## HP 9125S

## SERVICE MANUAL

Print Date: October 1, 1984

Part Number 09125-90030

THIS MANUAL IS INTENDED ONLY FOR SERVICE PERSONNEL TRAINED IN ITS USE
BY HEWLETT-PACKARD

## CONTENTS

## SECTION

PAGE
I Product Information ..... 1-1
Product Description ..... 1-1
Specifications ..... 1-1
Physical Characteristics ..... 1-1
Interface ..... 1-1
Performance Characteristics ..... 1-2
Electrical Characteristics ..... 1-2
Operating Environment ..... 1-2
Power ..... 1-3
Equipment Supplied ..... 1-3
Support Strategy ..... 1-3
Exchange Assemblies ..... 1-3
Serial Number Information ..... 1-3
II Site Preparation and Requirements ..... 2-1
Introduction ..... 2-1
Environmental Requirements ..... 2-1
III Installation and Configuration ..... 3-1
Installation ..... 3-1
Interface Restrictions ..... 3-1
Configuration ..... 3-2
HP-IB Address ..... 3-3
Power-On ..... 3-3
Write Protect Error ..... 3-3
IV Preventive Maintenance ..... 4-1
$\checkmark$ Functional Description ..... 5-1
Introduction ..... 5-1
Major Components ..... 5-1
Memory Map ..... 5-1
VI Removal and Replacement ..... 6-1
Introduction ..... 6-1
Tools ..... 6-1
Top Cover Removal ..... 6-1
Controller Removal ..... 6-1
Power Supply Removal ..... 6-2
Drive Removal ..... 6-2
VII Troubleshooting and Diagnostics ..... 7-1
Repair Philosophy ..... 7-1
Controller Electronics Assembly ..... 7-1
Power Supply ..... 7-2
Selftest ..... 7-2
Availiable Test ..... 7-3
Preparation For Troubleshooting ..... 7-4
VIII Adjustments ..... 8-1
Introduction ..... 8-1
Setup ..... 8-1
PLL Adjustments ..... 8-2
RPW/WPW Adjustments ..... 8-2
IX Replaceable Parts ..... 9-1
X Reference ..... 10-1
XI Product History ..... 11-1
XII Diagrams ..... 12-1
XIII Additional Information ..... 13-1
Self-Study Guide ..... 13-3
XIV Index ..... 14-1

## [1] PRODUCT DESCRIPTION

The HP 9125S Disc Memory (Figure 1-1) is a random access data storage device. The HP 9125S contains a single $51 / 4$-inch double-sided disc drive providing a maximum of 360 K bytes (double-sided) of storage capacity.

The HP 9125 D Drive uses thestandard HP-IB interface and can read, write and initialize disc in the IBM PC format. This provides data exchange capability between theHP 150 and the IBM PC. The HP 9125 S also provides data compatibility between the HP technical computers and the HP 150 PC .


Figure 1-1. HP 9125 S

## [2] SPECIFICATIONS

## PHYSICAL CHARACTERISTICS

Number of drives
Net Weight
Height
Width
Depth

```
                        l
    7.26kg (16 lbs)
    100 mm (3.9 in.)
    325 mm (12.8 in.)
    287.5mm (11.2 in.)
```


## PERFORMANCE CHARACTERISTICS

| Maximum Formatted Capac |  | Capacity |
| :---: | :---: | :---: |
| Bytes per sector | $\begin{aligned} & 512 \text { (MSDOS, PCDOS) } \\ & 256 \text { (LIF) } \end{aligned}$ |  |
| Sectors per track | 8 (PCDOS version 1.0) | 160 Kbytes |
|  | 9 (HP MSDOS) | 270 Kbytes |
|  | 9 (PCDOS version 1.1) | 180 Kbytes |
|  | (Version 2.0 and greater) | 360 Kbytes |
|  | 16 (LIF) | 270 Kbytes |
| Tracks per surface | 40 (PCDOS, HP MSDOS) |  |
|  | 35 (LIF) |  |

## ELECTRICAL CHARACTERISTICS

| Encoding | MFM (double-density) |
| :--- | :--- |
| Rotational Speed | 300 RPM |
| Tracks per inch | 48 |
| Average access time | 195 ms |

## OPERATING ENVIRONMENT

```
Operating Limits
    Temperature }1\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }4\mp@subsup{0}{}{\circ}\textrm{C}(5\mp@subsup{0}{}{\circ}\textrm{F}\mathrm{ to }10\mp@subsup{4}{}{\circ}\textrm{F}
        with maximum wet bulb temperature (non-condensing)
        not to exceed 29* C
    Altitude 0 to 4572 m (0 to 15,000 ft)
Non-operating Limits
(Storage and Transit)
    Temperature }\quad-4\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }6\mp@subsup{0}{}{\circ}\textrm{C}(-4\mp@subsup{0}{}{\circ}\mathrm{ to }14\mp@subsup{0}{}{\circ}\textrm{F}
    Altitude -304 to 15240 m (-1000 to 50,000 ft)
```


## POWER

LINE VOLTAGE
100-120 VAC (115 VAC line)

200-240 VAC (220 VAC line)

LINE FREQUENCY
$48-66 \mathrm{~Hz}$

POWER COMSUMPTION
50 Watts maximum

## [3] EQUIPMENT SUPPLIED

| Description | Quantity | HP Part Number |
| :--- | :---: | :---: |
| Power cord | 1 | Dependent on location |
| Fuse | 1 | $2110-0002(2$ AMP, 250 VAC) |
| Operator's Manual | 1 | $09125-90000$ |

A package of ten discs has been set up as a product. This product is orderable using the 92190 A product number.

