BUSINESS

PROCEEDINGS
HP 3000/SERIES 100
rOCU) VOLUME ||
rutua=
'I"I -
E3E)
D ==
INTEREX
DETROIT CONFERENCE

SEPTEMBER 28 - OCTOBER 3, 1986

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
4GL & The Changing Role Of The Programmer

Ian Farquharson
Infocentre Ltd.
6303 Airport Road
Suite 300
Mississauga, Ontario
L4V 1R8

Application development using Fourth Generation Programming Languages
is now a reality.

The existing data processing professionals are competent, educated and
comfortable in the use of traditional 3rd generation programming tools
and methodologies.

The systems analyst will continue to perform systems analysis
regardless of the implementation tool. But what about the task of
programming and the programmer himself? The programmer has spent years
refining his or her skills and expertise in traditional languages and
their associated development methodologies. The analyst on the

other hand has been refining the art of needs assesment, user interviewing
and systems analysis.

With Fourth Generation Software, the task of implementing application
software systems becomes one of telling the HP3000 what to do but not
necessarily, how to do it. The job entails the intricate involvement
of the various end users.

This paper will focus on the changing role and expectations of the
programmer in HP3000 data processing environments as a result of the
implementation of 4th and higher generation programming tools. It will
address the changes in the required skills set and the considerations
necessary to ensure the smooth transition to programming of the future
for todays existing data processing professionals.

Paper 3213 1 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Drive screens -- don't let them drive you crazy

by Michel Kohon
Tymlabs Corporation

Once upon a time, the computer world was nice and cozy. Users didn't exist, and programmers
were heroes. That was the time of the 80-column punch card and the endless listings. Cards
were generally used to write memos, sometimes to enter data in the big 64K IBM/360. Listings
were used to decorate the top of office cabinets, though we know of some zealous employees
who actually read them.

This ideal period ended suddenly when computer manufacturers such as HP introduced
interactive systems. They tried, sometimes with success, to have users and programmers talk to
each other, using the CRT console as an interface. Suddenly, programmers had to write systems
that would be used directly by users. And there the chaos began!

No one knew how to communicate with the users. What shall we display on the console? Where?
When? Instead of letting users enter data in columns, as with punch cards, someone decided it
was better to present data in rows. The controversy heightened.

Some programmers were in favor of columns while others were in favor of lines. Then a smart
programmer suggested that instead of displaying a prompt at every transaction, it could be just as
easy to leave the prompt on the screen, erase the old data, and let the user enter new stuff. Then
another one dared to put several columns on the screen so that users could see the whole form
during the transaction.

Things could have settled down a bit, but instead they got worse. A wise programmer realized that
sending the data field by field to the computer was not efficient for the machine. Instead, it would
be more productive to send the whole block of data for processing at each transaction.

The block mode was born, creating a much bigger hoopla. Was block mode user-friendly? (The
term then was ergonomic.) Some programmers wondered. Since they were doing software for
users, they had to deal with them, and although you don't want to mix the two, these things
happen. Some programmers and users became friends to the point where they actually talked to
each other; hence, the concept of user-friendliness was created.

Block mode and character mode advocates continued to war. "Anyway, in both cases the whole
form is displayed on the screen,” said a user.

"That's true,” said the two groups of programmers. "Is it not what you wanted?"
"No," said the user, "you never asked us before.”

Most of the current applications have adapted themselves to the strengths and weaknesses of
one system or the other. In the case of block mode, a form is displayed, data is collected without
controls (except some editing), and the data is sent to the processor. In the case of character
mode, a form is displayed, and data is collected with controls on a field-by-field basis.

In both systems, the screen drives the user instead of the user driving the screen, and users don't
want that anymore. Did they ever want it?

Let's take an example of what users want in real life. The screen displays "Name." User Joe
enters his name. Then the prompt "Sex" appears. Joe enters "M" for male.

Following the old approach, the next prompt would have been "Maiden Name.” Joe doesn't need
that - he is a male! Why not skip to the next prompt? On the other hand, and to follow the same
example, the fact that Joe is a male might trigger a new set of questions related to his military
duties.

Paper 3214 1 DETROIT, Ml

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

New screen-driving techniques can display a new form for these miilitary-related questions. The
new form will overlay part of the old and disappear as soon as it is completed. The windowing
concept is here!

A windowing system enables you to pop, hide, and overlay windows on the screen so that your
program follows the user's train of thinking instead of the user following the program's rigid
process. Programming windows is easy as long as you put your feet in the user's shoes.
Programming a so-called intelligent system becomes a day-to-day habit. With windows, your
program comes alive and your users become more productive.

A correct windowing system will at least provide the capabilities to create and display windows,
overlay windows, fill windows, and delete windows. In addition to those basic functions, a good
windowing package will offer some "window dressing" (it was too easy), features such as changing
colors, changing borders, and moving the title's position in the border.

Since you are now familiar with the idea of windows, brought to us by the Xerox STAR system and
effectively used by Apple and now IBM, let us redesign the classic-order entry system that most
packages use as a tutorial. But first, let's walk through the order program as it was. The dialogue
between the user and the program assumes that VPLUS is used.

The user enters a customer name, an order ID, and answers "No" at the prompt "Different delivery
address?" At this point, the user tabs 14 times to reach the delivery-condition field, a product
number, the quantity, and a discount. The user presses ENTER to ship the data to the processor.

The same application using windows will look like this. The program opens a window with three
options:

- N

1 - Order Entry

2 - Product Maintenance

3 - Customer Maintenance

. J

This window is in the top left corner of the screen with blue background. Although colors are
optional, they really make sense with a windowing system as a visual guide.

The user enters a 3, and a second window comes on the screen with a green background and a
large border. This window sightly overlays the first one, leaving the first line and the column with
1-2-3 still visible. It is a good practice to display the new window under the selected line. Our new
screen will look like this:

Paper 3214 2 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

1 - Order Entry

Customer name:

Order id:

Different delivery address:
Different invoicing address:

Delivery conditions:

\ J

Let's now assume a different delivery address. The program reacts immediately by opening a third
window with the name and address prompts overlaying the second window. Once the delivery
address is entered, the foreground window disappears and the user is back to the previous
window.

At this point, the user might request some online help. The old system would either have to erase
the whole screen or have one line ready for a help message. Both solutions are really
inconvenient for users. A windowing system can simply pop up a help window at a convenient
location that the environment is not disturbed.

As this short example shows, a good windowing system helps build a more productive user
interface and can help an application create the same excitement as Symphony, Topview or
Sidekick.

A windowing system in itself is not a multitasking operating system but rather a set of tools callable
from a program. The programmer can use these tools to create a myriad of "intelligent" user
interface for any environment, ranging from a small payroll application to the most complex multi-
tasking operating system. Many designers will see, as IBM and HP have, that this is the way to go.

Paper 3214 3) DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

An Expert Financial Planning System

Don MacKenzie, Ross Hopmans, Shawn Brayman

Brant Computer Services Limited
Burlington, Ontario

Paper 3215 1 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP

Paper 3215

Contents

[
.
o

Problem Description and Overview

Design Approach and Analysis
System Specifications

NN
- O

The Financial Planning Process
The ROGI Model
ROGI Strategies

wWww
« o o
N O

The 4GL Component
Modelling
Pros and Cons of the 4GL

PN
N HO

The Expert Side
Knowledge Acquisition
Rules from the Expert

(S ¢)]
P
N HO

Conclusion

o
.
o

. INTEREX 86

DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

1.0 Problem Description and Overview

This paper discusses a financial planning package developed by
Brant Computer Services that combines 4th and 5th Generation
Languages in a financial service oriented expert system.

The mandate from our client, an experienced financial planner, was
to design a micro-computer based system that provides two
distinct yet integrated functions:

1) A package that stores the client's personal and financial
data. Once the data is in the system, it must be
formatted into the necessary financial statements,
schedules, and accompanying calculations intrinsic to the
financial planning model.

2) The capability to provide recommendations based on
quantitative and qualitative information about the
client being evaluated. The knowledge required to make
these recommendations originates from the financial
planner and this knowledge is imparted to the expert
system.

The interesting implications of this project stem from the
practicality and feasibility of expert systems in the financial
services sector and the degree to which important business and
financial decisions can be formalized into a computer based
system. Related to this issue is the question as to whether the
system can be economical, user friendly, and portable.

Secondly, the attempt to deliver a system for production use which
is a hybrid of an artificial intelligence program and a
conventional fourth-generation language program has proven to be a
challenging and exciting process.

2.0 Design Approach and Analysis

Initially we defined the two distinct functions of the system. As
mentioned in the introduction, one component of the package
involves data capture, reporting functions, and a modelling
capability. These tasks are typically straightforward and
formalized and they must be carried out by the financial planner
in order to make strategic decisions based on the financial and
personal status of the client. To put it more simply, this is the
'front end' of the financial planning process: the accumulation
and integration of the client's financial information. The

Paper 3215 3 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP . INTEREX 86

information used up to this point is quantitative.

The second and more elaborate function of the system is the
'expert' capability that involves the digestion of both the
quantitative and the qualitative factors in the financial planning
process (more about this later). This functionality implies a less
tangible process than the one that occurs in the front end
section. However, a similarily formalized procedure is required on
the expert side although the decision criteria and considerations
for the expert process are broader and involve factors that are
not purely quantitative.

our aim here is to let the financial planner provide the rules and
reference points to the expert system so that the expert system
can supply valid strategies for the client to follow. Herein lies
the obvious challenge in this type of project: the formalization
of the complex and seemingly non-procedural processes and the
duplication of these processes on a computer based system.

The identification of the 'front end' and the 'expert end' of the
system gave us a starting point in the design of the system. By
determining the data requirements for the reporting functions and
the higher level processes, we were able to design the 'front end'
section of the system.

2.1 System Specifications

The system front end was designed to handle data entry, reporting
and modelling functions. The primary functional requirements of
this system were defined from a number of sources. Primarily, our
client provided us with samples of the input documents for his
clients as well as sample plan presentations. The client was
generating the bulk of his reports and schedules through a LOTUS
123 spreadsheet.

Oon top of this, we received a number of plan presentations from
other financial planning services. The exposure to the various
planning approaches and presentations enabled us to extract the
common requirements of the different plan philosophies.

We attended a financial planning conference and paid particular
attention to the different planning software packages that were
being promoted at the conference. Our emphasis here was on the
capabilities and user friendliness of these packages.

Critical to our analysis was the extensive amount of time spent

Paper 3215 4 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

with our client on the financial planning process in general. We
did have access to a broad range of financial planning material so
that we were able to get an idea of the amount and nature of the
information involved in the financial planning process itself.

The formalization of the planning process was achieved by sitting
down with our client, extracting his knowledge, and formulating a
set of rules to guide the expert system. This 'knowledge
engineering' involves refining the expert's knowledge into a
series of relationships and conditions that can be utilized by the
expert system. It is this information that guides it's decision
process.

3.0 The Financial Planning Process

Before describing our particular model, I will briefly discuss the
financial planning process in general. Essentially, this process
involves the assimilation of all the aspects of an individual or
family's financial and personal status. With this information, the
planner devises a methodical strategy whereby the client can
achieve his/her specified level of financial independence. This
sounds relatively straightforward, although it will become
apparent 1later in this paper that the process is complex and
involves many variables.

Currently, the financial planning industry is unregulated and
fragmented. Financial planning, unlike other financial services
such as accounting, does not enjoy a uniform, standard
methodology. Depending upon the financial planner involved, the
quality, method, and philosophy behind the planning does vary. On
top of this, financial planning services may be industry driven
(the service may be an arm of a financial institution such as an
insurance company or investment dealer) or product driven (the
planner favours a particular investment vehicle).

The purpose of this paper is not to perform a critical analysis of
the industry but rather to highlight the fact that there is a need
to standardize and define some of the universal requirements of
financial planning. One objective in designing a package such as
this 1is to provide a front end to the expert side of the system
that 1is relatively devoid of one particular approach. In other
words, the facts and information that are supplied to the expert
system should be unencumbered by a particular planning philosophy
and the expert system should not be constrained by a limited
amount of information about the client.

Paper 3215 5 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

3.1 The ROGI Model

The philosophy behind the Rate Of Growth on Investments (ROGI)
model is simple and easy to understand. The aims of this model are
as follows:

1) determine client's current financial status.
2) determine future capital requirements and objectives.

3) using a strategy of savings and optimal return on
investment, enable the client to achieve the targeted
financial goal within a time frame that is both suitable
and realistic for the client.

The task here is not dissimilar to a typical optimization problem
where a function is to be maximized subject to a constraint. 1In
this type of problem, both the maximizing function and the
constraints are non linear since many of the variables involved
are not dquantifiable. To put it simply, it is hard to build
information like "I hate gold, love real estate, am indifferent to
stocks as long as I maintain enough money in GIC's", etc. into a
formalized equation.

The key philosophy behind the ROGI model is that the achievement
of the client's financial objectives take into consideration all
of the aspects of the client's financial and personal status. This
means that the optimal strategy involves accounting for asset
management, cash flow, investment planning, estate conservation
and distribution, and the client's attitudes toward financial
independence.

3.2 ROGI Strategies

In the ROGI model, the client's future capital requirements are
laid out in such a way as to enable the planner and the client to
relate the client's specified financial target to the client's
current financial status. If the client is already on a path that
will allow him or her to achieve the desired financial goals, it
is unlikely that the individual is in need of a financial planning
service. If, on the other hand, the client must alter current
savings, portfolio performance or retirement expectations, then a
strategy must be devised to enable the client to achieve the
target capital pool.

Paper 3215 6 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

PRESENT ======-em—ceeceeccc e e e e e e e > FUTURE STATE
Future
Current --> -=> Capital
Status Requirements
| |
v v
- Net Worth - Outstanding Capital
- Asset Positioning outlays
- Cash Flow - Target Retirement
- Debt Structure Income
- Portfolio - Retirement Age
Performance - Retirement Length
- Value of Pensions - Long Term Inflation
- Insurance Coverage - Long Term Return on
\é/’f. Investments
- Tax Rate

STRATEGY

Level of Savings &

Return on Investment 6\\

Client Attitudes &
Attributes

Looking at the diagram above, we can get an idea of the types of
considerations that come into play in the planning process. The
front end of the system will provide the planner with the storage
of the data, reports required from the hard data and the impact of
the predictive data on future capital requirements.

The ability to assess the impact of the predictive data is what I
have referred to as the modelling function of the front end of the
system. By modelling, I mean that by manipulating certain
variables (they are quantitative) the planner can see the
resulting impact on the capital requirements of the «client's
financial goals. This is important since there is not necessarily
one optimal savings and investment rate, and the planner must be
able to determine the impact of alternative scenarios on the
client's future capital requirements.

Paper 3215 7 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

With the client's current status and projected requirements in
hand, the planner and the client can get an initial impression as
to the viability of the client's goals. The planner can begin to
see how the client's current cash flow and portfolio fit in with
the 1level of savings and investment that will lead to the desired
retirement income.

OPTIMIZE OPTIMIZE RETURN
SAVINGS ON INVESTMENTS

1. Earn more 1. Increase Risk

2. Spend Less 2. Investment Education
-budget 3. Professional Management

-restructure debt

-alter living standards
3. Taxes

-shelters

~-deferral strategies

Given that a «client has specified a retirement income that is
translated into a target capital pool, an optimal savings and
investment return are required. How are these levels determined?
Obviously, the client's projected cash flows and portfolio
performance are determinants. On top of this, the «client has
certain attitudes, opinions and biases that prevent particular
combinations of savings and returns on investments from being
viable planning strategies for the planner's client.

What are these constraints? These are considerations in the
planning strategy that are not purely economic or quantitative.
For example, the planner may recommend a target savings level for
the client to follow that is within the realm of the clients cash
flow. The client, however, may find this savings level
unacceptable in that it reduces his or her immediate standard of
living to a level that does not justify the purpose of the savings
plan. In the same manner, a suggested portfolio performance may be
rejected by the client on the grounds that it implies a risk
tolerance above that of the client. Or the planner may recommend
a restructuring of assets to increase liquidity that the client
cannot accept because the asset in question has a 'sentimental
value' to the client.

4.0 The 4GL Component

The previous discussion has given an indication of the

Paper 3215 8 DETROIT, Ml

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

considerations involved in the financial planning process. Despite
the repeated warnings about the intangibility of much of the data,
there is obviously a need for a variety of financial statements
and reports based on quantitative information. An objective of the
4GL component of this package is to integrate information and give
a profile of the client's financial status.

On the asset management side, the key reports to be produced are
statements of net worth, asset positioning, and the portfolio
performance of the the <client. Specifically, the net worth
information relates the debt/equity aspect of the client's
holdings. Asset positioning gives a breakdown of the types of
assets held by the client (personal, invested capital, tax shelter
etc.), as well as the liquidity of the assets. The portfolio
profile is useful in determining if the individual is adequately
diversified and has a portfolio that is in line with his or her
comfort level with regards to safety of capital. The portfolio
profile can also indicate how each component of the portfolio is
performing relative to the portfolio as a whole.

Cash flow reports indicate to the planner the ability of the
client to reduce current debt and to increase the client's net
investable capital. When determining an optimal savings level for
the client, the planner must have a good feel for the client's
discretionary cash flow from the present time to retirement or
financial independence.

Referring to the diagram on page 4, the asset and cash flow
reports profile the current status of the client. The future
capital requirements of the client are calculations that are based
on a combination of the client's needs in the future as well as
certain predictions about long range economic conditions such as
the rate of inflation, the client's nominal return on investments,

tax rate on retirement income etc... Other factors to be
determined include years to retirement and the 1length of
retirement.

These financial and future requirement reports are the basis of
the planning process. The client's attitudes and characteristics
may have a large impact on the particular strategy devised for the
client, yet these qualitative characteristics are meaningless if
the economic circumstances of the client preclude a realistic
chance at attaining the client's objectives. In other words,
before the planner can be concerned with all of the considerations

Paper 3215 9 DETROIT, Ml

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

of the planning process, he or she must have the basic financial
profile of the client in order to determine a realistic financial
objective for the client. This relates back to the statement that
while the 4GL is providing the 'less glamorous' component of this
package, the overall efficacy of the expert system will be
proportional to the quality of the information it is accessing, as
well as the rules that make it up.

4.1 Modelling

The planner and the expert system require the capability to
determine the impact of various strategies and manipulations on
the client's future cash flows, capital requirements, and
portfolio performance. Given that a particular savings level and
return on investment are not feasible for the client, the planner
will investigate the viability of various savings levels, returns
on investment, retirement parameters, investment vehicles etc...
The impact of a proposed scenario or strategy must be immediately
reflected in the system. Of particular importance in the ROGI
model 1is the ability to see how various assumptions and scenarios
impact on the target capital pool required by the client at
retirement.

For example, if a particular financial objective is not realistic
given the client's current desires and financial profile, the
planner may want to determine whether a 5 year deferment of
retirement will enable the client to amass the desired capital
pool at retirement. Alternatively, the planner may test the impact
of an increased investment return on the client's ability to
achieve the required level of invested capital. Below are some
examples of the modelling capabilities that the 4GL should
provide:

1) The effect of a different tax rate on retirement cash
flow

2) The impact of the purchase of a real estate investment
on capital requirments at retirement

3) The impact of a deferral of retirment on the required
level of savings and return on investment to achieve
the targeted financial goal

4) The impact of a restructuring of the client's portfolio
on the overall portfolio performance

Paper 3215 10 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

4.2 Pros and Cons of the 4GL

The choice of a 4GL for the front end functions is rooted in the
requirments of the front end:

1) strong screen handling/menu capabilities

2) data base access

3) user friendly

4) good reporting capability

5) linkup to 5GL

6) prototyping function

7) portability between HP3000 and IBM compatible
8) modular design capability

The prototyping capability of the particular 4GL that we used
(Speedware) is an important feature in designing a package such as
this one. Our client had a manual process of collecting the
client's financial data and we had to streamline the data entry
process to be easy to understand yet at the same time be able to
capture all of the information required by a comprehensive set of
financial documents. We were able to streamline the data capture
process by entering the test data on the system and producing the
various financial statements. In this manner we were able to play
with the data entry screens and let the design stage evolve to
the point where the system was capturing the necessary data while
keeping the data entry process relatively clear and simple to use.

A very strong feature of the 4GL we used was a module called
DESIGNER, which allows the programmer to create an application
using an online menu, screen, and report writer. Changes in the
input/inquiry screens of the system are reflected by a
corresponding data base modification generated by the DESIGNER.
Restructuring the data base as the development phase is ongoing is
simply a matter of defining a new data definition at the screen or
user level. The data base and code for the menu, screen and report
handling 1is generated by DESIGNER. The approach in this type of
system design is to define the system requirements from the end
user viewpoint without having to be too concerned with various
file structures or coding strategies.

The modularity of the system is another important consideration
because if the system is designed to handle a complex scenario, it
is convenient to be able to take out the more detailed functions
if they are not required for that particular planning situation.

If the client only requires an asset and cash flow profile, the
data entry process will entail entering asset and cash information

Paper 3215 1 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

without any prompting for future expectations or requiring
specific investment information regarding tax planning, risk
attitudes, desired retirement cash flows etc...

The ROGI model has one input screen for the client's personal
information, one screen to handle family data, one screen for all
asset types and liabilities (personal, investment, tax shelter),
one screen for cash flow, one screen for future capital
requirements, one screen for supplementary income at retirement
(pensions, annuities etc.), one screen for capital requirements at
death, and one screen for insurance profiles.

The portability of the 4GL application between the mini and the
micro computer enables development to occur on the HP3000 with a
port down to an IBM compatible. All that is required from the 3000
environment is the download of the data base schema file and the
4GL code - and, of course, MicroSpeedware on the PC. Once on the
micro, the data base is generated via a data base generating
utility and the 4GL code is interpreted by the SPEEDWARE
intepreter. The requirments of the micro are a minimum 512 meg
storage and a hard disk to handle the 4GL interpreters and
utilities.

There 1is a certain amount of functionality that cannot be
duplicated on the IBM compatible micro. Given that the micro does
not have more than one page of terminal memory, certain screen
jumping functions are not available. Secondly, the use of function
keys is diminished on the micro - this is an attractive feature in
the 3000 environment. Thirdly, unlike the 3000 environment,
external language subroutines cannot be called. There are also
certain data types that do not perform well on the micro such as
data items defined as floating point integers (ie: Jl, J2
fields).

The most significant shortcoming of the 4GL is the fact that it
does not handle exponentiation in it's calculation routines. This
posed an inconvenience in the development phase as many of the
calculations performed were either present value or annuity
functions. To handle this, it was necessary to write 1looping
routines. To complicate matters further there is a calculation
involving determining the Nth root of a number. While the
calculations could be performed in the report language of the 4GL,
the lack of the exponentiation function added overhead and
processing time to the reports that require present value or
compounding rate calculations.

Regardless of the difficulties, the ability to design and deveiop

Paper 3215 12 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

a system on the HP3000 and run it without modification on the
micro with everything including an Image compatible database, is a
tremendous time saver.

5.0 The Expert Component

With the client's information in hand, the task of the expert
system is to use the same considerations in defining an optimum
savings and investment strategy that the human expert uses. The
mandate in the system design phase is to convert the expert's
decision process into a set of rules and relationships that can be
incorporated into the expert system.

All expert systems are goal oriented in that they are trying to
solve a problem. In this case the problem faced by both our human
expert and our expert system is "How do I structure a plan for
this individual that best allows him to meet his financial goals
with a minimum of pain?" It is not good enough to propose just a
solution that works, we must select a strategy that takes into
account a client's fears, goals, loves, hates, desires and more.

5.1 Knowledge Engineering

Knowledge engineering is the process of determining how it is our
financial planner makes his decisions when he is preparing a
strategy or plan. At this stage two Brant knowledge engineers
have met with the financial planners about a dozen times in trying
to distill only the rules of thumb that the expert is using.

Before getting into specific examples of the process and the rules
it is worth reviewing a few basic "rules" about knowledge
engineering.

The first thing that Brant's knowledge engineers discovered was
that, unlike a conventional systems analyst role where the end
user has too many suggestions and you must weed out the
deliverables, our expert had the opposite problem. He appeared to
have nothing to say.

our financial planner explained up front that he didn't really
have rules, but rather made his decisions intuitively based on
years of experience in "reading" clients personalities. We were
informed that there was not a list of rules or procedures that he
followed to make his decisions.

