
• ,

HP][][][] 'NTEPaNAT'ONAl
lJSEPaS IJPaOlJP

1981 BERLIN INTERNATIONAL MEETING
GERMANY, OCTOBER 5-9

PROCEEDINGS

[-::'\....,
\mm/-..".

• ,

HP][][][] 'NTEPaNAT'ONAl
lJSEPaS IJPaOlJP

1981 BERLIN INTERNATIONAL MEETING
GERMANY, OCTOBER 5-9

PROCEEDINGS

[-::'\....,
\mm/-..".

• ,

HP][][][] 'NTEPaNAT'ONAl
lJSEPaS IJPaOlJP

1981 BERLIN INTERNATIONAL MEETING
GERMANY, OCTOBER 5-9

PROCEEDINGS

[-::'\....,
\mm/-..".

PROCEEDINGS OF THE HP3000 INTERNATIONAL USERS GROUP

BERLIN MEETING 1981 OCTOBER 5. - 9.

OCTOBER 5 THRU OCTOBER 9, 1981

TECHNICAL UNIVERSITY BERLIN

BERLIN / WEST - GERMANY

PROCEEDINGS OF THE HP3000 INTERNATIONAL USERS GROUP

BERLIN MEETING 1981 OCTOBER 5. - 9.

OCTOBER 5 THRU OCTOBER 9, 1981

TECHNICAL UNIVERSITY BERLIN

BERLIN / WEST - GERMANY

No. Titel

PROGRAM OF THE 1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

Author(s)

Subject category: Invited Papers

B.O
F.O
C.O

On the Use of Prototyping in Software Development
Softwaretechnology - A Future Requirement or Current Necessity
Some Problems of Software Engineering

Christiane Floyd
H. Blask
Wladyslaw M. Turski

Subject category: Business Applications

0.5
E.5
1.5
J.4

K.5
0.5
U.4

BUdgeting and Profit Planning on the HP3000
IPB: Interactive Planning and BUdgeting
The Use of EDP in the Freight Forwarding and Ships Agency Business
Using IMAGE-3000 to Establish an Order Processing--Finished Goods Inventory
On-Line Database System
A Try to Establish an Off-Line Time-Reporting & Wage Combination System
Data Capture Systems for Real-Time Manufacturing Management
New Directions in Investment Management

Jack Damm
Jens Pallesen
Hardy Jensen, Jorgen Rix
K. B. Sheu

w. G. Hsia
Bruce Toback
Frank Helson, Richard Steck

Subject Category: Data Base Management

~2- .'

.3

T.5

U.2

Data Analysis - The answer to successful implementation of IMAGE
A Comparison of Relational and Network Data Base Management Systems as
Implemented on the HP/3000
Relational Database Concept, Consequences for Organization and
Management-Structures
How to get more from your core memory or CFS/3000: A Core Resident File System

Richard Irwin
Christopher M. Funk, Thomas R. Harborn

Uwe Hinrichs

Pierre Senant

No. Titel

PROGRAM OF THE 1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

Author(s)

Subject category: Invited Papers

B.O
F.O
C.O

On the Use of Prototyping in Software Development
Softwaretechnology - A Future Requirement or Current Necessity
Some Problems of Software Engineering

Christiane Floyd
H. Blask
Wladyslaw M. Turski

Subject category: Business Applications

0.5
E.5
1.5
J.4

K.5
0.5
U.4

BUdgeting and Profit Planning on the HP3000
IPB: Interactive Planning and BUdgeting
The Use of EDP in the Freight Forwarding and Ships Agency Business
Using IMAGE-3000 to Establish an Order Processing--Finished Goods Inventory
On-Line Database System
A Try to Establish an Off-Line Time-Reporting & Wage Combination System
Data Capture Systems for Real-Time Manufacturing Management
New Directions in Investment Management

Jack Damm
Jens Pallesen
Hardy Jensen, Jorgen Rix
K. B. Sheu

w. G. Hsia
Bruce Toback
Frank Helson, Richard Steck

Subject Category: Data Base Management

~2- .'

.3

T.5

U.2

Data Analysis - The answer to successful implementation of IMAGE
A Comparison of Relational and Network Data Base Management Systems as
Implemented on the HP/3000
Relational Database Concept, Consequences for Organization and
Management-Structures
How to get more from your core memory or CFS/3000: A Core Resident File System

Richard Irwin
Christopher M. Funk, Thomas R. Harborn

Uwe Hinrichs

Pierre Senant

No. Titel

PROGRAM OF THE 1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

Author(s)

Subject category: Data Communications

H.5
1.4

L.5
U.3

Using DS3000-1ooo with HP/1000 Master Programs
A Distributed Computer System Interconnecting HP3000, HP1000, and other
Mini-Computers
Data Concentrators: In Focus for Mini-Computer Users
Decentralised Processing - New horizons for Sylems Designers

Jorg MUlier
Bjorn Dreher, Hans von der Schmitt,
Raymond Schoeck
Peter J. Mikutta
Norman Midgley

Subject category: Education

R.4 RMIT Student Data Base N. F. Riedl, E. de Graauw

Subject category: Editors

T.4 Fast Editing and Program Development using a Full Screen Editor Jacques Van Damme

Subject Category: Generators

E.3
1.1

New Approach toward System Implementation
Global Optimization: PROTOS - A COBOL Program Generator for the HP3000

Jean Pierre Theoret, Alan Rowan
Tipton Cole, Larry Van Sickle

Subject Category: Graphics

J.5 Computer Graphics, a Powerful Information Tool Sigmund Hoy Moen, Frederik Major

No. Titel

PROGRAM OF THE 1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

Author(s)

Subject category: Data Communications

H.5
1.4

L.5
U.3

Using DS3000-1ooo with HP/1000 Master Programs
A Distributed Computer System Interconnecting HP3000, HP1000, and other
Mini-Computers
Data Concentrators: In Focus for Mini-Computer Users
Decentralised Processing - New horizons for Sylems Designers

Jorg MUlier
Bjorn Dreher, Hans von der Schmitt,
Raymond Schoeck
Peter J. Mikutta
Norman Midgley

Subject category: Education

R.4 RMIT Student Data Base N. F. Riedl, E. de Graauw

Subject category: Editors

T.4 Fast Editing and Program Development using a Full Screen Editor Jacques Van Damme

Subject Category: Generators

E.3
1.1

New Approach toward System Implementation
Global Optimization: PROTOS - A COBOL Program Generator for the HP3000

Jean Pierre Theoret, Alan Rowan
Tipton Cole, Larry Van Sickle

Subject Category: Graphics

J.5 Computer Graphics, a Powerful Information Tool Sigmund Hoy Moen, Frederik Major

No. Titel

PROGRAM OF THE 1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

Author(s)

Subject category: Papers bY Hewlett-Packard Personnel

0.1
0.3
E.1
E.4
G.O

vH.1
H.2
H.4
J.1
K.1
l.1
L.4
0.1
0.2
P.1
]>.2

/'"R.1
R.2
R.S
S.1
S.3
S.4
S.S

T.1
T.2
T.S
U.S

Hewlett Packard - A View From The Inside
The HP2680A Laser Printing System (Overview)
Data Communications Strategy
New Directions in Customer Training
Business Computer Group Strategy
ANSI COBOL 198x: The Story behind the Headlines
HP Business Computer Group BASIC
Production Management/3000
Trends and Future Directions of Hewlett Packard Pheriphal Products
MPE-IV
News to MPE-IV Internals
The HP2680A Laser Printing System (Software)
Distributed Processing: A Hewlett Packard Solution
Terminal I/O - An Engineering Feedback Session
HP Plus
Cold Dump Analysis
Introducing the HP On-Line Performance Tool (OPT/3000)
ACE: Operatotless Job Scheduling and Processing
X.21JX.25 - Data Communications
Operator/Console Interface / MPE-IV - An Engineering Feedback Session
Terminals Strategy and New Products
Interactive HP3000 to IBM Host Communications
RAPID/3000, N~w from HP: Relational Access, Prototyping and Interactive
Development
Terminal 1/0 Controller for HP3000 Systems
Business Graphics: A Means to Improve Management Productivity
Increased Reliability at a Lower Cost
High speed digital image processing using a picture-scanning technique on
incremental plotters

Jan Stambaugh
Jim Langley
steve Zalewski
Donna M. Senko
Klaus-Dieter Laidig, Werner Gamm
Greg Gloss
Steve Ng
Wolfgang Bayer
WiUiam J. Murphy
Michael J. Paivinen
Uwe Jensen
Anthony stieber
Matthew O'Brien
Jim Beetem
Jef Graham
Michael J. Paivinen, Sergio Mastripieri
Clifford A. Jager
Bill Vaughan
Bill Baddeley
Michael J. Paivinen
Richard Franklin
Cynthia L Smyth
Victor C8nivell

Jim Beetern
Chris Kocher
Bruce Wheeler
Ramesh Pamchal

No. Titel

PROGRAM OF THE 1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

Author(s)

Subject category: Papers bY Hewlett-Packard Personnel

0.1
0.3
E.1
E.4
G.O

vH.1
H.2
H.4
J.1
K.1
l.1
L.4
0.1
0.2
P.1
]>.2

/'"R.1
R.2
R.S
S.1
S.3
S.4
S.S

T.1
T.2
T.S
U.S

Hewlett Packard - A View From The Inside
The HP2680A Laser Printing System (Overview)
Data Communications Strategy
New Directions in Customer Training
Business Computer Group Strategy
ANSI COBOL 198x: The Story behind the Headlines
HP Business Computer Group BASIC
Production Management/3000
Trends and Future Directions of Hewlett Packard Pheriphal Products
MPE-IV
News to MPE-IV Internals
The HP2680A Laser Printing System (Software)
Distributed Processing: A Hewlett Packard Solution
Terminal I/O - An Engineering Feedback Session
HP Plus
Cold Dump Analysis
Introducing the HP On-Line Performance Tool (OPT/3000)
ACE: Operatotless Job Scheduling and Processing
X.21JX.25 - Data Communications
Operator/Console Interface / MPE-IV - An Engineering Feedback Session
Terminals Strategy and New Products
Interactive HP3000 to IBM Host Communications
RAPID/3000, N~w from HP: Relational Access, Prototyping and Interactive
Development
Terminal 1/0 Controller for HP3000 Systems
Business Graphics: A Means to Improve Management Productivity
Increased Reliability at a Lower Cost
High speed digital image processing using a picture-scanning technique on
incremental plotters

Jan Stambaugh
Jim Langley
steve Zalewski
Donna M. Senko
Klaus-Dieter Laidig, Werner Gamm
Greg Gloss
Steve Ng
Wolfgang Bayer
WiUiam J. Murphy
Michael J. Paivinen
Uwe Jensen
Anthony stieber
Matthew O'Brien
Jim Beetem
Jef Graham
Michael J. Paivinen, Sergio Mastripieri
Clifford A. Jager
Bill Vaughan
Bill Baddeley
Michael J. Paivinen
Richard Franklin
Cynthia L Smyth
Victor C8nivell

Jim Beetern
Chris Kocher
Bruce Wheeler
Ramesh Pamchal

-.",

No. Titel

PROGRAM OF THE 1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

Author(s)

Subject Catagory: Installation Management

0.2
~.3

1.2
J.3
0.4
R.3
S.2

Thoughts concerning: How secure is your System?
System Performance and Optimization Techniques for the HP/3000
Transaction Processor for the HP3000
JOBLIB/3000 - an Interactive Pre-processing System of Jobs
Using the HP3000 as a Mainframe
The happy Transition
Security / Risk Management

Joerg Groessler
John E. Hulme
Godfrey Lee
Martti Laiho
Carl Christian Lassen
Harald Henriksen
Clifford W. Lazar, Eugene Volokh

Subject Category: Software Engineering

0.4
E.2
J.2
K.4

JU.1

RATFOR =FORTRAN/3000 + Elements of Structured Programming
User friendly Applications in commercial realtime Dataprocessing
New Software E_gineering Alternatives: Notes on Selecting Software
Optimisation of SPL and FORTRAN Programs
Prog~amming for Device Independence

Bjorn Dreher
Herbert Augenstein
Birket Foster
John Machin
John E. Hulme

Subject Category: Word-Processing

1.3
K.3
L.2

0.3

Integrated Oata- and Textprocessing with hp 3000
Computerized Typesetting: TEX on the HP3000
A Few Wefl-Chosen Words Concerning a Few Chosen Ways to do Word Processing,
Some Well-Chosen, Some not
DAISY/3000 A new Approach in Text Processing

Joachim Geftken
Lance Carnes
Wirt Atmar

Timo Raunio

No. Titel

PROGRAM OF THE 1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

Author(s)

Subject Catagory: Installation Management

0.2
~.3

1.2
J.3
0.4
R.3
S.2

Thoughts concerning: How secure is your System?
System Performance and Optimization Techniques for the HP/3000
Transaction Processor for the HP3000
JOBLIB/3000 - an Interactive Pre-processing System of Jobs
Using the HP3000 as a Mainframe
The happy Transition
Security / Risk Management

Joerg Groessler
John E. Hulme
Godfrey Lee
Martti Laiho
Carl Christian Lassen
Harald Henriksen
Clifford W. Lazar, Eugene Volokh

Subject Category: Software Engineering

0.4
E.2
J.2
K.4

JU.1

RATFOR =FORTRAN/3000 + Elements of Structured Programming
User friendly Applications in commercial realtime Dataprocessing
New Software E_gineering Alternatives: Notes on Selecting Software
Optimisation of SPL and FORTRAN Programs
Prog~amming for Device Independence

Bjorn Dreher
Herbert Augenstein
Birket Foster
John Machin
John E. Hulme

Subject Category: Word-Processing

1.3
K.3
L.2

0.3

Integrated Oata- and Textprocessing with hp 3000
Computerized Typesetting: TEX on the HP3000
A Few Wefl-Chosen Words Concerning a Few Chosen Ways to do Word Processing,
Some Well-Chosen, Some not
DAISY/3000 A new Approach in Text Processing

Joachim Geftken
Lance Carnes
Wirt Atmar

Timo Raunio

AUTHORS OF THE
1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

AUTHORS OF THE
1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

Name Paper(s) Name Paper(s)

Atmar, Wirt L.2 Lee, Godfrey 1.2
Augenstein, Herbert E.2 Machin, John K.4
Baddeley, Bill R.S Major, Frederik J.5
Bayer, Wolfgang H.4 Mastripieri, Sergio P.·2
Beetem, Jim 0.2, T.1 Midgley, Norman U.3
Blask, H. F.O Mikutta, Peter J. L.5
Canivell, Victor S.5 Moen, Sigmund Hov J.5
Carnes, Lance K.3 Murphy, William J. J.l
Cole, Tipton 1.1 MUlier, Jorg H.5
Damm, Jack 0.5 Ng, Steve H.2
De Graauw, E. R.4 O'Brien, Matthew 0.1
Dreher, Bjorn 0.4, 1.4 Paivinen, Michael J. K.1, P.2, S.1
Floyd, Christiane B.O Pallesen, Jens E.5
Foster, Birket J.2 Pamchal, Ramesh U.5
Franklin, Richard S.3 Raunio, Timo 0.3
Funk, Christopher M. L.3 Riedl, N. F. R.4
Gamm, .Werner G.O Rix, Jorgen 1.5
Geffken, Joachim 1.3 Rowan, Alan E.3
Gloss, Greg H.1 Schoeck, Raymond 1.4
Graham, Jef P.1 Senant, Pierre U.2
Groessler, Jorg 0.2 Senko, Donna M. E.4
Harborn, Thomas R. L.3 Sheu, K. B. J.4
Helson, Frank U.4 Smyth, Cynthia L. S.4
Henriksen, Harald R.3 Stambaugh, Jan 0.1
Hinrichs, Uwe T.5 Steck, Richard U.4
Hsia, W. G. K.5 Stieber, Anthony L.4
HUlme, John. E. H.3, U.1 Theoret, Jean Pierre E.3
Irwin, Richard K.2 Toback, Bruce 0.5
Jager, Clifford A R.1 Turski, Wladyslaw M. Q.O
Jensen, Hardy 1.5 Van Damme, Jacques T.4
Jensen, Uwe L.1 Van Sickle, Larry 1.1
Kocher, Chris T.2 Vaughan, Bill R.2
Laidig, Klaus-Dieter G.O Volokh, Eugene S.2
Laiho, Martti J.3 Von der Schmitt, Hans 1.4
Langley, Jim 0.3 Wheeler, Bruce T.3
Lassen, Carl Christian 0.4 Zalewski, Steve E.l
Lazar, Clifford W. 8.2

AUTHORS OF THE
1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

AUTHORS OF THE
1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

Name Paper(s) Name Paper(s)

Atmar, Wirt L.2 Lee, Godfrey 1.2
Augenstein, Herbert E.2 Machin, John K.4
Baddeley, Bill R.S Major, Frederik J.5
Bayer, Wolfgang H.4 Mastripieri, Sergio P.·2
Beetem, Jim 0.2, T.1 Midgley, Norman U.3
Blask, H. F.O Mikutta, Peter J. L.5
Canivell, Victor S.5 Moen, Sigmund Hov J.5
Carnes, Lance K.3 Murphy, William J. J.l
Cole, Tipton 1.1 MUlier, Jorg H.5
Damm, Jack 0.5 Ng, Steve H.2
De Graauw, E. R.4 O'Brien, Matthew 0.1
Dreher, Bjorn 0.4, 1.4 Paivinen, Michael J. K.1, P.2, S.1
Floyd, Christiane B.O Pallesen, Jens E.5
Foster, Birket J.2 Pamchal, Ramesh U.5
Franklin, Richard S.3 Raunio, Timo 0.3
Funk, Christopher M. L.3 Riedl, N. F. R.4
Gamm, .Werner G.O Rix, Jorgen 1.5
Geffken, Joachim 1.3 Rowan, Alan E.3
Gloss, Greg H.1 Schoeck, Raymond 1.4
Graham, Jef P.1 Senant, Pierre U.2
Groessler, Jorg 0.2 Senko, Donna M. E.4
Harborn, Thomas R. L.3 Sheu, K. B. J.4
Helson, Frank U.4 Smyth, Cynthia L. S.4
Henriksen, Harald R.3 Stambaugh, Jan 0.1
Hinrichs, Uwe T.5 Steck, Richard U.4
Hsia, W. G. K.5 Stieber, Anthony L.4
HUlme, John. E. H.3, U.1 Theoret, Jean Pierre E.3
Irwin, Richard K.2 Toback, Bruce 0.5
Jager, Clifford A R.1 Turski, Wladyslaw M. Q.O
Jensen, Hardy 1.5 Van Damme, Jacques T.4
Jensen, Uwe L.1 Van Sickle, Larry 1.1
Kocher, Chris T.2 Vaughan, Bill R.2
Laidig, Klaus-Dieter G.O Volokh, Eugene S.2
Laiho, Martti J.3 Von der Schmitt, Hans 1.4
Langley, Jim 0.3 Wheeler, Bruce T.3
Lassen, Carl Christian 0.4 Zalewski, Steve E.l
Lazar, Clifford W. 8.2

AUTHORS OF THE
1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

AUTHORS OF THE
1981 HP3000 INTERNATIONAL USERS GROUP MEETING IN BERLIN

Name Paper(s) Name Paper(s)

Atmar, Wirt L.2 Lee, Godfrey 1.2
Augenstein, Herbert E.2 Machin, John K.4
Baddeley, Bill R.S Major, Frederik J.5
Bayer, Wolfgang H.4 Mastripieri, Sergio P.·2
Beetem, Jim 0.2, T.1 Midgley, Norman U.3
Blask, H. F.O Mikutta, Peter J. L.5
Canivell, Victor S.5 Moen, Sigmund Hov J.5
Carnes, Lance K.3 Murphy, William J. J.l
Cole, Tipton 1.1 MUlier, Jorg H.5
Damm, Jack 0.5 Ng, Steve H.2
De Graauw, E. R.4 O'Brien, Matthew 0.1
Dreher, Bjorn 0.4, 1.4 Paivinen, Michael J. K.1, P.2, S.1
Floyd, Christiane B.O Pallesen, Jens E.5
Foster, Birket J.2 Pamchal, Ramesh U.5
Franklin, Richard S.3 Raunio, Timo 0.3
Funk, Christopher M. L.3 Riedl, N. F. R.4
Gamm, .Werner G.O Rix, Jorgen 1.5
Geffken, Joachim 1.3 Rowan, Alan E.3
Gloss, Greg H.1 Schoeck, Raymond 1.4
Graham, Jef P.1 Senant, Pierre U.2
Groessler, Jorg 0.2 Senko, Donna M. E.4
Harborn, Thomas R. L.3 Sheu, K. B. J.4
Helson, Frank U.4 Smyth, Cynthia L. S.4
Henriksen, Harald R.3 Stambaugh, Jan 0.1
Hinrichs, Uwe T.5 Steck, Richard U.4
Hsia, W. G. K.5 Stieber, Anthony L.4
HUlme, John. E. H.3, U.1 Theoret, Jean Pierre E.3
Irwin, Richard K.2 Toback, Bruce 0.5
Jager, Clifford A R.1 Turski, Wladyslaw M. Q.O
Jensen, Hardy 1.5 Van Damme, Jacques T.4
Jensen, Uwe L.1 Van Sickle, Larry 1.1
Kocher, Chris T.2 Vaughan, Bill R.2
Laidig, Klaus-Dieter G.O Volokh, Eugene S.2
Laiho, Martti J.3 Von der Schmitt, Hans 1.4
Langley, Jim 0.3 Wheeler, Bruce T.3
Lassen, Carl Christian 0.4 Zalewski, Steve E.l
Lazar, Clifford W. 8.2

Conference Paper:

HP 3000 International Users Group Meeting

7. Oct. 1981

On the Use of nprototyping" in Software Development

c. Floyd

Institute {?/dr Applied Informatics

Technical University Berlin

The phrase "rapid prototyping" is currently en vogue in

certain software engineering circles. The basic idea is to

aid communication between software producers and software

users (customers), in particular during the early stages of

software development, by furnishing experimental versions of

the system, to be tried out as part of requirement analysis.

Ba 1

In what follows I wi 11 attpmpt to d~monstr'atp thp ro.l e thclt

a softwar'e-"pr'ototype" might assume in diff~rent pr'oduction

set tingsin a man ne r' compat i. b lewi t h the ma i n 1 1. n e 0 f

softwar'e engineering's strive- for' a methodology, as

illustrated for example in Prof. Tur-skis lecture at this

meeting on October 9th </TURSKI 81/). To begin with,

however, some comments about the phrase "rapid prototyping"

are in order, since this promises to be yet another

unfortunate misnomer, which may well lead to serious

misunderstandings, if ever this technique should be adopted

by the software industry. A prototype is a well established

·concept in the engineering disciplines where it refers to

the first functioning version of a new kind of product. In

this context, a prototype is intended to exhibit all

essential features of the final product and thus becomes the

basis for experiments before the beginning of large scale

production. This analogy does not carryover easily to

software production, where we are not faced with mass

production at all. Surely, if we use the concept of a

prototype in software production - as I will do from now

onwards, though under protest - we shall have to give it a

new meaning appropriate for our purposes.

BO 2

Conference Paper:

UP 3000 International Users Group Meeting

7. Oct. 1981

On the Use of nprototyping" in Software Development

c. Floyd

Institute {?/dr Applied Informatics

Technical University Berlin

The phrase "rapid prototyping" is currently en vogue in

certain software engineering circles. The basic idea is to

aid communication between software producers and software

users (customers), in particular during the early stages of

software development, by furnishing experimental versions of

the system, to be tried out as part of requirement analysis.

Ba 1

In what follows I w.i 11 attpmpt to d~monstr·al.p thp r01 e that

a softwar'e-"pr'ototype" might assume in difft-'rent pr'oduction

set tingsin a man ne r' compat i. b lewi t h the ma i n 1 1. n e 0 f

softwar'e engineering's strivf" for' a methodology, as

illustrated for example in Prof. Turskis lecture at this

meeting on October 9th </TURSKI 81/). To begin with,

however, some comments about the phrase "rapid prototyping"

are in order, since this promises to be yet another

unfortunate misnomer, which may well lead to serious

misunderstandings, if ever this technique should be adopted

by the software industry. A prototype is a well established

·concept in the engineering disciplines where it refers to

the first functioning version of a new kind of product. In

this context, a prototype is intended to exhibit all

essential features of the final product and thus becomes the

basis for experiments before the beginning of large scale

production. This analogy does not carryover easily to

software production, where we are not faced with mass

production at all. Surely, if we use the concept of a

prototype in software production - as I will do from now

onwards, though under protest - we shall have to give it a

new meaning appropriate for our purposes.

BO 2

Conference Paper:

UP 3000 International Users Group Meeting

7. Oct. 1981

On the Use of nprototyping" in Software Development

c. Floyd

Institute {?/dr Applied Informatics

Technical University Berlin

The phrase "rapid prototyping" is currently en vogue in

certain software engineering circles. The basic idea is to

aid communication between software producers and software

users (customers), in particular during the early stages of

software development, by furnishing experimental versions of

the system, to be tried out as part of requirement analysis.

Ba 1

In what follows I w.i 11 attpmpt to d~monstr·al.p thp r01 e that

a softwar'e-"pr'ototype" might assume in difft-'rent pr'oduction

set tingsin a man ne r' compat i. b lewi t h the ma i n 1 1. n e 0 f

softwar'e engineering's strivf" for' a methodology, as

illustrated for example in Prof. Turskis lecture at this

meeting on October 9th </TURSKI 81/). To begin with,

however, some comments about the phrase "rapid prototyping"

are in order, since this promises to be yet another

unfortunate misnomer, which may well lead to serious

misunderstandings, if ever this technique should be adopted

by the software industry. A prototype is a well established

·concept in the engineering disciplines where it refers to

the first functioning version of a new kind of product. In

this context, a prototype is intended to exhibit all

essential features of the final product and thus becomes the

basis for experiments before the beginning of large scale

production. This analogy does not carryover easily to

software production, where we are not faced with mass

production at all. Surely, if we use the concept of a

prototype in software production - as I will do from now

onwards, though under protest - we shall have to give it a

new meaning appropriate for our purposes.

BO 2

The second unfortunate term in the phrase is the epithet

"rapid", which misleads us i.nto believing that spef'd is the

essential aspect in buildi.ng a prototype. Again, this is in

conflict with the engineering tradition, wher'p th<-- (H'ototypP

is the final result of careful design, exlcnsivp

calculations and field tests. I fail to see how a softwarf'

prototype produced rapidly, without the carpful preparations

mentioned above will yield reliable answers in determilling

actual requirements.

In order to judge the usefulness of prototyping in softwarp

development we must find answers to the following questions:

Why is communication about software requiremf'nts based as

it is on interviews, checklists and bulky documen~s not

sufficiently reliable and how could a prototype be helpful

in this context?

How does the software prototype relate to the final

product?

Is there one, or are th~re several prototypes and how are

they evaluated?

Under wbat circumstances can we justify the addit~onal

investment brought about by producing a prototype in the

early stag~s, i.e. what do we hope to gain later on?

How does prototyping relate to an orderly approach to

software development, based on deriving a program from a

rigorous specification according to the rules of

programming methodology?

As a starting point in answering these questions we should

take a close look at the well known phase-oriented approach

BO 3

to software development, its merits and shortcomings (see

for example /LEHMANN 80/). The phase-oriented approach was

devised as a means to find contractual bases in software

development and to define intermediate results in terms of

documents, which form the basis for subsequent work. The

phase-oriented approach relies on som~ important

assumptions, as there are:

that requirements, at least in principle, can be fixed in

advance,

- that documents, provided that their contents are described

in a sufficiently rigorous manner, are adequate as a

primary means of communication, i.e. that the customer

knows what he will get when he signs the contract.

Both of these assumptions unfortunately are contradicted in

the daily practice of software professionals who are faced

with the difficult task to base their own work on existing

base-line documents, while at the same time coping with

constantly changing requirements from their customers. The

phase-oriented approach does of course permit to go back to

earlier phases when needed, but it does not encourage the

planing of profound revisions.

The phase-oriented approach provides a sound basis to limit

the liability of the software producer. The product is

defined by its specification and the liability of the

software producer ends when he has derived a program, which

is cor'r'pct wi th rf'spect to its specification. As Prof.

Turski will point out in two days, this is a highly

nontrivial activity which is well supported by modern

software engineering techniques. Yet, experience shows, that

even a corr'ect program may not at all be adequate to fi t the

user's needs, because of far reaching misconceptions about

the actual requirements.

BO 4

The second unfortunate term in the phrase is the epithet

"rapid", which misleads us i.nto believing that spef'd is the

essential aspect in buildi.ng a prototype. Again, this is in

conflict with the engineering tradition, wher'p th<-- JH'ototypP

is the final result of careful design, exlcnsivp

calculations and field tests. I fail to see how a softwarf'

prototype produced rapidly, without the carpful preparations

mentioned above will yield reliable answers in determilling

actual requirements.

In order to judge the usefulness of prototyping in softwarp

development we must find answers to the following questions:

Why is communication about software requiremf'nts based as

it is on interviews, checklists and bulky documen~s not

sufficiently reliable and how could a prototype be helpful

in this context?

How does the software prototype relate to the final

product?

Is there one, or are th~re several prototypes and how are

they evaluated?

Under wbat circumstances can we justify the addit~onal

investment brought about by producing a prototype in the

early stag~s, i.e. what do we hope to gain later on?

How does prototyping relate to an orderly approach to

software development, based on deriving a program from a

rigorous specification according to the rules of

programming methodology?

As a starting point in answering these questions we should

take a close look at the well known phase-oriented approach

BO 3

to software development, its merits and shortcomings (see

for example /LEHMANN 80/). The phase-oriented approach was

devised as a means to find contractual bases in software

development and to define intermediate results in terms of

documents, which form the basis for subsequent work. The

phase-oriented approach relies on som~ important

assumptions, as there are:

that requirements, at least in principle, can be fixed in

advance,

- that documents, provided that their contents are described

in a sufficiently rigorous manner, are adequate as a

primary means of communication, i.e. that the customer

knows what he will get when he signs the contract.

Both of these assumptions unfortunately are contradicted in

the daily practice of software professionals who are faced

with the difficult task to base their own work on existing

base-line documents, while at the same time coping with

constantly changing requirements from their customers. The

phase-oriented approach does of course permit to go back to

earlier phases when needed, but it does not encourage the

planing of profound revisions.

The phase-oriented approach provides a sound basis to limit

the liability of the software producer. The product is

defined by its specification and the liability of the

software producer ends when he has derived a program, which

is cor'r'pct wi th rf'spect to its specification. As Prof.

Turski will point out in two days, this is a highly

nontrivial activity which is well supported by modern

software engineering techniques. Yet, experience shows, that

even a corr'ect program may not at all be adequate to fi t the

user's needs, because of far reaching misconceptions about

the actual requirements.

BO 4

The second unfortunate term in the phrase is the epithet

"rapid", which misleads us i.nto believing that spef'd is the

essential aspect in buildi.ng a prototype. Again, this is in

conflict with the engineering tradition, wher'p th<-- (H'ototypP

is the final result of careful design, exlcnsivp

calculations and field tests. I fail to see how a softwarf'

prototype produced rapidly, without the carpful preparations

mentioned above will yield reliable answers in determilling

actual requirements.

In order to judge the usefulness of prototyping in softwarp

development we must find answers to the following questions:

Why is communication about software requiremf'nts based as

it is on interviews, checklists and bulky documen~s not

sufficiently reliable and how could a prototype be helpful

in this context?

How does the software prototype relate to the final

product?

Is there one, or are th~re several prototypes and how are

they evaluated?

Under wbat circumstances can we justify the addit~onal

investment brought about by producing a prototype in the

early stag~s, i.e. what do we hope to gain later on?

How does prototyping relate to an orderly approach to

software development, based on deriving a program from a

rigorous specification according to the rules of

programming methodology?

As a starting point in answering these questions we should

take a close look at the well known phase-oriented approach

BO 3

to software development, its merits and shortcomings (see

for example /LEHMANN 80/). The phase-oriented approach was

devised as a means to find contractual bases in software

development and to define intermediate results in terms of

documents, which form the basis for subsequent work. The

phase-oriented approach relies on som~ important

assumptions, as there are:

that requirements, at least in principle, can be fixed in

advance,

- that documents, provided that their contents are described

in a sufficiently rigorous manner, are adequate as a

primary means of communication, i.e. that the customer

knows what he will get when he signs the contract.

Both of these assumptions unfortunately are contradicted in

the daily practice of software professionals who are faced

with the difficult task to base their own work on existing

base-line documents, while at the same time coping with

constantly changing requirements from their customers. The

phase-oriented approach does of course permit to go back to

earlier phases when needed, but it does not encourage the

planing of profound revisions.

The phase-oriented approach provides a sound basis to limit

the liability of the software producer. The product is

defined by its specification and the liability of the

software producer ends when he has derived a program, which

is cor'r'pct wi th rf'spect to its specification. As Prof.

Turski will point out in two days, this is a highly

nontrivial activity which is well supported by modern

software engineering techniques. Yet, experience shows, that

even a corr'ect program may not at all be adequate to fi t the

user's needs, because of far reaching misconceptions about

the actual requirements.

BO 4

The situation is aggravated by the fact that mistakes made

early in software development are the most costly to

correct. Serious mistakes in requirement analysis may well

be too costly to correct at all. The user organization will

have to adapt to the software - not vice versa.

There are important reasons why it may prove very hard to

find out detailed software requirements for the development

of large programs:

1) It is extremely difficult for people to visualize how

seemingly minor decisions about software will later on

affect their work with the system.

2) It is often extremely difficult to locate all groups of

people who will be directly or indirectly affected by the

system. Different user groups often have conflicting

views about an information system (which they perceive

from their own perspective), or they simply ignore each

others needs.

BO 5

The above mentioned difficulties do not pertain to all

requirements alike, in fact the following classification of

requirements helps to point out the areas where troubles

most likely arise. We can distinguish:

functional requirements describing the desired output to

be produced for a given input (the relation between input

and output may be highly nontrivial, but it is normally

governed by a stringent set of rules; whether or not the

program obeys the same set of rules can be proved - at

least in principle).

performance requirements stating the resources available

to achieve these functions (it may be difficult to show

the precise constraints on resources, whether or not the

program meets these constraints can be measured - at least

in principle).

handling requirements characterizing the manner in which

the system is to be embedded into the activities of all

people affected by it.

Of these three, the handling requirements are the least well

understood. Handling requirements pertain amongst others to

the following areas of special concern:

The design of man-machine interfaces in the widest sense

(including conceptual models the user must have, in order

to understand what the system does);

The degree of system integration and as a consequence the

possibility of interfering with or reshuffling the

system's functions as needed ("conviviality" of the system

according to Ivan Ilich /ILleD 79/);

BO 6

The situation is aggravated by the fact that mistakes made

early in software development are the most costly to

correct. Serious mistakes in requirement analysis may well

be too costly to correct at all. The user organization will

have to adapt to the software - not vice versa.

There are important reasons why it may prove very hard to

find out detailed software requirements for the development

of large programs:

1) It is extremely difficult for people to visualize how

seemingly minor decisions about software will later on

affect their work with the system.

2) It is often extremely difficult to locate all groups of

people who will be directly or indirectly affected by the

system. Different user groups often have conflicting

views about an information system (which they perceive

from their own perspective), or they simply ignore each

others needs.

BO 5

The above mentioned difficulties do not pertain to all

requirements alike, in fact the following classification of

requirements helps to point out the areas where troubles

most likely arise. We can distinguish:

functional requirements describing the desired output to

be produced for a given input (the relation between input

and output may be highly nontrivial, but it is normally

governed by a stringent set of rules; whether or not the

program obeys the same set of rules can be proved - at

least in principle).

performance requirements stating the resources available

to achieve these functions (it may be difficult to show

the precise constraints on resources, whether or not the

program meets these constraints can be measured - at least

in principle).

handling requirements characterizing the manner in which

the system is to be embedded into the activities of all

people affected by it.

Of these three, the handling requirements are the least well

understood. Handling requirements pertain amongst others to

the following areas of special concern:

The design of man-machine interfaces in the widest sense

(including conceptual models the user must have, in order

to understand what the system does);

The degree of system integration and as a consequence the

possibility of interfering with or reshuffling the

system's functions as needed ("conviviality" of the system

according to Ivan Ilich /ILleR 79/);

BO 6

The situation is aggravated by the fact that mistakes made

early in software development are the most costly to

correct. Serious mistakes in requirement analysis may well

be too costly to correct at all. The user organization will

have to adapt to the software - not vice versa.

There are important reasons why it may prove very hard to

find out detailed software requirements for the development

of large programs:

1) It is extremely difficult for people to visualize how

seemingly minor decisions about software will later on

affect their work with the system.

2) It is often extremely difficult to locate all groups of

people who will be directly or indirectly affected by the

system. Different user groups often have conflicting

views about an information system (which they perceive

from their own perspective), or they simply ignore each

others needs.

BO 5

The above mentioned difficulties do not pertain to all

requirements alike, in fact the following classification of

requirements helps to point out the areas where troubles

most likely arise. We can distinguish:

functional requirements describing the desired output to

be produced for a given input (the relation between input

and output may be highly nontrivial, but it is normally

governed by a stringent set of rules; whether or not the

program obeys the same set of rules can be proved - at

least in principle).

performance requirements stating the resources available

to achieve these functions (it may be difficult to show

the precise constraints on resources, whether or not the

program meets these constraints can be measured - at least

in principle).

handling requirements characterizing the manner in which

the system is to be embedded into the activities of all

people affected by it.

Of these three, the handling requirements are the least well

understood. Handling requirements pertain amongst others to

the following areas of special concern:

The design of man-machine interfaces in the widest sense

(including conceptual models the user must have, in order

to understand what the system does);

The degree of system integration and as a consequence the

possibility of interfering with or reshuffling the

system's functions as needed ("conviviality" of the system

according to Ivan Ilich /ILleR 79/);

BO 6

- The i n t, e r' p lay betwpen form ali zed (i. e. comput l~ r' - su p POt' t. t'd)

and informal ized wor'k-steps per'mi tt.ed by th(" syst t'm (wi th

thl" two extremes: the systpm pnfor'cps a wor'kj ng sty 1(.> ak in

to ~hp assembly line or' tht\ system offer's a tool-box to b("

used as needed).

This list does not claim to bt~ comp.l ete. Tht'" l'xamp 1<'s at'(-'

indicated in order to d~monstratp that handling rpquirpmpnts

wi 1lindeed 1. e a d to imp 0 r' tan t. d t' C .i s ion s abo u t so f twa f' ('

structur'l', that may well deter'mi ne the adequacy or'

inadequacy of an otherwi se corr'pct pr'ogr'am!

\.

In th<.' absenct· of a sui tab 1p t.hf'or'y of of'gani zat ions and of

sound uspr psychology, communication with the uspr, about

80ft\,,(.\ f'e r'(-'qu i rem<"n t s, wi 1 1 cont i nup to re 1y .I a rge- 1y on

('xp<"r'it'ncl:\ and j ntu i ti on. In this cont,<'xL, it is f(.>1 t by

many t.hat communi c.at.i on .i s mort' ('('.:0.1 i abJ (', if it is baspd on

an it I r'(-'ady ('X i st i ng pr'ogr'am \"h i ch can be eva I uated (a 1bE' it

not S~'st(:'maticaJly sinc(.I th(-'rp is noundf:~rJying theor'y ho\.;

t.his m~ght bl:' don("). A pr'ototypP t.hef'pforp, is to be

fur'Ili ~ht~d j n or'df'r to r'{-'duce the pr'obabi 1 i ty of

mi sund("r'st andi ng r·(..>qll i r'(-'ments . The addi t. i ona 1 i nvpstmen t

nt·t'd(~d fOf' i t.s pr'oducti on is just i fi ed by the- hop<-, t ha t th is

invpstmpnt is significantly smal]pf' than th(..> costs that arp

1 ik<"l.y to ar'is(~ fr'om the nt-'pd to adapt an i nad<:'quate progroam

.1 ater' on.

It.. should be k('pt. in mind, that the pr'oduct..ion of a

pI' 0 tot y P(. i s jus t j f i a b 1P 0 n 1yin l h (' cas (~ 0 f .1 0 n g -1 i f p

~yst("ms~ wh('r'(-" a fur't'H'(' ('xpansion of t.hp (;'':lI~ly phas('s wiJ J

pr-'psumab 1y 1('ad to prof i t::-; ov<.~r' a cons i dt'r'abJ e p(:'r'i od of

tim t' • Fu f't h <' r', t his tee h n i que i spa r' t i cu.1 a r I y f' <-d (..> \' ant for'

progr'am:::i \"hich ar'(·' embpddt'd in LpchnicaJ or' socio-t('chnica.l.

env i r'onm{~nts, bpCClUS<' :;uch pt'ogr'ams wi J 1

han d ling r' (~q1I i f' P m(' n t..s it s:-\ 0 c.i a t (' d wit h t h ('m.

have (-'1 abor'at.e

How t h(·'n , dops a soft wa 1'(-' pr'ototypP f'P I atp t·o t h(·· actua I

pr'oduc t' .i n t. imp, scoP<' and qua 1i t Y -; \\t> can d i st i ngu ish

Sl-"Vl"'r'a 1 feasi bl (' appr'oaches here:

- t h(·~ prutotype may be- in t.ended to aid r('qu·i r'(;'mpn t S ilna I y sis

on .I y 0 r' i t may be i n t (' n d (:" d to a c com pan y t h (' act 1I a I ~~. ~ t. t' III

th r'oughou t .i ts I. i ft'"t i m(".

80 7

Thp prot.otypP may bp inlpndt'd

same scop~ as the actual system

ex h.i bit oS P J e c ted f t-' a t u r' (-' son I y •

to COVt:'l' ('SSl'nt ially t'H'

Ot' il may b(' int('nded to

BO 8

- The interplay between formalized (i.e. computer-supporlpd)

and informal ized wor'k-steps per'mi tt.ed by th(" syst t'm (wi th

thp two extremes: the system enforcps a working style akin

Lo ~he assembly line or' th~ system offer's a tool-box to b("

used as needed).

This list does not claim to bt~ comp.l ete. Thp ('xamp I <,s at'e

indicated in order to d~monstrate that handJing requirpments

will indeed lead to impor'tanL dt'c.isions about softwiH'('

structur'f', that may wel J dl'ter'mi ne the adt'quacy or'

inadequacy of an otherwj se corr'pct pr'ogr'am!

\.

In thp ab~enct· of a sui tab 1p t.hf'ory of or'gani zat ions and of

sound uspr psychology, communication with the user, about

soft\"" r'e r'equ i rem("n t s, wi 1 1 cont i nue to re 1y 1 a r'ge 1y on

t'xppr'it'nct' and j ntu iti on. In this cont,('xt, i. tis f(.>J t by

many t.hat communi c·at.i on .i s mort' 1'(".1 i abJ (', i fit is based on

an a I t"'(-'ady <,x i st i ng pr'ogr'am \"h i ch can be eva I uated (a 1bE' i t,

not S~'st(:'mat:icaJly since:- th(-'r<' is nounderJying theor'y ho\.;

t.his m~ght be donp). A pr'ototypf" t.her'eforp, is to be

fur'ni ~ht~d j n or'der to r'pduce the pf'obabi 1 i ty of

mi sund p r' s t .1 n din g r' e qui f' ('men t s . The add i t ion a .1 i n v t' s t men t

nt'pd("d for' i t.s pr'oducti on is just i fi ed by the hope t ha t th.i s

invt'stmpnt is significantly smal]pT' than the costs that art-'

.I i k (oO J. y to a r' i s p f r' om the tH-' pdt 0 a d apt ani n a d t' qua t e p f' 0 g r' am

J ater' on.

It.. should be k<,pt. in mind, that the pt'oductjon of a

p r' 0 tot y P <' i :5 jus t i f i a b I (;l 0 n 1yin l h <' cas (-' 0 f .1. 0 n g -1 i f p

~yst(o'ms~ wh('r'(~ a fUf,tht·" <,xpansion or t.hp ('.:n'l)' phe:1S('S wil J

p J-' (' sum a b I yipa d top T' 0 fit::-) 0 v (... f' a c <) n sidp T' a b J e pt· J' i 0 d of

t i mt'. Furth('f', t hi:5 techn i que is par't i cu.lar I y f'(·d (-'vant for'

progr' am:::i \vhie h a r' (., f" mb (" d d to' din t (-' c h n i c a J 0 f' ~ DC i 0 - t (' c h n i ca.l.

env i t'onm(~nt::> ~ becClus(' ~lI('h pt'ogf'ams wi J 1

hand I jng r'(~qll i f'emen t.s assoc.i at <.'d with thpm.

have (.>1 abor'at.e

How t h(.• n , do p ~ a so f twa I' (., P r' 0 tot y Pp r' p I at p too t h pac t u a I

pf'oduct' .i n t. lmt-', SCOP(' and qua Ii ty -; \\t> call d i st i ngu ish

s(~v(:'r'a1 feasi bl (' appr'oaches here:

- t h(~ prutotype may be in t.ended to aid r'('qui f'(-'mpn t S ilna I y sis

on.l y or' it may be i nt('nded to accompany t hp act tiel I ~~.'st.(-'m

thr'oughout. its 1. i fpt imc.".

BO 7

The prototype may be intended

same SCOP(·' as the actua I system

ex hoi bit s e J t' C ted f pat u f' (., son I y •

toe 0 v t:' r' <.' SSt' n t i a I I Y t h c

or' il may bp intc.·nded to

BO 8

- The interplay between formalized (i.e. computer-supporlpd)

and informal ized wor'k-steps per'mi tt.ed by th(" syst t'm (wi th

thp two extremes: the system enforcps a working style akin

Lo ~he assembly line or' th~ system offer's a tool-box to b("

used as needed).

This list does not claim to bt~ comp.l ete. Thp ('xamp I <'s at'e

indicated in order to d~monstrate that handJing requirpments

will indeed lead to impor'tanL dt'c.isions about softwiH'('

structur'f', that may wel J dl'ter'mi ne the adt'quacy or'

inadequacy of an otherwj se corr'pct pr'ogr'am!

\.

In thp ab~enct· of a sui tab 1p t.hf'ory of or'gani zat ions and of

sound uspr psychology, communication with the user, about

soft\"" r'e r'equ i rem("n t s, wi 1 1 cont i nue to re 1y 1 a r'ge 1y on

t'xppr'it'nct' and j ntu iti on. In this cont,('xt, i. tis f(.>J t by

many t.hat communi c·at.i on .i s mort' 1'(".1 i abJ (', i fit is based on

an a I t"'(-'ady <,x i st i ng pr'ogr'am \"h i ch can be eva I uated (a 1bE' i t,

not S~'st(:'mat:icaJly since:- th(-'r<' is nounderJying theor'y ho\.;

t.his m~ght be donp). A pr'ototypf" t.her'eforp, is to be

fur'ni ~ht~d j n or'der to r'pduce the pf'obabi 1 i ty of

mi sund P r' s t .1 n din g r' e qui f' ('men t s . The add i t ion a .1 i n v t' s t men t

nt'pd("d for' i t.s pr'oducti on is just i fi ed by the hope t ha t th.i s

invt'stmpnt is significantly smal]pT' than the costs that art-'

.I i k (oO J. y to a r' i s p f r' om the tH-' pdt 0 a d apt ani n a d t' qua t e p f' 0 g r' am

J ater' on.

It.. should be k<,pt. in mind, that the pt'oductjon of a

p r' 0 tot y P <' i :5 jus t i f i a b I (;l 0 n 1yin l h <' cas (-' 0 f .1. 0 n g -1 i f p

~yst(o'ms~ wh('r'(~ a fUf,tht·" <'xpansion or t.hp ('.:n'l)' phe:1S('S wil J

p J-' (' sum a b I yip a d top T' 0 fit::-) 0 v (... f' a c <) n sidP T' a b J e pt· J' i 0 d of

t i mt'. Furth('f', t hi:5 techn i que is par't i cu.lar I y f'(·d (-'vant for'

progr' am:::i \vhie h a r' (., f" mb (" d d to' din t (-' c h n i c a J 0 f' ~ DC i 0 - t (' c h n i ca.l.

env i t'onm(~nt::> ~ becClus(' ~lI('h pt'ogf'ams wi J 1

hand I lng r'(~qll i f'emen t.s assoc.i at <.'d with thpm.

have (.>1 abor'at.e

How t h(.• n , do p ~ a so f twa I' (., P r' 0 tot y Pp r' p I at p too t h pac t u a I

pf'oduct' .i n t. lmt-', SCOP(' and qua Ii ty -; \\t> call d i st i ngu ish

s(~v(:'r'a1 feasi bl (' appr'oaches here:

- t h(~ prutotype may be in t.ended to aid r'('qui f'(-'mpn t S ilna I y sis

on.l y or' it may be i nt('nded to accompany t hp act tiel I ~~.'st.(-'m

thr'oughout. its 1. i fpt imc.".

BO 7

The prototype may be intended

same SCOP(·' as the actua I system

ex hoi bit s e J t' C ted f pat u f' (., son I y •

toe 0 v t:' r' <.' SSt' n t i a I I Y t h c

or' il may bp intc.·nded to

BO 8

The intention of the propagators of "rapid prototyping"

seems to be to produce throw-away prototypes - with the

same functional scope as the actual system, but of lower

quality - which precede the development of the actual

system itself. This approach implies the call for new

techniques, such as prototyping languages and

interpreters, which reduce the effort of prototype

production. I would like to point out that this approach

is highly problematic:

Since the specification does not yet exist at the time of

prototype production, it is not clear what the functional

scope of the prototype should be, and we find ourselves

thrown back into the kind working style which was - with

good reason - deplored ever since the 1960's.

Should the specification already exist, it is not clear

what is to be gained by quickly producing a system with

the same functional scope, but of lesser quality than the

final product. It should be remembered that the essential

thing about the prototype is its evaluation, for which

there is no systematic basis available as yet and which

will prove to be a large effort if the prototype itself is

complex. Therefore the feedback obtained by the evaluation

of such a prototype will come late and will be unreliable.

The production of the real system will be delayed, with no

obvious gain to justify the delay.

If the prototype is to precede, rather than to accompany,

the actual system it will not be helpful in dealing with

changing requirements, as will be argued below.

Requirements for software embedded in technicaJ or

socio-technical systems must be expected to change, because

original requirements were misstated (the probability of

this may perhaps be reduced with a "rapid prototype"),

- the environment evolves and develops new requirements,

the system, once in use, transforms its environment and

thus itself contributes to producing new requirements.

Because of the last two of these points, a "rapid"

throw-away prototype cannot be expected to aid in reducing

troubles with changing requirements in the long term.

In view of all the problems cited above it seems appropriate

to drop the analogy with engineering prototypes, to

generalize the concept of a "software prototype"

considerably and to combine its production with an orderly

approach to software production.

In the following, a prototype will designate a preliminary

version of the actual system which exhibits selected

features of the final product.

There may be one or a series of such prototypes, depending

on the needs of the specific project. The prototypes serve

primarily to aid discussions about handling requirements,

i.e. whereas their functional scope may be only a fraction

of the actual product's; they are carefully designed, so as

to illustrate how the system can be embedded into its

working environment.

a different view of

BO 9

This way

software

of using prototypes implies

development, which has been termed the

BO 10

The intention of the propagators of "rapid prototyping"

seems to be to produce throw-away prototypes - with the

same functional scope as the actual system, but of lower

quality which precede the development of the actual

system itself. This approach implies the call for new

techniques, such as prototyping languages and

interpreters, which reduce the effort of prototype

production. I would like to point out that this approach

is highly problematic:

Since the specification does not yet exist at the time of

prototype production, it is not clear what the functional

scope of the prototype should be, and we find ourselves

thrown back into the kind working style which was - with

good reason - deplored ever since the 1960's.

Should the specification already exist, it is not clear

what is to be gained by quickly producing a system with

the same functional scope, but of lesser quality than the

final product. It should be remembered that the essential

thing about the prototype is its evaluation, for which

there is no systematic basis available as yet and which

will prove to be a large effort if the prototype itself is

complex. Therefore the feedback obtained by the evaluation

of such a prototype will come late and will be unreliable.

The production of the real system will be delayed, with no

obvious gain to justify the delay.

If the prototype is to precede, rather than to accompany,

the actual system it will not be helpful in dealing with

changing requirements, as will be argued below.

Requirements for software embedded in technicaJ or

socio-technical. systems must be expected to change, because

original requirements were misstated (the probability of

this may perhaps be reduced with a "rapid prototype"),

- the environment evolves and develops new requirements,

the system, once in use, transforms its environment and

thus i tsel f contributes to pr'oduci ng new r·equirements.

Because of the last two of these points, a "rapid"

throw-away prototype cannot be expected to aid in reducing

troubles with changing requirements in the long term.

In view of all the problems cited above it seems appropriate

to drop the analogy with engineering prototypes, to

generalize the concept of a "software prototype"

considerably and to combine its production with an orderly

approach to software production.

In the following, a prototype will designate a preliminary

version of the actual system which exhibits selected

features of the final product.

There may be one or a series of such prototypes, depending

on the needs of the specific project. The prototypes serve

primarily to aid discussions about handling requirements,

i.e. whereas their functional scope may be only a fraction

of the actual product's; they are carefully designed, so as

to illustrate how the system can be embedded into its

working environment.

a different view of

BO 9

This way

software

of using prototypes implies

development, which has been termed the

BO 10

The intention of the propagators of "rapid prototyping"

seems to be to produce throw-away prototypes - with the

same functional scope as the actual system, but of lower

quality which precede the development of the actual

system itself. This approach implies the call for new

techniques, such as prototyping languages and

interpreters, which reduce the effort of prototype

production. I would like to point out that this approach

is highly problematic:

Since the specification does not yet exist at the time of

prototype production, it is not clear what the functional

scope of the prototype should be, and we find ourselves

thrown back into the kind working style which was - with

good reason - deplored ever since the 1960's.

Should the specification already exist, it is not clear

what is to be gained by quickly producing a system with

the same functional scope, but of lesser quality than the

final product. It should be remembered that the essential

thing about the prototype is its evaluation, for which

there is no systematic basis available as yet and which

will prove to be a large effort if the prototype itself is

complex. Therefore the feedback obtained by the evaluation

of such a prototype will come late and will be unreliable.

The production of the real system will be delayed, with no

obvious gain to justify the delay.

If the prototype is to precede, rather than to accompany,

the actual system it will not be helpful in dealing with

changing requirements, as will be argued below.

Requirements for software embedded in technicaJ or

socio-technical. systems must be expected to change, because

original requirements were misstated (the probability of

this may perhaps be reduced with a "rapid prototype"),

- the environment evolves and develops new requirements,

the system, once in use, transforms its environment and

thus i tsel f contributes to pr'oduci ng new r·equirements.

Because of the last two of these points, a "rapid"

throw-away prototype cannot be expected to aid in reducing

troubles with changing requirements in the long term.

In view of all the problems cited above it seems appropriate

to drop the analogy with engineering prototypes, to

generalize the concept of a "software prototype"

considerably and to combine its production with an orderly

approach to software production.

In the following, a prototype will designate a preliminary

version of the actual system which exhibits selected

features of the final product.

There may be one or a series of such prototypes, depending

on the needs of the specific project. The prototypes serve

primarily to aid discussions about handling requirements,

i.e. whereas their functional scope may be only a fraction

of the actual product's; they are carefully designed, so as

to illustrate how the system can be embedded into its

working environment.

a different view of

BO 9

This way

software

of using prototypes implies

development, which has been termed the

BO 10

the evaluation of successive prototypes is incorporated into

redesign at the end of each development cycle.

process-oriented approach elsewhere (/FLOYD 81/). Rather

than viewing software development as the production of one

program, by going through several phases and ending up in

"installation" and "maintenance", I prefer to view software

development as a sequence of development cycles {re-)design,

(re-)implementation and (re-)evaluation. It must be

emphasized, that each development cycle is baspd on a

specification from which the program version to be produced

can be derived in an orderly fashion, thus there is no

contradiction between this approach and software engineering

methodology; instead the specification itself is viewed as

an evolving document.

As opposed

communication

to the common phase-oriented approach,

with the user is continuous and feedback from

1) A prototype may coexist with the actual product; it is,

then, a program model of the same specification, less

rigorously treated, and serves as basis of experimental

changes before the program itself gets modified.

2) A prototype may coincide with the actual product: This is

intended in version-oriented software production in

development cycles, as described above. The specification

'is an evolving document; it mayor may not change from

one version to the next.

3) The product itself is a prototype: This arrangement is

relevant to the production of standard software, which is

designed to meet the functional requirements ~f a class

of users, but where handling requirements can be decided

by replugging existing components to fit individual

needs.

The specification serves as a common defining document for

both software producer and user. In particular, the

application model associated with th~ specification must be

phrased 50 as to exhibit the embedment characteristics of

the system in its working environment.

The responsebility of the user consists in providing, in

each development cycle, an evaluation basis for the

prototype which can be derived from the application model.

In the absence of a theory we can still point to no

systematic way of how to do this, but at least the new

framework will allow to progress in small, meaningful steps.

In the context of the modified approach to software

development described above, a prototype can assume one of

the following roles:

no 11

4) Production starts from a prototype: Analysis and redesign

of existing software can be viewed as q special case of

the same approach.

Each of these arrangements may prove a valuable help to aid

communication with the user in certain production settings

and each of these can be combined with orderly programming

methods. How much of a previous version of the program can

be retained to be incorporated into a subsequent version,

must be decided as part of the redesign effort following

each development cycle.

In order not to create false hopes, however, we must

remember that in this manner we have obtained a more

flexible framework - no more. Modern software design and

specification methods do not necessarily facilitate

incremental partial changes, which makes the use of a

specification as an evolving document awkward. We all know

30 12

the evaluation of successive prototypes is incorporated into

redesign at the end of each development cycle.

process-oriented approach elsewhere (/FLOYD 81/). Rather

than viewing software development as the production of one

program, by going through several phases and ending up in

"installation" and "maintenance", I prefer to view software

development as a sequence of development cycles {re-)design,

(re-)implementation and (re-)evaluation. It must be

emphasized, that each development cycle is baspd on a

specification from which the program version to be produced

can be derived in an orderly fashion, thus there is no

contradiction between this approach and software engineering

methodology; instead the specification itself is viewed as

an evolving document.

As opposed

communication

to the common phase-oriented approach,

with the user is continuous and feedback from

1) A prototype may coexist with the actual product; it is,

then, a program model of the same specification, less

rigorously treated, and serves as basis of experimental

changes before the program itself gets modified.

2) A prototype may coincide with the actual product: This is

intended in version-oriented software production in

development cycles, as described above. The specification

'is an evolving document; it mayor may not change from

one version to the next.

3) The product itself is a prototype: This arrangement is

relevant to the production of standard software, which is

designed to meet the functional requirements ~f a class

of users, but where handling requirements can be decided

by replugging existing components to fit individual

needs.

The specification serves as a common defining document for

both software producer and user. In particular, the

application model associated with th~ specification must be

phrased so as to exhibit the embedment characteristics of

the system in its working environment.

The responsebility of the user consists in providing, in

each development cycle, an evaluation basis for the

prototype which can be derived from the application model.

In the absence of a theory we can still point to no

systematic way of how to do this, but at least the new

framework will allow to progress in small, meaningful steps.

In the context of the modified approach to software

development described above, a prototype can assume one of

the following roles:

no 11

4) Production starts from a prototype: Analysis and redesign

of existing software can be viewed as q special case of

the same approach.

Each of these arrangements may prove a valuable help to aid

communication with the user in certain pr-oduction settings

and each of these can be combined with orderly programming

methods. How much of a previous version of the program can

be retained to be incorporated into a subsequent version,

must be decided as part of the r-edesign effort following

each development cycle.

In order not to create false hopes, however, we must

remember that in this manner we have obtained a more

flexible framework no more. Modern software design and

specification methods do not necessarily facilitate

incremental partial changes, which makes the use of a

specification as an evolving document awkwar-d. We all know

30 12

that in practice the discrepancy between programs and

specifications increase with time, thus making the

specification obsolete long before the program is shelved.

We can hope that progress in specification rese~rch will

help to remedy this situation.

On the other hand, we cannot hope that communication with

the user even based on carefully designed prototypes

will significantly improve, unless we find a theory o~

software embedment which is based on solid grounds in both

psychology and the social sciences. Such a theory will help

the software designer to make intelligent choices that can

be justified to the user by rational arguments, rather than

by individual tastes. It will also allow for the systematic

evaluation of prototypes.

Because of the serious concern for the adequacy of software

systems in their working environment, research efforts in

these directions must be considered one important front of

software engineering research.

80 13

References:

FLOYD, C.:

A Process-oriented Approach to Software Development.

in: Systems Architecture,

Proc. 6th ACM European Regional Conf. {1981),

Westbury House 1981, pp. 285-294.

ILIeH, I.:

Tools for Conviviality.

FONTANA/COLLINS 1979.

LEHMANN, M.M.:

Programs; Life Cycles and Laws of Software Evolution.

in: Proc. IEEE, Special Issue of Software Engineering

SEPT. 1980, pp. 1060-1076.

TURSKI, W.:

Some Problems of Software Engineering.

in: HP3000 International Users Group Meeting

OCT. 1981.

B014

that in practice the discrepancy between programs and

specifications increase with time, thus making the

specification obsolete long before the program is shelved.

We can hope that progress in specification rese~rch will

help to remedy this situation.

On the other hand, we cannot hope that communication with

the user even based on carefully designed prototypes

will significantly improve, unless we find a theory o~

software embedment which is based on solid grounds in both

psychology and the social sciences. Such a theory will help

the software designer to make intelligent choices that can

be justified to the user by rational arguments, rather than

by individual tastes. It will also allow for the systematic

evaluation of prototypes.

Because of the serious concern for the adequacy of software

systems in their working environment, research efforts in

these directions must be considered one important front of

software engineering research.

80 13

References:

FLOYD, C.:

A Process-oriented Approach to Software Development.

in: Systems Architecture,

Proc. 6th ACM European Regional Conf. {1981),

Westbury House 1981, pp. 285-294.

ILIeH, I.:

Tools for Conviviality.

FONTANA/COLLINS 1979.

LEHMANN, M.M.:

Programs; Life Cycles and Laws of Software Evolution.

in: Proc. IEEE, Special Issue of Software Engineering

SEPT. 1980, pp. 1060-1076.

TURSKI, W.:

Some Problems of Software Engineering.

in: HP3000 International Users Group Meeting

OCT. 1981.

B014

Presentation Abstract

Thoughts concerning

Presentation Title: Thoughts. concerning "HC?w secur.~__ is your S~stem?~ ._

Author(s): Jorg, Grossl~_r .

Title(s): .-- __J).iP.~ !-=.l~. _

Address: ..Te{lhnic.al_...uni'l.eI.SLt.y ..Be.r.lin_Sek.r......~3 . _

.. ~iln.s.~ei~~fel~ l.~;_ ~09.0 Ber lin 10

11iu\U s.rrur.r
.
tS your §ystt'm ~.

Abstract: (No more than 200 words)

__E.ata secur~_~~. .is .a.!·l._e~enti_~~..~~E...e~.t .. of online computing syst_e_m_s_o _

___l~?t ensure that internal data cannot be accessed by unauthorised

persons and that the file system can be rebuilt in case of a hard-

~_~oftwar~di ~?!?:t~__. ..

In this paper components of the security system of MPE are presented

and analizedo Weak points are.highl~ted and the measures necessary

to j rnprove seCllrj ty are d.isCll..q~eci_

Joerg Groessler; Technical University Berlin

D2 1 D2 2

Presentation Abstract

Thoughts concerning

Presentation Title: Thoughts concerning "H~w secur.~__ is your S~stem?~ _

Author(s): Jar&! Grassl~...;:,.r _

Title(s): .P.iP.~ ~=.ln&_-- _

Address: . Te{lhnic..aLJJni'l.e£SLty __Be.r.l..in_Se.k.r-...-liE3 ----_

iiuUJ .
tS your §ystt'm

Abstract: (No more than 200 words)

___It 1;111~t ensure that internal data cannot be accessed by unauthorised

persons and that the file system can be rebuilt in case of a hard-

In this paper components of the security system of MPE are presented

and analized. Weak points are.highllghted and the measures necessary

to jmproye seCllrity are disc!lssed

Joerg Groessler; Technical University Berlin

D2 1 D2 2

.tt'Uritg .on
",£-tt,sl,m. Introduction Page 1

.tt'Uritg on

.,£-II,sl,ms File Backup Page 2

What data security means

o to be able to rebuild the file systeIn

in case of a disaster

o to restrict access on various type

of data

D2 3

Standard File Backup
Facilities in MPE

o SYSDUMP, RELOAD

(based on Inagne-tic tape)

o STORE, RESTORE (tapes)

o User Logging

(based on disc or tape)

o Private volUIIles (disc)

D2 4

.tt'Uritg .on
",£-tt,sl,m. Introduction Page 1

.tt'Uritg on

.,£-II,sl,ms File Backup Page 2

What data security means

o to be able to rebuild the file systeIn

in case of a disaster

o to restrict access on various type

of data

D2 3

Standard File Backup
Facilities in MPE

o SYSDUMP, RELOAD

(based on Inagne-tic tape)

o STORE, RESTORE (tapes)

o User Logging

(based on disc or tape)

o Private volUIIles (disc)

D2 4

• ~turil9 un
",E-Itvshats File Backup Page 3

.I'ntritg .on

..,£-egsums File Backup Page 4

Problems with
Standard File Backup

o tape read error during RELOAD

system cannot be started

next action "IIlust be RELOAD"

m.easures:
(

change disc packs before RELOAD

~ELOAD with 'ACCOUNTS-only' then

RESTORE the reIIlaining files

(very time consuDling)

o tape read error during RESTORE

all files stored behind error point
cannot be restored

m.easure:

- use RESTORE- or GETFlLE2-prograIn

D2 5

o user logging causes systern overhead

:measure:

consider special logging during

prograID design

Prospects for tape-backup systeIIl

o GETFlLE-facility will be

illlproved

o special STORE-RESTORE system. is

considered (this possibly includes

features like UPDATE and APPEND)

D2 6

• ~turil9 un
",E-Itvshats File Backup Page 3

.I'ntritg .on

..,£-egsums File Backup Page 4

Problems with
Standard File Backup

o tape read error during RELOAD

system cannot be started

next action "IIlust be RELOAD"

m.easures:
(

change disc packs before RELOAD

~ELOAD with 'ACCOUNTS-only' then

RESTORE the reIIlaining files

(very time consuDling)

o tape read error during RESTORE

all files stored behind error point
cannot be restored

m.easure:

- use RESTORE- or GETFlLE2-prograIn

D2 5

o user logging causes systern overhead

:measure:

consider special logging during

prograID design

Prospects for tape-backup systeIIl

o GETFlLE-facility will be

illlproved

o special STORE-RESTORE system. is

considered (this possibly includes

features like UPDATE and APPEND)

D2 6

.~nsritg on

..,£-ftysums Restrictions Page 5
.~t'Uritg on
_,£-Itysums Restrictions Page 8

Restrictions In Data Access

o account-system (users, groups,

accounts with different passwords)

o user capabilities (8M, PM, PH, etc.)

o filena:mes with passwords

o privileged files

o file access capabilities on

user/group- and file-level

o RELEASE/SECURE-coInrnands

D2 7

Possible seven Ways
to crack the System

1. FIELD.SUPPORT

measure:

Password on SUPPORT-account

or rem.ove SUPPORT-account

from. the system

2. Jobs in PUB.SYS-group

:measure:

password on job-file or

put job into other SYS-group

3. LISTUSER @.@;LP

IDeasure:

log-on-UDC or perfor:rn cODlIIland

not in PUB.SYS-group

02 8

.~nsritg on

..,£-ftysums Restrictions Page 5
.~t'Uritg on
_,£-Itysums Restrictions Page 8

Restrictions In Data Access

o account-system (users, groups,

accounts with different passwords)

o user capabilities (8M, PM, PH, etc.)

o filena:mes with passwords

o privileged files

o file access capabilities on

user/group- and file-level

o RELEASE/SECURE-coInrnands

D2 7

Possible seven Ways
to crack the System

1. FIELD.SUPPORT

measure:

Password on SUPPORT-account

or rem.ove SUPPORT-account

from. the system

2. Jobs in PUB.SYS-group

:measure:

password on job-file or

put job into other SYS-group

3. LISTUSER @.@;LP

IDeasure:

log-on-UDC or perfor:rn cODlIIland

not in PUB.SYS-group

02 8

.~naritv Oft

_pE-·ustna. Restrictions Paae 7

4. Open all files of the systelD.

IIleasure:

special analysis of system. logging

5. Read terIDinal buffers (PM-capability
needed)

Ineasure:

relIlove PM-capability

6. Reading tanes

m.easure:

keep track of all tape-transactions
also using systelIl logging

7. FOPEN on terIninals

IIleasure: 11

8. ...

D2 9

.~naritv Oft

_pE-·ustna. Restrictions Paae 7

4. Open all files of the systelD.

IIleasure:

special analysis of system. logging

5. Read terIDinal buffers (PM-capability
needed)

Ineasure:

relIlove PM-capability

6. Reading tanes

m.easure:

keep track of all tape-transactions
also using systelIl logging

7. FOPEN on terIninals

IIleasure: 11

8. ...

D2 9

THE HP 2680 LASER PRINTING SYSTEM

(OVERVIEW)

by Jim Langley
HP 2680A R&D Project Manager
March 15, 1981

D3 1

Laser Printer Paper, July 14, 1981

Abstract

This paper describes the HP 2680A Laser Printing System from the
perspective of the Hp·3000 programmer. The printer hardware is first
described, then its features are explained. Concepts of downloadable
character sets, electronic forms and logical pages are discussed. The
implementation and use of these printer features via the system
software is also covered. The impact of the laser printer in a
distributed computing environment is briefly explored.

Overview

The HP 2680A is Hewlett Packards first page printer. It is based on an
electrophotographic process which was licensed from Canon, a Japanese
firm. The printer was designed and is manufactured by the Boise
division in Boise Idaho.

Several key objectives were established at the start of the program.
Reliability, flexibility, features matched to 3000 user needs, simple
powerfail and paper jam recovery, very low CPU overhead, and the
ability to access the printer and its features from existing programs
without modification became the primary objectives of the development
effort.

From the beginning the printer was designed as an extension of MPE, not
an added on peripheral. This tight coupling yielded a fully integrated
printing system that is fully supported by the MPE file system and
spooler. In ~ddition a powerful subsystem exists which allows complete
character set and forms design. Flexible page formatting and a full
complement of intrinsics provide access to all printer features.

By fully integrating the printer into the 3000 simple and reliable
power fail and paper jam recovery is realized. All these benefits were
achieved while the CPU overhead to drive the printer was reduced an
order of magnitude from that required to drive conventional printers at
comparable data rates.

Hardware

The 2680A is approximately 5.5 feet long, 2.5 feet deep and 4 feet
high. It weights about 875 pounds. Power requirements are 4500 watts
when printing. Throughput is 45 8.5 by 11 inch pages per minute. The
equivalent lines per minute speed is 2900 lpm ranging up to 12000 lpm
in reduction mode.

The paper path is short and readily accessible to the operator. It
features a powered paper stacker. The fusing system is radiant,
eliminating any pressure or high temperature rollers. Nothing contacts
the upper side of the paper once the image is transferred from the drum
to the paper, contributing to excellent reliability. The web is pulled
by a programmable torque motor on the output tractors, and paper motion
is gated by stepper motor driven input tractors. A solenoid powered
retraction mechanism pulls the paper away from the drum when the seam

D3 2

THE HP 2680 LASER PRINTING SYSTEM

(OVERVIEW)

by Jim Langley
HP 2680A R&D Project Manager
March 15, 1981

D3 1

Laser Printer Paper, July 14, 1981

Abstract

This paper describes the HP 2680A Laser Printing System from the
perspective of the HP3000 programmer. The printer hardware is first
described, then its features are explained. Concepts of downloadable
character sets, electronic forms and logical pages are discussed. The
implementation and use of these printer features via the system
software 1S also covered. The impact of the laser printer in a
distributed computing environment is briefly explored.

Overview

The HP 2680A is Hewlett Packards first page printer. It is based on an
electrophotographic process which was licensed from Canon, a Japanese
firm. The printer was designed and is manufactured by the Boise
division in Boise Idaho.

Several key objectives were established at the start of the program.
Reliability, flexibility, features matched to 3000 user needs, simple
powerfail and paper jam recovery, very low CPU overhead, and the
ability to aecess the printer and its features from existing programs
without modification became the primary objectives of the development
effort.

From the beginning the printer was designed as an extension of MPE, not
an added on peripheral. This tight coupling yielded a fully integrated
printing system that is fully supported by the MPE file system and
spooler. In ~ddition a powerful subsystem exists whieh allows complete
character set and forms design. Flexible page formatting and a full
complement of intrinsics provide access to all printer features.

By fully integrating the printer into the 3000 simple and reliable
power fail and paper jam recovery is realized. All these benefits were
achieved while the CPU overhead to drive the printer was reduced an
order of magnitude from that required to drive conventional printers at
comparable data rates.

Hardware

The 2680A is approximately 5.5 feet long, 2.5 feet deep and 4 feet
high. It weights about 875 pounds. Power requirements are 4500 watts
when printing. Throughput is 45 8.5 by 11 inch pages per minute. The
equivalent lines per minute speed is 2900 lpm ranging up to 12000 lpm
in reduction mode.

The paper path is short and readily accessible to the operator. It
features a powered paper stacker. The fusing system is radiant,
eliminating any pressure or high temperature rollers. Nothing contacts
the upper side of the paper once the image is transferred from the drum
to the paper, contributing to excellent reliability. The web is pulled
by a programmable torque motor on the output tractors, and paper motion
is gated by stepper motor driven input tractors. A solenoid powered
retraction mechanism pulls the paper away from the drum when the seam

D3 2

Laser Printer Paper, July 14, 1981

on the drum comes around. The input paper platform acts as a splice
table; a vacuum is used to hold the paper onto the table when splicing
a new box of paper onto the end of the previous box. The paper path
can accomodate various widths up to 12.5 inches and lengths up to 11
inches. A width sensor on the input tractors allows the printer to
energize only the correct width in the preheater section ot the tuser.
Paper which is heated produces odors, which are trapped and oxidized in
replacable tilter cartridges.

The image torming process is electrophotographic. The heart of the
system is a photoconductive drum about 19 inches in circumference and
14 inches long. The drum is coated with cadmiwu sulfide and wrapped in
mylar for protection. The drum is uniformly erased and then charged to
several hundred volts at the first station. The laser is then scanned
across the drum perpendicular to the direction of rotation. The beam
is modulated to give 180 dots per inch resolution. There are 2048.dots
in one scan line, giving a printable area 11.38 inches across. The
drum rotation allows the sweeping laser beam to cover an area 11 inches
long. The circular dot is about .008 inches in diameter on a grid
.0055 inches square. When the laser beam hits the drum the voltage is
depleted. Next the drum rotates past a cloud of fine tlour-like black
plastic. The plastic toner is attracted to areas of no voltage by
electrostatic forces. The pattern traced by the scanning laser beam is
now visable ,as a sharp black image on the drum. Finally the paper and
the drum are brought together for about 1 inch of tangential contact.
The paper is correctly charged to firmly attract the toner off the
drum. The small amount of residual toner not deposited on the paper is
then scraped off of the drum by a urethane wiper blade and collected by
a vacuum system. As the drum turns these processes are executed
s~ltaneously at different stations around the drum.

In order to achieve high print quality over a wide range of ambient
conditions the HP 2680A has two closed loop control systems. The
electrostatic control system monitors the potentials on the drum just
after the laser station. The voltage is measured both where the laser
exposed the drum and where it did not. The microprocessor taking the
measurements then controls several programmable power supplys to
maintain the correct drum potentials. The readings'and ajustments are
made once per drum rotation. The electrostatic closed loop compensates
tor variations between replacement drums, drum degradation over t~e,

humidity, temperature and altitude variations, and toner mixture
tatigue.

A second closed loop system monitors the developed image on the drum to
control print density on the page. By varying the amount of toner in
the developer assembly which brushes the toner mixture across the drum
the amount of toner on the drum and hence the final print darkness on
the paper can be controlled.

The mechanical features of the printer were designed to be simple and
reliable, and the operator functions are easy to learn and execute. A
vacuum system in the printer contributes to cleanliness. It is used to
recover toner' wiped off the drum. It also is used for the splice table
and to maintain good contact between the preheater pad in the fuser and

D3 3

Laser Printer Paper, July 14, 1981

the paper. The operator loads a fresh kilogram of toner into the
machine about once every eight hours of printing. Unused toner is
collected with the vacuum system, trapped centrifigally and deposited
in a disposable bottle which is replaced every couple of days. A new
box of paper is loaded every hour. The new box can be conveniently
spliced onto the end of the previous box or the new box can" be easily
loaded with the THREAD button.

There are two microprocessors in the HP 2680A. One is a 16 bit HP
proprietary 80S device which controls all machine functions such as th:
operator keyboard and alphanumeric display, the paper path, the closed
loop systems and internal diagnostics. The second processor is a high
speed bi-polar bit slice processor which communicates with the 3000 and
performs all processing on the data stream and ultimately modulating
the laser beam to form the correct images at the proper place on the
drum. This processor uses 256k bytes of RAM, with a second 256K
available as an option. Approximately 40K bytes of this memory is used
for tables and buffers, the remaining memory is partioned dynamically
during each job for character sets, forms, and page buffering.

Extensive internal diagnostics constantly monitor the state of the
machine, alerting the operator if a service engineer should'be called.
When arriving on site the service engineer can use additional
internally contained diagnostics to troubleshoot any problems. A very
complete self test program is available which prints many important
parameters on the machine itself. Data such as serial number, drum
rotations since last PM, firmware datecodes, and all operating values
are labeled and printed. The printer contains a limited amount of
nonvolatile memory.

PrOgramming Features

Page printers, even with their inherent benefits of high thruput, low
noise and exceptional print quality are rarely viable as simple print
and space devices because of their higher cost. However the HP 2680A
is a cost effective replacement for many line printers. This is
because of the flexibility and features of the printer. Electronic
forms allows the inventory of costly specialty forms to be eliminated.
Long lead times and form modifiation costs are reduced to a few hours
on a terminal. Definable character sets allows the ~rinter to be used
in a wide variety of industries and applications where conventional
printers are useless. In addition the print quality and crispness in
conjunction with the 8.5 by 11 inch paper size means HP2680A output
never needs to be copied or reduced before general distribution.

The HP2680A implements a concept called logical pages. A physical page
is a sheet of paper bounded by perforations. A physical page can be
divided into up to 32 rectangular areas called logical pages. Logical
pages can overlap. A programmatic command to page eject moves the
print to the next logical page. If all logical pages have been used,
the printer goes to the first logical page on the next sheet of paper.
Each logical page has several attributes such as an associated vertical
format control (VFC) table, a default line spacing, and one of four
orientations. In addition each logical page can have up to two forms

D3 4

Laser Printer Paper, July 14, 1981

on the drum comes around. The input paper platform acts as a splice
table; a vacuum is used to hold the paper onto the table when splicing
a new box of paper onto the end of the previous box. The paper path
can accomodate various widths up to 12.5 inches and lengths up to 11
inches. A width sensor on the input tractors allows the printer to
energize only the correct width in the preheater section ot the fuser.
Paper which is heated produces odors, which are trapped and oxidized in
replacable filter cartridges.

The image forming process is electrophotographic. The heart of the
system is a photoconductive drum about 19 inches in circumference and
14 inches long. The drum is coated with cadmium sulfide and wrapped in
mylar for protection. The drum is uniformly erased and then charged to
several hundred volts at the first station. The laser is then scanned
across the drum perpendicular to the direction of rotation. The beam
is modulated to give 180 dots per inch resolution. There are 2048.dots
in one scan line, giving a printable area 11.38 inches across. The
drum rotation allows the sweeping laser beam to cover an area 11 inches
long. The circular dot is about .008 inches in diameter on a grid
.0055 inches square. When the laser beam hits the drum the voltage is
depleted. Next the drum rotates past a cloud of fine flour-like black
plastic. The plastic toner is attracted to areas of no voltage by
electrostatic forces. The pattern traced by the scanning laser beam is
now visable as a sharp black image on the drum. Finally the paper and
the drum are brought together for about 1 inch of tangential contact.
The paper is correctly charged to firmly attract the toner off the
drum. The small amount of res idual toner not depos i ted on the paper is
then scraped off of the drum by a urethane wiper blade and collected by
a vacuum system. As the drum turns these processes are executed
s~ltaneously at different stations around the drum.

In order to achieve high print quality over a wide range of ambient
conditions the HP 2680A has two closed loop control systems. The
electrostatic control system monitors the potentials on the drum just
after the laser station. The voltage is measured both where the laser
exposed the drum and where it did not. The microprocessor taking the
measurements then controls several programmable power supp1ys to
maintain the correct drum potentials. The readings' and ajustments are
made once per drum rotation. The electrostatic closed loop compensates
for variations between replacement drums, drum degradation over time,
humidity, temperature and altitude variations, and toner mixture
fatigue.

A second closed loop system monitors the developed image on the drum to
control print density on the page. By varying the amount of toner in
the developer assembly which brushes the toner mixture across the drum
the amount of toner on the drum and hence the final print darkness on
the paper can be controlled.

The mechanical features of the printer were designed to be simple and
reliable, and the operator functions are easy to learn and execute. A
vacuum system in the printer contributes to cleanliness. It is used to
recover toner" wiped off the drum. It also is used for the splice table
and to maintain good contact between the preheater pad in the fuser and

D3 3

Laser Printer Paper, July 14, 1981

the paper. The operator loads a fresh kilogram of toner into the
machine about once every eight hours of printing. Unused toner is
collected with the vacuum system, trapped centrifigally and deposited
in a disposable bottle which is replaced every couple of days. A new
box of paper is loaded every hour. The new box can be conveniently
spliced onto the end of the previous box or the new box can· be easily
loaded with the THREAD button.

There are two microprocessors in the HP 2680A. One is a 16 bit HP
proprietary 80S device which controls all machine functions such as th:
operator keyboard and alphanumeric display, the paper path, the closed
loop systems and internal diagnostics. The second processor is a high
speed bi-polar bit slice processor which communicates with the 3000 and
performs all processing on the data stream and ultimately modulating
the laser beam to form the correct images at the proper place on the
drum. This processor uses 256k bytes of RAM, with a second 256K
available as an option. Approximately 40K bytes of this memory is used
for tables and buffers, the remaining memory is partioned dynamically
during each job for character sets, forms, and page buffering.

Extensive internal diagnostics constantly monitor the state of the
machine, alerting the operator if a service engineer shou1d'be called.
When arriving o~ site the service engineer can use additional
internally contained diagnostics to troubleshoot any problems. A very
complete self test program is available which prints many important
parameters on the machine itself. Data such as serial number, drum
rotations since last PM, firmware datecodes, and all operating values
are labeled and printed. The printer contains a limited amount of
nonvolatile memory.

PrOgramming Features

Page printers, even with their inherent benefits of high thruput, low
noise and exceptional print quality are rarely viable as simple print
and space devices because of their higher cost. However the HP 2680A
is a cost effective replacement for many line printers. This is
because of the flexibility and features of the printer. Electronic
forms allows the inventory of costly specialty forms to be eliminated.
Long lead times and form modifiation costs are reduced to a few hours
on a terminal. Definable character sets allows the ~rinter to be used
in a wide variety of industries and applications where conventional
printers are useless. In addition the print quality and crispness in
conjunction with the 8.5 by 11 inch paper size means HP2680A output
never needs to be copied or reduced before general distribution.

The HP2680A implements a concept called logical pages. A physical page
is a sheet of paper bounded by perforations. A physical page can be
divided into up to 32 rectangular areas called logical pages. Logical
pages can overlap. A programmatic command to page eject moves the
print to the next logical page. If all logical pages have been used,
the printer goes to the first logical page on the next sheet of paper.
Each logical page has several attributes such as an associated vertical
format control (VFC) table, a default line spacing, and one of four
orientations. In addition each logical page can have up to two forms

D3 4

Thirty two
s imultaneously •

Laser Printer Paper. July lit. 1981

associated with it. When the logical page is printed the torms are
automaticallY' overlaid by the printer. Several logical pages can share
the same form and WC. the printer will automatically relocate it to
the correct origin for each logical page. Logical pages are a powerful
concept which particularly supports existing programs. By defining 'the
logical page format an existing -job can have its output reduced two to
1 or four to 1 or rotated without even recompiling the job.
Additionally a job which curren'tly uses preprinted forms ca:n be
switched to run on the laser printer without modification. The
existing form is converted to electronic format and then the
corrspondiDg logical page is defined to use the form. The job is then
printed on the laser printer and the data is merged with the form and
printed.

The electronic forms capability is designed tor maximum tlexibility.
Each form can contain horizontal and vertical lines ot varying
thicknesses. text written with any number of fonts in any of the tour
basic directions t plus areas - or boxes of variable shading. Form
elements can be positioned anywhere and are not restricted to certain
character positions on the page as a "draw set" is. The printer can
support 32 different forms simultaneously. Each logical page can use
up to 2 torms as long as the total does not exceed 30. Addit ionally
each phys ical page can be overlaid with up to 2 torms. Enough memory
and processing power exists to create a form which is a dot per bit
image of an 8.5 by 11 inch sheet of paper. Forms are easily created
tor the printer using an interactiv~ program called IDSFORM.

The BP2680A printer accepts user defined character sets. Each
character set contains from 1 to 128 characters. Each character has an
associated cell of a specified size which contains any dot per bit
representation desired. The spacing between characters and between
lines can be set to any value. A character set can print in any of the
four directions. Proportional character sets are supported. In this
case each character has a parameter describing how far to move over
after printing each character. The printer also allows the cells to be
printed in any relationship to the current "pen" position. This allows
centered symbols, or common ba~e lines so different character sets can
be mixed properly on a single line. When us ing more than one character
set a primary and secondary set are defined and then selected with
either shift in, shift out control codes or by setting the eigth bit of
the ASCII code. HP supplies a large number of character sets of
various fonts and sizes. In addition character sets and logos can be
created interactively by terminal users via IDSCHAR.

user definable VFC's are supported by the prin'ter
They are easily created with the IF82680 program.

One additional feature was implemented to allow easy emulation of
multi-part forms. When activated each physical page of data will be
repeated up to eight times by the printer. As each copy of the page is
printed, the printer will automatically overlay any two forms on the
page. In this manner the same data can be repeated up to eight times,
but each copy can be individually addressed to shipping, purchasing,
order processing, etc.

D3 5

Laser Printer Paper, July lit, 1981

These basic data structures provide a wide range of user features.
When combined with the ability to place cells anywhere on the page and
overlap at will plUS the p~ocessing power to handle over 20,000
charac'ters on an 8.5 by 11 inch sheet a trulY unique ~rinter results.
The maximum number of cells on any raster scan is 255. As the cells
get larger. fewer can be printed s imultaneously. Character set
switching, forms overlay and other features all occur at speed.

The prin'ter •s memory is allocated by a memory manager on a j,ob by job
basis. ApproximatelY 40K bytes are used by the printer, the remaining
memory is allocated to character sets. forms, VFC's and page bUffering.
As IllUch memory as required is allocated to the user's character sets,
torms and WC •s • All remaining memory is used to buffer pages in an
intermediate linked list structure. More page buffering insures that
pages are printed at speed. Insufficient page buffering causes a lower
thruput rate. The programmer can add or delete character sets, forms
and VFCls during th~ job.

Environment Files

All character sets. forms t VFC I S and the logical page table and the
multicopy torms table are placed in an environment file by a terminal
\lser running IF82680. This tile is then sent to the printer at the
start of a job automatically. This allows the output of a job to
change appearance by changing the environment file or portions ot the
environment file. For example it the character set in an environment
file is changed from elite" to pica the next job to use the file will
have output printed in pica. By s~ly changing the logical page
description and substituting a smaller character set a job can be made
'to print in a 2 to 1 or It to 1 reduction mode. BP supplies several
~standard environment files to cover portrait mode pica and elite,
landscape 132 column printer emulation, two to one and four to one
reduction. The user can easily create additional environment files.

For Dew application programs the full power of the printer is available
through HP supplied intrinsics. The intrinsics allow features such as
writing a s'tring to a named field on an electronic form. The form can
be redesigned and rearranged without modification of any programs using
the form. The data will automatically be placed in the correct field
wherever it is on the page. Intrinsics also al19w the pen to be- moved,
new primary and secondary character sets to be selected, any logical
page to be turned on or off and other similar features.

System Software

Extensive system application software allows- creation of character
sets, forms, VFC's as well as the definition of logical pages and
multicopy forms tables.

IDSCRAR provides menu driven interactive creation of character sets on
graphic terminals. The program can emulate various shaped dots and
grid spacings. The laser printer has round dots about 8 mils in
diameter on a 5.5 mil grid. IDSCHAR also suppprts a digitizer to allow

D3 6

Thirty two
s imultaneously •

Laser Printer Paper. July lit. 1981

associated with it. When the logical page is printed the torms are
automaticallY' overlaid by the printer. Several logical pages can share
the same form and WC. the printer will automatically relocate it to
the correct origin for each logical page. Logical pages are a powerful
concept which particularly supports existing programs. By defining 'the
logical page format an existing -job can have its output reduced two to
1 or four to 1 or rotated without even recompiling the job.
Additionally a job which curren'tly uses preprinted forms ca:n be
switched to run on the laser printer without modification. The
existing form is converted to electronic format and then the
corrspondiDg logical page is defined to use the form. The job is then
printed on the laser printer and the data is merged with the form and
printed.

The electronic forms capability is designed tor maximum tlexibility.
Each form can contain horizontal and vertical lines ot varying
thicknesses. text written with any number of fonts in any of the tour
basic directions t plus areas - or boxes of variable shading. Form
elements can be positioned anywhere and are not restricted to certain
character positions on the page as a "draw set" is. The printer can
support 32 different forms simultaneously. Each logical page can use
up to 2 torms as long as the total does not exceed 30. Addit ionally
each phys ical page can be overlaid with up to 2 torms. Enough memory
and processing power exists to create a form which is a dot per bit
image of an 8.5 by 11 inch sheet of paper. Forms are easily created
tor the printer using an interactiv~ program called IDSFORM.

The BP2680A printer accepts user defined character sets. Each
character set contains from 1 to 128 characters. Each character has an
associated cell of a specified size which contains any dot per bit
representation desired. The spacing between characters and between
lines can be set to any value. A character set can print in any of the
four directions. Proportional character sets are supported. In this
case each character has a parameter describing how far to move over
after printing each character. The printer also allows the cells to be
printed in any relationship to the current "pen" position. This allows
centered symbols, or common ba~e lines so different character sets can
be mixed properly on a single line. When us ing more than one character
set a primary and secondary set are defined and then selected with
either shift in, shift out control codes or by setting the eigth bit of
the ASCII code. HP supplies a large number of character sets of
various fonts and sizes. In addition character sets and logos can be
created interactively by terminal users via IDSCHAR.

user definable VFC's are supported by the prin'ter
They are easily created with the IF82680 program.

One additional feature was implemented to allow easy emulation of
multi-part forms. When activated each physical page of data will be
repeated up to eight times by the printer. As each copy of the page is
printed, the printer will automatically overlay any two forms on the
page. In this manner the same data can be repeated up to eight times,
but each copy can be individually addressed to shipping, purchasing,
order processing, etc.

D3 5

Laser Printer Paper, July lit, 1981

These basic data structures provide a wide range of user features.
When combined with the ability to place cells anywhere on the page and
overlap at will plUS the p~ocessing power to handle over 20,000
charac'ters on an 8.5 by 11 inch sheet a trulY unique ~rinter results.
The maximum number of cells on any raster scan is 255. As the cells
get larger. fewer can be printed s imultaneously. Character set
switching, forms overlay and other features all occur at speed.

The prin'ter •s memory is allocated by a memory manager on a j,ob by job
basis. ApproximatelY 40K bytes are used by the printer, the remaining
memory is allocated to character sets. forms, VFC's and page bUffering.
As IllUch memory as required is allocated to the user's character sets,
torms and WC •s • All remaining memory is used to buffer pages in an
intermediate linked list structure. More page buffering insures that
pages are printed at speed. Insufficient page buffering causes a lower
thruput rate. The programmer can add or delete character sets, forms
and VFCls during th~ job.

Environment Files

All character sets. forms t VFC I S and the logical page table and the
multicopy torms table are placed in an environment file by a terminal
\lser running IF82680. This tile is then sent to the printer at the
start of a job automatically. This allows the output of a job to
change appearance by changing the environment file or portions ot the
environment file. For example it the character set in an environment
file is changed from elite" to pica the next job to use the file will
have output printed in pica. By s~ly changing the logical page
description and substituting a smaller character set a job can be made
'to print in a 2 to 1 or It to 1 reduction mode. BP supplies several
~standard environment files to cover portrait mode pica and elite,
landscape 132 column printer emulation, two to one and four to one
reduction. The user can easily create additional environment files.

For Dew application programs the full power of the printer is available
through HP supplied intrinsics. The intrinsics allow features such as
writing a s'tring to a named field on an electronic form. The form can
be redesigned and rearranged without modification of any programs using
the form. The data will automatically be placed in the correct field
wherever it is on the page. Intrinsics also al19w the pen to be- moved,
new primary and secondary character sets to be selected, any logical
page to be turned on or off and other similar features.

System Software

Extensive system application software allows- creation of character
sets, forms, VFC's as well as the definition of logical pages and
multicopy forms tables.

IDSCRAR provides menu driven interactive creation of character sets on
graphic terminals. The program can emulate various shaped dots and
grid spacings. The laser printer has round dots about 8 mils in
diameter on a 5.5 mil grid. IDSCHAR also suppprts a digitizer to allow

D3 6

Laser Printer Paper, July 14, 1981

easy input of character or logo outlines. The outline can then be
scaled and presented superimposed on the cells grid for easy filling
in. IDSCHAR supports lines, arcs, rectangular area fills plus scaling
and rotation. Special logo files are supported for use on forms. An
experienced graphics designer can create a complex logo in 1 to 4
hours. Generating a high quality character set takes about 40 hours.

IDSFORM provides menu driven interactive forms creation of forms on
graphics terminals. It supports horizontal and vertial lines of 3
different thicknesses. Boxes can be shaded from clear to black.
IDSFORM supports subforms which can be defined and then easily Imoved
around both on the page and between different forms. Windows describe
boxes consisting of headers and data fields. Data fields can be
labelled to allow symbolic access allowing the form to be changed
around without modifying the program. The 1040 tax form was perfectly
emulated in 14 hours by an experienced user of IDSFORM.

IFS2680 is the formatting program which bundles up different character
sets, forms, VFC's and a logical page table into an environment file.
IFS2680 also is the program which constructs VFC's and the logical page
table for the user. Overall job parameters such as the number of
copies of each page desired and the multicopy forms table are specified
via IFS2680. HP supplied standard environments are available from
IFS2680 either as they stand or as a base to begin creating a unique
environment for a special job.

A contributed program called TR2680 which interprets commands imbedded
in ASCII files is available. Text editors can be used to prepare memos
and reports with the imbedded commands ~o utilize HP2680A features such
as multiple character sets, forms overlay, pen moves etc.

Once an environment file is created it is specified with a new option
in the file equation :FILE PRINT;DEV=PP;'ENV=FOURT01. The environment
file is automatically placed in the spool file before the data. This
allows existing programs to use all of the features accessible via
environment files without modification.

Power fail and jam recovery are very simple and reliable. Non volatile
memory exists in the printer. When power resumes the 3000 retransmits
the job from the beginning at high speed. The printer processes the
data and resumes printing at the correct point in the job. The only
operator invention required is to insure top of form is correctly
aligned and push run. Paper jams are similar. If no paper was damaged
the job can be resumed without system intervention. If the operator
wishes to backup several pages the spooler is suspended, the jam
cleared, and the command :RESUMESPOOL LDEV#; BACK 5 PAGES is used.
This allows backing up or skipping forward an arbitrary number of
pages.

Another unique concept introduced with the laser printer is the error
trailer. When a program executes an illegal function such as selecting
a missing character set, moving the pen off of the logical page or
trying to print a character off of the logical page the printer relays
this information to the 3000. This information is then printed out at

D3 7

Laser Printer Paper, July 14, 1981

the end of the job before the trailer is printed. The error trailer
describes the error in english, along with the record number and actual
page number where the error occured.

Distributed Printing

MRJE has been modified to support HP2680 environment files. If the
device class is PP for page printer and the forms field is not empty
then the forms identifier is used to locate an environment file.

RJE has an option which allows the translator procedure to process each
record when received by the 3000. This allows complete access to the
printers features from a mainframe.

One internal test site is running a Series 30 to front end the laser
printer. They are printing over 130,000 pages per month. One half of
the output is generated by an Amdahl 470 and sent at 9600 baud via
MRJE.

At 2900 lpm the printer taxes the performance of most data
communication systems. System configuration, CPU overhead and data
format determine the printer utilization. The range can be from 10% to
100~. We are currently quantifying printer performance in these areas
and welcome user inputs and insights.

The HP2680A laser printing system provides a cost effective solution to
many computer output problems for HP3000 users. The reliability and
servicability contribute to its low cost of less than 4 cents per page
at 200K pages per month. The unmatched features provide capabilities
unjque in the industry. The complete software appliation package
allows immediate turnkey solutions with no programming. The impact of
the laser printer in the distributed network is significant and allows
non HP systems to utilize the printer as well as enhancing distributed
HP systems.

D3 8

Laser Printer Paper, July 14, 1981

easy input of character or logo outlines. The outline can then be
scaled and presented superimposed on the cells grid for easy filling
in. IDSCHAR supports lines, arcs, rectangular area fills plus scaling
and rotation. Special logo files are supported for use on forms. An
experienced graphics designer can create a complex logo in 1 to 4
hours. Generating a high quality character set takes about 40 hours.

IDSFORM provides menu driven interactive forms creation of forms on
graphics terminals. It supports horizontal and vertial lines of 3
different thicknesses. Boxes can be shaded from clear to black.
IDSFORM supports subforms which can be defined and then easily Imoved
around both on the page and between different forms. Windows describe
boxes consisting of headers and data fields. Data fields can be
labelled to allow symbolic access allowing the form to be changed
around without modifying the program. The 1040 tax form was perfectly
emulated in 14 hours by an experienced user of IDSFORM.

IFS2680 is the formatting program which bundles up different character
sets, forms, VFC's and a logical page table into an environment file.
IFS2680 also is the program which constructs VFC's and the logical page
table for the user. Overall job parameters such as the number of
copies of each page desired and the multicopy forms table are specified
via IFS2680. HP supplied standard environments are available from
IFS2680 either as they stand or as a base to begin creating a unique
environment for a special job.

A contributed program called TR2680 which interprets commands imbedded
in ASCII files is available. Text editors can be used to prepare memos
and reports with the imbedded commands ~o utilize HP2680A features such
as multiple character sets, forms overlay, pen moves etc.

Once an environment file is created it is specified with a new option
in the file equation :FILE PRINT;DEV=PP;'ENV=FOURT01. The environment
file is automatically placed in the spool file before the data. This
allows existing programs to use all of the features accessible via
environment files without modification.

Power fail and jam recovery are very simple and reliable. Non volatile
memory exists in the printer. When power resumes the 3000 retransmits
the job from the beginning at high speed. The printer processes the
data and resumes printing at the correct point in the job. The only
operator invention required is to insure top of form is correctly
aligned and push run. Paper jams are similar. If no paper was damaged
the job can be resumed without system intervention. If the operator
wishes to backup several pages the spooler is suspended, the jam
cleared, and the command :RESUMESPOOL LDEV#; BACK 5 PAGES is used.
This allows backing up or skipping forward an arbitrary number of
pages.

Another unique concept introduced with the laser printer is the error
trailer. When a program executes an illegal function such as selecting
a missing character set, moving the pen off of the logical page or
trying to print a character off of the logical page the printer relays
this information to the 3000. This information is then printed out at

D3 7

Laser Printer Paper, July 14, 1981

the end of the job before the trailer is printed. The error trailer
describes the error in english, along with the record number and actual
page number where the error occured.

Distributed Printing

MRJE has been modified to support HP2680 environment files. If the
device class is PP for page printer and the forms field is not empty
then the forms identifier is used to locate an environment file.

RJE has an option which allows the translator procedure to process each
record when received by the 3000. This allows complete access to the
printers features from a mainframe.

One internal test site is running a Series 30 to front end the laser
printer. They are printing over 130,000 pages per month. One half of
the output is generated by an Amdahl 470 and sent at 9600 baud via
MRJE.

At 2900 lpm the printer taxes the performance of most data
communication systems. System configuration, CPU overhead and data
format determine the printer utilization. The range can be from 10% to
100~. We are currently quantifying printer performance in these areas
and welcome user inputs and insights.

The HP2680A laser printing system provides a cost effective solution to
many computer output problems for HP3000 users. The reliability and
servicability contribute to its low cost of less than 4 cents per page
at 200K pages per month. The unmatched features provide capabilities
unjque in the industry. The complete software appliation package
allows immediate turnkey solutions with no programming. The impact of
the laser printer in the distributed network is significant and allows
non HP systems to utilize the printer as well as enhancing distributed
HP systems.

D3 8

RATFOR FORTRAN/3000 + ELEMENTS OF STRUCTURED PROGRAMMING

RATFOR FORTRAN/3000 + Elements o~tructured Programming

Bjorn Dreher

Institut fur Kernphysik der Universitat

0-6500 Mainz, West-Germany

Bjorn Dreher

Institut fUr Kernphysik der Universitat

D 6500 Mainz, West-Germany

D4 1

1. Introduct~on

RATFOR is a language introduced by Kernighan and Plauger (1] based on

F'ORTRAN-66. In their book "Software Tools" they present a preprocessor

that translates RATFOR into standard FORTRAN-IV.

In thlS paper 1 w~ll first show why RATFOR is a very useful addition

to other common languages and what we are using it for in Nuclear

Physics Research and System Programming.

In chapter 3 the RATFOR syntax will be shortly described and some

examples will be glven.

In the forth chapter I will present our implementation of a RATFOR

preprocessor and how to use it on an HP3000 system.

Conclusions about our exper~ence with RATFOR will be drawn in chapter

s.

2. Why use RATFOR as an additional language

The pr~mary reason for the authors of RATFOR was ~o make FORTRAN a

better programming language. With RATFOR it is possible to write much

more readable and better structured programs. This is achieved by pro

viding addltional conlrol structures that are not available in

FORTRAN-66, and by improving the "cosmetics" of the language.

The added control structures for better structur~ng of programs are

IF-ELSE, WHILt:-UU, K.t:~t:A·r-UN·r·lL, r"'uR loops, DO loops, d.m] oth~L~. An

INCLUDE statement allows the lnclusion of predefin~d code or defini

tion sequences at certain points. The cosmetics is improved by allow

1ng the programs to be in free-form. The end of the l~ne marks usually

D4 2

RATFOR FORTRAN/3000 + ELEMENTS OF STRUCTURED PROGRAMMING

RATFOR FORTRAN/3000 + Elements of Structured Programming

Bjorn Dreher

Institut fur Kernphysik der Universitat

D-6500 Mainz, West-Germany

Bjorn Dreher

Institut fUr Kernphysik der Universitat

D 6500 Mainz, West-Germany

D4 1

1. Introductl.on

RATFOR is a language introduced by Kernighan and Plauger (1] based on

F'ORTRAN-66. In their book "Software Tools" they present a preprocessor

that translates RATFOR into standard FORTRAN-IV.

In th1s paper I wl.ll first show why RATFOR is a very useful addition

to other common languages and what we are using it for in Nuclear

Physics Research and System programming.

In chapter the RATFOR syntax will be shortly described and some

examples will be g1ven.

In the forth chapter I will present our implementation of a RATFOR

preprocessor and how to use it on an HP3000 system.

Conclusions about our exper1ence with RATFOR will be drawn in chapter

s.

2. Why use RATFOR as an additional language

The pr1mary reason for the authors of RATFOR was ~o make FORTRAN a

better programming language. with RATFOR it is possible to write much

more readable and better structured programs. This is achieved by pro

viding addltional conlrol structures that are not available in

FORTRAN-66, and by improving the "cosmetics" of the language.

The added control structures for better structur1ng of programs are

IF-ELSE, WHILt:-UU, }{t;~t;A'r-UN'f'lL, J:"'uR loops, DO loops, dUU oth~LS. An

INCLUDE statement allows the lnclusion of predefin~d code or defini

tion sequences at certaln points. The cosmetics is improved by allow

1ng the programs to be in free-form. The end of the l1ne marks usually

D4 2

the end of the statement, but statements can easily be continued on
the next line by ending with a comma or with a special continuation
character. A sharp # anywhere in the line marks the beginning of a
comment, thus allowing trailing comments on each line. This certainly
encourages programmers to add more documentation to the source code.

3. RATFOR syntax

3.1 General rules

There are several characters recognized as special ones in RATFOR:

Examples:

Left and right braces act as delimiters for groups of statements like
BEGIN and END in SPL. other special characters are:

Any line end1ng in a comma will also be continued. Include files may
be nested 3 levels deep. A statement which starts and ends with a
quote will be stripped of the quotes and placed in column one in the
output. This is useful for 'hiding' Ratfor keywords and for putting
FORTRAN compiler commands ($CONTROL ...) in column 1.

A or" for NOT
\ or I for OR
& for AND

[* for MACRO LEFT BRACKET
*] for MACRO RIGHT BRACKET
for the begin of comments

\ ~s the line continuation character

for LEFT BRACE
for RIGHT BRACE

$(or
$) or

Because almost all constructs of standard FORTRAN are retained in
RATFOR, it is very easy for a FORTRAN programmer to learn RATFOR.
There is only a very low psychological barrier to switch from FORTRAN

to RATFOR.

In addition to the already mentioned features, RATFOR comes with a
built-in macro processor, which allows not only such constructs like
EQUATES and DEFINES as in SPL, but also enables you to add additional
language constructs (in the form of macros) to RATFOR as you need it.

In addition, you are not lost if you have to transfer one of your
RATFOR programs to an other installation that has no RATFOR compiler
available. You simply move the intermediate FORTRAN code to the other
system. This is of course the way, how the RATFOR preprocessor itself

is "boot-strapped" on a new machine.

From all this you see that RATFOR is a better choice than FORTRAN in
at least all those cases, where you have somewhat more complicated
control paths in a program. There are only few instances where GOTO
constructs are needed, and avoiding those makes programs usually more
readable and better self-documenting.

Besides applications in Nuclear Physics, we are using RATFOR to imple
ment data acquisition and measurement control subsystems as well as
computer communications systems. RATFOR helps us to write these
systems to a large extent in a machine independent way, burrying

machine dependencies in macro definitions. We are'currentlY using
three type of minicomputers in our institute: HP3000, HPlOOO, and

PE3220.

'$CONTROL USLINIT,NOSOURCE'
or

IF(arith expr) labell, label2, label3 ,

(Note: Arithmetic IF statements are not allowed in RATFOR).

Input is free-field with only few exceptions. Capitals and small
letters can be used. Embedded comments in a source line start with "#"

or "I".

Blocks are one single statement or several surrounded by braces. This
is simi li=iT to thp REGIN/END struc+.urp in AT,C.,()l, or SPL. The left brace
"(tt corresponds to BEGIN, the right brace tt)" to END.

D4 3
D4 4

the end of the statement, but statements can easily be continued on
the next line by ending with a comma or with a special continuation
character. A sharp # anywhere in the line marks the beginning of a
comment, thus allowing trailing comments on each line. This certainly
encourages programmers to add more documentation to the source code.

3. RATFOR syntax

3.1 General rules

There are several characters recognized as special ones in RATFOR:

Examples:

Left and right braces act as delimiters for groups of statements like
BEGIN and END in SPL. other special characters are:

Any line end1ng in a comma will also be continued. Include files may
be nested 3 levels deep. A statement which starts and ends with a
quote will be stripped of the quotes and placed in column one in the
output. This is useful for 'hiding' Ratfor keywords and for putting
FORTRAN compiler commands ($CONTROL ...) in column 1.

A or" for NOT
\ or I for OR
& for AND

[* for MACRO LEFT BRACKET
*] for MACRO RIGHT BRACKET
for the begin of comments

\ ~s the line continuation character

for LEFT BRACE
for RIGHT BRACE

$(or
$) or

Because almost all constructs of standard FORTRAN are retained in
RATFOR, it is very easy for a FORTRAN programmer to learn RATFOR.
There is only a very low psychological barrier to switch from FORTRAN

to RATFOR.

In addition to the already mentioned features, RATFOR comes with a
built-in macro processor, which allows not only such constructs like
EQUATES and DEFINES as in SPL, but also enables you to add additional
language constructs (in the form of macros) to RATFOR as you need it.

In addition, you are not lost if you have to transfer one of your
RATFOR programs to an other installation that has no RATFOR compiler
available. You simply move the intermediate FORTRAN code to the other
system. This is of course the way, how the RATFOR preprocessor itself

is "boot-strapped" on a new machine.

From all this you see that RATFOR is a better choice than FORTRAN in
at least all those cases, where you have somewhat more complicated
control paths in a program. There are only few instances where GOTO
constructs are needed, and avoiding those makes programs usually more
readable and better self-documenting.

Besides applications in Nuclear Physics, we are using RATFOR to imple
ment data acquisition and measurement control subsystems as well as
computer communications systems. RATFOR helps us to write these
systems to a large extent in a machine independent way, burrying

machine dependencies in macro definitions. We are'currentlY using
three type of minicomputers in our institute: HP3000, HPlOOO, and

PE3220.

'$CONTROL USLINIT,NOSOURCE'
or

IF(arith expr) labell, label2, label3 ,

(Note: Arithmetic IF statements are not allowed in RATFOR).

Input is free-field with only few exceptions. Capitals and small
letters can be used. Embedded comments in a source line start with "#"

or "I".

Blocks are one single statement or several surrounded by braces. This
is simi li=iT to thp REGIN/END struc+.urp in AT,C.,()l, or SPL. The left brace
"(tt corresponds to BEGIN, the right brace tt)" to END.

D4 3
D4 4

3.2 The DO statement

It resembles' the well known FORTRAN DO-statement without the need to

use a label at the fi'lal statement.

DO I=l,MAX,IDELTA

A(I)=I

or
DO I=1,MAX

(

A(I)=SIN(X(I»
B(I)=A(I)**2
}

3.3 The FOR statement

3.4 The WHILE statement

WHILE (X(I) A= 5)

{

DISPLAY XCI)
X(I)=FUNCT(X(I»
}

This allows a block of statements to be repeated while a certain con
dition holds true, which is tested at the beginning of each step.

3.5 The REPEAT statement

This is the counterpart to the WHILE statement. A block of statements
is continued until a certain condition, which is tested at the end of
the block, becomes true:

<BLOCK> stands for one statemerit or { several statements }. The
three parts between the parentheses have the following meanings:

FOR (1=1 ; 1<=100
<BLOCK>

!...:I+1) REPEAT
<BLOCK>

UNTIL (X==Y)

One may omit the UNTIL-clause to get a REPEAT FOREVER construct.

1: (1-1) Initialization statement. This may be ommitted, thus
starting with a previously defined value.

3.6 Exits

2: (1<=100) As long as this condition holds true, the following block
will be executed. This is tested at the beginning of

the block.

The two statements NEXT and BREAK allow to change the sequence of exe
cution in DO, FOR, WHILE and REPEAT blocks without the need for GOTO

statements (which is considered as bad programming stylel) and labels.

All three clauses may be almost arbitrarily complicated, as the

following example shows:

Modification, that is performed at the end of the block.3: (1=1+1)

FOR (X=O ; EXP(X)<-1.E70

(

PRINT X

X=ARCSIN(X)+~O./Y)

D4 5

NEXT starts over at the beginning of the currently executing block
(i.e. starts again at the first statement of the DO or POR block after
the appropriate modification of the running index - or whatever was
requested - has been done: corresponds to a GOTO to the CONTINUE
statement of a FORTRAN DO loop)

BREAK continues behind the current block. The DO, FOR, WHILE, or
REPEAT statement is terminated.

D4 6

3.2 The DO statement

It resembles' the well known FORTRAN DO-statement without the need to

use a label at the fi'lal statement.

DO I=l,MAX, IDELTA

A(I)=I

or
DO I=l,MAX

(

A(I)=SIN(X(I»
B(I)=A(I)**2
}

3.3 The FOR statement

3.4 The WHILE statement

WHILE (X(I) A= 5)

{

DISPLAY XCI)
X(I)=FUNCT(X(I»
}

This allows a block of statements to be repeated while a certain con
dition holds true, which is tested at the beginning of each step.

3.5 The REPEAT statement

This is the counterpart to the WHILE statement. A block of statements
is continued until a certain condition, which is tested at the end of
the block, becomes true:

<BLOCK> stands for one statemerit or { several statements }. The
three parts between the parentheses have the following meanings:

FOR (1=1 ; 1<=100
<BLOCK>

!...:I+1) REPEAT
<BLOCK>

UNTIL (X==Y)

One may omit the UNTIL-clause to get a REPEAT FOREVER construct.

1: (1-1) Initialization statement. This may be ommitted, thus
starting with a previously defined value. 3.6 Exits

2: (1<=100) As long as this condition holds true, the following block
will be executed. This is tested at the beginning of

the block.

The two statements NEXT and BREAK allow to change the sequence of exe
cution in DO, FOR, WHILE and REPEAT blocks without the need for GOTO
statements (which is considered as bad programming stylel) and labels.

All three clauses may be almost arbitrarily complicated, as the

following example shows:

Modification, that is performed at the end of the block.3: (1=1+1)

FOR (X=O ; EXP(X)<-1.E70
(

PRINT X

X=ARCSIN(X)+lO./Y)

D4 5

NEXT starts over at the beginning of the currently executing block
(i.e. starts again at the first statement of the DO or POR block after
the appropriate modification of the running index - or whatever was
requested has been done: corresponds to a GOTO to the CONTINUE
statement of a FORTRAN DO loop)

BREAK continues behind the current block. The DO, FOR, WHILE, or
REPEAT statement is terminated.

D4 6

3.7 Relational express10ns
define(pi,3.141S93)

The following is a table of the correspondence between FORTRAN and

RATFOR relational and logical operators:

Following

text will

letters.

th1s macro defin1t10n, every occurance of pI (or PI) 1n the

lead to the lnsertion of 3.141593 instead of the two

FORTRAN

.EQ.

.NE .

. GT.

.GE.

.LT .

•LE.

.AND .

. OR.

.NOT.

RATFOR

1\=

&

1\

define(max1nd,200)

1nteger 1array(max1nd),rarray(maxind,2)

do i = I, maxind

iarray(i) :: 0

This is useful to define dimensions and maximum index values globally.

define(tan,[*sin(SI)jcos(S1)*])

3.8 IF and ELSE clauses

This is similar as in ALGOL or SPL and many other languages:

IF (logical expression)

<block>

or

IF (logical expression)

<block>

ELSE

<block>

3.9 The INCLUDE statement

The INCLUDE statements allows the inclusion of program parts, which

are stored on a different file, at the point of the INCLUDE statement.

INCLUDEs may be nested 3 levels deep.

3.10 The Ratfor Macro

Rat for contains a macro processor. It is useful for simple character

string replacements, string replacements with parameters, as well as

for powerful extensions of the Ratfor syntax. Macros are defined with

the DEFINE statement. In the following we give a few examples of

simple macro definitions.

D4 7

This is a macro with parameters. tan(xj2) will be replaced by

s1n(xj2)/cos(x/2). With the macro definition, you can write the pro

gram as if "tan" were a function, but there are no function calls at

run-time. For complicated expressions, however, the object,code will

be quite long when you call the macro often.

Macros can be globally defined for a complete source file. It is best

to make the definitions at the beginning of the file, maybe with an

include statement for a file containing the macros.

The following example 1llustrates how powerful the RATFOR macro pro

cessor can be, 1f you have understood its operation and syntax in

detail. For instance, it is possible to write easy to use constructs

for condition code checking after the call of system intrinsics:

IFN=FOPEN(...)

BEGINCC

CCE

« block

CCG

« block »

CCL

block> >

ENDCC

There is no need to use all three conditions (CCE,CCG,CCL). If one is

omitted, control continues for that case after the ENDCC. The sequence

of CCE,CCG and CCL may be chosen arbitrarily.

D4 8

3.7 Relational express10ns
define(pi,3.141S93)

The following is a table of the correspondence between FORTRAN and

RATFOR relational and logical operators:

Following

text will

letters.

th1s macro defin1t10n, every occurance of pI (or PI) 1n the

lead to the lnsertion of 3.141593 instead of the two

FORTRAN

.EQ.

.NE .

. GT.

.GE.

.LT .

•LE.

.AND .

. OR.

.NOT.

RATFOR

1\=

&

1\

define(max1nd,200)

1nteger 1array(max1nd),rarray(maxind,2)

do i = I, maxind

iarray(i) :: 0

This is useful to define dimensions and maximum index values globally.

define(tan,[*sin(SI)jcos(S1)*])

3.8 IF and ELSE clauses

This is similar as in ALGOL or SPL and many other languages:

IF (logical expression)

<block>

or

IF (logical expression)

<block>

ELSE

<block>

3.9 The INCLUDE statement

The INCLUDE statements allows the inclusion of program parts, which

are stored on a different file, at the point of the INCLUDE statement.

INCLUDEs may be nested 3 levels deep.

3.10 The Ratfor Macro

Rat for contains a macro processor. It is useful for simple character

string replacements, string replacements with parameters, as well as

for powerful extensions of the Ratfor syntax. Macros are defined with

the DEFINE statement. In the following we give a few examples of

simple macro definitions.

D4 7

This is a macro with parameters. tan(xj2) will be replaced by

s1n(xj2)/cos(x/2). With the macro definition, you can write the pro

gram as if "tan" were a function, but there are no function calls at

run-time. For complicated expressions, however, the object,code will

be quite long when you call the macro often.

Macros can be globally defined for a complete source file. It is best

to make the definitions at the beginning of the file, maybe with an

include statement for a file containing the macros.

The following example 1llustrates how powerful the RATFOR macro pro

cessor can be, 1f you have understood its operation and syntax in

detail. For instance, it is possible to write easy to use constructs

for condition code checking after the call of system intrinsics:

IFN=FOPEN(...)

BEGINCC

CCE

« block

CCG

« block »

CCL

block> >

ENDCC

There is no need to use all three conditions (CCE,CCG,CCL). If one is

omitted, control continues for that case after the ENDCC. The sequence

of CCE,CCG and CCL may be chosen arbitrarily.

D4 8

4. Our RATF0Rt3000 implementation

Our RATFOR implementation was derived from a RATFOR preprocessor ori
ginally written for the HPI000 family of computers. Therefore it is
capable to produce output for the HPI000 FTN-IV compiler as well as

for FORTRAN/3000.

4.1 Limitations

Due to the fact that this version of RATFOR is an adaptation from the
HPI000 version there were some features in RATFOR/IOOO that did not
conform with FORTRAN/3000 syntax. Therefore, if in HP3000 mode some
original RATFOR features are switched off. In particular, in HP3000
mode the following applies:

RATFOR/3000 may be invoked by the following ODe:

For PORTRAN/3000:
RATFOR <in>, <out>, <list>, <opts>, <incld>, <ftnlist>

Por PTN4/1000:
RAT4 <in>,~out>,<list>,<opts>,<incld>,<ftnlist>

the intermediate Fortran code will be written to <out>
(the default is a SESSION temporary file RATTEMP)

the Ratfor program will be read from <in>

the source listing will be written to <list>

(default SNULL)

(default SSTDLIST)

1. CHARACTER declarations are passed as they are, because
PORTRAN/3000 supports type CHARACTER variables.

2. Character strings between quotes, e.g. "ABCDEF", are kept as they
are. In non-HP3000 mode this is converted to 8HABCDEF.

To allow for the use of substring designators, e.g. 1[3:5], in both
modes brackets are not recognized as delimiters of blocks as they were
in the original version. Use braces "{}" insteadl

RATFOR'does NOT understand FORTRAN arithmetic IF statements. If you
have to use them, e.g. to check the condition code after returning
from a system intrinsic, you have to put the statement between quotes.
(There is a special RATFOR macro available to check condition codes)

options are specified by <opts> (default %17 or %13)
The options are given as an integer constant (octal or decimal).
If the most significant bit is number 0 and the least signifi
cant is number 15, the bits have the following meanings:

15 list the source, otherwise only errors are listed.
bit 15=0 is automatically set, if <list> = SNULL;

errors are then output to SSTDLIST.

14 for future enhancements

13 =1 FORTRAN/3000 code
=0 PTN4/1000 code
automatically set by the two unc's

12 merge all RATFOR (and other) comments into the generated

PORTRAN program

the file <incld> will be included in frc:.C' ojf <in> (default SNULL)

the FORTRAN compiler listing will go to <ftnlist> (default SSTDLIST)

D4 9

For FORTRAN/3000 applications it is good practice to use the following
compiler command:

SCONTROL USLINIT,NOSOURCE

If you then use the default setting for the FORTRAN/3000 output
(SSTDLIST) you will not get the awkward FORTRAN listing, but instead
all (if at all) error messages with the line in error on your
terminal. The FORTRAN line numbers are derived from the original
RATFOR source line numbers, with an increment of .001 if there are
more than one FORTRAN lines generated from one RATFOR line. Therefore
it should be easy to find the RATFOR line, which is in error.

5. Conclusion

In conclusion, we found the RATFOR preprocessor a very valuable pro
gramming tool, especi~lly since a FORTRAN-77 version for the HP3000
seems to be still far away. Although FORTRAN-77 adds some of RATFOR'S
control structures, we find the cosmetics, the appearance of the pro
gram text, of RATFOR much more appealing.

D4 10

4. Our RATF0Rt3000 ~plementation

Our RATFOR ~plementation was derived from a RATFOR preprocessor ori
ginally written for the HP1000 family of computers. Therefore it is

capable to produce output for the HP1000 FTN-IV compiler as well as

for FORTRAN/3000.

