HP 3000 Computer Systems () Pretye

Native Language Support
Reference Manual

HP 3000 Computer Systems

NATIVE LANGUAGE SUPPORT
REFERENCE MANUAL

L8 packano

19447 PRUNERIDGE AVENUE, CUPERTINO, CA 95014

Part No. 32414-90001 Printed in U.S.A. 9/84
E0984

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for inciden-
tal or consequential damages in connection with the furnishing, performance or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights are reserved. No part of this document may be photocopied, reproduced or trans-
lated to another language without the prior written consent of Hewlett-Packard
Company.

Copyright (¢) 1984 by HEWLETT-PACKARD Company

i

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition, and lists the dates of all
changed pages. Unchanged pages are listed as "ORIGINAL". Within the manual, any
page changed since the last edition is indicated by printing the date the changes were made
on the bottom of the page. Changes are marked with a vertical bar in the margin. If an
update is incorporated when an edition is reprinted, these bars and dates remain. No in-
formation is incorporated into a reprinting unless it appears as a prior update.

First Edition «...ovveen. September 1984

Effective Pages Date

All . o v o v v e e v e i e s e e v s .. September 1984

1ii

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued be-
tween editions, contain additional and replacement pages to be merged into the manual by
the customer. The date on the title page and back cover of the manual changes only when
a new edition is published. When an edition is reprinted, all the prior updates to the edi-
tion are incorporated. No information is incorporated into a reprinting unless it appears as
a prior update.

FirstEdition o« o ¢ v ¢« ¢ v ¢ v v v ¢« « « « « + « September 1984

v

MPE V MANUAL PLAN

INTRODUCTORY LEVEL:

iNSggSﬁ;'aN GUIDE E GUIDE Eﬂ E
Wanual SER NEW @PERATOR
5953-7553 ‘s 33-90009 “‘ 3-90021

STANDARD USER LEVEL:

MPE V COMMANDS MPE V INTRINSICS MPE ¥V UTIUTIES
Reference Reference Reference
Manual Manual Manual
32033-90006 32033-90007 32033-90008

SEGMENTER DEBUG/STACK DUMP FILE SYSTEM
Reference Reference Reference
Manual Manual Manual
30000-20Q11 30000-80012 30000-90236

ADMINISTRATIVE LEVEL:

MPE V SYSTEM OPERATION
& RESQURCE MANAGEMENT
Reference Manual
32033-80005

SUMMARY LEVEL:

HPE

REF] GUIDE
0—80049
o oh

There are many more manuals applicable to the HP 3000. A complete list may be found in every
issue of the MPE V Communicator. Please contact your System Manager.

CONVENTIONS USED IN THIS MANUAL

NOTATION DESCRIPTION

COMMAND Commands are shown in CAPITAL LETTERS. The names must éon—
tain no blanks and be delimited by a non-alphabetic character
(usually a blank).

KEYWORDS Literal keywords, which are entered optionally but exactly as
specified, appear in CAPITAL LETTERS .

parameter Required parameters, for which you must substitute a value, ap-
pear in bold italics.

parameter Optional parameters, for which you may substitute a value, appear
in standard italics. .

[] An element inside brackets is optional. Several elements stacked in-
side a pair of brackets means the user may select any one or none of
these elements.

Example: [[2]] user may select A or B or neither.

When brackets are nested, parameters in inner brackets can only be
specified if parameters in outer brackets or comma place~holders
are specified.

Example: [parml[,parm2{,parm3}]] may be entered as:

parml ,parmé ,parm3 or
parml, ,parm3 or
,parm3 | etc.
{3} When several elements are stacked within braces the user mwust

select one of these elements.

Example: {{ ;‘ }} user must select A or B.

An ellipsis indicates that a previous bracketed element may be
repeated, or that elements have been omitted.

user input In examples of interactive dialog, user input is underlined.
Example: NEW NAME? ALPHA1

superscriptc Control characters are indicated by a superscriptc. Example: y©
(Press Y and the CNTL key simultaneously.)

™ (7 indicates a terminal key. The legend appears inside.

X% Comment Mok Editor’s comments appear in this form.

vi

CONTENTS

Section Page
PREFACE e e e e e e e e e e Xv
Section 1 Page
INTRODUCTION TONLS e e e e e e e 1-1
Background Information. e 1-1
Scope Of Native Language Support o v v v i e e 1-1
Supported Native Languages. e 1-2
§-Bit Character Sets e 1-3
Language-Dependent Characteristics. 1-4
Native Language Support in MPE Ot 1-5
NLS System Utilities e e 1-5
Configuring Native Languages e e 1-5
NLS Intrinsics. v o o o e e e e 1-5
Peripheral Support L L. 1-5
Conversion Utilities. e e e 1-6
Application Message Facility e 1-6
File Naming Conventions. v o v v v v v v v e e . 1-7
NLS In The Subsystems e e 1-7
Accessing NLS Features o 0 v v i e e e . 1-7
Intrinsics P 1-8
Additional Parameter Values in Existing Intrinsics. 1-8
Native Language Attribute 1-8
Commands e e e e e e e 1-8
Implicit Language Choice In Subsystems v v v v 1-9
The NLGETLANG Intrinsics. v i v i e e e e 1-9
User-Defined Commands (UDCs) 1-9
Application Programs L e e e e, 1-10
General Application Program.o 1-10
Application Program Without NLS. 1-11
Single Language Application e 1-12
Multilingual Application 1-12
HP Subsystem Utility Program v e 1-14
Section II Page
APPLICATION MESSAGE FACILITY o .. 2-1
Accessing Application Catalogs 2-1
Source Catalogs e e e e e e s e e 2-2
Directives 2-2
SSET Records v v v v ot 2-2
Message Records L L e e 2-4
Message Records Special Characters v . o i e e 2-4
Comment Records. L L e e e 2-5
Sample Source Catalog e 2-5
Parameter Substitution e 2-5
Positional Parameter Substitution L 2-6
Numerical Parameter Substitution 2-6
Catalog Naming Convention. e e e 2-7
Maintaining A Message Catalog 2-8
Merging Maintenance Files By Line Numbers 2-9

vii

CONTENTS (Continued)

APPLICATION MESSAGE FACILITY (Continued) Page
Modifying ARecord 2-9
Adding ARecord e e 2-9
Deleting A Record e 2-9

Merging Maintenance Files By $SET And Message Numbers. 2-9
Set Numbers e e e e e 2-9
Message NUmbers i i e e e e e e e e e e 2-9
Comment Records o o e e e e e e e e 2-10
The $DELSET Directive o o v i v e e e e e e e e 2-10

User Dialogue. e e e e e e e e 2-10

Formatting A Source Catalog 2-12

Expanding A Formatted Catalog 2-14

GENCAT JCWs o e e e e e e e s e s e e e e e e e e 2-15

GENCATInBatchMode i i i s e ... 2-15

GENCAT HELP Facility e e e e e e e e 2-16

Error MeSSages. . . . v v v v v v e e e e e e e e e e e e e e e e 2-17

Section III Page

NLS IN MPE SUBSYSTEMS e e e e s e e e 3-1

FCOPY. e e e e e e e e e e 3-2

FCOPY Options v v i e 3-2
CHAR Option o e e e e e e e e e e e e e 3-2
Character Translate Options. v v v v v i e e e e 3-2
Upshift Option.« . o e e e e e e e 3-3
FCOPY and KSAMFiles. 0 0 v i i it e e e e e e e 3-3

Combined Use of Options.« v i v it e e e e 3-3

Error Messages i e e e e e e e e e e e e e e e 3-4

Performance ISSUES L. e e e e e e e e e 3-4

IMAGE e e e e e 3-5

Utility Programs o o i e e e e e e e e e e e e e e e e e 3-5
DBSCHEMA o e e e e e e e e e e e e e e 3-5
DBUTIL e e e e e e e e 3-5
DBUNLOAD/DBLOAD s e e e 3-5

Intrinsics e e e e e e e e e e e e e 3-6
DBOPEN e e e e e e e 3-6
DBPUT. o e e e e e e e e e e e e e 3-6
DBINFO e e e e e e e e e e e 3-6
DBLOCK. e e e e e e e e 3-6

Changing The Language Attribute Of An Image DataBase 3-7

Error Messages i i i e 3-7

KSAM . . e e e e e e e e e e e 3-11

Creating KSAM Files With KSAMUTIL 3-11

Error Messages i i i i e e e e e e e e e e e e e e e 3-13

Additional DIsCussion e e e e e 3-13

Creating KSAM Files Programmatically 3-14

Additional DisCuSSioONn v . v v v i e e e e e e e e e e e e e 3-14

Modifying KSAM Files e e e 3-14

GenericKeyso e e e e e e e 3-15

Using FCOPY With KSAM Files 3-18
Copying From A KSAM File To Another KSAMFile 3-18
Changing The Language Attribute of a KSAMPFile 3-18

Moving NLS KSAM Files ToPre=-NLSMPE 3-18

viii

CONTENTS (Continued)

NLS IN MPE SUBSYSTEMS (Continued) Page
QUERY . . o o e 3-19
Command SUMMArY« . . o v v v e e e e e e e e e e e e e e e 3-20
Upshifting Data (Type Ultems)« oo v 3-20
Range Selection e e 3-20
Date Format e e e e e e e e e e 3-20

Real Number COnversions v v v v v v vt e e e e e e e e 3-20
Sorted Lists in REPORT et it e e e e 3-20
Numeric Data Editingin Report. 3-20
Additional DISCUSSION . . .+« v v v v v e e e e e e e e e e e e e e e e e e 3-20
Errof MESSAZES . v v v v v v v o e e e e e e e e e e e e e e e e 3-21
SORT-MERGE e e s e e e e e 3-23
Stand-Alone SORT-MERGE it ittt e e e 3-23
Programmatic SORT-MERGE 3-24
The SORTINIT Intrinsic« v v v v v v v e e e e e e e e e e e e 3-24

The MERGEINIT Intrinsic v v v v v e e e e e e e e e e e L. 3-25
Parameters i e e e e e e e e e e e e e e e e 3-25
Additional Informationo e e 3-26
Error MESSAZES . . .« v v v v v e 3-26
Performance Considerations o v v v e e e e e e e e e e 3-27
COBOCLII Sorting And Merging o o o it v vt v v v 3-27
VPLUS . . . e 3-29
Language Attribute.o oo e e e 3-29
Unlocalized e e e e e e e e e e e e e e 3-29
Language-Dependent L Lo e 3-29
International. L e e e e e e e e e e e e 3-29
Setting the Language ID Number. v v v 3-30
Field Edits e e e e e e e e e e e e e e e e e 3-30
Date Handling« o 0 o e e e e 3-31
Numeric Data e e e e e e e e e 3-31
Native Language Characters. o o v vt v oo 3-31
ENTRY and Language IDnumbero, 3-31
Error MESSAEES . . v v v v v v e 3-32
VPLUSINLIINSICS .+ & v v v v e 3-32
VGETLANG o o o e e e e e e e e e e e e e e e e 3-33
VSETLANG e e e e e e e e e e e e e e e e e e 3-34
Section IV Page
NATIVE LANGUAGE INTRINSICS e e e e e e e e 4-1
NLS Date And Time Formatting Overview.« . v v v o 4-2
ALMANAC . . . e e e e e e e e e 4-3
CATCLOSE o e e e e e e e e e e e e e e e 4-5
CATOPEN o e e e e e e e e e e e 4-6
CATREAD . . . e e e e e e e e e 4-17
MNLAPPEND . . . o e e e e e e e e e 4-9
NLCOLLATE e e e e e e e e e e e s e e e s e e e 4-10
NLCONVCLOCK o o e e e e e e e e e e e e e s e e e 4-12
NLCONVCUSTDATE . . . o o o e e e e e e e e e e e e e e e e e e 4-14
NLFMTCALENDAR o e e e e e e e e e e 4-16

ixX

CONTENTS (Continued)

NATIVE LANGUAGE INTRINSICS (Continued)

NLFMTCLOCK. e e e e e e e e e e e e 4-18
NLEMTCUSTDATE o o o e e e e e e e 4-20
NLEMTDATE e e e s e e e 4-22
NLGETLANG e e e e e e e s s e e 4-24
NLINFO . . e e e e e e e 4-26
NLKEYCOMPARE e e e e e e e e e e e e e 4-31
NLREPCHAR. e e e e e e e e e e e 4-33
NLSCANMOVE e e e e e e e e s e e e e 4-35
NLTRANSLATE e e s e s 4-38
Appendix A Page
SYSTEM UTILITIES e e e e e e e A-1
NLUTIL Program. o i v e e e e e e e e e e e e e e s e A-1
NLS File Structure o o o e e e e e e e e e e e e e A-1
Language Installation Utility (LANGINST) A-1
Adding a Language L e e e e e e A-2
Deleting a Language i e e e e e e e e e e e A-2
Modifying Local Formats e A-3
LANGINST User Dialogue o et s e e A-3
Choosing A Function. i i e e A-3
Adding A Language e e e e e e e e A-4
Deleting A Language e e e e A-4
Modifying Local Language Formats, A-5
Error MESSages o v v i e A-6
Appendix B Page
SUPPORTED LANGUAGES & CHARACTER SETS B-1
Character Set Definitions. B-1
Language Definitions. e e e B-2
Appendix C Page
COLLATING IN EUROPEAN LANGUAGES C-1
Collating Sequence o v i i e e e e e e e e e e e e e Cc-3
Language-Dependent Variationso C-10
Spanish. e e e e e e e e e e C-10
Danish/Norwegian. o v v v v i e e e e e e e e e C-10
Swedish e e e e C-11
Finnish. e e e e C~-11
Appendix D Page
EBCDIC MAPPINGS e e e e e D-1
Background Data L L e e e e e D-1
ROMANS8 to EBCDIC Mapping. v v v v v v e e i e e e e e .. .D-1

CONTENTS (Continued)

Appendix E Page
PERIPHERAL CONFIGURATION. oo e E-1
NLS Terminology . . . v v o v v o o e e e e e e e e e e e E-1
Peripheral Support Summaryo e e e e e e e E-2
Specifics of 7-Bit Support Lo E-4
NLS Peripheral Support Details. oo oL E-4
HP 150P.C. As A Terminal o . o v i v i it e e E-$§
HP 2382A Terminal e e e e e e e e E-6
CHP 2392A Terminal L . L e e e e e e e e e e E-7
HP 2563A Printer o o i e e e e e e e e e e e e e e e e e e e E-8
HP 2608A/HP 2608S Printers v v v v e i e e e e e e e e E-9
HP 2621B Terminal o e e e e e e e e E-10
HP 2622A/HP 2623A Terminals.« . o v v v i e e e e e E-11
HP 2622 J/HP 2623J Termunals o . o o v v e e E-12
HP 2625A/HP 2628A Terminals. o v o v v vt e e e E-13
HP 2626A/HP 2626W Terminals o o v vt e E-14
HP 2627A Terminal o 0 i e e e e e e e e e e e e E-15
HP 2631IBPrinter. o o o e e e e e e e e e e e e e e E-16
HP 2635B Printer/Terminal E-17
HP 2645 Terminal. 0 o o e e e e e e e e E-18
HP 2680A Printer o o o o e e e e e e e e e e e e e e e e E-19
HP 2688A Printer o o i e e e e e e e e e e e e e e e E-20
HP 2700 Terminal o o e e e e e e e e e e e e e e E-21
HP 2932A/HP 2933A/HP 2934A Printers. o . o o oo o E-22
NOLES . . v o o o e e e e e e e e e e e e e e e E-23
Appendix F Page
CONVERTING 7-BITTO 8-BITDATA F-1
National Substitution Sets L e e e e e e e e e F-1
Conversion Utilities. o v v i e e e e e e e e e e e e e e F-2
Conversion Algorithm L e e F-3
Conversion ProcedUure. Lo e e e e e e e e e e e e e F-5
NTMFESCNV Utility o o o o o e e e e e b e e e e e e e F-7
I7DB8CNV UtIlity o o o o o o e e e e e e e e e e e e F-8
VIFFECNV UtIlity o e s e e e e e F-10
V7FF8CNYV and Alternate Character Sets F-10
VTFEFSCNV Operation+« v v v vt v h et e e e e e e e e e F-11
Appendix G Page
APPLICATION GUIDELINES o i e et e e e e e e e e e G-1
All Programming Languages ot i e e e e e e e e e G-1
COBOLII (HP 32233A). . . o o e e e e e e e e e e e e e e e e e s e e e G-2
FORTRAN (HP 32102B) o o o e e e e e s e e e e e G-
SPL (HP 32100A) o o e e e e e e e e e e e e G-3
RPG (HP 32104A) . . . o o e e e e e e e e e e e e e e e e e G-3
BASIC (HP 32101B) . . . o o e e e e e e e e G-3
Pascal (HP 32106A) o e e e e e e e e G-3

X1

CONTENTS (Continued)

Appendix H Page
EXAMPLE PROGRAMS s, H-1
A. Using SORT In A COBOLII Program v v v v v v v et e e H-1
B. Using SORT In A Pascal Program« o v v v v . H-3
C. Using SORT In A FORTRAN Program H-35
D. Using DATE/TIME Formatting Intrinsics In A FORTRAN Program. H-6
E. Using The DATE/TIME Formatting Intrinsics In An SPL Program. H-10
F. Using The NLSCANMOVE In A COBOLII Program. H-15
G. Using The NLSCANMOVE Intrinsic In An SPL Program. H-22
H. Using NLTRANSLATE/NLREPCHAR Intrinsics In A COBOLII Program . . H-29
I. Using The NLKEYCOMPARE Intrinsic In A COBOLII Program H-32
J. Using The NLKEYCOMPARE Intrinsic In An SPL Program H-36
K. Obtaining Language Information In A COBOLII Program H-41
L. Using CATOPEN/CATREAD/CATCLOSE Intrinsics In A Pascal Program. . H-4S$

Xii

ILLUSTRATIONS

Title Page
Application Program Format e e e e 1-10
Application Program Without NLS e 1-11
Single Language Application i e e e e e e e e e e 1-12
Multilingual Application e e e e e 1-13
HP Subsystem Utility Program e e e e e 1-14
GENCAT Utility Program. o v it et e e e e e e e e e e e e e e 2-1
GENCAT Functions o o v i i it e e e e e e e e e e 2-3
Sample Source Catalog. L e e e e e 2-5
Positional Parameter Substitution e e e e e 2-6
Numerical Parameter Substitution 2-6
Collision Files e e e e e e e e 2. 2-8
Dialogue For Modifying A Source File e e 2-10
Maintaining A GENCAT Source File o it e i e, 2-12
Source Catalog Formatting Dialogue e e 2-13
Expanding A Formatted Catalog e 2-14
Formatting/Expanding GENCAT Source Files o o v v it v . 2-15
GENCAT HELP Facility Dialogue e s e e e e e 2-16
KSAM File Test Program o o e e e e e 3-12
Results Returned By The NLKEYCOMPARE Intrinsic v v v o v v v v v . 3-15
Generic Key Searches L e e e 3-17
KSAM Recovery Procedure o 0 e e e e e e e 3-18
Stand-Alone SORT-MERGE Dialogue i i e s e, 3-24
SORT VerbSyntax. e e e e e 3-28
NLS Date And Time Formatting OvVerview v v v v v i i e e e e, 4-2
ROMANS Character Set. o e e e e e e e s B-3
KANAS& Character Set. e e e e e e e e e e e e e e B-4
Collating SEQUENCE. v v o v v i e e e e e e e e e e e e C-3
Language Dependent Variations. v v v i v i e e e e e e e e C-10
ROMANS To EBCDIC Mapping. v v v v v i v e et e e e e s e e e s s D-2
Character Conversion Data e e e e e F-4
NTMFECNV Dialogue e e e e F-5
I7DB8CNV Dialogue o e e e e F-9

X1l

TABLES

Title Page
GENCAT Error Messages v v v v v it it e e e e e e e e e e e e e e e e e 2-17
MAKECAT/GENCAT COMPATISON . « + v v v v o e e e e e e e e e e e e e e s e e 2-22
FCOPY Error MeSSages v v v v v i i et e e e e e e e e e e e e e 3-4
IMAGE Utility Program Conditional Messages v i v v i v v vt et 3-8
IMAGE Library Procedure Calling Errors« .« o o v i e e e e e e e e 3-9
IMAGE Schema Syntax Errors o . o oo e e e e e e e e e e 3-10
KSAMUTIL Error MESSAZES« . v v v v v v et e 3-13
KSAM File System Error MeSSages« v v v v v v v v et e e e e e e e e e e e 3-14
Commands For Language-Dependent Information e e e e 3-21
QUERY Error Messages v v v v v v v v v i e et e e e e e e e e e e e 3-21
Programmatic SORT Error Messages v v v v v v v et e e e e e e e e e e e e e 3-26
Interactive SORT Program Error Messages v v v v v v v v i e et e e e 3-26
Programmatic MERGE Error Messages v v v v v v v e e e e et e e e e e e 3-27
Interactive MERGE Program Error Messages« . o v v v v i v v it e e e e e 3-27
VPLUS/3000 Error MESSAZES . . .+ v v v v v e e e e e e e e e e e e e e e e 3-32
LANGINST Error MESSAZES . . .« « v v v v v v v e e et e e e e e e e e e e e e e e e e A-6
Examples of Collating Sequence Priority 0 i o i e e e e e e C-1
Peripherals Fully Supported in 8-Bit Operation~All Language Options E-2
Peripherals With Limited Support in 8-Bit Operation« E-3
Peripherals Not Supported in 8-Bit Operation 0 v v v v v v v e e e e e e E-3
Conversion Utilities by File TYpe o o 0 0 e e e e et e e e e e e e e e F-2

X1iv

PREFACE

Native Language Support (NLS) provides the HP 3000 with the features necessary to
produce localized application programs for end users without reprogramming for each
country or language.

Native Language Support consists of Multi~Programming Executive (MPE) intrinsics, ad-
ditional features in COBOLII, and the FCOPY, IMAGE, KSAM, QUERY,
SORT-MERGE, and VPLUS subsystems, the Application Message Facility, plus utilities to
install and implement native language capabilities.

Xv/xvi

SECTION

INTRODUCTION TO NLS

Hewlett-Packard Native Language Support (NLS) features enable the applications desig-
ner/programmer to create local language applications for the end user.

BACKGROUND INFORMATION

A well-written application program manipulates data and presents it appropriately for its use and
user. Users who are less technically sophisticated benefit from aypplication programs which interact
with them in their native language, and which conform to their local customs. Native language
refers to the user’s first language (learned as a child), such as Finnish, Portuguese, or Japanese. Local
customs refer to conventions such as local date, time, and currency formats.

Programs written with the intention of providing a friendly user interface often make assumptions
about the local customs and language of the user. Program interface and processing requirements
vary from country to country, and sometimes within a country. Much existing software does not take
this into account, and is appropriate for use only in the country or locality in which it is written.

The solution to this problem is to design application programs that can be easily localized.
Localization is the adaptation of a software application or system for use in different countries or lo-
cal environments. In such an environment, the user’s native language and/or data processing
requirements may differ from those in the environment of the software developer. Traditionally,
localization has been achieved by modifying a program for each specific country. Applications
designed with localization in mind provide a better solution. Localization can then be accomplished
with (ideally) no modification of code at all.

An applications designer must write the application program with built-in provisions for localization.
Functions which are local language or custom dependent cannot be hard-coded. For example, all
messages and prompts must be stored in an external file or catalog. Character comparisons and up-
shifting must be accomplished by external system-level routines or instructions. The external files
and catalogs can be translated, and the program localized without rewriting or recompiling the ap-
plication program.

Native Language Support (NLS) provides the tools for an applications designer/programmer to
produce localizable applications. These tools may include architecture and peripheral support, as well
as software facilities within the operating systems and subsystems. NLS addresses the internal func~
tions of a program (e.g., sorting) as well as its user interface (messages, formats, for example).

SCOPE OF NATIVE LANGUAGE SUPPORT

HP 3000 Native Language Support (NLS) consists of features within MPE, as well as in the FCOPY,
IMAGE, KSAM, QUERY, SORT-MERGE, VPLUS, and COBOLII subsystems. These facilities allow
application programs to be designed and written with a local language interface for the end user, and
locally correct internal processing. The end user can see localized programs produced by applications
designers/programmers who have used the available NLS tools.

1-1

Introduction to NLS

The MPE interface, the subsystems, programmer productivity tools, and compilers have not been
localized.. The applications designer must still interact with MPE and the subsystems using American
English. For the designer/programmer, the interface has not changed. For example, it is possible to
write a complete local language application program using COBOLII and VPLUS, but the COBOLII
compiler and the VPLUS FORMSPEC program retain their English-like characteristics.

Not all functions which vary from one language to another or one country to another are provided by
HP 3000 NLS. For example, tax calculation rules are usually country-specific (or even more local),
and rules for word hyphenation are related to individual languages. Functions such as these are con-
sidered to be application-specific, and are beyond the scope of NLS.

SUPPORTED NATIVE LANGUAGES

NLS is based on languages and character sets which have been pre-defined and built into the operat-
ing system. These are referred to as supported languages. Hewlett-Packard has assigned a unique
language name and language ID number to each language supported in NLS. Characteristics of sup-
ported native languages are documented in Appendix B, "SUPPORTED LANGUAGES AND
CHARACTER SETS." In some cases, Hewlett-Packard has introduced more than one supported lan-
guage corresponding to a single natural language. For example, NLS supports FRENCH (language
number 7) and CANADIAN-FRENCH (language number 2). Upshifting is handled differently in
FRENCH and CANADIAN-FRENCH. When language-dependent characteristics differ within the
same natural language, NLS can create separate native languages to represent these differences.

Each of the supported languages may also be considered a "language family" which is applicable in
several countries. GERMAN (language number 8), for example, may be used in Germany, Austria,
Switzerland, and any other place it is requested. The 8&-bit character sets are ROMANS, character
set 1, and KANAS, character set 2.

In addition to the native languages supported, an artificial language, NATIVE-3000 (language num-
ber 0), represents the way the computer used to deal with language before the introduction of NLS.
The collating sequence {the sequence in which characters acceptable to the computer are ordered) for
NATIVE-3000, for example, is simply the order of characters in the USASCII code. The
NATIVE-3000 date format is that returned by the existing MPE intrinsic, FMTDATE. Whenever lan-
guage number O is used in a native language function, the result will be identical to that of the same
function performed before the introduction of NLS. NLS intrinsic calls with the language parameter
equal to 0 will always work correctly, even if no native languages have been configured on the sys-
tem. This list contains the language names and ID numbers (langnum values) available in each
character set.

1-2

Introduction to NLS

USASCII (Set #0)
Language Number Language Name

00 NATIVE-3000
ROMANS (Set #1)
Language Number Language Name

00 NATIVE-3000

01 AMERICAN

02 CANADIAN-FRENCH

03 DANISH

04 DUTCH

0§ ENGLISH

06 FINNISH

07 FRENCH

08 GERMAN

09 ITALIAN

10 NORWEGIAN

11 PORTUGUESE

12 SPANISH

13 SWEDISH
KANAS (Set #2)
Language Number Language Name

00 NATIVE-3000

41 KATAKANA

8-Bit Character Sets

Within NLS, each supported language is associated with an 8-bit character set (one character set may
support many languages). Like languages, character sets have Hewlett-Packard defined names and
ID numbers assigned, although these names and numbers are not widely used, except, in documenta~
tion. Before the introduction of NLS, the only widely-supported character set was USASCII, a
128-character set designed to support American English text. USASCIH uses only seven bits of an
8-bit byte to encode a character. The eighth or high order bit is always zero. For this reason,
USASCII is referred to as a "7-bit" code. :

An 8-bit byte has the capacity to contain 256 unique values, which means it is possible to build su-
persets of USASCII which permit encoding and manipulation of characters required by languages
other than American English. These supersets are referred to as "8-bit" or "extended" character
sets. New characters are added with code values in the range 161~254.

1-3

Introduction to NLS

NLS supports three character sets:
CHARACTER SET #0, USASCII
CHARACTER SET #1, ROMANS
CHARACTER SET #2, KANAS

Appendix B, "SUPPORTED LANGUAGES AND CHARACTER SETS" contains a list of native lan-
guages supported by each character set.

Another method of providing foreign characters (not supported by NLS) involves replacing as many as
12 existing characters in USASCII with substitution characters. The 7-bit substitution set eliminates
some characters in favor of others needed by a particular local language. A different substitution set
is necessary for each language. NLS 8-bit character sets support all USASCII characters (with the ex-
ception of "\" in KANAS) in addition to the characters needed to suppoert several western
European-based languages and katakana.

The use of 8-bit character sets for NLS implies that in character data, all bits of every byte have sig-
nificance. Application software must take care to preserve the eighth (high order) bit, nowhere al-
lowing it to be modified or reused for any special purpose. Also, no differentiation should be made
between characters having the eighth bit turned off and those with it turned on, because all are
characters of equal status in the extended character set.

Language-Dependent Characteristics

For each native language which is supported by NLS, a number of characteristics are known. These
are lexical conventions (e.g., collating sequence and upshifting rules), country or local custom-
dependent formats (currency symbols, date and time formats), and data processing conversion tables:

e Lexical conventions vary from country to country. The collating sequence is affected by the local
alphabet and usage of each language. Upshifting tables maintained by NLS for each supported
language contain the appropriate result of upshifting any character in the corresponding character
set. This category of information is really language~related in the literal sense.

e Currency symbols, and date, time and number formats are country and local custom dependent.
Currency symbols and their position in relation to numbers depend on local custom. Date, time
and number formats also vary from country to country.

o Data processing tables for ASCII-to-EBCDIC and EBCDIC-to-ASCII conversion are affected by
language because the EBCDIC codes are different from country to country.

Within NLS, characteristics that are language related, custom dependent, and data processing orient-
ed are all considered to be language dependent. All information used by, or available from NLS is
based on the application’s choice of language(s). For example, NLS maintains an ENGLISH collating
sequence and an ENGLISH time-of -day format. In this context, ENGLISH refers specifically to that
used in England rather than the English language. (AMERICAN refers to the language, formats and
tables used in the United States.)

Appendix B, "SUPPORTED LANGUAGES AND CHARACTER SETS," contains a complete list of
supported languages and language characteristics. The exact information on any particular installed
Janguage is available programmatically via the NLINFO intrinsic (see Section IV, "NATIVE
LANGUAGE INTRINSICS") or, in report form from the NLUTIL program.

1-4

Introduction to NLS
NATIVE LANGUAGE SUPPORT IN MPE

The MPE components of NLS consist of the utility programs, LANGINST and NLUTIL, and system
intrinsics, as well as an application message facility.

NLS System Utilities

LANGINST is used by system managers to select the native languages to be supported on their sys-
tem(s). NLUTIL is used to obtain the details of languages installed on a system. LANGINST and
NLUTIL are described in Appendix A, "SYSTEM UTILITIES."

Configuring Native Languages

Before any native languages (except NATIVE-3000) can be used on a system, they must be con-
figured by the System Manager using the LANGINST utility program. Refer to Appendix A,
“"SYSTEM UTILITIES" for the LANGINST user dialogue. The System Manager can select which sup-
ported languages to configure, and can modify several formats associated with any language(s) being
configured. This feature is useful, for example, to a System Manager in Austria who wants to install
GERMAN with a different currency symbol than the default for this language. Changes to a system’s
language configuration are effective after the next system startup, at which time the configured lan-
guages are installed. After a language has been installed, language-specific information available in
NLS may be used by any application program requesting it.

NLS Intrinsics

The NLS intrinsics may be called by application programs and Hewlett-Packard subsystems to provide
language-dependent functions and information for any language installed on a system. For example,
the NLFMTDATE intrinsic returns a locally formatted date, and the NLCOLLATE intrinsic compares two
character strings using a language-dependent collating sequence. The NLS intrinsics are documented
in Section IV, "NATIVE LANGUAGE INTRINSICS." Major HP 3000 subsystems call NLS intrinsics
to perform certain functions. For example, configured native languages can affect the collating se-
quence used by SORT-MERGE, the numeric formatting done by VPLUS, and the EBCDIC conver-
sions performed by FCOPY. Section III, "NLS IN MPE SUBSYSTEMS" contains specific information.

NOTE

None of these changes are automatic. All existing ap-
plications and jobs will work the same way they did
previously when NLS is installed unless they are
modified to request NLS functions.

Peripheral Support
Peripherals configured for any of the 7-bit substitution sets are not supported by NLS.
Most Hewlett~Packard peripherals are designed for 8-bit operation. Most peripherals that have been

configured for 7-bit operation can be reconfigured for 8-bit operation. Refer to Appendix E,
"PERIPHERAL CONFIGURATION" for instructions. Limitations and notes are listed for each

1-5

Introduction to NLS

peripheral. All NLS features are available to users with 7-bit USASCII terminals and printers,
provided that the data used contains only USASCII characters. For example, a user in the United
States can use AMERICAN (the Hewlett-Packard name for English as it is used in the United States)
for sorting, date formatting, and message handling consistent with lexical conventions and local cus-
tom formats. This is possible because USASCII is a subset of ROMANSE.

NLS has no direct control over what peripherals are configured on a system. It is, therefore, the
user’s responsibility to configure peripherals which support the character set(s) necessary for the
desired languages.

Conversion Utilities

Data encoded according to any 7-bit substitution set is not supported by NLS. Users with data en-
coded in one or more of the European 7-bit substitution sets supported on the older HP terminals and
printers have the option to convert this data. A set of utilities is available to convert 7-bit data to
8-bit (ROMANS) data in XSAM files, IMAGE data bases, VPLUS forms files, and MPE files.
Appendix F, "CONVERTING 7-BIT TO 8-BIT DATA," contains conversion instructions.

Application Message Facility

A localizable program contains no text (prompts, commands, messages) stored in the code itself. This
allows the text to be translated (part of the localization process) without modifying the source code of
a program or recompiling it. Therefore, a good text handling facility is essential to Native Language
Support.

The principal tool supplied within NLS for text handling is the Application Message Facility. The ap-
plication message catalog facility consists of the GENCAT utility program and the "CAT" intrinsics
(CATREAD, CATOPEN, and CATCLOSE). The application message catalog facility provides efficient
storage and retrieval of program messages, commands, and prompts. The GENCAT program is used
to convert an ASCII source file containing messages into a binary application catalog that can be ac-
cessed by the intrinsics. Application programs use the CAT intrinsics to retrieve messages from it.
An application message catalog consists of a file containing character strings (messages), each unique-
ly identifiable by a set number, and a message number within a set. Key features of the Application
Message Facility include:

o FEach message in a catalog can allow up to five parameters which may be specified by position or
by number.

o An editor is used to create an MPE ASCII file which is the source catalog. The GENCAT program
is used to read the source catalog and to create a formatted catalog. The formatted catalog has an
internal directory for efficient access, and is compacted (by deleting trailing blanks, for instance)
to optimize storage space.

e GENCAT has a facility to merge two message source files; a master file and a maintenance file.
The maintenance file contains changes to be made in the master file. Updates of a localized ver-
sion of an application may be made by translating the maintenance file, then merging it with the
localized source file.

o Multiple localized versions of an application can be supported with translations of the original
source catalog. If a naming convention is established, the application program can determine
which localized catalog to open at run time (using the CATOPEN intrinsic). A suggested naming
convention is discussed in Section II, "APPLICATION MESSAGE FACILITY."

1-6

Introduction to NLS

The application message facility is documented in Section II, "APPLICATION MESSAGE
FACILITY."

FILE NAMING CONVENTIONS

An application which has been localized into several languages will have separate message catalogs,
VPLUS forms files, and/or various other language-dependent data files for each of these languages.
It is suggested that a naming convention be established for these files which follows the language
numbering used by NLS. To do this, a file name should be used which is up to five identifying
characters followed by a three digit language number, corresponding to the language of the file con-
tents. For example, the original, unlocalized data might be stored in a file whose name is FILEOQOO;
the FILEOOS would contain the same data modified for German, and FILEOI2 would contain Spanish
data. It is the responsibility of the application program, then, to determine at run time which file to
open. (Once the language number is determined, the NLAPPEND intrinsic may be used to form the file
name if this convention is followed.)

NLS IN THE SUBSYSTEMS

In addition to the new utilities and MPE intrinsics, NLS provides features in COBOLII, FCOPY,
IMAGE, KSAM, QUERY, SORT-MERGE, and VPLUS. NLS features in these subsystems are in-
tended to provide applications designers and programmers with the tools to design local language ap-
plications. The subsystems themselves are not localized. The application end user, not the program-
mer or subsystem user, sees the localized interface.

MPE Native Language Support intrinsics provide the means to implement NLS features of the subsys-
tems. This means that native language definition is consistent in all the subsystems. Collating se-
quence is a good example of consistency within MPE and in the subsystems. The collating sequence
defined for a specific native language can be used in MPE by calling the NLCOLLATE and
NLKEYCOMPARE intrinsics. The same collating sequence is used by SORT-MERGE in ordering
records, by KSAM in ordering keys, and by IMAGE in ordering sorted chains when these subsystems
are dealing with sorted character strings that have been associated with the same native language.

The MPE operating system and its subsystems function independently of native language features con-
figured on the system. NLS features are optional, and must be requested to be invoked. This means
that existing application software and stream files will operate as they did before the introduction of
NLS.

ACCESSING NLS FEATURES

On HP 3000 systems using MPE and subsystems with NLS features, all NLS features are optional.
These features must be requested by the applications programmer through intrinsic calls or interac-
tively by the user of a subsystem program through a LANGUAGE command or keyword.

1-7

Introduction to NLS

Intrinsics

One way of getting (optional) NLS features from application programs is through calls to specific NLS
intrinsics, primarily in MPE. Thus, to get a local language date format, an application should call
the new NLFMTDATE intrinsic instead of the old FMTDATE intrinsic (which is unchanged).

Additional Parameter Values In Existing Intrinsics

Another way is by specifying values for extended or new parameters in existing intrinsics. For ex-
ample, SORTINIT in SORT-MERGE has been extended to allow the specification of a CHARACTER
key, and a native language ID number (langnum) which determines the collating sequence to be used.
These additional parameters must be used in an application to sort according to native language
values.

Native Language Attribute

Some subsystem structures, including IMAGE data bases, KSAM files, and VPLUS forms files may be
assigned a language attribute by their creators. The language attribute will ensure that certain func-
tions will perform according to localized specifications at run time. VPLUS, for example, will per-
form its upshift function according to the language of the forms file.

Commands

Commands or keywords have been added to certain subsystems which make NLS features available on
request. For example, entering LANGUAGE=FRENCH within QUERY would cause sorted character data
of IMAGE types X and U to be sorted according to the FRENCH collating sequence in its output
reports. If the language command is not entered, QUERY (or any other subsystem) will perform as it
did before the introduction of NLS. If these commands are not used, the default language(s) used by
subsystem utility programs can be influenced by the values of the two NLS Job Control Words,
NLUSERLANG and NLDATALANG.

Some general suggestions for designing applications incorporating NLS features, and specific strategies
for wusing major programming languages are included in Appendix G, "APPLICATION
GUIDELINES."

Information on how and when the individual subsystems are influenced is included in Section III,
"NLS IN MPE SUBSYSTEMS."

1-8

Introduction to NLS
IMPLICIT LANGUAGE CHOICE IN SUBSYSTEMS

Two NLS Job Control Words (JCWs), NLUSERLANG and NLDATALANG, permit the subsystem
user to designate a default language other than NATIVE-3000 for the subsystems. Each of the five
subsystem programs (SORT, MERGE, FCOPY, QUERY, ENTRY) looks at one of these JCWs, and its
value is used as a default language by the program. The default can be superseded by a specific com-
mand. Utility programs in the subsystems are often run within user-defined commands (UDCs).
UDCs are often created for the convenience of a less sophisticated computer user than the person who
designed them. To add to this convenience, NLS has established a convention for designating the na-
tive language choice for operation of the subsystem programs that does not require the user to enter a
language explicitly. This is accomplished through the use of two reserved Job Control Words (JCWs),
NLUSERLANG and NLDATALANG:

¢ NLUSERLANG designates the user interface (and report output) language for programs. If the
subsystems were localized (which they aren’t), this would be the language of choice for prompts
and messages. If user input data is modified, (for example, upshifted by QUERY or VPLUS) this
language determines which language’s attributes are used. NLUSERLANG designates the default
language for all language-dependent operations in QUERY and ENTRY.

e NLDATALANG designates the internal data manipulation language. One of the reasons that this
is distinct from NLUSERLANG is the possibility that multiple users with different interface lan-
guages may wish to share some common internal data which is, for example, sorted according to
one language. The data manipulation language is used in the SORT, MERGE, and FCOPY
programs to control their language-dependent functions, such as collating, upshifting, and con-
versions to and from EBCDIC. Note that if the user interface of one of these programs were
localized, which it isn’t, it would use NLUSERLANG as its default for messages, prompts, etc.

NLUSERLANG and NLDATALANG are independent JCWs, and are treated independently by
NLS. In many cases, of course, they will specify the same language, but examples already exist in
which they could have been used with distinct values. One example is the HPWord product,
which has the concepts of a user language and a document language.

The NLGETLANG Intrinsic

NLUSERLANG and NLDATALANG values are retrieved by the subsystems through calls to the
NLGETLANG intrinsic. Application programs may also wish to use this intrinsic. NLGETLANG retrieves
the value of the language attribute requested, and verifies that it is installed. If the value is that of
an unconfigured or undefined language, NLGETLANG will return a language ID number of O
(NATIVE~-3000) and an error. To use either JCW, set the integer value corresponding to the lan-
guage ID number desired, using :SETJCW. The MPE V Commands Reference Manual
(32033-90006), lists the :SETJCW command syntax.

User~Defined Commands (UDCs)
ENTRY, FCOPY, QUERY, SORT and MERGE are often run from within user-defined commands

(UDCs). The two NLS Job Control Words (JCWs) give the user the option of establishing a native
language within a UDC.

1-9

Introduction to NLS

APPLICATION PROGRAMS

The focus of HP 3000 NLS is the application program. Most NLS tools are accessed programmatically
from applications according to the requirements of the designer or programmer. Several common ap-
plication models are possible. These are illustrated in Figures 1-1 to 1-5. NLS capabilities can be
used in single language applications, multilingual applications, in subsystem utility programs, or not

at all.

General Application Program

The functions language can influence in an application in terms of data manipulation (internals) and
user interaction (externals) is illustrated in Figure 1-1. The core application program is flanked by
functions that can differ according to language and local customs (local date, time, and currency

formats).

DATA MANIPULATION

DATA BASE

INDEXED SEQUENTIAL

SORTING

CHAR, MANIPULATION

APPLICATION
PROGRAM

Figure 1-1. Application Program Format

USER INTERACTION

SCREENS

PROMPTS, MESSAGES

USER COMMANDS

FORMATS

Introduction to NLS

Application Program Without NLS

Figure 1-2 shows an application program which does not make use of NLS capabilities. This
NATIVE~-3000 application makes use of conventional programming techniques and standard MPE
and subsystem features to achieve the key language-dependent functions. It cannot be localized
without reprogramming and is unaffected by the introduction of NLS.

DATA MANIPULATION USER INTERACTION

(e.q., compares
upshifts)

Figure 1-2. Application Program Without NLS

1-11

DATA BASE SCREENS
IMAGE VPLUS
dato base(s) forms and
and intrinsics intringics

INDEXED SEQUENTIAL PROMPTS, MESSAGES
KSAM Hard—caded
files and APPLICATION and/or message
intrinsics PROGRAM catalog
Customer—written
or third party
application
SORTING USER COMMANDS
SORT~MERGE Hord—caded
Intrinsics and/or command
file
CHAR. MANIPULATION FORMATS
Hard—coded functions Intrinsics

(e.y.. FMTDATE)

Introduction to NLS

Single Language Application

French is used as the single language application example in Figure 1-3. The applications designer
has determined that only French is required, and has hard-coded its language ID number ({angnum)
7 into the program. The langnum is used as a parameter in calling various native language-
dependent intrinsics. In addition, the designer has created IMAGE data bases, KSAM files, and
VPLUS forms files with the French language attribute, and has expressed all prompts and messages in
French. This use of NLS is for programs which will only be used in one country or location, or with
only one language.

DATA MANIPULATION USER INTERACTION
DATA BASE SCREENS
IMAGE data FRENCH VPLUS
base(s) with forms

"FRENCH" attribute file(s)
INDEXED SEQUENTIAL PROMPTS, MESSAGES
KSAM file(s) Hard~coded

with "FRENCH" APPLICATION and/or application
attribute PROGRAM message catalog
- A program viritten
N for ugse in FRANCE,
S Set LANGNUM
ot °
SORTING & / to 7 (FRENGH). \ USER GOMMANDS
Hard—coded
SORT~MERGE
intrinsics e‘)% %; dnd/or command
~§° 23 file
Vi \
CHAR, MANIPULATION FORMATS
NL intrinsics Intringics
(e.g., NLCOLLATE (e.9., NLFMTDATE)
NLSCANMQVE)

Figure 1-3. Single Language Application

Multilingual Application

The program in Figure 1-4 shows a localizable or multilingual application. This application can be
used in several countries or in multiple languages by different users on the same system. The key at-
tribute of this program is that it selects its language(s) at run time.

When installing an application on a system, the manager of the application may establish configura-
tion file(s) for that application. These files store information about various users or transactions and

Introduction to NLS

their native language requirements. At run time the application program can determine which
language(s) to use.

