# OPERATING AND SERVICE MANUAL

MODULAR POWER SUPPLIES

L AND M SERIES

MODELS 62605L, 62605M, AND 62615M



# MODULAR POWER SUPPLIES L AND M SERIES MODELS 62605L, 62605M, AND 62615M

OPERATING AND SERVICE MANUAL FOR:
MODEL 62605L, SERIALS 1519A-00101 AND ABOVE
MODEL 62605M, SERIALS 1518A-00322 AND ABOVE
MODEL 62615M, SERIALS 1519A-00101 AND ABOVE

Hewlett-Packard

# SECTION I GENERAL INFORMATION

#### 1-1 DESCRIPTION

- 1-2 These modular power supplies employ a switching-regulator design for a high degree of efficiency and compactness. All models are completely solid state, utilizing high-reliability transistors and integrated circuits. The units all feature constant voltage/current limit operation as well as overvoltage protection. The output voltage can be adjusted between  $\pm 5\%$  of nominal, while providing full rated output current. Current limit activation is adjustable to any load current from 75% to 107% of maximum rated output. The overvoltage trip point is fixed at 120  $\pm 6\%$  of the nominal voltage rating.
- 1-3 Either the positive or negative output bus bar may be grounded or the output may be floated off ground.
- 1-4 The power supplies are packaged in cases of uniform dimension and can be bench operated or rack-mounted individually or side-by-side. These supplies are 1/2 rack width units.

# 1-5 SCOPE

1-6 This manual provides installation procedures, operating instructions, principles of operation, maintenance data, and replaceable parts information for the Hewlett-Packard modular power supplies listed in the adjacent chart. Note that the last two digits in the model number indicate the nominal output voltage of that supply.

#### 1-7 SCHEMATIC

1-8 The modular power supplies covered in this manual are of similar design differing mainly in component values rather than in circuit operation. Hence, in general, the information presented in this manual applies to all of the power supply models with any significant differences among the supplies described as applicable. The common schematic diagram at the rear of this manual includes notes and tables to identify the differences (mainly in component values) among the supplies.

#### 1-9 SPECIFICATIONS

1-10 Detailed specifications for the power supplies are given in Table 1-1.

|                  | DC OUTPUT                         |             |  |
|------------------|-----------------------------------|-------------|--|
| MODEL            | MODEL NOMINAL VOLTAGE (Adj. Span) |             |  |
| 62605M<br>62615M | 5V (±0.25V)<br>15V (±0.75V)       | 100A<br>40A |  |
| 62605L           | 5V (±0.25V)                       | 60A         |  |

#### 1-11 OPTIONS

1-12 Options are factory modifications of a standard instrument that are requested by the customer. The following option is available for the instruments covered by this manual.

| OPTION NO. | DESCRIPTION                                                                                                                             |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 106        | 187-250Vac, 48–63Hz, single phase input: factory modification consists of various component changes. (Refer to Section II for details). |

#### 1-13 ACCESSORIES

1-14 The accessories listed below may be ordered with the power supply or separately from your local Hewlett-Packard field sales office (refer to list at rear of manual for addresses).

| HP Part No. | Description                                                                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 62410A      | Rack Mounting Tray for mounting any combination of supplies. 19" wide, 5 1/4" high, and 17" deep. (Refer to Section II for details.)          |
| 62411A      | Rack Tray Blank Front Panel, 16 1/2" wide, 5-3/16" high, 1/8" thick.                                                                          |
| 62412A      | Rack Tray Blank Rear Panel, mounts on rear of rack mounting tray and allows installation of custom input/output connectors or other hardware. |
| 62414A      | Rack Tray Slides provide easy access to rack mounting tray and its supplies.                                                                  |

#### INPUT:

104-127 Vac, single phase, 48-63 Hz. See Option 106.

#### OUTPUT:

See chart, Page 1-1.

#### LOAD REGULATION:

Less than 0.05% for a load current change equal to the current rating of the supply.

#### LINE REGULATION:

Less than 0.05% for any change within the specified input voltage rating.

#### RIPPLE AND NOISE:

Models 62605L, 62605M: Less than 15mVrms and 50mV p-p (20Hz to 20MHz).

Model 62615M: Less than 15mVrms and 65mVp-p (20Hz to 20MHz).

#### TEMPERATURE RANGES:

Operating: 0 to 40°C ambient. Output current derated linearly for temperatures greater than 40°C.

Storage:  $-55^{\circ}$ C to  $+85^{\circ}$ C. Cooling: Built-in fan.

#### **TEMPERATURE COEFFICIENT:**

Less than 0.02% output voltage change per degree Centigrade over the operating range from 0 to 40°C at constant load and line voltage after 30 minutes warmup.

#### THERMAL PROTECTION:

Heat sink mounted thermostat shuts-off output if supply overheats due to high ambient temperature. Thermostat automatically opens when temperature cools to safe operating level.

## STABILITY:

Less than 0.1% total drift for 8 hours after an initial warm-up time of 30 minutes at constant ambient, constant line voltage, and constant load.

# 1-15 INSTRUMENT/MANUAL IDENTIFICATION

1-16 Hewlett-Packard power supplies are identified by a two-part serial number. The first part is the serial number prefix, a number-letter combination that denotes the date of a significant design change and the country of manufacture. The first two digits indicate the year (10 = 1970, 11 = 1971, etc.), the second two digits indicate the week, and the letter "A" designates the U. S. A. as the country of manufacture. The second part is the power supply serial number; a different sequential number is assigned to each power supply, starting with 00101.

#### LOAD TRANSIENT RECOVERY:

Output voltage returns to within 1% of nominal in less than 600 $\mu$ sec (62605M) 500 $\mu$ sec (62605L) or 300 $\mu$ sec (62615M), following a full to half load change.

#### **CURRENT LIMIT PROTECTION:**

Screwdriver adjustment, factory set to approximately 105% of rated current maximum. Current is cutback to approximately 70% under short circuit conditions. Minimum adjustment range is approximately 75 to 107% of rated output current.

#### **OVERVOLTAGE PROTECTION:**

Trip Level: The trip voltage is fixed at 120  $\pm 6\%$  of nominal output voltage.

Trip Input: A contact closure between terminals A1 and +S can be used to remotely trip the overvoltage circuit.

Trip Output: The potential across terminals A1 and +S falls to approximately 0.8V when the overvoltage circuit trips.

#### **VOLTAGE CONTROL:**

Screwdriver adjustment accessible through hole in front panel. Minimum adjustment range is  $\pm 5\%$ .

#### REMOTE SENSING:

Separate remote sensing terminals are provided which will correct for load lead voltage drops of up to 0.25V total (Models 62605M, 62605L) or 0.75V total (62615M). Load is protected if sensing terminals are inadvertently opened.

#### **DIMENSIONS:**

Refer to Figure 2-1.

## WEIGHT (net/shipping):

14 lbs. (6.4kg)/18 lbs. (8.2kg)

1-17 If the serial number prefix on your instrument does not agree with that on the title page of the manual, change sheets supplied with the manual or Manual Backdating Changes define the differences between your instrument and the instrument described by this manual.

## 1-18 ORDERING ADDITIONAL MANUALS

1-19 One manual is shipped with each power supply. Additional manuals may be purchased from your local Hewlett-Packard field office. Specify the model number, serial number prefix, and HP Part Number provided on the title page.

# SECTION II INSTALLATION

#### 2-1 INITIAL INSPECTION

2-2 Before shipment, this instrument was inspected and found to be free of mechanical and electrical defects. As soon as the instrument is unpacked, inspect for any damage that may have occurred in transit. Save all packing materials until the inspection is completed. If damage is found, a claim should be filed with the carrier immediately. Also, your Hewlett-Packard Sales and Service office should be notified.

# 2-3 Mechanical Check

2-4 This check should confirm that there are no broken terminals and that the panel surfaces are free of dents and scratches.

#### 2-5 Electrical Check

2-6 The instrument can be checked against its electrical specifications by using the comprehensive performance tests of Section V. Section III contains a quick check of power supply operation which can be used in lieu of the

performance tests, if desired.

#### 2-7 INSTALLATION DATA

2-8 The instrument is shipped ready for bench operation. It is necessary only to connect the instrument to a source of power and it is ready for operation.

# 2-9 Location and Temperature

2-10 This unit is fan cooled. The space in front of the air inlet must be clear of obstruction for at least 1-inch to permit a free air flow. Although clearance along the side or bottom surfaces is not critical, at least 3/4 inch clearance above the unit is required to avoid derating.

# 2-11 Mounting Orientation

2-12 Figure 2-1 shows outline and dimension information. As shown, four mounting holes are provided on the bottom of the supply. The unit can be mounted in any position except upside down.

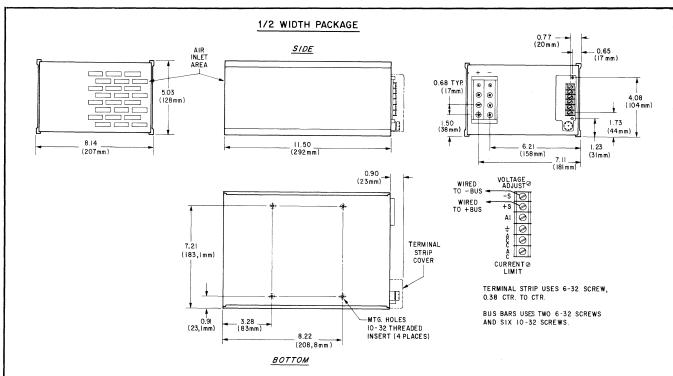



Figure 2-1. Outline Diagram

# 2-13 Rack Mounting

2-14 All modular power supplies can be readily mounted in any combination in a standard 19 inch rack using the Hewlett-Packard Rack Mounting Tray, Model 62410A. M and L series supplies are attached to the tray using the four 10-32 threaded mounting holes located in the bottom of the supply case. A maximum of two of these supplies can be mounted in the tray.

# 2-15 INPUT POWER REQUIREMENTS

2-16 The standard supply (no options) is shipped from the factory wired for 120Vac (nominal) operation and requires the input current and power shown on the following chart. Also included are the input current and power requirements for option 106 units (refer to next paragraph).

|                                     | AC INPUT                          |                      |  |
|-------------------------------------|-----------------------------------|----------------------|--|
| MODEL                               | CURRENT (Max)                     | POWER (Max)          |  |
|                                     | 127Vac 250Vac                     | @ 127Vac             |  |
| 62605M<br>62615M<br>626 <b>0</b> 5L | 11.5A 6.3A<br>12.5A 6.8A<br>8A 4A | 750W<br>840W<br>450W |  |

# **WARNING**

Ensure that the size of the ac ground wire is at least equal to that of the other two ac input wires. This minimizes the possibility of an ungrounded chassis.

# 2-17 Option, 106, 187-250Vac Input

2-18 For these higher input voltages, Option 106 (a factory modification) must be ordered with your supply. This modification includes removal of rectifier jumper A2W1, described in Note 4 of the schematic, and several parts changes (fuse, transformer, cooling fan, etc.). All of the parts changes are listed in Section VI of this manual. Aside from the input rectifier configuration change associated with jumper A2W1, circuit operation for an Option 106 unit is identical to that of a standard unit and no special operating instructions are necessary.

# 2-19 REPACKAGING FOR SHIPMENT

2-20 To insure safe shipment of the instrument, it is recommended that the package designed for the instrument be used. The original packaging material is reusable. If it is not available, contact your local Hewlett-Packard field office to obtain the materials. Be sure to attach a tag to the instrument which specifies the owner, model number, full serial number, and service required, or a brief description of the trouble.

# SECTION III OPERATING INSTRUCTIONS

#### 3-1 TURN-ON CHECKOUT PROCEDURE

- 3-2 The following checkout procedures describes the use of the voltage control and ensures that the supply is operational.
- a. Before connecting input power to unit, connect external voltmeter across +S and -S terminals at terminal board.
- b. Connect unit to input power source using AC, ACC, and ground terminals. (Use proper wire size in accordance with the input AC current rating listed in Section II).
- c. Observe output voltage of supply on external meter. Output is factory set to nominal voltage. If desired, VOLTAGE ADJUST (screwdriver control, accessible through cut out above terminal board) potentiometer can be used to set output to any voltage within  $\pm 5\%$  adjustment span.
- d. To verify operation of current limit circuit, disconnect input power and remove voltmeter. Connect low resistance current shunt (refer to Table 5-1) across output bus bars. Connect voltmeter to sampling terminals of shunt and reconnect input power. Observe that voltmeter indicates voltage proportional to 70  $\pm 7\%$  of the rated output current.
- e. Remove shunt and voltmeter. Before connecting actual load to supply, read the following paragraphs.

# 3-3 OPERATION

3-4 The supply can be operated in one of two basic operating modes; normal or remote sensing. Parallel and series operation are also feasible with this supply. The following paragraphs describe all of these operating modes plus supplementary operating information. More theoretical descriptions regarding the operational features of power supplies in general are given in Application Note 90A, DC Power Supply Handbook (available at no charge from your local HP sales office).

# 3-5 Normal Operating Mode

3-6 The power supply is shipped with the rear terminals connected for Constant Voltage/Current Limiting, local sensing operation. This strapping pattern is illustrated in Figure 3-1. Before connecting a load to the supply, check the rear terminals to ensure that the connections are correct and that the connecting straps are tightened securely.

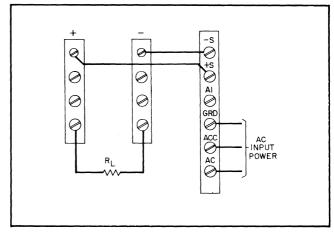



Figure 3-1. Normal Strapping

#### 3-7 Current Limit

- 3-8 Figure 3-2 shows typical current limiting characteristics for this supply. As indicated on the drawing, the current limit point varies in accordance with the output voltage. As received from the factory, the initial current limit point is set to  $105 \pm 1\%$  of the current rating with the output voltage set at nominal value. As shown on Figure 3-2, the initial current limit point will be approximately 107% of current rating if the output voltage is set to 5% above nominal. If the factory current limit setting is not compatible with anticipated load requirements, the limit can be adjusted by means of the CURRENT LIMIT control (screwdriver adjust directly below terminal strip) as outlined in Section V. The minimum adjustment range of the current limit potentiometer is approximately 75% to 107% of the current rating. Of course, if the initial current limit point is changed, the entire cutback line will shift accordingly. For example, a current limit setting of 75% of rating will result in a short circuit cutback point of approximately 40%.
- 3-9 Before altering the current limit, ensure that the new current limit point is at least 1 Ampere above the expected operating current. Operating the supply too close to the current limit crossover point may result in performance degradation. In addition, it is not advisable to set the current limit point above 107% of the rated output current. Prolonged operation at these high currents could cause excessive internal heating and possible damage to the supply.

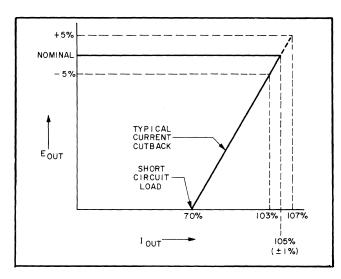



Figure 3-2. Typical Current Limiting Characteristics

# 3-10 Overvoltage Protection

- 3-11 This supply contains an overvoltage protection circuit which monitors the output voltage and turns off the supply if a fixed trip voltage is exceeded. The trip voltage, determined by fixed components in the overvoltage protection circuit, is  $120\pm6\%$  of the supply's nominal voltage rating. The circuit is activated within  $30\mu\text{sec}$  of the overvoltage condition and reduces the output voltage to near zero (less than 50mV).
- **3-12** Resetting. If the overvoltage circuit trips (output voltage falls to near zero) during normal operation, the circuit latches and input power must be removed to reset the supply. After removal of the ac power, disconnect any load from the power supply. Re-apply input power and determine if the overvoltage circuit again trips. If it does, there is a problem in the power supply. Refer to the troubleshooting procedures to isolate the cause of the overvoltage condition. If the supply does not trip when the load is removed, check the load circuit.
- **3-13 External Overvoltage Connections.** Terminals A1 and +S on the rear terminal strip provide a status output indication if the overvoltage circuit trips or; conversely, can receive an external input which can be used to turn off the supply.
- 3-14 Output Status Signal. Terminal A1 is at approximately +15V with respect to +S under normal (no overvoltage) conditions. If an overvoltage occurs, terminal A1 falls to approximately +0.8V. Terminal A1 sources about 0.1mA in the high (normal) state and can sink 10mA in the low (overvoltage) state.
- **3-15 Input Trip Signal.** A contact closure, or other low resistance path, bewteen terminals A1 and +S will remotely turn-off the output of the supply. Notice that the external

"trip" input does not actually trip the overvoltage circuit and, therefore, the circuit does not latch. Thus, when the contact closure across terminals A1 and +S is removed, the output voltage returns to normal.

# 3-16 Connecting Load

- 3-17 Each load should be connected to the proper supply output buses using separate pairs of connecting wires. This will minimize mutual coupling effects between loads and will retain full advantage of the low output impedance of the power supply. Each pair of connecting wires should be as short as possible and twisted or shielded to reduce noise pick-up. (If a shield is used, connect one end to power supply ground terminal and leave the other end unconnected.)
- 3-18 If load considerations require that the output power distribution terminals be remotely located from the power supply, then the power supply output buses should be connected to the remote distribution terminals via a pair of twisted or shielded wires and each load separately connected to the remote distribution terminals. For this case, remote sensing should be used (Paragraph 3-20).

#### ---- CAUTION ----

When connecting load lines to output bus bars, use lockwashers and tighten securely (to within 28 to 35 inch-pounds). A loose connection will cause undue heating at the bus bars.

3-19 Grounding. Positive or negative voltages can be obtained from this supply by grounding either output line at the load (see warning below). The ac ground terminal on the supply can be used, if desired, provided it is run out to the load. This supply can also be operated at up to 40Vdc above ground, if neither output line is grounded. (Please consult your local HP sales engineer if you have a special application that requires floating the output at more than 40Vdc off ground.)

# WARNING

Ground at the load only and always use two wires to connect the load to the supply. This eliminates the possibility of load current return paths through the ac ground line which could result in an ungrounded chassis.

#### 3-20 Remote Sensing (See Figure 3-3)

3-21 Remote sensing is used to maintain good regulation at the load by reducing the degradation that would occur due

to the voltage drop in the leads between the power supply and the load. Remote sensing is accomplished by utilizing the strapping pattern shown in Figure 3-3. The power supply should be turned off before changing strapping patterns. The leads from the sensing terminals to the load will carry much less current than the load leads and it is not required that these leads be as heavy as the load leads. However, they must be twisted or shielded to minimize noise pick-up.




Figure 3-3. Remote Sensing

3-22 For reasonable load lengths, remote sensing greatly improves the performance of the supply. However if the load is located a considerable distance from the supply, added precautions must be observed to obtain satisfactory operation. Notice that the voltage drop in the load leads subtracts directly from the available output voltage and also reduces the amplitude of the feedback error signals that are developed within the unit. Because of these factors it is recommended that the total drop in both load leads not exceed 0.25V (0.75V for Model 62615M). If a larger drop must be tolerated, please consult your local HP sales engineer. In planning your load hook-up ensure that the load wire size is taken into account since the diameter of the load wires is related to the IT drop.

#### NOTE

Due to the voltage drop in the load leads, it may be necessary to readjust the current limit. Refer to Paragraoh 3-7.

# 3-23 Parallel Operation (Figure 3-4)

3-24 Two supplies (Maximum) can be connected in straight parallel to obtain a total output current greater than that available from one power supply. The total output current is the sum of the output currents of both supplies. The output voltage of one power supply should be set to the desired output voltage; the other power supply should be set for a slightly larger output voltage. The supply set to

the higher output voltage will act as a current limited source, dropping its output voltage until it equals that of the other supply. The constant voltage source will deliver only that fraction of its total rated output current which is necessary to fulfill the total current demand.

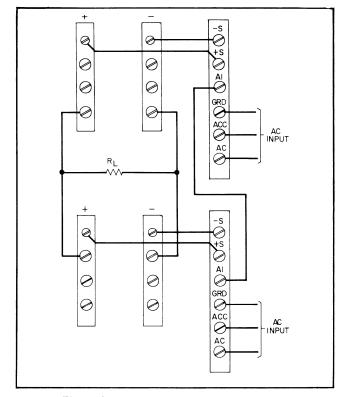



Figure 3-4. Straight Parallel Connections

- 3-25 The A1 Terminals on both units are connected together to permit complete overvoltage protection for the load. If an overvoltage condition occurs, the first supply that trips will then turn off the other supply via terminal A1 (Paragraph 3-15).
- 3-26 Two units can be connected in auto-parallel provided that certain internal circuit changes are made at the factory on a special order basis. The advantages of auto-parallel operation over straight parallel operation are equal current sharing by both units and complete control of the output current by one "master" supply.

# 3-27 Series Operation (Figure 3-5)

- 3-28 Two or more supplies (up to 40Vdc above ground) can be operated in straight series to obtain a higher voltage than that available from a single supply. When this connection is used, the output voltage is the sum of the voltages of the individual supplies. Auto-Series operation is not feasible with this type of supply.
- 3-29 Notice that series operation creates the possibility

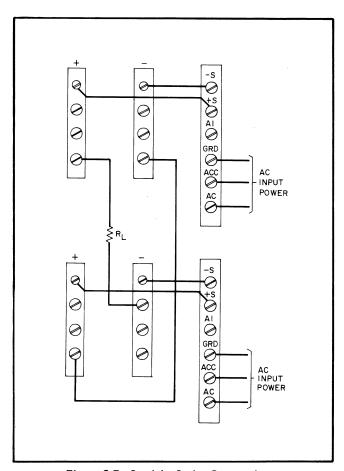



Figure 3-5. Straight Series Connections

of a reverse voltage being applied across the output terminals of the supply. If this occurs, the resultant reverse current flows through the output rectifiers (A4CR1, CR2) and the secondary of A4T1. If the unit is receiving input power, the fan is operating and no damage will occur. However, if the unit is off (no input power applied) a reverse current of more than 25% of rating will damage A4CR1, CR2 if applied for a sustained time period (approximately 25 seconds). Thus, observe the following precaution when turning on series connected units.

#### ---- CAUTION ----

When applying ac input power to series connected units, ensure that all units are turned on within 25 seconds. Reverse current flow for more than 25 seconds will damage the output rectifiers.

3-30 The A1 overvoltage terminals cannot be connected together for series operation, as they are in parallel operation, because the common point for each overvoltage circuit is always its own + output bus. Thus, each overvoltage circuit operates independently and the supply with the lowest trip point in the series ensemble will be the first (and possibly the only) supply to trip if an overvoltage occurs.

#### 3-31 SPECIAL OPERATING CONSIDERATIONS

#### 3-32 Temperature

3-33 The normal operating temperature for this supply is from 0 to  $40^{\circ}$  C, ambient. Beyond  $40^{\circ}$  C, the output current is linearly derated to 60% at  $70^{\circ}$  C (derated to 50% at  $70^{\circ}$  C for Model 62605L). Additional information on temperature is given in Section II.

3-34 Overtemperature protection is provided by temperature switch (TS1) which is mounted on the tunnel assembly heat sink. This switch closes if the heat sink temperature exceeds a safe value, turning down the supply to near 0V in the same manner as the overvoltage protection circuit (Paragraph 3-11). Reset of the supply is automatic after the supply cools down so that the temperature switch can reopen. Opening and closing temperatures for the switch are given in the replaceable parts list (Section VI). The switch requires approximately 3 minutes to reopen if the cooling fan is on.

## 3-35 Regulator Overcurrent Protection

3-36 This supply contains a fast acting protection circuit which monitors the current flowing through the regulator switch transistors, A3Q5 and Q6. If the regulator current rises to a level that could damage the switches, the circuit becomes activated and either reduces or turns-off the output of the supply. For short duration overloads, the output is reduced; for long duration overloads, the output is turned completely off. After the regulator current drops to a safe value, the overcurrent protection circuit deactivates and allows the output to rise to normal. Hence, if the overcurrent was of a transient nature, the output will remain at normal. However, if the overcurrent condition is being caused by a faulty component, the protection circuit will be reactivated and the above process will be repeated causing the output of the supply to oscillate. If this condition occurs, proceed to Section V, Table 5-2.

# SECTION IV PRINCIPLES OF OPERATION

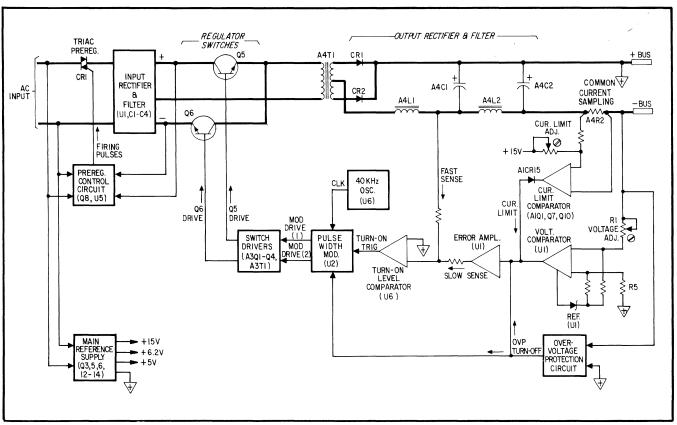



Figure 4-1. Typical Modular Switching Supply, Block Diagram

# 4-1 INTRODUCTION

4-2 This section contains principles of operation for the modular switching supplies. Theory is presented on both a block diagram and schematic circuit level.

## 4-3 BLOCK DIAGRAM THEORY

4-4 Figure 4-1 is a simplified block diagram showing the major elements of the supply. For simplification, some of 'the less important circuits have been omitted from the diagram. Each supply is made up of seven major elements: a preregulator triac, input rectifier-filter, a pair of push-pull switching transistors, an isolation transformer, an output rectifier-filter, a preregulator control circuit, and a pulse-width modulated feedback network which controls the regulator switches. Three supplementary circuits; current limit, overvoltage protection, and a reference voltage supply are important parts of the supply and are also shown on Figure 4-1.

#### 4-5 Preregulator Loop

4-6 The ac input voltage is first applied to the preregulator triac which operates in conjunction with a control circuit to form a feedback loop. The preregulator feedback loop minimizes the power dissipated by the regulator switches (Ω5 and Q6) by keeping the input rectifier voltage at a relatively low and constant level. To accomplish this, the control circuit issues a phase adjusted firing pulse to the triac once during each half cycle of the input ac. The control circuit continuously samples the voltage across the rectifier (for load compensation) and the input line voltage (for line voltage compensation). On the basis of these inputs, the circuit then determines at what time each firing pulse is generated.

# 4-7 Switching Regulator Loop

4-8 The phase adjusted output of the triac is rectified and filtered and then applied to the switching regulator transistors. These transistors, together with the switch

drivers, pulse width modulator, 40kHz oscillator, turn-on comparator, and voltage comparator, form another feedback loop which exercises a fine and "rapid" control of the output. The preregulator loop of the previous paragraph handles the large, relatively slow, regulation demands.