This response is actually a well documented "pseudo-truth" that

Paper 3215 13 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

has been addressed in many Expert Systems text books. The problem
has been termed the "Expert Paradox", where psychologists have
discovered that the better your expert, the less capable he or she
will be in describing how they make a decision. It has been
determined the experts use what has been termed "compiled
knowledge", where over the years the individual rules or
conditions in a circumstance become compiled so that the expert
actually does not use basic rules but can jump straight to the
intuitively correct answer. The knowledge engineer's job is to
decompile the knowledge into its composite rules.

Because the expert does not even recognize that he is using
compiled knowledge, it is useless to ask him or her "What route
did you use in this instance?" The expert honestly may not Xknow
what he had to do. What has become fairly standard procedure in
this type of process was to provide the financial planning expert
with example after example, scenario after scenario, and ask what
he would do and why. From these actions or responses our
knowledge engineers distilled the necessary rules for the expert
system.

5.2 Rules from the Expert

An example of the process and rules from the knowledge engineering
stage can be provided based upon one aspect of the decisions that
our expert would make; specifically, determining the risk
tolerance of the individual or family in respect to their
investment portfolio.

In our discussions with the expert on how risk tolerance played
into his decisions about portfolio structuring, we asked how he
picked a factor. 1In the "Fact Finder" on the client, the client
had been asked to rate his own risk tolerance from 1 to 9, where 1
was extremely conservative (ie: he would only invest in
guaranteed investment certificates in major banks that were
insured) and 9 was extremely daring (ie: all of his money was in
penny stocks of the Vancouver Stock Exchange or with bookies
across the coutry).

The first response from the expert was that he used the number
provided by the client to determine risk tolerance. When asked
what he did with a similar number provided by the spouse of the
client, he informed us that he took that into account as well. We
discovered that he 1looked at such factors as who made the
investment decisions, who appeared more knowledgeable about
investments, who was the primary breadwinner and several other

Paper 3215 14 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

factors before he selected a risk tolerance that may not relate to
either the spouse's or the client's selection.

A similar process occured when we discussed how the selection was
made for the family's after-tax income after retirement. It
turned out that the client was asked this question directly, but
in almost all cases this number was ignored. The expert asked a
wide variety of lifestyle questions that were each broken down
into composite numbers. The planner always selected the income
requirement figure that was largest, regardless of how it was
arrived at. 1In almost every aspect of the knowledge engineering
process we discovered that a myriad of "invisible rules" became
apparent once the questioning got underway.

There may be dozens and dozens of rules and relationships that
affect the selection of a risk tolerance. From these
relationships that were derived from examples or case studies,
generalized rules were determined.

risk tolerance (RT)if
client tolerance (RT)and
spouse's tolerance (RT).

In other words, if the client and spouse express similar
tolerances, go with it. If the client is also the primary
breadwinner, we go with his or her specified tolerance.

6.0 Conclusion
At this stage we have completed the 4GL system and are in the
process of refining the expert system. We are pleased with the

implementation and excited by the success of our first hybrid
system of 4GL and 5GL systems.

Paper 3215 15 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

HOW TO DEVELOP NEW APPLICATIONS: A STRATEGY

MARK WALLACE
ROBINSON, WALLACE & COMPANY
11693 SAN VICENTE BOULEVARD

SUITE 168
LOS ANGELES, CA 90049

I would 1like to discusa a strategy for developing new
applications. First of all, I’d like to distinguish between
two different classes of software application that you might
you want to develop in your shop. I’d like to make that
distinction based on the size of the application. The kind
of application that I’m going to be talking mostly about is
of a size that I call "industrial strength.™ For example,
like industrial strength Drano cleaner.

These applications are relatively large. Let me give you an
example. AC Sparkplug in the Detroit area is the
ranufacturer of sparkplugs for General Motors and also sells
to the after-market. They have a data base schema which by
itself is over 80,000 1lines. That is to say, when you run
the DB schema to compile their data base description, the
listing if taken to the printer would be over 1,500 pages
long. That’s an industrial strength application.

Another example would be airline reservations for American
Airlines or Eaatern or United; clearly industrial strength.
At the other end of the acale, we have what I call the toy
or tinkertoy-sized application.

The example that I will use of a tinkertoy-sized application
is the company bowling league report. Once a week, in the
evening, some of us go down to the bowling lanes and we bowl
in a team league. Every week a report gets drawn up showing
the scores of each individual and the handicap and so on and
ao forth. If we want to automate that, that would be
tinkertoy-sized application.

Now, why 1is it important to illustrate the difference
between these two? The reason is that a very different
approach is required if vyou’re going to be building an
industrial strength application. The same strategy that
works for the tinkertoy size may very well lead to a
disaster if you try to apply it to the industrial strength
size. For the tinkertoy size you may be able to simply go
ahead and write something down and see how it works. If it
doesn’t work out, throw it away and start over again.

Paper 3216 1 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

But that’s not going to be too good an approach if you’re
building an industrial strength application. The next
question is, why is that? Why do we need a strategy? Let
me draw some analogies from other areas. How would you buy
a computer? How would you select a 4th generation language
to use in your shop? How would you choose a school which to
attend? How would vyou build a house that met your needs?
I’m going to come back to each of these in a minute and
attempt to show that some planning is definitely called for.

Last year, when I discussed the problems with prototyping, I
mnade a general statement to the effect that vendors or
vendor representatives sometimes encourage customers to use
their 4th generation languages as a substitute for planning.
I made that statement in general because, first of all, I
believe it to be the case, but secondly, there really wasn’t
anything in writing for me to point to. That situation has
changed.

I have a piece of advertising 1literature that I picked up
from one of the 4th generation language vendors and I’d like
to quote from that document for you. It suggests that the
application development cycle now has been pretty
substantially changed due to prototyping with their 4gl.

Firast of all they talk about the old way of doing things.
The old way started off with a feasibility study and that’s
where you decide whether or not the system is feasible, that
is to say, cost effective. Whether the benefits it will
bring are such as to justify the cost of building it.
That’s the first step in what they call the traditional
approach. The next step is a detailed systems analysis.
Next step is a data base design. Then come the program
specifications including the screen and report layouts

Then the coding, then the testing of the program, and
finally documentation. That’s what they call the
traditional approach. That’s not too bad. What I’m going
to be recommending that you use is pretty similar to that.
1l don’t defer the documentation until the end, but by and
large what they’ve outlined ia a pretty reasonable statement
of the traditional approach. On the other hand, what do
they recommend.

Here’s what they say: prototyping with their 4th generation
language, I won’t mention it by name. First step, build the
system. That is where we start. Okay. We’ve left out a
few things, like the feasibility study. The feasibility
study was where we decided whether it was cost effective to
even do it or not. All right. Now how are we supposed to
" dispense with that just because we’ve got a 4GL? That is a
mystery to me. But anyway, that’s their first step.

Paper 3216 2 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Second step: show the system to the user. Third step:
modify the system according to user’s comments and then,
finally, repeat from step one above until the users are
happy. Now they claim that the prototyping approach is only
feasible because of the reduced development time and I agree
with that, but I would still say that for an industrial
strength application on the 3000 they have not reduced it
anywhere near enough.

Let’s go back and look at that approach or something similar
to it as applied to the four cases that I cited previously.
How would you buy a computer? Well, if you take their
approach, you jJjust order one. Don’t do any planning, don’t
even decide whether you need a computer or not, whether it’s
cost justifiable, just get one in and see if people are
happy with it. If they’re not, throw it out and get another
one, trade in your HP for an IBM or a Vax or trade in your
Vax for an HP. Just keep going through them until you get
one that everybody’s happy with.

How would you select a 4th generation language? Same
approach. Get one in, write a bunch of programs, if people
don’t like the language, throw it out and get another one.

What about choosing a school? Suppose you’re from Minnesota
and you want to study marine biology. Well, go to a school.
Go to the University of Minnesota. If it doesn’t work out
try the Univeraity of Nevada in Laa Vegaa in the middle of
the desert. If that doesn’t work out, give Kanaas a shot.
If that doean’t work out, try another one. Finally, you
enroll in the University of Hawaii or Univeraity of Miami
and you find a good program.

How would vyou build a house or a building to meet vyour
needs? Well, don’t do any drawings or plans. Suppose I was
an architect and you hired me to supervise the construction
of your new dream house and after a S minute conversation 1
said, "Well 1look, you’ve got the lot Let’s don’t waste any
time, meet me there tomorrow morning." And you do that and
I show up with a work crew and a steamshovel and we start
digging a hole in the ground.

I think you would recognize that that is a 1little bit
premature, that building the house and if it doesn’t work
out let’s knock it down and start over again, that’s really
not the best way to go. It might work if you’re building a
dollhouse with tinkertoys but if you’re building the Empire
State Building and you propose to erect it and then if the
users are not happy, then we’ll knock it down and try
version two, that really is a bit of a problenm.

Paper 3216 3 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

You know, if you want the extreme example, you’ve got the
case of the space shuttle where that was launched without
adequate preparation and clearly the users were very unhappy
with the most recent results. So what are we going to do,
just go back and put another one up and see if that works
ocut? The point I’m trying to make is, that if the project
is of industrial strength size you’re going to need a more
disciplined approach, otherwise many thing€ can go wrong.

The general idea as to what’s going to go wrong if you don’t
have a strategy is that you’re simply groping for what it is
the user actually wants. And the computer industry case
histories suggest that prototyping is an especially bad way
to grope for user needs in a situation where they are not
previously well understood, and where the project is of
industrial strength size. 1It’s going to be very ineffecient
because the minute you have to redo the user needs the
entire prototype can be thrown out, and, potentially you
have to start over from scratch.

Well, this idea of prototyping is simply one specific
example of implementing the software too soon. That is not
something that’s new to 4th generation languages. There’s a
phenomenon known as WISCA, stands for Why Isn’t Sam Coding
Anyway?, and that phenomenon was named by a man named Gerald
Weinberg, author of the “Psychology of Computer
Programming."

He named that because it occurs so often in the field. It
occurs because the project manager believes that the only
productive work is the actual writing of the program and
that anything prior to that--design, analysis, interviewing
the user, is simply some kind of ritualistic waste of time
that we go through before we are ready to get down to the
real nitty-gritty.

Another reason that we have implemented to soon,
historically, is because management indulges in an activity
that I called backward ‘“estimating™ and I say in quotes
because it’s really not estimating. What they say is
something like: We’d 1like this software to be ready on
February 1lst of next year and we feel that it’s going to
take 4 months to program and therefore you had better start
programming on November 1 regardless of where you are in
analysis or design. So even though you don’t know what the
user wants or have any strategy for solving the situation,
just start programming, because we think it’s a 4 month
programming job.

Paper 3216 4 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

That ia not the best way to build a system that satisfies
the user’s needs. But temptation to start implementing too
soon is worse with the 4th generation languages. Ideally,
you would think that management would recognize more time

should be available for wupfront planning because the
implementation will go so much faster. But that seems not
to be the case. First of all, if managers themselves did

not use 4th generation languages, if they come from a 3rd
generation language background, they won’t be familiar with
how fast the programming can go.

Number two, they may still have fallen into the trap by the
vendors that you can just go for broke and build the system
without doing any advance planning. So, in summary, why do
developers rush into the implementation phase? I feel that
nost of the time it’s one of three reasons. The first one
is because we are more afraid of being late than we are of
being wrong.

The second reason is what a friend of mine named Tom DeMarco
called hysterical optimisn. That’s where we think “it’s
can’t happen to me."™ We can launch the space shuttle,
nothing’a going to go wrong. Hysterical optimism is the
jdea that you can pull something off without having put in
the work that normally would be required to ensure success.

The third reason ia an area that is not the fault of the
data processing department, and that is lack of user
cooperation. Sometimes the data processaing team will be
given an asaignment and will not be allowed to communicate
with the end users. Either the users themaelves will refuse
to provide data on their needs or top management will forbid
the computer people to go talk to the users because it would
distract the users from their day-to-day work.

Now that’s a shortcut to disaster. 1 feel that developing a
requirements specification has to be a 50/50 proposition
between the systems analyst and the end user. If the user
is not willing to play an equal role then the reaulting
product ia almoat guaranteed not to be satiafactory unless
the application i1s =so0 aimple, 1l1like the bowling league
report, that it can be knocked out in an afternoon.

lLet me give you s=some historical support for the problems
people have run into by prototyping without the proper

background. First of all from Bankers Trust Company in New
York, as reported in ComputerWorld of June 4, 1984, some
quotes: “prototypes were being misused, acrobats (an

acrobat is someone who can make your 4GL stand up and jump
through a hoop) attack requests without proper analysis, and
that led to poor design and documentation and to data
integrity problenms.

Paper 3216 5 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

In this gentleman’s view, a prototype is a full working
representation and not something that is thrown together in

an afternoon. The worst danger of all he refers to is
“users were losing interest in confirming systems
specifications since they always assumed the prototype could
be changed.™ That’s a disaster. It’s hard enough to get

the user involved as it is. If you give them the impression
that they don’t need to be involved because you can just
magically change the entire system because of the speed of
your 4GLs, you’re going +to be bringing down a lot of grief
on your head if you’re trying to build something that’s
industrial strength.

Here’s another case study from Hughes Aircraft as reported
at the Structured Development Forum Conference in February,
1985. Prototyping, the author concludes, is not a
substitute for analysis and design, number one. Number two,
there is too much emphasis on details of form and screen
layouts. This distracts attention from essential policy
requirements. Number 3, prototyping 1is dependent on a
preexisting stored data model. That’s a critical point. If
you do not have an existing data base containing the data,
if you’re trying to determine what a new data base or set of
files should look 1like, prototyping is a terribly
inefficient way to do that.

Numrber 4, there is always the temptation to "enhance'™ the
prototype into the final system if either the project is
late or politics rears it’s ugly head. Number S5,
prototyping does provide valuable assistances in defining
the man/machine interface. What should the screens and
forms look 1like? How should we navigate through them?
These are important issues when we get to the design and
implementation stage, but not before that.

So the problem is that with these 4th generation languages
now we have to deal with both WISCA: Why isn’t Sam Coding
Anyway?, and WISPA: Why isn’t Sally Prototyping Anyway?
Both of those situations are dangerous.

Now having called your attention to the problem, what do I
propose for a solution? The solution is an application
development strategy. That strategy starts with a phase
called the Blitz. The Blitz is a very fast pass over user
requirements. It should 1last less than a week for any
system that you’re building on an HP3000. The Blitz is not
a complete mrodel of the requirements but simply a
preliminary version that’s used for management purposes to
plan the rest of the effort.

Paper 3216 6 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Following the Blitz we do a detailed requirements
specification and simultaneocusly we do a data or information
modeling of the data structures that are going to be
required. The results of those two activities feed into a
design step where we do a detailed data design and, if we’re
going to implement in COBOL, a detailed software design. If
we’re using a 4GL, we can bypass the software design because
the functionality will be built into the 4GL.

Following that, we can implement the system and subject it
to testing. If it passes the test, it then is acceptable
for installation. I want to look at some of these steps in
more detail. First of all, the specification or
requirements definition phase. That is also known as
systems analysis. The purpose is to establish what the
system must do. How to do it is deferred until design time.

Again from Bankers Trust, their conclusion, “*What is
required is a functional specification, in fact a project
cannot proceed to the next stage without it." Another quote
from May ‘84 ComputerWorld, *“The lack of complete and
correct specifications is the problem.™ Which brings us to
an observation known as Gordon’s Law. Mr. Gordon stated
that “If a thing is not worth doing at all, it’s not worth
doing well."

Another way to phrase that is, "“Pay me now or pay me later,*
from the televiaion commercial. Meaning that if you don‘t
pay up front to have your engine maintained by doing thinga
like changing the oil, vyou’re going to have an expenaive
rebuilding job on your handa. You can pay for a lot of oil
changes with what it would coat you to have an engine
rebuilt.

It’s the same thing in data processing. The cost of fixing
an error in the specification, if that hypothetically would
be $100 for your system, the cost of fixing it in the design
would be $1000. And the cost to fix it once the programs
are written would be £10,000, So correcting problema up
front is a lot more cost effective way to go.

We’re going to suggest that, in order to do this, you build
a model of the user’s requirements. A model has been
defined as '"a description or analogy used to help visualize
something that cannot be directly observed." That’s from
Webster. I would suggest that your new system cannot be
directly observed yet because you haven’t built it.

Paper 3216 7 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

So we’re going to build this model as a way of capturing the

user requirements. Now, a model necessarily must omit some
aspects of the new system, otherwise it would be the new
system itself. The structured analysis model that we are

proposing omits things like screen formats, report layouts,
physical storage details (e.g., packed or zoned) and the
flow of control from one screen to the next or when do we
trigger a report and so on. Unfortunately the prototyping
model that is typically built with a 4GL focuses on exactly
those details. That is very premature when you’re simply
defining requirements.

Now I’d like to talk a little bit more about the idea of the
essential requirements for a system and the concept of the
Blitz. First of all, let’s take a look at how defining the
requirements and building a system has been done in the past
several years. The diagram that I’m referring to is very
similar to the statement that was made by the 4GL vendor in
their advertising as to the traditional approach.

We start with the survey, then we do a detailed analysis,
then we do a design which would include both the data and a
function design in the 3rd generation environment or simply
a data design in the 4th generation environment, then go on
to implementation which would include programming, testing
and so on.

Now, let’s take a more detailed 1look at the way that the
structured analysis phase has been performed. We start by
nodeling the existing system. We study the current
implementation. Then the next step is to derive the logical
or essential requirements. We look into the current system
and we try to strip out any signs of that system that are
due to historical technology and not fundamental policy
requirements.

Let me mention a 1little war story here. IBM last vyear
announced that it was closing its final plant that produced
80 column punchcards. This is in 1985S. They’re finally
getting around to closing this plant. It doesn’t mean that
you can’t get punchcards still, simply that there was not
enough demand for IBM to continue producing. Why is it that
systems using the latest state of the art microchips and
circuitry still operate with punchcards or data bases where
every record is 80 characters long? The reason is because
the developers of the systems never took the intermediate
step of deriving the 1logical or essential requirement
policy. So we’re going to do that.

Paper 3216 8 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Then we will add in the new requirements for the next
version of the system and finally we will select the
automation boundary. That 1is to say, we will decide which
activities are going to be done by computer and which ones
will be done by human beings because, remember, we need to
focus on both of those pieces of the systemnm.

Now, when people actually applied these traditional ideas of
structured analysis, they came up with the following
evaluations. First of all as far as the analyst goes, they
found improved communication between themselves and the
users and also between themselves and the developers but
there were some problems. Problems include, on the
technical side, finding the true requirements. Number one,
What are the logical or essential requirements? Number two,
how do we make the transition to a software design.

There was also a managerial problem. How do we efficiently
apply this structured analysis technique? How do we
allocate our manpower and how do we plan or estimate or
control this work when we’ve never done it ourselves? The
reasons behind these problems stem from the fact that
classical structured analysis provides very strong
documentation conventions, but it doea not provide as
detailed a set of application strategies, or how to apply
the documentation conventions that it generates.

I’ve bean calling thia claaaical atructured analyaia and
that may be somewhat of a misnomer, especially in the HP3000
world, becauae it really is only about 10 yeara old and many
people in the 3000 area, because they have not been building
industrial atrength applicationas, have no exposure to the
techniques. The point is they’ve been out there long enocugh
to have been refined and re-engineered in a second pass and
that pass is known as essential systems analysis.

Essential systems analysis was developed by Steve McMenamin
and John Palmer. It consists of a conceptual framework upon
which are built those technical and managerial atrategiea.
The technical atrategy ia a set of procedurea for deriving
the current physical, current 1logical, new logical and new
physical models. It is based on the assumption that there
are no managerial constraints on the project. That is to
say that we have as much time as we want and as many
personnel as we would ever want and no constraint on money
that we spend during the analysis stage. So, in other
words, it’s an idealized approach.

Paper 3216 9 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Then they have the managerial strategy, which is the
technical strategy optimized by the assumption that the
project is constrained. Therefore we bring in assumptions
that we don’t have an unlimited amount of time. We don’t
have an unlimited amount of people or money to spend
building this requirements model so how should we proceed.

The first step is what I refer to as the Blitz. And when we
Blitz a system we could basically start off in one of two
ways. We could Blitz the existing system to determine the
requirements that it currently is providing a solution to,
or we could directly Blitz the new system, ignoring the
current one, to try and build the model from scratch.

Now, which approach you take depends on which strategy will
yield the most appropriate essence. For example, you need
to consider how forgiving is the system’s environment. If
it’s an air traffic control application, you’re going to
need to be more careful than if it’s the bowling league.
Which way will minimize mistakes? How different is the new
essence going to be from the existing essence?

How accessible 1is the existing essence? If the current
system documentation consists only of uncommented assembler
computer program listings, it may not be the most cost
effective appoach to dig into those. However, typically, on
most development efforts, you will choose to study the
essence of an existing system to provide the basis for
defining the essence of the new one.

The reasons why are that there is an existing essence which

is close to what the new one will be. Normally when we
build a new application, we don’t change the underlying
policies to any great extent. We may change the

implementation technology considerably but the business
problem that it solves generally will not change very much.
We have to have some policy today in order to be in business
even though we’re using pencil and paper or some other
approach.

Also, the essence of the current system normally is
reasonably accessible and we have sufficient time to study
it. Finally, there is sufficient danger in trying to ignore
the current system and specify the new essence from scratch.
We may miss something. It would be very embarrassing to
deliver a brand new system after a year of work only to hawe
the user say, “you forgot function X and our old system has
been doing that for 10 years."™ And your answer is, “Mr.
User, you never told us that X was a requirement.*" And the
user comes back and says, "but I assumed that everybody knew
that.” Okay. To avoid that phenomenon, amongst others that
can get us into trouble, we generally study the current
system first.

Paper 3216 10 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Now, the Blitz is a high level look at that system in order
to optimize the use of project resources. We teach a 3 day
class, the central point of which is blitzing and in this
discussion I’m only going to have time to give you the
briefest summary of that material. Basically in the blitz
we establish the purpose of the system in the first step,
second, we determine the context of the system. That
involves specifying which functions are included versus
which ones are in the outside world.

Third step 1is to identify the events or transactions that
the system has to respond to. The fourth step is to develop
the data or information model, whichever term you want to
give it. The fifth step is to build models for each
essential activity. There’ll be a separate essential
activity reponding to each event. And then the sixth step
is to integrate those essential activity models into one
overall essential model of the current system.

Now once we’ve done that, we have a reasonable understanding
of the essence of the new system and of the resources to
fully define those essential features. The Blitz is your
crystal Dball. It helps you see the future of the
development effort, to know where the project is headed.
However, you are not done with analysis at this time. You
still need to go back and do a detailed model wherein you
will provide thinga that the Blitz model is missing

Such thinga aa a rigorouas definition of context, detailed
activity apecificationa, and detailed data group and data
element definitionsa. The Blitz model ia only a high level
or abatract apecification of the easentional requirementa.
A detailed specification of those requirements must be
completed during the rest of the development effort. Now
what happens after vyou have specified the essential
requirements.

The next step is to identify in the new physical/design
stage what are the candidate processors. Are we going to
use a mainframe, are we going to use a 3000, what about
micros, PCs; are we going to use a canned package that we
can buy from a software center, are we going to use a 4GL or
do we have to use a 3rd generation language, what humans are
involved? Don’t forget the human processors. They are
equally important a part of your new system as the computer.

You have to take the essential activities and then allocate
them to the candidate processors. This piece is going to go
on the 3000, this will be done by a package, this goes to
the mainframe, this one is going to be done by human, and so
on. Then you can do your data base or file design from the
stored data model that was identified in the specification,
and you can proceed to the implementation.

Paper 3216 1 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

At this point, prototyping can be very useful, because given
our stored data model and our data base for file design, we
can bring a family of screens up to implement the online
system almost immediately. So, that would be an excellent
use of the 4th generation language. If you don’t have it of
course, you’re going to have to go to a 3rd generation
approach.