The program may call the NLGETLANG intrinsic to obtain the system default language, (which can be
set by the System Manager when native languages are configured) or it may prompt the user to enter
a language name or ID number (Langnum).

The application may call NLGETLANG to obtain the user interface language and/or the data manipula-
tion language. The Job Control Words NLUSERLANG and NLDATALANG must be in place before
invoking this type of application. This method could be too restrictive if many users or transactions
are handled from one job or session.

Once the languages have been determined, the program opens the appropriate VPLUS forms files,
message catalogs, and/or command files, based on the user interface language choice. It also opens
any needed IMAGE data bases, KSAM files, or general data files; these may or may not depend upon
language choice. The appropriate language ID numbers are used in calling the various native lan-
guage intrinsics. Different users may concurrently run the same program with different languages.
The application can be designed to use more than one language within a single execution. For ex-
ample, one language may be used for data manipulation and a different one for user interactions.

DATA MANIPULATION USER INTERACTION
DATA BASE Y SCREENS
IMAGE data base(s) / Y| VPLUS forms file(s)
with oppropriate w/appropriate language
language attribute(s) / or "interngtional"
s
L&)
&
/\T
INDEXED SEQUENTIAL - PROMPTS, MESSAGES
KSAM file(s) \ / In application message
with appropriate APPLICATION catalog(s) chosen
longuage attribute(s) PROGRAM by LANGNUM
A program written
for use in
G\\\)\’* = multiple countries.
Z\P“ Determine LANGNUM(s)
SORTING at run time.x USER COMMANDS
SORT~MERGE / \ Command file(s) or
intrinsics 1 message cotalog(s)
S o % chosen by LANGNUM
S % From applicotion k2
e(’ configuration fils, %
N systern default, user
% prompt, JCWs, etc.
CHAR, MANIPULATION FORMATS
NL intrinsica NL intrinsics
(e.g., NLCOLLATE (e.g., NLFMTDATE)
NLSCANMOQVE)

Figure 1-4. Multilingual Application

Introduction to NLS

HP Subsystem Utility Program

Figure 1-5 shows a special category of multilingual application, the Hewlett-Packard subsystem
utility program. Many of these programs are not typically used by end users, but are used to manipu-
late user data in conjunction with application programs. They determine which language to use at

run time via a user-entered keyword or command, or via defaults.

The user interaction in these programs has not been made localizable since many of these programs are

not end user tools.

DATA MANIPULATION

DATA BASE

IMAGE
data base(s)

INDEXED SEQUENTIAL

KSAM
file(s)
W =
o
SORTING
SORT-MERGE
intrinsics /

CHAR., MANIPULATION

NL intrinsics
(e.g., NLCOLLATE
NLSCANMOVE)

HP 3000
SUBSYSTEMS

FCOPY, SORT, MERGE,
QUERY, ENTRY
Determine LANGNUM
from user command
or keyword. *

*

Call NLGETLANG to
estoblish default(s).

Figure 1-5. HP Subsystem Utility Program

USER INTERACTION

SCREENS

VPLUS forms file(s)
w/appropricte language
or "international”

PROMPTS, MESSAGES

Hard—coded or in
message catalog
{not localized)

USER COMMANDS

Hard—coded

FORMATS

NL intrinsics
(e.g., NLFMTDATE)

APPLICATION MESSAGE FACILITY

The Application Message Facility is a Native Language Support (NLS) tool that provides a program-
mer with the flexibility needed to create application catalogs for localized applications. Text such as
prompts, commands, and messages intended for the user’s interaction with an application can be
stored in separate ASCII editor files. This allows the programmer to maintain files and localize ap-
plications without changing the program code.

The NLS Application Message Facility contains the GENCAT utility program and the CAT intrinsics,
CATOPEN, CATREAD, and CATCLOSE, as shown in Figure 2~1.

APPLICATION FORMATTED | CATOPEN
SOURCE GENCAT APPLICATION CATREAD | APPLICATION
CATALOG | prOGRAM [CATALOG —————>| PROGRAM
CATCLOSE
_____/ \J

Figure 2-1. GENCAT Utility Program

The GENCAT utility creates and maintains message catalogs which meet the NLS requirements for
efficient storage and retrieval of messages. For a comparison of GENCAT and MAKECAT, an MPE
utility which is also used to create and maintain message catalogs, refer to Table 2-2.

ACCESSING APPLICATION CATALOGS

Catalogs formatted with GENCAT can be accessed by applications via the CAT intrinsics:

CATOPEN - Opens a catalog for access by an application.

CATREAD - Retrieves text from a catalog.

CATCLOSE - Closes a catalog.
The NLAPPEND intrinsic can be called to concatenate the language ID number and .the catalog file
name before the catalog is opened. Refer to "CATALOG NAMING CONVENTION" in this section

for more information.

The intrinsics are documented in Section IV, "NATIVE LANGUAGE INTRINSICS." Refer to
Program L in Appendix H for an example of their use. '

2-1

Application Message Facility

SOURCE CATALOGS

First, the user creates an MPE ASCII file in an editor with an EDIT/3000 compatible format. The
catalog may contain 8-bit characters. The GENCAT program reads the source catalog and creates a
binary formatted catalog which can be accessed by application programs. Calls to the CAT intrinsics
access the formatted catalogs. An internal directory is created in the formatted catalog which ex-
pedites accessing the catalog. The text in the formatted catalog is compressed for efficient storage.
The source catalog’s record size may vary from 20 words to 128 words. Often, a message is split over
several records.

Figure 2~2 illustrates the three functions GENCAT performs on an application message catalog:
modifying, formatting and expanding.

DIRECTIVES

A source catalog contains directives which partition information in the message catalog. The three
types of directives include $ to denote a comment line, $SET to mark the beginning of a new set of
messages, and message numbers to indicate messages.

$SET Records

A $SET record initiates a logical grouping of messages. Sets break the catalog into manageable seg-
ments containing logical groupings of messages {e.g., one set of messages for prompts, one set for in-
structions, one set for error messages).

The format of a $SET record, where xxx is a required number for that set of messages (ranging from
1to255)is:

$SET xxx [comment] $set xxx [comment].

A $SET record can contain comment as an optional character string. If there is not at least one blank
between xxx and the comment, GENCAT will issue an error message and terminate the formatting.

Set records must begin in column 1. For example, to indicate that set number 1 is being defined:
$SET 1 Set one contains all prompts.

See Figure 2-3 for an example of a $SET record.

2-2

Application Message Facility

GENCAT MENUS

ENTER INDEX OF DESIRED FUNCTION

0. EXIT.
HELP,
. MODIFY SOURCE CATALOG.

~ N

. FORMAT SOURCE INTO FORMATTED CATALOG.
. EXPAND FORMATTED CATALOG INTO SOURCE.

ENTER NAME OF CATALOG
TO BE MODIFIED

l

ENTER NAME OF MAINTENANCE FILE

l

ENTER INDEX OF MERGE TYPE

0. DO NOT MERGE.
1. HELP.

2, BY LINE NUMBER.
3. BY SET/MESSAGE NUMBER.

l

SAVE COLLISIONS?
ENTER "YES" OR ''NQ"

o

ENTER NAME OF NEW

YES
——— ENTER NAME OF

COLLISION FILE

SOURCE CATALQG FiLE

|

[MODIFYING SOURCE...

ENTER NAME OF SOURCE FILE
TO BE FORMATTED

l

FORMATTING...

!

ENTER NAME FOR NEW FORMATTED

l

FILE

TOTAL NUMBER OF
SETS FORMATTED = __

TOTAL NUMBER OF MESSAGES
FORMATTED =

|

ENTER NAME OF FORMATTED
CATALOG TO EXPAND

l

ENTER NAME OF NEW
SOURCE FILE

EXPANDING...

TOTAL NUMBER OF
SETS EXPANDED = __

TOTAL NUMBER OF
MESSAGES EXPANDED = _ _

[::_"_____""_] — INDICATES

USER INFORMATION DISPLAYED

Figure 2-2. GENCAT Functions

2-3

Application Message Facility

Message Records
Message records consist of a message number followed by the message text. This may be an error mes-
sage, prompt, or any text which may change with the language or country where the program will be
used. Message records:
o Identify message locations within a set.
¢ Must be in ascending sequence and unique within the set that contains them.
e Do not need to be consecutive.
For example, within a set, one can have messages 1-25, 101, 300-332, and 32766. All of these
message numbers can be used again in another set. The format for a message record where xxxxx, an
integer, is the required message number is:

xxxxx [the text of the message].
Text is an optional character string which, if present, follows the message number. If the text is not
preceded by a blank, GENCAT will replace the character immediately following the message number
with a blank. The user will be informed that a blank has replaced the character. An exception is
made if one of two special characters, "%" or "&," follow the message number. These characters will
s0t be replaced by a blank. Their meaning is explained in the following section.

Message Record Special Characters

When CATREAD is writing a message to a file, the percent (%) instructs CATREAD to post a carriage
return-line feed before writing the next record. For example, a message in set 4:

3 AN ERROR OCCURRED DURING THE LOADING %
OF THE DATA BASE.

The execution of CATREAD (catindex,4,3); resultsin a display of:

AN ERROR OCCURRED DURING THE LOADING
OF THE DATA BASE.

The ampersand (&) indicates that the statement is continued on the next line. Message 98 in set 67 is:
98 THE NUMBER OF FILES &
DOES NOT MATCH THE &
SYSTEM’S CALCULATIONS.
The execution of CATREAD (catindex,67,98, ...); resultsin a display of:
THE NUMBER OF FILES DOES NOT MATCH THE SYSTEM’S CALCULATIONS.

Note the use of blanks as separators preceding the ampersand. Message records must begin in column
1 and may have leading zeros. For example, the format of messagz number 3 in some set is:

0003 PLEASE ENTER YOUR NAME.

2-4

Application Message Facility

The tilde () is used as a literal character. It instructs CATREAD to treat the character which follows
it as a literal part of the message (even if it is a special character). For example, two tildes in a row
will put one tilde into the message.

The exclamation mark (!) is discussed in "PARAMETER SUBSTITUTION" in this section.

Comment Records

Comments are used throughout the catalog to document sets and messages, and to make them easier to
read. The format of a comment record, where comment is an optional string of characters is:

${comment] .

A blank between $ and [comment] is necessary only when the comment is a $SET or $DELSET record.

Sample Source Catalog

Notice the directives $, ($SET numbers), message numbers, message comments, and the use of blanks
in the sample source catalog in Figure 2-3.

$ This catalog is for development only. Messages will be
$ added as needed.

$wn

$SET 1 Prompts

1 ENTER FIRST NAME

2 ENTER LAST NAME

$

$uex

$SET 2 Error messages

1 NAME NOT ON DATA BASE

2 ILLEGAL INPUT

95 OPERATION IS %
INCONSISTENT WITH ACCESS TYPE
$

Figure 2-3. Sample Source Catalog

PARAMETER SUBSTITUTION

Parameter substitution can often be used with messages. An exclamation mark (?) is used within a
message to indicate where a parameter is to be inserted using CATREAD. The user must choose posi-
tional or numerical parameter substitution. Mixing these two types within a message is not allowed.

2-5

Application Message Facility

Positional Parameter Substitution

Positional parameter substitution simply means that each of the parameters in the CATREAD parameter
list is to be inserted into the message at each successive "!". A maximum of 5 parameter substitutions

is allowed in one message. The example in Figure 2-4 will be used to illustrate the use of positional
parameter substitution.

SPL STATEMENT

CATREAD (catindex, 13, 400, error,,,user, term);

PARAMETERS

ARY.KSE", 0;

BYTE ARRAY user (0:8):="M
="THREE", Q3

BYTE ARRAY term (0:5):

TFigure 2-4. Positional Parameter Substitution
Message 400 in set 13 is:
400 ILLEGAL INPUT FROM USER ! ON TERMINAL NUMBER ¢

The execution of the SPL statement in Figure 24, with the parameters given, results in the following
message:

ILLEGAL INPUT FROM USER MARY.KSE ON TERMINAL THREE.

Numerical Parameter Substitution

Numerical parameters allow the user to decide where the parameters are to be placed within the mes-
sage. The exclamation mark (1) is immediately followed by a number in the range 1-5. The example
in Figure 2-5 will be used to illustrate the use of numerical parameter substitution.

SPL STATEMENT

CATREAD (catindex, 7, 4, error,,,fourstr, fivestr)

PARAMETERS
BYTE ARRAY fourstr (0:4):="FOUR", 03
BYTE ARRAY fivestr (0:4):="FIVE", 0

Figure 2-5. Numerical Parameter Substitution
A message in set 7 is:

4 EOF DETECTED AFTER RECORD t'1 IN FILE %2

2-6

Application Message Facility

The execution of the SPL statement in Figure 2-§, with the parameters given, results in the following
message:

EOF DETECTED AFTER RECORD FOUR IN FILE FIVE.
Message 5 in set 7 is:

5 EOF DETECTED AFTER RECORD '2 IN FILE !1
A change in the call results in a different message:

CATREAD (catindex, 7, 5, error,,,fourstr, fivestr)
Message:

ECF DETECTED AFTER RECORD FIVE IN FILE FOUR.

Mixing numerical and positional parameter substitution characters is not allowed and will be flagged
as an error:

EOF DETECTED AFTER RECORD ¢ IN FILE %1,

Numeric parameter substitution can be used only with GENCAT and the CATREAD intrinsic.
CATREAD interprets the character tilde (7} as a literal character. If a character is preceded by a tilde
(7), that character is taken literally. For example, if set 7 also contains the following message: -

6 ERROR ! IN INPUT~!

When the SPL statement, CATREAD (catindex,7,6,error,,,seventeen), is executed, the result-
ing output is:

ERROR 17 IN INPUT?

The second exclamation mark would not be used for parameter substitution because it is preceded by a

CATALOG NAMING CONVENTION

Catalogs are MPE files accessed by application programs via the CAT intrinsics. An application that
has been localized into more than one language will typically have a separate message catalog for each
language. A naming convention facilitates using different localized versions of files required by an
application program.

A catalog file name can be identified with a maximum of five characters. Each native language sup-
ported by NLS has a language ID number (langnum). A three-digit language ID number can be ap-
pended to the catalog file name to identify each localized catalog.

For example, an original unlocalized message catalog is APCAT000. The message catalog in German
would be APCATO008. A Spanish version would be APCATO012. Refer to Appendix B, "SUPPORTED
LANGUAGES AND CHARACTER SETS," for a complete list of native languages and their cor-
responding language ID numbers. When the language ID number has been selected, the NLAPPEND
intrinsic may be used to form the catalog file name. At run time the application program is
responsible for determining which catalog to open with the CATOPEN intrinsic.

2-7

Application Message Facility
MAINTAINING A MESSAGE CATALOG

Maintenance functions can include addition, deletion, and modification of records in the source file.
The input for merging consists of two files, the source file and the maintenance file. The main-
tenance file is merged against the source file, either by line numbers or by $SET and message num-
bers. If the user does not know the line numbers, the $SET and message numbers can be used success-
fully. The context of the $SET and message records in the maintenance file determines the type of
maintenance performed on the source. Changes made to a source during a maintenance merge may be
kept in a collision file named by the user. Collision files are created at the option of the user. Figure
2-6 illustrates how the collision file may be merged against the modified source catalog to re-create
the original source.

RELATIONSHIP OF COLLISION FILE
TO SOURCE CATALOG FILE

@ MODIFY
\ / NEW SQURCE

ORIGINAL SGURCE GENCAT

= \

MAINTENANCE SOURCE COLLISION FILE
e MODIFY | S
NEW SOURCE GENCAT ORIGINAL SQURCE

S —

COLLISION FILE MAINTENANCE FILE

Figure 2-6. Collision Files

2-8

Application Message Facility

Merging Maintenance Files by Line Numbers

Merging a maintenance file against a source catalog file by line numbers may include modifying,
adding or deleting records.

MODIFYING A RECORD. If the maintenance file’s line number is common to the source file’s, the
source’s record is overwritten by the maintenance record.

ADDING A RECORD. If the line number in the maintenance file does not exist in the source, the
record represented by that line number from the maintenance file is added to the source at that line
number.

DELETING A RECORD. The directives $EDIT and $EDIT VOID=XXXXXXXX are used to delete
records from the source file. If $EDIT VOID is used, the records beginning with and including the
record number of the $EDIT VOID record to record XXXXXXXX are deleted. The line number
XXXXXKXX represents the line number XXXXX . XXX of the source file.

Merging Maintenance Files by $SET and Message Number

When GENCAT reads a $SET record from the maintenance file, all records following the $SET record
are considered to be message records or comment records within that set until GENCAT reads another
$SET record or exhausts the maintenance file. Set numbers must be in ascending order, and all mes-
sage numbers must be in ascending order within each set.

The first record GENCAT expects to read from the maintenance file is a $SET, $DELSET (Refer to
"THE $DELSET DIRECTIVE" discussion in this section.), or a comment record. GENCAT will con-
tinue to read and evaluate the maintenance file records until there is an error or the maintenance file
is exhausted. After GENCAT reads a maintenance file record, it is evaluated according to a set of
rules, and a copy of the source is modified as necessary. The following rules for evaluation apply to
set numbers and message numbers.

SET NUMBERS. New message numbers and set numbers are added to the source catalog file. All
message numbers and messages following this set record are assumed to be new, and will be added to
the source file.

Set numbers, if already present, signify changes to the set of messages currently in the source catalog.
All message numbers and messages following this set are to be evaluated according to the rules for
message numbers.

Set numbers in a $DELSET record mean that the entire set of messages in the source is to be deleted.
MESSAGE NUMBERS. New message numbers within a $SET are added to the new source. Message

numbers that are already present are deleted if no text follows the message number. If new text is
supplied, the existing message will be updated.

2-9

Application Message Facility

COMMENT RECORDS. Comment records are written to the new source file as they are
encountered, either in the source or the maintenance file.

THE $DELSET DIRECTIVE. The $DELSET directive is allowed only in the maintenance file. It in-
structs GENCAT to delete the entire set of messages denoted by xxx. Optional text may follow xxx,
providing it is preceded by at least one blank. The $DELSET directive is not written to the new file.

$DELSET records must begin in column 1. The format of a $DELSET record, where xxx is an existing
set number in the source catalog is:

$DELSET xxx [text].
The directives $SET and $DELSET may be either in uppercase or lowercase ($set and $delset).
Mixed cases are not allowed (e.g., $Set or $delseT).
User Dialogue

The user may modify a source file, format a source catalog, or expand a formatted catalog as shown
in Figure 2-7. The process of maintaining a GENCAT source file is shown in Figure 2~8.

To modify a source file, enter:

:RUN GENCAT.PUB.SYS

HP32414A.00.00 GENCAT/3000 (C) HEWLETT-PACKARD., 1983

ENTER INDEX OF DESIRED FUNCTION

0. EXIT.

1. HELP.

2. MODIFY SOURCE CATALOG.

3. FORMAT SOURCE INTO FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.
>>2

ENTER NAME OF CATALOG SOURCE FILE TO BE MODIFIED
>>APCATO0QO
ENTER NAME OF MAINTENANCE FILE

>>CATMANNT

Figure 2-7. Dialogue For Modifying A Source File (1 of 2)

2-10

Application Message Facility

If the name of a nonexistent file is entered, an error message is displayed.
NONEXISTENT PERMANENT FILE (FSERR 52)

EXPECTED AN EXISTENT FILE AS INPUT (GCERR 15)

The prompt will then be repeated:

ENTER NAME OF MAINTENANCE FILE

>>CATMAINT

ENTER INDEX OF MERGE TYPE

0. DO NOT MERGE.

1. HELP.

2. BY LINE NUMBER.

3. BY SET/MESSAGE NUMBER.
>>§

Entering an "0" or (REJURN) aborts the maintenance function and returns to the main menu.

The user has the option of saving all the modifications resulting from the merge in a collision
file.

SAVE COLLISIONS? ENTER "YES" OR "NO"
>>YES

ENTER NAME OF COLLISION FILE
>>COLCAT

If the name of an existing file is entered, the prompt is repeated. A continues the
merging without saving the collisions.

GENCAT merges the source and maintenance files into a temporary file, and will prompt for
the name of a permanent file:

ENTER NAMZI OF NEW SOURCE CATALOG FILE
>>NEWCAT

This prompt is repeated until a unique file name or a (RETURN} is entered. The temporary file
is copied to the new permanent file. If a RETURN) is entered the merging is aborted.

Figure 2~7. Dialogue For Modifying A Source File (2 of 2)

2-11

Application Message Facility

SOURCE CATALOG FILE. NEW SQURCE CATALOG FILE
FIXED ASCI. (MODIFIED SOURCE CATALOG
RECORD SIZE = 40B -> 256B VIA MAINTENANGE FILE).

FIXED ASCH,
SAME RECORD SIZE AS
GENCAT SOURCE CATALOG FILE.

=/ N\

MAINTAINING

MAINTENANCE FILE, COLLISION FALE
FIXED ASCIL. (OPTIONAL FILE — ON
SAME RECOQRD SIZE AS DEMAND FROM USER).
SOQURCE CATALOG FILE FIXED ASCI.

SAME RECORD SIZE AS
SQURCE CATALQOG FILE.

Figure 2-8. Maintaining A GENCAT Source File

FORMATTING A SOURCE CATALOG

It is necessary to format the source catalogs so the CAT intrinsics can access them. GENCAT format-

ted files are binary, and cannot be edited. Formatting compacts files and creates a directory, which
saves disc space and reduces access time.

During the formatting process, GENCAT verifies that:

[}

All directives are legal and used correctly.

e Set numbers are in ascending order.

e Set numbers are greater than 0 and less than or equal to 255.

o Message numbers are in ascending order within each set.

o Message numbers are greater than 0 and less than or equal to 32766.
e Continuation and concatenation characters are correct.

e Parameter substitution characters are used correctly.

Application Message Facility

The dialogue listed in Figure 2-9 is an example of formatting a source catalog.

:RUN GENCAT.PUB.SYS

HP32414A.00.00 GENCAT/3000 (C) HEWLETT-PACKARD., 1983

ENTER INDEX OF DESIRED FUNCTION

0. EXIT.

1. HELP.

2. MODIFY SOURCE CATALOCG.

3. FORMAT SOURCE INTO FORMATTED CATALOG.

4. EXPAND FORMATTED CATALOG INTO SOURCE.
)>_3~

ENTER NAME OF SOURCE FILE TO BE FORMATTED
>>NEWCAT

FORMATTING. ..

ENTER NAME FOR NEW FORMATTED FILE
>>FORMCAT

TOTAL NUMBER OF SET FORMATTED = 6
TOTAL NUMBER OF MESSAGES FORMATTED = 167

FORMATTING SUCCESSFUL

Figure 2-9. Source Catalog Formatting Dialogue

2-13

Application Message Facility

EXPANDING A FORMATTED CATALOG

GENCAT contains a function to re-create the original source catalog file by expanding the formatted
catalog. The result is a new source catalog that can be edited, then converted to a formatted catalog.
Figure 2-10 is an example of the user dialogue for expanding a formatted catalog. Figure 2-11 il-
lustrates the relationship of formatted files to expanded files.

:RUN GENCAT.PUB.SYS

HP32414A.00.00 GENCAT/3000 (C) HEWLETT-PACKARD., 1983
ENTER INDEX OF DESIRED FUNCTION

EXIT.

HELP.

MODIFY SOURCE CATALOG.

FORMAT SOURCE INTO FORMATTED CATALOG,
EXPAND FORMATTED CATALOG INTO SOURCE.

HWMN O

>>ﬂ

ENTER NAME OF FORMATTED CATALOG TO EXPAND
>>FORMCAT

ENTER NAME OF NEW SOURCE FILE

>>NCATSOUR

EXPANDING. ..

TOTAL NUMBER OF SETS EXPANDED = 6
TOTAL NUMBER OF MESSAGES EXPANDED = 167

EXPANSION SUCCESSFULLY COMPLETED

Figure 2-10. Expanding a Formatted Catalog

Application Message Facility

RELATIONSHIP OF FORMATTED FILES
TO EXPANDED FILES

FORMATTING

@ —> | GENCAT | ——> @

SOURCE CATALOG FILE FORMATTED CATALOG FILE
FIXED ASCII FIXED BINARY
RECORD SIZE = 40B —> 256B RECORD SIZE = 128 W

FILECODE = 1230

FORMATTED CATALOG FILE FIXED ASCit
FIXED BINARY SOURCE CATALOG FILE
RECORD SIZE = 128W SAME. RECORD SIZE AS
FILECODE = 1230 ORIGINAL SOURCE
CATALOG FILE

NOTE: THE EXPANDED SOURCE FILE IS NOT AN EXACT
DUPLICATE OF THE ORIGINAL SOURCE FILE.
1. THE EXPANDED SOURCE WILL NOT CONTAIN ANY COMMENTS.
2. THE EXPANDED CATALOG IS AN UNNUMBERED FILE EVEN
IF THE ORIGINAL SOURCE IS A NUMBERED FILE.

Figure 2-11. Formatting/Expanding GENCAT Source Files

GENCAT JCWs

GENCAT sets one of three specific Job Control Words (JCWs) at the conclusion of a maintenance,
formatting or expansion process: GCMAINT, GCFORMAT, or GCEXPAND. If the process com-
pletes successfully, the appropriate JCW is set to zero (e.g., GCFORMAT is set to FATAL if a format
failed). If the process terminates unsuccessfully, the JCW is set to FATAL.

GENCAT IN BATCH MODE

GENCAT can be invoked interactively or in batch mode. GENCAT will abort a job in batch mode if
an error is encountered while formatting, expanding, or modifying.

2-15

Application Message Facility

GENCAT HELP FACILITY

GENCAT has an online HELP facility. The user can enter the index number for HELP from the
menu or a "?" in response to any prompt that does not have a menu selection for HELP. See Figure
2-12 for an example of the GENCAT HELP Facility dialogue.

:RUN GENCAT.PUB.SYS

HP32414A.00.00 GENCAT/3000 (C) HEWLETT-PACKARD., 1983
ENTER INDEX OF DESIRED FUNCTION

EXIT.

HELP.

MODIFY SOURCE CATALOG.

FORMAT SOURCE INTO FORMATTED CATALOG.
EXPAND FORMATTED CATALOG INTO SOCURCE.

HWMN -~

>>1

This is the driver menu for GENCAT.

Input consists of a numeric index, 0 through 4. Each index denotes
a function for GENCAT to perform.

- Will exit GENCAT and return you to MPE.

- Will display this message.

Will direct GENCAT to begin the maintenance function.
- Will direct GENCAT to begin the formatting function.
- Will direct GENCAT to begin the expansion function.

H WO =0
'

For each prompt, an input of an index for HELP or a "?" (depending
upon the type of prompt) will display instruction for that prompt.

Briefly, formatting is the creating of an internal representation of a
source message catalog into a form used by the CATxxxx intrinsics.
Maintenance is modifying the source message catalog by merging a
maintenance file against it. The merge may be by line numbers

set and message numbers. Expansion is converting the formatted

file back into a source message catalog. :

A carriage return exits GENCAT and returns to MPE.

Figure 2-12. GENCAT HELP Facility Dialogue

2-16

Application Message Facility

ERROR MESSAGES

GENCAT error messages are listed in Table 2-1.

Table 2-1. GENCAT Error Messages

MESSAGE

MEANING

ACTION

FREAD ERROR ON
SOURCE FILE.

INPUT FILE MUST HAVE
AT LEAST ONE RECORD.

INPUT FILE MUST
CONTAIN FIXED LENGTH
RECORDS ONLY.

INPUT FILE MUST BE
USASCIIT FILE ONLY.

INPUT FILE RECORD
SIZE MUST BE BETWEEN
40 AND 256 BYTES.

SET NUMBERS MUST BE
BETWEEN 1 AND 255.

SET NUMBERS MUST BE
IN ASCENDING
SEQUENCE.

A failure by FREAD when
reading a source message
catalog.

The file has an EOF of
zero (0).

File does not have a fixed
record length.

Source and maintenance
files must have records
that are in USASCII
format.

The record size of a source
or maintenance file is
greater than 256 bytes
(128 words) or less than
40 bytes (20 words).

A set number in a main-
tenance or source file is
not greater than or equal
to 1, or not less than or
equal to 255. The set
number may be negative
or it may not be numeric.

A set number is less than
or equal to the previous
set number in the source
file. Error can be detec-
ted at format time or
during a maintenance
function.

Recreate the source mes-
sage catalog.

Place at least one record
in the file.

Create the file with a
fixed record length.

Create the source and
maintenance files with
USASCII format.

Create a source and main~
tenance file with a record
size greater or equal to 40
bytes or less than or equal
to 256 bytes. (Note that
this record length includes
any line numbers in the
file.)

Change set number to a
value between 1 and 255
inclusive.

Change numbers to strict
ascending sequence.

2-17

Application Message Facility

Table 2-1. GENCAT Error Messages (Continued)

MESSAGE

MEANING

ACTION

10

11

12

13

14

15

MESSAGE NUMBERS MUST
BE BETWEEN 1 AND
32766.

MESSAGES MUST EITHER
CONTAIN ALL NUMBERED
OR ALL POSITIONAL
PARAMETER
SUBSTITUTION
CHARACTERS.
NOT ALLOWED.

MIXES

MESSAGE NUMBERS MUST
BE IN ASCENDING
SEQUENCE.

MESSAGE CONTAINS
NON-BLANK CHARACTER
IMMEDIATELY
FOLLOWING MESSAGE
NUMBER. NON-BLANK
CHARACTER ASSUMED TO
BE A BLANK.

EXPECTED ONE OF THE
FOLLOWING INPUTS: O,
1, 2, 3, 4, OR A
RETURN.

EXPECTED ONE OF THE
FOLLOWING INPUTS: O,
1, 2, 3, OR A
RETURN.

EXPECTED AN EXISTENT
FILE AS INPUT.

A message number value
is not between 1 and
32766 inclusive.

During the scan of the
message, GENCAT detec~
ted a mix of parameter
substitution characters.
For example, a message
contained numeric sub-
stitution characters as
well as positional substi-
tution characters.

A message number was
processed that is less than
or equal to the previous
message number. The
message numbers within a
set are not in ascending
sequence.

GENCAT detected a non-
blank character im-
mediately following the
message number in a mes-
sage. GENCAT replaces
this character with a
blank.

GENCAT detected an in-
correct input in response
to the first menu (which
prompts for a function).

GENCAT detected an in-
correct input in response
to the menu prompting
for the type of merging it
is to perform.

The file does not exist on
the system.

Change message number
value to a value that is
between 1 and 32766
inclusive.

Change the parameter
substitution characters
either to all numeric sub-
stitution or all positional
substitution characters.
(Note that this is for each
message only.)

Arrange the messages
within the set so that
their numbers are in strict
ascending order.

Insert a blank between the
message number and the
message text.

Respond only with O, 1,
2, 3, 4, or a RETURN).

Respond only with O, 1,
2, 3, or a REIURN).

Either create the file or
mnput the name of a file
that does exist on the
system.

2-18

Application Message Facility

Table 2~1. GENCAT Error Messages (Continued)

MESSAGE MEANING ACTION

16 EXPECTED A UNIQUE, The file already exists on Purge the file or input the
NON-EXISTENT FILE the system. The name of name of a file that does
NAME AS INPUT. the file should be one that not exist on the system.

does not exist on the
system.

17 EXPECTED A RESPONSE GENCAT requires a Respond with "YES,"

OF "YES" OR "NO" AS response of either "YES," "yes," "NO," or "no."
INPUT. “yes," "NO," or "no" to

the prompt of "SAVE

COLLISIONS? Enter

"YES" or "NO."

18 INPUT FILES MUST Source and maintenance Create a maintenance file
HAVE EQUAL RECORD files must have equal that has a record size
SIZES FOR THIS record sizes if the main- equal to the record size of
FUNCTION. tenance file is to modify the source file.

the source file.

20 THE CONSTRUCT OF The construct $DELSET, Remove $DELSET con-
$DELSET IS NOT which may be used in a struct from the source
ALLOWED IN THE maintenance file, was file.

SOURCE. detected in a source file
during a maintenance
function.

21 ONLY FIVE (5) GENCAT detected more Only five (5) or fewer
POSITIONAL PARAMETER than five (5) parameter parameter substitution
SUBSTITUTIONS substitution characters in characters per message.
ALLOWED PER MESSAGE. one message. Up to five

parameter substitution
characters are allowed per
message.

22 MAINTENANCE FILE The maintenance file is an Number the maintenance
MUST BE NUMBERED FOR unnumbered file. The file if the file is to be used
LINE-NUMBER MERGES. maintenance file must be in a line-number merge.

a numbered file if it is to
be usad in a line-number
merge.
23 SOURCE FILE MUST BE The source file is an un- Number the source file if

NUMBERED FOR
LINE-NUMBER MERGES.

numbered file. The
source file must be a
numbered {ile if it is to be
used in a line-number

merge.

the file is to be used in a
line-number merge.

2-19

Application Message Facility

Table 2-1. GENCAT Error Message (Continued)

MESSAGE

MEANING

ACTION

24

25

26

27

28

29

SOURCE FILE CANNOT
CONTAIN FORMS OF
$EDIT.

SEQUENCE NUMBER IN
$EDIT VOID RECORD
CONTAINS TOO MANY
DIGITS. EIGHT IS
THE MAXIMUM.

FILE IS NOT A
FORMATTED FILE.

SET RECORD IS
REQUIRED BEFORE A
MESSAGE RECORD IS
FORMATTED.

VALUE IN RIGHT BYTE
OF KANJI CHARACTER
IS INVALID.

SCAN COMPLETED WITH
NO CLOSING KANJI
ESCAPE SEQUENCE.
EXPECTS A CLOSING
KANJI ESCAPE
SEQUENCE TO
TERMINATE KANJI
CHARACTER SEQUENCE.

During a line-number
merge, GENCAT ex~
amines the source file for
$EDIT and $EDIT VOID=
constructs. These are not
allowed since if collision
files are to be used, an
ambiguity would exist if
the $EDIT and $EDIT
VO1D= were left in the
source file.

The value following the

$EDIT VOID=may have a

maximum of eight place
holders.

GENCAT can only ex—
pand formatted catalogs
(i.e., files formatted by
GENCAT).

A message was found
before set number was
defined.

Your message contains
special escape sequences
provided by HP that are
used for research and
development activities.
These special escape se-
quences are not supported
by HP and HP assumes no
responsibility for their
use.

See Message Number 28.

Remove all occurrences of
$EDIT and $EDIT VOID=
from the source file.

Reevaluate this value and
correct it, as it represents
a line number.

Format the file using
GENCAT.

Place the message in a set
or place a set number
before the message.

For messages 28 through
32, consult your HP rep-
resentative, or remove all
occurrences of the form
"esc$<terminator>" or
"ESC(<terminator>" from
your message catalog.
Where ESC is the escape
character, <terminator> is
"@" or "A" through "Z".

See Message Number 28.

2-20

Application Message Facility

Table 2-1. GENCAT Error Messages (Continued)

MESSAGE

MEANING

ACTION

30

31

32

33

INCOMPLETE KANJI
CLOSING ESCAPE
SEQUENCE DETECTED.

VALUE IN LEFT-BYTE
OF KANJI CHARACTER
IS INVALID.

VALUE IN PARAMETER
SECTION OF KANJI
ESCAPE SEQUENCE IS
INVALID. EXPECTED A
STRING OF DIGITS.

BLANK RECORDS THAT
ARE NOT CONTINUATION
RECORDS ARE NOT
ALLOWED.

See Message Number 28.

See Message Number 28.

See Message Number 28.

GENCAT detected a
blank record in the source
catalog and this record is
a continuation record for
the previous record.

See Message Number 28.

See Message Number 28.

See Message Number 28.

Remove the record from
the source file, or modify
the record immediately
before it to end with a
"%" ora "&" character.

2-21

Application Message Facility

Table 2-2. MAKECAT/GENCAT Comparison

FEATURES

MAKECAT

GENCAT

Access Methods

Formatting

Function

Input

Literal Character

Messages

Numerical
Parameters

Output

Processing

The FOPEN, GENMESSAGE, and
FCLOSE intrinsics are used to
open, access, and close formatted
MAKECAT catalogs.

Places an internal directory in the
file’s user labels. The file is for~
matted in place without creating
a new file.

Converts or formats HELP and
message files into catalogs.
Installs system message catalog,
using the BUILD entry point.

The name of a file must be en~
tered in a file equation. :FILE
INPUT=<your file>.

Not supported.

The message number range per set
is 1-258.

Not supported.
Saves the formatted file as a tem~-
porary file with the name

CATALOG.

Formats more quickly than
GENCAT.

CATOPEN, CATREAD, and
CATCLOSE intrinsics open, access
and close formatted GENCAT
catalogs.

A source message file is formatted
into another file, leaving the
original source intact. The
application uses the formatted file.
The original source file can be
purged. The formatted file can be
expanded to restore the original
source file.

Formats application message
catalogs. Provides maintenance
facility to modify existing source
catalogs. Provides capability of ex-
panding a formatted file back into
the original source file.

GENCAT prompts the user for the
name of a file.

The tilde "~" serves as a literal
character, causing the character
which immediately follows it to be
treated as text.

The message number range per set
is 1-32766.

Up to 5 numerical parameters can
be contained in a message.

GENCAT prompts the user for the
name of the formatted file. The
file is saved as a permanent file.

GENCAT verifies each message for
correct parameter substitution
characters. Manipulates two tem~
porary files while formatting the
source file.

2-22

Application Message Facility

Table 2-2. MAKECAT/GENCAT Comparison (Continued)

FEATURES

MAKECAT

GENCAT

Record Format

Sets

User Interface

Accepts source files of any size, but
the file it saves has a record size of
80 bytes. The system message
catalog is fixed binary. An appli-
cation catalog is fixed ASCII.

The set directive is $SET. The set
number range for a catalog is 1-63.

The user must know which entry
points to use and when to use them.
Files are input via file equations.
Error messages require user
interpretation.

Accepts source catalog files with
record sizes from 40 to 256 bytes.
The formatted file has a record size
of 128 words, and is fixed binary.
When a formatted catalog is ex-
panded into a source catalog, the
new source catalog is fixed ASCII
with a record size identical to the
original source catalog.

When maintenance is being per-
formed, both the source file and
the maintenance file must be of
equal lengths in fixed ASCII. The
resulting source file, and collision
file, if specified will be fixed
ASCII, and their record sizes will
equal the record size of the original
source file.

The set directive can be $SET or
$set. The set number range for a
source catalog is 1-255.

GENCAT is menu-driven. The
menus originate from a catalog.
Each prompt has HELP text as-
sociated with it. Error messages are
self ~explanatory.

2-23/2-24

SECTION

NLS IN MPE SUBSYSTEMS

Native Language Support (NLS) supplies the applications designer with the tools to support native
language data and local custom formats. NLS provides support features in FCOPY, IMAGE, KSAM,
QUERY, SORT-MERGE and VPLUS. COBOLII access to native language collating sequences is in~
cluded in the SORT-MERGE subsection discussion.

The emphasis of NLS in the subsystems is on providing the end-user, rather than the application
designer, with local language data and formats. User interfaces {prompts, commands and messages)
of the subsystem utility programs, e.g., FORMSPEC or DBUTIL, are not localized.

These notes on the subsystems are intended to be used as addenda to the subsystems manuals. Refer to
the SORT-MERGE, KSAM, FCOPY, QUERY, IMAGE and VPLUS manuals for complete documen-
tation on these subsystems. The format of each subsystems manual has been maintained as much as
possible in these updates.

3-1

NLS In MPE Subsystems

FCOPY

Native Language Support (NLS) features in FCOPY can be accessed by adding a LANG= parameter to
the existing options.

:FCOPY FROM=A; TO=B; LANG=GERMAN; UPSHIFT

If the LANG= parameter is omitted, FCOPY fetches the current data language with NLGETLANG (mode
2). If there is none, or if it is NATIVE-3000, FCOPY functions as it did before the introduction of
NLS.

FCOPY Options

The FCOPY options affected by language dependency are character printing, translating, upshifting,
and updating KSAM files.

CHAR OPTION. Character codes not represented by symbols are displayed as periods. The TO= file
can be a line printer, a keyboard display terminal, or an intermediate disc file to be listed at a later
time.

CHAR No LANG= The NATIVE-3000 processing scheme will be retained.

CHAR LANG= The character definition table associated with the language will be used.
Characters of type 3 (undefined graphic character) and § (control code) as
in NLINFO item 12, are replaced by periods. Refer to Section IV,
"NATIVE LANGUAGE INTRINSICS, " for more information.

CHARACTER TRANSLATE OPTIONS, These options translate data for ASCII-to-EBCDIC and
EBCDIC-to-ASCII conversions.

EBCDICIN/ Input of the LANG= parameter will result in the translation table associated
EBCDICOUT with the language being used.

For example, using an EBCDIC-to~ASCII conversion table, FCOPY con-
verts data from German EBCDIC to ROMANS:

>FROM=MYGEBCFL; TO= MYROM8FL; LANG=GERMAN; EBCDICIN
EOF FOUND IN FROMFILE AFTER RECORD 29

30 RECORDS PROCESSED #*# 0 ERRORS

3-2

NLS In MPE Subsystems

UPSHIFT OPTION. The UPSHIFT option converts lowercase alphabetic characters of supported
native languages to their corresponding uppercase characters as part of the copying operation.

UPSHIFT No LANG= Any character belonging to USASCII or to one of the extensions will be up-
shifted as it would have been before the introduction of NLS.

LANG= All characters will be upshifted according to the given language’s upshift
definition.

FCOPY AND KSAM FILES. To change the language of an existing file, a new KSAM file must be
built with the new language attribute, and the old file copied into the new. If FCOPY copies an ex-
isting KSAM file to a new KSAM file the same language attribute is assigned to the new file. The
LANG= option of FCOPY cannot be used to change the language of a KSAM file.

Combined Use Of Options

Using LANG= without another relevant option such as UPSHIFT or EBCDICIN usually results in a
warning message:

<<966>> WARNING: LANG OPTION NOT RELEVANT
The user can continue without affecting the outcome of the operation. The LANG= option is ignored.
The following combinations are flagged as an error:

BCDICIN; LANG=xxx
BCDICOUT ; LANG=xxx
EBCDIKIN; LANG=xxx
EBCDIKOQUT 5 LANG=xxx
KANA s LANG=xxx

For example:

>FROM=DEUTSCH; TO=DANSK; LANG=GERMAN; BCDICIN
*57#SYNTAX ERROR: TLLEGAL COMBINATION OF OPTIONS

0 RECORDS PROCESSED ##% 1 ERROR

3-3

NLS In MPE Subsystems

Error Messages

Table 3-1 lists the error messages for FCOPY.

Table 3-1. FCOPY Error Messages

ERROR # MESSAGE CAUSE ACTION
960 LANGUAGE NOT The language Verify spelling of lan-
CONFIGURED. requested is not’ guage name. Ask the
configured on the System Manager to con-
system. figure the language on
the system.

961 NLS NOT CONFIGURED. No native languages Ask the System Manager
are configured on to configure the native
the system. language on the system.

966 WARNING: LANG OPTION The LANG option is Check command for

NOT RELEVANT. not relevant to correct options. You
command last are given the choice
entered. whether or not to con-

tinue the operation.

Performance issues

The implementation of CHAR, UPSHIFT, and EBCDICIN/EBCDICOUT using NLS intrinsics and lan-
guage definition tables requires additional time for the conversion process.

3-4

NLS In MPE Subsystems

IMAGE

Native Language Support (NLS) in IMAGE enables the user to assign a language attribute to a data
base. This language attribute determines the collating sequence used to insert an entry with a sort
item of type X or U in a sorted chain. It also determines the operation of comparisons for entry level
DBLOCK calls. In order to use NLS with IMAGE, this language attribute will have to be specified by
the user either at schema processing time or through the SET command in DBUTIL.

Utility Programs

NLS features in IMAGE can be requested in four utilities: DBSCHEMA, DBUTIL, DBUNLOAD,
and DBLOAD.

DBSCHEMA.. The optional language attribute will be specified:

BEGIN DATA BASE databasename [,LANGUAGE: language] ;

The language name or ID number can be used for language. If no LANGUAGE is specified, the data
base will use NATIVE-3000 as a default.

The names of data items and data sets are restricted to certain USASCII characters. This allows
schemas to be valid internationally, for all Hewlett~Packard 8-bit character sets. It also allows the
sources of application programs which call IMAGE intrinsics to be entered from and displayed on all
8-bit and 7-bit (USASCI) terminals.

DBUTIL . DBUTIL includes the SET, HELP, and SHOW commands:

SET: SET LANGUAGE= language. This command can be issued only on a virgin
ROOT file or an empty data base (where <language> is the language name
or language ID number).

HELP: HELP SHOW and HELP SET will display the syntax for SHOW and SET
commands with the LANGUAGE option.

SHOW: SHOW databasename [/maintword] LANGUAGE. The language attribute
of the data base is displayed.
DBUNLOAD/DBLOAD. DBUNLOAD copies the data to specially formatted tapes or disc volumes.

The language ID number of the data base is stored along with the data.

DBLOAD warns the user who tries to load data when the language attribute of the data base on disc
and the data base on tape are incompatible:

WARNING: THE LANGUAGE OF THE DATA BASE IS DIFFERENT FROM THE LANGUAGE
FOUND ON THE DBLCAD MEDIA.