- 4-9 The feedback elements control the ON/OFF periods of the switching transistors in order to adjust the duty cycle of the rectangular waveform delivered to the output rectifier-filter. For example, if the output voltage attempted to decrease, the feedback network would sense the change and hold the switch transistors ON for longer periods of their switching cycles. An attempted increase is corrected by reducing the ON periods of the switching transistors. The output rectifier-filter rectifies and averages the bi-polar switch waveform to produce a dc output level which is proportional to the duty cycle of the waveform.
- 4-10 The 40kHz oscillator establishes the switching frequency of the loop with the asymetrical waveform shown on Figure 4-2. The  $4\mu$ sec positive portion of the clock signal serves two purposes within the pulse width modulator. First, it alternates routing of turn-on triggers to the switching transistors; and second, it establishes a 4µsec "safety band" which clamps off both drive signals, and thus insures that the switching transistors will not both turn on at the same time. Any time during the 21µsec "operating frame" a drive signal can be started by a turn-on trigger pulse, but it will always be terminated at the next  $4\mu$ sec period. From the timing relationships shown in Figure 4-2, it can be seen that the period of the drive signals (and thus the ON times of the switching transistors) depends on the position of the turn-on trigger pulse in the 21µsec frame; if it occurs early in the frame, the drive pulses will be wide; if it occurs late in the frame, the drive pulses will be narrow.
- 4-11 The turn-on trigger pulses are generated by a level comparator in U6. This circuit compares the output voltage at the + terminal (circuit common) with a summation of the fast and slow sense signals. The fast sense signal has the greatest effect on circuit operation and will be discussed first. This signal, taken just after the first L-C filter, has a triangular ripple component, sloping negatively when a switching transistor is ON and positively when both transsistors are OFF. When the sensed voltage reaches the + output potential, (firing threshold) the comparator generates a turn-on trigger pulse. Immediately, one of the switching transistors turns ON and the output starts to slope negatively again. If the load demand increases, the sensed voltage will rise more rapidly, the trigger pulses will be generated earlier, and the switching transistors will stay ON for longer periods to supply the increased demand. Conversely, a reduced load will lengthen the positive slope, causing the turnon trigger to occur later, and the switching transistors will conduct for shorter periods.

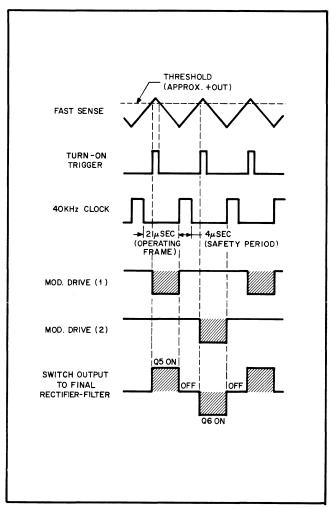



Figure 4-2. Switching Regulator Loop Waveforms

4-12 The slow sense input improves the regulation of the supply by including in the level comparison, the losses occuring between the fast sense point and the final dc output. This input is actually a slowly varying dc "bias" voltage which provides a means of making a slight correction to the fast sense waveform. A positive going slow sense voltage moves the entire fast sense waveform closer to the + out threshold resulting in the generation of an "earlier" turn-on trigger. A negative going slow sense input has the opposite effect. The slow sense voltage is produced by voltage comparator, U1, which compares the output voltage with a Zener reference voltage. Any difference between the two voltages is amplified and slowly varies the slow sense input to the level comparator.

#### 4-13 Current Limiting Circuit

4-14 The current limit comparator monitors the output current of the supply by sensing the IR drop across a low value sampling resistor. If the load current exceeds a preset limit, (established by the current limit adjust potentiometer and the output voltage), the current limiting circuit becomes

energized and reduces the slow sense voltage applied to the level comparator. This in turn cuts back the output current.

## 4-15 Overvoltage Protection Circuit

4-16 This circuit monitors the output voltage of the supply. If the output voltage exceeds a preset limit (120% of the nominal rated output voltage) the overvoltage circuit will activate, clamping off the drive pulses at the pulse width modulator and turning down the slow sense voltage. This reduces the output to approximately 0-volts. Once tripped, the overvoltage circuit latches and ac power must be removed in order to reset the circuit.

# 4-17 SCHEMATIC THEORY

4-18 The following paragraphs contain a brief description of all of the power supply circuits. Throughout this discussion refer to the schematic diagram, Figure 7-8.

#### 4-19 Preregulator Control

- 4-20 Preregulation is accomplished by means of a phase control circuit utilizing triac CR1 as the switching element. These circuits maintain a constant output voltage across rectifier package U1 by controlling the firing time of the triac.
- 4-21 To compute the triac firing time, the control circuit monitors two inputs; a rectified ac input ("line compensation" applied to the gate input of CR12) and the rectifier output ("E rectifier" applied to pin 4 of differential amplifier U5). The ac input compensates for variations in the ac line, while the rectifier input compensates for variations in the rectifier load (regulator switches, etc.). The rectifier input voltage is divided down and then compared with +3.6V reference voltage at pin 2 of the differential amplifier. Error voltages at the collector (pin 1) are used to control the conduction of current source Q8; which, in turn, controls the charging rate of ramp capacitor, C14. The positive end of C14 is connected to the anode (A) input of a programmable unijunction transistor CR12. This device is similar to a conventional unijunction transistor except that its firing point can be more closely controlled.
- 4-22 When the ramp voltage at the anode of CR12 becomes more positive (about 0,5V) than the ac gate potential (see Figure 4-3), CR12 conducts. The conduction of CR12 allows ramp capacitor C14 to discharge through pulse transformer T2 resulting in the generation of a triac firing pulse. Notice that C14 discharges rapidly, turning off CR12 and returning the ramp voltage to its starting point. At this time, the ramp capacitor begins charging up again and the previous cycle is repeated, ending with the generation of another firing pulse of a smaller amplitude. Although two,

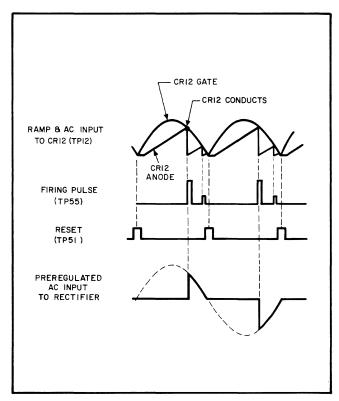



Figure 4-3. Preregulator Waveforms

or even more, firing pulses can be generated during each half cycle of the input ac, only the first firing pulse affects the operation of the preregulator. Once the triac is fired, it remains in conduction until that particular half cycle is completed. At the end of the half cycle the circuit is reset (TP51) by the conduction of U5 (pins 13 and 14) which discharges C14, ensuring that the ramp voltage always starts at the same point near the beginning of each half cycle.

- 4-23 How the preregulator control circuit compensates for load and line variations, can be seen by examining the ramp and ac input voltages at TP12. Notice that the slope of the ramp voltage affects the firing time of the triac. For example, a steeper ramp will result in an earlier firing time and momentary boost in the ac voltage applied to the rectifier. The magnitude of the ac input voltage applied to the gate input of CR12 also affects the triac firing time. At high line, the gate input is of course, higher, and the anode voltage of CR12 takes a longer time to reach the gate voltage. This results in a later triac firing time. The triac is fired earlier during the half cycle, if the ac input is at low line. In this manner, the preregulated ac voltage applied to the rectifier is maintained constant despite line variations.
- 4-24 The preregulator control circuit has its own regulated bias supply which develops the +12V and +3.6V reference voltages used by this circuit. The reference supply consists of step-down transformer T1, bridge rectifier (CR3-CR6), filter capacitor C16, series regulator Q4 and

error amplifier U5. The error amplifier senses a portion of the  $\pm 12V$  output at its emitter (pin 9) and compares it with a  $\pm 7.32V$  zener reference voltage connected to its emitter (pin 10). Error signals are applied directly to series regulator Q4.

# 4-25 Input Rectifier-Filter

4-26 The ac input to the supply is coupled through line fuse F1, an RFI filter, and triac CR1 to the input rectifier-filter circuit. This circuit consists of bridge rectifier module U1, filter capacitors A2C1 and C2, and equalization resistors A2R1 and R2. Components A2L1, L2 and C5 provide additional RFI filtering. When the supply is operated from a 120Vac source, jumper W1 is installed and the circuit functions as a voltage doubler. With a 187 to 250Vac input, the jumper wire is removed and the circuit becomes a full-wave bridge rectifier and filter. In this way, the dc voltage supplied to the switching transistors is the same (approximately 220Vdc) regardless of the ac input. (Other changes are required for a 187-250Vac input, refer to Section II, Option 106.

# 4-27 Regulator Switches and Drivers

- 4-28 The regulator switches, part of the switching regulator loop, were previously discussed in paragraph 4-7. All of these components are located on Driver Board A5A3, inside the tunnel assembly.
- 4-29 The driver circuit consists basically of predrivers Q1 and Q2, drivers Q3 and Q4, and a center-tapped isolation transformer, T1. As shown previously, on Figure 4-2, when the "modulator drive 1" input switches low, switching transistor Q5 conducts. Diodes CR9 and CR17 prevent Q5 from saturating too heavily by keeping the collector-emitter voltage at approximately 1.5V during conduction. The "modulator drive 2" input controls an identical switch circuit composed of Q6 and associated components.
- 4-30 When the modulator drive 1 signal is low, predriver  $\Omega 2$  is off and  $\Omega 4$  is on. Diode CR7 prevents  $\Omega 4$  from going too far into saturation. During the safety band period, when both modulator drive signals are high, driver  $\Omega 4$  is turned off. Filter C7 and L1 and CR4, CR8 prevent transformer overshoot from possibly turning on one of the switching transistors during the safety period.

#### 4-31 Output Rectifier-Filter

4-32 This circuit consists of a full-wave rectifier

(A5A4CR1, CR2) and a two section L-C filter A5A4L1, C1 and L2, C2. The circuit receives a bi-directional pulsewidth modulated signal from the secondary of isolation transformer A4T1 and provides the necessary rectification and filtering to produce a smooth dc output voltage. Inductor L3 helps to shape the fast sense signal applied to the turn-on level comparator.

#### 4-33 Pulse Width Modulation Circuits

- 4-34 This circuit generates pulse-width modulated drive signals to control the swtiching transistors. The frequency of the drive pulses is fixed at 40kHz but their width varies as a function of the position of turn-on trigger pulses received from the turn-on level comparator circuit.
- 4-35 Idealized waveforms for this circuit, are shown on Figure 4-4. The circuit consists of 40kHz oscillator, a buffer stage (U6), two inverters (U3), two D-type, positive-edge triggered flip-flops (U2), and two NAND gates (U3). F/F2 generates the modulated drive pulses and also controls F/F1. Two signals, the turn-on trigger pulses from U3-3 and the CLK output from U6-13, control F/F2. The 40kHz CLK signals are applied to the CLK input and each time the pulse switches low it forces the Q-output low, initiating a new 25µsec frame. The Q-output remains low until the CLK input of F/F2 is strobed by a positive turn-on trigger occurring sometime during the  $21\mu sec$  "window". From the timing diagram of Figure 4-4 it can be seen that the width of the drive pulses at the Q-output of F/F2 depends on how soon a trigger pulse appears in the window. For heavy power supply loads, the trigger will occur early and widen the pulses; for light loads the trigger will occur later and reduce the pulse width.
- 4-36 The  $\overline{Q}$ -output of F/F2 controls F/F1. F/F1 is connected in a toggling configuration ( $\overline{Q}$  connected back to D) so that each time the  $\overline{Q}$ -output of F/F2 switches high, the Q and  $\overline{Q}$  outputs reverse state. The Q and  $\overline{Q}$  outputs of F/F1 are logically NANDed with the Q-output of F/F2 and the results of this operation become the modulated drive signals for the switching transistors.
- 4-37 Notice that the CLK pulses from U3-11 are fed to inverter U3 (pin 1) where they are ORed with the turn-on triggers. These clock pulses provide the transitions necessary to ensure that F/F2 will continue to switch during periods when the supply is experiencing loading transients.

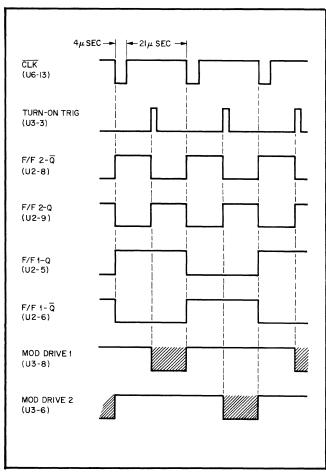



Figure 4-4. Pulse Width Modulator Waveforms

# 4-38 Turn-On Trigger Generation Circuits

- 4-39 This circuit group consists of constant voltage comparison amplifier U1, turn-on level comparator U6, and associated components. All circuits are located on card A1.
- 4-40 Voltage comparator U1 senses a portion of the output voltage of the supply (at the junction of R2 and R3) and compares it with a +3.6V reference voltage (junction of R4, R5). The reference voltage is obtained from a Zener diode inside the U1 package. Difference voltages are applied to the level comparator via a non-inverting error amplifier; also part of U1.
- 4-41 Turn-on comparator U6 performs a level comparison between a +0.6Vdc potential (forward voltage drop across CR16) at pin 7 and a voltage at pin 6 which consists of the fast sense signal from the output filter, the slow sense bias from U1, and a stabilizing signal from the equalization circuit. These three inputs are summed across resistors R9, R8, and R25 with the fast sense signal having the major influence on circuit operation. As previously shown on Figure 4-2, a turn-on trigger is initiated when the fast sense voltage rises above the +0.6V threshold potential. The trigger is

terminated when the sense voltage falls below the threshold point.

## 4-42 Equalization Circuit

- 4-43 A characteristic of switching loops such as this, is that for duty cycles of less than 50% (where the OFF periods of the switching transistors become greater than the ON periods) the loop becomes unstable and will oscillate. This condition is corrected by generating an equalization ramp and summing it with the fast sense voltage to increase the positive slope of the fast sense signal during short duty cycles.
- 4-44 The circuit consists of an integrating capacitor (C7) and a "reset" transistor (Q2). Two input signals control the circuit; the CLK input from inverter U3 and the pulse-width modulated output of F/F2 which serves as a reset signal. As shown on Figure 4-5, when both inputs are low, Q2 is cut off and C7 is allowed to charge through R24. When either input goes high, Q2 conducts, discharging C7. The level to which C7 can charge depends on when the reset input goes high. For duty cycles of 50% or greater, C7 has little time to charge. For shorter duty cycles, C7 is allowed to charge for a longer period and the stabilizing signal becomes more positive.

# 4-45 Current Limiting Circuit

4-46 This circuit ensures that the output current of the supply does not exceed the level set by the CURRENT LIMIT adjust potentiometer, R15. During normal (constant voltage) operation. Q10B is on holding Q1 and CR15 off. Current limiting occurs if the output current becomes high enough to turn on Q10A. Transistor Q1 is then allowed to

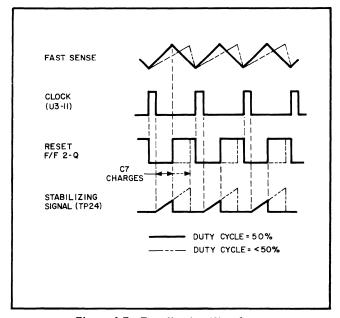



Figure 4-5. Equalization Waveforms

conduct, forward biasing isolation diode CR15, and applying a negative going signal to pin 13 of error amplifier U1. The feedback network then causes the output voltage of the supply to decrease and thus limit the load current.

- 4-47 Transistor Q7 speeds-up the action of the current limiting circuit during severe (short circuit) overload conditions. This transistor conducts for a short period (due to the heavy conduction of Q1) at the beginning of the overload, discharging capacitors C12 and C5. After the capacitors have been discharged, Q7 turns-off and remains off unless the supply is again short circuited.
- 4-48 The current limiting circuit contains a current cutback feature which minimizes power dissipation in the switching transistors. As the load resistance decreases, the output current is cutback linearly to approximately 70% of rated output current under short circuit conditions (see Figure 3-2). Cutback is made possible by R11 and R12 which are connected across the output of the supply. Under short circuit conditions, the current flow through R11, R12 decreases, driving the emitter of Q10A more negative. Q10A and Q1 then conduct even harder, further increasing the OFF periods of the switching transistors and thus cutting back the output current.

# 4-49 Overvoltage Protection Circuit

- 4-50 This circuit consists of comparator A1U5 and driver A1Q9. When the output voltage of the supply is below the trip voltage (120% of nominal), Q9 is off and associated isolation diodes CR27 and CR28 are reverse biased.
- 4-51 Comparator U5 continuously compares a portion of the output voltage (pin 4) with a 3.1Vdc reference voltage at pin 5. If the output voltage exceeds the trip level (established by voltage divider resistors R64-R67) the output of U5 becomes sufficiently positive to turn-on Q9. With Q9 on, its collector voltage drops to near 0V. Diode CR19 couples this low level back to U5, pin 4, to latch the circuit in the tripped state. With Q9 latched in the on state, diode CR27 becomes forward biased holding F/F2 (in the pulse width modulator) in the clear state. This removes the drive pulses, cutting off the switch transistors and decreasing the output voltage to approximately 0 volts. To avoid a recovery overshoot when the unit is reset, a "turn-down" signal is also sent to the slow sense circuitry via CR28, CR20, and R69.
- 4-52 External trip inputs are coupled to both the pulse width modulator (CR21) and the slow sense circuits (CR20) in the same manner as the internal trip signal. However, isolation diode CR28 is reverse biased at this time and the overvoltage circuit will not latch due to an external trip input.

# 4-53 Regulator Overcurrent Protection Circuit

4-54 This circuit ensures that the internal current flowing through regulator switches A5A3Q5 and Q6 does not exceed a level (approximately 130% of normal) which could damage the switches. The circuit monitors the switch current by means of input transformer A5A6T1. This transformer serves as the secondary winding of the transformer, while the wire that is in series with power transformer A4T1 serves as the primary of the input transformer. The wire is run physically through the center of the A6T1 core and, thus, induces the current flowing along the wire into the secondary winding. The rectangular input current is rectified by CR1-CR4 and the magnitude of the resultant voltage across R3 is proportional to the current through the regulator switches. During normal operation, the voltage across R3 is not high enough to break down Zener diode VR1 and transistor Q1 is therefore held off. However, if the regulator current exceeds the 130% threshold, VR1 breaks down allowing Q1 to conduct. The output of Q1 is fed to both the pulse width modulator (via diode A1CT21) and to the slow sense circuitry (via A1CR20) turning off the supply in the same manner as the overvoltage protection output (Paragraph 4-51). Once the regulator current drops below the threshold, Q1 turns off and the supply resumes normal operation unless the overload was caused by a component failure.

# 4-55 Main Reference and Driver Bias Supplies

4-56 The main reference supply produces three operating voltages (+15V, +6.2V, and +5V) for the other circuits of the supply. It also provides a +14V start-up bias for the driver circuits until the driver bias supply can begin to produce the +17V takeover bias. The main reference supply has a turn-on delay of approximately one-second before it begins to provide any of the above operating voltages. The delay period permits the preregulator to stabilize before the switching transistors and other control circuitry are allowed to operate. The one-second delay is obtained by capacitor C20 which controls the conduction of current source, Q6. When power is first applied, C20 begins charging through R72. Switch transistor Q13 is off at this time, holding off differential error amplifier (Q3, Q12) and series regulator Q5. As the charge on C20 increases, Q6 conducts more heavily until Zener diode VR4 breaks-down and Q13 turnson. With the emitter path to Q3 and Q12 completed, Q5 is allowed to conduct and the reference supply begins to product its output voltages. Transistor Q14, which acts as a control switch, also conducts at this time. Diode CR22 is then forward biased providing a start-up voltage of approximately +14V to the switch driver circuits. As the regulator switches begin to cycle, the driver bias supply begins operating and quickly provides the +17V takeover bias to the driver circuits. When this occurs, CR22 becomes

reverse biased and the start-up bias voltage is removed.

#### 4-57 Additional Protection Features

4-58 Aside from the normal protection provided by the current limit, overvoltage, and regulator overcurrent protection circuits, the supply also contains several special purpose components which protect the supply in case of unusual circumstances. One of these components is thermal switch TS1 which closes if the heat sink temperature exceeds a safe value (approximately 200° F). With TS1 closed, diode CR21 becomes forward biased shutting off the modulator drive pulses in the same manner as the overvoltage and overcurrent protection circuits, (Paragraphs 4-51 and 4-54). The switch automatically opens after the supply has cooled sufficiently

(nominally  $140^{\circ}$  F) and normal operation resumes, unless TS1 closed as a result of a failure.

- 4-59 Sensing protection resistors A1R73 and R74 prevent the load from receiving a higher than normal voltage if the connections between the output bus bars and the sensing terminals (+S and -S) are removed inadvertently.
- 4-60 The output rectifier diodes, A4CR1-CR2, provide a path for any reverse currents which could be injected into the supply by an active load. The supply can sink up to 25% of rated output current under steady state conditions; or 100% of rated output current for shorter time periods (approximately 25 seconds).

# SECTION V MAINTENANCE

# 5-1 INTRODUCTION

- 5-2 Upon receipt of the power supply, the performance check of Paragraph 5-6 can be made. This check is suitable for incoming inspection. Section III contains a quick but less comprehensive checkout procedure which can be used in lieu of the performance check, if desired.
- 5-3 If a fault is detected in the power supply while making the performance check or during normal operation, proceed to the troubleshooting procedures (Para-

graph 5-33). After troubleshooting and repair (Paragraph 5-44) repeat the performance check to ensure that the fault has been properly corrected and that no other faults exist. Before performing any maintenance checks, turn on the power supply and allow a half-hour warm-up.

# 5-4 TEST EQUIPMENT REQUIRED

5-5 Table 5-1 lists the test equipment required to perform the various procedures described in this section.

Table 5-1. Test Equipment Required

| TYPE                                    | REQUIRED<br>CHARACTERISTICS                                                               | USE                                                              | RECOMMENDED<br>MODEL                                                                                                                                           |
|-----------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital<br>Voltmeter                    | Sensitivity: 100mV full scale (min.). Input impedance: 10 megohms (min.).                 | Measure DC voltages: calibration procesures and troubleshooting. | HP 3450A                                                                                                                                                       |
| Variable<br>Voltage<br>Transformer      | Range: 90–130Vac (Higher for option 106). Equipped with voltmeter accurate within 1 Volt. | Vary ac input for line regulation test.                          |                                                                                                                                                                |
| Oscilloscope                            | Sensitivity: 10mV/cm. Differential input.                                                 | Display waveforms for testing and trouble-shooting.              | HP 140B plus 1400B plug-in. 1402A plug-in for noise measurements.                                                                                              |
| Frequency<br>Counter                    | Freq: 100kHz<br>Accuracy: 0.01%<br>Input Imp: 1 Meg.                                      | Adjust oscillator frequency.                                     | HP 5300A counter plus 5301A plug-in.                                                                                                                           |
| Resistive<br>Load                       | Value: See Paragraph 5-11<br>Tolerance: ±5%                                               | Power supply load resistor. (Fixed resistor or Rheostat.)        | James G. Biddle Carbon<br>Pile Rheostat Number 10.                                                                                                             |
| Current<br>Sampling<br>Resistor (Shunt) | Value: See Paragraph 5-13. Accuracy: 1% (minimum).                                        | Measure output current.                                          | 62605M: Simpson Shunt,<br>Model 06713, 5mV @ 100A.<br>62605L: Simpson Shunt,<br>Model 06711, 50mV @ 75A.<br>62615M: Simpson Shunt,<br>Model 06709, 50mV @ 50A. |

# 5-6 PERFORMANCE TEST

5-7 The following test can be used as an incoming inspection check and appropriate portions of the test can be repeated to check the operation of the instrument after repairs. The tests are performed using the specified nominal input voltage for the unit. If the correct result is not obtained for a particular check, proceed to troubleshooting (Paragraph 5-33).

# 5-8 Measurement Techniques

- 5-9 Connecting Monitoring Device. For the following Constant Voltage measurements, the measuring device must be connected across the rear sensing terminals of the supply in order to achieve valid indications. A measurement made across the load includes the impedance of the leads to the load and such lead lengths can easily have an impedance that is greater than the supply impedance, thus invalidating the measurement. To avoid mutual coupling effects, each monitoring device must be connected directly to the sensing terminals by separate pairs of leads.
- 5-10 Avoid Current Limiting. When measuring the constant voltage performance specifications, the current limit point should be set at least 1 Ampere above the maximum output current which the supply will draw, since the onset of current limiting action will cause a drop in output voltage, increased ripple, and other changes not properly ascribed to the constant voltage operation of the supply. The current limit potentiometer is factory set to 105±1% of the rated output current.
- 5-11 Selecting A Load Resistor. Constant voltage specifications are checked with varying amounts of load resistance connected across the supply. Where a "full" load resistance is required, the value and wattage of the resistor must permit operation of the supply at its rated (100%) output voltage and current. For example, a supply that is rated at 5 volts at 100A (Model 62605M) would require a load resistance of 0.05 ohm. The wattage rating of the 0.05 ohm resistor would have to be 500 watts, minimum.
- 5-12 Either fixed or variable resistors (rheostat type) can be used as load resistors. A rheostat is convenient when changing load resistances and when measuring the output current of the supply. A rheostat of the type recommended in Table 5-1 is adequate for any supply covered by this manual. This device is used in conjunction with a sampling resistor and voltmeter to accurately set the output current (refer to next paragraph). If fixed load resistors are used, their tolerances must be accounted for in evaluating the test results.
- 5-13 Output Current Measurements. For accurate out-

put current measurements a current sampling resistor should be inserted between the load resistor(s) and the output of the supply. An accurate voltmeter is then placed across the sampling resistance and the output current at any time can be calculated by dividing the voltage across the sampling resistor by its ohmic value. The total resistance of the series combination (sampling resistor and load resistor) should be equal to the desired load resistance as outlined in the preceding paragraphs. Of course, if the value of the sampling resistance is very low when compared to the full load resistance, the value of the sampling resistance may be ignored. The meter shunt recommended in Table 5-1, for example, is only 0.5 milliohm and can be neglected when calculating the load resistance of the supply.

5-14 Figure 5-1 shows a four terminal meter shunt. The load current is fed to the extremes of the wire leading to the resistor while the sampling terminals are located as close as possible to the resistance portion itself.

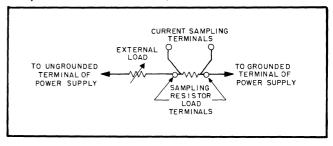



Figure 5-1. Current Sampling Resistor Connections

# 5-15 Rated Output

- **5-16 Voltage.** To ensure that the supply will furnish rated output voltage, proceed as follows:
- a. Connect digital voltmeter across +S and -S terminals of supply observing correct polarity.
  - b. Apply input power to supply.
- c. With no load connected, set output voltage of supply to any value desired within adjustment span. This output voltage can be used for all remaining constant voltage tests.
- d. With supply off, connect full load resistance across + and output terminals of supply (see Paragraph 5-11).
- e. Reconnect input power to supply. Voltmeter should read output voltage set in Step c (within tolerances of load resistor and meter).
- **5-17 Current.** To ensure that the supply will furnish the maximum rated output current, proceed as follows:
- a. Connect test setup shown in Figure 5-2. Select load and current sampling resistor values according to Paragraphs 5-11 and 5-13.
- b. Apply input power to supply and adjust  $R_L$  until digital voltmeter indicates a voltage drop which is

proportional to the maximum rated output current.

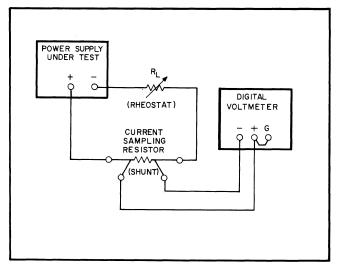



Figure 5-2. Output Current, Test Setup

### 5-18 Load Regulation

Definition: The change,  $\Delta$  E $_{OUT}$ , in the static value of dc output voltage resulting from a load change from 0 to 100% (or vice versa) of rated output current.

- 5-19 To check load regulation, proceed as follows:
- a. Connect full load resistance across output bus bars (Paragraph 5-11).
  - b. Connect digital voltmeter across ±S terminals.
- c. Apply input power and record output voltage on voltmeter.
  - d. Disconnect load resistance.
- e. Reading on voltmeter should not vary from reading of step c by more than 0.05%.

# 5-20 Line Regulation

Definition: The change,  $\Delta$  E<sub>OUT</sub>, in the static value of dc output voltage resulting from a change in ac input voltage over the specified range from low line (usually 104 Volts) to high line (usually 127 Volts), or from high line to low line.

- 5-21 To test the line regulation, proceed as follows:
- a. Connect variable auto transformer between input power source and power supply power input terminals.
- b. Connect load resistance and digital voltmeter across output of supply.
- c. Adjust variable auto transformer for low line input.
- d. Turn on setup. Read and record output voltage on digital voltmeter.