## [4] SUPPORT STRATEGY

The $51 / 4$-inch disc drive assembly and the controller PCA are serviced on the exchange program.

EXCHANGE ASSEMBLIES

5 1/4-inch disc drive
Controller PCA

HP Part Number

09131-69601
09125-69502

## [5] SERIAL INFORMATION

This Manual applies directly to Model 9125 S Flexible Disc Drives having serial numbers prefixed by 2430. Drives with later prefix numbers will be covered in manual updating supplements.

## [1] SITE PREPARATION

The following paragraph discuss the requirements for proper operation of the HP 9125 S Disc Memory. Site preparation is normally a customer responsibility.

## [2] ENVIRONMENTAL REQUIREMENTS

The HP 9125S is designed to operate in the following temperature range:

```
Temperature \(10^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right.\) to \(\left.104^{\circ} \mathrm{F}\right)\) with maximum wet bulb temperature (non-condensing) not to exceed \(29^{\circ} \mathrm{C}\)
```


## NOTE

The flexible disc in the HP 9125 S Disc Memory is designed for operation in a typical office environment. Use of the equipment in an environment containing dirt, dust, or corrosive substances will cause the flexible disc drives and disc life to be drastically reduced.

## SITE PREPARATION AND REQUIREMENTS

## [1] INSTALLATION

The disc drive is connected to the computer or computing system using one of the HP-IB cables listed in Table 1. Refer to the Operators Manual for system specific interconnect.

Table 1

| Length | Accessory Number |
| :--- | :---: |
| 1 metre | 10833 A |
| 2 metres | 10833 B |
| 4 metres | 10833 C |
| .5 metre | 10833 D |

## HP-IB INTERFACE RESTRICTIONS

1. All the AC line switches must be turned "OFF" when connecting (and disconnecting) devices to the system.
2. The total length of cable permitted in one bus system must be less than or equal to two metres times the number of devices connected together (the interface card is considered one device).
3. The total length of the cable must not exceed 20 metres. For example, a system containing six devices can be connected together with cables that have a total length less than or equal to 12 metres (six devices $x$ $2 \mathrm{~m} /$ device $=12$ metres). The individual lengths of cable may be distributed in any manner desired as long as the total length does not exceed the allowed maximum. If more than 10 devices are to be connected together, cables shorter than two metres must be used between some of the devices to keep the total cable length less than 20 metres.
4. The maximum number of devices that can be connected together in one bus system is 15 .

There are no restrictions to the way cables may be connected together; however, it is recommended that no more than four piggyback connectors be stacked together on one device. The resulting structure could exert enough force on the connector mounting to damage it.

## CAUTION

Disc drive performance and reliability are dependent on the type of media used. Disc drive specifications can be assured
only when using HP media. The use of improper media can result in premature disc failure or damage to the disc drive.

## CAUTION

Never turn the disc drive off or remove the disc from the drive when the disc access light is on; doing so can cause loss of data.

## [ 2] CONFIGURATION OF STANDARD DRIVE UNIT

## VOLTAGE SELECTION AND FUSING

The voltage select switch on the rear panel must be set to the nominal line voltage for the area in which it is operating, Figure 3-2 shows the voltage select switch set for 115 VAC line voltage.

## CAUTION

Always turn the AC power switch off or disconnect the AC line cord before changing the line voltage select switch position. Changing the line voltage select switch setting while AC power is on could damage the unit.


HP 9125S REAR PANEL
Figure 3-2

There is only one fuse required for each of the two voltage ranges of $110-120$ and $220-240 \mathrm{VAC}$. The part number for the fuse is $2110-0002$.

## WARNING

## ALWAYS DISCONNECT THE DISC DRIVE FROM ANY AC LINE BEFORE CHANGING FUSES.

## SELECTING THE HP-IB ADDRESS

To select the HP-IB address, locate the thumbwheel switch on the back of the unit. Use figure 3-2 for locating the switch. Turn the thumbwheel switch until the address you want appears in the window. Refer to your system Operator's Manual for proper setting of the HP 9125 S address within the system.

## POWER-ON SELFTEST

A power-on selftest is performed automatically when you turn on the disc drive. The selftest first checks the HP-IB, FDC, RAM, ROM, and PIA chips; followed by a WRITE/READ test (if an initialized, non writeprotected disc is inserted). The disc access LED acts as a pass-fail selftest indicator.

The basic (passing) selftest lasts approximately 5 seconds, as indicated by the disc-access LED. When an initialized, unprotected disc is inserted; read, write, and motor-speed tests are performed, adding 6 seconds to the test duration. A write-protected disc will not allow the WRITE/READ tests to run. If the disc access light stays on after the normal testing time, an error within the disc drive has been detected. If an error occurs, refer to Section 8 for troubleshooting procedures.

## WRITE PROTECT ERROR ON INITIALIZATION

A motor speed check is performed when a disc is inserted into the drive. If the motor speed is on either side of the tolerance allowed, a Write Protect Error is generated and the disc cannot be initialized or used. If the drive is operating properly, this indication is one of a defective disc. Discard the disc.