3-5

NLS In MPE Subsystems

If the user is running DBLOAD in a session, the user may choose to continue:
CONTINUE DBLOAD OPERATION ? (Y/N)

In case of a job execution of DBLOAD, or a negative answer ("N") to the previous question, the
DBLOAD operation is prematurely terminated.

Intrinsics

The language attribute of the IMAGE data base enables the IMAGE intrinsics to utilize native lan-
guage features.

DBOPEN. DBOPEN checks the language attribute of the data base. When the language attribute of
the data base is not supported by the current configuration of the system, an error code of ~200 is
returned:

DATA BASE LANGUAGE NOT SYSTEM SUPPORTED.

DBPUT. The position of a new entry with a type X or U item in a sorted chain is determined accord-
ing to the collating sequence of the language attribute of the data base.

If the data base language attribute is NATIVE-3000, the insertion of a new entry in the sorted chain
is determined by the result of a BYTE COMPARE between the key of the new record and the keys of
the entries already in the chain.

If the data base has a language attribute other than NATIVE-3000, the collating sequence definition

of the native language is used via a system version of the NLCOLLATE intrinsic to determine where to
insert the new entry.

DBINFO. DBINFO provides additional information about the language attribute of the data base:

Mode: 901

Purpose: Obtain language attribute of the data base.
Qualifier: Ignored

Buffer Array Contents: Word 1 contains the language ID number.

DBLOCK. If a lock item is of type U or X, and a lock specifies an inequality (range), the collating
sequence for the language of the data base will be used.

3-6

NLS In MPE Subsystems

Changing The Language Attribute Of An IMAGE Data Base

This change cannot be done with a single command. Once data has been stored in an IMAGE data
base with a native language attribute, changing the language attribute requires reorganizing data
along any sorted chains according to the collating sequence of the new language.

The procedure is:

1.

2.

DBUNLOAD the data base.
Purge the data base using PURGE in DBUTIL.

Modify the schema with the language attribute set by the LANGUAGE: parameter and create a
new root file with the schema processor.

Create the data base using CREATE in DBUTIL.

Run DBLOAD in session mode. A warning message is issued because the language has been
changed. A prompt is displayed:

CONTINUE DBLOAD OPERATION? (Y/N)

Enter "Y" to complete the change of the language attribute.

NOTE

All IMAGE data bases created before NLS are con-
sidered to have NATIVE-3000 as a language attribute.

Error Messages

The three types of error messages used in IMAGE are listed in the following tables. Table 3-2 lists
Utility Program Conditional Messages, Table 3-3 lists Library Procedure Calling Errors, and Table
3~4 lists Schema Syntax Errors.

3-7

NLS In MPE Subsystems

Table 3-2. IMAGE Utility Program Conditional Messages

MESSAGE

MEANING

ACTION

DATA BASE LANGUAGE
NOT SYSTEM
SUPPORTED.

ERROR READING ROOT
FILE RECORD.

ERROR WRITING ROOT
FILE RECORD.

INVALID LANGUAGE.

LANGUAGE MUST NOT BE
LONGER THAN 16
CHARACTERS.

LANGUAGE NOT
SUPPORTED.

NLINFO FAILURE.

NLS RELATED ERROR.

WARNING: THE
LANGUAGE OF THE DATA
BASE IS DIFFERENT
FROM THE LANGUAGE
FOUND ON THE DBLOAD
MEDIA.

Language of the data base is not
currently configured on your
system.

DBUTIL is unable to read a root
file record.

DBUTIL has detected an error
while writing a root file record.

Language name or number contains
invalid characters.

Language name is too long and,
therefore, must be incorrect.

The language specified is either not
supported on your system or is not a
valid language name or number.

An error was returned by MPE
NLS.

An error was returned by MPE NLS
on a DBOPEN on the data base.

User has changed the language at-
tribute of the data base between
DBUNLOAD and DBLOAD.
DBLOAD wants the user to be
aware of potential differences in
sorted chains of the collating se-
quence of the two languages (the
language of the data base on disc
and on tape) are different. In ses-
sion mode the question "CONTINUE
DBLOAD OPERATION?" is asked.
In job mode, DBLOAD will ter-
minate execution.

Ask the System Manager
to configure the native
language on your system,
or provide a valid
language.

Contact your Hewlett-
Packard support
representative.

Contact your Hewlett-
Packard support
representative.

Retype the correct lan-
guage name.

Retype the correct lan-
guage name.

Contact the System
Manager for configura-
tion of that language, or
provide a valid language.

Contact your Hewlett~
Packard support
representative.

Contact your Hewlett~
Packard support
representative.

After noting the informa-
tion returned by
DBLOAD, and the result
on eventual sorted chains
in the data base, proceed
with the operation by
answering "YES."

3-8

NLS In MPE Subsystems

Table 3-3. IMAGE Library Procedure Calling Errors

CCL CONDITION MEANING ACTION

-200 DATA BASE LANGUAGE DBOPEN attempted to open Ask the System Manager
NOT SYSTEM the data base and found that to configure the lan-
SUPPORTED. the language of the data base guage on your system.

is not currently configured.
The collating sequence of the
language is unavailable;
DBOPEN cannot open the data
base.

-201 NATIVE LANGUAGE NLS internal structures have Ask the System Manager
SUPPORT NOT not been built at system to install NLS.
INSTALLED. startup. The collating se-

quence table of the language
of the data base is unavail-
able; DBOPEN cannot open the
data base.
-202 MPE NATIVE LANGUAGE The error number given was Ask the System Manager

SUPPORT ERROR #1
RETURNED BY NLINFO.

returned by MPE NLS on a
NLINFO call in DBOPEN.

to install NLS.

3-9

NLS In MPE Subsystems

Table 3-4. IMAGE Schema Syntax Errors

MESSAGE

MEANING

ACTION

BAD LANGUAGE.

DATA BASE NAME TOO
LONG.

I.ANGUAGE EXPECTED.

LANGUAGE NOT
SUPPORTED.

NATIVE LANGUAGE
SUPPORT ERROR.

Language name contains invalid
characters or language number is
not a valid integer.

Data base name contains more than
six characters.

Schema Processor expected at this
point to find a LANGUAGE statement
after the comma following BEGIN
DATA BASE name statement.

Language specified is not currently
supported on your system or is not a
valid language.

An error was returned by MPE
NLS.

Examine schema to find
incorrect statement, edit,
and run Schema Processor
again.

Examine schema to find
incorrect statement, edit,
and run Schema Processor
again.

Examine schema to find
incorrect statement, edit,
and run Schema Processor
again.

Examine schema to find
incorrect statement, edit,
and run Schema Processor
again.

Contact your Hewlett~
Packard support
representative.

NLS In MPE Subsystems

KSAM

The Keyed Sequential Access Method (KSAM) organizes records in a file according to the content of
key fields within each record.

Native Language Support (NLS) in KSAM provides the resources to create files whose keys of type
BYTE are sorted according to a native language collating sequence. All BYTE keys in the file will be
sorted using the collating sequence table of the specified language. Keys, as well as data in the
record, may contain 8-bit character data.

A file language attribute may be supplied when a KSAM file is created to provide a key file organized
according to the collating sequence of a native language. The language attribute is provided when the
file is created. All KSAM files created before NLS was introduced are considered to have
NATIVE-3000 as a language attribute.

A KSAM file can be built with KSAMUTIL, or programmatically using FOPEN.

Creating KSAM Files With KSAMUTIL

When using KSAMUTIL, the parameter LANG=langname or LANG=langnum may be supplied on the
BUILD command, as shown in Figure 3-1. NATIVE-3000 is used as the default language attribute if
no language is specified.

The language specified in the LANG= parameter must be installed on the system at the time the com-
mand is issued for KSAMUTIL to build the file. If the language is not installed, an error message is
returned and the file is not built.

Danish is specified as the language in the example. The language attribute of the KSAM file can be
checked by the VERIFY command (mode 3).

3-11

NLS In MPE Subsystems

¢RUN KSAMUTIL.PUB.SYS

HP32208A.03.13 THU, FEB 16, 1984, 8:54 AM KSAMUTIL VERSION:A.03.13
>BUILD TEST;REC=-80,3,F,ASCII;KEY=B,1,4;KEYFILE=TESTK;LANG=DANISH
>VERIFY

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?4

TEST.LORO.NLS CREATOR=SLORO

FOPTIONS (004005)=KSAM, :FILE, NOCCTL, F, FILENAME, ASCII, PERM
AOPTIONS(000400)=DEFAULT, NOBUF, DEFAULT, NO FLOCK, NO MR, IN
RECSIZE:SUB:TYP:LDNUM:DRT:UN.: CODE:LOGICAL PTR: END OF FILE:FILE LIMIT

-80: 9: O0: 3: 89: 2: 0: 0: 0: 1023
LOG. COUNT:PHYS. COUNT:BLK SZ:EXT SZ:NR EXT: LABELS:LDN: DISCADDR:
0: 0: -240: 43; 8: 0: 3:00000234251:

KEY FILE=TESTK KEY FILE DEVICE=4 SI1ZE= 114 KEYS= 1

FLAGWORD(000020)=RANDOM PRIMARY, FIRST RECORD=0, PERMANENT
KEY TY LENGTH LOC. D KEY BF LEVEL
1 B 4 1 N 168 1

DATA FILE = TEST VERSION= A.3.13

KEY CREATED= 47/°84 9: 0: 7.6 KEY ACCESS= 47/’84 9: 0:19.2
KEY CHANGED= 47/°84 9: 0: 8.5 COUNT START= 47/°84 9: 0: 8.6
DATA RECS = 0 DATA BLOCKS= 0 END BLK WDS= 0
DATA BLK SZ= 120 DATA REC S§Z= 80 ACCESSORS= 0
FOPEN 1 FREAD 0 FCLOSE 1
FREADDIR 0 FREADC 0 FREADBYKEY 0
FREMOVE 0 FSPACE 0 FFINDBYKEY 0
FGETINFO 1 FGETKEYINFO 0 FREADLABEL 0
FWRITELABEL 0 FCHECK 0 FFINDN 0
FWRITE 0 FUPDATE 0 FPOINT 0
FLOCK 0 FUNLOCK 0 FCONTROL 0
FSETMODE 0 FREE KEYBLK 0 FREE RECS 0
KEYBLK READ 2 KEYBLK WRITTEN 0 KEYBLK SPLIT 0
KEY FILE EOF 10 FREE KEY HD 0 SYSTEM FAILURE 0
MIN PRIME 0 MAX PRIME 0 RESET DATE

DATA FIXED TRUE DATA B/F 3 TOTAL KEYS 1
FIRST RECNUM 0 MIN RECSIZE 4 LANG DANISH
WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?

>E

END OF PROGRAM

Figure 3-1. KSAM File Test Program

3-12

Error Messages

KSAMUTIL error messages are listed in Table 3~35.

Table 3-5. KSAMUTIL Error Messages

NLS In MPE Subsystems

ERROR # MESSAGE CAUSE ACTION

1070 LANG’ NOT FOLLOWED Improper syntax was Enter language name
BY ’=’ OR HAS T0O used in specifying the using correct syntax.
MANY PARAMETERS. language name.

1071 LANG® LANGUAGE Language name too Enter correct language
VALUE TOO LONG OR long, or missing as a name.

ABSENT. parameter.

1072 *LANG” LANGUAGE The language number Enter correct language
NUMBER VALUE contains invalid number.

INVALID. characters.

1073 *LANG® LANGUAGE NOT Language specified is Ask the System Manager
SUPPORTED. not configured on to configure the lan-

your system, or not a guage on your system.
valid language name
or number.

1074 NATIVE LANGUAGE NLS is not installed on Ask the System Manager
SUPPORT IS NOT your system. to configure the lan-
INSTALLED. guage on your system.

1075 NATIVE LANGUAGE An NLS MPE error Ask the System Manager
SUPPORT LANGUAGE NOT occurred. No lan- to configure the lan-
SUPPORTED. guage table exists for guage on your system.

language specified.

1076 NATIVE LANGUAGE An NLS MPE error Ask the System Manager
SUPPORT RELATED occurred. to configure the lan-
ERROR. guage on your system; if

it is already configured,
contact your Hewlett-
Packard support
representative.

Additional Discussion

Refer to Appendix A of the KSAM Manual (30000-90079) for more information on error messages.

3-13

NLS In MPE Subsystems

Creating KSAM Files Programmatically

The user must provide the langnum when calling FOPEN to build a KSAM file. The langnum is
stored in word 10 of the KSAMPARAM array. The FOPEN intrinsic checks each time a KSAM file is
opened to determine whether the language used is configured on the system. For backward com-
patibility reasons bit 11 in the flagword (word 15) must be set to 1if a language other than O
(NATIVE-3000) is used, to denote that word 10 contains valid information.

If bit 11 of flagword is O, the default language, NATIVE-3000, is used and the data in word 10 is
ignored. If the language is not configured, condition code CCL is returned by FOPEN.

The file system error messages listed in Table 3-6 have been included with NLS:

Table 3-6. KSAM File System Error Messages

ERROR # MESSAGE CAUSE ACTION
196 LANGUAGE NOT The language name or Ask the System Manager
SUPPORTED. number specified for to configure the lan-
FOPEN is not con- guage on your system.

figured on your sys-
tem, or is not a valid
language name or

number.
197 NATIVE LANGUAGE An NLS MPE error Contact your Hewlett-
SUPPORT RELATED occurred on a FOPEN Packard support
ERROR. call. representative.

Additional Discussion

Refer to Appendix A in the KSAM Manual (30000-90079) for a complete list of KSAM file system
errors.

Modifying KSAM Files

Every record added or updated in a KSAM file has its new keys of type BYTE inserted in the key file
according to the collating sequence of the language defined for that KSAM file. That function is
handled internally by a system version of the NLCOLLATE intrinsic when the language attribute of the
file is different from NATIVE-3000. A new key in a file with a NATIVE-3000 language attribute
will be ordered according to the result of a BYTE COMPARE between the key of the new record and
the keys of the records already in the key file.

3-14

NLS In MPE Subsystems

Generic Keys

NLS collating sequences differ from the USASCII collating, and the differences must be considered
when performing generic key searches. Refer to Appendix C, "COLLATING IN EUROPEAN
LANGUAGES," for more information.

The description of a generic key search in a KSAM file with a native language attribute is presented
from an application point of view.

Keys matching a certain generic key may not be in consecutive order in the key file because the keys
are sorted according to a native language collating sequence. The key sequence in Figure 3-3 il-
lustrates this with a French KSAM file; keylength is 4, the generic key length is 2. The partial key
"aa'" appears in non-consecutive keys (with a result of 0in the last column of the figure). Records
containing partial keys (such as "AA" or "Aa") are intermixed according to the French collating se-
quence. These keys have a result of 1 listed.

If a generic key search is performed in a KSAM file with a language attribute other than
NATIVE-3000, the application program must determine whether the retrieved record matches the
generic key and, even if it does not, whether subsequent records might still match it.

The codes returned by NLKEYCOMPARE are shown in Figure 3-2.

Refer to Section IV, "NATIVE LANGUAGE INTRINSICS," for a complete discussion of the
NLKEYCOMPARE intrinsic.

RESULT MEANING
0 The retrieved key matches the generic key exactly.

1 The retrieved key does not match the generic key.
Uppercase/lowercase priority or accent priority is different.

2 The retrieved key value is less than the generic key.
It precedes the designated key in the collating sequence.

3 The retrieved key is greater than the generic key.

Figure 3-2. Results Returned By The NLKEYCOMPARE Intrinsic

NLS In MPE Subsystems

The generic key search sequence is:

1. After FFINDBYKEY has been called with >= as relational operator (relop), the logical record
pointer points to the data record indicated by the arrow labeled "Case 2".

2. The subsequent FREAD call will retrieve the data record. When the partial key "AA" is com-
pared to the generic key "aa" they are found to be different.

This comparison is done by calling the intrinsic NLKEYCOMPARE using the generic key and the
key found in the record. The result returned by NLKEYCOMPARE tells the application whether
the FREAD delivered a record:

a. Before the desired range (result 2).

b. In the desired range with an uppercase/lowercase or accent priority difference
(result 1).

c. With an exact match (result 0).

d. After the desired range (result 3).

3. To get all records whose key match the generic key exactly, the FREAD calls and subsequent
NLKEYCOMPARE calls should continue until a result of 3 is returned.

When performing a generic key search in a KSAM file with a native language attribute other than
NATIVE-3000 use the NLKEYCOMPARE intrinsic to compare partial keys and generic keys.

Refer to programs I and J in Appendix H, "EXAMPLE PROGRAMS," for generic key searches in
KSAM files with native language attributes.

NLS In MPE Subsystems

Key length: 4

Language: FRENCH (only USASCII characters are used in the example).

Desired records are all records whose record key starts with "aa"

(generic key = "aa", length = 2).

Pointer Key NLKEYCOMPARE Result
Position Value ("aa" Compared to Key)

Case | =~-> A
a

Case 2 ~--> AA
Aa
aA
aa
AAA
aaa
AAAA
AAAa
AAaa
AaAa
AaaA
Aaaa
aAAA
aAAa
afAalA
aaAA
aaaA
aaaa

Case 3 ---> Baaa
baaa

Case: 1. FREAD starting at the beginning of the file.

2
2

OO O ot e et ik e e b s O R O e e

W Lo

2. FFINDBYKEY with relational operator = or >= andb subsequent

FREAD calls.

3. FFINDBYKEY with relational operator > and subsequent

FREAD calls.

Key Value: Key values in ascending sequence.

Figure 3-3. Generic Key Searches

3-17

NLS In MPE Subsystems
Using FCOPY With KSAM Files

COPYING FROM A KSAM FILE TO ANOTHER KSAM FILE, If the KSAM file already exists
{(built via KSAMUTIL or programmatically) the keys of type BYTE are put into the new file accord-
ing to the collating sequence belonging to the language of the "TO" file. If the file does not exist, a
new file is built with the same language attribute as the "FROM" file.

CHANGING THE LANGUAGE ATTRIBUTE OF A KSAM FILE. FCOPY cannot be used to
change the language attribute of an existing file. KSAMUTIL must be used to build a new KSAM file
with the new language attribute. Then the data can be copied to this file using FCOPY. Keys of type
BYTE in the destination key file will be ordered according to the collating sequence of the new
language.

Moving NLS KSAM Files To Pre-NLS MPE

Restoring a KSAM file with a native language attribute other than NATIVE-3000 to a system
without NLS installed can result in an incorrect key sequence in the key file for type BYTE Kkeys.
Systems without NLS installed do not recognize any collating sequence except NATIVE-3000.

If a file with a native language attribute other than NATIVE-3000 is restored, the first FOPEN on
the file will return the same error condition code as if a system failure occurred while the file was
opened. KSAMUTIL should be used to build a new KSAM file. The file with the native language at-
tribute is recovered, and FCOPY is used to copy the recovered file into the new KSAM file. See
Figure 3-4 for an example of this recovery procedure.

:RUN KSAMUTIL.PUB.SYS

HP32208A.03.10 SAT, SAT, MAY 26,1884, 12:33 PM KSAMUTIL VERSION:A.03.10
>BUILD NEWDATA;REC=-80,3,F,ASCII;KEY=B,1,4:KEYFILE=NEWKEY
>KEYINFO OLDDATA;RECOVER

SEXIT

:FCOPY FROM=0OLDDATA;TO=NEWDATA ;KEY=0

:RUN KSAMUTIL.PUB.SYS

HP32208A.03.10 SAT, SAT, MAY 26,1984, 12:33 PM KSAMUTIL VERSION:A.03.10
>PURGE OLDDATA

>RENAME NEWDATA,OLDDATA

>RENAME NEWKEY,OLDKEY

YEXIT

Figure 3-4. KSAM Recovery Procedure

3-18

NLS In MPE Subsystems

QUERY

. QUERY operations are performed by entering commands consisting of key words and parameters.

Native Language Support (NLS) features can be accessed in QUERY to retrieve data which meet
user-defined selection criteria, and to sort data according to native language collating sequences. The
user must know what the natwe language in QUERY is, how the language is specified, how the lan-
guage affects the output, and how to determine which language is being used.

IMAGE data bases have a language attribute that describes the collating sequence used in sorted
chains and locking. This language attribute does not affect QUERY operation.

Although QUERY commands are in English, the user can expect the output data to be sorted and
formatted according to the QUERY user’s language. The language of the data base may determine
the data sequence while using QUERY passively for data retrieval (FIND). When data is being sorted
or formatted by QUERY, the user’s language will determine the ordering and formatting of the data.
For example, in a French data base with a QUERY user’s language of Danish, data items in a sorted
chain might be retrieved according to the French collating sequence; but the sorting or formatting is
done according to Danish criteria.
The user can specify the QUERY user’s language by:
a Using a QUERY command:

>LANGUAGE = langnum or >LANGUAGE=langname . Default is NLUSERLANG.
e Using an MPE command:

:SETJICW NLUSERLANG = langnum. Default is NATIVE-3000.
For example, if the user’s language is French, the QUERY command is:

>|.ANGUAGE

or
>LANGUAGE

7

FRENCH

Or the MPE Job Control Word NLUSERLANG may be used: :SETJCW NLUSERLANG=T.

The >LANGUAGE= command always overrides NLUSERLANG. If neither option is used to specify the
user’s language, QUERY assumes LANGUAGE=0 (NATIVE-3000). NATIVE-3000 is the default,
which ensures backward compatibility. When the user’s language is NATIVE-3000, QUERY per-
forms as it did before NLS features were available.

QUERY allows access to more than one data base at the same time. This means that more than one
data base language attribute may be active at the same time. In any case, upshifting, collating, range
selection, formatting, or sorting is dependent on the QUERY user’s language specified by the user via
the JCW NT.USERLANG or the LANGUAGE = command.

NLS In MPE Subsystems

Command Summary

NLS can affect QUERY in upshifting data, range selection, date format, real number conversions,
and sorted lists and numeric data editing in REPORT.

UPSHIFTING DATA (TYPE U ITEMS). QUERY upshifts commands and the data of type U items.
QUERY commands are upshifted according to NATIVE-3000. Data is upshifted according to the
user’s language to UPDATE ADD (or ADD), UPDATE REPLACE (or REPLACE), FIND, LIST, MULTIFIND,
and SUBSET.

RANGE SELECTION. QUERY collates data according to the user’s language in FIND, LIST,
MULTIFIND, or SUBSET. The MATCH feature (in FIND and MULTIFIND commands) is no longer valid
when LANGUAGE <> O (NATIVE-3000). QUERY will display an error message if MATCH is used in
an interactive mode, and will abort the session in a batch mode.

DATE FORMAT., DATE is a reserved word in the REPORT command which provides the system
date. It is formatted according to the user’s language.

REAL NUMBER CONVERSIONS. In the commands REPORT and LIST the output is formatted ac-
cording to the user’s language. For example, 123.45 in NATIVE~3000 becomes 123,45 in FRENCH.

SORTED LISTS IN REPORT. QUERY sorts type U or X items in a REPORT according to the col-
lating sequence of the user’s language.

NUMERIC DATA EDITING IN REPORT. QUERY converts the data edited using the
NATIVE-3000 edit mask (using the period as a decimal point and a comma as thousands separator) to
the corresponding characters in the user’s language.

Additional Discussion

Refer to the QUERY Reference Manual (30000-90042) for a complete description of these
commands.

3-20

NLS In MPE Subsystems

The commands listed in Table 3-7 are used to obtain language-dependent information.

Table 3-7.

Commands For Language-Dependent Information

COMMAND

LANGUAGE-DEPENDENT INFORMATION

>HELP LANGUAGE

>SHOW LANGUAGE

>FORM

parameters.

Explains LANGUAGE command function, format and

Displays the QUERY user’s language.

Displays the data base language attribute.

Error Messages

QUERY error messages which support the NLS enhancement are listed in Table 3-8.

Table 3-8. QUERY Error Messages

MESSAGE

MEANING

ACTION

DBINFO MODE 901
FAILED. CHECK DATA
BASE LANGUAGE
ATTRIBUTE AND IMAGE
VERSION.

EXPECTED A LANGUAGE
NUMBER OR NAME.

INTERNAL QUERY NLS
PROBLEM.

The version of IMAGE on
your system does not have
NLS features.

The LANGUAGE command only
accepts the name of a lan-
guage or the number as-
sociated with that name.

The NLS subsystem encoun-
tered an error from which it
could not recover while at-
tempting to initialize
language-dependent
information.

This is a warning. The user
may wish to update
IMAGE/3000 to the same
level as QUERY.

Enter HELP LANGUAGE for a
complete explanation of the
command and then re~enter
it.

Contact your Hewlett~
Packard support
representative.

3-21

NLS In MPE Subsystems

Table 3-8. QUERY Error Messages (Continued)

MESSAGE

MEANING

ACTION

LANGUAGE INVALID.
NATIVE-3000 USED.

LANGUAGE NOT
CONFIGURED ON THIS
SYSTEM. NATIVE-3000
USED.

MATCH NOT VALID WHEN
LANGUAGE <>
NATIVE-3000.

NLCOLLATE INTRINSIC
INTERNAL ERROR.

NLUTIL INTRINSIC
INTERNAL ERROR.

USER LANGUAGE NOT
CONFIGURED ON THIS
SYSTEM. NATIVE-3000
USED.

USER LANGUAGE INVALID.

Language specified not con-
figured. The default,
NATIVE~-3000 was used.

Languages are configured on
each system. Language
specified is not available on
your system. The default
language is NATIVE-3000.

QUERY can only allow the
matching option for
NATIVE-3000.

An unexpected error condi-
tion occurred while doing a
comparison of the data.

The NLS subsystem encoun-
tered an error from which it
could not recover while at-
tempting to initialize
language~dependent
information.

User language not available.
Only NATIVE-3000 is avail-
able on your system.

Languages are configured on
each computer system.
Language specified is not
available on your system.
The default language is
NATIVE-3000.

Run NLUTIL.PUB.SYS to list
the languages and associated
numbers available on your
system.

Run NLUTIL.PUB.SYS to list
the languages and associated
numbers available on your
system.

If possible, change the lan-
guage to NATIVE-3000 for
the match.

Contact your Hewlett-
Packard support
representative.

Contact your Hewlett-
Packard support
representative.

Ask the System Manager to
configure the desired lan-
guage on your system.

Run NLUTIL.PUB.SYS to list
the languages and associated
numbers available on your
system.

3-22

NLS In MPE Subsystems

SORT-MERGE

SORT-MERGE organizes records in a file according to the collating sequence of the keys. The
default collating sequence for character data is based on the binary values of the characters. EBCDIC
and user-defined sequences can also be used. Native Language Support (NLS) in SORT-MERGE
provides the user with the option of collating according to a native language sequence.

SORT-MERGE can be used as a stand-alone program or programmatically.

Stand-Alone SORT-MERGE

The key type CHARACTER allows the user to access native language collating sequences. The
specific native language collating sequence is assigned by the LANGUAGE command.

C[HARACTER] The collating sequence defined in the LANGUAGE command is used to sort
keys of type CHARACTER. Refer to Figure 3-35 for an example of the use
of the CHARACTER key type.

COMMAND SYNTAX DESCRIPTION
LANGUAGE Defines the native language
>L[ANGUAGE] [1S] {langnum } collating sequence to be
{langname} used to sort keys of type
CHARACTER.

The LANGUAGE command may specify a language ID number (langnum) or language name
(Langname). The language specified must be configured on the system. If the LANGUAGE command is
not used, the language to be wused for coilating keys of type CHARACTER defaults to
NLDATALANG, the language returned by the NLGETLANG intrinsic (mode 2).

3-23

NLS In MPE Subsystems

In Figure 3-5 the LANGUAGE command designates Swedish. The VERIFY command will confirm
which language collating sequence will be used for the SORT or MERGE stand-alone program.

¢RUN_SORT.PUB.SYS ‘
HP32214C.04.00 SORT/3000 MON, JAN 30, 1984, 1:52 PM
(C) HEWLETT-PACKARD CO. 1983

>INPUT MYFILE
>OUTPUT $STDLIST
>KEY 1,4, CHARACTER
>LANGUAGE IS SWEDISH
>VERIFY

INPUT FILE = MYFILE
RECORD LENGTH = SAME AS THAT OF THE INPUT FILE
OUTPUT FILE = $STDLIST

KEY POSITION LENGTH TYPE ASC/DESC

1 4 CHAR ASC (MAJOR KEY)
LANGUAGE IS SWEDISH
>END

Figure 3-5. Stand-Alone SORT-MERGE Dialogue

Programmatic SORT-MERGE

To use SORT-MERGE programmatically with NLS features, the user must designate the collating se-
quence with the charseq parameter in the SORTINIT and MERGEINIT intrinsics.

THE SORTINIT INTRINSIC. The syntax for a procedure call using SORTINIT is:

IA IA v v DV v
SORTINIT (inputfiles,outputfiles,outputoption,reclen ,numrecs numkeys,
IA IA LP P IA L I
keys,altseq,keycompare ,errorproc ,statistics,failure,errorparm,
I IA o-v
spaceal location ,charseq,parm?)

3-24

NLS In MPE Subsystems

THE MERGEINIT INTRINSIC. The MERGEINIT syntax for a procedure call is:

IA

MERGEINIT (inputfiles,preprocessor outputfiles,postprocessor keysonly,
v
numkeys ,keys ,al t seq ,keycompare ,errorproc,statistics,failure,

I

errorparm,spaceallocation ,charseq,parm?)

P IA P Lv

IA IA L.P P IA L

I IA o-v

PARAMETERS.

numkeys and keys

The following parameters apply:

The numkeys parameter is an integer. The keys parameter is an integer
array. These parameters describe the way records are sorted or merged.
One of these parameters cannot be specified without the other. The use of
numkeys and keys disallows the use of keycompare. The number of keys
used during the comparison of records is contained in numkeys, and the
way records are compared is specified by keys. For each key specified,
keys contains three words:

The first word gives the position of the first character of the key within the
record. The second word gives the number of characters in the key. The
third word (bits 0-7) gives the ordering sequence of the records (a value of
0 for ascending, 1 for descending). Bits &-15 of the third word indicate
the type of data according to the following convention:

O=logical or byte (same as type BYTE in interactive mode)

I=two’s complement, including integer and double integer

2=floating point

3=packed decimal

4=Display-Trailing-Sign

S=packed decimal with even number of digits

6=Display-Leading-Sign

7=Display-Leading-Sign-Separate

8=Display-Trailing-Sign-Separate

9=character (collating sequence of charseq is used).

3-25

NLS In MPE Subsystems

charseq

A two-word integer array. To utilize charseq:
¢+ SetwordOtol.
¢ Set word 1 to the langnum of the collating sequence to be used for

sorting keys of type 9 (CHARACTER). The language designated must be
configured on the system.

Whenever keys of type CHARACTER are compared, and charseq has been used to request a native
language collating sequence (e.g., Dutch, Spanish, Danish), SORT or MERGE will call the
NLCOLLATE intrinsic to do a native language comparison.

If NATIVE-3000 has been designated by the user or as a default, SORT-MERGE will do a direct
byte comparison on keys of type CHARACTER. NATIVE-3000 is an artificial language whose col-
lating sequence is based on the binary values of the characters.

ADDITIONAL INFORMATION. Refer to the SORT-MERGE/3000 Manual (32214-90002) for
other parameter descriptions.

Error Messages

NLS-specific error messages include those for Programmatic SORT (Table 3-9), Interactive SORT
(Table 3-10), Programmatic MERGE (Table 3-11) and Interactive MERGE (Table 3-12).

Table 3-9. Programmatic SORT Error Messages

29 LIB SORT LANGUAGE NOT SUPPORTED.
30 LIB NLINFO ERROR OBTAINING LENGTH OF COLLATING SEQUENCE TABLE.
31 LIB NLINFO ERROR LOADING COLLATING SEQUENCE TABLE.
32 LiB INVALID CHARSEQ PARAMETER.
Table 3-10. Interactive SORT Program Error Messages
40 INVALID LANGUAGE 1ID.
41 THE LANGUAGE SPECIFIED IS NOT SUPPORTED.

3-26

NLS In MPE Subsystems

Table 3-11. Programmatic MERGE Error Messages

21 LIB SORT LANGUAGE NOT SUPPORTED.

22 LIB NLINFO ERROR OBTAINING LENGTH OF COLLATING SEQUENCE TABLE.
23 LIB NLINFO ERROR LOADING COLLATING SEQUENCE TABLE.

24 LIB INVALID CHARSEQ PARAMETER.

Table 3-12. Interactive MERGE Program Error Messages

37 INVALID LANGUAGE 1ID.
38 THE LANGUAGE SPECIFIED IS NOT SUPPORTED.

Performance Considerations

SORT-MERGE executes more slowly when keys of type CHARACTER and a native language collat-
ing sequence are requested. The complex collating algorithms required by some of the languages may
use additional CPU time. The speed of SORT-MERGE is unchanged when a native language collating
sequence is not requested, or when NATIVE-3000 is requested.

COBOLI Sorting And Merging

The syntax for the SORT and MERGE verbs has changed slightly for NLS. It is now possible to
specify the native language whose collating sequence is to be used. The old syntax allowed only an al-
phabetic name:

[COLLATING SEQUENCE IS alphabet -name)

The syntax has been changed to:

{alphabetname }
[COLLATING SEQUENCE 1S {languagename } |
{langnum }

With the addition of NLS features, alphabetname retains the same meaning, languagename is an
alphanumeric data item containing the name of the language whose collating sequence is to be used,
and langnumis an integer data item containing the language identification number of the language to
be used.

3-27

NLS In MPE Subsystems

Figure 3-6 demonstrates the use of the SORT verb syntax:

002700 01
002800 01

003400
003500
003600
003700

004100
004200
004300
004400

005100
005300
005400

002600 WORKING-STORAGE SECTION.

AN-LANG-NAME PIC X(16) VALUE "FRENCH"
NUM-LANG-ID PIC S9(4) COMP VALUE 7.

003300 SORT SORT-FILE

ASCENDING KEY SORT-KEY

COLLATING SEQUENCE IS AN-LANG-NAME
USING IN-FILE

GIVING OUT-FILE.

004000 SORT SORT-FILE

ASCENDING KEY SORT-KEY

COLLATING SEQUENCE IS NUM-LANG-ID
USING IN-FILE

GIVING OUT-FILE.

005000 SORT SORT-FILE

ASCENDING KEY SORT-KEY
USING IN-FILE
GIVING OUT-FILE

Figure 3-6. SORT Verb Syntax

3-28

NLS In MPE Subsystems
VPLUS

The VPLUS/3000 product consists of five major parts: Intrinsics, FORMSPEC, ENTRY, REFSPEC,
and REFORMAT.

VPLUS/3000 Native Language Support (NLS) enables an applications designer to create interactive
end-user applications which reflect both the user’s native language and the local custom for numeric
and date information in the supported languages. NLS provides these specific features in
VPLUS/3000:

o Native decimal and thousands indicators.

e Native language month names for dates.

e Alphabetic upshifting of native characters.

e Native characters in single value comparisons and table checks.
e Native collating sequence in range checks.

VPLUS/3000 does not support the application design process in native languages. Form names, field
identifiers, and field tags support only USASCII characters.

REFSPEC and REFORMAT do not use NLS features. These programs interact with users in
NATIVE-3000 only.

Language Attribute

VPLUS/3000 contains an NLS language attribute option which allows the applications programmer to
design an international or language-dependent forms file. If a native language attribute is not
specified the forms file is unlocalized.

The forms file reflects the language characteristics of the application. Each forms file has a global
language ID number. The application may be unlocalized, language-dependent, or international.
For examples of these applications, see Figures 1~3, 1-4, and 1-35 in Section I, "INTRODUCTION
TO NLS."

UNLOCALIZED. If no language ID number is assigned to a forms file, it will default to O
(NATIVE-3000).

LANGUAGE-DEPENDENT. This application only operates in a single language context. The lan-
guage ID number is assigned when the forms file is designed. If the text needs to be in the native lan-
guage, unique versions of a forms file are required for each language supported.

INTERNATIONAL ., Multinational corporations may need to maintain a business language for
commands, titles, and menus in addition to accommodating the language of the end user for the ac~-
tual data retrieved or displayed. For this application, select "-1" as the language ID number for the
forms file. The VPLUS/3000 intrinsic VSETLANG must be called at run time to assign the appropriate
language.

3-29

NLS In MPE Subsystems

Setting The Language ID Number

The components of a form which can be language-dependent are the text, the initial values of fields,
and the field edit rules. The language ID number determines the context for data editing, conver-
sion, and formatting. The FORMSPEC language controls the context when the forms file is designed.
The forms file language controls the context when the forms file is executed.

The forms designer sets language ID number values for the forms file via the FORMSPEC
Terminal/Language Selection Menu. The forms file language defaults to 0 (NATIVE-3000) if no
language ID number is specified for it. NATIVE-3000 is currently the only selection available for
the FORMSPEC language. This means that initial values and processing specifications must be
defined with the month names and numeric conventions of NATIVE-3000.

The designer can change the forms file language ID number at any time. The value must be a positive
number or a zero for a single language application. If the value is acceptable, but the language is not
configured, FORMSPEC will issue a warning message. The language ID number will not be rejected. -
The designer is prompted to confirm the value or change it.

For multiple language applications, the forms designer selects a forms file language ID number value
of -1. The international language ID number indicates that the intrinsic VSETLANG will be called at
run time to select the language ID number for the forms file. If an application uses an international
forms file without calling VSETLANG, it will be executed in the default, NATIVE-3000. If
VSETLANG is called for an unlocalized or language-dependent forms file, an error code will be
returned.

The designer has three options in designing an application to work effectively with multiple
languages:

e Develop several language-dependent forms files.
s Create one international forms file.
e Produce a combination of language-dependent files and an international forms file.

VGETLANG may be used to determine whether a language-dependent forms file or an international
forms file is being executed. If VGETLANG indicates an international forms file, VSETLANG must be
called to select the actual language. Refer to the VGETLANG and VSETLANG intrinsics at the end of
this section.

Field Edits

NATIVE~-3000 must be used to specify date and numeric fields within FORMSPEC. VPLUS/3000
will convert the value when the forms file is executed to be consistent with the native language selec-
ted. Single value comparisons (LT, LE, GT, GE, EQ, NE) table checks, and range checks (IN, NIN)
specified within FORMSPEC may contain any character in the 8~bit extended character set consistent
with the selected language ID number. When the form is executed at run time, the collating table for
the native language specified is used to check whether the field is within a range.

3-30

NLS In MPE Subsystems

DATE HANDLING. VPLUS supports several date formats and three date orders: MDY, DMY, YMD.
Any format is acceptable as input when the form is executed, provided that the field length can ac-
commodate the format. The forms designer specifies the order for each date-type field. With NLS,
the native month names are edited and converted to numeric destinations. The format and the date
order are not related to the language of the forms file.

NUMERIC DATA. Decimal and thousands indicators are language-dependent in the NUM[n] and
IMPn fields. When data is moved between fields and automatic formatting occurs for data entered in
any field, recognition, removal or insertion of these decimal and thousands indicators is language-
dependent. The optional decimal symbol in constants is also language-dependent.

NOTE

VPLUS/3000 edit processing specifications and terminal
edit processing statements are separate and are not
checked for compatibility. There will be no check that
the designer has specified a terminal local edit which is
consistent with the language~dependent symbol for the
decimal point (DEC_TYPE_EUR, DEC_TYPE_US) in the
configuration phase.

NATIVE LANGUAGE CHARACTERS. If a native language ID number has been specified in the
forms file, the UPSHIFT formatting statement will use native language upshift tables.

Range checks and the single value comparisons LT, LE, GT and GE involve collating sequences.
When the form is executed, the .native language collating sequence table designated by the language
ID number is used to check whether the field passes the edit.

NLS features in VPLUS/3000 do not include support for pattern matching with native characters.
MATCH uses USASCII specifications.

Entry And Language ID Number

The forms file language determines the user language in ENTRY unless the file is international (-1).
The ENTRY program uses the intrinsic VGETLANG to identify the language of the forms file selected
by the designer.

If the forms file is interhational, ENTRY calls the NLS intrinsic NLGETLANG (mode 1). If it returns a
value of UNKNOWN, the user is prompted for a language ID number. Once a valid language ID number
is determined, ENTRY calls the VSETLANG intrinsic to specify the corresponding language.

The batch file does not have a language indicator. Users with different native languages may collect
data in the same batch file if the associated forms file is international.

3-31

NLS In MPE Subsystems

Error Messages

VPLUS/3000 Error Messages are listed in Table 3-13.

Table 3-13. VPLUS/3000 Error Messages

NUMBER MESSAGE ACTION
9001 NATIVE LANGUAGE SUPPORT Ask the System Manager to install
SOFTWARE NOT INSTALLED. NLS software.
9002 LANGUAGE SPECIFIED IS NOT Select another language or ask the
CONFIGURED ON THIS SYSTEM. System Manager to configure the
desired language.
9011 WARNING: LANGUAGE NOT Language specified is not configured
CONFIGURED. CHANGE OR HIT on the system. Forms file produced
"ENTER" TO PROCEED. can only be executed on a system
configured with that language.
9014 ATTEMPTED SETTING A LANGUAGE VSETLANG can only be used with in-
DEPENDENT FORMS FILE TO ternational forms files.
ANOTHER LANGUAGE.
9015 NATIVE-3000 IS CURRENTLY THE FORMSPEC language can only be 0
ONLY SELECTION AVAILABLE. in this version.
9500 LANGUAGE OF FORMS FILE IS NOT Ask the System Manager to configure
CONFIGURED ON THIS SYSTEM. the language or use forms file on a
system with that language
configured.
9998 LANGUAGE ID MUST BE 0 TO 9899 Forms file language ID number must
OR -1 FOR INTERNATIONAL FORMS be between -1 and 999.
FILE.

VPLUS Intrinsics

The VGETLANG and VSETLANG intrinsics are used only with the VPLUS/3000 subsystem.
calls in VPLUS/3000 are usually in COBOL. Refer to the VGETLANG and VSETLANG sections for ex-

amples of calls in other programming languages.

3-32

Intrinsic

NLS In MPE Subsystems

VGETLANG

The VGETLANG intrinsic returns the language ID number of the forms file.

SYNTAX

CALL "VGETLANG" USING COMAREA LANGNUM

This intrinsic returns the language ID number of the forms file being executed. The forms file must
be opened before calling VGETLANG. Otherwise, CSTATUS returns a nonzero value.

PARAMETERS

COMAREA

LANGNUM

EXAMPLE

The following COMAREA fields must be set before calling VGETLANG if
not already set:

LANGUAGE Set to code identifying the programming lan-
guage of the calling program.

COMAREALEN Set to total number of words in COMAREA.
VGETLANG may set the following COMAREA fields:
CSTATUS Set to nonzero value if call is unsuccessful.

Integer variable to which the language ID number of the forms file is
returned.

The following examples illustrate a call to VGETLANG:

COBOL:

BASIC:

FORTRAN:

SPL:

CALL "VGETLANG" USING COMAREA ,LANGNUM.
120 CALL VGETLANG(C(*),L)
CALL VGETLANG (COMAREA ,LANGNUM)

VGETLANG (COMAREA ,LANGNUM);

GPECIAL CONSIDERATIONS

This intrinsic is used only in the VPLUS/3000 subsystem.

3-33

NLS In MPE Subsystems

VSETLANG

The VSETLANG intrinsic specifies the native language to be used with an international forms file.

SYNTAX

CALL "VSETLANG" USING COMAREA ,LANGNUM,ERROR

This intrinsic sets the language to be used by VPLUS/3000 at run time for an international forms
file. The forms file must be opened before calling VSETLANG. Otherwise, CSTATUS returns a

nonzero value.

If VSETLANG 1s called to set the language ID number for a language~dependent or unlocalized forms
file, an error code of -1 will be returned to ERROR. For international forms files, both CSTATUS
and ERROR return a value of zero and the forms file is processed with the native language ID num-~
ber specified in LANGNUM.

PARAMETERS

COMAREA

LANGNUM

ERROR

The following COMAREA fields must be set before calling VSETLANG (if
not already set):

LANGUAGE Set to code identifying the programming lan--
guage of the calling language.

COMAREALEN Set to total number of words in COMAREA.
VSETLANG may set the following COMAREA fields:
CSTATUS Set to nonzero value if call is unsuccessful.

An integer containing the ID number of the language to be used by
VPLUS/3000.

Integer to which the error code is returned. Zero means the call was suc-
cessfully completed. A value of -1 is returned if the call is unsuccessful.

3-34

NLS In MPE Subsystems

EXAMPLE

The following examples illustrate a call to VSETLANG:

COBOL: CALL "VSETLANG" USING COMAREA ,LANGNUM, ERROR.
BASIC: 120 CALL VSETLANG(C(*),L ,E)

FORTRAN: CALL VSETLANG (COMAREA ,LANGNUM ERROR)

SPL: VSETLANG (COMAREA ,LANGNUM,ERROR);

SPECIAL CONSIDERATIONS

This intrinsic is used only in the VPLUS/3000 subsystem.

3-35/3-36

NATIVE LANGUAGE INTRINSICS

The following categories of intrinsics are used by Native Language Support (NLS).

Information Retrieving:

ALMANAC Returns numeric date information.
NLGETLANG Returns the current language.
NLINFO Returns language-dependent information.

Character Handling:

NLCOLLATE Compares two character strings.
NLKEYCOMPARE Compares strings of different length.
NLREPCHAR Replaces nondisplayable characters.
NLSCANMOVE Moves and scans character strings.
NLTRANSLATE Translates strings from and to EBCDIC.