- e. Adjust variable auto transformer for high line input.
- f. Reading on digital voltmeter should not vary from reading recorded in step d by more than 0.05%.

# 5-22 Ripple and Noise

Definition: The residual AC voltage which is superimposed on the DC output of a regulated power supply. Ripple and noise may be specified and measured in terms of its RMS or (preferably) its peak-to-peak value.

- 5-23 Ripple and noise measurement can be made at any input AC line voltage combined with any DC output voltage and load current within rating.
- Figure 5-3A shows an incorrect method of measur-5-24 ing p-p ripple. Note that a continuous ground loop exists from the third wire of the input power cord of the supply to the third wire of the input power cord of the oscilloscope via the grounded power supply case, the wire between the negative output terminal of the power supply and the vertical input of the scope, and the grounded scope case. Any ground current circulating in this loop as a result of the difference in potential E<sub>G</sub> between the two ground points causes an IR drop which is in series with the scope input. This IR drop, normally having a 60Hz line frequency fundamental, plus any pickup on the unshielded leads interconnecting the power supply and scope, appears on the face of the CRT. The magniture of this resulting signal can easily be much greater than the true ripple developed between the plus and minus output terminals of the power supply, and can completely invalidate the measurement.
- 5-25 The same ground current and pickup problems can exist if an RMS voltmeter is substituted in place of the oscilloscope in Figure 5-3. However, the oscilloscope display, unlike the true RMS meter reading tells the observer immediately whether the fundamental period of the signal displayed in 8.3 milliseconds or 16.7 milliseconds (10 or 20 milliseconds for a 50Hz input). Since the fundamental ripple frequency present on the output of an HP supply is 120Hz (due to full-wave rectification), an oscilloscope display showing a 120Hz fundamental component is indicative of a "clean" measurement setup, while the presence of a 60Hz fundamental usually means that an improved setup will result in a more accurate (and lower) value of measured ripple. (For a 50Hz power input, the frequencies would be 100Hz or 50Hz.)
- 5-26 Figure 5-3B shows a correct method of measuring the output ripple of a constant voltage power supply using a single-ended scope. The ground loop path is broken by floating the power supply output. Note that to ensure that no potential difference exists between the supply and the

oscilloscope, it is recommended that whenever possible they both be plugged into the same ac power bus. If the same bus cannot be used, both ac grounds must be at earth ground potential. The terminating resistor ( $R_T$ ) must be physically connected as close as possible to the output terminals of the supply and its value should match that of the coaxial cable.

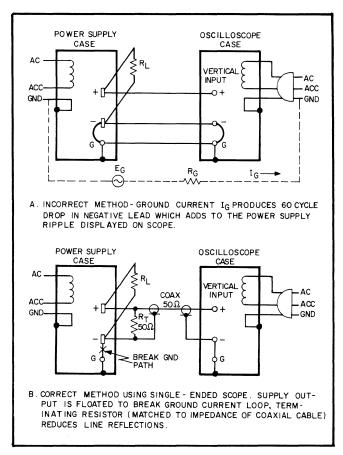



Figure 5-3. Ripple and Noise, Test Setup

- 5-27 To verify that the oscilloscope is not displaying ripple that is induced in the leads or picked up from the grounds, the (+) scope lead should be shorted to the (-) scope lead at the power supply terminals. The ripple value obtained when the leads are shorted should be subtracted from the actual ripple measurement.
- 5-28 Ripple and/or noise output measurement procedures are given in the following steps. If a high frequency noise measurement is desired, an oscilloscope with sufficient bandwidth (20MHz) must be used. To measure the ripple/noise output, proceed as follows:
- a. Connect oscilloscope or RMS voltmeter as shown in Figure 5-3B.
- b. Connect full load resistance across supply (Paragraph 5-11).
  - c. Connect input power and observe ripple or

noise. It should be less than 15mV rms or 50mV p-p (65mV p-p for Model 62615M).

# 5-29 Load Transient Recovery

Definition: The time "X" for output volt age recovery to within "Y" millivolts of the nominal output voltage following a "Z" amp step change in load current — where: "X" = time given in Figure 5-5, "Y" = 1%, and "Z" is the specified load current change, equal to half of the current rating of the supply. The nominal output voltage is defined as the DC level half way between the static output voltage before and after the imposed load change.

- 5-30 Transient recovery time may be measured at any input line voltage combined with any output voltage and load current within rating.
- 5-31 As shown in Figure 5-4, a hand-operated switch is used to switch between half and full load operation. The resultant one-shot displays are observed on an oscilloscope. A storage type oscilloscope, such as the HP Model 181A, is useful when attempting to observe the single shot events. Each load resistor is twice the normal full load resistance (Paragraph 5-11). The switch must be capable of handling at least half of the supply's output current and care should be taken so that contact "bounce" does not mask the true transient recovery waveform.



Figure 5-4. Transient Recovery Time, Test Setup

- 5-32 To check the load transient recovery, proceed as follows:
  - a. Connect test setup shown in Figure 5-4.
- b. Close then open switch and observe oscilloscope display.
- c. Recovery should be within the tolerances given in Figure 5-5.

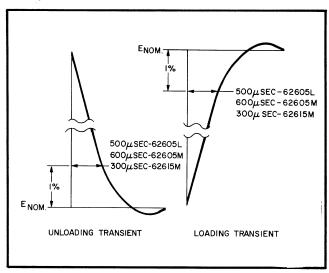



Figure 5-5. Transient Recovery Waveforms

#### 5-33 TROUBLESHOOTING

- 5-34 Before attempting to troubleshoot this instrument, ensure that the fault is with the instrument itself and not with an associated circuit. The performance test enables this to be determined without having to remove the covers from the supply.
- 5-35 A good understanding of the principles of operation is a helpful aid in troubleshooting, and it is recommended that the reader review Section IV of the manual before attempting to troubleshoot the unit in detail. Once the principles of operation are understood, refer to the following paragraphs in sequential order.

#### 5-36 Initial Troubleshooting Procedures

5-37 If a malfunction occurs, proceed as follows:

- (1) Note output condition of supply (0V output, low output voltage, etc.); then disconnect input power and remove all loads from unit.
- (2) Reconnect input power and proceed to appropriate troubleshooting procedure according to following symptoms:
- a. 0V output (most common failure sympton); proceed to Figure 5-6.
- b. Low output voltage (below minimum rating); proceed to Figure 5-7.
  - c. Normal output voltage; unit was in over-

voltage or thermal protection mode. Allow unit to run for about 30 minutes. If output falls to 0V again, proceed to Figure 5-6. If output remains normal, line or load transient may have tripped overvoltage circuit. Connect load and operate unit normally.

#### NOTE

If overvoltage circuit continually trips during operation, check load circuit for element causing severe unloading transient, e.g., full load to no load changes in output current.

- d. High output voltage (above maximum rating); this symptom is unlikely to occur because it requires a failure both in the overvoltage protection circuit and one of the regulation circuits. If this failure does occur, repair inoperative overvoltage circuit (Q9 open, U6 faulty) first; then proceed to Figure 5-6.
  - e. Excessive ripple; proceed to Table 5-3.
  - f. Poor load regulation; proceed to Paragraph 5-42.

# WARNING

Various components on the chassis, A1 control board, and tunnel assembly are operated at ac line potential. The following paragraphs list these components and describe a method of removing the input ac before troubleshooting the A1 board.

- **5-38** Avoiding Safety Hazards. The following components (or circuits) are tied directly, or indirectly, to the ac power line: A1L1, L2, A5B1, CR1, U1, A5A3Q5, Q6 and all parts in the power leads on the primary side of isolation transformer A5A3T1 (see schematic). Also tied to the power line are the preregulator control and reference supply circuits on the A1 control board.
- 5-39 When troubleshooting the preregulator feedback loop, ac must be applied to the unit and the repairman must exercise extreme caution when working in the areas designated above. However, if a trouble is isolated to the switching regulator loop, ac can be removed from the unit and the switching regulator control circuitry can be powered with an external dc source. The external source must be capable of providing 20V at 2 Amperes and is connected as shown in Figure 5-9. With this setup, all of the A1 control circuits (pulse width modulator, 40KHz oscillator, etc.,) are operational and troubleshooting of these circuits can proceed without ac hazards. Notice that the switching transistors (A5A3Q5 Q6) are not operational with this setup (no input

from filter board A2). However, troubles isolated to this area can be localized by means of the resistance checks given in Table 5-2.

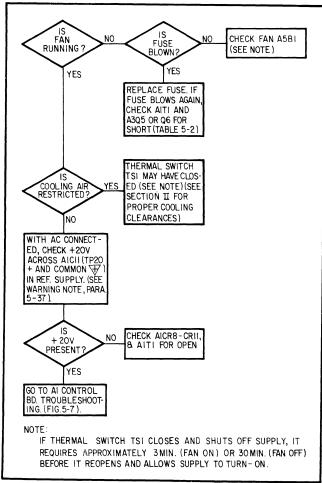



Figure 5-6. 0V Output Troubleshooting

# 5-40 Tunnel Assembly Troubleshooting

5-41 Component failures in tunnel assembly A5 can be quickly found with ohmmeter checks at the semiconductor junctions. Normal indications are either one silicon diode forward drop or an open circuit as indicated in Table 5-2. If a shorted junction is found, associated components should also be checked in case of multiple failures.

# WARNING

Disconnect ac input power before performing the resistance checks of Table 5-2.

# 5-42 Poor Load Regulation Troubleshooting

5-43 Before troubleshooting the supply, recheck the load

regulation test setup as outlined in the performance measurements portion of this section. Also, ensure that the supply is not going into current limit under loaded conditions. The current limiting point must be at least 1 Ampere above the operating current. If the unit still does not regulate properly, proceed as follows:

- a. Ensure sense lead connections are snug.
- b. Check for noisy voltage pot (A1R1) and drifting components in the voltage comparison amplifier circuit.
  - c. Check A1U1.
- d. Check main reference voltage circuit (+  $15 \forall$ , +  $6.2 \lor$  and +  $5 \lor$ ).

#### 5-44 REPAIR AND REPLACEMENT

#### 5-45 Cover Removal

- 5-46 To remove the top-end cover, proceed as follows:
- a. Remove screw attaching plastic terminal strip cover.
- b. With unit off, remove sense leads ( $\pm S$ ) from output bus bars.
- c. Remove three remaining screws at end corners of unit and remove top-end cover.

#### 5-47 A1 Board And Side Panel Removal

- 5-48 To remove the side panel and the A1 board from the side panel, proceed as follows:
  - a. Remove top-end cover.
- b. Remove two screws fastening left side panel to chassis.
- c. Rock left panel gently back and forth while pulling away from A2 board. This disconnects A1 board from A2 filter board connector and disengages chassis edge from slot in side panel.
- d. To remove A1 board from panel, pull off red, orange, and black wires from triac CR1.
- e. Pull red, black, and tracer wires from rectifier U1, by depressing clip spring through center terminal hole.
- f. Unscrew two 6-32 screws near center of left side panel.
- g. Slide A1 board forward into keyhole slots and lift out board for access to solder side.

#### 5-49 Removal of A5A3, A5A4 From Tunnel

- 5-50 To remove the driver board and output power assembly from Tunnel assembly A5, proceed as follows:
  - a. Remove top-end cover.
  - b. Remove two fan wires from A2 board.
- c. Remove two screws attaching right side panel to chassis.
- d. Gently rock side panel back and forth so that A2 filter board disconnects from A5A3 board and slot in panel disengages from chassis edge.

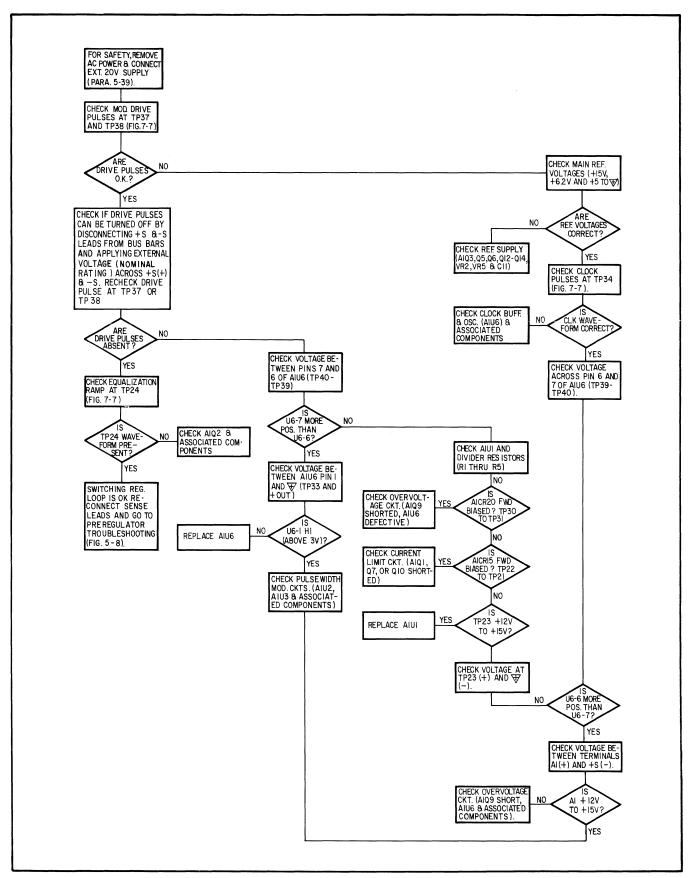



Figure 5-7. A1 Control Board Troubleshooting

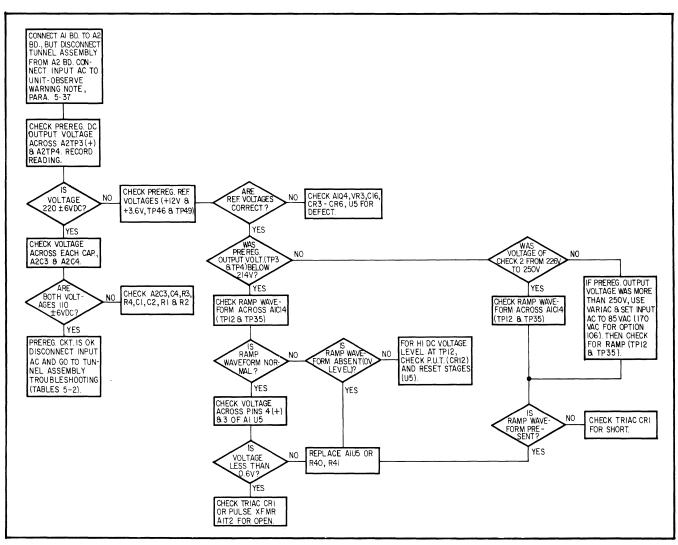



Figure 5-8. Preregulator Troubleshooting

Table 5-2. Tunnel Assembly Resistance Checks

| Neg. Lead                       | Pos. Lead                                                                                             | Normal Indication                                                                   | Probable Cause                                 |
|---------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------|
| A3TP26 ( pin<br>M of connector) | A3Q1 base (TP25) A3Q2 base (TP27) A3Q3 base (TP16) A3Q4 base (TP7) A3Q3 coll. (TP18) A3Q4 coll. (TP8) | one drop one drop one drop one drop $> 100~\Omega$ (Note 1) $> 100~\Omega$ (Note 1) | A3Q1<br>A3Q2<br>A3Q3<br>A3Q4<br>A3Q3<br>A3Q4   |
| A3TP18 (A3Q3 collector)         | A3Q3 base (TP16)<br>A3Q4 base (TP7)                                                                   | one drop<br>one drop                                                                | A3Q3<br>A3Q4                                   |
| A3TP13 (A3Q5<br>emitter)        | CR9 Cathode (TP9)<br>CR17 Cathode (TP17)<br>CR10 Cathode (TP10)                                       | one drop<br>open<br>one drop                                                        | A3Q5 (Note 2)<br>A3Q5 or CR11<br>A3Q6 (Note 2) |
| A3TP17                          | CR9 Cathode (TP9)                                                                                     | one drop                                                                            | A3Q5 (Note 2)                                  |

Table 5-2. Tunnel Assembly Resistance Checks (Continued)

| Neg. Lead                 | Pos. Lead                                  | Normal Indication | Probable Cause                       |
|---------------------------|--------------------------------------------|-------------------|--------------------------------------|
| A3TP11                    | CR10 Cathode (TP10)<br>CR12 Cathode (TP13) | one drop<br>open  | A3Q6 (Note 2)<br>A3Q6 or CR12        |
| A6Q1 - Emitter            | A6Q1 collector                             | open              | A6Q1 or TS1                          |
| A4CR1 and CR2<br>Cathodes | A4CR1, CR2 anodes                          | one drop (Note 3) | A4CR1 or CR2                         |
| — Output Bus              | + Output Bus                               | 4.5 $\Omega$      | A4R1, C2, C5 or<br>A4CR1, CR2, leaky |

#### NOTES:

- 1. Readings apply only if ohmmeter open circuit voltage is less than 2 Volts.
- 2. If A5A3Q5 or Q6 are shorted, check A5A4CR1 and CR2 for short.
- 3. Shottky diodes forward drops are slightly less than those for silicon diodes.
- e. To remove the A3 and A4 assemblies from the tunnel, first remove two each 6-32 screws from top and bottom of tunnel.
- f. Carefully slide A5A3 and A4 out of the tunnel by grasping black plastic bus bar shield with one hand and holding tunnel assembly with the other.

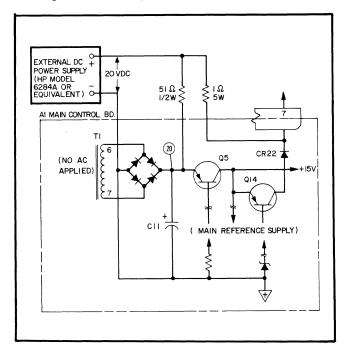



Figure 5-9. Substitute Bias Source,
A1 Board Troubleshooting

- g. Access is now gained to switching and driver transistors on the A5A3 board and components on the A5A4 assembly.
- h. To replace some components on A5A4 assembly, A3 and A4 must be separated by removing screw in center attaching board to threaded spacer. Then lift up A5A3 board (save fiber shield).
- i. To remove tunnel assembly from right side panel, push panel forward into keyhole slots and remove from tunnel.

### 5-51 Switching Transistor Replacement

- 5-52 If one of the switching transistors (A5A3Q5 or A5A3Q6) fails, it usually causes failure of the other transistor. Therefore, check both transistors as outlined in Table 5-4, before starting the following replacement procedures.
- a. Clean heat sink and transistor mounting surfaces. Clean mica insulator (not required on 62605L).
- b. Apply thin coating of silicone compount (Dow Corning 340 or HP 8500-0059) to all mating surfaces.
- c. Insert mounting screws and lockwashers into TO-3 mounting holes on transistor.
- d. Position mica insulator (if used) and transistor on heat sink.
- e. Install TO-3 plastic insulators (insulators not used on 62605L) into bottom of heat sink and onto protruding mounting screws.

  place.
  - g. Tighten four screws to 10 inch-pounds.

Table 5-3. Excessive Ripple or Noise Troubleshooting

| Symptom                   | Probable Cause                                                                                                                                                                                                                 |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Excessive 120Hz ripple    | Check preregulator output voltage across A2C3, and C4 as shown in Figure 5-8. If output is incorrect, check for open components on A2 board before continuing with preregulator troubleshooting.                               |
| Excessive 40kHz ripple    | <ul><li>a. Check A4C1, C2 including tightness of mounting screws.</li><li>b. Check A4L1, L2 for shorts or loose connections.</li></ul>                                                                                         |
| Excessive noise spikes    | <ul> <li>a. Recheck measurement technique.</li> <li>b. Ensure that A4T1 shield is connected properly.</li> <li>c. Check A4C3 — C6, R3 &amp; R4, open or short.</li> <li>d. Check A4C1, C2 mounting screw tightness.</li> </ul> |
| Erratic output at no load | a. Check equalization circuit, A1Q2. b. Check A1U1 for defect.                                                                                                                                                                 |

# 5-53 ADJUSTMENTS

# 5-54 Current Limit

- 5-55 The current limit point is factory set to  $105 \pm 1\%$  of the current rating with the output voltage set at nominal. The current limit must be checked and adjusted if any one of the following components are replaced: A4R2, A1VR1, R12, R15, R16, or Q10. Before making the adjustment, refer to Paragraphs 3-8 and 3-9 and then proceed as follows:
- a. With power disconnected make setup shown in Figure 5-10.
- b. Connect ac input power and decrease R<sub>L</sub> (from maximum) until current limit is reached (ripple observed on scope increases substantially). Reading on voltmeter is equivalent to current limit point.
- c. To change current limit, first increase current limit setting (below terminals on end panel). Decrease  $\rm R_{\rm L}$  until voltmeter reads value equivalent to desired output at current limit point.
- d. Decrease current limit setting until current limit is reached (ripple increases on scope).

#### 5-56 40kHz Clock

5-57 The frequency of the 40kHz oscillator is factory set to 40kHz ±200Hz and does not require adjustment unless an oscillator component is replaced. To adjust frequency,

proceed as follows:

- a. With input power disconnected, remove top-end cover to gain access to A1 board.
- b. To prevent possible damage to the regulator switches, remove tunnel assembly A5, as previously described.
- c. Connect frequency counter between TP34 (U6-13) and  $\pm$ S.
- d. Connect input power and adjust A1R31 for  $40kHz \pm 200Hz$ .
  - e. Remove input power and replace tunnel assembly.

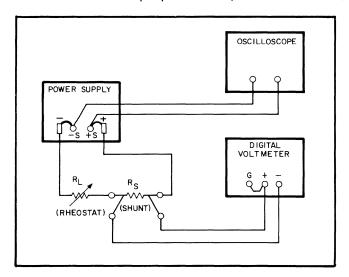



Figure 5-10. Current Limit Adjustment Setup

# SECTION VI REPLACEABLE PARTS

# 6-1 INTRODUCTION

- 6-2 This section contains information for ordering replacement parts. Table 6-4 lists parts in alpha-numeric order by reference designators and provides the following information:
  - a. Reference Designators. Refer to Table 6-1.
  - b. Description. Refer to Table 6-2 for abreviations.
- c. Total Quantity (TQ). Given only the first time the part number is listed except in instruments containing many sub-modular assemblies, in which case the TQ appears the first time the part number is listed in each assembly.
  - d. Manufacturer's Part Number or Type.
  - e. Manufacturer's Federal Supply Code Number.

Refer to Table 6-3 for manufacturer's name and address.

- f. Hewlett-Packard Part Number.
- g. Recommended Spare Parts Quantity (RS) for complete maintenance of one instrument during one year of isolated service.
- h. Parts not identified by a reference designator are listed at the end of Table 6-4 under Mechanical and/or Miscellaneous. The former consists of parts belonging to and grouped by individual assemblies; the latter consists of all parts not immediately associated with an assembly.

# 6-3 ORDERING INFORMATION

To order a replacement part, address order or inquiry to your local Hewlett-Packard sales office (see lists at rear of this manual for addresses). Specify the following information for each part: Model, complete serial number, and any Option or special modification (J) numbers of the instrument; Hewlett-Packard part number; circuit reference designator; and description. To order a part not listed in Table 6-4, give a complete description of the part, its function, and its location.

Table 6-1. Reference Designators

| A<br>B | = assembly<br>= blower (fan) | Е | = miscellaneous<br>electronic part |
|--------|------------------------------|---|------------------------------------|
| С      | = capacitor                  | F | = fuse                             |
| СВ     | = circuit breaker            | J | = jack, jumper                     |
| CR     | = diode                      | Κ | = relay                            |
| DS     | = device, signaling          | L | = inductor                         |
|        | (lamp)                       | M | = meter                            |
| l      |                              | I |                                    |

Table 6-1. Reference Designators (Continued)

| P<br>Q<br>R | = plug<br>= transistor<br>= resistor | V  | = vacuum tube,<br>neon bulb,<br>photocell, etc. |
|-------------|--------------------------------------|----|-------------------------------------------------|
| S           | = switch                             | VR | = zener diode                                   |
| T           | = transformer                        | X  | = socket                                        |
| TB          | = terminal block                     | Z  | = integrated cir-                               |
| TS          | = thermal switch                     |    | cuit or network                                 |

Table 6-2. Description Abbreviations

| A = ampere                         | mod. = modular or            |
|------------------------------------|------------------------------|
| ac = alternating current           | modified                     |
| assy. = assembly                   | mtg = mounting               |
| bd = board                         | n = nano = 10 <sup>-9</sup>  |
| bkt = bracket                      | NC = normally closed         |
| <sup>O</sup> C = degree Centigrade | NO = normally open           |
| cd = card                          | NP = nickel-plated           |
| coef = coefficient                 | $\Omega$ = ohm               |
| comp = composition                 | obd = order by               |
| CRT = cathode-ray tube             | description                  |
| CT = center-tapped                 | OD = outside diameter        |
| dc = direct current                | p = pico = 10 <sup>-12</sup> |
| DPDT= double pole,                 | P.C. = printed circuit       |
| double throw                       | pot. = potentiometer         |
| DPST= double pole,                 | p-p = peak-to-peak           |
| single throw                       | ppm = parts per million      |
| elect = electrolytic               | pvr = peak reverse           |
| encap= encapsulated                | voltage                      |
| F = farad                          | rect = rectifier             |
| <sup>O</sup> F = degree Farenheit  | rms = root mean square       |
| fxd = fixed                        | Si = silicon                 |
| Ge = germanium                     | SPDT= single pole,           |
| H = Henry                          | double throw                 |
| Hz = Hertz                         | SPST = single pole,          |
| IC = integrated circuit            | single throw                 |
| ID = inside diameter               | SS = small signal            |
| incnd = incandescent               | T = slow-blow                |
| $k = kilo = 10^3$                  | tan. = tantulum              |
| $m = milli = 10^{-3}$              | Ti = titanium                |
| M = mega = 10 <sup>6</sup>         | V = volt                     |
| $\mu = \text{micro} = 10^{-6}$     | var = variable               |
| met. = metal                       | ww = wirewound               |
| mfr = manufacturer                 | W = Watt                     |
|                                    |                              |

