
ewlett- ackard
usiness sers onference

PR
ORLANDO

EEDIN~S
August 7-12

1988
Volume 1

RETURN TO:
HPl/RESEARCH LIBRARY

BUilDING #2l
P.O. BOX 10490

PALO ALTO. CA. 94303·0971
PHONE # 415·857·3092

INTEREX

epff-7b , ~
Hlq HI b

l~ fg
v, I

the International Association of
Hewlett-Packard Computer Users

Proceedings

of the

1988 Conference of
HP Business Computer Users

at
Orlando, Florida
August 7-12, 1988

Volume 1

INDEX BY PAPER NUMBER

0001 The HP Employment Market - What Every Hiring Manager Should Know
Lynn A. Novo, Network Systems Company

0002 An Introduction to Symbolic Debugging
Tim Chase, Corporate Computer Systems, Inc.

0005 Separating Data and Processing or Designing DBs for Systems
Matt Ohmes, Cognos Inc. Yet to Come

0009 INFORM, PROTOS, QUIZ, and COBOL - a User's Experiences
Richard C. Decker, Computer Task Group, Inc.

0011 The Information System Lifecycle
Mark L. Symonds, Innovative Information Systems, Inc.

0012 Minimizing Coding, Maximizing Production
Karl Smith, Softsmith

0013 Electronic Forms: Another Step on the Road to the Automated Office
Richard J. Armitage, Business Systems International, William Tuminaro

0016 How to Keep Your Auditor Happy
Robert A. Karlin, Kadins' Korner

0017 User Friendly Security
Robert A. Karlin, Kadins' Korner

0018 AI - The Three Toed Sloth
Robert A. Karlin, Karlins' Korner

0019 Controlling the Datacomm Monster One Company's Approach
Jeffrey D. Van Brunt, Ireco Incorporated

0020 4GL's, COBOL and Data Communications
John D. Alleyn-Day, AH Computer Services, Inc.

0021 Fourth Generation Languages and Efficient Processing
John D. Alleyn-Day, AH Computer Services, Inc.

0022 Control Techniques for User's Global Resources
Kevin Darling, The Gap Stores

0024 Integrated Information Management - Get the Connection?
Jim O'Brien, O'Brien Downs Systems, Inc.

0025 Capacity Planning Getting Started
Chuck Rice, University Systems

0027 Data Integrity and Recovery
Teresa Brzozowski, Carolian Systems International, Inc.

0028 Pitfalls of Offloading Applications to PCs.
Mark W. Miller, JMA Technology, Inc.

0030 Decision Support System
Parvin Rahnavard, Independent Consultant

0032 Understanding Migration
David T. Elward, Taurus Software

0033 Dodging Bullets in Your DP Shop
Victoria A. Shoemaker, Taurus Software, Inc.

0034 Migration Made Easy
Victoria A. Shoemaker, Taurus Software, Inc.

0035 The Face of Data Processing
E. R. Simmons, Ph.D., The Protos Software Company

0036 MPE/XL Variables and Command Files
Brett Clemons, Softwarewizzardry, Inc.

-1-

INDEX BY PAPER NUMBER

0037 Computer Assisted VIEW, IMAGE, & SPL
Norman A. Hills, N.A. Hills Computing Services Limited

0038 Using COBOL II's Facilities
Pat Lockwood, Orion Systems Technology, Inc.

0039 00 00 00 A Beginner's Guide to UDC's and JCW's: How to Use Them to Your Benefit
David L. Largent, N. G. Gilbert Corporation

0040 Adding Multi-Plant Features to a Large, Integrated Manufacturing Package
Terry H. Floyd, Mehrdad Laghaeian, Blanket Resources

0041 HP Portability: RAM/ROM vs. Disk based approach
Hal Goldstein, Personalized Software

0043 The Seven Wonders of TERMDSM
Dennis Heidner, Boeing Aerospace Corporation

0044 .. 00 ••• 00.00 00 •••••••• 00 00 • 00 00 •• 00 • 00 • 00 • 00 •• 00 • 00 .. In Search of a Better Mouse Trap
Dennis Heidner, Boeing Aerospace Corporation

0045 ... 00 00 00 00 00 • 00 •• 00 00 00 •• 00 • 00 • 00 •• Data Structures "The KEY to Performanceu

David G. Robinson, PowerSpec International
0046 00 00 •• 00 .. 00 00 00 00 •••• 00 Effective Backup Strategies for the HP/3000.

Bud Beamguard, SYNTEX Corporation
0047 00 00 00.00 I haven't got a lot of time - I haven't got a lot of money

George Blessing, City of Pasadena
0048 Integrating PC's into a Distributed DP Environment

John Wilson, Coles Book Stores Ltd.
0049 Implementation of an Automated Code Enforcement System

Kathleen P. Metz Edwards, via the Integration of Third Party and
City of Plano In-house Developed Sftw.

0051 Modems, Multiplexers, and Concentrators
Jay Gross, Paradyne Corporation

0052 00 00 00 •• 00 00 00 00 Spectrum Instruction Set, a 3000 Hacker's View
Robert M. Green, Robelle Consulting Ltd.

0054 0 0 •• 0 • 0 .0 •• 0 0 0 ••• 0 0 0 0 •••••• 0 •• 0 •••••••••• Performance Monitoring On MPE/XL
Robert S. Apgood, Strategic Systems, Incorporated

0057 .. 000 00 00 •• 000.00 00 000 00.00 •• 00 0 00.00.00 •• 00 Sales Force Automation: A Case Study
Nolan M. Alexander, Bepex Corporation

0058 0000 •• 000.00 •• 00.000 •••• 0000 ••• 0000 ••• 000.0 •• Unorthodox IMAGE Acessing for Power
Joseph Berry, self employed

0059 0000.0000000000.00.0.0000000 Computer Training: How to Train the Computer Phobic
Christine Dale, Kaiser Permanente

0060 0 0 0 •••••• 0 ••••••• 0 •• 0 •• 0 ••• 0 •••••• 0 • 0 ••••••••• A Guide to Breaching HP 3000 Security
Phil Curry, Carter, Schaefer and Company

0061 00 00 0 00 00 00 00 00 00.00.00. Training a New Operator - Where Do You Begin?
Flo Barley, Pekin Memorial Hospital

0062 0 • 0 • 0 ••••••••••••••••••••••• 0 • 0 0 0 0 0 0 0 •••••••• 0 •••• 0 Parity Pitfalls
Karen Davis-Mackie, Cray Research, Inc.

0063 0 •••••• 0.00 •••• 00.000 •• 00000 •• 0. o Adressing the Problems of Program Documentation
Claire M. Perkins, Kaibab Industries

0064 ... 0 ••• 0 ••••• 0 • 0 0 0 0 0 • 0 •• Asynchronous and Synchronous Auto Dialing Equipment on
Benedict Bruno, S.T.R. Software Company, the HP 3000 Why, When, and How

-11-

INDEX BY PAPER NUMBER

0065 Distributing Applications from PC to Mini's
Andre J. Cruz, Merrill Lynch

0066 Integrated Information Engineering
Peter Ney, Richard Irwin Associates (RIA)

0067 Data Center Management and Efficiency
Betsy Leight, Operations Control Systems

0068 An HP 3000 approach to IBM's LIBRARIAN techniques
Betsy Leight, Operations Control Systems

0069 Foundations for HP Data Security
Kelly Spencer, State Farm Mutual Automobile Ins. Co.

0070 Where's the Space
Joe Berry, Pekin Memorial Hospital

0071 Application Software as a Long Term Investment
Arthur J. King, SOTAS Inc.

0073 Twisted Pair: A Thing of the Past and The Wave of the Future.
Mark Indermill, Precision Interlink Company

0074 Playing The Wrong Game: Measuring Programmer Productivity
A. Gene Harmon, AH Computer Systems Inc. in a 4GL Environment

0075 Integrating Paperless Systems In A Fortune 100 Company
R.L. Pringle, C.F. Raymond,]r. andJ.F. Konecny,]r. Lockheed Eng. and Management
Svcs. Co.,

0076 "How to Train a Terminal User to be an Effective PC User"
Jack K. Marshall, Solano County, Calif. MIS Department

0077 Documentation: The Necessary Evil
Robert M. Gignac, Motorola Information Systems

0078 The Secrets of Software Project
Robert R. Mattson, Management WIDCO

0079 Software Quality - Let's discuss this can of worms!
Robert R. Mattson, WIDCO

0080 Strategic Planning in Small MIS Shops
Terry W. Simpkins, Spectra-Physics, Retail Systems Division

0082 Making Short Shrift of Sorts
Charles Sullivan, RunningMate

0083 Developing a Faster IMAGE
Charles Sullivan, RunningMate

0086 Disaster Recovery, Can Your Company Really Recover?
T.]. Dooley,]r., Dooley Consulting Group, Inc.

0087 Information as a Competitive Weapon
David Ashton, Cognos, Inc.

0090 Experiences in Migration
James S. L. Cohen, Mecca Leisure PLC

0092 Don't Let Your Programmer Grow Up to Write Operational
J. B. Watterson, ORI/CALCLUON Inc., Documentation - or Should They?

0093 The Use and Abuse of Non-hashing Keys in IMAGE
Fred White, Adager

0094 Using a Task Manager to Improve User Productivity
Barry Polhemus, ETC Corp.

-111-

INDEX BY PAPER NUMBER

0095 Maximizing the Value of Data Through Optimized Data Base Performance
Kathy S. McKittrick, Dynamic Information Systems Corporation

0096 Programming in MPE/XL.
Eugene Volokh, VESOFT

0097 The role of Data Dictionaries in Application Development,
Raymond Ouellette, Infocentre, with an Emphasis on System Dictionary.

0098 Using MPE Message Files - An Application Approach
Patrick Fioravanti, Infocentre

0099 Distributed Applications Processing and How to Use it. or
PC Patrick Fioravanti, Infocentre Stop wasting those Mips!

0100 An Evaluation of Database Performance Tools, or How can we get
Tom Gosnell, Infocentre all of Tonight's Batch Work Done?

0101 A rational use of micro computer resources.
Raymond Ouellette, Infocentre

0107 Becoming Effective Tradespeople
Winsome R. Stretch, ACI Computer Services

0108 Telephone Support - 15 Ways to Maximize Your Investment
Doug Clement, Cognos Inc.

0109 Optimizing the Logical Database Design
Dick Onel, DCE Database Consultants Europe

0111 Electronic Forms in the Hewlett Packard Environment
Barry H. Gillespie, Indigo Software Ltd.

0112 Mass Storage - The Current Revolution
Suzanne M. Spitzer, McEvoy, Cooper, & Company

0113 The Politics of Data Communucation
Dave Hickey, Networks University Systems, The Ohio State Univ.

0114 Telecommunications Management and Cost
Kevin C. Halvorson, Control Telenomics

0116 Management By Standards
Baron E. DeKalb III, 3M Company

0117 Managing HPDesk Notice Boards Over Several Mailnodes: Remote or Local
Bob Myers, The Ohio State University

0118 Data Dictionaries: Bane or Boom
Stephen M. Butler, PROBUS International, Inc.

0119 Building a Home for Your HP 3000's Data Center Design,
Harry Krommer, Procter & Gamble Construction, and Operations

0121 Reflections Versus Advancelink
Ashley Wade, John McLean Jr., Lockheed Eng. & Management Svcs. Co.

0126 Distributed Applications and the Communication Link
Doug Walker, Walker Richer & Quinn, Inc.

0134 A Programming Environment in C
Larry Simonsen, VALTEK Incorporated, Keven Miller

0136 IDAT: For Dump Analysis and More
Neil Ferguson, Boeing Computer Services

0137 Telephone Call Accounting
Paul A. McArdle, TeleMar, Inc.

0139 Computerized Cargo System
Itzhak Benozer, Israel Ports Authority

-Iv-

INDEX BY PAPER NUMBER

0140 Hypothesis Driven Programming
Ross G. Hopmans, Brant Computer Services Ltd.

0141 De-Mystifying Data Base Normalization
Pat Witiw, Brant Computer Services Ltd.

0142 Applying Expert Systems in the Commercial Environment
Karen Hopmans, Brant Computer Services Ltd.

0144 Facilities Management - A Viable Alternative or How to
Jack Neale, Keep the Government Happy
Brant Computer Services Ltd., 24 Hours a Day

0145 Adopting Standards in Powerhouse Applications
Christopher D. Brayman, Brant Computer Services Ltd.

0146 System Development Methodologies in the Fourth Generation Environment
Kimberlie S. Davis, Martin Marietta Data Systems

0147 An Investment for Now and the Future: User Relationships
Kimberlie S. Davis, Martin Marietta Data Systems

0149 Design Considerations for Distributed Applications
Leigh Solland, Cognos Inc.

0150 0 ••••••••••••••••• Presenting Technical Information to Management
George B. Scott, Great Business Solutions, Inc.

0151 UNIX and Other Operating Systems
Timothy.D. Chase, Corporate Computer Systems, Inc.

0152 0" 0 What do you mean, "The job blew up"?
Michael Madigan, Anthony Furnivall, Buffalo Evening News

0153 . 0 ••••••••••••••••••••• 0 •• Conversations over the stable door
Anthony Furnivall, Buffalo Evening News

0154 o A New Model for Report Management & Distribution
Michael A. Casteel, Unison Software

0155 .. 0 ••••••••• 0 •••• 0 • 0 ••• 0 •••••• 0 •• 0 • New Paradigms for Automating Batch Processing
Michael A. Casteel, Unison Software

0156 0.0 The Future of Financial Systems on the HP 3000
Ronald D. Smirlock, Peat Marwick Main & Company

0157 00. 0" 0 ••••••• 0 •••• Management Systems at Westinghouse Furniture Systems - Total
Tom Idema, Business Systems Implementation
Westinghouse Furniture Systems from a Mgmnt. Perspective

0158 .. 0 • 0 ••• 0 0 ••• o. 0 ••••••••••••••••••••••••••••••••••• 0 ••••• 0 •••• Looking at Hpts Telesup
Isaac Blake, City of Tempe - Information Systems

0160 ... 0 • 0 •••••••••••••••••••••••••••••• Database Application Development Using Pascal
Giles F. Lewis, Wellington Management Company

0161 o. 0" o. 0 •• 0. 0 •••••••••••••••••••••• 0 ••••••• 0 ••• PC Powerhouse: When and How?
Suzanne Harmon, AH Computer Services, Inc.

0162 ... 0 ••• 0 •••••••••••• 0" 0 ••••••••••••••• Effectively Understanding User Requirements
Suzanne Harmon, AH Computer Services, Inc.

0164 0 •••••••••••• ASK: Better than New
Tim Snyder, Boston Scientific

0166 ... 0 ••••••••••••••••• 0 ••••••••••••••••••••• Contingency Planning - The Audit Process
Leslie A. Virgilio, OFF-SITE, Inc.

0167 Fortran 66 to 77: Conversion - Problem Considerations in an
Brant Kelly, Bradmark Computer Systems Integrated Environment

-v-

INDEX BY PAPER NUMBER

0168 Managing Application Programming with Fourth Generation Resources
N. M. Demos, Performance Software Corporation '

0169 HP's Precision Architecture - Strengths and Weaknesses
N. M. Demos, Performance Software Corporation

0170 What Will Programming Be Like in 1998?
N. M. Demos, Performance Software Corporation

0171 Staff Training, Why, How, and When
Charles A. R. Volz, Volz Associates, Inc.

0172 Computer Publishing
Charles A. R. Volz, Volz Associates, Inc.

0173 The Fall '88 Migration: New Directions?
Charles Finley, ConAm Corporation

0174 CASE a Way Out of the Software TRAP
Geof Davies, RAET Software Products, BV

0175 Pardon this Interruption: New Possiblities of the MPE Break Command
Michel Kohon, Tymlabs

0176 Methods of Cost Justification for Hardware and Software Purchases
E. Charles Stern, Tymlabs Corporation

0177 The Best of the New Creative Decision Making Techniques
Teresa Norman, Tymlabs Corporation

0178 Optical Disk Technology and HP Computers
Husni Sayed, Deborah Cobb/Tech. Writer, IEM, Inc.

0179 Automatic Identification and Bar Coding: Promise and Pitfall
Kenneth L. Kimbrough, Quality Consultants Incorporated

0180 "System Security? As Soon as I Can Find the Time.. ."
Steven G. Bloom, InCase Corporation

0181 Operations Management in a Multi-HP3000 Environment
Roberto Drassinower, Carolian Systems International Inc.

0182 Sales Force Automation - The Last Frontier
Mark P. Shirman, Innovative Information Systems Inc.

0183 HP Thinlan - A Users View
Allen R. Burns, Rutgers - The State University of N.].

0184 Migrating Secondaries
Waller and Pearce, INLEX, Inc.

0185 Banner Pages
Edmund C. Arranga, McDonnell Douglas Corporation

0186 How to be Successful in your Implementation of ANY Office Technology
Susan Wyatt, Wesson, Taylor, Wells & Assoc., Inc.

0187 Using Bar-Codes on HP3000's to Collect Factory Data
Lois Andersen, Spectra-Physics

0188 A Development Methodology for a New Generation
Grant W. Fletcher, Kathleen A. Sachara, The Interface Group

0189 An Approach to Debugging
Grant W. Fletcher, Kathleen A. Sachara, The Interface Group

0190 Optimizing IMAGE/TurboIMAGE Blocking and Buffering
David Merit, Bradmark Computer Systems, Inc.

-vl-

INDEX BY PAPER NUMBER

0191 EDI- Electronic Data Interchange
Charles S. Townsend, Birmingham Computer Group, Inc., contact through
Walter V. Jankowski

0192 ... o.. Low-cost and high efficiency with integrated PCs - Don't reinvent the wheel.
Rolf R. Schleicher, Deutsche BP AG, contact through Walter V. Jankowski

2001 .. o.o.o.o..o..o..o.o.o. o..o. .. o. Business Communications Under New Wave
Alison McCullum-Varey, HEWLETT-PACKARD

2002 Community Filing with PC's
Jonathan Baker, R. Varley, HEWLETT-PACKARD

2003 o.o.o. o. o.o. .. o. HP NewWave and Workgroup Productivity
Bill Crow, HEWLETT-PACKARD

2004 Using HPDeskmanager Intrinsic for Custom Applications
Peter Dunmore, HEWLETT-PACKARD

2006 Business Information on the Desktop: Alternatives to paper-based reporting.
Kyle Murphy, HEWLElT-PACKARD

2007 HP Help in Customizing Software
Andrew Watts, HEWLETT-PACKARD

2008 Cooperative Processing - Making the most out of the PC-HP3000 connection
Bruce Smith, Helen Chalmers, HEWLETT-PACKARD

2010 Matching Printer Technologies to Your Office Needs
Larry Tracy, HEWLETT-PACKARD

2011 How Electronic Forms are Changing Office Printing
Clay Young, HEWLETT-PACKARD

2013 Resource Sharing: A decentralized processing solution for
Ann Pirrone, Tracy Crowe un-tapped office productivity.
HEWLETT-PACKARD

2014 Effectiveness vs. Efficiency in Managing a Large Distributed, Electronic
Luis Hurtado-Sanchez, Amy Mueller, HEWLETT-PACKARD Mail Network

2015 o..o. o.o. •• o. ... o. Utilizing the PC for MPE Performance Management
Rex Backman, HEWLElT-PACKARD

2016 Software Performance Engineering: A Methodology for
Doug McBride, Designing Performance into
HEWLETT-PACKARD, Software Products

2018 User Interface Design Methodologies for CDROM Information
Greg Ferguson, Retrieval or "How to Find That Needle
HEWLETT-PACKARD in a Haystack"

2020 Strategies for Re-packing Discs and IMAGE Data Bases
Michael Hornsby, HEWLETT-PACKARD

2021 Use of CDROM Technology for Information Services
Phil Palmintere, HEWLETT-PACKARD

2022 Remote Configuration Tracking: The Confirm Concept
Robert Poling, HEWLElT-PACKARD

2023 Managing MPE for Support
Bill Sutton, HEWLETT-PACKARD

2024 Optical Publishing: Data Conversion/Preparation for CD-ROM Applications
Jeff Szafransky, HEWLETT-PACKARD

2025 Building a Complete Disaster Recovery Program
Greg Morris, HEWLETT-PACKARD, Norm Moyer

- vll-

INDEX BY PAPER NUMBER

2026 Finally: Performance Technology
Tony Engberg, HEWLETT-PACKARD

2027 HP AdvanceNet Overview
Karyn Mashima, HEWLETT-PACKARD

2028 HP AdvanceNet for Business Office Solutions
Felicia Choy, HEWLETT-PACKARD

2029 HP AdvanceNet for Regional Sales and Service
Alexander Henderson, HEWLETT-PACKARD

2030 HP AdvanceNet for Engineering
Dave Morse, HEWLETT-PACKARD

2031 HP AdvanceNet for Computer Integrated Manufacturing: The CIM Solution
Brice Clark, HEWLETT-PACKARD

2032 Hybrid Networks Public Versus Private Packet Networks The Best
Patrick Lelorieux, HEWLETT-PACKARD of Both Worlds

2033 OSI Basics and Future Directions
Bruce Fram, HEWLETT-PACKARD

2037 OS to NS Migration on the HP 3000
Chris Wallin, HEWLETT-PACKARD

2038 HP-to-IBM Communications
Michael Strickland, HEWLETT-PACKARD

2039 StarLan Networking
Alexa Ford, HEWLETT-PACKARD

2043 Disc interfaces for MPE/XL Systems
Gary Vogelsberg, HEWLETT-PACKARD

2044 Designing Performance Tools for the Every Day System Manager
Gerry Wade, HEWLETT-PACKARD

2045 Understanding IBM SNA or Through a Glass Darkly
Robert S. Yori, HEWLETT-PACKARD

2046 Proactive Network Diagnosis
Claudia Zornow, HEWLETT-PACKARD

2047 Considering a Network Management Service?
Sandi Voykin, HEWLETT-PACKARD

2048 Open View Windows: A New Foundation for HP Network Management
Kathleen Gannon, HEWLETT-PACKARD

2049 SYSTEM SECURITY: Access Control in the MPE Environment
Ken Jordan, HEWLETT-PACKARD CO.

2050 Integrating MPE XL: A True Story
Rex Backman, HEWLETT-PACKARD

2051 Cooperative Computing - A Bridge to the Future
Pam Brown, HEWLETT-PACKARD

2052 One Source, Many Machines: Application Development Using HP Pascal
Jean Danver, HEWLETT-PACKARD

2053 A Report on Report Writers
Stewart Hill, HEWLETT-PACKARD

2054 A Comparison of HPSQL and Turbolmage
Larry Kemp, HEWLETT-PACKARD

2055 The HPSQL Advance - Towards the OLTP Market
Alberto Lutgardo, HEWLETT-PACKARD

- vllI-

INDEX BY PAPER NUMBER

2056 Linking Data Processing and Office Automation
Peter O'Neill, HEWLETT-PACKARDGE

2058 Concurrency Control In HP SQL
Ragaa Ishak, HEWLETT-PACKARD

2059 HP SQL Performance
Edward Cheng, HEWLElT-PACKARD

2060 PC Networking Alternatives
Chris Olson, HEWLETT-PACKARD

2061 Fiber Optic Networking Update
Karen Dudley, HEWLETT-PACKARD

2062 Any questions? A look at questioning techniques in the classroom.
Steven Mock, HEWLETT-PACKARD

2065 Effectively Integrating Business Graphics with Existing
Marie Bernard, HEWLElT-PACKARD CO. Information Processing Systems

2066 MPE XL Mapped Files
Bryan Carroll, HEWLETT-PACKARD

2067 HELP! Stack Overflow! Alternatives for reducing stack size on
Lisa Burns Hartman, HEWLETT-PACKARD MPE VIE HP3000s.

2068 Giving Them What They Want: Quick Prototyping on the HP3000
Lisa Burns Hartman, HEWLETT-PACKARD

2069 What's in HP Pascal, A Systems Programming Language
Sue Kimura, HEWLETT-PACKARD

2070 New Features of the MPE XL User Interface
Tom Shem,}eff Vance, HEWLETT-PACKARD

2071 TRANSACT/XL: Strategy for Migration to Native Mode
Gary S. Peck, HEWLETT-PACKARD

2072 Effective use of HP-PA Optimizing Compilers
Brad Ahlf, HEWLETT-PACKARD

2073 Programming for MPE XL Performance
Dave Trout, HEWLETT-PACKARD

2074 Effective Implementation of Distributed Electronic Time
John Ramuta, HEWLETT-PACKARD Management and Scheduling

2075 "I have to teach the others back at work": When customer education
Mary Humphrey, HEWLETT-PACKARD, is really train-the trainer

2077 Planning a Computer Maintenance Program to Meet Your Needs
Siaou-Sze Lien, HEWLETT-PACKARD

2078 Cost Justifying Office Systems
Bill Franklin, HEWLETT-PACKARD

2079 Strategic Importance of Relational Database Systems
Orland Larson, HEWLETT-PACKARD

2080 Performance Tools Selection and Design
Paul Primmer, HEWLETT-PACKARD

2081 PC Integration with HPAdvanceNet
David Schwaab, HEWLETT-PACKARD

2082 Moving HP3000 OA Users to PC's: What's Involved?
Carol Agne, HEWLETT-PACKARD

2083 Managing a Small Office Local Area Network - HP Office Share
Belinda Yung-Rubke, HEWLETT-PACKARD

-Ix -

INDEX BY PAPER NUMBER

2084 HP SQL Performance and Design Tips
Marianna Woo, HEWLETT-PACKARD CO.

2085 Turbo IMAGE/XL and Transaction
George Allen*, Management HEWLETT-PACKARD CO.

2086 Tutorial- Workload Forecasting for MPE Environments:
Jim Morris Methodologies, Techniques, and Tools for the System's Manager
HEWLETT-PACKARD

2087 Architectural Overview & Implementation Methodology of Laser RX
Ray Ventura, HEWLETT-PACKARD

-x-

INDEX BY AUTHOR

Agne, Carol Moving HP3000 OA Users to PC's: What's Involved?
2082, HEWLETT-PACKARD

Ahlf, Brad Effective use of HP-PA Optimizing Compilers
2072, HEWLETT-PACKARD

Alexander, Nolan M Sales Force Automation: A Case Study
0057, Bepex Corporation

Allen*, George Turbo IMAGE/XL and Transaction Management
2085, HEWLETT-PACKARD CO.

Alleyn-Day, John D 4GL's, COBOL and Data Communications
0020, AH Computer Services, Inc.

Alleyn-Day, John D Fourth Generation Languages and Efficient Processing
0021, AH Computer Services, Inc.

Andersen, Lois Using Bar-Codes on HP3000's to Collect Factory Data
0187, Spectra-Physics

Apgood, Robert S Performance Monitoring On MPE/XL
0054, Strategic Systems, Incorporated

Armitage, Richard j., William Tuminaro Electronic Forms: Another
0013, Business Systems International Step on the Road to the Automated Office

Arranga, Edmund C. . Banner Pages
0185, McDonnell Douglas Corporation

Ashton, David Information as a Competitive Weapon
0087, Cognos, Inc.

Backman, Rex Utilizing the PC for MPE Performance Management
2015, HEWLETT-PACKARD

Backman, Rex Integrating MPE XL: A True Story
2050, HEWLETT-PACKARD

Baker, Jonathan, R. Varley Community Filing with PC's
2002, HEWLETT-PACKARD

Barley, Flo Training a New Operator - Where Do You Begin?
061, Pekin Memorial Hospital

Beamguard, Bud Effective Backup Strategies for the HP/3000.
0046, SYNTEX Corporation

Benozer, Itzhak Computerized Cargo System
0139, Israel Ports Authority

Bernard, Marie Effectively Integrating Business Graphics with
2065, HEWLETT-PACKARD CO. Existing Information Processing Systems

Berry,]oe Where's the Space
0070, Pekin Memorial Hospital

Berry,Joseph Unorthodox IMAGE Acessing for Power
0058, self employed

Blake, Isaac Looking at HP's Telesup
0158, City of Tempe - Information Systems

Blessing, George I haven't got a lot of time - I haven't got a lot of money
0047, City of Pasadena

Bloom, Steven G CtSystem Security? As Soon as I Can Find the Time Ct
0180, InCase Corporation

Brayman, Christopher D. . Adopting Standards in Powerhouse Applications
0145, Brant Computer Services Ltd.

-xl-

INDEX BY AUTHOR

Brown, Pam 0 Cooperative Computing - A Bridge to the Future
2051, HEWLETT-PACKARD

Bruno, Benedict . o.... 0 ••• 0 •••• Asynchronous and Synchronous Auto Dialing Equipment
0064, S.T.R. Software Company on the HP 3000 Why, When, and How

Brzozowski, Teresa 0 •••••••• 0 0 •••••• 0 ••• 0 •• 0 0 • 0 •• 0 ••••• 0 Data Integrity and Recovery
0027, Carolian Systems International, Inc.

Burns, Allen R.... o... 0 ••• 0 ••••••••• 0 ••• 0.0 •••••••••• 0 0 •• 0 0 0 o' HP Thinlan - A Users View
0183, Rutgers - The State University of NJ.

Butler, Stephen Mo 0 0 0 0 0 • Data Dictionaries: Bane or Boom
0118, PROBUS International, Inc.

Carroll, Bryan 0 ••• 0 ••• 0 •••••••••• 0 •••••••••••• 0 ••• 0 •• 0 •• 0 •• 0 •••• 0 ••• MPE XL Mapped Files
2066, HEWLETT-PACKARD

Casteel, Michael A.. 0 • 0 ••• 0 ••••••• A New Model for Report Management & Distribution
0154, Unison Software

Casteel, Michael Ao 0 • 0 ••• 0 0 • 0 ••• New Paradigms for Automating Batch Processing
0155, Unison Software

Chase, Tim .. 0 •••• 0 • 0 • 0 ••• 0 • 0 • 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 An Introduction to Symbolic Debugging
0002, Corporate Computer Systems, Inc.

Chase, Timothy Do 0 0 • 0 0 • 0 0 0 • 0 • 0 0 0 0 • 0 0 0 • 0 0 • 0 0 0 • 0 o. 0 o. UNIX and Other Operating Systems
0151, Corporate Computer Systems, Inc.

Cheng, Edward .. 00 •••• 0 •••••••••• 0 ••• 0 •• 0 •• 0 ••• 0 •• 0 ••••• 0 0 ••• 0 0 • 0 • o. HP SQL Performance
2059, HEWLETT-PACKARD

Choy, Felicia 0 ••• 0 ••••• 0 •••••••• 000.0 ••• 000. HP AdvanceNet for Business Office Solutions
2028, HEWLETT-PACKARD

Clark, Brice 0 • 0 •• 0 00 0 •• 0 0 0 0 0 •••• HP AdvanceNet for Computer Integrated Manufacturing:
2031, HEWLETT-PACKARD The CIM Solution

Clement, Doug Telephone Support - 15 Ways to Maximize Your Investment
0108, Cognos Inc.

Clemons, Brett 0.000.0 •• 00 •••• 0 •• MPE/XL Variables and Command Files
0036, Softwarewizzardry, Inc.

Cohen, James S. L 0 •• 0 ••••• 0 0 0 •••• 0 •• 00.00 •• 0 •• 0 •• 0 ••• 0.0. 0 0 Experiences in Migration
0090, Mecca Leisure PLC

Crow, Bill 0 0 • 0 • 0 ... 0 0 • o. HP NewWave and Workgroup Productivity
2003, HEWLETT-PACKARD

Cruz, Andre Jo 0 ••• 0 ••• 0 ••• 0 0 0 •••• 00.00 •• 0.000 Distributing Applications from PC to Mini's
0065, Merrill Lynch

Curry, PhiL o. 0 ••• 0 0" 0 o. 0 0 A Guide to Breaching HP 3000 Security
0060, Carter, Schaefer and Company

Dale, Christine .. 0. 0 • 0 • 0 • 0 • 0 • 0 0 • Computer Training: How to Train the Computer Phobic
0059, Kaiser Permanente

Danver, Jean 0 ••••••••••••••• 0 ••• 0 One Source, Many Machines: Application Development
2052, HEWLETT-PACKARD Using HP Pascal

Darling, Kevin 0 •••• 0.0. 0 00' 0 0 Control Techniques for User's Global Resources
0022, The Gap Stores

Davies, Goof 0 •••••••• 0 •••••• 0. 0 0.' 0" 0 ••• 0.0 CASE a Way Out of the Software TRAP
0174, RAET Software Products, BV

Davis, Kimberlie So .. 0 •• 0 ••• 0 •• 0 • 0 • 0 • 0 •• 0 •• 0 •• System Development Methodologies in the
0146, Martin Marietta Data Systems Fourth Generation Environment

- xll-

INDEX BY AUTHOR

Davis, Kimberlie S An Investment for Now and the Future: User Relationships
0147, Martin Marietta Data Systems

Davis-MackIe, Karen Parity Pitfalls
0062, Cray Research, Inc.

DeKalb III, Baron E Management By Standards
0116, 3M Company

Decker, Richard C INFORM, PROTOS, QUIZ, and COBOL - a User's Experiences
0009, Computer Task Group, Inc.

Demos, N. M Managing Application Programming with
0168, Performance Software Corporation Fourth Generation Resources

Demos, N. M HP's Precision Architecture - Strengths and Weaknesses
0169, Performance Software Corporation

Demos, N. M What Will Programming Be Like in 1998?
0170, Performance Software Corporation

Dooley, Jr., T. J. . Disaster Recovery, Can Your Company Really Recover?
0086, Dooley Consulting Group, Inc.

Drassinower, Roberto Operations Management in a Multi-HP3000 Environment
0181, Carolian Systems International Inc.

Dudley, Karen 0.0 •• 0.0 •• 0.0 ••••• 0.0. 0" 0" 0'0 Fiber Optic Networking Update
2061, HEWLETT-PACKARD

Dunmore, Peter 0 ••• 0 0 o. 0 0 Using HPDeskmanager Intrinsic for Custom Applications
2004, HEWLETT-PACKARD

Edwards, Kathleen P. Metz 0 ••• 0 ••• 0 ••• 0 •••••• .Implementation of an Automated
0049, City of Plano Code Enforcement System via the Integration of Third

Party and In-house Developed Sftw.
Elward, David T 0 •••••••• o. 0 •••••••••••• o. 0 ••••••••••••••• Understanding Migration

0032, Taurus Software
Engberg, Tony. 0 0 ••••••••••••••••••••••••• 0 •••• 0 ••••••• 0 • Finally: Performance Technology

2026, HEWLETT-PACKARD
Ferguson, Greg. 0 ••• 0 •• 0 •• 0 0 0 • 0 •• o... 0 User Interface Design Methodologies for CDROM

2018 Information Retrieval or "How to Find That
HEWLETT-PACKARD Needle in a Haystack"

Ferguson, Neil o0 •••••• 0 •• 00.0. o' 0 0 •••• 00. 0 0 •••••• IDAT: For Dump Analysis and More
0136, Boeing Computer Services

Finley, Charles 0 ••••••••••• 0 •••• 0 •••••••• 0 •• The Fall '88 Migration: New Directions?
0173, ConAm Corporation

Fioravanti, Patrick.. 0 • 0 • 0 ••••• 0 ••• Using MPE Message Files - An Application Approach
0098, Infocentre

Fioravanti, Patrick. 0 0 •••••••••••• Distributed Applications Processing and How to Use it.
0099, Infocentre or Stop wasting those PC Mips!

Fletcher, Grant W., Kathleen A. Sachara .0 ••••••• o... 0 ••• 0 • A Development Methodology
0188, The Interface Group for a New Generation

Fletcher, Grant W., Kathleen A. Sachara 0" 0 ••• 0 ••• 0 ••••• 0 • 0 • An Approach to Debugging
0189, The Interface Group

Floyd, Terry H Adding Multi-Plant Features to a Large, Integrated
0040, Blanket Resources Manufacturing Package Mehrdad Laghaeian

Ford, Alexa ... 0.' 0 ••• 0.0. 0 ••••••• 0 ••••••••••• 0 ••••••••• 0.0 •••••••••••• oStarLan Networking
2039, HEWLETT-PACKARD

- xIII -

INDEX BY AUTHOR

Fram, Bruce OSI Basics and Future Directions
2033, HEWLETT-PACKARD

Franklin, Bill Cost Justifying Office Systems
2078, HEWLETT-PACKARD

Furnivall, Anthony. Conversations over the stable door
0153, Buffalo Evening News

Gannon, Kathleen Open View Windows: A New Foundation for
2048, HEWLETT-PACKARD HP Network Management

Gignac, Robert M Documentation: The Necessary Evil
0077, Motorola Information Systems

Gillespie, Barry H. . Electronic Forms in the Hewlett Packard Environment
0111, Indigo Software Ltd.

Goldstein, Hal HP Portability: RAM/ROM vs. Disk based approach
0041, Personalized Software

Gosnell, Tom An Evaluation of Database Performance Tools, or How
0100, Infocentre can we get all of Tonight's Batch Work Done?

Green, Robert M Spectrum Instruction Set, a 3000 Hacker's View
0052, Robelle Consulting Ltd.

Gross,Jay Modems, Multiplexers, and Concentrators
0051, Paradyne Corporation

Halvorson, Kevin C Telecommunications Management and Cost Control
0114, Telenomics

Harmon, A. Gene Playing The Wrong Game: Measuring Programmer
0074, AH Computer Systems Inc. Productivity in a 4GL Environment

Harmon, Suzanne PC Powerhouse: When and How?
0161, AH Computer Services, Inc.

Harmon, Suzanne Effectively Understanding User Requirements
0162, AH Computer Services, Inc.

Hartman, Lisa Burns HELP! Stack Overflow! Alternatives for reducing
2067, HEWLETT-PACKARD stack size on MPE VIE HP3000s.

Hartman, Lisa Burns Giving Them What They Want: Quick Prototyping
2068, HEWLETT-PACKARD on the HP3000

Heidner, Dennis The Seven Wonders of TERMDSM
0043, Boeing Aerospace Corporation

Heidner, Dennis In Search of a Better Mouse Trap
0044, Boeing Aerospace Corporation

Henderson, Alexander HP AdvanceNet for Regional Sales and Service
2029, HEWLETT-PACKARD

Hickey, Dave The Politics of Data Communucation Networks
0113, University Systems, The Ohio State Univ.

Hill, Stewart A Report on Report Writers
2053, HEWLETT-PACKARD

Hills, Norman A Computer Assisted VIEW, IMAGE, & SPL
0037, N.A. Hills Computing Services Limited

Hopmans, Karen Applying Expert Systems in the Commercial Environment
0142, Brant Computer Services Ltd.

Hopmans, Ross G Hypothesis Driven Programming
0140, Brant Computer Services Ltd.

-xlv-

INDEX BY AUTHOR

Hornsby, Michael Strategies for Re-packing Discs and IMAGE Data Bases
2020, HEWLETT-PACKARD

Humphrey, Mary eel have to teach the others back at work": When
2075, HEWLETT-PACKARD customer education is really train-the trainer

Hurtado-Sanchez, Luis, Amy Mueller Effectiveness vs. Efficiency in Managing
2014, HEWLETT-PACKARD a Large Distributed, Electronic Mail Network

Idema, Tom Management Systems at Westinghouse Furniture Systems -
0157 Total Business Systems Implementation from
Westinghouse Furniture Systems a Mgmnt. Perspective

Indermill, Mark Twisted Pair: A Thing of the Past and The Wave of the Future.
0073, Precision Interlink Company

Ishak, Ragaa Concurrency Control In HP SQL
2058, HEWLETT-PACKARD

Jordan, Ken SYSTEM SECURITY: Access Control in the MPE Environment
2049, HEWLETT-PACKARD

Karlin, Robert A 0 How to Keep Your Auditor Happy
0016, Karlins' Korner

Karlin, Robert A 0 ••••••••• 0 •• 0 •• 0.0.000000000 ••••••• 0.0.00. User Friendly Security
0017, Karlins' Korner

Karlin, Robert Ao AI - The Three Toed Sloth
0018, Karlins' Korner

Kelly, Brant Fortran 66 to 77: Conversion - Problem Considerations in
0167, Bradmark Computer Systems an Integrated Environment

Kemp, Larry A Comparison of HPSQL and TurboImage
2054, HEWLETT-PACKARD

Kimbrough, Kenneth L.... Automatic Identification and Bar Coding: Promise and Pitfall
0179, Quality Consultants Incorporated

Kimura, Sue What's in HP Pascal, A Systems Programming Language
2069, HEWLETT-PACKARD

King, Arthur J Application Software as a Long Term Investment
0071, SOTAS Inc.

Kohon, Michel Pardon this Interruption: New Possiblities of the MPE
0175, Tymlabs Break Command

Krommer, Harry o. o.. Building a Home for Your HP 3000's Data Center
0119, Procter & Gamble Design, Construction, and Operations

Largent, David L A Beginner's Guide to UOC's and JCW's: How to Use
0039, N. G. Gilbert Corporation Them to Your Benefit

Larson, Orland Strategic Importance of Relational Database Systems
2079, HEWLETT-PACKARD

Leight, Betsy Data Center Management and Efficiency
0067, Operations Control Systems

Leight, Betsy An HP 3000 approach to IBM's LIBRARIAN techniques
0068, Operations Control Systems

Lelorieux, Patrick Hybrid Networks Public Versus Private Packet
2032, HEWLETT-PACKARD Networks The Best of Both Worlds

Lewis, Giles F Database Application Development Using Pascal
0160, Wellington Management Company

-xv-

INDEX BY AUTHOR

Lien, Siaou-Sze 0 ••• o' 0 Planning a Computer Maintenance Program to Meet Your Needs
2077, HEWLETT-PACKARD

Lockwood, Pat. 0 •••• 00 •• 0 0" 0 ••••••••••• 0 ••• 0" 0 ••••• 0 ••••• 0 ••• Using COBOL Irs Facilities
0038, Orion Systems Technology, Inc.

Lutgardo, Alberto '0' 0 0 •••• 00.0. 0 ••• 00 The HPSQL Advance - Towards the OLTP Market
2055, HEWLETT-PACKARD

Madigan, Michael, Anthony Furnivall . 0 ••• o' 0 ••• What do you mean, "The job blew up"?
0152, Buffalo Evening News

Marshall,}ack K. 00 "How to Train a Terminal User to be an Effective PC User"
0076, Solano County, Calif. MIS Department

Mashima, Karyn.""; 0 0 •••••••••••••••••• 0 •••••• 0 ••••••••• 0 •••• 0 ••• HP AdvanceNet Overview
2027, HEWLETT-PACKARD

Mattson, Robert R 0 • 0 •••••• 0 ••• 0 •• 0 ••• The Secrets of Software Project Management
0078, WIDCO

Mattson, Robert R 0 •••• 0 ••• 0 • Software Quality - Let's discuss this can of worms!
0079, WIDCO

McArdle, Paul A..... 0 ••••• 0 • 0 •••• 0 • 0 ••••• 0 ••••• 0 0 • 0 •• 0 0 • 0 •• 0 •• Telephone Call Accounting
0137, TeleMar, Inc.

McBride, Doug . 0 ••••• 0 •••••••••• Software Performance Engineering: A Methodology for
2016, HEWLETT-PACKARD Designing Performance into Software Products

McCullum-Varey, Alison Business Communications Under New Wave
2016, HEWLETT-PACKARD

McKittrick, Kathy So ... 0 0 0 0 •••• 0 0 ••• 0 Maximizing the Value of Data Through Optimized
0095, Dynamic Information Systems Corporation Data Base Performance

Merit, David 0 • 0 0 ••• 0 ••••••••• Optimizing IMAGE/TurboIMAGE Blocking and Buffering
0190, Bradmark Computer Systems, Inc.

Miller, Mark Wo o. 0 ••• 0 ••••••••• Pitfalls of Offloading Applications to PCs.
0028,]MA Technology, Inc.

Mock, Steven Any questions? A look at questioning techniques in the classroom.
2062, HEWLETT-PACKARD

Morris, Greg, Norm Moyer o' Building a Complete Disaster Recovery Program
2025, HEWLETT-PACKARD

Morris,]im ... Tutorial- Workload Forecasting for MPE Environments: Methodologies,
2086, HEWLETT-PACKARD Techniques, and Tools for the System's Manager

Morse, Dave 0 •• 0 •• 0 •••••••• 0 ••••• 0 •••••••••••• HP AdvanceNet for Engineering
2030, HEWLETT-PACKARD

Murphy, Kyle Business Information on the Desktop: Alternatives to
2006, HEWLETT-PACKARD paper-based reporting.

Myers, Bob Managing HPDesk Notice Boards Over Several Mailnodes:
0117, The Ohio State University Remote or Local

Neale, Jack Facilities Management - A Viable Alternative or How to
0144, Brant Computer Services Ltd. Keep the Government Happy 24 Hours a Day

Ney, Peter Integrated Information Engineering
0066, Richard Irwin Associates (RIA)

Norman, Teresa The Best of the New Creative Decision Making Techniques
0177, Tymlabs Corporation

Novo, Lynn A The HP Employment Market - What Every Hiring Manager
0001, Network Systems Company Should Know

-xvi -

INDEX BY AUTHOR

O'Brien,Jim Integrated Information Management - Get the Connection?
0024, O'Brien Downs Systems, Inc.

O'Neill, Peter Linking Data Processing and Office Automation
2056, HEWLETT-PACKARD

Ohmes, Matt Separating Data and Processing or Designing DBs for
0005, Cognos Inc. Systems Yet to Come

Olson, Chris PC Networking Alternatives
2060, HEWLETT-PACKARD

Onel, Dick Optimizing the Logical Database Design
0109, DCE Database Consultants Europe

Ouellette, Raymond The role of Data Dictionaries in Application
0097, Infocentre Development, with an Emphasis on System Dictionary.

Ouellette, Raymond A rational use of micro computer resources.
0101, Infocentre

Palmintere, Phil Use of CDROM Technology for Information Services
2021, HEWLETT-PACKARD

Peck, Gary S TRANSACT/XL: Strategy for Migration to Native Mode
2071, HEWLETT-PACKARD

Perkins, Claire M. . Adressing the Problems of Program Documentation
0063, Kaibab Industries

Pirrone, Ann Resource Sharing: A decentralized processing solution
2013, HEWLETT-PACKARD for un-tapped office Tracy Crowe productivity.

Polhemus, Barry Using a Task Manager to Improve User Productivity
0094, ETC Corp.

Poling, Robert Remote Configuration Tracking: The Confirm Concept
2022, HEWLETT-PACKARD

Primmer, Paul Performance Tools Selection and Design
2080, HEWLETT-PACKARD

Pringle, R.L Integrating Paperless Systems In A Fortune 100 Company
C.F. Raymond,Jr. and].F. Konecny, Jr.

0075, Lockheed Eng. and Management Svcs. Co.
Rahnavard, Parvin Decision Support System

0030, Independent Consultant
Ramuta, John Effective Implementation of Distributed Electronic

2074, HEWLETT-PACKARD Time Management and Scheduling
Rice, Chuck Capacity Planning Getting Started

0025, University Systems
Robinson, David G Data Structures uThe KEY to Performance"

0045, PowerSpec International
Sayed, Husni, Deborah Cobb/Tech. Writer Optical Disk Technology and

0178, IEM, Inc. HP Computers
Schleicher, Rolf R Low-cost and high efficiency with integrated PCs - Don't

0192, Deutsche BP AG, contact through Walter V. Jankowski reinvent the wheel.
Schwaab, David PC Integration with HPAdvanceNet

2081, HEWLETT-PACKARD
Scott, George B Presenting Technical Information to Management

0150, Great Business Solutions, Inc.

- xvii -

INDEX BY AUTHOR

Shem, Tom New Features of the MPE XL User Interface
Jeff Vance

2070, HEWLETT-PACKARD
Shirman, Mark P Sales Force Automation - The Last Frontier

0182, Innovative Information Systems Inc.
Shoemaker, Victoria A Dodging Bullets in Your DP Shop

0033, Taurus Software, Inc.
Shoemaker, Victoria A Migration Made Easy

0034, Taurus Software, Inc.
Simmons, Ph.D., E. R The Face of Data Processing

0035, The Protos Software Company
Simonsen, Larry & Keven Miller A Programming Environment in C

0134, VALTEK Incorporated
Simpkins, Terry W Strategic Planning in Small MIS Shops

0080, Spectra-Physics, Retail Systems Division
Smirlock, Ronald D The Future of Financial Systems on the HP 3000

0156, Peat Marwick Main & Company
Smith, Bruce Cooperative Processing - Making the most out of the

2008, HEWLETT-PACKARD PC-HP3000 connection Helen Chalmers
Smith, Karl Minimizing Coding, Maximizing Production

0012, Softsmith
Snyder, Tim ASK: Better than New

0164, Boston Scientific
Solland, Leigh Design Considerations for Distributed Applications

0149, Cognos Inc.
Spencer, Kelly Foundations for HP Data Security

0069, State Farm Mutual Automobile Ins. Co.
Spitzer, Suzanne M Mass Storage - The Current Revolution

0112, McEvoy, Cooper, & Company
Stern, E. Charles Methods of Cost Justification for Hardware and Software Purchases

0176, Tymlabs Corporation
Stretch, Winsome R Becoming Effective Tradespeople

0107, ACI Computer Services
Strickland, Michael HP-to-IBM Communications

2038, HEWLETT-PACKARD
Sullivan, Charles Making Short Shrift of Sorts

0082, RunningMate
Sullivan, Charles Developing a Faster IMAGE

0083, RunningMate
Sutton, Bill Managing MPE for Support

2023, HEWLETT-PACKARD
Symonds, Mark L. The Information System Lifecycle

0011, Innovative Information Systems, Inc.
Szafransky, Jeff Optical Publishing: Data Conversion/Preparation for

2024, HEWLETT-PACKARD CD-ROM Applications
Townsend, Charles S EDI- Electronic Data Interchange

0191, Birmingham Computer Group, Inc., contact through Walter V. Jankowski

- xviII -

INDEX BY AUTHOR

Tracy, Larry 0 ••••• 0 •••••••Matching Printer Technologies to Your Office Needs
2010, HEWLETT-PACKARD

Trout, Dave 0 •••••••• 0 • 0 • 0 ••••••• 0 ••• 0 • Programming for MPE XL Performance
2073, HEWLETT-PACKARD

Van Brunt,]effrey Do. 0 •• Controlling the Datacomm Monster One Company's Approach
0019, Ireco Incorporated

Ventura, Ray Architectural Overview & Implementation Methodology of Laser RX
2087, HEWLETT-PACKARD

Virgilio, Leslie A 0 ••• 0 •• 0 •• 0 • 0 • 0 •••••••••• Contingency Planning - The Audit Process
0166, OFF-SITE, Inc.

Vogelsberg, Gary 0 •••••••••••••••••• Disc interfaces for MPE/XL Systems
2043, HEWLETT-PACKARD

Volokh, Eugene Programming in MPE/XL.
0096, VESOFT

Volz, Charles Ao R Staff Training, Why, How, and When
0171, Volz Associates, Inc.

Volz, Charles A. R.... 0 ••••••••••••••••• 0 ••••••••••••••••••••••••••••• Computer Publishing
0172, Volz Associates, Inc.

Voykin, Sandi Considering a Network Management Service?
2047, HEWLETT-PACKARD

Wade, Ashley &]ohn McLean]r..... 0.0 ••••••••••• 0 •••••• Reflections Versus Advancelink
0121, Lockheed Eng. & Management Svcs. Co.

Wade, Gerry Designing Performance Tools for the Every Day System Manager
2044, HEWLETT-PACKARD

Walker, Doug Distributed Applications and the Communication Link
0126, Walker Richer & Quinn, Inc.

Waller and Pearce 0 •••••••••••••••••••••• 0 ••• Migrating Secondaries
0184, INLEX, Inc.

Wallin, Chris 0 ••••••••••••••••••••••••• DS to NS Migration on the HP 3000
2037, HEWLETT-PACKARD

Watterson,]. B Don't Let Your Programmer Grow Up to Write
0092, ORI/CALCLUON Inc. Operational Documentation - or Should They?

Watts, Andrew HP Help in Customizing Software
2007, HEWLETT-PACKARD

White, Fred The Use and Abuse of Non-hashing Keys in IMAGE
0093, Adager

Wilson,]ohn Integrating PC's into a Distributed DP Environment
0048, Coles Book Stores Ltd.

Witiw, Pat 0 •• De-Mystifying Data Base Normalization
0141, Brant Computer Services Ltd.

Woo, Marianna HP SQL Performance and Design Tips
2084, HEWLETT-PACKARD

Wyatt, Susan How to be Successful in your Implementation of ANY
0186, Wesson, Taylor, Wells & Assoc., Inc. Office Technology

Yori, Robert S 0 Understanding IBM SNA or Through a Glass Darkly
2045, HEWLETT-PACKARD

Young, Clay How Electronic Forms are Changing Office Printing
2011, HEWLETT-PACKARD

-xlx-

INDEX BY AUTHOR

Yung-Rubke, Belinda... Managing a Small Office Local Area Network - HP Office Share
2083, HEWLETT-PACKARD

Zornow, Claudia Proactive Network Diagnosis
2046, HEWLETT-PACKARD

-xx-

INDEX BY TITLE

0076 "How to Train a Terminal User to be an Effective PC User"
Jack K. Marshall, Solano County, Calif. MIS Department

2075 "I have to teach the others back at work": When customer education
Mary Humphrey, HEWLETT-PACKARD is really train-the trainer

0180 "System Security? As Soon as I Can Find the Time.. :'
Steven G. Bloom, InCase Corporation

0020 4GL's, COBOL and Data Communications
John D. Alleyn-Day, AH Computer Services, Inc.

0039 A Beginner's Guide to UDC's and JCW's: How to Use Them to Your Benefit
David L. Largent, N. G. Gilbert Corporation

2054 A Comparison of HPSQL and Turbolmage
Larry Kemp, HEWLETT-PACKARD
0188 A Development Methodology for a New Generation

Grant W. Fletcher, Kathleen A. Sachara, The Interface Group
0060 A Guide to Breaching HP 3000 Security Phil Curry
Carter, Schaefer and Company
0154 A New Model for Report Management & Distribution

Michael A. Casteel, Unison Software
0134 A Programming Environment in C

Larry Simonsen, & Keven Miller, VALTEK Incorporated
2053 A Report on Report Writers

Stewart Hill HEWLETT-PACKARD
0101 A rational use of micro computer resources.

Raymond Ouellette, Infocentre
0018 AI - The Three Toed Sloth

Robert A. Karlin Karlins' Korner
0164 ASK: Better than New

Tim Snyder Boston Scientific
0040 Adding Multi-Plant Features to a Large, Integrated Manufacturing Package

Terry H. Floyd & Mehrdad Laghaeian Blanket Resources
0145 Adopting Standards in Powerhouse Applications

Christopher D. Brayman, Brant Computer Services Ltd.
0063 Adressing the Problems of Program Documentation

Claire M. Perkins Kaibab Industries
0189 An Approach to Debugging

Grant W. Fletcher & Kathleen A. Sachara, The Interface Group
0100 An Evaluation of Database Performance Tools, or How can we get all

Tom Gosnell Infocentre of Tonight's Batch Work Done?
0068 An HP 3000 approach to IBM's LIBRARIAN techniques

Betsy Leight, Operations Control Systems
0002 An Introduction to Symbolic Debugging

Tim Chase Corporate Computer Systems, Inc.
0147 An Investment for Now and the Future: User Relationships

Kimberlie S. Davis, Martin Marietta Data Systems
2062 Any questions? A look at questioning techniques in the classroom.

Steven Mock, HEWLETT-PACKARD
0071 Application Software as a Long Term Investment

Arthur J. King SOTAS Inc.

-xxl-

INDEX BY TITLE

0142 Applying Expert Systems in the Commercial Environment
Karen Hopmans Brant Computer Services Ltd.

2087 Architectural Overview & Implementation Methodology of Laser RX
Ray Ventura HEWLETT-PACKARD

0064 Asynchronous and Synchronous Auto Dialing Equipment on the
Benedict Bruno S.T.R. Software Company HP 3000 Why, When, and How

0179 0 0 0 0 0 o. 0 0 0 • 0 0 • 0 Automatic Identification and Bar Coding: Promise and Pitfall
Kenneth L. Kimbrough, Quality Consultants Incorporated

0185 .. 0 ••• 0 •••• 0 • o' 0 0 0" •• 0 • 0 •• 0 •• 0 ••• 0 0 ••••••••• 0 •••••••••• 0 0 ••• 0 ••• o' .. Banner Pages
Edmund Co Arranga McDonnell Douglas Corporation

0107 0 ••••••••••••••••••• 0 ••••••••• o 0 •••••• Becoming Effective Tradespeople
Winsome R. Stretch AO Computer Services

2025 Building a Complete Disaster Recovery Program
Greg Morris & Norm Moyer, HEWLETT-PACKARD

0119 . o' 0 ••• 0 •••••••••• 0" 0 •••• Building a Home for Your HP 3000's Data Center Design,
Harry Krommer Procter & Gamble Construction, and Operations

2001 0 0 Business Communications Under New Wave
Alison McCullum-Varey HEWLETT-PACKARD

2006 .. 0 ••• Business Information on the Desktop: Alternatives to paper-based reporting.
Kyle Murphy, HEWLElT-PACKARD

0174 ... 0 •••••••• 0 00 ••••• 0 ••• o. o. 0 0 ••••••••••••• o' CASE a Way Out of the Software TRAP
Geof Davies RAET Software Products, BV

0025 .. 0 ••••••••••••• 0 ••••• 0 ••••••• 0 •••••••• 0 ••••••••• 0" Capacity Planning Getting Started
Chuck Rice University Systems

2002 .. 0" 0 ••••••• 0 ••••• 0 ••••••• 0 •••• 0 ••••••••••••••••••••••••• Community Filing with PC's
Jonathan Baker & Ro Varley HEWLETT-PACKARD

0037 0 0 0 0 Computer Assisted VIEW, IMAGE, & SPL
Norman A. Hills N.A. Hills Computing Services Limited

0172 ... 0 ••• 0 • 0 •••••••••••••••••• 0 0 0 •• 0 0 0 •• 0 •••• 0 •••• 0 ••••••••••• 0 0 •• 0 • Computer Publishing
Charles A. R. Volz Volz Associates, Inc.

0059 0 ••••••••••••••••• 0 ••••• Computer Training: How to Train the Computer Phobic
Christine Dale Kaiser Permanente

0139 .. 0 ••••• 0 •• 0 •••••••••••••• 0 ••• 0 ••••••••••• 0 •••••••••••••• 0 Computerized Cargo System
Itzhak Benozer Israel Ports Authority

2058 o.. 0 • 0 •••••• 0 ••• 0 0 ••• 0 0 • 0 0 •••••••• 0 0 • 0 ••• Concurrency Control In HP SQL
Ragaa Ishak HEWLETT-PACKARD

2047 0 •••••••••••••• Considering a Network Management Service?
Sandi Voykin HEWLETT-PACKARD

0166 0 0 0 Contingency Planning - The Audit Process
Leslie A. Virgilio OFF-SITE, Inc.

0022 0 0 0 Control Techniques for User's Global Resources
Kevin Darling The Gap Stores

0019 Controlling the Datacomm Monster One Company's Approach
Jeffrey D. Van Brunt Ireco Incorporated

0153 Conversations over the stable door
Anthony Furnivall Buffalo Evening News

2051 0 ••• 0 0 Cooperative Computing - A Bridge to the Future
Pam Brown HEWLETT-PACKARD

- xxll-

INDEX BY TITLE

2008 Cooperative Processing - Making the most out of the PC-HP3000 connection
Bruce Smith & Helen Chalmers HEWLETT-PACKARD

2078 Cost Justifying Office Systems
Bill Franklin HEWLETT-PACKARD

2037 DS to NS Migration on the HP 3000
Chris Wallin HEWLETT-PACKARD

0067 Data Center Management and Efficiency
Betsy Leight Operations Control Systems

0118 Data Dictionaries: Bane or Boom
Stephen M. Butler PROBUS International, Inc.

0027 Data Integrity and Recovery
Teresa Brzozowski Carolian Systems International, Inc.

0045 Data Structures tiThe KEY to Performance"
David G. Robinson PowerSpec International

0160 Database Application Development Using Pascal
Giles F. Lewis Wellington Management Company

0141 De-Mystifying Data Base Normalization
Pat Witiw Brant Computer Services Ltd.

0030 Decision Support System
Parvin Rahnavard Independent Consultant

0149 Design Considerations for Distributed Applications
Leigh Solland Cognos Inc.

2044 Designing Performance Tools for the Every Day System Manager
Gerry Wade HEWLETT-PACKARD

0083 Developing a Faster IMAGE
Charles Sullivan RunningMate

0086 Disaster Recovery, Can Your Company Really Recover?
T. J. Dooley, Jr. Dooley Consulting Group, Inc.

2043 Disc interfaces for MPE/XL Systems
Gary Vogelsberg HEWLETT-PACKARD

0099 Distributed Applications Processing and How to Use it. or Stop
Patrick Fioravanti Infocentre wasting those PC Mips!

0126 Distributed Applications and the Communication Link
Doug Walker Walker Richer & Quinn, Inc.

0065 Distributing Applications from PC to Mini's
Andre J. Cruz, Merrill Lynch

0077 Documentation: The Necessary Evil
Robert M. Gignac Motorola Information Systems

0033 Dodging Bullets in Your DP Shop
Victoria A. Shoemaker Taurus Software, Inc.

0092 Don't Let Your Programmer Grow Up to Write Operational
J. B. Watterson ORI/CALCLUON Inc. Documentation - or Should They?

0191 EDI- Electronic Data Interchange
Charles S. Townsend Birmingham Computer Group, Inc. contact through
Walter V. Jankowski

0046 Effective Backup Strategies for the HP/3000.
Bud Beamguard, SYNTEX Corporation

- xxlll-

INDEX BY TITLE

2074 Effective Implementation of Distributed Electronic Time Management
John Ramuta HEWLElT-PACKARD and Scheduling

2072 Effective use of HP-PA Optimizing Compilers
Brad Ahlf HEWLETT-PACKARD

2065 0 •••••••••••Effectively Integrating Business Graphics with Existing Information
Marie Bernard HEWLETT-PACKARD Processing Systems

0162 0 • 0 ••••••••••••• 0 ••• 0 •••• 0 ••••••••• Effectively Understanding User Requirements
Suzanne Harmon, AH Computer Services, Inc.

2014 Effectiveness vs. Efficiency in Managing a Large Distributed, Electronic
Luis Hurtado-Sanchez & Amy Mueller HEWLETT-PACKARD Mail Network

0111 . 0 •••••••••••••••• 0 ••••••••••• Electronic Forms in the Hewlett Packard Environment
Barry H. Gillespie Indigo Software Ltd.

0013 Electronic Forms: Another Step on the Road to the Automated Office
RichardJ. Armitage & William Tuminaro Business Systems International

0090 ... 0 ••• 0 • 0 ••••• 0 •••••••••••••••••••••••••••••••• 0 • • • • • • • • • • •• Experiences in Migration
James S. L. Cohen Mecca Leisure PLC

0144 .0 Facilities Management - A Viable Alternative or How to Keep
Jack Neale Brant Computer Services Ltd. the Government Happy 24 Hours a Day

2061 .. 0 ••• 0 •••••• 0 •• 000 •••••••••••••••••••••••••••••••••• 0 Fiber Optic Networking Update
Karen Dudley HEWLElT-PACKARD

2026 0 ••• Finally: Performance Technology
Tony Engberg HEWLElT-PACKARD

0167 .. 0 Fortran 66 to 77: Conversion - Problem Considerations in an
Brant Kelly Bradmark Computer Systems Integrated Environment

0069 . 0 ••••••••• 0 • 0 ••••••••• 0 •••••••••••••••••••••••••••• Foundations for HP Data Security
Kelly Spencer State Farm Mutual Automobile Ins. Co.

0021 0 ••••••• 0 ••••• Fourth Generation Languages and Efficient Processing
John D. Alleyn-Day AH Computer Services, Inc.

2068 Giving Them What They Want: Quick Prototyping on the HP3000
Lisa Burns Hartman, HEWLETT-PACKARD

2067 0 •••••••••• HELP! Stack Overflow! Alternatives for reducing stack size on MPE
Lisa Burns Hartman, HEWLETT-PACKARD VIE HP3000s.

2027 HP AdvanceNet Overview
Karyn Mashima HEWLETT-PACKARD

2028 HP AdvanceNet for Business Office Solutions
Felicia Choy HEWLETT-PACKARD

2031 HP AdvanceNet for Computer Integrated Manufacturing: The CIM Solution
Brice Clark, HEWLETT-PACKARD

2030 0 •• HP AdvanceNet for Engineering
Dave Morse HEWLETT-PACKARD

2029 0 •••••••••• 0 • 0 0 0 ••••••• 0 • 0 • 0 • 0 0 • HP AdvanceNet for Regional Sales and Service
Alexander Henderson, HEWLETT-PACKARD

2007 0000 •• 0 ••••• 0 ••••••••• o. 0 •••• 0 •••••••••••••••••• 0.' .HP Help in Customizing Software
Andrew Watts HEWLElT-PACKARD

2003 0 0 • 0 .. 0 0 ••• 00 •• 00 0 .. 0 0 0 .. 0 HP NewWave and Workgroup Productivity
Bill Crow HEWLETT-PACKARD

0041 0 ••••• 0 ••• 0 •••••••• 0 ••••••••• 0 •• HP Portability: RAM/ROM vs. Disk based approach
Hal Gold~iein,Personalized Software

-xxlv-

INDEX BY TITLE

2059 HP SQI. Performance
Edward Cheng HEWLETT-PACKARD

2084 HP SQL Performance and Design Tips
Marianna Woo HEWLETT-PACKARD

0183 HP Thinlan - A Users View Allen
R. Burns Rutgers - The State University of N.}.

0169 HP's Precision Architecture - Strengths and Weaknesses
N. M. Demos, Performance Software Corporation

2038 HP-to-IBM Communications
Michael Strickland HEWLETT-PACKARD

2011 How Electronic Forms are Changing Office Printing
Clay Young, HEWLETT-PACKARD

0016 How to Keep Your Auditor Happy
Robert A. Karlin Karlins' Korner

0186 How to be Successful in your Implementation of ANY Office Technology
Susan Wyatt Wesson, Taylor, Wells & Assoc., Inc.

2032 Hybrid Networks Public Versus Private Packet Networks The Best of
Patrick Lelorieux, HEWLETT-PACKARD Both Worlds

0140 Hypothesis Driven Programming
Ross G. Hopmans Brant Computer Services Ltd.

0047 I haven't got a lot of time - I haven't got a lot of money
George Blessing, City of Pasadena

0136 IDAT: For Dump Analysis and More
Neil Ferguson Boeing Computer Services

0009 INFORM, PROTOS, QUIZ, and COBOL - a User's Experiences
Richard C. Decker Computer Task Group, Inc.

0049 Implementation of an Automated Code Enforcement System
Kathleen P. Metz Edwards via the Integration of Third Party
City of Plano and In-house Developed Sftw.

0044 In Search of a Better Mouse Trap
Dennis Heidner Boeing Aerospace Corporation

0087 Information as a Competitive Weapon
David Ashton Cognos, Inc.

0066 Integrated Information Engineering
Peter Ney Richard Irwin Associates (RIA)

0024 Integrated Information Management - Get the Connection?
Jim O'Brien O'Brien Downs Systems, Inc.

2050 Integrating MPE XL: A True Story
Rex Backman HEWLETT-PACKARD

0048 Integrating PC's into a Distributed DP Environment
John Wilson Coles Book Stores Ltd.

0075 Integrating Paperless Systems In A Fortune 100 Company
R.L. Pringle, Lockheed Eng. and Management Svcs. Co.
C.F. Raymond,}r. andJ.F. Konecny,}r.

2056 Linking Data Processing and Office Automation
Peter O'Neill, HEWLETT-PACKARD

0158 Looking at HP's Telesup
Isaac Blake City of Tempe - Information Systems

-xxv-

INDEX BY TITLE

0192 Low-cost and high efficiency with integrated PCs - Don't reinvent the wheel.
Rolf R. Schleicher Deutsche BP AG, contact through Walter V. Jankowski

2066 MPE XL Mapped Files
Bryan Carroll HEWLETT-PACKARD

0036 MPE/XL Variables and Command Files
Brett Clemons Softwarewizzardry, Inc.

0082 Making Short Shrift of Sorts
Charles Sullivan RunningMate

0116 Management By Standards
Baron E. DeKalb III 3M Company

0157 Management Systems at Westinghouse Furniture Systems -
Tom Idema Total Business Systems Implementation
Westinghouse Furniture Systems from a Mgmnt. Perspective

0168 Managing Application Programming with Fourth Generation Resources
N. M. Demos Performance Software Corporation

0117 Managing HPDesk Notice Boards Over Several Mailnodes: Remote or Local
Bob Myers, The Ohio State University

2023 Managing MPE for Support
Bill Sutton HEWLETT-PACKARD

2083 Managing a Small Office Local Area Network - HP Office Share
Belinda Yung-Rubke, HEWLETT-PACKARD

0112 Mass Storage - The Current Revolution
Suzanne M. Spitzer McEvoy, Cooper, & Company

2010 Matching Printer Technologies to Your Office Needs
Larry Tracy HEWLETT-PACKARD

0095 Maximizing the Value of Data Through Optimized Data Base Performance
Kathy S. McKittrick, Dynamic Information Systems Corporation

0176 Methods of Cost Justification for Hardware and Software Purchases
E. Charles Stern Tymlabs Corporation

0184 Migrating Secondaries
Waller and Pearce INLEX, Inc.

0034 Migration Made Easy
Victoria A. Shoemaker Taurus Software, Inc.

0012 Minimizing Coding, Maximizing Production
Karl Smith Softsmith

0051 Modems, Multiplexers, and Concentrators
Jay Gross Paradyne Corporation

2082 Moving HP3000 OA Users to PC's: What's Involved?
Carol Agne, HEWLETT-PACKARD

2070 New Features of the MPE XL User Interface
Tom Shem & Jeff Vance, HEWLETT-PACKARD

0155 New Paradigms for Automating Batch Processing
Michael A. Casteel, Unison Software

2033 OSI Basics and Future Directions
Bruce Fram HEWLETT-PACKARD

2052 One Source, Many Machines: Application Development Using HP Pascal
Jean Danver, HEWLETT-PACKARD

- xxvI-

INDEX BY TITLE

2048 Open View Windows: A New Foundation for HP Network Management
Kathleen Gannon, HEWLETT-PACKARD

0181 Operations Management in a Multi-HP3000 Environment
Roberto Drassinower Carolian Systems International Inc.

0178 Optical Disk Technology and HP Computers
Husni Sayed IEM, Inc., Deborah Cobb/Tech. Writer

2024 Optical Publishing: Data Conversion/Preparation for CD-ROM Applications
Jeff Szafransky, HEWLETT-PACKARD

0190 Optimizing IMAGE/TurboIMAGE Blocking and Buffering
David Merit, Bradmark Computer Systems, Inc.

0109 Optimizing the Logical Database Design
Dick Onel DCE Database Consultants Europe

2081 PC Integration with HPAdvanceNet
David Schwaab HEWLETT-PACKARD

2060 PC Networking Alternatives
Chris Olson HEWLETT-PACKARD

0161 PC Powerhouse: When and How?
Suzanne Harmon AH Computer Services, Inc.

0175 Pardon this Interruption: New Possiblities of the MPE Break Command
Michel Kohon Tymlabs

0062 Parity Pitfalls
Karen Davis-Mackie Cray Research, Inc.

0054 Performance Monitoring On MPE/XL
Robert S. Apgood Strategic Systems, Incorporated

2080 Performance Tools Selection and Design
Paul Primmer HEWLETT-PACKARD

0028 Pitfalls of Offloading Applications to PCS.
Mark W. Miller JMA Technology, Inc.

2077 Planning a Computer Maintenance Program to Meet Your Needs·
Siaou-Sze Lien HEWLETT-PACKARD

0074 Playing The Wrong Game: Measuring Programmer Productivity in a
A. Gene Harmon, AH Computer Systems Inc. 4GL Environment

0150 Presenting Technical Information to Management
George B. Scott, Great Business Solutions, Inc.

2046 Proactive Network Diagnosis
Claudia Zornow HEWLETT-PACKARD

2073 Programming for MPE XL Performance
Dave Trout HEWLETT-PACKARD

0096 Programming in MPE/XL.
Eugene Volokh VESOFT

0121 Reflections Versus Advancelink
Ashley Wade Lockheed Eng. & Management Svcs. Co. John Mclean Jr.

2022 Remote Configuration Tracking: The Confirm Concept
Robert Poling HEWLETT-PACKARD

2013 Resource Sharing: A decentralized processing solution for un-tapped
Ann Pirrone HEWLETT-PACKARD, Tracy Crowe office productivity.

2049 SYSTEM SECURITY: Access Control in the MPE Environment
Ken Jordan, HEWLETT-PACKARD CO.

- xxvll-

INDEX BY TITLE

0182 Sales Force Automation - The Last Frontier
Mark P. Shirman Innovative Information Systems Inc.

0057 Sales Force Automation: A Case Study
Nolan M. Alexander Bepex Corporation

0005 Separating Data and Processing or Designing DBs for Systems Yet to Come
Matt Ohmes, Cognos Inc.

2016 ... Software Performance Engineering: A Methodology for Designing Performance
Doug McBride HEWLETT-PACKARD into Software Products

0079 Software Quality - Let's discuss this can of worms!
Robert R. Mattson, WIDCO

0052 Spectrum Instruction Set, a 3000 Hacker's View
Robert M. Green, Robelle Consulting Ltd.

0171 Staff Training, Why, How, and When
Charles A. R. Volz Volz Associates, Inc.

2039 StarLan Networking
Alexa Ford HEWLETT-PACKARD

2079 Strategic Importance of Relational Database Systems
Orland Larson HEWLE1T-PACKARD

0080 Strategic Planning in Small MIS Shops
Terry W. Simpkins Spectra-Physics, Retail Systems Division

2020 Strategies for Re-packing Discs and IMAGE Data Bases
Michael Hornsby, HEWLETT-PACKARD

0146 System Development Methodologies in the Fourth Generation Environment
Kimberlie S. Davis, Martin Marietta Data Systems

2071 TRANSACT/XL: Strategy for Migration to Native Mode
Gary S. Peck, HEWLETT-PACKARD

0114 Telecommunications Management and Cost
Kevin C. Halvorson Control Telenomics

0137 Telephone Call Accounting
Paul A. McArdle TeleMar, Inc.

0108 Telephone Support - 15 Ways to Maximize Your Investment
Doug Clement, Cognos Inc.

0177 The Best of the New Creative Decision Making Techniques
Teresa Norman, Tymlabs Corporation

0035 The Face of Data Processing
E. R. Simmons, Ph.D. The Protos Software Company

0173 The Fall '88 Migration: New Directions?
Charles Finley ConAm Corporation

0156 The Future of Financial Systems on the HP 3000
Ronald D. Smirlock, Peat Marwick Main & Company

0001 The HP Employment Market - What Every Hiring Manager Should Know
Lynn A. Novo, Network Systems Company

2055 The HPSQL Advance - Towards the OLTP Market
Alberto Lutgardo, HEWLETT-PACKARD

0011 The Information System Lifecycle
Mark L. Symonds Innovative Information Systems, Inc.

0113 The Politics of Data Communucation Networks
Dave Hickey, University Systems, The Ohio State Univ.

- xxviii -

INDEX BY TITLE

0078 The Secrets of Software Project Management
Robert R. Mattson, WIDCO

0043 The Seven Wonders of TERMDSM
Dennis Heidner Boeing Aerospace Corporation

0093 The Use and Abuse of Non-hashing Keys in IMAGE
Fred White, Adager

0097 The role of Data Dictionaries in Application Development, with an
Raymond Ouellette Infocentre Emphasis on System Dictionary.

0061 Training a New Operator - Where Do You Begin?
Flo Barley, Pekin Memorial Hospital

2085 Turbo IMAGE/XL and Transaction Management
George Allen*, HEWLETT-PACKARD CO.

2086 Tutorial- Workload Forecasting for MPE Environments: Methodologies,
Jim Morris Hewlett-Packard Techniques, and Tools for the System·s Manager

0073 Twisted Pair: A Thing of the Past and The Wave of the Future.
Mark Indermill, Precision Interlink Company

0151 UNIX and Other Operating Systems
Timothy D. Chase Corporate Computer Systems, Inc.

2045 Understanding IBM SNA or Through a Glass Darkly
Robert S. Yori, HEWLETT-PACKARD

0032 Understanding Migration
David T. Elward Taurus Software

0058 Unorthodox IMAGE Acessing for Power
Joseph Berry self employed

2021 Use of CDROM Technology for Information Services
Phil Palmintere, HEWLETT-PACKARD

0017 User Friendly Security
Robert A. Karlin Karlins' Korner

2018 User Interface Design Methodologies for CDROM Information Retrieval
Greg Ferguson Hewlett-Packard or "How to Find That Needle in a Haystack"

0187 Using Bar-Codes on HP3000·s to Collect Factory Data
Lois Andersen, Spectra-Physics

0038 Using COBOL Irs Facilities
Pat Lockwood Orion Systems Technology, Inc.

2004 Using HPDeskmanager Intrinsic for Custom Applications
Peter Dunmore, HEWLETT-PACKARD

0098 Using MPE Message Files - An Application Approach
Patrick Fioravanti, Infocentre

0094 Using a Task Manager to Improve User Productivity
Barry Polhemus, ETC Corp.

2015 Utilizing the PC for MPE Performance Management
Rex Backman, HEWLETT-PACKARD

0170 What Will Programming Be Like in 1998?
N. M. Demos Performance Software Corporation

0152 What do you mean, "The job blew up"?
Michael Madigan Buffalo Evening News Anthony Furnivall

2069 What's in HP Pascal, A Systems Programming Language
Sue Kimura, HEWLETT-PACKARD

- xxlx-

INDEX BY TITLE

0070 '.' Where's the Sp'ace
Joe Berry Pekin Memorial Hospital

_·xxx -

INDEX BY CATEGORY

PC Integration/Office Automation

0013 Electronic Forms: Another Step on the Road to the Automated Office
RichardJ. Armitage, William Tuminaro - Business Systems International

0028 Pitfalls of Offloading Applications to Pcs.
Mark W. Miller - JMA Technology, Inc.

0041 HP Portability: RAM/ROM vs. Disk based approach
Hal Goldstein - Personalized Software

0048 Integrating PC's into a Distributed DP Environment
John Wilson - Coles Book Stores Ltd.

0057 Sales Force Automation: A Case Study
Nolan M. Alexander - Bepex Corporation

0065 Distributing Applications from PC to Mini's
Andre J. Cruz - Merrill Lynch

0076 "How to Train a Terminal User to be an Effective PC User"
Jack K. Marshall- Solano County, Calif. MIS Department

0099 Distributed Applications Processing and How to Use it. or
Patrick Fioravanti Stop wasting those PC Infocentre Mips!

0101 A rational use of micro computer resources.
Raymond Ouellette - Infocentre

0126 Distributed Applications and the Communication Link
Doug Walker - Walker Richer & Quinn, Inc.

0161 PC Powerhouse: When and How?
Suzanne Harmon - AH Computer Services, Inc.

2001 Business Communications Under New Wave
Alison McCullum-Varey - HEWLETT-PACKARD

2002 Community Filing with PC's
Jonathan Baker, R. Varley - HEWLETT-PACKARD

2003 HP NewWave and Workgroup Productivity
Bill Crow - HEWLETT-PACKARD

2004 00 •• Using HPDeskmanager Intrinsic for Custom Applications
Peter Dunmore - HEWLETT-PACKARD

2007 000 ••• 000. 0 o. 00 0 0 0 0 0 •••••• 000000000 •• 000 •• 0 0.0 •• 0.0 .HP Help in Customizing Software
Andrew Watts - HEWLETT-PACKARD

2008 .. 0 o. 0 Cooperative Processing - Making the most out of the PC-HP3000 connection
Bruce Smith, Helen Chalmers - HEWLETT-PACKARD

2010 .. 0" o. 0 0 0 o. 0 •••• 0 0 •••••••••• 0 ••Matching Printer Technologies to Your Office Needs
Larry Tracy - HEWLETT-PACKARD

2011 0 0 •• 0 • 0 ••• 0 ••• 0 0 • 0 0 0 •• 0 0 • 0 • 0 • • •• How Electronic Forms are Changing Office Printing
Clay Young - HEWLETT-PACKARD

2013 0" o. 0 o. 0 o. 0" o. 0.' o. o. 0 0'0 Resource Sharing: A decentralized processing solution for
Ann Pirrone, Tracy Crowe - HEWLETT-PACKARD untapped office productivity.

2014 .. 0 ••••• 0 • 0 • 0 o. 0 0 • 0 •••• 0 0 0 0 0 ••• 0 ••• 0 • Effectiveness vs. Efficiency in Managing a Large
Luis Hurtado-Sanchez, Amy Mueller - Distributed Electronic Mail Network
HEWLETT-PACKARD

2065 0 ••••••••••• 0 •••••••••••••• 0 •••• 0 •••• o. Effectively Integrating Business Graphics with
Marie Bernard - Existing Information Processing Systems
HEWLETT-PACKARD CO.

- xxxl-

INDEX BY CATEGORY

0172 , Computer Publishing
Charles A. R. Volz, Volz Associates, Inc.

2006 Business Information on the Desktop: Alternatives to
Kyle Murphy - HEWLETT-PACKARD paper-based reporting.

0186 How to be Successful in your Implementation of ANY
Susan Wyatt - Office Technology
Wesson, Taylor, Wells & Assoc., Inc.

2082 Moving HP3000 OA Users to PC's: What's Involved?
Carol Agne - HEWLETT-PACKARD

Systems Manager/Data Communications

0017 User Friendly Security
Robert A. Karlin - Karlins' Korner

0019 Controlling the Datacomm Monster One Company's Approach
Jeffrey D. Van Brunt - Ireco Incorporated

0020 4GL's, COBOL and Data Communications
John D. AHeyn-Day - AH Computer Services, Inc.

0021 Fourth Generation Languages and Efficient Processing
John D. AHeyn-Day - AH Computer Services, Inc.

0025 Capacity Planning Getting Started
Chuck Rice - University Systems

0027 Data Integrity and Recovery
Teresa Brzozowski - Carolian Systems International, Inc.

00036 MPE/XL Variables and Command Files
Brett Clemons - Softwarewizzardry, Inc.

0039 A Beginner's Guide to UDC's and JCW's: How to Use Them
David L. Largent - N. G. Gilbert Corporation to Your Benefit

0043 The Seven Wonders of TERMDSM
Dennis Heidner - Boeing Aerospace Corporation

0046 Effective Backup Strategies for the HP/3000.
Bud Beamguard - SYNTEX Corporation

0047 I haven't got a lot of time - I haven't got a lot of money
George Blessing - City of Pasadena

0051 Modems, Multiplexers, and Concentrators
Jay Gross - Paradyne Corporation

0052 Spectrum Instruction Set, a 3000 Hacker's View
Robert M. Green - RobeHe Consulting Ltd.

0054 Performance Monitoring On MPE/XL
Robert S. Apgood - Strategic Systems, Incorporated

0060 A Guide to Breaching HP 3000 Security
Phil Curry - Carter, Schaefer and Company

0061 Training a New Operator - Where Do You Begin?
Flo Barley -Pekin Memorial Hospital

0062 Parity Pitfalls
Karen Davis-MackIe - Cray Research, Inc.

0064 Asynchronous and Synchronous Auto Dialing Equipment on the HP 3000
Benedict Bruno - S.T.R. Software Company Why, When, and How

- xxxll-

INDEX BY CATEGORY

0069 0 ••••• 0 •• 0 ••••••••••••••••••• 0 ••••••••• 0 •• Foundations for HP Data Security
Kelly Spencer - State Farm Mutual Automobile Ins. Co.

0070 0 ••• Where's the Space
Joe Berry - Pekin Memorial Hospital

0080 0 •••••••••••••••••••• 0 ••••••••••••••••••••••••• Strategic Planning in Small MIS Shops
Terry W. Simpkins - Spectra-Physics, Retail Systems Division

0082 .. 0 ••••••••••••••••••••••••••••••••••••• 0 • 0 ••••••••••••• 0 • Making Short Shrift of Sorts
Charles Sullivan - RunningMate

0100 0 ••••••• 0.0 ••••••••••• 0 •••••• An Evaluation of Database Performance Tools, or How
Tom Gosnell - Infocentre can we get all of Tonight's Batch Work Done?

