
HP AdvanceNet

DS/3000 HP 3000 to HP 3000
User /Programmer Reference Manual

F//19 HEWLETT
~!!a PACKARD

{.

Part No. 32185-90001
U0787

HP AdvanceNet

DS/3000 HP 3000 to HP 3000

User /Programmer

Reference Manual

~il~:~K~~~
19420 HOMESTEAD ROAD, CUPERTINO, CA 95014

Printed in U.S.A. DECEMBER 1985
Update 1, JULY 1987

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that
is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another language
without the prior written consent of Hewlett-Packard Company.

Copyright© 1985,1987 by HEWLETT-PACKARD COMPANY

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages: h1ch are issued between editions,
.;ontain additional and replacement pages to be merged into the manual by the customer. The dates on
the title page change only when a new edition or a new update is published. No information is
incorporated into a reprinting unless it appears as a prior update; the edition does not change when an
update is incorporated.

The software code printed ahn1gside 1he date indicates the version level of the software product at the
time the manual or update was issued. Many product update~ .ind fi; .. es do not require manual changes
and, conversely, manual corrections may be done without accompanying product changes. Therefore, do
not expect a one to one correspondence between product updates and manual updates.

First Edition
First Edition
Update #1. ..
Update #1 ...

. DEC 1985

. DEC 1985
JUL 1987 .. .

.. JUL 1987

JUL 87
iii

321858. 52. 00 (MPE V /E)
. 32189B.Ol.OO(MPEIV)
321 SSB. ~2 OO(MPE V /E)

321898. 01. OO(MPE IV)

.~

r

r.

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition aud ot any pages changed in updates to
that edition Within the manual, any page changed since the last. emtton is indicated by printing the date
the changes were made on the bottom of the page. Changes are marked with a vert:.:al bar in the margin.
If an update is incorporated when an edition is reprinted, these bars are removeo but the dates remain.
No information is incorporated into a reprinting unless it appears as a prior update. To verify that your
manual contains the most current information, check that the date printed at the bottom of the page
matches the date listed below for that page.

Effective Pages

2-19 to 2-20
8-1 to 8-16

JUL 87
v

Date

. JUL 1987

.JUL 1987

r '
.

. ,.,,

PREFACE I

The Hewlett-Packard AdvanceNet is a set of hardware and software data communications
products. One of these data communications products is DS/3000, an integrated software
package that provides the capability of communication between HP computer systems.

This manual documents DS/3000 as it applies to an HP 3000 network. The manual
explains how an HP 3000 user can communicate with another (or several other) HP 3000
computer systems by establishing a DS/3000 communications link. (Other manuals in the
DS/3000 series document the other network combinations of computer types.)

This manual explains the basic use of DS/ 3 000 to users and programmers. A companion
manual, the DS/ 3000 HP 3000 to HP 3000 Network Administrator Manual, explains more
advanced concepts such as configuring a system, and using TRACE for debugging.

Users of this manual should be familiar with the basic operating principles of the HP 3000
computer system using the MPE operating system, and should also be familiar with the
subjects covered in the following manuals:

For MPE-IV (Versions not earlier than C.Bl.A2):

• HP 3000 Computer Systems, MPE Commands Reference Manual
(30000 -90009).

• HP 3000 Computer Systems, MPE Intrinsics Reference Manual
(30000-90010).

• HP 3000 Computer Systems, System Manager/System Supervisor
Reference Manual (30000-90014).

• HP 3000 Computer Systems, Console Operator's Guide (32002-90004).

For MPE-V /E (Versions not earlier than G.00.00):

• HP 3000 Computer Systems, MPE V Commands Reference Manual
(32033-90006)

• HP 3000 Computer Systems, MPE V Intrinsics Reference Manual
(32033-90007)

o HP 3000 Computer Systems, MPE V System Operation and Resource
Management Reference Manual (32033-90005)

vii

I PREF ACE (continued)

For both:

• Fundamental Data Communications Handbook (5957-4634)

• Data Communications Handbook, Section C, DS/3000 to 3000
(32185-90003)

• Data Communications Handbook, Section D, DS/3000 to 1000
(32185-90006)

• Data Communications Handbook, Section G, X.25 Link (32187-90006)

For those users who also become involved in the selection and/or connection of the various
network components, reference should be made to the appropriate component manuals,
including the following:

• HP 30010A Intelligent Network Processor (INP) Installation and
Service Manual (30010-90001).

• HP 30020A Intelligent Network Processor (INP) Installation and
Service Manual (30020-90001).

• HP 30020B Intelligent Network Processor (INP) Installation and
Service Manual (30020-90005).

• HP 300IOA/30020A/B Intelligent Network Processor (INP) Diagnostic
Proc~dures Manual (30010-90002).

• HP 30055A Synchronous Single-Line Controller (SSLC) Installation
and Service Manual (3005 S -9000 I).

• Hardwired Serial Interface (HSI) Installation and Service Manual
(30360-90001).

For those programmers who use other subsystems in conjunction with DS/3000, the
following manuals should be referenced:

• TurbolMAGE Reference Manual (32215-90050)

• BASIC/ 3000 Interpreter Manual (30000-90026)

• COBOL/II Reference Manual (32233-90001)

• KSAM/ 3000 Reference Manual (30000-90079)

viii

PREF ACE (continued) I

NOTE

Within the text of this manual, cross-references are
made to these manuals by title. To obtain the part
number of the referenced manual, refer to these lists
of manuals in the Preface.

In this release, DS/3000 and X.25 Link are two separate products. If you are using DS/3000 between
HP 3000 computers, either with or without X.25, you should use this manual for all DS information
and refer to the DS/3000 HP 3000 to HP 3000 Network Administrator Manual (32185-90002) for
information about protocols, hardware, configuration, and tracing. If you are communicating with a
PAD terminal or an HP 2334A Cluster Controller, refer to the X.25 Link for the HP 3000 Reference
Manual (32187-90001).

ix

/~

NOTATION

noni talfcs

italics

[1

{ }

CONVENTIONS USED IN THIS MANUAL

DESCRIPTION

Words in syntax statements which are not in italics must be entered exactly as
shown. Punctuation characters other than brackets, braces and ellipses must also
be entered exactly as shown. For example:

EXIT;

Words in syntax statements which are in italics denote a parameter which must
be replaced by a user-supplied variable. For example:

CLOSE filename

An element inside brackets in a syntax statement is optional. Several elements
stacked inside brackets means the user may select any one or none of these
elements. For example:

[AB] User may select A or B or neither.

When several elements are stacked within braces in a syntax statement, the user
must select one of those elements. For example:

{A~} User must select A or B or C.

A horizontal ellipsis in a syntax statement indicates that a previous element may
be repeated. For example:

[,itemname] •.. ;

In addition, vertical and horizontal ellipses may be used in examples to indicate
that portions of the example have been omitted.

A shaded delimiter preceding a parameter in a syntax statement indicates that
the delimiter must be supplied whenever (a) that parameter is included or (b) that
parameter is omitted and any other parameter which follows is included. For
example:

item::l.[~itemb] L~itemc]

means that the following are allowed:

item::l.
item::l.,itemb
item:i.,itemb,itemc
item:i.,,itemc

xi

CONVENTIONS (continued)

underlining

(CONTROLlchar

When necessary for clarity, the symbol A may be used in a syntax statement to
indicate a required blank or an exact number of blanks. For example:

SET[(modifier)]6(variable);

When necessary for clarity in an example, user input may be underlined. For
example:

NEW NAME? ALPHA

Brackets, braces or ellipses appearing in syntax or format statements which must
be entered as shown will be underlined. For example:

LET var[Isubscriptll = value

Output and input/output parameters are underlined. A notation in the
description of each parameter distinguishes input/output from output
parameters. For example:

CREATE (parm1,parm2,flags,~)

Shading represents inverse video on the terminal's screen. In addition, it is used to
emphasize key portions of an example.

The symbol (I may be used to indicate a key on the terminal's keyboard.
For example, (RETURN! indicates the carriage return key.

Control characters are indicated by (CONTROL) followed by the character. For
example, (CONTROL)Y means the user presses the control key and the character Y
simultaneously.

xii

CONTENTS I

Section 1 INTRODUCING DS/3000 . 1-1

Section 2 THE COMMUNICATIONS LINK

What is a Communications Link? 2-1
Opening a Line. 2-2

Opening a Hardwired Line 2-2
Opening a Telephone Line . 2- 5
Specifying a DS Line . 2- 8
Specifying an X. 2 5 Line . 2- 1 6
The DSLINE Command. 2-1 7
:DSLINE ... 2-17
Dialing the Remote Computer . 2- 21
ID Sequences .. 2-21
Multiple Users 2-22
The REMOTE HELLO Command . 2-2 9
:REMOTE HELLO 2-29
Opening Multiple Lines 2-34
Line Opening Failures 2-48

Closing a Line ... 2- 50
Examples ... 2-51

Section 3 REMOTE SESSIONS

Issuing Remote Commands . 3-1
Using the Remote Subsystem from a Batch Job. 3-4
The BREAK Key. 3-4
The Control Keys . 3-6

Issuing Local Commands. 3-7
Terminating a Remote Session . 3-7

From the Local Session . 3-7
From the Remote Session 3-8

Section 4 REMOTE FILE ACCESS

Interactive Access . 4-1
Example # 1 . 4- 3
Example #2 ... 4-5
Example #3 ... 4-8
Example #4 ... 4-10
Example #5. 4-13

Program ma tic Access . 4- 1 5
Example ... 4-17

xiii

I CONTENTS (continued)

Sections USING A REMOTE DATA BASE

Access Through a Local Application Program. 5- 2
Method 1: Establishing Interactive Sessions. 5-2
Method 2: Using the Command Intrinsic. 5- 3
Method 3: Using a Data Base-Access File . 5-5
Syntax Considerations 5-10

User Identification 5-11
Example ... 5-11
Filename 5-12
Activating a Data Base-Access File 5-12
Accessing Data Bases 5-14

QUERY .. 5-15

Section 6 PROGRAM-TO-PROGRAM COMMUNICATIONS

PTOP Intrinsics. 6-5
ACCEPT ... 6-6
GET .. 6-8
PCHECK ... 6-10
PCLOSE ... 6-11
PCONTROL. .. 6-12
POPEN .. 6-14
PREAD .. 6-20
PWRITE ... 6-22
REJECT ... 6-24

Interfacing with COBOL and BASIC 6-25
PTOP Example ... 6-25

Master Program 6-25
Slave Program .. 6-2 7

xiv

.... _ __...

CONTENTS (continued)

Section 7 NETWORK FILE TRANSFER

Features of NFT ... 7-1
:DSCOPY. 7- 3
Opera ti on . 7 - 5
Source and Target Files. 7 - 5

Examples. 7 -6
Local Copy. 7 -6
Remote-to-Local Copy. 7-7
Local-to-Remote Copy 7-8
Remote Copy ... 7-9
Remote-to-Remote Copy 7-10

Interactive Mode .. 7-11
Multiple Transactions 7-11
Event Recording .. 7-12

Programmatic Mode .. 7-13
The DSCOPY Intrinsic 7-14

COBOL Calling Sequence 7-15
FOR TRAN Calling Sequence . 7 -1 5
BASIC Calling Sequence 7-16
Pascal Calling Sequence. 7 - 16
SPL Calling Sequence . 7 - 16

The DSCOPYMSG Intrinsic. 7 -1 7
COBOL Calling Sequence . 7-1 7
FORTRAN Calling Sequence 1-17
BASIC Calling Sequence 7-18
Pascal Calling Sequence. 7 - 1 8
SPL Calling Sequence . 7 -1 8

Programmatic Examples . 7 -19
DSCOPY COBOL Example 7-19
DSCOPY FOR TRAN Example 7 -19
DSCOPY BASIC Example 7-20
DSCOPY Pascal Example 7-20
DSCOPY SPL/3000 Example 7-20

Section 8 DS APPLICATION DESIGN

Transmissions Between Systems 8-4
Coordinating Master and Slave Programs . 8- 5
Interprocess Communication and· PTOP 8-6

Message Files . 8 - 6
Example . 8-7

Debugging .. 8-10
Line Buffers/Continuation Buffers 8-10
Compression. 8- 12
Performance . 8- 1 3

Computer System Dependent 8-13

JUL 87
xv

CONTENTS (continued)

Communications Links 8-13
Applications ... 8-14
Remote Listing ... 8-14

Multiple Remote Access 8-15

Section 9 DSCONTROL CONSOLE COMMAND

Syntax ... 9-2
Parameters . 9- 2
Operation ... 9-5
Examples. 9-7

Appendix A ERROR CODES AND MESSAGES

:DSLINE Syntax Errors. A-1
DS/ 3 000 Functional Errors. A- 3
:DSCONTROL Informatory Messages. A-6
:DSCONTROL Error Messages A-6
:DSCOPY General Error Messages A-9
:DSCOPY Intrinsic Error Returns A-10
:DSCOPY Internal Errors A-11
X. 21 Messages ... A-11

Set 1 : Call Progress Signals. A - 11
Set 2: DCE Provided Inf orma ti on . A - 1 2

Appendix B DS/3000 COBOL INTERFACE

Conventions .. B-1
Common Parameters B-1
Interface Intrinsics ... B-2

CPOPEN .. B-2
CPREAD .. B-3
CPWRITE ... B-3
CPCONTROL ... B-3
CPCLOSE ... B-3
CGET ~ B-4
CACCEPT ... B-5
CREJECT ... B-5
CPCHECK ... B- S

Example .. B-5
Master PTOP Program B-6
Slave PTOP Program B-9

JUL 87
xvi

r'·

CONTENTS (continued) I

Appendix C DS/3000 BASIC INTERFACE

Conventions ... C-1
Common Parameters . C-1
Interface Intrinsics . C- 3

BPOPEN .. '. .. C-3
SPREAD ... C-4
BPWRITE .. C-4
BPCONTROL .. C-4
BPCLOSE .. C-5
BGET ... C-5
BACCEPT .. C-5
BREJECT . C-6
BPCHECK .. C-6