Table 6-3. Code List of Manufacturers

| CODE    | MANUFACTURER ADDRESS                           | CODE           | MANUFACTURER ADDRESS                                   |
|---------|------------------------------------------------|----------------|--------------------------------------------------------|
| 00629   | EBY Sales Co., Inc. Jamaica, N.Y.              | 07137          | Transistor Electronics Corp.                           |
| 00656   | Aerovox Corp. New Bedford, Mass.               |                | Minneapolis, Minn.                                     |
| 00853   | Sangamo Electric Co.                           | 07138          | Westinghouse Electric Corp. Elmira, N.Y.               |
|         | S. Carolina Div. Pickens, S.C.                 | 07263          | Fairchild Camera and Instrument                        |
| 01121   | Allen Bradley Co. Milwaukee, Wis.              |                | Mountain View, Calif.                                  |
| 01255   | Litton Ind. Beverly Hills, Calif.              | 07387          | Birtcher Corp., The Los Angeles, Calif.                |
| 01281   | TRW Semiconductors, Inc.                       | 07397          | Sylvania Electric Prod. Inc.                           |
|         | Lawndale, Calif.                               |                | Mountainview, Calif.                                   |
| 01295   | Texas Instruments, Inc. Dallas, Texas          | 07716          | IRC Div. of TRW Inc. Burlington, Iowa                  |
| 01686   | RCL Electronics, Inc. Manchester, N.H.         | 07910          | Continental Device Corp.                               |
| 01930   | Amerock Corp. Rockford, III.                   |                | Hawthorne, Calif.                                      |
| 02107   | Sparta Mfg. Co. Dover, Ohio                    | 07933          | Raytheon Co. Components Div.                           |
| 02114   | Ferroxcube Corp. Saugerties, N.Y.              |                | Mountain View, Calif.                                  |
| 02606   | Fenwal Laboratories Morton Grove, III.         | 08484          | Breeze Corporations, Inc. Union, N.J.                  |
| 02660   | Amphenol Corp. Broadview, III.                 | 08530          | Reliance Mica Corp. Brooklyn, N.Y.                     |
| 02735   | Radio Corp. of America, Solid State and        | 08717          | Sloan Company, The Sun Valley, Calif.                  |
|         | Receiving Tube Div. Somerville, N.J.           | 08730          | Vemaline Products Co. Inc.                             |
| 03508   | G.E. Semiconductor Products Dept.              | 00000          | Wyckoff, N.J.                                          |
|         | Syracuse, N.Y.                                 | 08806          | General Elect. Co. Minature                            |
| 03797   | Eldema Corp. Compton, Calif.                   | 00000          | Lamp Dept. Cleveland, Ohio                             |
| 03877   | Transitron Electronic Corp.                    | 08863          | Nylomatic Corp. Norrisville, Pa.                       |
| 00000   | Wakefield, Mass.                               | 08919<br>09021 | RCH Supply Co. Vernon, Calif.                          |
| 03888   | Pyrofilm Resistor Co., Inc.                    | 09021          | Airco Speer Electronic Components                      |
| 04000   | Cedar Knolls, N.J.                             | 09182          | Bradford, Pa.                                          |
| 04009   | Arrow, Hart and Hegeman Electric Co.           | 09102          | *Hewlett-Packard Co. New Jersey Div.<br>Rockaway, N.J. |
| 04072   | Hartford, Conn.                                | 09213          | General Elect. Co. Semiconductor                       |
| 04072   | ADC Electronics, Inc. Harbor City, Calif.      | 09213          | Prod. Dept. Buffalo, N.Y.                              |
| 04213   | Caddell & Burns Mfg. Co. Inc.<br>Mineola, N.Y. | 09214          | General Elect. Co. Semiconductor                       |
| 04404   | *Hewlett-Packard Co. Palo Alto Div.            | 00214          | Prod. Dept. Auburn, N.Y.                               |
| 1 01404 | Palo Alto, Calif.                              | 09353          | C & K Components Inc. Newton, Mass.                    |
| 04713   | Motorola Semiconductor Prod. Inc.              | 09922          | Burndy Corp. Norwalk, Conn.                            |
|         | Phoenix, Arizona                               | 11115          | Wagner Electric Corp.                                  |
| 05277   | Westinghouse Electric Corp.                    |                | Tung-Sol Div. Bloomfield, N.J.                         |
| 332     | Semiconductor Dept. Youngwood, Pa.             | 11236          | CTS of Berne, Inc. Berne, Ind.                         |
| 05347   | Ultronix, Inc. Grand Junction, Colo.           | 11237          | Chicago Telephone of Cal. Inc.                         |
| 05820   | Wakefield Engr. Inc. Wakefield, Mass.          |                | So. Pasadena, Calif.                                   |
| 06001   | General Elect. Co. Electronic                  | 11502          | IRC Div. of TRW Inc. Boone, N.C.                       |
|         | Capacitor & Battery Dept. Irmo, S.C.           | 11711          | General Instrument Corp. Newark, N.J.                  |
| 06004   | Bassik Div. Stewart-Warner Corp.               | 12136          | Philadelphia Handle Co. Camden, N.J.                   |
|         | Bridgeport, Conn.                              | 12615          | U.S. Terminals, Inc. Cincinnati, Ohio                  |
| 06486   | IRC Div. of TRW Inc.                           | 12617          | Hamlin Inc. Lake Mills, Wisconsin                      |
|         | Semiconductor Plant Lynn, Mass.                | 12697          | Clarostat Mfg. Co. Inc. Dover, N.H.                    |
| 06540   | Amatom Electronic Hardware Co. Inc.            | 13103          | Thermalloy Co. Dallas, Texas                           |
|         | New Rochelle, N.Y.                             | 14493          | *Hewlett-Packard Co. Loveland, Colo.                   |
| 06555   | Beede Electrical Instrument Co.                | 14655          | Cornell-Dubilier Electronics Div.                      |
|         | Penacook, N.H.                                 |                | Federal Pacific Electric Co.                           |
| 06666   | General Devices Co. Indianapolis, Ind.         |                | Newark, N.J.                                           |
| 06751   | Semoor Div. Components, Inc.                   | 14936          | General Instrument Corp. Semicon-                      |
|         | Phoenix, Arizona                               |                | ductor Prod. Group Hicksville, N.Y.                    |
| 06776   | Robinson Nugent, Inc.' New Albany, N.Y.        | 15801          | Fenwal Elect. Framingham, Mass.                        |
| 06812   | Torrington Mfg. Co. Van Nuys, Calif.           | 16299          | Corning Glass Works Raleigh, N.C.                      |
|         |                                                |                | -                                                      |

<sup>\*</sup>Use Code 28480 assigned to Hewlett-Packard Co., Palo Alto, California

| CODE           | MANUFACTURER                             | ADDRESS                            |
|----------------|------------------------------------------|------------------------------------|
| 16758          | Delco Radio Div. of Gene                 | eral Motors                        |
|                | Corp.                                    | Kokomo, Ind.                       |
| 17545          | Atlantic Semiconductors,                 |                                    |
|                |                                          | Asbury Park, N.J.                  |
| 17803          | Fairchild Camera and Ins                 | ·                                  |
| 47070          | <b>.</b>                                 | tain View, Calif.                  |
| 17870          | Daven Div. Thomas A. Ed                  |                                    |
| 18324          | McGraw-Edison Co.                        |                                    |
| 18324          | Signetics Corp.  Bendix Corp. The Naviga | stion and                          |
| 19315          | Control Div.                             | Teterboro, N.J.                    |
| 19701          | Electra/Midland Corp.                    | reterboro, iv.s.                   |
| 19701          | •                                        | eral Wells, Texas                  |
| 21520          | Fansteel Metallurgical Co                |                                    |
| 21320          | r ansteer wetandigical Go                | No. Chicago, III.                  |
| 22229          | Union Carbide Corp. Eleg                 | • •                                |
| 22220          | · ·                                      | ntain View, Calif.                 |
| 22753          | UID Electronics Corp.                    | · ·                                |
| 23936          | Pamotor, Inc.                            | Pampa, Texas                       |
| 24446          | General Electric Co. So                  | chenectady, N.Y.                   |
| 24455          | General Electric Co.                     | ·                                  |
|                | Nela Park                                | , Cleveland, Ohio                  |
| 24655          | General Radio Co. Wes                    | · ·                                |
| 24681          | LTV Electrosystems Inc.                  | Memcor/Com-                        |
|                | ponents Operations                       | Huntington, Ind.                   |
| 26982          | Dynacool Mfg. Co. Inc.                   | Saugerties, N.Y.                   |
| 27014          | National Semiconductor (                 |                                    |
|                | S                                        | anta Clara, Calif.                 |
| 28480          |                                          | Palo Alto, Calif.                  |
| 28520          | ,                                        | Kenilworth, N.J.                   |
| 28875          |                                          | Rochester, N.H.                    |
| 31514          | SAE Advance Packaging,                   |                                    |
| 01007          | 1                                        | Santa Ana, Calif.                  |
| 31827<br>33173 | Budwig Mfg. Co.<br>G.E. Co. Tube Dept.   | Ramona, Calif.                     |
| 35434          | Lectrohm, Inc.                           | Owensboro, Ky.                     |
| 37942          |                                          | Chicago, III.                      |
| 42190          | Muter Co.                                | ndianapolis, Ind.<br>Chicago, III. |
| 43334          | New Departure-Hyatt Bea                  | 7                                  |
| 40004          | General Motors Corp.                     | irings Div.                        |
|                | General Motors Corp.                     | Sandusky, Ohio                     |
| 44655          | Ohmite Manufacturing Co                  | ·                                  |
| 46384          | Penn Engr. and Mfg. Corp                 |                                    |
|                | .g                                       | Doylestown, Pa.                    |
| 47904          | Polaroid Corp.                           | Cambridge, Mass.                   |
| 49956          |                                          | Lexington, Mass.                   |
| 55026          | Simpson Electric Co. Div                 | • .                                |
|                | Gage and Machine Co.                     |                                    |
| 56289          | Sprague Electric Co.                     | -                                  |
|                | No                                       | rth Adams, Mass.                   |
| 58474          | Superior Electric Co.                    | Bristol, Conn.                     |
| 58849          | Syntron Div. of FMC Co                   | •                                  |
|                |                                          | Homer City, Pa.                    |

| CODE  | MANUFACTURER ADDRESS                   |
|-------|----------------------------------------|
| 59730 | Thomas and Betts Co. Philadelphia, Pa. |
| 61637 | Union Carbide Corp. New York, N.Y.     |
| 63743 | Ward Leonard Electric Co.              |
|       | Mt. Vernon, N.Y.                       |
| 70563 | Amperite Co. Inc. Union City, N.J.     |
| 70901 | Beemer Engrg Co.                       |
|       | Fort Washington, Pa.                   |
| 70903 | Belden Corp. Chicago, III.             |
| 71218 | Bud Radio, Inc. Willoughby, Ohio       |
| 71279 | Cambridge Thermionic Corp.             |
|       | Cambridge, Mass.                       |
| 71400 | Bussmann Mfg. Div.of McGraw &          |
|       | Edison Co. St. Louis, Mo.              |
| 71450 | CTS Corp. Elkhart, Ind.                |
| 71468 | I.T.T. Cannon Electric Inc.            |
|       | Los Angeles, Calif.                    |
| 71590 | Globe-Union Inc.                       |
|       | Milwaukee, Wis.                        |
| 71700 | General Cable Corp. Cornish            |
|       | Wire Co. Div. Williamstown, Mass.      |
| 71707 | Coto Coil Co. Inc. Providence, R.I.    |
| 71744 | Chicago Miniature Lamp Works           |
|       | Chicago, III.                          |
| 71785 | Cinch Mfg. Co. and Howard              |
|       | B. Jones Div. Chicago, III.            |
| 71984 | Dow Corning Corp. Midland, Mich.       |
| 72136 | Electro Motive Mfg. Co. Inc.           |
|       | Willimantic, Conn.                     |
| 72619 | Dialight Corp. Brooklyn, N.Y.          |
| 72699 | General Instrument Corp. Newark, N.J.  |
| 72765 | Drake Mfg. Co. Harwood Heights, III.   |
| 72962 | Elastic Stop Nut Div. of               |
|       | Amerace Esna Corp. Union, N.J.         |
| 72982 | Erie Technological Products            |
|       | Erie, Pa.                              |
| 73096 | Hart Mfg. Co. Hartford, Conn.          |
| 73138 | Beckman Instruments                    |
|       | Fullerton, Calif.                      |
| 73168 | Fenwal, Inc. Ashland, Mass.            |
| 73293 | Hughes Aircraft Co. Electron           |
|       | Dynamics Div. Torrance, Calif.         |
| 73445 | Amperex Electronic                     |
|       | Hicksville, N.Y.                       |
| 73506 | Bradley Semiconductor Corp.            |
| 70550 | New Haven, Conn.                       |
| 73559 | Carling Electric, Inc. Hartford, Conn. |
| 73734 | Federal Screw Products, Inc.           |
| 74400 | Chicago, III.                          |
| 74193 | Heinemann Electric Co. Trenton, N.J.   |
| 74545 | Hubbell Harvey Inc. Bridgeport, Conn.  |
| 74868 | Amphenol Corp. Amphenol RF Div.        |
| 74070 | Danbury, Conn.                         |
| 74970 | E.F. Johnson Co. Waseca, Minn.         |

Table 6-4. Replaceable Parts

| REF.<br>DESIG. | DESCRIPTION                  | TQ. | MFR. PART NO.      | MFR.<br>CODE | HP PART NO. | RS  |
|----------------|------------------------------|-----|--------------------|--------------|-------------|-----|
|                | A1 Main Control Board        |     |                    |              |             |     |
| C1             |                              | ĺ   |                    |              |             |     |
| 62605M, 05L    | fxd, elect 1.8µF, 20V        | 1   |                    |              | 0180-0405   |     |
| 62615M         | fxd, elect 1μF, 35V          | 2   |                    | 56289        | 0180-0291   | 1   |
| C2             |                              |     |                    |              |             |     |
| 62605M, 05L    | fxd, elect 10µF, 20V         | 2   | 150D106X9020B2     | 56289        | 0180-0374   | 1   |
| 62615M         | fxd, elect 22µF, 15V         | 2   | 150D226X9015B2     | 56289        | 0180-0374   |     |
| C3             | fxd, mica 470pF, 300V        | 1   | DM15F471J0300WV1   | 72136        | 0140-0149   |     |
| C4             | fxd, mica 820pF, 300V        | 1   | DM15F821G0300WV1   | 72136        | 0140-0151   | l i |
| C5             | fxd, elect 1μF, 35V          | 2   | 150D105X9035A2-DYS |              | 0180-0291   |     |
| C6             | fxd, cer .01µF, 100V         | 2   | obd                | 91418        | 0150-0093   | 1   |
| C7             | fxd, mylar .047µF, 200V      | 1   | Type 27            | 09134        | 0170-0040   | 1   |
| C8, 9          | fxd, cer .001µF, 1KV         | 3   | C067B102E102ZS26   | 56289        | 0150-0050   | 1   |
| C10            | fxd, cer .02µF, 100V         | 1   | C023B101H203MS27   | 56289        | 0180-1943   | 1   |
| C11            | fxd, elect 1000μF, 25V       | 1   | 39D108G025GLU      | 56289        | 0180-1943   | 1   |
| C12            | fxd, elect .22µF, 35V        | 1   | 150D224X9035A2     | 56289        | 0180-1735   | 1   |
| C13            | fxd, elect 10μF, 20V         |     | 150D106X9020B2     | 56289        | 0180-0374   |     |
| C14            | fxd, elect 1.8µF, 35V        | 1   | 150D185X9035B2     | 56289        | 0180-0101   | 1   |
| C15            | fxd, cer .01µF, 100V         |     | obd                | 91418        | 0150-0093   |     |
| C16            | fxd, elect 47μF, 25V         | 1   | 476H025CC5B        | 56289        | 0180-0587   | 1   |
| C17            | fxd, cer .02µF, 2KV          | 2   | 41C321-CDH         | 56289        | 0160-2569   | 1   |
| C18A, B        | fxd, cer 7200pF (dual), 250V | 1   | 41C407-CDH         | 56289        | 0160-3611   | 1   |
| C19            | fxd, cer .02µF, 2KV          |     | 41C321-CDH         | 56289        | 0160-2569   |     |
| C20            | fxd, elect 22µF, 15V         |     | 150D226X9015B2     | 56289        | 0180-0228   |     |
| C21            | fxd, cer .1μF, 50V           | 2   | 5C50B1-CML         | 56289        | 0150-0121   | 1   |
| C22            | fxd, cer .47μF, 25V          | 1   | 316-000-R3A-211K   | 72982        | 0160-0174   | 1   |
| C23            | fxd, mica 220pF, 300V        | 1   | obd                | 09023        | 0160-0134   | 1   |
| C24            | fxd, cer .001µF, 1KV         |     | C067B102E102ZS26   | 56289        | 0150-0050   |     |
| C25, 26<br>C27 | Not Assigned                 |     |                    |              |             |     |
| 62605M         | Not Used                     |     |                    |              |             |     |
| 62605L, 15M    | fxd, cer 0.1 µF, 50V         |     | 5C50B1-CML         | 56289        | 0150-0121   | ĺ   |
| C28            |                              |     | 3030BT-GWL         | 00203        | 0130 0121   |     |
| 62605M         | Not Used                     |     |                    |              |             |     |
| 62605L, 15M    | fxd, cer .05µF, 400V         | 1   |                    |              | 0150-0052   | 1   |
| CR1-7          | diode, switching 80V, 200mA  | 13  | 1N4148             | 07263        | 1901-0050   | 7   |
| CR8-11         | diode, rectifier 400V, 750mA | 5   | SR1358-9           | 04713        | 1901-0028   | 5   |
| CR12           | Unijunction Transistor       | 1   | 2N6027             | 03508        | 1855-0314   | 1   |
| CR13           | diode, switching 80V, 200mA  | 1   | 1N4148             | 07263        | 1901-0050   |     |
| CR14           | diode, Schottky barrier      | 4   |                    | 28480        | 1901-0518   | 4   |
| CR15, 16       | diode, switching 80V, 200mA  |     | 1N4148             | 07263        | 1901-0050   |     |
| CR17           | diode, stabistor 15V, 150mA  | 2   | STB-523            | 03508        | 1901-0460   | 2   |
| CR18           | Not Assigned                 |     |                    |              |             |     |
| CR19           | diode, rectifier 200V, 1A    | 1   | 1N5059             | 03508        | 1901-0327   |     |
| CR20           | diode, switching 80V, 200mA  | 1   | 1N4148             | 07263        | 1901-0050   |     |
| CR21           | diode, Schottky barrier      | 1   |                    | 28480        | 1901-0518   | ļ   |
| CR22           | diode, rectifier 400V, 750mA | 5   | SR1358-9           | 04713        | 1901-0028   |     |
| CR23           | Not Assigned                 |     |                    |              |             |     |
| CR24           | diode, Schottky barrier      | 1   |                    | 28480        | 1901-0518   |     |
| CR25           | diode, switching 80V, 200mA  | 1   | 1N4148             | 07263        | 1901-0050   |     |
| CR26           | diode, stabistor 15V, 150mA  | 1   | STB-523            | 03508        | 1901-0460   |     |
| CR27           | diode, Schottky barrier      | 1   |                    | 28480        | 1901-0518   |     |

Table 6-4. Replaceable Parts

| REF.                  |                                 |    |                    | MFR.  |             |            |
|-----------------------|---------------------------------|----|--------------------|-------|-------------|------------|
| DESIG.                | DESCRIPTION                     | TQ | MFR. PART NO.      | CODE  | HP PART NO. | RS         |
| CR28                  | diode, switching 80V, 200mA     |    | 1N4148             | 07263 | 1901-0050   |            |
| L1, 2                 | fxd, inductor 20µH              | 2  |                    | 28480 | 5080-1786   | 1          |
| L3                    | fxd, inductor 680μH             | 1  |                    | 20.00 | 9100-0415   | 1          |
| P1                    | Connector, PC edge 30-pin       | 1  | 252-15-30-340      | 71785 | 1251-1886   | 1          |
| Q1-4                  | S. S. NPN Si                    | 8  | 2N3417             | 03508 | 1854-0087   | 6          |
| Q5                    | S. S. PNP Si                    | 1  | 2N2904A            | 04713 | 1853-0012   | 1          |
| Q6                    | S. S. NPN Si                    | '  | 2N3417             | 03508 | 1854-0087   | '          |
| Ω7, 8                 | S. S. PNP Si                    | 3  | TZ173              | 56289 | 1853-0099   | 3          |
| Ω9                    | S. S. NPN Si                    | Ŭ  | 2N3417             | 03508 | 1854-0087   |            |
| Q10                   | S. S. dual NPN Si               | 1  | TD203              | 56289 | 1854-0375   | 1          |
| Q11                   | Not Assigned                    | '  | 10200              | 30203 | 100+0070    | '          |
| Q12, 13               | S. S. NPN Si                    |    | 2N3417             | 03508 | 1854-0087   |            |
| Q14                   | S. S. PNP Si                    |    | TZ173              | 56289 | 1853-0099   |            |
| R1                    | Var. cer 2K, 10%                | 2  | 72X                | 73138 | 2100-3273   | 1          |
| R2                    | fxd, film 8.25K, 1%, 1/8W       | 3  | MF4C, T-0          |       | i           |            |
| R3                    | 1xu, 11111 6.25K, 1%, 1/6W      | 3  | WIF46, 1-0         | 19701 | 0757-0441   | 1          |
| 62605M, 05L           | fxd, film 3.92K, 0.5%, 1/8W     | 5  | MF4C, T-0          | 19701 | 0698-3327   | 1          |
| 62615M                | fxd, film 1.78K, 1%, 1/8W       | 1  | MF4C, T-0          | 19701 | 0757-0274   | 1          |
| R4, 5                 | fxd, film 3.92K, 0.5%, 1/8W     | 4  | MF4C, T-0          | 19701 | 0698-3327   | '          |
| R6                    | 1Xu, 11111 3.92N, 0.9%, 1/6W    | 4  | WII 40, 1-0        | 19701 | 0090-3327   |            |
| 62605M, 05L           | fxd, comp 100, 5%, 1/4W         | 1  | CB-1015            | 01121 | 0683-1015   | 1          |
| 62605M, 05L           | fxd, comp 390, 5%, 1/4W         | 3  | CB-1015            | 01121 | 0683-3915   | 1          |
| R7                    | fxd, comp 1K, 5%, 1/4W          | 4  | CB-1025            | 01121 | 0683-1025   | 1          |
| R8                    | fxd, comp 1X, 5%, 1/4W          | 1  | CB-1025<br>CB-3325 | 01121 | 0683-3325   | 1          |
| R9                    | 1xu, comp 3.3K, 5%, 1/4W        | '  | CD-3325            | 01121 | 0003-3325   | '          |
| 62605M, 05L           | fxd, comp 10K, 5%, 1/4W         | 6  | CB-1035            | 01121 | 0683-1035   | 1          |
| 62605M, 05L<br>62615M | fxd, comp 30K, 5%, 1/4W         | 1  | CB-1035<br>CB-3035 | 01121 | 0683-3035   | 1          |
| 1                     |                                 |    |                    |       | 1           |            |
| R10<br>R11            | fxd, comp 68K, 5%, 1/4W         | 1  | CB-6835            | 01121 | 0683-6835   | 1          |
| 62605M, 05L           | fxd, film 1.62K, 1%, 1/8W       | 2  | MF4C, T-0          | 19701 | 0757-0428   | 1          |
| 62615M                | fxd, film 6.19K, 1%, 1/8W       | 1  | MF4C, T-0          | 19701 | 0757-0290   | 1          |
| R12                   | fxd, film 10, 1%, 1/8W          | 1  | CEA, T-0           | 07716 | 0757-0346   | 1          |
| R13                   | 17.67 1.11.1. 1.67 1.767 1.7611 |    | 0_,,, 10           | 07710 | 0,0,00      | ·          |
| 62605M, 05L           | fxd, comp 1K, 5%, 1/2W          | 1  | EB-1025            | 01121 | 0686-1025   | 1          |
| 62615M                | fxd, comp 1K, 5%, 1W            | 1  | GB-1025            | 01121 | 0689-1025   | 1          |
| R14                   | fxd, comp 2K, 5%, 1/4W          | 2  | CB-2025            | 01121 | 0683-2025   | 1          |
| R15                   | var. cer 2K, 10%                | -  | 72X                | 73138 | 2100-3273   |            |
| R16                   | var. 561 210, 1075              |    | 727                | 73130 | 2100 0270   |            |
| 62605M                | fxd, film 1.5K, 1%, 1/8W        | 1  | MF4C, T-0          | 19701 | 0757-0427   | 1          |
| 62605L, 15M           | fxd, film 1.62K, 1%, 1/8W       | '  | MF4C, T-0          | 19701 | 0757-0427   | '          |
| R17                   | fxd, comp 360, 5%, 1/4W         | 1  | CB-3615            | 01121 | 0683-3615   | 1          |
| R18, 20               | fxd, film 21.5K, 1%, 1/8W       | 3  | MF4C, T-0          | 19701 | 0757-0199   | 1          |
| R19, 21               | Not Assigned                    |    | 10, 10             | 13701 | 1           | Ι΄.        |
| R22                   | fxd, comp 5.1K, 5%, 1/4W        | 3  | CB-5125            | 01121 | 0683-5125   | 1          |
| R23                   | fxd, comp 10K, 5%, 1/4W         |    | CB-1035            | 01121 | 0683-1035   | j '        |
| R24                   | fxd, comp 3.9K, 5%, 1/4W        | 1  | CB-1035            | 01121 | 0683-3925   | 1          |
| R25                   | fxd, comp 10K, 5%, 1/4W         | '  | CB-1035            | 01121 | 0683-1035   | 1          |
| R26                   | 174, COMP TOIX, 5/0, 1/4W       |    | OD-1030            | 01121 | 10003-1003  | '          |
| 62605M, 05L           | fxd, comp 51, 5%, 1/4W          | 3  | CB-5105            | 01121 | 0683-5105   | 1          |
| 62605M, 05L<br>62615M | fxd, comp 51, 5%, 1/4W          | 1  | CB-2015            | 01121 | 0683-2015   | 1          |
| 02013IVI              | 174, comp 200, 570, 17400       | '  | OD-2013            | 01121 | 2010        | <b>l</b> ' |

Table 6-4. Replaceable Parts

| REF.        |                                  |    |               | MFR.  |             |    |
|-------------|----------------------------------|----|---------------|-------|-------------|----|
| DESIG.      | DESCRIPTION                      | TQ | MFR. PART NO. | CODE  | HP PART NO. | RS |
| R27         | fxd, comp 10K, 5%, 1/4Ŵ          |    | CB-1035       | 01121 | 0683-1035   |    |
| R28         | fxd, film 5.6K, 2%, 1/8W         | 1  | MF4C, T-0     | 19701 | 0757-0942   | 1  |
| R29         | fxd, film 2.15K, 1%, 1/8W        | 1  | MF4C, T-0     | 19701 | 0698-0084   | 1  |
| R30         | fxd, film 8.25K, 1%, 1/8W        |    | MF4C, T-0     | 19701 | 0757-0441   |    |
| R31         | var, trmr 5K, 10%                | 1  | 62-208-1      | 73138 | 2100-2216   | 1  |
| R32         | fxd, film 13.3K, 1%, 1/8W        | 1  | CEA T-0       | 07716 | 0757-0289   | 1  |
| R33         | fxd, film 11.3K, 1%, 1/8W        | 1  | CEA T-0       | 07716 | 0698-4121   | 1  |
| R34         | fxd, comp 5.1K, 5%, 1/4W         |    | CB-5125       | 01121 | 0683-5125   |    |
| R35         | fxd, comp <b>3.</b> 9K, 5%, 1/4W |    |               | 01121 | 0683-3925   | 1  |
| R36         | fxd, comp 2K, 5%, 1/4W           |    | CB-2025       | 01121 | 0683-2025   |    |
| R37, 38     | fxd, comp 68, 5%, 1/4W           | 2  | CB-6805       | 01121 | 0683-6805   | 1  |
| R39         | fxd, comp 360, 5%, 1/2W          | 1  | CB-3615       | 01121 | 0686-3615   | 1  |
| R40         | fxd, film 7.5K, 1%, 1/8W         | 1  | MF4C, T-0     | 19701 | 0757-0440   | 1  |
| R41         | fxd, film 464K, 1%, 1/8W         | 1  | MF4C, T-0     | 19701 | 0698-3260   | 1  |
| R42         | fxd, comp 1.5K, 5%, 1/4W         | 1  | CB-1525       | 01121 | 0683-1525   | 1  |
| R43         | fxd, comp 7.5K, 1%, 1/8W         | 2  |               | 1     | 0757-0440   | 1  |
| R44         | fxd, film 10K, 1%, 1/8W          | 2  | MF4C, T-0     | 19701 | 0757-0442   | 1  |
| R45         | fxd, film 825, 1%, 1/8W          | 1  | MF4C, T-0     | 19701 | 0757-0421   | 1  |
| R46         | fxd, film 4.64K, 1%, 1/8W        | 2  | MF4C, T-0     | 19701 | 0698-3155   | 1  |
| R47         | fxd, comp 1K, 5%, 1/4W           |    | CB-1025       | 01121 | 0683-1025   |    |
| R48 ,       | fxd, film 4.53K, 1%, 1/8W        |    |               |       | 0698-4443   |    |
| R49         | fxd, film 3.65K, 1%, 1/8W        | 1  | MF4C, T-0     | 19701 | 0757-0434   | 1  |
| R50         | fxd, comp 20K, 5%, 1/4W          | 3  | CB-2035       | 01121 | 0683-2035   | 1  |
| R51         | fxd, comp 15K, 5%, 1/4W          | 1  | CB-1535       | 01121 | 0683-1535   | 1  |
| R52         | fxd, comp 1K, 5%, 1/4W           |    | CB-1025       | 01121 | 0683-1025   |    |
| R53         | fxd, comp 20K, 1%, 1/8W          |    |               | 01121 | 0757-0449   |    |
| R54         | fxd, comp <b>10K, 1%, 1/8W</b>   | 1  |               | 01121 | 0757-0442   | 1  |
| R55         | fxd, comp 10, 5%, 1/4W           | 1  | CB-1005       | 01121 | 0683-1005   | 1  |
| R56         | fxd, comp 100, 5%, 1W            | 1  | GB-1015       | 01121 | 0689-1015   | 1  |
| R57         | fxd, film 5.11K, 1%, 1/8W        | 3  | MF4C, T-0     | 19701 | 0757-0438   | 1  |
| R58         | fxd, comp 680, 5%, 1/4W          |    | CB-6815       | 01121 | 0683-6815   |    |
| R59         | fxd, film 5.11K, 1%, 1/8W        |    | MF4C, T-0     | 19701 | 0757-0438   |    |
| R60         | fxd, film 21.5K, 1%, 1/8W        |    | MF4C, T-0     | 19701 | 0757-0199   |    |
| R61         | fxd, film 1.21K, 1%, 1/8W        | 1  | MF4C, T-0     | 19701 | 0757-0274   | 1  |
| R62         |                                  |    |               |       |             |    |
| 62605M, 05L | fxd, comp 27, 5%, 1/4W           | 1  | CB-2705       | 01121 | 0683-2705   | 1  |
| 62615M      | fxd, film 12.1, 1%, 1/8W         | 1  |               |       | 0757-0379   | 1  |
| R63         | fxd, comp 750, 5%, 1/4W          | 1  | CB-7515       | 01121 | 0683-7515   | 1  |
| R64         | fxd, film 3.92K, 0.5%, 1/8W      |    | MF4C, T-0     | 19701 | 0698-3327   |    |
| R65         | fxd, film 8.25K, 1%, 1/8W        |    | MF4C, T-0     | 19701 | 0757-0441   |    |
| R66         |                                  |    |               |       |             |    |
| 62605M, 05L | fxd, film 24.3K, 1%, 1/8W        | 1  | MF4C, T-0     | 19701 | 0757-0451   | 1  |
| 62615M      | fxd, film 56.2K, 1%, 1/8W        | 1  | MF4C, T-0     | 19701 | 0757-0459   | 1  |
| R67         | fxd, film 3.92K, 0.5%, 1/8W      |    | MF4C, T-0     | 19701 | 0698-3327   |    |
| R68         | fxd, comp 20K, 5%, 1/4W          |    | CB-2035       | 01121 | 0683-2035   |    |
| R69         | fxd, comp 680, 5%, 1/4W          |    | CB-6815       | 01121 | 0683-6815   |    |
| R70         | fxd, film 5.11K, 1%, 1/8W        |    | MF4C, T-0     | 19701 | 0757-0438   |    |
| R71         | fxd, film 1K, 1%, 1/8W           |    | CEA T-0       | 07716 | 0757-0280   | 1  |
| R72         | fxd, film 118K, 1%, 1/8W         | 1  | MF4C, T-0     | 19701 | 0698-3265   | 1  |
| R73, 74     | fxd, comp 51, 5%, 1/4W           | 1  | CB-5105       | 01121 | 0683-5105   | 1  |