0113 0 The Politics of Data Communucation
Dave Hickey - Networks University Systems, Ohio State Univo

0117 0 •••••••••••••••••••••••• Managing HPDesk Notice Boards Over Several Mailnodes:
Bob Myers - The Ohio State University Remote or Local

0119 0 Building a Home for Your HP 3000's Data Center
Harry Krommer - Procter & Gamble Design, Construction, and Operations

0136 .. 0 •••••••••••••• 0. 0 •••••• 0 •••••••••••••••••••••• IDAT: For Dump Analysis and More
Neil Ferguson - Boeing Computer Services .

0144 Facilities Management - A Viable Alternative or How to
Jack Neale - Keep the Government Happy 24 Hours a Day
Brant Computer Services Ltd.

0151 0 ••••••••••••••••••••••••••••••••••••••• UNIX and Other Operating Systems
Timothy D. Chase - Corporate Computer Systems, Inc.

0152 00 0 0 0 0 What do you mean, "The job blew up"?
Michael Madigan, Anthony Furnivall - Buffalo Evening News

0153 o. 0 •• Conversations over the stable door
Anthony Furnivall - Buffalo Evening News

0154 A New Model for Report Management & Distribution
Michael A. Casteel - Unison Software

0155 New Paradigms for Automating Batch Processing
Michael A. Casteel- Unison Software

0158 0 Looking at HP's Telesup
Isaac Blake - City of Tempe - Information Systems

0167 0 Fortran 66 to 77: Conversion - Problem Considerations
Brant Kelly - Bradmark Computer Systems in an Integrated Environment

2015 Utilizing the PC for MPE Performance Management
Rex Backman - HEWLETT-PACKARD

2016 0 ••••••••••••••••••• Software Performance Engineering: A Methodology for
Doug McBride - Designing Performance into Software Products
HEWLElT-PACKARD

2018 0 •••••••••••• User Interface Design Methodologies for CDROM Information
Greg Ferguson - Retrieval or "How to Find That Needle in a Haystack"
HEWLETT-PACKARD

2020 0 ••••••••••••••••••• Strategies for Re-packing Discs and IMAGE Data Bases
Michael Hornsby - HEWLETT-PACKARD

2021 Use of CDROM Technology for Information Services
Phil Palmintere - HEWLETT-PACKARD

- xxxiII -

INDEX BY CATEGORY

2022 Remote Configuration Tracking: The Confirm Concept
Robert Poling - HEWLETT-PACKARD

2023 Managing MPE for Support
Bill Sutton - HEWLETT-PACKARD

2024 Optical Publishing: Data Conversion/Preparation for CD-ROM Applications
Jeff Szafransky - HEWLETT-PACKARD

2025 Building a Complete Disaster Recovery Program
Greg Morris, Norm Moyer - HEWLETT-PACKARD

2026 Finally: Performance Technology
Tony Engberg - HEWLETT-PACKARD

2027 0 • o. 0 ••••• 0 •• 0 • 0 •• 0 •••• 0 ••••• 0 • 0 0 0 •• 0 0 0 •• 0 ••• 0 ••• HP AdvanceNet Overview
Karyn Mashima - HEWLETT-PACKARD

2029 0 •• 00 • 0 • 0 • 0 •••••••••• 0 •••••• HP AdvanceNet for Regional Sales and Service
Alexander Henderson - HEWLETT-PACKARD

2030 .. 0 •••••••• 0 0 ••••••••••••••••• 0 ••••••••••• 0 ••••••• 0 •• HP AdvanceNet for Engineering
Dave Morse - HEWLETT-PACKARD

2031 HP AdvanceNet for Computer Integrated Manufacturing: The CIM Solution
Brice Clark - HEWLETT-PACKARD

2032 00 •• 000.0 •••• Hybrid Networks Public Versus Private Packet Networks The Best
Patrick Lelorieux - HEWLETT-PACKARD of Both Worlds

2033 0 •• 0 • 0 •••••••••••••• 0 •••••••••• 0 •• 0 • 0 0 0 •••••• OSI Basics and Future Directions
Bruce Fram - HEWLETT-PACKARD

2037 . 0 0 0 •••• 0 0 0 •• 0 ••• 0 • 0 0 0 0 •• 0 • 0 0 0 • 0 ••••••••••••• 0 0 •• DS to NS Migration on the HP 3000
Chris Wallin - HEWLETT-PACKARD

2038 0 •• 00.0 •••••••••••• 0 •••••••••••••••••••• 0 •• 0 •••• HP-to-IBM Communications
Michael Strickland - HEWLETT-PACKARD

2039 000 •••••••••••• 0 •••••• 00.0. 0 •••••••••••• 0 .StarLan Networking
Alexa Ford - HEWLETT-PACKARD

2043 0 •••• 0 • 0 0 o. 0 0 0 0 0 •••••••••• 0 0 •••••••••• 0 •••••• Disc interfaces for MPE/XL Systems
Gary Vogelsberg - HEWLETT-PACKARD

2044 0 ••• Designing Performance Tools for the Every Day System Manager
Gerry Wade - HEWLETT-PACKARD

2045 ... 0 •••••••••••••••••••••• 00000. Understanding IBM SNA or Through a Glass Darkly
Robert S. Yori - HEWLETT-PACKARD

2046 0 0 0 .. 0 0 Proactive Network Diagnosis
Claudia Zornow - HEWLETT-PACKARD

2047 0.0 •••• 0 •••••••••••••••••••• Considering a Network Management Service?
Sandi Voykin - HEWLETT-PACKARD

2048 0 ••••• Open View Windows: A New Foundation for HP Network Management
Kathleen Gannon - HEWLETT-PACKARD

2049 0.0 ••••••• 000.0 ••••• SYSTEM SECURITY: Access Control in the MPE Environment
Ken Jordan - HEWLETT-PACKARD CO.

2060 0 0 •••••• 0 0 0 0 0 0 •• 0 0 0 0 ••••••••••• 0 •••• 0 •••• 0 0 • 0 • 0 •• 0 •••••••• PC Networking Alternatives
Chris Olson - HEWLETT-PACKARD

2061 0 •• 0 •• 0 •• 0 ••••••••••••••••••••••••••••••• Fiber Optic Networking Update
Karen Dudley - HEWLETT-PACKARD

2028 0 HP AdvanceNet for Business Office Solutions
Felicia Choy - HEWLETT-PACKARD

-xxxlv-

INDEX BY CATEGORY

0175 00000000000 Pardon this Interruption: New Possiblities of the MPE Break Command
Michel Kohon - Tymlabs

0181 0000000. o. 0 0 0 0000. 0 0.0. 0 o. Operations Management in a Multi-HP3000 Environment
Roberto Drassinower - Carolian Systems International Inc.

0183 .0 0 0" 0 0 0 0 0 0 HP Thinlan - A Users View
Allen R. Burns - Rutgers - The State University of N.].

2080 . 0 •• 0 ••• 0 0 •• 0 ••••• 0 0 •• 0 0 0 0 0 0 •••• 0 • 0 • 0 ••••••• 0 Performance Tools Selection and Design
Paul Primmer - HEWLETT-PACKARD

2081 0000 0 0 00 0 0" 0 0" 0 0 0 0" o. PC Integration with HPAdvanceNet
David Schwaab - HEWLETT-PACKARD

2083 0 0 0 0 0 •••• 0 0 0 • o. 0 0 ••• Managing a Small Office Local Area Network - HP Office Share
Belinda Yung-Rubke - HEWLETT-PACKARD

0190 0000 •• 0 ••• 0 •• o •••• 0 • 0 ••• 0 Optimizing IMAGE/TurboIMAGE Blocking and Buffering
David Merit - Bradmark Computer Systems, Inc.

Application Development

00002 o. 0 0 ••• 0 •• 0 • o. 0 •••• 0 ••• 0 • 0 • 0 0 0 •• 0 • 0 •• 0 • 0 0 • 0 •• An Introduction to Symbolic Debugging
Tim Chase - Corporate Computer Systems, Inc.

0005 o. 0 0 0 •• Separating Data and Processing or Designing DBs for Systems Yet to Come
Matt Ohmes - Cognos Inc.

0009 .00000.00.0 •• 0.0.0 •• INFORM, PROTOS, QUIZ, and COBOL - a User's Experiences
Richard C. Decker - Computer Task Group, Inc.

0012 .. 000.0 ••• 0.0 •• 000.00.0.0 ••••••••••• 0.00. Minimizing Coding, Maximizing Production
Karl Smith - Softsmith

0016 .0.0 0 0 How to Keep Your Auditor Happy
Robert A. Karlin - Karlins' Korner

0022 00.0 0 0 0 o. Control Techniques for User's Global Resources
Kevin Darling - The Gap Stores

0030 . 0 • 0 •••• 0 •• 0 •• 0 •••• 0 ••••••••• 0 •••••• 0 ••••••••••••••• 0 •••••• 0 •• Decision Support System
Parvin Rahnavard - Independent Consultant

0034 . 0 •• 0 • 0 •• 0 •••• 0 •• 0 ••••• 0 ••••• 0 ••••••••• 0 0 ••••••••••• 0 0 • 0 • 0 •• 0 • 0 ••• Migration Made Easy
Victoria Ao Shoemaker - Taurus Software, Inc.

0037 0.0 ••••••• 0 •••••• 0 ••• 0.0. 0 •••• 0 •••••• Computer Assisted VIEW, IMAGE, & SPL
Norman A. Hills - N. A. Hills Computing Services Limited

0038 ... 0 ••••• 0 ••••••••••• 0 ••••• 0.0. 0 ••••••• 0 • 0 •• 0 • 0 ••• 0 •• 0 • 0 • o. Using COBOL Irs Facilities
Pat Lockwood - Orion Systems Technology, Inc.

0040 .00 ••••• Adding Multi-Plant Features to a Large, Integrated Manufacturing Package
Terry H. Floyd, Mehrdad Laghaeian - Blanket Resources

0044 . 0 0 • 0 •••• 0 •• 0 ••• 0 •••• 0 ••••••• 0 • 0 •••• 0 •••• 0 ••••••••• 0 • In Search of a Better Mouse Trap
Dennis Heidner - Boeing Aerospace Corporation

0045 . 0 0 0 0 0 .. 0 0 .. 0 Data Structures "The KEY to Performance"
David G. Robinson - PowerSpec International

0049 o. 0 Implementation of an Automated Code Enforcement System via the Integration
Kathleen Po Metz Edwards - of Third Party and In-house Developed Sftw.
City of Plano

0058 00.0.0 •• 0000.00 ••• 0000 ••••• 0.0 ••• 0.0 •• 00.0 •• 0 Unorthodox IMAGE Acessing for Power
Joseph Berry - self employed

-xxxv-

INDEX BY CATEGORY

0066 Integrated Information Engineering
Peter Ney - Richard Irwin Associates (RIA)

0071 Application Software as a Long Term Investment
Arthur]. King - SOTAS Inc.

0075 Integrating Paperless Systems In A Fortune 100 Company
R.L. Pringle, C.F. Raymond,]r. and].F. Konecny,]r. - Lockheed Eng. and Management
Svcs. Co.

0083 Developing a Faster IMAGE
Charles Sullivan - RunningMate

0090 Experiences in Migration
James S.'L. Cohen - Mecca Leisure PLC

0093 The Use and Abuse of Non-hashing Keys in IMAGE
Fred White - Adager

0094 Using a Task Manager to Improve User Productivity
Barry Polhemus - ETC Corp.

0095 Maximizing the Value of Data Through Optimized Data Base Performance
Kathy S. McKittrick - Dynamic Information Systems Corporation

0096 Programming in MPEjXL.
Eugene Volokh - VESOFT

0097 The role of Data Dictionaries in Application Development, with an
Raymond Ouellette - Infocentre Emphasis on System Dictionary.

0098 Using MPE Message Files - An Application Approach
Patrick Fioravanti - Infocentre

0109 Optimizing the Logical Database Design
Dick Onel - DCE Database Consultants Europe

0111 Electronic Forms in the Hewlett Packard Environment
Barry H. Gillespie - Indigo Software Ltd.

0118 Data Dictionaries: Bane or Boom
Stephen M. Butler - PROBUS International, Inc.

0121 Reflections Versus Advancelink
Ashley Wade,]ohn McLean]r. - Lockheed Eng. & Management Svcs. Co.

0134 A Programming Environment in C
Larry Simonsen, Keven Miller - VALTEK Incorporated

0139 Computerized Cargo System
Itzhak Benozer - Israel Ports Authority

0140 Hypothesis Driven Programming
Ross G. Hopmans - Brant Computer Services Ltd.

0141 De-Mystifying Data Base Normalization
Pat Witiw - Brant Computer Services Ltd.

0145 Adopting Standards in Powerhouse Applications
Christopher D. Brayman - Brant Computer Services Ltd.

0146 System Development Methodologies in the Fourth Generation Environment
Kimberlie S. Davis - Martin Marietta Data Systems

0149 Design Considerations for Distributed Applications
Leigh Solland - Cognos Inc.

0156 The Future of Financial Systems on the HP 3000
Ronald D. Smirlock - Peat Marwick Main & Company .

-xxxvl-

INDEX BY CATEGORY

0160 Database Application Development Using Giles Pascal
F. Lewis - Wellington Management Company

0164 ASK: Better than New
Tim Snyder - Boston Scientific

0170 What Will Programming Be Like in 1998?
N. M. Demos - Performance Software Corporation

2050 Integrating MPE XL: A Tme Story
Rex Backman - HEWLETT-PACKARD

2051 Cooperative Computing - A Bridge to the Future
Pam Brown - HEWLETT-PACKARD

2052 One Source, Many Machines: Application Development Using HP Pascal
Jean Danver - HEWLETT-PACKARD

2053 A Report on Report Writers
Stewart Hill HEWLETT-PACKARD

2054 A Comparison of HPSQL and TurboImage
Larry Kemp - HEWLETT-PACKARD

2055 The HPSQL Advance - Towards the OLTP Market
Alberto Lutgardo - HEWLETT-PACKARD

2056 Linking Data Processing and Office Automation
Peter O'Neill- HEWLETT-PACKARDGE

2058 Concurrency Control In HP SQL
Ragaa Ishak - HEWLETT-PACKARD

2059 HP SQL Performance
Edward Cheng - HEWLETT-PACKARD

2066 MPE XL Map,ped Files
Bryan Carroll- HEWLETT-PACKARD

2067 HELP! Stack Overflow! Alternatives for reducing stack size on
Lisa Burns Hartman - HEWLETT-PACKARD MPE VIE HP3000s.

2068 Giving Them What They Want: Quick Prototyping on the HP3000
Lisa Burns Hartman - HEWLETT-PACKARD

2069 What's in HP Pascal, A Systems Programming Language
Sue Kimura - HEWLETT-PACKARD

2070 New Features of the MPE XL User Interface
Tom Shem,]eff Vance - HEWLETT-PACKARD

2071 TRANSACT/XL: Strategy for Migration to Native Mode
Gary S. Peck - HEWLETT-PACKARD

2072 Effective use of HP-PA Optimizing Compilers
Brad Ahlf - HEWLETT-PACKARD

2073 Programming for MPE XL Performance
Dave Trout - HEWLETT-PACKARD

0174 CASE a Way Out of the Software TRAP
Geof Davies - RAET Software Products, BV

0178 Optical Disk Technology and HP Computers
Husni Sayed, Deborah Cobb / Tech. Writer - IEM, Inc.

0179 Automatic Identification and Bar Coding: Promise and Pitfall
Kenneth L. Kimbrough - Quality Consultants Incorporated

0184 Migrating Secondaries
Waller and Pearce INLEX, Inc.

- xxxvll-

INDEX BY CATEGORY

0185 Banner Pages
Edmund C. Arranga - McDonnell Douglas Corporation

0187 Using Bar-Codes on HP3000's to Collect Factory Data
Lois Andersen - Spectra-Physics

0188 A Development Methodology for a New Generation
Grant W. Fletcher, Kathleen A. Sachara - The Interface Group

0189 An Approach to Debugging
Grant W. Fletcher, Kathleen A. Sachara - The Interface Group

2084 HP SQL Performance and Design Tips
Marianna Woo - HEWLETT-PACKARD CO.

2085 Turbo IMAGE/XL and Transaction Management
George Allen* - HEWLETT-PACKARD CO.

0191 EDI- Electronic Data Interchange
Charles S. Townsend contact through Walter V. Jankowski - Birmingham Computer
Group, Inc.

0192 Low-cost and high efficiency with integrated PCs - Don't reinvent the wheel.
Rolf R. Schleicher - Deutsche BP AG, contact through Walter V. Jankowski

Management Track

00001 The HP Employment Market - What Every Hiring Manager Should Know
Lynn A. Novo - Network Systems Company

0011 The Information System Lifecycle
Mark L. Symonds - Innovative Information Systems, Inc.

0018 AI - The Three Toed Sloth
Robert A. Karlin - Karlins' Korner

0024 Integrated Information Management - Get the Connection?
Jim O'Brien - O'Brien Downs Systems, Inc.

0032 Understanding Migration
David T. Elward - Taurus Software

0033 Dodging Bullets in Your DP Shop
Victoria A. Shoemaker - Taurus Software, Inc.

0035 The Face of Data Processing
E. R. Simmons, Ph.D. - The Protos Software Company

0059 Computer Training: How to Train the Computer Phobic
Christine Dale - Kaiser Permanente

0063 Adressing the Problems of Program Documentation
Claire M. Perkins - Kaibab Industries

0067 Data Center Management and Efficiency
Betsy Leight - Operations Control Systems

0068 An HP 3000 approach to IBM's LIBRARIAN techniques
Betsy Leight - Operations Control Systems

0073 Twisted Pair: A Thing of the Past and The Wave of the Future.
Mark Indermill - Precision Interlink Company

0074 Playing The Wrong Game: Measuring Programmer Productivity in
A. Gene Harmon - AH Computer Systems Inc. a 4GL Environment

0077 Documentation: The Necessary Evil
Robert M. Gignac - Motorola Information Systems

- xxxvllI-

INDEX BY CATEGORY

0078 The Secrets of Software Project Management
Robert R. Mattson - WIDCO

0079 Software Quality - Let's discuss this can of worms!
Robert R. Mattson - WIDCO

0086 Disaster Recovery, Can Your Company Really Recover?
T.]. Dooley, Jr. - Dooley Consulting Group, Inc.

0087 Information as a Competitive Weapon
David Ashton - Cognos, Inc.

0092 Don't Let Your Programmer Grow Up to Write Operational Documentation
J. B. Watterson - ORI/CALCLUON Inc. - or Should They?

0107 Becoming Effective Tradespeople
Winsome R. Stretch - ACI Computer Services

0108 Telephone Support - 15 Ways to Maximize Your Investment
Doug Clement - Cognos Inc.

0112 Mass Storage - The Current Revolution
Suzanne M. Spitzer - McEvoy, Cooper, & Company

0114 Telecommunications Management and Cost
Kevin C. Halvorson - Control Telenomics

0116 Management By Standards
Baron E. DeKalb III - 3M Company

0137 Telephone Call Accounting
Paul A. McArdle - TeleMar, Inc.

0142 Applying Expert Systems in the Commercial Environment
Karen Hopmans - Brant Computer Services Ltd.

0147 An Investment for Now and the Future: User Relationships
Kimberlie S. Davis - Martin Marietta Data Systems

0150 Presenting Technical Information to Management
George B. Scott - Great Business Solutions, Inc.

0157 Management Systems at Westinghouse Furn-iture Systems - Total
Tom Idema - Business Systems Implementation from a Mgmnt. Perspective
Westinghouse Furniture Systems

0162 Effectively Understandiilg User Requirements
Suzanne Harmon - AH Computer Services, Inc.

0166 Contingency Planning - The Audit Process
Leslie A. Virgilio - OFF-SITE, Inc.

0168 Managing Application Programming with Fourth Generation Resources
N. M. Demos - Performance Software Corporation

0169 HP's Precision Architecture - Strengths and Weaknesses
N. M. Demos - Performance Software Corporation

2062 Any questions? A look at questioning techniques in the classroom.
Steven Mock - HEWLETT-PACKARD

2074 0••••••••••••••••••• Effective Implementation of Distributed Electronic Time
John Ramuta - HEWLETf-PACKARD Management and Scheduling

2075 '] have to teach the others back at work": When customer
Mary Humphrey - HEWLETT-PACKARD education is really train-the trainer

2077 Planning a Computer Maintenance Program to Meet Your Needs
Siaou-Sze Lien - HEWLETf-PACKARD

- xxxlx-

INDEX BY CATEGORY

2078 Cost Justifying Office Systems
Bill Franklin - HEWLETT-PACKARD

2079 Strategic Importance of Relational Database Systems
Orland Larson - HEWLETT-PACKARD

0171 Staff Training, Why, How, and When
Charles A. R. Volz - Volz Associates, Inc.

0173 000 ••••••••••••••••••••••••• o ••••••••••••• 0' • The Fall '88 Migration: New Directions?
Charles Finley - ConAm Corporation

0177 .0 ••••••••••••• 0 ••••••••• The Best of the New Creative Decision Making Techniques
Teresa Norman - Tymlabs Corporation

0176 ... 0 ••• 0 •• 0 •• 0.0 Methods of Cost Justification for Hardware and Software Purchases
E. Charles Stern - Tymlabs Corporation

0180 "System Security? As Soon as I Can Find the Time. 0 on

Steven G. Bloom - InCase Corporation
0182 .. 0 0 Sales Force Automation - The Last Frontier

Mark P. Shirman - Innovative Information Systems Inc.

- xl-

The HP Employment Market -
What Every Hiring Manager Should Know

Lynn A. Novo
Network Systems Company

98 South Turnpike Road
Wallingford, CT 06492

In the six years that I have been working as a personnel
consultant exclusively for companies that have Hewlett
Packard 3000 computers, I have seen that the managers
who are most successful at attracting and hiring HP
professionals are sensitive to the idiosyncracies of
the HP employment market. What follows are some of
their best ideas for identifying, interviewing, and
hiring in this unique employment market. You will get
a complete hiring process that will help you feel
confident that once you do find someone who can fill
your job requirements, you will have done everything
possible to get an acceytance of your offer.

We will begin with an overview of the HP employment
market and then we will concentrate on specific
guidelines to utilize from the beginning to the end of
your hiring process. We will discuss how to define your
staffing need, how to identify candidates to interview,
and how to conduct the interview itself. We will
conclude with how to extend an offer in a way that it
will most likely be accepted.

THE HP EMPLOYMENT MARKET

Let's begin our overview of the HP employment market by
identifying it. Just who is it that looks for a new
job? What are the reasons people give for leaving their
current employer?

I am sure you have noticed that in some respects, every
person who works in data processing is "in the market".
We all have heard those words: "I'm always interested
in hearing about new opportunities". I hope for your
sake you don't frequently hear your programmers say
those words into the telephone! But let's separate out
the serious job changers from the "always looking" ones
and see why they are in the market.

The HP Employment Market 0001-1

Whenever we at Network Systems Company talk with people
who are seriously interested in changing jobs, we ask
them to tell us the reason they would consider leaving
the company they work for at the time. Remember that we
only talk with people who work in HP 3000 environments.
We log this information in our computer and find that
all the reasons we have heard over the years fall into
the main reasons shown below.

REASONS FOR CHANGING JOBS

Want more money, salary too low

Candidate relocating

Company or department moving

No career growth, want more responsibility

Company converting to another vendor system

Want a shorter commute

Position boring, want more diversity and projects

Management problems, unclear direction

Losing job due to termination or layoff

For the purposes of this illustration, we'are grouping
together the reasons sited by ALL levels and types of HP
personnel. Please keep in mind that the bulk of the HP
employment market consists of ap~lications personnel
such as programmers or programmer/analysts. These are
the people who most often change jobs and for whom there
is the greatest demand.

Which do you think is the reason we hear most often?

Surprisingly,
raises. In
LEAST often.

it's
fact,

not because of low salary or low
that is one of the reasons we hear

Most people who consider themselves "in the market" say
the reason is:

" No career growth, want more responsibility II

The HP Employment Market 0001-2

Managers, please take note. Although this discussion is
not about how to keep your current staff, retaining
your staff is a challenge just as big as hiring is. I
welcome you to use this list of why HP professionals
change jobs as a way to begin a dialog with your staff
on this important subject. If you can improve your
relationship with your staff, you may never need to use
these guidelines on how to hire!

As we look at the actual hiring process, it will be
helpful to keep in mind the following keys for
successful hiring in the HP market.

FLEXIBILITY * TIMELINESS * PREPARATION

We'll see how each of these plays an important role in
our success at implementing a hiring process that will
result in more "yesses" to our offers.

THE HIRING PROCESS

What are the essential components of the hiring process?

Identifying the need
Sourcing candidates
Interviewing to hire
Extending the offer

IDENTIFYING THE NEED

The successful hiring managers we talk to always begin
their hiring process with a well thought out job
description. They do not necessarily try to replace
someone who leaves with the same set of skills. They
take the opportunity to evaluate their current staff and
ascertain where there might be in-house skills to fill
the gap.

Remember our reasons for changing jobs? This is a good
time to make sure that anyone who can be promoted or
reassigned to a project gets the opportunity to do so.
You'll eliminate a lot of resentment and a possible
second resignation if you consider your current staff
first, before you hire from the outside.

Take the time to write a job description. We find that
one of the biggest complaints we get from candidates is
that they are not told what they actually will be doing
on a day to day basis.

The SP Employment Market 0001-3

If we remember that our keys to success in HP hiring, we
can see that this first stage in the process requires a
great deal of PREPARATION. Your time investment at this
stage will be rewarded with successful hires after the
interview.

Although I suggest that you have specific requirements
for the job, I also recommend FLEXIBILILTY. In this
highly competitive HP employment market, you must be
willing to accept a combination of skills and total
experience, not just specific requirements. Managers who
fill their vacancies fastest are willing to interview
candidates with backgrounds that come close to their
needs. They are in the habit of screening in potential
candidates, not screening them out because they do not
match the rigid requirements.

SOURCING CANDIDATES

In this competitive market, as manager, you need to be
creative in your approach to identify sources of
candidates. It will not suffice to merely place an ad
in the newspaper, or wait for your personnel department
to forward you resumes. The successful hiring managers
of the 1990's will be using a variety of sources and
will network with as many people as possible on an
ongoing basis to be certain that they are always tuned
into the market.

Let's brainstorm the ways you can identify people to
interview to fill your job openings. These are the ways
hiring managers have told me they have sourced
candidates:

Newspaper advertising
Radio or cable TV advertising

Job fairs
Employment agencies/recruiters

College placement office or computer science department
User group meetings/conventions

Personal contacts
Vendor referrals

Employee referrals (give bonus)

The HP Employment Market 0001-4

Our clients tell us that one of the consistently
UNSUCCESSFUL ways to identify candidates is through
newspaper advertising. I am sure many of you have had
successful response to an ad at some point, but our
clients tell us they cannot rely on the response. In
this unique HP market, there is not a large enough pool
of qualified readers to justify the expense in most
newspaper geographic markets. The person you need to
hire probably is not bothering to read the Sunday want
ads anyway.

The college campus is an untapped resource in some
areas. If you know that a college in your area is using
the HP to teach computer science students, you should
get to know the department head and placement office.
Many of our clients take college students as interns and
then hire them to work in full time positions after
graduation.

In sourcing candidates to interview, it helps to be
willing to try different methods. Timeliness and
preparation count when it comes to the all-important
networking at user group meetings, with your vendors, or
with recruiters. You can't begin to make contacts in the
marketplace after your lead programmer resigns. You
need to have known what's out there and what sources
you can tap before you actually need them.

Flexibility and timeliness are not attributes typically
used to describe personnel departments. If your
personnel department's idea of recruiting is only to put
an ad in the paper, screen out resumes based on your
ideal job requirements, then forward a resume to you two
weeks after it was sent in, chances are the candidate
has already started working at the HP shop down the
road.

The managers who view themselves as successful in their
HP hiring either have extraordinarily efficient and
cooperative personnel departments who understand this
unique market, or they are handling the hiring process
almost entirely without personnel.

The HP Employment Market 0001-5

INTERVIEWING TO HIRE

When you have identified a gem of a candidate for your
staff opening, it is time to prepare for the interview.
There are some very simple things you can do to make
sure that your gem doesn't get so aggravated with the
interview process itself that he is turned off to your
company. If enough of the following "little things" go
wrong, your gem will not want to work for you regardless
of how much you want him or offer him.

Have the personnel interview occur AFTER your
department's interview, if you must have a personnel
interview at all. Your gem doesn't care that his
contribution to the medical plan is $14.10 a month. He
won't be listening attentively enough to remember after
the interview anyway. He wants to find out about you
and the technial environment as quickly as possible.

If by chance you cannot persuade your personnel
department to agree to this sequence, then at the very
least make sure that they see your gem promptly and that
they complete it as quickly as possible.

Don't bother with an application form. If an employment
application must be completed, either let your gem take
it and return it by mail or have him complete it after
your interview. No use having your gem getting
frustrated before your interview trying to remember if
he started that job in February or March of 1980.

Don't keep your candidate waiting. Your gem needs to
feel that your interview with him is important. When
candidates must wait to begin their interview, that is
the first thing they mention to us in the follow-up.
"They made me wait 20 minutes". It's hard to dispel
that resentment.

Try to be uninterrupted during the interview. Even if
you don't mind if your gem hears your users screaming,
he may get the impression that you don't value his time
or have enough control of your time to be left
undisturbed.

The RP Employment Market 0001-6

Spending time in preparation for
following these pointers will
predisposed to accepting an offer.

the
help

interview
your gem

and
be

Once you get your gem into your office (and it should be
a private office, even if it isn't your own because
yours is too messy) the most successful interviews have
been well prepared to include the following four phases:

Rapport screening

Fact finding

Evaluation interview

Selling

RAPPORT SCREENING

In rapport screening, you set the stage for a productive
interview. You want your gem to feel comfortable so
that he will be open and honest with you. You should
ask friendly, conversational questions about his hobbies
and interests. These first couple of minutes are when
your gem is going to be getting to know you as well.
This is the time for establishing shared experiences.
Often we hear things like, "We hit it off right from the
start. It turns out that the manager likes to ski as
much as I do."

FACT FINDING

After about 10 minutes of rapport screening, you begin
to establish if your gem has the credentials to do the
job. You will want to ask about what he does in his
current position and probe into specific areas of his
background to see how they relate to your needs.

As part of the fact finding session, many managers
involve another staff member to ask technical
questions. This is quite effective providing the other
person doesn't duplicate the questions you have asked.

The HP Employment Market 0001-7

EVALUATION INTERVIEW

If there is one secret to successful hiring, this is it.
I guarantee that if you implement this phase of
interviewing and ask these three simple questions at
this point in the interview, you will be rewarded with
some very valuable information. You will be better able
to determine if your gem should be made an offer; you
will be able to use this information to extend an offer
with a greater likelihood of acceptance; and you will be
better able to retain your gem once he does come to work
for you.

The evaluation interview is your time to get inside your
gem's head. It will reveal more about his personality
and work ethic than any other type of questions you can
ask.

Because of the personal nature of these questions and
the fact that you want your gem to be open and honest,
it helps to take a break (get a cup of coffee, for
example) to make the transition to this phase. I also
recommend that you do not take notes during this phase,
but rather write notes after the candidate leaves.

For the purposes of this paper, I will present the
interpretation of some of the responses along with these
questions. During the interview itself, however, I
suggest that you keep your focus on the answers your gem
is giving and reserve your interpretation of responses
until after the interview.

EVALUATION INTERVIEW QUESTION 1

Let's begin the evaluation questions with a topic we
have discussed already. Ask:

"Why would you consider leaving your current employer?"

We have already seen the range of possible answers to
this question. Let's take a closer look at each of the
reasons beginning with these tangible reasons when
people are forced to find a new job:

Candidate Relocating
Company or department moving

Losing job due to termination or layoff

Most managers feel comfortable with any of these reasons
and in fact find that candidates with these reasons are

The RP Employment Market 0001-8

the most eager to accept offers. However, if your gem
has lost or will lose his job, be sure to get the
details of the termination. Good HP people are not
usually let go, be certain your gem is the exception.

Continuing with other reasons for leaving:

Want a shorter commute

If your company is significantly closer to your
candidate's home or if it will be an easier commute, you
have one of the best motivators for changing jobs. In
fact, even people who would not ordinarily listen to
other opportunities become receptive to an opening that
is closer to home. Of course we need not mention the
benefits to you of having your staff members living
close by.

Company converting to another system

If your gem is upset that his company is replacing their
HP system with another vendor's system, this should be
music to your ears. It demonstrates that your candidate
knows and loves the HP and would rather switch companies
than fight the new vendor. Incidentally, this kind of
"vendor loyalty" is very common in the HP marketplace
despite the popular notion that everyone would rather
work on IBM.

Want more money, salary too low

This reason makes most managers nervous and indeed it
should. The candidate who says money is his primary
motivator for changing jobs is probably not the one you
want to hire. If you hire this type, you will always
wonder if you are giving him high enough raises (and our
research shows that these people NEVER think they are
being paid enough). .

The reasons you will hear most often are the intangible
ones that remain:

Position boring, want more diversity and projects
No career growth, want more responsibility

Management problems, unclear direction

The HP Employment Market 0001-9

Those three
insight into
his career
workplace.

The savvy hiring manager hears out the candidate's
complaints in any of these areas. These refer to the
way your candidate perceives his work environmnent.
With these emotional issues, you can see that this
information will help you shape your subsequent comments
to your candidate in terms that will "feel" positive and
that he will view as an improvement over his current
situation. I'll show you exactly how when we get to the
later phases of the interview process.

EVALUATION INTERVIEW QUESTION 2

"What do you want out of your work?"

This is where you will hear about your gem's plans for
his future. Can pe verbalize some long term goals?
Does he know what he wants? It will be hard for you to
keep him happy if he doesn't even know what it is that
he wants. If he does tell you some plans that could fit
into your department's future, we willl see how you can
use this information later to "sell" the job to him.

EVALUATION INTERVIEW QUESTION 3

"What effort would you be willing to put forth to
achieve what you want?"

Listen for a response that relates to commitment. Your
gem should have some idea of what it takes to achieve
the success he seeks. Often this response will be
conveyed in specific time elements such as, "I would be
willing to work 12 hour days to complete a project ahead
of schedule so that I could be promoted to a Project
Leader position."

EVALUATION INTERVIEW SUMMARY

little questions will give you a great
your potential hire's level of commitment,
goals, and his emotional ties to his

We will use the responses to these questions

The SP Employment Market 0001-10

again later in the hiring process but before we move on,
please allow me to make one more suggestion on the
evaluation interview.

Once you have hired your gem, I suggest you refer to
your notes on this phase of the interview frequently.
If you are continuing to provide an environment where
your employee is getting what he wants out of work and
is able to achieve his goals as given in responses to
Questions 2 and 3, you will improve your odds of keeping
him longer. An added benefit is that as your staff
realizes that you care about their career development
and that you are committed to helping them achieve their
goals, you will gain a loyalty that is normally unheard
of in the data processing profession.

Let's move now to finishing up your interview. We have
come to the fourth and final phase of the interview:

SELLING

Many hiring managers have told me that this was the
hardest phase of the interview to master, but the
rewards in terms of successful hires are worth it.

You begin this phase by telling your gem about your job
opening, emphasizing those aspects you garnered will be
important to him based on the evaluation interview. You
can see why it would be foolish to discuss the details
of the job before you had this valuable information.

Here's an example:

You learn from the evaluation interview that your gem
wants to leave his current employer because he feels
bored and doesn't feel that he's involved in any
projects. Even if your opening is for a programmer to
maintain your canned financial package, you should
include some mention of a project. Think of something
on your "To Do" list. Is there some piece of it that an
eager new hire could do? Probably, so mention it in
terms of being a project:

The HP Employment Market 0001-11

"You will be involved in a project to track user
complaints and make recommendations for ways to
streamline the problem-solving process."

Your gem will hear a specific thing about your job that
he can distinguish as being better than his current
job. He must be able to make this distinction in order
to accept your offer.

In this selling phase, you must also be prepared to open
up about yourself. Your gem will not work for you
unless he feels comfortable with you. This is the place
to discuss your own background including how long you
have worked there, why you joined the company, and what
you like about the company.

You might be surprised at how important this is. When
we surveyed all the candidates we placed in new HP jobs
over the past six years, they sited the personality and
skill level of the hiring manager as a major motivation
for accepting the job offer. If you're not letting your
gem get to know you in the interview, you're missing a
great "selling" opportunity.

Be enthusiastic about your company. You can't assume
that your gem knows anything about your company. You
must be able to state at least one clear reason why your
gem should go to work for your company. Your enthusiasm
will be contagious. He will recognize and begin to feel
a pride in being able to work for your company.

EXTENDING THE OFFER

Let's move ahead now and say that your gem really proved
to be a gem in the end. If you like him and think you
might want to hire him, you must move toward making the
offer immediately.

Remember that we said that successful hiring in the HP
market required TIMELINESS. Here's a case of that.
This is not a market where you have the luxury of
spending three weeks interviewing and another two weeks
deciding who to hire. The HP managers who are most
successful in their hiring are willing to make an offer
to the first candidate they interview. You should know
enough about the skills and personality you need before
the interview to make a decision quickly after the
interview when someone is right.

The BP Employment Market 0001-12

In determining the appropriate salary to offer, you need
to pay as much (or as little, depending on your
perspective) as necessary to get your gem to accept. In
the HP market, most managers tell me they would rather
offer slightly higher than the minimum acceptable. That
is a wise approach when you have the attitude that you
want your gem not only to work for you, but to come to
work happily. It has been our experience that your gem
will be more eager to start work quickly and has a
better chance of staying with you longer if he doesn't
feel that you were frugal in your initial offer.

If you take the responsiblility for keeping in tune with
the market, you should always have an idea of what the
"going rate" for a particular position is in your
geographic area. There will be times, however, when you
will want to hire a person that has an unusual blend of
technical skills that would make him extremely
beneficial to your department. In that case, you must
not hesitate to pay a higher salary than you had
expected. That extra couple of thousand dollars will be
recovered quickly in training costs and immediate
productivity in your department. Determining salaries
in this market requires FLEXIBILITY.

One final point about salaries. If you or your
personnel departments are using any national data
processing salary surveys for a reference in determining
salaries in your HP department, throw them in the
garbage. Our specialized market defies the national
averages. If you can't get a salary survey based on the
HP market itself, you can guage salary ranges by asking
any candidates you interview for their salary history,
not just current salary. From that you can see what
other companies have paid for different levels of
experience over the past years and you can compare it
with your staff salaries.

Once you have determined the salary, you need to contact
your gem to give him the good news. The managers who
get most of their offers accepted either extend the
offer themselves or have a well-trained third party do
it.

The best offers are made when the call is made to your
gem at home and parts of the selling phase of the
interview are reiterated. This is also the place where
you want to feed back to your gem that valuable
information you gathered in the evaluation interview

The BP Employment Market 0001-13

phase (which he will have forgotten that he told you).
Here's an offer that will most likely be accepted:

"We were most impressed with the experience you have
in maintaining financial applications in COBOL. We
feel that we could help you develop those skills
further by involving you with our manufacturing
systems and special projects like the one I discussed
during the interview. Over the next couple of years,
we expect to expand our MIS department and hope that
you would be someone who could eventually take on
additional responsibilities.

"Would you be interested? [By asking this now, you
save yourself the embarrassment of making an offer to
someone who is no longer interested.]

"Great! Then it is my pleasure to offer you the job
at a salary of $30,000 pius the benefits we
discussed. You will be eligible for a salary
increase of up to 10% in 6 months. When can we look
forward to you starting?"

Do you notice how we keep "selling" through the offer?
And again, how the information from the evaluation
interview gets reworded and used to paint a positive
picture of what our gem wants? We present the biggest
offer we can and be sure to mention benefits and
raises. If you can make your offer like this as the
culmination of a well-prepared hiring process, your
efforts will be rewarded with an enthusiastic new staff
member.

We have talked about how your success as a hiring
manager in this highly competitive HP employment market
requires that you use use flexibility, timeliness, and
preparation in your hiring process. Using the
guidelines for identifying your staffing need, sourcing
HP candidates, interviewing to hire with the evaluation
interview, and extending the offer will help make
certain that the person you want to hire will want to
work for you.

The RP Employment Market 0001-14

Symbolic Debugging: An Introduction

Timothy D. Chase
Corporate Computer Systems, Inc.

33 West Main Street Holmdel, New Jersey

'l',.Text to a trusty compiler it's a good symbolic debugger that tops my list of important software
1~development tools. I would fear facing a day in my chosen programming profession without
symbolic debug. It never fails to amaze me, though, how few people use symbolic debuggers let
alone know what they are. In this article I will introduce you to symbolic debuggers, their technol
ogy and how they can be used to help programmers do their work. In addition, I will give you a
listofbasic features which should be lookedfor when selecting a symbolic debugger. No one debug
ger has all of the features I'll mention, but some do have an impressive subset

There are as many different symbolic debuggers as there are compilers on different computers. For
this reason, it is virtually impossible to talk specifically about anyone debugger or language in
detail. Instead, I will try to discuss symbolic debugging in general terms and leave you to fmd out
the details of the symbolic debuggers available to you. I have tried to select a cross section of ac
tual debuggers to use for examples. Those mentioned include Codeview for the ffiM PC by
Microsoft, HP's Toolset and CCS' TRAX both for the HP3000 and HP's DEBUG/lOOO for the
HPlOOO RTE-A system.

Finally, if you do any serious programming or if you have to maintain the work of other program
mers and you don't have access to some form ofsymbolic debugger, you should complain to some
one.~.

What is a symbolic debugger?

Before answering that, we need to briefly review the program development process. If you recall
the dark times in computer programming then you remember assembly language. Assembly, or
machine language, was the original way to program computers. Only one level removed from the
l's and 0's computers really understand, assembly language is very difficult for biological systems
(people) to understand. So to save our sanity high level programming languages were designed.
The idea behind high level languages is that the computer, itself, can be used to translate the high
level language into the more basic machine language. This method ofprogramming quickly became
successful but its success brought about another problem - debugging.

The problem with debugging high level languages stems from two basic sources. First, operating
systems are designed to support applications written in many different languages. In fact, on most

Symbolic Debugging 0002-1

computers, every language finally compiles (is translated) into arelocatableorbinarymodule which
is the same regardless of the original source language. This is called an object module. Object
modules are then linked together by a system utility to fonn a finished application. The problem is
that after the linking, the operating system has lost track of the original fOIm of the language. When
problems show up, the operating system only has information about the object fonn of the applica
tion and very little information about the original source.

The second problem comes from a mismatch in computational models. You, as a high level lan
guage programmer, think: of the computer in an anijicial way. If you program in COBOL, then you
think of your computer as a COBOL machine regardless of the underlying hardware. This is one of
the basic features of high level languages: you don't have to understand the real computer in order
to do your work. The real computer, however, is usually quite different from the conceptual model
created by the high level language. The problem is that the operating system relates bugs to you in
terms ofthe real computer rather than the high level programming model. Faced with the error mes
sage like SYSTEM STACK UNDERFLOW the COBOL programmer is at a total loss. The COBOL
model of programming does not contain system stacks or underflows. In order to deal with bugs
of this sort, the high level programmer is forced to go to low levels in the system.

In a nutshell then, symbolic debugging is a method by which the programmer can receive informa
tion about bugs as well as look for bugs at the same level as the program was originally written.
The successful symbolic debugger maintains the illusion ofthe computational model created by the
high level language. By keeping the programmer at the source level during debugging, the sym
bolic debugger makes the same impacton the debugging process as the compilermade on the coding
process.

How are bugs found without symbolic debug?

Without symbolic debugging there are three basic ways in which programmers debug their
programs. They can analyze system output, they can put special debugging code in the source or
they can resort to assembly language debuggers. Although widely used, each of these techniques
has some serious problems.

Analyzing system output usually means pawing through miles ofprinterdump output. The applica
tion was running fine for a while and then it blew up. The dump comes out and then you try to
reconstruct what happened. The problem, of course, is that it's difficult to find something wrong
in the maze of maze of registers and memory locations. When you fmally do find something you
might actually be looking at secondor third ordereffects. In other words the real bug caused some
thing to happen which caused something else to happen which you saw (second order effect). In
addition, you need to learn how to read dumps and, usually, you also have to learn a bit about as
sembly language in order to navigate the output. This type of debugging was the primary debug
weapon in the arsenal of the batch programmer of the 60's

The next approach is to add special debug code. It's surprising how many programmers still use the
"put in DISPLAY statements" method to finding bugs. This technique requires the programmer to
insert little "hi, you got this far" messages in the program source code. The program is run and the
output is then analyzed. This technique has several problems. First, you have to know where the

0002-2 Symbolic Debugging

bug is (roughly) in order to know where to insert the print statements. Second, inserting debugging
statements alters the program and may even make the bug go away. Finally, the debugging state
ments are, by definition, never in the program when you need them. This means you have to put
them back in, recompile, re-link and they try the program again. Also, unless the debug statements
have testing associated with them, they can generate reams of output which must be carefully
analyzed (shades of the output dump).

The final nonsymbolic approach is to use an assembly language debugger. These debuggers were
developed by the assembly language programmers and are, in fact, pretty close to symbolic debug
gers if you program in assembly language. The problem here, however, is that you must descend
to the depths of assembly language in order to use them thus defeating the major reason for using
high level programming languages. If, as many other programmers, you program in a ponable lan
guage you may regularly work on several different computers. This means that you'll have to be
adept at the assembler on several machines. Still, even with its problems, the assembly language
debugger is usually the best alternative if full symbolic debugging is not be available on your sys
tem.

How is symbolic debugging different?

The approach used in symbolic debugging is different from the first two alternatives given above.
It is also much simpler than the assembly language approach. The fundamental difference is that
it is an interactive action. The programmer is dynamically interacting with the program being
debugged. Other nonsymbolic approaches are static. You are analyzing a print out of what hap
pened or you are watching the output generated by special debug code. With symbolic debugging
you are encouraged to try experiments to prove or disprove theories about what might be causing
a bug. If unexpected results are seen, you can quickly try a new course of action. In a large system
without symbolic debugging it is often difficult even to discover which module the problem is in.
With the right set of symbolic debug features this can border on simple.

As a maintenance tool for supporting a software system symbolic debugging is invaluable. Usual
ly during this part of an application's life cycle it is supported by people who did not do the original
development work on the project. Symbolic debugging techniques enable these people to watch
the program execute. Its logic flow and operation become very real to the support people and their
job is made simpler so their throughput is increased and the support costs are reduced.

How does symbolic debugging work?

The symbolic debugger is actually only one part of a series of cooperating programs. The symbolic
debugger (depending on implementation techniques) requires infonnation from both the compiler
and the linker. Remember, during normal compiling, most of the source information is lost when
the object modules are produced. In order to have symbolic debugging, the information usually
discarded by the compiler must be passed through into the object modules. In addition, because
object modules may be relocated in memory as a result of the linking process, the linker (or loader
or segmenter) must output infonnation to a special file called a debug infonnation file or a debug
map file. The result of the compile-link operation then is a completed application program along
with a debug infonnation ftIe.

Symbolic Debugging 0002-3

The basic idea behind a symbolic debugger is to be able to execute the application normally by is
suing the appropriate start up commands to the host operating system. If, however, the program
displays some aberrant behavior, the symbolic debugger may be invoked which then runs the
program in a different mode making it available for debugging. During debugging there are two
program executing: the application program and the debugging package itself. The programmer
interacts with the debugging package while the debugging package interacts with the application
program being tested

There are, essentially, two classes of symbolic debuggers. These are intrusive and nonintrusive.
An intrusive debugger is one in which the application is compiled in a special way which causes
some amount ofdebug code to be placed in it. A program compiled with debug code inserted in it
is said to be instrumented. A noninstusive debugger does not require any special debug code to be
insetted into the application. Totally nonintrusive debuggers are rare and need a great deal of help
from the host operating system. More than likely the symbolic debugger you will be using is an in
trusive debugger.

It is important to detennine the amount of intrusion which is required for debugging. Normally the
compile process is altered in some way when the symbolic debugger is to be used. For example,
in Microsoft's QuickC compiler, the user selects if the compile will result in a debuggable object
module or not. Likewise in HP's TOOLSET COBOL debugger all source modules to be debugged
must have the $CONTROL SYMDEBUG option. If the intrusion is small in terms of consumed
program resources (memory space andexecution time), then applications can be routinely compiled
with the debug option. By doing this, especially on new applications, the debugger is always avail
able when a problem is discovered. This removes the need to recompile and re-link the application
when a bug shows up. In fact it is quite common for an address sensitive bug to vanish when a
program is compiled in the debug mode. By always compiling in debug mode this can't happen.

What are symbolic debugger features?

Although source languages differ widely when it comes to features, symbolic debuggers are fairly
similar in terms of the basic offering. Different debuggers are differentiated by how the features are
implemented and the ease of their use.

The debugger model the programmer deals with is the original source fue and the currently execut
ing statement. Usually the source statements around the current statement are displayed on the
screen along with a command area. The program under test is placed in a suspended state so that
it is not executing and the debugger, itself, is waiting for commands from the programmer. Note
that because of the required programmer think time a symbolic debugger is not normally useful for
real time applications which must execute without interruption. If a program must read a sensor
every 2 seconds and it takes you 4 seconds to type a command to begin execution, you're in trouble!

Most symbolic debuggers are command driven. This means that you type in commands to bring
the debugger into action. DEBUG on the HP/lOOO RTE-A is fairly typical. DEBUG's commands
are one or two characters followed by one or more arguments delimited by various characters
depending on the selected options. The arguments, however, reference objects normally found in
the source language using at least some of the syntax of the original source language. These objects

0002-4 Symbolic Debugging

mightbe statementnumbers oruser identifiers (as opposedtooctal memory addresses). PC's, having
powerful screen management technology, can suppon debuggers which use a mouse.

The Microsoft Codeview debugger is a good example of a debugger which is both command and
mouse driven. The mouse is a natural tool for the symbolic debugger. Ifyou want to execute your
program up to a given line, you just point at the line with the mouse and click a button. This high
ly tactile way of manipulating your program is both natural and easy to learn.

A good symbolic debugger should have as many of the following features as is possible:

Breakpoints

The basic operation of the symbolic debugger is to insert breakpoints into the program under test
and then execute the program until it hits a breakpoint. When a breakpoint is hit, the program
suspends execution and you can look around. For example, if you suspect that a problem is at line
100 (the program aborts from that location), you can set a breakpoint at that line and execute the
program. When the program attempts to execute line 100, the breakpoint is hit and you can check
the values of various data locations to make sure everything is as it should be.

The simple "stop when you hit it" breakpoint may be augmented by several other different break
point types. This may include iterative and conditional breakpoints. Iterative breakpoints usual
ly have a count associated with them. The program is allowed to pass thought the breakpoint for a
specified number of times (the count) and then the program stops. This is especially useful when
you know that a problem occurs on a given line after a certain number of "events" happen. For ex
ample, your program blows up after reading 125 input records. You could place an iterative break
point with a count of 124 on the input read statement. The program will stop just before reading the
125th record.

The conditional breakpoint actually allows you to specify some type of test condition. When the
breakpoint is struck, if the condition is met, the program will suspend. If the condition is not met,
the program continues execution. For example, your program aborts when a value gets greater than
6742. You could set a conditional breakpoint with the condition "value greater than 6742". Each
time the breakpoint is hit the debugger checks to see if the value is greater than 6742. Ifyes, the
program under test is suspended for you. This is especially useful when a bug displays itself only
when certain data values are being processed

Single step

In addition to breakpoints another vital feature is the ability to single step source statements. This
is usually accompanied with a representation of the current statement on the screen. This might be
a marker to one side of the statement (CCS TRAX) or, more spectacularly, by changing the color
ofthe current statement (Microsoft QuickC). Whatever the display technique, the single step opera
tion should have these important features:

Symbolic Debugging 0002-5

Simple command to repeat single stepping. When you are single stepping, you normally want to
execute several lines one after the other. This should not require long command sequences. A
softkey or a carriage return is all that should be required to execute the "next" statement

Single step should come in two different "flavors". You should be able to step into subroutines or
to step over subroutines. Stepping into subroutines means that you continue to single step when
executing the subroutine. This gives you a look at the operation of the subroutine ifyou think the
bug might be there. Stepping over a subroutine causes the subroutine to execute at full speed with
the next single step operation at the source statement which immediately follows the source level
call to the subroutine. This is important when you know that the subroutine is bug free, but you
wish to trace the flow of the calling program.

Although not provided by all symbolic debuggers (multiple breakpoints accomplish the same thing)
single step execution is a real time saver when trYing to follow complex logic flow. For example,

;the outcome of a "go to depending on" statement is simple to figure out with single step, but quite
a bit harder to figure out using breakpoints.

Variable display and modification

There are several different ways to implement this important feature. Some debuggers (HP
DEBUG/lOOO, CCS CView, HP TOOLSEn have commands to display the current contents of
program variables whenever you want. The display command uses the source level name for the
data object as well as the source level syntax to access the object. This can be quite complex. For
example, the C debugger CView from CCS allows you to enter a complete C expression which is
then interpreted with the computed results printed out A more common approach is to enable the
programmer to print out simple data identifiers, perhaps indexed with constants.

A different approach is the one used by Microsoft's Codeview and to a lesser extent HP's TOOL
SET. These debuggers allow you to define watch expressions which automatically display the con
tents of user identifiers whenever the identifier changes during the execution of the program. This
feature coupled with single step can be very useful for determining when a data value gets incor
rectly changed. The Microsoft implementation of this feature allows the programmer to open up a
special watch window which contains the current values of specified variables.

The automatic display of variable changes as opposed to upon user request can take its toll in extra
added code unless there is some assist from the hardware. The compilermust add special subroutine
calls on every assignment statement in order to trap variable changes. The overhead may become
prohibitive.

Another, less costly way of achieving much the same effect is to be able to attach commands to
breakpoints. The commands are usually display commands. The idea is that the commands will be
held in ready waiting for the breakpoint to be hit. When the breakpoint is hit, the attached com
mands are executed. Doing this, for example, would allow a programmer to attach a number ofdis
play commands to a breakpoint followed a continue execution command. Whenever the breakpoint
is hit, the display commands execute followed by the continue command. The net effect is that the
data objects are printed will little overhead.

0002-6 Symbolic Debugging

A final aspect of data display is the format of the output. It is a useful feature if the debugger is
capable of outputting data in several different user selectable ways. Sometimes, for example, you
may wish to view a decimal number as a decimal number, but other times you may want to see the
same value in octal or hex. Most symbolic debuggers accommodate this.

Theflip side ofvariabledisplay is variable alteration. Most symbolicdebuggers enable the program
mer to change the contents of variables. Again, the original source names for the variables are used
along with the source syntax. All debuggers support changing the values of simple scaler variables
(non array type). Some allow you to change the values ofan array variable with a single command.

Being able to change the value of a variable is a surprisingly useful feature. It often allows you to
change a good value to a bad value just to see how the program will react. Or it allows you to patch
an incorrect value in order to continue looking for a different bug without re-linking. On the
HP/3000, for large COBOL programs, the time required to re-segment can be large. Being able to
find another bug without recompiling and segmenting is an important feature.

Flow control

Most debuggers offer several commands which effect the execution flow of the program under test
There are usually two different types of flow control. The first is the proceed command. Using a
proceed will cause the program you are debugging to begin execution under the control of the sym
bolic debugger. The program will continue execution until it either tenninates, is terminated by the
host operating system or hits a breakpoint. There are several variations on this theme which are
available.

For example, the DEBUG/lOOO package gives the programmer the option of keeping the program
under test alive after a system termination. This means that if the program under test executed an
illegal instruction or violated the memory protection scheme, rather than tenninating the program,
control is passed back to the debugger so that the programmer can examine the program after the
crash. DEBUG/lOOO even allows you to re-execute the program after the halt (presumably after
changing data values).

The proceed commands found in symbolic debuggers usually have several different options as
sociated with them. The CCS TRAX debugger, for example, provides for a temporary breakpoint
which may be set with the proceed command. The proceed command can optionally indicate that
the program under test should execute up to a given point and then stop. Although the same effect
may be achieved with a breakpoint, combining the breakpoint with the proceed makes life a little
easier.

Another important (but dangerous) flow control command is the go to command. This allow the
programmer to redirect control to another part of the source program. This is often used to re-ex
ecute statements after a variable has been changed to check the new outcome. The problem with
this command is that its power often lets you abuse the source language by going where the com
piler never intended you to. In COBOL, for example, you might circumvent a proper exit from a
PERFORM statement by using a debugger go command. This might ultimately introduce a (oon-

Symbolic Debugging 0002-7

repeatable) bug which isn't really a bug at all. As in programming using a go to in debugging should
be done with care.

Some miscellaneous features•••

We have discussed most of the mainstream symbolic debug features and their typical usage. What
remains is a briefcollection of features which have appeared in various debuggers and are interest
ing enough to comment on. Unfortunately, no one debugger has all of these features - too bad.

Dual displays

This is a nice feature found in the Microsoft Codeview debugger. It enables you to have access to
the source code as the program executes, yet still see the output generated. You can switch back
and forth between the source display and the output display by pressing a function key on the PC.
This feature is vital to anyone designing interactive applications.

A similar feature is available in the CCS TRAX debugger. Designed to aid in the debugging of
COBOL based V/pLUS programs, TRAX provides a feature similar to Codeview with HP charac
ter oriented tenninals. Again, you can switch between the output (V/PLUS) display and the source
code debugger display.

lA>1Vlevelmmachine

Some symbolic debuggers (in a seeming contradiction to their major claim to fame) enable you to
gain access to the underlying machine. These features are used infrequently, but when you need
them they are nice. For example both Codeview will explode the source code into assembly lan
guage with intermixed source code statements. You can then extend the commands to include as
sembly language versions. In other words single step becomes single instruction step instead of
single source statement step. DEBUG/lOOO provides the ability to view assembly language, but
not to interact with it. TRAX gives assembly language in a separate window of the output display
which overlays the source.

These features are useful if you just can't figure out what went wrong at the source code level. All
symbolic debuggers that I've seen also include an optional register display if you are working in
assembly language mode so that you can see the effect of the machine state as instructions execute.

Another (not quite so low level) feature is the ability to map addresses back into source line num
bers. All symbolic debuggers have the ability to map statement numbers into the absolute addres
ses of the executable program, but some have the ability to reverse this process. This becomes
useful when you have to interpret system error messages. The operating system usually gives you
an error message which references an octal address. The ability to map this address back into a
source file and a line within the source file can be a real time saver.

There is another class of features which give you a history of your executing program. This is done
in a variety of ways with differing degrees of usefulness. Toolset provides a paragraph trace fea
ture which prints out the last several paragraphs which have been executed in a COBOL program.

0002-8 Symbolic Debugging

TRAX will display the call chain which displays which subroutines were called in order to arrive
at the statement you are currently executing. Codeview has a similar feature, but with the added
ability to actually breakpoint the call chain so that when a subroutine returns the breakp~int is struck.

All of these features provide a way to determine how you got to a given source statement. At first
this might seem silly, but it is quite important. If you have a subroutine which is used in several
different places you may not know where the subroutine was called from. Placing a breakpoint in
the subroutine and then using a history feature will give you a good idea how you got there.

Conclusions...

Symbolic debugging has finally come of age. There are currently a number ofexcellent debugging
packages out on the market which greatly reduce the time required to fmd and fix bugs. Although
sometimes looked upon as afrill, the symbolic debugger is as important a tool for serious software
development as the compiler itself.

Although debuggers differ substantially in detailed implementation many have the same features.
This paper has discussed the basic features required of any symbolic debugger in order to be use
ful. Briefly they are:

Source based. This means that debugger commands and displays should be oriented around
the original source program. Commands should reference source statement numbers and source
user identifiers rather than machine addresses.

Breakpoints. This are markers which may be set in the program being debugged. They may
include simple, conditional and iterative.

Single step. This feature lets you execute a source statement at a time. It should offer the ability
to step into subroutines and to step over subroutines.

Variable access. You should be able to display user variables and alter their values. Variables
are accessed by their source names using the source language syntax.

Flow control. You should have the ability to navigate your source program; to proceed to
specified statements and to skip statements by using a go to type of command.

For most programming applications symbolic debugging is by far the best way to debug programs.
Because it is highly interactive it enables the programmer to easily develop hypotheses about what
is wrong and then try experiments on the executing program to uncover the bug.

Symbolic Debugging 0002-9

Separating D8t8 and Processing
or

Building Databases for Systems Yet to Come

Matt Ohmes
Cognos Corporation

2301 East Lamar Blud. #416
Rrlington, Teaas 16006

Introduction

This paper had a long and difficult birth.

Like most programmers during the last 10 years, I had been told of the
glories of "normalized" data structures. But also, like most programmers, I
did not really know WHY it was important to normalize. It was simply
accepted as a theoretical maxim that "good" database designs were
normalized. It was also accepted as common sense that "real programmers"
didn't normalize; real programmers optimizedl

There did not seem to be a practical advantage to normalization. It made it
more difficult to program, maintain, and fine tune applications. On the
other hand, if you just made a few adjustments to the database, here and
there; things got so much simpler.

Since I considered myself a "real programmer", I never paid much attention
to all this theoretical talk. After a while though, I began to notice some
problems with my database designs. Oh, they worked all right for the
original application, but the designs caused nothing but problems for
anything new.

Several years and a few minor disasters later, I decided to re-analyze my
approach. Why was the database that was so "perfect" for one application,
"perfectly awfu1" for the next? Finally, the l1ght dawned; "normallzation'"

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-1

I had fine tuned and "tweaked" myself into my a corner for the last time.
From that point on, all my data bases would be perfect paragons of
normalized forml

Several more years and minor disasters later, I realized that normalization
alone, was also not the answer. It was a technique. A set of rules that
tended to yield a desired result. The result is easier to state than achieve:
The "ideal" database is one that allows any number of applications to

effectively and efficiently access and manipulate it. To achieve this
result, the designers and programmers must, as much as is possible and
pract ica1, separate the database from the processes that acts upon it.

This paper addresses many of the pitfalls that I have encountered while
learning the ins and outs of database design. It also lists some rules of
thumb that I use in my data structures. Hopefully it will help you sidestep
some of my "minor disasters".

What is Normalization?

Since this paper is not intended to be a formal discussion of normallzation,
I won't spend much time on the normalization process or theory. But, I will
give a general description of 1st, 2nd, and 3rd "normal form" structures.

The initial requirement for any level of normalization states that all
records (or "tuples" if your relational) must be uniquely identified. This
unique identifier is commonly called the "primary key" and can be either a
single field or combination of fields. Note that Image Detail sets cannot
have a unique key item, but each record can still be different from others in
the set; through a combination of fields.

First Normal Form stipulates no repeating groups. Simply stated, this
means getting rid of all arrays. This applles to both explicit arrays (eg.
Item MONTH occurs 12) and lmpllclt arrays (eg. Item JAN, Item FEB, etc.>.

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-2

Actually" First Normal Form prohibits a variable number of repeatlng flelds
in a record" but this restriction is generally expanded to include any arrays.
Arrays are usually eliminated by creating a new file in which each record
would take the place of a single" occupied array occurrence.

Second Normal Form must satisfy First Normal Form, plus all items must
be functionally dependent on the primary key alone. In other words,
eliminate data redundancy. "Customer Address" should only be in the
Customer file. It should not also appear in the Invoice file just because
Invoices are sent to Customers. The Customer must be related to the
Invoice file in some manner" but that relationsh·ip should be via the primary
key of the Customer record. The goal is minimum redundancy.

Third Normal Form requires Second Normal Form, plus the elimination all
transitive dependencies. Simply stated again, this means don't put vital
information where all references to it might be eliminated by normal
processing. For example, if all Invoice records are deleted from your
system after they're paid, make sure that the Invoice flle is not the ONLY
place you store your customer's addresses. If a customer pays his bills
promptly, you certainly don't want to lose track of him'

There is also a Fourth and Fifth Normal Form in relational theory. In
practice" however.. Third Normal Form is the generally accepted standard
for most data processing shops. Third Normal Form is what I refer to as a
"normalized" database in this paper. If you want a more thorough
discussion of the normalization theory or process.. there are many papers
avallable. Three I have referenced in the writing of this paper are:

A SIMPLE GUIDE TO FIVE NORMAL FORMS IN RELATIONAL DATABASE THEORY
William Kent
Communications of the ACM
February 1983

and

Sepal"ating Data and Processing or
Designing Databases for Systems Yet to Come

0005-3

SIX STEPS TO A NORMALIZED DATABASE
Paul Bass
Supergroup Magazine
May/June 1985

and

HOW TO DESIGN FOR THE FOURTH GENERATION
Leigh Solland
Baltimore/Washington RUG - Interex 1985
Paper 3013

There are literally hundreds of others available. Any that explain the
process clearly are worth reading.

Why aren-t most data bases normalized?

Let us assume that the average programmer or analyst can understand
enough relational theory to describe a normallzed data structure. Why then,
aren't more data bases normalized?

The primary reason is, there is no perceived advantage to normalization.
Most traditional programming languages do not readily lend themselves to
normalized data structures. A Third Normal Form database does not
necessarily make for more work for the average programmer, but certainly
does not make for lessl

Normalized data bases tend to have more flles with each flle havlng shorter
records. Those files all must have separate open, read, check for end of
flle, and close routines. It is simply easier for the average programmer to
have fewer files. Fewer files mean a lot less code in most programming
languages.

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-4

It is also easier to build on familiar techniques. Even if those techniques
aren't necessarny as relevant for present day computers. For example,
many systems have been designed to minimize reads and writes at all
costs, even though almost all systems can utilize Multi-record reads and
disc caching with I1ttle or no programmer intervention. This doesn't mean
that disc I/O should not be minimized. But it is not the hobgobl1n it once
was.

It should be noted however, that normalization does tend to penalize record
retrieval. Data that might be on one file in a traditional structure might
have to be read from two or more files in a normalized structure.

Why should data bases be normalized?

If it 1S so much trouble to use normalized data bases, then why on earth
should we even bother? The answer is simple; normalization yields data
structures that are stable, accessible, and flexible. The design minimizes
data redundancy and maximizes consistency. If the database is designed
properly, any subsequent application should be able to access and
manipulate the data as well as the first.

This is the major problem with most. "unfriendly" data bases out there
today. Most were designed around a single application. Their structure is
build to get the most out of that application. Unfortunately, most
designers don't reallze that the fundamental data entities and relationships
for a company change very little over time. The systems that process that
data, however, and the specific procedures involved, change more
frequent ly.

This point must be clearly understood, before the advantages of
normalization can be reallzed. A normalized database is inherently
independent of its applications.

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-5

The ·Danger Zones·

If you are in the process of designing a database or building an application,
you may want to run down a mental check list here. There are several
"warning signs" of a non-normallzed database. If these signs are present,
some "rules" have been violated. That does not mean the database design is
"bad". It is simply not perfectly normalized. As we'll see later, there are
sometimes perfectly valid reasons for breaking the rules.

Rrrays

Anyone who ever took a computer programming class in school learned to
manipulate arrays. They are perfect for teaching looping and control break
processing without actually getting into messy concepts Hke files and data
management systems. They are also easy to understand and control, so
most programmers Quickly become quite dexterous with them.
Programmers are people, and people like to stick with what they know, so
arrays tend to crop up in a lot of data bases.

There is nothing wrong with arrays. In fact, they are very handy for certain
things. Arrays are great for "summary" type records. If I have an individual
sales record for each of my 100 products for each week of the year; at the
end of the year, it would be nice to archive that data on 100 records. Each
record would have a 52 occurrence array, and each occurrence would have
the sales for that product in that "\leek. That seems a sensible idea, so why
wait unt11 the end of the year? Why not use the array records for daily
processing?

The most obvious problem is actually the most minor; the problem of
unused occurrences. If we used our example array for dally processing,
over half the array would be wasted space unt 11 the middle of each year.
However, unless each occurrence was Quite large, the actual space "wasted"
would not significant.

Separating Data 8nd Processing or
Designing Databases for Systems Yet to Come

0005-6

The major difficulties with arrays arise when we change our processing
requirements. What jf I decide to record dany sales figures for the 10
most active products.. but only want monthly sales of the bottom 50? My
array made assumptions about my processing that had nothing to do with
the basic data. The data includes product.. total sales, and the period of
time involved. The array forced my period of time to be 7 days. Would your
boss allow you design a database that would permit only 10 products or
only 50 invoices? The principle is the same.

Arrays force processing assumptions on data structures that inevitably
must be revised.. and arrays are notoriously resistant to revision. They also
tend to be exceptionally tenacious. Programmers seem willing to go to
almost any length to keep their arrays (eg. "Well, when the array overflows,
we add another record with the same key.. except we set a flag on the
second record indicating it's a duplicate. Then we increment a counter on
the first record showing how many duplicate records we have ...).

A normallzed data structure may force more records to be read for a given
report, but it is relatively easy to restructure.. and it is~ processing
independent.

The -Euerything- Record

The next "warning sign" is what I call the "Everything Record". It is
revealed by the presence of very large records in relatively few files. The
general idea seems to suggest that if you put all your data into a single
record, you can save a lot of time and effort opening.. closing.. and reading
fl1es. The chief benefits are simpler file handling routines and fewer
records to read. You don't have to go elsewhere to get any information.
Normallzed databases tend to have more files.. but each file has shorter
records.

Very large data records are rarely a conscious decision on the part of the
database designer. Most "everything" records just seem to grow as

Separating Data and Protessing or
Dellgnlng Databases for Systems Yet to Come

0005-1

applications evolve. It 1S a lot easier to add a new field to an existing
record than to consider the implications of a new file in the overall design.

"Everything records" often suffer from a "merging" of data entities. If
several fields have been added to a record to indicate a number of
different client statuses, for example; perhaps a new "client-status" file
should be created. That way new status codes could be created and old ones
deleted without a structural change to the primary file. The resulting
design would also be easier to comprehend.

It is difficult for programmers to understand very large record structures.
It is hard to grasp the individual meaning and relative importance of 300
different data items in a single record. Normallzation clarifies data
relationships and anything that clarifies the structure. simplifies
development and maintenance.

The Multi-Record Type File

The next "warning sign" is another example of "merged" entities. That is
the multi-record type file. (eg. Header Records, Detall Records, Trailer
records). There are few advantages to multi-record type files. The only
one I can think of is a reduction in file opens. There are a lot of
disadvantages'

Multi-record type files complicate programs. The programmer must check
for file type, save record locations for later updates, check for different
data types in overlapping fields, and a number of other irritations. Any
record structure change is major problem. You can't just add a field, you
must check every other record type in the file and make adjustments. Even
minor changes cause major ripples.

Terribl~ performance problems can also result. At one site I visited, there
was one Image data set, containing over 1 million records, that had 17
different record types described for it. Three record types comprised over

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-8

99 percent of fHe, two types had less than 100 records each, one had 5. To
report those 5 records, over 1 million had to be readl The user base had
l1ttle idea which record type was which. They were forced to decide if
they should scrap an fairly satisfactory system or live with it, as it was,
forever.

Multl-record type flles perpetuate old, batch processing concepts. They
come from an era when sequential files were the cutting edge of data
management technology. There is little advantage in retaining this
technique.

Calculated Items

Calculated fields are also considered a "warning sign" in data design.
Although I have found no specific prohibition against stored, calculated
values in relational theory, they are generally rejected in normallzed
designs. If calculated values are stored in the database, their accuracy is
always in question. This restriction is usually rather loose, however. If
accuracy of data is vitally important and processing time is relatively
unimportant, calculated fields should be avoided. If processing time is of
paramount importance, calculated fields are well worth considering.

All the "warning signs" llsted above fall into a broad category I call
"language specific designs". They result from applying appllcation
programming techniques to data structure design. When programmers learn
how to "code around" unusual data designs, they typically add those
techniques to their "bag of tricks". Unfortunately, they also tend to add the
unusual data designs to that mental bag too. This perpetuates "unfriendly"
designs. It's llke the old saying: "When the only tool you have is a hammer,
all your problems start to look like nails." Don't repeat a questionable
design just because you know how to program around it.

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-9

File Specific Rpplication Designs

Another broad category of "warning signs" is "file specific application
designs". This is the opposite side of the design coin. In this case it is the
application that suffers because the developer overuses certain file
features. For example, if an entire application is built around the generic
retrieval capabillty of KSAM, future systems may suffer.

A more common but less obvious example of a "file specific appllcation
design" involves item level locking in Image. Item level locking has widely
been described as an important component in "strong" application locking.
While Item level locking may be useful in a single application, it is an
invitation to misfortune in the long term. Applications that rely on item
level locking to achieve acceptable performance, are extremely fragile. If
a subsequent appllcation does not follow exactly the same locking rules as
the first, Image resolves the conflict by using the broadest locking level
requested. This could easily cause an existing appllcation to suddenly
become unacceptably slow.

For a more complete discussion of locking strategies and pitfalls, I would
suggest reading Chapter 15 of the Image/3000 Handbook. "Picking the
Lock". A general rule can be applied; don't design your database around the
way you code, and don't code around the "neat tricks" in your file
management system.

When should you -break the rules-?

As I mentioned earlier, the "warning signs" indicate some "rules" have been
violated. But, there are valid reasons for breaking those rules. If
performance concerns become overwhelming or a change will greatly
simplify the overall processing, then bend the ~ules just en'ough to get by.
Don1t assume that all normalization should be thrown out the window just
because one report runs slow. If possible, wait until the user base has a
chance to exercise the system. They wlll show real bottlenecks, as
opposed to predicted ones.

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-10

I know of at least three examples, from personal experlence, where
violations of the normallzation rules dramatically enhanced the existing
system, without compromising the overall design.

One site I visited did not have n calculated or summary fields, even
though they had hundreds of thousands of transactions. Even the simple~t

of calculated reports took hours. Since day old data was accurate enough
for management reports, several summary flles were constructed. In each
summary fl1e, thousands of records were compressed into a few summary
records each night. The reports then ran almost instantly against these
shorter files the next day.

Another site had a system that was almost totally table driven. They had
over 30 different types of "lookuplt files in which the records all had the
same format; "code-value", followed by "description". They were all put
into a single multi-record type fHe to create a .. table of tables". This kept
the overall structure cleaner and made adding new table types much
simpler.

The third site (a well known software vendor, very famillar to me) had a
database in which each Customer was related to one or more CPU records.
The number of CPU records per Customer was not originally keep on the
Customer record. It was soon discovered that every Sales Rep wanted to
instantly see the number of CPUs each Customer had. Rather than force
that number to be counted on each inquiry, it proved to be more effective to
count CPUs when they were added, store that count on the Customer record,
then have a batch process re-count periodically for "insurance".

In all three instances, the data designs were "de-normalized" to a limited
degree to aid in processing. But, none of the sites had to corrupt their
basically sound designs; and all of the sites have added new systems on
top of their original databases with little or no problems.

Separating Data and Processing or
Dellgnlng Databases for Systems Yet to Come

0005-11

Conclusion

In the final analysis, subsequent systems are the measure of a database
design. If the second appllcation runs as well against your database as the
first, then you have a strong, stable, flexible design.

Data (the database) and processing (the applications that use that
database) are and should be separate. Processing is based on the needs of
the user at the moment. Data reflects the information needs of a company
over time. With accessible data and flexible data structures, MIS can plan
for the needs of systems yet to come and keep the users satisfied. And
that is, after all, our job.

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-12

USING INFORM, PROTOS. AND QUIZ
A User's Experiences

Richard Decker
Co~puter Task Group

SUite 644
World Trade Center

BaltiMore Maryland 21202

This paper shares SOMe of MY experiences in developino sYSeMS With
COBOL and fourth qeneration lanquaqes. The fourth oeneration lanquaoes
to be hiohliohted will be INFORM/3000. PROTOS and QUIZ.

INFORM/3000 is the report writinQ product of Hewlett-Packard's (HP)
RAPIDi3000. PROTOS is a product developed by PROTQS SOFTWARE COMPANY
of AUSTIN. TEXAS that qenerates COBOL source code. QUIZ is the report
writinq section of POWERHOUSE products developed by COGNOS of CANADA.

A Qood workinq knowledqe of the Hewlett-Packard database lanquaoe
IMAGE and screen forMatter VPLUS Must be Mastered before the user can
acquire all the potential that the fourth qeneration lanquaqe PROT OS
can offer. The user of QUIZ and INFORM does not need a knowledoe of
the database lanquaqe or screen forMatter. The difference is that
PROTOS is a productivity tool deSIqned to be used Mostly by
proqraMMers. while QUIZ and INFORM packaqes are tools used by end
users.

There is a learninq curve to be conSIdered when first beQinninq to use
the new lanquaQes. I have learned all of the lanquaqes on MY own
without havinq the ooportu~nitv of attendino a forMalized class on any
product. Manuals supplied with all products are excellent, well
written and orqanized. A person could beCOMe proficient in the
lanquaQe with about 40 hours of concentrated study and practice for
PROTOS. about 20 hours of effort for QUIZ. and about 10 hours for
INFORM.

0009-01

OBSERVED PROBLEMS
ProbleA 1:
I have observed that when a fourth Qeneration lanQuaQe is installed at
a site a strono tendancy prevails to let the user play a predoMinate
role in developino reports. After the database has been bUilt. and the
data loaded into the SysteM. the screens are developed and a user can
access data on-line. The user is usuallY very pleased with the
Quickness of the on-line screens. but in tiMe. they always want a
hardcopy report that shows everythinQ. Hardcopv reports that show
everythino. sorted two or three different ways are not thinQs that
process very fast.

Possible solution to proble~ 1:
Ourino SysteM analysis all anticipated reports should be analyzed and
an aQreeMent reached with the user and analyst as to content before the
analyst or prOQraMMer is transferred to another project. Reports that
Miqht take a lonq tiMe to process Miqht be faster in execution tiMe if
the proqraMs creatinq theM were written in COBOL. If the report
accesses More than one file and various types of cro5s-checkinq and
validation are involved within the report then the use of COBOL is
reCOMMended. Reports such as these are best addressed durinQ
develoPMent.

Proble~ z:
On the other hand are 'ad-hoc' reports. These reports are those Quick.
short reports that answer 'Questions of the MOMent'. Fourth qeneration
lanouaQes are usually excellent for these types of reports. These
Quick reports are usually answerinQ Questions of data content. The
data content is either of a certain field of data. or durino a
particular tiMe period. There is usually a selection verb involved and
one or More paraMeters associated with it. A probleM arises if the
prOQraMMers are busy with other thinos and the end user knows nothino
other than the report writers of the fourth oeneration lanQuaQe. The
probleM is that production reports are written with the report writer.
and SOMe of the reports are Made Quite extensive in scope of data
reported. A user can beCOMe very attached to a packaoe and try to see
just how intricate he can Make a report before the entire SysteM is
brouQht to its knees. This type of cripplinq affect is not necessary.

POSSible solution to oroble~ Z:
More thoUQht and on-qoino support should be oiven the user by the
proqraMinQ staff. COMPlicated production reports should be written in
COBOL. or PROTOS. and SOMe restraints should be placed on the user
abusinQ the power of the report writers for 'ad-hoc' reports. This type
of Mal-practice causes lack of systeM control. and Mav very well cause
the buvinQ of More and More disk drives. and More powerful CPU's. all
in the naMe of 'Qivino the user what they want'.

0009-02

How is the oroara~~ina staff suppossed to acco~olish this on-eoine
support when they are already backloQQed with requests. Here are a few
5uQQestions that May help. Situations differ. of course. froM site to
site. The reasons for backloQs are surely not all the saMe.

SUQQestion nu~ber one: More uniforMity of orocraMMinc style.

If all proqraMs were to look alike, Maintenance people would know where
to look for a oroblem. If a chance were to be Made to orocraMS, the
chanqe would be predictably placed. and a better estiMate of tiMe
involved could be qiven. Uniformity of style also includes uniforMity
of code. Copylibs should be used wherever possible. Skeleton proqraMs
should be the basis for all types 0f proQrams. Screen proqraM
develOPMent, report prOQraMS, and Maintenance type prOQraMS all should
have a well thouqht out pre-defined basis for their develOPMent. The
cries of prOqraMMer creatiVity should be drowned out. If a person has
a better way of doinQ a routine, or proqraM. then let the idea be
shared for the benefit of all. HavinQ More than one style of code in a
shop, or worse within the saMe SysteM. is a niqhtMare to Maintain.
Besides, when you execute fourth Qeneration lanQuaaes, you are tradina
individual creatiVity for speed. The speed COMes frOM the predictable
way of expressinQ the syntax of the developMent lanauaqe.

SUQQestion nu~ber two: More interaction between users and the DP staff.

If a user is becoMinq obsessed with a packaae. and beQins to be abusive
with its capabilities. do not let it continue until the entire CPU is
openly cryinQ for help. Fourth Qeneration report writers are ideal for
certain types of reports. DeterMination of best use is always needed.

SUQQestion nu~ber three: NorMalize the database whenever possible.

Fourth aeneration lanquaoes work best in databases that are nor~alized.

NorMalization is linkinQ of data With the use of keys and related
information. A proce5S of deliMitlnq the data to a SMaller and SMaller
nUMber of records to scan is Quicker than lookinq at all records in a
file. RandOM access can be used with keys. Seauential search is
needed if no keys are available.

Review the present structure of the database and see if benefits could
be realized with SOMe structured Modifications. This sUQQestion could
beCOMe very expensive to incorporate on existinc SysteMS. It may not
be practical or pOSSible on vendor SysteMS. When developinq SysteMS
in-house it is a priMary concern.

0~09-03

MAINTENANCE

Different products take different approaches to their operation.
PROTOS. because it will Qenerate COBOL code as the output utilizes its
own database to orqanize itself. QUIZ will utilize either
DICTIONARY/3000 or a cOMPiled scheMa. called QSCHEMAC. to oroanize and
operate. INFORM utilizes DICTIONARY froM which it extracts data.

Sche~a description

A scheMa is a flat file describinq each data eleMent of a SysteM in its
Most priMary forM. For exaMPle last naMe is a alpha-nuMeric eleMent of
twenty characters. and iteM cost is a nUMeric eleMent with two deciMal
positions. The scheMa then qoes on to describe where eleMents are
found within a file. In addition to file layouts. redefinitions of a
eleMent May be found. For exaMPle the eleMent of telephone nUMber May
be redefined as cOMPosed of an area code. prefix or exchanQe. and the
station nUMber or last four diQits. EditinQ inforMation can also be
found in sOMe scheMas. This inforMation is usually identified after a
verb in the scheMa. such as the verb TYPE. TYPE Dollar would indicate
that all eleMents followinq should be forMatted with two deCiMal points
when shown to a user. Other TYPE editinq would be Date in MOY or YMD
forMat. or a picture clause such as Type 999.9999. a nUMber havino four
deCiMal places.

Maintenance of the 5che~a

If the QSCHEMA Method is eMPloyed then a scheMa file
USlnQ an editor subSysteM. This editor file will contain
IMAGE database and forMfiles. In addition the naMes of
files to be used are also listed. The identification of
used. size. type. and record layout of each file is also
editor file. After the editor file is created. use
prOQraM creates the QSCHEMAC flle.

is Maintained
the naMes of
flat and keyed
each eleMent

listed in this
of a utility

Each data eleMent's size and type Must be entered into the SysteM by a
user at least once. Each file naMe and layout Must be entered into the
SysteM by a user at least once. These two stateMents are to be done
whether OICTIONARY/3000 or an editor file is used with the products.
So why use DICTIONARY/3000? Because ~ore vendor products interact with
and thru DICTIONARY/3000 than an editor file.

0009-04

Maintenance of the dictionary

When usinQ QUIZ the choice of usinq OICTIONARY/3000 or QSCHEMA is left
to the custo~er. DICTIONARY is probably a better choice.
OICTIONARY/30~0 1S available on the HP-3000 whether or not a fourth
qeneration lanQuaQe is in use. The dictionary could be used as a stand
alone reference source. ProQra~ DICTDBM.PUB.SYS (Diet database
~anaQer) ~aintains the dictionary. OICTDBM is not as easy to use as
the QDoR product to input inforMation into oICTIONARY/3000. The QoOR
packaoe also has so~e other nice features associated with it that are
helpful in the Maintenance or develOPMent phases of projects. There is
an option that autoMatically qenerates COBOL copybooks for all the
divisions of a COBOL prOQraM. In addition a user can view all
inforMation concerninq a data eleMent. dataset. database or file
residinq in OICTIONARY/3000. When OICTIONARY/3000 is used there is
another product Made by COGNOS called QDOR that uses Menus and screens
to update the DICTIONARY/3000. This is iMPortant if Many flat files.
or KSAM files are used in the SysteM. The record layout of flat files
and KSAM files are not autOMatically copied into DICTIONARY/3000.
IMaQe database rootflles (showinQ database scheMa inforMation) and
FORMSPEC. containinQ forMatted screen inforMation. are autoMatically
copied into OICTIONARY/3000 usinQ a few SiMPle utility prOQraMS.