Now I mentioned that one candidate processor would be a
package. Why would vyou bother to go through this detailed
requirements definition if vyou’re going to solve vyour
problem by buying a package? Well, how do you know you’re
buying the right one? There have been several tragic case
histories of companies that spent hundreds of thousands of
dollars on a manufacturing package in either a mainframe
environment, or I know of even some examples on HP3000s,
only to throw it out and switch to another software vendor.

If you don’t know your requirements before you buy the
package, you are at the mercy of the software vendors. If
you have a structured analysis model of the requirements,
you are in control. You can say to them, here’s what 1
need, how does your program measure up?

So, the conclusion is that 4th generation languages are
great tools but like all tools they need to be used in areas
where they are appropriate. Furthermore, prototyping is not
a substitute for systems analysis. You need a methodology
or strategy. Structured analysis has proved to be an
effective tool for requirementa definition and it ia the
cornerstone of our methodology or strategy. It should be
used even when packages are considered for implementation.

Paper 3216 12 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The final example I want to give is from one particular 4GL
on the Hewlett-Packard and it bears out our claim that a
structured analysis model in effect is a prototype on paper.
We want to go through our blitzing phase, then come back, do
the information modeling and the detailed specifications,
and then take these stored data models from those two specs
and merge them and then, finally, now that we have our data
base or file design, we can deliver a prototype.

What I now want to show vyou is a way to deliver that
prototype that requires almost no human intervention. We
start by doing the structured analysis on a PC or a Hewlett-

Packard Vectra. From that we can extract a DeMarco-style
data dictionary. We can then upload that to the 3000, and
feed it into a package called LL’Spirit. LL’Spirit is a
Powerhouse generator. It generates Powerhouse programs.

Those get fed into Powerhouse and up comes the running
prototype automatically, consisting of all the screens for

every file as well as a top level menu. So my final
conclusion is one that 1 hope will be a happier result for
systems analysts. That 1is that we now have time to do

systems analysis because automatic prototyping will put a
running system in front of the user as soon as requirements
have been specified.

Paper 3216 13 DETROIT, Ml

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The Mini and the Micro
Distributed Application Development and Processing

Patrick Fioravanti
InfoCentre Ltd.

6303 Airport Road
Suite 300
Mississauga, Ontario
Canada L4V 1RS8

Introduction.

The role of the Personal Computer in the HP3000 data processing
installation is due for some changes. In many cases the PC is
underutilized, serving as a standalone workstation for word
processing, graphics, and spreadsheet analysis. These are
excellent wuses for the PC, and remove the need for the
aforementioned services to be offered on the HP3000, however we
are now in the position to fully exploit the capabilities of our
PC's and further reduce the load on the HP3000 associated with
application system development and execution.

With new 4TH Generation development software and data
communication technology, our Personal Computers can play an
integral role in system development and distributed system
processing. An associated challenge concerns maintaining the
security of our distributed corporate data.

We will be describing in this paper, opportunities available for
integrating the use of your PC's into your everyday application
system processing, and we will be considering the impact these
opportunities may have on the continued security of your
corporate data.

Paper 3217 1 DETROIT, M|

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Before launching into this discussion 1let's 1look at some
justifications for expanding the use of our micros.

1) Cost. The cost of PC hardware continues to fall. It is not
difficult to acquire an MS-DOS based machine, with a generous
configuration for a purchase price less than or equal to that
of a HP video display terminal. The cost of software is
another consideration. There can be no question that PC
software is available for a fraction of the price of
minicomputer software having similar functionality.

2) Redundancy. What happens when your HP3000 is unavailable for
use? Few HP3000 installations have a spare machine that can
be pressed into service when catastrophe strikes. On the
other hand, it is far more likely that an installation would
have a spare PC on hand, to keep the micro based applications
running when a particular machine is down.

3) Performance. There 1is a 1lot of computing power in our
Personal Computers waiting to be harnessed effectively. This
computing power can be put to work doing some of the tasks

currently undertaken by our HP3000s. If the workload is
distributed wisely, then optimal use can be made of both
resources. Our overworked HP3000 can shed some of its

burden, possibly stalling an impending upgrade. As a result,
we can improve the performance of our mini, which in turn can
make our user community more productive, and make better wuse
of our available resources.

OK, so we know we should be making better use of our PCs,
removing some processing burden from our HP3000's, but we need
to equip our Data Processing Department with the appropriate
tools in order to accomplish this integration.

Firstly we require an application development environment that
is common between the two machines. Specifically, we require
the same programming language on the micro as we have on the
HP3000, and the same DBMS. It is advantageous for. this common
programming language to be a Fourth Generation Language (4GL). A
4GL offers several Dbenefits critical to the successful

Paper 3217 2 DETROIT, Ml

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

integration of minis with micros:

- Portability. If the micro version of the 4GL is a true
implementation of its HP3000 based counterpart, then
applications developed using that language will be easily
ported from one environment to the other. Furthermore,
there is no need for the conversion of source to
executable code (compile and 1link process) required by
third generation languages, which again simplifies the
porting process.

- Standardization. 4GL's standardize the appearance and
behaviour of menus and screens, enabling users to work
with different applications within the organization, with
minimal application specific training. You can take this
standardization one step further, making the micro
screens look and operate like their HP3000 counterparts.
Additionally, if the 4GL includes a module which
generates user documentation from the source code, then
this standardization benefit will extend to your system
documentation.

- Speed of development. The same benefits being realized
in HP3000 system development efforts using 4GL, directly
apply to the micro environment.

A common application development environment provides two very
important benefits:

- our system development staff can develop applications for
the PC's with no new learning. All existing knowledge of
the programming language and experience with creating,
manipulating, and accessing Database files is
transferable.

- application development activities can be wundertaken
either on the PC or the HP3000, regardless of where the
finished product will ultimately run.

Secondly we require a mini to micro communication facility.
This facility must enable communication between the machines in
both directions. It will be used to transfer text files during
the system development phase, and to transfer data when our
users are running the application.

Paper 3217 3 DETROIT, Mi

. SOUTHEASTERN MICHIGAN USERS GROUP . INTEREX 86

Consider as an example of these tools, InfoCentre's successful
4GL Speedware and associated micro based product microSpeedware.
The combination of Speedware and microSpeedware provides a
common programming language - REACTOR, while microSpeedware's
Speedbase is an IMAGE clone for the MS-DOS environment. We will
discuss later in this paper the communication facility that is
available to the Speedware installation.

With these tools in place, let's turn our attention to
integrating our micros with our minis. Like anything else, a
good sytems integration tool will provide you with choices,
rather than locking you into one fixed "solution".

For discussion purposes let's 1identify three approaches
available to the Speedware installation for implementing
micro-mini integrated solutions:

1) Standalone applications.
2) Batch Integrated.

3) OLRT Integrated.

The first approach entails identifying the machine for which a
particular application 1is best suited, then developing the
application to run only on that machine. This is what most of
us are doing now. Our serious applications are developed to run
on our HP3000's, frequently with little thought given to the
role that our Personal Computers can play in the corporate
systems strategy.

Consider however that some applications are ideally suited to
run in a standalone fashion on a Personal Computer. Many shops
have several candidate applications hiding in their applications
backlog. These may be those system requests for a small
standalone system, benefitting one department within the
organization, that may mnot justify the allocation of HP3000
computing and development resources. Complicating matters
further, the application may have several twists to it, making
it unsuitable for the popular PC Database packages.

Given the toolset described earlier, the following scenario
becomes possible:

Using an IMAGE application generator, such as the DESIGNER
module of Speedware, develop the application on your HP3000.

The Mini and the Micro
Distributed Application Development and Processing

Paper 3217 4 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Your system development staff are already familiar with the
tools - Speedware and IMAGE, and the tools get the job done very
quickly. An experienced Speedware user will produce results in
a fraction of the time required by his COBOL oriented
counterpart.

DESIGNER will generate the application, which consists basically
of two components:

- an IMAGE Database

- a REACTOR specifications file containing the Speedware
code for the Menus, Screens, Online HELP, Reports, and
Transaction Processing programs required by the
application.

The developed application can be implemented on the Personal
Computer by downloading the IMAGE schema, and the Speedware code
(Specifications file). This text file transfer can be
accomplished with the use of the file transfer wutility of your
choice. The IMAGE schema becomes a Speedbase Database by
compiling the schema text with the Speedbase Schema Processor.
With the Database created on the PC, the user accesses the
application by running microREACTOR against the downloaded
specifications file.

Developing standalone PC applications as outlined above yields
several benefits:

- the user gets the application he needs.

- you didn't add another application on to the load of your
HP3000.

- your staff developed the application without embarking on
yet another learning curve.

Ongoing maintenance to this application can be undertaken in the
same fashion. Use DESIGNER to make programming or Database
structure changes to the application, then download the new
version (as described above). Alternatively, the application
can be maintained 1locally (on the PC) using text editing
software to implement programming changes to the Specification
file, or structural changes to the schema text file.

Paper 3217 5 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP . INTEREX 86

To summarize on this standalone approach, the tools described
above enable one to develop an application on either the
Personal Computer or the HP3000, and then implement that
application on either machine. This is made possible by the
system development environment which provides a common DBMS and
programming language on both machines.

In the example outlined above, an application was developed on

the HP3000 for use on a Personal Computer. Once implemented,
this application will run standalone on the PC, and that is
where the data resides. Prudent computer system operation

procedures dictate that the data should be protected and
secured. The data can be protected by the implementation of
rigorous backup procedures. This will be the responsibility of
the PC user who should be encouraged to develop and practise
these procedures. Data security poses a much bigger problem.
In the absence of the familiar MPE/IMAGE umbrella, how do we
prevent unauthorized access to the data resident on the Personal
Computer? This problem introduces a major stumbling block which
possibly limits the usefulness of this mini - micro integration
approach to casual applications processing insensitive,
non-critical data.

The second choice was labelled Batch Integrated. This approach
enables an application system to be designed where the
processing, and the data, is shared between the HP3000 and any
number of Personal Computers. With this approach, the
communication between the HP3000 and the micros is batched. For
example, at the end of the day, or the end of the week, all of
the transactions processed by the PC workstations are uploaded
to the HP3000 and posted to the central IMAGE Database. At the
same time, mnew versions of the "master" or reference type
Datasets are downloaded to the PC workstations, enabling them to
carry on with the next batch of transaction entry.

Capitalizing on the common development tools in the two machine
environments, this type of application can be developed and
implemented quite easily. The micro to mini communication (the
batch transfer of files) could be undertaken with a file
transfer utility such as HP's AdvanceLink.

The advantages to this approach can be:
- the processing involved in data editing and general
transaction entry is offloaded from the HP3000. The PC

earns its keep.

- for remote workstations data communications costs can be
reduced. The workstation is not connected all day, and

Paper 3217 6 DETROIT, Ml

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

the data transferred has been pre-edited by the
application programs.

There are several drawbacks to this approach:

- information is not shared in a timely fashion. Depending
on the application, this drawback will vary in severity.

- the duplication of data is costly, time consuming, and
depending on file sizes possibly impractical.

- data security is compromised since corporate data resides
outside of the realm of protection offered by MPE and
IMAGE. This problem 1is compounded by the duplication
factor mentioned above.

With the Batch Integrated approach to mini - micro integration
we are still faced with the problem of protecting and securing
the data which resides on the Personal Computer. The problem is
aggravated with this second approach since we would be using
this approach to tackle larger, more complex applications (and
hence more critical data) than with the Standalone approach, and
because there are potentially many copies of this unsecured
data. We can partially offset these concerns with the
consolation that the data left wunsecured on.a Personal Computer
at any point in time is but a snapshot of the entire Database,
and that the central IMAGE Database which contains the whole
picture can be secured and protected.

The third approach we called OLRT (On-Line Real Time)
Integrated. This solution is similar to the Batch Integrated
solution with one +very important difference. By introducing a
transparent networking mechanism called Remote Dataset
Capability, we can eliminate the need for data duplication, and
do the mini to micro communications in real time.

Remote Dataset Capability is defined as: The ability within a
Database to define a Dataset which is physically resident on a
different CPU, and to access this Dataset in a fashion that is
transparent to the application program.

This approach involves designing an application that will be
distributed across any number of Personal Computers connected to
an HP3000. As the application designer you choose where the
processing will be done (all on the PC's, or shared between the
PC's and the HP3000), and where the data will reside (all on the
HP3000 or shared between the PC's and the HP3000).

Paper 3217 7 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Those Datasets that are to reside on the HP3000 in the central
IMAGE Database are identified to the Personal Computer as a
"Remote" Dataset. When the Personal Computer user is running
the application, the micro and the mini communicate in a fashion
that is transparent to the wuser. Any Database transactions
involving the remote Dataset (reads, writes, deletes or updates)
are passed to the HP3000 where the appropriate IMAGE intrinsics
are executed and the results returned to the micro.

Using this arrangement, the Personal Computers are connected to
the HP3000 via a terminal port. The HP3000 treats the port as
an I/0 device as opposed to a Job/Session device. A number of
PC workstations can share the same port.

To 1illustrate with an example, consider an Order Processing
application where the actual entry of customers' orders is to be
distributed across a number of PC workstations. An IMAGE
Database could be developed to support this application
consisting mainly of the reference or master Datasets such as
Customer and Product. The PC workstations would each have their
own local Database, perhaps matching the structure of the IMAGE
Database. The local Databases would define the Customer and
Product Datasets as Remote Datasets. As orders are entered at
the PC workstations, lookups and validations for Customers and
Products are processed against the centralized copy of those
files maintained in the IMAGE Database. The resultant order
transaction records would be stored locally at each workstation.
If desired, at any time the transactions could be uploaded from
the PC workstations and consolidated within the IMAGE Database,
where they would be available for centralized reporting.

This On-Line Integration approach offers these benefits:

- distributed processing, shifting some of the processing
load from the HP3000 to the PC's.

- information that is physically resident on the HP3000 can
be read and updated immediately.

- there is no data duplication.
- the critical corporate data can be left on the HP3000
where it is protected by the security provisions of MPE

and 1IMAGE. Access to the data 1is controlled by the
application software.

Paper 3217 8 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

What is the appropriate mini - micro integration approach? All
of the approaches offered in this paper support application
development activities on either machine. Depending on the

approach, the system processing will take place exclusively on
the PC, exclusively on the HP3000, or will be shared between the
two resources. Depending on the approach, the data will be
physically resident on the PC, or the HP3000, or both and
sometimes with duplication. Where the data resides can have
serious impact on the security of the data. Obviously the
choice of approach must be determined by your resource
availability and your application needs. To add to the decision
making complexity, consider also that the choices are not
mutually exclusive. A mixture of approaches may be appropriate
for the various components of a specific application.

Paper 3217 9 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Summary :

As this paper has pointed out, it is the case that we have at
our disposal the technology to effectively integrate the use of
our Personal Computers into our HP3000 based application system
development and processing. In order to achieve this end of
mini - micro integration we need to embrace the tools required:
a 4GL programming language common to both the MPE and MS-DOS
environments, a common DBMS, and transparent micro to mini
communications. With these tools in place, we can design
applications, distributing the processing and the data across a
network of MPE and MS-DOS machines, with a tremendous amount of
application design flexibility. The tools make it easy. The
challenge is to maintain the high degree of data security that
we have become accustomed to with the security provisions
offered by MPE and IMAGE.

Paper 3217 10 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Is There Life Besides IMAGE?

May Kovalick

Hewlett-Packard
Information Technology Group
Cupertino, California, USA

Introduction

"Knowledge is of two kinds: we know a subject ourselves, or we know where we can find
information upon it." - Samuel Johnson, 1775.

Samuel Johnson is the originator of the first English language database. We all have a
copy of a similar database on our desk today - the dictionary. In 177§, to have that
database at one’s disposal was rare and privileged. Today, the possession of such is
commonplace. The body of knowledge that existed then was minuscule compared to that
of today. Nonetheless, the amount of knowledge or information that we know ourselves is
becoming smaller compared to that we have access to. Fortunately, technology is on our
side for managing the ever increasing amount of data.

For most of the HP3000 users, the IMAGE database management system has been the tool
for storage and retrieval of data for many years. With the advent of more sophistication
in the usage of databases, and the increased emphasis on productivity and flexibility, the
offering of the relational technology on Hewlett-Packard’s family of computers is a must.

The new ALLBASE product is Hewlett-Packard’s advanced database management system
for the Hewlett-Packard Precision Architecture systems for both the commercial and
technical markets. It combines both relational and network model data access in a single
product (See Figure 1). HPIMAGE is the enhanced version of the recently introduced
TurboIMAGE database management system. HPSQL is the relational interface that uses
the de facto industry standard SQL (Structured Query Language) for both data definition
and data manipulation. The co-existence of both interfaces in one database management
system allows the user the flexibility to choose the appropriate data model for each
database application.

The rest of this paper will concentrate on the HPSQL interface. I will give an overview of
the basic data definition and data manipulation functions of HPSQL, describe the major
components of HPSQL, highlight some of the features that are wunique to

Hewlett-Packard’s SQL, and give a preview of future directions of Hewlett-Packard’s
database product offerings.

HPSQL

HPSQL is a family of relational products available on the different Hewlett—Packard
computers:

e HPSQL/V is available on the Series 70 and all previous MPE-V based HP3000 systems.

¢ HPSQL/XL (a component of ALLBASE/XL) will be available on the HP 3000 900 series
systems.

Paper 3218 1 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

e HPSQL/HP-UX (a component of ALLBASE/HP-UX) will be available on the HP9000
800 series systems.

e HPSQL/ 300 will be available on the HP9000 series 300 systems.

HPSQL provides all the advantages of relational technology. It is easy to learn and use,
and provides a set of powerful commands for data definition, data manipulation, security
and authorization control, transaction management and database administration.

The implementations of all the HPSQL products are highly leveraged and are totally
compatible with one another. Customers may develop applications on one system and be
able to move those applications to another without source code modifications.

HPSQL HPIMAGE

Data Definition

An HPSQL database is a collection of database objects consisting of tables, views and
indexes. A table consists of columns and rows, and may be created with the CREATE
TABLE command. The relationships among tables are determined, not by explicit
pointers, but by the data values in the columns of the tables themselves.

A view is a virtual table derived by a data manipulation statement from one or more

physical tables or views. Views provide some data independence from certain changes to
the database. If the user wishes to condense multiple tables into one, or split one table into

Paper 3218 2 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

many, views can protect the user from modifying programs that read these tables.
Another use of views is for security. If the user wishes to restrict access to data based on
content, a view may be defined to perform value based security checking.

A user may create indexes on a table to reduce the time it takes to retrieve data from it.
Unlike HPIMAGE application programs where an access path has to be explicitly specified
for each database retrieval operation, HPSQL application programs do not specify indexes
to be used for the query commands. HPSQL automatically analyzes data access requests in
terms of the indexes available and chooses to use the one that will optimize performance.

Tables, views and indexes may be added or deleted dynamically to the database while it is
in use. An existing table may also be expanded by the addition of one or more new
columns. These dynamic data definition capabilities of HPSQL allow the users to
restructure the database easily to reflect changing needs.

Data Manipulation

HPSQL provides the SELECT, INSERT, UPDATE, and DELETE commands for data access
and modification.

The SELECT command in HPSQL allows users to perform the three basic relational
retrieval operations of selection, projection and join. Selections produce a horizontal subset
(of rows) in a table that satisfies certain criteria. Projection produces a vertical subset (of
columns) in a table. Join combines data from two or more tables by matching values in a
column of one table with values in a comparable column in the other tables. In addition,
the SELECT command supports arithmetic expressions, sorting, grouping operations and a
set of built-in aggregate function such as MIN, MAX, AVG, etc.

The INSERT command allows users to add one or more rows to a table. The UPDATE
command allows users to modify values in one or more rows of a table. The DELETE
command allows users to delete one or more rows from a table.

Using these four basic data manipulatior. commands, the users can easily specify what data
to access or modify without having to specify how to do it.

Components of HPSQL

Figure 2 shows the architecture of HPSQL. There are five major components:

e The interactive user interface (ISQL).

e The utility package for performing database administration tasks (SQLUtil).

e The preprocessors that provide programmatic access to the database (Preprocessors)
e The parser and query processor (SQLCore).

e The kernel database access module (DBCore).

I will describe these components from the bottom up.

Paper 3218 3 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
DBCore

DBCore comprises the command executor and the low-level services. The command
executor is a single, cleanly defined interface point that accepts commands from the
interfaces above and calls the low-level services to perform the tasks. The low-level
services include all the routines to store, access and update data, and provides transaction
management, multi-user concurrency control, logging and recovery. ’

DBCore does not presume the relational, nor any, model of data. It handles data in a
model independent manner. It is this feature that allows both the HPSQL and HPIMAGE
interfaces to be built on top of it.

This layer of the software is most dependent on the operating system, especially the
modules for accessing files. However, these OS-dependent routines are well encapsulated
and insulated, thus making the operating system transparent to the HPSQL and HPIMAGE
interfaces above. This modularity allows ALLBASE to be easily portable to the different
operating systems.

..................... \ Feeemmememmmmmmm e
. HPSQL o HPIMAGE ‘
' '])
' ' ' 1
: User Appl'n 1SQL ' ' :
! M !
] ' 1]
1 N ' 1
| l: v '
, PP’s ' ' .
' ' ' 1
1 1 1]
' 1 1 1
' 1 ' !
1 1 1 [}
: SQuutil SQlCore |! ! .
1 1 ' '
i 1 ' 1
| QR . [L U S]
L it U el adiiy’s ittt '
: DBCore l; '
N S Command Executor
: Low-level Services '

1

SQL database HP! databas

SQLCore

SQLCore comprises the parser and the query processor. The parser parses SQL commands
and generates command trees which are ‘"flattened", 1ie. all the internal
machine-dependent pointers are replaced by a machine-independent linear representation.
The linearized command trees are then passed on to the query processor.

Paper 3218 4 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The query processor performs protection validation, query optimization and access path
selection. It also makes sure that the tables and columns referenced in the query are valid,
and generates the appropriate DBCore commands to execute the query.

The set of powerful data manipulation commands allows the user to specify what data is to
be accessed or modified, but not necessarily how to access them. A query optimizer is
contained in the query processor to look at the query and evaluate the current physical
structure of the database to determine the most optimal path to access the data. This,
however, does not mean that the user has no control over the performance of his queries.
Because of the powerful data definition capabilities provided by HPSQL, the user can tune
the performance of his/her applications by creating and dropping appropriate indexes for
the tables, or by changing the physical configuration of the database.

One such example is the use of a clustering index for a table. When a row is inserted or
updated into a table that is defined with a clustered index, HPSQL will attempt to place
that row on the same or consecutive data page with other rows with similar key values.
Because the rows are physically close, I/O overhead is reduced and performance may be
improved whenever the rows are retrieved in key order.

Preprocessors

HPSQL provides users programmatic access to HPSQL databases via preprocessors. The
preprocessors are programs that read the source code of user application programs which
have SQL commands embedded in them. The preprocessor looks for the predefined
directives (EXEC SQL) in the source programs that define access to HPSQL and replaces
them with language specific calls to HPSQL. It also performs optimization for the queries
and stores the predefined database commands in the database so that, when the program is
executed, the preprocessed commands are executed.

There are two ways that database management systems can allow application access to a
database: preprocessors and intrinsics (e.g. DBGET or DBPUT for IMAGE). There are a
number of advantages in using the preprocessor approach. Firstly, a preprocessor is usually
more friendly than intrinsics It can take care of data type conversions,
language-dependent and OS-dependent calling conventions, and error handling in a
manner that is transparent to the user. Secondly, the preprocessor approach improves
performance by allowing query optimization to be performed when the application is
preprocessed instead of at run-time. At run-time, HPSQL will detect if a change in the
database structure has invalidated the access strategy for any of the queries and will
automatically re-process those queries for the new structure. Thirdly, there is the
advantage of being compatible with other industry implementations and thus provides
portability for SQL applications.

The Pascal and COBOL preprocessors are available with HPSQL/V and HPSQL/XL. The
Pascal, FORTRAN and C preprocessors are available with HPSQL/HP-UX and
HPSQL/ 300.

SQLUtil

SQLUtil provides a set of commands for the database administrator to perform various
administrative tasks, such as altering the configuration of the database environment,
managing database files, and backing up and restoring the database environments, etc. It
can be invoked either from ISQL or from the operating system.