Examples ... C-6
Master PTOP Program C-6
Sia ve PTOP Program . C- 11

Appendix D ASCII CHARACTER SET. D-1

xvii

I~

~-

INTRODUCING DS/3000 -
~~~~~~~~~[!] 

The Hewlett-Packard AdvanceNet is a combination of hardware and software products that make it 
possible for Hewlett-Packard computer systems to communicate with one another, and with IBM 
mainframes as well. The connections can be made over hardwired lines, and/or over the public 
telephone facility, and/or across Public Data Networks (PDNs), in any mixture. This capability, 
coupled with our proven remote entry capability to IBM computer systems, provides a total solution to 
large-company electronic data processing (EDP) needs. 

But exactly what does this overall capability mean? It means that a large multidivisional corporation 
can have a truly coordinated world-wide network of computer systems. They are coordinated in the 
sense of tying together the various commercial and industrial functions within each division and 
factory, and they are also coordinated in the larger sense of tying together the various divisions and 
factories at the corporate level. 

For example, imagine a large corporation which has factories in the United States, Canada, France, and 
West Germany. Within each factory there are HP 3000 computer systems performing such functions 
as inventory control, factory data collection, and operations management. With a Hewlett-Packard 
Distributed Systems Network these manufacturing information systems can be tied into an HP 3000 
system which handles the factory's administrative functions (such as finance and accounting). The 
administrative systems of each factory can, in turn, be connected not only to one another but also (via 
remote job entry) to a large computer facility at corporate headquarters. This overall networking 
capability makes it possible to perform financial analysis and control at a group and corporate level as 
well as at the individual factories. 

Within the realm of AdvanceNet is the software subsystem that accomplishes HP computer-to-HP 
computer communication over these connecting lines. This software subsystem is called OS Network 
Services (DS/3000). Among other features, DS/3000 includes such capabilities as: 

• Virtual Terminal/Remote Command Execution. Gives the user remote interactive 
capabilities, even though the user's terminal is physically connected to the local HP system. 

• Remote File Access. A user is allowed access to files in remote HP computer systems. An 
important aspect of this feature is the capability of using Interprocess Communications (IPC) 
between systems. 

• Remote Data Base Access. A user can directly access data bases on any remote HP computer 
under the same security protection used by local data bases. 

• Program-to-Program Communication. Permits programs residing in different HP computer 
systems to interactively exchange information with one another in a coordinated manner. 

• Network File Transfer. A facility that efficiently transfers disc files between HP 3000 
computer systems. 

This manual describes how an HP 3000 user can communicate with several HP 3000 computers by 
establishing a DS/3000 communications link. DS/3000 is that part of the HP Distributed Systems 
Network in which several HP 3000 computer systems are connected to one another. DS/3000 can 
also be used for intercomputer communications with other families of computers (such as HP 
3000/HP 1000, HP 3000/HP 250, and HP 3000/HP 98xx desktop computers), but these other 
combinations are described in separate reference manuals. 

1-1 



Introducing DS/3000 

As a simplified example of a computer network, imagine that you are in the same room with an HP 
3000 (labeled "System A" in Figure 1-1) and that another HP 3000 (labeled "System B") resides in 
another part of the building. These two computers are connected to one another by an ·~ 
interconnecting cable and a pair of communications interfaces. By virtue of DS/3000 you can use the 
processing capability of both of these HP 3000 machines and pass data back and forth between them 
by entering commands through a single terminal. 

To see how DS/3000 works in this simple example, follow through the step-by-step procedure. 

HP3000 
SYSTEM A 

n 
µ 

Communications 

/ Interface ~ 

Interoonnectin1 
Cable 

r 
~ 

Figure 1-1. HP 3000 to HP 3000 Example 

1-2 

HP3000 
SYSTEM B 



Introducing DS/3000 

Step 1. Sit down at a terminal connected to System A and initiate a session. 

(RETURN) 

:HELLO USER.ACCOUNT 

HP3000 / MPE V G.02.00. MON, SEP 30, 1985, 12:23 PM 

WELCOME TO SYSTEM A. 

Within the context of DS/3000, such a session is referred to as a "local" session because it is active 
within the HP 3000 to which your terminal is directly connected. This terminology becomes more 
meaningful later, since all you have actually done, so far, is initiate a standard MPE session. At this 
point, you have reached the situation illustrated in Figure 1-2. 

HP3000 
SYSTEM A 

LOCAL 
SESSION 

CommunlcaUons 

/In~rlace~ 

InterconnecUna 
Cable 

Figure 1-2. Initiating the Local Session 

1-3 

HPSOOO 
SYSTEM B 



Introducing DS/3000 

Step 2. Now, open a communications line between System A and System B. Do this by entering a 
: OSLIN E command. 

: OSLINE REMOTEt 
OS LINE NUMBER = #L3 

In this example, REMOTE1 is the DS device class name established during system configuration (in 
System A) for the particular line you wish to use. DS/3000 opens the line and then assigns you a line 
number (3 in this example). This line number is analagous to the file number returned to you by the 
MPE File System when you open a file programmatically using the FOPEN intrinsic. Within your local 
session, it uniquely identifies the particular line that you have opened. This becomes significant only 
if you must open more than one communications line during a session. 

Step 3. Now that you have acquired access to a communications line between System A and System B, 
initiate a session in System B (from your local log-on terminal). Do this by entering a REMOTE 
command which includes an MPE HELLO command for the remote system. 

:REMOTE HELLO RUSER.RACCOUNT 

HP3000 / MPE V G.02.00. MON, SEP 30, 1985, 12:23 PM 

WELCOME TO SYSTEM B. 

Within the context of DS/3000, this type of session is referred to as a "remote" session because it is 
active within the remotely located HP 3000 that is connected indirectly to your log-on terminal by 
way of a communications line and your local HP 3000. You now have two distinct sessions in progress 
concurrently: one in System A (under the user and account names USER. ACCOUNT) and the other in 
System B (under the user and account names RUSER. RACCOUNT). It is important to keep in mind that 
within System A your local session is operating under the capabilities and security restrictions defined 
(by the accounting structure of System A) for USER. ACCOUNT, while within System B your remote 
session is operating under the capabilities and security restrictions defined (by the accounting structure 
of System B) for RUSER. RACCOUNT. At this point, the situation is as illustrated in Figure 1- 3. As will 
be seen in the next few steps, you can alternate freely between the two sessions. 

1-4 



HPSOOO 
SYSTEM A. 

LOCAL 
SESSION 

Communloatlons 

/ Interface~ 

InterconnecUn1 
Cable 

Figure 1-3. Initiating the Remote Session 

Introducing DS/3000 

HPSOOO 
SYSTEM B 

REMOTE 
SESSION 

Step 4. Now, see what files reside in the home group of the ACCOUNT account in System A. 

: LISTF 

FILENAME 

DATA1 DATA3 FILE1 SOURCE2 SOURCES 

You can do the same for the home group of the RACCOUNT account in System B by entering the 
following command through the same terminal: 

: REMOTE LISTF 

FILENAME 

DATA1 DAT AS DATA6 FILE3 SOURCE1 

Notice that in both cases the same command was entered, but in the latter case the prefix REMOTE was 
used. The presence or absence of that prefix is what determines whether a command is to be executed 
in the local session or in the remote session. 

1-5 



Introducing DS/3000 

Step 5. As a result of the LISTF and REMOTE LISTF displays, you can see that a source file, named 
SOURCE1, exists in System B but not in System A. Suppose you wish to modify one of the statements 
in that program. To do that, use the text editor in System B. This time, instead of prefixing your 
remote commands with REMOTE, try a different technique. Enter the following: 

:REMOTE 
# 

This construct gets into the remote session in such a way that all commands can be entered in their 
normal form (without the prefix REMOTE). The fl is the prompt character issued by DS/3000 (in place 
of the usual MPE colon prompt). In all other respects it will seem as though you are executing an 
MPE interactive session on your local computer. 

Step 6. Now invoke the text editor, copy the content of SOURCE 1 (which is a file in System B) into 
the editor>s work file, display the content of the work file, modify the desired statement, and store the 
altered source code back in SOURCE 1. 

#EDITOR 
HP32201A.7.17 EDIT/3000 WED, MAR 6, 1985, 3:47 PM 
(C) HEWLETT-PACKARD CO. 1985 
/SET FORMAT=COBOL 
/T SOURCE1 
/LIST ALL 

1 $CONTROL USLINIT,SOURCE 
1.1 IDENTIFICATION DIVISION. 
1.2 PROGRAM-ID. COBOL-TEST1. 
1.3 ENVIRONMENT DIVISION. 
1.4 DATA DIVISION. 
1.5 WORKING-STORAGE SECTION. 
1.6 77 EDIT-FIELD PIC $$$$$9.99. 
1.7 77 TOTAL-COST PIC 999V99. 
1.8 77 COST-OF-SALE PIC 99V99. 
1.9 77 TAX PIC 99V99. 
2 77 Y-N PIC X. 
2.1 PROCEDURE DIVISION. 
2.2 ENTER-ROUTINE. 
2.3 MOVE ZEROS TO TOTAL-COST. 
2.4 DISPLAY SPACE. 
2.5 DISPLAY "ENTER COST OF SALE 11

• 

2.6 ACCEPT COST-OF-SALE. 
2.7 COMPUTE TAX= COST-OF-SALE* .06. 
2.8 ADD COST-OF-SALE, TAX TO TOTAL-COST. 
2.9 MOVE TOTAL-COST TO EDIT-FIELD. 
3 DISPLAY "TOTAL COST= " EDIT-FIELD. 
3.1 DISPLAY "ARE YOU FINISHED? (YORN)". 
3.2 ACCEPT Y-N. 
3.3 IF Y-N = 11 N11 OR 11 n 11 GO TO ENTER-ROUTINE. 
3.4 STOP RUN. 

1-6 



/MODIFY 2.5 
MODIFY 2.5 

DISPLAY "ENTER COST OF SALE". 
I (NO DECIMAL POINT) 

DISPLAY "ENTER COST OF SALE (NO DECIMAL POINT)". 

/KEEP SOURCE1 

Introducing DS/3000 

SOURCE1 ALREADY EXISTS - RESPOND YES TO PURGE OLD AND KEEP NEW 
PURGE OLD? YES 
/EXIT 

END OF SUBSYSTEM 
II 

Step 7. The work in System Bis now completed; so terminate the remote session and return control to 
your local session. 

CPU=4. CONNECT=7. WED, MAR 6, 1985, 9:15 AM 
ill_ 

Note that you are now back in the local session in System A (signified by the colon prompt). The 
remote session no longer exists, but the communications line is still open. You could, if you wanted, 
initiate another remote session over the line by issuing another REMOTE HELLO command. To close 
the communications line, enter the following variation of the : DSLINE command: 

:DSLINE REMOTE1 ;CLOSE 
1 OS LINE WAS CLOSED. 

~- Finally, terminate the local session. 

: BYE 

CPU=1. CONNECT=11. WED, MAR 6, 1985, 9:16 AM 

1-7 



. DS/3000 Introducing 

1-8 

I~ 



......__ __ T_H_E_c_o_M_M_u_N_1c_A_T_1o_N_s_L_1_NK_~1:1·11i 
WHAT IS A COMMUNICATIONS LINK? 

Within the context of DS/3000, a "communications link11 consists of the following elements: 

• An interactive session in progress on an HP 3000 computer. 

• A physical communications line between that HP 3000 computer and another HP 3000 computer 
at a remote location. 

• An interactive session in progress in the remote HP 3000 computer (initiated over the physical 
communications line from your local session). 

Note that your local terminal is the log-on terminal for both the local session and the remote session. 
(See Figure 2- 1.) 

HP3000 

LOCAL 
SESSION 

User's 
Lo1-on 
Terminal 

Communicaliona Line 

_ _( 

HP3000 

REMOTE ) 
SESSION 

Figure 2-1. DS/3000 Communications Link (HP 3000 to HP 3000) 

2-1 



The Communications Link 

OPENING A LINE 

A communications link can be established over a hardwired communications line, over the public 
telephone network, or over an X.21 or X.25 Public Data Network (PDN). The procedures for opening 
hardwired lines and for opening telephone lines differ only slightly. Therefore, the basic differences 
will be presented first, followed by the procedures that are essentially the same. Generally, once the 
connection to the remote computer is established, you will perceive no difference in the way DS/3000 
performs. 

Opening a Hardwired Line 

What is a hardwired line? In the general field of data communications there are two types of lines 
commonly referred to as "hardwired." The first type is a dedicated path on the public telephone 
network that is leased from the telephone company for the private use of a computer-to-computer 
configuration. Such a line serves as a permanent connection between the two computers. The other 
type of hardwired line is a cable that is connected directly to the communications I/O interfaces of 
the two computers. Within the context of DS/3000, "hardwired" always refers to a cable connection. ·~ 
However, the technique for opening a line is the same for either a direct-connect line or a leased 
(nonswitched) telephone line. 

The hardwired interconnecting cable connects to each HP 3000 by way of a communications 
interface. The communications interfaces that can be used for a hardwired connection are listed in 
Table 2-1. Although the INPs and the SSLC are the interfaces most commonly used for telephone line 
connections with modems, they can also be used in hardwired applications without modems. Refer to 
Table 2-1 to see which controller is used with which HP system. 

Table 2-1. Associations between Controllers and Systems. 

Controller System 

HP 30010A HP 3000 Series II/III 
Intelligent Network Processor (INP) 

HP 30020A HP 3000 Series 30/33/39/40/42/44/48 
Intelligent Network Processor 

HP 30020B HP 3000 Series 
Intelligent Network Processor 30/33/39/40/42/44/48/64/68 

HP 30055A HP 3000 Series II/III 
Synchronous Single-Line Controller (SSLC) 

HP 30360A HP 3000 Series II/III 
Hardwired Serial Interface (HSI) 

2-2 



Opening a Line 

It is relatively straightforward to obtain access to a hardwired communications line. All you are 
required to do is identify the particular communications interface you wish to use. 

NOTE 

Throughout this manual, the term 11dsdevice11 will be used 
as a generic term for logical device number, class name 
or, in the case of X.25, a node name. 

You identify the particular communications interface of the particular line you wish to use by 
specifying the dsdevice associated during system configuration with the desired interface. In the 
example in Section 1, the : DSLINE command was used for this purpose, as follows: 

: DSLINE REMOTE1 

If you are the first person to use a : DSLINE command after the operator has enabled the DS line, you 
may also wish to specify the size of the DS/3000 line buffer to be used in conjunction with the line. 
The size of this buffer determines the maximum amount of data that can be sent or received in a 
single physical transmission over the line. Note that a transmission as you normally think of it 
(sending or receiving all or part of a file) may actually consist of many physical transmissions. In 
essence, this buffer size defines a blocking factor for the line. (See Figure 2-2.) A default buffer size is 
established during system configuration, and in most cases (as in the example in Section 1), you will 
find it satisfactory to let this default value prevail. If you do wish to change the line buffer size, use 
the l inebuf parameter as described on pages 2-17 and 2-18. 

2-3 



Opening a Line 

Assume that the DS/3000 line buffer size is 512 words and that the user has initiated the 
transmission of a block of data 1200 words in length from an HP 3000 to a remote HP 3000. The 
block of data would actually be sent in three separate transmissions, as follows. (DS/3000 appends an ~ 
average of 20 words of overhead on each transmission.) 

Figure 2-2. DS/3000 Line Buffer Example 

1200 words of data to 
be transmitted 

First physical 
transmission: 512 
words (492 words of 
data + 20 words of OS 
overhead) 

Second physical 
transmission: 512 
words (492 words of 
data + 20 words of OS 
overhead) 

Third physical 
transmission: 236 
words (216 words of 
data + 20 words of OS 
overhead) 

1200 words of data 
received at remote 
computer 

When you enter a : DSLINE command, OS/3000 attempts to give you access to the specified 
communications line and, if successful, informs you of the assigned OS line number by displaying the 
following message at your terminal: 

OS LINE NUMBER = #Lx 

where xis the assigned OS line number. In the example in Section 1, the OS line number 11 311 was 
assigned. The DS line number is significant only if you open and use more than one communications 
line concurrently within a single local session (see "Opening Multiple Lines" later in this section). 

At this point you have acquired a physical communications line but the communications link does not 
yet exist. The actual communications link between the two computers is established by initiating a 
remote session over the line. You do this by executing a REMOTE HELLO command. In the example in 

2-4 



Opening a Line 

Section 1, the REMOTE HELLO command contained the minimum parameters required (a username and 
an accountname), as follows: 

:REMOTE HELLO RUSER.RACCOUNT 

The communications link between the two HP 3000 computers now exists. 

Opening a Telephone Line 

A DS/3000 communications link can also be established over the public (dial-up) telephone network. 
In such a case, the information passed back and forth between the two computers travels over the 
same lines that are used for normal voice traffic. Each computer is interfaced to the telephone lines 
by way of a modem. (The term "modem" is a contraction of MOdulator-DEModulator.) A modem is a 
device that translates digital signals (electrical impulses) generated by a computer into analog signals 
(tones) that can be transmitted over telephone lines, and vice versa. 

The modem is connected to the HP 3000 Computer System by way of a communications interface. 
The communications interfaces used with modems are listed in Table 2-2. Refer to Table 2-2 to see 
which controller is use'd with which HP system. Each INP or SSLC controls one modem (such as an HP 
3721 OT, 37220T, or 37230A modem, or a Bell System Type 201, 208, or 209 modem), and is capable 
of both initiating and accepting a telephone connection with a remote computer over the public 
telephone network or a leased telephone line. 

Table 2-2. Associations between Controllers and. Systems. 

Controller System 

HP 30010A HP 3000 Series II/III 
Intelligent Network Processor (INP) 

HP 30020A HP 3000 Series 30/33/39/40/42/44/48 
Intelligent Network Processor 

HP 300208 HP 3000 Series 
Intelligent Network Processor 30/33/39/40/42/44/48/64/68 

HP 300SSA HP 3000 Series II/III 
Synchronous Single-Line Controller (SSLC) 

2-5 



Opening a Line 

It is a little more complex to obtain access to a telephone line than to a hardwired line. First, you 
must identify the particular communications interface (INP or SSLC) you wish to use. You do this by 
specifying the device class name or logical device number of the communication line that was ~ 
associated during system configuration with the desired interface. You use the : DSLINE command for "-
this purpose, as follows: 

:DSLINE REMOTE2 

If you are the first person to use a : DSLINE command after the operator has enabled the DS line, you 
may also wish to specify the size of the DS/3000 line buffer to be used in conjunction with the line. 
The size of this buffer determines the maximum sized block that can be sent or received in a single 
physical transmission over the line. Note that a transmission as you normally think of it (sending or 
receiving all or part of a file) may actually consist of many physical transmissions. In essence, this 
buffer size defines a blocking factor for the line. (See Figure 2-2.) A default buffer size is established 
during system configuration, and in most cases (as in the example in Section 1), you will find it 
satisfactory to let this default value prevail. If you wish to change the line buffer size, use the 
l inebuf parameter as described on pages 2-17 and 2-18. 

Next, you may wish to supply a set of identification (ID) sequences to be used in verifying that the 
desired pair of computers are connected to one another. This is discussed under 11ID Sequences" later in 
this section. Briefly, however, you may supply an ID sequence that identifies your HP 3000 and one 
or more ID sequences that identify the remote computer with which you wish to be connected. When 
a telephone connection is established between your HP 3000 and a remote HP 3000, the two 
computers exchange ID sequences and their validity determines whether or not the connection is to 
remain in effect. You use the : DSLINE command to supply ID sequences, as follows: 

:DSLINE REMOTE2 ;LOCI0=11 SYSTEM A" ;REMID="SYSTEM X" 

where SYSTEM A is the ID sequence identifying your local HP 3000 and SYSTEM Xis the ID sequence ~ 
identifying the remote computer with which you want to establish a telephone connection. 

Again, there are default values that can be established during system configuration. In most cases, 
however, you will at least want to explicitly identify the desired remote HP 3000 to be certain that 
the proper connection is being established. 

Now you must establish the physical connection between the two computers by dialing (at the modem) 
the telephone number of the remote computer and responding (at the system console) to the dial 
request. If you wish to have the console operator of your HP 3000 dial the number for you, you may l 
supply the desired number in the : DSLINE command and it will be displayed as part of a dial request 
message at the operator's console. In such a case, you would supply the telephone number as follows: 

:DSLINE REMOTE2 ;LOCID= 11 SYSTEM A" ;REMID="SYSTEM X" ;PHNUM=SSS-1234 

If autodial equipment is installed on the REMOTE2 line, the telephone number supplied in the 
: DSLINE command is used instead of the number configured for the line. 

The various possibilities involved in establishing a telephone connection with a remote computer are 
discussed under "Dialing the Remote Computer" later in this section. 

When you execute the : DSLI NE command, DS/3000 attempts to give you access to the specified 
communications interface (INP or SSLC) and, if the telephone connection is successfully established, 
informs you of the assigned DS line number by displaying the following message at your terminal: 

OS LINE NUMBER = #Lx 

2-6 



Opening a Line 

where xis the assigned DS line number. In the example in Section 1, the DS line number 11311 was 
assigned. The DS line number is significant only if you open and use more than one communications 
line concurrently within a single local session (see "Opening Multiple Lines" later in this section). 

At this point, you have acquired a physical communications line, but the communications link does not 
yet exist. The actual communications link between the two computers is established by initiating a 
remote session over the line. You do this by executing a : REMOTE HELLO command. In the example 
in Section 1, a : REMOTE HELLO command was used that contained the minimum parameters required 
(a username and an accountname), as follows: 

:REMOTE HELLO RUSER.RACCOUNT 

The communications link between the two HP 3000 computers now exists. 

2-7 



Opening a Line 

Specifying a DS Line 

As you have seen, in order to open either a hardwired communications line or a dial-up telephone line, 
you must specify a dsdevice identifying the particular communication line that is associated with the 
specific interface you wish to use. Deciding which name and number to use is complicated, but in real 
life, once the hardware and software configuration is installed and usable, most DS/3000 sites will 
post a notice defining all of the available communications lines and the proper device class names, 
logical device numbers, or nodenames for each. The following examples describe the procedure in case 
you wish to know how it works, or if your system does not post them. 

For each communications interface, there is a pair of associated drivers. First, there is the actual INP, 
HSI, or SSLC driver that directly controls the operation of the interface board. In addition, there is a 
DS/3000 communications driver that controls the operation of the INP, HSI, or SSLC driver. The 
names of these drivers are as follows: 

IOINPO (INP driver) 
CSHBSCO (HSI driver) 
CSSBSCO (SSLC driver) 
IODSO (DS/3000 communications driver, while utilizing the bisync protocol) 
IODSX (DS/3000 communications driver, while utilizing the X.25 Link software) 
IODSTRMO (DS/3000 virtual terminal driver, while utilizing the bisync protocol) 
IODSTRMX (DS/3000 virtual terminal driver, while utilizing the X.25 Link software) 

Now look at the appropriate sample 1/0 device table produced during system configuration. (See 
Figures 2-3 and 2-4 for a hardwired line or Figures 2-5 and 2-6 for a telephone line). 

One or more virtual terminal drivers (IODSTRMO or IODSTRMX) are also configured into a system. 
The IODSTRMO/IODSTRMX entries allow users on another system to be logged on to a system and 
regulate the number of remote Session Main Processes (SMP) that can be assigned to a given line. Each 
IODSTRMO/IODSTRMX entry is related to the proper communications interface entry by the number 
specified in the column labeled ORT. Figure 2-4 (the INP hardwired example) shows logical device 6 7 
paired with logical device 27; Figure 2-6 (the INP telephone line example) shows logical device 68 
paired with logical device 26. 

In Figure 2-3, notice that the HSI board entries (logical devices 12 through 15) look the same except 
for the POR TMASK. The POR TMASK specifies which port on the board is to be used. There are also 
virtual terminals (logical devices 60 through 64) referencing back to logical device 12. Since only one 
port on the HSI board can be opened at a time, only one block of virtual terminal entries is needed for 
that board. As each port is opened individually by specifying the corresponding dsdevice in the 
: DSCONTROL command (see Section 9), the system automatically reallocates the virtual terminal 
entries to the proper HSI board entry. This reallocation will not, however, show up in the I/O 
configuration table. This use of virtual terminals is unique to the HSI. SSLC and INP configurations 
require a block of terminals for each interface configured. 

In Figure 2-3, the shaded items in the column labeled DRIVER NAME show four HSI lines (CSHBSCO) 
configured into the system as logical devices 12 through 15. For each one of these lines, there is a 
DS/3000 communications driver, IODSO, also configured into the system. Each IODSO entry is related 
to the proper HSI entry by the number specified in the column labeled ORT (the #prefix indicates a 
back reference to a previously defined logical device number). Logical devices 50 through 53 are 
paired with logical devices 12 through 15, respectively. In this example, it is the device class name or 
logical device number of the appropriate IODSO entry that would be used to specify the desired line. 

2-8 



Opening a Line 

~- LOG ORT u c T SUB REC OUTPUT MODE DRIVER DEVICE 
DEV fl N H y TYPE TERMINAL WIDTH DEV NAME CLASSES 
# I A p TYPE SPEED 

T N E 

4 0 0 0 6 128 0 IOMDISC1 SPOOL 
SYSDISK 

2 5 0 0 0 3 128 0 IOMDISCO DISC 
5 13 0 0 8 0 40 LP JA s IOCRDO CARD 
6 14 0 0 32 2 66 0 s IOPRTO LP 
7 6 0 0 24 0 128 LP IOTAPEO TAPE 
8 6 1 0 24 0 128 LP IOTAPEO TAPE 
9 6 2 0 24 0 128 LP IOTAPEO TAPE 
10 6 3 0 24 0 128 LP JA s IOTAPEO BAT APE 
1 1 20 0 0 34 0 128 0 IOPTPNO PT PUNCH 
:112 1 :::: 1 ::~::1 16 0 0 19 3 0 0 ~~~i~~~ HSI 1 
:;;~:~;:: ::: ::::;: ::::::::. ::. 

~ 
:J.i~ii!:1::i:1 11,~ 0 0 19 3 0 0 HSI2 
1 ~:4:::1·::m:1·~ 0 0 19 3 0 0 ls~1ss~~ HSI3 
:1:sw:1m:111:s. 0 0 19 3 0 0 HSI4 .:·::;.;,::::.;::·:::::;:::::: ::::··:·' ·:,;:; ;~: .... ::::::: ::::; 
20 7 0 0 16 0 10 ?? 40 20 JAID IOTERMO CONSOLE 
21 7 1 0 16 0 1 1 ?? 40 21 JAID IOTERMO TERM 
22 7 2 0 16 0 1 1 ?? 40 22 JAID IOTERMO TERM 
23 7 3 0 16 0 1 1 ?? 40 23 JAID IOTERMO TERM 
24 7 4 0 16 0 1 1 ?? 40 24 JAID IOTERMO TERM 
25 7 5 0 16 1 1 1 ?? 40 25 JAID IOTERMO TERM 
26 25 0 0 17 0 0 0 IOINPO INP1 r 27 26 0 0 17 3 0 0 IOINPO INP2 
29 28 0 0 18 0 0 0 CSSBSCO SSLC2 
~~1 1:1:~1~·~ 0 0 41 0 128 0 I~~~ HDS1 
~1·,11.i;~ 0 0 41 0 128 0 HDS2 
5.2:i :':· /' ;4 0 0 41 0 128 0 

II:::~:::::!!::::~ ........ 
HDS3 .......... . ...... 

11,:1:'i
1!1

I 
0 0 41 0 128 0 HDS4 
0 0 16 0 ?? ?? 40 60 J ID !IOOSi:RMO OS TERM 

:;·:.:::::.::···::::,;··:· ...... 
0 0 16 0 ?? ?? 40 61 J ID !IiOOST:RMO. DSTERM 
0 0 16 0 ?? ?? 40 62 J ID i~I~[~~~ OS TERM 

~ ~~-11.11.g 0 0 16 0 ?? ?? 40 63 J ID :IODST:RMO DST ERM 
~-4i]!.ff l?. 0 0 16 0 ?? ?? 40 64 J ID ix·®sraMP DST ERM 
66 #26 0 0 41 1 128 0 IODSO DSLINE1 
67 #27 0 0 41 1 128 0 IODSO DSLINE2 
68 #26 0 0 16 0 ?? ?? 40 68 J ID IODSTRMO INP1 
69 #27 0 0 16 0 ?? ?? 40 69 J ID IODSTRMO INP2 
70 #29 0 0 41 0 ?? 128 0 IODSO SDS1 
71 #29 0 0 16 0 ?? ?? 36 71 J ID IODSTRMO OS TERM 

Figure 2-3. Sample 1/0 Device Table (Hardwired Line with HSI) 

2-9 



Opening a Line 

In Figure 2-4, the shaded items in the column labeled DRIVER NAME show an INP (IOINPO) 
configured into the system as logical device 2 7. (Note that the subtype is 3, indicating hardwired.) ~ 
For this line, there is a DS/3000 communications driver (IODSO) also configured into the system. The ) 
IODSO entry is related to the proper INP entry by the number specified in the column labeled ORT 
(the I prefix indicates a back reference to a previously defined logical device number). Logical device 
6 7 is paired with logical device 2 7. In this example, it is the device class name (DSLI NE2) or logical 
device number (67) of the IODSO entry that would be used to specify the desired line. 

NOTE 

Figure 2- 4 does not show a line configured for X. 2 5 
activity to another HP 3000. The back referencing 
scheme is identical to this example. However, the 
following differences should be noted for an X.25 
configuration: 

• The communications driver is named IODSX. 

• The device class name or logical device number of an 
IODSX entry should not be used in a : DSLINE 
command (or in other commands, such as DSCOPY). 
To access the desired remote node, we encourage 
X.25 Link users to enter a nodename whenever a 
dsdevice is required. See page 2- 16 to determine a 
node name. 

2-10 



Opening a Line 

LOG ORT U C T SUB REC OUTPUT MODE DRIVER DEVICE 

~ DEV ' N H y TYPE TERMINAL WIDTH DEV NAME CLASSES 

' I A p TYPE SPEED 
T N E 

4 0 0 0 6 128 0 IOMDISC1 SPOOL 
SYSDISK 

2 5 0 0 0 3 128 0 IOMDISCO DISC 
5 13 0 0 8 0 40 LP JA s IOCRDO CARD 
6 14 0 0 32 2 66 0 s IOPRTO LP 
7 6 0 0 24 0 128 LP IOTAPEO TAPE 
8 6 1 0 24 0 128 LP IOTAPEO TAPE 
9 6 2 0 24 0 128 LP IOTAPEO TAPE 
10 6 3 0 24 0 128 LP JA s IOTAPEO BAT APE 
11 20 0 0 34 0. 128 0 IOPTPNO PT PUNCH 
12 16 0 0 19 3 0 0 CSHBSCO HSl1 
13 16 0 0 19 3 0 0 CSHBSCO HSI2 

~ 14 16 0 0 19 3 0 0 CSHBSCO HSI3 
16 16 0 0 19 3 0 0 CSHBSCO HSI4 
20 7 0 0 16 0 10 ?? 40 20 JAID IOTERMO CONSOLE 
21 7 1 0 16 0 11 ?? 40 21 JAID IOTERMO TERM 
22 7 2 0 16 0 11 ?? 40 22 JAID IOTERMO TERM 
23 7 3 0 16 0 11 ?? 40 23 JAID IOTERMO TERM 
24 7 4 0 16 0 11 ?? 40 24 JAID IOTERMO TERM 
25 7 5 0 16 1 11 ?? 40 25 JAID IOTERMO TERM 
26 25 0 0 17 0 0 0 IOINPO INP1 

r 2~mmm12a 0 0 17 3 0 0 l~Q~:~:~ INP2 l:: : ; :: . : : ; : ~::: : : . : :: : : : : : : : : 

29 28 0 0 18 0 0 0 CSSBSCO SSLC2 
50 #12 0 0 41 0 128 0 IODSO HDS1 
51 #13 0 0 41 0 128 0 IODSO HDS2 
52 #14 0 0 41 0 128 0 IODSO HDS3 
53 #15 0 0 41 0 128 0 IODSO HDS4 
60 #12 0 0 16 0 ?? ?? 40 60 J ID IODSTRMO DSTERM 
61 #12 0 0 16 0 ?? ?? 40 61 J ID IODSTRMO DSTERM 
62 #12 0 0 16 0 ?? ?? 40 62 J ID IODSTRMO DST ERM 
63 #12 0 0 16 0 ?? ?? 40 63 J ID IODSTRMO DSTERM 

" 64 #12 0 0 16 0 ?? ?? 40 64 J ID IODSTRMO DSTERM 
~. 65 #12 0 0 16 0 ?? ?? 40 65 J ID IODSTRMO DSTERM 

66 #26 0 0 41 1 128 0 IODSO DSLINE1 
§t.n:i27 0 0 41 1 128 0 1iQP$0 DSLINE2 
68 #26 0 0 16 0 ?? ?? 40 68 J ID IODSTRMO INP1 
eg::·,•~t 0 0 16 0 ?? ?? 40 69 J ID :~QD.st~MQ INP2 
76 ··1·29 0 0 41 0 ?? 128 0 IODSO SDS1 
71 #29 0 0 16 0 ?? ?? 36 71 J ID IODSTRMO DSTERM 

Figure 2-4. Sample 1/0 Device Table (Hardwired Line with INP) 

2-11 



Opening a Line 

In Figure 2-5, the shaded items in the column labeled DRIVER NAME show one SSLC (CSSBSCO) 
configured into the system as logical device 29. (Note that the subtype is 0, indicating a switched ""' 
telephone line.) Notice the DS/3000 communications driver, IODSO, is related to the SSLC entry by / 
the number specified in the column labeled ORT (the# prefix indicates a back reference to a 
previously defined logical device number). Logical device 70 is paired with logical device 29. It is the 
device class name (SOS 1) or logical device number (70) of the IODSO entry that would be used to 
specify the desired line. 

2-12 



Opening a Line 

r LOG ORT U CT SUB REC OUTPUT MODE DRIVER DEVICE 
DEV II N H y TYPE TERMINAL WIDTH DEV NAME CLASSES 

' I A p TYPE SPEED 
T N E 

4 0 0 0 6 128 0 IOMDISC1 SPOOL 
SYSDISK 

2 5 0 0 0 3 128 0 IOMDISCO DISC 
5 13 0 0 8 0 40 LP JA s IOCRDO CARD 
6 14 0 0 32 2 66 0 s IOPRTO LP 
7 6 0 0 24 0 128 LP IOTAPEO TAPE 
8 6 1 0 24 0 128 LP IOTAPEO TAPE 
9 6 2 0 24 0 128 LP IOTAPEO TAPE 
10 6 3 0 24 0 128 LP JA s IOTAPEO BAT APE 
11 20 0 0 34 0 128 0 IOPTPNO PT PUNCH 
12 16 0 0 19 3 0 0 CSHBSCO HSI1 
13 16 0 0 19 3 0 0 CSHBSCO HSl2 

r 14 16 0 0 19 3 0 0 CSHBSCO HSI3 
16 16 0 0 19 3 0 0 CSHBSCO HSI4 
20 7 0 0 16 0 10 ?? 40 20 JAID IOTERMO CONSOLE 
21 7 1 0 16 0 11 ?? 40 21 JAID IOTERMO TERM 
22 7 2 0 16 0 11 ?? 40 22 JAID IOTERMO TERM 
23 7 3 0 16 0 11 ?? 40 23 JAID IOTERMO TERM 
24 7 4 0 16 0 11 ?? 40 24 JAID IOTERMO TERM 
25 7 5 0 16 1 11 ?? 40 25 JAID IOTERMO TERM 
26 25 0 0 17 0 0 0 IOINPO INP1 

r 27 26 0 0 17 3 0 0 IOINPO INP2 
~9.l:iii!!ili~I 0 0 18 0 0 0 css:esco SSLC2 
5·(j"'"#f2 ::::;··:-·:::::::::;::::·::;::::::: 

0 0 41 0 128 0 IODSO HDS1 
51 #13 0 0 41 0 128 0 IODSO HDS2 
52 #14 0 0 41 0 128 0 IODSO HDS3 
53 #15 0 0 41 0 128 0 IODSO HDS4 
60 #12 0 0 16 0 ?? ?? 40 60 J ID IODSTRMO DST ERM 
61 #12 0 0 16 0 ?? ?? 40 61 J ID IODSTRMO DSTERM 
62 #12 0 0 16 0 ?? ?? 40 62 J ID IODSTRMO OS TERM 

r 63 #12 0 0 16 0 ?? ?? 40 63 J ID IODSTRMO DSTERM 
64 #12 0 0 16 0 ?? ?? 40 64 J ID IODSTRMO DSTERM 
65 #12 0 0 16 0 ?? ?? 40 65 J ID IODSTRMO DST ERM 
66 #26 0 0 41 1 128 0 IODSO DSLINE1 
67 #27 0 0 41 1 128 0 IODSO DSLINE2 
68 #26 0 0 16 0 ?? ?? 40 68 J ID IODSTRMO INP1 
69 #27 0 0 16 0 ?? ?? 40 69 J ID IODSTRMO INP2 

~~'',',~;~ 0 0 41 0 ?? 128 0 IO[)SO. SDS1 
0 0 16 0 ?? ?? 36 71 J ID lOb$J'.RMP DST ERM 

Figure 2-5. Sample 1/0 Device Table (Telephone Line with SSLC) 

2-13 



Opening a Line 

In Figure 2-6, the shaded items in the column labeled DRIVER NAME show an INP (IOINPO) 
configured into the system as logical device 26. (Note that the subtype is 0. This indicates that the 
INP is used for a dial-up line.) For this line, there is a DS/3000 communications driver, IODSO, also J 
configured into the system. The IODSO entry is related to the proper INP entry by the number 
specified in the column labeled ORT (the# prefix indicates a back reference to a previously defined 
logical device number). Logical device 66 is paired with logical device 26. It is the device class name 
(DSLINE1) or logical device number (66) of the IODSO entry that would be used to specify the desired 
line. 

2-14 



Opening a Line 

LOG ORT U C T SUB REC OUTPUT MODE DRIVER DEVICE 
DEV II N H y TYPE TERMINAL WIDTH DEV NAME CLASSES 

' I A p TYPE SPEED 
T N E 

4 0 0 0 6 128 0 IOMDISC1 SPOOL 
SYSDISK 

2 5 0 0 0 3 128 0 IOMDISCO DISC 
5 13 0 0 8 0 40 LP JA s IOCRDO CARD 
6 14 0 0 32 2 66 0 s IOPRTO LP 
7 6 0 0 24 0 128 LP IOTAPEO TAPE 
8 6 1 0 24 0 128 LP IOTAPEO TAPE 
9 6 2 0 24 0 128 LP IOTAPEO TAPE 
10 6 3 0 24 0 128 LP JA s IOTAPEO BAT APE 
11 20 0 0 34 0 128 0 IOPTPNO PT PUNCH 
12 16 0 0 19 3 0 0 CSHBSCO HSI1 
13 16 0 0 19 3 0 0 CSHBSCO HSI2 

r 14 16 0 0 19 3 0 0 CSHBSCO HSI3 
16 16 0 0 19 3 0 0 CSHBSCO HSI4 
20 7 0 0 16 0 10 ?? 40 20 JAID IOTERMO CONSOLE 
21 7 1 0 16 0 11 ?? 40 21 JAID IOTERMO TERM 
22 7 2 0 16 0 11 ?? 40 22 JAID IOTERMO TERM 
23 7 3 0 16 0 11 ?? 40 23 JAID IOTERMO TERM 
24 7 4 0 16 0 11 ?? 40 24 JAID IOTERMO TERM 
25 7 5 0 16 1 11 ?? 40 25 JAID IOTERMO TERM 
~§!!llli!ll!g~ 0 0 17 0 0 0 !~~~~ii). INP1 

r 27 26 0 0 17 3 0 0 IOINPO INP2 
29 28 0 0 18 0 0 0 CSSBSCO SSLC2 
50 #12 0 0 41 0 128 0 IODSO HDS1 
51 #13 0 0 41 0 128 0 IODSO HDS2 
52 #14 0 0 41 0 128 0 IODSO HDS3 
53 #15 0 0 41 0 128 0 IODSO HDS4 
60 #12 0 0 16 0 ?? ?? 40 60 J ID IODSTRMO DSTERM 
61 #12 0 0 16 0 ?? ?? 40 61 J ID IODSTRMO DSTERM 
62 #12 0 0 16 0 ?? ?? 40 62 J ID IODSTRMO DST ERM 
63 #12 0 0 16 0 ?? ?? 40 63 J ID IODSTRMO DST ERM r 64 #12 0 0 16 0 ?? ?? 40 64 J ID IODSTRMO DST ERM 
65 #12 0 0 16 0 ?? ?? 40 65 J ID IODSTRMO DSTERM 
e~:,:~?.~ 0 0 41 1 128 0 ,~g9 DSLINE1 
67 #27 0 0 41 1 128 0 IODSO DSLINE2 
§~.;.!:~~~ 0 0 16 0 ?? ?? 40 68 J ID :xppsj'.RMO INP1 
69 #27 0 0 16 0 ?? ?? 40 69 J ID IODSTRMO INP2 
70 #29 0 0 41 0 ?? 128 0 IODSO SDS1 
71 #29 0 0 16 0 ?? ?? 36 71 J ID IODSTRMO DSTERM 

Figure 2-6. Sample 1/0 Device Table (Telephone Line with INP) 

2-15 



Opening a Line 

If you have only one communications interface configured into your system, there is no question about 
which name or number to specify in a : DSLINE command. If there is more than one communications 
interface, however, you must know (or ask someone who knows) which interface is connected to the ~ 
physical line you want to use. 

Specif ylng an X. 25 Line 

When specifying an X.25 line, you do not use the 1/0 device table. This is because X.25 uses node 
names, rather than LDEVs, to specify devices. To find out what node names are configured on your 
system, type the following: 

:RUN NETCONF.PUB.SYS 

LIST 

See the DS/ 3000 HP 3000 to HP 3000 Network Administrator Manual for more information on 
NETCONF. 

2-16 



:DSLINE 

r The DSLINE Command 

The format of the : DSLINE command, as used to open a line, is presented here. In addition to opening 
a hardwired line or a telephone line, this command can also be used for closing one or more 
communications lines (see page 2-50). 

SYNTAX 

:DSLINE dsdevice [;LINEBUF=buffersize] 
[;EXCLUSIVE] 

PARAMETERS 

[;COMP] 
[ ;NOCOMP] 
[;QUI ET] 
[;PHNUM=telephonenumber] 
[;LOCID=localidsequence] 
[;REMID=remoteidsequence[, ... remoteidsequence]] 
[;SELECT=selectionsignal sequence] 
[;OPEN] 
[;QUEUE] 
[;NOQUEUE] 

The parameters that pertain to opening a line follow: 

dsdelJice This is the device class name or logical device number assigned to the 
DS/3000 communications driver (IODSO) during system configuration, or a 
logical node name associated with the X.25 Link communications driver 
(IODSX) during network configuration. This parameter indirectly specifies 
which communications interface you wish to use. 

For X.21, you can specify a node rather than a OS device. DS will first 
determine if a valid LDEV or device class name was given. If that is not 
the case, DS will search the configuration data base to determine if it is a 
node name. 

NOTE 

X. 2 5 Link users should al ways specify a node name 
rather than a line identifier. The logical node name 
(mentioned in the dsdelJice parameter description) 
appears in the configuration file, NETCON, for a Public 
Data Network (PON). A Remote Node (RN) table entry 
relates the logical node name (specified in this command) 

2-17 



:DSLINE 

buff ersize 

EXCLUSIVE 

COMP 

NOCOMP 

QUIET 

to the logical device number of the appropriate IODSX 
driver (the X.25 driver), and to the PDN address of the 
destination node. 

A decimal integer specifying the size (in words) of the DS/3000 line buffer 
to be used in conjunction with the communications line. The integer must 
be within the range 304 < buff er-size< 409 5 when used with the SSLC 
or HSI, or within the range 304 < buffer-size< 1024 when used with 
the INP. The default value is the buffer size entered in response to the 
PREFERRED BUFFER SIZE prompt during system configuration. This 
parameter overrides the MPE configured value when specified by the first 
user to open the given line. If you are using X.25, this parameter is ignored. 

This parameter, if present, specifies that you want exclusive use of the 
communications line. If the requested line or specified communications 
interface is already open and you have specified the EXCLUSIVE option, 
DS/3000 will deny you access to the line (you cannot open it). (See "Line 
Opening Failures" later in this section.) Opening an EXCLUSIVE line 
requires the user to have CS and ND capabilities. 

By using this parameter, you can override the current system default, which 
was set at configuration time (see Section 1 of the DS/ 3000 Network 
Administrator Manual) or set by the system operator (see Section 9), and 
activate data compression. In this way, the mode of operation is set for 
your subsequent DS activity. This parameter does not affect other users 
sharing the line. 

This parameter deactivates the data compression mode. 

When you issue the : DSLINE command with this parameter added, the 
message identifying the DS line number is suppressed. The messages 
associated with the subsequent REMOTE HELLO and REMOTE BYE commands 
will also be suppressed. 

I CAUTION I 
The messages suppressed when the QUIET parameter is used may 
include information you would normally want to see or expect 
to see. For instance, if the remote account requires a password, 
and you do not include the password as part of the REMOTE 
HELLO command, the remote system's prompt for that password 
will not be displayed. Since the REMOTE HELLO cannot finish 
until you supply that password, the terminal will appear to be 
"hung" when, in fact, it is only waiting for your response. 
Similarly, if the remote account has a logon UDC, any prompt 
produced by a command within that UDC will not appear. 
Again, until the unseen prompt is answered, the : REMOTE 
HELLO cannot complete, and the system will not respond with 
the appropriate remote or local system prompt(# or : ). 

2-18 



r 

:DSLINE 

The additional parameters that pertain only to opening a telephone line are as follows: 

telephonenumber 

looalidsequenoe 

remoteidsequenoe 

SELECT 

A telephone number consisting of digits, dashes, and special characters. The 
permitted special characters are: 

0 through 9 

/ (separator used for automatic call units that have a second dial tone 
detect) 

D (one-second delay. Used for European modems and automatic call units 
that require built-in delays) 

# (defined by the local telephone system) 

* (defined by the local telephone system) 

The maximum length permitted (including both digits and dashes) is 30 
characters. Provided that YES was entered in response to the DIAL 
FACILITY prompt during system configuration, this telephone number will 
be displayed at the operator's console of your HP 3000 and the operator 
will then establish the telephone connection by dialing that number at the 
modem. (When the autodial feature is present in your system, the number 
provided here is dialed automatically.) The default telephone number is the 
one entered in response to the PHONE NUMBER prompt during system 
configuration. 

A string of ASCII characters contained within quotation marks. If you 
wish to use a quotation mark within an ASCII string, use two successive 
quotation marks. The maximum number of ASCII characters allowed in 
the string is 1 6. 

The supplied string of ASCII characters defines the ID sequence that will be 
sent from your HP 3000 to the remote HP 3000 when you attempt to 
establish the telephone connection. The default value is the ASCII string 
entered in response to the LOCAL ID SEQUENCE prompt during system 
configuration. 

Same format as looal idsequenoe. 

The supplied strings of ASCII characters define those remote HP 3000 ID 
sequences that will be considered valid during an attempt to establish the 
telephone connection. If the remote HP 3 000 does not send a valid ID 
sequence, the telephone connection is terminated. The de fa ult set of 
remote ID sequences consists of the ASCII strings entered in re·:ponse to the 
REMOTE I.D SEQUENCE prompt during system configuration. 

The SELECT parameter is the equivalent of PHNUM for X. 21 switched lines. 
The seleotionsignalsequenoe, SELECrs equivalent of a phone number, 
must be a string of 1 to 30 alphanumeric and/or special characters. 

JUL 87 
2-19 



QUEUE 

NOQUEUE 

:DSLINE 

It must be delimited between two identical special characters. If the 
specified seleotionsignalsequence is less than 30 characters, it will be ~,­
padded at the end with blanks. The selectionsignalsequence can be J 
given as one or more blanks to indicate you wish to use the direct dial 
facility. (You must subscribe to it through your X. 21 network.) The 
SELECT parameter value takes precedence over that specified in the 
configuration data base. 

This parameter allows your request to be queued when the X. 21 network 
connection you wish to open is already in use. Your call will be connected 
as soon as the circuit is free. If another user is already queued, and you 
issue a : DSLINE command that allows queueing, a message will be printed 
telling you that you are queued behind a previous request. The default 
condition is NOQUEUE. 

This parameter deactivates queueing when you are opening an X. 21 line. 
If the line is already in use when your : DSLINE is issued, your call request 
will not be completed when the ciruit becomes available. This is the 
default condition. 

JUL 87 
2-20 



Opening a Line 

Dialing the Remote Computer 

When you are opening a telephone line, you may supply a telephone number as an optional parameter 
in the : DSLINE command to be dialed at the modem connected to the specified interface. If you 
supply a telephone number, DS/3000 displays a message on the system console telling the operator to 
dial that number. The operator, after dialing the specified number, enters YES or NO through the 
system console =REPLY command to let DS/3000 know whether or not the telephone connection was 
successfully made. If the operator enters YES, DS/3000 proceeds with the exchanging of ID sequences. 
If the operator enters NO, your : DSLINE request is denied (you cannot open the line). In either case, 
your terminal's keyboard is disabled until the console operator responds. 

If you do not supply a telephone number, the sequence of events is as described in the above 
paragraph, except that DS/3000 uses (by default) the first telephone number in the PHONELIST 
established during system configuration. 

If you do not supply a telephone number and no PHONELIST was established during system 
configuration, an I/O request message is displayed at the system console, but it does not include the 
number to be dialed. This method might be used when you will dial the remote HP 3000 yourself. 
Remember, however, that the console operator must still know whether you dialed successfully, since 
he must respond to the console message before you are granted access to the line. Because your 
terminal's keyboard is disabled until the console operator responds with YES or NO, it is recommended 
that you always supply a telephone number in the : DSLINE command. 

ID Sequences 

Once a telephone connection to a remote HP 3000 exists, the two computers exchange ID sequences 
with one another. Within the context of DS/3000, an ID sequence is a string of up to 16 ASCII or 
EBCDIC characters, or octal or hexadecimal numbers, that identifies a particular computer. 

During system configuration, each HP 3000 can be assigned a local ID sequence and a list of remote 
ID sequences. The local ID sequence identifies the particular HP 3000 in which it is established; the 
remote ID sequences identify those remote computers with which a communications link can be 
established over the public telephone network. 

In the : DSLINE command, you can supply (as optional parameters) a local ID sequence and one or 
more remote ID sequences to be used instead of those established during system configuration. (See 
Figure 2-9.) 

When a telephone connection is established between your HP 3000 and a remote HP 3000, the local 
ID sequence supplied in your : OS LINE command is transmitted to the remote system. Then the 
remote system transmits its local ID sequence over the telephone line to your HP 3000. The received 
ID sequence is then compared against the remote ID sequence(s) supplied in your : DSLINE command. 
If that ID sequence is found to be valid, the telephone connection is considered successful and 
DS/3000 grants you access to the line. If the ID sequence received at either end of the line is not 
considered valid, your : DSLINE request is denied (you cannot open the line). 

If you do not supply any ID sequences, DS/3000 uses those established during system configuration. If 
no ID sequences were established during system configuration and you do not supply any, no local ID 
sequence is transmitted from your HP 3000 to the remote system and any remote ID sequence 
received is considered valid. 

2-21 



Opening a Line 

Multiple Users 

Within a DS/3000 environment, it is possible for several users at either end of the line to share access 
to the same physical communications line or for a single user at one end of the line to obtain exclusive 
access to the line. 

As previously mentioned in the presentation of the : DSLINE command, the EXCLUSIVE parameter can 
be used to obtain exclusive access to the specified physical communications line. If you specify this 
parameter (and if access to the line is granted), no other user in either computer will be permitted to 
open that line until you close it. If you ask for exclusive access to a particular line and that line is 
already in use, DS/3000 denies your request (you cannot open the line). (See "Line Opening Failures" 
later in this section.) 

For hardwired lines and for dial-up lines, multiple users at either end of the line can specify the same 
physical line in : DSLINE commands and obtain access to that line as long as none of them requests 
exclusive access. In such a case, the users' data is multiplexed, so that each user's access to the line 
appears to be.completely independent of all others. The exception for a telephone line is that all users, 
other than the one who originally opened the line, specify (explicitly or by default) the currently ~ 
active remote ID sequence. Figures 2-7 through 2-11 present annotated examples, illustrating ) 
successful and unsuccessful attempts by different users to obtain access to the same line. 

2-22 



SYSTEM A 

LOCAL 
SESSION 

REMOTE3 

...... 
............ 

...... ...... 
...... ...... .......... 

...... 
...... ..... ..... ..... 

..... ...... 

Opening a Line 

SYSTEM B 

{ REMOTE ) 
- - \ SESSIOti 

- - -( REMOTE ) 
. SESSION • 

...... ...... 
~~;;:;;::;::::--

User X User Y 

Figure 2-7. Multiple User Example 1 

:HELLO USER.X :HELLO USER.Y 

: DSLINE REMOTE3 :DSLINE REMOTE3 

:REMOTE HELLO USER.X :REMOTE HELLO USER.Y 

In this example, User X initiates a local session in System A, obtains access to the hardwired 
communications line that connects System A to System B, and initiates a remote session in System B. 
User Y subsequently initiates a local session in System A, obtains access to the same communications 
line, and initiates a remote session in System B. The request by User Y for the particular 
communications line is granted by DS/3000 because neither user asked for exclusive access to the 
line. 

2-23 



Opening a Line 

Ueer X 

SYSTEM A 

LOCAL 
SESSION 

REMOTE3 

Figure 2-8. Exclusive Option Example 

:HELLO USER.X :HELLO USER.Y 

:DSLINE REMOTE3 ;EXCLUSIVE :DSLINE REMOTE3 

:REMOTE HELLO USER.X 

SYSTEM B 

{ REMOTE ) 
--\SESSION 

User Y 

In this example, User X initiates a local session in System A, obtains exclusive access to the 
hardwired communications line that connects System A to System B, and initiates a remote session in 
System B. User Y subsequently initiates a local session in System A and requests access to the same 
communications line. The request is denied by DS/3000 because User X already has exclusive access 
to the specified line. DS/3000 responds with: ~ 

l 
241 OS LINE IN USE EXCLUSIVELY OR BY ANOTHER SUBSYSTEM. (DSERR 241) 

2-24 



Configured Local ID: A 

Configured Remote IDs: B,C 

SYSTEM A 

LOCAL 
SESSION 

LOCAL 
SESSION 

....... 

User X 

REMOTE2 

Opening a Line 

Configured Local ID: B 

Configured Remote IDs: A,C 

....... ---..... ..... ..... 
..... ..... -..... 

SYSTEM B 

I REMOTE ) 
--\SESSION 

- --( REMOTE 
SESSION 

..... ...... 

) 

~!!l!!!!E!iCi=~-
User Y 

Figure 2-9. Dial-up Line Multiple User Example 1 

:HELLO USER.X 

:DSLINE REMOTE2 & 
;PHNUM=SSS-1234 & 
;REMID="B" 

:REMOTE HELLO USER.X 

:HELLO USER.Y 

:DSLINE REMOTE2 & 
;PHNUM=SSS-1234 & 
;REMID= 11 811 

:REMOTE HELLO USER.Y 

In this example User X initiates a local session in System A and obtains access to the line identified 
by the device class name REMOTE2. The supplied telephone number is displayed at the system 
console of System A. The console operator establishes the telephone connection by dialing the 
number at the modem connected to the particular line and then enters YES through the system 
console to let DS/3000 know that the telephone connection was successfully made. The two 
computers exchange their configured local ID sequences. System A compares the received ID 
sequence (B) against the remote ID sequence specified by User X (REM! D=" 611

). Since the received ID 
sequence is found to be valid, the telephone connection is allowed to remain in effect. User X then 
initiates a remote session in System B over the telephone line from his local log-on terminal. 

User Y subsequently initiates a local session in System A and requests access to the same line 
(REMOTE2). Since that line is already open, DS/3000 ignores the supplied telephone number (no 
message is displayed at the system console). Access to the currently opened line is granted to User Y 
because neither user requested exclusive access and User Y specified the currently active remote ID 
sequence (REM! D=" B") in the : DSLI NE command. 

2-25 



Opening a Line 

Configured Local ID: A Configured Local ID: B 

Configured Remote IDs: B,C Configured Remote IDs: A,C 

SYSTEM A SYSTEM: B 

REMOTE2 

- - - - - - -tp- - - - { REMOTE ) 
- - SESSION 

............ 
.................. _ ----...... -----

Figure 2-10. Dial-up Line Multiple User Example 2 

:HELLO USER.X 

:DSLINE REMOTE2 & 
;PHNUM=SSS-1234 & 
;REMID="B" 

:REMOTE HELLO USER.X 

:HELLO USER.Y 

:DSLINE REMOTE2 & 
;PHNUM=SSS-2001 & 
;REMID= 11 C11 

In this example User X initiates a local session in System A and obtains access to the line identified 
by the device class name REMOTE2. The supplied telephone number is displayed at the system 
console of System A. The console operator establishes the telephone connection by dialing the 
number at the modem connected to the particular line and then enters YES through the system 
console to let DS/3000 know that the telephone connection was successfully made. The two 
computers exchange their configured local ID sequences. System A compares the received ID 
sequence (B) against the remote ID sequence specified by User X (REMI D=" B"). Since the received ID 
sequence is found to be valid, the telephone connection is allowed to remain in effect. User X then 
initiates a remote session in System B over the telephone line from his local log-on terminal. 

User Y subsequently initiates a local session in System A and requests access to the same line 
(REMOTE2). Since that line is already open, DS/3000 ignores the supplied telephone number, and no 
message is displayed at the system console. The request is denied by DS/3000 because the specified 
line is already open and User Y did not specify the currently active remote ID sequence (B) in his 
: DSLINE command. DS/3000 responds with: 

255 COMMUNICATIONS INTERFACE ERROR. UNANTICIPATED CONDITION. (DSERR 255) 

2-26 

~ 
1 



Configured Local ID: (none) 

Configured Remote IDs: (none) 

SYSTEM A 

LOCAL 
SESSION 

LOCAL 
SESSION 

...... 

User X 

REMOTE2 

...... .................. 

Opening a Line 

Configured Local ID: (none) 

Configured Remote IDs: (none) 

............ _ ------ ..... --

SYSTEM B 

{ REMOTE ) 
--\SESSION 

- -J REMOTE ) 
\SESSION _ 

-...... 
~~=::--

User Y 

Figure 2-11. Dial-up Line Multiple User Example 3 

:HELLO USER.X :HELLO USER.Y 

:DSLINE REMOTE2 ;PHNUM=SSS-1234 :DSLINE REMOTE2 ;PHNUM=SSS-1234 

:REMOTE HELLO USER.X :REMOTE HELLO USER.Y 

In this example User X initiates a local session in System A and obtains access to the line identified 
by the device class name REMOTE2. The supplied telephone number is displayed at the system 
console of System A. The console operator establishes the telephone connection by dialing the 
number at the modem connected to the particular line and then enters YES through the system 
console to let DS/3000 know that the telephone connection was successfully made. No ID sequences 
are exchanged because none were established (in either HP 3000) during system configuration and 
User X didn't specify any in the : DSLINE command. User X then initiates a remote session in 
System B over the telephone line from his local log-on terminal. 

User Y subsequently initiates a local session in System A and requests access to the same line 
(REMOTE2). Since that line is already open, DS/3000 ignores the supplied telephone number (no 
message is displayed at the system console). Access to the currently opened line is granted to User Y 
because neither user requested exclusive access and User Y specified the currently active remote ID 
sequence (in this case none) in his : DSLINE command. 

2-27 



Opening a Line 

NOTE 

When no ID sequences are configured and the users don't 
supply any in their : DSLI NE commands, both are taking 
it on faith that they are connected to the proper remote 
computer. In this example, if User Y had specified 
PHNUM=SSS-2001, DS/3000 would have ignored this 
telephone number because the line is already open. User 
Y would have been connected to the currently active 
remote computer rather than the requested remote 
system. The total absence of configured or supplied ID 
sequences is safe only under very controlled 
circumstances. It is strongly recommended that all 
computers in a DS/3000 network that are capable of 
communicating over telephone lines have default local 
and remote ID sequences established during system 
configuration and that all line users specify the ID 
sequence of the desired remote computer (REMID=x) in 
their : DSLINE commands. 

2-28 



:REMOTE HELLO 

The REMOTE HELLO Command 

Once you have obtained access to a physical communications line using the : DSLINE command, you 
use the : REMOTE HELLO command to actually establish the communications link. The : REMOTE 
HELLO command initiates a remote session on your behalf in the HP 3000 connected to the other end 
of the communications line. 

The format of the : REMOTE HELLO command is presented here. Notice that, except for the two 
shaded items, it has exactly the same format as the standard MPE : HELLO command. 

Because the : REMOTE HELLO command is initiating a session for you in a remote HP 3000, the 
parameters in that command specify information which pertains to the operating environment of the 
remote HP 3000 instead of the local one. For instance, username, accountname, and groupname 
must all be valid as defined by the accounting structure of the remote HP3000, and the cpuseconds 
specified by the optional TIME parameter impose a time limit on the remote, rather than the local, 
session. 

SYNTAX 

:~~~1t1~!! HELLO [sessionname,]username[/userpass] .acctname[/acctpass] 
[,groupname[/grouppass]] 

[; TERM=termtype] 

[ ;TIME=cpusecs] 

[;PRI={!i}] 

[
;INPRI=inputpriority] 
; HI PRI 

2-29 



:REMOTE HELLO 

PARAMETERS 
session name 

username 

userpass 

acct name 

acct pass 

groupname 

grouppass 

termtype 

Arbitrary name used in conjunction with username and acctname 
parameters to form a session identity. Contains from 1 to 8 alphanumeric 
characters, beginning with a letter. Default is that no session name is 
assigned. 

A user name, established by the account manag~r, that allows you to log on 
under this account. Contains from 1 to 8 alphanumeric characters, 
beginning with a letter. 

(Required parameter.) 

User password, optionally assigned by the account manager. Contains from 
1 to 8 alphanumeric characters, beginning with a letter. 

Name of account, as established by the account manager. Contains from 1 
to 8 alphanumeric characters, beginning with a letter. The acctname 
parameter must be preceded by a period. 

(Required parameter.) 

Account password, optionally assigned by the system manager. Contains 
from 1 to 8 alphanumeric characters, beginning with a letter. 

Name of the group to be used for local file domain and CPU time charges. 
Established by the account manager. Contains from 1 to 8 alphanumeric 
characters, beginning with a letter. Default is your home group, if you are 
assigned one by the account manager. 

(Optional if you have a home group; required if a home group has not been ~ 
assigned.) 

Group password, optionally assigned by the account manager. Contains 
from 1 to 8 alphanumeric characters, beginning with a letter. 

(Required if assigned and you are logging on under other than your home 
group; optional if you are logging on under your home group.) 

Ignored. The TERM=termtype parameter of the HELLO command that 
initiated the local session also implicitly defines the log-on terminal type 
for any remote sessions initiated from the local session. 

2-30 



cpusecs 

BS, CS, OS, ES 

inputpriority 

HIPRI 

dsdeuice 

:REMOTE HELLO 

Maximum CPU time that the session can use, entered in seconds. When the 
limit is reached, the session is aborted. Must be a value from 1 to 32767. 
To specify no limit, enter a question mark (?)or UN LIM, or omit the 
parameter. Default is no limit. 

Execution priority class. BS is highest priority; ES is lowest. If you specify 
a priority that exceeds the highest permitted priority for your account or 
user name by the system, MPE assigns the highest priority possible below BS. 
Default is CS. 

NOTE 

OS and ES are used primarily for batch jobs. Their use 
for sessions is discouraged. 

Relative input priority used in checking against access restrictions imposed 
by the jobfence, if one exists. Takes effect at log-on time. Must be a value 
from 1 (lowest priority) to 13 (highest priority). If a value is specified that 
is less than or equal to current jobfence set by the console operator, the 
session is denied access. Default is 8 or 13, depending upon the System 
Logging options in effect. 

Request for maximum session-selection input priority, causing the session to 
be scheduled regardless of current jobfence or execution limit for sessions. 
This parameter can be specified only by users with System Manager or 
System Supervisor capability. (If not, the system tries to log you on with 
INPRI=13.) Default is the current jobfence and execution limit. 

The device class name or logical device number assigned to the DS/3000 
communications driver (IODSO) during system configuration, or a logical 
node name associated with the X.25 Link communications driver (IODSX) 
during network configuration using NETCONF. This parameter, if present, 
specifies which line you wish to use. 

(Optional parameter if a line is already open; otherwise it is required.) 

NOTE 

X.25 Link users should always use a node name rather 
than a line identifier. 

2-31 



Opening a Line 

So far, we have been talking entirely about the : OSLINE and : REMOTE HELLO commands being used 
in conjunction with one another: the : OSLIN E command obtaining access to a physical line and the 
: REMOTE HELLO command actually establishing the communications link by initiating a remote ~ 
session over the acquired line. As you may have guessed from the above parameter definitions, the 
: OSLINE parameter of the : REMOTE HELLO command gives you a new, and simpler, way to obtain a 
line and establish a communications link. If you are satisfied to use the default DS/3000 line buffer 
size and you do not need exclusive use of the line, you can acquire a line and initiate a remote session 
over that line by using a single command: a : REMOTE HELLO command with the : OSLINE parameter. 
If you open a line in this way, however, it remains open only for the duration of the particular remote 
session (when the remote session is terminated the line is automatically closed). If, on the other hand, 
you use the : OS LINE command to open a line, the line remains open for the duration of the local 
session (or until you explicitly close the line). 

To illustrate this, look again at the example in Section 1. In that example, the : OSLINE command was 
used to obtain access to the hardwired line REMOTE! and the : REMOTE HELLO command was used to 
initiate a remote session over the line: 

: OSLINE REMOTE1 
OS LINE NUMBER = #L3 
:REMOTE HELLO RUSER.RACCOUNT 

HP3000 / MPE V G.02.00. 

WELCOME TO SYSTEM B. 

TUE, OCT 22, 1985, 9:08 AM 

NOTE 

In this case, the acquired line remains open when the 
remote session is terminated. 

By including the : OS LINE parameter in the : REMOTE HELLO command, essentially the same 
operations could be performed while using a single command, as follows: 

:REMOTE HELLO RUSER.RACCOUNT;OSLINE=REMOTE1 
OS LINE NUMBER = #L3 

HP3000 / MPE V G.02.00. TUE, OCT 22, 1985, 9:08 AM 

WELCOME TO SYSTEM B. 

NOTE 

In this case, the acquired line is closed when the remote 
session is terminated. 

These same examples can be followed when you use a dial-up line. However, the telephone line will 

2-32 



Opening a Line 

work properly for you only under the following very limited circumstances: 

• You must be satisfied to use the default DS/3000 line buffer size established during system 
configuration. 

• The default ID sequences established in both computers during system configuration must 
properly identify both your local HP 3000 and the desired remote HP 3000 (or no ID sequences 
were established during system configuration in either computer). 

• You must dial the remote computer yourself at the local system modem, or the line must be 
connected to, and configured for, autodialing. Note that if you cannot successfully make the 
telephone connection you cannot abort the : REMOTE HELLO command; the command will be 
rejected by DS/3000 if no connection is established within 15 minutes, unless another value was 
specified at configuration time. 

The likelihood of all of the above conditions existing for a particular use of DS/3000 is rather slim. 
In most DS/3000 environments you will want to explicitly define the ID sequence of the desired 
remote computer to guarantee that the proper connection is established, and you will want to provide 
a telephone number so that you can let DS/3000 know immediately if a telephone connection cannot 
be made. (It is not acceptable to tie up a communications interface and your log-on terminal waiting 
for an unsuccessful : DSLINE or : REMOTE HELLO request to be rejected.) 

I CAUTION I 
Special consideration must be paid to the contents of any remote logon UDCs 
activated by a : REMOTE HELLO command. These UDCs are commonly constructed 
to execute a series of batch processes or initiate a turnkey application. In such 
cases, the command : BYE is often the final command in the sequence. The 
execution of this : BYE in a remote logon UDC will generate the following error 
messages: 

REMOTE HELLO Must Be Done To Initiate Remote 
Session. (DSERR 227) 

UNABLE TO COMPLETE THE REMOTE COMMAND. (CIERR 1316) 

These messages are generated because the : REMOTE HELLO does not actually 
complete until it finishes executing the commands within the UDC file. The final 
: BYE, however, terminates the remote session. So when the remote system replies to 
the : REMOTE HELLO, DS/3000 finds that no remote session has been established 
and returns an error. 

It is not safe to assume, however, that the error message has been generated solely 
because of the : BYE command in the remote logon UDC, since the same message 
will be generated if the : REMOTE HELLO fails for some other reason, or if the 
execution of a UDC fails on an internal error. When this error message appears, 
then, it may be difficult to interpret the actual cause of the error. Accordingly, it 
is recommended that the user avoid inserting the : BYE command in the remote 
account>s logon UDC, and find an alternative way of accomplishing the particular 
batch or application processing. One method would be to execute a job stream from 
within the local session. 

2-33 



Opening a Line 

Opening Multiple Lines 

Within your local session, you can open more than one physical communications line and you can have ~ 
remote sessions active concurrently over all of the opened lines. However, when operating without 
X.25 Link, you are limited to one remote session per physical line at any given time. 

If access to the specified line is obtained, DS/3000 responds to each : DSLINE command by displaying 
a DS line number at your log-on terminal. This line number is roughly analogous to the file number 
returned by the MPE FOPEN intrinsic, in that it is an arbitrary number that uniquely identifies 
(within your local session) your current access to a particular communications line. It has no 
relationship to the logical device number or any other configuration parameter associated with the 
line. DS line numbers are meaningful only if you have more than one line open concurrently within a 
single local session. In that case, you are assigned a separate DS line number for each line you have 
opened, and you subsequently use these numbers to specify which line you wish to use for a given 
remote command (or sequence of remote commands) or to close a particular line without closing the 
others. 

Figure 2-12 illustrates a situation where a user has established two hardwired communications links 
concurrently from within a single local session. Take a closer look at that situation and examine the 
sequence of commands that was used to create it. 

SYSTEM A 

LOCAL 
SESSION 

I 
I 

User's 
Log-on 
Terminal 

REMOTE3 
./.(OS Une number 3) 

~REMOTE1 
(OS Une number 4) 

SYSTEM B 

_( 
REMOTE ) 

- SESSION 

SYSTBM C 

REMOTE 
SESSION 

Figure 2-12. Multiple Line Example (Hardwired Lines) 

2-34 



Opening a Line 

First the user sat down at a terminal connected to System A and initiated a local session: 

:HELLO USER.ACCOUNT 

HP3000 / MPE V G.02.00. TUE, OCT 22, 1985, 1:37 PM 

WELCOME TO SYSTEM A. 

USER and ACCOUNT are valid user and account names, respectively, as defined by the accounting 
structure of System A. 

Now, we have the situation illustrated in Figure 2-13. Notice that, at this point, no communications 
link exists between any of the three systems. 

SYSTEM A 

LOCAL 
SESSION 

User"a 
Loa-on 
Terminal 

REMOTEJ 

j 

Figure 2-13. Initiating the Local Session 
(Hardwired Example) 

2-35 

SYSTEM B 

SYSrEM C 



Opening a Line 

Next, the user acquired access to a line between Systems A and Band initiated a remote session in 
System B: 

: DSLINE REMOTE3 
DSLINE NUMBER = #L3 
:REMOTE HELLO RUSER.RACCOUNT 

HP3000 / MPE V G.02.00. TUE, OCT 22, 1985, 1:38 PM 

WELCOME TO SYSTEM B. 

REMOTE3 is the device class name (as defined within System A) associated with the particular line. 
RUSER and RACCOUNT are valid user and account names> respectively, as defined by the accounting 
structure of System B. 

Now we have the situation illustrated in Figure 2-14. 

SYSTEM A 

LOCAL 
SESSION 

Uaer#l!il 

Loa-on 
Terminal 

REMOTEJ I (OS Une number 3) 

Figure 2-14. Establishing the Link With System B 
(Hardwired Example) 

2-36 

SYSTEM B 

REMOTE 
SESSION 

SYSTEM C 



Opening a Line 

Finally, the user acquired access to a line between Systems A and C and initiated a remote session in 
System C: 

: DSLINE REMOTE1 
OS LINE NUMBER = #L4 
:REMOTE HELLO RUSER.RACCOUNT 

HP3000 / MPE V G.02.00. TUE, OCT 22, 1985, 1:39 PM 

WELCOME TO SYSTEM C 

REMOTE1 is the device class name (as defined within System A) associated with the particular line. 
RUSER and RACCOUNT are valid user and account names, respectively, as defined by the accounting 
structure of System C. 

We end up with the situation illustrated in Figure 2-15, which is identical to Figure 2-12 that started 
this example. 

SYSTEM A 

LOCAL 
SESSION 

I 
I 

User's 
Log-on 
Terminal 

REMOTE3 I (OS Una number 3) 

~REMOTE1 
(OS Une number 4) 

SYSTEM B 

( REMOTE ) 
-~SESSION 

SYSTEM C 

REMOTE 
SESSION 

Figure 2-15. Establishing the Link With System C 
(Hardwired Examp1e) 

2-37 



Opening a Line 

Figure 2-16 illustrates a situation where a user has established two telephone communications links 
concurrently from within a single local session. Take a closer look at that situation and examine the 
sequence of commands that was used to create it. 

SYSTEM A REMOTE2 I (OS Une number 3) 

( 
LOCAL )_ 

SESSION -
I I 
I I 

' ~REMOTEJ 
' (OS Une number 4) 

' ' 

User's 
Lo1-on 
Terminal 

' ' ' ' 

SYSTEM B 

{ REMOTE ) 
- --\ SESSION 

SYSfEM C 

Figure 2-16. Multiple Line Example (Telephone Lines) 

2-38 



Opening a Line 

First the user sat down at a terminal connected to System A and initiated a local session: 

:HELLO USER.ACCOUNT 

HP3000 / MPE V G.02.00. TUE, OCT 22, 1985, 1:37 PM 

WELCOME TO SYSTEM A. 

USER and ACCOUNT are valid user and account names, respectively, as defined by the accounting 
structure of System A. 

At this point, we have the situation illustrated in Figure 2-17. Notice that, so far, no communications 
link exists between any of the three systems. 

SYSTEM A 

LOCAL 
SESSION 

User#& 
Loa-on 
Terminal 

REMOTE2 

I 

~REMOTE3 

Figure 2-17. Initiating the Local Session 
(Dial-up Example) 

2-39 

SYSTEM B 

SYSTEM C 



Opening a Line 

Next, the user acquired access to a telephone connection between Systems A and B and initiated a 
remote session in System B: 

:DSLINE REMOTE2 ;LOCID= 11 A11 ;REMID="B" ;PHNUM=SSS-8001 
OS LINE NUMBER = #L3 
:REMOTE HELLO·RUSER.RACCOUNT 

HP3000 / MPE V G.02.00. TUE, OCT 22, 1985, 1:38 PM 

WELCOME TO SYSTEM B. 

REMOTE2 is the device class name (as defined within System A) associated with the particular line, A 
and Bare the ID sequences identifying Systems A and B, respectively, and 555-8001 is the telephone 
number of the modem connected to the communications interface at System B. RUSER and RACCOUNT 
are valid user and account names, respectively, as defined by the accounting structure of System B. 

Now we have the situation illustrated in Figure 2-18. 

SYSTEM A. 

LOCAL 
SESSION 

User' a 
Loa-on 
Terminal 

REMOTE2 j (OS Line number 3) 

~REMOTE3 

SYSTEM B 

REMOTE 
SESSION 

SYSTEM C 

Figure 2-18. Establishing the Link With System B 
(Dial-up Example) 

2-40 



~· 

Opening a Line 

Finally, the user acquired access to a line between Systems A and C and initiated a remote session in 
System C: 

:DSLINE REMOTE3 ;LOCID= 11 A11 ;REMID= 11 C11 ;PHNUM=377-2000 
OS LINE NUMBER = #L4 
:REMOTE HELLO RUSER.RACCOUNT 

HP3000 / MPE V G.02.00. TUE, OCT 22, 1985, 1:39 PM 

WELCOME TO SYSTEM C. 

REMOTE3 is the device class name (as defined within System A) associated with the particular line, A 
and Care the ID sequences identifying Systems A and C, respectively, and 377-2000 is the telephone 
number of the modem connected to the communications interface at System C. RUSER and RACCOUNT 
are valid user and account names, respectively, as defined by the accounting structure of System C. 

We end up with the situation illustrated in Figure 2-19, which is identical to Figure 2-16 that started 
this example. 

2-41 



Opening a Line 

SYSTEM A 

LOCAL 
SESSION 

I 
I 

REMOTE2 j, (OS Une number J) 

'\. ~REMOTEJ 
'\. (OS Une number 4) 

' ' 

User' a 
Lo1-on 
Terminal 

' ' ' ' 

SYSTEM B 

{ REMOTE ) 
- -\. SESSION 

SYSTEM C 

Figure 2-19. Establishing the Link With System C 
(Dial-up Example) 

2-42 

~ 
I 



Opening a Line 

Figure 2-20 illustrates a situation where a user has established two X.25 communications links 
concurrently from within a single local session. Take a closer look at that situation and examine the 
sequence of commands that was used to create it. 

I 
I 
I 
I 

~ 
User'l!I 
Loe-on 
Terminal 

' ' ' ' ' ' 

SYSTBM B 

( REMOTE ) 
- -\ SESSION 

SYSTEM C 

..1. REMOTE ) 
- SESSION 

Figure 2-20. Multiple Line Example (X.25 Lines) 

2-43 



Opening a Line 

First the user sat down at a terminal connected to System A and initiated a local session: 

:HELLO USER.ACCOUNT 

HP3000 / MPE V G.02.00. 

WELCOME TO SYSTEM A. 

TUE, OCT 22, 1985, 1:37 PM 

USER and ACCOUNT are valid user and account names, respectively, as defined by the accounting 
structure of System A. 

At this point, we have the situation illustrated in Figure 2-21. Notice that, so far, no communications 
link exists between any of the three systems. 

SYSl"BM A 

LOCAL 
SESSION 

User"s 
Loe-on 
Terminal 

Figure 2-21. Initiating the Local Session 
(X.25 Example) 

2-44 

SYSTEM B 

SYSTEM C 



Opening a Line 

Next, the user acquired access to an X. 2 5 connection between Systems A and B and initiated a remote 
session in System B: 

:DSLINE NODEB 
OS LINE NUMBER = #L3 
:REMOTE HELLO RUSER.RACCOUNT 

HP3000 / MPE V G.02.00. TUE, OCT 22, 1985, 1:38 PM 

WELCOME TO SYSTEM B. 

NODEB is the nodename (as defined within System A) associated with the particular line. RUSER and 
RACCOUNT are valid user and account names, respectively, as defined by the accounting structure of 
System B. 

Now we have the situation illustrated in Figure 2-22. 

I 
I 
I 
I 

~ 
User's 
Loli(-on 
Terminal 

SYSTBM B 

_( REMOTE ) 
- SESSION 

SYSTEM C 

Figure 2-22. Establishing the Link With System B 
(X.25 Example) 

2-45 



Opening a Line 

Finally, the user acquired access to a line between Systems A and C and initiated a remote session in 
System C: 

:DSLINE NODEC 
ENVIRONMENT 2: REMOTE3 
:REMOTE HELLO RUSER.RACCOUNT 

HP3000 / MPE V G.02.00. TUE, OCT 22, 1985, 1:39 PM 

WELCOME TO SYSTEM C. 

NODEC is the nodename (as defined within System A) associated with the particular line. RUSER and 
RACCOUNT are valid user and account names, respectively, as defined by the accounting structure of 
System C. 

We end up with the situation illustrated in Figure 2-23, which is identical to Figure 2-20 that started 
this example. ) 

2-46 



I 
I 
I 
I 

~ 
User•s 
Loe-on 
Terminal 

' ' ' ' ' ' 

SYSTBM B 

_( REMOTE } 
- SESSION 

SYSTEM C 

.1 REMOTE ) 
- SESSION 

Figure 2-23. Establishing the Link With System C 
(X.25 Example) 

2-47 

Opening a Line 



Opening a Line 

Line Opening Failures 

There are several reasons why a : DSLI NE command for opening a communications line might be 
rejected by DS/3000, some of which have been illustrated earlier in this section. 

The following list summarizes the likely causes of a line opening failure that are common to lines in 
general: 

• You made a syntax error in the : DSLINE command. 

• You gave an erroneous line or node name specification (dsdevice) in the : DSLINE command. 
(There is no IODSO entry in the system configuration with the specified device class name or 
logical device number, or the remote node name you specified was not defined in the network 
configuration database). 

• The line was not opened by the local console operator. 

• The line was not opened by the remote console operator. 

• The remote operator may have lowered the session LIMIT. 

o The local console operator may have used the SLAVE option to limit OS activity to incoming users 
only. 

• The remote console operator may have used the MASTER option to prohibit access to the system. 

• All virtual terminals on the remote system are already in use, which means there are no remote 
resources available for you to establish a remote session. 

• All virtual circuits are in use (X.25 only). 

• Someone has exclusive access to the specified line. 

• You asked for EXCLUSIVE access to a line that is in use. 

• DS/3000 detected a hardware problem (the communications interface board is not responding 
correctly). 

2-48 



~· 

Opening a Line 

The following list summarizes the additional causes of a line opening failure on a dial-up telephone 
line: 

• The operator was not able to make the requested telephone connection and entered NO through 
the system console in response to the dial request message. 

• The remote computer rejected your local ID sequence. 

• The remote computer did not send a valid ID sequence (the received ID sequence did not match 
any of the remote ID sequences that you specified or, if you didn,t specify any, did not match any 
of the configured remote ID sequences). 

• The specified line is already in use and the remote ID sequence you supplied did not match the 
one used by the currently connected remote HP 3000. 

The various error numbers and messages that might appear as a result of line opening failures are 
included in the summary of error codes and messages in Appendix A. 

2-49 



Closing a Line 

Closing a Line 

Once you have opened one or more communications lines, you can close any or all of them by using a 
variation of the : DSLINE command. The line closing format of the : DSLINE command is presented 
here. 

SYNTAX 

{
dsdevice } 

:DSLINE ~slineNumber ;CLOSE 

PARAMETERS 
dsdevice 

dslineNumber 

@ 

;CLOSE 

The device class name, logical device number, or logical node name specified 
in the : DSLINE command that opened a particular line. 

The DS line number assigned to you by DS/3000 when the particular line 
was opened. When this parameter is used, it must appear in the format 
#Ln, where n is the line number (see "Examples" on the following page). 

This parameter specifies that you wish to close all of the lines that you 
currently have open. 

This parameter specifies that you wish to close the specified line(s). 

If no line identifier (dsdevice, dsl ineNumber, or @)is specified, DS/3000 closes the line that you 
most recently opened. 

NOTE 

When the last node issues a : DSLINE CLOSE command, 
the message CS I/O ERROR will appear on the remote 
console. This is normal, and should be ignored. 

2-50 

~ 



Closing a Line 

Examples 

The following examples illustrate the variations of the : DSLINE command that can be used for closing 
one or more communications lines. 

:DSLINE REMOTE3 ;CLOSE 
This form closes the line that is identified by the device class name REMOTE3. 

:DSLINE 55 ;CLOSE 
This form closes the line that is identified by the logical device number 5 5. 

: DSLINE @ ;CLOSE 
This form closes all the lines that you currently have open. 

:DSLINE #L3 ;CLOSE 
This form closes the line that is identified by #L3. 

: DSLINE ;CLOSE 
This form closes the line that you most recently opened. 

If you are sharing one or more physical communications lines with other users, the above forms of the 
: DSLINE command close the line(s) for your application only (the other user's applications are not 
affected). 

2-51 



Closing a Lin~ 

-~ 
. __ .~ 

2-52 