Maintenance of standards for proqra~5 - CODvbooks

While thinkinQ of ways to increase productiVity and Quality of software
used in today's SysteMS. let's not overlook SOMe of the More COMMon and
less expensive Methods available to proqraMMers.

The COMMunication area (COMAREA) of the buffer for the screen handler
VPLUS/3000 is not SiMPle. Use of a copybook MeMber for the COMAREA
standardizes and thus SiMplifies the use of VPLUS/3000. The copybook
MeMber for the IMAGE area contains all the redundant paraMeters the
IMAGE calls require. database naMe field. dataset naMe field. Modes.
buffer na~e field. etc. Usinq copybooks insure that those data
eleMents appearinq 1n Many prOQraMS will always be naMed the saMe
thinQ. This is appreciated by those persons doinQ Maintenance on
prOQraMS after the oriQinal author has departed. It is also
appreciated by the oriQinal author when tryinQ to Qet a prOQraM
finished by a deadline.

Another use of copybooks would be to store the forMat to be used
within the Identification division of a COBOL prOQraM. Within this
forMat is an expanded ReMarks section. Expansion would include all
pertinent inforMation about the prOQraM and how it relates to other
prOQraMS and files within the SysteM. This can prove to be an
invaluable asset durinQ Maintenance of the SysteM.

0009-05

Type of syste~s developed
Nor~ally MY work is in a Manufacturinq environ~ent. Users of MY
SysteMs include plant Manaqers. production supervisors. operators.
office clerks. and secretaries. In qeneral. ManaQers require sUMMarial
inforMation. operators need siMPle data entry screens which require
MiniMal trainina to use. and secretaries need siMPle and flexible
capabilities with their screens. Usually the systeMs developed are a
cOMbination of on-line prOQraMS involvinq data entry or inquire
screens. and batch proqraMS. In developina the screen prOQraMS
VPLUS/3000. or FORMSPEC. was the screen aenerator used.

ThoUQhts on chooslnQ a develop~ent lanQuBQe
If only one of the lanquaQes were utilized to develop a SysteM the
followinQ drawbacks Miqht be encountered. COBOL prOQraMS take tiMe to
develop and the services of a proqraMMer. PROTOS would require a
knowledqeable prOQraMMer or user. INFORM and QUIZ are liMited when it
COMes to doina intricate edit checkinq.

Factors to consider when ~lxl~Q the lanQuaQes
COBOL only
If COBOL is the only lanquaqe used there is usually a backloQ of user
requests. These requests can be for new SysteMS. Modifications to
SysteMS. corrections to proqraMS. updates to 'hard-coded' tables. or
need for More proQraMs. This delay results frOM a variety of factors,
the quality of the proqraMMinq staff. the size of the proqraMMinQ
staff. the tenure of the staff. The DP staff's inexperience in
prOqraMMinq. or their understandina of a SysteM under consideration.
Qreatly affects the speed at which requests are satisfied.

COBOL and INFORM
When COBOL and INFORM are used there is an assuMPtion that data sOMehow
found its way into a database. or file and a user is extractinq data
alMost in a reference type Mode. INFORM can be used to create links
between various datasets in a database. but in its siMPlest Mode it
reports data eleMents Within a sinqle dataset. Durinq develOPMent work
this can be a Qreat asset. The product itself is very Menu/panel
driven which is Qood for novice user. however the proQression of panels
qets tirinq quickly. A More experienced user is Qiven the option of
strinqinq out his request for a panel. The More experienced user can
enter a strlnq of "1.5.3" and will qet to the data eleMent screen
within the database they want. enablinq theM to do what they want to
do. NorMalization of any database is stronqly suqqested when usinq a
fourth qeneration report writer. NorMalization will affect the
retrieval tiMe for requested inforMation. Searchino for keys Within
the data uses a short strinQ of data called an index to locate the
desired data. If the user requests data that is not indexed then all
the data ~ust be read to Match the 'strinq of data' requested.

0009-06

COBOL and QUIZ
When COBOL and QUIZ are used a More dynaMic environMent can be
More readilY established. By usinq the ACCESS statMent in the QUIZ
lanquaqe linkaqe to various datasets is Quickly and easily
aCCOMPlished. The SELECT stateMent is used to retrieve a subset of
inforMation. The SORT stateMent allows a More readable report.

Steps necessary before and durinQ use of fourth Qenerat10n lanQuaQes
First the dictionary has to be created. To aCCOMPlish this run the
proqraM OICTINIT.PUB.SYS. This will establish the OICTIONARYi3000
database. After the dictionary database is created it Must be filled
wIth lnforMation. To fill the dictionary database a utility prOqraM is
ran. The naMe of the proqraM to fill the dictionary is
DICTOBD.PUB.SYS. Fillinq the dictionary with inforMation about
databases and forMfiles is an easy Matter. With the COMMand LOAD and
the naMe of the database or forMfile the prOqraM ooes to the rootfile
or forMfile and oets all inforMation of data eleMents. datasets. and
forMs. At this point the user can access the dictionary and flnd
inforMation concernlnq dataset naMes. and what data eleMents are in the
datasets. To allow uers to access inforMation located in More than one
dataset at the saMe tiMe. relational Ilnkaqes or qroups Must be set up
in the dictionary.

Once the qroups are established a user can More fully utilize the
dictionary to extract inforMation in a More looial form.

INFORM - Run the proqram INFORM.PUB.SYS. A series of panels 1S

presented to navioate the user thru the prooraM to extract data.

QUIZ - The dictionary Bqain has to be established prlor to USlno QUIZ.
The dictionary can be oenerated by usinq the Method discussed wlth
INFORM. or another Method can be used. QUIZ is a CGGNOS product. and
the purchase of QDOR could also be Made in additon to QUIZ. QDOR is a
series of forMatted screens which allow data entry into
DICTIONARY/3000. Once the dictionary is Made QUIZ uses its own
lanquaoe to extract and report data. StateMents such as ACCESS. SORT.
REPORT. 60. LINK and others are used to Manipulate the data and
datasets or files. QUIZ is powerful in that with the ACCESS and LINK
stateMents Many datasets and/or files can be lOQically tied toqether to
extract needed inforMation. No previous links need to be established.
such as in usinQ INFORM. The use of teMPorary subsets of inforMation
is also a useful idea. As a QUIZ jobstreaM executes the user can
direct that subsets of inforMation be saved either perManently or just
for the duration of the .10bstreaM. This allows for easier Qeneratlon
of rather intricate reports. Much More detailed reports can be
qenerated usinQ QUIZ than INFORM with the saMe aMount of effort
involved.

0009-07

PROTOS The dictionary involved with this product is not the
DICTIONARY/3000. Rather PROTOS uses its own" dictionary oenerated fro~

a scheMa that this product recoqnizes. There are More steps and
planninq involved usinq this product in cOMParison to QUIZ or INFORM.
But we are talkinq apples and oranqes here. PROTOS is a COBOL
qeneratinQ lanQuBqe. and is More powerful in what it can do than the
other choices beinQ cOMpared in this paper.

In planninq for PROTOS a PROSCHEMA Must be Made. A PROSCHEMA involves
naMinQ the databases and forMfiles to be accessed. Declarations of
data eleMent's type can be Made. These declarations involve date
forMattinq. currency forMattinq. deciMal aliqnMent and redefines of an
iteM into sub-iteMs. Files are declared and their associated record
layouts are qiven. PROTOS. when defininq datasets and files. will qive
a prefix to the iteMS associated With theM. In the COBOL code these
internally qenerated prefixes appear. An option is available where the
prefixes are predefined by the user.

Several User Defined COMMands (UDC's) are then used to initialize and
ready the PRDTOS product for use. The three Main UDS's are PROINIT.
PROBUILO. and PROCOPY.

PROINIT will build the PROTOS database dictionary and initialize it
for use. The dataset capacities are pre-defined. but can be
overridden.

PROBUILD will read the PROSCHEMA and fill the dictionary with
inforMation as directed by the PROSCHEMA.

PROCOPY will build a copylib. In the copylib will be all the file
layouts. and buffer areas that will be needed by future prOQraMS. In
addition all IMAGE and VPLUS buffer areas will be in the copylib.

At this point the user has a dictionary. a linkaoe defininq database.
and a copylib. PrOQraMS written in PROTOS syntax can now be written.
The PROTOS lanQuaQe is easy to learn and not exceptionally COMPlicated.
It is very helpful to understand how IMAGE and VPLUS work when writinQ
a prOQraM. PROTOS is a lanQuaqe of few words. A proqraM that will do
Quite a lot can be written With very few lines of code. This is where
the increase in productivlty can best be observed. However because the
lanquaqe is 50 powerful. a thorouQh understandino of what can be
aCCOMPlished by a sinole COMMand is necessary.

0009-08

After the PROTOS source code is written it Must be converted to COBOL
code. The UDC to accoMPlish this is the PROWRITE udc. After the COBOL
code has been qenerated the norMal cOMPilinq.and prepinq Must be done
prior to savinq the object and COBOL source code. SOMe installations
save both the PROTOS and COBOL code. while others discard the COBOL
code after the executable code has been saved. It is adVisable to Make
any future Modifications to the PROTOS source and not the COBOL source
code. Within the qenerated code any calls to IMAGE or VPLUS are
perfor~ed usino the SL provided by PROTOS. Beinq that all error
checkinq is done within the SL. user edit checkinq and exception
handlinq Must be thouohtfully done.

Factors involved when choosina a lanQuaQe

All three vendors have excellent reputations. and all three qive very
oood custOMer support. Let us approach this QUest10n of choosinq a
product frOM what the desiqn of the SysteM deMands.

DesiQn ConSiderations

If the new SysteM is in its buddinq staqes the analyst Must converse
with the user to deterMine what are their expectations of the SysteM.
Will the SysteM have Many on-line screens. Will the screens be very
intricate or will they display inforMation found pretty Much in a
10Q1cal area of data. A loqical area of data is sOMethino like basic
personnel inforMation. COMPonent Makeup of a product. current payroll
inforMation. etc.

If the data eleMents are SOMehow loqically linked toqether then those
iteMS Miqht be contained within a sinqle dataset. If a screen 1S to
show ~any iteMS upon a sinqle request frOM the user the screen beCOMes
More intricate. A user May 11ke 'busy' screens that show .lust as ~uch

inforMation as can possibly be displayed 1n eiqhty colUMns and
twenty-four rows. Another user will like Menu driven SysteMS that take
theM to a certain area of infor~ation and display only requested iteMS
of inforMation.

Data entry screens usually look SiMPle enouqh but internally Many Many
checks have to be done to deterMine proper linkage to ~aster datasets.
I aM speakino of a user defined conditions that Make data entry More
valid and accurate. Does a purchase order have a vendor? Is the vendor
valid? Cr05s-checkinq and validation of data can beCOMe as involved as
the user. MOney. tiMe and expertise of people involved allow.

0009-09

FORMSPEC can be used to develop the screens. The prOQraM5 will be
written in COBOL with or without the help of PROTOS. If PROTOS is to
be used there are SOMe considerations as to how screens are Made. The
naMino conventions are Most prOMinent. Data eleMent naMes within the
PROSCHEMA will only be fifteen characters lana. This liMitation of
field size allows PROTOS to interact with the FORMSPEC product. PROTOS
allows a very convenient technique to be applied to screens workina
with detail sets. The technique involves fillinq up the screen with as
Many detail records as the screen will allow. The screen is defined in
the PROSCHEMA usinq the REPEAT verb and naMinq of the screen. When
PROTOS operates it treats the area of the screen as a MatriX. and
autoMatically tracks data fields within the Matrix. With this
technique inquiry. and updatinq of Many detail records is possible with
a screen full of data.

If the SysteM is to be fairly static any of the lanquaqes will do
nicely. Static Means once the inforMation is loaded into a database
the user will access the SysteM to retrieve inforMation in Much the
saMe way as a reference library is used. The data May be updated
daily. weekly or less often but at the MOMent the user is reQuestinq
data. the SysteM is fairly static. Personnel. payroll. and SOMe
inventory applications are in this area of a reference SysteM. If the
SysteM will stay within one area of a plant. then this too beCOMes a
reference type SysteM showinq a status of the area.

When SysteMS cross departMents. or location boundaries the systeMS
beCOMe More interactive and More COMPlicated. More cross-checkinq and
validation is needed to insure accuracy and SMoothness of operation
between the various areas of the SysteM. In these situations a lanquaqe
other than a report writer is needed. COBOL proqraMS. or proqraMS
qenerated by usinq PROTOS. are needed to build the SysteM. If Many
reports are needed PROTOS is very well suited to qenerate cOMolex
reports with MiniMal effort on the part of the proqraMMer. Reports
written in PROTOS are Much easier to write and Modify than a straiqht
COBOL proqraM. The reason for this is the use of the FORMAT verb in
PROTOS. The proqraM shows the 'forMat' or report layout of the report
in the prOqraM. The fields are then defined by just naMinq the data
eleMents to be shown. and control breaks are identified by naMinq data
eleMents after the BREAK verb.

0009-10

QUIZ is a very powerful report writer. It is easier to use than
PROTOS. If the report is a listinQ of data ele~ent values it is very
easy to use. The user accesses the dataset or file. and Qives the
REPORT verb na~inQ the data ele~ents desired. Then the GO verb is used
and the report is forMatted. colu~n headers included. and Qenerated to
printer or other device. If subsets of inforMation are needed. the
SELECT verb Makes Quick work of extractino the needed data. A SORT
verb is also easy to use and declare. AQain. if the report is a set or
subset of inforMation QUIZ is excellent to use. The way that the
database is orqanized can oreatlv affect the perforMance. but that is
the probleM of the analyst or database desiqner. not the lanquaoe. It
is when the data to be extracted is not a SiMPle subset of inforMation
that QUIZ is More difficult to use. Extraction beCOMes difficult if
the conditions to select data are based on data eleMents not defined
within the dataset itself.

SUMMary

When usinQ fourth Qeneration lanQuaqes orqanization of data and
preparation for use of the tool is very iMPortant. Various types of
dictionaries and various dictionary utilities have been reviewed in
this paper. Data structure has been shown to be the foundation for the
fourth oeneration lanquaqes. SoMe dictionary Maintenance products have
been Mentioned and briefly reviewed. In reviewino these products
eMPhasis has been placed on how the product is set-up for operation.
In oeneral. the COMPleXity of a proqraM will dictate what type of
fourth qeneration product to use for an application. The More COMPlex
a proqraM the qreater the need for COBOL. Once the dictionary is bUilt
and loaded With data of the SysteM. extraction of inforMation has been
oreatly siMolified by these lanQuaqes. It is this SiMPlification of
extraction that can affect SysteM perforMance. Reports should be
scrutinized to deterMine if the power of the lanquaqes 1S beinq used
effectively. SvsteM adMinistrators should be aware of how a user is
accessing the data to deterMine effiCiency and "bottle-necks" caused by
abuse.

0009-11

The Information System Lifecycle

It's Tough
~~en There's No Can Opener

By Mark L. Symonds
Innovative Information Syste~s, Inc.

63 Nahatan street
Norwood, Massachusetts 02062

In years past I had been an economist. I heard a lot
of jokes about that profession in those days. The most
memorable of which involved three people stranded on
that old familiar desert island. One was a chemist,
one was a hockey player and the other was an economist.
They had nothing but one large can containing food and
supplies.

While pondering their dilemma, the chemist suggested
they let the container soak in seawater until it rusted
through. That way they could qet at the food. The
others scoffed at him pointing out that they would waste
away from hunger long before getting their first meal.
The hockey player insisted they should heave the can
against the palm tree to break it open. The economist
heaved a condescending sigh and said "There's an
obvious solution to this problem." The others quickly
leaned forward, listening intently for the answer. The
economist began:
"First, assume we have a can opener ••• "

Information systems development poses similar problems.
If one assumes we have huge bUdgets, a large,
experienced staff, well-defined requirements and
flexible deadlines then anyone can put together
beautiful systems ••• in theory. When we assume we
don't have a can opener, things get interesting.

Despite what some software vendors say, systems do not
come in cans. It is not just a matter of "open and
serve." We all know that implementing systems requires
careful planning, hard work and diligent execution.
Indeed, defining, developing and maintaining information
systems is a complex undertaking that requires many
different kinds of skills and management techniques.

The Information System'Lifecycle
0011-1

My purpose here is to outline the steps, issues and
challenges in each phase of the information systems
lifecycle. I will also illustrate some practical
techniques for coping with these challenges and for
avoiding some of the pitfalls inherent in each phase of
work.

There are a great many temptations, blind alleys and
wrong turns on the road to a successful systems
implementation. There is always a scarecrow pointing
down the road of custom programming saying "there aren't
any packages to fit our business." There are the
packages that seem to have six bedrooms and 4 bathrooms
as well as a pool and tennis court, but turn out to be
only a nice facade. It is important, then, to have a
good road map and to plan the trip. It is equally
important to be a diligent and careful driver.

Information Systems Lifecycle

The Information Systems Lifecyc1e is a conceptual
framework that will provide the basis for effective and
efficient systems development projects. There are four
major phases in the lifecycle:

I. Information Planning
II. Information Design

III. Systems Implementation
IV. Support and Maintenance

Each phase has its own set of challenges, pitfalls and
rewards. Each in turn requires different skills on the
part of MIS management and staff as well as that of top
management. Before exploring those details let's look
at what is usually entailed in each of the four phases
of the cycle.

Information Planning

In general terms, information planning is the process by
which an organization determines what information it
will need over the next three to five years to remain
competitive in ·its industry or to gain a comparative
edge. It also looks at how this information should be
gathered, stored and distributed so as to make most
efficient use of the data and other resources such as
hardware and people.

The Information System Lifecycle
0011-2

The product of the information planning process should
be a set of goals and a detailed plan for achieving
those objectiv~s. These goals are set only after
careful study of how the organization operates now, how
it should operate and of what competitors might be
doing. The action plan will define various distinct
projects to be undertaken, prioritize those projects and
estimate the costs, benefits and impact of each.

Information Design

As the projects identified in the information plan are
undertaken, they enter the Information Design phase.
Here, the detailed requirements of information content
and flow are defined. Analysts assist users in
determining the types of data needed, the sources of the
information and the required timing and presentation.

In most cases a software package will meet a high
percentage of the requirements for an application. It
is during this phase that analysts evaluate alternative
packages against their list of requirements to find the
one that is the best "fit." It is here also that any
required modifications to the system are identified and
designed. If a package does not make sense, all the
details of a custom system are designed at this time.

other important steps in this phase are planning the
conversion of data to the new system and sizing the
hardware needed to support the application.

Systems Implementation

This is where proper planning and design pays off.
Lack of it shows up very clearly as well. Tasks include
detailed design and programming of package modifications
or custom programs, user training, procedures
development, comprehensive testing and conversion of
data.

It is at this stage of the systems lifecycle that
decisions and details can no longer be put off. A
well-planned project will require a minimum of redesign
and unforeseen effort during this phase. The potential
for problems is well-known. One of Murphy's Laws is
that the first .half of a project takes ninety percent of
the money and time allotted. The other half takes the
other ninety percent.

The Information System Lifecycle
0011-3

Maintenance and Support

User requirements are not static. New ways of looking
at the data emerge, new data need to be captured; new
technology allows more efficient processing.

This phase involves ongoing support of users for
questions and problems. It also entails bug diagnosis
and correction and development of enhancements. This
work is very different from the other phases because it
is ongoing and sometimes repetitive.

Eventually it comes time to reevaluate the existing
information architecture. The current systems are
mature and have been modified and enhanced for some
time. Often, an individual system can be studied and
replaced without affecting the others. Periodically
however, it is necessary to take a fresh look at the
overall approach to information processing. A new
strategic Information Plan may confirm some approaches
and highlight bottlenecks and inadequacies in other
areas. So the process begins again to ensure that the
organization has the complete, accurate and timely
information it needs to maintain its competitive edge.

CHALLENGES AND TECHNIQUES

I. Information Planning

The strategic planning phase often poses the most
difficult problems for MIS management. The concept
of a Chief Information Officer has only recently
gained a foothold in the Fortune 500. It is a very
rare phenomenon for small to medium sized
organizations to recognize the competitive and
strategic importance of information planning.

A. Selling the Idea to Top Management

I've seen many projects fail due to infighting
and lack of cooperation among departments.
Commitment from senior management is essential
to ensure that each user 'area do what it can
to help attain the timely and successful
completion of the project.

The key to getting the top people "on board"
is speaking their language. Top management is
accustomed to getting formal reports from
other areas such as finance and operations.

The Information System Lifecycle
0011-4

Formal, informative reporting in terms they
understand will earn respect and confidence.
To the extent possible, estimates of cost
savings, both tangible and intangible, should
be provided. Over time, this practice will
bring more attention to the importance of
information processing.

B. Making it Pervasive

There is a great temptation to study carefully
the areas that are most intere·sting. There is
a tendency to gloss over ones that may yield
large benefits despite the lack of glamour.
Voice response order entry may get a lot of
attention even though the system cannot
allocate inventory properly and loses
backorders.

It takes discipline to do a thorough job of
information planning. It is essential,
though, to touch every box on the organization
chart.

c. Keeping Focused

An information may be well-planned and
designed to study all important areas of the
organization and still run into problems.
It's a challenge to remain focused on the
scope of the project and not to get distracted
by fun details that should be studied later.

II. Information Design

Since the products of the design phase are less
tangible it often does not get the attention it
deserves. It is the thought of many that the
design phase ends when the budget runs out. The
major issues here are completeness and
organization.

A. Complete Design Before Coding

The biggest temptation here is to start coding
and seeing some results before the whole
system is scoped out. Management and users
are eager to see results and the staff is
excited and anxious to get to "the fun part."

The Information System Lifecycle
0011-5

The fun part becomes a disaster, though, when
the house is half-built and the bathroom and
kitchen have to get moved to the other end.

B. Get Good User Input

Don't skimp on user interaction with the
design staff. After the initial requirements
definition users must remain available for
questions and clarification. This is more
easily accommodated when analysts batch their
questions instead of interrupting users
constantly. They typically have full-time
responsibilities in addition to the
development project.

Analysts should understand the business
functions under review. A good analyst will
lead the user through the universe of features
and functions and not just take notes. An
experienced business systems analyst can make
this a two-way conversation drawing upon
experience at other businesses or other areas.
S/he can help the user define which ones are
essential for doing his/her job effectively.

c. Prioritize

User requirement lists must not be taken as
gospel. A knowledgeable user will include
wish list items that would make his or her job
easier and provide better information. The
analyst should help the user rank each item as
1) Required, 2) Very Helpful or 3) Nice to
Have. The nice-to-haves are often difficult
and expensive to implement ••• especially in
comparison to their benefits.

It is often the case that the users are not
prepared to take full advantage of all the
features on day one of the new system. The
core pieces can be put in place first as long
as appropriate "hooks" are provided to
accommodate future functionality. In any case,
generalized hooks should be built in to reduce
the impact of unforeseen future requirements.

The Information System Lifecycle
0011-6

D. Be Creative

Too often we are constrained by past standards
and perceived limitations. creativity is the
mother (or at least the mother-in-law) of
greater efficiency and productivity.

III. Systems Implementation

Whereas the products of the design phase can be
somewhat nebulous, the implementation segment has
very concrete deliverables. It is here that poor
execution of the previous phases really shows up.

If the planning and design are carried out
diligently, the implementation will be much
smoother, but there are still pitfalls.

A. supervision and Resource Management

There is a paradox in most management
situations. You want the most qualified
person for a given task but you also want the
individual to grow and learn. A good manager
must balance these opposing ideals.

The key here is to delegate and then supervise
carefully. The individual should have to
reach to accomplish the tasks but not be so
lost as to get discouraged. Proper training
is an important element. Some specialized
education will give a staffperson a sense of
worth as well as additional tools to perform
the job.

Making deadlines and expectations clear must
be coupled with providing the means of
accomplishing them. In this way project
personnel will have more control over the
outcome of their piece of the job.

B. Testing

Testing is not given its due often enough.
The testing process should begin in the
detailed design phase. It is there that the
programmer/analyst defines the conditional
logic and should identify test cycles and
conditions. Rigorous unit testing will make
the all-important integration test go more
smoothly.

The Iaformation System Lifecycle
0011-7

Package acceptance testing is also an oft
neglected procedure. Few packages are 100%
bug-free. I have also known there to be
occasional errors when installing such
software. Diligent acceptance testing not
only helps shake out any problems but gives
the in-house support staff a much better
understanding of the programs and data
structu~~es•

C. Change Control

How often is it that users sign off on the
design and are not heard from again? Changes
to design during this phase cannot be made
willy-nilly. The pressures of an
implementation project usually result in such
changes being thrown in without adequate
forethought.

Some larger shops will not process any
modification requests until after the system,
as designed, is implemented. Of course, the
tighter the design the easier it is to enforce
such a rule. Again, proper design should
reduce the call for last-minute changes.

IV• ongoing Support

Maintenance programming is often thought of as
the mailroom of MIS: not much excitement and not
much growth potential. It doesn't have to be that
way. One can distinguish himself here by providing
consistency, creativity and organization.

A. Organization

Users need an effective means of reporting
their problems or enhancement requests. There
is room for creativity in defining the methods
to be used.

A good approach will involve meaningful change
request or problem report forms as well as
meetings with analysts if more explanation is
needed. These are complemented well by "user
group" meetings which serve as an open forum
to discuss system use and and proposed
enhancements.

The Information System Lifecycle
0011-8

B. Feedback

Another valuable aspect of user group meetings
is to recap and explain the status of bug
reports and new modifications to the system.
My former boss once told me: "If ·you're giving
someone something make sure they know about
it ... Users have to be aware of the changes
made for them.

c. Prioritization

Communication is a two-way street. Users must
also make their priorities clear. When there
is a difference in opinion management must be
prepared to step in to moderate. Establishing
and reevaluating relative priorities helps
assure that scarce resources are put to the
best ·use.

The information systems 1ifecyc1e is fraught with perils,
pitfalls and temptations. Many can be avoided or at
least minimized with diligence, proper planning and
discipline.

The potential rewards of well-defined and carefully
installed systems are enormous. A sound information
architecture will provide a solid foundation for
creating or maintaining a company's competitive edge.

Not even canned systems come with can openers and
simplifying assumptions won't fly in the boardroom.
Organization, hard work and resourcefulness are the next
best bets.

The Information System Lifecycle
0011-9

TITLE: Minimizing Coding, Maximizing Production

AUTHOR: Karl Smi th

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING

PAPER NO. 0012

ELECTRONIC FORMS:
ANOTHER STEP ON THE ROAD TO THE AUTOMATED OFFICE

By Richard J. Armitage and William C. Tuminaro
Business Systems International

Canoga Park, California

THECURSEOFTHEPREPIDNTEDFORM

Forms are a good tool. They allow information to be categorized for
ease of interpretation. They standardize and simplify the communication of
complex corporate and legal data. A properly designed form can highlight in
formation that would otherwise be lost in a sea of numbers.

Forms provide value, and that is why we use so many in business. Like
any good tool, forms -- at least the traditional preprinted forms -- cost money:

* money to design
* money to print
* money to store

These are the visible costs associated with using preprinted forms, but what
about the other costs -- the ones I refer to as "The Curse of the Preprint~d

FOlm." Let's briefly review some of these less obvious costs.

First, there is the cost of time spent finding the right form and then
mounting and aligning it for printing. There is also the potential of using the
wrong form. Here the cost is wasted time to re-run a job, or if no one detects
the error, embarrassment or even a lawsuit.

Next, there are costs associated with managing preprinted forms. These
include time and energy spent controlling access to forms, monitoring inventory
levels and reordering forms, and making sure that only the current version of a
form is being used.

Page 0013-01

Electronic Forms:
Another Step on the Road to the Automated Office---------------

The cost of obsolescence is a major consideration in using preprinted
forms. As requirements change, forms must change; and the old forms aren't
worth the paper they are printed on. Murphy's Law suggests that the obsoles
cence of a form will occur just after you have ordered a year's supply. (Many
companies avoid the cost of disposing of obsolete forms by not throwing their
obsolete forms away. Instead they hide them in dark places in the hope that the
waste will remain undiscovered. I cannot help but wonder how much of
America's office space is being used to store obsolete forms.)

Perhaps the most serious problem associated with using preprinted forms
is the cost of keeping inefficient forms. These are forms which should be
redesigned, but aren't because of the cost of creating and printing a new ver
sion.

Today, with the technology of laser printing and the sophistication of
available software, there is no reason for a company to incur the excessive cost
of buying preprinted forms or to continue to operate under the curse of the
preprinted form. Electronic forms are here, and they represent a significant
step on the road to the automated office.

In this presentation, we will discuss the electronic form as an alternative
to the preprinted form. We plan to cover the capabilities of the laser printer
which make electronic forms a viable alternative to preprinted forms in the typi
cal office. We will then review the procedures involved in developing electronic
forms, merging data with electronic forms from both mini and micro computer
based applications, and fmally we will review some actual cases involving the
implementation of electronic forms. Throughout the presentation we will at
tempt to point out the advantages in cost savings and improved productivity
resulting from the switch to this new technology.

First, what is an electronic form? Viewed very basically an electronic
form is nothing more than a file containing instructions which allow a laser
printer to print an image of the form. The instructions are stored in a host com
puter and sent to the laser printer's memory when needed.

Page 0013-02

Electronic Forms:
Another Step on the Road to the Automated Office---------------

Let's briefly review some of the advantages which electronic forms offer
to the modern business office. We can begin with the obvious costs in time and
money spent on designing and printing forms. With a preprinted form it can
takes weeks to design the form, do the artwork, set the type, review proofs,
make changes, and start the process all over again. Once the form is finalized,
there is the actual cost of printing, shipping, and storing the preprinted form.
With an electronic form you can create and begin using a new form in a matter
of hours. You can fine tune the design without incurring additional costs other
than your own time. There is no need to order and pay for a year's supply, you
print the form only when it is needed. Because the electronic form is stored in
the computer, it is always ready for use in each and every company location.
You have eliminated the problem of wasted time spent looking for a form or in
advertently using the wrong form. And when the form is printed, it is done with
laser printer quality and perfect alignment of data every time.

We spoke about the effort spent in managing preprinted forms. With
electronic forms this effort is reduced significantly. Since forms are stored in
the computer, you no longer have to worry about physical access control. You
can restrict access to your electronic form files just as you restrict access to your
computer programs. Certain forms can be restricted to individuals or depart
ments, while others are universally available. You do not have to be concerned
with inventory levels or lead times for reordering forms. Most important, there
is only one version of the electronic form available -- the current version. You
can forget about tracking down supplies of obsolete forms spread throughout
the company.

Since forms are only printed when needed, there are no large inventories
on hand when you decide to change a form. The redesign and implementation
of a new electronic form is easy and straightfoIWard. The day the new form be
comes effective, it is the only form available for downloading to the laser
printers.

One more benefit before we move on. With an electronic form it is easy
to print the output on demand, and in the user's department. You do not have
to batch the output until you have enough to justify the time to mount a new
form, nor do you have to print all your forms centrally because your users
cannot mount and align forms on their own department printers.

Page 0013-03

Electronic Forms:
Another Step on the Road to the Automated Office---------------

LASER PRINTERS -- THE IDDDEN CAPABIUTIES

According to industry sources, laser printer sales for calendar year 1987
were approximately 500,000 units. Most of these units are being used to
produce high quality word processed documents. But as those of you who have
ventured into desktop publishing are probably aware, the laser printer offers
some unique capabilities. We would like to discuss these first, and then discuss
how they have opened the door for electronic forms. Our discussion of
capabilities will focus oil the Hewlett-Packard LaserJet Plus family of printers.
These include the LaserJet Plus, the LaserJet 500 Plus, the LaserJet Series II,
and the LaserJet 2000.

1. Print Quality

The laser printer with its 300 x 300 dots per inch resolution creates docu
ments which come very close in quality to typeset documents. It handles both
graphic images and text on a single page, and allows up to 16 different fonts to
be used on a page.

2. Fonts

The laser printer offers an almost unlimited variety of fonts, with both
fixed and proportional spacing. These can be mixed to replicate most
preprinted forms. The LaserJet Series II has 6 internal fonts available plus two
font cartridge slots. In addition, it can store up to 32 soft (downloadable) fonts
with sizes ranging from 6 to 30 point.

Cartridge fonts (which are also referred to as hard fonts) plug into font
cartridge slots in the printer. The fonts contained in the cartridge become avail
able once the cartridge is plugged in. They do not have to be downloaded and
they do not take up any of the printer's memory.

Soft fonts are supplied on diskettes or tape and must be transferred
(downloaded) into the printer's RAM memory. Soft fonts generally cost less
than cartridge fonts and provide more versatility in the combinations you can
use and the size of fonts available.

Page 0013-04

Electronic Forms:
Another Step on the Road to the Automated Office---------------

Fonts are identified and may be selected by their individual characteris
tics. These include orientation, symbol set, spacing, pitch, height, style, stroke
weight, and typeface. The printer maintains a table which contains the values of
all of the currently specified characteristics. These values are described in. an
"escape sequence". We will discuss escape sequences later. Generally,
electronic forms software will allow you to identify fonts with a number or short
name which is cross referenced to the table of font characteristics.

3. Memory

The laser printe~ has its own memory which is used to hold fonts and
commands for forms and graphic images. The memory is also used by the
printer for buffering input and for building a page image. The LaserJet Series
II comes with 512K of memory and can be upgraded with an additional 4
megabyte memory board. The LaserJet 2000 comes with 1.5 megabytes of
memory and can be upgraded to a total of 5.5 megabytes.

4. Programming

Laser printers provide a control language which can be used to com
municate from the system to the printer in order to access the printer features.
Hewlett-Packard's printer language is the "Printer Command Language" or
PCL. PCL provides four levels of printer features ranging from level 1 which
handles basic character printing and spacing, to level 4 which handles page for
matting. The original LaserJet uses level 3 (the office word processing feature
set) while the LaserJet Plus family uses level 4. Each level is a proper super-set
of the previous level, providing upward compatibility.

peL commands are also referred to as escape sequences. These com
mands are used to control cursor movement, font selection, line drawing, job
control, definition and placement of graphic images, and to access other printer
features.

Page 0013-05

Electronic Forms:
Another Step on the Road to the Automated Office---------------

5. Storage of form files and graphic images

The laser printer's memory is not limited to storage of fonts. It can also
store macro files which contain commands which direct the printer. These files
are used to define electronic forms or other graphic images. The advantage is
that once the files are stored in the laser printer's memory they are available for
use throughout the day. Thus, in most situations, only data is transmitted to the
printer from the computer. The electronic form is already present. The Laser
Jet Plus and the Series II can store up to 32 form files. The LaserJet 2000 has a
capacity of over 32,000 forms.

These are some to the laser printer capabilities which make electronic
forms a reality. Next, we will discuss the process of defining an electronic form.

ELECfRONIC FORMS DEFINED WITH peL

If you analyze most business forms you will notice that they typically con
tain lines, boxes, shaded areas, text, and graphic images. Each of these com
ponents can be defined with PCL commands. With enough experience, anyone
can design even a complex form using PCL commands and scanned images. For
example, to draw a horizontal line the escape sequence has to specify the start
ing cursor position, the line thickness, the length, and the dot pattern. The peL
command to draw a line would look like this:

{ESC}*p30Ox400Y{ESC}*c90a150bP

It is not our intention to teach you how to write escape sequences. There
is an abundance of forms design software which will create these peL com
mands for you. It is, however, important for you to understand which com
ponents of a form can be drawn with PCL commands and which need to be
scanned images, and the difference between storing a form in raster format or
vector format.

Page 0013-06

Electronic Forms:
Another Step on the Road to the Automated Office---------------

First, let's review the components of a form and identify those specified
with PCL commands and those which must be scanned images.

* Horizontal Lines - PCL
* Vertical Lines - PCL
* Boxes - PCL using horizontal and vertical lines
* Shaded Areas - PCL
* Text - PCL
* Logos - scanned image
* Special Characters - some with PCL, others

must be scanned
* Mixed Orientation Text - scanned
* Reverse Text - scanned

At this point some of you may be wondering why not scan an entire form
and forget about PCL commands. In order to answer that question, you should
understand the significance of defining and storing a form in raster versus vector
format.

Let's begin with an explanation of raster. Raster refers to images which
are composed of groups of dots. When a laser printer prints an image it creates
the image by laying down a pattern of dots (90,000 for each square inch).

These dots are actually specified by individual bits of data, each bit being
either on or off. These patterns of dots can be communicated from the host
computer to the printer in either their dot format (raster) or as vector com
mands which the printer converts to dots at the time the image is printed.

In raster each individual dot (or bit) is transmitted from the host com
puter to the printer. It requires a large amount of information (in byte format)
to describe even a small raster image. For example, a one square inch box
would require 90,000 bits (300 x 300) or 11,250 bytes of data. A complete 8.5 by
11 inch form would require over one million bytes of data.

In vector an image is communicated to the printer in a command format
similar to the line draw command previously described. The printer converts
the commands into dot patterns just prior to printing.

Page 0013-07

Electronic Forms:
Another Step on the Road to the Automated Office---------------

While raster provides ultimate versatility and flexibility in defining laser
output, its use should be limited to those situations where ve.ctor commands are
not available. Using vector commands to define an electronic form saves trans
mission time from the host computer to the printer, and requires less printer
memory to store the form. It also saves disk space on the host computer.

Now that you understand that, we can get into how electronic forms are
designed. There are a number of electronic form design methodologies avail
able. We will briefly describe the most common, and discuss some pros and
cons of each approach.

1. Scanning Forms

We have already touched upon this approach when we discussed raster
images. In scanning, you use a scanning device to create a raster image of an
entire form (lines, text, logos, etc.). Scanning a form appears to be quick and
precise. But, actually the scanned form requires extensive editing to meet even
a minimum standard of acceptability. Even with editing, a scanned form will
rarely match the printers potential quality. Of course we have already discussed
the size of a scanned form file and the excessive time to transmit the form fIle
from the host computer to the printer. Another problem with scanned forms is
the difficulty in registering the form for data.

2. Forms Designed with Commands

Many forms design packages allow you to draw a form by entering com
mands. For example, to draw lines and boxes you enter commands for the start
ing and ending positions and the thickness of the lines. This approach allows
extreme precision and is especially useful for forms which will be filled in with
computer data. No special equipment is required. A disadvantage is that the
form cannot be viewed on the computer terminal. It must be printed. Actually
for complex forms, the image displayed on a graphics terminal usually is not in
sufficient detail to be of much value to the designer, so printing the form at each
major step in the development is usually required anyway.

Page 0013-08

Electronic Forms:
Another Step on the Road to the Automated Office---------------

3. Drawing Forms on a Graphics Terminal with a Mouse

This approach is popular with many of the PC based forms design
packages. It allows lines and boxes to be drawn on a graphics terminal. Text
must still be entered from the keyboard, but the form can be visualized as it is
developed. This approach is valuable for simple forms, however as the form
gets more complex, the graphic image on the terminal screen is not sufficiently
precise to be of value. The problem goes back to the typical graphics monitor at
a resolution of 640 x 350 dots for the entire screen trying to adequately display a
form which will be printed at a much higher resolution and with much more
detail. Our experience is that for simple forms, the mouse drawing approach is
fast and easy, but for anything above a very simple form this approach is slower
and more difficult.

4. Using a Digitizer Tablet

This may be the fastest method for converting existing preprinted forms
into electronic forms, especially if the forms have a large number of lines and
boxes. It does require -additional hardware and text items still have to be en
tered from the keyboard. The approach is of limited value in designing new
forms, and it is difficult to register a form for computer data.

In selecting form design software, some of the factors which you should
consider are:

1) The number of forms to be designed.

2) The amount of text versus lines and
boxes on the typical form.

3) Equipment available and the experience
of the personnel designing the forms on
that equipment.

4) How the forms are to be filled in (computer
or manually).

Page 0013-09

Electronic Forms:
Another Step on the Road to the Automated Office---------------

This last consideration may be the most important. A form is designed
only once, but fIlled in many times. If a form is to be filled in with computer
generated data, you must be concerned with how easily the package allows you
to register the form for data, and how easily the data merging part of the
package allows you to integrate the electronic form into your computer applica
tion. We suggest that when you select a package make sure it allows you to
print a copy of the form overlaid with a printer spacing grid based on the pitch
and lines per inch of the data. This is an extremely valuable tool for fine tuning
an electronic form for data merging with computer generated data.

DATA MERGING REQUIREMENTS

Data merging is the process of merging data from a host computer ap
plication with an electronic form. The concept is essentially the same as when
using an impact printer and preprinted forms. First, the form must be available
when the data arrives at the printer; and second, the positioning of the data on
the form is handled by the computer application.

Let's begin with the elements needed for successfcl merging of data with
an electronic form. These are:

1) The form to be filled in must be in the
printer's memory.

2) Any font required by the form or the data
must be available.

3) The form must be activated for overlay with
the data.

4) The data from the host computer application
with proper printer spacing must be available.

Page 013-10

Electronic Forms:
Another Step on the Road to the Automated Office---------------

When and how the printer is prepared for data merging depends on your
application. We will outline several alternatives which fall under the two broad
categories, which we refer to as, Application Control and User Control.

Under the Application Control method, one approach is to download
soft fonts and the form required by a particular application each time data is
sent for printing. The sequence would be to send the soft fonts, then send the
form, reposition the cursor by sending a PCL command, and fmally sending the
data. This approach should only be used for low volume forms that are printed
infrequently. Its main advantage is reliability, that is, all required elements are
guaranteed to be available when needed. The main disadvantage is the over
head involved in sending font and form files to the printer for each page of data.

A slightly modified version of this approach is to download the soft fonts
and the form required by a particular application at the beginning of the ap
plication job stream. This eliminates the repetitive downloading of fonts and
form for each page of output, while still maintaining a high degree of reliability
that the fonts and form will be available when the data arrives at the printer.

A superior approach for handling printer preparation, in situations
where forms are used on a routine basis, is to store all of the soft fonts and the
electronic form fIles required by each of your applications in the printer's
memory so that they are available whenever needed. This is the User Control
approach. As we discussed previously, the LaserJet Series II can store up to 32
macro files in its memory. (Forms are stored as macro fIles.) Under this ap
proach, you establish host computer job streams to download the fonts and
forms required by each laser printer. The jobs are run each time the printers
are powered up. Forms and fonts remain resident in a printer's memory as
long as it remains powered up. Since more than a single form can be in the
printer's memory, the printer must be told which form is to be overlaid with the
data from your application. The printer has a feature called auto-macro over
lay, which allows a previously loaded macro (form) file to be merged with data
from an application. The signal to start auto-macro overlay (which is referred
to as activating a form) is an escape sequence sent by your host application as
the flIst characters in your output data string. Once a form is activated it will be
overlaid with each page of output until another form is activated or until the
printer is reset.

Page 013-11

Electronic Forms:
Another Step on the Road to the Automated Office---------------

APPUCATION OF ELECTRONIC FORMS ON THE HP3000

Next we will discuss some of the considerations in using electronic forms
on the HP3000. Typically, you will be integrating the electronic form with an
existing application which is already printing output on a preprinted form with
an impact printer. Your main concern should be how easily can the data merg
ing requirements of the electronic form be integrated into the application.

Let's start with procedures for downloading fonts and forms to the laser
printer. You need a program to download soft fonts and forms from the host
computer to the laser printer. They cannot be merely copied with a utility
program. The actual program is typically executed in one of three ways. The
first method is on-line with the particular font and form files to be downloaded
selected by the user or operator. The other two methods were described under
data merging. The program can be set-up as a batch job which can be run by it
self or as part of an application job stream, or as a subprogram called by the ap
plication program which generates the data.

One advantage in some software packages is the ability for the fonts re
quired by a form to be automatically downloaded with the form. This saves
time and eliminates the potential for error. Of course, the same fonts should
not be repeatedly downloaded when you specify several forms, instead the
software should identify the common fonts and only sends them once. Another
valuable feature is the ability to group forms so that only a group name need be
specified in order to download all of the forms in the group.

We spoke of activating the auto-macro overlay feature for a form stored
in the printer. Usually this is accomplished by including the escape sequence as
the first characters in the output data string. If a second form is required, its es
cape sequence is included in the next string of data. This procedure of sending
an escape sequence, data, another escape sequence, and more data is referred
to as dynamic form switching. After the last record of data is sent, the printer
must be reset in order to terminate the auto-macro overlay. Usually this is
handled by the spooler, however your program can also send its own PCL reset
command.

Page 013-12

Electronic Forms:
Another Step on the Road to the Automated Office---------------

APPUCATION OF ELECTRONIC FORMS ON THE PC

Whereas, replacing preprinted forms with electronic forms on the
HP3000 usually involves an existing application program which is processing
and printing the data, on the PC you frequently fmd electronic forms being
implemented to replace preprinted forms filled Qut by hand or on typewriters.
Thus, the first concern in dealing with electronic forms on the PC is determining
the application to be used to fill out the form. Typically the application is a
word processing program, a spread sheet program, or a data base manageme~t

program. There are also specialized data entry programs which can be used to
display a data entry screen that looks like the form.

The procedures for downloading forms and fonts from a PC to the
printer are the same as on the HP3000. Likewise, the basic requirement for ac
tivating the auto-macro overlay feature is the same. However, implementation
of the auto-macro overlay can be complicated with some PC packages which
restrict the inclusion of escape sequences within the data string. In these cases
the escape sequence to activate the form must be sent outside the data string,
and if the program sends a printer reset prior to data, the reset must be dis
abled.

The bottom line is that there is no standard approach for handling
electronic forms on the PC because each package provides different approaches
for interfacing with the printer. At BSI, we routinely use electronic forms with
dBASE, R-BASE, Lotus 1-2-3, Word Star 2000, Word Perfect, and Advance
Write.

One important consideration in using electronic forms on the PC is con
trol over the master version of each form. When you have individual PC users,
PC network users, and HP3000 users all using electronic forms, it is essential
that a central library of forms be established. OthelWise, you will soon fine
various versions of the same form spread throughout the company. At BSI, we
maintain the library of master electronic forms on the HP3000. Both our
HP3000 users and PC users access this library for the current version of
electronic forms.

Page 013-13

Electronic Forms:
Another Step on the Road to the Automated Office---------------

IMPLEMENTATION OF ELECTRONIC FORMS - CASE STUDIES

In this section, we will cover two situations where electronic forms have
been implemented with great success. The frrst situation, which was described
in an article in the November, 1987 issue of The HP Chronicle, involves the
Central Coast Computing Authority (CCCA) in Santa Barbara, California.
CeCA is a public agency with data processing responsibility for the Santa Bar
bara Community College District, as well as two school districts comprised of 24
high schools, junior high schools and elementary schools. They seIVice ap
proximately 130 users, most of whom are at remote locations.

CCCA's initial application of electronic forms was for printing student
transcripts. Under the old method, a student or parent requested a transcript
from one of the member schools. The request was then transmitted on-line to
CCCA, where it was held until off hours for printing. At that point it was neces
sary for the computer operator to mount the preprinted transcript forms and
then print the small number of requested transcripts (usually from 1 to 20).

After printing, the transcripts were sorted by requesting school, and sent
to the requesting schools either via mail or courier. Considerable time delays
occurred routinely, and a number of people were involved in the process.

The implementation of electronic forms for this application was simple
and straightfolWard. Most of the schools already had laser printers on site so
the actual printing of the requested transcripts was shifted from the central
facility to the individual.requesting schools. Here is how the system works. The
file containing the electronic transcript form is maintained in the central com
puter. Access to the form and the font fIles is via an on-line request screen
which allows each school to request that these be downloaded to its laser
printer. When a transcript is requested, the job is submitted on-line from the
remote location. The job is processed on the HP3000 and the data is sent to tl)e
laser printer at the school where it is overlaid onto the form and printed.

The application was easy to implement, but the benefits were significant.
Now instead of days, the turnaround time from request to printing is just
minutes. Also, most of the man hours have been eliminated from the process
since the computer operator and the mail room are no longer involved.

Page 013-14

Electronic Forms:
Another Step on the Road to the Automated Office---------------

CCCA is a typical example of electronic forms replacing preprinted
forms. The process was simple and no modification to the existing program was
required. Another example of electronic forms is an application involving the
TOY travel order form for the U.S. Navy. This application involves the use of
both an electronic form and electronic signatures. .

The Naval Ship Weapons Systems Engineering Station at Port Hueneme
implemented a new on-line financial management system (referred to as
STAFS) which included a number of very sophisticated on-line approval
processes. One of these involves the generation of TOY travel orders for
Department of Defense personnel. The TOY travel order allows government
personnel to receive advances for business travel expenses. The system allows
for the requesting, approving and authenticating of travel orders to be done en
tirelyon-line. However, once the actual travel order is printed, each of the offi
cials involved is required to sign the form.

At Port Hueneme, over 50 travel order requests are processed and
printed each day. Prior to electronic forms, the approved travel orders from the
STAFS system were printed in the travel office on preprinted forms, and then
someone would carry them around the base getting the appropriate officials to
sign the orders (which they had already electronically approved on the new
computer system). The implementation of electronic forms and electronic sig
natures was designed to eliminate this duplicate effort, and to streamline the
process of generating travel orders.

The system operates on a Hewlett-Packard Vectra computer which is lo
cated in the travel office and connected to the STAFS computer. Printing of the
travel orders is done on a LaserJet Series II. Approved travel orders which are
to be printed are transmitted from the STAFS computer to a signature merge
program operating on the Vectra. The names of the requesting and approving
officials on the travel order record are used to search for the appropriate
electronic signature images, which are stored in encrypted form on the Vectra's
hard disk. The travel order data, the signature images, and the electronic form
are merged and printed by the laser printer.

Page 013-15

Electronic Forms:
Another Step on the Road to the Automated Office---------------

The system saves time and money, but more importantly it allows the
Navy to take advantage of the control and approval functions built into the
STAFS system. The electronic signature image on the physical document is
proof that the travel order was in fact electronically approved in the STAFS sys
tem.

CONCLUSION

We have covered a lot of ground in our discussion of laser printers and
electronic forms. Hopefully we have succeeded in demonstrating that the laser
printer has the potential to be an invaluable tool capable of assisting you in
achieving tremendous cost savings and efficiencies within your office. At this
point, we would like to recap some of the key advantages to be gained in using
electronic forms in place of preprinted forms.

Reduced cost is one of the primary benefits to be gained with electronic
forms. The direct costs associated with using preprinted forms are high and
they continues to go up. The indirect costs of storage space and wasted time are
also significant. All of these costs can be eliminated or drastically reduced with
electronic forms.

Electronic forms provide you with almost complete control, something
that is impossible with preprinted forms. Access to any particular form can be
restricted to certain people or departments, and the current version of an
electronic form is the only one available for use throughout the entire company.

Printing of forms can take place in the user departments without worry
ing about inexperienced people having to mount and align preprinted forms.

Finally, you never run out of electronic forms.

The bottom line is that the laser printer has opened the door to a new of
fice technology -- electronic forms. With it, you can make your forms the effi
cient tools they were intended to be.

Page 013-16

How To Keep Your Audltor Happy

Robert A. Karlin
Karlins' Korner

7628 Van Noord Ave.
N. Hollywood Ca.

91605

'TWas the night before audit

am all thrCNJh the shop,

not a creature was stirring,

not the tiDiest flip flop.

•'lhe listings were placed

'neath the viM09 nth carel

in hopes that the AQiitor,

vouldn't look there.

'And I nth ay coffee cup

clutched in JIY fist,

searching around for

vhat could have been Ilissed.

ljad as I await there

snepq the floor,

I SlIIdeD1y hear

a 10111 knock on the door.

II ru8b to the door,

aDd what there att8Dds,

but a three piece blue suit~

aDd eight tiny red peDS.

I -On Debits, On Credits~

-On Dashes, am X' s,

-Is the Bold Account right,

-Bave we paid enolllh 'nixes? •

•Be aoved through the rooa

searCbiDg for listiDgs~

to tiDd tor ~elf
vbat controls ge were Jli.ssiDg.

I ADd when he vas through

aid his notati0D8 abed. ,

he turned to ay boss,

91th a sbake of his head.

I • All of these prograas

-aust be rewritten.

11)1 TO lED YOUR AUDITOR HAPPy 0016-2 Robert A. Karlin

-DocUilentation is had.

-aid the Data· s not hidden.

'AId as he strode out #

you could hear # 10111 aid clear #

•If you thiDk this '18.8 bad.

IIjust 1J8.it 'til next year'-'

vith apologies to Cleaent C. Jloore

11)1 TO IEEP YOUR llJDI'roR HAPPy 0016-3 Robert 1. Karlin

II THE BEGDDIDIG

In aost cases, it is difficult to involve your aw1itor in a

project fro its inception. Usually, he will _it until aost of the

design is caplete before descemiIQ froa his office upon the

project teea. A few fairly silaple design c0D3iderati0D3 will go a

lODJ vay in providiIQ hia with coafort aid peace of 1liDl, am this

can be very ilaportant in keepiD} the project on course am umer

blllget.

COST JUSTIlICATIOIf.

OUr first, aDd prilmry concern in providiIQ a\l1itability for our

systeaa is coat jwstification. If we are speming tyenty thousand

dollars to design aDd ilapleaent a systea" ge should not spem two

buDdred thouaaDd to iDsure its auditability, if the systea does not

require it. If you are doing bulk .ailiD}s, It .ay not .atter if

you looae ten percent of your .aater file, if you ~ still select

enough different DalleS to fill your .ailing requiroents. On the

other baDd, if you nul a bank" a listiD} for the IRS of all

custoaers that baTe earned aore than six buDdred dollars bad better

balance to the penny. During the design of the systea, the actual

worth of the em product (worth, not cost - a three hUDdred dollar

progrea My be worth Ililli~ to the corporation) awst be weighed

against the cost of any a\l1itability design enbanceaents.

BACIUP AID RECOVERY

11)' TO EEEP YOUR AUDITOR HAPPy 0016-4 Robert 1. larlin

One of the aore iaportant areas that an auditor viii want to

ema1De 1s the Backup aid Recovery scheae tor your project. Be vill

DOt be concerned vith the daily aDd veekly backups for your overall

syatea (though the aCbeduliDJ of these jobs in relationship to you

systea is aportant) , but &pecif ically vith the application

depm:lent backups tbat should be designed into your systea. If you

nightly proc8ssiDJ takes alaost your full offshift tille, ten Ilimlte

backups at convenient tiJles during the night could save hours of

recovery tiJle. Soaeti.aes, copying one key file to tape could be the

key to a tiaely recovery. It your daytiae online operation is

critical to the corporation, a lunchtille backup could be very cost

effective. Closing am copyiDJ your transaction log tile at

reasODable intenals can also save tiM and aoney in the long I1m.

If you chose this route, be certa1n tbat you are predictable. It

you close dam at noon every day for a half hour, doni t close dam

at eleven f if ty t i ve one day am t'lelve f it teen the next. I ¥hen the

operator gets huDgry' is not a particularly effective lunchtille

backup 8cheae. Keep a reasODable DUllber of generations of your

backup, am keep scme of thea offsite. This is an iJaportant part of

the original systea design, am incl\11ing the backup procedures viii

show thoroughness that auditors like. Bote that copies of your

software should also be kept otts1te.

A seccmd area that an alllitor vill be interested in is your

EDI 'ro DEP YOUR At1DI'roR IIlPPY 0016-6 Robert A. larlin

testiDJ and turnover procedures. Procedures for both problea

resolution and new software releases sbDuld be considered as part of

the initial systea design. Backout procedures should be part of the

turnover of any chaD]es to a systea. Application systea cbaDqes

should be scheduled at non peak tilles~ aid the users should be

forewarned that the chaD]e is beiDg iIlpleaented, 80 that they My

prepare for the possibility of catastrophic failure. All cbanaes

should be tested in an eDTiromumt as close as possible to the

production eDTiromumt in vh1ch they viII 11m, am the test results

should be part of the chmJe docuaentation. 111 chaD]es IlUSt be

reflected in the STstU. docuaentation, am DO systEm should be

accepted that does not have sufficient docuaentation. '!he auditor

viII probably require the user to sign off to any chaD]es to the

application systea, ¥bether or not they Yill be visible to ma.

DOCtJlJEIT.lTIOR

Syste. docuaentatioD is probably the first thiDq any auditor ¥ill

ask for, and 90e to the project unager that does not bave it. '!be

docuaentation should be written duriDg the project developaent as an

inteqral part of the slste. design package~ and should be kept

current 8S proqrUlliDJ continues. 'Ihe original progro. specs should

be co.lete enouah to write the proar8.ll ¥1thout the need for

additional infonaation, though I have yet to see a syste-. where this

could be done. At the least, the prograa specs should be annotated

by the prograaaer ¥hen further infomation becoaes 8'ftlilable. File

contents am usage should be kept in soae fora of data dictionary,

11)' TO OEP YOUR 11JI)IroR HAPPY 0016-6 Robert A. larlin

ard the dictionary should be kept current as the project continues.

file layouts should be in copybooks, generated, if possible froa the

data d1ct1cmary, aD! all pragro. should use the saae copybooks.

I:eeping the doctmeDtation current is 8S iJlportant as the

ccmpleteness of its content. !yet. docuaentation should consist

of, at the very least, input aDd output descriptions, the data

tranafomation and foBUlae used in the prograas, restart and renm

procedures, priMry users, other users, systea dependencies,

balancing iDstructiODS, 8Dl progru and job control listiDIs.

Copies of the docuaentation (either in _chine readable fora or on

microfiche), should be kept offs1te. You should also develop SOlle

to~ of cbaDge control docuaentation consisting of a description of

the cbaDge, the reason for the cbaDge, copies of any cbaDged syste-.

docuaentation, aDd backout procedures in case of a cbaDge failure.

SECURI'l'f

Of all areas of &yatu control, security is probably the IlOst

aiaunderstood. rtost people consider security to consist of

preventing UDauthorized access to production data. '!his, in truth,

is part of security, but is bardly the entire subject. Security

should be considered as the protection of the operating envi.ronaent

fro. coaproJUse or duage YITll)UT SERIOUSLY mPACTIRG USERS ARD

PR!VEHTIHG 'IBElf rROlI DOIBG 'Im:IR JOB. This includes providing the

operations personnel respons1ble tor the Jl8.1ntenance am .on1tor1ng

of the system. with the tools necessary to their work. Any good

progruaer, nth the tille to work at it, can access or cbaDge data

surreptitiously in a production envirODllent. It is better to spend

HOI roo X!!P YOUR AUDI'roR BlPPY 0016-7 Robert A. brIm

tae am aoney in ensuriD) that all accesses to production data are

properly logged, aDd that unauthorized access can be spotted easily,

than to try to prevent all access to the data. Tools such as QUERY

should be controlled, as opposed to eliaiDated. If security is Mde

so tight that prograoers am users cannot do their jobs properly,

the security system will be circuaYented at the first opportunity.

The balance user friendly and tight security is a fine one, am
should be based on the actual worth of the data and syste. inTolved,

not on a 'global' security.mate.

DATA DiTEGRITr

The last area that we sill discuss froll the a\l1itor ' s checklist

is the controls needed to ensure the veracity of the production

data. At each step in processiD), checks should be established to

ensure that the data at this step is proper. All proqraas should,

at a 1W1i.Ilua, provide a record ccnmt of input am output records.

Proqrau that do serial reads should also prOTide soae fora of

balanciD) total that can be used to trace data as it .oves through

the sTste.. A tr8.D88.ction log, contai.ni.Dq dates, tiaes, users and

cbange data, should be updated for every cbange to the data base.

Control totals fro. this log should be checked against the data base

at appropriate intervals. Prograas to insure the integrity of the

databa~e ~hould be part of the origiDDl ~:Jtea de:Jign, aloDg with

.intenance progrus that update the transaction log vbi.le updating

the database. For illaqe databases, DICTDBA, BOIllESSY, DBSTAT (or

any of the other prograu that do forward am backward reads of all

my '00 UEP YOUR 11JDITOR HAPPy 0016-8 Robert 1. larlin

the chains on a database), can be nm on a scheduled basis, though a

proaru to do the su.e tmct10n can be vr1tten am ta110red to the

application and would provide a better test of the database. In

qeneral, a\llit trails aM ba1aDciDJ controls should be kept as

siaple as possible, and should be easily located for crosschecking

against each other. If they are not, they '1111 be iQIlore4.

8)' TO KEEP YOUR AUDITOR IIAPPY 0016-9 Robert 1. laflin

AS TIl! fOiL» TORRS

One of the _jor probleas tbat plague ongoing projects is tbat

the personnel that fiDi.sh a project -.y not he the ones that started

it. The job of the a1l11tor is -.de tbat auch barder by constantly

cbaDJing procedures and styles of codiDg am docuaentation. An

auditor tbat does not UDderstald your systea is one that 'lill

criticize it heavily. A few iaportant dos aDd don'ts -.y save hours

of headaches writing responses to your auditors reports.

COHSIS'IUCY

If you feel the need to cbaDJe staldards in aid streaa (am there

_y be very good re8S0D8 to do so), take the tiae to retrofit

previous coding am docuaentation to .tch the current stardard.

But it works, I hear you say. If it works that gel1, then _ybe

your stamards don't really need cbaDJiDg, at least as far as this

project is concerned. On the other bam, if there is such a

pressing need for revision, then there is a need for the recodiDl

effort. If you don't schedule it as part of the cbaDJe, it will

never ever oet dane. It is far worse to atte.pt the .ainteoance of

a systea that doe9 not follow a consistent staldard than to atteapt

the mintenance of a systea tbat follovs a bad one.

DlFORrflTIOI AS IT IIiPPEJIS

11)1 '00 KEEP YOUR AOJ)I'I'OR HAPPY 0016-10 Robert 1. larlin

Copy your auditor on every design chaDge 1UDlO, the IliDutes of

every design :aeetiJrJ, am copies of all user uaos. It My seen

that by deluging m.. with 'lbat you Iliqht thiDk to be trivia, you

viII be actually hurtiD) your cawse, but this is Dot so. If your

auditor can see the developaent of your systea as it happens, you

vill not haTe to explain as IISDY of the design decisions you ake to

hi. dovn the road, ¥hen those reasons are clouded by ti.Jle aM

subsequent probleas. Also, by keeping track of the evolution of

your systeJl, your auditor vill develop 8 sense of continuity vithin

which your decisiOlU' nIl be IlOre explicable.

Jl'9 'ro REP YOUR AUDITOR HAPPy 0016-11 Robert A. larlin

In the fiDal analysis, whether or not your auditor is happy 'lith

your project vill depend as IUCh on bow tbe project is accepted by

its users as on anyone else' 8 opinion. Your atditor vill usually

look in those places that baTe been pointed out to first. If your

users are viII iDfomed, am bappy with the results of the project,

the a1ditor 'lill begin his audit on a positive note. If your users

are plagued by an unreliable systea, am are not kept inf oraed of

changes, both planned am unplanned, the aUditor vill bave balt ot
his report written lcmg before he enters the data processing

departaent. It is difficult to keep all users happy all of the

tille, but by getting' user siqnoffs on all cbaDjes, aDd by Mking the

user teel as it he bad a baM in des1gning the syste. tbat 'lill

ultiMtely deteBine how veIl he does his job, you can keep him

bappy .ost ot the t1ae. AM this viII certa1nly increase your

chances of receiving a successful audit of your systea.

11)1 TO I!EP YOUR lDDrroR HAPPY 0016-12 Robert 1. larlin

AID so

In suaary, aost points that your a1l1itor sill briDJ to your

attention are CODOn sense approaches to the design of your systea.

Your auditor is JlOst concerned 'lith the protection of the production

env1rODllent, am the ability to prove the results of the systea

under consideration. Be viII vant to be able to pick up any

report, pick a figure, am trace it back to its original source

docuaent. To do this, he will Deed good systea docuaentation, a

good aud1t trail of transaction history, the confidence that the

report he holds coincides with the database at a particular tille,

am the knoVledge that the progrus that led to the production ot

the report have been fully tested aDd inteqrated into the systea as

a lfhole. In general, these points are the points tbat you should be

concerned nth as veIl. In scme respects, your auditor is your

conscience, keeping your troa cuttiDJ comers that you knoV you

shouldnIt. Reanber this, aDd you will survive even the IlOst

striDJent audit.

8)' TO mP YOUR 1DDI'roR HAPPy 0016-13 Robert 1. laflin

User Friendly Security

Robert A. Karlin
Karlins' Korner

7628 Van Noord Ave.
N. Hol1'ywood Ca.

91605

SECURITY: ... 2. sOBething that gives or assures safety, tranquillity,
certainty~ etc.; protection; ~feguard ... (Webster's Hev World

Dictionary of the English Language Second College Edition: 1976)

From the beginning of the online business data processing
environment, the que~tion of protecting that environaent bas been

asked many tiJaes. The answers have run the q8Jlut from complete

indifference to extreme paranoia. The propounders of these e.llSwers

have collected. numerous argwaents~ most of which have little or

nothing to do with the basic question. In order to adequately explore

the question of safeguarding the business data processing environaent

ve will use the following definition of security:

SECURITY: The protection of the business data processing environment

froa dall8.ge WITHOUT SERIOUSLY IlIPACTIHG THE ABILITY or THE DATA

PROCESSING USER TO CONDUCT HIS BUSINESS.

USER FREDIDLY SECURITY 0017-1 Robert 1. larlin

'lith the eaergence of large DP staffs, many professionals have

forqotten that the business data processing environaent is not an end

in itself but a service provided to enhance the efficiency of a

particular business. 110st security is installed and adainistered by

staff members far removed froa the user. Especially in these cases,

security officers must balance the need for protection against the

iapact on the user's operation. In this paper we will explore the

kind of considerations that must be taken into account when

establishinq or maintaining a secure environment.

USER FREINDLY SECURITY 0017-2 Robert A. larlin

SECURITf AND RISK ANALYSIS

In order to properly impleaent security in a data processing

enviroDilent, one must knOY ¥hat one is protecting, and wba t one is

protecting it froll.. There are no global rules on hOTl Jauch security is

necessary, or ¥bat form it should take. Each particular installation

llust analyze its own ennromaent, identifying the perils to be

protected aqainst, and assessinq the cost of protection aqeinst the

worth of what is being protected. We can group the perils in the data

processing field into the following categories: Unauthorized Access to

sensitive information.. Accidental Damaqe. and tfalicious Destruction.

For the purpose of this di~cus:sion we viII ignore the proble. of

Unauthorized Use (that is~ use of hardware or software without either

damage or the compromising of sensitive data) because with the

exception ot response time considerations, the problems of

unauthorized U3e (such as the productivity of an eaployee who spends

h1s day playing pong) should be handled in other areas (such as

personnel) without me.king security either the scapeqoat or the cure

all. Employees who cannot behave in a responsible manner will turn to

other toras of diversion, while security restrictions to prevent this

type of problem will do nothing aore than lower the Borale of those

stat f who are responsible em.ployees. In addition to these

considerations, it is impossible to assian a meaningful value to

losse~ suffered due to the unauthorized ~e of hardware or ~oftvare,

and without a value the ilD.position of security is a meaningless

gesture.

USER FREINDLY SECURITY 0017-3 Robert A. larlin

Each different type of peril bas different forBUlae for calculating

the 1088 that could be suffered. Some 108s8s can be .ore political

than actual, am proper security for these cases 181 consist prillarily

of education. Other losses, while real, may be incalculable. In these

cases, one aust be JlOre concerned 'lith the recoverability of the

enviromaent than in its protection. True disaster recovery will be

part of any efficient security srste., and if a disaster recovery plan

is in place at the outset, the job of instituting effective security

is ..de that m.uch easier.

lull scale risk analysis for an eXisting shop can be both costly

and ti.ae consuJlling. lIost corapanies opt f or ignoring the proble. of

designing a viable security plan altoqether and therefore end up

instituting security measures on a haphazard basis. This creates havoc
tor users and programaers alike, costs much 1n tiRe and .anpower, and

usually does not protect the environaent from. I18ny of the perils

besetting it. To make the buIden of risk analysis easier to bear, a

surface analysis of the environaer!t can establish the types of

applications Within the envirollllent, and reco_end the appropriate

security for each type of application based on the both the value of

the applications within each type, and the ease in tailoring the

security tools available to that application type. New applications

standardly can include a risk analysis, while old applications can be

retrofitted as time allows, and the risks warrant. In this manner,

all systems can be brought to a standard level ot protect1on With tar

less impact on the current users of the systeas.

When perfonrlnq risk analysis it is easy to focus on the

USER FREINDLY SECURITY 0017-4 Robert A. larlin

/
/

programaer as the main security risk. Aside froa the obvious .orale

probleu in a shop where each eaployee is treated as either a hardened

criminal just waiting to sabotage the system, or a fumble fingered oaf

unable to read a file without deleting it, a security systea designed

to keep prograuers in 8J1811 boxes can double developaent tille, and

prevent tillely problem resolution. ¥bile it is appropriate to place

some restraints on the prograuing staff, it is necessary to a110'l

enouqh freedom. to the staff to do its job. In qeneral, one aust be

realized that one' 8 proqrauing staff vorks for the same company, and

is not •the enemy'.

USER FREINDLY SECURITY 0011-5 Robert A. larlin

TYPES or SECURITY

Secur1ty coaes in a number of foras, and not all foru are

appropriate for a particular task. Each application must be examined

to deteBine the most cost effective form of protection. Ease and

cost of i.pIe_entation" ~u~ceptibility to damage.. and sensitiTi ty of

the data must all be taken into consideration.

The first and simplest fora of security is the assigmaent of

unique user identification. 'Ihis security measure is the foundation on

which many of the more sophisticated measures are based. Until Until
unique ids are assigned, no responsibility can be assigned, and no

audit trail can exist. Coason user ids for depart.ents or
applications remove one of the cornerstones of a good security

illPlementation.

once UDlque user ids have been assioned ~ each user can be
restricted to a single on-line session at a tiae. This prevents the

usurption of a user id while the user is logged on, and reinforces

good security habits by torcing the user to log off when he leaves his

terminal. (If you don't think this 18 the case, watch a user try to
sign on to show hiB boss & problea).

Password pr.otection of the user td is the next level of security,

Passwords should be assigned by the user hiaself, and changed at

reasonable intervals. Requiring passwords to be chaDJed too often, or

!s,s1qn1DJ uaninoless gibberish will result in passwords that have

USER FREDmLY SECURITY' 0017-6 Robert A. laflin

been written down and placed in desk drawers or taped to the tenlinal.

Once the user id has been protected, additional passwords should be

used sparingly if at all, since additional passwords will also

encourage passwords to be written and stored iDstead of reaembered.

Once the user id is secure, files and applications can be vrite

restricted to certain users. 'Ib.is helps preserve the integrity of the

files. Data bases and other master files should be protected. fro-. any

unauthorized write access. Transaction files should have a broader

access, encouraging the correction of erroneous data by transactions

(which are auditable) instead ot direct manipulation ot the data base

(which is not).

Read-protecting data should be litaited to instances in which the

data itself i8 sensitive. nany applications overlap, and the

1nteqrat1on ot data and elimination ot redundancy can be greatly

hindered by a coaaon policy of read restrictions.

lor extremely sensitive material, encryption is superior to read

protection, but costlier to implement. The combination of the tvo is

very secure.

Honvolatile files can be protected by restricting access to batch

programs only. This allows a complete audit trail for all activity

against these files, and an extreaely easy recovery· path in the event

of file corruption.

Restricting access to certain users 1ds l proqraas or files, can

USER FREINDLY SECURITY 0011-7 Robert A. larlin

also be acoomplished by terminal l0C8.t1on. Th18 fora of protection
.uat be applied carefully, since certain aiDor disasters that affect

the location of the acceptable terainals can have major consequences.
11so, late night and weekelll roote proble. resolution can be

haJllPered. Restricting terminals to certain users by user id can pose

the siailar proble~.

Any fo~ of restriction carries with it certain costs not

assoc:ta ted with iaple.ent8 t ion. Restrictions tha. t hallper problem

resolution can have serious cost consequences. Restrictions that

force users to alter their way of business unnecessarily can also

increase operating budqet:s treaendously. These factors Bust be taken

tnto account in any effective security iaple.entation.

USER FREDIDLY SECURITY 0017-8 Robert A. larlin

UlAU1B)RIZED ACCESS

Probably the .oat misunderstood area of security is unauthorized

access. Unauthorized. access involves the cOJll)IollisiJr] of data or

prograu. as opposed to Unauthorized use. vbich is the use of hardvare

aM 30ftware without the coaprollisiJr] of data or proqraAS. It is

particUlarly easy to apply the strictest security .easures to a whole

installation where only sJl8.11 portions of the data within the

installation are siqnificant. On the ¥hole" there is usually very

little sensitive data in an installation. This data divides easily

1nto three tYDes: econollically sensitive data. leaally sensitive data
a11d morale :ten~itiYe data.

[conolltcally sensitive data consists of intorll8tion that could

cause monetary loas 1t divulged, such as proprietary software~ sales
CO.~.ssion rate3, tl1ture aarket studies, etc. Security in these areas

11 more to make the user teel secure, than to actually protect, since

it is qenerally .ore iaportant to the user hiaself tban to any

competitor" and since .oat ot it is available on the corporate ruaor

mill anyway. In the user coaunity, availability on a need to know

basis is appropriate; for the proqramaiDg staff" nondisclosure

agreeraents are usually ~ficient to protect the ~te.llation. On

those areas that are truly sensitive. inc11l1ina aerger plans. in8ide
info~tion" etc., nondisclosure aqreeaents can saaetiaes be the only

protection" since the data 'lill be aWilable to a prooraa.er at the
first application proqra. failure.

usn FREIHDLY SECURITY 0011-9 Robert 1. (arlin

Legally sensitive data presents a greater probleJl. Bank account

balances, credit inforMtioD, persODD.el records, etc. can all he the

basis for costly suits if divulged. 'Ihis data should be protected

f lOll any unauthorized user, and .ost of the prograDi.DJ staf f . Only

those whose resp0D3ibilities directly include production prOblea

resolution should have access to this data, and again, noMisclosure

agreeaents are a necessity.

Ilorale sensitive data can be the .oat difficult security access

proble.. 'Ibe largest area of aorale sensitive data is payroll

infonaation. Any coapany that does its 0911 payroll is asking for

trouble. If there is no way out of it, responsibility for payroll

problem resolution should be relegated to one's Ilost trustworthy

staff, and no one who handles payroll data should be drastically

underpaid.

Another area of .orale sensitive data can be online interoffice

.eIl08. l10st mail packages do not encrypt these Ilissives, aD1 many use

data bases that are accessible to all users.

In these cases, staff aust be cautioned fro. using online Mil for any

aessaqe that could be inappropriate for qeneral release.

The general rule of thulab for UDauthorized access is to aS8U1le

that staff .embers are responsible people, and will, in general,

behave in an appropriate mnner. Truly sensitive _terial should be

protected to prevent tsptation, but ainiml security aeasures are

sufficient for most purposes.

USER FREDJDLY SECURITY 0017-10 Robert 1. larlin

AaIDDTAL DAIflG!

The .oat prevalent security problea is accidental damage to

software or data. All shops have experienced SOIle fora of accidental

duage, and we include UDder this heading anything froa the progru

bug to purging the ycoDj file. Each of us has experienced the joy of

atteapting a coherent application repair at 3 a. Jl., only to find in

the aominJ that our fix has gone awry. Yet coapletely eli.ainating

access to the production data can be a cure worse than the disease, as

production proqre.a inconsistencies wreak havoc in our da t8. bases,

while 'Ie sit helpless to correct the problem..

OUr first goal in handling accidental duage is to adait not only

the possibility but the probability of error. lor each application

area, 'Ie sust assess the extent of duaqe that is, if not acceptable,

at least tolerable. How late in the day can the users be allowed

access to their syate. before a true crisis sets in? How far back can

the U8er recreate his input? Can the user survive if the niqhtly

batch jobs were not nm.? Until these questions are answered, 'Ie

cannot truly 85se35 our risk, and apply the correct 8Ilount of

security.

Our second step is to codify the types of damage that can occur

accidentally. The~e \15oo1ly break down into the follOWing C8tegorie~:

Loss or corruption of production prograa, Loss of input data,

Corruption of input data, Corruption of Database, and Loss of

Database.

USER rREDlDLY SECURITY' 0017-11 Robert A. larlin

llost security probleas relating to production proqraas occur

while atteaptirrj to correct other types of probleu. '!he best

solution to this type of occurrence is tbe establisbaeDt of a separate

operations group responsible for production turnover. Tb1s group

could also double as docuaentation librarian aDd production problea

support, am is an excellent way of apprenticing neY prograu.ers.

Production turnover procedures .ust be rigorous, with write access to

the production progru group denied to all but the staff responsible.

If the shop is too naIl to warrant a staff for this purpose, the

syste. manager should take on this responsibility. Even in a shop

with one or tvo progr8Jmers, the lmderlying security should be put in

place as if a production turnover staff existed. !loving production

prograas (as well as JCL, standard copybooks, etc.) should be

accoaplished by preexistiDJ job streau, paraaetr1cally JlOd1fied to

the task at hand and capable of creating an archive version of both

source am executable prograa tiles. An audit trail ot 80M sort,

either a listing that is filed, or a file that is extended, can also

be created by this streaa. Proper prograa security includes the

ability to easily back out any progru change, in addition to

identifyiDJ what vas changed. Proper security also includes beiD.;J

able to easily identify the current prograa version, through coapile

date aDd/or version nuaber prollinently displayed each tiu the prograa

is executed.

PreventiDj loss of input files, on the other hand, can be a

nightaare that no aaount of security v111 prevent. Identification ot

input is essential in satequardiDj a production enviromaent. All

USER FREDIDLY SECURITY 0017-12 Robert 1. latlin

proor••, that create data that is inPUt to other proarams .ust create

an audit count of at least the nuaber of records passed. In addition,

aoa. other f ora of bash or lOGical C01mt should be instituted. 'lhese

COtmts can be displayed on control reports that are filed, or added to

an amit file along 'lith a tille/date/proqr8Jl steJlp. Online input

should be logged 30aewhere, with an easily accessible way of

determini.nq if the data logged has been applied to the production

enYironaent in case of system or progra-. failure. Just supplying a

user with a transaction 100 in the event of a crash can save hours of

Danual labor trying to recover a deyls input. It the integrity of the

system warrants it, transaction backups can be taken anywhere from

hourly to daily. Here again, we aust veigh the cost of the loss

against the aaount of security to apply.

Corruption of data bases or input data is usually (though not

always) accomplished by a program bug. A perfect prograa of Bore than

a hundred lines bas yet to be 'IIit ten, and no test procedure can

effectively test all possible occurrences. All systeas should have 8

aethod of correcting bad data within the systea using builtin

safeguards and audit trails, but all proqraas should also be perfect.

The tille vill cOile when the input data llust be tweaked, and good

security aust al109 it. It is far aore iIlportant that cbanqes to

production data by other than production progra.B be identified than
be prcyCfttcd. If it io too difficult to change the data within the

security systea, it vill be changed outside of it, and any audit trail

viII be irretrievably lost. The ainiaua audit trail aust be to log the

access to the production data. The ai.ni.mDl security aust require the

USER lREIIDLY S!CtJRITf 0017-13 Robert A. Iarlin

bad data be backed up prior to beiDJ tweaked, for even bad data is

better than none at all. If successful, the change should be signed
off by ~o.eone other than the iapleaentor, preferably the user.

Loss of data base through bard_re or software can not be

prevented. The only possible security for this type of problea is

regular backups and tr8l138.ction logging. LoggiDJ can be iIlpleaented

through prograJUling on files not managed by a Data Base lfanagellent
Systea, aDd all systeas tbat use such files should be e'¥'aluated for

the necessity of such .easures.

Loss of a data base thro\1CJh human error can usually be prevented

through the use of appropriate access security. Privileged

capabilities should be restricted to those for whoa it is necessary.

Even these users should have both privileged am non privileged

access, and use the former only when necessary. Privileged
capabilities should never be restricted to 8. single user id ~hared

amongst those wno need it, since this eliminates a major audit trail.
Each user who may need privileged access should have his or her own

user id, the use of which may be audited easily.

our last step is the logqiDJ and analysis of all accidental

duage to the production environaent. Only by exaaini.nq the pattern

of past errors can we iaprove our security. 'Ie m.ust restrain
ourselves, however" froa iapleaentiDJ ramoa security aeasures in

response to any particular event. Security must be established as a
coherent structure of policies 8M procedures, not a haphazard

collection of unrelated actions.

USER FREDIDLY SECURITY 0017-14 Robert 1. larlin

nALICIOUS DESTRUCTION

Rex Stout once coaented that it was iapossible to prevent a

determined .urderer. It is not difficult, however, to .ate certain

he is caught. The salle logic of course applies to aost business data

processing environaents. One cannot secure one's syste. froa those

wbose responsibility it is to ensure tt.ely and accurate service to

one's users. One cannot secure one's syste. fro. the user mo aust

update it. Any atteapt to place severe enough restrictions to

actually protect Jl8.y result in a .orale problea deep enough to

precipitate the very acts one is trying to protect against. 'the tvo

Jlaj or et t arts in this area aust be: first, to establish a secure

enough environaent to enable reasonable detection of sabatoge; and

second, to isolate the perpetrator.

Securing the environment involves many of the steps outlined for

accidental dalMlqe. A separate staff responsible for turnovers,

sufficient backUp procedures, including oftsite retention of files

back far enouqh to cover aO:Jt contingencies, aM separate production

libraries are all good aeasures to help secure the enVironaent. Other

CODon sellae iteu include reaovinq access to bard1f8.Ie aM software

before an ellPloyee is inforaed of his teBination.. aiVing tvo weeks
pay in lieu of notice IN ADDITIOIl to any 3eYerance due, aDd eDforcirlq

password chanqes at reasonable intervals (tvo Ilonths is adequate) .

Creating an ataosphere ¥bere the .ajority of e~loyees feel they have

been reasonably vell treated is probably the best safeguard. Allowing

USER rREDDLY SECURITf 0017-15 Robert A. larlin

eaployees to feel that they' are professionals, even when terJliDatiDj

thea, vill also help foster professional conduct.

Isolation of the perpetrator can be enbanced iDeasurably by

assigning sole responsibility for each area to different staff

aellbers. All senior and interaediate staff should have an area of

total responsibility, am should be held accountable for knoviDq the

current state of their area, includiDJ recent probleL~ and changes.

This provides a siDjle area to audit on e.ployee teraination, either

by the corporation, or by the e~loyee's own decision.

In general, though, one cannot run one's business in the fear of

sabatoge by disqnmtled elq)loyees. Tho1ljh stories of coaputer crille

fill the newspapers, very very few eJlPloyees actually resort to such

tactics. MOst staff are professional, and even if they' are not, the

effect on one' 8 career of being discovered is enough to discourage

even the .ost foolhardy. Only in anqer 'lill these eaployees attempt

to dsmge your installation, and proper management is more important

in preventiDj this fOB of sabatOC)e thaD any security iapleaentation.

USER FREIIDLY SECURI'l'f 0011-16 Robert 1. Karlin

IHSTALLIHG SECURITY

After delineating the perils that would affect your installation,

it's tae to analyze the extent of the security necessary for your

installation.

rir5t, isolate global perils, those eleJlents that could briDj

your coaplete operation to a halt. The responsibility for these

elements reside with your systea amager and technical staff.

Securing the sTste. tram these people is extre.ely counterproductive

and probably i.possible anyway. Establish in3tead a aonitoring

procedure to protect the systeal regular backups to recover With, and

I walk throuqh3' of all systea changes aaongst the responsible parties.

New releases of vendor software should be publicized prior to

installation .. am copies of the prior release should be available to

return to. Never let a vendor ~ including HP ~ !BIt etc. install

softwle without first, explai.niDJ the new release and installation

procedures to you; secoM.. explaini.n(J the backout procedures to you;

third, allowing you to do a coaplete backup of your current syste.;

and fourth.. alloving you to talk to another installed site.

Second, identify your essential tae critical applications.. that

i~, those application~ th&t mJST (not should) be completed or online

at a particular tille, or your operation goes down the tubes. These

can include daily payrolls, order picking tickets, point of sale

applications, etc. Deteraine the types of perils that these

USER rREIIDLY SECURITf 0017-17 Robert A. larlin

applications are subject to. Establish the Itini.mDl tiae it ¥Quld take

to recover froa each type of peril and deteraine if a MIlual backup

can be desiqned for coaplete disasters. Determine the lliniIlua

security necessary to protect against the .ajority of these perils and

iapleaent it on an application specific basis. This My involve

programming the security into the application itself. Remember, these

applications IlUST be awilable at a particular tiae, and so you baTe

no real choice in whether or not to aple.ent security here.