Paper 3218 5 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
IsQL

ISQL is the interactive user interface that provides the user with functionally complete
interactive SQL access to the data. It accepts user SQL commands, sends them to the
parser, then passes the "flattened" command trees to the query processor for processing.

ISQL accepts commands from three sources: the terminal, the command buffer, or a
command file. The command buffer is an area for holding one or more commands for
the duration of an ISQL session. The contents of the command buffer may be changed,
kept in a file or executed. A command file is a system file that contains one or more
SQL commands. It may be created outside the ISQL environment, using an editor or a
program written by the user.

ISQL also provides a command history buffer for holding the 10 most recently
submitted commands. Any of the commands from the command history buffer may be
listed, recalled for re-execution, or edited and re-executed.

ISQL is a useful facility for different types of users. Frequent users may use it for ad hoc
retrieval and modification of data with the usual data manipulation commands. It can be
a program development tool for application programmers to build test databases, and to try
out queries to be embedded in applications. It is also a tool for database administrators to
create and maintain databases, to load/unload data from/into external files, and to define
and control physical storage for the databases.

HPSQL Unique Features

Most of you may already be familiar with HPSQL/V or the industry standard
implementation of SQL and the basic functions provided by SQL. For more information,
you may refer to the SQL Reference Manual.

In this section, I would like to highlight a few of the SQL features that are unique to the
HPSQL product. These features include the following:

e Authorization Groups for security management
e Savepoints for transaction management
e Logging and Recovery

e Bulk Table Processing through the Programmatic Interface

Security Management and Authorization Groups

A major function of a database administrator is security management, i.e. controlling
access to a database and its objects such as tables, views, etc. Since every user must have
appropriate authorization in order to access the database:and perform operations, the DBA
can use HPSQL authorization to maintain security for a multi-user database environment.

An authority is a privilege given to a user or a group of users to access the database
environment, create database objects, perform a specific operation, preprocess and run
application programs containing SQL commands, or maintain the database environment.
Authorization is provided for the tables, views, and resources of the database. The owner

Paper 3218 6 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

(initially the creator) of an object can perform all operations on the object and can grant
authorization to another user to operate on the object. Authorities on an object may be
revoked, and ownership of an object may be transferred to another user or group of users.

For most business organizations, a database is shared by multiple departments having
different types of access and operations performed on the database. For example, a
personnel database may be accessed by different departments such as accounting, payroll,
personnel clerks, personnel managers, etc. Each of these departments may have one or
more users, and each of the departments may require different access rights to the
database. In order to make it easier for the DBA to establish authorization for the
database for groups of users according to their database requirements, HPSQL provides a
unique feature called authorization group.

An authorization group is a group of users that possesses the same set of authorities. A
user can be a member of any number of groups, and groups can also be members of other
groups. Authorization groups may be created or dropped dynamically. Once a group is
created, individual users or groups can be added to an authorization group or removed
from the group. When a user is added, he or she automatically acquires the authorities
belonging to the group.

The GRANT and REVOKE commands allow the user to specify a group as the receiver of
the authority. These authorities then belong to the group and not to the individual
members of the group. That is, as long as a user is a member of a group, the user possesses
the authorities belonging to the group. If the user is removed, he or she no longer possesses
the authorities of the group.

Authorization group is therefore a valuable security management feature for the database
administrator to easily control database access for groups of users.

Transaction Management and Savepoints

A transaction is a unit of work specified by a sequence of SQL commands. A transaction is
started by the command BEGIN WORK and ended with the command COMMIT WORK,
in which case all changes made by the transaction become permanent. The transaction
may be aborted with the command ROLLBACK WORK, in which case none of the changes
are made to the database. Most of the commercial SQL implementations provide the above
facilities for managing user transactions.

In addition to the above, HPSQL supports savepoints within transactions to allow users to
rollback some of the changes in a transaction. A savepoint defines a set of commands
within a transaction that can be aborted without aborting the entire transaction. A
savepoint is defined using the SAVEPOINT command. The user can then undo the changes
within a transaction since the savepoint was defined by using the ROLLBACK WORK
command. Multiple savepoints can be defined within a transaction and are referred to by
a number returned by the query processor in the SAVEPOINT command.

A savepoint may be used in a long transaction that does several operations, some of which

might have to be rolled back. Savepoints can greatly reduce the number of transactions
that have to be resubmitted because part of the transaction was unsuccessful.

Logging and Recovery

Paper 3218 7 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

In order to support concurrency and still provide data integrity and reliability, HPSQL
provides extensive logging and recovery features.

The most common form of damage to a database occurs when a user or system process fails
during the execution of a transaction and is unable to complete it, thus rendering the data
inconsistent. This is called a soft failure since the database is not seriously corrupted and
can potentially be reparied without requiring complete restoration of the data.

HPSQL logs all changes to the data of a database in its log file. Should a soft failure occur,
HPSQL will automatically attempt to bring all data back to a consistent state with the
information recorded in the log file. All transactions which successfully committed prior
to the crash will be recovered. Transactions which failed to complete prior to the crash
will be rolled back, or undone. This is called rollback recovery. Rollback recovery is
automatic and is always available.

A second form of failure results from a hard failure which renders the database
unreadable or completely corrupted. Such failures may be due to hardware problems, such
as a disc head crash or an operating system error that allows random data to be written on
a table in the database.

Should a hard failure occur, it is necessary to restore a stored copy of the damaged
database(s) and then roll-forward, or redo, all transactions that were committed before the
hard crash and since the stored copy was created. This is called roll-forward recovery.

To support roll-forward recovery in HPSQL, an archive mode of logging is provided.
When HPSQL is run in archive mode, all changes to the database are logged and the log
space is never reused. To perform roll-forward recovery, an old copy of the database is
restored from a backup or archive copy. The current log contains all the changes since the
last backup. Using the START DBE ... RECOVER command, the database is recovered to
a consistent state by incorporating all work done by transactions committed before the
failure, and excluding any changes made by transactions that did not commit by the time
of the failure. A date and time may also be specified in this command for recovering the
database to the desired date and time.

A dual logging option is available in HPSQL to further enhance integrity. Two
separate logs on separate media are maintained. Both logs are written for all operations.
Normally only one log is read during recovery, but if an error is encountered, HPSQL
switches to the other log automatically. Data integrity is maintained, provided that there
is at least one good copy of each log record on either of the logs.

Programmatic Interface and Bulk Table Processing

HPSQL provides the full set of data definition, data manipulation and transaction
management commands through the programmatic interface. This includes the use of host
variables, indicator variables for handling null values, run-time error checking and
handling, the use of cursors, and dynamic query processing for executing SQL commands
that cannot be defined until run-time.

The data manipulation commands in HPSQL allow the user to insert, delete, update and
select rows from a database. A single row or multiple rows can be operated upon with one
data manipulation command. A cursor may be used to operate on a multiple-row query
result, one row at a time. Like the cursor on a terminal screen, an HPSQL cursor is a
position indicator. It allows the user to move through the multiple-row query result,

Paper 3218 8 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

retrieving a row at a time into host variables and optionally updating or deleting the row.
Reporting applications may find this technique useful.

In addition to the above, HPSQL provides a unique feature in the programmatic interface
for bulk table processing. The user may specify an application program to retrieve
or insert multiple rows with the execution of a single SQL command. Three bulk
commands are available:

e The BULK SELECT command can be used when you know in advance the maximum
number of rows in a multiple-row query result, or when the query result is not too
large. For example, an application that retrieves a query result containing a row for
each month of the year might find this command useful.

e The BULK FETCH command can be used to handle large query results or multiple-row
query results whose maximum size is unpredictable. If a single execution of the BULK
FETCH command does not retrieve the entire set of query result, it may be re-executed
to retrieve subsequent rows in the query result. This use of a cursor is most suitable for
display-only applications, such as programs that allow a user to browse through a query
result, so many rows at a time.

e The BULK INSERT command can be used to insert multiple rows into a table. Rows
are inserted from a host variable declared as an array.

In the bulk retrieval commands, the user may specify the maximum number of rows to be
retrieved and where to put the data. Rows are retrieved into a host variable declared as an
array. HPSQL fetches as many rows as will fit in the retrieval area (or the specified
maximum number of rows, or the number of rows remaining in the query result,
whichever is less). A value is returned telling the user the actual number of rows fetched.

The BULK SELECT command minimizes the time a table is locked for the retrieval
operation, because the program can execute the BULK SELECT command, then
immediately terminate the transaction, even before displaying any rows. Similarly, the
BULK INSERT command is efficient for concurrency, because any exclusive lock acquired
to insert rows need be held only until the BULK INSERT command is executed.

The set of bulk table processing commands provided by HPSQL is very valuable for
application builders. It provides a set of features complementary to the row-at-a-time
cursor operation commands. It allows application programmers easy access and handling of
multiple-row data and query results. It also provides good performance for applications
that need to handle large amounts of data efficiently.

Future Directions

Many of Hewlett-Packard’s customers have invested heavily in developing database
applications using IMAGE. With the introduction of Hewlett-Packard’s Precision
Architecture systems, many of these customers may choose to migrate their existing
database applications to ALLBASE. HPIMAGE certainly provides an easy and logical
migration path. However, users may want to take advantage of the relational technology
to increase their productivity and to ease their programming effort.

In view of this, Hewlett-Packard plans to provide users the capability of accessing
HPIMAGE data using HPSQL in future releases of ALLBASE (Figure 3).

Paper 3218 9 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

HPSQL HPIMAGE
INTERFACE INTERFACE

DBCORE

InE

HPSQL DB HPIMAGE DB

\-_—*! —

Figure 3. SQL Access 10 HPIMAGE Deta

Users may be able to develop new applications against existing HPIMAGE databases using
the HPSQL programmatic interfaces. The same data may also be accessed on an ad hoc
basis using the powerful and flexible interactive query capability provided by ISQL.

This integration will thus allow users to gain the optimal benefits of both technologies
without introducing data redundancy or inefficiencies into the MIS environment.

Another Hewlett-Packard long term goal is to provide its customers with the hardware
and software needed to support distributed database management systems. One important
step toward that goal is to provide the same powerful database management software on
all computers so that data can easily be shared. By offering its customers SQL, the de facto
industry standard for relational technology, Hewlett-Packard is moving toward
compatibility not only between its own computer systems, but also with those of other
suppliers.

Conclusions

Yes, with ALLBASE, there is life besides IMAGE. The HPSQL and HPIMAGE interfaces
serve as complements for each other in ALLBASE. The architecture of ALLBASE is
modular, allowing for changing architecture (at the bottom) and for additional user
interfaces (on the top). The system architecture of ALLBASE provides a solid foundation
to carry Hewlett-Packard’s database management plans well into the next decade.

Paper 3218 10 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Performance Programming With HPSQL/V
Paul E. Dembry
Hewlett-Packard

19447 Pruneridge Avenue
Cupertino, CA 95014

Hewlett-Packard’s newest database management product, HPSQL/V, is
designed to reduce the amount of DBMS internals knowledge needed by the
average user in order to achieve good application performance. For ex-
ample, HPSQL/V provides a query optimizer which automatically determines
the most efficient access plan for user queries. However, in order to
fully realize the extraordinary power of HPSQL/V, programmers must un-
derstand some of the internal strategies used in such areas as index
management, concurrency control, and transaction management.

In this paper, the basic concepts behind HPSQL/V’s internals are ex-
amined along with their impact on application performance. The focus is
on how to exploit HPSQL/V’s inherent strengths for maximum performance.
The reader is assumed to have read the HPSQL/V DBA and SQL Reference
Manuals.

Product History and Structure

HPSQL/V evolved from the same base as the recently introduced ALLBASE
product. Therefore, the concepts described here also apply to the
ALLBASE product. Application developers can use HPSQL/V not only to
develop production applications on their current HP3000 systems but also
as a learning and debugging tool for their new HP3000/930 relational
applications.

HPSQL/V consists of several major modules, two of which will be ad-
dressed herein: DBCORE/V and SQLCORE/V. DBCORE/V performs the actual
record retrieval and storage, index management, logging and recovery,
space management, concurrency and locking control, and transaction
management functions. SQLCORE/V checks, parses, stores and retrieves
the SQL commands, performs the authorization checking, and optimizes the
access path.

DBCORE/V will be examined first with special emphasis on the locking and
concurrency control systems. A firm understanding of these is essential
to achieving acceptable application performance. This section will be
followed by a discussion of SQLCORE/V and how it controls the
effectiveness of DBCORE/V. Some observations on database table

Paper 3219 1 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

definition and a few general overall suggestions will wrap up this
effort.

DBCORE/V

A key factor in application throughput is the multi-programming level
supported by a particular subsystem. A subsystem that allows only one
user to use it at a time can be much simpler to design but will produce
a bottleneck in the system. DBCORE/V allows up to 192 concurrent users,
or "threads", at any one time. In order to support this high level of
concurrency without compromising data integrity and reliability,
DBCORE/V provides extensive locking and recovery features.

DBCORE/V stores user data in relations which consist of records called
tuples. Each tuple is partitioned into fields called columns consisting
of varying length byte strings. Relations correspond to HPSQL/V tables
and tuples correspond to rows. The unit of storage used within DBCORE
is called a page. It is a 4096 byte record which contains the
relation’s tuples along with some header information.

Locks

In any system that allows a high number of concurrent users, there is
always the possibility of two or more users trying to update the same
data simultaneously or of one user’s partial data changes being seen by
other users before they are complete. The latter is called a "dirty"
read since the data may or may not be consistent with respect to the
other changes.

DBCORE/V deals with this issue by using locks to restrict a user’s ac-
cess to data. The use of these locks is fundamental to DBCORE/V’s
ability to ensure data integrity and therefore the user is not allowed
to bypass the locking facility, but does have some control over the
types of locks used.

DBCORE/V locks at two levels, page and table, and provides three types
of locks: exclusive, shared, and share-subexclusive. The first type of
lock is an exclusive lock which prevents any other users from accessing
a relation or data page. Exclusive locks are automatically placed on
any page that has been altered by a transaction.

The second type of lock is a share lock. This lock allows other users

to read but not alter the data in a relation or page. Share locks allow
many users to read the same pages concurrently.

Paper 3219 2 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Finally, the third type of lock is a share-subexclusive lock, which al-
lows other users to read parts of a relation but allows only one trans-
action to modify the relation at a time. This more complex lock is in-
tended for users who intend to update part of the relation but want to
allow other users to read the relation until they are ready to do the
update.

It should be clear that an exclusive lock cannot be granted on a rela-
tion when there are outstanding share locks on the same relation and
vice-versa. If this situation arises, DBCORE/V will suspend the
requesting transaction until its lock request can be satisfied. Before
doing this, however, it checks to see if suspending the user will cause
a deadlock, a situation where a ring of users are all waiting on the
user ahead of them. Consider the example shown below:

User 1: User 2:
-Read page A -Read page B
Is it locked? Is it locked?
No, acquire share lock No, acquire share lock
on page A. on page B.
-Modify page B -Modify page A
Is it locked? Is it locked?
Yes, deadlock? Yes, deadlock
No, wait for exclusive Yes, deadlock detected!
lock.

User 1 needs an exclusive lock on page B in order to modify it, but user
2 has a share lock on page B so user 1 is suspended behind user 2.
Unfortunately, user 2 needs an exclusive lock on page A in order to
modify it, but user 1 has a share lock on page A so user 2 would be
suspended behind user 1. This would create a deadlock situation where
neither transaction could advance. In this case, DBCORE/V will abort
the lower priority transaction, undo all the changes made by it (see the
section on transactions), and thereby resolve the deadlock situation.

There are two ways that an application can affect the types of locks
used on its behalf. First, at table creation time, the user can specify
the implicit type of locking to be used with the table. The types are
PUBLIC, PUBLICREAD, and PRIVATE with the default being PRIVATE. These
are related to the locks described above as shown in this table:

Paper 3219 3 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

| Table | Lock I
| Type |---ommmmsmesmeooeeooooooooeooeoooooo-
READ	LEVEL	WRITE	LEVEL	
PRIVATE	Exclusive	Table	Exclusive	Table
PUBLICREAD	Share	Page	Exclusive	Table
Gt S S				
PUBLIC	Share	Page	Exclusive	Page

PRIVATE corresponds to an exclusive lock on the relation. As soon as a
user accesses the relation for either a read or a write, DBCORE/V gets
an exclusive lock on the entire relation. This eliminates the pos-
sibility of a deadlock within this table, eliminates the locking over-
head for this table, and eliminates any hope of allowing users to share
the table, thereby limiting the concurrency to 1. This will not be very
good for multi-user throughput.

PUBLICREAD corresponds to a share-subexclusive lock on the relation
while PUBLIC implies locking on a page level instead of a relation
level. In terms of overall system throughput, PUBLIC tables are the
best choice in most, but not all, situations. It is important to note
that, at the present time, HPSQL/V does not allow the user to change the
implicit table locking strategy after the table has been created.

In addition to the locking strategy defined at table creation time, the
application can try to override this with the "LOCK TABLE" SQL command.
This command allows the application to tell DBCORE/V to apply either a
share or exclusive mode lock on the entire relation.

Share mode allows multiple users to read the relation while allowing
only one user to update it. This function is useful for PUBLIC tables
if the application wants to prevent multiple users from updating the
table at the same time. It has no effect on PUBLICREAD or PRIVATE
tables since they already have an equally or more restrictive locking
strategy.

Exclusive mode tells DBCORE/V to treat PUBLICREAD and PUBLIC tables like
PRIVATE tables with respect to locking.

Which locking should you use in your application? Unfortunately, this is
not a simple question to answer. The figure below gives a graphical de-
scription of some of the issues involved in this decision:

Paper 3219 4 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Low Concurrency High
| == =mmem oo |
PRIVATE PUBLICREAD PUBLIC
Low Locking overhead High
Low Deadlock potential High

over time

As you can see, locking strategies and achievable concurrency are tight-
ly coupled. In addition, the overhead associated with locking is also
related to the locking used. Tables also have a continuum of sorts as
shown here:

Read Predominant Access Write

Therefore, an application’s locking strategy is a compromise between
concurrency and overhead, in addition to deadlock probability. In
general, if an application is going to read or update a large portion of
a table, it is advisable to acquire a SHARE or EXCLUSIVE lock, respec-
tively. This keeps DBCORE/V from having to manage a large number of
locks. It also reduces the chance of deadlocks. One example of this is
during table loading(EXCLUSIVE lock) or unloading(SHARE lock). However,
it will probably reduce the achievable concurrency. On the other hand,
applications which only read or update a small part of a table at a time
should create their tables as PUBLIC tables. The additional locking
overhead will be overshadowed by the increase in concurrency.

Transaction Support

A unit of work is called a transaction and consists of any number of SQL
statements enclosed within a BEGIN WORK and either a COMMIT WORK or
ROLLBACK WORK statement. Once a transaction starts, it either com-
mits (COMMIT WORK), in which all changes made by the transaction are made
permanent and visible to other users, or it aborts(ROLLBACK WORK or
deadlock), in which case none of the changes are made. For this reason,
the transaction is considered the atomic unit of recovery. This proper-
ty of transactions is guaranteed for both user sessions and system
failures. It is important to note that all locks acquired during a
transaction accumulate throughout the transaction and are released only
when the transaction is committed or aborted.

This last point is perhaps the most important thing to remember about

transactions. As noted in the above discussion about locks, anything a
transaction does with respect to data in a table requires a lock.

Paper 3219 5 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Reading through a table, for example, will apply share locks to the data
pages and will prevent any other transaction from updating that page.

The concept of a transaction can be applied very effectively within an
application. For example, any data that is accessed during a transac-
tion is guaranteed not to change during that transaction. There is
never any need to refetch a record to make sure that it has not changed
during the transaction. Until the transaction commits or rolls back,
any data that it touches is guaranteed to remain consistent!

Also, DBCORE/V supports SAVEPOINTS which are markers within a transac-
tion that allow the user to undo part of the transaction without going
back to the beginning. This allows an application to explore different
"paths" without having to worry about explicitly undoing its changes if
it needs to back up and try a different approach. For example, a bank
debits a customer’s checking account for $100 which overdrafts the ac-
count. The customer has overdraft protection so the bank sets a
savepoint and tries to transfer $100 from MasterCard to the checking ac-
count. This hits the customer’s credit limit on MC and so the applica-
tion rolls back to the savepoint, thereby undoing the MC debit without
undoing the original checking account debit. Declaring a new savepoint,
the application checks Visa-it is below the credit limit so the transfer
occurs and the transaction is committed. With savepoints, the transac-
tion did not have to start all over again, it could undo just part of
its work.

It is good practice to keep your transactions as small as possible in
order to minimize lock conflicts between users. Also, in the case of a
deadlock, the transaction may be aborted. The cost of redoing the
transaction from the beginning needs to be considered when designing
transactions. DBCORE/V supports the idea of a transaction priority from
0 to 255, with O being the highest priority. The application specifies
this in the BEGIN WORK statement; the default is 127. DBCORE/V first
checks the priority of the two transactions causing the deadlock and
aborts the one with the lower priority. If the cost of a deadlock abor-
tion is high for a particular transaction, then the application should
specify a low transaction number.

Terminal reads should be avoided within transactions since the user may
go to lunch at that point. If they are necessary to the application,
then a timeout should be set before the read. On the other hand, if the
transaction uses only PUBLIC or PUBLICREAD tables which are never up-
dated by other users, then there is no possibility of one transaction
locking out another.

Paper 3219 6 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
Indexes

In order to avoid serially searching through relations on every access,
HPSQL/V allows users to create indexes. DBCORE/V supports B-tree in-
dexes on relations. It also has two options for indexes: clustering and
unique. Indexes can be created or dropped at any time and can have up
to 15 column keys. Clustering indexes can improve the efficiency of
sequential processing for queries that use the index. This is because
DBCORE/V will place new tuples physically near other tuples with similar
key values whenever possible. Creating a clustering index has no effect
on the existing data in the relation, only on new tuples. Also, there
can be only one clustering index on a relation.

Unique indexes are a special type of B-tree index which prohibit tuples
with duplicate keys. These can be used very effectively by applications
that deal with unique fields such as Social Security numbers.

An index can be defined as unique, clustering, unique and clustering, or
none of these. In this last case, duplicate keys are allowed and tuples
are inserted into the relation wherever there is room. In addition, a
relation can have any number of indexes defined on it.

The advantages of indexes are not free, however. Every time an index
key column is updated, deleted, or inserted, DBCORE/V must adjust the
index to reflect the new value. The more indexes that contain the al-
tered key column, the more overhead will be generated. Also, DBCORE/V
needs space in which to store the index. Each index entry contains the
key value(s) along with the tuple identifier of the actual data tuple.
Thus, the greater the number of columns in the key, the more space that
will be required to store it. For these reasons, users must be careful
when developing their index strategy.

All large relations should generally have at least one index defined on
them corresponding to the most frequently specified key(s). In addi-
tion, the table should be loaded in that index’s key order.
Applications which do a great deal of bulk reads based on that key will
benefit from this ordering. Also, after many inserts and deletes, the
index pages may become very sparsely populated even though the number of
index levels remains high. This condition can be identified by compar-
ing the "cluster count" with the "number of pages' and "number of rows"
columns in the SYSTEM.TABLE relation. This procedure is described in
the HPSQL/V DBA Guide.

Note: Even though there is an index on a relation, HPSQL/V may decide

not to use it. This is further explained in the SQLCORE/V section on
queries.

Paper 3219 7 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Storage management

DBCORE/V stores data and indexes in files called DBEFiles. These are
privileged MPE files with a 4096 byte record size, the same size as the
data page. A relation’s data and index(es) are stored in a logical
group of these DBEFiles called a DBEFileset. DBEFiles can be added or
removed from the set at any time and can be designated as table, index,
or mixed storage. Since relations are created within DBEFilesets, their
data is spread throughout all the DBEFiles, of the correct type, in the
set.

There is a tradeoff between potential application throughput and storage
efficiency. MIXED DBEFiles contain both table and index data and can be
very useful for small tables. This is because DBCORE/V will try to
place table data and index keys on contiguous DBEFile pages. MIXED
DBEFiles also offer better storage efficiency since the user does not
have to allocate separate DBEFiles for tables and indexes.