Table 6-4. Replaceable Parts

| REF.        |                                          |    |                  | MFR.  |                    |     |
|-------------|------------------------------------------|----|------------------|-------|--------------------|-----|
| DESIG.      | DESCRIPTION                              | TQ | MFR. PART NO.    | CODE  | HP PART NO.        | RS  |
| R75         | fxd, comp 10K, 5%, 1/4W                  |    | CB-1035          | 01121 | 0683-1035          |     |
| R76         | fxd, comp 4.3K, 5%, 1/4W                 | 1  | CB-4325          | 01121 | 0683-4325          | 1   |
| R77         | fxd, comp 680, 5%, 1/4W                  |    | CB-6815          | 01121 | 0683-6815          | '   |
| R78         | fxd, comp 5.1K, 5%, 1/4W                 |    | CB-5125          | 01121 | 0683-5125          |     |
| R79         | fxd, comp 10, 1%, 1/8W                   |    | CEA T-0          |       |                    |     |
| R80, 81     | Not Assigned                             |    | CEA 1-0          | 07716 | 0757-0346          |     |
| R82         | •                                        |    | CD 7505          | 01101 | 0000 7505          |     |
| R83         | fxd, comp 7.5K, 5%, 1/4W<br>Not Assigned |    | CB-7525          | 01121 | 0683-7525          |     |
|             | •                                        |    | 00.0045          | 04404 | 2222 2245          |     |
| R84         | fxd, comp 390, 5%, 1/4W                  |    | CB-3915          | 01121 | 0683-3915          | 1   |
| R85         | fxd, film 23K, 1%, 1/8W                  | 1  | MF4C, T-0        | 19701 | 0698-3269          | 1   |
| R86         | fxd, film 10K, 1%, 1/8W                  |    | MF4C, T-0        | 19701 | 0757-0442          |     |
| R87         | fxd, comp 390, 5%, 1/4W                  |    | CB-3915          | 01121 | 0683-3915          |     |
| R88         | fxd, 47, 5%, 1/4W                        | 1  | CB-4705          | 01121 | 0683-4705          | 1   |
| R89         | fxd, comp 90.9K, 1%, 1/8W                | 1  |                  |       | 0757-0464          |     |
| T1          | Bias Transformer                         | 1  |                  | 28480 | 62605-80094        | 1   |
| T2          | Pulse Transformer                        | 1  |                  | 28480 | 5080-1785          | 1   |
| U1          | Linear voltage regulator IC              | 1  | SL22310          | 07263 | 1826-0049          | 1   |
| U2          | Dual D flip-flop IC                      | 1  | DM74L74N         | 27014 | 1820-0596          | 1   |
| U3          | Quad 2-input NAND IC                     | 1  | SD12955          | 27014 | 1820-0583          | 1   |
| U4          | Not Assigned                             |    |                  |       |                    |     |
| U5          | Transistor Array IC                      | 1  | CA3046           | 02735 | 1821-0001          | 1   |
| U6          | quad. comparator                         | 1  | MC 3302P         | 04956 | 1826-0241          | 1   |
| VR1         | diode, zener 7.32V 2%                    | 2  | CD35668          | 15818 | 1902-0045          | 2   |
| VR2         | diode, zener 4.99V 2%                    | 1  | CD35620          | 15818 | 1902-3092          | 1   |
| VR3         | diode, zener 7.32V 2%                    | '  | CD35668          | 15818 | 1902-0045          | '   |
| VR4, 5      | diode, zener 6.19V 2%                    | 2  | 000000           | 04713 | 1902-3114          | 2   |
|             | A2 Filter Board                          |    |                  | 04713 | 1302-3114          | -   |
| C1, 2       |                                          |    |                  |       |                    |     |
| 62605M, 15M | fxd, elect 3300μF, 125V                  | 2  | 049518           | 56289 | 0180-0 <b>5</b> 88 | 1   |
| 62605L      | fxd, elect 2000μF, 200V                  | 2  |                  |       | 0180-0653          | 1   |
| C3, 4       | ·                                        |    |                  |       |                    |     |
| 62605M, 15M | fxd, elect 320μF, 200V                   | 2  | 601D632          | 56289 | 0180-0590          | 1   |
| 62605L      | fxd, elect 32µF, 200V                    | 2  |                  |       |                    | 1   |
| C5A, B      | fxd, cer 7200pF, (dual), 250V            | 1  | 41C407-CDH       | 56289 | 0160-3611          | 1   |
| L1A, B      | inductor, 20µH                           | 2  |                  | 28480 | 5080-1787          | 1   |
| R1-4        | fxd, met oxide, 7.5K, 5%, 2W             | 4  | RG42             | 11502 | 0764-0002          | 1   |
|             |                                          |    |                  |       | 0.0.002            |     |
|             | A5 Tunnel Assembly Includes              |    |                  |       |                    |     |
|             | 115V Cooling Fan, B1                     |    |                  | 28480 | 5060-2653          | 1   |
|             | A5A3 Driver Board                        |    |                  |       | '                  |     |
| C1          | fxd, cer .01μF, 100V                     | 5  |                  | 91418 | 0150-0093          | 1   |
| C2          | fxd, elect 47µF, 25V                     | 1  | 476H025CC5B      | 56289 | 0180-0587          | 1 1 |
| C3          | fxd, cer .01μF, 100V                     | '  |                  | 91418 | 0150-093           | '   |
| C4, 5       | fxd, cer .02μF, 100V                     | 2  |                  | 31410 | 0160-0818          | 2   |
| C6          | fxd, cer .01µF, 100V                     | _  |                  | 91418 | 0150-0093          | -   |
| C7          | fxd, elect 4.7μF, 35V                    | 1  | 15004757002502   |       |                    | ,   |
| C8, 9       |                                          | 1  | 150D475X9035B2   | 56289 | 0180-0100          | 1   |
|             | fxd, cer 2.2µF, 25V                      | 2  | 5C15C2-CML       | 56289 | 0160-0128          |     |
| C10-12      | fxd, cer .01µF, 1KV                      | 4  | C023A102J103MS38 | 56289 | 0150-0012          | 1 1 |
| C13, 14     | fxd, cer 5000pF, 1KV                     | 2  | C023B102G502ZS31 | 56289 | 0160-0899          | 1   |
| C15, 16     | fxd, cer 470pF, 1KV                      | 2  | DD-471           | 71590 | 0160-2496          |     |
| C17, 18     | fxd, cer .22μF, 50V                      | 2  | 5C52B-CML        | 56289 | 0160-0263          | 1   |

Table 6-4. Replaceable Parts

| REF.        |                             |     |               | MFR.   |             |     |
|-------------|-----------------------------|-----|---------------|--------|-------------|-----|
| DESIG.      | DESCRIPTION                 | TQ  | MFR. PART NO. | CODE   | HP PART NO. | RS  |
| C19         | fxd, cer .01μF, 1KV         |     | 5C15C2-CML    | 56289  | 0150-0012   |     |
| CR1         | diode, stabistor            | 2   | 00,002 02     | 28480  | 1901-0701   | 2   |
| CR2         | Not Assigned                | -   |               | 20100  | 1001 0701   | _   |
| CR3         | diode, switching 80V, 200mA | 3   | 1N4148        | 07263  | 1901-0050   | 3   |
| CR4         | diode, rectifier 200V, 1A   | 4   | 1N5059        | 03508  | 1901-0327   | 2   |
| CR5         | diode, stabistor            | -   | 1110000       | 28480  | 1901-0701   | ۷   |
| CR6         | Not Assigned                |     |               | 20100  | 1001 0701   |     |
| CR7         | diode, switching 80V, 200mA | ļ   | 1N4148        | 07263  | 1901-0050   |     |
| CR8         | diode, rectifier 200V, 1A   |     | 1N5059        | 03508  | 1901-0327   |     |
| CR9, 10     | ,                           |     |               | 0000   | 1.001.0027  |     |
| 62605M, 15M | diode, rectifier 400V, 1.5A | 2   | SR1846-12     | 04713  | 1901-0418   | 2   |
| 62605L      | diode, rectifier 200V, 1A   | 2   | 1N5059        | 03508  | 1901-0327   | 2   |
| CR11-14     | diode, rectifier 400V, 1A   | 4   | 1N4936        | 04713  | 1901-1065   | 2   |
| CR15, 16    | Not Assigned                | '   |               | 0.7.10 | 1.001.1000  |     |
| CR17, 18    | <b>J</b>                    | ł   |               |        |             |     |
| 62605M, 15M | diode, rectifier, 400V, 3A  | 2   | MR854         | 28480  | 1901-0719   | 2   |
| 62605L      | diode, rectifier, 400V, 1A  | 2   | 1N4936        | 28480  | 1901-1065   | _   |
| L1          | inductor, 2mH               | 1   |               | 28480  | 5080-1788   | 1 1 |
| L2          | inductor, 15μH              | 1   |               | 28480  | 62605-80099 | 1   |
| P1          | Connector, PC edge 30-pin   | 1   | 252-15-30-300 | 71785  | 1251-2035   | 1   |
| Ω1, 2       | S. S. NPN Si                | 2   | 2N3417        | 03508  | 1854-0087   | 2   |
| Q3, 4       | 0.017                       | -   | 2110-117      | 03300  | 1004 0007   | _   |
| 62605M, 15M | Power NPN Si                | 2   |               | 28480  | 1854-0672   | 2   |
| 62605L      | Power NPN Si                | 2   | MJE-182       | 04713  | 1854-0585   | 2   |
| Q5, 6       |                             | -   | WIDE TOZ      | 04713  | 1034-0303   |     |
| 62605M, 15M | Power NPN Si                | 2   |               | 28480  | 1854-0673   | 2   |
| 62605L      |                             | 2   |               | 20100  | 1004 0070   | _   |
| R1          | fxd, comp 3K, 5%, 1/4W      | 2   | CB-3025       | 01121  | 0683-3025   | 1   |
| R2, 3       | fxd, comp 10K, 5%, 1/4W     | 2   | CB-1035       | 01121  | 0683-1035   | 1   |
| R4          | fxd, comp 10, 5%, 1/4W      | 4   | CB-1005       | 01121  | 0683-1005   | 1   |
| R5          | fxd, comp 3K, 5%, 1/4W      |     | CB-3025       | 01121  | 0683-3025   | '   |
| R6, 7       | 2, 233, 233, 233            |     | 05 0020       | 01121  | 0000 0020   |     |
| 62605M, 15M | fxd, ww 250, 5%, 5W         | 2   | 243E          | 56289  | 0811-1856   | 1   |
| 62605L      | fxd, ww 300, 5%, 5W         | 2   | 243E          | 56289  | 0811-1215   | 1   |
| R8          | fxd, comp 10, 5%, 1/4W      | ] _ | CB-1005       | 01121  | 0683-1005   | Ċ   |
| R9          | fxd, comp 4.7, 5%, 1/4W     | 2   | CB-0475       | 01121  | 0683-0475   | 1   |
| R10         |                             | l - |               |        |             |     |
| 62605M, 15M | fxd, 1.25, 1%, 4W           | 2   |               |        | 0811-2556   | 1   |
| 62605L      | fxd, 1.5, 5%, 3W            | 2   |               |        | 0811-1220   | 1   |
| R11         | fxd, comp 4.7, 5%, 1/4W     |     | CB-0475       | 01121  | 0683-0475   |     |
| R12         |                             |     |               |        |             |     |
| 62605M, 15M | fxd, 1.25, 1%, 4W           |     |               |        | 0811-2556   |     |
| 62605L      | fxd, 1.5, 5%, 3W            |     |               |        | 0811-1220   |     |
| R13         | fxd, ww, 22, 5%, 2W         | 1   | 243E          | 56289  | 0698-3609   | 1   |
| R14, 15     | fxd, comp 150, 5%, 1/4W     | 2   | CB-1515       | 01121  | 0683-1515   | 1   |
| R16         | Not Assigned                |     |               | = 1    |             |     |
| R17         | -                           |     |               |        |             |     |
| 62605M, 15M | fxd, ww, 25, 5%, 10W        | 1   | 247E          | 56289  | 0698-3609   | 1   |
| 62605L      | Not Used                    |     |               |        |             |     |
| R18         | Not Assigned                |     |               |        |             |     |
| L           |                             |     |               |        |             |     |

Table 6-4. Replaceable Parts

| REF.<br>DESIG.                                           | DESCRIPTION                                                                                                         | тΩ                    | MFR. PART NO.                                    | MFR.<br>CODE                     | HP PART NO.                                                   | RS                    |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------|----------------------------------|---------------------------------------------------------------|-----------------------|
| R19<br>62605M, 15M<br>62605L<br>T1<br>TS1<br>62605M, 15M | Not Used fxd, comp 3.3, 5%, 1/2W Driver Transformer Thermal Switch (closes 200 ±6°F, Opens 140 ±5°F)                | 1<br>1<br>1           | 430-1062                                         | 28480<br>80089                   | 0686-0335<br>5080-1789<br>3103-0038                           | 1                     |
| 04.0                                                     | A5A4 Output Power Assembly                                                                                          |                       |                                                  |                                  |                                                               |                       |
| C1, 2<br>62605M<br>62605L<br>62615M<br>C5                | fxd, elect 40,000μF, 7.5V<br>fxd, elect 21,000μF, 7.5V<br>fxd, elect 15,000μF, 20V<br>fxd, cer 2.2μF, 25V           | 2<br>2<br>2<br>1      | 60 <b>2</b> D462                                 | 56289<br>56289                   | 0180-0589<br>0160-0128                                        | 1<br>1<br>1           |
| C6<br>CR1, 2                                             | fxd, cer .05μF, 400V                                                                                                | 1                     | 33C17A3-CDH                                      | 56289                            | 0150-0052                                                     | 1                     |
| 62605M<br>62605L<br>62615M                               | Schottky, rectifier 30V, 55A<br>Schottky, rectifier<br>Diode, rectifier 40A, 100V                                   | 2<br>2<br>2           | ·                                                | 28480                            | 1901-1082<br>5080-1844                                        |                       |
| L1<br>62605M<br>62605L<br>62615M<br>L2                   | inductor, 4μΗ<br>inductor, 8μΗ<br>inductor, 15μΗ                                                                    | 1<br>1<br>1           |                                                  | 28480<br>28480<br>28480          | 62605-80097<br>62605-80104<br>62615-80095                     | 1<br>1<br>1           |
| 62605M, 05L<br>62615M<br>L3                              | inductor, 2μΗ<br>inductor, 4μΗ                                                                                      | 1<br>1                |                                                  | 28480<br>28480                   | 62605-80098<br>5080-1840                                      | 1<br>1                |
| 62605M, 05L<br>62615M                                    | inductor, 270μΗ<br>inductor, 1000μΗ                                                                                 | 1<br>1                | 2500-00                                          | 99800                            | 9100-1642<br>9100-1798                                        | 1                     |
| R1<br>62605M, 05L<br>62615M<br>R2                        | fxd, ww, 5, 5%, 10W<br>fxd, ww, 35, 5%, 10W                                                                         | 1<br>1                | 247E                                             | 56289                            | 0811-1893<br>0811-1900                                        | 1                     |
| 62605M<br>62605L, 15M<br>R3                              | fxd, .00075 ohms<br>fxd, .0017 ohms                                                                                 | 1<br>1                |                                                  | 28480<br>28480                   | 62605-80002<br>62605-80003                                    | 1                     |
| 62605M, 05L<br>62615M<br>T1                              | fxd, comp 43, 5%, 1/2W<br>fxd, comp 620, 5%, 1/2W                                                                   | 1<br>1                | EB-4305<br>EB-6215                               | 01121<br>01121                   | 0686-4305<br>0686-6215                                        | 1                     |
| 62605M, 05L<br>62615M<br>TS1<br>(62605L)                 | Power Transformer Power Transformer Thermal Switch (closes 200 ±6° F, Opens 140 ±5° F)                              | 1<br>1<br>1           | 430-1062                                         | 28480<br>28480<br>80089          | 62605-80096<br>62615-80094<br>3103-0038                       | 1<br>1<br>1           |
| 04.5                                                     | A5A6 Regulator Overcurrent Board                                                                                    |                       |                                                  |                                  |                                                               |                       |
| C1, 2<br>62605M, 05L<br>62615M<br>C3<br>CR1- ,4<br>Q1    | fxd, cer 0.1µF, 50V<br>fxd, cer .01µF, 1KV<br>fxd, cer 5,000pF, 1KV<br>diode, rectifier, 80V, 200mA<br>S. S. NPN Si | 2<br>2<br>1<br>4<br>1 | 5C50B1-CML<br>C023B102G502ZS<br>1N4148<br>2N3417 | 56289<br>56289<br>07263<br>03508 | 0150-0121<br>0150-0012<br>0160-0899<br>1901-0050<br>1854-0087 | 1<br>1<br>1<br>4<br>1 |

Table 6-4. Replaceable Parts

| REF.<br>DESIG.                                          | DESCRIPTION                                                                                                                                                                                                                                                               | TQ                                             | MFR. PART NO.                  | MFR.                                                                                            | HP PART NO.                                                                                                                                                  | RS                    |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| R1, 2<br>62605M, 05L<br>62615M                          | fxd, comp 1.8, 5%, 1/2W<br>fxd, comp 13, 5%, 1/2W                                                                                                                                                                                                                         | 2 2                                            | CEA T-0<br>EB-1305             | 07716<br>01121                                                                                  | 0698-6254<br>0686-1305                                                                                                                                       | 1<br>1                |
| R3<br>62605M, 15M<br>62605L<br>R4<br>R5<br>T1<br>VR1    | fxd, film 100, 1%, 1/8W<br>fxd, film 162, 1%, 1/8W<br>fxd, comp 200, 5%, 1/4W<br>fxd, comp 2.7K, 5%, 1/4W<br>Transformer, overcurrent<br>diode, zener 6.19V 2%                                                                                                            | 1<br>1<br>1<br>1<br>1                          | CEA, T-0<br>CB-2015<br>CB-2725 | 07716<br>01121<br>01121<br>28480<br>04713                                                       | 0757-0401<br>0757-0405<br>0683-2015<br>0683-2725<br>5080-1805<br>1902-3114                                                                                   | 1<br>1<br>1<br>1<br>1 |
| CR1<br>F1<br>62605M, 15M<br>62605L<br>L1<br>62605M, 15M | Chassis Electrical<br>triac, 15A<br>fuse, 15A, 250V<br>fuse, 10A, 250V<br>inductor, 1.75mH                                                                                                                                                                                | 1<br>1<br>1                                    | 314015                         | 28480<br>75915<br>28480                                                                         | 1884-0243<br>2110-0054<br>2110-0051<br>62605-80095                                                                                                           | 1<br>5<br>5           |
| 62605L<br>U1                                            | inductor, 4mH<br>diode, assembly                                                                                                                                                                                                                                          | 1<br>1                                         | SDA 10254-5                    | 28480<br>04713                                                                                  | 62605-80106<br>1906-0018                                                                                                                                     | 1<br>1                |
|                                                         | A1 Mechanical Terminal block Heat Dissipator, TO5 (A1Q5)                                                                                                                                                                                                                  | 1<br>1                                         | 206206<br>207-CB               | 0082M<br>05820                                                                                  | 0360-0590<br>1205-0206                                                                                                                                       |                       |
|                                                         | A3 Mechanical Transistor Heat Sink (Q5, 6) 62605M, 15M Transistor Pin Socket (Q5, 6) Transistor Insulator, plastic (Q5, 6) Mica Insulator (Q5, 6) Transistor Pin Insulator (CR9, 10) Transistor Heat Sink (Q5, 6) 62605L Transistor Pin Socket (Q5, 6)                    | 1<br>4<br>2<br>2<br>2<br>2                     | IERC LAT 03 B3CB               | 28480<br>28480<br>28480<br>28480<br>28480<br>28480<br>28480                                     | 5020-2501<br>1251-2913<br>0340-0503<br>0340-0174<br>0340-0167<br>1205-0267<br>1251-2913                                                                      |                       |
|                                                         | A4 Mechanical Positive Output Bus (A4 Chassis) Bracket (rear C1 and C2) Mounting Strap (T1 and L1) Standoff 1.875 in. Standoff 1.000 in. Negative Output Bus Terminal Strip (3-lug) Lug Assembly (A4C6) Rectifier Heat Sink (S) 62605M, 15M 62605L 62605L Grommet .375 OD | 1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1 | 332-14-03-010<br>SB-375-4      | 28480<br>28480<br>28480<br>28480<br>28480<br>71785<br>28480<br>28480<br>28480<br>28480<br>28520 | 5000-3081<br>5000-3083<br>5000-3082<br>0380-0572<br>0380-0173<br>5000-3080<br>0360-0364<br>5060-2641<br>5020-2293<br>62605-20005<br>62605-20006<br>0400-0064 |                       |

Table 6-4. Replaceable Parts

| REF.<br>DESIG.                                                                   | DESCRIPTION                                                                                                                                                                                                       | ΤΩ                              | MFR. PART NO.  | MFR.                                                                 | HP PART NO.                                                                                                                                 | RS                    |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                                  | Insulator (between output buses)<br>Insulator (under A3)<br>Shoulder Washer .375 OD .15 ID<br>Output Terminal Insulator (molded<br>plastic)                                                                       | 1<br>1<br>3                     |                | 28480<br>28480<br>28480<br>28480                                     | 5000-3095<br>5000-3079<br>2190-0490<br>0340-0549                                                                                            |                       |
|                                                                                  | Miscellaneous Chassis Side Cover ID Plate Bracket Capacitor Clamp (A2C1, C2) Fuse Holder (F1) Terminal Block Cover, Plastic Identification Label 62605M 62615M 62605L Packing Carton Floater Pad, Packing Carton  | 1<br>2<br>1<br>1<br>1<br>1<br>1 | 342014         | 28480<br>28480<br>28480<br>28480<br>75915<br>28480<br>28480<br>28480 | 5000-3074<br>5020-2292<br>5000-3075<br>5000-3077<br>1400-0084<br>0360-0551<br>7120-4232<br>7120-4903<br>7120-4893<br>9211-0615<br>9220-1409 |                       |
| F1<br>62605M, 15M<br>62605L<br>L1<br>62605M, 15M<br>62605L<br>A1T1<br>A2W1<br>A5 | Option 106 187-250Vac Input  fuse 8A, 250V fuse 6A, 250V  Inductor, 5.25mH Inductor, 9.3mH Bias Transformer Remove jumper Tunnel Assy. (complete with 230V cooling fan) Identification Label 62605M 62615M 62605L | 1 1 1 1 1 1                     | ABC-8<br>MTH-6 | 71400<br>71400<br>28480<br>28480<br>28480<br>28480                   | 2110-0342<br>2110-0056<br>62605-80100<br>62605-80108<br>5080-1803<br>5060-2662<br>7120-4357<br>7120-4902<br>7120-4892                       | 5<br>5<br>1<br>1<br>1 |

## SECTION VII CIRCUIT DIAGRAMS AND COMPONENT LOCATION DIAGRAMS

This section contains the circuit diagrams necessary for the operation and maintenance of this power supply. Included are:

- a. Component location diagrams (Figures 7-1 through 7-6), showing the physical location and reference designators of parts mounted on the printed circuit boards and chassis.
- b. Circuit waveforms (Figure 7-7), showing the waveforms found at key points in the circuits. These waveforms are used in conjunction with the troubleshooting procedures of Section V.
- c. Schematic diagram (Figure 7-8), illustrating the circuitry for the entire power supply. Test points are identified by encircled numbers.