Third, identify those essential applications tbat are not tiJle

specific, that i:s, they mmt be done but you baTe soae leeway in

recovery. Security here can be looser than in the previous

categories, but these are still essential systeas. With thi:s

category, you !lust determine the Jl8xiJaua tiBe that you can live

without each application, that is, hOY -.ny hours or days have you to

fix any problem. Application considerations for this category should

be geared toward the auditability and recovery of data, as opposed to

stringent internal application security.

Fourth, group those applications that should be nm, but are non

essential or can be produced at a later tiJIe. ~Y' user report3 fall

into this category. SOlle complete applications may fall here.

Usually, standard sy:stea security is sufficient to safeguard these

applications.

Mld if you have any applications in the fifth category, that is

those applications that do not need to nm at all, my are you still

runniDJ thea?

USER lREDlDLY SECURITY 0017-18 Robert A. larlin

In conclusion, bY applying security at the application level, in

response to the perceived need of the application itself, you ¥ill

tim that you 9111 need lesa security tban if you try to apply

aecurity to your systea 8S 8 whole. I ¥ill leave you with the

following olio of security guidelines.

* When possible I allow users to assiqn their ovn passwords.

* If you are assigning passwords, do not mke them. overly

coaplex, or soaeone viII tape thea to the teraiDal.

* Try not to require nuaerous different passwords. Use the

user id to ascertain access.

* It is ..ore aportant to loq chaBJes to your eDTiromaent than

to prevent thea.

* It is IlOre illPortant to provide a tool to the user, than it

18 to protect hi. froa the consequences of that tool. This

does not relieve you of the responsibility of explaining

those consequences to hiB.. but he's a big boy.. and should be
alloyed to .ake up hi:t 01fD aiDd.

* ¥hen in doubt, back it up.

USER nED1DLY SECURrrr 0011-19 Robert 1. tarlin

* When in doubt, log it, count it, apply it ... but back it up

first.

* Security should not be painful. If it is, you're doing it

wrong.

* And fiDally, your eaployees' .orale is the best security in

any environaent.

USER FREDIDLY SECORITf 0011-20 Robert A. larlin

AI-The Three Toed Sloth

Robert A. Karlin
Karlins' Korner

7628 Van Noord Ave.
N. Hollywood Ca.

91605

1he three toed .loth, the ai, is a large slcnr beast tbat

lives in the South Aurican jUDrJles, where he baDgs upside dcnm froa

the trees, feed1Dg on fruits aid vevetab1es. Tb.oug"h slow and

nomally docile, the a1 is a powerful aniMl, aD1 can be daDJerous

vhen aroused.

Artificial IDtell1geDCe, tbat is AI, is also a larqe slow

beast, I1v1Dg far froa the ken of DOral proqruaers. Close

obsenation of AI by progruaers aore used to the lllDIane could

easily lead thea to believe that the AI has been prograaed upside

dam, or at least by creatures that live in trees, feeding on fruits
aDd vegetables. ~ AI, though slov aDd nomally docile ... can iIMleed

be very powerful, aid also Tery dangerous it Il1sused.

1I-'1'be '!'ree Toed Sloth 0018-1 Robert A. larlin

DmlQDOCTIoB

Since the hegiDDiDg of the cnputer age, II8D. has lfODdered at the

idea of a th1Dk1D1 .chiDe. rroa the Dybbuk of eastern European

ayth to the clock1fork figures of seventeenth aDd eighteenth century

fiction, th1Dk1D1 _chiDe. vere usually envi.ioned as h1maD in

shape. In 1923, larel Capek coi.Ded the lford Robot in his play,

R. U. R., aid since then, the vord bas been synonyaous vith

aechaDical intelligence. It _an't 1mtil the creation of Eniac aDd

1Jn1ftC, the first coaurcial cnput1D1 .chiDes, in the a1d 19608

that the actual aechaDisa by which intelligence could be iJlparted to

DOD11V1Dg structures took sbape. SiDee tbat tille, the search tor

artificial intelligence, has heen ceaseless.

In general, AI bas not touched the business ..rket place. AI is

still too new a field of stllly to baTe produced IlUCh fruit.

Bovever, this is chlmJ1D1. '!'his paper is a look at AI froa the

busiDesnaD' s point of View, el"w1n1DJ wbat bas 0'0118 before, aid

wbat 18 still to C0a8, aDd bDv this vill affect the business data

process1D1 departaent of the near future.

11-'Ihe Tree Toed Sloth 0018-2 Rohert 1. larlin

IITlLLIGDQ

Before we enter tDto a diacuaa10n of Wbat cODItitutl. artificial
intelligence, ve should first see if we can define 1Jhat it i8 tbat

ve uan by intelligence.

Webster's del iDes intelligence as ' the ability to learn or

UDderstaDd froa experience; the ability to acquire am retain

knovledge; the ability to respom quickly aid successfully to a nev
situation' . IbIlt part of this defiDition is applicable to

intelligence of tbe artificial kind?

By far the .ost strikiDg difference between ccmputer prograas aDd

huIMm beiDgs is the ability of huaaD8 to alter their bebaYior

pattern based on experience. But it is possible to create prograas

that learn as well. The siaplest ezuple of a prograa that leams is

the gue progru AJIDW" a ccmputerized version of twenty questions.

To iDitiate the que, the prograa says ''IBIB or AB ARnw.'. After

the player rlapoMs 91th a carra1ge return, the prograa 1Dquires

•DOES 'IBIS AJIDW, lilY! FOUl rEI'l'?l. If you reapcmd in the

aff1mative, the progru '1111 say 'ARE YOU 'lBIBIIG or A CA'M'. If

you re&pOD! tbat you are not thiDkiDl of a cat, the prograa rill ask

you ¥bat 8I1iM.l you are tbiDkiDg of, aDd 1d1en you respom

'elephant', the progru. vill ask for an ildicative feature of aD

elepbant. 1be Belt tiae the gue is played, if the 8D81fer to the

first question is affimativ8, the progru vil1 ask the question

saved froa the first gue to differentiate a cat froa an elephant.

AI-'Jhe Tree Toed Sloth 0018-3 Robert A. brlin

If the progru again guesses ¥rOD), it 9111 store the infO~tiOD

acquired this play. In a surprisingly short tiJae, the prograa can

accurately guess thouaa!ds of separate am...ls, usually 91th less

thaD ten questions. 1bi.s f ora of trial by error can be very

effective for nail probleas, but alaost vorthless for anythiDg

larger. To illustrate, iMgiDe a pragru that plays chess. After

each loss, tbe software stores the last aove prior to the .ate, and

eliJaiDates it froa its possible aoves. To develop any coherent play

in this EDDer vould take years, even 91th our fastest .ach1nes, aD1

the lookup tiM during play vould be prohibitive. Current research

in the area ot sot tvare leam1DJ is conceDtrating on aethods tor

deriviDg UlderlyiDg rules of thUllb, as opposed to specific courses

ot action.

It My seea tbat acquisition aid retention ot kDovledqe is the

easiest sepent ot intelligence to eaulate in MChinery. After all,

this is 'lbat ve believe coaputers do best, storing data. AId yet,

just storing data does not really fit vbat Webster vas driviDg at.

Data aust be stored in SOH usable fora, iDlexed appropriately for

later retrieval, aDd suaarized into coherent structures. ADd this

is 1fhere ve nm into trouble. 'e can store data auch JlOre easily

thaD ve can produce general purpose rules to identify aDd classify

tbat data. We bave trouble developiD) rules to al109 a prograa the

ability to distiDguish between a photo of a beach ball aDd a photo

ot the SUD. 'e also have trouble eliaiDatiDl -noise- data, data

tbat does not belODJ, froa data that just does not fit. A h1man can

easily look into a basket of objects and retrieve a particular size

aDd color block, yet there is DO pragro yet that can perfom that

1I-'Ihe Tree Toed Sloth 0018-4 Robert 1. larlin

task nth one huDdred percent accuracy.

'!'he ability to respcmd to new sit1Bticms based on prior experience

_y sea to he the aost difficult section of our definition to

eaulate, yet is actually one of the success stories of current 11

research. Rule-based 'expert systeu' baft been developed that can

generalize froa iDsufficient data aid, respODdiDg to DeW situatiODS

with its area of expertise, produce fairly reliable results, but the

key to a successful expert systea seas to be as auch in the

artistry of the design ualyst as in the developaental teclmique.
Ie have yet to produce an expert systea able to design other expert

systeu, thouI;Jh this project is certainly being pursued.

1I-'lhe Tree Toed Sloth 0018-6 Robert 1. larlin

'lhe biggest success story of artificial intelligence research is
kno1rledge-based or •ezpert' systeu. 'Ibe first prograa that could
be called knovledge-based &s called DDDIW... aid &s dneloped at

Stanford University in the aid 1960s in order to help cheaists

identify cOltPoUEds by spectroaetric 8D1l1ysis. SiDee tbat tille.
expert systeaa ha?e been desigDed for applicatiODa as di~rse as oil

prospectiDJ aid aediciDe. In addition to cOlq)lete applicati0D8.

expert aptea •shells' are nov aftilahle. allo1fiDg custoaers to

tailor the systea to their 0. needs.

All expert systeas contain at least tvo basic parts. first,

obYiously i8 the 'kno1rledge base' itself aDd secord, aOlle fOOl of

knovledge interpreter to input aDd retrieve data tra the knovledge
base.

In order to represent a field of kDovledge, it aust be codified in

a way tbat vill -.Ice it both accessible am understudable. Sou of
the different ways of codiDg are logical codiDg, procedural

representation. saant1c nets, production 8Ysteas, aid frues.

Logical codiDJ coDsilts of fOrMl logical stateaents. lor
esople, if ve take the stateaent 'all con have four levs', then ve

could espress this in foral logical espression as 'lor any object

x, if x is a cow, then x has four legs'. 'ft1e adftDtage of logical

coding i8 tbat the rules by 1fb1ch express10DS are naluated is based

1I-'ft1e Tree To" Sloth 0018-6 Robert A. larlin

on centuries of philosophical research, aid is kDom aDd veIl

urderstood.

Procedural representation consists of 8Ml1 veIl defined

procedurel tbat procell 1Dliv1d_l porti0D8 of the problea. ror

elOPle, if v. vere buildiDg a Datural laDguage parsiDg prograa,

DOUDS, verbs, adverbs, etc. each vould bave their 01ID naIl

procedure tbat detera1Des wbat actions should he taken. 'ft1e _jor

d1sa4ftDtage to prOCedural based systeu 18 the1r coaplex1ty,

creatiDg probleu in UlderstaDdiDg the entire interaction of the

base procedures aid .akiDg debuggiDg difficult.

Se.ntic nets alt relnble the clatabase of the business

cODUDity. Objects, concepts aDd events are stored as 'nodes', am
the interrelation of these nodes are stored as 'liDks'. A sillple

net Jdght be:

COy

I
I has-part

I
V

FOUR LEGS

'Ibe _jor problea 91th nets is tbat they are not 1DDately ftl1d,

that is, the interpretation of ¥bat a liDk IleaDS is entirely in the

l'JaDds of the soft_re, aDd, unlike the logical representation, the

data itself is DO guarantee of its ••n11'MJ.

AI-The Tree Toed Sloth 0018-1 Robert A. larlin

Productiona systeas, also knom as rule-based systeJlS, store

1Dfomat1on 8S a set of rules, called productl0D8, usually in the

fora of •if cordition, then action'. An exuple _y be, 'If it

starts ra1D1Dg, aDd you are outside, then open 1mbrella' . Because

of their iDDate UlderstaDdability, production systeas bave been

useful for large application systeas. DEllDIW" aentioned above, aid

PROSPEC'l'OR, a oeological progru, are UODJ the better kDo1m of

these.

The last represeDtaticmal scheae we 9111 discuss is the •frue' ,

or object oriented representation. Unlike rule based systeu, ¥here

each 'unit' is procedural, am nets in vbich each unit is

declarative, each frau includes both a declarative and procedural

portion. Tbis allows the fraae itself to deteraiDe What action it

should take to any action aqaiDst the frue. Object oriented coding

is becoaiDJ popular outside of the AI research centers, aDd object

oriented PASCAL c0Iq)11ers are eYen D01f becoaiDJ aftilable.

In addition to our kDovledqe baS8, 98 IlUSt bave SGIle fora of

prograa to analyze our queries aid convert thea into sou fOB of

database access. Each different fOOl of data storage bas its om

type of '1Dterence eDJ1De' to fora the bridge between the user aDd

the data aDd to represent the aethodology of the oriqiml expert.

!luch of the research in this area centers arOUld the &bility to

control aid predict how the sy:ttea viii function Ulder a broad reDJe

of cirCUllStances. 'ftlese teclmiques are slovly vorkiDrJ their ~y

AI-'1be Tree Toed Sloth 0018-8 Robert 1. larlin

into the business coaUDity to produce .mageaent reportiDg aid 10Dg

I81Qe data 8.D8.1ysis aid prediction.

!zpert systeu bave been succelsful, 1fbeD they are, due to the

Darrovne8s of the scope choseD for each project. Inovledge based

systeu are _aaive UDdertakiDgs, ilrfolviD) skilled •knowledge

eDgiDeers· , 'Ibo are reapODSible for interpretiDg the aethods of each

ezpert chosen for a SYltea JaOdel, aDd converting this knowledge aid

aethodoloqy into a prograa aDd database. As any analyst knows, eYen

the expert ay not know 'lbat he is doing 1fbeD he exercises his

talent, so separatiDg the substance froa the riDdow dreaaiDg can be

quite an UDdertakiDg. Even af ter the STste-. is coaplete, iaproved

teclmology aid current iDfor-.tion aust still be added continuously

to keep the 8fstea frca becoaiDg obaolete. ADd yet, expert systeas

can pay for theuelves in a single use, capturiDg an expertise that

vould be lost forever.

Zyen tho1JJh ge .y lea to baye produced the ellbryo of _chine

intelligence, we are beoiDDiDr1 to realize that huIIans thiDJc

differently tbaD the aodels ve bave built. Let us look at how

reaearchers have tried to prOYide _chiDe intelligence with the

ability to solve probleas.

1I-'ftle Tree Toed Sloth 0018-9 Robert 1. larlin

PROBLIII SOLVIIfG

The area of gaae playiDJ bas been one of the .st successful areas

of research in AI. !lost of the leaders of AI vere fascinated nth

goes research, due not just to the enjoyaent of g08 playiDg, but

to the liJaited doaiD tbat exist in a que enriromum.t, alloviDg a

gaae s1JlUlat1on to act as a prolY tor aore cOllPl1cated. real world

probleu. One of the aost popular que siJlu1ations bas heeD, of

course, chess. The first paper on the subject, 'PrograD1Dg a

COIIpUter for PlayiDJ Chess', 1I8S published in 1950 by Claude

SbaDDoD, aDd .any of the teclm1ques described are used by today' s

chess playiDrJ MchiDeS. Chess is a good emaple of bov problea

sOlTiDJ teclmiques baYe developed.

In the begiDDiDg, aost scholars telded to believe tbat all tbat

vould be needed to develop a good chess progro .s eD01J;Jh storage

am. speed to elU1De all possible aov8S tbat could be played for,

say, the next ten turDS. !lost chess experts, by the vay, look ahead

Gout s11 JUrIes. Bcnrever, it ve say tbat, 8S an average, ve can

JlOV8 at least ten pieces in any one 1aOV8, aDd our OPPOD8Dts can aove

the sue, ve vould need to naluate 1020 JlOTes to look ten aoves

ahead. Even if we could process a aillion aoves per secOld, it

would take about 3%1010 hours, or about 3 aillion years. Obviously,

th1s is not quite acceptaJ)le for an afternoon gue of chess. Soae

..y IlU8t be fOUld to shorten our search. 'fbis area of research has

been one of the aost illportant areas of AI, aid is basic to a1llost

all other AI areas.

1I-'Ihe Tree Toed Sloth 0018-10 Robert 1. laflin

In order to el8lliDe search techDiques, V8 vill repre8ent our

probleu in the fora of a 's_reh tree'. We start at the top of our
tree a8 80:

rroa this point, let us say, ge bave three possible options. We
1fOU1d represeDt thea as 80:

AI-'fbe Tree Toed Sloth 0018-11 Robert 1. larlin

AGain, let us say tbat each of these optiODl can have three

possible options of their own:

ADd so forth.

There are a m.ber of ways we can search this tree. '!he first,

aDd easiest~ type of search is called the 'depth-first' search.
This, as its DlIae illplies, iDYolves searchiDrJ each branch of the

tree to its bottaa .oat leaf, tbat is, fraa start to option 1, to
lA, to lB, to le, to option 2, to 21, etc. Strictly at ralda., this

type of search vill, on an average, hit balf of the nodes to be

s.rcbed before fildiDg a 'hit'. '1he secord type of search is kncnm.

as the 'breadth-first' search. 'lbi.1 would irrrolve searchiDg each

level, froa start to option 1, to option 2, to option 3, to lA, to

tB, to ie, to 21, etc. This search type bas the d1sad'98ntage of
neediDg a ?ery large iDteraediate storage area to store the results

AI-'lhe Tree 'I'oed Sloth 0018-12 Robert 1. larlin

of searchi.DJ each level, aJd, in a raMoa search~ 9111 probably hit

a greater nlmber of nodes. On the other haM~ breadth-first

searches are useful in .any gue aituationa. aiDce they allow

partial e~luation of eaCh .ajor liab of ~e tree before cant1Du1Dg

the search, aM this # in tum would allow the prograa to pick the

liJlb IlOst likely to contain the solution.

Another tecbDique that helps shorten search tae is called

'bidirectional reasOD1lWJ'. In. this type of search, not only do you

start a breadth-first search froa the top of the tree, you caD start

a breadth-first search froa the 9oal. nus is useful for types of

unipulations, such as _zes, in which the goal am its precursors

are clearly defined, em we are looking for a relatiODShip between

the start aDd the goal.

iDother tlportant problea solving tool is called '.eaDS-eDds

amlysis' . 'Ibis aethod inTolves deterai.ni.DJ, for each node in the

tree, what is required to accOIq)lish the execution of the node.

'!'bese are then aDalyzed for each coaplete path froa the top of the

tree to the required solution, aDd an optiJma strategy for

traversiD} the tree 1s evolved.

!lost probleu in AI 1DVolve using a coJabiDation of techniques to

achieve a solution. The d}'D8Jlic selection of search algorithas

based on the type of problea presented 1s another cont1nUi.D) area of

AI research, aDd is aD area that can be of direct benefit to the

business coBUDity. 18 the size am cOIIPlexity of our data base

technologies increase, TIe viII need to include .any of the problea

AI-'ftle Tree Toed Sloth 0018-13 Robert A. larlin

sol'riDg aethuds of 11 just to keep the cost of our inquiries

EDBqeable.

1I-'lbe Tree Toed Sloth 0018-14 Robert 1. larlin

DTQRlJ, J'lJIGIINiE STS'IJIIS

1he ability to Ulderatml aid Ule leguaVI baa al.ya bien a

yardstick for deterai.Di.DJ intelligence. EYeD after the discovery

that other species used 18DfJUl1ge# this fact vas used as evidence of

their intelligence # aid closeness to Iml on the evolutiODllry scale.

EYeD the intelligence of dogs am cats is Dot usually considered to

be their ilmate ability to solft cnplez probleu in opeDiDg doors

aid proceediDg throucrh _zes# but their ability to Ulderst8.ld hUED

speech. Is it any VOIder that the use of e. natural laDJUllge. such

as EDglish. lrench# or SRhili 8S opposed to COBOL# PASCAL# or LISP"

is ccmsidered priJle evidence of _chine intelligence?

The problema besettiDl the ..lysis of Datural l8DfJUI1ge can be

easily illustrated in the folloviDg ezuples. rirst# ezuine the

folloviDg sentences:

Tae flies like an arrow.

Fruit flies like a baDaDa.

In the first sentence, 'flies' is a verb am 'like' is a
preposition. In the secord # 'flies' is a noun ard 'like' is a verb.

nus type of uncertainty can give softvare fits. A secom ezuple

aight be: 'Ihe ball -.s hit by the boy with the bat. Did the boy hit

the ball usiDg a hat.. or is the hat just the aeaDS by which we
should identify the boy? CbaDge 'hat' to 'bat' aDd aD.SWer the

question again.

11-'1'be Tree Toed Sloth 0018-16 Robert A. larlin

Batura1 laDguage research _8 given an enonaous boo8t by the work

of one persOD, Aaerican .thnaticiaD Baa. ChollSky, 'lbo, in 1957,

revolutionized liDgu1sticl with the publi8b1Dg of 'SJDtactical

Structures' . Chouky 1I8.S the first persOD to treat vraaar as an
area of study that tr8D8c8llds specific 1aDg1ages, an area of study

91th rules coaon to all 1aDg1ages aDd able to be expressed in

logical aDd athnatical tenaiDology. Chouky' 8 rules of qr8JDl8r

allowed researchers to begin to codify the aethods by vbi.ch h1maDs

act1B1ly decipher 1aDg1age, aDd to apply sou of these techniques to

_cb1De intelligence.

is Datural l.aDguave Ifsteas were refiDed, it becaae obvious tbat a

rule based laDguage systea would becOM caples to the point of

1Iapo8s1bllity, not just because of the size of the database, but

also .because of the iDability to deb1l] a &ystea of tbat .agDitude.

Object based des1gDs aid constrained representation systeas are nov

being applied to the prob1ea in order to siJlplify the basic systas

by reducing the llUIIber of rules the syat. aust deal 91th.

Batural l.aDguave systeas are increasing in illportance in the

INsiDess cODUDity. is relaticmal databases becOM prnalent,

Datural laDguage intertace IYsteu are becoaiDg popular, siDee this

a1109s a user of DO coaputer sophistication to create c0llP1ez

database queries without leamiDg 'coaputer sbortbald' laDguages,

such as SQL. But even tbe sillplest Datural laDguage query processor

needs an alnBdaDCe of data storage 8D1 CPU cycles. Rev ideas trOll

AI research are eagerlyavaited.

AI-'lbe Tree '!'oed Sloth 0018-16 Robert 1. larlin

A seccmd area of Datural l.aDJuave syateu that ia becoaiDJ popular

in coaerc1al applicationa is laDg1acJe translation prograDing. It

_y sea UDiIIportaDt to be able to tranalate ~66 //i66ralJlt16 into

Russian U8iDJ a c~ter, but the ability to tranalate tec1m1cal

IIIIIIUIlla aid dOClmeDta of all aorts 'lill speed the spread of

technologies arOUld the world. It My be possible to read teclmical

joumala published in Japan or GeIIIaDY today, instead of vaitiDj

weeks for the translations to be coapleted. Even cmaputer softvare

interfacea could be translated, expaJdiDJ the .rkets for these

products, and tbe hardvare they are written for.

Ie bave seen that Datural laDguage systeas are not siaple. On the

other bald, the eccmoaic incentives for 90rkiDJ Datural laDguage

systeu sen to be expaJdiDJ this area of AI at a rapid rate.

COIIbiDed 'lith the concurrent reaearch in voice synthesis aDd speech

recognition, ve My soon be seeiDJ systeas that can be queried in

EDgliah over the phoDe to tell us the weather in BaDkok, or the

ba1aDce in our cbeckiDg accounts.

1I-'fbe Tree Toed Sloth 0018-17 Robert 1. larlin

JIJ!RE ARE B 110'

Ie ban looked at a bit of AI teclmology, aid VI baVl discussed a

fev of the applicaticms DOll UDder stllly. We haft ccmpletely igD.ored

the areas of robotics; visual, aural aDd tactile perception; self

prograDi.Dg aDd self eDbanciDg systaa; etc. 'Ihe purpose of this

paper .8 to give an overview of the field of AI. nth gpbasis on

those areas that My becoae applicable to the buainess co.-unity of

today.

In general, ve baTe seen tbat AI 1s usually very costly, both to

desip aDd to ezecute. 1faDy' coaercial' AI ayateaa were origiDally

developed in traditiODal AI laDJUages, such as LISP, aid PROLOG, am
later converted to PASCAL, roRTlWf aDd even COBOL to achieve the

speed necessary to coapete in the coaercial _rketplace. As AI

aoves froa a bit aid aiss field of st1dy to a fully eDlJineered

science, aore applications vill fiDd their vay into the _rket

place. Beware, hcnrever, the Yerdor who is tryiDg to sell you an

'expert' Sfstea for $495.90. Tbe aost charitable point that _y be

-.de would be that an oyerzee.lous sales force tacked the appellation

to the product 'Iithout lookiDg the vords up. On the other bald ,

this could be another aetbod of aeparatiDg the unvary froa their

aoney. It vill be quite a fev years before even a reasonable subset

oould be fOUDd o.t cOIIpUter boutique priceo.

ADd yet, certain subsets of ezpert systeu aDd natural laDguage

Sfsteu are beviImiDJ to appear econoaica.l. In not to MDY years,

11-. Tree Toed Sloth 0018-18 Robert 1. larlin

it will be cODon to filii qulry laJrJ1agls that ala to bl _lim.
because the aubset of _l1sh iltplalllted vill be fairly large. You

should expect these prograu to be ftry Iitlral in their

1DterpretatiOD. 1akirQ 'can you get .e the .lea figures frOll

October?' .aJ get you an aDlver of 'liS'. !bell prog~ will allo
t8ld to get confused often eDQUg'h for users to ccmaent on the need

to desk check the output beforl treatirQ it 1.1 goapel.

We should also see iltprand database access teclm1ques•. with

algorithu to optiJa1ze inquiriea baaed em prior ezperience. OUr

concept of data stoRve viii tlld to iDclwle concepts such as 'self

defi.niJwJ' databases. 1Jhase cmaplete structure. iDclldirlg source.

responsibility. editirlg criteria ud report forat. will he atored

as part of the database itself. We should begin to see object

oriented e:rtenaicma to our current laJrJ1aves. 'Dlese are e:rtraely
useful ill rapidly cbaDJimg businesses. such as life iDsurance aid

ccmaodities tradimg. ad would .ae the probleu of iltpla_timg Dey

products or aodifyiDJ 8zistimg ones.

'ft1ouarh we _1' not aee larel capek' a robots in our offices next

week. AI is here to stay. I.IIl will be a larve part of the offiCI of

toaorrov.

AI-The Tree Toed Sloth 0018-19 Robert A. Karlin

BIILIOGI4PIII

I have fOUDd the follow1DJ bookl to be eltr...ly 1DterestiDg while

r....rchiDg this paper. I would highly recODlDd thea to anyone who

is interested in the subject of Artificial IDtelligIDCe.

mum; JQQIIIIS '1hI a.rch for Artificial Intlll1g1DC1 by Igor

neklaJder aDd Pieri Burnett. 1987 (Alt red A. IDopt, IDe) . This book

i. aD elclediDgly cl..r book de.cr1biDg the ar. of 11..

'Jhe 'MmBOOX 0' ,\RTIlICw, IIJILLIGIIICI yolUU' i, 2. ODd 3 by

Afton Barr ard Ed.rd A. re1geDbaUil. 1981 (911110 laut.., IDe).

The defiDit1ve telt OD artificial intelligence. 10 study of the

field could be caplet. without it. ~ain, this book is quite easy

to rMd, aDd eYlD the .st difficult elUlPl.s are pr.sented 91th

grace aid style.

AI in tho 1980. ODd BlTOID aD lIlT SUrvey, edited by t. Eric L.

Griuon aDd Raaesh S. Patil. 1987 (1Ia••cbuaetts IDItitut. of

Teclmology Pre.s). A provocat1v, look at AI present aDd tutur•.

GODEL. E!QJQ, BN;II: AD Eternal Gold8Jl Braid Douglas R.

Bofstadter. 1979 (Basic Book., IDe). ODe of the unique books of our

t1ae, G!B 1s a .rvelous blm1 of tr.t1s. aDd DODSeD8e, exploring

the world of artificial intel1ig'8DC8 in a MDDer akin to L81fi.&

carrol, creating a "orld of Zen AI. Tb1s book is not a quick read,

but it is v.ll worth your whi.le to explore it.

1I-'Ihe Tree Toed Sloth 0018-20 Robert A. Karlin

CONTROLLING THE DATACOM MONSTER:
ONE COMPANY'S APPROACH

Jeffrey D. Van Brunt
Ireco Incorporated

11th Floor Crossroads Tower
Salt Lake City, utah 84144

Introduction

In 1983 when I started working for Ireco, a Utah based
international explosives company, our datacomm consisted of
several local terminals and one 9. 6 point-to-point leased
line. This line connected our Salt Lake City office and our
West Jordan plant, 20 miles away. In June 1985 Ireco
acquired the Explosives and Nitrogen Products division of
Hercules Inc., an acquisition tripling the size of the
company overnight. In the area of datacomm, this meant we
added five major manufacturing plants and one distribution
facility with which we had to establish nationwide
communications. We were very much in the dark as to what
the needs of these sites would be. Adding to the
complexity, we were just making a recommendation to replace
our current hardware with Hewlett-Packard equipment. We
knew we had to act quickly, so we took our best guess,
ordered data lines and began implementation. Four months
after the network was installed we realized what we had in
place was totally inadequate. We also realized that we did
not have the expertise to design a network that would handle
our needs. There were questions concerning response time,
redundancy,· and reliability. We weren't sure how to solve
these and many other questions. What were we to do? After
a great deal of thought, we came up with a plan as to what
we thought we should do.

About The Paper
This paper will discuss the approach taken to tackle the
datacomm monster before us: one company's approach to
achieving results in the world of data communications. I
need to emphasize at this point that in no way do I feel
that our approach is the only approach, or the best
approach. I'm not even sure there is such a thing as the
best approach. What we have done is develop a method that
works for Ireco in it's particular situation. I hope that
by reading this paper you can gather some ideas and generate
some questions in your own mind as to how to control the
datacomm monster in your company. The remainder of this
paper will be a chronology of the events and steps taken at
Ireco over the last three years in the area of datacomm.

0019-1

A Word About Ireco
Ireco Incorporated is an international explosives
manufacturer and distributor headquartered in Salt Lake
City, utah. It has operating facilities in 26 countries
located on every continent in the world. Ireco is owned by
Dyno Industrier A.S. of Oslo, Norway. Dyno is one of
Norway's oldest and largest companies with it's history
dating back to 1865, when it was producing dynamite based on
Alfred Nobel's patents. Ireco consists of three
manufacturing divisions: Industrial Explosives, Nitrogen
Products and Defense Products. Ireco has four marketing
divisions: Western U.S., Central U.S., Eastern u.S. and
International Sales. Ireco also has Wholly owned
subsidiaries in Canada and Chile. Ireco is considered to be
a full-line explosives manufacturer spanning all explosives
markets.

Early Datacomm Network

Factors Involved
As mentioned before, Ireco was a very unsophisticated
datacomm user when the Hercules acquisition took place.
During this time we were a very small shop consisting of
five people, none of which were "datacomm experts. II What
faced us seemed like a monumental task. We now had a total
of six manufacturing plants and one distribution facility
with which we had to establish data communications. We had
been told of the pending acquisition in April of 1985 but
were allowed no contact with the new sites until the final
papers were signed. Once the papers were signed an
agreement was made with Hercules to continue to allow the
plant sites to use their existing applications for one year.
We all breathed a sigh of relief since we thought we had
some time to plan our strategy. The one task we
immmediately needed to worry about was establishing a
connection from Salt Lake to Wilmington, Delaware (Hercules'
computer center) in order to allow corporate office
personnel access to the existing Hercules computer systems.
This was accomplished without too much headache. We sat
b~ck and started to plot our strategy for handling these new
needs. We thought we had time! Before we knew it we were
into september and were told that as of January 1, 1986 the
manufacturing plants had to be online with Salt Lake. At
this point we still had not been able to gather an adequate
amount of information on the data processing needs of these
plants. What we did have was a list of applications and
equipment used to access the Hercules system. We also found
out that it took 45-60 working days to get a leased circuit
installed. Realize that while all of this was going on,
there was the problem of finding adequate software packages
to handle the increased needs of the company, and we were

0019-2

also in the process of converting to HP hardware. WHEW! It
gives me a headache just thinking about it.

Why Our Decisions
Based on what little we did know, and with advice from a
couple of vendors, decisions were made and the lines, modems
and mUltiplexers were ordered. We were feeling pretty 'good
and were excited about what was to come. Boy were we naive.

The design consisted simply of two multidrop 9600 baud
leased lines with three drops each. At the remote sites,
9600 baud modems were to be installed to act as slave units
as well as mUltiplexers capable of handling eight devices
each. The one site that we had been communicating with was
to be left as is. In Salt Lake there would be two master
modems and a major mUltiplexer node capable of handling all
the remote devices. We had at the time two HP3000's and it
was decided that we would use DS/3000 with the OS pt-to-pt
link for system to system communications. (see
illustrations 1 & 2)

There are a few key points about the decisions that need to
be emphasized here. First, the design was a best guess
based on the information gathered. Second, the modems were
purchased from the only company we had a history with.
Third, the mUltiplexers were purchased from the same company
that our existing equipment had been purchased from in order
to protect what we thought at the time was an already
substantial investment. This was done even though the local
HP support people had had no experience with this company's
equipment communicat~ngwith the HP3000.

Implementation and Problems
I would like to say at this point that the implementation of
this network went smoothly, but I would be lying. The
datacomm lines were supposedly all installed around the
first part of November and the modems and mUltiplexers were
also arriving. Again we thought, "no problem, we have
almost two months to get ready." A trip was organized and I
was sent out to install the equipment at three of the sites
in early November. In addition there was cable to be strung
in the offices. Well, to make a very long story short,
there were problems at all three sites. Some of the
problems were: the telephone companies not installing an
RJ41C terminator, or if it was installed, not in the right
place; the lines that were supposed to have been tested,
were not working; not knowing how to properly configure the
modems; bad cards in the mUltiplexer equipment; missing
reels of cable for connecting terminals and printers: and
countless othe~ minor problems. After a two week trip I did
manage to arrive back in Salt Lake with things semi-working.
Over the next month+ we continued to try and iron out the
problems and get things working by January 1. After many

0019-3

sleepless nights we finally did. The second week of January
we were off and running.

The Next step

underlying Major Concerns
The implementation o,f our first network taught us one
important thing: "We didn't know very much about data
communications." It was decided that at this point some
education was essential. A class was found and a couple of
key people were sent to school. Some questioning and
re-evaluation of our network was an important result of this
education. We were already seeing some problems. There
seemed to be alot of down time in the phone company circuits
which caused lost work time. The network was already
slowing down and all we were running was Payroll. The sites
had too much effect on each other. This raised major
concerns about performance and response time, reliability of
the network, and contingencies in the case of a circuit
being down for a long period of time. We were really
worried since we were just beginning to add the load of
applications that we were to eventually reach, and the sites
were going to become increasingly dependent on the computer.
We knew we needed a better network. We didn't panic and
decided that we would take the time to do it right. For
this we sought some outside help in the guise of network
consulting.

steps Taken in Design of Network
Once a consultant, or I should say consultants, were
selected and fees .negotiated, the first step was to
interview some of the key users and management personnel.
This was done for two reasons: first, to determine what some
of the complaints about the way the network was functioning
now were; and second, to make a determination of how long
they could afford to not have access to the computer. The
overwhelming answers to the first part were the system is
just too slow and the lines go down too often. The
concensus answer to the second surprised us. Users felt
that anything more than a couple of hours downtime during
the day would cost the company money. From this it was
decided that two key criteria for the new network design
would be to dramatically increase the performance (response
time) and to provide for redundancy to avoid excessive
downtime. Another criteria added was that the network had
to be flexible enough to easily add sites. This was for
both terminals and CPU's. The next step was to learn as
much as possible about the traffic that this network would
be expected to handle. Information was gathered from each
site concerning applications used, volume of
transactions/day, number of pages printed/day and peak
processing times daily, weekly and monthly. This was an

0019-4

exhaustive list as even an application that was only
accessed on a monthly basis was considered. Next we looked
at the applications themselves. A program was written to
run on a datascope that would measure the number of
characters being communicated between the CPU and terminal
while running an application. To me, some of these numbers
were quite amazing. For instance in our order management
system it takes approximately 10,000 characters to enter an
order header and one line item. Added to this data was the
area code and telephone prefix of each of our plants. We
also decided at this time that we were going to install
another HP3000, this one being in our Port Ewen, New York
plant. One thing that made the design of our network
difficult was that our plants are not isolated to any given
cpu. They need to be able to access any cpu quickly at any
given time.

Armed with all the information they could carry, the
consultants went back to their office and hashed out a
design. Much of the data gathered was input into a software
package that analyzes traffic to suggest line speeds and
helps in determining the most cost effective routing of
datacomm lines. After a period of time, a design proposal
was presented to Ireco. This design was discussed and
refined several times before a final design was achieved.

The Design
The design in its final form is shown in illustrations 3 &
4. As can easily be seen, the new network was drastically
different from the old network and much more complex.
Following are some of the key parts of the design:

1. There are no multidrop circuits involved. It was
determined that the line traffic was too great for
multidrop circuits to be feasible.

2. The speed of many of the circuits was boosted to a
speed of 19.2 in order to handle traffic demands.

3. There are in reality two paths between Port Ewen,
New York and Salt Lake City: one running
effectively at 9.6 and one running at 19.2. This
provides for redundancy and the capability to keep
running if one of the circuits fails.

4. Several modems have been added that have split
streaming capability. This was done to allow the
splitting of a 19.2 line into two 9.6 chunks.

5. Through the use of either dual dial restoral or
re-routing of modems, every plant has the capability
of continuing to function if their main circuit
fails.

6. Louisiana, Missouri became a central hub for
communcations.

7. OS X.25 link was chosen to do system to system
communications. This was chosen because in
conjunction with the mUltiplexer each system is only

0019-5

one jump from another. It was decided, the system
to system would be mostly limited to program to
program communications, spool file transfers and
network file transfers. The plan has also been to
supply a PON type link to our parent company in
Oslo, Norway.

8 • Even local terminals in Salt Lake and Port Ewen
would be connected to the mUltiplexer in order to
allow one-step access to any system. The
mUltiplexers act as port selectors and the first
menu a user sees is from the mUltiplexer.

9. It was determined that a network management system
was needed to monitor the datacomm lines and control
all of the modems from one central place. This
provides a distinct advantage when dealing with
AT&T. When a line is having a problem we can tell
exactly what the problem is and relay this
information to AT&T. This has helped us solve bad
line problems quickly.

Test Phase
The biggest question mark in the new design was the
multiplexing equipment. As mentioned earlier, the vendor
was an unknown in the HP3000 wOl.:"ld and we had experienced
some problems with the mUltiplexors that had taken awhile to
resolve. We knew there was other equipment available that
was proven with the HP3000 but again we wanted to protect
our investment and our jobs. So, in order to answer this
question, a test plan was developed in which all possible
types of connections and all possible applications were to
be tested. A complete copy of the test plan is contained in
Appendix A. An agreement was reached with the mUltiplexer
vendor for enough equipment to conduct this test. HP was
also involved in supplying modems, test sets and software
for the HP3000. This test was conducted afterhours over a
series of nights so as not to cause down time to users.
There were a couple of significant factors that came out of
this test:

1. It was determined that we would need 25 pin ATP
ports on the 3000 instead of 3 pin. The reason was
bhat if the phone line was dropped, or the session
on the mUltiplexer was dropped, it left the session
on the HP3000 and anyone could grab it. This was a
security risk that we could not live with. A
special cable was developed to solve this problem
thanks to' the efforts of engineers from both
vendors.

2. We also found that we would have to leave the packet
size in X.25 on the HP3000 at 128K because we were
telling the 3000 that it was talking to a PONe This
would be a drawback, but we felt we could live with
it.

After completing all of the tests, it was determined that

0019-6

the mUltiplexers would function adequately for our needs and
orders were placed.

How Did We Implement?
At this point one thing was for sure; this implementation
was going to be extremely tricky. First, we were adding two
more CPU's to the network. Second, we already had a network
in place and a good deal of the existing equipment was to be
used in the new network. Third, we had to keep downtime to
an absolute minimum. We thought, "If we can pull this one
off it will be a miracle." The whole implementation was a
carefully thought out phased plan, and it worked.
Phase I: Install the HP3000/52 in Salt Lake and add the

users to it as well as those local users that
would be going through the network to the
mUltiplexer. Once the 52 had been installed,
the setup of the mUltiplexer and rewiring of the
computer room was completed over a three-day
weekend. This also involved the establishment
of X.25 communications between the systems, and
the capability to move spool files and data
files from system to system.

Phase II: This involved the installation of equipment at
two of our plant sites; Louisiana, Missouri and
Donora, Pennsylvannia. These were the two sites
in addition to Port Ewen that were to have more
than one modem. In these situations the modems
would be back to back and required that the
configurations be exactly right, which was
nowhere close to default, and a user contact be
trained to make the cutover.

Phase III: This would be the most difficult and complicated
phase. This involved the installation of the
HP3000/58 and extensive datacomm equipment in
Port Ewen. It would also require additional
equipment to be installed in Salt Lake and the
cutover of the whole company to the new network.
Again, this phase was done on a three-day
weekend plus one working day down time. The 58
and the datacomm equipment was installed and
readied over a period of 1 1/2 weeks. On Friday
a company wide coordinated effort was made and
the phone line cutover was completed. Over the
next three days the cabling was re-done and the
network tested. By Tuesday morning the whole
network, with the exception of one site due to
an out of specification line, was up and
running. Even the site with the bad line was
brought up with the DDR option.

0019-7

The experiences we had gained from our first network
installation helped us greatly in preparing for this one,
and contributed to it being a success.

strengths and Weaknesses
Now that we have been functioning on this network for a
little over a year, there are some strengths and weaknesses
that should be pointed out.

strengths:
1. The strongest point of this network is probably the

performance (response time) for terminal users.
There is not much difference between a local (SLC)
terminal and a remote site terminal, even at peak
use times.

2. The ability for any terminal user to access any CPU
directly is definitely a positive. This allows us
to save X.25 for file transfers and the moving of
spool files.

3. Although we don't use it very much, the ability to
resume communications even when a phone circuit is
down has helped us on occasion. We do limit the use
of the DDR feature due to the cost of long distance
phone calls.

Weaknesses:
1. The X.25 traffic should not be sharing the same

mUltiplexer as the terminal traffic. It tends to
cause performance problems for the file transfers
and moving of spoolfiles. This problem is partially
due to the before mentioned packet size limitation,
and also to' the fact that our proj ected load has
increased.

2. We have had trouble with the quality of some of the
19.2 cireuits. These have taken time to resolve,
even with the help of our network management system.
We have also had trouble with one of our 9.6
circuits and getting that fixed by a RBOC (Regional
Bell Operating Company).

3. There remains a problem with performing file
transfers using a PC connected through the network.
This appears to be a problem with the way the
mUltiplexer handles ENQ/ACK flow control.

All in all the network has done its job and performed
according to design.

Where Are We Now

What Has Happened Since
One thing that I have been able to eount on in the 4 1/2
years that I've been at Ireco is that things are going to

0019-8

change. There have been further acquisitions, the company's
marketing organization has been re-structured, and our
Canadian sUbsidiary wants to come online. This has all
placed new demands and requirements on our datacomm network.
We have once again been faced with the question of "What are
we going to do? II Although we have learned alot in our
experiences, we are nowhere near experts. So, once again,
we have called on the consultants to help us meet the new
needs that are before us.

The New Desiqn
What we are doing with the new design at this point is to
take our existing network and add to it. (see illustrations
5 & 6) We are adding tail circuits to accommodate our
Olympia, WA. office and our Montreal, Canada office. We are
also adding a subnet that will accommodate our central
marketing region. As a part of this we are hoping to add
another CPU in Salt Lake. We have added a PC LAN to the
Salt Lake office, and we are going to LAN connections for
system to system communications in the Salt Lake office.
We're also pUlling the remaining X.25 communications out of
the multiplexers. Not shown in the illustrations but of
equal importance is that connectivity within the
manufacturing plant sites has become extremely important.
We are currently investigating different ideas for
accomplishing this. The implementation has not begun yet as
the plans have just been finalized, but it should once again
be challenging.

Future Considerations
In the future we hop~ to merge the new subnet into the older
network to take advantage of hubbing and cheaper phone line
costs. We will have an office in Atlanta, GA. that we will
need to bring online, and we still hope to establish
communications with our parent company. Eventually we would
like to include the 58 in Port Ewen into the system LAN that
will be present in Salt Lake. The main thing for us is to
remain as flexible as possible so that further changes
within the company will not continue to cause us headaches
and sleepless nights, and so that we can react quickly to
these changes.

Conclusion

I hope that sharing our experiences at Ireco will help
others in controlling their own datacomm monster. with the
speed at which equipment and standards keep changing, things
can get out of control in a hurry. In closing I would like
to reiterate some of the things that have been key to us.

1. Get outside help. There is no way we could have
done it without the consultants. We are not
datacomm experts. With the speed at which things

0019-9

are progressing, and with new technologies, there is
no way we can keep up. Besides, it's the
consultant's job to keep up; that's what they're
paid for.

2. Plan ahead and test the equipment before
implementing. Salesmen can tell you anything. The
sky is the limit for them. Make sure what they tell
you will really work.

3. Get a network management system. Our network really
isn't that big, but we could not manage without it.
This has allowed us to have one person manage the
entire network.

4 • Remain flexible. You never know when things are
going to change. There will always be new
requirements and increased demands that cannot be
anticipated.

Last but not least, it is also very important to have good
people. As my boss likes to say, "You can have the best
system in the world, but without good people you don't have
squat. II

0019-10

ORIGINAL IRECO DATACOMM NETWORK

CODEr ,ItO
DI:A "0

CODIX tI40

9.6

COClX 1140

DCA "0

caoa al.o

CODa IHO

CODa 2201INP

HP3000
68

c
(I)
,-t.,
a
rt-o·
::s
f\.)

SALT lAKE cnv

INP

9.6

DONORA, PENNSYlVANIA

41DUa1w.1

, PMm:R

• PCMm

PAINTSVIllE, KENTUCKY

31UCW1lW.1

, PMntR

I PO«I'I

9.6

PORT EWEN, NEW YORK

31!R11M.S

1 PMfT!I'S

I PO«I'S

HP3000
37

ccoa 1140

DCA "0

COOI:X 1140

DCA "0

cocex 2140

DCA "0

cooa 1101

WEST JORDAN, UTAH CARTHAGE, MISSOURI LOUISIANA, MISSOURI BESSEMER, AlABAMA

3~ 4l1NmM.1 l~l.I

, PMtI'!R , PRIf'rIR , MH'I'IR

.. PO«I'I • PO«1'I • POInI

IRECO US DATACOMM NETWORK

"\
./

1/lII.~trrtti()n 1

~/

L 15 T

DONORA

MMAN

PAINTSVILLE

MMDY

OM

t----<J

HP3000
S/58

M
u 25 T MMDY

~ Mtv1PE

I X.25 '------,-------'
p

10 T ----;L- L
E

~2-. x

~.!L~~.~--~-__--~~~ EWEN __

X.25

IREeo
Data Communications Network

I 19.2

I
I----------1
I 9.6 ,J

1<1.2 ' 1~.2

PC LAN

HP3000
S/70

MMAN 50 T

FIN

HP3000
5/52
OM

HP3000
MICRO XE

OA

SALT LAKE CITY

M

U

L
T
I

P
L
E

~~25 ~

"lllstr~ti()n 4

IRECO US DATACOMM NETWORK

/II! Ie; fra finn .l:)

IR:ECO i"llcOrplJra!i{Cdi <C:(jj)J/l/ililifjlllJIJiicatioliJ1§ Neiwork
Processing and Switching Nodes

PC' •

ThinLAN
HUB

2680

20
..,t.

CODEX 6745 Nul tip1exer....,..

Wheaton, IL

10
P.".

r::;:lMi~

Illustra tion 6

Port Ewen, NY

DCA 355 Nul Upl exer

e.' 2680 26~0 Salt Lake City, UT 2680

----~----~~-------------------~---------. ,

OBJECTIVE 1

IRECO MULTIPLEXER TEST PLAN

VERIFY DCA355, DCA110 PERFORMANCE WITH HP
PRODUCT SET FOR TERMINAL - CPU
COMMUNICATIONS

Terminal-Oriented Product

PRIORITY:

(1) HPWORD V
(2) HPWORD 150
(3) HPDRAW
(4) ADVANCELINK 2392 (File Transfer)
(5) OM
(6) MM
(7) DELUXE VISICALC
(8) EASYCHART
(9) REMOTE SPOOLED PRINTING
(10) ADAGER MODEL II
(11) SECURITY/3000
(12) MPEX
(13) LISTKEEPER
(14) INFORM
(15) REPORT
(16) PAYROLL
(17) ACCOUNTS PAYABLE
(18) GENERAL LEDGER

TOPOLOGIES:

(1) Single DCA 355 (SLC) used as Data Switch,
Terminals to S/68 and S/37

(2) Two DCA 355, Point-To-Point, Terminals to S/68
(3) DCA 110 to DCA 355, Point-To-Point, Terminals

to S/68
(4) DCA 110 to DCA 355 to DCA 355, Point-To-Point,

Terminals to S/68
(5) DCA 110 to DCA 355 to DCA 355, MUltiDrop 110

and Point-To-Point DCA 355's, Terminals to
S/68

(6) DCA 120 to DCA 355, Point-To-Point, Terminals
to S/68

HARDWARE REQ'D:

DCA 1 EA DCA 355 with HP Option Ports (4 Ports)
2 Composite Ports

2 EA DCA 355 Composite Port Boards for
existing DCA 355

0019-A1

HP 4 EA 37230A 9.6KBPS Shorthauls (Bellevue)
2 EA 37210T 4.8KBPS Modems (Bellevue)

IRECO 1 EA HP150
Misc Cabling

1 EA 2392, 2934, 2686

ACCEPTABILITY CRITERIA:

(1) DCA as Network Vendor -
No errors in using the following products:-(1) MM

(2) PM
(3) OM
(4) PCM
(5) DESKMANAGER

(2) DCA as Conditionally Acceptable Network -
No errors in using the following products:-(1) HPWORD V

(2) HPWORD 150
(3) HPDRAW
(4) AdvanceLINK 2392 (File Transfer)
(5) Deluxe Visicalc
(6) EasyCHART
(7) HPACCESS

Errors using a product will eliminate the use of thatproduct at a site. Therefore, IRECO will decidewhether to restrict the use of the product tohard-wired terminals or eliminate DCA as networkvendor.

METHODOLOGY:

(1) HPWORD V
(a) Run HPWORD - Observe and time download.

Observe LDEV
(b) Edit existing document
(c) Print existing document to:

(1) Spooled Printers (2932 & 2686)
(2) Attached Printers (2932 & 2686)

(d) Exit HPWORD
(e) LOG OFF
(f) LOG ON w/2nd terminal
(g) LOG ON w/HP150

(1) Make sure LDEV is different from step
(A) above

(h) Complete step A above. Download should
take less than 10 seconds

0019-A2

(2) HPWORD 150
(a) Transfer HPWORD 150 document from HP150

to HP3000. Observe and time file
transfer

(b) Use HPWORD to convert display and print
document

(c) Evaluate printed document for errors
(d) Transfer HPWORD document from HP3000 to

HP150. Observe and time file transfer
(e) Use HP150 to display and print document
(f) Evaluate printed document for errors

(3) HPDRAW
(a) Use HPDRAW to display and edit an

existing drawing
(b) Plot drawing using system plotter
(c) Plot drawing using eavesdrop mode
(d) Observe drawings for errors

(4) ADVANCELINK 2392
(a) Transfer ASCII file of approximately 100

records from HP150 to HP3000. Verify
correct transmission

(b) Transfer binary file of approximately
1000 records from HP150 to HP3000.
Verify correct transmission

(c) Transfer ASCII file of approximately 1000
record from HP3000 to HP150. Verify
correct transmission

(d) Transfer binary file of approximately
1000 records from HP3000 to HP150.
Verify correct transmission

(e) Compare time required for above transfers
to time required when HP150 is connected
directly to HP3000 @ 9600 BPS

(5) ORDER MANAGEMENT/ACCOUNT RECEIVABLE
(a) Get into the main menu and enter the OMS

subsystem
(b) Add a sales order
(c) Inquire into an existing order
(d) Print order acknowledgements online
(e) Print shipping papers on a remote slave

printer
(f) Enter into OMR sUbsystem and run a couple

of reports
(g) Enter the AR subsystem and enter a daily

cash entry
(h) Perform a customer inquiry
(i) Enter into the GM sUbsystem and enter a

new customer

0019-A3

(j) Enter into the GMUTIL sUbsystem and
perform at least one function

(k) Run a TREG to test the interface to MM

(6) MM
(a) Have the software start a terminal
(b) Use the "start" command to bring up a

terminal
(c) start a terminal as a logged in terminal(d) Perform the following functions on each

of the above terminals:
1. Transfer between each of the four

sUbsystems
2. Transfer between copies of MM
3. Add a part number
4. Add a work order
5. Issue to the work order
6. Receive against a work order
7. Add a purchase order
8. Receive against the PO
9. Review activity and other things

online
10. Transfer to the SAl terminal and

back
11. Follow a menu tree down from top to

bottom
(e) Terminate the MM session
(f) Submit a job to the SAl

(7) DELUXE VISICALC
(a) Create 50 row x 12 column spreadsheet
(b) Fill with data (50% entry, 50%

calculated)
(c) Print spreadsheet to spooled and stand

alone printers (use compressed format)
(d) Save spreadsheet
(e) Retrieve spreadsheet
(f) Examine all cells for correct content
(g) Compare timing with direct connected

terminal @9600 BPS

(8) EASYCHART
(a) Use HPEASYCHART to display and edit an

existing chart
(b) Plot chart using eavesdrop mode
(c) Observe chart for errors
Cd) Plot chart to screen

(9) REMOTE SPOOLED PRINTING
(a) Create 10 copies of an approximately 132

line spoolfile with monotonically
increasing line lengths

0019-A4

(b) Place properly configured HP4951 between
system and mUltiplexer port

(c) Release spoolfile for printer. Observe
proper printing. Look for:
(1) Proper handling of status request

(Esc ? DC1)
(2) Proper handling of XOFF's (DC3

followed by status request properly
answered followed by XON [DC1])

(d) Interrupt printer operation by
(1) Taking printer offline, then placing

online
(2) Causing paper out and correcting

paper out
(3) Pressing reset

(e) Power off printer. Observe proper
console message

(f) Verify (a) - (e) above at 1200, 2400,
4800 and 9600 BPS

Notes: Channel must be 7 bit odd parity
or 8 bit no parity

Channel must have Flow Control disabled

Printer must be Type 32, SubType 14,
Term-Type 19

(10) ADAGER MODEL II
(a) Change the capacities in at least three

datasets of two separate databases and
verify integrity

(b) Run Detpack on at least three datasets of
two separate databases and verify
integrity

(c) Move at least three datasets of two
separate databases from one ldev to
another and verify integrity

(11) SECURITY/3000
(a) Login to a user that is set up in

security with a menu and verify no
problems getting in

(b) Use three or four of the menu functions
to verify that they work

(c) Verify that the logoff utility works,
time inactivity period

(d) Verify that timeout on the DCA and on the
HP3000 are in sync

(e) Stream a job using Streamx and an asked
for parameter to verify that it works
properly

0019-A5

(12) MPEX
(a)

(b)
(c)

(d)

verify that MPEX can be entered with all
capabilities set properly.
Use the extended LISTF command options
Use the"Altfile command to change the
attributes of at least two files
Use the extended fileset capabilities

(13) LISTKEEPER
(a) Get into Listkeeper and edit a list
(b) Create a new list from an old list
(c) Print a list to the system line printer
(d) Print list to a slaved printer

(14) INFORM
(a) Enter Inform and select into several

groups
(b) Modify (or create) a report and display

to terminal
(c) Print a report to the system line printer

(15) REPORT
(a) Run a compiled report and print to

display
(b) Run a compiled report and print to

printer

(16) PAYROLL
(a) Enter the payroll system and input some

time transactions
(b) Run the time transaction edit
(c) Perform maintenance on several employee

records
(d) Run a report using the report writer

subsystem

(17) ACCOUNTS PAYABLE
(a) Get into the AP system and enter the

Batch Input Processor. Use the functions
to add, change, delete, and copy a batch

(b) Enter the Online Services. Use the
functions for log procedures, vendor
entry, voucher edit, master file inquiry,
and control file inquiry

(c) Enter the standard jobstreams and use the
functions to do control file maintenance,
daily processing, and periOd end
processing

(d) Bring up online and then bring it down

0019-A6

(18)

OBJECTIVE 2

TOPOLOGY:

GENERAL LEDGER
(a) Get into the GL system and enter the

Batch Input Processor. Create and save a
batch

(b) Enter the Standard Jobstreams and run a
control file update and a master file
update

(c) Enter Online Services and enter a journal
entry

(d) Run the Post jobstream

VERIFY DCA 355 PERFORMANCE WITH HP X.25
(VT & NFT) BETWEEN SLC S/68 & S/37

Back-to-back DCA 355's used as X.25 switches between
S/68 and S/37

HARDWARE REQ'D:

DCA

HP

IRECO

Same as OBJECTIVE 1 adding X.25 capability to
DCA 355's

4 EA 37230A shorthaul modems
2 EA 30221A (?) RS232 modem cables
X.25 LINK S/W on S/68 & S/37

Same as OBJECTIVE 1

ACCEPTABILITY CRITERIA:

No Observed Errors
No CS or DS Reported Errors
Throughput not less than 80% of computed value

METHODOLOGY:

(1) virtual Terminal (VT) Operation

Repeat all items in OBJECTIVE 1 using
Terminal/150/Printer/Plotter on 8/37,
applications on S/68

Note: Observed results and compare with those
obtained in OBJECTIVE 1 testing

(2) Network File Transfer (NFT) Operation .
(a) Create file containing 1000 100 Byte

noncompressible ASCII records on 8/37
(b) Transfer file from 8/37 to 8/52 using

D8COPY and noting time required. Verify
error free transfer

0019-A7

(c) Compute throughput. 1 19.2KBPS and 1
9.6KBS line with traffic balancing should
net approximately:

19,200 + 9600 = 1800 CPS less overhead
8

(d) Transfer file 5/68 to 5/37 using DSCOPY
and noting time required. Verify error
free transfer

(e) Compare throughput with C above

0019-A8

4GL's, COBOL and Data Communications

by
John D. Alleyn-Day

A H Computers
8210 Terrace Drive,

El Cerrito, CA 94530-3059
415-486-8202 or 415-525-5070

Introduction

One of our clients, Underground Service Alert, operates an
extensive system for sending messages to hundreds of printer
terminals located in the states of California and Nevada.
Although not a true real-time system, it must neverless transmit
messages in a timely fashion wi th insignif icant delays. They
were using on old system that had been around for about ten years
and that had come to the limit of its performance because of
various problems with the software. It was our task to change
this software structure to allow it to handle their increased
business.

The Database System

The major problem was that the old system revolved around an
IMAGE database and, in particular, a detail dataset that was used
to control the transmission process. This was a very complex set
with six paths. These paths were present to allow access by a
variety of routes but they had a very deleterious effect on
performance. One of the critical keys was the "status" of the
record, indicating whether or not the message was "Sent",
"Waiting" or IIFailed li

• The sending program read down this path
to find messages to send. Unfortunately, changing the status, as
one must for each message transmitted, involved a delete and an
add.

This process was causing a major I/O bottleneck in the system and
it was therefore necessary for us to find another method of
controlling the transmission without such an excessive overhead.
Furthermore, we wanted to introduce an additional feature, namely
making the order of tranmission dependent on a "priority" field
that indicated the importance of the message.

The "status" had to be a key, so that the messages waiting to be
sent could be quickly found. At the same time, it had to be
capable of fast updating. Several different methods were
considered, including MPE flat files or MPE message files, from
which the records would be deleted as they were sent. However,
incorporating the priority scheme made a FIFO queue such as a
message file inapproriate.

4GL's, COBOL and Data Communications

0020 -1

Our final solution was to use a KSAM file for our transmission
queue. Making one of our keys "status" followed by "priority"
allows us to find messages waiting to be sent in priority order,
and to insert new messages into the queue at the point
corresponding to the priori ty that we assigned. Furthermore,
KSAM allows us to change secondary key values with comparatively
little overhead, without deleting and adding the record. There
is a further performance advantage of using KSAM. We usually
write more than one record at a time to the file (because anyone
message is usually sent to several different destinations) and,
if we lock around this group of updates, then the buffers are
most likely to be written out to disc only at the end of all the
updating. This can also save enormously on disc I/O.

The Structure of the Programs

Our main requirement is to control approximately ten outgoing
modems, to have each dial a specific number, prepare a message
from data on our database and then transmit it. The database
then needs to be updated with the information that the message
was sent.

There are several subsidiary functions that must also be
performed. We have to schedule the transmissions appropriately,
ensuring that the most critical messages go first and that two
different modems don't try to send to the same terminal. We also
need to keep track of failing terminals and not attempt to send
to a terminal that is down. Furthermore we need a mechanism for
changing the operating parameters "on the flyCl and methods for
inquiring into the performance and controlling it.

In general, the activities associated with each modem are
asynchronous, in the sense that what happens on one modem has
little or no connection with what is happening on another. There
are also long I/O waits associated with each modem, while it is
dialing or transmitting data. We cannot have a program wait for
one modem to complete dialing before it continues to another,
without serious impact on the total throughput of the system.

We could have written a program with privileged mode no-wait no
buf I/O. This has been done by many people in the past for
special-purpose terminal-handlers. However, it would have been
very complex and it would still not avoid the problem that there
would be no modem port I/O while the program was updating the
database. However, this situation, with multiple simultaneous,
asynchronous processes is what time-sharing is all about, and is
precisely what the HP3000 was built to handle. So we make use of
process handling and allow the MPE operating system to handle the
complex scheduling of the various processes, rather than trying
to do it ourselves.

4GL's, COBOL and Data Communications

0020-Page 2

Control Program
(online)

~1_ Message IC>I_)_F_il_e_s_> II' >

Scheduling Program
(father process)

_,L __/1_'_ Message , /
)) - -)) - - - -)--)--r- ---m- Files --r-
,1/ /11 - - -1- - 11' '/1_

Modem Program
(son process)

Modem Program
(son process)

/1'
\ /

)--- ---) - - - Modem ports - - -
_:1:-

))

Fig. 1. Interconection of Programs and Message Files.

4GL' s , COBOL and Data Communications

0020-Page 3

The programs are set up as shown in Fig. 1. The main scheduling
program is the father process,and keeps track of the messages to
be sent and the availabili ty of each line. It also updates the
queue file to reflect the status of the messages. Each dial-out
modem has its own son process. This process opens the port, sets
up the modem, prepares messages, dials the modem, and transmits
the messages. The way in which the modems are controlled was
discussed in a talk that I gave last year at the Interex
conference in las Vegas, called "Dialing out from the HP3000".

There is also a "control" program, run in session mode that
communicates with the scheduling program via two permanent
message files. This allows the supervisor to see the internal
tables, to alter internal parameters and to fail and restore
lines and terminals.

We make use of MPE to do our schedul ing for us. The son
processes spend a great deal of their time waiting on I/O, either
from the port or from the message file in which commands from the
control program are placed. If there is nothing to be sent, the
son process is suspended on a read of the message file and hence
uses virtually no computer resources at all.

The fa ther process, on the other hand, cannot suspend in this
way. Not only must it respond to replies from the sons, but also
to commands from the control program. Furthermore, it has other
functions that must be performed at regular intervals.

The Operation of the Programs

The scheduling program has several internal tables that are used
to store vital information. The largest table is the .. internal
queue", which is a miniature version of the "queue" file and is
replenished from this file at regular intervals. It is there for
performance reasons to save on disc I/O.

The father process runs through a polling loop. It first checks
the time, and if five minutes (or whatever interval has been set
by the supervisor) has passed, the program reads the "queue" file
to determine the messages wai t ing to be sent, using the key by
status, priority, etc. These messages are put into the internal
queue table. The program checks each modem and if it is not
bUsy, finds the terminal with the next highest priority message
and instructs the modem to send the next four messages wai ting
for that terminal. The program also checks the return from the
son processes. Depending on the result, various actions are
taken, such as updating the queue file to indicate that the
message has been sent and checking the error tables to update hte
error counts.

There is an internal table that keeps track of failing terminals,
counting how many times a call failed to go through, or how many

4GL's, COBOL and Data Communications

0020- Page 4

times the line was busy. After some number of failures, the
terminal is considered to be down and all subsequent messages to
that terminal are failed immediately. A terminal can be restored
by the supervisor via the control program. A terminal may also
be manually failed by the same mechanism.

Another internal table keeps track of the outgoing lines. In
this table are stored the last command sent and the terminal and
messages currently being handled by the corresponding modem as
well as counts of failures on the line and flags to indicate a
failed line or a busy line.

The control program is a very simple program and interacts with
the transmission process by putting commands in the sending
message file. These are retrieved by the scheduling program
which either changes parameter data within its stack or responds
by dumping the contents of one of its tables into the reply
message file. The control program then formats this data and
displays it for the supervisor.

Telecommunication Problems

The major difficulty in this scheme is recognising and handling
telecommunication problems. Ideally, all problems would be
recognized and handled automatically by the program, and in most
cases we have achieved that. Busy signals, "no carrier" and
disconnects are interpreted and handled by the scheduling
program.

Sometimes, it is a little tricky to assign a problem to a
terminal or a line. No dial-tone, of course, is a line failure,
and a busy signal is a terminal problem. But a disconnect could
be a problem associated with a specific terminal and the line
connecting to it or it could be associated with an outgoing line
and the modem attached to it. However, when we are updating the
failure counts, we set the count back to zero as soon as a
successful transmission is made. So we count this type of
failure both as a line failure and a terminal failure, and it
soon becomes apparent into which category it really falls. Even
this can get a little difficult, as happened once when a major
line out of the local MCI switch was damaged, and a very large
number of calls failed to go through. This looked to the program
as if both terminals and lines were failing. However, to the
supervisor, it was very apparent that something dreadful was
going on, and a call by him to MCl soon determined the nature of
the problem.

There is one problem that we have not yet completely resolved.
For some reason, the modems will, from time to time hang up when
dialing. The program thinks that all is well, and keeps trying
to dial, but the modem doesn't respond. It doesn't occur very
frequently, and, of course, rarely when I am around to see what
has happened. It can easily be cleared by hanging up the modem,

4GL's, COBOL and Data Communications

0020-Page 5

so the scheduling program contains code that checks each dialing
modem, and warns the supervisor if a modem takes longer than a
certain time to complete a dialing command. This invariably
means that the modem has got into this peculiar state, and the
supervisor is able to handle it. It would be preferable to
correct this problem automatically without human intervention
but, in the meantime, this is an effective strategy.

Problems of Operating Strategy

Structured programming is particularly important in an
application such as this. Firstly, great use is made of HP
intrinsics, and it is most convenient to have these in sections
of their own so that they can be executed as simple functions.
Furthermore, in operating the program, it becomes important to be
able to change the strategies used in polling the various
functions. This is made particularly easy if the program is well
structured.

As an example of the strategy changes that we made, we started
wi th a strategy that had the program go through the following
sequence repeatedly. First the time was checked to see if the
internal queue should be refreshed. Then the program checked all
the replies waiting from the modem programs and carried out any
updating needed as a result. Then the program looped through
each modem, and, if it were possible to send, the appropriate
commands were prepared and sent. Then the supervisor's message
file was checked for a command.

Although this looks like a perfectly reasonable way to poll, it
turned out to have two major drawbacks. First of all, there was
a tendency for there to be a lot of completed messages at one
time and this would lead to heavy updating while the son
processes sat idle, waiting for their next command. Then,
transmit commands were sent all at once to the son programs,
tending to keep them in sync. We wanted to keep them out of
sync, so that message preparation would not occur at the same
time on different modems, as this process puts a significant
demand on the database. Furthermore, because the updating was
all in a chunk, it often took a long time to acknowledge the
message from the supervisor, which translated into a poor
response time for that command.

We fixed these problems by changing our strategy. Now, after
each reply from a son process, we check to see if we can start
another message on that line, and do so right away if possible.
In addition, we check the supervisor's message file after each
update, so that we never have to wait more than a few seconds for
a reply. I t was part icularly easy to do this because the
structured programming allowed us to shuffle the processing
around just as we wished.

However, this is still not the optimum strategy. The supervisor's

4GL's, COBOL and Data Communications

0020- Page 6

message file is read with a timed read, and it takes a second to
time out, so the more frequent reads add additional delay time
into the loop and thus make the program operate at something less
than optimum speed. Its speed, however, is better than with the
original strategy.

Useful Programming Techniques

Writing and debugging multiple process programs of this kind can
get to be quite complex, and I developed one or two techniques
that may be useful to other people attempting the same thing.

As a matter of course, I always program trace messages into my
COBOL programs, usually for each entry into a section. In the
past I used the "parmA to turn on and off a flag for this
purpose. With son processes it gets a little complex doing it
this way, so for these programs, I used a different technique,
namely a JCW that is set before the programs starts. There is a
different JCW for each program, so that the messages from each
program can be controlled independently.

with several programs running in the same session, sorting out
the messages can get qui te complex. Each message, of course,
identifies itself in the message with its name, and, in the case
of a son, with a number to identify which one it is. This number
is passed by the father in the Aparm" and corresponds to that
program's position in the line table. It is passed back in any
reply to identify which son process the reply is coming from.

As an additional debugging aid, there is a special command in the
control program that will turn on the debug flag in the father
program. This can be invaluable when a problem arises in the
live system after the program has run for several hours. The
debug messages can be turned on "on the fly" and they prints out
on the STDLIST. As an addition to this, turning on the debug
flag in this way also sets the debug Jew which is checked by the
jobstream. This is important as we normally use "set
stdlist=delete" to get rid of the listings if all is well, but in
this case we don't want that to happen.

In the tuning of the program there were changes that had to be
made to several parameters such as the maximum size of various
tables, that necessitated recompiling the program. This is
conveniently achieved by making use of macros in the HP COBOL to
assign specific values to the parameters and have them
substituted in the code as it is compiled. It avoids searching
through the code for each place that the number needs to be
changed.

The same facility is used for error handling on file intrinsics.
A standard routine is laid out at the start of the program, with
the appropriate error messages substituted for each use of the
routine. This saves a great deal of debugging time for error

4GL's, COBOL and Data Communications

0020- Page 7

routines.

All the screens in this system have been implemented in a 4GL.
The decision to use a 4GL was based on improved development times
and the availabilty of the language for future development.
Unfortunately things didn't work out quite the way we expected.
Our system is somewhat out of the ordinary and many 4GL' s work
best on very ordinary systems. If the 4GL methods don't fit your
development, the 4GL can cause more trouble than it is worth. We
found that we didn't save very much development time by using a
4GL.

We carefully avoided using features in COBOL that might cause
problems, such as item locking in IMAGE, and we ran into no
significant problems with mismatches between COBOL and the 4GL.
From this point of view, our melding of COBOL and the 4GL was
very successful.

However, it appeared that the 4GL was running particularly slowly
and also seriously slowing down the COBOL program. Although we
were able to make some marginal improvements we finally
discovered that this was because the 4GL in question has an
unexpected and undocumented "feature" whereby each write is
forced to disc, rather than waiting until the file is unlocked at
the end of a group of writes. There is no way of overriding this
"feature", and the vendor is not about to change it in any way.
Combined with other inefficient ways of handling the data that
the 4GL forces us into, this completely eliminates one of the
major advantages of KSAM stated earlier. We are looking into
methods to overcome this problem.

Summary

Mixing a 4GL with COBOL can be done without any major programming
difficulties. However, inefficiencies in the 4GL will
necessarily be present and can impinge on the efficient operation
of the COBOL programs.

The handling of multiple outgoing telecommunication channels
using father and son processes is a very effective method of
control. Most of the programming is fairly straightforward, if
one is familiar with using intrinsics within COBOL program
programs, but tuning the program for optimum performance requires
a considerable amount of experience and trial and error.

4GL's, COBOL and Data Communications

0020- Page 8

005900* Define the maximum number of line-groups to be handled
006200* Define the maximum number of lines to be handled
006300$define %lines=10#
006400
006500* Define the maximum number of messages to be batched
006600* into one call.
006700$define %batch=4#

zero
"FCHECK" using

\11\,
file-err-code

move low-values to file-err-msg
call intrinsic "FERRMSG" using file-err-code,

file-err-msg,
file-err-length

move "12" to quit-msg
perform pquitl

007300*define the standard error routine for intrinsic calls
007400$define %filecheck=
007500 if c-c less than
007600 call intrinsic
007700
007800
007900
008000
008100
008200
008300
008400

027700 01
027800
027800
027900
027900
028000
028100

line-data.
02 line-table occurs %lines times.
02 line-table occurs 10 times.

03 hold-index occurs %batch times index.
03 hold-index occurs 4 times index.
03 batch-pointer pic 99.
03 mt-file-num pic s9(4) comp.

1(67100
107200
107300
107400
107500
107600
007500
007600
007700
007800
007900
008000
008100
0(68200
008300
008400

move +1 to dummy.
call intrinsic "FCONTROL" using

ctlt-file-num,
\4\,
dummy.

%filecheck(ctlt-file-num#,Fcontrol Error Controlt File#).
if c-c less than zero

call intrinsic "FCHECK" using
\ctlt-file-num\,
file-err-code

move low-values to file-err-msg
call intrinsic "FERRMSG" using file-err-code,

file-err-msg,
file-err-length

move "Fcontrol Error Controlt File" to quit-msg
perform pquit.

Fig 2. Example of using macros in COBOL

4GL's, COBOL and Data Communications

0020- Page 9

FOURTH GENERATION LANGUAGES
AND PROCESSING EFFICIENCY

John D. Alleyn-Day
A H Computers,

8210 Terrace Drive,
El Cerrito, CA 94530-3059 USA

415-525-5070

Fourth Generation Languages have great power and can be used to
write processing programs easily and quickly. However, they also
have a reputation for being extremely inefficient -- a reputation
which is undeserved. Many programs written in fourth generation
languages are inefficient because the programmer is tempted to
use programming methods without really understanding what the
language is doing.

I am going to discuss a particular situation that arose using
RELATE/3000. The same situation could have arisen with several
diffferent languages, and with many different data situations.
Since the solution would have been similar in each case, I want
to share it with you.

I have been working extensively with the Sierra Club, who use
RELATE/3000 together with IMAGE for a significant part of their
processing. The fourth generation language is often used to
access data from both RELATE/3000 files and from IMAGE databases.
The Sierra Club has run into devastating problems with
efficiency. Some batch programs have taken all weekend to run,
just to turn out a report. In some cases, the time needed was so
extreme that the jobs were aborted so that other users could get
their share of computer resources! In this environment, my task
was to put together several batch programs that would be
producing statistical summaries of data from files with 500,000
or more records each. I was facing a serious problem of
efficiency and, in working out a solution, I learned a great deal
about fourth generation languages.

The major conclusion to come out of my work was that the
inefficiencies were not necessarily an integral part of the
fourth generation language but rather of the way in which the
language was used. You see, the simplici ty of the programming
methods encourages programmers, myself included, to construct
very inefficient programs without realising the true import of
their code. I will illustrate this for you as we go along.

In order to understand the example I am going to work with, let
me gi ve you some background about the data structures that are
involved. We will be looking at three files. The first is "grd"
which is an IMAGE detail set. It has a unique key of "resource".
The second file is "grdx" which is a Relate/3000 file and is a
type of history file, with old data from "grd". The third file
is called "detail" and contains details of money amounts. The
"detail" fields with which we are mainly concerned are

Fourth Generation Languages and Processing Efficiency
0021- 1

"resource", date, and amount.

We want to get the field "amount" from C'detail" and collect it
together on the basis of the "fiscal year" (which is a function
of "date"), "class" which comes from "grd" and "preY class" which
comes from "grdx". We also need the "resource" for the time
being as we want the count of the number of records in "detail"
for each resource as one of our parameters. This was the first
step in a series that ultimately produces a small statistical
report. We shall not concern ourselves with the rest of the
program as it is of no interest to our present problem. The
following example of Relate/3000 code shows how we can do this in
a few lines.

open file grdx.data;mode=read,share
open database gendbz.dba.parajtype=imagejmode=5jpass=READPW
open set grdidatabase=gendbz.dba.para
modify field grdresourcj name=resource
open file detail.donors;mode=read,share

select &
detail.@, &
fiscal= &

$integer($substr($year($new date(date,+92»,3,2),2), &
memb cnt=0, & -
rcount=0, &
resource, &
class=grd.grdclass, &
prey class=grdx.prev class &

by fiscal,class,prev crass, resource &
where grdx.resource=grd.resource &

and grdx.prev class<>"" &
and grdx.resource=detail.resource

consolidate &
fiscal:f &
class:f &
prey class:f &
amount:t &
memb cnt:f &
rcount:c &

to testdata;records=150000 &
by fiscal,class,prev_class,resource

The select statement is asking RELATE/3000 to read the "amount"
data from the "detail ll file, pick up the "class" from the
corrresponding "resource" record in the "grd" file, and the
·prev class" from the "resource" record in the "grdx" file when
"prev- class" is not blank. Each of these files is at least
500,000 records, but from our familiarity with the data we know
that only about 15% or so of the resources will have a non-blank

Fourth Generation Languages and Processing Efficiency
0021- Page 2

"prev_class".

A program like this is very straightforward in concept and easy
to put together. This is the program as I first wrote it. After
it had run for the better part of a weekend and was still
incomplete, we had to abort it on Monday morning to release
computer resources for other users.

If I had written a COBOL program to solve this problem, it would
have taken only a few hours. In frustration, I asked myself, "Is
this inefficiency an inescapable problem associated with the
relational database and the fourth generation language, or is
there something that I can do about it?".

In working out a solution I learned that there is a cardinal rule
which must be applied. KNOW WHAT YOUR FOURTH GENERATION LANGUAGE
IS ACTUALLY DOING. Why does it take so long?

This is what I found out that RELATE/3000 was doing. In my
program, the language will select one of the files to read
sequentially (usually the shorter one) and, for each record, use
the key "resource" to access the corresponding data in the other
files. In my particular case, one of the RELATE/3000 files,
"grdx", was the shortest, and was therefore the one that was read
sequentially. For each of the 500,000 records there is likely to
be two disc I/O's for "GRD": one to read the master and the
second to read the detail in the IMAGE database. Additionally,
for the "grdx" record, there will be about 2 or 3 disc I/O's on
the "detail" file, 1 or 2 for the key and one for the data
record. (This number depends on the size and the randomness of
the files.) A quick calculation gives 2.5 million I/O's, and at
20 I/O's per second, these reads alone will take about 35 hours.

I must then add a few hours for sequentially reading the first
RELATE file and for writing the new one. Furthermore the data
must be sorted and this is another place for inefficiency.
Relational database systems usually sort a file by finding an
existing index that is suitable or by creating a new index. In
my case the sort key is made up of data elements from different
files, so Relate/3000 cannot use either of these options directly.
Instead it starts by copying the data needed into a temporary
file and then creating a new index for that data. Like IMAGE,
Relate/3000 attempts to protect the data integrity by forcing the
data to disc after each write. This will account for about
80,000 I/O's, taking about 2 to 3 hours. The keys also have to
sorted and written out. The data is then read by key from this
temporary file, totalled and written to the new file. It is not
hard to see why this program could easily take several days to
run.

This tendency to permit inefficient programming is not the
characteristic exclusive to RELATE/3000. Let us look at the same
basic program written in QUIZ. The following statements achieve
approximately the same result (substituting IMAGE masters for the
"detail n file and the "grdx n file).

Fourth Generation Languages and Processing Efficiency
0021- Page 3

access grdx &
link to resource of detail &
link to resource of grd

select if prev-class of grdx

define n-date numeric*6
ascii(date«days(d-date of detail) + 92»)

define fiscal numeric*2 &
n-date[I,2]

define memb-cnt numeric*7 0
define rcount numeric*5 = 0

sort on fiscal, class of grd, prev-class of grdx,
resource of grdx

report summary &
fiscal &
class of grd &
prev-class of grdx &
amount of detail subtotal &
memb-cnt &
rcount

set subfile at resource name testfile

This code will carry out a very similar process to the one that
the RELATE/3000 code performs. The est imates of the number of
disc I/O's obtained for RELATE/3000 apply equally well to QUIZ.
The sort considerations are somewhat different. QUIZ uses a
record complex made up of the join of all the data and sorts it
as one huge record. Because of the large record being sorted, it
is unlikely that the method used in QUIZ will be, on average, any
more efficient than the method used by RELATE/3000. In any
particular case, the relative efficiency will depend on the size
of the data record, the size of the key, and other factors.

So the major part of the inefficiency of the processing is not
dependent ·on any specific fourth generation language, but rather
on the processing methods that are generally encouraged by fourth
generation languages. Specific methods for improving this
performance depends on the particular language used, but the
general approach is the same. I will illustrate my methodology
using the RELATE/3000 example, l&aving you to make the necessary
adjustments to achieve similar results in your own language.

Now that I know why my program takes so long to run, I can set
about making it run faster -- much faster. Twenty or thirty
percent improvement in efficiency will not be enough; I need it
to run five to ten times faster. For this phase of my work, I
adopted another rule, "Use batch techniques for batch programs".
This shouldn't be anything new. The "Image Handbook" in the

Fourth Generation Languages and Processing Efficiency
0021- Page 4

chapter called "Throw off your Chains" contains lots of hints for
handling database files in a batch environment. The fact that
this is a fourth generation language rather than a third
generation language shouldn't make much difference. In my
original program I totally ignored the tenet "paths should be
reserved for on-line users". The major reason for the poor
performance is the keyed reads that are being carried out to
obtain data from secondary files. How can I avoid this?

Let us go back a few years to the days of punched cards and
sequential files on tape. without keys and chains, there was no
possibility of doing what I have done here. Instead, we used all
kinds of processing tricks to get the answers in the most
efficient way possible, usually making considerable use of the
system sort, record sort breaks, and matching record keys. I can
use that experience now to carry out a similar process.

I thought about how I would have written a COBOL program to do
the same job. I would have read each file in turn, extracting
the fields I wan ted and then released the records to the sort,
sorting on my key values. I would have arranged the sort so that
the records from the different files were sorted together by
"resource"; then I would have matched the records and created my
output records, each of which would have been a composite of
several of the input records. It might have been necessary to
sort again before total ing, or, if the final resul ts were
sUfficiently compact, I might have created a table in memory to
accumulate the answers.

The answer to my problem is to do something similar here.
Because of the intrinsic limitations of the various software
tools, I will not be be able to achieve the same efficiency as a
COBOL program, but I can approach it. I can do as much as
possible with serial reads and extracted data. I must avoid
using paths through datasets which, although they are excellent
in on-line situations, are a disaster in batch processing. Also,
to simplify things, I will deal with the files two at a time
instead of all three as I might in a COBOL program. The first
step is to do two extracts and a sort.

I start by reading serially through the "grdx" dataset and
extracting an MPE file consisting of only those records and
fields that I really need. Just as if I were writing COBOL,
before starting I generate my "sort" record layout with the
following piece of code.

create file sample;records=0ifields= &
(fiscal,i,2), &
(class,a,2), &
(prev class,a,2), &
(resource,d,8), &
(amount,d,10), &
(memb cnt,d,7), &
(rcount,d,S)

Fourth Generation Languages and Processing Efficiency
0021- Page 5

Now I copy the data I want to my first work file with the
following code.

open file grdx
copy rea.rcount=l &

to rea.data;type=mpe;structure=sampleirecords=300000 &
for prev_class<>nn

This process takes about one and a quarter hours.

Extracting IMAGE datasets is, of course, a job for SUPRTOOL. If
you have IMAGE datasets this big and are serious about improving
your efficiency, you must have SUPRTOOL, which can also be used
for the sorting phase.

Now I switch to SUPRTOOL, extract the IMAGE dataset, appending it
to the previous one, and then sort. (I make use of a field
"rcount" that is not being using at the moment as a record-type
indicator.) The resulting file will be sorted so that, for each
"resource", there will be one record from "grd" and sometimes a
preceding record from the ngrdx" file. The following code
achieves this.

base gendb
get grd
define f,l,2,integer
define p,1,2,byte
define a,l,4,double
define n,1,4,double
define g,1,4,double
extract f=0
extract grd-class
extract p=" "
extract grd-resource
extract a=0
extract n=0
extract g=2
output rea. data, append
xeq

input rea. data
key 7,4,doubleil9,4,double,desc
output reb. data
xeq

The extract took about 10 minutes and the sort about 20 minutes.