If the table is large and spans multiple DBEFiles, it is more advan-
tageous to define separate TABLE and INDEX DBEFiles and then move them
to different spindles using SQLUTIL/V. This can reduce the disk workload
by spreading index and table I/Os across different disks. For example,
if an index is used during query execution, then the index I/Os will go
to one spindle and table I/Os to another. This will reduce the number of
disk reseeks. Otherwise, applications will queue up on the disk first
to get the index and then again to get the. data.

For maximum flexibility, users can define a DBEFileset for every rela-
tion. This way, the DBEFiles in the set will contain only the data and
index(es) for that relation making it easy to know which DBEFiles should
be moved to different spindles.

It is also very important that the system DBEFiles and.the log file(s)

be placed on the least accessed device(s) on the system since these
DBEFiles are very heavily accessed for almost all queries.

SQLCORE/V

SQLCORE/V acts as the HPSQL interface to DBCORE/V. It provides all the
system authorization checking, query handling, and, most importantly for
this discussion, query optimization.

Paper 3219 8 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
Queries

Query design is an important factor in overall application performance.
Poorly designed queries will not only take longer to execute but may
also generate many more locks than are really necessary, thereby affect-
ing other users.

The information provided in the predicate, or WHERE clause, is used by
SQLCORE/V to decide on its query execution strategy. It is important to
specify enough selection criteria here in order to minimize the amount
of sifting the application has to do on the result.

If there is an index defined on one of the source tables and it includes
one or more of the columns from the WHERE clause, then the performance
of the query may be significantly better than otherwise. However, just
because such columns are specified does not imply that SQLCORE/V will
decide to use the index. There are several criteria that must be satis-
fied for this to occur.

1. The first key in the index must match one of the columns in the
WHERE clause. Multiple column indexes are wonderful for sorting
and controlling uniqueness, but only the first key counts in the
optimizer’s choice of "useful" indexes.

2. SQLCORE/V does not yet fully optimize "OR" predicates. The in-
dexed column must have an "AND" relationship to the query. This
means that if the column does not satisfy the condition, then the
row will not be part of the solution.

3. The indexed column must not be updated by the query being
processed. This is to avoid getting into an infinite update loop.

4. The value against which the indexed column is being compared must
be compatible with the column, or at least the value must be con-
vertible by SQLCORE/V into a the index column data type.

After all the conditions are satisfied, SQLCORE/V may decide to use the
index. The optimizer may decide that, since there are very few rows in
the table anyway, it would be faster to simply do a serial search in-
stead of looking up the index and then getting the rows!

Another area to watch is arithmetic operations. Arithmetic expressions
should be evaluated outside of the query if possible. For example,

SELECT cl,c2 FROM t1,t2
WHERE cl = :hostvariable * 3;

Paper 3219 9 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

should be coded as

hostvariable := hostvariable * 3;
SELECT cl,c2 FROM t1,t2
WHERE ¢l = :hostvariable;

As the number of tables being joined in a query increases, the response
time of the application will most likely increase non-linearly. If the
application’s queries are joining five or more tables at once, then it
would be advisable to either break up the query or "unnormalize" the
tables a bit. This increases the amount of redundant data but speeds up
access to that data. Table structure is discussed in more detail fur-
ther in this paper.

Data conversions are not a great idea, as explained above in the index
selection section. SQLCORE/V can provide data conversion between host
variable types and HPSQL/V types but this will always create more over-
head for the application. Wherever practical, host variables should be
defined as the same type as their companion columns.

The application’s queries should only return the actual data required
instead of specifying '*’ in the select-list. This minimizes the amount
of data traffic between DBCORE/V and SQLCORE/V and can cut down on the
number of DBCORE/V calls which will improve performance. Even better,
the select-list order should be close to that of the tables being ac-
cessed. This way, HPSQL/V will not have to rearrange the order of the
retrieved columns.

Table structure

The structure of the database in terms of its tables has a major effect
on the performance of the applications which use it. We have already
covered the ramifications of the implicit locking defined for a table in
the DBCORE/V section.

Column definitions

HPSQL/V has a data value called "NULL". It is neither zero nor blank
and can be used to signify that a column has no value(*something better
than this!*). Like most very nice things columns which allow NULL
values create extra overhead for HPSQL/V. If the NULL property is not
required for the application, then the table columns should be defined
as NOT NULL.

Paper 3219 10 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Another very useful feature is the VARCHAR data type. This corresponds
to the PASCAL "string" type and can save a great deal of storage space
for character data. For example, if the application is using data which
has a maximum length of 80 bytes, but an average length of only 15
bytes, the VARCHAR type would save a great deal of space over a fixed
CHAR type. Keeping track of VARCHAR lengths, however, creates work for
DBCORE/V. Unless the average length of the data is less than T0% of the
maximum length or disk space is at a premium, it is better to use a
fixed length CHAR field.

Normalization

No discussion of relational DBMS application performance would be com-
plete without a section on data normalization. As discussed in the sec-
tion on query definition, the cost of joins increases non-linearly with
the number of tables. If some of the tables in the system will be
frequently joined, it may be advantageous to simply combine them. This
will spoil the normalized beauty of the application but will do wonders
for the response time and overall system throughput. After approximately
five tables, joins will rapidly become a bit cumbersome. As we gain
more experience with optimization strategy, this number may increase;
until then, keep the number of join tables low!

General good ideas

HPSQL/V’s optimizer is fairly bright and makes good decisions based on
the data stored in the system catalogs. These catalogs contain table
and index characteristics such as average column length, number of rows
in the table, and number of indexes on the table. These values are up-
dated only when the user issues an UPDATE STATISTICS command. If the
table statistics become obsolete, HPSQL/V may not be able to generate
the most optimal access plan for a query. It is a good idea to update
the system catalogs for a table whenever major changes have occurred on
that table, such as the creation of a new index or after large number of
rows have been inserted/delete/updated.

HPSQL/V allows the user to dynamically restructure the database while
other users are working. All actions such as creating new DBEFiles, new
tables or indexes, updating table statistics, altering user capabilities
with the GRANT command, make changes to the system catalogs which are
very frequently accessed. Therefore, such changes should be done at
periods of low usage and should be either committed or rolled back
quickly.

Paper 3219 11 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Finally, the very rich authorization capabilities of HPSQL/V have not
been examined herein. As might be assumed, the more complex the user
authorization scheme, the slower the system will run. The key is to im-
plement only the security checking that is absolutely required without
going overboard.

Summary

HPSQL/V is a very new product that is gaining much customer attention.
There is not yet a great deal of empirical performance data and much of
the performance programming techniques have yet to be developed. This
paper addresses the programming issues that I have experienced so far
and will hopefully become a working document over the lifetime of the
product.

Paper 3219 12 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
RELATIONAL DATA BASE: HOW DO WE KNOW IF WE NEED ONE?

Orland Larson
Hewlett-Packard Company
19447 PRUNERIDGE AVE.
CUPERTINO,CA 9501k

Summary

The field of reiational technology is clearly misunderstood by a large
number of people. One major obstacle to acceptance of the relational
model is the unfamiliar terminology in which relational concepts are
expressed. In addition, there are a number of misconceptions or
"myths"” that have grown up in the past few years concerning relational
systems. The purpose of this paper is to define those terms, correct
some of those misconceptions and to help you decide if your company can
benefit from adding relational data base technology to your current
capabilities.

This paper reports on the growing body of knowledge about relational
technology. It begins by reviewing the challenges facing the MIS

organization and the motivation for relational technology. It then
briefly describes the history of relational technology and defines the
basic terminology used in the relational approach. This will be

followed by an examination of the productivity features of the
relational approach and why it should be seen as a complement rather
than a replacement for existing network databases such as the IMAGE
data base management system. Typical application areas where the
relational approach can be very effective will also be surveyed.
Finally, a checklist will be reviewed that will help the audience
determine if, indeed, they really can benefit from using a relational
data base.

Introduction

The Challenges Facing MIS

The MIS manager is facing many challenges in today’s modern information
systems organization. The backlog of applications waiting to be
developed is one of key challenges concerning MIS. In most medium to
large installations the backlog of applications waiting to be developed
is anywhere from two to five years. This estimate doesn’t include the
"invisible backlog,” the needed applications which aren’t even
requested because of the current known backlog. Software costs are
increasing because people costs are going up and because of the
shortage of skilled EDP specialists. The data base administrator is
typically using nonrelational data bases where a great deal of time is
spent predefining data relationships only to find that the users data
requirements are changing dynamically. These changes in wuser
requirements cause modifications to the data base structure and, in
many cases, the associated application programs.

Paper 3220 1 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The application programmer is spending a significant amount of time
developing applications using these non-relational data bases, which
require traversing or navigating the data base. This results in
excessive application development time. Because the users requirements
change dynamically, it also means a great deal of time spent
maintaining applications. The programmer is also frequently restricted
by the data structures in the data base, adding to the complexity of
accessing data.

End users or business professionals are frustrated by the 1limited
access to information that they know exists somewhere in the data base.
Their business environment is changing dynamically, and they feel MIS
should keep up with these changes. They find the applications are
inflexible, due to the pre-defined relationships designed into the data
base. They also lack powerful inquiry facilities to aid in the
decision-making process, which would allow them to ask anything about
anything residing in that data base.

The Motivation for Relational

Dr. Codd, considered to be the originator of the relational model for
data bases , noted when presented the 1981 ACM Turing Award, +that the
most important motivation for the research work resulting in the
relational model was the objective of providing a sharp and clear
boundary between the 1logical and physical aspects of data base
management (including data base design, data retrieval, and data
manipulation). This is called the data independence objective.

A second objective was to make the model structurally simple, so that
all kinds of users and programmers could have a common understanding of
the data, and could therefore communicate with one another about the
database. This is called the communicability objective.

A third objective was to introduce high level language concepts to
enable users to express operations on large chunks of information at a
time. This entailed providing a foundation for set oriented processing
(i.e., the ability to express in a single statement the processing of
multiple sets of records at a time). This is called the set-processing

objective.

Another primary motivation for development of the relational model has
been to make data access more flexible. Because there are no pointers
embedded with the data, +the relational programmer does not have to be
concerned about following pre-defined access paths or navigating the
database, which force him to think and code at a needlessly low level
of structural detail.

The Relational Data Model: A Brief History

In 1970, Dr. E.F. Codd published an article in the Communications of
the ACM entitled "A Relational Model of Data for Large Shared Data
Banks." This classic paper marks the "birth" of the relational model.
Dr. Codd was the first to inject mathematical principles and rigor
into the study of database management.

Paper 3220 2 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

By the mid 70’s, there were two database prototypes being developed.
IBM was behind a project called "“System R," and there was another
relational database being developed at the University of California,
Berkeley called INGRES. It was late 1979 before the first commercially
available relational database arrived in the marketplace called ORACLE,
from ORACLE Corp., which was an implementation based on System R. In
1981 Relational Technology Inc. introduced INGRES which was a
different implementation based on the research done at Berkeley. Today
there are several additional advanced relational products available,
such as SQL/DS and DB2 from IBM and Rdb from Digital Equipment
Corporation. There are additional products sometimes referred to as
“"born again" relational databases such as IDMS/R from Cullinet, ADR’s
DATACOM/DB, and Software AG’s ADABAS, to name a few.

Relational Database Defined

The relational database model is the easiest one to understand - at
least at the most basic level. In this model, data are represented as
a table, with each horizontal row representing a record and each
vertical column representing one of the attributes, or fields, of the
record. Users find it natural to organize and manipulate data stored
in tables, having long familiarity with tables dating from elementary
school.

The Table, or two dimensional array, in a "true" relational data base
is subject to some special constraints. First, no row can exactly
duplicate any other row. (If it did, one of the rows would be
unnecessary). Second, there must be an entry in at least one column or
combination of columns that is unique for each row; the column heading
for this column, or group of columns, is the “key" that identifies the
table and serves as a marker for search operations. Third, there must
be one and only one entry in each row-column cell.

A fourth requirement, that the rows be in no particular order, 1is both
a strength and a weakness of the relational model. Adding a new item
can be thought of as adding a row at the bottom of the table; hence
there is no need to squeeze a new item in between preexisting items as
in other database structures. However, to find a particular item, the
entire table may have to be searched.

There are three kinds of tables in the relational model: base tables,
views, and result tables. A base table is named, defined in detail,
filled with data, and is more or 1less a permanent structure in the
database.

A view can be seen as a "window" into one or more tables. It consists
of a row and/or column subset of one or more base tables. Data is not
stored in a view, 80 a view is often referred to as a logical or
virtual table. Only the definition of a view is stored in the
database, and that view definition is then invoked whenever the view is
referenced in a command. Views are convenient for limiting the picture
a user or program has of the data, thereby simplifying both data
security and data access.

A result table contains the data that results from a retrieval request.

It has no name and generally has a brief existence. This kind of table
is not stored in the database, but can be directed to an output device.

Paper 3220 3 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
The Relational Language

The defacto industry standard language for relational data bases is
SQL. SQL stands for Structured Query Language. This name is deceiving
in that it only describes one facet of SQL’s capabilities. In addition
to the inquiry or data retrieval operations, SQL also includes all the
commands needed for data manipulation. The user only needs to learn
four commands to handle all data retrieval and manipulation of a
relational database. These four commands are: SELECT, UPDATE, DELETE
and INSERT.

The relational model uses three primary operations to retrieve records
from one or more tables: select, project and join. These operations
are based on the mathematical theories that underlie relational
technology, and they all use the same command, SELECT. The select
operation retrieves a subset of rows from a table that meet certain

criteria. The project retrieves specific columns from a table. The
join operation combines data from two or more tables by matching values
in one table against values in the other tables. For all rows that

contain matching values, a result row is created by combining the
columns from the tables eliminating redundant columns.

The basic form of the SELECT command is:

SELECT some data (field names)

FROM some place (table names)

WHERE certain conditions (if any) are to be met

In some instances WHERE may not be neccessary. Around this

SELECT. .FROM..WHERE structure, the user can place other SQL commands in
order to express the many powerful operations of the language.

In all uses of SQL, the user does not have to be concerned with how the
system should get the data. Rather, the user tells the system what he
wants. This means that the user only needs to know the meaning of the
data, not its physical representation, and this feature can relieve the
user from many of the complexities of data access.

The data manipulation operations include UPDATE, DELETE and INSERT.
The UPDATE command changes data values in all rows that meet the WHERE
qualification. The DELETE command deletes all rows that meet the WHERE
qualification and the INSERT command adds new rows to a table.

When retrieving data in application programs it -"is important to
remember that SQL retrieves sets of data rather than individual records
and consequently requires different programming techniques. There are
two options for presenting selected data to programs. If an array is
established in the program, a BULK SELECT can retrieve the entire set
of qualifying rows, and store them in the array for programmatic
processing. Alternatively, it is possible to activate a cursor that
will present rows to programs one at a time.

SQL has a set of built-in, aggregate functions. The functions

available are count, sum, average, minimum, and maximum. They operate
on a collection of values and produce a single value.

Paper 3220 4 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

In addition to commands for data retrieval and modification, SQL also
includes commands for defining all database objects. The data
definition commands are CREATE, ALTER and DROP. The CREATE command is
used to create base tables and views. The ALTER provides for the
expansion of existing tables and the DROP deletes a view. One of the
most powerful features of SQL is its dynamic definition capability.
This function allows the user to add columns, tables and views to the
database without unloading and reloading existing data or changing any
current programs. More importantly, these changes can be made while
the databases are in use.

Productivity Features of Using Relational Technology

Relational technology is one very important tool that can contribute to
making data processing professionals more productive. The programmer
can benefit from a facility called interactive program development,
which allows the development and debugging of SQL commands and then
permits the moving of those same commands into the application
programs. It is convenient and easy to set up test databases
interactively and then to confirm the effect of a program on the
database. All of these characteristics make SQL a powerful prototyping

tool. The on-line facilities of SQL can be used to create prototype
tables loaded with sample or production data. On-line queries can
easily be written to demonstrate application usage. End users can see

the proposed scheme in operation prior to formal application
development. In this prototype approach, people-time and computer-time
are saved while design flaws are easily corrected early in development.

The data base administrator profits from the productivity features
already described for programmers. The database administrator has a
great deal of freedom in structuring the database, since it is
unneccessary to predict all future access paths at design time.
Instead, the DBA can concentrate on specific data requirements of the
user. Nonrelational models, on the other hand, require all
relationships be pre-defined, which adds to the complexity of the
application and lengthens development time.

Additional productivity features for the database administrator include
the capability to modify tables without affecting existing programs and
the capability +to dynamically allocate additional space while the
database is still in use. SQL goes far beyond many database management
systems in the degree of protection that it provides for data. Views
make it possible to narrow access privileges down to a single field.
Users can even be limited to summary data. Protection can be specified
for database, system catalog, tables, views, columns, rows and fields.
It is also possible to restrict access to a subset of commands. These
access privileges can be changed dynamically, as the need arises.

In many installations, the key to overall productivity is the ability
of DP too offload the appropriate portions of the development and

maintenance to the end user. The flexible design approach of
relational databases allows an application to be designed with the end
user’s requirements in mind. This could enable the DP professional to

Paper 3220 5 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP . INTEREX 86

implement an application up to the point where the end user could
create and execute his own queries, thereby expanding the application
on his own and reducing his dependence on the data processing
department. Through SQL, the end user is provided with extremely
flexible access and simple but powerful commands.

Relational and Nonrelational: Complementary Technologies

Within a data processing department already using a well-established
nonrelational DBMS, what role can relational technology be expected to
play? We know that DP will not automatically drop everything and go to

relational. Rather, relational technology should be seen as a
complement rather than a replacement for nonrelational database
systems. Both approaches offer a host of benefits, and most

applications can be implemented with either of the two.

The relational approach is preferred when the application has a large
number of data relationships or when the data relationships are unknown
or changing dynamically. The relational approach provides the needed
flexibility to establish relationships at the time of inquiry, not when
the database is designed. If the application has unknown of incomplete
data specifications, which is usually the case in a prototyping
environment, then a relational system may be preferable. If the
application requires a quick turnaround, the quick design and
implementation capabilities of a relational database can be important.
The ability to handle ad hoc requests is a definite strength of the
relational model as is the ability to extract data for use in a
modeling, forecasting, or analytical framework.

The nonrelational approach is preferred for high-volume on-line
transaction processing applications where performance is the most
critical requirement.

Choosing the Right Technology

The choice of the "correct" database management system must be based on
the environment in which the database will be used and on the needs of
the particular application. The key feature of relational technology
is that it allows for maximum flexibility, and will probably be the
choice for many new applications. On the other hand, nonrelational
systems may continue to be preferrable for very stable or structured
applications in which data manipulation requirements are highly
predictable, and high transaction throughput is important.

The optimum approach for many MIS departments will be +to use the
relational system concurrently with the existing nonrelational system,
matching the appropriate technology to the application. The only
problem with such an approach is that the data for an application
developed in one technology may sometimes be needed by applications
developed in the other technology. Data may be '"locked out” from an
application that needs it, or users might be tempted to duplicate the
data, maintaining both copies. The most desirable solution would
obviously be to provide both relational and nonrelational access to a
single database. This capability will be available with HP’s ALLBASE.

Paper 3220 6 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Applications

There are many application areas - particularly those involving user
analysis, reporting, and planning - where the very nature of the
application is constantly changing. Some typical application areas
are:

* Financial
- Budget analysis
- Profit and Loss
- Risk assessment

* Inventory
- Vendor performance
- Buyer performance

* Marketing and sales
- Tracking and analysis
- Forecasting

Personnel
- Compliance
- Skills and job tracking

* Project management
- Checkpoint/milestone progress
- Development and test status

* EDP auditing
- Data verification
- Installation configuration

* Government/education/health
- Crime and traffic analysis
- Admissions/recruiting/research
- Medical data analysis

These applications typify instances where it is of primary importance

to establish interrelationships within the database and to define new
tables.

Paper 3220 7 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Checklist for Deciding Whether or Not You Need A Relational Database

Note: If you answer yes to any of the following questions, you should
seriously consider taking advantage of relational technology.

1. Does your company have an excessive backlog of applications to be
developed, including an invisible backlog?

2. 1Is your company spending too much money developing applications due
to the complexities of using nonrelational systems?

3. Do your users’ requirements for information change dynamically?

4. Are your programmers spending too much time maintaining
applications caused by changing data requirements or relationships?

5. Do your users feel restricted by a nonrelational database?

6. Are your programmers spending an excessive amount of time writing
code to navigate through nonrelational databases?

7. Is the nature of your applications such that it is constantly
changing?

8. Would your users find it natural to organize and manipulate data in
tables?

9. Do your users currently use LOTUS 1-2-3 or spreadsheets?

10. Is your company moving towards a true distributed database
environment?

SUMMARY

A fully implemented relational system presents a user with a data
description that is irreducibly simple, a language that allows him to
ask questions instead of writing programs, implementation transparency
that ensures survival of programs in the face of change, system-
optimized efficiency that adapts, and controls and views that are at
once specific and efficient. For the database administrator it means
unprecedented power and ease in controlling and restructuring a
database. For the application programmer, it increases productivity
many fold and lifts programming to the level of problem solving. For
the casual user, it makes direct access to data at last possible. The
bottom line is that relational technology is here to stay!

Paper 3220 8 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Bibliography

Codd, E.F., "A Relational Model of Data for Large Shared Data Banks,"
CACM, 13 6,(June 1970),pp. 377-387.

Codd, E.F.,"Relational Database: A Practical Foundation for
Productivity," CACM, 25 2,(February 1982,pp. 109-117.

Date, C.J., An Introduction to Database Systems. Addison-Wesley, 197T.

s,Relational Technology: A Productivity Solution, Hewlett-
Packard Co., Computer Systems Division, Cupertino, Ca., 5954-
6676, January 1986.

Biography

Orland Larson is currently Information Resource Management Specialist
for Hewlett-Packard. As the database and application development
specialist for the Information Systems Tactical Marketing Center he
develops and presents seminars worldwide on database management,
information systems prototyping and productivity tools for information
resource management. He is a regular speaker at Hewlett-Packard’s
Productivity Shows and Users Group Meetings and also participates in
various National Data Base and U4th Generation Language symposiums.
Previously he was the Product Manager for IMAGE/3000, Hewlett-Packard’s
award winning database management system.

Before joining HP he worked as a Senior Analyst in the MIS Department
of a large California-based insurance company and prior to that as a
Programmer/Analyst for various software companies. Mr. Larson has
been with Hewlett-Packard since 1972.

Paper 3220 9 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP

INTEREX 86

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

RELATIONAL DATABASES VS. IMAGE: WHAT THE FuUSS IS ALL ABOUT
by Eugene Volokh,
VESOFT, Inc.
7174 Melrose Ave.
Los Angeles, CA 90046 USA
(213) 937-6620
Presented at Greater Los Angeles Users Group meeting, Apr 1986.

ABSTRACT

What are "relational databases" anyway? Are they more powerful than
IMAGE? Less powerful? Faster? Slower? Slogans abound, but facts are hard
to come by. It seems like HP will finally have its own relational system
out for Spectrum (or whatever they call it these days). I hope that this
paper will <clear up some of the confusion that surrounds relational
databases, and will point out the substantive advantages and
disadvantages that relational databases have over network systems like
IMAGE.

WHAT IS A RELATIONAL DATABASE?

Let's think for a while about a database design problem.

We want to build a parts requisition system. We have many possible
suppliers, and many different parts. Each supplier can sell us several
kinds of parts, and each part can be bought from one of several
suppliers.

Easy, right? We just have a supplier master, a parts master, and a
supplier/parts cross-reference detail:

\ SUPPLIERS / N\ PARTS /
N\ / N\ 4
\ (M) / \ (M) /

\ SUPPLIER-XREF /
\ /
\ (D) /

N /

Paper 3221 1 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

Every supplier has a record in the SUPPLIERS master, every part has a
record in the PARTS master, and each (supplier, part-supplied) pair has
a record in the SUPPLIER-XREF dataset.

Now, why did we set things up this way? We could have, for instance,
made the SUPPLIER-XREF dataset a master, with a key of SUPPLIERS#+PART#.
Or, we could have made all three datasets stand-alone details, with no
masters at all. The point is that the proof of a database is in the
using. The design we showed -- two masters and a detail -- allows us to
very efficiently do the following things:

* Look up supplier information by the unique supplier #.
* Look up parts information by the unique part #.

* For each part, 1look up all its suppliers (by using the cross-
reference detail dataset).