## [1] INTRODUCTION

The disc drive does not require regular maintenance. However, to extend the life of the flexible disc drive, a head cleaning kit (Hewlett-Packard part number 92190 HC ) may be ordered. The kit should be used only if you experience excessive read errors or if a disc has been damaged. Do not use the kit routinely, since repetitive use of a cleaning disc may accelerate head wear in the disc drive.

The performance and life of the disc drive and the flexible discs depend on how carefully they are handled. Refer to the disc care and handling guidelines presented in Chapter 1 of the Operator's Manual for the proper care of the disc.

## FUNCTIONAL DESCRIPTION

## [1] INTRODUCTION

The following paragraphs give a brief overview of the hardware and shows the memory allocations for the major LSI components of the HP 9125S.

Figure $5-1$ is the block diagram for the unit.

## MAJOR COMPONENTS

1. An HP-IB interface chip, 8291 A , appears to the microprocessor as a bank of eight addressable registers and all interaction with HP-IB is performed by reading and writing to these registers.
2. The microprocessor is a Motorola 68B09. During normal operations, the microprocessor controls all of the internal busses. This includes the reads and writes to and from all of the chips. It is run by an external 8 Mhz clock and produces two, 2 Mhz clock signals ( Q and E ) which are used for the bus timing signals. Addresses from the microprocessor will be valid with the leading edge of Q (which leads the E signal) and data is latched on the falling edge of $E$.
3. All firmware is stored in the Intel D27128 EPROM. This includes the information for various selftest procedures and for SUBSET/80 command interpretation.
4. The RAM, a Toshiba $2016 \mathrm{AP}-12$, stores 2048 bytes of information All data transferred to or from the disk will be temporarily stored here. The remaining RAM space is used for stack and general purpose data storage.
5. Controlling the CDC drive is done by the Western Digital 2793-3X Floppy Disk Controller (FDC) chip. This chip is a formatter/controller chip which includes an on-board PLL data separator and write precompensation logic.
6. The 68B21 Peripheral Interface Adapter (PIA), interfaces many interrupt and control signals to and from the 68B09 microprocessor. It controls and monitors signals to and from the CDC drive including HEAD LOAD, MOTOR ON, HEAD SELECT, DISK CHANGE, RESET DISK CHANGE, and READY. It interfaces the FDC's interrupts, INTRQ and DRQ, and the CDC's INDEX into the processors's IRQ and DIRQ ports. It also inputs the configuration of a service test to be performed, and signals to the user that the power-on selftest passed.

MEMORY MAP

ADDRESS ALLOCATION
8291A (HP-IB)
Status Register
Interrupt Register
Data Register

HEX ADDRESS
BINARY ADDRESS

| 8291 A ( HP -IB) |  | msb | 1 sb |
| :---: | :---: | :---: | :---: |
| Status Register | $2 \times \times 0$ | 001 | -000 |
| Interrupt Register | 2XX1 | 001 | -001 |
| Data Register | 2XX2 | 001 | -010 |


| Parallel Poll Register | 2XX3 | 001 | -011 |
| :---: | :---: | :---: | :---: |
| Loop Address Register | 2XX4 | 001 | -100 |
| Scratchpad Register | 2XX5 | 001 | -101 |
| Scratchpad Register | 2XX6 | 001 | -110 |
| Auxilary Input Register | $2 \times \times 7$ | 001 | -111 |
| FDC |  |  |  |
| READ WRITE |  |  |  |
| Status Reg. Command Reg. | 0XX0 | 000 | --00 |
| Track Reg. Track Reg. | 0XX1 | 000 | --01 |
| Sector Reg. Sector Reg. | 0XX2 | 000 | --10 |
| Data Reg. Data Reg. | 0XX3 | 000 | --11 |

PIA

|  | CONTROL REGISTER A-BIT2 B-BIT2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peripheral Reg | A | 1 | $X$ | 6XX0 | 011 | -00 |
| Data Dir. Reg. | A | 0 | $X$ | 6XX0 | 011 | --00 |
| Control Reg. | A | X | $X$ | 6XX1 | $011-$ | --01 |
| Peripheral Reg | B | $X$ | 1 | 6XX2 | 011- | --10 |
| Data Dir. Reg. | B | X | 0 | 6XX2 | 011- | --10 |
| Control Reg. | B | X | $X$ | 6XX3 | 011- | -11 |

RAM

|  | 4000 | $010--000$ | 0000 | 0000 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Through | $47 F F$ | $010--111$ | 1111 | 1111 |

ROM

|  | $C 000$ | 1100 | 0000 | 0000 | 0000 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Through | FFFF | 1111 | 1111 | 1111 | 1111 |

UNUSED

Address...
And Address...
8XXX
AXXX


Figure 5-1

FUNCTIONAL DESCRIPTION

## [1] INTRODUCTION

This chapter provides information for disassembly of the HP 91255 disc memory. An exploded view of the unit is also provided which references part numbers that are listed in the replaceable parts section.

The following tools are required for disassembly and reassembly of the disc memory.
1/4-inch nut driver
\#1 pozidriv screwdriver (HP part number 8710-0899)
\#2 pozidriv screwdriver (HP part number 8710-0900)
Needlenose pliers
Use Figure 9-1 in the replaceable parts (Section IX) for assembly location. Use Figure 6-1 and 6-2 for cable connector location.