~~~~~~R-EM_o_T_E_s_E_s_si_o_Ns~r!'f1 
A communications link exists after you have initiated a session in the remote HP 3000 under the
username, accountname, and groupname specified in the : REMOTE HELLO command. You now have
two distinct sessions in existence simultaneously from the same log-on terminal: a local session (in the
HP 3000 to which you first logged on) and a remote session (in the HP 3000 at the other end of the
communications line).

Within the local session, you have access to all 1/0 devices and disc files in your local HP 3000 (subject
to the usual MPE file security, of course). This is a normal MPE interactive session in every respect.
You enter MPE commands and use the various language and utility subsystems exactly as you would if
DS/3000 were not present. This local session is running under the username, accountname, and
groupname specified in the : HELLO command that you used to first log on. All user capabilities and
file access available to you within the local session are determined by those log-on parameters.

Within the remote session, you have access to all 1/0 devices and disc files in the remote HP 3000
(again, subject to the usual MPE file security). With the few minor exceptions described in the
following pages, this is also a normal MPE interactive session. All MPE commands and subsystems are,
however, executed in the remote HP 3000. The terminal output resulting from the executed
commands and subsystems appears at your local log-on terminal. The remote session is running under
the username, accountname, and groupname specified in the : REMOTE HELLO command that you used
in establishing the communications link. All user capabilities and file access available to you within
the remote session are determined by those log-on parameters.

For the sake of clarity and as a learning aid, the remainder of this section will treat local and remote
sessions as separate (and essentially unrelated) entities that use only those resources available in the
particular HP 3000 in which they are running. Actually, it is possible to access the 1/0 devices and
disc files of the remote HP 3000 computer from your local session, and it is also possible to access the
1/0 devices and disc files of the local HP 3000 from your remote session. This more advanced activity
will be covered in Section 4, "Remote File Access."

ISSUING REMOTE COMMANDS

Remember that, in the previous sections, the following sequence of commands was used to establish the
communications link:

(RETURN)

:HELLO USER.ACCOUNT

HP3000 / MPE V G.02.00. MON, OCT 28, 1985, 9:05 AM

WELCOME TO SYSTEM A.
: DSLI NE REMOTE2
OS LINE NUMBER = #L3

3-1

}
HELLO command
and log-on
display for
local session.

Remote Sessions

:REMOTE HELLO RUSER.RACCOUNT

HP3000 / MPE V G.02.00. MON, OCT 28~ 1985, 9:06 AM

WELCOME TO SYSTEM B.

}
HELLO command
and log-on
display for
remote session.

At this point, the remote session has been initiated, but you are currently in the local session (as
signified by the colon prompt character). To execute a command in the remote session, use the
following construct:

:REMOTE [xxx] command

where xxx is the DS line number returned by DS/3000 when the communications line was opened,
and command is the desired MPE command in its normal format. (The DS line number is necessary
only if you have more than one communications line open simultaneously; if it is omitted, then the
line which you most recently opened is referenced by default). In the example in Section 1, this
construct was used to execute a LI STF command, as follows:

: REMOTE LISTF

FILENAME

DATA1 DAT AS DATA6 FILE3 SOURCE1

Because the prefix REMOTE was included, the LISTF command is executed in the remote session (the
implied account and group names are those established by the : REMOTE HELLO command that
initiated the remote session). Although the LISTF command is executed in the remote HP 3000, the
output generated by the command is displayed at your local log-on terminal.

Notice, in the above example, that the DS line number associated with the particular communications
line was not specified (3 in this example). This is because, if no line number is specified, DS/3000 uses
(by default) the line most recently opened. Only one communications line is open from your local
session; so DS/3000 uses that line by default. If you had opened a second line, you would need to tell
DS/3000 in which remote computer the remote command is to be executed. To tell DS/3000, include
the appropriate DS line number in the remote command, as follows:

: REMOTE 3 LISTF

FILENAME

DATA1 DAT AS DATA6 FILE3 SOURCE1

The above construct only allows you to execute a single remote command. After the remote command
has been executed, control returns to your local session (as signified by the colon prompt character).

But suppose that you want to execute a whole series of remote commands. It would obviously be a
nuisance to have to prefix each command with the word REMOTE. DS/3000 provides a convenient
solution to this situation. To execute a series of commands in the remote session, use the following
construct:

3-2

Remote Sessions

:REMOTE [xxx]

r where xxx is again the DS line number of the desired communications line (specifying in which
remote HP 3000 you want to execute commands). DS/3000 then prompts you for each command by
displaying a # in column 1 of your terminal (in place of the standard MPE colon prompt). In the
example in Section 1, this construct was used for entering two remote MPE commands, EDITOR and
BYE.

After reviewing the example in Section 1, try another example that uses more than those two remote
commands:

:REMOTE
#LISTF

FILENAME

DATA1 DATAS
#PURGE DATAS
#PURGE DATA6
#LISTF

FILENAME

DATA6

DATA1 FILE3 SOURCE1
#RUN FCOPY.PUB.SYS

HP32212A.0.03 FILE COPIER

>FROM=DATA1 ;TO=DATA2 ;NEW

FILE3 SOURCE1

EOF FOUND IN FROMFILE AFTER RECORD 679

680 RECORDS PROCESSED *** 0 ERRORS

>EXIT

END OF PROGRAM
#LISTF

FILENAME

DATA1
#BYE

DATA2 FILE3 SOURCE1

CPU=4. CONNECT=7. MON, OCT 28, 1985, 9:13AM
#1_

Notice that except for the II prompt (in place of the standard colon prompt) this looks exactly like a
normal MPE interactive session. All of the commands shown in the previous example are entered
through the local log-on terminal, but the MPE and FCOPY commands are executed in the remote
session within the remote HP 3000. After each remote MPE command was executed, however, control
remained in the remote session (as signified by the II prompt character). When the remote session was
terminated and the user typed a colon (:) in response to the #prompt following the log-off message,
control was then returned to the local session (as signified by the colon prompt).

3-3

Remote Sessions

Using the Remote Subsystem from a Batch Job

While in a batch job, you can establish a remote session by using the : DSLINE or : REMOTE HELLO
command.

The job to be streamed may be similar to the following:

:JOB USER.ACCOUNT
: DSLINE REMOTE2
:REMOTE HELLO RUSER.RACCOUNT
:REMOTE
#FILE OUT;DEV=LP
#BUILD WORK;DISC=SO
#RUN USERPROG
#PURGE WORK
#:
:REMOTE BYE
: DSLINE ;CLOSE
:EOJ

NOTE

The remote fl prompt is optional.

An important point to remember is that, once established, the remote session is interacting with the
job in the same way as it would interact with a terminal. If the remote session detects an error, the
error is printed to $STDLIST. If the error generates a user prompt, the next record in the job file is
read as the response (in the same manner as waiting for a character or (RETURN) on a terminal). The
record is then lost to the job.

The lBREAKI Key

Within a remote session, you can use (BREAK) to temporarily interrupt remote processing. When doing
so, either you may return control to the MPE Command Interpreter of your local HP 3000, or you
may temporarily suspend the remote subsystem that you are executing without returning control to
the local HP 3000. This is determined by how you execute commands in the remote session. There are
two ways to execute commands in a remote session:

• By prefixing each command with the word REMOTE.

• By entering the word REMOTE, which prompts you for each command.

Prefixing Each Command with REMOTE.

When you are conducting a remote session by prefixing each command with the word REMOTE,
pressing (BREAK) returns control to the local Command Interpreter and you receive the colon (:)
prompt. To continue remote processing at the point where it was interrupted, you merely enter
REMOTE RESUME in response to the local MPE colon prompt.

3-4

Remote Sessions

As an example, assume that you are in the midst of using the text editor in a remote session when you
decide to start a job stream executing concurrently in your local HP 3000. The sequence of commands
would be similar to the following:

:REMOTE EDITOR

HP32201A.7.17 EDIT/3000 MON, OCT 28, 1985, 9:11 AM
(C) HEWLETT-PACKARD CO. 1985
/ADD
-1 DOE, JOHN

2 BLACK, PATRICIA
3 SIMON, NEIL
4 MACK, SHIRLEY

29 M CHI
23 F SF
43 M NY
38 F DET

Local S~BREAK pressed here.
session
prompt.

~ :STREAM COBTEST1
#J19

:REMOTE RESUME

READ pending
MICHAELS, WILLIAM

6 O'LEARY, TIMOTHY
7 MARTIN , MARY
8 MURIN, JOICE

} Control is now
in the local
session.

32 M CHI
49 M DET
34 F LA
42 F CHI

} Control is now
back in the
remote session.

Notice that when (BREAK I was pressed, the text editor in the remote HP 3000 was waiting for you to
enter the text for line 5. (BREAK! interrupted the remote session and passed control to the MPE
Command Interpreter of the local HP 3000 (as signified by the colon prompt). The STREAM command
was issued within the local session, which caused the file COBTEST 1 to be executed in the local HP
3000. Then, when the RESUME command was issued, control was passed back to the remote session at
the point where it was interrupted (that is, the text editor in the remote HP 3000 is now waiting for
you to enter the text for line 5). When the text for line 5 is entered, the remote session proceeds as
though nothing had happened.

Note that by the end of the example, the local job stream, the local session, and the remote session are
all operational simultaneously.

3-5

Remote Sessions

Entering REMOTE.

When you are interacting with the remote Command Interpreter by having entered the word REMOTE
and you are receiving the remote prompt(#), pressing (BREAK) will temporarily suspend the subsystem
you are executing and will return control to the remote Command Interpreter. To continue remote
processing at the point where it was interrupted, you merely enter RESUME in response to the remote
prompt.

As an example, assume that you are in the midst of using the text editor in a remote session when you
decide to start a job stream executing in your remote HP 3000. The sequence of commands would be
similar to the example shown previously, but with a few minor differences, as follows:

:REMOTE
#EDITOR

HP 32201A.7.17 EDIT/3000 MON, OCT 28, 1985, 9:20 AM
(C) HEWLETT-PACKARD CO. 1985
/ADD

1 LEWIS, LEO
2 LAGERGREN, FRED
3 DICKINSON, MARY
4 LAGREGREN, LINDA
5~

51 M SV
25 M SJ
21 F SC
24 F SJ

t____ BREAK pressed here.

#STREAM APLTEST1
#J20

#RESUME

READ pending
MELLO, HENRY

6 SOARES, JOE
7 LAWRENCE, ALICE
8 LEWIS, BOB

}
44 M SJ

Control is
still in the
remote session.

59 M LA
44 F SJ
29 M WASH

Notice that when (BREAK) was pressed, the text editor in the remote HP 3000 was waiting for you to
enter.the text for line 5. [BREAK) interrupted the remote session, but control remained in the remote
HP 3000 (as signified by the remote# prompt). The STREAM command executed the file APL TEST I
within the remote HP 3000. Then, when the RESUME command was issued, control was passed back to
the point where the text editor was interrupted (that is, the text editor is waiting for you to enter the
text for line 5). When the text for line 5 is entered, the remote session proceeds as though nothing had
happened.

The Control Keys

Within a remote session (CONTROLJH, (CONTROLJX, and [CONTROLJY perform exactly the same functions as they
do in a normal MPE interactive session.

For example, if you are using FCOPY or the text editor in a remote session, you can use [CONTROLJY to
prematurely terminate an FCOPY or text editor operation. When the operation terminates, control is
still in the particular subsystem within the remote session.

3-6

~
y

Remote Sessions

Similarly, you can use (CONTROLJH to delete the last character entered or (CONTROLJX to delete the line of
text currently being entered. In both of these cases, after the deletion occurs, control remains in the
remote session.

ISSUING LOCAL COMMANDS

Whenever the standard MPE colon prompt is displayed at your terminal, you are in the local session.
Within the local session, you enter MPE commands in their normal format in response to the colon
prompt. If you are in the midst of a remote session (that is, you used the command : REMOTE, and
DS/3000 is issuing the fl prompt character), you can return control to your local session by entering a
colon, as follows:

In response to the remote colon, control returns to the MPE Command Interpreter of your local HP
3000 which then prompts you for local commands with the colon prompt character. Note that the
remote colon does not terminate the remote session; you can resume processing in the remote session by
again using either of the constructs described under "Issuing Remote Commands.11

TERMINATING A REMOTE SESSION

You can terminate a remote session either from within the local session or from within the remote
session itself.

From the Local Session

Whenever the standard MPE colon prompt is displayed at your terminal, you are in the local session.
To terminate a remote session from within your local session, use the following command:

:REMOTE (xxx] BYE

where xxx is the OS line number associated with the communications line connecting the particular
remote session to your local session. (The DS line number is necessary only if you have more than one
communications line open simultaneously; if it is omitted then the line that you most recently opened
is referenced by default.)

For instance, in the example in Section 1, either of the following sequences could have been used to
terminate the remote session:

3-7

Remote Sessions

#1_
:REMOTE BYE

CPU=4. CONNECT=7. MON, OCT 28, 1985, 9:13 AM

OR

11_
:REMOTE 3 BYE

CPU=4. CONNECT=7. MON, OCT 28, 1985, 9:13 AM

In both cases, the remote colon was used to return control from the remote session to the local session.
In either case, the remote session is terminated. Remote sessions are also automatically terminated
when the local session is terminated.

If the communications line was opened using the DSLINE= parameter of the : REMOTE HELLO
command, the line is automatically closed when the remote session terminates. To initiate another
remote session over the same communications line, you must once again open the line (using either the
: DSLINE command or the OS LINE= parameter of the : REMOTE HELLO command) and then issue
another : REMOTE HELLO command.

If the communications line was opened using the : DSLINE command, it is still open. To initiate a new
remote session over the same communications line, merely issue another : REMOTE HELLO command
(you do not need to issue another : DSLINE command because the communications line is still open).
To close the communications line, use the constructs presented in Section 2.

From the Remote Session

Whenever the # prompt is displayed at your terminal, you are in the remote session. To terminate a
remote session from within the remote session itself, use the following command:

#BYE

Note that you do not need to supply a DS line number in this case, because DS/3000 knows implicitly
which remote session you wish to terminate (that is, the one in which the #BYE command is executed).

Remember that this command was used to terminate the remote session in the example at the end of
Section 1, as follows:

CPU=4. CONNECT=7. MON, OCT 28, 1985, 9:15 AM

Notice that although the remote session is terminated, DS/ 3000 is still issuing the # prompt character.
To return control to the local session, issue a colon (described earlier under "Issuing Local Commands11

).

If the communications line was opened using the : DSLINE command, it is still open. To initiate
another remote session over the same communications line, merely issue an appropriate remote MPE ~

3-8

Remote Sessions

HELLO command. (You do not need to use the prefix REMOTE because DS/3000 is still waiting for you
to enter a remote command; nor do you need to issue another DSLINE command because the
communications line is still open.) To close the communications line, use the constructs presented in
Section 2.

If the communications line was opened using the DSLINE= parameter of the : REMOTE HELLO
command, the line is automatically closed when the remote session terminates. To initiate another
remote session over the same line, you must once again open the line (using the : DSLINE command or
the DSLINE= parameter of a : REMOTE HELLO command) and then issue another : REMOTE HELLO
command.

NOTE

Including a : BYE command in a remote logon UDC is not
re.commended. For a fuller explanation regarding the use of
logon UDCs on a remote system, ref er to the discussion of
the : REMOTE HELLO command in Section 2, pages 2-29 to
2-33.

3-9

Remote Sessions

·:)
'-.. __ .

3-10

r

'-------RE_M_o_T_E_F_1L_E_A_c_c_E_ss __ r11~l·
11

i
In the preceding sections, you have seen how you can establish a communications link between two HP
3000s and thereby use the computing power of the remote HP 3000. But through the use of the
DS/3000 Remote File Access (RFA) capability, programs running in your local session can:

• Use any of the devices connected to the remote HP 3 000 as though they were connected directly
to your local HP 3000

• Access any of the disc files of the remote HP 3000 (subject to the normal MPE file security, of
course) as though they resided at your local HP 3000 site.

Section 4 is divided into two main parts. The first part, "Interactive Access", describes how you can
issue local MPE FI LE commands that define devices and/or files residing at the remote HP 3000 site.
The second part, "Programmatic Access", describes how you can use the standard set of MPE File
System intrinsics within your local programs to access devices and/or files residing at the remote HP
3000 site.

INTERACTIVE ACCESS

After a DS/3000 communications link has been established, you can issue local MPE FI LE commands
that d~fine devices and/or files residing at the remote HP 3000 site. To make this possible, the DEV=
parameter of the MPE : FI LE command was expanded to include a DS line specification in addition to
the usual device specification. To specify a file that resides across a DS line, the format of the DEV=
parameter is as follows:

;DEV=[dsdevioe]#[devioe]

where dsdevioe is the device class name, logical device number, or node name that you used when
establishing the particular communications link (this specifies the physical line connecting the two
computers); and device is the device class name or logical device number of the desired remote device
as established within the remote HP 3000. It defaults to DISC. (Refer to the MPE Commands
Reference Manual for the complete syntax and all parameters.)

NOTE

When the : FI LE command is entered on a remote
system to point back to a file on the local system,
dsdevioe is omitted.

The dsdevioe# parameter (within the DEV= parameter) is the only parameter of the MPE : FI LE
command that is unique to DS/3000. This one small item of syntax is enormously powerful. It means
that from within your local session you can access any of the devices and/or disc files of a remote HP
3000 as though they resided at your local HP 3000 site. Access to remote disc files is, of course,
subject to the usual MPE file security. The user, account, and group names that you specified in the

4-1

Interactive Access

: REMOTE HELLO command when establishing the communications link are the ones used by MPE in
the remote HP 3000 for determining your file access capabilities.

If device is omitted, the local system is used instead of the remote system. This is useful in cases
where, for example, a program is located on a remote system, but the data it uses is)ocated on the local
system. See Example # 5.

Following are five annotated examples illustrating remote device and file access from a local session.

4-2

~-

Interactive Access

Example # 1: Remote Off-Line Listing

Assume that you, using the Text Editor on your HP 3000, are to maintain an ASCII file containing
both uppercase and lowercase characters, but that you don't have an upper/lowercase line printer.
Assume further that elsewhere in the same building there is another HP 3000 with an
upper/lowercase line printer, that both HP 3000s have DS capability, and that they are connected to
one another by an interconnecting cable and communications interfaces. You can access the remote
line printer as follows.

First, the console operators of both computer systems OPEN the line. (See Section 9.) Then, you log on
to your HP 3000 and establish a communications link with the remote HP 3000.

:HELLO USER.ACCOUNT
:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

where USER and ACCOUNT are valid user and account names (respectively) within the accounting
structure of your local HP 3000, RUSER and RACCOUNT are valid user and account names (respectively)
within the accounting structure of the remote HP 3000, and LINE2 is the device class name of the
local IODSO entry (or the node name associated with the IODSX entry) for the line that you want to
use.

Next, issue a local MPE : FI LE command that defines the desired line printer as a remote device.

:FILE LIST;DEV=LINE2#SLOWLP

where LIST is the formal designator by which you will subsequently reference the line printer, LINE2
is the device class name (or node name) you used when establishing the particular communications
link, the II symbol tells the local file system that the next parameter references a device on the remote
system, and SLOWLP is the device class name (as established within the remote HP 3000) of the
upper/lowercase line printer.

Then, invoke the Text Editor of your local HP 3000, specifying the remote line printer as the off-line
listing device:

: EDITOR •LIST

Thereafter, direct the Text Editor offline output to the remote upper /lowercase line printer as though
it were connected directly to your local HP 3000. For example, you could print the content of the file
TEXTFI LE on the upper/lowercase line printer as follows:

/TEXT TEXTFILE
/LIST ALL,OFFLINE

The entire command sequence is as follows (see Figure 4-1):

:HELLO USER.ACCOUNT
HP3000 / MPE V G.02.00. MON, OCT 28, 1985, 12:51 PM

WELCOME TO SYSTEM A.

:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2
OS LINE NUMBER = #L3
HP3000 / MPE V G.02.00. MON, OCT 28, 1985, 12:52 PM

4-3

Interactive Access

WELCOME TO SYSTEM B.

:FILE LIST;DEV=LINE2#SLOWLP
: EDITOR *LIST
HP32201A.7.17 EDIT/3000 MON, OCT 28, 1985, 12:53 PM
(C) HEWLETT-PACKARD CO. 1985
/TEXT TEXTFILE
/LIST ALL,OFFLINE
*** OFF LINE LISTING BEGUN. ***

Duo

--

Toxtllle

SYSTEM A

~ LOCAL ,,, SESSION

Lo1-0n
Terminal

-
EDITOR

UNE2
~

SYSTBll B

REMOTE
SESSION

Upper /Lower Cue
Line Printer
(SLOYLP)

Figure 4-1. Remote Off-Line Listing Example

4-4

~

.~

Interactive Access

Example # 2: Locally Sorting a Remote File

~ Assume that there is a file named SOURCE residing on a disc connected to a remote HP 3000 and that
SOURCE contains a list of clients sorted alphabetically by the clients' names. Assume further that the
remote HP 3000 and your local HP 3000 both have DS/3000 configured and that they are
interconnected by a hardwired connection. You wish to access the remote file SOURCE from your local
HP 3000, sort its content alphabetically by the names of the states in which the clients reside, and
store the sorted version in a newly created disc file named SORTED on your local HP 3000. You can
do that (without disturbing the original content of SOURCE) as follows.

r

First, the console operators of both computer systems OPEN the line. (See Section 9.) Then, log on to
your local HP 3000 and establish a communications link with the remote HP 3000.

:HELLO USER.ACCOUNT
:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

where USER and ACCOUNT are valid user and account names (respectively) within the accounting
structure of your local HP 3000, RUSER and RACCOUNT are valid user and account names (respectively)
within the accounting structure of the remote HP 3000, and LINE2 is the device class name of the
local IODSO entry (or the node name associated with the IODSX entry) for the line that you want to
use.

Next, issue a local MPE : BUILD command to create the local disc file SORTED that will receive the
sorted output.

:BUILD SORTED;DISC=250,1,1;REC=-80,16,F,ASCII

Then, issue two local MPE : FI LE commands: one that defines the remote disc file SOURCE as the sort
input file and one that defines the local disc file SOR TED as the sort output file.

:FILE INPUT=SOURCE;DEV=LINE2#DISC
:FILE OUTPUT=SORTED

Then, invoke the Sort program, specify the sort key, and initiate the actual sort.

:RUN SORT.PUB.SYS
>KEY 50,9
>END

Note that the sort is performed in your local HP 3000, using the remote disc file SOURCE as the sort
input file; the output of the sort is stored in the local disc file SORTED; and the original content of
SOURCE is not altered.

The entire command sequence is as follows (see Figure 4- 2):

:HELLO USER.ACCOUNT
HP3000 / MPE V G.02.00. MON, OCT 28, 1985, 12:51 PM

WELCOME TO SYSTEM A.

4-S

Interactive Access

:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2
OS LINE NUMBER = #L3
HP3000 / MPE V G.02.00. MON, OCT 28, 1985, 12:52 PM

WELCOME TO SYSTEM B.

:BUILD SORTED;DISC=250,1,1;REC=-80,16,F,ASCII
:FILE INPUT=SOURCE;DEV=LINE2#DISC
:FILE OUTPUT=SORTED
:RUN SORT.PUB.SYS
>KEY 50,9
>END

STATISTICS

NUMBER OF RECORDS = 221
RECORD SIZE (IN BYTES) = 80
NUMBER OF INTERMEDIATE PASSES = 0
SPACE AVAILABLE (IN WORDS) = 13,346
NUMBER OF COMPARES = 45
NUMBER OF SCRATCHFILE IO'S = 10
CPU TIME (MINUTES) = .01
ELAPSED TIME (MINUTES) = .14

END OF PROGRAM

4-6

·~. --.-.;}

Disc

SORTED

SYSTBM A.

~-
I SORT

Loa-on
Terminal

-

SOURCE

Figure 4-2. SORT Remote File Access Examr.Je

4-7

Interactive Access

SYSTEM B

Disc

Interactive Access

Example #3: FCOPYing to a remote system

Suppose that you want to copy a disc file from your local HP 3000 to a remote HP 3000. Assume a
hardwired connection and DS/3000 is configured. You can perform the file copy operation as follows.

First, the console operators of both computer systems OPEN the line. (See Section 9.) Then, you log on
to your local HP 3000 and establish a communications link with the remote HP 3000.

:HELLO USER.ACCOUNT
:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

where USER and ACCOUNT are valid user and account names (respectively) within the accounting
structure of your local HP 3000, RUSER and RACCOUNT are valid user and account names (respectively)
within the accounting structure of the remote HP 3000, and LINE2 is the device class name of the
local IODSO entry (or the node name associated with the IODSX entry) for the line that you want to
use.

Next, issue a local MPE : FILE command defining the destination file (REMFILE) as being a remote
disc file.

:FILE REMFILE;DEV=LINE2#01SC

Then, invoke the File Copier and specify the file copy parameters.

:RUN FCOPY.PUB.SYS
>FROM=LOCFILE;TO=*REMFILE;NEW

·~

A new disc file named REMFI LE is created in the home group of the RACCOUNT account in the remote ~
HP 3000 and the content of the local disc file LOCFI LE is then copied over the communications line
into REMFI LE.

The entire command sequence is as follows (see Figure 4- 3):

:HELLO USER.ACCOUNT
HP3000 / MPE V G.02.00. MON, OCT 28, 1985, 12:51 PM

WELCOME TO SYSTEM A.

:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2
OS LINE NUMBER = #L3
HP3000 / MPE V G.02.00. MON, OCT 28, 1985, 12:52 PM

WELCOME TO SYSTEM B.

:FILE REMFILE;DEV7LINE2#DISC
:RUN FCOPY.PUB.SYS
HP32212A.3.19 FILE COPIER (C) HEWLETT-PACKARD CO. 1984

4-8

~· \.

>FROM=LOCFILE;TO=•REMFILE;NEW
EOF FOUND IN FROMFILE AFTER RECORD 2017

2018 RECORDS PROCESSED *** 0 ERRORS

>EXIT
END OF PROGRAM

Disc

LOCFILE

SYSTEM A

LOCAL
SESSION

Lo1-0n
Terminal

FCOPY

Interactive Access

SYSTEM B

REM:FILE

REMOTE
SESSION

I
I
I
I
I
I

\I/ Disc

Figure 4-3. FCOPY Remote File Access Example

4-9

Interactive Access

Example #4: Locally Running Remote Programs

Assume that there is a COBOL source file named SOURCE 1 residing on a disc connected to a remote
HP 3000 and that you want to compile, prepare, and execute that program on your local HP 3000.
Assume further that the remote HP 3000 and your local HP 3000 both have DS/3000 configured and
a hardwired interconnection. You can locally compile, prepare, and execute the remote source file as
follows.

First, the console operators of both computer systems OPEN the line. (See Section 9.) Then, log on to
your HP 3000 and establish a communications link with the remote HP 3000.

:HELLO USER.ACCOUNT
:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

where USER and ACCOUNT are valid user and account names (respectively) within the accounting
structure of your local HP 3000, RUSER and RACCOUNT are valid user and account names (respectively)
within the accounting structure of the remote HP 3000, and LINE2 is the device class name of the
local IODSO entry (or the node name associated with the IODSX entry) for the line that you want to
use.

Next, issue a local MPE : FI LE command defining the file SOURCE1 as being a remote disc file.

:FILE SOURCE1;DEV=LINE2#DISC

where LI NE2 is the node name or the device class name that you used when establishing the
communications link and DISC is the device class name (as established within the remote HP 3000) of
the disc on which SOURCE 1 resides.

Then, invoke the COBOL compiler and the Segmenter of your local HP 3000, specifying the remote
disc file SOURCE 1 as the inputfile.

:COBOLGO *SOURCE1

The content of the remote disc file SOURCE 1 is compiled, prepared, and executed in your local HP
3000.

The entire command s~quence is as follows (see Figure 4-4):

:HELLO USER.ACCOUNT
HP3000 / MPE V G.02.00. MON, OCT 28, 1985, 12:51 PM

:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2
OS LINE NUMBER = #L3

HP3000 / MPE V G.02.00. MON, OCT 28, 1985, 12:52 PM

:FILE SOURCE1;DEV=LINE2#DISC
:COBOLGO *SOURCE1

PAGE 0001 HP32213C.02.12 (C) HEWLETT-PACKARD CO. 1983

(SOURCE 1 is now being compiled.)

4-10

·~
'

In terac ti ve Access

DATA AREA IS $000341 WORDS.
CPU TIME= 0:00:01. WALL TIME= 0:00:07.

END COBOL/3000 COMPILATION. NO ERRORS. NO WARNINGS.

END Of" COMPILE

(The compiled version of SOURCE 1 is now being prepared by the MPE Segmenter.)

END Of" PREPARE

(The compiled and prepared version of SOURCE 1 is now being executed.)

END Of" PROGRAM

NOTE

Due to the amount of time and system resources
required for COBOL activity, this example does not
make efficient use of a OS line. The general rule is
to do the COBOL compile, preparation, and run on
the same system where the data resides. Sometimes
this means copying the data files to another system
before (or after) COBOL activity, rather than
copying across the line during the COBOL activity.

4-11

Interactive Access

SYSTEM A

LOCAL - -
SESSION

Loe-on
Terminal

COBOL

i
Segment er
User Program

SYSTEM B

-

SOURCE!

REMOTE
SESSION

'1'

Disc

Figure 4-4. COBOLGO Remote File Access Example

4-12

Interactive Access

Example #5: Remote Programs and Local Data

Assume that there is a COBOL source program named SOURCE1 residing on a disc connected to a
remote HP 3000 and that you want to run that program using a data file named DATA 1 residing on
your local system. Assume further that the remote HP 3000 and your local HP 3000 both have DS
capability and a hardwired interconnection. You can do that as follows:

First, log on to your HP 3000 and establish a communications link with the remote HP 3000.

:HELLO USER.ACCOUNT
:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

where USER and ACCOUNT are valid user and account names (respectively) within the accounting
structure of your local HP 3000, RUSER and RACCOUNT are valid user and account names (respectively)
within the accounting structure of the remote HP 3000, and LINE2 is the device class name of the
local IODSO entry (or the node name associated with the IODSX entry) for the line that you want to
use.