Time/Date Formatting:

NLCONVCLOCK Converts the time format.
NLCONVCUSTDATE Converts the custom date format.

. NLFMTCALENDAR Formats the date.
NLFMTCLOCK Formats the time.
NLFMTCUSTDATE Formats the date into custom date format.
NLFMTDATE Formats date and time.

Application Message Catalog:

CATCLOSE Closes a message catalog.

CATOPEN Opens a message catalog.

CATREAD Reads information from a message catalog.
NLAPPEND Concatenates a file name and a language number.

4-1

Native Language Intrinsics

NLS Date And Time Formatting Overview

Figure 4-1 shows the results of using NLS intrinsics when formatting date and time.

NATIVE LANGUAGE DATE AND TIME FORMATTING OVERVIEW

HP 3000
INTERNAL FORMATS

MPE INTRINSICS

v

LANGUAGE—DEPENDENT
EXTERNAL FORMATS

NL INTRINSICS

Formatted Custom
(Short) Date
(e.q., 9/24/84)

NLFMTCALENDAR

>

ALENDAR Internal

CALEND =| Calendar Date
(Single Word)

CLOCK Internal

> Time Of Day
(Double Word)

NLFM%

Formatted Date
(e.g., Mon,
Sep 24, 1984)

Formatted Date And
Time (e.g., Mon,
Sep 24, 1984,
12:17 PM)

Figure 4-1. Date And Time Formatting Overview

4-2

Formatted Time
(e.q., 12:17 PM)

ALMANAC

Native Language Intrinsics

INTRINSIC NUMBER 406

Returns numeric date information.

SYNTAX

Lv

ALMANAC (date,error,yearnum,monthnum,daynum,weekdaynum) ;

I I I I 0-v

This intrinsic returns the numeric date information for a date returned by the CALENDAR intrinsic.
The returned information is year of the century, month of the year, day of the month, and day of

the week.

PARAMETERS

date

error

yearnum

monthnum

logical by value (required)
A logical containing the date in the format:

Bits O 6 7 15

Year of Century Day of Year

logical array (required)

The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error # Meaning

1 No parameters available for returning values.
Day of the year out of range.
3 Year of the century out of range.

integer by reference (optional)
An integer to which the year of the century is returned. For example,
00=1900, 84=1984.

integer by reference (opticaal)

An integer to which the month of the year is returned. For example,
l=January, 12=December.

4-3

Native Language Intrinsics

daynum integer by reference (optional)
An integer to which the day of the month is returned.

weekdaynum integer by reference (optional)
An integer to which the day of the week is returned. For example,

1=Sunday, 7=Saturday.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E in Appendix H, "EXAMPLE
PROGRAMS."

4-4

Native Language Intrinsics

CATCLOSE

INTRINSIC NUMBER 417

Closes the specified application message catalog file.

SYNTAX

D

CATCLOSE (catindex,error)

LA

The CATCLOSE intrinsic is for use with the application message facility.

PARAMETERS

catindex

error

double by value (required)
The catalog index returned by the CATOPEN intrinsic.

logical array (requiréd)
The first word of this two-word array contains the error number. The

second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error # Meaning
1 Close of catalog file failed.
100 Internal message facility error.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program L in Appendix H, "EXAMPLE PROGRAMS."

4-5

Native Language Intrinsics

CATOPEN

INTRINSIC NUMBER 415

Opens the specified application message file.

SYNTAX

D BA LA
catindex:=CATOPEN (formaldesignator.,error);

The CATOPEN intrinsic must be used with the application message facility.

FUNCT!ONAL RETURNS

A catalog index double is returned (an internal value recognized by the CATREAD and CATCLOSE n-
trinsics). This is not a file number.

PARAMETERS

formaldesignator byte array (required)
Contains a string of USASCII characters that identify the catalog file to the
system. This string must be terminated by any USASCII special character
except a slash or a period.

error logical array (required)
The first word of this two~word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error # Meaning

1 Open failed on catalog file.

2 Could not access catalog file.

3 File specified is not a GENCAT formatted catalog.
100 Internal message facility error.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program L in Appendix H, "EXAMPLE PROGRAMS. "

4-6

Native Language Intrinsics

CATREAD

INTRINSIC NUMBER 416

Reads the specified catalog and returns (or sends) the text as specified.

SYNTAX
I D IV Iv LA BA Iv
msglen:=CATREAD (catindex,setnum,msgnum,error buff buffsize,

BA BA BA BA BA Iv 0-v
parml ,parme ,parm3 ,parmé ,parms ,msgdest) ;

The CATREAD intrinsic provides access to the application message facility. It only accesses catalogs
opened with the CATOPEN intrinsic. The NLS application message catalog facility is discussed in
Section II, "APPLICATION MESSAGE FACILITY."

FUNCTIONAL RETURNS

The length of the message is returned to msglen (in positive bytes).

PARAMETERS
cat index double by value (required)
An index returned by CATOPEN which specifies the catalog to be used.
sethum integer by value (required)
A positive integer no grzater than 255 specifying the set number within the
catalog.
msgnum integer by value (required)
A positive integer no greater than 32766 specifying the message number
within the message set.
error logical array (required)

The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-7

Native Language Intrinsics

buff

buffsize

parml -parmd

msgdest

Error # Meaning

1 Invalid catindex specified.

2 Read failed on catalog file.

3 Set not found.

4 Message not found.

6 User buffer overflow.

7 Write failed to msgdest file.
14 Set < = 0 specified.

15 Set > 255 specified.

16 Message number < O specified.
17 Message number > 32766 specified.
18 Specifies buflen <= 0.

19 Specifies msgdest < 0.

100 Internal message facility error.

byte array (optional)
A byte array to which the assembled message is returned.

integer by value (optional)

When specified, this is the buffer length in bytes. If buff is not specified,
this is the length (in bytes) of the records to be written to the destination
file. (Default = 72 bytes.)

byte arrays (optional)
Parameters to be inserted into message. These must always point to a
character string. The strings must be terminated by a binary zero.

integer by value (optional)

Integer value specifying the destination of the assembled message (0 =
$STDLIST, >2 = file number of destination file. Default = $STDLIST if
buff not specified and no file if specified).

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program L in Appendix H, "EXAMPLE PROGRAMS. "

4-3

Native Language Intrinsics

NLAPPEND

INTRINSIC NUMBER 412

Appends the appropriate language ID number to a file name.

SYNTAX

BA Iv LA
NLAPPEND (formaldesignator,langnum,error);

The NLAPPEND intrinsic allows an application to designate which of several language-dependent files
(e.g., application message catalogs or VPLUS forms files) should be used by appending the language
ID number to the file name. (This assumes that the application uses this naming convention for its
language~-dependent files.)

PARAMETERS
formaldesignator byte array (required)
Contains a string of USASCII characters interpreted as part of a formal file
designator. The file name must end with three blanks.
langnum integer by value (required)
An integer specifying the language ID number of the catalog to be opened.
error logical array (required)

The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error # Meaning

1 * NLS is not installed.

2% Specified language is not configured.

3 Invalid file name.

4 File name not terminated by three blanks.
5% NLS internal error.

6 * NLS internal error.

*

These errors do not apply to calls with a langnum equal to O
(NATIVE-3000).

SPECIAL CONSIDERATIONS

Split-stack calls not permitted.

4-9

Native Language Intrinsics

NLCOLLATE

INTRINSIC NUMBER 402

Compares two character strings in a language-dependent manner.

SYNTAX

BA BA IV I IV LA LA 0-v
NLCOLLATE (stringl,string2,length,result ,langnum,error,collseq);

This intrinsic collates two character strings according to the collating sequence of the specified lan-
guage. Its purpose is to determine a lexical ordering. It is not intended to be used for searching or
matching. To determine whether two strings are equal, use the COMPARE BYTES machine
instruction.

PARAMETERS
stringl byte array (required)
One of two character strings to be collated.
string2 byte array (required)
The other character string to be collated.
length integer by value (required)
The length (in bytes) of the string segments to be collated.
result integer by reference (required)
The result of the character string collating:
0 If stringl collates equal to string2.
-1 If string? collates before string2.
1 If stringl collates after st¢ring2.
Result will be O if a nonzero error is returned.
langnum integer by value (required)
The language ID number indicating the collating sequence to be used.
error logical array (required)

The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Native Language Intrinsics

Error # Meaning

1 * NLS is not installed.

2% Specified language is not configured.
3 Invalid collating table entry.

4 Invalid length parameter.

5* NLS internal error.

6 * NLS internal error.

* These errors do not apply to calls with a langnum equal to O
(NATIVE-3000).

collseq logical array (optional)
An array containing the native language collating sequence table as return-
ed by NLINFO, item 11. This parameter is required for split-stack calls. If
this parameter is present, [angnum will be ignored and this routine will be
much more efficient.

OPERATION

If the collseq parameter is omitted, and langnum is specified as tor defaults to) a language which
collates by binary encoding, the COMPARE BYTES machine instruction will be used to compare the
two indicated strings. Otherwise, the collseq array will be used to determine the string compare

operation (note that this may be a COMPARE BYTES). Refer to the NLINFO intrinsic items 11 and
27.

SPECIAL CONSIDERATIONS

Split-stack calls are permitted.

4-11

Native Language Intrinsics
INTRINSIC NUMBER 409
Checks validity of the string by using the formatting template returned by NLINFO item 3, then con~

verts the time to the general time format returned by the CLOCK intrinsic. This intrinsic is the in-
verse of NLFMTCLOCK.

SYNTAX

D BA Iv Iv LA
time:=NLCONVCLOCK (string,stringlen,langnum,error);

FUNCTIONAL RETURNS

The intrinsic returns the time in the format:

Bits 0 78 15

Hour of Day Minute of Hour

Seconds Tenths of Seconds

NOTE

Seconds and tenths of seconds will always be zero.

PARAMETERS
string byte array (required)

A character string containing the time to be converted.
stringlen integer by value (required)

A positive integer specifying the length of the string (in bytes).
langnum integer by value (required)

An integer which contains the language ID number specifying the custom
time format which has to be matched by the string.

4-12

Native Language Intrinsics

error logical array (required)
The first word of this two-word array contains the error number. The
second word 1is reserved and always contains zero. If the call is successful,
both words contain zero.

Error # Meaning

1* NLS is not installed.

2% Specified language is not configured.
3 Invalid time string.

4 Invalid length.

S* NLS internal error.

6 * NLS internal error.

%

These errors do not apply to calls with a langnum equal to 0
(NATIVE-3000).

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E in Appendix H, "EXAMPLE
PROGRAMS." See Figure 4-1 for an illustration of the relationship between the various date and
time handling intrinsics.

4-13

Native Language Intrinsics

NLCONVCUSTDATE

INTRINSIC NUMBER 408

Checks the validity of a string by using the formatting template returned by NLINFO item 2, then
converts the date to the general date format as returned by the CALENDAR intrinsic. This intrinsic is
the inverse of NLFMTCUSTDATE.

SYNTAX

L

date:=NLCONVCUSTDATE (string,stringlen,langnum,error);

BA v v LA

FUNCTIONAL RETURNS

The intrinsic returns the date in the format:

PARAMETERS

string

stringlen

Langnum

error

Bits O] 7 15

Year of Century Day of Year

byte array (required)
A character string containing the date to be converted. Leading and trail-
ing blanks will be disregarded.

integer by value (required)
A positive integer specifying the length of the string (in bytes).

integer by value (required)
An integer which contains the language ID number specifying the custom
date format which has to be matched by the string.

logical array (required)

The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-14

Error #

1*
2 *

§ %
6 *

Native Language Intrinsics

Meaning

NLS is not installed.

Specified language is not configured.

Invalid date string.

Invalid string length.

NLS internal error.

NLS internal error.

Separator character in s¢ring doesn’t match separator
in the custom date template.

The length of the date string is more than 13 characters
{excluding leading and trailing blanks).

* These errors do not apply to calls with a [langnum equal to O
(NATIVE-3000).

SPECIAL CONSIDERATIONS

Split-stack calls dre not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E in Appendix H, "EXAMPLE
PROGRAMS." See Figure 4-1 for an illustration of the relationship between the various date and

time handling intrinsics.

4-15

Native Language Intrinsics

NLFMTCALENDAR

INTRINSIC NUMBER 413

Formats the supplied date according to the language-dependent calendar template. The formatting is
done according to the template returned by NLINFO item 1.

SYNTAX

NLFMTCALENDAR (date,string,langnum,error);

LV BA v LA

PARAMETERS

date

string

langnum

error

logical by value (required)
A logical value indicating the date in the format as returned by the
CALENDAR intrinsic:

Bits O 6 7 15

Year of Century Day of Year

byte array (required)
A character string in which the formatted date is returned. This string will
be 18 characters long, padded with blanks if necessary.

integer by value (required)

An integer containing the language ID number indicating the calendar
template to be used. A langnum of 0 will return the date formatted as
though FMTCALENDAR were used. (For example, FRI, OCT 1, 1982.)

logical array (required)

The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error # Meaning

1* NLS is not installed.

2% Specifiéd language is not configured.
3 Invalid date value.

§* NLS internal error.

6 * NLS internal error.

* These errors do not apply to calls with a langnum equal to O
(NATIVE-3000).

Native Language Intrinsics

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E in Appendix H, "EXAMPLE
PROGRAMS." See Figure 4-1 for an illustration of the relationship between the various date and
time handling intrinsics.

4-17

Native Language Intrinsics

NLFMTCLOCK

INTRINSIC NUMBER 410

Formats the time of day obtained with the CLOCK intrinsic. The specified language will determine
the format. The template {(clock format description) returned by NLINFO item 3 will be used.

SYNTAX

DV BA Iv LA
NLFMTCLOCK (time,string,langnum error);

PARAMETERS
time double by value (required)
A double word value containing the time in the format as returned by the
CLOCK intrinsic:
Bits O 78 15
Hour of Day Minute of Hour
Seconds Tenths of Seconds
string byte array (required)
An eight-character byte array in which the formatted time of day is
returned.
langnum integer by value (required)
An ID number specifying which language-specific format is to be used. A
langnum of 0 will return the time formatted as though FMTCLOCK were
used.
error logical array (required)

The first word of this two~word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error # Meaning

1% NLS is not installed.

2% Specified language is not configured.
3 Invalid time format.

4 * NLS internal error.

5 * NLS internal error.

6 * NLS internal error.

* These errors do not apply to calls with a langnum equal to O
(NATIVE-3000).

4-18

Native Language Intrinsics

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E of Appendix H, "EXAMPLE
PROGRAMS." See Figure 4-1 for an illustration of the relationship between the various date and
time handling intrinsics.

Native Language Intrinsics

NLFMTCUSTDATE

INTRINSIC NUMBER 407

Formats the general date format returned by the CALENDAR intrinsic to the custom date format for a
native language. A custom date is an abbreviated format such as "10/1/82" or "82.10.1." The
formatting is done according to the template returned by NLINFO item 2.

SYNTAX

NLFMTCUSTDATE (date,string,langnum,error);

Lv BA Iv LA

PARAMETERS

date

string

langnum

error

logical by value (required)
A logical value containing the date in the format as returned by the
CALENDAR intrinsic:

Bits O 6 7 15

Year of Century Day of Year

byte array (required)
A 13-character byte array to which the formatted date is returned.

integer by value (required)

An ID number of the language whose custom date template is to be used for
the formatting. A langnum of 0 will return the time formatted as though
FMTCLOCK were used.

logical array (required)

The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error # Meaning

1* NLS is not installed.

2% Specified language is not configured.
3 Invalid date value.

5% NLS internal error.

6 * NLS internal error.

* These errors do not apply to calls with a langnum equal to O
(NATIVE-3000).

4-20

Native Language Intrinsics

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to examples D and E in Appendix H, "EXAMPLE
PROGRAMS." See Figure 4-1 for an illustration of the relationship between the various date and
time handling intrinsics.

4-21

Native Language Intrinsics

NLFMTDATE

INTRINSIC NUMBER 414

Formats the specified date and time according to the concatenation of the templates returned by

NLINFO items 1 and 3.

SYNTAX

Lv

NLFMTDATE (date,time string,langnum.error);

DV BA Iv LA

PARAMETERS

date

time

string

langnum

logical by value (required)
A logical value indicating the date in the format as returned by the
CALENDAR intrinsic:

Bits O 6 7 15

Year of Century Day of Year

double by value (required)
A double word value indicating the time to be formatted. The double word
is in the format returned by the CLOCK intrinsic:

Bits O 78 15

Hour of Day Minute of Hour

Seconds Tenths of Seconds

byte array (required)
A 28-character string in which the formatted date and time are returned.

integer by value (required)

A language ID number designating the formatting templates to be used. A
langnum of O will return the date/time string as though FMTDATE were
used. (For example: MON, FEB 7, 1983 9:00 AM.)

4-22

Native Language Intrinsics

error logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error # Meaning

1* NLS is not installed.

2% Specified language is not configured.
3 Invalid date value.

4 Invalid time value.

5* NLS internal error.

6 * NLS internal error.

* These errors do not apply to calls with a langnum equal to O
(NATIVE-3000).

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program K in Appendix H, "EXAMPLE PROGRAMS."
See Figure 4-1 for an illustration of the relationship between the various date and time handling
1ntrinsics.

4-23

Native Language Intrinsics

NLGETLANG

INTRINSIC NUMBER 411

Returns current language information.

SYNTAX

I v LA
langnum:=NLGETLANG (function,error);

This intrinsic returns a language ID number which characterizes the current user, data, or system. It
is intended for use by Hewlett-Packard subsystems (programs, not intrinsics) or by applications
programs so they can automatically configure themselves. Refer to "SPECIAL CONSIDERATIONS"

for a description of where NLGETLANG derives its information.

FUNCTIONAL RETURNS

The language ID number (langnum) of the current user, data, or system. In the event of an error,
an integer value of 0 (i.e., NATIVE-3000) is always returned to langnum.

PARAMETERS
function integer by value (required)
An integer containing the function number indicating which type of lan-
guage ID number should be returned. The possible values are:
1 The user-interface language. This is used to specify the language to
be used for communication between the program and the user.
2 The data language. This is an attribute which .determines how
various language-dependent data manipulation functions f(e.g.,
sorting, upshifting) should be performed by the subsystem.
3 The system default language.
error logical array (required)

The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-24

Native Language Intrinsics

Error # Meaning

[y

NLS is not installed.

2 NLGETLANG found the language requested, but it was
not configured on the system.

Invalid function value.

4 No language specified for NLGETLANG to access.

(S8

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.
The NLGETLANG intrinsic will locate the language ID numbers requested by function 1 and 2 by
referring to ‘the Hewlett-Packard defined Job Control Words (JCWs) NLUSERLANG and

NLDATALANG respectively. If the required JCW does not exist, or has a value greater than or
equal to FATAL (32768), Error #4 is returned.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program K in Appendix H, "EXAMPLE PROGRAMS."

4-25

Native Language Intrinsics

NLINFO

INTRINSIC NUMBER 400

This intrinsic returns language-dependent information.

SYNTAX

Iv LA I LA
NLINFO (itemnumber,itemvalue,langnum,error);

PARAMETERS
i temnumber integer by value (required)

Positive integer which specifies the 7 temvalue to return.
itemval ue type of variable depends on itemnumber (required)

Return variable for information requested; or (if i temnumber is 22 or 24)
the language name or number about which information is requested.

The following is a list of the currently defined itemnumbers, and the data types and information
returned to [temvalue.

Item # Type Description of itemvalue
1 LA An 18-character array to which the calendar format is returned. The 18
characters of the string for this definition are interpreted as the format

description for that language.

The following descriptors are valid:

D One-character day abbreviation.

DD Two-character day abbreviation.
DDD Three-character day abbreviation.

M One-character month abbreviation.
MM Two~-character month abbreviation.
MMM Three-character month abbreviation.
MMMM Four-character month abbreviation.
mm Numeric month of the year.

dd Numeric day of the month.

yy Numeric year of the century.

yYYY Numeric year.

Nyy National year.

Valid separators are any special character.

For example, a format may be: DDD, MMM dd, yyyy. Using this format
in NATIVE-3000 would result in: FRI, MAY 25, 1984.

4-26

LA

LA

LA

Native Language Intrinsics

A 13-character array to which the custom date format is returned. The
13 characters of the string for this definition are interpreted as the custom
date format description.

The following descriptors are valid:

mm Numeric month of the year.
dd Numeric day of the month.
Yy Numeric year of the century.
YYYY Numeric year.

Nyy National year.

Valid separators are any special character. For instance, a date format
might be: yy/mm/dd. An example of this format in NATIVE-3000:
81/03/25.

An eight-character array to which the clock specification is returned. This
eight-character string provides the clock format description (template):

HHSXXYYZ with:

HH Clock hour specification, either "12" or "24".

S Separator. Valid separators may be any special or alpha charac-
ter, or "0" if no separator between hours and minutes should
appear.

XX Symbol for AM.

YY Symbol for PM.

z Suppresses leading zero (of hours) if blank; prints leading zero if
0.

In suppression of leading zero, " " (leading zero suppressed) or "“0" (lead-

ing zero will be printed) are valid. For example, the format "12:AMPM "
would yield formatted clock information in the form: 9:06 AM. The lead-
ing zero is suppressed.

If the clock specification were changed to "240 0", the formatted
clock information for the same time would be: 0806. Note the four
blanks used as place holders to ensure the correct placement of the leading-
zero suppression character.

A 48-character array to which the month abbreviation table is returned.
Each abbreviation is four characters long, using blank padding where
necessary to maintain uniform length in all native language abbreviations.
For example, the NATIVE-3000 abbreviations contain three characters
plus a blank. The first four characters of the array contain the abbrevia-
tion of January.

The month abbreviation table for NATIVE-3000 would be:
"JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC "

4-27

Native Language Intrinsics

10

11

LA

LA

LA

LA

LA

LA

LA

A 144-character array in which the month table is returned. Each
month’s name can be up to 12 characters long. Unused space in each
month name is padded with blanks where necessary to equal 12 characters.
The table begins with the language-dependent equivalent in the native lan-
guage specified for January.

For example, the month name table for NATIVE-3000 would be:
"JANUARY FEBRUARY MARCH .. .DECEMBER "

A 21-character array in which the day abbreviation table is returned.
FEach abbreviation is three characters long. The table begins with Sunday.

For example, the day abbreviation table for NATIVE-3000 would be:
"SUNMONTUEWEDTHUFRISAT"

An 84-character array in which the table containing the day of the week is
returned. Each day is 12 characters long (with blank padding as needed).
The table starts with Sunday.

For example, the day name table for NATIVE~3000 would be:
"SUNDAY MONDAY TUESDAY ... SATURDAY "

A 12-character array to which the YES/NO responses are returned. The
first six characters contain the {upshifted) "YES" response; the second six
the (upshifted) "NO" response.

A two-character array to which the symbols for decimal separator and
thousands indicator are returned. The first character contains the decimal
separator, the second contains the thousands indicator.

A six-character array to which the currency signs are returned. The first
character represents the short currency symbol (if any) used for business
formats; the second character is a flag that indicates whether the currency
symbol precedes or succeeds the number and also whether the currency
symbol is preceded or succeeded by blanks. The last four characters contain
the full currency symbol. The layout of the second character is as follows:

bits 0:4 O The currency symbol has no blanks preceding or succeed-
ing it.
1 The currency symbol has a blank preceding it.
2 The currency symbol has a blank succeeding it.
3 The currency symbol has blanks preceding and succeed-
ing it.
bits 4:4 The currency symbol precedes the number.
The currency symbol succeeds the number.
The currency symbol replaces the decimal separator.

N - O

An array to which the collating sequence table is returned. A call to
NLINFO item 27 determines the length of this array based on the length of
the table of the native language specified.

4-28

12

13

14

15

16

17

18

19

20

21

22

23

24

LA

LA

LA

LA

LA

LA

LA

LA

LA

LA

Native Language Intrinsics

A 256-character array to which the character set attribute table is return-
ed. Each character will contain the numeric identification of the character
type:

Numeric character.

Alphabetic lowercase character.
Alphabetic uppercase character.
Undefined graphic character.
Special character.

Control code.

N B W= O

A 256~character array to which the ASCII-to-EBCDIC translation table is
returned. '

A 256-character array to which the EBCDIC-to-ASCII translation table is
returned.

A 256-character array to which the upshift table is returned.
A 256-character array to which the downshift table is returned.

A logical array to which the language numbers of all configured languages
are returned. The first word of this array contains the number of con-
figured languages. The second word contains the language number of the
first configured language. The third word contains the language number of
the second configured language, etc. (The langnum parameter is
disregarded.)

A logical to which true (-1) is returned if the specified language is support-
ed (configured) on the system. Otherwise, false (0) is returned.

An integer to which the character set ID number supporting the specified
language is returned.

A 16-character array to which the uppercase name of the character set
supporting the specified language is returned. If the name contains fewer
than 16 characters, it will be padded with blanks.

A l6-character array to which the uppercase name of the specified lan-
guage is returned. If the name contains fewer than 16 characters, it will
be padded with blanks.

The itemvalue is a logical array containing a language name or number
(in ASCII digits) terminated by a blank. The array must be at least eight
words in length. The associated language ID number will be returned to
Langnum.

A logical to which true (~1) is returned if the character set specified is sup-
ported (configured) on the system. Otherwise, false (0) is returned.

The i temvalue is a logical array containing a character set name or num-~
ber (in ASCII digits) terminated by a blank. The required length of this
array is eight words or more. The associated character set ID number will
be returned to langnum.

4-29

Native Language Intrinsics

25 LA
26 I
27 1
28 I
29 LA
langnum
error

A l6-character array to which the uppercase name of the specified charac-
ter set is returned. The langnum parameter must contain the ID number
of the character set. If the name contains fewer than 16 characters, it will
be padded with blanks.

An integer to which the class number of the specified language is returned.

An integer to which the length (in words) of the collating sequence table of
the specified language is returned.

An integer to which the lengt‘h (in words) of the national-dependent in-
formation table is returned. If no national table exists for the specified
language, Error #4 is returned.

A logical array to which the national-dependent information table is
returned. To determine the size of this array, the length must first be ob-
tained with a call to NLINFO item 28.

integer by reference (required)
The language or character set identification number for the information
requested.

logical array (required)

This two-word array contains the error number in the first word. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error # Meaning

1% NLS is not installed.

2* Specified language is not configured.

3% Specified character set is not configured.
4 No national table is present.

5% NLS internal error.

6 * NLS internal error.

7-9 Reserved.

10 The { temnumber is out of range.

* These errors do not apply to calls with a langnum equal to O
(NATIVE-3000).

SPECIAL CONSIDERATIONS

Split-stack calls are permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D, E, F, G and H in Appendix H, "EXAMPLE

PROGRAMS."

4-30

Native Language Intrinsics
NLKEYCOMPARE
INTRINSIC NUMBER 405

Compares two strings of different length. For use with KSAM generic key searching.

SYNTAX

BA Iv BA v I Iv LA LA 0~V
NLKEYCOMPARE (genkey,lengthl,key,length2 result ,langnum,error,coll seq);

This intrinsic gives the KSAM user the ability to determine whether the key of a record matches the
generic key specified. It should be used when reading a KSAM file in key sequential order in com-
bination with FREAD, after a FFINDBYKEY call.

The NLKEYCOMPARE intrinsic allows a program to determine whether a generic key search found an
exact match (i.e., the generic key is exactly equal to the beginning of the key, and not almost equal
because of priority (e.g.,uppercase versus lowercase or accent). It also allows the program to deter-
mine whether an exactly matching key could be farther along the key sequence.

PARAMETERS
genkey byte array (required)
Contains the generic key to be compared to the keys contained in the
record read by FREAD.
lengthl integer by value (required)
The length in bytes of genkey, which must be less than length2.
key byte array (required)
This contains an entire key to which the user wants to compare genkey.
length2 integer by value (required)
The length in bytes of key, which must be greater than length].
result integer by reference (required)

The result of the compare:

0 The retrieved key matches the generic key exactly for a length
of lengthl.
1 The retrieved key does not match the generic key: it is different

only because of priority (e.g., uppercase versus lowercase
characters or accent). 'The FREAD Key is still in range. This
means that records may follow whose key matches the generic
key exactly.

4-31

Native Language Intrinsics

2 The retrieved key is less than the generic one (its collating order
precedes the key specified). It does not match genkey. This
means the FREAD call found a record which precedes the range
requested. Records which match genkey may follow.

3 The retrieved key is greater than the generic key (it collates af-
ter the specified key). This means that the FREAD call found a
record whose key follows the specified range. No records
matching genkey follow.

langnum integer by value (required)
The language ID number indicating the collating sequence to be used for
the compare.

error logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error # Meaning

1 * NLS is not installed.

2* Specified language is not configured.

3 Invalid collating table entry.

4 Invalid [ength parameter.

5* NLS internal error.

6% NLS internal error.

7 Value of Length is not less than length2.

* These errors do not apply to calls with a langnum equal to O
(NATIVE-3000).

collseq logical array (optional)
An array containing the collating sequence table as returned by NLINFO
item 11. This parameter is required for split-stack calls. If this parameter

is present, langnum will be ignored and this routine will be much more
efficient.

SPECIAL CONSIDERATIONS

Split-stack calls are permitted. NLKEYCOMPARE is intended for use with the KSAM subsystem.

ADDITIONAL INFORMATION

For example calls of this intrinsic refer to Programs I and J in Appendix H, "EXAMPLE
PROGRAMS."

4-32

Native Language Intrinsics

NLREPCHAR

INTRINSIC NUMBER 403

Replaces nondisplayable characters of a string.

SYNTAX

BA

NLREPCHAR (instr,outstr,stringlength,repchar, langnum,error ,charset);

BA Iv BV Iv LA LA 0-v

This intrinsic replaces all nondisplayable control characters in the string with the replacement charac-
ter. Nondisplayable characters are those with attribute 3 (undefined graphic character) or § {(control
code), as returned by NLINFO item 12.

PARAMETERS

instr
outstr
stringlength
repchar

langnum

error

byte array (required)
A byte array in which the nondisplayable characters have to be replaced.

byte array (required)
A byte array to which the replaced character string is returned.

integer by value (required)
A positive integer specifying the length (in bytes) of instring.

byte value (required)
A byte specifying the replacement character to be used.

integer by value (required)
An integer value specifying the language ID number of the language that
determines the character set to be used.

logical array (required)

The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-33

Native Language Intrinsics

Error # Meaning

1* NLS is not installed.

2% Specified language is not configured.

3 Invalid replacement character.

4 Invalid length parameter.

5% NLS internal error.

6* NLS internal error.

7 Invalid charset table entry.

8 Overlapping strings, outstring would overwrite
instring.

* These errors do not apply to calls with a langnum equal to O
(NATIVE-3000).

charset logical array (optional)
Contains the character set definition for the language to be used, as return-
ed in NLINFO item 12. If this parameter is present, [angnum will be ig-
nored and this intrinsic will be much more efficient.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program H in Appendix H, "EXAMPLE PROGRAMS."

4-34

Native Language Intrinsics
NLSCANMOVE
INTRINSIC NUMBER 401

Moves and scans character strings according to character attributes.

SYNTAX
I BA BA LV Iv
numechar:=NLSCANMOVE (instring,outstring,flags,length,

v LA LA LA o-v
langnum error,charset ,shift);

The machine instructions (and the SPL constructs) for SCAN and MOVE used for upshifting or in
conjunction with the alphabetic, numeric or special characters will only work for NATIVE-3000.
This intrinsic will handle this function in a language-dependent manner.

FUNCTIONAL RETURNS

The number of characters acted upon in the SCAN or MOVE operation.

PARAMETERS
instring byte array (required)
A character string which will act as the source string of the SCAN/MOVE.
outstring byte array (required)
A character string which will act as the target.
NOTE
If outstring and instring are the same string, this
intrinsic will act as SCAN. Otherwise, a MOVE will be
performed. (Refer to Error #3.)
flags logical by value (required)

A flag defining the options for calling the intrinsic. This parameter always
defines the condition for terminating the SCAN/MOVE operation.

4-35

Native Language Intrinsics

bits 14:2 Alphabetic. NLINFO item 12, types 1 (alphabetic
lowercase character) and 2 (alphabetic uppercase
character).

1 Lowercase.
2 Uppercase.
3 Uppercase or lowercase.

bits 73:1 Numeric. NLINFOitem 12, type O.

bits 12:1 Special. NLINFO item 12, types 3 (undefined graphic
character), 4 (special character), or 5 (control code).

bits 71:1 WHILE/UNTIL option. If this bit is zero, then
SCAN/MOVE is performed while the condition specified
by (flags (12:4)) is true. If this bit is one,
SCAN/MOVE is performed until the condition specified
by (flags (12:4)) is true.

bits 9:2 Shift.

1 Upshift.
2 Downshift.

bits 0:9 Reserved. These bits of the flags parameter are reser-
ved and must be zero.

length integer by value (required)
An integer indicating the maximum number of characters to be acted upon
during the indicated operation.

langnum integer by value (required)
An integer containing the language ID number which implies both the
character set definitions of character attributes and the language-specific
shift.

error logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-36

charset

shift

Native Language Intrinsics

Error # Meaning

1* NLS is not installed.

2% Specified language is not configured.

3 Overlapping strings; instring would have been over-

written by outstring.

Invalid length parameter.

NLS internal error.

NLS internal error.

Reserved portion of flags is not zero.
Both upshift and downshift requested.
Invalid table element.

O 00 2 ON i B
LR

* These errors do not apply to calls with a langnum equal to O
{(NATIVE-3000).

logical array (optional)

An array containing the character set definition for the language to be
used, as returned in NLINFO item 12. If present, the [angnum parameter
will be ignored, and this routine will be much more efficient. This param-
eter is required for split-stack calls in which flags (12:4) is not equal to O
and flags (12:4) is not equal to 15.

logical array (optional)

An array containing shift information for a desired upshift or downshift
(e.g., as returned in NLINFO items [S or 16). This parameter will be util-
ized when bits (9:2) of flags is not equal to 0. If present, the langnum
parameter will be ignored, and this routine will be much more efficient.
In split-stack calls this parameter is required if bits (9:2) of flags is not
equal to O.

SPECIAL CONSIDERATIONS

Split-stack calls are permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs F and G, in Appendix H, "EXAMPLE

PROGRAMS."

4-37

Native Language Intrinsics
INTRINSIC NUMBER 404
The NLTRANSLATE intrinsic translates a string of characters from EBCDIC~-to-ASCII or

ASCII-to~EBCDIC using the appropriate native language table. This intrinsic performs the same
function as CTRANSLATE using native language tables.

SYNTAX

1v BA BA v IV LA LA 0-V
NLTRANSLATE (code,instring,outstring,stringlength,langnum,error,table);

The instring parameter is translated into outstring for length of stringlength using a transla-
tion table determined according to the first rule that applies from the following list:

1. If table is present, a translation will be made using table.

2. If langnumequals NATIVE-3000 a standard ASCII-to-EBCDIC or EBCDIC-to-ASCII transla-
tion is made.

3. The ASCII-to-EBCDIC or EBCDIC-to-ASCII translation table for the language specified will

be used.

PARAMETERS

code integer by value (required)
1 EBCDIC~to-ASCII
2 ASCII-to-EBCDIC

instring byte array (required)
The string of characters to be translated.

| outstring byte array (required)

A byte array to which the translated string is returned. The parameters
instring and outstring may specify the same array.

stringlength integer by value (required)
A positive integer specifying the number of bytes of instring to be
translated.

langnum integer by value (required)

An integer containing the language ID number of the language whose
translation tables are to be used.

4-38

error

table

Native Language Intrinsics

logical array (required)

The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error # Meaning

1% NLS is not installed.

2* Specified language is not configured.
3 Invalid code specified.

4 Invalid length parameter.

5* NLS internal error.

6 * NLS internal error.

* These errors do not apply to calls with a Ilangnum equal to O
{(NATIVE-3000).

logieal array (optional)

A 256-byte array which holds a translation table. Each byte contains the
translation of the byte whose value is its index. This parameter corresponds
to NLINFO items 13 and 14. If present, langnum parameter will be ig-
nored and this routine will be much more efficient.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program H in Appendix H, "EXAMPLE PROGRAMS."

4-39/4-40

SYSTEM UTILITIES

NLUTIL Program

The program allows the user to verify the language/character set configuration on the system.

:RUN NLUTIL.PUB.SYS

This displays a table of the configured languages and their character set. For example:

Lang Lang Char Char
ID Name ID Name
3 DANISH 1 ROMANS
5 ENGLISH 1 ROMANS
12 SPANISH 1 ROMANS .

A prompt asks whether the user wants a full listing:
Do you require a full listing of the current configuration? (Y/N)

An "N" response will terminate the program. A "Y" response will produce a complete formatted list-
ing of the currently configured languages written to file NLLIST on device class LP.

NLS File Structure

The file NLSDEF . PUB.SYS lists all character sets supported by Hewlett~Packard and it relates charac-
ter set names to character set ID numbers. It does the same for languages, and it indicates, for every
language, what character set is required to support that language.

A file CHRDEFxx (xx is the character set ID number) contains the data pertaining to the character set
with ID number xx, and all languages supported by that character set. 'There is more than one
CHRDEFxx file.

The NLSDEF and the CHRDEFxx files are used by the program LANGINST.PUB.SYS to build or modify
the file LANGDEF . PUB.SYS (see below for a description of this program). This file is used at system
start up to build a number of system data segments holding the information required by NLS. The
number of data segments built at start up is one plus one for every language configured.

Language installation Utility (LANGINST)

The file LANGDEF.PUB.SYS contains all language~dependent information for every language to be
configured on a system at the next startup. It is an MPE file that is built or modified by running the
program LANGINST. It gathers data from NLSDEF.PUB.SYS and CHRDEFxx.PUB.SYS files into
LANGDEF . PUB.SYS.

System Utilities

Only a user logged into the PUB group of the SYS account as MANAGER.SYS can run LANGINST to:
e Add alanguage to the configuration file.

o Remove a language from the configuration file.

o Display and modify local formats of a configured language.

e Display the languages supported by Hewlett-Packard.

e Display the languages currently configured.

¢ Modify the system default language.

Any changes to LANGDEF will become effective when the system next comes up.

Adding a Language

LANGINST prompts the user MANAGER.SYS for the language to add to LANGDEF. The user may sup-
ply either the language ID number or name. If is entered, the operation is aborted. If the
language is already installed the user is advised, and the addition is cancelled with an error message:

SWEDISH is already configured.

Similarly, for example, if the appropriate CHRDEFxx file is not available, the add is cancelled with an
error message:

The CHRDEFxx file is missing.
The Addition has been cancelled.

Refer to Table A-1 for a complete list of LANGINST error messages.

It is not possible to add NATIVE-3000. This language is hard-coded and is always configured. Any
attempt to configure it will result in the error message:

NATIVE-3000 is always configured.

Deleting a Language

LANGINST allows the user to delete any configured language with the exception of NATIVE~-3000,
which cannot be deleted. In addition, a check is made to ensure that the language designated as the
system default is not deleted.

System Utilities

Modifying Local Formats

The System Manager is allowed to modify the following local formats for any language configured in
LANGDEF :

o Date format (Dateline format).
° Custom date format (Short).

° Time format.

® Currency sign.

° Decimal and thousands indicator.
° Month names.

o Abbreviated month names.

° Weekday names.

° Abbreviated weekday names.

o Yes/No iﬁdicators.

° National date table.

If the language supports a special National Table containing date information (KATAKANA), the last
option is displayed to allow the user to modify this date information.

Whenever any changes have been made, the new copy of the file is saved under the name LANGDEF.
In addition, the old, unchanged version of the file is saved under the name LANGDxxx. The number
xxX increases by one every time a new copy of LANGDEF is saved. This allows the user to return to
the configuration that existed before LANGDEF was changed. To return to the previous configuration,
:PURGE or :RENAME the current LANGDEF. Then :RENAME the LANGDxxx with the highest number
LANGDEF. The next system startup will delete the changes.

LANGINST User Dialogue

The following are user dialogues for choosing a function, adding a language, deleting a language, and
modifying local language formats.

CHOOSING A FUNCTION. The System Manager selects an item from the main menu:

EXIT

ADD LANGUAGE TO LANGDEF

DELETE LANGUAGE FROM LANGDEF

MODIFY NATIVE FORMATS

LIST HP SUPPORTED LANGUAGES

MODIFY THE SYSTEM DEFAULT LANGUAGE
LIST LANGUAGES CURRENTLY CONFIGURED

AT WD -0

System Utilities

To list languages which can be configured on the system, select Option 4:

HP SUPPORTED LANGUAGES:

0 NATIVE-3000 using USASCII
1 AMERICAN using ROMANS
2 CANADIAN-FRENCH using ROMANS8
3 DANISH using ROMANS
4 DUTCH using ROMANS
5 ENGLISH using ROMANS
6 FINNISH using ROMANS
7 FRENCH using ROMANS
8 GERMAN using ROMANS
9 ITALIAN using ROMANS
10 NORWEGIAN using ROMANS
11 PORTUGUESE using ROMANS
12 SPANISH using ROMANS
13 SWEDISH using ROMANS
41 KATAKANA using KANAS

press any key to continue .

ADDING A LANGUAGE. To add a language, select Option 1:
1. Use the language name or language ID number (langnum).

2. The addition is aborted by entering a , a language that is already configured, a language
not supported by NLS, or NATIVE-3000.

Enter language to be added: SPANISH
SPANISH is already configured.

If a language is requested that is supported but has not been previously configured, LANGINST
configures it and displays the message:

SPANISH has been successfully configured.

3. When the addition is successfully completed, or else aborted, the main menu is displayed.

DELETING A LANGUAGE. To delete a language, select Option 2:
1. Use the language name or language ID number (langnum).

2. The deletion is aborted by entering a ®ETURN), a language that is not configured, or the system
default language.

3. When the deletion is successfully completed, or else aborted, the main menu is displayed.

System Utilities
MODIFYING LOCAL LANGUAGE FORMATS. To modify local language formats, select
Option 3:
1. Use the language name or language ID number (Langnum).

2. The process is aborted by entering a [RETURN), a language that is not configured, or
NATIVE-3000.

3. If the process is aborted, the main menu is displayed.

4. If a configured language is entered, a menu is displayed:

0. RETURN

1. DATE FORMAT (Dateline format)

2. CUSTOM DATE FORMAT (Short)

3. TIME FORMAT

4. CURRENCY SIGN

5. DECIMAL AND THOUSANDS INDICATOR
6. MONTH NAMES

7. ABBREVIATED MONTH NAMES

8. WEEKDAY NAMES

9. ABBREVIATED WEEKDAY NAMES

10. YES/NO INDICATORS

11. PROCESS THE NATIONAL DATE TABLE
Enter selection number 24
Business Currency sign 3
Enter the new value :<CR>
Fully qualified Currency sign :FF
Enter the new value :<CR>

The currency sign currently follows the number, e.g., 100DM.
The following currency codes are available:

<CR> to retain the existing value.

0 - The currency symbol precedes the number, e.g., $100.00.

1 - The currency symbol succeeds the number, ©.g., 100.00DM.

2 - The currency symbol replaces the decimal point, e.g., 100500,

Enter the required currency codes (0, 1, or 2) :<CR>
There are to be no blanks before or after the currency symbol.

The following blank-control codes are available:

<CR> to retain the existing value,

0 - No blanks bhefore or after the currency symbol,

1 - A blank is to precede the currency symbol.

2 - A blank is to succeed the currency symbol,

3 - A blank is to precede and succeed the currency symbol.

Enter the required code (0, 1, 2, or 3):<CR>
After the selection is made, the current value is displayed. The user is prompted for a new
value. If a new value is entered, it is validated and if valid it replaces the old value. If no new

value is entered (only (RETURN)) or if an invalid value is entered, the old value is retained.

A-S

System Utilities

Error Messages

Table A-1 contains LANGINST error messages.

Table A-1. LANGINST Error Messages

MESSAGE

MEANING

ACTION

A NONNUMERIC GRAPHIC
CHARACTER IS
EXPECTED...

ATTEMPTING TO ADD TOO
MANY CHARACTER SETS.

BUILDING AN EMPTY
LANGDEF .

DELETION TERMINATED
. ATTEMPTING TO
DELETE NATIVE-3000.

ERRONEOUS STARTING
YEAR NUMBER. EXPECTED
A NUMBER BETWEEN O AND
Q9.

INPUT TOO LONG ..
PLEASE REENTER:

INTERNAL ERROR ...
PLEASE REPORT.

INVALID DATE FORMAT.
EXPECTED MM/DD/YY.

LANGNAME 1S ALREADY
CONFIGURED.

LANGNAME 1S AN ILLEGAL
LANGUAGE NAME (OR
NUMBER) .

An alphabetic or special
character (but not numeric) is
expected.

Adding this language would
exceed the maximum con-
figurable character sets.

There was no existing

LANGDEF file, so a new,
empty one is being built.

The language NATIVE-3000
may not be deleted from the
list of configured languages.

The year number entered in
not valid.

The program does not expect
so much input in this context.

Internal error.

The entered date is not valid.

The language selected has al-
ready been configured.

The language name or num-
ber entered is not valid.

Enter a valid character.

Don’t configure languages
from so many character sets.

None. If you have already
configured languages, find
LANGDEF .PUB.SYS on a
backup and restore it. Or
else, reconfigure the lan-
guages with this program.