* For each supplier, look up all the parts it sells (by using the
cross-reference detail dataset).

This is what IMAGE is good at -- allowing quick retrieval from &

master using the master's unique key and allowing quick retrieval from ¢
detail chain using one of the detail's search items.

However, lets take a closer look at the parts dataset. It actuall:
looks kind of like this:

PART# <—=- unique key item

DESCRIPTION

SHAPE
COLOR

What if we want to find all the suppliers that can sell us
"framastat"? A "framastat", you see, is not a part number -- it's a par
description. We want to be able to look up parts not only by their par
number, but also by their descriptions. The funcrions supported by ou
design are:

* Look up PART by PART#.

* Look up SUPPLIERS by SUPPLIERS#.

* Look up PARTs by SUPPLIERS#.

* Look up SUPPLIERs by PART#.

What we want is the ability to

* Look up PART by DESCRIPTION.

Paper 3221 2 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

The sad thing is that the PARTS dataset is a master, and a master
dataset supports 1lookup by ONLY ONE FIELD (the key). We can't make
DESCRIPTION the key item, since we want PART# to be the key item; we
can't make DESCRIPTION a search item, since PARTS isn't a detail. By
making PARTS a master, we got fast lookup by PART# (on the order of 1 or
2 1I/0s to do the DBGET), but we forfeited any power to look things up
quickly by any other item.

And so, dispirited and dejected, we get drunk and go to bed. And,
deep in the night, a dream comes. "Make it a detail!" the voice shouts.
“"Make it a detail, and then you can have as many paths as you want to."

We awaken elated! This is it! Make PARTS a detail dataset, and then
have two search items, PART# and DESCRIPTION. Each search item can have
an automatic master dataset hanging off of it, to wit:

\ SUPPLIERS / \ PART#S / \ DESCRIP- /
\ / \ / \ TIONS /
My s N\ (A) 7/ N (A) /

\ / \ / \ /
\ / N/ N/
_/ N/ N/
\ / \ /
\ SUPPLIER-XREF / \ PARTS /
\ (D) / \ (D) /
\ / \ /

What's more, if we ever, say, want to find all the parts of a certain
color or shape, we «can easily add a new search item to the PARTS
dataset. Sure, it may be a bit slower (to get a part we need to first
find it in PART#S and then follow the chain to PARTS, 2 I/Os instead of
1), and also the uniqueness of part numbers isn't enforced; still, the
flexibility advantages are pretty nice.

So, now we can put any number of search items in PARTS. What about
SUPPLIERS? What if we want to find a supplier by his name, or city, or
any other field? Again, if we use master datasets, we're locked into
having only one key item per dataset. Just like we restructured PARTS,
we can restructure SUPPLIES, and come up with:

Paper 3221 3 DETROIT, M|

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

\ SUPPLIER#S / \ PART#S / \ DESCRIP- /
\ (A) /£ N\ (A) / \ TIONS ~/
\ / N\ / N (A) 7/
\ / N\ / N\ /
N\ / N/ A
\—-=/ \/ \/
N\ / \ / N\ /
\ SUPPLIERS / \ SUPPLIER-XREF / \ PARTS /
\ (D) / \ (D) / \ (D) /
N\ / \ / \ /

Note what we have done in our quest for flexibility. All the real
data has been put 1into detail datasets; every data item which we're
likely to retrieve on has an automatic master attached to it.

Believe it or not, this is a relational database.

IF THIS IS A RELATIONAL DATABASE, I'M A HOTTENTOT

Surely, vyou say, there is more to a relational database than just an
IMAGE database without any master datasets. Isn't there? Of course,
there is. But all the wonderful things you've been hearing about
relational databases may have more to do with the features of a specific
system that happens to be relational than with the virtues of relational
as a whole.

Consider for a moment NETWORK databases. IMAGE is one example, in
fact an example of a rather restricted kind of network database .(having
only two levels, master and detail). Let's look at some of the major
features of IMAGE:

* IMAGE supports unique-key MASTERS and non-unique-key DETAILS.

* IMAGE does HASHING on master dataset records.

* IMAGE has QUERY, an interactive query language.

Paper 3221 4 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

Which of these features are actually NETWORK DATABASE features? In

other words, which features would be present in any network database,
and which are specific to the IMAGE implementation? Of the three listed
above, only the first -- masters and details —-- must actually be present
in all databases that want to call themselves "network”. On the other
hand, a network database might very well use B-trees or ISAM asz its
access method instead of hashing; or, it might not provide an
interactive query language. It would still be a network database -- it

just wouldn't be IMAGE.

Why is all this relevant? Well, let's say that somebody said "Network
databases are bad because they use hashing instead of B-trees." This
statement is wrong because the network database model is silent on the
question of B-trees vs. hashing. It is incorrect to generalize from the
fact that IMAGE happens to use hashing to the theory that all network
databases use hashing. If we get into the habit of making such
generalizations, we are 1liable to get very inaccurate ideas about
network datamases in general or other network implementations in
particular.

The same gqoes for relational databases. The reason that so many
people are so keen on relational databases isn't because they have any
particularly novel form of data representation (actually, it's much like
a bunch of old-fashioned KSAM/ISAM-like files with the possibility of

multiple keys); nor 1is it because of some fancy new access methods
(hashing, B-trees, and ISAM are all that relational databases support).
Rather, 1it's because the designers of many of the modern relational

databases did a good job in providing people with 1lots of useful
features (ones that might have been just as handy in network databases).

WHAT ARE RELATIONAL DATABASES -- FUNCTIONALITY

The major reason for many of the differences between relational
databases and network databases is simple: age. Remember the good old
days when people hacked FORTRAN code, spending days or weeks on
optimizing out an instruction or two, or saving 1000 bytes of memory
(they had only 8K back then) ? Well, those are the days in which many of
today's network databases were first designed; maximum effort was placed
on making slow hardware run as fast as possible and getting the most out
of every bvte of disk.

Relational databases, children of the late '70s and early '80s had
the benefit of perspective. Their designers saw that much desirable
functionality and flexibility was missing in the older systems, and they
were willing to include it in relational databases even if it meant some
wasted storage and performance slow-down. The bad part of this is that,
to some extent, modern relational databases are still hurting from
slightly decreased performance; however, this seems to be at most a
temporary problem, and the functionality and flexibility advantages are
quite great.

Paper 3221 5 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

THE USER INTERFACE -- THE RELATIONAL QUERY LANGUAGE

If you look at the theoretical definition of relational databases --
the one given by Codd in his original paper that first introduced the

subject =-- you'll find that nowhere does it talk about B-trees or
hashing or internal dataset format or anything like that. In fact, what
defines a relational database 1is the format of each "relation" (or
dataset) and the Relational Query Language that lets a user retrieve

from and update these datasets. Since IMAGE detail datasets very closely
fit the requirements of relational dataset format, we won't talk much
about this; the concept of a Relational Query Language, however is
another story.

Everyone understands the "Query Language" part -- it's an interface
that allows interactive access to the database, just like QUERY/3000
(note that "query" means any database retrieval, insertion, update, or
deletion). What makes the query language RELATIONAL?

Imagine for a moment the following QUERY/3000 statement -- let's call
it "SELECT":

¥ It has the ability of a >LIST command to select certain records
based on selection conditions (like PRICE < 1000 AND COLOR =
"RED") .

x Just like a >LIST, it can output only those fields you want (not
just the entire record).

* Instead of just saying "list the fields PRICE and COLOR" vyou can
also specify expressions such as PRICE * NUM-ITEMS, so that the
statement might look like:

SELECT PRICE, COLOR, PRICE * NUM-ITEMS, NUM-ITEMS + 100

* Finally -- the most important difference of all, you can RETRIEVE
ITEMS FROM SEVERAL DATASETS AT ONCE! This is what QUERY's >JOIN and
>MULTIFIND commands let you do, but it's a lot less clumsy.

The capability of retrieving stuff from several datasets (called
"joining", from which QUERY's >JOIN command gets its name) is the most
important difference between Relational Query Languages and orthodox
query languages (such as QUERY-A, which didn't have even the » JOIN
command). If there's one thing the advocates of relational databases can
be proud of, it's their efforts for widespread implementation of joins
in various query languages.

With the >SELECT statement, we could say something like:

SELECT SUPPLIER.NAME, SUPPLIER.NUMBER,
PART.NAME, PART.NUMBER

FROM SUPPLIER, PART, SUPPLIER-XREF

WHERE SUPPLIER.NUMBER = SUPPLIER-XREF.SUPPLIER# AND
PART.NUMBER = SUPPLIER-XREF.PART# AND

Paper 3221 6 DETROIT, Ml

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

PART.COLOR = "RED" AND
SUPPLIER.STATE = "“CA"

This finds every SUPPLIER in the state of CAlifornia who supplies red
parts, and prints the name and number of that supplier together with the
name and number of every red part that he supplies.

The first thing you should notice about the >SELECT command is that
THERE'S NOTHING IN IT THAT QUERY/3000 DOESN'T HAVE. Functionally
speaking, it's merely a combination of QUERY's »>LIST, »>JOIN, and
>MULTIFIND. The big thing is that you don't have to specify an explicit
>JOIN command that tells QUERY how to navigate the pathways between
SUPPLIER, SUPPLIER-XREF, and PART. It figures all this out
automatically.

For instance, the »>SELECT command shown above figures out that it
should find all the CAlifornian SUPPLIERs (maybe there's even a search
item on STATE that'll make the search faster), for each of those finds
the appropriate items in SUPPLIER-XREF, and for each SUPPLIER-XREF item
it checks to see if the cross-reference record refers to a red part.
Alternatively, it might look up all the red parts first, and then for
each of those parts go through SUPPLIER-XREF and find all the
CAlifornian SUPPLIERs.

It's a great convenience to have the query language figure out the
way the join should be done, but functionally this doesn't give you any
capability you don't already have with QUERY/3000. In a way, therefore
(with a few technical exceptions), QUERY/3000 IS a relational query
language, although not easy to wuse as many such languages that
relational database systems support.

A BRIEF, BUT IMPORTANT DIGRESSION

RELATION = TABLE = DATASET.

ATTRIBUTE = COLUMN = FIELD (or ITEM -- it's close enough).

TUPLE = ROW = RECORD.
The relational database community is fond of calling things “relations",
"attributes", and "tuples". This 1is just needless confusion. A
“relation" is a dataset, and "attribute" is a field/item, and a "tuple"
is a record. Table, column, and row are more names for the same thing.

I try to always use the words dataset, item, and record. If anybody

throws any of the relational buzzwords at you, just do a quick mental
translation.

FLEXIBILITY -- BUILDING AUTOMATIC MASTERS ON THE FLY

Paper 3221 7 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

If you look wecarefully at the theoretical definition of relational
databases, you'll find that it doesn't actually mention any analog of an

automatic master dataset. It describes “relations", which are just
detail datasets, and some broad parameters of the Relational Query
Language, but it says nothing about “indexes", which 1is what most

relational systems use in the same way that IMAGE uses automatic
masters.

Thus, a database system may well have all its selections and joins
implemented using serial reads and still be relational! Of course, such
a system wouldn't sell very well, so all relational systems allow you to
build "indexes" just like IMAGE lets you set up automation masters. The
thing that the architects of these systems did right, however, was that
they 1let vyou build indexes whenever you liked, not just when you were
initially building the database. Similarly, vou could delete them
whenever you found that the overhead of constantly updating the index
exceeded the benefit that the index gave you for searching.

In some ways, this feature —-- although, as I said, theoretically not
a ‘"relational" feature -- is one of the most important advantages of
relational systems. It's this that gave rise to the often-heard but
quite misleading statement that "in relational systems, you can find
things by any item, not Jjust a search item". 1In both IMAGE and
relational databases, you can find records using non-search items, but
it'll require a serial search; in both IMAGE and relational databases,
you can set up any item as a search item, but then you have to pay a
penalty every time you add or delete a record. The big advantage of
relational is that you can make ordinary items into search items (and
vice versa) very easily -- even easier than with ADAGER.

MORE FLEXIBILITY -- CHANGING DATABASE STRUCTURE ON THE FLY

The ability that a relational database user has to easily build and
destroy indexes is actually just a special case of the ability the user
has to easily create and destroy any dataset in the database. He can add
datasets, delete datasets, restructure them, and so on.

This can be done not just after the system is built, but even while
other parts of the database are in use. Again, any ADAGER user will
understand how useful this kind of ability is (although ADAGER is
actually rather more powerful than most relational databases'
restructuring tools).

Again, this is not part of the "theoretical" definition of databases,
since the theoretical definition doesn't worry about "unimportant"

things 1like performance or database maintenance; still, it's pretty
universal among database systems.

MORE USEFUL FUNCTIONALITY

Paper 3221 8 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

Relational Query Languages and Ease of Restructuring are two of the
three most major features that relational databases provide (the third
one I'll get to later). What I've taken pains to point out is that these
features aren't unique with relational systems, and to a large extent
are present in IMAGE, especially if you also throw in ADAGER. However,
relational systems did pioneer these features, and should be given much
credit for the spread of these features to non-relational systems like
IMAGE.

Some other wuseful features -- also not part of the theoretical
definition of relational databases, but implemented in most relational
systems —-- are:

* B-tree and ISAM indexes to the addition (or sometimes to the
exclusion) of hashing indexes. With these, vyou can do KSAM-like
accesses by which vyou can quickly find all the customers whose
names start with "SMI" or retrieve all the parts in sorted order by
part number.

* Indexes on multiple items, just as if you were able to build a
single IMAGE automatic master on not just the VENDOR# field of the
INVOICES dataset, but both the VENDOR# and the INVOICE# fields.

* Views, which look to the user just 1like a dataset, but which are
actually the results of FINDs (or MULTIFINDs) on other dataset (s).
In other words, a user (or a database administrator) can define a
view called RED-CALIFORNIAN-PARTS, which corresponds to the

SELECT SUPPLIER.SNAME, SUPPLIER.SNUMBER,
PART.PNAME, PART.PNUMBER, PART.PSHAPE

FROM SUPPLIER, PART, SUPPLIER-XREF

WHERE SUPPLIER.NUMBER = SUPPLIER-XREF.SUPPLIER# AND
PART.NUMBER = SUPPLIER-XREF.PART# AND
PART.COLOR = "“RED" AND
SUPPLIER.STATE = "CA"

command that we discussed above. This view will look just like a
dataset which contains the data retrieved by this >SELECT -- the
only difference is that the dataset won't actually take up any disc
space, but rather any command that refers to it will automatically
be translated into one that extracts all the requested data from
the SUPPLIER, SUPPLIER-XREF, and PARTS datasets.

Thus, if we define the RED-CALIFORNIAN-PARTS view to be equivalent
to a SELECT like the one above, then

SELECT RED-CALIFORNIAN-PARTS.SNAME,
RED-CALIFORNIAN-PARTS.PNAME
WHERE RED-CALIFORNIAN-PARTS.PSHAPE="CUBE"

will get all the red parts that are made by CAlifornian SUPPLIERs
AND are cubes (the parts, not the suppliers).

Paper 3221 9 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

* Integrity constraints, by which you can say something like "all
employee salaries must be positive" or "the sum of HOURS-WORKED and
HOURS~-VACATION may not be more than 48". Any time a user -- through
a program or the interactive query environment -- tries to add a
record to the database that violates the integrity constraints,
he'll get an error. On the other hand, the built-in integrity
constraints of IMAGE, namely that all detail records must have
corresponding appropriate manual master records, are not supported.

* Virtually all relational database systems have built-in
"transaction-level recovery". Without going to deeply into this --
users of IMAGE roll-forward or roll-back recovery already know what
this 1is -- this is a good way of making sure that the database is
kept safe and sound (even in case of disk errors or such). It also
allows you to automatically prevent half-completed transactions —--
for instance, the addition of half the 1line items of an invoice -
from being left in the database in case of system crash.

FUNCTIONAL ADVANTAGES OF IMAGE OVER RELATIONAL

As a rule, most relational systems are more powerful than IMAGE.
Still, the very fact that IMAGE is a network system gives it some
advantages over relational systems.

* The most major one is the fact that in IMAGE, all detail records
must have corresponding records in any appropriate manual masters.
This 1is a kind of "integrity constraint" (see above) that most
relational systems don't support. It's often quite useful for the
database itself to make sure that a user can't enter an invoice,
say, belonging to a non-existent vendor.

* Another advantage of IMAGE (or, to be precise, of QUERY) is that

unlike many (but not all) relational database systems, QUERY can
handle several databases open at once.

BUT WHAT ABOUT RELATIONAL DATABASE PERFORMANCE?

One thing that's often been said about relational databases is that
they're slow. The reason why this rumor is so prevalent is that it's

often been true. Relational databases are young creatures, not yet as
well-optimized as older, more mature systems. Still, the recent (past 3
vears) ‘coup' of relational systems has shown great improvement, and

there's no reason why they can't - now or in the near future - match and
exceed the performance of older systems like IMAGE/3000.

What exactly was it that has made many older relational systems slow?
It wasn't the data structures - they can use hashing and B-trees just as

Paper 3221 10 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

well as IMAGE or KSAM (the fact of the 1index and the dataset being
stored in two different places isn't really a problem). It wasn't the
recovery logging - a smart relational system might actually do less I/Os
to support database reliability than IMAGE does (with each one of its
writes having to be posted immediately to disk). The greatest speed
problem of relational systems actually happens to be their greatest
performance advantage - embedded query languages.

As I mentioned before, relational databases were invented almost
backwards (some of their proponents claim that the non-relational
databases were the ones invented backwards). Instead of describing the
physical structure first - hashed masters, details, search items, sort
items, double-word pointers, etc. - and then adding the query language
as an afterthought, relational query capabilities were designed first
and then some reasonable physical structure was built around them.
That's why relational query languages are so nifty.

The problem the relational architects got was this:

In a relational gquery system, to print out the names of all the
employees who made more than $50,000 per year, the names of their
departments, and the addresses of their buildings, sorted by department
name, we could say

SELECT EMPLOYEE.NAME, DEPARTMENT.NAME, BUILDING.ADDRESS,
BUILDING.CITY, BUILDING.STATE

WHERE EMPLOYEE.SALARY > 50000 AND
EMPLOYEE.DEPT# = DEPARTMENT.DEPT# AND
EMPLOYEE.BLDG# = BUILDING.BLDG#

SORT BY DEPARTMENT.NAME

But, this is all in QUERY - how can we do this from our program? Do we
now have to go back to the old way of doing all those DBGETs and
DBFINDs?

What the designers of several relational systems decided was that
* YOU CAN EMBED RELATIONAL QUERY COMMANDS INTO YOUR OWN PROGRAMS!

Think about it for a moment. Your program might look like this:

ACCEPT "WHAT SALARY THRESHOLD DO YOU WANT?", SALARY
SELECT :ENAME = EMPLOYEE.NAME, :DNAME = DEPARTMENT.NAME,
:ADDRESS = BUILDING.ADDRESS, :CITY = BUILDING.CITY,
:STATE = BUILDING.STATE
WHERE EMPLOYEE.SALARY > :SALARY AND
EMPLOYEE.DEPT# = DEPARTMENT.DEPT# AND
EMPLOYEE.BLDG# = BUILDING.BLDG#
SORT BY DEPARTMENT.NAME
DO
This code will be executed once for each employee-department-
building triplet found, with the ENAME, DNAME, ADDRESS, CITY,

QOO#* % 4

Paper 3221 11 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

C and STATE variables set to the proper values.
DOEND

The query you want to execute is just embedded right in your program
(with each line preceded by, say, a "#" to indicate that it's part of a
query). Any variables - 1like the threshold SALARY or ENAME, DNAME,
ADDRESS, CITY, or STATE - can be passed to and from the query. Finally,
in the <case of SELECT queries (which only retrieve data), a bunch of
code will be executed for each thing retrieved; other queries, like
APPEND, DELETE, or UPDATE can also be conveniently embeded.

What an idea! This is almost like having a fourth—-generation language
- all the power of a procedural language with all the ease of use of the
relational query facility. However, truly heroic measures have to be
undertaken to be sure that this isn't the slowest database system known
to man.

The simplest way of allowing embedded queries is to have the compiler
(or, more commonly, a preprocessor program that converts the embedded
code into something ‘readable to the compiler) compile <calls to the
relational’ query language. Think of it 1like QUERY/3000 wasn't a
standalone program, but rather a procedure, and you'd say

CALL QUERY ("FIND EMPLOYEE.SALARY > 10000"}

This'll work, but imagine the overhead QUERY will have to go through to
parse and interpretively execute this operation! It has to recognize the
FIND, find the dataset EMPLOYEE, find the data item SALARY, figure out
what indexes there are on the EMPLOYEE dataset - you'll be lucky if it's
done by Christmas. And, believe it or not, this 1is how some early
relational database systems worked.

Now, there 1is a more intelligent approach, but it's harder to
implement. What it involves is that the preprocessor should do much of
the query parsing when it preprocesses the user’s program. It sees our
SELECT, for instance, and looks up all the datasets and items that it
refers to. Then, the pointers to all these things are kept around, so at
run time, no parsing or dataset/item lookup needs to be done. In the
best ©possible case, the preprocessor might actually compile the SELECT
into the appropriate DBGETs, much like the interactive QUERY facility
would translate the SELECT into a bunch of DBGETs that it has to do.

It 1is on the success of this "preprocessor-time precompilation” that
the performance of a commercial relational system - including, in
particular, HP's new relational offering - rests.

HP might decide to forbid embedded queries altogether and have a
DBGET/DBPUT/etc.-like interface. This won't be all that bad, but it

won't be very nice (believe me, embedded queries are VERY useful). Or,
it could give us slow embedded queries and a fast DBxxx-like interface,
telling us to "make our choice" - believe me, this will be no choice at

all, considering just how slow non-precompiled embedded queries are.

Paper 3221 12 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

The worst thing HP can do is to give us slow (non-precompiled) embedded
queries WITHOUT a procedure-level interface to the system. This means
that their entire relational product will be a total, unmitigated
disaster.

HP might do some simple precompilation - say, parsing of the embedded
query into individual tokens ("SELECT", "EMPLOYEE", etc.). WRONG. All it
saves is just a little text scanning at run-time.

HP might have the preprocessor parse out the entire query and also
look wup all the various datasets and items mentioned in it, thus saving
the extra overhead at run-time. This may make for a viable, tolerably
fast system.

Finally, if HP 1is feeling really audacious - and smart - it can
compile the embedded query into some kind of pseudo-code that's as close
to the actual DBGET/DBPUT/etc. call level as possible. That way, all
that will be needed at run-time is for the program to step through this
pseudo-code and do a DBxxx call or something 1like that for each
pseudo-instruction. If this is done, there's no reason I can see why the
relational database can't be as fast or faster than IMAGE.

CONCLUSION
My conclusions are simple:
* Relational databases are nothing revolutionarily new. Their main
advantage lies not in any radically different data representation

structure, but rather in a lot of useful functionality/flexibility
features.

* All those functionality/flexibility features are really GREAT. If
HP doesn't degrade performance too badly, you ought to like the
relational system a lot better than you do IMAGE.

* The performance of the system depends primarily on how good a job
HP does of optimizing the preprocessing of embedded queries.

* You'll 1love embedded queries, if they're fast. If they're slow,
you'll hate them.

Paper 3221 13 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Relational Databases

WHAT I HAVEN'T SAID AND WHY I HAVEN'T SAID IT

The purpose of this paper is to clarify for the average user the
differences between IMAGE/3000 and common relational database systems -
like HP's imminent relational offering. To do this as tersely as
possible, I've omitted many details (some of them pretty substantial
ones) that I think are insignificant to the broad picture I'm trying to
present.

Still, I think that it's appropriate for me to point out these
details and explain why I didn't think it necessary to discuss them in
greater detail.

* THE MATHEMATICAL THEORY OF RELATIONAL DATABASES - RELATIONAL
CALCULUS AND RELATIONAL ALGEBRA. I believe that these are
completely irrelevant to practical uses of relational database
systems. I get particularly irritated when people say that
"relational databases are Mathematically Sound" - something I've
heard many a time - this implies that network databases are
Mathematically Unsound. I've worked on them for six years, and
believe me, they're sound enough.