~ Next, issue a remote MPE : FI LE command that defines the data file DATA 1 as being a local disc file.

:REMOTE
#FILE SOURCE1;DEV=#

If you prefer, the : FI LE command can be issued from your local session as follows:

:REMOTE FILE DATA1;DEV=#

r' where# indicates that the remote session should "go back" to the local session to find the data file.

Then, invoke the COBOL compiler and the Segmenter of your remote HP 3000.

#COBOLGO SOURCE1

Or, if you pref er, you can run the job from your local session, as follows:

:REMOTE COBOLGO SOURCE1

The entire command sequence is as follows (see Figure 4-5):

:HELLO USER.ACCOUNT
HP3000 / MPE V G.02.00. MON, OCT 28, 1985, 12:51 PM

:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2
OS LINE NUMBER = #L3

HP3000 / MPE V G.02.00. MON, OCT 28, 1985, 12:52 PM

:REMOTE
#FILE DATA1;DEV=#
#COBOLGO SOURCE1

PAGE 0001 HP32213C.02.12 (C) HEWLETT-PACKARD CO. 1983

4-13

Interactive Access

(SOURCE 1 is now being compiled.)

DATA AREA IS %000341 WORDS.
CPU TIME= 0:00:01. WALL TIME= 0:00:17.

END COBOL/3000 COMPILATION. NO ERRORS. NO WARNINGS.

END Of' COMPILE

(SOURCE 1 is now being prepared by the MPE Segmenter.)

END Of' PREPARE

(The compiled and prepared version of SOURCE1 is now being executed, and· is accessing DATA1
for data.)

END Of' PROGRAM

Disc

SYSTEM A

UNE2
it'

----> LOCAL - -
SESSION

DA.TA1

Log-On
Terminal

COBOL

Figure 4-5. COBOL Remote File Access Example

4-14

SYSTEM B

REMOTE
SESSION

/I\

I
I
I

\I/ Disc

SOURCE!

NOTE

Many aspects of system resources (for example,
memory size, CPU load, type of CPU load, time
quantums, etc.) affect how COBOL and remote data
base access activities are conducted in a DS/3000
environment. In general, it is more efficient to
transfer data, USL, and SL files before or after (but
not during) COBOL activity.

PROGRAMMATIC ACCESS

Interactive Access

Once a DS/3000 communications link has been established between your HP 3000 and a remote HP
3000, you can use the standard set of MPE File System intrinsics within your local programs to access
devices and/or files residing at the remote HP 3000 site. To make this possible, the format of the byte
array referenced by the device parameter of the MPE FOPEN intrinsic was expanded to include a DS
line specification in addition to the usual device specification. The format of the device byte array is
as follows:

[dsdeviae]#[deviae]

where dsdeviae is the device class name, logical device number, or node name that you used when
establishing the particular communications link (this specifies the physical line connecting the two
computers) and device is the device class name or logical device number of the desired remote device
as established within the remote HP 3000. (For a complete presentation of all FOPEN intrinsic
parameters, ref er to the MP E Intrinsics Reference Manual.)

NOTE

When the : FI LE command is entered on a remote
system to point back to a file on the local system,
dsdeviae is omitted.

The addition of dsdeviae# to the format of the byte array referenced by the device parameter has
enormously powerful implications. It means that programs executing in your local HP 3000 can easily
access any of the devices and/or disc files of a remote HP 3000 as though they resided at your local
HP 3000 site. Access to remote files is, of course, subject to the usual MPE file security. The user,
account, and group names that you specified in the : REMOTE HELLO command when establishing the
communications link are the ones used by MPE in the remote HP 3 000 for determining your file
access capabilities.

On the following pages, an annotated example illustrates remote device and file access from a local
program running within a local session.

The Condition Codes for the various MPE File System intrinsics retain their normal meanings. Any
communications line errors will return a CCL In the event of an error, you can call the MPE FCHECK
intrinsic to determine what happened. When using the MPE File System intrinsics for remote file

4-15

Programmatic Access

access, the Message Block B (File System) error codes apply to the remote file. You may also use the
MPE PRINTFILEINFO intrinsic to display the status of a remote file.

4-16

Programmatic Access

The following program example tests RFA capabilities by writing to a remote file, reading the records
back, then listing the contents of the remote file on the remote line printer.

Example

The following program illustrates how remote files can be accessed by using file system intrinsics.

$CONTROL USLINIT,ADR,MAP,CODE
BEGIN
INTEGER

A,
I:=-1,
RDISCNUM,
RLPNUM;

BYTE ARRAY RMTLP'FILNAM(0:3):="RLP II

BYTE ARRAY RLPDEV(0:11);
BYTE ARRAY RMTDISC'FILNAM(O:S):="RDISC II

BYTE ARRAY MSG(0:71);
BYTE ARRAY RDISCDEV(0:11);

LOGICAL ARRAY LMSG(*)=MSG;

INTRINSIC PRINT,READ,FOPEN,FWRITEDIR,FREADDIR,FWRITE,FCLOSE;

<< User enters remote disc device class name into RDISCDEV. >>

MOVE MSG:="INPUT REMOTE DISC DEVICE CLASS NAME 11

PRINT(MSG,-35,0);
MOVE MSG:= 11 IN THE FORM .. DSDEVICE#DISCDEV 11

PRINT(MSG,-31,0);
A:=READ(LMSG,-12);
MOVE RDISCDEV:=MSG,(A);

<< User enters remote LP device class name into RLPDEV. >>

MOVE MSG:= 11 INPUT REMOTE LP DEVICE CLASS NAME 11

PRINT(MSG,-33,0);
MOVE MSG:="IN THE FORM .. DSDEVICE#LPDEV"
PRINT(MSG,-29,0);
A:=READ(LMSG,-12);
MOVE RLPDEV:=MSG,(A);

<< Open remote disc file. >>

MOVE MSG:="OPENING REMOTE DISC FILE 11

PRINT(MSG,-24,0);
RDISCNUM:=FOPEN(RMTDISC'FILNAM,4,3104,-80,RDISCDEV);
IF <> THEN

BEGIN
MOVE MSG:= 11 COULD NOT OPEN REMOTE DISC FILE "
PRINT(MSG,-31,0);

4-17

Programmatic Access

GO TO OUT;
END;

<< Initialize remote disc file. >>

MOVE MSG:="WRITING TO REMOTE DISC FILE 11

PRINT(MSG,-27,0);
MOVE MSG:=" ";
MOVE MSG(1):=MSG(0),(71);

<< Write ten copies of MSG to remote disc file as a line check. >>

WHILE (I:=I+1) <10 DO
BEGIN

MOVE MSG:="REMOTE FILE ACCESS TEST ";
FWRITEDIR(RDISCNUM,LMSG,36,DOUBLE(I)); <<RECORD TO BE

WRITTEN>>
IF <> THEN

BEGIN
MOVE MSG:="ERROR WHEN WRITING TO REMOTE DISC 11

PRINT (MSG,-33,0);
GO TO OUT;

END;
END;

« Initialize LP file. »

MOVE MSG:="OPENING REMOTE LP FILE ";
PRINT(MSG,-22,0);
RLPNUM:=FOPEN(RMTLP'FILNAM,4,1,,RLPDEV);
IF <> THEN

BEGIN
MOVE MSG:="COULD NOT OPEN REMOTE LP FILE "
PRINT (MSG,-29,0);

END;

<< Read 10 records from remote disc and write them to remote >>
<< LP, one at a time. >>

I: =-1 ;
WHILE (I:=I+ 1) < 10 DO

BEGIN
FREADDIR(RDISCNUM,LMSG,36,DOUBLE(I));
IF <> THEN

BEGIN
MOVE MSG:="COULD NOT READ REMOTE DISC FILE 11

. PRINT(MSG,-31,0);
END;

FWRITE(RLPNUM,LMSG,36,0);
IF < > THEN

BEGIN
MOVE MSG:="COULD NOT PRINT TO REMOTE LP FILE "
PRINT(MSG,-34,0);

4-18

"'· ~ '

~'

OUT;
END.

END·
END· '

'

4-19

Programmatic A ccess

Programmatic Access

~ ·, _., ..

·~

._ __ u_s_1N_G_A_RE_M_o_T_E_D_A_T_A_B_A_s_E___,r~l·ll,
TurboIMAGE is HP's data base management system. With DS/3000, you can use it to access data
bases on other computer systems.

NOTE

All references to TurboIMAGE in this section apply equally to
IMAGE/3000 if you are using either MPE IV or a version of
MPE V prior to G.02.00. Also note that IMAGE/3000 and
TurboIMAGE databases can access one another, but with some
constraints. Please refer to the Turbo/MAGE Reference Manual
cited in the Preface of this manual.

If you want to access a data base that resides on one HP 3000 computer system while operating a
session on another HP 3000 computer system, you may do so provided both systems have DS/3000
capability. You may use a data base on a remote HP 3000 either from a program that is running on
the remote system or from a program running on your local HP 3000. The various ways to open a
communications line and initiate a remote session are described in Sections 1 through 4. This section
describes ways to access data bases programmatically with DS/3000. For example, you can establish a
communications link and remote session and then run a remote program accessing a data base on the
remote machine as illustrated in Figure 5-1.

Local HP 3000

Locol Terminal

:HELLO •••
:OSLINE •••
:REMOTE HELLO •••
:REMOTE RUN PROGX

Figure 5-1. Using a Remote Program.

5-1

Remote HP 3000

Program PROGX

¢
Doto Bose OBX

Using a Remote Data Base

ACCESS THROUGH A LOCAL APPLICATION PROGRAM

If you want to access a remote data base using a local application program, there are three methods
you may choose from. In all cases, a local program accesses a remote data base and the data is passed
across the communications line.

Method 1: Establishing the Session Interactively

To use the first method, you interactively establish a communications link and a remote session and
enter a : FI LE equation for each remote data base. The : FI LE equation specifies which data base is to
be access on which remote system and device. A local application program can now access a remote
data base, as shown in Figure 5-2.

Local HP 3000

P~ram PROGX:

Colls DBOPEN
for DBX and
OBY doto base.

Local Termfnol

:Ha.LO ...
:OSUNE •••
:REMOTE HELLO ...
:FILE DBX;OEV•SYSX#DISCA
:FILE DBY;DEVaSYSX#DISCA
:RUN PROGX

Remote HP 3000

SYSX

Data Bose OBX
and
Data Base OBY
reside on OISCA

Figure 5-2. Using Method 1.

5-2

r,
Using a Remote Data Base

Method 2: Using the Command Intrinsic

The second method is very similar to the first, but you use the MPE command intrinsic within your
application program to establish the communications link, remote session and remote data base access.
In order to use this method in a COBOL, RPG, or BASIC application program, you must write a
procedure in SPL or FOR TRAN and call the procedure.

To use this method, you must issue a : REMOTE HELLO command (either as part of the : OSLINE
parameter, or by issuing the : DSLINE as a seperate command) and a : FI LE equation by calling the
command intrinsic for each of these commands. The command intrinsic is explained in the MPE
Intrinsics Reference Manual, and information about accessing remote files is given in Section 4.
Figure 5-3 contains a diagram of Method 2.

Local Termfnol

:HELLO ...
:RUN PROGX

Local HP 3000 7
Pro9rom PROGX:

Remote 3000

Cont<1rne calls to SYSX
COMMAND "OSUNE SYSX"
COMMAND "REMOTE HELLO ••• " IL_ _ Oota BoH CBX
COMMAND 11FILE OBXiDEV•SYSX#DISCA" -.. ,,,

rosldes on OISCA

(pr'Oflln::im code)

COMMAND "REMOTE dalina#BYE ... 11

COMMAND "OSUNE dslfnejl:CLOSE ... "

Figure 5-3. Using Method 2

If you want to access more than one remotely located data base with an application program, you must
enter one : FI LE equation for each remote data base. It is important to remember that a : REMOTE
HELLO to the same remote computer should not be repeated within a process since the second request
for a remote session would log off the first one.

When the application program calls the DBCLOSE procedure, or is ready to terminate execution, it
must programmatically issue : REMOTE BYE and : DSLI NE commands for the communications line
specified with the foregoing command intrinsic. (Note that the application must also close all other
files and devices it opened on the remote system, not just the database files, before the : REMOTE BYE
and : DSLINE ;CLOSE commands.

5-3

Using a Remote Data Base

If you use this method, any change in the data base name, account or password information requires
modification of the application program. Since the application program maintains logical control over ~.····
the commands that are issued, it is responsible for checking all status words returned by the remote J
system.

5-4

~ ,.

Using a Remote Data Base

Method 3:. Using a Data Base-Access File

The third method involves creating a special file which we shall call the data base-access file (DBA
file). This file provides TurboIMAGE with the necessary information to establish a communications
link and a remote session. It also specifies the remote data base or data base-access file name so that
the necessary TurbolMAGE intrinsics can be executed on the remote computer.

Local Terminal

:HELLO USERA.ACCTA.GROUPA
:RUN PROGX

LOC<JI HP 3000 7
Progrom PROGX:

Colla Remote 3000

DBOPEN with BASE array
containing OBAFY. SYSX

,,,,.

Doto BoH-Accaes flle -;ii' Doto Bose OBY
named OBAFY containn: resrdes on DISCA

In occount ACCTB

Roe 1: flLE OBY;OEVQSYSX#OISCA
Roe 2: OSLIN£ S'VSX; .•.
Rec 3: USERA.ACCT A.G ROUPA•H ELLO USERB.ACCTB .••

Figure S-4. Using Method 3

5-5

Using a Remote Data Base

NOTE

With Method 3, which uses the data base-access file,
only one data base can be accessed using each data
base-access file per : DSLINE. For example, if two
computers are linked through two : DSLINEs, you can
open one data base on each line. However, a second
: REMOTE HELLO on either : DSLINE terminates the
previous : REMOTE HELLO for that particular line. For
multiple remote data base access, Method 1 or Method 2
is recomended. If the data base-access file is used,
automatic : REMOTE BYE and : DSLINE ;CLOSE
commands are issued on the communications line
specified in the data base-access file when the
application program terminates execution. Note that
even though the : REMOTE BYE and DSLINE ;CLOSE
commands happen automatically, the application (PROGX
in this example) program should provide for closing all
remote file and remote devices that might be open
before the application ends.

5-6

Using a Remote Data Base

By using this approach, the data base administrator can set up a user-table that provides more control
over the data base users, and thus, enhances data base security. To create the data base-access file, use
the Editor (Edit/3000). First use the :SET LENGTH command to accommodate the largest record to
be included in the data base-access file, up to a maximum of 128 characters. The content of this file
should be created in the format shown below.

SYNTAX

Record l

Record 2

Record 3

Records 4
through n

:FILE dbname1[=dbname2]; DEV=dsdevice#[DISC]

:DSLINE dsdevice [;LINEBUF=buffer-size] [;LOCID=local-id-sequence]
[;REMID=remote-id-sequence] [;PHNUM=telephone-number] [;EXCLUSIVE]
[;QUIET]

lusername.lacctname[,lgroupname]=HELLO rusername [/rupas~]
racctname[/rapasw] [,rgroupname[/rgpasw]][;TIME=cpusecs]
[;PRI=priority] [;HIPRI]

;INPRI=inputpriority

Same format as Record 3. Specifies other user.account ,group identification.

PARAMETERS

dbname1

dbname2

dsdevice

buff er-size

local-id-sequence

is the name of the data base or the data base-access file on the remote
system you want to access, or is the formal file designator used in the
program if dbname2 is specified.

is the name of the data base or the data base-access file on the remote
system you want to access.

is the device class name or logical device number assigned to the DS/3000
communications driver (IODSO) during system configuration, or a logical
node name associated with the X.25 Link communications device (IODSX)
during network configuration using NETCONF.

is a decimal integer specifying the size (in words) of the DS/3000 line
buffer to be used in conjunction with the communication line. The integer
must be within the range 304 <buffer-size<4096. The default value is
the buffer size entered in response to the PREFERRED BUFFER SIZE
prompt during system configuration.

is a string of ASCII characters contained within quotations marks. If you
wish to use a quotation mark within an ASCII string, use two successive
quotation marks. The maximum number of ASCII characters allowed in
the string is 16.

5-7

Using a Remote Data Base

The supplied string of ASCII characters defines the ID sequence that will be
sent from your HP 3000 to the remote HP 3000 when you attempt to ~
establish the telephone connection. If the remote HP 3000 does not)
recognize the supplied ID sequence as a valid one, the telephone connection
is terminated. The default value is the ASCII string entered in response to
the LOCAL ID SEQUENCE prompt during system configuration.

remote-id-sequence Same format as local-id-sequence.

telephone-number

EXCLUSIVE

QUIET

lusername

lacatname

lgroupname

The supplied string of ASCII characters defines those remote HP 3000 ID
sequences that will be considered valid when you attempt to establish the
telephone connection. If the remote HP 3 000 does not send a valid ID
sequence, the telephone connection is terminated. The default set of remote
ID sequences consists of the ASCII strings entered in response to the REMOTE
ID SEQUENCE prompt during system configuration.

is a telephone number consisting of digits and dashes. The maximum length
permitted (including both digits and dashes) is 30 characters. If YES was
entered in response to the DIAL FACILITY prompt during system
configuration, this telephone number will be displayed at the operator's
console of your HP 3000 and the operator will then establish the telephone
connection by dialing that number at the modem. The default telephone
number is the first one entered in response to the PHONE NUMBER prompt
during system configuration.

specifies that you want exclusive use of the particular communications line.
If the specified HSI, SSLC or INP is already open and you have specified the
exclusive option, DS/3000 will deny you access to the line (you cannot open
it). Opening an EXCLUSIVE line requires the user to have CS capability.
This capability may be granted by a system manager or account manager.

specifies that the message identifying the DS line number will be
suppressed. The messages assodated with subsequent : REMOTE HELLO and
: REMOTE BYE commands will also be suppressed. In this case, the terminal
operator is totally unaware that remote processing is taking place.

is a user name on the local HP 3000, as established by an account manager,
that allows you to log on under this account. This name is unique within
the account. It contains from 1 to 8 alphanumeric characters, beginning
with a letter. An at sign (@) may be used to indicate the log on user name.

is the name of your account on the local HP 3000 as established by a system
manager. It contains 1 to 8 alphanumeric characters, beginning with a
letter. An at sign(@) may be used to indicate the log on account.

is the name of a file group to be used for the local file domain and central
processor time charges, as established by an account manager. It contains

5-8

rusername

racctname

rgroupname

rupasw

rapasw

rgpasw

TIME=cpusecs

PRI={~~}

Using a Remote Data Base

from 1 to 8 alphanumeric charcters, beginning with a letter. An at sign(@)
may be used to indicate the log on group.

is a user name on the remote HP 3000 that allows you to log on under the
remote account. It follows the same rules as username. An at sign(@)
may be used to indicate rusername as with lususername.

is the name of the log on account on the remote HP 3000. It follows the
same rules as lacctname. An at sign (@) may be used to indicate
racctname is the same as lacctname.

is the name of the log on group on the remote HP 3000. It follows the same
rules as lgroupname. An at sign(@) may be used to indicate rgroupname
is same as lgroupname.

is the password assigned to rusername.

is the password assigned to racctname.

is the password asigned to rgroupname.

is the maximum central processor time that your remote session can use,
entered in seconds. When this limit is reached, the remote session is aborted.
It must be a value from 1 to 32767. To specify no limit, enter a question
mark or omit this parameter. Default: No limit.

is the execution priority class that the Command Intepreter uses for your
remote session, and also the default priority for all programs executed
within the remote session. BS is highest priority; ES is lowest. If you
specify a priority that exceeds the highest that the system permits for
racctname or rusername, MPE assigns the highest priority possible below
BS. Default: CS.

NOTE

OS and ES are intended primarily for batch jobs; their
use for sessions is generally discouraged.

INPRI=inputpriority is the relative input priority used in checking against access restrictions
imposed by the job fence, if one exists. It takes effect at log on time. It
must be a value from 1 (lowest) to 13 (highest priority). If you supply a
value less than or equal to the current job fence set by the console operator,
the session is denied access. Default: 8 if logging of session/job initiation is

5-9

Using a Remote Data Base

HIPRI

enabled, 1 3 otherwise.

is a request for maximum session-selection input priority, causing the
remote session to be scheduled regardless of the current job fence or
execution limit for sessions.

NOTE

You can specify this only if you have system manager or
supervisor capability. (Optional parameter)

Syntax Considerations

The following syntax should be noted:

• No spaces are allowed around the periods in the optional file reference, or separating dsdevice
and the # sign, in Record 1.

• Passwords are not allowed with the local user, account, and group names. They are not neccessary
since the local user passes the security password checks when logging on the local session.

NOTE

Remote logon parameters must define a valid logon
known to the remote machine. For example, if a
particular user name requires a password on the remote
machine, the password parameter is not optional in the
d~ta base-access file and must be supplied in the : HELLO
command.

5-10

Using a Remote Data Base

USER IDENTIFICATION.

Records 3 through n in a DBA file tell TurboIMAGE which user, account, and group names on the
local computer may access which user, account, and group names on the remote computer. You may
specify remote user identification for more than one local user by creating a record for each local
user.account,group in the format of Record 3 shown above. An at sign(@) may be substituted for
any user, account, or group name in the record. If an at sign is substituted for lusername,
lacctname, or lgroupname, the name is replaced with the corresponding name specified at log on
time.

When a local user runs a program that OBOPEN the DBA file, TurboIMAGE searches for a match
between the local user, account and group names in the OBA file and the names the user entered when
logging on to the local session. When a match is found, TurboIMAGE performs the : FILE and
: OS LINE commands, and a : REMOTE HELLO using the corresponding rusername, racctname,
rgroupname, and passwords if present. If an at sign is found, it is replaced with the corresponding
name to the left of =HELLO. For example, if the record contains USERA. ACCTA,GROUPA=HELLO
@.ACCTB,@, TurboIMAGE replaces the first at sign with USERA and the second with GROUPA If an at
sign is not found, no substitutions are made. In either case, the information to the right of =HELLO is
used as the remote log on identification.

EXAMPLE. The following syntax should be noted:

Record 1 FILE STORE;OEV=OSL1#0ISC

Record 2 OSLIN E OS L1

Record 3 USERA.ACCTA,GROUPA=HELLO USERB.ACCTA,GROUPB

Record 4 @.ACCTA,GROUPA=HELLO USERA.ACCTA,GROUPA

Record 5 USERB.ACCTB,@=HELLO USERB.ACCTX,@

End of file

If a user logs on with the log on identification indicated in the first column below, TurboIMAGE will
use the corresponding user. acct, group identification in the second column to establish
communication with the remote system.

Log-on Identification

Userl USERA.ACCTA,GROUPA
User2 USERB.ACCTA,GROUPA
User3 USERB.ACCTB,GROUPB
User4 USERA. ACCTB,GROUPB

Remote Identification Used

USERB.ACCTA,GROUPB
USERA.ACCTA,GROUPA
USERB.ACCTX,GROUPB
None, no match found.

The first user's log-on identification matches the local user, account, and group names specified in
Record 3, so the remote names specified in that record are used. The second user's account matches
Record 3 but the user name does not, so TurbolMAGE looks for another table entry with account
ACCTA Since the entry in Record 4 specifies any user(@) of ACCTA if their group is GROUPA, the
second user's remote identification will be that specified in Record 4.

The third user logs on to ACCTB and a match is found in Record 5, since it specifies the same user
name and accepts any group in the account.

5-11

Using a Remote Data Base

The fourth user's account matches Record 5 but the user name does not match. Therefore, the fourth
user cannot access the remote data base with this application program.

FILENAME.

After you have created the file with the Editor, you should KEEP it UNNumbered. The file name must
follow the same rules as a data base name. It must be an alphanumeric string from 1 to 6 characters,
the first character must be alphabetic.

ACTIVATING A DATA BASE-ACCESS FILE.

After you have constructed a data base-access file, you must use the DBUTI L utility program to
activate the file. The complete syntax for running the utility program is given in the Turbo! MAGE
Reference Manual. Here is a summary of the operating instructions:

:RUN DBUTIL.PUB.SYS

>>ACTIVATE data base-access file name

Verification follows:

FILE command:
DS LINE command:
HELLO command:

ACTIVATED

»EXIT

<result>
<result>
<result>

DBUTI L verifies that the file to be activated:

• has a file code of zero
• is an UNNUMBERED, ASCII file
• has a record length <= 1 2 8 characters
• has at least three records.

If any of these conditions is not satisfied, activation fails. If all of the above are satisfied, DBUTI L
prints the following message:

Verification Follows:

Then the utility program verifies the syntax of:

• Record 1
• Record 2 through dsdevice, which must be identical to the dsdevice specified in Record 1
• Records 3 through n, through the parameter rgpasw.

This means that for Records 2 through n only the positional parameters (those whose function is
determined by their relative position within the command) are verified by DBUTI L. The remaining
key word parameters are checked by the command interpreter at DBOPEN time.

5-12

.~

Using a Remote Data Base

If all of the above conditions are met, DBUTI L successfully activates the data base-access file, by
changing the file code to the TurbolMAGE reserved code -402. The example in Figure 5-S illustrates
how to create and activate a data base-access file. In this case, the file named DSASTR is to be used to
gain access to the STORE data base residing on a remote system in the PAYACCT account. The remote
system is referenced by dsdevice name MY.

After the data base-access file is created using the Editor, it is enabled by using the DBUTI L utility
program.

5-13

Using a Remote Data Base

HELLO MEMBER1.PAYACCT

:EDITOR

HP32201A.07.17 EDITl3000 THU, OCT 3, 1985 2:37 PM
(C) HEWLETT-PACKARD CO. 1985
/A

1
2
3
4
5

FILE STORE;DEV=MY#
DSLINE MY
MEMBER1.PAYACCT=HELLO MEMBER1.PAYACCT
MEMBER2.PAYACCT=HELLO @.PAYACCT
II

IK DBASTR,UNN
/g_

END OF SUBSYSTEM
:RUN DBUTIL.PUB.SYS
>>ACTIVATE DBASTR

Verification follows:
FILE command: Looks good
DSLINE command: Looks good
HELLO command: Looks good
HELLO command: Looks good

ACTIVATED
>>EXIT

END OF PROGRAM

Figure 5-5. Preparing a Data Base-Access File.

ACCESSING DAT A BASES.

Log on to the local
system.

Run the Editor.

Create records in data
base-access file.

Keep the file.

Run DBUTIL to enable
file.

To reference the data base from your local application program, use the data base-access file name
instead of the root file name when calling the TurbolMAGE procedure. The word array specified as
the base parameter must contain a pair of blanks followed by the left-justified data base-access file
name and terminated by a semicolon or blank. TurboIMAGE recognizes the -402 file code and
establishes a communications link to the remote HP 3000. If the data base is succesfully opened,
TurboIMAGE replaces the pair of blanks with the extra data segment number of the assigned Remote
Data Base Control Block. The base parameter must remain unchanged for the remainder of the
process. When the application program calls the DBCLOSE procedure or terminates execution,
automatic : REMOTE BYE and : DSLINE commands are issued to terminate the session and close the
communications line.

5-14

Using a Remote Data Base

Figure 5-6 illustrates use of the data base-access file through a program named APPLICAN. After
logging on to the local system, the user runs the program named APPLICAN from the local session. The
base array in this program contains 11 DBASTR". When a call to DBOPEN is executed, TurbolMAGE
establishes a communication line and remote session. When the program closes the data base,
TurbolMAGE closes the line and terminates the remote session.

:HELLO MEMBER2.PAYACCT

: RUN APPLICAN

OS LINE NUMBER = #L4
HP3000 IIB. MON, OCT 28, 1985, 1:56 PM

WELCOME TO SYSTEM B.

CPU=2. CONNECT=1. MON, OCT 28, 1985, 1:59 PM
1 OS LINE WAS CLOSED

:BYE

Figure 5-6. Using a Data Base-Access Fi1e.

QUERY/3000

Log on to local
system.

Execute application
program.

TurboIMAGE establishes
a communications line
and remote session.

When the data base is
closed, TurboIMAGE
closes the line and
terminates remote
session.

Log off local system.

When you run QUERY /3000, which is accessed with RUN QUERY. PUB.SYS, you can specify the data
base to be used in two ways. You can use the DEFINE command, which then prompts you for:

DATA-BASE,
PASSWORD,
MODE (see Table 5-1 for available modes),
DATA-SETS to be accessed,
PROC-FI LE, which stores FIND, RE PORT, and UPDATE commands as procedures,
OUTPUT, which specifies the output device.

You can also specify these options individually, as QUERY/3000 commands.

The DATA BASE= prompt can be answered with a remote data base name or the data base-access file
name. Note, however, that perfomance can be significantly improved if you run QUERY/3000 in
remote session, thereby accessing the data base on the system where it resides, rather than running
QUERY/3000 locally to access a remote data base.

5-15

Using a Remote Data Base

*

Table 5-1. Modes of Access

If your mode is: 1 you may: find (read), replace, add, and delete entnes.
(QUERY /3000 requests TurbolMAGE to
lock and unlock the data base dynamically
when accessing it.)

2 find and replace entries.

3* or 4 find, replace, add, and replace entries.

5 find entries. (QUERY/3000 locks and
unlocks.)

6, 7*, or 8 find entries.

These modes give you exclusive access to the data base. All other modes allow others to share the
data base. Search and sort items cannot be replaced.

5-16

PROGRAM-TO-PROGRAM Im
L--~~~~~-c_o_M_M_UN_l_CA_T_l_O_NS ___ [TI

In the preceding sections, you have seen how you can establish communications links between several
HP 3000 computers to form a telecommunications network and how you can execute programs in any
of the HP 3000s from a single log-on terminal. Furthermore, you have seen that programs running
within any HP 3000 in the network can, under the proper circumstances, obtain access to any of the
hardware or software resources available throughout the network. At this point, you already have a
powerful telecommunications network capability at your disposal.

But for many teleprocessing applications, it is essential that separate user programs be able to be run
simultaneously in separate computers within the network and that they be able to communicate
efficiently with one another.

Two capabilities answer that need: DS/3000 Program-to-Program (PTOP) Communications (described
in this section) and MPE Interprocess Communications (IPC) (described in Section 8).

You might ask, "Why can't the normal process-handling capabilities of MPE be used for this purpose?"
As you probably recall, the process-handling capabilities of MPE permit a user process (referred to as
the "father" process), to create and activate one or more 11son11 processes that then run concurrently
with the father process. Father and son processes can communicate efficiently with one another
through the use of the SENDMAIL intrinsics, shared extra data segments, or a shared user file.
Unfortunately, however, the process-handling capabilities of MPE were designed for use within a
single processor. They cannot handle the intervention of a communications line between father and
son processes.

Suppose you were to log on to an HP 3000, gain access to a DS line, and initiate a remote session.
Within the local session, you use a STREAM command to initiate the execution of a program named
PROGA; and within the remote session, you use a STREAM command to initiate execution of a program
named PROGB. You now have two programs executing simultaneously: PROGA in your local HP
3000 and PROGB in the remote HP 3000.

At this point, the two programs are entirely independent of one another: neither knows the other
exists. If you add a shared access disc file to the situation, PROGA and PROGB can now read from
and write to that file, and thereby communicate indirectly with one another. This arrangement works
well as long as the data being deposited in the shared file does not have to be retrieved, processed, and
responded to within a finite period of time.

There are teleprocessing applications where this type of arrangement is not only adequate but makes a
great deal of sense. For example, consider the case where a branch office is accumulating information
that must be merged once a day into a data base residing at the main office. In this case, the two
programs can make very effective use of the message file approach that IPC uses (see Section 8 for a
description).

As soon as an application tries to be truly interactive, however, this arrangement falters because the
two programs cannot communicate directly. Each must know whether or not the other program is
trying to transmit data. The more dependent each program is upon receiving data from the other, the
more likely it is that PTOP should be used for the application.

With the remote file access method of program -to-program communication (IPC), the two programs
have no way of knowing if the other program is actually executing. With the POPEN intrinsic, the
master program knows that the slave program is executing, because it created and activated the slave

6-1

PTOP Communications

program's process. Likewise, the slave program k:qows that the master program is executing, because
without an active corresponding master program, the slave itself would not be executing.

The DS/3000 program-to-program communications facility provides nine intrinsics that make it
possible for two or more user programs residing in separate HP 3000s to exchange data and control
information directly (and efficiently) over DS/3000 communications links.

The nature of any two programs that are communicating with one another in this manner is not
symmetrical. One of them (referred to as the "master" program) is always in control and is the one
that initiates all activity between the two programs. The other (referred to as a "slave" program)
always responds to requests received from the master. Those intrinsics used within a master program
are summarized in Table 6-1, and those used within a slave program are summarized in Table 6-2.

Table 6-1. Master Program-to-Program Intrinsics.

Intrinsic Name Function

PO PEN Initiates and activates a slave process in a remote HP 3000 and initiates
program-to-program communication with the slave program.

PRE AD Sends a read request to the remote slave program asking the slave to send
a block of data back to the master.

PWRITE Sends a block of data to the remote slave program.

PCONTROL Transmits a tag field (containing user-defined control information) to the
remote slave program and receives a tag field back from the slave.

PC LOSE Terminates (kills) the remote slave program's process.

PC HECK Returns an integer code specifying the completion status of the most
recently executed master program-to-program intrinsic.

6-2

~
j

PTOP Communications

Table 6-2. Slave Program-to-Program Intrinsics.

Intrinsic Name Function

GET Receives the next request from the remote master program.

ACCEPT Accepts (and completes) the request received by the preceding GET
intrinsic call.

REJECT Rejects the request received by the preceding GET intrinsic call.

PCHECK Returns an integer code specifying the completion status of the most
recently executed slave program-to-program intrinsic.

Conceptually, the DS/3000 program-to-program intrinsics are very similar to the MPE process
handling and file system intrinsics that are used for process-to-process communication within a
single-system environment. Table 6-3 compares the intrinsics used for process-to-process
communication within a single-system environment to those used for program-to-program
communication within a distributed systems environment.

6-3

PTOP Communications

Table 6-3. Single System / Distributed Systems Comparison.

Function Single System Distributed Systems
(Process Handling) (Program-to-Program)

Initiate CREATE PO PEN
another ACTIVATE
process.

Communicate Mail Intrinsics: Master (father) Requests:
with the other
process. SENDMAIL PREAD

RECEIVEMAIL PWRITE
PCONTROL
PCHECK

User Managed Extra Data Segment Sia ve (son) Responses:

GETDSEG GET
DMOVEIN ACCEPT
DMOVEOUT REJECT

PC HECK

Shared User File:

FOPEN
FREAD
FWRITE
FCONTROL
FCLOSE
FCHECK

Terminate the Father: Master (father):
other process.

KI LL (a son) PCLOSE (a slave)

TERMINATE (self TERMINATE (self
and all sons) and all slaves)

6-4

~·

r

PTOP Communications

When a DS/3000 communications link exists between two HP 3000s, a user program (the master
program) can create and activate a son process (a slave program) in the remote HP 3000. The POPEN
intrinsic performs this function, in place of the standard MPE CREATE and ACTIVATE intrinsics.

After the master and slave programs are both executing, the master program can:

• Send data (PWRITE) or control information (PCONTROL) directly to the slave program

• Send a read request (PREAD) or control request (PCONTROL) to the slave program asking that the
slave send data or control information back to the master

• Check status (PCHECK) and terminate (PCLOSE) a slave program.

Notice the striking similarity between this method of communication and the use of the MPE File
System intrinsics FREAD and FWR ITE. It is as though the master program is reading from or writing to
a file -- a very intelligent file that is capable of making decisions, controlling input/output devices,
and performing productive processing.

PTOP INTRINSICS

The following pages contain detailed descriptions of the PTOP intrinsics that were summarized in
Tables 6-1 and 6-2. For convenience in locating specific items of information in this reference
section, these detailed descriptions are presented in a format consistant with that used in the MPE
Intrinsics Reference Manual. Also, since this part of the section will be used for repeated reference,
the intrinsics are arranged in alphabetical sequence, rather than in the order of normal usage as they
were presented in the summary ta bl es.

These PTOP intrinsics are callable from SPL, FORTRAN, Pascal, or COBOL II. To call a DS/3000
PTOP intrinsic from a program, use the following procedure:

1.

2.

3.

4.

Refer to the intrinsic description to determine the parameter types and their positions in
the parameter list.

Declare the variables or array names to be passed as parameters by type at the beginning of
the program.

Include the name of the PTOP intrinsic in an INTRINSIC declaration statement, or the
language's equivalent.

Issue the intrinsic call at the appropriate place in your program.

6-5

ACCEPT
(Slave callable)

SYNTAX

Accepts (and completes) the requests received by the
preceding GET intrinsic call and returns an optional tag
field to the remote master program.

ACCEPT([itag] rnitarget] [j~jtcount]);

PARAMETERS

itag

target

tcount

integer array

A twenty-word array used for transmitting a tag field. The format of the
tag field is defined by the user's master and slave programs.

integer array

An array used for transmitting or receiving blocks of data.

For PREAD requests, this array contains the block of data to be transmitted
to the master program.

For PWRITE requests, this array receives the block of data from the
DS/3000 buffer.

For POPEN and PCONTROL requests, this parameter has no meaning and
should be omitted.

integer by value

An integer specifying the number of words (if positive) or bytes (if negative)
to be transmitted or received.

For PREAD requests, this parameter specifies how much data is to be
transmitted from target to the master program.

For PWRITE requests, this parameter specifies how much data is to be
moved from the DS/ 3 000 buff er to target.

For POPEN and PCONTROL requests, this parameter has no meaning and
should be omitted.

6-6

ACCEPT Intrinsic

CONDITION CODES

CCE

CCG

CCL

OPERATION

Request completed successfully.

(Not returned.)

An ~rror occured. Issue a PCHECK intrinsic call to determine what
happened.

The ACCEPT intrinsic accepts the request received by the most recent GET intrinsic call, completes the
requested operation, and transmits an optional tag field back to the remote master program.

~ In the case of a POPEN request, the ACCEPT call transmits an optional tag field (itag) to the remote
master program.

In the case of a PREAD request, the ACCEPT call transmits the specified number of words or bytes
(tcount) from target to the master program and transmits an optional tag field (itag) to the master
program.

In the case of a PWRITE request, the ACCEPT call moves the specified number of words or bytes
(tcount) from the DS/3000 buffer to target and transmits an optional tag field (itag) to the
master program.

In the case of a PCONTROL request, the ACCEPT call transmits an optional tag field (itag) to the
remote master program.

6-7

GET
(Slave callable)

SYNTAX

Receives the next request from the remote master
program.

ifun: =GET ([i tag] rn!i l] [!~:ionumber)) ;

FUNCTIONAL RETURN

ifun

0

2

3

4

5

PARAMETERS

itag

il

integer

An error occured. This value is returned only when the condition code CCL
is also returned. Issue a PCHECK intrinsic call (with a dsnum parameter of
zero) to determine what happened.

POPEN request received.

PREAD request received.

PWRITE request received.

PCONTROL request received.

This value is returned only when the condition code CCG is also returned.
It indicates that a pending MPE File System 1/0 without wait request was
completed (instead of the expected remote DS/3000 1/0 request).
ionumber contains the file number associated with the completed 1/0
request.

integer array

A twenty-word array used for receiving a tag field. The format of the tag
field is defined by the master and slave programs.

integer

A word that has meaning only when a PREAD or PWRITE request is received
from the master program.

6-8

·~

~
~·

ion umber

GET Intrinsic

For a PREAD request, il contains an integer specifying the number of words
or bytes requested by the master program.

For a PWRITE request, il contains an integer specifying the number of
words or bytes transmitted from the master program to the DS/ 3 000
buff er on the remote system.

integer

A word that has meaning only when the condition code CCG and an ifun
of 5 are returned. In that case, ionumber contains the MPE File System
file number associated with the completed 1/0 without wait request.

Default: No file number is returned.

CONDITION CODES

CCE

CCG

CCL

OPERATION

Request received successfully.

The implicit IOWAIT(O) call issued by the GET intrinsic completed a
pending remote MPE File System 1/0 without wait request instead of a
remote DS/ 3000 1/0 request. ionumber contains the file number
associated with the completed File System request.

An error occurred. Issue a PCHECK intrinsic call to determine what
happened.

The GET intrinsic receives the next request from a local master program and accepts an optional tag
field (available in itag). The GET intrinsic call implicitly issues an IOWAIT(O) intrinsic call. An
ifun of 0 indicates that an IOWAIT error occurred. An ifun of 5 will occur only if you are executing
MPE File System intrinsic calls without wait in your remote program and the implicit IOWA IT (0) call
completes a pending File System 1/0 request instead of the expected DS/3000 1/0 request (in this
case, you will have to issue another GET call after processing the completed File System 1/0 request in
order to receive the expected DS/3000 1/0 request).

NOTE

You must not use IOWAIT calls within a program
containing DS/3000 GET calls. If you were to use an
IOWAIT(O) call and it responded to a DS/3000 1/0
request, your program would not be able to make any
sense out of the information returned by the IOWAIT
call.

6-9

PCHECK
(Slave and Master callable) Returns an integer code specifying the completion status

of the most recently executed DS/3000
program-to-program intrinsic.

SYNTAX

ioode:=PCHECK(dsnum);

FUNCTIONAL RETURN

When the PCHECK intrinsic executes, it returns to the calling program a number (ioode) that specifies
the completion status of the most recently executed DS/3000 program-to-program intrinsic. The
various values of ioode are shown in Appendix A under the heading "DS/3000 Functional Errors.11

PARAMETERS

dsnum integer by value

MASTER PROGRAM:

SLAVE PROGRAM:

The link identifier returned by the particular
POPEN intrinsic that initiated communication
with the remote slave program.

0 (zero); no link identifier is returned to a
slave program.

CONDITION CODES

CCE PCHECK request successfully completed.

CCG (Not returned.)

CCL PCHECK request denied because dsnum was invalid.

OPERATION

The PCHECK intrinsic returns an integer value that specifies the completion status of the most recently
executed DS/3000 program-to-program intrinsic.

6-10

(Master callable)

r SYNTAX

PC LOSE (dsnum);

PARAMETERS

dsnum integer by value

PC LOSE
Terminates program-to-program communication with a
remote slave program.

The line number returned by the particular POPEN intrinsic call which
initiated communication with the remote slave program.

~ CONDITION CODES

CCE

CCG

CCL

OPERATION

Successful completion.

(Not returned.)

Request denied; an error occurred. Issue a PCHECK intrinsic call to
determine what happened.

The PCLOSE intrinsic terminates the remote slave program associated with dsnum. The particular
communications line remains open.