None.

Enter the year number again.
It must be a number between
0 and 99.

Reenter the data correctly.

Contact your Hewlett-
Packard representative.

Enter the date again in the
form MM/DD/YY.

None.

Enter the language again,
correctly.

System Utilities

Table A-1. LANGINST Error Messages (Continued)

MESSAGE

MEANING

ACTION

LANGNAME 1S AN INVALID
SYSTEM DEFAULT
LANGUAGE.

LANGNAME IS NOT A
CONFIGURED LANGUAGE.

LANGNAME 1S NOT
CONFIGURED.

LANGNAME IS NOT IN THE
CHRDEF FILE.

NATIVE-3000 IS ALWAYS
CONF IGURED.

NATIVE-3000 MAY NOT BE
MODIFIED.

THE CHRDEFXX FILE IS
MISSING. THE ADDITION
HAS BEEN CANCELLED.

THE DECIMAL SEPARATOR
AND THOUSANDS
SEPARATOR SHOULD BE
DIFFERENT.

THE EXPECTED NAME
SHOULD CONTAIN
ALPHABETIC CHARACTERS
ONLY.

THE FILECODE FOR
CHRDEFXX.PUB.SYS IS
INCORRECT.

The language selected is not
configured on the system.

The language selected is not
configured on your system.

The language entered is not
configured on your system.

One of the CHRDEFxx files is
not consistent with the NLSDEF
file.

NATIVE-3000 may not be
added to the list of configured
languages because it is always
configured.

The language definition of
NATIVE-3000 may not be
modified.

The character definition file for
the selected language is missing.

The decimals and thousands
separators have been defined to
be the same.

Only alphabetic characters are
allowed in this context.

The character definition file for
the selected language has a bad
file code.

Add the language to the list
of currently configured
languages with this
program.

Add the language to the list
of currently configured
languages with this
program.

Add the language to the list
of currently configured
languages with this
program.

Restore all CHRDEFxx files
and NLSDEF from your
master backup.

None.

None.

Restore the missing file
from your master backup.

Change the decimal and/or
thousands indicator.

Please re-enter the value,
restricting the input to al-
phabetic characters.

Restore the missing
CHRDEF xx file from the
master backup.

System Utilities

Table A-1. LANGINST Error Messages (Continued)

MESSAGE

MEANING

ACTION

THE FILECODE FOR
LANGDEF.PUB.SYS IS
INCORRECT.

THE FILECODE FOR
NLSDEF.PUB.SYS IS
INCORRECT.

THE LANGUAGE YOU ARE
ATTEMPTING TO DELETE
IS THE SYSTEM DEFAULT
LANGUAGE .

THE USER SHOULD BE
_MANAGER.SYS, RUNNING
IN THE PUB GROUP.

THERE IS NO MORE ROOM
FOR ADDITIONAL DATE
PERIODS. PLEASE
REPORT.

TOO MANY LANGUAGES
HAVE BEEN CONFIGURED.

UNABLE TO RENAME
LANGDEF TO LANGDnnn.
THE EXISTING LANGDEF
WILL BE PURGED.

UNKNOWN OPTION ...
PLEASE REENTER.

The current language definition
file has a bad file code.

The master NLS definition file
has a bad file code.

The system default language
may not be deleted from the list
of configured languages.

The user is not MANAGER.SYS
or is not logged on in the PUB
group.

There is no room for additional
entries in the national date
table.

Adding another language would
exceed the maximum configur-
able languages.

The old LANGDEF file could not
be renamed because all files
LANGDOOO thru LANGDS99 al-
ready existed.

The option selected is not a
valid one.

Restore LANGDEF ., PUB.SYS
from a backup copy. Or
purge it, and recreate it by
reconfiguring the desired
languages with this
program.

Restore NLSDEF . PUB.SYS
from the master backup.

If you wish to delete this
language, you must first
change the system default
language to another
language.

Log on as MANAGER.SYS in
the PUB group and run the
program again.

Contact your Hewlett-
Packard representative.

Don’t configure so many
languages on one system.

Purge some or all of the
files LANGDOOO to
LANGD299 so the most
recent changes to LANGDEF
can be saved in the future.

Enter the number cor-
responding to one of the
currently valid options.

SUPPORTED LANGUAGES |[fgln
AND CHARACTER SETS || g

Character Set Definitions

The character sets supported by NLS are:

Set Name Set ID Number Languages Supported

USASCII 00 NATIVE-3000.

ROMANS 01 Many European-based languages.
KANAZS 02 Phonetic Japanese (katakana).

All character sets are supersets of USASCII, and are occasionally referred to generically as "ASCII"
character sets, as in the term "ASCII-to~-EBCDIC translation".

For every character set a character attribute table is defined. This table of 256 entries holds an at-
tribute (type) for every character.

Type ldentification: Example

0: Numeric character. 2, 7, 89

1: Alphabetic lowercase character. d, b, %, q, x
2: Alphabetic uppercase character. A, B, N, @, X
3: Undefined graphic character.

4: Special character. #, %, 7, %

5: Control code. Linefeed, Escape

Supported Languages And Character Sets

Language Definitions

The following language names and language ID numbers are supported in NLS:

USASCII (Set #0)
Language Number Language Name

00 NATIVE-3000
ROMANS (Set #1)
Language Number Language Name

00 NATIVE-~3000

01 AMERICAN

02 CANADIAN-FRENCH

03 DANISH

04 DUTCH

0S ENGLISH

06 FINNISH

07 FRENCH

08 GERMAN

09 ITALIAN

10 NORWEGIAN

11 PORTUGUESE

12 SPANISH

13 SWEDISH
KANAS (Set #2)

00 NATIVE~-3000

41 KATAKANA

The following items are defined for every supported language:

The upshift and downshift table.

The collating sequence table.

The ASCII-to-EBCDIC and EBCDIC-to-ASCII translate tables.
The long date format (the DATELINE format).

The short date format (the custom date format).

The time format.

The currency symbol (one character).

The currency descriptor (up to four characters).

The position and spacing of the currency sign.

The decimal and thousands separators for numbers.

The equivalents of YES and NO (both up to six characiers).
The full weekday names (up to twelve characters).

The abbreviated weekday names (up to three characters).
The full month names (up to twelve characters).

The abbreviated month names (up to four characters).

The National Date table (where applicable).

Refer to the discussion on the NLINFO intrinsic in Section IV for a complete description of these items.

B-2

Supported Language And Character Sets

ROMANS8 CHARACTER SET
(USASCII PLUS ROMAN EXTENSION)

N N e - oy o _1_41_2 o o ||l
el-lol T« b« |iw | @ | 'O [H [O O O |20 pw po
ol Rl |~ | W jom '~ | & | @ [<T |-~ QO D | = | KO
lrjo|o| ¥ ko |<® |<O <3 |*® [*0 |0 "I | ® |0 |.O |3 |:® |:® O |:3
—lol-1-| Z |l o lOr|lorhZz el = DI | ¥ o] e
104lom
~|lolo|~| O
—|lojo|o| ©
“+ g
01117pqutUVWXyZ{\|}~%
olvlrloj0]e |B|lQ@|lO|D|O |- |OD|le|=|—lx|—|E|lCc}|O
ol-lol-lwla|g|lc|w|F|D|>|Z|X|>[N|—|—|—|<]| |
01004@ABCDEFGHIJKLMNO
ocjolvrir| OO |~ N M | O[O |~ O ~IV | HIAN]C
OO1OZW|." #* A NG~ [~ |~ | +]| -] ~
w|lrr N || X | Z|o|Z m O
00011LCCCCAYTAMUSSSSS
alalala|la|Z|lo|w|o|¥W| p|lw[LlO|T D
JI XTI X X519 dlo|k|lu|-|lu|lx
ololojo| o D |+ O | Q1'%
2196 |lb|n|&§|f|lao|a|T|d|>|u|0|n|9
Sla|ld|la
ol~jlan|lo|t|lvwio|r|lolo|2|2 (Y23 |0
al o} vl o| ~|lo| o] ~lO| O}]| O] | O|
Sl ol ol v] ol o | ~|o}jo| | ~}Oo|o| |~
Sl o}l o]lo]l] ol |]| | ~|]Oo|lo]Oo]l]O]| |]| | v
gl ol ol ol olojojolo| ~| | | | | | | v

Figure B~-1. ROMANZS& Character Set

B-3

Supported Language And Character Sets

KANA8 CHARACTER SET

(JISCIl PLUS KATAKANA)

15

14

13

A

)

v

12

5

11

7| *
|/

A | N v

ri4

—
01117pqr8tuvwxyz{|}~%
o|l~|~|o] ©o}. |wm|lolOo|D]|O|+|O|lc|=|—-|lx|—|E|Cc|O
olrlo|l~lwo]l ||l || |D|>|S[X|>[N|[—|w|—]|< _
01004@ABCDEFGHIJKLMNO
cjo|lr|~| OO |~ N|O|IFT|O[O]|N]|]O | ~IV A e
00109_%'" #$O/o&, ~ |~ |+ -1 -

wlr|lNjo| STl X | ZIom|Z m| O wlolon
ololol~| ~l2|lO|O|O|O|<|S|F|<|2|D|a|P
DDDDDNSECESEFGRU
21 I XIXI591%|dle|lr|lu|-lu|lxc|o]=
oloj O D |l O w
il 21216 |28|F|a|o|zT|a|>|c|Cc|a|®
Sla| 8l a8
o|l-|la]lo|s|wvw]|o|~|lo|lo|2|ZlY¥|R|I|LC
.nm04|01010101010101
Al ol ol ~} oo}l]] o]lo}] +~~|]OC}OC|]
.h,w00004l1|14|00001111
dlolojolotojo]l]ojJo|l]}]~} ~

Figure B-2. KANAS Character Set

B-4

COLLATING IN EUROPEAN
LANGUAGES | ¢

Collating is defined as arranging character strings into some (usually alphabetic) order. To do this a
mechanism must be available that, given two character strings, decides which one comes first. In
Native Language Support (NLS) this mechanism is the NLCOLLATE intrinsic.

Look at the full ROMANS& character set and consider that all these characters can appear in every
European language. Even if a character does not exist in a language, it can still show up in names
and/or addresses. It is quite useful to address a letter to Spain correctly, even if it originates in
Germany. Therefore, the full ROMANS8 character set is considered to be used in all languages, and a
collating sequence has been defined for all characters in the ROMANS character set for the languages
1t supports. Figure C-1 lists the collating sequence for:

AMERICAN GERMAN
CANADIAN-FRENCH ITALIAN
DANISH NORWEGIAN
DUTCH PORTUGUESE
ENGLISH SPANISH
FINNISH SWEDISH
FRENCH

All characters in a group, indicated by brackets (or, in a few footnotes, by underlining) collate the
same. These characters usually differ only in uppercase versus lowercase priority, or accent priority.
In sorting, they are initially considered the same. If the remaining characters in the two strings do
not determine which string comes first, then the priorities of characters will be used to determine the
order. Refer to Table C-1 for examples of collating sequence priority.

Table C-1. Examples of Collating Sequence Priority

Sorted Strings Explanation

aéb, aéc The third character in each string is different. The
"b" precedes the "c¢".

aeb, aéb The characters in the two strings are identical, so accent

priority determines the order. The "e" precedes the &',

abc, Abd The last characters in the strings are different. The "c"
precedes the "d".

aBc, abc The characters in the two strings are the same, so the
uppercase priority determines the order. "B" precedes
1 bll .

Collating In European Languages

NOTE

This Appendix deals with collating or lexical ordering,
and does not include matching. For matching purposes,

there is generally a difference between "A" and "a'.

Figures C-1 and C-2 display the collating sequence in three ways: the graphic representation of the
character, the decimal equivalent of the character’s binary value, and a description of the character.
Language-dependent variations to the collating sequence appear in Figure C-2.

Collating In European Languages

Collating Sequence

CHARACTER

J g Q-
= > >~ x>

)

I =

Qjo

DECIMAL
EQUIVALENT

32
160
48
49
50
51
52
53
54
55
56
57
65
97
224
196
161
200
162
192
216
204
208
212
225
L 226

66
. 98

DESCRIPTION

Space

Do Not Use

Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine

Uppercase
Lowercase
Uppercase
Lowercase
Uppercase
Lowarcase
Uppercase
Lowercase
Uppercase
Lowercase
Uppercase
Lowercase
Uppercase
Lowercase

Uppercase
Lowercase

Acute

Acute

Grave

Grave

Circumflex
Circumflex
Umlaut/Diaeresis
Umlaut/Diaeresis
Degree

Degree

Tilde

Tilde _

OO >0 B >0 >0 >0 >

T w
L

Note that £ligature (211)and & (215) are expanded for collating purposes to AE or ae and col-

late as:

ad AE Ae £ aE ae & AF.

Figure C-1. Collating Sequence (1 of 7)

C-3

Collating In European Languages

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
c 67 Uppercase C
c 89 Lowercase ¢
G 180 Uppercase C Cedilla
] L 181 Lowercase c Cedilla
D 68 Uppercase D
d 100 Lowercase d
b 227 Uppercase D Stroke
d L 228 Lowercase d Stroke
E 69 Uppercase E
e 101 Lowercase e
E 220 Uppercase E Acute
é 187 Lowercase e Acute
E 163 Uppercase E Grave
e 201 Lowercase e Grave
g 164 Uppercase E Circumflex
é 193 Lowercase e Circumflex
E 165 Uppercase E Umlaut/Diaeresis
é | 205 Lowercase e Umlaut/Diaeresis
F 70 Uppercase F
f 102 Lowercase f
G 71 Uppercase G
g L 103 Lowercase ¢
H [T2 Uppercase H
h 104 Lowercase h
I 73 Uppercase 1
i 105 Lowercase |
f 229 Uppercase 1 Acute
i 213 Lowercase | Acute
1 230 Uppercase I Grave
1 217 Lowercase i Grave
by 166 Uppercase I Circumflex
T 209 ~ Lowercase i Circumflex
b3 167 Uppercase I Umlaut/Diaeresis
T L 221 Lowercase i Umlaut/Diaeresis
J 74 Uppercase J
J . 106 Lowercase J
K 75 Uppercase K
k L 107 Lowercase k

Figure C-1. Collating Sequence (2 of 7)

C-4

Collating In European Languages

CHARACTER DECIMAL DESCRIPTION
EQUIVALENT
L [76 Uppercase L]
l L 108 Lowercase 1 _
M i 7 Uppercase M]
m . 108 Lowercase m .
N i 78 Uppercase N]
n 110 Lowercase n
N 182 Uppercase N Tilde
[L. 183 Lowercase n Tilde .
0 i 79 Uppercase O]
e} 111 Lowercase o
6 231 Uppercase O Acute
6 198 Lowercase o Acute
o} 232 Uppercase O Grave
o) 202 Lowercase o Grave
0 223 Uppercase O Circumflex
6 194 LLowercase o Circumflex
o} 218 Uppercase O Umlaut/Diaeresis
8 206 Lowercase o Umlaut/Diaeresis
o} 233 Uppercase O Tilde
(o] 234 Lowercase o Tilde
) 210 Uppercase O Crossbar
% | 214 Lowercase o Crossbar .
P [80 Uppercase P]
p L 112 Lowercase p .
- -
Q 81 Uppercase Q
q - 113 Lowercase q .
R i 82 Uppercase R]
r L 114 Lowercase r .
S [83 Uppercase S]
s 115 Lowercase s
S 235 Uppercase S Caron
g L 236 Lowercase s Caron .
T i 84 Uppercase T]
t L 116 Lowercase t .

Note that the B (222, sharp s) is expanded to ss and collates according to the German stan-
dard as: sr B ss st.

Figure C-1. Collating Sequence (3 of 7)

C-5

Collating In European Languages

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
U 85 Uppercase U
u 17 Lowercase u
0 237 Uppercase U Acute
G 199 Lowercase u Acute
U 173 Uppercase U Grave
U 203 Lowercase u Grave
0 174 Uppercase U Circumflex
G 195 Lowercase u Circumflex
0 219 Uppercase U Umlaut/Diaeresis
u L 207 Lowercase u Umlaut/Diaeresis
\Y i 86 Uppercase V
\% L 118 Lowercase v
W i 87 Uppercase W
w L 119 Lowercase w
X i 88 Uppercase X
X L 120 Lowercase x
Y i 89 Uppercase Y
y 121 Lowercase y
¥ 238 Uppercase Y Umlaut/Diaeresis
% L. 239 Lowercase y Umlaut/Diaeresis
Z i 20 Uppercase Z
z L 122 Lowercase z
P [240 Uppercase Thorn
o} L 241 Lowercase Thorn
177 Currently Undefined
178 Currently Undefined
242 Currently Undefined
243 Currently Undefined
244 Currently Undefined
245 Currently Undefined

Figure C-1. Collating Sequence (4 of 7)

C-6

Collating In European Languages

CHARACTER

K

>

%

DECIMAL
EQUIVALENT DESCRIPTION

40 Left Parenthesis
41 Right Parenthesis
91 Left Bracket

a3 Right Bracket
123 Left Brace

125 Right Brace
251 Left Guillemets
253 Right Guillemets
60 Less Than Sign
62 Greater Than Sign
61 Equal Sign

43 Plus

45 Minus
254 Plus/Minus
247 One Quarter

248 One Half

179 Degree (Ring)

37 Percent Sign

42 Asterisk

46 Period {Point)
44 Comma

59 Semicolon

58 Colon

Figure C-1. Collating Sequence (5 of 7)

C-7

Collating In European Languages

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
é 185 Inverse Question Mark
? 63 Question Mark
i 184 Inverse Exclamation Point
' 33 Exclamation Point
/ 47 Slant
\ g2 Reverse Slant
| 124 Vertical Bar
e 64 Commercial At
& 38 Ampersand
35 Number Sign (Hash)
§ 189 Section
$ 36 U. S. Dollar Sign
¢ 191 U. S. Cent Sign
£ 187 British Pound Sign
£ 175 Italian Lira Sign
¥ 188 Japanese Yen Sign
F 190 Dutch Guilder Sign
o] 186 General Currency Sign
" 34 Double Quote
¢ 96 Opening Single Quote
? 39 Closing Single Quote
~ 94 Caret
~ 126 Tilde

Figure C-1. Collating Sequence (6 of 7)

C-8

Collating In European Languages

CHARACTER

DECIMAL
EQUIVALENT
168
169
170
171
172
95
246
176
249
250

252

31

128

159
127

255

DESCRIPTION

Accent Acute

Accent Grave

Accent Circumflex
Umlaut/Diaeresis

Tilde Accent

Underscore

Long Dash

Overline

Feminine Ordinal Indicator
Masculine Ordinal Indicator
Solid

\
\

/
/
\

\
Currently Undefined
/ Control Codes

/

DEL

Control Codes

0 Not Use

Figure C-1. Collating Sequence (7 of 7)

C-9

Collating In European Languages

Language-Dependent Variations

Listed below are language-dependent variations for Spanish, Danish/Norwegian, Swedish and
Finnish.

SPANISH. CH is considered a separate character, which collates between C and D. The same
applies to LL, which collates after L and before M:

ce 1€ The @ symbol can equal anything.
CH LL Therefore, CH comes after C followed by
Ch Ll anything, and before D followed by
cH IL anything.

ch 11

D@ M@

In Spanish N and N are not considered the same in collating (this also applies to n and).
They are different characters which follow one another in the collating sequence:

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
N - [78 Uppercase N
n 110 Lowercase n -
N [182 Uppercase N Tilde
7 183 Lowercase n Tilde

DANISH/NORWEGIAN. The 4, @, and A collate at the end of the alphabet:

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
Zz i 90 Uppercase Z]
z L 122 Lowercase z N
A i 211 Uppercase AE Ligature i
@ | 215 Lowercase ae Ligature "
0] [210 Uppercase O Crossbhar i
o L. 214 Lowercase o Crossbar -
A i 208 Uppercase A Degree i
a L 212 Lowercase a Degree .
P i 240 Uppercase Thorn |
o} L 241 Lowercase Thorn -

Figure C-2. Language-Dependent Variations (1 of 3)

C-10

Collating In European Languages

SWEDISH. The A, Aand 8 are collated at the end of alphabet:

CHARACTER

z

Qo

B
b

DECIMAL

EQUIVALENT DESCRIPTION
i 90 Uppercase Z i
L 122 Lowercase z .
i 208 Uppercase A Degree]
L 212 Lowercase a Degree _
[216 Uppercase A Umlaut/Diaeresis |
L 204 Lowercase a Umlaut/Diaeresis .
218 Uppercase O Umlaut/Diaeresis
. 206 Lowercase o Umlaut/Diaeresis
i 240 Uppercase Thorn i
L 241 Lowercase Thorn -

FINNISH. The A, X, and U are treated the same as in Swedish. The @ is considered to be the
same as J. Vand W, and Y and U are regarded as the same in Finnish.

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
u 85 Uppercase U
u 117 Lowercase u
g 237 ‘Uppercase U Acute
G 199 Lowercase u Acute
] 173 Uppercase U Grave
U 203 Lowercase u Grave
0 174 Uppercase U Circumflex
[[195 Lowercase u Circumflex A
A% 86 Uppercase V
v 118 Lowercase v
W 87 Uppercase W
W L 119 Lowercase w -
A 88 Uppercase X
X L 120 lLowercase x _
Y 89 Uppercase Y
y 121 Lowercase y
¥ 238 Uppercase Y Umlaut/Diaeresis
¥ 239 Lowercase y Umlaut/Diaeresis
4] 219 Uppercase U Umlaut/Diaeresis
u L. 207 Lowercase u Umlaut/Diaeresis .

Figure C-2. Language-Dependent Variations (2 of 3)

C-11

Collating In European Languages

CHARACTER

Qo

[+ H]

DECIMAL
EQUIVALENT

80
L 122

208
| 212

216
| 204

218
206
210
L 214

240
L 241

DESCRIPTION

Uppercase
Lowercase

Uppercase
lLowercase

Uppercase
Lowercase

Uppercase
Lowercase
Uppercase
Lowercase

Uppercase
Lowercase

N

A Degree
a Degree

A Umlaut/Diaeresis
Umlaut /Diaeresis

N

Umlaut /Diaeresis
Umlaut/Diaeresis
Crossbar
Crossbar

O OO0 O

Thorn
Thorn

Figure C-2. Language-Dependent Variations (3 of 3)

C-12

EBCDIC MAPPINGS

NLS provides mappings, through NLTRANSLATE and NLINFO, from HP 3000 supported character sets
(ROMANS, KANA8) to the various national versions of the EBCDIC code. This applies to all native
languages supported on the HP 3000, and is done differently for each language.

Background Data

EBCDIC is an 8-bit code which originally used only 128 of the 256 possible code values. These 128
characters have almost the same graphic representations as the traditional 7-bit, 128-character,
USASCII code. Three characters are different. USASCII has the left and right square brackets ([])
and the caret ("), while EBCDIC includes the American cent { ¢), the logical OR (|), and the logi-
cal NOT (=).

The EBCDIC code was modified to accommodate the extra characters required by European lan-
guages. For example, when the German EBCDIC was defined some less important characters were
traded for German national characters, and the vertical bar (]) became lowercase &. Similar things
happened to create EBCDIC codes for Norwegian/Danish, Swedish/Finnish, Spanish, Belgian,
Italian, Portuguese, French, and English in the UK.

The 128 unused positions in the various national language EBCDIC codes were later used to accom-
modate all national characters which appeared in any of the EBCDIC codes. Each resulting Country
Extended Code Page became a superset of each existing national EBCDIC. In the German table, for
instance, the empty space was used to accommodate characters from other languages, but the
traditional German characters { &, & and Ui, and B) retained their original position in the
German national EBCDIC. There are many Country Extended Code Pages now, all showing exactly
the same characters, but showing them in different locations. Consider, for example, the character
which has decimal code 161 (octal 241, hexadecimal Al). In original EBCDIC this is the ~. This is
the sharp s (B) in German, the diaeresis accent (™) in French, the lowercase {i in Swedish/Finnish
and Norwegian/Danish, the lowercase 1 in Italian, and the lowercase ¢ in Portuguese.

This situation makes it necessary to map the Hewlett-Packard ROMANS character set to the many
different EBCDIC Country Extended Code Pages.

ROMANS to EBCDIC Mapping

In mapping from ROMAN2S to and from any EBCDIC, characters look the same, or as close as pos-
sible, before and after conversion. The majority of the symbols appearing in ROMANS also exist in
the EBCDIC Country Extended Code Pages. In ROMANS there are nine characters which have no
similar EBCDIC character, and six undefined characters. Since there are no undefined characters in
the EBCDIC Country Extended Code Pages, 15 characters in EBCDIC have no look-alike in
ROMANS. For these characters a one~-to~one mapping has been defined as shown in Table D-1.

EBCDIC Mappings

dec. oct. hex. ROMANS EBCDIC

169 251 AS ' Grave Accent l Logical OR

170 252 AA ~ Circumflex Accent - Logical NOT
172 254 AC ~ Tilde Accent 2 Superscript 2
175 257 AF & Italian Lira Sign 3 Superscript 3

177 261 B1 Presently Undefined H MU Character

178 262 B2 Presently Undefined — Double Underline
235 353 EB 8§ Uppercase S Caron Y Uppercase Y Acute
236 354 EC § Lowercase s Caron y Lowercase y Acute
238 356 EE ¥V Uppercase Y Umlaut 1 Lowercase i Without Dot
242 362 F2 Presently Undefined R Cedilla

243 363 F3 Presently Undefined q Paragraph Sign
244 364 F4 Presently Undefined ® "Registered" Sign
245 365 F5 Presently Undefined % Three Quarters
246 366 F6 __ Long Dash SHY Syllable Hyphen
252 374 FC Solid M Middle Dot

Figure D-1. ROMANS to EBCDIC Mapping

For the Hewlett-Packard KANAS8 character set, which supports KATAKANA, the mapping to and
from EBCDIC is defined by Japanese Industrial Standards (JIS) and IBM.

In all languages, the character mappings defined and implemented on the HP 3000 are such that any
character mapped from any Hewlett-Packard 8-bit character set to EBCDIC and then back again, or
vice versa, will result in the original character value. A complete listing of the Hewlett-Packard
8-bit character set to EBCDIC mappings and vice versa can be obtained by running the utility
NLUTIL.PUB.SYS.

The mappings can be made available to a program by the NLINFO intrinsic item 13 or 14. The map-
pings are used by the NLTRANSLATE intrinsic, which performs the Hewlett-Packard 8-bit to EBCDIC
translation or the reverse. The CTRANSLATE intrinsic maps USASCII to EBCDIC (and vice versa) and
maps JISCII to EBCDIK (and vice versa). For the languages NATIVE-3000 and KATAKANA there
is no difference between the mappings produced by NLTRANSLATE and CTRANSLATE.

PERIPHERAL CONFIGURATION

Native Language Support (NLS) relies on the use of 8-bit character sets to encode alphabetic,
numeric and special characters required for the proper representation of native languages. Two
character sets are available, ROMANS8 and KANAS8. This Appendix explains how to configure
various printers and terminals supported on the HP 3000 for 8-bit operation, so that ROMANZS or
KANA characters may be entered and displayed.

Most Hewlett-Packard terminals and printers are designed for 8-bit operation. Some have limitations
which are listed as Notes at the end of this Appendix. A listing of relevant Notes is included with the
instructions for each peripheral, and the peripherals to which such notes apply are listed in Table
E-2.

NLS Terminology

The following are definitions of NLS terms:

JISCHI The Japanese version of USASCII. It is a 7-bit character set identical to
USASCII with the exception that the Japanese yen symbol replaces the "\ "
character.

KANAS The Hewlett-Packard supported 8-bit character set for the support of

phonetic Japanese (katakana). It includes all of JISCIH plus the katakana
characters. Refer to Appendix B for the table of KANAS8 characters.

ROMANS The Hewlett-Packard supported 8-bit character set for Europe. It includes
all of USASCII plus those characters necessary to support the major western
European languages. Refer to Appendix B for the table of ROMANS
characters.

Roman Extension Part of the "old ROMANS" as implemented on a number of the older
Hewlett-Packard terminals and printers. It is not a character set in itself
but refers to an extension to USASCII. This extension is usually imple~
mented as an alternate character set. The characters in Roman Extension
form a subset of the non-USASCII characters in ROMANGS and the same
internal codes are used in both cases.

Old ROMANS USASCII plus Roman Extension. The manuals for terminals supporting old
ROMANZ contain this table.

Processing Standard The internal Hewlett~Packard 8-bit processing standard for all
Hewlett-Packard products. This standard was developed in anticipation of
NLS and specifies standard character sets, escape sequences, character
designations and invocations and keyboard operation for peripherals and
systems.

Limited Support Refer to the Notes for each specific peripheral.

Peripheral Configuration

NLS Peripheral Support Summary

Tables E-1, E-2, and E-3 contain information on which peripherals are fully supported, have
limited support, and those which are not supported.

Table E~1. Peripherals Fully Supported in 8-Bit Operation - All Language Options

Conforms To Supports Supports
Model/Type Processing Standard Full ROMANS Old ROMANS
HP 150 PC/As Terminal YES VES YES
HP 2392A Terminal YES NO YES
HP 2563A Printer YES YES YES
HP 2621B Terminal YES NO YES
HP 2622J Terminal YES YES* N/A*
HP 26237 Terminal YES YES* N/A*
HP 2625A Terminal YES YES YES
HP 2627A Terminal YES NO YES
HP 2628A Terminal YES YES YES
HP 2932A Printer YES YES YES
HP 2933A Printer YES YES YES
HP 2934A Printer YES YES YES
HP 2700 Terminal YES NO YES

* Supports KANAS8 rather than ROMANS.

Peripheral Configuration

Table E-2. Peripherals With Limited Support in 8-Bit Operation

Conforms To Supports Supports
Model/Type Processing Standard Full ROMANS 0ld ROMANS
HP 2382A Terminal NO NO YES
HP 2608A Printer NO NO YES
HP 2608S Printer NO NO YES
HP 2622A Terminal NO NO YES
HP 2623A Terminal NO NO YES
HP 2626A Terminal NO NO YES
HP 2626W Terminal NO NO YES
HP 2631B Printer NOl NO YES
HP 2635B Prntr/Term NO NO YES
HP 26457J Terminal NO YES* N/A*
HP 2680A Printer NO NO YES
HP 2688A Printer NO YES YES

* Supports KANA 8 rather than ROMANS.

Table E~3. Peripherals Not Supported in 8-Bit Operation

Conforms To Supports Supports
Model/Type Processing Standard Full ROMANS Old ROMANS
HP 2624B Terminal NO NO NO
HP 2687A Printer YES NO NO**

#% This printer functions correctly in 8-bit operation (it has no 7-bit operation). However, much
of the ROMANZS character set is not implemented and KANAS8 is unavailable. Some of Roman
Extension is not implemented; but 8-bit characters with some of the Roman Extension values
print in a degraded fashion (i.e., accented vowels print as the corresponding vowel without ac-
cent, and the international currency symbol prints as "0").

Peripheral Configuration

Specifics of 7-Bit Support
No peripherals are supported in 7-bit native language operation.

All peripherals are supported in 7-bit USASCII operation, though the non-USASCII characters are
then unavailable. This includes the devices not listed at all in the preceding tables, because they are
devices which have only 7-bit operation.

If 8-bit data is sent to a device configured for 7-bit USASCII operation, those characters with the
eighth bit on will be displayed as unrelated (but predictable) USASCII characters, or else as blanks,
depending on the device. For example, an "a" displays as "H" on a 264 5A terminal.

This Appendix contains specific information on each device supported in 8-bit mode to help configure
these peripherals to utilize NLS capabilities.

NLS Peripheral Support Details
There are two ways to access ROMANS characters not on the keyboard.

From many of the terminal keyboard layouts (e.g., French and Spanish) you can access a few
ROMANS characters (certain accented vowels) from the standard keyboard by using mutes. Enter a
non-spacing diacritical character (such as an accent mark or circumflex), then the unaccented vowel.
The result on the screen is a single, merged character, and usually a single, merged character is
transmitted to the system. (See Notes 7 and 10 for some of the peripherals.)

Accessing ROMANS or KANA 8 characters that do not appear on your keyboard can be accomplished

by using "N Cn / "CO oo ",c", or the "Extend char” key, depending on the terminal. If your
terminal uses "N ™" (or "shlftlng out"), please consult Notes 1-4 at the end of this Appendix.

E-4

Peripheral Configuration

HP 150 P.C. as a Terminal

Requirements

None. ROMANS character set is standard.

Character Set Supported

ROMAN3S

Configuring For 8-Bit Operation

Global Configuration Language = Language of the keyboard.
Portl or Port2 Parity = None
DataBits = 8
Check Parity = No
Terminal Configuration ASCII 8-Bits = Yes
MPE I/0 Configuration Terminal Type = 10 (12 if connection is ATC).

Typing ROMANS8 Characters Not On The Keyboard

Access the ROMANS8 characters not on the national keyboard by pressing the "Extend char" key,
holding it down while pressing one of the other keys. Most of the accented vowels, as well as the
Spanish Nor #, are accessed from most of the national keyboards by means of mutes. The mute is a
diacritical mark such as an accent, circumflex, or diaeresis. Enter a non-spacing diacritical character
(if it is not on the keyboard layout, press the "Extend char" key), then the unaccented vowel (or N or
n). The screen displays a single, merged character, and a single, merged character is transmitted to
the system. The non-spacing diacritical character is not displayed on the screen until the second
character is typed.

Notes

None.

Peripheral Configuration

HP 2382A Terminal

Requirements

Option 001, 002, 003, 004, 005, 006 or 007 (National keyboard and ROM).

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Datacomm Configuration Parity = None
Chk Parity = No

Terminal Configuration ASCII 8-Bits = Yes
Language = Language of the keyboard layout.

MPE 1/0 Configuration Terminal Type = 10 (12 if connection is ATC).

To configure the terminal for 8-bit operation as the default, set switches AS=up, A6é=down, A7=up,
Bl=down.

Typing USASCIlI/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS qwM, or
ESPANOL M, some Roman Extension characters (certain accented vowels) are accessible from the stan-
dard keyboard by using mutes. Enter a non-spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character. With a national keyboard, the USASCII
characters, which are replaced on the keyboard, cannot be entered, but they can be displayed when
received from the system.

Access the Roman Exterésmn characters not on the keyboard by shifting out the keyboard. Enter
"N to do so. Enter "0°" to return to the usual keyboard layout.

Notes

1,2,4,5,6,7,9.

Peripheral Configuration

HP 2392A Terminal

Requirements

None. A subset of the ROMANS character set is standard.

Character Set Supported

A subset of ROMANZR (the last two columns of the ROMANZS table are missing).

Configuring For 8-Bit Operation

Datacomm Configuration Parity/DataBits = None/ 8.

Terminal Configuration Keyboard = National layout of keyboard.
Language = Language in which terminal messages and labels are to
appear.

MPE I/0 Configuration Terminal Type = 10 (12 if connection is ATC).

Typing ROMANS8 Characters Not On Keyboard

Some ROMANS characters (certain accented vowels) are accessible from the standard keyboard by
using mutes. Enter a non-spacing diacritical character, then the unaccented vowel. The screen dis-
plays a single, merged character, and a single, merged character is transmitted to the system (in both
character and block mode).

ROMANS characters not on the keyboard are accessible by pressing the "Extend char" key, holding it
down while pressing another key. Most accented vowels are accessed via mute character combina-—
tions. The mute character itself is accessed via the "Extend char" key, and the vowel from the stan-
dard keyboard. The placement of extended characters is in Appendix B of the HP 2392A Display
Station Reference Manual (02392-90001).

Notes

None.

Peripheral Configuration

HP 2563A Printer

Requirements

None. ROMANR character set is standard.
(KANA 8 is available with Option #002.)

Character Set Supported

ROMANS, KANAS

Configuring For 8-Bit Operation

Printer Set primary character set = 20 (ROMANS) or = 21 (KANAS8) via the
switches on the front panel. If the printer has a serial interface, set
DataBits = 8, Parity = None. These configurations can also be done
programmatically with escape sequences.

MPE 1/0 Configuration For serial interface, configure the printer on the HP 3000 as Termtype
= 20 (8-bits of data). On a Multipoint line, use Termtype = 18 or 22.
For HP-IB interface, use Type = 32, Subtype = 9. This permits
programmatic reconfiguration via escape sequences.

Notes

None.

Peripheral Configuration

HP 2608A/HP 2608S Printers

Requirements

Option 001 and 002 for KANAS.

Option 002 for Roman Extension.

Character Set Supported

KANAS

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Set switches on front panel: USASCII+RomExt
Primary Language = 0000
Secondary Language = 1111
KANAS
Primary Language = 1110
Secondary Language = 0011

On the HP 2608S only, a program can also set these values via escape sequences.

MPE 1/0 Configuration Termtype = 20 or 22.

Notes

9,11.

Peripheral Configuration

HP 2621B Terminal

Requirements

Option 001,002,003,004,005,006 and/or 010 (National keyboard and/or extended character set
ROMs).)

Option 101,102,103,104,105,106 and/or 110 (Extended national keyboard and/or ROMs).

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Set switches PO,P1,P2: Set to 0,1,0 (down,up,down).

Set switches LO,L1,L2: Set to language of keyboard layout (see HP 2621B Manual
(02620-90062), for settings for keyboard layout), and switch 5 of the
left-hand group = 0 to activate the keyboard of that language.

MPE 1/0 Configuration Terminal Type = 10 (12 if connection is ATC).

Typing USASCII/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish a few Roman Extension characters (certain accented
vowels) are accessible from the standard keyboard by using mutes. Enter a non-spacing diacritical
character, then the unaccented vowel. The screen displays a single, merged character, and a single,
merged character is transmitted to the system.

Roman Extension characters (except those available via mutes) not available on the keyboard cannot
be entered. But they can be displayed when received from the system.

The USASCII characters which are replaced on the native keyboard are available after pressing
(A1) in the "modes" level (an asterisk will appear next to the "USASCII" label for this function
key). This causes the keyboard to become the standard USASCII layout. Press (1) again (the as-
terisk will disappear) to return to the native keyboard.

Notes

10.

Peripheral Configuration

HP 2622A/HP 2623A Terminals

Requirements

Option 001, 002, 003, 004, 005, 006 or 202 (National keyboard and/or extended character set
ROMs).

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Datacomm Configuration Parity = None
Chk Parity = No

Terminal Configuration ASCII 8-Bits = Yes ‘
Language = Language of the keyboard layout.

MPE 1/0 Configuration Terminal Type = 10 (12 if connection is ATC).

Typing USASCIil/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS qwM, or
ESPANOL M, a few Roman Extension characters (certain accented vowels) can be accessed from the
standard keyboard by using mutes. Enter a non-spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character. Access the USASCII characters replaced on a
national keyboard by pressing (SHIFT) and one of the numeric pad keys.

Acgess the Roman Exterésion characters not on the keyboard by shifting out the keyboard. Enter
“N"" to doso. Enter "O " to return to the usual keyboard layout.

Notes

1,2,4,5,6,7,9.

Peripheral Configuration

HP 2622J/HP 2623J Terminals

Requirements

None. Katakana is standard.

Character Set Supported

KANAS.

Configuring For 8-Bit Operation

Datacomm Configuration Parity = None
Chk Parity = No

Terminal Configuration ASCII 8-Bits = Yes

MPE 1/0 Configuration Terminal Type = 10 (12 if connection is ATC).

Typing KANAS8 Characters Not On The Keyboard

Access the KANAS8 characters not in JISCII by pressing the "katakana" key to enter katakana mode.
Press the "CAPS" key to return to the JISCII keyboard.

Notes

None.

Peripheral Configuration

HP 2625A/HP 2628A Terminals

Requirements

None. ROMANS character set is standard.

Character Set Supported

ROMAN?R

Configuring For 8-Bit Operation

Datacomm Configuration Parity = None
Chk Parity = No
DataBits = 8 (in Multipoint: Code = ASCIIS).

Terminal Configuration ASCII 8-Bits = Yes

MPE 1I/0 Configuration Terminal Type = 10 (12 if connection is ATC).

Typing ROMANS8 Characters Not On The Keyboard

if the keyboard layout is French or Spanish a few ROMANS characters (certain accented vowels) can
be accessed from the standard keyboard by using mutes. Enter a non-spacing diacritical character,
then the unaccented vowel. The screen displays a single, merged character, and a single, merged
character is transmitted to the system (in both character and block mode).

Access the ROMANS characters not on the keyboard by pressing ". ©u to enter "extended characters
mode." When not using the USASCII keyboard, this may not actually be the key labelled period (.)
but the period key for the USASCII keyboard. A keyboard layout showing the placement of extended
characters is located in the User’s Manual for the HP 2625A Dual-System Display Terminal and HP
2628A Word-Processing Terminal (02625-90001).. Enter “,C" to return to the usual keyboard
layout.

Notes

None.

Peripheral Configuration

HP 2626 A/HP 2626W Terminals

Requirements

Option 001, 002, 003, 004, 005, 006 or 201 (National keyboard and/or extended character set
ROMs).

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation
Global Configuration Language = Language of keyboard layout.

Datacomm Configuration Parity = None
Chk Parity = No
DataBits = 8 (In Multipoint: Code = ASCII8).

Terminal Configuration ASCII 8-Bits = Yes
ESC) A = RomanExt*
Alternate Set = A.

MPE 1/0 Configuration Terminal Type = 10 (12 if connection is ATC).

*0On some versions of the 2626W the RomanExt and BOLD alternate sets are exchanged. Press
IDENTIFY ROMS; if CHARACTER ROMS show 1818-1916 and 1818-1917, Rev.A, set ESC) A =
BOLD to access ROMANS.

Typing USASCIli/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS qwM, or
ESPANOL M, a few Roman Extension characters (certain accented vowels) can be accessed from the
standard keyboard by using mutes. Enter a non-spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character. Access the USASCII characters replaced on a
national keyboard by pressing and one of the numeric pad keys.

Acgess the Roman Exte%sion characters not on the keyboard by shifting out the keyboard. Enter
"N7" todoso. Enter "O7" to return to the usual keyboard layout.

Notes

1,2,3,5,6,7,8,9.

Peripheral Configuration

HP 2627A Terminal

Requirements

None. Roman Extension is standard.

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Datacomm Configuration Parity = None
Chk Parity = No

Terminal Configuration Language = Language of keyboard layout.
ASCII 8-Bits = Yes

MPE I/0 Configuration Terminal Type = 10 (12 if connection is ATC).

Typing USASCII/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS qwM, or
ESPANOL M, a few Roman Extension characters (certain accented vowels) can be accessed from the
standard keyboard by using mutes. Enter a non-spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character, and a single, merged character is transmitted
to the system (in both character and block mode).

Access the USASCII or Roman Extension characters not on the keyboard by putting the keyboard in
Foreign Characters mode. Enter ". " to do so. Find the keyboard location of any desired character
in the HP 2627A Display Station Reference Manual (02627-90002). Enter ", " to return to the
usual keyboard layout.

Notes

4.

Peripheral Configuration

HP 2631B Printer

Requirements

Roman Extension and katakana are now standard. Formerly option #008 (katakana) or #009
(Roman Extension) was required.

Character Set Supported

KANAS

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Set the rocker switches on the Serial I/O Interface PCA (S2, inside the printer) as follows:

Switches 6,7 Set to 00 (both open).
(Received eighth bit passed).

Set the rocker switches on the Printer Logic PCA (inside the printer) as follows:

In Ist Group of 7 Set Switch 7 = 0 (Open) (8-bit Datacomm).
In 2nd Group of 10 Set Switches 1-5 = 11111(USASCII) ; 10110 (JISCII).
Set Switches 6-10 = 10001 (Roman Extension) ; 10101(katakana).
Front Panel Switches Parity = 00 (None).
MPE 1/0 Configuration Subtype = 14 (not supported if connection is ATC).

Terminal Type = 20 or 22.

Notes

9,11,14.

Peripheral Configuration

HP 2635B Printer/Terminal

Requirements

Roman extension is now standard. Formerly one of options #001, 002, 003, 004, 005 or 006 (na-
tional keyboards) was required.

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation
Set the rocker switches on the Serial I/O Interface PCA (S2, inside the printer) as follows:

Switches 6,7 Set 00 (both open).
(Received eighth bit passed).

Set the rocker switches on the Printer Logic PCA (inside the terminal) as follows:
In 1st Group of 7 Set Switch 7 = 0 (Open) (8-bit Datacomm).

In 2nd Group of 10 Set Switches 1-5 =11111 (USASCII).
Set Switches 6-10 = 10001 (Roman Extension).

Set the rocker switches on the keyboard PCA (inside the terminal) as follows:
Set Switches 4-8 Set to language of terminal keyboard. Refer to the HP 2630B Family

Reference Manual (02631-90918) for a list of keyboard layouts and
the corresponding switch settings.

Front Panel Switch Parity = None.

MPE 1/0 Configuration Terminal Type = 15.
Notes

1,2,5,7,9,11.

Peripheral Configuration

HP 2645J Terminal

Requirements

None. Katakana is standard.

Character Set Supported

KANAS

Configuring For 8-Bit Operation
Datacomm Configuration Parity = None

MPE 1/0 Configuration Terminal Type = 10 (12 if connection is ATC).

Typing KANA8 Characters Not On Keyboard
Access the KANAR characters not in JISCII by pressing the "katakana" key to enter katakana mode.