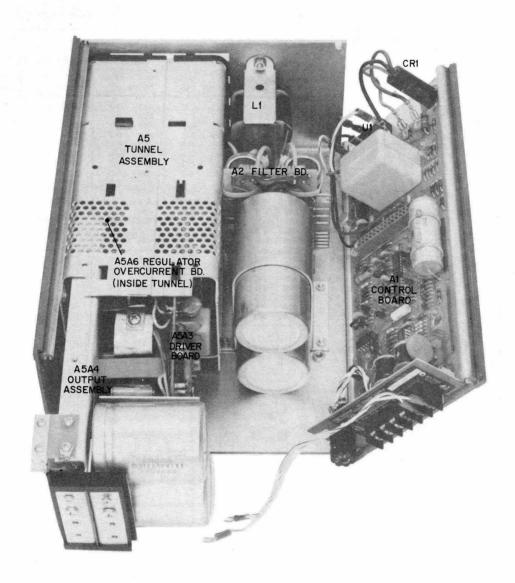
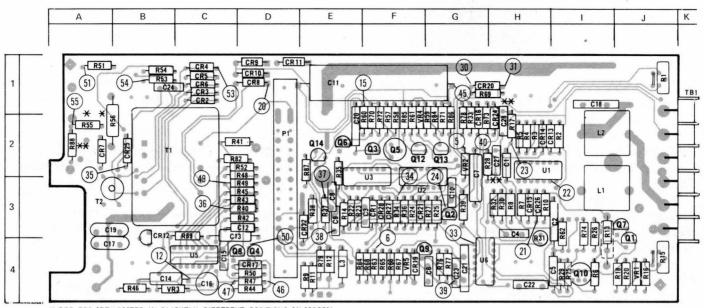
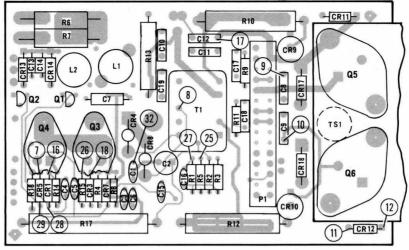




Figure 7-1. Overall View, Subassembly Location




\* R55, R56 ARE LOCATED IN SLIGHTLY DIFFERENT POSITIONS ON 62605M
\*\* C27, C28, R88 ARE NOT USED ON 62605M

| REF<br>DESIG | GRID<br>LOC | REF<br>DESIG | GRID |
|--------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|------|
| C1           | H-2         | C24          | B-1         | CR22         | E-3         | R1           | J-1         | R26          | 1-3         | R49          | D-3         | R72          | F-2         | VR1          | J-4  |
| C2           | 1-3         | C27          | H-2         | CR24         | H-2         | R2           | 1-2         | R27          | G-3         | R50          | D-4         | R73          | G-2         | VR2          | G-2  |
| C3           | F-3         | C28          | H-2         | CR25         | B-2         | R3           | H-2         | R28          | G-2         | R51          | A-1         | R74          | 1-3         | VR3          | B-4  |
| C4           | H-3         | CR1          | F-3         | CR26         | H-3         | R4           | H-2         | R29          | 1-4         | R52          | D-2         | R75          | 1-4         | VR4          | F-2  |
| C5           | 1-4         | CR2          | C-1         | CR27         | F-3         | R5           | H-2         | R30          | H-3         | R53          | B-1         | R76          | G-4         | VR5          | F-4  |
| C6           | G-4         | CR3          | C-1         | CR28         | F-3         | R6           | 1-4         | R31          | H-3         | R54          | B-1         | R77          | G-4         |              |      |
| C7           | G-2         | CR4          | C-1         | L1           | 1-3         | R7           | H-3         | R32          | H-3         | R55          | A-2         | <b>R78</b>   | G-2         |              |      |
| C8           | E-3         | CR5          | C-1         | L2           | 1-2         | R8           | H-3         | R33          | G-2         | R56          | A-2         | R79          | E-4         |              |      |
| C9           | E-3         | CR6          | C-1         | L3           | E-4         | R9           | E-4         | R34          | F-3         | R57          | F-2         | R82          | C-2         |              |      |
| C10          | G-3         | CR7          | A-2         | P1           | D-2         | R10          | H-3         | R35          | E-2         | R58          | F-2         | R84          | G-2         |              |      |
| C11          | E-1         | CR8          | D-1         | Q1           | J-3         | R11          | E-4         | R36          | F-3         | R59          | G-2         | R85          | F-2         |              |      |
| C12          | D-3         | CR9          | D-1         | Q2           | G-3         | R12          | E-4         | R37          | E-3         | R60          | F-2         | R86          | G-2         |              |      |
| C13          | C-3         | CR10         | D-1         | Q3           | F-2         | R13          | 1-3         | R38          | E-3         | R61          | F-2         | R87          | E-2         |              |      |
| C14          | B-4         | CR11         | D-1         | Q4           | D-4         | R14          | E-3         | R39          | G-3         | R62          | 1-3         | R88          | A-2         |              |      |
| C15          | C-4         | CR12         | B-3         | Q5           | F-2         | R15          | J-4         | R40          | D-3         | R63          | F-4         | R89          | C-3         |              |      |
| C16          | C-4         | CR13         | H-2         | Q6           | E-2         | R16          | J-4         | R41          | C-2         | R64          | E-4         | T1           | B-2         |              |      |
| C17          | A-4         | CR14         | H-2         | Q7           | J-3         | R17          | H-2         | R42          | D-3         | R65          | F-4         | T2           | A-3         |              |      |
| C18          | 1-1         | CR15         | H-3         | Q8           | C-4         | R18          | J-4         | R43          | D-3         | R66          | F-4         | TB1          | K-2         |              |      |
| C19          | A-3         | CR16         | G-2         | Q9           | F-4         | R20          | J-4         | R44          | D-4         | R67          | F-4         | U1           | H-2         |              |      |
| C20          | E-2         | CR17         | D-4         | Q10          | 1-4         | R22          | E-3         | R45          | D-3         | R68          | F-4         | U2           | F-2         |              |      |
| C21          | G-4         | CR19         | F-4         | Q12          | F-2         | R23          | E-3         | R46          | B-4         | R69          | G-1         | U3           | F-3         |              |      |
| C22          | H-4         | CR20         | G-1         | Q13          | G-2         | R24          | F-3         | R47          | D-4         | R70          | F-2         | U5           | C-4         |              |      |
| C23          | G-4         | CR21         | F-3         | Q14          | E-2         | R25          | G-3         | R48          | D-2         | R71          | G-2         | U6           | G-4         |              |      |

Figure 7-2. Main Control Board (A1), Component Location



Figure 7-3. Filter Board (A2), Component Location



62605M, 62615M

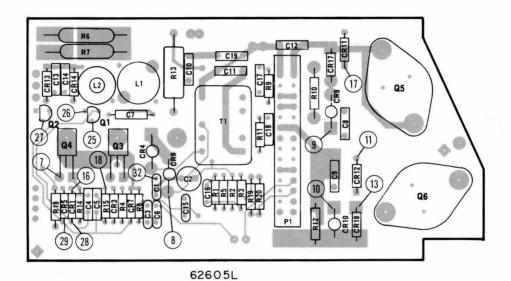



Figure 7-4. Driver Board (A5A3), Component Location

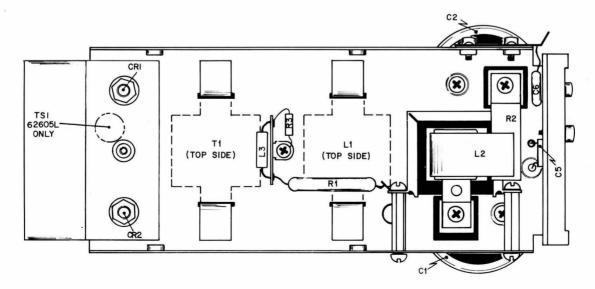
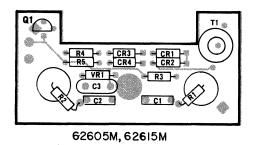




Figure 7-5. Output Power Assy. (A5A4), Component Location



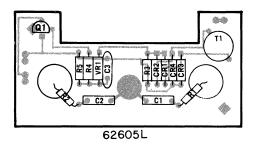



Figure 7-6. Regulator Overcurrent Bd. (A5A6), Component Location

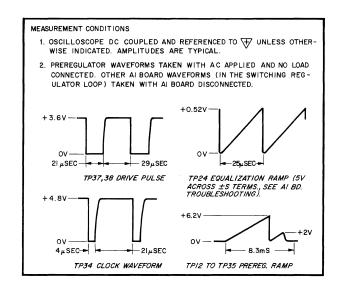



Figure 7-7. Circuit Waveforms

| SCHEMATI | C TABLE                    |                            |                      |           |             |             |                     |                   |                   |                     |                    |                   |                    |                     |               |             |                 |                    |                   |                   |                 |              |      |        |                 |        |                    |            |                  |                   |             |        |
|----------|----------------------------|----------------------------|----------------------|-----------|-------------|-------------|---------------------|-------------------|-------------------|---------------------|--------------------|-------------------|--------------------|---------------------|---------------|-------------|-----------------|--------------------|-------------------|-------------------|-----------------|--------------|------|--------|-----------------|--------|--------------------|------------|------------------|-------------------|-------------|--------|
|          |                            |                            | SCHEMATIC COMPONENTS |           |             |             |                     |                   |                   |                     |                    |                   |                    |                     |               |             |                 |                    |                   |                   |                 |              |      |        |                 |        |                    |            |                  |                   |             |        |
|          |                            |                            |                      |           |             |             |                     | ΑI                |                   |                     |                    |                   |                    |                     | А             | 2           |                 | 4                  | 43                |                   |                 |              |      | A5A4   |                 |        |                    |            | A5A6             |                   | CHAS        | SIS    |
| MODEL    | OUTPUT<br>VOLTAGE<br>(VDC) | OUTPUT<br>CURRENT<br>(ADC) | СІ                   | C2        | C27         | C28         | R3                  | R6                | R9                | RII                 | RI6                | R26               | R62                | R66                 | CI<br>C2      | C3<br>C4    | R6<br>R7        | RIO<br>RI2         | RI7               | RI9               | CS<br>CI        | LI           | L2   | L3     | RI              | R2     | R3                 | C1<br>C2   | RI<br>R2         | R3                | FI          | LI     |
| 62605M   | 5±0.25                     | 100                        | 1.8                  | 10        | NOT<br>USED | NOT<br>USED | 3.92K<br>0.5%       | 100               | 10K<br>5%         |                     | 1.5K<br>1%<br>1/8W |                   |                    | 24.3K               | 3300<br>125V  | 320<br>200V | 250<br>5%<br>5W | 1.25<br>1%<br>1/4W | 25<br>5%<br>I/2W  | NOT<br>USED       | 40,000<br>7.5V  | 4µН          | 2 11 | 270µH  | 5<br>5%         | 0.75mΩ | 43<br>5%           | 0.1        | 1.8<br>5%        | 100<br>1%<br>1/8W | 15A<br>250V | 1.75mH |
| 62605L   | 5±0.25                     | 60                         | 20V                  | 25∨       | 0,1         | .05         |                     |                   | 1/4W              | 1%<br>1/8W          | 1.62K              | 5%<br>I/4W        | 5%<br>1/4W         | 1%<br>1/8W          | 2000<br>200V  | 32<br>200V  | 300<br>5%<br>5W | 1.5<br>5%<br>3W    | NOT<br>USED       | 3.3<br>5%<br>I/2W | 21,000<br>7.5 V | 8 <b>µ</b> H | ΖДП  | 270µH  | ióm             | I.7mΩ  | 1/2W               | 50V        | 1/2W             | 162<br>1%<br>1/8W | 10A<br>250V | 4mH    |
| 62615M   | 15±0.75                    | 40                         | 1<br>35∨             | 22<br>15V | 50V         | 400V        | 1.78K<br>1%<br>1/8W | 390<br>5%<br>I/4W | 30K<br>5%<br>I/4W | 6.8IK<br>1%<br>I/8W | 1/8W               | 200<br>5%<br>I/4W | 12.1<br>1%<br>1/8W | 56.2K<br>1%<br>1/8W | 3300<br>125 V | 320<br>200V | 250<br>5%<br>5W | 1.25<br>1%<br>4 W  | 25<br>5%<br>1/2 W | NOT<br>USED       | 15,000<br>20V   | 15µH         | 4μH  | 1000µН | 35<br>5%<br>IOW |        | 620<br>5%<br>I/2 W | .OI<br>IKV | 13<br>5%<br>1/2W | 100<br>1%<br>1/8W | 15A<br>250V | 1.75mH |


- SCHEMATIC NOTES

  1. \* DENOTES CHASSIS MOUNTED COMPONENTS.
- 2. ALL RESISTORS IN OHMS, ±5%, I/4W UNLESS OTHERWISE INDICATED.
- 3. ALL CAPACITORS IN MICROFARADS, UNLESS OTHERWISE INDICATED.
- 4. JUMPER AZWI IS CONNECTED WITH A IZOVAC INPUT RECTIFIER-FILTER IS CONFIGURED AS A VOLTAGE DOUBLER. WITH A 187-250VAC INPUT (OPTION 106 UNITS), AZWI IS REMOVED RESULTING IN A CONVENTIONAL BRIDGE RECTIFIER CONFIGURATION. (ADDITIONAL CHANGES ARE REQUIRED FOR OPTION 106 UNITS - REFER TO SECTION II).
- 5. TEST POINT VOLTAGES MEASURED UNDER THE FOLLOWING CONDITIONS
  - A. HP 427A OR EQUIVALENT.
- B IZOVAC INPUT.
  C VOLTAGES REFERENCED TO \$\infty\$ OR \$\infty\$, AS INDICATED.
  D. READINGS ARE TYPICAL ±10%.
  E. ALL READINGS TAKEN IN CONSTANT VOLTAGE OPERATION.

- 6. PIN LOCATIONS FOR SEMICONDUCTORS ARE SHOWN BELOW



7. PIN LOCATIONS FOR INTEGRATED CIRCUITS ARE SHOWN BELOW:



- 8. THE SQUARE PLATED PADS ON ALL P.C. BOARDS INDICATE ONE OF THE FOLLOWING:
- A. PIN 1 OF AN I.C. OR TRANSFORMER.
  B. POSITIVE END OF A POLARIZED CAPACITOR.
  C. CATHODE OF A DIODE OR EMITTER OF A TRANSISTOR.

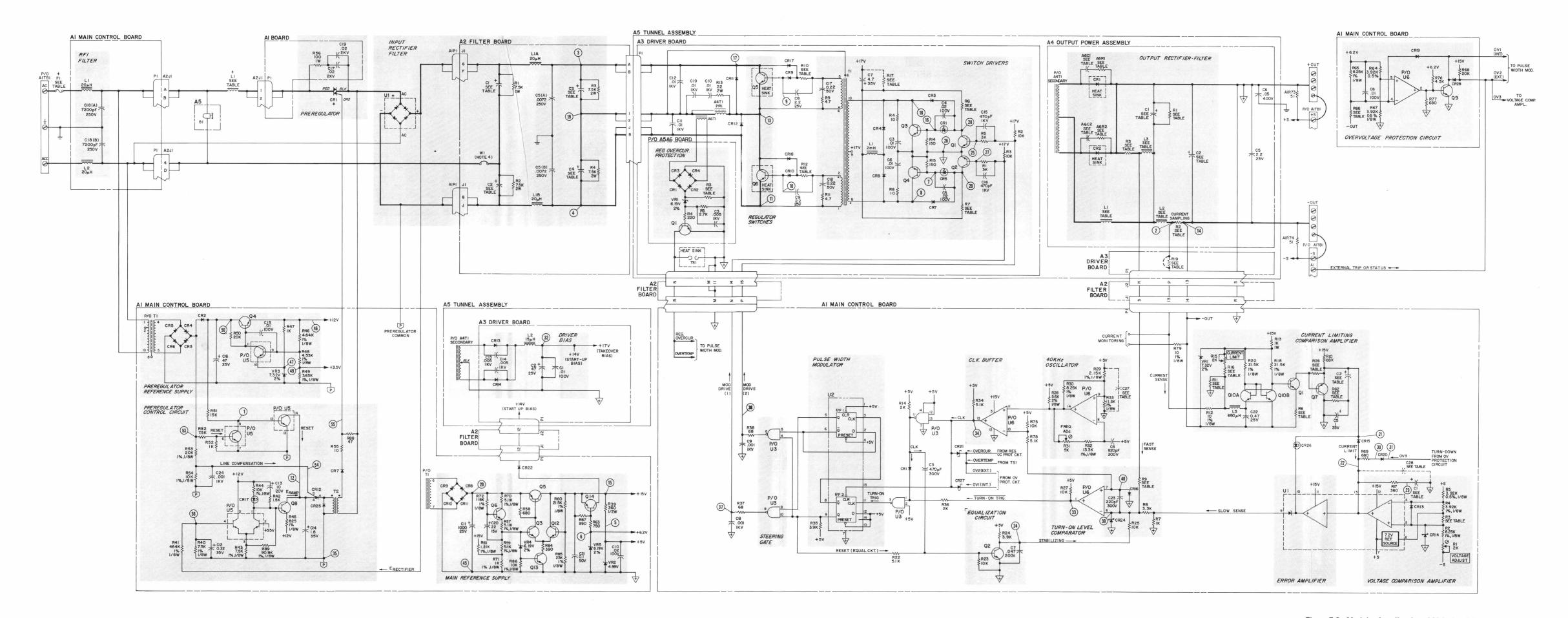



Figure 7-8. Modular Supplies, L and M Series, Schematic Diagram

## POWER SUPPLY MODIFICATION Convert Model 62605M to 62605M-P31

#### PURPOSE:

To provide current limit adjustment range of 50% to 100% of the 100A maximum rated output current.

## FACTORY MODIFICATIONS:

- 1. Change A1R11 to 2.61k 1%, 1/8W, HP Part No. 0698-0085.
- Change A1R13 to 820Ω, 5%, 1/2W, HP Part No. 0686-8215.
   Change A1R15 to 10k pot., 10%, HP Part No. 2100-3274.
- 4. Change A1R16 to 1.21k, 1%, 1/8W, HP Part No. 0757-0274.

#### MANUAL CHANGES

## Models 62605L, 62605M, and 62615M Modular Power Supplies

Manual HP Part No. 5950-1756

Make all corrections in the manual according to errata below, then check the following table for your power supply serial number and enter any listed change(s) in the manual.

|        | 5                      | Serial                                       | Make                            |
|--------|------------------------|----------------------------------------------|---------------------------------|
| Model  | Prefix                 | Number                                       | Changes                         |
|        |                        |                                              |                                 |
| 62605L | 1531A                  | 00121-00140                                  | 1                               |
|        | 1541A                  | 00141-00206                                  | 1, 2                            |
|        | 1633A                  | 00207-00259                                  | 1, 2, 6                         |
|        | 1648A                  | 00260-00563                                  | 1, 2, 6, 8                      |
|        | 1724A                  | 00564-00877                                  | 1, 2, 6, 8, 10                  |
|        | 1740A                  | 00878-01094                                  | 1,2,6,8,10,11                   |
|        | <b>1749</b> A<br>1811A | 01095-01 <b>32</b> 9<br>01330- <b>0</b> 1429 | 1,2,6,8,10-12<br>1,2,6,7,10-13  |
|        | 1821A                  | 01430- <b>01</b> 579                         | 1.2,6,7,10-15                   |
|        | 1830A                  | 01580-01879                                  | 1,2,6,7,10-15                   |
|        |                        |                                              | 17                              |
|        | 1841A                  | 01880-01929                                  | 1,2,6,7,10-15<br>17,19          |
|        | 1845A                  | 01930-02679                                  | 1,2,6,7,10-15<br>17-19          |
|        | 1919A                  | 02680-02874                                  | 1,2,6,7,10-15<br>17-20          |
|        | 1931A                  | 02875-03914                                  | 1,2,6,7,10-15<br>17-21          |
|        | 2017A                  | 03915-04094                                  | 1,2,6,7,10-15,<br>17-21,23      |
|        | 2023A                  | 04095-04309                                  | 1,2,6,7,10-15,<br>17-21, 23, 24 |
|        | 2029A                  | 04310 up                                     | 1,2,6,9,10-15,<br>17-21,23-25   |
| 62605M | 1 <b>5</b> 30A         | 00372-00471                                  | 1                               |
|        | 1539A                  | 00472-00521                                  | 1, 2                            |
|        | 1543A                  | 00522-00661                                  | 1, 2, 3                         |
|        | 1550A                  | 00662-00711                                  | 1-4                             |
| 1      | 1604A                  | 00712-01211                                  | 1-5                             |
|        | 1633A                  | 01212-01513                                  | 1-6                             |
|        | 1639A                  | 01514-01644                                  | 1-7                             |
|        | 1648A                  | 01645-02438                                  | 1-8                             |
|        | 1724A                  | 02439-03395                                  | 1-8, 10                         |
|        | 1746A                  | 03396-04095                                  | 1-8,10-12                       |
|        | 1808A                  | 0409604665                                   | 1-8,10,12,13                    |
|        | 1828A                  | 04766-04805                                  | 1-8,10-14,16                    |
|        | 1828A                  | 04806-0 <b>5</b> 455                         | 1-8,10-14,16,                   |
|        | 1840A                  | 05456-06354                                  | 17<br>1-8,10-14,<br>16-18       |
|        | 1923A                  | 06355-06824                                  | 1-8,10-14,<br>16-18,20          |
|        | 1930A                  | 06825-07124                                  | 1-8,10-14,<br>16-18,20,21       |
|        | 1937A                  | 07125-08474                                  | 1-8,10-14,<br>16-18,20,21       |
|        | 2013A                  | 08475-09009                                  | 1-8,10-14,<br>16-18,20-22       |
|        | 2018A                  | 09010-09409                                  | 1-8, 10-14,                     |
|        | 2029A                  | 09410-09559                                  | 16-18, 20-23<br>1-8,10-14,      |
|        |                        |                                              | 16-18, 20-23,25                 |
|        | 2033A                  | 09560-up                                     | 1-8, 10-14, 16-18,              |
| L      | l                      |                                              | 20-23, 25,26                    |

|          | S             | Serial      | Make                              |
|----------|---------------|-------------|-----------------------------------|
| Model    | Prefix        | Number      | Changes                           |
| 62615M   | 1528A         | 00121-00190 | 1                                 |
| 02013111 | 1543A         | 00191-00230 | 1, 2, 4                           |
|          | 1544A         | 00231-00236 | 1, 2, 4, 5                        |
|          | 1633A         | 00237-00244 | 1, 2, 4-6                         |
|          | 1648A         | 00245-00252 | 1, 2, 4-6, 8                      |
|          | 1712A         | 00253-00326 | 1, 2, 4-6, 8, 9                   |
|          | 1726A         | 00327-00365 | 1, 2, 4-6, 8-10                   |
|          | 1742A         | 00366-00395 | 1,2 4,6,8-10-12                   |
|          | 1808A         | 00396-00415 | 1,2,4,6 8,10                      |
|          | , 555.        |             | 12.13                             |
| İ        | 1816A         | 00416-00430 | 1,2,4,6,8,10-                     |
|          |               |             | 12,13,14                          |
|          | 1825A         | 00431-00460 | 1,2,4,6,8,                        |
|          | 1836A         | 00461-00528 | 10-15,17<br>1,2,4,6,8,            |
|          | 10007         | 00101 00020 | 10-15,17,18                       |
| İ        | 1922 <i>F</i> | 00529-00563 | 1,2,4,6,8                         |
|          |               | 00504.00040 | 10-15,17,18,20                    |
|          | 1938A         | 00564-00613 | 1,2,4,6,8,10-15                   |
|          | 20254         | 00014 00000 | 17,18,20,21                       |
|          | 2025A         | 00614-00628 | 1,2,4,6,8,10-15,                  |
|          | 2029A         | 00629-up    | 17,18,20,21,23                    |
|          |               |             | 1,2,4,6 8 10-15<br>17 18 20 21 23 |
| <u></u>  |               |             | 25                                |

#### ERRATA:

Make the following changes to the parts list and to the Figure 7-8 schematic or the schematic table:

Change the part number of A1C10 to 0160-0818.

Add the following part numbers:

A2C3, C4 in the 62605L is 0180-2601.

A5A4C1, C2 in the 62605L is 0180-2600.

A5A4C1, C2 in the 62615M is 0180-2605.

For the Models 62605M and 62615M, change the part number of A5A3R17 to 0811-1899.

Under Miscellaneous on Page 6-12, change the chassis part number to 5000-3111.

Add this note to the top of Table 5-2:

NOTE: One silicon junction drop.equals about 0.7 volts ac.

#### CHANGE 1:

Add to the parts list under A1 Mechanical, IC socket 14-contact, part number 1200-0508, quantity 5, (for U1, U2, U3, U5, and U6).

Make the following schematic and parts list changes to the Model 62605L only. On Driver Board Assembly A5A3: Change R19 to 4.7 ohms, 0698-0001. Change C7 to  $0.47\mu$ F 0180-0376. Change R6 and R7 to 250 ohms, 0811-1856.

Manual Changes/Models 62605L, 62605M, and 62615M Manual HP Part No. 5950-1756 Page -2

#### CHANGE 2:

The serial prefix of the Model 62615M has been changed to 1543A.

In the parts list and in the component table accompanying the schematic, change A1R16 in the Model 62605L to  $1.5k\Omega$  1%, 1/8W, HP Part No. 0757-0427.

In Table 1-1, change the load transient recovery specification for the Model 62605M to 750µsec.

#### CHANGE 3:

In Model 62605M, change capacitors A2C3 and A2C4 on the  $\blacktriangleright$  filter board to 45 $\mu$ F, 150V, HP Part No. 0180-2627.

#### CHANGE 4:

In the parts list and on schematic, make the following changes: Under A5A4 Output Power Assembly: Change L2 in the Model 62605M to  $1.1\mu H$ , HP Part No. 62605-80109.

Under A1 Main Control Board, for Models 62605L and 62605M: Change C2 to  $22\mu F$ , 15V, HP Part No. 0180-0228. Change R6 to  $390\Omega$ , 5%, 1/4W, HP Part No. 0683-3915. Designate that R11, 1.6k, 1%, 1/8W, (HP Part No. 0757-0428), is selected for optimum performance.

Change R26 to  $200\Omega$ , 5%, 1/4W, HP Part No. 0683-2015. Change R62 to 12.1 $\Omega$ , 1%, 1/8W, HP Part No. 0757-0379. Under A5A6 Regulator Overcurrent Board for Models 62605M and 62615M: Add capacitor C4, 220pF, 500V, HP Part No. 0150-0111. Connect C4 from the collector to the emitter of A5A6Q1.

#### CHANGE 5:

Change the serial prefix for Model 62605M to 1604A. In Model 62615M, change capacitors A2C3 and A2C4 on the filter board to  $45\mu F$ , 200V, HP Part No. 0180-2627.

#### ERRATA:

In paragraphs 4-50 and 4-51, change the reference designator of the comparator from "A1U5" to "A1U6".

In parts list, under A5A4 Output Power Assembly, HP Part No. of CR1 and CR2 in Model 62605L should read 1901-0748.

In Table 5-1, correct the description of the recommended current sampling resistor for the Model 62605M to read "Model 06713, 50mV @ 100A".

Make this addition to note 3 following Table 5-2: "These Schottky diodes will normally exhibit a certain amount of reverse leakage. This is not cause for replacement".

#### CHANGE 6:

On page 6-5 of the parts list and the Figure 7-8 schematic, delete capacitors A1C8 and A1C9.

#### CHANGE 7:

Under A5A4 on page 6-10, change the HP Part No. of CR1 and CR2 for the Model 62605M to 1901-0727.

#### CHANGE 8:

The value of A5A6R3 on the A5A6 Regulator Overcurrent Protection Board has been changed to improve operation of the peak current limit circuit. In the Models 62605M and 62615M, A5A6R3 is 90.9 ohms, 1%, 1/8W, HP Part No. 0757-0400. In the Model 62605L, A5A6R3 is 150 ohms, 1%, 1/8W, HP Part No. 0757-0284. In the Model 62605L only, A3R19 has been changed back to its original value of 3.3 ohms, 5%, 1/2W, HP Part No. 0686-0335 to optimize the range of CURRENT LIMIT control A1R15. Make these changes to pages 6-11 and 6-10 of the parts list and to the table accompanying the Figure 7-8 schematic diagram.

#### ERRATA:

Delete from the parts list the five 14-contact IC sockets added to the A1 Board by Change 1.

Add this caution notice to the outline diagram on page 2-1:

#### CAUTION

The length of the 10-32 screws that mount these supplies must not exceed the thickness of the mounting surface by more than 3/8 of an inch. Longer screws can short the supply internally.

#### CHANGE 9:

In the schematic table for Fig. 7-8 and on page 6-11 of the parts list, change the value of snubber resistors A5A6R1 and A5A6R2 in the Model 62615M only to 3.9 ohms, 5%, 1/2W, HP Part No. 0698-5139.

In Table 1-1, change the ripple and noise specification for the Model 62615M only to read: Less than 15mV rms and 85mV p-p (20Hz to 20MHz).

#### **ERRATA:**

On page 6-9, add the part number for transistors A5A3Q5 and Q6 in the Model 62605L, which is 1854-0710.

On page 6-12, change the part number of the packing carton floater pad to 9220-1418 and the quantity to two.

#### CHANGE 10:

Make the following changes to pages 6-5 through 6-8 of the parts list and to the Figure 7-8 schematic. Change 10 affects the A1 board of all L- and M-Series models.