The assemblies labeled on the drawing are as follows:
1 Top Cover
A2 Power Supply PCA
A3 Controller PCA
2 Disc Drive
A5 HP-IB Connector Assembly

## [2] TOP COVER REMOVAL (1)

To access the internal assemblies, the top cover must first be removed.
Peform the following steps to remove the top cover.

- Remove the 2 screws located at the rear of the unit.
- Remove the 3 screws located on the bottom of the front panel.
- Slide the top cover forward for removal.
- To assemble, reverse the above process.


## [3] CONTROLLER PCA REMOVAL (A3)

To remove the printed circuit assembly complete the following steps.

- Remove the 2 screws that attach the PC assembly to the chassis.


## REMOVAL AND REPLACEMENT

- Carefully remove the two keyed ribbon cables (J1 and J2), and the DC power cable (J3).
- To assemble, reverse the above process.


## [4] POWER SUPPLY PCA REMOVAL (A2)

- Remove the fan connector J6 and main DC power connector J5.
- Pull the white AC power button from the switch shaft and remove the shaft after pulling it forward from the switch.
- Disconnect the the two connectors and the ground strap coming from the AC line connector.
- Remove the two cable connectors coming from the power transformer to the power supply PCA (J3 and J4).
- Remove the two mounting screws and pull the plastic lock-pin upwards.
- Tilt the front of the PCA upwards enough to clear the transformer and lift the assembly from the chassis.
- To assemble, reverse the above process.


## [5] DRIVE REMOVAL (2)

The drive assembly is attatched to an aluminum mounting bracket, which is attatched to the chassis. To remove the drive assembly, use the following steps:

- Remove the top cover as stated above.
- Remove all connectors from the Drive control PCA.
- Remove the two screws that secure the Drive Control PCA; remove the PCA, and set it aside.
- Remove the power supply PCA using the steps stated above.
- Disconnect the 34 pin flat ribbon cable from the drive electronics board.
- Remove the two screws that secure the drive mounting assembly to the main frame.
- Slide the drive mounting assembly foreward approximately $1 / 4$ inch and lift upwards from the main frame.
- Remove the four screws that mount the drive to the drive mounting assembly.
- Remove the drive from the mounting assembly.
- Remove the DC power connector from the drive electronics board.
- To assemble, reverse the above process.


## NOTE

Care should be taken to ensure proper fit of the drive unit front bezel into the front panel opening. When mounting the drive into the drive mounting assembly, adjust the drive down as far as possible before tightening the four drive mounting screws.

After assembling, verify that the disc drive eject lever does not bind on the front panel.


91255 POWER SUPPLY
Figure 6-1


91255 Controller PCA
Figure 6-2

## [1] INTRODUCTION

The Phase Lock Loop (PLL), Read Pulse Width (RPW), and Write Pulse Width (WPW) adjustments are performed as follows. The PLL adjustment should be performed when the unit exibits read/verify errors or fails the VERIFY test (TEST 7). The RPW and WPW adjustments are not recommended as they rarely drift, and are not critical. The RPW and WPW procedures are included for troubleshooting purposes and for the case of unintentional adjustment only.

## [2] PREPARATION FOR ADJUSTMENTS

The following procedure arranges the Drive Control PCA for easy access to test-points and jumpers.

1. Remove the top cover as described in Section VI, subsection 2
2. Remove the two Drive Control PCA mounting screws.
3. Unplug the 4-pin power supply connector from the Drive Control PCA (leave the flat ribbon cables connected).
4. Lift out the Drive Control PCA, and rotate it so that the ribbon cables face the rear of the unit.
5. Install one of the PCA mounting screws in the left mounting location. This screw serves as a support for the left side of the PCA.
6. With the Drive Control PCA in the rotated position, install the remaining PCA mounting screw through the lower right-hand corner of the PCA into the right mounting location. Rest the left side of the PCA on the leftside support screw.
7. Reconnect the power supply cable to the Drive Control PCA. The unit now appears as shown in figure 7-3.

To assemble, reverse the above process.
NOTE
Care should be taken to ensure proper fit of the drive unit front bezel into the front panel opening. When mounting the drive into the drive mounting assembly, adjust the drive down as far as possible before tightening the four drive mounting screws.

After assembling, verify that the disc eject lever does not bind on the front panel.

## PLL ADJUSTMENT

The PLL, as well as the RPW and WPW adjustments require the FDC chip to warm up prior to adjustment. Perform the following procedures at an ambient temperature of $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ in the order specified.

Use Figure 8-1 for locating test points.

1. Power-on the unit, and allow the power-on selftest to finish.
2. Set the ADJ jumper to the "T" position. This enables the FDC Adjust Mode.
3. After 2 minutes warm up, attatch the frequency counter test leads to the VCO testpoint. The frequency should be $250 \mathrm{KHz}+-5 \%$. If adjustment is necessary, adjust the variable capacitor C 3 for a frequency of $250 \mathrm{KHz}+-.2 \%(+-500 \mathrm{~Hz})$.
4. Return the ADJ jumper to the original position.
5. Verify disc operation; recycle power and observe the selftest results.