6-11

PCONTROL
(Master callable) Exchanges tag fields with the remote slave program.

SYNTAX

PCONTROL(dsnum[!~:itag]);

PARAMETERS

dsnum

itag

integer by value

The link identifier returned by the particular POPEN intrinsic call which
initiated communication with the remote slave program.

integer array

A twenty-word array used for transmitting and receiving a tag field. The
format of the tag field is defined by the master and slave programs and
may serve any purpose you desire.

CONDITION CODES

CCE

CCG

CCL

OPERATION

Request accepted by remote slave program.

Request rejected by remote slave program.

Request denied; an error occurred. Issue a PCHECK intrinsic call to
determine what happened.

The PCONTROL intrinsic transmits a tag field to the remote slave program and accepts one in return.
The remote slave program must issue a GET intrinsic call followed by either an ACCEPT or REJECT call
to complete the PCONTROL operation. Both the ACCEPT and REJECT calls transmit a tag field back to
the master program.

Although this intrinsic was designed specifically for the exchanging of tag fields, you will notice that
itag is an optional parameter (it is also optional for the ACCEPT and REJECT slave
program -to-program calls). If the master program did not transmit a tag field, the returned tag field
(if any) is not accessible.

The PCONTROL activity is illustrated in Figure 6-1.

6-12

~

'

MASTER
Send control request and optional
tag field.

Send optional
tag field.

GET

ACCEPT

or

REJECT

PCONTROL Intrinsic

SLAVE

DS/3000
BUFFER

Figure 6-1. PCONTROL Activity.

6-13

POPEN
(Master callable)

SYNTAX

Initiates program-to-program communication with a
remote slave program.

dsnum: =POPEN(dsdevioe,progname[!~!itag] (h~jentryname] rn'.param]
[..... fl] (""'. k •] [" .. 'dl • 1 ("'... --' 1 ["'''b f . 1) l~l ags j~jstac size !~! size !j[tma;uata l~i u size

FUNCTIONAL RETURN

·When the POPEN intrinsic executes, it returns to the master program a number (dsnum) by which
DS/3000 uniquely identifies the particular communications link. This number is analgous to the file
number returned by the MPE FOPEN intrinsic in that it is used in all subsequent master
program-to-program intrinsic calls to reference the remote slave program.

PARAMETERS

dsdel)ioe

progname

itag

entryname

byte array

Contains a string of ASCII characters terminated by a space. This string
must be the device class name, logical device number, or node name used in
the : DSLINE or : REMOTE HELLO command that opened the
communications line you will be using.

byte array

Contains a string of ASCII characters terminated by a space. This string is
the name (with optional group and account names) of an MPE program file
(residing on a disc connected to the remote HP 3000) containing the remote
slave program.

integer array

A twenty-word array that is used for transmitting and receiving tag fields.
The format of the tag field is defined as part of the user's application.

Default:

byte array

A tag field of all zeros is sent; the returned tag field (if
any) is not available to the master program.

Contains a string of ASCII characters terminated by a space. This string is
the name of the entry point (label) at which execution of the remote slave
program is to begin.

Default: Primary entry point.

6-14

pa ram

flags

POPEN Intrinsic

integer by value

A word used to transfer control information to the new (remote) process.
Any instruction in the outer block of code in the new process can access
this information in location Q-4.

Default: Word is filled with zeros.

logical by value

A word whose bits, if on, specify the loading options for the slave program:

NOTE

Bit groups are denoted using the standard SPL notation.
Thus bit(1 S: I) indicates bit 1 S, bi ts(1 0: 3) indicates bits
1 0, 11, and 1 2.

Bit(15: 1) - (Always set on.)

Bit(14: 1) - LOADMAP bit. If on, a listing of the allocated (loaded) program
is produced on the job/session list device. This map shows the Code
Segment Table (CST) entries used by the new process. If off, no map is
produced.

Default: Off.

Bit(l 3: 1) - DEBUG bit. Bit must be off (O) -- no breakpoint can be set.

Default: Off.

Bit(12: 1) - If on, the slave program is loaded in non -privileged mode. If
this bit is off, the program is loaded in the mode specified when the
program file was prepared.

Default: Off.

6-15

POPEN Intrinsic

Bits(10:2) - LIBSEARCH bits. These bits denote the order in which remote ~
libraries are to be searched for the slave program:

00 System Library

01 - Account Public Library, followed by System Library.

10 - Group Library, followed by Account Public Library and System
Library.

Default: 00

Bit(9: 1) - NOCB bit. If on, file system control blocks are established in an
extra segment. If off, control blocks may be established in the Process
Control Block Extension (PCBX) area. ~

Default: Off.

NOTE

This bit should be set on if the slave program uses a large
stack.

Bits(7:2) - Reserved for MPE. Should be set to zero.

Bits(5:2) - STACKDUMP bits. Bits must be off (00).

Default: 00

Bit(4: 1) - Reserved for MPE. Should be set to zero.

NOTE

The following bits (0:4) are ignored, because the bit pair
(5:2) must be 00.

Bit(3: 1) - DL to QI bit. If on, the portion of the stack from DL to QI is
dumped. If off, this portion of the stack is not dumped.

Default: Off.

Bit(2: 1) - QI to S bit. If on, the portion of the stack from QI to S is dumped.
If off, this portion of the stack is not dumped.

6-16

stacksize

dlsize

mar.data

buf size

POPEN Intrinsic

Default: Off.

Bit(l:l) - Q-63 to S bit. If on, the portion of the stack from Q-63 to Sis
dumped. If off, this portion of the stack is not dumped.

Default: Off.

integer by value

An integer (Z - Q) denoting the number of words assigned to the local stack
area bounded by the initial Q and Z registers.

Default: The same as that specified in the program file.

integer by value

An integer (DB - DL) denoting the number of words in the user-managed
stack area bounded by the DL and DB registers.

Default: The same as that specified in the program file.

integer by value

The maximum size allowed for the process stack (Z - DL) area in words.
When specified, this value overrides the one established at
program -preparation time.

Default:

integer by value

If not specified, and not specified in program file either,
MPE assumes that the stack will remain the same size.

The size in words of the communications buffer (DS/3000 buffer) that is to
be established by the remote DS/3000 software. It has a maximum value of
4096 words. Note that this parameter defines the maximum number of
words of data that can be transmitted by a PWRITE or PREAD intrinsic call.

Default: Same size as the line buffer defined by the : DSLINE
command (LINEBUF=) for the first : DSLINE issued to the
dsdevice. Will never be smaller than 304 words.

If no LI NEBUF= is specified by the first : DSLI NE
command, then the default configuration length is used. If
X.25 is being used, the default configuration length will be
138.

6-17

POPEN Intrinsic

CONDITION CODES

CCE

CCG

CCL

OPERATION

Request accepted by remote slave program.

Request rejected by remote slave program.

Request denied; an error occurred. Issue a PCHECK intrinsic call to
determine what happened.

The POPEN intrinsic creates and activates a process in the remote HP 3000 for the specified remote
slave program (progname) and optionally transmits a tag field (itag) to that remote slave program.
The remote slave program must issue a GET intrinsic call followed by either an ACCEPT or REJECT call
to complete the POPEN operation. The remote slave program may transmit a tag field back to the
master program as part of an ACCEPT or REJECT call. If the master program transmitted a tag field,
then the returned tag field (if any) is available in itag. If the master program did not transmit a tag
field, then the returned tag field (if any) is not accessible.

The bufsize parameter specifies the length in words of an area to be established by the remote
DS/3000 software as a communications buffer. This buffer is established implicitly as part of the GET
call that receives the POPEN request. The value will be the maximum size of a PREAD or PWRITE data
buffer.

NOTE

fhe master program is limited to one slave program on
each line. Thus, only one POPEN (to a given node) is
permitted, assuming only one line connects the two
systems. After a POPEN. intrinsic call, the remote slave
program remains activated, and both the
communications link and the DS/3000 buffer remain
intact, even if the POPEN request is rejected ~Y the
remote slave program. T~e meaning of a POPEN reject
by the remote slave program must be established as part
of the design of the user's application.

The POPEN activity is illustrated in Figure 6-2.

6-18

(HP 3000)
MASTER

1) Create and activate a process for
the remote slave program.

2) Send optional tag field.

GET

ACCEPT

or

REJECT

(HP 1000)
SLAVE

Figure 6-2. POPEN Activity.

6-19

POPEN Intrinsic

DS/3000
BUFFER

PRE AD
(Master callable) Asks the remote ·slave program to return a block of data.

SYNTAX

lgth:=PREAD(dsnum,target,tcount[,itag]);

FUNCTIONAL RETURN

The PREAD intrinsic returns a positive integer value showing the length (lgth) of the information
transferred. If the tcount parameter in the PREAD call was positive, the positive value returned
represents a word count; if the tcount parameter was negative, the positive value returned represents
a byte count.

PARAMETERS

dsnum

target

tcount

itag

integer by value

The link identifier returned by the particular POPEN intrinsic call which
initiated communication with the remote slave program.

integer array

The array into which data received from the remote slave program will be
deposited. ·~

integer by value

The requested number of words (if positive) or bytes (if negative) of data

integer array

A twenty-word array used for transmitting and receiving a tag field. The
format of the tag field is defined by the master and slave programs and
may serve any purpose the user desires.

CONDITION CODES

CCE

CCG

CCL

Request accepted by remote slave program.

Request rejected by remote slave program.

Request denied; an error occurred. Issue a PCHECK intrinsic call to
determine what happened.

6-20

PREAD Intrinsic

~ OPERATION

The PREAD intrinsic transmits a read request to the remote slave program and optionally transmits a
tag field from itag to the remote slave program. The remote slave program must issue a GET
intrinsic call followed by either an ACCEPT or REJECT call to complete the PREAD operation. The GET
call moves the tag field from the master program into the itag field provided in the remote slave
program. The ACCEPT call moves the requested block of data from the remote program's data buffer
into the target in the master program, and it also sends the optional i tag back to the master program.
The REJECT call transmits no data; it only returns the optional tag field. If the master program did
not transmit a tag field, the returned field (if any) is not accessible.

The PREAD activity is illustrated in Figure 6-3.

TARGET

USER'S
BUFFER

(HP 3000)
MASTER

r---- ---- ---
GET

ACCEPT

(HP 1000)
SLAVE

(Send data from user's
buffer to remote master
program)

--- USER'S
--------- -- BUFFER

or

REJECT
(no data transmitted)

Figure 6-3. PREAD Activity.

6-21

PW RITE
(Master callable) Sends a block of data to the remote slave program.

SYNTAX

PWRITE (dsnum, target, tcount [!~!itag]);

PARAMETERS
dsnum

target

tcount

itag

integer by value

The link identifier returned by the particular POPEN intrinsic call which
initiated communication with the remote slave program.

integer array

The array from which data will be transmitted to a remote slave program.

integer by value

The requested number of words (if positive) or bytes (if negative) of data.

integer array

A twenty-word array used for transmitting and receiving a tag field. The
format of the tag field is defined by the master and slave programs and
may serve any purpose the user desires.

CONDITION CODES

CCE

CCG

CCL

OPERATION

Request accepted by remote ·slave program.

Request rejected by remote slave program.

Request denied; an error occurred. Issue a PCHECK intrinsic call to
determine what happened.

The PWRITE intrinsic transmits a block of data (number of words or bytes = tcount) from target to
the DS/3000 buffer in the remote HP 3000, and optionally transmits a tag field from itag to the
remote slave program. The remote slave program must issue a GET intrinsic call followed by either an
ACCEPT or REJECT call to complete the PWRITE operation. The GET call moves the tag field from the
master program into the itag field provided in the remote slave program. The ACCEPT call moves the
data from the remote DS/3000 buffer into the remote slave program's buffer, and it also sends the
optional itag back to the master program. The REJECT call refuses the write request (the data in the ·~

6-22

PWRITE Intrinsic

DS/3000 buffer is no longer accessible to the slave program) and returns the optional tag field to the
master program.

The PWRITE activity is illustrated in Figure 6-4.

(HP 3000) (HP 1000)
(data)

~--------------------------------~
f ~
I
I
I
I
l

USER'S
BUFFER

TARGET

PWRITE

MASTER

Send write request, optional
tag field, and data.

Send optional
tag field.

GET

SLAVE

ACCEPT

(data moved from DS/3000 I
buffer to user's buffer) I

\

or

REJECT
(data lost to user's program)

Figure 6-4. PWRITE Activity.

6-23

_ _,

DS/3000
BUFFER

USER'S
BUFFER

REJECT
(Slave callable)

SYNTAX

REJECT([itag]);

PARAMETERS

itag integer array

Rejects the request received by the preceding GET
intrinsic call and returns an optional tag field to the
remote master program.

A twenty-word array used for transmitting a tag field. The format of the
tag field is defined by the user,s master and slave programs.

CONDITION CODES

CCE

CCG

CCL

OPERATION

Response transmitted successfully to the remote master program.

(Not returned).

An error occurred. Issue a PCHECK intrinsic call to determine what
happened.

The REJECT intrinsic rejects the request received by the most recent GET intrinsic call and transmits
an optional tag field (i tag) back to the remote master program.

6-24

.) --

r

PTOP Communications

INTERFACING WITH COBOL AND BASIC

Access to the program-to-program communications capability is available to ANS COBOL (COBOL/I)
and BASIC users only through the interface routines described in Appendices Band C, respectively.

Programs written in SPL, FOR TRAN, and COBOL 11/3000 can use the PTOP intrinsics described in
this section.

PTOP EXAMPLE

This example shows how two programs can communicate with one another by using the master and
slave program-to-program intrinsics. The comments included within each program tell Nhat is
happening.

Master Program

1 $CONTROL USLINIT,ADR,MAP,CODE
2 BEGIN
3
4 COMMENT
5 NAME Of PROGRAM IS MASTERP.
6 THE SOURCE IS MASTERS.
7 THIS PROGRAM IS TO BE RUN ON THE MASTER CPU. IT WILL START
8 THE "SLAVEP" PROGRAM ON THE SLAVE CPU. THE PROGRAM WILL THEN
9 RECEIVE A KNOWN TEST PATTERN FROM THE USER TERMINAL, WRITE IT

10 TO THE REMOTE DISC FILE, READ IT BACK 5 TIMES, AND PRINT IT
11 ON THE LOCAL LP 5 TIMES.
12 THE TRANSFER Of DATA IS DONE THRU PTOP.;
13
14
15
16
17
18
19
20
21

INTEGER
ERROR,
LINE 'NUM,
I,
J,
LPDEV'NUM;

22 BYTE ARRAY DS'DEVICE(0:6):= 11
II

23 BYTE ARRAY LPDEV(0:2):="LP 11
;

24 BYTE ARRAY LPFILE(0:6):= 11 LPFILE II

25 BYTE ARRAY MSG(0:79);
26 BYTE ARRAY PROG'NAME(0:19):= 11 SLAVEP.PUB.SUPPORT II

27
28
29
30
31
32
33

LOGICAL ARRAY IOBUF(0:39);
LOGICAL ARRAY ITAG(0:19):=20(%020040);
LOGICAL ARRAY MSGW(*)=MSG;
LOGICAL ARRAY DS'DEVW(*)=DS'DEVICE;

6-25

PTOP Communications

34
35 INTRINSIC DEBUG,FCLOSE,FOPEN,FWRITE,PCONTROL;
36 INTRINSIC PCLOSE,POPEN,PREAD,PRINT,PWRITE,READ;
37
38 MOVE MSG:=" INPUT NAME OF DSDEVICE";
39 PRINT(MSGW,-28,0);
40 READ(DS'DEVW,-7);
41
42 MOVE MSG:=" POPEN ISSUED11

;

43 PRINT(MSGW,-18,0);
44
45 LINE'NUM:=POPEN(DS'DEVICE,PROG'NAME,ITAG);
46 IF <> THEN
47
48
49
50
51
52
53
54
55
56

BEGIN
PRINT(ITAG,20,0);
ERROR := 1;
GO TO ERR'PROC;

END
ELSE

PRINT(ITAG,20,0);

57 MOVE MSG:=" POPEN COMPLETED SUCCESSFULLY";
58 PRINT(MSGW,-33,0);
59
60 LPDEV'NUM:=FOPEN(LPFILE,4,1,40,LPDEV);
61 IF <> THEN BEGIN ERROR:=2;GO TO ERR'PROC; END;
62
63 MOVE MSG:= 11 IN PUT TEST RECORD MAX. 80 CHAR";
64 PRINT(MSGW,-30,0);
65
66 MOVE IOBUF:= 11

"; «CLEAR OUT BUFFER AREA»
67 MOVE IOBUF(1):=IOBUF,(39);
68
69 READ(IOBUF,-80); <<GET RECORD TO WRITE>>
70
71 PWRITE(LINE'NUM,IOBUF,40); <<SEND RECORD TO REMOTE>>
72 IF <> THEN BEGIN ERROR:=3;GO TO ERR'PROC; END;
73
74 MOVE MSG:=" DISC FILES BEING XFERRED FROM REMOTE";
75 PRINT(MSGW,-41,0);
76 J:=-1; <<START READING FROM REMOTE>>
77 WHILE (J:=J+1)<5 DO
78 BEGIN
79 MOVE MSG:=" PREAD ISSUED";
80 PRINT(MSGW,-19,0);

MOVE IOBUF:=" 11
;

MOVE IOBUF(1):=IOBUF,(39);

81
82
83
84
85
86
87

I:=PREAD(LINE'NUM,IOBUF,40,ITAG);
IF = THEN

BEGIN

6-26

88 IF J=4 THEN
89 BEGIN
90 MOVE MSG:=" ALL DISK RECORDS XFERRED";
91 PRINT(MSGW,-29,0);
92 END;
93 END
94 ELSE
95 BEGIN ERROR:=4;GO TO ERR'PROC; END;
96 FWRITE(LPDEV'NUM,IOBUF,1,0);
97 IF <> THEN BEGIN ERROR:=4;GO TO ERR'PROC;END;
98 END;
99

100 FCLOSE(LPDEV'NUM,0,0);
101 PCLOSE(LINE'NUM);
102 IF <> THEN BEGIN ERROR:=S;GO TO ERR'PROC;END;
103 MOVE MSG:="END OF MASTER PROGRAM";
104 PRINT(MSGW,-21,0); GO TO' END'IT;
105
106 ERR'PROC: <<HANDLE ERROR CONDITIONS>>
107 DEBUG;
108 FCLOSE(LPDEV'NUM,O,O);
109 PCLOSE(LINE'NUM);
110 MOVE MSG:="ERROR, END MASTER PROGRAM";
111 PRINT(MSGW,-25,0);
112
113 END'IT: END.

Slave Program

1 $CONTROL USLINIT,ADR,MAP,CODE
2
3 BEGIN
4 COMMENT
5 THE NAME OF THIS PROGRAM IS SLAVEP.
6 THE NAME OF THE SOURCE IS SLAVES.
1 THIS PROGRAM IS TO BE COMPILED AND PREP'ED ON THE

PTOP Communications

8 SLAVE HP3000 SYSTEM. IT WILL BE INITIATED FOR EXECUTION
9 BY THE MASTER. THE FUNCTION OF THIS PROGRAM IS TO

10 LOAD A DISC FILE WITH 5 KNOWN TEST PATTERNS THAT WILL
11 BE TRANSFERRED TO THE MASTER 5 TIMES AND PRINTED ON THE
12 MASTER'S LINE PRINTER 5 TIMES;
13
14
15 INTEGER
16 ERROR,
17 DISK'FILENUM,
18
19
20
21
22

I ,
IL,
IONUMBER,
J· ,

23 BYTE ARRAY MSG(0:79);
24 BYTE ARRAY TEST(0:4):="TEST II

6-27

PTOP Communications

25
26 LOGICAL ARRAY DISK'BUF(0:39);
27 LOGICAL ARRAY ITAG(0:19):=20(020040);
28 LOGICAL ARRAY MSGW(*)=MSG;
29
30 INTRINSIC FOPEN,DEBUG,FWRITEDIR,FREADDIR,FCLOSE;
31 INTRINSIC GET,ACCEPT,PRINT,READ,REJECT;
32
33
34 IL:=40;
35 MOVE MSG:="ISSUING A GET (REMOTE)";
36 PRINT(MSGW,-22,0);
31 I:=GET(ITAG); <<GET FOR POPEN>>
38 IF < THEN
39 BEGIN
40 MOVE ITAG:="ERROR ON GET;POPEN";
41 GO TO ERR'PROC;
42 END;
43
44 IF 1=1 THEN
45 BEGIN
46 MOVE MSG:="POPEN RCVD ... ISSUING AN ACCEPT (REMOTE)";
47 PRINT(MSGW,-39,0);
48 ACCEPT(ITAG); <<ACCEPT FOR POPEN>>
48 END;
50
51 MOVE ITAG:="POPEN ACCEPT SUCCESSFUL (REMOTE)";
52
53 DISK'FILENUM:=FOPEN(TEST,4,%104,-80,,,,1,1,10D);
54 IF<> THEN BEGIN ERROR:=1;GO TO ERR'PROC; END;
55
56 I:=GET; <<TEST REC FROM MASTER>>
57 IF <> THEN BEGIN ERROR:=2; GO TO ERR'PROC; END;
58 IF I=3 THEN <<PWRITE RECEIVED>>
59 BEGIN
60 ACCEPT(,DISK'BUF);
61 IF <> THEN BEGIN ERROR:=3; GO TO ERR'PROC; END;
62 END;
63
64
65 I:=-1; <<START WRITING TEST FILE>>
66 WHILE(I:=I+1) < 5 DO
67 BEGIN <<WRITE REC TO DISK>>
68 FWRITEDIR(DISK'FILENUM,DISK'BUF,40,DOUBLE(I));
69 IF <> THEN BEGIN ERROR:=4; GO TO ERR'PROC; END;
10
71 END; <<END WRITING TEST FILE>>
72
13 J:=-1; <<SEND DISK FILE TO MASTER>>
74 WHILE(J:=J+1)<5 DO
75 BEGIN
76 MOVE MSG:="ISSUING A GET (REMOTE)";
77 PRINT(MSGW,-22,0);
78 I:=GET(ITAG,IL,IONUMBER);

6-28

79
80
81
82

83
84
85
86
87
88
89
90
91
92
93
94

IF < THEN BEGIN ERROR:=S; GO TO ERR'PROC; END;
IF I=2 THEN

BEGIN
MOVE MSG:="PREAD RCVD ... ISSUING AN ACCEPT";
(REMOTE)";
PRINT(MSGW,-39,0);

END
ELSE

BEGIN ERROR:=6;GO TO ERR'PROC; END;
MOVE DISK'BUF:=%020040;
MOVE DISK'BUF(1):=DISK'BUF(0),(39);
FREADDIR(DISK'BUF,40,DOUBLE(J));
IF <> THEN BEGIN ERROR:=7;GO TO ERR'PROC; END;
ACCEPT(ITAG,DISK'BUF,40);
IF <> THEN BEGIN ERROR:=8;GO TO ERR'PROC; END;

END;

95 FCLOSE(DISK'FILENUM,O,O); GO TO END'IT;
96
97 ERR'PROC: <<HANDLE ERROR CONDITIONS>>
98 DEBUG; <<WILL PROMPT AT MASTER SIDE TERMINAL>>
99 REJECT;

100 I:=GET; <<ALLOW PCLOSE>>
101 GO TO ERR'PROC;
102
103 END'IT: END;

6-29

PTOP Communications

PTOP Communica:iions

6.;.30

-r
~~---N_E_T_w_o_RK~Fl-LE __ T_R A_N_s_F_ER__.f~H,
The Network File Transfer (NFT) program runs on an HP 3000 Computer System to provide the
ability to copy disc files efficiently. When initiated over a DS/3000 communications link, the NFT
program can copy a file to or from any other adjacent HP 3000 computer which also provides this
service.

FEATURES OF NFT

• You can initiate copy operations from sessions, jobs, or programs.

• DSCOPY can be used to copy users' files and MPE system files, as well as data management files,
such as KSAM/3000 files.

• There is only one NFT command to learn -- : DSCOPY.

• There are two intrinsics: DSCOPY and DSCOPYMSG. The intrinsics are callable from programs
written in SPL/3000, COBOL, Pascal, FORTRAN, and BASIC.

• NFT can be used in Interactive Mode to submit a series of copy requests. When a DSCOPY
command or intrinsic initiates Interactive Mode, users' requests are placed in a transaction file
whose formal designator is DSCOPYI. The default for this file is $STDINX. This file must be
unnumbered.

• NFT can record a history of all copy operations performed by DSCOPY requests. The history
report can be printed to $STDLIST, as well as to a secondary file. The secondary file has the
formal designator DSCOPYL.

• You can initiate a copy operation from a system other than the system(s) where the source and
target files are located.

~ • NFT can efficiently copy disc files within your local HP 3000.

• The files referenced by a DSCOPY command (or intrinsic) may reside on system or private volumes.

File transfers can involve one or more computers. In all transfers, there are three distinct roles a
system can play:

1. The initiator is always the system where the : DSCOPY command originates. The initiator
functions only in an outgoing sense. It is similar to PTOP operation, where the PTOP
master program always issues a POPEN out across a DS line to cause a slave to be created
and activated on a remote system.

2. The producer is the source computer where the file that is to be copied resides.

3. The consumer is the target computer where the new file will reside.

7-1

Network File Transfer

You should remember that one system may be performing two or all three of these roles.

When a DSCOPY request names a remote source, the DS line to that computer must be open and a
remote session must exist. The same is also true when a remote target is specified.

When DSCOPY is used to transfer files over two or more systems, the following restrictions apply:

1. DSCOPY must be initiated only from the master side of the OS line. The slave (remote) side
cannot be the initiator of a DSCOPY command.

2. DSCOPY must not be initiated programmatically from either a master or a slave PTOP
program in any direction.

7-2

:DSCOPY

r SYNTAX

where the command syntax has the following meanings:

source

target tfile[~!dsdell] [{~}[tde11)] [;FCODE=sourcefilecode]

To submit a series of transfer requests, omit all of the source and target parameters to initiate
Interactive Mode. NFT prompts you for input and, after the transfer completes, prompts you again
for the next transfer request. r Terminate Interactive Mode by typing I I or (CONTROLlY.

PARAMETERS
sfile

sdsdelJ

sdelJ

Identifies the file to be copied. The name can be written in the following
format:

sfile[\lockword][.groupname][.accountname]

If the source file is in a group.account different from the requestor's
log-on group.account, the requestor must have read and lock access to
the source file. (Lock access means that the file cannot be opened for
writing while : DSCOPY is copying it.)

The device classname, logical device number, or node name that was used to
open the communications link to the remote computer where the source file
resides.

Default: The local system (that is, the system where the transfer
request is submitted).

The classname or logical device number of the disc where the source file
resides.

Default: DISC.

7-3

:DSCOPY

tfile

tdsdelJ

*

tdelJ

FCODE=
source f ilecode

USE

Available

Breakable?

Specifies the file to receive the data. The name can be written in the
following format:

tfile[\lockword][.groupname] [.accountname]

Default: The new file has the same filename as the source file. The
default groupname and accountname are the log-on
groupname and accountname. Security is on for the new
file, even though the source file may have been released.

The device classname, logical device number, or nodename that was used to
open the communications link to the remote computer where the target file
will reside.

Default: : DSCOPY copies the sourcefile to the local computer and
assigns the same filename as the sourcefile name. If the
source computer is the local system, this default causes a
file system error (because the file already exists).

Means the target dsdevice (the target computer) is the same as the source
dsdelJice (the source computer).

The device classname or logical device number of the disc where the new
file should reside.

Default: DISC

Applies to privilege mode files only. Specifies that the new file will have
the same negative file code as the source file. System Manager or Privilege
Mode capability is required for both the source and target file creators.

in Session? YES

in Job? YES

in Break? NO

Programmaticall y? NO*

No**

* Call the DSCOPY intrinsic rather than use the COMMAND intrinsic.

** Use (CONTROLIY, rather than (BREAK I.

7-4

~ OPERATION

NOTE

[BREAK) is disabled during DSCOPY.

If you enter [CONTROLJY during a copy operation, DSCOPY
prints the percentage of the transfer that is complete
and prompts whether to cancel or continue the
operation.

Source and Target Files

:DSCOPY

In a DSCOPY command, source and target files are referenced as defined by the systems upon which
they reside.

There is no default for a sourcefile.

A default for a targetfile is derived from the sourcefile. The default consists of the first sequence of
characters in the sourcefile name which constitutes a legal HP 3000 file name. For example:

:DSCOPY SFILE.SGROUP,SNODE

Here the source file is SFI LE (in group SGROUP on a remote system). The targetfile is generated in the
users' log-on group (on the local system) and is assigned the default name SF ILE. The characteristics
of the new file are the same as those of the source file.

In order to transfer a file with a negative file code (i.e., a privilege mode file), the FCODE= parameter
must be included in the command string, and the log-on user on both the source and target systems
must have System Manager (SM) or Privilege Mode (PM) capability. (Remember that the user
requesting the transfer (the initiator) is not necessarily the log-on user at the target (the consumer).)
After a successful copy operation, the new file has the same negative file code as the source file (as
specified by sourcefilecode). For example:

:DSCOPY SFILE,SNODE TO TFILE;FCODE=-401

When copying KSAM files, both the data file and its key file are copied. The DSCOPY user can
specifically name a data file/key file pair by enclosing the file names in quotes and separating them
by a comma. For example:

:DSCOPY SFILE TO 11 DATAFILE,KEYFILE 11

When a user specifies a source KSAM data file and the NFT subsystem must generate a default key
file, it uses the data file name and appends a K. For example:

:DSCOPY SFILE, LINE1 TO TFILE, LINE2

7-5

:DSCOPY

In the case where SFI LE is a KSAM data file, the new data file on the computer connected to LINE2 ·~
will be named TFI LE and the associated key file will be named TFI LEK by default.

EXAMPLES

Local Copy

NOTE

DSCOPY cannot copy to a back-referenced target file
(e.g., the form DSCOPY SFI LE TO *TFI LE is not
permitted).

To make a local copy of SFI LE and name the new file TFI LE, use either of the following:

: DSCOPY SFI LE TO TFI LE or : DSCOPY SFI LE; TFI LE

SFILE

LOCAL

I
TFILE I

I

The following example copies a file named SFI LE from another group on the local system (SGROUP) ·~
into a file in the log-on group. The new file is also named SFI LE.

:DSCOPY SFILE.SGROUP

SFILE

SGRO UP

LOCAL

7-6

I
SFILE I

I

:DSCOPY

Remote-to-Local Copy

To copy a file from the computer connected to DS line SYSA into your log-on group (on the local
system), enter:

:DSCOPY SFILE,SYSA;TFILE

LOCAL

SYSB

REMOTE

SFILE

7-7

:DSCOPY

Local-to-Remote Copy

To copy a file named SFI LE (on the local system) to the computer attached to DS line SYSB and name
the new file SF I LE, enter:

:DSCOPY SFILE TO ,SYSB

LOCAL

SFILE

1----
SFILE :

l ____ _J

7-8

:DSCOPY

Remote Copy

An asterisk(*) means the target system is also the source system. The following example copies a file
named SFI LE to a new file named TF I LE. Both files reside on the remote computer connected to the
dsline named S YSA.

:DSCOPY SFILE,SYSA TO TFILE,*

LOCAL

SYSA

SFlLE
r- -,
I TFILE I
I I ----..J

REMOTE

7-9

:DSCOPY

Remote -to -Remote Copy

The next example illustrates a command that copies a file from one remote system to another. In this
case, the communications lines to both remote computers must be open and a remote session must exist
on each system.

:DSCOPY SFILE,SYSA TO TFILE,SYSB

,------.
TFILE :

I I '-----

REMOTE

LOCAL REMOTE

SFILE

7-10

:DSCOPY

r INTERACTIVE MODE

To execute a series of transactions interactively, enter the : DSCOPY command without parameters.
Now the system prompts you for input with the word DSCOPY and accepts your response from the file
DSCOPYI (whose default is $STDINX).

The syntax required for your response follows the format already described for source and target
parameters.

You can issue MPE comands while in Interactive Mode by entering a colon (:)before the command.
The MPE commands allowed in Interactive Mode are those allowed by the COMMAND intrinsic.

Note the following about Interactive Mode:

• To continue your response on the next line, enter an ampersand(&) as the last non-blank
character on the current line and press (RETURN!. A continuation prompt is printed so that you can

~ continue your response.

• To cancel a response while entering a line, use (CONTROL)X.

• To terminate Intractive Mode, enter //or (CONTROL)Y.

Multiple Transactions

DSCOPY also allows you to perform multiple file transfers by redirecting DSCOPYI to a disc file
containing the individual file transactions. To use this mode of DSCOPY, simply create an
unnumbered ascii file, with one transfer per line, using the following format:

SFILE[,SDSDEV] TO TFILE[,TDSDEV]

where SFI LE is the source file, TFI LE is the target file, and SDSDEV or TDSDEV is the device class
name, LDEV number, or node name that was used to open the communications link to the remote
computer. Keep this file, unnumbered, using a filename of your choice. Next, enter an MPE file
equation that references your transaction file to DSCOPYI, and then enter the : DSCOPY command
without parameters. In the following example, user input is underscored, and the existence of a remote
session is assumed.

NOTE

lmbedded MPE commands are not supported if DSCOPYI has
been redirected to a file other than the default, $STDINX.

7-11

:DSCOPY

Example

EDITOR
HP 32201A.7.17 EDIT/3000 TUE, OCT 29, 1985, 8:35 AM
(C) HEWLETT-PACKARD CO. 1985
/ADD

1 SFILEA,REMOTE1 TO TFILEA
2 SFILEB,REMOTE1 TO TFILEB
3 SFILEC,REMOTE1 TO TFILEC
4 //

/K XFERFILE,UNN
/'f

END OF PROGRAM
:FILE DSCOPYI=XFERFILE
:DSCOPY

Network File Transfer [HP32185B.52.00]

DSCOPY SFILEA,REMOTE1 TO TFILEA

(C) Hewlett-Packard Co. 1980

New file created -- TFILEA.TGROUP.TACCT
Succeeded.

DSCOPY SFILEB,REMOTE1 TO TFILEB
New file created TFILEB.TGROUP.TACCT
Succeeded.

DSCOPY SFILEC,REMOTE1 TO TFILEC
New file created TFILEC.TGROUP.TACCT
Succeeded.

END OF SUBSYSTEM

Event Recording

DSCOPY produces printed output to document user input and copy results. This output may be sent to
a primary file and/or a secondary file, either of which may be disabled. The primary file is $STDLIST
and the secondary file has the formal designator DSCOPYL. All user requests and DSCOPY prompts are
printed on $STDLIST and echoed on the secondary file (and on the primary, if not duplicative).
Primary output is enabled by a : DSCOPY command, or by the DSCOPY intrinsic with the OPT
parameter set to 4, 5, or 6 (refer to the parameters of the DSCOPY intrinsic). Output for the secondary
file, DSCOPYL, defaults to $NULL so that secondary output is disabled by default. It can be enabled by
using a : FI LE command to equate DSCOPYL to a file or a line printer, or to $STDLIST.

7-12

r

Network File Transfer

PROGRAMMATIC MODE

Programs can use the DSCOPY intrinsic to copy disc files.

Programs can also print a message which corresponds to the result code returned by a DSCOPY intrinsic
call. The DSCOPYMSG intrinsic is used for this purpose.

(BREAK) is disabled during DSCOPY. After you finish with the DSCOPY intrinsic, you must call
FCONTROL 15 to set [BREAK) back on. See the MPE Intrinsics Manual for details.

The rules for using the intrinsics are consistent with those for using other MPE intrinsics. Specifically,
the following rules apply.

• Both intrinsics can be called from programs written in the SPL/3000, COBOL, Pascal, FORTRAN,
and BASIC languages.

•

•

•

•

•

•

•

Calling sequences for all of the languages are basically the same .

All parameters are passed by reference .

The intrinsics are not option variable .

Neither of the intrinsics are typed (returns a parameter as its value) .

Neither returns a condition code (they both return a result) .

Split stack calls are not allowed .

For COBOL, data types should be defined as follows:

Data Type

Numeric

Alphanumeric

Numeric Array

Data Description

PICTURE S9(4) COMPUTATIONAL

PICTURE X(n) or PICTURE A(n)

PICTURE S9(4) COMPUTATIONAL SYNCHRONIZED OCCURS n
TIMES

• For Pascal, the following special data type should be defined:

Data Type Data Description

SHOR TINT -32768 .. 32767

7-13

DSCOPY Intrinsic

Allows programmatic use of DSCOPY

SYNTAX

DSCOPY (opt, spec, result);

PARAMETERS
opt

spec

logical

opt controls the primary output (i.e. output to $STDLIST) and specifies the
type of copy operation.

Bits 0 through 12 are reserved for future use and should be set to zero. The
remaining bits can be set to indicate the following:

Value

0

2

4

5

6

logical array

Meaning

Single transaction; primary output disabled.

Multiple transactions; return after first
unsuccessful transaction; primary output
disabled.

Multiple transactions; return after all
transactions have been attempted or after an
internal error occurs; primary output disabled.

Single transaction; primary output enabled.

Multiple transactions; return after first
unsuccessful transaction; primary output
enabled.

Multiple transactions; return after all
transactions have been attempted or after an
internal error occurs; primary output enabled.

The logical array should contain ASCII text terminated by an 8-bit binary
zero. In the single transaction case, the syntax required is the same as for
the DSCOPY command parameters.

In the multiple transaction case, the array should contain only a zero. Zer.o
causes NFT to read the copy request from the DSCOPYI file (whose default

7-14

is $STDI N). This file must be unnumbered.

result logical array

A two-word array returned to the caller that indicates the outcome of the
intrinsic call.

result(O)

result(1)

OPERATION

Indicates the copy operation was successful.
Any other value represents an error as defined in
"DSCOPY Error Messages" listed in Appendix A.

Shows the number of files that were
successfully copied.

Simultaneous OSCOPY requests cannot be issued from two processes in the same session.

The only valid values for the opt parameter are: 0, 1, 2, 4, 5, or 6.

The ASCII text passed by the spec parameter must be terminated by a binary zero.

The values passed in the parameters are verified as being in bounds and valid.

The system creates the NFT process and passes the contents of opt and spec to it.

The specified files are copied by the NFT process.

The intrinsic returns the result to the user.

EXAMPLES

COBOL Calling Sequence

CALL "DSCOPV" USING OPT, SPEC, RESULT.

OPT Numeric data item.

SPEC Alphanumeric data item.

RESULT Numeric array of two or more data items.

FORTRAN Calling Sequence

CALL DSCOPY (OPT, SPEC, RESULT)

7-15

OPT I NTEGER*2 variable

SPEC CHARACTER array

RESULT An array of two or more INTEGER*2 variables

BASIC Calling Sequence

CALL BDSCOPY (0, S$, R)

0 Numeric variable

S$ A string variable

R An array of two or more numeric variables

Pascal Calling Sequence

DSCOPY (OPT, SPEC, RESULT);

OPT SHOR TINT variable

SPEC PACKED ARRAY OF CHAR array

RESULT INTEGER variable

SPL Calling Sequence

OSCOPY (OPT, SPEC, !RESULT);

OPT Logical

SPEC (0: 30) Logical Array

I RESULT (0: 4) Logical Array

7-16

DSCOPYMSG Intrinsic

Prints the result code returned by DSCOPY.

~ SYNTAX

DSCOPYMSG (result, fnum, r);

PARAMETERS

result

f num

r

logical array

The two-word result returned by the DSCOPY intrinsic.
0 = DSCOPY was successful.
n =An error occurred. Refer to the Error Messages in Appendix A.

integer by value

When fnum=O, the message associated with result is printed on $STDLIST.

When fnum contains a file number returned by an FOPEN call, the message
associated with result is written to the file.

integer

Result returned by this DSCOPYMSG call.
0 = Successful call
n =Unsuccessful call. Refer to the Error Messages in Appendix A.

EXAMPLES

r" COBOL Calling Sequence

CALL 11 DSCOPYMSG 11 USING RESULT, FNUM, R.

RESULT An array of two or more data items.

FNUM A numeric data item.

R A numeric data item.

FORTRAN Calling Sequence

CALL DSCOPYMSG (RESULT, FNUM, R)

RESULT An array of two or more INTEGER *2 variables.

7-17

FNUM INTEGER*2 variable

R INTEGER*2 variable

BASIC Calling Sequence

CALL BDSCOPYMSG (R, F, RO)

R An array of two or more numeric variables

F An integer variable

RO An integer variable

Pascal Calling Sequence

DSCOPYMSG (RESULT, FNUM, R);

RESULT INTEGER variable

FNUM SHOR TINT variable

R SHOR TINT variable

SPL Calling Sequence

DSCOPYMSG (!RESULT, FNUM, R);

IRESULT(0:4) Logical Array

FNUM Integer

R Integer

7-18

-~

PROGRAMMATIC EXAMPLES

A very simple example of a programmatic DSCOPY request is shown coded in the COBOL, FOR TRAN,
BASIC, Pascal and SPL/3000 languages.

The example copies a file (NFTTEST) to a new file (TEMP1). The source file resides on the local
machine, and the new file will be created on a remote machine connected to line "HDS.11

DSCOPY COBOL Example

1 $CONTROL CODE
1.1 $TITLE" DSCOPY INTRINSIC TEST"
1.2 IDENTIFICATION DIVISION.
1.3 PROGRAM-ID. DSCOPYOO.
1.4 AUTHOR. SUZANNE FLAHERTY.
1.5 DATE-WRITTEN. APRIL 1980.
1.6 DATE-COMPILED.
1 . 7 REMARKS.
1.8 THIS PROGRAM DOES A SIMPLE DSCOPY INTRINSIC CALL.
1.9 ENVIRONMENT DIVISION.
2 CONFIGURATION SECTION.
2.1 SOURCE-COMPUTER. HP3000
2.2 OBJECT-COMPUTER. HP3000
2.3 DATA DIVISION.
2.4 WORKING-STORAGE SECTION.
2.5 01 OPT PIC S9(4) COMP VALUE 0.
2.6 01 STRING1.
2. 7 02 ASCII PART PIC x (24) VALUE II NFTTEST TO TEMP1 'HOS II.
2.8 02 TERMINATOR PIC S9(4) COMP VALUE 0.
2.9 01 RESULT1.
3 02 RESULT2 PIC S9(4) COMP OCCURS 2 TIMES.
3.1 PROCEDURE DIVISION.
3. 2 BEGIN LABEL.
3.3 CALL INTRINSIC "DSCOPY" USING OPT, STRING1, RESULT1.
3.4 STOP RUN.