A1R73, 74: Change these sensing protection resistors (near output terminals on schematic) to 51 ohms, 5%, 1/2W, HP Part No. 0686-5105.

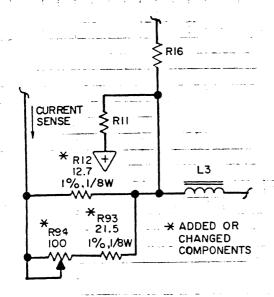
A1C25: Add C25 (0.01 $\mu$ F, 0150-0093) to the voltage comparison amplifier circuit. This capacitor is connected between pins 7 and 12 of U1.

A1P1: Change the part number to 1251-2035.

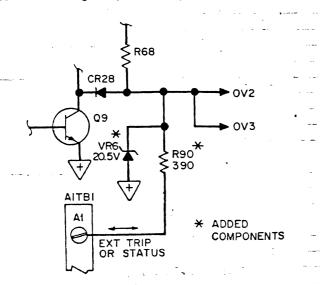
Manual Changes/Models 62605L, 62605M, and 62615M Manual HP Part No. 5950-1756 Page — 3 —

\_CHANGE 10 (Continued)

A1R92: Add R92 (4.7 ohms, 5%, 1/4W, HP Part No. 0683-0475) to the voltage comparison amplifier circuit. R92 is connected in series with the negative terminal of A1C1.


A1C26: Add C26 (0.05µF, 400V, HP Part No. 0150-0052) to the preregulator control circuit. C26 is connected between TP53 (+ terminal) and preregulator common P.

A1R55: Replace R55 in the preregulator control circuit with a jumper.


A1R12: Change R12 in the CL comparison amplifier to 12.7 ohms, 1%, 1/8W, HP Part No.0698-4356.

A1R93: Add R93 (21.5 ohms, 1%, 1/8W, HP Part No. 0698-3430) to the CL comparison amplifier as shown below.

A1R94: R94 is a 100-ohm trimmer, HP Part No. 2100-3349, and is a factory adjustment used to set the adjustment



Current Limiting Comparison Amplifier Changes (Change 10)



Overvoltage Protection Circuit Changes (Change 10)

range of CURRENT LIMIT adjust R15. Add it to the CL comparison amplifier as shown below.

A1R90: Add R90 (390 ohms, 5%, 1/4W, HP Part No. 0683-3915) to the overvoltage protection circuit as shown below.

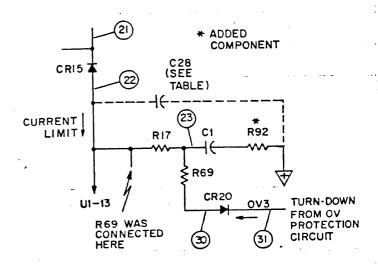
A1VR6: Add zener diode VR6 (20.5V, 5%, 400mW, HP Part No. 1902-0182) to the overvoltage protection circuit as shown below.

A1R69: Resistor-R69 is now connected to TP23 as shown below instead of to TP22.

In addition to the above circuit changes, the A1 circuit board has been modified to allow automated component insertion.

#### CHANGE 11:

The following changes have been made to the A5A3 Driver — Board in the Model 62605L in order to allow the same blank-A5A3 Board to be used in all three L- and M-Series models:


Delete the two heatsinks for A5A3Q5 and Q6 (two HP Part No. 1205-0267) and replace them with a single cast aluminum heatsink (5020-2501). Add two transistor insulators (0340-0503) for Q5 and Q6, and relocate thermal switch TS1 from the A5A4CR1 and CR2 heatsink to the new Q5/Q6 heatsink. Also on the A5A3 Board in the 62605L, change the part number for CR9 and CR10 to 1901-0418, and change R19 to 4.7 ohms, 5%, 1/4W, HP Part No. 0683-0475.

In the A5A4 Output Power Assembly of the Model 62605L, delete the two heatsinks for A5A4CR1 and CR2 (62605-20005 and 62605-20006) and replace them with a single heatsink, HP Part No. 5020-2293.

Add capacitor C4 to the A5A6 Regulator Overcurrent Board in the Model 62605L. A5A6C4 is a 220pF, 500V, disc capacitor, HP Part No. 0150-0111, and is connected between the emitter and collector of A5A6Q1.

#### CHANGE 12:

On page 6-11 of the parts list under Chassis Electrical, \_\_\_ change the HP Part No. of triac CR1 to 1884-0269.



| Manual Changes/Models 62605L, 62605M, and 62615M<br>Manual HP Part No. 5950-1756                                             |                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page - 4 -                                                                                                                   | CHANGE 19:                                                                                                                                                          |
| CHANGE 13:                                                                                                                   | Change the part number of Schottky diodes A4CR1 and CR2 to 1901-0851. This new diode is completely inter-                                                           |
| Replace A2C1, C2 capacitor clamp, HP Part No. 5000-                                                                          | changeable with the 1901-0748 used formerly.                                                                                                                        |
| _ 3077 with capacitor clamp HP Part No. 5000-3167. Add 8 inch long polyurethane foam tape, HP Part No. 0460-                 |                                                                                                                                                                     |
| 0105, to underside of new capacitor. Solder lug, HP Part No. 0360-0007 is added to the minus side of capacitor C2.           | CHANGE 20                                                                                                                                                           |
| OHANGE 44.                                                                                                                   | Dual capacitor C18A and B in the input RFI filter                                                                                                                   |
| CHANGE 14:                                                                                                                   | has been changed to two individual 4700pF 250 Vac capacitors designated C18A and C18B. Their HP part                                                                |
| _ Change A1R32 to 16.2k, ±1%, 1/8W, HP Part No. 0757-                                                                        | no. is 0160-4439. Make this change to the Fig. 7-8                                                                                                                  |
|                                                                                                                              | schematic and on page 6-5 of the parts list.                                                                                                                        |
| Change HP Part No. of A1U6 to 1826-0138.                                                                                     | CHANGE 21:                                                                                                                                                          |
| ERRATA:                                                                                                                      | Dual capacitor A2C5 has been replaced by two individual capacitors designated C5 and C6. These are 0.01µF 250Vac                                                    |
| Effective in all models:                                                                                                     | HP part no. 0160-4355. Also on the A2 board, R1 through                                                                                                             |
| Change bridge rectifier (U1 Chassis Electrical) to HP Part                                                                   | R4 have been changed to 7.5k $\Omega$ 3W, HP part no.                                                                                                               |
| No. 1906-0224. Add warning label, 'Warning for continued                                                                     | 0811-1815. The capacitor clamp for A2C1 and C2 (changed by Change                                                                                                   |
| protection against fire hazard ", HP Part No. 7120-4627                                                                      | 13) has been changed to HP part no. 5000-3174. The                                                                                                                  |
| Replace diode CR24 (p. 6-5) with HP Part No. 1901-0841.                                                                      | foam tape used with this clamp has been changed to HP part no. 0460-1027.                                                                                           |
| In model 62605M, change Schottky rectifier to HP Part                                                                        | CHANGE 22:                                                                                                                                                          |
| No. 1901-0851.                                                                                                               | This change does not require a change to the manual.                                                                                                                |
| _ CHANGE 15:                                                                                                                 | CHANGE 23:                                                                                                                                                          |
| In Models 62605L,62615M                                                                                                      | Table CA and by Marilland CA and by Marilland                                                                                                                       |
| HP Part No. 2950-0038 with fuse holder body HP Part                                                                          | In Table 6-4 under Miscellaneous, add C.S.A. (Canadian Standards Association) identification label, HP Part No. 7120-8627. The models 62605L, 62605M, and           |
| No. 2110-0464 and fuse holder cap, HP Part No. 2110-0465. Add hex nut, HP Part No. 2110-0467.                                | 62615M are now C.S.A. certified for "component type custom rectifiers."                                                                                             |
| CHANGE 16:                                                                                                                   | In the Model 62615M only, diodes A5A4CR1 and A5A4CR2 have been changed to HP Part No. 1901-0904. The new part is interchangeable with the old one.                  |
| In Models 62605M:                                                                                                            | CHANGE 24:                                                                                                                                                          |
| Delete fuseholder HP Part No. 1400-0084. Delete nut, HP Part No. 2950-0038. Add fuse holder body, HP                         | In the Model 62605L, A2 Filter Board capacitors<br>C1 and C2 have been changed to HP Part No.                                                                       |
| Part No. 2110-0464. Add fuse cap, HP Part No 2110-0465. Add nut (metallic) HP Part No. 2110-0467.                            | 0180-3058.<br>CHANGE 25.                                                                                                                                            |
| CHANGE 17: ·                                                                                                                 | Change capacitor A5A3C2 to 110µF 300V, HP Part No. 0180-2771.                                                                                                       |
| Delete diode CR16, HP Part No. 1901-0050. Add                                                                                | ►CHANGE 26                                                                                                                                                          |
| resistor R95 in place of the deleted diode. This resistor is fixed composition, 2.2k $\Omega$ , 1/4W, HP Part No. 0683-2225. | This change adds a field-selectable choice of line voltage ranges to the Model 62605M. A front panel slide switch can select an input range of either 104 to 127Vac |

or 187 to 250Vac. The supply is shipped with the switch set to the 187 to 250Vac range. Most of Change 26 affects the A1 Main Control Board Assembly, for which a partial

schematic is provided. Correct the parts list and schematic in the manual to reflect the following component and

wiring changes.

CHANGE 18:

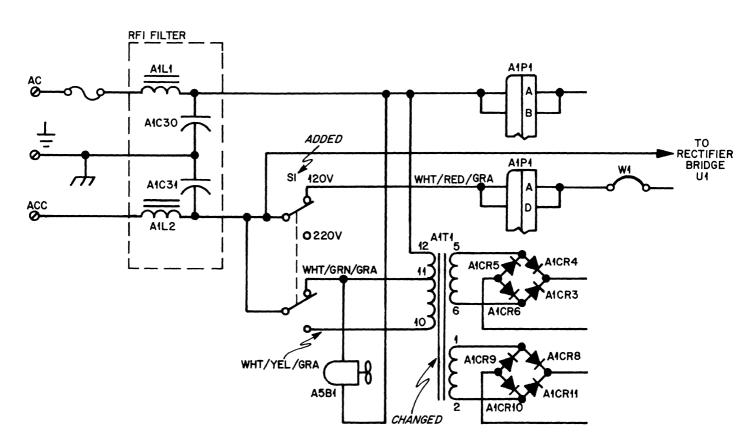
Add resistor R96 to the A1 Control Board. This  $6.8 M\Omega$  5% 1/4W resistor (HP Part No. 0683-6855) is connected from pin 1 to pin 7 of turn-on level comparator U6.

Manual Changes/Models 62605L, 62605M, and 62615M Manual HP Part No. 5950-1756 Page -5-

Add line voltage selector switch A1S1 (HP Part No. 3101-0419), and change bias transformer A1T1 to HP Part No. 5080-1908. The attached figure shows the associated wiring changes. Notice that the terminals of A1T1 have been renumbered and that the wiring to fan A5B1 has been affected. Also shown in the figure are new component designations for the two capacitors formerly designated C18(A) and C18(B). (These were a dual capacitor until Change 20). A1C18(A) is now designated A1C30 and A1C18(B) is now A1C31; both keep the former HP Part No. 0160-4439.

Other changes not shown in the figure include the following: In the preregulator circuit delete A1C19 and change A1C17 to  $0.01\mu F$ , HP Part No. 0160-4065. Also change A1R56 to  $51\Omega$ , 5% 1/2W, HP Part No. 0686-5105.

A1C16 in the preregulator reference supply has been changed to  $47\mu\text{F}$  40V, HP Part No. 0180-2827.


Delete ID plate bracket 5000-3076, and add angle bracket 5000-3147. Also change the cover to HP Part No. 62605-00008.

Due to the elimination of a need for Option 106 for the Model 62605M, paragraphs 1-12 and 2-18, and the Option 106 portion of the parts list no longer apply to this model. The new dual-input-voltage Model 62605M uses the same size fuse in both input ranges as was formerly used in the 104 to 127V range: an HP Part No. 2110-0054 rated at 15A and 250 volts.

Add the following caution notice to the beginning of Section III:

# CAUTION

Do not connect the ac input terminals until you have checked that the line voltage selector switch has been set to the proper range.





#### **SALES & SERVICE OFFICES**

### AFRICA, ASIA, AUSTRALIA

ANGOLA

Telectra
Empresa Técnica de
Equipamentos
Eléctricos, S.A.R.L.
R. Barbosa Rodrigues, 42-1°DT.°
Caixa Postal, 6487
Luanda
Tel: 35515/6
Cable: TELECTRA Luanda

Cable: TELECTRA Luanda

AUSTRALIA

Hewlett-Packard Australia
Pty. Ltd.
31-41 Joseph Street
Blackburn: Victoria 3130
Blackburn: Victoria 3130
Blackburn: Victoria 3109
Tel: 89-6351
Telex: 31-024
Cable: HEWPARD Melbourne
Hewlett-Packard Australia
Pty. Ltd.
31 Bridge Street
Pymble
New South Wales, 2073
Tel: 49-6566
Telex: 21-561
Cable: HEWPARD Sydney
Cable: HEWPARD Sydney
Cable: HEWPARD Sydney

Hewlett-Packard Australia

Hewlett-Packard Australia Pty. Ltd. 153 Greenhill Road Parkside, S.A., 5063 Tel: 272-511 Telex: 82536 Cable: HEWPARD Adelaide Hewlett-Packard Australia

Pty.Ltd. 141 Stirling Highway Nedlands, W.A. 6009 Tel: 86-5455 Telex: 93859 Cable: HEWPARD Perth

Cable: HEWPARD Perth
Hewlett-Packard Australia
Pty. Ltd.
121 Wollongong Street
Fyshwick, A.C.T. 2609
Tel: 95-273
Telex: 62650
Cable: HEWPARD Canberra

Cable: HEWPARD Canberra
Hewlett Packard Australia
Pty. Ltd.
5th Floor
Teachers Union Building
495-499 Boundary Street
Spring Hill. 4000 Queensland
Tel: 229-1544
Cable: HEWPARD Brisbane

GUAM
Medical/Personal Calculators Only
Medical/Personal Calculators Only
Guam Medical Supply, Inc.
Jay Ease Building, Room 210
P. 0. Box 89417
Tamuning 96911
Tel: 646-543
Cable: EARMED Guam

HONG KONG Schmidt & Co.(Hong Kong) Ltd. P.O. Box 297 Connaught Centre, 39th Floor 39th Floor Connaught Road, Central Hong Kong Tel: H-255291-5 Telex: 74766 SCHMC HX Cable: SCHMIDTCO Hong Kong

INDIA Blue Star Ltd. Kasturi Buildii Brue Star Ltd.
Kasturi Buildings
Jamshedji Tata Rd
Bombay 400 020
Tel: 29 50 21
Telex: 011-2156
Cable: BLUEFROST Blue Star Ltd.
Sahas
414/2 Vir Savarkar Marg
Prabhadevi
Bombay 400 025
Tel: 45 78 87
Telex: 011-4093
Cable: FROSTBLUE

Blue Star Ltd. Band Box House Prabhadevi Prabhadevi Bombay 400 025 Tel: 45 73 01 Telex: 011-375! Cable: BLUESTAR

Gable: BLUESTAR
Blue Star Ltd.
7 Hare Street
P.O. Box 506
Calcutta 700 001
Tel: 23-0131
Telex: 021-7655
Cable: BLUESTAR
Blue Star Ltd. Blue Star Ltd.
Bhandari House
7th & 8th Floor
91 Nehru Place
New Deihi 110 024
Tel: 634770 & 635166
Telex: 031-2463
Cable: BLUESTAR

Cable: BLUESTAR
Blue Star Ltd.
Blue Star House
11/11A Magarath Road
Bangalore 560 025
Tel: 55668
Telex: 043-430
Cable: BLUESTAR

Blue Star Ltd.
Meeakshi Mandiram
xxx/16/8 Mahatma Gandhi Rd.
Cochin 682 016
Tel: 32069,32161,32282
Telex: 0885-514
Cable: BLUESTAR

Blue Star Ltd.
1-1-117/1
Sarojini Devi Road
Secunderabad 500 003
Tel: 70126, 70127
Telex: 015-459
Cable: BLUEFROST Cable: BLUEFRUS†
Blue Star Ltd.
2/34 Kodambakkam High Road
Madras 600 034
Tel: 82056
Telex: 041-379
Cable: BLUESTAR

INDONESIA BERCA Indonesia P.T. P.O. Box 496/Jkt. Jln.Abdul Muis 62 Jin. Abdul Muis 62 **Jakarta** Tel: 40369, 49886,49255,356038 Telex: Jkt. 42895 Cable: BERCACON

BERCACON
BERCA Indonesia P.T.
P.O. Box 174/Sby.
23 Jln. Jimerto
Surabaya
Tel: 42027
Cable: BErcacon

ISRAEL
Electronics Engineering Div
of Motorola Israel Ltd.
16. Kremenetski Sireet
P. 0. Box 25016
Tel-Aviv
Tel: 38973
Telex: 33559
Cable: BASTEL Tel-Aviv

JAPAN Yokogawa-Hewlett-Packard Ltd Chuo Bldg., 4th Floor 4-20, Nishinakajima 5-chome Yodogawa-ku, Osaka-shi Osaka,532 Tel: 06-304-6021 Telex: 523-3624 JAPAN

Telex: 523-3624
Yokogawa-Hewlett-Packard Ltd
29-21, Takaido-Higashi 3-chorne
Suginami-ku. **Tokyo** 168
Tel: 03-331-6111
Telex: 232-2024 YHP-Tokyo
Cable: YHPMARKET TOK 23 724 Cable: YHPMARKET TOX 23 724
Yokogawa-Hewlett-Packard Ltd
Nakame Bulding ach
Nakame Bulding ach
Nakame Bulding
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ach
Nakame Sulding ac

Yokogawa-Hewlett-Packard Ltd. Mito Mitsui Building 105, 1-chome, San-no-maru Mito, Ibaragi 310 Tel: 0292-25-7470

Yokogawa-Hewlett-Packard Ltd. Inoue Building 1348-3, Asahi-cho, 1-chome **Atsugi**, Kanagawa 243 Tel: 0462-24-0452

Yokogawa-Hewlett-Packard Ltd. Kumagaya Asahi Hachijuni Building 4th Floor 3-4, Tsukuba

KOREA

Seoul
Tel: (23) 6811, 778-3401/2/3/4
Telex: 2257S
Cable: ELEKSTAR Seoul

MALAYSIA
Teknik Mutu Sdn. Bhd.
No. 2, Lorong 13/6A
Section 13
Petaling Jaya, Selangor
Tel: 54994/54916
Telex: MA 37605 Telex: MA 37605 Protel Engineering P.O. Box (917 Lot 259, Satok Road Kuching, **Sarawak** Tel: 53544 Cable: PROTELENG

MOZAMBIQUE A.N. Goncaives, Ltd. 162, 1° Apt. 14 Av. D. Luis Caixa Postal 107 Maputo
Tel: 27091, 27114
Telex: 6-203 NEGON Mo
Cable: NEGON

Kumagaya, Saitama 360 Tel: 0485-24-6563

KENYA
Technical Engineering
Services(E.A.) Ltd.
P. O. Box 18311
Nairobi
Tel: 55679/556680/557726
Telex: 22629
Cable: PROTON

Cable: PROTON
Medical Only
International Aeradio(E.A.)Ltd.
P.O. Box 19012
Nairobi Airport
Nairobi Airport
Telex: 325015/56
Telex: 32501/22301
Cable: INTAERIO Nairobi

Samsung Electronics Co., Ltd. 15th Floor, Daeyongak Bldg., 25-5, 1-KA Choong Moo-Ro, Chung-Ku,

Norrie and Parumoana Street Portrua Tel: 75-098 Telex: 3859 Analytical/Medical Only Medical Supplies N.Z. Ltd. P. 0 80x 309 239 Stammer Road Christchurch Tel: 992-019 Cable: DENTAL Christchurch Cable: DENTAL Christchurcl Analytical/Medical Only Medical Supplies N.Z., Ltd. 303 Great King Street P.O. Box 233 **Dunedin** Tel: 88-817 Cable: DENTAL Dunedin

NIGERIA The Electronics Instrumentations Ltd. N6B/770 Oyo Road Oluseun House P.M.B. 5402 Ibadan Tel: 61577 Telex: 31231 TEIL Nigeria Cable: THETEIL Ibadan

NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.
4-12 Cruickshank Street
Kolbinie, Wellington 3
Courtiney Place
Wellington
Tel: 877-199
Cable: HEWPACK Wellington
Hewlett-Packard (N.Z.) Ltd.
Pakuranga Professional Centre
267 Pakuranga Highway
Box 51992
Pakuranga

Pakuranga Tel: 569-651 Cable: HEWPACK Auckland

Cable: HEWPACK Auckland
Analytical/Medical Only
Medical Supplies N. Z. Ltd.
Scientific Division
79 Cartton Gore Road, Newmarket
P. 0. Box 1234
Auckland
Tel: 75-289
Cable: DENTAL Auckland

Analytical/Medical Only Medical Supplies N.Z. Ltd. Private Bag Norrie and Parumoana Streets

NEW ZEALAND

The Electronics Instrumenta-tions Ltd. 144 Agege Motor Road, Mushin P.O. Box 6645 Lagos Cable: THETEIL Lagos

PAKISTAN Mushko & Company Ltd. Oosman Chambers Abdullah Haroon Road Karachi-3 Telis 11027, 512927 Telex: 2984 Cable: COOPERATOR Karachi Mushko & Company, Ltd. 38B, Satellite Town Rawalpindi Tel: 41924 Cable: FEMUS Rawalpindi

Cable: FEMUS Rawalpindi
PHILIPPINES
The Online Advanced
Systems Corporation
Rico House
Rose Makati
Legaspi Wilage, Makati
Metro Manila
Tel: 85-35-81, 85-34-91,85-32-21
Telex: 3274 ONLINE

RHODESIA Field Technical Sales 45 Kelvin Road North P.O. Box 3458 Salisbury Tel: 705231 (5 lines) Telex: RH 4l22

SINCAPORE
Hewlett-Packard Singapore
(Pte.) Ltd.
1150 Depot Road
Alexandra P. O. Box 58
Singapore 4
Tel: 270-2355
Telex: HPSG RS 21486
Cabie: HEWPACK, Singapore

Cable: HEWPACK, Singapore
SOUTH AFRICA
Hewlett-Packard South Africa
(Pt). Ltd.
Private Bag Wendywood,
Sandton, Transvail, 2144
Hewlett-Packard Centre
Daphne Street, Wendywood,
Sandton, 2144
Tel: 802-1040/9
Telex: 8-4782

Hewlett-Packard South Africa (PV.), Ltd. P. 0. Box 120 Howard Place, Cape Province, 7450 Pine Park Centre, Forest Drive, PlneBands, Cape Province, 7405 Tel: 53-795 bt 9 Telex: 57-0006

Tellex: 57-UUUb TAIWAN Hewlett-Packard Far East Ltd. Taiwan Branch 39 Chung Hsiao West Road Section 1, 7th Floor Taipei Tel: 3819160-4,3141010,3715121 Ext. 270.270

Ext. 270-279 Cable: HEWPACK TAIPEI Hewlett-Packard Far East Ltd. Taiwan Branch 68-2, Chung Cheng 3rd. Road Kaohsiung Tel: (07) 242318-Kaohsiung

re: (u)/ 2423 6-Addisium)
Analytical Only
San Kwang Instruments Co., Ltd.
20 Yung Sui Road
Taipei
Tel: 3715/I7-4 (5 lines)
Telex: 22894 SANKWANG
Cable: SANKWANG Taipei

TANZANIA
Medical Only
International Aeradio (E.A.), Ltd.
P.O. Box 661
Dar es Salaam
Tel: 21251 Ext. 265
Telex: 41030

THAILAND
UNIMESA Co. Ltd.
Elcom Research Building
2538 Sukumvit Ave.
Bangchak, Bangkok
Tel: 3932387, 3930338
Cable: UNIMESA Bangkok

UGANDA Medical Only International Aeradio(E.A.), Ltd. P.O. Box 2577 Kampala Tel: 54388 Cable: INTAERIO Kampala

ZAMBIA R.J. Tilbury (Zambia) Ltd. P.O. Box 2792 Lusaka Tel: 73793 Cable: ARJAYTEE, Lusaka

OTHER AREAS NOT LISTED, CONTACT: OTHER AREAS NOT LISTE!
Hewlett-Packard intercontinenta
3200 Hillview Ave.
Palo Alto. California 94304
Tel: (415) 856-1501
TWX: 910-373-1267
Cable: HEWPACK Palo Alto
Telex: 034-8300, 034-8493

## **CANADA**

ALBERTA Hewlett-Packard (Canada) Ltd. 11620A - 168th Street Edmonton T5M 3T9 Tel: (403) 452-3670 TWX: 610-831-2431

BRITISH COLUMBIA Hewlett-Packard (Canada) Ltd. 10691 Shellbridge Way Richmond V6X 2W7 Tel: (604) 270-2277 TWX: 610-925-5059 Hewlett-Packard (Canada) Ltd. 210,7220 Fisher St. S.E. Calgary T2H 2H8 Tel: (403) 253-2713 Twx: 6I0-82I-6I4I

MANITOBA Hewlett-Packard (Canada) Ltd 380-550 Century St. Winnipeg R3H OY1 Tel: (204) 786-6701 TWX: 610-671-3531

NOVA SCOTIA Hewlett-Packard (Canada) Ltd. 800 Windmill Road Dartmouth 838 1L1 Tel: (902) 469-7820 TWX: 610-271-4482 HFX

ONTARIO Hewlett-Packard (Canada) Ltd. 1020 Morrison Dr. Ottawa K2H 8K7 Tel: (613) 820-6483 TWX: 610-563-1636 Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive Mississauga L4V 1M8 Tel: (416) 678-9430 TWX: 610-492-4246

QUEBEC Hewlett-Packard (Canada) Ltd. 275 Hymus Blv. Pointe Claire H9R 1G7 Tel: (514) 697-4232 TWX: 610-422-3022 TLX: 05-821521 HPCL

FOR CANADIAN AREAS NOT LISTED:

## CENTRAL AND SOUTH AMERICA

ARGENTINA Hewlett-Packard Argentina Hewlett-Packard Argentina S.A. Leandro N. Alem 822 - 12° 1001 **Buenos Aires** Tel: 31-6063,45,6 Telex: 122443 AR CIGY Cable: HEWPACKARG Biotron S.A.C.I.y M. Bolivar 177 1066 **Buenos Aires** Tel: 30-4846, 34-9356, 34-0460, Telex: 17595

BOLIVIA
Casa Kavlin S.A.
Calle Potosi: 1130
P.O. Box 500
La Paz
Tel: 41530,53221
Telex: CWC EXP 5298,ITT 3560082
Cable: KAVLIN

BRAZIL Hewlett-Packard do Brasil I.e.C. Ltda. Alameda Rio Negro, 750 Alphaville 06400 Barueri SP Tel: 429-3222 Cable: HEWPACK Sao Paulo

Hewlett-Packard do Brasil I.e.C. Ltda. Rua Padre Chagas, 32 90000-Pórto Alegre-RS Tel: (0512) 22-2998, 22-5621 Cable: HEWPACK Potto Alegre Ladie: HEWPACK PORTO Alegre Hewlett-Packard do Brasil I.e.C. Ltda. Rus Siqueira Campos, 53 Copacabana 20000-Rio de Janeiro-RJ Tel: 257-80-94-DDD (021) Telex: 391-212-1905 HEWP-BR Cable: HEWPACK Rio de Janeiro

CHILE
Calcagni y Metcalfe Ltda.
Alameda 580-01. 807
Casilla 2118
Santiago, 1
Telex: 398613
Telex: 3520001 CALMET
Cable: CALMET Santiago