RELATE/3000, in common with most fourth generation languages, can
operate on MPE files as well as on its own files. I use
functions to "combine" the records and create a new file with the

Fourth Generation Languages and Processing Efficiency
0021- Page 6

combined records. My first step is to run through my new file
getting the lI prev class" field from the records of type I into
the "prev_class" Class field of the records of type 2. How this
is done will vary considerably with the particular fourth
generation language that is being used and with the format of the
data being processed. In my example, I used the following code.

open file sample
open file reb.dataitype=mpeistructure=sample
let prev_class=$last(prev_class,resource)

The "let ll statment holds the data in "prev class" from one record
to the next, resetting it to blanks when the "resource" key
changes. The overall effect is to blank out "preY class" in the
records of type I and to move the value from that-record to the
records of type 2. This process takes about 30 minutes.

From here I could have proceeded in a variety of ways. One
possibility is to copy the type 2 records which we want to
another file and handle the "detail file" in a process similar to
what I have discussed, namely extracting it to an MPE file,
sorting and combining. However, I will actually get about 80,000
records from this file, and it takes only about twice as much
time to link this file to the "detail" file using standard
RELATE/3000 code as it does to extract the "detail" file, combine
and resort. Because this was a once only report, I chose to go
back to standard fourth generation language techniques as
follows.

create file rec.dataistructure=sampleirecords=250000
modify file ree.dataicrashproof=noieompress=noi sean=0
close file ree.data

open file reb.dataitype=mpeistructure=sample
open file detail.donorsimode=read,share
select &

reb. resource, &
reb. class, &
reb.prev class, &
detail.@-&

where reb.prev class<>"" &
and reb.resource=detail.resource

copy &
rec.fiscal= &

$integer($substr($year($new date(date,+92»,3,2),2), &
rec.memb cnt=l & -
to ree.data

This process took about fi ve and a half hours.

From here on the files are getting progressively smaller, and the
use of the standard fourth generation language procedures will

Fourth Generation Languages and Processing Efficiency
0021- Page 7

not be seriously time-consuming.

This raises a final point. A programmer must use judgement in
applying the techniques I have illustrated. On small files the
increased efficiency possible with my techniques will probably
not repay the time you spend doing the additional analysis.
However, if you run a program very frequently, analysis and
reprogramming for greater efficiency may be very valuable, even
if small files are involved. Some installations run small
reports everyday at lunch-time in preparation for the afternoon's
work. In such a case, the extra effort to increase speed can be
justified.

Finally, I suggest that the Fourth Generation Language Developers
consider this problem. Many customer representatives claim that
their systems run batch programs. This is true -- in a way.
Fourth Generation Language programs can be run in batch, but as I
have demonstrated, they use on-line~chniques most of the time.
This should be changed. Language statements used by the fourth
generation languages do not necessarily stipulate the processing
actually carried out. The two examples that I used from
RELATE/3000 and QUIZ now imply the use of keyed reads, leading to
inefficient batch programs. Why could not a Fourth Generation
Language interpret these examples as extracts, sorts, merges and
record matching, similar to the processes that I actually used?
A fourth generation language that could choose its processing
method based on whether it was considered to be batch or on-line
could achieve a substantial improvement in efficiency, and an
increased market acceptance.

So far, the forth generation language vendors have not seen this
as a problem that they need to address. However, there is one
group that has stepped into the breach, namely Robelle. They are
just bringing out an addition to SUPRTOOL called SUPRLINK, which
carries out the matching of records in an efficient manner. As
of this writing the program is in beta test. I have not had time
to test it , but it appears to have all the cpability necessary
to solve the problem that I have described here.

To sum up, if you are having problems with your fourth generation
language efficiency, there are two steps to follow. First,
understand exactly how your fourth generation language operates
and carries out its processing. It may take quite a bit of work
to get this out of your fourth generation language supplier or to
do the detective work to find it out on your own. My advice is,
"Be persistent". Secondly, make use of batch techniques for your
batch programs and not the on-line techniques that you may be
seduced into using by the your fourth generation language.
And, of· course, use your judgement as to when it is worth the
trouble and when it is not.

Fourth Generation Languages and Processing Efficiency
0021- Page 8

Con'trol Techniques tor User ~ s Global Resources

Kevin Darling
'l'he Gap ~ Inc.

Eas'tern Dis'tribu'tion cen'ter
3434 Mineola Pike

Er1aDger~ Ky. 41018

I Wl'RODUCTIOB

In 'the pas't ~ we have des igned and iJIIpleasen'ted sys'teaas 'to do a s'tream of
'tasks and only concerned ourselves abou't resource con'ten'tion when i't was
necessar,y. The implica'tion of 'this is 'tha't mos't processes were ba'tCh and
processed serially. To nan a job ou't of sequence or agains't a program
currently nmniDg could impac't 'the data and user access.

Well~ systems have become more user oriented. The sys'tems are nOli online
and users have direct con'trol of the input and can nOli see 'the resul't of
their 1I0rk online. To support 'this user in'teractivity~ lie have had 1;0

respond to 'the resource and da'ta conten'tion needs of these new
applica'tions.

To support 'the users~ we have developed a sof't1m.re and da'ta base solution
'tha't provides systems lIi'th a means 'to con'trol 'the common da'ta and
resources. These global u'tilities or GUTIL rou'tines as we viII refer 'to
them ~ have varying uses. They provide system developers a cOlDlllOn se't of
rules and rou'tines 'to comple'te 'the work and keep code cOllllDon. These
routines have also helped reduce 'the amount of coding in COBOL programs
since the routines are simply called by 'the program. The ca'tagories of
rou'tines available include:

- Global parame'ter con'trol
- Work-file processing ~ includiDg build defini'tioDS and file equa'tions
- Ou'tpu't file equa'tion defini'tions
- Error and warning message processing
- Ron da'ta base dependent rou'tines

Following will be a d~scrip'tion of 'the rou'tines and da'ta base 1;0 suppor't
these user con'trols. :

GLOBAL PARAME'l'ERS

Global parame'ters are da'ta s'truc'tures 'to hold fixed da'ta and modifiable
da'ta. These parame'ters are generally accessed by multiple processes and
fea'tures con'tained in global param'ters allow 'them 'to be access globally and

Control Techniques for User ~ s Global Resources
0022-1

also allow a specific process to lock the parameter exclusively.

To support the global parameter data structure, a master data set is used
in a GUTIL data base. The data structure can be represented as follows:

GLOBAL-PARMS (master):
* Parameter name - This is the key to the data set. This field

that contains the actual name of the parameter programs will
reference.

* Access ID - This field contains the ID for the program that
currently 'is using the data item. This ID number is assigned when
the data base is opened.

* Flag - This field is to maintain the current access status of the
parameter. The value determines whether there is open access,
read access only or locked with no access by any other process.

* Type - This field is to determine the format the data is returned
to the program. If the type is 0, it returns a single element
integer. If the type is a 1, it returns a character string of up
to eight characters. If the type is a 2, it returns a 2 element
double integer.

* Length - The definition of the length of the data field to be
returned.

* Binary data - This data item is a 2 element data area where the
integer data is stored.

* ASCII data - This data item is a defined character string for
storage of the character data.

* Binary min and max - These values control the range the parameter
falls in. If the value becomes greater than the maximum, the
routines automatically wrap the value around to the minimum.

Other data items maintained in the data structure but not critical to the
actual data processing include a time stamp for the last modification and
the modifier name for the process that last modified the data.

The uses for the global parameter data structure include:

* Nearest printer to an LDEV - This structure allows you to define
a terminal parameter that stores the nearest printer to that
terminal. Programs could dynamically access this information and
route the output being requested by the user to the printer. If
a change is necessary while a user is working, like to route to
a different printer, the parameter could be modified and the next
request for a report would reference the new printer location.

Control Techniques for User's Global Resources
0022-2

* Informative parameters to control programs - These parameters
include concepts for location identification for reports and
program control. The parameters could also be used to supply
data for controlling programs. This data could be constant or
could be very dynamic and changed periodically.

* File building key information - This structure enables you to
define parameters used to build files. In our use of this concept,
we have defined integer data types that get incremented from some
start value through and ending value to create a unique key for
data work files. If the number series reaches the maximum number,
the routines automatically wrap the value around to the minimum
value. Using this and the file building features we will discuss
later, we create files for use by processes and maintain the key
series separately for each major process.

* Dynamic data parameters - This data structure is used to hold data
that could be and usually is modified frequently by many processes.
Such uses include data retention values, time stamps, and parameters
that provide unique key entries for data bases.

The routines that are in place to support global parameters include:

* GETGPARM - This routine gets the global parameter data and based
on the type, returns the data to the calling program.

* SETGPARM - This routine sets the data value based on the type to
the value that is passed to the routine.

* INCGPARM - This function increments by one the data value in the
parameter. The parameter needs to be a type O.

* DECGPARM - This function decrements by one the data value in the
parameter. The parameter needs to be a type O.

* GETGPARMSTAT - This routine returns the current status of the
global parameter. This status is the flag value kept in the data
base for the global parameter.

WORK-FILES

Work-files are the most complex component of the GUTIL routines system.
The software supports the automatic creation, maintenance, file equation
definition, and purging of these files. This is done in such a manor that
the system developer only need define the characteristics and file equation
for the file one time and the system is intellegent enough to resolve the
processing for the file.

Work-file equations are generally pre-defined file equations that get
established by the procedure for which they are established. These file
equations allow some use of variable definition that the routines are
intelligent enough to resolve.

Control Techniques for User's Global Resources
0022-3

The work-files themselves are files which when built can be used for any
purpose. The files can also be created with user labels. The user label
area is especially good for maintaining processing, restart, and data that
is common to all data in the file. In the case of the restart information,
the programs could use this concept to be able to help control the restart
of programs in event of a program failure or graceful termination. The
files themselves with the user labels and the data base entries also
provides a secure version control on the files.

To support the work-file concept, there are four master data sets and three
detail data sets. The data sets and their data include:

CATALOGS (master):
* Catalog - This is the key to the data set and is a number that

represents a grouping of files. These files generally have a
root that is used to store and reference the file.

* File root map - This is the actual map that is used to generate
the root for the file. There could be GUTIL variables included
in the definition that the serving routines resolve in order to
complete the file build.

* Description - This is simply a definition, for reference, of the
defined purpose of the catalog.

FILE-CODES (master):
* File code - This is the number that is used by the build command's

CODE= parameter. It clearly defines the file type for use by other
routines but also allows programmers and support personnel to easily
determine the use of a file.

* Description - This is simply a definition, for reference, of the
defined purpose of the file code.

FILE-ROOT (automatic master):
* File root - This is the actual root that gets assigned to files

when the file is created. There is one entry per unique root.

PROCEDURE (master):
* Procedure - This typically is a program or procedure name. It is

used as a global reference to data so routines can do things for
a specific program or routine.

* Description - This is simply a definition, for reference, of the
program or procedure and basically what it does.

WORK-FILE-BUILD (detail):
* Catalog - This is used to define the catagory the file was created

under. It allows a path into the data to display all files that
are referenced by such a grouping. It is a key to the data set.

Control Techniques for User's Global Resources
0022-4

* File code - This is used to define the specific file code class the
file belongs. It typically is a finer resolution as to getting
specific files needed. It is a key to the data set.

* File name map - This is the definition of how the name is to be
constructed if it contains variables to be resolved.

* Lock word - This is the lock word that is assigned to the file when
it is built.

* Group name - This is the group in which the file is to be created.
* Record size - The length of the data record.
* Label length - The number of words that are required for the label

information the file may use.
* Various MPE file create information fields including blocking

factor, extents, record limit, and KSAM key information if the
file is a KSAM file.

WORK-FILE-EQUATIONS (detail):
* Catalog - This is the global catagory for the file equation

grouping. It is a key to the data set.
* Procedure - The program or procedure name that is used to index

and reference a specific group of file equations. It is a key to
the data set.

* File code - This is the code number assigned to a more specific
group of files. It is a key to the data set.

* File equation - This is the actual file equation the routines use
to be set up for the calling program.

WORK-FILES (detail):
* Catalog - This is the global catagory for the file grouping. It

is a key to the data set.
* File code - This is the code number assigned to a more specific

group of files. It is a key to the data set.
* File root - This is the actual root or name of the file as it

appears on the system. It is a key to the data set.
* Date/Time created - This represents the date and time the file

was created. This information is also kept in the label and is
used to help maintain version control.

* File name - This is the full name of the file including the group
in which the file resides.

* Label length - This represents the length of the label as it is
defined.

The use of work-files can be extended from their basic use of storing user
data. One extent ion which uses the concept of user labels includes storing
common data used in processing in the label. This could reduce the amount

Control Techniques for User's Global Resources
0022-5

of data that has to be stored in each record. A second application of
work-files is to use the user label for storing check points for
processing. The programs would update fields in the label at critical
points of the processing. If the program would fail, a simple clean-up of
the data back to a check point could be done and then the program
would be restarted. Upon restart, the program would first determine if it
was already processing the data and where it had left off. Processing
would then be set to begin at the point of interruption and the program
would continue until normal completion. Use of user labels does require
some tools to be written to maintain the data should modification be
necessary. Such utilities could and should be user developed to meet the
need of the particular application data file. But, tools like DISKED5
can be used to do the simple data editting tasks.

Most of the applications we have developed rely heavily on being able to
generate unique files for processing through the day. We also use work
files that are created once and that are used over. Such applications
include data base clean-up programs. The file has restart information in
the label that initially starts as ready to process. The program uses the
file to store the keys found in searching that are candidates for deletion.
Upon completing the search the phase is set to deleting and the record
number is set to the top of the file in the label. The program begins
purging and updates each time the pointer. When completed with that phase,
the phase is updated to the next search to be done or set to program
completed for the next run. In this example, if the program fails during
the search phase, it simply redoes the search when restarted. If the delete
function has begun, the program gets the record number it last purged and
moves on to the next record and continues processing.

To support the work-files philosophy, several routines are available. They
include:

* BUILDWFILE - This routine uses the definitions defined in the work
file build data set to actually build the file. If there are
variables or parameters that need resolution for completing the
actual build, this routine resolves them. Typically, such items
that need resolution include getting a global parameter to fill in
a particular value.

* DELETEWFILE - This routine deletes the work-file entry from the
data base but does not purge the data file. This allows the
entries that need to be searched for a program be reduced while
still maintaining the data for backup.

* ENTERWFILE - This routine reads the label information of the
work-file and then recreates the work-files data set entry. This
is required so that the automatic version control built into the
system will allow use of the data file.

* EQUATEWFILE - This routine uses the data passed to establish the

Control Techniques for User's Global Resources
0022-6

defined file equations for the specific file. It uses the
definition in the work-file equations data set. And like the build
function, will resolve any parameterized variables.

* GETWFILEINFO - This routines retrieves the label information and
returns the data to the calling program.

* PURGEWFILE - This routine actually purges the data file and data
base entry for the data set.

* SECUREWFILE - This routine logically locks the data file in the
work files data set to control the access of the data file.

* SETWFILEINFO - This routine writes the label information back to
the data file.

* STATUSWFILE - This routine returns the status of the data file,
including the security and logical lock information.

OUTPUT FILE EQUATIONS

Output file equation control is available to control the set-up and issuing
of file equations for a program of process. Before a program begins
processing, it establishes the necessary file equations for referencing
output devices. During the processing if there are changes or new
equations that need to be set, the program can reexecute the file equations
store in the data base and continue processing.

Data base support for the routine include two master and one detail
sets. One master already discussed for work-files is Procedures.
others used to support output file equations include:

data
~e

FILE-FORMAL (master):
* File formal - This item is the eight character reference for the

file equation which also can be seen in a SHOWOUT FHAME field
for the output queue.

* Description - This item describes the file formal for reference and
documentation purposes.

PRINT-FILE-EQUATION (detail):
* Procedure - This is a key entry from the master data set. It is

used to be able to define all file equations for a specific program
or procedure.

* File formal - This is a key entry from the master data set. It is
used to be able to define a specific file equation for a program and
not the entire set available.

* File equation - This field contains the actual file equation the
routines use to set up the equations for the programs.

Output file equation control in a controlled environment has two purposes.
The first is upon initial start-up of the program, all necessary file
equations are defined for the output needs of the program. Much like work
files, the equations can be parameterized such that some resolution of the

Control Techniques for User's Global Resources
0022-7

equation may be necessary. A second use that relies even more heavily on
the parameterization available is the use of one common file equation with
the device ID being undefined. This value could then be resolved by either
using a global parmeter that has been updated to reflect the output
location or by using the global parameter NEAREST-PDEV-TO-#'#, where '" is
the terminal requesting the output, to define the final destination.

The single routine used to support this feature is:

* EQUATEPFILE - This routine uses the procedure/file-formal to define
the file equations requested. It resolves the parameterization
in the file equation based on the same rules as work-file equations
are defined.

WARNING AND ERROR MESSAGE PROCESSING

Warning and error message processing is available for the special
processing of messages back to users, operators, and programmers. This
facility enhances the error messages the HP provides to better define
errors and display the data to various places in specified formats. These
routines use highly parameterized data to resolve the processing of
information passed by programs. Warnings are typically used for
informative purposes while errors usually will be followed by the program
terminating in some error state.

The data base support for message processing includes again the Procedures
data set already defined and also the following:

MESSAGES (detail):
* Procedure - This is a key to this data set from the master. It

is used to be able to access messages for a specific program and
allow for the same error number to be stored for different programs.

* Message - This is a sorted data item which is the actual message
number.

* Type - This defines whether the message is a warning or an error
and what level of warning or error it is.

* Flags - This item defines information concerning the display and
responce needed for a message, if any. Examples of this include
definition of the display locations (eg. console, log file, or
$STDLIST) and whether a console reply is necessary or not.

* Message parameters - These define up to four data parameters and
the format in which to be displayed. These parameters typically
contain data that should be displayed for better error resolution.

* Message text - This defines the message text, including any
parameters that need to be resolved. Also included are references
to the message parameters which are passed by the program.

Control Techniques for User's Global Resources
0022-8

The key use here is to consolidate the messages for systems into one place
for easy maintenance. It also provides programs with functionality that
can be used to better debug program errors and aborts. By storing the
parameters and messages in a data base, the form of the message can be
easily modified even while programs are running. This should be especially
handy if a program begins to issue messages to the console which are simply
informative and the operations person wishes that the messages would stop
displaying. The message could be modified to be rerouted to $STDLIST or
modified to better display the error data if it appears difficult to
understand.

Routines available for message include:

* DUMBMSG - This routine processes messages based on information in
the data base. This message can be sent to more than one location
and may request operator reply. It can automatically cause an abort
or simply log the message to a file and continue. If the message
causes an abort, 104 words of the stack, starting with the address
of the first parameter, is displayed.

* LOGABORT - This routine logs an entry to the abort log file and
terminates the porgram.

* LOGSTART - This routine creates an entry in the process log file
indicating that a program has started.

* LOGSTOP - This routine creates an entry in the process log file
that a program has stopped.

* SMARTMSG - This routine is the same as DUMBMSG except that it
checks the last message before returning the new message. If the
new message is more serious than the old, it returns the message;
otherwise, it does not.

SPECIAL ROUTINES FOR GUTIL

Any program that uses the routines described above that need access to the
data base need to execute two other routines. The first is INITGUTIL.
This routine is designed to open the data base and then initialize the data
and common areas associated with using the routines. Second is
RELEASEGUTIL. This routine closes the data base and releases any special
resources consumed by the GUTIL routines.

Control Techniques for User's Global Resources
0022-9

NON DATA BASE DEPENDENT ROUTINES

GUTIL also includes routines that are not data
routines are typically are for specific tasks
Examples of the routines included are:

base
or

dependent. These
data manipulation.

* CAPCHECK - This routine uses the Local Attribute available with MPE
as well as a security template to determine whether the user has
the authority to use a particular function.

* STARTJCW - This routine starts a process that displays a reply
message to the console and then processes the reply back for the
calling program. The JCW needs to be checked by the program to
determine what should be done.

* TIMESTAMP - This routine returns the date and time in a two element
double integer. This is used to track modification in the GUTIL
routines and it can be used by programs to apply a time stamp to
user data to know when a particular update occurred.

* CDIGIT - This routine calculates check digits based on the check
digit calculations available in the routine.

CONCLUSION

These routines have been used in our shop for over four years now for a
variety of uses. These routines have provided our staff with common
routines and data structures for the development of user systems. These
routines also provide the control and checks and balances necessary for the
successful operation of the systems.

ACKNOWLEDGEMENTS

I would like to acknowledge Mr. Chris Hagood for writing a significant
portion of the routines discussed. And also to his documentation of the
system which made it easier to use and manage.

I would also like to acknowledge our staff for helping to continue to
develop new routines and enhance old ones to make the system effective for
getting the job done.

Control Techniques for User's Global Resources
0022-10

Integrated Information Management
Get The Connection?

Jim O'Brien
O'Brien Downs Systems, Inc.
P.O. Box 429369
Cincinnati, Ohio 45242

INTRODUCTION

Integrated Information Management ("11M") is a concept that has
been derived from the sharing of information. Information sharing
that is essential to operating a modern business enterprise.
Traditionally, software developers have not provided the ability
to share information. Standard access methods to find the
necessary information typically require the user to utilize
different programs and inquiry screens to determine relationships
that must be known to serve a particular request.

For example, a customer service representative may need to know
expected delivery dates of a selected inventory item for a
partiCUlar customer. This request would be difficult to
accomplish with non-11M software systems. The time element
involved can be a serious hindrance to answering a customer
request. The lack of integration with the corresponding quick
access may potentially lead to customer problems such as lost
orders, irritated customers and generally unacceptable customer
service levels.

One important question to ask is why were systems written in the
past that are functional for the areas being accessed such as
customer order entry, purchase order entry, inventory control,
etc., but are not integrated to each other? The answer to this
question is fundamental to this dissertation on 11M. Applications
were written for a specific task, for a specific purpose or for a
partiCUlar user or group of users. No thought was given to
integration of the various applications within the overall system
being used.

Another question to ask is why haven't 11M systems been developed
in the past? The MIS staffs of organizations have been viewed as
a service department. Their main responsibility was to "take care
of the computer system" and handle the computer needs of the end
user. Therefore, since little evidence of 11M is seen, it may be
because the user has never asked for it or wasn't aware that 11M
can be a reality. Unless management permits the MIS department to
take an active role in offering solutions to business problems or
to give some incentive for offering innovation, lIM systems of
the future will never be possible.

11M 0024-1

A logical reason for lack of 11M may be found by analyzing the
history of computer software systems. The history of computer
software systems can be demonstrated in three phases, as follows:

PHASE I:

BATCH-ORIENTED PROCESSING:

Batch-oriented processing was used for very specific functions.
These were without anyon-line, real-time capabilities or any
thought of integration. Software system developers were extremely
limited due to the hardware and software technology in existence
at that time.

PHASE II:

ON-LINE PROCESSING:

Current software systems utilize on-line processing, but still
have roots in the design from the batch-oriented processing.
Separate systems are written for specific functions and
information relationships are only addressed where necessary to
run these specific applications. This often results in a narrow
focus with built-in design limitations that may make the 11M
concept difficult to utilize around these applications.

PHASE III:

INTEGRATED INFORMATION MANAGEMENT:

Analysis of existing 11M based software supports the statement
that it provides organizations the ability to use their
information resources to their best competitive advantage.

A symptom of the need of 11M is 111'11 have to talk to John over
in our purchasing department to find out about delivery on that
inventory itemll or "I'll get back to you later when I find out
all the pertinent facts." How many times have we all heard those
types of things being said, been put on hold, transferred to
another department or told we would be called back with the
information we requested? 11M can put a stop to these issues and
improve customer service levels immediately. Frustration and lack
of responsiveness to user needs have increased over time and will
only get worse if 11M is not employed as soon as possible within
the company organization.

11M 0024-2

The lack of system integration may have been acceptable in the
past, but if we are to be competitive in today's marketplace, it
is essential that computer solutions employ the new conceptual
framework of 11M. 11M will allow us to move forward with our
system development and to meet the challenge for integrated
information access. We will be able to use the valuable
information which is being collected at all levels within the
organization to our fullest advantage.

11M will be made possible only when information management has
taken place and the organizational barriers have been removed.
When 11M techniques are employed within the organization and the
various company departments are sharing information, dramatic
changes may occur. Examples of impact areas that can benefit from
11M are customer service, responsiveness to problems, inventory
turns and better purchasing.

There are four major areas for discussion in employing 11M within
an organization:

I. SOFTWARE:

Software designers must develop systems that integrate the
available information within the organization and also be very
user friendly. If the newly developed 11M systems are not user
friendly then they will not gain the wide acceptance that must
prevail if 11M is to be used to its full potential. 11M systems
must be developed by experienced, proven system professionals.
Systems should be designed in a cooperative effort between
management, department heads, individual users and the MIS staff
using the following steps:

A. DEFINITION OF REQUIREMENTS:

This is a difficult step as most systems were developed around a
particular application. Brainstorming sessions must be held to
formulate which kinds of 11M tools can be developed to use
company information to the fullest benefit. The end users and
department personnel need to discuss their individual needs as
well as the company's needs and expectations. Everyone must close
their mind to pre-conceived notions of how systems are developed.
User input in areas that may not come under their job description
must be considered in overall requirements. Management should
encourage them to step outside their normal functions because the
best definition of need may come from those that do the majority
of the daily workflow. Inter-departmental and inter-user
relationships should be discussed and documented to assist in

11M 0024-3

requirement definitions. Company management must be made fully
aware of the urgency of the 11M need so they can utilize it to
become more competitive in the marketplace.

B. DOCUMENTATION OF REOUIREMENTS:

Formal documentation procedures should be adopted and
established. This may include, but is not limited to, write-ups
of job descriptions, organizational charts, management/user
objectives, narratives, flowcharts, screen layouts and any other
information which may assist in the overall system design.

One important aspect to consider is in the area of user and data
access security. This should not be taken lightly as once 11M
techniques are employed, access to company information becomes
easier. Documentation of security requirements, with
corresponding user and management approvals, must be obtained
before final system specifications are developed.

c. SYSTEM DESIGN:

System design becomes much more complex as more integration of
information is required. Structured system design is highly
recommended in order that the integrated techniques and inter
relationships of the data can be fully understood by all system
and user personnel.

D. PROGRAMMING:

Access and retrieval speed is mandatory to be as fast as possible
under certain hardware/software constraints. Special care should
be taken toward selection of the programming tools and languages
used so speed can be maximized. Programmers and system designers
should be constantly searching and/or developing new tools to
provide quicker, easier and more user-friendly access to the data
within the systems. Structured coding and programming standards
are required when 11M systems are to be programmed. This will
make program de-bugging and future program maintenance easier and
therefore result in better programs that will run in accordance
with specifications. On-line help prompts can be incorporated
into the programs to assist users in how to operate the software.
Screen printing to a selected printer is also helpful since this
provides users with a mechanism to print out pertinent
information that they do not have to write down. They will be
able to highlight information and pass it on to the proper person
for follow-up. This should result in quicker follow-up on
problems.

11M 0024-4

E. TESTING AND DEBUGGING:

Various users can alpha and beta test the software programs as
they are developed to ensure that they have been programmed
according to the specifications and requirements as presented in
A) and B) above. This will prevent some of the lack of integrated
system design that has occurred in the past. As users start
working with 11M programs, they will continue to modify and
enhance existing programs. New programs may be developed as they
become more familiar with the endless possibilities now available
to them. An information revolution may take place as we make
great progress in the 11M area.

F. IMPLEMENTATION AND TRAINING:

Realistic time tables should be set for training and implementing
the 11M system. Many good project schedUling and management
software tools exist out in the market today that can be used in
this area. Training should take on a greater emphasis than it has
in the past so that users can get increased benefits earlier in
the implementation cycle. User manuals should be developed that
demonstrate all the features that are available to the user. Full
examples should be provided so the user can follow along with
his/her own screen for easy assimilation to a particular
environment.

II.DATA:

Policies must be developed for data standards so that information
is easily transportable from system to system. This can be on a
single CPU or may involve a multitude of systems. Data standards
also need to be established for non-EDP data as well. The
standardization of the data may also encompass using corporate
databases to collect and group data for all entities or a single
entity. Access may even be required between the home office and
remote sites or vice versa. In many companies, various
hardware/software environments exist, which require data
standards to be enacted so that all the required information can
be accessed from anywhere within the organization.

III. PROCEDURES:

Procedures and policies must be developed for integrated system
development. These should be adopted companywide aligning
integrated system development strategies.

11M 0024-5

IV. MANAGEMENT SUPPORT:

Full management support is required for success in order that
maximum advantage be taken of the company's valuable information
resources.

11M may require some changes in management philosophies. All
pertinent information must be related and integrated. This means
that inter-departmental barriers must be broken apart and the
information systems linked together. The ultimate purpose of 11M
is to make available information that has been created by
departments or users that specialize in creating and using that
data to all users. Management must adopt a policy of integrating
data and systems where possible to bring the entire resources of
the company together, much like a conductor who integrates the
various instruments together in the symphony.

Management will have to allocate funds for 11M projects in order
to be able to reap the tremendous benefits available. Management
will have to begin to measure the benefits provided and will see
astounding increases in user satisfaction, customer service
levels and the cooperation between employees. Management must
support 11M fully to maximize the benefits that this kind of
technology can provide.

CONCLUSION

11M poses many challenges to management and system professionals
that need to be addressed. When the 11M technology is used in
"real-life" situations the results are amazing. We have seen and
documented significant productivity increases in companies where
11M has been implemented. 11M systems have been developed which
work with existing software technology. 11M is not just a vision,
but a reality.

11M 0024-6

Capacity Planning: Getting Started
Charles Rice

University Systems
The Ohio State University

1121 Kinnear Road
Columbus, Ohio 43212

Introduction

Capacity planning can be defined as planning the future use of
your computing resources by what has taken place in the past and what is
currently being planned for the future.

There is a proverb that says "any enterpri se is bu i1t by wi se
planning, becomes strong through common sense, and profits wonderfully
by keeping abreast of the facts." This proverb sums up what capacity
planning is all about.

Planning the use of your computing resources is a wise thing to
do. One of Murphy's 1aws states that the demand for your comput i ng
resources wi 11 always grow to exceed your comput i ng resources. The

.·purpose of a capac i ty plan is to accommodate the demand for comput i ng
resources before those demands exceed the resources available.

Capacity planning requires the use of common sense. You can almost
always add another system to your computer, but common sense says "what
is the affect of the new system on the other systems?" The new online
system could possibly affect the response time of other online systems.

Above all, capac i ty P1ann ing requi res you to keep abreast of the
facts and rumors. A capacity plan needs to keep track of what happened
in the past and what is being planned for the future. Are future
versions of a program going to use more resources? Are there plans to
add new systems to the current load? As time goes by the future becomes
more clear and adjustments are made to previous plans.

Getting Started

The fi rst step to capac i ty P1ann ing is to ident i fy the resource
that will limit your capacity. What resource is keeping you from adding
more systems? Is the CPU busy 100% or maybe the CPU 'is paused for disc
50% of the time. As a general rul e the resource that 1imi ts your
productivity is the resource that you want to concentrate most of your
effort.

Before MPE started to cache disk lOs in main memory, the number of
disk lOs was often the resource that limited activity on our HP. With
di sk cachi ng though, CPU has become the 1imi t i ng factor. Therefore at
University Systems, we concentrate most of our effort on tracking and
predicting CPU usage.

Capacity Planning: Getting Started 0025-1

Even though our Capacity Planning Report concentrates on CPU, for
historical purposes we track disc lOs, memory activity and global
response time. These resources can indicate problems that would not be
noticed by tracking just CPU. For example if memory activity seems high,
you have a historical record of memory activity to use as a yardstick.

For all of the resources we track we have set a threshold val ue
that we do not want to cross. For instance 85% CPU busy is the typical
threshold value for CPU in the industry. If the CPU is busy 85% of the
time then you are approaching the capacity of your CPU. Some thresholds
that we set are arbitrary i.e. a point where we think we will start to
have problems although we have no evidence that would indicate any
problems.

There are many tools on the market today that can assist you with
capacity planning. The first capacity planning report produced at
Uni vers i ty Systems' used some tools from the Contri buted Library·.
Before we produced the next report MPE V was installed and the tools we
were using were not compatible with the new version of MPE. It is best
to use tools that are either supported or supportable i.e. you have the
source code and knowledge to support the tools.

At University Systems we use HPTREND from Hewlett Packard and
SVSPLAN from Carol ian Systems. HPTREND has been very good for tracking
resource usage by account and CPU by act ivi ty e. g. CPU busy, memory
management, paused fQr disk etc. SVSPLAN ~a~ been excellent for
identifying CPU activity by process and/or user. SVSPLAN, by allowing us
to get at 'the raw data, offers, us a lot of versatility despite its short
comi ngs, wlli ch I wi 11 ident i fy 1ater.· .

Organizing'the ~eport

At University Systems'we' produce a 'Capacity Planning Report
quarterly. What follows will be a summary of how our report is organized
and th~n a ~escription of all the se~tions.

1. Index.
2. Summary.
3. Definition of Business Elements.
4. CPU Graphs:

a.) Average CPU used :during 24 hour weekday.
b.) Average CPU used during weekend: '
c.) Prime Time CPU Use by Business Element During

Quarter.
d.} Peak Time CPU Use by Business Element During

Quarter (see page 7.) .
e.) Table of Projected Growth by Business Element for

prime and peak time (see page 8.)
f.) Graph of Projected Growth by prime and peak time (see

page 9.) .. .
5. Graph of Disk lOs during prime and peak time.
6. Graph of Free Disc Space.

Capacity Planning: Getting Started 0025-2

7. Miscellaneous Information.
8. Actions taken to improve performance.
9. Recommendations.

10. Glossary.

Report Summary

Most people who read this report will have their own areas of
interest. For example the Director of Operations might be more
interested in CPU usage on third shift while the Director of Development
will be interested in response time the programmers are receiving. The
purpose of the summary though, is to direct the readers attention to the
areas that need attention. This is where you point out when the current
CPU will run out of capacity.

Business Elements

At University Systems we wanted to know what processes were using
the CPU. So we divided all processes into eight different categories
that we call Business Elements. The eight Business Elements are:

1. Editing Programs (Editor, TOP, SPEEDIT etc.)
2. HPDESK.
3. Office Automation .(HPWORO, GRAPHICS etc.)
4. Data Communications (MRJE, OS, NS, IMF etc.)
5. Utilities (MPE subsystems, LIB, TECH etc.)
6. Production (Income producing accounts.)
7. Other (Programs not included in other filters.)
8. Unknown (CPU used but not accounted for by any business

element. We have assumed that this is operating system
overhead.)

CPU Graphs

Although we are mostly concerned with prime time (8:00 AM to 6:00
PM Monday thru Friday) we do incl ude a graph of CPU usage duri ng the
week nights and weekend. This serves two purposes, it gives management
an idea of what is happening after hours and records this information
for historical purposes. There might come a time when this information
will become useful.

We produce two pie charts for prime and peak time that display
average CPU used by bus iness e1 ement duri ng the' quarter. By addi ng a
s1ice of pi e 1abe1ed IDLE CPU we force the total of all the bus iness
e1 ements to add up to 100% i. e. 100 mi nus the sum of ,all bus iness
elements equals IDLE CPU.

The table of projected growth by business element is a product of
two tables. The first table consists of the percentage that each'
bus iness element is projected to grow by month (see TABLE ONE.) The
second table consists of the actual and predicted percentage of CPU
consumed by each bus i ness element (see TABLE TWO.) The 1ast month of

Capacity Planning: Getting Started 0025-3

actual data is multiplied by the percentage that the business element is
expected to grow in the next month. For example if HPDESK is expected to
grow 1% in the months of May thru September. The last month of actual
data shows that HPDESK used up 15.4% of the CPU. This number (15.4%) is
multiplied by 1% to obtain the projected growth of HPDESK for the month
of May.

TABLE ONE
3/88 4/88 5/88 6/88 7/88 8/88 9/88

HPDESK 1% 1% 1% -25% 1%
EDITORS 2% 2% 2% 2% 2%

TABLE TWO
3/88 4/88 5/88 6/88 7/88 8/88 9/88

HPDESK 14.0% 15.4% 15.5% 15.7% 15.8% 11.8% 11.9%
EDITORS 15.2% 14.2% 14.5% 14.8% 15.1% 15.4% 15.7%

The table of projected growth by business element is detailed by
month and should cover as many months as you think your current CPU will
last. This table should reflect your judgment of the expected growth.
For example if you know that the performance release of HPDESK is going
to be installed in August, then theoretically the amount of CPU used by
HPDESK during that month should decline. So the expected growth for that
month would be a negative number.

The Graph of Projected Growth is ;produced from the table of
projected growth by business elements. The sum of all business elements
are added together and plotted by month in a.graph. This is probably the
most important graph of the Capacity Planning Report. An example of the
table of projected growth and graph of projected growth is on page 8 and
9 of this paper.

You can use this graph to show your track record of predictions
versus actual values recorded. By doi ng thi s you can determi ne if the
predictions for growth need to be revised. Your first few reports will
probably not be very accurate but with experience, you will get a better
feel for predicting future growth.

The Capacity Planning Team for our IBM mainframe has found that the
margin of error on all the business elements usually averages out to be
fa i r1 y small. That is they do not have good t rack record pred ict i ng
individual business elements, but the margin of error on all business
elements averaged together usually comes out to be very small.

SYSPLAN does have a TREND command that does. ali ne.ar project ion of
resource usage, but thi s command has a major f1 aw. When the TREND
command is used, its projection is based on all hours and days of the
month with no exceptions. We use our HP very heavily during prime time,
but at night and on the weekends, it is just ab,out an id1 e CPU. CPU
usag~ during prime time is 70% to 80%, however using the TREND command
shows the CPU usage around 50%. I don't know about you, but I would have

Capacity Planning: Getting Started 0025-4

a hard time just i fyi ng the purchase of a new CPU based on the graph
produced by the TREND command.

Idea11 y, the TREND command shoul d 1et you input what the growth
will be from month to month and let you eliminate exceptional days. You
would be surprised what a few holidays would do to a linear projection.

DISK lOs

A graph of disk lOs is also included in the report. This is for
historical purposes. Since we are not ready to upgrade to a HPPA
processor, we needed to extend the life of our current cPU. To do this
we are replacing all of the 7933XP disc drives with 7937XP disc drives.
Then we will cache lOs at the disc level instead of in main memory. The
theory being that the 7937XP disc drives can cache lOs ALMOST as
effectively as main memory can. We anticipate freeing up 5% to 10% or
our CPU but at the risk of becoming 10 bound. Therefore we want to track
our average number of disk lOs during the prime time.

Disk Space

Freespace is a1so included in our capaci ty P1ann i ng report. We
order another disc drive when 75% of our total disc capacity is full. In
general it is hard to offer more services or add new systems when disc
space starts to get tight. A lack of disc space can become a performance
and/or service inhibitor.

Miscellaneous

The Miscellaneous Information is a good place to put trivial facts
that have potential of impressing somebody. For instance this section is
a good place to put how many sessions and jobs that occurred on the HP
on a average month~

University Systems as a g~neral rule doesn 1 t charge anything for
the use of the HP. However we do have a charge back program. We are
going to use this program to produce bills to send to our customers with
a note explaining that this is the amount of free services we provided
them wi th 1ast month. Thi s produces good wi 11' among our customers and
conditions them to the day when we might have to start charging for use
of· the HP. The dollar amount that the HP could bring in if we so chose
i~ goo~ miscellaneous information!

Actions Taken to Improve Performance

You always want to include in your capacity plbnning report what
you did over the last period to improve performance. Sometimes it is
hard for upper .management to see the monetary value of a system
programmer because a system programmer doesn't directly bri ng in any
income. This is a section to let readers of this report know what you do
and how valuable you are.

Capacity Planning: Getting Started 0025-5

Recommendations

This section is used to make recommendations to improve
performance. The recommendations may be as simple as optimizing disk IDs
over LDEVs to buying a larger CPU. The idea is to be planning as far
into the future as possible. You do not want to wake up one morning and
find out you need new CPU. On the other hand you do not want to buy a
larger CPU sooner than required.

Conclusion

There are several mistakes that can be made in producing the
capacity planning report. One mistake is for the systems programming
group to become consumed with producing the capacity planning report and
have no time for any other activities.

Another mistake is to not expect any surprises. A capacity planning
report can only guess what will happen in the future. No matter how good
one is at predicting the future, there will come a time when the
prediction will miss by a long shot. Usually the cause of the inaccuracy
is from underestimating the amount of CPU a system will consume. Be
prepared for the worst.

Every computer center should have some idea of its current and
future computing load. A capacity planning report can provide management
with the necessary information to formulate a plan to accommodate or
deny future demands for computing power. The hard part about producing a
capacity planning report is getting started. Once started though you
will find the report evolving into very useful tool.

Capqcity Planning: Getting Started 0025-6

UNIVERSITY SYSTEMS HP3000 SERIES 70 US3/RED
Average CPU Used by Business Element during Peak Hour

i?-a
CD
n...,...
'C

"tI.....
:::I
::I...
::I
fa

r,...,......
::I

CD,...,,...
CD
a.
g,
"

Utilities
SI.B

PNMtian
2••

OffiCi ~ian
3.01

ca.miCltiarll....

Elec:tranlc ..11
17.8

october 1987 thru Dec,lIar 1.7
10: 00 AM to 1t: 00 AM

PROJECTED PEAK TIME CPU FALL QUARTER •87

Production

Office Auto

Datacom

Utilities

Editors

BPDESK

Other

7/87 8/87 9/87 10/87 11/81

3.6 3.2 1.9 1.1 0.4

2.0 1.4 2.2 3.3 3.0

4.5 4.5 5.2 4.3 4.4

15.5 16.4 15.4 17.8 16.0

17.2 16.6 17.9 15.1 14.3

16.4 17.0 15.3 20.1 17.6

19 . 3 18. 7 22. 5 19. 4 24 •9

12/87 1/88 2/88 3/88 4/88 5/88 6/88 7/88 8/88

o. 35 o. 3 O. 3 0 . 3 O. 3 0 •3 O. 3 O. 3 o. 3

2.76 2.8 2.8 2.9 2.9 3.0 3.1 3.1 3.2

4.14 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4

22.33 22.7 23.2 23.7 24.1 24.6 25.1 25.6 26.1

14.10 14.3 14.6 14.9 15.2 15.5 15.8 16.2 16.5

15.09 11.6 11.8 12.0 12.3 12.5 12.8 13.0 13.3

22.00 23.1 24.2 25.4 26.7 28.0 29.4 30.9 32.5

Total 78.7 78.1 80.7 81.4 80.9 80.78 79.2 81.4 83.7 86.1 88.6 91.2 93.8 96.6

PROJECTED GROWTH BY BUSINESS ELEMENT

Production

Office Auto

Datacom

Utllities

Editors

BPDESK

Other

7/87 8/87 9/87 10/87 11/81 12/87 1/88 2/88 3/88 4/88 5/88 6/88

111 1 1 1

2 2 2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2

222 2 2 2

-23 2 2 2 2 2

555 5 5 5

7/88 8/88

1 1

2 2

1 1

2 2

2 2

2 2

5 5

Capacity Planning: Getting Started 0025-8

UNIVERSITY SYSTEMS HP3000 SERIES 70 RED/US3

Actual
CPU

Average Peak CPU Projections
Pro j ected CPU

CPU Limit
Pro j ected (new)

CPU

100 Percent CPU Bus,

A"MA

-------- ---- --- ...---...--- --- --- ...•__.__.__.__.__•__.__.__>""" ~-:--=. s< -:--_.~~........-:...__•__•__•__

- ----- -----...--- ...

n 90GI
'0
GI
n

80....
rt"
~

"U
70....

GI
:::I
:::I

80....
:::I
CO

en
50CD

rt"
rt"....

•:::I
CO

en
rt"

30III.,
r+
CD
a.

20
0
0
N

10UI
I

CD

OM

March 1987 thru August 1988
10: 00 a. thru 11: 00 a.

DATA INTEGRITY AND RECOVERY

AUTHOR: TERESA BRZOZOWSKI

CAROLlAN SYSTEMS INTERNATIONAL INC.
3397 American Drive, Unit 5, Mississauga, Ontario L4V 1T8 CANADA

Database failures and resultant recovery efforts cost HP3000 users thousands
of dollars every.2!l. in lost processing time and inconvenience. While this
paper provides a discussion of IMAGE failure types and various methods of
recovery, it also intends to educate the reader as to how some basic database
design and implementation procedures can act as proverbial "ounces of
prevention ll

- protecting you and your company from having to needlessly exist
and suffer with logically and physically broken databases.

IMAGE FAILURE MODES

A quick review of IMAGE failure modes reveals that such common occurrences as
system failures or hangs, disc media failures, datacomm line failures or
application failures can all bring database processing to a screeching halt.
Failures can also result in physical or logical damage to the database, with
physical failures resulting from having bad data on disc (filesys), broken
chain pointers or inconsistent root files. Logical failures can result
because of missed updates, puts or deletes or missing delete flags. Whatever
the cause, there are several standard and some new ways to repair the damage.

CLASSIC IMAGE RECOVERY

A standard method of IMAGE recovery is to restore your most recent copy of
your database and forward recover using DBRECOV. However, there are some
major deficiencies with this method of recovery. First and foremost, the
process is extremely time consuming as it keeps users away from productive
processing.

Also, DBRECOV uses a technique of recovery known as staging, whereby the
restored DB is updated from the log file via staging files. The problem with
staging is that large numbers of transactions can be ignored if an lIend" is
not found, resulting in these transactions not being applied to the database.
The result can be a great deal of time and effort spent on forward recovery,
with no guarantee that the recovery will be complete.

INTRINSIC LEVEL RECOVERY - ILR

If a failure occurs during an actual DB intrinsic such as updating, ILR can
ensure physical integrity of your database by undoing the intrinsic. The
problem with "undoing" is that with IMAGE databases, in some instances the log
file and the database may not agree! Improvements made to TurboIMAGE have
alleviated this problem.

Data Integrity And Recovery 0027-1

TURBOIMAGE RECOVERY

With Turbo, ILR will complete the intrinsic call so that the logfile and the
database agree, as opposed to just "undoing" it. Turbo allows you to forward
recover with DBRECOV as does IMAGE, but it also allows you to initiate a
rollback recovery.

Rollback recovery is a more timely method of recovery as it eliminates the
need for a DBrestore and to reapply logged transactions to the database.
Ro 11 bac k recovery allows users to bri ng thei r current database up, and back
out the last incomplete transactions, while complete transactions are left in
place.

The use of ILR and Rollback recovery will generally ensure that more data is
recovered than is possible with roll forward techniques. This is due to the
fact that ILR with rollback recovery requires physical logging.

Physi ca1 1oggi ng ensures that the changes to the database are recorded and
written to the log file as they occur. This prevents the log record from
remaining in memory where they can be lost in the event of a failure.

Despi te the time savi ngs that can be real i zed wi th Turbo I s newer recovery
features, neither these or IMAGE recovery procedures are of assistance with
another common occurrence that results in logically broken databases program
aborts.

RECOVERING FROM PROGRAM ABORTS

Programming bugs, user errors and datacomm line failures are just a few of the
occurrences that can result in a database becoming logically corrupt. To
date, HP3000 sites have had to live with the fact that once their databases
have become logically corrupt, that they have to endure this inconvenience
until a full recovery procedure can be initiated.

PROBLEMS ASSOCIATED WITH ABORT RECOVERY

Again user downtime is the penalty that must be paid as users have to
terminate, partial transactions are deleted or completed, and then users are
allowed to access the machine again. However, if strong locking is not in
place, the transaction interaction that has been rolled out can inadvertently
undo a completed call. The real solution to this dilemma is to have a "net
change" rollback. This is currently unavailable, as a "net change" rollback
requires a detailed and intimate knowledge of the application.

SOLUTIONS - HOW TO MINIMIZE RECOVERY HEADACHES

The benefit of such facilities as DBRECOV and Rollback recovery can be greatly
enhanced if you implement the following safeguards.
1. Turn on~ - despi te pers i stent mi sconceptions, 1oggi ng does not

significantly degrade the performance of your machine. If you are not
logging you have precluded yourself from virtually all methods of
recovery.

Data Integrity And Recovery 0027-2

2. Use Begins and Ends - Without DBbegins and DBends, by definition no
logical transactions exist. Therefore, database logical integrity is
impossible to determine. The best that can be done is to provide for an
audit trail of physical transactions.

3. Strong locking - Some method of strong locking should be implemented.
Without strong locking, a transaction can interact with another
transaction before it has completed, thereby making the result of a
rollback recovery questionable.

4. Turn on ILR - Turning on ILR will ensure that your database will always
be physically intact.

Implementation of these four key points is crucial if you are to ensure
database integrity and ease of recovery for your company. They can result in
tremendous reducti ons in user downtime and the time is spent on recovery
procedures. There is however, another alternative method of database
recovery, that when implemented with the aforementioned safeguards, will
render downtime due to the initiating of recovery, or the existence of
logically corrupt databases due to program aborts, a thing of the past.

AN ALTERNATIVE - DYNAMIC ItROLLBACK II

A fac i1i ty that provi des a dynami c roll bac k, wi 11 actua11 y undo an aborted
transacti on as the abort occurs. Thi s II rea1 time remova111 of an aborted
transaction will result in your database always being logically intact.
Without the existence of incomplete transactions in your database, .it would
also unnecessary to have to take the system down to initiate a cleanup.

Such a utility does exist, and is actually one product for the HP3000 from the
Caro1ian Systems Research and Development group. Known as INTACT, this
product provides these major capabilities which have been previously
unaddressed and unavailable to HP3000 users.

Data Integrity And Recovery 0027-3

your database, it woul d also be unnecessary to have to take the system
down to initiate a cleanup.

For the HP3000 classics, Carol ian Systems has developed a real-time
roll-out utility called INTACT. Hewlett-Packard is also seriously
investigating this data integrity issue for the Spectrum series, however,
dates for the release of such a capability have not yet been released.

DATA INTEGRITY AND RECOVERY 0027-4

Pitfalls of Offloadin2 Applications to PCs
by MarkW.Miller

JMA Technology, Inc.
P.O. Box 570727

Houston, Tx 77257-0727

And on the eighth day, Hewlett-Packard said "Let there be no
graphics, spreadsheets or word processing to slow down
busIness transaction processing on the HP3000" and 10, the
users heard these words and they believed.

Consider the HP3000. For years, it has served as the central
work horse in numerous companies. The general-purpose
machine embraced every kind of application people could dream
of. It has served well as a file repository, a point-of-sale
processor, information storage and retrieval, sales tracking,
business forecasting and even process control and monitoring.

It's processed transactions, statistics, documents, results,
budgets, financial statements, labels, graphs and reports. It
contains one of the most efficient, reliable and stable
arithmetic logic units available in the market. It's output
capacity outstrips all but the fastest impact and laser printers.
It facilitates central control of data in a dynamic business
environment.

For many businesses, whether for profit or non-profit, it was
(and still is) the steppin~-stone into the future of computing.
It obeyed their every wish while serving as an all-purpose
business computer, meeting all comers with enthusiasm. HP
even pushed their own word processing, graphics and
spreadsheet software for years (must have been to sell more
hardware), saying that this was the best solution. And now,
they tell us we can't do that any more. These applications will
not be supported starting with the new spectrum line.

We must remove all vestiges of centralized office automation
and relegate any perceived CPU intensive applications to their
youn~er brother PC's. Thus ends an era of one vendor, one
machIne, total solution.

This 'HP way' of things is being touted by many influential
users and a plethora of papers, presentations, seminars and
propaganda have surfaced promoting it. Before moving all
these "CPU intensive" applications off the HP3000,
consideration should be given to the long-term effects. The
philosophies involved require carefully planned and thought out
decisions.

Pitfalls of Offioading Applications to PCs
0028-1

This paper exposes the flaws inherent in this 'HP way' of
one-sided thinking by pointing out the issues of centralized
versus offloaded applications. Further, it discusses the
different aspects of permanently moving all of these
applications to PC's. Finally, some of the myths involving
'CPU intensive' applications will be dispelled and guidelines
for determining which applications to keep and which ones to
offload will be included.

The lIP Way ofThings

As an immediate response to the 'HP Way' of thinkin~, I must
say that this had to be a regression from their earlIer stance
and that they are ignoring a certain segment of their current
users. This blanket approach is an insensitive and ignorant way
to support these users. I'm talking about those companies that
depend solely on the HP3000 to meet all their Data Processing
needs.

On the HP3000, it is the activities, not the applications, that
need to be monitored, quantified and justified on an individual
user usage basis. This is the key to determining which
activities need to be offloaded to Pcs.

If all user activity is individually oriented and not vital to
business operations, all this activity would probably be best
offloaded to the single user oriented PCs. Upon close
examination, however, most companies will find that much of
the activity is vital to business operations. If this activity
gets offloaded, loss of control over that information occurs.

You may ask why I so vehemently state these things when it is
so painfully obvious that the future of computing will include
PCs and distributed processing. It is because of the sheer
simplicity of the concept that the HP3000 can be all things to
a small or even medium size company. Additionally, not all
companies .,believe that they must remain 'state-of-the-art' by
installing PCs and implementing distributed processing.

For purposes of discussion, I will be limiting this talk to
HP3000s and IBM PC, XT, AT and compatibles. The PC
operating system mentioned is PC-DOS/MS-DOS version 2.0 and
up without any special add-on hardware or software. The
reason this paper is limited to these machines and operating
systems is because these are the predominant PCs already
installed in most HP3OO0 shops.

I am acutely aware of the multi-tasking capabilities of
Windows and Wave-Mate, however, these packages are not yet

Pitfalls of Offloading Applications to PCs
0028-2

in wide-spread use. The same is true for the PS-2 and
compatible machines, OS-2 (not available yet), Unix operating
systems and hi~h-powered workstations. These are rarely
found in the same enVIronment as the HP3000.

Here, I will show you some reasons not to offload
applications:

10 Reasons Not to omoad Applications

1. Wholesale Output Power

The HP3000 has more output power than any PC sold today.
This output can be with a large variety of output devices
including plotters, printers of all types, punch cards (what?),
magnetic tape, serial communications, dIsplay terminals and
many others. This power, coupled with spooling, allow
tremendous output in relatively short time frames.

Because of the limited output of a PC, the user is often faced
with the challenge of finding a way to print a report or plot a
graph. Some software packages are now emerging that allow
spooling to the HP3000 and networked PC's usually have a
shared output device. This limitation, however, can cause
delays and frustration among users.

2. Production Power

Many companies close their books monthly to allow analysis of
financial status on a more timely basis. The vast quantities
of numbers to be crunched can easily overwhelm a PC. The
HP3000, however, is able to perform complete jobs of number
crunching, reporting and graph plottin~. These outputs are
generally reviewed to aid in decision making for the bUSIness.

This is known as Production Graphics and Production
Spreading. These dOobs would take days to complete on a PC,
whereas, the HP30 0 handles them in hours. Control of the
process is completely taken care of on the HP3000, whereas, if
split over many PC's could cause confusion and possible loss of
data, results or precision.

3. Application Droning

The HP3000, after fifteen years, has developed quite a third
party hardware sales sector. As a result of this, older model
HP3000s are available for less than ever before. Consider a
dedicated HP3000 for a single application that is causing
bottlenecks. This could free up considerable computing, input

Pitfalls of Offloa~l'fplicationsto PCs

This type ofand output power for your primary machine.
distribution of applications is known as droning.

As the company grows, more drones may be implemented to
distribute the load. This can even include more than one
application. These HP3000's may also be networked with data
and programs residing on different machines. With this
scenario, the company could grow infinitely without ever
needing mainframes.

5. End-user Communications

As more people use the computer, communications becomes
more and more important. The electronic mail systems on the
mInIS are excellent communications devices for those who used
to play telephone tag all the time. The messages may even be
forwarded in a network ofHP3000s.

The management and administration may wish to use these mail
systems to disseminate information, company policies, memos,
etc. In any case, the quality of communications is hi~her

with electronIc mail than without it. Better communicatIons
means better productivity.

The ease at which data may be passed to other users is also a
factor in productivity. On the HP3000, this is a simple and
straightforward task. Even in a network of HP3000s, this is
still relatively simple. If this is tried between the HP3000 and
the PC it becomes a tryin~ task at best. With terminal
emulation software, it is eaSier, but the difficulty remains in
assuring correct file sizes, data types, and special characters.

6. Data and File Differences

Binary data located on the PCs and the HP3000s are not the
same. Care must be taken in transferring this data and
loading it into the new PC application. At times, the data
must also be re-organized and possibly require some decisions
concerning'excess' data from the HP3000 applications.

In the case of graphics, it may require massaging and possible
re-organizing of data from raster to vector or vice-versa.

7. Lack of Features and Operational Differences

Much of the PC software available today lacks many of the
features available on mini software. These features, while
seeming very unimportant, may make the difference in how the
company operates because they don't exist in the PC
application. This can prove to be very frustrating to end

Pitfalls of Offioading Applications to PCs
0028-4

This can translate to loss ofusers and management alike.
productivity and profits.

Very few applications on the PC operate in the same manner as
on the HP3000. These differences will cost in terms of
re-training, loss of productivity and error corrections during
the implementation. This loss will eventually pay for itself,
unless the data transfers are awkward or untimely.
Re-evaluating the usage of the application may change the
companies needs and require scrappIng whole systems because
they are 'canned' or not worth adapting.

In any case, changes will be necessary to the da ta if
downloaded to the PC. For spreadsheets, this may require
changing commands, macros, use-fIles, etc. to correspond with
the PC spreadsheet because they are incompatible. For word
processors, it may require changes of commands, removal of
Imbedded commands and adding new imbedded commands or
converting all text files to a new format.

8. Costs and Investments

Before you discard your HP3000 applications, consider the
investment· that you are throwing away. Not just the software
costs, but user productivity and experience, data files, use
files, worksheets, etc., and any 'systems' created. After all,
you don't throwaway your 4GL just because it produces slow
reports from time to time. Remember, prototyping, testing
theories and experimenting bring advances in processing and
business.

This investment has been built over years and does not easily
die. Gradual migration to similar PC products should be
impl.e.mented to avoid alienation of users and loss of valued
actIVIties.

9. Back-up and Data Control

For many shops, no solid back-up procedures have been
identified for PCs, much less implemented. This lends itself
to loss of data integrity and control for any data that is
passed through or to PCs. This condition, while reparable,
could cause many headaches or loss of critical data.

10. Data Transfer

Any data needed from the HP3000 will need to be extracted
and placed into a file, transferred to the PC and then imported
into the application. This requires time and resources.
Resources include HP3000 processor time, file access, transfer

Pitfalls of Offloading Applications to pes
0028-5

processing on both the HP3000 and PC, and PC processor time
to import the data into the application.

Because this can quickly add up to more than it would take to
finish the process on the HP3000, it could be a reason not to
offload the application. If this is for ad-hoc or what-if types
of applications, it may be justifiable. However, if it is a set
process that never or seldom changes, it may be better off on
the HP3000 than offioading.

Central Repository of Information

In many installations, the HP3000 serves as a repository of
informatIon. This usage is common for businesses because the
idea of having centralized locale of information is appealing. If
all information is located on one computer, the relationships of
this information is simpler to envision and easier to manipulate
into comprehensive analysis and reporting. This concept has
prevailed since the first businesses used computers to organize
massive volumes of data.

This is not to say that all information and its' processing
must be continued in this environment, but merely a testimony
to the solidity of the concept of centralized information.
Today, that concept is expanded to include various other types
of processing, including the use of personal computers as well
as other types of computers for specialized processing needs.
The HP3000 is not perfectly adapted for many of these unique
needs, but rather becomes complementary to fulfilling them.

Data Security and Control

If the users are allowed free reign over data, control and
security will be virtually non-existent. It becomes simple to
introduce many cOJ?ies of sensitive data on relatively
unsecured PCs. WhIle data must be accessible, it must be
controlled enough to prevent loss or damage. Effort must be
made to prevent carelessness with data (especially sensitive
data).

In general, data is captured through various means, collated,
categorized, massaged, 'transactioned' and placed into any of a
variety of file structures. Once this data is captured, the
company must decide what the value of this informatIon is. If
it IS of value in steering the business into profitable markets
or possibly more of a share in the current markets, then it
must be Identified as such and given the same protections and
care that any other corporate asset.

Pitfalls of Offloading Applications to PCs
0028-6

Determining the value of this type of data is no simple task
and not the purpose of this paper, so I will not dIscuss it
here. Once a value is placed on it, however, ensuring that the
data is exploited sufficiently to justify its' capture becomes the
most important task at hand. After all, dead data is useless to
any company. By using the HP3000 as a central repository for
important information, the company may take complete
advantage of it through any of various processing steps,
regardless of the means used to accomplish these goals.

Data can be monitored, controlled, secured and tracked, just
like any other asset. This may include issuing data like a
company vehicle may be issued to an executive. It is
expected to be returned in good condition and intact when the
user is finished with it. This concept could very well protect
this asset and insure its' integrity without possible
compromise. Since a 'virgin' copy remains in the central
repository, it is safe and assuming the employee who checked
it out IS honest, the copy will not be lost or allowed to be
abused in any way.

Offload Decision-Making

There are, indeed, applications that should or could be
offloaded to PCs. As previously mentioned, individual or
ad-hoc oriented activities are best offloaded. But, what about
that huge financial report we produce every night with that
spreadsheet on the HP3000? Would it take less 3000 resources
if we downloaded it' to the PC or would we be better off
leaving it where it is? In order to better understand the
questions raised, ':He must examine the dynamics involved.

Architectural Considerations

First, we must understand the architecture of each machine,
and what it was designed for. The HP3000 was designed as a
multi-tasking, multi-user system using the time-slice/q-priority
method of time sharing user (and system) processes. In theory,
it can handle over 200 interactive user sessions and 50 or more
batch jobs, each capable of tasking up to 63 programs.
However, rarely will each user be running this many programs
at the same time, all of the time.

Because of the nature of an interactive session, much of the
time, the session is idle. During these idle times, other
processes get serviced, and efficient use of the CPU resources
IS accomplished. When the session is not idle, the process
monitor ensures that the user process gets served a reasonable
number of times per second to allow a smooth flow of activity

Pitfalls of Offioading Applications to PCs
0028-7

to the user.

The PC was originally designed as a single-task, single-user
system using no time sharing concept. However, since the user
is the only process to worry about, the user is always served
instantly. While this concept is powerful, it can also be said to
be wasteful when it is idle. Thus the un-used CPU resources
remain un-usable because no other processes can access the
CPU while the user is occupying the keyboard (of the PC).
This is known as serial computing. One user, one process at a
time.

In order to get a handle on using this idle resource during off
hours, we can use them for completing processes previously
accomplished on the HP3000. This is called dlstribu ted
processing.

Assume for one moment that we are working with a production
machine and that we want to offload this single process to a
PC to finish the number crunching. We must decide whether or
not to offload.

Formula Calculations

We need a method for determining the feasibility of offloading
a process. To do this, we want to calculate a time index for
each process technique desired. This first formula is designed
to calculate the index for time to process the data on a PC
with downloaded information from the' HP3000, and then, upload
the data for file update or for output.

11 = E + Tl + A + PI + 01 + 1'2 + 02

This next formula is for computing a time index for leaving
the process on the HP3000.

I2=E+P2+02

Variable Definitions:

11 - Index of PC processing time.

E - average time to extract data (HP3000)

Tl - average time to transfer data down

A - average time to import data into PC application

PI - average time to process data (PC)

Pitfalls of Offioading Applications to PCs
0028-8

01- average time to output data (PC)

12 - average time to transfer data up

02 - average time to import/output data (HP3000)

12 - Index of HP3000 processing time.

P2 - average time to process data (HP3000)

These time indexes represent the average time it takes for
each of the methods to complete the process. Note that these
also represent single-tasking, head-to-head competition
between the HP3000 and the PC. When the multi-tasking
aspect of the HP3000 is taken into consideration, the time
indexes for the PC must be multiplied for each additional task
able to be processed on the HP3000. Using this methodology,
fairly accurate indexes are produced and the real advantages
of multi-tasking begin to show up.

Of course, these formulas are not usable with complete
applications that are being offloaded. Offloaded applications
derive pure and simple cost/benefit ratios and only HP3000
extract and download times (if any) need be considered. The
formula (using above variable definItions) would look something
like:

11 = E + Tl + A + PI + 01

In any case, this index is likely to be less than the HP3000
index, unless uploading becomes necessary. Additionally, the
import, process, output cycle may be repeated as many times
as desired with the same data without affecting HP3000
resources. If no HP3000 extract and download are necessary,
the time index will always be better than that of the HP3000.

Of course, calculating E, Tl, T2, 02 and P2 requires some
analysis and testing since some factors may vary including
quantity of data, system activity load, file availability
(fra~menting), file record size and quantity of data
manIpulation (transformations, calculations, translations,
formatting, etc.).

If the two indexes (11 and 12) are equal, chances are, no
benefits are achieved by offloading the process. If 11 is less
than 12, the benefits are realizable. If the cost of developing
the PC application/programs is not tremendous, the benefits
would outweigh the costs. If, however, the costs are
approaching the extreme, the benefits would not outweigh the
costs. If 11 is larger than 12, forget about offloading the

Pitfalls of Offloading Applications to PCs
0028-9

process at this time.

Naturally, there are ways to improve this cost/benefit ratio,
however, that subject is not the purpose of this paper.

Ideas for obtaining these values include recording job wall
time for one month for this process. Determining PC
processing time for the import, process, export and transfers
could be obtained by prototyping them. These figures are
averages and not absolute since different numbers take
different times to crunch.

Strategic Planning

Planning these moves is just as important as making them. By
outlining them and studying them ahead of time, you can avoid
critical mistakes. If you buy HP3000/PC compatible software
(spreadsheets, graphics, word processing, 4GLs for prototyping,
etc.), most of your job is done. Because these applIcations can
easily use the same files, no translation/modification is
necessary. Feasibility testing is simple and straight-forward.

If the software is incompatible, however, your job has just
begun. Programs will be needed to manipulate the data into
usable formats for the PC and the HP3000. If you share your
plans with your end-users as well as management, you will
most probably find out ahead of time whether or not any
unforeseen obstacles exist.

Issues of Concern

There are some obvious areas that need attention before
offloading any applications permanently.

PC Purchasing and Maintenance Costs

Consider that a copy of each software package must be
purchased for every PC needing that application. Consider
also, that you may need to expand memory, disk space or I/O
boards to use the new application efficiently.

Oversized A~~lications

Some applications may be larger than the PC is designed for.
One of our customers built a PC spreadsheet so complicated
that it took over 5 hours to re-calculate (goal seeking). In
two hours, he converted the spreadsheet to run on the HP3000
where it took less than 50 minutes to compute during a busy
time frame.

Pitfalls of Offloading Applications to pes
0028-10

It's fine to tie up a PC during off hours, when it is not
needed. But, if this stretches into the day when an engineer
or manager needs the PC, you are encroaching on end-user
time. The moral: Don't offload extremely complex
applications/activities to PCs.

Learning Curve for Applications

If the end user will be utilizing the application, they will have
a learning curve. This will work fine if the application is used
only on PCs after that. If the user must constantly switch from
PC to HP3000 and back, it may be better off left on the
HP3000. This also goes for learning to interact in general with
the PC.

Productivity Improvements

Some productivity improvements are never realized because the
gains are imperceivable. This is usually the result of poor
planning and feasibility testing. The biggest problem involved
here is usually data control (who's got what, where).

Home-Grown Software

If your end-users like to create their own applications and
want to use company data in them, watch out! Most end-users
do not sufficiently test their programs and this could result in
contaminated data. If this data is then used to update
company data, the contamination spreads. Encourage high
standards and avoid contaminated data.

Duplication of Efforts. Systems and Results

Many times, without good communications, users may duplicate
the efforts of others sometimes creating the same systems
with differing means. Establish a good communication base and
encourage sharing of applications.

Equipment TWes and Compatibility

If no precautions have been taken, users may get incompatible
equipment and forego decisions concerning sharing and
communicating. Establish company guidelines to avoid this
possibility.

Software Compatibility

If the software packages on the different PCs are
incompatible, sharing data and ideas becomes difficult. The
same is true of software between the PCs and the HP3000. Any

Pitfalls of Oftloading Applications to PCs
0028-11

time a new upgrade is received, be sure it is installed on all
equipment, including operating systems.

Operatin~ Systems

The DOS operating system is barely adequate at best. It
requires excess typing and is filled with traps and holes. It
may do well to leave the PC to the tasks it does best. At
least, obtain a good menu facility to ease the end-user
burdens.

Data Duplication

With many users downloading data, there is a big risk of data
duplication. A timing problem could also occur. Consider the
scenario where one user downloads a set of data; another
user, not knowing this, does the same. Each does calculations
and manipulations to get final results for updating the HP3000
data. One reloads and updates the data on the HP3000, soon
followed b¥ the other. What is the integrity of these
updates? QuestIonable, at best.

Future Needs

Consider an application that is completely offloaded to a PC.
The old software on the HP3000 is laid to rest. Six months
later, the results of this activity are determined necessary to
another application on the HP3000. You must now reverse the
roles and upload data to the HP3000. Moral: Run your HP3000
applications until there are no more perceived needs for it for
at least one year.

Data Base Dependent Applications

Some applications depend on data in a data base to complete
certain tasks such as validation, inventory checks, etc. If this
data is static and rarely changes, it is easy to justify
offloading it. If the data changes regularly, however, your I/O
involved in the transfer may easily outweigh the benefits.
Graphics production and real-time budgeting are two activities
that readily come to mind to remain on the HP3000.

Summaty Data Bases

In every organization, there are certain key numbers that play
an important role in decision-making. These might include
inventory levels, revenues, cost of product, depreciation and/or
sales. These figures are often needed in a summary form to be
used in spreadsheets, graphics and/or word processing.

Pitfalls of Offioading Applications to pes
0028-12

If this data was researched and identified, it could become
standardized for the company. Further, it could be extracted,
calculated and deposited into a summary data base by a
standard job at standard time intervals. By having each
application use this data whenever possible, a large reduction
in processing can be achieved.

This 'summary' data base could then be reviewed periodically
to determine if any changes are needed. This accomJ?lishes two
things: 1. a reduction in processing and 2. a reductIon in the
need for constant access to production data by user activities.

Communications and File/Data Transfer

When you begin to use distributed processing with the HP3000
and PCs, a word about communications must be said. Since time
is of key importance, good communications are necessary to
facilitate efficient processing and timely results. There are
three basic types of connections available: direct or hardwired,
phone (with modems) and networked.

The direct connection is as fast as your HP3000 can
communicate (2400, 9600, or 19200 baud rate depending on the
CPU and port types). The quality depends on the type of
cable and distance from the CPU.

The phone connection is as fast as the CPU, but limited by
the modem speed. The quality depends on the modem and the
phone line type.

The network connection is the fastest of all. Speeds of up to
1 MByte are available now and speeds of up to 10 MByte are
promised in the near future. The quality depends on the
quantity of traffic and errors encountered during the transfer.
Of the three types of connections, this is the most sensible.

Don't skimp on the connections. After all, the communication
speed and quality are an integral part of the processing load
and can greatly limit timely throughput. Any good terminal
emulation software package will do for the interface. Be sure
you have options for al ternate protocols since they may be
needed for tricky transfers.

Myths About 'CPU Intensive' Applications

Over the years, many people have talked about system 'HOGS'
and their nature. Fingers have often pointed towards these
applications with anger, disgust and ridicule. Here, I will
dIspel some of these myths.

Pitfalls of Offloading Applications to PCs
0028-13

Spreadsheets

The spreadsheet began its life on a PC. It was a tool for
manipulating numbers quickly and displaying (or printing) them
in a desired format and order. Soon, the sJ?readsheet was
available on the mini, and now, even on maInframes. Many
people point to them as CPU hogs.

First, the only time this is true is when a re-calculation is
taking place. Since re-calculations are done only occasionally,
the overall CPU usage, while significant, is spread over a
period of minutes or hours. Much of this CPU activity is done
when the CPU may otherwise have not been busy.

Second, the quantity of calculations is solely dependent on the
size of the spreadsheet. By keeping spreadsheet size down and
combining tasks, this problem can be reduced.

Third, the quantity of work accomplished in comparison with
hand-made calculations is overwhelming. The HP3000 can do
more calculations in one minute than most people can do in an
hour. Such a versatile tool could not be replaced with 100
COBOL programs.

Graphics

Another victim of prejudice are graphics programs. Consider
the quantity of data that must be crunched to produce a set
of charts. Of course, to collect, prepare and compile the
data, the HP3000 must be used anyway. The PC cannot
accomplish this task alone. Since most of the overall CPU
time IS used up in these tasks, offloading the results to a PC
for visual or print output barely makes sense.

Production graphics require a mini, since the PC is incapable
of crunching tbis much data in a reasonable amount of time.
Since this type of graphing is necessary to make meaningful
decisions in business, why wait for the PC to finish?

Word Processing

Another perceived culprit of excess CPU theft is word
processing. The only way this could be true would be by
typesetting documents regularly. If the text is not
automatically re-formatted, the word processor takes up no
more resources than any text editor currently running on the
HP3000.

If, indeed, documents are typeset on the HP3000 as a part of

Pitfalls of Offioading Applications to PCs
0028-14

production, chances are that this is the best place to continue
to perform these tasks. It becomes especially so when form
letters are being produced with informatIon from a data base.
This high quantity output could not be accomplished on a PC in
a timely manner.

Centralized word processing is still in demand and only
recently several software packages became available on minis.
This is fositive proof that some companies still want to keep
tight contro over text production.

Which Ones Go?

According to a 1987 survey made by Datamation, planned PC
purchases were up three percent and planned minI purchases
were down thirteen percent compared to 1986. It also stated
that users are using their pes an average of 5.6 hours a day.
This indicates a trend towards new distributed applications on
Pcs.

We can't simply ignore these machines. They must be used
more to aid in data processing. Let's look at what activities
are best suited for each machine.

PC Oriented Activities

what-if games

project budgeting

ad hoc letters

desk top publishing

cost justification studies

proposal development

presentation graphics

to pre-test decisions based on
various possible scenarios and
outcomes

to createIchange the budget
for a project

that don't rely on data from
the HP3000

for presentations, literature,
documents

discover economics of
cost/benefits

proposals that don't affect
others

for ad-hoc presentations

Pitfalls of Offioading Applications to pes
0028-15

personal budgeting for a small department or a
person

In general, anything that does not directly affect the whole
company or whole departments. Any application that does not
require constant access to the HP3000 for data, files, or other
resources. Less complex financial spreadsheets, graphics,
word-I?rocessing or statistical analysis. Stand-alone type
applicatIOns. Data collection and verifying applications.

HP3000 Oriented Activities

production graphics

production letters

whole company/ division
dependent

multi-user dependent

real-time budgeting/allocation

data base dependent

production spreading

information dependent
activities

sensitive/ confidential info.

high-precision calculations

financials & extrapolations

month-end, administrative or
management charts

form letters, personalized mass
production, statements of
accounts, etc.

information critical to or
directly affecting them

data needing sharing, memo
distribution

same-day re-structuring of
budgets, allocations of
personnel/resources

requires access to kinetic
on-line information

month-end financials,
statements, special financial
reports, goal seeking

~epends ~n changing
InformatIon

information that needs
guarding from potential leaks

requiring at least sixteen
significant digits

production financials and
reports

Pitfalls of Offioading Applications to PCs
0028-16

In general, applications/activities that are too complex, data
dependent, sensitive or bulky to be accomplished on a PC. Any
application that is multi-user and/or multi-tasking. Activities
tnat require vast information resources, gathering, compiling
and/or sorting. Activities that need to be shared among a
group of peo.ple for the purpose of splitting responsibilities and
later re-combmatlon.

So, what does it all add up to?

In this paper, we discussed the pros and cons of offloading
HP3000 applications to PCs and reasons not to offload an
application or activity. Suggestions were given concerning
decision issues, what to offload and how to decide what to
offload. Additionally, we dispelled some of the myths about
CPU intensive applications and their proper place among
software on the HP3000. Finally, we covered some of the
related issues concerning offloading and gave ideas about
avoiding pitfalls when deciding to offload an activity.

In conclusion, let me state that the PC can play an important
role in your data processing strategy if you take the time to
properly plan for it. Do not just offload an application before
considering the implications involved. How you accomplish this
migration is as important as the resulting configuration and the
affect it has on your company may cause you trouble if you
don't look ahead.

Keeping all these issues in mind, you may not ever hit a snag,
or you may discover that the best laid plans weren't
conSIderate enough. In any case, you have the choice of
acting intelligently or blindly following the HP rhetoric. You
may win, but it could be at a cost higher than you wanted to
pay.

Pitfalls of Offloading Applications to PCs
0028-17

4.

2.

3.

9.

13.

10.

7.

5.

6.

12.

8.

11.

Bibliography

1. Ralph E. CarJyle, "Midrmme Shootout: Mini/Micro Survey"
Datamation, November 15; 1987, 60-76.

Robert Green, David q~~ft~d Mike Shumco, "Squeezing
the last bit out of your 11.r..1UUU," Interact 8:4 (April
1988):68-80.

M. E. Kaba}j "Office Automation - ~ppropriate
Technology, Interact 8:3 (March 1988):9():91.

Rozan S. Bro~ "The PC to HP3000 Connection," Interact
8:3 (March 1988):99-107.

Karen Heater, "Networking the Mini and the Micro,"
Interact 8:3 (March 1988):55-61.

M. E. Kabat' "Office Automation - Data Interconversion,"
Interact 7:1 (November 1987):106-107.

Gary Thomp.son, "Electronic Publishing with the HP3000,"
Interact 7:8 (August 1987):50-57.

Bruce Edwards, "Office Automation - PCs in the Office,"
Interact 7:1 (January 1987):54-55.

David R. Lee and Del Jones, "MIS - ApPlications
DeveloRment on PCs and LANs Part f: New Design
Tools,"lnteract 7:1 (January 1987):60-63.

David R. Lee and Del Jones, "MIS - Aj)plications
Development on PCs and LANs Part Z:Four new-user
support tools," Interact 7:2 (February 1987):56-62.

David R. Lee and Del Jones, "MIS - New Techniques in
Applications Development on PCs and LANs Part 3: Living
in a nonsequential world: Su~rvisory Programming on
PCs," Interact 7:3 (March 19~I):63-64.

Tomorrows Management Generation Roundtable Staff,
Datamation, September 15, 1987, 126-138.

Rich McCah~ Jerry Johnson and Sandi Fruehling, "Office
Automation: Man~g Your PC-based Word Processing
Documents," Interex IJcls Vegas Conference Proceedings,
1987.

14.

15.

Jean Pierre Martin, "Business Graphics: Micro vs. HP3000,"
Ibid.

Steven CarneBie, Richard Cor~~~~Robert Mattson,
"Production Graphics on the HP3000 - It Can and Should
Be Done," Ibid.

Pitfalls of Omoati1~plications to PCs

Decision Support SY8tem

Parvin Rahnavard
Integrated Decision Ilevation And acience

6809 Wisconsin Ave
Chevy Chase, Maryland 20815

1. Introduction

A Decision Support System(DSS) must be capable of
presentinq an integrated representation of diverse
types of knowledqe and manipulation of that
knowledge. This depends on the effective
management of two types of knowledge: 1.
Descriptive knowledge (i.e. , data, information) with
which MIS is concerned, and 2. Procedural
knowledge, also called a model, which specifies an
algorithm that tells us how to derive new knowledge
in the sense of facts, expectations, or beliefs.
PopUlarity of personal computers and spreadsheets
have proven that users will build and use models
given the right tools. In addition, increased
availability of relational database systems, 4th
GL, and AI languages significantly facilitate user
access to data resources. Senior organizational
management should take advantage of these facts and
technoloqy to accommodate the organization's
strategic planning in a timely fashion rather than
relying on the outdated file structures and
programming languages.

This paper discusses some of the problems that MIS
is confronted with and recommendations for
short-term and long-term approaches to integrate
information into a cohesive framework with the
ultimate outcome of becoming an integrated
corporate knOWledge across time and people.

Decision Support System 0030-1

the Evolution of Information2. Barriers to
Management

Information management has been forced to grow in
order to accommodate the increased variety of
automated tasks for the operational control and the
increased demands for information by varied users
within the organization. These two trends have
brought to the forefront a growing need for data
control and management.

2.1 Data Control

It has always been assumed that the system
which used the data automatically owned the
data. Thus, if the same data resides in
different systems with name, editing, and
validation rules that could vary within the
systems. Then, when a user wanted to perform
data analysis and information planning through
the use of the data that went across system
boundaries, the extracted information would
contain data inconsistencies that would need
to be resolved. This has led to loss of
credibility of MIS departments.

2.2 Data Management

When systems are usually developed without
concern for overall requirements, it is
difficult to share data for the organization's
mUltiple needs. Thus, a lot. of time and
effort is spent in creating new files and
programs for existing data. This results in
management's lack of ability to obtain the
required information for making timely and
knowledgeable decisions. Figure 1 shows such
an environment:

Decision Support System 0030-2

Global Planning

Low planning
Control

Operational Systems

Figure 1

To overcome the above mentioned problems, there is a
need for an organizational decision support system
which would satisfy the need for data control and
data management in the corporate environment.

3. Oecision Support System (OSS)

For the purposes of this paper a summary of the
objectives and basics of the nss components and its
implementation in Information Management environment
is discussed.

3.1 Objectives and Goals

Improve and increase management's access to
data.
Improve manager's ability to more quickly
respond to ever changing organizational
information.
Reduce the level of effort for accessing
information.
Reduce the lead time for acquiring
information.
Integrating capabilities such as spreadsheets,
graphics, and mathematical models which can
predict, simulate, or optimize the consequences
of decision.

Decision Support System 0030-3

3.2 Fundamentals of DSS

3.2.1 Dictionary

The primary control element in a information
management services is the information
dictionary. It has been estimated that the
Federal Government can save $150 million over
the next decade by adopting a standard
dictionary system. The dictionary contains
descriptions of, and relationships with other
information resources. The dictionary is
instrumental in the planning, administration
and operation of an organization's activity.
The concept of the dictionary has been used in
the following major areas within the DSS:

a. Data Dictionary

The data dictionary is the logical place for
sharing and centralizing the control of data.
This part is the "active" dictionary, which
means every request for data passes through
the dictionary which is the arbiter of how the
data is cataloged, where the data is located,
the value transformation, edit validation,
presentation characteristics, and so on. DSS
would then direct the file handler, and the
operating system to obtain the data items and
apply the various operations on the item
before final presentation to the user.

b. Reports, View tables, Models Dictionary

This dictionary is a logical place for
defining, sharing and centralizing control of
reports, view tables and models.

Reports, view tables and models consist of a
general structure and its associated data.
This dictionary is vitally concerned with how
to orchestrate data in order to perform any
kind of manipulation which turns into defining
dynamic relationships.

Decision Support System 0030-4

c. Security Dictionary

In addition to the built-in security that the
relational database contains as a global
security, it may be necessary to create a
sec~rity dictionary based on the
organizational structure. Fiqure 2 shows an
example of the security levels that can be
incorporated into the dictionary.

USER

~
lulOOlllto)

NETWORK

~
_ Jog on tel

MACHINE

it
__

APPLICATION
SYSTEM

~
bmexecuW

PROGRAMI
UTIUTY

'-V faan acoeal

tJ~~'tr.
'if

_ obtUI1

DATA ITEM

~ _ObtUI1

DATA VALUE

Decision Support System 0030-5

3.3 System structure

This is a customized on-line command
processing system which manipulates data in
response to functionality features implemented
in the system. These functionalities are
based on the nature of the organization's
decision making applications.

The system design is based on a hierarchy of
reducing the most complex functions to simple
functions resulting in a series of single
modules residing in program/module database.
There are two types of single modules:
directional and functional. Directional
modules determines the availability of the
other modules within the system hierarchy.
Functional modules are responsible for
processing input data to create output data.
Since modules have been defined in the
program/module database, automatic
documentation would be generated initially
and/or anytime there is a modification to the
system.

This design
capability
integration
needs.

provides an open-ended dynamic
for implementation and/or

of new features based on user

This eliminates managements reliance on
switching among separate software tools. Such
an approach will reflect the nature of the
business organization, and exhibit much of the
flexibility inherent in a person's mental
knOWledge.

Decision Support System 0030-6

4. Implementation

Based on the organization's strategic plan, Senior
management may decide on two different approaches:
1. Implementation of short-term and long-term plan;
or 2. Implementation of long-term plan only. If
'the organization decides on selecting plan one,
then there needs to be a parallel operation to
incorporate both.