4.1 Limitations

Due to the fact that this version of RATFOR is an adaptation from the
HP1000 version there were some features in RATFOR/1000 that did not
conform with FORTRAN/3000 syntax. Therefore, if in HP3000 mode some
original RATFOR features are switched off. In particular, in HP3000
mode the following applies:

RATFOR/3000 may be invoked by the following ODe:

For PORTRAN/3000:
RATFOR <in>, <out>, <list>, <opts>, <incld>, <ftnlist>

Por PTN4/1000:
RAT4 <in>,~out>,<list>,<opts>,<incld>,<ftnlist>

the intermediate Fortran code will be written to <out>
(the default is a SESSION temporary file RATTEMP)

the Ratfor program will be read from <in>

the source listing will be written to <list>

(default SNULL)

(default SSTDLIST)

1. CHARACTER declarations are passed as they are, because
PORTRAN/3000 supports type CHARACTER variables.

2. Character strings between quotes, e.g. "ABCDEF", are kept as they
are. In non-HP3000 mode this is converted to 8HABCDEF.

To allow for the use of substring designators, e.g. 1[3:5], in both
modes brackets are not recognized as delimiters of blocks as they were
in the original version. Use braces "{}" instead!

RATFOR'does NOT understand FORTRAN arithmetic IF statements. If you
have to use them, e.g. to check the condition code after returning
from a system intrinsic, you have to put the statement between quotes.
(There is a special RATFOR macro available to check condition codes)

options are specified by <opts> (default \17 or \13)
The options are given as an integer constant (octal or decimal).
If the most significant bit is number 0 and the least signifi
cant is number 15, the bits have the following meanings:

15 list the source, otherwise only errors are listed.
bit 15=0 is automatically set, if <list> SNULL;

errors are then output to SSTDLIST.

14 for future enhancements

13 =1 FORTRAN/3000 code
=0 FTN4/1000 code
automatically set by the two UDC'S

12 merge all RATFOR (and other) comments into the generated

FORTRAN program

the file <incld> will be included in fre:.(" 'jf <in> (default SNULL)

the FORTRAN compiler listing will go to <ftnlist> (default SSTDLIST)

D4 9

For FORTRAN/3000 applications it is good practice to use the following
compiler command:

SCONTROL USLINIT,NOSOURCE

If you then use the default setting for the FORTRAN/3000 output
(SSTDLIST) you will not get the awkward FORTRAN listing, but instead
all (if at all) error messages with the line in error on your
terminal. The FORTRAN line numbers are derived from the original
RATFOR source line numbers, with an increment of .001 if there are
more than one FORTRAN lines generated from one RATFOR line. Therefore
it should be easy to find the RATFOR line, which is in error.

5. Conclusion

In conclusion, we found the RATFOR preprocessor a very valuable pro
gramming tool, especially since a FORTRAN-77 version for the HP3000
seems to be still far away. Although FORTRAN-77 adds some of RATFOR'S
control structures, we find the cosmetics, the appearance of the pro
gram text, of RATFOR much more appealing.

D4 10

Now, what is the pay-off? certainly compilation time is increased. In

the current version, the RATFOR compiler needs about the same CPU time

to transform RATFOR to FORTRAN as the FORTRAN compiler needs for its

job. This can be somewhat improved in the future by sampling the most

frequently used parts of the preprocessor and improving on these

pieces of code.

In addition you have to be aware, that RATFOR/3000 checks only RATFOR

syntax, most of the FORTRAN s~atements go unchecked to the FORTRAN

compiler. FORTRAN/3000 will then g~ve you the errors. Since the line

numbers of the intermediate FORTRAN code a derived from the original

RATFOR line numbers, it is very easy to track an error reported,by the

FORTRAN compiler back to the original RATFOR source line.

Regarding run-time performance, we did not

difference between a RATFOR program and a

written directly in FORTRAN.

find any sign~ficant

corresponding version

Of course, a globally optimizing FORTRAN compiler, which we are all

waiting for, would improve the run-time behaviour of RATFOR programs

as well as FORTRAN programs.

[1] B.-W. Kernighan, P.J. plauger:

Publishing Co. 1976

Software Tools, Addison-Wesley

04 11

Now, what is the pay-off? Certainly compilation time is increased. In

the current version, the RATFOR compiler needs about the same CPU time

to transform RATFOR to FORTRAN as the FORTRAN compiler needs for its

job. This can be somewhat improved in the future by sampling the most

frequently used parts of the preprocessor and improving on these

pieces of code.

In addition you have to be aware, that RATFOR/3000 checks only RATFOR

syntax, most of the FORTRAN statements go unchecked to the FORTRAN

compiler. FORTRAN/3000 will then g1ve you the errors. Since the line

numbers of the intermediate FORTRAN code a derived from the original

RATFOR line numbers, it is very easy to track an error reported,by the

FORTRAN compiler back to the original RATFOR source line.

Regarding run-time performance, we did not

difference between a RATFOR program and a

written directly in FORTRAN.

find any sign1ficant

corresponding version

Of course, a globally optimizing FORTRAN compiler, which we are all

waiting for, would improve the run-time behaviour of RATFOR programs

as well as FORTRAN programs.

[1] B.-W. Kernighan, P.J. Plauger:

Publishing Co. 1976

Software Tools, Addison-Wesley

D4 11

BUDGETING AND PROFIT PLANNING ON THE HP3000

A presentation on financial planning given at
the HP3000 International Users Group meeting
in Berlin, Germany, on October 6, 1981, by
Mr. Jack Damm of The Palo Alto Group.

D5 1

BUDGETING AND PROFIT PLANNING ON THE HP3000

BY JACK DAMM, PRINCIPAL, THE PALO ALTO GROUP, CUPERTINO, CALIF
(408) 725-1282

Good morning. Today I'm going to talk about budgeting and
profit planning on the HP3000. This discussion will be
organized around a specific example, but will not be limited
to it. This is a very subjective discussion. There is cer
~ainly plenty of room for conflicting opinions. And there
are many ways of putting together plans which are different
from the example being presented here.

How many of you in the audience have the primary respon
sibility for budgeting or profit planning in your company?
How many of you are in your company's data processing department?
How many of you get no closer to profit planning than putting
together your own budgets?

I hope that when this discussion is finished, that as a "D.P.
person" you get a little better idea of what overall company
planning is, and where your own budgeting and forecasting
fits into it. As a "financial planner", I hope that you will
leave with a better understanding of the the HP3000 can con
tribute to your own company's planning.

My discussion will proceed as follows: First, some gener
alities about planning. The use of the HP3000.
A brief comparison of high-level financial planning lang
uages versus manual or programmed models. Then I will
discuss a typical plan.

First, a definition.
When I talk about planning, I will be speaking specific-
ally about company (or corporate) planning. Product fore
casting, departmental budgeting, and financial projections.
Deciding where funds are to be spent, and analysing the impact
of these expenditures.

There is a myth: That one can build a "model" of a
company which can be mathematically manipulated to make
"optimal" use of resources and maximize achievement of
company goals. That this model needs to be complicated, and
is incomprehensible to mere mortals. It is true that one
could formulate a "model" of a "company where the goal is to
maximize profit or cash flow, .with constraints involving
debt-to-equity ratios, market penetration, production capa
city, etc. But because of how little we actually know about
the future, and how much uncertainty there is about it, to
build a sophisticated model which "optimizes" the results of
a business, is ridiculous. It would be fooling ourselves
about how little we actually know.

There is reality: What planning really is, is sitting down and
accepting that there is much uncertainty about the future.
But at the same time, in order for us to be somewhat prepared
for that uncertain future we must make assumptions. Best
guesses about what may happen. One of the most important

D5 2

BUDGETING AND PROFIT PLANNING ON THE HP3000

A presentation on financial planning given at
the HP3000 International Users Group meeting
in Berlin, Germany, on October 6, 1981, by
Mr. Jack Damm of The Palo Alto Group.

D5 1

BUDGETING AND PROFIT PLANNING ON THE HP3000

BY JACK DAMM, PRINCIPAL, THE PALO ALTO GROUP, CUPERTINO, CALIF
(408) 725-1282

Good morning. Today I'm going to talk about budgeting and
profit planning on the HP3000. This discussion will be
organized around a specific example, but will not be limited
to it. This is a very subjective discussion. There is cer
~ainly plenty of room for conflicting opinions. And there
are many ways of putting together plans which are different
from the example being presented here.

How many of you in the audience have the primary respon
sibility for budgeting or profit planning in your company?
How many of you are in your company's data processing department?
How many of you get no closer to profit planning than putting
together your own budgets?

I hope that when this discussion is finished, that as a "D.P.
person" you get a little better idea of what overall company
planning is, and where your own budgeting and forecasting
fits into it. As a "financial planner", I hope that you will
leave with a better understanding of the the HP3000 can con
tribute to your own company's planning.

My discussion will proceed as follows: First, some gener
alities about planning. The use of the HP3000.
A brief comparison of high-level financial planning lang
uages versus manual or programmed models. Then I will
discuss a typical plan.

First, a definition.
When I talk about planning, I will be speaking specific-
ally about company (or corporate) planning. Product fore
casting, departmental budgeting, and financial projections.
Deciding where funds are to be spent, and analysing the impact
of these expenditures.

There is a myth: That one can build a "model" of a
company which can be mathematically manipulated to make
"optimal" use of resources and maximize achievement of
company goals. That this model needs to be complicated, and
is incomprehensible to mere mortals. It is true that one
could formulate a "model" of a "company where the goal is to
maximize profit or cash flow, .with constraints involving
debt-to-equity ratios, market penetration, production capa
city, etc. But because of how little we actually know about
the future, and how much uncertainty there is about it, to
build a sophisticated model which "optimizes" the results of
a business, is ridiculous. It would be fooling ourselves
about how little we actually know.

There is reality: What planning really is, is sitting down and
accepting that there is much uncertainty about the future.
But at the same time, in order for us to be somewhat prepared
for that uncertain future we must make assumptions. Best
guesses about what may happen. One of the most important

D5 2

results of the planning process is to get managers
together and corne to a general agreement as to how company
goals are to be achieved. In a nutshell, planning is sit
ting do~ with marketing and production planning people
and getting a "best guess" product forecast. Getting respons
ible managers to commit to realistic levels of spending
within their departments. Create a plan of action which
represents a generally agreed-upon approach to the direction
of the business.

While it may be uncertain, a good plan at least makes it
possible to rule out the "unlikely" or "infeasible" situation
which might result from "seat-of-the-pants" guesses:

- Growing too fast to be supported by available funds
- Spending too much money to have any left over
- Selling more product than can be produced
- Producing more product than can be sold

So, I am going to talk about reality. Putting together a
plan, what it means, and how the HP3000 can be used as an
effective tool in getting the job done.

THE TOOLS: An HP3000 computer system, available for both
batch and interactive use. Most of our customers use in-house
(rather than dial-up) systems. They use both on-line CRT's
and printing terminals, and most have access to a near-by
line printer. The system is almost always accessible to the
responsible manager, although some companies distribute only
the reports and not the computer interaction as well. The
system is used interactively for setting up reports and re
viewing the results on a particular report. Reports are
run in the batch mode for making multiple copies, generating
a Whole sequence of reports at once, and sometimes just for
hard-copy output.

A.high-level planning language. We work with our proprietary
financial planning language, Dollar-Flow, and it will be used
to illustrate the examples here. We choose to work in a
"high-level language" like Dollar-Flow because:

- Planning by hand (and calculator), despite the flexib
ility it provides, takes too much time, involves too
many opportunities for error, and is particularly
undesirable when doing many iterations of a plan.

- Planning on a computer using a "procedure level"
language like BASIC, FORTRAN, or COBOL takes too
long to set up, is inflexible, and requires the
services of a programmer.

Dollar-Flow, because it is designed for planning, enables us
to focus on the problem itself, without paying particular re
gard to all the details of what is actually going on in-
side the computer.

THE PLAN: A typical financial plan might involve the follow
ing modules:

- A sales foecast
- Budgets and budget consolidations
- A profit/loss projection D5 3

- A cash flow projection
- A balance sheet projection

Most of the plans which we get involved with work on a three
to five year horizon with (of course) particular attention
being paid to the first year. For the first two years the
plan usually is done by month, whereas the third through
fifth year projections might be by quarter, by half, or on
an annual basis.

SALES FORECAST: Preparing the sales forecast is the first
step in profit planning. Today I am not going to go into the
any techniques which can be used for forecasting. Rather, I
am going to concentrate on the techniques we use for working
with forecast figures which have been decided upon (in one
way or another) by those responsible for the forecast.
The sales forecast is the most important as well as the most
uncertain part of the planning process. Since sales de
termine how much money is available for budgets, etc., the
forecast is prepared first. And because of the uncertainty
of our projections, we may re-run our plan several times with
varying levels of sales as a "what-if" analysis. So we can
do contingency planning.

A forecast for a product-oriented company is usually done
first on a "bottoms-up" basis. That is to say, on a product
by-product basis. If we are building a plan with a three or
five year horizon, the third through fifth years may only be
ov~rall sales dollars estimates. In the near term, however,
the sales forecast is done by month for each product. In
addition to the unit sales forecast, we need an average
selling price on each product (which may vary over time),
which we will show as one value here. And to enable us to
generate figures for the cost of sales, we combine this data
with estimates of direct labor per unit, direct material per
unit, and manufacturing overhead (which mayor may not be on
a per-unit basis). The sales revenue and cost of sales
forecast then is simply a product of the unit sales project
ions and the per unit price and cost factors. A typical
product forecast might look like the following:

12/ 4/79 XYZ COMPANY PAGE 1
SALES FORECAST REPORT

AVG DIRECT DIRECT MFG
SELLING LABOR/ MATL/ OVHD/

PRICE UNIT UNIT UNIT
-------- --- ..---- -------- --------

1 WIDGETS •••.••.•...• 900 85 200 255
2 GIZMOS •.••••.••••.• 1,300 155 275 465
3 THINGS •.••••••.•••• 1,950 175 375 525
4 NON-THINGS ••.•••.•• 2,100 575 525 1,725
5 ZITHERS .•••••.•.••. 2,450 560 450 1,680

JAN JAN REV JAN DL JAN DM JAN OVHD
UNITS

-------- -------- -------- -------- --------
1 WIDGETS ••••.•..••.. 100 90,000 8,500 20,000 25,500
2 GIZMOS .•.••••.•.••• 50 65,000 7,750 13,750 23,250
3 THINGS •.•.•.•.•..•.
4 NON-THINGS ••.••.•.. 25 52,500 14,375 13,125 43,125

DS 4

results of the planning process is to get managers
together and corne to a general agreement as to how company
goals are to be achieved. In a nutshell, planning is sit
ting do~ with marketing and production planning people
and getting a "best guess" product forecast. Getting respons
ible managers to commit to realistic levels of spending
within their departments. Create a plan of action which
represents a generally agreed-upon approach to the direction
of the business.

While it may be uncertain, a good plan at least makes it
possible to rule out the "unlikely" or "infeasible" situation
which might result from "seat-of-the-pants" guesses:

- Growing too fast to be supported by available funds
- Spending too much money to have any left over
- Selling more product than can be produced
- Producing more product than can be sold

So, I am going to talk about reality. Putting together a
plan, what it means, and how the HP3000 can be used as an
effective tool in getting the job done.

THE TOOLS: An HP3000 computer system, available for both
batch and interactive use. Most of our customers use in-house
(rather than dial-up) systems. They use both on-line CRT's
and printing terminals, and most have access to a near-by
line printer. The system is almost always accessible to the
responsible manager, although some companies distribute only
the reports and not the computer interaction as well. The
system is used interactively for setting up reports and re
viewing the results on a particular report. Reports are
run in the batch mode for making multiple copies, generating
a Whole sequence of reports at once, and sometimes just for
hard-copy output.

A.high-level planning language. We work with our proprietary
financial planning language, Dollar-Flow, and it will be used
to illustrate the examples here. We choose to work in a
"high-level language" like Dollar-Flow because:

- Planning by hand (and calculator), despite the flexib
ility it provides, takes too much time, involves too
many opportunities for error, and is particularly
undesirable when doing many iterations of a plan.

- Planning on a computer using a "procedure level"
language like BASIC, FORTRAN, or COBOL takes too
long to set up, is inflexible, and requires the
services of a programmer.

Dollar-Flow, because it is designed for planning, enables us
to focus on the problem itself, without paying particular re
gard to all the details of what is actually going on in-
side the computer.

THE PLAN: A typical financial plan might involve the follow
ing modules:

- A sales foecast
- Budgets and budget consolidations
- A profit/loss projection D5 3

- A cash flow projection
- A balance sheet projection

Most of the plans which we get involved with work on a three
to five year horizon with (of course) particular attention
being paid to the first year. For the first two years the
plan usually is done by month, whereas the third through
fifth year projections might be by quarter, by half, or on
an annual basis.

SALES FORECAST: Preparing the sales forecast is the first
step in profit planning. Today I am not going to go into the
any techniques which can be used for forecasting. Rather, I
am going to concentrate on the techniques we use for working
with forecast figures which have been decided upon (in one
way or another) by those responsible for the forecast.
The sales forecast is the most important as well as the most
uncertain part of the planning process. Since sales de
termine how much money is available for budgets, etc., the
forecast is prepared first. And because of the uncertainty
of our projections, we may re-run our plan several times with
varying levels of sales as a "what-if" analysis. So we can
do contingency planning.

A forecast for a product-oriented company is usually done
first on a "bottoms-up" basis. That is to say, on a product
by-product basis. If we are building a plan with a three or
five year horizon, the third through fifth years may only be
ov~rall sales dollars estimates. In the near term, however,
the sales forecast is done by month for each product. In
addition to the unit sales forecast, we need an average
selling price on each product (which may vary over time),
which we will show as one value here. And to enable us to
generate figures for the cost of sales, we combine this data
with estimates of direct labor per unit, direct material per
unit, and manufacturing overhead (which mayor may not be on
a per-unit basis). The sales revenue and cost of sales
forecast then is simply a product of the unit sales project
ions and the per unit price and cost factors. A typical
product forecast might look like the following:

12/ 4/79 XYZ COMPANY PAGE 1
SALES FORECAST REPORT

AVG DIRECT DIRECT MFG
SELLING LABOR/ MATL/ OVHD/

PRICE UNIT UNIT UNIT
-------- --- ..---- -------- --------

1 WIDGETS •••.••.•...• 900 85 200 255
2 GIZMOS •.••••.••••.• 1,300 155 275 465
3 THINGS •.••••••.•••• 1,950 175 375 525
4 NON-THINGS ••.•••.•• 2,100 575 525 1,725
5 ZITHERS .•••••.•.••. 2,450 560 450 1,680

JAN JAN REV JAN DL JAN DM JAN OVHD
UNITS

-------- -------- -------- -------- --------
1 WIDGETS ••••.•..••.. 100 90,000 8,500 20,000 25,500
2 GIZMOS .•.••••.•.••• 50 65,000 7,750 13,750 23,250
3 THINGS •.•.•.•.•..•.
4 NON-THINGS ••.••.•.. 25 52,500 14,375 13,125 43,125

DS 4

In businesses which build product to inventory (where sales
and production levels may be very different in a given period),
a manufacturing plan is required in addition to the sales
forecast. That is to say, once the sales forecast has been
prepared, then the production planners must sit down and de
termine a production plan which will meet an objective level
of delivery of product and reasonable levels of inventory,
given the sales forecast. The production plan would be
similar to the unit sales forecast - it is simply the units
to be produced by period. The result of the production plan is
actual outlays for direct material and direct labor (which
go into inventory). Combined with the cost of sales (what
comes out of inventory) this gives us the change in invent
ories. A typical production plan might look like the following:

Now, a top-down analysis may be done on the total sales figures
in each period (or by year) and feedback on the unit forecasts
if they are too high (or low).

5 ZITHERS .••......•.•

6 TOTAL ALL PRODUCTS.

12/23/79

175 207,500

XYZ COMPANY
PRODUCTION PLAN

30,625 46,875 91,875

PAGE 1

Now, we are not finished with the forecast. One is never
finished with the forecast. But with it set up in our
planning system as we are doing here, when the forecast
figures change, we can re-run our model and get a revised
company plan with a minimum of effort.

The next step is budgeting (which may overlap with the
forecasting step). The forecast is important to the budget
ing step because it tells us how much is available to be
spent in the budget. In other words, the budgets may need
to be revised as the forecast changes.

A few comments about the typical budget environment.
There is usually a budgeting hierarchy, where there

are several levels of consolidation. Budgets may be
grouped at sub-department, department, product line,
division, or many other levels.

In addition to the consolidation hierarchy, there
may be service departments (or locations) which charge
some costs out to other departments (data processing
for example).

A typical budgeting hierarchy might have the following
levels:

Divisional consolidated budgets

Product line consolidated budgets

Service location budgets

Overall company budgeted expenditures

05 6

.20 X '1001 WAGES & SALARIES' :1002 FRINGE BENEFITS

1001 WAGES & SALARIES
3001 SUPPLIES
5002 COMPANY AUTO
5003 ENTERTAINMENT

The total budget may be calculated using the 'SUM' function of
Dollar-Flow:

Departmental budgets

Location budgets (within a department)

TOTAL BUDGET = SUM('1001 WAGES & SALARIES', '9999 MIse EXPENSE'):

Some budget items are functions of other items. Por example,
fringe benefits may be set up as 20% of wages and salaries:

Now, the budget reports we usually set up identify each bud
getary item by general ledger account number and description.
For most. of the items on the budget, the system prompts for a
value to be input for each period on the budget (typically the
periods are months) and allows for revisions to be made by row
and/or column. Typical input lines are:

JAN FEB MAR APR MAY
-------- -------- -------- -------- --------

6 TOTAL SALES•..... 207,500 207,500 207,500 467,500 461,000
-------- -------- -------- -------- --------

7 TOTAL COGS LABOR..•.••.. 30,625 30,625 30,625 53,000 52,225
-------- -------- -------- -------- --------

8 TOTAL COGS MATL ...••••.. 46,875 46,875 46,875 96,250 94,875
-------- -------- -------- -------- --------

9 TOTAL COGS OVI1D ...•....• 91,875 91,875 91,875 159,000 156,675
-------- -------- -------- -------- --------

10 TOTAL COGS•........ 169,375 169,375 169,375 308,250 303,775
11 WIDGET UNIT PRODUCT ION .. 100 100 100 100 100
12 GIZMO UNIT PRODUCTION ... 50 50 25 20 10
13 THING UNIT PRODUCTION •.. 50 100 150 150
14 NON-THING

UNIT PRODUCTION 25 25 25 25 25
15 ZITHER UNIT PRODUCTION .. 10

-------- -------- -------- -------- --------
16 TOTAL

PRODUCTION (AT ASp) 207,500 305,000 370,000 461,000 472,500
-------- -------- -------- -------- --------

17 TOTAL PROD LABOR........ 30,625 39,375 44,250 52,225 56,275
-------- -------- -------- -------- --------

18 TOTAL PROD MATL 46,875 65,625 77,500 94,875 96,625
-------- -------- -------- -------- --------

19 TOTAL PROD OVHD 91,875 118,125 132,750 156,675 168,825
-------- -------- -------- -------- --------

20 TOTAL
PROD LABOR,MATL,OVHD.... 169,375 223,125 254,500 303,775 321,725

21 PROD MATL PURCHASES 77,500 94,875 96,625 131,625 130,250
22 INITIAL INVENTORY....... 125,000
23 BEGINNING INVENTORY..... 125,000 155,625 238,625 342,875 375,150
24 INVENTORY CHANGE •....... 30,625 83,000 104,250 32,275 51,575
25 ENDING INVENTORY........ 155,625 238,625 342,875 375,150 426,725
* END OF $FLOW$ REPORT * D5 5

In businesses which build product to inventory (where sales
and production levels may be very different in a given period),
a manufacturing plan is required in addition to the sales
forecast. That is to say, once the sales forecast has been
prepared, then the production planners must sit down and de
termine a production plan which will meet an objective level
of delivery of product and reasonable levels of inventory,
given the sales forecast. The production plan would be
similar to the unit sales forecast - it is simply the units
to be produced by period. The result of the production plan is
actual outlays for direct material and direct labor (which
go into inventory). Combined with the cost of sales (what
comes out of inventory) this gives us the change in invent
ories. A typical production plan might look like the following:

Now, a top-down analysis may be done on the total sales figures
in each period (or by year) and feedback on the unit forecasts
if they are too high (or low).

5 ZITHERS .••......•.•

6 TOTAL ALL PRODUCTS.

12/23/79

175 207,500

XYZ COMPANY
PRODUCTION PLAN

30,625 46,875 91,875

PAGE 1

Now, we are not finished with the forecast. One is never
finished with the forecast. But with it set up in our
planning system as we are doing here, when the forecast
figures change, we can re-run our model and get a revised
company plan with a minimum of effort.

The next step is budgeting (which may overlap with the
forecasting step). The forecast is important to the budget
ing step because it tells us how much is available to be
spent in the budget. In other words, the budgets may need
to be revised as the forecast changes.

A few comments about the typical budget environment.
There is usually a budgeting hierarchy, where there

are several levels of consolidation. Budgets may be
grouped at sub-department, department, product line,
division, or many other levels.

In addition to the consolidation hierarchy, there
may be service departments (or locations) which charge
some costs out to other departments (data processing
for example).

A typical budgeting hierarchy might have the following
levels:

Divisional consolidated budgets

Product line consolidated budgets

Service location budgets

Overall company budgeted expenditures

05 6

.20 X '1001 WAGES & SALARIES' :1002 FRINGE BENEFITS

1001 WAGES & SALARIES
3001 SUPPLIES
5002 COMPANY AUTO
5003 ENTERTAINMENT

The total budget may be calculated using the 'SUM' function of
Dollar-Flow:

Departmental budgets

Location budgets (within a department)

TOTAL BUDGET = SUM('1001 WAGES & SALARIES', '9999 MIse EXPENSE'):

Some budget items are functions of other items. Por example,
fringe benefits may be set up as 20% of wages and salaries:

Now, the budget reports we usually set up identify each bud
getary item by general ledger account number and description.
For most. of the items on the budget, the system prompts for a
value to be input for each period on the budget (typically the
periods are months) and allows for revisions to be made by row
and/or column. Typical input lines are:

JAN FEB MAR APR MAY
-------- -------- -------- -------- --------

6 TOTAL SALES•..... 207,500 207,500 207,500 467,500 461,000
-------- -------- -------- -------- --------

7 TOTAL COGS LABOR..•.••.. 30,625 30,625 30,625 53,000 52,225
-------- -------- -------- -------- --------

8 TOTAL COGS MATL ...••••.. 46,875 46,875 46,875 96,250 94,875
-------- -------- -------- -------- --------

9 TOTAL COGS OVI1D ...•....• 91,875 91,875 91,875 159,000 156,675
-------- -------- -------- -------- --------

10 TOTAL COGS•........ 169,375 169,375 169,375 308,250 303,775
11 WIDGET UNIT PRODUCT ION .. 100 100 100 100 100
12 GIZMO UNIT PRODUCTION ... 50 50 25 20 10
13 THING UNIT PRODUCTION •.. 50 100 150 150
14 NON-THING

UNIT PRODUCTION 25 25 25 25 25
15 ZITHER UNIT PRODUCTION .. 10

-------- -------- -------- -------- --------
16 TOTAL

PRODUCTION (AT ASp) 207,500 305,000 370,000 461,000 472,500
-------- -------- -------- -------- --------

17 TOTAL PROD LABOR........ 30,625 39,375 44,250 52,225 56,275
-------- -------- -------- -------- --------

18 TOTAL PROD MATL 46,875 65,625 77,500 94,875 96,625
-------- -------- -------- -------- --------

19 TOTAL PROD OVHD 91,875 118,125 132,750 156,675 168,825
-------- -------- -------- -------- --------

20 TOTAL
PROD LABOR,MATL,OVHD.... 169,375 223,125 254,500 303,775 321,725

21 PROD MATL PURCHASES 77,500 94,875 96,625 131,625 130,250
22 INITIAL INVENTORY....... 125,000
23 BEGINNING INVENTORY..... 125,000 155,625 238,625 342,875 375,150
24 INVENTORY CHANGE •....... 30,625 83,000 104,250 32,275 51,575
25 ENDING INVENTORY........ 155,625 238,625 342,875 375,150 426,725
* END OF $FLOW$ REPORT * D5 5

And some budget items may use figures allocated from other
budget locations:

3005 EDP EXPENSE =
'% EDP ALLOCATION' X 'TOTAL BUDGET' OF 'D9000'/100;

A typical budget plan might look like:

12/23/79 MARKETING BUDGET PAGE
FY 1980

.TAN FEB MAR APR MAY

1 1001 WAGES & SALARIES 5000 5000 5000 10000 10000
2 1002 FRINGE BENEFITS 1000 1000 1000 2000 2000
3 1003 PAID VACATION 100 100 100 200 200
4 1004 SICK PAY 150 150 150 300 300
5 3001 SUPPLIES 500 500 500 500 500
6 3005 EDP EXPENS ES 800 800 800 1200 1200
7 5001 TRANSPORTATION FARES 2000 2000 2000 2000 2000
8 5002 COMPANY AUTO 500 500 500 500 500
9 5003 ENTERTAINMENT 500 500 500 500 500

10 8001 ADVERTISING 1000 1000 5000 2000 2000
11 8002 PROMO LITERATURE 2500 2500 2500 2500 2500
12 8003 TRADE SHOWS 10000 20000
13 9999 MISC EXPENSE 500 500 500 500 500

------- ------- ------- ------- -------
14 TOTAL BUDGET 24550 14550 18550 42200 22200
15 % FRINGE 20.0 %
16 % EDP ALLOCATION 8.0 %

* END OF $FLOW$ REPORT *

By having allocated expenses defined within our planning
system as automatically flowing into each of the using loca
tions, it is easy for us to keep all of the budgets con
sistent. Whenever the budget for a service department (such
as EDP) is revised, the new figures flow into the departments
using their services the next time those budgets are run.

One more comment about the system we are using. Within
Dollar-Flow, information is organized on a report basis. That
is to say, users work with one report at a time and do not
have to concern thenmselves with the distinctions between
repor~s, files, programs, and data. And reports are saved
on the HP3000 under 8 character MPE file names so they
referenced by other reports and/or re-run at some later time.

We usually organize the budget reports according to the
customer's own scheme for identifying budget locations, by
saving these reports with meaningful names. For example, if
the EDP department has a location code number of 9000, then
we might save the budget for that department under L11e lldllle

'D9000'. Sub-departments locations might be coded 'D9001',
'D9002', etc. A budget which is a consolidation of other
departments might be stored with a descriptive name like
D900' or 'D900X'. With a numbering scheme which groups
various budgets into group names which can be accessed using
@, i, and? symbols (according to the MPE file referencing
convention), indirect file references can be used to set up
the structure of a budget hierarchy. In other words, we D5 7

could define a consolidation report as summing 'D900#' which
would automatically add up 'D900l' through 'D9009'.
Budget consolidation reports usually have the same format as
the lower-level reports they reference.

A few comments about the budgeting process. In our experience
we have seen great diversity in how companies do their plan
ning. Some companies centralize budget preparation. Distri
buting budget worksheets, then inputting the data and making re
visions in one area. Other companies distribute the entire pro
cess, letting managers interact directly with the budget system,
only processing the data when it is reaciy for consoli.dation.
Some companies budget in great detail. Others take the "big
picture" approach, working at higher levels of consolidation.
The one thing that all of the companies which we have worked
with have in common, is that the budgeting process involves many
changes and several iterations. With several levels of consoli
dation, and allocations from several service departments,
budgeting would be a massive job if it were done by hand. And
a massive headache if it were done with the traditional program
ming approach in BASIC, FORTRAN, or COBOL.

Once the budgets have been prepared, we are ready to proceed
with the profit/loss projection. With the information provided
by the sales forecast and manufacturing plan, plus the depart
mental budgets, the P & L is little more than a recap of exist
ing information. This is particularly easy in the system which
we are using because we can 'define' relationships on our P & L
report which will cause data to be read automatically from re
ports which have already been prepared. For example, we could
read information from the manufacturing plan with rules like the
following:

DIRECT LABOR = 'TOTAL COGS LABOR' OF 'MFGPLN'
DIRECT MATL = 'TOTAL COGS MATL' OF 'MFGPLN' ;

where 'TOTAL COGS LABOR' and 'TOTAL COGS MATL' are lines on the
production plan which has been set up and saved under the name
'MFGPLN' .

We can even reference several reports for a one-line consoli
dation:

MARKETING = 'TOTAL BUDGET' OF ('D2001','D2002', ... , 'D2009');

Of course the one-line consolidation shown here would only be
necessary if we didn't have a consolidation report already
set up for total marketing.

A few of the lines involve calculations with other lines on the
P & L report itself:

TOTAL DIRECT cos'r = 'DIRECT LABOR' + 'DIREC'l' MATL' + 'MFG OVHD'
GROSS MARGIN = 'SALES' - 'TOTAL DIRECT COST'

And one line, 'INTEREST EXPENSE', is a forward reference to two
other lines yet to be defined:

INTEREST EXPENSE = '% INTEREST' X 'OUTSTANDING DEBT' / 1200

Now, the P & L projection (combined with the cash flow) is 05 8

And some budget items may use figures allocated from other
budget locations:

3005 EDP EXPENSE =
'% EDP ALLOCATION' X 'TOTAL BUDGET' OF 'D9000'/100;

A typical budget plan might look like:

12/23/79 MARKETING BUDGET PAGE
FY 1980

.TAN FEB MAR APR MAY

1 1001 WAGES & SALARIES 5000 5000 5000 10000 10000
2 1002 FRINGE BENEFITS 1000 1000 1000 2000 2000
3 1003 PAID VACATION 100 100 100 200 200
4 1004 SICK PAY 150 150 150 300 300
5 3001 SUPPLIES 500 500 500 500 500
6 3005 EDP EXPENS ES 800 800 800 1200 1200
7 5001 TRANSPORTATION FARES 2000 2000 2000 2000 2000
8 5002 COMPANY AUTO 500 500 500 500 500
9 5003 ENTERTAINMENT 500 500 500 500 500

10 8001 ADVERTISING 1000 1000 5000 2000 2000
11 8002 PROMO LITERATURE 2500 2500 2500 2500 2500
12 8003 TRADE SHOWS 10000 20000
13 9999 MISC EXPENSE 500 500 500 500 500

------- ------- ------- ------- -------
14 TOTAL BUDGET 24550 14550 18550 42200 22200
15 % FRINGE 20.0 %
16 % EDP ALLOCATION 8.0 %

* END OF $FLOW$ REPORT *

By having allocated expenses defined within our planning
system as automatically flowing into each of the using loca
tions, it is easy for us to keep all of the budgets con
sistent. Whenever the budget for a service department (such
as EDP) is revised, the new figures flow into the departments
using their services the next time those budgets are run.

One more comment about the system we are using. Within
Dollar-Flow, information is organized on a report basis. That
is to say, users work with one report at a time and do not
have to concern thenmselves with the distinctions between
repor~s, files, programs, and data. And reports are saved
on the HP3000 under 8 character MPE file names so they
referenced by other reports and/or re-run at some later time.

We usually organize the budget reports according to the
customer's own scheme for identifying budget locations, by
saving these reports with meaningful names. For example, if
the EDP department has a location code number of 9000, then
we might save the budget for that department under L11e lldllle

'D9000'. Sub-departments locations might be coded 'D9001',
'D9002', etc. A budget which is a consolidation of other
departments might be stored with a descriptive name like
D900' or 'D900X'. With a numbering scheme which groups
various budgets into group names which can be accessed using
@, i, and? symbols (according to the MPE file referencing
convention), indirect file references can be used to set up
the structure of a budget hierarchy. In other words, we D5 7

could define a consolidation report as summing 'D900#' which
would automatically add up 'D900l' through 'D9009'.
Budget consolidation reports usually have the same format as
the lower-level reports they reference.

A few comments about the budgeting process. In our experience
we have seen great diversity in how companies do their plan
ning. Some companies centralize budget preparation. Distri
buting budget worksheets, then inputting the data and making re
visions in one area. Other companies distribute the entire pro
cess, letting managers interact directly with the budget system,
only processing the data when it is reaciy for consoli.dation.
Some companies budget in great detail. Others take the "big
picture" approach, working at higher levels of consolidation.
The one thing that all of the companies which we have worked
with have in common, is that the budgeting process involves many
changes and several iterations. With several levels of consoli
dation, and allocations from several service departments,
budgeting would be a massive job if it were done by hand. And
a massive headache if it were done with the traditional program
ming approach in BASIC, FORTRAN, or COBOL.

Once the budgets have been prepared, we are ready to proceed
with the profit/loss projection. With the information provided
by the sales forecast and manufacturing plan, plus the depart
mental budgets, the P & L is little more than a recap of exist
ing information. This is particularly easy in the system which
we are using because we can 'define' relationships on our P & L
report which will cause data to be read automatically from re
ports which have already been prepared. For example, we could
read information from the manufacturing plan with rules like the
following:

DIRECT LABOR = 'TOTAL COGS LABOR' OF 'MFGPLN'
DIRECT MATL = 'TOTAL COGS MATL' OF 'MFGPLN' ;

where 'TOTAL COGS LABOR' and 'TOTAL COGS MATL' are lines on the
production plan which has been set up and saved under the name
'MFGPLN' .

We can even reference several reports for a one-line consoli
dation:

MARKETING = 'TOTAL BUDGET' OF ('D2001','D2002', ... , 'D2009');

Of course the one-line consolidation shown here would only be
necessary if we didn't have a consolidation report already
set up for total marketing.

A few of the lines involve calculations with other lines on the
P & L report itself:

TOTAL DIRECT cos'r = 'DIRECT LABOR' + 'DIREC'l' MATL' + 'MFG OVHD'
GROSS MARGIN = 'SALES' - 'TOTAL DIRECT COST'

And one line, 'INTEREST EXPENSE', is a forward reference to two
other lines yet to be defined:

INTEREST EXPENSE = '% INTEREST' X 'OUTSTANDING DEBT' / 1200

Now, the P & L projection (combined with the cash flow) is 05 8

us~ally run as soon as the first pass forecast and budget reports
ar~ ready. The budgets and the forecast are then red-lined, and
sent back for revision. The revisions may involve changes in
budgeted expenditures, pricing (and volume) of products, or even
timing of product introduction and related expenditures. The
running of the P & L and the cash flow is then the "top-down"
step in planning, where the forecasts and budgets are revised
based on overall criteria.

A typical P & L projection might look like the following:

VYZ COMPANY
PROFIT/LOSS AND CASH FLOW PROJECTION

12/23/79

JAN FEB MAR APR

PAGE

MAY

1

bill (less the cost of making the goods) is profit. However,
all the company who shipped the product has at this point is a
thing called "accounts receivable", or money owed to it by the
customer which has not yet been paid. This becomes cash only
when the customer pays his bill. Conversely, when a company
takes delivery of goods on credit from a vendor, the amount owed
to the vendor ("accounts payable") only becomes a cash outflow
when the bill is paid. In both of these cases, cash will even
tually change hands to offset accounts receivable and accounts
payable. However, the timing makes a big difference in cash
flow. And, keep in mind, running a business at a loss (although
undesirable) is not nearly as serious as running out of money
(and unable to borrow it somewhere)! If a company is growing
fast, it is very easy to run out of cash even though the busi
ness is very profitable.

For companies where cash flow is important (because they are
growing rapidly, because margins are low, or a host of other
reasons), the cash flow projection may be the most important
part of the planning cycle.

40.0 66.3 80.9

207.5 207.5 207.5

167.5 141.3 126.6

RECEIPTS = 'BEGINNING A/R' + 'SALES' - 'ENDING A/R'

The report lines appear as follows:

JAN FEB MAR APR MAY

21 CASH FLOW PROJECTION:
=====================

22 RECEIVABLES AGING:

23 PRIOR 2 MOS SALES 180.0 190.0
24 3 MOS AVG SALES 192.5 201.7 207.5 294.2 378.7
25 # DAYS SALES IN A/R 45.0 45.0 45.0 45.0 45.0
26 BEGINNING A/R 300.0 288.8 302.5 311.3 441.3
27 CHANGE IN A/R (11.3) 13.8 8.8 130.0 126.8
28 ENDING A/R 288.8 302.5 311.3 441.3 568.0
43 RECEIPTS 218.8 193.8 198.8 337.5 334.3

Enough of the generalities. Let's look at what we do to create
our cash flow. First, the "aging" of accounts receivable, or
reflecting how cash payment of accounts receivable is expected
to occur over time. We usually calculate a 3 month moving aver
age of sales, then use an estimate of the number of days of sales
that will be in accounts receivable at one time. We set up this
number of days sales figure as an easily revised input value so
that the plan can be run at varying rates of receivables collec
tion. Combining the average sales with the number of days sales
which are in accounts receivable, we project the ending accounts
receivable balance for each month. With this information, all
we have to do is a calculation with the following rule to deter
mine cash receipts:

2.3

35.0
22.2
25.0

37.2

73.9

71.6
34.4

82.2

305.0

52.2
94.9

156.7
1.2

156.1

461.0

34.0

43.7

43.7
9.8

35.0
42.2
25.0

321.6

145.9

102.2

53.0
96.3

159.0
13.3

467.5

12.3

25.0
18.6
25.0

68.6

(.3) 12.3

(.3) 12.3

2.0

1.7

25.0
14.6
25.0

64.6

.9

25.0
24.6
25.0

74.6

30.6 30.6 30.6
d6.9 46.9 46.9
91.9 91.9 91.9
(1.9) (28.l) (42.8)

(35.5)

(34.6)

(35.5)

9 GROSS MARGIN

I PROFIT/LOSS PROJECTION:

8 TOTAL DIRECT COST

2 SALES
3 DIRECT COSTS:
4 DIRECT LABOR
5 DIRECT MATL
6 MFG OVHD
7 MFG OVHD VARIANCE

15 INTEREST EXPENSE

14 OPERATING PROFIT

18 NET INCOME AFTER TAX

16 NET INCOME BEF TAX
17 TAXES ON INCOME

10 ENGINEERING
11 MARKET ING
12 GEN & ADMIN

13 TOTAL PERIOD EXPENSE

Now, setting up a cash flow projection from the information we
already have available requires little more than taking our P & L
results and adjusting them for timing in the flow of funds.
Let's start this with a very simplified rule of thumb. The dif
ference between profit and cash flow is that:

PROFIT (like your salary) is what you pay taxes on, whereas
CASH is what you have in the bank.

And we all know what a big difference that can be! Let's examine
two important examples. If a company sends a shipment to a cus
tomer along with a bill for the goods, then the amount of the

D5 9

For accounts payable, the process is a little more involved.
We take the total budgeted expenditures for all of the operat
ing departments and subtract out the payroll and depreciation
expenses from them. We add into this direct material purchases
and capital equipment purchases. This gives us the amount of
accounts payable we have incurred. Then, we assume that all of
our bills are paid in 30 days (or 1 period in the example here).
So we just take the prior period's accounts payable to determine
our payment of accounts payable in the current period. To han
dle the first period, we add a figure for accounts payable in
curred in the preceding period. This analysis appears as follows:

D5 10

us~ally run as soon as the first pass forecast and budget reports
ar~ ready. The budgets and the forecast are then red-lined, and
sent back for revision. The revisions may involve changes in
budgeted expenditures, pricing (and volume) of products, or even
timing of product introduction and related expenditures. The
running of the P & L and the cash flow is then the "top-down"
step in planning, where the forecasts and budgets are revised
based on overall criteria.

A typical P & L projection might look like the following:

VYZ COMPANY
PROFIT/LOSS AND CASH FLOW PROJECTION

12/23/79

JAN FEB MAR APR

PAGE

MAY

1

bill (less the cost of making the goods) is profit. However,
all the company who shipped the product has at this point is a
thing called "accounts receivable", or money owed to it by the
customer which has not yet been paid. This becomes cash only
when the customer pays his bill. Conversely, when a company
takes delivery of goods on credit from a vendor, the amount owed
to the vendor ("accounts payable") only becomes a cash outflow
when the bill is paid. In both of these cases, cash will even
tually change hands to offset accounts receivable and accounts
payable. However, the timing makes a big difference in cash
flow. And, keep in mind, running a business at a loss (although
undesirable) is not nearly as serious as running out of money
(and unable to borrow it somewhere)! If a company is growing
fast, it is very easy to run out of cash even though the busi
ness is very profitable.

For companies where cash flow is important (because they are
growing rapidly, because margins are low, or a host of other
reasons), the cash flow projection may be the most important
part of the planning cycle.

40.0 66.3 80.9

207.5 207.5 207.5

167.5 141.3 126.6

RECEIPTS = 'BEGINNING A/R' + 'SALES' - 'ENDING A/R'

The report lines appear as follows:

JAN FEB MAR APR MAY

21 CASH FLOW PROJECTION:
=====================

22 RECEIVABLES AGING:

23 PRIOR 2 MOS SALES 180.0 190.0
24 3 MOS AVG SALES 192.5 201.7 207.5 294.2 378.7
25 # DAYS SALES IN A/R 45.0 45.0 45.0 45.0 45.0
26 BEGINNING A/R 300.0 288.8 302.5 311.3 441.3
27 CHANGE IN A/R (11.3) 13.8 8.8 130.0 126.8
28 ENDING A/R 288.8 302.5 311.3 441.3 568.0
43 RECEIPTS 218.8 193.8 198.8 337.5 334.3

Enough of the generalities. Let's look at what we do to create
our cash flow. First, the "aging" of accounts receivable, or
reflecting how cash payment of accounts receivable is expected
to occur over time. We usually calculate a 3 month moving aver
age of sales, then use an estimate of the number of days of sales
that will be in accounts receivable at one time. We set up this
number of days sales figure as an easily revised input value so
that the plan can be run at varying rates of receivables collec
tion. Combining the average sales with the number of days sales
which are in accounts receivable, we project the ending accounts
receivable balance for each month. With this information, all
we have to do is a calculation with the following rule to deter
mine cash receipts:

2.3

35.0
22.2
25.0

37.2

73.9

71.6
34.4

82.2

305.0

52.2
94.9

156.7
1.2

156.1

461.0

34.0

43.7

43.7
9.8

35.0
42.2
25.0

321.6

145.9

102.2

53.0
96.3

159.0
13.3

467.5

12.3

25.0
18.6
25.0

68.6

(.3) 12.3

(.3) 12.3

2.0

1.7

25.0
14.6
25.0

64.6

.9

25.0
24.6
25.0

74.6

30.6 30.6 30.6
d6.9 46.9 46.9
91.9 91.9 91.9
(1.9) (28.l) (42.8)

(35.5)

(34.6)

(35.5)

9 GROSS MARGIN

I PROFIT/LOSS PROJECTION:

8 TOTAL DIRECT COST

2 SALES
3 DIRECT COSTS:
4 DIRECT LABOR
5 DIRECT MATL
6 MFG OVHD
7 MFG OVHD VARIANCE

15 INTEREST EXPENSE

14 OPERATING PROFIT

18 NET INCOME AFTER TAX

16 NET INCOME BEF TAX
17 TAXES ON INCOME

10 ENGINEERING
11 MARKET ING
12 GEN & ADMIN

13 TOTAL PERIOD EXPENSE

Now, setting up a cash flow projection from the information we
already have available requires little more than taking our P & L
results and adjusting them for timing in the flow of funds.
Let's start this with a very simplified rule of thumb. The dif
ference between profit and cash flow is that:

PROFIT (like your salary) is what you pay taxes on, whereas
CASH is what you have in the bank.

And we all know what a big difference that can be! Let's examine
two important examples. If a company sends a shipment to a cus
tomer along with a bill for the goods, then the amount of the

D5 9

For accounts payable, the process is a little more involved.
We take the total budgeted expenditures for all of the operat
ing departments and subtract out the payroll and depreciation
expenses from them. We add into this direct material purchases
and capital equipment purchases. This gives us the amount of
accounts payable we have incurred. Then, we assume that all of
our bills are paid in 30 days (or 1 period in the example here).
So we just take the prior period's accounts payable to determine
our payment of accounts payable in the current period. To han
dle the first period, we add a figure for accounts payable in
curred in the preceding period. This analysis appears as follows:

D5 10

PAID' and 'OUTSTANDING DEBT' lines on the cash flow. The system
which we are using actually solves the circular logic involved
in ca1c''1lating interest, cash flow, and debt, so that these
values are all mutually consistent.

This completes our profit plan. I want to emphasize here that
the example we have used is not a fixed or canned example. De
pending on the way in which our customers think of their projec
tions, we may alter the rules for the P & L, cash flow, and
balance sheet projections. And in most cases, the forecast re
ports and budgets are tailored to conform to the customer's own

The last step in our profit plan is the creation of a balance
sheet. Similar to the P & L statement, the balance sheet is
usually just a recap of the P & L and cash flow projection. I
won't say much about the balance sheet, except to mention that
we use it as a tool to make sure that our cash flow projections
are working correctly. If our assets are equal to our liabili
ties (as they should be), then we can be pretty sure that we
haven't made a mistake in the general logic of the cash flow (of
course the values could still be wrongl). The balance sheet
might appear as follows:

XYZ COMPANY PAGE 1
BALANCE SHEET PROJECTION

DEC JAN FEB MAR APR MAY

50.0 105.9 141.0
300.0 288.8 302.5 311.3 441.3 568.0

125.0 155.6 238.6 342.9 375.2 426.7

475.0 444.4 541.1 760.0 957.4 994.7
2255.0 2248.0 2241.0 2234.0 2427.0 2420.0
------ ------ ------ ------ ------ ------

2730.0 2692.4 2782.1 2994.0 3384.4 3414.7

WORTH:
190.0 215.7 221.8 227.4 574.1 351.7

9.8 44.1
100.0 72.2 156.0 181.1

DS 12

290.0 287.8 377.8 227.4 583.8 576.9
900.0 900.0 900.0 900.0 900.0 900.0

2730.0 2692.4 2782.1 2994.0 3384.4 3414.7

1540.0 1504.5 1504.3 1866.6 1900.6 1937.8

1190.0 1187.8 1277.8 1127.4 1483.8 1476.9

2340.0 2340.0 2340.0 2690.0 2690.0 2690.0
(800.0)(835.5)(835.7)(823.4)(789.4)(752.2)

* END OF $FLOW$ REPORT *

1 ASSETS:
2 CASH
3 ACCTS RECEIVABLE

4 INVENTORY (NET)

5 TOTAL CURRENT ASSETS
6 PROP, PLANT & EQUIP

7 TOTAL ASSETS

8 LIABILITIES AND NET
9 ACCTS PAYABLE

10 TAXES PAYABLE
11 S.T. BANK LOAN

12 TOTAL
CURRENT LIABILITIES

13 L.T. BANK LOAN

12/23/79

20 ASSETS - LIABS

18 TOTAL
STOCKHOLDERS EQUITY

19 TOTAL LIABS & WORTH

14 TOTAL LIABILITIES
15 STOCKHOLDERS EQUITY:
16 COMMON STOCK
17 RETAINED EARNINGS

D5 1]

29 PAYABLES AGING:
30 BUDGETED EXPENSES 164.6 154.6 158.6 272.2 252.2
31 PAYROLL 50.0 60.0 65.0 75.0 80.0
32 PAYROLL (EXCL D.L.) 19.4 20.6 20.8 22.8" 23.7
33 DEPRECIATION 7.0 7.0 7.0 7.0 7.0
34 MATERIAL PURCHASES 77.5 94.9 96.6 131.6 130.3
35 CAPITAL EQUIPMENT PURCHASES 200.0
36 ACCTS PAYABLE INCURRED 215.7 221.8 227.4 574.1 351.7
37 PRIOR PERIOD A/P 190.0
38 ACCTS PAYABLE PAID 190.0 215.7 221.8 227.4 574.1

42 CASH FLOW:
=========

43 RECEIPTS 218.8 193.8 198.8 337.5 334.3
44 DISBURSEMENTS:
45 PAYROLL PAID 50.0 60.0 65.0 75.0 80.0
46 ACCTS PAYABLE PAID 190.0 215.7 221.8 227.4 574.1
47 TAXES PAID
48 INTEREST PAID .9 2.0 2.3

49 TOTAL DISBURSEMENTS 240.9 277.6 286.8 302.4 656.3

50 NET CASH FLOW (22.2) (83.9) (88.1) 35.1 (322.1)

51 BEGINNING CASH 50.0 105.9 141.0
52 CHANGES IN CASH (22.2) (83.9) (88.1) 35.1 (322.1)
53 ENDING CASH 27.8 (83.9) (88.1) 141.0 (181.1)
54 FINANCING 350.0
55 BORROWING(REPAYMENT) (27.8) 83.9 (156.0) 181.1
56 ENDING C~SH AFTER FINANCING 105.9 141.0

57 BEGINNING DEBT 100.0 72.2 156.0
58 OUTSTANDING DEBT 72.2 156.0 181.1
59 , INTEREST PAID 15.0 % 15.0 % 15.0 % 15.0 % 15.0 %

Now, to calculate the cash flow in each period, all we do is to
take the receipts and subtract the total of payroll, accounts
payable paid, taxes paid, and interest paid. This gives us our
net cash flow from operations in any given period.

For interest payments, we assume that they are paid in the per
iods that they are incurred. (We will discuss the interest cal
culation in somewhat greater detail in a moment.) And taxes are
usually paid based on the results of the prior year. In the
example here, we have assumed that no taxes were due in the
preceding year.

Next, we consider financing. As shown here, we have constructed
a model which takes the beginning balance of cash in a given
period and adds into it the changes in cash due to operations.
Equity financing is then added into the cash balance. Then, we
set up a rule for the line 'BORROWING (REPAYMENT)' which says
IIIf the cash balance is less than zero, borrow enough money to
bring the balance back to zero. If the cash balance is greater
then zero, then payoff any existing debt with whatever cash is
available. II We then add this borrowing or repayment into our
cash balance and we have ending cash for the period. The
financing lines appear as follows:

One last comment about the cash flow. The 'INTEREST EXPENSE'
line on the p' & L statement is calculated using the " INTEREST

PAID' and 'OUTSTANDING DEBT' lines on the cash flow. The system
which we are using actually solves the circular logic involved
in ca1c''1lating interest, cash flow, and debt, so that these
values are all mutually consistent.

This completes our profit plan. I want to emphasize here that
the example we have used is not a fixed or canned example. De
pending on the way in which our customers think of their projec
tions, we may alter the rules for the P & L, cash flow, and
balance sheet projections. And in most cases, the forecast re
ports and budgets are tailored to conform to the customer's own

The last step in our profit plan is the creation of a balance
sheet. Similar to the P & L statement, the balance sheet is
usually just a recap of the P & L and cash flow projection. I
won't say much about the balance sheet, except to mention that
we use it as a tool to make sure that our cash flow projections
are working correctly. If our assets are equal to our liabili
ties (as they should be), then we can be pretty sure that we
haven't made a mistake in the general logic of the cash flow (of
course the values could still be wrongl). The balance sheet
might appear as follows:

XYZ COMPANY PAGE 1
BALANCE SHEET PROJECTION

DEC JAN FEB MAR APR MAY

50.0 105.9 141.0
300.0 288.8 302.5 311.3 441.3 568.0

125.0 155.6 238.6 342.9 375.2 426.7

475.0 444.4 541.1 760.0 957.4 994.7
2255.0 2248.0 2241.0 2234.0 2427.0 2420.0
------ ------ ------ ------ ------ ------

2730.0 2692.4 2782.1 2994.0 3384.4 3414.7

WORTH:
190.0 215.7 221.8 227.4 574.1 351.7

9.8 44.1
100.0 72.2 156.0 181.1

DS 12

290.0 287.8 377.8 227.4 583.8 576.9
900.0 900.0 900.0 900.0 900.0 900.0

2730.0 2692.4 2782.1 2994.0 3384.4 3414.7

1540.0 1504.5 1504.3 1866.6 1900.6 1937.8

1190.0 1187.8 1277.8 1127.4 1483.8 1476.9

2340.0 2340.0 2340.0 2690.0 2690.0 2690.0
(800.0)(835.5)(835.7)(823.4)(789.4)(752.2)

* END OF $FLOW$ REPORT *

1 ASSETS:
2 CASH
3 ACCTS RECEIVABLE

4 INVENTORY (NET)

5 TOTAL CURRENT ASSETS
6 PROP, PLANT & EQUIP

7 TOTAL ASSETS

8 LIABILITIES AND NET
9 ACCTS PAYABLE

10 TAXES PAYABLE
11 S.T. BANK LOAN

12 TOTAL
CURRENT LIABILITIES

13 L.T. BANK LOAN

12/23/79

20 ASSETS - LIABS

18 TOTAL
STOCKHOLDERS EQUITY

19 TOTAL LIABS & WORTH

14 TOTAL LIABILITIES
15 STOCKHOLDERS EQUITY:
16 COMMON STOCK
17 RETAINED EARNINGS

D5 1]

29 PAYABLES AGING:
30 BUDGETED EXPENSES 164.6 154.6 158.6 272.2 252.2
31 PAYROLL 50.0 60.0 65.0 75.0 80.0
32 PAYROLL (EXCL D.L.) 19.4 20.6 20.8 22.8" 23.7
33 DEPRECIATION 7.0 7.0 7.0 7.0 7.0
34 MATERIAL PURCHASES 77.5 94.9 96.6 131.6 130.3
35 CAPITAL EQUIPMENT PURCHASES 200.0
36 ACCTS PAYABLE INCURRED 215.7 221.8 227.4 574.1 351.7
37 PRIOR PERIOD A/P 190.0
38 ACCTS PAYABLE PAID 190.0 215.7 221.8 227.4 574.1

42 CASH FLOW:
=========

43 RECEIPTS 218.8 193.8 198.8 337.5 334.3
44 DISBURSEMENTS:
45 PAYROLL PAID 50.0 60.0 65.0 75.0 80.0
46 ACCTS PAYABLE PAID 190.0 215.7 221.8 227.4 574.1
47 TAXES PAID
48 INTEREST PAID .9 2.0 2.3

49 TOTAL DISBURSEMENTS 240.9 277.6 286.8 302.4 656.3

50 NET CASH FLOW (22.2) (83.9) (88.1) 35.1 (322.1)

51 BEGINNING CASH 50.0 105.9 141.0
52 CHANGES IN CASH (22.2) (83.9) (88.1) 35.1 (322.1)
53 ENDING CASH 27.8 (83.9) (88.1) 141.0 (181.1)
54 FINANCING 350.0
55 BORROWING(REPAYMENT) (27.8) 83.9 (156.0) 181.1
56 ENDING C~SH AFTER FINANCING 105.9 141.0

57 BEGINNING DEBT 100.0 72.2 156.0
58 OUTSTANDING DEBT 72.2 156.0 181.1
59 , INTEREST PAID 15.0 % 15.0 % 15.0 % 15.0 % 15.0 %

Now, to calculate the cash flow in each period, all we do is to
take the receipts and subtract the total of payroll, accounts
payable paid, taxes paid, and interest paid. This gives us our
net cash flow from operations in any given period.

For interest payments, we assume that they are paid in the per
iods that they are incurred. (We will discuss the interest cal
culation in somewhat greater detail in a moment.) And taxes are
usually paid based on the results of the prior year. In the
example here, we have assumed that no taxes were due in the
preceding year.

Next, we consider financing. As shown here, we have constructed
a model which takes the beginning balance of cash in a given
period and adds into it the changes in cash due to operations.
Equity financing is then added into the cash balance. Then, we
set up a rule for the line 'BORROWING (REPAYMENT)' which says
IIIf the cash balance is less than zero, borrow enough money to
bring the balance back to zero. If the cash balance is greater
then zero, then payoff any existing debt with whatever cash is
available. II We then add this borrowing or repayment into our
cash balance and we have ending cash for the period. The
financing lines appear as follows:

One last comment about the cash flow. The 'INTEREST EXPENSE'
line on the p' & L statement is calculated using the " INTEREST

products and chart of accounts. The m~in idea here, however, is
that we have a framework in which we set up analyses. Then, as
required, we make changes taking advantage of the flexibility of
the planning language which we are using.

Setting up a realistic plan is an excellent first step in manag
ing a fast-moving business effectively, but it is only a begin
ning. What really counts is putting it into action. So, once a
plan is established, then actual performance against it must be
monitored. This can be done with a combination of budget var
iance reports, forecast versus actual sales reports, and com
parisons of P & L, cash flow, and balance sheet position. In
some cases, we set up variance report"s within the Dollar-Flow
system for this reporting. In other cases, we feed the projec
tions which have been set up in Dollar-Flow into other reporting
systems.

Let me summarize what we have covered here. Our overall company
plan has encompassed a product-by-product forecast with a match
ing production plan to establish what we expect to produce and
sell. We have established budgets which set the spending for
various areas of-responsibility in the company. And we have
set up a profit/loss statement, cash flow projection, and balance
sheet projection to examine the impact of the forecast and budgets,
analyze alternative financing and management strategies, and to
review the company operations on an overall basis.

I hope we have eliminated some of the mystery and myth which sur
rounds the concepts of financial planning and cash flow analysis.
Building an effective profit plan for a company is not a trivial
task, nor is it an impossible one. We feel that it is an excel
lent opportunity to use the computer as a tool, but at the same
time is not a good data processing application. Because of the
demands in planning for flexibility, immediate feedback, ease of
use, and good documentati0n, it is simply too difficult to set
up good models in languages like COBOL, BASIC, or FORTRAN. With
a good financial plann~ng language, however, the HP3000 can be
a very powerful tool fqr bUdgeting and financial planning.

Thank you very much. Do you have any questions?

05 13

products and chart of accounts. The m~in idea here, however, is
that we have a framework in which we set up analyses. Then, as
required, we make changes taking advantage of the flexibility of
the planning language which we are using.

Setting up a realistic plan is an excellent first step in manag
ing a fast-moving business effectively, but it is only a begin
ning. What really counts is putting it into action. So, once a
plan is established, then actual performance against it must be
monitored. This can be done with a combination of budget var
iance reports, forecast versus actual sales reports, and com
parisons of P & L, cash flow, and balance sheet position. In
some cases, we set up variance report"s within the Dollar-Flow
system for this reporting. In other cases, we feed the projec
tions which have been set up in Dollar-Flow into other reporting
systems.

Let me summarize what we have covered here. Our overall company
plan has encompassed a product-by-product forecast with a match
ing production plan to establish what we expect to produce and
sell. We have established budgets which set the spending for
various areas of-responsibility in the company. And we have
set up a profit/loss statement, cash flow projection, and balance
sheet projection to examine the impact of the forecast and budgets,
analyze alternative financing and management strategies, and to
review the company operations on an overall basis.

I hope we have eliminated some of the mystery and myth which sur
rounds the concepts of financial planning and cash flow analysis.
Building an effective profit plan for a company is not a trivial
task, nor is it an impossible one. We feel that it is an excel
lent opportunity to use the computer as a tool, but at the same
time is not a good data processing application. Because of the
demands in planning for flexibility, immediate feedback, ease of
use, and good documentati0n, it is simply too difficult to set
up good models in languages like COBOL, BASIC, or FORTRAN. With
a good financial plann~ng language, however, the HP3000 can be
a very powerful tool fqr bUdgeting and financial planning.

Thank you very much. Do you have any questions?

05 13

~(I)

~w-'er:
NI
(.I)

****Iw>(I)

c::::
wa.er:a.w:J:
I-U

J
>WUW~I-

-.Z~-~W~*••*

~c::::
er:~

~
~
.

~
c
.
.

W...J
I

er:
l-

N
w...J

•
:K

I-
w

e
n

:

DATA£OMMUNIGAII9N-STRATEGY

ST. ZALEWSKI

····WE DIDN'T RECEIVE THE PAPERS YET (EDITOR)

ST. ZALEWSKI
HE"LETT PACKARD

/

••••

El 1

USER FRIENDLY APPLICATIONS

IN COMMERCIAL REALTIME

DATAPROCESSING

~DD[P\r@~

~ Introduction

~ User Interlace

~ Application PrograDis

~ User Training

, \' ,I I ' I I

:) EXPER IENCES

:) SUGGESTIONS

:) PROBLEMS

HERBERT AUGENSTEIN

RECHENZENTRUM
HERBERT SEITZ KG
GRONENSTRASSE 11/12
D-2800 BREMEN
W-GERMANY

~ User DocuDientation

E2 1

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 2

E2 2

USER FRIENDLY APPLICATIONS

IN COMMERCIAL REALTIME

DATAPROCESSING

~ Introduction

~ User Interlace

~ Application PrograDis

~ User Training

, \, II I ' I I

::> EXPERIENCES

::> SUGGESTIONS

::> PROBLEMS

HERBERT AUGENSTEIN

RECHENZENTRUM
HERBERT SEITZ KG
GRONENSTRASSE 11/12
D-2800 BREMEN
W-GERMANY

~ User DocuDientatioD

E2 1

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 2

E2 2

The Herbert Seitz COlDpany is WE PROVIDE OUR SERVICES IN GERMANY AND FRANCE FOR COMMERCIAL
APPLICATIONS LIKE

~ ACCOUNTING

~ MATERIAL MANAGEMENT

~ PAYROLL

~ TOOLS FOR HP 3000
OPERATION, SOFTWARE-DESIGN
AND DOCUMENTATION

~ SHOP FLOOR CONTROL,
CAPACITY PLANNING

~ ARE SPEAKING (HP-)ENGLISH

~ HAVE DP EXPERIENCE

~ HAVE SEEN ANY TERMINAL BEFORE

=*> WORKMEN

=*> DATA TYPISTS, CLERKS

=*> MANAGERS

OUR USERS ARE

ONLY AFEW OF THEM

AND 10 HP 3000 SERIES III IN
ASSOCIATED COMPANIES

WITH APPROX. 350 TERMINALS SPREAD
OVER GERMANY CONNECTED VIA HARD
WIRED LEASED LINES/DIALED LINES

7 OWN HP 3000 (SERIES III AND 44)
IN OUR BREMEN AND PFORZHEIM BRANCH

Location or:

~ A REALTIME DATAPROCESSING SERVICE BUREAU

~ AND S9FTWAREHOUSE

~ AND HEWLETT PACKARD OEM

o own Computers

• A ssociated Companies

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 3 UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 4

E2 3 E2 4

The Herbert Seitz COlDpany is WE PROVIDE OUR SERVICES IN GERMANY AND FRANCE FOR COMMERCIAL
APPLICATIONS LIKE

~ ACCOUNTING

~ MATERIAL MANAGEMENT

~ PAYROLL

~ TOOLS FOR HP 3000
OPERATION, SOFTWARE-DESIGN
AND DOCUMENTATION

~ SHOP FLOOR CONTROL,
CAPACITY PLANNING

~ ARE SPEAKING (HP-)ENGLISH

~ HAVE DP EXPERIENCE

~ HAVE SEEN ANY TERMINAL BEFORE

=*> WORKMEN

=*> DATA TYPISTS, CLERKS

=*> MANAGERS

OUR USERS ARE

ONLY AFEW OF THEM

AND 10 HP 3000 SERIES III IN
ASSOCIATED COMPANIES

WITH APPROX. 350 TERMINALS SPREAD
OVER GERMANY CONNECTED VIA HARD
WIRED LEASED LINES/DIALED LINES

7 OWN HP 3000 (SERIES III AND 44)
IN OUR BREMEN AND PFORZHEIM BRANCH

Location or:

~ A REALTIME DATAPROCESSING SERVICE BUREAU

~ AND S9FTWAREHOUSE

~ AND HEWLETT PACKARD OEM

o own Computers

• A ssociated Companies

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 3 UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 4

E2 3 E2 4

JJrnli1:P®,:QJm@'l;[\,®lJD ~£}

lor this kind of users ~e need ...

[f A FRIENDLY interlace BETWEEN THE USER AND
HIS APPLICATION PROGRAMS

\ (I

[f EASY-TO-UNDERSTAND

aPPlication
progralDs

~ A user training WITH
REGARD TO THE STANDARD OF
EDUCATION OF ITS PARTICIPANTS

[f user dOCuDlentatioD MANUALS,
WHICH INVITE TO READ

,. ~, rQrl~·\0~;~\ (~0(,-s(r

1111. KEEP YOUR USERS OUT OF MPE

MPE IS A HIGH LEVEL OPERATING
SYSTEM WITH A LOT OF POWERFUL
COMMANDS, BUT IT IS NOT DESIGNED
FOR THE DIRECT USE OF USERS WE
ARE DISCUSSING ABOUT

1111. USE ANY KIND OF MENU-TECHNIQUE

(WE CALL OURS
"USER-PROFILES")

.__c-l
~ -~

~ <::{

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 5

E2 5

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 6

E2 6

for this kind of users ~e need ...

[f A FRIENDLY interface BETWEEN THE USER AND
HIS APPLICATION PROGRAMS

\ (,
[f EASY-TO-UNDERSTAND

aPPlication
progralDs

~ Auser training WITH
REGARD TO THE STANDARD OF
EDUCATION OF ITS PARTICIPANTS

[f user doculDentatioD MANUALS,
WHICH INVITE TO READ

1111. KEEP YOUR USERS OUT OF MPE

MPE IS A HIGH LEVEL OPERATING
SYSTEM WITH A LOT OF POWERFUL
COMMANDS, BUT IT IS NOT DESIGNED
FOR THE DIRECT USE OF USERS WE
ARE DISCUSSING ABOUT

1111. USE ANY KIND OF MENU-TECHNIQUE

(WE CALL OURS
"USER-PROFILES")

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 5

E2 5

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 6

E2 6

c::
"'Ij
en

""

~
n
::I:

~
N
til
Z
.-3

~
3:
::I:
til

i3
til
~
.-3

en
til
H
.-3
N

~
Cl

td
):ll
G1
trj

co

c
"'Ij
en
N

~
n
::I:

t1
N
til
Z
t-3
~

~
::I:
til

i3
til

~
en
trj
H
t-3
N

~
Gl

t'd
):ll

g]

-...J

I NT E RF ACE (3)

~ THE USER ONLY CAN DO THINGS YOU WANT HIM TO DO

~ BUT HE CAN DO ANYTHING POSSIBLE WITH THE HP 3000

QUERY WITH TERMI NAL- },
OUTPUT "-
QUERY WITH PRINT-OUTPUT
"LISTF" OF SOME FILES""""
HARDCOPY SPOOL PRINT
"PURGE" OF ONE FILE
START OF A JOBSTREAM
SKIP TO ANOTHER MENUE

I NTERFACE (2)

=*> WE ONLY NEED 1 MPE COMMAND: HELLO
=*> MENUES EASILY CREATED AND MAINTAINED WITH EDITOR IN ANY LANGUAGE

00

C'J
u.J

'"N
LJ.J

I NT ERF ACE (3)

~ THE USER ONLY CAN DO THINGS YOU WANT HIM TO DO

~ BUT HE CAN DO ANYTHING POSSIBLE WITH THE HP 3000

QUERY WITH TERMI NAL- },
OUTPUT "-
QUERY WITH PRINT-OUTPUT
"LISTF" OF SOME FILES./'"
HARDCOPY SPOOL PRINT
"PURGE" OF ONE FILE
START OF A JOBSTREAM
SKIP TO ANOTHER MENUE

I NT ERF ACE (2)

~> WE ONLY NEED 1 MPE COMMAND: HELLO
~> MENUES EASILY CREATED AND MAINTAINED WITH EDITOR IN ANY LANGUAGE

I NT E RF ACE (5)
c
~ =*> ASK FOR RECONFORMATION OF CRITICAL CHOICES------------------~
~

RECHENZENTRUM HERBERT SEITZ KG
FINANZBUCHHALTUNG - DIALOG

BREMEN - PFORZHEIM
(Auswahltabelle 4)
(Druck im Hause)

01 Drucken DP-Liste
02 Drucken AP-Liste
03 Drucken Personenkonten
04 Drucken Sachkonten
05 Drucken Journal
06 Drucken Summensaldenliste
07 Drucken Hauptbuch
08 Drucken kumulierte Sachkontenwerte
09 Drucken Mahnungen
10 Aufgliederung der offenen Posten
11 Drucken Faelligkeitsliste
12 Drucken Provisionsabrechnung
13 zurueck zur Auswahltabelle 1
99 Arbeitsende
BITTE AUSWAHL EINGEBEN
o1
vJ e rt n S 1 e die 5 eAr b e i t w irk 1 i c h w0 1 1en,
dann.wlederholen Sie bitte die Einga~e

Ihrcr gewuenschten Auswahl. Andcrnfalls
geben Sle ein beliebiges Zeichen ein.

o

I NTERF ACE (4)

~CONTROL OF REQUIRED SEQUENCE OF DIFFERENT MENUE-CHOICES REFERRING•••••••••
TO TIME, SITUATION OR KIND OF DATA-ENTRIES

~ .

~ INFORM THE USER WHAT THE COMPUTER IS DOING FOR HIM •••••••••••••••••••••••••••••••
••••••

•
~..

"YOUR INVOICES ARE READY. ENTER 13 FOR HARDCOPY OR 14 FOR LINE-PRINTER OUTPUT"

I NT E RF ACE (5)
c
~ =*> ASK FOR RECONFORMATION OF CRITICAL CHOICES------------------~
~

RECHENZENTRUM HERBERT SEITZ KG
FINANZBUCHHALTUNG - DIALOG

BREMEN - PFORZHEIM
(Auswahltabelle 4)
(Druck im Hause)

01 Drucken DP-Liste
02 Drucken AP-Liste
03 Drucken Personenkonten
04 Drucken Sachkonten
05 Drucken Journal
06 Drucken Summensaldenliste
07 Drucken Hauptbuch
08 Drucken kumulierte Sachkontenwerte
09 Drucken Mahnungen
10 Aufgliederung der offenen Posten
11 Drucken Faelligkeitsliste
12 Drucken Provisionsabrechnung
13 zurueck zur Auswahltabelle 1
99 Arbeitsende
BITTE AUSWAHL EINGEBEN
o1
vJ e rt n S 1 e die 5 eAr b e i t w irk 1 i c h w0 1 1en,
dann.wlederholen Sie bitte die Einga~e

Ihrcr gewuenschten Auswahl. Andcrnfalls
geben Sle ein beliebiges Zeichen ein.

o

I NTERF ACE (4)

~CONTROL OF REQUIRED SEQUENCE OF DIFFERENT MENUE-CHOICES REFERRING•••••••••
TO TIME, SITUATION OR KIND OF DATA-ENTRIES

~ .

~ INFORM THE USER WHAT THE COMPUTER IS DOING FOR HIM •••••••••••••••••••••••••••••••
••••••

•
~..

"YOUR INVOICES ARE READY. ENTER 13 FOR HARDCOPY OR 14 FOR LINE-PRINTER OUTPUT"

zs~n

~ ALLOW A REGULAR PROGRAM
TERMINATION OR A CANCELLATION
OF THE LAST ENTRY AT ANY TIME
IN ANY SITUATION VIA THE
F7/F8 KEYS

~ ALWAYS POlNT TO WRONG ENTRIES
AND PROVIDE A MEANINGFULL
ERROR MESSAGE

~ IF POSSIBLE, USE THE FIELDNAMES
IDENTICAL WITH THE ITEM NAMES OF
THE CORRESPONDING DATA BASE

~ AVOID (ENGLISH) ERROR MESSAGES FROM
ANY HP SUBS¥STEM

~ USE STANDARD FORMS AND TRANSACTION
CODES IN ALL PROGRAMS AND SYSTEMS

~ ONLY BLOCK MODE PROGRAMS (V/3000)

~ TRY TO DESIGN GOOD READIBLE FORMS

GENERAL GUIDELINES FOR OUR PROGRAMMERS:
:2

--t

rn
:::c

en " » -n
c: » <n en 0 »n -m 0 t:j n
en -i
en ::c » rn
" rn z
c: ~ -<:
r ~

» n m
n n 0"

0 -i z
3 """tJ < r
r rn -m n
-i en -i- rn
0 en z
z en G)

0 0 »
" z n

en -i
0
-i 0 <::c ~
rn -i
~ C-

o rn
en tl1 en
m en
en ...
en
0
z
en

0
:::0

C-
o
~
en

m
-in-

m 0- lJ'l <:I>~ :t> 3 tJ r'J CJ
ro c: 0 :1 c: C c:

~
,... () .., l/1 CO t1l ,.... l/1lD m

~
,... J ((:1 (1O ..,

fT1 l:) ro w :1 UJ D ttl (.0

U"l J "Jro :r c: -+l-+lftl

:I> 01-'" Q. :1 lJ'l c: -+l(

C 0 () ro ,...~ ro ro OJ
(f) J

~
'CJ OJ :r f1:l

E ro fT\ . ~. cr:r ..., Q. :r-
:I> ., ro ~ c:
I =' ~.

..,
r U'I ro In ;e ~ () m

c: :r ro :r
fT1 =' =' Cl. n .., D

0.0. =' :T ro 0- (lJ ...,
:z ro ~

.., ro =' 0-
C> ~ 111 ro c: :r :j 0- ro
rT'l ., row ro C.J ro
to OJ 3 Ul cr =' ...,
rT'l (jJ J>(tl ~ OJ ro
:z ro N c: ,... ..., n ro

:::J ~ U1 N :T :j D OJ
ro ~ ro 0- ..., :J

OJ :::J (f) (j) 0- :J
:T~ :;- ro« (1l., ro Ul 111 ro ~

rt'ro
;U :::J ro ~ row
NlD c: (f) 3 :j fO

ro ., -0 OJ ro ='
0- ro 0- D. N

ro ..., 0- ro c
:::J ~

.., .., ..., ..., 0
ro ro c ='

(J) :::J () N
:::J 3 ::r ::r ro c

IV ~.
.., ...,

r+ ro,

ro Q. =' ro
ro 0

. ., n fD
::r ::1
rt- 0..

ro...,

SOME EXAMPLES III

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 12

E2 11 E2 12

zs~n

~ ALLOW A REGULAR PROGRAM
TERMINATION OR A CANCELLATION
OF THE LAST ENTRY AT ANY TIME
IN ANY SITUATION VIA THE
F7/F8 KEYS

~ ALWAYS POlNT TO WRONG ENTRIES
AND PROVIDE A MEANINGFULL
ERROR MESSAGE

~ IF POSSIBLE, USE THE FIELDNAMES
IDENTICAL WITH THE ITEM NAMES OF
THE CORRESPONDING DATA BASE

~ AVOID (ENGLISH) ERROR MESSAGES FROM
ANY HP SUBS¥STEM

~ USE STANDARD FORMS AND TRANSACTION
CODES IN ALL PROGRAMS AND SYSTEMS

~ ONLY BLOCK MODE PROGRAMS (V/3000)

~ TRY TO DESIGN GOOD READIBLE FORMS

GENERAL GUIDELINES FOR OUR PROGRAMMERS:
:2

--t

rn
:::c

en " » -n
c: » <n en 0 »n -m 0 t:j n
en -i
en ::c » rn
" rn z
c: ~ -<:
r ~

» n m
n n 0"

0 -i z
3 """tJ < r
r rn -m n
-i en -i- rn
0 en z
z en G)

0 0 »
" z n

en -i
0
-i 0 <::c ~
rn -i
~ C-

o rn
en tl1 en
m en
en ...
en
0
z
en

0
:::0

C-
o
~
en

m
-in-

m 0- lJ'l <:I>~ :t> 3 tJ r'J CJ
ro c: 0 :1 c: C c:

~
,... () .., l/1 CO t1l ,.... l/1lD m

~
,... J ((:1 (1O ..,

fT1 l:) ro w :1 UJ D ttl (.0

U"l J "Jro :r c: -+l-+lftl

:I> 01-'" Q. :1 lJ'l c: -+l(

C 0 () ro ,...~ ro ro OJ
(f) J

~
'CJ OJ :r f1:l

E ro fT\ . ~. cr:r ..., Q. :r-
:I> ., ro ~ c:
I =' ~.

..,
r U'I ro In ;e ~ () m

c: :r ro :r
fT1 =' =' Cl. n .., D

0.0. =' :T ro 0- (lJ ...,
:z ro ~

.., ro =' 0-
C> ~ 111 ro c: :r :j 0- ro
rT'l ., row ro C.J ro
to OJ 3 Ul cr =' ...,
rT'l (jJ J>(tl ~ OJ ro
:z ro N c: ,... ..., n ro

:::J ~ U1 N :T :j D OJ
ro ~ ro 0- ..., :J

OJ :::J (f) (j) 0- :J
:T~ :;- ro« (1l., ro Ul 111 ro ~

rt'ro
;U :::J ro ~ row
NlD c: (f) 3 :j fO

ro ., -0 OJ ro ='
0- ro 0- D. N

ro ..., 0- ro c
:::J ~

.., .., ..., ..., 0
ro ro c ='

(J) :::J () N
:::J 3 ::r ::r ro c

IV ~.
.., ...,

r+ ro,

ro Q. =' ro
ro 0

. ., n fD
::r ::1
rt- 0..

ro...,

SOME EXAMPLES III

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 12

E2 11 E2 12

w

AP P LIe AT ION PRO GRAM S (3)

TELL THE USER WHAT HE IS EXPECTED TO DO

UPLEASE CHECK THE SUGGESTED DELIVERY DATE AND COMPLETE THE ORDER u

AP P LIe AT ION PRO GRAM S (2)

SAME TRANSACTION CODES IN ALL PROGRAMS

LAGERBESTAHDSFDRTSCHREIBUNG
INMBFO

SHOW - IF POSSIBLE - THE AVAILABLE TRANSACTION-CODES

w

AP P LIe AT ION PRO GRAM S (3)

TELL THE USER WHAT HE IS EXPECTED TO DO

UPLEASE CHECK THE SUGGESTED DELIVERY DATE AND COMPLETE THE ORDER u

AP P LIe AT ION PRO GRAM S (2)

SAME TRANSACTION CODES IN ALL PROGRAMS

LAGERBESTAHDSFDRTSCHREIBUNG
INMBFO

SHOW - IF POSSIBLE - THE AVAILABLE TRANSACTION-CODES

AP P LIe AT ION PRO GRAM S \JJ

PROVIDE INFORMATIONS ABOUT LOCKS AND THEIR REASON

~6G001 Teile - Stammdatenverwaltung

"NO MASTER ITEM CHANGE POSSIBLE. THE TERMINAL 71 HAS EXCLUSICE ACCESS TO THIS ENTRY"

..&

0\

AP P LIe AT ION PRO GRAM S (4)

TELL THE USER, IF A TRANSACTION TAKES MORE THAN THE NORMAL RESPONSE TIME

"BILL OF MATERIAL WILL BE COPIED. PLEASE HOLD ON"

STUECKLISTE WIRD KDPIERT.

AP P LIe AT ION PRO GRAM S \JJ

PROVIDE INFORMATIONS ABOUT LOCKS AND THEIR REASON

~6G001 Teile - Stammdatenverwaltung

"NO MASTER ITEM CHANGE POSSIBLE. THE TERMINAL 71 HAS EXCLUSICE ACCESS TO THIS ENTRY"

..&

0\

AP P LIe AT ION PRO GRAM S (4)

TELL THE USER, IF A TRANSACTION TAKES MORE THAN THE NORMAL RESPONSE TIME

"BILL OF MATERIAL WILL BE COPIED. PLEASE HOLD ON"

STUECKLISTE WIRD KDPIERT.

AP P LIe AT ION PRO GRAM S (7)

~» HELP FACILITY AND FIELD EXPLANATION WITHIN PROGRAMS

BESCHRE I BUNG DES FELDE~,'~ AUS DEM TE I LE-STAMMSATZ

DISPOSITIONSSTUFE

FELDLAENGE 2 STELLEN, DAVON 0 DEZIMALSTELLEN, NUMERISCH

AENDERUNG ISTER~AUBT.

DESCRIPTION OF E~ELD DISTU
FROM MASTERFILE

DISPOSITION LEVEL
""'-l FIELDLENGTH 2, 0 DECIMALS,

} CHANGE IS ALLOWED

NUMERIC

I.N~1'A~.T···, ·,:i~,:·~·1.• ' E,NDPRODUKT
2 BAUGRUPPE .

. 3' • E I -N Z E L - .0 pER K AUF TEl L
: 4 • .H-ALB2E;:UG. ODER ~OHMATER I A';l-' .

ALLOWED 1 = FINAL PRODUCT
ENTRIES: 2 = ASSEMBLY

3 = PART OF PURCHASE ITEM
4 = RAW-MATERIAL

*** OUR EXPERIENCE: THIS FEATURE IS USED VERY SELDOM AND'~T IS VERY EXPENSIVE
TO DESIGN AND MAINTAIN
WE DON'T EMPHASIZE IT IN ALL APPLICATIONS

AP P LIe AT ION PRO GRAM S (6)

FORCE USER TO CHECK HIS ENTRY, WHERE IT MAKES SENSE

"PLEASE CHECK THE RESULT OF YOUR ENTRY. IF NECESSARY CANCEL WITH F7"

AP P LIe AT ION PRO GRAM S (7)

~» HELP FACILITY AND FIELD EXPLANATION WITHIN PROGRAMS

BESCHRE I BUNG DES FELDE~,'~ AUS DEM TE I LE-STAMMSATZ

DISPOSITIONSSTUFE

FELDLAENGE 2 STELLEN, DAVON 0 DEZIMALSTELLEN, NUMERISCH

AENDERUNG ISTER~AUBT.

DESCRIPTION OF E~ELD DISTU
FROM MASTERFILE

DISPOSITION LEVEL
""'-l FIELDLENGTH 2, 0 DECIMALS,

} CHANGE IS ALLOWED

NUMERIC

I.N~1'A~.T···, ·,:i~,:·~·1.• ' E,NDPRODUKT
2 BAUGRUPPE .

. 3' • E I -N Z E L - .0 pER K AUF TEl L
: 4 • .H-ALB2E;:UG. ODER ~OHMATER I A';l-' .

ALLOWED 1 = FINAL PRODUCT
ENTRIES: 2 = ASSEMBLY

3 = PART OF PURCHASE ITEM
4 = RAW-MATERIAL

*** OUR EXPERIENCE: THIS FEATURE IS USED VERY SELDOM AND'~T IS VERY EXPENSIVE
TO DESIGN AND MAINTAIN
WE DON'T EMPHASIZE IT IN ALL APPLICATIONS

AP P LIe AT ION PRO GRAM S (6)

FORCE USER TO CHECK HIS ENTRY, WHERE IT MAKES SENSE

"PLEASE CHECK THE RESULT OF YOUR ENTRY. IF NECESSARY CANCEL WITH F7"

OUR PRO GRAM

c{) INTRODUCTION INTO INTERACTIVE DATA PROCESSING

~ UPDATE TRAINING FOR STANDARD USERS

~ APPLICATION'-TRAINING

~QUERY FOR NON-DP PERSONNEL

~ UPDATE TRAINING FOR QUERY USERS

INTRODUCTION TRAINING

I> 1/2 DAY THEORY, 1/2 DAY LABS

~ TERMINAL USE

~ HARDCOPY-PRINTER USE

~ HOW TO LOG ON

~ HOW TO USE THE MENUES

~ TRY SOME TRANSACTIONS

I> HANDOUTS:

- SLIDE COPIES
- TERMINAL AND HARDCOPY USER MANUAL

(SIMPLIFIED AND TRANSLATED)
- CHECKLIST FOR TROUBLESHOOTING

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 19

E2 19

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 20

£2 20

OUR PRO GRAM

c{) INTRODUCTION INTO INTERACTIVE DATA PROCESSING

~ UPDATE TRAINING FOR STANDARD USERS

~ APPLICATION'-TRAINING

~QUERY FOR NON-DP PERSONNEL

~ UPDATE TRAINING FOR QUERY USERS

INTRODUCTION TRAINING

I> 1/2 DAY THEORY, 1/2 DAY LABS

~ TERMINAL USE

~ HARDCOPY-PRINTER USE

~ HOW TO LOG ON

~ HOW TO USE THE MENUES

~ TRY SOME TRANSACTIONS

I> HANDOUTS:

- SLIDE COPIES
- TERMINAL AND HARDCOPY USER MANUAL

(SIMPLIFIED AND TRANSLATED)
- CHECKLIST FOR TROUBLESHOOTING

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 19

E2 19

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 20

£2 20

UPDATE TRAINING FOR STANDARD USERS

::> REPEAT INFORMATIONS FROM INTRODUCTION AFTER SOME
WEEKS/MONTH OF PRACTICE WITHIN 1 DAY THEORY

::> HOW MTS WORKS

::> HOW TO IMPROVE RELIABILITY OF DATA
COMMUNICATION

::> STRATEGIES FOR LESS RESOURCE
USAGE AND BETTER RESPONSE TIMES

::> HELPFUL HINTS AND TRICKS
FOR TERMINAL- AND HARDCOPY
USAGE

::> WHAT A COMPUTER HAS TO DO
FOR A "SIMPLE TRANSACTION"
(OR WHY DOES IT TAKE SUCH A
LONG TIME)

::> DIFFERENCES BETWEEN JOBS AND
SESSIONS

::> REASONABLE USE OF QUERY

::> MORE INFORMATIONS ABOUT TROUBLESHOOTI NG

SOME EXAMPLES •••

HP 3000

SSLC ~OST STAND
.,LEITUNG

\
\

\
\

USW.

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 21

E2 21

UPDATE RECHENZENTRUM HERBERT SEITZ KG PAGE: 22

£2 22

UPDATE TRAINING FOR STANDARD USERS

::> REPEAT INFORMATIONS FROM INTRODUCTION AFTER SOME
WEEKS/MONTH OF PRACTICE WITHIN 1 DAY THEORY

::> HOW MTS WORKS

::> HOW TO IMPROVE RELIABILITY OF DATA
COMMUNICATION

::> STRATEGIES FOR LESS RESOURCE
USAGE AND BETTER RESPONSE TIMES

::> HELPFUL HINTS AND TRICKS
FOR TERMINAL- AND HARDCOPY
USAGE

::> WHAT A COMPUTER HAS TO DO
FOR A "SIMPLE TRANSACTION"
(OR WHY DOES IT TAKE SUCH A
LONG TIME)

::> DIFFERENCES BETWEEN JOBS AND
SESSIONS

::> REASONABLE USE OF QUERY

::> MORE INFORMATIONS ABOUT TROUBLESHOOTI NG

SOME EXAMPLES •••

HP 3000

SSLC ~OST STAND
.,LEITUNG

\
\

\
\

USW.

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 21

E2 21

UPDATE RECHENZENTRUM HERBERT SEITZ KG PAGE: 22

£2 22

LISTEN SELBST GEMACHT - WIE FUNKTIONIERT DAS ??

MIT OEM LISTEN-ABRUF WIRD EINE PLATTENDATEI
ERZEUGT (KEIN PAPIER BEDRUCKT)

ERST DAS UFF-LINE DRUCKEN BRINGT DIE PLATTEN
DATEI AUF PAPIER

UPDATE RECHENZENTRUM HERBERT SEITZ KG PAGE: 23

E2 23

UPDATE RECHENZENTRUM HERBERT SEITZ KG PAGE: 24

(2 24

LISTEN SELBST GEMACHT - WIE FUNKTIONIERT DAS ??

MIT OEM LISTEN-ABRUF WIRD EINE PLATTENDATEI
ERZEUGT (KEIN PAPIER BEDRUCKT)

ERST DAS UFF-LINE DRUCKEN BRINGT DIE PLATTEN
DATEI AUF PAPIER

UPDATE RECHENZENTRUM HERBERT SEITZ KG PAGE: 23

E2 23

UPDATE RECHENZENTRUM HERBERT SEITZ KG PAGE: 24

(2 24

AP P LIe AT ION T RAI NI NG

CLASSROOM-TRAINING OR TRAINING ON THE JOB
(KIND AND TIME DEPENDS ON APPLICATION)

~ "TRAINING COMPANIES" FOR
TEST AND TRAINING IN ALL
APPLICATIONS

~ FREE PHONE IN CONSULTING
FOR ALL USERS

QUERY FOR NON-DP-PERSONNEL

~ 3-4 DAYS WITH 7 LABS
QUERY FOR USERS, ONLY INFORMATION RETRIEVAL
(NO UPDATE AND DELETE)

~ DATABASE. TERMS AND THEORY (VERY LITTLE)

~ HOW TO USE "HELP, FORM"

~ SMALL REPORTS WI TH
"LIST"

~ "FIND" COMMAND
(OR HOW TO TRANSMIT
MR. BOOLE'S MESSAGE)

~ COMPLEX REPORTS

SOME EXAMPLES •••

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 25

E2 25

UFS2 RECHENZENTRUM HERBERT SEITZ KG PAGE: 26

E2 20

REPORT BEISPIEL

C BUN G:

Av.fYo..r &oJ~~+

Awf~au~J~" it. Ac~k'el

! lif ec.\" '" e~

~ kk.IU.\."~f.'~

R
H1,"AUFTRAGSUEBERSICHT VOM",30
H1,DATE,40
H1,"SEITE II ,bO
H1,PAGENO,6S,SPACE A1
H2. IIAUFTRG II ,6
H2, IIDATUM II , 13
H2, "KDNR II ,19
H2, "KUNDE II ,26
H2, "MENGE II ,54
H2,"VK-PREIS",6S
H2,"AUFTRGS-WERT",78,SPACE A1
G1,"ARTIKEL:",8,SPACE B1,SPACE
G1,ARTNR,18
G1,ARTKBZ,29
T1,R2
D1,AUFNR,6
D1 , AUFDAT ,13
D1,KDNR,20
D1,KDKBZ,26
D1,AUFMENGE,S4,E1
E1,"ZZZZZZZ9"
D1,ARTVKPR,6S,E2
R1,L,AUFHENGE
R1,H,ARTVKPR
R2,A,R1
D1,R1,78,E2
E2,"ZZZZZ9.99"
E3, "ZZZZZZZe-I. 99-"
T1,AUFNR,6,COUNT
T1, "AUFTRAEGE" , 16
T1,AUFHENGE,54,E1,ADD
T1,R2,78,E2
T1,ARTVKPR,b5,E2,AVERAGE
LINES=1S
PAUSE
S1,ARTNR
END

001
002
003
004
OOS
006
007
008
009
011
012
013
014
01S
016
017
018
019
020
021
022
023
024
025
026
027
028
035
036
037
038
039
040
041
042
043
044
045

PROCEDURE: RP01
DATA SET NAME
DATA ITEM NAME
SETS
ITEMS
PATHS

RICHTIG FALSCH

Fa

Fa PATHS

FOR KDNR

FORM KDSTAM

F ITEMS

SETS FORM

FORM ITEMS SETS

FORM

FOR KDSTAM

IMAGE / QUERY RECHENZENTRUM HERBERT SEITZ KG PAGE: 27 I~'A(,E/(,UERY FU~CIJF.i':7.r:~TRUr-7 IIr:HnEHT SEI TZ KG PJV~E: 28

t2 27 E2 28

=*> STANDARD DOCUMENTATION FILES
(FOR MANUAL PRINTING) ARE USER ACCESSIBLE

=*> USER MAY SUBMIT HIS ADD ON DOCUMENTATION
INTO THE SAME DOC FILE

=*> MANUAL FOLLOWS THE TYPICAL PROGRAM
SEQUENCE

=9> ANY NEW INFORMATION ON THE
SCREEN IS DISPLAYED WITH PICTURES

SEE EXAMPLE NEXT PAGE ttt

HERBERT SEITZ KG

I_~:~::~,,_·===[_DIA_I.OG-----"--1_ ~
__ ANWENDUI'IIOEhJ __

I DISPOSITIONSERFASSL~G
Ii ----------------------
! WIR HABEl'll IN UNSERER GRUN~1nS~E WIEDERUM DIE MATERIAL

NUHHER A UND DEN VERARREITUNGSSCHLUESSEL D FLIER DIE
ERFASSUND [tER [t I S.PO'':; I T ION E I I-.JGEGEBEN ES ER:=;CHE I NT [I I E
ABGEE: I LOETE MAS;LE

FUER DIESES FELD GILT WIEDER DIE BEREITS
GENAI'II'-.JTE REGEL FUER [If'TlII1SERFASSUNG

UFS2 RECHENZENTRUN HERBERT SEITZ KG PAGE: 29

MFNGE .

PRE 1:=.

DISPOSITIONSMENGE (3 KOMH~ STELLEN,
---------------- LOGIK WIE BESCHRIEBEN)

IN DIESEM F8D ~ANN DER EINZELPREIS EINGEGEBEN
WERDEN WIRD KEIN WERT EINGEGEBEN SO HOLT DIE
MAS~HINE, FU~R DIE BEWERTUNG DES AUFTRAGS
BES.TAhIDES; , DEN PREI~. AUS DEM LAGERSTAI'111SATZ

I"

£2 29

I ~ .

L-- ...__L__(~_~__7_-:_t----L1 ..l-- ---.L--
3-O---.-----

E2 30

- CUTL :CONTROL)

- SHIFT-TASTE

- LEERTASTE

- DEL-TASTE

- RETURN-TASTE

DIE COKTROL-TASTE WrRD ZUR UMKEHRUNG YON
HORMALFUHkTIONEN ezw. 2U~ STEUERUHC VON
SONDERFUNkTIO"EH VERWANDT. ZUR AUSFUEH
RUNG EIMER SOLCHEH SOHDERFUHKTION ftUSS
STETS DIE COHT~OL-TASTE FESTGEHALTEH
WERDEN UNO EIHE WE1TERE ANDERE TASTE GE
DRUECKT WERDEN. SO 1ST Z.B. DIE COHTROL
TASTE FESTZUHALTEN UND DIE TAB-TASTE ZU
8ETAETI~EH, WEHN MAN FElDWEISE RUECK
WAERTS SPRINGE" WILL.

"IT DER FESTGEHALTENEN SHIFT-TASTE KOEH
HEU DIE JEfl'E rLS 1('1 OBEREU TASTEHBERE I CH
ANGEZEICTE~ ZEICHEN EIUGEGEBEN ~ERDEN,

1M BEREICH ~ER BUCHSTABEN A - Z DIEHT
DIE SHIFT-TASTE WIE DIE BUCHSTABEN-U"-
SCHALTTASTE BEt SCHREIBHASCH UR AH-
STEUERUNG YOH GROSS8UCHSTA O~ EGEl
FALL [ST JEOOCH DURCH DI ~~ IGU-
RATION ,CAPS-LOCK-TAS~~ ~~~ SHIFT-
TASTE DEll CROSS8UCH~ ~~~~ IUGESCHAL-
TET. ~O