COLOMBIA
Instrumentación
Henrik A. Langebaek & Kier S A
Carrera 7 No. 48-75
Apartado Aéreo 6287
Bogoté, ID. E.
Tel: 69-88-77 Telex: 044-400 Cable: AARIS Bogota Instrumentacion H.A. Langebaek & Kier S.A Apartado Aereo 54098 Apartado Aei Medellin Tel: 304475

Tel: 304475

COSTA RICA
Cientifica Costarricense S A
Avenida 2, Calle 5
San Pedro de Montes de Oca
Apartado 10159
San Jose
Tel: 24-38-20, 24-08-19
Telex: 2367 GALGUR CR
Cable: GALGUR

ECUADOR
Computadoras y Equipos
Electrónicos
FU. Box 6423 CCI
EDV Aflaro No. 1824,3°Piso
Tel: 453 482
Telex: 2548 CYEDE ED
Cable: Sagita-Quito
Medical Only
Hospitalar S. A.
Casilla 3590
Robles 625
Quito
Tel: 545 -250
Cable: Hospitalar-Quito

EL SALVADOR
Instrumentacion y Procesamiento
Electronico de el Salvador
Bulevar de los Heroes 11-48
San Salvador
Tel: 252787

GUATEMALA
IPESA
Avenida Reforma 3-48,
Zona 9
Guatemela City
Tel: 316627,314786,66471-5,ext.9
Telex: 4192 Teletro Gu

MEXICO MEXICO
Hewlett-Packard Mexicana,
S.A. de C.V.
Av. Periférico Sur No. 6501
Tepepan, Xochimilico
Mexico 23, D.F.
Tel: 905-676-4600
Telex: 017-74-507 Hewlett-Packard Mexicana, S.A. de C.V. Ave. Constitución No. 2184 Monterrey, N.L. Tel: 48-71-32, 48-71-84 Telex: 038-410

NICARAGUA Roberto Terán G. Apartado Postal 689 Edificio Terán Managua Tel: 25114, 23412,23454,22400 Cable: ROTERAN Managua

Cable: HOI EHAN Managua
PANAMA
Electrónico Balboa, S.A.
P.O. Box 4929
Calle Samuel Lewis
Cuidad de Panama
Tel: 64-2700
Telex: 3485126 Curundu,
Canal Zone
Cable: ELECTRON Panama

PERU
Compañía Electro Médica S.A.
Los Flamencos 145
San Isidro Casilla 1030
Lima 1
Tel: 41-4325
Telex: Pub. Booth 25424 SISIDRO
Cable: ELMED Lima

VENEZUELA Hewlett-Packard de Venezuela 9.0. Box 50933 Caracas 105 Los Ruices Norte 3a Transversal Edificio Segre Caracas 107 Tel: 35-00-11 (20 lines) Telex. 25-146 HEWPACK Cable: HEWPACK Caracas 107

Cable: ELMED Lima
URIUGUAY
Pablo Ferrando S.
Comercial e Industrial
Avenida Italia 2877
Cassilia de Correo 370
Montevideo
Teli: 40-3102
Teliex: 702 PUBLIC BOOTH PARA
PABLO FERRANDO TELEFONO
Telie: RADIUM Montevideo
Cable: RADIUM Montevideo
Cable: RADIUM Montevideo
Teliex: 024-3830, 034-3483 FOR AREAS NOT LISTED, CONTACT: 8/78

### **EUROPE. NORTH AFRICA AND MIDDLE EAST**

AUSTRIA Hewlett-Packard Ges.m.b.H. Handlelskai 52 P.O. Box 7 A-1205 Vienna Tel: 351620-29 Cable: HEWPAK Vienna Telex: 75923 hewpak a

BEL.GIUM Hewlett-Packard Benelux S.A./N.V. Avenue du Col-Vert, 1, (Groenkraaglaan) B-1170 Brussels Tel: (02) 660 0047,672-2240 Cable: PALOBEN Brussels Telex: 23-494 paloben bru

CYPRUS Kypronics 19 Gregorios Xenopoulos Street P.O. Box 1152 Nicosia Tel: 45628/29 Cable: Kypronics Pandehis Telex: 3018

CZECHOSLOVAKIÁ Institute of Medical Bionics Vyskumny Ustav Lekarskej Bioniky Jedlova 6 CS-88346 Bratislava-Kramare Tel: 4251 Telex: 93229

DDR Entwicklungslabor der TU Dresden Forschungsinstitut Meinsberg DDR-7305 DDR-7305 **Waldhelm/Meinsberg** Tel: 37 667 Telex: 518741 Export Contact AG Zuerich Guenther Forgber Schlegelstrasse 15 1040 Berlin Tel: 42-74-12 Telex: 111889

Telex: 111889

DENMARK
Hewlett-Packard A/S
Datavej 52
DA:3460 Birkerod
Tel: (02) 81 65 40
Cable: HEWPACK AS
Telex: 37409 hpas dk
Hewlett-Packard A/S
Navervej 1
DK-8600 Silkeborg
Tel: (08) 82 71 66
Telex: 37409 hpas dk
Cable: HEWPACK AS

EGYPT I.E.A. I.E.A. international Engineering Associates 24 Hussein Hegazi Street Kasr-el-Alini Caliro
Teli: 23 829 Telex: 20F. Cable: INTENGASSO
Mechanical Carel Amin Mohamed Sami Amin Sami Amin Trading Office 18 Abdel Aziz Gawish Abdine-Cairo Tel: 24932 Cable: SAMITRO CAIRO

FINLAND Hewlett-Packard OY Nahkahousunti 5 P.O. Box 6 SF-00211 Helsinki 21 Tel: (90) 6923031 Cable: HEWPACKOY Helsinki Telex: 12-1563 HEWPA SF

FRANCE
Hewlett-Packard France
Quartier de Courtaboeuf
Boite Postale No. 6
F-91401 Orsay Cedex
Tel: (1) 907 78 25
Cable: HEWPACK Orsay
Telex: 600048 Telex: 600048
Hewlett-Packard France
Bureau de vente de Lyon
"Le Saquin"
Chemin des Mouilles
B.P. 162
F-69130 Ecully Cedex
Tel: (78) 33 81 25,
Cable: HEWPACK Eculy
Telex: 31 06 17

Telex: 31 06 17
Hewlett-Packard France
Bureau de vente de Toulouse
Péricentre de la Cépière
Chemin de la Cépière, 20
F-31300 Toulouse-Le Mirail
Tel:(61) 40 11 12
Cable: HEWPACK 51957
Telex: 510957

Telex: 510957
Hewlett-Packard France
Le Ligoures
Bureau de vente de Marseilles
Place Rouée de Villenueve
F-l3100 Aix-en-Provence
Tel: (42) 59 41 02
Cable: HEWPACK MARGN
Telex: 410770

Hewlett-Packard France Bureau de vente de Rennes 2, Allee de la Bourgnette B.P. 1124 F-35100 Rennes Cédex Tel: (99) 51 42 44 Cable: HEWPACK 74912 Telex: 740912

Telex: 740912

Bureau de vente de Strassbourg

Bureau de vente de Strassbourg

B, rue du Canal de la Marne

F-67300 Schiltigheim

Tel: (88) 83, 88, 10/83, 11,53

Telex: 890141

Cable: HEWPACK STRBG

Hewlett-Packard France

Bureau de vente de Lille

Immeuble Péricentre

Riue van Goolo Rue van Gogh F-59650 **Villeneuve** d Ascq Tel: (20) 91.41.25 Telex: 16.01.24F

Hewlett-Packard France
Bureau de Vanntes
Bureau de Vanntes
Bureau de Vanntes
Batiment Ampére
Rue de la Commune de Paris
B.P. 300
Tel: (01) 931 88 50
Tel: (01) 931 88 50 Hewiett-Packard France Bureau de vente de Bordeau Av. du Pdt. Kennedy F-33700 Meriguac Tel: (56) 97 22 69

GERMAN FEDERAL REPUBLIC
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Berner Strasse 117
Posttach 560 140
Tel: (0611) 50-04-1
Cable: HEWPACKSA Frankfurt
Telex: 04 13249 hpffm d Telex: 04 13249 hptfm d Hewlett-Packard GmbH Technisches Büro Böblingen Herrenberger Strasse 110 D-7030 Böblingen, Württe Tel: (0703) 667-1 Cable: HEWPACK Böblingen Telex: 07265739 bbn Hewlett-Packard GmbH

Telex: 07265739 bbn Hewlett-Packard GmbH Technisches Büro Düsseldorf Emanuel-Leutze-Str.1(Seestern) D-4000 Düsseldorf Tel: (0211) 59711 Telex: 085/86 533 hpdd d

Hewlett-Packard GmbH Technisches Büro Hamburg Wendenstrasse 23 D-2000 Hamburg Tel. (04) 24 13 Cable: HEWPACKSA Hamburg Telex: 21 63 032 hph d Hewlett-Packard GmbH Technisches Büro Hannover Am Grossmarkt 6

Technisches Büro Hann Am Grossmarkt 6 D-3000 Hannover 91 Tel: (0511) 46 60 01 Telex: 092 3259 Telex: 092 3259

Hewlett-Packard GmbH
Technisches Buro Nürnberg
Neumeyerstrasse 90
D-8500Nurnberg
Tel: (0911) 56 30 83
Telex: 0623 860

Hewelt-Packard GmbH Technisches Büro Müncher Eschenstrasse 5 D-8021 Taufkirchen Tel: (089) 6117-1 Hewlett-Packard GmbH Technisches Büro Berlin Kaithstrasse 2-4 D-1000 Berlin 30 Tel: (030) 24 90 86 Telex:018 3405 hpbln d

HUNGARY MTA

MTA Múszerűgy és Méréstechnika Szolgalata Hewlett-Packard Service Lenin Krt. 67, P.O.Box 241 1391 Budapest VI Tel: 42 03 38 Telex: 22 51 14

ICELAND Medical Only
Elding Trading Company
Hafnarnvoli - Tryggvagot
P.O.Box 895
IS-Reykjavik
Tel: 1 58 20/1 63 03
Cable: ELDING Reykjavik ng Company Inc - Tryggvagotu

IRAN Hewlett-Packard Iran Ltd. No. 13, Fourteenth St. Mir Emad Avenue P.O. Box 41/2419

RELAND
Hewlett-Packard Ltd.
King Street Lane
GB-Winnersh, Wokin
Berks, RG11 5AR
Tel: (0734) 78 47 74
Telex: 847178
Cable: Hewpie London

ITALY
Hewlett-Packard Italiana S.p.A.
Via Amerigo Vespucci 2
Casella postale 3645
I-20124 Millano
Tel: (02) 6251 (10 lines)
Cable: HEWPACKIT Milano
Telex: 32046

Hewlett-Packard Italiana S.p.A. Via Pellizzo 9 1-35100 Padova Tel: (049) 66 48 88 Telex: 41612 Hewpacki Telex: 41612 Hewpacki Hewlett-Packard Italiana S.p.A. Via G. Armellini 10 1-00143 Roma Tel: (06) 54 69 61 Telex: 61514 Cable: HEWPACKIT Roma

Hewlett-Packard Italiana S.p.A. Corso Giovanni Lanza 94 I-10133 Torino Tel:(011) 682245/659308 Medical/Calculators Only Hewlett-Packard Italiana S.p.A. Via Principe Nicola 43 G/C I-95126 Catania Tel:(095) 37 05 04

Hewlett-Packard Italiana S.p.A. Via Amerigo Vespucci, 9 I-80142 Napoll Tel: (081) 33 77 11 Telex: 61.51.4 Via Rome Hewlett-Packard Italiana S.p.A. Via E. Masi, 9/8 I-40137 Bologna Tel: (5I) 30 78 87

JORDAN
Mouasher Cousins Co.
P.O. Box 1387
Amman
Tel: 24907/39907
Telex: SABCO JO 1456
Cable: MOUASHERCO

KUWAIT Al-Khaldiya Trading & Contracting P.O. Box 830-Safat Kuwait Tel:42 4910/41 1726 Telex: 2481 Areeg kt Cable: VISCOUNT

LUXEMBURG Hewlett-Packard Benelux S.A./N.V. Avenue du Col-Vert, 1 (Groenkraaglaan) B-1170 Brussels Tel: (02) 672 22 40 Cable: PALOBEN Brussels Telex: 23 494

MOROCCO Dolbeau 81 rue Karatchi Casablanca Tel: 22 41 82/87 Telex: 23051/22833 Cable: MATERIO

Gerep 190 Blvd. Brahim Roudani Casablanca Tel: 25 16 76/25 90 99 Telex: 23 739 Cable: GEREP-CASA

Cogedir 2 Rue d' Agadir, B.P. 156 Casablanca Tel: 27 65 40 Telex: 21 737 Cable: COGEDIR

NETHERLANDS
Hewlett-Packard Benelux N.V.
Van Heuven Goedhartlaan 121
P.O. Box 667
NL-Amstelveen 1134
Tel: (120) 47 20 21
Cable: PALOBEN Amsterdam
Telex: 13 216 hepa nl

NORWAY Hewlett-Packard A/S Osterdalen 18 P.O. Box 34 N-1345 Osteraas Tel: (02) 1711 80 Telex: 16621 hpnas n

Telex: 16621 hpnas n POLAND Biuro Informacji Technic: Hewlett-Packard UI Stawki 2, 6P 00-950 Warszawa Tel: 33.25.88/39.67.43 Telex: 81 24 53 hepa pl Biuro Obsługi Technicznej 01-447 Warszawa ul Newelska 6 Poland

Zakiady Naprawcze Sprzetu Medycznego Plac Komuny Paryskiej 6 90-007 Loddz Tel: 334-41, 337-83 Telex: 886981

PORTUGAL
Telectra-Empresa Técnica de
Equipamentos Eléctricos S.a.r.l.
Rua Rodrigo da Fonseca 103
P.O. Box 2531 P-Lisbon 1 Tel: (19) 68 60 72 Cable: TELECTRA Lisbon Telex: 12598 Medical only Mundinter Intercambio Mundial de Comércio

Intercambio Mundial de Come S.a.r.I. P.O. Box 2761 Avenida Antonio Augusto de Aguiar 138 P - Lisbon Tel: (19) 53 21 31/7 Telex: 16891 munter p Cable: INTERCAMBIO Lisbon

RUMANIA Hewlett-Packard Rep Bd.n. Balcescu 16 Bucuresti Tel: 15 80 23/13 88 85 Telex: 10440

Telex: 10440
I.I.R.U.C.
Intreprinderea Pentru
Intretinerea
Si Repararea Utilajelor de Calcul
B-dul Prof. Dimitrie Pompei 6
Bucuresti-Sectorul 2
Tel: 88-20-70, 88-24-40, 88-67-95
Telex: 118-25

SAUDI ARABIA Modern Electronic Establishment (Head Office) P.O. Box 1228, Baghdadiah Street Jeddah Tel: 27 798 Telex: 40035 Cable: ELECTA JEDDAH Cable: ELECTA JEDDAH
Modern Electronic
Establishment (Branch)
P. O. Box 2728
Riyadh
Tel: 62296/6823
Cable: RAGUFCO
Cable: RAGUFCO
Establishment (Branch)
P. O. Box 2728
Tel: 4478-44813
Tel: 44678-44813
Tel: 44678-44813
Cable: ELECTA AL-KHOBAR
SBAIN

SPAIN Hewlett-Packard Española, S.A. Hewlett-Packard Espanola, S. Calle Jerez 3 E-**Madrid** 3 Tel: (1) 458 26 00 (10 lines) Telex: 23515 hpe

Hewlett-Packard Española, S.A. Milanesado 21-23 E-Barcelona 17 Tel: (3) 203 6200 (5 lines) Telex: 52603 hpbe e

Hewlett-Packard Española, S.A. Av Ramón y Cajal, 1 Edificio Sevilla. planta 9° **Seville** 5 Tel: 64 44 54/58 Hewlett-Packard Española S.A. Edificio Albia II 7º B E-**Bilbao** 1 Tel: 23 83 06/23 82 06

Telex: \$3933 hpag ch
Cable: HPAG Cable: HPAG Cable: HPAG Cable: HPAG Cable: HPAG Cable: HPAG Cable: HPAG Cable: HPAG Cable: HPAG Cable: HPAG Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: HEAVE Cable: SAWAH, DAMASCUS Sudiama Hilal El Mlawi
P. O. Box 2528
Mannoun Blair Street. 5-58
Mannoun Blair Street. 5-58
Telex: 11270
Cable: HLA DAMASCUS
TUNISIA
TUNISIA

TUNISIA
Tunisie Electronique
31 Avenue de la Liberte
Tunis
Tel: 280 144 Corema 1 ter. Av. de Carthage

1 ter. Av. de Carthage
Tunia
Tei: 253 821
Telex: 12319 CABAM TN
TURKEY
TEKNIM Company Ltd.
Riza Sah Pehlevi
Caddesi No. Teadesi No. Teadesi No. Telex: 42155 TKNM TR
Medical only
Medina Eldem Sokak 41/6
Yüksel Caddesi Ankara

Ankara
Tel: 17 56 22
Cable: EMATRADE/Ankara Analytical only Yilmaz Ozyurek Milli Mudafaa Cad 16/6 Kizilay Ankara Tel: 25 03 09 - 17 80 26 Telex: 42576 OZEK TR Cable: OZYUREK ANKARA UNITED ARAB EMIRATES Emitac Ltd. P. O. Box 1641 Sharjah Tel: 24121-3 Telex: 8136 EMITAC SH Cable: EMITAC SHARJAH UNITED KINGDOM
Hewlett-Packard Ltd.
King Street Lane
GB-Winnersh, Wokini
Berks. RG11 5AR
Tel: (0734) 78 47 74
Cable: Hewpie London
Telex:847178/9

Hewlett-Packard Ltd. Trafalgar House Navigation Road Altrincham Cheshire WA14 1NU Tel: (061) 928 6422 Telex: 668068 Telex: 668068
Hewlett-Packard Ltd.
Lygon Court
Hereward Rise
Dudley Road
Halesowen,
West Midlands B62 8SD
Tel: (021) 550 9911
Telex: 339105

Telex: 39105

Hewlett-Packard Ltd.
Wedge House
799, London Road
GB-Thornton Heath
Surrey CR4 6XL
Tel: (01) 684 0103/8
Telex: 945825
Castleford
Yorks WF10 1AE
Tel: (0977) 550016
Telex: 557355

Hewlett-Packard Ltd 1, Wallace Way GB-Hitchin Hertfordshire, SG4 OSE Tel: (0462) 31111 Telex: 82.59.81

Telex: 82, 59, 81
Hewlet-Packard Ltd
2C. Avonbeg Industrial Estate
Long Mile Roda
Dublin 12
Tel: Dublin 514322/514224
Telex: 30439
USSR
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewlet-Packard
Hewle

Iei: 207.59.24
Telex: 7825 hewpak su
YUGOSLAVIA
SIKR-SIANAGATHHEMENT-PACKARD
MIKIOSICEWA 387VII
61000 LJUDIJION
TELEX: 3158 79/32 16 74
TELEX: 31583
SOCIALIST COUNTRIES
NOT SHOWN PLEASE
CHEWIST-SIANAGATHHEMENT SHOWN PLEASE
CHEWIST-SIANAGATHHEMENT SHOWN PLEASE
P. 0. Box 7
A-1205 Vienna, Austria
Tel: (10222) 35 16 21 to 27
Cable: HEWPAK Vienna
MEDITERRANEAN AND
MIDDLE EAST COUNTRIES
NOT SHOWN PLEASE CONTACT:
Hewiett-Packard S.A.
Mediterranean and Middle
East Operations
35. Kolkwitoni Street
GRH-Mitissla-Athens. Greene

GR. Kolokotroni Street Platia Kefallariou GR-Kifissia-**Athens**, Greece Tel: 8080337/359/429 Cable: HEWPACKSA Athens FOR OTHER AREAS NOT LISTED CONTACT

Hewlett-Packard S.A. 7, rue du Bois-du-Lan P.O. Box CH-1217 Meyrin 2 - Geneva Switzerland Tel: (022) 82 70 00 Cable: HEWPACKSA Geneva

## **UNITED STATES**

ALABAMA
P.O. Box 4207
8290 Whitesburg Dr.
Huntsville 35802
Tel: (205) 881-4591
8933 E. Roebuck Blvd
Birmingham 35206
Tel: (205) 836-2203/2

ARIZONA 2336 E. Magnolia St. Phoenix 85034 Tel: (602) 244-1361 2424 East Aragon Rd. Tucson 85706 Tel: (602) 889-4661

\*ARKANSAS

CALIFORNIA 1430 East Orangethorpe Ave. Fullerton 92631 Tel: (714) 870-1000 3939 Lankershim Boulevard North Hollywood 91604 Tel: (213) 877-1282 TWX: 910-499-2671

1 WX: 910-499-26/1 5400 West Rosecrans Blvd. P.O. Box 92105 World Way Postal Center Los Angeles 90009 Tel: (213) 970-7500 TWX: 910-325-6608 \*Los Angeles Tel: (213) 776-7500 3003 Scott Boulevard **Santa Clara** 95050 Tel: (408) 249-7000 TWX: 910-338-0518

\*Ridgecrest Tel: (714) 446-6165 646 W. North Market Blvd Sacramento 95834 Tel: (916) 929-7222 9606 Aero Drive P.O. Box 23333 San Diego 92123 Tel: (714) 279-3200 \*Tarzana Tel: (213) 705-3344

COLORADO 5600 DTC Parkway Englewood 80110 Tel: (303) 771-3455 CONNECTICUT 12 Lunar Drive New Haven 06525 Tel: (203) 389-6551 TWX: 710-465-2029

FLORIDA FLORIDA P.O. Box 24210 2727 N.W. 62nd Street Ft. Lauderdale 33309 Tel: (305) 973-2600 4428 Emerson Street Unit 103 Jacksonville 32207 Tel: (904) 725-6333 P.O. Box 13910 6177 Lake Ellenor Dr. Orlando 32809 Tel: (305) 859-2900 P.O. Box 12826 Suite 5, Bldg. 1 Office Park North Pensacola 32575 Tel: (904) 476-8422

GEORGIA
P. 0. Box 105005
450 Interstate North Parkway
Atlanta 30348
Tel: (404) 935-1500
TWX:810-786-4890
Medical Service Only
"Augusta 30903
Tel: (404) 736-0592 P.O. Box 2103 1172 N. Davis Drive Warner Robins 31098 Tel: (912) 922-0449

HAWAII 2875 So. King Street Honolulu 96826 Tel: (808) 955-4455

ILLINOIS 5201 Tollview Dr. Rolling Meadows 60008 Tel: (312) 255-9800 TWX: 910-687-2260

INDIANA 7301 North Shadeland Ave. Indianapolis46250 Tel: (317)842-1000 TWX: 810-260-1797 IOWA 2415 Heinz Road Iowa City 52240 Tel: (319) 338-9466

KENTUCKY Medical Only 3901 Atkinson Dr. Suite 407 Atkinson Square Louisville 40218 Tel: (502) 456-1573

LOUISIANA P.O. Box 1449 3229-39 Williams Bo Kenner 70063 Tel: (504) 443-6201

MARYLAND 6707 Whitestone Road Baltimore 21207 Tel: (301) 944-5400 TWX: 710-862-9157 2 Choke Cherry Road Rockville 20850 Tel: (301) 948-6370 TWX: 710-828-9684

MASSACHUSETTS 32 Hartwell Ave. **Lexington** 02173 Tel: (617) 861-8960 TWX: 710-326-6904

MICHIGAN 23855 Research Drive Farmington Hills 48024 Tel: (313) 476-6400 724 West Centre Ave Kalamazoo 49002 Tel: (606) 323-8362

MINNESOTA 2400 N. Prior Ave. St. Paul 55113 Tel: (612) 636-0700 MISSISSIPPI 322 N. Mart Plaza Jackson 39206 Tel: (601) 982-9363

MISSOURI 11131 Colorado Ave MISSOURI 11131 Colorado Ave. Kansas City 64137 Tel: (816) 763-8000 TWX: 910-771-2087 1024 Executive Parkway St. Louis 63141 Tel: (314) 878-0200

NEBRASKA Medical Only 7171 Mercy Road Suite II0 Omaha 68106 Tel: (402) 392-0948

NEVADA Las Vegas Tel: (702) 736-6610 NEW JERSEY W. 120 Century Rd. Paramus 07652 Tel: (201) 265-5000 TWX: 710-990-4951 Crystal Brook Professi Building, Route 35 Eatontown 07724 Tel:(201) 542-1384

NEW MEXICO P.O. Box 11634 Station E 11300 Lomas Blvd Albuquerque 87123 Tel: (505) 292-1330 TWX: 910-989-1185 156 Wyatt Drive Las Cruces 88001 Tel: (505) 526-2484 TWX: 910-9983-0550

TWX: 910-9983-0550

NEW YORK
6 Automation Lane
Computer Park
Albany 12205

Tel: (518) 458-1550

TWX: 710-444-4961

650 Perinton Hill Office Park
Fairport 14450

Tel: (716) 223-9950

TWX: 510-253-0092 5858 East Molloy Ro Syracuse 13211 Tel: (315) 455-2486 1 Crossways Park West Woodbury 11797 Tel: (516) 921-0300 TWX: 510-221-2183

NORTH CAROLINA 5605 Roanne Way

OHIO
Medical/Computer Only
Bldg. 300
1313 E. Kemper Rd.
Cincinnati 45426
Tel: (513) 671-7400 16500 Sprague Road Cleveland 44130 Tel: (216) 243-7300 TWX: 810-423-9430 1041 Kingsmill Parkway Columbus 43229 Tel: (614) 436-1041 OKLAHOMA P.O. Box 32008 6301 N. Meridan Avenue Oklahoma City 73112 Tel: (405) 721-0200

4110 S. 100th E. Avenue Grant Bldg. Tulsa 74145

OREGON 17890 SW Lower Boones Ferry Road Tualatin 97062 Tel: (503) 620-3350

PENNSYLVANIA 111 Zeta Drive Pittsburgh 15238 Tel: (412) 782-0400 1021 8th Avenue King of Prussia Industrial Park King of Prussia 19406 Tel: (215) 265-7000 TWX: 510-660-2670

PUERTO RICO
Hewlett-Packard Inter-Americas
Puerto Rico Branch Office
Calle 272.
Edif. 203 Urg. Country Club
Carolina 00924
Tel: (809) 762-7255
Telex: 345 0514

SOUTH CAROLINA P. 0. Box 6442 6941-0 N. Trenholm Road Columbia 29260 Tel: (803) 782-6493 TENNESSEE 8914 Kingston Pike Knoxville 37922 Tel: (615) 523-0522

3027 Vanguard Dr. Director's Plaza **Memphis** 38131 Tel: (901) 346-8370

\*Nashville Medical Service only Tel: (615) 244-5448 TEXAS 4171 North Mesa Suite C110 El Paso 79902 Tel: (915) 533-3555 P.O. Box 1270 201 E. Arapaho Rd. Richardson 75080 Tel: (214) 231-6101 P.O. Box 42816 10535 Harwin Dr. **Houston** 77036 Tel: (713) 776-6400 \*Lubbock Medical Service only Tel: (806) 799-4472 205 Billy Mitchell Road San Antonio 78226 Tel: (512) 434-8241

UTAH 2160 South 3270 West Street Salt Lake City 84119 Tel: (801) 972-4711

VIRGINA P.O. Box 12778 No. 7 Koger Exec. Cente Suite 212 Suite 212 Norfolk 23502 Tet: (804) 461-4025/6 P.O. Box 9669 2914 Hungary Springs Road Richmond 23228 Tel: (804) 285-3431

WASHINGTON
Bellefield Office Pk.
1203-114th Ave. S.E.
Bellevue 98004
Tel: (206) 454-3971
TWX: 910-443-2446

WEST VIRGINIA Medical/Analytical On Charleston Tel: (304) 345-1640

WISCONSIN 9004 West Lincoln Ave West Allis 53227 Tel: (414) 541-0550

FOR U.S. AREAS NOT LISTED: Contact the regional office nearest you. Atlanta. Georgia... North Hollywood, California... Rockville, Maryland...Rolling Meadow Illinois. Their complete addresses are listed above.

\*Service Only