## RPW AND WPW ADJUSTMENTS

1. Perform the preceding power-on, and warm up procedure (repeat above steps 1 and 2)
2. Attach the oscilloscope test lead to the RPW test point.
3. Observe the waveform pulse width (see Figure 7-2). The pulse width should be $500 \mathrm{~ns}+-10 \%$.
4. Attatch the test lead to the WPW test point and observe the pulse width. The width should be $250 \mathrm{~ns}+-10 \%$.
5. The RPW and WPW adjustments are rarely necessary. Perform only if the adjustments were inadvertently altered.
6. Return the ADJ jumper to the original position.
7. Verify disc operation as in step 5 of the PLL adjustment section above.


91255 Controller PCA
Figure 7-1


Figure 7-2


CONTROLLER PCA IN ROTATED TEST-POSITION
Figure 7-3

## ADJUSTMENTS

## TROUBLESHOOTING AND DIAGNOSTICS

## [1] REPAIR PHILOSOPHY

The $51 / 4$-inch disc drive assembly and the controller PCA are serviced on the exchange program. The part numbers are as follows:

```
5 1/4-inch Flexible Disc Drive -- 09125-69601
Controller/Power Supply Assembly -- 09125-69502
```


## CONTROLLER ELECTRONICS ASSEMBLY

Figure 4-1 represents the controller printed circuit assembly. Along with key components, test points and jumpers are also labeled.


9125S Controller PCA

Figure 8-1

## POWER SUPPLY ASSEMBLY

The power supply PCA is not an exchange assembly. The following Figure (Figure 8-2) is provided only for location of power supply voltage test points. This will aid you in isolating the failure to a replaceable assembly.


Figure 8-2

## [2] SELFTEST

Selftest routines can be initiated in 3 different ways. These test are initiated as follows

1. At power-on a selftest of the processor, ROM, HP-IB chip, microprocessor RAM, buffer RAM, and drive is performed.
2. With a host, the Initiate Diagnostic command can be given. It runs a test similar to those at power on.
3. The SVC TEST, when set to the "T" position, causes the HP 9125 S to go into the diagnostic test mode. The HP 9125 S interprets the 4 bit HP-IB switch and the TEST MSB jumper as a selftest to perform. The LED is blinked (to show th at it works) and then the test, as selected by the address switch setting, is performed. A successful test is indicated by the LED blinking (once per second). A failure causes the LED to stay on. The test results are displayed for 5 seconds. If the SVC TEST jumper is left on, the same test will be performed again. When the SVC test jumper is no longer in the diagnostic test position, the HP 9125 S will go through the power-up sequence and will again be in the peripheral mode of operation, waiting for commands over the HP-IB.

## NOTE

Puting the SVC TEST jumper in the "T" position, and then turning the unit on, will not initiate the selftest selected. You must install the SVC TEST jumper after the unit has gone through its power-on reset sequence.

The following table illustrates how to select the desired test using the HP-IB address switch and the TEST MSB jumper. Use Figure 8-1 for location of the TEST MSB jumper.

TABLE 1

| HB-IB <br> ADDRESS | TEST <br> MSB JUMPER | SELECTED <br> TEST |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 1 | 0 | 1 |
| 2 | 0 | 2 |
| 3 | 0 | 3 |
| 4 | 0 | 4 |
| 5 | 0 | 5 |
| 6 | 0 | 6 |
| 7 | 0 | 7 |
| 0 | 1 | 8 |
| 1 | 1 | 9 |
| 2 | 1 | 10 |
| 3 | 1 | 11 |
| 4 | 1 | 12 |
| 5 | 1 | 13 |
| 6 | 1 | 14 |
| 7 |  | 15 |

The Self-Test capability of the HP 9125 consists of being able to select and optionally loop on any one selected test from the following choices:

The results of asuccessful test are displayed by the FAULT-LED blinking (once per second). A failure causes the LED to stay on. Results are displayed for five seconds followed by a complete power-up sequence.

NOTE
A disc must be in the drive to perform test 5-8. Ensure that the disc is not write protected and that it is an initialized scratch disc.

AVAILABLE TEST

0
RAM

1
$2 H P-I B$

3 FDC chip

All possible patterns are written in all locations of RAM.

A checksum calculation is performed.
Two of the registers on the HP-IB chip are written and their contents verified.

Two of the registers on the FDC chip are written and their contents verified.

| 4 | Floppy Seek | Commands are given to the FDC to move the head on and off track 0 . The track 0 indicator is checked to see that movement occurred. |
| :---: | :---: | :---: |
| 5 | Floppy Speed | The head is stepped to track 35 and loaded. The period of the index pulse is measured and compared against the specification. No test is performed if there is no medium in the drive. |
| 6 | Floppy Write/Verify | Every sector on the disc is written and the data is verified. All user data on the medium is lost |
| 7 | Floppy Verify | All sectors in the data area of the disc are checked for CRC errors. No user data is affected. |
| 8 | Floppy Format | The disc is re-initialized with a 011 data pattern. |

NOTE
There are 16 selftests available. Test 9-16 are not used.

## [3] PREPARATION FOR TROUBLESHOOTING

The following procedure arranges the Drive Control PCA for easy access to test-points and jumpers for troubleshooting.

1. Remove the top cover as described in Section VI, subsection 2.
2. Remove the two Drive Control PCA mounting screws.
3. Unplug the 4-pin power supply connector from the Drive Control PCA (leave the flat ribbon cables connected).
4. Lift out the Drive Control PCA, and rotate it so that the ribbon cables face the rear of the unit.
5. Install one of the PCA mounting screws in the left mounting location. This screw serves as a support for the left side of the PCA.
6. With the Drive Control PCA in the rotated position, install the remaining PCA mounting screw through the lower right-hand corner of the PCA into the right mounting location. Rest the left side of the PCA on the leftside support screw.
7. Reconnect the power supply cable to the Drive Control PCA. The unit now appears as shown in Figure 8-3.