~C:J~~
D 0«
~v~ RZEICHEN. DIESE TASTE

~~~ HKT~~~,T:~~E~E~U~:E~~~~EM
DRUECK - UND BEtM LOSLASSEH DER
TASTE WIEDER AUSGESCHALTET UIRD,

MICHT YERWEMDEtl,

DIE RETURN-TASTE HAT HUR UHTER FOlGENDEH
8EDIHCUHCE" DIE FUNKTtaH E[HER SEHDE TASTE
(ZUI'I RECHNER) I

o DAS TERrtltlAL 1ST MICHT IN EINE"
MEHRTER:-IIUALBETRtEB (MTS) AHGESCHLOS
SEN

o SIE ARBEITE" 2,2T, NICHT IN BJlDSCHIRM
HASkE~ SOHDERH IN A9FRAGE- ODER
DRUC~PROCR~MMEN (HENUE, QUERY, OFF-
L tHE-DRUCK)

CE-CH 01.10.79 !PAGE: 31

E2 3]



NEW APPROACH TOWARD SYSTEM IMPLEMENTATION

Presentation Abstract

Presentation Title: NE~1 APPROACH TOWARD SYS TEM I MPLEMENT AT ION _

Title(s): ~~- PRESIDENT

Author(s):

Address: .

JEAN PIERRE THEORET

INfO BO"TIQ"[ -U-O---7575 r~ANS CANADA I:iWY

Abstract: (No more than 200 words)

JEAN PIERRE THEORET

ALAN ROWAN (UK)

INFO-BOUTIQUE (UK)LTD ST LEONARD HOUSE,
98 HARWOOD RD, FULHAN, LONDON

J. P. THEORET
INFO-BOUTIQUE LTD

7575 CANADA HWY
ST. LAURENT, QUEBEC

CANADA H4T IV6

A. ROWAN
INFO-BOUTIQUE(UK) LTD

ST. LEONHARD HOUSE
98 HARWOOD ROAD
FULHAN, LONDON

E3 1

_From~~ery where one can see new trend in System Implementation

Cost of hardware is going down and cost of people is going up.

This is not a new fact, but it is only recently that research

ha~e made significant break through to adjust System Implementation to

thIS new realIty.

Ne \. e em f3 ute r 1 8 A g U 8 g e S 8 rei ftt r f) due ed, f'\ e w met R.f) d g 8 redeye 1 f) pedt 0

o D tim i z~~o pIe. This ish a p pen i ng. not 0 n 1 y a t the 1eye 1 0 f

programmer with program generator, but also at all level of data

processing activities ie: design, documentation, training etc ..•...

This new approach seem to prepare data processing world to what

is realy coming next ...•.•..

£3 2



NEW DIRECTIONS IN CUSTOMER TRAINING

for HP3000

PRODUCTIVITY PRODUCTS

and

OFFICE PRODUCTS

Dr. Donna Senko
Marketing Engineer
Hewlett-Packard Company
Customer Information Products [4 1

Senko -

PRESENTATION OUTLINE

I. Presenting ... Customer Information Products

II. Analysis of Customer Needs

III. Analysis of User Types

IV. Instructional Modes

V. Media

VI. Measuring Effectiveness

VII. Training Plan

E4 2



Senko -

I. Presenting... Customer Information Products

As the use of computers and the range of technical expertise of

users expands, the role of customer training and documentation is be

coming a more vital part of computer system support. In turn, computer

course developers and technical writers must establish direct contact

with customers to ascertain technical and functional needs, likes and

dislikes. This presentation should serve three purposes: 1) define

HP's perspective on training and documentation: 2) inform our user

base of our plans in this field: 3) solicit input from our users.

The intention of this meeting is to inform and to be informed, that

is, to open a direct communication link between the factory and the

user.

The Customer Information Products staff of Information Networks

Division provides training and documentation for two families of HP30DO

software products: Productivity Products and Office Products. Produc

tivity Products include all data management tools, such as IMAGE/30DO,

VPLUS/3000, QUERY/3000, and KSAM/3000. Also included are language compilers.

Office Products include graphics packages, text editing/word processing,

and office printing systems.

FJr all products serviced by the Customer Information Products group,

there is an underlying philosophy of training. That is, we consider

ourselves successful when we make customers successful in using the

HP3000. We have found two basic ingredients necessary to do this: 1)

carefully analyze customer needs: and 2) research what type of users

will use each particular product.

E4 3

Senko -

II. Analysis of Customer Needs

The focal point of customer training is the user. In analyzing

customer needs and user types, we are attempting to produce training

and documentation materials which are totally user-oriented. The new

materials we are developing attempt to present only relevant information

to each user, in a manner best suited to that user type. We no longer

try to present ~ information to ~ users, presented in the same

fashion. In most cases this has become an impractical method of train

ing.

In our analysis of customer needs we take many issues into

consideration. Among these are: quick start-up, task-oriented training,

cost-effective training, accurate and detailed product description,

readily available training, increased system use, and increased produc

tivity. We are particularly aware of the need for customers to use a

product efficiently soon after purchase. By developing training which

is task-oriented (in other words, "how to ... ", rather than a strict

reference type of presentation), we are able to reach many more users

and have users avoid much frustration.

The issue of cost-effective training can be presented from several

points of view. Training which is streamlined to the needs of each

user demands less time. Also, many of the training classes we are now

developing are self-paced. This means there is no travel expense involved,

and the user needn't be away from the office for extended periods. This

also makes training available to many users who would not have been sent

to a class.

£4 4



Senko -

II. Analysis of Customer Needs (continued)

Because it is a necessity for our training and documentation to

be accurate and detailed, we are implementing a formal evaluation

procedure as part of our course development cycle. The evaluation

plan will be discussed later in this paper.

By making training accurate, specific to the user, readily

available, and cost-effective, we will assist customers in increasing

use of their systems and consequently increasing productivity.

£4 5

Senko -

III. Analysis of User~

In analyzing user types, we address two questions: 1) who

are the users: and 2) how will they use the product?

The first question (who are the users?) must be viewed from

a historical perspective. Traditionally, most computer users were

trained and experienced computer professionals. Until recently, most

users were programmers. Today's HP3000 users include: experienced

and inexperienced programmers, system ad~inistrators, data base

administrators, data entry clerks, graphic designers, secretaries,

office principals, and clerk/typists. Each of these user types has

a different level of computer technical background and requires ap

propriate training.

The second question (how will they use the product?) can best

be addressed with sample questions we ask in developing materials.

Specifically, we try to ascertain what the tasks of each user will be.

For example, will a programmer be responsible only for using a subsystem,

or will he be responsible for optimizing its use? Also, is this the

only training the user will receive? Will he have assistance in using

the product, or should this training make him self sufficient with the

product? Is this product similar to other products this user might be

familiar with? Are there other subsystems which should be mentioned

in the training, because of products likely to be used together? Although

specific questions about each user's tasks vary from product to product,

the basic questions, such as those listed above, remain the same.

£4 6



Senko -

IV. Instructional Modes IV. Instructional Modes (continued)

Senko -

After considering customer needs and user types, we are able

to decide on an instructional mode. That is, what type of training

and documentation should we supply? Once agin it ;s necessary to

take a historical perspective. When the majority of users consisted

of experienced programmers, classroom training and reference docu

mentation served the purpose best. Reference manuals usually provide

the necessary information for computer professionals to begin using

a new product and supply more detailed information as they proceed.

Classroom training provides users with technical information about

the product, as well as application information for individual users.

Awell-versed instructor can usually supply necessary technical in

formation for spcific applications.

Now, as the use of computers increases, we are seeing many

different types of u~ers, more and more of whom are non-computer

technical. These users usually require more training than the users

of the past, and a different type of training is required. In most

cases, a tutorial approach to new materials better serves the needs

of these users than does reference documentation. Also, most users

prefer to learn on their own, at their own pace, with new materials

presented incrementally. Thus, the current emphasis is on developing

more tutorial documentation and interactive self-paced instruction

materials.

E4 7

Since some users have expressed interest in having contact

with an instructor although they learn best at their own pace, we

also plan to experiment with monitored self-paced instruction. With

this type of instruction, students can work and learn at their own

pace, but at an HP training center and with an experienced HP instructor

present. The instructor will introduce the product, guide students

through the self-paced course, and answer application specific questions.

But what exactly is interactive self-paced instruction? Inter

active refers to using the HP3000 to learn about the HP3000. That

is, all interactive instruction involves direct hands-on use of the

system in the learning stages. The system is not only the object of

the instruction, it is also the means. Self-paced refers to a method

of allowing the user to learn at his own pace. The user can determine

when he will take modules of a course, how long he will spend on each

module, and whether or not he should repeat modules before going on

to subsequent lessons.

£4 8



Senko -

v. Media

The next question is: What constitutes interactive self-paced

training? Depending on the needs and users, we pick a mixture of

qvailable media. Media we are currently using or exploring are:

workbooks, audio cassettes, video tape/disc, on-line HELP facilities,

and total on-line training. Even media such as workbooks and audio

cassettes are part of interactive training, since we always couple

them with use of the system. For example, a student will use a work

book or audio cassette while sitting in front of his/her terminal and

will actually use the system while reading or listening. Explicit

step-by-step instructions walk the user through the procedure of using

the particular subsystem.

Examples of interactive self-paced instruction with workbooks

are: A Guided Tour of the HP3000 and Using OSG/3000. A self-paced

course using audio cassettes is Using COBOL II. Video disc and total

on-line training are currently being explored. One module of on-line

training is already available as part of the System Manager classroom

course. We are also currently working closely with the INO lab in

designing the on-line HELP facility which accompanies many of our

products.

E4 9

Senko -

VI. Measuring Effectiveness

In evaluating our courses, we focus on the user once again.

There are two methods we employ to gather input from our customer

base. The first is by meeting formally or informally to exchange

general information and opinions. This is what we are attempting

to do today. The second method is by including direct interface with

customers in the course development cycle.

The major steps in the course development cycle are outlined

in a flowchart on slide VI.3. Notice that we include :hree stages of

materials evaluation once development has been completed: 1) materials

are tested for technical accuracy and functionality at internal HP

sites: 2) materials are tested for technical accuracy and functionality

with customers: and 3) we check known support problems to gather in

formation for revising materials and for planning future training. The

boxes with shading on this flowchart represent the stages of course

development during which customers are involved. Notice that we work

with customers in the investigation stages, as weli as in the test

and follow-up stages. We are making an effort to work directly with

customers as much as possible.

E4 10



Senko -

VII. Training Plan

Finally, it is time to introduce our entire training plan.

The best way to do this is to present the courses available according

to user type. For the sake of simplicity we have chosen to outline

our courses here around five different types of users. Naturally

these courses can be useful to oth~r than the user types presented

here.

At present there are two courses for the end user, that is, the

non-computer technical user. These are: A Guided Tour to the HP3000,

which introduces the novice user to the major subsystems of the HP3000,

and Using DSG/3000, which provides the non-programmer instruction in

using the interactive interface of Decision Support Graphics/30DD.

For the system administrator there are currently two classroom courses:

System Operator and System Manager. For the data base administrator

there is currently one classroom course: IMAGE/3000. The application

programmer has several courses available. Among them are: the self

paced course for COBOL II, and the classroom courses: Programmer's

Introduction, IMAGE/3000, VPLUS/3000, DSG/3000 Programmatic Use, 2680

Laser Printing System. The progr~mmer analyst currently has one

classroom course available: Application Design.

At this point we would like to get your input on existing

customer courses and what you would like to see in the future.

E4 11

z
m
~

0

-0
~m

~ n
0

0 ~
0-n c

~ n 0

~ ~

z
n ~

m <
0

~
~

u z ~ I
Z

~ 0 ~ ~ n
0
0

~ c
c ~ Q ~

~n 0 G ~

~ ~
0

~ c 3

n m
~

~

~ ~
~

~

z
z
0

E4 12



PRESENT ING I I I

CUSTOMER INFORMATION PRODUCTS

I .1.

PRESENTATION OUTLINE

VI I TRAINING
PROGRAr'l

VI .~'EASUR ING
EFFECTIVENESS

V. r1EDIA

IV. INSTRUCTIO~

MODES

III ANALYSIS
OF

USER
TYPES

II.ANALYSIS
OF

CUSTOMER
NEEDS

I .PRESENTI NG I I •

CUSTOMER
INFORMATION
PRODUCTS

I



PRODUCTIVITY PRODUCTS:

DATA MANAGEMENT TOOLS

LANGUAGES/COMPILERS

OFFICE PRODUCTS:

GRAPHICS PACKAGES

TEXT EDITING/WORD-PROCESSING

OFFICE PRINTERS

IND CUSTOMER INFORMATION PRODUCTS

PROVIDES:

HP3000 TRAINING AND DOCUMENTATION

FOR

c PRODUCTIVITY PRODUCTS

o OFFICE PRODUCTS

::r
L.J..J



11.1.

ANALYSIS

OF CUSTOMER NEEDS

PHILOSOPHY OF CUSTO~ER TRAINING

ANALYSIS
OF

EEDS

:::r
l.J..J

1.4.

OFFICE PRODUCTS
TRAINING USE R

ANALYSIS
OF

USER
TYPES

PRODUCTIVITY PRODUCTS
TRAINING



o
N

.:::r
LJ..J

ANALYSIS

OF USEH TYPES

..;.1.;..1I~._1. (hi) ~~~KL:~~

QUICK

START-UP
TASK-ORIENTED

TRAINING

DETAILED

PRODUCT

CST-EFFECTIVE

TRAINING

DESCRIPTION

READILY

AVAILABLE TRAINING

NEE D S

C US TOM E R

INCREASED

PRODUCTIVITY

~II_.2_. (hi) ~~~KL:~6 !



WHO ARE THE USERS?

UNTIL RECENTLY:

TECHNICAL"

COMPUTER PROFESSIONALS

I I 1030

USER TYPES

_________________~ WHO ARE THE USERS?

THE TREND:

MORE FIRST-TIME USERS

AND

NON-EDP PROFESSIONALS

_______________~~ HOW WILL THEY USE THE PRODUCT?

_1_1_10_2_0 lhtl ~;~K~~6



HO\~ \4 I LL USERS USE THE PRODUCTS?

o WILL PROGRAMMERS BE RESPONSIBLE FOR OPTIMIZING SYSTEM USE AS

WELL AS USING THE SYSTEM?

o DOES THIS PRODUCT REPLACE A PRODUCT THE PROGRAMMER ALREADY
KNOWS?

o How DOES THIS PRODUCT RELATE TO OTHER PRODUCTS?

o Is THIS TRAINING STAND-ALONE?

o WILL THE DATA BASE ADMINSTRATOR DESIGN NEW DATA BASES, OR SIMPLY

MAINTAIN EXISTING ONES?

o WILL THE OFFICE PRINCIPAL NEED ACCESS TO DATA BASES?

o \~ILL THE DATA ENTRY CLERK NEED TO USE PROGRAMS CR UTILITIES; OR

JUST ENTER DATA?

HP3000 USERS INCLUDE:

DATA ENTRY
CLERK

.:.~~.:' "EXP'ERI-EN'CED ::..-

:..;: ~:.y;~~.~~~~~'~~ ),,:,
I / SyST5,"'1 / /
/ AD}1IN) STRAJO~

I , I /

SECRETARY

OFFICE
PRINCIPAL

W
:··~····

~~. C"~: -

~
~

0-
I I 1.4.

GR.l\PH IC
DESIGNERS

TECHNICAL, COMPUTER PROFESSIONAL

SL I GIITLY CO~~PUTER TECH~J ICAL

Norl COMPUTER TECHN I CAL

CLERK/
TYPIST



ANALYSIS
OF

NEEDS

+

ANALYSIS
OF

USER TYPES

INSTRUCTIONAL

MODE

..I_V....2.." (h~ ~;~KL;~6

INSTRUCTIONAL MODES

_IV_"_l" - (h~ ~~~KL:~6



IV.4.

INSTRUCTIONAL MODES
WHERE WE'VE BEEN:

INSTRUCTIONAL MODES

CLAssRooM
'H.sn~",cnoN

IV.3.



WHAT IS INTERACTIVE SELF-PACED INSTRUCTION?

INTERACTIVE USING YOUR HP3000 TO LEARN
ABOUT THE HP3000

SELF-PACED THE USER SETS HIS/HER OWN PACE
OF LEARNING

INSTRUCTIONAL MODES

WHERE WE'RE GOING:

en
N

.:::r
I..L.l

IV.5.
_____________________________-- lhJ) ~;~.;:~6



MIXED MEDIA

FOR

INSTRUCTIONSELF-PACEDINTERACTIVE

MEDIA

HEWLETT(hj) PACKARD



MEDIA

_______________~ AUDIO CASSETTES

_________________________________ (hJl ~:~~:~~V.4.

MEDIA

____________~ WORKBOOKS

V.3._________________________________ (hJl ~;~KL:~6



V (;.

MEDIA

->

MEDIA

ON-LINE HELP FACILITY

/

VIDEO TAPE/DISK

\ill
[1

\I C"'
\ • J.

------------------ (hll ~;~K~~~~



MEASURING

EFFECTIVENESS

MEDIA>
ON-LINE TRAINING



No

Study new

Product

COURSE
DEVELOPMENT

CYCLE

Yes

Design

course

Dev. course
materials

\

\

\

Analyze "how '
prod. wi 11 \ '
b\ us~. \ \

\ \ \ \

VI.3.
~a ~:~t<a.:~~-----------------------------

GENERAL
INFORMATION

CUSTOMER
INPUT

COURSE DEVELOPMENT
CYCLE

..;V.;.I.:.:.2;.;. lha ~:~i:~~



WE NEED

INPUT!

YOUR

HEWLETT(ha PACKARD

EVALUATION PLAN

TECHNICAL(1) INTERNAL IONAL TESTINGAND FUNCT

(3) ow-up FROMCUSTOMER FOll OF-VIEW
SUPPORT POINT-

(2)
CUSTOMER TIOE~~~I~~~TINGAND FUNCT

1.4.
HEWLETT(hJl PACKARD



A Guided Tour
To The HP3000

NEW PRODUCT TRAINING PROGRAM

FOR:

END USER

Using
DSG/3000

:::r
:::r
:::r
l.L..l

TRAINING PROGRAM

"'"::r
::r
uJ



NEW PRODUCT TRAINING PROGRAM

FOR:

DATA BASE ADMINISTRATOR

IMAGE/3000

~I.4.

NEW PRODUCT TRAINING PROGRAM

FOR:

SYSTEM ADMINISTRATOR

\.n
::r
::r
u J

System
Operator

VI 1.3.

System
Manager



NEW PRODUCT TRAINING PROGRAM

FOR:

ANALYST

Application

Des \?i

VI 1.6.

NEW PRODUCT TRAINING PROGRAM

FOR:
SPL/File
Sys tem

APPLICATION PROGRAMMER

Measuring
Sys telll
Performance

Special
Capabilities

Introduction
To MPE

IML/3000~680 Laser

~_i.nting System

0:::--'
'" f I GgrO"''''d tic IJs~

........----
Vf-iLUS/3uCJ

VI I .5.

It~;iuti 300e

P(O~jr(lIll1ne f IS

(

I COBOL: I
IL _

/~

(
.,~/



2100 K0BENHAVN IZJ

NU-DATA

LYNGBYVEJ

APS

70-72

TEL 01. 29 27 2e

APS REG. 7B 18

GIRO NR. 7 21 eo 60

) )

)
A presentation of IPB, system
for Interactive Planning and
Budgeting by NU-DATA ApS.

E5 1 E5 2



Abstract:

IPS is an interactive system developed for financial planning and

budgeting purposes with particular emphasis on the simulation side.

The system has its own II model language ll which makes it flexible and

easy to use - also for persons without any kind of fOP experience.
This enables the user to investigate the impact of uncertain future
conditions and improves his understanding of the consequences of
alternative actions.

The IPB system is an efficient tool for the manager who knows the
problem of not being able to achieve information about the effects
on earnings and cash-flow of some specific changes of policy, in a
sufficiently quick and accurate manner.

The structure of all planning, budgeting and calculation can
in principle be described as:

~ M_O_DEL

ILPAllIlUT (oUftGlI - 1981
DlPIIHltlHt: XI

lURNO\'U PROD. IU ~93~~0 7612~0 7617~0 896000 J01l7~0 100.0
- UNit [OS'S ...... 326288 416688 418688 492801 16564'5 5~.0

FIRST 5£[010 THIRD FOURU
QUARIU aUlun. QUARtER aUIUEI

fUR RAUO
'981 l/SAUS

Any accountant or financial manager who knows the problem of being
stuck in daily routines, unable to deliver the anyalyses that manage
ment justly wants but seldom gets, can also profit from the IPa

system. CCIIH:IBUTION ...... 2~6962

uaf:lS, fOUIlAII •••• 30600
UrcU.:I[ltT " ...... 12~00

342~62

36600
Inco

347~62

30600
13700

403199 U:»~2B6

30600 121400
13100 52400

4~.O

4.1
1.1

E5 3

- loVikHlA(1 43100 4]1(10 44300 44JOO 17.800 ~.8

IJEtl. 1I11,HUl'II(l1l n38t2 ~99462 298762 3~8899 1180486 39.2

l'UloIl CON['It'OIiS:
II ~. J •• '.1. & r t, r I. c

SAL[ III UHI1S UXU IUO 1450 1450 1600
HICE n UNit (lUI 525 52~ ~15 560
LH.r.[~, fOlilllAII 30600 3t600 30600 3'600
lllll"!CltT ........ 12500 I'~OO 13'00 11'00
COloTldtullOIl 'A110 O.4~ 0.45 0.45 0.45

When combining DATA with certain arithmetic rules (a MODEL) a
RESULT is produced. If the RESULT is cOlllbirJE:!U wilh d REPORT

layout the finished text will be written out.

E5 4



IPB is made to handle exactly this structure, and the calculation

and thewr'iting out of a budget is very simple;

READY FOR COMHAND
1.00 BUILD RESUL FROM MODEL AND DATA

REAllY FOR COMMAND
1.00 WRITE RESUL AFTER FORM

Thus the computer takes care of the calculation/typing ''Iol'k

and the dec; s i on makers can concentt'a te on a 1tet'na t i ves. The

consequences of alternatives can be illustrated like this:

READY FOR COMMAND
1.00 ALTERNATIVE TERMINAL
1.00 DATAl DATA2 DATA3
1• 00 [/3, II7
1.00 INFLATION O~5

An inflation rate of 0.5 per cent pet~ pel'iode VI111 be added to

the information in the tht'ee sets of data in lines 3 and 7.

If DATAl, 2 and 3 contain information about three departmenls

three department budgets can be made using the Sal'lC cal(ulJtion

rules on all three sets of data.

READY FOR COMMAND
1:00 BUILD BUDGl FROM HODEL AND DATAl
1.00 BUILD BUDG2 FROM HODEL AND DATA2
1.00 BUILD BUDG3 FROM MODEL AND DATA3

E5 S

The department budgets can be added up to a total budget:

READY FOR COMMAND
1.00 ADD BUDG1 BUDG2 BUDG3 TO TOTAL

The TOTAL result can now be written out according to the same

report layout as the department budgets:

READY FOR COMMAND
1.00 URITE TOTAL AFTER FORM

If sevc."al a1tel'natives an; made in relation t.o the base bud~et

it is only the changes which will be of interest. If the new

budget is deduc ted from the 0 Id one these changes "Ji 1,. be in

focus:

REA~Y FOR COMMAND
1.00 SUFTRACT OLD TOTAL 1v CHANG

l·:hel1 the budget is to be \,;.-i t ten out the cO::I;:iand ,..1U:·:r' Cdn be

used. This entails that only the lines whose value diff~rs

from 0 (zel~o) are "/ritten out. The text ''Ii11 have the usual

layout, but only factors \'Jhich have been changed cO!;1pat'ed \·Jith

the original ones will be included.

READY FOR CON~AHD

1.00 WRITE CHANG AFTER FORM JUMP

rs 6



IPS has about 60 commands and instructions of which 7 are used
in the above examples. These commands/instructions make it very
easy for people without EDP experience to make their own models
and reports, and also registration and processing of data are
facilitated.

In the following we will give a brief description of the various
commands' and instructions.

ES 7

Summary of commands and instructions and their most important
characteristics

-----_._-------

ADD file namel, ....• , file name n TO file name.

Adds two or more data files line by line and column by column.

TERMINAL
ALTERNATIVE REFERENCE file name

These commands are used to analyse 'what if' situations. Newalter
natives can often be analysed by modifying existing data files
(e.g. insertion of new figures, adding a constant value to existing
values, change of percentage, or making an alternative inflation).
By using the command ALTERNATIVE such modifications of existing data
can be made in three different ways:-

- line by line
- in a sequence of lines

in lines and files referenced in a file (if the command is
REFERENCE).

AUTO file name
Executes a sequence of commands and instructions stored on the
strategy file in question.

BUILD file name FROM file name (AND file name)
This command results in accomplishing an arithmetic operation
defined in a model file. The result of the calculations will be
stored on an existing data file or on a new data file. If the
calculations require input the command (AND file n~me) specifies

where the input can be accessed.

COpy file name TO file name
Copies files. Especially useful in connection with alternative
calculations (ALTERNATIVE) if a copy of the original data is

required.

E5 8



DATA file name
Entry of data. The data entered will be kept on a data file of the
specified name.

DIVIDE file name 1, ••••• , file name n TO file name
This command allows the user to divide data files quantity by
quantity.

GET file name
Creates a new file by joining lines from one or more existing
files.

MATRIX file name * file name TO file name
The command executes different kinds of matrix operations.

MERGE file name 1, (file name 2) TO file name
This command enables the user to create new data files from
existing data files in any possible way.

MODEL file name
Definition of arithmetic operations. These will be kept in a file
under the specified name.

MULTIPLY file name 1, ••••• , file name n TO file name
The use of this command multiplies two or more data files
quantity by quantity.

PURGE file name
Deletes the file.

REFERENCE file name
In connection with alternative calculations it may often be use-
ful to alter several lines in different data files by one
operation. For instance all lines c ~a;ning information of a
currency will be changed by a percentage as a result of a new
rate of exchange; or all lines conta~ning information of the
price of petrol per gallon will be illcreased by the amount XX,
which is a new tax. The REFERENCE co~and allows the user to
combine any data line in any data fil~ by a reference.

E5 9

REPORT file name
Definition of output structure, i.e. which lines and columns from
which file are to be written and which layout is to be used.

SCHEME file name
This command is used to design and print schemes for data.

STOP
Terminates the program.

STRATEGY file name
Allows the user to create a chain of commands and instructions. The
sequence of commands and instructions will be kept in a strategy
file after which it is possible to execute the sequence by one command
only. This command can be used for example when the company budget
is to be gathered from several department budgets, etc.

SUBTRACT file name 1, ••••• , file name n TO file narne
Subtracts data files quantity by quantity.

UPDATE file name
Any column and line in the specified data file can be updated
(changed) by the use of UPDATE.

WRITE file name AFTER file name
This command prints a data file according to the structure specified
under REPORT.

E5 10



COLUMNS
The system operates with colufflns 1 - 30. If the user wants to
change the number of columns or if certain columns should be
reserved for later use the instruction COLUMNS should be applied.

CONSTANT
Replaces specified data by a constant.

DATE
Writes today's date.

DECIMAL
Controls the number of decimals in the output.

DIVISOR
This instruction is used to reduce the values in one or more
lines in a data file by a divisor.

FACTOR
This instruction is used to increase the values of one or more
lines in a data file by a factor.

HEADING
Prints a heading on all pages in a report.

IF
Used as a conditional expression under GET and MERGE.

IF - - - ELSE
Logical espression which can be used in the calculations.

INFLATION
Adds inflation to defined data lines (a percentage calculation).

E5 1]

INTERVAL
All lines in data files, model files, report files, reference files
as well as in strategy files are numbered. The system generates
line numbers automatically with increments of 1. This can, however,
be changed arbitrarily by the instruction INTERVAL.

LINE
Prints a line of specified characters in the report.

LIST
Gives a listing of the file which is in use.

MINUS
Subtracts a constant from data specified by the user.

MOVE
Moves one or more columns in a data file.

NEWCOL
Changes the number of active columns in data and model files.

PAGE
Changes to a new report page.

PERCENTAGE
Changes specified data by X per cent.

PLACE
Is used to copy sequences of lines as well as single lines from a
data file to a model file.

PLUS
Adds a constant to data specified by the user.

READY
Terminates the use of any command; the system is then ready for a
new command.

E5 12



RECIPROCAL

Gives a reciprocal change on one or more lines in a
data fi le

SEQUENCE

Controls the sequence in which the columns are to be printed in
th~ report.

SUBHEADING

Prints a column heading.

TEXT

Inserts a text line in the report.

UNIT

Defines the unit in which the output should be printed. E.g. the
output is wanted in thousands (UNIT 1000), hundredths (UNIT 0,01) etc.

Cxx

Defines the column number. Arithmetic operations can be executed on
lines as well as on columns.

Dxxx.xx

Definition of data lines (up to 99999 in one data file).

Dr4xxx. xx

Modifications of data line xxx.xx

Lxxx.xx

Definition of model lines (used when arithmetic operations are
executed on columns).

Mxxx.xx

Modifications of line xxx.xx

Pxxx. xx - Pyyy.yy

Purges lines xxx.xx - yyy.yy

E5 13

Commands

Instructions

COLUNNS
CONSTANT

DATE
DECIMAL
DIVISOR
FACTOR
HEADING
IF ELSE

IF
INFLATION
INTERVAL
LINE
LIST
~1I NUS

MOVE
NEVJCOL
PAGE
PERCENTAGE
PLACE
PLUS
READY
RECIPROCAL
SEQUENCE
SUBHEADING
TEXT

UNIT

Cxx

Dxxx.xx
DNxxx.xx
Lxxx.xx
~lxxx. xx
Pxxx.xx
*(asterisk)
;(semicolon)
Data line
~1odel 1i ne
Column calculation

Survey of COPl;;lands and inst.'uctions
w
:>

S

S

S

iC iC iC iC

iC of( S

iC iC iC of( S

iC iC S

iC iC of( S
of( iC of( S

iC iC S

E5 14



. SOFTWARE TECHNOLOGY

A FUTURE REQUIREMENT OR CURRENT NEC~~~l.ILl '

DR. HARRY BLASK

DR. H. BLASK
MINISTERY OF RES~ARCH AND TECHNOLOGY
BONN
WEST-GERMANY

FO 01

\



2. Situation and impact of information technology

"SOFTWARE TECHNOLOGY

Tht! institutions using infor'mation t.t'chnology and, in the

final analysis, socie'ly as a wholp is becoming mor'e and

mo I'C' dep(!ndc'nt. on t.td ~ techno logy. Lmpor'tan t sect.ors of

pr'oduct. i on eng i ne{'r' i n~, l he cont r'o I of comp I ex l.c'<.:hn i cal

plClut s. t.he administ.rat ion and handl ing of lal'p;{' stocks of

i nfo ..'mat ion. a II t h{'sp ar'p pr'acl i Cll I Ly riO lonAcc' poss ib l~

wi t.hout. dLlt.a PI'OC('SS i n~. I r dat.a pr'ocess i ng ever' fa i 1s,

t It ismay have d i sast. I'OUS consequen<.:l's. i riC Iud i ng even t he

dc.·str'uclion of companies. One of the main c-lements of t.he

vu Inc'r'al> iii t Y or t hos(' who c'C'I)' I ar'gc' lyon i nfol'mat ion

t.t'chll()I()~~.. is the incr'C'tlsinp," cOl1lpl('xity of technical

-.;y -.;t c'ms iUld t h(' iI' ;'1>(> I i cat i OilS. Jhe'y makl' usc.' of

p I (' C t I' () n i (' i 11 r U I '01 it t i 0 II (H' () C t' ~sing b p (' illl ~ ('. a h 0 vcal I. t his

"I 1\,\~.~ lHlm""uli~ I i 1Ih.~ cHILI i nt ('I'COIUH'('t ions I ('ad i ng Co Bl'W

[n mode-r'n indust.rial societies, t.hc gener'ation, pr'occssing

and tr'ansfer of i nforma t ion arc play i ng an incr'cas ingly

impor't.ant role. Together with microelectronics~ data

pr'ocessing and technical communicat,ioll, infor'mation

t.echno logy r't'pr'esents a key t ('chno logy wh ich none of the

major i ndust-r' i a I i zed nat ions can afford to neglect.

Cons ider. for instance, the incr'eas i ng i ntegrat ion, and the

fu c·ther dec 1 inc in pr ices, of e I C'ctron ic components: here,

fut.ure dcvelopment wi I 1 lead t.o fundamental changes for

manufacturec's and users of informat ion technology as well as

for privat.,e u:,;pr's. Since we are still at the beginning of

t his pr·oc('ss. we can by no means pred i ct aLl t.he

ClHI:-;PqU(.'IlC('S wh i ch \"i 11 be br'ought. about by i nfor'mat ion

tpchnu logy. Some effc'ct.'s. however', arc a 1ready emcrgi ng

today wit h it sumct. i mes d('pc'css i ng c I a r' i t.y :

i ncr'('(lS i n,!:!:f'P SlJ Lt i ng L I'('IHI t O\~'\I·d s

l('ssI (~~s t J"'anspet I'('n t •mak("~.. t he systems

i n("ol'mat i Oil.

('ornp I ('x i t ~

DR. HARRY BLASK

A FUTURE REQUIREMENT OR CURRENT NECESSITY?"

1. Introduction

Ladies and Gentlemen,

This (' x amp 1(' t h r' () \". <; ... r (' (" i:\I I! g It tOil t II(' P ~"(' .-; { 'n t .. # f t t,.a i {'

sit.uation: fVPII ~per!alists fail t.o dC'tp('t (,:\ist ill~ ,"TOI'S

or' manipulat ions. \\'ollld I il,(' to ('xami'H' thi~ ~ittl;lt inn

furt.her' ina SOll1c'\"hat. gCflPr'al i /('d manlH'I· h('fot·" I ('\- ('tit lIill I ~

cmbar'k upon tht.' act Uil I suojt"ct lI,un('1 y soft.war·c tcchno I O:!)·.

Every time a new technical a<.:hievem('nt is madl' thcr'(' ar'e il

few resourcefu I minds who arc qu i ck to make USt' of it. to t.he

disadvantage and detriment of their fellowmen. So lhp

development and propagation of informat.ion tf'chnology has

"blessed" mankind with so-cell led comput"('r' cI'ime. h·ould

like to cite one of the cases r'('pol'ted t.o dale' which think

is of particular' interest t.o the subje<.:t of my papPI':

A ff'w years ag;o , an ilud i t. was announcpd llllt'xIH'('t ('d I) in iUI

En~lish bank. The r'('sult was that sump t'mplo)"('('s of tht, dat.a

processing division disappear'cd over'ni~ht (and IJr'ohahl~ I(,("t

the cou n try ). Th i s p r' act i C it I lye0 U (" i rill«' d the suspic ion t It a t

i rr'cgu lari t i('s had occuI'C'd. Thc soft ,,·al'(' \va:"'i t IH'U exam i n('<1

with spC'cial care; but in spitp of an intC'nsiv(' :"'i('aITh. the'

manipulat.ions which had most pl'obaol,\ o('pn made cOllld lIof ()(.

d iscover·ed.

FO 1 FO 2



controllable,

specialists as

the beginning.

- software be structured in

way so that later on

necessary, modified or

and capable of being mastered by only a few

was illustrated by the example I quoted at

- Information technology also penetrates increasingly into

sensitive areas. It controls railway and tram signalling

installations; air traffic control is more and more

computer-assisted. Presumable nuclear power stations, too,

will soon be monitored and controled by computers; this,

however, is not yet permitted in the Federal Republic of

Germany. Errors or failures occuring in these areas would

result in serious accidents involving loss of life. We

have still far to go before finding a solution to the

problem of ensuring the reliability of information

systems.

If we now consider information technology from the hardware

and software aspects, we will find that the software has

nothing comparable to set against the technical progress of

hardware. This is probably due to the fact that hardware is

the result of engineering to a much greater extent than

software and that engineering uses sophisticated working

techniques and theoretical elements with a long tradition.

They were already known and practised long before data

processing was developed. Programming, on the other hand, is

relatively new. It takes place at the boundary between

technology, organization and the humanities and to this day

is considered an "art" and not a science. When a system is

implemented the cost share of software todey is already in

the region of 80% and shows a tendency to increase.

FO 3

3. The software crisis

Let us first of all consider the manifestations of the so

called software crisis. When comparing the software

development of 20 years ago of that of today we find that

little has changed. The scene is still dominated by the

"free lance artist" who produces software ,without observing

too many rules, giving free rein to his intuition. For him,

it is not important that

a transparent and intelligible

it can ~e understood and, if

supplemented also by the other

users,

- adequate documentation be provided for programmes; this

applies even more to considerations of, and decisions on,

design, which today are put down in writing in very few

cases only,

- an extensive phase of problem analysis and definition

precede the design and impl~mentation phase,

- programme protability is achieved.

As a result, software is prone to many errors; in the case

of major operating systems, for example, between 5000 and

10000 errors per year are reported to the manufacturer. It

is often found that software is no longer usable soon after

its developer has left ~he company or if development

capacity is no longer accessible for other reasons.

FQ q



Other symptoms of the crisis are:

In addition to these qualitive characteristics of the

"software crisis", there are some important economic

aspects:

Users and developers have difficulty in communicating with

each other. Having different engineering backgrounds, they

do not speak the same language. Communication is further

complicated by the fact that the colloquial language we

normally use is informal and imprecise.

Progress and productivity in software production are

particularly difficult to control. While between 1958 and

1978 the processing productivity of computers increased by

a factor of 1000, the productivity of programmers

increased only by a factor of 2! Projects are managed and

organized in a shirt-sleeve manner and consequently yield

unsatisfactory results. A study carried out by the

University of Karlsruhe involving 100 automation projects

showed that, on average, software had additional time

requirement of about 50%, while the costs were about 75%

higher than estimated.

b) Competition between data processing suppliers has been

shifting to the software sector. This applies without·

reservation to operating systems, which determine

computer characteristics much more then hardware does. If

you just remember how many computers - espec~ally smaller

ones use the standard components from Intel, Texas

Instruments, Motorola and Fairchild, you will recognize

that the net value added to a product and its identity

and hence its competitve ability come from the software,

including application software.

increasingly complex tasks - thus becoming increasingly

complex and expensive itself on the other hand,

microelectronics brings out price cuts for hardware,

while this can hardly be said about the soft- ware side.

c) Available data processing solutions are ihadequately

portable or not portable at all. The same problem

definitions are therefore handled again and again - a

practice which constitutes an enormous economic waste.

This is why we have to look for new approaches in order to

reduce the cost of software development and maintenance.

Just as we use high-precision tools in production

engineering, we will have to use the computer itself for

software production. Neither our own capabilities nor our

own ability to analyse and integrate are sufficiently

powerful to cope with the software crisis.

and description available for

inadequate. This applies in

means. The large variety of

available complicates

The means of expression

software development are

particular to graphical

programming languages

standardization.

a) In the

thousand

80% of

accounted

to the

Federal Republic of Germany alone, about DM 10

million are spent annually on software. About

the costs of a data processing application are

for by software. On the one hand, this is due

fact that software is designed to fulfil

FO 5 FO 6



based 011 t IH' 1'0 I 10\" i 1lP; phas(':'"\:

4. The software technology scene

Appr'oachcs to softWil"C' pr'oduct i 011 t ('chno logy h,'1\'(, developed

sin c e t h {' I (l t (' 6(' I sand (\ PP(' a I' 1>1' 0 m i sillg; ;1 t t h p P I' e sen t

time, tH.l\"(,Vf~", the tl~I'm "technology" is rathcl' flatt('I'ing.

The methods, techn i ques and too 1 S lIs('d al'p oft ("n qu i t.e

sophi s tIcatedand hen c e can b t." a p p 1 i l-> don 1): byex per t s. I n

add i t ion, the va lue of soft \"a r'p t.(.>chno logy i s fl~equent,ly not

easy to understand. It is absolutcly impossible for the

normal user t.o estimat.e t.he value of such technological

too 1s. As a consequencf' , the ba I'r i 1'I'S preven t i ng t. he i r

introduction are tt~cmendous: thel'e is it gr'pat ,'eluet anc(~ to

i n trod u c e s u c h too Iso 11 the p a " t 0 f milll gem l' 11 t boa I'ds, \,..-110

hesitate to invest thl' larg(.> funds I'equi"l'd for tht....

necessa r'y t I'a i n i ng effol,t and fo I' i nv('st mell t.s, as \,'C 1 1 ;lS

on the p a ,~t 0 f oS 0 r twa r' e de v f' lope I' S, who a ,'e ex p (' c ted tog i v l'

U IJ the i I~ old f am iIi a I' W0 r' kill g m(' tho d ~ (l n d t (.) a qua i Ii t

t hemse I \'l'S \~ it h 11('\'· sOlJh i.st i C(l t cd t ('chn i ques. I n vi ('"' of

t h i :=\ sit 11 a t ion i tis 11 0 "'011 d (' " t hilt too l S 0 f .s 0 f t \,' a ,,(.~

t.echnology are not yt't

Republic uf C,Pl·lIldIlY 01', pl·obaly, in othel' cuuntr,ie:-j.

so f t \v 'H'pdf' V P I 0 pm c' n t (l Jl d m~l i Jl t (' nail c t.' a r' e ge flt' 1'.1 I I ,\Today,

rl'qu i r('m('1l t anal~' s i:-; illld SI)('<'" i l' i Cll t ion

- I'ollgh des i gil

- final dp:-;ign

- coding and implemcnt-at ion

- m:l i fl Ll'llallce.

To i Jl C Iud e Lcst i ngin t h i:-i L i oS t a ~ Ll ph a s ('of i t:'"\ 0 \..; n \,' 0 II I d ,

t h ink, not. b (' C 0 I~ r f' c t , sin c e t est i n g act i v i tie s () c <: II I' i Il

a II the phases c i L('d above. For' all phases, t hl.'l~(, <t,'t' i :'"\0

I aCed so lut ions \d th qu i tC' d i ffer'cnt capabi 1 it i C's. Comput,p,'

aided lools and met.hods for the I'equirement (analy:-;i:-; and

specification) phase have so far beell the leasl dcv('lop<,d

elements. One of the rna in r'casons for th i sis p,'obab J y t. h('

fa c t t hat the I~ e is a con t r a die t ion bet h' e e Jl the nee l' S S a I' i 1y

a pp 1i cat ion - 0 ric n ted c h a rae t c r 0 f t his act i v i t Y and t IH' 11 e e d

for highly flex ible too ls for vary i ng appl ieat ions. FOI' the

rough and finaide s i gnphas e oS, the sit u at ion i s bet t. e I~ :

sc:veral methods (e.g. the Jackson met.hod, structul'pd

programming) are at least known to users by name, alt.hough

the y a I' e act II il l 1y usedon Ly by a few a d v (1 n c e d so f twa r e

de vel 0 p (' r s • Lnth(' cod i n p: ph asp , \v h i chi s t h (' t. I' a d i t. ion a I

fif'ld of activity of IH'og;I'illllmcl'S, methuds and tools of

Soft.w:ln" technology al'e mOI'(' \,'ide-spl'(,ild, of course', Vther'eas

the maintenanct~ pha~(' is st i II chal'acterizpd by a vpr'y ~mall

inventory of methods and lo()l~.

FO 7 FO R



initiate supporting measures.

A country like the Federal Republic which - because of its

5. Measures initiated by the BMFT to support

software technology

In order to prepare the ground for support measures, the

Federal Ministry for Research and Technology entrusted the

Society for Mathematics and Data Processing (GMD) with the

undertaking of a study to analyse measures for the

improvement of software production and to identify research

areas which, in the medium term, are, or will be, of

importance for users and software producers. The study also

included a detailed analysis of the market of software

suppliers in the Federal Republic of Germany. Let me cite a

few results of the study:

Under 3 successive data processing programmes from 1967 to

1979, the Federal Government gave support to research and

development activities for hardware and software. A total of

about 3.5 thousand million was provided to support research

and development in this field. The first programme focused

on hardware, the second and third on software, with an

increasing emphasis on small computers. Applications of data

processing in many different areas were supported (e.g. in

administration, medicine, process control, computer-aided

design or education). By promoting the field of data

processing during the years up to 1979/1980, many of the

objectives of the data processing programmes, which were

designed as a pump-priming measure, have been achieved. As a

consequence, the financing in particular of future products

and standard applications will now be left to industry.

Present support measures concentrate on existing deficiency

areas in information technology. To give you an idea of

these measures, let me cite - apart from software technology

a few other important areas in which support is given

predominantly to basic research work and systems know-how:

- data security

- information technology for office and administration tasks

- very-large-scale integrati~n of electronic s~s~~ms

- fundamental principles of systems engineering ~

- pattern recognition

- communications technology.

I do not want to go into greater detail. For those who are

interested, let me point out that the support measures

proposed are always announced in the Bundesanzeiger, the

official organ of the Federal Government.

imports must be able to offer

advanced products cannot affort to neglect

industries. The situation I have just

inevitably calls for the government to

There are about 3.000 suppliers of software in the Federal

Republic. About 85% of them have a capital of less than DM

250.000, which means that most of them are not able to

raise enough funds of investment in tools of software

technology. But also the more powerful suppliers who would

be able to invest have not, as a rule, reached a

satisfactory level of know-how concerning software

technology. Owing to this situation, the software industry

will, in the medium term, not be able to make use of the

existing growth opportunities, since its technological

know-how and also its economic potential are limited.

dependence on

technologically

important key

described almost

FO 9 FO 10



From the above remarks on the software crisis it is t Methodology

with quite considerable deficiencies. And since even

relatively little progress can be expect.ed to yield

significant growth in productivity and improvement of

quality, about 60 per cent of the funds available for

software technology arc earmarked for this ar~a.

Existing methods and tools arc at prescnt often used fOI-'

only one or several software development phases. As

development work proceeds Lo the next phase, cxtvnsive

modification operations and manual adaption work are

llsua II y nt'cessary, wh i ch wou 1d not be J'c'lu ired if we had a

coor'd inated and i nt.egr'at.ed syst.em of methods. Whet.h('r'

eventually a system can indeed be develope~ which would be

a b 1 e to supp 0 r t the who l e so f twa r' e 1. i fee y c I c fro m the

r'cqu i r'ement ana 1y sis to t.he ma i ntenance phase wi lhout

intermediat.e manual wor'k is, I think, open to doubt. It. is

immediately obvious that much remains to be done in the

field of software technology. This need is certainly not

controversial. It is also, I think generally accepted that

the quality of software can be improved, above all, if a

systematic approach is developed and introduced for the

problem definition and the design phases. But opinions

differ when it comes to dec id i ng wh i ch methods ar'e the most

efficient, since this quantitative efficiency is analysed or

proved only very rarely; which means often bel iers ar'c

stated in the absence of evidence.

It would be just fine if the whole software life cycle could

be covered by a few methods. But this is wishful thinking

and hence unrealistic. One of the conclusions of the

abovementioned study by the GMD is that the development of

methods cannot be separated from the individual products to

be developed.

The means of expression for design and testing certainly are

- other methods may be - dependent on the kind of product to

be developed (e. g. micr'o-systems, compi ler's). Neverthe less,

there are certainly also a number of methods which lend

themselves to general use. The variety of techniques,

methods and tools required is and will be large - at least

judging by the present state of the art and by present

know-how. A policy aiming at the advancement of software

technology and its use in the Federal Republic of Germany

has to take this fact into account and consequently has to

support a relatively large number of means of software

technology before strategies can emerge which it would be

promising to pursue with emphasis and in cooperation between

several parties. We are focusing our support measures on

areas where we be 1 ieve the' stanuar'd of know-how is

particularly low. These areas are:

FO 11

clear, ho,,,ever, that methodology is at present an area

FO 12



Individual methods in deficiency areas

- Description of requirements / Software design

Although some methods do exist, they arc not all

particu- larly satisfactory. In this area, WP ~ivp

specific support t,o graphical methods~ because' they scpm

to us especially promising for an engint-'~ring appr'oach.

The Petri networks may play an impor'tant r'ole one day in

this connection.

- Quality assurance

in particular testing. In addition to testing the codt'o

testing (also by machines) during the first phasps of

the software life cycle will be of inc,.'(>a~ing

importance, in part i cuI ar because err'or's in the

description of re- quirements and in soft.warr· design al'p

part icalarly expen- s i ve er rors, since thc-y a r'e usua I I~'

detected at a late stage and following t~xtcllsivc

searches.

It ish 0 pedthat two pI' 0 j e c t s wh i c h we sup po (' t '.k nd \\' hie h

are dedicated to programme verificalioll. i.e. proving

that the code contains no err'ors, wi II O{' successfu I. If

a real breakthrough is achieved here, we shall feel far

1e s S con c ern t han be for'eat the tho 1I g h t 0 f us i n g

software also in sensitive areas.

FO 13

- Maintenance

50% to 80% of the cost of a software product during the

entire period of its use are caused by maintenance.

Improved maintenance will be achieved automatically when

better methods are 'used for the initial phase of the

soft.ware development. But apart from that, improved

methods of maintenance must also be developed. ~e arc

giving special support to activities for thr development

of remot{' diagnosis and maintenance.

Evaluation of methods

As 1 sa i d l> 0 for' c, t his i san issu e 0 f s pe cia 1 i n t ere s t to

the uspr. Th~ trouble is that the situation with regard to

mct.hods pvaluation is part.icularly gloomy. There are

pract.ically no measuring methods and technique~ which

could yield quantifiablp and meaningful evaluative

r (' suI t s . Th{' pro j e c t s we are suppo r ting don 0 tat, p r' e sen t

include any such activities.

On~ of thp requirements we have fixed for all the projecls

we promote is that. t.he proc0.ss('s and mpthods can be uspd

wit h com put (:> r' supp 0 r' t. l f theyea nnot be u s pdin t his way wt'

a r~ (, a f r' it i d t. hE' Y wi I I m0 s t I y not b c' a Iong - term s u c c e s sill

lJI'(\ct i cP.

A s('cond rpason fot, t.h is I'Pqu i rcmcnt is t.he fact that a

met.hod is not matur~, logical <lnd consistent unti I it can be

progl'ammcd. Th(-' wor'k \v(' suppor't is int0ndpd t.o achievc

pr'ogr'('ss in soft\val'e t('chnology. TIl(' d~v("lopmcnt results

m11 s t b C' I ;) t' gP I y r 0 r t a h I (. so as t () f il (' iii t "t P mOl' f' gP n f' r'" 1

appl ical ion. O('vclopment s \dlich al'c of valut-> fi r·~t and

for' ('m() s t. toorH' i 11 t (' I' (' s t (' d p it I't Y 011 I Y, \v ill n () t r f' c e i v f'

SUpPOI'C. r Jl the case ~f pl'i vat{' (,,,tel'pr'i scs it is Ollt.

gener'a] pol icy t.o bp<u' only 50;.~ of the pr'oj~ct. costs.

FO 14



6. Supportive '~easures by the I-:ur'opean Communities

shal L now say a fpw wOI'ds abollt ,SllppOl't m(·Ll.~llr'('s uy tht,

J'ht' COline i I () f t. he )':u r'op('an Commtln it if's adapt pd a

of SUppOI·t i Vf' me(iSIl r'ps t\H' t h(' r i (,1 d () l' dtt t Cl

enumerate hcr'c. The.> programme I s terms of reference are so

general that a relatively wide range of tasks can be

includC'd. More specifically, software technology projects

iU' c' a I so eli g i b 1e for' p r'om 0 t. ion. In 0 rdern0 t tora i s e

l'"lsp hopes, let me point out to you that all projects to

be suppor'tcd by the EC must comply wi th the requi rements

of advancing cooperation within the EC, which means that

t.11C·Y must be carried out jointly by institutions in at

1Pilst 2 EC count',I' if's. The measures supported by the

Comm iss ion al'e aanounc<,d annua I Iyin the off i c i al Gazette

of t IH' European Commun'i t, i es.jilt II l \'\'0i -. :-illbd i \' i </(,'<1

pl'lI\ i d(' ~ -) m i , , i Oil 'III IIpC'iln

'·'1(' ()I'CI,!.lI',IJlllJl c'

In )1)7°.

('our' .\'('ill'S. t h(' ()I'n~I',lmJ1l(' \'\' ill

EC.

\('('Ollllt i n~ ('II it -..

pill't -.:

a) Cerlt'l'a I act i 011

Dpaling with st.andar·di/at iOIl. pllul it' 1)I'(lcllr'('II\('nt.

coop{'rat ion bt>t.ween r'psciilTh Ct'lllt'I'S ilnd O!',!!.1I1 i /ilt i cHl-i

which advance the use of data pr'ocessing. :-itlldic'"" oil

em p loymen tissUP s; d a t Cl S {' cur' i t y and d a t. a pl'O t C' eli (111 il S

we 11 as the I ega 1 protect i on of comptl t pr' pI'ogr'anlln(",').

b) softwarl' and appl ical iOI1:-i

[n the fipld of gpnpr'al soft.w'lr'p. t,hp EC Commission giv('s

Slip po r' t lop r' 0 j (' c t s aim i ngal :

III addit.ion to thp steps taken by t,he EC Commission,

other' EUl'opean countr'ies, besides the federal Republic of

Ger'mally, also have initiated action for the support of

informat.ion t.echnology. These mpasur'es differ very much

fl'om (';1<.:h olher' so that it would t.ake too much time to go

illt.o fUI,thf>r delai I. Gt>llpral ly speaking, it can be said,

think. that small EC countries (e.g. Denmark, the

Nether'l ands, Be 19i urn) do not gi ve financial support to

i n d u s t r' i ali n format ion t e c h n 0 logy act i v i tie s , where a s

I ar'g<>I' countr'i es 1 ike the Un i ted Kingdom and france

pr'ov i d(' qu i Le cons i der'able funds for th is purpose. The

r'c'sposab iii t.y for nat i ona I support. measures is assigned

t,o d i ffcr'ent government departments in different

cOllnLr'ic.>s, often t.o the d(~partment, of industry, research

or' ('ducation.

- t.ht' f~st.abIishment. and diss('minat ion of st.andar'ds

- j mpI'ovC'd pOI't.ab iIi t.y

- i mpr'oved conver's i on ('ouel i t j OilS

- improved (,'ff i c i C'n<:y 0 f da t a pr'ocpss i ng sy st ('ms.

Th p supp 0 r' t. i v ~ m(' a ~ II I' (-' sin t h (, f i ("' ) d () f ;\ [' r lie a ~ i u: 1:-; ; I r'l'

not lim i ted t. () (' (' "t it i II ric' Ids. but t. h c.' Y h a v {' t () (" (l mp 1~

with specific (.'r·itt>r'ia. \\'hich I do not. hOh'('VC'r', \vi:-ih t ()

FO 15 FO IE



7. Considerations on a future coordinated system technology

Before - in conclusion - trying to answer the question asked

in the title of my paper, let me draw your attention to a

technology of which the software technology is only one

aspect. Hardware and software (by softwar'e mean both

operat i ng syst.ems and uSt.'r' softwar'e) were poor Iy coord i natf'd

from the first yeal's of lh(-' great i nCI'ease of computer lise.

As hardwar'e development r'acpd ahead. If'ilving softwar'e a long

way behind, the gap between t he two gl'ew wi del' and w"i 11 ~ven

increase as new har'dwar'c ar'Ch i tectures ar°e:' df'v(' Iop~d. The

existing programming languagps Clnd tf'chni4Ut'S would make

only very effective use of the possibilities offerrd by

hardware. Consequently. it is an increasingly urgent task to

make hardware and software development converge into a co

ordinated system technology.

FO 17

8. Conclusions

To summarize. let me emphasize that the software crisis must

be overcome as soon as possible. As I said before, some DM

10 thousand million are spent annually on software in the

Federal Republic of Germany. Successful rationalization in

software. production which reduces in particular the amount

of maintenance required will soon result in major economies.

If lhe software crisis is not overcome, the majority of

st.aff engaged in software production would spend all their

time on maintenance work and therefore be unable to tackle

ur'gent new tasks. It is frightening to think that a very

large portion of the qualified manpower engaged in data

processing which is in short supply anyway - is not

available for innovation work which is urgently required by

the' pconomy. The need to reduce the great dependence and

vu I nf~t'abi 1 i ty caused by information technology by improving

the str'ucture and thus the managabi 1 i ty of software is

another aspect which is of interest to the society as a

whole.

The software producer is at present in a rather favourable

s i t.uat i on compared wi th othel' producer's. This is due on t.he

onf' hand, to t.he eXlr'pmely high demand for software, which

can hal'd I y be met, and. on the' other hand, to the fact that

for' many customers soft,\\'arc is st i 11 a book with seven

sea I s ~ so that they have to fu I. 1. y r'e lyon the pr'oducers. I

am surc that this situation will, howcver, change during the

nt!xt. few years. User's \\'i 11 become incr'casingly awar'e of the

problems involved in information t.echnology and will

endeavour' to aquir'E' at. least some basic knowledge. They will

then look at softwal'c wi t.h a more cr'i t i c:a 1 eye and wi 11 

mor'c often than in the past dpmand better qual i ty.

Software produc('I's who (H'C not ab I e to meet such

I'equ i rements wi 1 I not be ab Ie t.o hold t.he i f' mat'ket. pos i tion.

FO 1&



The availability of the tools of software technology will

then be crucial prerequisite for the survival of a company.

Since software technology cannot, however, be introduced

overnight, but probably only in the course of several years,

software producers would be wise to begin immediately to

tackle this task. Difficult as this task may seem in the

face of such a multitude of methods, it should not be

postponed, since any delay jeopardizes future opportunities.

Thank you for your attention.

FO 19



BUSINESS· COMPUTER GROUP STRATEGY

K.D. LAIDIG

W. GAMM

**** WE DIDN'T RECEIVE THE PAPERS YET (EDITOR)

K.D. LAlDIG
W. GAMM
HEWLETT PACKARD

****

GO 1



GREG GLOSS

HEWLETT - PACKARD INFORMATION NETWORKS DIVISION

HI 1

ANSI COBOL 198x: The Story behind the Headlines

Greg Gloss
Hewlett-Packard Information Networks Division

ABSTRACT

The ANSI (American National Standards Institute) X3J4 technical
committee is in the final stages of its work on the next version
of the COBOL standard. This paper will discuss some of the major
new features which are expected to be included such as structured
programming constructs together with those items which will no
longer be allowed in the next standard. Some background
explaining the reason the committee chose to make some of the
changes will be included. In addition, the standardization
process will be covered briefly.

BACKGROUND

The current version of ANSI COBOL was adopted in 1974. Since
1977, the ANSI X3J4 committee has been working on the next
version of the COBOL standard. Since it is not clear how 1 ~ng

this process will take, I will refer to the next standard as
COBOL 18X.

OVERVIEW

The next standard will have changes in the following categories:

a. New Features
b. Transitional Features
c. Deleted Features
d. Specification Changes
e. New Reserved Words

A significant effort has been put into incorporating structured
programming constructs into COBOL. In addition, other new
facilities have be0n added to make programming in COBOL easier.
Some current features have been flagged for deletion either in
the new standard or in the subsequent standard. Those features
which are in the new standard, but which are not expected to be
in the subsequ~nt standard are called transitional. There have
also been some changes to the rules and additional reserved words
includ d which may affect existing programs.

STRUCTURED PROGRAMMING

The new structured programming constructs which have been defined
for COBOL include Scope Terminators, nested programs, PERFORM
statement enhancements, the EVALUATE statement, and the CONTINUE
stateiHt'nt.

HI 2



Statements]
EVALUATE HOURS-WORKED EXEMPT

WHEN 0 ANY PERFORM NO-PAY
WHEN 1 THRU ijO ANY PERFORM REG-PAY
WHEN 41 THRU 80 "N II PERFORM OVERTIME-PAY
WHEN 41 THRU 80 lIy lI PERFORM REG-PAY
WHEN OTHER PERFORM PAY-ERROR.

Scope Terminators

Under COBOL '74, conditional statements could not be included
with the statement group following a conditional phrase such as
AT END or ON SIZE ERROR. New reserved words have been added such
that any conditional statement can be turned into an imperative
statement and used as part of the conditional statement group.
For example,

READ FILE-IN AT END
ADD A TO B ON SIZE ERROR

PERFORM OVERFLOW-ROUTINE
END-ADD
MOVE SPACES TO REC-IN.

Under COBOL 174, it is not legal to specify the ON SIZE ERROR
phrase in the above example because it turns the ADD statement
into a conditional statement and only imperative statements are
allowed following the AT END phrase. However, with the scope
terminator, END-ADD, the ADD statement with the SIZE ERROR option
becomes an imperative statement and is legal in this situation.
The MOVE statement is the second imperative statement to be
executed if the AT END branch is taken and the period terminates
the READ statement. If the READ itself were nested under a
conditional such as an IF, it would be terminated by an END-READ
instead of the period.

Nested Programs

The nested program facililty allows programs to be contained
within other programs so that global data may be easily shared
and the program structure and relationships-specified. In the
following example, program B is contained within program A.

IDENTIFICATION DIVISION.
PROGRAM-ID. A.
ENVIRONMENT DIVISION.
DATA DIVISION.

[Global Data Declarations]
PROCEDURE DIVISION.

[Program A Procedure Division
IDENTIFICATION DIVISION.
PROGRAM-ID. B.
ENVIRONMENT DIVISION.
DATA DIVISION.

[Local Data Declarations]
PROCEDURE DIVISION.

[Program B Procedure Division Statements]
END PROGRAM B.
END PROGRAM A.

HI 3

Program A may call program B; however, program B cannot call
program A. Program B can access data in program A which is
declared as GLOBAL unless program B contains a local data item
of the same name.

PERFORM Statement Enhancements

The PERFORM statement has been enhanced to allow a list of
imperative sta~ements to be embedded within the statement instead
of paragraph names and to allow the programmer to specify whether
the UNTIL conditions are to be tested before or after the
specified set of statements has been executed.

An example of an in-line PERFORM is shown below:

PERFORM 10 TIMES
ADD A TO B
ADD 1 TO A

END-PERFORM.

The two ADD statements will be executed 10 times.

Under COBOL 174, the UNTIL conditions are always tested before
executing the specified paragraphs. The new specifications will
allow the test to be made afterwards. For example,

PERFORM READ-LOOP
WITH TEST AFTER
UNTIL EOF-FLAG.

Control will always transfer to READ-LOOP at least once. The
test option may also be specified with an in-line PERFORM.

EVALUATE Statement

The EVALUATE statement adds a multi-condition CASE construct to
COBOL. The EVALUATE statement causes a set of sUbjects to be
evaluated and compared with a set of objects. If the comparisons
are all true, a specified group of statements is executed. For
example,

The above example evaluates two data items, HOURS-WORKED and
EXEMPT. If HOURS-WORKED is 0, any value for EXEMPT will
be true and NO-PAY will be performed. If HOURS-WORKED is between
1 and 40, REG-PAl will be performed. If HOURS-WORKED is between

Hi 4



41 and 80 and EXEMPT contains "N", OVERTIME-PAY will be
performed. If HOURS-WORKED is between 41 and 80 and EXEMPT
contains a lIy", REG-PAY is performed. If none of the above
conditions are true, PAY-ERROR is executed.

CONTINUE Statement

The CONTINUE statement is a no operation statement which
indicates that no executable statement is present. It may be
used anywhere a conditional statement or an imperative statement
may be used. For example,

(

IF A ( B THEN
IF A ( C THEN

CONTINUE
ELSE

MOVE ZERO TO A
END-IF
ADD B TO C.

SUBTRACT C FROM D.

The CONTINUE statement allows control to go to the ADD statement
following the IF when A is less than C. If the NEXT SENTENCE
option had been used, control would have transferred to the
SUBTRACT statement instead.

OTHER NEW FEATURES

There is a long list of other new features which should make the
job of the COBOL programmer easier. The more significant
ones are listed here.

Reference Modification

Reference modification allows you to reference a portion of
a data item by specifying a leftmost character position and a
length. For example,

MOVE A (3:5) TO B.

will move the third through seventh characters of A to B.

05 JOB-TITLE PIC X(20).

The following INITIALIZE statements in the Procedure Division
could be used to put values into the record:

INITIALIZE RECORD-l REPLACING NUMERIC BY ZERO.
INITIALIZE RECORD-l REPLACING ALPHANUMERIC BY SPACES.

The effect would be the same as:

MOVE ZERO TO EMP-NO EMP-PAY.
MOVE SPACES TO EMP-NAME JOB-TITLE.

De-editing

Under COBOL '74, it is not legal to move from an edited field
to a numeric or numeric edited field. The new specifications
will allow moving from a numeric edited item to either a numeric
or numeric edited item. The edited item which is the sending
item will be converted to its numeric value and moved to the
receiving field.

REPLACE Statement

The REPLACE statement function is similar to that of a COPY ...
REPLACING except that the REPLACE statement operates on all
source program text, not just text in libraries. Thus, if one
of the new reserved words is used heavily in an existing
program, you may want to use a REPLACE statement to change it.
For example,

REPLACE ==TEST== BY ==TESTT==

will replace all subsequent occurrences of TEST by TESTT in the
source program until another REPLACE statement, a REPLACE OFF
statement, or the end of the source program.

Optional FILLER

The word FILLER is now optional for data items which need not
be named.

INITIAL Attribute

INITIALIZE Statement

The INITIALIZE statement provides the ability to set selected
types of data fields to predetermined values. Assume RECORD-l
was described as follows:

01 A.
05
05

B PIC X( 5) .
PIC X(S) VALUE "NAME:".

01 RECORD-I.
05 EMP-NO
05 EMP-NAME
05 EMP-PAY

PIC 9(6).
PIC X( 20) .
PIC 9(5)V99.

HI 5

The INITIAL clause in the PROGRAM-ID paragraph indicates that
every time the program is called, the internal data is
initialized. This function is the same as the $CONTROL DYNAMIC
option on the HP-3000.

HI 6



The following SET statements could be used:

SET SWITCH-1 TO ON.
SET EOF-FLAG TO TRUE.

PROGRAM-ID. SUB-PROG INITIAL.

EXTERNAL Attribute

The EXTERNAL clause specifies that a data item or file is
available to every program in the run unit which describes the
data item or file.

01 READ-FLAG
88 EOF-FLAG

PIC 9.
VALUE 1.

FD FILE-l IS EXTERNAL.

SYMBOLIC CHARACTERS Clause

The SYMBOLIC CHARACTERS clause in the SPECIAL-NAMES paragraph of
the Environment Division allows the programmer to equate a name
to a specific character. This feature can be useful for
non-printable characters. For example,

SYMBOLIC CHAkACTERS BELL IS 7, CARRIAGE-RETURN IS 13.

This clause would allow a MOVE statement such as

MOVE BELL TO A.

ADD Statement Enhancement

Under COBOL '74, the ADD statement allows either a TO or a
GIVING format, but a statement of the form

ADD A TO B GIVING C

is not allowed. The new specifications will allow the TO
before the last operand when the GIVING option is used.

Alphabetic Tests

Two new alphabetic class tests have been defined:

1. ALPHABETIC-UPPER will be true if the data item being
tested contains only A-Z and spaces.

2. ALPHABETIC-LOWER will be true if the data item being
tested contains only a-z and spaces.

SET Statement Enhancements

The SET statement has been enhanced to allow the setting of
external switches either on or off and condition-names to true.
For example, given the following declarations:

SWO IS SWITCH-l

HI 7

The second SET statement is equivalent to:

MOVE 1 TO READ-FLAG.

TRANSITIONAL CATEGORY

There are some features of the current standard which are
scheduled for a phased deletion. Implementations must still
support these features in the new standard, but not in the
subsequent standard.

One of the most visible areas of change in the transitional
category is in the realignment of file related clauses. The
Environment Division is intended for machine dependent functions
and the Data Division for machine independent functions.
However, the placing of some clauses in the current COBOL '74
standard does not conform to this concept. Therefore, certain
clauses have been moved from the file control entry in the
Environment Division to the file description entry in the Data
Division and vice versa. The old locations are specified as
transitional elements so implementations of the new standard must
support programs which contain the clauses in either th~ old or
the new locations. The following Environment Division clauses
are included in the transitional category:

FILE-STATUS
RECORD KEY
ALTERNATE RECORD KEY
ACCESS MODE

The following Data Divison clauses are included in the
transitional category:

BLOCK CONTAINS
CODE-SET

The Identification Division paragraphs are included in the
transitional category in favor of the more general comment
facility (* in column 7). Part of the reason for this change
is the problem with the use of the word COpy in these
paragraphs. It is not clear whether COpy in a comment entry
is intended to be a COpy statement or is merely part of the
conunent.

HI 8



The INSPECT ... TALLYING ... REPLACING format of the INSPECT
statement is included in the transitional category since
the same function can be accomplished with two separate
INSPECT statements.

DELETED FEATURES

The following features are not included in the next standard:

This change was required because of the desire to minimize the
portability problems caused by implementor-defined reserved
words. Under the COBOL 174 standard, the implementor could
reserve the words used for switches, alphabet-names, and
output advancing controls. The new standard will not
allow these words to be reserved. This change however
caused a parsing problem in the SPECIAL-NAMES paragraph
because it would not be clear whether a clause such as

OTHER CHANGE~

The order of the steps in a multi-conditional PERFORM ... VARYING
statement has been changed. Under COBOL '74, the statement

1. The ALTER statement.
2. The ENTER statement.
3. The MEMORY SIZE clause.

New status code values for file errors are being defined. These
codes will cover situations which violate the standard but for
which no standard status code was defined. For example, trying
to open an indexed file in a program which declares it to be
a relative file.

END-UNSTRING
END-WRITE
EVALUATE
EXTERNAL
FALSE
GLOBAL
INITIALIZE
NUMERIC-EDITED
OTHER
PADDING
REPLACE
STANDARD-2
TEST
TRUE

END-DELETE
END-DIVIDE
END-EVALUATE
END-IF
END-MULTIPLY
END-PERFORM
END-READ
END-RECEIVE
END-RETURN
END-REWRITE
END-SEARCH
END-START
END-STRING
END-SUBTRACT

ALPHABET
ALPHABETIC-LOWER
ALPHABETIC-UPPER
ALPHANUMERIC
ALPHANUMERIC-EDITED
ANY
COMMON
CONTENT
CONTINUE
CONVERSION
CONVERTING
DAY-OF-WEEK
END-ADD
END-CALL
END-COMPUTE

SWO IS EBCDIC

RESERVED WORDS

The following new reserved words have been added:

was specifying that EBCDIC was the mnemonic-name for switch
SWO or whether SWO was the mnemonic-name for alphabet EBCDIC.
By requiring the word ALPHABET in a alphabet-name clause, the
ambiguity is resolved.

UNTIL 1>10
UNTIL J>10

PERFORM PAR-1 VARYING I FROM 1 BY
AFTER J FROM I BY

The ALTER statement is being deleted because it is widely
accepted as poor programming practice which causes significant
program maintenance problems. The ENTER statement and MEMORY
SIZE clause are being deleted from the standard because they are
primarily implementor defined functions which are not necessarily
meaningful on all systems and are thus not portable.
Implementations will still be allowed to support these
three features as extensions to the standard.

would set I to 1 and vary J from 1 to 10 and then set J to 1,
increment I to 2 and vary J until 10. The new specifications
will increment I to 2 before setting J to I. Thus, on the second
cycle, J will vary from 2 to 10 instead of 1 to 10 as under COBOL
'74. The primary reason for this change is because this
statement, as currently defined, has caused much confusion
because it doesn't do what most people expect and is probably not
used very much. Progran~ers who have attempted to use this
statement to do a bubble sort have usually been surprised at the
results.

The new reserved word ALPHABET is required in the alphabet
clause of the SPECIAL-NAMES paragraph.

ALPHABET ASCII IS STANDARD-I.

STANDARDIZATION PROCESS

There are two committees which work on defining COBOL. The
CODASYL COBOL Committee has the responsibility of developing the
language. The ANSI X3J4 committee has the responsibility of
standardizing the language. When working on a new standard. X3J4
can adopt specifications from either the previous standard or
from the Journal of Development which reflects the work of the
CODASYL COBOL Committee. If there is a problem with the JOD
specifications, X3J4 must either subset the specifications from
the JOD so that the problem does not appear in the standard or
request that CCC resolve the problem. Both committees have
representatives from implementors, users, and government. X3J4
currently has 23 members and holds six 4-day meetings each year.
The work on the next standard is nearing completion as the
committee has achieved the necessary two-thirds vote on its

Hl q Hl IC



formal letter ballot to forward the document to its parent
committee, X3. X3, in turn, votes to send it out for an official
pUblic comment period of at least four months. The X3J4
committee will review all comments received during this period.
After all negative comments have been processed, the X3 committee
votes on sending the draft proposed standard to ANSI to be
formally processed as a new standard.

During the standard revision process, X3J4 has published
information concerning its work in COBOL Information Bulletins.
The latest one was CIB 19 which was published in May, 1980.
Comments concerning the draft standard will be officially
requested during the public review period; however, comments
may be submitted earlier to:

Chairperson, X3J4
CBEMA
1828 L St. N.W.
Washington, D.C. 20036

~l }]



SYSTEM PERFORMANCE AND OPTIMIZATION TECHNIQUES

FOR THE HP3000

JOHN HULME

ApPLIED CYBERNETICS, INC.

H3 1

SYSTEIv: PERFORr-iANCE AND OPTIMIZATION TECHNIQUES
FOR THE HP/3000

John Hulme
Applied Cybernetics, Inc. ,

Los Gatos, California
(408) 356-7296

INTRODUCTION

The purpose of this paper is to introduce the reader to certain
techniques which can imorove system performanc~ throughput, and
run-time efficiency o~ HP/3000 computers. These improvements will
typically reduce response time substantially and generally increase
=ata processing productivity.

This paper will not simply tell yOU what to do and what not to do.
In many cases there are trade-offs involved and it is more important
to understand the principles behind the techniques than the techniques
themselves. And because analogies often help us to learn by giving
us a ne~J perspective, we will make use of a non-data-processing
illustration.

SO~E BASIC PRINCIPLES

The first thing to understand is that any given computer can execute
a finite number of instructions in a fixed amount of time. When
that theoretical limit is reached, no amount of tuning can "squeeze"
extra instructions into the computer. For the most part'. however,
computers do not bog down because we ask them to do too much, but
rather because we cause them to trip over themselves 1n the process
of doing it.

This leads to the second important principle: At any moment the
computer is either 1) doing productive work. 2) getting ready to do
productive work, or 3) waiting on some external action before it can
proceed with productive work. As a program is initiated, thereby
causing a certain sequence of instructions to be executed, we will
call the execution of those instructions· "oroductive work". Whether
the "productive work" is really necessary or not, and whether it is
efficiently or inefficiently organized, are issues to be addressed
later. But a more significant fact of computer life is that usually
only a small percentage of the computer's time is spent executing
application program instructions.

A CRUDE MODEL

To illustrate these principles, imagine a "library for the blind".
The librarian sits behind the desk waiting for a blind person to
walk into the library. This is the "wai~ing period". When the
blind person arrives, the "getting ready Iperiod begins. The blind
person tells the librarian which book to retrieve and by one method
or another the book is retrieved. The librarian now begins the
"productive work" phase, reading to the blind person from the selected
book. When the reading is completed, the librarian may return the
book to the shelf or leave it on the desk. Then a new waiting
period begins.

113 2



SLOW-MOTION PERFORFiANCE SIMULATION

'*"

~_I

_I

,,-I

)

____I

The librarian eventually verifies that you are a qualified user of
t~e library and sends you back a standard message which allows you to
proceed. This process may require the librarian to send his assistant
to the book shelves several times, e.g., to get a procedures manual,
index of users, table of passwords, welcome message, etc.

Visualize this scenario from the patro~s point-of view (refer tc
figure 1): You walk into the library, find an empty cubicle (terminal),
and make yourself comfortable. You begin to formulate and transmit
you~ library card number and password (log-on) at the rate of no more
than 5 characters per hour. (If it will relieve the agony, you may
imagine that you spend the time drawing very large, very elaborate
block letters). Depending on the facilities available in the
cubicle, you will either transmit each letter as it is formulated
or accumulate several characters (maybe even hundreds) and transmit
them in a burst. In either case, you transmit each letter separately
by ringing a bell, and, when you have the librarian's attention,
holding up the card with the letter on it. The librarian records
each character of your message on a notepad corresponding to your
cubicle, then continues with his other business. Finally you'send
a character which means "that's the end of what I'm sending you".

At the risk of distorting the human situation, let me suggest four
refinements which make our model more nearly resemble the actual
computer processes:
1. The "library" should be regarded as a collection of

a) read only instruction manuals and reference tables (pro
grams and constants) and

b) numerous loose leaf volumes (files) containing sheets of
current figures and data (recorqs) which may be periodically
replaced, revised, removed, or added to.

2. The "librarian's" job should be generalized to include any type
of service that can be performed on the basis of preprinted
instructions and supplied data.

3. 7he computer always deals with a CODY of whatever is stored on the
disc, and usualLy just a few recoras-at a time. So let's imagine
that instead of asking a library assistant to fetch a particular
book, the librarian will specify a limited number of paragraphs
or data sheets and will ask the assistant to bring a photocopy
of the desired paragraphs (colored paper for instructions;
white paper for data).

4. Because the processing speeds of a co~puter are so great, our model
operates in slow-motion by comparison. Allowing that tne librar
ian can do in one hour what an HP/3000 can do in one second (i.e.,
usina the scale of one hour for each second), the assistant could
handle 20 to 50 requests per hour, and the equivalent of a 60-word
per-~inute typist could enter one character every 12 ~inutes. A
2~C2-~aud rate would be equivale~t to a maxi~ur of 5 c~aracte=s

trans~:tted per minute, and a 6JO-line-per-minute printer would
correspond to one line every 6 minutes.

THE MODEL REFINED

In this analogy, the librarian represents the computer's central
processing unit (CPU), by which all the productive work is acc~mplished.

Like our imaginary library, the HP/30GO has only one CPU. To 1mprove
t~roughput we must ~aximize the CPU's productive time.

2ach patron represents a log-on session or joe. T~e librarian's desk
represents the computer's main memory. It is cf a limited size,
merel" a workspace, in comparison to the stacks ·:>f book shel ves which
corre~pond to the mass storage devi~es. Finally, each as7istant
re~resents an i/o channel transferr1ng data to and from d1SC, for
example.

While illustrating some important concepts, this analogy does not
accurately model the run-time e~vironment of the HP/30~O, or any .~.?
other computer. How could we refine the model tc make 1t more real1s~~c.

If the library is a bUsy one, we can imagine that one or more .
assistants might be hired to transport the books between the l~brar

ian's desk and the book shelves. Let's imagine that there is one
assistant for each wing of the library. The librarian can do more
prod~ctive work (reading to the patrons), spending less time get~ing

readY (still lo~king things up in the card catalog, but now dea11ng
~the assistants instead of transporting books). A new type of
waiting is introduced, however: waiting for assistants to brin~

:,ooks back.

H3 3 H3 4



Next, you painstakingly tell the librarian the na~e of an instructio~

ma~ua] (proqra,,) you want him to follow in perfor~ing so~e service
for you. He has the assistant get him a copy of t~e first para~rap

(se~~ent) of the instruction manual (unless a copy happens to be
sitfing so~ewhere on the desk already). He also gets a copy, your
own personal copy, of a worksheet (your data stack) associated wit~

the specific instruction manual you have specified.

I~ case there is not enough empty space on the desk for these papers~

the librarian first clears some space by either a) throwing away one
of the instruction sheets, b) having his assistant put the worksheet
for some other patron in a special holding file (virtual me~ory), or
c) having his assistant take one of the data sheets back to the
loose-lea: it was copied from and replace the original with the nevi
version.

The libraria~ now goes to work following the instruct:ons you have
resuested. This will continue until a) he comes to a poirL in the
instructions w~ich specifies he is to send certa~n infor~ation to
you and/or ask you for additional input; b) he comes to the end c~

the page or is otherwise instructed to refer to another page, one
whicr. is not currently on the desk; c) the instructions reqGire
that information be fetched from the book shelves, taken there
to be filed, or sent to some output device; d) a predefined lengtr: cf
time elapses ( a SOC microsecond quantum corresponds to one-half
ho~r in our model); or e) the librarian completes his assignffient and
c:sposes of your worksheet.

In any of these cases, the librarian will go back to work ror one
of the other patrons, provided he ha~ all the resources necessary
to do so. If ~ot, he will wait (until the necessary information is
fetched by the assistant or transmitted by one of the patrons).
Depending on what you've asked the librarian to do, and how busy
he is doing things for the other patrons, it may take hours or even
days before he gets back to you. But then again, ~t ~ay take days
for you to formulate the equivalent of one screen of input, too
(at the rate of 5 characters per hour).

T~ROUGH THE EYES OF THE CPU

Now let's reverse roles and look at the situation from the librar
ian's perspective. Try to imagine yourself as a calm, unemotional,
purely methodical being who is never responsible for mistakes bec3use
he does precisely as he is told. You couldn't care less if someone
gets poor response time; you aren't to blame, because you only rest
when there's nothing for you to do. In fact, you purposely set
things aside during peak demand periods to do in your spare ti~e.

But you can't take credit for that either-- you're only following
directions from the MPE handbook.

2:08:17 Ring! There's the bell in cub~cle five. He's holding up
the letter "R". "Jrite it down on memo pad #5 (line buffer).

H3 5

2:08:20 Here's t~e library assistant with the record session #12
requested. OOpS! The worksheet for session #12 has b~2n

set aside (swapped out to the syste~ di5c). Send the
assistant for it and wait a minute.

2:J~:24 A ring from cubicle #8. That's a carriage return. Ti~e tu
reinitiate session #2. Make a note to send the assisiant
for the worksheet when he gets back.

2:2E:2~ ~ait some.

2:C9:0C Wait some more.

2:~~::~ Oh good. something to do (the observer's feelin~s, not
yours). A ring fror.~ cubicle #3. A ""7". ~oJrite it do\o:n.

2:J?:2C Here's the assista~t. Put worksheet #12 on the desk. Send
~im back for worksheet #8-- no, there's not room for it~

Give him the worksheet for session #5 and send him to file
it (we'~e waiting for i~put from cub~cle #5). We'll send
~ir. for worksheet #8 next time.

2:~?:~~ Okay, r.o~ to get to work on task #12. Fir~t set the ti~E~

for 30 minutes. Now add I to J end put the res'..:l:' in r~.

2:J~:2E ~ove W6 to W2. Move ••• hold it, there's another ring fro~

#3. SaY, that's only a few seconds ••• must be a block-mode
terminai. vJri te dow~ the "9" and 00 back to work. r':ove
X to Y. Call the procedure "XFORl<'-;. Oh, it· s on the de.s ':
already-- it hardly ever gets t~rown out, that's because
nearly every program uses it.

2:C?:~: Another ring from cubicle #3. This time it's a ~inus sign.
Continue wi th "XFORr·~". Conve!"t the first letter of Y to
upper-case. Now the second letter. Now ~he t~i~d. Nc~

the fourth. That's all. Return to the ~ain progra~. ::'s
still in ~emory. ~ove the new Y to F3.

Z:JJ:52 Another ring from cubicle #3. A field separ3to~. Resu~e

task #12. Perform FLAG-SST subroutine. !~'s in anct~er

.3c---e:t, O:'1e that's not in memory. r-:ake a note to senj :or
~:. 3~spe~d task #12 for a mi~ute.

2:12:C4 Cubicle ~3 aaain. Just a blank, but write it down anyway.
Tha t' s "7-?-~inus-f ield separa tor-space", so far.

2::J:14 The assistant has finished filing worksheet #5. Se~d hi~
now for worksheet #6.

2:18:16 Cubicle #3. Another space.

2:10:19 Interrupt from the printer saying the last line has orintec
successfully. Now reactivate t~e spooler job-- it's' instr~c
tio!1s are still on the desk and so is t~e buffer containing
the print-line. Initiate i/o transfer.

2:10:26 2-second wait.

H3 6



2:10:28 Cubicle #3. A third space.

12-second wait.

2:10:40 Cubicle #3. A fourth space.

12-second \olai t.

2:10:52 Cubicle #3. A fifth space.

12-second wait.

2:11:04 Cubicle #3. A fielj-separator.

5-second wait.

2:11:C9 Worksheet #8 is here. Send assistant to get a copy of
FLAG-S2T routine. Now to process this input fro~ cubicle #S.

Edit first field. OK. Edit second field. OK. Kove first
field to R1.

2:11:!5 Cubicle #3. The letter "H".

Move second field to K2. Edit third field. Isn't nu~eric

but should be. Transfer to error handler in sa~e seg~ent.

2:11:2E. Cubicle #3. The letter "0".

Prepare output to tell cubicle #E about error. Comment: ltis
a shame, but since he's in block-mode, he'll have to retrans
mit t~e whole screen again, after correcting the error i~

field 3. And who is to say other errors might not be detected
after that? And you, the librarian, can receive t~ose 873
characters, one every 12 seconds for nearly t~ree hours.
But you don't mi~d. It's only a joe.

2:11:4~ Cubicle #3. The letter "V".

Finish putting error message in the output buffer. Initiate
transfer to cuticle #8. ~ark task #E eligible to be swapped
out.

2:11:47 Cubicle #11. The letter "P".

2:11:52 Cubicle #3. The letter "E".

FLAG-SET routine is here. Continue with task #12. ~ove
1 to FLAG. Add 1 to COUNT. Exit back to mainline. What!
The assistant had to fetch a separate segment just so we
could do that?

2:11:59 Cubicle #11. Oh, oh. Two block-mode devices transmitt~ng
at once! Record the letter nIne

2:12:04 Cubicle #3. The letter I!R".

Comment: Stop, I've had enough of dinging bells! This place sounds like
a. hotel lobby, not a library!

113 7

OBSERVATIONS

As this analogy indicates, there are three factors which reduce
overall system performance:

a. unnecessary disc i/o (most serious),
b. unnecessary terminal i/o (too com~on), and
c. unnecessary CPU usage (rarely the problem in an on-line environ

ment.

EXCESSIVE DISC I/O

The primary cause of excessive disc i/o is inadeguat~ main ~emory

to hold the required work space (stack and data segments) for each
concurrent process, plus all frequently refrenced program segments,
plus a reasonable mix of infrequently referenced program segments.

The HP/3000 is very good at ~andling multiple concurrent users, even
when they won't all fit in memory together. In fact, the use of
virtual memory, combined with a well-designed algorithm for selecting
which segment to overlay, allows the system to operate efficiently
even in cases where a single program exceeds the limits of main memory.

The thing to remember, however, is that code segments put a relatively
small load on the system while data segments put a potentially disas
trous load on the system. In the first place, code segments can be
split up and made as small as the programmer wants them t~ be.
Secondly, they do not have to be rewritten to virtual memory when the
main memory space is to be re-used; they are simply overlaid. Data
segments, en the other hand, tend to expand, and car. be split only
with difficulty. Since their contents may change, they must be
rewritten each time the process is swapped out, and reread each
ti~e it is swapped bacl~ in. Finally, whatever data space is required
must be repeated for each process that is active. ThereforG, if
you are supporting 20 terminals, any reduction in data requirerr.e~ts

would produce 48 times the benefit that an ecuivalent red~cti0n in
cede re'::'J iremer:ts wou ld produce. .

,:"3 :'de fror. up~ r=d':' no to a 1:rger mach ine, a sr--.or-ta ~e 8: :':"'ai ~ :neT'".~=-:

C3n ~e avertea ~y: -
a. reduci~g the nu~ber of concurrent processes (not an attract:ve

option) ,
t. reducing the average stack or data seg~ent size,
c. reducins the size of the average prcgram seg~ent,

d. organizing progra~ segments better so that out-of-se~~ent

transfers occur less often to non-resident segments and so
that often-used code is collected in co~pact seg~er.ts that
are likely to stay in memory, or

e. some combination of the above.

When adeq~ate main me~ory is available, swapping is unnecess3ry,
and disc accesses (w~ich are very expensive in terms c~ ti~e) will
be expended strictly for data retrieval and storage. Once swap~:n~

be;:: ins , the computer's "productive" activities :re at t~e :.:ercy of
"waiting". In the worst case, "threshing" occurs, v/r.icr. means t:-:at
every time a session gets a turn at execution, eit~er t~e progru~

seffien~ has been overlaid or the session's work space has bee~ swa;~ed

out.

H3 8



It is worth noting that the use of I~AGE (or of KSAE) causes the

allocation of extra data segments. Specifically, each I~~GE data

base th~t is open requires a data segment large eno~gh to hold one

copy of the root file plus four complete ~ata base ~uf~ers. If a

progra~ accesses multiple data bases, or ~f the roo~ f~le or ~uffers

are large, the memory requirements wi~l b~ substant~al, and W~~h

many terminals running data base appl~cat~ons, the memo~y re~u~rements

can add up very quickly. Granted, the advantages of us~ng a powerful

access method may outweigh the costs of addition~l ~emo~y.deman9s,

but such tools should be used carefully and not ~nd:scr~~~nantly.

It should also be noted that 'the use of block-mode re~uires extens:'ve

buffers in the stac~ (at least as large as t~e largest screen to

be trans~itted). The use of VIEW/32J2 may add another 6J00 bytes

of buffer in each user's stack, not to mention the extra data seg~ents

created ~\' its use of KEAL. If you have 20 users, this amounts to

1201< extra bytes of memory or more.

EXCESSIVE TER~INAL I/O

Major causes of excessive terminal i/o include t~e.following: . ~

a. Transmitting unnecessary characters (tralilng spaces, leadln~

zeroes insignificant digits, etc.) to the computer,.u

necess~ry consequence of fixed-format or block-mode lnput.

b. Transmitting the same data to.the computer m~re than on~e~

as occurs in block-mode w,en a w~ole screen ~s retransmlt~ed

to correc~ an error in a single field.
c. Retransmitting to the computer data which ha~ not b 7en changed

since it was received from the computer. ThlZ too ~s t~e

result of block-mode transmission. .._

d. Repeatedly displaying prompts at the term~nal ~nstccd of

using protected bac!~ground forT:1s.. . . c: every

Since each character of input consumes cr~t~ca~~~esource~,

effo~t should be made to ensure that only s~gn~.lcant da_3 is

tran~mitted (no extraneous zeroes or space~ and only those fields t~=t

are new or have been modified).

It is not only wasteful of computer power, but also destructive of

o erator morale, to wait until a whole screen of.duta h~s~bee~

e~tered and trans~itted to the computer before d~scoverl~~ ~h~t
the screen is i~valid due to a duplicate key or a~ unreco;nlzed

search-item value, etc.

~ tha~ is) ~o dis~'a'"

It is e~·.J~lly inefficient (for the compu,-er, ~. - - I ... '-I ~!,,",..;"':

a cre-::-: of d5t3. have the operator update a s_ngle Value c .. ·..

~~ ns-~~ t~e w~c e scree~ back to the co~puter. :~ an.extre:e c~se.

t~ s c=~ld a~0un tc over a t~ous~~d characters tra~s~ltted Just

t~ c~ange o~e or two c~aracters.

H3 9

EXCESSIVE CPU USAGE

Besides the costly i/o overhead, it is altogether possible that a

retransmitted screen will be completely re-editted, values packed and

unpacked, and fields reformatted even though only a single field

was updated, and maybe even if nothing was updated. This is one

cause of unnecessary CPU usage.

Most editting and reformatting done in COBOL subroutines requires

excess usage to begin with, and it is far better to allow such work

to be done in SPL SUbroutines, where it can be done efficiently.

Including such subroutines in the COBOL programs also causes bul~:ier

segments, which is likely to increase the need for swapping. The

best solution is to incorporate all editting within the terminal

handling module itself, since it is already being shared by all

on-line programs and is therefore likely to remain constantly in

main memory. There are a multitude of factors which can unnecessarily

increase the so-called "productive work" which the CPU has to so.

Because computers are seldom CPU-bound in an on-line environment,

few people exert the effort to truly optimize CPU performance any~ore.

Whenever it is a problem, more careful analysis of the prograrr.(s)

in question 'will usually yield a more efficient method of solving

the application problem.

Often, more careful analysis will also yield a better solution from

the point of view of disc i/o as well, both in terms of swapping,

code-segment SWitching, and data retrieval and storage. One word

of warning, however: more efficient solutions (CPU-wise) are very

often more complex, and to the extent t~at they increase stack space,

or code-segment size, or they require more transfers from one

code-segment to another, they may prove counter-productive.

One situation in which heavy CPU usage can be very detrimental is

w~e~ on-line processes are competing wit~ batch applications for

CPU resources. This can be vividly illustrated b·... running a COBOL

compile, an Editor GATHER ALL, a sort, or the BASIC interpreter at

t~e same time on-line programs are running. Block-mode applications

exhibit many of these same tendencies and can severely impede

response-time for character-mode applications When both types are

running concurrently.

SPECIfIC OPTI~IZATION TECHNIQUES

1. Resegment programs so that no segment exceeds %5000 words.

2. Set the blockmax parameter on I~AGE sche~as as low as possible.

3. Use extra data segments where'possible and free t~e~ u~ ~he~ fir.ished,

rat~er than increasing stack space for :arge te~porary tuffers.

4. Don't keep files open unnecessarily.
5. Don't abuse I~~SE:

a. eliminate sorted chains Where poss:.tle.

~. carefully evaluate tradeoffs of increasing or eli~inating

seco~da~y paths ir. detail data sets.

c. use "@:;" or at least ,q;" for i te:r lists ,·.::-.erever possi::~le.

d. only use binary keys (in master file) when overlapping

keys can be avoidid.

H3 10



e. don't let synonym chains get very long.
f. when loading master data sets, store only primaries on

the first pass, making a seccnd pass for secondaries.
g. keep master data sets less than 85% filled.
h. periodically reorganize detail data sets that have long

c~ains associated with a frequently-accessed path (puts
consecutive records in the same physical block).

i. keep the number of data sets in a data base as small as
practical without requiring many programs to open multiple
data bases.

j. keep I~AGE record lengths to a minimum.
6. Have operators exit programs when not in use.
I. Use a field-oriented terminal handler whicn performs standard

edits for you.
~. Use for~atted screens with protected backg~ound whenever the

application is appropriate to such use.
~. Keep terminal i/o buffers small; if possible, eliminate block-mode

i/o altogether. (Don't use block-mode and character-mode i/o at
the same time.)

1:. Don't use VIE~ without a lot of memory.
11. Don't use DEL at all.
12. Run CPU-intensive jobs (including compiles, preps, and Editor

GATHER ALL) when on-line applications are not running, or at least
run them in a lower-priority sub-queue.

13. Set the syste~ quantum for a shorter period than recommended in the
~PE manual (but don't overdo it-- some experimentation may be
necessary) •

*APPLIED CYBERNETICS INC.
Information Management Specialises

ll4Caminodei Ceno. LosGMos. CA. 95030
408 35().7296

H3 }]



Production ManagemenU3000 description 71
N

.:::r
::I:

WORK ORDERS

~

Production
~anageIDent/3000

ov.erview

The efficient management of production
resources is made possible using the
techniques of Capacity Requirements
Planning (CRP) and Shop Floor Control.
These techniques build upon a manufacturer's
production schedule, an accurate description
of the facility, and the steps necessary to
fabricate or assemble each part; as well as
information about the status and location of
each work order. An effective method of
dealing with these fundamental issues can
provide a manufacturer with a sound
foundation for success.

Work-In-Process Control-Provides a
variety of tools to analyze the progress of the
manufacturing plan and allows production
managers to fine-tune the shop floor control
process.

Work Order Scheduling-Calculates start and
completion dates for each sequence of every
production work order under the control of
Production ManagementJ3000.

Shop Floor Dispatching-Maintains
production priorities to ensure that
manufacturing resources are devoted to the
right tasks at all times.

Work Order Tracking-Records the progress
of each work order as well as related labor
charges and exception information.

Capacity Requirements Planning
Anticipates labor and other manufacturing
resource requirements on the basis of
in-process production work orders and/or
planned work orders from a Material
Requirements Planning system.

WORK
ORDER

,...---. SCHEDULING -

t
Production planning and
control system
Production Managementl3000 is a standard
application product which helps manage the
planning and control functions of a discrete
manufacturing company. The objectives of the
product are to minimize inventory investment
while maximizing asset utilization, shipment
performance, and customer satisfaction.

Production ManagementJ3000 is a fully
integrated system and addresses the following
areas:

Routings and WorkcentelS-Maintains
descriptive, cost, and planning information
about each workcenter in a manufacturer's
production facility and the routing sequence
necessary to build each assembled or fabricated
part.

WORK
ORDER

TRACKING

1 t
CAPACITY ROUTINGS SHOP

REQUIREMENTS ~ AND ----. FLOOR
PlANNING WORKCENT,ERS DISPATCHING

! ! !
LABOR AND STANDARD PRIORITIZED
EQUIPME~T PRODUCTION QUEUE

REQUIREMENTS COSTS LISTS

WORK-
..- IN-PROCESS

CONTROL

INPUT,
OUTPUT

ANALYSIS

Production Managementf3000

c
Q) 0
~

(/) ~0 to
0 ~ c
a ~ > to
M '+- C a e

0 :t: M ~

.......... Vl ~ l"""'4 Q)
V'l e (.!).- ~ V'l E (,!J s.: -t-tZ ~ Q) c Q)

l.IJ Q) C'l 0 ~ "'0 ~ (/)

::E ~ to :; V'l ~ V') Q)

l.IJ to C ~ to :3:
(.!J co to to V'l ~ ~

ce ::E u u Q) ;z C'l r;o to C'l
ce c ~ C- o.. ~ Q)

::E to U ~ I Q) C'l
C'l :3 0- Q) ~ .a c

z '+- "'0 ex: c ~ c
8 '0 0 Q) Q) Q) :c~ m (,!J 'i ~.- :3: a.. ~ :0
u 'r- C Q) Q) co
::> u Q) :t: :t:
0 ~ C'l 0
a Q) s::: M
0:: ~

0
a..

~
I"-

0
U :0

co



74 Production ManagementJ3000 description

The shop calendar
An important factor in the creation of a detailed
production plan is a definition of the work
schedule for each production area. Production
ManagementJ3000 maintains a shop calendar
which describes the work-day and shift
schedules for each workcenter in the
manufacturing facility. This calendar can be
maintained on-line by shop management and
can be modified at any time to reflect changes to
the work schedule as soon as they are planned.
The Production Management/3000 shop
calendar describes schedules for up to three
shifts per day, for as many months as
necessary.

Describing the
manufacturing process

Part number definition
Each manufactured part, subassembly, and
product is assigned a unique part number. Th is
number is used throughout Production
Management/3000 to access, update, and
retrieve information about each item. Part
information maintained in Production
Management/3000 includes: standard yield
percentage, standard run quantity, and part
description. If desired, additional data items
can be added through the use of the Production
Management/3000 customization feature.

Defining production operations
Each basic manufacturing proct.:ss can be
described separately within Production
Managementl3000 and is assigned a unique
operation number. Information such as average
queue, setup, and unit run times as well as
standard manufacturing yield is maintained for
each operation along with a brief description of
the procedure (Le., drill, paint. test, etc.).

These operations form the basis for
describing th~ individual steps involved in the
manufacturing process for each manufactured
part number under the control of Production
ManagemenU3000.

In addition to a master shop calendar, a
separate calendar can be created for any
individual workcenter. All Production
\1anagementl3OOO scheduling and planning
'unctions refer to the same set of shop
'alendars, providing a consist~nt basis for
'etailed production planning and a simple
leans of indicating holidays and planned
'ork schedules.

".j.,1 wer _ .; lotIon llcloll

Chg Del Rev
Wstn Wstn Wstn

Chg Melr
for Wstft

ADD w~TH

Default
Valu.s £lIT

.•.:q :I/It ."n I·j WO'. Slot Ion [le~cr IpllOn
HCl\PILL NUMERICAL DIiIILL STATIOH

Work tenter Id
~TAL

'/IIP/ICI tf
1".00 hour"'':lay
24.00 hou' ~ 'day-

~atl!

Star t Up
Unll Mea~ure

[ ner 9Y
8000.00 unll~/hr

1500.00 Unl t~

WT

: a \~

F'rl!v Brealdown
0~798'

"'''Il:ldyy

Clale
Pre'" Prevent Ive Maintenance

08018'
IIIl1lddyy

vate
Ob~oleh

flllllddyy

·,..eue Tlln~ Averoge 4.00 hr~ Worl Station Slalu~ ,
',,,eue (Ofllpre~"on 1 SO ( Statu' C 1000 meon, avallable )

~
I

Defining workstations befines standard
Basis of CRP waiting time at
exception reporting this workstation

Production Managementl3000 description 73

Routings and
Workcenters

Features
• On-line data base update.

• On-line review of routing and workcenter
infonnation.

• Standard, common, and alternate routings.

• Capacity specifications of workcenters.

• Cost specifications of workcenters.

• Shop calendars.

• Standard labor ..md overhead cost
calculation.

Description
An accurate model of the manufacturing
facility and the procedures used to
manufacture each product is essential to all
production planning and control functions.
The ROlITINGS AND WORKCENTERS
module pro.vides for on-line entry, validation,
and maintenance of the information which
fonns the foundation for the operation of
Production ManagementJ3000.

The capability to define and maintain standard
part routings and manufacturing workcenter
descriptions is provided both in Materials
ManagementJ3(XX) and in Production
ManagementJ3(XX). In situations where both
Materials ManagementJ3000 and Production
Managementl3000 are employed together, aU
facility and routing specifications will be
defined and maintained through Production
ManagementJ3(XX). In such cases, the
ROUTINGS AND WORKCENTERS module of
Materials ManagementJ3000 will be disabled.
Standard labor and overhead cost information
will be provided to the STANDARD
PRODUcr COSTING module of Materials
ManagementJ3000 from Production
ManagementJ3(XX).

For customers who choose to install Production
ManagementJ3000 after Materials
ManagementJ3000 is already in operation,
information defined in the ROUTINGS AND
WORKCENTERS module of Materials
Managementl3000 can be transferred to the
ROUTINGS AND WORKCENTERS module of
Production Managementl3000 as a part of the
normal system installation procedure.

Describing the
manufacturing facility
Production Management/3000 views the
manufacturing facility as a collection of
workcenters, each of which shares common
personnel, supervision, andJor floor space.
Workcenters, in tum, are comprised of one
or more workstations which represent labor
or equipment used to perform each type
of production activity. Depending upon
the nature of each manufacturing facility.

individual people andJor pieces of equipment
can be represented by separate workstations,
or those which are more or less interchangable
with one another can be grouped together.

A workstation may be thought of as a location
at which people andJor machines perform a
particular type of activity needed to produce
each part, assembly, or product. Information
maintained for each workstation includes
descriptive and control information such as
labor and equipment capacity, average queue
delay time, and the percentage of the normal
queue which can be compressed for high
priority work.

Additional information including average
wage rates, production capacity, and the
names of responsible managers can be
maintained at the workcenter level.

The information maintained for each
workstation and workcenter is essential for
realistic work order scheduling and tracking, as
well as for the calculation of accurate standard
labor and overhead cost information.



76 Production ManagementJ3000 description

Alternate workstations
In situations where a routing sequence for a
part can be performed equally well at more
than one workstation, the various alternatives
can be specified by creating multiple entries
having the same route-sequence number. On
the shop floor, when each work orderarrives at
a production sequence for which multiple
alternatives exist, Production Management!
3000 examines the workload in queue at each
alternate workstation and then recommends
sending the order to the one with the least
hours of work waiting to be done.

I I I
SEQUENCE 10 I SEQUENCE 20 I SEQUENCE 30 I sEOUENCE40

I
I I r

"'"
I

I I WORKSTAl1ON I

I I
3 I

I
I I I
I I OR

I
I I I

WORKSTATION~ W~KSTAnON -..f WORKSTAl10N t-. WORKSTATlON
1 I 2

I
4 I 6

I I I
I I OR I
I I I
I I WORKSTATION I
I I 5 I
I I " ~ I
I I I
I I I

Alternate workstations

Production Management/3000 description 75

Oprln Hbr Work S\o\lon Work Center..........
HU\ Seq
Overr Iele

ifW

Joining sequence for
parallel paths

Tool lei

....wfr·Ui-JL;.f,j

Setup "ochl nc

~

Unl\ Run Plochlne

~

Porollel
Code

81

Indicates whether
labor or machine
hours are to be
used for scheduling

Repotr
Level-

~';~:a

~

Por \ HUlllber
199'9'-711

~ou\e

Seq Htlr

&II,..----
AI \

Pte Id

•

seKk;ijir
URR£HT T II'I£S IH HOURS

Setup Schedule Code

!-.-.
Unl\ Run Lobor Unl\ Run Schedule Code

UiWi •
Defines standard ~
rework sequences

IJrowlng lei

W=2f.f*-
Tronll\--

Add $tondord PAulang

Defining standard routings

Each sequence in a part's routing must be
assooated with both a valid workstation and a
valid operation. The order of each operation
within a part routing is controlled by the user
supplied route-sequence number. Any amount of
descriptive text may be associated with each
route-sequence. In addition, the user may
enter the following information for each
sequence in the routing:

• Descriptive and control infonnation.

• Machine, tool, and drawing references.

• Setup and unit run times.
• Transit time from the previous operation.
This infonnation provides the basis for all work
order scheduling, capadty planning, and shop
floor control functions.

Defining standard routings
(Bills of labor)
The sequence of operations required to
produce or assemble an item constitutes the
standard routing (or bill of labor) for that part.



78 Production ManagementJ3000 description

!r--------------..,

Alternate part routings
Alternate routings designed to take advantage
of various equipment configurations or
subcontractors can be defined in advance. Each
alternate routing specified for a part must be
complete and is independent of all other
routings. When work orders are actually
created, any of the specified routings can
be selected.

PRIMARY ROUTING

PART A

! ALTERNATE ROUTING

CUT

BEND

INSPECT

DRIll

!
DEBURR

TO
SUBCONTRACTOR

~:': ....t-------.,j

IL .J

.Iternate routings

L -.I

Production Management/3000 description 71

Parallel routing sequences
Production ManagementJ3000 provides the
capability to schedule and control multiple
parallel production paths for each individual part
number. This allows related subassemblies to
be manufactured on a single production work
order and then to be combined without using
intermediate inventory levels. Any number of
parallel paths can be specified for each part,
and each can include as many production

sequences as necessary. Each production path
is identified by a user-defined JXlrallel code
attached to each routing sequence, and by a
specification of the sequence at which paths
"join" for assembly.

Production Management/3000 provides for the
scheduling and control of parallel production
paths to minimize overall manufacturing ~ad
time, and to keep work-in-process inventory
levels to a minimum. In certain types of
manufacturing environments, the use of
parallel production paths can result in
significant reductions in inventory carrying
costs.

iEIt-
': \- "." .~.". ..I~;" Q,U ...• 1;. . ; : <Y.'~~

{ '~·'10~'. 1------
I PATH 1LEAD TIME I

:~ S~QUE"''''i-- ' .. ';3~.•~. "60!~~.t:"tt.:.!, '.l?':f.· " .....,.I!l
14~&0Di1.f" .'
I PATH 3 LEAD TIME

TOTAL-PART LEADTlME

Parallel routing paths



80 Production Management/3000 description

Employee information
Employee information in Production
Management/3000 is used primarily for the
validation of direct labor charges. An employee
identification code must be assigned to each
employee who will be charging labor time to
work orders. As labor is reported, Production
Management/3000 verifies that a valid ID code
is entered with each transaction. Additional
information such as location code and
overhead account can be maintained for each
employee, for use as reference information.

Standard Product Costing
Production Management/3000 calculates
standard labor and overhead costs for each part
under its control. 'These costs are calculated
using the run quantity for each part, labor
setup and run times from the standard

routing, and overhead and average wage
rates from each workcenter. If more than
one routing exists for any part, the primary
routing is used (i.e., any alternate routings are
ignored). This information is available to the
STANDARD PRODUcr COSTING module of
Materials Management/3000 for use in the
standard cost rOll-Up, For a detailed discussion
of STANDARD PRODUCT COSTING, please
refer to the chapter describing Materials
Management/3000 earlier in this document.

Production ManagementJ3000 description 79

Common part routings
Production Management/3000 allows any
part to use the routing defined for a~y other
part as if it were its own. All Production
Management/3000 functions can automatically
refer to the common routings for such a part.
This feature eliminates the need to define
identical routings for each of a number?f
similar parts which utilize the same baSIC
manufacturing process.

An additional advantage of this approach is
that when the common routing changes in
any way, only one master routing needs to be
modified in order to effect the change for all
parts which refer to it. This can represent a
substantial reduction in effort and can help to
ensure the consistency of manufacturing
specifications.

PARTe~ PART A ..--PARTS

~r-------------I

---.,.
.,.---
-L -.J

Common routings



82 Production Management/3000 description

Input/Output analysis
The Input/Output analysis report provides a
means of evaluating recent performance both
in absolute terms, and in the light of previously
planned production requirements. Planned
input and output are presented alongside
actual orobseroed input and output for each
recent time period, and cumulative changes in
backlog are calculated for easy analysis. Early

identification of production bottlenecks
through the use of InpuUOutput analysis
allows corrective action to be taken before the
overall manufacturing plan can be seriously
effected.

o
o
o
o
o
o
o
o
o
o
o

40.6
39.6
36.6

Cumulative deviation
from the production
plan at this workstation

CAPACITY .. 16 HRS
PERIOD:::I 2 DAYS
AVG OVER 4 PERIODS

UPPER
120
100

HAPPY PEDALER BICYCLE WORKS
EXCEPTION I/O REPORT

WORK STATION

LOWER
80
o

TOLERANCES
INPUT
OUTPUT

Standard labor hours
actually amvlng at
thiS workstation

04/02/81 15:17
04/02/81 15: 00

-------------INPUT-------------- -------------QUTPUT------------- ----BACKLOG----
PLAN OBSD DEV CUM.DEV PLAN OBSD DEV CUM.DEV OBSD PLAN
16.0 14.0 -2.0 -2.0 16.0 15.5 -1.5 -1.5< 42.6
13.5 13.5 .0 -2.0 16.0 15.5 -.5 -2.0< 40.6
17.0 20.0 3.0 1.0 16.0 17.0 1.0 -1.0< 43.6
16 • 0 12 . 5 - 3. 5 - 2. 5 17 .0 12. 5 -4. 5 - 5. 5< 4 3. 6
16.0 11.5 -4.5 -7.0 17.0 13.5 -3.5 -9.0< 41.6
16.0 17.0
16.0 17.0
14.0 17.0

PRINT DATE
RUN DATE

WKCTR METAL
WKSTN DRILL
HANAGER-J. FERGUSON

-PERIOD-
DATE

03/24/81
03/26/81
03/28/81
03/30/81
04/01/81
04/03/81
04/05/81
04/07/81

LEGEND: •<' .. Out of Tolerance

Standard labor hours
scheduled to ar"ve
at thiS workstation

01

01
0 1

1
01

01
0 1

I
01
0'I
0'0:
01

InpUt/Output report

Production Management/3000 description 81

Work-In-Process
Control

Features
• Input/Output analysis.

• On-line work order status and
history reporting.

• Work order priority control.

• Work order partialling.

• Work order routing modification.

• Data archiving and retrieval.

Description
WORK-IN-PROCESS CONTROL provides
a set of reports and functions which allow
production managers to monitor the progress
of the manufacturing plan and to override the
automatic scheduling and control functions of
Production Management/3000 in order to
accommodate special situations.

order to ensure that the detailed production
schedule supports the due dates of all known
requirements, Production Management/3000
assumes that infinite production capacity is
available at all times. CAPACITY
REQUIREMENTS PLANNING evaluates all
such requirements over time in order to
identify schedules which call for more capacity
than is actually available. By evaluating the

RELEASED
WORK ORDERS

I..
INOUEUE

resource requirements stenuning from each
work order, capacity requirements and production
priorities can be determined so that specific
actions can be recommended by Production
Management/3000.

Each Production Management/3000 function
uses the current production schedule in a
coordinated way as individual work orders
proceed through the following life cycle:

IN-PROCESS

When factors beyond the scope of automatic
planning and control arise, Production
Management/3000 allows priority and routing
decisions to be included directly into the
manufacturing plan. This capability removes
the need to "work around the system" in
special situations; thus integrating the best of
automatic scheduling and control with
management discretion. -IN TRANSIT

Life cycle of a work order
All planning and control functions of
Production Management/JOOO revolve around
individual production work orders. Taken
together, all planned and open work orders
constitute the current production schedule. In

COMPLETED
WORK ORDERS

Production life cycle



l)4 Production Management/3000 description

Creating a partial order

(HAT[ PAIH I AL

_;.~, t::4J ,~:U Ull'a]

Creating partial work orders
Production Management/3000 provides for the
separation of work orders into multiple partial
work orders at any time. Partial work orders
are created by speCifying the number of units
from the jxmmt work order which are to be
separated, and the production sequence from
which they are to be taken. A separate copy of
the work order is then automatically created
which has a routing identical to that of the
parent.

Once created, partial work orders become
independent of their parent work orders
and can be aSSigned separate due dates
andJor priorities. For accounting and material
planning purposes, all reJatl!d work orders carry
the same order number and are distinguished
from one another on the basis of the ~rtial

/lumber assigned to each. Any number of
partials can be associated with a single work
order number, and partial work orders can be
further sub-divided if necessary.

(rcote a Porllol lpl

.••..••.•.• (UPP[HT LOT .

Or·je, Po, t 10 I Opcrot 10n Poulc
II'J"'ber Mumbrr ~eq tlbr

~.. UI1a I"J,Q
(Op\.)

.•••• H(WPAPT1ALLDT .•:l
Hc .. Porllol auol!ly

M•• mbcr Portloled

aa.u ~
Sequence from
which Units
will be taken

vole In

IUUIa
("''''ddyy)

T ,me In

W.J8
(hh",,,,o )

Labor reporting and
maintenance
Direct labor hours reported on the shop floor
CJn be reviewed by employee, work order, or
workcenter. Modifications can be applied to
tIny individual charge, if necessary, prior to the
utilizatiun of these records for job costing or
other reporting purposes.

Production Management/3000 description H3

. 'Schedulcd"'
··In·· Beg End Illy ,Hy Prtlol

Oprln ['.sle T me Dole Dole ,1'1 Bonu~ Slot Porent
DRLI 06/1S 03 36P 06/15 06/16 SO 0 5000

, •• ' •• " ••• '" ••". ••". SO lSOO'
PTIO Obllq 08 30A 0611'3 l" Ou:::itie..dded

at each sequence

Quantities moved in
from previous sequences

Reporting work order status

Order
OverView

Printed Both
Report EXIT

QRQEP STATUS

Dc~cr Ipl Ion
REAR PAHEL FRAME

StopChg Lot
Status

Por I Humber

~~--

Wor ~ 1010' ~

.: enter ~Iollon

METAL HC[,PILl
M(TAl ['E8UPP

"[TAL r
Current location
of work order

O,.je' -
W0176S8

P,llol

Work order status reporting
The current location and status of each work
order in process is available at all times for
on-line analysis and review. Work-in-process
status can be reported either on CRT screens or
printed reports by:

• Individual work order.

• Workstation or workcenter.

• Operation number.

• Part number.

Order routing modification
Production Management/3000 provides the
capability to modify the order routing for any
single work order to accommodate special
situations (such as subcontracting) without
changing the standard routing for the associated
part. Such changes are applied to the copy of
the routing which is made at the time each
work order is scheduled (see the section on
WORK ORDER SCHEDULING later in this
chapter).

Existing production sequences can be modified
or deleted and new production sequences
can be added at any point in the routing. Work
orders which are modified in this manner are
immediately rescheduled in order to ensure
that all changes are accurately reflected in the
detailed production schedule.



86 Production Management/3000 description

.::T
:c

Infinite capacity assumption
For purposes of work order scheduling,
Production Management/3000 assumes that
infinite production capacity is available
at all times. Each work order is scheduled
independently and requirements in excess of
available capacity are then identified by the
CAPACITY REQUIREMENTS PLANNING
module (see the discussion of CRP later in this
chapter). This procedure ensures that detailed
production schedules will support the overall
master schedule, and that modifications to the
plan based on capacity constraints will be made
in a coordinated manner through the materials
management function.

SEQUENCE 10

The scheduling calculation
Lead time requirements for each work order
are calculated by accumulating the specified
transit, queue, setup and run times for each
production sequence.

Backward and forward scheduling
Once sequence lead times have been
calculated, should-be start dates can be assigned
to each production sequence either by
"backward scheduling" from a user-supplied
order due date, or by "forward scheduling"
from a user-supplied order start date. The
dates are established by calculating actual
elapsed time required to perfonn any
production sequence and by examining
the shop calendar for each workcenter to
determine the number of working hours
scheduled for any given date and shift.

Parallel production paths
When parallel production paths are defined
in the routing for a part (see the ROUTINGS
AND WORKCENTERS section earlier
in this chapter), each path is scheduled
independently so that all will be ready for the
joining sequence at the same time. In this way,
inventory levels at all points in the
manufacturing cycle can be maintained at the
lowest possible levels.

Components of lead time

Production ManagementJ3000 description 85

Work Order
Scheduling

Features
• Backward or forward scheduling.

• Infinite capacity scheduling.

• Work ord.er specific routings.

• Overlapped, compressed, and split
sequence scheduling.

• Partial work order scheduling.

• Parallel path scheduling.

Description
Work orders can be created as a result of
transactions from Materials Management!
3000, and/or directly within Production
Management/3000. As each work order is
created, a unique copy of the standard part
routing for that part is made and is associated
with the order. This order routing can then

be modified as necessary to indicate unique
deviations from the standard routing
(refer to the discussion of "Order routing
modification" in the WORK-IN-PROCESS
CONTROL section earlier in this chapter).

Using the due date of the work order as a basis,
scheduled start and completion dates/times are
calculated for each production sequence. Work
orders are automatically rescheduled when
ever their due dates or other specifications are
modified. These schedules form the basis for
the evaluation of production prioritie~ as well
as other planning and control functions.

PART A WORK ORDER #1234 FOR 100 PART A DUE DEC. 1

STANDARD ROUTING

SEQUENCE

10
20
30
40
50

OPERATION

CUT
DRill
BEND
DEBURR
INSPECT

SEQUENCE OPERATION START COMPLETE
DATE DATE

10 CUT NOV. 10 NOV. 13
20 DRill NOV. 15 NOV. 24
30 BEND NOV. 25 NOV. 27
40 DEBURR NOV. 28 NOV. 30
50 INSPECT NOV. 3D DEC. 1

ORDER ROUTING

Standard Routing and Order Routing



Shop Floor
Dispatching

Features
• Routin~ Lists.

• On-line review of workcenter status.

• Dispatch lists by workstation or workcenter.

• On-line priority calculation.

• Multiple dispatching rules.

• Manual priority override.

Description

The SHOP FLOOR DISPATCHING
module provides the tools to enSUfe that
manufacturing resources are devoted to thl'
right work orders at all times. The SHOP
FLOOR DISPATCHING module evaluates
production priorities dynamically on thl' basis
of up-to-date status infonnation and makl's
these priorities visible when nel'ded on thl'
shop floor.

Production Mana~ement.l3(X)Odescription H'I

Overlapping, splitting,
and queue compression
Pfoduc.:ti~lI1 MM1.lgellll'nt 300(} pw\'jdl's fOf
thrl'l' ml'thllds of fl'during thl' m.lnUI'Ktufing
Il'.ld timl' h,r ,1 pilrt bl'low thilt which fl'sults
from thl' SChl'duling c,lkul.ltion dl'scribl'd
.lbo\'l':

Overlapped sequenc~s-Arl'thosl' Whl'fl'
soml' p,ut of ,1 wor" ordl'r is mO\'l'd on to bl'gin
till' nl'xt production Sl'L)Ul'IKl' beforl' i1l1units

SEOUENCE 10

Ull tlw \\'ur"- llrdl'r h.l\l· bl'l'll c~\mpll'll'd. TIll'
dfl'ct is to "nn'r1,,~" pnlCl'ss tillw.....11 t\\'ll
Sl'l!lIl'IKl''-' .1Ild tll I"l'dull' thl' on·r.llIl'I.'~I""l'd
tillll' reLJuin'd lor compll'lioll 01.1 \\'or"- llrdl'l.
On'r1,lp c.:.1Il be spl'cifil'd l'ithl'l" for illdl\·ldll.11

routing Sl'l!lIl'IlCl'S or Illr .111 Sl"!Ut'nu'., in .1
.... t.lI1dard p.Ht routing,

Split sequences-Are thosl' \\'Iwrl' mllrl'
th.111 l)lll' pl'rson or machine pl'rfornh wnr"
conc.:urfl'lltl~· .1t .1 ...ingle productil'n .... l'l!lIl'IKl.'.
Thl' number of slJ(h pl'l'pll' lll" 1ll.1lllinl·... '·.m bl'
spl'cifil'd lor .111~' Sl'lllll'ncl' ot .1 part'., rlluting,
which h.1'\ till' l'ffl'Ct pf rL'during till' J'/'(I('';~l11,'\

portion l,1 l'I.'pSl'd 1t'.ld linll'.

Queue compression-Is .1 Illl',lI1S 01
prl.'-l"pl'diting.1 work ordl'r by elssuming less
lh,1I1 sl,lI'ld.ud qUl'Ul' tinll's \\'Ill'n l:cllculating

...d1l'dull'd st.ut d.ltl'S fur l'ild1 prududillil

.... l'L)ul'nCl'. Sinn' thl'sl' d,llL'... furm thl' b.1Si ... '"l"
thl' elssignmL'l1t of rl'l.lti\'l' prillritil.''' .llllllnh
work ordl'l's in 'lul'ul', this h.b thl' l'fkd III
assigning till' (lllt1J1rt'~~l'd \\'or"- on,kr .1 hi~~I1l'r

pri,'rit~, cIt l',llh sl"lUl'l'll'l' th,\Il it \\,puld
normally h,1\'l'. This is .KL'omplishl'd l'\~'

"Iwrifyillh ,1 '\lUl'lIl' comprl'"sioll f.1l'to!''' Illl" ,1

\\'l)l'k ordl'r ",hidl indir"tL's the percl'nt.lhl'lll
thl' -.tclnd.1n.i 'IUl'UL' \\'hid'l is tp bl' T"l'Ill11\'l'd Ipr
-.dll'dliling pllrpo.,l's.

Overlaoped scheduling



Production Managementl3000 description 91

Work order priority
calculation
The relative priority of each work order in the
queue of each workstation is evaluated on the
basis of a user-specified system value which
defines the facility disl'atdlillg nde. Two such
dispatching rules are provided by Production
Managementl3OOO:

Queue Queue Chg Lot
Part Oprtl'l Status

Wet' Id W,tn Id (leave blank to ,ee
METAL 011 wod ,totLOl'ls)

Order Oper -Sehd-Date-
W, t n- I d HUllIber P, t 1 Hbr Pr, Beg' n End

Stop Pr 1nhd 80th
Report

SHUT MtTAl SHQP

Date
I n Per t - HUlllber

QyEUE HUB

£lIT

Oty
Stat Left

Scheduled start dates-The scheduled start
dates assigned to each production step by the
WORK ORDER SCHEDULING module are
compared with one another, and higher
priorities are assigned to work orders with
earlier dates.

Critical ratio-Priorities are based upon the
ratio between the remaining lead time for each
work order, and the elapsed time remaining
until the due date for that wurk order. Work
orders with lowL" critical ratios have higher
priorities.

~~ _ QiL.l lU. ULlU. llLll ti.LQ.!. ....?9UO'?LO-;.x.0&.i39c,1 ~
Tool-Id: HCTP-1JO~ Drwg-Id:

!1WUJJ....~ _ QiL.l U ~~ Aim 3871-019" l.A.ll.....-.l.
Tool-Id: HCTP-'98~ Drwg-Id:

lli!1L-~ _ Wl. U QiLl.i Wll Wll 5118-""8 ~
Tool-Id: Dr.g-Id:

W!!L-~ _ eI.1l U Wll QiLn AiLU 1178-3811 LUL........-U
Tool-Id: Drwg-Id:

~ m&11D _ eru U Aial~ AiLU ,,"P'-2M" ~
Tool-ad: Dr.g-Id:

QWl!L..~ _ DIW. U Aial AiQ2~ ??9P-0198 ~
Tool-Idl Dr"g-Id:

Selecting work from queue

In either case, these priorities can be
overridden, as necessary, by user-specified
priority assignments.

When personnel or machines become
available, a dispatcher can obtain a list of jobs
currently waiting at any workstation or
workcenter in priority order. This list can be
produced either on-line or in printed form.

l.Jt1 Production Management/300n description

AltRte, RteSeq' PH Cde NxtSeq' Opn' Wrk Cntr Wrk stn Rpr Lvl OrdTyp
0030 PTll METAL PAINT 0 WO

AltRte' RteSeql PH Cde NxtSeq. Opn' Wrk Cntr Wrk stn Rpr Lvl OrdTyp
0020 DaOl METAL DEBURR 0 WO

AltRtel RteSeq' PH Cde NxtSeql Opn' Wrk Cntr Wrk stn Rpr Lvl Ol:'dTyp
0010 DRLl METAL DRILL 0 WO

WOl:'k Ol:'del:' Routing List

10
10
I
10
10I
10
Io
o
o
o
o
o
o

Page 1

06/15/81 08: 43A

---Current Unit-Run---
Labor Machine Code

.5 0.0 L

---Current Unit-Run---
Labor Machine Code

.05 .5 M

---Current Unit-Run---
Labor Mach ine Code

.25 .25 L

Descl:' ipt ion
BACK-PLANE CABINET FIXTURE

Tool Id

Tool Id

Tool Id TLOOl224

Pal:'t Numbel:'
3940-0498

---Current Set-Up---
Labor Mach ine Code

4.0 4.0 L

---Cul:'rent Set-Up---
Labor Mach ine Code

1.5 0.0 L

---Current Set-Up---
Labor Machine Code

2.0 2.0 L

Ol:'der •
W0000012

Drawing Id

Current
Transit Time

8.0

Drawing Id DWG0014-2 REV A

Curl:'ent
Tl:'ansit Time

8.0

Current
Trans it Time

8.0

Drawing Id

HAPPY PEDALER BICYCLE WORKS01
0 1

1

01

01
0 1

I
Ol
o
o
o
o
o
o

Releasing work orders
Once shop management has determined that
all materials and documentation necessary to
begin production activity on a given work order
have been assembled, the order is released to the
queue of the first production sequence. At that
time a Routing List is printed which describes
the rou ti ng for tha t order in detail. This Routing
List is added to the shop packet and travels
with the work order through the production
process.

.-\$ work. order movement or schedule changes
ld"\.' pi(l~,-=, th~'Produ~hoi'\~anagemenL~
data base is modified immediately to reflect the
current status of work-in-process at all times.
This dynamic model of the shop environment
provides the basis for dispatching work
according to the latest priorities whenever
manufacturing resources become available.

Work order Routing List



Work Order
Tracking

Features
• On-line work order status review.

• Interactive step completion reporting.

• Factory Data Capture terminals.

• Partial work order tracking.

• Rework and scrap reporting.

• Exception reporting.

• Automatic load balancing.

• Labor collection.

Description
In order to effectively establish production
priurities and provide shop managers with the
information necessary to properly manage the
manufacturing environment, Production
Management/3000 must maintain an accurate 0

picture of the status and location of each work
order (or partial work order) at all times. Work
urder status information is collected Oil tlte shop
floor at the time production activity actually
takes place. Either simplified HP Factory Data
Capture terminals or full-screen CRTs can be
used fur this purpose.

Work order status can be modified in either of
two ways:

1) As a result of completing an operation.
When a production step completioll is
reported, the status of the associated work
order is automatically changed from ill
process at the current sequence to ill trallsit to
the next sequence.

2) Through the use of a specific transaction
which modifies the status of a work order
sequence to indicate that it has changed
from one status to another (e.g., ill trallsit to
ill queu(', or ill queue to ill process).

Production ManaKement,3000 descriplion 93

Work order status reporting
The current location and status of each work
order in process is available at all times for
on-line analysis and review. Work-in-process
status can be reported either on CRT screens or
printed reports by:

• Individual work order.

• Workstation or workcenter.

• Operation number.

• Part number.

'J2 Production Management/3000 description.

Selecting work orders from
available queue
As each work order is selected from queue for
processing, its status is changed from in queue
to in process using the WORK ORDER
TRACKING function to indicate that it is being
worked on.

r

Order
HUlllber..... Portael

HUllber- Operot aon
HUllber-

CHG bpI STATuS

--- Hew Stohs ...
Dole TUIe

... u.iiiB
(lftlIlddyy) (hhll.)

DynamiC shop floor dispatching ensures that
priorities are up to date at all times, reflects
changes to the overall production plan quickly,
and can reduce or remove the need for manual
expediting of hot jobs.

Hew Stohs Code
MIl

StondArd lpt $totu, ted,;.
o • Order bung entered.
I - Order beang scheduled.

10 - Order hes been scheduled.
500 • Shp an tronut.

1000 • Step queued to Wstn.
:lOaD - (OrdcirIShp) wort an procen.
3000 - Step lS on "HOLD".

Changing the status of a lot

O"ont a'y In
_ (Only for receavlng frOIl

IH TRAHSIT).

4000· Step co.plelaon of 0 portaol.
5000 - Step co.plelaon of 0 full order.
6000 • Order cOllpleted.
7000 • Order slopped (concelled).
8000 • Full Order "BO"'8ED" (OTY-OUT-O)'
9000 • Porllol order "BOMBED".



Production Management/3000 description 95

SHP XCPTH
Chg Lo t S~ep·'.··"· .... •
Slabs Qv..•l'l~p ~~r't

... - Except Ion ----
Date Time

070981 0200P
(mmddyy) (nhmm)

Comment
LOCK-WASHEflS DAI'IAGED
AHO UHUSABLE

rOO;?-Hou'lng damaged.
F003-Performance not .. Ithln 'pees.
r004·Plns broten/mUSing.
rOOS·1 ncorrect Opt Ion Recell/ed .
r006·Broten trace.

Poute
Seq Hbr

30
(Opt. )

Operat Ion
tlumber

DPL2

Par tU11
tlumber

.......... - Exception -_. __ • __ •••••••

'.:.:le IJUantl t. (omponent fart
BP. H 4' 1339-0936

: 'andO, 3 [_,cpllon Lode,
SPIIl'Materlal artll/ed brolen
MS(T-WronQ number of part, recell/ed
rIJOO'(omponent doe, not

..or. (Indetermlnale).
r')')l .."." tch Failure

Or·je r
II'Jmber

WO,9847

Order Pav All Step Step
Slalill we 1Cc:ptn COlllplcln Lobor

[nts:, Prgdyctlgn Step [!S;CRtton InformotlOD

'-

Recording exception information

Production exceptions
Information describing material failures, scrap
losses, rework activity, or other exceptional
conditions associated with each work order
sequence can be collected and stored for
analysis and review. This information can be
entered at the time work orders are being
tracked from one production sequence to
another, or separately when exceptions are
actually detected.

Exceptions can be recorded either as free-fon"
comments, or in terms of predefined codes
which can be analyzed on a statistical basis.
Exception codes and their definitions can be
described at any time and can be either global
or local in scope. Global exceptioll codes can be
used to describe unusual ev~nts regardless of
where in the manufacturing facility they occur,
while local eXCL-ption codes apply only to those
wurkcenters with which they have been
specifically associated.

Pre-defined exception
code

Free-form comment

Production Manag~mentJ3000description

[ntce Pcgdusllgn Step Cpmplrt.gD '"'gemotign ST[P CgMPL£TH

t{iL.~ I~\::~ ·t~:~1* 11~ It::,;! tHqp~ iD

••••••••••••• Exception •••••••••••••••

_ _,J;lY ~~'~M'm

Rlln
Hours

~

SUP LABQR

Time Out

(~)

Quant I ty
Scrapped....

Date Dllt

IWU
(mmddyy)

ap' "h ·· ...·ot: 1 Sl r.; ..... '''''········i·",·f·, ....9 .. lI·· .• ep,.. ,J ..' ... ,i'!.,.-
.. ~~WLb!:

Quontlty
Reworted--•••• Hours •••••---

Rte
Seq Hbr
I I
(opt.)

Quant I ty
Bonu,ed

~

Operat&on
Humber

iBli1

Employee
Humber

D&rectLabor:~

·-Completlon?···
(tiormal. ~epalr)

( or Ilomb )

.Ii

Order Part lal
Humber Humber-- ..

Completing a production sequence

LaborcoUection
Production ManagementJ3000 provides the
means to capture and record direct labor hours
applied to each work order sequence. Labor
hours are reported directly by shop personnel
011 the shop floor where work is actually being
performed. As each entry is made, Production
ManagementJ3000 ensure~ that a valid
employee ID and work order number have
been provided.

Production sequence
completions
As soon as each production sequence has
been completed, the results can be reported to
Production ManagementJ3000 by the people who
actually perlonll the work. The number of units
completed, scrapped (lost), bonused (found),
and reworked at each sequence can be entered
via an HP Factory Data Capture terminal or a
full·screen CRT. Related information such as
direct labor charges, material failures, or other
exceptions can be collected either all at one time
as a part of the step completion transaction, or
separately through individual transactions
designed specifically for each type of
information.

Employee
Humber

Direct Labor: gl9.~~~

Labor hours can be entered at the time work
orders are being tracked from one production
sequence to another, or through separate
'transactions as work is actually performed.
Labor charges can be modified at any time
and accumulated hours can be reported by
employee ID, work order number, or
workcenter.

Order
Humber

jWQQ1J

Partial
Humber

Di

Operation Route
Humber Seq Hbr

Q&U ( J
(Dpl. )

Set·up
Hour'

~

Date

WW
(mmddyy)

Labor
Hour'

II&.U

Time
Uj~8

(hhmma)

Charging time to a work order



Production Management/3000 description 97

Capacity
Requirements
Planning

Features
• Load projection by workstation.

• Exception reporting.

• Summary workcenter reporting.

• Alternate load measures.

• User-defined reporting periods.

• Load detail reporting.

SUGGESTED
WORK ORDERS
FROMMRP

OPEN WORK ORDERS
FROM Production
Management/3000
DATA BASE

Capacity Requirements Planning

4h Production Management/3000 description

Balancing load among
alternate workstations
When successful completion of a production
sequence is reported, the status of the work
order is modified to indicate that it is in transit
to the next production sequence. In cases
where more than one alternate workstation
has been specified for the next production
sequence, Production ManagementJ3000 will
examine the amount of work in the queue of
each alternate workstation. The work order
wilJ then automatically be made available in the
queue of the workstation with the least hours of
work waiting to be done and the user will be
notified which workstation has been selected.

This technique for load balancing provides
for the even distribution of work among
alternate workstations, and consequently for
the reduction of lead times and inventory
levels.

Description
CAPACITY REQUIREMENTS PLANNING
can be used to plan labor and other
manufacturing resource requirements over
time at the workstation and workcenter
level. It can use both existing work orders

PRODUCTION
PLAN

CAPACITY
REQUIREMENTS
PLANNING

SEQUENCE 30

SEQUENCE 20

Load balancing

and production requirements suggested by
Materials ManagementJ3000 or another similar
system. It provides a tool to highlight potential
capacity constraints and provides information
that can be used to help ensure that appropriate
resources are available when needed and to
smooth the workload for a manufacturing
facility.

LOAD PROFILE

OR

A
·~

..... .....
"J .' • "., •

, .... , ...
, ~. \. ~ ..

-



Production Management/3000 description 99
00
N

:::r
:c

lVorkcentersummmmary
reporting
In situations where direct labor personnel are
trained to move among several different
workstations in response to changing
workloads, the true labor capacity of a
workcenter may be less than the sum of the
capacities of all workstations within it. In
addition to workstation load reports,
Production Managementl3000 provides
summary load reports for each workcenter
which can help to identify resource constraints
which might not be visible at the workstation
level.

EQUIPMENT
AVAILABLE
8 HOURS/DAY
TOTAL = 32 HOURS

LABOR
AVAILABLE
8 HOURS/DAY
TOTAL = 16 HOURS

Workcenter labor capacity

98 Production Management/3000 description

Calculation of requirements
The calculation of manufacturing resource
requirements is accomplished by scheduling
each work order in theproduction schedule using
part and order raulings and the shop CQlendar to
detennine detailed load requirements for each
work order. Each work order is scheduled
independently of all others as if infinite
capacity were available at all times. These
detailed load requirements are then
accumulated Uy workstation for each
user-defined time period (days, weeks,
months or quarters), forming a load profile for
each workstation.

Alternate load measures
Although labor is often the capacity cons~aint

in manufacturing operations, this is not
always the case. CAPACITY REQUIRE
MENTS PLANNING can calculate resource
requirements both in tenns of labor hours and
one alternate unit of measure (e.g., machine
hours, cm2, etc.) 'which can be specified for
each workstation. Both load measures are
accumulated and reported separately for each
workstation, so that they can be analyzed

independently ofone another or together. This
capability provides the fleXibility to evaluate
resource requirements in tenns most
appropriate to each individual workstation.

Load profile reporting
After all time-phased load profiles have been
calculated, the resulting resource requirements
are compared with the standard production
capacity specified for each workstation. In cases
where requirements differ from standard
capacity by more than a user-specified
percentage, a workstation load report is printed
which describes the load profile of that
workstation and indicates the time periods in
which averload or underload conditions are
anticipated.

-upERIOD--- ·HACHJI~E-- ---------LABOR LOAD---------- LABOR --DEVIATION- --------UTILIZATION OF SCHEDULED CAPACITY-----u---
UATE LEN LOAD CAP RLSD OPEU PLAN SUGG TOTAL CAP CUR CUM \ OUT. 50. 100. 150. 200.

04/0.l/81 1 0 0 6 4 0 0 -1-0 8 2 2 125 10 XXXXXXXXXXXXXXXXXXXXXXXX
04/03/111 1 0 0 5 3 0 0 8< 8 0 2 125 10 XXXXXXXXXXXXXXXXXXXXXXXX
1J4/04/Bl 1 0 0 7 3 0 0 10< 8 2 4 150 )5 XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
04/05/81 1 0 0 12 0 0 ) 15< 8 5 9 213 98 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX+
04/0lt/81 1 0 0 2 6 0 0 8< 8 0 9 213 98 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX+
04/U9/81 1 0 0 0 7 0 0 7< 8 - 1 8 200 85 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
04/10/81 1 0 0 0 4 2 2 8< 8 0 8 200 85 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
04/11/ltl 1 0 0 0 0 6 0 6< 8 - 2 6 175 60 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
04/12/81 1 0 0 0 0 10 4 14< 8 6 12 250 135 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX+
04/13/IU 7 0 0 0 12 46 0 58< 40 18 )0 175 60 xxxxxuxxxxxxxxxxxxxxxxxxxxxxxxxx
04/20/81 7 0 0 0 0 48 10 58< 40 18 48 220 105 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX+
04/27/81 7 0 0 0 0 36 0 36< 40 -4 44 210 105 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx+
1l5/04/81 7 0 0 0 0 38 2 40< 40" 0 44 210 105 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx+

LEGEND: .. Out of Tolerance
Length: '0' .. Dally 'W' II Weekly 'BW' .. Biweekly 'M' II Monthly '0' II Ouarterly 'SA' II Semlannual 'A' .. Annual

\~Kc..:TR MI:TAL
UK~'rl~ DRI LL
MAfIAGER-J. fERGUSON

Calendar days in
rQIJorting period

o
o
o
o
o
o
o
o
o
o

PAGE

Total labor hours
planned for each
petiod

HAPPY PEDALER BICYCLE WORKS
EXCEPTION CAPACITY PROJECTION REPORT

WORK STATION

OW. OW M 0 SA A
UPPER TOLERAI~CE 115 120 120 125 1 8 150 150
LOt/ER TOLEAAt~CE 90 85 85 80 60 60 50

15:52
15 :00

04/02/81
04/02/81

PHWT UATE
RUN DATI:

o
o
o
o
o
o
o
o
o
o



Production Managementl3000 description

Load detail reporting
In situations where examination of the load
profile report identifies overload conditions
which need to be corrected, a load detail
report can be requested for any individual

workstation. The load detail report indicates
the specific work orders which contribute to the
accumulated load profile during each time
period, and the amount of workload which
each represents.

On the basis of this information, individual
work orders can be rescheduled into earlier or
later time periods to arrive at a load profile
which better fits the available manufacturing
resources.

---I'a.;IU.lU--- ---"~T '.U/'un:R---- PL --------ORDER------- --SCHEDUL£D DAT£- OP£R MACtlIN£- -LABOR-- ----SCH£DUL£o---- ---WORKSTATION--
OAT': L.CU "UMDER PRTL TP QTY IN START OUT NDR LOAD CAP LOAD CAP DEV CUM 1.0' OUT PREV NEXT

4/0:.! 1 3940-0498 W0200161:1 OP 32 04/02 04/02 04/02 0803 .0 l.S DRILL PAINT
8498-0498 \10200527 OP 50 04/02 04/02 04/02 DBOl .0 2.2 DRILL PAINT
9487-1152 '~0200886 OP 100 04/02 04/02 04/02 0801 .0 2.5 DRILL PAINT
1:1376-8274 W020124S OP 110 04/02 04/02 04/02 0801 .0 3.0 DRILL PAINT
0'J38-17114 \10201604 OP 75 04/02 04/02 04/02 DBOl .0 1.5 DRILL PAINT
7467-666:.t W0201963 OP 90 04/02 04/02 04/02 DBOl .0 4.5 DRILL PAINT
857"-8391 \10202322 OP 100 04/02 04/02 04/03 0801 .0 2.2 DRILL PAINT
1)47)-OJ95 U0202681 OP 100 04/02 04/02 04/02 DB07 .0 3.4 DRILL PAINT
fSU5-1H2 U0203040 OP 225 04/02 04/02 04/02 DBll .0 1.0 DRILL PAU",
4095-21:183 W020lJ99 OP 400 04/02 04/02 04/02 DBOl .0 2.5 DRILL PAINT
7459-03l:14 W0203758 OP 430 04/02 04/02 04/02 0001 .0 3.0 DRILL PAINT
9847-7644 ~'0204117 OP 100 04/02 04/02 04/03 0801 .0 2.2 DRILL PAINT
un-lB46 \10204476 OP 48 04/02 04/02 04/02 DDOl .0 3.0 DRILL PAINT
lJ7J:l-37114 W0204835 OP 48 04/02 04/02 04/02 DBOl .0 2.5 DRILL PAINT

TOTAL .0 35.040.0 5.0

.<, .. Out of Tol~rance

'0' .. Dally 'U' .. Weekly 'OW' II Biweekly 'H' .. l10nthly '0'" Ouarter-ly 'SA' .. Sellliannual 'A'" Annual

I
Planned labor requirements
for each work order

10
'0
1
10

'0
o
o
o
o
o
o
o
o
o
o
o

PAG£HAPPY PEDALER BICYCLE WORKS
DETAIL CAPACITY PROJECTION REPORT

WORl< STATION

W mf M 0 SA A
UPl'l::1t TOLERANCE 115 120 120 125 140 1SO 150
t.o.~ER TOLERAUCE 90 85 85 80 60 6\) 50

04/0U8l lS:Sl
04/02/81 13: 49

L.cc.;a;NU:ILo...""

Starting date of
reporting period

t'U1I4T UATC
RUU UATI::

\1I,~'rlt tl£TAL
wt\sn, U£UUItR
HA"AGCK-J. ~. t:ltGUSOU

o
o
o
o
o
o
o
o
o
o
010:
0 1

I
0 1

I
01

Load detail report



USING DS 3000/1000 WITH HP 1000 MASTER PROGRAMS

JOERG MU.ELLER

J. MUELLER

SWS SOFTWARE SYSTEMS
BERN, SWITZERLAND

H5 01



Using D53000-1000 with HP/1000 Master PrograMs

by Joerg Mueller

SWS SoftWare SysteMs

Bern, Switzerland

Introduction

and HP/1000-coMputers it is obViously attractive to link the systeMS

with a D53000-1000 COMMunication line. In fact in certain cases it May

even be possible to have a MeMory resident HP/1000 operating systeM

without any Mass storage of its own thanks to the D53000-1000

downloading facility.

The HP/l000 systeMS have evolved and this allows to use theM also as

general purpose COMputers. Nevertheless it is advisable to restrict

the use of the 11000 and to do MOSt of the prograMMing on the HP/3000)

HP/3000 is a very efficient general purpose COMputer, which gives
if the resources such as the present workload and the COMMunication