* OPTIMIZING LARGE, COMPLICATED JOINS AND QUERIES. In my discussion
of performance, I emphasized the importance of good preprocessing
and precompilation. This is a big deal for small, simple queries
that take only a small amount of processing time, and thus any
parsing overhead really slows them down. However, a query that
does, say, a join of three 100,000-record datasets won't be slowed
down much by parsing - what will speed it up most is a good Join
Optimization algorithm, one which knows, say, which dataset to read
through first, and so on. The reason why I didn't talk much about
it is that the big three-way 100,000-tuple joins aren't all that
frequent, and we can live with them being slow. The small queries
have to run like greased lightning.

* FIRST, SECOND, THIRD, BOYCE-CODD, AND OTHER NORMAL FORMS.
Interesting for a paper on how to design a database to minimize
programming problems, but irrelevant to this discussion. In any
case, anything you can represent in IMAGE is normalized enough to
be directly translated to relational, although some database
designs may be prettified by further normalization.

Paper 3221 14 DETROIT, Ml

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

THE FUTURE OF DATA BASE TECHNOLOGY

By Mark S. Trasko, President, Dynamic Information Systems Corporation

The Spectrum machines recently announced by HP have generated much
enthusiasm in the user community. The new 930 and 950 models will provide
major increases in CPU power along with a powerful new DBMS with both
network and relational interfaces. Many sites with large data base applications
have been anxiously awaiting these machines as an alternative to switching to
another vendor’s supermini or mainframe. With the wide array of CPU’s
available in the 5 to 20 MIP range instead of the Series 68’s meager 1 MIP speed,
a hardware upgrade is an obvious solution to their performance problems.

Or is it?

CPU POWER ALONE MAY NOT BE THE ANSWER

Unfortunately, most data base applications can be improved only slightly by
increases in CPU speed. Why? Because they are disc I/O bound rather than
CPU bound. Most inquiries and reports require lengthy serial or chained reads
of the data base even when only a small subset of records is of interest. The
time required to accomplish the report depends on disc throughput rather than
CPU speed. And while CPU speeds continue to increase as semiconductor
technology evolves, disc drives, because they are mechanical devices, are still
limited to about 30 I/O’s per second.

Sophisticated disc controllers and operating systems can increase the aggregate
I/0 throughput of multiple disc systems to 100 - 150 I/O’s per second by issuing
I/0 requests to several drives concurrently. Still, most data base applications are
1/0 bound. Today’s CPUs are capable of executing 100,000 or more instructions
for each disc access, so they spend much of their time waiting for the next I/O
to complete.

CAN DISC CACHING HELP?

Disc caching can help significantly when read locality is high (serial reads for
example). Caching is simple in concept. When a block of data is requested from
the disc, the next several blocks are also read into memory in anticipation that
those blocks will be requested next. If that happens, the requests can be
satisfied directly from the memory cache instead of additional disc I/O’s.

Paper 3222 1 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Unfortunately while caching increases effective I/O throughput in some cases, it
reduces I/O throughput in others. When read locality is poor or write locality is
high, caching decreases the effective I/O throughput because few I/0O’s are
eliminated and the length of each I/O is increased. (See Note 1.)

In addition, caching can place high demands on CPU and memory resources.
CPU’s and semiconductor RAM are rapidly becoming cheaper and faster, so
conserving the machine’s most precious resource, disc I/0, is well worth the
additional CPU & memory expense. The problem is that effective disc caching
in a data base environment is difficult to achieve, and caching can actually
degrade performance as the Guttman study shows. (See Note 1.)

For example, IMAGE master entries are accessed using both calculated reads (in
mode 7 DBGETSs or in DBFINDs on details) and serial reads. Optimum
performance would be achieved if we could disable caching on calculated reads
because reading several unneeded blocks of data in addition to the entry we
want slows disc I/O and wastes CPU and memory resources. Conversely, we
would like to do huge cached reads from the disc when serially reading a master,
because the total amount of disc I/O required could be reduced by a factor of 10
or more.

Cached access to detail records suffers from the same problem. In a serial read,
large "fetch quantums” (cached reads) are obviously desirable. But in chained
reads, which are much more common, the optimum cache length varies from call
to call. A long chained read on the primary path of a freshly reloaded detail
could benefit greatly from a large fetch quantum. Conversely, chained reads on
any other path, short (1 or 2 entry) chained reads, and the chained reads
implicitly done by IMAGE when detail records are added would all benefit if
caching were disabled. Why? Because several blocks of data are being read
when only one is needed.

In general the more data sets that need to be accessed in an inquiry, the less
benefit disc caching provides. For example highly normalized data bases, while
more flexible to access and easier to maintain, can degrade report and
transaction performance markedly because more data sets need to be accessed to
retrieve the desired information. Hence the number of I/0’s required is
increased and the potential benefits of disc caching or large block reads are
eliminated due to poor locality. Normalization is an important consideration in
all data bases, but the extreme degree of normalization used in most relational
data bases has contributed greatly to their poor performance reputation.

Note 1: Paula Guttman of Bell Communications Research analyzed the
performance impact of caching on large IBM mainframes. Her study reveals that
caching is a two-edged sword, helping performance in some situations and
hurting in others. The paper, "Methods for the Deployment of IBM 3880 Model
13 Cached Storage Controllers" was presented at the CMG XV International
Conference on the Management and Performance Evaluation of Computer
Systems, December 1984.

Paper 3222 2 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

I’'m probably going to get in trouble for saying this, but effective disc caching
on data base applications can only be accomplished by the DBMS. The DBMS
has the best idea what data is likely to be accessed next. Ideally the DBMS
would even accept occasional help from the application program, since in some
cases the program might have a better idea what data will be requested. At
present, the operating system is responsible for controlling caching, which is
unfortunate since it is totally in the dark regarding what the user, application
program, and DBMS will do next.

There is a common misconception at many sites who think they are CPU-bound
when in fact they are not. This results from the high CPU and memory
utilization seen when disc caching is being used. Lengthy serial reads using disc
caching can benefit somewhat from a faster CPU because records in the cache
can be accessed faster. Even with a 20 MIP CPU, however, those serial reads
could only achieve a speed matching that of currently available utilities such as
Suprtool and High Performance Quiz. These utilities do large blocked

(MR /Nobuf) reads directly from disc to the program’s stack. No matter how fast
the CPU, reading from disc to a cache buffer and then from the cache buffer to
the program’s stack will be slower than going directly from disc to stack. So
when fast serial access to one data set is required, software solutions are the best
answer.

Most reports and nearly all transactions require many more random (calculated,
chained, directed) reads than serial reads resulting in poor disc locality. In these
situations, caching helps very little. The caching software simply has too little
knowledge of what data will be requested next to be effective. A faster CPU
can do nothing to address this fundamental problem. It’s a bit like running a
program with an infinite loop: a faster CPU would make the loop execute faster
but the program won’t finish any sooner.

WHAT IS THE SOLUTION?

There is only one. The amount of disc I/O required to "get the job done" must
be dramatically reduced. In data base applications, this means that the amount
of I/0 needed to select and retrieve a desired subset of records for display or
reporting must be cut drastically and the amount of I/O required to complete a
transaction must be minimized.

How can that be done?
There are 5 major ways:
- Sophisticated indexing
- Optimized data base design
- Advanced reporting techniques

- Smart buffering (disc caching) by the DBMS
- Routine maintenance (physical re-ordering of the data)

Paper 3222 3 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
SOPHISTICATED INDEXING

Efficient, flexible, and powerful indexing of the information in a data base is
the only way to dramatically decrease the disc I/O needed to retrieve that
information. Indexing allows us to locate a desired subset of records without
scanning the data files. With advanced indexing techniques, record selections by
virtually any criteria can be accomplished using relatively few disc reads. The
disc I/O required for a retrieval can be reduced by a factor of 1,000 or 10,000 or
more, the time reduced from hours to seconds.

OMNIDEX, an enhancement to HP IMAGE, provides such state of the art
indexing capabilities. Information can be accessed in seconds by any
combination of words and values across multiple fields, regardless of data base
size. Features include:

* Record selection by multiple fields without serial reads

* Generic (partial key) retrieval and sorted sequential access.
* Multiple keys in masters

* Keyword retrieval on textual data

In an OMNIDEX retrieval, records are qualified at the rate of 10,000 records per
second per keyword (selection value), regardless of the size of the data set.
Suppose a data set of one million companies contained 10,000 company contacts
with the name MARK, 30,000 companies in DENVER, and 8,000 companies
whose name contained the word SYSTEMS. OMNIDEX would qualify all
MARK’s in DENVER who worked for a SYSTEMS company in about 5 seconds.
In comparison, a serial read of the data set on a lightly loaded system would
take about an hour, a chained read along the City path (the only practical
IMAGE or ALLBASE key in this example since they do not provide keyword
retrieval) would take 10-20 minutes. (See Figure 1.) No DBMS available on any
machine today approaches the retrieval speed and flexibility of OMNIDEX.

QUALIFICATION TIME
OMNIDEX * 5 seconds

Chalned **%*%k%xkkkxkkx*x*x*x%%%x%* 15 minutes

Read
Serial *kkkkkkkkkkkhkkkhkhkkkhkkkhkkkhkkkkr/ /hkkkkkkkkx 60 min.
Read
B T e e aan e
MINUTES: 1 5 10 15 20 25 55 60

Figure 1. Multiple Field Selection on a 1,000,000 Record Data Set

Paper 3222 4 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

OMNIDEX can provide almost instant access to data that would otherwise be
inaccessible in on-line applications and can dramatically reduce the time it takes
to select and report a subset of records in a data base. But two issues come to
mind: What effect does the indexing overhead have on transaction speed? And
how can OMNIDEX help when a report must include all or nearly all records
rather than a subset?

The second question is easy to answer: OMNIDEX won’t do anything for you,
but data base design, maintenance, and advanced reporting techniques can do a
great deal. More on this later.

What about the effect of indexing overhead on transaction volume? That
depends. OMNIDEX uses very sophisticated indexing techniques that are low in
overhead, but all indexing costs disc I/O’. The goal is to minimize the total
I/O’s required by a transaction, which has two parts: validation and updating.
Validating a transaction requires retrievals on data sets that should be heavily
indexed to permit the fastest, most flexible access possible. Master files, for
example, are frequently read and rarely updated. They should be heavily
indexed by keys and keywords to allow instant access by any words or values in
any combination of fields. High transaction detail sets should be lightly indexed
to minimize update overhead.

If a high transaction data set also needs heavy indexing for reporting there are
two solutions. One is to defer indexing to a batch run during off-hours, a
feature provided by OMNIDEX. The other is to maintain a heavily indexed
informational data base which is updated periodically from the operational data
base. This is an almost ideal solution. The operational data base can be
optimized for on-line updating, while the informational data base is optimized
for reporting and ad hoc inquiry.

Typically an operational data base uses extensive OMNIDEX indexing on master
files and non-volatile details, but minimum IMAGE or IMSAM (the Btree sorted
sequential access component of OMNIDEX) indexing on high transaction details.
An informational data base uses extensive OMNIDEX indexing on all data sets
that require fast record selection.

OMNIDEX includes a batch utility that indexes data about 10 times faster than
on-line updates, which makes the indexing of large data bases very practical.
For example, a one million record data set with 8 keyword fields can be indexed
in about 8 hours. This is more than 10 times faster than an IMAGE detail with
8 paths or a KSAM or relational data base file with 8 key fields. No DBMS
available on any machine today approaches the indexing speed of OMNIDEX.

DATA BASE NORMALIZATION

Normalization seems to be a very popular concept these days, especially with
relational data base advocates. I’m oversimplifying the concept, but for this
discussion I will define normalization as the division of data into several files
(data sets) to eliminate data duplication and conserve space. The files can be
linked logically or physically or both, depending on the underlying DBMS.

Paper 3222 5 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

For example an IMAGE data base contains masters and details which are linked
by physical pointers, and it typically also contains master sets used as "code
tables" which are logically linked to other sets. A state code table that contains
the state name and time zone is an example. Given the state code we could
display the state’s name & time zone simply by referencing the code table.

Maintaining variable length data (for example invoice line items) in details and
using code tables conserves space, eliminates data redundancy and simplifies
maintenance ("change it in one place instead of a thousand"). These
normalization techniques are in common use. They offer numerous benefits, but
they have one serious drawback: they can destroy report performance.

The reason is simple. A report on a heavily normalized data base has to link to
numerous sets, requiring far more disc I/O than a report on a single data set.
Disc locality is lost, rendering caching or large block reads by the program
useless. If a small subset of records is of interest and they can be quickly
isolated by indexing (they always can with OMNIDEX) the disc 1/0 is
manageable. But if a large number of records must be retrieved for the report
the amount of disc I/O will be enormous.

The fault lies with the data base design, not IMAGE or the HP3000. If the
application were ported to an IBM mainframe, the performance would still be
bad. A little faster because IBM disc drives are a little faster (40 I/O’s per
second rather than 30), but still bad.

OPTIMIZED DATA BASE DESIGN

How can we improve the performance? If any of the code tables are small and
not being updated by other processes, programs can keep a copy of them in
memory. That eliminates the disc I/O associated with accessing them. Beyond
that, there is only one option to improve performance: de-normalize the data
base.

Consider some rough numbers. Suppose a 100,000 entry master has an 800,000
entry detail linked to it. Assume that we generate a report by serially reading
the master, linking to the detail, and linking from the detail to another master.
For example the linkages might be Customer master to Invoice detail to Parts
Master. Over 800,000 I/O’s would be required just to access the second master
once for each detail record, regardless of caching or optimized ordering of those
detail records.

800,000 I/0’s at 30/second takes nearly 8 hours, which would have to be added
to the time it took to access the detail entries, sort and output the data. This
report would take a long time.

Now suppose we de-normalized this data base by taking all the data needed by
the report from the second master and duplicating it in the detail. Obviously
this can seldom be done on operational data bases, but can easily be done on an
informational data base that was updated weekly or monthly. The 800,000 I/O’s
that were required to access the second master would be eliminated shaving 8
hours of f of the report time! How long would the report take now?

Paper 3222 6 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

That depends. This is a situation where disc caching, CPU speed, and careful
data ordering can really pay off. If the detail was freshly reloaded in primary
path sequence and caching was enabled with a fetch quantum of 32 sectors, all
master and detail records could be read with less than 35,000 I/O’s. This
assumes a master record size of 512 bytes (16 per cache buffer) and a detail
record size of 256 bytes (32 per cache buffer). That is a relatively large detail
record but denormalization would have increased its size. Assuming 15 I/O’s per
second for the large (but very effective!) cached reads, the total retrieval time
for the report would be only 40 minutes.

To illustrate the value of optimum data ordering and caching in this example,
the same report without caching would require about 110,000 I/O’s (assuming
Blockmax=1024). The same report with a worst case data ordering, which some
production data bases approach, and the original level of normalization could
take 1,600,000 I/O’s -- 2 per detail record, regardless of whether caching was
enabled or not. This is a performance difference of 40 to 1 based solely on
optimized data base design and data ordering!

Yet you could throw hundreds of thousands of dollars of hardware at the
problem instead, and see NO improvement. That’s why I always get a glazed
look in my eyes when people tell me they need more horsepower to solve the
data base performance problems on their 68. It makes me wish I sold hardware.

Some of you are wondering what assumptions I made on chain lengths in the
-above example. After all the purpose of ordering detail records in path sequence
is so that a chained read is localized to one portion of the file. If so, and if the
chains are long (many records with the same key), we accrue all the benefits of
IMAGE buffering and disc caching if it’s enabled.

For example, a chained read of 32 256-byte records could be accomplished in one
32-sector cached read from the disc if all 32 records were contiguous. But if a
chain contained only 1 entry, the benefits of caching and buffering would be
lost because 32 records were read to get the 1 needed. Right? Not in this case.

If the records in the master and its details are in the same physical order by key
value, the length of the chains is totally insignificant. As we serially read the
master and link to its details, the chained reads against the details will proceed
in their physical order. Hence every cached read will be a "perfect" one giving
us precisely the entries we need next, regardless of chain lengths. At the end of
a detail chain, the next master entry in the cache will match the next entry in
the detail cache. (See Figure 2.)

Paper 3222 7 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

MASTER
IMAGE Key |SMITH|JONES | | BROWN |
| -==-- |----- |-==-- |===-- |
I | | I |
Record# 1 2 3 4

DETATL

IMAGE Key |SMITH|SMITH|SMITH |JONES |JONES | BROWN | BROWN | BROWN | BROW

| === | ———- | === | ===m=| === | === e | ===~ |--=-

| | | | I | | | I
Record# 1 2 3 4 5 6 7 8 9

Figure 2. Optimum Data Ordering for Hashed Master

The next question is: How do you load the detail records in the same physical
order (by key value) as the master? The answer is a little embarassing. You
cannot do it with DBMGR, a product I wrote a few years ago. DBMGR sorts the
detail records by primary key value before reloading them. This benefits
chained reads (especially long ones), but not as much as it would in this situation
if DBMGR sorted the records by the key’s hash value instead. The hash value is
the target record number of the corresponding master entry. Ignoring synonyms,
the hash value is the physical order of the master entries. We’ll enhance
DBMGR to optionally sort by hash value soon, probably by the time you read
this, so that details can be reloaded in the same physical order as their
corresponding master.

A chained DBUNLOAD/LOAD would order the details optimally as long as you
didn’t change the master’s capacity in the new data base. Rego still hasn’t sent
me my ADAGER tape (where is it Alfredo?), but I assume DETPACK will do it
for you. Finally, if you’re loading an informational data base, you can
guarantee perfect detail ordering regardless of synonyms by loading the master
first, then loading the detail by serially reading the informational data base
master and linking back to the operational data base to unload its detail entries
with chained reads.

OPTIMIZED REPORT PERFORMANCE

Because this data base is so optimized for fast retrieval, report performance will
be heavily influenced by several other factors. If a large number of records are
extracted, the I/O overhead incurred writing the records to a file and the time
required to sort those records become important. Large block (MR/Nobuf) writes
to the unload file should be used. Otherwise, writing to that file will create a
bottleneck given the high speed at which data can be unloaded from the data
base. Using large block writes, very high (1000 sectors/second) transfer speeds
can be attained.

Paper 3222 8 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Since nearly perfect disc caching will occur during extracts from this data base,
CPU speed will be a major factor influencing performance. Virtually every data
base application on the HP3000 is disc I/O bound, so CPU speed has little
impact. This application, however, would have such high I/O efficiency under
caching that it would be CPU bound. Caching is quite CPU intensive, so perfect
caching (always reading the right records into the cache) makes if difficult for
the CPU to keep up with the disc drives.

The next step to improving performance on this application is to place the
master, detail, and unload file on three separate drives. Because the data is
physically ordered in exactly the way it will be extracted, the extract and write
can be accomplished by positioning the disc heads at the beginning of each of
the three files and slowly spiraling in. A full track or cylinder of data would be
transferred, then the head would index in one track and continue. If no other
users were competing for disc I/O’s during the report, the data throughput would
be very high assuming the CPU could keep up.

The MPE sort is fast, but given the speeds at which data can be extracted from
this data base, sort times could become a major portion of the report time. One
simple solution would be to use IMSAM. IMSAM provides sorted sequential
access and partial key retrieval by any fields in an IMAGE master or detail.
The fields need not be IMAGE keys. Records can be extracted in sorted
sequence of any IMSAM Kkey, eliminating the need for a separate sort operation.

In this application, however, there is a caveat. The physical order of the records
in the data base will not match the sorted sequence desired. The records are
physically ordered by hash value rather than by sorted sequence of any IMSAM
key field. Hence disc locality will be lost and caching will provide no benefit,
returning us to a 1 record per I/O situation. When a subset of records is of
interest, IMSAM retrieval is the optimum choice. 1000 I1/O’s to read 1000 master
entries in sorted sequence is much faster than 10,000 I/O’s to serially read a
100,000 entry master and sort the 1000 entries extracted. But if all the records
need to be retrieved from a data base with a hashed master, a serial read and
sort is much faster than using an IMSAM sequential read.

Most data bases require a wide mix of inquiry and reporting. On-line inquiries
must quickly select a few records for display. Fast selection is the critical issue,
which can be accomplished using IMAGE, IMSAM, and OMNIDEX indexing
options. Reports cover both subsets and full data sets of records. In small
subsets, selection speed determines performance, so indexing power is the
controlling factor. As the subset increases in size, retrieval speed starts to
dominate, so data ordering and organization become crucial. Can a data base be
optimized for all sizes of reports?

Paper 3222 9 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
THE LOWLY J2 KEY

A data base can be optimized for any size report by using a J2 field for the
master’s key. J2 Keys are much maligned in literature, to the point where most
data base designers refuse to use them. Because they can cause terrible synonym
problems, J2 keys are unsuitable in most situations unless they meet one simple
criteria. If the value of a J2 key does not exceed the capacity of the master set,
the record number of an entry will equal its key value. Several wonderful
things happen as a result:

- The master set will contain no synonyms.

- No pad space is required in the set (no disc space is wasted)

- Master entries with J2 keys can be batch loaded many times
faster than hashed masters.

- Since the physical position of an entry is its key value you
can physically order the entries in any sequence desired.

The first two benefits are minor. The third is significant and can be easily
accomplished in batch loads. If entries are added in ascending key sequence (1,
2, 3, ..) with the "output deferred" option enabled (DBCONTROL mode 1), a full
block of entries can be added before IMAGE posts the block to disc. For
example if a master set had a blocking factor of 4, 4 entries could be added for
each disc I/O. The larger the block size (IMAGE Blockmax), the higher the
blocking factor and the faster the load.

The major benefit of J2 keys is the ability to physically order master entries in
any sequence desired. This is done by assigning key values starting at 1 to the
entries in sorted sequence of another field, such as an IMSAM key field. (See
Figure 3.) This yields optimum performance for all reports that retrieve data in
that sequence. Since the data is physically ordered in the same sequence that
we’re retrieving it, the full benefits of caching are available during the retrieval
stage of the report. In addition, the need to sort the output is eliminated. This
design permits the ultimate inquiry and report performance on any computer
system.

IMAGE Key |_1_ | _2 | 3 | 4

IMSAM Key |JAMES |JANSEN|JENSON |JONES |
| ===== | = I == I
1 | | | |
Record# 1 2 3 4 ’

DETAIL

IMAGE Key |JAMES |JAMES |JANSEN |JENSON | JENSON | JENSON | JONES | JONES |

Record# 1 2 3 4 5 6 7 8

Figure 3. Optimum Data Ordering for Master with J2 Key

Paper 3222 10 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Consider an accounting data base with a 20 byte account code as the key. Most
likely, the account code is comprised of several components concatenated
together to form a hierarchical key. Sorted sequential access allows us to select
a subrange of accounts for review, frequently necessary in accounting
applications.

If we redesign the data base to use a J2 field as the IMAGE key instead, and
make the ‘account code an IMSAM key, we can map this data base into the
ultimate performance design just described. IMSAM sequential retrievals by the
account code will access records in the same sequence as their physical order, so
any size retrieval will be optimized. Records can be added at will since IMSAM
indexing is updated automatically. Report performance will gradually decline as
more records are added because the new records are not in sorted sequence.
Periodically the data base can be reloaded to reorder the data in account
sequence for maximum performance.

If OMNIDEX indexing is added to this data base, it becomes the ultimate
informational data base. Users can instantly access records by selection criteria
on multiple fields, perform keyword retrievals, access records in sorted sequence
of any field or combination of fields, and generate reports up to a hundred
times faster than on most data bases. Giving users such fast, flexible access to
information will dramatically increase the computer’s value to any organization.

All the tools you need to design data bases with incredible performance on the
HP3000 are available. The rest is up to you. Just remember, make every I/O
count. It’s that simple, and that difficult. And it’s the only way on the HP3000
or any other computer system.