To assemble, reverse the above process.

After assembling, verify that the disc eject lever does not bind on the front panel.


CONTROLLER PCA IN ROTATED TEST-POSITION

Figure 8-3

## [1] INTRODUCTION

In the following parts list, the major assemblies are designated by the number "1". All piece parts of that major assembly are designated by a decimal number ". 2 ", and lower level parts by ". 3 " etc.

CABLES

| 1 | $09125-61600$ | DRIVE CONTROL CABLE |
| :--- | :--- | :--- |
| 1 | $09125-61601$ | POWER CABLE |
| 1 | $09125-61602$ | INTL HP-IB CABLE |

ELECTRICAL PARTS

## 1

1

1
1
09125-66501
09125-66502
09125-66503
09153-68801
POWER SUPPLY BD
CONTROLLER BD
HP-IB BD
LINE FILTER ASSY

MECHANICAL PARTS

1
09125-68500
FAN ASSY

CASE PARTS

```
0380-1756
0403-0427
07940-00026
09121-48303
09125-00100
09125-04700
09125-40200
09153-04100
09153-43700
5041-1203
0515-0413
```

SNAP-IN STANDOFF
BUMPER FOOT
FAN GUARD
FOOT-MOLDING
CHASSIS
DRIVE BRKT
FRONT PANEL
TOP COVER
(1)

PUSH ROD
PWR BUTTON, WHITE
SCR-MACH M4X. 7

## REPLACEABLE PARTS

1
1
0515-1085
0624-0525
SCR-MA M4X. 7 8MM
SCR-TPG 10-14

## EXCHANGE ASSEMBLIES

1

| 09125-69601 | DISC DRIVE $\quad(2)$ |
| :--- | :--- |
| 69125-69502 | CONTROLLER BOARD |

POWER SUPPLY BOARD (A2)

| 1 |  | 09125-66501 | POWER SUPPLY BD |
| :---: | :---: | :---: | :---: |
| 2 | C1, 2 | 0160-3622 | C-F . IUF 100V |
| 2 | C8,10 | 0160-4830 | C-F 2200PF 10\% |
| 2 | C5,6,12 | 0160-4832 | C-F.OIUF 10\% |
| 2 | C15,16 | 0160-5098 | C-F .22UF 10\% |
| 2 | Cl 1 | 0180-0210 | C-F 3.3UF 15V |
| 2 | C7,13 | 0180-0692 | C-F 220UF 35V AL |
| 2 | C4 | 0180-3297 | C-F loouf 63V AL |
| 2 | C3 | 0180-3390 | C-F 33UF 100V |
| 2 | C9 | 0180-3575 | 4700 UF CAP |
| 2 | C14 | 0180-3576 | C-F . 01 F |
| 2 |  | 0340-0583 | INSUL-XSTR TO-3 |
| 2 | J | 0360-2035 | CONN-SGL CONT |
| 2 |  | 0590-0305 | NUT HEX 6-32 |
| 2 | R8 | 0683-1025 | R-F 1K 5\% . 25 W |
| 2 | R9, 16 | 0683-1045 | R-F 100K.05 |
| 2 | R3, 7 | 0683-1205 | R-F $125 \% .25 \mathrm{~W}$ |
| 2 | R14,15 | 0683-1245 | R-F 120K. 05 |
| 2 | R18 | 0683-1635 | R-F 16K 5\% . 25 W |
| 2 | R2 | 0683-6225 | R-F 6.2K 5\% |
| 2 | R13 | 0698-3136 | R-F 17.8K 1\% |
| 2 | R4, 6 | 0698-3511 | R-F 665.01 |
| 2 | R1 | 0698-3628 | R:F $2205 \% 2 \mathrm{~W}$ MO |
| . 2 | R5, 12 | 0698-4465 | R-F 931 OHM 1\% |
| . 2 | R10,11 | 0757-0442 | R-F $10.0 \mathrm{~K} \mathrm{1/8W}$ |
| 2 |  | 09121-48305 | STAND-OFF CAP |
| 2 |  | 09125-84302 | CAP CAUTION LBL |
| . 2 |  | 1205-0503 | XSTR MOUNT T03 |
| 2 |  | 1205-0602 | HEATSINK |
| 2 | J2 | 1251-5153 | CN SGL-CONT TAB |
| 2 | J6 | 1251-6427 | CN2 .1 SQ POST |
| 2 | J4 | 1251-8958 | CN4 . 156 RND PST |
| 2 | J5 | 1252-0349 | 10.1 CONN |
| 2 | J3 | 1252-0362 | PRIMARY 4.1 CONN |
| 2 | U2 | 1826-0346 | IC-LM358 |
| 2 | U4 | 1826-0412 | LM 393 V.COMPAR |
| 2 | U1 | 1826-0555 | IC-LM340LAZ-5 |
| 2 | Q1 | 1854-0087 | XSTR-ST NPN |
| 2 | U5,6 | 1854-0611 | XSTR-2N6055 NPN |