Press the katakana key again to return the keyboard to its JISCII layout. Alternatively, press the
right key (once by itself) to enter katakana mode, and the left key to exit from it.

Notes

9,12.

Peripheral Configuration

HP 2680A Printer

Requirements

Environment files ending in "X" for USASCII plus Roman Extension.
Environment files ending in "K" for KANAS.

Character Set Supported

USASCII plus Roman Extension
KANAZB

Configuring For 8-Bit Operation

Use the environment files ending in "X" (for USASCII plus Roman Extension) or those ending in "K"
(for KANAS).

Notes

9,11.

Peripheral Configuration

HP 2688A Printer

Requirements

Environment files COURxA, GOTHxA, LP88, PICAxA, PRESxA, ROMPxA, SCRPRA.

Character Set Supported

ROMAN3

Configuring For 8-Bit Operation

Use one of the environment files listed above for support of ROMANS.

Notes

9,11.

Peripheral Configuration

HP 2700 Terminal

Requirements

None. Roman Extension is standard.

Character Set Supported

USASCII plus Roman Extension.

Configuring For 8-Bit Operation

Portl or Port2 Parity/DataBits = None/8§.
Configuration Chk Parity = No
Terminal Configuration Language = Language of keyboard layout.

ASCII 8-Bits = ON.

MPE I/0 Configuration Terminal Type = 10 (12 if connection is ATC).

Typing USASCIll/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS gwM, or
ESPANOL M, a few Roman Extension characters (certain accented vowels) can be accessed from the
standard keyboard by using mutes. Enter a non-spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character, and a single, merged character is transmitted
to the system (in both character and block mode).

Access the USASCII or Roman Extension characters not on the keyboard by putting the keyboard in
Foreign Characters mode. Enter ". " to do so. Find the keyboard location of any desired character
usixclg the algorithm in the HP 2700 Family Alphanumeric Reference Manual (02703-90003). Enter
", " toreturn to the usual keyboard layout.

Notes

3,13.

E-21

Peripheral Configuration

HP 2932A/HP 2933A/HP 2934A Printers

Requirements

None. ROMANRS and KANAZQ character sets are standard.

Character Set Supported

ROMANZS, KANAS

Configuring For 8-Bit Operation

Printer

MPE 1/0 Configuration

Notes

None.

From the front panel, in the Printer Print Settings, set Primary
Character Set = | (ROMANS) or = 2 (KANAS).

For serial interface, in the Interface Data Settings, set DataBits = 8
Parity = None.

3

For Multipoint, set Parity = None, Code = ASCIIS8.

These can also be done programmatically with escape sequences.

For serial interface, configure the printer on your HP 3000 as
Termtype = 20 (8 bits of data) (not supported via ATC connection or

ADCC with HIOTERMO0.) On a Multipoint line, use Terminal Type =
18 or 22.

E-22

Peripheral Configuration

NOTES

The following Notes apply to the peripherals covered in this Appendix. Refer to the description of
each peripheral for a list of which Notes apply to it.

1.

When "N" (shift out) and "0 (shift in), are used to shift the keyboard out for Roman
Extension, they are transmitted to the system when the terminal is in character mode. This

results in superfluous data in the byte stream sent to the system.
(HP 2382, 2622, 2623, 2626, 26395)

When shift out and shift in are sent to the terminal they have no effect on the active character
set (as expected by some software), but they do affect subsequent keyboard operation, as if
they had been typed in.

(HP 2382, 2622, 2623, 2626, 2635)

When the keyboard is shifted out, (in Foreign Characters mode for the HP 2700 family), the
space bar sends %240 instead of %40, and the DEL key sends %377 instead of %177.
(HP 2626, 2700)

When the keyboard is shifted out (in Foreign Characters mode for the HP 2627), the space bar
sends %240 instead of %40, and the DEL key sends nothing. This has been fixed in the most
recent versions of the 2622 and 2623 terminals. These will show as ROMs 1818-3199/3203
with Date Code 2313 or later (2622), and 1818-3223/3228 with Date Code 2335 or later
(2623).

(HP 2382, 2622, 2623, 2627)

If "(ESCAPE))B" or "(ESCAPE))C" is entered or transmitted to the terminal, the alternate charac-
ter set will be redefined (e.g., to line draw or math). This will cause all would be Roman
Extension characters, whether displayed on the terminal or entered via one of the methods list-
ed above, to appear as the corresponding line draw or math symbols (or blanks, if that alternate
set is not present in the terminal). To remedy this, enter "O (ESCAPE) m)A" on the HP 2626A,

reset Alternate Set to A in the TERMINAL CONFIGURATION menu). Note that data entered
or displayed while the terminal has another alternate character set defined is correct internally
even though it may not display correctly on the terminal.

(HP 2382, 2622, 2623, 2626, 2635)

When the terminal is in block mode and one or more Roman Extension characters are entered
(e.g., "U"), then (ENTER) is pressed, what is transmitted to the system, and written to the
buffer of the program reading from the terminal, is "(ESCAPE))U". This is the terminal’s way of
compensating for Note 5. It means that when the data is sent back again from the computer,
"U" will always display this way, and not as the corresponding line draw or math symbol. It
also means that there may be more information in the program buffer than the user or the
programmer is expecting, or there is less room in that buffer for other information. Note that
if the terminal is controlled by VPLUS/3000, it strips out the escape sequence before passing
the data on to the calling program’s buffer (and from there to the data file or data base).

(HP 2382, 2622, 2623, 2626)

Peripheral Configuration

10.

11.

12.

13.

14.

For the languages FRANCAIS azM, FRANCAIS qwM, and ESPANOL M when mutes are used
and the terminal is in character mode, two characters are sent to to the system although a
single, merged character appears on the screen. This means that an incorrect two-byte
representation of the accented character will be received by the program or file. The next time
they are displayed the terminal will put them back together, provided the terminal is still con-
figured for FRANCAIS azM, FRANCAIS qwM, or ESPANOL M. In block mode a single
character (the correct ROMANS code for the merged character) is sent to the system.

(HP 2382, 2622, 2623, 2626, 2635)

When softkey labels which contain extended characters (in the range %200-%377) are received
from the system, the extended characters are lost and the inverse video is turned off on the
label.

(HP 2626)

This device does not actually support 8-bit character sets, but simulates them by handling two
7-bit character sets, a primary and an alternate. Legitimate data from real alternate character
sets (line draw or math) cannot be used in a supported (standard) way together with general
ROMANS8 (KANABS) data because these devices treat Roman Extension (katakana) as an alter-
nate character set, in 8-bit mode. All alternate character sets are addressed by codes with the
eighth bit set to one; Roman Extension (katakana) must share this position with the other al-
ternate sets through the use of escape sequences ("(ESCAPE))x"), and on the terminals shift-
in/shift~out are unsuitable for invoking alternate sets. The practical result of this is that NLS
will not support the use of alternate character sets together with ROMANS (KANAS8) data on
these devices. Configure the device for 8-bit mode as documented, then limit the data to (old)
ROMANS (KANAS).

(HP 2382, 2608, 2622A, 2623A, 2626, 2631, 2635, 26457, 2680, 2688)

For the French and Spanish keyboards, when mutes are used and a mute diacritical is entered
followed by a space, the ROMANS codes for the diacritical and the space are both transmitted
to the system, not just the ROMANR character for the diacritical.

(HP 2621B)

When a shift-out character is sent to the printer, it causes subsequent data (until a shift-in is
sent) to be selected from the alternate character set, whether or not the eighth bit is on.
(HP 2608, 2631, 2635, 2680, 2688)

When the system sends an 8-bit character the terminal shifts into katakana mode until a 7-bit
character is received. For example, switching terminal speed with the MPE :SPEED command
sometimes results in the receipt of an 8-bit character from the system. The user will need to
exit katakana mode before entering "MPE" to signal that the speed has been changed.

(HP 26457)

When the terminal is in Block Format mode (e.g., under control of VPLUS), an attempt to
read the character %254 (tilde~accent in ROMANS) from an input field causes the read to
hang.

(HP 2700)

Versions of the 2631B with Printer Logic PCA #02631-60225 are not supported, because
switch 7 (8 bit datacomm) is ignored. It is possible to configure 8 bit datacomm on this PCA
programmatically via an escape sequence; but the program must do so before every data

transfer.
(HP 2631B)

CONVERTING 7-BIT TO 8-BIT DATA

Many Hewlett-Packard peripherals can be configured for 7-bit operation with one of the European
language national substitution character sets. These peripherals must be converted to 8-bit operation
to access Native Language Support (NLS) capability. NLS requires the use of 8-bit character sets
which include USASCII and native language characters.

NLS for western European languages is based on the ROMANS& character set in which the additional
characters required are assigned to unique values between 128 and 255. It requires eight bits to hold
the value of a ROMANS& character. All the special European characters are accessible in ROMANS&
without losing any of the USASCII characters.

The 7-bit national substitution sets do not offer a full complement of characters. New characters
replace existing ones. In FRANCAIS, for example, the graphic symbol "#" is not available. In
Spanish and French, even the substitutions made are not sufficient to obtain all the necessary new
characters. The use of mute characters is required. Mute characters provide a single graphic on the
terminal screen or paper for two bytes of storage and two keystrokes. For example, an "é" in Spanish
or French would be produced with an accent mark plus an "e", whereas ROMANS contains the "é"
as a single character. In any one language, the graphic symbols for other European countries are not
available at all. For example, a French user does not have access to the necessary characters to
properly address a letter to someone in Germany. The ROMANS 8-bit character set eliminates these
problems.

Naticnal Substitution Sets

Many Hewlett~Packard peripherals support the 7-bit national substitution sets for the following lan-
guages. (They are listed here as they appear on the terminal configuration menus of the terminals
which support them):

SVENSK/SUOMI

DANSK/NORSK

FRANCAIS M

FRANCAIS

DEUTSCH

UK

ESPANOL M

ESPANOL

ITALIANO (On a few devices only.)

These are 7-bit national substitution character sets or languages in which one or more of 12 USASCII
graphic symbols are replaced by other graphic symbols required for the national language being used.
The same 7-bit internal code is displayed as a different symbol than that assigned to it by USASCII.
For example, in USASCII the decimal value 35 is assigned to the graphic symbol "#"; but in the
FRANCAIS national substitution set, the same decimal value 35 is assigned to the graphic symbol
11} £|I .

Users who have been using these (HP 262X) terminals in 7-bit operation for many years may have a
substantial investment in data which 1s encoded in one of these 7-bit national substitution character
sets. Hewlett-Packard i1s making several conversion utilities available to convert this data to
ROMANS.

Converting 7-Bit To 8~Bit Data

Conversion Utilities

Because NLS involves using full 8-bit character sets for all data, customers wanting to use the facility
will need to configure their peripherals for 8-bit operation. (This is not possible for the HP 264X
terminals.) The national substitution characters, if input on a terminal configured for 7-bit opera-
tion, will not display correctly on a terminal or printer configured for 8-bit operation.

Several utilities are available to convert existing data that has been input with an HP 262X terminal
configured for 7-bit operation. Refer to Table F~1 for a listing of these utilities. The premise of
these utilities is that users will run them once for each file which needs converting, and will configure
all their peripherals for 8-bit operation. Thereafter, peripherals will only be used in 8-bit operation.

Table F-1. Conversion Utilities by File Type

File Type

Utility to be Used for Conversion

EDITOR files.

Other MPE files which
are all text.

MPE files in which text
data is organized in fields
which need to start in fixed
columns.

MPE files which include
some non text data (e.g. N
integer or real).

IMAGE data bases.
VPLUS forms files.

HPFWORD files.

TDP files.

N7TMF8CNV (text option).
NT7MF8CNYV (text option).

N7MF8CNV (text option; data option if language is
FRANCAIS M or ESPANOL M).

N7TMF8CNYV (data option).

I7DBECNV.
VIFF8CNV.

HPWORD internal files have always been based on a subset of
ROMANS. No conversion is necessary.

Run N7MF8CNYV and then change back whatever "\" is con-
verted to in the chosen language in case you need the "\" for
embedded TDP commands.

Converting 7-Bit To 8-Bit Data

Conversion Algorithm

The conversion utilities convert records or fields from files which are assumed to have been created at
an HP 262X terminal configured for 7-bit operation, and for a language other than USASCII. The
conversion is from the HP 262X implementation of a European 7-bit substitution character set to the
8-bit ROMANS character set. This involves converting the values with which certain characters are
stored in the file. Before conversion, the file should look correct on a HP 262X terminal configured
for 7-bit operation with the appropriate substitution set. After conversion the file will look correct
on any terminal configured for 8-bit operation.

Records and/or fields from files of all types are converted using the same algorithm which is expressed
in Figure F-1. The conversion affects only the 12 characters shown in the table. All other charac-
ters remain unchanged.

To use this table, find the desired national substitution set on the left. The uppermost row shows the
7-bit decimal values for which substitutions may have been made. There are two rows of informa-
tion opposite each national substitution set. The upper row shows the graphic assigned in 7-bit opera-—
tion and the lower row the decimal value assigned the graphic in ROMANGS after using the conversion
algorithm.

When certain FRANCAIS M and ESPANOL M characters are followed immediately by certain other
characters, the two-character combination is converted to a single ROMANS character, and the field
or record being converted is padded at the end with a blank:

FRANCAIS M

~(94) followed by a, e, i, o, or u is converted to 4(192), &(193), 1(209), 8(194), or
0(195).

“(126) followed by a, e, i, o, or u is converted to #(204), &(205), 7T(221), &(206),
i(207).

“(126) followed by A, O, or Uis converted to £(216), 0(218),or 0U(219).
ESPANOL M

"(39) followed by a, e, i, o, or u is converted to 4(196), é(197), 1(213), 6(198), or
4(199).

If these characters are followed by any other character, they are converted to their ROMANS equiv-
alent as shown in Figure F~1.

Converting 7-Bit To 8-Bit Data

CHARACTER CONVERSION

Decimal Value of Character to be Converted

National
Subst .Set 35 39 64 91 92 93 94 96 123 124 125 126

USASCII # ’ @ [\] ~ ¢ { ! } ~

Qo
f omt

SVE/SUOMI # ’ E B o} A 0 é] 5
35 39 220 216 218 208 219 197 204 206 212 207

DANSK/NORSK # ? € A @ A ~ ¢ ®] a ~
35 39 64 211 210 208 94 96 215 214 212 126

FRANCAIS £ ’ 3 ° ¢ 8 ~ ¢ é d b
187 39 200 179 181 189 170 96 197 203 201 171

FRANCAIS M & * 3 ° ¢ § ~ é
187 39 200 179 181 189 170 96 197 203 201 171

[l
s

DEUTSCH £ 8 E 08 g ~ CRN U B
187 39 189 216 218 219 94 96 204 206 207 222

U K £ ’ @ [\] ~ ¢ { | } ~
187 39 64 91 92 93 94 96 123 124 125 126

ESPANOL # ’ @ i N é ° ‘ { [} ~
35 39 64 184 182 185 179 96 123 183 125 126

ESPANOL M # g @ i N ¢ ° ¢ { (] } ~
35 168 64 184 182 185 179 96 123 183 125 126

ITALIANO & e ° ¢ & ~ 0
187 39 64 179 181 197 94 203 200 2

s
o o
o)
pnt

2 201 217

Figure F-1. Character Conversion Data

F-4

Converting 7-Bit To 8-Bit Data

Conversion Procedure

To convert 7-bit substitution data to 8-bit ROMANZS data:

1. Determine which files need to be converted. A file must be converted if the data was input
from an HP 262X terminal configured for 7-bit operation, or for a national substitution set
other than USASCII.

2. Determine the national substitution set ("language" on the terminal configuration menu) from
which the conversion should be done for each file. This is the language the HP 262X terminal
‘was configured for at the time the file data was input.

3. Refer to Table F-1 to determine which utility should be used to convert each file.

4. Back up all files to be converted (: STORE to tape or SYSDUMP).

S. Run each utility, supplying it with the language and file names as determined above.
Instructions for running each utility are found at the end of this Appendix.

6. Configure all terminals and printers for 8-bit operation. (At least one terminal must already be
configured for 8-bit operation when the VIFF8CNV utility is run.) Refer to Appendix E,
"PERIPHERAL CONFIGURATION."

Figure F~2 is a sample dialogue from a session executing N7MF8CNV for both text and data files.

:RUN N7MFBCNV.PUB.SYS

HP European T7-Bit character sets are:

1. SVENSK/SUOMI
2. DANSK/NORSK
FRANCAIS M
FRANCAIS
DEUTSCH

UK

ESPANOL M
ESPANOL
ITALTANO

OO~y U W

From which character set should conversion be done: 5
File types which can be converted are:

1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of file to be converted: 1

Name of text file to be converted: ABC

112 records converted in ABC

Name of text file to be converted: (RETURN)

Figure F-2. N7MF8CNYV Dialogue (1 of 2)

F-5

Converting 7-Bit To 8-Bit Data

File types which can be converted are:

1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of file to be converted: 2

Name of data file to be converted: XYZ

Please supply one at a time the field to be converted (first byte is 1),
Start, Length: 1,12
Start, Length: 15,30
Start, Length: 61, 6

Start, Length: (RETURN

Data file XYZ: fields to be converted are:

1, 12
15, 30
61, 6
Correct?
287 records converted in XYZ

Name of data file to be converted:
File types which can be converted are:

1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion. '

Type of file to be converted:
HP European 7-Bit character sets are:

. SVENSK/SUOMI
DANSK/NORSK
FRANCAIS M
FRANCAIS
DEUTSCH

UK

ESPANOL M
ESPANOL
ITALIANO

- -

.

.

O oEo~NOOU bW -

From which character set should conversion be done: ([RETURN)

END OF PROGRAM

.
.

Figure F-2. N7MF8CNYV Dialogue (2 of 2)

F-6

Converting 7-Bit To 8-Bit Data

N7MF8CNV Utility

N7MFS8CNYV converts data in EDIT/3000 and other MPE text and data files from a Hewlett-Packard
7-bit national substitution character set to ROMANS. The user is prompted for language and file
type (text or data). For a data file, the user will be prompted on each file for the starting position
and length of each field (portion of a record) to be converted. For a text file, each record is convert-
ed as one field.

The user is prompted for the name of each file to be converted. Files are read one record at a time;
each record is converted (or certain fields of it are converted for data files), and the result is written
to a new temporary file. When all records have been read, converted and written to the new file, the
old (unconverted) copy is deleted, and the new one saved in its place. An exception to this is KSAM
files, which are converted in place, rather than written to a new temporary file. A count of the
number of records read and converted is displayed on $STDLIST.

This utility will not convert files containing bytes with the eighth bit set. This situation probably in-
dicates a misunderstanding or error. The likely causes are:

e File is not a text or data file.

» File is a data file for which the fields have been inaccurately located.
o File was created on a terminal configured for 8-bit operation.

¢ File has already been converted.

The maximum record length supported is 8192 bytes. The maximum number of fields supported in
the records of a data file is 256.

If the file being converted contains user labels, these are copied to the new file without conversion. If
a fatal error is encountered during the conversion (e.g., 8-bit data or file system error found) the
conversion stops, the old copy of the file is saved, and the new copy is purged. The data is unchang-
ed. An exception to this is KSAM files. Since these are converted in place, some records may already
have been modified. KSAM files (including key file) should be restored from the backup tape to en-
sure a consistent copy.

A Y€ entered during conversion displays the number of records successfully converted and conversion
continues. On variable length data files, if a field or portion of a field is beyond the length of the
record just read, a warning is displayed and that field is not converted on that record. Other fields on
the same record are converted, and processing continues with subsequent records. After each file has
been converted, the user is prompted for another file name.

In addition to the text and data options, there is a test conversion option which shows how the conver-
sion algorithm operates. The test conversion option must be run from a terminal configured for 7-bit
operation with the chosen national substitution set. The user is instructed to enter a string, and the
result of the conversion is displayed. The user does not have to switch back and forth between 7-bit
and 8-bit operation to see the result. Each character converted is displayed as a decimal value in
parentheses rather than graphically. Other characters are displayed unchanged.

At any point in the program, a exits the current program level at which the user is located.
A in response to a request for the starting position and length of a field in a data file indi-
cates that the definition of fields is complete, and the program proceeds with the conversion of the
data file. A entered in response to a request for a text file name indicates the conversion of
text files is complete; the program goes back to the question: "Type of file to be
converted?".

Converting 7-Bit To 8-Bit Data

I7DB8CNYV Utility

I7DB8CNYV converts the character data in an IMAGE data base from an Hewlett-Packard 7-bit na-
tional substitution set to ROMANS. The program is a special version of the DBLOAD.PUB.SYS

program, and the conversion is done as part of a data base load. The procedure for running
I7DB8CNYV is:

1. Run DBUNLOAD.PUB.SYS to unload your data base to tape.
2. Run DBUTIL.PUB.SYS,ERASE to erase the data in your data base.
3. Run I7DBBCNV to convert the data and load it back into your data base.

I7DB8CNYV will request the following:

1. The 7-bit national substitution set from which the conversion is to be made.

2. The data base name.

3. The utility prompts the user: Convert all data fields of type X or U. "YES"or
means "YES". If a "NO" is entered, the user will be prompted in each data set for
each field of type U or X.

The single field in an automatic data set is not proposed for conversion. Whether or not its
values are converted depends on the response to the item(s) through which it is linked to detail
data set(s). At the end of each data set, the user is asked to confirm that the correct fields to
be converted from that data set have been selected. Again, a is treated as a "YES"
answer. Enter "N" or "n" to change the data fields in that data set to be converted.

I7DB8CNYV then loads the data base from tape. As each record is read, those fields which were selec-
ted have their data converted according to the algorithm for the 7-bit national substitution set which
was selected at the beginning of the program.

I7DB8CNV will not allow 8-bit data (bytes with the high-order bit set) in the data fields it is trying
to convert. The utility will not abort but the field in question will not be converted, and a warning
will be issued:

#% WARNING: 8-bit data encountered in item [itemname in DS data set].

If the program should abort for any reason during the conversion, the user must log on again to clear
the temporary files used during the conversion process before running the program again.

Figure F-3 shows the dialogue from a sample run of the I7DB8CNYV program.

Converting 7-Bit To 8-Bit Data

:RUN I7DB8CNV.PUB.SYS

HP European T7-bit character sets are:

. SVENSK/SUOMI
DANSK/NORSK
FRANCAIS
FRANCAIS M
DEUTSCH

UK

ESPANOL
ESPANOL M
ITALIANO

-

-

WO gy bwMn—

From which character set should conversion be done:
WHICH DATA BASE: QWERTZ
Convert all fields of type U,X in all data sets (Y/

Data Set SET1 fields to be converted:

ITEM1 (Y/N)?
ITEM2 (Y/N)?
ITEM3 (Y/N)? N

ITEM4 (Y/N)?

Is Data Set SET1 correctly defined (Y/N)?
Data Set SET2 - Automatic Master

Data Set SET3 fields to be converted:

ITEM1 (Y/N)?

ITEMS (Y/N)? N

ITEMG (Y/N)? N

Is Data Set SET3 correctly defined (Y/N)?
DATA SET 1: 19 ENTRIES

DATA SET 2: 0 ENTRIES

DATA SET 3: 25 ENTRIES
END OF VOLUME 1, O READ ERRORS RECOVERED
DATA BASE LOADED

END OF PROGRAM

.

2

N)? N

Figure F-3. I7DB8CNYV Dialogue

Converting 7-Bit To 8-Bit Data

V7FF8CNV Utility

V7FF8CNYV converts text and literals in VPLUS/3000 forms files from a Hewlett-Packard 7-bit na-
tional substitution character set to ROMANS. V7FF8CNV is a special version of
FORMSPEC.PUB.SYS and is run the same way. Before running this utility back up the forms file
{:STORE to tape or SYSDUMP), then:

1. Configure your terminal for 8-bit operation. (Refer to Appendix E, "PERIPHERAL
CONFIGURATION, " for information on specific terminal configuration.)

2. Run V7FF8CNV.PUB.SYS, stepping through each form, field definition, save field, function
key label. As each screen is presented on the terminal, 7-bit substitution characters have al-
ready been converted to their ROMANS equivalent.

3. If the data is correct, press and proceed to the next screen. If not, correct the data,
then press to continue.

4. After all screens are converted, recompile the forms file as usual.

Conversion applies to substitution characters found in all source records in VPLUS/3000 forms files
with the following exception: substitution characters for "[" and "]" are not converted in screen
source records since these indicate start and stop of data fields. The following would be converted:

e Text in screens.

e TFunction key labels.

¢ Initial values in save field definitions.
s Initial values in field definitions.

e Literals in processing specifications.

Y7FF8CNYV and Alternate Character Sets

Hewlett-Packard block-mode terminals which have the capability to handle all or part of ROMANS
can be divided into two groups, based on how they handle alternate character sets when configured
for 8-bit operation.

GROUP ONE - HP 2392A, 2625A, 2627A, 2628A, 2700, and 150. Use shift-out and shift-in
characters to switch back and forth between an 8-bit base character set and an 8-bit alternate
character set. This is the standard for new Hewlett-Packard terminals and printers.

GROUP TWO = TP 2622A, 2623A, 2626A, and 23824. (Do not use an HP 2624A or HP 2624B
as they are unable to handle 8-bit characters properly.) Group Two terminals use the eighth bit to
switch back and forth between a 7-bit base character set and a 7-bit alternate character set.
Therefore, it is not possible to get true 8~bit operation (ROMANZS8) and use an alternate character set
(e.g., line draw) at the same time because the base character set is not really 8-bit, but 7-bit with
the additional characters defined in the alternate character set. Using both 8-bit ROMANS& charac-
ters and line draw in the same file is not recommended since the user must continually redefine the
alternate character set, switching back and forth between Roman Extension and the line drawing

F-10

Converting 7-Bit To 8-Bit Data
character set. Shift-out and shift-in are ignored by the terminal, which goes to the alternate
character set when the high order bit is on.

Files using alternate character sets on one group of terminals will not display correctly on the ter-
minals of the other group, even when terminals from both groups are configured for 8-bit operation.

Therefore, the use of characters from an alternate set affects the conversion procedure. If the forms
file does contain characters from an alternate character set, choose one of the following alternatives:

1. Eliminate the use of alternate character sets (either with FORMSPEC or while running
V7FF8CNYV).
2. Define alternate character sets to appear correctly on Group One terminals. This happens au~

tomatically when VIFF8CNYV is run from a Group One terminal. Characters from these alter-
nate sets will appear as USASCII characters on a Group Two terminal.

V7EF8CNYV Operation

VIFF8CNV must be run on a terminal supported by VPLUS/3000 which supports display of all
characters, enhancements and alternate characters sets used in the forms file. If alternate character
sets are used, the HP 2392, 2625, 2627, 2628, 2700, or 150 are recommended.

The VIFF8CNYV procedure is:

1. Configure your terminal type properly for 8-bit operation by using the settings recommended
in Appendix E, "PERIPHERAL CONFIGURATION."

2. Run V7FF8CNV.PUB.SYS.. Respond to prompts for the terminal group and the national sub-
stitution set.

3. Press NEXT once to begin going through the forms file.

4. Press after each screen until the end of the forms file is reached. Two exceptions to
: Step 4 are:

Type "Y" in "Function key labels" on each FORM MENU and the GLOBALS
MENU to see and convert function key labels.

o On the field definition screen, if the processing specs have converted data which you
want to save, press the FIELD TOGGLE key, then to save that conversion.

NOTE
If you try to redisplay a screen which has already been
converted and this conversion has been saved by pressing
(ENTERJ, a message "Form contains 8 bit data"
will be displayed. Do not press (ENTER) again, but con-
tinue on through the forms file.

5. Compile your forms file as usual.

These conversion utilities are designed to be used once to update existing data to 8-bit compatibility.

F-11/F-12

APPENDIX

G

APPLICATION GUIDELINES

Currently, the HP 3000 supports six conventional programming languages (SPL, FORTRAN,
COBOLII, Pascal, RPG and BASIC). Some general guidelines and some specific to each of the sup-
ported programming languages are included in this Appendix to help the programmer select a lan-
guage to use for writing a local language or localizable application.

All Programming Languages

Create and use message catalogs. Do not hard-code any text messages, including prompts. For
example, never require a hard-coded "Y" or "N" in response to a question. The equivalents of
YES and NO for every language supported by NLS are available through a call to NLINFO item 8.

Use the NLS date and time formatting intrinsics. Do not use the MPE intrinsics DATELINE,
FMTCLOCK, FMTDATE and FMTCALENDAR. They all result in American-style output.

Check a character’s attribute, available through NLINFO item 12, to determine printability.
Alternatively, use the NLREPCHAR intrinsic to check whether the character gets replaced or not.
Do not use range checking on the binary value of a character to decide whether it is printable or
not.

Use the NLCOLLATE intrinsic to compare character strings. Do not compare character strings (IF
abc > pgr ... , where abc and pqr are both character strings). Since these comparisons are
based on binary values of characters as they appear in the USASCII sequence, they usually
produce incorrect results. Obviously, this is not applicable in case an exact match is tested (IF
abc = par ...).

Use NLSCANMOVE for upshifting and downshifting. Do not upshift or downshift based on the
character’s binary value. For a...z in USASCII, upshifting can be done by subtracting 32 from
the binary value. This does not work for all characters in all character sets.

To determine whether a character is uppercase or lowercase use the character attributes table
available through NLINFO item 12. Do not use a character’s binary value in range checks to
decide whether it is an uppercase or lowercase alphabetic character.

Much Hewlett-Packard and user-written software assumes that numeric characters (0 through 9)
are represented by code values 48 through 57 (decimal). In general, this is valid because standard
Hewlett-Packard 8-bit character sets are supersets of USASCII. However, some character sets
may have different or additional characters which should be ireated as numeric. Therefore, if at
all possible, avoid doing range checks on code values to recognize or process numeric characters.
For recognition of numeric characters, interrogate the character attributes table, available
through a call to MLINFO item 12.

Use the NLTRANSLATE intrinsic, not CTRANSLATE, to translate to or from EBCDIC.

Do your own formatting using the decimal separator, the thousands separator, and the currency
symbol available through NLINFO items 9 and 10. Use the standard statements to output into a
character string type variable. Replace the decimal and thousands separators by those required in
the language being used. Do not use standard output statements (PRINT, WRITE) for real

Application Guidelines

numbers, since this formats them according to the definition of the programming language. This
usually results in American formats with a period used as the decimal separator.

Input data into a character string, and preprocess the string to replace any decimal or thousands
separators used in the American formats. Then supply the string to the standard read statement.
Standard input statements for real numbers (READ, ACCEPT) should not be used as they accept the
period as the decimal separator. Many non-American users will input something else (a comma,
for example).

Always store standard formats for date and time (like those returned by FMTCALENDAR and
FMTCLOCK) if dates or times have to be stored in files or data bases. Never store a date or a time
in a local format. Intrinsics are available to convert from the standard format to a local format,
but the reverse is not always possible.

Do not use VPLUS/3000 terminal local edits. VPLUS/3000 edit processing specifications and
terminal edit processing statements are separate and are not checked for compatibility. There will
be no check that the designer has specified a terminal local edit which is consistent with the
language-dependent symbol for the decimal point (DEC_TYPE_EUR, DEC_TYPE_US) in the con-
figuration phase.

COBOLIlI (HP 32233A)

Use the character attributes table of the character set being used to determine whether a charac-
ter is ALPHABETIC or NUMERIC. This table is available through a call to NLINFO item 12. Do
not use the COBOLIl ALPHABETIC and NUMERIC class tests to determine this (e.g., If data-
item IS ALPHABETIC).

Do not use input-output translation by COBOLII from an EBCDIC character set by means of the
ALPHABET-NAME clause and the CODE SET clause. Use the NLTRANSLATE intrinsic.

Use the NLS date and time formatting intrinsics for display purposes. Do not use TIME-OF-DAY
and CURRENT-~DATE. These items are formatted in the conventional American way, and are
unsuitable for use in many other countries.

Use the COLLATING SEQUENCE IS [anguage-name or the COLLATING SEQUENCE IS
language-1D phrase in the enhanced SORT and MERGE statements to specify the language
name or number whose collating sequence is to be used. Do not use the COLLATING SEQUENCE
IS alphabet -name phrase for sorting and/or merging in COBOLII.

In condition-name data descriptions (88-level items), avoid the THRU option in the VALUE
clause (e.g., 88 SELECTED-ITEMS VALUE “A" THRU "F").

FORTRAN (HP 32102B)

L]

Format specifiers N and M will output in an American numerical format (with commas between
thousands and a decimal point) or an American monetary format (like N, with a "$" added).
Additional post processing will be required.

Outputting logicals will result in a "T" (for true) or an "F" (for false). Similarly, "T" and "F"
are expected for logical input. A non-English speaking user may want to use another character.

Application Guidelines
o The intrinsic functions RNUM, DNUM and STR all assume an American format in the input and
produce an American formatted output.

o The EXTIN® and INEXT’ entry points of the compiler library assume American formats. Do not
use them.

SPL (HP 32100A)

o To determine whether or not the byte is alphabetic, numeric, or special, consult the character at-
tribute table of the character set used. This table is available through NLINFO item 12. Do not
use the IF xyz = (or <>) ALPHA {or NUMERIC or SPECIAL) construct to determine this.

e Do not use the MOVE ... WHILE construct or the MVBW machine instruction. It stops moving

bytes based on the USASCII binary value of bytes, by which it determines whether the byte is al-
phabetic or numeric. Use the NLSCANMOVE intrinsic.

RPG (HP 32104A)

The features of NLS are accessed primarily through intrinsic calls. Using MPE and subsystem intrin-
sics from RPG requires expertise. For this reason, the use of RPG as a vehicle to write localizable ap-
plications or to access native language structures is not recommended. Some RPG functions, such as
date and numeric formatting, provide some control for national custom differences, but the choices
are very limited and can only be made by recompiling.

BASIC (HP 32101B)

The features of NLS are accessed primarily through intrinsic calls. Since most intrinsics are not call-
able from BASIC, the use of BASIC as a language to write localizable programs is not supported.

Pascal (HP 32106A)

A type of CHAR indicates an 8-bit entity, and thus allows processing of 8-bit characters without
problems.

G-3/G-4

%i\i:D”REanx

EXAMPLE PROGRAMS

The example programs in this Appendix demonstrate calls to NLS-related intrinsics from several
programming languages. They are not intended to be used as application programs.

A. Using SORT In A COBOLII Program

This program shows how to sort an input file (formal designator INPTFI LE) to an output file (formal
designator OUTPFILE) using a COBOLII SORT verb.

Lines 3.5 and 4.1 show how to specify the language to determine the collating sequence.

$CONTROL USLINIT
IDENTIFICATION DIVISION.
PROGRAM-1ID. EXAMPLE.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT INPTFILE ASSIGN TO "INPTFILE".
SELECT OUTPFILE ASSIGN TO "OUTPFILE".
SELECT SORTFILE ASSIGN TO "SORTFILE".

OO WM —

DATA DIVISION.

FILE SECTION.

SD SORTFILE.

01 SORTFILE-RECORD.
05 SORTFILE-KEY PIC X(4).
05 FILLER PIC X(68).

FD INPTFILE.
01 INPTFILE-RECORD PIC X(72).

OO Wwn -

FD OUTPFILE.
01 OUTPFILE~RECORD PIC X(72).

WORKING-STORAGE SECTION.
01 LANGUAGE PIC S9(4) COMP VALUE 12.

PROCEDURE DIVISION.
MAIN SECTION.
SORT SORTFILE
ASCENDING SORTFILE-KEY
SEQUENCE 1S LANGUAGE
USING INPTFILE
GIVING OUTPFILE.
STOP RUN.

W ~NOU AW =

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
P
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4

Example Programs

Line 3.5 could be written also as:
3.5 01 LANGUAGE PIC X(16) VALUE "SPANISH ".

In the example execution the input and output files are associated with the terminal ($STDIN and
~$STDLIST):

:FILE INPTFILE=$STDIN
¢FILE OUTPFILE=$STDLIST
:RUN PROGRAM;MAXDATA=12000

character
credit
DEBIT
:EOD
credit
character

DEBIT

END OF PROGRAM

Example Programs

B. Using SORT In A Pascal Program

This program shows how to sort an input file (formal designator INPF) to an output file (formal
designator OUTF) using SORTINIT intrinsic call.

1 $USLINITS

2 $STANDARD_LEVEL ’HP3000°$

3

4 PROGRAM example (inpf,outf);

5

6 TYPE

7 smallint = -32768 .. 32767;

8

9 sort_rec = RECORD

10 position: smallintg
11 length: smallint;
12 seq_type: smallinty
13 END;

14

15 char_seq = RECORD

16 array_code:smallint;
17 language: smallintg
18 END;

19
20 file_arr = RECORD
21 num_file: smallint;
22 num_zero: smallint;
23 END;
24
25 file_rec = PACKED ARRAY [1..72] of CHAR;
26
27 file num = FILE of file_rec;

28

29 VAR
30 nhumkeys: smallint;
3 reclen: smallint;
32 keys: sort_recy
33 cseq: char_seq;
34 inp: file _arr;
35 out: file_arr;
36 inpf: file num;
37 outf: file_num;
38

39 PROCEDURE sortinit; INTRINSIC;
40 PROCEDURE sortend; INTRINSIC;

41

42 PROCEDURE maing

43 BEGIN

44 numkeys := 13

45 reclen :=72;

46

47 WITH keys DO

48 BEGIN

49 position := 1;
50 length 1= 4y

Example Programs

51 seq_type := 93 -
52 END;

53

54 WITH cseq DO

55 BEGIN

56 array_code:=13
57 language:= 123
58 END;

59

60 WITH inp DO

61 BEGIN

62 RESET (inpf);
63 num_file := FNUM (inpf);
64 num_zero := 03
65 END;

66

67 WITH out DO

68 BEGIN

69 REWRITE (outf);
70 num file := FNUM (outf);
71 num_zero := 03
72 END;

73

74 sortinit (inp,out,,reclen,,numkeys,keys,,,,,,,,cseq);
75 sortend;

76

77 END;

78

79 BEGIN

80 main;

81 END.

In the example execution the input and output files are associated with the terminal ($STDIN and
$STDLIST):

:FILE INPF=$STDIN
¢FILE OUTF=$STDLIST
:RUN PROGRAM;MAXDATA=12000

character
credit
DEBIT
:EOD

credit
character
DEBIT

END OF PROGRAM

-

C. Using SORT In A FORTRAN Program

Example Programs

This program shows how to sort an input file (formal designator FTN21) to an output file (formal
designator FTN22) using SORTINIT intrinsic call.

1 $CONTROL USLINIT,FILE=21-22

2 PROGRAM EXMP

3 INTEGER FNUM

4 INTEGER N(4)

5 INTEGER KEYS (3)

6 INTEGER CSEQ (2)

7 SYSTEM INTRINSIC SORTINIT, SORTEND
8 c

9 C KEY (3) = 9 character type key
10 C CSEQ(2) = 12 Spanish collating sequence
" C

12 KEYS (1) = 1

13 KEYS (2) = 4

14 KEYS (3) = 9

15 CSEQ (1) = 1

16 CSEQ (2) = 12

17 C

18 (o4 Sort file FTN21 into FTN22

19 C
20 N (1) = FNUM (21)
21 N (3) = FNUM (22)
22 N (2) =0
23 N (4) =0
24 CALL SORTINIT (N(1),N(3),,,,1,KEYS,,,,,,,,CSEQ)
25 CALL SORTEND
26 STOP
27 END

In the example execution the input and output files are associated with the terminal ($STDIN and

$STDLIST):

:FILE FTN21=$STDIN
tFILE FTN22=$STDLIST
:RUN PROGRAM;MAXDATA=12000

character
credit
DEBIT
:EOD

credit
character
DEBIT

END OF PROGRAM

Example Programs

D. Using DATE/TIME Formatting Intrinsics In A FORTRAN Program

The user is asked to enter a language. All date and time formatting and conversion is done by using
the language entered by the user. The time and date used in the examples is the current system time
obtained by calling the HP 3000 system intrinsics CALENDAR and CLOCK.

1 $CONTROL USLINIT
2 PROGRAM EXAMPLE
3 LOGICAL LANGUAGE(8)
4 CHARACTER #*16 BLANGUAGE
5 c
6 LOGICAL LERROR(2)
7 INTEGER IERROR(2)
8 C
9 CHARACTER %13 BCUSTOMDATE
10 CHARACTER #28 BDATE
11 CHARACTER %18 BCALENDAR
12 CHARACTER #8 BCLOCK
13 C
14 LOGICAL LWEEKDAYS(42)
15 CHARACTER #12 BWEEKDAYS(T)
16 C
17 LOGICAL LMONTHS(72)
18 CHARACTER #12 BMONTHS(12)
19 c
20 EQUIVALENCE (LANGUAGE, BLANGUAGE)
21 EQUIVALENCE (LWEEKDAYS,BWEEKDAYS)
22 EQUIVALENCE (LMONTHS, BMONTHS)
23 EQUIVALENCE (LERROR, IERROR)
24 LOGICAL DATE
25 INTEGER #4 TIME
26 INTEGER LANGNUM, LGTH, WEEKDAY, MONTH
27 SYSTEM INTRINSIC CLOCK, CALENDAR, ALMANAC, NLINFO,
28 # NLFMTCLOCK, QUIT, NLCONVCLOCK, NLFMTDATE,
29 # NLFMTCALENDAR, NLFMTCUSTDATE, NLCONVCUSTDATE
30 c

31 1001 FORMAT (1X,A12)
32 1002 FORMAT (1X,A13)
33 1003 FORMAT (1X,A18)
34 1004 FORMAT (1X,A8)
35 1005 FORMAT (1X,A28)
36 2001 FORMAT (A16)

37 2002 FORMAT (A1)

38 C

39 1 WRITE (6,%)

40 #"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"
41 READ (5, 2001) BLANGUAGE

42 C

43 C NLINFO item 22 returns the corresponding

44 c lang number in integer format for this language.
45 C

46 CALL NLINFO (22, LANGUAGE, LANGNUM, LERROR)

47 IF (IERROR(1) .EQ. 0) GO TO 400

48 C

49

50
51
52
53
54
55
56
57
58
58
60
61
62
63
64
65
66
67
68
69
70

71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
85
86
97
98
99
100
101
102
103
104
105

OOOO0OO0

OO0

OO0 o OOO0O0 (9]

OO0

Example Programs

IF (IERROR(1) .NE. 1) GO TO 200

WRITE (6, *) "NLS IS NOT INSTALLED"
CALL QUIT (1001)

IF (IERROR(1) .NE. 2) GO TO 300

WRITE (6, *) "THIS LANGUAGE IS NOT CONFIGURED"
CALL QUIT (1002)

CALL QUIT (1000 + IERROR(1))

This obtains the machine internal clock and calendar
formats, which are provided by the HP 3000 intrinsics.

TIME
DATE

CLOCK
CALENDAR

Call ALMANAC and convert the machine internal
date format into numeric values, which will be used
as indices into the name tables.

CALL ALMANAC(DATE, LERROR, , MONTH, ,WEEKDAY)
IF (IERROR(1) .NE. 0) CALL QUIT (2000 + IERROR(1))

Call the tables for month and weekday names and
display todays day name and the current month’s name.

CALL NLINFO(5, LMONTHS, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (3000 + IERROR(1))

WRITE (6, 1001) BMONTHS (MONTH)

CALL NLINFO(T7, LWEEKDAYS, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (4000 + IERROR(1))

WRITE (6, 1001) BWEEKDAYS (WEEKDAY)

Format the machine internal date format
into the custom date format {short version).
The result will be displayed.

CALL NLFMTCUSTDATE (DATE, BCUSTOMDATE, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (5000 + IERROR(1))

WRITE (6,%) "CUSTOM DATE:"
WRITE (6,1002) BCUSTOMDATE

Use the output of NLFMTCUSTDATE as input for
NLCONVCUSTDATE and convert back to the internal format.

DATE = NLCONVCUSTDATE (BCUSTOMDATE, 13, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (8000 + IERROR(1))

Format the machine internal date format into the
date format (long format) according to the language.

H-7

Example Programs

106
107
108
108
110 C
1"
12
113
114
115
116
"7
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136 C
137

138

139 C
140 C
141

142

OO

OOOO0 O OOOOO0

OO0

The result will be displayed.

CALL NLFMTCALENDAR(DATE, BCALENDAR, LANGNUM, LERROR)
IF (IERROR(1) .NE. O) CALL QUIT (7000 + IERROR(1))

WRITE (6,%) "DATE FORMAT:"
WRITE (6,1003) BCALENDAR

Format the machine internal time format into the
language-dependent clock format.
The result will be displayed.

CALL NLFMTCLOCK(TIME, BCLOCK, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (8000 + IERROR(1))

WRITE (6,%) "TIME FORMAT:"
WRITE (6,1004) BCLOCK

Use the output of NLFMTCLOCK as input for
NLCONVCLOCK and convert back to the internal format.

TIME = NLCONVCLOCK(BCLOCK, 8, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (9000 + IERROR(1))

Format the machine internal time and date format
into the language dependent format.
The result will be displayed.