Paper 3222 11 DETROIT, MI

.SOUTHEASTERN MICHIGAN USERS GROUP . INTEREX 86

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

TRENDS IN "IMAGE"

BRADMARK COMPUTER SYSTEMS

Paper 3223 1 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP

YEAR

1975
19/6
1978
1979
1981
1982
1982
1983
1983
1984
1934
1985

Paper 3223

SYSTEM

CX

Series
Series
Series
Series
Series
Series
Series
Series
Series
Series
Series

MEMORY
CAPACITY

64K

512K

2MB
1MB
2MB
4MB
8MB
4MB
3MB
8MB
3MB
2MB

. INTEREX 86

TERMINAL
CAPACITY

16
64
32
56

144
104

32
336

DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

IMAGE DATABASE SIZES

HISTORY MASTERS DETAILS

R e — 350K e 2MB
1975 - 1977 |---] 10k |----|] 30K
1977 - 1980 | =====-- | SOK |-=--- | 150K
1980 - 1982 | === | 100K |-------- | 500K
1982 - 1985 | | 350K |--—--=-=-—-- | 2mB
Paper 3223 3 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Paper 3223

RESULT

PERFORMANCE CONSCIOUSNESS

THROUGHOUT AWARENESE

LOAD SCHEDULING

VISIBILITY INTO "IMAGE" DATASETS

4 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

IMAGE "B" CONTROL BLOCKS

SDBCB - SYSTEM DA''A BASE CONTROL BLOCK

RDBCB - REMOVE DATA BASE CONTROL BLOCK

DBCB - GLOBAL DATA BASE CONTROL BLOCK

ULCB - USER LOCAL CONTROL BLOCK

ILCB - INTRINSIC LEVEL RECOVERY CONTROL BLOCK
Paper 3223 5 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

IMAGE *"B"

SYSTEM DATABASE CONTROL BLOCK
(SDBCB)

TRAILER
v.-‘v\—/

DATABASE CONTROL BLOCK
(DBCB)

FRONT AREA

BUFFER

TRAILER

USER LOCAL CONTROL BLOCK
(ULCB)

TRAILER

Paper 3223 6 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

GLOBAL DBCB

CONTAINS:

- DATABASE STRUCTURE
- DATABASE UERS
- LOCKING AREA

- TRANSACTION STAGING

Paper 3223 7 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP

DATA BA3E CONTROL BLOCK
(DBCB)

INTEREX 86

LOCK AREA

GLO AL

ITEM SECURITY
vLcs ¢—P

SET SECIJRITY

ITEI1 TAQLE

SET TAB.E

ILR BLO:K

r—-’ ILCB

NLS LAN ;UAGE

ULCB G

DSC

LOCK AREA (128W / 256W)

BUIPFFER AREA

TRAILER (128W)

Paper 3223 8

DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

DBCB BUFFER SIZE

TOTAL SPACE 32,600
MAX LOCKING AREA -6,144
FIXED AREA =150

26,206

INTERNAL TABLES:

ROOT FILE LENGTH (5u00)
TRAILER LENGTH

NO. OF ITEMS

NO. OF SETS SECURITY
12 X NO. OF USERS

SPACE AVAILABLE FOR BUFFERS

Paper 3223 9 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP

INTEREX 86

INTERNAL BUFFERS

TYPICAL SPACE
BLK SIZE
512

1024
2048

OVERRIDE WITH BUFFSPECS

(20,000 WORDS)
BUFFERS
40

20
10

Paper 3223

10

DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

BUFFERS

SET 23 BLK T}

SET) BLK ()

seTC3 BLK)

Paper 3223 11 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

UGLCB

CONTAINS:

- USER CAPABILITY STRUCTURE

- TRANSACTION STAGING

- USER ITEM LIST

Paper 3223 12 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

ILCB

DB PUT
DB DELETE

HEADER
\‘
ILK

BUFFER

/ ENDING

ILR SET /

Paper 3223 13 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP

LIMITS

DATA ITEMS

DATA SETS

DATA I'YEMS/SET

DATA ENTRIES/SET

DATA ENTRIES/DETAIL CHAIN
DETAILS/MASTERS
MASTERS/DETAILS

MAX ENTRY SIZE

LuVEL WURDS SUPPORTOR

GLOBAL DBCB
LOCAL DBCB

Paper 3223

TREND CHANGES IR IMAGE
DUE TO CURRENT LIMITS

14

INTEREX 86

TURBO
IMAGE

1023
199
255

2B
2B
16
16
4096

NO

+/USER

DETROIT, M

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

TURBO MODIFICATION

o ROOT FILE
- ITEM & SET TABLE MAP

- ITEM TABLE FORMAT
- EXTENDED SET TABLE FORMAT

0 SETS

—~ POINTER FORMAT
- ENTRY COUNT WITHIN MASTER

Paper 3223 15 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

ACTUAL FILE LIMITATIONS

MPE RESTRICTIONS:

1 EXTENT 65K sectors
1 FILE 32 EXTENTS

- T S G G G S G - G G G G = G G B G WS G Sw T G G G S P § G G B@ G T Su S

IMAGE'S SIZES

DEFAULT BLOCKING ACTUAL
BLOCK SIZE FACTOR FILE LIMIT
512 1 500
512 2 1M
512 4 2 M
512 8 4 M

Paper 3223 16 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

TURB(O IMAGE
DBS DBG (STATIC INFO) DBB
GENERAL LL_()CK AKEA
— GLOBAL
SYSTEMS AREA GLOBAL
(DB INFO TRACE) PILE & TABLE
ITEM SULCURITY
ILK BLOCK
DBU SE1 SECURITY
I/0 TABLE
GLOBAL ITEM TALBE
LK
SET SECURITY SET TABLE
ITEM SECURITY
LOCK AREA
(8F)
TRAILER TRAILER TRAILER

Paper 3223 17 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

MAJOR TURBO IMPACTS

o BREAKING UP THE GLOBAL DBCB into

- 1 GLOBAL DBCB
- MULTLPLE LOCAL DBCBs

o] SINGLE THREADING
- DBPUT

- DBUPDATE
- DBDELETE

o MULTI - THREADING

- DBGET
- DBFIND

Paper 3223 18 DETROIT, Ml

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

THREADING CONCEPT

SINGLE I/0 s ARE MULTI TuREADED

MULTIPLE I/0 s ARE SINGLE THREADED

Paper 3223 19 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

‘''HREADING

SINGLE:
DBPUT, DBDELETE, DBFIND,
DBGET (2,3,7)

MULTI1:

DBUPDATE,
DBGET (1,4,5,6,8,)

Paper 3223 20 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

POTENTIAL PERFORMANCE IMPROVEMENT

GLOBAL DBCB

DBGET DBGET DBGEY
DBPUT DBFIND

IMAGE DBUPDATE DBGET
"B" DBFIND

BGET DBGE

DBPU

IMAGE PROCESSING I

GLOBAL DBCB LOCAL DBCB LOCAL DBCB
DBPUT DBPUT D L D
DBUPDATE DBGET
IMAGE IMAGE

TURBO

IMAGE PROCESSING

Paper 3223 21 : DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP

Q W &©m O O w »

- GET (5)
- UPDATE
- GET
- GET
- PUT
- UPDATE
- GET

Paper 3223

INTEREX 86
QUEING UP THE SERVICE
LK
B A | SET BLK - 4.1/0
F C | SET BLK ..}1/0
D | SET BLK --}1/0
E | SET BLK
G | SET BLK

22

DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

WHAT DOES THIS ALL MEAN?

THE TREND IS TOWARDS LARGER DATABASES

THE PRODUCT RANGE HAS BROADENED SUBSTANTIALLY

THE NUMBER OF USERS PER SYSTEM HAS EXPONENTIALY INCREASED

Paper 3223 23 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

NEED FOR "IMAGE" DIAGNOSTICS

TO DETERMINE AND EXPEDITOUSLY CORRECT CURRENT PROBLEM

TO KEEP TABS ON POTENTIAL PROBLEMS

TO HAVE BETTER CONTROL OVER YOUR ENTIRE "IMAGE" ENVIRONMENT

Paper 3223 24 DETROIT, Mi

gegze Jaded

4

IW ‘llodi3a

DB.GENERAL (3.A.00) Copyright BRADMARK 1982
Licensed tos ACHME BANUFACTURING INC,

MASTER MERU OF COMPREHRERSIVE FPEATURES
1.0 INTERRAL STRUCTURES 2.0 DIAGNOSTICS W/RECVRY 3.0 DATASET MAINTENANCE

{1.1) USER CLASSES {2.1) MST SET ARALYSIS {3.1) CAP TABLE ENTRY
{1.2] ITEM LISTS [2.2] SYNONYM CHAIN TEST [3.2] CAP MANAGEMENT
(1.3] S8BT LIST {2.3] DTL SBET ANALYSIS {3.3] MST CAP CBANGE

[W/RELATIONS) (2.4] PATH CBAIN ANALYSIS [3.4] MST CAP SAMPLER
[1.4) SET-ITEM LISTS [OF MST-DTL LINKAGE] [3.5] DTL CAP CHANGE
[1.5) SCHEMA GENERATOR [2.5] CHAIN RESTORATION {3.6] DTL SET REORGANIZE
4.0 GENERAL UTILITIES 5.0 ROOT PILE MAINTENANCE 6.0 COPYING FEATURES
{4.1] RESTORE {5.1) PASSWORD CHANGES [6.1] BASE GENERATOR
(4.2) RENAME [5.2] ITEM CHANGES [6.2] UNLOAD/RELOAD
(4.3) PORGE {5.3] DATASET CHANGES (6.3] TO/FROM °"MPE® PILB
[4.4]) BRASE (S.4] SBET-ITEM CHEANGES {0.4} BY SELECTED KRYS
(4.5) DEVICE TRANSPER [S.5] DATAPATE CHANGES 6.5] GENERAL FEATURES
[4.6] PAST COPY [5.6] ACTIVATE CHANGES

Option selected (option number, NEBLP or END):

dNOYHD SHASN NVOIHOIN NH3LSVIHLINOS

98 X3H3LNI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

POTENTIAL "IMAGE" PROBLEM

(o} SET CAPACITY OVERRUN

o] EXCESSIVE SECONDARIES IN MASTERS

o POOR ENTRY DISTRIBUTION

o BROKEN SECONDARY CHAINS IN MASTER

o BROKEN CHAIN DIAGNOSTIC IN DETAIL

o DEFECTIVE LABEL IN SET

o INCOMPATIBLE CAPACITY IN ROOT FILE

o DEFECTIVE DFLETE CHAIN

Paper 3223 26 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

CAPACITY MANAGEMENT

CAPACITY RANGE PARAMETER SETTINGS:
(Please enter a percentage value for each request)

MAXIMUM THRESHOLD FOR EACH MASTER DATASET:

MAXIMUM THRESHOLD FOR EACH MASTER DATASET: 70
EXPANSION FACTOR: 15

MINIMUM THRESHOLD FOR EACH MASTER DATASET: 30
COMPRESSION FACTOR: 40

MAXIMUM THRESHOLD FOR EACH DETAIL DATASET: 90
EXPANSION FACTOR: 20

MINIMUM THRESHOLD FOR EACH DETAIL DATASET: 50
COMPRESSION FACTOR: 25

Paper 3223 27 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

CAPACITY MANAGEMENT TABLE

DATA BASE: OEDB . FRI, DEC 7, 1984 3:52 PM

CAP THRESHOLD CAPACITY CHNG
ENTRY BELOW ABOVE COMPRS EXPAND
SETS: TYPE CAPACITY COUNT MIN(%) MAX(%) BY (%) BY (%)

PRFX A 2511 1801 30 70 40 15

PRFD D 4637 4489 50 90 25 20

CUST M 5273 1437 30 70 40 15

SHIP D 1282 486 50 90 25 20

ORDL D 2593 1421 50 90 25 20

ORDM M 2593 1421 30 70 40 15
Paper 3223 28

DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

CAPACITY MANAGEMENT USAGE

~—= CAPACITY MANAGEMENT PROCESS

SOURCE DATABASE: OEDB
PASSWORD:

DATA BASE: OEDB MON, DEC 17, 1984 6:27 PM

ENTRY --= MINIMUM --- -- MAXIMUM --
SETS: TYPE CAPACITY COUNT LEVEL COMPRESS LEVEL EXPAND

SHIP D 1282 486 641 961 1154
%x previous set requires compression ===
CAPACITY CHANGE IN PROGRESS ---
486 RECORDS COPIED =--

DETAIL SET CHANGE SUCESSFULLY COMPLETED!

ORDL D 2593 1421 1037 2074
ORDM M 2593 1421 778 1556

Paper 3223 29 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

4.0 GENERAL UTILITIES

[4.1) RESTORE

[4.2] RENAME

[4.3] PURGE

[4.4] ERASE

[4.5] DEVICE TRANSFER
[4.6] FAST COPY

Paper 3223 30 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Paper 3223

5.0 'ROOT FILE MAINTENANCE

PASSWORD CHANGES
ITEM CHANGES
DATASET CHANGES
SET-ITEM CHANGES
DATAPATH CHANGES
ACTIVATE CHANGES

31 DETROIT, MI

-SOUTHEASTERN MICHIGAN USERS GROUP . INTEREX 86

Paper 3223

6.0. COPYING FEATURES

BASE GENERATOR
UNLOAD/RELOAD
TO/FROM "MPE" FILE
BY SELECTED KEYS
GENERAL FEATURES

32 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP

INTEREX 86
REVIEW OF "IMAGE" BLOCKING LAYOUT
BIT MAP MEDIA RECORD
— Z
= v
00110001001 *l I l [
BIT MAP =~ BIT FOR EACH ENTRY IN BLOCK
MED1A RECORD IMAGE ENTRY WITH ALL POINTERS
MASTER ENTRY DETAIL CHAIN LINKAGES
- N —
tor | Bxw | wwp | ¢ oF | BrW | EWD ¢t of | BEW | FWD
ENTRS| PTR PTR ENTRS| PTR PTR |eee ENTRS| PTR PTR ENTRY
1 > = m—— —]
SYNONYM CHAIN 1ST DETAIL NTH DETAIL
DETAIL ENTRY
MASTER CHAIN LINKAGES
T ———— A —
BRW | FWD BKW | FWD
PTR PTR cee PTR PTR ENTRY
w LS S —
15T WASTER NTH MASTER
Paper 3223

33

DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP

MASTER SET ORGANIZATION
(PRIMARIES)

CAPACITY REMAINING ENTRY COUNT
ly N f
l
I
(=N
171
LAl
C—11
[t
Paper 3223 34

. INTEREX 86
ENTRIE
A
B
C
A
L
G
(o] <KEY
<~ R
I
T
H
2!

DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP

INTEREX 86
MASTER SET DISTRIBUTION
(SECUNDARIES)
ENTRIES
D
| 1 |
— ,
v]- 5 =1 I\),
- X
A
L
G
S]
RIT>
Rp | o J/
T
T nal 1
K&_
| 1 =1 D
Al
XD 1-> Lx1 N
|
[l 1
Paper 3223 35

DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP

MASTER SET DISTRIBUTION
(MIGRATING SECUNDARIES)

INTEREX 86

ENTRIES

B 1 |
A
)
/I
o I
L] Lol 5
[A]
e =1 7
//
(x| L‘l
L1]
Paper 3223 36

DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

IMAGE ALGORITHMS

KEY: NUMERIC DATA TYPE
MODULE (I,J,K,R)

PRIME NUMBER - BEST CAPACITY

KEY: NON-NUMERIC DATA TYPE
HASH (U,X,F,P)

NON-PRIME - BEST CAPACITY

Paper 3223 37 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
MASTER SET ANALYSIS
DATASET: CUST
GENERAL INFORMATION
DATASET NAME CUST
SET NUMBER 03
SET TYPE M
ENTRY SIZE 24
RECORD SIZE 106
BLOCKING FACTOR 04
NO OF POINTERS 6
SET CAPACITY 53276
ACTIVE ENTRIES 41296
SET CAPACITY 53276 HIGHEST ACTIVE ENTRY 53271
ACTIVE ENTRIES: PRIMARIES W/ SECONDARIES 10945
PRIMARIES 207174 LONGEST SECONDARY
SECONDARIES 20522 AVERAGE SECONDARY 2
TOTAL ... 41296 POSSIBLE ENTRIES IN ERROR 0
REMAINING ENTRIES 11980 NO OF TOTAL BLOCKS 13,319
$ SPACE LEFT 22%
SECONDARY ANALYSIS OF MASTER SET
PRIMARIES SECONDARIES)
1 2 3 5 10 50 100 1lou+
20774 5070 4100 2043 1020 0 0 0 0
Paper 3223 38 DETROIT, MI.

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

NO. PRIMARIES IN MASTER SET

-u
OPTIMAL PRIMARIES = _]1 -e

u

Where u = entries / capacity

$ FULL PRIMARIES SECONDARIES RATIO
10% .951 .048 .050
20% .906 .093 .103
30% .863 .136 157
40% .824 .175 .213
50% +786 .213 .270
60% .751 .248 .329
70% .719 .280 .390
80% .688 .311 .452
90% «659 «340 .516
100¢% 632 .367 .581

Paper 3223 39 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

R ———y
& o \ 1
% : \ \
£ \ \ Je
\\ \ @
\\ \)
\‘ \ ak:
\‘ \
\‘ \ 1R
\‘ \
T e ! ‘\ \ 1% 3 ..
T 3 | v x 8
s 8 | A 1e g ¢

40

Primaries

Titel Y—as

00
80
0
40—
20+
0

Paper 3223 40 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP

ENTRIES:

CAPACITY

301
300
293

Paper 3223

172

% FULL

57%
57%
58%

CAPACITY SENSITIVITY

PRIMARIES

114
36
140

4

23
28

INTEREX 86
SECONDARIES
3 5 10 50
4
5 111

DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

FINAL RESULTS OF CAPACITY SAMPLING:

Av/se Prim Tot.
Cap. Prim. Sec. Rat. Ch. Dist. Di.

60011 691 6 0.00 1.0 10.6 10.9
60012 690 / 0.01 1.0 27.0 27.2
60013 531 166 0.31 1.2 50.4 66.1
60014 694 S 0.00 1.0 24.8 24.9
60015 697 O 0.00 0.0 10.2 10.2

The capacity with the best primary
to secondary ratio & set
distribution is:

60015

Option selected
(£, MPE, HELP, or END): H

Paper 3223 42 DETROIT, M

SOUTHEASTERN MICHIGAN USERS GROUP

(MASTER DATASET DISTRIBUTION)

INTEREX 86

10% 9 9 9 s 2 2 9 9 5 . 5 . 5 92 42 5)
4
se Lo 11 M1 M o O O I e O O ||
distribution of entries across the set =---=>
ENTRIES PER DISTRIBUTION CATAGORY:
5% 1652 25% 825 45% 3717 65% 825 85% 1652
108 3720 30% 820 50% 2064 70% 2064 90% 825
15% 3717 35% 830 55% 1652 75% 3717 95% 2064
208 3714 40% 3717 60% 2064 80% 825 1u0% 825
The following distribution is for PRIMARIES onlyl
(MASTER DATASET DISTRIBUTION)
108 e 5 ? 3 3 3 5 1o 3 35 3 5 5 3 5 3 2 3
5
L3 5[M |
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
distribution of entries across set ===-->
ENTRIES PER DISTRIBUTION CATAGORY:
5% 1039 25% 623 45% 2077 65% 623 85% 1039
10% 2077 30% 620 50% 623 70% 1039 90% 623
15% 1039 30% 626 55% 623 75% 1039 95% 187v
20% 1870 40% 1039 60% 1039 80% 623 00% 623
Paper 3223 43 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP

MASTER SET ANALYSIS

POTENTIAL PROBLEMS

(o} EXCESSIVE I/0O PROCESSING DUE TU TOO MUCH RESIDUAL SPACE

o OVER POPULATION OF SECONDARIES

SECONDARIES

CAPACITY FULLNESS

0. POOR DISTRIBUTION OF PRIMARIES

o BROKEN SECOMDARY CHAINS

o DEFECTIVE LABEL

Paper 3223 44

INTEREX 86

DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP

INTEREX 86
DETAIL SET DISTRIBUTION
ENTRIES
HIGH WATER REMAINING DELETE A
MARK, ENTRY COUNT CHAIN A
L B
l ¥ 1 LI | ¥ 1] B
c
A'
A1] N
BI
LAl] o
AI
LBl | B*
CI
=1]
Lel |
La'l]
&l]
L2l]
Led]
LAzl |
184 |
[EA]
Paper 3223 45

DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
DETAIL SET DISTRIBUTION
(SIGNIFICANCE OF DELETE CHAIN)
DELETE FHAIN HEAD
1 1‘; 1]
/
W/
M
\ A
=
| :
__/

i)
ﬁ/
ML | | l
Paper 3223 46 DETROIT, M

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

DETAIL SET ANALYSIS
DATASET: SHIP

GENERAL INFORMATION:

DATASET NAME SHIP
SET NUMBER 04
SET TYPE D
ENTRY SIZE 64.
RECORD SIZE 68.
BLOCKING FACTOR 07.
NO OF POINTERS 1.
SET CAPACITY 111354

ACTIVE ENTRIES 93576

SUMMARY INFORMATION:

SET CAPACITY 111354 HIGHEST ACTIVE ENTRY 111207
ACTIVE ENTRIES 93576 SECOND HIGHEST ENTRY 111022
HIGH WATER MARK 111350 POSSIBLE ENTRIES IN ERROR 0
ENTRS ON DELETE CHAIN 17774 NO OF TOTAL BLOCKS 15907
INACT. ENTRIES COUNTED 17774 ENTRIES ON OTHER SIDE

DEVIATION 0 OF HIGH WATER MARK 0
REMAINING ENTRIES 17778 TRUE REMAINING ENTRIES 17778
$ SPACE LEFT 15 % SPACE LEFT 15

Paper 3223 47 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

DETAIL SET ANALYSIS

FOTENTIAL PROBLEMS

o CAPACITY MAY NOT BE CONSISTENT WIYH RUOT FiLk

(o] DEFECTIVE LABEL

- BAD HIGH WATER MARK
- BAD ENTRY COUNT
~ INACCURATE DELETE CHAIN HEAD

o BROKEN DELETE CHAIN

Paper 3223 48 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

PATHING DISTRIBUTION

MASTER DETAIL
:\} — |
(A {
o)
|y [B] N
[B]
[cl /q
(A] “l\
i+
Lal 51;
[&] &
(€] 1\\
tal
LB 1 &
| Jg/
Cl———

Paper 3223 49 DETROIT, Mi

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

PATHING ANALYSIS

DATASET: SHIP
CHAIN TESTING PHASE ---

PROCESSING CHAIN THROUGH MASTER: CUST CHAIN 1 OF 1
AND DETAIL CHAIN 1 OF 1

MASTER COUNTED: 41296
MASTERS W/DETAILS: 12277

LARGEST DETAIL CHAIN: 85
SECOND LARGEST CHAIN: 72
AVERAGE DETAIL CBAIN: 7

DETAIL DISTRIBUTION SUMMARY:

BLK OPT %
PATH-SIZE DETAILS MASTERS AVG READS READS INEFF
1-50 66180 11856 6 33549 11856 g3
51-100 27396 421 65 14987 3914 282
101-500 0 0 0 0 0
501-1000 0 0 0 0 0
1001-5000 0 0 0 0 0
5001-12500 0 0 0 0 0
12501-25000 0 0 0 0 0
25001-65000 0 0 0 0 0

TOTAL DETAILS COUNTED: 93576
ENTRIES IN DETAIL SET: 93576

NO BROREN CHAINS FOUND ALONG THIS PATH!

NO BROKEN CHAINS FOUND IN THIS DATASET!

Paper 3223 50 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

PATH ANALYSIS

POTENTIAL PROBLEMS

Paper 3223

INEFFICIENT DISTRIBUTION OF ENTRIES ACROSS SET

UNNECCESSARY I1/0's DUE TO EXCESSIVE DELETED ENTRIES

UNNECCESSARY CHAIN PATHS F

BROKEN

ALL DETAILS CHAINED TO ONE OR TWO MASTERS
CHAIN CONDITIONS

IMPROPER BIT MAP
DEFECTIVE KEY

BAD LEVEL

BAD CHAIN POINTER

WRONG PRIMARY PATH ASSIGNMENT

51 DETROIT, MI

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

SUMMARY

o "IMAGE" DATABASES SINCE 1976 HAVE GRUWN EXPONENTIALLY

o FEASIBILITY OF A UNLOAD/RELOAD OR SOLVE QUESTIONABLE
PROBLEMS IS IMPRACTICAL

0 "IMAGE" USER NEED VISIBLITY INTO THEIR DATABASES

o FREQUENT DIAGNOSTICS ARE NO LONGER A NICETY THEY'RE
ESSENTIAL

(o} UT