4.1 Short term

Refer to Fiqure 3. Since the existing
structure is based on the application system
owning the database, retrieval of the
information can only be achieved through a
vertical or one way access, restricting
complete use of the system capabilities. Such
will result in quicker access to information,
however, lack of flexibility across databases.

ecision Support
System

DICTIONARY

Rgure 3

Decision support System 0030-7

Global Planning

Low planning
Control

OperatIonal Systems

4 •2 Lonq term

This step requires a total redesiqn and
restructurinq of the information at the
corporate level rather than at the operational
level. The redesiqn and restructuring would
take place within relational data structure
environment. The dictionary would be the sole
communicator with the data area and the
operational and planning systems. All systems
should be designed independent of the data
structure. Fiqure 4 shows such environment.

DICTIONARY

DATA AREA

Strategic Planning

Tactical Planning
Operation Control

Rgure 4

Decision Support System 0030-8

Understanding Migration

David Elward
Taurus Software, Inc.
770 Welch Road Suite 3A
Palo Alto, CA 94304

Introduction

If you're considering purchasing an HP3000 Series 900 machine, then there's a
very good chance you will be "migrating" once it arrives. By migrating, I mean
moving your existing programs and data files from your "classic HP3000" to
your new "Spectrum Machine".

Migration has never been much of an issue within the Hewlett-Packard world,
because up until now, all HP3000's have had the same hardware instruction
set. This means that compiled programs will run on any HP3000, with the only
difference being performance.

As you probably know by now, the Series 900 machines have a completely
different instruction set than classic HP3000's. This instruction set has fewer
instructions than traditional computer instruction sets and is based up RISC
(Reduced Instruction Set Computer) technology. Hewlett-Packard calls this
technology Hewlett-Packard Precision Architecture (HPPA). Within this paper,
the terms HPPA machine, Spectrum machine, Series 900 machine, and MPE
XL machine will all be used interchangeably to indicate HP's new computer.
The term "classic HP3000" will be used to indicate older machines that run
MPEN.

When you begin learning about migrating and the new HPPA machines, you
soon realize that there is an abundance of terms you've never heard before.
Terms like "native mode", "mapped files", "Sysgen", and "MPE XL" are some of
them. This presentation will focus on what these terms mean to you and your
migration. Specific topics that will be discussed are as follows:

1. What is migration?
2. What is the difference between Compatibility Mode and Native Mode?
3. How do I prepare for migration?
4. What are some of the new MPE XL features and commands?
5. What are some of the new MPE XL utility functions?

Understanding Migration 32-1

What Is Migration?

Migration is simply moving programs and files which run on MPE/V based
machines to HPPA based machines. The question then is: "Why is any

. migration effort needed at all?"

When the HP3000 was first introduced, it had an operating system called MPE,
meaning Multi Programming Executive. Subsequent revisions of MPE were
released, and most of you are probably now running the MPE VIE operating
system. On the HP3000 Series 900 machines, the operating system is called
MPE XL. The operating system on all classic HP3000's is written in a language
specifically designed for the HP3000 hardware called SPL, Systems
Programming Language. For the most part, MPE XL is a complete rewrite of
MPEN in a language called PascaVXL. PascaVXL is standard Pascal plus a
variety of programming extensions added by Hewlett-Packard.

When MPE XL was designed, paramount importance was given to the issue of
compatibility. With few exceptions, MPE XL is, and was designed to be,
completely compatible with all MPEN software. To make all MPEN software
run on MPE XL, Hewlett-Packard had a big problem because all MPEN
programs contained instructions for the old hardware which won't run on the
new machines. The solution HP chose, was to write software that would
emulate the classic HP3000 hardware and to integrate this emulator deep
within MPE XL. By doing this, Hewlett-Packard has made the differences
between MPEN and MPE XL almost completely invisible.

Understanding Migration 32-2

Compatibility Mode versus Natlye Mode

"Compatibility Mode" (CM) is the term HP has chosen to mean running a
. program that contains instructions for the classic HP3000. When a compatibility
mode program runs on MPE XL, the instructions are actually being emulated by
the emulation software.

Almost all, if not all, of your programs will execute in compatibility mode with
little or no effort on your part. Compatibility mode programs are typically created
on an MPEN machine, and then moved with : STORE/: RESTORE, or :DSCOPY to
an MPE XL machine. You can create a compatibility mode program by running
an MPEN compiler in compatibility mode on a MPE XL machine. Running an
MPEN compiler in compatibility mode generates object code with classic
HP3000 instructions. This means they can run on the classic HP3000 using its
instruction set or in compatibility mode on the HPPA machine emulating the
classic HP3000 instruction set.

"Native Mode" (NM) is the term HP has chosen to mean the running of a
program that executes HPPA instructions. A native mode program .m.us1 be
created by a native mode compiler on MPE XL, and will nm run on MPEN.

Native mode programs execute much faster than compatibility mode programs
because the process of emulation takes time. On the average, a native mode
program will execute about 12 times faster than its compatibility mode
counterpart. Currently. there are four native mode compilers available on
MPE XL. They are: PascallXL, FORTRAN 771XL, COBOL/II/XL, and C/XL.

You are probably not surprized that HP has created a middle ground. The OCT
(Object Code Translator) produces programs that can be executed in native
mode and on the classic HP3000 with out having to recompile.

What the object code translator does is translate the classic HP3000
instructions contained in executable code (PROG or SL files) to native mode
instructions. The native mode instructions are then added to the program or SL
file, leaving the classic HP3000 instructions in place.

There are two reasons for leaving the old instructions in place. One reason is
because the old code is used by the translated instructions, and the other is so
that the translated file may be moved back to MPEN and still work. It will still
work because MPEN ignores the HPPA instructions within the file. Translated
programs tend to run about 4 times faster than untranslated programs.

Understanding Migration 32-3

Switching Modes

Sometimes it is necessary to have a program run in both native mode and
compatibility mode. For example, a native mode COBOL program needs to call

. an SPL procedure. Since there is no native mode SPL compiler, it must remain
in compatibility mode. Hewlett-Packard has provided a mechanism for doing
this called the "Switch Subsystem".

The Switch Subsystem is a set of procedures that enable a program to call a
procedure that runs in the opposite mode than the program is currently running
in. In order to understand how the switch stub works, we need to understand
the internal data structures.

On MPEN, the only data structure that is created when the program is executed
is the program's stack. (See Figure 1) However on MPE XL three different data
structures are created: the Compatibility Mode Stack (Same format as MPEN),
the Native Mode Stack, and the Native Mode Heap. (See Figure 2) .

Environment for MpEN program

+--------------+
I PCBX I

DL +==============+
I DB Minus I

DB +--------------+
I DB Plus +
+--------------+
I I

Q +--------------+
I Q plus I

S +--------------+
I I

Z +--------------+
Program Stack

Figure 1.

Understanding Migration 32-4

Environment for MpE XL program

DL

DB

Q

S

oZ

+--------------+
I PCBX I
+============+
I DB Minus I
+--------------+
I DB Plus +
+--------------+
I I
+--------------+
I Q plus I
+--------------+
I I
+--------------+
Compatibility
Mode Stack

+--------------+
I I
I Global I
I and I
I Local I
I Variables I
I I
I I
I--------------ISP
I I
I I
I I
+--------------+
Native Mode
Stack

Figure 2.

+---------------+
I 1
I Dynamic I
I Storage I
I I
I I
I I
I 1
1

0

I
I I
1 I
I I
+---------------+
Native Mode
Heap

When a program is executing in eM, it has access only to the Compatibility
Mode stack. When a program is executing in NM, it has access only to the
Native Mode Stack and Heap. Because of this, a "switch stub" is required to
change modes. The switch stub is responsible for calling a switch procedure
with the correct parameters to direct it to copy the procedure parameters from
the current stack to the stack for the opposite mode. An easy fill-in-the-blank
utility program is supplied with MPE XL to help the programmer write switch
stubs.

Which is better for my program - eM or NM?

When it comes time for you to migrate, yOU'll be faced with many decisions, not
the least of which is whether your programs will run in native mode or
compatibility mode. The advantage of native mode is that your programs will
run much faster. The advantage of compatibility mode is that you can move
your programs from MPEN to MPE XL and run them all within a matter of
minutes.

In the long run, an attempt should be made to get as many programs as
possible to run in native mode. Pascal and COBOUII programs should not
present much of a problem to migrate to a native mode compiler, and
FORTRAN 77 programs should migrate to native mode easily but watch out for
the IEEE floating point.

Relatively Easy programs to Migrate to Native Mode:

1. Pascal programs. Pascal/XL has many new features over PascalN,
however you should be careful when using them because they will not
work on MPEN.

Understanding Migration 32-5

2. CoboVIl programs. Cobol 66 programs will need to be changed to
CoboVII, before they can be compiled in native mode.

Potentially Pifficylt Programs to Migrate to Native Mode:

1. Fortran Programs. All Fortran 66 programs will have to be changed to
Fortran 77 before they can be compiled in native mode. Floating point
numbers are stored differently internally on HPPA machines than on
classic HP3000's, so any floating point data that has been written to files
or data bases must be changed to IEEE format using an intrinsic supplied
with MPEXL.

DifficuU or Impossible Programs to Migrate to Native Mode:

1. SPL Programs. There is no native mode SPL compiler available from
Hewlett-Packard, although there is one called SPLASH available from a
third party. SPL programs must run in compatibility mode or must be
rewritten in another language.

2. Basic Programs. Basic/3000 will never be available in native mode on
MPE XL, however HP Business Basic will be.

3. Programs that use privileged mode (PM). Many privileged mode
programs will run correctly in CM, and many will not. Because the
MPE XL .operating system is completely different internally than MPEN,
there is very little chance that privileged mode programs can be run in
native mode without major changes.

Native Mode Considerations

In general, there are two big differences between the behavior of compatibility
mode programs and native mode programs. One is data alignment, and the
other is floating point. Compilers like to align data on word boundaries; the
trouble is that classic HP3000's have 16 bit words, and Series 900 machines
have 32 bit words. This will cause the data to be stored differently in
compatibility mode programs than in native mode programs. This could cause
problems for programs that use existing data files, or programs that call external
procedures expecting the data in a different format. Hewlett-Packard has
supplied a compiler option for the native mode compilers to direct the data to be
aligned the exact same way as it would be using a compatibility mode compiler.

Classic HP3000's use their own format for storing and manipulating floating
point (Real) numbers, and HPPA machines use the IEEE Standard for storing
and manipulating floating point numbers.

Understanding Migration 32-6

Single precision HP3000 floating point numbers have a precision of 6.9 digits
and a range of ± 1.2E77 to ± 8.6E-78. Single precision IEEE floating point
numbers have a precision of 7.2 digits and a range of ± 3.4E38 to ± 1.4E-45.

Double precision HP3000 floating point numbers have a precision 16.5 digits,
and the same range as single precision numbers. Double precision IEEE
floating point numbers have a precision of 15.9 digits and a range of ± 1.8E308
to ±4.9E-324.

This format difference will probably have a negligible affect on mathematic
results, however it is a problem for floating point data stored within files. Classic
HP3000 floating point numbers stored within files, will have to be converted to
the IEEE format using the HPFPCONVERT intrinsic if you wish to access them in
native mode.

Understanding Migration 32-7

preparing for your Migration

HP has provided a number of facilities to allow you to prepare for you migration
prior to your HPPA machine arriving. One of the utility programs which runs on
the classic HP3000 is called RTM (Run Time Monitor).

The RTM is a utility intended to help you identify areas within your MPEN
programs that could cause a problem when ported to MPE XL. Because of
fundamental differences between MPEN and MPE XL, there are some things
that may work on MPEN that will fail on MPE XL. The RTM is intended to help
you detect these things by logging calls to MPEN intrinsics that could be a
potential problem on MPE XL.

Logging is controlled using a program called RTMSYS •PUB. SYS and the logging
results may be printed using a program called RTMREP •PUB. SYS. Typically, the
user will monitor an application being considered for migration for a number of
days. Then the RTM reports will printed and any potential problems will be
investigated. The advantage of the RTM is that it runs on MPEN, and problems
may corrected long before migration actually begins.

Another utility which that can be run on the classic HP3000 to help your prepare
for migration is the OCA (Object Code Analyzer). The OCA is a utility program
that scans program or SL files for potential MPE XL problems.

It is intended to perform the same function as the RTM, however its method of
operation is different. The RTM logs intrinsic calls when they actually happen;
the OCA scans a program or SL file looking for intrinsic calls. The OCA has the
advantage of being able to obtain the results immediately without waiting for
days of logging. Its disadvantage is that it is may not be as accurate because it
cannot always tell what parameters an intrinsic is being called with. Like the
RTM, the eCA runs on MPEN, and may be used before migration actually
begins.

Understanding Migration 32-8

MpE XL New Features

A number of new features have been added to MPE XL machines. The features
fall into three areas: intrinsics, mapped files, and command interpreter
changes.

Intansies

As you may have guessed, new intrinsics have been added to MPE XL. Many
of the new intrinsics have to do with switching between NM and CM. Others are
provided to access features of the new command interpreter, including a new
HPCICOMMAND intrinsic that can execute any MPE XL command including User
Defined Commands (UDCs). Another new intrinsic is HPFOPEN that opens a file
just as the FOPEN intrinsic does, but HPFOPEN is implemented with a couple of
new features and is designed to be easily expanded.

Mapped Files

Using the HPFOPEN intrinsic, a program may now open a file "mapped". When a
file is opened as a mapped file, a pointer is returned to the calling program.
This pointer may be used to access the file directly without going through the file
system. The mapped file may be treated exactly as if it was a data array within
the program's stack. The advantage of mapped files is a tremendous
performance improvement because the file system overhead is virtually
eliminated.

MPE XL Command Interpreter

The MPE XL Command Interpreter has almost all of the commands that the
MPEN Command Interpreter has. The commands that have been deleted were
deleted because they have no place within MPE XL. The deleted commands
include CACHECONTROL, DATA, FULLBACKUP, GIVE, LISTVS, PARTBACKUP,
PTAPE, and VINIT.

Some of the existing MPEN commands have been modified or enhanced on
MPE XL. Some of these commands are: IF has been greatly enhanced, LISTF
has had some new options added, LISTACCT, LISTGROUP, LISTUSER have
been changed to give output similar to LISTDIR5, REDO has been enhanced,
RUN has had some options added.

Several new commands have been added to MPE XL that give dramatic
improvement over MPEN. The SETVAR, SHOWVAR, DELETEVAR, and INPUT
commands have been added to manipulate variables. Variables are similar to
JCWs except that they may contain string and boolean values in addition to
numeric values. About 60 variables are predefined within MPE XL and they
contain a variety of information about the users environment, such as the CI

Understanding Migration 32-9

prompt. user's jobname. user. group and account among others.

A redo stack has been added that saves that last 20 or more commands. A DO
command that does any command within the redo stack has been added. and a
LISTREDO command that displays the redo stack has also been added.

A fast copy command has been added that copies files 10-20 times faster than
FCOPY. A PRINT command has been added to display the contents of a file. or
prints the file upon a line printer without having to use an editor.

Perhaps the greatest improvement is the addition of command files. Command
files are similar to UDCs except that they may only contain one group of
commands. and they do not need to cataloged. Whenever a command is
entered that MPE XL does not recognize. it is assumed to be a command file or

. program name. and MPE XL searches the user's group. PUB group. and
PUB.SYS group file a program file or command file with the same name.

SYSGEN

There is no SYSDUMP program on MPE XL to configure your system.
SYSDUMP has been replaced by a program called SYSGEN to configure your
system and make cold load tapes. Backup is performed using STORE.
SYSGEN has a much different approach than SYSDUMP; it is command
oriented rather than question oriented. This approach is much more direct than
SYSDUMP's.

In addition to SYSGEN. there is- a program NMCONFIG that is· used to configure
your LAN (Local Area Network). DTC (Distributed Terminal Controllers). and
terminals connected to DTC's. Since all terminals on MPE XL except the
console must go through a DTC. the NMCONFIG program must be used to
configure all of your terminals.

A program called VOLUTIL replaces VINIT and is used to configure your disc
drives.

plRMIG

If you wish to replace one of your classic HP3000's with a Series 900 machine.
you will want to move your entire accounting structure along with all of your files
to the new machine. Hewlett-Packard has supplied a program to assist you in
doing this called DIRMIG. DIRMIG runs on your MPEN system and creates a
tape containing accounting and configuration information to be moved to
MPE XL.

Understanding Migration 32-10

Many of the system utility programs have been either removed or replaced on
MPE XL. The following list summarizes the major changes:

1. LISTDIRS has been removed. Its functionality has been moved to
standard MPE XL commands. LISTF options 3, and is similar to the
LISTDIR5 LISTF command. LISTF option 4 is similar to the LISTDIR5
LISTSEC command. The LISTUSER, LISTGROUP, and LISTACCT
commands now have output similar to LISTDIRS, and the octal dump
mode has been eliminated.

2. The FREES program has been replaced with the DISCFREE program.
DISCFREE performs the same function as FREES, but the output format is
different.

3. SPOOK has been modified internally, but no differences are visible to the
user.

4. The LISTEQS program has been eliminated. It no longer has a use in
MPEN or MPE XL because of the LISTEQ and LISTFTEMP commands.

. 5. DEBUG has been completely rewritten and does not bear any any
resemblance to the MPEN debugger. The MPE XL debugger is many
times more powerful and makes extensive use of windows to display
information.

Understanding Migration 32-11

Summary

The first step towards a successful migration is education. MPE XL contains
many new things that at first can be overwhelming. What is comforting is that
when you begin to use MPE XL, you don't even need to know you're using it.
All of the commands you are likely to use perform just the same, and programs
moved to MPE XL in compatibility mode just run. Only when you are ready to
maximize the benefits of your new machine do you need to have a good
understanding of the migration process.

Understanding Migration 32-12

Dodging Bullets in Your DP Shop

Victoria Shoemaker
Taurus Software, Inc.

770 Welch Road Suite 3A
Palo Alto, CA 94304

Introduction

At last count, there were exactly 3,572,614 HP3000
programs that mishandled error conditions. Do any of
your coworker's programs write records to already full
data sets without giving anyone a clue? How many of
you have received phone calls at obscure hours by some
poor user wondering exactly what is going on in this
$STDLIST? What percentage of operators do you think
know how to read an oct~l stack dump and then fix the
problem? The cost of recovering from a program that
kept on running when it should have stopped because
something was wrong can be staggering.

Error handling within a computer programs and JCL
means recognizing error conditions and taking
appropriate action. There are generally three courses
of action that can be taken when an error is detected:

A. Recover from the error,
B. Print an error message and abort the program,
C. Ignore the error entirely.

All too often programs take Action C. This can lead
to countless headaches and nightmares for users and
programmers alike, and is rarely the best way to
handle an error condition.

Action B, print an error message and abort is an
acceptable method of handling errors; however, it is
often used as a copout by lazy programmers.
Unfortunately for most of us, this is the method used
by MPE when it encounters an error: Print a system
failure message on the console, and die.

Action A, recover from the error, is often the best
method of error handling, but it is also the most
difficult and costliest one to implement. It would be
unreasonable to always attempt to recover from error
conditions. If your program can't open the data base,
it's tough to recover, so print an error message and

Dodging Bullets In Your DP Shop 33-1

abort. Batch programs should abort more often than
online programs. Often an online program should print
an error message to the user and let the user decide
what to do next. You wouldn't want your editor to
abort if you tried to Text in a file that you
misspelled.

The key to good error handling is to detect the error
as soon as it occurs. Whenever you wait, assuming any
errors will get detected down the road, you run the
risk not being able to figure out the cause of the
problem or an even worse fate of never discovering
there was a problem until it's too late.

As an example: What if a program that writes to a
database, doesn't check to see if the DBPUT worked?
(As I've seen before) If it's an online program, the
user may simply keep entering data for hours without
knowing that all of her bits are going into the great
bit bucket in the sky. If it's a batch program, then
maybe hundreds of honest hard-working employees
mysteriously won't get paychecks on Friday.

Dodging Bullets In Your DP Shop 33-2

"Error handling within programs

The first step to handling an error condition is
detecting it. The second step is for the program to
decide what to do with it: recover, abort, or ignore.

Detecting errors

Processing
Errors

When to Abort

For example: If your program is reading down a chain
in an Image detail data set when the DBGET fails, what
should the program do? Your program should probably
be able to recover if the error is an end-of-chain
error, but should probably abort with an error message
if it's any other Image error. Your program should
check for an error condition after every system
procedure call. It cannot be stressed enough, how
important it is to check for an error condition after
EVERY system procedure call. ReL~mber, the sooner the
error is detected, the better off you and everyone
else will be.

Whenever a program makes a system procedure or
intrinsic call, the following steps should be taken
after checking for an error to ensure proper error
handling:

If no error occurred, then continue processing

If an error occurred:

1. Retrieve error number

2. Determine if error is recoverable.

If recoverable, recover.

If error is not recoverable:

1. Retrieve and print error message based on
error number.

2. Abort the program, if appropriate.

When should the program abort and when should the
program simply print an error message and then
continue processing?

1. All severe errors should abort the program.

2. Errors within a batch program should abort.

Dodging Bullets In Your DP Shop 33-3

3. Errors within an online program should print a
message and continue if possible.

4. Programs that may run batch or online SHOULD CHECK
whether they are being in batch, or online using
either the WHO or FRELATE intrinsic and abort or
continue accordingly. This is where many programs
have problems.

Dodging Bullets In Your DP Shop 33-4

File System Errors

File system errors should be detected by checking the
condition code after every file system intrinsic call.
The condition code is part of the hardware status word
and is set by every file system intrinsic. The
condition code can have one of three different values:

CCE - Condition Code Equal. This means that the
intrinsic call was successful.

CCG - Condition Code Greater than. This means that a
warning condition occurred, and that the intrinsic
call mayor may not have worked, depending upon which
intrinsic was called. Check the intrinsics manual.

CCL - Condition Code Less than. This means that an
error condition occurred and that the intrinsic
failed.

Checking
Condition Code
in SPL

In SPL, check the condition code by simply using a
relational operator with no expression. The condition
code must be checked immediately after the intrinsic
call. In addition, be careful not to assign the
return value of an intrinsic call into an indexed
array because this will destroy the condition code
returned by the intrinsic call.

Some examples:

LEN := FREAD(FNUM, BUF, BUFLEN);
IF =THEN

PROCESS'RECORD
ELSE

IF> THEN «END OF FILE REACHED »
END'OF'FILE

ELSE «SOME OTHER ERROR »
FILE'SYSTEM'ERROR;

FNUM := FOPEN(FILENAME, FOPTS, AOPTS);
IF < THEN

FILE'OPEN'ERROR;
«WE DO NOT NEED TO CHECK CCO, BECAUSE

FOPEN DOESN'T RETURN IT »

Do NOT do the following:

FILENUMBER(N) := FOPEN(FNAME, 3);

Dodging Bullets In Your DP Shop 33-5

Checking
Condition Code
in PASCAL

Checking
Condition Code
in COBOL

The array index N, will destroy the condition code.

BUFLENGTH := FREAD(FILENUM, BUFFER, LEN);
NUMREADS := NUMREADS + 1;
IF <> THEN «READ FAILED »

HANDLEREADERROR;

This will not work, the statement after the FREAD
will destroy the condition code.

In Pascal the condition code may be checked by using
the CCODE function. The CCODE function works as if it
were a local variable to the current procedure that is
set each time an intrinsic is called. CCODE may be
checked any time before the next intrinsic call within
the same procedure. Unlike SPL, the condition code
does not need to be checked immediately after the
intrinsic call, and you may assign the result of and
intrinsic call into an array. The CCODE function
returns the following values: 0, for CCG, 1, for CCL,
and 2 for CCE. It often helps to use a nconstn
statement at the beginning of your program defining
these three values. Example:

LEN := FREAD(FNUM, BUF, BUFLEN);
IF CCODE = 2 THEN (* READ WAS OK *)

PROCESS_RECORD
ELSE IF CCODE = 0 THEN

DO_END_OF_FILE
ELSE (* CCODE MUST BE 1 *)

FILE_SYSTEM_ERROR;

You can only check condition codes in COBOL II. You
must define the name of your condition code variable
within the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION. The COBOL condition code is similar to the
SPL condition code in that you must check it
immediately after the intrinsic call and may not
assign the result of the intrinsic call to an indexed
variable. The condition code variable may only be
compared with zero. Condition code equal to zero
means CCE, less than zero CCL, and greater than zero
CCG. Example:

ENVIRONMENT DIVISION.
SPECIAL-NAMES.

CONDmON-CODE IS CONDCODE.

Dodging Bullets In Your DP Shop 33-6

PROCEDURE DIVISION.

CALL INTRINSIC "FREAD"
BUFFERLEN

USING FNUM, BUFFER,

Printing Error
Messages

FCHECK Intrinsic

GIVING BYTESREAD.
IF CONDCODE > 0 THEN

PERFORM END-OF-FILE
ELSE

IF CONDCODE < 0 THEN
PERFORM HANDLE-FILE-ERROR

ELSE
PERFORM PROCESS-RECORD.

Whenever your program detects a file system error
that it does not know how to recover from, it should
print an error message and stop. There are several
intrinsics that facilitate this.

The FCHECK intrinsic is used to request the file
system error that has most recently occurred. The
first two parameters to FCHECK are:

the file number of the file on which the error
occurred
the error number to be returned to the program.

If an error occurred during an FOPEN intrinsic, a
value of zero should be passed to FCHECK as the file
number. Be careful when using FCHECK because there is
an unfortunate ambiguity with file system error
numbers. A file system error of zero can mean one of
three things occurred:

The end of file was reached.

There was no file system error.

In rare circumstances a file system error occurred,
but the system did not set the internal error
number for FCHECK to retrieve.

Other intrinsics The FERRMSG intrinsic is used to translate the file
system error number into an error message. This
message is usually more helpful than simply printing
the file system error number.

PRINTFILEINFO prints a file tombstone and is another
intrinsic that is often called when a file system
error is detected. EDITOR, FCOPY and other programs
call PRINTFILEINFO when they discover a problem.

Dodging Bullets In Your DP Shop 33-7

The undocumented GENMSGU intrinsic can be used to
print out a file system error message. It has two
single word integer parameters passed by value. The
first parameter is the message set number from
CATALOG.PUB.SYS, and the second parameter is the error
message number. Use message set 8 for file system
errors. (Set number 2 can be used for MPE errors
returned by the COMMAND intrinsic.)

Dodging Bullets In Your DP Shop 33-8

Image Subsystem Errors

Image error handling is a bit easier than the file
system. After every Image call, check the first word
of the status array. If the first word is zero, then
what you tried to do worked; otherwise it didn't. If
the program understands the error number, such as 15
for end-of-chain, the program should be able to take
appropriate recovery. If the program doesn't
understand the error number, it should go into error
mode. There are basically two ways to handle Image
errors:

Call DBERROR to get the Image error message, print
the message and then resume with the program.

Call DBEXPLAIN to print all pertinent Image error
information, then abort the program.

Dodging Bullets In Your DP Shop 33-9

VPLUS Subsystem Errors

VPLUS error handling is similar to Image error
handling. After every VPLUS procedure call check the
first word of the COM area. If the first word is zero
then everything is OK, otherwise you've got problems.

Usually, the program should call VERRMSG to get the
error message, then should zero the status word, then
call VPUTWINDOW to put the error message in the VPLUS
window. If the program decides to abort, the program
should either call VCLOSETERM before printing any
error messages or it should do the following:

Call the FCONTROL intrinsic using the 49th word of
the VPLUS COMAREA as the file number and 12 as the
control code to turn the terminal echo back on for
the user.

Escape sequences should also be printed to the
terminal to turn format mode off «esc>X), turn
block mode off «esc>&kOB), turn memory lock off
«esc>m), and home down «esc>F).

Dodging Bullets In Your DP Shop 33-10

Other Intrinsics

There are many other intrinsics, virtually all of
which return a status code via the condition code, or
return an error number or both. Unfortunately, MPE
does not provide any mechanism for converting an error
number into error message. The program must either
convert the error number itself, or simply print the
error number out as part of the error message.

Dodging Bullets In Your DP Shop 33-11

Aborting a program because of an error

When a program encounters an error that it cannot
recover from, then it should abort by going through a
special abort procedure. The abort procedure should
do the following:

1. Print the file system/IMAGE/VPLUS error message
that caused the abort.

2. Print an error message specific to the program and
location within the program that detected the
error. Ideally, no two error messages detected
from different points within a program should print
the same message.

3. Terminate the program by calling the QUIT
intrinsic, do not use STOP RUN in COBOL programs or
the TERMINATE intrinsic to abort a program.

As an alternative to calling QUIT, the program may set
the high order bit of the system JCW by calling the
SETJCW with a negative value, then call the TERMINATE
intrinsic. Doing this causes the program to end in an
error state. The QUIT intrinsic does this
automatically for the user. Note that the JCW may
also be set with the PUTJCW intrinsic, or the COMMAND
intrinsic with a SETJCW command.

Dodging Bullets In Your DP Shop 33-12

Error Handling Within Job Streams

Error handling within job streams is often done
carelessly. The :CONTINUE command should only be used
when necessary. Wanton placement of :CONTINUE
commands within a job can be hazardous to your health.

For example, many programmers make the mistake of
putting :CONTINUE commands before :PURGE commands.
This is almost always incorrect. If the :PURGE
command attempts to purge a file that does not exist,
then a WARNING is issued, not an error. No :CONTINUE
command is necessary for the job to continue. In most
circumstances in which the :PURGE command fails, the
job should stop running because there is a problem,
such as the file being accessed by another program.

Using JCW The system defined job control words (JCWs) CIERROR
and JCW can be used very successfully within job
streams. These JCWs are managed by both the system
and the user.

The JCW called CIERROR is set by the MPE whenever an
error or warning occurs with an MPE command. It is
set to the command interpreter error number if there
is a problem, otherwise its value is not changed.
Unfortunately, there is no way to tell by looking at
the number whether it is an error or a warning. There
are many uses of CIERROR. This example will check if
a file exists:

:SETJCW CIERROR = 0
:CONTINUE
:LISTF MYFILE;$NULL
:IF CIERROR = 0 THEN
: TELLOP MYFILE is alive and well.
:ELSE
: TELLOP HELP! MYFILE is not there!
:ENDIF

The JCW called JCW is used to help the job determine
what happened with a program run. When a program is
run, MPE sets JCW to zero.

If the program is successful, then JCW may be set to a
value from zero to 16383 to indicate its success.

If a warning occurs during the program, then the
program may set JeW to a value from 16384 to 32767.

Dodging Bullets In Your OP Shop 33-13

Aborting a Job

If an ~r occurs during the program, then the
program should set the value of JCW to a value from
32768 to 65535.

If a program terminates with the value of JCW from
32768 to 65535, then MPE will consider that the
program has terminated abnormally and generate command
interpreter error 989. A job would have had to have a
:CONTINUE command before the run of the program for
the job to continue.

When a job encounters a nonrecoverable error, it
should abort. This is most easily done by doing
nothing because MPE will handle it for you if you
don't use :CONTINUEs and your programs abort properly.
By using this method, an operator can always tell if a
job succeeded or failed by taking a quick glance at
the bottom of the $STDLIST.

A perhaps better way of aborting a job is to use
:CONTINUE commands before each run of a program, then
use JCW checking to determine if the program
succeeded. If ever a program within the job fails,
use the :TELLOP command to notify the operator that
the job has failed. Example below:

IJOB ARlOO2J,BATCH.AR
ISETJCW ERROR, 0
!CONTINUE
!RUN ARlOO21P.PROG.AR
!IF JCW >= FATAL THEN
! SETJCW ERROR = 1
!ENDIF
!IF ERROR =0 THEN
! CONTINUE
I RUN ARlOO22P.PROG.AR
IENDIF
!IF ERROR = 0 AND JCW >= FATAL THEN
I SETJCW ERROR = 2
!ENDIF
IIF ERROR = 0 THEN
! CONTINUE
! RUN ARlOO23P.PROG.AR
!ENDIF
!IP ERROR = 0 AND JCW >= FATAL THEN
! SETJCW ERROR =3
!ENDIF
!
!IF ERROR <> 0 THEN
! TELLOP **************************************
! TELLOP ** JOB **
! TELLOP ** ARlOO2J **
! TELLOP ** FAILED! **

Dodging Bullets In Your DP Shop 33-14

11ELLOP **************************************
SHOWlCW

! ABORT
!ELSE
! 11ELLOP lob ARlOO2J completed successfully.
!ENDIF
!EOl

This job stream has several noteable features:

1. It is written is such a way that can be easily read
and modified. The :IF statements never get more
than one level deep.

2. When the job fails an easily identifiable message
is printed on the console for the operator.
Presumably, the program that failed has printed an
error message on the $STDLIST that will enable the
operator or programmer to pinpoint the problem.

3. By using the :ABORT command to tenminate the job
stream, MPE will stop processing the job and print
a message at the bottom of the $STDLIST that the
operator can easily recognize as a failed job.
Note that the :ABORT command is not intended for
this purpose but serves nicely.

4. When the job succeeds, a simple message is printed
to the console and the job terminates with an :EOJ
command, a signal to the operator reading the
$STDLIST that the job was successful.

Dodging Bullets In Your DP Shop 33-15

Error Handling Within UDes

Let's not forgot abort user-defined commands.
Basically, error handling within UDCs is the same as
it is within job streams. The :CONTINUE command
performs the same function in ODCs as it does within
jobs, it allows the rest of the ODC to complete if one
of the commands encounters an error. An example of
this would a copy ODe as follows:

COpy FROMFILE,TOFILE
FILE INPUT = lFROMFILE
FILE OUTPUT = lTOFILE
CONTINUE
RUNMYCOPY
RESET INPUT
RESET OUTPUT

This ODC would make certain that the INPUT and OUTPUT
file equations were reset regardless of the success of
the program MYCOPY.

Dodging Bullets In Your DP Shop 33-16

Suggested Error Handling Standards

Programatic error handling:

1. Check the condition code or status word after EVERY
intrinsic or system procedure call.

2. Retrieve and display system error message whenever
appropriate.

3. When a program running within a job cannot recover
from an error, it should always abort, even if it
is an online program.

4. When a program running online detects an error,
print a message and continue if possible, otherwise
abort.

5. When aborting a program, always print a unique
error message in addition to the system error
message, and always set the job control word JCW to
a fatal value.

Error handling within jobs:

1. Do not abuse the :CONTlNUE command. If there is a
problem with the job, it should abort.

2. Use the :CONTINUE command before each command that
could fail; then use JCW checking to ensure it
succeeded.

3. If a job fails, print an easily recognizable
me~sage on the console.

4. Make certain that an operator can easily determine
if a job failed by glancing at the $STDLIST.

5. Successful jobs should always end with an :EOJ
command.

Dodging Bullets In Your DP Shop 33-17

Conclusion

For a data processing shop to run as smoothly as
possible, the programs and job streams need to be
written so that errors get detected as soon as
possible after they happen. Once an error is
detected, appropriate handling of the error is
imperative, whether it be a simple error message or a
program abort.

By following the guidelines in described in this
paper, you will be well on the road to DP pie in the
sky.

Dodging Bullets In Your DP Shop 33-18

Migration Made Easy

Victoria Shoemaker
Taurus Software, Inc.

770 Welch Road Suite 3A
Palo Alto, CA 94304

So you have purchased a Hewlett-Packard Precision Architechture machine
(HPPAlSpectrumlSeries 900). CongratulationsI So you are going to migrate.
What does migration mean, exactly? How does one migrate anyhow? Oh...you
haven't thought that all the way through yet. Hmm, maybe you should start
planning your migration now.

This paper will take you through the steps you will need to take to make your
migration effort to the HPPA machines complete and successful. There are
seven steps:

• Education
• Analysis of Existing Applications
• Developing of a Migration Plan
• MPEN Conversions
• Installation of HPPA machines
• Compatibility Mode Operation
• Migration to Native Mode Operation

Each of these steps will be discussed in detail.

Migration Made Easy 34-1

Education

The HPPA machine is completely different from the classic HP3000. There are
very few similarities in their hardware architectures. HP has gone to great pains
to ensure that old job streams and programs will run on the HPPA machines,

. but all of the classic HP3000 hardware emulation is done via software on the
HPPA machine. Underneath the software are two different machines. For all of
the differences between the two computers, they might have been put out by
two different manufacturers.

The point I am trying to make, is that what makes the classic HP3000 hum, does
not make the HPPA machine hum. In order to take advantage of the
performance gains projected by HP, you are going to have to migrate your
software to native mode. All the knowledge you have gained about stacks,
PCBs, MPE tables and such are of little help. You must learn about this new
machine from scratch. So, step one, get educated.

There are a number of different ways to learn about the HPPA machines: user
groups, manuals, FASTLANE consulting, HP classes and books. Some of the
topics you are going to want to make yourself familiar with are as follows:

• Native Mode vs Compatibility Mode. Actually this is a very simple lesson.
Native mode operation means that it is using the native instruction set
(RISC) of the HPPA machine. Compatibility mode means that software is
emulating the native mode operation of a classic or MPEN based machine.
In order to take advantage of the performance gains of the HPPA machines
over the classic HP3000s, you are going to have to convert your applications
to native mode.

• System Management. The HPPA machines don't use SYSDUMP. They
have a new configuration manager called SYSGEN. It is very different from
SYSDUMP. The HPPA machines don't use OPT or any of the other
performance monitoring tools you are used to. The HPPA machines handle
terminal connection differently than you are used to.

• Operational Changes. From the simplest thing, bringing up the machine to
private volumes, the HPPA machine is different. You are going to have to
learn how to do everything over again.

• NewlChanged Commands. There a number of new commands in MPE
which is now called MPE XL. The command resolution and syntax have
changed dramatically. All the changes are very positive. You are going to
want to take advantages of the positive changes immediately.

• pata Migration. The classic HP3000 is a 16 bit machine. The HPPA
machine is a 32 bit machine. This spells data migration. You need to know
how this will affect your data files and program's internal data structures.

Migration Made Easy 34-2

• programming Environment. There are a number of new programming tools
available including a symbolic debugger. You are going to want familiarize
yourself with its features before you begin conversion to native mode.

• Programming Languages Issues. Each programming language has its own
set of challenges when moving to native mode that you are going to have to
be familiar with before you begin. We will discuss some of those issues later
in this paper.

• NewlChanged Intrinsics. A number of intrinsics have changed. In addition,
a number of new intrinsics have been added to take advantage of some of
the new features in MPE XL. I am sure that you are going to want to take
advantage of these Y/hen converting to native mode.

As you can see the list is fairly impressive of some of the basic things you are
going to need to know WWllil you begin your migration. So, how do you go
about this? Easy, there are number of different ways, some even freel

1. User's Groups. There are a number of different speakers talking at this
conference alone about migration issues. Attend their talks. Read their
papers. Ask questions. Some of the users have already gone through
migration experiences. Learn from their successes and mistakes. HP has
released early bird sites and FASTSTART companies from their
confidentiality agreements. These companies are a wealth of knowledge.

2. Manuals. HP has published a number of manuals to help companies have a
successful migration experience. Some of the titles are as follows:
Migration Process Guide, Programmer's Skills Migration Guide, and COBOL
Migration Guide. I found the first two listed very helpful in getting an overall
picture of what is involved in migration. Remember when you read these
manuals, read them as Alfredo Rego recommends, like love letters.

3. Consulting. Both HP and independent consultants are offering migration
assistance. I have not used either one. HP's consulting is called
FASTLANE consulting. It includes a one day class taught at your site and a
migration planning meeting. Independent consulting seems to be varied.
As with any consulting, make sure you are dealing with experts.

4. Classes. HP offers two classes to help you in migration: system
management, and programmer's class. The system management class is
three days long and deals with the new SYSGEN and other system utility
software. The programmer's class is seven days long and is for
programmers who plan to assist in the migration effort. It covers language
specific information and the symbolic debugger.

5. ~. There is a book covering Spectrum issues called Beyond RISC! An
Essential Guide To Hewlett-Packard Precision Architecture. I am sure it is

Migration Made Easy 34-3

Migration Made Easy 34-4

ANlicallon Analysia

Once you are educated, you are now ready to review your applications for any
known migration issues. Some obvious gotchas are:

• FORTRAN. There is no FORTRAN/56 native mode compiler on the HPPA
machines. You must first convert your FORTRAN/56 to FORTRANI77. I don't
code in FORTRAN, but from what I understand this is not a trivial task.

• COBOL. All COBOU66 programs need to be converted to COBOUII.

• ~. There is no BASIC/3000 native mode compiler on the HPPA
machines. Business Basic has a native mode compiler.

• ~. There is no SPL native mode compiler on HPPA. A third-party
compiler, SPLASH compiles SPL to native mode.

• Privilege Mode. Remember when HP said "Don't use privilege mode." Well
now you know why. MPE XL is a completely different operating system
internally from MPEN. This means there is 50-50 chance that your
privileged mode programs will need to be changed before they will run in
native mode.

• Floating point. The HPPA machines uses IEEE floating point arithmetic.
The classic HP3000s used their own brand of floating point arithmetic. If you
use real numbers this could be an issue for you. For your information,
COBOL does not use floating point, PASCAL and SPL have floating point
facilities, and FORTRAN uses floating point extensively.

Other than these obvious issues, there a number of specific language and
intrinsic related issues. Luckily for you, HP has put together a migration tool
package. The price is right, $100. The package includes two programs: RTM
andOCA.

RTM (Run Time Monitor) is a utility program designed to help you identify areas
within your MPEN programs that could be a problem when ported to MPE XL. It
logs calls to MPEN intrinsics which have been changed or are not supported on
MPE XL as they happen. The logging is controlled by RTMSYS.PUB.SYS. The
logging reports are printed using RTMREP.PUB.SYS.

OCA (Object Code Analyzer) is a utility program which scans program and SL
files for potential problems. OCA scans a program for "problem" intrinsic calls.
The advantage to using OCA is that you are able to obtain immediate results
without the need for logging. OCA may not be as accurate as RTM because it
cannot always tell what parameters an intrinsic is called with.

Migration Made Easy 34-5

Both of these migration tools run on MPEN based systems. You can run them
before beginning migration. Don't forget to analyze both internally written
applications and third-party solutions. Your migration effort will be affected by
both types of applications.

At the end of this phase of migration, you should have a list of applications and
any potential migration problems. With this list, you will be able to begin the
next phase of migration, planning.

Migration Made Easy 34-6

planning

Planning is the single most important element of your migration. Regardless of
how many applications run in your shop, how many machines you have, how
much third party software you run - your migration's success depends on how
well you have planned it out. Spend the time to plan. It will payoff.

The first thing you will need to decide is which of your applications are worth
migrating to native mode operation. Some factors that may enter into your
decision are:

• How often does this application run? If the application only runs once a
year, does it really need the performance gains provided by converting it to
native mode?

• How much trouble will it be to convert this application to native mode? If you
have a frequently called FORTRAN/66 routine, is it really worth converting it
first to FORTRAN/77 and then to native mode?

• Do you have the source code for this application? Obviously for third-party
solutions, you probably are going to have rely on the vendor for native mode
solutions. For contributed routines, you may have to let them run in
compatibility mode for lack of a better solution.

• Is this a high volume application? If the application processes a great deal
of transactions, it may be worth converting for the increase in transaction
throughput.

• Do you have to maintain compatibility with MPEN based machines? If this is
true, then you may not want to take advantage of the native mode compilers.
Native mode object code will not run on MPEN based machines. There is a
middle ground f"r such applications. OCT (Object Code Translator) converts
an MPEN object module and adds native mode instructions to the end of the
program file. This way the program can run on both MPEN and MPE XL
programs. OCTed programs do not run quite as fast as native mode
programs, but it is a good compromise for programs which need to run on
both types of systems.

Once you have determined which of your applications will be migrated to native
mode, you must develop a migration plan for each application. HP can help
with the development of this plan through their FASTLANE consulting.

Along with your application specific plans, you will need an overall strategy for
handling privilege mode programs/routines. Some of your privilege mode
programs and routines will have to be rewritten entirely. Some of the functions
can easily be replaced with complimentary functions on the HPPA machines.

Migration Made Easy 34-7

Regardless of the situation, you must decide if you wish to migrate privilege
mode programs to native mode or let them run in compatibility mode.

The last consideration is site planning. During your migration, there will be a
time during which both your classic and HPPA machine will share the same
room. This means you need to prepare your computer room for two scenarios:
parallel operation (HPPA and classic) and HPPA. During parallel operations,
you will need power, air conditioning, and peripherals for two machines. You
must plan the additional strains on your computer room. To help in your
planning, if you were to just move your existing applications directly onto a
HPPA machines, you would need an additional 200/0 disc space. Make sure
you have enough disc ordered for your machine.

So to review, you are going to need plans for the following:

• Application specific migration

• Privilege mode strategy

• Site planning.

Migration Made Easy 34-8

MPEIV Migration

Prior to receiving your HPPA machine, there are a number of tasks that can and
should be completed on the MPEN base machine. A checklist of these tasks
follows.

1. Upgrade to the latest release of MPEN. MPE XL's base release was
UBdelta4. This is the starting point for MPE XL. It is best it you get on this
release of MPEN before migrating.

2. Get on the latest release of your programming languages. If you are using
BASIC/30aO convert your programs to Business BASIC. If you are using
FORTRAN/66 convert your programs to FORTRANn7. If you are using
COBOU66 convert your programs to COBOUII. If you are using SPL, either
convert your programs to another language or buy SPLASH. For all
compilers, get to the current version of the compiler.

3. Call INTRINSIC. For all system intrinsics, the new format of the call on MPE
XL is CALL INTRINSIC. Change all COBOL programs to use this format.

4. Block Mode. If you developed your own block mode terminal routines,
convert them to use the new standard block mode routines: VTURNON/OFF,
VPRINTSCREEN, and VBLOCKREADIWRITE.

5. EOPENs of LDEVs are not supported. The DTC does not assigned a fixed
LDEV numbers for devices. Opening a specific LDEV may not produce the
same result on MPE XL as it does on MPEN. It is possible to assign fixed
LDEV numbers, but this is not the default configuration.

6. .u.oC Conversion. You will want to change UDCs which have the same
name as the new MPE XL commands. You will also be able to omit 70% of
your system-wide logon UDCs which run programs in PUB.SYS because of
the new implied run and HPPATH variable.

7. SYSpUMp does "pi exist. You will want to convert your job streams which
use SYSDUMP to use STORE. The commands FULLBACKUP and
PARTBACKUP are not supported on MPE XL.

. 8. penpherals. Not all the peripherals that are supported on MPEN based
machines are supported on HPPA machines including paper tape, and
cartridge tape drives. Get a list from your HP CE.

Migration Made Easy 34-9

Installation

The awaited day finally arrivesl Your HPPA machine finally arrivesl Well, here
is the bad news, you are probably going to need some help getting everything
configured and setup. As you recall, SYSDUMP does not exist on the HPPA
machines. It has been replaced by SYSGEN.

When migrating from MPEN to MPE XL you will use DIRMIG to create your
directory, accounting structure, user logging parameters, RIN table, and private
volume information. SYSGEN is the device configuration dialogue. In addition,
there is another utility, NMCONFIG, used to configure your LAN and DTCs.

Well, if you are like me, these are all new and it would be nice if someone was
there to help you.

Now the good news, once your accounting structure and other internal
structures are in place, you can just restore your applications and they will just
runl Compatibility mode operation just worksl So let's look at our next step
compatibility mode operation.

Migration Made Easy 34-10

Compatibility Mode

As you recall compatibility mode is the term HP has chosen to mean running a
program that contains instructions for the classic HP3000. When a compatibility
mode program runs on MPE XL, the instructions are actually emulated by the
emulation software.

The purpose of running your programs in compatibility mode is to ensure that
the operation of these programs on MPE XL produces the exact same results as
it did on MPEN. Almost all of programs work exactly the same.

Typically compatibility mode testing continues through one complete
accounting cycle. During this testing, your programmers can begin familiarizing
themselves with the new features of MPE XL and the feel of the HPPA
machines.

Migration Made Easy 34-11

Migration to Natlye Mode Operation

During this phase of your migration, you are going to implement the application
migration plans. This is an appropriate time for your programmers to attend the
programmer training course and to learn the new debugger. They will also
need to familiarize themselves with switch-stubs, which is a technique for
switching between native mode and compatibility modewithin a program.

Once the conversion to native mode is complete. You can address yourself to
optimizing the performance of your programs. There are several things which
can affect performance of your applications:

• Mixed mode applications. Mixed mode applications run slower than native
mode applications because of time required to go through switch-stubs.

• OCT applications. Programs which have been run through OCT will not run
as fast as those which have been recompiled using a native mode compiler.
This is due to the literal translation of MPEN instructions.

• Extra data segments. Extra data segments are an MPEN data structure and
should be converted to mapped files for extra performance.

• Use of KSAM/BIOICIR/MSG files. These file structures are supported using
compatibility mode file intrinsics only. Because the intrinsics are supported
in compatibility mode only, they will be inherently slower than other file
structures.

• Word alignment. You can expect increased performance for programs that
align their internal data structures to 32 bit word boundaries.

As with the classic HP3000, we are going to have to experiment with what
exactly makes this machine perform. I am sure that over the next few years we
will all be learning about the performance tuning techniques for the HPPA
machines.

Migration Made Easy 34-12

Summary

The most important lesson from this paper is two-fold: get educated and plan
your migration. I believe that if you learn as much as you can before you get
started and then plan your migration, you cannot have anything but a successful
migration. Good luck to youl

I want to express my gratitude to John Bria of Hewlett-Packard for his help in
developing this paper. It is his talk that provided me with the basis for this
paper. Without his help, this paper would still be blank.

Migration Made Easy 34-13

TITLE: The Face of Data Processing

AUTHOR: E. R. Simmons, Ph.D.

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING

PAPER NO. 0035

MPE/XL Variables and Command Files

Brett Clemons
Softwarewizardry, Inc.

Tampa, FL. 33615

Abstract. With the introduction of Hewlett-Packard's
Precision Architecture came a new command interpreter - MPE/XL.
One of the most powerful new enhancements to the basic MPE
command interpreter is a new type of file - the command file.
Command files can be used in place of. or in conjunction
with, UDC's to produce a versatile tool at the disposal of
the veteran or novice programmer alike. The most exciting
aspect is the introduction of variables, or 'vars' to allow
you the ability to customize your command interpreter to perform
very sophisticated tasks with a single keystroke. Examples
include compiles of wildcard filesets, file purges or
compressions, as well as analysis of files in a wildcard
fileset. Variables, as well as a few new MPE/XL commands,
allow the programmer to place control of the command interpreter
where it belongs - with the user.

1. Introduction.

The evolution of the MPE command interpreter has been slow and
gradual. Existing commands were enhanced, but no major change
occurred in the basic 'core ' of the command interpreter until
recently. With the advent of MPE/XL Precision Architecture
command interpreter, something new has evolved from the old
command interpreter. For the purposes of this paper, MPE/XL
shall be termed a command interpreter, which more technically
expresses what it is.

Hewlett-Packard's new approach to command interpreters has
breathed new life into the old MPE command interpreter. bringing
with it something which allows for the command interpreter
itself to be used as an extension the programming
languages, or as a programming language itself. 11any of the
elements found in fundamental programming languages are
present in the new MPE/XL command interpreter. For example.
variables allow you to store temporary information in any of
the formats that may be found in a programming language. In
addition, testing of variables in Boolean expressions allow
for a much expanded analysis of conditions that may occur
external to the programs. Also, several commands have been
added to allow recursive performance of a block of commands.
Previously, a set of commands that you wanted to execute
could only be stored in a file, and :5ETCATALOGed. This file
contained User Defined Commands oc UDCs. Command files,
which are meant to expand upon UDC's, and not replace them,
allow the execution of a block of commands - and command files

MPE/XL Variables and Command Files 0036 -1-

are easy to set up and maintain.

This paper shall also investigate more advanced topics using
command files and variables, as well as some new MPE/XL
commands that add flavor to command files.

II. Variables - the new JCWs

Under the MPE command interpreter, the only way of storing
temporary information external to a program was in a file, or
with Job Control Words (JCWs). JCWs are not eliminated with
MPE/XL, but are enhanced with a new form of storage called
variables.

Variables names identify the variable referenced in the
commands. Variable names start with an alphabetic character
or underscore () character. and contain from one to 255
characters. Of course, variable names must be unique.

There are three several different types of variables.
Variable types are defined with the use of the new MPE/XL
command SETVAR. SETVAR allows the definition of a variable
name explicitly with the SETVAR command; the variable type is
implicit with the initial value assigned to the variable.
SETVAR is also used to redefine the value of an existing
variable. The basic type of variables are Boolean. Integer
and Strings. The type of a variable is set at time of
definition, depending upon the information to be stored in
the variable. For example, to define a boolean variable, use
the following command construct :

TRUE
:SETVAR varname,{

FALSE

The second type of variable, integer variables. allow you to
define variables containing numeric values, and are defined
at definition time with a

:SETVAR varname,integer-value.

The third type of variable, string variables, are defined
with a

:SETVAR varname, 'string-value '.

String variables may contain any valid string, from none to
256 valid alphanumeric characters.

Variables are removed with the DELETEVAR command. When a
variable is defined it retains its characteristics initially
defined with the SETVAR command until theDELETEVAR command

MPE/XL Variables and Command Files 0036 -2-

is used to remove the variable from the user's job or
session. Its form is

:DELETEVAR varset

and as shown in the syntax, may contain wildcards (@. ~,etc)

to specify a set of variables to be deleted.

The final variable command is the SHOWVAR command. SHOWVAR
lists variables to $STDLIST, and uses wildcards in the same
way as the LISTF command does. fhis command has the format

:SHOWVAR [varset]

If the varset parameter is omitted, only user-defined
variables are displayed; if @ is used for varset, then all
variables will be shown. Other wildcards may be used to list
any subset of variables. For example,

SAVE @
HP@ -
SAVE_VAR_~@

are all valid subsets that may be used to represent a one or
more variables that are defined.

Variables can be used in a variety of ways, most usefully in
command files, but they are not excluded from use in UDCs or
jobs.

Ill. Using Variables

When MPE/XL parses a command line, the Expression Evaluator
(a part of MPE/XL J first looks for variables in the command
line. The process of substituting a variable's value in a
command line is called dereferencing; dereferencing takes
precedence over all other operations in an MPE/XL command
line, including the recognition of the command name itself!
There are two methods of dereferencing variables. The first,
implicit dereferencing, is where the variable name is placed
in the command line and MPE/XL substitutes the value of the
variable before parsing the command line. For example, when
the following commands are entered

:SETVAR INDEX1 17
:IF INDEXI (a 20 THEN

the expression evaluator responds with the familiar

••• EXPRESSION TRUE

and will continue executing commands until a matching ENDIF
is encountered, because the value of INDEXl is 17, which is
less than 20.

MPE/XL Variables and Command Files 0036 -3-

In the second case of dereferencing, explicit dereferencing,
the variable name is preceded by one or more exclamation
points (!) which directs MPE/XL to substitute the value of
the variables represented at that place in the command line.
The most important thing about explicit dereferencing is that
MPE/XL substitutes a pair of exclamation points with a single
exclamation point, and a single exclamation point forces
MPE/XL to perform value substitution. For example

:SETVAR varl, 'stringvalue'
:SETVAR var2, 'I !varl'
:SHOWVAR var2
VAR2 D !VARl

:ECHO Ivar2
stringvalue

This example also shows how variables can be set to any valid
expression, including other variables. However, expression
types may not be mixed as in

:SETVAR VAR_VALUE 17 + 'foo'

The Expression Evaluator would flag this command as an
error.

functions allow the manipulation of text in command line.
Again, the part of MPE/XL responsible for evaluation of the
results of functions is the Expression Evaluator. There are
several functions, Just a few of which are

len - string length function
str - string extraction
ups - upshift string

These powerful functions allow complicated variables to be
built and examined in command files.

IV. Global Variables

Variables may be defined by the user, but MPE/XL maintains
its own set of variables. All global variables start with HP
(what else?), except CIERROR and JCW, which, under the old
command interpreters, were JCW names. Global variables may be
read only or read/write, and may not be deleted.

Jobs and sessions begin with the Global variables defined
with initial values. Global variables allow for lots of
things in the user environment to be tested or displayed:

HPJOBLIMIT - is the system's Job limit
HPMONTH - is the month according to MPE/XL
HPCIERRMSG - is the error message that corresponds
to another variable. CIERROR

11PE/XL Variables and Command Files 0036 -~-

HPMSGFENCE - allows MPE/XL error messages to
be suppressed.

One global variable of particular interest is HPPATH. This
variable defines the 'path' that MPE/XL will search for
command files (and program files, too). Initially, it has the
value !hpgroup,pub,pub.sys. This means that MPE/XL will first
look for command files or programs in your current group
(!hpgroup), the the public group of your logon account ~pub)

and last in pub.sys.

V. Defining command files

Ever since MPE III, users have had the ability to define
their own commands. The way this was accomplished in the past
was through the User Defined Commands (UDC'sJ, which are
familiar to most users. However, a new way of storing user
commands was introduced with MPE/XL. This is the command
file. Command files and UDCs are both very similar and very
different. One of the main differences is that multiple UDCs
are defined in a single MPE file and the SETCATALOG command
is used to invoke the UDCs at the appropriate level - system,
account or user. On the other hand, a command file represents
a single user command, and that command is invoked by virtue
of the name of the file itself. In other words, to execute
the commands in the file COMMFILE, merely say

:COMMFILE

Kind of simple, isn't it? Optional parameters may be added
after the command file name, but must follow the rules
outlined in the header portion of the command file. Command
file command lines may contain commands that are valid MPE/XL
commands, or user commands in UDCs or command files. Command
lines may even contain the name of program files. since with
MPE/XL, the :RUN command is implied if the command name IS a
valid program file. In MPE/XL, user commands may even invoke
themselves (unless disallowed with the OPTION NORECURSIONJ.

Command files are much more simple to create than UDCs.
Simply use you favorite brand of text editor, and olace
commands in an MPE file. To execute command files in a
different group or account, you must have the appropriate
access to that file, in the same fashion as UDC's.

VI. Command Filq Structure

The basic structure of command files is simple,and very much
like UDCs. The first line is the optional parameter line. Up
to 63 parameters may be specified. The syntax for this line
is

parm parml[-'defaultvalue'], ... parm63

MPE/XL Variables and Command Files 0036 -5-

The second line is the options line. These lines specify how
the command file will be accessed or the basic environment
the command file will operate in:

option optionl[,option2[, ...]]

Some available options are BREAK/NOBREAK, HELP/NOHELP, etc.
Remaining lines are command lines. All MPE/XL commands except
:00 and :REOO are valid and may be used in user commands.

Parameters for command files are specified in one of two
ways. New MPE/XL users will feel comfortable with the
POSITIONAL parameter sequence, in with the parameters in the
command are specified in the same sequence as in the PARM
line of the command file. The other way is by using the
KEYWORD construct. A user file (named COPYFILE) containing
the lines

parm filein='$stdin', fileoutm'$stdlist'
fcopy from-!filein;to-!fileout;new

may be invoked by any of these valid user commands:

:copyfile oldfile, b
:copyfile oldfile b
:copyfile fileout=b,filein-oldfile

VII. Programmatic Access to Command files

One of the really nice things about command files (and also
UDCs) is that with MPE/XL. all user commands may be invoKed
from programs. Those that cannot are those that have the
OPTION NOPROGRAM specified in the header portion of the
command file. Hewlett-PacKard had the foresight to provide
MPE/XL users with the new HPCICOl1MAND intrinsic, which allOWS
any valid user command to·be invoked from a program. This
powerful new intrinsic allows the distribution of programming
power to the command interpreter, and will be discussed in a
subsequent section. The consequences are that any command,
MPE/XL or user, can be executed from a program.

VIII. New MPE/XL commands to support user commands

Several new commands were introduced in MPE/XL chat allow
maximum utilization of command files. Although command files
can be written without the use of these commands, the power
of MPE/XL really comes through when these are used.

The first of the new commands is the WHILE and the ENDWHILE
commands, which have the the syntax

:WHILE boolean-expression [DO]
< commands executed as long as condition

is true)

MPE/XL Variables and Command Files 0036 -6-

:ENDWHILE

The WHILE and ENWHILE commands allow fo~ multiple ~epetition

of of a block of commands while a condition is t~ue. As long
as the condition is t~ue, the commands will continue to be
executed.

Anothe~ command of g~eat use in commands files is the new
COpy command. The COpy command is the much modified FCOPY
command. with a much mo~e simplistic syntax:

{ ASK)
:COPY [FROM-]f~omfile[;TO=tofile] Cit YES)]

{ NO)

COpy pe~fo~m a multi-reco~d. no-buffe~ed file copy of files
much the same way that FCOPY does. The~e a~e some
~est~ictions: f~omfile and tofile may not be system defined
files o~ spool files. The options dete~mine whethe~ the user
is asked to replace the tofile if it exists - ASK will p~ompt

the user; YES will ~eplace the file and a NO option will
leave the tofile intact if it exists.

The PRINT command is ve~y similar to the COPY command. This
command's syntax is

:PRINT [FILE~]file

[iOUT = outfile]
[;START = sta~trecordJ

[;END = endrecord]
[;PAGE = linesinapage]
[;{UNN]

{NUM)

Although p~ima~ily for printing files to $STDLIST, once you
realize that any file may be specified for the file pa~ameter

(unlike the COPY command) and about any file may speclfied
for the outfile. then the PRINT command is not unlike the
fCOPY command except fo~ real neat feature - it may called
while in BREAK mode! PRINT and COpy are commands. and unliKe
FCOPY which is a p~ogram, may be used in BREAK mode.

The INPUT command allows inte~active acceptance of variable
values. The fo~mat for the INPUT command is

: INPUT [NAME=Jvariable-name
[;PROMPT - promptstring]
[;WAIT - waitseconds]

This command allows the changing or the creation of
variables, and optionally will prompt the use~ with a prompt
string, and wait a given numbe~ of seconds fo~ the user to
respond. If the user does not respond in that time. command
file execution continues, but CIERROR will be set with a

MPE/XL Variables and Command Files 0036 -7-

value of 9003.

Ano~her really useful command, introduced previously, is the
ECHO command which has the format

:ECHO [message]

Echo does not perform implicit dereferencing, but instead
requires explicit dereferencing of variable names. One thing
to remember about the ECHO command is tha~ a carriage return
is always generated after the message is displayed. and ~f

message is null, only a carriage return is generated.

Other MPE/XL commands are the CALC command (used to generate
the result of an expression to $STDLIST and to HPRESULTJ, and
the RETURN command (returns to previous level of Command
file).

IX. Command File Examples

Our first example will be to use three existing variables to
create a fourth. The three pre-existing variables are global
variables and co~tain the year Clast two digits), the month
(digits, not name) and the day of the month, respectively. We
use these to create a new variable. HPYYMMDD:

SETVAR HPYYMMDD, IHPYEAR • 10000
SETVAR HPYYMMDD.IHPYYMMDD + (!HPMONTH • 100)
SETVAR HPYYMMDD, !HPYYMMDD + IHPDATE

The next example uses the PAGE option of the PRINT command to
print a file without pausing:

PARM FILENAME
PRINT !FILENAME;PAGE=O

This example shows the use of the parameter line, and the use
of the parameter in the command file to cause the parameter
value to be replaced with the value lREQUIRED) specified
when the command was executed.

The next example shows the easy way to recover lost
filespace by 'squeezing' the end of file to the file limit.

The following example is the command file SQUEEZE:

PARM FILENAME
COMMENT
COMMENT This specifies that the command file will have ONE
COMMENT required parameter - the filename to be squeezed.
COMMENT
IF NOT FINFOC'!FILENAME'.O) THEN
COMMENT
COMMENT This line tests for the presence of the file

MPE/XL Variables and Command Files 0036 -8-

specified in the parm line. The fINfO is a function
requiring two parameters : the first the filename in
string form, and the second, the function number.
Zero as a parameter queries for the existence of a
file, and returns a Boolean result.

COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

ECHO !fILENAME does not exist - cannot squeeze
ELSE
COMMENT
COMMENT If the file does not exist, no need to even try any
COMMENT of this stuff.
COMMENT

SETVAR END_OF_FILE.![FINFO(!FILENAME,l9)
COMMENT ~

COMMENT This command line will set a variable to the number
COMMENT of records in the file (end of file) by using
COMMENT the FINFO function with a parameter of 19.
COMMENT

FILE NEWFILE;DI5C-!END_OF_FILE;SAVE
COMMENT
CO~1ENT This command line will set a variable to the number
COMMENT of records in the file (end of file; by using flNfO
COMMENT with a parameter of 19.
COMMENT

SETVAR CIERROR,O
COpy !FILENAME,·NEWfILE;YES

COMMENT -
COMMENT These lines prime CIERROR to zero and copy the file
COMMENT from the oldfile to the newfile.
COMMENT

IF CIERROR = 0 THEN
PURGE !fILENAME
If CIERROR Q a THEN

RENAME NEWFILE,!FILENAME
ELSE

ECHO !FILENAME was not purged nor renamed
ENDIF

ELSE
ECHO Copy of !FILENAME failed

ENDIF
COMMENT
COMMENT If the COPY command succeeds, purge the oldfile and
COMMENT rename the newly created file to the name of the old
COMMENT file. Otherwise. tell the user the copy and rename
COMMENT has failed.
COMMENT
ENDIF
COMMENT • end of the command file.

Now for a really good example of the power of command files.
First, lets consider the mundane output from the L1Slf
command. Typically, it has the format that we are all
familiar with:

MPE/XL Variables and Command Files 0036 -9-

ACCOUNT"'" TESTACCT GROUP"" TESTGRP

fILENAME CODE ------------LOGICAL RECORD-----------
SIZE TYP EOF LIMIT RIB

DISCFILE 80B FA 597 597 3
CRLFILE NMRL 128W FB 689 689 1
COBTEXT EDTCT 1276B VA 785 785 1
V23AXFRM VFORM 256B FA 27958 50000 1
W23AXWSP TSR 102LJ:B FA 3 39 1
XL NMXL 128W FB LJ:LJ:260 lf096000 1
Y23AXUSL NMPRG 128W FB 2031 2031 1
UOOAAX89 USL 128W FB 266 1023 1

Careful examination of the output will show that if we
redirect this output to a disc file, we could use fileset
wildcards in some command files. PURGESET is such a command
file. It invokes another command file (XEQFILEJ, which itself
invokes other command files. The result is a wildcard file
purge.

The following example is the command file PURGESET.

PARM FILESET
COMMENT ~

COMMENT This command file will purge filesets. The
COMMENT only parameter is the desired fileset.
COMMENT
SETVAR SAVE_HPAUTOCONT,HPAUTOCONT
SETVAR SAVE_HPMSGFENCE,HPMSGFENCE
COMMENT .
COMMENT In these lines, we save off the current value
COMMENT of HPAUTOCONT, the autocontinue var, and
COMMENT HPMSGFENCE, the var that determines if 11PE/XL
COMMENT error messages are displayed.
COMMENT
SETVAR HPAUTOCONT,TRUE
SETVAR HPMSGFENCE,2
COMMENT A

COMMENT Here. we'll set HPAUTOCONT to true, meaning that
COMMENT we won't have to preface every command line with
COMMENT a :CONTINUE; it's implied. HPMSGFENCE "" 2 tells
COMMENT MPE/XL to override printing-of error messages.
COMMENT
SETVAR FILE SET."!FILESET"
ECHO Please-Wait .. Determining value of fileset
COMMENT A

COMMENT Save off our original fileset and tell the user
COMMENT to hang on a sec.
COMMENT
SETVAR CIERROR,O
FILE TEMPFILE;TEMP;REC=-80,l,F.ASCII;NOCCIL
FILE OLDTEMP=TEMPFILE,OLDTEMP

MPE/XL Variables and Command Files 0036 -10-

LISTF !FILE_SET,l;-TEMPFILE
COMMENT -
COMMENT Here is the LISTF of our fileset into a temporary
COMMENT file. The ,1 format will give us lots of good info
COMMENT about each file, as shown above.
COMMENT
IF CIERROR = 0 THEN

RUN EDITOR.PUB.SYS;STDIN=PRGSTDIN;STDLIST=$NULL
ELSE

ECHO fileset !FILE SET Is Invalid
ECHO CIERROR is !CIERROR which means:
ECHO ! HPCIERRI1SG

ENDIF
COMMENT
COMMENT In these lines. if C1ERROR is zero. run EDIT/3000
COMMENT with a redirected $STDIN, else tell the user what
COMMENT went wrong.
COMMENT
RESET TEMPFILE
RESET OLDTEMP
XEQ XEQCOf'lM
COMMENT
COMMENT Reset the tempfile file equations and XEQute the
COMMENT text file that EDIT/3000 created previously.
COMMENT
DELETEVAR FILE @
DELETEVAR GOTFILE
DELETEVAR CUALNAME
DELETEVAR LISTF @
D~LETEVAR YES_@-
COMMENT .
COMMENT Cleanup. Delete vars created in this and other
COMMENT command files.
COMMENT
PURGE XEQCOMM
PURGE TEMPFILE,TEMP
COr-Il'lENT -
COMMENT Purge the XEQ file and the temporary file.
COMMENT
SETVAR HPAUTOCONT,SAVE_HPAUTOCONT
SETVAR HPMSGFENCE,SAVE_HPMSGFENCE
COl1f1ENT -
COMMENT Reset these vars to their previous values.
COMMENT Delete the SAVE vars
DELETEVAR SAVE_@

The following example is the MPE file used as the $STDIN for
EDITOR.PUB.SYS in the command file PURGESET. This file is
PRGSTDIN:

TEXT ·OLDTEMP
CHANGE 50 TO :": IN ALL
CHANGE 1 TO :PURGEfLE ": IN ALL
KEEP XECCOMM,UNN

MPE/XL Variables and Command Files 0036 -11-

EXIT

The following command file is invoked from PURGESET. It has a
single parameter, the line from the LISTF command that was
prefixed with the name of this command file CPURGEFLE):

PARM LISTF LINE IN
COMMENT ~ - -
COMMENT The single parameter 'passed' to this command file
COMMENT file from PURGESET is the line of the LISTF file,
COMMENT TEMPFILE.
COMMENT
COMMENT REMEMBER : HPMSGFENCE - 2 and HPAUTOCONT = TRUE
COMMENT
SETVAR LISTF_LINE,"ILISTF_LINE_IN"
COMMENT "
COMMENT Save off the parameter passed for examination.
COMMENT
SETVAR FILE_NAME,"! (STR(LISTF_LINE,1,8)]"
COMMENT '
COMMENT Examine the LISTF file. There are three types of
COMMENT lines in that file:
COMMENT 1. header Ilnes.
CarniENT 2. blank lines
COMMENT 3. filename lines.
COMMENT Lets save off the first eight character (the SIR
CO~1ENT function, discussed previously, does chat) into
COtH'IENT a variable called 'FILE_NAME I.

COMt'lENT
1F "! FILE NAf1E" = "ACCOUNTc:" THEN
COtlMENT -
COl1MENT This LISTF line is a header line. It will contain
COMMENT the group and account name of those files that
COMMENT will be listed in the succeeding LISTF lines.
COMr1ENT

SETVAR GOTFILE,FALSE
SETVAR LISTF_ACCOUNT, "I CSTR(LISTF_LINE,11,8)]"
SETVAR LISTF_GROUP, "! [STR(LISTF_LINE,31,8)]"

COMI1ENT .
COMMENT Lets set a variable to say let us know that this
COMMENT is not a file. Also, extract the account and
COMMENT group in variables.
ELSE

IF ("I FILE NAME" = "FILENAME") OR &
("! FILE-NAME" - " ") THEN
SETVAR-GOTFILE, FALSE

ELSE
COMf1ENT ~

COMMENT These lines are of no concern to us. We ignore them.
COMtlENT

SETVAR GOTFILE,TRUE
SETVAR QUALNAME, "IF1LE NAME" + " 0 " + "ILISTf GROUP"
SETVAR QUALNAME,II!QUALNAMEII + "." + "!LISTF_ACCOUNT"
STRIP QUALNAME

MPE/XL Variables and Command Files 0036 -12-

If it is not a header line or a blank line, it is
the name of a file. Lets fully qualify the filename
such that QUALNAME contains file.group.account.
If QUALNAME contains imbedded blanks (file,group or
account < 8 chars), STRiP will strip out blanks.

ENDIF
ENDIF
COMMENT
COMMENT
COMMENT
COMI1ENT
COMMENT
COMt'IENT
COMMENT
IF liOTFILE THEN
COMMENT ~

COMMENT If our Boolean var is set. the line just processed
COMMENT contains a filename, which was preceeded by blank and
COMMENT header lines (ALWAYS).
COMMENT

SETVAR YES_NO_PROMPT, 'Purge' + '!QUALNAME' + ' lY.N)?'
SETVAR YES_NO," "

COMMENT ~

COMMENT Setup the variable names to contain the userprompt
COMMENT and the user's response.
COMI1ENT

WHILE ("!YES NO" <> "V") AND l"!YES NOli <> "N") DO
INPUT YES_NO,PROMPT.... "!YES_NO_PROMPT"

ENDWHILE
COMMENT '
COMMENT These lines will ask the user if the file should
COMMENT be purged. User must respond Y or N.
COMMENT

IF ("!YES NO" a "Y") THEN
ECHO - « Purging !QUALNAME »
SETVAR CIERROR,O
PURGE !QUALNAME

COt'lMENT .
COMMENT User responded Y. Attempt to purge the file.
COMMENT

IF CIERROR <> 0 THEN
ECHO Purge of !QUALNAME failed .

ENDIF
COMMENT ~

COMMENT Attempt failed. Tell the user why and continue to
COMMENT next file.
COMMENT

ENDIF
ENDIF
COMMENT • end of command file.

The next command file is STRIP. It will parse a variable
value and remove ALL leading,trailing and imbedded blanks.

PARM VARNAME
SETVAR LITVAR,"!VARNAM~"

SETVAR SAVEVAR,!VARNAME
WHILE pose " ","!SAVEVAR") > 0

SETVAR SAVEVAR,lI!SAVEVAR" -

MPE/XL Variables and Command Files 0036 -13-

ENDWHLLE
SETVAR !LITVAR,"!SAVEVAR"
DELETEVAR LITVAR
DELETEVAR SAVEVAR

Once we have this command file under our belt, we can really
start to get fancy. With a little imagination, we can select
files in our fileset by specific attributes, such as file
code, file size, etc. The mechanics are not difficult, but
are not included because of space considerations. However,
can include a command file to set the attributal variables
related to a file. This command file is FILEATTR:

PARM LISTF LINE
OPTION NOLIST
SETVAR FILE_CODE,STR(LISTF_LINE,ll,6)
COMMENT - file code of file (string)
SETVAR FILE_CODE_I,FINFO('!QUALNAME',-S)
COMMENT ~ file code of file (integer)
SETVAR CREATOR,FINFO('!QUALNAME',~)

COMMENT ~ file creator (st~ing)

SETVAR DATE_CREATED_STR, FINFO('! QUALNAI1E', 6)
COMMENT' date created (string))
SETVAR REC_SIZE,SIR(LISTF_LINE,17,S)
COMtlENT ~ record size (bytes or words, str i ng j

SETVAR ASCIl_BlNARY,STR(LISTF_L1NE,26,lJ
COiltIENT" file format (ascii or binarY,string)
SETVAR FIXED_VARIABLE,STR(LlSTF_LlNE,c5,1)
COMMENT ~ record format (fixed or variable,string)
SETVAR BYTES_WORDS,STRCLISTF_LINE,22.1)
COMMENT ~ record units of measure (bytes or words,stringJ
SETVAR EOF,STR(LISTF_LINE,30,S)
COMMENT ~ number of records in the file (string)
SETVAR FILE_LIMIT,STR(LISIF_LINE,~O,lO)

COMMENT' maximum number of records in file (string)
SETVA~ FILE_LIMIT_l,FINFOl'!QUALNAME' ,12)
COMMENT ~ max records in file (integer)
SETVAR FOPTIONS,FINFO('!QUALNAME',13)
COMMENT ~ file options (string)
SETVAR FOPTIONS_I,FINFOC'!QUALNAME',-13)
COMMENT ~ integer foptions
SETVAR LAST_MOD_DATE_YYYYMMDD,FINFO('!QUALNAME'.-8)
COMMENT ~ last modification date (integer)
SETVAR INT_l, LAST_110D_DATE_YYYYMtIDD / 1000000
SETVAR INT_2,INT_l • 1000000
SETVAR LAST_MOD_DATE_YYMMDD, LAST_MOD_DATE_YYYYI111DD - INT_2
COMMENT . last mod date YYMMDD
STRIP FOPTIONS
STRIP FILE CODE
STRIP REC SIZE
STRIP EOF-
SIRl P FILE Ll111 I
COMI-IENT . §"trip the blanks from these vars. Once STRIPped,
COMMENT their variable class will change to integer.

MPE/XL Variables and Command Files 0036 -l~-

X. MPE/XL as a Programming Language

MPE has been thought of by some as being capable of being a
programming language. Previous versions of MPE fell short of
that mark, but probably not by mUCh.

By that same token, lets examine MPE/XL in comparison to both
older versions of MPE and other programming languages.

Although MPE/XL does not have a compiler, it is not
necessarily a prerequisite of a programming language to have
a compiler. Recursive abilities are found in MPE/XL
lWHILE .. ENDWHILE) and other programming languages; storage of
numeric and non-numeric literals (SETVAR) are also present in
MPE/XL and other compilers. Examination of stored literals
(IF statement with explicit variable dereferencingJ and
intermediate literals (IF statement with STR function of
literal constant, for example) are present in tlPE/XL as well
as compiler languages. The ability to call programs written
in other languages (RUN statements) or in the same language
is characteristic of some programming languages. Programs
written in MPE/XL are callable from programs written in other
programming languages CHPCICOMMAND intrinsic is needed). in
addition, MP~/XL lends itself well to structuring and
development with modularity, a trademark of some programming
languages. MPE/XL can also accept input external to the
program (INPUT command), produce output (PRINT, ECHO) and can
perform arithmetic operations (CALC command). Older versions
of MPE had but a few of these features.

Indeed, there may now be little argument that tlPE/XL is a
programming language. However. to make 11PE/XL a REALLY
powerful programming language. 1 offer Hewlett-PacKard a
'wish list'.

XI. Some Things to Make MPE/XL Really Neat

While MPE/XL is a vast improvement over MPE. I would like to
see several things implemented to make MPE/XL a bona fide
programming language.

The first would be the ability to call any intrinsic from a
command file (except those that use procedure labelsJ. All
the new HP intrinsics lHPfOPEN. HPFCLOSE) could be called in
the same manner as calling other command files. For example.
to call HPfOPEN, you might use command syntax like thlS:

HPfOPEN filenum,filename,fileoptions

This seems like a natural extension to 11PE/XL, and something
that should follow all the progress made with MPEiXL.

MPE/XL Variables and Command files 0036 -15-

Several additional functions that would be nice to have might
be a leading/trailing spaces 'trimming' function simllar to
the 'STRiP' command file presented previously. A 'SfUff'
function to place a string within another string would be
great. How about a square root function for the FORTRAN
programmers?

These 'wishes' are not to be taken as a criticism of liPE/XL
because they do not have these 'goodies'. MPE/XL is an
outstanding example of a natural software evolution, and the
absence of these functions or structure in no way detracts
from the total product.

Acknowledgments

Many thanks to the people of Collier-Jackson, Inc in Tampa,
for allowing me the experience of programming on a SPECTRUM
machine. Special thanks to Barry Lemrow at CJI for ideas and
suggestions, as well as his review of this paper before
publication.

Special thanks to Hugh McKee of Hewlett-Packard. who also
reviewed this paper before publication. and urged many months
ago, that it should be written.

MPE/XL Variables and Command Fiies 0036 -16-

Computer Assisted VIEW, IM~GE & SPL
Norman A. Hills

N.A.Hills Computing Services Limited
336 Piccadilly Street

London ON Canada N6A 137

Introduction

VIEW provides an effective user to termin~l interface, IMAGE
is an efficient Data Base for organizing data storage, and
3PL is a versatile language with which to build a busness
system. D~TA ELEMENTS must be defined in each of VIEW, IMAGE
and SPL conforming to the various rules which are different
for each sub-system, as illustrated in Table I.

Table I

DATA ELEMENT COMPARISONS

Sub-System VIEW IMAGE

Data Element FIELD NA"'1E ITEM PART

Alpha first Char
and A-Z, 0-9 or: +-*/?' fJ'J,&@

Numeric Types DIG K1
NJJ\1n I1
IMPn 12

Character CHAR Xn

SPL

IDENTIFIER

LOGICAL
INTEGER
DOUBLE
REAL
LO~G

BYTE (char)
LOGICAL (words)

While the programmer must live with these differences, he
must also maintain a conformity between the sub-systems so
that the Data Elements do not become damaged or distorted
during any transfer between the sub-systems. This need for
intra-system conformity complicates the task for system
maintenance particularly when there is a need to revise any
of the characteritics of a data element.

The presence of ~he data element in THREE distinct systems
requires that each data element be defined THREE TIMES. For
anyone concerned with labour efficiency or cost
effectiveness there is an obvious redundancy of effort
associated with THREE definitions for the same data element.

There are many packages available that address in various
ways this issue of programmer productivity. Our approach has

Computer Assisted VIEW, I~~GE & SPL 0037-1

been to make more effective use of the eXisting resources
that are available in the standard HP3000 utilities.

VIE~"

Most systems start with the development of VIEW screens as
samples for the user to review his visible interface to the
system.

RUN ENTRY.PUS.SYS

requires the user to identify the name of the FORMS file and
a BATCH file. The potential user can then experience the
Field Edits and the other features of VIEW that can be
included in the design of the screens.

As a later step, when the database has also been created,
the user can employ DBENTRY from the CSL libraries to
interact between the VIEW screen and the IMAGE database and
it can be very useful to have this type of practice prior to
the development of any application programs.

The information about each of our Data Elements that has
been stored in our VIEW forms file is of course very
pertinent to the balance of the program development. It
would be very helpful to be able to have the computer
convert some of this information rather than have the
programmer create manually the corresponding d~ta elements
for the other sub-systems.

Existing VIEW Intrinsics in Table II can be used to retrieve
pertinent information relative to each Field Name.

Table II

VIE\~ INTRINSICS

T~ORD OF INFORM.A.TION
INTRINSIC BUFFER RETURNED

VGETFILEINFO 5 Number of Forms in File

VGETFOR ~"INFO 3-10 Form Name
12 Number of FIELDS in Form

VGETFIEL1)INFO 11-18 Field Name
20 Field Number
21 Field Length

25-26 Data Type of Field

Computer Assisted VIEW, IMAGE & SPL 0037-2

To obtain complete information from the Forms File, the
number of forms from VG~TFILEINFO establishes the number of
iterations required for VGETFORMINFO, and the number of
fields from each VGETFORMINFO establishes the number of
iterations required for VGETFIELDINFO.

For this retreived VIEW information to be applicable to
IMAGE and SPL we have replaced the screen desi~n identifier
in the FIELD MENU during forms design with a FIELD N~ME that
follows our particular conventions established for IMAGE
naming of SETS and ITEMS.

- Each Field Name becomes Itemname Setname in the VIE~

formsfile. In View we are limited to the underscore as
the only permissible joiner, and this has the unfortunate
feature of.becoming invisible in the forms file listings.

- Although the JOIN utility of QUERY uses the convention of
Setname.Itemna~e, we find it much more convenient during
program preparation and program maintenance to be able to
have the Item as the orimary key of any sort, so we are
using the Itemn~me first.

- Each ITE~ and SET name will be a maximum of 5 characters.

This information from the Formsfile can be re-arranged to
develop a significant start for the IMAGE database DBSCHE~A

as:

- A sorted list of ITE~ names.

- ~ sorted list of SET names.

- A list of ITEM n~mes that are associated with each SET
name.

Computer Assisted VIEW, IMAGE & SPL 0031-3

- A highly probable identification of the ITEM Type which
we would usually translate as follows:

Table III

DATA TYPE TR.t\~SLATION

VIEW TYPE FIELD LENGTH IMAGE TYPE SPL TYPE

DIG < 6 K1 LOGICAL
or 11 INTEGER

> 5 12 DOUBLE

NUt-tn < 6 11 INTEGER
> 5 12 DOUBLE

IMPn < 6 11 INTEGER
> 5 12 DOUBLE

CH~R n Xn LOGICI\L

- An extraction of the PROCESSING SPECIFICATlON associated
with each Field is not available through an existing
intrinsic. Our only solutions so far to this desire, is
to copy the formsfile listing to a disc file, scan it for
the occurrence of the Field Name, and then extract the
subsequent text of PROCESSING SPECIFICATION.