DSCOPY FORTRAN Example

25 $CONTROL MAP,LIST,CODE,CROSSREF,LOCATION,STAT
26 PROGRAM DSCOPY
27 CHARACTER*40 STRING1
28 INTEGER*2 FNUM, R
29 INTEGER*2 OPT
30 INTEGER ARRAY IRESULT(4)
31 SYSTEM INTRINSIC DSCOPY, DSCOPYMSG
32 c
33 DATA STRING1/20HNFTTEST TO TEMP1,HDS/
34 c
35 C THIS PROGRAM DOES A DSCOPY INTRINSIC REQUEST
36 c
37 OPT=O

7-19

Network File Transfer

FNUM=O 38
39
40
41
42

CALL DSCOPY(OPT, STRING1, !RESULT)
IF (!RESULT .GT. 0) CALL DSCOPYMSG(IRESULT, FNUM, R)
STOP
END

DSCOPY BASIC Example

10 REM THIS WILL DO A SIMPLE DSCOPY REQUEST
20 DIM A$(30],R[4]
30 O=R2=Z=O
40 MAT R=ZER
50 A$=" NFTIEST TO TEMP1,HDS II

60 PRINT A$
70 CALL BDSCOPY(O,A$,R[*])
80 IF R(1] <>O THEN PRINT 11 ERROR IN DSCOPY. ERROR= ",R[1)
90 IF R[1] <>O THEN CALL BDSCOPYMSG(R[*],Z,R2)

100 STOP
110 END

DSCOPY Pascal Example

PROGRAM DSCOPY;
TYPE

SHORTINT = -32768 .. 32767;
VAR

OPT,FNUM,R : SHORTINT;
RESULT INTEGER;
SPEC PACKED ARRAY (1 .. 127] OF CHAR;

PROCEDURE DSCOPY; INTRINSIC;
PROCEDURE DSCOPYMSG; INTRINSIC;
BEGIN

SPEC:='NFTIEST TO TEMP1,HDS';
OPT:=O;
FNUM:=O;
DSCOPY(OPT,SPEC,RESULT);
IF (RESULT > 0) THEN DSCOPYMSG(RESULT, FNUM,R);

END.

DSCOPY SPL/ 3000 Example

1 $CONTROL USLINIT,CODE
2 BEGIN
4 INTEGER FNUM:=O,R:=O;
3 LOGICAL OPT:=O;
5 LOGICAL ARRAY SPEC(0:30), IRESULT(0:4);
6 INTRINSIC DSCOPY, DSCOPYMSG;
7 MOVE SPEC:="NFTIEST TO TEMP1, HOS";
8 DSCOPY(OPT,SPEC,IRESULT);
9 IF !RESULT > 0 THEN DSCOPYMSG(IRESULT,FNUM,R);
10 END.

7-20

~

"

L--DS~A_P_PL_1c_A_T_1_o_N_D_E_s1_G_N~~~~-------1~:1•1i
OS/ 3000 is particularly useful in applicat10ns that invoJve transa..;tion processing and that are
geographically or functionally dispersed. Any local-system command can be executed remotely through a
simple extension to that command. Many operating system intrinsics are also extended in a similar
fashion. No knowledge of the communication protocol or physical link being used is required of the
terminal user or application programmer. Every application-level capability operates transparently across
each connection-level alternative.

DS/3000 on the HP 3000 provides facilities for point-to-point connection between processors. These
connections can be made on a variety of types of communications lines, including switched (dial-up),
leased, or hardwired, and they can also be mixed throughout the network. Applications can easily obtain
access to systems more than one 11hop11 away, through multiple : REMOTE HELLO log-ons. In addition, HP
3000 computers can connect to X. 25 packet-switched networks and communicate across those networks
with HP I 000 or other HP 3000 computers using the DSN/X. 25 software. In fact, DS/3000 can
maintain concurrent connections to multiple remote systems, and/or multiple connections to the same
remote system, over a single physical link to the X. 2 5 network.

OS/ 3000 requires users to pass all of the security checks imposed by MPE (such as passwordsj when
logging on to a remote system. DS/ 3000 also provides additional security features applicable only to a
network environment. For example, the operator can restrict incoming or outgoing access to the
communications link, and incoming host-to-host calls from an X. 25 network are accepted only if the
remote host is configured in the local system's network data base.

DS/3000 offers the tools to facilitate the sharing of resources within a network. Examples of such
resources are programs, data structures, or physical hardware elements of the network. You can access
these resources in any of several modes:

o Remote command execution allows you to direct commands to any CPU in the network.

• Remote File Access (RFA) permits the application of processing power to files and devices remote
from the CPU. RFA also provides the means for extending Interprocess Communications (IPC) across
a OS link.

• Program-to-program (PTOP) communication permits direct communications between master and
slave programs, each resident in its own CPU within the network.

o Remote Data Base Access (RDBA) gives the capability for direct and indirect access of data bases on
: r:y HP 3000 computer in the network. Combining the distributed processing capability 0f DS/3000
:;th the use of data management subsystems such as VPLUS/3000, KSAM/3000, and TurbolMAGE

Pakes possible the sharing of data

• Network File Transfer (NFT) is a more efficient mechanism than FCOPY for transferring disc files
across a communications link.

The chief advantages of Program-to-Program (PTOP) communication are coprocessing capabilities and
control of data transmission blocking. Coprocessing master-slave programs execute in multiple systems.
Program-to-Program communication allows decision making to be distributed within the master-slave
relationship. The exchange of data and control information between the executing programs can be used

JUL 87
8-1

DS Applications

to alter program flow to adjust to current conditions in the network. Coprocessing capabilities assume
1mportan1c m netw(•rk.s where synchronization of modifications to related data structures is important. ~

There exist limitations on certain PTOP application designs. If your PTOP application intends to have one
master program and multiple slave programs, the SYSTEM BREAK key should be disabled by calling the
following procedure at the beginning of the master program:

PROCEDURE DISABLE BREAK;
BEGIN

END

INTEGER STDIN;(file number)
LOGICAL ANYINFO;(required by fcontrol)
STDIN:=FOPEN(,3244);
FCONTROL(STDIN,14,ANYINFO);(disable system brea~~

If you opt to keep the SYSTEM BREAK key feature, the master program should be strudured so that it will
be made up of one father process and multiple son processes. Each of the son pn.•1..esses will be a master
PTOP process and communicate with a slave PTOP process on a separate remote system. See Figure 8-1.

JUL 87
8-2

r

OS Applications

FATHER

SON 1 = SON N

MASTER PTOP PROCESS MASTER PTOP PROCESS

SLAVE PTOP PROCESS SLAVE. PTOP PROCESS

ON REMOTE SYSTEM 1 ON REMOTE SYSTEM N

Figure 8-1. Master Program Structure.

Blocking control can be utilized in such a manner as to decrease the number of transmissions to move a
specific amount of data. Since transmission time on a high-speed link is a negligible factor in
communications performance, the required number of transmissions is the key to performance. Reducing
the number of transmissions correspondingly reduces the number of line turnarounds. This may become a
significant performance factor in half-duplex networks or satellite communication links where
propagation delay affects response time.

JUL 87
8-3

DS Applications

TRANSMISSIONS BETWEEN SYSTEMS

Underlying all modes of utilizing DS/3000 is the transmission of data from one system to another. Now
compare the building of these transmission units for remote file access and for PTOP.

DS/3000 is supported on three controllers: the Intelligent Network Processor (INP). the Hardwired Serial
Interface (HSI), and the Synchronous Single-Line Controller (SSJ..C). To configure any of these devices
into the system, you must specify a buffer length. The buffer length value that you specify represents the
maximum number of words to be transmitted between systems in one t1ansmission and it is the system's
default buffer size. When you activate DS/3000 with a : DSLINE command, a l inebuf parameter may
be specified to override the configured buffer size. Only the first user to activate the line may use
l inebuf to alter the data communication buffer size. This buff er size may not be respecified until all
concurrent DS/3000 users have closed their links. In this way, the pertinent buffer limiting factors for
inter-CPU transmissions are set. ·

How is l inebuf utilized in accessing remote files and remote peripheral devices? The basic unit for file
system operations is the record (or block of records). In remote file access and remote command execution,
file system blocking limits the transmission unit to a single record or sequential multiple records. File
system's FREAD is satisfied by moving a logical record from a file to the user's buffer. An FREAD on a file
open with multi-record access is satisfied by a byte count that can be specified to be block-sized. Thus,
an FREAD on a remote file will pack l inebuf with a record or a specified byte count of sequential
records.

Contrast this record-orientation to the array-orientation of PTOP communications. PTOP's PREAD is ~
satisfied by the transmission between programs of the contents of a user-defined buffer. The PTOP }
programmer must construct the buffer by packing it with array(s), record(s), or fields of records. The
records in one transmission need not even come from the same file.

In addition to transmitting specified data, DS/3000 attaches a header of varying lengths. The header
always contains eight words transmitted in a fixed format and can contain additional words in an
appendage area. For remote command execution and remote file and peripheral device access, the data
field is usually preceded by a header of 14 words. Some intrinsics, such as FREAD (multirecord), require a
longer header to convey all parameter information. The header for PTOP communications includes the
20-word tag field in the appendage; thus the typical PTOP header is 34 words long. The ideal l inebuf
size will allow the user's data field plus DS/3000 header information to fit into linebuf

JUL 87
8-4

OS Applications

To illustrate: Assume that you want to read six 80-byte records from a remote file and have specifed a
l inebuf of 304 words.

a. If the remote file is defined as REC=-80, 1 , F, then Remote File Access must retrieve a block of one
record from the disc, FREAD one record, and transmit one record. The complete data transfer
requires six disc accesses, six FREADs, and six data transmissions

b. If the remote file is defined as REC=-80, 6, F, then Remote File Access must access the disc to
retrieve a block of six records, satisfy an FREAD with one record, and transmit one record. The
complete transfer requires one disc access, six FREADs, and six data transmissions.

c. If the remote file is defined as REC=-80,6,F, and opl·nd with the NOBUF and multirecord option,
then Remote File Access must access the disc to retrieve a bhKk of six records, satisfy an FREAD of
480 bytes with six records, and transmit the six records. The cc.mplete data transfer requires one disc
access, one FREAD, and one data transmission.

d. In PTOP, the master program can issue a PREAD. The sla\'e program can pack the buffer with all six
records, utilizing any of the above three methods. Note that a l inebuf of 304 words is ample to
permit transmission of 480 bytes (240 words) of data plus 34 words of DS/3000 header information
in one transmission.

COORDINATING MASTER AND SLAVE PROGRAMS

PTOP communication programming requires synchronizing two separate programs at specific points in
time. For this reason, it is often helpful to block diagram the transmissions and their contents on a r- simulated time line.

\
Where the PTOP programmer wants to loop on certain PTOP operations, the loop's terminating condition
must, of course, be defined. The master program has direct control over the interprogram
communications and can terminate a loop under conditions defined locally. More difficult are the
situations when the slave must communicate to the master that the terminating condition has been met.
To do this, the slave might send a REJECT response. A REJECT does not allow transmission of data, and so
requires a terminating exchange of transmissions after all data has been transmitted.

Another method is to utilize the 20-word i tag field (the i tag parameter) of the PTOP intrinsics. This
field is not accessible by the slave unless designated as a parameter in the corresponding master's PTOP
operation. For example:

Example A.
Example B.

Master Program
PREAD(dsnum, target, tcount);
PREAD(dsnum, target, tcount, itag);

Slave Program
GET(itag);
GET(i tag);

In example A, PRE AD does not utilize the i tag field. The slave program cannot access i tag on this
transaction. The second PREAD (Example B) might not even initialize the i tag array, but the array has
been specified as a parameter. The slave program can now return control information to the master via
this field. The master program logic can inspect i tag and take corresponding action.

A PCONTROL from the master will also cause an exchange of itag fields and may be used for passing
control information. This intrinsic will not pass a data field, however.

JUL 87
8-5

DS Applications

The control information passed between prograrns may termmate a loop, may branch to another part of
the program, may transmit an index to be used in a CASE statement, or may serve any other purpose the
programmer desires.

It is important to bear in mind the accessibility of transmitted data When the master program PWRITEs,
the slave program cannot process the received data until the ACCEPT intrinsic has moved the data into the
slave process stack. The slave program can, however, exammf the i tag array before doing the ACCEPT or
REJECT. After examining the itag, the slave can then alter the itag array. The ACCEPT or REJECT
will transmit the slave's itag to the master. Slave local processing can then proceed.

INTERPROCESS COMMUNICATION AND PTOP

Interprocess Communication (IPC) is a capability of the MPE tile system that is very beneficial in the
DS/3000 environment. For some applications, IPC may be easier to implement than
Program-to-Program Communications (PTOP) and may provide other advantages as well. A basic
description of the use of IPC and the changes made to the file system is included in the MPE Intrinsics
Reference Manual and the MPE File System Reference Manual.

Message Files

Message files are used by IPC to transfer requests from one process to another. Each message file is a
queue, with records acted upon in the order received. Message files are opened with FOPEN, read with
FREAD, written to with FWRITE, and closed with FCLOSE.

When a message file is opened, the file system assigns a unique 1 6-bit ID n um her to the process that opens ~
the file. Each record the process writes to the message file is associated with this number. When the
writer closes the file, the ID number no longer applies, and may be reused.

When the files are opened with FOPEN, the user process accesses the file as either a reader or a writer;
readers access the top of the message file, while writers access the tail. Readers access the file with
FREAD. The record is copied to the reader, and is deleted from the message queue. Writers access the file
with FWRITE. FWRITE appends one record to the tail of a message file. See Figure 8-2.

JUL 87
8-6

r

r·

message 1

message 2

message 3

message 4

FRBAD to

ree.d proooa

l"WRITB from write prooeas

message 5

Figure 8-2. Reading and Writing to a Message File.

Message files can be created using the : BUI LO command or the FOPEN intrinsic.

Example

DS Applications

A simple example of the use of IPC for communication between two remote sessions is presented in Figure
8-3. User Bill establishes a local session on Node A and a remote session on Node B. His application,
called BI LLPROG, opens a local MSGFI LE as a reader and a remote MSGFI LE as a writer. Then, user Jack
establishes a local session on Node Band a remote session on Node A. Jack1s application, called JACKPROG,
opens a local MSGFI LE as a reader and a remote MSGFI LE as a writer. Now these two unrelated processes
can communicate with each other through the IPC capability.

JUL 87
8-7

I

I

OS Applications

NODE A NODE B ~

(f
j FWRITE 1

BILLPROG --- -·--------.___M_s_G __ Fl_LE_J
/1\ FREAD
I
I

MSG FILE

FREAD

FWRITE
JACKPROG

I

~
I .
i~
~~

Figure 8-3. Two-node IPC Communication

If PTOP had been used in the example in Figure 8-3, a PTOP master program would need to be executing
in one node and a slave program would have been initiated by the master in the other node. The
master-slave programs would also require coordination because of their relationship.

The advantage of IPC becomes more dramatic when two or more processes desire to communicate with
each other, or when the network is more complex than two nodes. Figure 8-4 shows a network consisting
of three nodes and a solution that seems very useful in the general DS/3000 applications environment.

JUL 87
8-8

·~

NODE A

.-~

I •+LE I -i-
' ' I

NODE 8

.-~
I MS~HCE I -i-

' ' I

NODE C

r-~

I •+LE I -i-
/ \

I

MSP

Figure 8-4. Three-node IPC Communication

DS Applications

In Figure 8-4, a general application program called a Message Switching Procedure (MSP) is written and
executed on each node. The MSP performs the following functions:

• Opens a local message file as a reader.

• Opens any local applications message files as a writer.

• Opens all DS lines to adjacent nodes.

• Establishes a remote session on each of these nodes.

• Opens a message file on each adjacent node as a writer to be used for communication with each
adjacent MSP.

The MSP handles all outgoing requests by forwarding them to the MSP programs on adjacent nodes. The
MSP also handles all incoming requests by routing them to a local application program or by passing them
on to the next node in the network.

JUL 87
8-9

I

DS Applications

If the network is complex and it is desirable to shift the n ... "P' i; .. !.l··,iity for routing from the user to the
MSP, a solution might include addressing within the user\ d;. 1 'j I .1Jffer and the use of a directory file in ~
conjunction with the MSP. The MSP would then use : he directory file to determine to what node it '
should forward the message. A more advanced directory file could provide alternate routes in case of
downed lines. If alternate routes were not available, the unserviceable requests could be stored in a disc
file and then be rewritten to the MSP,s MSGFI LE when the downed '•ne~ are restored.

In a simple network, it may not be desirable to design an MSP; but it is still possible that using IPC may be
more advantageous than using PTOP. In this case, each user application could set up one or more remote
sessions on the appropriate node(s) and communicate with other processes using the normal file intrinsics
(FOPEN, FREAD, FWRITE, and FCLOSE) and message files. Also~ by using the : FI LE command, it can be
transparent to the user or to the application program that the MSGFIL f is located on a remote node.

The advantage of using an MSP is that several users on a system can communicate with a number of
remote processes, but only one remote session is required per node. Since fewer remote sessions are
necessary, the amount of memory required is decreased.

The major advantage of IPC versus PTOP is that there is no limitation to the number of local or remote
processes with which a single process can communicate. The processes are fully bilateral with IPC making
it easier to implement and expand the application for more complex networks. Also, activities such as
development, testing, and debugging can all be done on one node, and then the resulting application can be
distributed.

DEBUGGING

Where the amount of local processing in a PTOP application is significant, it may be helpful to debug the .)~~
master and slave programs as local programs. MOVEs on dummy arrays or FREADs on dummy files can be
substituted for communication operations to simplify debugging of the local processing.

When the time arrives to run the programs in master-slave fashion, a : RUN PROG; DEBUG is sufficient to
invoke the Debug Utility for the master. This will not, however, allow the programmer to set a
break-point in the slave program or to examine the slave process stack. To facilitate debugging a slave
program, the first executable statement of the slave program should be the DEBUG intrinsic.

LINE BUFFERS/CONTINUATION BUFFERS

DS/3000 is designed to send across the line, in a single transfer operation, the amount of data configured
as the PREFERRED BUFFER SIZE for the line controller (INP, SSLC, or HSI). The first person to use a DS
line can override the configured line buffer size by specifying a different value with the l inebuf
parameter of a : OSLIN E command.

When a user specifies l inebuf=xxxx, the xxxx value tells the Communication Subsystem (CS/3000) the
maximum amount of data DS/3000 will ever send across the line in a single request. For example, if you
say linebuf=1074, you are saying the largest buffer DS/3000 can pass to the Communication Subsystem
is 107 4 words.

The 1074words will always consist of both user data and DS/3000 fixed header and variable-length
appendage characters. The additional characters (approximately 20 to 50 words) give to and from
information, intrinsic names, etc., and vary for RFA and PTOP operations.~

JUL 87
8-10

~ \ '

DS Applications

When a DS/3000 user requests the transfer of more data in a single operation than the line buffer can
accomodate, DS/3000 automatically fills the line buffer, CS/3000 makes the transfer, then DS/3000
refills it, and transfers again -- until all of the user's data has been sent. When a user's single request
causes DS/3000 to make several transfer operations. the additional buffers of data are known as
"continuation buffers. 11 As stated before, the ideal line buffer should be large enough to eliminate the
need for continuation buffers.

JUL 87
8-11

DS Applications

COMPRESSION

Compression of data on the communications link may be specif1~d in order to achieve higher throughput.
DS/3000 initialization procedures allow compression only 1f both systems are capable of performing
compression. Compression is handled on an individual basis, so that on a non-exclusive line, some users
will compress while others will not.

Compression is most helpful in applications using line speeds up tu 56 K bps. It is generally neither
helpful nor desirable m applications that use higher data rates. It i;an be specified by the user in three
different ways:

• At generation time by use of SUBTYPE= 1 while configuring IODSO or IODSX (refer to Section 1 in
the DS/ 3000 HP 3000 to HP 3000 Network Administrator Manual. This configured subtype sets the
default for the line.

o While executing the : DSCONTROL console command. A console operator uses r.he parameter to
override the w1: '. ~ured line default or to reset to the conhgured state.

• While executing a :DSLINE command in a session or JOb. Use of the :DSLINE parameter allows
individual users to control whether or not their data will be compressed, and will override the current
line default.

Compression generally increases throughput by reducing redundancy in the data, which results in a ~
reduction in the number of characters being transmitted over the communications link. The compression
technique compresses any occurance of three or more consecutive characters. Compression does not take
place in the data only. It can occur in the fixed part or the appendage of the DS/3000 header.

The amount of redundancy in data or files may vary significantly. Source or listing files may be
compressed by as much as 7 5 percent, but a more typical random assortment of HP 3000 files may be
reduced by an amount closer to 2 5 percent. Obviously, the actual reduction will vary from application to
application. Comparative tests with and without compression will indicate the benefits.

In some cases, however, compression could actually result in an increase in the number of characters to be
transmitted. For this reason, DS/3000 examines each case when compression is specified. If a situation is
found where compression would be detrimental to performance, DS/3000 sends the data uncompressed.

Using compression and decompression increases the system overhead at both ends of the link. The decision
on whether to use compression depends on the communications link data rate, system load, and the
amount of redundancy in the data being transmitted. Often, a test of relative throughput with normal
system load and 11typical11 data will provide an indication of the benefits of using compression.

JUL 87
8-12

Octal Value
xx nnn nnn

Formats for Inserted Compression Characters

Meaning
xx = compression type

00 = uncompressed character string
10 =repeated blanks
11 =repeated non-blank characters

DS Applications

(next byte is the ASCII value for the repeated character)

Examples:
036

217

323. 052

nnn nnn =octal character count
1 to 77.

36 (octal) non-compressed characters

1 7 (octal) blank characters

2 3 (octal) compressed * characters

For example, sending the string 1111111111 uncompressed resulted in the following string:

031 • 061 031 • 061 031 • 061 031 . 061 031 • 061

Sending the string compressed resulted in the following string:

312.061

where the 3 shows that there is a repeated non-blank character, the 12 means 12 octal (10 decimal)
characters, and the 061 is the ASCII representation of 1.

PERFORMANCE

The performance achieved while using the DS/3000 link may vary widely, and it depends on many
factors.

Computer System Dependent

The activity mix on the respective HP 30(") will affect performance. It depends upon the character of
the simultaneous activity: such as the number 0f jobs, number of CPU-bound jobs and their relative
priority, contention for disc, memory size and amount of swapping, quantum size, etc.

Communication links

The choice of the communications link will provide an upper limit to the performance. Generally, a
full-duplex line will outperform a half-duplex line by reducing line turnaround delays. A half-duplex
line with a smaller request-to-send/clear-to-send delay will be faster (such as a 208B at SO milliseconds
versus a 2 0 SB at 1 S 0 milliseconds).

JUL 87
8-13

DS Applications

Line quality can result in wide variations in performa111. .. e at times when line errors are high. A leased
line is generally better and more predictable than a dial-up ime. Some telephone offices provide cleaner
lines depending on the age and nature of their switching gear.

Applications

For a given amount of data, the buffer size selected will affect performance. The smaller the number of
requests required to transmit a given quantity of data, the higher the throughput. This also includes
continuation requests. The data may be packed into larger buffers while using PTOP applications. The
data may also be blocked into larger records for RFA applications. (RFA and FCOPY handle one record
at a time, even though the file may use blockm_g)

As described earlier, use an appropriate line buffer size. Use a line buffer large enough to contain the full
record or buffer, plus the DS/3000 fixed blocks and appendage header words. (The "rule-of-thumb" is 50
words larger than the data size.)

For applications to be run on dial -up lines, the line errors normally suggest a reasonable l inebuf
maximum of 1024 words. Analysis of : SHOWCOM xx ; ERRORS output and trace listings for error rates
will allow modification of this recommendation for "typic<i 11

' conditions. (This suggested maximum value
of 1024 could be either increased or decreased when an SSl ,-: is bemg used; but the value could only be
decreased when the communications interface is an INP, smce the maximum buffer size for the INP is
1024 words.)

PTOP applications allow both the master and slave programs to do a larger share of data searching,
qualification, and manipulation at each local computer, thus reducing the quantity of data which must be
sent across the line.

Remote Listing

Where data must be sent to a remote device (such as a line printer or a magnetic tape) it may be possible
to send the program that generates the data to the remote computer for execution. For example, since a
compiler listing can be quite large, it might be more efficient to transmit the source across the line and do
a remote compilation and remote list, rather than doing a remote list for a local compilation.

JUL 87
8-14

OS Applications

("' MULTIPLE REMOTE ACCESS

While presenting the basic concepts of DS/3000 in the tutorial sections of this manual, the examples were
intentionally limited to simple networks. From those somewhat simplistic illustrations, it might appear as
though the only way your local computer can talk to more than one other computer is through additional
parallel communication lines from your local system to the additional remote systems. Actually, it is
possible to communicate with other remote computers in the network that have no direct connection with
your local computer. This communication is made possible by going through one remote computer (to
which you do have a direct communication line) to reach another remote computer to which the first
remote computer is connected. To reach a second remote system through a first remote system, a multiple
REMOTE command is used. The syntax is as follows:

:REMOTE (xxx] [REMOTE (xxx]] ... (conrn:lnd]

In this way, the local user can initiate a session sequentially on each remote system. See Figure 8-5.

SYSTEM
A

SYSTEM
B

:REMOTE LISTF Lists these
files to
System A

SYSTEM
c

:REMOTE REMOTE LISTF Lists these
files to
System A

SYSTEM
D

:REMOTE REMOTE REMOTE LISTF .. Lists these
files to
System A

Figure 8-5. Multiple Remote Accessing Example

Figure 8- 5 shows how your local system (System A) can obtain a list of the files in the first remote system
(System B) by issuing the command:

:REMOTE LISTF

JUL 87
8-15

I

DS Applications

To obtain a similar list of files from System C in this kind of network (where the communications link is
through an intermediate remote computer), use the command:

:REMOTE REMOTE LISTF

Likewise, you can route your request through to System D by expanding the command to:

:REMOTE REMOTE REMOTE LISTF

Using this compound command accomplishes the same result as if you had issued the following series of
separate commands:

:REMOTE
#REMOTE
#REMOTE
#LISTF

There is an important difference in the way of returning to your local system, however. When you reach
System D (Figure 8-4) by entering the compound command

:REMOTE REMOTE REMOTE
II

the # prompt is coming from the Command Interpreter (CI) on System D. If you now type a colon (:)

you are being switched back to your local CI (System A). But if you were to use the alternative method of
reaching System D with a series of separate commands

:REMOTE
#REMOTE
#REMOTE

and then you typed a colon as before, you would be switched to System C. To get back to your local
system (System A), you must return a step at a time (just as you went out to System D a step at a time) as
follows:

:REMOTE
#REMOTE
#REMOTE
II:
11:
Ill

JUL 87
8-16

'-----o_s_c_o_N_T_R_o_L _c_o_Ns_o_L_E_c_o_M_M_A_N_o__..r:'·"1

Before establishing a DS/3000 communications link, the console : DSCONTROL command must be used
to OPEN a line, so that it is available to DS/3000 users. The : DSCONTROL command allows you to
enable or disable the DS/3000 subsystem on a specific communications link.

For easy reference, this command is shown in the following format:

• SYNTAX Shows the format of the command.

• PARAMETERS Describes the variables in the command.

• OPERATION Describes the command in detail.

• EXAMPLES Shows the command in use.

9-1

:DSCONTROL

SYNTAX

:DSCONTROL dsdelJice [function [... function]]

where the parameter function has the following options:

[;CANCEL]

[
;OPEN [,MASTER] [,[SPEED=]speed]]
;SHUT ,SLAVE

[;TRACE {:~~F Ci~!ALL] [f~Jmsk] [ilinumentries] [!~!WRAP] [!~!filename] }]

[;MON [,OS]] ;MOFF ,cs

[;COMP]
;NOCOMP

[·RETRV={DEFAULT}]
' count

PARAMETERS

dsdelJice

OPEN

The logical device number or the device class name of the
DS/3000 communications device (IODSO or IODSX). On your
system's 1/0 configuration listing, the device is back referenced by
a pound sign(#) to a previously defined INP, HSI, or SSLC.
(Required parameter.)

Makes the line available for remote communication via the
DS/3000 Subsystem. For bisync DS/3000 (IODSO), the DS
subsystem is enabled, but no activity is initiated on the
communications link. For DS/3000-X.25 (IODSX), the DS

9-2

)

CANCEL

SHUT

MASTER

SLAVE

linespeed

:DSCONTROL

subsystem establishes a communications link with the PON.
(Required parameter.)

Applicable only to X.21. Cancels all queued outgoing call
requests. Sends an abort request to the communications device.
Validates that the device is X.21 related and that there is a
queued request. CANCEL is executed before any other
: DSCONTROL parameter.

Initiates an orderly line shutdown. Refer to OPERATION for
details about the line closing procedure.

Limits DS/3000 line activity to outgoing requests only. No
incoming sessions are allowed.

Limits DS/3000 line activity to incoming requests only; no
outgoing activity is allowed.

Default: Both MASTER and SLAVE processing are allowed.

Transmission rate in characters per second (Bit Rate/8). This
parameter is effective only if your system generation for the line
selected SPEED CHANGEABLE. Specify l inespeed if yours is a
European installation with modems running at half speed, or if
the line is hardwired and you want to override the configured
default. It may be necessary to include this parameter if the
length of cables used for HSI communications has been changed
since the system was configured.

HSI speed: 250 000 (cable lengths less than 1000 ft.)

125 000 (cable lengths greater than 1000 ft.)

INP or SSLC speed: 250, 300, 600, or 1200

INP only speed: 2400 or 7200

The SPEED= keyword in the open option may be omitted from a
: DSCONTROL command. For example, the following two
commands have exactly the same effect:

:DSCONTROL 60;0PEN,MASTER,SPEED=250000

:DSCONTROL 60;0PEN,MASTER,250000

Remember, both ends of the line must operate at the same speed.

Default: System configuration values.

9-3

:DSCONTROL

TRACE,ON

ALL

mask

numentries

WRAP

filename

TRACE,OFF

COMP

NOCOMP

MON [,OS]
,CS

Activates the TRACE facility to provide a record of
communications activities. Trace parameters are positional. The
line must already be open, or the OPEN keyword must also be
included (to open the line).

Generates trace records for all line activity.

Default: Records are written only for transmission errors.

An octal number preceded by a percent sign (3nn). Used to select
type of trace entries generated. Refer to Sections 3 and 4 in the
DS/ 3000 Network Administrator's Manual for an explanation of
the mask bits.

Default: %37 (all except PSTN).

Decimal integer for the maxim um number of en tries in a trace
record, not greater than 248.

Default: 24. (See OPERATION.)

Trace entries that overflow the trace record overlay the prior
trace record entries.

Default: Overflow entries are discarded.

A name for the trace file.

Default: DSTRCxxx. PUB. SYS (where xxx is the LDEV of the
dsdevice).

Deactivates the TRACE facility, so that no records are kept of
DS/3000 actions, states, and events. Also closes the trace file.

Sets data compression as the default mode of operation for all line
users. The line need not be open to use COMP.

Sets uncompressed data as the default mode of operation for all
line users. The line need not be open to use NOCOMP.

Activates internal communication monitoring activity to give
additional information on a subsequent cold dump of the system.
The line must be open for the use of MON.

9-4

r

MOFF

RETRY=[DEFAULT]
count

OPERATION

MON

MON,DS

MON,CS

:DSCONTROL

Requests monitoring of all levels of activity.

Requests monitoring at the DS/3000 level of
internal software operation.

Requests monitoring at the Communication System
level of internal software operation.

Default: No monitoring.

Used only for system troubleshooting.

Deactivates internal DS/3000 monitor records. Line must be
open for the use of MOFF.

Changes the communications error retry count to the specified
value. The retry counter controls the number of times the system
attempts to send or receive a message across the communications
link.

DEFAULT

count

Default: 1 5.

Specifies a limit of 1 5 retries after a line error
occurs.

Can be any value within the range of 0 to 255.

Unless : DSCONTROL is issued from the master console, this command requires the user to have CS and
ND capability. In addition, all users except the console operator are granted access to : DSCONTROL
only if they are ALLOWed to use the command and are ASSOCIATEd with the specified DS device.

Only one DS/3000 communications device can be active (OPEN) on a controller at any given time.
Once opened (with the : DSCONTROL command), a communications link can be shared by multiple
DS/3000 users. It cannot, however, be shared by users of other communications subsystems supported
by your system (for example, DSN/MRJE). Thus, you must SHUT the DS/ 3000 communications device
before the controller can be opened for use by another subsystem.

Before issuing a : DSCONTROL command, use the : SHOWDEV command to check whether a
communications link is already established. The LDEV for the INP, SSLC, or HSI port will be
UNAVAI Lable if the communications link is in use by any subsystem; the LDEV for a DS/3000
communication device, driver IODSO or IODSX, will be AVAI Lable if it is currently OPEN for use by
DS/ 3 000 users.

If a DS device class includes more than one OS device, the functions specified in the : DSCONTROL
command apply to all devices in that class. If you have not been ALLOWed to use this command, you
can only control those devices in the device class with which you have been ASSOCIATEd (if any).

9-5

:DSCONTROL

If you include more than one function in a : DSCONTROL command, each function (with its
subparameter list) must be separated by a semicolon. A function that duplicates or conflicts with a
previous function overrides that function. Functions can appear in any order but are executed in the
following order:

1. CANCEL

2. OPEN/SHUT

3. TRACE

4. MON/MOFF

5. COMP/NOCOMP

The default name of the trace file is:

DSTRCxxx.PUB.SYS

where xxx is the logical device number of the dsdevice.

If no trace file exists when you turn on the trace facility and you do not specify numentries, the
system creates a file to hold 24 entries in each record.

When using the bisync protocol, the SHUT parameter initiates an orderly line closing procedure. If no
sessions or applications are using the line when you shut it, line disconnection occurs immediately. If
any user (including applications) has the line open, the line remains connected until all sessions and
applications CLOSE the line, or until those accessing the line terminate or are aborted. Once CLOSEd ~
by the console operator, no new users may access the line until the operator reopens it. When using
the X.25 capability of DS/3000, the SHUT parameter disconnects the line immediately, even if there
are current users on the line.

NOTE

Occasionally you may not be able to SHUT a standard
(non-X.25) DS line. This could happen, for example, if a
DS user forgot to issue a : DSLINE xxx ;CLOSE
command but still has a local session. It could also
happen if a remote session is 11hung.11 In such a situation,
you can "kill" all activity across the line by issuing an
: ABORTIO xxx (where xxx is the logical device number
of the dsdevice). Following the use of the : ABORTIO
xxx command, a second : DSCONTROL xxx ;SHUT
command will complete successfully.

9-6

:DSCONTROL

EXAMPLES

To open X.25 line number 55, thereby making it available for use by DS/3000 users, enter:

:DSCONTROL 55;0PEN

To permit the local HP 3000 to process only master (outgoing) requests on DS line number 55, enter:

:DSCONTROL 55;0PEN,MASTER

To activate the CS Trace facility for DS line 55 (the line is already open), enter:

:DSCONTROL 55;TRACE,ON,ALL

To open X.25 line 55 and activate CS Trace with a maximum of 250 entries in a trace record, enter:

:DSCONTROL 55;0PEN;TRACE,ON,,,250

To open the line named REMSYS and establish compression as a default and enable internal monitoring,
enter:

:DSCONTROL REMSYS;OPEN;COMP;MON

9-7

:DSCONTROL

I~

·~

9-8

r'·
\

L-----E_R_R_o_R_c_o_o_Es_A_ND_M_E_ss_A_G_E_s__..r'::
1

•

11
The following is a summary of the error code numbers and messages that may be encountered. The
messages, as listed here, have been grouped into several categories. For example, the first group
contains all messages pertaining to : DSLINE syntax problems, while the second group contains the
messages that report a DS/3000 functional problem. Each group is identified with an explanatory
heading, and the messages are listed in numerical sequence within each category for easy reference.

:DSLINE SYNTAX ERRORS

These messages are sent to the terminal user to point out an error in syntax or to warn of the
consequences of a request.

1300 REMOTE JOBS ARE NOT ALLOWED!. (CIERR 1300)

1301 DSLINE CANNOT CONTAIN BOTH OPEN AND CLOSE. (CIERR 1301)

1302 DSLINE REQUIRES AT LEAST ONE PARAMETER. (CIERR 1302)

1303 DSNUMBER SPECIFICATION MUST BE A NUMBER FROM 1 THRU 255.
(CIERR 1303)

1304 DSLINE #1! DOES NOT IDENTIFY AN OPEN OS LINE. (CIERR 1304)

1305 EXPECTED LINEBUF, PHNUM, IOCID, REMID, OPEN, CLOSE,
QUIET, COMP, NOCOMP, OR EXCLUSIVE. (CIERR 1305)

1306 MULTIPLE USE OF ! IS NOT ALLOWED. (CIERR 1306)

1307 THE SYNTAX FOR ! REQUIRES AN = SIGN FOLLOWED BY DATA.
(CIERR 1307)

1308 PHNUM IS 1 TO 20 DIGITS AND DASHES. (CIERR 1308)

1309 ! LIST CAN CONTAIN ONLY ONE ELEMENT. (CIERR 1309)

1310 THE SPECIFIED LOGICAL DEVICE IS NOT OPEN. (CIERR 1310)

1311 THE FIRST CHARACTER OF AN ID SEQUENCE MUST BE A 11 OR A (
(CIERR 1311)

1312 THE ID SEQUENCE MUST TERMINATE WITH A). (CIERR 1312)

1313 THE ID SEQUENCE MUST TERMINATE WITH A 11 (CIERR 1313)

1314 A NUMERIC ID SEQUENCE ELEMENT MUST BE 1 THRU 255 (OR
3377). (CIERR 1314)

A-1

Error Codes and Messages

1315 LINEBUF MUST BE A NUMERIC VALUE FROM 304 THRU 4096.
(CIERR 1315)

1316 UNABLE TO COMPLETE THE REMOTE COMMAND. (CIERR 1316)

1317 NOT A CURRENTLY AVAILABLE DSLINE. (CIERR 1317)

1318 USE OF EXCLUSIVE REQUIRES BOTH NS AND CS CAPABILITY.
(CIERR 1318)

1319 THE OS LINE #L! IS IN USE BY A PROGRAM OR SUBSYSTEM AND
CANNOT BE CLOSED. (CIERR 1319)

1320 EXPECTED A RESPONSE OF YES, Y, NO, ORN. (CIERR 1320)

1321 UNABLE TO OPEN THE OS LINE ON DEVICE!. (CIERR 1321)

1322 @ IS INVALID IN THIS CONTEXT. (CIERR 1322)

1323 A DSLINE OPEN REQUIRES A VALID OS DEVICE NAME AS THE
FIRST PARAMETER. (CIERR 1323)

1324 FROM ADDRESS MUST BE BETWEEN 1 AND 14 CHARACTERS INCLUSIVE.
(CIERR 1324)

1325 TO ADDRESS MUST BE BETWEEN 1 AND 14 CHARACTERS INCLUSIVE.
(CIERR 1325)

1326 FROM AND TO ADDRESS MUST BE A DECIMAL NUMBER. (CIERR 1326)

-1389 INVALID OR MISSING DELIMETER FOR SELECTION SIGNAL SEQUENCE.
(CIERR 1389)

1390 SELECTION SIGNAL SEQUENCE MUST BE FROM 1 TO 30 CHARACTERS.
(CIERR 1390)

1391 BOTH QUEUE AND NOQUEUE SPECIFIED; NOQUEUE USED. (CIWARN 1391)

1392 ONLY ! WORDS WERE ALLOCATED FOR THE LINE BUFFER.
(CIWARN 1392)

1393 COMPRESSION REQUEST NOT HONORED. REMOTE DOES NOT SUPPORT
THIS FEATURE. (CIWARN 1393)

1394 COMPRESSION PARAMETER RESPECIFIES AND OVERRIDES PREVIOUS
COMPRESSION PARAMETER. (CIWARN 1394)

1395 OPEN PARAMETERS ENTERED ON A CLOSE REQUEST ARE IGNORED
(CIERR 1395)

1396 AN ID LIST MUST CONTAIN 255 OR LESS ELEMENTS.
(CIWARN 1396)

1397 AN UNNECESSARY DELIMITER IS IGNORED. (CIWARN 1397)

A-2

Error Codes and Messages

1398 THERE ARE NO OS LINES OPEN. (CIWARN 1398)

~· 1399 MULTIPLE USE Of ! IS REDUNDANT AND IGNORED. (CIWARN 1399)

DS/ 3000 FUNCTIONAL ERRORS

These messages report a functional problem within the system.

201 REMOTE DID NOT RESPOND WITH THE CORRECT REMOTE ID.
(DSERR 201)

202 SPECIFIED PHONE NUMBER IS INVALID. (DSERR 202)

203 REMOTE ABORT/RESUME NOT VALID WHEN DOING PROGRAM-TO­
PROGRAM COMMUNICATION. USE LOCAL ABORT/RESUME.
(DSWARN 203)

204 UNABLE TO ALLOCATE AN EXTRA DATA SEGMENT FOR DS/3000.
(DSERR 204)

205 UNABLE TO EXPAND THE DS/3000 EXTRA DATA SEGMENT.
(DSERR 205)

206 SLAVE PTOP FUNCTION ISSUED FROM A MASTER PROGRAM.
(DSERR 206)

207 SLAVE PTOP FUNCTION OUT OF SEQUENCE. (DSERR 207)

208 MASTER PTOP FUNCTION ISSUED BY A SLAVE PROGRAM.
(DSERR 208)

209 SLAVE PROGRAM DOES NOT EXIST OR IS NOT PROGRAM FILE.
(DSERR 209) r Creation of Slave Program failed, possibly because of invalid stack size.