line allow it, because software Maintenance on the HP/3000 often is

easier and has to be done for other applications anyway, so that the

prograMer staff usually will be More faMiliar with the 13000. However

the environMent May iMpose a More iMportant HP/l000 configuration.

users and prograMers a lot of flexibility on the software side. Now

that newer HP/3000 Models support HP-IB devices flexibility has been

extended to the hardware. Nevertheless users would be ill advised to

use HP/3000 as a MeasureMent data logger or to do any other forM of

fast data acquisition. Interrupts at the rate of thousands or even
probleMS with DS3000-1000 which May occur under such

only hundreds per second should not be sent to a general purpose

COMputer.

Of course Hewlett Packard offers a solution for fast data acquisition

and processing with the HP/1000 COMputers. An iMportant additional

advantage of the HP/l000 systeMs is a price tag which favourably

COMpares to the 13000-line. Users already owning an HP/3000 see the

disadvantage though of a largely incoMpatable, different 16 bit

COMputer systeM. Architecture, operating systeM, language syntax and

file structure are all different on the two systeM types. Except for

trivial cases it is not even possible to define a COMMon Fortran

subset, so that the saMe source code could be used on both COMputers.

The choice of having both types of systeMs within one COMpany May

nevertheless payoff, because a good price to perforMance ratio can be

achieved. Once the decision has been Made to purchase both HP/3000-

HS 1

cirCUMstances will here be discussed. PrograM to prograM COMMunication

(PTOP) will be analysed priMarily in this paper, but the other forMS

of COMMunication also will be discussed briefly so as to see their

respective Merits.

HS 2



1. Respectiye Merits o¥ the DS3000-1000 ¥eatur~s

Host of the RTE-IVB operator cOMMands can be issued froM a HP~3000

reMote session. It is possible to start and analyse the state of the

RTE-systeM. In fact a RTE-IVE MeMory based systeM May entirely be

controlled by a HP/3000 se5si~n. The HP/1000 is working as a front end

COMputer in such a case, a configuration, which May be very useful.

It is interesting to note that on the HP/3000 a Cross-AsseMbler of the

HP/2100 is available (which in effect allows a subset of the HP/1000

instructions) and a Cross Loader also exists. A Fortran crosscoMpiler

exists in the contributed library now. It therefor now should be

possible to deYelop a cOMplete HP/1000 application on the 13000 and

siMply download by DS3000-1000. The HP/1000 does not need to have any

storage device in such a case.

115 3

1.2. ReMote EXEC calls

An EXEC call is faMiliar to all HP/1000 prograMers. The HP/3000

equivalent are the systeM intrinsic calls. The systeM resources May

prograMatically be used by such calls. Input/Output, prograM

scheduling, segMent loads and tiMe request$ are possible. It is

therefore feasible for a HP/3000 process to use all HP/1000

peripherals. Only the actual driyer of the device is residing on the

HP/1000 in such a case.

The opposite type of calls, i.e. the use of HP/3000 systeM intrinsics

by a HP/1000 prograM, is not possible however.

1.3. ReMote file access

Although HP/l000 files are not easily accessible by HP/3000 session

COMMands, it is however fully possible to use HP/l000 files by a

HP/3000 prograM. Such files cannot only be read and written to , but

they can be created, opened and closed , renaMed or also purged. The

structure of the files reMain of the HP/1000 type of course.

Besides different file structures the two COMputer systeMS also have

different real nUMber representation. This Must be reMeMbered for

binary files which are COMMonly used by HP/1000 and HP/3000 prograMS.

Except for a little snag in case of a zero the SPL-routines CR1RJ and

CR3Rl contained in the contributed library allow correct conversion

between the two types of real variables.

H5 4



Again it is not possible for a HP/tOOO prograM to access HP/3000

files. One obvious probleM in this context is the "aXiMUM length of a

naMe, which May only have up to six characters for a file on the

HP/l000 instead of 8 letters as on the 13000.

1.4 PrograM to PrograM COMMunication (PTOP)

The MOst powerful cOMMunication tool available within D8JOOO-1000 is

the PTOP-packave. It consists of a set of nearly identical procedures

available on both COMputers.

For a PTOP user application to work a pair of prograMs Must exist. The

provraM initiating the cOMMunication is the so called "aster prograM.

The other progr.M is called a slave prograM and is autoMatically

scheduled by the respective operating systeM, when the Master prograM

initi.tes the cOMMunication. The Master prograM May be on the HP/JOOO

or on ~he HP/l000. Since a HP/JOOO prograM can practically control all

resources of the HP/l00t, it will not often be necessary to have

HP/JOOO M••ter progr.Ms. Usually the other forMS of reMote access will

be sufficient. Whenever a HP/l000 prograM wants to access the 13000

there is no other choice however than to use PTOP cOMMunication.

The Master provraM initiates cOMMunication by the POPEN procedure. The

slave receives all inforMation by a GET call and returns its

inforMation by ACCEPT or REJCT. On the Master side the following other

procedure. are .v.ilable.

H5 5

PREAD to receive a buffer of inforMation,

PWRIT(E) to send a buffer of inforMation,

PCONT(ROL) to exchange a "tag"-field i.e. a buffer of

20 words,

PCLOS(E) to abort the slave progra",

PCHECK (/3000) to analyse the last PTOP transaction.

Although the procedure calls are very siMple, PTOP COMMunication can

present SOMe difficulties to a beginner. Whenever Multiple Master

prograMs initiate the saMe slave or autOMatic scheduling is wanted,

probleMS May increase even More. But on the other hand applications

can be tackled, which otherwise could not be realised at all. In fact

once D83000 is installed, PTOP can prove to be a very useful tool for

concurrently running prograMS within the saMe COMputer systeM.

H5 6



2. Situation of CIBA-GEIGY PhotocheMie (Fribourg, Switzerland)

The COMputer configurations to be discussed here as a practical case

have the following siMplified outline (Fig.l).

�--------~-N~_--, I---~--~~-- -~I

, I DS3000 1 1
1 HP3000/II1 1-------------------1 HP3000/I1 1

... 1 , ... 1 1
' --- 1 , 1,

1
IDS3000-1000
1
1

I-~------------' ,-------------1
1 1 DS1000 1 1

[--~---] I HPtOOO/45 1-------------------1 HPI000/20 1
[ Disc ]---1 1 1 1
[ ] 1 1 1 1------,------

Testing lab instrUMents

The HP3000/I1 systeM serves priMarily as developMent systeM, the

HP3000/II1 supports Materials control, production ManageMent, quality

control and distribution and is thereby fully loaded. The HP/I000

systeMs perforM MeasureMents, control the instruMents and process the

data for Quality Control. The results are interMediately stored on the

HP/l000 disc and usually daily transMitted to a HP/3000 data base.

Had the HP/3000 systeMs not been so heavily loaded, a configuration

without disc-systeM could have been envisaged. Since this solution was

out of the question, the benefits of largely independent HP/I000

systeMS were fully exploited. SysteM operation still had to be siMple

though since no actual COMputer operator could be afforded for the

IIOOO-systeMs.

It is here that local PTOP processing on the HP/I000 systeMS proved to

be very useful. Concurrently running prograMS could thereby easily be

synchronised. The PTOP prograMS running with the HP/3000 are not of

such a nature as shall be shown later.

The usual contact between the HPtOOO/45 and the HP3000/II1 during theFig. t
Configuration with hardwired

connections. norMal working hours restricts itself to a few occasional

13000-sessions initiated on the 11000 or the fetching of a source file

as will be seen later. The daily evening tranSMission sends all

relevant MeasureMent results for COMplete evaluation and storage to

the 13000. Since the 13000 systeMS are continuously operator

115 7

controlled this is also the place all plotting is done through batch

jobs streaMed by the tranSMission prograM.

The tranSMission prograMS contain .autoMatic Maintenance functions so

as to eliMinate MeasureMent results older than two days on the

115 8



11000-disc I if transMission and storage on the 13000 were faultless.

The reMaining iMportant function of the DS 3000-1000 line enables to

set up the HPII000 Master data files froM scratch. This is done after

every disc copy (usually once a Month)1 whenever a new software

revision is installed and when the Master sets are updated on the

13000 side. The only updating MechanisM for those 13000 Master sets

allowed to the user go by way of the 11000. Thereby data integr'ity

usually is conserved eventhough the inforMation is stored on both

systeMS. Of course there always will be a hurried SMart user ruining

the concept.

3. D53000-1000 PTOP prograMs

For the three types of transMission operation Mentionned three pairs

of PlOP prograMs had to be written:

1) PUGE: to put or get source files

2) PUTSE: to transMit and Maintain

the MeasureMent result files

3) FMDEN: to Maintain the Master data sets

Except for the occasional probleMs with ignorant new users the systeM

has been successfully operational in autOMatic Mode for several Months

now.

All three applications

access frOM the 11000

obviously aiM to do prograMatic reMote file

to the 13000. As it was shown earlier this

function only can be achieved by PTOP COMMunication. Had the aMount of

initial probleMS been foreseen it probably would have been More

econOMical to sacrifice the requireMent of at least seMi-autOMatic

operation and have the user Manually start a 13000 session and a 13000

prograM I which then could dire~tly do reMote file access without PTOP

COMMunication. Now the PTOP pairs are operational they offer easier

use though.

3.1. PUCE (PUt and GEt)

H5 9

Source file

source files l

housekeeping

DS3000-tOOO

Maintenance l i.e. creating back ups and only keeping

which are being worked on directly on diSCI is a

probleM COMMon to all COMputer systeMS. Having

this probleM could elegantly be solved with SOMe

H5 1



addit~onal benefits.

The pr~graMers disc cartridges containing his source files are

declared a scratch area and are usually entirely erased every week or

two. Whereas such a way of operating a HP/3000 probably would create a

prograMers revolution, the HP/l000 with a DS-link can be Maintained in

such a Manner, because

:RU,PUGE

+GET source

the saMe Manner as PUGE as far as the cOM"unication is concerned. One

of the aparent differences is the autOMatic streaMing of batch

evaluation jobs by the HP/3000 slave.

The MeasureMents of a day are usually tranSMitted within about 15

"Minutes.

3.3. FHDEN (Fetch Haster sets for DENsitOMetry)

updated on both COMputers siMultanously.

A COMplete dUMp takes about one Minute and fills 805 sectors of the

7906 disc. This corresponds to a practical speed of 25 kBaud (in the

software sense).

this prograM

frOM the

will rapidly give the file back <it takes 8 seconds to get the +

prOMpt and e.g. 25 seconds for a source file of 300 lines to be

available on the 11000). Of course eventually the source files are not

available on line on the 13000 either anyMore. In that case the

prograMer has to have the source reloaded frOM Mag tape on to the

13000 and can then fetch it again, obviously a More tedious operation.

By

sets

pair either a COMplete dUMp of all relevant Master

13000 to the 11000 is realised or individual data is

The additional benefit is the ease of Maintenance on the HP/l000. A

procedure using PUGE is all that has to be called, whereby all source

files are tranSMitted to the 13000 and there renaMed to suit the file

na"ing conventions of the 13000 (a source ~SOURC.JH will beCOMe

SSOURCJH.HP1000 on the 13000). The whole scratch area then is SiMply

purged.

3.2. PUTSE (PUT SEnsitOMetric results)

The prograM pair to tranSMit MeasureMent data essentially operates in

H5 11

4. Design of PTOP prograM pairs

As a first general rule it can be stated that PTOP COMMunication

should be avoided, whenever other "eans such as reMote file access or

reMote EXEC calls can give the saMe result, because the application

will be operational More rapidly.

There are situations though, as seen earlier, when PTOP COMMunication

HS 12



is the only good solution for the end user. Even between two HP/3000

such prograM pairs May be useful as well described in the D53000

reference Manual.

Once it has been decided to use PTOP COMMunication, prograMing is

usually done in such a way that the COMputer initiating the

COMMunication has the Master prograM and the other one the slave.

DS3000-tOOO appears to have a bug though and it is currently not

advisable to write HP/1000 Master prograMS and HP/3000 slaves. Once

the prograMS are in working order there are no big probleMS to be

expected. Testing proves to be very disagreeable though, because an

abort of the slave on the 13000 on bounds violation, integer overflow,

an inexistent file or other such norMalities in a testing phase

systeMatically provokes a systeM down of HPE. Obviously the poor

prograMer provoking such a SMall disaster on a production oriented

heavily loaded HP/JOOO will have plenty of niceties to hear.

If a /3000 slave has to be written there are a few options which

increase the chance of "PE-survival. An obvious solution is to Make

the slave as short and siMple as possible. Delegate More intricate

work to previously or later executable prograMS. One of the

possibilities in this context is the use of· streaMed subsequent jobs.

Another solution can consist of a very siMple PTOP pair, which only

initiates the COMMunication and then is followed by another pair, for

which the Master is on the /3000 side. In fact it is possible for a

slave prograM itself to beCOMe Master of another. Probably this would

not help to solve the abort probleM (it has not been tested), because

it appears to be related to the original, atypical scheduling of the

slave.

H5 13

Other obvious Means of avoiding the slave to abort consist in all the

necessary tests to intercept the potential error. This requires

additional code though and thereby Makes the testing phase longer. The

final way out for testing again is disagreeable: night shift. Wait

until all those backlogged batch jobs are out of the systeM and then

learn to warMstart HPE!

There are other potential probleMS with PTOP. A prograMer glancing

through the available procedure calls intuitively aSSUMes that

COMMunication starts by POPEN and terMinates by PCLOSE. The aSSUMption

is correct for POPEN, but PCLOSE not only stops COMMunication, but

also aborts the slave, even if it is concurrently working for another

Master. Except for eMergency exits a Master prograM will therefore

contain at least one POPEN, but usually no PCLOSE.

A slave Must be careful by what process it is called. All transactions

of the Master are received by the GET procedure. By prograM logic

Maybe a PREAD is expected to be calling, in SOMe case6 it May though

be a POPEN frOM another Master or, in fact, frOM the saMe Master,

which terMinated and restarted for SOMe reason.

FrOM all that has been said it priMarily can be concluded that PTOP

cOM"unication should be kept as siMple as possible, especially if the

prograMer is inexperienced with D53000. Hopefully the systeM down bug

will be out before HPE revision Zephyr (or whatever) arrives and then

PTOP COMMunication can be a very useful tool even between a 11000 and

a /3000.

HS 14



I--~-~----------J J-~~--~~--------I
I I DS3000 I I
I HP3QOO/III 1-------------------1 HP3000/I1 I

... 1 I . t. J I
I I I I

Testing lab instruMents

Fig. 1
ConTiguration with hardwired

connections.

H5 15



GLOBAL OPTIMIZATION

PROTOS - ACDBa.. PROGRAM GENERATCR FOR HE HP3OO)

By

J. TIPlON COlE

~. TIPlON COlE

COLE & VAN SIC KLE CO MPAN Y, INC II

AUSTIN, TX

( ABSlRACT)

TITLE: Global Opti"ization

SPEAKER: J Tipton Cole, Cole &Van Sickle Co"pany, Inc., Austin, TX
P.O. Box 15085 8900 Shoal Creek 404 Austin, Texas 78761 USA

ABSTRACT: Global optiftization of any co"puter application for
business is facilitated by observing a few basic rules: 1) work
on the right proble", 2) opti"ize only where it helps, 3) opti"ize
for the total lifeti"e cost of the project, and 4) use proven
Methods and tools. Tec~nical workers and "anagers often lose
sight of business objectives. Uorse yet, despite all of the talk
about software engineering, we neglect fundaftental engineering
principles and techniques.

This talk 5tress~s the i"portance of concentrating on the
business purposes behind the project and the iftportance of i"pleften
ting the applications now rather than later.

This presentation is designed for DP Managers, non-DP "anagers who
have responsibility for DP or who "ust deal with the DP departftent,
and DP staff "e"bers with "anagerial aspirations.

11 1

***** IF YOU FEEL ASPI~ATIONS FOR A COMPLETE lEXT, ASK THE
AUTHOR - UNTIL NOW THErtE IS NONE FOR THE PROCEEDINGS 

( EDllOR ) * * *

II 2



(ABSlRACT)

TITLE: PROTOS - A COBOL Prograft Generator for the HP3000

SPEAKER: J Tipton Cole, Colt &Van Sickle Coftpaay, lac., Austin, TX

ABSTRACT: PROTOS is a COBOL prograR generator written exclusively for
the HP3000 fa"ily of co"puters. It is desig.ned to work naturally and,
efficiently with I"A6E and V/3000. It writes COBOL code that takes
advantage of the strengths ot HP's best software and of the strengths
of the HP hardware. Th. COBOL code follows the best prograft"ing prac·
tices. It is easy to re.a and understand; it is well-structured. In
'act it il superior to hand written code in quality as well as cost.

Jhis talk covers the reasons that business organizations
need too11 such as PROTOS, and the b«netits that PROTOS brings to any
business application project. DiscussioD of specific teatures and
d'Ronstration ot PROTOS in action are left to the question and answer
period aad individual -"••tiD,I.

This presentatioft is desigled 'Dr IP "anagers, Do.-DP ftanagers who
have responsibility tor Dr or who "ust deal with tbe Dr departftent,
aDd DP staf' "e"bers with "anlg.r1al aspiratioas.

***** NOlES SEE ABSlRACT BEFORE (EDIlOR) ***

II 3



QUASAR SYSTEMS

TRANSACTION PROCBSSOR FOR THB HP3000

Godfrey Lee
Product Develop.ent Specialist

QUASAR SYSTEMS

TRANSACTIO. PROCBSSOR POR THE HP3000

I am sure that each of us has had the need to manipulate files,
or perform bulk updates of an application database, and found
that the existing methods are either incomplete (i.e. PeOPY) or
too troublesome (i.e. COBOL) to use. Most application systems
involve several standard batch functions which require custom
programming. Yet the task involved is so standard one should be
able to specify it in a simple, logical and straightforward
manner.

Tnese functions can include:

Daily, weekly, or monthly rollovers.
Reformatting a file.
producing a summary file.
Selectively copying based on some condition.
Copying elements from one file to another.
Reformatting a database.

File manipulation tasks are a common requirement in developing
as well as running most application systems. While excellent
productivi ty tools now exist for large segments of application
development and maintenance, batch processing programs· still
have to be prepared in the same tiresome manner.

The paper introduces the concept of a powerful batch-oriented
data manipulation tool called a TRANSACTION PROCESSOR, which
will keep pace with and interface with current state-of-the-ar~

productivity tools. I

Quasar Systems ltd.
Software Products Group
275 Slater Street, 10th Floor
Ottawa, Canada KIP 589
(613)237-1440
Telex: 053-3341

Quasar Systeas Inc.
1460 Maria Lane, Suite 250
Walnut Creek
California
94596
(415)943-7277

1-2 1

The TRABSACTIOB PROCBSSOR will be called Q'l'P. and will
complete Quasar Systems' family of application ge"nerator
products, which currently include QUIZ for reports and QUICK for
screen-based input. With this family, users will be able to
generate entire applications in a consistent easy-to-use style.

This paper will discuss:

1. QTP in relation to an application dictionary
2. Design objectives
3. QTP in operation (some examples)
4. QTP in the production environment
5. Design considerations.

12 2



QUASAR SYSTEMS QUASAR SYSTEMS

TRANSACTION PROCESSOR AND THE APPLICATION DICTIONARY DESIGN OBJECTIVES

The transaction processor
independent product in
application dictionary.
components:

will be able to
association with
In essence, QTP

operate as an
Quasar Systems
will have two

The design objectives of QTP are:

to support the standard maintenance functions of add, change
and delete against all data permanently on file

to support the copying of elements from one file to another

to allow the reformatting of files and databases

to be able to produce summary files

to support these summary options: sum, count, average,
maximum, minimum, percentage and ratio

typeto support standard editing of input including,
checking, value range checking, and pattern matching

to be able to specify the sorting and selection of input files

to support any combination of IMAGE, KSAM and MPE files

to reference the structure, composition and elements of files
in a central independent schema

standard batch applications
file manipulation.

Under the control of specification statements which can be used
by both programmers and non-programmers, QTP will carry out
two major functions:.

2. QTP

1. QSCHEMA

The schema processor compiles a description of data files and
element characteristics including data validation and display
specifications. The compiled schema functions as an application
dictionary, providing central administrative control and freeing
users of QTP from a great deal of repetitive programming.

to use concise specification statements in simple free-form
syntax.

12 3 12 4



QUASAR SYSTEMS QUASAR SYSTEMS

THE TRANSACTION PROCESSOR IN OPERATION
3. CUlling obsolete data

A company wants to streamline their customer file and delete
anyone on their mailing list who hasn't corresponded for over a
year.

OTP will be ideally suited to problems involving the
reformatting of files. Assume for instance, . that the old
customer file shown in Figure 1 is obsolete. The "PYR-SAlES II
(previous years sales) item is to be dropped; IIYTD-'5AlES" (year
to date totals) is to be expanded for larger dollar volumes;
item "CUSTOMER-ID" is to be expanded; an item "SALESMAN-CODE" is
to be added; and all items are to be re-ordered.

> ACCESS MAIL-LIST
SELECT IF 365 < (DAYS (SYSDATE) - DAYS (RESPONCE-DATE»)
FILE MAIL-LIST DELETE
GO

Figure 1

records of
the SELECT

all
in

statement in this example deletes
that nave satisfied the condition

The FILE
MAIL-LIST
statement.

4. Reformatting a file

ACCESS PROIIUCTS
SELECT IF PRODUCT-CODE: liS" AND PROf'JeT-NUH", 6000
FILE PRODUCTS UPDATE

IT EM PRODUC T-CODE FIHAL II HII

GO

Tne manager of inventory control wants to assign a new product
series "M" to all series "S" product numbers greater than 6000.
With OTP, this task could be accomplished by entering the
following statements:

1. New product number

To show the scope of the OTP in operation, here are four short
examples of situations which occur f~equently and which normally
require specially written programs.

The ACCESS statement specifies which file(s) are to be read--in
this case, the file PRODUCTS. The SELECT statement then"
restricts the selection of recordc; from the product file to
those records to be changed. The FILE and ITEM statements
speci fy the changes to be made to selected records. The GO
statement causes the QTP request to be executed.

Tne steps needed to format the new customer file are:

(a) Unload the master file.

ACCESS CUSTO"ER
SUBFILE TMP OUTPUT CUSTOMER
GO

2. Organizational change

The San Francisco branch has been reorganized and is now part of
California branch. All reference to San Francisco is to be
deleted and all records for San Francisco employees are to be
updated to reflect their new status as records of California
branch employees.

) ACCESS BRANCHES LINK TO EMPLOYEES LINK TO BILLINGS
SELECT IF BRANCH-NO OF BRANCHES "SF"
FILE EMPLOYEES UPDATE

ITEM BRANCH-NO FINAL "CA"
:;. FILE BILLINGS UPDATE

ITEM BRANCH-NO FINAL "CA"
GO

OLD CUSTOMER MASTER

CUSTOMER-NAME
CUSTOMER-ID
CUSTOMER-ADDRESS
PYR-SALES
YTD-SAL ES

X(20)
X(6 )
X(60)
9(6)
9(6)

NEW CUSTOMER MASTER

CU STOME R- I D
CUSTOMER-NAME
CUSTOMER-ADDRESS
SALESMAN-CODE
YTD-SALES

X(IO)
X(20)
X(60)
X(6)
9(10) COMP

The ACCESS statement in this example illustrates multi-file
access. Keyed linkages between files can typically be performed
automatically, using information in QSCHEMA. The ITEM
statements in this example set BPANCH-NO to "CA" in the selected
EMPLOYEES and BIllINGS records.

(b) Change the schema, purge and recreate the customer. file
(details not shown).

12 5 12 5



QUASAR SYSTEMS QUASAR SYSTEMS

(d) purge the temporary file.

:PURGE THP

(c) Reload the new master file.

:> ACCESS *THP
FILE CUSTOMER ADD

"") GO

The SUBFILE statement creates an ad-hoc file containing
specified information. Subfiles automatically contain their own
schema and are therefore self describing. In this example
SUBFIlE creates a temporary file TMP containing a copy of the
customer master file.

QTP automatically performs the following manipulations for
commonly named items in the two files:

changes
changes
changes

tem type
tem size
tem order.

QTP IN THE PRODUCTION ENVIRONMENT

The following two examples look in detail at how QTP might
handle two common month-end production situations.

1. Adding l' interest to all invoices
over 30 days due

To expand on a typical accounts receivable situation, assume a
company has reached the due date for monthly accounts
receivable. The account manager wants to add 1% interest to all
outstanding accounts and update the master file. QTP performs
this task in fewer than 20 specification lines.

> ACCESS ACCOUNT-HASTER LINK TO ACCOUNT-DETAIL
> SORT ON ACCOUNT-NO, INVOICE-NO
> TE"PORARY INVOICE-DATE RESET AT INVOICE-NO &
> INITIAL DATE OF ACCOUNT-DETAIL I
> IF TYPE OF ACCOUNT-DETAIL="INVOICE n
"> TE"PORARY INVOICE-BALANCE RESET AT INVOICE-NO INITIAL
> SU" A"OUNT OF ACCOUNT-DETAIL INTO INVOICE-BALANCE &
;:. IF TYPE OF ACCOUNT-DETAIL = "INVOICE" OR I
:> TYPE OF ACCOUNT-DETAIL = "INTEREST"
:> SU" A"OUNT OF ACCOUNT-DETAIL INTO INVOICE-BALANCE NEGATIVE &
> IF TYPE OF ACCOUNT-DETAIL = apAY"ENT-
> FILE ACCOUNT-DETAIL ALIAS INTEREST ADD AT INVOICE-NO &
> IF SYSDATE > INVOICE-DATE + 30
> ITE" A"OUNT FINAL INVOICE-BALANCE * 0.01
> ITE" TYPE FINAL -INTEREST H

> FILE ACCOUNT-HASTER UPDATE AT ACCOUNT-NO
> SUH AHOUNT OF INTEREST INTO BALANCE OF ACCOUNT-HASTER
) GO

The account details are accessed and sorted on account number
and invoice number.

Two temporary items, INVOICE-DATE and INVOICE-BALANCE are
created to hold the date and accumulated outstanding balance of
each invoice.

Tne two SUM statements accumulate the outstanding balance.

The first FILE statement together with the following two
ITEM statements create a new detail recora for the interest if
the invoice is past due.

The last FILE statement and following SUM statement update
·the account balance to reflect the new interest change.

12 7 12 8



QUASAR SYSTEMS QUASAR SYSTEMS

TRANSACTION PROCESSOR STATEMENTS

used to define a frequently used expression.

specifies an explicit set of data by key for
retrieval.

specifies that input files be edited according to
editing defined in QSCHEMA.

read, the order in
and linkage between

in QTP will be as

specifies the files to be
which they should be read
files.

takes all requests defined up to the BUILD
statement and saves these requests into a named
MPE file for future use.

specification statements used

EDIT

BUILD

ACCESS

DEFINE

CHOOSE

The major
follows:

ACCESS BATCH-HEADER LINK TO TRANS
> SELECT IF TOTAL-ENTERED = TOTAL-CALCULATED
) SORT ON ACCOUNT-NO
:> FILE ACCOUNT-DETAIL ADD
:> ITEM TYPE INITIAL "PAYMENT-

FILE ACCOUNT-HASTER UPDATE AT ACCOUNT-NO
SU" AHOUHT OF TRANS INTO BALANCE OF ACCOUNT-MASTER

>- FILE BATCH-HEADER DELETE
> FILE TRANS DELETE
> GO

2. Standard Batched Update

Tne standard batcn update is probarly the most universal OTP
application. At the end of each day, a company wants to total
all money received and prepare for the next day's transactions.
With OTP, this assignment could be performed in ten
specification lines.

The ACCESS, SELECT and SORT std· ements retrieve transactions
from balanced batches and sort them by account number.

The FILE statement for ACCOUNT-DETAIL creates payment records
from the transactions.

Tne FILE statement together wi th the following SUM statement
update ACCOUNT-DETAIL to reflect the new pay~ents.

The final two FILE statements delete all processed batches and
transactions.

FILE

ITEM

RESET

SELECT

defines an output action to be performed on a
file. These actions are:
ADD add if record does not exist
UPDATE add if record does not exist, else replace
REPLACE replace if record exists
DELETE delete if record exists.

indicates specific items to be assigned initial
or final values, or to accumulate totals.

resets status control options to original status.

restricts selection of records for processing to
those which satisfy a condition.

SORT specifies the order in which records are sorted.

SUBFILE creates a sequential file (MPE).
Does not require the file to exist in the QSCHEMA.
Will produce its own schema information in the
header of the file, and be accessible to both
OTP and QUIZ.

TEMPORARY creates a temporary-item which does not exist in
the database.

12 9 12 10



QUASAR SYSTEMS

DESIGN CONSIDERATIONS

To arrive at a smoothly functioning product, certain designconsiderations were uppermost in the thoughts of the developmentteam.

· The desirability of a specification based language toinsulate users from procedural constructs.

• The need to support complicated production runs as well asad-hoc file maintenance functions.

. The need for efficient run time performance. Since OTPwill run repetitively against bulk volumes of data itsde~ign wil~ differ. significantly from a data entry s'ystemWhlCh requlres a hlgh degree of user interaction.

The need for effecti ve interaction wi th QUICK to allowclass data changes in conjunction with data entry .

. The automatic insulation of users from migrating secondaryand other file positioning problems inherent in IMAGE andKSAM file updates.

12 11

QUASAR SYSTEMS

SUMMARY

Application systems on the HP3000 are typically composed ofnumerous data entry screens, numerous reports and a relativelysmall number of batch processes which run on a regular basis atday-end, month-end and year-end. Significant progress has beenmade towards eliminating the need to custom program data entryand reporting functions. Very little attention has been paid tothe development of productivity tools to perform standard batchprocessing functions. The transaction processor is designed toperform most standard batch operations as well as a wide rangeof file manipulation functions. QTP, together with itscompanion products QUIZ, QUICK, and QSCHEMA, will form acomplete application generator for the HP3000. Complete systemscan be built using these components with major savings inprogrammer resources applied to development and maintenance, andwith real gains in data integrity, system consistency andflexibility.

12 12



Integrated Dat" - and

Testproeessing with hp3000

JOACHIM GEFFKEN
RECHENZENTRUM
HERBERT SEITZ KG
GRUNENSTRASSE 11/12
2800 BREMEN 1

c:) Introduction

c:) File access

c:) Dataselection

c:) Correction aid

c:) CustolDizer

t:) Supervisor

c:) Interlace

lOT RECHENZENTRUM HERBERT SEITZ KG

13 1

lOT RECHENZENTRUM HERBERT SEITZ RG PAGE: 2

13 2



The Herbert Seitz CODipany is

~ A REALTIME DATAPROCESSING SERVICE BUREAU

~ AND SOFTWAREHOUSE

~ AND HEWLETT PACKARD OEM

w-ith (1:981:) ...

7 OWN HP 3000 (SERIES III AND 44)
IN OUR BREMEN AND PFORZHEIM BRANCH

AND 10 HP 3000 SERIES III IN
ASSOCIATED COMPANIES

WITH APPROX. 350 TERMINALS SPREAD
OVER GERMANY CONNECTED VIA HARD
WIRED LEASED LINES/DIALED LINES

Location or,

o own Computers

• A ssociated Companies

WE PROVIDE OUR SERVICES IN GERMANY AND FRANCE FOR COMMERCIAL
APPLICATIONS LIKE

:H ACCOUNTING

JH PAYROLL

~ MATERIAL MANAGEMENT

:>i SHOP FLOOR CONTROL,
CAPACITY PLANNIN~

JH TOOLS FOR HP 3000
OPERATION, SOFTWARE-DESIGN
AND DOCUMENTATION

OUR USERS ARE

~ WORKMEN

=*> DATA TYPISTS, CLERKS

~> MANAGERS

ONLY AFEW OF THEM

~ ARE SPEAKING (HP-)ENGLISH

~ HAVE DP EXPERIENCE

~ HAVE SEEN ANY TERMINAL BEFORE

lOT RECHENZENTRUM HERBERT SEITZ KG PAGE: 3

13 3

lOT RECHENZENTRUM HERBERT SEITZ KG PAGE: 4

13 4



THIS PRESENTATION IS A GENERAL DESCRIPTION OF SOME
TECHNIQUES OF INTEGRATED DATA- AND TEXTPROCESSING ON
HP3000 COMPUTERS AS THEY ARE IMPLEMENTED IN IDT3000.
THIS IS NOT A COMPLETE PRODUCT OVE~VIEW.

IDT3000 IS A DATA- AND TEXTPROCESSING SOFTWARE PACKAGE
DESIGNED BY HERBERT SEITZ ~G WITH:

- AN IMAGE TEXTDATABASE AND DIC;IONARY

POWERFUL TEXTEDITING AND FO~MATTING FEATURES
FOR BUSINESS LETTERS AND REP~RTS

FILE ACCESS TO IMAGE-, KSAM- AND MPE-FILES

- A SELF LEARNING DICTIONARY AND AN ON-LINE
CORRECTION AID

- MULTILINGUAL SCREENS, MESSAGES AND HYPHENATION
ALGORITHMS

- A CUSTOMIZE~ FOR CHARACTER SETS, TERMINAL- AND
PRINTERTYPES, DATAFILES, DATADEFiNITIONS AND
OPERATING ENVIRONMENTS

INTERFACES TO DATAPROCESSING AND DATACOM~UNI

CATION

- A DAILY REPORT OF THE OUTGOING LETTERS AND RE
PORTS

- A TRACKING MECHANISM FOR RL.-.lEWED SUBMISSIONS

- A BATCH PROCESSING INTERFACE

1CORRECTION AID / DICTIONARY (1)1

GENERAL CONSIDERATIONS:

- THE USE OF A DICTIONARY MAKES ONLY SENSE IF THE
VOCABULARY IS SUFFICIENT

- A VOCABULARY OF APPROXIMATELY 150.000 WORDS IS A
REASONABLE COMPROMISE (VOCABULARY, DISC SPACE AND
ACCESS TIME)

- A STATISTICAL EVALUATION OF THE VOCABULARY DURING
THE SELECTION-PROCESS IS ADVISABLE

- THE GENERAL RULE OF THUMB FOR DATABASE CAPACITIES
SHOULD BE KEPT IN MIND IN ORDER TO GAIN REASONABLE
RESPONSE TIME (I.E. CHECKING OF 100 WORDS IN 2 - 3
SECS.)

- UNTIL THERE ARE BETTER ALGORITHMS AVAILABLE FOR
PARSINS,INTERPRETING AND UNDERSTANDING TEXT IN HIS
CONTEXT IT IS NECESSARY TO MAKE THE DICTIONARY

~> USER ACCESSIBLE

AND

~> SELF LEARNING

SEE NEXT PAGES

lDT I RECHENZENTRUM HERBERT SEITZ KG I PAGE: 5

13 5

lDT I RECHENZENTRUM HERBERT SEITZ KG IPAGE: 6

13 6



H
o
~

ICORRECTION AID I DICTIONARY (3) ,

name' I __.J ®
@L.._J .

Printer No. Cl

from 'text

'3> Print correction aid totally
<4> Print hyphenation eKceptions total iy

(5) Vocabulary from I1PE-file . ._©_.._
into CQrrectlon aid

(6) Vocabulary from NPE-file
into hyphenation exceptions file

171 Copy correction aid into MPE-fil~ dQD
(8) Copy hyphenation exceptions into HP~-file

<1> Vocabulary into correction aid
(2' Only from section:

J

co

NEW VOCABULARY MAY BE ENTERED FROM THE TEXTDATABASE (8) OR ONLY SOME SECTIONS ~
. OR MPE-FILES ~. IF THE TEXT IS CAREFULLY CHECKED IN THE FIRST PERIOD OF USE THE

DICTIONARY WIL~ BECOME MORE AND MORE SUFFICIENT FOR THE SPECIFIC APPLICATION. THE
DICTIONARY MAY BE RESTORED TO MPE FILES (g) FOR BACKUP PURPOSES OR STATISTICAL
EVALUATIONS.

H
o
~

ICORRECTION AID / ~ICTIONARY (2) I
Form if Haintenanance correction aid

o (X) Copy display to printer

~ THE USER MAY ENTER OR UPDATE DICTIONARY ENTRIES WHENEVER NECESSARY ~.
t'Ij



CORRECTION AID / DICTIONARY <5} I

Maintenance of hyphenation-exceptionsForm 3

Word
Hyphenation at

~I~rION

lOT )000

®---------------_._, I
(A) Normal hyphenation after this co)u~n

(K) for ck to k-k hyphen~tlon <special feature for ger~an)
<v> for con~.Ctnant du.pl ica~ ian (special feature for german)

existing definitions ~il1 be displayed

o (X> Copy scr~en to lineprinter

Elease mark whp.re You want a hyphe!)dtJ9!_' ]

-o
THE USER MAY ENTER OR ALTER EXCEPTIONS FOR THE HYPHENATION ALGORITHM G8) WHEN
NECESSARY. IN THIS WAY THE STANDARD PRECISION OF APPROX. 95% MAY BE INCREASED >99%
FOR A SPECIFIC APPLICATION WITH ITS TYPICAL SET OF VOCABULARY AND SIZES OF THE
FORMATTED TEXT.

CORRECTION AID / DICTIONARY (4)

Text name ~ORRIrEt'J) Sect ion[C] Password r-~-=-_~ J.f.tl-F j le
rn text entry (4) insert at

<5> m~dify from
2) print on (6) display from line L-~

printer 0 (7) delete all, or fro~ fine to
f 3 > r en11mbe r ( a) dup 1 i ca tel i ne __ . _I__ __ to

(9' search pattern _. . ... frolll --.
Correction aid <0' copy __. 1 1.. __._ to t-=.-I

11 21 31 41 So, 131 71

@
P1~ase che(:k y(Jur_._t~)( t_~_na ..£Q!.L~0-_~.l.Q.!...~! '- . . :=J

THE CORRECTION AID CAN BE ENABLED THROUGH THE USER (8) AND WORKS DURING TEXTENTRY
OR UPDATE (§). UNKNOWN (NOT NECESSARY WRONG)WORDS ARE MARKED ~ AND THE USER IS
PROMPTED FOR RECHECKING AND CORRECTING (]D.



H
o
~

- -- - - - - - -

c-.....
.-"1

---- r-r.

N

lJ)

W ..
~ :iI
<: t:>
~ -=:

c.
(/) ~

W x ----..0:: (/) Z w
W (/) 0 Z

~ 0.. (/)
C)a >- w .... 0::: tr.

W .... u « w w :.:
0:: u 0::: ....

NW « :J u.
~ ...J C) <C i: E-t
Z Q < H

U. <C u. (/) (/) x t.LJ
(/) W Z .... W ;,L. til
(/) t- o:: 0 <Cw Z u ~ 0::: f-.
u UJ :x: 0::: « l.. n:
0 0::: t- W .... 0 Z If '-aJ
0:: W :J: Z U. 0 ~0- ~ ~ t- W
t- ~ ~ « .... ~x (/) 0 Z t- U ;c
w Q L&J .... 0 «.... ...J 0:: Q Q :(

0 (/) :;:)
po-- Q .... u. (/) > u. <C ~

Z L&J Z 0 t- E-t- « (/)- ...J U w « z
~ V) UJ ..J U z Q "-1....., I uJ Q. <C <C C) 0 N

<C U ~ Z <C Z.... U 0 0::: .... ~
<C <C ... .... L&J t- <C (/) > :I:V) C ~ (/) « u w U

L&J <C (/) :J 0:: C) (/)
~(.I) LL ..J (/) (/) UJ LL Z en0 ~ ~ L&J Q 0.. « UJw « u w 0 Q :x: uz t- ... U t- o U u --u 0 0:: W « L&J ~ .... «

u 0 C) ~ :I: :J.... LL <C 0:: - .... >- 0 <C
et:

<C ~ ~ w ...J (/) >- ....0::: 0 - (/) z u. « <C «C) u ....., :J :J 0 UJ ..J QI.LJ UJ....
-J Z- E-t

a
LLI Hu.. :r:-- ....

CORRECTION AID / DICTIONARY (6) I

f crrTl S Pattern Maintenance rDT 3GOfJ

No.
~

Existing patterns will be displayed

o tX) Copy screen to J ineprinter

COMPLEX TEXT EXPRESSIONS MAY BE DEFINED AS TEXT PATTERNS (8), IF NECESSARY WITH
TEXT FORMATTING COMMANDS (R). PATTERNS ARE CALLED WITH THE COMMAND &nnn
(~nn = PATTERN NO.),



IF I LEA C C E S S (3) I
Customizing data access tadre9s-file and master-fil~ 2>

-
Form 5

A CA) Customiting adre~s-rile

In this form You may customize Your

(9) Customizing master-file 2

Adre~s- file

IllT 3000

You ~ill .have to d~scribe each field (1 - 50).
Existing descriptions will be shown.

Field Fieldname ® Start Data-( J) Siz~(2. FormatO) ®NO@) Col. Typo?
12 A Name ::oJ m 0 ~ Lr------------_-=----j

(1' P4-P12 packed numeric ite~ ~ ~ (3) 'X' place for 1 alphanumeric
C2-C10 binary coded numeric item character
F alpha-numeric item 'Z' supress leros

the last digit mu~t be
an 'X' for a gign
character <nwner ic-l ten.

P~le,;:.;a=s:.;:e~e:.:.;n:..::t~e.:..r_~fie:..:l:..d-::::--:.lf..;:o;..:.r;;:.m:il.:..t':-0. . ===:J

(2) Size:
you may need one digit for a
sign character!

n (X) Copy screen to lineprinter

UP TO 100 FIELDS PER USER AND/OR SESSION CAN BE CONFIGURED ~. THE NAME (6),
POSITION <&), DATA TYPE (g), SIZE <E) AND OPTIONAL EDIT MASKS <E> CAN BE
DEFINED AND MODIFIED WHEN NECESSARY.

IF I LEA C C E S S (2) I
to r_fL?:.- . --:..F-:J....:.I.:.,e_C;:""..;:o:..;n.:..:..f_~~.t lon ...__ I 0 l~.q[g

SpecificatIon of Address-File: F i Jename KQ.STAH :J

F i letype
m (1' IMAGE-DB eDRSIA J Password ~R~ .~

S~archite", eORNL J (fjetClil Dataset)

@ (2) KSAH-Flle <Access via Primary-Ke~'
<3> HPE-File (sequentJal. only for Serial Letters)
<4> Adress-File not used

Specification of the order ::J File Filenamt? [Slt.Q_l .]

Filetvpe
m <I) IMAGE-DB ffiID![! .. =:J Password ~------~

Searct-d tem IIOTN.B. . ] (Data l! Da taset) ------

@(2) KSAH-File (Access via PrImary-Key)
(4) Second Master-File not used

o eX) Copy screen to lineprinter

~e enter data and pr~s~ -ENIER-=- ._o_ __04.- ••_._~

THE USER MAY DEFINE OR CHANGE FILENAME AND TYPE FOR AN ADDRESSFILE ~ AND
ANOTHER USER SELECTABLE FILE <ED.



H
o
l-3

[F [LEACCESS

Text name L.__ .-J S~ction c=J
J (1) From unformatted text or (l> formatted fIle to printer No. 0
o (!) A lett~r to addressee: . . ~

®(2) without accessing t~e address-f ile
A (3) Ale t t e r t 0 all add r f? S C:. €I 5 () f the ad d r 4? c;, S - f i 1t?

(4) Only selec ted addresses wi th field _ _ .._
c=J field

o <X> Using lett~rhead:

<X> WJth data of Urdef
<X) MargIn alJgnment

Your let ter Ollr sign

H
o
l-3

----------------------_._------------_._----- -----------

THE FILEACCESS (AND THE DATA SELECTION) CAN BE DONE DURING THE PRINTING /
SELECTING OF BUSINESS LETTERS ~. DATA MAY BE SELECTED AND INSERTED FROM
THE ADDRESSFILE ~ AS WELL AS FROM THE MASTER FILE 2 CS).

IF I LEACCESS

["q!!!_.? . For mi1!) ~~-=-~_~~~il ===~~=~~=-==-.lQ]_--i r~!i]

Tex! name ~!i!ri9b(;>iJl Sf-ct ion~ F'a~s'JJt,rd L __-=-=:J

~ (1 ) ~ormatting tex t (text
®(2) Pr!nt formatted text

~ (X) In~.ert add re~·see ot

file -) formatted t~xt file) C01umns~~
r) n r r r,.., t t? frIo • [J

<X) Add from rnaster-file2 Orders
from

Ul

<x> Blockformat required

THE FILEACCESS (AND THE DATA SELECTION) CAN BE DONE DURING THE TEXT FORMATTING (8).
DATA MAY BE SELECTED AND INSERTED FROM THE ADDRESSFILE ~ AS WELL AS FROM THE
MASTER FILE 2 ~.

~,...J.. ~



H
o
~

ID A T A S ELEe T ION

Text name ~onERg Section ~11 Pa.ssl.lord L J

~ (I) From unformatt~d text or (2) formatted file to printer

] <I> A letter to addressee: loooooa®
~ (2) wi thout access-Cngthed~jrec;s-f{lE'
~ (3) A letter to all addresses of th~ addrE"ss-file

(4) Only selected addresses with fip)d
L I field =

No. rJ

~ <X> Using letterhead:

X (X) With data of Ordp.r
<X) Margin alignment

~14.1 dated for rent?wed ~.ubmis~.jon : Q2..Q.381

Nast e>r- file of ~.32:n..QJ.L21L© _
Column <only printer 2601)

--------------- --_._-- - -------_._-- -------
Your sign YOllr JettE'r Our ,=,ign Dat~

S. 8. 198.L _

co

THE SELECTION OF DATA CAN BE DONE IN THE TEXT FORMATTING MODULE OR DURING THE
PRINTING OF SELECTED BUSINESS LETTERS (8) WITH DATA ELEMENTS OF THE SPECIFIED
ITEMS ® + ©.

t'--.....

""'"'

if)

w r--
en C.:J
UJ <!
-J a.

~
u- ..... C)

x ..:::« w Cl4
t- Z -« ,-...
0 UJ (/) a::: V>

:c 0::: 0 .. UJ Z Z UJ
0 t- UJ ......... ~ UJ U 0 « ...J C)
UJ t- o (/) :I: « - a. ~z C) t- Z « t- u- ~ z ~
0 z w « a::: « < N

-J t!) UJ U x 8
~ 0::: (/)0 Z ~ ::J « lLJ H
Z => wo z ~ ~
UJ 0 0 t!)0 0 0- « w U)
~ w « t-r\ 0- 0 UJ

en t- => t- > :r: « if) E-1
UJ 0 U C) 0::: 0 U 0 ~> z w z 0 0::: ..... W W W

r-- 0 « ..J « 0- 0- « 0 .....
~c::Q :E: UJ ..J W c::Q 0 U UJ

,-... « ~ (/) 0::: ,-... ~ W -J Wr--i en 0- >- ·0 ..J :I:- UJ >- U 0::: .. UO Z W u.
:I: « t!) >- ..... 0 0 (/) :£t- ~ w z ::> 0::: UJ t-r\ UJ ::>

0::: 0 UJ t- (/) w u ex;z u. t!) « ..... z ::> en 0 (/) :I: <t E-10 z CL Z G >- UJ t- U- Z0 ~ - en en a::: {.J..1t- ~ 0 a::: ,-... « « t!) UJ N=> 0 U 0- UJ U) UJ 0::: Z ~ Z0 .....J U) 0::: Z Z 0 Z Wt-- -J ..J 0::: « 0 UJ 0 :I:« 0 « w c::Q ..... t!) I ;: UU t- u- U ~ - « « :I: :I: t.4<: ~ « a::: .. t- U 0 U ~UJ 0 UJ t!) UJ t- UJ ~ « ~ 0::: ~:r: 0 _I « z u 0 « 0- «--l u- t- ..J 0 UJ c::Q c::Q
0 en t!) ::> 0 en .---..

w Z :I: U) :I: a w :r: ~oz <.!) UJ t!) t- ..... C) « 0
(/) 0 => z => 0::: .. U ::> 0:::0

UJ 0 0 0 N UJ W 0 t!) t-r\
t- Z 0::: U) a::: CL ..J ..J a::: 0 t-
U 0 :r: ::> :I: UJ => UJ :r: a::: 0<t: UJ 0 ~ c::Q ~ a::: a (/) u. t- o.. --J

I- UJ UJ E-.
en c::Q Q

d:: H
UJ z

Q :I: «- t- U



o
N

"""'

H

o
t-3

ICUSTOMIZER (l) I

;ype ~1~SS

<8> Lineprinter 261312617/261~

<D) as Device
<F> a.s lJevlce
eGJ Laserprinter 2&80

Printer
2
4
6
3

as Hardcopyo <~) Copy screen to ! ineprinter
<H) Olympia ESW100RO

C:-crfYl 1 Customi!er tor Hn.rd l;,arE-cQnfigurat1ofl lOT 3000

:®har.Set : (1) ASCII/UK (2) Oeuts,-hUSOI (3) Francais <4> t:spano!
~~anguage : (I) Engl ish (2) Deutsch (3) Francais (4) Espanol

x> Auditfile USo>d.® addressee in flel.~ No. if] 1)'
(X) Database for Hyphenation-Exceptions u~ed ~

. 00 Corrp.ction-Aid used®
Printer Tvpe Oe'!ice-Cldss F

~ ~ ~®
<A) Terminal-Printer
<C> Matrixprinter 2608/2631 as Hardcopy
<E> Daisywheelprlnter 2601 as Hardcopy

~
n
::z:
t"1
Z
N
t"1
Z
t-i
~
c:
~

::z:
t"1

~
t"1
~
t-i

In
t"1
H
t-i
N

~ E1(:-a~.~_~nter-=-da-t5!_~~lli·i~~:. -·mrn=-__~=~~~~=~~-=~~=-~=_=_.~=-==-=_-=.=J

-

rv
o

THE INTEGRATION OF DATA- AND TEXTPROCESSING REQUIRES THE OPTION OF TEXTPROCESSING
WITHIN THE EXISTING DATAPROCESSING (HARDWARE-)ENVIRONMENT (8) INCLUDING CHARACTER
SETS ®, LANGUAGES ©, DATA LAYOUTS ® AND THE PROCESSING ENVIRONMENT ® + ®.

H
o
~

IDATA SELECTION (3) I

o
(2) print on

printer
( 3) renumbe r

E~iJ 03 Le_LJ...!!. ~___L_!J_J.~~_D_L~ . . TJn]1J]
Te~t na~~ ~QR(RY Section~ Pas~word c====J l~~-Fil~
ill (1) text entry (4) Insert at

(5) modify from
(6) display'fro(Q line [==:J
<]) nelete all. or from line to
( 8) dl.lp lieate line . I to
(9) search pa.ttern . . f rom

_ eX> Korrektur (0) copy _. 1 . to C:=1
,- • 11 • 21 • 31 • 41 • 1)1 • 61.. 71

;~i~r1; an rt@le of-TIlT3oo's ,jatarr;;E'rtTo--;-T~7tture-:---------------
~I~ar Hr. ~A12.

1~2.nk l'ou for Your letter and Your inter~~t !Tr our neiL! ~B~·n. ihe
~. ric ~ I) f ~B35 rc; \I e r y a t t rae t i ve .
01.1 r 10 cal rep r ~ ,::. eo n tat i ve Hr. &0SAL ESHAN ltd l J (Jj n t act t 1..1 U IJf i t h 1nthe
n f> x t f t? W day S 3 nd prov ide f II r the r i~ r rna t 10 n~. f ,) r Y(\ U •

SinCE'r!-l Ycurs'5R$R&VsIgn€'r$R&V~Itle ®

DATA ELEMENTS CAN BE DEFINED BY IDT3000 INTERNAL FIELD NUMBERS (8) (REFERRING TO
THE CUSTOMIZED FILE-ENVIRONMENT) OR BY DATA ELEMENT NAMES OF A DATA DICTIONARY ~
(DICTIONARY 3000).



-

("\J
N

/V"'\
t-~

I Na::: N
UJ.... oo
Z

~
(,)

-J
IC(

« Cl.

0:
~UJ I

> en " I «
UJ .... .... « u
en ::> 0: ~ .... C>

0 0 0 « z ~
en >- 0.. 0:: 0 0 ::>
UJ ,.... « ,.... UJ u.. .... ~ N
0:: UJ -J en 0:: ~ Z .... ~ E-c

C) UJ 0 .... Z 0 H
::> « UJ " UJ Z U ~
0 ~ -J 0: ~ 0:: t- O U)
UJ « en « « 0 Q.. 0::
0:: U. Z « ~ u 0.. UJ ~

0 i. 0 0 t- t- ~
C) Z -J " 0:: Z " -J ::> J,aJz « <: <: t- >- <: ........ ::> en ::> 0..

~en z u 0:: ::I: 0:: ~ UJ ~ ~en C) ~ 0 UJ UJ ~ ::I: 0,.... ~en Z ;: 0 ::> C) .... 0 U . U :I:
UJ a u z z u Z I
U en UJ '5 <: t- u. 0 0: :E0 en 0.. t- u. UJ t- o:: <: 0 UJ ::>
0:: UJ ~ <: « 0 z 0.. t- o:: t- t- -J ~
0.. U ......... 0: 0 C) en <: u <: ::> E-ct- o t- Z t- ~ 0:: 0:: 0 U 0.. « zx 0:: en ~ " ::> <: 0.. UJ ~ ~ ~ t.aJ
UJ 0.. UJ en en 0 0:: en 0 z 0 Nt- t- -J en <: en C) u. <: z " ::> u u z- x z ~ UJ en 0 0 -J « en ~ W0 UJ U. 0 UJ U Z 0: UJ ~ " z :I:(/) z .... ;: ::I: 0 0 0.. en 0 UJ 0.. 0 Z 0 u<: 0:: u 0: UJ t- C) « u 0 0:

~w UJ UJ en 0.. t- Z 0.. Z .... ....
I :L t- Z U 0 >- 0: < < t- WU < t- ::> UJ ::I: UJ t- UJ ::I: U .... « UJ..... 0.. U. en u -J ..... t- U < W -J -ex:: <: z ~ UJ <: t- UJ <: en x t- o UJ

0 UJ 0 0 CQ < en u ::> 0:: UJ UJ Zu.. UJ u CQ ::i 0 x Z t- ::> "0 ~ < « < UJ <: C) z ~ zcr: UJ t- UJ t- t- UJ .... 0.. 0:: 0.. ..... « ~ 0t- UJ :L « « ::I: « 0.. <: >- « ~ 0 0UJ < CQ t- o 0 t- o <: > t- o ~ 0.. W .....
0::

~ C) en
UJ UJ E-4z t- w Clz « H- U.

~

\SUPERV I SORI

FO"rm I _. DaJly RE:pOL!.!B~ne'~Q ~~bm i ~si..Q~_._. . --=nI'[)"(fQ]

o <I) Print daily r~port ® Pru,t",r ~Io. 0
<2> daily report only for business letters
(3) checlc li,t for ro:neued submission ®

o <A> Totally
(B> Date of beginning
<C) From this date up to EJ©
Sort item
1st []
2nd
3rd == @4th _

Optional

(A) Print date-
(8) Date of reneued submis~ion

<C> User

only 'text name
only user

( [) Teo )( t name
<E) AdressE:'e

COllment -----_.__._-----._._----------

THE SUPERVISOR FEATURE ALLOWS SOME KIND OF PROCESSING FUNCTIONS LIKE DAILY REPORTS
JF OUTGOING LETTERS A~ REPORTS (8) OR RECORDS OF RENEWED SUBMISSIONS, THAT ARE
DUE FOR NEW ACTIONS (]D. BOTH REPORTS MAY BE TOTAL OR A PARTIAL SELECTION ~
WITH DIFFERENT SORT CRITERIA <!D.

~_-.j""'-------------------------------,"-------,-,---_._,-



8..llI~I!liJilll~_P ..__~11f1f:YI~! .. ~Y~IEM-.l~If.B-(ON~CT IJiG HP2.QQQ1.

HLIOOQ_BmtJ1I~fR._~lNL: __COMPuT~R~

BJORN DREHER, HANS VON DER SCHMITT, RAIMOND SCHOECK

INSTITUT FOR KERNPHYSIK DER UNIVERSITXT D-6500 MAINZ

WEST GERMANY

14



Fig. 1: Overview of our distributed computer system (the CDC1700
will be replaced by a PE3220 system).

E x per i men t s
I I
1 I

+---------+ +---------+
1 1 I 1
1 HP1000 1 1 CDC1700 1
1 1 I 1
+---------+ +---------+

1 I
1 /

I /
1 /

1 /
\ I /

+---------------------------+
1 I
I H P 3 000 I
I I
+---------------------------+

M i c rot ron
1 1
1 I

+---------+ +---------+
1 I 1 1
1 BP1000 1====1 HPIOOO 1
1 I I 1
+---------+ +---------+

1
\

\
\

\

At that time 053000/051000 was not yet available, but HP had available
a product called "Programmable Controller", which was an BP2100 (or at
that time already an HP21MX) computer connected to the BP3000 via a
16-bit parallel link using Universal Interfaces at both ends. With
this product came cross software that enabled the user to generate
RTE-e operating systems, to assemble HP1000 Assembler programs, bring
it into an absolute form using a Cross Loader (XL2100) and download it
to the front-end computer. There existed also an (unsupported) Cross
FORTRAN compiler that was compatible with those days' FTN-IV compiler
of RTE-III. Our final configuration is shown in· figure 1. The two
interconnected HPIOOO systems are today running RTE-IV operating
systems, the third one used to work with RTE-C and we are currently in
the process of rewriting our applications to be compatible with
RTE-IV. For the CDC1700 we built an interface to let it appear to the
BP3000 like an BP1000 computer, so that we could connect it to a third
Universal Interface card.

The Institut fUr Kernphysik der Johannes Gutenberg-Universitat at
Kainz, West-Germany, is a medium size institute for basic research in
the field of Nuclear Physics. We have an 340 MeV linear accelerator
for electrons to perform research in the nuclear structure area using
electromagnetic interaction. Currently an 175 MeV two stage c.w. race
track microtron for electrons is under construction, which is con
trolled and operated with the help of two BP1000 computers. The first
of the two stages is operational since 1979.

A Distributed Computer system Interconnecting BP3000, BP1000,
and other Mini-eomputers

Bjorn Dreher, Bans von der Schmitt, Raymond Schoeck
Institut fUr Kernphysik der Universitat

0-6500 Mainz, west-Germany

1. Introduction and early history

Until 1976 the control of experiments and the data acquisition was
performed by a (today still operational) CDC1700 "minicomputer". In
addition a substantial part of the data analysis was also done on this
system. By that time we noticed that the computing power and the tools
for program development of the CDC1700 were no longer adequate for our
tasks. Therefore we decided to purchase a new powerful minicomputer
system (BP3000) for the data analysis part of the work and to connect
to' it several smaller systems (BP1000) as front-ends for the real-time
applications.

Since at that time the cost for disc memories was higher than today
and memory-resident operating systems were still around, we wanted to
be able to perform the program development to a large extent on the
BP3000, even for the front-ends. operating systems were to be genera
ted on the BP3000 and then ~ownloaded to the small system.

In addition, to reduce t~e cost for the front-ends, these should be

equipped only with experiment related peripherals, such as CAMAC
interfaces, and not necessarily with expensive magnetic tape trans
ports or line printers. A concentration of those devices at the BP3000
would promise a much higher utilization and availability to all front
end computers.

There existed already some communications software for a similar, but
in some essential points different, distributed system at the Techni
cal University in Berlin. This had been written jointly by HP
Frankfurt and the Technical University of Berlin. It was kindly made
available to us and constituted the basis for our current communi
cations system between the front-end computers and the HP3000.

14 1
14 2



2. The curren~ sys~em

In the process of ge~~ing ~he ini~ial sys~em running i~ ~urned ou~

~ha~ both communica~ion drivers in ~he BP3000 ( IORENO) and in ~he

BP1000 (DVR63) were not sui~ed for our problem. Therefore we 'had ~o

modify bo~h, especially the BP1000 side. Now the communication between
~he ~wo compu~ers is really interrupt driven on bo~h sides without the
need to loop on a s~atus request to see whe~her ~he o~her side is
willing to send, ~o receive, or to do no~hing a~ all.

Today three compu~ers are connected in a star configuration to the
BP3000 and a forth one will be added in the near future. The peri
pherals of the BP3000 are accessible to the small computers through
the file sys~em or directly via special communica~ion drivers in the
BP1000 in the case of magnetic tape uni~s, line prin~er, and plot~er.

Direct program to program communication between a program on the
BP1000 and one on the BP3000 is also available.

In ~he following we give an overview abou~ ~he possibili~ies a user on
one of ~he front-end computers has in ~he curren~ system:

a. Access ~o the en~ire file sys~em of the BP3000

- Read and write sequentially or in direct access

Position ~o records, write filemarks, space fi1emarks, rewind,
etc.

- Ob~ain ~he s~a~us of a device

A supervisory program in ~he BP3000 ( CENTRAL) keeps track of all
files opened by programs in the front-end computers. so that only
those programs in the fron~-end computers may access the files who
"own" i~. When a program closes the connection to the BP3000, all
files opened by it are automa~ically closed. In addition there is
the option to open files globally, so that they can be accessed by
more than one program simultaneously.

b. Initiate batch jobs

c. Create and ac~ivate processes

d. Program to program communication between programs in the front-end
computer and programs in the BP3000.

14 3

e. Perform MPE commands

f. Generate an Rl'E-e operating sys~em on the BP3000 and download it
in~o the target machine. Develop application software in
PORTRAN-IVor HP1000 Assembler, bind i~ into the target system and
download i~ dynamically in~o ~he target machine.

9 • Transparen~ use of peripherals of the BP3000. Magne~ic ~ape uni~s

and the lineprinter are accessible from the front-end processors
as if they were connected direc~ly to them, e.g. through PORTRAN
READ/WRITE statements or EXEC-calls. The plotter is available
through s~andard (Calcomp-) calls. This concep~ is easily expanded
to o~her peripherals.

According to the ini~ial demands to the system, communication is
normally initiated by one of the front-end computers. Each request
consists of a pair of messages of variable length. The firs~ message
contains ~he request type and the necessary data. The second (return)
message contains possible error codes and the resulting data. The
interface on the HP1000 side is a se~ of subrou~ines (SATTL) ~hat

allow ~he programmatic execution of all features mentioned above, or a
direct EXEC call to the drivers of the (virtual) peripheral devices
a~tached ~o the HP3000. An interactive program (XOPPL) allows to exer
cise all requests ~o the BP3000 and to transfer files from one machine
to the other.

The receiving process in ~he BP3000 is one program (CENTRAL), which
performs all necessary operations to satisfy the individual requests.
This process runs· as an always present batch job (in the CS queue),
one job per link ~o a front-end computer. Each front-end compu~er can
have up to 5 programs communicating with the BP3000 a~ ~he same ~ime,

each of which may have up to 10 files simultaneously open. Those
numbers are more or less arbitrarily chosen and can be easily
increased when ~he need arises. Requests from different programs can
be freely intermixed.

3. Need for additional functions

As one can see from the previous chapter, the current system con
stitutes a fixed master/slave re1a~ionship between two communicating
cbmputers, where the fron~-end processor is ~he master and ~he HP3000
is always the slave. This was satisfying for the first few appli
cations, but soon it turned out that a dynamic establishment of the
master/slave relationship and a more direct communication between

14 4



programs/processes in the vaxious machines would make many appli
cations easier to implement. In particular , it should be possible to
start an exchange of messages from any computer.

A general process to process communication across the entire distri
buted system seemed to be the most attractive solution. Of course, the
existing higher-level functions of our current system should not be

touched.

4. The BPIOOO message system

Portunately a system that fulfilled many of those needs had been
implemented in 1978/79. It was developed in our institute for the
inter-process communication ( IPC) among the various on-line control
programs which are distributed within the two BPIOOO computers that
control the new microtron mentioned in chapter 1.

The communications protocol of the process-to-process layer is based
on the exchange of messages via just two operations: SEND and RECEIVE.

Messages have the same form whether beeing exchanged locally in one
computer or between the two computers. The participants of the com
munication are addressed by lO-bytes symbolic names. These are mapped
to target computer and process by the system.

Messages axe transmitted as sequences of fixed-length packets in a
store-and-foreward fashion. Each packet is 64 bytes long consisting of
a header (essentially sender and receiver addresses) and the data. The
packet transmission constitutes the computer-to~computerprotocol,
which is thus very simple and easy to standardize.

In addition, I/O requests to devices attached to remote computers are
transparently handled by using IPC between I/O drivers.

In summary, this message system enabled us to build a modular distri
buted control system. The modules (programs) axe explicitly portable
between the two computers by using the symbolic addressing scheme and
by the transparent I/O system. Thus programs can be freely redistri
buted on demand in a growing system, as our microtron control system
is.

14 5

5. The second generation communications system

Based on these ideas, we are currently in the process of implementing
a second generation of our communications system uniformly throughout
our distributed system. It will interconnect one BP3000 with three
SPI000's and one PE3220 computer.

The new system will also be an IPC system transmitting messages decom
positioned into packets. However as compared to the above application,
the system must be capable of higher data flows since the number of
data bytes per message will be laxger on the average. Therefore the
packet size will be increased to 128 bytes. On the other side there is
less need for a fUlly symbolic addressing capability and other over
head-generating features of the BPIOOO message system. Thus a higher
data throughput may be achieved. Some essential features of the new
system will be given below.

Prom an architectural viewpoint, messages between two processes will
be transmitted in our system by a store-and-forewaxd packet SWitching
mechanism.

splitting messages into a number of sma1ler packets has important
advantages:

a. Long messages do not necessarily monopolize a communication line.
They can be interleaved with packets from other (more urgent)
messages.

b. By using fixed length packets as the vehicle of message transfer,
it is easy to buffer messages prior to the actual transmission and
incoming messages before they are collected by their recipient.
Buffering space will be taken from a global packet pool common for
all ports of a particular computer.

c. Buffering separates nicely the lower communications layer, that
controls just the traffic of incoming and outgoing packets, from
the next higher layer, that consists essentially of the decom
position of messages into a series of packets (SEND operation),
the reconstruction of messages from a series of packets (RECEIVE

operation), and the mapping of symbolic addresses.

d. ~ store-and-foreward capability comes as a by-product from the
buffering.

14 6



7. Conclusion

In summary, even the current ( first generation) system and the
dedicated HP~OOO message system have proved very valuable in many
daily applications. The second generation system, that will be avail
able on all our in-house (mini-)computer systems, will have an even
higher impact on man~ current and future applications. After 4 years
of experience with an own, custom designed, communica~ions system, we
feel that in our case this was the right way to go. Even today, there
is no communica~ions s~em commercially available ~hat would fulfill.
exactly all our needs. Having all the knowledge about the system in
house allows us quite easily to add new required function to the
system, as they arise. The fact that most modules of the system are
written in a high-level portable language makes it easy to put the
system on o~her computer families and integra~e them into our distri-

buted system.

Besides packe~ing/de-packe~ing, packe~ ~ransmission, and buffer
managemen~, ~he sys~em has ~o perform addi~ional moni~or func~ions on
~he participa~ing processes.

i. Processes mus~ be suspended and re-ac~iva~ed in ~he course of
SEND and RECEIVE reques~s.

ii. Time-out conditions may arise in RECEIVE as well as in SEND

requests; the former when an expected message is no~ received in
~ime, the latter when a transmitted message is not consumed by
the recipient in ~ime.

Prom the hardware point of view we will still have point-~o-point con
nections between ~he various computers in a s~ar configura~ion (with
~he exception that two BP~OOO sys~ems are connected directly with each
other), the BP3000 being ~he inner node. We will use ~he eXis~ing

hardware (~6 bi~ parallel plus some con~rol. l.in~s) wi~h Universal
Interfaces in the BP-compu~ers on both sides. However, as can be seen
from point c above, the kind of hardware is not that important for ~he

designed function of ~he whole system.

6. Implementation

To reduce programming time and to improve main~ainabili~y and
documen~ation of ~he system as well as portability we decided to write
as many as possible rou~ines in a high-l.evel language. Por ~he

non-BP3000 sys~ems we decided to use RATFOR [~], which is a PORTRAN
dialect that adds s~ruc~ured elements ~o FORTRAN-IV. The output of the
RATFOR preprocessor is s~andard FORTRAN-IV, which serves for the
portability of RATFOR programs. only few routines on the HP~OOO

systems are written in BP1000 Assembler.

The same approach will be taken for the PE3220 system, which will
replace the CDC~700 computer.

Since it is expected ~hat the HPjOOO will have ~he highes~ message
~raffic of all computers and since several routines have to perform
~heir tasks in privileged mode, we decided to write the BP3000 side in
SPL, a~ least ~he inner kernel with ~he mos~ time-critical parts of
~he system. This allows us ~o make ~he best use of the HP3000 archi
~ecture and its instruction set, thus lowering ~he time overhead
introduced by the ,packet SWitching architecture.

14 7

[~] B.-W. Kernighan, P.J. Plauger:
Publishing Co. ~976

Software Tools, Addison-wesley

14 8



THE USE OF EDP IN THE FRE IGHT EORWARQJ~§

AND SHIPS AGENCY »!l$Jlt~~.~

HARDY JENSEN

JORGEN RIX

H. JENSEN
J. RIX

DATA ADVICE A/S
NIELS BOHRS VEJ 3
OK-600D KOlDING

15

/



--~=111111111 ViDa
Abstract: (No more than 200 words)

DATA ADVICE ~

OATO:

SAG:

SIDE:

02

Presentation Abstract

Presentation Title: The yse of EDP in the freight forwarding and ships agency

business

Author(s): _.....;H;.;,;:a:;;.;.r...;:;;d....y...;;J;..;:e:.;.;n~se=.:n~.L-,...;;,.J=.:0r:...;;g~e;.;.:n...;;R:.;..i:.=.;x=--- _

Title(s): S_a_l_es_M_a_na_g_e_r_,_S_a_l_e_s_D_i_r_ec_t_o_r _

Address: __D_a_t_a_A_d_v_ic_e_A_/S_,:....-N_ie_l_s_Bo_h_r_s_Ve-.:"J=--o_3..:..,_D_K_-_6_00_0__Ko_l_d_i_n.::.g _

Abstract: (No more than 200 words)

Data Advice A/S, is an OEM- and software house in Denmark, which have

specialized in the freight forwarding and ships agency business.

Data AdYice A/S has therefore designed and jmplemented a total frejght

forwarding and ships agency package for use on HP3000 machines.

In this package Data Advice A/S have integrated the forwarding and the

book-keeping procedures so that double data registration has been

avoid, also is the system build so, that is uses the advantage of an on-line

machine i.e. information typed in by one person is at once acc~ssible to

all users of the system.

IS 1

Briefhy the system, among other things, contents of following functions:

- Import and export routines from the point where the order is taken
through part-/full-load bookings, way-bill handling, haulage plan
ning, loading fists, unloading lists, manifesting, customs
clearance (both import and export), automatic invoicing to total.
financial accounting including book-keeping on all relevant accounts.

15 2



TRANS·AND·FHTURE·BIRE£TI9NS·BF-Hp·PERIPHERAl-PRODUCTS

W. J. MURPHY

**** WE DIDN'T RECEIVE THE PAPERS YET (EDITOR) ****

W.J. MURPHY
HEWLETT PACKARD

Jl 1



NEW SOFTWARE ENGINEERIN§ ALTERNAT.I~ES

NEW SOFTWARE ENG:NEERING ALTERNATIVES
(ABSTRACT)

BIRKEl FOSTER

notes on selecting software by Birket Foster, m. b. foster associates ltd.
2755 draper place, ottawa phone (613) 820-5067

The objecti.,ve of this talk is to help hp3000 users in the software
selection process. It is recognized, that many applications and
utilities could never be written using in-house expertise or
resources (adager, quiz,qedit, 8image, etc) there is a growing
community of HP3000 software vendors to which many HP3000 sites
are turning to speed the systems development life cycle.

For most sites the process of selecting software is a new one.
This paper presents a framework to help hp3000 users avoid the
pitfalls of purchasing someone elses software to process their
application.

The areas, covered in this paper are:

1. introduction
2. the selection framework

a) scope
b) features
c) rating system
d) selecting committee

3. souces of supply
4. other information required
5. the decision
6. the legal contract
7. conclusion

J2 1

******* SORRY, BUT DUE 10 POSTAL SlRlKE THIS PAPER DIDN'T REACH US
IN Tlfo1E, ASK THE AUTHOR FOR COMPLETE DOCUMENTATION - (EDllOR)

J2 2



JOBLIB/?OOO - AN INTERACTIVE PRE-PROCES~L~G SY~TEM

MARTTI LAIHO

MARTTI LAIHO
Ov PORASTO AB
TOOLONTULLINKATU 8
SF-00250 HELSINKI 24
FINLAND

J3 1

-1-

"l1artti Laiho
OY PORASTO AS
Toolontullinkatu A

SF-00250 Helsinki 7.1)
FINLAND
telex: 1?SlQ4 PSTO SF

JOSLIS/, 000 - an Interacti ve Pre-processing System

Introduction

This presentation is a progress report on the development work made
at Oy Porasto Ah since 1977 to make hetter use of the automatic data
processing capabilities in HP3000 systems. For earlier reports refer to /1/
and /2/.

Most automatic processing is in hatch mode, but the old way of batch
usi ng "fi xed" stream files suffers from some severe drawbacks:

security of passwords on JOB stream files
troublesome updatinq of parameters and optional parts of
streams when using general purpose editor programs, which
often leads to mistakes, and
many copies ahd versions of same stream files on disc
documentation prohlems of stream updatinq with editors in

transferring the JOB preparation and initiation work to end
users of the system
a typing error in the filename of a :STREAM command may
start an undesi red JOB.

Too often these problems are avoided by letting end users do the work
from time to time, makin9 them wait for the execution of a series of
tasks on-line, even if all responses could be supplied beforehand.

These problems can' be solved easily hy pre-processing technigues.
That is by updating the stream file under control of a Qeneral purpose
pre-processing program, according to stored processing rules for the
particular job stream (or task). To provide best support for the, user this
pre-processing must be interactive.

J3 2



-2-

JOBLIB/3000 system

The problems listed above are solved by JOBLIBI3 000, general purpose
pre-processing system for HPJ 000, in the following ways:

In the JOBLIB system, job streams are gathered as "job templates"
into special library files, leaving all information concerning user, account,
group and passwords out of the !JOB-lines.

To initiate a job stream, a user simply starts the program JOBGEN,
provides the name of job-library (default is JOBLIB) and the particular
JOB required. Passwords are either supplied automatically from some

secure data base (this is a new option in JOBGEN 5.5) or they are
prompted from the user.

Updating of parameter values in the stream is made by character
string replacement operations, using mnemonic string variables, the only
data format for variables in JOBLIB command language - job generation
language (JGL), the lines of which are inserted in the job templates to
control the flow of pre-processing. The string variable processing is
implemented in a very powerfull way' providing full text processing
capabilities found in many programming languages, and they can be used
also as numeric variables if the character string value assigned to them
happens to be numeric. Of course this can be ensured by some data
checking facilities of JGL.

In many pre-processing systems, the value assignment for string
variables is made by commands such as

DEFINE (identifier, "value")
(see 131 p. 251), but in JOBLIB system we use automatic assigments of
the type

••SET identifier::"value"
..CaMP identifier::(arithmetic expression)

and interactive assignments of type
..DISP <advice>

..READ identifier • ="default"; checking rules •
where the preceeding ..DISP commands are used to provide the user with
further information concerning the prompted parameter value.

Values of string variables can be any character strings of 0 to 80
ASCII characters in length and restricted only by the data checking rules,
if used. Currently there can be up to 150 different string varibles used
in one job definition.

J3 3

-3-

The assigned string value will then be replaced at every occurence of
the variable name, preceded by "&", in any lines of the job template that
the name occurs. These are then copied into JOBGEN work memory
before they are interpreted andlor copied into the final stream file.

Values of string variables can also be used to control the flow of
pre-processing by the structured commands

..IF , ..WHILE and ••CASE
where the values of string variables can be tested in the condition part of
the command using relational and logical operators (which will be fully
implemented in release 5.5). This provides the possibility to select
alternative or optional parts in the final stream automatically, according
to parameters supplied by the user.

To achieve full flexibility and automaticity in assignments, replace
ments and conditions, we have implemented substring operations and string
processing functions such as: $LEN(s), $UPS(s), etc.

For maintenance of parts common to many JOBs and to make use of
generalized parts, we have also implemented a procedure library facility in
JGL. This feature has been especially appreciated by those users of
JOBLIB system, who are familiar with the procedure library facility of
IBM's operating systems. The procedure library provides an easy way to:

use parametrized QUERY reports included in different JOBs
maintain tables of parameter values in separate libary files
define generalized parts of JOBs for making backups or

for other routines, etc.

The procedure calls (..INCL -commands) can be hierarchical and even
recursive. The outer pre-processing can be secured by using local string
variables inside the procedures, and using string variahles as parameters in
procedure call. Values can be transfered into and out of the variables
used in procedures, just like in programming languages.

I nstead of a procedure, a whole file can be included during the
pre-processing. This provides possibilities for includinq for example

stream parts generated by some other programs into the final

stream
source programs with inserted JGL control lines and string

replacements into a compilation stream, making use of
interactive pre-processing for COBOL programming. This goes
even far beyond the capabilities of COSOLII.

J3.4



-4-

Benefits

-5-

Availability

References

The JOBLIB system makes batch jobs easier to use, and it provides a
comprehensive technique for system personnel to submit job preparation
work to operators and even to end users. All the user has to know is the
name of the JOBLIB, the name of the job, and how to answer the
questions presented in the job template.

F or system personnel, the JOBLIB system provides the possibility of
tool-jobs, a flexible test environment, a procedure library for common
parts, and a good on-Une documentation technique. From elements of
macro processing and programming languages, we have created a new and
efficient "productivity tool" that provides a dynamic and flexible extension
of traditional job streams. The JOBLIB system is not just a library
system, but a new approach to batch processing in an on-line environment.

The benefits of JOBLIB system are clear: it saves human and
computer resources, time and money, eliminating errors and increasing
security and productivity.

III

121

I 3 I

We at Porasto belive that the JOBLIB system is of use in almost all
HP3000 installations and we have made it available on an yearly rental
basis. Currently it has been installed in 20 HP3000 systems in Finland
and Sweden; For further information, please contact Oy Poraato Ab, att:
Martti Laiho, Toolontullinkatu 8, SF-00250 Helsinki 25, FINLAND.

JOBLIB - Generalized Job Library and Interactive Job Generating System,
Martti Laiho, Proceedings of HPIUG Fall Meeting 1980, pp 9.5.1-9.5.10

JOBLIB13000 - Job-library and Pre-processing System,
Simon Harryman et ai, HPIUG Spring Meeting 1981

Kernighan, Plauger: SOFTWARE TOOLS
Addison-Wesley, 1976, ISBN 0-201-03669-X.

Future ·plans

J3 5

(This presentation has been written with DAISY13000 text processing system)

J3 6



USING IMAGE-3000 TO ESTABLISH AN ORDER PROCESSING-
FINISHED GOODS INVENTORY ON-LINE DATA BASE SYSTEM

K.B. SHEU

Speaker: K. B. Sheu

\!;9~~~ &n~£

~rIDilo~~

ABSTRACT (1)

SHEET NO

WALSIN LIHWA CABLES

ELECTRIC WIRE &CABLE CORPORATION

THE WALSIN BUILDING
219 CHUNG HSIAO E. ROAD, SEC 4
TAIPEI TAIWAN R.O.C.

J4 1

TOPIC:USING I~AGE-3000 TO ESTABLISH AN ORDER PROCESSING--FINISHED

GOODS INVENTORY ON-LINE DATA BASE SYSTEM

WALSIN LIHWA CABLE CO.LTD.,APPLY IMAGE-3000 TO ESTABLISH AN ON-LINE

DATA BASE SYSTEM WHICH INCORPORATES 4 MODULES----PRODUCT DATA MODULE,

CUSTOMER INFORMATION MODULE, ORDER PROCESSING MODULE AND FINISKED

GOODS INVENTORY MODULE. THESE MODULES ARE LINKED BY SEARCH-ITEMS.

USING THE CAPABILITIES OF IMAGE-3000, A TWO LEVEL HIERARCHICAL DATA

SASE SYSTE~ CAN BE IMPLEMENTED AND SUITABLE FOR ON-LINE OPERATION.

SEV~RAL OTHER TRANSACTION FILES ARE ALSO RELATED AROUND TO THIS

SYSTEM TO FORM A TOTAL INTEGRITY.

***** WAITING FOR THE FULL TEXT OF THIS PAPER •• (EDITOR) ***

WALSIN LlHWA ELECTRIC WIRE & CABLE CORPORATION
The WAlSIN BUlI(M~ 2 19 Chunq HSiao f. RO;ld SCl .t T;lIpe. taIwan R 0 (.
Tel 7712!21120Ltnes' PO BOX 22926 Teltl' '1516WALSINTall~·

Cable WALSIN TatpCI

J4 2



COMPUTER GRAPHICS, A POWERFUL INFORMATION TOOL

SIGMUND Hov MOEN

FREDERIK MAJOR

COMPUT ER GRAPH I CS, A PO\'JEHFU L L I r~ FiJRM/\ T lorJ TC',:'L.

Aut 11 0 r s: S i 9mund H0 v Moe n, A. / 5 5 yd va r .:J n~10 r, t.. i r ~ e n (> s, t~ \..) r ~ ~1 .."

Fredrik Major, The Ship Rese0rch Inst. of Norway,

Trondhei~, Norway

SIGMUND Hov MOEN A/S SYDVARANGER, KIRKENES, NORWAY

FREDERIK MAJOR THE SHIP RESEARCH INST. OF NORWAY TRONDHEIM, NORWAY

J5 1

Information transfer from/to human beeings is a central part

of a computer system. We wi I I here show how Computer Graphics

can make man machine communication extreemely much more

efficient. A case study of a Norwegian mining company,

A/S Sydvaranger, wi I I illustrate this fact. This company uses

Computer Graphics for information transfer between people at

all levels.

The graphic system in use for the above mentioned appl ication

is G P G S - F (General Purpose Graphic System in Fortran) which

is the standard graphic system for Norwegian users.

This standardization has been p~shed through by N0R~IGD, The

Norwegian Cooperation in Computer Graphics, formed by Norwegian

users.

GPGS-F wh i ch here wi I I be br i ef I y descr i bed (A more deta i led

description in (I) ) is implemented for 12 different computer

types with device drivers for 17 different graphic devices.

There are approximately 70 instal lations of the sysyem today

throughout the wor I d, 10 of theese are HP 3000 i nsta I Iat ions.

J5 2



BRIEF DATA ON AKTIESElSKABET SYDVARANGERs PRODUCTION

THE BASIS for the company's existence are the
very substantial iron ore deposits situated on the
Kirkenes-peninsula combined with excellent deep
~a harbour facilities ih Kirkenes, only 5 miles
'rom the main orebody at Djernevatn.

\KTI~ELSKAIIET SYUVARANGER \\115
'ounded in 19Ob. The company today has 2JOO
ihareholders. The Norwegian 80vemnlent owns
)IDID of the sham.

rHE PLANT is today desilned and buill for a to
al production capacity of 2.5 million metric tOilS
ron pellets (minimunl bScro Fe).

THE MINING in BjtJrnevatn is carried out as an
open cast operation. The OPeIl pit is considered
large by Norwelian standards. The present pro
duction plans.operate with a strippin8 ratio of 2,5: I,
i.e. IS million Ions of waste have to be removed to
enable recO\'el)' nf our annual produclion of app-
rox. b million tons of magnetic ore which contains
about 300

/ 0 irun.

DRILLING is malad)' carried out by means of By
cyrus Erie bO R rotaI)' drills producin8 holes of 12
1/4 inch diameter.

BLAST CHARGING is done with ANFEX (Am
moniunl nitrate-fuel explosives) and TNT-slurr)·.
Each hole is charged with approximately I ton of
explosives. Totul blast size varies between 75.000
tons and 750.000 tuns or material broken, and the
equivalent amount nf explosives used varies
between JO and JOO tons.

LOADING OF MATERIAL is carried out with
track mounted P" H electric shovels with 7 mJ
bucket capacity and one Marion 191 and one
P eft H 2100 shovel. each wUh II 'm (IS Jyds) buc
ket. In addition to this several wheel loaders are
used. the laraest of which is a 10 Iyds Caterpillar
992 and Dart 600 12 Iyds.

ORE AND WASTE TRANSPORT is laken care
of by a Deet of 100 and ISO Ions Leetra Haul and
Haulpack trucks.

PRIMARY CRUSHING is done in Bjernevatn by
means of U"'o) 54" Nordbera gyratory crushers
(54" wide intake openini'. which is normally set at
5'/2" closed .side. giving ore crushed down to app
roX. minus 5".

ORE CODDING is carried oul on conveyin8 it
over larae masnetic drums separating mosl of the
waSle (IS~o - 20 CVo) front the ore before it Is dis
char8ed inlO the ore storage silo.

THIS CRUSHED ORE is transported by our own
railway in bO tons capacity cars and dumped in la
rge nre bins al our secondary crushing plant.
Each Irain has 20 cars and thus carries approx.
1200 tons.

OUR TWO STAGE SECONDAI{Y CRUSHING
PLANT uses 7"Symonds cone crushers and re
duces the ore in size to approx. minus I inch.

PRIMARY GRINDING of this n,aterial is carried
oul in a two sta8e ball mill process ""here waler is

added as a carryin8 ~8ent. After this 8rindinl
approx. JOOJo of the material is separated out as
waste over series of magnetic drums. Thi$ product
or concentrate. is 8round further to make it suit
able for pelletizing.
This concentrate contains approx. 68e,o Fe.

PELLETIZING, a process which transformes the
concentrate into the shape of small 111" diameter
balls is carried out by addin8 approx. 10"0 of a
binding a8enl called bentonite (basically a spec
ial, dry, finel)' ground clay). This mixture is rolled
in larae'inclined drums which produl'e small balls
(green pellets).
These are dried over a travelling grate. prehealed
and sintered. The -pellets- will have a ten'perat
ure in excess of 1000" C when leavin8 the grate.
From here the)' enter a rOlating oven or kiln where
they are heated further to approx. IJ5O° C.
The hot pellets are now discharging into a cooler
section where they are cooled down to 26-300 C by
a forced air draught.
This product is stored in a lafRe 400.000 tons ca
pacity silo blasted into the mountain.

THE HARBOUR in Kirkenes is a good natural
harbour which has little problem wilh ice in win
ter. in spite of its location at 70° North.
The harbour facilities has a capacity for luadillg
ships up 10 150.000 Ions al a rale of
approx. 4.000 I/h.

AKTIESELSKADET SYDVARANGER today
has approx. 1250 employees in Ser-Varanpr

rn
rn
Q)

o
o
~
0.

Q)

.s::

.p

'0
Cm
>,

~
0.e
o
o

Q)

.s::

.p



1.2 An EDP pioner in Norway

A/S Sydvaranger installed its first EOP equipment in 1963.
At that time a computer was a scarcity even at the norwegian
universities.

The first machine was an IBM punched-card-based 421.

Part of the companies staff-department-routines were implemented
in the first place and soon afterwards a first version of a
stock controlling and accounting system.

In 1966 a new and more powerful computer was installed (IBM 360/
20) and the main part of the companies accouting system was
"'oomputerized tt •

An information system for the mining operations was also devel
.loped.

In 1974 the 360/20 was scrapped and after a short interludium
where different alternatives were tested, the company in 76
bought and installed a HP 3000.

Today A/S Sydvaranger heavily depends on the computer in the
following areas:

• Production reporting
· Accouting
· Stock control
· Payment of wages

The companies data flow

J5 5

Within a year a process control machine (Siemens R 30) will be
installed to improve production quantum- and quality control
.in the pelletizing plant.

We are also testing out a mineral evaluation system (Mineval),
which is a program based on first generation gr"aphical methodes.

The total investment in EDP equipment so far amounts to approxi
mately 5 mill. kroner. (1 mill. $)

The hardware configuration consists of approx 30 terminals
of all kinds - six of them at the companies headquarters in
Oslo.

The EDP-department today counts 11 persons, 7 of them are
programmers.

Our main effort is to improve the information contained in the
great variety of EDP-reports, and also get the computer and
computer methods accepted everywhere in the company.

Considering the fact that EDP less than 20 years ago was a rarity,
it is not surprising that use of the modern microprocessorpowered
computers have created a lot of discussion, - both seen from the
economic and social point of view.

What is the outcome of the millions that have been invested in
EDP-equipment the manager is asking. What will happen with my
job is the workers question.

One of our projects to r~assure both parts is to supplement the
numerical reports wi thbetter understandable ·one's. Today
this is ~ossible not least due to computer graphies.

Drawing machines, plotters, graphical screens, digitizers etc.
has moved the computer a big step towards the people.

J5 6



1.3 Graphic Hardware

The hardware is a mixture of a number of units as shown below.

1.4 Graphic Software

Hardware is mentioned - computer journals are full of visuali
zation units of all kinds. Less is spoken about software.
How do you program a 3 dimensional rotation picture; how do
you program a histogram? Do you hav to write a special program
for every graphical output unit?

So many questions. And so many traps to be caught in.

MAIN
OFFICE
OSLO

/

PROSPECTING
OFFICE
OSLO

Ala SYDYARANGER
CONFIGURATION'
GRAPHICAL
E ttUIPM£NT.

HP 3000
GPGS-F

MINE
OFFICE
KIRKENES

EOP
CEPARTMENTS
KIRKENES.

PEU.ET PLANT
KIRKENES

One way to get rid of most of the difficulties is to choose
a standardized graphical software package.

The GPGS-F is such a system. Standardized by NORSIGD, a
no .... ~ve'1la~ organization formed by peopl,= interested in graphics.

GPGS-F is fortunately impleme~ted on the HP3000 system. The
system basis is a set of fundamental routines drawing lines,
circles, character strings, numerics etc ..

Besides the routines already mentioned the system coptains a
number of special drivers for the most popular and common
graphical units.

The system is very well documented and easy to learn.

All units is online to the HP3000. Some of them are multi
plexed on medium capasity telephon lines.

J5 7 J5 8



1.5 System philosophy

The graphical system is an online one. On the user's commands
itareofetching data from the big databases containing up-to
date information about the stock, the production, the ~~~oup

ting etc .. The extracted data is then presented as diagrams ..

The user's of the system are not computer specialists, they
might ~ot even be interested in computers. They are mine
foremen, geologists, production planers, clerks, directors etc ..
Therefore the user interface to the system is very important.
The online dialog should be adapted to the user's language
and way of thinking.

This is obtained by giving the user a series of commands to
choose be t\'.:een.

A valid command leads to a conversation like the followir.g

· command name identifying the user's main topic of
interest

· additional information f.ex. machine number
· period of interest
· output media

Not valid input at all levels are followed by a very friendly
sorry - and a recommended continuation.

The language is plain and simple norwegian, not a word is re
minding the user of the bits and bytes, the full duplex, the
recursive procedures, the interlaced memory - and whatsoever.

As a first aid the HELP command gives an overall information
about the system.

1.6 Data collection

o
A
T
A

C
o
L
L
E
C
T
(2

ONLINE
DATABASES

FOR

SlOe K CONTRa.
ACCOUNTINi
PRODUCTION

ONLiNI GRAPHICAL

GRAPHICAL
fIGS

(GP GS )
.\

DRIVERS

REPORTING SYSTEM "/~ SYDVARANGER.

J5 9

The systems practical value fully depends upon the quality of
the information put into the databanks. Tt has therefore been
necessary to establish a data reporting program.

A great number of reports is collected and registered into
the computer.

This is also done online by means of masking technics.

On the next page the data collection system for the production
data is shown.

J5 10



~,
~\

~
I ,
I ~"\
\ I\ .

\

-...0"!;

o.

J5 11

1.7 Examples

The example section is devided in three parts.

Part one contains examples from the economics reporting system
(diagram 1 - 3).

Part two shows some mining reports (diagram 4 - 6).

Part three shows how the pelletizing plant has been run
(diagram 7 - 8).

J5 12



Tol.aUcoelnacMr :"

~~"~L ~·ar

295.828 "ILL. ICR •

"'Jelt.
2'14.1t t MILL. ICR.

s.... p.-\.Ode fcrr-. ar
280.014 MILL. ICR.

to

TOT A L RAP paR T
~pr.~

• tm · · · · · .. · .
§.
:J
E

tOO • • •• • •• • • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

50 ............................................. , ,.

o
1

~~
COl.

5

~~..
8

~2'
CD<. .

.., 8
;1
,~

9

TOT A L RAP P 0 R T
~ pre ,.r'-GdltC~J to

t'.110 "IU.. ICR.C 8.1 I)
filler budeJel~

t2.S2t MIU.. ICR.I 1.5 I)
~ fJarIrM. •

ICaM.ncIMr h..t.t...t. .. ar:
284._ "ILL. ICR•.-'':./ ..

_.~ ....e".'................................................................. ~tt1':~ •••••••••
t<'wt1

.~.... ' .
~..::~ ........'.'.

.......•..•.......•..............•..........................................

tao

o
o........-?--.-,--.....--~-...., .....- ....--.....--..--....--~-- .....- .....~--+----------_ ....

200

.
2100
s:



A. ~

Borg/maLm
.0

t.5
15 ....

.0

.0

t.'
McaLm---
S.rs -.-.-.-

rOI

r oj i. I
r·..J I

r.J I
• J
! 1
J •· I! I

r·-l i
r·...J I
I I

1
i
i
i
i
i

2.1-0
'.1'2"".02

.00

.00
"5.11'

40

FardeLl.I"lg ~ •
OppLag
SJtlJr-n.vann N
BJtarnevann S
SIlJ."e~vann

TV.f"'"rdaL.-n
FL.l<e~Lnd

Per-Lode

rOI
i i
1 i
! I

r°..J i
i i
I

r
o

"

r oJ i
· II .
· I
I •· II ·· I
I ·· !

s.rg~an~C 4000 ~onn)
HoLm seo.ses
Serg 87S.2'0
Ta~aL 1Sae.2SS

GJ-n/dQlgn sa .829
B..-g/maLm I 2 • .,00
s~~p.aaraprad.:2C.45.000

a 2 5 l' 5 B , 8 9 10 "1 12 1S 41' 15 16 4' 48 is 20 21 22 25 21' 25 26 2' 28

80

as
so

7S

.0

as
C so
a 55..,
0

so
0 1-5
0

1-0

-eJ 55..
0 !so
6 25
'to
tJ 20
l• tSm

to
s
a

Oag_r

TH1'

E 0 B - A V 0 ELI N G E N
~ pI'. per\..ode (dda.-JLer4..) 4980 Per\.ode to

~ h\.llt.L t. lir:
t .200 HILL. I<R •

.34S MIu... KR. ( 2O.a I)

\.nder' budltJell

.018 MILL. I<R.( 8.9 I)

over f Jar6rel.

45

o·

1

o ••• Ib»Jell

2

__ H",ll...l '" ~
............................................................................o·......o·
• ••• 0 0 ••• 0 •••••••••••••• 0 •••••••• 0 •••••••••• 0 ,:: ••••••• 0 • 0 ••••• 0..... ~~... .,.,-.-.~.. .".... ".... .....~........................................,........ ... .,.,..:--: ....

2.0

§.
:i .
_ t.5
E

t.O

.s

.0
0



S!::Jdvarar.~er ..

Dr'-*~••~a"-'-."-~k "'or
al.l.. prodUk_Jarle-

~ maak\.ner
'to

!

r'cm

D~L~~s~appa~~e~Lng.8J0~neva~n

TLdaTo~br-uksdLa
Maek\.~I.IP. Cr\.f""- I<L~ .....","- .cJ
B~ BQR : 158.0 .0 S .0... ..J
S~ DM 1 t .0 .0 S .0 J e~
L 4800 a 20.0 .0 B .0 L ••
L2400 :I SIS.O .0 12.0 1J ~ ~
HJuLLQ8~~: ~o.a .0 .0
L H 400 1 ••0.0 5.0
HauL-Pack 84.0 .0 s.o
L H sa : 18.0 .0 2.0

480

41'0

J:
..J

CD
10

oo
4..
I

.J
Jo
:t

J:

..J

8
Do.
N
..J

oo
(J)
•
..J

1:
Q

L.,
m

80

420

..OO-t---e!!!!.---------------- ~

•
t:z:a:
<
..J
~
en
~

20

a: so
a

THU. OCT !SO. i sao

GRUBEN

SJI2IRNEVANN N TVERRDALEN
BORINS ILASTINe ITRANSPORT ~TN8 LABTINB

Inn: 0
M: o.
B: 228.
(~)

H: '00.
B: 1&0150.

CUann)

HI • 42~.
82 ....,s-t.
(~.)

Ii: o.
s: o.
(~)

H: o.
B: o.

C~onn)

N: O.
B: O.
(~.)

4. ~. 24.~.~tt.4S. SSS.SSB.&5S.

~/
22. ~t.106.~-ns SS2.&28.6In

~ ft82 ••- .... 628.

J(NUSER {~

22850. k:' t 4SS94 _ .... Ic:m
ol.onn ~.

UT8TYR UT8TYR UTSTYR

........

92 484 ...... Ic:m -:>

1t /
rJS10.

-leonn

TTPP

ITRANSPORT

UTSTYR

LASTINS

UT8TYR

BORINS

-UTsTYR

LA9TI~eetORIN8

oU-l :

FORSEP
HI O.
81 o.

C.....r)

HI ,aso.
81 4[J!:SO.
(~)

HI 4 4S48.
SI 1S8"18.

r,cnricm'; )

HI o.
8: a4.

( ..~~) HI 41500.
8: 2 ..150.

(,ern)

Hz iOl5058.
8a s-Joo.

C'arnkna. )

2890.
~onn

UTSTYR
Pt82.

B~2JRNEVANN S FISKETINO



A/S Sydvarangerll
DrLflsrapporlerLng,KLrkenes

n.182
82.002
85.191

4.020

Procb:8Jan pell'"
Tolal :.98.11i
BJ .8nL4.l: 1 .0f1

PV1+PV2.

FE Ulall
8J.en\.4.t.
HUl
fb(

Sl.avvue

PV1+PV2.

PV1+PV2.
____.-..- ..............Ir'-flel~ p.ll....v

Tolalt. :.081.000
Prot. drIgn: 58.82t

t2 IS t1 tS t8 t1 48 18 20 2t 22 25 21 2S 28 21 mPsr'.: 5 1980

~ 88
.J B1,

88

~ 8&

~
81

85
~ 62..J

...J &0
! 10
~, SO

~
20

a to
:;; 0

~
t2

- 9

~ 8
...J

5l.
0

t 2 SiS 8 1 8 8 to tt

A/S Sydvarangerll
DrLflsrapporlerLng,KLrkenes

2

15-r-----------....&.I...-..a...IILJI~I..-------------_1_"iIIiliL...IilSI.l'-'ii!liik-.cai!Ii!~_

Avfall (FE-.agJ
BJ .en\.4.t.: ...210
HUl .890
tbc 2.120
Sl.CIYV\.k: •iSS

Avfall (Felol)
6J .""..ll: S.115
"~ 1.120
tbc I 8.&10
Sl.avvue: •iBito

O-t--r--r----r--,-~__r_~~__r__r__r--r--r__r--r~--,.--r--r--r........,.--w--,r---'I,.......,r__r___....__------~

tS

s

Avfall
Tolal : 210.i95
SJ ••" ..lot.: 8.901

to

5-+-..,.....:::=p::::::r=:.......__-.......--r---t=r=t:~=4~--y-~~~.-.~=--_t"""""4~~~;..--:;-&---------&
tS

.J

..Ja

1
O-t--r--r-.....,.-~_r_-r--r---r-...,...--r_,..--r--r__r--y--..,..--r--r--r--r--r---.--,---,~r___'I..._~--~~~~---'

t 2 SiS 8 1 8 8 to t t t2 t5 ti tS 18 t1 48 t8 20 2 t 22 2!5 21 2S 28 21 mP9r' .: 5 1980



2 GPGS-F, A PORTABLE DEVICEINDEPENDENT GRAPHIC SYSTEM

2.2 History

The GPGS system was originally designed by Rekencentrum,
Delft University of Technology, The Netherlands and Science
Faculty, Catholic University Nijmegen, The Netherlands in
1972. A version of the system written in standard Fortran
has been developed by NORSIGD. The first Fortran based
version was released in 1975 and named GPGS-F. GPGS-F has
been under continous development since the first version
was released. This work has been guided by annual user
meetings. The result of these meetings has been new
features and minor changes to the system.

2.3 Device control

GPGS-F provides device independent programming with choice
of graphic device at run-time.

2.1 Background

During the early seventies, computer graphics was introduced

in the research and commision work of The Ship Research

Institute of Norway (NSFI). In this process lack of suitable

standardized basic software was very badly felt.

About the same time simi I iar problems arose in other rosnarch

institutions and in the industry.

A national special i~T8rrest JrouD in computer graphics grew

up from the loose attempts of cooperation between the involved

parts.

NORSIGD (The Norwegian Special Group in Computer Gri';tJil!CS)

was founded in 1975 and has since then formed the basis of

a very good cooperation between most Norwegian computer

graphics users.

The main task for NORSIGD hils been developing a standard

graphics softw~re system for ~orway.

J5 21

Figure 1 shows how the device independancy is obtained. The
device independant part produces the same picture code for
all devices, and the device driver(s) translates this code
to the bit pattern required for the actual device. The
device independant code is put on such a level that advanced
graphic devices may be used in an efficient way. Examples
of such functions are charactir, circle and marker genera
tion. GPGS-F will also be able to take advantage for the
functions of more advanced refresh display such as hard
ware scaling, rotation and depth quing.

J5 22



· . . . . . . . . .-------- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----· . . . . . . . . .

________ -----:-----:-----:-----:-----:-----:----_. 8 - • __

· . . . . .-------- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----· . . . . .

· . . . . . . . .--------.-----.-----.-----.-----.-----.-----.-----.-----.----- -----

A

r:;I 0- G)
~ ~ -0
c+ .... ~

I ~ ~

1 I .... I__ I ~ ~ ~
-oc"l ~ ~ ~~
c;- ~ I ~ I ~
g-~·LJ~I' ~~ 3-S ID cT --' G)
ID --' VJ

.... (I) I

n ::s ."

~~. I

ID "0
ID
::s
0
~

::s
rt

C
l::s rt ....

e n
-"-s cT
~·ID C
--' 0. -S
n> n>

(I)

0-"0 fT1

-S C; ;;;;1rt n
rT rT :
ID -S :4

~ gI'''' ,
n !

i

_-0·0

:4

0-"0 1-4

-S --' ::s
.... e rt
< cT ID
ID rt -S
.'S ID ~

t -S n

I ~
L_.__~_

r'--"-'-
I
iQ."O C

-S --' -S

~~. ~ ~ l41l
I~ __~

---~

0- rt (I)!

CJ

1<

I~n
ID
(I)

::s
rT
ID
-S
~

n
rT
~.

<
ID

0
lD
<

.....
::s
rT
ID
-S
~

n
rt

<
ID

0
lD
<
n
ID

::z
e
::s
ID

o
."

G)

-0
;;>
(I)

I

"

3:
».....
z
(I)

--4
;0
C
n
--4
C
:::0
fT1

"
to

x

}~

}{

~.~

}{

~.~

~.~

x

x

>~

~<

~{

~<

~{

X

~.{

x

x

}{

x

x

}{

}{

~.{

~.~

~<

}~

}~

>~

>~

>~

~<

x

x

X

}~

}{

}~

}{

X

~.~

x

}{

X

x

}{

x

x

>{

)(

y.

~

x

)(

')(.

)(

X

~{

~{

x

x

~<

x

~.{

x

x

>{

},

~{

~{

~.{

x

x

}{

\I
l\

x

}{

}{

},

:~~=~=:~~=~=:===~=:~=~==:~====:~=~=~:~====:~====:~~===:=~=~~:

. . . . . . . . .-------- -----.-----.-----.-----.-----.-----.-----.-----.-----.-----

· . . . .-------- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----· . . . .

. . . . . . . .-------- ----- -----.-----.-----.-----.-----.-----.-----.-----.-----

· . . . . . . . .--------.-----.-----.-----.-----.-----.-----.-----.-----.----- -----

TEK 4014 X X '1- ~< : ~{ ~.{:}{: ~<

-------- ----- ----- ----- ----- -----:----- -----:-----:-----:-----
HP 2648 X X ~ ~ X

· . . . . . . . . .--------.-----.-----.-----.-----.-----.-----.----- ----- ----- -----

• a a • • a - • e • •

:UN 1=- :Hp~ --:Vit-x-_. :CDC _. -:DEC --: iBM -.- : ~j OR0_. :PO p--:PR 1ME:Lsi .- --
:'.JAC :3000 :11 :CYBER:10 :370 :10 :11: :11
:1100 : :

(X~iMPlcmented, O=undcr implcMcntation)

· . . . . . . . . .--------.-----.-----.-----.-----.-----.-----.-----.-----.-----.-----

Table 1 shows the current implementation status for GPGS-f.

. . . . . . .-------- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----. . . . . . .

· . . .-------- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----· . . .
:TEK 4027:

: ALPH '.'DUS ~<

:PSEUDO

:TEK 4010: }C

:TEK 4662:

:RAM 6002:

:HP 7221 :

:FILE

:TEK 4663:

:TEK 402S: X

: '.'ERSATEC:

:PRINTER: X

:CALCOMP :· . . . . . . . .--------.-----.-----.-----.-----.-----.---_.-.-----.-----.-----.-----

:SURRENDER X

: GPGS-F

: GRAPH I STO ~{

:FILSYS

The status for GPGS-F implementation5 pr AU9U~t 1,1981 is shown bclow:

:KINGMATIC X: : : X: : : X : X________ - - - - : - - - 1 _

:~~===~==:=====:=====:=====:==~==:===:=:=====:=====:=~===:=====:=====:

:--------:-----:-----:-----:-----:-----:-----:-----:-----:----- -----
:ICAN ~.~

:~======:::====:=====:==:==:~~===:~==:=:====~::====:=====:=====:=====:

UV\~ro"d (fr~l~\v\(1':j) iMr'-G~<"'~~O~S H~V'\ejuJ(..LL Eu.U,
H'tc..~~ 1
c..~O\1 E HLO ~ Wl''-t'05 J5 23 J5 24



2.4 Graphic elements

By single calls to the basic routines ~f GPGS-F, the
following graphic elements may be "generated:

- straight lines
- set of straight lines
- circles/circle areas
- text
- markers
- functions

All graphic elements may be hardware generated by the graphic
device.

The elements are defined in a user defined coordi.nate system
(2-or 3-D Kartesian) and are fully transformable.

2.5 GRAPHISTO - Graph and Histogram plotting

, ... {)OC:'J up and elm.." l,.{l llt 0

GRAPHISTOlb)is a subroutine package which using the basic
routines of GPGS-F can produce curve-, bar- and piecharts.
The package was designed to remove programming effort from the
tasks of producing standard plots. GRAPHISTO is aimed at easy
presentation of one variable data.
An advantage when using this package is that it can be entered
at different levels. When the user wants to produce one of the
standard charts of the system this can be done by one simple call.
If this standard chart does not satisfy the requirements for the
plot, user can enter the system on a lower level, composing the plot
he wants. The user can even go down to the basic routines of
GPGS-F and mix these with the GRAPHISTO calls.

J5 25

GRAPHISTO provides 4 so-called 'chart' routines that will in
answer to a single call draw a complete diagram with anno
tated axis, texts on axis and datapoints.

The types of plots provided through these 4 routines are:

Histogram with labels under each bar and linear or
logaritmic axis in x and y.
Table of lines with straight lines letwe~n plots.
Smooth curve through specified points.
Pie chart.

These 4 routines use the basic GRAPHISTO routines as axis
drawing, range computation, 'nice' value computation and
curve plotting. The lower level routines are also avail
able to.the user and offers possibilities for sophisti
cated non-standard plots like multiple axis, marking special
data points etc. Appended to this chapter are some plots
to demonstrate the use and possibilities of GRAPHISTO.

Figure 7 Shows some plots produced with GRAPHISTO.

Available facilities are:

Chart plotting:

Simple and smooth (cubic spline) curves in different
linestyles.
Histograms. They may be plotted with or without hatch
ing of bars in any angle.
Pie charts with texts and percentage of total pie.

Axis drawing

Near to plot on either side of plot.
Through any data or page value.
Several parallell with different units.

J5 26



Figure 7. GRAPHISTO example plots.

J5 27

Axis annotation:

On either side of axis
Numeric or text labels
Any character size and angle
Upper and lower case
Extra tick marks
Title

Grid:

AlonQ x- or y-axis
Linear or logaritimic
Any line type or '+' at grid crossings

Dataplotting:

Table of values in x- and y or functions
Simp1e connected points
Interpolated curve through pOi.nts
Markers at points
'Undefined' points
Automatic data indexing
Automatic data incrementing

Page layoL't:

Center~d he~ding

Positioni~g of dataplotting area in us~rs window
Bar and curve legends
Frame

~li scellaneous:

'Best-fi t I range computa t i on of da.ta conta; ned ; n

array or function.
'~est-fit' label format computation.
Conversation between coordinates in users window
and in plotting coordinates.

J528



Error Reporting:

The routines in the GRAPHISTO system uses the error
system of GPGS-F. This includes parameter checking
and print of routine number, where error occured. Also
the number of calls made to GRAPHISTO routines and
wrong parameters are printed. This makes it easier
for the user to find place and reason of error.

10. SURRENDER, 3-D SURFACE PLOTTING

Base for all SURRENDER plotting is a rectangular x-y grid
(matrix) with z-va1ues in each node. A surface with M grid
points in x-direction and N grid in y-direction will be
stored in a Fortran DIMENSION ARRAY (N,M).

This grid may be rendered as a 3-D perspective plot of the
grid (Iso1ines any combinations of x,y and z) with hidden lines
removed or as a 2-D contour map (Iso1ines for any of x,y or z).
Also other usefull facilities like drawing axes, marking points
etc. are available and will be further explained later.

Example of minimum effort plot:

c
C COH~U'l'!~ 'i'H~ FUtiCl'lON 'SIN(X)¥.Sll~(Y)/(y'·Y)'

C

CALL NIT~~V(lD~V)

Cl\Ll. BGtJt'lC(l)
CI\LL ~LOt~A1(ZN/\T.11.11 .-15. ~ 1~ .... l~ .. l~ •• ~\·:(lrd~.~I.;C)

CALL SI~I>°l('

DO ~ooo TY=-13.15
'i :. FLO 1\ 'r ( 1Y )
STt'!YY:; 1.0

IF (lY.~~.O) Sl~YY=SlN(Y)/Y

DO 1000 lX=-l~tl~

X=FLOAT(lX)
SINXX::l.0

IF (lX.N~.O) 51tXX=SIN(X)/X
ZHAT(lX+1G.IY~16J=10.C!SlNXX~SlNYY

1000 CONTINUS
C
C MAK~ ~lNIMUN ErrORT DLOT
C

1>1 r-;!~I~S 1Q/'1 1\~f)Hl~ (;~r.~) ) • v() (I; ) ,ZI.:. T ('i 1 •.~ 1 ) ~ iG';)~' Co) )
D,' TA I ()~: vIt~ / • Vu / C • 0 • (I • 1, G• 0 • G••~ /
DI,TA IbUJ~;/~O/, 1 h!::D/60/

The package is built up much the same way as GRAPHISTO with
some routines that makes a complete plot in one call, and
others to add features for a more sophisticated plot.

SURRENDER (S) is a subroutine package for ~rawing bivariate
surfaces in 3 dimensions. GPGS-F basic routines are used for
line drawing and GRAPHISTO routines for axis drawing and curve
smoothing.

J5 2S J5 3C



Hidden line removal: Contour plots.

By default the hidden lines will be removed. To do this
the system uses a working array to be supplied by user. As
the needed size of this array is dependant upon the number
of points to plot, this method gives no restrictions about
number of points.

Contour plots consists of ;solines ;n the z-direction. The
range and number of contour 1;nes may be given, and they
may be added to the perspective plot or plotted as a separ
ate 2-dimensiona1 plot.

))

/ 1~\\"~~-;2.r ----.~
/, ,~ 1'/ ,--------

I CO ""'- ...J.2 ----.--------...
, ./ .I 1~ ---' .------/' '2 ....--.---

,/ ---- ~~------
.~ ----/
~r C
t'\\~:;i:'~
lhY.JJ

Aoding axes to the plot.

Axes may be added by a call to a single routine giving
standard axis annotation or by several calls to GRAPHISTO
Axes routines for special labels and format.

Setting focal point and eye position:

The surface may be seen from any point in space and some routines
are used to set this point either using cartesian or spherical
coordinate system. The viewing may be either axonometriq or
perspective.

J5 31 J5 32



References

I. Major,F. ,

Martens,D. GPGS-F, a portable device independent

graphic system.

Presented at the HPGSUG meeting, Lyon 1979.

lc NORSIGD:

3c. NORSIGD:

4. Zachrisen, M,
Torgersen,J.E.:

5. Zachrisen, M:

GPG~-F US~~IS Guide,
4.edition, TAPIR for1ag 1980

GPGS-F Course Notes,
RUNIT 1977

GRAPHISTO, User's Manual
RUNIT report STF14 A79023

SURRENDER - a subroutine package
for rendering bivariate sufaces.
RUNIT report STF14 A79020

. J5 33



M·P·E- ·IV

M. S. PAIVINEN

•••* WED1DN'T RECEIVE TH~ PAPERS YET (EDITOR) ••••

M.S. PAIVINEN
HEWLETT PACKARD

Kl 1



<V DATABASE CONSULTANTS EUROPE B.V., 1981

Keizersgracht 557

1017 DR AMSTERDAM

Netherlands

(020) 224243

August 1981

DATA ANALYSIS - The answer to successful implementation of IMAGE

by RICHARD IRWIN

ABSTRACT

IMAGE is now considered to be technically one of the most

successful DBMS's. However, as with other DBMS's it

suffers badly when poor design tools and methods are

used. Data Analysis is an essential part of a concept

that is growing rapidly in Europe and America.

This paper describes the Data Analysis process; how to

begin. Defining data areas and data resources. The concept

of entities attributes and relationships. The degree of

relationships, one-to-one, one-to-many, many-to-many.

Types of relationship, e.g. optional, involuted, multiple.

The use of the data model as a learning aid to the analyst

and to communicate with non-dp users. Life cycle,

sub-type and time dependent entity roles. The interactive

part of data modelling. Mapping to the logical database.

Distinction between conceptual, logical and physical

Presentation to the HP3000 International

Users Group

1981 Berlin International

Meeting Germany

K2 1

stages of development. Overcoming general structural

limitations of IMAGE.

This paper is written and presented by Richard Irwin, a

Senior Consultant with Database Consultants Europe BV

who has spent the past five years analysing, designing

and implementing IMAGE/3000 systems.

K2 2



2.

1. INTRODUCTION

f~...9~r~

<C.G. Davis "Requirements Problems in large real-time

systems development")

2. WHY USE A METHODOLOGY?

on the logical construction of IMAGE and using an

but in order to demonstrate its usefulness, a specific

50

100

COST OF

FIXING

ERRORS

IMPLEMENTATIONDESIGNANALYSISBUSINESS
ANALYSIS

20

40

10

30

50%

% OF ERROR

IN

ESTIMATION

OF TOTAL PROJECT

COST

scientific

file systems and ranges of hardware.

area has been chosen. The paper has also concentrated

in other environments, e.g.

elopment cycle in a business environment. This does not

mean however 'that data analysis should not be performed

HP3000, but many aspects can be seen to apply to other

This paper is primarily concerned with the system dev-

A 'method' is a procedure for carrying out a certain PROJECT LIFE CYCLE STAGES

task. O A 'methodology' is an integrated set of procedures,

founded on consistent basic principles, which provide

a complete framework within which a given task can be 2. 2. Providing a means of communication.

performed. A methodology is used to perform these Check point facilities provide a means of communication

basic functions. between all levels of personnel concerned with the

Highlighting of problems at an early stage.
project.

The development process is structured to allow

critical management, user and technical decisions to

be taken at the right time, i.e., as early as
2. 3. Proof of progress.

possible. (see Figure lover)
DP management is under constant pressure to show results.

Without a methodology all we do is push for early

system completion, thus instead of the project being

time-shared as in Figure 2 (over),

K2 3 K2 4



3. 4.

we save time in the analysis, resulting in Figure 3.

Consolidation across applications

file collation

proliferation of work files

integration of processing

Lack of control

satisfying new application requirements

availability and use of data

3. 3.

3. 2.

MAINTENANCE 75%

25%

ANALYSIS

DESIGN

IMPLEMENT

ATION

Figure 3

ANALYSIS

30%

40%

IMPLEMENTATION

Figure 2

With a methodology however, we can prove our progress at

each step by producing checkpoint documents. A methodology

must therefore provide:

guidelines which ensure that we don't overlook things

(not rules as they are too inflexible)

an approach which is top-down or outside-in and modular

easily understood diagrams for communication

standards for use a~d documentation

3. DATA - A VALUABLE RESOURCE

For years the value of data was grossly under-estimated.

This meant that the emphasis was on the application

approach, where, for each application, the data

would be defined again resulting in the following

difficulties:

3. 1. Duplication of data

inconsistencies of value, timeliness and meaning

cost of storage

When the introduction of the database philosophy came,

it was not necessarily a philosophy centred around Database

Management Systems but more the acceptance of the need

to share data. Data is the basis of information flow

across the functional boundaries within an enterprise

as represented in Figure 4.

Figure 4

IWAREHOUSING I~-------· ..I

IINVOICING I
The definition of a database should be:

an organised, integrated collection of data which

is structured to reflect the real 'world of

the enterprise

K2 5 K2 6



s. 6.

is stored independently of programs which use it

satisfies the requirements of multiple user 4. WHAT IS DATA ANALYSIS?

application

or all of the above may be summarized quite simply Data analysis is part of the systems development cycle

by defining a database as "a common pool of shared data". as shown in Figure 5.

However, new problems soon became apparent to the

designs of early database systems:
Figure 5

The Systems development cycle

lack of procedures to make and document critical

ACTIVITY
ANALYSIS

APPLICATION
SYSTEM DESIGN

STRUCTURED
PROGRAMMING

BUSINESS
ANALYSIS

LOGICAL

DATA
ANALYSIS

SYSTEM

IMPLEMENTATION

CONCEPTUAL

PHYSICAL

LOGICAL
DATA
STRUCTURE
DESIGN

PHYSICAL
DATA
STRUCTURE
DESIGN

~he database project was usually seen as a file

failure to fully exploit the rOle of data

meant that the designs became inflexible

design decisions

dictionary/directories

no allowance (or design) for database recovery

adoption of a bottom-up approach to data analysis

development of single-application oriented databases

conversion exercise

or re-organisation

the development stages.

for the use of a database there are also pitfalls in

To summarise - the database philosophy evo~ved from a

need to share data, but whilst there are many benefits

The objective behind each part is as follows:

K2 7 K2 8



What is fundamentally wrong with many approaches is that

no method exists for analysing and describing in a concise,

user-oriented way, the business data and how it operates,

divorced from any considerations of how the system will

eventually be designed.

The most important factor to note is the early split

between data and functions. Most of the emphasis in other

system development methodologies has been on the functional

side, typically on the programming effort. Although

programming errors are one direct cause of costly and

inflexible systems many of the errors can be traced back

to errors in the analysis and design stage.

Business Analysis (SA)

Data Analysis (DA)

Activity Analysis (AA)

Logical data structure

design (LDSD)

Application system

design (ASD)

To define the business area

boundaries for analysis needs,

at a high level

To analyse the data resources

To define the users'

information handling processes

To map the data model to

the logical data structure

To translate the user information

handling processes into a

technical application system

design

It is often desirable, and should be possible to analyse

a business without any prior constraints on how parts

of the business are to be computerised and which

business functions will form the basis of computer

systems.

In many approaches other than Data Analysis, the

emphasis is placed on determining and analysing the "output

required", (i.e. listings, reports, computer files,

etc. - a dangerous practice in itself, as information

requirements are never static) and then expressing the

results in terms of computer files, English narrative

descriptions (often long and complex) of the "processes

required", and technical flowcharts of the flow of data

through the system. The results of this approach are

apparent - inflexible systems which are not resilient

to change and whose development is often unco-ordinated

and fraught with problems. The' underlying cause is that

the business was never fully understood before the design

stage.

One approach which seeks to remedy this lack of an

analysis methodology is known as data analysis. Database

Consultants Europe BV (DeE) has sllcessfully used this

technique for a number of years during which time the

initial concept has been developed into a complete analysis

and design methodology.

K2 9 K2 10



~I •

Data analysis is a method used to understand and

document a complex environment in terms of its data

resources. The resul~of data analysis are summarised

in a diagram known as a data model. Detailed results

1(;.

5. WHERE TO BEGIN?

To initiate the task of Data Analysis the following

tasks should be performed:

are documented on specially designed forms. The input

and output of Data Analysis can be summarised as in

Figure 6.

Figure 6

5. 1.

5. 2.

Gaining support.

from management

da~a processing staff

user departments involved

Definitions

POLICIES
AND
CONSTRAINTS

FUNCTION

OF
BUSINESS

I------~
ANALYSIS

DESCRIPTION OF
GLOBAL
ENTITIES

OBJECTIVES
AND
TIME SCALE

DATA
ANALYSIS

WORKING
MATERIAL FOR
ACTIVITY
ANALYSIS

WRITTEN
DEFINITIONS OF
ENTITIES,
ATTRIBUTF.S AND
RELATIONSHIPS

5. 3.

5. 4.

- of the objectives

- of the timescale

- terms of reference

Design and acceptance

- Data Analysis standards as compared

with existing standards

- Documentation

Anticipation of possible unfortunate

discoveries

- irreconcilable coding systems

- inconsistent existing data

- incorrectly interpreted reports

K2 11

5. 5. Education and training

- theory and methodology

- detailed procedures.

K2 12



data will probably be kept in an information

handling system, e.g. objects, people, places

or abstractions such as events.

7. 3. Relationships

A relationship is an association between e~tities,

e.g. the entity 'order' is related to the entity

'order line', the entity 'car' is related to the

entity 'part'.

An attribute is a basic unit of information

which describes an entity. Within the company

environment, an attribute cannot usefully be

sub-divided into other units of information.

An entity must have attributes if it is of interest to

the company, e.g. the entity "insurance policy" could

have the attributes policy number, date policy started,

person's name, person's date of birth.

There are no theoretical rules which can be applied to

decide when an object is worth being an entity or attribute

until the company environment is known to the analyst. If

the object is not of fundamental importance to the enterprise

then it is not worth keeping information about it. For

example, can a building be.an entity? In the case of a

company which simply exists in one building the answer

could be 'no'. However, in the case of a'construction

company or an electrical installation company the answer

would most definitely be 'yes'.

Attributes7. 2.

7. DEFINITION OF ENTITIES, ATTRIBUTES AND RELATIONSHIPS

Within data analysis, there are three major components:

7. 1. Entities

An entity is something of fundamental importance

to a company. It is thus something about which

6. DATA AREAS AND RESOURCES

When choosing the data area for analysis, it should be

small enough to be manageable and not too complex that

an overview cannot be attained. There should be clear

cut definable boundaries with a minimum of interaction

with other areas. It should be independent of, or well

defined in terms of, specific applications. There should also be

abusiness requirement for applications to be implemented

in that area, or for improvements to be made to existing

application. The data resources can be categorised in the

following way:

Personal knowledge and ideas

Clerical records

Manually produced reports

Correspondence

Computer files

Other computer readable data

Computer produced reports

K2 13 K2 14



PICTORIAL REPRESENTATION

Entities are represented by a rectangular box

with the name of the entity written inside the

box.

A s i mil are x amp1 e for at t r i bu t e sis a 'lJe r 5 on's v.' C' i lJ h t ' .

In the case of a vacuum cleaner sales company the answ~r

would be that a 'person's weight' would not be an attribute

but for a hospital it would.

] O.

10. 1. Entities

9. ANALYSIS OF ATTRIBUTES

Once the major entities have been identified, determination

of relevant attributes is performed by examining:

Manual files

Documents

Decision criteria' (to identify implicit

selection or distinguishing attributes)

Computer files

For new entities it will be necessary to ask when data is

needed to be kept about that entity.

One to One (]: 1 )]o. 2. 1.

In the l2arly global data analysis phase,only the entity

name is written inside the rectangle. However,

when doing the detailed data analysis it is

sometimes convenient to include also the names

of the identifying attributes.

10. 2. Relationships

Relationships are shown by drawing a line between

the entities ,also showing the degree of the

relationship. An abbreviated name of the relationship

can be written alongside the line. (NB. entity names

and relationship names are read in a clockwise

di rection) ,

The One to One degree of relationship is represented

by

ANALYSIS OF ENTITIES

In order to recognise entities it is important to ask what

data or objects are within the chosen area(s). A first

pass of definitions of entities and preferably their

distinguishing or key attributes is ffiade. The key point to

remember is that the focus is on entities not processes.

How~ver it is important to ask what events take place (e.g.

job offers) in order to identify entities which are abstractions.

It is advisable to check all input and output reports for

other possible report entities.

8.

1<2 15 K2 16



i.e. One house is lived in by one family nnd

one family lives in one house.

10. 2. 2. One to Many (l:n)

11. 2. Partially optional

~_P_E_R_S_O_N_r-. - - 4L-__C_A_R__

One to many degree of relationship is represented

by

i.e. A person may own none, one or many cars

but a car must be owned by a person.

order line belongs to one order.

i.e. One order contains many order lines and one

10;. 2. 3. Many to Many (n:n)

11. 3. Involuted relationships

MARRIED TO.--"-- ----.

B---J
MANNED-BY

TAKES PART IN

An involuted relationship is a relationship

between occurrences of the same entity type,

e.g. a person may be married to another person.

One project is manned by many personnel and one

person can take part in many projects.
11. 4. Multiple relationships

11. FORMS OF RELATIONSHIP

OWNS

HAS OFFICES
IN

Relationships can take many forms

11. 1. Optional Relationships

~C_O_U_N_'T_R_y_I"- - - - - - -~>--_O_I_L_W_E_LL_
i.e. A country mayor may not contain oil wells.

K2 17

i.e. A company may own many buildings and must

have offices in many buildings.

11. 5. Inclusive relationships

An entity can participate in the one relationship - "overdrawn;

only if it also participates in the other

relationship - "has".

K2 18



11. 6.

l"i.

Exclusive relationships

[EM"PLOYEE
,,, ,

G

18.

A "situation which must be avoided is the tendency

to think in computer terms instead of user terms.

It is also important to keep the representation in the

simplest possible form.

Figure 7

Example data model - first pass

An entity occurrence may participate in anyone, but not

more .than one, of a number of alternative or exclusive

relationships, e.g. a car must be owned by either an employee

or a department, not both.

12. THE DATA MODEL AS A COMMUNICATION TOOL

It is imperative for any methodology to be able to

use the analysis results for communic~tion purposes.

Since communication must take place between the user of

the information and the technician who is performing the It should be noted that a hierarchical structure

analysis, it is also necessary to keep the pictorial

representations as simple as possible to avoid misunder-

standings and to enhance co-operation. No user has the

time or inclination to sit down and discuss 50 or 60

pages of documentation. It should also be remembered,

therefore, that only those parts of the picture which

pertain to the user's direct area of interest should be

brought to him for discussion.

At all times the picture should represent the real

world of data and its relationships.

K2 19

has been deliberately avoided so that relationships can be

thought about more easily. Obviously models become messy

and have to be redrawn when too many lines of relationships

are involved.

13. PRACTICAL PROBLEMS

13. l~ Many to many relationships

When a many to many relationship occurs it usually

means that another entity can be identified between

the two entities.

K2 20



13. 3. Life-cycle rOles

Life-cycle roles are special cases of sub-type

r5les in which a sequence exists between the

i.e. An employee works on many different projects sub-types. This seq~ence is shown by a double

and projects have many di f fercnt employee·s. arrow on the connecting line.

Because it is useful to have the attribute 'length

of time of employee on project' we are obliged to OIL WELL

past, e.g.

Most time problems can be represented simply by

showing the multiple relationships of present and

The Problem of Time

ABANDONED
WELL

PRODUCTION
WELL

EXPLORATION
WELL

13. 4.

[iMPL;;],----
r

-=rl ~._-PROJECT
ACTIVITY PER

EMPLOYEE

create the following situation:

13. 2. Entity roles

Entities which are similar but which have slightly

different attributes depending on the value(s) of
~
WORl<ED ON BY ~

PROJECT ~ ~

~----- ARE WORKING
ON

ANALYST I
certain ~lassifying attribute(s), are probably

entity 'roles'. An entity role is a sub division

of an entity type which is difficult to separate

from the entity type with which it is associated.

14. ACCESS PATH ANALYSIS

Access path analysis could easily be a large enough topic

for discussion within a separate paper. In this paper the

subject is summarised to demonstrate its relevance. To

E.g. A 'person' entity may be subdivided into

'ADULT' or 'CHILD'. This would be represented in

perform access path analysis the following tasks are

performed.

the following way:

--------_....._------ 14. 1. For each access path, the entity types

PERSON

~_A_D_U_L_T__I [CHILD .OJ

are listed in the order they are needed for a

particular function.

K2 21 K2 22



in terms of relationships and attributes.

14.

14. 3.

The select.ion criteria arc recorded

It has to be recorded whether each

Function 2 Product - retrieved, selected by product
Second
entry point code.

Stock - retrieved, selected by relationship

14. 4 •

entity attribute type is retrieved, modified,

created or deleted.

It is also necessary to record any

relationships created, modified or deleted.

Examole of Access Path Analysis.

with product and depot and updated.

Order line - stored, related to order and

product.

15. MAPPING TO I~~GE

The uctivities of data modelling and activity analysis are

ACTIVITY ORDER ENTRY performed as far as possible without reference to

ACTIVITY DESCRIPTION implementation techniques available in IMAGE. The process

Function

Function 2

RESULT

An order is received by telephone. The depot

that will make the delivery is selected

depending on whether the goods are bulk

or packaged. The order is recorded, and

related to the delivery point and the

depot.

The goods specified in each order line

are validated. The order lines are

recorded, linked to the goods and to the

order or back-order as appropriate.

of access path analysis does, however, identify alternative

methods of achieving the required result, besides showing

that occasionally the data model is deficient or inconvenient

for handling some functions. At this point it helps to

understand the range of logical structures available, in

order to consider the alternative methods of representing

entities in the Database, together with their attributes and

relationships. I~~GE provides the capability to implement

relationships through the use of PATHS though in practice

there can be many restrictions on using that PATH. The

simplest way to convert entities to logical records is to

Function 1
First entry Delivery point- retrieved, selected by
point

delivery point name.

Depot - retrieved, selected by bulk or

package relationship.

Order - Stored, related to delivery point

and depot.

K2 23

create one record type for each entity type, i.e. creating

a DATA SET or a number of DATA SETS fur an entity.

Attributes become DATA ITEMS. It may be necessary to divide

attributes across more than one DATA SET to provide

efficient access to the most frequently used attributes or

to combine several entities into one logical record. Any

such changes should be checked against the data model.

K2 24



16. TYPICAL STRUCTURAL PROBLEM

A typical example of a problem presented by IMl~GE is the

18. CONCLUSION

Data analysis provides a good communication tool between

following. the user wishing to understand his system

COMPANY , DEPARTMENTI

and the analyst wishing to understand the user data. It

provides a methodology which is flexible enough to adjust

to new environments, not a checklist of standards which
This would have to be represented in Ir~GE by

DEPARTMENT MASTER
EMPLOYEE

MASTER

are inflexible to change.

IMAGE is successful mainly because it is $imple to

COMPANY
MASTER

DEPARTMENT
DETAIL

EMPLOYEE
DETAIL

understand. With an easy-to-understand methodology and

DBMS, implementation of systems becomes a smoother process

with involved, motivated users and a database ready to

cope with future demands.

Although it is an inconvenience to have to adjust the design

to fit into these kind of circumstances, IMAGE has proved

to be very simple for interpretation when looking to the

ease of the DBSCHEMA.

17. PERFORMANCE CONSIDERATIONS

Performance considerations are quite often outside the scope

of data analysis particularly as performance is usually

dependent upon volume. In a high transaction volume system

it is worth considering the possibility of splitting

entities into sub-entities to reduce the volume in each

set and perhaps even reducing the necessity for an

access PATH.

K2 25 K2 26



COMPUTERIZED TYPESETTING: TEX ON THE HP3000

LANCE" CARNE S

LANCE CARNES
INDEPENDENT CONSULTANT
163 LINDEN LANE
MILL VALLEY
CALIFORNIA 94941 USA

K3 1

CO~IPu·rEH.IZED TYPESETTING: 'J)~ ON TIlE IIP3000

Lance Carnes
Independent Consultant

163 Linden Lane
Mill Valley, California 94941 U.S.A.

September 1981

ABSTRACT: 1EX is a program which allows the ordinary user to produce professional
quality typcset output. 1"FX was developed by Donald E. Knuth of Stanford University and
is currently used throughout the world for typesetting both te~hnical and non-technical
material. This paper will describe the use of~ and show sOlne examples of its output.
The transportable version of TEX, written in Pascal, has becn Rllccessfully moved to the
HP3000. The second part of the paper describcs the tasks involved in this process.

I. INTRODUCTION

1. What is '!tY{ ?

Tau Bpsilon Chi (11~ ) is a syst.em for typesetting t.echnical books and papers. It can
also be used for ordinary non-technical material. The systeln does not require the uscr to
have a knowledge of typesetting rules or conventions..

The original 'J'EX system was developed at Stanford University by Donald E. Knuth.
Frustrated in his attefilpts to print a. sccond edition of The Art 0/ C07nputcr Programming
in the same printing style as the first edition, he looked for altcrnatives in the area of
computerized typ(~setting. Finding nothing that suitC'd him J he eJubarked on a project
which was to becorne the 19.X systC'fll. This :;;ystern is described in detail in his infornlative
and hunlorous book, 11~ and A1E7ilFONT [l<l1ut79].

The 11~ systern is currently used throughout the world J partly for technical work in
nlathematics and physics, and partly for various other uses. The Journal 0/ the American
Mathe1natical Society now accepts 'J)~X input files for publication. Some major corpora
tions and universities use it for typesetting their inlernal docunlcntation, user manuals,
newsletters, etc. The 'l~ Use~s Group a.ccepts art.icles and letters for their Journal in 1lYC
format.

2. flow does it work?

The 1lij{ program accepts an input file con~isting of text and control sequences J and
generates a device independent output file (D\'1 file) which contains commands for driving
a raster print.ing deYice. Once 'J}~ has processed the input and produ('C'd a DVI file, it
is up to a device driver progranl to interpret the cOTllmands in the DVI file and produce

K3 2



Figure 1. Functional diagram of t.he~ system.

glue betwecn the boxes by allowable amounts.

For further dctails on the inner workings of'I}YC , see [Knut79) or [Spiv80).

3. Submitting an input file to TEX

The input file for 'lEX is edited using any tcxt editor. The text and any control
sequences are contained in this file. When~ is run, this file is designated as the input
file.

Device
drivel'

programprogram

printed output. This sequence of events is shown in Figure 1.

Most of the typesetting is done by 1tVC automatically. ~ operates on many levels,
composing pages, paragraphs lines and words. All of these are interrelated, with the
intention of producing professional quality printing. In cascs where 'lEX needs to be guided,
for example in printing the 1EX logo, the user intervenes by specifying a control sequencc
(see 3. below).

The 1FIC system does not typeset a single- word or a single line at a time. Rather,
it typesets a page or more at a time. This is done for a variety of reasons. Mainly, we
want the printed page to consist of pleasantly spaced paragraphs, lines and words. Also
we want to avoid other unwanted phenomena, such as "widow" lines. A widow line is the
first line of a paragraph appearing at the bottom of a page with the paragraph continuing
on the next page. To eliminate widows, 1FX returns to the paragraphs already layed out
and expands them slightly so as to use one more line on the page. This forces the widow
line (,0 the top of the next page.

Paragraphs are composed to reduce the number of hyphenations and so as not to leave
a single word stranded in the last line. In addition, the spacing between words is equalized
throughout the paragraph.

Lines of text are composed of words and other symbols (e.g. mathematical formulas)
with the space between words equalized.

Words are typeset with the letters placed one character width apart. Unlike stan
dard computer printers which print all characters in the same width (usually 1/10 inch),
typesetting separates characters by the exact width of the character, depending on the
"font" or character style used. In addition, '.J:Fj( will place characters closer together or
farther apart in accordance with traditional typesetting rules. For example, when typeset
ting the word uAVIATOR" the "A" and ICy" are placed closer together; this is called
"kerning". Notice in the word "find" that the ICf" and ICi" are pushed together to form the
"ligature" 6. These typesetting conventions and more are known to lEX , freeing the user
from having to memorize them.

The basic concepts 'JlYC uses are "boxes" and ICgl ue". A box contains something which
is to be printed, and glue specifies the spacing between boxes. For example, a character
is a box, a word is a collection of character boxes, a line is a group of word boxes, a
paragraph is a coHection of line boxes, and a page is a box composed of paragraph boxes.
The space between boxes can expand or contract by carefully defined amounts, called the
stretchability or shrinkability of the glue. For example, when ".rwc composes a paragraph
that has a hyphenation it tries to back up and redistribute the spacing of the words in the
paragraph to avoid the hyphenation. It does this by increasing or shrinking the space or

Dasically, text is entered in a standard fashion with spaces between words, and one
blank line between paragraphs. The input need not be formatted in any particular manner
beyond this. Control sequences are defined as a u\" followed by a word or symbol. They
allow the user to specify a special command. For example, U\i t IMPORTANT" would cause
the word IMPORTANT to be set in italic font.

The 1lYC system can be run in cither interactive or batch mode. In interactive mode,
if~ finds an error the user is allowed to make modifications on the fly. For example,

!Undefined control sequence
\iy

IMPORTANT

The 1liX program is indicating that it does not know the control sequence CC\iy" and
shows what it, has scanned on the first line, and what it has not yet scanned on the following
line. At this point the user may correct the input by typing 1(1" to erase one symbol or
control sequence, and then "I" to insert the correct sequence "\i til. Any corrections made
in this manner are recorded in an errors file for future reference.

I
As 1)YC is processing the input, it is writing to the DYI file. After the input is

successfully process~d, the DYI file is ready for the device driver program.

Two other important facilities are available with TEX. These are alternate input
files and macro definitions. Alternate input files are 1}YC input files which are read in
conjunction with another input file. For exaInple, if a paper has an abstract and three
sections, and each is in a separate file, a main file would draw theln all together as follows:

~ paper on TEX for the HP3000 ~

\input basic ~ basic control sequences
\input texabs ~ abstract file
\input sect1
\input sect2
\input sect3
\end

Each of the alternate input files could have had \input cOIJlmands also. The maximum
nesting depth is nine.

Macro definitions allow the user to specify a common sequence by defining it and
giving it a name. For example, the logo 1)YC was specified by inserting U\TEX". \ TEX was
previously defined as

2 3

K3 3 1(3 4



\def\TEX{\hbox{lowercase{\:a \uppercase{T}\hskip-2pt\lowerl.94pt

\hbox{\uppercase{E}}\hskip-2pt \uppercase{X}}}}

It is much easier to write U\TEX" than to insert the above expansion.

4. Fonts

A font is a specific design of an alphabet and associated symbols. For example, this

paper is set in a font called Computer Modern Roman. Most typewriters have Pica or

Elite type fonts. The different uballs" or "daisy wheels" on some printers allow the user

to change fonts.

, The~ system allows up to 64 different fonts to be specified within the same job.

A control sequence is given to switch from one to the other. Naturally you must have a

device which can support all of these different fonts.

Knuth also wanted to define his own fonts and created a system called METAFONT

to do this. Using METAFONT one can design a font which is coded into a file for use by

'lEX . For more information on METAFONT see [Knut79].

5. The DVI file

The DVI file consists of a series of 8- bit codes which tells a device driver how to typeset

the job. The fonnat of the DVI files is given in Appendix B.

Basically, a DVI file command is of the form Uset the letter d and advance the character

width" or "change to font 3" or "advance vertically 12 rsu's". No inherent intelligence on

the part of the device is assumed. In fact,~ gets along best with devices which have no

internal programming, such as proportional spacing or typesetting firmware.

6. Device drivers.

The assumed printer is a raster scan printing device. This implies that all spacing

between characters and lines is user specified. A typical computer line printer is not a

raster device since it will always print 10 characters/inch, and six lines/inc.lt (or some

variation of this). Most of the daisy wheel terminals available now can be used as raster

devices. The actual device~ is aimed at is a commercial computer-driven typesetting

device; such as a Xerox Graphics Printer, a Mergenthaler Linotron 202, or an HP2680

Laser Printer.

The 1EX program has no knowledge of any particular printing device. It creates the

same DVI file regardless of the output device. It is the job of the Device Driver program

to interpret the DVI commands and produce output on a specific device. While there is

only one 'lWC program, there will be one Device Driver program for each output device.

II. '!EX on the HP3000

1. '!EX in Pascal

The 1EX system was originally written in a language called SAIL (Stanford University

Artificial Intelligence Language). The SAIL compiler and the original ~ system ran

4

:<3 5

on the DEC-20 cOluputer only. 1)~ is in the public domain, hut was not even renlotely

transportable. Due to the popularit.y of the system, a project was undertaken to translate

the 1)i)( system into a computer language which was available on most modern computer

systems.

The language chosen for the transportable syste'm was Pascal. The method for

translating the system was as follows. First,. a well documented pseudo-Pascal source was

developed. This source has only a slight resemblance to a Pascal program and was intended

to serve mostly as documentat.ion, and to give all the algorithms. This file is often referred

to as the DOC file.

The second step was to prod uce syntactically correct Pascal source code from the DOC

file. There is a program called UNDOC which performs this step. The resulting Pascal

source is distributed anyone wanting to transport~ to another computer ..

The DOC file is actually typeset, and a photocopy is provided with the distribution

tape. The Pascal source is almost unreadable, but will compile. Examples of both of these

files is in Appendix C.

2. Moving ':IlYC to the HP3000.

The Stanford 1~-in-Pascal project brought the system to a point where it could be

transported to other computer systems. The transportat.iun process, however, requires a

good deal of tinle and a patient systems programmer.

At the time of writing, this author has successfully transported 'lEX to the HP3000.

The project was by no means trivial, as will be shown.

Bringing~ to the HP3000 had a lot of problems right from the outset. First, there

was no supported Pascal compiler at the time this project was begun. Second, the design

of the 1)YC program assunles a large addres~. space, sonlething on the order of 600K words

of addressable memory.

The tasks broke down as follows:

a. Edit the Pascal sources. While the system was translated to a UStandard"

Pascal, there are still many variations and assumed extensions which had to be

accounted for. With 23,000 lines of Pascal source this took considerable time and

effort.

b. Rewrite the "System dependent" routines. These are the' procedures and

functions which interface 1E1C with the file system, terminal I/O a.nd other traits

particular to the host system. About 25 routines had to be modified or rewritten.

c. Implement a virtual memory scheme. rIEX references several large arrays

throughout, SOIne as large as 50,000 elements with 4 32-bit words per element. An

addressing scheme was developed to allow the array contents to reside in secondry

storage.

d. Revise the Pascal compiler to allow 32-bit integers and to compile large array

references. ~ assumes 32-bit integers throughout, and the Portable P4 compiler

from the HP Users Contributed library was modified to allow them.

e. Optimize the performance of the system. When the above tasks were

completed and the system first ran on the IIP3000, it was the incredibly slow. Where

5

K3 6



the ori~inal 'J1l~ syste'1Il at Stanford processed a document in Irss than two minutes,

the initial 111'3000 ']}.X took '10 minutes. By anaylzing TEX=s operation, sorne

optimizations have been madc redllcinp: the rUll time to about h minutes. Additional

optimizations will be made to allow the systenl to run as fast as possible. One tool
which has been particularly useful for identifying inefficient code is APG/:~OOO from

Wick Hill Associates.

3. Device drivers.

A device driver for a daisy wheel printer has been devcloped for usc on the II P:~OOO.
While only one font is available at a timr with this devicc, satisfact.ory results have been

obtained. The output is suitable for internal documentation, and for proofing a document.
Future plans are to develop a driver for the IIP26HO Laser printer.

However, it is not neccssary to have a high quality printill~ device on-site. There

is one cOIIlmercial printing hou~e in San Francisco which uses 'I).j< for typeseting on a
Mergenthaler Linotron 202; the au tput from this device is carJlera ready. DVI files produced

by 1rJ( on the HP:~OOO, once proofed on the daisy wheel printer, will he sent to this

cornlIlercial printer.

ID. Conclusions

This is a truly remarkable' systelTl. It gives the ordinary pC'rson the ability to print

professional quality copy. The user will not have to explain to a typographer what is
wanted, but. will have personal control.

The IIP3000 implelJlentatioTl of 'I),X will be a booJl for any organizalioll desiring to
improve the quality of documentation, user manuals and other printrd Inaterials. Good

result.s can be obtain eo with an inexpcnsive daisy \\'})(~d print('r. \\'hC're ra.mera ready ropy

i~ desired, several highcr quality d('vic('s are ("oIJlJl\('rcially available.

Hopefully more organizations \...·ill begin to use 'I)X for documentation, ma.nuals,

annual rcports and newsletters. Perhaps olle day soon the lIP Ceneral SystPlTlS Users

Group will accept papers for public.ation ill 'I).X format.

ACKNOWLEDGElvIEN1'S.

My thanks to Prof. Luis Trahb-Pal'do ;H1d Cltarl(·s H<'stivo of St:~rtf()rd Ulliv(~rsity for

their assistance in learning th(~ 'ILX sY:-il('fII; and to CI'~~TltY, Il"C. of O:tkL~f1d, C:dirornia,

fur I)fO\·idiflg time on the II P:WOO.

6

\(3 7

REFERENCES.

[1(nut79] Donald E. Knuth, 'I).X and A1ETAI"OiVT. New Directions in Typesetting. Digital

Press, 1979.

This is a beautifully printed book. an acknowl('dgelTlent of the 1l~ system. Don

Knuth:s writing stylr is at once brilliant and witty. It contains a User's Guide to

the 'I).~ alld t\1ETAFONT systems and a paper 011 t\1athenlatical Typo~raphy.

[Spiv80] \1ichael ~pivak. Tht: Joy of TRX. A CourJllrt Cuide to Typesetting Technical

Text by Computer. Version -1. AlllcricaTl \lath(,lIIalical Socicty, 1980.

This is a. real hook. It givcs a lighthearlcd introduction to the use of AMS-TEX,
the vrrsion of'lj,j{ used by the Ai\.1S.

TUChoat. The 1).X Users Group Newsletter. Published by the American Mathematical
Society.

The 'ILX U~ers Group is small currently, bUl enthusiastic and helpful. For
informat.ion on melnbership write to

TEX Users Croup

c/o Alllcrican Mal~matical Society

P.O. Box 62·tk
ProvideJlc.e, }thode Island 02n·tO USA

K3 8



\noindent (\bf ~~ST~ACT:l \T~X\ IS a.proqram w~lch allows
th~ ordinary user to prolluce proleSS10'lal qua'lti'
typeset output.
\TEX\ ~as developed oy Donald E. Knuth ot Stan~ord
University and is currentl~ ust!d ~hrouqhout thE: worlu "
[or typesetting both technlcdl ana non-technical material.
This paper will describe the use of \TE~\ an<. sho..
some examples of its output.
The trans~ortable version of T~X, written in Pascal,
has b~en successfully reoved to tne HPJOOG.
The secono part of the paper describes the tasks involved
in this process.

\ v skipO. 4 c 1;1
\noindent (~bf I. I~TQODUCTIO~)

\ v sk i 2 o. J Cit
\noinaent (\bC 1. _hat is \TE~\ ?l

\yskip 0.1 crn
{\it Tau ~'s11on Chi} (\T£).\ r is a system for ty"pesettinCJ
technical oooks and ~apers.
It can also be used tor ordinary non-technical material.
The syste~ does not require the user to nave a knowledqe of
typesettin~ rules or conventions.
The original \TEX\ svsteffi ~3S developed at Stanford University
by Donala E. Knuth. .
Fr us t rate .1 i n his at t e DIP t ~ top r in t a 5 ~C on d edt t 10no!
(\ it The 'r t of Cor~puter ?ro~ramming) in the sa1l'e pr inti nq styl e
as the firs t edt t ionl he looK ed tor al terna tiyes in the
area of co~puterized typesettin~.
Finding nothing that suited him, he embarked on a project

ABSTRACT: 1FJC is a program which allows the ordinary user to produce professional
quality typeset output. 'lEX was developed by Donald E. Knuth of Stanford University and
is currently used throughout the world for typesetting both technical and non-technical
material. This paper will describe the use of~ and show some examples of its output.
The transportable version of TEX, written in Pascal, has been successfully moved to the
HP3000. The second part of the paper describes the tasks involved in this process.

I. INTRODUCTIO'N

1. What is 'l&X ?

Tau Epsilon Chi(~ ) is a system for typesetting technical books and papers. It can
also be used for ordinary non-technical material. The system does not require the user to
have a knowledge of typesetting rules or conventions.

The original1EX system was developed at Stanford University by Donald E. Knuth.
Frustrated in his attempts to print a second edition of The Art 0/ Computer Programming
in the same printing style as the first edition, he looked for alternatives in the area of
computerized typesetting. Finding nothing that suited him, he embarked on a project

APPENDIX A. A portion of the 1E1C input file for this paper.

K3 9

Command Name Command Bytes
Description

VERTCHARO 0
Set character number 0 from the eurrent font such that
its reference point is at the eurrent position on the page,
and then increment horilontal eoordinate by the character's
width.

VERTCHARI 1
Set eharacter number 1, etc.

VERTCHAR127 127
Set character number 127, etc.

NOP 128
No-op, do nothing, ignore. Note that NOPs come between
eommands, they may not come between a com~and and
its parameters, or between two parameters.

BOP 129 cO(4J cl [41 ... c9[4] p(4]
Beginning of page. The parameter p is a pointer to the
BOP command of the previous page in the. DVI file (where
the /irst BOP in a .DVI file has a p of -1, by convention).
The ten c's hold the values of ~'s ten \counters at the
time this page y/as output.

EOP 130
The end of all eommands for the page has been reached.
The number of PUSH eommands on this page should equal
the number of POPs.

PUSH 132
Push the current values of horisontal eoordinate and verti
eal eoordinate, and the current W-, X-, Y-, and I-amounts
onto the stack, but don't alter them (so an XO after a PUSH