| .2 | U3 | $1884-0074$ | IC-2N5060 |
| :--- | :--- | :--- | :--- |
| .2 | CR9.10 | $1901-0025$ | DIO-SI |
| .2 | CR1-8 | $1901-1135$ | DIO-PWR 3A 70V |
| .2 | CR12 | $1902-0040$ | DIO-ZNR 14V 5\% |
| .2 | R17 | $0811-3292$ | R-F .15 ohm 5\% 2W |
| .2 | R19 | $0683-1515$ | R-F 150 ohm 5\% .25W |
| .2 | CR14 | $1902-0562$ | DIO-ZNR 22V 5\% 1W |
| .2 | Q2 | $1884-0293$ | THYRISTOR |
| .2 | CR13 | $1902-0074$ | DIO-ZNR 7.15V 5\% |
| .2 | CR11 | $1902-0644$ | DIO-ZNR 1N5363B |
| .2 | F1 | $2110-0002$ | FUSE 2A 250V |
| .2 |  | $2110-0565$ | CAP-FUSE HOLDER |
| .2 |  | $2110-0642$ | FUHLR-EXTR POST |
| .2 | F2,3 | $2110-0711$ | S AMP FUSE |
| .2 | SW1 | $3101-0680$ | SW-PB-DPDT |
| .2 | SW2 | $3101-2623$ | SWITCH-SLIDE |
| .2 |  | $7120-7500$ | LABEL-INFO |

CONTROLLER BOARD (A3)

| 1 |  |
| :---: | :---: |
| . 2 | C3 |
| 2 | C1,2,4,6-8,11 |
| . 2 | C5 |
| . 2 | C9 |
| . 2 | Clo |
| 2 |  |
| 2 | R5 |
| 2 | R3 |
| 2 | R4 |
| . 2 | R6 |
| 2 | U6 |
| 2 |  |
| . 2 | 3060 |
| . 2 | J3 |
| . 2 | J2 |
| 2 | J1 |
| 2 |  |
| . 2 | RP3 |
| . 2 | RP2 |
| . 2 | RP I |
| . 2 | U17 |
| . 2 | U7 |
| . 2 | U11, 12 |
| . 2 | Ul0 |
| 2 | U13,18 |
| . 2 | U19 |
| . 2 | U9 |
| . 2 | U8 |
| . 2 | U14 |
| . 2 | U20 |
| . 2 | U15,16 |
| . 2 | U2 |


| $09125-66502$ | CONTROLLER BD |
| :--- | :--- |
| $0121-0552$ | C-V 7-60PF VAC |
| $0160-4832$ | C-F .01UF 10\% |
| $0160-5098$ | C-F .22UF 10\% |
| $0160-5349$ | C-F 200PF 5\% |
| $0180-0374$ | C-F 10UF 20VDC |
| $0360-0124$ | STUD-TERM |
| $0698-4507$ | R-F 76.8K 1\% |
| $0757-0280$ | R-F 1K 1\% .125W |
| $0757-0411$ | R-F 332 OHM 1\% |
| $0757-0442$ | R-F 10.OK 1/8W |
| $09125-89101$ | IC EPROM CTLR |
| $1200-0861$ | SKT-IC 28-CONT |
| $1251-5380$ | CN2.1 SQ POST |
| $1251-7018$ | CN4.1 SQ POST |
| $1251-8683$ | CONNECTOR,34 PIN |
| $1252-0407$ | CONN-33 PIN POST |
| $1258-0141$ | JUMPER-REM |
| $1810-0190$ | NTWK-R13X2.2KDIP |
| $1810-0204$ | NTWK-R 7X1K SIP |
| $1810-0205$ | NTWK-R 7X4.7KSIP |
| $1813-0194$ | XTAL-CLK-OSC |
| $1818-1611$ | IC-STATIC RAM |
| $1820-0471$ | IC-SN7406N |
| $1820-0681$ | IC-SN74SOON |
| $1820-1112$ | IC SN74LS74AN |
| $1820-1208$ | IC-74LS32 |
| $1820-1216$ | IC-SN74LS138 |
| $1820-1416$ | IC SN74LS14N |
| $1820-1423$ | TTL SN74LS123N |
| $1820-1433$ | IC SN74LS164N |
| $1820-2096$ | IC SN74LS393N |
| $1820-2549$ | IC-8291AP |

## REPLACEABLE PARTS

| 2 | U5 | 1820-2624 | IC-68B09 |
| :---: | :---: | :---: | :---: |
| 2 | U4 | 1820-2983 | IC 68B21 |
| 2 | U3 | 1820-3659 | WD-2793-02 FDC |
| 2 | CRI | 1901-0050 | DIO SWITCHING |
| 2 | LED 1 | 1990-1022 | LED,VIS-RED/BRKT |
| 2 | U1 | 1 LH4-0001 | TRANSCEIVER |
| 2 | R1, 2 | 2100-3210 | RES-TRMR 10K 1\% |
| 2 |  | 7120-6830 | LABEL INFO |
| HP-IB | BOARD | (A5) |  |
| 1 |  | 09125-66503 | HP-IB BD |
| 2 |  | 0380-1717 | STANDOFF-HEX |
| 2 |  | 09125-04101-P | PERS COVER PLATE |
| . 2 |  | 1251-7651 | CN24 M AMP CHAMP |
| . 2 |  | 1251-8683 | CONNECTOR, 34 PIN |
| . 2 |  | 2190-0843 | WSHR-LK INTL T\#8 |
| . 2 |  | 2200-0107 | SCR-MACH 4-40 |
| . 2 |  | 3100-1951 | SW-THUMBWHEEL-10 |
| . 2 |  | 7120-7501 | LABEL-INFO |



Figure 9-1


NONE DESIGNATED AT THIS TIME XI

NOT APPLICABLE AT PRESENT TIME

PRODUCT HISTORY

ADDITIONAL DIAGRAMS NOT REQUIRED.