IMAGE DBSCHE'1A

The skeleton of Itemnames and Setnames followed by Items of
the set can be enh~nced by the programmer to include
comments and any additional items or sets that have not
originated as a View Form Field.

For those who would like to write the OBSCHEMA as their
first step, is is unfortunate that there are no intrinsics
that will help to develop VIEW from the DBSCijEMA.

RUN DBSCHEMA.PUB.SYS is used in the conventional way to
create the ROOT FILE for the Database.

RUN UBDERIVE.PUB.SYS is used to create the BASENAMEnn
dataset files for the database, and at the same time create
the files of declarations and code that can become part of
the subsequent SPL programs via appropriate $I~CLUDE

statements.

This process is quite fully explained in the June '87 issue
of Interact article titled DERIVATIONAL PROGRAM CODE. To

Computer Assisted VIEW, IMAGE & SPL 0037-4

avoid repetition, we will concentrate here on the aspects
that have been incorporated subsequent to this reference
publication.

In the above reference we descripe the contents and purpose
of four files created by DBDERIVE:

basenameOC

basen~meGL

basena~ePC

basenameZX

We now have DBDERIVE create a fifth file named basenameSP
which is a BTREE file containing the correct spelling for
all the known expression elements that may be referenced in
the source code, as follows:

- BasenameGL contents of identifiers

- INTRLIST file of valid SPL Intrinsic names

- All of the SPL Reserved words.

This BTREE file basenameSP acts as a DICTIO~ARY of valid
words that may be included in the 3PL Program Code.

EDITOR entry of SOURCE CODE

The HP EDIT3000 can be customized to execute up to 3 user
interfaces by using the initi~tion command:

RUN EDITOR.PUB.SYS;PAR~=16

These user interfaces can be located in an SL at either the
SYSTE~ ACCOUNT or GROUP level, and can be invoked at either:

- INITIALIZATIO~ to set up files or processes

CO~MAND phase so that whenever any test is entered in
response to a / prompt, the users' procedure will be
executed and m~y execute user defined special commands.

- ADD phase will be executed whenever any text is entered
in response to a line number prompt.

We make use of this feature of EDIT3000 by having INIT
Activate a Process which will receive via a message file
during the ADO phase, a copy of each line as it is entered.

Computer Assisted VIEW, IMAGE & SPL 0037-5

This background process takes each word of the entered line
and searches the BTREE spelling Dictionary file basenameSP
to determine if the word is valid. If a line cont~ins 1ny
word that is not in the BTREE dictionary, then the offending
word is surrounded by the escape sequence for blinking
inverse video and the whole line is returned directly to the
$STDLIST screen.

By having the spelling check performed by a background
process, it does not slow down the interactive response of
the terminal to each terminating line feed. Only the
offending lines are returned to the $STDLIST screen and
although the offending lines may not appear until two or
three lines after they were entered, this is still far more
efficient and productive than wating until the first compile
to be made aware of transpositions and other spellin~

errors.

If the user is presented with a blinking word that is
correct, then this is an effective reminder that the user
should have the word apprpriately added to the program
DECL~RATrO~S, at either the LOCAL or GLOB~L level, and have
the word added to th~ BTREE file basenameSP so that the
background process in future will return only lines that
contain genuine omissions.

SPL COMPILES

Now that we have been using these techniques for about two
years, we have settled down to a few conventions of
convenience.

PROGDEV user is the program developer, with ~L,pq,~R

capability, ho~e is th~ pro~ram testing group PROGTEST and
the source cod~ for development versions is in the group
TSTLIBRY. The programs for testing are compiled as
appropriate:

1/ Following any database reVision, by a JOB STREA~ which
includes all the required steps such as:

CODIDENT to create the currently required contents for
all of the $INCLtJDE fil~s that are part of the source
code listings Since all the modules will require
compiling, this stream will also PURGE USLname and BUILD
USLname.

SPL textname.TSTLIBRY, USLname, $NULL to compile all of
the source code files into the USL file.

PREP and Save the compiled program.

Computer Assisted VIEW, IMAGE & SPL 0037-6

2/ UDCname textname
SPL Itextname.TSTLIBRY, USLname, $NULL
PREP USLname, $newpass; MA~ATA=nnnn; C~P=I~. BA. pij, MR
PURGE Progname
SAVE $OLDPASS, Progname

UDCname textn~rne as a UDC with only one PAR~ which can be
used to compile any source text from TSTLIBRY to USLname
for PREP and SAVE of each modification during testing. It
is important to recognize that any program change that
intriduces global variables not previously used, will
require the Job stream to perform a complete recompile
with the expanded $INCLUDE of Global variables.

LBRARI~N user is the ACCOUNT LIBRARIAN, with AL,PH,~R

capability, home is the group LIBRARY and the source code
for production versions is in the group LIBRARY.

In addition to this, we have a group OLDLIBRY which will
contain a copy of the most recently replaced production
source code, and a group named OLDPROG which will contain
the most recently replaced PROG code. The steps to be
performed when a new version has completed its test and is
ready for production include:

3/ REN textname
RENAME Itextname.LIBRARY, !textname.OLDLIBRY
FCOPY FRO~ = Itextname.TSTLIBRY; TO = !textname.LIBRARY

REN is a UDC for quickly renaming source codes files that
are about to be replaced.

4/ An expanded version of the job stream in TSTLIBRY is
maintained as a SYSTE~ job so that it can include the
commands to DEALLOCATE before and ALLOCATE after the
complete SPL and PREP of the production version of the
program code.

As each new module is created, it is added to both of the
job streams so that the updating of any production version
can be accomplished with a minimum of instruction to the
computer.

D~TA TRANSFER~

Every application of VIEW ~nd IMAGg requires program code to
effect a data transfer between the Form Field and
itemname'setname. Character strings are a reltively simple
one to one transfer, but each of the numeric fields require
a translation between the character format of the form field
contents and the binary format of the database itemname. We

Computer Assisted VIEW, IMAGE & 3PL 0037-1

have simplified this transfer through the use of VG~T'TYPE

AND VPUT'TYPE intrinsics of our own creation. These
intrinsics operate on three I~TEGER ARRAYS.

- The first array contains the field numbers for each
window that is to be transferred, and the process is
termination by a '0' as the field number.

- The second array contains the same number of integer
elements, and each integer identifies the type of
conversion that is to be performed during the transfer.

- The third integer array agRin contains the same nu~ber of
elements, and the element is the word address of the
location on the stack for the database item.

The creation and keying into the program of these arrays is
tedious and easily subject to error. Since all of the
variables were identified during the run of these utilities,
we can readily have the three integer arrays and their
assigned values computer created and ready for inclusion in
the programs by a $INCLUDE statement.

SlJt~MARY

Our approach has been the application of creative laziness
to a more effective utilization of existing resources that
are available in the standard HP3000 utilites. While the
product of our efforts may be of some interest to other
us ers of IMAGE wi th SPL or VIE~-l, we feel that tell ing the
story of how our shortcuts have evolved, could be an
inspiration to others who should be looking for
opportunities to implement savings within their own
particular environment.

Computer Assisted VIEW, IMAGE & SPL 0031-8

Using COBOL II's Facilities

By: Patrick A. Lockwood

Orion Systems Technology, Inc.

1309 East Northern Ave., Suite 701

Phoenix, AZ 85020

Copyright 1988 Orion Systems Technology, Inc.

Page 0038-1 Using COBOL U's Facilities

INTRODUCTION

This paper is targeted at analysts/programmers who are familiar with COBOL, but
who have not had much experience utilizing it on the HP3000.

HP's implementation of 1974 ANSI Standard COBOL provides the designer and the
programmer with many tools to help develop robust systems, with techniques that
rival the current crop of fourth generation languages for speed, and allow the use of
concepts not usually associated with this high level language.

Thispaperwill exploretechniques usedtoquicklydevelop systemsinCOBOL II (most
of which is upwardly compatible with the ANSI '85 compiler), and to accomplish this
without sacrificing quality.

Some topics to be ~vered are:

* Use of MULTIPLE COpy LIBRARIES for both DATA and PROCEDURE

divisions.

* Commonly (and not so commonly) used INTRINSICS called from COBOL II,
and how they can help you.

* DECLARATIVES and I/O STATUS checking.

* PROCESS HANDLING vs DYNAMIC SUBPROGRAMS in on line menus.

Examplesfrom realprogramswill beusedthroughout, with minorchanges to protect
both the innocent and the guilty.

Using COBOL 11'. Facilities Page 0038-2

COpy LIBRARIES

I haven't worked on a computer system that uses COBOL without some form of the
COpy statement; however many make it inconvenient to implement.

HP has provided two facilities for managing copy libraries that provide the program
mer with great flexibility, as well as making standardization easy to implement.

1. MULTI-MEMBER library files.

On the HP3000, unlike many other systems, multiple members may reside in one
copy libraryfile. Normally, acopy libraryfile ismaintained as aKSAM file, which may
be easily manipulated with the COBEDIT.PUB.SYS utility. This utility allows you to
add new members, and to delete or edit existing members. Editing is handled by
process handling to the EDITOR while still within the COBEDIT utility.

copy VSAPTCD IN GCCl IB NOLI ST •
copy WSBANIC IN GCCLIB NOLIST.
copy WSCTlREC IN GCCllB NOLIST.
copy WSGLACCT IN GCCl IB NOl IST •
copy USJCII IN GCCl IB NOliST •
aPY WSlEDGER III GCCL IB NOL IST •
copy WSOWNER IN GCCl IB NOL IST •

copy CENLINEW IN COPYllB NOlIST.
aPY aIIURI IN COPYllB NOL IST •
aPY STOCALl" IN COPYL IB NOLI ST •
aPY VCALl" IN COPYL IB NOLI ST •
aPY PAUSEU IN COPYL IB NOLI ST •
aPY STDPRTRW IN COPYL IB NOL IST •

Figure 1

01 WSAPTCD
01 VSBANK
01 VSCTLREC
01 VSGLACCT
01 VSJCII
01 WSLEDGER
01 VSOUNER

01 CENLINEW
01 COIDIV
01 STOaLl"
01 VCALl"
01 PAUSEW
01 STOPRTRW

SPAGE "WOrking Storage Copy Meab!rs"102.2

102.3
102.4
102.5
102.6
102.7
102.8
102.9
103
103.1
103.2
103.3
103.4
103.5
103.6

2. MULTI-LIBRARY COpy STATEMENTS in a program.

Within one program,
you may copy mem
bers from multiple li
brary files, thus allow
ing you to maintain
separate libraries of
standardized routines
used in any program,
as well as libraries of
members unique to a
single application.

Figure 1 shows how these two facilities make it easy to combine data from multiple
copylibraries intoone program. Notethat two librariesare specified; COPYLIB, which
is the library of commonly used members, and GCCLIB, which contains record
descriptions used only in the GCC applications. The NOLIST entry tells the COBOL
compiler not to list the data being inserted into the program at compile time.

Page 0038-3 Using COBOL 11'8 Facilities

COpy LIBRARIES

The first copy library member listed in Figure 1 is CENUNEW, the commonly used
working storage for centering text in any line up to 132 characters long. Using the
COBEDIT utility, it's easy to list the data from a copy member to the terminal.

:RUN COBEDIT PUB SYS

HP32233A.01.05 COPYLIB EDITOR - COBEDIT SUN. FEB 14. 1988. 12:59 PM
(C) HEWLETT-PACKARD CO. 1986

TYPE "HELP" FOR ALIST OF COUMANDS.
>LlB .CQpYlIB
>LlST CENllNEW

Text-nome CENLINEW

PIC X(1}
132 TIMES
BY TOC.

PIC X(1}
132 TIMES
BY TIC.

COUP PIC S9(4) VALUE 79.

COMP PIC 59(4).
COMP PIC 59(4).

001OOOtt....tt••
001100*
001200. CENLINEW; Working storage for CENLINEP
001300·
001400·...••....
001500.
001600 05 LINE-LENGTH
001700
001800 01 BLANK-COUNT
001900 01 CHAR-COUNT
002000
002100 01 TEXT-IN.
002200
002300 05 TI-COL
002400 OCCURS
002500 INDEXED
002600
002700 01 TEXT-OUT.
002800
002900 05 TO-COL
003000 OCCURS
003100 INDEXED
>

Using COBOL II'. Facllnles Page 0038-4

COpy LIBRARIES

The COBEDIT utility allows you to switch between libraries; the following shows a
listing of a member of GCCLIB, which contains application specific record descrip
tions.

NOTE that COBEDIT allows back-referenced file names for selecting the current
library.

~-------------->LlB «ClIB
>LlST WSBANK

Text-nome WSBANK

PIC X(6).
PIC X(B).

PIC X(8).
PIC X(6).
PIC X(10).
PIC X(30).
PIC X(30).
PIC X(30).
PIC X(10).

PIC S9(9)V99 COMP- 3.
PIC S9(9)V99 COUP-3.

05 ACCOUNT-NO
05 JOB
05 BANK- ACCT- NO
05 NAME
05 ADDR1
05 ADDR2
05 LAST-CK-NO
05 OPEN-CASH
05 TRANS-CASH

290300ttt..
290400t
290500t WSBANK; Working Storage for BANK-DESCR Data Set in DAPTnn Data Bose
290600*
290700.."*
290800.
290900 02 BANK- DESCR.
291000 05 CASH-ACCT-IDX.
291100 10 JOB-IDX
291200 10 ACCOUNT-IDX
291300
291400
291500
291600
291700
291800
291900
292000
292100
292200
292300
>00

END or PROGRAM

Commonroutines mayalsobestored in copy libraries; oncetested, they may beused
easily by all members of the staff without worrying about re-inventing the wheel, and
withassurance thattheyarenot contributingtowards bugsdiscovered duringtesting.

Page 0038-5 Using COBOL II's Facilities

COpy LIBRARIES

A common routine CENLINEP is stored in COPYUB; many programs in different
applications have occasional need to center text.

>llB tCOPYlIB
>LlST CENIINEP

Text-nome CENLINEP

001000..••..••..
001100.
001200. CENLINEP; Centers TEXT-IN in TEXT-OUT
001300·
001400....••....
001500
001600 MOVE ZEROS TO BLANK-COUNT.
001700 MOVE SPACES TO TEXT-OUT.
001800
001900 IF LINE-LENGTH <1OR
002000 LINE-LENGTH> 132,
002100
002200 MOVE 132 TO LINE-LENGTH.
002300
002400 SET TIC TO LINE-LENGTH.
002500 PERFORM CENLINE-LAST-COUNT.
002600
002700 SET TIC TO 1.
002800 PERFORM CENLINE-FIRST-COUNT.
002900
003000 IF BLANK-COUNT <LINE-LENGTH,
003100
003200 COMPUTE CHAR-COUNT = (BLANK-COUNT / 2) + 1
003300
003400 SET TOe TO CHAR-COUNT
003500
003600 COMPUTE CHAR-COUNT = LINE-LENGTH - BLANK-COUNT
003700
003800 PERFORM CENLINE-MOVE CHAR-COUNT TIMES.

Continued on Page 7 ..•.

Using COBOL 11'. Facilities P8g8oo38-8

COpy LIBRARIES

003900
004000 CENLINE-lAST-COUNT.
004100
004200 IF TI-COL (TIC) = SPACE.
004300
004400 ADO 1 TO BLANK-COUNT
004500 IF TIC > 1,
004600
004700 SET TIC DOWN BY 1
004800 GO TO CENLINE-LAST-COUNT.
004900
005000 CENLINE-FIRST-COUNT.
005100
005200 IF TI-COL (TIC) = SPACE,
005300
005400 ADD 1 TO BLANK-COUNT
005500 IF TIC <LINE- LENGTH,
005600
005700 SET TIC UP BY 1
005800 GO TO CENLINE-FIRST-COUNT.
005900
006000 CENUNE-MOVE.
006100
006200 MOVE TI-COL (TIC) TO TO-COL (TOC).
006300
006400 SET TIC, TOC UP BY 1.

>

The ability to have multiple libraries accessed within one COBOLprogram makes the
use of common routines a 'common' occurrence in shops that rely on standardized
techniques to develop programs quickly.

P8ge0038-7 Ualng COBOL Il'a F8Cllnies

COpy LIBRARIES

Combining the copy members CENUNEW and CENUNEP from COPYUB, and
WSBANK from GCCLIB, we're able to use coding techniques like the following:

MOVE NAME IN WSBANK
MOVE 30

PERFORM CENLINEP.

MOVE TEXT-OUT

TO TEXT-IN.
TO LINE-LENGTH.

TO HEADING-BANK-NAME.

NOTE that the use of the copy member name as a paragraph name (CENLINEP) is
acceptable; the entry in COPYLIB actually has no paragraph name.

Similarly, by beginning the working storage copy members with a period (.), and
having the '01' level be prior to the COpy statement, allows reference to the group
item by its copy member name (WSBANK), as well as by the '02' level that
corresponds to the data set name (BANK-DESCR).

The NOLISTconvention forcopy members is common in shopsthat make heavy use
of copy libraries; typically, each programmer has a listing of the common library
(COPYUB) athis/herdesk, aswell as listings ofthose application dependentlibraries
(such as GCCUB) that are frequently referenced. This makes compiled listings
shorter, and for programmers experienced with the shop's conventions, easier to
work with.

Using COBOL II'. Facilities P8ge0038-8

DECLARATIVES and I/O STATUS

You've seen it, the infamousTOMBSTONE printed by the file system when aCOBOL
program attempts an I/O operation that is unsuccessful, and for which there wasn't

an appropriate error handling routine established.

ManyprogramscheckforAT ENDand INVAUD KEYconditions, butareatatotal loss
if an OPEN fails, or if the INVALID KEY condition doesn't allow the program to
adequately diagnose the problem, thereby preventing 'elegant' error handling.

Two features of COBOL II (and COBOL85) provide the means to trap I/O errors and
take the appropriate action based upon the actual condition that occurred.

DECLARATIVES.

This Section of the program, which must be the first Section within the Procedure
DMsion, defines procedures to be used when the file system discovers an error or
unusual condition.

FILE STATUS.

This entry in the SELECT filename clause defines a storage location in which the
status of the most recent I/O operation for a file is returned.

The two, working in combination, give the programmer complete control over error
and exceptional condition processing for a file.

To see how these work together, we'll begin with some sample program code,
beginning on Page 10 with a file select clause using the FILE STATUS option.

Page 0038-9 Using COBOL U's Facilities

ASSIGN TO "GLBYTDAD"
ORGANIZATION IS INDEXED
ACCESS IS DYNAUIC
RECORD KEY IS WORK-KEY
fiLE STATUS IS 10ERRW.

DECLARATIVES and I/O STATUS

The FILE STATUS item must be selected if you want to trap I/O errors and be able
to determinethe cause ofthe I/Ofailure. When an inputoroutputoperation has been
performed on the file. the status item is updated with atwo character code indicating
the status of the operation.

Ifthefirstbytecontains0 (ZERO), theoperationwasbasicallysuccessful.The second
byte contains additional information further defining the status.

5.2 SPAGE "INPUT-OUTPUT SECTION"
5.3 INPUT-OUTPUT SECTION.
5.4
5.5 fiLE-CONTROL.
5.6
5.7 SELECT WORK-fiLE
5.8
5.9
6.0
6.1
6.2
6.3

The example above shows a FILE STATUS item of IOERRW. This is a two byte field
defined as a commonly used member of COPYLIB.

Page 11 shows this copy member, which also includes an additional field used for
interpreting the second byte of the status returned for I/O operations.

Using COBOL II'. Fecllllles Page 0038-10

DECLARATDVES and I/O STATUS

Meanings of the first byte (IO-ERR-1) are:

* 0 Successful completion
* 1 At end, EOF has been reached
* 2 Invalid key, duplicate for writes, or not found for reads
*3 Physical I/O error, or beyond EOF

••••••••••
*
* ICERRW: Worlth. Storage for FILE STATUS

*••••••••••

••••••••••
*
* Used to convert the second byte of FILE
* STATUS (lOERRV) to 8 val id MPE fi le system
* error code (FSERR)

*
02 100000-CIlARS PIC 1(2) VALUE "00". • •••••••••

02 FILLER
REDEFINES 100RRV-CHARS.

88 10-OK VALUE "0".
88 10-At-EII) VALUE "1".
• IG-IIYALID-m VALUE "2".
88 10-PERMANENT-ERRat VALUE "3".
88 10-IIISC-ERROR VALlE "9".

88 10-SUCCESSFUL
as 10-ALUIED-DUPL
88 IO-EOF
as 10-SEClENCE-ERR
88 10-DUPL-KEY
88 10-11"-FOUIID
88 10-BCUlD-VI0l

88 10-PERM-ERRat

05 10-ERR-1

05 10-EII-2

VALUE "00".
VALUE "02".
VALUE "10".
VALUE "21".
VALUE "22".
VALlE "23".
VALUE "24",

"34".
VALUE "30".

PIC 1(1).

PIC 1(1).

01 100RR-CONVERT.

05 100RR-DlIItY PIC 1(1) VALUE
Lell-VALIES.

05 100RR-CHARACTER PIC 1(1).

01 UERR-IlPE-ERR-"
REDEFINES 100RR-allVERT

altP PIC 59(4).

88 100UIICIITAIllABLE VALUE 90,
91.

88 100FILE-IIOT-FIIJIID VALUE 52,
53.

88 10-DEY-tllAVAILULE VALUE 55.
88 IO-DUPLICATE-FILE VALUE 100,

101.

P8ge 0038-11 Using COBOL II's Fecilities

DECLARATIVES and I/O STATUS.

The other feature that helps us handle I/O errors is afairly simple routine inserted in
the first part of the program; it works for main programs and subprograms.

The program must have a DECLARATIVES Section, which must be the first section
in the program. NOTE that the use of a section for Declaratives requires a section
name for the first paragraph of the normal procedure division, even if the program is
not to be sectioned to create additional code segments.

A sample DECLARATIVES follows.

40.3 SPAGE "Procecb'e Division - section 0"
A~SIiprJytI» 40.4 PROCEDURE DIVISIOII USING STDCALL",

IJei9 a*l1Iih lie 40.5 DBCALL",
1JfIfI1¥!/trs••• 40.6 VCALL",
~trWI1B1IJtn 40.7 USAPTCD,

40.8 STDPRTRW.
40.9
41

IiIJIpkdsIottmfd10 41.1 DECLARATIVES.
/Jegi1/Ef1MIMS 41.2

!ZCIOIMIJ£mpir;r/ 41.3 GLBYTOA-START SECTUII 00.
41.4

UiEstitnBi 41.5 USE AfTER ERRCII PROCEDlIlE CIt IIItK-fILE.
41.6

rolMetlbfIJfR¥fIiI 41.7 GLBYTDA-lo-ERRCIt.
IUWJ ITpoarJn 41.8

41.9 If 10-IIISC-ERIKIt,
42

Qnvt2fIIfJIe (J/ 42.1 lINE 10-ERR-2 TO 100RR-CHARACTER
Ql;JfIfb IJlliTi'IUII. 42.2

42.4 lINE SPACES TO STD-CALL-RESULT-IISG
42.5

Q(1YIi?111l!S!6Je 42.6 CALL IITRINSIC "fERRIISG" USING 100RR-MPE-ERR-IRIt,
42.7 STD-CALL-RESULT-IISG,
42.8 STD-CALL-COIIDTN-WRD
42.9

r"mlunbtDIT 43 IIOVE 100RR-MPE-ERR-'" TO STD-CALL-COIDTN-WRD.
43.1

IiIJIpkdsIottmfd 43.2 EIID DECLARATIVES.
43.3

IJJrJi7 tm1dIJfO!P1I 43.4 'llnDA-BEGII SECT1ell 00.
IIiIJB:IinIlI1Ie 43.5

43.6 PERFCIIII IDISEKEEPING.

Using COBOL II'. Facllnles Page 0038-12

DECLARATIVES and I/O STATUS

The documentation for COBOL provides the rules for precedence for FILE STATUS
items and USE PROCEDURES (with a flow chart further explaining this in KPR#
4700245142 in the System Staus BUlletin); it really boils down to a simple statement
....'"you use aFILE STATUS item, andhave a USE PROCEDURE, your destiny is in
your own hands'.

The FILE STATUS item is updated for all of your I/O, and the USE PROCEDURE is
executed for every exceptional condition. This allows the following type program..
ming:

The file is first opened for
input; just to see if it's
there. If so, the control
record is retrieved. If it
doesn't exist, the user is
asked for parameters for
building a new file, and for
data to be stored in the
control record.

The change in processing
based upon 10-FILE
NOT-FOUND (FSERR 52)
is easy to handle; all other
I/Oerrors are unexpected
and cause an exit to the
error handling routine.

The USE Procedure is in
voked for all 'NOT Io-OK'
situations, and the FILE
STATUS item is set after
each I/O.

236.4 'PAGE ICBEGIN-WORK-FlLE"
236.5 BEGIN-WORK-FILE.
236.6
236.7 OPEN INPUT WORK-FILE.
236.8
236.9 IF la-OK.
237
237.1 CLOSE WORK-FILE
237.2
237.3 OPEN 1-0 WORK-FILE
237.4
237.5 IF la-OK,
237.6
237.7 PERFORM GET-CONTROL-RECORD.
237.8
237.9 IF 10-FILE-NOT-FOUND,
238
238.1 PERFORM ASK-FOR-CONTROL-DATA
238.2 PERFORM ISSUE-FILE-EQUATION
238.3
238.4 OPEN 1-0 WORK -FILE
238.5
238.6 IF 10-OK.
238.7
238.8 PERFORM WRITE-NEW-CONTROL-REC.
238.9
239 IF NOT 10-OK,
239.1
239.2 GO TO 10-ERROR-EXIT.

Ifthe FILESTATUS contains a9 inthe first byte (10-ERR-1), the second byte is moved
to 10ERR-CHARACTER, which is used, via the redefinition of 10ERR-CONVERT, to
call INTRINSIC -FERRMSG" to obtain an interpretation of the error condition to place
in a message passed back to the caller.

P8ge 0038-13 Using COBOL II's Facilities

DECLARATIVES and I/O STATUS

In the example shown on Page 13 only the IQ-FllE-NOT-FOUND condition was
specifically anticipated. But note howeasy itwould be toattemptthe open, then ifthe
condition 10-UNOBTAINABLE (Exclusive Violation) was found, the program could
'elegantly'letthe userknowthat thefile was in usebysomeone else, and request that
a later retry would be appropriate.

The COBOL manual recommends calling ·CKERROR" to convert the second byte of
FILE STATUS to an ASCII number, however the simple move to a redefined integer
(COMP) accomplishes the same thing, and that number is in the correct format for
calls to uFERRMSGI'.

Of course, there are many other ways to accomplish the same logic that this little
routine uses; it only points out one set of circumstances that make use of these
techniques. Once mastered, and with key elements readily available in a COPYlIB,
you'll find its flexibility to be helpful in complex applications.

Obtaining actual file system error codes for those conditions that do not begin with
a9 in thefirstbyte isalsopossible.The intrinsicFCHECKapplies tofiles on anydevice,
and can be used simply. For example:

CALL INTRINSIC IIrCHECK" USING WORK-FILL
IOERR-MPE-ERR-NUM.
\\. \\. \\.

This returns the file system error code for the last I/O for WORK-FilE into IOERR
MPE-ERR-NUM.

NOTE that the intrinsics manual asks for filenum for file intrinsics; COBOL program
mers may substitute filename, as defined in a SELECT statement. The backslashes
in the call above stand for 'null' parameters; optional parameters not required for a
simple call Just for the file system error number.

To easily change programs from COBOL74to COBOla5, a new copy member can
be created that contains the FILE STATUS errorcodes used with the newer compiler
(and run time processing). The table on Page 15 provides a brief overview of the
differences.

Using COBOL 11'. FacliRles Page 0038-14

DECLARATIVES and I/O STATUS

COMPARISON of ANSI 85 va ANSI 74 1·0 STATUS CODES

~SI85 ANSI74 MEANING

04 00 Read length of record doesn't match file.

OS 00 Optional file not present; created.

07 00 File NOT a TAPE file as OPEN/CLOSE implies.

14 . 00 Relative record number larger than PICTURE of key descriptor.

24 24 Write beyond file boundary, or relative record number larger than
PICTURE of key descriptor.

35 9x Non-optional file not present; not created.

37 00 Open mode invalid for file type.

38 00 Attempted OPEN on file closed with lock.

39 00 Attribute conflict; file not opened.

41 9x Attempted OPEN on file that is open.

42 9x Attempted CLOSE on file that is not open.

43 9x/00 Attempted DELETE/REWRITE without prior READ.

44 00 Boundary violation or invalid record size.

46 10 Attempted READ after EOF or previously unsuccessful read.

47 9x/00 Attempted READ on file not open for input.

48 9x/00 Attempted WRITE on file not open for output (or 1-0).

49 9x/OO Attempted REWRITE/DELETE on file not open for 1-0.

Creating anew copy library member incorporating the revisions to 1-0 Status makes
upgrading to COBOL 85 an easier task.

Page 0038-15 Ualng COBOL lI'a Facilities

SOME ADDITIONAL INTRINSles

TO introduce the use of some intrinsics that are fairly easy to use from COBOL II, I'll
describe a situation that we ran into, and the solution that we used. Ofcourse, there
are always multiple solutions to any design/programming problem, but this will be
fairly illustrative of the power available to COBOL programmers.

A system, written in COBOL 68, was being converted to COBOL 74. To those ofyou
never exposed to the wonders ofCOBOL68, it had no facility for calling HP intrinsics
directly; any needed intrinsic calls were written in SPL First the COBOL program
called the SPL intrinsic handling routine, which called the instrinsic, then returned to
the COBOL program. It was a little cumbersome, but it worked. However, it did
discourage COBOL shops from heavy use of intrinsics. Naturally, as part of the
conversion process, direct calls to intrinsics were substituted for the calls to SPL
intrinsic handling routines.

The system being modified was structured with a MAIN SUPERVISOR, which called
dynamic subprograms for various required functions. Due to the system table limits
at the time the system was developed (CST entries, maximum code segments per
process), it had to also initiate a second level supervisor for some functions, using
process handling to accomplish this.

Called Programs

Initiated via Process Handling

Called Programs

NOTE that parameters were passed between processes by entries in a data base.

Using COBOL 11'. Fecllftles Page 0038-18

SOME ADDITIONAL INTRINSICS

Ourcharterwasn'ttototally redesign thesystem, butwewereasked ifwe couldspeed
the movementbetweenthe mainsupervisorandthesecondary supervisor.Thebasic
logic in use was:

MAIN SUPERVISOR

Post parameters to control data base
Cose terminal
Call SPL routine to CREATE and AcnvATE process

{ Wait for Tenant Supervisor}

Retrieve parameters from control data base
Open terminal
Ifparameters indicate a differentproductiondatabasewas opened
by tenant supervisor, close initial database and opendata base that
had been opened by tenant supervisor.

TENANT SUPERVISOR

Open control data base, and retrieve parameters
Open production data base
Open forms file
Open terminal

{Additional Processing}

Post current data base name and other parameters to control data
base, then close it.
Cose production data base
Cose terminal
Close forms file
STOP RUN

P8ge 0038-17 Using COBOL II'. Fecllitles

SOME ADDITIONAL INTRINSICS

Aftersome analysisofthefrequencyofuseoftheTenantSupervisor (howoften itwas
initiated from within the Main Supervisor by a user in one session), we elected the
following two concepts for reducing the transition time:

1. Eliminate the control data base as a means of passing parameters.
Several options came to mind; we chose an extra data segment as a
means ofpassing parameters between processes. They provide afast
means of sharing data between processes, and implementation in the
system would be easy, utilizing the existing data structure (the control
record layout) for parameter storage.

This eliminated the data base open, GET/PUT I/O, and data base
close in both the Main Supervisor as well as the Tenant Supervisor.

2. Because the frequency of use seemed to justify it, we elected to not
terminatetheTenantSupervisor(STOP RUN) when itscurrentprocess
ingwascomplete, butto retain itas aprocessthatcould be re-activated
when next needed.

This eliminated the repeated overhead of program loading, forms file
open, and data base open (so long as the data base requested in the
passed parameters was the same as the previously requested data
base).

The results were quite acceptable to the users.; the transition time YlaS..reduced. On
the first initiation of the Tenant Supervisor during anyone session, there was still a
noticeable delay, but not as long as previously.

Thesecond, and subsequent initiationsoftheTenantSupervisorwere ataspeedthat
gave no indication that another program was being started. The following intrinsics
were used to accomplish this from within COBOL programs:

GETDSEG
DMOVOUT
CREATE
ACTIVATE
DEMOVIN
KILL
FREEDSEG

Using COBOL 11'. Fecl181es Page 0038-18

SOME ADDITIONAL INTRINSICS

To illustratehowthese may be usedfrom within COBOLprograms, we'll startwith the
WORKING STORAGE used in the Main Supervisor.

55.4 01 DSEG-IDK-AREA.

55.5

J.s:sifoed IJf JIPI' (Cl7lBlY:) 55.6 05 DSEG-IIIDEX alP 'IC 59(4) VALlE ZERO.

oszr;/etJ,fUJ (in 1IDIfir) 55.7 05 DSEG-LGTH alP 'IC 59(4) VALlE '76.

Jhwmm 4frjfrJerIMIlJe 55.8 05 DSEG-ID IDF 'IC 59(4).
55.9 05 DSEG-ID-I REDEFINES DSEG-ID 'IC 1(2).

56

Jl6JfiJw IaBIitJo 56.1 01 DSEG-DISPLACEJEIIT CDF 'IC 59(4) VALUE ZERO.

ItJnJs /() IJJI()YIJI,/tJIA7WJIIT 56.2 01 DSEG-"'-TRAIISFER alP 'IC 59(4) VALUE 176.
56.3

'!JI1or ar:1Jtet:/ptrJteY 56.4 01 CREATE-'IN alP 'IC 59(04) VALUE ZERO.
56.5

Jhwmm to IJe ioilillierl 56.6 0' CREATE-PROG-twE 'IC X(27).

Extra Data Segments are an additional
segment of memory that a program is
allowed to use for storage of data. They
may be easily shared by multiple proc
esses within the same process tree (fa
ther process and its sons). One advan
tage they have is that transfer of data isat
memory to memory speeds; there is no
disc I/O associated with their use, other
than any required by MPE's memory
manager.

The GETDSEG intrinsic is used to create
8 new Extra Data Segment, or to gain
access to one that has been previously
created. The 10isthe namebywhichyour
program attempts to initially perform the
GETDSEG, for the stated LENGTH.

The INDEX is a unique number assigned
by MPE; once acquired, the index is used
to obtain access to the data in the DSEG
using the DMOVIN intrinsic (move data
from extra data segment to your
program's working storage) and the
DMOVOUT intrinsic (move data from
working storage to the extra data seg
ment).

DISPLACEMENT is like a subscript or
index, telling the DMOVIN and
DMOVOUT intrinsics where in the Extra
Data Segmentto begin the move ofdata,
using 0 (ZERO) as the firstword. The size
ofthe data string to be moved is stated in
number of words.

P8ge 0038-19 Using COBOL II's Facllftles

SOME ADDITIONAL INTRINSICS

The first change to the Main Supervisor was to add a call to GETDSEG, done only
oncein the intialization logic.Thisestablishesthe datasegment, andassignsaunique
indexnumberto it. This is the identifier bywhich itwill be recognized by anyprogram
that is a member of this process.

The 10 is the namebywhich otherprocesses sharing this extra datasegmentwill first
obtain access to it.

The size, in number of words, is the size of the record used in the original data base
parameter passing routine.

A.ssip 8IJ ID to ll5ZYl

It!tIJllJtd1.1JIPl'
Ia.ifIIJ tisifJtl

JD esl4IJistJed81KJ1'e

Old lor emJI" ctJlJtlilitms.
Ubuxl esl4IJir1J

tIiJI,pJasticf 8JKIezillo
CIJIJJIJJ(JfJ emJI" di5p18.1
lrJulliJe tarll.I Jl8JiJ
~1oI"8IJ

'bJlasI1rJpJJic"emnIouJJd
in lain (JJ"SlJIpIqfF8lJlS.

107.9
108
108.1
108.2
108.3
108.4
108.5
108.6
108.7
108.8
108.9
109
109.1
109.2
109.3
109.4

MOVE "M" TO DSEG-ID-X.

CALL IIiTRIIiSIC "GETDSEG" USIIiG DSEG-INDEX,
DSEG-LGTH,
DSEG-ID.

IF DSEG-IIIDEX > 11m AID DSEG-ltlDEX < 12005

MOVE "aJILD DSEG FAILED" TO STD-CALL-RESULT-II$G
IDlE "GO" TO SID-CALL-RESULT-cmE

CDUVTE STD-CALL-CDDTII-YIU) • DSEG-INDEX

PERFCIUlJ DISPLAY-RESULTS-UPCII-lDISOLE

GO TO EJI)-OF-PROGRM.

Once established, the Extra Data Segment may be used repeatedly. There is no sig
nificant time used in acquiring an Extra Data Segment; it is significantly less than the
time used to open a data base.

The errorconditions forwhich thetest is done are items such as invalid length, you've
attempted to exceed the maximum configured XOSEGS, etc.

Using COBOL II'. Facllftl8s P8ge 0038-20

SOME ADDITIONAL INTRINSICS

Theend ofprogramroutinewasmodifiedto includeacall to FREEDSEG; this releases
the the data segment from the session. Perhaps not strictly required in this
application; experience has shown that good housekeeping pays off.

The same is true for the call to the KILL intrinsic. This deletes the son process; that
is the Tenant Supervisor, if it had been intitiated.

116.1 EIID-OF-PROGRAM.

116.2
b ft'lJ8ol Supenisor mine JI7111 116.3 IF CREATE-'III NOT = ZERO,

116.4
116.5 CALL IIiTRIIiSIC "KILL" USIIiG CREATE-'Ili.
116.6

/IJ'Il5Z'C IfIJS ar:tJlerI, free /1 116.7 IF DSEG-IIIDEX NOT = ZERO,
116.8
116.9 CALL IIlRIIiSIC "FREEDSEG" USIIG DSEG-IIIDEX,

117 DSEG-ID.
117.1

/IpMudioo 6ala IJase open. 117.2 IF DB-OPEN,

d:lieJl 117.3
117.4 PERFORM DBCLSDBP.

117.5

~ IIJe 10I1/JSfile 117.6 PERFORM VCLOSEFCltMF.
117.7

~ IIJe lenniJNJI 118.2 PERFCItM VClOSETERM.
118.3

.&illIJifpJqfl1Jm 118.4 IJ]IACK•

Earlier, the use of copy members for commonly used functions was discussed. This
routine includes performs of three commonly used copy members:

DBCLSDBP; closes the currently open data base
VCLOSEFORMF; closes the currently open VPLUS forms file
VCLOSETERM; closes the currently open terminal file used by VPLUS

Page 0038-21 Using COBOL 11'. Facilities

SOME ADDITIONAL INTRINSICS

The routines to create and/or activate the Tenant Supervisor and pass parameters
become easy after the preliminary work has been done.

439.3 IIIITIATE-TEIWIT-SUPERVISOR.
440

JIoyefJlWmeleIS 10J'll5'irl 440.1 PERfClUt MOVEClJT-DSEG.
440.2

thfJlt'/JcliYale a/J()lJJerpn:Jt:eS.'t" 440.3 PERfClUt CREATE-AND-ACTIVATE- TSUPVOAX.

lJJeo 1fIJll1orillo Mum 440.4

JIove dllJ4fer/jWIJIJ1e1elS 118'* In 440.5 PERfClUt IlNEIN-DSEG.

440.6
440.9 • cantinJe processing
441.6
441.7 IlNECIJT-DSEG.
441.8
442.7* set up parllDetera here
443.3

!B' IJJe IHlIT8BpJer/ by 443.4 CALL INTRINSIC "DMOVWT" USING DSEG-INDEX,

f»l.lDl 443.5 DSEG-DISPLACEMENT,

SIarIinIIfJC8li()JJ Iii laJrellJ.5'l:C 443.6 DSEG-NUM-TRANSfER,

JlumlJer 01 'fJIds 10 lransler 443.7 WSCTLREC.

3Ju.n:e 01dal8 10 IJe mt»WIoul 443.8
443.9 IF C-C lOT = ZERO,

ClJecJ lor enrJJ:$ antieril ilaDy 444

IOUDd 444.1 lINE "OM" TO STD-CALL-RESULT-aJ)E

444.2 lINE "DIIDVWT fAI L· TO STD-CALL-RESULT-MSG

444.3
444.4 PERfORM DISPLAY-RESULTS-UPON-CONSOLE

444.5
444.6 GO TO END-Of-PROGRAM.

NOTE that this process is suspended after the Tenant Supervisor is initiated (Une
440.3), so the next instruction will be executed as soon as control is returned to this
process. The use of the Extra Data Segment is barely more difficult than a "CALL
USING- when dealing with a subprogram.

Continued on Page 23 .•.

Ualng COBOL 11'. Facilities Page 0038-22

SOME ADDITIONAL INTRINSICS

Creating and/or activating a process is not difficult. NOTE that the %101 parameter
(flags. as defined in the Intrinsics Manual) tells MPE that the created process should
usethe NOCB parameter; it has stacksize p~oblems and needs the space this frees.

PERfORM DISPLAY-RESULTS-UPON-CONSOLE

PERfmtM DISPLAY-RESULTS-UPOtiI-CONSOLE

GO TO END-Of-PROGRAM.

USING CREATE-PIN,

2.

TO STD-CALL-RESULT-MSG

TO STD-CAll-CONDTIl-WRI)

TO STD-CALL-RESULT-CCI)E

TO STD-CALL-RESULT-M$G
TO STD-CALL-CONDTII-IDU)

TO STD-CALL-RESULT-CCI)E

GO TO EIID-Of-PROGRAM.

MOVE "ACTIVATE fAILED"

MOVE CREATE-PIli

MOVE "CR"

CALL IIiTRIIiSIC "CREATE" USING CREATE-PROG-IlAME,

\\,
CREATE-PIN,

\\.
X101.

lINE "CREATE fAILED"
MOVE CREATE-PIli

MOVE "CR"

If C-C < ZERO,

CALL IIiTRINSIC "ACTIVATE"

If CREATE-PIli < 1 CIt > 1024,

If CREATE-PIli = ZERO,

MOVE "TSUPVOAX.grcqJ.acct" TO CREATE-PROG-NAME.

CREATE-AID-ACTIVATE-TSUPVOAX.444.8
444.9
445.1
445.2
445.6
445.7
445.
445.9
446
446.1
446.2
446.3
446.4
446.5
446.6
446.7
446.8
446.9
447
447.1
447.2
447.3
447.4
447.5
447.6
447.7
447.8
447.9
448
448.1
448.2
448.3
448.4
448.5
448.6

Jdilele IIJe I'eo8nI
3gJeM;rJI: t!IjJtX'/q 10

IJe6diwJledIJf il
IIemnbIJJd wI

tlJ!fifDtJI~
aBfItd IIiIIIJJe

jJIfD!AT lie ar!IIItfI

MJ etJiI7jJtJiJJl /JIJ/1Je

HKIJIIDIIJtTIfJiIInJetI

Ih INIiII= j&7!II

MDJ" IffJdiwJIe
JJIIJer11t'IIfJ~

II!IroitJrJIer
IIenr;nAJ//IJd erillo

tmJJIJQIJ~

JrdiI!

Continued on Page 24 •••

Page 0038-23 Using COBOL II'. Facilities

SOME ADDITIONAL INTRINSICS

When theTenant Supervisor returns control to the Main Supervisor, the passed, and
maybe changed, parameters are restored using DMOVIN. Its operation is just the
reverse of the DMOVOUT intrinsic; it moves data from the Extra data Segment into
the program's Working Storage.

PERFCItM DISPLAY-RESULTS-lJP(II-aliSOLE

GO TO END-Of-PROGRAM.

IF C-C NOT = ZERO,

CALL IIiTRIIiSIC "DMOVIII"

TO STD-CALL-RESULT-cmE

TO STD-CALL-RESULT-IISG

USING DSEG-INDEX,

DSEG-DISPLACElCfIlT,

DSEG-NUM-TRAJISFER,

WSCTLREC.

MOVE "DI"
lINE "DMDVIII fAILED"

448.8 IIOVEIII-DSEG.

448.9
449
449.1
449.2
449.3
449.4
449.5
449.6
449.7
449.8
449.9
450
450.1
450.2
450.3
450.4* Restore p8r~ters here

IJwIIIIJI:r!JfJllJ CA'118lTl
J1IufiJIr ItJc8IiJJJ ioJar:
MunIJer 0/IIDIrlr If}~

I/uzt!i in~sIIJnfIe

/Iemn ItJuJxt eDl

The Main Supervisor code to replace control data base open, gets, and puts was
easily replaced by the GETDSEG, DMOVOUT, DMOVIN, and FREEDSEG intrinsic
calls.

But what about the Tenant Supervisor?
What changes did it require for an Extra Data Segment?
And how could we eliminate its startup overhead?

Using COBOL II'. F8CUftl.8 P8ge 0038-24

SOME ADDITIONAL INTRINSICS

The initiated program needs to do some
of the same things as the initiator. It must
use GETDSEG to acquire access to the
ExtraDataSegment, anditusesDMOVIN
and DMOVOUT to receive and return
parameters in the Extra Data Segment.

However, to avoid startup overhead, it
needs some slight modifications. First, it
needs to have a way to suspend itself,
rather than completely terminate.

This allows it to be re-activated in the
same state that it was in when it sus
pended.Thatmeansthatanyfilesopen at
the time it suspended will still be open
when it is re-activated.

It must, therefore, be able to recognize
whether the current activation is an initial
activation, or a reactivation. This is an
easy task, since the DSEG-INDEX itself
becomestheswitch; ifnon-zero, then the
program was Just re-initiated.

67.5 PROCEDURE DIVISUII.
57.5
57.6 TSUPY-START.

57.7
57.8 IF DSEG-llmEX =ZERO,

t1Jtd IlWl-IIIIC AJr 57.9
1iJ'sf 1iIJIe;-ifJr) 6C(jlIi~ 58 PERFCIUlJ IKIJSEKEEPIIG

IJ!iITlMJtltIJ tJIIJer 58.1
iIJiIiIIizJJ/it /arb 58.2 CAlL IIITRIIISIC "GETDSEG" USIIG DSEG-INDEX,

58.3 DSEG-LGTH,

58.4 DSEG-ID.

58.5
58.6 IF DSEG-INDEX > 11m AND DSEG-IIIDEX < X2OO5

/It!I1'I:nbuxt elil 58.7
58.8 MOVE "OS" TO STD-CALL-RESULT-COOE

58.9 MOVE "BUILD DSEG FAILED" TO STD-CALL-RESULT-MIG

59 GO TO EIID-Of-PROGRAM.

59.1

JItJe iJJ jIN1II/Jf!IIn 59.2 CALL IITRIISIC "DMOVII" USING DSEG-lImEX,
59.3 DSEG-DISPLACEJElT,
59.4 DSEG-IlUM-TIWISFER,
59.5 USCTLREC.
59.6

/IttTrnbJod eli! 59.7 IF C-C lOT III ZERO,

59.8
59.9 lINE "OM" TO STD-CALL-RESULT-COOE
60 IIOVE "DMDVII FAILED" TO STD-CALL-RESULT-IISG
60.1 GO TO END-OF-PROGRAM.

Page 0038-25 Using COBOL II's Facilities

SOME ADDITIONAL INTRINSICS

The housekeeping routines, which are only executed on the first activation of the
program, include terminal and forms file opens, as well as a data base open.

On second, and subsequent initiations, these routines are bypassed. The GETDSEG
isn't extremely time consuming, but the file opens create tremendous overhead.

The normal proc-
essing can nowcon-
tinue as if this were a 66.9 IKIJSEKEEPING.

dynamically called
67
67.1 MOVE "AM"

SUbprogram; if the 67.2 MOVE "II"

currently open data
67.4
67.6 MOVE "AIBOOOF.lroup.8CCOWIt"

base is the correct 67.7

one (baseduponthe
68.1 PERFORM WFENfORMf •
68.2

passed parameters 68.3 If IIOT Y-OK,

in the DSEG), the
68.4
68.5 MOVE "VOPENfORMf fel led' ,

program can pro- 68.6 MOVE "Yf"

ceed with the next
68.7 MOVE V-STATUS
68.8 GO TO END-Of-PROGRAM.

VPLUS screen to be 68.9

displayed the
70.3 11M 9

to 70.4

user. 70.5 PERfORM ..eIlTERM.

70.6
70.7 If IIOT Y-OK.

There's one last 70.8

thingwe havetotake
70.9 MOVE "VOPEIlTERM fel led' ,

71 MOVE Y-STATUS

care of; ensuring 71.1 IIOVE "YT"

that when the pro-
71.2 PERFc:mI YCLOSEFCllMF,

71.3 GO TO END-Of-PROGRAM.

gram is ready to re- 60.9

turn control to the
61.8 PERFORM OPEII-PROPER-DATA-BASE.

TO DSEG-ID-X.
TO DB-OPEN-SU.

TO Y-fORJlS-FiLE-IlAME.

TO STD-CAlL-RESULT-MSG

TO STD-CAlL-RESULT-cmE
TO STD-CAlL-CONDTN-WORD

TO Y-TERM-anL.

TO STD-CAlL-RESULT-MSG
TO STD-CALL-COIIDTII-IDU)

TO STD-CALL-RESULT-cmE

MainSupervisor, itsuspends itselfratherthancompletely terminating. This ishandled
through a small change to the end of program routine.

Using COBOL 11'. Facllnles P8ge 0038-28

SOME ADDITIONAL INTRINSICS

Theend ofprogram routinehaschecksforerrorsdiscoveredbyprocessing routines,
and a call to intrinsic ACTIVATE. Calling ACTIVATE with a PIN number of 0 (ZERO)
indicates to MPE that you want to activate the Father of the current process.

USIIiG 0,3.

TO STD-CALL-RESULT-C(I)E
TO STD-CALL-RESULT-MSG

TO TSUPV-STD-CALL-RESULTS.
TO CR-WSAPTCD.
TO CR-USER-PARMS.

lINE "DS"
lINE "DIIJWIJ'T FAILED"

GDBACIC.

lINE "AF" TO STD-CALL-RESULT-C(I)E

lINE "ACTIVATE FATHER FAIL" TO STD-CALL-RESULT-II$G
PERFCIUI DISPLAY-RESULTS-UPCll-COISOLE

PERFCIUI DISPLAY-RESULTS-UPCll-COISOLE.

PERFCIUI DISPLAY-RESULTS-UPCll-COISOLE.

CALL IIiTRINSIC "DMOVWT" USING DSEG-IIIDEX,
DSEG-DISPLACEMEIIT,
DSEG-IIlII-TRANSFER,
USCTLREC.

IF C-C NOT = ZERO,

GO TO TSUPV-START.

IF C-C lOT =ZERO,

CALL IIiTRINSIC "ACTIVATE"

IF STD-CALL-RESULT-cmE MOT ;: "DS",

IF (lOT RESULTS-OK),

lINE STD-CALL-RESULTS
lINE USAPTCD
MOVE TSUPV-USER-PARMS

SPAGE "CLOSE RCIITIIES"
END-OF-PROGRAM.

73.9
74
74.1
74.2
74.3
74.4
74.5
74.6
74.7
74.8
74.9
75
75.1
75.2
75.3
75.4
75.5
75.6
75.7
75.8
75.9
76
76.1
76.2
76.3
76.4
76.5
76.6
76.7
76.8
76.9
71
71.1
71.2
71.4
71.5

1/emriJJ /I/fJWJIA: ld
1IjJ~1r

diIp;IrU: t/irJ/6f

The ACTIVATE of the Father suspends the current process; when re-activated, it
continues with the next instruction, which takes it back to the start of the program.

P8ge 0038-27 Using COBOL II'. Facilities

SOME ADDITIONAL INTRINSICS

The following summarizes some of the key differences between called dynamic

subprograms and created processes.

CALLED PROGRAMS CREATED PROCESSES

Subprograms may reside in Segmented Programs are prepped as main pro

Ubraries (SLs), or be prepped with the grams.

main program.

Shared data bases and other files elimi- Initial activation requires opening any re

nate overhead associated with opens quired files. If not suspended upon com

and closes. pletion, this is repeated for each crea-

tion/activation.

Parameter passing techniques are famil- Parameter passing requires additional

iar to most programmers. design work, but is relatively easy once

mastered.

Programs execute serially; that is, the Created processes may execute serially,

calling program suspends until the called or may be executed in parallel with the

program returns. creating process.

Each can be an effective technique when properly applied; the analyst must be

familiar with multiple techniques to create applications that meet the user's require

ments and effectively utilize the hardware/software environment of the HP3000.

Using COBOL H'.FacUlt... Page 0038-28

SOME ADDITIONAL INTRINSICS

There are a few additional comments regarding these techniques:

5.7 SPECIAL-NAMES.
5.8
5.9 CONDITION-CODE IS C-C.

As is true of so many design/programming techniques, the more you use them, the
easier they become. And the more you learn. the more you find there is to learn.

Today's COBOL on the HP3000 provides many ways for the inventive analyst to
achieve things that previously were reserved for 'Systems Programmers'.

Page 0038-29 Using COBOL II's Facilities

SUMMARY

COpy COBOL II's Copy Ubrary facility makes the use of common working
UBRARIES storage and common procedure division routines easy. In addition to

assisting in the development of error free programs, it enhances the
speed of development.

The multiple library capability not only simplifies maintenance of librar
ies. but also eases the task of updating programs for new versions of
compilers and operating systems. Forexample, changes to parameter
sizes associated with the new intrinsics in the XL operating system can
be easily accomodated in a new copy library, allowing programs to be
compiled for either with minimum change.

FILE
STATUS &
DECLARA
TIVES.

The use of File Status items and the Declarative section give the
programmercomplete control of file system error handling. This, com
bined with the ability to call file system Intrinsics using the COBOL
filename in place of the normallntrinsics's fi/anum parameter allow for
'elegant' error handling. as well as provide access to many facilities
previously considered too esoteric for COBOL programmers.

OTHER Special Capabilities such as Process Handling and Extra Data seg
INTINSICS ments can be easily utilized in COBOL II. A careful reading of the

Intrinsics manual will open many doors for the creative analyst/pro
. grammer.

I hope these ideas have spurred your imagination. Hewlett Packard has given us a
powerful tool forbusiness programming in COBOLII. One ofour tasks is to recognize
the facilities available to us, and make use of them to provide quality systems to our
users.

Using COBOL II's Facilities Page 0038-30

A Beginner's Guide to UDe's and JCW's:
How to Use Them to Your Benefit

David L. Largent
The N.G. Gilbert Corporation

P.o. Box 1032
700 South Council

Muncie, IN 47308-1032

1.0 Introduction - WIs this for me?W

How many times have you forgotten to issue a FILE command before
running a program? How often have you typed a FILE command wrong?
Do you ever get tired of typing the DELETESPOOLFlLE command? Have
you been looking for a way to make your job streams a little
"smarter"? Would a way to automate some of your procedures be
helpful? If you have any of these problems and have never
considered using UDC's and/or JCW's, now is the time to do so.

Over the course of the following pages will be found answers to
questions related to User Defined Commands (UDC's) and Job Control
Words (JCW's) such as:

- What are they?
- How can they help me?
- How are they created?
- How are they used?
- What are some common problems that arise?
- Are they worth the effort of learning something new?

To find these answers, a number of example UDC's, job streams, and
programs will be examined to see how and where UDC's and JCW's can
be used and how they work.

This paper is directed at new users of an HP3000 who have not yet
explored the world of UDC's and/or JCW's. However, any user may
find some tidbits to put in their "toolbox" that will prove useful
either now or in the future. This paper assumes the reader has a
general knowledge of the HP3000; specifically, the following are
"prerequisites" for this paper:

- Knowledge of the HP3000 accounting structure
(i.e., Fi1e/Group/AccountjUser).

- Knowledge of how to use an ASCII text EDITOR
(e.g., EDITOR/3000).

- Knowledge of many MPE commands and how to use them.
- Knowledge of job streams and how to use them.

A Beginner's Guide to UDC's and JCW's:

Copyright @) 1988 David L. Largent

0039 - 1

One further note. The information provided in this paper is
correct and up-to-date (to the best of my knowledge) and reflects
the way UDC's and JCW's are used and work as of the G.02.04 version
of MPE VIE (UB Delta 4). I am aware that changes have been made in
MPE XL, but have not made any attempt to include that information
in this paper.

For those of you who have chosen to stay with me, here is what you
can expect. First we will examine User Defined Commands (UDC's);
second, Job Control Words (JCW's) will be examined; third, we will
take a look at how UDC's and JCW's can be used together; and
finally, we will take a look at what we have learned and decide if
it is worth the effort to put these powerful new tools to work.
So. .

2.0 aWhat are User Defined Commands (UDC's)?-

UDC is one of many acronyms used in the HP3000 world. This one
comes from the phrase User Defined Command. A UDC is a command
that is designed for some user's convenience. It is made up of
standard MPE commands and/or other UDC's. A UDC can replace a
single, long command or may replace a long sequence of many
commands. They provide a short cut (a more precise way!?!) to
accomplish some particular task. By entering the UDC name, the
predefined commands are automatically executed. Think of them as
just another MPE command.

2.1 DHow can UDC's help me?D

A UDC may be used in most any situation where a standard MPE
command may be used, even within another UDC. They can be used in
both sessions and job streams. They cannot, however, be executed
by using the COMMAND intrinsic or from within subsystems unless you
are in BREAK. With that as background information, how can they
help you?

UDC's are perfect solutions for many "problem" situations. A long
sequence of MPE commands can be replaced by a single UDC name, thus
decreasing the time it takes to accomplish the task (less typing),
and also eliminating typing errors. A lengthy command like
DELETESPOOLFILE can be replaced by a UDC name such as RPUR. A
complicated sequence of commands, such as a long list of FILE
commands before running a program, can be reduced to one UDC name
such as PAY. Many of your boring, repetitive tasks can be
automated by using UDC's. UDC's can also be used to protect your
system from both the naive user and the too-knowledgeable user.
They can also cause something to automatically happen at log on
time. These all serve as examples of ways to make the HP3000 more
nuser-friendlyn.

By this point in time, you probably have half a dozen UDC ideas in
your head just waiting to get out. So. . .

A Beginner's Guide to UDC's and JCW's: 0039 - 2

2.2 -How do I create a UDC?-

First of all. slow down! UDC's. as with most everything in life,
are best created with PPP -- proper prior planning. If thought is
given to each UDC you create, a lot of changes can be avoided
later and you will likely end up with a more functional set of
unc's that are easier to use. For some people. creating a good UDC
is an art. rather than a science -- they may put as much thought
and care into a UDC as they put into developing a program.

Now that you have slowed down a bit (you have haven't you?!!). give
some thought to what MPE commands get used often on your system.
Are there particular tasks that always require the same sequence of
commands? Are there commands or tasks that may not be difficult
for us programmers to master. but may be intimidating for the user?
Now take your list (you did write them down didn't you?) and
evaluate each command or task. Some of them may be used so seldom
that it is not worthwhile to create a UDC. (That can also be a
reason to create a UDC for a task. so that the sequence of steps
need not be remembered!) Some of the commands may be so short that
creating a UDC for them would only save two or three key strokes.
You must make a judgement call for each command or task as to
whether the convenience of having the UDC available for use is
worth the time and effort of creating it.

2.21 Defining the UDC.

Let us assume that you have chosen to create a UDC for the SHOWJOB
command in its simplest form. You would like to be able to type
the letter "J". and have the system behave as if you had typed
"SHOWJOB". A UDC to do this could look like:

J
OPTION LIST. HELP
SHOWJOB

**

Header section
Execution options section
Body section
UDC separator section

As shown above. every UDC consists of four main sections: a header
section. an optional execution options section. a body section. and
a UDC separator section. The first line in this example is the
header section. containing the actual command the user will type.
The second line provides some execution options to the system. The
third line makes up the body section. containing the actual command
to be executed. The fourth line serves as a separator between UDC
definitions in a UDC file.

2.211 The Header Section.

The Header Section of a UDC consists of the command name,
parameters. and their optional default values. A UDC header may
extend over more than one physical line or up to a maximum of 320
characters. Each line to be continued must have as its last
nonblank character an ampersand (&).

A Beginner's Guide to UDC's and J~'s: 0039 - 3

The command name is what the user will actually type (along with
any needed parameter values) to cause the UDC to be executed. It is
composed of a maximum of sixteen alphabetic or numeric characters
and must begin with an alphabetic character. The characters "RFA"
may not be a unc name nor may they be the first three characters of
a UDC name, as this has been reserved by HP for internal use only.
Use common sense when naming your UDC's. Use a derivative of the
actual MPE command(s), or if naming a UDC for a particular task,
give it a name that is descriptive of the task. It is a good idea
to avoid single letter UDC names to reduce the chance of executing
the command by mistake (at least for any that may be
"destructive").

Parameters are variables that are assigned either a default value
or a value provided by the user along with the command name. These
variables are specified on the same line as the command name and
may be used in the body of the unc to make the UDC more flexible
and less specific. You may have a maximum of sixteen parameters in
one UDC.

Each parameter must have a name. A parameter name must begin with
an alphabetic character; the remainder may be alphabetic or numeric
characters. The maximum length for a parameter name is seventy
characters. However, the actual maximum may be less -- a parameter
name may not be split between physical lines. The same is true for
default values for parameters. Further constraints on the length
of the parameter name may apply because of the position where the
parameter is used in the body section.

If a UDC parameter does not have a default value specified, then it
is considered a required parameter and one must be provided when
the user executes the UDC. If a value for a required parameter is
not provided by the user, an appropriate error message is displayed
and the unc is not executed.

Let us change the requirements for our J UDC. We now want it to do
one of three things:

SHOWJOB JOB=@
SHOWJOB JOB-@S
SHOWJOB JOB-@]

(show all jobs)
(show sessions only)
(show batch jobs only)

This can be accomplished with one UDC if we use a parameter. The
header section will now look like:

J WHAT2SHOW .. " "

The command name is still J. The character string "WHAT2SHOW" is
the parameter name. A default value of "" has been specified.
This means that if a user just types "J", a list of all jobs will
be displayed. Alternatively, if the user types "J S" the l~s.t will
show sessions only.

A Beginner's Guide to UDC's and JCW's: 0039 - 4

As can be seen in the example above, a default value for a
parameter is specified by placing an equal sign (-) after the
parameter name, and then following that with the default value. If
the default value contains spaces or special characters, then it
will need to be enclosed in quotation marks (n). If no spaces or
special characters are needed in the default value, the quotation
marks are optional. When a default value is not provided for a
parameter, the only thing that appears in the header section is the
parameter name.

If more than one parameter is used in a UDC, default values may be
specified for all, some, or none of them. That is, some of the
parameters can be required while others are optional. A comma (,)
is used to separate a parameter name from the previous parameter
name (or default value if one is specified).

From the user's point of view, there are two ways UDC parameters
can be thought of: keyword and positional. When a user is
executing a UDC, either approach may be used, but not both at the
same time. A keyword parameter is one in which the parameter name
is typed, followed by an equal sign (~), followed by the parameter
value. In this way, values for parameters may be provided in any
order. For example:

J WHAT2SHOW- It S"

is the way the user would execute the J UDC using a keyword
parameter. A positional parameter is one in which the value is
specified for each parameter in the order they were defined in the
UDC. If a new value is not provided for an optional parameter, its
position must still be "held" by a comma (,). The J UDC executed
with a positional parameter would look like:

J S

The concept of keyword and positional parameters is the same as for
the standard MPE commands, except that only one approach may be
used on a given execution of a UDC.

When providing numeric values for parameters (either the default
values or the user's actual values), both decimal and octal
numbers may be used. Octal numbers are indicated by preceding them
with a percent sign (%). As you would expect, if the user provides
a value for a parameter that has a default value, the user's value
is the one that will be used. If the parameter value a user needs
to provide contains spaces or special characters, that value will
need to be enclosed in quotation marks (").

2.212 The Execution Options Section.

The
each

execution options section of a UDC
of four pairs of options. Each

consists of choices from
of these four pairs has a

A Beginner's Guide to UDC's and JCW's: 0039 - 5

default and, therefore, if the defaults are what is desired, this
entire section can be left out. These options control the
operation and use of the UDC. If the execution options section is
provided, it must appear as the next line following the header
section and will consist of a single line. The line must start
with the word OPTION. The rest of the line contains the option or
options you have chosen with a comma (,) between each one if you
list more than one. The four option pairs are discussed in the
following paragraphs.

LIST/NOLIST. The default is NOLIST. The LIST option will cause
the text of the body section to be listed on the standard list
device with the parameter values substituted as each line is
executed. The NOLIST option will not list any of the text of the
body section. It is a good idea to use the LIST option on unc's
that are replacements for standard MPE commands. This way the
actual command is before you and you will be less likely to forget
what the MPE command is when you need to use it on another system
that doesn't have your UDC! The NOLIST option is generally a good
choice for unc's that are implementing user tasks.

BREAK/NOBREAK. The default is BREAK. If the NOBREAK option is
chosen, the commands that make up the body of the unc will be
nonBREAKable. That is, pressing the BREAK key will not cause the
command or program to stop. If the BREAK option is chosen, the
commands that make up the body of the UDC will be BREAKable (if
they are normally BREAKable as MPE commands). It is a good idea to
use the NOBREAK option on any UDC that runs a VPLUS application.
This eliminates the problems that occur when BREAK is pressed while
in block mode. The use of the NOBREAK option will prohibit certain
users from using any MPE commands and can serve as a way to
discourage simple security breaches.

If the BREAK key is pressed during the execution of a unc that is
using the BREAK option, the following happens:

- If it was executing a nonprogram command, the
UDC terminates.

- If it was executing a program, and the RESUME command
is used, the UDC will also resume execution. An
exception to this occurs if a SETCATALOG command is
executed while in BREAK. In this case, the program
is resumed but the remainder of the UDC will not
be executed.

For you programmers, the NOBREAK option overrides the CAUSEBREAK
intrinsic. A program containing CAUSEBREAK will not BREAK if it is
executed from a UDC that has the NOBREAK option specified.

LOGON/NOLOGON. The default is NOLOGON.
chosen, the commands specified in the

If the
body

LOGON option is
of the UDC will

A Beginner's Guide to UDC's and JCY's: 0039 - 6

automatically be executed when the user logs on. Only one LOGON
UDC at the user level will be executed. If more than one LOGON UDC
exists for the user level, only the first one will execute. The
LOGON option can be put to good use on user task unc's. By using
this option, the user can logon and automatically be put into a
menu or application program. If the NOBREAK option is also used,
you can keep a user from gaining direct access to MPE commands. An
example of this will be shown later.

HELP/NOHELP. The default is HELP. If the HELP option is chosen,
you may type HELP followed by the UDC name and see the definition
of the UDC. If the NOHELP option is chosen, this possibility does
not exist. More will be said later about the use of the MPE HELP
subsystem. It is good to choose the HELP option unless you have a
security sensitive situation. If you specify both the NOLIST and
NOHELP options and an error occurs during execution of the UDC, the
error will be reported but the line containing the error will not
be listed.

2.213 The Body Section.

The body section of a UDC consists of one or more MPE commands
and/or UDC's which will be executed when the user types the unc
name. Other noncommand text such as data for subsystems or
application programs may not be included. A logical line of the
body may extend over more than one physical line for up to a
maximum of 320 characters. Each line to be continued must have as
its last nonblank character an ampersand (&). The body section
follows the execution options section, if any options have been
listed. If the execution options section is not present, then the
body section will follow the header section.

There are a few restrictions of which to be aware. The REDO
command may not be used in a UDC. The DATA, JOB, and HELLO
commands may be used, however, they will cause the current job or
session to logoff and effectively terminate execution of the UDC;
no new job or session will be initiated.

Let us go back to our last version of the J unc. We wanted it to
do one of three things:

SHOWJOB JOB-@
SHOWJOB JOB=@S
SHOWJOB JOB=@J

We last defined the header section as:

J WHAT2SHOW C3 " n

The body section needed to satisfy our requirements will consist of
a single MPE command:

SHOWJOB JOB=@IWHAT2SHOW

A Beginner's Guide to unc's and JCW's: 0039 - 7

In this example, all the characters preceding the exclamation point
(t) will be left as shown. The character string" IWHAT2SHOW" will
be replaced by either the default value of" ", or whatever the
user types as a parameter value following "J". This revised
command image is then what is sent to the MPE command interpreter
for execution. Thus, if the user types:

J S

the command image that will be executed will be:

SHOWJOB JOB-@S

Alternatively, if the user just types:

J

and uses the default parameter value, the command image that will
be executed will be:

SHOWJOB JOB=@

As is shown above, placing an exclamation point (I) immediately
before a parameter name in the body section of a UDC will cause MPE
to substitute the value of that parameter into that position of the
command. If a parameter name does not follow an exclamation point,
then an error will be reported to the user. If an exclamation point
does not precede a parameter name, no substitution will be
attempted, and the parameter name will be left in the command.

Normally, an exclamation point signifies a parameter name. If you
want to use the exclamation point but not have MPE try to
substitute a value, use an even number of exclamation points. An
odd number causes MPE to attempt a substitution. Each pair of
exclamation points will be translated into a single exclamation
point. For example, consider the following UDC:

EXAMPLE PARK
OPTION LIST
COMMENT! IPARM
COMMENT II!! 1PARK

**
If the user was to execute it by typing

EXAMPLE TEST

the two comments would be displayed as:

COMMENT IPARM
COMMENT 11TEST

A Beginner's Guide to UDC's and JCW's: 0039 - 8

Sometimes you will need to insert a parameter into the middle of a
character string in the UDC body section. As an example, the
following UDC is presented:

PREPS PROGNAME, MAXDATASIZE-l5000
OPTION LIST
PURGE ! "PROGNAME"X
PREP !"PROGNAME"U,I"PROGNAME"X;MAXDATA-lMAXDATASIZE;RL=PRRL
SAVE I"PROGNAME"X

**
In this UDC, two parameters are used: PROGNAME and MAXDATASIZE.
MAXDATASIZE has a default value of 15000. When the UDC is
executed, it will purge a file, prepare a file, and then save the
program file just created. The parameter name PROGNAME is enclosed
in quotation marks (") to separate it from the letters "X" and "U"
that follow. Without the quotation marks, there would appear to be
invalid parameter names following the exclamation points. This is
only a concern if the character immediately following a parameter
name is a letter or number.

If the UDC was to be executed by typing:

PREPS PAY

the actual command images executed would be:

PURGE PAYX
PREP PAYU, PAYX; MAXDATA-l5000 ;RIFPRRL
SAVE PAYX

The parameter value "PAY" corresponds to parameter PROGNAME because
they are both the first item provided in the list. Since a second
parameter value was not provided when the UDC was executed, the
default value for MAXDATASIZE was used.

If an error is encountered as the commands of a UDC are executed,
an error message will be displayed and the UDC will terminate. If
the UDC is being executed in a job stream, the job stream will also
terminate. Sometimes it is desirable for the UDC to continue with
the next command regardless of whether the previous command
resulted in an error. To accomplish this, a CONTINUE command must
be inserted immediately preceding the command that may result in an
error. Consider the following UDC:

REPORTS
OPTION LIST
CONTINUE
RUN PROG1X
RUN PROG2X
SHOWTIME

**

A Beginner's Guide to UDC's and JCW's: 0039 - 9

In this example, two programs are run and then the time of day is
displayed. If program PROG2X results in an error (i.e., it
aborts) when it is run, the remainder of the UDC will not be
executed. That is, if program PROG2X aborts, nothing else will be
done. Program PROG2X will always be run regardless of whether
program PROGlX results in an error. The CONTINUE command tells MPE
to continue with the next command, even if the current command
fails. This "override" capability only applies to the command
immediately following the CONTINUE command.

UDC's can perform tasks much more complex than those already
covered by using sophisticated command sequences and/or referencing
other UDC's from within the body section of the UDC. By using
control characters and escape sequences, you can control the
appearance and location of information as it is displayed by a UDC.
The terminal's function keys can be "loaded" by a UDC, thus making
your terminal a little more "user-friendly". Examples of these
will be provided later.

As mentioned earlier, a UDC may reference or execute another UDC.
This process is referred to as nesting. There is a limitation
however: a UDC may only reference another UDC that is defined
later in the UDC file (we will discuss UDC files in a few more
paragraphs). As long as the reference occurs before the
definition, UDC's can be written in a structured way.

Consider the following UDC's:

INFO
OPTION LIST
ME
J
T

**
J
OPTION LIST
SHOWJOB

**ME
OPTION LIST
SHOWME

**T
OPTION LIST
SHOWTIME

**
In this example, we have defined four UDC's: INFO, J, ME, and T.
The INFO UDC will cause the J, ME, and T UDC's to be executed one
after the other in the order listed in the INFO UDC. When the J
UDC is executed, it will execute the SHOWJOB command; the ME UDC
will execute the SHOWME command; and the T UDC will execute the

A Beginner's Guide to UDC's and JCW's: 0039 - 10

SHOWTIME command. So, by simply
provided information from all
automatically.

typing "INFO", the user
three of the MPE

will be
commands

2.214 The UDe Separator Section.

The last section of a UDC definition is the unc separator. This
consists of a single line that must start with an asterisk (*) in
column one. The rest of the line is yours to do with as you wish.
The purpose of this section is to separate one unc from the next
one in the UDC file and must be the last line of the unc
definition.

So, there you have it in ten words or less (give or take a few
thousand) . You now know how to define a UDC. But once you have a
number of UDC's defined, what do you do with them? The answer to
that question is...

2.22 Put Your UDC Definitions in a UDe File.

A UDC file is simply an ASCII text file that contains one or more
UDC definitions. Any ASCII text editor may be used to create a UDC
file. The record length of the UDC file may be any length;
however, 72 character records is what MPE is expecting. If you set
your record length less than 72, your UDC's likely will not execute
properly. Using a record length larger than 72 characters will
work; however, only the first 72 characters of each line will be
read by MPE. A UDC file may contain any number of unc
definitions.

The unc's should be entered in some logical sequence to make
maintenance easier -- my suggestion is alphabetically by the UDC
name. An exception: remember that if you are using nested unc's,
the definition of a UDC must be after its reference(s). So, either
name them appropriately or include them in the file out of
sequence. If you are using the escape character in your unc's, an
easy way to key it in is to type in some otherwise unused character
(e.g., the A character) in place of the escape character. Then
when you are finished entering the UDC definitions, globally change
all occurrences of that character to the escape character. The
reverse sequence can be used if you need to modify an existing unc
file. Just remember to change them back before you keep the file.

Once you have entered all of the UDC definitions using your text
editor, save the file with some meaningful name. My preference is
to use the letters "UDC" as the last three characters of the file
name. Doing so makes it easy to locate UDC files with the LISTF
command. You may keep your file with or without line numbers -
MPE does not care. You may create multiple UDC files; however, for
performance reasons (which we will discuss later), it is best to
limit the number of UDC files that exist for one user. If you
wish, a lockword may be assigned to the UDC file.

A Beginner's Guide to UDC's and JOW's: 0039 - 11

Simply creating a unc file with a text editor does not yet make the
UDC's available for use. The next step is to tell MPE that you
have a UDC file you wish to use. However, before we discuss that,
let us take a look at account and system level unc's.

2.23 Account and System Level UDC's.

Up to this point, we have been discussing unc's in general. There
are actually three different levels of unc's: user, account, and
system. A unc file may be set up by a user for hisfher own use.
An account manager may create a set of UDC's for use by all users
of that account. The system manager may create a set of unc's for
use by all users on the system. So now you have one more item to
consider when you are creating a UDC: Who should have access to
it?

When the MPE command interpreter is given a command (either an MPE
command or a UDC), it follows a predefined hierarchy to decide what
to do with the command in question. Shown below is that
hierarchy:

First User Level UDC File

N'th User Level UDC File

I
First Account Level UDC File

N'th Account Level UDC File

I
First System Level UDC File

N'th System Level UDC File

I
MPE Commands

This hierarchy is followed regardless of whether it is trying to
locate a command provided at a colon (:) prompt or a command that
is coming from a unc. This is the reason that when using nested

A Beginner's Guide to UDC's and JCW's: 0039 - 12

UDC's, the UDC definition must follow the reference(s) to that
UDC.

There is an exception to this hierarchy: UDC's with LOGON listed
as an option. When a user logs on, one logon UDC, at most, will be
performed at each UDC level. The system level logon UDC (if
present) will execute first, then the account level logon UDC (if
present), and finally, the user level logon UDC (if present) will
be executed. If more than one logon UDC exists at a level, only
the first logon UDC at that level will be executed but will not
affect the execution of other levels' logon UDC's.

Another implication of this hierarchy is that when a UDC
level has an identical name to a UDC or command at another
the following rules apply:

at one
level,

1. A UDC in user level UDC file 1 takes precedence over user
level UDC file n.

2. A UDC in user level UDC file n takes precedence over
account level UDC file 1.

3. A UDC in account level UDC file 1 takes precedence over
account level UDC file n.

4. A UDC in account level UDC file n takes precedence over
system level UDC file 1.

5. A UDC in system level UDC file 1 takes precedence over
system level UDC file n.

6. A UDC in system level UDC file n takes precedence over the
MPE commands.

What all of this means is that you can set up a UDC with exactly
the same name as an MPE command (or UDC) and effectively redefine
that command. For instance, if you wanted to keep a user from
using the PURGE command, the following UDC could be established:

PURGE FILENAME - "$NULL"
OPTION LIST
COMMENT YOU HAVE NOT BEEN GIVEN ACCESS TO THIS COMMAND.

**
Unless you are specifically taking advantage of this capability, it
is best to give all of your UDC's unique names. Here is another
example of these rules and the hierarchy: if both a system level
and a user level UDC have the same name and an account level UDC
references a UDC by that name, then the system level UDC will be
executed rather than the user level UDC because the system level
UDC is "after" the account level UDC that referenced it, where as
the user level UDC would be "before" that reference.

A Beginner's Guide to UDC's and JCW's: 0039 - 13

A user must have special capabilities to establish account or
system level UDC's. To establish account level UDC's, the user
must have the AM capability; to establish system level UDC's, the
user must have the SM capability. Additionally, if system level
UDC's are established, the system level UDC files must either have
their access security released or have the access security such
that all users will have READ and LOCK access to the file(s). (For
security reasons, the latter is preferred.)

2.24 Telling the System About Your UDC File(s).

As stated earlier, simply creating a UDC file with a text editor
does not yet make the unC'a available for use. The next step is to
tell MPE that you have a UDC file you wish to use. The MPE command
to do this is SETCATALOG. The simplest syntax of the SETCATALOG
command is:

SETCATALOG udcfilename[/lockword]

where "udcfilename" is your UDC file name and "lockword" is an
optional lockword assigned to the UDC file. This version will
enable a UDC file for the user level only. The user executing the
SETCATALOG command must have READ and LOCK access to the UDC file.
Unless you have account or system manager capabilities, you must
logon as the user that you want to enable the UDC file for. The
SETCATALOG command may be issued from a session, job, or in BREAK.
It may not be issued from a program, nor is it BREAKable.

When SETCATALOG is executed with a file name provided, three things
occur. The command interpreter searches the UDC file for errors:
problems like specifying an option that is not a valid option are
caught; problems like syntax errors in the body section of the UDC
are not caught. If no errors are found in a UDC, then an entry is
established in a directory that will eventually contain entries for
all UDC's in the UDC file. The UDC file name and optional lockword
is stored in a system catalog of all UDC users. This system
catalog is file COMMAND.PUB.SYS. The directory is stored in an
extra data segment for that session or job. Since the lockword (if
one is provided) is stored in COMMAND.PUB.SYS, a user does not need
to know the lockword to logon or to access the UDC. In addition to
the UDC file name (and lockword), the user name and account and the
UDC level (user, account, system) are also stored in
COMMAND.PUB.SYS.

As you could probably guess, the file COMMAND.PUB.SYS must exist
before any SETCATALOG is attempted. If the file does not exist,
the system manager or supervisor must build it. The file should be
built with a record size of twenty words. The maximum number of
records for the file can be determined by calculating the sum of:

1 for each user.account that will have user level UDC's; plus
1 for each user level UDC file to be used; plus

A Beginner's Guide to UDC's and JCW's: 0039 - 14

1 for each account that will have account level UDC's; plus
1 for each account level UDC file to be used; plus
1 if system level UDC's are to be used; plus
1 for each system level UDC file to be used.

So, the BUILD command used by the system manager might look like:

BUILD COMMAND.PUB;REC-20,32;DISC-500

To secure this file so that all users may utilize UDC's, but only
the system manager may read or modify it (since there could be
sensitive information stored there), the system manager should
enter:

ALTSEC COMMAND. PUB; (X:ANY;R,L,W,A:CR)

Taking this last step will provide execute access to all users
(which is all they need), and restrict all other access to the
creator of the file (in this instance, the system manager).

If you have more than one UDC file that you wish to enable at the
user level, the syntax of the SETCATALOG command becomes:

SETCATALOG udcfilenamel[/10ckword],udcfilename2[/10ckword] ...

The UDC file names are listed (with the optional lockwords) with a
comma (,) inserted between each one. The position of a UDC in the
directory determines which other UDC's it may reference (remember
the hierarchy discussed a few paragraphs back?). The UDC files are
opened and scanned in the order they appeared in the last
SETCATALOG command for that UDC level. All user level UDC's are
entered into the directory first, followed by all account level
UDC's, and finally, all system level UDC's.

So, now you know how to "turn on" or enable user level UDC's. What
if you want to disable or "turn off" user level UDC's? To
accomplish this, you again use the SETCATALOG command, except this
time do not provide a UDC file name:

SETCATALOG

When a UDC file name is not provided with the SETCATALOG command,
all entries and references to any user level UDC files in the UDC
directory and COMMAND.PUB.SYS that are currently enabled for the
user issuing the command are eliminated. The UDC files themselves,
however, are not purged. To re-enable your UDC files, you would
simply type the SETCATALOG command, followed by your UDC file
name(s) again. Disabling user level UDC's does not have an
immediate affect on other job or sessions that are still logged on
with the same user name. They may continue to use the disabled
UDC's until they logoff. Conversely, if you enable some UDC's,
other users will not have access to them until they logon again.

A Beginner's Guide to UDC's and JCW's: 0039 - 15

Now, suppose som~time previously you have typed:

SETCATALOG UDCl,unC2,unC3

You, therefore, have the UDC's from three UDC files enabled (plus
any account or system level unC'sl). For whatever reason, you no
longer need the unc's in file unC2. To eliminate them, but still
keep the others, you need to type:

SETCATALOG UDC1,unC3

Anytime the SETCATALOG command is executed, it has the effect of
removing all user level UDC's for the user entering the command.
Additionally, if a UDC file name(s) is provided, those UDC's are
re-cata1oged and available for use.

At some point in time (probably very soon after you start using
UDC's) , you will need to modify or add to an existing UDC file.
There is not much more involved than simply using a text editor to
make the changes or additions; however, you do need to know about a
"gotcha". Because of the way unc's are enabled, whenever a user is
logged on to the system, any UDC file(s) associated with that user
(including account and system level UDC files) are considered
"open" . What this means is that you may not alter that UDC file in
any way as long as the user is logged on and has the UDC file
enabled. You may not PURGE, RENAME, or (in EDITOR) modify and KEEP
that UDC file. Any attempt to alter the file will result in the
error message "EXCLUSIVE VIOlATION".

So, how do you ever make changes or additions?l? You have five
options (take your pick -- they all work well under different
situations):

1. Have all users (and jobs) that are using the UDC file
log off (except you of course). You use the SETCATALOG
command to disable the UDC file in question. Make
your changes to the file, and keep it. Re-enab1e
the UDC file by using the SETCATALOG command. Notify
the users they may log back on.

2. Have all affected users (including yourself) disable the
UDC file by using the SETCATALOG command. Make your
changes to the file, and keep it. Have all users
re-enable the UDC file by using the SETCATALOG command
- or - you use the SETCATALOG command and have the
other affected users logon again. Watch out for
batch jobs when using this option.

3. Have all affected users (and jobs) logoff the system.
You logon so that you can modify and keep the UDC file,
but as a user that does not have this UDC file enabled.
Make your changes to the file, and keep it. Notify the
users they may log back on.

A Beginner's Guide to UDC's and JCY's: 0039 - 16

4. Logon so that you can modify and keep the UDC file.
Make your changes to the file and keep it under a new
file name. Later, after all affected users and jobs
have logged off, disable the UDC file, PURGE the old
UDC file, RENAME the new file to the old file, and
re-enable the UDC file with the SETCATALOG command.