w'll get to the same spot that it would have had it had been
given just before the" PUSH).

POP 133
Pop the 1-, Y-, X-, and w-amounts, and vertical eoordinate
and horilontal coordinat.e oD" the stack. At. no point in a
.DVI file will there have been more POPs than PUSHes.

HORZRULE 135 h(4) 17(4) •
Typeset a rule of height h and width w, with its bottom left
corner at the Courtent position on the page. If either h ~ 0
or 17 ~ 0, no rule should be set.

APPENDIX' B. DVI commands.

K3 10



VERTRULE

HORZCHAR

FONT

X2

X3

X4

XO

W2

W3

W4

WO

Y2

134 b(4) _(4]
Same as HORZRULE, but also increment horizontal coor
dinate by 'tV when done (even it b .$ 0 or w .$ 0).

136 e[l)
Set character e just as it we'd gotten the VERTCHARe
command, but don't change the current position on the
page. Note that e must be in the range [0..127}.

137 f[4]
Set. cUlTent font to f. Note that this command is not
currently used by ~-it is only needed if f is greater than
63. because of the FONTNUM commands below. Large
font numbers are intended for use with oriental alphabets
and for (possibly large) illustrations that are to appear in a
document; the maximum legal number is 232

- 2.

144 m(2)
Move right mTSU·S by adding mto horizontal coordinate, and
put m into x-amount. Note t.hat m is in 2'5 complement, 80

this could actually be a move to the left.

143 m[3:
Same as X2 (but has a 3 byte long m parameter).

142 m[4]
Same as X2 (but has a 4 byte long to parameter).

145
Move right x-amount (which can be negat.ive, etc).

140 m(2)
The same as t.he X2 command (Le., alters horilontat~oor.

dinate), but alter w-amount rather than x-amount, so that
doing a WO command can have different results than doing
an XO command.

139 m[3]
As above.

138 m(4)
As above.

141
Move right w-amount.

148 D(2)
Same idea, but now it's "down" rather than "right", so
vertical coordinate changes, as does y-amount.

K3 11

Y3

Y4

YO

Z2

Z3

Z4

zo

FONTNUMO

FONTNUM1

FONTNUM63

141 n[3}
As above.

146 n(4]
As above.

149
Guess.

152 m(2}
Another downer. Affects vertical coordinate and l'amount.

151 m{3]

150 m[4]

153
Guess again.

1501
Set current font to O.

155
Set current font to 1.

217
Set current font to 63.

,(3 12



3G. The procc:durc Pnnt takes an integer as argument. alld prints the
correspondin~ sLrnypool entry both in the terminal and·in the errors file.

procedure Print(mtJ : inLtgu);
var i : mtt9cr; { index in the string}

c : asuiCudc;
begin l ::.:: slrnglmul; c := Jtrngpool(il;
while c <:> null do

begin tcrVulf :== chr(c}; trr/tll :-= chr(c); puL(LcrUuL); pUI(cTT/Il);
IncrcmcuL(l); c := Jlrngpoollil
end;

end;
procedure IJrmll. n (mcs : mttgtr);

{ l.lke 11rmL I but. beginumg at a new line. }
begin LtrOut T ::..:. chr( carriagcrcturn); trr/d T := ttrOut 1; put( luOut);
put(ur/ll}; tcrOuLJ := chr(/mc/ttd}; trr/lll := LtrOut 1; put(luOut);
put(trr/il}; }Jrml(mu)
cnd;

§36

i " ~ :- ,; ~ - ) ;

. " ... - - '\.
- .' :.. .- - , ,. I

- ... a _ _ •

-; -. - - - - :

, -, - - - '\ .
- - ". - -,.),
~ ...-=::.'" :-:~-:. (~~;

. - - . . ..... -
:~-~-: .~~.---:-,

::=~-:'.'.~:- "-4lI

i _ - :. eo: : _ - : .... ' _ _

1 ", _ ~ - .. - _ - _ I' - ::: ~. - ~ •• .:: • :

1'" -

I . ;. ~

1 ~ ~:..

1 2:; :;
1 : ;" ~

1 : 7:: :::: -': . :- - : - - . - .. " ~ ,. : ~ :
i : ::- - ::. ~ : •
1~(: -,,~,,-( ... :~)
1 : ~ ~ ; •. - ~ ... : ~ '. ( ~ - -. - _ - ; ;

.; .. -

IE.' 1)9<: SYSTEM f)EPI~NlmNcm~

25. Find the equation of the
plane passing through the end points
of the three vectors A == 3i - j + k,
B === i + 2j - Ie, and C === i + j +
k, supposed to be drawn from the

. .
orIgIn.

26. Show that the plane
through the three point3 (Xl, Yl, Zl),
(X2, Y2, Z2), and (X3' Y3, Z3) is given
by

Xl X Yl Y Z1 Z

X2 X Y2 Y Z2 Z o.
X3 X Y3 Y Z3 Z

Solution. Let w f(x, Y, z)
x 2 + y2 - Z, so that the equation
of the surface has the form

f(x, Y, z) == constant, APPENDIX C. Fragments of lFJC DOC and Pascal source.

APPENDIX D. An example of technical typesetting.

K3 13
i(3 14



OPTIMIZATION OF SPL AND FORTRAN PROGRAMS

1.

2.

CONfrEN'rs

IN'rROOlJC'f ION

1.1 Scope

1.2 Termin~1ogy

1.3 Basis

1.4 Background: The Machine Architecture

1.5 Background: The Compilers

GENERAL OPTIMIZATION PRINCIPLES

1

2

3

5

6

2. 7 /h':.1 i.'j data- type conyers ions

2.8 ~~ltiVly instead of dividing

~.9 Explvit special hardwdre features

~.lO ~Joid unnecess3ry memory references

John Machin

Campbell & Cook Computer Services

Melbourne, Australia

K4 3.

2.1

2.2

2.3

2.4

2.5

2.6

00 it at compi1~-time

Do it only as uften as needed

Do it in the ~e1~sters

Don'~ do i~ at ~lL

Don 't dlJ it. with a procedure call

Be ~·trv of long reals

6

7

8

10

11

15

17

18

19

21

K4 2



4.

OPTIMIZATION TOPICS SPECIFIC TO FORTRAN

3.1 Multi-dimensioned arrays

3.2 MORECOM

3.3 $INTEGER*4

3.4 Character Variables

3.5 Indirect Indirection

3.6 $CONTROL ~OUNDS

3.7 Th~ Formatter

3.8 $CONTROL INIT

3.9 Use of SPL Routines

MISCELLANEOUS

23

23

25

29

31

34

37

38

38

39

40

1.

1.1

INTRODUCTION

Scope

This paper discusses general principles and specific

techniques for making SPL and FORTRAN programs use less

CPU time on HP3000 computers.

There are three things which affect the CPU speed of a

program:

(a) Hardware: Once one has purchased a particular

machine, nothing can be done to increase its CPU

speed.

REFERENCES

APPENDIX A: CLEARMANY PROCEDURE

A.l Purpose

4.1

4.2

4.3

4.4

A.2

A.3

Slow programs: prevention

Slow programs: cure

Know your machine

Future Shock

Calling sequence

Source

40

40

42

43

44

45

45

45

46

K4 3

(b) Manufacturer-supplied compilers and run-time

libraries: The quality of compiler-generated code

can have a potent effect on the speed of a program,

as can the efficiency or otherwise of the library

routines it calls. Later sections of the paper

highlight language features and compiler features

which necessarily execute slowly, in order that the

programmer might avoid them, where

KII II



•

2

possible. Other features, where the necessity is

improbable or dubious, are listed for temporary

avoidance by the programmer until the suggested

compiler enhancements are implemented.

(c) User-written code: Given that suitable algorithms

have been chosen, the way in which the user

pr.ograms them can be of considerable consequence.

1.3

3

Basis

statements made in this paper in relation to code

emission by the compilers are based on the Athena (1918)

software release.

Timings were obtained on an HP3000 Series III.

1.2 Terminology

1.4 Background: The Machine Architecture

To avoid much repetition, abbreviations are used for the

names of the four main numerical data types, as shown

below:

Abbreviation Expansion SPL FORTRAN
Equivalent Equivalent

SI short integer integer integer[*2]

LI long integer double integer*4

SR short real real real

LR long real long double precision

K4 5

1.4.1

1.4.2

It is of course stating the obvious to say that the

HP3000 architecture, at the "machine instruction" level,

is scarcely traditional. Many of the features of the

machine ease considerably the task of generating machine

code for medium-complexity languages such as SPL and

FORTRAN. Some features however cause difficulty in

emitting code, and this difficulty sometimes lead to

suboptimal code.

The low limits on direct data addresses (e.g.

OB+255,Q+127) can cause problems with programs requiring

many variables. This leads to an extra level of

indirection in FORTRAN programs (see "MORECOM" and

"Indirect Indirection" later) and surgery in SPL

programs.

K4 6



1.4.3

1.4.4

1.4.5

4

The BR (branch) instruction post-indexes (like all other

memory-reference instructions) when it should pre

index. The code generated for computed GO TO, CASE and

SWITCH statements is cute but is about 3 times as much

as would otherwise be necessary.

The elegant simplicity of the stack machine is rudely

violated by the instructions which handle long reals.

Far from the zero-address "stackops" used for arithmetic

on other data types, these instructions operate on the

addresses of one operand (negate), two operands

(comp~re), or three operands (add, subtract, multiply,

divide). Given this startling departure from

orthogonality, together with the fact that there are no

specific instructions for loading or unloading the stack

four words at a time, the number of references to long

reals in later sections of this paper should cause

little surprise.

The low limits on direct code addresses (e.g.

P-255,P+255 for LOAD,BR,MTBA etc and P-31,P+31 for the

test-and-branch instructions) cause two problems in code

generation:

(a) Is a branch to be direct or indirect?

If indirect, where should the indirect word be

placed?

•
K4 7

1.5

5

(b) Where should constants be placed?

Some solutions to these problems are good; occasionally

however, an indirect branch is used unnecessarily, and a

constant is dumped immediately (with a branch around it)

instead of being carried forward.

Background: The Compilers

Neither the SPL compiler nor the FORTRAN compiler is

represented by Hewlett-Packard as being an optimizing

compiler. However, on perusing a check list of

optimization techniques described in the literature, one

finds that some of these are used (at least partially)

and that the use of others is obviated by the machine

architecture.

It is generally accepted that of the languages available

on the HP3000, SPL is the most "efficient", closely

followed by FORTRAN. Looking at directly comparable

features of the two languages, it is found that

sometimes SPL generates better code, and other times

FORTRAN does. Both compilers would benefit from a

cultural exchange.

K4 8



2.

6

GENERAL OPTIMIZATION PRINCIPLES
2.2

7

Do it only as often as needed

Do it at compile-time

While it may look better to code:

2.1

PARAMETER PI 3.14159 •••

2.2.1 Both compilers perform limited elimination of common

sub-expressions within a statement. This is done only

with respect to subscripted array references. The

seemingly wider scope stated by Splinter [1]

(expressions in parentheses) does not prevail.

CIRCUM = 2.0 * PI * RADIUS

(or the SPL equivalent)

it will run faster if you write

PARAMETER TWOPI = 6.28318 •••

CIRCUM = TWOPI * RADIUS

Neither compiler will simplify expressions involving

constants; if you write

A:= 1 + 1;

that is exactly what you get.

K4 9

The method used is to load the index register once only

with the value required for the offset into the

array(s).

Three qualifications must be met for the compilers to

perform this optimization:

(a) The subscript expressions must be lexically

identical.

(b) The array(s) must not be long real.

(c) (SPL only) The subscript "expressions" can only be

simple variables or constants.

K4 10



8 9

0(1 + 3, J + 5) = E(l + 3, J + 5)

Examples of FORTRAN statements where the elimination is

done are:

A(I + J) B(I + J) + C(I + J)

2.3.2 The index (X) register has a limited arithmetic

capability, and may also be used as temporary storage.

Of course the X register is used for several things

other than array subscripting, and so it is dangerous to

merely equate some name to the X register and write code

as though an ordinary variable was involved.

No elimination is done in:

A(I + J) = B(J + I) (not lexically same)

In particular the use of the X register in and around

statements involving long reals is perilous.

2.2.2

2.2.3

K = (1 + J) * (1 + J) (not in array reference)

Where there are common sub-expressions not fitting the

above criteria, time and code-space can be saved by

using a temporary variable.

Invariant expressions can be moved outside loops. This

seems obvious, almost too trivial to mention, but such

E.g. LONG A, B;

LONG ARRAY C(O:lO), D(0:10);

INTEGER X = Xi

A:= B; «SETS X TO 1

IF B IS A PROCEDURE ARGUMENT BY

REFERENCE»

cases can be "hidden" by the high level language: see

section 3.1.1. C(X):= D(X): « CHANGES VALUE OF X »

2.3

2.3.1

Do it in the registers

The HP3000 architecture does not offer quite the same

scope (or the necessity!) for optimizing the use of

registers as does a machine of the "umpteen general

purpose registers" variety.

K4 1J

2.3.3 The assignment operator can be used in SPL to replace a

load from memory with a faster stack-duplicate

operation.

K4 12



2.4

2.4.1

10

Instead of

c:= 0 + Ei

A:= B + C;

write

A:= B + (C:= D + E)i

Warning: for long reals, the compiler generates worse

code for the latter case.

Don't do it at all

When you write

FOR 1:= J STEP K UNTIL L DO .....

the SPL compiler must generate code which checks whether

the loop is to be entered at all.

When you write

FOR 1:= 0 UNTIL 9 DO .....

K4 13

2.5

2.5.1

2.5.2

11

the loop body must be ent8ced, but the compiler still

goes through the motions.

If this latter loop is nested within others, this is a

waste of time, which can be saved (together with 2 or 3

words of code) b~ writing

FOR* 1:= 0 ....

Don't do it with a procedure call

As is well known, there is a reasonable overhead

involved in a call to a procedure in the current

segment, and a greater overhead in a call to a procedure

in another segment (especially if the called segment is

not present in memory).

While splitting a program into procedures or subroutines

aids greatly in structuring a program, care should be

taken to avoid frivolous procedu~e calls.

The SPL subroutine, although offering a somewhat more

austere environment than a procedure, has the advantage

of faster invocation and faster return.

K4 14



2.5.3

12

It may sometimes be worth the waste of code space to

change a procedure into a subroutine and include it in

each calling procedure.

The following "dirty trick" allows a single copy of a

subroutine to be shared by several procedures in the

same segment:

(a) Include the source of the subroutine ("SHARED'SUB")

in an "initialising" procedure.

(b) The initialising procedure should include:

SUB'AOOR:= @SHAREO'SUB;

where SUB'AOOR is global.

(c) Invocation of the shared subroutine is done by

« stack arguments, if required »

TOS:= SUB'AODR;

ASSEMBLE (SCAL 0);

Less obvious than explicit procedure calls (coded by the

programmer) are implicit procedure calls generated by

the compilers.

K4 15

2.5.4

13

Usually there is a rationale for an implicit procedure

call: the language feature is not directly supported by

the microcode, and in-line code would take up too much

space.

In Fortran, all "basic external functions" are handled

by procedures. Turning to the "instrinsic functions",

which also look like function calls at the source level,

we find that some of them are in fact handled by in-line

code. Almost all the numerical functions are in this

category; among the exceptions are AINT, JOINT, DDINT,

AMOD, and the MAX/MIN family.

Of course the MAX and MIN procedures cater for a

variable number of arguments; but there is a case for

using in-line code for the frequent case of two short

integer arguments. The code currently generated for

J = MAX (K, L) is

LOAD K

LOAD L

LDI 2

PCAL MAXO'

STaR J

K4 16



14

whereas in-line code would take only two more words:

LOAD K

LOAD L

DDUP, CMP

BGE P + 2

XCH, Nap

DEL, Nap

STaR J

This means that, cont~~ry to the advice given by H-P

[3], it is better to ~~ite A**2 than A*A, where A is

short (integer or real). The converse applies when A is

long (integer or real).

It is curious that optimization of the unlikely

expression A**l is done (not very well: B = A**l

generates e.g.

LDD Q + 1, Ii Nap, NOPi STD Q + 2, I)

In a degenerate case such as J

programmer can instead write

IF (J.GT.K) J = K

MAX (K, J), the

whereas no effort is made with the equally unlikely

expression A**O.

2.6 Be wary of long reals

2.5.5

which is better than the in-line code above, especially

if the probability of J exceeding K is low.

In both SPL and FORTRAN, procedures are generally used

for exponentiation. The exception is that FORTRAN emits

in-line code for the exponentiation of short integers

and short reals to the short integer powers 1, 2, 3 and

4.

<4 17

2.6.1

2.6.2

As mentioned earlier, the non-stack nature of the

instructions for handling long reals makes life nard for

compiler writers, occasionally leading to the emission

of rather peculiar code.

In the code generated for A = B + C, the FORTRAN

compiler loads the address of A last instead of first,

then does CAB, CAB to put it into the right place. The

SPL compiler avoids this waste of time and code space.

K4 18



2.6.3

2.6.4

The FORTRAN compiler always uses the MOVE instruction

for simple assignments, and usually achieves reasonable

code, e.g. nine machine instructions for A(J) = B(J).

On the oth~r hand the SPL compiler eschews the MOVE

instruction and in desperately trying to simulate 4-word

loads and stores, requires 22 instructions to encode

A(J):= B(J)!1

As the long real machine instructions work with

addresses, not values on the stack, it follows that when

expressions force the compilers to put temporary results

on the stack (the natural method with other data types),

the results will be sub-optimal.

One way of avoiding this is to use variables to hold

often used constants,

It is better to write

ONE = 100

A= A + ONE

B= B + ONE

than

A= A + 100

B= B + 100

K4 19

2.7

2.7.1

2.7.2

17

Another method is to simulate the code which would be

emitted by a compiler for a 3-address machine:

Instead of

A= B + C * 0

write

TEMP C * 0

A= B + TEMP

Avoid data-type conversions

Unlike SPL where the programmer must explicitly code a

type conversion, FORTRAN automatically emits type

conversions in "mixed-mode" expressions. As these

conversions take time and code-space, they should be

avoided where possible.

Particularly wasteful is the habit common to some

programmers of using short integer constants in an

otherwise real expression. The code generated by

A= A + 1 runs at about 70% of the speed of that

generated by A = A + 1.0.

K4 2C



2.7.3

2.7.4

18

Conversion from long illteger to long real .:ind vice versa

requires a procedure call; all others are done in-line.

Intriguing code is generated by the FORTRAN compiler for

the conversion from long integer to short integer.

The instructions used to do it on the stdck are:

DTST, NOP

DASL 16

DEL, NOP

followed by a test for overflow which is not done in

SPL. The SPL compiler uses only one word of code

instead of the 3 above:

DTST, DELB.

2.8.2

2.9

2.9.1

19

Cd re ':;h:)llld be \..ls·:.?d wht:-n rt-~p inl: i n9 d i vi s ion by

rrtultiplicntion when d const,nt i'; involved. ~or ~xample

10.0 can be represented 2xactly ~s a short real, but 0.1

cannot be. Coding A=B*O.l inst~ad of A=B/IO.O may

result in loss of precision.

Exploit special hardware features

Testing for a true or false value is actually reduced by

the machine to a test for odd or even. Consequently we

may obtain a test for parity in the guise of a "logical"

test.

In SPL, the condition

I MOD 2 1

2.8 Multiply instead of dividing
can be re-written as

2.8.1 Multiplication is faster than division, 50 it should be

substituted where possible.

.<~ It

LOGICAL (I)

and in FORTRAN, the similar condition can be re-written

as BaOL (I).

K4 22



2.9.2

20

In SPL the construct I <= J <= K uses the CPRB (compare

range and branch) instruction and it is better to use

this than

I <= J AND J <= K.

2.9.4

21

The CMPB (compare bytes) instruction can be induced to

report the residual count of uncompared bytes, as well

as the addresses of the unequal bytes and the condition

code.

A classic case is scanning off trailing blanks.

Although it is easier and clearer to write

However, when the lower bound is zero, it is much faster

to use WHILE LEN> 0 AND BUF(LEN-l) " " DO LEN:= LEN-I;

2.9.3

LOGICAL (J) <= LOGICAL (K)

than 0 <= J <= K.

The hardware condition code is not affected merely by

testing it, nor by branches. Where a logic path is

required for each of the results of a comparison

(.<, +, », the test does not need to be performed twice.

Instead of

IF I = J THEN

ELSE IF I > J THEN

ELSE

write

IF I = J THEN •••

ELSE IF > THEN •••

ELSE

K4 23

2.10

the following code runs much faster:

IF BUF(LEN-l) = n " THEN BEGIN

IF BUF(LEN-2) = BUF(LEN-!), (I-LEN), 0 THEN;

LEN:= - TOS;

DDEL;

END;

Avoid unnecessary memory references

The standard practice of the FORTRAN compiler and the

normal usage of the SPL programmer is to address arrays

indirectly through a pointer. To obtain the contents of

an array element, the contents of the pointer cell must

first be obtained.

K4 24



22
23

3. OPTIMIZATION TOPICS SPECIFIC TO FORTRAN
2.10.2

2.10.3

The SPL programmer can avoid this, when sufficient

primary address space is available, by coding "=08" or

"=Q" in the array declaration. As only the "zero'th"

element of the array must be in the direct address

range, one large array may use direct addressing.

The FORTRAN compiler makes no attempt to use direct

addressing, even in the simple case when all the local

arrays and variables would fit in the range

(Q+l, Q+127).

Although optimal allocation of addresses might require

n! iterations where n is the number of local arrays and

variables, some optimization would be better than none.

K4 25

3.1

3.1.1

Multi-dimensioned arrays

Given the declaration

DIMENSION A(3, 4, 5), AX(60)

EQUIVALENCE (A, AX)

when the programmer writes

00 100 K = 1, 5

100 T = T + A(I, J, K)

the effect is as though the following had been writ~en:

DO 100 K = 1, 5

100 T = T + AX«(K - 1) * 4 + J - 1) * 3 + I)

Obviously part of the offset calculation need be done

once only, before the loop is entered.

It is possible to recode this as:

IX = (J - 5) * 3 + I

DO 100 K = IX + 12, IX + 60, 12

100 T = T + AX(K)

1<4 26



3.1.2

3.1.3

24

Such rewriting is of course error-prone. Having the

compiler do it would be preferable, but this is one of

the more complex optimization algorithms.

Where one or more of the subscripts is a constant, no

cognisance is taken of this, and the effect is

ludicrous. For example, when the user writes

A(l, 1, 1), the code emitted is as though he had written

AX«(l - 1) * 4 + 1 - 1) * 3 + 1)

instead ofAX(l)!!

There is a glaring need for compiler enhancement in this

case.

The programmer should evaluate carefully his perceived

need for multi-dimensioned arrays. Often such an array

can be replaced entirely by an array of one dimension,

or an array of one dimension can be equivalenced to it

and used for some of the manipulations required

(especially those which operate on every element of the

array).

K4 27

3.1.4

3.2

3.2.1

25

One special case is where an array has two dimensions,

but in references to the array, one of the subscripts is

always constant. This array should be split up into

several arrays of one dimension.

For example:

DIMENSION CASH(3, 10)

NET = CASH(l, J) - CASH{2, J) - CASH(3, J)

is better written as:

DIMENSION SALES(lO), EXPENSES(lO), TAX{lO)

NET = SALES{J) - EXPENSES(J) - TAX(J)

This is much clearer as well as much more efficient.

MORECOM

As mentioned earlier, the limit of 255 on direct

DB-relative addressing causes problems with FORTRAN

programs with many variables and arrays in COMMON.

The compiler option $CONTROL MORECOM was introduced to

alleviate this problem.

K4 28



3.2.2

26

When this option is in effect, instGad of one word of

primary DB being allocated to point to each variable and

a.rray in COMMON, one word is rillocated to point to each

COMMON block. Consequently indexing must be used to

address variables within:COMMON.

Assume the following declarations:

REAL A, B, C

INTEGER I, J

COMMON/BLK/I, A, J, B

Without the MORECOM option in effect, the statement

C = B will generate code such as:

27

The variable B abov~ is at an 0ven offset (4) from the

start of th~ hlock - this allo~s the usc of double-word

indexiny in the Lon instruction.

Things can be wors~: the variRble A is at an odd offset

(I) from the start of the block - what happens is this:

LDXI 1

LOAD DB + 0, I, X

INCX, NOP

LOAD DB + 0, I, X

OTST, NOP

5'1'0 Q + 1

LDD DB + 3,

To add insult to inJury, the DTST instr~ction above is

quite redur.dant.

STD Q + 1

which is as good as one will ever get.

With MORECOM, however, the same statement will generate:

3.2. 3 A similar l:~ffect is observable wh~n array'; .i:·~ tsed;

however wh~?n the offset is z~ro, t~e (longer) f~( tip. for

the orld c~se is used!!

LOXI 2

LDO DB + 0, I, X

STD Q + 1

K4 29

Timin~~ ~re shown b~low for repeating All)

times, wh~re A and B are REAL arrays.

B(I) 5,000

1<4 30



3.2.4

3.2.5

28

Addressing for Time Ratio to
(ms) "standard"~

No MORECOM 56 1.00

MORECOM,offset even,>O 90 1.61

MORECOM,offset odd 154 2.75

with one-word variables and arrays (INTEGER*2, LOGICAL)

and four-word variables and arrays (DOUBLE PRECISION),

the parity of the offset is irrelevant: it just takes

more code and more time when the MORECOM option is used.

When the use of the MORECOM option is unavoidable,

considerable time and code space can be saved by

ensuring that the offsets of REAL and INTEGER*4

variables are even. A straightforward way of doing this

is to list all the REAL and INTEGER*4 variables and

arrays first in the COMMON statement. Offset parity in

existing COMMON blocks can be checked by perusing the

output of the compiler MAP option.

A better solution would have been to allocate two

DB-primary words per common block, one pointing to the

1st word in the block and the other to the 2nd word.

Thus any offset in the block would be even with respect

to one of the pointers. Unfortunately this would have

restricted the maximum number of common blocks to only

127 instead of 2541

K4 31

3.3

3.3.1

3.3.2

29

$INTEGER*4

As the manual says, this option forces all integer

variables and arrays (other than those explicitly

declared INTEGER*2) and all integer constants to be

INTEGER*4. It is likely to be used in the early stages

of converting a FORTRAN program from another machine.

Use of this option can cause gross waste of code space

and data space and considerable increase in execution

time.

Consider the following example:

REAL A(lO), T

T = 0.0

DO 100 I = 1, 10

100 T = T + A(I)

without the use of the option, the variable I and the

constants 1 and 10 are INTEGER*2, and the loop is

controlled by the efficient MTBA instruction which

increments I, tests it against 10, and branches back to

the start of the loop, all in one hit.

K4 32



3.3.3

30

When $INTEGER*4 is in effect, I, 1 and 10 are INTEGER*4,

and the loop is controlled by code which is slow for ~ 0

reasons:

(a) each function of the MTBA instruction has to be

simulated separately

(b) LI arithmetic is slower than S1.

Once a converted program has been made to run correctly,

the following steps should be taken:

(a) Remove the $INTEGER*4

3.4

3.4.1

3.4.2

31

Character Variables

The following declarations are used in the discussion:

CHARACTER A*80, B*1(80), C*(10), D*10

EQUIVALENCE (A, B, C), (S(ll), D)

INTEGER*2 I, J, N

CHARACTER S*(N), T*l, U*l

The code generated for references to. character variables

of constant size (e.g. A), and for references to

constant substrings (e.g. A [11:10]) is generally

efficient. Some special cases are:

Assignment oi character variables of size 1 is done

by the same sort of code as is used for wider

variables.

(b)

(c)

Insert IMPLICIT INTEGER*4 (I-N)

Determine which variables and arrays do not need to

be INTEGER*4 and declare-them explicitly as

INTEGER*2.

(a)

E.g. T U is done by

(d) Determine which constants need to be INTEGER*4 and

append the letter AJ" to them.

K4 33

LOAD Q + 1

LOAD Q + 2

LDI 1

MVB 3

K4 34



32

instead of

LOB Q + 2, I

STB Q + 1 , I

and T = " " is done by

LOAD Q + 1

BR P + 2

%020000

LRA P - 1

LSL 1

LDI 1

MVB PB, 3

instead of

LDI %40

STB Q + 1, I

K4 35

3.4.3

33

(b) When a shorte~ string is assigned to a longer

st~ing (e.g. C = T), the balance of the longer

st~ing is blanked by calling the procedure

BLANKFILL'. If one really needs the blanking done,

an alternative is:

C [1:1] = T

C [2:9]

This will run faster, but takes more code, and if

one counts too few blanks, BLANKFILL' will still be

called!

(c) When the position part of the substring is not 1,

code must be emitted to generate the offset from

the start of the variable. Thus it is faster to

use 0 than A[ll:lO]. The offset is calculated once

only (using rather cunning code) in the subprogram

prologue; the trade-off is the extra word taken for

a pointer to the start of D.

If the size of a string is variable (e.g. S), or

variable substrings are used (e.g. A[I:J]), external

procedures are used not only to perform the operation

required, but also for paternalistic e~ror checking

which cannot be turned off.

K4 36



3.4.4

3.5

3.5.1

·~4

\"l~er.~ only th~ position prlrt: ~f ..\ 5uh~t(ir'lIJ i:5 .,·trt..lble

(e.g. A [1:10]), it !nay be fJossible to rlvl)i.d th~~ dreaded

peALs by equating to a character array. 8.g. it iB

better to use B(I) than AlI:l].

When reference is made to a character array of more than

one dimension, the element offset is calculated as

described in Section 3.l.1~ then this is multiplied by

the element size to get the byte offset. (The

multiplication uses slow unsigned arithmetic (LMPY,

DELB), because the byte offset could exceed 32K). Thus

offset calculation for a character array of n dimensions

is as complicated as that for an integer (say) array of

n + 1 dimensions. The exception is where the character

element size is 1; multiplication by 1 is avoided.

Indirect Indirection

A Fortran main program or subprogram can run more slowly

than expected if it has many local variables.

All local variables and arrays must be addressed

relative to the Q register, and the direct range is +1

to +127.

K4 37

3.5.2

35

S~rl~e in this range is allocat~d ~ccording to the

ft)llowiny priorities:

(1) One word as a pointer to each array, character

variable or varirlble mentioned in a DATA statement

(Compilation will fail if there are more than 127

words required.)

(2) One word for each INTEGER*2 and LOGICAL variable.

(3) One word as a pointer for each DOUBLE PRECISION

variable.

(4) Two words for each INTEGER*4 and REAL variable.

Once the total of the above allocations exceeds 127, one

locatior. (typically Q + 1) is allocated as a pointer to

an "extension area". Then the remaining variables are

addressed as though·the extension area were an array and

they were elements of the array. The offset into this

pseudo-array is shown in the output from the compiler

MAP option.

The effect on the execution speed is apparent from the

code generated:

K4 38



3.5.3

3.5.4

36

Variable J's address in the MAP is Q + 23.

The code required for J 0 is

ZERO, NOP; STOR Q + 23.

Variables Kis address in the MAP is Q + 1, I, %11.

The code required for K Q is

ZERO,. NOPi LOXI %11; STOR Q + 1, I, X.

Fortunately the problem does not seem to be compounded

by parity problems with REAL and INTEGER*4 variables (as

it is with MORECOM)i there is no language-imposed

ordering requirement (as there is with variables in

COMMON) and in observed cases the compiler allocates the

two-word variables first, so that they are at even

offsets in the pseudo-array.

Unfortunately when some variables will fit in the

primary area and others would not, the compiler has no

way of knowing which will be used more frequently than

others, so it can happen that a variable used as a DO

index can end up in the secondary area.

K4 39

3.6

37

Several things can be done' by the programmer to

alleviate the problem:

(1) Split the subprogram.

(2) Use EQUIVALENCE to equate less frequently used

variables to elements of arrays (one array for each

data-type).

(3) Put some variables into COMMON. If MORECOM is

required, the~ frequently used variables should

be put into COMMON. While this is the easiest to

write, it will typically waste stack space.

$CONTROL BOUNDS

Use this option, if you must, while debugging, but be

sure to remove it for production running.

This option generates a procedure call for each

subscripted array reference.

K4 40



3.7

3.7.1

3.7.2

3.7.3

3.8

3.8.1

38

The Formatter

We have the authority of Splinter [1] saying that the

implementation of the Formatter is inefficient: on top

of this it should be realised that each READ or WRITE

statement involves an overhead of two procedure calls,

together with one procedure call for each variable, each

array, and each iteration of a DO-implied list.

Unformatted I/O merely avoids the conversion ·to external

form: it does not avoid all those procedure calls. It

is often worth the effort involved in using the file

system instrinsics instead of unformatted I/O.

Further details on the diseconomy of using the Formatter

are given by Green [4].

$CONTROL INIT

Use of this compiler option causes all local variables

and arrays to be cleared to zero during the subprogram

prologue. The code used to do this is quite

efficient: one block move is done to clear variables

and arrays with fixed bounds, and another is done if

there are any arrays with dynamic bounds, to clear them.

K4 41

3.8.2

3.9

3.9.1

3.9.2

39

It follows that if any arrays, or more than a few

variables, are to be cleared at the start of a

subprogram, it is much better to use $CONTROL INIT than

to write explicit statements, especially for the arrays.

Use of SPL Routines

SPL allows access to all the features of the machine,

and can thus be used to perform operations which can be

expressed onty clumsily, if at all, in FORTRAN. As

access to an SPL routine from FORTRAN necessitates a

procedure call, the time saved within the SPL routine

needs to be worthwhile.

As recommended in [3], a frequent choice for an

excursion into SPL is usage of the MOVE and MVB

instructions for initializing or assigning arrays en

masse. Appendix A shows an example of how to obtain

leverage from the investment in a PCAL by allowing many

arrays to be cleared at once.

K4 42



4.

4.1

4.1.1

4.1.2

4.1.3

40

MISCELLANEOUS

Slow programs: prevention

Ensure that the best data structures and algorithms have

been chosen; it is pointless to ~bit-twidd1e" with the X

register if you are bubble-sorting a 10,000 element

array.

When writing the program, bear in mind the language

features which can cause a problem, and avoid them in

frequently executed code.

Draw a diagram showing which procedures call which other

procedures, and arrange the segmenta~ion to minimize

calls which cross segment boundaries.

4.2.2

4.2.3

41

However procedures whose names contain an apostrophe are

likely to be called implicity by the compiler. The

Compiler Library Manual will give you an idea of what

the procedure is for. The PMAP will tell you one

subprogram in each segment which is calling the

procedure. If you still cannot match up the procedure

name with the language feature it encodes, it is

possible to decompile the calling segment, find the

actual references, and tie these back to the source (via

the PMAP and the LOCATION output of the compiler).

Then, if desired, the source can be modified to avoid

the procedure call.

If the problem cannot be traced to one or more external

procedure calls, several options are open:

(a) Review the segmentation

4.2 Slow programs: cure

(b) Read your source again carefully.

4.2.1 Obtain a PMAP of the program and establish the reason

for each external procedure reference. This should be

easy for procedure names which do not contain an

apostrophe: you explicitly coded the procedure call.

K4 43

(c) Ensure debugging statements are in-operative.

(d) Re-run the program with calls to e.g. PROCTIME

inserted at salient points.

K4 44



4.4 F'l1t.url~ shock

4.3. 1

4. J. 2

For high-l;vr~l-l.:lni.Jll-:lq{~ pro':J('i;ilmt~rS i(1Lt?rl~st.~d in

lenrning In:)r(~ ~blYlt "lh;-\t hapP8ns bc-~hinli th(~ scenes, :l

s t ~ r ting po i "1 tis t l) r e;.\d s r~ eLi c) nS 0 f the S}'3 t :~ In

Hef(~cence i'1anu.:\l.

This will giv~ an overview of how the m~chine works at

the machine code level. Th~~ !-1ilchine InstrLlct ion Set

Manual should be used as a reference for p~rticuldr

machine instructions~

Specific details as to the i'nplt~mcntntion of langua<J2

features can be obtained by compiling sample source

programs wi th the MAP opt ion (and, for FOR'rRAN, the

LOCA'rrON option), prepping with th~~ PMAP option, ann

then decompiling the object program. The programs

DECOMP (in the contributed Library) and EPwtI)!SASM (on th(~

Orlando swap tape) may be used for this purpose.

The INNERLIST opt inn in the SPL compiler is often

useful; however ~s its output is produced before code

generation is complete, the result can occasionally be

misl€ading.

\(4 45

4.4. 1

4.4.2

As :)t-lt~~l in Sl~Ct. ion 1.3, this papel- is basp.d on

t)i)s'.~r'J·-ltion of th,~ behaviour of th(~ Athena versions of

the SPL and FOH'r~{AN cOtnpi lers. It is hoped that future

versions of the compilers will generate better code. It

.i'3 likely that '..-lhen an t?nhancement is made, the code

gen8rnted by the compil~r for a pnrticular language

feature will be better than that generated Eor the

"work-around" the programmer has used in the interim.

It may be found useful for the programmer to set up a

jobs t realn to compi le, prepa re, and decompi le a program

(or suite oE programs) which exercise the language

features and their work-arounds. This jobstream may

then be run after a software update and its output

comp~red with previous results.

K4 46



44

REFERENCES

45

APPENDIX A: CLEARMANY PROCEDURE

[1]

[2]

E. Splinter: "Optimizing FORTRAN IV/3000" in HP3000

Users Group 1977 International Meeting Proceedings.

C. Morris: "FORTRAN Optimization" in Journal of the HP

General Systems Users Group, Volume 1 No. 6 March/April

1978.

A.I Purpose

This procedure will clear one or more arrays with one

call.

[3]

[4]

(Not quoted in this paper).

Hewlett-Packard Company: "Program Optimization",

Appendix F of "FORTRAN/3000 Reference Manual", Edition

I, Update 3.

R. M. Green: "HP3000 - Optimizing Batch Jobs" in

Hewlett-Packard General Systems Users Group 1981

International Meeting (Orlando, Florida) - Proceedings.

K4 47

A.2 Calling seguence

Given that n arrays are to be cleared:

The (2i-l)th argument is the address of the ith array.

The (2i)th argument is the number of words to be cleared

in the ith array.

The (2n+l)th argument is n, the number of arrays.

Limits: I <= n <=29

Example:

INTEGER*2 SIA(IOO), SIB(M)

DOUBLE PRECISION LR(IO,IO)

CALL CLEARMANY (LR,400,SIB,M,SIA(51),50,3)

K4 48



46

W~r111 ne1:

The FOR'r:{AN cornpi ll~r wi 11 r:ornpLl in i f tht~r..~ are two or

.nore ca ll~ in OI1(~ ~ubpro(.:Ir('1R ~nd tht.~ ~r<Jllmef'1t8 <10 n~t

a9r~e in type and nUMber.

A.3 Source

Procedure clearmany (n);

integer n;

begin

integer fence, i;

integer point~r arg, len, block;

instrinsic quit;

«start of argument checking»

if not (1<=[ <=29) then quit(l);

pus~, (Q);

fence:= tos-S-2*n;

@ar9:= @11;

for* i:= 1 until n do begin

@arg:= @arg-2; @len:=arg(l)i

if logical(arg) > logical(fence) then quit (2);

if logical(@len) > logical(fence) then quit (3);

if not (1<= len <= (fence-arg-l» then quit (4);

end;

«end of argunent checking»

K4 49

47

@:trg:=@n;

for. * i:= 1 until n do begin

@arg:=@arg-2;

@block:= arg;

@len:= arg (1);

block:=O;

move block(l):=block,(len-l);

.~nd;

tos:= %31400 + 2 * n + 1;

assembl~ (XEQ 0);

end;

K4 50



ATRY TO ESTABLISH AN OFF-LINE TIME-REPORTING &WAGE

COMBINATION SYSTEM

W. G. H~IA

W.G. HSIA

WALSIN LIHWA ELECTRIC WIRE & CABLE COORPORATION
THE WALSIN BUILDING, 219 CHUNG HSIAO E. ROAD,SEC 4
TAIPEI TAIWAN R.O.C.

Speaker: W. G. Hsia

ABSTRACT (2)

TOPIC:A TRY TO ESTABLISH AN OFF -LINE TIME-REPORTING & WAGE

COMBINATION SYSTEM

THERE IS A FURTHER CHANLLENGE FOR HP-3000 USERS TO TRY TO ESTABLISH

A TIME-REPORTING & WAGE COMBINATION SYSTEM AFTER THEY HAVE SET UP

THEIR WAGE/SALARY PROCESSING SYSTEM. THIS PAPER SHOWS SOME DEVELOP-

ING IDEA OF IMPLEMENTING IT AT WALSIN LIWHA CABLE CO. LTD., ALTHOUGH

WE ARE STILL UNDER WAY, SOME EXPERIMENTAL RESULTS REVEALS THAT IT IS

A FEASIBLE WAY. THIS SYSTEM USES A LOW-COST OFF-LINE TIME-REPORT

TERMINAL (BCD CODE), A MINI-TAPE AUXILIARY RECORDER, AND SOME GATE

LOGIC FOR OPERATING SUPERVISION. A SOFTWARE DRIVER WRITTEN IN

FORTRAN LANGUAGE IS USED TO INTERFACE THE MINI-TAPE AND HP-3000

SYSTEN

WE HOPE YOU CAN GIVE US SOME NEW IDEAS AND SHARE KNOWLEDGE WITH

US THROUGH THIS MEETING.

WALSIN L1HWA ELECTRIC WIRE & CABLE CORPORATION
The WAlSIN BUlldmq 219 Chunq HSiao E Road Sec 4 Taipei Taiwan ROt
Tel 7712121 120 lines) POBOX 22926 Telex 11516 WAlSIN Tala;e'
Cable 'WAlSIN Taipei

K5 2



r-i

r-i
--J

lielielie*,-...
0::
0I-Qw........

I-w>en0::
U

J
a..

en
l

«
-'I

Q
..

C
C

,

~I
w:x:I-U

J
~
·
I

>

:::1'
z

w
w

u

g:1
en

w
Z

0::
W

;1
....,

.,.I-
Q0::

Z
«

:::::;)
Q

~U
en'

Q
«

:3=1
z

a..
~
I

U
J

w
X

V
J

I-
Z

I-

*
w

'W

*
....,

...J

*
]
:

*
.

W
:::::;)

::r:

****

U. JENSEN

WE DIDN'T RECEIVE THE PAPERS YET (EDITOR) ****

, :"

• ,- • I ~ ••

U. JENSEN
HEWLETT PACKARD '

Ll 1



-----~
Presentation Abstract

Presentation Title: A_F_ew_W_e_ll_-C_ho_s_e_n_W_o_rds__C_o_n_ce_r_n_in....:g::......-A_F_e_w_C_h_o_se_n_W_a_y_s_

AFEW WELL-CHOSEN WORDS CONCERNING AFEW CHOSEN WAYS to do Word Processing, Some Well-Chosen, Some Not

TO DO WORD PROCESSING, SOME WELL-CHOSEN, SOME NOT
Author(s): "'_i_rt_A"_t_rn_a_r _

Title(s): P_re_,_i._i~_"'1_t_,_"_I_C_S _

Address: __--::...P.:...:.O::....;.;",..,,;.,;;.B~o;;.,;..x_4.:....:6:.....;.9~1 _

University Park, NM 88003 USA

WIRT ATMAR
Abstract: (No more than 200 words)

Simply because you are intimately involved with HP 3000 computers,

you are also intimately involved in an environm"ent where word-proc~ssing

is going to become an ever more pressing demand. It would seem to be no

overstatement to say that every HP 3000 is likely to possess some capa-

bili ty to perform some aspect of word processing in the next five years.

The major computer compatible techniques are to be reviewed and

their merits assessed and their limits discussed. Quite plainly, due to

both subtle and blatant, will inevitably interweave these few chosen

words of the presentation. The listener is encouraged to be critical.

the author's position as a producer of word processing equipment, biases,

STILL WAITING
FOR FULL TEXT
(EDITOR) ***

*****

W. ATMAR
AICS
P.O. Box 4691
UNIVERSITY PARK, NM 88003
USA

L2 1
L2 2



A Comparison

of

Relational and Network

Data Base Management Systems

as Implemented on

the

HP/3000

by

Thomas R. Harbron

and

Christopher M. Funk

July 1981

Christopher M. Funk & Co., Inc.
22 North Second Street, P. O. Box 1249
lafayette, IN 47902
(317) 423-2644

L3 1

INTRODUCTION

Motivation

The "software crisis", which has been generally recognized in the last
ten years, has created the need for tools that allow programmers and users
of computers to be more productive. The traditional tools (compilers,
editors, file systems, etc.) are not adequate to keep pace with the grow
ing power of computers and the expectations of those who use and pay for
them.

Consequently, the past few years have seen a multitude of products
introduced which claim to improve programmer productivity or, in a few
instances, eliminate the need for programmers, or at least coders. Spec
ifically, in the HP/3000 product line, Image, Query, DEL, KSAM, and V/3000
have been introduced by HP. Outside vendors have added to this list with
products which, while frequently improving on the HP products, are more
imitative than inovative. For example, there are several "Query like"
products available from independent vendors which extend the functions
of Query and remedy several of its obvious deficiencies, but do not offer
a fundamentally different kind of tool.

More recently, several inovative tools have appeared on the market.
Among these are two relational database management systems,' Relate/3000 1

and Rel*Stor. The inovative aspect of these products is that th~y are
based on the relational model rather than the network model of Image.

Objec tives

The purpose of this paper, and the study on which it is based, is to
compare these products with Image both in concept and implementation to
determine the strengths and weaknesses of each. The goal is to select one
of the three as the basis of further development of software tools.

The authors do not presuppose that one of these products will be
clearly superior to the others or that one would be the best choice under
all circumstances. However, this study should serve as the basis for a
rational decision.

To do a thorough analysis of these products, one should probably use
each for a year or more in a variety of applications. Since this is not
feasible, the authors have elected to evaluate them on the basis of:

1. The published specifications and user manuals;

2. The mapping of a small, but demanding database onto each system;

3. Performance on the HP/3000 as indicated by carefully ci. )St<'" ~~sts.

L3 2



The adjective "logical" will be applied to the terms field, record, key,
and file when discussing the corresponding parts of the models.

Relationship - a logiaal connection between entities. For example,
be~een a parent and children, or between a vendor and
purchase orders to that vendor.

This analysis is further complicated because:

1. Both Rel*Stor and Relate/3000 are still under development with modules
and features not yet implemented;

2. Their manuals are likewise under development, and not always in step
with the product;

3. One product (Rel*Stor) was not made available for testing.

File - the physical representation of a group of similar
entities consisting of the records representing
those entities.

Therefore, the reader should be cautioned not to accept this study as
the last word on these products.

A "standard" database problem will be used as an example throughout the
remainder of this paper. This problem is a simplified accounting system.
The entities and their attributes are as follows:

BACKGROUND
Entity

Department

Attributes

Dept n - a unique number assigned to each department.

Da tabase Models Dept name - the common name of the department.

Attribute - a characteristic of an entity. Only attributes
of an entity can be stored, not the entity itself.

These three models are known as the network model, the hierarchical
model, and the relational model. Virtually all database systems are based
on one of these three models. Moreover, an important step in designing a
specific database is modeling it in one of these three forms.

Most authors 2 - 7 list three different models for databases. These are
idealized models of how data is naturally structured and do not consider
questions of implementation or efficiency. Rather, the models are based
on mathematical principles.

Each form has its own peculiar strengths and weaknesses. These are
discussed briefly below. One problem found in discussing models and data
base systems is that each, generally, has a unique vocabulary. This is
confusing enough when considering them one-at-a-time. When three models
and three systems are discussed in one paper, it is hopeless. Therefore
a "generic" vocabulary will be employed here as listed below. The authors
apologize to those who may find these terms imprecise or contrary to
standard usage:

CR Account 0 - the number of the account to which this
transaction is credited.

Amount - the dollar amount of the transaction.

YTD debit amount - the total dollar amount of all
transactions debited to this account.

YTD credit amount - the total dollar amount of all
transactions credited to this account.

Expense description - a descripti~n of the expense
type.

Exp g - a unique number assigned to each expense type.

DB Acoount , - the number of the account to which this
transaction is debited.

Budget amount - the dollar amount budgeted for this
account.

Date - the date of the transaction.

Account 0 - a unique number assigned to each account,
consisting of a dept g concatenated with an expense
number.

Dept head - the name of the manager of the department.

Expense

Account

Transactions

- the physical representation of an attribute.

- the physical representation of an entity consisting
of the fields that hold the attributes of that entity.

- an object or "thing" about which information
is stored in a database.

Field

Entity

Record

Key - a set of attributes that distinguishes one entity
from other similar entities.

Reference - the account reference of the transaction.

-2-
L3 3

-3-



Network Model

The network model is characterized by logical files, each of which
represents an entity type. The logical files are connected by relation
ships that show how entities in one logical file are related to entities
in other logical files.

The relationships are usually restricted to one-to-N or l:N types.
This means that exactly one entity in one logical file is related to
N(zero or more) entities in another logical file. This is customarily
noted by an arrow pointing from the "111 entity to the "N" entity. For
example, a department entity may be related to many accounts while an
account entity must be related to exactly one department.

More than one relationship may exist between two entities. For
example, each transaction is related to exactly one account as a IIcredit
account" and to exactly one account as a "debit account." This is done as
two l:N relationships from account to transaction.

A convenient way to represent a network model is by a "data structure
diagram. II Such a diagram is shown in Fig. 1 for the accounting problem.
Note that entities are usually_~inked together by a shared attribute value.
The name of the shared attribute is shown on the arrow in the diagram.
The underlined attributes are keys.

Notice that some of the attributes appear in parentheses. These are
the same attributes that are used for the relationship linkage. Thus,
it is redundant to show them as attributes; however, this is done in
parentheses for logical completeness.

The network model.is probably the most general of the three models.
The network formed by the relationships can take on any topography and
the links show the entity relationships. The other models are more
restrictive.

Hierarchical Model

The hierarchical model is, structurally, a subset of the network model;
i.e. any hierarchical structure can be built under the rules of the network
model. The difference is that additional constraints are imposed on the
hierarchical model. These have to do with the relationships between enti
ties and are as follows:

1. There is a unique entity type called the "root" where the hierarchical
network begins.

2. Each entity, except those in the root, has exactly one "parent." A
parent is another entity of a different type at a higher level.

Automobile

Figure 2

The account example does not map easily into the hierarchical model
because both the lIaccount" and "transaction" entities have multiple parents.
A better example is the bill of materials problem shown in Figure 2:

3. Each entity, except those at the lowest level of the hierarchy, may
have multiple "children." A child is another entity of a different
type at a lower level.

Block

- -- -- .- _.._-
Dept 0, Deptname, Exp II,

Depthead Expense description

i ept

--

rxp j

(Account 0), Budget amount,

YTD credit amount,

YTD debit amount

,nt 01
Transactions

lDB j

(CR Account #),(DB Account 0)

Amount, Date, Reference

Figure

-4- L3 4
-5- l3 5



The hierarchical model is rightfully popular in situations where the
data is naturally hierarchical. Otherwise, most of its usage seems to
result from the dominance of several early database management systems
based on this model. Many problems, including our elementary accounting
example, would require unnatural restructuring to fit this model.

Relational Model

Normalization

This is one of the most important and poorly understood steps in
designing a database. Normalization is essentially the process of dis
covering and isolating the entities represented by the data. There are
three levels of normalization and the topic is discussed by most authors 2 - 7

with varying degrees of clarity. Atre 2 present~ ~n unusually lucid dis
cussion of normalization.

A simple list of the attributes of each logical-record type, with an
indication of the keys is sufficient to describe a model. For example,
the following describes the relational model of the accounting problem:

While the network and hierarchical models are similar to each other,
the relational model is totally different from them. The database con
sists of multiple logical files (called relations). Each logical file has
one or more keys by which the logical records may be retrieved. There are
no entity relationships of any kind connecting the logical files. The
entity relationships can only be determined by comparing values of attrib
utes of different entities. 8

Logical File

Department

Expense

Account

Transaction

Attributes

Dept 0, Deptname, Depthead

~, Expdesc

Acct il, Budamt, YTDCR, YTDDS

CRAcct 0, DBAcct H, Arnt, Date, Ref

Normalization is nearly always presented in mathematical terms which,
unfortunately, discourages some from investigating it further. A complete
discussion is beyond the scope of this paper. However, normalized data
will have the following advantages over intuitively designed, or unnor
malized data:

1. Numerous types of insertion and deletion anomalies will not occur.
These anomalies are of the type where the insertion or deletion of one
entity has an unexpected or undesirable effect on another entity.

2. All entities will be readily accessible. Functions thought of after
the database is designed will not require restructuring of the data
base.

3. A higher degree of data independence is possible. Programs are less
likely to need change as the database is changed.

Neither the models nor the database systems have any way to enforce
normalization. However, failure to normalize the data will inevitably
create serious problems.

Notice that transaction has two keys. Multiple keys are allowed i~ the
relational model.

This model is unquestionably the simplest in appearance, and that is
probably its greatest strength. It also has a firm mathematical founda
tion. Some authors 9 regard it as the most fundamental of the three models.
However, it is probably the least implemented model because of two problems.

The first is a flaw in the model - the lack of explicit entity rela
tionships. This can lead to what are called "insertion anomalies" and
"deletion anomalies." For example, if a transaction is inserted~ in our
accounting problem, for which no credit account exists in the account
logical file, the model will accept it. Likewise, a dep~rtment could be
deleted, thus "orphaning" the accounts associated with that department.
Thus the rules necessary to avoid tbese anomalies must be imposed extern
ally to the model.

The second problem is not so much with the model as with the implemen
tations. The model makes it easy to request operations which are logically
simple, but which require considerable resources and time to execute.
Thus relational systems have earned a reputation for inefficiency.

Mapping is a series of transformations on the structure of the data
base from its inception to the 'final, physical, database: There are five
states in which the data is structured:

1. Initial data description

2. Normalized data description

3. The database model

4. The schema

5. The database

The mapping from the initial form to the normalized form is called
"normalization" as described earlier. Normalization actually includes
three separate transformations.

The mapping from the normalized form to the model is frequently accom
panied by some compromises. If, for example, a hierarchical model is used,

-6-
-7- L3 6



and the data is not inherently hierarchical, an artificial constraint is
placed on the structure. Likewise, it may be necessary to "unnormalize"
the data to some degree to fit the model.

Mapping from the model to the schema is really two activities that
are done in parallel. First, the model must be mapped to the actual
database systems. Some systems will be very close to the model and present
little difficulty. Others may impose either structural or efficiency con
straints which cause the structure to be altered significantly from that
of the model. For example, the two-level limitation of Image requires
compromises from the ne~ork model.

Second, the data structure must be expressed in a form acceptable to
the database system. The form is called a "Data Description Language"
or DOL. All database systems have a DOL. Some have a formal syntax, such
as Image, while others may be conversational, such as Relate/3000. The
data structure description expressed in a DOL is called a "schema."

The final transformation, of the schema into a database, is done by the
database system. In most systems it is automatic with feedback in the form
of error messages, status reports, and statistics.

Implementation Considerations

The following items are factors to consider in judging the merit of a
particular database system. Until the perfect system is developed, some
will always be better than others on specific points. Different users will
weigh these factors differently. However, all should be considered before
~ selection is made.

1. Mapping: What constraints are imposed when mapping from the model to
the schema? Do significant changes have to be made? Are some things
allowed, but not done because of performance considerations?

2. Data Manipulation Language (DML): The DML is the form in which requests
are transmitted to the database system. Is the DML powerful? Is it
easy to understand? Is it flexible? Can it be used from an applica
tion program? Is there a "stand-alone" mode?

3. Performance:

a) Run efficiency: Are efficient search algorithms used? Is response
time good? Are (logically) unnecessary accesses to secondary
storage required?

b) Storage efficiency: Is most storage SP3C~ used for data? Do
indexes, pointers, or other "non-data" items use up excessive
space?

4. Concurrency: Has adequate thought been given to th~ problem of multiple
users updating the database? What penalties or complications arise
from shared access?

5. Restructuring: What needs to be done to change the database structure?
What resources are required? What effect does restructuring have on
eXisting applications? What must be done to initially load the data
base?

6. Security: How well protected is the data from unauthorized access?
At what level or levels is security imposed: database, file, record,
or item?

7. Integrity: Is the database prone to develop internal inconsistencies
(broken chains, missing records, etc.)? Do aborts or crashes cause
problems? What provisions are there for checkpointing (back-up copies)
and journaling (transaction logging) and recovery?

8. Data Independence: Are application programs isolated from the physical
storage considerations? Can changes be made in the physical or logical
structure of the database without changing existing programs?

These implementation considerations, together with the strengths and
weaknesses of the model on which it is based, will be used to judge each
of the systems considered in the next section.

Three Implementations

This section of the paper will consider three database systems: Image,
Relate/3000, and Rel*Stor. For each of these systems, the strengths and
weaknesses of the model and the implementation considerations will be dis
cussed. Finally vendor information will be provided.

Image/Query

Image
10

is based on the network model. As such it enjoys the benefits
of explicit entity relationships of the I:N variety, and even extends the
concept by allowing the N entities to be ordered by the value of an attrib
ute of that entity.

The DOL uses a formal, but concise, syntax. The mapping is straight
forward with one glaring exception: a logical file (called a "set" in
Image) cannot both be on the "1" side of some entity relationships and on
the "N" side of others. This limits the system, physically, to two levels.

The problem is caused by the distinction between two kinds of files:
masters and details. Masters are direct access files where a record is
located by hashing on a single key. The hashing algorithms arc effectively
implemented and work with good efficiency. Detail files are essentially
sequential-chronological files. Entity relationships are implemented using
pointers to form a linked list or "chain" linking all related record~.
Each chain starts and ends on one record in a master set. The chain links
any number of records (64K maximum) in a detail set. One master record
may originate up to 16 different chains. One detail record may be linked

-8-
l3 7

-9-

l3 8



into as many as 16 differe~t chains. Detail records are normally accessed
by following a chain from a master record. Sequential access is possible
for both master and detail records.

<<DEPT fJ»
«EXP 11»
<<DEPARTMENT NAME»
<<DEPT HEAD'S NAME»
«EXPENSE DESCRIPTION»
<<BUDGET AMOUNT»
<<YEAR-TO-DATE CREDIT TOiAL»
<<YEAR-TO-DATE DEBIT TOTAL»
«ACCT n• DEPTDEXPO»
«CREDIT ACCT I»
<<DEBIT ACCT 0»
<<TRANSACTION AMOUNT»
«TRANSACTION DATE»
<<ACCOUNTING REFERENCE»

X4;
X4;

X20;
X20;
X20;

12;
12;
12;
X8;
X8;
X8;
12;
12;
X6;

The schema for this data base is 8S follows:

required to circumvent the two-level problem. This requires redundant
storage and additional access to secondary storage.'

BEGIN DATA BASE ACCTOB;
PASSWORDS: <<NONE»
ITEMS:

DEPT,
EXP,
DEPTNAME,
DEPTHEAD,
EXPDESC,
BUDAMT,
YTDCR,
YTDDB,
ACCT,
ACCTCR,
ACCTDB,
AMT,
DATE,
REF,

Expense

Expensedesc.

I Exp iJ,
Depthead

fI, Deptname

Department

The two-level structure causes difficulties, and requires compromises
when mapping from model to schema. For example, the following data struc
ture diagram represents the Image implementation of the accounting problem.
Trapezoids are used to represent master sets while rectangles represent
detail sets. Chains are represented by solid arrows while logical rela
tionships (implemented programatically) are shown by broken arrows.

]J§'8.t_l! .. j:~e. J~
Budgetamt, YTO CR amt,

YTD DB amt

I Acct 0

SETS:
NAME: DEPARTMENT, MASTER;

ENTRY: DEPT(l),
DEPTNAME,
DEPTHEAD;

CAPACITY: 23;

Account Indx
NAME: EXPENSE, MASTER;

ENTRY: EXP(l),
EXPDESC;

CAPACITY: 23;

NAME: ACCOUNT, DETAIL;
ENTRY: DEPT (DEPARTMENT),

EXP (EXPENSE),
BUDAMT,
YTDCR,
YTDDB;

CAPACITY: 100;

Date, Ref NAME: ACCOUNTINDX, MASTER; «LOGICALLY PART OF 'ACCOUNT'»
ENTRY: ACCT(2);
CAPACITY: 101;

Figure 3

The broken underlines indicate that the underlined data item is a key
only via the associated master. Image, however, requires that such fields
be physically present in spite of the logical redundancy.

The ACCOUNT and ACCOUNTINDX sets are logically the same, but two are

NAME: TRANSACTION, DETAIL;
ENTRY: ACCTCR (ACCOUNTINDX),

ACCTDB (ACCOUNTINDX),
AMT,
DATE,
REF;

CAPACITY: 6000;

«CREDIT ACCT #»
«DEBIT ACCT #»

END.

-10-
l3 9

-11-

L3 10



A variety of data types may be defined in the DOL. These are:

16 bit signed integer
32 bit signed integer
64 bit signed integer
16 bit unsigned integer
32 bit floating point
64 bit floating point
Character string
Zoned decimal
Packed decimal

No provision is made to add user defined data types.

Image's DMl consists of procedure calls which are compatible with all
the standard languages. A summary of the procedures and their functions
appears in Figure 4. An application program called uQuery" is supplied
with Image. II This program can be used interactively to access a database.
It also serves as a report generator. Its usefulness is limited by its
inability to look at more than one file at a time. However, it works very
well otherwise and is simple enough to be used by non-programmers. Manip
ulations such as sorts and totals may be specified.

The run efficiency of Image is generally good. Performance problems
are usually the result of design errors. For example, adding a detail
record to a long ordered chain requires a sequential search of the chain.
If there are 1000 detail records on the chain, 500 of them will (on the
average) have to be read to determine the logical placement of the new
record. Normally this would require 500 disk accesses! Thus, long ordered·
chains should be avoided.

Another source of performance problems can be record-level locking.
Image uses dynamic locking to handle the concurrency. The locking may be
done at the database level, file level, or record level. The lower the
level, the greater the complexity12 and the greater the overhead involved.
The overhead at the database level is negligible; at the record level it
is considerable.

Much of the time, blocking of records does not help reduce disk accesses.
There is a provision to store detail records, that share a chain, in the
order in. which they occur on the chain.. This physical ordering can only b...:
done 3S part of restructuring and is not dynamically maintained. Thus
there is usually a requirement for one physical access for each logical
access.

Insertions and deletions require considerably more than one access.
To insert a detail requires a minimum of four ac~~sses for each chain in
volved as well as the \.,rit~ to put the record Ollt. A deletion will usually
require six accesses per chain.

The designer can consider these factors in mapping the schema and the
resulting Image implementations can be as efficient as corresponding
non-database applications.

PROCEDURE

DBOPEN

DBLOCK

DBFIND

DBGET

DBBEGIN

DBMEMO

DBPUT

DBUPDATE

DBDElETE

DBEND

DBUNlOCK

DBClOSE

DBINFO

DBEXPLAIN

DBERROR

DBCONTROl

FUNCTION

Initiates access to a data base. Sets up user's access
mode and user class number for the duration of the process.

Locks one or more data entries, a data set, or an entire
data base (or a combination of these) temporarily to
allow the process calling the procedure to have exclu-
sive access to the locked entities.

locates the first and last entries of a data chain in
preparation for access to entries in the chain.

Reads the data items of a specified entry.

When logging, designates the beginning of a transaction
and optionally writes user information to the logfile.

When logging, writes user information to the logfile.

Add new entries to a data set.

Updates or modifies the values of data items that are
not search or sort items.

Deletes eXisting entries from a data set.

When logging, designates the end of a transaction and
optionally writes user information to the logfile.

Releases those locks obtained with previous calls to
DBLOCK.

Terminates access to a data base or a data set, or resets
the pointers of a data set to their original state.

Provides information about the data base being accessed,
such as the name and description of a data item.

Examines status information returned by an IMAGE pro
cedure that has been called and prints a multi-line
message on the $STDlIST device.

Supplies an English language message that interprets the
status information set by any callable IMAGE procedure.
The message is returned to the calling program in a
buffer.

Allows program operating in exclus!'/e mode to enable or
disable the "deferred update" option.

Figure 4

-12-
L3 11 -13- L3 12



The storage efficiency of Image is generally good, but again there
are exceptions. Each chain requires 10 bytes for chain information in
each master record, and 8 bytes in each detail record. \lliere several
chains are involved this can become significant. Where the amount of
data per record is small and the number of chains is high, the total stor
age required can be several times that required by the data. However,
this is not typical. A modest "root file" is required to contain the
schema and statistical information, but this is negligible in size.

As nbted above, concurrency is handled by dynamic locking at several
different levels. As with any dynamic locking situation, care must be
exercised to avoid lockouts or deadlocks. Experience has shown that a
dozen or so interactive users can share access to a database locking at
the database level without serious contention problems. Hore can probably
be accommodated with lower levels of locking.

Restructuring of an Image database is awkward at best and nearly im
possible at worst. Essentially, fields may be added to records, and
existing fields may be redefined. The maximum capacity of files may be
changed, and chains may be added or deleted. Sometimes, but not always,
new files may be added.

Restructuring is done with the utilities DBUNLOAD and DBLOAD. DBUN
LOAD dumps records from the old database to magnetic tape. The old data
base is then purged and the new one is created from the revised schema.
DBLOAD then loads the data from the tape to the new database. All poin
ters and chains are built anew by DBLOAD and the process can be very slow.
The new database must be very similar to the old as no structure infor
mation is carried on the tape.

Security is very good with Image. In addition to the MPE file security,
Image has an internal security mechanism that is very flexible. Up to
63 user classes, with associated passwords, may be defined. For each file
and/or field, it is possible to specify which classes are allowed read
access and which are allowed read/write access. All other user classes
have no access. Image files are "privileged files" and cannot be accessed
except through Image or by a privileged mode user.

The integrity of Image is unusually high. Crashes seem to cause a
problem only when caused by a catastrophic hardware failure. Even then
the problem can usually be fixed by deleting and replacing the record(s)
involved. At worst a DBUNLOAD/DBLOAD will repair all structural damage.

Checkpointing can be done easily by using the utilities DBSTORE/
DBRESTOR. These dump the files, with pointers, to tape and from tape to
disk. Since no restructuring is done, they are very fast and efficient.

Journaling may be done with the transaction logging feature of Image.
A utility is available to process the logged transactions to a check
pointed version of the database to recover all processing.

The degree of data independence can vary widely depending on the
application programs themselves. At the low end of the spectrum, a pro
gram can, on a DBGET, request a physical record. At the other end, it can

request the specific fields wanted and the order in which they are deliv
ered. A useful option is that of asking for the same list of variables
used on the previous access of that file. This permits a logical "view"
to be defined by the initial access(es). Thereafter the program sees this
same view.

Image is structured as a set of user-callable procedures and several
utilities plus Query. The utilities are only needed to restructure or
recover the database and are not used for routine functions. All proced
ures are part of the application program's process. However, an extra
data segment is created for each database that each process has open. In
addition, all processes using a database share an extra data segment that
serves as a common buffer and locking mechanism.

Image is a well established product and is nearly error free. It is
available from:

Hewlett-Packard Co.
19447 Pruneridge Avenue
Cupertino, CA 95014

Relate/3000

Relate is based on the relational model. Thus it enjoys the benefits
of s'implicity at the expense of losing the explici·t entity relationships
found in the other models. It is an unusually faithful implementation.
with all standard features.

The DDL is conversational and informal. No "database" per se is defined.
However, files (called relations in this model) are defined along with the
name, and internal and external description of each field. These descrip
tions are stored in the "user label" area of each file. Thus the files
are independent of one another. A database consists of those files a user
has open at any given time.

Host relational systems provide for two types of relations or logical
files. A "primary relation" is a permanent part of the database and is
usually implemented as a physical file. A "derived relation" is one
created during the run of an application and is usually not permanent.
These derived relations are of two kinds: a "snapshot" is usually created
by copying data from a primary relation to a new file. Thereafter it is
independent of the original data. An "evolving view" is a rule that says
how the derived relation is formed from the primary relations. The data
remains in the primary relation.

Relate allows snapshots to be created at any time. In addition, evolv
ing views may be created in two ways. A temporary, core resident view may
be specified with the SELECT command. A permanent evolving view may be
specified by the CREATE VIEW command. These are stored in separate, short
files which contain the definition of the view, but no data.

-14- L3 13 -15- L3 14



A file (or relation) is created by the CREATE FILE command while keys
are specified by the CREATE INDEX command. Examples of these commands are
perhaps the most concise way to describe the DDL. The accounting problem
will be used in these examples. Note that file names are limited to seven
characters. Comments are enclosed in brackets { } but are not part of the
session dialog; computer output is underlined:

{Create the department file}
> CREATE FILE DEPART; RECORDS=23
ENTER FIELD NAME, TYPE, LENGTH{.DECIMALS}
? DEPT, ALPHA, 4
? DEPTNAME, ALPHA, 2~
? DEPTHEAD, ALPHA, 2~
"1 !! '
THE "DEPART" FILE HAS BEEN CREATED AS A PERMANENT RELATE!3"~" FILE.

{Create the expense file. Here the description for each field is contained
in the CREATE command}

> CREATE FILE EXPENSE;RECORDS=23;FIELDS~(EXP,ALPHA,4)(EXPDESC,ALPHA,2")

THE "EXPENSE" FILE HAS BEEN CREATED AS A PERMANENT RELATE!3",," FILE.

{A command may extend over multiple lines as follows}
> CREATE FILE ACCOUNT;RECORDS=I"";FIELDS=&
&> (DEPT,ALPHA,4),&
&> (EXP,ALPHA,4),&
&> (BUDAMT,DOUBLE,13;COMMA=YES),&
&> (YTDCR,DOUBLE,13;COHMA=YES),&
&> (YTDDB,DOUBLE,13;COMHA=YES)
THE "ACCOUNT" FILE HAS BEEN CREATED AS A PERMANENT RELATE!3""~ FILE.

{Finally the transaction file is created}
> CREATE FILE TRANS;RECORDS=6"""
ENTER FIELD NAME, TYPE, LENGTH{.DECIMALS}
? DEPTCR,ALPHA.4

"1 EXPCR, ALPHA, 4
? DEPTDB,ALPHA,4
"1 EXPDB,ALPHA,4
? AMT,DOUBLE,13,COHMA=YES
l' DATE,REAL,8;FORMAT="MM!DD/YY"
If REF,ALPHA,6
"1 !I
THE "TRANS" FILE HAS BEEN CREATED AS A PERMANENT RELATE!3""" FILE.

{Next the keys are defined with the CREATE INDEX command. The SET PATH
command defines the "current" file for indexing}

> SET PATH DEPART
> CREATE INDEX BY DEPT;UNARY
TThe "unary" specifies that keys must be unIque}
> SET PATH EXP
>' CREATE INDEX BY EXP; UNARY
TThe following index contains one key formed by concatenating two fields}
> SET PATH ACCOUNT
~ CREATE INDEX BY DEPT,EXP;UNARY

{The following indexes each have ~o keys, each of which is the concaten-'
ation of two items; neither key must be unique}
> SET PATH TRANS
> CREATE INDEX BY DEPTCR,EXPCR
~ CREATE INDEX BY DEPTDB, EXPDB

Each data file has one index file associated with it. Up to nine
indexes may be defined for each data file. All indexes for one data file
are stored in the one index file. The indexes are structured as "B_trees. tt14

The B-tree is a tree structure which neatly solves the problems of making
additions and deletions to the index, and is very efficient for retrieval.
Appendix B of the KSAM manual 15 has a good presentation on B-tree indexes.

Eight different data types may be specified for the fields. These are:

Character String
16 bit unsigned integer
16 bit signed integer
32 bit signed integer
32 bit floating point
64 bit floating point
Packed decimal
Zoned decimal

There is currently no provision for user defined data types, but this
feature is under c~nsideration.

An external format is also specified which has several options and
some nice features. It is not as flexible as the PICTURE clause of COBOL
or the FORMAT statement of FORTRAN, but better than the facilities found
in Query.

The DML consists of ~o parts: commands and procedure calls. By far
the greatest power and flexibility is in the commands. The procedures
provide a better interface for application programs, in some cases, and
somewhat more flexibility. Both commands and procedures may be accessed
from an application program. The commands can also be used with Relate
running as an interactive program as in the examples above.

The diagram in Figure 5 illustrates the program structure of Relate.
The program Relate is the workhorse of the system. It is all that is
needed when Relate is run as an independent program. When Relate is used
from an application program, the "host language interface" library pro
cedures are called by the program. These procedures, in turn, create a
son process which runs the Relate program. All calls to these procedures
are passed to the son process "(Relate) for execution.

-16- L3 15 -17- L3 16



Application
Program

Relate
Procedures

c=J,

Relate
Program

Command

DISALLOW

ENABLE SECURITY

END

EXIT

EXECUTE

HELP

LABEL*

LET*

MODIFY

Function

Inverse function of ALLOW.

Turns on Relate security.

Terminates Relate program.

Terminates Relate program.

Causes Relate commands in a file to be executed.

Displays information about commands.

Prints records in label format.

Makes arithmetic or alphabetic assignments.

Changes the field formats or descriptions for the
current file.

Figure 5

The following table lists the Relate commands with a brief description
of the function of each. These commands may be used in the stand-alone
mode or from an application program.

NOTE

OPEN [~:~~base]
File

PRINT*

The note command begins a comment line.

Opens the named database (Image) or file. "Path" is
an alternate name for a file.

Displays selected data from current file on $STDLIST.
Command

ADD

ALLOW

CHANGE*

CLOSE

COMPARE

CONSOLIDATE*

COPy*

CREATE FILE

CREATE INDEX

CREATE VIEW

DELETE*

DISABLE SECURITY

Function

Adds a record to the current file.

Sets the capabilities of different users.

Modifies record(s) in a file.

Closes files or databases.

Compares contents of two files and selects either
matching or unmatched records.

Creates a subset of the current file.

Copies the current file to another.

Creates a Relate/3~~~ file.

Creates an index for the current file.

Creates an "evolving view" and stores its descrip
tion in a file.

Purges selected records from current file.

Releases Relate security.

-18- L3 17

PURGE INDEX

PURGE VIEW

RECOVER*

REDO

REORGANIZE

SELECT*

SET INDEX

SET PATH

SHOW

SORT*

SUM*

Purges an index from the current file.

Purges the named view.

Restores records that have been logically, but not
physically deleted.

One line edit function for previous command.

Physically removes logically deleted records and,
optionally, changes file capacity.

Creates an "evolving view" and holds it in main memory
for use by subsequent command(s).

Specifies which index is to be used.

Specifies which file is to be used.

Displays information about open files and indexes.

Copies selected records from the current file to
another file in order specified by sort key(s).

Totals one or more fields in selected records.

-19- L3 18



Command Function ways to do this, but the following sequence worked. It was necessary to
create a temporary file similar to ACCOUNT but with different field names.}

will print the records for all people whose names are in the range A-G.

The selection may be further qualified by a "FOR" clause. For example:

~ "A"/"G" PRINT FOR DEPT = "SALES" AND SALARY > 25~~0

> SET FILE PEOPLE
> SET INDEX NAME
> "A"/"G" PRINT

Space does not permit a more complete display of the use of the com
mands. A rather nice demonstration package is available from CRI that
shows more of the commands. A few hours "playing" with the system is also
very instructive.

The programmatic interface consists of the eleven procedure calls listed
in Figure 6. Notice that any of the commands may be used through the RELATE
procedure. A "cursor" is a file control block. Multiple cursors may be
used allowing multiple files to be processed concurrently.

> CREATE FILE TEMP; STRUCTURE=ACCOUNT
tThis creates a file of the same size and with the same field definitions

as ACCOUNT.}
> SET PATH ACCOUNT
'> COpy TO TEMP
TTEMP now contains the same data as ACCOUNT.}
> SET PATH TEMP
>' MODIFY DEPT; NAME:::::DEPTDB
>' MODIFY EXP; NAME=EXPDB
TThe field names in TEMP have been renamed.}
> SET PATH ACCOUNT
'> MODIFY DEPT; NAME:::::DEPTCR
'> MODIFY EXP; NAMEgEXPCR
TThe field names in ACCOUNT have been temporarily renamed. Names of fields

in ACCOUNT and TEMP now correspond to those in TRANS. Next, an evolving
view will be defined as the product of account numbers in these two files,
excluding cases where the two account numbers are identical. These 5112
transactions will then be created with the copy command.}

~ SELECT ACCOUNT.DEPTCR,ACCOUNT.EXPCR,TEMP.DEPTDB,TEMP.EXPDB WHERE&
&> ACCOUNT.DEPTCR <> TEMP.DEPTDB OR ACCOUNT.EXPCR <> TEMP.EXPDB
~ COPY TO TRANS

Blocking factors are automatically chosen, and again, seem to be nearly
optimal. Disk accesses appear to be the minimum possible in most cases
tested.

The other source of low efficiency has been the indexing system. The
B-tree structure has solved this nicely and this particular implementation
is nearly optimally efficient. For example, a new index was ,created for
the TRANS file of 5112 records in 78.5 seconds of CPU time. This works
out to 15.4 milliseconds per record which is excellent.

The big problem with relational systems has always been run efficiency.
Part of the problem comes from the apparent simplicity of the model - it
is very'easy to give a logically simple command that requires enormous
resources. One of the authors, while experimenting with Relate, inadver
tently gave a command that required 723 = 373,248 logical file accesses.
It required about 40 minutes to execute and, but for good blocking effic
iency could have required much longer. A better way was found to do the
same function in a few seconds.

Merges selected files.

Specifies terminal characteristics.

Sets global parameters.

UPDATE

TERMINAL

SYSTEM

Again referring to the accounting problem the following dialog illus
trates the power of some commands. As before, comments are in brackets,
computer output is underlined.

Those commands marked with an asterisk in the table above allow subsets
of the records in the current file to be selected in either or both of two
different ways. The first is by a range or ranges of values of fields that
are indexed. For example:

will print the records for all people whose names are in the range A-G, who
work in the sales department, and whose salary is greater than 250~~. Both
ranges and FOR conditions may be compounded.

{Next, a SELECT command is used to define an evolving view that combines
data from two different files. The COPY command then copies this view to
another file.}

> SELECT DEPART.DEPT,EXPENSE.EXP
TThis will select the dept n from the department file and the exp n from

the expense file. There are 8 records in the department file and 9 in
the expense file. A total of 8x9=72 combination& are possible, and that
many records will be copied by the next command.}

> COPY TO ACCOUNT
TWe now have 72 accounts in the ACCOUNT file. We would next like to

create one transaction for each combination of credit aect # and debit
acct II except that the same account number may not appe:ir in both places.
This will give 72x72-72=5112 transactions. There may be more elegant

{Open department file and add entries to it}
> OPEN FILE DEPART
>' ADD
ENTER DEPT, DEPTNAME, DEPTHEAD
DEPT? {Here the one field, or all three fields, may be entered. If
----- fields have been specified in a hierarchical form, only fields

that differ from record-to-record need be entered.}
DEPT? // {Returns control to command interpreter.}

-20- L3 19 -21- L3 20



Procedure

RELATE

RDBADD

RDBBIND

RDBCLOSE

RDBDELETE

RDBERROR

RDBINFO

RDBINIT

RDBPOINT

RDBREAD

RDBUPDATE

Function

Passes a command to the RELATE/30~~ data base management
system.

Adds a new record to the file associated with the passed
cursor.

Binds a memory location for a return value or a substi
tution variable.

Closes a cursor.

Deletes the current record from the file associated with
the passed cursor.

Returns information on an error condition that exists in
a cursor.

Returns information on the current file or status of the
system.

Initializes a cursor.

Positions a pointer to a specific record for reading.
This call does not function on views or selections.

Reads the next record from the associated cursor.

Updates the current record on the file associated with
the passed cursor.

Figure 6

Security is defined with the ALLOW command. Essentially this speci
fies which users or groups of users can execute various groups of commands.
For example use of the CREATE and PURGE commands can be restricted to one
user. However, these security features only are effective for users going
through the Relate system. Only the MPE file security is effective for a
user who goes into a Relate file through the MPE file system.

An option exists to considerably strengthen the security by making th~

Relate files privileged files as Image does. However, this presently in
volves giving PM capability to the account and to the database administrator.
Other options are under study to improve the security including encryption.

The integrity is similar to Image except that journaling (logging to
a tape) and recovery from the log tape are not presently implemented.
They could be done through application programming.

Data independence is also similar to Image. The user may accept all
fields in the record as they physically occur or specify the fields and
their order.

Relate/3~~~ is a new product and, as with any new product of this com
plexity, can be expected to have some bugs in it. However, it appears to
be soundly conceived, efficiently implemented, and a very effective tool.
It is available for a one-time fee of $18,500 which includes the first
year's maintenance. Maintenance after the first year will be 15% of the
(then) current selling price. Relate is available from:

Computer Resources, Inc.
2750 EI Camino Real
Mountain View, CA 94040
(415) 941-4646

In short, both storage and run efficiencies seem to be very close to
the ideal. Where performance problems arise, they can likely be traced
to the ease with which some very awkward operations can be requested.

Concurrency is handled by dynamic locking of files. It may be enhanced
beyond the file level in subsequent releases. Even at the file level,
experience with Image indicates that it should be effective.

Restructuring is certainly one of the strong points. of Relate. New
files are easily defined and data from one or more files can readily be
copied to the new file, with undefined fields zeroed or h1anked. More
over, Relate may be used with Image, KSAM, or MPE files as well as Relate
files. Many of the commands including OPEN, COPY, PRINT, and CLOSE will
work with these other file types. Not only does this give the user the
option of combining these other file types into a Relate database, but it
also makes the task of converting from the other file types to Relate files
a trivial exercise. After one has struggled with restructuring Image,
Relate seems almost too good to be true!

-22- L3 21

Rel*Stor

Rel*Stor is also based on the relational model and, with Relate,
shares the particular strengths and weaknesses of that model. Unlike
Image and Relate, which were created specifically for the HP/3~~~, Rel*Stor
is implemented on other systems.

The DDL for Rel*Stor is slightly more formal than that for Relate, but
closer to Relate's than Image's. The DEFINE command is used to create a
file (relation or "table" as it is called in the Rel*Stor manual 16

). A
database is created using the DEFINEDB command. This command specifies
the name of the database and gives upper limits for the number of data
files and users. Three directories are then created to store information
on the database and its users, but no data files are specified or created.

Derived relations can be created as snapshots through the RETRIEVE
command. The RANGE command allows the data for the snapshot to be gathered
from more than one file. There is no provision for "evolving views."

-23- L3 22



The DEFINE command is functionally and syntactically similar to the
CREATE command of Relate. For example. the ACCOUNT file would be created
by tne following:

STRING 4.
STRING 4.
INTEGER l~.

INTEGER l~.

INTEGER l~.

Terminal
Interface
Processor

Library
Procedures

Application
Program

DEFINE ACCOUNT
DEPT
EXP
BUDAMT
YTDCR
YTDDB
PRIHEc:2
SIZEg 23;

There are only three data types specified. and data is stored in ex
ternal (ASCII) form rather than internal (Binary) form. Data type appears
to matter only when arithmetic operations are performed. The three types
and the upper and lower limits on their "width" are:

The PRIMEg2 clause indicates that the first two fields (concatenated)
constitute a unique key for each record. There is no provision for files,
such as the transaction file, where no combination of fields yields a
unique key. (Two transactions could be identical in all respects.) Like
wise there is no provision for multiple keys. The single key may include
several fields (in order of declaration starting with the first). The
indexes are structured as B-trees with the advantages of ease of chanRe
and efficient retrieval.

These widths would allow both 16 and 32 bit integers, but only 32 bit
floating point. No formatting capability is included.

The DML is quite rich and nearly as complex as a programming language such
as Basic. This richness could be seen as Rel*Stor's strongest point. Its
complexity could be a weak point.

Relational
Data

Handler

Figure 7

4 to 12 bytes
8 to 12 bytes

Integer
Real
String

TIP serves as a conversational interface. te},~ edi t~r. and other m1.s
cellaneous functions. It operates in three diff~r.ent modes: control mode,
edit mode. and administrative mode. The control mod~ ~;lows the user to
formulate queries. send them to the RDH, and see the results. The edit
mode allows the user to compose. edit. modify and saY'.' qll~rles. The admin
istrative mode allows qualified users to define new databases, grant users
access to databases and retrieve data base statistics. There are 45 TIP
commands altogether as shown in Figure 8.

Before proceeding to the DML it is necessary to understand the program
matic components of Rel*Stor and how they function. A program called the
Relational Data Handler or RDH is the main workhorse of the system. The
RDH is run as a son process of the user's process. The user's process
may either be an application program or a program called the Terminal
Interface Process or TIP. See Figure 7.

-24- L3 23 -25-



APPEND

BYE

COMPILE

CONTll~UE

EDiT

ENil

GO

HELl.O

totarulO

SEND

SETPAGE

SETRR

SETWSR

SHOWHE

STATISTICS

SYSTEM

TIP Control Commands

append, insert, or change data in a relation

terminate a session with a aatabase

translates Buffer to code and checks syntax

continue query to retrieve next page of data

switch from Control to DBA mode

switch from Control to Edit mode

return control to the operating system

COMPILE and RUN the Textual Buffer

initiate a session with a database

list relo' ions and their data attributes

change aucomatic PRINTRR mode

pt'int the number of disk accesses in your last
request

print the Result Relation

send the COMPILED Buffer

save the Result Relation, formatted for a LOAD
command

send a canned query for processing

set the maximum rows per page in the Result
Relation

reset the size of Result Relation file

reset the size of workspace relation file

shows the filenames and parameters of present
session

print the statistics associated with your last
query

print the system configuration parameters

Figure 8 (contd)

-26- l3 25

TIME

II

\

ADD

DELETE

END

JOIN

KEEP

LIST

PURGE

REPLACE

TEXT

II

ABORT

ALTUSER

COOL

DEFINEDB

DEFINEI

END

LISTDBS

TIP Control Commands

print th~ time required to complete last query

terminates APPEND command

terminates APPEND command

TIP Edit Commands

add l1ncIJ to the Buffer

del~te l1neK from the Buffer

retllrn re, r(tntrol mode

JOIN tog(~thf'T th~ Buffer and a KEEPed file

save thp ,'ontN,tn of the Buffer in a permanent file

11ul JJ,uou uf th~ BuffE'r

r~p}~h'\e tin",'u of t L~X.t 1n the Buf fer

brJu~ & perwa~wut file into the Buffer

tel~inate ADD or REPLACE command

TIP Administrator Commands

set query control point to inactive

change or add to the capability of a user

to be implemented

define a new data base

initial installation of RELATE

return to control mode

list data base statistics or all data base names

Figure 8 (contd)

-27- L3 26



TIP Administrator Commands The programmatic interface to the RDH consists of four library pro
cedures:

Name

LISTUSER

NEWUSER

PURGEUSER

REMOVEDB

RESTRICT

list directory for one user or all users

enter a new user with RETRIEVE capability

remove a user from a data base directory

remove a data base

to be implemented

Procedure

STARTRDH

TXTBFMGR

PROJECT

GETDESC

Function

Creates the RDH process

Sends a query to RDH

Returns one field at a time from the result of
the query

Returns a description of the result of a Query

WARM to be implemented

Figure 8

-28- L3 27

Queries are processed in a "batch" mode by the RDH; i.e. a query is
passed to the RDH, the result of the search is placed in a temporary file
called the "result relation." The results may then be interrogated or
even saved as a new, permanent file.

Thus, in spite of the numerous TIP commands, it is the RDH commands
that constitute the true DML, and even include most of the DDL. Figure 9
lists the RDH commands and operators which may be combined in the usual
ways.

The RETRIEVE command is the primary read verb and the WHERE clause the
qualifier. For example, the following query would retrieve all transac
tions debited to department #42 for expense categories 10-29 if the amount
exceeds $100.00.

RANGE X = ACCOUNT
RETRIEVE X.DEPTDB, X.EXPDB, X.DEPTCR, X.EXPCR, AMT, DATE, REF
WHERE

X.DEPTDB = 42 AND X.EXPDB >=1~ AND X.EXPDB < 3~

AND AMT > 1~~.~~

The LOAD command may be used to load data to a Rel*Stor file from an
MPE file. It also may be used to add new records to a Rel*Stor file.
There is no update verb in the RDH commands. The APPEND command in the
TIP control mode will update. The only other option is to copy the entire
file, modifying the necessary records. This seems to reflect a strong
"batch" orientation rather than an on-line orientation.

Little can be said about performance since the product was not avail
able for testing. The batch orientation of the DML, however, makes it
likely that interactive processing, for any but a read only mode, would
be awkward at best and could be very inefficient.

Storage efficiency is likewise less than optimum due to the storage of
external rather than internal forms of the data.

Concurrency is not implemented at the present time. There are plans
to add it in 1982. At present only one user at a time may access a data
base.

-29- L3 28



Name

AND

AVG

BUT

COLLECT

COUNT

DEFINE

DELETE

DELETEQ

LOAD

MAX

MIN

NOT

OR

RANGE

REMOVE

RENAME

RETRIEVE

SAVE

SUM

WHERE

+, - * , /

()

:-

RDH Commands and Operators

Meaning

logical (Boolean) operator

COLLECT function - averages real or integer

logical (boolean) operator - same as AND

perform function (COUNT. SUM, MIN, MAX, AVG)

COLLECT function - counts rows

create a new data base table

delete rows from a data base table

DELETE but save DELETEd rows in Result Relation

bulk load data into a table

COLLECT function - finds maximum in column

COLLBCT function - finds minimum in column

logical (Boolean) operator

logical (Boolean) operator

specify table and assign relation variable(s)

purge a data base table

rename a data base table

get information from a data base

save the Result Relation as a data base table

COLLECT function - adds real or integer column

introduce qualification clause to query

arithmetic operators - plus, minus, times, divided by

parenthesis - determine order of operation

value of expression is assigned to variable

Security is defined by the NEWUSER and ALTUSER commands. These allow
the administrator to control the users having access to each database,
and the commands that each user may use. However, these security pro
visions are only effective for users going through the Rel*Stor system.
Only the MPE file security is effective for a user who goes into~a Rel*Stor
file through the MPE file system.

Integrity is similar to Image except that there is no provision for
journaling (logging transactions to tape) and recovery from the log tape.
This could be implemented by application programs, however.

Data independence is also similar to· Image. The user may accept all
fields in the record as they occur, or specify the fields and their order.

Rel*Stor is a new product, with some features not scheduled for imple
mentation until next year. As with any new product of some complexity,
it can be expected to have some bugs. It was designed to work on a variety
of computer systems and this may well cause some compromises in its design 
for example the "batch" orientation o! the RDH.

Rel*Stor is available for a one time fee of $20,000 which includes
delivery, installation, three copies of the doc~entation, maintenance/
update service, and hot-line consultation for 12 months. Maintenance/up
date service. and hot-line consultation costs $3000 per year after the
fir9t year. Rel*Stor is available from:

GTE Products Corporation
P.O. Box 188
Mountain View, CA 94042
(415) 966-2371

SUMMARY

Any time that complex sye~ems are compared, it is·difficult to be
totally objective because the designers of the systems had different goals
and viewed various features with differing importance. Likewise, users
of these systems will have varying needs. Thus it is not possible to
rank these systems - anyone of them might be the best choice for some
applications. The grading chart, shown following~ is an attempt to objec
tively assess salient features· of each system. Even here, however, each
individual grade must be a subjective judgment made after considering a
variety of dissimilar factors.

<, <a, a, >a, relational operators
>

II

%

relational operator - is not equal to

relational operator - is included in - string only

Figure 9

-30-
L3 29 -31- l3 30



Bibliography

In the table below, the features of each of the three systems have
been graded in ten categories. These grades are solely the judgment of
the authors. The grade meanings are as follows:

A - excellent, outstanding
B - above average
C - average
D - below average but useable
F - essentially useless or non-existent
X - unable to determine

1. Newsletter of the UP General Systems Users Group, p. 24, April, 1981.

2. Atre, S., Data Base: Structured Techniques for Design, Performance,
and Management. New York: John Wiley & Sons, 1980.

3. Date, C.J., An Introduction to Database Systems. Reading, Mass.:
Addison-Wesley Publishing Co., 1977.

4. Kroenke, David, Database Processing. Palo Alto: Science Research
Associates, Inc., 1977.

12. Image, op.cit., p. 4-17.

15. KSAM/3000 Reference Manual. Hewlett-Packard Co., Cupertino, CA,
Part No. 30000-90079.

7. Wiederhold, Gio, Database Design. New York: McGraw-Hill Book Co.,
1977.

11. Query Reference Manual. Hewlett-Packard Co., Cupertino, CA., Part
No. 30000-90042.

GTE Products Corp., MountainUser Reference Manual for Rel*Stor.
View, CA, March 1981.

5. Tsichritzis, Dionysios C., and Lochovsky, Frederick H., Data Base
Management Systems. New York: Academic Press, 1977.

6. Ullman, Jeffrey D., Principles of Database Systems. Potomac, Md.:
Computer Science Press Inc., 1980.

8. Date, op.cit., p. 53.

9. Atre, op.cit., p. 130.

10. Image Data Base Management System Reference Manual. Hewlett-Packard
Co., Cupertino, CA., Part No. 32215-90003.

16.

14. Comer, Douglas, "The Ubiquitous B-Tree," Computing Surveys, Vol II,
No.2, June 1979, pp 121-137.

13. Relate/3000 Database Management System Reference Manual. Computer
Resources, Inc., Mountain View, CA, July 1, 1981.

The time has come for a centralized data dictionary. The dictionary
would necessarily be complex enough to require a database to store it.
Systems could share the information and the data conversion procedures
instead of each having its own (different) version. The authors plan to
do future work in this direction.

This paper is the result of one small step in a project to bring to
gether a cohesive and effective set of program development tools. The key
stone of this project is a data dictionary which would be shared by all
components. At present each system (Image, Relate/3000, Rel*Stor, V/3000,
etc.) has its own data dictionary (or fragment thereof) contained within it.

Image Relate/3000 Rel*Stor

1. Mapping to system D B B

2. DDL and data types B B C

3. DML C A D

4. Run performance B B X

5. Storage efficiency C A D

6. Concurrency
(\

B C F

7. Restructuring D A B

8. Security B D D

9. Integrity A B B

10. Data independence C C C

Future Developments

-32- L3 31 -33- L3 32



rJ,~ HEWLETT ================= UP USERS' GROUP
~~ PACKARD BERLIN 1981

THE HP 2680A LASER PRINTING SYSTEM

THE

SYSTEM

HP2680A

L AuS E R PRINTING

The HP2680A Laser Printing System consists of a medium-speed laser
printer which together with its associated software, allows the devel
opment and printing of forms containing data, special character sets,
company logos as well as the usual design elements making up a standard
form.

The outstanding feature of this printing system is the interactive
software which is used for development of all kinds of different
forms, character sets, company logos and other artwork using no more
than a standard graphics terminal and a digitiser linked up with an
HP 3000 computer. This software has been specially designed for the use
of the non-programmer - all instructions are entered through menus or
special function keys on the terminal and there are various useful de
fault values present in the menus. In addition, sensible warning and
error messages are displayed to prevent the user from wasting his time
with correcting mistakes.

Although the software is very easy to use, it has many built-in
features allowing the user to make full use of the printing flexibility
of the HP 2680A Laser Printer. It is the purpose of this presentation
to describe some of these features using practical examples.

OVERVIEW

(SOFTWARE)

Anthony G.Stieber
HP2680A Applications
BGD, Peripherals Group

L4 1

The structure of the software associated with the HP2680A Laser Printer
could be represented in the form of the following equations:-

Printout • Data File + Environment File

Environment File a Forms + Character Sets + Page Layout

Forms =Lines + Boxes + Shading + Headings + Logos + Signatures

Character Sets • Characters + Logos + Signatures + Other Artwork

The following software is available for use with the HP2680A Laser
Printer:-

1- IFS2680 (Interactive Formatting System) is used for creating
environment files.

2 - 1[' /3000 (Interactive Design Software) which includes two
programmes:

a) IDSFORM for creating forms
b) IDSCHA~ which is used for creating character set and

logo files.
3 - Various intrinsics within MPE which are used to conrol the Laser

Printer.

L4 2



!
i

f
•I
!
~

I

FA:" HEWLETT HP USERS' GROUP
~& PACKARD ===-=~.-aa=:ll:r::l:l:ll=-=--=z:=::I"c:=a::~ BERLIN 1981

PR.INTING

In order to control the printing out of.data by means of the environ
ment file, a modified version of the file equation can be used
which allows the environment file to be specified. This file
equation also specifies the target device ie. the HP2680A printer.

ego :FILE PRINTOUT;DEV-EPOC;ENV-TESTENV;CCTL

("EPOC" is the device class name for the HP2680A)

Data which is sent to this device file ''PRINTOUT' will be automatically
merged with the environment file '7ESTENV". It is sent in this form to
the spooler and then printed out using the specified character sets.
forms etc.

INTERACTIVE DESIGN CONTR.OL

Since IDS/3000 has been designed with the non-programmer in mind,
no special programming language has to be learnt in order to make
full use of the features of this system.

All instructions to the system are entered by the user by means of
menus and function keys. In order to save on development time,
useful default values are provided by the software. These are par
ticularly valuable when only relatively simple environments, forms
and characters are to be designed. Warning and error messages pre
vent even an inexperienced user from making serious errors such as
erasing the product of an aftemoon's work!

WbeD tbe DIet bal completed aDd IDtered lOme meDDI, tbe lfIIelD
ukl bim to cODfirm bl. eDtrlel by repeatiDI -eater-. Some
addltioDallaformatioa may be dllplayedlO tbat tbe unr cia be
CluUe lure tbat bls eatri.. an correcL

l4 3

FA:' HEWLETT UP USERS' GROUP _
a!'~ PACKARD ..:a::::a===....~.......--==-- BERLIN 1981

IFS2680 - ENVIRONMENT DESIGN

The environment file contains all the information required to con
trol the printing of data:-

1- Physical page information:
Paper dimensions
Number of copies of each page to be printed

2 - Print formatting information:
Location and dimensions of printing areas on a physical page.

These printing areas are called logical pages.
Names of forms on which data is to be printed. Each form

must be attached to a logical page.
ne potltloalal of a form oa alolical Pile may be
dODe ID~Daally by ladlcatlaltbe ~"taDceJ from tbe
top aDd left baad slda of tbe 101lcal pale or It
IDIJ be placed automatically eitber ia lbe ceatre of
tbe Pile or III oae of tbe four corDen. If tbe form
does DOt fit iato tlae 101leal Pile, It may be ICIled
dowa automatically. However, If desired, tbe form
may project beyoad tbe lid.. of tbe 101lcal paae. la
tblt call, aD data may be written to tbe par" of
tbe fona J'IDa oatil. tbe 10aleaJ PIP boaDdary.

Vertical formatting control for each logical page
Printing direction (orientation) on a logical page

Up to thlrt)'-two eliffereDt 1011cal Piles coatalnlal
two fonu eacb may be lpeclfle4. However, tbere II
a limit of II differeat forma wblcb Cia be prlated
oa a pylic" pal"

3 - Typeface information for printing data:
Character font name
Character font size
Character font orientation

Up to thirty-two cbaracter ..tl ma)' be lpeclfled
witbiD ID eDviroameat file. Bacb orientatloD aad
Ille of a character font is eleclared u a cllffenat
cbaracttr let. La... Ilpatunl IDd otber attwoR
caa be tpeClfled to be cbancter letl anel may tbUi
be prlattd out al clata.

INITIALISATION

If the user wishes to make use of most or all of the features of
a standard environment file present in the system or of one of his
own environment files, this may be specified on the Initialisation
Menu. The desired features are then copied from one environment
file to the one that the user is constructing.

Amoal tbe ltaDdard eDvlroameat fUn Ia tbe
Iyltem, tbere are nveral wblcb may be uled
for automatic 1:1 or 4:1 reductioa of data.
nil II especially uaeful for 8torinllarle
amouDII of computer output la arcblveL



F/3 HEWLETT ============================= UP USERS' GROUP =======-
~MC~~ ~R~~M

MULTI-COPY FORMS

There is a special menu for specifying multi-copy forms which are
intended to simulate the use of carbon paper with each copy consisting
of a different form for distribution to different people. With this
menu, one can indicate two forms to be printed on each copy. Up to eight
different copies may be specified - each containing two different
forms while the data printed on each form will be the same. It is of
course possible to blank out data on certain forms by specifying
black boxes within the forms.

COMPILAnON

When all desired parameters have been entered into the environment
file,l they must be compiled so that they can be downloaded to the
HP.l680A in a form that can be used directly for printing. The com
pilation of the environment file is started by a command in the
main menu.

F/3 HEWLETT --==============-================ UP USERS' GROUPa!t. PACKARD IIiIi BERLIN 1981

IDSFORM - FORMS DESIGN

Forms which are used for printing data on the Laser Printer are
stored in standard MPE forms files. Each forms file may contain
different named forms.

The IDSFORM programme is used for· interactive forms de~g~ ~ng only
an UP graphics terminal. For ease of development and modification,
each form may be have a structure consisting of:

1- Subforms
Sab-forlDl may be 1t0reeS ID a temporary "Hold- file aDd may be
moved or copied to otber locatloD' OD tbe Ame form or eYeD
to otber form•.

2 - Fields which are used for printing data and for specifying
headings. Fields must be contained within sub-forms.

Headl.... may be ipeClfied allDl aDy desired ebaracter sell
ID aDy ODe of lbe four poaIbJe orieDtatioDl aDd ID yarloa.
1Ius. ID addltloa, til, pultioD of a beadiDI wllbiD lbe
field may be .pec:lfied a. well u wbetber it II to be
jutlfied or Dol ADy 1010 or ipKial ebarac:ten ItDnd
b1 tile user may IMt IPtClfled iD a beadiq.

3 - Subfields which may be used for printing data. They must be
contained within fields.

FORM GRAPHICS

When working at the form and sub-form levels, it is possible to make
use of some graphics features:

1- Line drawing using 3 different line thicknesses and 8 types.
2 - Box drawing using 3 different outline thicknesses and 8 types.
3 - Box shading in S different shades

Some examples of the variations possible in drawing lines and boxes
are shown opposite.

DESIGN AIDS

A grid with numbered lines can be specified by the user in order to
be able to place form elements at precisely the location he requires.
This grid is purely a design aid and is not printed on the final
version of the form.

lil 6



IDSFORM - GRAPHICS OPTIONS

SOUlll1ftt1IUne

Oottldlia1

Da!led lu.

Oot-4llJl line AU coewtiOl'll of ttlnt lint tJpeI

TIWt lOUd liM • 1M tMdonnaII .,. ,.....1.. Tht)o

101'1II1 tMdlnnI dotted line "" be epecititd 011 ttlt ,rlCl!Ucl 1IIftlI.

!

i
•I
!
~

~

I

IDSCHAR. - CHARACTER SET DESIGN

Characters. logos and other artwork used for printing on the Laser
Printer are stored in standard MPE files. Two file types may be
specified:

1- Character Set Files: each of these files is used for a com
plete typeface ie. all sizes and orientations of each charac
ter are stored in a character set file.

- - - - - - - - - - - - - - Uidlcllltlldlial

••••••••••••• - Doull1.llidelSllhtdUM

2 - Logo Files: each of these is used to store a particular logo
or piece of artwork in all of the desired sizes.

IDSCMAR is the programme used for the interactive creation of charac
ter sets and design elements by means of an UP graphics terminal and
an HP digitiser or graphics tablet. The basic storage unit of a
character set or logo is the character cell.

-·:1:::::::::::::::111111::::::::::::::::::::::::::::::::::1:::::::::::::11:-::::::::::::::::::::::::::::::::::::::::=4

1- Cell dimensions (maximum lize il 155 x 155 priotlol doll
Ie. 3.6 em or U IDCbel square)

2 - If proportional spacing is to be used for printing
3 - The bounds.used for proportional spacing
4 - Positioning of the cell relative to other cells when printing.

PROPORTIONAL SPACING

DESIGN AIDS

CHARACTER CELL SPECIFICAnONS

Character sets may be defined as being proportionally spaced ie. the
printing position of a character on a line depends on the width of the
previous character. For instance. in lhe final printout. 'the space
takern up by an "i" will be much less than that taken up by a "w".
Within a character cel~ the bounds used for proportional spacing
may be specified.

Outline Generation:
In order to simplify the task of designing characters, logos, sig
natures etc. an HP digitiser or graphics tablet may be used to trace
the outline of a piece of artwork. Within IDSCMAR. this outline may
be stored. magnified or moved within a character cell. If
the user is satisfied with the outline. he may fill it in manually or
automatically with printable dots.

-r-------,
I I
I I
I IL .J

,..---------.,
i i
i iL J

o

o
r-··----·---· l
: _ .:

,.._._._._._._,
i iL._._._._._._i
i ..ull.....llilull

. .
iall...II.IIIIIIIlII.i

e
i
!.
~ i
~i
i=

r.ii'r_J~.::!~!~~m::~~.';;.r.:I! il
W~~;;;.;..i...;;o:~;;J.r:::,..~~:1;.:::~=::.:~::r~_~'! .....d Ei......................................................................................................................

L4 7
L4 8



rJ~ HEWLETT UP USERS' GROUP
I!~ PACKARD =::::::::1==================== BERLIN 1981

Cell Grid:
For the accurate placement of printing dots within a cell, the dot
positions can be marked automatically using a two letter command.

Cell Manipulation:
When designing for instance a character set, a very useful feature
of the system is the possibility to move character cells around the
screen and to display different character cells at the same time.

Cell Graphics:
Using the function keys on the terminal,
it is possible to draw lines, arcs, circles
and boxes with~n a character cell as shown
here on the righ t.

Examples of Character Design:

L4 9

PROGRAMMATIC CONTROL

Under MPEt various intrinsics have been implemented to allow the
user complete flexibility in controlling data printout. A programme
called Translator (available in the Contributed Lihrary) simplifies
the use of these intrinsics to allow even the non-programmer access to
the features of the Laser Printing System.

PHYSICAL PAGE CONTROL

A skip to a new physical page may be carried out at any time during
the printing of the data using an intrinsic.

LOGICAL PAGE CONTROL

Up to thirty-two logical pages may be specified per physical page; a
logical page may be either active or inactive. The data coming from
a source file or programme is printed on each active logical page in
sequence. When all active logical pages have been pnnted on t print
ing continues on the first active logical page of the next physical
page. Logical pages may be activated or deactivated using an intrinsic.

CHARACTER SET SELECTION

Character set selection with an intrinsic is done by specifying the
primary and secondary character sets. As with an ordinary printer t

data is normally printed with the specified primary character set but
after a shift out t the secondary character set is used for printing.

DATA DIRECTING

Data can be directed to print out on a particular named field of a
specified sub-form within a selected form. The exact destination
of the data may be specified using three intrinsics. One advantage
of this system over traditional printing methods is that changes
can be made to the form without making any changes to the appli
caions programme producing the data - the named forms, sub-forms
and fields are all the parameters that are required.

PEN CONTROL

The laser in the HP2680A can be considered to be a pen drawing an
image on the paper. This pen can be moved about and positioned any
where on the paper using intrinsics. Printing of data always starts
at the current pen position.

L4 10



I
f
l

I
I
:
f
t

FJ,3 HEWLETT UP USERS' GROUP
a!~ PACKARDs================= BERLIN 1981

OBTAINING PRINTING INFORMATION

Several intrinsics can be used to obtain information on the following:

1 - The character fonts in use
2 - The logical pages in use
3 - The current state of the print job
4 - The width of a given character string in dots
5 - Error information.

rJ~ HEWLETT UP USERS' GROUP
~~ PACKARD============= BERLIN 1981

CONCLUSION

For the user who wishes only to print out a report or a memo on the Laser
Printer the task is made easy by the use of default values available
within the system while the user who wishes to make use of all the fea
tures of the Laser Printer is enabled to do so by the great flexibility
of the software.

Point Size:

GLOSSARY

Cell File: An MPE file containing character cells ie. charac
ters, company logos, signatures and other graphics
elements.

Character Cell: Storage unit within a cell file which contains a
character, logo or signature etc of a particular
font, size and orientation.

Dots: Since the HP2680A printer prints dot patterns, cell
size for instance may be specified in terms of dots
(180 dots per inch or 71 dots per centimetre).

Environment File: An MPE file containing all the information re
quired for the printing out of formatted data
together with any desired forms.

Forms File: This is an MPE file containing one or more forms.

Logical Page: This is a printing area defined on a physical
page which is used for printing data and forms.

Multi-copy Forms: This is a feature simulating the use of carbon
paper in sending the same data on different forms
to different recepients.

This is the term used in the printing industry in
dicating type size. As a general rule, there are
70 points per inch but the exact point size of a
character also depends on some other factors apart
from the height of the letter.

Proportional Spacing: Variable spacing between letters depending on
the actual width of each individual letter.

L4 1.J

31st August 1981 Anthony Stieber

BGD, Peripherals Group, Boeblingen

L4 12



DATA CON£ENTRAT9RS IN FO£US·FOR MINI£Q"PUTER-USERS

DATA CONCENTRATORS IN FOCUS FOR'MINICOMPUTER-USERS

Paper held by Peter J. Mikutta, Ing. grad.,
President
TELEMATION GmbH
Bismarckstr. 8
6232 BAD SODEN/TS.

HP-Users.Group, Berlin,
Thursday, October 8, 1981

PETER J. MIKUTTA

P.J.ptIKUTTA
TELEMATION GMBH
BISMARCKSTR.8
6232 BAD SODEN/Ts.

l5 1

Occasionally sales representatives of mainfrane ~anufacturers

state that asynchronous communication systems are nowadays

abolished and they refer convincingly to their intelligent

and synchronous TP-systems. Some users accept this inform

ation and spread it out with firm belief as their own opinion.

No wonder that asynchronous communications have been more

or less condemned.

However, the fact is that asynchronous communications with

means of data concentrators provide the minicomputer user

with significant advantages regarding error correction and

transmission performance like the IBM users with an IBM 3270

or IBM 7380 system. This paper is alaed to help you to under

stand the advantages of using data concentrators specifically

with regard to price-/performance ratio.

Before microcomputer-driven data concentrators beeame avail

able, mincomputer users planning to install more than one

low-speed terminal in a remo~e branch location had to lease

a telephone line with two modems for each terminal at high

cost (Pig.la).

. •. /2

l5 2



page 2: DATA CONCENTRATORS IN FOCUS FOR MINICOMPUTER-USEaS page 3: DATA CONCENTRATORS IN FOCUS FOR MINICOMPUTER-USERS

The er-ror rate problem is especially acute with high-speed

time division mUltiplexers that operate at the maximum rate

for a single voice-grade-circuit. The best error rate quoted

by any supplier, including the telephone companies, is 10-6 •

This translates to one error every 90 seconds at 9600 bps;

at 4800 bps, one error every three minutesl and at 2400 bps

the minimum line speed required to fill a CRT screen in a

tolerable time frame - one error every six minutes.

CENTRAL ~
COMPUTER r+--------:J~

~~:~~
~~ , • REIIOTE

~r:.~~~~R ••• TERMINALS

Fig. 1. Two approaches to linking multiple terminals to a
central computer: (a) using a separate line for each
terminal and (b) using a single multiplexed line.

Most PTT organisations provide for asynchronous modems

only two alternatives:

1. a modem for 300 baud ( 30 characters/sec.)

2. a modem for 1200 baud ( 120 characters/sec-. )

These low speeds do surely not encourage to operate with

more than one CRT or printer - since, even with 1200 baud,

to fill on CRT screen takes 16 seconds. The unsatisfying

transmission speed in conjunction with the lack of error

correction has carried asynchronous communications into a

dead end.

This error rate is overcome when multiplexed data communic

ation networks use mainframe processors as hosts because

the terminals automatically retransmit data cont~ing errors.

As a result, mainframe terminal operators see only a slight

degradation, if any at all, in terminal response when an

error occurs. However, when terminals are linked to a mini

computer, erroneous data blocks cannot be retransmitted.

Moreover, implementing a data communications link bas&d on

TOMs and mimcomputers can be expensive. Modems needed to

operate at 9600 bps can cost as much as $ 5000 each, or more

than three times the cost of a multiplexer alone. Even at

slower speeds, this equipment is costly.

The need for intelligence

To implement a multiplexed multi-terminal network, mini

users need "smart" multiplexers that will enable them to

hang more than one terminal off a single line at each site

while providing the error-control required for efficient

operation. In addition, minicomputer users need to use

high-speed terminals to minimize operator waiting time

during interaction with the co~puter.

Another alternative was to use time-division (TDM) or

requency division (FDM) multiplexers that enable terminals

to share a telephone line (Fig. lb). However, the lack of

sophisticated error-control routines inherent in minicom

puter-supported Teletype-compatible CRTs, printers, and other

remote peripherals results in unacceptable line-error rates

with this approach.

••• / 3

To provide these capabilities at a price mini users can

afford, .several US companies, such as MICOM SYSTEMS, have

introduced microcomputer-driven data coneantrators. These

devices typically handle four- or eight channels.

• •• /4

L5 3 L5 4



page 4: DATA CONCENTRATORS in focus for MINICOMPUTER-USERS

A multiplexed network uses two concentrators: one at the

terminal end of the phone link, the other at the host computer.

Both devices are linked to the telephone line via modems.

In operation, the concentrators buffer data prior to trans

mission, enabling them to transmit variable-length data

blocks depending on the loading on each terminal's channel.

In effect, the data concentrator, or statistical multiplexer,

as it is often called, increases the average traffic on a

high-speed line by buffering peak traffic on individual

channels.

The concentration made possible by buffering data also in

creases throughput compared to time-division multiplexers.

The reason? TOMs transmit data blocks even when a particular

terminal has no data to send. Statistical multiplexers, on

the other hand, assign channel capacity dynamically accord

ing to the load on a given input channel.

The load-averaging method used by statistical multiplexers

makes them better suited than TOMs to the interactive mode

of operation that characterizes minicmputer-based systems.

In interactive applications, the loadings tend to come in

bursts, rather than at the steady pace characteristic of

batch o~ remote job entry. Bence, TOMs are often too power

ful for minicomputer applications.

Smart means no error

Moreover, by buffering data, concentrators can also check

data blocks received on the high-speed link and request

retransmission in case of error. To implement this automatic

ally, similar to that used in IBM's SDLC protocol. A data

concent~ator, for example, typically attaches a cyclic

redundancy check (CRC) character to each transmitted block.

The receiving concentrator then recalculates the attached

eRe to check the block for errors.

... /5

L5 5

page 5: DATA CONCENTRATORS IN FOCUS FOR MINICOMPUTER-USERS

With data concentration, the undetected error rate is so

low (better than 1 block in 10 12 ) that data transmission is

error-free for all practical purposes. The error-handling

does not involve the host minicomputer at all. In fact, in

most applications, the mini treats the data communications

hardware as if it were simply a hardwired peripheral located

in the same room.

The microcomputer based intelligence of a statistical multi

plexer is also used to simplify network configuration. The

Micom Micro 800, for example, is self-configuring to a large

extent. All configuration parameters, including the data

rates for each channel, are switch selected, with only 16 DIP

switches required to configure a four-channel unit. In con

trast, most TDMs have literally thousands of possible strap

option permutations, any of which may be responsible for

time-consuming installation problems.

To further simplify system configuration, switch selection

of configuration parameters is required only at the computer

site. The host data concentrator automatically down-line

loads all configuration data. Only one switch need be set

in the remote concentrator to inform the unit that it is

a "slave" unit.

Data concentrators do have a drawback, however. During pro

longed peak transmission periods, or because lines errors

have lead to excessive retransmission, "buffer overflow" may

occur as data comes into the buffer faster than it can be

sent out onto the line. In such a situation, data is lost,

with the most active channel losing all its data first,

followed by less active channels in order to buffer utilization.

To minimize data loss caused by buffer overflow, data cop

centrators incorporate switch-selectable options intended

. .. /6

L5 6



page 6: DATA CONCENTRATORS IN FOCUS FOR MINCOMPUTER-USERS
page 7: DATA CONCENTRATORS IN FOCUS FOR MINICOMPUTER-USERS

to suspend data transmission temporarily. For example, the

Micr0800 takes advantage of the fact that most minicomputers

will suspend transmission either on receipt of a special

control character (XOFF), or on the dropping of the Clear

to-Send interface control signal. Transmission will r~sume

when the system receives the XON control character or when

Clear-to-Send is raised.

If buffer overflow continues and data is lost, an appropriate

message is sent to the affected terminal. The Micr0800 also

automatically transmits a "LINK DOWN" message, when the

communications link between Micr0800s is down. In short,

the concentrator advises terminal users of fault conditions

in the communications system.

slave Micr0800 if an ENQ (Control E) is entered from the

terminal and the high-speed communications link between

Micr0800's is down. Thus, the terminal user is kept advised

of fault conditions in the communications system.

Controls and Indicators

The Micro800 includes as standard a comprehensive set of

status displays and a thumbwheel switch behind the Micro800

front panel. The 3-position thumbwheel switch provides for

activation of two fault-isolation loopback tests and a self

test of the local Micr0800 unit.

The Local Composite Loopback test position causes the composite

output from the Micr0800 to be looped back to itself for test

ing of the local concentrator.

In the meantime Micom has installed more than 20.000

Micr0800's, many used as terminal 'cluster controllers' in

DEC, Data General, and Hewlett-Packard systems. For many

of the thousands of customers already using the first

generation Micro800 Data Concentrator besides the easy "do

it-yourself installation" the most remarkable feature was

the "do-it-yourself troubleshooting".

The Remote Composite Loopback test position causes the comp

osite interface loopback test to be performed remotely to

test both the local concentrator and the transmission link

to the remote concentrator.

Femschleifen-Kanaltest

I i p ".~I CD AT' SL RTCL LA 80 CO RA

j~\Q'
. ~~~=~st~~I~I~D~:'j.
~ I Modem

L-J I

Primlir-5chleifentest Au6enstelle

Lokaler Primlir-5chleifentest

[JOV IMICRoeoo
Zentrllie

+-

MICRO 800 Daten-Konzentrator: Bedien- und Anzeige-Elemente
Block Lo.lungs-

3-alullger Akliy· wledorhol· Ala,m Cpu.

Funktlona-$chellor enz:.ge Anr:,ge An~e,gl.' Fe~le,

[Jov ·IMICRoeoo
ZonHllte

+-
Lokaler Kana'-5ch'elfentest

Do-it-yourself Troubleshooting

Any item of data communications equipment such as the Micro800

data concentrator must be connected to a variety of equipment

supplied by other vendors (modems, lines, data terminal

equipment)" all of which can and will malfunction from time

to time. Since the Micro800 is designed for do-i~ourself

installation, it also incorporates built-in test features

to facilitate do-it-yourself troubleshooting.

The intelligence of the Micr0800 is used, for example, to

pro~ide the response "LINK DOWN" automatically from the

.•. /7 TACT Option

1.45·
Anlelge

Sync·
Ve,lust

Fern
schlollon·
Anle'go

PuHor· Alorm-/
Uberillul Schle,tonleal

An,o,go

L5 7 L5 8



page S: DATA CONCENTRATORS iN FOCUS FOR MINtCOMPU~ER-USERS

TACT Option

The MicroSOO's most powerful built-in test feature is TACT,

the Terminal-Activated Channel Test Option. TACT allows

any terminal to check out its own operation, or the local

MicroSOO, or the complete MicroSOO system end-to-end.

TACT is activated from the terminal by depressing ENQ

(Control B), followed by BREAK. This causes the local Micr0800

to respond with the message "MICOM IN TACT". The terminal

may now select one of lour test functions. Depressing "L"

(Local Test) causes the channel to enter the Local Chftnnel

Loopback mode. Upon entering this mode, the message "LOCAL

TEST" is transmitted to the terminal. Thereafter all data

entered from the terminal will be looped back to the terminal

by ~he local MicroSOO. Depressing "R" (Remote Test), follow

ing TA~T activation, causes the channel in the remote MicroSOO

to enter tbe Remote Channel Loopback mode. The message "REMOTE

TEST" is transmitted to the terminal. Thereafter all data

entered from the termin~l will be looped ba~k to the terminal

by the remote MicroSOQ.

Activation o! the built-in "fox message generator" is achieved

iD the same manner as the loopback mode selection. Depressing

"T" (Terminal Test), following TACT activation, causes the

local MicroSOO to transmit the message "TERMINAL TEST" follow

ed by a continuous "fox~ mesaage to the terminal. Depress-

ing "8" (System Test) follOWing TACT activation causes the

local Mic~oSOO to place the remote MicroSOO in Remote Channel

Loopback mode and transmit the "fox" message continuously

to the remote MicroSOO where it is looped back and trans

mitted to the terminal. The message "SYSTEM TEST" is received

by the terminal at the start of the test.

TACT 1s deactivated by depressing BREAK. TACT signals it has

been deactivated by transmitting the message "MICOM TACT

COMPLBTB" to the terminal.

... /9

l5 9

page 9: DATA CONCENTRATORS IN FOCUS FOR MINICOMPUTER-USERS

For Bewlett-Packard-users MICOM provides special support

for hp-~OOsystems. Thus special XON/XOFF characters are

being recognized for buffer and flow control.

Introducing the Micr0800/2

Based on the experience with their worldwide installations

MICOM has now introduced the model Micro800/2, the first

second generation data concentrator. Besides the features

already mentioned the Micr0800/2 exploits new advances in

semiconductor technology to offer eight times the perform

ance of the original Micr0800. For example the eight channel

unit can handle eight (8) CRTs with 9600 bps each over one

single modem line with 9600 bps. That means a concentration

factor of 800 ,. In addition, it offers major feature

improvements such as data compression, terminal priority,

terminal-initiated channel configuration, synchronous and

clocked asynchronous channels, and a 'command port' to permit

on-line system testing, reconfiguration, message broadcast,

and performance monitoring. The MicroSOO/2 re~ains the same

small size and light weight as the MicroSOO to minimize

logistics problems and simplify installation and replace

ment in the field. Like the MicroSOO, it is designed for

~o-it-yourself installation" and ease of operation by non-

technical personnel.

Command Port Feature

All standard Micr0800/2 models are equipped with a Command

Port which offers a wide variety of monitoring, test, and

control facilities. The Command Port may be connected to

a dial-up or dedicated terminal provided by the customer or

directly to a computer port, and may operate at up to 1200 bps.

Message Broadcast permits a message to be transmitted from

the Command Port to selected channels or to all channels,

local or remote. This feature may be used, for example, to

advise of an impending computer shut-down or the schedule

••• /IG
l5 10



page 10: DATA CONCENTRATORS IN FOCUS FOR MINICOMPUTER-USERS

for system restoral.

Dynamic Channel Reconfiguration permits the data rate to be

changed for a selected channel or permits activation of local

echo or generation of specific delays for carriage return,

line feed, and form feed, temporarily overriding the channel

configuration selected by DIP switches.

Remote Busy permits busy-out of dial up modems attached to

individual channela on the remote Micr0800/2, facilitating

centralized access control in timesharing computer systems.

Centralized Troubleshooting is available from the Command

Port, including the full capabilities of TACT as well as

control of local and remote composite loopbacks.

Alarm Messages with time and date of occurence are generated

automatically each time the Micr0800/2 locally or remotely

~xperiences a buffer-full or buffer-overflow condition,

encounters unusually high line error rates, or loses synchron

ization or 'carrier' on the high-speed composite data link.

Analysis of the message log helps pinpoint telephone line

and modem problems.

Periodic Reports at user-selectable intervals or on demand

provide statistics on data traffic, average and peak buffer

memory utilization by channel, block retransmissions, and

telephone line quality including outages. Analysis of these

statistics shows trends in telephone line quality and provides

an indication of the ability to add additional channels or

increase the speed of existing channels to improve service

and plan for future growth.

..• III

L5 11

page 11: DATA CONCENTRATORS IN FOCUS FOR MINICOMPUTER-USERS

SYNC-Option

Forthermore, I like to mention the Sync.Option. In addition

to the asynchronous terminals it allOWS to operate four

synchronous CRTs or printers. They may either run in character

oriented protocols (BSC) or bit-oriented protocols (BDLCI

SDLC) .

I am confident that I have been able to express to you the

benefits of using data concentrators since they provide

enormous savings in terms of telephone line and modem costs.

As carried out in my example of a cluster-configuration

with 8 terminals you will need - instead of 8 expensive

telephone lines and 16 modems - one telephone line and two

modems only. At the same time you can use fast synchronous

modems up to 9600 bps instead of asynchronous low speed modems

with maximum 1200 baud only. Automatically, you will have

gained an error correctionw~ch reduces transmission errors

practically to zero. Besides this, all these advantages

do not load up your minicomputer system. No hard- or soft

ware-changes are requ~re~.

Nowadays, since savings are more and more becoming a must,

the usage of data concentrators is the ideal and most effect

ive tool for cost reduction. Therefore, data concentrators

should be considered in any data communications concept.

Asynchronous communications supported by data concentrators

are by no means old-fashioned but state-of-art technology

with progressive means of cost savings.

Due to the high compression technique telephone lines will be

more efficient and transmission will become error-free.

• • • /1.2

L5 12



page 12: DATA CONCENTRATORS IN FOCUS FOR MINICOMPUTER-USERS

Statu. Report

L5 13



DISTR IBVTED PRO.CE~S ING :-.8-. tlEW~~IT _f8CK8B~ S~~_VIlP_~

MATTHEW O'BRIEN

M. O'BRIEN

HEWLETT PACKARD GENERAL SYSTEMS DIVISION
19410 HOMESTEAD ROAD
CUPERTINO, CALIFORNIA 95014

01 1

DISTRIBUTED PROCESSING

A HEWLETT PACKARD SOLUTION

Matthe w O'Brien
Section Manager
Hewlett Packard General Systems Division
19~ 10 Homestead Road
Cupertino, California 95014

The purp~se of this paper is to present a new concept

in the way in which data processing is done within any organ-

izntion which presently utllizes a central mainframe computer

with terminal a~cess diSlributed between many user's.

The term distributed processing has had various meanings

through the development history of different computers. One

meaning that might be attached to the term is that which also

might be called array processing. This involves an array of

processors distributing the power of the CPU and performing

tasks in parallel to accomplish the computation in a shorter

period of time. This is definitely not the meaning that I

wish to attach to the term distributed processing.

For the purpose of this discussion, the following phrases

characterize 'distributed processing':

- localization of some compututional po~cr tlnd program memory

Page 1

01 2



- maintenance of a central node for computation and data base

minimization of datacommunicat.i.on traffic

- utilization of the relative strengths of distributed CPUs

- maintenance of privacy by means of local data bases

- utility of shared central mass storage and peripherals

- concept of synergy of "one man - one machine"

This definition warrants an easily understood clarification,

as the concepts are more easily grasped with the presentation

of a concrete example. The distributed processing referTed to

is that which is achieved by clustering to~ether a group of

what has been termed 'personal computers' around a central node

consisting of a mainframe CPU. Unlike the simple terminal

interface to a central. CPU which has been prevalent, this con

figuration leads to clear advances in price, utility, performance

security, etc. Before proceeding, the terms PerSOnal. computer

and mainframe CPU need clarification.

The mainframe computer was the first result of constructing

e1ecb'"onic devices to perform large amounts of computation or

calculation. Prior to the late 1930's and the early 1940's,

rudimentary machines had been constructed to handle either

calculation with numbers or some other sorting or controlling

function. In order to handle P'"Oblems which involved extreme

effa"'ts of mental and hand calculation, investigations were begun

into constructing an electronic machine which would automate

Page 2

01 3

the calculation process. Perhaps one of the most famous examples

were the calculations to produce a book containing tables of

art.:illery pro~ctile paths under varying conditions of shell mass

size, charge mass and volatill.ty, wind conditions, atmospheric

density and of course barrel elevation and azimuth. As

so many variables were involved and such great accuracy

was desired, it was necessary to perform many hundreds of

thousands of calculations to produce a satisfactory result.

This example serves well in showing the emergence of the

mainframe computer fa" two reasons:

- the machine was constructed largely for a single purpose,

to perform large numbers of similar calculations

- it was technilogically impossible to p"oduce a computer

capable enough, portable enough, and in great enough

numbers to couple them directly with the artillery units

to produce real-time computation

The artillery pro~ctile computer pro~ct was successful

and interest grew rapidly in performing diverse computational

tasks. However, fundamental limitations still existed, the

primary for this discussion being the great expense of producing

the central processing unit and the amount of maintenance to

keep it performing correctly.

As the years went by great improvements were made in

refining the CPU, however it's expense, bulk and necessary

level of maintenance continued to jJstify it's name -

Page 3

01 4



central p-ocessing unit.

The purpose of this 1mmediate topic is to stress that

the computational structure of the mainframe developed

not ·due to its inherent suitability for the j>b, but due

to technological limitations in p-oducing inexpensive, portable

and reliable computational machines of enough capability

to allow each user his own ~cesscr. Granted Uli.s limitation,

the only practical solution required a central processor with

multiusers timesharing the CPU through terminal ports. This

multiuser aspect allowed sufficient utility to amortize the

comparatively expensive CPU, and continues to be reflected

today in the continuing drive to allow greater numbers of

users to share the same machine, driving down the per-user

cost of computational power.

Turning now to defining the meaning of Personal computer,

it must be stressed that the term can produce varied opinions.

The prefen-ed definition here is a microprocessor-based

processing unit with additional local program and data memory

and some form of mass storage and I/O capability. More

abstractly, a machine with sufficient power and utility to

be used in a stand-alone mode with the capability of being

programmatically altered to perform a very wide range of

tasks. The last point is il"lportant as it is wished that

programmable calculators be eXcluded, their use being too

limited to manipulation of numbers and device control.

Page 1&

01 5

The element that has made possible the personal

computer is the large scale integration of many semicon

ductor devices onto monolithic chips. nus has led to

the realization of an effective processing uriit which is

inexpensive, very portable and highly reliable.

Personal computers cost a fraction of the pice of their

computing counterparts of ten years ago, and fIll the

requirements of cost, reliability and partibility

necessary for Personal use.

Subsequent to the emergence of the first micropro

cessor and the continued density improvements of RAMs

and ROMs in the late 1960s, there emerged the use of

these components as a replacement for large amounts

of combinational circuitry that had previously been

needed to perform certain electronic control functions.

These first uses of microprocessors did not jJsti.fy the

name computer, as no means of user programmability was

avallable.

By the mid-1970s the Personal computer began to emerge,

tentatively and lacking in capability, amount of memory,

suNlcient I/O and most importantly, software. Given these

realities, the machines generally found usage solely as

means of technological amusement· and as a means of playing

simple games. By the late 1910s a fundamental change had

OCCUlTed and Personal computers began to be used in serious

Page 5

01 6



applications in science and business.

Today, the personal computer is recognized as a cost

effective means of automating many previously manual

operations. Computationally the processor is able to manage

many demanding tasks and performs quite well in many appli

cations. Increasing emphasis on increasing the performance

of the processor and lowering the cost of the necessary I/O

functions and peripherals continues and can be expected to

yield ne w generations of increasingly cost-effective personal

computers.

Having discussed these two classes of computers and having

brought their development to the present, the next issue that

needs to be examined is where do these computers go from here?

Will inc·reasingly more advanced technology allow personal com

puters of ever increasing performance and ever lowering price

to become so capable and affordable as to displace forever the

mainframe?

My perception of this question is that the answer is no,

that the mainframe will continue to serve an important portion

of the data processing system requirements of most organizations

for the foreseeable future. It is important to note the restrict

ion is made to be most organizations, and the validity of this

restriction is easily shown as many small organizations today do

rely only on a personal or microcomputer as their data processing

Page 6

01 7

needs are suff'iciently limited in scope as to be adequately met

by the microcomputers and sm all peripherals.

However, the characteristics of computer usage in a large

organization are usually different. To corroborate the contentio

that the day of the mainframes demise is not im mediate, a few

specific examples of the differences can be made and broken into

two categories, im mediate and future:

Immediate

* vastly higher performance of mainframe is needed to perform

tasks of high numerical accuracy or time consuming tasks

* very involved and large applications require large core

or program memory to successfully execute

* cost effectiveness of sharing expensive mass storage

and peripherals

These points as to the need for the mainframe might

possibly begin to change or weaken as the evolution of

technology continues. However, another larger list can be

made which will not as easily be displaced by technological

change as they are not technology-dependent but rather are

a fundamentally desirable feature:

Future

* the mainframe concentrates and universalizes data

bases which are accessed by many individuals

• allows control of the processing functions of the

organization to be visible and controlled by management

Page 1

01 8



• allows managerial control of the security of data bases

• makes the backup and physical security of important data

more predictable and controllable

• removes from the hands of unskilled operators the

neces..c:tity for determining the validity of the data