210 WARNING -- INVALID MAXDATA OR DLSIZE FOR A SLAVE PROGRAM.
SYSTEM DEFAULTS ARE IN EFFECT. (DSWARN 210)

211 SLAVE ISSUED A REJECT TO A MASTER PTOP OPERATION.
(DSWARN 211)

212 FILE NUMBER FROM IOWAIT NOT A DS LINE NUMBER. (DSWARN 212)

213 EXCLUSIVE USE OF A OS LINE REQUIRES BOTH ND AND CS
CAPABILITY. (DSERR 213)

214 THE REQUESTED DS LINE HAS NOT BEEN OPEN WITH A USER :DSLINE
COMMAND OR A REQUIRED :REMOTE HELLO HAS NOT BEEN DONE.
(DSERR 214)

A-3

Error Codes and Messages

215 DSLINE CANNOT BE ISSUED BACK TO THE MASTER COMPUTER.
(DSERR 215)

216 MESSAGE REJECTED BY THE REMOTE COMPUTER. (DSERR 216)

217 INSUFFICIENT AMOUNT OF USER STACK AVAILABLE. (DSERR 217)

218 INVALID PTOP FUNCTION REQUESTED. (DSERR 218)

219 MULTIPLE POPEN. ONLY ONE MASTER PTOP OPERATION CAN BE
ACTIVE ON A OS LINE. (DSERR 219)

220 PROGRAM EXECUTING GET WAS NOT CREATED BY POPEN. (DSERR 220)

221 INVALID OS MESSAGE FORMAT. INTERNAL OS ERROR. (DSERR 221)

222 MASTER PTOP FUNCTION ISSUED PRIOR TO A POPEN. (DSERR 222)

223 REQUEST TO SEND MORE DATA THAN SPECIFIED IN POPEN.
(DSERR 223)

224 FILE EQUATIONS FOR A REMOTE FILE CONSTITUTE A LOOP.
(DSERR 224)

225 CANNOT ISSUE POPEN TO A SLAVE SESSION IN BREAK MODE.
(DSERR 225)

226 SLAVE PROGRAM HAS TERMINATED BEFORE EXECUTING "GET".
(DSERR 226)

227 REMOTE HELLO MUST BE DONE TO INITIATE REMOTE SESSION.
(DSERR 227)

228 EXCEEDED MAXIMUM NUMBER OF VIRTUAL CHANNELS PER JOB.
(DSERR 228)

231 INVALID FACILITY IN CONNECTION REQUEST. (DSERR 231)

232 THE REMOTE COMPUTER IS NOT OBTAINABLE. (DSERR 232)

233 VIRTUAL CIRCUIT IS NOT AVAILABLE. (DSERR 233)

234 QUEUEING IS REQUIRED TO COMPLETE THE REQUEST. (DSERR 234)

235 OS MESSAGE SEQUENCING ERROR. (DSERR 235)

236 COMMUNICATIONS HARDWARE HAS DETECTED AN ERROR. (DSERR 236)

237 CANNOT CURRENTLY GAIN ACCESS TO THE TRACE FILE. (DSERR 237)

238 COMMUNICATIONS INTERFACE ERROR. INTERNAL FAILURE.
(DSERR 238)

A-4

239·COMMUNICATIONS INTERFACE ERROR. TRACE MALFUNCTION.
(DSERR 239)

240 LOCAL COMMUNICATION LINE WAS NOT OPENED BY OPERATOR.
(DSERR 240)

241 OS LINE IN USE EXCLUSIVELY OR BY ANOTHER SUBSYSTEM.
(DSERR 241)

242 INTERNAL OS SOFTWARE ERROR ENCOUNTERED. (DSERR 242)

243 REMOTE OR PON IS NOT RESPONDING. (DSERR 243)

244 COMMUNICATIONS INTERFACE ERROR. LINE RESET OCCURRED.
(DSERR 244)

245 COMMUNICATIONS INTERFACE ERROR. RECEIVE TIMEOUT.
(DSERR 245)

246 COMMUNICATIONS INTERFACE ERROR. REMOTE DISCONNECTED.
(DSERR 246)

Error Codes and Messages

247 COMMUNICATIONS INTERFACE ERROR. LOCAL TIME OUT. (DSERR 247)

248 COMMUNICATIONS INTERFACE ERROR. CONNECT TIME OUT.
(DSERR 248)

249 COMMUNICATIONS INTERFACE ERROR. REMOTE REJECTED
CONNECTION. (DSERR 249)

250 COMMUNICATIONS INTERFACE ERROR. CARRIER LOST. (DSERR 250)

251 COMMUNICATIONS INTERFACE ERROR. LOCAL DATA SET FOR THE
OS LINE WENT NOT READY. (DSERR 251)

252 COMMUNICATIONS INTERFACE ERROR. HARDWARE FAILURE.
(DSERR 252)

253 COMMUNICATIONS INTERFACE ERROR. NEGATIVE RESPONSE TO THE
DIAL REQUEST BY THE OPERATOR. (DSERR 253)

254 COMMUNICATIONS INTERFACE ERROR. INVALID I/O CONFIGURATION.
(DSERR 254)

255 COMMUNICATIONS INTERFACE ERROR. UNANTICIPATED CONDITION.
(DSERR 255)

256 REQUEST QUEUED BEHIND PREVIOUS REQUEST.

A-5

Error Codes and Messages

:DSCONTROL INFORMATORY MESSAGES

These messages convey status information.

300 OS DEVICE!: MASTER AND SLAVE ACCESS SHUT.

301 OS DEVICE!: SLAVE ACCESS OPENED; MASTER ACCESS SHUT.

302 OS DEVICE!: MASTER ACCESS OPENED; SLAVE ACCESS SHUT.

303 OS DEVICE!: MASTER AND SLAVE ACCESS OPENED.

304 OS DEVICE!: TRACE ACTIVATED USING TRACE FILE!.

305 OS DEVICE!: TRACE DEACTIVATED.

306 OS DEVICE!: MONITORING ACTIVATED.

307 OS DEVICE!: MONITORING DEACTIVATED.

308 OS DEVICE!: DEBUG MODE ACTIVATED.

309 OS DEVICE!: DEBUG MODE DEACTIVATED.

310 OS DEVICE!: SPECIAL DEBUG MODE ACTIVATED.

311 OS DEVICE!: DEFAULT MODE IS NO COMPRESSION.

312 OS DEVICE!: DEFAULT MODE IS COMPRESSION.

313 OS DEVICE !: RETRY COUNT NOW EQUALS !.

314 OS DEVICE!: CALL REQUEST CANCELED.

:DSCONTROL ERROR MESSAGES

These messages point out an error in syntax or warn of the consequences of a request.

4100 NUMBER OF PARAMETERS EXCEEDS MAXIMUM OF!. (CIERR 4100)

4101 EXPECTED AT LEAST TWO PARAMETERS: A OS DEVICE
CLASS/NUMBER AND A FUNCTION KEYWORD. (CIERR 4101)

4102 EXPECTED A DEVICE CLASS NAME OR LOGICAL DEVICE NUMBER FOR
ONE OR MORE OS DEVICES. (CIERR 4102)

4103 USER IS NOT ASSOCIATED WITH OS DEVICE!. NO CONTROL
FUNCTIONS EXECUTED FOR THIS DEVICE. (CIWARN 4103)

A-6

c

r

Error Codes and Messages

4104 USER IS NOT ALLOWED TO USE :DSCONTROL AND IS NOT ASSOCIATED
WITH THE OS DEVICE(S). (CIERR 4104)

4105 EXPECTED ONE OR MORE OF THE CONTROL FUNCTIONS: OPEN, SHUT,
MON, MOFF, COMP, NOCOMP, TRACE, OR DEBUG. (CIERR 4105)

4106 INVALID CONTROL FUNCTION. EXPECTED ONE OF: OPEN, SHUT,
MON, MOFF, COMP, NOCOMP, TRACE, OR DEBUG. (CIERR 4106)

4107 MASTER OVERRIDES PREVIOUS MASTER/SLAVE OPTION.
(CIWARN 4107)

4108 SLAVE OVERRIDES PREVIOUS MASTER/SLAVE OPTION.
(CIWARN 4108)

4109 SPEED OPTION OVERRIDES PREVIOUS SPEED OPTION.
(CIWARN 4109)

4110 OPEN OVERRIDES PREVIOUS OPEN/SHUT FUNCTION.

4111 SHUT OVERRIDES PREVIOUS OPEN/SHUT FUNCTION.

4112 TRACE OVERRIDES PREVIOUS TRACE FUNCTION(S).

4113 DEBUG OVERRIDES PREVIOUS DEBUG FUNCTION(S).

(CIWARN 4110)

(CIWARN 4111)

(CIWARN 4112)

(CIWARN 4113)

4114 MON OVERRIDES PREVIOUS MON/MOFF FUNCTION. (CIWARN 4114)

4115 MOFF OVERRIDES PREVIOUS MON/MOFF FUNCTION. (CIWARN 4115)

4116 COMP OVERRIDES PREVIOUS COMP/NOCOMP FUNCTION. (CIWARN 4116)

4117 NOCOMP OVERRIDES PREVIOUS COMP/NOCOMP FUNCTION.
(CIWARN 4117)

4118 EXPECTED A 11
;

11
,

11
,

11
, OR RETURN AS DELIMITER. (CIERR 4118)

c 4119 EXPECTED EITHER A 11
;

11 OR RETURN AS DELIMITER. (CIERR 4119)

4120 EXPECTED A "=" AS DELIMITER FOR SPEED OPTION. (CIERR 4120)

4121 EXPECTED A "," AS DELIMITER BETWEEN OPTIONS. (CIERR 4121)

4122 ILLEGAL OPEN/SHUT OPTION. EXPECTED ONE OF: MASTER, SLAVE,
SPEED, OR LINESPEED VALUE. (CIERR 4122)

4123 EXPECTED A POSITIVE DOUBLE VALUE FOR LINESPEED.
(CIERR 4123)

4124 CS CAPABILITY REQUIRED TO USE :DSCONTROL. (CIERR 4124)

4125 PM CAPABILITY REQUIRED TO USE DEBUG FUNCTION. (CIERR 4125)

A-7

Error Codes and Messages

4126 DEBUG FUNCTION MAY ONLY BE USED BY SYSTEM CONSOLE.
(CIERR 4126)

4127 EXPECTED NO OPTION FOR DEBUG OR ONE OF THE FOLLOWING:
ON, OFF, OR POSITIVE INTEGER VALUE. (CIERR 4127)

4128 EXPECTED NO OPTION FOR MON/MOFF OR ONE OF THE FOLLOWING:
CS OR OS. (CIERR 4128)

4129 COMP/NOCOMP FUNCTIONS HAVE NO OPTIONS. (CIERR 4129)

4130 SPEED OPTION IGNORED FOR SHUT FUNCTION. (CIWARN 4130)

4131 EXTRANEOUS 11
;

11 IGNORED. POSSIBLE MISSING FUNCTION?
(CIWARN 4131)

4132 EXTRANEOUS 11
,

11 IGNORED. POSSIBLE MISSING OPTION?
(CIWARN 4132)

4133 CREATION OF OS MONITOR PROCESS FAILED. (CIERR 4133)

4134 PROGRAM FILE 11 DSMON.PUB.SYS 11 MISSING. (CIERR 4134)

4135 OS MONITOR UNABLE TO RUN AS A SYSTEM PROCESS. (CIERR 4135)

4136 CS DEVICE ! IS UNAVAILABLE FOR USE. (CIERR 4136)

4137 OS DEVICE MUST BE OPEN PRIOR TO USE. (CIERR 4137)

4138 USER SPECIFIED TRACE FILE NOT ALLOWED WHEN MORE THAN ONE
DEVICE IN DEVICE CLASS. (CIERR 4138)

4139 OS DEVICE ! CURRENTLY CONTROLLED ELSEWHERE. (CIWARN 4139)

4140 OS DEVICE!: OPEN/SHUT NOT EXECUTED DUE TO ABOVE.
(CIWARN 4140) .

4141 OS DEVICE!: TRACE NOT EXECUTED DUE TO ABOVE. (CIWARN 4141)

4142 OS DEVICE!: MON/MOFF NOT EXECUTED DUE TO ABOVE.
(CIWARN 4142)

4143 OS DEVICE!: COMP/NOCOMP NOT EXECUTED DUE TO ABOVE.
(CIWARN 4143)

4144 DS DEVICE!: DEBUG NOT EXECUTED DUE TO ABOVE. (CIWARN 4144)

4145 NO OS DEVICES REMAINING TO BE CONTROLLED. (CIWARN 4145)

4146 RETRY OVERRIDES PREVIOUS RETRY FUNCTION. (CIWARN 4146)

4147 EXPECTED AN 11 =11 AS DELIMITER FOR RETRY FUNCTION.
(CIERR 4147)

A-8

Error Codes and Messages

4148 INVALID RETRY COUNT, MUST SPECIFY "DEFAULT" OR A NUMBER
BETWEEN 0 AND 255 INCLUSIVE. (CIERR 4148)

4149 OS DEVICE!: RETRY NOT EXECUTED DUE TO ABOVE. (CIWARN 4149)

4150 OS INTERNAL FIX NUMBERS DIFFER. (CIWARN 4150)

4151 INCOMPATIBLE OR MISSING NONCRITICAL OS MODULE: DSCOPY,
DSTEST, DS2026, OR DS2026CN. (CIWARN 4151)

4152 CRITICAL OS MODULES ARE INCOMPATIBLE, NO CONTROL FUNCTIONS
EXECUTED. (CIERR 4152)

4153 MISSING CRITICAL OS SOFTWARE, NO CONTROL FUNCTIONS EXECUTED.
(CIERR 4153)

4155 PROMPT OVERRIDES PREVIOUS PROMPT FUNCTION(S). (CIERR 4155)

4180 REDUNDANT SPECIFICATION OF CANCEL OPTION IGNORED. (CIWARN 4180)

4181 CANCEL OPTION HAS NO PARAMETERS. (CIERR 4181)

4182 OS DEVICE ! IS NOT AN X.21 DEVICE; CANCEL NOT EXECUTED. (CIWARN 4182)

4183 NO CALL REQUEST FOR OS DEVICE!. (CIWARN 4183)

:DSCOPY GENERAL ERROR MESSAGES

0 SUCCEEDED.

1 SUCCESSFULLY INITIATED.

4 UNABLE TO OPEN TRANSACTION FILE. (NFTERR 4)

~ 5 UNABLE TO OPEN LIST FILE (DSCOPYI). (NFTERR 5)

6 IC ERROR ON TRANSACTION FILE. (NFTERR 6)

7 TRANSACTION RECORD > 200 CHARS LONG. (NFTERR 7)

9 TEMPORARY TRANSACTION FILE FULL. (NFTERR 9)

10 PARAMETERS IMPLY CONFLICTING MODES. (NFTERR 10)

11 CAN'T "RUN" COPY PROCESS IN THIS MODE. (NFTERR 11)

13 UNRECOGNIZED PARAMETER. (NFTERR 13)

14 CONFLICTING OPTIONS HAVE BEEN SPECIFIED. (NFTERR 14)

~ 16 UNIMPLEMENTED FEATURE. (NFTERR 16)

A-9

Error Codes and Messages

17 CANNOT CONTACT REMOTE NODE. (NFTERR 17)

18 FILE SYSTEM ERROR ON SOURCE FILE. (NFTERR 18)

19 FILE SYSTEM ERROR ON TARGET FILE. (NFTERR 19)

21 ILLEGAL DSLINE NAME. (NFTERR 21)

24 UNSUPPORTED STANDARD DEVICE TYPE. (NFTERR 24)

25 CAN'T FIND OR OPEN THE SOURCE FILE. (NFTERR 25)

26 CAN'T CREATE OR OPEN THE TARGET FILE. (NFTERR 26)

27 CANNOT CONTACT REMOTE SYSTEM. (NFTERR 27)

28 SOURCE AND TARGET FILES CANNOT BE ACCESSED THROUGH REMOTE
FILE ACCESS. (NFTERR 28)

29 COMMUNICATION IO ERROR. (NFTERR 29)

30 INSUFFICIENT CAPABILITIES. (NFTERR 30)

33 NO SOURCE FILE WAS SPECIFIED. (NFTERR 33)

36 DS/3000 HAS NOT BEEN INSTALLED ON THIS SYSTEM. (NFTERR 36)

37 REMOTE SYSTEM UNABLE TO USE TRANSPARENT MODE. (NFTERR 37)

38 CAN'T FIND THE EXTRA DATA SEGMENT, USE THE DSCOPY INTRINSIC
TO INVOKE NFT. (NFTERR 38)

39 INVALID EXTRA DATA SEGMENT CONTENTS, USE THE DSCOPY INTRINSIC
TO INVOKE NFT. (NFTERR 39)

40 NEGOTIATIONS FAILED, NO COPY CAN BE PERFORMED. (NFTERR 40)

41 FILE TRANSFER ABORTED. (NFTERR 41)

42 COPY CANCELLED BY USER. (NFTERR 42)

:DSCOPY INTRINSIC ERROR RETURNS

80 BOUNDS VIOLATION. (NFTERR 80)

81 SPLITSTACK MODE CALLS NOT ALLOWED. (NFTERR 81)

82 FIRST PARAMETER VALUE IS OUT OF RANGE (-1:6). (NFTERR 82)

83 SECOND PARAMETER TOO SHORT TO CONTAIN VERSION STRING.
(NFTERR 83)

A-10

Error Codes and Messages

84 NFT PROCESS IS BUSY, CAN'T START NEW TRANSACTION.
~ (NFTERR 84)

85 NFT PROCESS IS NOT RUNNING. (NFTERR 85)

86 ILLEGAL BASIC CALLING SEQUENCE. (NFTERR 86)

:DSCOPY INTERNAL ERRORS

101 INTERNAL ERROR ON REMOTE SYSTEM. (NFTERR 101)

102 REMOTE SYSTEM NFT VERSION IS INCOMPATIBLE. (NFTERR 102)

103 INTERNAL - STRING STORAGE OVERFLOW. (NFTERR 103)

~ 104 UNABLE TO CREATE TEMPORARY TRANSACTION FILE. (NFTERR 104)

105 AN UNEXPECTED MESSAGE WAS RECEIVED. (NFTERR 105)

r

~

106 AN ILLEGAL VALUE WAS RECEIVED IN A MESSAGE. (NFTERR 106)

107 A MESSAGE RECEIVED IN INVALID FORMAT. (NfTERR 107)

108 A REQUIRED ELEMENT WAS MISSING FROM A RECEIVED MESSAGE.
(NfTERR 108)

109 NFT PROCESS CREATE FAILED. (NFTERR 109)

110 ATTEMPT TO GET EXTRA DATA SEGMENT FAILED. (NFTERR 110)

X.21 MESSAGES

Set 1: Call Progress Signals

1 ! LDEV ! /CPS 001 TERMINAL CALLED

2 ! LDEV !/CPS 002 REDIRECTED CALL

3 ! LDEV !/CPS 003 CONNECT WHEN FREE

20! LDEV !/CPS 020 NO CONNECTION

21 ! LDEV ! /CPS 021 NUMBER BUSY

22! LDEV !/CPS 022 SELECTION SIGNALS PROCEDURE ERROR

23! LDEV !/CPS 023 SELECTION SIGNAL TRANSMISSION ERROR

A-11

Error Codes and Messages

41! LDEV !/CPS 041 ACCESS BARRED

42! LDEV !/CPS 042 CHANGED NUMBER

43! LDEV !/CPS 043 NOT OBTAINABLE

44! LDEV !/CPS 044 OUT OF ORDER

45! LDEV !/CPS 045 CONTROLLED NOT READY

46! LDEV !/CPS 046 UNCONTROLLED NOT READY

47! LDEV !/CPS 047 DCE POWER OFF

48! LDEV !/CPS 048 INVALID FACILITY REQUEST

49! LDEV !/CPS 049 NETWORK FAULT IN LOCAL LOOP

61! LDEV !/CPS 061 NETWORK CONGESTION

71! LDEV !/CPS 071 LONG TERM NETWORK CONGESTION

81! LDEV !/CPS 081 REGISTRATION/CANCELLATION CONFIRMED

82! LDEV !/CPS 082 REDIRECTION ACTIVATED

83! LDEV !/CPS 083 REDIRECTION DEACTIVATED

Set 2: DCE Provided Information

LDEV !/NPI 001 CHARGE ADVICE - MONETARY CHARGES

2 LDEV !/NPI 002 CHARGE ADVICE - DURATION (SECONDS)

3 LDEV !/NPI 003 CHARGE ADVICE - UNITS

10! LDEV !/NPI 010 LINE IDENTIFICATION !

20! LDEV !/NPI 020 SIGNAL FORMATTING ERROR

A-12

______ os_1_a_o_oo_c_oe_o_L_1_N_T_ER_F_A_c_E___.r'!l·
1i

CONVENTIONS

To call an external procedure from ANS COBOL (COBOL/I), the parameters must be passed by word
reference. This requirement effectively prevents the COBOL/I user from calling system-level
intrinsics in general, and specifically, the DS/3000 Program-to-Program intrinsics. The following
interface routines are provided to allow the ANS COBOL user access to the program-to-program
communications capability. The user of COBOL 11/3000 need not use these interface intrinsics, since
the call-by-value capability can access the Program-to-Program intrinsics (as outlined in the
COBOL/II Reference Manual).

The parameters in the COBOL calling sequences must be of the following types:

If the parameter is an integer, it must be a COBOL picture 9 through 9(4) or S9(3) computational,
synchronized.

If the parameter is a character string, it must be defined as COBOL picture X(n) or A(n), where n is
large enough for the required number of characters.

In the following parameters, those not specifically defined as characters will be assumed to be integers.

It is assumed that the user is already familiar with DS/3000, in general, and the program-to-program
intrinsics, specifically. Information regarding formal usage or content of the interface intrinsic
parameters can be found in Section 6.

COMMON PARAMETERS

Parameters whose use is the same through all the procedures are:

ccode

dsnum

itag

target

integer (required)
The condition code returned by the PTOP intrinsic.
-1 =CCL
0= CCE
1 = CCG

Refer to Section 6 for the meaning associated with these codes in individual PTOP
calls.

integer (required)
The number returned by CPOPEN, and which is required for all subsequent master
PTOP calls. The number is always 0 for slave programs.

A 20-word integer field (optional).

A character field used for reading or writing data (required).

B-1

DS/3000 COBOL Interface

tcount integer (required).
The number of words or bytes to be read or written. Words are a positive integer;
bytes are negative.

INTERFACE INTRINSICS

CPOPEN

This proc.,edure is the COBOL callable interface to POPEN.

Calling Sequence:

CALL "CPOPEN" USING ccode,dsnum, dsdevice, progname, itag, entryname, parm,
flags, stacksize, dlsize, rrrixdata, buffsize

Where:

dsdevice

progname

itag

entryname

pa rm

flags
stacksize
dlsize
rrrixdata

buff size

is a character field containing the node name, device class, or logical device number
of the desired DS line.

is a character field containing the name (terminated by a space) of the remote slave
program.

is the 20-word integer field sent to and received from the remote program.

is the character field specifying the secondary entry point (or spaces) where the
remote program will begin execution. It is ignored if the slave program runs on an
HP 1000.

is an integer value to be placed in Q-4 of the slave program. It is ignored if the
slave program runs on an HP 1 000.

are all MPE parameters used to specify slave program loading options. See Section
6 of this manual or the MPE Intrinsics Reference Manual for usage. It is ignored if
the slave system is an RTE system.

is an integer specifying the maximum number of words which will be transferred
by any of the PTOP intrinsics.

B-2

DS/3000 COBOL Interface

CPREAD

This procedure is the COBOL callable interface to PREAD.

Calling Sequence:

CALL 11 CPREAD11 USING ccode,dsnum,length,target,tcount,itag

Where:

length

CPWRITE

is the actual number of words or bytes (depending on the value of tcount) read
into target. (Required.)

This procedure is the COBOL callable interface to PWRITE.

Calling Sequence:

CALL "CPWRITE" USING ccod.e,dsnum,target,tcount,itag

CPCONTROL

This procedure is the COBOL callable interface to PCONTROL.

Calling Sequence:

CALL 11 CPCONTROL 11 USING ccode,dsnum,itag

CPCLOSE

This procedure is the COBOL callable interface to PCLOSE.

Calling Sequence:

CALL "CPCLOSE" USING ccode,dsnum

B-3

DS/3000 COBOL Interface

CGET

This procedure is the COBOL callable interface to GET.

Calling Sequence:

CALL "CGET" USING ccode,ifun,itag,il,ionumber

Where:

ifun

il

ion umber

is the function number of the current pending PTOP operation. (Required.)
0 =An error occurred. This value is returned only when the condition code CCL

is also returned. Issue a PCHECK intrinsic call (with a dsnum parameter of zero)
to determine what happened.

1 = POPEN request received.
2 = PREAD request received.
3 = PWRITE request received.
4 = PCONTROL request received.
5 =This value is returned only when the condition code CCG

is also returned. It indicates that a pending MPE File System 1/0 without wait
request was completed (instead of the expected remote DS/3000 1/0 request).
ionumber contains the file number associated with the completed 1/0 request.

is the number of words sent by a PWRITE or the number of words requested by a
PREAD.

is the file number of a non-OS file which completed an 1/0 without wait.

B-4

DS/3000 COBOL Interface

CACCEPT

This procedure is the COBOL callable interface to ACCEPT.

Calling Sequence:

CALL "CACCEPT" USING ccode,itag,target,tcount

CREJECT

This procedure is the COBOL callable interface to REJECT.

Calling Sequence:

CALL 11 CREJECT 11 USING. ccode,itag

CPCHECK

This procedure is the COBOL callable interface to PCHECK.

Calling Sequence:

CALL 11 CPCHECK11 USING ccode,dsnum,icode

Where:

dsnum integer (required for master, optional for slave).
For a master program, this number is returned by the CPOPEN call. For a slave
program, this number is always 0.

iocode is an integer identifying the last error encountered. The error code meanings are
given in Appendix A, under "DS/3000 Functional Errors."

EXAMPLE

The following example illustrates how two COBOL programs, residing on two HP 3000 computers, pass
data back and forth. These two programs demonstrate and test the intrinsics available to the user of
the COBOL Program-to-Program facility of DS/3000. The Slave program must be entered on the
remote system, compiled, and PREPed before the test. The PREPed file must then be made a
permanent file. In this example, the MPE commands were:

: COBOL COBOLSS (COBOL Slave Source)
:PREP $OLDPASS, COBOLS
:SAVE COBOLS

The Master program must then be entered, compiled, PRE Ped, and run on the local system.

A brief outline of the test follows:

B-5

DS/3000 COBOL Interface

1. The Master program opens the Slave program with CPOPEN. The itag array is filled with the
value of the subscript of each array element, and the CPOPEN intrinsic is called. The Slave displays ·""
certain parameters involved in the opening. Then the Master also displays the value of the "1
parameters used for opening the remote program. After each call is made to a COBOL intrinsic,
the status of the call is checked in the STATUS-CK-RTN paragraph.

2. The Master next tests the CPREAD intrinsic by requesting that a message from the Slave be sent
back.

3. C PWR ITE is tested by sending a message to the Sia ve. The Sia ve then displays the message as it was
received to demonstrate the validity of the text.

4. The CREJECT-TEST paragraph of the Master is used to test the CPREJECT intrinsic available to
the Slave as well as the CPCONTROL intrinsic of the Master. The value 14 is moved into the first
element of !TAG and CPCONTROL is called. Within the paragraph that handles a call to
CPCONTROL, the Sia ve tests this value and rejects the request.

5. The master then calls CPCLOSE to close the remote program before terminating itself.

The individual programs are shown on the following pages.

Master PTOP Program

001000$CONTROL USLINIT,SOURCE,MAP
001100 IDENTIFICATION DIVISION.
001200 PROGRAM-ID. MASTER-COBOL.
001300 ENVIRONMENT DIVISION.
001400 DATA DIVISION.
001500************************************
001600 WORKING-STORAGE SECTION.
001700 77 CCODE PIC S99 COMP VALUE 0.
001800 77 DSNUM PIC S99 COMP VALUE 0.
001900 77 PARAM PIC S99 COMP VALUE 0.
002000 77 FLAGS PIC S99 COMP VALUE 33.
002100 77 STACKSIZE PIC S9(4) COMP VALUE IS -1.
002200 77 DLSIZE PIC S9(4) COMP VALUE IS -1.
002300 77 MAXDATA PIC 59999 COMP VALUE IS 8000.
002400 77 BUFSIZE PIC S999 COMP VALUE IS 304.
002500 77 LGTH PIC S99 COMP VALUE 0.
002600 77 !CODE PIC S99 COMP VALUE 0.
002700 77 TCOUNT PIC S99 COMP VALUE IS 33.
002800 77 I PIC S99 COMP VALUE 0.
002900 77 DATA-BUF PIC X(66) VALUE SPACES.
003000**
003100 77 A-DOLLAR PIC X(12) VALUE 11 « ACCEPT » 11

•

003200 77 K-DOLLAR PIC X(12) VALUE 11 ## PCHECK ## 11
•

003300 77 M-DOLLAR PIC X(26) VALUE 11 ######### MASTER#########".
003400 77 0-DOLLAR PIC X(11) VALUE 11 ## POPEN ##".
003500 77 R-DOLLAR PIC X(11) VALUE"## PREAD #a-'.
003600 77 5-00LLAR PIC X(18) VALUE 11 ## STATUS CHECK##".
003700 77 W-DOLLAR PIC X(12) VALUE 11 ## PWRITE ##".
003800 77 CO-DOLLAR PIC X(14) VALUE 11 ## PCONTROL ## 11

•

003900 77 C9-DOLLAR PIC X(12) VALUE 11 ## PCLOSE ## 11
•

B-6

004000 77 D1-DOLLAR
004100 77 EO-DOLLAR
004200 77 PO-DOLLAR
004300 77 RO-DOLLAR

PIC XXXX VALUE "INDY".
PIC xx VALUE II II

PIC X(7) VALUE 11 COBOLS ".
PIC x (12) VALUE II« REJECT »It.

004400**
004500 01 !TAG-ARRAY.
004600 02 ITAG-ARRAY-MEM PIC 99 OCCURS 20 TIMES.
004700**
004800* PROCEDURE DIVISION *
004900**
005000 PROCEDURE DIVISION.
005100 DRIVER-PARA.

PERFORM ISSUE-AN-OPEN.
PERFORM ISSUE-A-READ.
PERFORM ISSUE-A-WRITE.
GO TO CREJECT-TEST.
GO TO PCLOSE-CALL.

ISSUE-AN-OPEN.
DISPLAY M-DOLLAR.
DISPLAY 0-DOLLAR.
PERFORM LOOP! VARYING I FROM 1 BY 1 UNTIL

I IS GREATER THAN 20.
DISPLAY II TAG TO BE SENT: ".
DISPLAY !TAG-ARRAY.

DS/3000 COBOL Interface

005200
005300
005400
005500
005600
005700
005800
005900
006000
006100
006200
006300
006400
006500
006600
006700
006800
006900
007000
007100
007200
007300
007400
007500
007600
007700
007800
007900
008000
008100
008200
008300
008400
008500
008600
008700
008800
008900
009000
009100
009200
009300

CALL 11 CPOPEN 11 USING CCODE, DSNUM, D1-DOLLAR, PO-DOLLAR,
!TAG-ARRAY, EO-DOLLAR, PARAM, FLAGS, STACKSIZE, DLSIZE,
MAXDATA, BUFSIZE.

PERFORM STATUS-CK-RTN.
DISPLAY 0-DOLLAR.
DISPLAY II CCODE= 11

, CCODE, II DSNUM=", DSNUM,
II PARAM=", PARAM.

DISPLAY II FLAGS=", FLAGS, II STACKSIZE=", STACKSIZE.
DISPLAY II DLSIZE=", DLSIZE, II MAXDATA= 11

, MAXOATA.
DISPLAY II BUFSIZE=", BUFSIZE, II LGTH=", LGTH.
DISPLAY II PROGNAME=", PO-DOLLAR.
DISPLAY II !TAG-ARRAY RECEIVED: II

DISPLAY !TAG-ARRAY.
ISSUE-A-PREAD.

DISPLAY R-DOLLAR.
PERFORM LOOP! VARYING I FROM 1 BY 1 UNTIL
I IS GREATER THAN 20.

DISPLAY "!TAG TO BE SENT: 11
•

DISPLAY !TAG-ARRAY.
CALL 11 CPREA0 11 USING CCODE, DSNUM, LGTH, DATA-BUF,

TCOUNT, ITAG-ARRAY.
PERFORM STATUS-CK-RTN.
DISPLAY II CCODE= 11

, CCODE, II DSNUM=", DSNUM,
II LGTH= 11

, LGTH.
DISPLAY II DATA RECEIVED FROM SLAVE: II

DISPLAY DATA-BUF.
DISPLAY II ITAG RECEIVED: II

DISPLAY !TAG-ARRAY.
ISSUE-A-WRITE.

DISPLAY W-DOLLAR.

B-7

DS/3000 COBOL Interface

009400 PERFORM MULTIPLY-LOOP VARYING I FROM 1 BY 1 UNTIL
009500 I IS GREATER THAN 20.
009600 DISPLAY " ITAG TO BE SENT: ".
009700 DISPLAY ITAG-ARRAY.
009800 MOVE "THIS IS THE DATA FROM PWRITE TEST. 11 TO DATA-BUF.
009900 CALL 11 CPWRITE 11 USING CCODE, DSNUM, DATA-BUF, TCOUNT,
010000 !TAG-ARRAY.
010100 PERFORM STATUS-CK-RTN.
010200 DISPLAY II CCODE=", CCODE, II DSNUM= 11

, DSNUM.
010300 DISPLAY II ITAG RECEIVED: II

010400 DISPLAY !TAG-ARRAY.
010500 CREJECT-TEST.
010600 DISPLAY CO-DOLLAR.
010700 MOVE SPACES TO !TAG-ARRAY.

·010800 MOVE 14 TO ITAG-ARRAY-MEM(1).
010900 DISPLAY 11 ITAG TO BE SENT: ".
011000 DISPLAY !TAG-ARRAY.
011100 CALL 11 CPCONTROL 11 USING CCODE, DSNUM, !TAG-ARRAY.
011200 PERFORM STATUS-CK-RTN.
011300 STOP RUN.

·~
011400 LOOP!.
011500 MOVE I TO ITAG-ARRAY-MEM(I).
011600 MULTIPLY-LOOP.
011700 MULTIPLY 2 BY ITAG-ARRAY-MEM(I).
011800 STATUS-CK-RTN.
011900 IF CCODE IS LESS THAN ZERO GO TO
012000 SOMETHING-WENT-WRONG.
012100 IF CCODE IS GREATER THAN ZERO GO TO
012200 REQUEST-REJECTED.
012300 DISPLAYS-DOLLAR, "EVERYTHING OKAY".

~
'· .

012400 REQUEST-REJECTED.
012500 DISPLAYS-DOLLAR, "REQUEST REJECTED BY SLAVE".
012600 GO TO PCLOSE-CALL.
012700 SOMETHING-WENT-WRONG.
012800 DISPLAYS-DOLLAR, 11 CCL--SOMETHING IS WRONG 11

•

012900 CALL 11 CPCHECK 11 USING CCODE, DSNUM, !CODE.
013000 DISPLAY K-DOLLAR, II CCODE=", CCODE,
013100 II !CODE=", !CODE.
013200 PCLOSE-CALL.
013300 DISPLAY C9-DOLLAR.
013400 CALL 11 CPCLOSE 11 USING CCODE, DSNUM.
013500 DISPLAY II CCODE=", CCODE, II DSNUM= 11

, DSNUM.
013600 STOP RUN.

B-8

r
Slave PTOP Program

001000$CONTROL USLINIT,SOURCE
001100 IDENTIFICATION DIVISION.
001200 PROGRAM-ID. SLAVE-COBOL.
001300 ENVI~ONMENT DIVISION.
001400 DATA DIVISION.
001500**
001600 WORKING-STORAGE SECTION.
001700 77 T PIC S99 USAGE COMP.
001800 77 I PIC S99 COMP VALUE 0.
001900 77 CCODE PIC S99 COMP VALUE 0.
002000 77 IFUN PIC S9 COMP VALUE 0.
002100 77 IL PIC S99 COMP VALUE 0.
002200 77 IONUMBER PIC S99 COMP VALUE 0.
002300 77 !CODE PIC S99 COMP VALUE 0.
002400 77 DSNUM PIC S99 COMP VALUE 0.
002500**
002600 77 C-DOLLAR PIC X(11) VALUE 11 ## CHECK##".
002700 77 G-DOLLAR PIC X(9) VALUE 11 ## GET ## 11

•

002800 77 A-DOLLAR PIC X(12) VALUE 11 ## ACCEPT ## 11
•

002900 77 R-DOLLAR PIC X(12) VALUE 11 ## REJECT ## 11
•

DS/3000 COBOL Interface

003000 77 S-DOLLAR PIC X(25) VALUE"######### SLAVE ######### 11
•

003100**
003200 77 00-DOLLAR PIC x (11) VALUE II« POPEN »II.
003300 77 CO-DOLLAR PIC x (14) VALUE II« PCONTROL »II.
003400 77 SO-DOLLAR PIC X(18) VALUE 11 ## STATUS CHECK ## 11

•

003500 77 RO-DOLLAR PIC X(11) VALUE 11 << PREAD >> 11
•

003600 77 WO-DOLLAR PIC X(12) VALUE 11 « PWRITE » 11
•

003700**
003800 01 DATA-ARRAY.
003900 02 DATA-ARRAY-MEM PIC 99 OCCURS 33 TIMES.
004000 01 !TAG-ARRAY.
004100 02 ITAG-ARRAY-MEM PIC 99 OCCURS 20 TIMES.
004200***
004300* PROCEDURE DIVISION *
004400***
004500 PROCEDURE DIVISION.
004600 START-OF-SLAVE.
004700 DISPLAY S-DOLLAR.
004800 CALL 11 CGET" USING CCODE, IFUN, !TAG-ARRAY, IL, IONUMBER.
004900 PERFORM PRINT-GET-PARAMS THROUGH CHECK-RETURN-CC.
005000 IF CCODE IS NOT EQUAL TO ZERO GO TO CREJECT-PAR.
005100 GO TO POPEN, PREAD, PWRITE, PCONTROL DEPENDING ON IFUN.
005200 POPEN.
005300 DISPLAY S-DOLLAR.
005400 DISPLAY 00-DOLLAR.
005500 MOVE ZEROES TO !TAG-ARRAY.
005600 GO TO CACCEPT-PAR.
005700 PREAD.
005800 DISPLAY S-DOLLAR.
005900 DISPLAY RO-DOLLAR.
006000 PERFORM LOOP1 VARYING I FROM 1 BY 1 UNTIL
006100 I IS GREATER THAN 20.

B-9

DS/3000 COBOL Interface

006200 PERFORM INCREASE-LOOP VARYING T FROM 1 BY 1 UNTIL
006300 T IS GREATER THAN IL.
006400 GO TO CACCEPT-PAR.
006500 LOOP7.
006600 MOVE 7 TO ITAG-ARRAY-MEM(I).
006700 LOOP1.
006800 MOVE 1 TO ITAG-ARRAY-MEM(I).
006900 LOOP2.
007000 MOVE 2 TO ITAG-ARRAY-MEM(I).
007100 INCREASE-LOOP.
007200 MOVE T TO DATA-ARRAY-MEM(T).
007300 PWRITE.
007400 DISPLAY S-DOLLAR.
007500 DISPLAY WO-DOLLAR.
007600 PERFORM LOOP7 VARYING I FROM 1 BY 1 UNTIL
007700 I IS GREATER THAN 20.
007800 CACCEPT-PAR.
007900 CALL 11 CACCEPT" USING CCODE, !TAG-ARRAY, DATA-ARRAY, IL.
008100 PERFORM CHECK-RETURN-CC.
008200 IF !FUN = 3 PERFORM PRINT-DATA.
008300 GO TO START-OF-SLAVE.
008400 CREJECT-PAR.
008500 CALL 11 CREJECT11 USING CCODE, !TAG-ARRAY.
008600 PERFORM CHECK-RETURN-CC.
008700 GO TO START-OF-SLAVE.
008800 PCONTROL.
008900 DISPLAY CO-DOLLAR.
009000 IF ITAG-ARRAY-MEM(1) = 14 GO TO CREJECT-PAR.
009100 PERFORM LOOP2 VARYING I FROM 1 BY 1 UNTIL
009200 I IS GREATER THAN 20.
009300 GO TO CACCEPT-PAR.
009400 PRINT-DATA.
009500 DISPLAY "DATA RECEIVED FROM THE MASTER: 11

009600 DISPLAY DATA-ARRAY.
009700 PRINT-GET-PARAMS.
009800 DISPLAY II CCODE=", CCODE, II !FUN=", !FUN, II IL=", IL'
009900 II IONUMBER=", IONUMBER.
010000 DISPLAY "!TAG RECEIVED: ".
010100 DISPLAY !TAG-ARRAY.
010200 CHECK-RETURN-CC.
010300 IF CCODE IS NOT EQUAL TO ZERO
010400 PERFORM SOMETHING-WENT-WRONG.
010500 DISPLAY SO-DOLLAR, "EVERYTHING OKAY".
010600 SOMETHING-WENT-WRONG.
010700 CALL "CPCHECK" USING CCODE, DSNUM, !CODE.
010800 DISPLAY 11 CCODE=", CCODE, ... ICODE=", !CODE.
010900 ERROR-EXIT.
011000 DISPLAY 11 ## SLAVE PROGRAM EXITING##".
011100 STOP RUN.

B-10

______ o_s1_a_o_oo_e_As_1c_1N_T_ER_F_A_c_E_f ll~'·"1
CONVENTIONS

When parameters are specified in the CALL statement the BASIC/ 3000 Interpreter (and compiled
BASIC) sets up a parameter address table. The parameter address table consists of:

• The number of parameters.

• A code word for each parameter, specifying data type and dimensioning.

• A reference pointer to each parameter.

See Appendix F of the BASIC/ 3000 Interpreter Manual.

Because the DS/3000 intrinsics are program-to-program, the BASIC/3000 slave must be a compiled
and PREPed program. The master program may be either running on the Interpreter or run as a
compiled program.

It is assumed that the user is already familiar with DS/3000 in general and the program-to-program
intrinsics specifically. Information regarding formal usage or content of the interface intrinsic
parameters can be found in Section 6.

COMMON PARAMETERS

Parameters whose usage is the same throughout the procedures are:

ccode

dsnum

itag

Parameters

integer.
Condition code returned by the DS/3000 Program-to-Program intrinsic.

-3 =not enough user stack for data transfer.
-2 =CCL
O=CCE
1 = CCG

integer.
The DS/3000 communication line number. (analagous to FOPEN file number)

integer.
A 20-word array.

The BASIC-DS/3000 interface routines pack and unpack the data specified in the
parameter lists of the master and the slave programs. The user must insure that the
number of parameters specified on the master and the slave sides are the same and
that the data types correspond. If the sending and receiving data types are not the
same, the resulting data will be unpredictable. ·

C-1

DS/3000 BASIC Interface

Special care must be taken when passing string variables (simple strings or string arrays). String
variables have both a physical (i.e. maximum) length and a logical (i.e. current) length. The logical
length is never greater than the physical length and may, in fact, be smaller. Since PTOP packs string
variable parameters according to their logical lengths, but unpacks according to the physical length of
the receiving string variables, the same string variable cannot be used for both sending and receiving if
its physical length exceeds its logical length.

For example, suppose NO$ is a 10 character string which currently has the value JOHN. N's physical
length is 10 but its logical length is only 4. If a master PTOP program were to BPWRITE NO$, only 4
characters of data will be sent across the line. If the slave PTOP program were to call BACCEPT with
another 10 character string, say MO$, the value of MO$ after the BACCEPT would be JOHNxxxxxx,
where the xs are undefined. The logical length of MO$ would now be equal to its physical length,
which is 10.