CALL NLFMTDATE(DATE, TIME, BDATE, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (10000 + IERROR(1))

WRITE (6,%) "DATE AND TIME FORMAT:"
WRITE (6, 1005) BDATE

STOP
END

Executing the program gives the following result:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

NATIVE-3000
JANUARY
TUESDAY
CUSTOM DATE:
01/31/84
DATE FORMAT:
TUE, JAN 31,
TIME FORMAT:
5:15 PM

1984

DATE AND TIME FORMAT:

TUE, JAN 31,

1984, 5:15 PM

Example Programs

END OF PROGRAM
:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
8

Januar

Dienstag

CUSTOM DATE:

31.01.84

DATE FORMAT:

Di., 31. Jan. 1984

TIME FORMAT:

17:15

DATE AND TIME FORMAT:
Di., 31. Jan. 1984, 17:15

END OF PROGRAM

Example Programs

E. Using The DATE/TIME Formatting Intrinsics In An SPL Program

The user is asked to enter a language. All date and time formatting and conversion is done by using
the language entered by the user. The time and date used in the examples is the current system time
obtained by calling the HP 3000 system intrinsics CALENDAR and CLOCK.

1 $CONTROL USLINIT

2 BEGIN

3 LOGICAL ARRAY

4 L ’ERROR (0:1),

5 L *LANGUAGE (0:7),

6 L’PRINT (0:39),

7 L ’CUSTOM *DATE (0:6),

8 L *DATE (0:13),

9 L *CALENDAR (0:8),

10 L "MONTHS (0:71),

11 L *WEEKDAYS (0:41),

12 L *’CLOCK (0:3);

13

14 BYTE ARRAY

15 B*PRINT (%) = L°PRINT,

16 B CUSTOM’DATE(*) = L°’CUSTOM’DATE,
17 B’CALENDAR(*) = L°’CALENDAR,
18 B ’DATE (#) = L’DATE,

19 B ’MONTHS (#) = L°’MONTHS,
20 B WEEKDAYS (#) = L ’WEEKDAYS,
21 B ’CLOCK () = L’CLOCK;
22
23 BYTE POINTER
24 BP’PRINT;

25

26 DOUBLE
27 TIME;
28
29 LOGICAL
30 DATE,
31 HOUR *MINUTE = TIME,
32 SECONDS = TIME + 1,
33
34 INTEGER
35 YEAR,
36 MONTH,
37 DAY,
38 WEEKDAY,
39 LGTH,

40 LANGNUM;

41

42 DEFINE

43 WEEKDAY *NAME = B’WEEKDAYS((WEEKDAY - 1) # 12)#,
44

45 MONTH >NAME = B’MONTHS((MONTH - 1) # 12)#,
46

47 ERR *CHECK = IF L’ERROR(0) <> O THEN.
48 QUIT #,

49 -

50
51
52
53

54

55
56
57
58
58
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
83
90
91
92
a3
94
95
96
o7
98
99
100
101
102
103
104
105

Example Programs

CCNE = [F <> THEN
QUIT #,
DISPLAY = MOVE B’PRINT := #,

ON’STDLIST

,23

@BP’PRINT := TOS;

LGTH

:= LOGICAL(@BP’PRINT) -
LOGICAL(@B’PRINT);

PRINT(L’PRINT, -LGTH, 0) #;

INTRINSIC

READ,

QuIT,

PRINT,

cLocK,
CALENDAR,
ALMANAC,
NLINFO,
NLFMTCLOCK,
NLCONVCLOCK,
NLFMTDATE,
NLFMTCALENDAR,
NLFMTCUSTDATE,
NLCONVCUSTDATE ;

<< Start of main code.

<<

DISPLAY
"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"
ON’STDLIST;

READ(L LANGUAGE ,-16)

BEGIN

The user is asked to enter a language name or number.>>

NLINFO item 22 returns the corresponding
lang number in integer format for this language. >>

NLINFO(22,L *LANGUAGE , LANGNUM, L *’ERROR) ;
IF L’ERROR(0) <> O THEN

IF L’ERROR(0) = 1 THEN

BEGIN
DISPLAY

“NL/3000 IS NOT INSTALLED"

ON’STDLIST;
QUIT(1001);

END
ELSE

IF L’ERROR(0)

BEGIN

DISPLAY

= 2 THEN

"THIS LANGUAGE IS NOT CONFIGURED"
ON°STDLIST;
QUIT(1002);

Example Programs

106
107
108
109
110
111
112
113
114
115
116
"7
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
138
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

<<

<<

<<

<<

<<

<<
<<
<<

END
ELSE
QUIT (1000 + L’ERROR(0));
END;

This obtains the machine internal clock and
calendar formats which is maintained by MPE. >
TIME := CLOCK;
DATE := CALENDAR;

Call ALMANAC and convert the machine internal date
format into numeric values, which will be used as indices
into the name tables. >>

ALMANAC (DATE, L’ERROR, , MONTH, , WEEKDAY);
ERR’CHECK (2000 + L’ERROR(0));

Call the tables for month and weekday names and
display todays day name and the current month’s name. >>

NLINFO(5, L’MONTHS, LANGNUM, L’ERROR);
ERR’CHECK (3000 + L’ERROR(0));

DISPLAY MONTH’NAME, (12) ON’STDLIST;

NLINFO(7, L’WEEKDAYS, LANGNUM, L’ERROR);
ERR’CHECK (4000 + L’ERROR(0));

DISPLAY WEEKDAY NAME, (12) ON’STDLIST;
Format the machine internal date format
into the custom date format (short version).

The result will be displayed. >>

NLFMTCUSTDATE (DATE, L *CUSTOM *DATE , LANGNUM, L ’ERROR) 3
ERR’CHECK (5000 + L’ERROR(0));

DISPLAY "CUSTOM DATE:" ON’STDLIST;
DISPLAY B’CUSTOM’DATE,(13) ON’STDLIST;

Use the output of NLFMTCUSTDATE as input for
NLCONVCUSTDATE and convert back to the internal format.>>

DATE := NLCONVCUSTDATE (B’CUSTOM’DATE, 13,LANGNUM, L ’ERROR) ;
ERR’CHECK (6000 + L’ERROR(0));

Format the machine internal date format into the >
date format (long format) according to the language. >>
The result will be displayed. >>

NLFMTCALENDAR (DATE , L *CALENDAR, LANGNUM, L ’ERROR) ;
ERR’CHECK (7000 + L’ERROR(0));

DISPLAY “DATE FORMAT:" ON’STDLIST;

H-12

162 DISPLAY B’CALENDAR, (18) ON’STDLIST;

163

164 << Format the machine internal clock format

165 into the language-dependent clock format.
166 The result will be displayed.

167

168 NLFMTCLOCK (TIME,L *CLOCK, LANGNUM, L ’ERROR) 3
169 ERR’CHECK (8000 + L’ERROR(0));

170 :

171 DISPLAY "TIME FORMAT:" ON’STDLIST;

172 DISPLAY B’CLOCK,(8) ON’STDLIST;

173

174 << Use the output of NLFMTCLOCK as input for
175 NLCONVCLOCK and convert back to the internal format.
176

177 TIME := NLCONVCLOCK(B’CLOCK,8,LANGNUM,L "ERROR);
178 ERR*CHECK (9000 + L’ERROR(0)):

179

180 << Format the machine internal time and date
181 format into the language-dependent format.
182 The result will be displayed.

183

184 NLFMTDATE(DATE,TIME,L’DATE,LANGNUM,L’ERROR);
185 ERR’CHECK (10000 + L’ERROR{0));

186

187 DISPLAY "DATE AND TIME FORMAT:" ON’STDLIST;
188 DISPLAY B’DATE,(28) ON’STDLIST;

189

190 END.

Executing the program results in the following:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

GERMAN

Januar

Dienstag

CUSTOM DATE:

31.01.84

DATE FORMAT:

Di., 31. Jan. 1984
TIME FORMAT:

17:12

DATE AND TIME FORMAT:
Di., 31. Jan. 1984, 17:12

END OF PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

o
JANUARY
TUESDAY

>>

>>

>>

Example Programs

Example Programs

CUSTOM DATE:

01/31/84

DATE FORMAT:

TUE, JAN 31, 1984

TIME FORMAT:

5:13 PM

DATE AND TIME FORMAT:

TUE, JAN 31, 1984, 5:13 PM

END OF PROGRAM

Example Programs

F. Using The NLSCANMOVE Intrinsic In A COBOLII Program

In this program there are six different calls to NLSCANMOVE. In every call all parameters are passed to
NLSCANMOVE. Since the upshift/downshift table and the character attributes table are optional
parameters, they may be omitted. For performance reasons (if NLSCANMOVE is called frequently)
they should be passed to the intrinsic after being read in by the appropriate calls to NLINFO.

1 $CONTROL USLINIT

1.1 IDENTIFICATION DIVISION.

1.2 PROGRAM-1D. EXAMPLE.

1.3 AUTHOR. LORO.

1.4 ENVIRONMENT DIVISION.

1.5 DATA DIVISION,

1.6 WORKING-STORAGE SECTION.

1.7 77 QUITPARM PIC S9(4) COMP VALUE 0.
1.8 77 LANGNUM PIC S9(4) COMP VALUE O.
1.9 77 FLAGS PIC S9(4) COMP VALUE O.
2 77 LEN PIC S9(4) COMP VALUE 70.
2.1 77 NUMCHAR PIC S9(4) COMP VALUE O.
2.2

2.3 01 TABLES.

2.4 05 CHARSET-TABLE PIC X(256) VALUE SPACES.
2.5 05 UPSHIFT-TABLE PIC X(256) VALUE SPACES.
2.6 05 DOWNSHIFT-TABLE PIC X(256) VALUE SPACES.
2.7

2.8 01 STRINGS.

2.9 05 INSTRING.

3 10 INSTR1 : PIC X(40) VALUE SPACES.
3.1 10 INSTR2 PIC X(30) VALUE SPACES.
3.2 05 OUTSTRING PIC X(70) VALUE SPACES.
3.3 05 LANGUAGE PIC X(16) VALUE SPACES.
3.4

3.5 01 ERRORS.

3.6 05 ERR1 PIC S9(4) COMP.

3.7 88 NO-NLS VALUE 1.

3.8 88 NOT-CONFIG VALUE 2.

3.9 05 ERR2 PIC S9(4) COMP VALUE O.
4

4.1 PROCEDURE DIVISION.

4.2 START-PGM.

4.3 # Initializing the arrays.

4.4

4.5 MOVE "abCDfg6i jkakBbgcGjGT1$ESAIINdEeE1a23%&T7"

4.6 TO INSTRI1.

4.7 MOVE "a 123&i12fARgghk IKLabCDASAUNI"

4.8 TO INSTR2.

4.9

5 # The user is asked to enter a language name or number.
5.1

5.2 DISPLAY

5.3 "ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):".
5.4 ACCEPT LANGUAGE.

5.5

5.6 CONVERT-NAME-NUM.

5.7

NLINFO item 22 returns the corresponding

H-15

Example Programs

lang number in integer format for this language.

O

CALL INTRINSIC "NLINFO" USING 22,
LANGUAGE,
LANGNUM,
ERRORS.
IF ERR1 NOT EQUAL ©
IF NO-NLS
DISPLAY "NL/3000 IS NOT INSTALLED"
CALL INTRINSIC "QUIT" USING 1001
ELSE
IF NOT-CONFIG
DISPLAY "THIS LANGUAGE IS NOT CONFIGURED"
CALL INTRINSIC "QUIT" USING 1002
ELSE
COMPUTE QUITPARM = 1000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

OO~ WD =

GET-TABLES.
Obtain the character attributes table
using NLINFO item 12,

OO0 WN —

CALL INTRINSIC "NLINFO" USING 12,
CHARSET-TABLE,
LANGNUM,
ERRORS.
IF ERR1 NOT EQUAL O
COMPUTE QUITPARM = 2000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

Obtain the upshift table using NLINFO item 15.

CONOUI WD -

CALL INTRINSIC "NLINFO" USING 15,
UPSHIFT-TABLE,
LANGNUM,
ERRORS.
IF ERR1 NOT EQUAL O
COMPUTE QUITPARM = 3000 + ERRI
CALL INTRINSIC "QUIT" USING QUITPARM.

*# Obtain the downshift table using NLINFO item 16.

DOWOWCOWOOOWOOVPOVMPODBO®POPONNNNNANNANNNODOIDOODDO O VUV

WO WM —

—_
o

CALL INTRINSIC "NLINFO" USING 16
| DOWNSHIFT-TABLE,
LANGNUM,
ERRORS .

U R QDI G Y
(oo ole

IF ERR1 NOT EQUAL O
COMPUTE QUITPARM = 4000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

-
o o

DISPLAY "THE FOLLOWING STRING IS USED IN ALL EXAMPLES:"
DISPLAY INSTRING.

—t amh med -
- O O o
OO NOU N WM —

-
—

EXAMPLE-1-1.
* The string passed in the array instring should be moved
and upshifted simultaneously to the array outstring.

o Y N
-~ 4
oo
wn -

H-16

11.4
11.5
11.6
1.7
11.8
11.9
12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
16

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

% % % % Kk Kk ¥k ¥k ¥k k ¥

f % k% ok ¥k ¥ K % ¥ %k Kk K Kk ¥

Example Programs

Set the until flag (bit 11 = 1) and the
upshift flag (bit 10 = 1). All other flags remain O.
0123456789012345
00000000001 10000 = 860(octal) = 48(dec)
Note: The ’until flag’ is set. Therefore, the operation continues
until one of the ending criteria will be true.
If no ending condition is set, the operation
continues for the number of characters contained in
length.
MOVE 48 TO FLAGS.

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHIFT-TABLE
GIVING NUMCHAR.
IF ERR1 NOT EQUAL O
COMPUTE QUITPARM = 5000 + ERRT
CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY "UPSHIFTED: (EXAMPLE 1-1)",
DISPLAY OUTSTRING.

EXAMPLE-1-2.

The string passed in the array instring should be moved
and upshifted to the array outstring (same as EXAMPLE 1-1).
Set the while flag (bit 11 = 0) and the upshift flag
(bit 10 = 1). 1In addition all ending conditions will be
set {bits 12 - 15 all 1).
012345678901 2345 BITS
0000000000101 111 =57(octal) = 47(dec.)
Note: The ’while flag’® is set. Therefore, the operation
continues while one of the end criteria is true.
Since all criteria are set, one of them will be
always true, and the operation continues for the

number of characters contained in length.

MOVE SPACES TO OUTSTRING.

MOVE 0 TO FLAGS.

MOVE 47 TO FLAGS.

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,

Example Programs

17

17.
17.
17.
17.
17,
17.
17.
17.
17.

18

18,
18.
18.
18.
18.
18.
18.
18.

18
19

-

18.
19.
19.
19.
19.
19,
19.
19,
19.

20

20.
20.
20.
20.
20.
20.
20,
20.
20.

21

21.
21,
21.
21.
21.
21.
21.
21.
21.

22

22.
22.
22,
22.
22,

WOy H WM — OE~NO U WMo — WO NO U WN — WSO~ WN =

©CO~NOOUH WD —-

Gl WM —

% % % % %k % K R K K K X ¥ ¥ ¥

¥ % k % k % * *

CHARSET-TABLE,
UPSHIFT-TABLE
GIVING NUMCHAR.

IF ERR1 NOT EQUAL O
CALL INTRINSIC "QUIT" USING 6.

DISPLAY "UPSHIFTED: (EXAMPLE 1-2)".
DISPLAY OUTSTRING.

EXAMPLE-2-1.

The string passed in the array instring should be
scanned for the first occurrence of a special character.
All characters before the first special character are
moved to outstring.
Set the until flag (bit 11 = 1) and the special
character flag (bit 12 = 1). All other flags remain zero.
0123456788012345 BITS
000000000001 1000 = 30(octal) = 24(dec.)
Note: The ’‘until flag’ is set and the ending condition is
set to ’special character’. Therefore, the operation
continues until the first special character is found
or until the number of characters contained in

length is processed.
MOVE SPACES TO OUTSTRING.
MOVE 24 TO FLAGS.

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHIFT-TABLE
GIVING NUMCHAR.
IF ERR1 NOT EQUAL O
COMPUTE QUITPARM = 7000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM,

DISPLAY "SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)".
DISPLAY OUTSTRING.

EXAMPLE-2-2.

The string passed in the array instring should

be scanned for the first occurrence of a special
character. All characters before the first special
character are moved to outstring (same as EXAMPLE 2-1).
Set the while flag (bit 11 = 0) and all condition

flags except for special characters (bits 13 - 15 = 1),

0123456789012345 BITS

H-18

22.6
22.7
22.8
22.9
23

23.1
£3.2
23.3
23.4
23.5
23.6
23.7
23.8
23.9
24

24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
24.9
25

25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
25.9
26

26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
27

27.1
27.2
27.3
27.4
27.5
27.6
27.7
27.8
27.9
28

28.1

® % X % k% ¥ X X ¥

%k ok ok ok ok ok % % % B ok ok Rk Kk ¥ %k %k %

Example Programs

00000000000001 11 = T(octal) = T7(dec.)

Note: The ’while flag’ is set and all ending criteria
except for special characters are set. Therefore, the
operation continues while an uppercase, a lowercase, or
a numeric character is found. When a special
character is found, or the number of characters
contained in length is processed, the operation will
terminate.

MOVE SPACES TO OUTSTRING.
MOVE 7 TO FLAGS.

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHIFT-TABLE

GIVING NUMCHAR.

IF ERR1 NOT EQUAL O
COMPUTE QUITPARM = 8000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY "SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)".
DISPLAY OUTSTRING.

EXAMPLE-3-1,

The string passed in the array instring should be
scanned for the first occurrence of a special or numeric
character. All characters before one of these characters
are moved to outstring and downshifted simultaneously.
Set the until flag (bit 11 = 1) and the ending condition
flags for special and numeric characters (bits 12-13 = 1).
To perform downshifting set bit 9 to 1.
012345678901 2345 BITS
000000000101 1100 = 134(octal) = 92(dec.)
Note: The ’until flag’ is set and the ending condition is
set to ’special character’ and to ’numeric character’.
Therefore, the operation continues until the first
special or numeric character is found, or
until the number of characters contained in length

is processed.
MOVE SPACES TO OUTSTRING.
MOVE 92 TO FLAGS.

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,

H-19

Example Programs

28.
28.
28.
28.
28.
28.
28.
28.

29

29.
29.
29.
29.
29,
29.
29.
29.
29.

30

30.
30.
30.
30.
30.
30.
30.
30.
30.

31

31.
31.
31.
31.
31.
31.
31.
31.
31.

32

3e.
32.
32,
32.
32.
3z2.
32.
32.
32.

33

33.
33,
33.
33.
33.
33.
33.

OO UTh WM -— QOO WM — OoO~NOUL WM — OCWNOOTD WN — OO~y WM

~NOoO U W —

® % % £ K R % k % X ¥ ¥ ¥ ¥ K ¥ K ¥ ¥

OUTSTRING,

FLAGS,

LEN,

LANGNUM,

ERRORS,

CHARSET-TABLE,

DOWNSHIFT-TABLE
GIVING NUMCHAR.

IF ERR1 NOT EQUAL TO O
COMPUTE QUITPARM = 9000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY
“SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)".
DISPLAY OUTSTRING.

EXAMPLE-3-2.
The string passed in the array instring should be
scanned for the first occurrence of a special or numeric
character. All characters before one of these characters
are moved to outstring and downshifted simultaneously
{(same as EXAMPLE-3-2).
Set the while flag (bit 11 = 0) and the condition
flags for upper and lower case characters (bits 14-15 = 1),
To perform downshifting set bit 9 to 1.
012345678901 2345 BITS
0000000001 000011 = 103(octal) = 67(dec.)
Note: The ’while flag’ is set and the ending criteria for
upppercase and lowercase characters are set.
Therefore, the operation continues while an uppercase or
a lowercase character is found. When a special
or a numeric character is found, or ths number of
characters contained in length is processed, the
operation will terminate.

MOVE SPACES TO OUTSTRING.
MOVE 67 TO FLAGS.

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS ,
CHARSET-TABLE,
DOWNSHIFT-TABLE

GIVING NUMCHAR.

IF ERR1 NOT EQUAL O

COMPUTE QUITPARM = 10000 + ERRT1,
CALL INTRINSIC "QUIT" USING QUITPARM.

H-20

Example Programs

33.8 DISPLAY

33.9 "SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)".
34 DISPLAY OUTSTRING. '

34.1

34.2 STOP RUN.

Executing the program results in the following:
:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

GERMAN -

THE FOLLOWING STRING IS USED IN ALL EXAMPLES:

abCDfg6i jkakBbgcGjGT1f$ESAlINdEeE1a23%&T7a 123%i12f4Rgghk1KLabCDASAUN |
UPSHIFTED: (EXAMPLE 1-1)

ABCDFGBIJKAZABBCGJIGF 1F$EISAUNDAEE1A23%&TA 123& 1 12FARGBHKLKLABCDASAUNT
UPSHIFTED: (EXAMPLE 1-2)

ABCDFGBIJKAARBPICGIGF1F$E! SAUNDAEE1A23%&TA 123&1 12FARGHHKLKLABCDASAUNI
SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)

abCDfg6 i jkaABbgcGjGf1f

SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)

abCDfg6 i jkaABbgcG jGF1f

SCAN/MOVE /DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)

abedfg

SCAN/MOVE /DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)

abedfg

END OF PROGRAM

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

0

THE FOLLOWING STRING IS USED IN ALL EXAMPLES:

abCDfg6i jkaklbgcGjGf1f$EI SALNdEeE1a23%&Ta 123&i12fARgghk IKLabCDASAUN
UPSHIFTED: (EXAMPLE 1-1)

ABCDFG61JKAAABZFCGIGF 1F$EISAUNDIEE1A23%&TA 123&1 12FAAGEHKLKLABCDASAURNI
UPSHIFTED: (EXAMPLE 1-2)

ABCDFG6IJKAAABFCGIGF 1F$E! SAUNDIEE1A23%&TA 123& 1 12FAAGEHKLKLABCDASAUNI
SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)

abCDfg6ijka

SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)

abCDfg6ijka

SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)

abcdfg

SCAN/MOVE /DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)

abedfg

END OF PROGRAM

Example Programs

G. Using The NLSCANMOVE Intrinsic In An SPL Program

In this program there are six different calls to NLSCANMOVE. In every call, parameters are passed to
NLSCANMOVE. Since the upshift/downshift table and the character attributes table are optional
parameters, they may be omitted. For performance reasons (if NLSCANMOVE is called frequently)
they should be passed to the intrinsic after being read in by the appropriate calls to NLINFO.

1 $CONTROL USLINIT

2 BEGIN

3 LOGICAL ARRAY

4 L UPSHIFT (0:127),

5 L °DOWNSHIFT (0:127),

6 L *CHARSET (0:127),

7 _L’ERROR (0:1),

8 L’INSTRING (0:34),

g L>OUTSTRING (0:34),

10 L ’PRINT (0:34),

11 L°LANGUAGE (0:7);

12

13 BYTE ARRAY

14 B’INSTRING(#) = L’INSTRING,
15 B’OUTSTRING(*) = L’OUTSTRING,
16 B*PRINT () = L°PRINT;

17

18 BYTE POINTER

19 BP*PRINT;
20
21 INTEGER
22 LANGNUM,
23 NUM’CHAR,

24 LGTH,
25 LENGTH;
26
27 LOGICAL
28 FLAGS;
29
30 DEFINE
31 LOWER *CASE = FLAGS. (15:1)#,
32 UPPER *CASE = FLAGS. (14:1)#,
33 NUMERIC’CHAR = FLAGS.(13:1)#,
34 SPECIAL’CHAR = FLAGS.(12:1)#,
35
36 WHILE *UNTIL = FLAGS. (11:1)#,
37
38 UPSHIFT’FLAG = FLAGS.(10:1)#,
39 DOWNSHIFT’FLAG = FLAGS. (9:1)#,
40

41 ERROR’CHECK = IF L’ERROR(0) <> O THEN
42 QUIT #,

43

44 CCNE = IF <> THEN
45 QUIT #,

46

47 DISPLAY = MOVE B’PRINT := #,
48

H-22

Example Programs

49 ON’STDLIST = ,2;
50 : @BP’PRINT := TOS;

51 LGTH := LOGICAL(@BP’PRINT) -

52 LOGICAL (€B’PRINT);

53 PRINT(L’PRINT, -LGTH, 0) #;

54

55

56 INTRINSIC

57 READ,

58 QUIT,

59 PRINT,

60 NLINFO,

61 NLSCANMOVE ;

62

63

64 << Start of main code.

65 Initializing the arrays. >>
66

67 MOVE B’INSTRING
68 := "abCDfg6i jkaklbgcGiGF1f$EISAINdEeE1223%&T",2;
69 MOVE % "a 123&i12fARgghk 1KLabCDASAGNI"

70

71 MOVE L °’OUTSTRING ="y

T2 MOVE L’OUTSTRING(1) L ’OUTSTRING, (39);

73

74 MOVE L ’LANGUAGE ="y

75 MOVE L’LANGUAGE(1) L *LANGUAGE, (7);

76

177 << The user is asked to enter a language name or number. >>
78

79 DISPLAY

80 "ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"
81 ON’STDLIST;

82

83 READ(L *LANGUAGE,-16);

84

85 << NLINFO jtem 22 returns the corresponding language

86 number in integer format for this language. >>
87

88 NLINFO(22,L *LANGUAGE ,LANGNUM,L "ERROR) ;

89 IF L’ERROR(0) <> O THEN

90 BEGIN

91 IF L’ERROR(Q) = 1 THEN

92 BEGIN

93 DISPLAY

94 "NL/3000 IS NOT INSTALLED"

95 CN’STDLIST;

96 QUIT (1001);

97 END

98 ELSE

89 IF L’ERROR(0) = 2 THEN

100 BEGIN

101 DISPLAY

102 "THIS LANGUAGE IS NOT CONFIGURED"

103 ON’STDLIST;

104 QUIT (1002);

nn
" ou

non

H-23

Example Programs

105
106
107
108
109
110
11

112
13
114
115
116
17
118
119
120
121

122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
138
140
141

142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160

<<

<<

<<

<<

END
ELSE
QUIT (1000 + L’ERROR(0));
END;

Obtain the character attributes table using
NLINFO item 12.

NLINFO(12,L >*CHARSET,LANGNUM, L ’ERROR) ;
ERROR *CHECK (2000 + L’ERROR(0));

Obtain the upshift table using NLINFO item 15.

NLINFO(15,L >UPSHIFT,LANGNUM,L *ERROR) ;
ERROR *CHECK (3000 + L’ERROR(0));

Obtain the downshift table using NLINFO item 16.

NLINFO(16,L *DOWNSHIFT,LANGNUM,L *ERROR) 3
ERROR *CHECK (4000 + L’ERROR(0));

Print the character string used in all examples(instring).

DISPLAY

"THE FOLLOWING STRING IS USED IN ALL EXAMPLES:"
ON’STDLIST;
DISPLAY B’INSTRING,(70) ON’STDLIST;

EXAMPLE’1°1:

<<

The string passed in the array instring is moved and

UPSHIFTED to the array outstring.

Note: The ’until flag’ is set. Therefore, the operation
continues until one of the ending criteria is true.
If no ending condition was set the
operation continues for the number of characters
contained in length.

LENGTH t= 703

FLAGS := 03

WHILE UNTIL 13
UPSHIFT ’FLAG =13

NUM’CHAR := NLSCANMOVE(B’INSTRING, B’OUTSTRING, FLAGS,

LENGTH, LANGNUM, L’ERROR, L’CHARSET, L’UPSHIFT);

ERROR *CHECK (5000 + L’ERROR(0));

DISPLAY "UPSHIFTED: (EXAMPLE 1-1)" ON’STDLIST;
DISPLAY B’OUTSTRING, (NUM’CHAR) ON’STDLIST;

EXAMPLE*1°2:
Note: The ’while flag’ is set. Therefore, the operation will

<<

continue while one of the end criteria is true. Since

all conditions are set, one of them will be always

H-24

>>

>>

>>

>>

>>

Example Programs

161 true and the operation continues for the number of
162 characters contained in length. This example performs
163 the same operation as EXAMPLE 1-1. >>
164 .

165 MOVE L’OUTSTRING = "My

166 MOVE L’OUTSTRING(1) = L’OUTSTRING, (39);

187

168 FLAGS 1= 03

169

170 LOWER *CASE =13

171 UPPER *CASE = 13

172 SPECIAL CHAR =1

173 NUMERIC *CHAR =1

174

175 WHILEUNTIL = 0;

176 UPSHIFT ’FLAG = 1;

177

178 NUM’CHAR := NLSCANMOVE (B’INSTRING, B’OUTSTRING, FLAGS,

179 LENGTH, LANGNUM, L’ERROR, L°’CHARSET, L’UPSHIFT);
180 ERROR *CHECK (6000 + L’ERROR(0));

181

182 DISPLAY "UPSHIFTED: (EXAMPLE 1-2)" ON’STDLIST;

183 DISPLAY B’OUTSTRING, (NUM’CHAR) ON’STDLIST;

184

185 EXAMPLE’2°’1:
186 << The string contained in instring should be scanned for the

187 first occurrence of a special character. All characters
188 before the first special are moved to outstring.

189 Note: The ’until.flag’ is set and the ending condition is
180 set to ’special character’. Therefore, the operation
191 continues until the first special character is found or
182 until the number of characters contained in length
193 is processed. >>
194

195

196 MOVE L ’OUTSTRING = "

197 MOVE L ’OUTSTRING(1) = L’OUTSTRING, (39);

198

199 FLAGS := 0y

200

201 SPECIAL *CHAR = 13

202

203 WHILE UNTIL = 1;

204 UPSHIFT *FLAG = 03

205

206 NUM’CHAR := NLSCANMOVE(B’INSTRING, B’OUTSTRING, FLAGS,

207 LENGTH, LANGNUM, L’ERROR, L’CHARSET, L’UPSHIFT);
208 ERROR’CHECK (7000 + L ’ERROR(0));

209

210 DISPLAY "SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)"

211 ON’STDLIST;

212 DISPLAY B’OUTSTRING, (NUM’CHAR) ON’STDLIST;

213

214 EXAMPLE’2’2:
215 << Note: The ’while flag’ is set and all ending criteria
216 except for special characters are set. Therefore, the

H-25

Example Programs

217 operation continues while an uppercase, a lowercase, or
218 a numeric character is found. When a special

219 character is found or the number of characters

220 contained in length is processed, the operation will
221 terminate.

222 This is the same operation as in EXAMPLE 2-1. >>
223

224 MOVE L’OUTSTRING = "y

225 MOVE L’ OUTSTRING(1) := L’OUTSTRING, (39);

226

227 FLAGS = 03

228

229 LOWER *CASE =13

230 UPPER *CASE = 13

231 SPECIAL CHAR = 03

232 NUMERIC "CHAR = 13

233

234 WHILE UNTIL = 03

235 UPSHIFT ’FLAG = 03

236

237 NUM’CHAR := NLSCANMOVE (B’INSTRING, B’OUTSTRING, FLAGS,

238 LENGTH, LANGNUM, L’ERROR, L’CHARSET, L’UPSHIFT);
239 ERROR *CHECK (8000 + L’ERROR(0));

240

241 DISPLAY "SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)"

242 ON’STDLIST;

243 DISPLAY B’OUTSTRING,(NUM’CHAR) ON’STDLIST;

244

245 EXAMPLE’3°1:
246 << The data contained in instring should be scanned for the

247 first occurrence of a numeric or a special character.

248 All characters preceding the first special or numeric character
249 are moved to outstring.

250 Note: The ’until flag’ is set and the ending conditions are
251 set to ’special character’ and to ’numeric character’.
252 Therefore, the operation runs until the first

253 special or numeric character is found, or

254 until the number of characters contained in length

255 is processed. >>
256

257

258 MOVE L ’OUTSTRING ="

258 MOVE L ’OUTSTRING(1) := L’OUTSTRING,(39);

260

261 FLAGS := 03

262

263 SPECIAL *CHAR =13

264 NUMERIC *CHAR =13

265

266 WHILE UNTIL =13

267 DOWNSHIFT’FLAG := 1;

268

269 NUM’CHAR := NLSCANMOVE (B’INSTRING, B’OUTSTRING, FLAGS,

270 LENGTH, LANGNUM, L’ERROR, L’CHARSET, L DOWNSHIFT);
271 ERROR *CHECK (9000 + L’ERROR(O0)); ’
2Te

H-26

Example Programs

273 DISPLAY

274 "“SCAN/MOVE /DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)"
275 ON’STDLIST;

276 DISPLAY B’OUTSTRING, (NUM’CHAR) ON’STDLIST;

277

278 EXAMPLE ’3°2:
279 << Note: The ’while flag’ is set and the ending criteria for

280 upppercase and lowercase characters are set.

281 Therefore, the operation continues while an uppercase or
282 a lowercase character is found. When a special

283 or numeric character is found or the number of

284 characters contained in length is processed, the

285 operation will terminate.

286 This is the same operation as in EXAMPLE 3-1, >>
287

288 MOVE L’OUTSTRING = Yy

289 MOVE L ’OUTSTRING(1) := L’OUTSTRING, (39);

290

291 FLAGS = 03

292

293 LOWER *CASE = 13

294 UPPER *CASE = 13

295

296 WHILE UNTIL = 0y

287 DOWNSHIFT’FLAG := 1;

298

299 NUM’CHAR := NLSCANMOVE(B’INSTRING, B’OUTSTRING, FLAGS,

300 LENGTH, LANGNUM, L’ERROR, L’CHARSET, L’DOWNSHIFT);
301 ERROR *CHECK (1000 + L’ERROR(0));

302

303 DISPLAY

304 "SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)"

305 ON’STDLIST;

306 DISPLAY B’OUTSTRING, (NUM’CHAR) ON’STDLIST;

307

308 END.

Executing the program results in the following:
:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

GERMAN

THE FOLLOWING STRING IS USED IN ALL EXAMPLES:

abCDTg6 | jka&RbgcG jGT17S$E SAUNdSeE1a23%kTa 123&i12FARgghk IKLabCDASAUN i
UPSHIFTED: {(EXAMPLE 1-1)

ABCDFGBIJKAZRBECGIGF 1F$E SAUNDEEE1A23%&TA 123&112F AKGEHKLKLABCDASAUNI
UPSHIFTED: (EXAMPLE 1-2)

ABCDFGBIJKAARBGCGIGF 1F$ESAUNDAEE1A23%& TA 1238&112F ARGOHKLKLABCDASAUNI
SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)

abCDfg6i jkaZlbgcGjGf1f

SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)

abCDFg6i jkaAkbgcG T 1T

SCAN/MOVE /DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)

abcdfyg

H-27

Example Programs

SCAN/MOVE /DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)
abcdfg

END OF PROGRAM
:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

NATIVE-3000

THE FOLLOWING STRING IS USED IN ALL EXAMPLES:

abCDfg6i jkaAlbgcGjGT1f$E SAUNdEeE1a23%&Ta 123&i12fARgghk IKLabCDASAUN i
UPSHIFTED: (EXAMPLE 1-1)

ABCDFG61JKAZEBBCGIGF 1F$E SAUNDIEE1A23%&TA 123&1 12FARGEHKLKLABCDASAUNI
UPSHIFTED: (EXAMPLE 1-2)

ABCDFG6IJKAARBSCGIGF 1F$ESAUNDIEE1A23%&TA 123&1 12FARGEHKLKLABCDASAUNI
SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)

abCDfg6i jka

SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)

abCDfg6ijka

SCAN/MOVE /DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)

abcdfg

SCAN/MOVE /DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)

abcdfg

END OF PROGRAM

H-28

Example Programs

H. Using The NLTRANSLATE/NLREPCHAR Intrinsics In A COBOLII
Program

The string used in the example is 256 bytes in length and contains all possible byte values from O to
255. This string is converted from USASCII to EBCDIC. Then the converted string is taken and
translated back to USASCII. This is done according to the ASCII-to~-EBCDIC and EBCDIC-to-ASCII
translation tables corresponding to the entered language.

Afterwards this twice-translated string is displayed. All characters which are non-printable (control
and undefined characters) in the character set supporting the given language are replaced by a period
before the string is displayed, by calling NLREPCHAR intrinsic.

1 $CONTROL USLINIT

1.1 IDENTIFICATION DIVISION.

1.2 PROGRAM-I1D. EXAMPLE.

1.3 AUTHOR. LORO.

1.4 ENVIRONMENT DIVISION.

1.5 DATA DIVISION.

1.6 WORKING-STORAGE SECTION.

1.7 77 QUITNUM PIC S9(4) COMP VALUE O.
1.8 77 LANGNUM PIC S9(4) COMP VALUE O.
1.9 77 IND PIC S9(4) COMP VALUE 0.
2

2.1 01 TABLES.

2.2 05 USASCII-EBC-TABLE PIC X(256) VALUE SPACES.
2.3 05 EBC-USASCII-TABLE PIC X(256) VALUE SPACES.
2.4 05 CHARSET-TABLE PIC X(256) VALUE SPACES.
2.5

2.6 01 BUFFER-FIELDS.

2.7 05 INT-FIELD PIC S9(4) COMP VALUE -1.
2.8 05 BYTE-FIELD REDEFINES INT-FIELD.

2.9 10 FILLER PIC X.

3 10 CHAR PIC X.

3.1

3.2 01 STRINGS.

3.3 05 LANGUAGE PIC X(16) VALUE SPACES.
3.4 05 IN-STRING.

3.5 10 IN-BYTE PIC X OCCURS 256.

3.6 05 OUT-STRING.

3.7 10 OUT-STR1 PIC X(80).

3.8 10 OUT-STR2 PIC X(80).

3.9 10 OUT-STR3 PIC X(80).

4 10 OUT-STR4 PIC X(16).

4.1

4.2 01 REPLACE-WORD PIC $S9(4) COMP VALUE O.
4.3 01 REPLACE-BYTES REDEFINES REPLACE-WORD.

4.4 05 REPLACEMENT-CHAR PIC X.

4.5 05 FILLER PIC X.

4.6

4.7 01 ERRORS.

4.8 05 ERR1 PIC S9(4) COMP.

4.9 05 ERR2 PIC S9(4) COMP.

5 PROCEDURE DIVISION.

5.1 START-PGM.

5.2 % Initialize the instring array with all possible

H-29

Example Programs

3 #* byte values starting from binary zero until 255.
4 MOVE -1 TO INT-FIELD.

5 PERFORM FILL-INSTRING VARYING IND FROM 1 BY 1
.6 UNTIL IND > 2586.

7 GO TO GET-LANGUAGE.

8
9

FILL-INSTRING.
ADD 1 TO INT-FIELD.
MOVE CHAR TO IN-BYTE(IND).

GET-LANGUAGE.
#The language is hard-coded, set to 8 (GERMAN).

MOVE 8 TO LANGNUM.

GET-THE-TABLES.

Call the USASCII-EBCDIC and EBCDIC-USASCII

conversion tables and the character attribute table

by using the appropriate NLINFO items.

NOTE: NLTRANSLATE and NLREPCHAR may be called without
passing the tables (last parameter). For performance
reasons the tables should be passed, if these
intrinsics are called very often.

OCO®~NOHUTH WM —

% % % X k % ¥

CALL INTRINSIC "NLINFO" USING 13,
USASCII-EBC-TABLE,
LANGNUM,
ERRORS.

OO NO U pWMO-—

I[F ERR1 NOT EQUAL O
COMPUTE QUITNUM = 1000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

CALL INTRINSIC NLINFO ITEM 14,
EBC-USASCII-TABLE,
LANGNUM,
ERRORS.

WO WM -

IF ERRT NOT EQUAL O
COMPUTE QUITNUM = 2000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.
CALL INTRINSIC "NLINFO" USING 12,
CHARSET-TABLE,
LANGNUM,
ERRORS.
IF ERR1 NOT EQUAL ©
COMPUTE QUITNUM = 3000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

QUOUOVOOOVWOWOOWWOWORBDIDDPBO®PB®IIPNANNNNNNNNNNOTOODTOOOOOHIOOOON TGO T GTIGTLOTU

OO WM —

-
o

CONVERT~ASC-EBC.

Convert IN-STRING from USASCII into EBCDIC by

* using NLTRANSLATE code 2. The converted string will
be in OUT-STRING.

— — - b
O [= e o
N WD —

—
o

CALL INTRINSIC “NLTRANSLATE" USING 2,
IN-STRING,
OUT-STRING,
256,

U QT Ty
O OO0

H-30

10.9

1"

11.
11.
1.
11,
11,
11,
11.
11.
11.

12

12.
12.
12.
12.
12.
f2.
12.
i2.
12.

13

13.
13.
13.
13.
13.
13.
13.
13.
13.

14

14,
14.
14.
14,
14.
14.
14.
14.
14.

O~y U b Wiv— WooO~NOOU W — oo~ WM —

WoWw~NOoT WM —

Example Programs

LANGNUM,
ERRORS,
USASCII-EBC-TABLE.
IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 4000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

CONVERT-EBC-ASC.

Convert OUT-STRING back from EBCDIC to USASCII by
using NLTRANSLATE code 1. The retranslated string will
be in IN-STRING again.

CALL INTRINSIC "NLTRANSLATE" USING 1,
OUT-STRING,
IN-STRING,
256,
LANGNUM,
ERRORS ,
EBC-USASCII-TABLE.
IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 5000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

REPLACE-NON-PRINTABLES.
Replace all non-printable characters
¥ in IN-STRING and display the string.

MOVE "." TO REPLACEMENT-CHAR.
CALL INTRINSIC 'NLREPCHAR" USING IN-STRING,
IN-STRING,
256,
REPLACE -WORD,
LANGNUM,
ERRORS.
IF ERR1 NOT EQUAL ©
COMPUTE QUITNUM = 6000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

DISPLAY "IN-STRING:"

DISPLAY IN-STRING.
STOP RUN.

H-31

Example Programs

I. Using The NLKEYCOMPARE Intrinsic In A COBOLII Program

The example shows a new KSAM file built programmatically. This new KSAM file is built with a
language attribute. This means the keys will be sorted according to the collating sequence of this lan-
guage. After building the file,the program writes 15 hard-coded data records into it.

Perform a generic FFINDBYKEY with a partial key of length? containing "E". This should position

the KSAM file pointer to the first record whose key starts with any kind of "E" (e, E, &, &,
etc.).

After locating this record, read all subsequent records in the file sequentially and call NLKEYCOMPARE
to check whether the key found is what was requested. If the result returned by NLKEYCOMPARE is 3,
the program is done. There are no more records whose key starts with any kind of "E".

1 $CONTROL USLINIT

1.1 IDENTIFICATION DIVISION.

1.2 PROGRAM-ID. EXAMPLE.

1.3 AUTHOR. LORO.

1.4 ENVIRONMENT DIVISION.

1.5 CONFIGURATION SECTION.

1.6 SOURCE-COMPUTER. HP3000,

1.7 OBJECT-COMPUTER. HP3000.

1.8 SPECIAL-NAMES.

1.9 CONDITION-CODE IS CC,

2 DATA DIVISION.

2.1 WORKING~STORAGE SECTION.

2.2 7 QUITNUM PIC S9(4) COMP VALUE O.
2.3 7 LANGNUM PIC S9(4) COMP VALUE 0.
2.4 7T LEGTH PIC S9(4) COMP VALUE 0.
2.5 77 FNUM PIC S9(4) COMP VALUE O.
2.6 144 RESULT PIC S9(4) COMP VALUE O.
2.7 77 IFOPTIONS PIC S9(4) COMP.

2.8 77 AOPTIONS PIC S9(4) COMP.

2.9 7T IND PIC S9(4) COMP.

3

3.1 01 TABLES.

3.2 05 COLL-TABLE PIC X(800).

3.3 05 KSAM-PARAM.

3.4 10 KEY-FILE PIC X(8) VALUE SPACES.
3.5 10 KEY-FILE-SIZ PIC S9(8) COMP.

3.6 10 FILLER PIC X(8) VALUE SPACES.
3.7 10 LANGUAGE-NUM PIC S9(4) COMP.

3.8 10 FILLER PIC X(8) VALUE SPACES.
3.9 10 FLAGWORD PIC S9(4) COMP.

4 10 NUM-OF -KEYS PIC S9(4) COMP.

4.1 10 KEY-~DESCR PIC S9(4) COMP.

4.2 10 KEY-LOCATION PIC S9(4) COMP.

4.3 10 DUPL-BLOCK PIC S9(4) COMP.

4.4 10 FILLER PIC X(20).

4.5

4.6 01 STRINGS.

4.7 05 GEN-KEY PIC X(4).

4.8 05 FILENAME PIC X(8) VALUE SPACES.
4.9

5 01 ERRORS.

s e s 2 -
loReNeRelNelNoNo]

COOUWEOWOOOOOIINOETONETREIONNNNNNNNNLTOROONDOOHO NN GGG G GGG OO

[o) I &7 I SN CVIN A E (.OCONI(DU'I.&L»JI\)‘
=3

-

-

©O©ow~NOUEHAWN —

O©oo~NOOohs WM =

OO WMN —

O oO~NOG Ul WD —

05
05

01
05
05
05

01
05
10

01
05
05
05

ERR1
ERR2

DATA-RECS.
DATA-REC1
DATA-REC2
DATA-REC3

Example Programs

PIC S9(4) COMP.
PIC S9(4) COMP VALUE 0.

PIC X(50).
PIC X(50).
PIC X(50).

DATA-RECS-R REDEFINES DATA-RECS.

DATA-RECORD
FILLER

KSAM-RECORD.

FILLER
RECORD-KEY
FILLER

PROCEDURE DIVISION.
INIT-KSAM-RECORDS.
Initialize the Data Record with the data which should be
% written to the KSAM file.