base and the funtionality of the computer

• ensures all data processing of critical nature

uses the same revision application

• inherently allows com munication between users as

it implies a common network

* allows access to higher levels of networking as

mainfra me serves as efficient port

• additionally, it is most probable that while technology

\vill bring cheaper peripherals and memory to the personal

computer, it will probably always do so to the mainframe

* finally, it appears that perhaps a ne w generation of

supercomputer might appear using Josephson j.mction

technology, but the cooling requirements will obviate the

small size and portability of microcomputers

Enough said regarding the essentiality of the mainO-arne

and the inevitability of the microcomputer. Let us now

consider a pair of specific computers; the HP 3000 mainframe

and the HP 125 personal computer. Explaining the HP 125 and

its interaction with the HP 3000 shows where Hewlett Packard

believes the computational system for the medium-to-large

Page 8

01 9

organization is headed.

The HP 125 has been designed to be the foremost personal

computer available today. As is the case with all Hewlett

Packard products, we like to think that the HP 125 offers

the customer not a piece of equipment, but also what we believe

is more fundamentally important - it is a solution. It brings

what we believe are the typical strengths of Hewlett Packard

to what is now a somewhat chaotic and young product area.

Hewlett Packard has been recognized for some fundamental

precepts by which it does business; that the satisfaction of

the customer is most important. This is not only the correct

attitude, it also has proven to be a good business practice

as it has over the years built a clientele of loyal customers.

As such, the HP 125 ~lAesses good price/performance,

reliability t serviceability, and presents a total solution

composed of not jJst the product but also the system

interaction and software to make the hardware investment

meaningful.

The HP 125 is structurally based upon the HP 262X terminal

family, sharing some common assemblies. The terminal and CPU

portion appear outwardly much like a HP 262X terminal, with

the mass storage and peripheral devices being connected to

an extended I/O panel on the rear.

Page 9

01 10



(~
The HP 125 combines three functional abilities

within one package:

• it serves as an autonomous microcomputer

• it serves as solely a data terminal

• it creates a synergy of use by combining the function

of the microcomputer with the data terminal

As a microoomputer, the HP 125 operates using the

CP/M operating system. This operating system has

become a defacto industry standard for use with the

8080 or Z-80 microprooessor. To support the operating

system, a Z-80 with 64K bytes of system RAM is used.

This constitutes the bulk of the CPU, the only other

signifioant electronios being a boot ROM to load the

operating system from the disc oonnected to the

IEEE 488 interfaoe oonnector and the byte-parallel

interface to the terminal portion of the system.

With this relatively simple CPU, the CP/M operating

system standardizes within the memory space the

necessary functions like input/output, me system,

eto. whioh allow applioations software to be hardware

independent. Manufacturers of hard ware who desire

to utilize the standard operating system merely

customize those portions whioh are neoessary to

&Dow the hardware to correotly perform the hardware

Page 10

01 11

dependent I/O functions.

The benefit of supporting the CP/M operating

system is that the HP 125 then is able to directly

run many hundreds of applications that Nn under CP/M.

Applications include accounting packages, mailing list

programs, word P"Ocessing, languages, etc. with more

applications being added to the list daily.

One drawback of the standardized CP/M operating

system is that the author of a generalized application

package has had to depend upon the least com mon denomin

ator of hardware I/O capability. This becomes most readily

apparent with the terminal interface. Most CP/M systems

have been constructed by building a box to contain the

CPU. The user then selected a terminal which he connects to

CPU box. This of COlD""Se means that the application written

for the CP/M operating system has been forced to assume the

least oapable set of terminal features as more advanoed

features ere not supported on many terminals.

Aoknowledging this shortooming, the HP 125 will be

released with a great deal of specialized software, some

of whioh has been customized for the superior capabilities

of the maohine by authors of existing software applioations

and some of whioh has been written by Hewlett Paokard.

With these two sources of software 1n addition to all

generalized CP/M software, the HP 125 will tring an unp-eoe..

Page 11

01 12



dented amount of microcomputer software to the purchaser.

As mentioned, the terminal portion of the HP 125 is

a fairly advanced data terminal, utilizing softkey structure

to access such features as the mode of logging data from

video memory to either the integral thermal printer cr

the serial printer connected to the I/O port. Softkey

tree selection of functions now only serves to lessen the

amounts of keystrokes necessary to select functions, but

also serves to guide the user.

The soft.keys within the HP 125 not only have the

inherent functions embedded within them to implement

the terminal features, but are also user programmable

to contain up to 80 bYtes which can be used for every

thing from string substitution to escape sequences

which actuate execution of subfUnctions contained in

applications. Each user programmable softkey can be

accessed from either a keypad stroke cr an application

program for 'user selection. An application or user

programmed pneumonic label can 6e placed within the

bottom two rows to cOlTespond to each of the eight

programmable keys.

With these advanced terminal features, the HP 125

offers advanced features for a CP/M stand-alone

computer system.

Page 12

01 13

The HP 125 maintains a separate terminal function

ality within its operating capabilities. When power

:Is applied to the system it normally defaults to the

terminal mode of operation, with the selection of

loading the oPerating system to become a microcomputer

being selectable by the depresslon of a single softkey.

As a data terminal, the HP 125 has capab111ties similar

to those of the HP 2621, with some enhancements common

to more advanced members of the HP262X terminal famUy.

Additionally, it presents some features not previously

available.

First a brief description of the terminal capabilities

of the HP 125 before a discussion of those terminal features

unique to it.

As a terminal, the HP 125 presents the user with 2~

lines containing 80 characters of text. Also on the

screen are a 25th and 26th row containing the labels for

either the embedded softkey tree structure, cr when

selected, the user programmable softkey pneumonlcs.

The terminal allows selection of half-bright, underline,

inverse video, or blinking enhancements on a line-to-line

basis.

The keyboard :Is the full extended keyboard which contains

dedicated cursor control, scrolling, softkey, numeric pad,

and screen-oriented editing keys.

Page 13

01 14



Input/output is provided by an IEEE 488 port and two

serial ports. One serial port is nominally dedicated to a

serial printer, the other to datacom munications.

Datacom m runs at 9600 baud and supports various handshakes

necessary for use \-lith different CPUs and modems. The datacom m

port also supports the 13265A direct-connect modem. The printer

port is configurable for variable amounts of nulls, parity, and

the sense of the rate-pacing handshake. This allows the HP 125

to directly use a large amount of serial printers without the

necessity of any special logic or cables.

As an option, the HP 125 supports a thermal printer which is

integrated into the top of the terminal package. Either this

printer or a serial printer (if configured) are supported within

terminal firm ware by a softkey tree which allows the direct

printing of the entire contents of video memory, the visible

screen or a selected line. Additionally, logging modes can be

set so that ~ data coming to the video memory or only that

data overflowing video memory is pinted.

All configuration information is stored in a CMOS RAM

which has battery backup, allowing the user-selected confi

guration to be maintained when the system is powered down.

The te~minal supports remote operation and configuration

. by use of escape sequences. As an example, the keyboard has

a 'home cursor' key which positions the cursor at the first

character in video memory. An application program can also

Page 14

01 15

hom e the cursor by transmitting the correct escape sequence

to the terminal. By this means, applications running in either

the CP/M CPU within the system or an application running on

a mainframe can efficiently manipulate the terminal. features to

provide a friencD.y applications interface to the user.

The afore described features make the terminal portion of

the HP 125 a high performance terminal for use with both the

CP/M CPU and when used with a remote mainframe. These features

are fairly comparable to those which are supported within the

HP 262X family.

Additional to these, the terminal implements several unique

features which are fundamental for its use as a CP/M terminal

interface and which also generally provide better performance.

Within the terminal, an I/O map is maintained which allows

the mapping of any source devices to any destination devices.

(For the purpose of this disCUssion, note the terminal considers

the output of the CP/M processor to be an input!) An example

may better illustrate this:

In order to diagnose a difficulty in running.a CP/M-based

application, the HP 125 user can map the output (console odt)

of the CP/M CPU to be not only the CRT screen, but also datacom m

port 1. To this port he has connected a modem which ties over

the phone lines to another HP 125 (or terminal) on which a

knowledgeable user of the application is viewing. By this means,

the output of the application and keystrokes entered by the

Page 15

01 16



user (CP/M operates in a full duplex mode) can be viewed for

debugging. Further, were the user to map datacomm POrt 1 as

the input for the CP/M CPU (console in), the remote viewer can

also run the program and allow the direct operator to watch

in crder to learn the correct manner in which to run the

application.

As another example of the value of this feature,

consider a CP/M application written to perform an

accounting function. Within the application, various

output is routed to either the screen or to the printer

for hardcopy. Often it is desired that this fixed

output routing be altered, perhaps to obtain hardcopy

of items normally sent to the screen. With the HP 125

YO map, this is easily accomplished.

Another distinctive feature of the HP 125 is that

all the ROH-based routines which give the terminal

portion of the product its capabilities are vectored

through locations in RAM upon powering the system on.

By this means, an application which doesn't prefer to

use the terminal capabilities as dictated by the RO M

routines can intercept the routine call and substitute

in RAM its own specialized routine. An example of this

ability is also illustrative:

In the normal mode of operation, the cursor control

and editing keys as supported by terminal firmware allow

Page 16

01 17

the user to manipulate the text on the screen directly.

However, this 'feature' may not be desirable while in the

midst of running an application. The application can

consequently be written to intercept. the keystroke process

ing routine and can then trap keystrokes which are extra

neous to the application previous to returning control to

the terminal ROM code for keystroke execution. Or by this

means, the functionality of keys can be altered.

By this method of embedding a high degree of functional

capability in ROM but yet allowing customization of routines

critical to certain applications, the HP 125 goes well

beyond tile capabilities of most microcomputers. Very

sophisticated terminal features are ROM resident, and special

ized features are application program mabIe.

Understanding the HP 125 from the physical and features

standpoint allows us now to address the unique capability

that Hewlett Packard brings to the field of making distributed

processing an asset for organizations with large and diverse

com puting needs.

In a previous section, the permanent and essential

nature of the mainframe was discussed. As present users

of the HP 3000 computer can probably attest, a meu:>r

usage of the system involves the creation, maintenance

and access to data bases which allow the smooth function-

Page 11

01 18



ing of large organizations. This automation of data

base with instant and acct.rate access has been the pinciple

benefit of the computer to the business world.

Granted that the personal computer and the main&ame

have been discussed and the individual merits of both are

appreciated, an examination of the interaction of the

two for doing distributed processing is appropriate.

Person~ computers have begun to appear within the

ranks of large organizations for use either by individuals

or for the needs of a small department. While the personal.

computer has obviously fulfilled a purpose, the utilization

factor could be greatly larger. The HP 125 performs well the

tasks being addressed by the personal computer, but brings

much greater utilization without a greatly appreciable higher

pice.

The function that is easily recognized for a personal.

computer within a large organization is what may be called

data display and analysis. This term is meant to describe

the typical interaction of a manager with those performance

criteria of his organization represented by a collection of

data.

For the display and analysis of data, the personal.

computer of today tends to fall to emclently perform its

function. The data base for most organizations is large,

communal in nature, sub~ct to &equent caTect10n or update,

Page 18

01 19

and most necessarily must be cur:ent and correct throughout

the organization. Using a stand-alone personal computer,

much time consuming and detailed analysis has been done

only to find the raw data was incorrect due to an erTOr

in transcription or a recent uPdate.

Additionally, most information within organizations comes

from a multitude of sources. Using a typical division within

Hewlett Packard as an example, data bases are maintained that

updated or accessed by accounting, Personnel, purchasing,

scheduling, manufacturing, quality assurance, research & devel

opment, administration, etc. This is the data that is the

sub~ct of display and analysis.

With todays typical personal computer, the transfer of data

between the micro and the mainframe is at best tedious if not

impossible cr prone to error. The HP 125 strives to make this

process the most expedient, etTOr-free and simple process

possible. With a wealth of data base management capab:Dity

available on the HP 3000 computer, the HP 125 leverages great

power into the hands of the person who analyzes or uPdates

the data base.

As an example, the HP 125 supports a screen-ai.ented

calculator which allows management personnel to easily

create, display and manipulate data. It allows the manager

to quickly eXplore "what i1'" questions regarding the vital

numerical. data which represents his success or failure.

Page 19

01 20



Additionally the HP 125 supports a graphical display package

which allows significant data to be displayed by means of

bar charts, pie charts, etc. With the HP 125, the data fer

display, analysis and charting can interactively now over

the terminal data comm port to and from the personal computer

and the mainframe. All data is from the common base of the

mainframe and represents the organizations mo3t recent and

accurate figures. All results of analysis can im mediately

be re-entered into the common data base. Standardized

reports from functional areas can access the database from

other areas in which they don't necessarily have involvement

as to the generation of data, but from which their respective

areas can be directly affected.

All functional areas can present reports that are stan

dardized across the <rganization as to format. Data flows

emciently between crganizations, as data entered by one

area becomes immediately accessible for all users. The

security of the data base is cared for by the inform~tion

services group, guaranteeing against the hazards of losing

critical data. The access of individuals to data is

controlled by managem~ntj the HP 125 can be programmed to

allow only visual display of the data without user

copying to printer cr disc while the initial access can

be p-otected by the HP 3000 using passwords.

The strength of the HP 125 is its interactive ability

Page 20

01 21

to dynamically perform as a port to the mainft"ame, a

stand-alone personal computer, or a synthesis of the two

functions. Stressing the dual nature of mainft"ame access

for data interchange with local analysis, the HP 125 features

utility programs which greatly simplify the user interface

and lessen the need for sophistication in performing complex

or powerM analysis of mainft"ame data.

As an example, take the purchasing department in a large

organization. One of the areas with the greatest potential

for cost minimization is the timely and careful control·of

inventory. Suppose that this organization does basic manufact

uring of a wide line of products with many subcomponents and

consequently has fifty buyers interacting with a thousand

vendors regarding tens of thousands of purchased parts.

Due to the common and large data base needed to track the

tens of thousands of parts, the HP 3000 presents a good choice

for a central mainframe, probably also functioning for other

purposes within the crganization. By utilizing the "HP 125

as a personal tool for each of the ruty buyers, an extremely

powerful controlling application can be quickly written for

use by each of the buyers.

Organizing the overall data base using the HP 3000 and

1M AGE, the HP 125 can be used serve as the user interface

into the larger database for each user. Data is taken from

the mainft"ame into each of the ruty buyers personal. computers.

Page 21

01 22



The data resides loc8lly and is manipulated by each buyer for

program med action items such as overdue shipments, low in'(ent

cry items, high inventory items, changes in scheduling

affecting inventory needs, etc. Purchasing management can

control and st.andard~e the means of analysis of each

buyers proficiency through a com mon local program. Each

buyer using his own data base can generate reports with

a common format with all buyers reports. Using the

HP 125 graphical packa~e to generate bar or pie charts,

the performance indicators can be directly analyzed and

evaluated.

In this example, the HP 125 served as the individuals

port to the HP 3000 data base, it Performed local analysis

of data, reduced datacomm overhead and expense, and allowed

local generation of reports and graphical analysis.

To aim marize, it is believed that the manner in which

computers ire used by organizations to enter, display and

analyze data is eVolving towards a new distributed network

of processing units. The change on the scene is due to the

technological ability to p-oduce processing units that are

inexpensive, reliable and capable. The ability to place

a personal computer in the hands of an individual has shown

to be not only cost effective, but by being personal has

involved individuals not p-eviously utilizing computing

Page 22

01 23

power directly. While personal computers have these

benefits, they have not fully utilized the greater

advantage of being part of the entire crganizational

data processing network within most organizations.

The HP 125 used with the HP 3000 shows the first

step in the evolution of data processing. This evolution

will bring computer usage into the hands of increasingly

greater amounts of individuals within organizations.

Data processing will become more convenient and co~

effective.

Page 23

01 24



TERMINAL I/O

AN ENGINEERING FEEDBACK SESSION

l. SHOULD HP SUPPORT THESE FACILITIES ON FUTURE POINT-TO-POINT

TERMINALS?

A. HALF DUPLEX MODEMS

JIM BEETEM B. DIFFERING INPUT/OUTPUT LINE SPEEDS

C. PAPER TAPE MODE (TAPEMODE)

D. HP 2615 (MINI BEE) TERMINAL TYPE

E. TERMINAL TYPE 11

F. HARD COpy DEVICES WITHOUT BACKSPACEABLE CURSORS

(UREAL II TELETYPE ASR 33 1 s)

2. WHICH NEW TERMINAL FACILITIES WOULD BE VALUABLE FOR EUROPEN

USERS?

PRESENTOR

JH1 BEETEM

INFORMATION NETWORKS DIVISION

****STILL WAITING FOR FULL TEXT****

(EDITOR)

02 1 02 2



HELSINGIN KAUPPAKORKEAKOULUN LASKENTAKESKUS
!I E L SIN K 1 SC HOOL OF F..CONO \.\lCS COMPUT E R CE NTH. E

DAISY 3(0) -

A NEW APPROACH IN lEXT PROCESSING

TIMO RAUNIO

lDlrRlDIV13J1m1m1m

A NEW APPROACH IN TEXT PROCESSING

Once lIpon a time, Mr. GutenberQ discovered typography. It was a revolution in
information distribution.

Vlhen IBM released the electronic typewriter with type ball and later advanced it
by includinq magnetic memory, we were talking about word processing.

Only a few years aQo did the rush of all kind of microprocessor controlled eQuip
ment with cfisolay units and floppy discs begin. Now we can use the term text
processing, although their different features, hardware and prices cause confusion
in our minds.

However, now we are standing at the front door of integrated information process
inq, which includes all conventional data processing as well as hiqh quality printed
output, electronic archives, automatic reproduction and mailinq, etc. A key to
slightly open that roor is DAISY/JOOO, a proqram which fills the gap between
your existinQ systems and hiQh Quality formatted outout with reasonable costs,
and meanwhile, satisfies all of vour normal text processinq demands, until we
have "the paoerless office".

\YHAT IS DAISY/JOOO

DAISY is a high level document description language with which almost any kind
of (iocument can easily he produced. It fully utilizes the intelligence of the
Diablo printer and Hyfeed sheet feeder. Over 70 hasic level' commands are
recoqnized by DAISY and these commands are used to define even higher level
macro commandl. To obtAin hiQh quality, even very complicated, formatted out
put, the ltSer only inserts a few names of these previously defined macros within
the text.

In addition to all normal text processinn features, some sophisticated capabilities,
such as Qraphics, user-written procedures, conditional execution etc.; are included.

Runeberginkatu 14-16 SF-00I00 Helsinki 10 FINLAND 8 90-440211

03 1 03 2



2

COMMAND LEVELS

Printer level commands are escape sequences which are hard to remember and
difficu.lt to use. The user does not have to worry about them with DAISY.

Basic level commands have mnemonic names and are much easier to use. They
also qenerate all of the required escape sequences for the resired operation.
However, the user selc10m has to he concerned about them, unless he is the
oerson creatinq macro libraries.

Macro level commands are the main tools used when entering texts to he format
ted. Macro commands are named and defined hy the user. Thus, their names
and function can be desiqned accordinq to the user's demands.

MACRO LEVEL BENEFITS

As known in the other oroQramminQ lanquaoes where user defined macros are
available, the macros are the key to effective and structured programminCl. The
same also applies to text processinn and esoecially to flexihle text entry.

Some noticeable benefits of macro level commands are:

Short commands do a lot. Thus, complex series of commands or often used
phrases can be referred to by a single name.

Flexibility. Just chanqinQ the macro library will result in a totally different
output format or changing a macro definition will have its effect throughout
the text.

Mnemonic names can be used in any lanquaqe.

Less errors. A correctly designed macro does it right always and there
remain only typinq errors which rarely can be avoided.

Less work. Once desiqned, macros can always be used.

The user can concentrate on WHAT he is writing, NOT HO\'/ he is writinq.

No regressive way of thinkinq. Each macro can cancel all unwanted states
set by other macros. Thus, each macro STARTS a block of text.

No need to adjust the text on the display. The user simply writes the text
and the macros always do the proper formatting.

03 3

J

RESTRICTIONS

DAISY/3000 is hardware tiependant. It has been written in SPL, which is known
only by HP computers. Conversion to PASCAL may be possible.

The escape sequences controllinQ the output devices have no standarc1s, and neither
rb the features of printers. Therefore, only one printer coulci be selected as the
output device, so that all of the advanced formattinq features and special effects
could be realized. Thus, formatted output is availat,le only with the DIABLO
printer.

Even if the escape sequences coulci be converted, a display terminal cannot show
a II the necessary formattinq. An example: A very normal situation is to have
marqins at columns 9 and 79. With proportional spacing, this area contains
85-100 characters per line and an 80 column display will cut the line and could
not possifJly show the riqht justified marqins.

DAISY: COMMANDS

This section cfescrihes the basic level commands by classes. More detailed infor
mation can he found in the "DAISY reference manual" and in the application notes.

Command classes are:
- Define files

Define macros
Modes of operation
Size of page
Vertical movement
Horizontal movement
Special effects

Automatic titles and footnotes
Graphics

Automatic table of contents and keyword index
Conditional commands
User procedures
Hyphenation
Miscellaneous
End
Edit

03 4



4

The commands can bp locatr.d anywhprf' within the tc,<t and arp indic:lted tty a
"command character". Some commanns have numeric parametprs which can he

any inteqer expression containinq variables and constants.

USER PROCEDURES

If the capabilities of DAISY are not satisfactory. the user can write his own
procedures or suhproQrams in SPL or FORTRAN. DAISY then loads such routines
from the user's SL file when desired and the procedure can return commands
and/or text for DAISY to process.

This feature allows direct linkaqes to existinq systems, riata bases and registers.
Also, user-written "preprocessors" for the input can easily be done to totally
change the default syntax of commands.

INTERACTIVE APPLICATIONS

User-written procedures can be used to obtain interactive text processing applicat
ions. However, DAISY itself includes commands to make conversation with the
user.

In many cases, it is desirable to alter some of th.e formatting parameters durinq
execution. Form size and printwheel characteristics are two such parameters.
Also, you may have a fixed text where only a few words should be changed
from time to time. Editinq of such text is unnecessary if you use interactive
commands.

EDIT

There are several methods to create input files or write texts for DAISY. One
way is EDIT/3000, which as known is a very powerful tool when enterinll or
editing any kind of source texts. EDIT/3000 is available in' the normal way or
as a son process of DAISY through the EDIT command.

Although EDIT/3000 is quite a meritorious proqram, it lacks a few desirable
features when enterinq and editinn texts in human lanQuages. Therefore, DAISY
has a built-in, full-screen editor which operates in block mode and fully utilizes
the local edit facilities of HP2640 series terminals. (2620 series terminals are
under investigation).

03 5

5

DAISY IN PRACTICE

When compared to those stand-alone micro-monsters, DAISY has a totally differ
ent theory of operation. Which one is better depenns on what you are doinQ. If
you are only replacinq a typewriter, DAISY may be too sophisticated. But, if
you want real text processing, the macro level commands show their power.
And if you are planninq linkaoes to your existing systems or to raise your inte
qration level, there are not too many other possibilities available.

EXAMPLES

The following four pages show some examples of DAISY applications. They are
not examples of any orc1inary text processing applications which any system can
do. Rather, they show some of the flexibility and graphical power of DAISY.

The first example shows part of an application note which describes a convenient
way to craw flowcharts. This macro library consists of about 30 defined .macros,
20 of which are not visible to the user. The flowchart in the example was
drawn with 12 lines of input, using 9 of these predefined macros.

The second example shows the usage of multiple printwheels. It was printed
with 3 different wheels: CUBIC PS, APL and SCIENTIFIC.

The third one is an example of multicolumn printinq.

The last one shows mathematical expressions with user-defined, special-symbol
macros, usinQ graphical mode.

DAISY is developed in HELECON, HELSINKI SCHOOL OF ECONOMICS

Distribution: Oy PORASTO A.,
Toolontullinkatu B

00250 Helsinki 25
FINLAND
Telex: 125194 PSTO SF

03 6



;-I:~I~U"'<i L..:).19dl

DAISY: application not~ 2/01

HOW TO MAKE FLOWCHARTS WITH DAISY

Macrolibrary "FLOWCH" provides a convenient way to draw flowcharts. t:xarnp
Ie:

User input defines which symbols are used and where thr,y are located, text
within symbols and where to draw lines.

2. 2 Ens i m ,nai sen k crt B I u V l4 n pre d i k 0 .l t l i k 31 k YyI i

Nimikkeisto L koostuu joukosla vakj~ ftln~tio- ja predikaattisymboleja. Jo

kaiseen funktio ja relaatiosymboliin liittyy kokonaisluku, joka ilmaisce syrnbolin

paikkaluvun. Tasmallisemmin,

L ~ (Canst, Func, Rei, ar),

missa

Canst -- vakiosyrtlbolicn joukko,

Fune -- funktiosymbolien jaukl<a,

ReI -- relaatiosymbolien joukko ja

ar: Func u Rei + N.

Kun ar(f) :: n, f £ Fune, sanomme, etti.i f on n-paikkainen funktiosymboli.

Vastaavasti, kun ar(r) = n, r £ Rei, sanomme, etta r on n-paikkainen relaatio-

symboli.

Nirnikkeislon L = (Canst, Funk, Rei, or) struktuuri on pari M = (M,I), missa

M on ei-tyhja arvojoukko ja I on kuvaus joukolla Canst U Func u ReI, siten,

etta

I(c) e: M I<un e £ Cor.:~t,

l(f): Mn .. M kun f £: Func, ar(f) = n ja

I(r) c Mn kun r £ Rei, ar(r) :: n.

l<ayt5mme u!iein merkintaa eM = I(c), fM = 1(0 ja rM = I(r).

[simerkik~i ryhmateoriassa kaytetatin nimikkeiatoa

L1 = ({O}, {+},o, ar)

Illissa ar(+) = 2. L1 :0 struktuuri on p:tri M = (M,!), miss3 1(0) £ M ja 1(+): t.;12

-to M.

Lukut~oriassa t3as kaytelaan nimikkeistoa
Daisy automatieally calculates the form of symbols, horizontal and vertic81 cente
rirg of the texts, start rInd end points of the lines, location of arrowheads, loc~tion

of "yes/no-like" labels around the "if" sym!Jol and the scale of the picture.

Runeberginkatu 14-16 SF -00100 Helninki 10 FII"L/~ND 8 90-440211

03 7

L Z = ({O). {S, +, *}, 0, ar).

Inissa 3r(S) = 1 ja ar(+) = ar(') == 2. Er5s tamijn kielen struktuuri on M ;::

(M,n, miss:i ·OM = 0 £: N , SM (n) = n+1, +M (m,n) = m+n ja.M (m,n) :: m*n,

ts nailHi symboleilla on standardi merkitykscnsa.

03 8



()
~2

Opiskelutekniikka -3-
5 The AJKA model performance

1 1•4 OPINTOJEN SUUNNITTE.LU I

Ratkaisevaa on kuitenkin, etta opiskelija ei vain
"istu" erilaisissa opetustilaisuuksissa. Ainoastaan
osaUistumalla aktiivisesti tyoskentelyyn han voi
saada jotakin irti opetuksesta. Sen lisaksi hanen
taytyy kayttaa hyvakseen jokainen tilaisuus kes
kusteluun opettajan kanssa ja tehda talle kysy
myksia. Opettajat yleensa arvostavat sidi, etta
opiskelijat seuraavat heidan opetustaan aktiivi
sesti ja kiinnostuneina.

Seminaariharjoitukset tapahtuvat pienryhmissa (y
leensa 8-15 henkiloa). Niissa kasitellaan keskuste
lemalla joko teoreettisia tai kaytannollisia kysy
myksia. Seminaariharjoitusten yhteydessa opiskeli
jat laativat usein myos esitelmia keskustelun poh
jaksi ja joissakin aineissa kasitellaan seminaareissa
myos heidan tekemiaan tutkimussuunnitelmia. Se
minaareissa on hyva tilaisuus oppia tieteellisen kes
kustelun periaatteita ja tutustua oppiaineen meto
diikkaan. Ne auttavat tehokkaasti syventymaan
omaan aineeseen.

Ei ole liioiteltua vaittaa, etta useimpien akatee
misten aineiden opetus on nykyaan niin tehokasta,
etta opiskelijoiden tod~lla kannattaa seurata sita
niin paljon kuin mahdollista. Oppitunteihin, ko
keellisiin toihin ja harjoJtuksiin osallistuminen on
useimmiten tentissa onnistumisen valttamaton
edellytys. Harjoitukset antavat tarpeellisen tai
don selviytya soveltavista tenttitehtavista, ja se
minaarissa saa dirkeata ohjausta tieteelliseen tyo
hone

man kuin oli suunniteUut. Tehokkainta on asettaa
paamaaransa siten, etta sen voi tavoittaa maksi
maalisen ponnistelun avuUa. Sen on sUs oltava saa
vutettavissa, mutta vasta todellisen tyopanoksen
jaIkeen. Ei riita, jos suunnittelee "ehtivansa niln
ja niin pitkalle aineessa ensimmaisten viikkojen
aikana". On vahintaan yhta tarkeata yrittaa suun
nitel1a tymsa yksityiskohdat viikko viikolta ja paiva
paivalta.

1, ••• ,0

1, ••• , T

1, ••• ,0

1, ••• ,T

1

·t

the mean percentage mean absolute error

M = - t (! EIIAit - Pit I) ) 100

o 1=1 T T=l Ait

the mean percentage root mean square error

1 0 1 ~(Alt - Pit)2 t
R =- :E (- _) 100

o i= 1 T \IL(Ait - A)2 i

are used. 1

and

3. It is possible that an equation has a good statistical
fit, but a poor tracking fit. This is due to the dynamic
properties of the lOOdel which bear little relation to the
way individual equations fit the historical data. It is for
this reason that M and R tracking errors are an important
criterion for the evaluation of a multi-equation model.

L4. In the following comparisons of calculated vs. observed
variable values will be performed between the AJKA and the
ETLA models and trend forecasts:

Lue sopivasti1.4.2

On niinikaan hyOdyUista kehittaa kiintea tyos
kentelytapa. MyOs tyoskentelytapa on suunniteltava
realistisesti siten, etta sita voidaan noudattaa
pitkan ajanjakson kuluessa. Sen tahden on tyos
kentelysuunnitelmaan jatettava tilaa esim. urhei
lulle, ostosmatkoille, kirjallisuudelle ja sanoma
lehdille, jarjestotoimintaan osallistumiselle, eloku
vissa ja teatterissa kaynneille ja muille virkistys
mahdollisuuksille. Nain valtytaan suunnitelman ali
tuiselta muuttelemiselta ja ennen kaikkea saasty
taan silHi tunteelta, etta olisi "epaonnistuttu" hy
vissa aikomuksissa. Voit esimerkiksi hankkia pai
vakirjan, jossa jokainen paiva on jaettu tunteihin,
ja merkita siihen suunnitelmasi. Usein on sopi
vinta aloittaa merkitsemalla tenttipaivat, ja si
ten laskea ne tenttia edeltavat paivat, jotka tar
vitsee kertaukseen ja sen jalkeen jakaa jaljel1a
oleva aika niiden kurssin osien kesken, jotka tay
tyy suorittaa, jotta ohjelma pitaisi paikkansa.

Yliopistoissa ja korkeakouluissa tiettyyn jarjes
telmaan sidottu opetus on muotoiltu siten, etta
se vaihtelee viikottain. Si110i on viela jokaista
viikkoa harkittava erikseen. On kuitenkin miltei
aina mahdollista sovittaa opiskelutyo kiinteisiin
aikoihin ja taten luoda itselleen tyoskentelyrutii
ni, jota voi noudattaa.

Aktiivisuuden merkitys1.3.4

Tarkeampia johtopaatoksia, joita voidaan tehda
teoriaosan perusteella, on se, etta yhden ja sa
man aineen IHan keskitetty oppiminen pitkahkon
ajanjakson aikana tuskin on jarkevaa. Sen tah
den on hyva suunnitella vaihteleva pitkan ajan
ohjelma, jotta valtyttaisiin tehottomilta ja usein
masentavilta oppimistasanteilta.

Tehokkaan opiskelumetodiikan tarkea apuvaline
on sUs mahdollisimman yksityiskohtainen suunni
telma. Pitkan tahtayksen suunnittelun on havaittu
vaikuttavan positiivisesti opiskeluun. Jokainen saa
vutettu valitavoite antaa opiskelijalle tyydytyk
sen tunteen ja lisaa opiskelutarmoa auttaen siten
voittamaan seuraavan tehtavan mukanaan tuo
mat alkuvaikeudet.

Paamaaran tulee luonnollisesti oUa realistinen:
jos on asettanut itsel1een liian suuret vaatimuk
set - toivoen 51 ten kannustavansa omat kykynsa
aarimmilleen - alkaa jonkin ajan kuluttua tuntea
haluttomuutta huomatessaan, etta paamaaraa ei
voikaan saavuttaa. Itseltaan IHan vahan vaatimi
nen veltostuttaa ja opiskelija oppii viela vahem-

Akateemisten opintojen suunnittelussa on erit
tain tarkeata, ettei opiskelija yliarvioi omaa opis
kelukapasiteettiaan. Suhteellisen vapaa opiskelu tar
joaa kylla mahdollisuudet tahan. Monet opiskeli
jat aloittavat IHan optimistisesti monta ainetta

Ajankaytto ei suinkaan ole ainoa asia, joka pi
taa suunnitella 50pivaa kaavaa noudattaen. Myos
opi ttava aines tulee organisoida hyvin. Kurssin
jokaisen osan kohdalla on suunniteltava, kuinka
pat jon aikaa kutuu kurssikirjojen, muun kirjalli
suuden ja luentomuistiinpanojen lukemiseen, pal
jonko aikaa kuluu mahdollisiin harjoitustehtaviin
ja esitetmien laatimiseen, h lopuksi, kuinka pal
jo~ aikaa on varattava ke:rtaukseen ennen loppu
tenttia. Kertaamiseen varattu aika on usein te
hokkaammin kaytettya kuin alkuperainen oppimi
saika. Edelleen voi olla hyvin edullista lukea eri
kirjoja tai kurssin kohtia rinnakkain.

1.11.1 Pitkan tihtayksen ohjelma 1.11.3

1.4.4

SuunnitteJe yksityiskohtai
sesti

Realistinen paamaara

1 for periods 1958-78, 1971-78 and years 1977 and 19'78
2 for 22 common endogenous variables of AJKA and ETLA
j for some of the most important variables separately.

These are documented e.g. in Johnston, H.N., Klein L.R.
and Shinjo K.: 'Estimation and Prediction in Dynamic
Econometric Models', Chapter 2 in Sellekaerts, and in
Pindyck and Rubinfeld.

03 9 03 10



-------- -----

USING THE·HP 3000-AS AMAINFRAME

CARL CHRISTIAN LASSEN M.Sc.

Presentation Abstract

Presentation Title: "USING THE HP 3000 AS A MAINFRAME"

(Follow up to the presentation about that made in Montreux)

Author(s): __C_a_r_l_C_h_rl_os_t_ia_n_L_a_s_s_e_n_M_._S_c_. _

Title(s): D_ir_e_c_to_r _

DANSK OVERS0ISK MOTOR INDUSTRI - DOMIAddress: _

SDR.Ringvej 35, DK 2600 Glostrup, DANMARK

Abstract: (No more than 200 words)

Running 28 different applications with more than 100 user~ situated all

over the country, working in the automobile import and resale trade,

and in the agricultural machine trade, forces you to design the appli-

cations with regards to the many different opinions about what is needed

and what is not.

This pre.:;entation will give you an idea about our philosophy on Systems

Development, on bUing packages, programs or projects.

It will present our philosophy on Real Time versus Batch processing

C.C.LASSEN
DANSK OVERSOISK MOTOR INDUSTIE - DOMI

SDR.RINGVEJ 35
DK 2600 GLOSTRUP
DANMARK

04 1

and our implementation of Semi Batch tasks. (continued on next page)

04 2



It wi 11 present our philosophy and implied problems with the use of

IMAGE, KSAM and MPE files, and how we change a system from one

to another - if it seems relevant.

I will comment about our methods of squeezing more through the

machines, how we find out which parts of the apllications are the

bottlenecks and how we reduce the resources used in an application,

using among other NOBUF 10, MR, blocking to sector boundaries,

reprogram to SPL etc.

I will comment about the various ways of handling terminal dialogs,

and on the SL compared to stand alone programs.

.".
I will present a method of changing the package from a set of stand

alone programs to one master program handling the outer routines 

database open etc - and keeping the programs as code segments.

(This reduces overhead from the domain of users changing from one

program to another.) It is a result of our development strategy and

optimization.

04 3



( ABSlR ACT)

DATA CAPTURE SYSTEMS FOR REAL-TIME MANUFACTURING MANAGEMENT

By

BRUCE TOBACK

CONlENTS: DESIGN AND IMPLEMENTATION OF A DATA CAPTURE SVSlEM
IN A MANUFACTURING ENVIRONMENT,

HARDWARE, SOFTWARE, USER I NTERFACE CONSIDERATIONS

BRUCE TOBACK

A. L.S. CORPORATION

****** ASK AUTHOR FOR FULL lEXT, WE DIDN'T FIND ONE I' I (EDllDR)

05 1



...,

**•*~.0:::
o.1-
....QW

.
"";

HP PLUS

Ji GRAHAM

: f .. ~. .'

J. GRAHAM
HEWJ.;·ETT PACKARD

*'*'**

'.\

PI 1



III*••,.....0:::
0~QU

J
.......,

~U
J

>(f)

0:::
LIJ
C

L
«'C
L

en~
LLJ

en
Z

0::
:c

>-
LIJ

W
~

..:J
Z

<
0

-
W

Z
>

>
~

0:::
«

t-
W

0
-

0
..

(I)
u

E
«

w
:::D

E
0:::

~
V

)
.Q

:E
~

0::
~

V
)

...
z

«
-.:J

z:
W

0:::
~

C
D

Q
Z

w
U

~

-
«

Q
>

C
L

0
-

-
W

«
~

~
S

Q
..

en
...

<
W

•
E

-I
•

en
s

•
en

U
J

•
E

:::

(OlD-DUMp·ANALYSIS

M.S. PAIVINEN

S. MASTRIPIERI

•••• WE DIDN'T RECEIVE THE PAPERS YET (EDITOR) .***

M.S. PAIVINEN
S. fltASTIPIERI
HEWLETT PACKARD

P2 1



SOME PROBLEMS OF SOFTWARE ENGINEERING

WLADYSLAW M. TURSKI

PROF. W.M. TURSKI
INSTITUTE OF INFORMATICS
WARSAW UNIVERSITY
WARSAW, POLAND

QO 1

Some Pr'oblems of Software Engineering

Wladyslaw M. Turski

lnst i Lute of I nfol'mat i cs

Warsaw University

The phrase "software engineering" was coined just over 13

years ago. It was considered a little provocative by its

originators and was chosen explicitly for this reason. The

group of coveners of the Garmisch (October 1968) and Rome

(October' 1969) conference sponsored by the NATO Science

Committee deliberately selected a key phrase that contrasted

wi h t the the n p rev a iii n g perc e p t ion 0 f so f twa r' e issu e s

("software chaos" and "software crisis" being then two

phrases very much in vogue). The phrase "software

eng i nee r i n g" h i n ted at 1 a wandOl'd e r inan (' n vir 0 nmen t

considered hopelessly anarchic, promised some rigour and

discipline where there was none, whiffled of industrial

approaches in the field where artisanship reigned

unchallenged. The phrase "software engineering" evoked - no

matter how nebulously - notions of standards, measures of

productivity, industry-wide and commonly accepted codes of

good practices. Unfortunately, the launching of a phrase

seldom solves any real problems and sometimes creates new

ones, primarily those of cr'poibility.

QO 2



inevitable

r'evea ling

antipodes,

well-read,

computing

rethoric:

engineering". Unlike social ones, this technological

revolution turned against its fathers.

Software C'ngineer'ing caught on. Conceived as an int('llpctlial

pl'ovocation by the most Iy acadpmic animator's of t.he

Car'm i seh-Rome conferences, thp phrase was eagel') y accepted

by a 11 sorts of i ndust ria 1 organ i sa l i ous. Thp younger' spt

(and information processing community expands so q\liekly~

that it constantly seems to consist morp of the' youngpr' set.)

is now firmly convinced that software engineering is a

well-established industrial discipline, opposed or' at Ipast

neglected by the academia. (A year ago I witnessPd a most

..;ortw;tr,p ("'ng;irlt,(,t'ing should ha\,(' ('\It'(,<1 all thpspI dpal Iy,

and s i mil at' i I Is. (fnl'or'tllna(,p I y t IH's(' phpflollH'na - vpr'y r'eill

nrH'S - ilJ'(' merely s~'mpt.oms of much deepPl' t !'oublL's and sincp

most ('fCopt,s d i r'pcted at ,'emcdy i ng thp symptoms do not cu r'e

the sicktH'ss lhat. causes them, even if t.;tken jointly, all

prescr'ipt.ions for' amp] ior'ating par'ticulal' aspecls of thp

softWill'(' ('I'i sis do not seprn to apJH'('c i ab I y i mpl'ove the st.ate

of aCrai 1'-";. Even though the {'xpr'('ssion "soClwar'c cr'isis" is

by now (1('at'ly for'gotten, almost all thl.' complaint.s made

f i ftpl'n )'PiH'S ago ('ou I d bp r'ppeat,ed today, ppr'haps more

str'ongly. There is, however', one notable and very important

except ion: we have I car'ned how to wr'i l.c correct pr'ogr'ams

given pr'ecise specificatiolls.

am fu 11 y aware that the ab iIi ty to make correct pr'ograms

given precise specifications is but a small consolation for

someone faced with the full scope of issues involved in

prov i dt ng the software par't. of a computeri sed sys.tem,

nevertheless I am going to spend some time analysing this

achievf'ment. I am going to do so for' several reasons:

be

scene: at a computer-e)l'i en Lcd gathe-I'i ng on the

a very articulate, but clearly not vpr'y

industrial programmer' addressPd a profpssol' of

science with a question he obviously thought

when at long last, would the universities

recognise the existence of software engineering, accept. the

and start doing something useful in this

direction. The object of this tirade was the person who can

called the spiritus mavens of the 68/69

conferences, one of the authors of the phrase "software

justly

(i) because it shows what it takes to solve a problem

in the area of softwarE' cngi neeri ng,

(ii) because it bares some fundamental deficiencies of

the common sense approach to software problems,

techniques involved in solving a methodological

problem if software construction,

engineering that

scientific terms.

the intellectual

the only part of software

can be completely discussed in

demonstrates

is

it

it

because( iii)

(iv) because

The software crisis of the 60's was very rcal. The qual it.y

of most computer programs was very poor, their documentation

at the very best - sketchy, the reusability of software

components - practically unheard-of, software systems in use

were growing patchier and patchier, software projects were

notoriously behind schedule and above budget. The shortage

of skilled programmers was crippling, good people were hard

to get and once gotten would very often be soon bribed away.

Programming languages were just about the only facet of

programming sufficiently well-understood to have a

comprehensive and consistent theory (even in this case the

theory covered only part of the problem, i.e. syntax,

leaving out the perhaps more important subject of

programming language, which is semantics).

QO 3 QO 4



rhus \'iC' consider' a pr'o~I'''1I\ and a sp.'cifi<.:at i(HI. FOI' somt'

We leave aside, for the moment, t.he objections that one

se I dom is interested in actuall y ver i fy i ng if an ar'b i trary

progr'am Pis correct wi th I'espcct to spec if i cat ion S, that

our main interest is in producing pr'ograms that enjoy this

property vis a vis given specification. After all, unless we

have a better procedure, a thorough quality assurance test

is a purchaser's best friend!

('Ol",(,("t with re!'->pect. t.u thl' sIH·cifi<.:ation S. Th('

v (' I' i r i it C t ion 0 f whe t h <.' C' a p a "t i c u ] a r' pit i r (P. S) entit I ('.';; us

to make th i s slatem('nt d('pends. of COlu'se. on a gr'cat many

Cl d d i t. ion a I cons i de rat ion s. (I n c i did f' n t a I I y, 1 am a f r' aid t. hat

s om(' r' e ade r s art'" beg inn i n p: t. 0 S II S P e c t t hat. I am 0 v l~ r I y

pedantic, that I indulge in an academic nitpicking; let me

hasten to assure them that me concern is very practical: it

is precisely because I am int.er'est.ed in useful programs t.hat

am rather particular about expressing my objectives quite

clearly and opt for writing a watertight warranty thaL the

pc'ogr'am wi II indeed sal i sfy my goal s as expressed by thc'

specifications.)

Lpt u:-; f i r'st cons i <h' r~ why i nst ead of Cl ::i imp I ('r' (" pl'('s ...d OJ)

"cor'r'('ct. pr'ogl'am" we ar'(' using Cl longer' (and. aclmittf'clly,

c 1ums i l't'" on •.': "'PI'o~t'am cor'r'pct. wit h ('(':->IH'('( l () i t ~

specification".

The only rational interpr'etation of the shor't('I' tprm

"correct program" could relate to the internal <.:orr'ectncss

of a piece of code, i.e. to its syntact.ic correct.ness. For a

reasonable grammer the question of syntactic correctness can

be solved quite mechanically: every acceptable compiler does

it all the time. On the other hand, if the syntactic

correctness of a program cannot be resolved mechanically, we

are dealing with a programming languagr too ambiguous for

any semantic interpretation, with a text too vague to be

considered meaningful. (A more puritan viev would be to

state that syntactic unresolvability precludes semantic

modelling and thus such texts are meaningless.) Since it is

safe to assume that we are willing to restrict our

considerations to programs that are guaranteed to be

mean i ngful , i • e • to such programs tha t a r'e gua ran teed to

have a nontrivial semantic model, we assume that programs we

are considering are g~aranteed to be syntact i call y cor'rect.

~ll('h pa i ('S w(' ar'f' Pllt it I ('d t.o st alp t.hat pt'ogr'am Pis

As soon as we decide that we wish t.he term "corrpctness" to

express more than just syntactic correctness, we must look

for an externa 1 frame of reference. (Not.h i ng .~upr i sing ill

it: in a scientific sensf.', correctness, just as

truthfullness - in a slight depat~tur{' from common lISilgP - is

always a dyadic relation that holds, or docs not. between

two ent i ti es rather' than be i ng a property pnjoyed, or not,

by an entity taken in isolation.) For a meaningful,

purposful, useful program, the frame of reference that seems

most natural for establ ishi ng th£' program's cot'rect ness is

its specification, i.e., a stat~mcnt of the pr0gram'~

purpose.

QO 5

Pf>r'haps thp simp 1est form a p('ogram spec if i cat i on can take

is a pai r' of statements, IN and OUT, each of wh i ch can be

t.'ith<:>r true or false, depending on the envir'onment in which

it is to be evaluated. (Some srntcnces, tautologies, are

t. I' U e ( 0 r' fa 1s e) rega r'd Je s s 0 fan envir 0 nme n t; i f we fan c y

it, we may introduce the statement TRUE hhich - by

def i nit ion - is true in l'v('r'y env i ('onment, and the statement

FALSE - fa I sC' in cver'y env ironment, t.hese two statement.s arc

supr is i ngl y usef'u I !) Us i ng an IN/OUT pa iI' wc express the

fo II ow i ng I'('quest: we want a program P such that if its

exc'cut. ion star'ts in an ('IlV ironment in wh i ch IN is true then

aft£'r i t.s t.'xecut ion is comp 1et.ed we sha II g<'t, an env i r~onment

in whi<.:h OUT will be true. This request can be writ~en as a

QO 6



formula: for £'xample, with IN and OUT as before, and

in which P is an unknown, or desired, program. Thus this

formula may be considered as an equation that defines

program P.
we get the conjecture

(IN) P (OUT) (x) P if x>"'y -=) m::.x

y):: x ::. =) m: -= y u.

For example,

(integers x, yare' defined) P (integer's x,x,m are d£'fincd

and m = max(x,y»

(integers x,y are defined)

if. x>-:.y =~> m:;-x

y>~x ==) m:::y ti
(integers x,y,m are defined and m max(x,y»

is a specification for a (small) program P that culls the

maximum of two given integers.

Now, how do we proceed to verify that a given program P is

correct with respect to its IN/OUT specification? There are

several ways of doing it, depending on the particular

fashion in which semantics of the programming language

employed for coding P is formulated. If we are to proceed at

all, however, the semantics of this language should bv

expressed in such a way as to permit calculations of the

environment transformations effected by the execution of the

language instructions. Knowing how the execution of each

instruction transforms its inherited environment into the

environment for its successor, we can ascertain if the

execution of P, starting from its first executabl~

instruction initiated in the environment satisfying IN, will

lead, transformation by transformation, to an environment

satisfying OUT. Thus we can establish the correctness of P

with respect to IN/OUT by proving the conjecture that arises

when the text of program P is substituted in (x). Note that

the ability to carry out this proof depends on thp abi lity

of a rigorous definition of the programming semantics.

QO 7

There are two varieties of thus understood correctness:

partial and total. The distinction relates to the fact that

some programs are known to contain endless loops, or - what

is more realistic - to contain instructions which initiated

in some environments may loop forever. Partial correctness

amounts to saying: it is guaranteed that provided the

execution of P comes to a normal end the conjecture ~x)

holds. Total correctness amounts to a stronger: it is

guaranteed that the execution of program P will come to a

normal end and that conjecture (x) holds.

The investigations into the extent of the notion of program

correctness led to many useful programming techniques.

Methods of composing programs in such a way that their

correctness with respect to given specifications would be

guaranteed by virtue of construction steps taken were

developed and made quite practical. The key to the success

of these developments was the appreciation of the

calculability of environment transformations effected by the

execution of programming language instructions with

well-defined senantics. This in turn led to a considerable

effort in formulating calculable semantics of programming

languages, and - in due course - to certain preferences in

programming languages themselves.

QO 8



Th~ intuitive approach to programming language design

(wouldn't it be nice if we had such and such feature in our

language) was replaced by a more somber attitude: let's have

in our language only such constructs which have calculable

semantics, and preferably select those whose definitions

make semantic calculations easy.

In recent years, many techniques based on calculable

semantics and on the principle of provable program

correctness with respect to its specification emerged and

found practical applicaton. Even if the practiced version of

a programming technique is not explicitly calculational

(structured programming, stepwise refinement, Jackson method

etc.), their origin is unmistakable and their soundness

depends on the firmly established mathematical theory of

program correctness.

It is often said that the formal methods of program

verification and/or program derivation from specifications

are applicible to small problems only, or less kindly

spoken, toy problems. Two justifications are put forward in

support of this thesis. The first one points out that the

volume of formal manipulations needed to verify a program is

usually an order of magnitude larger than the volume of the

program text itself, which makes this approach impractical

for large problems. The second one questions the basic

premise of the method - the availability of precise

specifications. Both objections are well-founded; the second

one is however much more serious and will be dealt with

somewhat later, in a broader context.

As far as the length of the verification proofs is concerned

we should in all fairness observe that the verification of

an existing program against an existing specification is a

relatively infrequent event. A much more realistic approach

is to use the calculable semantics for deriving the program.

(JO 9

The length of formal manipulations involved is still quite

impressive, but in this case the effort spent on "formal

manipulations" should not be considered as an addition to

the cost of program development. If a programmer develops a

habit of formally deriving programs from specifications,

then all his activities related to program construction,

indeed, the whole problem-so~ving process is carried out by

these formal manipulations. Starting with the necessary

problem analysis and derivation of auxiliary facts, through

structutal analysis, decomposition and linguistic

interpretation (stepwise refinement), and ending with final

expansion (coding) - all these steps, which one way or

another must be present in program derivation, are combined

into a formal derivation of a program. Seen from this point

of view the length of the derivation is a measure of the

effort needed to properly construct the program. As usual,

the derivation may be more or less detailed, some people

learn to perform in their heads longer transformations than

others, but the fact remains: formal derivation of programs

is not any longer than an informal one. It is, however, more

explicit, provides a better documentation and is a whole lot

less vulnerable to a chance mistake or oversight. In a

sense, it is a pity that the published examples of formal

derivations of programs - for dydactic purposes - refer to

very simple problems only: because it is so easy to derive

the specified programs in one's head, an explicit formal

protocol of the derivation seems too long and, perhaps,

unnecessary.

The relationship between a specification and a program is

not a function: given a specification there may be a great

many different programs that satisfy it, i.e. are correct

with respect to this particular specification. If the

specificaliull i~ luu vague, i.e. if it does not capturc !!!
important requirements, a correctly constructed program may

turn out to be not quite satisfactory. This raises'a very

QO 10



specifi cati ons? And if so, what is t.he fr·aml.... of r·pference to

be usedin sue h a ve r i fie a t jon? Wit h t. his p r' 0 b I (' m, howe v e r' ,

we are leaving that part of softwar'e £->ngin{'cring which could

be conveniently called programming methodology, the only

part in whi ch sol i d progress over' the I ast decade can be

reported.

Contrary to a popular bel ief, thC' completeness of

specifications - at least the mathematical completeness _

would not necessarily be an unconditional blessing. Fir'st of

all, it would be very difficult to achi('ve, secondly, it.

would almost invariable amount to overspecification in terms

that matter for the ultimate use of the program.

it COVPI' a vCI'ificat.ion of the

specification must encompass notions quite alien to the

the IN/OUT style of

very naturally to such

initial one: the extended

but this is a relatively minor

bC' formulated in a language much

sorting. (Incidently,

does not lend it.self

specifications,

ri cher' t han that nef'dcd for thp

the specification must

additional

po i nt. )

problem of

specifications

Tn aiming for completeness of specifications great care must

bp excercised that their consistency be preserved.

excluded; simi lal'ly, if it was sppcifil'd that. th(' pr'ogr'ams

shou I d not. USE" more t. han I 01~ ex t ra rnt'mory on top of t.ht> N

c €' I I s n f> e d (' d for t h {' V E' <.: t 0 I' A. 0 b s e r v e, howe v e r', t hat i n

order t.o pxpr('ss such add it i ona I const.ra i nts on thp program,

of pr'ogrammf'rs'extentt.heof

does

issuecontroversial

responsibility:

Deriving a program to meet a giv~n specification, a

programmer is free to use his judgement, r'ely on his

expertise, draw upon available knowledge and recources, make

decisions in all issues that are left unspecified. For

example, a specification may read as follows:

IN: AI, ••• , AN .i s a defi ned sequence of i nteger·s.

OUT: (i) Bl, ••• ,BN is a sequence of integers and

(ii) Bl, ••• ,BN is a defined per'mutation of

AI, ... AN and

(.iii) i<:j ==> Bi =Bj for all 1<:i,j~~N

The inconsistency of spl"'cification is much more harmful than

its incomplvtcness. An incomlete specification can be

satisfied by many different programs, the only danger b~ing

that the one actually df'rived would not meet some

unspecified requirements (while being in full accord with

the specified ones!) An inconsistent specification cannot be

met by any program! (In our example, it suffices to extend

the given specificatjon by the request that the cost of

expcuting the program be less than kN, for fixed k and N, to

make the thus extended specification inconsistent.)

Thus a modicum of incompleteness of the specification is

harmless ( and in practice unavoidable), whereas the

inconsistency must be categorically avoided.

The abi 1 i ty to produce corr'ect programs gi ven consi stent

specifications, the ablilit.y gained through caclulable

formalisation of semantics of pr'ogramming languages, has

caused a marked shift of research interests away from issues

specification.

This is, of course, a specification for a sorting program.

The choice of the sorting algorithm is left unspecified, the

programmer' may explore this freedom as he wishes - provided

the program he produces satisfies the given specification.

If the specification wa:s a bit "mor'c complete" and asked,

for instan c e, t hat the cos t 0 f the IJr' 0 g I' am ex c c u l ion s h 0 u 1 d

not exceed kNlogN, a large class of algorithms would be

of programming languages, towards the issues of

QO 11 QO 12



(i) syntactic rules,

(ii) semantic equations.

jhere are several ways in which this relatively new research

topic is likely to produce results important for practical

work. (In some 6f these directions considerable progress has

already been made, and practically significant results and

techniques are available.)

The directions closest to the traditional programming

activity is that of formalisation of program-objects

specification (such as data types, modules, monitors etc.).

In fact, the methods of specifying these objects are so

closely related to programming techniques, that frequently

they are considered simply as parts of programming

methodology. Yet, it is worthwile to observe that the same

techniques may be applied to specification of objects not

necessarily related to programs.

In the briefest possible exposition, one

an abstract data type is specified by two Several projects are currently under way trying to combine

various specification techniques into specification

languages, or more precisely, into software specification

languages.

Similarly, the techniques used for specifying active

software components, such as modules, monitors, and classes,

can probably be used for specification of simulation

software. In fact, since most of the work in this direction

is based on the original contributions of SIMULA 67 - a

language initially intended for programming simulation

computations - using these techniques for specification of

simulation software would in a sense complete a full cycle

of development, which is always intellectually pleasing!

bases can be used to faithfully ( well, sufficiently

faithfully) represent almost anything of interest in

buisness data processing, I see no reason whatsoever why the

abstract data type specification techniques could not be

applied to specification of software, e.g., for management

information systems. (Indeed, some experimental results in

this spirit have been reported in research publications.)

typedataabstracttheexample,

sets of formulae:

Consider, for

specifications.

could say that

The syntactic rules describe the morphology of objects of

the type being defined and the syntax of spectfied

operations acting on these objects; the semantic equations

express - in calculable fashion - the properties of objects

and operations. The publicised examples relate to well-known

program objects (stacks, queues, tables, etc.) but the very

same technique can be applied to specification of any

objects that can be abstractly viewed as many-sorted

algebras. In fact, since there is no fundamental reason why

this technique could not be applied to, say, data base

specification and since ( as we are repeatedly told) data

The most important advantage of specification languages

based on formal specification techniques would be the

availibility of an extensive calculable apparatus enabling

the verification of software produced according to the

specifications expressed in such languages. Let me once more

stress the importance of such an apparatus. Unless the

notation of satisfaction is formalized, it cannot be made

calculable. And unless we have a calculable means of

establishing whether a piece of software satisfies the

specification, we are on the very shaky ground of debugging,

test-case verification etc., which never leads to foolproof

assurances. Recall that it was the introduction of

calculable semantics of programming languages ~hat made

QO 13 QO 14



possible a satisfactory interpretation of the program

correctness problem, and, as a consequence, led to

programming methods that guarantee the program correctness.

Another - and in a way no less important - advantage of

formalized software specification languages rests in the

ease with wich they permit the construction of assorted

aids, facilitating the process of programming by performing

a host of clerical functions (cross-referencing, indexing

etc.), by executing various checks (inconsistency of

interfaces, use/define matches etc.) and - in some instances

by simulated "execution" of specified, but not yet fully

programmed, software. Especially in large software projects

such aids reduce the burden of ancilary functions on

programmers and thus increase their productivity by allowing

a less diluted concentration on main tasks. Again it should

be stressed that the formalisation of the specification

language (both of its syntax and semantics) is the crucial

factor in determining how extensive a set of aids can be

constructed.

Another direction of research on specifications concerns

operation on specifications, such as extending a

specification by additional requirements and joining two

specifications into one. Such operations closely correspond

to situations frequently encountered in practice; in fact,

as we shall see in a moment, manipulations with

speci~cations are about the most important tool in software

engineering. In order to attach meaning to results of

formally defined operations on specifications, a suitable

formal view of specifications had to be established. This

was accomplished by considering specifications as algebraic

theories, in which case the theory of categories provided

the necessary framework. Burstall's language CLEAR has been

explicitly designed for describing sp~cifications as

theories and for programming operations on them.

QO 15

All the so-far discussed research directions on

specification issues implicitly assume that the

specifications are the ultimate source of inspiration for

software. This view is clearly inadequate for practical

applications, where the utimate source of inspiration is a

need felt by the customer, a need usually poorly articulated

and nearly always expressed in terms far removed from

program-oriented terminology.

Theoretically, we could argue that the steps necessary to

convert such a nebulously formulated need into a

specification for a software (system) do not belong to

software engineering. Personally, I do not subscribe to this

view. First of all, if the pre-specification steps are

excluded from the scope of software engineering we shall not

have any rea] control over their quality, and there is very

little sense in making an effor·t to produce high quality

software hanging on low quality specifications. Secondly, it

is in the link between the customer's needs and

specifications that the most troublesome aspects of software

engineering have their roots (as we shall see in a moment).

Thirdly, an interface between the pre-specification problem

analysis and the specification must be established: if we

admit that the former is quite informal and the latter 

formal, the interface could be extremely akward.

One way of extending the software engineering towards the

analysis of customer's needs consists in providing

semi-formal tools (such as, e.g. SofTech's SADT) to be

applied to the analysis of customer's requests expressed in

his language. The use of such tools imposes certain

discipline on thp formulation of the need, mostly syrlLactic

and structural, thereby establishing syntactic r'plationships

between various structural entities. Roughly speaking, on

sucessful application of such various tools we get a

(JO 16



counterpart of syntactic rules of algebraic specification,

albeit sometimes expressed in a form much less convenient

for subsequent manipulations (in the case of SADT we get a

pictorial presentation of syntactic rules). The semantic

equations are not so easy to obtain by semi-formal analysis.

One can point out an analogy of a sort between the

semi-formal requirements of analysis and flowcharting as a

means of program design. It certainly is a step forward with

respect to totally informal (unstructured) analysis, but

without formalisation of corresponding semantic notions we

are still left without means to verifiably establish the

correctness of our proceedings. It should be observed that

the commercial success of semi-formal techniques in

customers' problem analysis provides an empirical proof of

the practical recognition of advantages extending software

engineering outside the specification/program bracket.

An alternative approach to the analysis of customer's

problems has been motivated by considerations of software

evolution. It is a well-known fact that software systems in

continuous use over extended periods of time evolve. The

causes of evolution fall roughly into two categories:

internal and external.

Internal causes of software evolution include two major

classes:

- corrections

- improvements.

Corrections are such software changes that remove discovered

errors~ i.e. violations of the satisfaction relationship

between an existing specification and an existing program.

Theoretically, if the software is correct with respect to

QO 17

its specification, no corrections are necessary. In

practice, they do occur, just as errata are occasionally

necessary to texts of mathematical proofs.

Improvements are such software changes that leave the

satisfaction relationship ~etween the existing specification

and program intact and exploit the freedom left by the

specification in order to bring about advantages that cannot

be described in the linguistic system employed for the

specification. A typical improvement is the replacement of

an algorithm be a less complex one or by a "faster" one.

External causes of software evolution may be also classified

into two groups:

related to the change of programming environment,

- related to the change of specification.

A change of programming environment occurs e.g. when the

hardware system is extended by a new component or a new

hardware facility is added that extends the repertiore of

programming means of expression. A more radical change of

programming environment is caused by replacement of

hardware, in which case (all or some) programming means of

expression lose their hardware interpretation. An extreme

case of programming environment change is a switch over from

one programming language to another, or from one operating

system to another, or from one manufacturer's hardware to

another's. It should be observed that:

(i) a change in programming enviromnent does not

necessarily involve a change in software (e.g. we

may ignore an added hardware fa~ility), in which

case the situation is roughly similiar to that of

internal improvements,

QO 18



( i i ) if the change of programming environment is

forcing a change in software, such change is to

be effected under the invariance of

specification, excepting the somewhat ludicrous

cases where the specification contains the

explicit request that products of ABC company are

to be used.

modification activities are constantly

wasteful and poorly managed. It would be

speak of specification maintenance in the

internal causes of software evolution and in

change in programming environment, and to

spade in case of specification changes.

challenged as

much better t.o

presence of

the case of a

call a spade a

Thus we have isolated the only kind of software change that

is caused by an as it were spontaneous change in

specifications. Why should a specification change at all?

Well, there are several rea~ons:

Two symmetrical errors, commonly committed, contribute to

the bad reputation of software evolution:

(i) forgetting to maintain the specification when

software is changed for internal reasons,

(i) the original specification

customer's needs,

poorly captured the (i i) specifying

certain that

consistent.

software changes without making

the resulting specification is

(ii) the customer changes his mind,

(iii) the use of the system changed the customer's

environment in such a way that his needs have

materially changed.

In the professional jargon, the activity of changing the

software is circumstantially called "software maintenance".

It is a particularly absurd choice of terminology to speak

of software maintenance when we mean software changes;

unfortunately it is being done all the time! The use of this

mi snomer is also exceptionally har·mfl.ll from the

psychological point of view: it is subconsciously expected

that any maintenance should be relatively inexpensive (in

comparision with the original investment). Software

"maintenance" being anything but inexpensive~ the software

All, who ever participated in a

developent project, are well familiar

these, more often - with all.

significant software

with at least one of

An often encountered variation of the second error constists

in making software changes when the customer's needs have

changed, without bothering to modify the specification at

all. This practice is supported by the befief that "software

models the application", hence if the application changes,

the software should change accordingly. In fact, the

software is related to an application through the

specifiction, and if the verb "to model" is to be used in

its technical sense, then software models its specification.

Thus if we want to stabilize the software evolution, we must

jealously maintain the specification-software relationship,

and allow such software changes only which either werifiably

preserve this relationship under invariance of the

specification, or re-establish this relationship when the

specification has been modified in a consistent way.

The relationship between the specification and software

being thus promoted to the role of main concern of the

programmer, how do we envisage the pragmatically important

QO 19 QO 20



The ensuing change of the specification must be effected in

a formal system in which the specification is written and

the modified specification must be checked for consistency.

At this stage some changes may be rejected, others may cause

us to think very seriously if it is really worthwile to

introduce them (if the resulting modifications of the

specification are massive, the work involved in changing the

software may be expected to be similiarly extensive.)

When the specification is changed and thus the satisfaction

relationship between the specifications and the application

domain model is re-established , a crucial decision must be

taken: to modify the software (because it does not model the

specification any more) or to construct a new software. This

unavoidable decision is in the considered arrangement

somewhat less arbitrary than in other set-ups because it is

prededed by a full-scale formal modification process

In addition to the methodological advantages, the proposed

arrangement may be used as a framework in which stable

evolution of software may be clearly monitored, and thus at

least some calamities may be prevented. Indeed, assume that

the customer feels a need to modify the software. This need

must be expressible as a change in the application model (no

other means of articulation is admitted, or to put it

bluntly: all other means of articulation of the customer's

wishes are simply dangerous and should be disregarded). Thus

a modification of the application'model is considered as the

only possible source of the initiative for software change.

We may safely assume that such modification violates the

existing relationship between the specification and the

application model. (Even if the specification/application

relationship is not broken there may be a valid reaso~to

change the specification - it just has been demonstrated

modifications!)

to application domaininsensitivetooisitthat

link between the customer's needs and the - necessarily

formal specification? In order to achieve a pleasing

symmetry and a simple, conceptually unifying treatment of

both considered environments (the program environment in

which a program models a specification, and the application

environment) I suggest that the particular application be

considered a model of the specification in the application

domain. In this way, formally at least, the relationship

between the particular application and the specification is

exactly of the same kind as the relationship between

specification and software.

The major advantages of such an arrangement come from the

obligation to prove that the application satisfies the

specification. This means that the application must be

presented S6 precisely that such a proof would be possible.

At the same time, it does not mean that the application must

be described in programming terms. The choice of the

language used for application description is left entirely

to the applicatio~ experts, the only requirements being that

it has a calculable semantics, just as the programming

language has one.

Naturally, in the temporal sequence of events, the

specification hardly precedes the application model. In

practice it will be somehow abstracted from a description of

the application, but the abstraction process (present in all

system design methods) is now verifiable.

Just as there may be m~ny programs satisfying any given

specification, many applications may fit a given

specification. The freedom left by the specification in the

application domain is now a measure of how precisely the

specification captures the customerl~ needs. If, with a

given specification, one g~~~ coo unrestricted application

models the specification has to be tightned.

gO 21 QO 22



performed on the specification.

Most importantly, if the specification changes are expected,

the construction of software may be subject to certain

rigours, making subsequent specification-directed

modifications of software easier. (Modularity, seperation of

concerns, splitting a specification into covering

"subspecifications".) A particularly promising technique

consists in anticipating (at least some) changes in

specification, cataloging them and providing - a priori 

algorithms for changing the software so as to incorporate

any of the catalogues specification changes.

QO 23

REFERENCES

(The references listed here are recommended as "further

reading" on topics discussed here in this paper.)

Berg, H.K. and Giloi, W.K. (Eds.): The Use of Formal

Specifications of Software. Informatik-Fachberichte ~

(1980), Springer-Verlag.

Bjorner, D. (Ed.): Abstract Software Specifications. Lecture

Notes in Computer Science~ (1980), Springer-Verlag.

Floyd, C. und Koptez, H. (Hrsg.): Software Engineering 

Entwurf und Spezifikation (1981), Teubner.

Jones, C.B.: Software Development - A Rigorous Approach

(1980), Prentice-Hall.

'Lehman, M.N.: Programs, life cycles, and the laws of

software evolution. Proc. IEEE ~ (1980), 1060.

Turski, W.M.: Software Stability. 1lLSystems Architecture,

Proc. 6th ACM European Regional Conf. (1981), London.

QO 24



INTRODUCING THE HP ON-LINE PERFORMANCE TOOL

(OPT/3000)

Robert L. Mead Jr.

Member of Technical Staff

Hewlett-Packard Company

Computer Systems Division

Robin P. Rakusin

Product Manager

Hewlett-Packard Company

Computer Systems Division

Clifford A. Jager

Project Manager

Hewlett-Packard Company

Computer Systems Division

Rl 1

INTRODUCTION

The question of whether or not a computer system is being effectively

utilized is often difficult, if not impossible, to answer. Equally

difficult can be the identification of a bottleneck when the performance

of a system is less than expected. These difficulties typically arise

due to a lack of information on which to base a judgement or decision.

Even in those situations where information is available, it is often the

case that information is incomplete, or possibly inaccurate or

misleading, thus forcing the analyst to make a "best guess" as to the

true situation. When detailed and complete information is available, it

is frequently difficult to separate the useful information from the vast

amount of data provided. In this paper we describe an interactive

software product designed specifically to aid in the analysis of HP 3000

computer system performance, and which addresses the problems just

described.

This product, the HP On-line Performance Tool (OPT/3000), is Hewlett

Packard's first performance measurement software product, and can be

used to identify performance problems or bottlenecks, to characterize

the workload on an HP 3000, to collect information required for capacity

planning activities, to analyze system table configurations, and in some

cases, to tune the performance of individual applications. OPT/3000

provides information in 23 separate interactive displays in the

following areas: CPU utilization and memory management activity, memory

usage, I/O traffic, program and process activity, and system table

2

Rl 2



usage. Although each display is designed to be quickly and easily

understood, the assumption is made that the user has been trained on the

internal operation of MPE IV, the newest version of the HP 3000

Multiprogramming Executive operating system. OPT/3000 is designed to

operate in conjunction with MPE IV and can be used on any HP 3000 Series

II, Series III, Series 30, Series 33, or Series 44.

This paper presents an overview of the HP On-Line Performance Tool, and

discusses some intended applications of OPT/3000. The information

reported by OPT/3000 is also reviewed in-depth, as well as the

techniques used to obtain the information.

OVERVIEW OF OPT/3000

The HP On-line Performance Tool is a software product that provides

performance related information in an interactive environment. As

mentioned earlier, OPT/3000 can generate 23 different displays

containing performance related information, in addition to seven menu

displays. These displays are grouped into six categories, called

display contexts, each of which is associated with a different type of

system resource. The six contexts are: Memory, CPU/Memory Management,

I/O, Process, System Tables, and Global (a little bit of everything).

Within each context, displays are available at successively greater

levels of detail. This structure allows the user to progress from

summary level information to more detailed information as the situation

3

Rl 3

requires. In many cases, the summary level information is sufficient.

Once a display has been generated, it is automatically updated at

periodic intervals, with the length of the time interval under control

of the user. A display can also be updated upon demand, simply by

entering a carriage return. All commands within OPT/3000 consist of a

single ASCII character, and a different set of commands are available in

each display context. Certain global commands are available in all

contexts. In addition, the pound sign character (I) is used as an

escape character to access a set of control operation commands. These

commands perform such operations as changing the current display context

and suspending the updating of the current display. With this simple

user interface, the generation of a different display within the current

context is accomplished via a single keystroke, and the generation of a

new display within a different context with a minimum of three

keystrokes. Menu displays are available within each context, and list

the commands available within that context.

An extensive on-line help facility is also available as an integral part

of OPT/3000. With this facility, documentation explaining any command

or display can be quickly displayed. In many cases, interpretation

guidelines are also provided to aid in the identification of performance

problems.

OPT/3000 utilizes the features of the HP 264x series of terminals to

generate displays with a graphical format, where practical. The

4

Rl 4



terminal features used include the four available video enhancements

(blinking, inverse video, underlining, half-bright), the line drawing

character set, and the cursor addressing capabilities. OPT/3000

automatically checks to verify that an appropriate terminal is being

used, and warns the user if an incompatible terminal is in use.

A hard copy of any display can be generated on the line printer (device

class LP) with a single keystroke. The hard copy displays are similar

in layout to the interactive displays, but some reformatting is

necessary to convey the same information, due to the lack of video

enhancements on a line printer (e.g. paper cannot blink).

Although the HP On-line Performance Tool is primarily designed for

interactive use, it can be executed in batch mode to collect summary

information 'about system activity. These summary reports can be used to

provide data for capacity planning activities, and can be generated

interactively as well. Once activated, the summary reports are

generated independent of the interactively generated displays.

There is no limit on the number of copies of OPT/3000 which can be

executing simultaneously. OPT/3000 obtains much of its information via

a new internal measurement interface facility incorporated within MPE

IV. This facility maintains a set of measurement counters accessible by

multiple users. Additional information concerning the measurement

interface, and the techniques used by OPT/3000 to collect information,

will be discussed in a subsequent section.

5

Rl 5

APPLICATIONS OF OPT/3000

There are several anticipated uses for the HP On-line Performance Tool.

Among these uses are the identification of performance problems and

bottlenecks, the analysis of system table configurations,

characterization of the system workload, capacity planning, and

performance tuning of applications. Each of these activities utilizes

some or all of the capabilities of OPT/3000. We will now briefly

discuss each of these application areas before describing in some detail

the information provided by OPT/3000.

The' ability to quickly move between displays and the variety of

information available through OPT/3000 facilitates its use in

identifying performance problems and bottlenecks. In particular, it is

expected that a system clearly bottlenecked by CPU, memory, or I/O will

be quickly identified. OPT/3000 can also be used to determine if disc

accesses are unbalanced between multiple drives. Poorly behaved

application programs can also be identified, in terms of programs which

use excessive numbers of files and extra data segments and those which

waste stack space.

A second application area is that of system table configuration

analysis. Inappropriately configured system tables can degrade system

performance, either by wasting memory if the tables are unnecessarily

large, or by causing processes to delay while waiting for an entry in a

table that is'configured too small. In the latter case, system failures

6

Rl 6



may also result it the table size is exceeded'. OPr/3000 allows the user

to quick1Y.identit,y those tables which are not properly configured, and

to determine (through utilization statistics) a more appropriate value.

The characteristics ot the workload on an HP 3000 can be determined

using OPT/3000. The names ot all active or allocated programs on the

system can be easily determined. as well as the users of each program.

The CPU usage. disc I/O rate. and memory usage characteristics ot an

individual application can be determined if the application is running

stand-alone on the system.

~e 8umDar7 reports which can be generated by OPT/3000 in either batch

or interactive mode can be used to provide data for capacity planning

activities. These reports indicate the CPU usage of the system, memory

management activity. and the I/O traftic on individual discs, line

printer8. and mapetic tapes. The information used to generate the

summary reports can also be logged to an OPr/3000 log file (disc or

tape). which could be processed to provide input for generating plots.

In this maDDer. OPT/3000 can gather trending information that can be

used to determine when additional peripherals or systems are needed, or

to detect changes in the day-to-d~ processing load.

Although OPT/3000 is oriented towards the measurement and analysis of

the system as a whole tit can be of some value when tWling the

performance ot individual applications. In particular, OPT/3000 can

provide information relating to an application's usage of files and

7

Rl 7

extra data segments, plus detailed information about the application's

use of its stack. CPU usage information is also available.

INFORMATION PROVIDED BY OPr/3000

As mentioned earlier, the HP On-line Performance Tool provides

information in six different display contexts: global, memory,

CPU/memory management, I/O, process, and system tables. In this section

we describe the types of information available in each context. In

general, the information provided by OPT/3000 can be divided into two

basic classes. The first class of information shows the state of some

aspect of the system at the moment the display update is generated.

Examples of this class of information include the current contents ot

main memory and the current list of active programs. The second class

ot information summarizes activity within the system during some

interval. CPU utilization and disc I/O rates are examples of this

second class of information. In most cases, this summary class

information is reported for two types of intervals: the interval between

the previous display update and the current display update, and the

interval encompassing all update intervals since the start of OPT13000

execution. These two intervals are herein referred to as the current

interval and the overall interval, respectively. The user can clear all

totals associated with the overall interval at any time in order to

start a new overall interval. We will now discuss the information

available in each of the display contexts.

8

Rl 8



Global Context

The global context is automatically entered upon execution of OPT/3000,

and it provides summary level information concerning CPU usage, memory

utilization, disc I/O rates, and process activity. The generation of

summary reports is also controlled from the global context. The two

displays in the global context can be used to quickly determine

potential problem areas (e.g. memory bottleneck), and then more detailed

displays in the other contexts used to isolate and verify the problem at

hand. The global context can also be used to monitor general system

activity, in order to detect fluctuations in resource usage. The CPU

and disc I/O information summarizes the activity for both the current

and overall intervals, whereas the memory and process information

describes the situation at the time of the update.

Memory Context

The memory context consists of eight displays, and provides information

related to the usage of main memory and segment sizes. Three of the

displays provide information related to the current contents of memory

and the remaining displays consist of histograms depicting distributions

of segment sizes or free areas in memory. The highest level display

concerned with the contents of memory allows the user to determine the

current percentage of memory containing code segments, stacks, and extra

data segments. Additionally, the user can determine the type of code

and data segments in memory. For example, the user can determine the

percentage of the extra data.segment memory usage that is due to

lMAGE/3000, KSAM/3000, the file system, or system tables. Likewise,

9

Rl 9 r.

code segment memory usage is separated into segments originating from

program files, and those from segmented libraries.

The user is also able to generate an image of the current contents of

main memory, either for all of memory or for a single bank (64K words).

This image indicates the type of each segment (e.g. file system data

segment, stack, program file code segment), the approximate size of the

segment (in either 1K or 64 word increments), and other miscellaneous

information about the segment (e.g. is it locked or frozen?, is it an

overlay candidate?). These images are generated by utilizing the

display enhancement capabilities of the HP 264x series of terminals, and

consist of a sequence of alternating white and gray rectangles

(generated using inverse video and half-bright). Each rectangle

represents an individual segment.

The histogram displays depict the distribution of segment sizes, in

either 1K or 512-word increments. The highest level display depicts

separate distributions for code, stack, and extra data segments. The

remaining four histogram displays generate higher resolution histograms

for each of the above three segment types, plus one for free areas in

memory. The histograms are generated using the line drawing character

set of the terminal, so as to provide maximum resolution.

CPU/Memory Manager Context

The CPU/memory manager context includes three displays with information

related to CPU usage and memory management activity. The highest level

10

Rl 10



display provides information about both CPU and memory management

activity,. while the remaining two displays provide more detailed

information about each of these areas. All information provided in this

context is of the interval summary class, with information for both the

current and overall intervals.

The CPU information provided allows the user to determine the percentage

of time the CPU is in various states, as well as the rate at which

processes are being allowed to execute in the CPU. The reported CPU

states include CPU busy executing processes, CPU time for memory

management, CPU time on background memory "garbage collection", CPU on

overhead processing (e.g. handling interrupts, dispatcher time), CPU

waiting for user disc I/O to complete, CPU waiting for memory management

I/O to complete, and CPU idle. Information for process launches and

process preemptions is reported as the number of occurrences of the

event per second (i.e. as a rate). Reported rates include the current

interval, the overall interval, and the maximum rate observed in a

single interval since the start of the overall interval. These three

rates are depicted with a one-line bar on the terminal screen, utilizing

inverse video and half-bright inverse video to indicate the current and

maximum rates, plus an asterisk to denote the mean rate over all

inti.svals.

Event rate information is also reported for memory management activity

in this context. The events reported include memory allocation, memory

management disc I/O write, memory management disc I/O read, release code

11

Rl 11

segment from memory, and release data segment from memory. Information

is also available concerning how the memory manager satisfies requests

for absent segments. When a segment absence fault occurs in MPE IV, the

algorithm used by the memory management routines can terminate with one

of five possible outcomes, ranging from· recovering the segment from the

list of overlay candidates to temporarily postponing the request to

avoid thrashing. OPT/3000 shows the per~tage of memory allocation

attempts terminating with each of the five outcomes. These percentages

are shown for both the current and overall intervals, utilizing a bar

with alternating white and gray areas.

I/O Context

The I/O context provides four displays regarding I/O completion rates

for discs, line printers, and magnetic tapes. The highest level display

indicates the I/O completion rate per second for each type of device,

for both the current and overall intervals. The remaining three

displays provide more detailed information about individual devices

within each device category. These displays indicate the completion

rate for three types of I/O operations (read, write, and control) on

each individual device. This information can be used to determine if

the I/O traffic is balanced between the devices on the system, or to

identify times of peak activity.

Process Context

The process context includes four displays with information concerning

process and program activity on the system at the time the display is

12

Rl 12



updated. The highest level display provides intormation about all

active or allocated programs. This information includes the tully

qualified program tile name, the size ot the program file in words, the

number of segments in the program, the number of current users of the

program, and limited working set intormation.

Once the above display has been generated, a second level display can be

used to determine more detailed information about each process sharing a

program file (or for system processes or command interpreter processes).

The more detailed intormation includes the user name and account of the

user, the process number (PIR), the size ot the process stack in words,

the CPU tilDe used by the process, the number of open files and extra

data segments, and the job/session number.

Additional information about a specific process can then be obtained ~

generating a third level display. This display contains all of the

intormation present in the second level display, plus more detailed

information about how the process is utilizing its s~ack space (e.g. the

size ot the DL area, size of the global data area). Also included are

the names of all open tiles, a list of son processes, and a list of

explicitly obtained extra data segments and their sizes.

Some of the information reported in the second and third level displays

could be used to circumvent the security aspects of MPE. For this

reason, these two displays cannot be generated b1 all users of OPT/3000.

The security provisions within OPT/3000 allow a user with either system

13

Rl 13

manager (SM) or operator (OP) capability to generate these two displays

for any program file. Any other user can only generate the displays for

a program file it they are the creator of the file, or are the account

manager for the account in which the program file resides.

The remaining display in the process context provides information about

the number of processes in various states. For example, the total

number of processes waiting for blocked I/O, number of processes waiting

for RIMs, and the number of processes in the dispatch queue are

reported. This information indicates the state at the t~e the display

is updated, and no averages or totals over time are reported.

System Tables Context

The system tables context contains two displays indicating the eurrent

and max~ utilization ot configurable system tables. One display

provides only the current and maximum utilizations in a graphical

format, using inverse video and half-bright inverse video bars. For

almost all tables reported, the maximums are for the time since the last

system warmstart. For the remaining tables, the maximum is that

observed by OPT/3000. The second display provides more detailed

information in a tabular format~ This detailed information includes the

configured number of entries, entry size, and maximum utilization

observed b1 OPT/3000, as well as the current and maximum table

utilizations.

14

Rl 14



MEASUREMEHT TECHNIQUES

The BP On-line Performance Tool obtains the information used to generate

its disp~s from two basic sources. The first source is the new

internal measurement interface facility within MPE IV. and the second is

internal MPE data structures and tables. The measurement interface

provides all information related to CPU usage. memory management

activity. and I/O traffic. All other information reported by OPl'/3000

is obtained by examining internal MPE tables and data structures.

The measurement interface facility in MPE IV provides 0Pl'/3000 with a

formal mechanism for accessing instrumentation within MPE IV. When the

facility is enabled by 0Pl'/3000. the measurement interface obtains an

extra data selllent to be used as a set of counters. This segment is

then locked and frozen in memory and its location stored in a global

cell. As events occur, the appropriate counters within the extra data

segment are incremented by code within MPE IV. and accessed in a

consistent manner by 0Pl'/3000. The CPU state time information is

maintained in: similar fashion. OPl'/3000 determines the activity

during an interval by comparing the current sample to the previous

sample. and computing the change in each counter. A count ot the number

of processes that have activated the interface is maintained by MPE IV.

When the count falls to zero, the extra data segment is released and the

instrumentation disabled. This mechanism allows multiple copies of

OPl'/3000 to use the same shared instrumentation. As MPE continues to

evolve, both the measurement interface facility and OPT/3000 will be

15

Rl 15

modified to reflect any changes within MPE.

The overhead within MPE for maintaining the counters has been determined

to be approximately 0.3 to 0.8 percent of available CPU time, depending

upon the amount of activity within the system. OPT/3000 can collect

data from the extra data segment. and update all of its internal totals

with the change in each counter in approximately 40 milliseconds. As

can be seen from this data. the measurement interface facility provides

a very low overhead method for obtaining performance information.

All other information reported by OPT/3000 must be obtained by examining

internal MPE data structures and tables. The information concerned with

the current contents of main memory is obtained by scanning all of

memory. examining each region and sub-region header (these are similar

to the memory links in MPE III). The segment size histograms are

produced by processing the segment tables. The information concerning

program files and processes is obtained by examining the loader segment

table directory, process control block table. and the process control

block extension area in the stack of a process. System table

utilization information is partially obtained by examining information

maintained in the header port ion of each table.

The overhead required to gather aD1 of the information just mentioned

varies depending upon the system configuration. In general, the CPU

time required to collect the necessary information and update any

display ranges from 300 to 800 milliseconds, depending upon the display.

16

Rl 16



This normally translates into a total CPU overhead for OPT/3000 ranging

from 1 to 3 percent of available CPU time, depending upon the displays

generated and the frequency of display updates. An update interval of

15 seconds is the default used, and results in overhead in the 1 to 2

percent range.

SUMMARY

The HP On-line Performance Tool is part of Hewlett-Packard's integrated

approach towards offering HP 3000 users alternatives in performance

measurement analysis. In addition to OPT/3000, the first HP 3000

software performance measurement product, a new System Performance

Evaluation package and a new MPE Internals and System Performance

Analysis course are being offered tor HP 3000 users.

The recently introduced HP 3000 System Performance Evaluation Consulting

package offers an alternative to OPT/3000 for HP 3000 users who want

system performance analysis conducted by HP Performance Specialists.

These Specialists have in-depth training on the internals of MPE and on

the performance characteristics of the HP 3000. They also have a number

of HP-supplied software tools at their disposal, such as OPT/3000,

IOST~, and the MPE IV Data Collection Program (MPEDCP), for collecting

and analyzing performance measurement information on the HP 3000.

17

R1 17

A new MPE Internals and System Performance Analysis training class is

being offered in conjunction with the HP On-line Performance Tool. The

first part of the course discusses the areas of MPE IV that are

necessary for understanding the performance measurement information

presented in OPT/3000, in particular, the ne~ MPE IV memory manager, the

dispatcher, scheduler and I/O areas in MPE IV, and the process

structures. The second part of the course reviews the inter

relationships of the performance measurement variables discussed in the

first part, and presents operational guidelines for OPT/3000. In

addition, case study workshops will be used to share HP Performance

Specialist techniques and experiences with class participants.

18

Rl 18



r-f

Ne:::

****
~

..-..
Z

0::

.....
0

c.n
.-

en1J:J
Q

(..:)
W

a>
........

0
::

0
..

I-w
~

>
z<

C
en~

u
;)

IJJ

Z
Q

.

......
<

...:J
Q

.

::cQ
IJJ

U
J

~
:J:

:r=
<

'I-

~
:J:

V
)

t!'
IJJ

:;:)
.>

I=IQ
<

0
>

W

~
U

~
IJJ

V
')

0::

V
)

0

LJ:.J
......

0::

~
<

0
::

Z
~

0
0

U

t
-

~
<

c:e
Q

<
Q

..

0
::

::I:

U
J

IJJ
t!)

I-

a..
~

:
;
:
)
'1

-

0
<

W

•
>

...J

•
~

U
J

•
~

W

(..:)
*

:c:
<2::ACE:·OPERATORlESS-JOB S£HEDUlING·AND·PReCESSING

B. VAUGHAM

**** WE DIDN'T RECEIVE THE PAPERS YET (EDITOR) ****

B. VAUGHAM

HEWLETT PACKARD

R2 1



V. ANDREASSEN
H. HENDRIKSEN
BERGEN, NORWAY

THE HAPPY TRANSITION

VERNER ANDRASSEN

HARALD HENDRIKSEN

R3 1

THE HAPPY TRANSITION

by

Verner Andreassen, Data Processing Manager, City og Bergen

and

Harald Henriksen, General Manager, Aktuelldata (Norway), Sandvika

An overview of the transition from traditional mass batch

processing into user driven interaction distributed

system at City of Bergen, Norway.

R3 2



liTHE HAPPY TRANSITION

Page 2.

ORGANIZATION STRUCTURE Of THE CITY OF BERGEN

Bergen, Norway's second largest city, is situated on Norway's West Coast

about 500 km north west of Oslo. Once a Hanseatic city, and the largest

Nordic city in 1600, Bergen now has a population of 210.000, and covers

an area of 465 km2• The city administration's number of full time

employee equivalents is 10.000. The total 1981 budget is $ 400 mill.

The administration's structure is very much like the divisionalization

we often see in industrial corporations with an equal number of

employees, with one staff division, The City Manager Division. Within

this division, the EDP department is located. In addition there are

some 10 functional divisions.

To get a clear picture of the various EDP activities within the govern

ment, one has to make observations from different viewpoints. The

systems have been initiated out of different needs, they are built and

are working differently, and the administration's influence on the way

the systems are developed varies from practically none to complete

control.

After the assimilation of some of the neighbouring societies in 1972,

the main objectives of the EDP department can be summed up as follows:

1. Consolidation of the joining (as of 1972) societies operating

systems.

2. Initiating and implementation of a number of comprehensive systems

on a large IBM mainframe, owned jointly by local adminstrations and

private enterprise in the region (= KDV).

3. Setting up local, decentralized processing services, with data entry

and information systems, partly for distributed interaction with

exisiting centralized systems, but also for establishing, none-main

frame-dependant local solutions.

R3 3

liTHE HAPPY TRANSITION

Page 3.

The development has been done in cooperation with the user divisions,

and project groups have often been established for the various tasks.

The city decided in 1972 against setting up an internal data processing

centre with the resulting centralized' development and processing con

cept. for control, planning and approval of the EDP activities a

professional organ was established located in the City Manager's staff.

At this point, a committee named by and among the politicians took of

fice. (The EDP committee.) Their mandate will be discussed later,

after a look on how the consider

INFORMATION TECHNOLOGY VS. ORGANIZATION THEORY.

First, it is recognized that in relation to the development of data

processing these two concepts must have a uniform and harmonic plat

form. It is commonly accepted that the information technology has great.

influence on employment and the working environment, as well as areas of

responsibility and distribution of competance, but also on the quality

and rapidness with which tasks are completed. The technology also

defines information accessability and availability in support of plan

ning and managing the society's development. Traditional organization

theory points out a relation between the subsystems of technology, admi

nistration and the social subsystem, where the technological system is

represented by machines and in this case also software, - the social

subsystem by interhuman relations and structured, as well as unstruc

tured, ways of contact and communication. In the administrative subsys

tem we will find guidelines, policies, structures, plans and hierarchi

cal command lines. In the same way as with traditional technology, the

information technology will impact on the administrative and social

subsystems, especially when applied for rationalization purposes. These

unreflected impacts are often felt negatively. If, on the other hand,

the information technology is used purposely to influence and prepare

the organi~ation to cope with new tasks, and to solve old tasks in a

different and more effective way to produce detail and new management

information, this impact changes radically.

R3 4



"THE HAPPY TRANSITION

Page 4.

The effects appear in different ways, and often several at the same

time. One obviously and very little desired effect is e.g. that

know-how of certain (routine) jobs is drained out of the social system

and instead put into the information technology as "axioms ll e.g. burnt

into ROMs. This will gradually transfer employees into "operators",

resulting in loss of insight. A too technological information exchange

is also a risk of making people lose their feeling of belonging in a

sucial subsystem. Reallocation of competance and information through

incompetent use of technology will gradually and undeliberately restruc

ture, and in the worst case, b.ake down the administrative subsystem,

whether the effect is extreme centralization or decentralization.

These phenomenons are some of the main reasons for the strong involve

ment we see throughout the world when EDP issues are discussed. They

are also fundamental for the decision to have a co-ordinated development

of the organization structure, people and data processing, and what is

more important, the city must always master and control the information

technology and the applied methods.

THE EDP MASTER PLAN.

The political controlling authority was when this situation was recogni

zed transferred from the EDP committee to Administration Committee as a

consequence of the increasing importance of technology. An excerpt of

it's mandate tells that:

"The committee will have general guidelines approved for the use of EDP

in the city administration, anv within these consider long range plans

for the city's EDP development. These plans shall be designed also with

regard to their social impacts within the city. The committee will

influence federal and other public plans to reflect the needs of the

cityll.

The EDP master plan must, because of the strong relationship between

organization development, personnel development and data processing, be

integrated in the city overall long range planning. The master plan is

the strategic plan for the EDP development the next 5 to 10 years.

R3 5

liTHE HAPPY TRANSITION

Page 5.

It defines long range objectives, general guidelines to reach the objec

tives, and the span in regulation and the restructuring of activities.

The resource plan will explain what resources are available or needed,

in terms of personnel, technology, caoital and know-how to reach the

objectives. A tactical plan will state short term aims, with action

plans, budgets and definition of resource available. This planning

pattern has so far bee prevailing in the city's overall planning proce

dures, and has also been true for the EDP sector.

The EDP master plan is the strategic platform for the long range activi

ties, as well as for the single projects. The Master plan is therefore

considered by the Administration Committee (the politicians), and is

approved as a directive for further development prior to the planning on

the division and department level.

SYSTEMS METHODOLOGY IN THE 60IES AND 70IES

Two types of systems have been prevailing: sectorial purpose system and

function oriented systems. The sectorial systems have been serving the

tax sector, the social security sector, the public and private property

(real estate) sector, whilst the functional systems have been applied

across division borders for applications as payroll, accounting and

accounts payables and receivables.

The systems were designed as self-contained systems within the single

finctions, comprising data entry, transport/transmission to the central

mainframe, storing, processing and result presentation. The functional

systems have had the design objective to provide adequate solutions for

the smallest as well as the larges public adminstration unit. Mostly

these systems were developed by resources outside the city government

administration. Often large project organization were employed to deve

lop and design the systems, and to make it possible for most of the

involved parties to be heard. Typically, these projects were establi

shed and completed as inter city government co-operation. The size of

the systems and their complexity, has resulted in an increasing staff of

specialists within the differen system areas, but outside the city's

administration. These systems are highly vulnerable, as operation

R3 6



"THE HAPPY TRANSITION

Page 6.

experience shows that their maintainability is person dependant. This

city co op organization of system development have influenced the cost

of development and operation, and competance has been drained out of the

executing divisions into the system development organizations.

This approach in system development in the 60ies and 70ies has had the

side effects of information centralization and reduced availability and

accessability for the users, centralized competance, development and

maintenance with reduced user influence possiblities. Local administra

tions are as a consequnce driven by conditions established in the EDP

systems.

The system development trends of the 60ies and 70ies, have cemented the

sectorial and central way federal and city governments manage.

THE COMPLEXITY VS. COST ASPECT.

Profesionally, it is recognized that the more complexity you introduce

into a system to make it all-comprising, the higher the cost of develop

ment and operation will be. If we consider the cost aspect related to

the completeness of a system, the cost will increase as a constant

function until you have an approx. 80% coverage, while it'will take an

exponential function to cover the last 20%. In other words, the 80-20

rule is applicable, you do 80% of a project for 20% of the total,cost.

There was and still is a lot of room for productivity tools and action

to improve this picture.

These large systems also have certain needs to exchange data. and infor

mation integration between sys~ems that one by one is complex, is not

made easier by different software, software technology inherant in each

system and the time factor for development. The systemR are expensive

to develop and operate, and it is necessary to have several users to

make the cost of operation economically acceptable. This service bureau

syndrome has gradually defined the cities' adminstrations 8S necessary

for the continued growth of the IBM 3033 site mentioned earlier. Conse

quently,-attempts to localize data processing on minis amd micros are

often considered as threats to the large centralized

R3 7

"THE HAPPY TRANSITION

Page 7.

facility, and are therefore obstructed in different ways.

The systems of the 60ies were mainly of the periodic batch type. rile

information was transferred from the classic ledger cards to magnetIC

representation. It was necessary to make frequent printouts of file

information to keep an adequate level of information. The terminal

solutions of the 70ies made on-line inquirires on passive registers

possible. This change in information accessing made other organizing

and retrieval methods necessary, involving higher cost of operations for

the periodic systems. It also involved enhancements of the central

computer.

These complex common city government systems produced a staff of

"experts", often located outside the local administrations and with

little feeling for the administration's real needs. The situation can

be labelled as "Systems by the experts and for the experts". We often

find the user left with complex, technically oriented manuals, without

true insight in how the system functions. The expected gain in produc

tivity and rationalization was not realized, and we see the users as

suppliers of data (as contrary to information) and receivers of

results. The user influence of their working environment is reduced,

and in many cases the stress factors are increasing.

Another aspect of these large systems is the fact that the register

information is organized and primarily has the objective to satisfy

sectors within the different divisions of the administration. It is

necessary, however, for effective administration to have access to more

data than defined for each sectorial system. Therefore, we see many

manually driven support systems connected to the large, complex systems.

As these effects of the centralized systems were getting more apparaent,

it was now recognized that in order to stop the unfavourable development

of cost, and to stop the drain of competance out of the administration,

these large systems should be frozen, and the competence must be reesta

blished within the function units of the administration. Further, the

units must build up their own EDP know how, enablinq them to cope with

their own problems.

R3 8



"THE HAPPY TRANSITION

Page 8.

LOCAL TECHNOLOGY.

In the mid 70ies the situation described was getting increasingly

obvious within the city. Distributed data processing seemed to be a

solution, as it was necessary to continue using most of the large sys

tems for some years. It was made a policy to avoid participation in new

inter city projects based on large mainframes.

The first HP-3000 was installed at the City Manager's Division in mid

1977. Successively, local computers were installed at the City trea

surer, the City Transport Authority and at the City Electrical Utility.

The equipment covers functions within these main application areas:

Data entry and local storage

Local processing of local and remotely located information

(other HP-3000 x IBM)
Data presentation (line printer, VDU and graphics)

Statistical analysis and presentation

System illustration'models

Programming/System Development

Data preparation

Data communications

Education and training

Integrated text processing.

The HP-3000s are linked horizontally to each other, using HP-DSN.

Theoretically, any terminal user have access to all resources in the

network, also including several connections to the IBM mainframe. In

this concept all HP-3000 members in the network are equal.

Relatively demanding tasks are asigned to the HP-3000, such as

"THE HAPPY TRANSITION

Page 9.

establishing local interactive information systems and inter

action with local micros, data network, terminal administration,

data reduction and aggregation, together with statistical

analysis.

A PHILOSOPHICAL VIEW Of THE BOIES.

The platform for the data processing of the BOies is an analysis of the

single data item; where it is born, generated, transported, stored,

processed and where and how it is presented, and how it can be aggre

gated to the next information level. One of the most obvious shortco

mings of the systems described earlier, was the lack of defined

aggregation levels and data reduction levels. Detail transactions are

of interest only up to a certain (management) level, and will represent

a tremendous overhead when carried forward on all processing levels. To

capitalize on this recognition, it is necessary to define each data item

with reference to it's organization homestead. Definitions also have to
be made for establishing, maintenance and transaction responsibility.

In the same way, procedures and policies for the use of data items

outside it's origining domain must be established, since all items are

readily available from a technological point of view. The process of

setting up a responsibility/right-to-use structure, is done over time

and in line with the on-going development of organization, responsibi

lity, delegation, decentralization and localization.

In this way, the data structure is integrated into the city's organiza

tion pattern.

The system concept can be constructed based on the same general prin

ciples.

Instead of envisioning unified systems within each of the cities'

divisions, the systems are exploded into autonomous system elements' forsetting up local, terminal based data entry and inquiry systems,

working against the large (batch) periodically run inter city

systems, and validation and transportation of data to and from

these systems.

R3 9

data entry

data storing

data retrieval

data transportation

data processing

data presentation.

R3 10



liTHE HAPPY TRANSITION

Page 10.

A combination of the different system elements will often with little

effort provide the desired solutions.

The interaction between the system elements, whether the elements are

implemented on the same technology or different technologies, is based

upon the standardized data items, and standardized methods for moving

data between technologies. The explosion of the classic all-comprisning

system concept into functional elements, makes adaptions to individual

and local needs easier, and the external characteristics are flexible,

as the funcionalized elements contain less obstacles to the practical

implementations. It is also possible to standardize processing charac

teristics, eliminating the needs to design new processing routines for

new tasks and new data items. By processing it is here meant processing

to change register data into new data before conversion into information

(e.g. traditional payroll batch processing). A data processing system

deals with raw material, work in process and finished goods inventory.

During the 60ies and 70ies it was a recognized practice to gather all

single transactions for the different system areas for a common and

unified processing in a huge mass transaction system prior to the final

results. The uncritical transport of single transactions to the regis

ters of the large systems has made these systems unsuitable as manage

ment tools. Through a flexible and localized application of data entry,

storing, retrieval and presentation, transaction data can be handled on

a low organization level. Instead of sending the total transaction

volume on to the next level in the organization, the data entry system

will make aggregates to the next management level. The transactions can

be stored in its system of origin for the purpose of e.g. statistical

processing. On an expection basis single transactions are forwarded one

or more levels up (e.g. payroll transactions). The distributed concept

complies with ~he need for authorized information retrieval, both verti

cally and horizontally.

As data processing in the 60ies and 70ies focused on quantities, the

focus of the BOies will be on improved quality and productivity in

retrieval, transportation, analysis and presentation of information.

R3 11



RMIT STUDENT DATA BASE

N.F. RIEDL

N.F. RIEDL
E. DE GRAAUW
ROYAL MELBOURNE INST. OF TECHNOLOGY

R4 1

RMIT STUDENT DATA BASE

The Student Data Base and its peripheral systems

were developed and introduced by staff of the

Royal Melbourne Institute of Technology. The

project was supervised by Mr. N.F. Riedl,

Data Base Administrator and E. de Graauw, Senior

Systems Analyst.

R4 2

/



1. DESIGN OBJECTIVES FOR THE RMIT STUDENT DATA BASE

The RMIT Student Data Base was designed to satisfy

the following basic requirements.

.2.

information and academic information respectively.

Additional programs are available to process bulk

information, such as examination results, in batch

mode and to produce a large variety of reports.

1.

2.

3.

4.

5.

The recording, in on-line mode, of the

Academic progress of 12,000 students.

The capacity to enrol most of these

students over a three week period.

The production of examination lists covering

all intermediate and final examinations.

The retention of a complete academic

history for each student.

To provide a basis for resources planning.

Student information held on the data base provides

a complete profi~e of current and historical,

academic and personal details, for each student who

attended courses during the past years. Once a

students' most recent records reach a certain age,

all of his information is archived (unloaded to tape

and, possibly, microfiche) and only an extract of his

original record, including a microfiche reference, is

kept on-line for further use.

Academic information describes course structures,

including past and future courses.

2. OVERVIEW OF THE RMIT STUDENT DATA BASE

2.1 Description (See Appendix I for DB Diagram)

The name RMIT Student Data Base describes both

a data base containing academic and student

information, as well as the systems that operate

on this data base.

Day to day maintenance of data on the Student Data

Base is performed using two major programs which

allow on-line, real-time, processing of student

.. /2

R4 3

Subjects are recorded as part of course years and

stages and full details are available as to how

subjects may be taken, who may take the subjects.and

study periods involved. Provision is made for sub

division of subjects into units, with similar

information being recorded for units as for subjects.

Examination details which may be recorded for subjects

and units include such items as intervals at which

intermediate examinations are due and number of

papers per examination .

.. /3

R4 4



2.2

·3.

Technical Aspects

The Student Data Base was set up using the HP

Image data base package.

Because most of the information on the data base

is subject to various conditions and relationships,

special access modules were designed and written by

RMIT staff, which incorporate the logic needed to

.4.

Course information is retained after courses have

been phased cut, because student records on file

may still refer to these courses. This

necessitates data base course structures which can

represent the various stages of course development.

Thus users may set up details of future courses

without enrolments taking place in these courses.

take these requirements into account. As a result

on the starting year, starting semester and duration

of the subject. Maximum duration was set at four

semesters.

In any semester most students are studying only for

some of the subjects they enrolled for at the beginning

of the acad~mic year. Those subjects have been .

defined in the Student Data Base as "current" for

RMIT programmers can concentrate on processing the

data without the need to get involved in basic data

collection techniques. The following is an

example of the technique used:-

that semester. Whether a subject is current depends

Or a gradual phasing in or out of course years and

stages may be represented.

And, finally, courses may be phased out entirely so

that no enrolments can take place, although full

course details are available for reporting purposes.

All of this is controlled by a dating system which

defines the total period over which a course, course

year, stage, subject or unit is available as well as

the periods over which different versions of the same

are in use.

Data Base access modules have been developed which will

extract, for a given student, the subjects that were

current in any semester or year for a specified course.

Another example is the use of special modules to extract

"current" academic information from the historical

course data.

. ./4

R4 5

3. INFORMATION ON THE STUDENT DATA BASE

3.1 Student Data

Student Data is recorded under different headings to

assist with the access and maintenance of information

on file. The groups of data are listed below.

.. /5

R4 6



. 5.

Personal Details - Name, addresses, etc.

.6 .

A structure of academic data groups, similar to

Historical addresses - Recorded as a result of address
changes.

Statistical details - Employment, residential and
educational status.

student details, provides for economic and

versatile processing facilities.

Financial details - Annual record of fees due
and paid.

The main data groups are listed below.

Award details

Prize details

Course details

Subject details

Unit details

- Historic record of all awards
presented.

- Historic records of prizes
obtained by students.

- One set of details for each year
for each course enrolment per
student, containing details such
as course code, study mode, study
load, enrolment year, etc.

- One set of details for each subject
enrolment per student containing
details such as subject number,
course code, enrolment year and
semester, study mode and result.

- One set of details for each unit
enrolment per student containing
details such as unit number,
subject number, enrolment year
and semester, study mode and result.

Course details

Subject details

Unit details

4. DATA STATUS CONCEPTS

- These are distributed over several
groups which provide historical
details, basic course details
such as course description and
structural details which link
subjects to relevant years and
stages.

- These are distributed over several
groups which provide historical
details, basic subject details,
such as name of subject, structural
details, which lists units that
belong to a subject, and
examination details which indicate
the number of examinations and
timing of examinations per subject.

- These are distributed over several
groups which provide information
similar to that available for
subjects as outlined above.

3.2 Course Data (See Appendix II)

The academic data structures in the Student Data Base

4.1 General Description

Information on the Student Data Base is in a state of

permit a true representation of course structures as flux. From the moment a student enrols, his enrolment

defined in the RMIT calendar, complete with elective details determine where he fits into the student profile.

structures in use in different course. This information
Depending on wether he is an internal or external

is linked to academic data recorded for individual

students, -thus making possible the production of

various academically oriented reports such as

examination stationery.

.• /6

R4 7

student, doing Course A or Course Z, full time or

part time mode, etc., etc., his name mayor may not

appear on various reports, notices, examination

stationery, etc.

Every change to his status, such as a subject

cancellation~receiptof results, re-enrolment, leave
.. /7



.7.

of absence, etc., may affect the way the next

process (report, update, etc.) treats his

.8.

- Deleted

of the major status conditions that may occur

and their effects.

- Current

This is a student who is currently attending

Student Status

This is a major indicator which determines the

overall standing of a student. It takes the

following values.

4.2

records.

classes.

It is therefore important to be aware

The student may be enrolled in several

4.3

- Archived

Enrolment Status

This status is based on how a student is currently

enrolled in a course or each of several courses.

Enrolment status determines the following:

Year of enrolment (used to identify current

and historical enrolment).

Year or Stage of Course

Study Mode (Internal, External, Mixed)

Study Load (Full Time, Part Time, Single Subject).
courses at once, in which case cancellation of one

course will not affect his current status.

Depending on further sub classifications this

student will appear on most standard printouts.

Other status possibilities are

- Concessional (Enrolment at RMIT subsidiary to

enrolment elsewhere).

- Leave of Absence

- Unsatisfactory

- Inactive

.. /8

R4 9

4.4 Subject/Unit Currency per student (See Appendix III)

Subject/Unit Currency is a definition that was

developed to enable identification of Subjects and

Units that have reached a certain stage of completion.

The information on which this currency is based is

for each Subject or Unit:

The year of enrolment

The starting semester

The duration in semesters.

Using the above information it is possible to define

which Subjects/Units are, or were, current at any'

point in time. In practice it was found that two

.. /9

R4 10



. 9.

types of currency stood out as a basis for further

refinement.

Thus, to extract all Subjects and Units that a

student is (or was) enrolled in any year, we use:

.10 •

The following definitions of currency apply.

Academic Definitions of Current Course

This is a Course which includes the year

specified as '~urrent' in its period of currency.

Year Currency "A Subject or Unit is current in

any given year if the study period for the Subject

or Unit takes in at least one semester in that year".

For the purpose of selecting Subjects and Units

that may be due for examination in a particular

semester, we use:

Academic Definitions of Current Subject

This is a Subject which includes the year

specified as 'current' in its period of currency.

Academic Definition of Current Unit

This is a Unit which includes the year specified
Semester Currency "A Subject or Unit is current in

as 'current' in its period of currency.

a given semester if part or all of the study period

for the Subject or Unit coincides with that Semester".

To further determine whether an examination is due for

a particular Subject or Unit enrolment, the examination

details include an item called EXAM-SEMESTERS, which

specifies the number of semesters required to be

completed in the Subject or Unit beofre the

4.6

Note that in the above definitions current year may

be any year specified for this purpose.

Example of Student Data Currency

The last page in this chapter contains a typical

academic student data structure, representing

schematically the type of structure that exists on

the Student Data Base.

examination is due. This permits users of the system

to define intermediate examinations. A number of
From this structure the following information

file, it is necessary to ascertain that student

details are related to academic data for corresponding
•• /10

4.5

formulae have been developed which are used to

determine enrolment currency, exam currency, re-

enrolment currency, etc., using the above criteria.

Currency of Academic Data (See Appendix II)

Due to the historical nature of the academic data on

periods.
R4 11

may be extracted.

a. This student has attempted three courses.

b. He is currently (1980) studying subjects in
Courses Band C.

c. This year (1980) he is enrolled for
Subjects CBS2 (Unitized Subject)

CBS3

CCS5

CCS6

CCS7 .. /11
R4 12



.11.

.12.

TYPICAL ACADEMIC STUDENT DATA STRUCTURE

MSTUDENT DSTUDENT-COURSE DSTUDENT-SUBJECT DSTUDENT-UNIT

~
CCS5/l/2

OURSE-C (YR=80) CCS6/2/~1 CCS7Ul/1/1
CCS7/0/ CCS7U2/2/l

CCS7U3/2/2
CCS7U4/1/2

CASI/l/l
/CAS2/l/2

(YR=75)~CAS3/2/1
CAS5Ul/1/1

~AS4/l/l ~CAS5U2/l/2
(YR=76)~~AS5/0/0~CAS5U3/2/l

CAS6/l/2

~
CAS7/l/l

(YR=77) CAS8/l/l
CAS9/l/2

(YR=79)~CBSl/l/l
----.CBS2/0/0--- CBS2Ul/2/2
~BS2/0/0~CBS2U2/l/l

(YR=80)~BS3/1/2 ~CBS2U3/l/1

~CSl/2/l
(YR=78)~CS2/l/2

______CCS3/l/l
(YR=79)~CCS4/2/2

COURSE-A

SETS:

Note in the last example that if CCS3/l/l had

been recorded as CCS3/2/3, this subject would

have been current in semester 2, 1980.

b. This semester (Semester 2, 1980) he is engaged
in the following Subjects and Units (Note: 1/2
means starting semester is 1 and duration is 2
semester):

Subjects CBS3/l/2

CCS4/2/2

CCS5/l/2

CCS6/2/l

CCS7/0/0 (Unitized Subject)

Units CCS7U2/2/l

CCS7U3/2/2

CCS7U4/l/2

and units CBS2Ul

CBS2U2

CBS2U3

CCS7Ul

CCS7U2

CCS7U3

CCS7U4

.• / 13

•• /12

R4 13 R4 14



.13.

This is achieved through the use of an enrolment

ENROLMENTS

5.1 Enrolment Data Base (See Appendix IV)

The enrolment system reduces input data handling

to a minimum.

of data which was printed on enrolment forms for new

and returning students. For new students the

enrolment information consists of data transferred

from applications processed by the Admissions

System and academic details extracted from the

Student Data Base.

S.

data base. The enrolment data base contains copies

5.2

.14.

Enrolment Forms

Details printed on enrolment forms include Subjects

and Units that new students are expected to study in

the first year or stage of their course.

Preprinting of subjects and Units can be valuable

for the following reasons:

Reduction in Keying - if the preprinted subject

and unit details are correct, they need not be

keyed again.

Early Enrolment Statistics - Any saving in

processing time will speed up the production of

enrolment statistics.

For returning students the enrolment information is

taken from their records on the Student Data Base.

The data in the enrolment data base is used to speed

up on-line enrolments as explained in a later

chapter. (5.4)

Students who are not shown on any of the enrolment

files may be enrolled by overriding the normal data

checks. This procedure permits the enrolment of

students who enrol before the addition data has been

processed or who do not enrol via the Admissions system.

• • /14

R4 15

Fewer Errors - If less data is transcribed manually,

fewer errors will occur.

For returning students the selection of Subjects

and Units for preprinting poses serious problems at

RMIT, as a result of loosely defined course structures,

insufficient knowledge of Subjects and Units completed

at printing time and the large number of students who

"straddle" course years and stages.

Although the system is capable of preprinting most

Subjects and Units for returning students, due to the

above problems this facility is currently not used .

•• / IS

R4 16



·16 •

5.3

•15.

The only Subjects and Units that are preprinted for

returning students are those that they have started

in the preceding year and have not yet completed

in terms of the total duration of these Subjects

and Units.

Data Priorities

The enrolment process is designed to satisfy the

following requirements:

Depending on the type of number submitted, the

system will access either the admission data or

the returning student data on the enrolment data

base and display all of the information that was

printed earlier on the enrolment form.

The operator modifies the details shown on the screen

as required and adds any missing PART I details from

the form. This tends to involve mainly Subject

information.

The system then checks the data and reports on errors

satisfactory extent, and provided the data is not

rejected entirely, due to serious errors, the

operator indicates that the data is to be processed.

While enrolments are in progress, the Academic

departments and Planning Branch need information on

total numbers of students enrolled to-date in

various categories.

The enrolment details required for this are treated

found. When the data has been corrected to a

as high priority data, to be processed on-line. (PART I)
5.5 NORMAL and FAST Modes

The remainder is processed in batch mode (PART II). To provide for greater flexibility in the on-line

Note, that PART I details may be batched if necessary. process, the system allows operators to specify

"FAST MODE" incase of peak loads.

5.4 ~

A specially designed enrolment form is in use which

clearly identifies the on-line and batch input data

areas.

When a student hands in a completed enrolment form,

the keyboard operator enters the Student Number shown

on the form, or, if the student is a new student, the

In NORMAL mode the system updates the Student Data

Base directly with data received from the key board

operator.

In FAST mode the data submitted by the operator 1s stored

in a holding file and used to update the Data Base ~n

batch mode at a later stage, when demands on the

computer are less.
../17

Application Number.
•• /16

R4 17 R4 18



.17.

When a number of operators are keying enrolment

information simultaneously, any number of them

may be using one or other of the input modes

described above.

R4 19

RMIT STUDENT DATA BASE DIAGRAM APPENDIX I

v

DUNIT-EXAM

19/8/81
E.de G.

R4 20



APPENDIX II Page 1 of 2
APPENDIX II Page 2 of 2

STUDENT DATA BASE COURSE STRUCTURES
STUDENT DATA BASE SUBJECT STRUCTURES

Data Sets
(1) = MCOURSE 0> = DCOURSE-YR
(2) = DCOURSE-INFO Qi) = DCOURSE-SUBJECT

198 /2 COURSE DETAILS

C

CD = MSUBJECT @ = MUNIT
~::: DSUBJECT-INFO G> = DUNIT-INFO
0> = DSUBJECT-UNIT

197 ~18 19 BOlli ~81/2 SUBJECT MASTER ENTRY 19<;9
b

(e.g. tpt)
Version 1 --
Version 2

Version 3 --
Vpr~ion 4

SUBJECT MASTER ENTRY

Standard Onitized unitized Version 2
(e.g. 'Qt)

l\Lersion 1 _Version 1
~

Standard

~nl~Version 2

" !2
-

" 3

" 4

«~Unit 1 -
II 2 1.. 6 --~ ..

7
-

" 9

Unit taken as Subject
~

IJNIT MA~TER ENTRY
(e.g. 1)

Academic-Yr-To
Vpr~don 1 ----

2Acadanic Version --Yr-From
I Version 3

Data Sets r-

19

(~

SUBJ-

SUBJ-

SUBJQ

~1JR.T-

, SUBJ-

,,, D

B

Version 3

STAGE A

YR 2

YR 1

1 SUBJP

~""Rl_

~TG B

STG A

COURSE MASTER ENTRY

Ve sion 2

197 /8

SUBJ-

SUBJ:.,

SURJ-

YR L

Version 1

1972

R4 21
R4 22



APPENDIX III
RMI! ENROLMENT FLOW DIAGRAM

~PENDIX IV

SUBJECT CURRENCY RANGES

Update
Report

A

Enrolment
Forms

'FAST MODE'

Enrolment

'--"1:'=:=--~.,----_--.JForms

H

I
FEBJAN

4

FEB

3

JANFEB

SEMESTER DVRATION
1 I 2

I

JAN

I I
I I
I I
TA I
I
I

I

L-
I

I

I
- B I

G
I

R I I
I I
I lC
I
I

I

I
I

I
I

D

I
I I

, l I
I

IJ:.

I
I I
I I
I

,F

I I
I I
I I

I
G

I
I I

I L I I
I I 1

I
I I I
I I I I

STARTING
SEMESTER

2

STARTIN
SEMESTE

1

12 4
1-----t------t---=---.J--:.----1

~4 23 ~4 24



AN INTRODUCTION TI CCITT RECOMMENDATION X.21

BILL BADDELEY

B. BADDELEY
HEWLETT PACKARD
COMMERCIAL SYSTEMS PINEWOOD
308-314 KINGS ROAD, READING
BERKSHIRE, RGI 4ES

R5 1

An I~troduction to rrTTT Recommepdatio~ X.21

Bill Baddeley
Hewlett Packard
r'ommercial Systems Pinewood

This paper is an introduction to rrITT Recommendation X.21. The
recommendation specifies a new data communications interface
which you will probably encounter soon if vou haven't already.

At the present time, most data communications among remote
terminals and computer systems are carried over the public
switched telephone network or over leased telephone circuits.
The telephone network has evolved over many years and is an
excellent medium for voice transmission. When people started
connec~ing computers and terminals over long distances, the
telephone network provided a readily availble, though not an
optimal, connection medium for digital signalling. romputer
systems and terminal equipment are tvpically connected to the
public switched telephone network or leased telephone lines
through an interface which is referred to by th~ label RS-232 or
V.24. This interface type has been around for quite some time
and is commonly available on modem and terminal equipment.

An organization of devoted to international cooperation. in
telecommunications, the rrITT, is an international advisory body
which deals with telephone and telegraph communications. The
rrITT issues recommendations for services and implementation of
services. There is a series of rrITT recommendations (the
"V-series" recommendations) for the connection of data terminal
equipment or DTF (the cate~ory DTF includes terminals and
computer systems) to the telephone network throu~h a modem. The
connection point to the telephone network is called the data
circuit terminating equipment, or DCF. The standard connection
between terminals or systems and the telephonp. network is
described in CrITT recommendation V.24 and the ETA (th~ U.S.
Flectronic Industry Association) RS-232. The 25-pin connector
which you may have seen on your terminal cable or computer system
is the standard connector for this interface. The V.24 or RS232
connection carries signals between the terminal or computer and
the modem. These signals include the trapsmitted and received
dat~ signals, timing information and control signals which
constitute a dialog between the modem and the computer concerning
the state of the connection. For leased telephone circuits, the
V.24/RS-232 connection carries all of the information needed
between the modem and the system or terminal. The V.24"
recommendation specifies the function of each of the data and
control circuits in the interface, and the dialog between the
terminal/system and the modem/DC-F. For switch~d telephone
connections, some PTTs offer automatic calling units. rrTTT

R5 2