## ADDITIONAL INFORMATION

## CONTENTS

PAGE
Self-Study Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3

## ADDITIONAL INFORMATION

## HP 9125S

## SELF-STUDY GUIDE

This guide will temporarily act as the self-study training for the HP 9125S. The final HP $9125 S$ SelfPaced Training Guide will be introduced mid-1985.

## BEFORE YOU BEGIN <br> THIS COURSE

This section is a learning guide for the HP 9l25S Disc Drive. To successfully complete this program you should have the following:

1. A good understanding of digital electronics
2. At least one year of experience in digital electronic repair or direct supervision by a person with more than one year experience in disc repair
3. A working HP 9125S disc drive
4. The HP 9125S Service Manual.

## Products Covered

This guide covers the HP 9125 S product only.

How to Take This Course

Refer to the reference material as instructed, perform the labs, and answer the lab questions.

## Theory of Operation

Turn now to the Section $V$ of the $9125 S$ Service Manual, and read the functional description section.

## Installation

Refer to Section III of the Service Manual during the following exercises.

## Lab 1

1. Unpack your disc unit and inventory the standard equipment provided with the unit.
2. Check the setting of the line voltage select switch, and ensure that it is properly set for the line power in your area.
3. Remove the line fuse from the unit, and verify that it is the correct value for the selected line voltage setting.
4. Locate the HP-IB address switch. It is used to select selftests (explained later) as well as to select the device address. The device address will vary with the host computer.

## Reference

Refer to the following sections of this manual when performing the following lab exercises.

| Functional Descripton | Section V |
| :--- | :--- |
| Removal and Replacement | Section VI |
| Adjustments | Section VIII |
| Troubleshooting | Section VII |

## Lab 2

1. Install a formatted, unprotected disc; power the unit on. Observe the Power-on selftest results.
2. Repeat step 1 with a WRITE-PROTECTED disc installed. Were the selftest results different? How?
3. Perform each of the jumper-selectable selftests. Remember that a disc must be installed for all tests that access the disc; unprotected discs are necessary to allow the write operation.

## Lab 2 discussion

if Observe the Power-on Selftest results.
2. The duration of the Selftest is shorter than that of step 1 . Tests involving the WRITE operation are skipped when a WRITE-PROTECT tab is detected.
3. Observe the Selectable Selftest results.

## Troubleshooting

Read the Troubleshooting section of the HP 9125 S Service manual and procede to Lab 3.

## Lab 3

1. Install a WRITE PROTECTED disc in the drive, and run the WRITE/READ test (TEST 6).
2. Select and run TEST 10 (HP-IB switch to 2; MSB jumper to 1). What are the test results? Why?

## Lab 3 discussion

1. The WRITE/READ test falls since WRITE PROTECT tab prevents the WRITE operation.
2. The test fails (test-LED stays on for 5 seconds). Test 10 is not a valid test.
Address Switch. ..... 3-3
Adjustments ..... 8-1
PLL Adjustments ..... 8-2
RPW/WPW Adjustments ..... 8-2
Available Test ..... 7-3
Configuration ..... 3-2
Connection. ..... 3-1
Controller Electronics Assembly. ..... 7-1
Controller Removal ..... 6-1
Disassembly ..... 6-1
Display Results. ..... 7-3
Drive Removal. ..... 6-2
Electrical Characteristics ..... 1-2
Equipment Supplied ..... 1-3
Exchange Assemblies. ..... 1-3
Fuse Types ..... 3-3
HP 150 . ..... 1-1
HP-IB Address ..... 3-3
HP-IB Cables ..... 3-1
HP-IB ..... 1-1
Head Cleaning ..... 4-1
Host ..... 7-2
Illustrated Parts Breakdown ..... 9-5
Initiating Self-Test ..... 7-2
Installation. ..... 3-1
Interface Restrictions ..... 3-1
Interface ..... 1-1
Length of Cables. ..... 3-1
Motor Speed Error ..... 3-3
Number of Devices ..... 3-1
Operating Environment ..... 1-2
Performance Characteristics. ..... 1-2
Physical Characteristics ..... 1-1
Power Supply Removal ..... 6-2
Power Supply ..... 7-2
Power-on Selftest ..... 3-3
Power-on ..... 7-2
Power ..... 1-3
Product Description ..... 1-1
Read Errors ..... 4-1
Repair Philosophy ..... 7-1
SVC Test ..... 7-2
Selftest ..... 7-2
Setup. ..... 8-1
Site Environmental Requirements ..... 2-1
Site Preparation ..... 2-1
Specifications ..... 1-1
Storage Capacity ..... 1-1
Support Strategy ..... 1-3

## INDEX

Test Points and Jumpers ..... 7-1
Tools ..... 6-1
Top Cover Removal ..... 6-1
Troubleshooting, Preparation For ..... 7-4
Voltage/Fusing ..... 3-2
Write Protect Error ..... 3-3