OCCURS 15.
PIC X(10).

PIC X(3).
PIC X(4).
PIC X(3).

MOVE "0148BBeZZZ011EZqrzyx001ABCDXXX007EdCDxyx012&z2zAzzz2"
TO DATA-RECH.

MOVE "003EaBCXXX008EEaaYZZ0158ABDYZY005eLDFyxy002BBCdxxx"
TO DATA-REC2.

MOVE '"004eABCYYY006éabcYYY009888Ayz2z010eaxfxyz013FGHIzgs"
TO DATA-REC3,

Hard-code the language used in the example program

to 0 (NATIVE - 3000).

MOVE

0

TO

LANGNUM.

Build a new KSAM file with the data file name
KDO0QO. The key file has the name KKO00O.

MOVE
MOVE

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

CALL

"KD00O " TO
"KK000 " TO
1 TO
LANGNUM TO
%20 TO
0 TO
%10004 TO
4 TO
%100024 TO
%4000 T0
5 TO

FILENAME.
KEY-FILE.

NUM-OF -KEYS.

LANGUAGE-NUM.

FLAGWORD.

KEY-FILE-SIZ.

KEY-DESCR.

KEY-LOCATION.

DUPL-BLOCK.
FOPTIONS.
AOPTIONS.

Set the values for KSAM parameter array.

INTRINSIC "FOPEN" USING FILENAME,
FOPTIONS,

- H-33

Example Programs

10.7 AOPTIONS,

10.8 -10,

10.8 \\,

11 KSAM-PARAM

1.1 GIVING FNUM.

11.2 IF CC NOT EQUAL 0

11.3 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,
1.4 CALL INTRINSIC "QUIT" USING 1000.

11.5

11.6 * Fill the hard-coded data into the KSAM file.

1.7

11.8 PERFORM FILL-IN-DATA VARYING IND FROM 1 BY 1
1.9 UNTIL IND > 15,

12 GO TO FIND-DATA.

12.1

12.2 FILL-IN-DATA.

12.3 CALL INTRINSIC "FWRITE" USING FNUM,

12.4 DATA-RECORD(IND),
12.5 -10,

12.6 0.

12.7 IF CC NOT EQUAL 0

12.8 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,
12.9 CALL INTRINSIC "QUIT" USING 2000.

13 -

13.1 FIND-DATA.

13.2 # Perform a generic FFINDBYKEY with a

13.3 # partial key of length 1 and value "E". The relational
13.4 # operator will be 2 (greater or equal).

13.5 * This FFINDBYKEY will position the KSAM pointer at the
13.6 * first key starting with any kind of "E".

13.7

13.8 MOVE "E" TO GEN-KEY.

13.9

14 CALL INTRINSIC "FFINDBYKEY" USING FNUM,

14.1 GEN-KEY,

14.2 0,

14.3 1,

14.4 2.

14.5 IF CC NOT EQUAL 0

14.6 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,
14.7 CALL INTRINSIC "QUIT" USING 3000.

14.8

14.9 * Read the subsequent entries and check whether an
15 * exact match occurred by using NLKEYCOMPARE.

15.1 # When NLKEYCOMPARE returns 3 as a result, there are no
15.2 * more keys starting with any kind of "E".

15.3 # If an exact match was found the record is printed.
15.4

15.5 DISPLAY

15.6 “THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:"
15.7 MOVE 0O TO RESULT.

15.8 PERFORM READ-DATA UNTIL RESULT EQUAL 3.

15.9 GO TO TERMINATE-PGM.

16

16.1 READ-DATA.

16.2 CALL INTRINSIC "FREAD" USING FNUM,

H-34

Example Programs

16.3 KSAM-RECORD,

16.4 -10.

16.5 IF CC NOT EQUAL 0

16.6 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,
16.7 CALL INTRINSIC "QUIT" USING 4000.

16.8

16.9 CALL INTRINSIC "NLKEYCOMPARE" USING GEN-KEY,

17 1,

17.1 RECORD-KEY,
17.2 4,

17.3 RESULT,
17.4 LANGNUM,
17.5 ERRORS,
17.6 COLL-TABLE.
17.7 IF ERR1 NOT EQUAL 0

17.8 COMPUTE QUITNUM = 5000 + ERRT,

17.9 CALL INTRINSIC "QUIT" USING QUITNUM.

18 I[F RESULT = 0

18.1 DISPLAY KSAM-RECORD.

18.2

18.3 TERMINATE-PGM.

18.4 % Close the KSAM file and purge it.

18.5

18.6 CALL INTRINSIC "FCLOSE" USING FNUM,
18.7 4,
18.8 0.
18.9

19 STOP RUN.

Executing the program results in the following:

:RUN PROGRAM

THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:
011EZgqrzyx

003EaBCXXX

007EJCDxyx

END OF PROGRAM

H-35

Example Programs

J. Using The NLKEYCOMPARE Intrinsic In An SPL Program

The example shows a new KSAM file built programmatically. This new KSAM file is built with a
language attribute. This means the keys will be sorted according to the collating sequence of this lan-
guage. After building the file, it is filled with 15 hard-coded data records.

Perform a generic FFINDBYKEY with a partial key of length1 containing "E". This should position

the KSAM file pointer to the very first record whose key starts with any kind of "E" (e, E, &, é,
etc.).

After locating this record read all subsequent records in the file sequentially and call NLKEYCOMPARE
to check whether the key found is what was requested. If the result returned by NLKEYCOMPARE is 3,
there are no more records starting with any kind of "E".

1 $CONTROL USLINIT

2 BEGIN

3 LOGICAL ARRAY

4 L ’ERROR (0:1),

5 L ’KSAM*PARAM (0:79),

6 L’PRINT (0:39),

7 L ’RECORD (0:4),

8 COLL ’TABLE (0:399);

9

10 BYTE ARRAY

11 FILENAME (0:7),

12 GEN’KEY (0:4),

13 KEY (0:4),

14 B KSAM PARAM(%) = L ’KSAM *PARAM,
15 B’PRINT(*) = L’PRINT,
16 B *RECORD (#) = L ’RECORD;
17

18 DOUBLE ARRAY

19 D’KSAM’PARAM(*) = L ’KSAM *PARAM;
20
21 BYTE POINTER
22 BP’PRINT;
23
24 INTEGER

25 I,

26 LGTH,

27 FNUM,

28 RESULT,

29 LANGNUM;
30
31 LOGICAL
32 FOPTIONS,
33 AOPTIONS;
34
35 LOGICAL ARRAY

36 L’DATA(0:74) :=
37
38 << |key | >
38 "0148BBezz2",

40 "011EZgrzyx",

41 "001ABCDXXX", << This is the data, which >>

H-36

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
54
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

"00TEdCDxyx",
"0128zzAzzz",
"0158ABDYZY",
"005elDFyxy",

"002BBCdxxx",
"003EaBCXXX",
"008EEaaYzzZ",
"004eABCYYY",
"006éabcYYY",
8ééayzz",
"010eaxfxyz",
"013FGHIzqgs";

"009

DEFINE

KEY’FILE
KEY’FILE’SIZ
KEY *DEV
LANGUAGE
FLAGWORD
NUM’OF *KEYS
KEY’TYPE

KEY *LENGTH
KEY *LOCATION
DUP’FLAG

KEY *BLOCK
RANDOM *FLAG

DEFINE

RECORD

ERROR *CHECK

CCNE

DISPLAY

ON’STDLIST

INTRINSIC

FOPEN,
FREAD,
FWRITE,
FCLOSE,
FFINDBYKEY,
FGETKEYINFO,

E I | N ¢ A | N | N N (I [N N | SO B 1

it

L ’KSAM *PARAM# ,

D’KSAM ’PARAM(2)#,

L *KSAM *PARAM(6) #,

L *KSAM PARAM(10)#,

L °’KSAM*PARAM(15) #,

L. ’KSAM *PARAM(16)#,

L KSAM *PARAM(17).(0:4)#,

L ’KSAM *PARAM(17). (4:12)#,
L ’KSAM’PARAM(18)#,

L *KSAM*PARAM(19).(0:1)#,

L ’KSAM’PARAM(19). (1:15)#,
L *KSAM’PARAM(20).(8:1)#;

L’DATA (I # B)#,

IF L’ERROR(0) <> O THEN

QUIT #,

IF <> THEN
QUIT #,

MOVE B’PRINT :

.23
@BP°PRINT

:= TOS;

LGTH := LOGICAL(@BP’PRINT) -
LOGICAL (@B PRINT)

PRINT(L’PRINT, -LGTH, 0) #;

H-37

<< The following DEFINE statement defines the layout of the
KSAM parameter array, which is necessary to build
file programmatically.

a KSAM

Example Programs

<< will be written to the KSAM >>
<< file.

<< The key starts in column 4
<< and is 4 characters long.

>>
>>
>>

>>

Example Programs

98

99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

<K

<<

<K

<<

<<

PRINTFILEINFO,
NLINFO,
NLKEYCOMPARE ,
FCLOSE,

PRINT,

QUIT,

READ;

Initializing the arrays,

MOVE L ’KSAM *PARAM ="
MOVE L ’KSAM’PARAM(1) L *’KSAM’PARAM(0), (79);

MOVE GEN *KEY = "

MOVE KEY p= " "

Hard-code the language used to 8 (GERMAN).
LANGNUM := 8;

Call in the collating sequence table.
This is done by calling NLINFO ITEM 11.

NLINFO (11, COLL’TABLE, LANGNUM, L’ERROR);
IF L’ERROR(O) THEN
QUIT(1000 + L’ERROR(0));

Build a new KSAM file with the data file name
KD008. The key file has the name KKO008.

Set the values for KSAM parameter array.

MOVE FILENAME := "KDO0OO08 s << KSAM data file
MOVE KEY’FILE := "KK0O08 " << KSAM key file
NUM*OF *KEYS = 1 << Num of keys = 0
LANGUAGE = LANGNUM; << Set the language
FLAGWORD. (11:1) = 13 << Indicates that

<< language is set
KEY’FILE’SIZ = 200D << Max. 200 entries
KEY *TYPE = 13 << Byte key
KEY *LENGTH = 4; << 4 byte length
KEY *LOCATION = 43 << Key start at col.4
DUP ’FLAG =1; << Allow dupl. keys
KEY *BLOCK = 103 << Keys per block 10
FOPTIONS = %4000, << KSAM file
AOPTIONS = 45, << Update

FNUM := FOPEN(FILENAME,FOPTIONS,AOPTIONS,-10,,
B ’KSAM *PARAM) ;
IF <> THEN
BEGIN ,
PRINTFILEINFO(FNUM);
QUIT(2000);

H-38

>

>>

>>

>>
>>

>>
>>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

>>
>>

154
155
156
157
158
159
160
161

162
163
164
165
166
187
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
180
191

182
183
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209

<<

<<
<<
<<
<<
<<

<<
<<
<<
<<
<<

END;

Copy the hard-coded data into the KSAM file.
I := -1
WHILE (I := 1 + 1) < 15 DO
BEGIN
FWRITE(FNUM, RECORD, -10, %0);
IF <> THEN
BEGIN
PRINTFILEINFO(FNUM) ;
QUIT(3000);
END;
END;

Perform a generic FFINDBYKEY with a

partial key of length 1 and value "E". The relational
operator will be 2 (greater or equal).

FFINDBYKEY will position the KSAM pointer at the

first record starting with any kind of "E".

MOVE GEN’KEY := "E";
FFINDBYKEY (FNUM, GEN’KEY, 0, 1, 2);
IF <> THEN

BEGIN

PRINTFILEINFO(FNUM);
QUIT(4000);
END;

Read the subsequent entries and check by

using NLKEYCOMPARE whether an exact match was found.
When NLKEYCOMPARE returns a 3 as a result, the program
is beyond the range of valid keys.

If an exact match was found, the record is printed.

RESULT := 03
DISPLAY
"THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:"
ON’STDLIST;
WHILE RESULT <> 3 DO
BEGIN
FREAD{FNUM,L ’RECORD,-10);
IF <> THEN
BEGIN
PRINTFILEINFO(FNUM);
QUIT(5000);
END;

MOVE KEY := B’RECORD(3),(4);
NLKEYCOMPARE (GEN’KEY, 1, KEY, 4, RESULT, LANGNUM,

Example Programs

>>

>>
>>
>>
>>
>>

>>
>>
>>
>>
>>

L ERROR, COLL’TABLE);

ERROR’CHECK (9000 + L’ERROR(0));

IF RESULT = 0 THEN << exact hit >>
BEGIN
DISPLAY B’RECORD, (10) ON’STDLIST;
END;

H-39

Example Programs

210 END;

211

212 << Close the KSAM file and purge it.
213

214 FCLOSE(FNUM, 4, 0);

215

216 END.

Executing the program results in the following:

:RUN PROGRAM

THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:
003EaBCXXX

O0TEdCDxyx

011EZgrzyx

END OF PROGRAM

H-40

>>

Example Programs

K. Obtaining Language Information In A COBOLIl Program

This program prints the User Interface, Data Manipulation, System Default, KSAM key sequence,
VPLUS/3000 forms file, and IMAGE data base language numbers.

OO A W — OWONOULAH WM = OO ~NOUTDH WN —

CTOaorTotn T DAL DDDEDDIRADNWWLWWWLWWWWWWMNOMPNDPMNPMNDMONDOVONDMND = = a2
QOO WM —

OO NOUTSNWN —

$CONTROL USLINIT
IDENTIFICATION DIVISION.

PROGRAM-1ID. EXAMPLE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.

SPECIAL-NAMES.

CONDITION-CODE IS CCODE.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 LANGUAGE

01 NLERROR.
05 NLERR OCCURS 2

01 FILENUM

01 KSAMAREA.

05 KSAMPARAM.
10 FILLER
10 KLANG
10 FILLER
10 FLAGS
10 FILLER

05 KSAMCONTROL

01 COMAREA.
05 COM-STAT
05 COM-LLANG
05 COM-LENG
05 COM-FILL

01 RESULT.
05 OPER
05 LANG
05 FILLER
05 NERR

01 DBNAME .
05 FILLER
05 FILENAME
01 PASSWORD

01 DBMODE

‘PIC

PIC

PIC

PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC

PIC

PIC

PIC

S9(4) COMP.

$S9(4) COMP.

S9(4) COMP.

X(20).

$9(4) coMP.

X(8). '

59(4) COMP VALUE 0.
X(148).

X(256).

S9(4) COMP VALUE 0.

S9(4) COMP VALUE 0.
$9(4) COMP VALUE 60.
X(114) VALUE LOW-VALUE.
X(10).

27279.

X(68) VALUE " Error".
2779,

X(2) VALUE " ",
X(36).

X(8).

$9(4) COMP VALUE 5.

H-41

Example Programs

6 01 STAT.

6.1 05 DBSTAT PIC S9(4) COMP VALUE 0.
6.2 05 FILLER PIC X(18).

6.3

6.4 01 DUMMY PIC S9(4) COMP.

BB # = m o mm o e e e
6.6 PROCEDURE DIVISION.

6.7

6.8 MAIN.

6.9 PERFORM USER-LANG.

7 PERFORM DATA-LANG.

7.1 PERFORM SYST-LANG.

7.2 PERFORM KSAM-LANG.

7.3 PERFORM FORM-LANG.

7.4 PERFORM BASE-LANG.

7.5 STOP RUN.

T % it it enteernneseoteensosonosnsssenesennnennenes
7.7 USER-LANG.

7.8 CALL INTRINSIC "NLGETLANG" USING 1 NLERROR
7.9 GIVING LANGUAGE.

8 MOVE "USER lang:" TO OPER.

8.1 MOVE LANGUAGE TO LANG.

8.2 MOVE NLERR (1) TO NERR.

8.3 DISPLAY RESULT.

S T
8.5 DATA-LANG.

8.6 CALL INTRINSIC "NLGETLANG" USING 2 NLERROR
8.7 GIVING LANGUAGE.
8.8 MOVE "DATA lang:" TO OPER.

8.9 MOVE LANGUAGE TO LANG.

9 MOVE NLERR (1) TO NERR.

9.1 DISPLAY RESULT.

0
9.3 SYST-LANG.

9.4 CALL INTRINSIC "NLGETLANG" USING 3 NLERROR
8.5 GIVING LANGUAGE.
9.6 MOVE "SYST lang:" TO OPER.

S.7 MOVE LANGUAGE TO LANG.

9.8 MOVE NLERR (1) TO NERR.

9.9 DISPLAY RESULT.

10 it i i ettt et et
10.1 KSAM-LANG.

10.2 DISPLAY “Enter KSAM file name:".

10.3 ACCEPT FILENAME FREE.

10.4 IF FILENAME NOT = SPACES PERFORM KSAM-OPEN.
10.5

10.6 KSAM-OPEN.

10.7 CALL INTRINSIC "FOPEN" USING FILENAME 1

10.8 GIVING FILENUM,

10.9 IF CCODE = 0

11 THEN PERFORM KSAM-INFO

11.1 ELSE DISPLAY “Error in KSAM file OPEN".
11.2

11.3 KSAM-INFO.

11.4 CALL INTRINSIC "FGETKEYINFO" USING FILENUM
11.5 KSAMPARAM KSAMCONTROL.

H-42

11.
1.
1.
1.

12

12.
12.
12.
12.
12.
12.
12.
12.
12.

13

13.
13.
13.
13.
13.
13.
13.
13.
13.

14

14.
14.
14.
14,
14.
14,
14,
14,
14.

15

15.
15.
15.
15.
15.
15.
15.
15.
15.

16

16.
18.
16.
16.

[Col s s BEN R)}

OO uUlH WP — ©C OO pH WHN ~ OWw N WMN -

OO NOUTH WN —

H WM —

Example Programs

CALL INTRINSIC "FCLOSE" USING FILENUM 0 0.
IF FLAGS < O THEN ADD 32768 TO FLAGS.
IF FLAGS - (FLAGS / 32) # 32 > 15

THEN MOVE KLANG TO LANGUAGE

ELSE MOVE ZERO TO LANGUAGE.

MOVE SPACES TO RESULT.
MOVE "KSAM lang:" TO OPER.
MOVE LANGUAGE TO LANG.

DISPLAY RESULT.
FORM-LANG.
DISPLAY "Enter FORM file name:".
ACCEPT FILENAME FREE.
IF FILENAME NOT = SPACES PERFORM FORM-OPEN.

FORM-OPEN.
CALL "VOPENFORMF" USING COMAREA FILENAME.
IF COM-STAT = 0
THEN PERFORM FORM-INFO
ELSE DISPLAY "FORMS file OPEN failed:" COM-STAT.

FORM-INFO.
CALL "VGETLANG" USING COMAREA I.ANGUAGE.
CALL "VCLOSEFORMF" USING COMAREA.
MOVE "FORM lang:" TO OPER.
MOVE LANGUAGE TO LANG.
DISPLAY RESULT.
BASE-LANG.
DISPLAY "Enter DATA BASE name:'.
ACCEPT FILENAME FREE.
IF FILENAME NOT = SPACES PERFORM BASE-OPEN.

BASE-OPEN.
DISPLAY "Enter PASSWORD:".
ACCEPT PASSWORD FREE. ,
CALL "DBOPEN" USING DBNAME PASSWORD DBMODE STAT.
IF DBSTAT = ©
THEN PERFORM BASE-INFO
ELSE DISPLAY "Error in Data Base Open:' DBSTAT.

BASE-INFO.
MOVE 901 TO DBMODE.
CALL "DBINFO" USING DBNAME DUMMY DBMODE STAT LANGUAGE.
MOVE 1 TO DBMODE.
CALL "DBCLOSE" USING DBNAME DUMMY DBMODE STAT.
MOVE “BASE lang:" TO OPER.
MOVE LANGUAGE TO LANG.
DISPLAY RESULT.

H-43

Example Programs

Executing the program results in the following:

+RUN PROGRAM;MAXDATA=12000

USER lang: 0 Error
DATA lang: 3 Error
SYST lang: 0 Error
Enter KSAM file name:
GERMANK

KSAM lang: 8

Enter FORM file name:
FRENCHFF

FORM lang: 7

Enter DATA BASE name:
SPBASE.TEST

Enter PASSWORD:
MANAGER

BASE lang: 12

END OF PROGRAM

.

2
0
0

H-44

Example Programs

L. Using The CATOPEN, CATREAD And CATCLOSE Intrinsics In A

Pascal Program

Tme%mmommacuM%,mwsmmm%Mﬁmmdmmthmonﬂwﬁmﬁudkt@ﬁw.er@
a third message into a buffer, prints the buffer, then closes the catalog.

OWoOo~NO Ul WN —

MMOMNDMNMN — o ca cd a2
P WM 200N OUTHAWND O

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

$USLINITS
$STANDARD_LEVEL ’HP3000°$

PROGRAM example (input,output);
TYPE int = -32768..32767;

VAR cat_index : INTEGER;

error : PACKED ARRAY [1..2] OF int;
cat_name : PACKED ARRAY [1..8] OF CHAR;
dummy,

msg_len,

set_num,

msg_num,

intr_id : inty

parm_n,

parm_m : STRING[40];

buffer : STRING[80];

FUNCTION catopen: INTEGER; INTRINSIC;
FUNCTION catread: int; INTRINSIC;
PROCEDURE catclose; INTRINSIC;

PROCEDURE show_error; { a very simple "error printer”}
BEGIN
PROMPT(* error ’,error[1]:1);
{ intr-id identifies the intrinsic called }
CASE intr_id OF
1 : WRITELN(’ in CATOPEN’);
2 : WRITELN(’ in CATREAD’);
3 : WRITELN(® in CATCLOSE’);
END;
END;

BEGIN
{ Make sure that name ends with a space. }
cat_name := ’EXAMPLE ’;
intr_id := 13
cat_index := catopen(cat_name,error);
IF arror[1] <> O THEN show _error;

n -

parm_n := 5973 { set parameter 1 }
{ append a null character }
STRWRITE(parm_n,STRLEN(parm_n)+1,dummy,CHR(O));

parm m := ’thirty-three’; { set parameter 2 }

{ append a null character }
STRWRITE(parm_m,STRLEN(parm_m)+1,dummy,CHR(O))

H-45

Example Programs

50 intr_id := 23

51 set_num := 3; { set the message set number }
52 msg_num := 174 { set the message number }
53 msg_len := catread(cat_index,set num ,msg_num,error,,,
54 parm_n,parm_m)

55 { pass parameters 1 and 2, and print on $STDLIST }
56 IF error[1] <> 0 THEN show_error;

57

58 msg_num := 233 { change the message number }
59 msg_len := catread(cat_index,set_num,msg“num,error,,,
60 parm_n,parm_m);

61 { pass parameters 1 and 2, and print on $STDLIST }
62 IF error[1] <> 0 THEN show_error;

63

64 set_num := T3 { change the set number }
65 msg_num := 9; { set the message number }
66 { get the message into the buffer }
67 msg_len := catread(cat index,set _hum,msg_hum,error,
68 buffer);

69 IF error[1] <> O THEN show error;

70 { update the length of the buffer }
71 SETSTRLEN(buffer,msg_len);

72 WRITELN (buffer); { now write the buffer }
73

T4 intr_id := 3;

75 catclose(catmindex,error);

76 IF error[1] <> 0 THEN show_error;

77

78 END.

This program uses a message catalog file. To build this file, enter the following text into a text file:

$set 3 Comment describing this set’s contents.
$

17 There is an error in line '1 on page !2.

23 On page 2 there is an error in line 1.

$

$set 7 Description of this set of messages.

$

09 Process completed successfully.
Use the GENCAT program to format this file into a catalog file called EXAMPLE. Executing the
sample program results in the following:
:RUN PROGRAM
There is an error in line 53 on page thirty-three.
On page thirty-three there is an error in line 59.

Process completed successfully.

END OF PROGRAM

H-46

INDEX

Accessing
Catalogs, 2-2
KANAS8 Characters, E-4
NLS Features, 1-7
ROMANS Characters, E~4
Adding A Language
ID Number, 4-9
LANGINST, A-2
Adding Records To Maintenance Files, 2-9
Algorithm, Conversion, F-3
ALMANAC Intrinsic, 4-3
Alternate Character Sets, F-10
Application Message Facility, 1-6, 2~-1
(See GENCAT)
Applications
International, 3-29
Language-Dependent, 3-29
Localized, 1-1, 2-1
Multilingual, 3-30
Single-Language, 3-30
Unlocalized, 3-29
Applications Programs, 1-10
General, 1-10
Multilingual, 1-12
Single-Language, 1-12
Subsystem Utility, 1-14
_ Without NLS, 1-11
ASCII-To-EBCDIC Translation, 4-38
Assigning
A Language Attribute, 1-8, 3-5, 3-11
A Language ID Number, 3-31

Backward vCompatibility, 1-6
BASIC, Guidelines For Using, G-3
BUILD Command, 3-11

3

Calendar Formatting, 4~16, 4-26
CAT Intrinsics
CATCLOSE, 2-1
CATOPEN, 2-1
CATREAD, 2-1

Catalogs

Accessing, 2-1

Expanding, 2~14

Formatting, 2-13

Message, 2-2

Naming Convention For, 2-7

Source, 2-2
CATCLOSE, 2~1

Intrinsic, 4-95

Pascal Program, H-45
CATOPEN, 2-1

Intrinsic, 4-6

Pascal Program, H-4$§
CATREAD, 2-1

Intrinsic, 4-7

Pascal Program, H-45
Changing Language Attribute, 3-3, 3-7, 3-18
Character Handling, VPLUS, 3-31
Character Printing, FCOPY, 3-2
Character Set

Attribute Table, 4-29

ID Number, 4-29

Name, 4-30

Specified, 4-30
‘ Verifying Support Of, 4~29
Character Sets

7-Bit, F-1

8-Bit, 1-3

KANAS8, 1-3, B-2

ROMANS, 1-3, B-2, F-1
Character Strings

Comparing, 4-10, 4-31

Moving, 4-35

Scanning, 4-35

Translation, 4-38
Character Translation, In FCOPY, 3~-2
Character Upshifting

FCOPY, 3-3

QUERY, 3-20
Characters, Nondisplayable, 4-33
Class Number, 4-30
Clock Specification, Formatting, 4~27
Closing A Message Catalog, 4-5
COBOLII

Guidelines For Using, G~2

Language Information, H-41

Merging, 3-27

NLKEYCOMPARE Program, H-32

NLTRANSLATE/NLREPCHAR, H-29

Programs Using SORT, H-1

I-1

INDEX (Continued)

Sorting, 3-27

Using NLSCANMOVE, H-~15
Collating Sequences, 3-23, C-1
Collating Sequence Table, 4-28

Length Of , 4-30
Collision Files, 2-8
Commands, 1~8

Language-Dependent, 3-21

User Defined, 1-9
Commands, List Of MPE

BUILD, 3-11

LANGUAGE, 3-19, 3-23

REPORT, 3-20

VERIFY, 3-11, 3-24
Comment Records, 2-5, 2-10
Comparing Character Strings, 4-10, 4-31
Compatibility, Backward, 1-6
Configuration

Language, 1-5

Verification Of , A-1
Configuring Printers

(See Printer Configuration)
Configuring Terminals

(See Terminal Configuration)
Conversion Procedures, F-5, F~10
Conversion To 8-Bit Data

Editor Files, F-2

HPWORD Files, F-2

IMAGE Data Bases, F-2

MPE Files, F-2

TDP Files, F-2

VPLUS Forms Files, F-2
Conversion Utilities, 1-6

[7DB8CNV, F-8

N7MF8CNV, F-7

VIFF8CNV, F-10
Copying A KSAM File, 3-18
Country Extended Code Pages, D-1
Creating A KSAM File

Programmatically, 3-14

With KSAMUTIL, 3-11
Currency Symbols, 4-28

Language-Dependent, 1-4
Custom Date Formatting, 4-14, 4-20, 4-27

b

Data Conversion
Algorithm, F-3

Language-Dependent, 1-4
Procedure For, F-5, F-10
User Dialogue, F-5, F-9
Date and Time
Formatting, 4-2, 4-22
In FORTRAN, H-6
in SPL, H-10
Date Format, QUERY, 3-20
Date Handling, VPLUS, 3-31
Date Information, 4-3
Day Abbreviation Table, 4-28
Day Of The Week Table, 4-28
DBINFO Intrinsic, 3-6
DBLOAD Utility, 3-5
DBLOCK Intrinsic, 3-6
DBOPEN Intrinsic, 3-6
DBPUT Intrinsic, 3-6
DBSCHEMA Utility, 3-§
DBUNLOAD Utility, 3-§
DBUTIL Utility, 3-5
Decimal Separators, 4-28
Deleting '
Languages With LANGINST, A-2
Records In Maintenance Files, 2-9
Directives in Source Catalogs, 2-2
$, 2-2
$SET, 2-2
$DELSET, 2-10
Downshift Table, 4-29

E

EBCDIC

Code, D-1

Mappings, D-1
EBCDIC-To-ASCII Translation, 4-38
EDITOR Files, Conversion Of, F-2
ENTRY, 3-31

(See VPLUS)
Error Messages

FCOPY, 3-4

GENCAT, 2-17

IMAGE, 3-7

KSAM, 3-13, 3-14

LANGINST, A-6

QUERY, 3-21

SORT-MERGE, 3-26

VPLUS, 3-32

I-2

INDEX (Continued)

Expanding
Message Catalogs, 2-2
Source Catalogs, 2-14

FCOPY
Character Printing, 3-2
Character Translation, 3-2
Character Upshifting, 3-3
Error Messages, 3-4

Files
Collision, 2-8
Maintenance, 2-9
Merging By Line Number, 2-9
Merging By Message Number, 2-9
Naming Conventions, 1-7
Structure, A-1

Formatting
Calendar, 4-16, 4-26
Clock Specification, 4-27
Custom Date, 4-14, 4-20, 4-2/
Date and Time, 4-2, 4-22
Language-Dependent, 4-26
Message Catalogs, 2~2 .
Source Catalogs, 2-2, 2-12
Time, 4-12, 4-18

Forms File Language ID Number, 3-33

FORMSPEC, 3-30
(See VPLUS)

FORTRAN
Date/Time Formatting Intrinsics, H-6
Guidelines For Using, G-2
Using SORT, H-S5

G

GENCAT, 1-6, 2-1
(See Application Message Facility)
Error Messages, 2-17
HELP Facility, 2~16
in Batch Mode, 2-15
Job Control Words (JCWs), 2-15
Special Characters, 2-4
General Application Program, 1-10
Generic Key Searching, 3-15, 4-31

H

HELP Facility, GENCAT, 2-16
HPWORD Files, Conversion Of, F-2

IMAGE, 3~$§
Data Bases, Conversion Of , F-2
Error Messages, 37
IMAGE Intrinsics
DBINFO, 3-6
DBLOCK, 3-6
DBOPEN, 3-6
DBPUT, 3-6
IMAGE Utility Programs
DBLOAD, 3-5
DBSCHEMA, 3-5
DBUNLOAD, 3-5
DBUTIL, 3-§
International Applications, 3--29
Intrinsics, NLS
ALMANAC, 4-3
CATCLOSE, 4-5
CATOPEN, 4-6
CATREAD, 4-7
NLAPPEND, 4-9
NLCOLLATE, 4-10
NLCONVCLOCK, 4-12
NLCONVCUSTDATE, 4-14
NLFMTCALENDAR, 4-16
NLFMTCLOCK, 4-18
NLFMTCUSTDATE, 4-20
NLFMTDATE, 4-22
NLGETLANG, 4-24
NLINFO, 4-26
NLKEYCOMPARE, 4-31
NLREPCHAR, 4-33
NLSCANMOVE, 4-35
NLTRANSLATE, 4-38
intrinsics, VPLUS
VGETLANG, 3-33
VSETLANG, 3-34
nvoking GENCAT, 2-1§

I-3

INDEX (Continued)

JISCII, E-1

Job Control Words, 3-19, 4-25
In GENCAT, 2-15
NLDATALANG, 1-9
NLUSERLANG, 1-9

K

KANAS8, E-1
Character Accessing, E-4
Character Set, B-3
KSAM, 3-11
Error Messages, 3-13, 3-14
KSAM Files
Copying, 3-18
Creating Programmatically, 3-14
Creating With KSAMUTIL, 3-11
FCOPY, 3-3
Modifying, 3-14
Moving To MPE; 3-18

L

LANGINST System Utility, A-1
Adding A Language, A-2
Deleting A Language, A-2
Modifying Local Formats, A-3
User Dialogue, A-3
Utility Program, 1-§

Language Attribute
Assigning, 1-8, 3-5, 3-11
Changing, 3-3, 3-7, 3-18
VPLUS, 3-29

LANGUAGE Command, 3-19, 3-23

Language-Dependent
Applications, 3-29
Commands, 3-21
Currency Symbols, 1-4
Data Conversion, 1-4
Information, Returning, 4-26
Lexical Order, 1-4
Variations, C-9

Language ID Number, 4-29
Adding, 4-9
Assigning, 3-31
Forms File, 3-33

Returning, 4-24
Language Information, COBOLII, H-41
Language Verification, 4-29
Languages

Configuring, 1-5

Supported, 1-2, B~1
Lexical Order, Language-Dependent, 1-4
Localized Applications, 1-1, 2-1

M

MAKECAT/GENCAT Comparison, 2-22
Maintenance Files, 2-9
Directives, 2~10
Merging By Line Number, 2-9
Merging By Message Number, 2-9
Merging By Set Numbers, 2-9
Mapping, ROMANS To EBCDIC, D~1
MERGEINIT Intrinsic, 3-25
Merging, COBOLII, 3-27
Merging Maintenance Files, 2-9
Message Catalogs
Closing, 4~5
Maintaining, 2-8
Modifying, 2-2
Opening, 4-6
Reading, 4-7
Message Numbers, 2-9
Message Records, 2-4
Special Characters In GENCAT, 2~-4
Modifying
KSAM Files, 3-14
Local Formats LANGINST, A-3
Maintenance Files, 2~9
Message Catalogs, 2-2
Month Abbreviation Table, 4-27
Month Table, 4-28
Moving Character Strings, 4-35
Moving KSAM Files, 3-18
MPE Files, Conversion Of , F-2
Multilingual Applications, 1-12, 3-30

N

N7MF8CNV Utility, F-7
Naming Conventions, Catalog, 2~7
Naming Conventions, Files, 1-7

I-4

INDEX (Continued)

National Substitution Sets, F-1

National-Dependent Information Table, 4~30

Native Language, Specifying A, 3-34
NLAPPEND Intrinsic, 4-9
NLCOLLATE Intrinsic, 4-10
NLCONVCLOCK Intrinsic, 4-12
NLCONVCUSTDATE Intrinsic, 4-14
NLDATALANG JCW, 1-9
NLFMTCALENDAR Intrinsic, 4-16
NLFMTCLOCK Intrinsic, 4-18
NLFMTCUSTDATE Intrinsic, 4-20
NLFMTDATE Intrinsic, 4-22
NLGETLANG Intrinsic, 1-9, 4-24
NLINFO Intrinsic, 4-26
NLKEYCOMPARE

COBOLII, H-32

Intrinsic, 4-31

SPL, H-36
NLREPCHAR Intrinsic, 4-33
NLSCANMOVE

COBOLII, H-15

Intrinsic, 4-35

SPL, H-22
NLS Features, Accessing, 1-7
NLTRANSLATE

Intrinsic, 4-38

COBOLII, H~29
NLUSERLANG JCW | 1-9
NLUTIL Utility Program, 1-5, A-1
Nondisplayable Characters, 4-33
Numeric Data Editing

QUERY, 3-20

VPLUS, 3-31
Numerical Parameter Substitution, 2-6
Numeric Date Information, 4-3

0]

Old ROMANS, E-1
Opening A Message Catalog, 4-6

Parameter Substitution, 2-5
Numerical, 2~6
Positional, 2-5

Parameter Values, 1-8
Pascal

CATCLOSE, H-45

CATOPEN, H-45

CATREAD, H-45

Guidelines For Using, G-3

Programs Using SORT, H-3
Peripheral Support, E-4
Positional Parameter Substitution, 2-5
Printer Configuration

HP 2563A, E-8

HP 2608A/HP 2608S, E-9

HP 2631B, E-16

HP 2635B, E-17

HP 2680A, E-19

HP 2688A, E-20

HP 2932A/HP 2933A/HP 1934A, E-22
Processing Standard, E-2
Programmatic

KSAM, 3-14

SORT-MERGE, 3-24
Programming Languages, Supported

BASIC, G-3

COBOLII, G-2

FORTRAN, G-2

Pascal, G-3

RPG, G-3

SPL, G-3

Q

QUERY, 3-19
Character Upshifting, 3-20
Date Format, 3-20
Error Messages, 3-21
Numeric Data Editing, 3-20
Range Selection, 3-20
Real Number Conversion, 3-20
Sorted Lists, 3-20

R

Range Selection, QUERY, 3-20
Reading A Message Catalog, 4-7
Real Number Conversion QUERY, 3-20

I-5

INDEX (Continued)

Records
Comment, 2-5, 2-10
Message, 2-4
$SET, 2-2
Replacing Nondisplayable Characters, 4-33
REPORT Command, 3-20
Returning A Language ID Number, 4-24
Roman Extension, E-1
ROMANS, E~1
Accessing Characters, E-4
Character Sets, B-3, F-1
RPG, Guidelines For Using, G-3

Scanning Character Strings, 4-335
Set Numbers, 2-9
$SET Records, 2-2
Single~-Language Application, 1-12, 3-30
SORT
In A COBOLII Program, H~1
In A FORTRAN Program, H-5
In A Pascal Program, H-3
Sorted Lists, QUERY, 3-20
Sorting, COBOLII, 3-27
SORTINIT Intrinsic, 3-24
SORT-MERGE, 3~23
Error Messages, 3-26
Programmatically, 3-24
Stand-~Alone, 3-23
SORT-MERGE Intrinsics
MERGEINIT, 3-2§
SORTINIT, 3-24
Source Catalogs
Directives, 2-2
Formatting, 2-2, 2-13
Sample, 2-5
Size Of , 2-2
Special Characters GENCAT, 2-4
Specifying A Native Language, 3-34
SPL
Date/Time Formatting Intrinsics, H-10
Guidelines For Using, G-3
NLKEYCOMPARE, H-36
NLSCANMOVE, H-22
Stand-Alone SORT-MERGE, 3-23
Substitution, Parameter, 2-5
Subsystem Utility Program, 1-14

Subsystems, Supported, 1-7

FCOPY, 3-2
IMAGE, 3-5

KSAM, 3-11
QUERY, 3-19
SORT-MERGE, 3-23
VPLUS, 3-29

Supported Languages, 1-2, B-1
System Default Language, 3-26
System Manager Capabilities, A-2
System Utility Programs

LANGINST, 1-5, A-1
NLUTIL, 1-5, A-1

Table Returned

ASCII-To-EBCDIC Translation, 4~29
Character Set Attributes, 4-29
Collating Sequences, 4-28

Day Abbreviation, 4-28

Day Of The Week, 4-28

Downshift Table, 4-29
EBCDIC-To-ASCII Translation, 4-29
Language ID Numbers, 4-29

Month, 4-28

Month Abbreviation, 4-27

Upshift Table, 4-29

TDP Files, Conversion Of, F-2
Terminal Configuration

HP 150 As A Terminal, E~-$
HP 2382A, E-6

HP 2392A, E-7

HP 26218, E-10

HP 2622A/HP 2623A, E-11
HP 2622)J/HP 2623J, E-12
HP 2625A/HP 2628A, E-13
HP 2626A/HP 2626W E-14
HP 2627A,E-15

HP 2635B, E-17

HP 2645J, E-18

HP 2700, E-21

Thousands Indicators, 4-28
Time Formatting, 4-12, 4-18
Translation Table

I-6

ASCII-To~EBCDIC, 4-29
LEBCDIC-To-ASCII, 4-29

INDEX (Continued)

U

Unlocalized Applications, 3-29
Uppercase Character Set Name, 4-29
Uppercase Language Name, 4-29
Upshifting Characters, 3-3, 3-20
Upshift Table, 4-29
User Dialogue

Data Conversion, F~5, F-10

Expanding A Formatted Catalog, 2-14

Formatting Source Catalogs, 2-12

GENCAT HELP Facility, 2-16

LANGINST, A-3

Modifying Source Files, 2-10
User-Defined Commands (UDCs), 1-9
Utilities, Data Conversion, 1-6, F-7
Utility Programs

DBLOAD, 3-5§

DBSCHEMA, 3-5§

DBUNLOAD, 3-5

DBUTIL, 3-5

I17DB8CNV, F-8

IMAGE, 3-5

LANGINST, 1-5, A-1

NTMF8CNV, F-7

NLUTIL, 1-5, A-1

V7FF8CNV, F-10

v

Verification Of Configuration, 4-29
VERIFY Command, 3-11, 3-24
Verifying
Character Set Support, 4-29
Language Configuration, A-1
VGETLANG Intrinsic, 3-33
VSETLANG Intrinsic, 3-34
VPLUS, 3-29
Character Handling, 3-31
Date Handling, 3~31
Error Messages, 3-32
Forms Files, Conversion Of , F-2
Language Attribute, 3-29
Numeric Data, 3-31
VPLUS Intrinsics
VGETLANG, 3-33
VSETLANG, 3-34

XYZ

Yes/No Responses, 4-28

1-7/1-8

READER COMMENT SHEET

Native Language Support

(32414-90001)

September 1984

We welcome your evaluation of this manual. It is one of several that serve as a reference source for
HP 3000 Computer Systems. Your comments and suggestions help us to improve our publications and
will be reviewed by appropriate technical personnel. HP may make any use of the submitted sugges-

tions and comments without obligation.

Is this manual technically accurate?

Are the concepts and wording easy to
understand ?

Is the format of this manual convenient
in size, arrangement and readability ?

Comments:

Yes [] No []

Yes [] No {j

Yes [1 No (]

(If no, explain under Comments, below.)

(If no, explain under Comments, below.)

(If no, explain or suggest improvements
under Comments, below.)

We appreciate your comments and suggestions. This form requires no postage stamp if mailed in the
U.S. For locations outside the U.S., your local HP representative will ensure that your comments are

forwarded.

FROM:

Name

Date:

Company

Address

R
EII'I l NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1070 CUPERTINO, CALIFORNIA

POSTAGE WILL BE PAID BY ADDRESSEE

Documentation Manager/47U
Hewlett-Packard Company
Computer Systems Division
19447 Pruneridge Avenue
Cupertino, California 95014

READER COMMENT SHEET

Native Language Support

(32414-90001)

September 1984

We welcome your evaluation of this manual. It is one of several that serve as a reference source for
HP 3000 Computer Systems. Your comments and suggestions help us to improve our publications and
will be reviewed by appropriate technical personnel. HP may make any use of the submitted sugges-

tions and comments without obligation.

Is this manual technically accurate?

Are the concepts and wording easy to
understand ?

Is the format of this manual convenient
in size, arrangement and readability ?

Comments:

Yes [] No []

Yes [1 No[]

Yes [1 No []

(If no, explain under Comments, below.)

(If no, explain under Comments, below.}

(If no, explain or suggest improvements
under Comments, below.)

We appreciate your comments and suggestions. This form requires no postage stamp if mailed in the
U.S. For locations outside the U.S., your local HP representative will ensure that your comments are

forwarded.

FROM.:

Name

Date:

Company

Address

i IIII I NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1070 CUPERTINO, CALIFORNIA

POSTAGE WILL BE PAID BY ADDRESSEE

Documentation Manager/47U
Hewlett-Packard Company
Computer Systems Division
12447 Pruneridge Avenue
Cupertino, California 95014

READER COMMENT SHEET
Native Language Support
(32414-90001) September 1984
We welcome your evaluation of this manual. It is one of several that serve as a reference source for
HP 3000 Computer Systems. Your comments and suggestions help us to improve our publications and

will be reviewed by appropriate technical personnel HP may make any use of the submitted sugges-
tions and comments without obligation.

Is this manual technically accurate ? Yes [} No [l (If no, explain under Comments, below.)
Are the concepts and wording easy to Yes [] Ne [] (If no, explain under Comments, below.)
understand ?

Is the format of this manual convenient Yes [1 No [] (If no, explain or suggest improvements
in size, arrangement and readability ? under Comments, below.)

Comments:

We appreciate your comments and suggestions. This form requires no postage stamp if mailed in the
U.S. For locations outside the U.S., your local HP representative will ensure that your comments are
forwarded.

Date:

FROM.:

Name

Company

Address

i IIII ! NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1070 CUPERTINO, CALIFORNIA

POSTAGE WILL BE PAID BY ADDRESSEE

Documentation Manager/47U
Hewlett-Packard Company
Computer Systems Division
19447 Pruneridge Avenue
Cupertino, California 95014

HEWLETT
PACKARD

Part No. 32414-90001 k : [ﬁp
- Printed in U.S.A. 9/84 : '
E0884

	List of Effective Pages
	Printing History
	Contents
	Preface
	Section I Introduction to NLS
	Section II Application Message Facility
	Section III NLS in MPE Subsystems
	Section IV Native Language Intrinsics
	Appendix A System Utilities
	Appendix B Supported Languages and Character Sets
	Appendix C Collating in European Languages
	Appendix D EBCDIC Mappings
	Appendix E Peripheral Configuration
	Appendix F Converting 7-Bit to 8-Bit Data
	Appendix G Application Guidelines
	Appendix H Example Programs
	Index