~~~arison of rrITT Recommendations V.24 and X.?1

recommendation V.24 also describes the standard interfa~e between

a system or terminal and the automatic calling unit (th~ FIA

specification is RS-366). This interface uses the same 25-pin

connector as the V.24 modem interface with redefined signal

lines. The V.24 recommendation specifies the dialog between the

system/terminal and the automatic calling unit for establishing

connections.

The telephone network is being replaced for some classes of data

communications traffic by public data networks. There is a lot

of information in the computer press these days about the new

public data networks and the n~w international standards for

these data networks. Dependin~ on where you are lo~ated, you may

have heard of either X.25 or X.21 or both. The rrrTT has issued

a series of recommendations (the X series) whi~h deal with data

communications networks. The X series of recommendations de~l

with services on networks which are specifically desi~ned for

data communications. There are quite a few public data networks

now in operation, and more services are plan~ed for introduction

within the next few years.

These networks can be broken into two principal ~ate~ories

according to the type of service which theY offer. One tvpe is

Circuit-Switched, where the connection between two sYstems or

terminals is equivalent to a hardwired connection once it has

been established through the network. Fxamples of circuit

switched networks are the Nordic Public Data Network in Denmark,

Finland, Norway and Sweden and the DATFX-L network in the Federal

Republic of Germany. The other type of network is

Packet-Switched. Packet switched networks support multiple

virtual connections through the network over a single DTF/DrF

connection.

The CCITT X.21 recommendation describes an interface between Data

Terminal Fquipment (terminals and systems) and Data

Circuit-terminating Fquipment for synchronous ooeration on public

data networks. This interface replaces the two-connector,

multiple signal interface of V.24 with a simpler set of signals,

a smaller connector, and imoroved electrical characteristics

(fig. 1).

R5 3

V.24

Auto raIl
Unit.

Modem
Unit.

Distance: < 20 ~etres

Speed: < 20 Kbit/sec.

Signals: <= 31 signals

ronnectors: 1-2 25-pin

X.21

1DTF ~~J

> 1000 ~etres

> 100 Kbit/sec.

<= 7 signals

15-pin

I)

R5 4

The X.21 interface is better able to meet the r~quirements of
~urrent systems for data ~ommuni~ations than is V.24 in t~rms of
speed and distance between the system and the network port
interface. The speeds of service in public data np.tworks under
the CCITT X recommendations are easily met bv the X.21 int~rfa~e,

the fastest being 48 kbits/sec. For this reason, X.21 is
gradually replacing the V.24 interfa~e.

The rrITT X.25 recommendation, which covers packet-swit~hed data
networks, sp~cifies the X.21 interface as the electrical and
mechanical interface between the DTF and DCF. The X.25
recommendation will be covered in more detail later in this
session.

In addition to the electrical and logical definition of the X.21
interface, the rCITT recommendation des~ribes logi~al procedures
for the operation of the interface in a circuit-swit~hed network
and in leased-circuit appli~ations.

The circuit-switched network pro~edures are broken into four
phases: the quiescent phase, when no conne~tion exists betwe~n

the local"station and any remote station; the call establishment
phase, when either the DTF starts a call or the DrF signals an
incoming call; the data transfer phase, and; the call clearing
phase. The circuit-switched network procedures are very much
like the procedures one uses with the switched telephone network.

During the q~iescent phase, the telephone is on-hook. In the
X.21 case, the system/terminal~and the network signal their
respective states of readiness to establish a connection through
the network.

o

2

4,5

6

1

8

rode

01
02
03

20
21
22
23

41
42
43
44
45
46
41
48
49
51
52

61

11

81
82
83

X.21 raIl Progress Signals

Meaning

Terminal raIled
Redirected Call
Connect When Free

No r·onnect ion
Number Busy
Selection Signals Procedure Frror
Selection Signals Transmission Frror

Access Barred
Changed Number
Not Obtainable
Out 0 f Order
rontrolled Not Readv
Uncontrolled Not Re~dY
DrF Power 0 ff
Invalid Facilitv Request
Network Fault in Lo~al Loop
raIl Information Servi~e

Incompatible User rlass of Servi~e

Network Congestion (short term)

Long-term Network Congestion

Registration/Cancellation ronfirmed
Redirection Activated
Redirection Deactivated

The call establishment phase, in the case of the telephone
conversation, begins when one lifts the receiver and dials ~

number or when the telephone rings, signalling an incoming call.
In the X.21 network, the terminal/system signals to the DCF that
it is preparing to issue selection signals; the DrF responds bv
signalling "proceed to select", and then the DTF issues a .
selection signnl sequence specifying a remote station and/or
network services. An incoming call is announced bv the DCF to
the DTF/system/terminal. All cases of call collision (incoming
and outgoing calls at the same time) are resolved in favor of th~

outgoing call. If one dials a busy station or mis-dial a number,
you receive in response a tone or tone sequen~e, or perhaps a
recorded message. In the case of an X.21 network, t.he calling
DTF receives call progress signals (figure) which indicate wrv a
call is delayed or why it has failed. These call progress .
signals are useful in determining a reasonable next action. In
additon to call progress signals, the X.21 recommendation
describes optional facilities for transf~rring information su~h

as called line identification to the ~alling DTF and calling line
identificaiton to the called DTF as part of the ~all setup
procedure.

RS 5

Group 0 signals are delay conditions without call clearing
Group 2 signals indicate short-term ~onditions

Group 4 and 5 signals indicBte long-term conditions
Group 6 signals are short-term network related conditions
Group 1 signals are long-term network related conditions
Group 8 signals are confirmation signals (with call clearing)

RS 6

Once the call setup is ~omplete, the connection betwpen the
calling and the called DTFs is transparent. The nptwork
transfers thp. states of each station's transmit data line
bit-for-bit exactly as it appears at the DrF interfa~e. The data
phase continues until one of the DTFs signals a clear request.
This is analogous to the ~onversation part of a telephone call.

raIl clearing is signalled by either end and transferred to the
opposite end. Following ~all clearing, the DTF and DrF re-enter
the quiescent phase.

The circuit switched public data network has several advantages
over the public telephone network, having been designed expressly
for data communications. One clear advantage is automatic call
establishment (no operator dialling).

The X-series reco~mendations include recommendations for a
uniform international node numbering scheme which is analogous to
the international telephone numbering scheme. For p.xample, each
Nordic network connection has a 6-digit network number, which is
unique within the country. International calls in~lude an
international prefix, a network/nation code, and a network node
identification number. Within the Nordic Public Data Network,
~alls are possible among the nations of Denmark, Finland, Norway
an9 Sweden.

Another feature of the new public data networks is fast call
establishment and high reliability. For example, the Nordic
Public Data Network specifications state that all ~alls will be
set up within 2 seconds, 99% will be set up within 0.5 seconds
and 90~ of all calls will be set up within 0.1 seconds.
Similarly all call clearing operations will take under 0.2
seconds, with 90~ under 0.05 seconds. This is clearly an
improvement over the performance of the switched telephone
network.

The X.21 call progress signals, described previously, provide a
clear indication of the status of a given call attempt along with
information about the probable success of a retrv.

Additional facilities allow the subscriber to simplify the call
process by using short-form addresses for commonly called remote
nodes. Access restrictions can be placed on a given node bv
specifying optional facilities to bar incoming or outgoing calls.
A group number facility allows several ports to be accessed from
the network by a common node address; a central computer can be
equipped with several ports which, in addition to their unique
addresses are also accessed via a common nationa1/T~E'twork number.
This facility is also referred to as "multiple lines at the same
address". The Closed User Group facility allows the creation of
private networks within the larger public data network. If a
company has several systems at different geographi~al locations,
and has no need to connect them to systems outside of the
particular set, then the specification of closed user group

R5 7

membership for each of them eliminates access from computers
outside the network. The facility can also be used in surh a way
as to restrict the connections from any node in the grcup to only
other group members. It is also possible for a particular ncde
to belong to several closed use~ groups, one of which is the
default or preferential one. In order to switch from the
preferential to an alternate c]osed user group, the selection
signal sequence is prefixed with a facility requpst 00de
specifying which alternate group is to be used for the call
set~p, followed by the address of the npde within that group.

A ~all queueing facilitv allows incoming calls to be held in a
first ir. first out queue with a specified number of positions.
The caller receives a call progress signal indicating that thp.
call is queued at the remote end. The call redirpction favilitv
allows one node to temporarily transfer its address to anotr.~r

node; for the period during which this facilitv is activated. all
calls for the node are redirected automaticallv to the alt~r~ate

node. A call progress signal informs callers that the call has
be en red ire (' ted • Th e CalI i ng an d raIl e d Lin e ide nt i fie 8 t i (" n
facilities provide for verification and monitoring of connp~ti0~S

rna de t h r 0 ugh the netw0 r k . A nod e sp ec i f yin g the r har geT r' ~.: i" sf e r
facility is charged for all incoming calls (which are normally
charged to the call~r). The charge advi ce faci 1 i tv allow s a node
to be informed, following disconnection, of the charges for a
call.

r ire u i t - s wit c hed X. 2 1 net w0 r k s ar e cu r r e nt 1y 0 f f E' red i n r r: ~' :f, ark ,
Finland, Norway, Sweden, F.R. Germany, and Japan. Several other
Furopean nations have X.21 networks in their future plans.
Further information about the specification and the network
services is available from the implementing PTTs, and from the
rCITT (Union Internationale Des Telecommunications, Place des
Nations, CH-1211 GFNFVF 20, SUISSF).

R5 8

M. PAIVINEN
HEWLETT PACKARD

OPERATeR/CONSOlE·INTERFACE

AN·ENGINEERING~FEEDBACK-SESSION

MICHAEL PAIVINEN

Sl 1

OPERATOR/CONSOLE INTERFACE
AN ENGINEERING FEEDBACK SESSION

PRESENTOR
MICHAEL PAIVINEN

COMPUTER SYSTEMS QIVISION

IN MPE III VERSION B.01.00, THE CONSOLE INTERFACE WAS REDESIGNED
TO PROVIDE A DISTRIBUTED CONSOLE FACILITY BY INTRODUCING THE
ASSOCIATE, ALLOW, AND CONSOLE COMMANDS. IN ORDER TO PROVIDE
DIRECTION FOR THE FURTHER DEVELOPMENT OF THE OPERATOR INTERFACE,
THE AUTHOR WILL BE SOLICITING CUSTOMER INPUT ON THE FOLLOWING
QUESTIONS:

1. WHO IS THE "TYPICAL" OPERATOR? WHAT IS HIS/HER COMPUTER
SCIENCE BACKGROUND? SOPHISTICATION? WHAT SET OF SYSTEM
CAPABILITIES ARE GIVEN TO THE OPERATOR?

2. WHAT FUNCTIONS DO THE OPERATORS PERFORM ROUTINELY? WHAT
ARE THEIR ADDITIONAL RESPONSIBILITIES? WHAT SYSTEM OPERATIONS
ARE NOT IN THE HANDS OF THE OPERATOR? WHY?

3. ARE CUSTOMERS USING THE DISTRIBUTE CONSOLE FACILITY? IF SO,
HOW IS IT BEING USED? IF NOT, WHAT ARE THE PROBLEMS?

4. WHAT FEATURES OF THE INTERFACE HELP OPERATORS CONTROL THE
SYSTEM? HOW COULD THE INTERFACE BE IMPROVED TO PROVIDE BETTER
CONTROL?

5. HOW WOULD CUSTOMERS LIKE TO SEE THE CONSOLE INTERFACE EVOLVE?
MORE POWERFUL OPERATOR CAPABILITIES? AUTOMATION OF SYSTEM
FUNCTIONS TO REQUIRE NO OPERATOR INTERVENTION? OTHER SUGGESTIONS?

Sl 2

HP 3000 SECURITY/RISK MANAGEMENT

c.w. LAZAR

C.W. LAZAR
SYSTEMS INFORMATION AND TECHNOLOGY
ARCO TRANSPORTATION COMPANY

Los ANGELES

52 1

c.w. Lazar
Systems infonmation and technology
Arco transporation company
Los Angeles

HP 3000 Security/risk management

Purpose
The purpose of security/risk management is
to maintain operations in planned mode
to prevent as far as practicable unauthorized
access to (discovery or modification) of
program and data files
to prevent, mitigate or recover from inside or
outside dysfunctions.
Environment

Organizations that can afford an HP 3000 and the support
staff generally are significant businesses.
Edp costs vary between 1.5 pct and 5 pct of total costs and
business related systems may handle 30 pct to 50 pct of company
revenues.
The following system illustrate the point.
Payroll 30 pct plus
materials purchasing 30 II

accounts payable 30 II

materials inventory 10 II

genera1 1edger 100 II

Hence a 20 Dollar a year business may run 6 to 20
million through its HP 3000
my company runs approximately 70 million through and
we may double that in 12 months.
Most HP 3000 installations represent a department's
first or most ambitious step into electronic data
processing away from manual or service center operations.
a large portion of system managers have had little or no system
management responsibilities.
This presentation is aimed at them and their concerned
auditors.
2 - 1

2. The fundamental security devision rule
decision about security measures should be based on cost
versus worth. An organization shouldn't spend more to avoid

- 1 -

52 2

4000/.001
or
4,000,000
if back-up tapes are stored off-site and there
is a back-up computer access agreement, then it
is unlikely that the cost of a total hardware
loss fire would equal 4,000,000.
It follows that an expensive a~tomatic halon
system may be a waste of stockholders' money
for a business data processing machine. This
of course may not be true for a real time
process control computer or an airline reservation
system.
This is a reasonable example of applying the
decision rule. It of course doesn't leave the
auditors with a sanguine feeling, that I placated
by installing a 60 handcarried halon system.
3. Quantification of security costs
Decisions about security need to be couched in
reasonable estimates of costs of security systems
and probabilities of undesired incidents.
3.1 Security systems costs.
Security systems can be divided into two arbitrary
classes
probability reducers
cost mitigators
The following are examples of
probability reducers, their objectives
and ball park costs.

an increase than the libel or expected cost of the incident.
In mathematical terms
de(pic1) is greater than(de(p1'ci') plus demci)
where
de equals discounted expected value
pi probability of incident i
c1 cost of incident i
mc; II II cost of mitigation measures for incident
No absolutes
The cedision rule is not a new or original
concept. It is a game theory rule that
emphasizes that there are no absolutes.
That measures short of suicide can't eliminate
undesired incidents: they can only reduce theire
probability on their cost.
Consider a fire in the computer room. It can
be caused by a dropped cigarette or an electrical
short or an overheated cooling fan or arson or a
fire in the next room or one probagated through
the plenum or false floor. Rules can ban smoking
but not electrical shorts.
2 - 3
Paperless computer rooms can reduce the source
of fuel and halon systems can reduce the source
of oxygen. But how often is the computer room
the first source of fire in a building. How
many computer rooms share buildings with chemical
closets used by cleaning personnel or oily rags
used by engineers?
How many computer centers are built on bed rock
with fire proof walls and no common air conditioning
equipment?

How well will these fire retardent measures combate
and enternally sourced fire and which more probable?
2 - 4
The probability of a computer room fire is very
low on the order less than 0.1 pct per year. The
cost of an automatic halon system is 4000 to
10,000 for a 10' x 15' room. It would imply
that the cost of the fire totally suppressed
should be

- 2 -
52 3

item
computer room
locks

door locks

objective
reduce unauthor
ized access

reduce unauthor
ized access to
files
reduce probabil
ity of theft

cost range
150- 1000

100- 300
one time

comment
cheap looks
can be
jimmied.
with credit
card
beveled
latches can
be jimmied
with credit

card

- 3 - 52 4

item objective cost range comment same port.

sentries reduce unauthor- 10,000- 20,000 cheap no smoking reduce fire 1 to? some smokers

ized access to per shift per sentry can probability will violate

files year become thief reduce disk wear rule. Some

reduced probabil- can become may quit.

ity of thef lazy manual fire put out fire 50- 200 Good for

passwords reduce unauthor- 1.00- 5.00 effective- extinguisher limited fire.

account, group, ized access to per password ness is in- Doesn't work

user files and per change versely pro- without

programs portioned to operator.

age and tape back-up recover lost 15 to 50 Typically

number of system files per tape per half a week

cognocenti day plus re- day will be

approaching entry cost at lost and will

item objective cost range conunent 1/2 a day per have manual-

zero after person ly re-entered

three days. back-up tapes

Low cost and item objective cost range COl111lent

low effect- Should be

iveness stored

paswords are remotely. Need

stored in protection

clear text system.

in stream remote protect back-up 2- 10 per Should be

jobs that tape tapes from month per tested

are not storage local dys- tape episodically

lock worded function

and in image hardware recover costs 2 to 5 pct of most large companies

schema that insurance of hardware self-insured.

are not lock disaster 1.5 to 3 Read policies

worded. times costs carefully.

Multi user the expected

paswords cost of the

obviate disaster

accountabil- Internal

ity violation of privacy

item objective cost r'an~~e comment manipulations

terminal keep unauthorized 50- 400 can be by- fraud ghost vendors and employees

locks users from passed with theft or hardware, information

accessing system second
terminal re-
connected to - 5 -

- 4 - S2 5 S2 6

<. :-:

External
ftres

:earthquake's
boirib,'rlgs

'power-failures
toxic spilis
phone system failures

,- 6 -,

S2 7

'r'

,~. .

--(

**••,......0:::
0t--~

(/,)
w

t
-

""'"
U::::;)

t-
a
l

w
0

>
c:::
'7-

en0:::
3

:
w

U
J

Q
.

Z
<Q

.
a
l

z
:

w
<

J
:

Z
t-

>
-

(.!:)
.J

W
L1:.J

~
>

t-
Z

-
e

t:
C

w
c:::

0:::
U

t-
U

.
w

(/,)
0:::

~
(/,)

c:::
t-

o:::
...:J

<
c:e

z
~

z::
~

z
u

.....
<

E
~

.J
Q

.
0

:
~

L1:.J
U

J
Z

t-
I
-

~
<

t-
o:::

w
•

U
.

.J
•

~

•
.

w
•

c::::
:c

TERMINAlS·STRATEGY·ANB·NEW-PROBUCTS

R. FRANKLIN

•• WE DIDN'T RECEIVE THE PAPERS YET (EDITOR) ****

R. FRANKLIN
HEWLETT PACKARD

53 1

RAPID 3909, NEW FReM HP:

RELATIONAL ACCES; PROTOTYPING AND INTERACTIVE DEVELGPMENT

JUTTA KERNKE

J. KERNKE
HP INFORMATION NETWORK DIVISION
19420 HOMESTEAD ROAD
CUPPERTINO, CA 95104

55 1

Presentation Abstract

Presentation Title: RAPID/3000, new from HP: Relational Access, Prototvpjng and

Interactive Development

Author(s): .3It.lJuld.ltllL.ltuaa~Ke_r......nl.Dk_e _

Title(s): ---Ip'-lr~o~d....,;uclll.lt_...."MlWo.an~al&,lg,...e.....r.....,~H,;,...P--=I:..:.n:..:.f..=.o.:..:rrna.:.;.:;..;:t~i..=.on:..;.....;.N.:.;::e~tw.;:.;o::.::r~k=--=D..:..iv~i:..::s~i=on~ _

Address: 1.....9a4:a2K.O....lHAloWlmlaesoil..JtllLlie....a~d....JRwooLliaLWd'___........::C~u:.a:.p=_er:...:t:..:i~n:=.o.a.., ~CA~--=9'-=5~1.x.Q4..L.- _

Abstract: (No more than 200 words)

RAprD/30nn- A famil.)' of pmductivity tools for tbe application pmgranmer,

analyst. data base administrator and end-user It provides a total sglution

to 80% of transaction requirements RApID/3nnn prov1dps;lelat1nnal ad-boc

inquiry and comprehensive. customrzed reports to the end-user and decision_

maker - - more infonmation easier and quicker' SimplifieS design and increases

p-roductiyity in development, testing and implementation - - more applications

faster: Redyces tjme spent in debugging. majntaining and doc'Imeat1Rg - -

more time away from tedious routines' A relational dictionary/directgry

separates the user-world from the system environment - - better contral for
more lntonmation resources for all users. RAPID/3000 - - - to get more

infonnation to more management faster and
easier:

S5 2

Ewiwwc:Q.-,

••••iw:>C
I)

a::wA
.

<A
.

W:J:
i-w>U

J
Uwa::

...ZQ-QW~••••

TERMINAl·I/O·CQNTR9llER·FOR-Hp·30gQ·SYSTEMS

J. BEETEM

**** WE DIDN'T RECEIVE THE PAPERS VET (EDITOR) ****

J. BEETEM
HEWLETT PACKARD

Tl 1

FAST-EDITING ANB·PROGRAM·DEVElOPMENT

USING·A-FUlL·SCREEN-EDITOR

J. VAN DAMME

J. VAN DAMME.
SYDES
A. GOSSETLAAN 30A
B 1720 GROOT-BIJGAARDEN
BELGIUM

T4 1

FA:~:T ED IT 1NG

At![:r

P~OGRAM DEVELOPMENT

/J~; IHG A

FULL SCREEN EDITOR

T4 2

/

FULL SCREEN EDITING

• I NTRODUCT..,J ON,

FULL SCREEN EDITING

2. THE SEQUENTIAL EDITOR.

In most computer syst~m$, text handling is one of the main tasks. Pt"09 r"'am The first text ~ditors considered three sequential files, Th ..:: f i ~" s t f i 1,;;

levelopment, which is a form o~ text handling, can tak@ 9 considerable amount of
contains the old text to be modified; a s~cond file contalns comffiands to allow

:DP r~50urces. The choice of a good text editor can result in a large increase
t·~;s: de 1e:t·1 on .. replacement and addition of full lines. Tt"le' ~"esu I 'to is E1nei...1

If pr·clljucti 1 t~l'l.

Je will now look at the advant~g~s and disadvantages o~ several kinds of t~xt

~d i tot.. ::: .

T4 3

~equentlal File, containing the corrected text.

An example: of this editor type: is QUERY's 'ALTER' command to modify a procedure,

Typical to th~se editors is that the line numb~r$, given in the commands J must

be strlctly ascending.

Only ~ew o~ the sequential editors hav~ string handling capabilities.

T4 4

f- :.: LL .::; C r;~ EEt. E r', I T Iii t~

.~,

rHf-:' I t~ TERHe TI F E[., ITO~: .

FfJLL ·::CREEt·~ EU I T I ~v~

4. fHE FULL f'RGE ED I TOR,

q m.;, j ,) to. tE: n rl~ n t: ~ ITI .;:: !"I t t (& t r. E: ::: ,:; q i J E: n t i:11 ~ d it,:: to. i·.I3 .: thE j:/ t :-' .: ..j UCt i ,:;j-, .:. f i ,-. t 07: to..;:. '.:: t i f f~t tht:i t i 1TrE;.. h1h€:n 1T,,:·t-·€ i nt·e 11 i 9e:nf:. t er·fJ!.i r!a 1 S to>::,: :111.-:; ~~,.. ::t 1 1 ::tb 1-,2 l ;,t"·.J€ p.:sr" t .:.f-

.: .:a p:s to 1 1 i tie s . In g~neral these include the ~diting task could be performed by the terminal i~stead o~ the ~omputer.

- th~ possibility to Jump back and forth In th~ text f\l The editor s€nds a full page of tExt to the th~ scr~en. Thi~ t~xt is ~dited

- string handling capabilities (e.g. FIHD " s tr'lng")
u.;: i n tJ t r. e e tj i t f .:: at. iJ r' e Eo 0 f the t e t'IT, ina I <e . g. - INS E P. T LIN E '.. ' (') ElET E CHAR •) .

see th~ context of the changes he IS introducing, parts 0f the t€::t have to be

listed after ent~r1ng some edit commands.

I n t ~ to..~ c t i fed it,:, r' ::: .:. etc.n c. n tE: sir, 9 10:. 1 in€: ~ t. ·a t. i ITI e . So. if tho::: 'JStE;t-· i,'·:.nts t.(;
After e:diting of the page 15 finished .. the terminal s~nds the full page back to

the computer and this one stE:nds a ntE:w page to th€ te~rninal.

The advant~ges of this method are obviously:

L'1 0 S t. i n t erac t. i fed ito to, 5 t"" r' k ':. r, a C I;:' P ~.." C' f t. h e: CI r' i gin.~ 1 t ~;:);: t (.:. i,,t ,.:;, to. k f i 1.::: ::. r h E:

operation of copying the original text into the work filE: and vi~e versa~ takes

a tonsiderable amouht of time and system resources. On the other hand, working

dirictly on che b~[ginal t~~t, is an hazardous task to und~rtak€ sinc~ a mere

typing ~rror could destroy large parts of the text.

good ov~rsight of th~ context of the changes performed.

- a ~~ry natural way of editing (it looks like editing on ~ she~t of paper),

- '..,. ~ to. ~:.l p t:,I •.I':' t" f IJ IIi f t r-. .:.: t. e l"Il, ina I 'J sed has 9 ".:. d e tj i tin9 .: .:i pa b f 1· i 't. i e s .

The disadvantag~s are:

is to copy the file, at the start or each edit run, and s~ve the work file ~s

This saves the time of a 'KEEP' operation.

Regul~rly t~~ing a copy ot the text solves the problem.

the new text at the end.

An alternate ~olution

Sending a page bacV ~nd forth t~kes ~ considerable ~mount of time if the

terminal speed is low.

~.g. eight sE:conds to send a 24 lines by 80 ch~racter$ pag~ at 2400 baud.

This transmission is p.::rformed twice} ev~n if only a singl€ character is to

be modified.

- A sofi:::ticated and hence E:xpenEi~e t£rmin31 i5 n~~d.:.:d.

- The amount of t~xt that can be added to a p~g~ 1~ de~~ndant on the amount nf

Til 5

local store in the tet-·",.i na 1 .

T4 6

FULL SCREEN EDITING
5

~. THE FULL SCREEN EDITOR,

To overcome the disadvantages of the full page editor, the editor itself can

FULL SCREEN EDITING

6. ADDITIONAL FEATURES.

Many additional features are added to text editors. Some of th~ffi are:

Th~ editor accepts one

emulate the sophisticated edit features of an expensive terminal.

edits the ~hole file at a time instead of only one page.

Th-=: user· then
- The capability of compiling d1rectly from the wo~k File.

edit command (this can be a single key stroke) ~nd performs the ~dit on the text

file and on the screen,

A typical exa~ple of this editor type is the editor available on the HP 300

system.

The advantages of such ~ ~yste~ are:

- a 11 the advantages of' a fu 11 page ed i tor' .

- consti"derabi e savi ngs" of t. i me .

- Tne only special features needed on the terminal are

. cursor positioning

. charaeter ~hd l"lne i~s~rtion and d~l~tion

AAl 6~ner ~eatures can be emulated by the editor.

This allows to implement a full screen editor on a low cost terminal.

"j/.;

- Disc space saving by record compression.

- Handling of MACRO·s.

- Automatic generation of program code.

- Word processing capabilities.

- Loop constructs.

- Conditional editing.

FULL SCREEN EDITING

7. FSEDIT.

FSEDIT is a full screen editor for the HP3aOO computer sytems.

It will run on any terminal from the HP264x and HP262x families, including the

10ld ,:.::,st. HF"2621 .

Its main features are:

- full screen editing as described above.

- single key-str~ke commands.

- dire~t tompile} prepare and run from the work file.

- word processing capabilities.

- COBOL source generation.

- ma,:ro h.andl in9.

- p01o.terf"ull comm.and set.

These and other fea~ures make FSEDIT an easy to use tool, that allows a high

increase in pr'oduct i'oli t.y of proQr'ammer's and other users.

FSEDIT- is developed by

S"(DES N. V.

At GOSSETLAAN 30A

TEL 02 4E.62813

TELEX 63435

8 1720

BELG"IU~l.

GROOT BIJGAARDEN

DemoRst~~tio~s of FSEDIT are given at the SYDES N.V. booth.

T4 9

Summary of: RELATIONAL DATABASE-CONCEPT, CONSEQUNCES FOR ORGANIZATION

AND MANAGEMENT-STRUCTURES

1. What is a releational database

If you look at EDP-concepts, you will find in almost all cases an

hierarchically structured file organization. Data sets were organized in

different stand-alone files, which were accessed through SEARCH-ITEMS. Most

of the fILES were designed for a single application. The structure of this

file-system (i.e. the PATHES to the DATA-ENTRIES) has been defined before

implementing the data sets (i.e. in ISAM, HISAM~ KSAM fiies etc.).RELATIONAL DATABASE-CONCEPT,

CONSEQUENCES FOR ORGANIZATION AND MANAGEMENT-STRUCTURES EXAMPLE find "city of Berlin"

if ZIP-CODE is the search-item to all cities, you could find

the city of Berlin only, if you knew the zip-code.

UWE HINRICHS

Only with SORT/MERGE you could reassemble your file, so that it would

satisfy a different QUERY.

If changes would become more complex, you would have to reorganize your

file-system for this particular application. that means building up

new files with new PATHES and reflecting these changes within the

program/system.

With the appearance of database systems this became much easier. But still

you needed a strong, hierarchical structure of organization at the

beginning. The advantage was that your DATA didn't fit for just one

application but for your application system in total.

EXAMPLE a whole application system

a single application

---{> COMPANY

---{> SALES
MATERIALS MANAGEMENT
FINANCE
etc.

The understanding of a database system was originally a mass stora~e file

system, in which the data sets were application independent.

Still you had to organize the pathes within the database in the beginning,

so that you had a regulated structure, which couldn't be modified without

any problem.

To fullfill this postulate, you needed a modification of the database struc

ture or you could use a QUERY-SYSTEM.
But a disadvantage of QUERY systems is the time used to search items in a large

database throughPATHES, which have not been implemented (SCHEMA).

There are different types of such traditional DATABASE-SYSTEMS; for Example

HIERARCHICAL and NETWORK DATABASES.
Both TYPES Of DATABASE SYSTEMS have the same features of a traditional file

management organization :

UWE HINRICHS

SAUER-INFORMATIC

KROKAMP 35
2350 NEUMUNSTER

WEST-GERMANY

EXAMPLE implemented references between

postulate references between

SALES --~ fINANCE

SALES ---{> .MATERIALS MANAGEMENT

T5 1 ... /2 T5 2

2 3

The advantage of relational database systems are :

2. Organizational Aspects

You can define this relation easily with the new variable path information.

The capability of modifying, deleting and adding new relations at any time
is a feature of this system.

. •• etc.

Organization Analysis

GENERAL
CONCEPT

I
I I

FIELD EDP
STRUCTURE CONCEPT

I
r I I

SALES MATERIALS FINANCE
MANAGEMENT

These steps are time consuming with the additional disadvantage that
the result is always just a snapshot of an existent system, possibly
reflecting some future requirements.

EXAMPLE

With a traditional concept there is a strong interdependence between
the first and the -second part and there fore it is important to analyze
the complete system-in order to get an optimal, general concept which
covers future requirements, too. Before starting to implement the
application system with a traditional file/or database system it is
necessary to have the organizational concppt completed. The traditional
TOP/DOWN APPROACH is usually used for this type of concept.

You must modify the whole structure and analyse the whole system again,
if you modify or add relations between elements of the defined concept.

The great advantage of a relational database system is the variability in
organization structure. The steps of system analysis are flexible, because
you don't need a general concept that is structured in a first and second
part like the general concept.

available relation --~ SALES - FINANCE

postulate relation --~ SALES - PRODUCTION PLANNING

EXAMPLE

With a traditional computer organization you need a general concept before
you can start programming and building the FILE-/DATABASE-SYSTEM in the
field (i.e. manufacturing firms, administrations etc.).
The main chapters of this concept are

a regulated structure
- modifying and adding of references and programs ale very difficult/time

consuming
cycle of lifetime about years, because the requirements are changing
(trouble shouting)

- must of top/down approach
- batch approach

price/performance for modifiying and adding

The relational database system, now, has a completely different approach.
The structure of TRADITIONAL FILE-SYSTEM/DATABASE-SYSTEM has to be defined
first, before you start solving your detail problem. With RELATIONAL DATABASE
SYSTEMS (ROBS) the strcture is variable :
you still might define temporary relations like you could with traditional
QUERY SYSTEMS. However, the most important feature of a ROBS is the capability
of learning relations (PATHES).

- analysis of given structures
- definition of future requirements
- definition of implementation steps
- description of analysis

implementation

a variable structure without hierarchical levels
easy to modify, delete and add relations and programs
bottom up approach
lifetime of the systems without a limit, because the system is flexible
to adapt new requirements immediately
full dialogue approach
high quality of ptice/perfommance

- high data quality
high automation level

The general concept - also the analysis - is divided into two parts. The main steps of realization are here

first part organizational concept of the analysed field

related to field structure and needs
description of given structure with future requirements
implementation

second part organizational concept of EDP

related to Hard- and Software-Systems (Software-tools). . .. /4

... /3 TS 3 T5 4

4

If new requirements arise you ~ill implement them immediately without

reflection on previous ~ritten Software. The problem is now restricted

to generation of new field structure elements.

The system isn't a snapshot any longer, but a living system. Using this

technique will now allow you to use the BOTTOM UP APPROACH for your

organizational work. Thisis in fact the most efficient way to proceed

because the level of quality of your DECISION-DATA is depending on the

level of quality of your BASIS DATA.

The features of this organization method are :

horizontal structured information --;;> relations between the field

elements
vertical structured information --1:> Management Information System

high level automation
all kinds of information available immediately

EXAMPLE Relational Concept

SALES
<J----{>

MATERIALS
MANAGEMENT

FINANCE

<J--{>'

TOP
MANAGEMENT

FIELD
MANAGEM£NT

,
l-._.._._._

,5 5

PROGRAMMING FOR DEVICE INDEPENDENCE

JOHN HULME

J. HULME
ApPLIED CYBERNETICS, INC.
Los GATOS, CALIFORNIA
224 CAMINO DEL CERRO

Ul 1

PROGRAMMING FOR DEVICE INDEPENDENCE

John Hulme
Applied Cybernetics, Inc.

Los Gatos, California
(408) 356-7296

224 Camino Del Cerro

INTRODUCTION

The purpose of this presentation is to discuss techniques

and facilities which:

1) isolate the programmer from specific hardw~re con
siderations

2) provide for data and device independence

3) allow the programmer to deal with a logical rather
than a physical view of data and devices

4) allow computer res~urces to be reconf~gured, re
placed, rearranged, reorganized, restructured or
otherwise optimized either automatically by system
utilities or explicitly by a system manager or
database administrator, without the need to rewrite
proqrams. '

The evolutionary development of these techniques will

be reviewed from a historical perspective, and the specific

principles identified will be applied to the problem "of pro-

ducing formatted screen applications which will run on any

type of CRT.

Ul 2

WHAT IS A COMPUTER?

As you already know, a computer consists of one or more

electronic and/or electromechanical devices, each capable of

executing a limited set of explicit commands. For each type

of device some means is provided to allow the device to re

ceive electrical impulses indicating the sequence of commands

it is to execute. In addition to commands, most of these

devices can receive electrical impulses representing bits of

information {commonly called data> which the device is to

process in some way. Nearly all of these devices also pro

duce electrical impulses as output, which may in turn be

received as commands and/or data by other devices in the

system.

Nowadays, most devices also have some form of "memory"

or storage media where commands or other data can be recorded,

either temporarily or semi-permanently, and a means by which

that data can later be received in the form of electrical

impulses.

The tangible, visible, material components which these

devices are physically made up of is generally called com

puter hardware. Any systematic set of instructions describing

a useful sequence of commands for the computer to execute

can be called computer software. As we will see later, soft

ware can be further subdivided into system software, which

is essentially an extension of the capabilities of the hard

ware, and application programs, which instruct the computer

how to solve specific problems, handle day-to-day applications,

2 Ul 3

and produce specific results.

Originally it was necessary for a computer operator to

directly input the precise sequence of electrical signals by

setting a series of switches and turning on the current.

This process was repeated o~er and over until the desired

sequence of instructions had been executed.

By comparison with today's methods of operating comput

ers, those earlier methods can truly be called archaic. Yet

the progressive advancement of computer systems from that

day to this, however spectacular, is nothing more than a

step-by-step development of hardware and software building

blocks, an evolutionary process occuring almost entirely

during the past 25 years.

ENGINEERING AND AUTOMATION

I think we mostly take for granted the tremendous com

puting power that is at our fingertips today. How many of

us, before running a program on the computer, sit down and

think about the details of hardware and software that make

it all possible? For that matter, who stops to figure out

where the electrical power is coming from before turning on

a light or using a household appliance? Aefore driving a

car or riding in an airplane, who stops to analyze how it

is put together?

Probably none of us do, and that is exaclly what the

design engineers intended. You see, it is the function of

product engineering to build products which people will buy

3

Ul 4

and use, which usually means building products which are easy

to use. The fact that we don't have to think about how some

thing works is a measure of how simple it is to use.

Wherever a process can be automated and incorporated

into the product, there is that much less that the consumer

has to do himself. Instead of cranking the engine of a car,

we just turn a key. Instead of walking up 30 flights of

stairs, we just push a button in the elevator.

It's not that we are interested in being lazy. We are

interested in labor-saving devices because we can no longer

afford to waste the time; we have to meet deadlines; we want

to be more efficient; we want to cut costs; we want to in

crease productivity. We also want to reduce the chance for

human error. By autom~ting a complicated process, we

produce consistent results, and when those results are

thoroughly debugged, error is virtually eliminated. We can

rely on those consistent results, which sometimes have to

be executed 'with split second timing and absolute accuracy.

Without reliable results there might be significant economic

loss or danger to life and limb. Imagine trying to fly

mode~n aircraft without automated procedures.

Automation also facilitates standardization, which

allows i~terchangeabilityof individual components. This

leads to functional specialization of components, which in

turn leads to specialization of personnel, with the attendant

savings in training and maintenance costs. And because the

engineering problem only has to be solved once, with the

4

U1 5

benefits to be realized every time the device is used, more

time can profitably be spent coming up with the optimum

design.

BUILDING BLOCKS

In my opinion, the overWhelming advantage of a~tomating

a complicated process is that the process can thereafter be

treated as a single unit, a "black box" if yO'-l will, in

constructing solutions to even more complicated processes.

Later, someone could devise a better version of the

black box, and as long as the functional parameters remain

the same, the component could be integrated into the total

system at any time in place of the original without destroying

the integrity of any other components.

It is this "building-block" approach Which has· perm~tted

such remarkable progress in the development of computer hard

ware and software. As we review the evolution of these

hardware/software building blocks, keep in mind that the

chronological sequence of these developments undoubtedly

varied from vendor to vendor as a function of how each per

ceived the market demand and how their respec~ive ~ngineering

efforts progressed.

ONE STEP AT A TIME

Even before the advent of electronic computers, various

mechanical and electro-mechanical devices had been produced,

some utilizing punched card input. Besides providing an

5

U1 6

effective means of input, punched Cdlds urld p~1per tape repre

sent a rUdimentary storage medium. Incorporatinq paper tape

and card readers into early computer system~ no~ only allowed

the user to input programs and data more quickly, more easily,

and more accurately (compared with flipping switches manually),

but on top of that it allowed him to enter the same programs

and data time after time with hardly rnare effort than enter

ing it once.

The next useful development \-/as the Itstored program"

concept. Instead of re-entering the program with each new

set of data, the program could be read in once, stored in

memory, and used over and over.

This concept is an essential feature of all real comput

ers, but it would have been practically worthless except for

one other essential feature of computers known as internal

logic. We take these two features so much for granted that

it's hard to imagine a computer without t.hem. In fact, with

out internal logic, computers reoll y wouldn' l be fl:lJch good

for anything, since they would only oe able to execute a

program in sequential order beginning with the first instruc

tion and ending with the nth. Internal logic is based on

special hardware commands which provide the ability fjrst of

all to test for various conditions and secondly to specify

which command will be executed next, depending on the results

of the test. In modern computer lan')u 'lCJes, in i ernal logic

is manifest in such constructs ~s IF st.1tem2n~~; GO TO

statements, FOR loops, and subroutine calls.

Gut at the stage we are dl~cuss:nC1 I_iiere '.tJere no modern

programming languages, just the langua(Jp- ·~)f electrical signals.

These came to be represented as numbers (even letters and

other symbols were given a numeric e.luivalent) and programs

consisted of a long list of numbers.

Suppose, for example, that the numbers 17, 11, and 14

represented hardware commands for rea~ing a number, adding

another number to it, and'storin<] the result, respectively,

and suppose further that variables A through Z were stored

in memory locations 1 through 26. Then the program steps

to accomplish the statement "give Z a value equal to the sum

at X and y" might be expressed as the following series of

numbers, which we will call machine instructions:

17, 24, 11, 25, 14, 26

In e3sence, the programmer was expected to learn the language

of the computer.

A slight improvement was realized when someone thought

Lo devise a meaningful mnemonic for eacil hardware command and

Lo have the proqrammer write prO(}rc1r:I~.i '--Ising the easier-to

remember mnemonics, as follows:

REA D, 24, ADD, 25, :; TOh F:, 25

or perhaps even

READ, X, ADD, Y, Sl'Old::, Z.

After the programmer had ,:lescr ibed the logic in this

way, any program could be readily converted to the numeric

torm by a competent secretary. but ~,ince tMe converslurl WCiS

relatively straightforward, it would be automated, saving Lhe

6

Ul 7 Ul 8

secretary some very boring work. A special computer program

was written, known as a translator. The mnemonic form, or

source program as it was known, was submitted as input data

to the translator, Which substituted for each mnemonic the

the equivalent hardware command or memory location, thus

producing machine instructions, also known as object code.

Translators required two phases of execution, or two passes,

one to process the source program and a second to execute

the resulting object code. Once the program functioned

properly, of course, it could be executed repeatedly without

the translation phase.

It would have been possible for the hardware engineers

to keep designing more and more complicated hardware commands,

and to some extent this has been done, either by combining

eXisting circuitry or by designing new circuits to implement

some new element.al command. Each new machine produced in

this way would thus be more powerfUl than the lqst, but it

would have been economically prohibitive to continue this

type of development for very long and the resulting machines

would have been too large to be practical anyway.

Engineers quickly recognized that instead of creating

a more powerful command by combining the circuitry of existing

commands, the equivalent result could be achieved by combining

the appropriate collection of commands in a miniature program.

Thi~ mini-program could then be repeated as needed within an

application program in place of the more complex command. Or

better yet, it could be kept at a fixed location in memory and

8

U1 9

be accessed as a subroutine just the same as if it were

actually a part of each program.

Another approach was to use an interpreter, a special

purpose computer program similar to a translator. The inter

preter would accept a source program in much the same way as

the translator did, but instead of converting the whole thing

to an object program, it would cause each hardware command to

be executed as soon as it had been decoded.

Besides requiring only one pass, interpreters had the

added advantage of only having to decode the commands that

were actually used, though this might also be a disadvantage,

since a command used more than once would also have to be de

coded more than once.

The chief benefit of an interpreter lay in its ability

to accept mnemonics for commands more complex than those

actually available in the hardware, and to simulate the

execution of those complex commands through the use of sub

routines. In this way, new commands could be implemented

without any hardware modifications merely by including the

appropriate subroutines in the interpreter. This step marked

the beginning of system software.

In addition, source programs for nearly any ~omputer

could be interpreted on nearly any other computer, as long as

someone had taken the tim~. to write the necessary interpreter.

Interpreters could even be written for fictional computers

or computers that had been designed but not yet manufactured.

This techniq~e, thoug~ generally regarded as very 1nefficient,

9
Ul 10

provided the first means of making a program transDortable

from one computer to another incompatible computer.

It is possible, of course, to apply this technique to

translators as well, allowing a given mnemonic to represent

a whole series of commands or a subroutine call rather than

a single hardware instruction. Such mnemonics, sometimes

called macros, ga~e users the impression that the hardware

contained a much broader repetoire of commands than was

act~ally the case.

Implementing a new feature in software is theoretically

equivalent to implementing the same function in hardware.

The choice is strictly an economic one and as conditions change

so m1ght the choices. One factor is the universality or fre

quency with which the feature is likely to be used. Putting

it in hardware generally provides more efficient execution,

but putting it in the software is considerably easier and

provides much greater flexibility.

The practice of res~ricting hardware implementation to

the bare essentials also facilitated hardware standardization

and compatibility, which was crucial to the commercial user

who wanted to minimize the impact on all his programs if he

should find it necessary to convert to a machine with greater

capacity. Beginning with the IBM 360 series in 1964 "families"

of compatible hardware emerged, inclUding the RCA Spectra 70

series, NCR ~entury series, and Honeywell 200 series, among

others.

10

Each family of machines had its own operating system,

software monitor, ur executive system over~eeing the

operation of every other program running on the machine.

In some systems, concurrent users were allowed, utilizing

such techniques as memory partitioning, time-sharing, multi

threading, and memory-swapping. Some form of job control

language was devised for each operating system to allow the

person submitting the jobs to communicate with the monitor

about the jobs to be executed.

Introducing families of hardware did not solve the

probJem of compatibility he tween one vendor and the next,

however, a problem which could only be solved by developing

programming languages which were truly independent of any

particular piece of hardware.

Since the inventors of these so-called higher-level

languages were not bound by any hardware constraints, an effort

was made to make the languages as natural as possible. FORTRAN

imitated the language of mathematical formulas, while ALGOL

cldimed to be the ideal language for describing algorithmic

logic; COBOL provided an English-like syntax, and so on.

Instead of having to learn the computer's language, a

programmer could now deal with computers that understood his

language. Actually, it was not thp. hardware which could

understand his language, but d more sophisticated type of

trclnslator-interpreter known as a compi.ler.

To the degree that a particular]ar'l<)uage enjoyed enough

popular support to convince multiple vendors to implement it,

programs written in that language could be transported amor.g

Ul 11 11
U1 12

th~se machines for which the corresponding compjler was

available.

The term compiler may have been coined to indicate that

program units were collected from various sources besides the

source program itself, and were compiled into a single function

ing module. Subroutines to perform a complex calculation such

as a square root, for example, might be inserted by the comiler

whenever one or more square root operations had been specified

in the body of the source program.

Embedding subroutines in the object code was not the

only solution, however. It became more and more common to

have the genera ted ob ject programs merel y "CALL" on subrou

tines which were external to the object program, having been

pre-compiled and stored in vendor-supplied "subroutine librar

ies". This concept was later extended to allow users a means

of placing their own separately-compiled modules in the library

and accessing them wherever needed in a program.

I should mention that an important objective of any

higher level language should be to enable a user to describe

the problem he is solving as clearly and concisely as

possible. Although the emphasis is ostensibly on making the

program easy to write, being able to understand the program

once it has been written may be an even greater benefit,

particuldrly when program maintenance is likely to be

performed by someone other than the original author.

It is well-known that program maintenance occupies a

great deal of the available time in the typical data

12

U1 13

processing shop. Some studies estimate the figure at over

SO% and increasing. In order to be responsive to changing

user requirements, it is essential to develop methods which

facilitate rapid and even frequent program changes without

jeopardizing the integrity of ttle system, and without tying up

the whole DP staff.

To avoid having to re-debug the logic every time a change

is made, it is often possible to use data-driven or table

driven programming technigues. The portion of the program

which is likely to change, and which does not really affect

the overall procedural logic of the program, is built into

tables or special data files. These are accessed by the

procedural code to determine the effective instructions to

execute.

The most common example in the United States, and

perhaps in other countries as well, is probably the table of

income tax rates, which changes by law now at least once a

year. The algorithm to compute the taxes changes very rarely,

if at all, so it does not have to be debugged each time the

tables change. In simple cases lika this, non-programmer

clerks might safely be permitted to revise the table entries.

In more sophisticated applications, tables of data called

logic tables may more directly determine the logic flow

within a program. The program becomes a kind of interpreter,

and elements in the logic table may be regarded as instructions

in some esoteric machine language. Such programs are gener

~lly more difficult to· thoroughly debug, but once debugged

13

Ul 14

provide solutions to a broad class of problems without ever

having to revise the procedural portion of the program.

Sometimes, logic-controlling information is neither

compiled into the program nor stored in tables, but is pro-

vided to the program when it is first initiated or even during

the course of execution, in the form of run-time parameters

or user responses. The program has to be pre-programmed

to handle every valid parameter, of course, and to gracefully

reject the invalid ones, but this method is useful for cutting

down the number of separate programs that have to be written,

debugged, and maintained. For example, why write eight

slightly different inventory print programs, if a single

program could handle eight separate formats through the use

of run-time options?

Incidentally, program recompilations need not always

cause alarm. Through the proper use of COpy code, programs

can be modified, recompiled, and produce the new results with-

out the original source program ever having to be revised.

This is made possible by a facility which allows the source

program to contain references to named program elements stored

in a COpy library in$tead of having those elements actually

duplicated within the program. A COpy statement is in

effect a kind of macro which the compiler expands at the

time it reads in the source program.

For example, if a record description or a table of values

appears in one program, it is likely to appear in other

programs as well. It is faster, easier, safer, and more

14

Ul 15

concise to say "COpy RECORD-A." or "COpy TABLEXYZ." than

to re-enter the same information again and again. And if

for some reason the record layout or table of values should

have to be changed, merely change it in the COpy library,

not in every program.

By changing the contents of a COpy member in this way

and subsequently recompiling selected programs in which the

member is referenced, those programs can be updated without

any need to modify the source. If procedure code is involved,

the new COpy code only need be debugged and retested once

rather than revalidating all the individual programs.

Where blocks of procedural code appearing in many programs

can be isolated and separately compiled, however, this would

probably be better than using COpy code. For one thing, the

separate modules would not have to be recompiled every time

the procedural code was revised.

BITE-SIZE PIECES

Breaking a complex problem into manageable independent

pieces and dealing with them as separate problems is a

valuable strategy in any problem-solving situation. Such a

strategy has added benefits in a programming environment:

1. Smaller modules are typically easier to understand,
debug. and optimize.

2. Smaller modules ar~ usually ~Rsier to rewrite or
replace if necessary.

3. Independent functions which are useful to one appli
cation are often useful to another application; using
an existing module for additional applications cuts
down on programming, debugging, and compilation time.

15

U1 16

5.

"4. Allowing applications to share a m~dule reduces memory
requirements.

Having only one copy of a module ensures that the
module can be replaced with a new version from time
to time without having to worry that an undiscovered
copy of an older version might still be lurking
around somewhere in the system.

The fact that a routine only has to be coded once

usually more than compensates for the extra effort that may

In this way, many alternative products may become

available, and the user will have to evaluate which approach

he wishes to take advantage of, based on such factors as cost,

efficiency, other performance criteria·, flexibility of oper

ation, compatibility with existing software, and the

comparative benefits of using each product.

PRINCIPLES OF GOOD SYSTEM OESIGN

of the following principles:

In case you may need to design your own supporting

software, or evaluate some that is commercially available,

let's summarize the techniques which will permit you to

achieve the greatest degree of data, prog~am, and device

independence. I have already given illustrations of most

have to go into generalizing the routine. The more often

it's used, the more time you can afford to spend improving it.

SYSTEM SOFTWARE

Functions which are 50 general as to be of value to

every user of the computer, such as i/o routines, sort

utilities, file systems, and a whole host of other utilities,

are usually included in the system software supplied by the

hardware vendor. Just what facilities are provided, how

sophisticated those facilities are, and whether the vendor

charges anything extra for them, is a matter of perceived

user need and marketing strategy. Sometimes vendors choose

to provide text editors and other development tools, and

sometimes they don't. Sometimes they provide a very powerful

data base management system, sometime only rudimentary file

access commands. And so on.

When hardware vendors fall to provide some needed piece

of software, it may be worthwhile for the user to write it

himself. If the need is general enough, software vendors may

rush in to fill the void; or perhaps user pressure will even

tually convince hardware· vendors to implement it themselves.

16

Ul 17

1.

2.

3.

4.

5.

Modularity--Conceptually break everything up into
the smallest modules you feel comfort~ble deal
ing with.

Factoring--Whenever a functional unit .appears in
more than one location, investigate whether it 1s
feasible to "factor it out" as a separate module
(this is analogous to rewriting A·B+A·C+A·O as
A·(B+C+O) in math).

Critical Sections--Refrain from separating modules
which are intricately interconnected or sub
dividing existing modules whic~ are logically
intact. .

Independence--Strive to make every module self
contained and independent of every external
factor except as represented by predefined
parameters.

Interfacing--Keep to a minimum the amount of commu
nication required between modules; provide a
consistent method of passing parameters; make
the interface sufficiently general to.allow
for later extensions.

17

Ul 18

6. Isolation--Isolate all but the lowest-level modules
from all hardware considerations and physical
data characteristics.

7. Testing--Test each individual module by itself as
soon as it is completed and as it is inteqrated
with other modules.

8. Generalization--Produce modules which solve the
problem in a general way instead of dealing with
specific cases. Be careful, however, not to
over-generalize. Tr¥ing to make a new technology
fit the mold of an existing one may seem like
the best modular approach, and the easiest to
implement, but the very features for which the
new technology has been introduced must not
become lost in the process.

EXAMPLE--When CRT's were first attached to com
puters they were treated as teletypes, a class of
i/o devices incompatible with two of the CRT's
most useful features: cursor-addressing and the
ability to type over existing characters. Putting
the CRT in block-mode and treating it as a fixed
length file represents the opposite extreme: the
interactive capabilities are suppressed and the
CRT becomes little more than a batch input device,
a super-card-reader in effect.

9. Standardization--Develop a set of sound programming
standards including structured programming methods,
and insist that ea~h module be coded in strict
compliance with those standards.

10. Evaluation--Once the functional characteristics
have been a~hieved, use available performance
measurement methods to determine the areas which
most need to be further optimized.

11. Piecewise Refinement--Continue to make improvements,
one module at a time, concentrating on those with
the largest potential for improving system perform
ance, user acceptance, and/or functional
capabilities.

12. Binding--For greater flexibility and independence,
postpone binding of variables; for greater
efficiency of execution, do the opposite; pre
bind constants at the earliest possible stage.

BINDING

As the name suggests, "binding" is the process of tying

together all the various elements which make up an executing

program. Binding occurs in several different stages ulti

mately making procedures and data accessible to one another.

For example, the various statements in an application

program are bound together in an object module when the

source program is compiled. Similarly, the various data

items comprising an IMAGE data base become bound into a

fixed structure when the root file is created. A third

case of binding involves the passing of parameters between

separately compiled modules.

Remember that at the hardware level, where everything

is actually accomplished, individual instructions refer to

data elements and to other instructions by their location in

-memory. The "address" of these elements must ,~ither be built

into the object code at the ti~e a program is compiled, be

placed there sometime prior to execution, or be provided

during execution. Likewise, information governing the flow

of logic can be built into the program originally, placed in

a file which the program accesses, passed as a parameter when

the program is initiated, or provided through user inter-

action during execution.

Binding sets in concrete a particular choice of options

to the exclusion of all other alternatives. Delayed binding

therefore provides more flexibility, while early binding

18
U1 19

19 U1 20

provides greater efficiency. BindJng during execution time

can be especially pClwerful but at the :.;amc t.ime potentially

critical to system performance. In generdl, variables should

be bound as early as possible unl~ss you specifically plan

to take advantage ot leaving them unbound, in which case

you should delay binding as long as it proves beneficial and

can still be afforded. Incidentally, on the HP 3000, address

resolution between separately-compiled modules will occur

during program preparation (PREP) except for routines in

the segmented library, which will be resolved in connection

with program initiation. If your program pauses initially

each time you run it, this run-time binding is the probable

cause.

A SPECIFIC APPLICAT~ON

About five years ago, we were faced with the problem

of developing a system of about 300 on-line application

programs for a client with no previous computer experience.

Their objective was to completely automate all record-

keeping, paper-flow, analysis, and decision making, from

sales and engineering to inventory and manufacturing to

payroll and accounting. The client had ordered an HP 3000

with 256K bytes of memory and had already purchased about

20 Lear-Sigler ADM-1 CRT's. About 12 terminals were to be

in use during normal business hours for continuous inter-

active data entry; the re~aining eight terminals were

primarily intended for inquiry and remote reporting.

20
U1 21

Up-to-date information had to be on-line at all times using

formatted screens at every work station. Operator satisfac-

tion was also a high priority, with two- to five-second

response time considered intolerable.

DISCUSSION QUESTIONS

Based on the "principles of good system design" sum
marized earlier, what recommend~tions·wouldyou have made
to the development team?

At the time, HP's Data Entry Language (DEL) seemed to
be the only formatted screen handler available on the
HP 3000. Consultation with DEL users convinced us it
was rather awkward to use and exhibited very poor re
sponse time. Also it did not support non-HP character
mode terminals.

We elected to write a simple character-mode terminal
interface, which was soon expanded to provide internal
editting of data fields, and later enhanced to bandle
background forms. We presently market this product under
the name TERMINAL/3000. You've probably heard of it.

The compact SPL routines reside in the system SL and
are shared by all programs. The subroutine which inter
faces directly with the terminals is table-driven to
ensure device-independence. By implementing additional
tables of escape sequences, we have added support for
more than a dozen different types of terminals besides
the original ADM-l's.

If we were faced with a similar task today, would your
recommendations be any different?

After completing most of the projec~, we did what should
have been done much earlier: we implemented a CRT forms
editor and COBOL program generator which together auto
mate the process of writing formatted-screen data entry
programs utiliZing TERMINAL/30DO. We call this approach
"results-oriented systems development"; the package is
called ADEPT/3000. Programs Which previously took a
week to develop can now be produced in only half a day.

Since we were using computers to eliminate monotonous
tasks and improve productivity for out clients, it was
only natural that we should consider using computers to

21
U1 22

reduce monotony and increase productivity in our own
business, the business of writing application programs.
If you write application programs or manage people who
do, you also may wish to take advantage of this approach.

What features of VIEW/3000 would have made it unsuitable
for this particular situation?

- not available five years ago
- HP 2640 series of terminals only
- block-mode only (not interactive field-by-field)
- requires huge buffers (not enough memory available)
- response time and overall system performance inadequate

From what you know of TERMINAL/3000 and ADEPT/3000, how
do these products enable a programmer to conform to the
principles of good system design?

TERMINAL/3000 itself: modular, well-factored, single
critical section, device-independent, independent of
external formats, simple l-parameter interface, table
driven hardware isolation, well-tested, generalized,
optimized for efficiency, run-time binding of cursor
positioning and edit characteristics.

ADEPT/3000: produces COBOL source programs that are
modular, well-segmented, device-independent, and
contain pre-debugged logic conforming to user-tailored
programming standards; built-in interfaces to
TERMINAL/3000 and IMAGE/3000 (or KSAM/3000) isolate
the programs from hardware considerations and provide
device and data independence.

ttl 23

BIBLIOGRAPHY

Boyes, Rodney L., Introduction to Electronic Computing:
A Management Approach (New York: John Wiley and
Sons, Inc., 1971).

Hellerman, Herbert, Digital Computer System Principles
(New York: McGraw-Hill Book Co., Inc., 19G7).

Knuth, Donald E.! The Art of Com8uter Progra:n::-.l.rl2. (Readin; 1

Mass.: AddIson-Wesley PublIshing Company, ·~J68) ..

Swallow, Kenneth P., Elements of Computer Programminq
(New York: Holt, Rinhart and Winston, Inc., 19~~).

Weiss, Eric A. (ed.), Computer Usage Fundamental~ (New York:
McGraw-Hill Book Co., Inc., 1969).

U1 24

(CGElCG

HOW TO GET MORE FROM YOUR (ORE MEMORY

PIERRE SENANT

COGELOG/ Etude et realisation de systemes informatiques
Avenue de la Baltique, Z.A. de Courtaboeuf, 91940 LES ULIS / FRANCE
Tel.: (6) 907.70.79

HOW TO GET MORE FROM YOUR CORE MEMORY

OR

CFS/3000

A CORE RESIDENT FILE SYSTEM

Pierre Senan t

A LITTLE HISTORY •••

A data processing system ordinarily uses three main types of
memory, which have each a different speed level. Besides, the
byte cost of these types of memory varies with their access
speed. Here are the three types of memory in decreasing cost
order :

1.

P. SENANT
COGELOG
ETUDE ET REALISATION DE SYSTEMES INFORMATIQUES
AVENUE DE LA BALTIQUE, Z.A. DE COURTABOEUF
91940 LES ULIS, FRANCE

U2 1

1. Core memory. The latest technology uses integrated circuits

and the access time is calculated in micro-$eco,nds. The
purpose of this memory is to contain program segments during
the time they are executed, as well as a part of the data to
be handled. The life time of these elements in memory is
between a few milli-seconds, and many hours.

U2 2

(e,ae,
2.

2. Auxiliary memory: Magnetic discs are normally used. The

time to access information is calculated in milli-seconds.

The purpose of this kind of memory is to save programs and

data to be used during a given period, which can be from a

few minutes to many months.

3. Archival memory: This can be done through many devices, but

the most common is the magnetic tape. Since the access to

data is performed serially, the access time to data can be

from a few seconds to ~any minutes. This low-cost type of

memory is used as back-up memory, and for saving all data

currently unused.

When we consider the evolution of these different types of

memory during the last past years, we observe a fall in prices

for all types, but a particular drop for the core memory.

This drop has considerably changed th~ physionomy of data

processing systems during the last years. The HP-3000

system remained in the swim. When it came out in 1972, the

maximum memory size supported was 128 K bytes. The model of

1981 can support up to 4000 K bytes.

In addition, this trend will probably be confirmed in the

next years, and an HP-3000 with 20.000 K memory will be

common soon. The advantages of the increase of the core

memory are evident :

U2 3

(e,ae,
3.

• The amount of code that can be put in memory at a given

time is larger. This implies a fall in data segment

swapping, which dramatically reduces the disc overhead

and increases the throughput of the system.

• The amount of data handled in one time can theoretically

be increased, by using large file system buffers. However

this technique gives disappointing results, especially in

random access.

Most data processing applications are now using more and more

interactive mode, instead of batch mode. Improving batches is

important, but improving on-line programs is vital. Batches can

run in off-peak hours, and most of the time the jobs can be

done. But in interactive applications, each second of response

time lost must be multiplied by the nuwber of users, and

employer's time is getting expensive.

So, the benefit of increasing core memory comes almost

exclusively from improving the programs flow. Suppose we

could increase indefinitely the core memory size, we would

reach a critical point where adding a memory module would

not affect the response time, because all program segments

are already in core.

Another important factor bears heavily on the response time

disc accesses due to transactions of application programs,

An on-line program using a data base system (I~!AGE 3000 for

example) may be very greedy in disc accesses. This overhead

U2 4

'CGElCG

4.

'CGElCG

5.

The idea to make some files core-resident might not be very

original, but it certainly remained a dream until to day.

Now the dream becomes reality with CFS/3000.

In my opinion, a real in-core memory file system must follow

the following principles.

· It must be program independant.

Allowing programming people to decide if a file must be

core-resident or disc resident would be catastrophic.

· A core resident file must be accessible from all processes.

The duplication of data is not acceptable.

· It must be reliable. Data integrity must not be affected, as

well as the process independancy.

· It must respect all security and privacy ~rovisions of the

file system, as well as those of subsystems (IMAGE, KSAM).

· It must be fully controlled by the System Manager, who must

know at any time.

- the name and the sizes of core-resident files

- the total memory size used

- access frequency of any data-set.

is independant of the number of program segments in memory

and it becomes the actual bottleneck. This makes unprofitable

an increase of core memory.

When a system has reached this level of evolution, one ~ossible

way to reduce the overhead is to suppress some disc accesses.

At first sight, this load seems to be incompressible. If we

assume the files and the data bases have been correctly

organized, and application programs have been written with

shrewdress , what can we do ?

However, when we examine all kinds of files involved in an

application, we are surprised by their diversity, in the size,

in the organization, and in the usage.

In fact, most of them are small enough, and are so frequently

accessed that we would do better to make them core-resident.

NOW THE PRESENT CFS/3000

U2 5

In addition, the System Manager can decide to put inor out of

core-memory any file at any time without disturbance in operation.

The conception of CFS/3000 has been founded upon these

principles.

U2 6

(C'ElC'
6.

HOW TO USE CFS/3000

This product is intended to optimize both batch programs and

on-line programs. In all cases, a good knowledge of application

programs and system management will be required •

• In a batch environment, the execution time can be dramatically

reduced. It will be strongly recommended to run one program at

a time, in order to devote the maximum core-memory to data files .

• In an interactive environment, the tuning must be more

accurate.

You will have to use the utility program IOSTAT2 to determine

how busy your discs are, and what they are doing (swapping or

accessing data files).

If the swapping is low, you may use CFS/3000. You will select the

file to make core-resident by considering their impact on the

response time.

With CFS/3000 you will be able to make trials without stopping

the daily operation.

As a first step, you may declare core~resident same small files

freq~ently accessed like.

• Tables of parameters

• Automatic master data sets (IMAGE)

• KSAM key-files

In a second step, you will be able to design your future

applications, by taking into account this new possibility,

U2 7

euroco

Opening Address

DECENTRALIZED PROCESSING - NEW HORIZONS FOR SYSTEMS'DESIGNERS 1. Introduce who you are: D.A. Saunders, B.Sc., M.I.C.S. OR •••

NORMAN MIDGLEV

D. A. SAUNDERS

NoRMAN MIDGLEV

SALES REP.

EUROCO SoFTW ARE SVSlEME

AN DER J\..slER 1

2CXX) HAMBURG 1

W - GERMANV

U3 1

2. Thank audience for attending, as this is the last session and we
realise a number of them would like to wind up.

3. Introduce subject matter:
a) We are going to talk about a Financial &Management Accounting

System which utilises the most up to date System Software
facilities available.

b) Computer Manufacturers invest substantial amounts of money in
the Research &Development of Systems Software - however the
development of application Software to match the System Software
in capability is mostly out of the reach of the user due to its
high cost.

c) This normally would have led to a totally unbalanced state in
the development of advanced end-users software. However,
imaginative systems' designers with the background and backtng
have clutched the challenge so that now there are some application
systems matching the system software capability.

d) These systems in general are either produced by a Software House
so that costs can be sDread among many users or by extremely
large concerns that can justify the expenditure.

- 2 -

lJ3 2

eUI'OCD

- 2 -

History

In 1971 when EUROSPAN started, the COMPUTER installations were in the
main 'Main Frame' oriented. We approached our design of EUROSPAN by
looking at the following:

a) STRUCTURE OF FILES
b) ACCOUNTING PRINCIPLES
c) HISTORICAL COMPUTER DESIGN OF

ACCOUNTING SYSTEMS

In structuring our files we recognised that the system should be capable
of handling a multi division or multi company type structure. Indeed our
first customer was a service bureau and needed such a structure. Systems
Analysts traditionally designed systems which broke the accountants
normal conventions which he was used to (i.e. non double-entry bookkeeping
and seperate ledger systems whereas he was used to 3 in 1 type systems).
This led to an alienation of accountants to computers so we brought the
computer back to the liking of the accountant by designing an integrated
double system for him. This design was not done by computer people but
by accountants with the help of computer people. We were fortunate in
having a qualified accountant who also was an expert in the computer
field.
From 1971 the system evolved from a basic accounting system to a more
complex one include such facilities as automatic creditor payments and
cost accounting. This changing design brought us up to 1977 when we
realised the significance of the emereging mini computer market place.
Which market has brought computing power to companies heretofore unable
to afford it.
We decided to completely rewrite EUROSPAM to allow for Online facilities
whilst still retaining it's much vaunted and accepted structure. In
addition auditors by now were aware of the possibilities and dangers
of computerised accounts and through consultation with them we included
new further enhanced security measures into EUROSPAN.

- 3 -

U3 3

euroeD

- 3 -

Theoretical Frame Work

There were many implications in designing and producing a truly Online
System. Many of you, no doubt, have been presented with semi-online
(not interactive) type systems that effeGtively only replaced the punched
card and we felt that our EUROSPAN should definitely not be confused
with such systems and should be the tool of the non computer trained
accountant.
The implications of such a system needed consideration in the following
areas:

- Storage capabilities
- Hardware and
- Software Portability
- Integration of other applications
- End of Year Problems
- User Friendliness
- Speed
- Security in Multiprocessing

At that stage also computer manufacturers were introducing and 'Singing
about' the new buzz word 'Decentralisation' (naturally this was influenced
largely by an ever-aware end-user demand owing to their increased
awareness of computer power) and we toak the initiative of designing our
system to cater for the communications problems that usually exist.

B I L D

In recognising communications we also took account of multi-international
requirements by solving those at the same time. The implications of this
are not technical but conceptual and ar~ as follows:

a) Currency
b) Language
c) Corporate Reporting

- 4 -

U3 4

.urGeo

- 4 -

Methods and Techniques

In consideration of the implications of online, multi-international
systems we adopted the following solution taking into account a rigid
standards system development by one of our sister companies.

1.) Storage capabilities
In a 'multi type' situation large duplication of data can exist
so we set out in adapting EUROSPAN to the end-user to perform a
clear analysis of each Group's/Com9anies'/Divisions' responsibilities
to cut down on the unnecessary holding of duplicate data by the use
of a common data base and subsidiary ones. We integrated our
ledgers into a simple data base.

2.) u.
3.) Hardware/Software

Nowadays functionality depends largely on the joint facilities
provided both in hardware and software. We did not want a system
which t.ied us exclusively to a particular manufacturer or operating
system as we don't determine that manufacturer's future. We are
confident that many of you present are in the same frame of mind.
So we wrote the following facilities ourselves and used an industry
standard language of COBOL.

- Menu Processor
- Screen Handler
- Logging and Recovery Routines
- File Handler
- Security Routines

These enabled us to retain a large degree of Manufacturer Independance.

- 5 -

U3 5

euroco

- 5 -

4.) Integration of Job Functions/Other Apolications
Trough our menu processor we have the ability to switch from function
to function inthout having to go back through the menu itself which
gives the flexibility and ease of use demanded by the discerning
end-user. In addition we adopted a parameter/table driver system to
enable the end-user to define their own requirements (e.g. functions,
languages, help routines, reporting formats) without the painstaking
job of changing programs for minor requirements.•

5.) End of Year Problems
Most systems we have come across impose fixed booking periods on' the
end-user and at the end of year before starting a new one cumbersome
procedures must be carried out in balancing/finalising the old year
before proceeding with the new. This costs a company re~l money in
delayed revenue and has put an unacceptable strain on tHe data
processing divisions within companies.
Through parameters, the EUROSPAN user can determine exactly the periods
he requires and can post details to previous periods until he finally
decides to close them off, whilst always having an up-to-date balance
on all accounts for a period of two years. He can also retain his
history for ad-infinitum depending on his disc-storage.

6.) User Friendliness
It is enough to say that through the use of our menu system and
breakdown of functions in the familiar way the user is used to using,
he relates totally to the system.

7.) Speed
Speed can be a real 'bug bear' in any real-time system especially
with sophisticated processing requirements. We incorporated the
following procedures to overcome this:
a) Logical grouping of fields in Data Base Design which afforded us

less system overhead and additional logical data item space for
individual requirements.

- 6 -

U3 6

eUTOCO

- 6 -

Furthermore grouping of data items eleminates the need to
concatenate data items and hence reduces system overhead.

b) By freeing space on the data base other applications such as
order processing, fixed assets accounting, stock/warehouse etc.
control can be incorporated under the one schema.

c) Our menu processor enables the user to move between online
functions without necessarily going through the menu each
time, carrying across all relevant data. This makes a very
efficient and fast usage of the system possible.

d) He have developed screen handling routines with prompt and
help facility on each field. Online processing is character
mode, i.e. fields are validated upon acceptance and
redundant screen input by the user is avoided. Field by field
processing has proven to be overall faster and more efficient,
especially in a very large user environment.

e) Our file handling routines were also designed for fast input
and retrieval of data. The dabase design and own 10ggingl
recovery procedures that we implemented reduce the overall
system overhead.

f) Finally our concept of defining up to 99 different transaction
types within the bookings-posting functions, with user-defined
parameters, reduces dramatically the necessity to input
recurrent data within logically similar types of transactions
(e.g. posting invoices, cash etc.).
The speed of entry and validation is thus very high within
all areas of postings, as default or predefined values need
not be entered anymore by the user.

- 7 -

U3 7

euroco

- 7 -

8.) Multiprocessing
One of the major headaches of software designers that multiprocessing
has brought about, is security and recovery of data. As already
mentioned, we have developed our own logging techniques.
The terminal number, user number, date, time, and type of transaction
as well as the logical end of cycle for transaction cycles are par.t
of the log information. One is thus in the position of determining
the last transaction per terminal as well as any logically incomplete
transactions. Recovery may be then effected, either from the previous
data security, or merely by eliminating any incomplete transaction
cycles from the database, i.e. working backwards.

9.) Communications
Communications software and hardware are now readily available. Postal
links are constantly improving through postal radio developments and
sattelite communication.
He have found HP's OS software &H/W a very easy to use and reliable
tool, within our distributed network applications.
Our phi1oso~hy in this area is simple. Provide the facility for
immediate retrieval of relevant data through communications, but
always ensure that every unit within a network may continue to process
its own data independant1y, at any time. We must subsequently provide
subsets of the central database to remote locations and update these
as required daily. The relevant information as to which data is
required where, is held on file so that again, no redundant transfer
of data needs to take place. Also a set of reconci1ation procedures
had to be developed to ensure the integrity of all remote databas~s.

When communications are across borders, there are also time differences
to take into account. Here the priority is to enable data exchange
at the most efficient and also economic time, while ensuring maximum
data security.

- 8 -

LJ3 8

eu,oco

- 8 -

10. International
Factors are most important in any international system are:

- Currency
- Langua~e

- Different accounting periods and fiscal years
- Different balance sheet formats
- Different reporting conventions
- Different 10ga1 considerations to be considered

We have given everyone of these polnts considerable attention, as the
constantly growing list of our multinational users proves.
We have kept language constants separate from the program code.
Flexible currency conversion routines have been developed to enable
the user to define the rules according to the procedures he is used to,
and the legal regulations in the respective country.
Decimal points are no~ available if the foreign currency dges not
require them (increased speed of entry).
EUROSPAN offers multinational concerns the tools to maintain accounts
in local and remote company format, currency and language, as well
as providing each company with a number of different reporting,
budgeting, consolidation and grouping options.
In addition to this our report generator WHAT-IF integrated with
EUROSPAN gives the user an additional tool for retrieving data and
producing new reports in any desired format, as and when necessary.

- 9 -

U3 9

.uroeD

- 9 -

Result

Sophisticated application software for sophisticated system software
is now made possible at a price that end-users' budgets can allow, as
the development costs have been spread over a large number of users.
Installation and trial time is also cut short by the fact that EUROSPAN
is a proven system.

If you have time please come and see us at stand 1.

U3 10

****,......0::
t-

o
z
:

....
LLJ

-
E

~
U

J
U

J
c.J:)

'-"
<

a..
2

....
0::

ce
W

0
E

>
U

t-
en

....
z
:

0::
,
~

LIU
U

J
°UJ

E
a..

~
t-

<
U

J
V

)
a..

(,!)
LIIJ

<
>

U
J

Z
z
:

E
::r:

<
~

0
~

....
E

en
u

z::
..J

W
W

....
~

U
J

I-
~

Z
:z::

en
LLI

en
w

E
Z

~
U

t-
C

D
u..

Ll.l
CD

~
I:t:

W
I
-

>
~

I-
Z

LrJ
..

.....
0::::

Z
~

~
C

Q
-

l-
e

<
3

E
z
:

LILJ
w

0
z

s
(I)

~
Z

..J
U

.J
•

w
w

0

•
::

I-
U

•
en

z
•

-
L

L
~

...J

NEW DIRE£TI9NS IN INVESTMENT MANAGEMENT

F. HELSOH

fl. STECK

•••• WE DIDN'T RECEIVE THE PAPERS YET (EDITOR) ****

F. HELSOM
R.STECK
LINCOLN NAT. INVESTMENT MANAGEME~T CORP.

U4 1

~ ..

High Speed Digital Image processing using a Picture-Scanning technique on

Incremental Plotters.

Ramesh Panchal
Hewlett Packard Ltd
King Street Lane
Winnersh
i'lok i ngham
Berks
RGll 5AR

US 1

ABSTRACT:

A method for high speed digital image processing, using incremental plotters

is described. This proiect involves the use of computer graphics to

electronically scan a picture and convert the resultant analogue signals to

digital signals, subsequently to be processed on a high resolution TV

monitor. The picture scanning attachment consists of a high resolution

optical reflective sensor and associated amplification stages. This is in

the form of a small probe which replaces the pen and the pen holder in an

incremental plotter, and thus allows pictures to be scanned and stored as

digital output for subsequent processing by a digital computer. The

processing of this digital output could be on a high resol~tion TV monitor

or a printer, using the Grey Scale contrast technique. Relativ~ merits of

this scanning technique are discussed. A special mention is made of a

possible interface with the Hewlett-Packard Laser Printer software, where

the digiti sing process could be speeded up many fold.

US 2

2

INTRODUCTION:

Digital image processing technology has reached a stage in its development

where a considerable impact has been made in most technological

fields. In addition to commercial and military applications, it's impact

on the medical technology has been far reaching e.g. its use in brain and

body scanners, where the resultant digital images are processed on a high

resolution TV monitor.

A digital image memory and processor offers a wide range of capabilities.

It can digitise and store image data provide scan conversion, improve

signal-to-noise ratio (SNR) via frame integration or averaging, detect

and accumulate image differences, enhance very low contrast images and

provide an interface between video and digital technologies. A well

designed system will also have the flexibility to be interfaced with a

variety of image sensors, computers, displays and recording devices as

well as provide for software expansion for image analysis applications.

Cigure 1 is a block diagram showing a state-of-art digital image memory

~nd processor with such a range of capabilities.

As it can be envlsaged from above, there are various techniques one can

employfordigital image processing. This paper examines a very simple

and inexpensive picture scanning device in conjunction with an incremental

plotter to digitise a picture and process the image on a high resolution

TV monitor. The study was a direct result of a requirement for an

inexpensive method for inputting shaded images to a digital computer. One

of the projects involved the use of these shaded images in comparing the

relative merits of Fourier, Walsh and Haar transforms in data compression

and noise reduction of images. The mathematics involved is rather complex

and beyond the scope of this paper and hence has been omitted for simplicity.

U5 3

3

The entire study was carried out in the department of Computer Science at

Brunel University.

The outcome of this study offers a good, inexpensive practical avenue for

digital image processing, and a possible application with the Hewlett

Packard laser printer is mentioned.

THE SENSOR AND PLOTTER:

The picture scanning device, assembled at the Computer Science laboratory

of Brunel University, consisted of the HEDS-1000 high resolution optical

reflective sensor (Hewlett Packard 1979), mounted at the end of a small

plastic tube which replaced the pen and the pen holder on the plotter.

Mounted within the tube was the associated circuitary (see figure 2)

comprising a current feedback amplifier utilising the sensor's internal

transistor, thus providing current gain and bias point stability. Further

gain was provided by an operational amplifier with adjustable output

voltage level, which allowed for optimum contrast to be selected for any

given shaded picture. The output from the sensor was converted by an ADC

(Computer Technology OOOOa) which \'.:as connected to a Modular One computer

for storage as a data file.

The incremental plotter used (Computer Technology, OOOOb) was a small

roller type, rather than the drum or flat-bed construction which was the

only one available at the time of this study.

Apart from the low cost aspect of this simple design approach, another

favourable feature was that it enabled the employment of standard Calcomp

digital plotter software in driving the modified pen carriage during

picture scanning.

US 4

4

DIGITISED OUTPUT:

After image processing, the output can be programmatically presented to a

line printer or a matrix printer using overprinting techniques, (See

figure 3) with an output voltage swing from the sensor of 8v for a high

contrast picture, and a noise level of less than 20mv peak-to-peak, a

considerable number of grey levels can be achieved. In order to test

the sensor, the digital output was initially processed on a matrix

printer (Centronix 702) for which sixteen levels of grey were chosen.

This produced a rather poor quality of overprinted images but proved to

be sufficient to test the senso~. The subsequent image processing was

carried out on a high resolution TV monitor.

PROBLEMS ENCOUNTERED:

Apart from the poor quality of overprinted images obtained from the matrix

printer, a major problem area was due to picture wrinkling. As the plotter

was a roller type, and the pictures were fastened on the plotter paper,

there was a tendency for wrinkling to occur which caused image defocusing.

A 0.5mm high ridge caused a 50% drop in reflected photo current. This was

overcome, for test purposes by using small mint postage stamps (figure 4).
(The problem would be non-existant on Hewlett-Packard flat-bed plotter

series where the paper is electrostatically held absoutely flat on the

plotter.)

CONCLUSION:

The sensor is sUfficiently sensitive to detect variations in whiteness

(or blackness) quite unnoticed by the naked eye. A high resolution is

achievable which also enables line following and other complex scanning

routines to be programmed.

US S

5

APPLICATIONS AND FURTHER WORK:

This technique provides a relatively inexpensive method for digital image

processing. As a result of a matrix availability on' the Hewlett Packard

laser printer - 2680 software, a special character set with varying levels

of darkness can be generated. Using IDSCHAR, a character designing program

provided with the 2680 software, a special set of characters, with each

character cell showing a varying shade ranging from total white to total

black can be generated. As there are numerous levels of grey achievable

by the sensor, these can be associated with the special character set on

the laser printer and a TV monitor like resolution is achievable, although

further work in this area is necessary.

Similarly, the sensor can be used using the primary colour filters and

data stored for each colour, which can be subsequently integrated on a

colour monitor. It is also possible to transmit these digital data

files across a communications network and process the image remotely.

US 6

6
Figure 1.

\I 'beo
Ol.tTPu,-

D/A

CoN \J~Q..re:'t

Du.,p\.lT
eoNrltlLl "'~~NS PoQ.~

(6Q..~i 'SCALe

loOK UP T~~)

'\

A./b

(2A~.bO~

~~

Nt~'10f.'t

toO"" "~Il'fet.

ARI1"HM~Ic...

'~W""e

L.f:VbL-

CJ)NTRoL

", l)e-o
R~U:f\Jf;e..

S'(NL-

&e,rJE:J{~To~

J>~TA

~Q.ES$

(()t-ITR..ol-

~J'fNj)Ot-..1

~~S

tID

'''4

Lo~p

V'b~

aAr .. ---

REFERENCES:

1. MENGERS Paul et al, Research &Development OCT 1977

2. PAGE Ivor &WOOD Robert, The Computer Journal, 24 1981

3. RYAN Daniel, Computer Aided Graphics &Design, MOl New York 1979.

4. HEWLETT PACKARD (1979) - High resolution optical reflective sensor.
Data sheet - Hewlett Packard Components.

5. COMPUTER TECHNOLOGY (OOOOa) 1.722 Analogue input module, outline
specification sheet - Computer Technology
Ltd.

6. COMPUTER TECHNOLOGY (OOOOb) 1.43 Incremental Plotter - Modular One
interim user handbook, Computer Technology
Ltd.

FftQNI

PtrN~L OF
LoM pur;

CoNT~Ol- t'I\~Molt1

CON1WL

A block diagram shows relationship of elements comprising digital image

memory/processor with random access memory.

US 7
US 8

:-

Figure 3.9

:I:CH:L
ICH2

F'F~()GI:~'~I"i FPI:;.::rNT
~c **~*~~~*~~~**~*~~****~**~**~************~*****
C ••••• TH:r:S Pl;:OGF~I~'~l HEf-1DS A F:I:LE (-',ND Pl;:INTS' OUT A
C •••• Co P:I:CTUI;:E ON THE CENTF~()NIX 70~~. THE FIL.l:: FDI;:Mf\T IS
C. • • •• Th~: f i "~t l Chl.lr. in t hIE: f i l-e: i ~s t hli:: l 'i~ t t'i::r N,
C. • • •• f () l l 0 \J~::d bY t h~;; ~) i Z~: 0 f f· i c t u,.~:: If\1.1 t ,. i x (1.--128).
,: • • • •• T h~: r €:~. ~: 0 f t hli:: f i lie:: i S 1.1 ~:t t r i n 9 0 f ~~ r -e: y ~:t C IJ. l 0(:;

Cc •••• vf.ll,.l'C:~) in th<iC: rlJ.n~J~:: O--:L~5, nUn\tH::r~) ()ut~)id';:;
C •••• o' t h i ~:i r f.). n ~.~ IC:: W ill b€: ~. CfJ. l 'i:: d IJ. n d t run Cf.l t Ii::d j n t () it.
Cc •••• Th~::!:~~: O('(ci; ('\:;0.<1 in fr<c:'c: fonr't.d, of t~::r • h~::
C. • • •• l ':>,'::; t n un,h~;:r t h~:r''i:: ~:;h() ul d bli:: f,ln 0 t h~:r I N I f 0 (.

C. • • •• I.l n ~::I.J pic t u r ~: () r I,Ul I E I t () t ~: ,. ,'" j n f,). t <ci: t h~:: p lot •
C ••••• Th~: ch. ~:;~:t u~5o<::d is ,.,<:;1.>.<:1 (rom ~). do.tl,lf j lli~ tl'li~,
Ct. • •• f i. l ~:: c () n t 1:1 .i n s 1.1 ~. t r i n!oJ 0 f c, h • I:J 0. i ,. ~5 I,J h j c h (1 r Cci;

C. • • •• () VIC:" pr j n t ~::d t () ~':H:: t t "lli:: r'1i:: c'IU i rE:<:1 I:lf.). t t oc::rn.

C Un i. t f.l~i)Si~JrHTlCci:n t i~) : .•.
c. . • . . ~! C () n s 0 lli::
C.. • • • • 3 [)f), t f.l f i l ,::
C..... '4 Tty linE: for c;~~ntr·()nix. e.:J./TTB
c. . . . • ~j Cho.r·.. ~)~:: t f i l~:, l~ur' r·,::n t l Y •PCCHSET

DIriENS:I:ON l.:I:NEl (1.2B) y L]:NE~! (128) , IGREY:I. (16) ,
+]:GI:~EYZ(16) , IP:I:CT (l~~B) ,VAL.UES(:t;!.(3)

C. • .. •• F~E:I~l[) CH GET FROM UNIT 5
DO 15 I==:L, J.6
RE~D (5,1015)ICH

1. () :L:j F[)F~MAT (A2:)
C ••••• l rc: f t !:. tl i f t l IJ.n d r i ~J h t s h .i. f t 9 t () 9 ~ t tOft 7 bit $

! LDA :I:CH
! SFT LfCJ
! SFT "'+1
! STf.'. ICHl

C••••• lli:: (t c'J r i !~ h t 9 for b () t t 0 lI\ 7 bit~)

! LDA ICH
! SFT ~:j7

! 8FT .Ill
! STA :rCH~!