As another example, suppose the master PTOP program were to pass two 10 character strings to
BPWRITE (NO$ and N 1 $), and the slave PTOP program called BACCEPT with two 10 character strings
(MO$ and M 1 $). If NO$ = JOHN and N 1 $ = JANE DOE, the resulting values of MO$ and M 1 $ would be
JOHN JANE and DOExxxxxxx, respectively. (The xs are undefined characters.)

These anomalies are consistent in BASIC with the rules governing access to other media in which the
length of strings is not inherent (for example, binary files). There are several ways to avoid these
problems. The first method, which is illustrated in the example BASIC PTOP programs in this section,
is to pad all strings with blanks before transmitting them (i.e. before BPWRITE or before BPACCEPT of
a BPREAD). Another, more sophisticated approach, would be for the sending side to pass the logical
lengths of the strings in the i tag array. The receiving side would supply only one parameter, a string
which is large enough to hold all of the strings which were sent. This string could then be unpacked
by the user program using the information in the tag array and the substring functions of BASIC.

There is one more anomaly involved in passing strings. Since strings are always unpacked starting on
word boundaries, it is not possible to unpack an even length string into two odd length strings.

C-2

DS/3000 BASIC Interface

INTERFACE INTRINSICS

BP OPEN

This procedure is the BASIC callable interface to POPEN.

Calling Sequence:

CALL BPOPEN(ccode,dsnum,dsdevice,progname, 0 , 0 , 0 , 0 , . ~itag} {entryname} {param} {flags}

Where:

dsdevice

progname

entryname

pa ram

flags
stacksize
dlsize
maxdata

buf size

stacksize} {dlsize} {maxdata}
0 , 0 , 0 ,

buffsize)

string.
The OS line class, node name, or logical device number (string must have at least
one trailing blank).

string.
Name of remote slave program (terminated with a blank).

string.
Secondary entry point into the slave program (terminated with a blank).

integer.
Value placed in Q-4 of the slave program stack.

MPE parameters used to control slave program loading. See Section 6 of this
manual or the MPE Intrinsics Reference Manual for usage.

integer.
Maximum number of words per PTOP transfer.

C-3

DS/3000 BASIC Interface

BPREAD

This procedure is the BASIC interface routine to PREAD.

Calling Sequence:

CALL BPREAD(ccode,dsnum,lgth,{~tag},param list)

Where:

lg th

param list

BPWRITE

integer.
Number of words received in transfer.

::= param [,param list] where param is any BASIC supported data type (such as
STRING, INTEGER, REAL ARRAY)

NOTE

The BASIC interface routines: BPREAD, BPWRITE, and
BACCEPT differ significantly from the PTOP intrinsics in
the target/tcount vs. parameter list data schemes.
The parameter list allows the BASIC user to send and
receive heterogeneous data items. A contiguous buffer is
built on the User,s stack for the transfers.

This procedure is the BASIC callable interface to PWRITE.

Calling sequence:

CALl BPWRITE(ccode,dsnum,{~tag}.param list)

BPCONTROL

This procedure is the BASIC interface routine to PCONTROL.

Calling Sequence:

CALL BPCONTROL(ccode,dsnum,itag)

C-4

'-

DS/3000 BASIC Interface

BPCLOSE

This procedure is the BASIC interface routine to PCLOSE.

Calling Sequence:

CALL BPCLOSE(ccode,dsnum)

BGET

This procedure is the BASIC interface routine to GET.

Calling Sequence:

CALL BGET(ccode,ifun,{~tag}•{~l}·{~onumber}l

r Where:

~
\'

ifun

il

ion umber

BACCEPT

integer.
Receives the function code from the request issued by the remote master program.
(Refer to Section 6 for ifun meanings.)

integer.
The number of words expected or sent on BPREAD or BPWRITE.

integer.
Valid if both ocode=l and ifun=S. File number of completed non-DS 1/0
without wait.

This is the BASIC callable interface routine to ACCEPT.

Calling Sequence:

CALL BACCEPT(ccode,ifun,{~tag}•param list)

C-5

DS/3000 BASIC Interface

BREJECT

This is the BASIC callable interface routine to REJECT.

Calling Sequence:

CALL BREJECT(ccode,itag)

BPCHECK

This is the BASIC callable routine to PCHECK.

Calling Sequence:

CALL BPCHECK(ccode,dsnum,icode)

Where:

dsnum integer.
For a master program, this number is returned by BPOPEN. For a slave program,
this number is always 0.

icode integer.
The number returned identifies the last error encountered. Refer to Appendix B,
under the heading "DS/3000 Functional Errors", for meaning.

EXAMPLES

Master PTOP Program

MASTER
1 REM:**
2 REM:
3 REM:
4 REM:

MASTER PTOP PROGRAM

5 REM:**
6 REM:
7 REM:
8 REM:
9 REM:

10 REM:

THIS PROGRAM ISSUES A BPOPEN TO THE SLAVE PROGRAM AND
USES THE TAG FIELD TO SEND SUBTYPES FOR THE BREAD/BWRITE
OPERATIONS.

11 REM:**
110 REM: DATA DECLARATIONS
120 REM:**
130 REM: BASIC PTOP INTRINSIC PARAMETERS--
140 INTEGER C,D,F,IO,L
150 REM: C=CC, D=DSNUM, F=FLAGS, IO=ICODE, L=LENGTH
160 INTEGER 11 [20]
165 MAT 11=ZER

C-6

170 REM: 11 [*]=TAG FIELD
180 DIM D0$[10],P0$[10]
190 REM: DO$=DSLINE, PO$=REMOTE PROGRAM
200 REM: ------LOCAL VARIABLES-----
210 DIM N1$[20],N2$[20],A1$[20],R$[40]

DS/3000 BASIC Interface

220 REM: N1$,N2$=NAMES; A1$[20]=ADDRESS; R$=RECORD(NAME,ADDRESS)
221 DIM B$[20]
222 REM: B$= BLANK PADDING STRING
230 DIM C$[20],N$[22]
240 REM: C$=USER COMMAND/TEXT LINE
250 REM: N$=ENTER NAME MESSAGE
260 REM:**
270 REM:
280 REM:
290 REM:

START OF PROCESSING

300 REM:**
310 REM: -----INITIALIZATION OF VALUES AND BPOPEN-----
320 PRINT "ENTER DSLINE CLASS NAME"
325 INPUT DO$
330 PRINT "ENTER SLAVE PROGRAM NAME"
335 INPUT PO$
340 N$="ENTER NAME II

345 B$= 11

360 CALL BPOPEN(C,D,DO$,PO$)
370 IF C=O THEN GOTO 410

II

380 PRINT 11 ### ERROR ON BPOPEN ### 11

390 GOSUB 7000
400 STOP
410 REM:**
420 REM: WELCOME MESSAGE AND MENU
430 REM:**
440 PRINT "MASTER AND SLAVE PTOP RUNNING"
450 PRINT II II

460 PRINT 11 *** OPERATIONS MENU *** 11

470 PRINT II N - NAME CHANGE"
480 PRINT II A ADDRESS CHANGE"
490 PRINT II I INSERT PERSON"
500 PRINT II D DELETE PERSON"
510 PRINT 11 LN LIST NAME AND ADDRESS"
520 PRINT 11 LA LIST ALL NAMES AND ADDRESSES"
530 PRINT II EX EXIT PROGRAM"
540 REM:**
550 REM: OPERATION REQUEST
560 REM:**
570 PRINT II II

580 PRINT "ENTER OPERATION"
590 LINPUT C$
600 IF C$(1,1]= 11 N11 THEN GOTO 1000
610 IF C$[1,1]= 11 A11 THEN GOTO 2000
620 IF C$ [1 '11 ='~I II THEN GOTO 3000
630 IF C$[1,1]= 11 D11 THEN GOTO 4000
640 IF C$[1,2]="LN" THEN GOTO 5000
650 IF C$[1,2]="LA" THEN GOTO 6000
660 IF C$[1,2]= 11 EX 11 THEN GOTO 8000

C-7

DS/3000 BASIC Interface

670 PRINT 11*** UNRECOGNIZED OPERATION *** 11

680 GOTO 450
1000 REM:**
1010 REM: NAME CHANGE
1020 REM:*******************************·***********************
1030 PRINT N$
1040 LIN PUT N 1 $
1045 IF N1$="" THEN GOTO 450
1050 IF I1[1]<0 OR I1[1]>1 THEN GOSUB 7000
1060 PRINT "ENTER NEW NAME"
1070 LIN PUT N2$
1 080 I 1 [1] = 1
1084 REM: PAD STRINGS WITH BLANKS BEFORE XMI~ING
1085 N1$=N1$+B$
1086 N2$=N2$+B$
1090 CALL BPWRITE(C,D,I1[*],N1$,N2$)
1100 GOSUB 7000
1110 GOTO 1000
2000 REM:**
2010 REM: ADDRESS CHANGE
2020 REM:**
2030 PRINT N$
2040 LINPUT N1$
2050 IF N1$="" THEN GOTO 450
2060 PRINT "ENTER NEW ADDRESS"
2070 LINPUT A1$
2080 I1[1]=2
2084 REM: PAD STRINGS WITH BLANKS
2085 N1$=N1$+B$
2086 A1$=A1$+B$
2090 CALL BPWRITE(C,D,I1[*],N1$,A1$)
2100 GOSUB 7000
2200 GOTO 2000
3000 REM:**
3010 REM: INSERT NAME
3020 REM:**
3030 PRINT N$
3040 LIN PUT N 1 $
3050 IF N1$= 1111 THEN GOTO 450
3060 PRINT "ENTER ADDRESS"
3070 LINPUT A1$
3080 I1[1]=3
3084 REM: PAD STRINGS WITH BLANKS
3085 N1$=N1$+B$
3086 A1$=A1$+B$
3090 CALL BPWRITE(C,D,I1[*],N1$,A1$)
3100 GOSUB 7000
3110 GOTO 3000
4000 REM:**
4010 REM: DELETE PERSON
4020 REM:**
4030 PRINT N$
4040 LINPUT N1$
4050 IF N1$= 1111 THEN GOTO 450

C-8

4060 I1[1]=4
4065 REM: PAD NAME WITH BLANKS
4066 N1$=N1$+B$
4070 CALL BPWRITE(C,D,I1[*],N1$)
4080 GOSUB 7000
4090 GOTO 4000

DS/3000 BASIC Interface

5000 REM:**
5010 REM: LIST NAME AND ADDRESS
5020 REM:**
5030 PRINT N$
5040 LINPUT N1$
5050 IF N1$='"' THEN GOTO 450
5060 I 1 [1] = 1
5067 REM: PAD NAME WITH BLANKS
5068 N1$=N1$+B$
5070 CALL BPWRITE(C,D,I1[*],N1$,N1$)
5080 IF C=O THEN CALL BPCONTROL(C,D,11[•])
5090 IF C<>O OR I1[1]<>1 THEN GOTO 5000
5100 L=-80
5110 CALL BPREAD(C,D,L,I1 [*],R$)
5120 GOSUB 7000
5130 PRINT R$
5140 GOTO 5000
6000 REM:**
6010 REM: LIST WHOLE LIST
6020 REM:**
6030 L=-80
6040 I1[1)=2
6050 CALL BPREAD(C,D,L,11 [•],R$)
6060 GOSUB 7000
6070 PRINT R$
6080 IF I1 [1)=0 THEN GOTO 6000
6090 GOTO 450
7000 REM:**
7010 REM: CONDITION CODE AND STATUS CHECK
7020 REM:**
7030 IF C>O THEN GOTO 7120
7040 IF C<O THEN GOTO 7150
7050 CALL BPCONTROL(C,D,11[•))
7060 IF I1[1)<0 OR I1 [1)>1 THEN GOTO 7090
7065 REM: REMINDER--CHECK ABOVE LINE
7070 REM: *** EVERYTHING OKAY ***
7080 RETURN
7090 REM: *** BAD RECORD ***
7100 PRINT "### NON-EXISTENT RECORD ### 11

7110 RETURN
7120 REM: *** CCG ***
7130 PRINT "### REQUEST REJECTED BY SLAVE ###"
7140 RETURN
7150 REM: *** CCL ***
7160 CALL BPCHECK(C,D,IO)
7170 PRINT 11 ### PTOP ERROR:";I0; 11 ###"
7180 RETURN
8000 REM:**

C-9

DS/3000 BASIC Interface

8010 REM: EXIT
8020 REM:**
8030 CALL BPCLOSE(C,D)
8040 GOSUB 7000
8050 END

C-10

DS/3000 BASIC Interface

Slave PTOP Program

SLAVE BF
1 REM:**
2 REM:
3 REM:
4 REM:

SLAVE PTOP PROGRAM

5 REM:**
6 REM:
7 REM:
8 REM:
9 REM:

10 REM:

THIS PROGRAM ACCEPTS DATA FROM THE MASTER AND
ACCORDINGLY CHANGES, INSERTS, OR DELETES ENTRIES.
IT ALSO TRANSMITS NAME/ADDRESS RECORDS TO THE MASTER

100 REM:**
110 REM: DATA DECLARATIONS
120 REM:**
130 REM: -----BASIC PTOP INTRINSIC PARAMETERS-----
140 INTEGER C,F,L,IO,I,D
150 REM: C=CC; F=FUNCTION; L=IL; IO=I/O; I=ICODE; D=DSNUM
155 D=O
160 INTEGER I1[20)
170 REM: I1[*]=TAG FIELD
180 REM: -----LOCAL VARIABLES-----
190 DIM N1$[20],N2$[20],A1$[20]
200 REM: N1$,N2$=NAME; A1$=ADDRESS
210 DIM N0$(20,20),A0$(20,20)
220 REM: NO$,AO$=LIST OF NAMES AND ADDRESSES
225 DIM B$[20]
226 REM: B$= BLANK PADDING STRING
230 INTEGER P,S
240 REM: P=LAST RECORD POINTER; S=STATUS
250 INTEGER X
255 X=O
256 S=1
800 REM:**
810 REM: START OF PROGRAM
820 REM:**
830 CALL BGET(C,F,I1[•])
845 IF C<>O THEN GOTO 7000
850 GOSUB 5000
870 GOSUB F OF 1000,2000,3000,4000
880 GOTO 800

1000 REM:**
1010 REM: BPOPEN
1020 REM:**
1030 CALL BACCEPT(C,F)
1050 GOSUB 5000
1055 REM: INITIALIZE NAME AND ADDRESS ARRAYS
1056 B$=" II

1060 FOR P=1 TO 9
1070 READ NO$[P],AO$[P]
1074 REM: PAD STRINGS WITH BLANKS
1075 NO$[P]=NO$[P]+B$
1076 AO$[P]=AO$(P]+B$

C-11

DS/3000 BASIC Interface

1080 NEXT P
1085 P=9
1090 RETURN
2000 REM:**
2010 REM: READ
2020 REM:**
2030 IF I1[1)=2 THEN GOTO 2090
2040 REM: *** LIST SINGLE RECORD ***
2050 11[1]=S=1
2060 CALL BACCEPT(C,F,I1[•],NO$[PO],AO$[PO))
2070 GOSUB 5000
2080 RETURN
2090 REM: ***LIST ALL RECORDS ***
2100 IF S<>O THEN PO=O
2110 S=O
2120 PO=P0+1
2130 IF PO=P THEN S=1
2140 I1[1]=S
2150 CALL BACCEPT(C,F,I1(*],NO$(PO],AO$(PO])
2160 GOSUB 5000
2170 RETURN
3000 REM:**
3010 REM: WRITE
3020 REM:**
3030 GOSUB I1(1] OF 3040,3160,3290,3410
3035 RETURN
3040 REM: ***ENTRY: NAME CHANGE ***
3050 CALL BACCEPT(C,F,I1[•],N1$,N2$)
3055 GOSUB 5000
3060 PO=O
3070 PO=P0+1
3080 IF NO$[PO]=N1$ THEN GOTO 3120
3090 IF PO<>P THEN GOTO 3070
3100 S=-1
3110 RETURN
3120 REM: *** NAME FOUND, CHANGE IT ***
3130 NO$[PO]=N2$
3140 S=1
3150 RETURN
3160 REM: ***ENTRY: ADDRESS CHANGE ***
3170 CALL BACCEPT(C,F,O,N1$,A1$)
3180 GOSUB 5000
3190 PO=O
3200 PO=P0+1
3210 IF NO$[PO]=N1$ THEN GOTO 3250
3220 IF PO<>P THEN GOTO 3200
3230 S=-1
3240 RETURN
3250 REM: *** RECORD FOUND, CHANGE IT ***
3260 AO$[PO]=A1$
3270 S=1
3280 RETURN
3290 REM: ***ENTRY: INSERT NAME
3300 CALL BACCEPT(C,F,O,N1$,A1$)

C-12

3310 GOSUB 5000
3320 IF P=20 THEN GOTO 3380
3330 P=P+1
3340 NO$[P]=N1$
3350 AO$[P]=A1$
3360 S=1
3370 RETURN
3380 REM: ***LIST ALREADY FULL ***
3390 S=-1
3400 RETURN
3410 REM: *** ENTRY: DELETE NAME ***
3420 CALL BACCEPT(C,F,O,N1$)
3430 GOSUB 5000
3440 PO=O
3450 PO=P0+1
3460 IF ~0$(PO]=N1$ THEN GOTO 3500
3470 IF PO<>P THEN GOTO 3450
3480 S=-1
3490 RETURN
3500 REM: ***FOUND RECORD, DELETE IT ***
3510 NO$(PO)=B$
3515 AO$(PO)=B$
3520 S=1
3530 RETURN

DS/ 3000 BASIC Interface

4000 REM:**
4010 REM: BPCONTROL
4020 REM:**
4030 I 1 [1] =S
4040 CALL BACCEPT(C,F,11[*])
4050 RETURN
5000 REM:**
5010 REM: CONDITION CODE AND STATUS CHECK
5020 REM:**
5030 IF C>O THEN GOTO 5070
5040 IF C<O THEN GOTO 5100
5050 REM: ***EVERYTHING OKAY ***
5060 RETURN
5070 REM: *** CCG ERROR ***
5080 PRINT 11 ### SLAVE: PTOP(CCG) 1111#"
5090 RETURN
5100 REM: *** CCL ERROR ***
5110 l=O
5120 CALL BPCHECK(C,I,IO)
5130 PRINT "##II SLAVE: PTOP ERROR: 11 ;I0; 11 ###"
5140 RETURN
6000 DATA 11 CHRISTINE 11

,
11 BRISTOL 11

6010 DATA "MEL","CAMBRIDGE"
6020 DATA 11 CAROL 11

,
11 PALO ALTO"

6030 DATA "LISA, MISA & RICHIE 11
,

11 BRISTOL 11

6040 DATA 11 LISBET 11
, "ZURICH"

6050 DATA 11 JOHN 11
,

11 BERKELEY 11

6060 DATA 11 CAROLYN 11
,

11 ST. PAUL"
6070 DATA 11 TODD 11

,
11 SANTA CLARA"

6080 DATA 11 GARY 11
,

11 SAN FRANCISCO"

C-13

DS/3000 BASIC.Interface

7000 CALL REJECT(C,11[*])
7010 GOTO 830

C-14

~
- "y

I~

1-------A_s_c_11_c_H_A_RA_c_T_E_R_s_E_T___.r11g1
1

•

1i
ASCII First Character Second Character ASCII First Character Second Character

Character Octal Equivalent Octal Equivalent Character Octal Equivalent Octal Equivalent

A 040400 000101 ACK 003000 000006
B 041000 000102 BEL 003400 000007
c 041400 000103 BS 004000 000010
0 042000 000104 HT 004400 000011
E 042400 000105 LF 005000 000012
F 043000 000106 VT 005400 000013
G 043400 000107 FF 006000 000014
H 044000 000110 CR 006400 000015
I 044400 000111 so 007000 000016
J 045000 000112 SI 007400 000017
K 045400 000113 OLE 010000 000020
L 046000 000114 DC1 010400 000021
M 046400 000115 DC2 011000 000022
N 047000 000116 DC3 011400 000023
0 047400 000117 DC4 012000 000024
p 050000 000120 NAK 012400 000025 a 050400 000121 SYN 013000 000026
R 051000 000122 ETB 013400 000027
s 051400 000123 CAN 014000 000030
T 052000 000124 EM 014400 000031
u 052400 000125 SUB 015000 000032
v 053000 000126 ESC 015400 000033
w 053400 000127 FS 016000 000034 x 054000 000130 GS 016400 000035
y 054400 000131 RS 017000 000036
z 055000 000132 us 017400 000037

SPACE 020000 000040
a 060400 000141 ! 020400 000041
b 061000 000142 .. 021000 000042
c 061400 000143 # 021400 000043
d 062000 000144 $ 022000 000044
e 062400 000145 % 022400 000045
f 063000 000146 & 023000 000046
g 063400 000147 023400 000047
h 064000 000150 I 024000 000050
i 064400 000151) 024400 000051
i 065000 000152 . 025000 000052
k 065400 000153 + 025400 000053
I 066000 000154 026000 000054

m 066400 000155 - 026400 000055
n 067000 000156 027000 000056
0 067400 000157 I 027400 000057
p 070000 000160 : 035000 000072
q 070400 000161 ; 035400 000073
r 071000 000162 < 036000 000074
s 071400 000163 = 036400 000075
t 072000 000164 > 037000 000076
u 072400 000165
v 073000 000166

? 037400 000077
@ 040000 000100

w 073400 000167
x 074000 000170

I 055400 000133
\ 056000 000134

v 074400 000171
z 075000 000172

I 056400 000135
6. 057000 000136

0 030000 000060
1 030400 000061
2 031000 000062
3 031400 000063
4 032000 000064
5 032400 000065
6 033000 000066

- 057400 000137

(060000 000140
075400 000173

I 076000 000174
} 076400 000175

- 077000 000176
DEL 077400 000177

7 033400 000067
8 034000 000070
9 034400 000071

First Character Second Character
NUL 000000 000000
SOH 000400 000001
STX 001000 000002
ETX 001400 000003
EOT 002000 000004
ENO 002400 000005

A A
r-~- Y ----,

; o I 1 J 2 i 314 is is I 1isi9l10i11 J12lui1411s;
0-1

I~

D-2

A

ACCEPT, 6-3, 6-4, 6-6
and GET, 6-7
and PCONTROL, 6-6, 6-7
and POPEN, 6-6, 6-7
and PREAD, 6-6, 6-7
and PWRITE, 6-6, 6-7
condition codes, 6- 7
operation, 6-7
parameters, 6- 6
syntax, 6-6

Accessing data bases with data base-access file, 5-14
Acctname, 2- 30
Acctpass, 2-30
ACTIVATE, 6-4
Activating a data base-access file, 5-12
Autodial, 2-6

B

BACCEPT, C-5
BASIC

and DSCOPY intrinsic, 7-16
and DSCOPYMSG intrinsic, 7-18

Batch job, using remote subsystem from, 3-4
Bell 201, 2-5
Bell 208, 2-5
Bell 209, 2-5
BGET, C-5
Blocking control, 8-2
Blocking factor, 2- 3, 2-6
BPCHECK, C-6
BPCLOSE, C- 5
BPCONTROL, C-4
BPOPEN, C-3
BPREAD, C-4
BPWRITE, C-4
BREAK

and DSCOPY, 7-5
and DSCOPYMSG, 7 -1 3
and Network File Transfer, 7- 5
and NFT, 7-5
and remote sessions, 3- 4

BREJECT, C-6
BS, 2-31
Buffer length, 8-2
Buffer size, 2-18, 5-7
Buffers, line and continuation, 8-8
BYE command

within remote logon UDCs, 2-33, 3-9

INDEX-1

INDEX I

Index

c
CACCEPT, B- 5
CGET,B-4
CLOSE, 6-4
Closing a line, 2-50
COBOL

and DSCOPY intrinsic, 7-15
and DSCOPYMSG intrinsic, 7-1 7

Commands
issuing local, 3-7
issuing remote, 3-1

Communications link, 2-1
COMP, 2-18
Compression, 2-18, 8-10

and DSCONTROL, 8-10
and DSLINE, 8-10
and 1/0 configuration, 8-10
and SYSDUMP, 8-10
formats, 8-11

Continuation buffers, 8-9
Control keys, and remote sessions, 3-6
Coordinating master and slave programs, 8- 3
CPCHECK, B- 5
CPCLOSE, B-3
CPCONTROL, B-3
CPOPEN, B-2
CPREAD,B-3
Cpusecs, 2-31, 5-9
CPWRITE, B-3
CREATE, 6-4
Creating a data base-access file, 5-7
CREJECT, B-5
cs, 2-31
CSHBSCO, 2- 8
CSSBSCO, 2- 8

D

Data base-access file
activating, 5-12
creating, 5-7
example, 5-11
parameters, 5- 7
syntax, 5-7

Data bases, accessing, 5-14
OBA example, 5- 11

INDEX-2

OBA file
accessing data bases, 5- 14
activating, 5-12
creating, 5- 7
parameters, 5-7
syntax, 5-7

Dbnamel, 5-7
Dbname2, 5-7
Debugging OS applications, 8-8
DEV parameter, 4-1
Device class name, 2- 8
Dialing the remote computer, 2-21
Dialup line multiple user example, 2-25, 2-26, 2-27
DISC,4-1
DMOVEIN, 6-4
DMOVEOUT, 6-4
OS, 2-31
OS applications, 8-1

de bugging, 8- 8
DS header, 8-2
OS line number, 2-4
OS performance, 8- 11

and communication links, 8-11
and remote listing, 8- 1 2
computer system dependent, 8-11

OS/ 3 000 BASIC interface, C-1
and string variables, C-1
common parameters, C-1
conventions, C-1
example, C-6

DS/3000 BASIC interface intrinsics, C-3
DS/3000 COBOL interface, B-1

common parameters, B-1
conventions, B-1
example, B- 5

DS/3000 COBOL interface intrinsics, B-2
DS/3000 functional errors, A-3
DSCONTROL, 9-1

and compression, 8-1 0
command execution order, 9-5
error messages, A - 6
examples, 9-7
informatory messages, A - 6
opera ti on, 9 - 5
syntax, 9-2

INDEX-3

Index

Index

DSCOPY, 7-1
and Back-Referenced Files, 7-6
and BREAK, 7- 5
and File Equations, 7-6
and KSAM files, 7- 5
and negative file codes, 7-5
BASIC example, 7-20
BASIC intrinsic, 7-16
COBOL example, 7-1 9
COBOL intrinsic, 7-15
ending interactive mode, 7-11
event recording, 7-12
FOR TRAN example, 7-19
FORTRAN intrinsic, 7-15
general error messages, A -9
interactive mode, 7-11
internal errors, A-11
multiple requests, 7-3
multiple transactions, 7-11
operation, 7- 5
parameters, 7 - 3
Pascal example, 7-20
Pascal intrinsic, 7-1 6
programmatic mode, 7-13
source and target files, 7 - 5
SPL intrinsic, 7-13
SPL/3000 example, 7-20
SPL/3000 intrinsic, 7-16
syntax, 7-3
use, 7-4

DSCOPY intrinsic, error returns, A-10
DSCOPYI, multiple transactions, 7-11
DSCOPYMSG, 7-13

and BREAK, 7-1 3
BASIC intrinsic, 7-1 8
COBOL data types, 7-13
COBOL intrinsic, 7-17
FORTRAN intrinsic, 7-17
Pascal data types, 7-13
Pascal intrinsic, 7-1 8
SPL/3000 intrinsic, 7-16, 7-18

Dsdevice, 2-1 7, 2- 3 1, 5- 7
Dsdevice parameter

with FILE, 4-1
with FOPEN, 4-1 5

DSLINE, 2-17, 2-50
and compression, 8-1 0
examples, 2-51
parameters, 2- 1 7
syntax, 2-17

DSLINE syntax errors, A-1

INDEX-4

·~
.... _ .

E

Entering remote mode, 3-6
Error messages, A - 1
Errors

at line opening, 2-48
at opening dialup line, 2-49
DS/3000 functional, A-3
DSCONTROL, A-6
DSCONTROL informatory, A-6
DSCOPY general messages, A -9
DSCOPY internal, A-11
DSCOPY intrinsic, A -1 0
DSLINE syntax, A-1
X. 21 call progress signals, A - 11
X. 21 DCE provided information, A- 12
X. 21 messages, A - 11

ES, 2-31
Establishing a remote link

dialup example, 2-40
hardwired example, 2-36
X.25 example, 2-45

Establishing a second remote link
dialup example, 2-42
hardwired example, 2-37
X.25 example, 2-4 7

Examples
BASIC DSCOPY, 7-20
COBOL DSCOPY, 7 -19
data base-access file, 5-11
DBA, 5-11
dialup line multiple user, 2-25, 2-26, 2-27
DS/3000 BASIC interface, C-6
DS/3000 COBOL interface, B-5
DSCONTROL, 9-7
DSCOPY, 7-6
DSLINE, 2- 5 1
establishing a remote line dialup, 2-40
establishing a remote line X.25, 2-45
establishing a second remote link dialup, 2-42
establishing a second remote link hard wired, 2- 3 7
establishing a second remote link X.25, 2-4 7
establishing a remote line hardwired, 2-36
exclusive option, 2-24
FCOPYing to a remote system, 4-8

INDEX-5

Index

Index

FOR TRAN DSCOPY, 7-1 9
initiating the local session dialup, 2-39
initiating the local session X.25, 2-44
initiating the local session hardwired, 2-35
locally running remote programs, 4-1 0
locally sorting a remote file, 4- 5
multiple line dialup, 2-38
multiple line hardwired, 2-34
multiple line X.25, 2-43
multiple user, 2-23
multiple user dialup line, 2-25, 2-26, 2-27
Network File Transfer, 7-6
NFT, 7-6
Pascal DSCOPY, 7-20
programmatic access, 4- 1 7
programmatic DSCOPY, 7-1 9
PTOP, 6-25
PTOP master program, 6-25
PTOP slave program, 6-2 7
remote off-line listing, 4-3
remote programs and local data, 4-13
SPL/3000 DSCOPY, 7-20

Exclusive, 2-18, 2-22, 5-8
Exclusive option example, 2-24
Execution priority, 5-9

F

Failures
dialup line opening, 2-49
line opening, 2-4 8

FCHECK, 6-4
FCLOSE, 6-4
FCONTROL, 6-4
FCOPYing to a remote system, 4-8
FOPEN, 6-4
FORTRAN

and DSCOPY intrinsic, 7-15
and DSCOPYMSG intrinsic, 7-17

FREAD, 6-4
FWRITE, 6-4

INDEX-6

G

GET, 6-3, 6-4, 6-8
and ACCEPT, 6-7
and IOWAIT, 6-9
and PREAD, 6-8
and PWRITE, 6- 8
condition codes, 6-9
functional return, 6- 8
operation, 6-9
parameters, 6- 8
syntax, 6-8

GETDSEG, 6-4
Groupname, 2-30

H

Hardwired line, opening, 2-2
Hardwired Serial Interface, 2-2, 2-5, 2-8, 2-18
HIPRI, 2-29, 2-31, 5-10
Home group, 2-30
HP 3000 Series 30/33/39/40/42/44/48, 2-2, 2-5
HP 3000 Series 30/33/39/40/42/44/48/64/68, 2-2, 2-5
HP 3000 Series II/III, 2-2, 2-5
HP 3001 OA, 2-2, 2-5
HP 30020A, 2-2, 2-5
HP 300208, 2-2, 2-5
HP 30055A, 2-2, 2-5
HP 30360A, 2-2
HP 3 2 71 OT, 2- 5
HP 37220T, 2-5
HP 3.7230A, 2-5
HSI, 2-2, 2-5, 2-8, 2-18

hardwired sample 1/0 device table, 2- 8

INDEX-7

Index

Index

1/0 configuration, and compression, 8-10
ID sequences, 2-21, 2-28
Initiating the local session

dialup example, 2-39
hardwired example, 2-35
X.25 example, 2-44

INP, 2-2, 2-5, 2-8, 2-18
dialup sample 1/0 device table, 2-14
hardwired sample 1/0 device table, 2-10

Input priority, 5-9
lnputpriority, 2-31
Intelligent Network Processor, 2-2, 2-5, 2-8, 2-18
Interactive access, 4-1
Interactive mode, ending, 7-11
Interactive Mode, entering MPE commands, 7-11
Interprocess Communications, 1-1, 6-1, 8-1

advantage over PTOP, 8-8
and PTOP, 8-4

Intrinsics
PTOP, 6-5
PTOP ACCEPT, 6-6
PTOP GET, 6-8
PTOP PCHECK, 6-10
PTOP PCLOSE, 6-1 1
PTOP PCONTROL, 6-12
PTOP POPEN, 6-14
PTOP PREAD, 6-20
PTOP PWRITE, 6-22
PTOP REJECT, 6-24

IODSO, 2-8
IODSTRMO, 2-8
IODSTRMX, 2-8
IODSX, 2-8, 2-17
IOINPO, 2-8
IOWAIT, and GET, 6-9
IPC, 1 - 1, 6- 1, 8- 1

advantage over PTOP, 8-8
and PTOP, 8-4

Issuing local commands, 3-7
Issuing remote commands, 3- 1
1/0 configuration, and compression, 8-10

INDEX-8

K

KILL, 6-4
KSAM files

and DSCOPY, 7-5
and Network File Transfer, 7-5
and NFT, 7-5

L

Lacctname, 5- 8
LDEV, 2-8
LON, 2-8
Lgroupname, 5- 8
Line and continuation buffers, 8-8
Line buffer, 2-3, 2-6
Line number, 3-2
Line opening failures, 2- 4 8

dialup, 2-49
Local, 1-3
Local commands, issuing, 3-7
Local ID sequence, 2-19, 5-7
Locally running remote programs, 4-10
Locally sorting a remote file, 4-5
Logical device number, 2-8
L username, 5- 8

M

Master PTOP intrinsics, 6- 2
Message Switching Procedure, 8- 7
Modem, 2-5
Modulator-demodulator, 2-5
MPE commands

comparison with PTOP, 6-4
entering during Interactive mode, 7-11

MSP, 8-7
Multiple data bases, and RDBA, 5-3
Multiple DSCOPY requests, 7-11
Multiple line example

dialup, 2-38
hardwired, 2- 3 4
X.25, 2-43

Multiple remote access, 8-13
Multiple user dialup line example, 2-25, 2-26, 2-27
Multiple user example, 2-23
Multiple users, 2-22

INDEX-9

Index

Index

N

Network File Transfer, 1-1, 7-1, 8-1
and BREAK, 7- 5
and KSAM files, 7- 5
and negative file codes, 7-5
consuming system, 7 -1
DSCOPY operation, 7- 5
DSCOPY parameters, 7- 3
DSCOPY syntax, 7-3
DSCOPY use, 7-4
ending interactive mode, 7 -11
event recording, 7 - 1 2
features, 7-1
initiating system, 7-1
interactive mode, 7-11
multiple DSCOPY requests, 7-11
producing system, 7-1
programmatic mode, 7-13
source and target files, 7 - 5

NF~, 1-1, 7-1, 8-1
and BREAK, 7- 5
and KSAM files, 7 - 5
and negative file codes, 7-5
consuming system., 7 - 1
DSCOPY operation, 7- 5
DSCOPY parameters, 7- 3
DSCOPY syntax, 7-3
DSCOPY use, 7-4
ending interactive mode, 7- 11
event recording, 7-12
features, 7-1
initiating system, 7-1
interactive mode, 7-11
multiple DSCOPY requests, 7- 3
multiple transactions with DSCOPYI, 7-11
producing system, 7-1
programmatic mode, 7-1 3
source and target files, 7 - 5

Nocomp, 2-1 8
Node name, 2- 31

0

Opening a hardwired line, 2-2
Opening a line, 2-2

with Remote Hello, 2-31
Opening a telephone line, 2 - 5
Opening multiple lines, 2-34

INDEX-10

~
J

p

Pascal
and DSCOPY intrinsic, 7-16
and DSCOPYMSG intrinsic, 7-18

PCHECK, 6-2, 6-3, 6-4, 6-10
condition codes, 6-10
functional return, 6-10
opera ti on, 6- 1 0
parameters, 6-1 0
syntax, 6-10

PCLOSE, 6-2, 6-11
condition codes, 6- 11
operation, 6-11
parameters, 6- 11
syntax, 6-11

PCONTROL, 6-2, 6-4, 6-12
and ACCEPT, 6-6, 6-7
condition codes, 6-12
operation, 6-12
parameters, 6- 1 2
syntax, 6-12

PON, 2-17
PHONELIST, 2-21
POPEN,6-2,6-4,6-14

and ACCEPT, 6-6, 6-7
condition codes, 6-18
functional return, 6-14
opera ti on, 6- 1 8
parameters, 6-1 4
syntax, 6-14

PORTMASK, 2-8
PREAD, 6-2, 6-4, 6-20

and ACCEPT, 6-6, 6-7
and GET, 6-8
condition codes, 6-20
functional return, 6-20
operation, 6- 21
parameters, 6-20
syntax, 6-20

Program-to-program communications, see PTOP
Programmatic access, 4-15

example, 4-1 7

INDEX-11

Index

Index

PTOP, 1-1, 6-1, 8-1
advantages of, 8-1
and SPL, 6-5
example, 6-25
interfacing with BASIC and COBOL, 6-25
interfacing with COBOL and BASIC, 6-25
master intrinsics, 6-2
slave intrinsics, 6- 3

PTOP commands, comparison with MPE, 6-4
PTOP intrinsics, 6-5

ACCEPT, 6-6
GET, 6-8
PCHECK, 6-10
PCLOSE, 6-11
PCONTROL, 6-12
POPEN, 6-14
PREAD, 6-20
PWRITE, 6-22
REJECT, 6-24

P\VRITE,6-2,6-4,6-22
and ACCEPT, 6-6, 6-7
and GET, 6-8
condition codes, 6-22
operation, 6-22
parameters, 6-22
syntax, 6-22

Q

QUERY, 5-15
Quiet, 2-18, 5-8

R

Racctname, 5-9
Rapasw, 5-9
RDBA, 1-1, 5-1

through a local application program, 5-2
using a data base-access file, 5-5
using a OBA file, 5- 5
using the command intrinsic, 5- 3
with multiple data bases, 5-3

RECEIVEMAIL, 6- 4
REJECT,6-3,6-4,6-24

condition codes, 6-24
operation, 6-24
parameters, 6- 2 4
syntax, 6-24

INDEX-12

Remote, 1-4
REMOTE, 3-2
Remote Command Execution, 1-1
Remote commands, issuing, 3-1
Remote Data Base Access, 1-1, 5-1
Remote File Access, 1-1, 4-1, 8-1
Remote Hello, 2- 2 9

for opening a line, 2- 31
parameters, 2- 3 0
syntax, 2-29

Remote ID sequence, 2-19, 5-8
Remote logon UDCs, 2- 3 3, 3- 9
Remote mode, entering, 3-6
Remote off-line listing, 4-3
Remote programs and local data, 4-13
Remote sessions, 3-1

and BREAK, 3-4
and CONTROL keys, 3-6

RFA, 4-1, 8-1
Rgpasw, 5-9
Rupasw, 5-9
R username, 5-9

s
Sample I/O device table, INP dialup, 2-14
Sample 1/0 device tables, 2-8

HSI hard wired, 2- 8
INP hardwired, 2-1 0
SSLC dialup, 2-12

SELECT, 2-1 9
Selection signal sequence, 2-19
SENDMAIL, 6-4
Sessionname, 2 - 3 0
Single system/distributed system comparison, 6-4
Slave PTOP intrinsics, 6-3
Specifying a DS line, 2- 8
Specifying an X.25 line, 2-16
SPL/3000

and DSCOPY intrinsic, 7-1 3, 7 -16
and DSCOPYMSG intrinsic, 7-18
and PTOP, 6- S

SSLC, 2-2, 2-5, 2-8, 2-18
dialup sample 1/0 device table, 2-12

Synchronous Single-Line Controller, see SSLC
SYSDUMP, and compression, 8- 10

INDEX-13

Index

Index

T

Telephone line, 2-1 9
opening, 2- 5

Telephone number, 2-19, 5-8
TERMINATE, 6-4
Terminating remote session, 3-7

from local session, 3-7
from remote session, 3-8
within remote logon UDCs, 2-33, 3-9

Termtype, 2-30
Time, 5-9
Transmission between systems, 8-2

u
User identification, 5-11
Username, 2-30
Userpass, 2- 3 0
Using remote subsystem from batch job, 3-4

v
Virtual terminal, 1-1, 2-8

x
X. 21 messages, A - 11

call process signals, A - 11
DCE provided information, A-12

X.25, 2-17, 2-31

INDEX-14

....-------------------------·-··-

MANUAL UPDATE
.._____ ···--· . -----------------

MA!\ t: 1\ L IDENTIFICATION
Title: HP 3000 to HP 3000 User/Programmer Reference Manual
Part Number: 32185-90001
Edition Date: DECEMBER 1 \,) ~ '

THE PURPOSE OF THIS MANUAL UPDATE

lJPDATE IDENTIFICATION
Update Number: 1
Update Date: JULY 1987

is to accumulate all the changes to the latest edtlivu of the manual. LoJ Htr updates ti' i he latest edition
which have not been incorporated are contamed herein. This update package consists of all new and
changed pages (backup pages are provided when necessary) plus this cover letter.

CHANGED PAGES
have the date of the update at the bottom of the page. Changes are marked with a vertical bar in the
margin; when an update is incorporated in a subsequent reprinting of the manual, these bars are removed.
11New11 pages are those which were not present in the latest edition of the manual.

TO UPDATE YOUR MANUAL
replace existing pages in the latest edition of the manual with corresponding pages from this update
package. Destroy all replaced pages. In addition, insert any new pages from this update.

F/ji9 HEWLETT
11:/:. PACKARD

HEWLETT-PACKARD COMPANY
19420 HOMESTEAD ROAD, CUPERTINO, CA 95014

32185-90001
U0787

·~· ...___.

Part No. 32185-90001
Printed in U.S.A. 12/85
E1285

F/ji9 HEWLETT
~~PACKARD

~-

	Contents
	Section 1 Introducing DS/3000
	Section 2 The Communications Link
	Section 3 Remote Sessions
	Section 4 Remote File Access
	Section 5 Using a Remote Data Base
	Section 6 Program-to-Program Communications
	Section 7 Network File Transfer
	Section 8 DS Application Design
	Section 9 DSCONTROL Console Command
	Appendix A Error Codes and Messages
	Appendix B DS/3000 COBOL Interface
	Appendix C DS/3000 BASIC Interface
	Appendix D ASCII Character Set
	Index