:I:GF~EYl ex:>
'IGI:~EY2 (I)
CONT]:i~UE::

Lt~:;;:7a

L.E:::::6<i
C••••• READ SINGLE CI-IAH FROi'1 DATAFILE
10 READ (3,1010)ICH
lOlO FOF~MAT(A1>
C••••• l~ft 1 & ~i9ht 9 to convert to 7 bit YQlu~

! LOA :[CH
! SFT "1'7
! SFT .ttl.
! ~rrA ICH

C ••••• CHECI< F()F~ N OH F
IF (]:CH • EC~ • LE:) GOTD 999<7
IF (l£H.ETI.LN) GOTO 20
GOlD 999:L

Z 0 c:ni\!TINlJE
C••••• READ SIZE.CW SQUARE ~;:OM DATAFILE

I:~E~',D (~) t' :l 020) ISCH,JI;:
IF (ISQ~;:.LE.O) GOTD 9995
IF (rBL~l.JF~.GT • :L ZB) GOTD 9995

TOP VIEW

Figure 2.

CONNECTION DIAGRAM

8 . LED ANODE,~V:o.:i if.-"':'~; ,:"- ..' ..' ,~.',' :
i·1 . I. He: ":. ~ .":'·~I .• ':: .•le ,,.,,,· _~ :. -:"... •

.-: 8~~ .,:rRA"S1STO~·EMITTER:.;·; •.••,·\1.·: .. :·;·.:.

:~'IN', ·fFUNcTibN·.·.. q.\f.\\'!·,~\·~ .1 i[:.(.~.:;H:,.."·
:,-: 1· \ .TRANSISTOR COLLECTOR ' .~.,:,.' '::' '.
'•. 2 • ~TRANSISTOR BASE, PHOTODIODE ANODE,
;':·3. ~ • PHOTOOIODE CATHODE... . ,.," ;'.

4~~" :. LEDCATHODE.·SUBSTRATE.CASE··":····.
i S' :.. ·Ne.·........'.l....... ~ :.:.~...... ..

senscr shown enlarged.

8

--,
1

~
I
I

--~

High resolution optical reflective

SCHEMATIC DIAGRAM

Os-SUBSTRATE DIODES

U5 9
.... /2

US 10

10

c ••••• I="\EAD SCALING FACT()F~ FI;:()H TEF~I·t]:Nf~L

WFU:TE (2 , ~!~5)
~~~:; F(U:~Mf~T (' TYPE: SCAI..ING FACTOF~~? • /)

READ(Z,10Z0) FA~rOR

DO ~!O 0 d::::l y IB(RJF~

1:~EI~-'lD ( ~~ , :L O~!. 0 ) (VALUES ( I) , I=1 , :X:SC~UF< )
1.020 ~-:'()r~MAT()

DO ], () 0 I:::::L, :I:SOUI:;:
lPICT (I):: VALUES (:x:) *FACTOR

<70 IF ( IP:I:CT ( :I:) • LT. 0) :I:PJ:CT ( 1: ) ::: 0
:I:F CI:I:'ICT<X> .GT.:L~j) IPICT<I)=l~;

IGF,:EY:::I:PICT (I) .•. 1.
I...Ij~E:l (I) :: :IGF~E,(:1. (IGF~EY)

100 LINE2 (I) = IGREY2 (IGREY)
WRITE (1,1050)(LTI~El(I),I:::1~ISQ~~)

C{~I...L CR
WI:;:ITE (1,:1. O~50 ) (L]:i"E~! CI:) ~ :1::::1" IS(~UI~)

:L O~:;() FDI;:i1AT (:I.H"', 1. ~!B(.l;!)
C..~·II...L CI:~

Cf~lLI.. LF
200 CONTINUE

WFU:TE ( At , 1 0 ~5~; )
1055 FtmMAT (1H!)

GC>TO 10
9991 WRITE (2,2010)
20 1 0 F()I:~11(4T (1. X, 'UN~{NOWN CHARAC,TE:R' I )

GOTD 9999
<J995 WfU:TE (Z,20Z0 >:I:SC1UF\
2020 F~RMAT (lX,,'MATRIX SIZE OF ',I6,' IS OUT OF RANGE I

/)

(J999 STOP
END

SUBf~()LJTrNE CI;:
NULL :: 0
]:CF~ :-.:: :1.3
WFU:TE ( .ct , 100 () ) :I:Cf~

DO J. 0 0 I:L ::: l , :L ~)

'I. 0 0 WI:U:TE (At,1. () 0 () ) NUl.l.
1000 FlmMAT (lK~,A2)

F~ETLJI:~N

END

SLJBF~OUTINE LF
NUL.L :: 0
:I:L.F ::. 10
WF~ITE (.q, :LOOO )l:l•.F
DO J () 0 12::::1." :L~J

:LOO WI:U:TE (.qy :lOOn ) NUl.L
loon FCffiMAT CIH+"A2)

HETl.JF~N

Ei~[)

.... /3

U5 11

1-1

•••••••• Dol a I I Q 1.1 :::::l:::::::::;;::::::::=:::::
•••••••• DaIIIQI§~~~~~~~~

•••••••• DIIIIDI§~~~~~~~~~

I • • • • • ••". II I § IIII ;::::::::=:::::;:::::::::::;::;
.§ § ~ III II III ! ! ! ! ! ! ! ! +......++......+()(J()()()()()O
n~§D:~§I§!!!!!!! !++++++++()()O()()()()O
II~~~I§II!!!!!!! !++...+++ +()(J()OODOO
II ~ } ~ II ~ III ! ! ! ! .! ! ! ! ++++++ ·+O()()()()O()()
~~~***~*~~~~~~~~88888888ffiffiIDIDffiIDwm

~*******~~~~~~~~88888888ffimmffimmmm

***~*~**~~~~~~~~88888888ffimmffiffiIDmm

*~~***~*~~~~~~XX88888888ffimmmmwmm

OOOOOOOOgW~~Nm0M~rnmIDffimm~oaBaaoa8

OOOOOOOOMM~Q~MMM~mmIDmWIDmOOB008a8

000000000~~M~MM~~m~wmmW~800B88aB

OOOOOOOOU~M~g0Un~mrn~mmIDmOOB080DO

16 Grey Scale values used for digital image numbers

U5 12

N

Understanding Hewlett-Packard, a view from the inside

by

Jan Stambaugh
Computer Systems Divisi"on
19447 Pruneridge Avenue
Cupertino, CA 95014

Four months ago, I resigned as chairman of the HP3000 International
Users Group's board of directors to accept a position as manager of
the quality improvement program for Hewlett-Packard's Computer Systems
Division. In the past four months, I have learned a great deal about the
Hewlett-Packard company, a complex yet simple organization which focuses
on quality and excellence in the design of its products and services. It
has been both amusing and disturbing for me to realize how little I ever
really understood about how things work at Hewlett-Packard and why.

This paper is designed to help customers gain an awareness of Hewlett
Packard, its structure, it's management, and it's goals and objectives.

HP BCG BASIC

STEVE NG

ENGINEERING SECTION MANAGER

IIEWLETT PACKARD GENERAL SYSTEMS DIVISIOtJ

SEPTEMBER 21, 1981

ABSTRACT

This paper describes the strategy for developing and maintaining a
competitive, compatible BASIC language and compatible BASIC inter
face to tools (e.g., database, data entry, reports, graphics) for
the Business Computer Group families (125, 250 and 3000). BeG BASIC
project objectives, features, technology used and conversion aids
will be discussed.

BACKGROUND

It has long been a goal at HP to have a single HP standard for
BASIC to provide a growth path through the desktop computers to
the HPIOOO and the commercial machines (HP125, HP250 and HP3000).
However, the implementors on single-user single-language machines
and those on multi-user multi-language machines differ
philosophically with respect to the inclusion of operating system
functions at language level. As a result, we have more than a
dozen BASICs at HP, most of them are incompatible with 9ne
another.

Our near-term goal is to narrow the number of BASICs at HP to two:
BCG BASIC and TCG BASIC. In August this year, the General Systems
Division has been given the charter of the BeG BASIC. GSD has the
total responsibility for developing and maintaining a competitive,
compatible BASIC language and compatible BASIC interface to tools
(e.g., database, data entry, reports, graphics) for the Business
Computer Group families (125, 250, 3000 and future BCG computers).

OBJECTIVES

Compatibility across all BCG machines is the primary objective.
It is difficult to write an application program without using any
tools such as database, data entry and report writers.

1.

Even if we achieve 100% language compatibility but don't have a
common interface to the application tools, then it will be
extremely difficult to transport programs from one system to the
other. Thus for the BCG BASIC project, we set the following
objectives:

o To provide a compatible BASIC language for the HP3000 and
future BCG products.

o To provide an upgrade path for current users of BASIC/250,
BASIC/125 and BASIC/3000.

o To be a user-friendly system in the 250 tradition.

o To provide uniform interfaces to application tools on all
target systems.

o To provide conversion aids for current 125, 250 and 3000 BASIC
users ensuring at least 80% automatic conversion.

FEATURES

The new ANSI BASIC standard, expected to be adopted in 1982,
describes a very full and powerful BASIC language. It provides
the user with capabilities and features previously lacking in the
language and necessary for large applications. HP needs a
compatible BASIC across all its product lines, and conforming to
the BASIC ANSI standard is the best way to accomplish that.

BCG BASIC will include all of the features specified in the ANSI
BASIC Level I standard proposed by ANSI-ECMA. In addition, many
of the better features of the HP250 and HPl25 will be implemented.

Highlights of the BCG BASIC include:

o Identifier names up to 31 characters long
o Named subprograms
o Sophisticated exception handling
o Integrated file system
o Arrays up to six dimensions
o Commercial formatter
o 250-like programmer interface
o Built-in application tools for database and Forms Management
o Alphanumeric labels
o IF-THEN-ELSE, WHILE-LOOPS AND CASE constructs
o Templates for reading files written by other languages
o Enhanced string handling
o Support for non-English character sets and collating sequences

2 •

TECHNOLOGY USED

The BCG BASIC will use our Portable Compiler Writing System (PCWS)
which is an integrated compiler system for a set of Programming
languages and machine architecture and has been under development
at HP for the last two years. The PCWS consists of a Common
Intermediate Data Structure (CIDS), which is source language and
architecture independent, and a Code Generator for each machine.
With PCWS, it permits the production of M different languages for
N different machines with only (M+N) rather than the traditional
(MxN) programs.

Other advantages of the pews approach include the following:

1. Provides the user with uniformity across architectures
for a given language and across languages for a given
architecture.

2. Reduce development and maintenance costs.

3. Increase reliability and efficiency.

4. A global optimizer can be produced to work on the eIDS
and hence all compiled languages.

In order to provide the friendly, interactive environment of the
HP250, and to eliminate the current problem of having
inconsistencies between the compiler and interpreter, BeG BASIC
will be a hybrid interpreter/compiler implementation. Run-time
performance should be somewhere between the current HP3000
interpreter and compiler. Speci~l terminal drivers will be
implemented for BeG BASIC to provide the 250 "personality".

CONVERSION AIDS

Utility programs will be developed which will attempt to
automatically convert 125, 250 and 3000 BASIC programs and data
files to BeG BASIC. A report will be generated detailing the
changes made to the program. If the converter has problems or
cannot translate certain constructs, the user will be asked for
more information and/or the statement in question will be flagged
for manual conversion.

Our goal is to have at least 80% automatic conversion for current
125, 250 and 3000 BASIC programs. This means that the users'
conversion effort will be no more than 20% of the effort required
to rewrite the application.

MPE IV

~

Mike Paivinen
Computer Systems Division
Hewlett-Packard Company
19447 Pruneridge Avenue
Cupertino, CA 95014

This presentation will discuss the MPE changes in the kernel policy

at a conceptual level. Ageneral overview of the new feature set will be
given. This presentation is basically aimed at those people who are
just becoming familiar with MPE IV and will not be an in-depth
technical presentation.

countlnQ systeMs.

(toc lu}r 0 und

the Ace 0 un t l n Q De P f) r t Me n tIs t 0 sup p 0 r 'f I] n d d I:'! 'h'! lop c: 0 '1\ U tit ':.!,. .1 :r. ",! d I] C

1he"c: COl' n t .l n g S ~ s t e t\s Gr 0 up 0 f CSY r ~ ~) 0 r t s t () t h t1 CSY Con t roll -:! r

D 'I r " ()] t! w.i t h .i nand handles 011 account1ng dQta procemsinp for CS).

tlit ••tltt••••t. h tttttttt•••tltt••
tltttttfttttt h tttttttt4.tt
••Illttttt h' ittttttttt
tlttttttt hhh ppD tt.ttt~tt II [W L r " T
tlttt••ti h h p P tttttfftt
~tttt••tt h h p p Itttfftit
Itttlt~lt h h p ppp tttt1tttt r A r K A R D
11titttttt p ttlttt.t.}
1tltttt•••t, 0 tltttttttt~t

ttlt111ttttlltt p ttt1Jt4t4tttltt4tt.

COMPUTER SYSTEMS DIVISION
(lC CO" n t inQ S Ys t eMS G,' 0 II P
19447 Pruneridge Ave.
Cupert1no~ Ca. 950\4
(400)-725-8111 X42S7

I n I] d d i t ion 't 0 sup p 0 r t we h 'l V e be COl" e Illo'! rl viI v in" 0 I V ,,! d (1 n ddt! d .i ...

clJted tOI

'[c 1] 1 IJ.) UCJ h '1 n., ."ceo U11 "t i n f} t1 YS 1 eMS nu p t! r vis 0 r (1) 1 est i n Q n e \.I tiP P" 0 due t s - b 0 1 h h'l r d wa,' e un d 5 0 f t W11 r 1:1 •

functionality and reliability but also utllizinq th~s~

,:\CF: On ~ r' 11 to,' 1e s ~i J fJ h 5 c h ~ d u 11 n Q 11 n d Pro r.: e 5 sinQ
This includes not on 1 ~ d 0 .1 n 9 p r t? ... r € 1e I) 5 t'? , t?' S l' .i n Q r (:01'

"Ie!:; 'II~ r.c1 :
pro d u c: t 5 t 0 de IJ e 1 00 0 U,' d 1 s t rib uteden v .1 ron n € n t •

(2) fully utilizing liP software f]nd h"l('dw'Jr't~ to .irt!lI(J.rl\t~nt I]

processing envjronM~nt~

ACE i~ on oulilh! job sr.:hedul.inq Ilnd pror.:~?ssing l1opl1cfltion.
Th ~ 11 PP 1 .i c: IJ t i. f) ncon 1 " 0 1 S 5 ,i. t\ " 1 t I.l n t~ 0 " 5 P " () C e s !:' J. n g que u t.~ c; 0 f' Job !;t

i n 1'1 M" 1 t i ... t'\ I} C 1\ i n .;~ n ,!. t \.J IJ r 1< • A sin (J 1e M'1 S t ti!. J' ~.; c h e d u 1e «: 0 n ·t r 0 1 s " 1\ t1

o "t!~ " to!;. t.l n d 111 e t'.' c: t, .i n e 5 () f 1 Wh j c: h t; t? c: u t 1 (' n wJ 1 1 0 C C. If r •

"d1stributed" datI]

wh.lch the Cut'lDuting power Is wher't! t h,:!

i . e. 0 n t? .i n

~h~O[).le I}ntj

s y S 1 eMS e. cur i t ~ 11n d 0 per' 1:1 tor 1e S 5'" C 0''\P \J t e r' s •

f'no 1 v .1 n a .. s c h to! d 'J 1. i n (J n 1.1 r' I] " e t t'! r s t. tot heM II S 1 e. r' i uh 1 i '3 t c r ..! 11 t ~ ~,;

I] ,., 0 I' t il 'J !;. 5 c t; to! d u 1 t'! • l h t:! - P;) r I] r" e t t~ r 5 IJ 11 0 ,... for 5 c h e. d u i i ... 9 IJ J C' b 1 0

t! xe c I.J ted b!J t h l~ d 11 ~ 0 f the "" ,,! e k., 't he. w() r I< d 11 Y () f the M ')1'\ , h ~ 0 " t It e
p t:U' 1 J c U 10 r' NOli 1 h 0 f t tH! ~ ,=! I] r .

probleMS IJre. This jnclud~5 Ilddressjny tt,t1 ~) rob 1 ,~ " ::1 () r

SERIES 44 IJnd I] SERIES 33, with I] 10tol of about 1000 Hb of diSC

the p " in t 1n g for b () t h tVl c h 1n e 5 (W~ USe Dn/ 3 n() f) t () c I) 0 ~ so () () 1 f i. 1 ~! l'i f,' 0 M

We currentl~ hove our IJppllclltJ.ons spreod I]cros~; 1wo .:p~~()()() s~st€,I'\s .• (1.IIni.l~ pf'ocessinf;.l r..;tt:U't5 with 'lssigning S~'!q'.h~nce nt'nber's to
the i 0 h 5 S c h t2 d " 1 t! d for 1 he d 1:1 V t.1 n tI rev.i e w.i n CI i () b d t? P t n d t? n c: .i e ~ .
l:: 11c h . j 0 his e i ·t her s c he d II 1 t~ d t () run 0 f' d I'! r ~'! ~ r ;. d f I) r' f I' ·t "r ~
procl~5sjnQ. the. !;;cht2dule 15 then pxectJt€<1 j,n til':! e:'.5'tl]blJ!';;ht~d

5 e fJ\H.! n c: ~ \oJ i the 0 n tin U 0 'J 5 [) r uart] h '111 tic: " 0 nit 0 r i n (J • J I) b S I] r ~ I} n 1 v
s t re Ij t-l e d "p () n 5 U r: c e s ~ f ,,:1 C0 ,.~,; 1 t'.' t jon () f' t h t.d I' d t? P,? rHi ,~ f) C .i ':1 5 . (, t , h t1
r.: () n c 1. u ':.,; i () n 0 f the r roc t! 5 sin Q., f1 r t=! po,' t i::. q ,,~ n l~ r' I) ·t e t.I t h I) t 1 i ~ t I;

::; II C c: ,~ 5 5 f u 1., ~lla 0 r ted." can c ..: 1] t? d." Ij n d d € f € r r to'! d j () b !:, •

storo(}e (f 0 ,. r 0 f 0 u," d.i ~cdr i ve. 5 (lreP r 1 VOl t2 'vi 0 1 " ,., (l S). On e ~~ b 19Ado l~ 5

the Se,'1es 33 to the Ser'1e.s 44). We h I] ve. (t n e I-11" ~. ;.1 S r\ .1 C r () COMput l~ r .i. n

ru' e c ",' " e n t 1 ~ e IJ I] 1 U I] 't J. n g '}I': II P 3 fJ 0 () t 0 tH! put i n

Th to'! I] r p 1. i Co 1.1 t ion h 1.1 3 I.) t! ~ n ~H' 1. "rU" i 1!J cit'? S .i g ned t () b '"! 0 P ~~ r 11 t () r J. ~.~ ::i S

i nit!i e x e cut .i () n . II 0 \..I e. ,~ r., 11 t, IJ n u 1.1 1 0 v err j d e. C(j P IJ b .i 1 i 1 ~ h I]::; b ~.. € n
~) r () v i d ,~d • Un c: t\l'Hl ~} e ~i i n ..~)(i s tin q '1 PP 1 i C 'l'f ion fJr' 0 CJ " 11 t" ::t (H' J eli. ::;
f' t"~ 0 I'.i r(! c1 •

the d (! p I] r t rH! n 1 I] 1\ d

Accounts PllvlJble f()r de. d 1 C IJ t € d [' r () r,; .:! s S 1 n Q • Our ~; v s t ,:.: tl s g f' 0 H 0 () .. 12

professionflls stJoports 1.1n I.lcco',ntinq d,~pl]r'ttl\e.nt or t\O [)t?'ople.

2

JOB PI~oeESSI NG FtJN~': TION

Job processing for botch jobs can be broken down into severol tusks:

1 • BeIIEJ) tJL I NG. Th .i S con s 1 s t S 0 f d e t e. f' Min i n 9 when tot- un ~ IJ C h

job that is on the Hoster Job list. The Master Job list

is the set of 011 batch Jobs whose processing needs to be

scheduled (reosons for scheduling will be discussed).

Along with the schedul.i.ng of jobs., in'tt':rdt=~pendenc.les

'1 M 0 n 9 job St·, tJ 5 t b ~ t '.1 k t'! n in t (l con sid t! r 'J t i () n. Ce r ·t I] .i. n

Jobs' processing will be "de.pt'!nd(~nt" upon the successful

c: o,,,p 1 ,,~ -t i 0 j; 0 f 0 the r job t1. 1fthe j C) b S -t r e IJ n '(hot pro r.: e 5 S-

es Labor vouchers Ilborts., we would not W(lnt to begin the

processing of our Lobor VarilJnce job strelJM until we suc

c e 5 5 full y ~ - j n ish the Lob 0 r V 0 uc her's . Sc h ~ d u 11 n Q IJ 15 () .i n

3.

pr OCto'! ss .lng continues wi th either t] rec;tlJrt of 'the '=Ibnr' 't~d

job or 'the streaMing of the next ovallobl£ ioh.

REPUr{l"IN(; • (\f·ter all p r' 0 c e s sin Q j S cOt'\ple ted., 'th--1 re~IJlt:i

Must be recorded onto 1he Mllster schedu1r: l.1nd ,. epor tt7.<:1 to

the systeM users. In DOlI] Processing it .i~ nec~ssnr~ to

j n for M the use r S Q S t 0 wh I] t ''''Il !:') ace () MP1 j s· h € d '.1 nd t Ci .i Ii .

for '1 the s y s ·t eMS g r 0 U~ C) f wh I) t ~ rob 1 eMS M I' !~ 't be f.i X t! d .

eludes identifying jobs thot require "extro consid~rQ-

t10ns" suc~ as t~pe Mounts or prlvate voluMe Mounts.

~~. P ROCESSING, l' his inc 1 ud t! S 2 i n 1 e J' r e l'l t e ,1 t 11 S k S 1

Q. StreaMing the jobs on the schedule. For the ~ext job

to be processed~ a check Must be Mode for the successful

cOMpletior: of oIl Jobs this job Is d~pendent on~ ch£ck to

Moke sure nIl extra considerations have been taken core

of (r.u'lvlJte voluMes

job.

tQpes~ etc.)~ ond then str~oM the

b. Monitor~ng the processing of eoch Job. Processing Must

be Moni't"'~d so thlJt when IJ Job finishes or' aborts.,

3
4

We hove found thot OlMos1 011 of the Job proc€~$in9 'unction con

be flutoM'lted. ACE i~ our oppliclltions subs!1steM thllt h'lndles .\LL of' ol.,r

$~nQle MQst~r $chedule controls the queues and the Mochlnes on which

an overvIew of the IMpleMentotlon of the ACE ub~steM.

*************************************t******************t
* ** ******************* t
* * Set uo: * ** * -SCHEDL DB t ** * -ACE OPERATOR * ** * Cr,PA[zILIlIES* ** * -COMPUTER * ** * TAULE * t
* ******************* ** I ** : ** *********~********* t* * Cre~te * ** * HASTER JOB * ,
* * LIST * ~
* ******************t ** I '\ ** / \ t
* ******************** *************~***** ** * Set up * * Set uv * ** * DEPENDENCIES * * EXTRA * ** * * * CONSIDERATJU~S * *
* ******************** ***********~**~**** *
* ** ***********~******* ** * Set up * ** * HOLIDAY * t* * TABLE * *
* ******************* t
* I ** I ** ******************* ** * Set uo * ** * SCHEDULING * ** * PARAMETERS * *
* ******************* t* I ** I $

* ******************* ** * Creote Q * ** * MONTHtS * *
* * SCHEDULE * *
* ******************* ** *
***************************************~*****************

The Qopllc01ion con1rol$

ACE 1s operQtorless 1n Its executIon ~nd

Jhe subsysteM has 1wo online progrQM9~ SCHEDULER and PROCESSOR~

'fakinQ the job processing function described above it wIll now be

t hfl t ') r.E! uS ~ d toe r' e 11 1 e and e xe cut e the Job s c he d u1e 9 •

Ment.

job-scheduling and proce$$lng ap~llcotion.

execution will occur.

requires NO changes in existlnQ a~pllcatlon prograMs or JCL t~ iMple-

AUTOMATION OF lUE JOB PROCESSING f'lJNCTION: ACE

schedule processing for our Accounting d€CHlrtMent . ACE 113 Iln ~nline

siMultaneous processIng queues of Jobs in Q Multl-Mochlne network. A

:;hown how ACE is set u~ nnd execu1ed to oroceS9 Jobs. Figure 2.1 show$

FiQure 2.1 IMpleMentin~ ACE

s
(;,

ACE: THE HASTER J09 LIST

ACE beqins with the creation or a HASTER JOB LIST. Thig list con-

tQins 011 the Jobs (on all the MQchines) that ACE wIll control. To

create the list only two pieces of inforMation are necessay~ (1) the

fully-qualifIed n~Me of the fIle In which the JCL resldes~ which will

ACE: CREATING HONTHLY JOB SCHEDULES

Once the H~5ter Job List hQS b~en $oecified the Mnntt\ly job

schedules can be creQted. To aid in the SChEduling of J~b5 ~ set of

"scheduling PQraMeters" Qre defined within the 5vsteM nnd con b~ used

to create Q schedule.

be cqlled the "JOB-NAME"~ and (2) the Co"pu~~r on which the JCL usu~lly

"EXTRA-CONSIDERATIONS"~ START- TIME-SlOP-TIME WINDOW~ DEFAULT-gUEUE~

AND DEFAULT~ SEQUENCE NUM~ER.

resides. Optionol inforMotion includes "DEPENDENCIES" 0'
In our Accounting d~pur1Ment we proce~~ Lnb~r Uoucha~s ~v~rv

Wednesdoy niqht. We process our first G.:nerlJl Ledgti to Mlcr"orlcht~ on

the 3rd worklnQ-da~ of ever~ Month, We ~rocess ~OM~ jobs every other

we e k 0 n H0 n d fJ Y .• SOMe Job s e v t? r y d I] Y 0 f the we (, k iJ n d 50 II' € .i (I b s () n] y

Deoendencies ore the Job-nQ~es of those Jobs upon whose succes9ru1

cOMpletion the current Job depends. Extrt.1 conslderQt!ons ore dependen-·

cies that ACE canlt handle. The applic~tion can check 10 see if the

proper privQte volUMe Is currently "ounted~ but It cannot physIcally

Mount the privQte voluMe itge1f. So the extr~ consideration 1s the

re"Mlnder to the person settlnq up the dt.1ily schedule thQt ~PRIVATE

VOLUH£ AUDITOl IS NEEDED FOR THIS JOBM. ExtrQ consider~tlons are Qiso

co""onl~ used to reMind of needed tape Mounts. The st~rt-tlMe-stop-tl"e

window allows ~ scheduled Job to be rtfn only between two s~ecified

tiMes~ Ie. the "window". If the window cannot be s~tjsfied~ the Job 1a

not stre~Med. The def~ul1 ~ueue and defQult sequence nUMber allow a

one-ti"e specIficQtlon of these IteMS when theIr values are fairly

static.

7

twice ~ ,ear, Wh~t we have found is that Most of our jobs have 0 dls-

tlnct pt.1ttern to their schedule. W~lve defined a ~€t of p~rfl'h~·t,::r·5

thQt describe these potterns to ~ld us In our Mnnthly ~chedullng. The5~

pOrt.1Meters allow for schedullnq Q Job to be executed b~ 1he dl]~ of the

week~ the workd~~ of the Month or th~ oorticul~r Month of ~h~ ~~or.

UslnQ cOMbinQtions of poroMeters any pott€rn clJn be describEd. There

~re ~lso ~QrOMeters that allow for the ~xclu$ion or do~s~ w~~ks~ or

Months.

Once the p~ra"eter5 h~ve been specified for eQch job~ creQtlng Q

specified Monthls schedule consists of MQppl~lnQ" these paroMeters to

the Monthls c~lendQr, The result 1$ the QctUt.11 5ch~dule of 1he d~te

each Job will run durlnQ th~t Month. ACE MQlntains Q tQble of holldo~s

(inputted by the user) ~nd will not schedule Jobs on those ~p~clflc

dates. Once sa1isl'led with the schedule for the Month~ and when QP-

pro~riate (eg. the beginninQ of the Mon'h)~ the schedule is OC1!VQ,€d

for use.

a

ACE: DAllY JOD PROCESSING

l)'lllv processing bt!Qins by entering SCHEDlJl..£:R ond reql.h1stinQ tht'!

dQ~'S schedule. All jobs sche.duled for this do~~ and ~)1 Jobs froM

previous ~chedules thot either Qborted or were "d~ferred" will be

presented. Onl~ whe~ 0 Job finishes successfull~ or is concell~d is 11

r~Moved froM the current schedule. Sequance nUMbers ood queue nUMbers

Must be QssiQn~d to each Job on the schedule. Dependencl~s are reviewed

ond Qre "deoc'lvo1~d" or Gddltionol added if desired. For Job~ requir-

(1) AUTOMATIC RESUME ,....ode In which rROCf.SRf)r~ will e)(e('~I1~~ the.

en t ire s c h e d u1e w.l tho 1I t nee d (1 f 0 n v t1 r:a: r i n t e f' Q C t 1 0 n ·

ThiS is the pure "o~ero1orless" M~de.

(2) MANUAL RESUME Mode in which PROCESSOR l4il1 t?Y.£cutE: ·~he:!

entlr@ schedule bv s'to!lping r.after eflch ~ob is str.:~o.t"..~d

Ilnd wlJitlnQ for the user·· to let.it strt20'" it~~ n.:.xt _lob.

This '" 0 delsex t r e Me I ~ use r u I wh t'? n Mfln v J Il b ~ a r ..'! d ..~ P ~? n _..

den ton Q sInq Ie job. On e con] .~ t the fIr!:: t j (1 h r .. n IJ n (I

PROCESSOR pick the next Job. Should the kEy job ~bort th~

lnQ privot€ voluMes or tope5~ the privQte voluMe nOMe or thE lOQicul

device nUMber on which the tope resides con be entF-red into the s~s'eM.

then Monitor the job 10 cOMpletion before]~ttinq

(PROCESSOR will then ch€ck to M~ke sure the ~rivQte voluMe is Mounted

before streoMing Q Job ond in ~he case o~ tope.s will reol~ to the first

tape r~que5t). Eoch Job thut opoeors on the schedule con either (1) be

1'.1ft scheduled to run this dlJ~~ (2) dE!-ferr~d for .r.,ture procf!sslnQ~ or

(3) cancelled frOM the schedule. De~erred Jobs will continue to appeor

~Qch following d~y until scheduled or concelled. Concelled Jobs will

not appear oQ~ln until the next date they are scheduled to run. Jobs

1hat wer~ not scheduled Ma~ be added to the s~hedule ot thi~ tiMe as

long fJS the~ exist on the t1aster- Job Lis't. For all Jobs that are Ie Ft

on th~ sch~dule~ HPE pO$~wordg ore enter~d ~nd the ~~hedule is reod~ to

proces~.

user could fix the ~roble" Gnd resturt ~he jub ~n 1t

f' .lnishes successf·ully. ThIs woy the jobs d~p~nd.irH} 0" Jt~

COMpletion would be streaMed insteQd of beinq d~rerred

because their dependencies couldn·t bt! Met.

The prograM allows the user to switch between a~toMotlc r~~UMe and

Manual resu"e at any tiMe b~ usinQ control-V. the user could Mon11~r

th~t first key Job uslnQ "anual reSUMe and UDon its ~uccessful COM ple-

tlon leave PROCESSOR in autoMatic-reSuMe and QO hOM£.

PROCESSOR picks the next Job to str~oM Qcc~rdinQ to Q .tr~iqht-

forward set of rules.

The pr~'1rf]M PROCESRfJR (Flq\.re 3.1) executes th~ t;chedule. (1) Onlv one job frOM a portlcullJr que-,e elln bt! in pr'or.:.~c;si_n~

PROCESSOR is on online proQroM that can be run frOM onv terMin~l on the

5vsteM. The prograM 1s executed in one of ~wo "odesl

9

at any tiMe. Until 1hE outc~Me of the curr~nt job is

regolved~ qll follOWing Jobs in th~t qucu~ wait.

(2) Each queue Is processed In the order of the 5equ£nC€

nUMbers Q~siQned to CQch Job. No j~b will be considered

10

for ~roces$ing until all jobs ahead of It hav~ t~en

processed (this Met.1nS either f.LnlSh€d ~.l:cce::~sftll1y, scheduled and running jobs. JobS~ queues~ or the entire schEdul~ can b~

aborted or deferred because dependencies w~~€nit Met)

(3) PROCESSOR will continuall~ loop sequentlall~ through thP

~ueue$ checking to see 1f the next job in e~ch qUEU~ i~

reQd~ to streaM or Must b€ deferr€d because of de~€~d£nc~

listed either online or offline. Figur~s 3.2 and 3.3 show t~e forMat

of the schedule lists.

Second~ the schedule can be altered frOM withln PROCESSOR. Queues

can be deferred~ cancelled~ or $uspend~d. Jobs con b~ added~ MOdLfied

aborts. PROCESSOR can hQv~ as MQnV jobs orocEssing Q~ or deleted. When Modif~inQ jobs~ d~p~nGencies con bE ~dded or

there ore queues active for th€ schedulE (~t can't 0C

More be couse of rule (1) and Lt could b~ less b~CQU5~

dependencies can cross queues forcIng onE Queue to WQi~

until Qnother'~ job finishes).

************** MAIN MENU *

**
* * * *************** *************** ***************** ******i*~~~*~*

RUN SCHEDULE *LIST SCHEDULE* *CHANGE SCHEDULE* *RUN SYS l!TIL*

************** *************** ***************** **************
*AUTOMATIC *LIST SCHEDU(E *SUSPEND A QUEUE _STREAM A JOB

RESUME ONLINE/OFFLINE *DELETE A QUEUE *RUN TOP
*MANUAL *LIST A QUEUE *ADD., DELETE, or\~ *~~UN SPDOI~

RESUME ONLINE/OFFLINE MODIFY A JOB *r::XECUTr:: AN
*LIST A JOB. MPE CDM~AN~

ONLINE/OFFLINE
*'SHOW> COMMANDS

SHOWJOB JOB=@J
SHOWJOB
SHOWOUT JOB=@
SHOWOLIT JOEc=@.l
SHOWOUT JOB=@~READY~N

FiQure 3.1 PROCESSOR.

Besides being able to specifv which Mode to run the schedule in:

there are other tQsks which can be perforMed frOM PROCESSOR.

11

deactivated.

Third~ PROCESSOR uses process h~ndling to allow the u~er t1 streaM

a job., run TDP.PUB.SYS:. run SPOOI~ IPUIl.~:Yf:.; .. (\i' €X€C....lt~.:. otr,ei :-';!"'[COl... ·

M~nds. This is to allow for restar1in~ abor1~d Jobs frOM wit~ln

PROCESSOR. BPOOI(is used to r£od spoolfiles., TDP .L:::.' G.n t~d.l tor, iJnrJ 1'lH';

streQM COMM~nd not onlu streaMS the Job but Qlso ~ets UQ thE jot

streQMed os on ACE job.

DEFAUL.T"HQUEUE ..·r~UMBt::I~ :

1.:' EF f.l UL T _. P I~ J UI~ IT y' :

DEFAUlT-COMPUTER~NUMBER:

QUEUf:

PRIORITV* STATUS

COMPUTER CODE JOB-NAME

DEPLi'·IDENCIES/

E.XTI::A CON~:.:IDE:;~:{:.·T I()r.I~: ..

JOBli.GROUP.ACCOUNT

QUEUE-NUMBER:

PRIORITY:

COMPUTER-NUMBER:

STATUS··· CODE: SCHE.DUl i::'" rlf:, 1t'

01*10*01

01*20*02

R

s

JOB11.GROUP,ACCOUNT

JOBi2.GROUP.ACCOUNT

**JOBXX,GROUP,AlCQU~T

*~J'(JBYY I GI:(DUP . f~CCDUrrr

JOt:t2 ,GI~aup . t,CCOUNT

)t{*JDH3.1, Gi~OU::' . ACCGut,rj

NECDS TAPE MOUNT

FOR LA~~T STEP

START-TIME:

STOP-TIME:

AVG-I~UN-TIME:

~;; l (.:. ~~ T.... TIM [~ WIN DC;~: :

STOP-TIME-WINDOW:

~.i

12345678<)'0 J. 2!:?o4';';;:l;'?[:<? 0 ~ 2~::!.:4'56'.:."D·:;'O~.. ,~

F19ure 3.2 Current Schecule LisT THIS MONTH'S SCHEDULE: (.I (1 0 0R(I AI:? 0 0 0 (J Dl~ 0 j. 0 0 U(; 0 1 t: (i 00 (,I i 0 l.J :.i 'i

DEPENDENCIES:

EXTRA CONSIDERATIONS:

JOBXX,GROUP.ACCOUNT

JOBYY,GROUP.ACCDUNT

JOBZZ.GROUP.ACCOUNT

13

JOB11.GROUP.ACCOUNT INFORMATION:

Fiqure 3.3 Current Schedule Job InforMQt~on.

14

Whe~ PROCESSOR finishes or~cessing the pr~duction sch~dule 1he

last j~b s~r~aMed g~nerQte$ Q report sUMMarlzlng ~he results of the

processing." Aborted Jobs~ def~rrad Jobs~ cancelled jijbs~ and ~uccessful

jo~s are all reported in this r~port. We then post this repor~ for ~h~

users.

1.5

An Introduction to frITT Recommendation X.21

Bill Baddeley
Hewlett Packard
Commercial Systems Pinewood

This paper is an introduction to rrITT Fe~ommendation X.21. The
recommendation specifies a new data communications interfac~

which you will probably encounter soon if you haven't already.

At the present time, most data communi~ations among remote
terminals and computer systems are carried over the public
switched telephone network or over leased tel~phone circuits.
The telephone network has evolved over many years and is an
excellent medium for voice transmission. When people started
connecting computers and terminals over long distances, the
telephone network provided a readily availble, though not an
optimal, connection medium for digital signalling. romputer
systems and terminal equipment are typically connected to the
public switched telephone network or leased telephone lines
through an interface which is referred to by th~ label RS-232 or
V.24. This interface type has been around for quite some time
and is commonly available on modem and terminal equipment.

An organization of devoted to international ~ooperation in
telecommunications, the r.r.ITT, is an international advisory body
which deals with telephone and telegraph communications. The
r.rrTT issues recommendations for services and implpmentation of
services. There is a series of r.rlTT recommendations (the
"V-series" recommendations) fo~ the connection of data terminal
equipment or DTF (the cate~ory DTF includes terminals and
computer systems) to the telephone network throu~h a modem. The
connection point to the telephone network is called the data
circuit terminating equipment, or OCF. The standard connection
between terminals or systems and·the telephonp. network is
described in r.ClTT recommendation V.24 and the FlA (the U.S.
Flectronic Industry Association) RS-232. The 25-pin ~onnector

which you may have seen on your terminal cable or computer system
is the standard connector for this interface. The V.24 or RS232
connection carries signals between the terminal or computer and
the modem. These signals include the tra~smitted and received
data signals, timing information and control signals which
constitute a dialog between the modem and the computer concerning
the state of the connection. For leased telephone circuits, the
V.24/RS-232 connection carries all of the information n~eded

between the modem and the svstem or terminal. The V.2U
recommendation specifies the function of each of the data and
control circuits in the interfa~e, and the dialog between the
terminal/system and the modem/Dr.F. For switch~d telephone
connections, some PTTs offer automatic calling u~its. rrITT

recommendation V.24 also describes the standard interface between
a system or terminal· and the automatic calling unit (the FIA
specification is FS-366). This interface uses th~ same 25-pin
connector as the V.24 modem interface with redefined signal
lines. The V.24 recommendation specifies the dialog between the
system/termi nal and the automatic calling uni t for. establ i shi ng
connections.

The telephone network is being replaced for some classes of data
communications traffic by public data networks. There 1s a lot
of information in the computer press these days about the new
public data networks and the new international standards for
these data networks. Dependtn~ on where you are located, you may
have heard of either X.25 or X.21 or both. The r.rITT has issued
a series of recommendations (the X series) which deal with data
communications networks. The X series of recommendations deal
with services on networks which are specifically desi~ned for
data communications. There are quite a few public data networks
now in operation, and more services are plan~ed for introduction
within the next few vears.

These networks can be broken into two principal ~ategories

accordin~ to the type of service which they offer. One type is
r.ircuit-Switched, where the connection between. two svstems or
terminals is' equivalent to a hardwired connection once it has
been established through the network. Fxamples of circuit
switched networks are the Nordic Public Data Network in Denmark,
Finland, Norway and Sweden and the DATFX-L network 1n the Federal
Republic of Germany. The other type of network is
Packet-Switched. Packet switched networks support multiple
virtual connections through the network over a single DTF/DCF
connection.

The Cr.lTT X.21 recommendation describes an interfac@ between Data
Terminal Fquipment (terminals and sy!~~ms) and Data
Circuit-terminating Fquipment for synchronous operation on public
data networks. This interface replaces the two-connector,
multiple signal interface of V.2U with a simpler set of signals,
a smaller connector, and improved electrical characteristics
(fig. 1).

~~mparison of rrrTT Recommendations V.2U a~d X.21

V.24

Auto raIl
Unit.

Modem
Unit.

Distance: < 20 Metres

Speed: < 20 Kbit/sec.

Signals: <= 31 signals

ronneC'tors: 1-2 25-pin

X.21

IDTF I I~rF I

> 1000 Metres

> 100 Kb i t / s ec .

<= 7 signals

15-pin

The X.21 interface is better able to meet the requirements of
0urrent systems fer data 00~muni0ations than is V.24 in terms of
speed and distance between the system and the network port
interface. The spe~ds of service in public data nptworks under
the rrrTT X recommendations are easily met bv the X.21 interfa0e,
the fastest being 48 kbits/sec. For this reason, X.21 is
gradually replacing the V.24 interfa0e.

The rrITT X.25 recommendation, which covers packet-swit0hed data
networks, spPC'ifies the X.21 interfaC'e as the electrical and
mechanical interfacp. between the DTF and DrF. The X.25
reC'o~mendation will be C'overed in more detail later in this
session.

In addition to the p.lectrical arc 10giC'al definition of the X.21
interface, the rrITT reC'ommendation des0ribes logiC'al pro0edures
for the operation of the interfaC'~ in a C'ir0uit-swit0hpd network
and in leased-C'ircuit appli08tions.

The C'ircuit-switC'hed network pro0edures are brokp.n into four
phases: the quiescent phase, when no conne0tion exists between
the local station and any remote station; the C'all establishment
phase, when either the DTF starts a call or the DrF signals an
incoming C'all; the data transfer phase, and; the 0~11 0learing
phase. The circuit-swit0hed network pro0edures are verv mU0h
like the procedures one uses with the switrhed telephone network.

During the quiescent phase, the tp.lephone is on-hook. In the
X.21 case, the system/terminal and the network signal thp.ir
respe0tive states of readiness to est?-blish a conne0tion through
the network.

The call establishment phase, in the case of the teleohone
conversation, begins wrc~ one lifts the re0eiver and dials a
number or when the telephone rin~s, signallin~ an incoming 0a11.
In the X.21 network, the terminal/sYstem signals to the DrF that
it is preparing to issue sele0tion signals; the orF responds bv
signalling "proceed to select", and then the ['TF issues a
selection signal sequence spe0ifving a remote station and/or
network servi0es. An incoming call is an~ounced bv the nrF to
the DTF/svstem/terminal. All cases of call 00llision (ir0oming
and outgoing calls at the same time) are resolved in favor of the
outgoing 0all. If one dials a busy station or mis-dial a number,
YOU receive in response a tone or tone sequen0e, or oerhaps a
rp.corded message. In the 0ase of an X.21 network, t.he calling
DTF receives 0all progress signals (figure) whi0h indi0ate wry a
call is delayed or why it has failed. Thpse call pro~ress

signals are useful in determining a reasonable next 80tion. In
additon to 0all progress signals, the X.21 recommendation
describes optional fa0ilitips for transfprring informaticp sU0h
as called line identifi0ation to the 0alling DTF and calling line
identificaiton to the 0alled DTF as part cf" the 0all setUD .
procedure.

Group 0 signals are delay conditions without call clearing
Group 2 signals indicate short-term conditions
Group 4 a~d 5 signals indicate long-term conditions
Group 6 signals are short-term network related conditions
Group 7 signals are long-term network related conditions
Group 8 signals are confirmation signals (with call clearing)

Group

o

2

4,5

6

7

8

Code

01
02
03

20
21
22
23

41
42
43
44
45
46
47
48
49
51
52

61

71

81
82
83

X.21 Call Progress Signals

Meaning

Terminal Called
Redirected Call
Connect When Free

No Connection
Number Busy
Selection Signals Procedure Frror
Selection Signals Transmission Frror

Access Barred
Changed Number
Not Obtainable
Out Of Order
Controlled Not Ready
Uncontrolled Not Ready
DCF Power Off
Invalid Facility Request
Network Fault in Local Loop
Call Information Servi~e

Incompatible User Class of Servi0e

Network rongestion (short term)

Long-term Network Congestion

Registration/Cancellation Ccnfirmed
Redirection Activated
Redirection Deactivated

Once the call setup is ~omplete, the connection between the
calling and the called DTFs is transparent. The n~twork

transfers the states of each station's transmit data line
bit-for-bit exactly as it appears at the DCF interface. The data
phase continues until one of the DTFs signals a clear request.
This is analogous to the ~onversation part of a telephone call.

Call clearing is signalled by either end and transferred to the
opposite end. Following call clearing, the DTF and orF re-enter
the quiescent .phase.

The circuit switched public data network has sev~ral advantages
over the public telephone network, having been designed expressly
for data communications. One clear advantage is automatic call
establishment (no operator dialling).

The X-series recommendations include recommendations for a
uniform international node numbering scheme which is analogous to
the international telephone numbering scheme. For p.xample, ea~h

Nordic network connection has a 6-digit network numb~r, which is
un i que with in the coun try. In t ern a t ionalea 11 s in c1udean
international prefix, a network/nation code, and a network node
identification number. Within the Nordic Public Data Network,
calls are possible among the nations of Denmark, Finland, Norway
and Sweden.

Another feature of the new public data networks is fast call
establishment and high reliability. For example, the Nordic
Public Data Network spe~ifications state that all 0alls will be
set up within 2 seconds, 99~ will be set up within 0.5 seconds
and 90~ of all calls will be set up within 0.1 se~onds.

Similarly all call clearing operations will take under 0.2
seconds, wi th 90~ under 0.05 seconds. This is clear Ivan
improvement over the performance of the switched telephone
network.

The X.21 call progress signals, des~ribed previously, provide a
clear indication of the status of a given call attempt along with
information about the probable success of a retry.

Additional facilities allow the subscriber to simplify the call
process by using short-form addresses for commonlv 0alled remote
nodes. Access restrictions can be placed on a given node bv
specifying optional facilities to bar incoming or outgoing calls.
A group number fa~ility allows several ports to be accessed from
the network by a common node address; a central computer can be
equi pped wi th several ports which, in add! tion to thei r unique
addresses are also accessed via a 0ommon national/network number.
This facility is also referred to as "multiple lines at the same
address". The r.losed User Group facility allows the creation of
private networks within the larger public data network. If a
company has several systems at different geographi0al locations,
and has no need to connect them to systems outside of the
particular set, then the specification of closed user group

membership for each of them eliminates access from computers
outside the network. The facility can also be used in su~h a way
as to restrict the connections from any node in the group to only
other group members. It is also possible for ~ parti~ular nod~

to belong to several closed user groups, on~ of which is the
default or preferential one. In order to switch from the
preferential to an alternate ~losed user group, the sele~tion

signal sequence is prefixed with a facility requpst ~ode

specifying which alternate group is to be used for the call
setup, followed by the address of the node within that group.

A ~all queueing facility allows incoming calls to b~ held in a
first in first out queue with a specified number of positi~ns.

The caller receives a call progress signal indicatin~ that the
call is queued at the remote end. The call redirpction fa~ility

allows one node to temporarily transfer its address to another
node; for the period during which this facility is activated, all
calls for the node are redirected automatically to the alternate
node. A call progress signal informs callers that the call has
been redirected. The raIling and Called Line identification
facilities provide for verification and monitorin~ of ~onnections

made through the network. A node. specifying the Char~e Transfer
facility is charged for all incoming calls (which are normally
charged to the caller). The charge advi~e facility allows a node
to be informed, following disconnection, of the ~harges for a
call.

Circuit-switched X.21 networks are currently offered in Denmark,
Finland, Norway, Sweden, F.R. Germany, and Japan. Several other
Furopean nations have X.21 networks in their future plans.
Further information about the specification and the network
services is availa~le from the implementing PTTs, and from the
r.CITT (Union Internationale Des Telecommunications, Place des
Nations, rH-1211 GFNFVF 20, SUISSF).

Design Considerations for Support X.25
Communicator Networks

~

Shnider Youssef-Digaleh
Hewlett-Packard Company
Information Networ~s Division
19447 Pruneridge Avenue
Cupertino, CA 95014

Over the past decade Data Communications has been revolutionized by a
radically new technology called Packet Switching. Ccitt Standards have
been defined and adopted in a timely fashion as a solution to the
urgent need for an agreed upon protocal. This has the advantage that Ccitt
Standards are widely applicable and are not limited to a specific
manufacturer or vendor defined protocol.

Hewlett-Packard has initiated a major commitment to the use of
internationally accepted standards protocols as the fundamental basis for
its Hewlett-Packard distributed System Network Communicatlon Architecture.

Terminals Strategy and new products

by
Richard Franklin

Grenoble Terminals Division
Hewlett Packard Company

Since the first HP terminal 2640A was introduced in November 1974,
HP has constantly been making head lines thanks to its terminals
features, reliability and contributions.

With 11 terminals, HP has a very wide range of terminals available
today to fit any user needs in the five application areas onto
which HP is concentrating.

- Data entry
- Program preparation
- Text preparation
- Data analysis
- Cad/Cam

Data analysis, mainly thanks to the HP3000 success, is by far the
application where our terminals have been sold.

Today we introduce a new terminal, the 2382A office display terminal
which offers features such as:

- 9' I display

- 2640/2622A compatibily
- 2 full pages of memory
- 8 screen labeled softkeys

With its compact design, this unique device can fit on top of any desk.

The 2624B is also new in this area. It offers all the 2624A features plus
multipoint, local forms cache, printer pass through and record mode.

For the ever growing data analysis application, HP presents today the
2623A graphics terminal with its block mode capability, 2 full pages of
memory, user definable soft keys, national character sets, its 512 x
390 dots resolution, and DSG/3000 support, the 2623A provides a low lost
graphics solution.

But not only HP works on designing new terminals but also on providing new
software tools for existing products. For example 4 new software packages
are now availabel on the 2647A.

INTERACTIVE HP-3000 TO IBH HOST COMMUNICATIONS

Cynthia L. Smyth
Member of Technical Staff

Data Communications Laboratory
Information Networks Division

Hewlett-Packard Corporation
19qq7 Pruneridge Avenue

Cupertino, California, 9501Q I'SA

INTERACTIVE HP 3000 TO IBM HOST COMMUNICATIONS

INTRODUCTION

Interactive Mainframe Facility (IMF), previously known as
Interactive Mainframe Link, has been enhanced with new features
and improvements on existing features. The purpose of this paper
is to introduce DSN/IHF to new users as well as inform currect
users of the improvements and new features.

OVERVIEW

IHf Is a product that enables an HP 3000 Computer System to
emulate a remote IBM 3270 series Cluster Control Unit. In pre
vious releases, IMf only supported Binary Synchronous Communica
tions (BSC). Now IHF also supports 3271 Synchronous Data Link
Control (SDLC) as an SNA physcial unit type one. Through IMF,
users on an IfP 3000 can send data to and receive data from appli
cations on a remote host. A user can access a remote host appli
cation either programmatically through IHf Intrinsics or inter
actively through IMF'~ Pass Thru Facility.

It is possible to use IHF for data entry and retrieval to a
remote host application. These host programs issue write com
mands which send screens of data to remote terminals and read
commands which receive data from remote terminals. The host reg
ulates data transmission, therefore IHf sends and receives data
when the host instructs it to do so.

In order to establish communications with a host system, the
HP 3000 uses an interface called an Intelligent Network Proc
essor. The INP handles the line protocol and p~rforms many 3270
controller functions. The INP software communicates to the HP
3000 software through HP's internal Communication Subsystem (CS).
IHf and the INP together appear to the host like a 3270 Control
Unit.

There are four major components In the IMF product. They
are the INP, the IMF Intrlnslcs, Pass Through Hode, and the IHF
Manager Program. To understand the product, a user needs to know
what these components do and ~ow they interact. These components
and their interaction are briefly described below.

IND, HEWlETT~PACKARD 2

INTERACTIVE UP 3000 TO IBH HOST COMMUNICATIONS

IMF provides Intrinsics which users can call from COBOL,
FORTRAN, SPL, or BASIC. In most cases, the intrinsics allow a
user to tailor his HP 3000 program to fit an existing IBM appli
cation. The In~rinslcs are easy to us~, and they perform func
tions which include transmitting data, receiving data, reading a
screen of data, and locating the 3270 field attribute bytp.s In a
screen of data. An HP 3000 application using the IHF Intrinsics
appears as an interactive session to an IBM Host.

IMf also provides a Pass Thru Facility, previously called
the Inquiry and Development Facility, which allows most HP ter
minals and printers to interact with a host application without
additional programming on the HP 3000. When using the Pass Thru
Facility, HP terminals and printers function as 3270 terminals
and printers.

The IMF communications line is controlled by its Manager
Program. From within this program, a user with OP <System Super
visor) capability can issue commands such as START and STOP to
control the IHF SUbsystem. The Console Operator may also issue
commands to control the subsystem.

IHF requires a configuration file for each IMf
communications line in operation. This file contains information
about the line such as the logical device number of the INP, the
control unit number, and a list of the devices configured on the
host system. The configuration file also contains a list of
users that are allowed to use the communications line. The IHF
manager may override the allowed list of users In the configur
ation file.

ENHANCEf.1ENTS

As mentioned in the overview, IHf now gives the user the
option of using either 3271 Synchronous Data Link Control (SDLC)
as an SNA physical unit type one or Binary Synchronous Communica
tions (BSC). There are many advantages In using SDLC protocol.
SDLC prOVides better data security because it does more hand
shaking than BSe protocol. Although BSC lines can be supported
in an SUA network, IHF support of SDLC eliminates the need and
overhead to maintain BSe lines. SDLe protocol allows different
types of SNA devices and systems to use the same multidrop line.
Multidrop lines can use higher speeds with SDLC protocol than BSC
protocol.

INTERACTIVE HP 3000 TO IBM HOST COHMUNICATIONS

IHF now supports IBH's Conversational Monitor System (CMS).
This is an important enhancement since CHS and IBM's Virtual
Machine 370 (VH) are widely used.

The first release of IHF had a restriction on the size of a
data block that could be received from the host application.
This restriction has been removed in the second release for both
protocols. A segmentation scheme has been implemented in the BSC
driver to segment the incoming host data into 256 byte blocks for
processing, and the SDLC protocol sends 256 bytes of data in one
frame.

IHf's design has changed to solve two character code
problems encountered in the first versipn. First. the ASCII to
EBCDIC translation function has been moved from the INP to the
3000 and now uses HPE's CTRANSLATE Intrinsic. Therefore. users
who have special character translations will see those transla
tions in their IHF applications 8S in all other Data Communica
tions products. Second, eight-btt character codes like Katakana
will be easily supportable in the new version. Eight-bit char
acter code support is now possible because IHF no longer uses the
high order bit to denote a 3270 field attribute byte.

The receive timer for the RECV3270 Intrinsic has been
expanded to cover the TRA"3270 Intrinsic so that a user m~y

d~lcct that the host has stopped communicating without needing to
use no-wait I/O.

The IMF monitor now identifies the communications line
number in its messages. This is essential for installations
where more than one IHF line is in use at once.

The IHF Hanager's DISPLAY ALL command has been improved. A
message has been added to indicate whether the host is communica
ting or not. Also. if CS Trace is running the name of the cur
rently opened trace file is displayed.

The default name on a CSTRACE file name has been changed to
IHFTRXXX.PUB.SYS where XXX is the Idev of the pseudo-device.

When the Pass Thru Facility is terminated on a 26~OB

terminal, it will print a reminder message on the screen to un
latch the block mode key.

A new Intrinsic, PRINT3270, has been added to IHF. This In
trinsic will enable the user to get a hardcopy snapshot of his
screen image. The screen can be printed In two different for
mats. One format shows attribute characters and nulls and is
very useful for debug purposes. The other format prints the
screen as it would be viewed on a terminal and thus provides some

\-"

IND, HEWLETT-PACKARD 3 IND. HEWLETT-PACKARD ..

INTERACTIVE HP 3000 TO IBM HOST COHMUNICATIONS

or the features of a local copy. A user interface to this
Intrinsic will allow it to be called from the Pass Thru Facility.

There has been 8 change to the IHF philosophy when the host
stops communicating. Basically, the IHF Subsystem will remain
active if the host stops communicating and will not have to be
restarted when the host starts communicating again. Pass Thru
terminals, however, will exit the Pass Thru facility and return
to "PEe Users might have to re-establish their sessions with the
host since IHF cannot maintain them on the host side. During
the time that the host is down, any TRANS3270 or RECV3210 intrin
sic calls will receive an error message stating that the host is
not coamunicatinl. It Is important to remember that IHF cannot
distinguish when a host subsystem or application terminates if
the access method continues to send control sequences through the
phone line.

A data stream mode has been added to IHF to provide 8 means
of file transfer between the host and the 3000. This mode will
allow an application program to obtain the untranslated data
stream from the host. This mode Is only allowed when using SDLC
protocol. Two new intrinsics, READSTREAH and WRITESTREAH, have
been added for using this mode. The data stream is kept In the
same format as the host sent it in and no screen imale is pro
duced. Hence, a user in data stream mod@ 1s not allowed to use
any or the IHF Intrlnsics which access an internal screen Image.
Likewise, a user who is not In data stream mode may not access
the READSTREAH and WRITESTREAH Intrinsics as the data stream is
not maintained.

CONCLUSION

For HP 3000 users who need to access data on a. remote IBH
mainframe, IHF is an excellent solution. In addition to 3270
emulation, IHF enables users to write HP 3000 applicc·tons that
can communicate with host appllcati~!,s. The new functions and
enhanced features provide increased functionality and extend
IKF's useability In SNA host environments.

IND, HEWLETT-PACKARD 5

BUSINESS GRAPHICS
AN EFFECTIVE MEANS OF

IMp·ROVING MANAGERIAL PRODUCTIVITY

Christofher Kocher
Produc Manager
Information Networks Division
Hewlett-Packard Company
Cupertino. Califomia

I. Introduction

II. A Historical Perspective of Office Pro~uctivity

III. What is Management?

IV. How can' Graphics Help Managers Spend Time More Effectively

V. How Does Graphics Help Managers Make Better Decisions?

VI. Conclusion

VII. Implications for Data Processing Managers

VIII. References

- 2 -

II. A HISTORICAL PERSPECTIVE OF OFFICE PRODUCTIVITY

In this century enormous strides have been made in increasing the

productivity of industry and agriculture. Technological innova

tions have greatly improved not only output per capita, but also

the standard of living. Until relatively recently however, very

little attention has been given to office productivity. This

lack of concern is very apparent in the low capital investments

and low productivity improvements made in the office in the last

decade for the average worker in the United States.

At the same time', it is interesting to note some of the other

trends that are taking place in business organizations and

specifically in the office:

I. INTRODUCTION

The market for business computer graphics products is expected to

grow at 59S per year over the next five years. In part, this

growth is a result of the increasing interest in managerial pro

ductivity and the realization that computer generated graphics is

a tool that can be employed today to improve the effectiveness of

management decision making.

Functional managers and professionals in finance, marketing, man

ufacturing, personnel and accounting are seeking better ways of

defining and analyzing problems as well as communicating their

findings to other decision makers. These managers are looking to

their data processing departments for advice and recommendations

on how to develop computer graphics systems. Data Processing

managers will play a very important role in improving managerial

productivity in the future.

Office Worker

Industrial Worker

Farm Worker

Capital Investment

$ 2,000

$25,000

$35,000

Productivity Gains[1]

liS

90S

1851

This paper will describe some of the historical trends in Office

Productivity, and then explore the role of management in todays

organizations. Emphasis will be placed on how graphics can help

managers in the decision making process. The conclusion also

offers a brief discussion of the implications and opportunities

that these trends have for data processing professionals.

o In the United States, over 2~O billion pages of computer

printout was created in 1980, up 251 over 1979.[2]

o Office workers are becoming a larger percentage of the

total labor force as the U.S. becomes more of a service

oriented economy ,from 221 in 1980 to 301 in 1990.[3]

o Electronics and memory costs are dropping between 20S

and 401 per year, while labor costs are rising at

71.[1]

o The total cost of producing a letter in the United

Sta~es is estimated at $6.63.[4]

These facts all bear witness to wha~ has'commonly become called

"The Information Explosion". As Alvin Toffler, the well known

'futurist points out in his book, The Third Wave, we have tried to

automate our offices the way we automate factories in a

routinized manner that increases the quantity of output but not

necessarily the quality. This approach has not yielded commensu

rate productivity gains. More data is not always better.

The advent of electronic word processors is evidence' of the

economic incentives to automate the office. It is clear that

there is vast room for improving the manner in which we handle

documents. Time savings may be quantified and document creation

costs reduced. What is not so measurable however, is management

productivity. How does one measure a manager's productivity?

The number of decisions made? The quanity of memos written? The

length of meetings attended? Clearly these are not very good

measures. And yet, when examining office productivity one

needs to put secretarial and clerical vs. managerial and profes-

sional productivity 1n perspective.

o 7SJ of the $640 billion spent on direct labor costs in

U.S. offices goes towards management and professional

salaries and benefits.[S]

o 80S of one U.S. insurance company's office costs went

toward management and professional salaries.['1]

One needs to ask, why we are not looking more closely at improv

ing managerial productivity. In fact, this process has begun.

The result has been a high degree of interest in tools to make

managers more efficient and more effective: electronic mail,

teleconferencing, decision support tools and graphics. Before

exploring managerial productivity further one needs to define

exactly what is meant by management and what managers do in the

decision making process.

III. WHAT IS MAIAGEMEIT?
What type of information do managers need?

Managing means many things to many people. In fact, there are

probably as many definitions of management 8S there are manage

ment styles. In any case, several key ingredients invariably ap

pear in a description of management:

o Relevant information

- unrelated data will only be time-consuming and

distracting

From these definitions .of management, one observation ~s very

clear. If managers and business professionals primary function

is decIsion making, then information is their most important

resource. Note the distinction between data and information.

There is an excessive amount of untimely and irrelevant data

available to most managers today which explains the reason so

many computer printouts go unread. Information on the other hand

may be a summary of only the most important elements that affect

a managers sphere of influence.

o Accurate information

- unreliable data may mislead a decision maker; however,

spending excessive time accumulating and verifying it may

make it untimely.

o

o

o

Planning, organizing and controlling

-key elements in management.

"Getting things done through other people"

-clearly communicating goals, providing incentives to

motivate employees and delegating responsibility

Making Decisions

-one of the main purposes of managers is to ~ake

relevant information and determine the best course of

action or allocation of resources to maximize or

minimize occurences that conform to their organizations

objectives.

o

o

o

Timely information

- obsolete ~ata in todays competitive environment 1s usually

worthl~ss information

Summarized information

- although some levels of decsion makers need details, most

managers need to see the "big picture". Managers can ill

afford to spend time reading about an operation or divi

sion that only affects 1 or 21 of their sales, profits,

costs, etc.

Well formatted information

- nothing is worse than pertinent information that i~ bur

ied in long listings of hundreds or eveh thousands of vari

abIes. Key facts, trends and relationships should stand

Many theories have been postulated and estimates made of how man-

out so that managers can quickly grasp their meaning and

proceed in their analysis.

IY. HOW CAN GRAPHICS HELP MANAGERS SPEID TIME MORE EFECTIYELY?

agers spend their time. There have even been a number of profes-

5ional studies.With these information needs in mind, it is very 1nte~esting to

observe how managers really do spend their time on a day to day

basis.

One of the most comprehensive surveys was co~

ducted by recording the activities of 300 managers and pro-

fesionals 1n 15 organizations every 20 minutes throughout their

working day. [6] The results were very revealing:

.MANAGERIAL. ACTIVITY PROFILE

MW.VDtG
u •

......u.

MEET1NQS
-.0 •

This vividly illustrates the role of meetings in the management

process. Being able to convey information succinctly as well as

understanding the presentations of others is essential for suc

cess. Any significant contribution to managerial productivity

must address this communication intensive joint decision-making

process.

Meetings

Electronic mail may reduce the need for some meetings and tele

conferencing may reduce the travel time and expense of others,

but graphics can make meetings more effective. Using visual aids

such as charts and graphs:

o Ideas can be conveyed more rapidly using colors and tex

tures in a visual format -- reducing meeting time. It is

interesting to note that 351 of managers thought meetings

were too long and 3~S thought they were unproductive[6J

o Information can be displayed in a more interesting format

-- keeping the attention of participants

o Concepts are more easily retained by li,_steners because hu

mans are more accustomed to storing visual images. This

improves the results of the mee~ing. For a physiological

~xplanation of why graphs and visual images are more easily

retained by the human brain see [7].

The most relevant data can be presented in a summarized

format -- focusing attention on the key points of

discussion.

Document Creation

Document creation which consumes 131 of the average manager's

time consists of composing, creating, editing, designing, and

drawing documents. This activity has enjoyed some productivity

improvements ~ith the advent of less expensive dictation equip

ment and word processing. Graphics can also make a contribution

in this activity by providing managers with the tools to more

effectively communicate their ideas and influence other decision

makers. In realization of this fact, the Harvard Business School

recently created a new course on the use of business graphs.

Reading

Reading which accounts for 8S of managers and professionals time

would benefit greatly if document creators used graphics since

readers would be able to more quickly grasp key ideas. In fact,

the analysis of [7] indicates that the Human brain is able to

absorb between 48 and 72 million words per minute in visual im

ages vs about 600 to 1200 words per minute for the average

reader.

Aside from these activities, professionals and managers spend

about 251 of their time on less productive activities that should

frequently be performed by support personnel: filing, copying,

seeking information, seeing people, scheduling, organizing work,

- W/WW//Aw7A

....-..s

waiting, etc. Electronic filing, electronic mail, and intelli

gent copiers will help to improve productivity in this area 1n

the future. Traditional business display graphics are not very

r~levant to these activities although some software packages will

provide capabilities to create organizational charts, Gant

charts, and Program Evaluation and Review Techniue charts,

(PERT). Some professionals will u~e these sp~cialized tools,

quite frequently but support personnel will probably prepare

these charts 'because of their routinized nature.

.....
.......-s
~

Flsure 2

Cft'CIt.....
c::J ~

The last activity which takes up an average of 8S of a managers

time is analysis. This is probably the one activity that people

most closely associate with managing and decision making. Before

discussing the very important role of graphics in analysis and

the decision making process one las~ point needs to be made.

Management styles are different just as managers' jobs vary from

one organization t~ another. The amount of time spent on dif

ferent activities varies from one manager to the next. In the

chart below, it is apparent that professionals and lower level

managers spend more time on less productive tasks probably be

cause they do not have supporting staffs. It is also clear that

they spend more time doing analysis and document preparation than

upper level managers. At the same time, senior managers spend

considerably more time in meetings.

"'twzwwA d

....-
From these observations a picture begins 'to emerge of lower level

managers collecting and analyzing data, generating solutions and

communicating these solutions to upper level managers who review

them. It also brings up the question of the type of data that is

desired by different managers.

Typically lower level managers deal with data internal to the

organization (orders, shipments, inventories, etc.) while senior

level managers deal with both internal and external data (infla

tion rates, interest rates, industry growth, etc.). These lower

level managers and professionals may need graphs produced from

data resident on an existing data base while senior managers may

want to use their own data.

In fact, Computerworld magazine estimated that "top managers

sp~nd less than 21 or 31 of theit time dealing with computer

printouts, terminals, or intelligent stations".[8l

This has important ramifications for the decision making process

as we will see in the next section.

Y. HOV DOES GRAPHICS HELP MAMAGERS MAKE BETTER DECISIONS?

With this basic understanding of how managers spend their time

and the ways Braphics can make them more productive, it is in

structive to look even more closely at how an individual manager

might 10 through the decision making process. Specifically, I

will use Hewlett-Packard's' Decision Support Graphics/3000 8S an

example of a powerful computer graphics package that can help

managers make· better decisions.

Although there are a multitude of ways to make decisions ranging

from the basic scientific method to sophisticated operations

research models, there are usually several steps that are common

to all techniques. The schematic below illust~ates some of the

main steps in any decision making process.

Filure 3

THE DECISION MAKING PROCESS

Problem Definition: Before launching into any type of analysis,

the decision maker needs a clear understanding of the problem at

hand, perhaps even further defining it. In some cases, objec

tives need to be set and assumptions stated. In others, the

decision maker may need to question the basic premise of whether

a problem even exists or what the decision criteria are.

The next example shows sales of a product over several years. By

looking at a column of numbers, it might be obvious that sales

have been growing~ In the graph below however, something else

emerges: sales Brew at a rapid pace the first three years but

have almost leveled off in the last year.

Fllure 5

SALES GROWTH

UNns-..------------------....

. ..•

-
Filure JI

A good examp~e of how a graph can help define a problem is shown

below. A manager looking at this sales data might be very con

cerned about the decline in sales. However, by displaying last

years data next to this years, it is apparent that there may not

even be a problem, rather, sales are seasonal and one can exp~ct

a decline during certain months.

Data Collection: Once the problem is defined, the decision maker

can proceed to sather data that is relevant to the decision.

This data may reside in file cabinets, in reports, with other

people or hopefully, in a computer data base where it can be.

qUickly retrieved.

DSG/3000 was specifically designed with data retrieval 1n mind.

If data originates from a managers own information base (external

to the organization), this information can be entered qUickly by

filling in a menu. If the data is in an IMAGE data base, Query

may be used to retrieve the data for a graph. Other tabular MPE

files may also be used. Below is an example showing how data can

be entered in the DSG/JOOO data prompt menu.

Figure 6

4', I ~""
.... : ""'..

'10 I 'n • '6!1 · flit UDl '5

'145 • "!IS I
,,, · ...- · i'iC'Rl1IS

:," I "12 · 1.S · 'IPR · !""5

:,.. I "93 I 140 I lt9IY • IBOl J'S

'9) • :105 I 145 I I JIM I l~_

117!t I 11.0 •
1_

I IJ&.I. · IfUT5

In · '705 I 165 I I AUG I IDOl TS

"9
, ;115 I 115 I iSlP t ;cRrMS

.no · .ne I ;0" · IDe, · '''''5
:'18 I ;-~5 t ;O~ · ·...v I 'fIOl '5
'7Q •...tt I .,,~ fI(' I ..'ptw:

ThUS, DSG/3000 is ideal for periodic reporting Where the same

chart is used month after month since it can be updated automati

cally with the most recent data. At the same time, however, cus

tomized graphs can be created with manually entered data for spe

cial presentations. This flexibility is important to consider

when designing a graphics system. Since senior managers often

deal with external data that is not resident in the organiza-

tion's information systems.

Analysis: With th~ appropriate data in hand, the decision maker

can proceed to determine what is relevant, how accurate it is,

and then begin analysis. Frequently, this is the longest step in

the process because the data must be prepared and formatted so it

can be manipulated. Most business managers and professionals

then perform some combination of the following analyses:

o extrapolating trends over time

o studying relationships between variables

o making comparisons between entities

o looking for exceptions and variances

These four types of analyses lend themselves to visual portrayal.

Trends as we saw in the example of sales over time are usually

displayed in a line chart or a series of bars 1n a bar chart as

shown below.

Figure 7

OPEL AND GERMAN FORD HOPE TO SHRINK LOSSES

F1Bure 8

THE COSTS OF' PRODUCING A LETTER
u.s. 16.63 IN 1981

SECRETARY'S nME
'1.87

DICTATOR'S TIME
'1.75

-~......

Relationships can also be displayed 1n line charts like the pre

V10US example where we saw the relationship of sales in the dif

ferent periods. Clustered bar charts like the example above

vividly show the relationships of two variables over time. Pie

charts like the one below are ideal for comparing the relative

sizes of individual parts of a whole.

............-u. __......~ .

Graphics are also very valuable in showing exceptions and varian

ces. This is an essential analysis for those managers who manage

by objective or manage by exceptio~. Charts see frequent ap

plications ·in bUdgeting where forecasts are compared with actual

results. The chart below shows how different departments within

one division have performed on both a monthly and yearly basis.

The bars depiet what I of the forecast each department has

achieved. At a glance, ~t 1s clear that departments two and

three have reached or exceeded their goals. Department one

has had a poor month, meeting only 50S of its goal but is still

almost on target for the year. Department four, on the other

hand is considerably below expectations both for the month and

the year to date.

Figure 9

SALES TO DATE

....-------------------.
I-

Solution Formulation: After completing analyses. the decision

maker may have enough understanding of the problem to generate

In generating alternative solu~ions. a manager may choose to ma-

nipulate data in several ways. To accomodate this activity. DSGI

3000 has built in transformation capabilities: cumulations to

give totals up through a given time period; moving averages to

smooth out irregularities in trendS; logorithmic scaling to dis-

play variables which have values very far apartjand several

others. Manipulations of the data can be performed within DSG/

3000 by simply filling in one menu -- there is no need to exit or

write special programs. Below is an example of some cumulated

data:

Filure 10

GE~S CUMULATM DEBT

-~

--
-
-

several alternative solutions. If so, the decision maker can

choose the alternative that best fits the decision criteria or,

if the problem 1s not fully understood the decision maker can

redefine the problem, collect more data, and do more analyses.

.. ----- - -

As we discussed earlier, business graphics are very valuable in

interesting format that will maintain the listeners interest as

rapidly conveying the most relevant information in a concise and

spent in meetings or make the time spent more productive by

They can reduce the amount of timemeetings and presentations.

well as improving their retention of key points. DSG/3000 pro

vides presentation Quality graphs and slides appropriate for re

ports and mee~ings. In fact all the graphs I have shown you to

day were created with DSG/3000. One major consumer package goods

company in the United States found they were able to reduc~ the

cost of producing presentation slides by 50S using DSG/3000.

Communication: Once the best solution has been determined, the'

answer can be communicated to those who need to act upon it.

Quite often this step is overlooked in the decision-making pro

cess and yet it is probably one of the most important. How often

do senior managers redefine problems, ask for more data or

request additional analyses? These activities often set the

whole process in motion again which explains the extremely itera

tive nature of the decision making process. This points out the

necessity of being able to easily update and cre~te graphs man

ually, as well as using them for periodic reporting.

In fact, very few managers make decisions by themselves, most

often they must seek approval from higher levels. This in part

explains why managers spend 46S of their time in meetings and top

level managers spend only 2 - 3S of their time dealing with

compute~s.

The ability to store the data and chart information separately

allows users to update graphs on a periodic basis without

recreating all of th~ chart specifications. Arrows, text, and

lines as well as color selection can be employed to highlight the

most important information. The ability to put multiple graphs

on one page is also very valuable since it allows you to show

relationships between various elements of your data. The two

examples below demonstrate the amount of information content that

can be placed in a graph.

Fllure 11

AIR CONDITIONER PLANT #8 DAYTON, OHIO

PRODUCTION COST ANALYSIS

SOURCE: AMAlGAMAIL.D STORES. INC. 1981 ANNUAL REPORT

Fllure 12

AMAl6ANATED STOA£S. INC •...... .,.""

-..---.......---......---..
-..----1

VI. CO.eLUSION

The trend toward office automation will continue at an accelerat-

ing pace as word processing and data processing systems ·are inte-

grated over the next decade. In addition to productivity im-

provements for secretaries and clerical personnel, more sophisti-

cated tools will be made available for managers and profes-

s1onals. Some of the technologies that w~ll come into widespread

use are electronic mail, teleconferencing, personal support tools

for scheduling and calculating as well as sophisticated decision

support tools.

Graphics are alr~ady playing a major role in improving managerial

productivity today because of their applicabil~ty in the decision

making process. In the fut~re, charts will become an integral

part of business reporting because of their exceptional abiity to

cummunicate trends, relationships, comparisons and variances.

Lets quickly review why this is true.

Graphics is an especially useful tool to managers because of:

Information needs --

Graphics can provide concise summaries of the most

relevant information in a visually appealing format that is

easil~ understood by others.

Daily Activities --

Graphics can assist managers 1n communicating to others in

meetings (461 of their time) and in creating documents (131

of time). The ability to understand material when reading

(8S of time) and do sophisticated analysis (81 of time) is

vastly enhanced with the use of graphics.

Decision Makins Process

Graphic's can help all steps of decision making by focusing

attention on the most important facts during problem

definition. Computer graphics With, data base access ex

pedites the collection of data in a highly accurate manner.

Graphics 1s probably most valuable in analysis because it

quickly shows trends, relationships, comparisons, and

variances and exceptions. Combined with some simple

statistical tools, graphics can be invaluable in exploring

alternative solutions and visually displaying "what if"

analyses. And last, but probably most important, it can

communicate information to others, very effectively.

How can Graphics Help Management?

Planning, organizing and controllins-- These key in

gredients of management are each a series of interrelated

decisions. Planning for example asks the questions who

will do What, where, at what cost, etc.? Budgeting is an

excellent example of planning in which many people may be

involved in making many interrelated decisions. Graphics

can be a valuable resource 1n this iterative process.

Thus, managers with graphics at their fingertips, despite their

differing management styles and job descriptions will have access

to more relevant data, in a more concise fashion, in an easy to

comprehend format, that will let managers spend more time doing

what they do best -- making decisions'.

VII. IMPLICATIOIS FOR DATA PROCESSIIG MAIAGERS VIII. REFERENCES

Today senior managers are looking for better more timely informa

tion. They are looking to their management information systems

personnel to improve their decision making capabilities. This

means providinK better information rather than just more data.

It also mean, providing it 1n 8 more succinct, highly compreh

sible format like graphics that can be easily understood by busi-

ness managers.

In the-future, those managers and professionals who use graphics

will be able to more effectively manage their businesses. And

those computer systems specialists who implement graphics on

their systems will be able to provide higher quality information,

not just data to their end user decision makers.

In fact, one observer pointed out that the role of DP directors

in the future will change "from technician to management scien

tist. [3] But, it is up to you, the experts on computers and

information systems, the professionals who are abreast of the

latest technology to show managers throughout your organizations

how they can be more productive using the tools and services you

provide. They will not come to you because 1n most cases, they

are successful now and they are not aware of many of the tools

you have at your disposal. You need to be the agent of change

and take the lead 1n 1mproving your organizations management

productivity.

[1]

[2]

[3]

[~]

[5]

[6]

[7]

[8]

Fronk, Robert L.
"Driving Forces for Office Automation"
Arthur.D. Little, Inc.

Friend, David
"The Promise of Information Graphics
Computer Pictures Corporation, Boston, Mass.

Kline, Frank R.
"Management of Information Technology 1n the 80s"
Drexel Burnham Lambert, Inc., New York, N.Y., 6/80

"Briefs" on Dartnell Institute of Business Research Report
Management World
Administrative Management Society, Willow Grove, PA, 6/81

"Graphics in the Executive Workstation"
Computer Graphics for Management, Vol. I, No. 3

"Booz, Allen StUdy of Manageriall
Professional Productivity"
Booz, Allen & Hamilton, Inc., New York, N.Y., 6/80

Patterson, Marvin
"Graphics Representation of Numeric Data: A Versatile Key
to Better Decision Making"
Hewlett-Packard Conference, Detroit, Michigan, October,
1978

"Managers vs. Office Automation"
Planet News, No. 41
Infomedia Corporation, San Bruno, California, 5/81

counting s~steMs,

l::CockQround

The Accounting SysteMs Group of CSY reports 1'1) the CSY Corl·1"roll.:.:.r

the Accountinq DepartMent is to su~port and develoo COMput~rl~~d QC~

UUi" 7'olE l.JJtiijnand handles Qll accounting dQtQ orocessi~9 for CSY.

f.~*iiii.i.t*.*~~ h .*.**i*~ttit-*~#•••••••••***•• =11= h t:t:*i**~:n:~1f:.t

ii**ii:t••• h :t••:tt*=*.t~

••••••••• hhh ppo t:t.ttt:t•• H r ~..I L F T
ii:tii:ii:J:. n ~ p p t:J::l:t:t.:ttt*••• :1:=1=••• i1 h P p tt:t:t:D·:t:J::l=i
#i:tti.iit h h P P!l!J ••:1=•••••• P f~ C 1< t~ t~ '0.*..t ••••~ p t**:J:#:U:#i#:ft:
~i•••:tit.:t:*t: 0 tttti:t:tt:ttt#
.t.*.tt••*••t*~ P *.#.**~*t*t.**.*.#t

COMPUTER SYSTEMS DIVISIuN
Account~ng S~steM~ Group
19447 Pruneridge Ave,
Cupertino~ Co. 95014
'408)-725-8111 X42S7

In additIon to suoport we have beCOMe heavilv Involved and oedi-

cQted to:

Bi~l VQughQn~ Accounting SysteMs Supervisor (1) Testing new HP products - both hardware Q~d softwQr£.

IncreQsed ReliQbilitv at Q Lower Co~t

This includes not only doing ore-release testing fp~

functionality ~nd· reliability but also utilizlnQ the~e

ABST~ACT:

products to develop our distribut€d €nVlrOnM~n~,

systeM securit~ and operatorleSS-COMputers.

the departMent ~nd are currentlv evaluatinQ an HP3000 to be put in

II dis t rib ute d .. d IJ t Q pro c e s sin 9 e n v .1 r () nMen t " i . e. 0 n ~ .i n

wh.1ch the COMputing power is where the people and

We hove one HP12S MicrOCOMputer in

probleMS are. Thls Lncludes Qdaressing the orobleMs Gf

(2) Full~ utilizing HP so~tware and hardware to iMoleM~n1 Q

We currentl, nave our applications spread across two HP3000 5ysteMs~ a

the Serles 33 to the Series 44).

the printing for both Machines (we use DS/3000 to cony spoolfiles frOM

storaQe (four of our disc drives are Prlvute VoluMe~). One 2619A dOEU

Accounts Pa,able for dedicQted processing. Our s~steMs group of 1~

professionals supports an accounting departMent of 40 people.

SERiES 44 and ~ SERIES 33~ with a total of Qbou~ 1000 Mb of disc

.- MONITOt<
- GOMolete systeM security, applicQtion control and ~rl~naiy

user ~nterfQce ln Q single online proQroM
- A GE~ERAL PURPOSE AUTOMATED CONTROL APPLICATION

- How to insure th~t what one OrOOrQM writ€s to a file i~
The saMe as what the next prOgraM r~QdS

- INTELLIGENT DATABASE CAPACITY CHECKS
- How to orevent databases frOM hittina c~oacltv. ther~LJu

Q v 0 .1 dIn g t i,.,e - con SUM 1 n9 r E c 0 ve r!J .']n·j ~ c 1e Qn .. \.l L" . .

- PRIVATE VOLUMES
- How Private VolUMes Qre Meant to be used to

,<1> better utilize disc drive.s
(2) insure aata inteQrity and security
(3) do svsteM backuD

.- APPLICATION TESTING .
- f\ sou nd t est in Q s t rat e Qy t hat p t:l YS 0 F-f in t t"l'e 1...; ng r I.' .-,
IMAGE LOGGING
- Showing its benefits both online and batch

- MISCELLANEOUS
- Kev file recovery after catastr09hic crashes

Building fil€s to Qvoid run-tiMe aborts
- Unique approaches to JCL~ UDC)s and MijE CiloQ!:;.i.lity

MQint~nQnce

- Utiliting "INFO=" for passing parQM~ters to COBOL
prograMS

lhis paper will discuss vQrious techniaues ~tilized to lnCrQ~$£

The reliabillt~ of appllCQtion software ond t~ SlMpl~fv the
ooerations ManageMent of the HP3000. Topics oris~nted wlll ln~lude:

2

Mon.1TOi"
fiqure i.O for brief overview). The o.pp 1 ieQ t.i. on " :;'::.':; exist ir:q !-Jl:'3U 0 {)

~QpQbll1t1es and 1s wr.1tten alMosT entirelv .1n CODUL TI.

Aoplictltl0ns on tMe HP3000 a~e executed in elther online or baTen

Mode. Presenti~., Hewlett·-PIJCI{.:lrd O\h~S not iJ~~vi\:le /'j.n QutOi'iot-::r~ =-~",'s'teN

TO assist users in runninq applications in n friendly WQ~.

To ·s 't IJ r tab t] ten p r \i c e 5 s t:-i ~ \J seT' (-H.: :: t log (\ j.. .,. (l t th~ 1"1. P P I (i r.H"· j iJ t ~.~

g 7' 0 U0 Q n a I] C C 0 lJ n t 0.n d i< now how t 0 S t r e II til t ned € s .i. I' e ti job 'J s i il g i. t S 'f 0 r .. '.

file eqlJl]tion-:a as well IlS IJ.ll nE.cessl]r~ pai'=lMeters of tiie MPE \(ljr.., co."'I"·

M Q n .:1 (L. lB., t"i AXDr~ TA.' etc .). I 11 bot bel] s e .:; .' t j', E: S e s v s t oE M f (.\ r r·~ a ~ .j -r i € S I] r f~

witn tne operating svst~M.

of no concern TO the user and n~ or

t*
*t~ :«

*** TEF.'MJN{~L

* *
* *
******~~********~**~***

t 11 € \i ~::. e r r·H} -::. t \.' r, (.\ W IJ 1), n ~~: c € ~:) 5 IJ r :I

$n~ s~ould not be for~ed ro deal

To run on onlIne progfaM~Mal naMe.

printers~ ana even COMputers) in tne user;s QreQs~

open COMputer rOOMS~

of CiSl~iQuted GrOCes51ngWi "h T:')~ l'1ovent

operotDrlE5s s~stE~~, iJrtd

and the eM~rq~nce 0'

ha~dwQre (t~rMlnols.

't ti ~ iss u ,~. ;:) j' ,1 ~;, V '; t 1:'2 ,"\

****~*******~***~**~**

* ** LOGON NOBREAK J~C *
* *
********~****~**~*****

s e lof I] S the hoI ct e. roof t h € ke ~ s. () 0 r 1'1 po r (.\ Ij. C h tat r, .I. S j. 5 r::. 1.I e i:::· 1'.j ::. ~::~ C ,~ t e

slngle account and I]CC€SS to tnE grouos Wl~'ln tho~ ~c~ov~t, Ac~~~s T~

the Accounting structure of the 3000 susteM,

we M lJ So t now f t n d W·'] v s t 0 S t::' cur e thE. C; V s t eMU S 1. ii g t n e :;. '.J s t tEo M 1 t ...

:~:..:!~ J Tf·\
°i) i::~

*'}:>'f(*.~*

**'

:t'Tt :i..,~;t

*****~*********~~**~**

* ** APPLICATIONS ** MONITOR *(_n.

* *
*~********************Each Monitor conTrols n

i Cr Co k:~ \~ n t tlo.;: C ('. i'; j.'. I,: ~. -:' i i' (.\ .:"1 VIlonQ€r be fesolu£d WJt,secllr'it~1I con no

door.

MPl is only gro.nted Lf p~ssWOl'dS Qr~ Known. AopliCQtio~~ ~re run ******1f.*******~********»,~;r.*':t**** ~ l!:: *:t;. :i< '* ~ "i(~t.

through Monitor so

needs tU get 1nto MPE.

tht:.I.t no USE:. (other' t~Gn ~~S~~MS DerSOGGE]~ €V~I

MPE AeP L I CA T r OrJs·- -- - - _. _..... MOO- - - _.- -_... •M..__ ••• ,

The ent.lre Manitoi' Ilop.licll'tion CQn be i r...olE ,'.,\~ n t e (; W.~: T ;-~ 0 UTA ~J l'
F I all, r e 1. () M() n i -:- (f j- ::::: \J e r' V.i....: :....1 •

CHANGESt 0 e x 1 $ t .i. n Q P r ,0 9 raM S .' c. r Jab s t j' e GM:·. 'f rot o;?:; Vs t € M 1 So:' (! i1 t .7.1. b 1:I ~~ €

dr.i. ven Ilnd i sexe c l.J t e C1 u s 1n q I "d' HI 0 g 0 n UDC w.i t h U::-, T '[0 j\' NO F:. ,~: CA1< (s e '::.

~.

puts the" into the dotQbase~ and then orints a $tQnGardl1£~ control
A GENERAL PURPOSE AUTOMATE}) CONT~OL APPLICAT.cDN
--------~--------------~----------------~~-~--- report to STDLIST. Then prograM B coMes along and Q3 it read~ file D

progra".

tols to those in the dlltQbQSe for file D. If the!J do not MQ,"ch iJn ,~~r-rOt"

it keeps the saMe two totals that A kept. At the ena of its prOCE5S1n~·

it also calls the control lOQs subroutine but it wlll COMpare its to-

reoort is printed showing the differences and the sucroutine Qoorts the

We Would hove tn€

us~ of ~equEnt~Ql dlSCple prograMs passinQ ~nforMQtiGn through the

+iles Qod for certain J~bs it is not enouqh to successfullu r~Qch [OJ

to say that process~nQ was indeed succe~sful.

One of the tasks a s~steMs QdMin~strotor hQ~ to ao is to v~rii'~

control totals for batcn jobs. Most of our butch JOos con.lst o~ Multl-

prograMs ~ithin the JOb print out control re90rts tij STDLiST and the There are several functions tnat can be accoMpli5Med wiln Cont~oi

s~steM adMlnistrator would M~nuQll~ verlfy that tne control totais Logs:

Matched.
<i) Replace - thLs is used by the prograM creatLng a f~l~ G~

We have deslQned and iMpleMented an QutoMQteo c~nTrol logging pro- was prograM A in the exaMole above. The totols taken arc

cedur~ that (1)

stores and r~ports the InforMation being]Ggg€d~ (4) d!rect~ tn~ sys-

(5) 15 siMple ond straight forwQ~d to iMD~£M0nt.

If tn€v do not MO~C~

this takes the totols beinQ possed ~~ thp

datQbOse for that particular fll~.

prograM and COMDQreS the:~ to the totals p~es~ntl~ LG T~~

the prograM is aborted and an error Messaqe IS print~a

put into the dlltabase ana no fu~tnar proces~Lng is d~n~

(2) COMpare

adMinistrator's attention ~o variances in t~E control tOTals. an~teMs

is standard for all Qoplicot~~n sUbSY$t€M5~ (2\

eliMinates Manual calculations therebv ~liMlnatlng hUMan ~~ror~ ,3)

This svsteM~ called ContrOl Logs~ 1~ Griven off a aQtQOaSE thQT

Maintains the totals and the o~raM~t€rS tnat detlne now thE svst~f~

snould hanale the totals. All of the code to oa insertea in~o eaCh

progroM is kept in our copvlib.

(3)' Update - this takes the totals beln passed by th~ p~~9roM

and adds theM to the totals alreQdv in tne cQtabasa Qn~

the resulting new totQls ore then out In thf dotobaSi I

pro 9 r IJ M II AII Wr i teo u t da tot 0 0 f i 1 € n Q f", e ct .. DII. '; he Ii p I 0 Qr ",;'1 " ft II (,..111 J

use file D as an incut file t'~ 00 fur1~er orocess~ng. In p:oqraM ~~

with the first two totols passed and then does an UGa~TE

using two optional totals that are used fGr thLS fun~tLGn

and function (S>

(4) COMpare and Update - tnis does tMe COMpare function fL~~t

LatThe following ExaMple will snow how Control Logs wor~~,

eacn tiMe Q r~cord is wrltten tp D two 10tols ore ~€pt (l~ GCCDuntlnQ

we USUQllv keep recoro count and a dollar totai) a~d a1 the ena of

progrlJM A the control log subroutine is ca~J~d. TnJ5 tuk€S th~ ~Gtols

I; 6

(5) COMpare and ReDlace - this doe$ the COMoure function

first with the first two totals oassed and then does an

Update using the second two totals.

We now currentl, have all of our batch proce~5ing using Gontrvl

logs for ever~· file tr.ot is passed between t",'o or Mor~ pr'oQrIJM:;.

INTELLIGENT DATABASE/FILE CAPACITY CH£~KS

RecoYering a datQDaSe after Q dQtos£~ has hit cG~acitu ~~ 0ne ~~

the More painful recover, processes. Using IMAGE LOGGING h~lo~ ~~CQU~~

~ou con recover right up to the process tnot filled ~he 001QrQS~ DU 1

!" 0 u S t i 11 ha vet 0 ret l' i eve the d t.1 tabase of rOM !" 0 U r 1,"1~ ·t b f1,: k 1,i1::' o. j", ;j r I.J ~',

Generall!,,~ it has not oeen inconsistent dota that hQS led to Control the log file back in. I tis a 1 $ 0 d .i. f f .i. cuI t t 0 IJ :I. WI) ~ ~ ~~ ~ e 0 r J, ~:: j'j'~ (i n t G f'i

Logs MiSMQtches~ rather it has been thot when we fjx bugs in progrQMS

we have inadvertantly introduced other bUQs that Qff~ct these fLIes.

of the aMount of free soace eacn datas~t within ~~ch OGt~~Q~E hG~,

That 307.; 0 r so f r e e S PQ C £ ~ 0 u 1 ike tOMa 1n t ,:1 incand .i S ,'] Pn € .:1 r IJ J :J i" t··,.i n ,~~ ,i ',:

quickly and when it does ~ou are faceo with what iN€. i'~Y'::,'" 1'(, fJ.S ::1.

"capacit~ aoor?".

Along with dot~boses~ d~ta files CQn oe used l~ n sLMll~r M~n~~~

where free space is MointQJ.n€d Qnd inf(.\l""'Motion .is "l:jf.i:J€rH:':"~C. I Ti' 't'i"I'"

file on a regular basis using "ACC=APPEND" on file ~~uat10~~.

Wh a t we h a ve de vel 0 p e d l 5 a s .i. MD 1 e M~ tho d 0 f .. ;.: p .. f j' (,i n 7" c: .7J r....:C ,i 'I' \.'

checking within prograMs so tnat processing can be terMinQ~~~ D~ror~

on ':J d Q t Q is 0 II t tot h € d Q t 0 base 0 r f 11 E .i. ii t ti IE: co::: to ~ r, ere. ';' :'\ ~. :- e v,: .i ,i ,

not be enough space avallable.

We do alMost all of our orogroMMinq l. n CDE<iJl...., an d 1,., ,L 't:--, :::C i::iJ:._ :i.:,

MPE INTRINSICS can be coIled airectl~ $0 tha~ none of whot we are 90_n0

to do requires any fanc, sUDroutines or ~Gaing, ~':<I,; 1J':i 1\1·1 .,:. C ;: j:r':J

M(]DE202 c all s for do. t IJ. set S IJ. n .:t II f"' G£: 'f I NFUh 1 n t :'" J. :OJ ::~ J. C C iJ :l :t;r. . :'.:" {-,,:~ ~

all current-count and cQDacity inforM~tio~ can b~ o0t~ln~a, :- 1-:' '10,.., t :··•..::.r· .:.::

-.7

.i t .i son 1 ~ IJ MI] t t e r 0 f de t er Min .I. n <;'1 1 f' wh (.1 1" ~I (: t,l h ,::1 'J \;' t (i r· :,' 'I' J n ,..,.1.;./, r.: '1' ,

B

f h e Q 0 0 vee x11 M \) 1e i S Q S i. I"i C) 1e t> lJ t :J ;:! r ~} p (; W·E, r of iJ 1 c 'l ~; ~~ ;} f 1'"; 0 ;N '1':)

done for ACCESS=APPEND tvpe files. Also G dataset o~ PLle CGG Q~ Td~l"

ovoid dotobas€ recovery. As Ment16ned bef~r~~ tn€ SOMe ~hec~~~~ can 0~

The following exoMple will helo:

**********~*********
/ \

TRANS DATA FILE
\ /

*****************~**
ed ~or Q percentage of full capacJtu. ~ ·f :'.'J lJ 9~, ~,~ J. ;;' I' t ;j .) f I,: :,. :: h 't :'\ ',;. r'o

\ /

* ** VALIDATION *
* PROGRAM *
* *
~*************

\ /

************~*******
* ** VALID-REC-DTL*

* DATASET *
* ***********

Figure 3.0 DatabQse Capacitv-check eXQMol~.

We have a OrOOrQM thQt on Q dQil~ basis reQa~ in a t~Q~~Qc~ion

file called "TRA~S": Eoch record in TRANS Is uall~G1~d ana OVT to a
dataset called "VALID-REC-OTL" in the hOLDOB databQs~, The VERY FIRST
CODE within the PROCEDURE DIVISION does tnr~e thln9~'

(1) Calls the intrinsic FGETINFO to find out ho~ Munv r~~~rd~

are in the TRANS disc file.

(2) CQlls DBINFO MODE202 to aet tne current record caun~ Q~a

the capac i t ~ 0 f the VALID-:REC-DTL Q'F' HOLDiJI.'.

(3) Adds together the nUMber of recordS In TRANS and tne rUM
ber of records currentlv In VALID~R[C-DTL and if thiS t~

tQl is GREATER THAN the CQOQC11y of th~ dQtQ~~~ the
prograM aborts itself (after DrJntlng IJ Me~5age explQ~n'

ino the situation). Abortino th~ o~oarllM n~orts a ~Qtcn

pr~cess thereb~ eff€ctiuel~ stoDoing- ~r0ces5in9 eo t~c
dO~llblJse can De expanded.

9

the orograM can oe aoorted when 9SZ or g~eQter ls r~~Cn~G. ~~~ iMDO~'

t Il n t poi n 't .t !.; -:- h IJ. t t ;"'. € ~ t'l e c: k to \7 P \..1 t J. n ~. t t :-! ~ t.' tE, g .L r', \"1 j, I' ~:: t, 02 f ,-' j' t.. ;.~ ;" ~I t~.i. ;1 (,

of processlng has Daq~n so That the O~OsrQM c~n ~~~lly G~ r~s~~rt~~

frOM the beQl~nin9.

~ :J

PRIVATE VOLUMEB

In Movinq tow~rds Gn operQtorl~ss environMent Private VoluMes hava

plQ~ed a ke~ role in several WQ~s.

APPLIcAyroN TESTING

·t:< e in q a So ~ S t eMS Qr 0 iJ P t h 1J"t d t) e S Q 0 P 1 .~ I: :J ~ i. 0 r, M Ij. .I. n "t t.:' r· (1 it ::: t::. tJ. -;:. l.~~. i.. 1 i.1.:;

developMent w€ do alot of testing {.In tXistin.~ '=;~S-:-oE:""'I:::' :':;.:::. bUy::.. :.F'~ fl·..·,::rl

rUles or even quidellnes on testlng. WhGt hQoo~ned ~Q~ 1nat:

Qnd progrQMS are enhnnced. In the oast we aiwQys t£s~ed with Q sub~~t
We now use privGte voluMes for alMost ~ll of the proce$s.l.ng 'that

U se d tog 0 tot IIpe. An HP 7925 d.1 s c PQ eke Q n h old .:J. b <HI t ~~, i t~ (i 0b p.1 t l] I:h' ~.

worth of inf'orMfltion. UsinQ theMPE cOMrJlti.nd "VMCUrJT ON;-A:JTO" with r.l

of our "livt-" d'"JtlJ in t"J group t",act! jus t f 0 • t t=.=: ~. t J. !'"a 9 ."] n .~ 1 i\ IE: " oE. ¥.! t. ;-. t=: 'I ~.

private no one has to to "REPLY"nen tn~ oack J.~, nf.€.cled. P.l1 ~~I'E: or."

vQntages of disc access ~re Qv~il~ble as welt QS tna RQSe o~

(1) TIE; S 't d Q taw 0.::; € 0. S .i. 1 ~ .:j ~::; t i" 0 ~ eo d t'] s· 0 n € p €. j" s· ':'1 r. '-'H) ~J :i. d i:)',1 r IJ .::

fl1~s or alter dQtQ that another had S€t vo. ThlS usunllu

reMovQbilit~ and storaQ~ that tlloes have. d.letn't happen while ~oTh wer£ testing, U:';-. t! f.; r~. t ~:.",~,; :".

We now use ~rivate volUMes for ~11 of our oartial dUMO~ (~~st~M

done out when ha CQMe bQc~ Q Month 1~1er to u~e thE ~Q~Q

oackuo) . W\? use the vol uMe s IJ S It ~) ERIAL DISCS" and =.: r, ...;e b'J. C' h L'i) 't 0 \:l.l. ~;: c
to test l] new change 1n the Drpgr~M hE 1Gund MIS ~r~0~

the SQMe way we used to backup to ~ape.

We ha ve f 0 un d t h t] 1 "s i nQ Pr i vQ t e v 0 ::. ,.. "', e s of 0 r t ••J C i< H 0 .i. -E; -:. (.I s. t l:': i ~-! .:l ..

cause of the lack of Multiple ta~e Moun1s and that diSC pa~ks d~ not

s u f fer fro M the par i t ~ err 0 r s t hat t]ref r· e q u€ n ton lJ gin g .,. Q P€. :r.. ~ n ,1 I'] tl .

to-da~ use we hdve found that MQjor ~~steM cr~shes tnat call f~~

rclo~d5 seldOM des'tro~ the flIes on our pilvote '-'.)lllM€5 ~·o tl'lot (lr,l '.l

svs'teM-doMain drives need to be ielo~ded. This hns cut our re~OQa tl~e

to less than half what it was before.

We hQve created a oiivllte volUMe ciJ.lled "SPAI:EII thQ't ha~) on€. Q:'OIJ~

on it also called SPACE. This oock is Mounted wh£nev~r we need ~o do

extreMel~ lQrge sorts. Whflt we do is to "oo .l n t" our sort file:; ~:) E:eACE

and d 0 IJ 11 0 f the so r tin Q 0 nth i:; C 0 Mp 1 e t e], ~ eMp t ~ Hf' ? (j' 2 S P (.1 c': (t :, Q t ' (.:.

nearly SOO~OOO sectors of sorting sp~ce').

11

datQ \.wnich he knew and l.Jnderstol)ij) gone. o. l1.i.to::'i"~'!d. ';-:-,J.:;

created a situation wh€r~ t€5t ra~0 JntegrJt~ ~as n~n~~

lstent and Much tiMe Qno ~ffort ~~r~ WQst~d Qlw~v~ n~vLn1

to recreate datQ.

,;:!) B~cl]use 1:ne test dQtiJ. wusn;t l)ct llQ11v desi.!]ned i.1" I.J~,"'t}

seldOM reall~ "tested" th.:. progro.,...,:=-. it flOlt.d 'tni(HI~!;:. r(1

b l:! til e Q n in Q f IJ 1 oEHl C h d.i. f f'e i' en tty r.> e 0 f t i' 11 n S.'1 c ·t .l 0 n M I.J c::, ·t b Ii:.

included in th~ data and especlGllv ones that fullv exer

cise the Qi'ea of "the oiograM tnl]t has been chiJ.nge~.

PrOduction data 0150 gen£rall~ contains Q nlgh VOlUME ~r

on1v I] few t~p~s of these transactions so t~lJ.t Wh~~ d~t~

is Just bein'} CGoit::d frOM the IJ.ve 0010 f.i.:;'~~, it USU~:l}J"

wasn;t of Much worth exce~t to see if the progroM couLo

ron frOM beQinnlnQ to end without a~ortlngl

12

(3) Because the. test dotlJ -wasn; t ':1ctu''Jlly ct€~=:J.;;n~d J t l.-.J:J.··. T'ESTBASE glllclel.Lner;;:

we call "lESTBASE ".

was told to put in and wQsn't ever unG~rstand.Lng th~

probleM to be solvea.

ver~ seldoM thQt the prograMMer ~EALLY understooo the in-
TESTBASE should hQye cOMplete clo~ure. Any dQtQ n~eG~d

for JOD5~ vol1dQtlon~ etc. will b€ ~Ept WJtnln TEST~ASk.

If needed, TESTBASE could be reMov~d to u~otner MQcnine
along wit~ ne.cessary prograM f.Lles Qnd 011 test.tG9 c~uld
be accoMplisned.

(1)

(2) NQMing conventions snoula be Inoependent ~rOM actual
nOMina conventions. Most oroductlon nQM~no CGnVentlons
(ea. ·Part-NuMbers) Qre n~t the result ~f orede~ln~o
na~!na scheMes desianed 10 MlnlMi:e sta~t'· uo costs and
overh~ad involvea i~ user understanding. TESTBAS£ nQM~~
will try to be 05 siMple and .orderly as is oosslble.

Vt,"f'l:o.nd trlt:. Pi"cll:.~lrQi,,\.

putting i.n code 'tn'l':- h~.

terrelati~nships withIn the data

often the prograMMer was siMply

This list could QO on and on. Our solution to tne probleM .t~ ~~Qt

TESTBASE is a group within our FINANCE account t~Q~ is aesign€d tG

(3) All test dQta should be independant of actuQl proauctlon
dat.:] values. In this wav aata CO.n De aesJonE.d to or"\'oLdc
speci~ic in~orMQtion to the testor. -

exists wIthin TESTBASE~S SEt of dato.

Listed below is tne set o~ guidellnes that we ~Qve ~at UD for

"1i\!e u scenario desired. By Itself-supporting" it .l~ t-,eor,t th'-:lt c.tosur02

procedures we;Ye outlined~ TESTBASE con b£ EnhQnced to fully t~st Qn~

(4) TESTBASE should be recoverable. This ME.Ons thGt Q~ Jn~

tiMe the prograMMer May retreat back to tLM~ G and b~g.i.n

again with exactly the saM~ scenorJo or environMenT ne
started with. Also, with not b€ina tied to 'the oroduc
t10n enyirOnMent t~stbase or Qn~· port o~ it' MeQn~
TESTBASE con De stored at anv point in tLMe during ~~~t

Ing and then at any tlM~ be recovered to tnat point f~r

restQrt.

(5) TESTBAS£ should be dynaMiC in tnat wnene~er it i~ u;~~~

tiMe should be taken to ~nhanc£ tMe oriQincl testOQ~~ ~~
thllt (a) it does not beCOMe outdated and (b) so 1hQ~

testbuse orows with new dQtabas€s and flIes beina GdC~~

to increase the range of systeMs· that can bE t~~te~ i~
the f u t u r e w1 ,. h 0 u t h Q " 1 n 9 to" r· ..: i rr ve n t t 11 t? l.y h €; e J. II w.l. 1'to.

each new user.

t est .i. n 9 ().j ':'l U r

i.s Mel1nt ttlllt ij-:l.troq th..=:.B~ "coMplete" itsoftware.

be 'Q co~piete~ self-supporting environMent fur ~hE.

Accounting

TEST BASE as Q II C leQn II coo!J and f oj' each per ~on we hi.l")~ a gr 0 up for the;'..

TESTBASE. The way TESTBASE works in prQctic~ is ~h~t ~e keEp the group

to do their testlnq in. When we create tills group w€ g~vca tll!~i'i a copv

of Q1I tne necessar!J files that they will need frOM TESTBASE and .W~

Make sure that when testing is fIn~shed tho.t th~y 90 back ~~d odd to

TESTBASE the new test data thQt thev have developed. WQ have found that

for TESTBASE t~ work requIres Q serious COMMitM€~t and effort frOM

ManQgeMent but thQt the testing tiMe SaYed~ the incr~used tn~ioughne5s

and qualit~ of testinQ~ ond the knowledge QQ~ned by the progruMME.rS

Makes TEST BASE one of the best investMents we~ve MQu€.

1:'-) 1.4

IMAGE LOGGING

In 0 ur en vir 0 n Me n t we are usir. q 1MQg e 1_ .:; Q9 l. n '1 tV' j" :'1 l {' t 1;':1 i. :i. ~.I ;:'l I 1 0 F

o ~ r d a tab Q se s • A11 0 f 0 urI 0 9 9 .i n {I .i s c; 0 r. e t I) d.i. 5 C 1'1 tl u Wei '.; € r -:: .:l :t.;. :: -=. (i

SOMe unexoected bene~lts ~rOM hQUlng the lijgging pr1ces~es.

First~ we1ve seen no probleMs wltn logging to Dis~. When ~e hUjl~

our log fiies we obtuin the disc Qddres~ or tn~ f~les ~Q ~nQt in a

MISCELLANEOUS TOPICS

Kev Tile recover~ QTter catQstrophlc crashes

There used to be a tiMe when cQtastroohlc s~stEM crasnes Meant Q

total reload of the s~steM frOM the lost backup. for Accoun11nQ thiS

Meant iosing all the processing that had occ~rrea f~OM bQC~Up 10 the

crash. However~ wiTh a ·litTle planning and Q systeM utillt~ called

serious crash we con pull the files off to taoe vsing SAVU~}L (see
SADUTIL (see MPE S~s1eMs Utilities reference M~nuQl p."li't i'Ji:.•

MISCELLANEOUS section on Ke~ file recover~).

Secon d .' 0 ne 0 f t neb i 9 Qe ~ t :J en to f :i. t s f· r \, r'\ ~. GY. 9 .:. il'} C \) ,.~ \~. $. r. (j t f i \' ,v.

when the s~steM crashes but when an application a~oj"~s and WE na~d to

30000-90044) files on the inoperable Syst~M can be copied to tGpe and

thereb~ recovered.

Planning needs to be done because if the ~~s1eM dlr~ctor~ 15

recover the databases involved. It is n~ce be~ng Qbl~ to r6cove~ 0
des1ro~ed 1n the crQsh~ The onl~ way to Qe~ the fll~ is t~ know the

aatQbQse riqht up to the beginning of Droce~~ing of an QOpllCQt~on Qnd

not lose previous processing to thot datQ~~s~.

Third, ~he incr~MentQl proc~ssing tiMe involv~~ with logging i~

unnoticeable anM iMpleM€nt~tion of lOQQing ~~quir~s no prograM cnang€s.

A COMMon oractice we~v~ seen i~ to put DBsrtiRE's at tn~ b~gLn~ing of

JGC streaMS for ~ecoverabjlity. TMQ1 defi~itely adCs p-ocEsslng tiMe:

tS

logical device it resides on and i1s starting disc aQaress. This infor-

MoT10n can be obtained frOM The MPE. STORE CO,'\Mand using the St10W para ..·'····

eter or can be obtained b~ aoing Q LISTF within LISTDIR2,PUB.SYS.

In our environMent we use bOTh~ aependinQ on tne so~cific f~l€.

For our IMQge Logging files w€ put LISTDIR2 in the job str~~M thQt

builds the log 'il~s. This wav the addre5s IS pr~nt~d right on thE

STDLIST and filed with the backuo li5tings. For the f~w strategic files

thot we need to keep track of their WherEQbouts on tne SystiM~ W€Jv~

put LISTDIR2 i~to the Job streaMS that creQte the ~il~s. If the ~VSt~M

crasnes~ we get the address of the file frOM The last STDLISl for tnnT

Job and use SADUTIL to get our file back~

i6

BuildlnQ files to avoid run-tiMe aoorts

Wh e n b ui 1din g f i 1e s wit h i n job s t rea M:, the II DISC=.1 P.'J r ,,) j., e "t t=. j' 0 ·r:

the BUILD cOMMand CQn be used to allocate the entl~~ QMOunt of disc

space needed. This is accoMplisned by setting the 1n1t1al allocatiGn

prints it off. We print off the STDLIST~5 once Q ctQV ond file thE tneM

by the day we print theM off (this avoids having to sepQrQt~ t~e~l). Now

our printer jaMS alot less often and we Ql~Q's know exactl~ wh~r£ the

STDLIST~s are'

'eaual to the nUMber of txtents \ reMe t-iue r· thQ't

DISC=[nUMrec][~[nuMextent$][~inltlJlloc)]] so tno? DlSC=10C~~~32~3~

would allocate the enti~e space for 10~OOO r~cord~ or fQil au~ to lac~

of disc space. This way lack of disc spac€ will o~ort the)o~ streoM

outside of~ and before the prograM thot wGuld;ve used tne file.

How not to lose JCL

In the oast we had alot of probleMs with ~he STDLIEr that i~

prInted for ever, batch job. Flrst~ it 5~eMS IJS though STDLISr)s pogc

eject the line printer aoout ev~ry other line. ThiS olwaus destrov~d

an~ atteMpt to keep paper piling properly and JIJMMed the prl~ter Gn ~

regular basis. Secondly~ user~~ don~t und~rstand tne iMoortance of

STDLISTJs 50 the, got thrown out~ fil~d with reports~ lnodve~tantlv

left Q~tQched to sOMebodY~s output (and therefore thrown outJ,erc. It

QIWQ~S seeMed to be the case that the STDLIST was M~s51ng for tnQt

critical job ~hat aborted and trying to fix the jOb oecaMe a dLf~icult

task.

We have iMpleMented Q ~iMple solution 1hat has solved our STDLIST

probleMS. Any

.. OUTCLASS=LP .' S II

doesn~t print

Job thllt has a STDLIST wo.·tn saving il.:l s;. 1111d

added to its job card. This de fer;; the STDLI:~.T so it

(our DUTrENCE is nor·Molly 7) until a syst€ls: o~.r·::;(jn

i7 tS

MPE IV 1 S IIINFO= \I PARAME·r Er~

WORKING-S1DRAGE SECTION.

:RUN PROGRAM~INFO="HELLO-THER£"

« THIS PROGRAM WILL RETURN AN 83 CHARACTER STRING ~)

« AND THE LENGTH OF THIS STRING »
« TO A COBOL PROGRAM THAT WAS RUN WITH THE "INFO=II
« OPTION. THE ADDRESS OF THE STRING IS SlCRED IN
« Q-S AND THE LENGTH IS STORED IN Q-6 AT RUN TIM£.

BEGIN

HEWLETT-PACKARD 3210 OA. 08.0 i SPL [·4W] BUN: ~~[P 20.\ i ";'D·l

BEGIN
LOGICAL QSTART=Q~

Q +000
INTEGER. DEL TA., X.:

Q +001
Q +002

BYTE POINTER PINFO~

Q +003
POINTER P'LEN,PQ ... PREG~

Q +004· .
Q +005
Q +006

POINTER W' P INFO.t
Q +007

LOGICAL VA;~ ~

Q +01.0

PROCEDURE GETINFO(INFO,LEN)l
ARRAY INFO~ .
I rfTEGER LEt~ ~

$CONTROL SUBPROGRAM,MAP\ADR,SEGMENT=GETIN~Q

$TITLE "FMS061SS· . G£TiNFO"

PAGE 0001

00000 0
00000 0
00000 0
00000 0
00000 0
00000 0
00000 0
00000 0
00000 0
00000 0
00000 i
00000 1
00000 1
00000 i
00000 1
00000 1
00000 2

00000 2

00000 2

00000 2

00000 2

00000 2

PIC ;«80).
PIe 89 (04 i ·COrli

o

;.

CALL flGETINFO" USING INFO, INFO-LENGTH.

MPE IV hilS Q new OQrllMeter ... cfllled ilINFO" 0' f"r..r the RUN c:;MMGnd.

We hpv~ written an 5PL subroutine that retriev~s the alohnnuM£ric

() i Ir~FO

o1~ INFO-LENGTH

t10n was "PARM"~ and it nllndled only nUMeric inforMotl0n.

string Ilnd the length of this st~~nQ to Q COBOL II p~ogrQM. A siMple

prograMS. Before INFO tne only run-tiMe PQrQMeter for pQssing !n~OrMQ-

Using INFO alohanuMer1c 1nforMQt1on con be passed to Qpol!cotlon

COBOL eXflMple and the subroutine 11~tinQ follow:

@PINFO := @PQ - S~ «SET POINTER TO WHERE
« RUN INfO ADDRESS WILL DE>,

@P'LEN := @PQ - b; « RETURN LENGTH OF)}
«STRING FROM Q(I)-6»

THEN .. GOTO STOP/THIb

~(FIND OUT HOW MUCH TO CHANGE Q
({ SET POIN1ER TO VALUE Of
« P-REGISTER IN SfACK MARKER

......
,~ l

) }

> >
END OF STACK CHAIN ...
CAN STOP NOW

20

« SET POINTER PQ TO CURPENT
« VALUE OF Q-REGlST[~

LEN : = P I LEN .~

IF PREG = 0

DELTA ~= PQl
@PREG := @PQ(-2)~

X o : = @QSTART l
@PQ : = Xl'

AGAIN:

00000 2
00000 2
00003 2
00005·2
00005 2
00005 2
DODOS 2
00007 2
00012 2
00012 2
00012 2
00015 2
00015 2
00015 2

00020 2
00022 2
00022 2

00023 2

i9

GOTO AGAIN~

HEWLETT-PACKARD FMSOblSS GETINfU

STOP~THIS:

@W I PINFO := @PINFO~ « SET UP r~E I~F~;)

<< POINTEr-: ;- .>

«RETURN INFO »
« ST:~ Ir.'G))

":
MOVE INFO :=~WIPINFO~iLEN)~

VAR : = '~P PINFO.~
@W~PINFO := VARt
@W'PINFO := @W'piNFO / 2;
HOVE INFO:="

X := @PQt
@PQ := X - DELTA~ « OECR£MENT Q-PTK >}

« 10 PREVIOUS }>
<(VALU2: AND STAi~T AGAlt: ~ .'

END~

PAGE 0002

00025 2
00025 2
00027 2

00032 2
00032 2
00033 2
00033 2
00033 2
00033 2
00033 2

00035 2
00037 2
00041 2
00044 2

00100 2

~O104 2
00104 2

IDENTIFIER

AGAIN
DELTA
INFO
LEN
P~LEN

PINFO
PQ

PREG
QSTART
STOplTHIS
VAR
WI PINFO
X

'. ,.
CLASS TYPE ADDREE·S . .~

LABEL PB+OtiS .~
SIMP, 'JAR, INTEGER (.; +001
ARRAY (R) LOGICAL Gol -··0 O~;

SIMP. vAR • <R) INTEGEJ~ tJ -004
POINTER LCiGICAL Q t·OO4
POINTER BYTE {) +603
POINTER LOGICAL ~ ·00'';
POINTER LOGICAL 0 ..·1)06
SIMP, VAR. LOGICAL Q +000
LABEL PBf·Ij::;:.5
SIMP. VAR. LOGICAL Q + ~J 1 0
PflINTE:R LOGICAL i:j +00 ~1

SIMP. VAR .. IN1£.GE:R Q +00;:.)

00000 1 END.

IDENTIFIER CLASS TYP£ AODI=lESS

GETINFO PROCE.DURE

PRIMARY DB STORAGE=XOOO~

NO. ERRORS~OOOO~

PROCESSOR.TIME=O:OO:Ol~

SECONDARY DB 5TORAGE=:OO~OO
NO. WARNINGS=OOOO
ELAPSED TIHE=O:OO:07

21

	Program of the 1981 HP3000 International Users Group Meeting in Berlin
	Authors of the 1981 HP3000 International Users Group Meeting in Berlin
	On the Use of "Prototyping" in Software Development
	Thoughts concerning "How secure is your System?"
	THE HP 2680 LASER PRINTING SYSTEM(OVERVIEW)
	RATFOR = FORTRAN/3000 + Elements of Structured Programming
	Budgeting and Proif Planning on the HP3000
	Data Communication Strategy
	User Friendly Applications in Commercial Realtime Dataprocessing
	New Approach Toward System Implementation
	New Directions in Customer Training for HP3000 Productivity Products and Office Products
	IPB Interactive Planning and Budgeting
	Software Technology - A Future Requirement or Current Necessity?
	Business Computer Group Strategy
	ANSI COBOL 198X: The Story behind the Headlines
	System Performance and Optimization Techniques for the HP3000
	Production Management/3000
	Using DS 3000/1000 with HP 1000 Master Programs
	Global Optimization
	PROTOS - A COBOL Program Generator for the HP3000
	Transaction Processor for the HP3000
	Integrated Data- and Textprocessing with HP3000
	A Distributed Computer System Interconnecting HP3000, HP1000 and other Mini-Computers
	The Use of EDP in the Freight Forwarding and Ships Agency Business
	Trans and Future Directions of HP Peripheral Products
	New Software Engineering Alternatives
	Using IMAGE-3000 to Establish an Order Processing-Finished Goods Inventory On-Line Data Base System
	Computer Graphics, a Powerful Information Tool
	MPE IV
	Data Analysis - The Answer to Successful Implementation of IMAGE
	Computerized Typesetting: TEX on the HP3000
	Optimization of SPL and FORTRAN Programs
	A Try to Establish an Off-line Time-reporting & Wage Combination System
	News to MPE IV Internals
	A Few Well-Chosen Words Concerning a Few Chosen Ways to Do Word Processing, Some Well-Chosen, Some Not
	A Comparison of Relational and Network Data Base Management Systems as Implemented on the HP/3000
	The HP2680A Laser Printing System (Software)
	Data Concentrators In Focus for Minicomputer-Users
	Distributed Processing - A Hewlett-Packard Solution
	Terminal I/O An Engineering Feedback Session
	Daisy 3000 - A New Approach in Text Processing
	Using the HP 3000 as a Mainframe
	Data Capture Systems for Real-Time Manufacturing Management
	HP PLUS
	Cold Dump Analysis
	Some Problems of Software Engineering
	Introducing the HP On-line Performance Tool (OPT/3000)
	ACE: Operatorless Job Scheduling and Processing
	The Happy Transition
	RMIT Student Data Base
	An Introduction to CCITT Recommendation X.21
	Operator/Console Interface An Engineering Feedback Session
	HP 3000 Security/Risk Management
	Terminals Strategy and New Products
	RAPID/3000, new from HP: Relational Access, Prototyping and Interactive Development
	Terminal I/O Controller for HP 3000 Systems
	Fast Editing and Program Development Using a Full Screen Editor
	Relational Database-Concept, Consequences for Organization and Management-Structures
	Programming for Device Independence
	How to Get More from Your Core Memory
	Decentralized Processing - New Horizons for Systems Designers
	New Directions in Investment Management
	High Speed Digital Image Processing Using a Picture-Scanning Technique on Incremental Plotters
	Understanding Hewlett-Packard, a view from the inside
	MPE IV
	ACE: Operatorless Job Scheduling and Processing
	An Introduction to CCITT Recommendation X.21
	Design Considerations for Support X.25 Communicator Networks
	Terminals Strategy and new products
	Interactive HP-3000 to IBM Host Communications
	Business Graphics An Effective Means of Improving Managerial Productivity
	Increased Reliability at a Lower Cost
	HP BCG BASIC