5. Any combination or variation of the above four options
that you can get to work.

It is important to understand that all affected users must take
some action (logoff/on or SETCATALOG) because the SETCATALOG
command only takes effect for the session or job that issues it and
for future logons. It does not affect other jobs or sessions
currently logged on.

You now know everything (well almost everything) I know about using
the SETCATALOG command with user level UDC files. But what about
account and system level UDC files? How do they get enabled and
disabled for use? The answer again is the SETCATALOG command! We
add one more parameter to the previous syntax:

SETCA!ALOG udcfilenamel[j1ockword][,udcfilename2/[lockword]] ;ACCOUNT
SETCATALOG udcfilenamel[j1ockword][,udcfilename2/[lockword]] ;SYSTEM

The ACCOUNT parameter specifies that the UDC file(s) being enabled
should be available for all users in the account. This parameter
requires the account manager capability. Reading between the lines,
you have probably realized that you must logon to the account that
the UDC file is to be enabled for. For example, if you want to
enable UDC file ACCTUDC for account XYZ, first logon as the account
manager of account XYZ, then enter:

SETCATALOG ACCTUDC;ACCOUNT

If you wish to disable the account level UDC files, you would
enter:

SETCATALOG;ACCOUNT

Again, you must have the account manager capability to use the
ACCOUNT parameter. Taking this new information into account, all
previous information pertaining to the SETCATALOG command and user
level UDC files also applies to account level UDC files.

The SYSTEM parameter specifies that the UDC file(s) being enabled
should be available for all users of the system. This parameter
requires the system manager capability. For example, if you want to
enable UDC file SYSUDC for all users of the system, just logon as
the system manager, then enter:

SETCATALOG SYSUDC;SYSTEM

A Beginner's Guide to UDC's and JCW's: 0039 - 17

If you wish to disable the system level UDC files, you would enter:

SETCATALOG;SYSTEM

Again, you must have the system manager capability to use the SYSTEM
parameter. Taking this new information into account, all previous
information pertaining to the SETCATALOG command and user level UDC
files also applies to system level UDC files.

If you have the account manager or system manager capability, you
may use another parameter of the SETCATALOG command:

SETCATALOG udcfilenamel[/10ckword][,udcfilename2[/10ckword]] ...
;USER-user[.account]

where "user" is a user name and "account" is an account name. This
allows you to enable a UDC file for a user other than the one you
are logged on as. Account managers may enable UDC files for any
user in their account. The system manager may enable UDC files for
any user on the system. They will not take effect, however, until
the next time the user logs on.

This parameter may also be used to disable UDC files for other
users:

SETCATALOG;USER-user.[account]

The same restrictions and capabilities apply for account managers
and the system manager, as were just discussed above.

One last parameter that you may wish to know about:

SETCATALOG ... any other parameters ... ; SHOW

This will list the UDC file names and UDC definitions in each of
those files as they are scanned. This is helpful for locating where
an error is occurring when you use the SETCATALOG command, but I
don't suggest it for general use. It can take a while to list all
of the UDC definitions in a large UDC file. Additionally, any
account or system level UDC's are listed after the user level unc's
are scanned (remember -- they go into the user's directory too!).

2.25 What happens when I logon and have some UDe' s enabled?

At logon time, any user that has one or more UDC file(s) enabled for
his/her use (user, account, or system!) will cause a fair amount of
CPU and disc utilization to occur. As a result of previous
SETCATALOG's, the file COMMAND.PUB.SYS contains the UDC file names
enabled for every user, as well as those enabled for each account
and the system. At logon time, this file is searched to identify
what UDC files are enabled for the user in question. As each one is
identified, that UDC file is opened and the contents of it are read.
As the UDC file is scanned, entries are created and placed in a

A Beginner's Guide to UDC's and JCW's: 0039 - 18

directory of UDC's for the user. That directory is created in an
extra data segment for the session or job.

When you enter a command or UDC name, the command interpreter
searches the UDC directory (the extra data segment) for that which
you typed in, starting at the beginning of the directory. Remember
that entries are placed in the UDC directory in user level, account
level, system level sequence. If the command is found in the UDC
directory, the UDC body for that command is read one line at a time
and parameters are substituted into the line where appropriate. The
command interpreter is then re-entered at a special internal entry
point to interpret the new expanded command string and goes through
the same steps just mentioned, except that this time, the UDC
directory scan begins with the directory entry that follows the UDC
currently being executed. (Now do you understand why the definition
of a unc must be after its reference?) If the command interpreter
fails to find a match for a command string in the UDC directory, it
then checks to see if it is a valid MPE command. This cycle is
repeated until the end of the UDC definition that is being
executed.

2.26 Looking at what UDC's are available.

There is a handy MPE command which will list all of the UDC names
enabled for your session or job:

SHOWCATALOG [listfile]

where "listfi1e" is the name of the file (disc or printer) you wish
the list to be sent to. Unless directed elsewhere with a prior FILE
command, if you specify "listfi1e", the listing is sent to device
class LP. If ttlistfile" is not provided, the list of UDC names will
be displayed on $STDLIST (your terminal for a session). This
command may be issued from a session, job, or in BREAK. It may not
be issued from a program. The SHOWCATALOG command is BREAKable (it
aborts execution of the command).

The output from the SHOWCATALOG command lists the unc's currently
enabled for your use, the level at which they are defined (user,
account, system), and the file name in which they reside. A sample
execution follows:

:SHOWCATALOG
UDC1.GROUP.ACCT

AA
BB

UDC2.GROUP.ACCT
CC

ACCTUDC.PUB.ACCT
DD

USER
USER

USER

ACCOUNT

A Beginner's Guide to unc's and JCW's: 0039 - 19

SYSUDC.PUB.SYS
EE
FF
GG

SYSTEM
SYSTEM
SYSTEM

This example shows seven UDC's enabled from four different UDC
files: three at the user level, one at the account level, and three
more at the system level.

The SHOWCATALOG command has another parameter that can be useful,
especially for account and system managers:

SHOWCATALOG [listfile];USER-user[.account]

where "user" is the name of a user, and "account" is an account
name. This parameter permits you to specify a user other than
yourself for which you want the SHOWCATALOG done. The output when
this parameter is used will consist of only enabled UDC file names
and which level they were defined at. No UDC names will be listed.

For example if you want to know what UDC file(s) are enabled for a
user, you could type:

SHOWCATALOG;USERs=DAVE

and the system would respond with:

USER UDC CATALOG FILE NAMES:
UDCl.GROUP.ACCT
UDC2.GROUP.ACCT

ACCOUNT UDC CATALOG FILE NAMES:
ACCTUDC.PUB.ACCT

SYSTEM UDC CATALOG FILE NAMES:
SYSUDC.PUB.SYS

There are a few limitations when using the "USER-" parameter:

1. A user with neither account nor system manager
capabilities may only specify hisfher own user name.
A user may not obtain information for any other user.

2. A user with account manager capability may specify any
user in hisfher account. Additionally, if "@" is used for
the user name, only the account level UDC file name(s)
will be displayed.

3. A user with system manager capability may specify any
user on the system. Additionally, if "@" is used for
the user name and an account name is specified, the
account level UDC file name(s) will be displayed. Also,

A Beginner's Guide to UDC's and JCW's: 0039 - 20

if "@" is specified for both the user and account, only
the system level UDC file name(s) will be displayed.

A way of getting more information about a particular UDC is to use
the MPE HELP command. Unless the NOHELP execution option was
specified when the UDC was created, if you type

HELP udcname

where "udcname" is the name of a UDC, you will receive a listing of
the UDC definition. For example, if you typed:

HELP J

(and the UDC we discussed sometime back was enabled), the system
would respond with:

USER DEFINED COMMAND

J WHAT2SHOW-" "
OPTION LIST
SHOWJOB JOB-@IWAT2SHOW

If the NOHELP execution option is specified when a UDC is
and the HELP command is used for that UDC, the system will
with:

created,
respond

Can't find an;ything under this command or in the table of contents.

unless the UDC name is the same as an MPE command, in which case you
will receive information about the MPE command. It should be noted
that you may not enter the HELP subsystem itself and get information
about your UDC's. Only by using the HELP command as described
earlier will you receive this information.

2.3 How about some examples?

Good Ideal I'll present some here; also see section four for
examples of using JCW's and UDC's together. NOTE: Anytime you see
the characters "<esc>" in this paper, read it as an escape
character. That is, for purposes of this paper, I have used the
characters "<esc>" in place of the escape character. However, if
you were to type in the UDC, you would need to use the escape
character instead. Additionally, the control character will be
represented by the characters "<ctrl>".

We have been at this for a while, so let's take a look at some games
I mean UDC's for a games user. I have a variation of the

following UDC file set up on my system:

A Beginner's Guide to UDC's and JCW's: 0039 - 21

If you just want the schedule to print on the
screen, press the RETURN key instead of doing all II

of the above. "

If you want the loan schedule printed on paper,
wait for this phrase to appear...

ENTER THE USnNG DEVICE (RETURN FUR $STDUST)?tt
then press the BRFAK key. You will get a co1on(:) II

Type AMORTPRINT, and press the RETURN key. The II

screen will now say...
READ pending

Now type LP, press the RETURN key, and go on to ..
answer the other questions.

BIOSIN
FIVEROW
C1I'HEU.O

ANIMAL
CHESS
IANDERP

StartGames
Option LogOn
Display " <es~.'•••"."""""A"."'AAA••••AA'••••••' "
Display " <esc>&dA* * "
Display" <esc>&dA* WELCOME TO '!HE lIP 3000 GAME ROOM *"
Display" <esc>&dA* * "
Display It <es~"".'."''''''''''A'''''''''Jn'''''''''''''.'' •••''''''''''''••''''''••• '''''''''. "
Display" "
Display" Type UST to get a listing of the available games "
Display" "

**Games
Display" ADVENT•••• (Adventure) A game of exploration.
Display 11 AMORT..... Creates amortization (loan) tables .
. . .continued for other games available ...

**Advent
Continue
R1m ADVENT

**Amort
Display "<esc>&dBNOTE:
Display "<esc>&dB
Display "<esc>&dB
Display "<esc>&dB
Display "<esc>&dB
Display "<esc>&dB
Display "<esc>&dB
Display "<esc>&dB
Display It<esc>&dB
Display "<esc>&dB
Display "<esc>&dB
Display It<esc>&dB
Display l1<esc>&dB
Continue
R1m AMORT
Reset list
list

**
AmortPrint
File UST-AMOR'lRPr;Forms-B 1/2 by 11 INCH PAPER REQUIRED <ctr1>G.
Resume

**
...continued for other games available ...
Stop
Abort

**List
Display" Available Games ...
Display" ADVENT AMORT
Display " BIOSINPl BJ
Display" FOOTBALL GRIC

A Beginner's Guide to unc's and JCW's: 0039 - 22

UBOATSTARTREC TREK2640SAHARA
ULTIMA

Display "
Display "
Display
Display" If you would like a one line description of each of"
Display" the games, type GAMES, and press the return key.
Display " "

**
Items of interest in the example ODC file above:

1. The LOGON execution option is used so the welcome message
appears automatically.

2. No, there is not an MPE command DISPlAY I Display is
a system level ODC I have set up to cause the
parameter value provided to be displayed by using
the COMMENT command. (We will take a look at the
ODC definition for DISPlAY later.

3. Escape sequences are used to control the appearance
of text on the screen. In the case of STARTGAMES, it
will blink, and in AMORT, the text will be shown
in inverse video.

4. The CONTINUE command is used in all of the individual
game unc's to guarantee that the LIST UDC will always be
executed, even if the program aborts.

5. The RESUME command is used in AMORTPRINT to automatically
put them back in the program after they press the BREAK
key.

6. Notice that no options were provided in most UDC's.
Since the default is NOLIST, the command(s) will not be
displayed on the screen. However, in UDC DISPlAY, OPTION
LIST is used so that the messages passed to it will be
displayed.

7. The LIST UDC must be at the end after all of the
individual game UDC's because each one of them ends with a
reference to LIST.

8. The STOP UDC exists to provide the user a "graceful" way
to end a game they do not wish to continue. The users
know to press the BREAK key and type STOP if they find
themselves in this situation.

O.K. We have had our fun with the games. Time to get back to some
serious work. The next series of examples come from some of my
application systems. These ODC's are generally user level ODC's.

First, a few unc's from the accounts payable system. In UDC file
APINUDC, I have the following ODC:

A Beginner's Guide to UDC's and JCW's: 0039 - 23

Payable
Option LogOn,NoBreak
Continue
Payable
Bye

**
In UDC file APUDC, the following UDC's exist (among others):

Payable
Option NoBreak
File TODAT-TODAT.GLXEQ;Shr
File AP830WRK-VENNAMES;Rec--80,16,F,ASCII;Disc-32,1,Save
Run PAYABLEX;Lib-G

**VendorMaint
Option NoBreak
Display "Use this program with extreme care.<ctrl>G"
Run AP429X;Lib-G

**
Items of interest in the accounts payable examples:

1. There are two classes of users for most of the
application systems: A "data entry" user who only needs
access to one main menu-driven program (for example,
PAYABLEX) and a user who needs access to that same
program, as well as other utility programs (for example,
AP429X) for the application system. I have implemented
this by creating two UDC files. The "data entry" user
has both UDC files enabled in the order listed above.
However, the other user only has the second UDC file
enabled. In this way, the UDC to actually run the program
PAYABLEX only needs to be entered in the second UDC file
(in this example that UDC is relatively short; however,
some others have numerous FILE commands), with a reference
made to it in the first, rather than needing to define it
twice.

2. Even though the "data entry" user has both UDC files
enabled for them, they effectively only have one thing
they can do: RUN the PAYABLEX program. This is because of
the LOGON execution option which automatically starts up
the program at logon time, and logs them off (because of
the BYE command) when the program stops running. Two more
items are required to guarantee that this will work,
however. The NOBREAK execution option must be specified
to keep the user from pressing the BREAK key and gaining
access to MPE. The CONTINUE command is also needed, so
that if the PAYABLEX program should abort for some reason
(I know - you write perfect programs that never abort - I
have problems sometimes thoughl), the next command (in
this case, BYE) will still execute.

A Beginner's Guide to UDC's and JCW's: 0039 - 24

Here is a neat idea for use with the SORT program (it works well
with many others too!):

EquipmentSort
Purge EQPSORTD
Run SORT.PUB.SYS;StdIn-SDEQPSRT;StdList-$NULL

**
Most any program can have its standard input and output files
redirected (i.e., provided from, or sent to, some place other than
normal). See the RUN command for more details on this. In this
UDC, the interactive input is coming from a disc file named
SDEQPSRT, and the interactive output is discarded. File SDEQPSRT
contains the commands that would normally have been provided to the
SORT program (i.e., the names of the input and output files, and
the key information).

Now, we will look at some UDC's from our job costing system. It
has not been converted to an interactive system yet, and is still
using the ENTRY.PUB.SYS program to create batch files which are
then processed. The UDC's do provide some good examples of nesting
UDC's, however.

EditJobList BFName
Option NoBreak
Reformat !BFName
Sort IBFName, SDEDTLST
File JCWRK,New;Temp
File CARD-SORTFlLE,OldTemp
Run JCOlOX
File JCWRK,OldTemp
File JCMSTR,Old
File LIST-JC020LST;Cctl;Dev-LP
Run JC020X

**EditYeeklyCost BFNAME
Option NoBreak
Reformat !BFName
Sort IBFName,SDEDTCST
File CARD-SORTFlLE,OldTemp
Run JCllOX

**Reformat BFName
Purge !BFName ,Temp
File REFFlLE-JCREF.REFFILE,Old
File BATCH~!BFName.FCDATA,Old

File OUTFILE-IBFName,New;Temp
File REFLIST-$NULL
Run REFORMAT.PUB.SYS

**

A Beginner's Guide to UDC's and JCW's: 0039 - 25

SORT BFName, SDName
Purge SORTFILE,Temp
File INPUT-IBFName,OldTemp
File OUTPUT-SORTFILE,New;Temp
Run SORT.PUB.SYS;StdIn-ISDName;StdList-$NULL

**
Items of interest in these job costing UDC's:

1. UDC's EDITJOBLIST and EDITWEEKLYCOST both reference UDC's
REFORMAT and SORT; however, different information is
provided for the parameter values, so they process the
files differently.

2. UDC REFORMAT only needs to know what the name of the
batch file is that was created with ENTRY.PUB.SYS. The
output from the REFORMAT program is stored in a temporary
file with the original batch file name.

3. UDC SORT needs to know the batch file name and the name of
the "sort data" file. The input data file for the sort is
actually the temporary file created while reformatting.
The output data file is always named SORTFILE, and is a
temporary file. Temporary files are used for two reasons:
first, they are automatically PURGEd when the session or
job logs off; and secondly, they permit two sessions or
jobs to do the same thing at the same time and eliminate
the need to worry about permanent file usage conflicts.
The "sort data" file contains information about how to
sort the input file, and is specified by using the STDIN
parameter of the RUN command (see the previous example for
further discussion of this).

Here are some examples from the financial system that show
execute the same program, but provide for different input
output.

how to
and/or

Ba1anceSheet
BalShRun 11,";Forms-BIANK8 1/2 by 11 INCH PAPER REQ <ctrl>G."
**
BalanceSheetGB
BalShRun 2
**
BalShRun Copies,Forms-" "
File BALSHLST;Dev=LP"ICopies; IForms
Run BALSHX
**
CorporatePL
PrintPL C,12
**
DivisionPL
PrintPL 1,13
**

A Beginner's Guide to UDC's and JCW's: 0039 - 26

C1ientPL
PrintPL 2,9
**
PrintPL Fi1eCode,Copies-l
File PLFLA-PLFLIFi1eCode,Old
File PRPALLST-PRPLI"FileCode"LST;Dev-LP,9,ICopies;&

Forms-BLANK 8 1/2 by 11 PAPER REQ <ctrl>G.
Run PRPALX
**

Here is what to look for in these examples:

1. There are seven UDC's, but only two actually RUN a
program; the other five just reference those two.

2. In the case of the balance sheet program (BALSHX), we need
to print the report on both blank paper and regular "green
bar" paper. The program takes very little time to run, so
we run it twice, once with each UDC, to create two
different spool files with a different number of copies
for each. In one case, the FORMS parameter and value is
provided, and in the other case, the default value is
used.

3. In the case of the profit and loss program (PRPALX) , we
need to print a different number of copies of each type
of statement. Additionally, because of the way the
program is set up, there is a different input file for
each type of statement. There is actually only one
character different in each file name, so the FILECODE
parameter is used to provide that.

4. In UDC PRINTPL, notice the use of quotation marks (")
around the FILECODE parameter. This is because it needs
to be substituted in the middle of a "word".

5. In that same UDC, also notice the use of the ampersand
character (&) to continue the logical line onto the next
physical line of the UDC. Were all of that to have been
typed on the same line, it would have gone beyond the
seventy-two character limit for a line.

What if you have two different users that need to use the same
program, but do not use the same "terminology"? Create two unc's
that RUN the same program. Our invoicing/accounts receivable
system provides a good example. We have one set of users that work
with the invoicing part of the system and a second set that works
with the accounts receivable part of the system. It is really all
one application system, but the two user groups tend to think of
them as (related, but) separate entities. So...

A Beginner's Guide to unc's and JCW's: 0039 - 27

Invoices
InvRecRun

**ARec
InvRecRun
**
I nvRecRun
Option NoBreak
File ENAME.PUB;Shr
File TODAT-TODAT.GLXEQ;Shr
Run INVRECX; Lib-G
**

In this example, each user group has a UDC that makes sense to them
but both end up at exactly the same place!

Since most of you are probably programmers, let us take a look at
some UDC's that you may find useful in your day-to-day existence.
This list is not meant to be exhaustive, but rather meant to get
you started:

DBLoad
Option List
Run DBLOAD.PUB.SYS

**DBSchema SchemaFile
Option List
File DBSTEXT-!SchemaFile
File DBSLIST;Dev-LP
Run DBSCHEMA.PUB.SYS;Parm-3
Reset DBSTEXT
Reset DBSLIST
**
DBUnLoad
Option List
Run DBUNLOAD.PUB.SYS
**
DBUtil
Option List
Run DBUTIL.PUB.SYS
**
FormSpec
Option List
Run FORMSPEC.PUB.SYS
**
Preps ProgName,MaxDataSize-15000
Option List
Purge !"ProgName"X
Prep !"ProgName"U,"ProgName"X;MaxData-IMaxDataSize
Save I"ProgName"X
**

A Beginner's Guide to UDC's and JCW's: 0039 - 28

Query
Option List
Run QUERY.PUB.SYS
**
RunLG Program
Option List
Run I"Program"X;Lib-G
**

There is not a whole lot to explain here -- nothing fancy just
some examples of commands and tasks that you probably do most every
day. The only item I will mention is the use of OPTION LIST which
displays the command as it is executed. This helps remind me that
I am using a UDC and that some day, some where, I may need to type
this longer command.

Now for some UDC's that the system operator would likely find
useful:

AfterChecks
OptionList
Download 6,VFCSTD6.PUB.SYS
Download 6,Margin-l
StartSpool 6
**
BackUp
Option List
Limit 2,1
File BCKUPCNF.BACKUP-BCKUPCNF.PUB.SYS
Run BACKUP.HPUNSUP.SUPPORT;Info-" n

AbortJob HPTREND,MGR.TELESUP
Limit 1,1
**
BeforeChecks
Option List
Continue
StartSpool LP
StopSpool 6
HeadOff 6
**
JobF Priority-O
Option List
JobFence !Priority
**
LoadVFC VFCFileName-VFCSTD6
Option List
Download 6,IVFCFileName.PUB.SYS
**
Margin LeftCo1umn-1
Option List
Download 6,Margin-ILeftCo1umn
**

A Beginner's Guide to UDC's and JCW's: 0039 - 29

Reply " 6 "Reply "
Redo II 4 "Redo"
Show "" Cache II 9 "ShowCache u

System Up" S "SysUp"
Show ""Reports" 17 "ShowOut Job=@; Sp"
Run "" SpookS" 18 "Run SpookS.Pub.Sys"

SpookS " " Detail " 8 us @.@;@O"
System Down" 7 "SysDown"

OffSites
Option List
Limit 2,1
Stream OFFSITEJ.PUB.SYS
AbortJob HPTREND,MGR.TELESUP
Limit 1,1
**
OutF Priority-1
Option List
OutFence IPriority
**
RCop Fi1eNumber,Copies-1
Option List
AltSpoo1Fi1e #0 !Fi1eNumber; Copies-I Copies
**
RDef FileNumber
Option List
AltSpoolFile #O!FileNumber;Pri-O
**
RPri Fi1eNumber,Priority-8
Option List
AltSpoolFile #O!FileNumber;Pri-IPriority
**
RPur Fi1eNumber
Option List
De1eteSpoolFile #O!FileNumber
**
StopSp Device-6
Option List
StopSpoo1 !Device;OpenQ
**
StrtSp Device-6
Option List
StartSpool !Device
**
Sysr=>wn
Option List
ShowJob
ShowOut Job=@;Sp
Console
ShowTime
**
SetOpKeys
SFK 1 0 "
SFK 2 0 "
SFK 3 0 II

SFK 4 0 "
SFK SO"
SFK 6 0 "
SFK 7 0 "
SF!{ 8 0 "
UserKeys
**

A Beginner's Guide to UDC's and JCW's: 0039 - 30

0039 - 31

Just the same as the last examples, this is by no means an
exhaustive list, but rather a starting point for you as you
consider what makes sense on your system. Now for some items of
interest:

1. We print our checks "hot" to the printer. That is, we stop
the spooler process for the printer itself. Two UDC's make'
life easier in this situation: BEFORECHECKS and AFTERCHECKS.
Nothing fancy; just some steps that have to be done over
and over -- and done CORRECTLY every time.

2. BACKUP and OFFSITES are two UDC's that assist with performing
SYSDUMPs. The BACKUP program referenced is a program that
used to exist in the HPUNSUP group of the SUPPORT account
before the days of the TELESUP account. Its sole purpose in
life is to create and stream a batch job that either performs
a full or a partial backup based on the day of the week and
the information stored in the file BCKUPCNF. In recent years,
HP has provided us with the FULLBACKUP and PARTBACKUP commands
which nearly eliminated my need for the BACKUP program. My
problem is that we perform two full backups every week: one
stays on site; the other goes off site. The PARTBACKUP
command performs a partial SYSDUMP since the last full
backup. However, since my second full backup is off site, I
really want the partial backups done after it to still go
back to the last on site full backup. The BACKUP program
permits me to handle this, the HP commands do not. At any
rate, each of the UDC's set the job and session limits low,
stream an appropriate job stream, and then abort the HPTREND
job stream so that it is not running during the backup.

3. In the SETOPKEYS UDC, the SFK UDC is referenced. This will
be discussed later. For the time being, just understand
that the SETOPKEYS UDC will cause the terminal function
keys to be loaded with this information.

If you are getting tired of examples, feel free to go on to the next
section. For those of you who want more examples, we will next look at
some of the UDC's from my system level UDC file, and then finish up with
some unique "goodies" that may prove useful to some of you:

AboJ JSNumber
Option List
AbortJob #!JSNumber

**AltJ JobNumber,InPriority-8
Option List
AltJob #J!JobNumber;InPri-!InPriority

**Con LDev-" "
Option List
Console !LDev

**
A Beginner's Guide to UDC's and JCW's:

Ed
Option List
Editor
**
Entry
Option List,NoBreak
ListF BF@,O
Run ENTRY.PUB.SYS
**
Files
Option LogOn, List
File LP; Dev-LP
File T;Dev-TAPE
Display "The above File commands are in effect."
Display "The system unc's are enabled."
**
J WHAT2SHOW-" "
Option List
ShowJob Job-@!WHAT2SHOW
**
L FileSet-"@",Detail-2,ListFile-$STDLIST
Option List
ListF !FileSet, !Detail; IListFile

**LEq
Option List
ListEq
**
List FileName,ListFile-$STDLIST
Option List
FCopy From-!FileName;To-IListFile
**
LT FileSet-"@",Detail-2,ListFile-$STDLIST
Option List
ListFTemp IFileSet,IDetail;IListFile

**LUDC
Option List
ShowCatalog

**Me
Option List
ShowMe

**Out Items-"Spn
Option List
ShowOut Job=@;IItems

**Print FileName,Copies-I,Priority-8
Option List
File LISTING;DEV-LP, IPriority, ICopies
FCopy From-!FileName;To~*LISTING

Reset LISTING
**

A Beginner's Guide to unc's and JCW's: 0039 - 32

PScreen
Option List
Run PSCREEN.PUB.TELESUP

**Purges FLl,FL2-$NULL,FL3-$NULL,FL4-$NULL,FLS-$NULL,FL6-$NULL
Option List
Purge !FLl
Purge !FL2
Purge !FL3
Purge !FL4
Purge !FLS
Purge !FL6

**Res
Option List
Resume

**RunPS Program
Option List
Run !Program.PUB.SYS

**SetUDC Filel-$NULL,File2-$NULL,File3-$NULL,File4-$NULL,FileS-$NULL
Option List
SetCatalog !Filel, IFile2, !File3, !File4, IFileS

**ShC
Option List
ShowCache

**ShD LDev-" "
Option List
ShowDev !LDev

**Sort Input,Output
Option List
File INPUT-!Input
File OUTPUT-!Output
Reset LIST
Run SORT. PUB . SYS

**SpookS
Option List
Run SPOOKS.PUB.SYS

**Str JobName, Char-"!"
Option List
Stream !JobName, !Char

**StrAt JobName,Time,Char-"!"
Option List
Stream IJobName , IChar;At-ITime

**

A Beginner's Guide to UDC's and JCW's: 0039 - 33

StrDay JobName,Day,Time-"O:O",Char-"I"
Option List
Stream IJobName,IChar;Day-IDay;At-ITime

**StrIn JobName,Days-O,Hours-O,Minutes-O,Char-" I"
Option List
Stream IJobName,IChar;In~IDays,IHours,IMinutes

**
T
Option List
ShowTime

**Display Message-" "
Option List
Comment <esc>MIMessage

**
A few notes and points of interest:

1. In the few situations where we still use the ENTRY program to
create batch files, we use the naming convention of always
starting the batch file name with the letters "BF". In
the ENTRY ODC, the purpose of the LISTF command is just to
provide a list of existing batch files to the user before the
program starts running.

2. Yhen I want a quick listing of a file on my screen or on
paper, I use the LIST or PRINT ODC's. Both use the FCOPY
command to produce the listing. One slight inconvenience
(besides the "extra garbage" displayed): unless the file
record length is eighty (for LIST) or 132 (for PRINT)
characters, FCOPY gives you a warning message that you must
respond to.

3. The DISPLAY UDC is used to display the character string
provided in the MESSAGE parameter. The escape M sequence
causes the cursor to delete the line that the cursor is on,
then display the message. The end result is that only the
message is left on the screen. Note that this UDC is at
the end of the UDC file so that all other UDC's may use it
to display messages.

O.K. Now for those unique "goodies" I promised you. Have you been
looking for a way to load information into your terminal's function keys
automatically? If you have, keep reading. If you have not, perhaps you
want to know why you would want to. Using the function keys to execute
commands is a good alternative to UDC's because the overall overhead is
usually less. Function keys also provide a one or two keystroke
execution of commands. Why am I telling you about an alternative to
UDC's?l? Because the solution is accomplished with UDC's.

My original source for this information was from the November 1987 issue
of the Interact magazine. In that issue, Michael J. Parker and Lynn

A Beginner's Guide to UDC's and JCW's: 0039 - 34

Wilson of State Farm Insurance in Bloomington, Illinois, had a short
article in the Users' Forum section of the magazine. I have taken their
ideas and expanded them to work on all of the types of terminals I have
(HP 2645A, HP 2392A, and HP 700/92), and, I believe, on any HP terminal.
There are three parts to the solution: two unc's that need to be
defined once probably in a system level UDC, and one or more
additional unc's defined that use the first two. The two system level
UDC's should be defined as:

SFK Key-l;Attr-O;Headl-" ";Head2-" ";&
Length-40;Function-"

Option List
Comment <esc>&fl"Attr"alnKey"kl"Length"LIFunction<esc>M<esc>A
Comment <esc>&fl"Key"k16dOLIHeadlIHead2<esc>M<esc>A

**UserKeys
Option List
Comment <esc>&jB<esc>M<esc>A

**
The SFK UDC accepts the information for one function key and "loads"
that information by causing it to be displayed on the terminal with the
COMMENT command. Be careful when you type this one in: upper and lower
case makes a difference in how it will execute! The KEY parameter
signifies which function key (1 through 8). The ATTR parameter
indicates what should happen when the function key is pressed:

0 (Normal) The defined string is displayed. To execute it,
the user must press the RETURN key.

1 (Local Only) The defined string is displayed; however,
it may not be executed.

2 (Transmit) The defined string is displayed and immediately
executed.

The HEADI and HEAD2 parameters provide values to be placed in the labels
on the screen (only for terminals that can "label" the function keys).
LENGTH indicates how many characters are in the function string. And
finally, the FUNCTION parameter provides the actual character string to
be "loaded" into the function key.

I have used the COMMENT command twice in this UDC because we have a
mixture of terminals and not all of them have the capability of
labelling the function keys. The first (longer) COMMENT command will
work on all of the terminals and will cause all of the information to be
loaded except for the function key labels on the screen. The second
COMMENT command provides the additional label information to those
terminals that can accept it (the older model terminals just ignore it).
It must be split in two steps; if combined into one, the older model
terminals will not have any of the information loaded into the function
keys. If all of your terminals have the function key labelling
capability, you may combine them into one COMMENT. On the other hand,
if none of your terminals have this capability, the second COMMENT could
be left out and the HEADI and HEAD2 parameters could be eliminated.

A Beginner's Guide to UDC's and JCW's: 0039 - 35

The USERKEYS UDC simply causes the function key labels to be
displayed on the terminal screen (if they are not already). Again,
this is ignored by the older model terminals, but is needed for the
newer ones. The "<esc>M<esc>A" sequence in both UDC's effectively
"erases" the comments from the screen as the UDC executes. If you
would like them left on the screen, that sequence could be left off
the end of the line.

What might the UDC's that use these look like?
example:

Here is an

SetMainKeys
SFK 1,0," "," QUERY", ,"Run QUERY.PUB.SYS"
SFK 2,0," "," DBUTIL ",,"Run DBUTIL.PUB.SYS"
SFK 3, 2 , It II , "SHOWJOB "" It ShowJob It

SFK 4,0," It, " FORMSPEC" ,,"Run FORMSPEC.PUB.SYS"
SKF 5,0," "," EDITOR ",,"EDITOR"
SFK 6,0," "," SPOOK ",,"Run SPOOK5.PUB.SYS"
SFK 7, 0 , .. " , II SEGMENTR" , , "Run SEGMENTER. PUB. SYS"
SFK 8,0, "PrepSave", "Program", , "Preps"
UserKeys

**
If you want to take this a step further (although you do get back
your saved UDC overhead), instead of RUNning each of the above
programs, execute a UDC to do so. In the UDC for each program,
execute a UDC before and after the RUN command to load the keys for
the program about to be run and then reset them afterward. For
example:

Query
SetQueryKeys
Run QUERY. PUB. SYS
SetMainKeys

**DBUti1
SetDBUti1Keys
Run DBUTIL.PUB.SYS
SetMainKeys

**
Do remember to place these in the UDC file prior to the SETMAINKEYS
and each of the SETxKEYS UDC's. By using this nesting technique,
you can set up a "menu" system with only UDC's and terminal
function keys. Neat, huh?l?

Now for "goodie" number two. Have you ever wanted to get rid of a
set of files but did not really want to type PURGE over and over
and did not have access to MPEX? Now you can (maybe) I This idea
came from the March 1988 issue of The Chronicle newspaper.
Victoria Shoemaker (of Taurus Software) in her :NEWUSER column,
presented this novel solution to the problem:

A Beginner's Guide to unc's and JCW's: 0039 - 36

PurgeFS FileSet
Option List
Store !FileSet;$Null;Show;Purge

**
This UDC STOREs the file set you specify to $NULL (which does
nothing you do not even need to REPLY to a request!) and then
PURGEs the files afterwards. This format of the STORE command is
normally used to archive information and then remove it from the
system -- we just happen to be archiving to the "bit bucket". Any
file set that the STORE program will accept (including the "-"
option) can be provided to this UDC. Be careful with this one
it can be very powerful. Make sure you have a good backup before
you type PURGEFS "@.@.@"!

"Goodie" number three. Do you need a way to provide different
"welcome" and/or "news" messages for each user? If so, read on.
This one comes from an article M.E. Kabay (of JINBU Corporation)
wrote in the March 1988 issue of The Chronicle. Here's a system
level UDC:

SysMessage
Option LogOn
Run LIST.PUB.TELESUP;INFo-"Y ON;T OFF;L NEWS.PUB.SYS"

**
If an account needs a special message or "news" file, set up an
account level UDC for them:

AcctMessage
Option LogOn
Run LIST.PUB.TELESUP;INFo-"y ON;T OFF;L NEWS.PUB.ACCT"

**
Special needs for a user? Try this user level UDC:

UserMessage
Option LogOn
Run LIST.PUB.TELESUP;INFO-"Y ON;T OFF;L NEWS.GROUP.ACCT"

**
The FCOPY program could be used instead of the LIST program, but I
think you'll find the LIST program a little "nicer". By having all
of these separate files. you can easily provide different
information to different users or accounts by including it in their
own news file. To update a file, simply use your favorite text
editor.

One last "goodie". This one permits you to send a message or list
the contents of an entire file on any terminal screen that is
turned on but not logged on:

A Beginner's Guide to UDC's and JCW's: 0039 - 37

Send LDev,Source
File TERM;Dev-ILDev
Continue
FCopy From-ISource;To-*TERM
Reset TERM
**

This UDC, when executed, uses the FCOPY program to copy the
specified file to the specified terminal. Again, the destination
terminal must be turned on but logged off for the message to be
displayed. If $STDIN is provided for the SOURCE parameter, then
the user may type whatever he/she wishes at the time of the UDC
execution. (This can be a little tricky though -- there is no
prompt and you must type ":EOD" to end your message.)

A situation I find this
completed, and I need to
Consider the following:

SendToA11 Source
Send 22,! Source
Send 23, ISource
Send 24,! Source
Send 25,!Source
Send 26,!Source
Send 27,! Source
Send 28,! Source
Send 29,! Source
Send 30,! Source
Send 31,! Source
Send 32,! Source
Send 33,!Source
Send 34,! Source
Send 35,!Source
**

If I type:

UDC helpful
let users

in is after a backup has
know that they can logon.

SENDTOALL SYSTEMUP.PUB.SYS

then it will attempt to transmit the contents of file
SYSTEMUP.PUB.SYS to each terminal. If a particular terminal is not
turned on, or is already logged on, that FCOPY will fail, but
because of the CONTINUE command, the next one will still be
attempted.

2.4 llhat are some problems I may have while using unc's?

Throughout the paper, I have provided a number of warnings and
"gotchas". Listed here (in somewhat random order) are a few worth
repeating and a few not mentioned previously.

A Beginner's Guide to UDC's and JCW's: 0039 - 38

If a system and a user level UDC have identical names and an
account level UDC references a UDC by this name, then the system
level UDC will be executed because of the UDC hierarchy.

If an error or warning occurs as a UDC executes, MPE will:

1. Print an appropriate error message.

2. Unless NOHELP is specified, print a caret (A) pointing
to the error.

3. Unless NOHELP and NOLIST are specified, print the line
in which the error occurred.

Every time a user logs on, a UDC directory is
session or job. If an error occurs during this
only the UDC level in which the error occurs
initialized. All others will still be enabled.

created for that
initialization,

will fail to be

A UDC name may not be "RFA" or start with the letters "RFA". This
is reserved for HP's internal use. Any UDC that is "RFA" or starts
with "RFA" will not execute and will result in the error message:

UNKNOWN COMMAND NAME (CIERROR 975)

If the SETCATALOG is executed as part of a UDC, it will be the last
command executed in the UDC body. Additionally, if the SETCATALOG
was part of a nested UDC, all levels of UDC execution are
terminated after completion of the SETCATALOG command.

If you execute a UDC that RUNs a program, you press BREAK, and then
execute the SETCATALOG command while in BREAK, you may type RESUME,
and continue with that program; however, any further execution of
the UDC that issued the RUN command will be terminated.

UDC's are not always as secure as you might think. Certain
programs and subsystems (e.g., SPOOK) allow users to enter MPE
commands and RUN programs. So even if you have a UDC with LOGON
and NOBREAK specified, the user can still gain access to MPE.

When you run a program, you no longer have access to your UDC's.
The COMMAND intrinsic only can be used to execute MPE commands.

Consider using the CONTINUE command wherever possible. This will
help prevent a program from aborting and terminating the UDC
execution. Even though it may seem unlikely that a program will
abort, it can be accomplished in many programs by typing :EOD when
prompted for input. This causes an end of file condition on $STDIN
and gives many programs problems.

Even though you have disallowed certain commands to a user (by
redefining them with a UDC) , be careful. If the user has access to

A Beginner's Guide to UDC's and JCW's: 0039 - 39

the COMMAND intrinsic (e.g., through EDITOR), the user can still
execute most MPE commands.

When modifying a ODC file, make sure that all users (sessions and
jobs) accessing that file have either logged off or disabled ODC's
with the SETCATALOG command. If you are working on a system level
ODC file, that means every user on the system is affected I

If you get rid of a user (with the PURGEUSER command) that had
unc's enabled at the time, the entries are NOT removed from
COMMAND.PUB.SYS. Always execute a SETCATALOG command to disable
UDC's for the user before purging the user.

UDC's bring with them system resource overhead at logon time, and
they use up entries in the DST table. The DST table entries are
used because of the extra data segment used to store the unc
directory for each job or session. To reduce overhead and improve
system performance when UDC's are used, do whatever you can to
reduce the number of unc files. This will reduce the number of
DST's used, as well as reduce the number of FOPEN's.

Here is a question you have not asked yet: is there a maximum
number of unc's that may be enabled for a user? The answer is yes.
Every unc enabled for a job or session must have an entry placed in
the unc directory in an extra data segment. When that extra data
segment becomes full, that is the maximum number of unc's.

If you keep these potential problems and limitations in mind as you
start your adventure into the wonderful world of unc's, you should
do well in avoiding most of the problems and pitfalls that may
arise along the way.

2.5 Are we done with UDC's yetl?1

Yes! At least for the time being.
completely different.

3.0 What are Job Control Words (Jell's)?

And now for something

JCW is one of the many other acronyms used in the HP 3000 world.
This one comes from the phrase Job Control Word. A JCW is MPE's
way of permitting programs and commands to communicate with each
other within a given job or session. JCW's are unsigned integer
variables used at the operating system level with values ranging
from zero through 65,535. Each JCW has a name and can be set
and/or interrogated either by MPE commands and/or programs.

3.1 How can JCV's help me?
-or-
Vhy would I want a program to talk to my commands?

A Beginner's Guide to UDC's and JCW's: 0039 - 40

Good questions I A properly used JCW will permit you to create
"smarter" job streams. They can help to automate some of the
decision making process in procedures. They can even help you
catch errors before they become a problem I All of this is to say:
JCW's can help make the system more "user friendly".

By testing JCW's against specific values, the user can program
conditional statements that take action(s) based on the results of
the test. JCW's can be set to predetermined values to indicate
completion of steps within a procedure. JCW's can be checked to
determine if certain events (usually errors) have occurred within
MPE.

3.2 O.K. I think I see how they could help me.
So, how do I create and use a Jal?

First, some background information. Three classes of JCW's exist:
user-defined JCW's; system-defined JCW's; and system-reserved
JCW's. In some ways, they are exactly the same -- in other ways,
they are completely different.

User-defined JCW's are named and assigned values solely by the
user. MPE never changes the value of, or interrogates a user
defined JCW. The user creates and assigns a value to this class of
JCW's with the SETJCW command or the PUTJCW intrinsic. The Jcw
name must begin with an alphabetic character and may consist of a
maximum of 255 alphabetic or numeric characters. You may not begin
a JCW name with the mnemonic names OK, WARN, FATAL, or SYSTEM
except under very specific conditions. (If you want to know what
they are, see the HP "commands" manual.) The value assigned to a
user-defined JCW must be in the range of zero to 65,535 inclusive.
User-defined JCW's may be interrogated by the user with the SHOWJCW
command and the FINDJCW intrinsic. These new commands and
intrinsics will be discussed later, so please be patient.

System defined JCW's are named by the system and assigned values by
the system and/or by the user. Both the system and the user may
interrogate system-defined JCW's. Only two system-defined Jcw's
exist: JCW and CIERROR. Both are created and set to zero at the
beginning of every job or session. They will remain zero unless
the user changes their value or an error occurs. The JCW named JCW
has two special values:

%140000 (System 0) Program aborted per user request.
a value greater than %140000 Program terminated in an error state.

The CIERROR JCW keeps track of the command interpreter (CI) errors.
If a CI error occurs, CIERROR is set to reflect the most recent
error number. Valid commands do not reset CIERROR to zero. Thus,
it always contains the number of the last error that occurred,
unless the user resets its value. Generally, it is best not to
alter the values of the system-defined JCW's. If you need to
control a JCW, it is best to use a user-defined JCW.

A Beginner's Guide to UDC's and JCW's: 0039 - 41

System-reserved Jew's are named and assigned values solely by the
system. Users may not change the value of a system-reserved JCW.
They may, however, interrogate it. There are six system-reserved
JCW's: HPMINUTE, HPHOUR, HPDAY, HPDATE, HPMONTH, and HPYEAR. The
following briefly explains what each is:

HPMINUTE Minute of the hour: values are 0 through 59.
HPHOUR Hour of the day: values are 0 through 23.
HPDAY Day of the week: values are 1 through 7; Sunday - 1.
HPDATE Day of the month: values are 1 through 31.
HPMONTH Month of the year: values are 1 through 12; January ... 1.
HPYEAR Year of the century: values are 0 through 99.

3.21 JCW usage in jobs and/or sessions.

O.K. So now you know what JCW's are. You even know about the
three classes of JCW's and what who can do to what. But, how do
you look at or set their values? For jobs or sessions, the answer
is: with the SHOWJCW and SETJCW commands.

The SHOWJCW command displays the current value of one or more
JCW's. Its syntax is:

SHOWJCW [jcwname]

where "jcwname" is a valid JCW name (any class). If a name is
provided, then only the value for that JCW will be displayed. If a
name is not provided, then all system-defined and user-defined
JCW's and their values are displayed -- system-reserved JCW's are
not displayed. This command may be executed from a session, job,
in BREAK, or from a program. It is BREAKable (it aborts execution
of the command).

If no user-defined JCW's have been created and the user types:

SHOWJCW

the system will respond with

JCW==O
CIERROR-O

unless some error has occurred prior to this command.

If you wish to see the current value of a specific JCW, you might
type:

SHOWJCW HPDAY

and the system would respond with:

HPDAY....3 SYSTEM RESERVED JCW

A Beginner's Guide to UDC's and JCW's: 0039 - 42

Or, if you typed:

SHOWJCY UPDATEERRORS

and UPDATEERRORS was a valid user-defined JCY name, the system
would respond with:

UPDATEERRORS-2

Big deal, so you can look at the value of a JCY. So what?!? O.K.,
let me tell you how you can change or set the value of a JCY
that is a little more productive. We need the SETJCY command to do
this:

[+value]
SETJCY j cwname-va1ue [-value]

where "jcwname" is the name of a new or existing user- or system
defined Jew and "value" represents one of the following:

1. An octal number between zero and %177777, inclusive.
2. A decimal number between zero and 65,535, inclusive.
3. An MPE-defined JCW value mnemonic (OK, WARN, FATAL, or

SYSTEM)
4. The name of an existing JCW.

All values must be in the range of 0 to 65,535, inclusive. That
is, if the "+" or "-" option is used, the result of the arithmetic
must be in the range as well. (The equal sign following the
"jcwname" may actually be one or more punctuation characters or
spaces, except "%" and "-" If you prefer some other notation.
feel free ...) This command may be executed from a session, job.
in BREAK, or from a program. It is not BREAKable.

A word or two about the four JCW value mnemonics. They are:

OK value is zero
WARN value is 16,384
FATAL value is 32.768
SYSTEM value is 49,152

These are strictly mnemonics for specific values -- they cannot be
used as JCW names. You may use a combination of a mnemonic and a
number to indicate a value between two mnemonics. If you specify:

FATAL32

for example, an implied addition takes place (32.768 + 32) and the
value would be 32,800. The "+" and "-" option may also be used
with mnemonics. For example:

FATAL - 768

A Beginner's Guide to UDC's and JCW's: 0039 - 43

would result in a value of 32,000. If the SHOWJCV command is used
to display current JCW values, and a value is greater than one of
the mnemonics, then the value will be displayed as the mnemonic
plus the amount over. For example, a value of 16,386 will be
displayed as:

WARN2

An exception to this is that any value less than 16,384 will be
shown as the actual number.

When the SETJCV command is executed, it causes the MPE JCV table to
be scanned for the name of the specified JCV. If the name is
found, the JCV is set to the value provided. If the name is not
found, it is added to the JCV table and then set to the value
provided. Once a JCV is created, it exists for the duration of
that session or job. There is no way to delete a JCV, short of
logging off.

You still are not feeling very productive with JCV's yet, right!?!
O.K. Here is the good stuff. JCV's are most often used to control
the flow of batch jobs (they can also be used in unc's and/or in
sessions), taking various actions based on the results of previous
steps. To do this, the IF/THEN, ELSE, and ENDIF commands are used.
For purposes of this paper, I am going to assume you either know
how these MPE commands work or can easily acquire the knowledge as
we look at examples. Some examples will come later that should
clear up some of your questions.

3.22 Jev usage in programs.

Now, for you programmer-type people, we will take a look at how to
interrogate and set JCV's from within a program. My examples will
be based on COBOLII usage; however, I will try to provide
information in a general way.

The programmatic equivalent to the SHOWJCW command is the FINDJCV
intrinsic. Its syntax (in COBOLII format) is:

CALL INTRINSIC "FINDJCV" USING jcwname,jcwvalue,status

where "jcwname" is an alphanumeric variable (byte array) containing
the name of the JCV to be found, "jcwvalue" is an unsigned one-word
integer variable (logical) to which the JCW value is returned and
"status" is a signed one-word integer variable (integer) to which a
value denoting the execution status of the intrinsic is returned.
The "jcwname" parameter may contain up to 255 alphanumeric
characters, starting with a letter and ending with a
nonalphanumeric character, such as a blank. If the requested JCW
is found, its value is returned to the program in the "jcwvalue"
parameter; if not found, no change is made to this parameter. The
"status" parameter will be returned with one of four possible
values:

A Beginner's Guide to unc's and JCW's: 0039 - 44

o Successful execution; the JCV was found.
1 Error: "jcwname" is longer than 255 characters.
2 Error: The value of "jcwname" does not start with a letter.
3 Error: The JCV was not found in the JCV table.

The FINDJCV intrinsic may be used to return the value of any of the
three classes of JCW's.

The SETJCW command's programmatic equivalent
intrinsic. Its syntax (in COBOLII format) is:

is the PUTJCW

CALL INTRINSIC ttpuTJCV" USING jcwname,jcwvalue,status

where "jcwname" is an alphanumeric variable (byte array) containing
the name of the JCW to be created or changed, "jcwvalue" is an
unsigned one-word integer variable (logical) containing the value
for the JCW, and "status" is a signed one-word integer variable
(integer) to which a value denoting the execution status of the
intrinsic is returned. The "jcwname" parameter may contain up to
255 alphanumeric characters, starting with a letter and ending with
a nonalphanumeric character, such as a blank. If "@" is the value
used, all JCW's will be set to the value provided. If the
specified JCW already exists in the JCW table, its value is changed
to the value provided in the "jcwva1ue" parameter; if not there, an
entry is created and then it is assigned the specified value. The
"status" parameter will be returned with one of six possible
values:

o Successful execution; value entered in the JCV table.
1 Error: "jcwname" is longer than 255 characters.
2 Error: The value of "jcwname" does not start with a letter.
3 Error: JCW table overflow; no room to create this new JCW.
4 Error: Attempted to assign a value to a JCW value mnemonic.
5 Error: Attempted to assign a value to a system-reserved JCW.

The PUTJCV intrinsic may only be used to assign a value to a user
defined or system-defined JCV. As mentioned earlier, if the JCV
named JCW is set to exactly %140000, then when the program stops
running, the system will display:

PROGRAM ABORTED PER USER REQUEST (CIERR 989)

If it is set to any value greater than %140000, then the message
displayed will be:

PROGRAM TERMINATED IN AN ERROR STATE (CIERR 976)

If the program is running in a batch job, the job will terminate
unless a CONTINUE command precedes the RUN command.

Another possibility with JCW's is to use them to permit separate
processes within the same job or session to communicate with each

A Beginner's Guide to UDC's and JCW's: 0039 - 45

other. If a process were to set a JCY to a given value when a
certain event occurred, then any other related process could check
that JCW to find out when it occurred or what has occurred.
Remember, however, that only numeric information may be assigned to
JCW's.

Just so you can't say that I didn't tell you about them, two other
intrinsics exist: GETJCW and SETJCY. They only permit you to
interrogate and set, respectively, the value of the system-defined
JCW named Jew. Since they have limited usability and you can use
FINDJCW and PUTJCY to accomplish the same thing, I do not suggest
learning about them.

3.3 How about some examples?

Once again, you have a good idea! First, we will look at some
examples in batch jobs, then we will take a look at a couple
example programs that use JCY's.

3.31 Batch Job Examples.

Since most of us are likely programmers, I will start with an
example job stream I use when working with a program. Virtually
all programs that are created at N.G. Gilbert Corporation are
written in the PROTOS language. For those of you not familiar with
PROTOS, it is a program generator whose output is a complete,
structured, COBOLII program. Once the program has been written in
PROTOR (and keyed into an editor file), the next step is to have
PROTOS create the COBOLII source program. When PROTOS completes
that task, then you need to compile the COBOLII source program.
The final step is to prepare the object program to produce the
program file.

Since I do not want to tie up a terminal (and the system) while all
of this transpires, I use an "intelligent" job stream to handle the
various tasks.

!Job prog,PRGRMR.NGG
!Comment This job stream performs a ProWrite, COBOUI compile,
!Comment PREPare, and SAVE of a program. If any errors
!Comment are encmmtered along the way, a message is sent
!Comment to PRGRMR .NGG, and the job stream stops running.
!SetJCW CIError ~ OK
!Continue
!ProWrite progP,prog,$STDLIST,2000
!If CIERROR < > OK Then
! Tell PRGRMR..NGG; ProWrite of prog aborted<ctrl>G.
!Else
! If PROTOSError < > OK 'lben
! Tell PRGRMR.NGG; Errors in ProWrite of prog<ctr];>G.

A Beginner's Guide to UDC's and JCW's: 0039 - 46

Else
Tell PRGRMR.NGG; ProWrite of prog done. Compile started.
File COPYUPFPROCOPY
Continue
COBOUI prog, progU
If CIError < > OK 'Then

Tell PRGRMR.NGG;Complie of prog aborted <ctrl>G.
Else

Tell PRGRMR..NGG; Compile of prog done. Prepare started.
Purge progX.
Continue
Prep progU,progX;MaxData-20000
If CIError < > OK Then

Tell PRGRMR. NGG; Prepare of prog aborted <ctrl.:>G.
Else

Save progX.
Tell PRGRMR.NGG;Program prog is done <ctrl>G.

EndIf
Endlf

EndIf
!Endlf
!EQJ

This example demonstrates how you can structure a job stream to
check for errors and take different actions based on the occurrence
or non-occurrence of errors. Some points of interest:

1. JCW CIERROR is set to OK (i.e., zero) at the start of the
job to guarantee that it starts at zero.

2. Even if one of the programs (PROWRITE, COBOLII, or PREP
(SEGMENTER) aborts, the job stream will continue because
of the CONTINUE commands. This permits us to check
CIERROR after each one to see if it aborted. If the
CONTINUE commands were not used, the job stream would
ab~rt before we could check the JCW's.

3. PROTOSERROR is a JCW that the PROWRITE program creates
and sets equal to the number of errors found in your
PROTOS program. By checking it, we can determine whether
it is worthwhile to continue on with the compile and
prepare steps.

4. Notice that you may nest the IF statements to create
whatever logic that might be required.

Here is another variation of this same job stream. This version
just tells the programmer that there is an error, but does not
report in detail like the previous version:

A Beginner's Guide to unc's and JCW's: 0039 - 47

!Job prog,PRGRMR.NGG
ISetJCW CIError-oK
tSetJCW False-l
!SetJCW NoProblems-oK
IContinue
IProWrite progP,prog,$STDLIST,2000
!If CIError < > OK Then
I SetJCW NoProblems-False
!Else
! If PROTOSError < > OK Then
I SetJCW NoProblems-False
! Else
! File COPYLIB=PROCOPY
! Continue
! COBOLII prog, progU

If CIError < > OK Then
SetJCW NoProblems-False

Else
Purge progX
Continue
Prep progU,progX;MaxData-20000
If CIError < > OK Then

SetJCW NoProblems=False
Else

Save progX
EndIf

EndIf
I EndIf
IEndIf
IIf NoProblems-False
I Tell PRGRMR.NGG;Errors in program prog <ctrl>G.
!Else
I Tell PRGRMR.NGG;Program prog is done.
!EndIF
IEOJ

In this version, JCW NOPROBLEMS is set to indicate when an error
has occurred and then is checked at the end of the job stream to
determine what to tell the programmer. (Note the creation of JCW
FALSE.)

Here is an example of making use of the system-reserved JCW's.
This is a modified version of the job stream we use to do our daily
backups.

!Job BackUp,Operator,Sys
ISetJCW Monday-2
IShowAllocate
IRun FREE5.PUB.SYS
IShowCache
!Report
!If HPDay=Monday Then
! FullBackUp

A Beginner's Guide to UDC's and JCW's: 0039 - 48

IElse
I PartBackUp
I EndIf
!Stream JHPTREND.HP35l36A.TELESUP
IIf HPDay-Monday or HPDay-Monday+3 Then
! Stream PREDICTJ.HP05093A.TELESUP
IEndIf
IEOJ

Points of interest in the backup job stream:

1. Notice the creation of the JCV MONDAY. This is not
necessary, but it makes the IF command read a little
nicer.

2. If the JCV HPDAY has a value of 2, then it is Monday and
a full backup should be performed. Otherwise, a partial
is done.

3. When the backup has completed, the HP trend job stream is
restarted, and if it is Monday or Thursday (Monday + 3),
then the HP predict job stream is also started.

Here is an example of using the IF command and JCV's to do
something they were not designed for, but it works, so why not?!!
The following could be included at any point in a job stream where
Jell would not be equal to FATAL (which would be virtually
anywhere) :

I If JCW-Fatal Then
From this point on (up to an ELSE or ENDIF command), you
may type whatever you wish. The lines do not even need to
start with an exclamation pointl The reason this works is
that when the condition in an IF command is false (which
it is in this instance), all command lines are ignored
until an ELSE or ENDIF command is read. Thus, this
provides an easy way to include comments without using
the COMMENT command.

!EndIf

Two other sources of example job streams are the PREDICTJ and
JREDUCE job streams from HP. They make extensive use of Jell's to
control the flow of the job stream logic.

3.32 Programmatic Examples.

The following is a COBOLII subroutine (actually it was written in
PROTOS) I created to call in any situation where I want to end a
program and have:

PROGRAM ABORTED PER USER REQUEST (CIERR 989)

A Beginner's Guide to UDC's and Jell's: 0039 - 49

displayed afterwards (granted, this is not very oftenl). The sole _
purpose of this program is to set Jew to a value of %140000.

$CONTROL DYNAMIC, BOUNDS
IDENTIFICATION DIVISION.
PROGRAM-ID. SETABORTJCW.
AUTHOR. DAVID L LARGENT.
DATE-WRITTEN. TOE, OCT 20, 1987,
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

Sets JCW to "Program Abort".

01 JCW-NAME
VALUE "JCW "

01 JCW-STATUS
01 Jew-VALUE

VALUE %140000 .

PROCEDURE DIVISION.

MAIN-LINE-SECTION SECTION.

MAIN-LINE.

3:41 P.M.

PIC X(4)

PIC S9(4) COMP .
PIC 9(4) COMP

MOVE ZERO TO Jew-STATUS.
CALL INTRINSIC "PUTJCW" USING JCW-NAME JCW-VALUE

JCW-STATUS.
IF JCW-STATUS NOT - ZERO

DISPlAY "Program SETABORTJCW: JCW not set. II

GOBACK.

This may not be a very useful program to you, as it is printed;
however, it does show the basics of what needs to be done to create
and/or set a particular JCW to a given value. If your JCW name is
longer than three characters, make sure you increase the length of
field JCW-NAME. Also, make sure you have at least one blank or
some other non-alphanumeric character following your JCW name. The
value for JCW-VALUE can be specified as a decimal number if you
prefer.

Here is a trivial example of the FINDJCW intrinsic, but again it
shows the basics of what needs to be done to retrieve the value of
an existing JCW.

$CONTROL BOUNDS
IDENTIFICATION DIVISION.
PROGRAM-ID. DISPlAYJCW.
AUTHOR. DAVID L LARGENT.

A Beginner's Guide to UDC's and Jew's: 0039 - 50

DATE-WRITTEN. WED, APR 27, 1988, 4:24 A.M.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Displays the Value of JCW *

01 JCW-NAME
VALUE "JCW ..

01 JCW-STATUS
01 JCW-VALUE
PROCEDURE DIVISION.

MAIN-LINE-SECTION SECTION.

MAIN-LINE.

MOVE ZEROS

PIC X(4)

PIC S9(4) COMPo
PIC 9(4) COMPo

TO JCW-STATUS
JCW-VALUE.

CALL INTRINSIC "FINDJCW" USING JCW-NAME JCW-VALUE
JCW-STATUS.

IF JCW-STATUS NOT - ZERO
DISPlAY "Program DISPlAYJCW: JCW not found."

ELSE
DISPlAY "JCW - " JCW-VALUE

STOP RUN.

Same comments as last time: make sure you set up JCW-NAME large
enough to hold your JCW name and make sure you end it with at least
one blank or other non-alphanumeric character.

3.4 What are some problems I may have while using JClJ's?

Throughout the paper, I
limitations. Listed here
worth repeating.

have provided a number of warnings
(in somewhat random order) are a

and
few

A JCW name must start with a letter and may consist of a maximum of
255 alphabetic or numeric characters.

The value assigned (whether a number or a calculated value) must be
in the range of zero to 65,535, inclusive.

The system-reserved JCW's may not be assigned a value by a program
or the user.

If you want to check for program errors (e.g., program aborts),
make sure to include a CONTINUE command before the RUN command.

A Beginner's Guide to UDC's and JCW's: 0039 - 51

Remember that the only thing that changes the values of CIERROR and
JCW (except the user) is another error. That is, a valid command
does not set them to zero!

Although JCW's can have any value from zero through 65,535, only
values from zero through 16,383 will be displayed as numbers.
Values larger than 16,383 will be displayed as a JCW value mnemonic
and an offset beyond the mnemonic value.

4.0 How can I use unc's and JCV's together?

UDC's and JCW's can be used together very effectively. JCW's can
control the flow of logic within a unC. A UDC (by way of its
parameters) can gather information and use that information to set
JCW's such that a program can then interrogate them and take
appropriate actions. So, let us look at some examples of combining
these two powerful capabilities.

To start off with, we will look at some logon unc's. First, a
simple addition to the system level logon unc to make use of
system-reserved JCW HPDAY easier:

SysLogOn
Option LogOn,NoBreak
SetJCW Sunday-1
SetJCW Monday-2
SetJCW Tuesday-3
SetJCW Wednesday-4
SetJCW Thursday-5
SetJCW Friday-6
SetJCW Saturday-7
**

By including this, these seven JCW's would always be available for
use in IF commands. For example:

If HPDay-Monday Then
Fu11BackUp

Else
PartBackUp

EndIf

is easier to read and understood than "If HPDay=-2 ... ".

Next, a way to have one thing automatically happen if a session
logs on and something else if a job logs on:

UserLogOn
Option Logon,NoBreak
SetJCW CIError-O
Continue
Resume

A Beginner's Guide to UDC's and JCW's: 0039 - 52

If CIError - 978 Then
Run (batch program)

Else
Run (online program)
Bye

EndIf
**

The RESUME command is not allowed in job mode (thus, CI error 978),
so we can use the result of its execution to determine if a session
or a job is logging on. Also, note that a job could be set up to
do other things after the "logon" program runs because there is not
an automatic BYE like there is for the session.

Here is a way to control when people logon and play games:

GamesLogOn
Option LogOn,NoBreak
If HPDay - Sunday or HPDay - Saturday or &

HPHour < 8 or HPHour > 17 or HPHour 12 Then
Display "Welcome to the Game Room"

Else
Display "Sorry, the Game Room is closed."
Display "Hours: Saturday and Sunday: all day"
Display " Monday-Friday: Before SAM, After 5PM"
Display " and Noon to IPM"
Bye

EndIf
**

If it is Saturday or Sunday, or before SAM, after 5PM, or sometime
during the noon hour, this ODC will let the user stay logged on.
Any other time and the user will automatically be logged off. Note
that if the user gets logged on during an "open" time, they may
continue playing "forever" -- there is nothing to force them off
when the game room "closes".

The following ODC is executed every morning by our operator or
anytime the machine is restarted. It provides a quick, easy way of
getting everything set to a known value:

SysUp
Option List
Streams 10
JobFence 0
JobPri CS,DS
JobSecurity Low
Continue
DiscRPS 3,Disab1e
Continue
StartCache 1
Continue

A Beginner's Guide to ODC's and JCW's: 0039 - 53

StartCache 2
SetJCW CIError-O
Continue
StartCache 3
If CIError-O Then

Stream JHPTREND.HP35136A.TELESUP
Else

Display "<esc>&dJ The HPtrend job stream should be"
Display "<esc>&dJ running. If it is not,
Display "<esc>&dJ STREAM JHPTREND.HP35136A.TELESUP"

EndIf
ShowJob JOB-@J
OutFence 1
HeadOff 6
Continue
StartSpoo1 6
Limit 3,16
SetOpKeys

**
A few points of interest:

1. Since we leave disc caching turned on virtually all of
the time, this UDC assumes that if the "StartCache 3"
command succeeds, the system must have just been started
and, therefore, the trend job stream needs to be
initiated.

2. The last thing that is done is to load the function keys
on the system console with the SETOPKEYS ODC that was
discussed earlier.

Here are a couple of UDC's to make things more convenient:

FindRun Program,Parm-O
SetJCW CIError-O
Continue
Run IProgram.Groupl;Parm-IParm
If CIError-622 Then

SetJCW CIError-O
Continue
Run IProgram.Group2;Parm-IParm
If CIError-622 Then

SetJCW CIError-O
Continue
Run IProgram.Group~;Parm-IParm

If CIError-622 Then
Display "This program was not found in"
Display "groupl, group2 or group 3."

EndIf
EndIf

EndIf

**
A Beginner's Guide to UDC's and JCW's: 0039 - 54

List FromFi1e-$StdIn,ToFile-$StdList
SetJCW CIError-O
Continue
File PRINT;Dev-IToFi1e
If CIError-30l or CIError-344 Then

File PRINT-!ToFi1e
EndIf
FCopy From-IFromFi1e;To-*Print
**

The FINDRUN UDC will try RUNning your program from three different
groups before it "gives up". This could be changed to be different
accounts as well, and could have more nesting added to try in more
locations if you wish.

The LIST UDC provides a lot of flexibility. The "to" file can be
specified by providing a device class name, a logical device
number, or a file name! To list a file on your terminal, you would
type:

LIST file

To print a file on the line printer, you could type either one of
these:

LIST file,LP
LIST file,6

To list a file on a terminal with a logical device number of 27
(the terminal would need to be turned on, but logged off), you
would type:

LIST file,27

To copy h file to an existing disc file, you would type:

LIST file,file2

It is not possible to create a new disc file. Another option
available with this UDC is to use the default "FromFi1e ll value of
$STDIN, which will accept input from your terminal keyboard, thus
permitting you to "create" a file as you go.

Now let us take a look at a UDC in which information is passed to a
program by way of JCW's. This example is from the unc's that
PROTOS Software Company provides with their PROTOS system:

PROWRITE F,C-"C",L-$NULL,S-1023,R-ROOTDB,Q-O
SETJCW PROBUILDWRITE-2
SETJCW QEDITOUT-IQ
FILE SEMDOPE-SEMDOPOl.PROTOS.PROTOS;SHR
FILE SEMPASS...SEMPASOl.PROTOS.PROTOS;SHR
FILE SSERR~SSERR.PROTOS.PROTOS;SHR

A Beginner's Guide to UDC's and JCW's: 0039 - 55

FILE SEMTEMP-SEMTMPOl.PROTOS.PROTOS;SHR
FILE ATNINl-!F
FILE ATNOUT2 - !L
PURGE IC
BUILD IC;REC--80,l6,F,ASCII;CODE-EDTCT;DISC-IS
FILE COBOLOUT-!C
FILE ROOTDB=-IR
IF QEDITOUT-l THEN

PURGE QECOBOUT, TEMP
FILE QECOBOUT;REC-256;DISC-IS;TEMP

ENDIF
RUN PROTOS.PROTOS.PROTOS;LIB-G
IF QEDITOUT ~ 1 THEN

PURGE !C
RENAME QECOBOUT,IC,TEMP
SAVE !C

ENDIF
RESET SEMDOPE
RESET SEMPASS
RESET SSERR
RESET SEMTEMP
RESET ATNINl
RESET ATNOUT2
RESET COBOLOUT
RESET ROOTDB
**

In this example, there are two JCW's used to pass information to
the PROTOS program: PROBUILDWRITE and QEDITOUT. The QEDI TOUT JCW
gets its value from the Q parameter of the UDC. Based on the
QEDITOUT JCW, different parts of the UDC are executed.

JCW's may only be assigned numeric values. So how do you make use
of character string information from a UDC parameter? Here is one
way:

CopyW2ToTape CharSet-X
SetJCW A-{)
SetJCW E-O
SetJCW !CharSet:-l
If A-=O and E=O '!ben

Display nAn 'A' or an 'E' must follow the copy command.<ctr1>Gn
Else

File W2~E;Dev=tAPE;Rec--276,25,F,ASCII

If A-l Then
.--FCopy FrOllPPR997TAP; T0-*W2TAPE

Else
FCopy From-PR997TAP;T0-*W2TAPE; EBCDICOur

EndIf
ListF PR997~,l

Display n<esc>d] Check the munber of records copied.<ctrl>Gn
EndIf

**
A Beginner's Guide to UDC's and JCW's: 0039 - 56

The purpose of this UDC is to copy a disc file to magnetic tape.
The catch is that we need the option of copying it in EBCDIC
format; thus, the CHARSET parameter. There are two "correct"
responses: A and E. At the beginning of the UDC, two JCW's (A and
E) are created and set to zero, then the user's choice is set to
one. By having a default value that is not correct, if the user
does not provide a value, the UDC will provide the message to the
user and "remind" them of the correct values.

5.0 Closing Thoughts --
Is it worth the effort of learning something new?

We have looked at User Defined Commands and Job Control Words.
Numerous examples have been explored to see how they work and how
they can be used. They are a very powerful feature of the HP 3000.
There is overhead associated with them (especially UDC's) , yet, my
feeling is that the convenience and "user-friendliness" gained
outweighs that overhead. They must be controlled however -- people
can get carried away when creating UDC's.

So, is it worth the effort? My answer is a (qualified) resounding
YES! The qualification is that UDC's and JCW's must be carefully
planned and monitored to reap the greatest benefit, but, oh, what a
benefit it is: increased operator, programmer, and user
productivity and a computer system that is easier to use overall.

HP is a trademark of Hewlett Packard Company.
PROTOS is a trademark of PROTOS Software Company.

Acknowledgements

A special thanks go to the following people who
creating this paper in some (tremendous) way
efforts (and tolerance!) are greatly appreciated:

Dan Hinds
Jonathan Largent
Lois Largent
Karen Morgan
Dawn Thomas
Martha Walsh

assisted in
all of their

A Beginner's Guide to UDC's and JCW's: 0039 - 57

Fisher, Sharon

Griffin, Brad

Hewlett Packard Company

Hewlett Packard Company

Hewlett Packard Company

Hewlett Packard Company

Hewlett Packard Company
Response Center
(specifically B.A.)

Kabay, M.E.

Largent, David L.

Lund, Robert A.

Parker, Michael J. and
Wilson, Lynn

PROTOS Software Company

Shoemaker, Victoria

Volokh, Eugene

Volokh, Eugene

Bibliography

"Setting up UCDs" , Interact, July, 1984,
page 48ff.

"Another Way to SetJCWs as Part of a Log-on
UDC" , SuperGroup Association Magazine,
June, 1986, page 12.

Hewlett Packard Response Center Questions
& Answers, August 1, 1986, page 1.

MPE V Commands Reference Manual, First
Edition, Update 1, 1986, Chapters 2 and 3.

MPE V Intrinsics Reference Manual, Second
Edition, Update 1, 1986, Chapters 2 and 5.

System Operation and Resource Management
Reference Manual, Second Edition, Update 1,
1986, Chapter 6.

Calls to the Atlanta HP Response Center
during April, 1988.

"Making the Most of Your WELCOME Message",
The Chronicle, March, 1988, page 54.

"Function Key Labelling", Interact,
February, 1988, page 15.

"UDCs: A Primer", Interact, April, 1987,
page 71ff.

"Labelling F-keys" , Interact, November,
1987, page 22££.

PROTOS Documentation, version 861231.

"UDCs: Marvelous and Misunderstood", The
Chronicle, March, 1988, page 34.

"Burn Before Reading - HP3000 Security and
You", Thoughts and Discourses on HP3000
Software, Third Edition, 1987, page 19ff.

"Conditional Execution -:IF, :ELSE, :ENDIF,
ET. AL.", SuperGroup Association Magazine,
February, 1986, page 28ff.

A Beginner's Guide to UDC's and JCW's: 0039 - 58

ADDING MULTI-PLANT FEATURES TO

A LARGE, INTEGRATED MANUFACTURING PACKAGE

by Terry H. Floyd and Mehrdad Laghaeian

BLANKET RESOURCES

Houston, TX 77450

Whether buying a new software package or maintaining an already purchased sys
tem, program and database modifications to a third party vendor's application are
a serious decision. Manufacturing software systems like Hewlett-Packard's
MMIPM or ASK's MANMAN are large and complex, trying to be all things to all
customers (almost). Even if a company buys software that "fits" its applications,
the complexities of the changing environment require some small changes within
the vendor's lead time. But really complicated modification projects are expensive
to maintain as new enhanced "releases" become available.

If the vendor is definitely not going in a given customer's direction, that company
must either modify the package and abandon new releases, change to another pack
age or prepare to spend substantial funds and resources for on-going maintenance
of the modifications within the vendor's new releases.

If planned modifications are something the vendor intends to do themselves (some
day), then it may be okay to do drastic changes. The key to successful modification
in anticipation of the vendor's moves is a very close contact with the vendor and its
users groups.

This presentation is the story of one company's modifications to ASK's MANMAN
system. It covers adding "Multi-Plant" features which were two releases ahead of
the vendor, but which hopefully will "go away" when the vendor implements its
more generic solution in a couple of years. It also shows how a two or three man
team can leverage the thousand man years work of the vendor's R&D department,
moving fast to solve unique problems while the vendor and its many customers
agree on the best solution for all.

ADDING MULTI-PLANT FEATURES TO A LARGE, INTEGRATED MANUFACTURING PACKAGE
0040 -1

ASK released MANMANIMFG on the HP3000 in the summer of 1978. MAN
MAN was originally written in IMAGElFortran on the HP2100/1000. During
1979, as the Financial software packages (named FINMAN I,ll,and ill)were
produced, four updates to MANMANIMFG were sent out to the tiny customer
base. Anyone who had modified any programs found out quickly how to migrate
through new releases. If ASK had kept up the three month release cycle, who
knows where we'd be? But they didn't; they went to a twelve month release cycle
by 1982.

Cameron Iron Works of Houston, Texas purchased the ASK MANMAN software
in June, 1987. The Company was replacing large mM mainframes running custom
in-house manufacturing/financial software. Three hundred plus terminals in sites
all over the oil producing states were to be replaced with "dumb PC's" networked
to an HP3000.

ASK's software/hardware price and performance/fit were excellent for Cameron in
most areas. Two major concerns were lack of adequate Multi-Plant features in the
applications software and doubts about response time with 300 terminals. Cameron
cut the number of terminals in half to solve the latter problem. Blanket Resources,
also of Houston, was contracted to enhance the applications software.

Cameron and Blanket Resources worked closely with ASK, at the local Houston of
fice and at Corporate, to learn which features would be added to the packages and
when. Visits by Cameron and/or Blanket Resources to the ASK Users Group
"Multi-Plant Common Interest Group" meeting in St. Louis in December, 1987 and
"Multi-Plant Roadshow Seminar" in Chicago in September,1987 gave insights about
what other ASK users wanted and when ASK would respond. Sessions at the
MANMAN conference in San Jose in March, 1988 brought the Multi-Plant eIG
up to date on the progress at Cameron.

Cameron Iron Works "went live" on all major aspects of MANMAN MFG,
OMAR, NP, and GIL on March 1, 1988. Here is a description of the environment
and Modifications:

A 'multi-plant' environment can be described as a group of manufacturing plants
with a common 'thread'. Any attempt to be more specific about the meaning of
the term would make it invalid for any number of 'multi-plant' situations currently

ADDING MULTI-PLANT FEATURES TO A LARGE. INTEGRATED MANUFACTURING PACKAGE
0040 - 2

operating in the business world. The 'common thread' could be a holding com
pany (fixed assets), a managing entity (general ledger), a financial group (accounts
payable, accounts receivable), a production management center (order manage
ment, purchasing, production planning), or a supplier (a plant and multiple distribu
tion warehouses). It will take an enormous effort to satisfy every combination that
could possibly exist.

The standard ASK package has been able to provide a common view of the finan
cial state of a company with multiple plants through a single GL. The problem has
been the fact that different plants had to lead separate lives. There was no means
of centralizing any other function within the company. This created book keeping
problems and made production planning and management very difficult. The
material transfer between different plants had to be managed in a roundabout way.
Centralized order management and production planning had to be done manually.
It was not possible to order the same part from the same vendor for different
plants and take advantage of quantity discounts. And the list went on and on.

The task to turn the ASK's manufacturing and financial packages into a Multi
plant package was made possible due to the fact that ASK is getting ready to have
multi-plant capabilities. There are already 'inactivated hooks' throughout the sys
tem which just needed to be switched on. It also helped to have a specific company
which had an already working definition of what the multi-plant system should
look like. This limited definition enabled the project team to spend minimum
amount of time studying the design requirements. The program modification and
development started within 30 days after the start of the project.

The overriding guideline for the entire project was to stay within the realm of fu
ture ASK multi-plant features defined by ASK's own project documentation and
the undocumented program hooks buried inside the seemingly 'single plant' pack
ages. All designs had to fit within the framework of ASK's upcoming product en
hancements so that the custom modifications could be phased out as they become
vendor supported functions.

The modified system can have a single or multiple financial groups managing multi
ple manufacturing plants. Material transfer is possible and is tracked automatically
through intercompany clearing accounts. Order entry is possible at the local plant
level and also through centralized order management. Vendors are maintained in
one database and paid for purchases by different plants with a single check. An
overall view of bookings and shipments is possible making it feasible to observe

ADDING MULTI-PLANT FEATURES TO A LARGE, INTEGRATED MANUFACTURING PACKAGE
0040 - 3

product trends and forecast accordingly. All this was possible without any changes
to the transactions and utilities supplied by the vendor.

Under this scheme there are plants that manufacture and warehouses under these
plants which act as distribution points. As far as the user is concerned, the visible
differences from the unmodified ASK package are as follows:

A A multi wa(ehouse user is prompted for the warehouse number at the start of
eacb command.

B. A multi-plant user is prompted for the plant when initially starting a session.

A single warehouse user will never be prompted for the above information. The
only other difference is the interplant material transfer transactions which had to
be developed in their entirety since there are no such functions currently offered
by the software vendor. All the warehouse and plant switching is done by the
software in the background freeing the user from determining which database they
should be accessing.

The project was completed in shortest possible time due in part to the somewhat
unique approach which enabled the users to interact with the designer/programmer
directly. The completed programs were submitted to the requesting user for test
ing. Any bugs or enhancements were explained to the original programmer who
also made the necessary changes. There was one project leader for design and im
plementation who was involved in all aspeets of the decision making. There was
also a project coordinator in charge of user/design team/operations team interface.
There were at most seven individuals in the project team including the user testing
group.

Originally it was decided that the documentation would be completed before any
code modification was started, but it quickly became apparent that, since the users
had the final word, any attempt at documentation would lead to hundreds of pages
of obsolete information by the completion of the project. The users, not being
familiar with the new package, would alter the specification upon the first execu
tion of a modified or developed transaction. This method goes against the prevail
ing and accepted method of product development and modification. In practice,
however, this approach was abandoned after a 40 page document had to be dis
carded before it was even submitted to the client company. The time required to
produce the documentation was deemed better spent completing the requested
program and submitting that to the user committee.

ADDING MULTI-PLANT FEATURES TO A LARGE, INTEGRATED MANUFACTURING PACKAGE
0040 - 4

The Cameron/ASK/Blanket Resources MANMAN implementation is still in
progress while this paper is being written in April, 1988. The speech to be
delivered in Orlando in August will provide more details.

ADDING MULTI-PLANT FEATURES TO A LARGE, INTEGRATED MANUFACTURING PACKAGE
0040 - 5

OUTLINE

I. Introduction

A History of ASK's MANMAN Software Releases

B. History of Case Study Company

II. Fitting the Company to the Package - the Compromises

A Multi-Plant Environment

B. The Standard ASK Package in Multi-Plant Environment

C. The Modifications

D. Implementation Events

ill. Conclusions

A The Team Approach for Success

B. Eleventh Hour Delivery Service

ADDING MULTI-PLANT FEATURES TO A LARGE. INTEGRATED MANUFACTURING PACKAGE
0040 - 6

I
MANUFACfURING

I

OMAR

MULTI-PLANT
SUBSYSTEM

MANUFACfURlNG

I
MANUFACfURING

I
PURCHASING~PURCHASING

VENDORS

ACCOUNTS
PAYABLE

GENERAL
LEDGER

PURCHASING

ADDING MULTI-PLANT FEATURES TO A LARGE, INTEGRATED MANUFACIURING PACKAGE
0040 -7

HP Portability: RAM/ROM vs. Disk-Based Approach
Hal Goldstein

Personalized Software
Fairfield, Iowa 52556

I am the publisher and editor of The Portable Paper, a
bi-monthly magazine devoted exclusively to Hewlett-Packard (HP)
Portable computers. We review products that run on the
Portables and provide in-depth tutorials, tips, and tricks on how
to make best use of HP Portables. Our company, Personalized
Software also sells many software and hardware products that
enhance HP Portables.

We know from our extensive customer service how people use and
feel about HP Portables. We are intimately familiar with the
machines' strengths and weaknesses. From this vantage point, we
will compare the two main versions of computer "portability" in
the marketplace today: the RAM/ROM disk-based portable and the
mechanical disk drive portable. In particular, we will compare
the Portable Plus/HPII0 with the new HP Portable Vectra.

First we'll look at how HP RAM/ROM portables work, at their
advantages and disadvantages, and recent advancements. Then
we'll look at how the mechanical disk drive portables work and
their advantages and disadvantages.

RAM/ROM MACHINES

To understand what we mean by a RAM/ROM electronic disk-based
portable, we will examine the Hewlett-Packard Portable Plus and
the HPII0. Both these machines contain two electronic "pseudo"
disks: a RAM-based A drive disk and a ROM-based B drive disk.
These two disks are not physical disks in the usual sense -
they are electronic simulations of disks. From both the user's
and the the operating system's point of view these RAM and ROM
disks look the same as a floppy or hard disk.

The RAM-based A drive disk stores data and programs that can be
created, modified, or deleted, in the same way one would
manipulate data on a floppy or hard disk. Similary, the ROM
based B drive disk functions like a write-protected "·;sk. A
user can access any data or program on the ROM disk. H\'. aver, no
information cannot be added to, deleted from, or modified on the
ROM disk.

Computer users may be familiar with "RAM disks." Usually, these
can be created by software and function as a disk as long as the
computer is on. In contrast the HP Portable electronic disks
are "non-volatile" RAM. Unlike volatile RAM, the electronic
disk stores and maintains files and programs even after the
computer is "turned off." The internal battery supplies enough
power to keep these files and programs alive for weeks and even

0041- 1
HP Portability: RAM/ROM vs. Disk-Based Approach

months.

Further, this non-volatile RAM in the HP110 and Portable Plus
actually serves two functions. The user divides his RAM between
internal memory and an electronic disk according to his
requirments. For example, on the 512K Plus, a user can allot
128K to internal memory and 384K to the electronic disk drive.
That means he has 128K for program and temporary data space.
When he wants to save his work, he saves it to the permanent 384K
electronic A disk space. The B disk stores ROM software programs
or data and is never used directly to save files.

We will now examine the HP110 and Portable Plus more closely.

THE HP110

The first HP RAM/ROM portable, the HP110, emerged from one simple
idea: to create a lightweight, powerful, rugged portable computer
that meets 95 percent of a portable computer user's needs.

Built into the ROM B disk of the HP110 is the full implementation
of Lotus lA, an easy-to-use word-processor called MemoMaker,
communications software for the 300 baud modem, and MS-DOS 2.11.
It also has 272K bytes of non-volatile RAM for electronic disk
storage and internal memory.

The default and most common division of that 272K of RAM between
internal memory and electronic disk is 96K internal memory and
176K RAM disk. with this configuration an HP110 can hold, for
example, on its electronic disk: Turbo Pascal, a text formatting
program, 110K for data files -- and still have enough internal
memory to run many Lotus applications.

HP no longer makes this 16-line HP110. (However, Personalized
Software and other sources sell used HP110's for between $700 and
$1000, the bargain of the year.)

The HPI10 does have its limitations. Some users want a bigger
screen, larger memory, and IBM compatibility. They also want a
choice of ROM applications and a higher-speed modem. To satisfy
these desires, Hewlett-Packard created the Portable Plus.

THE PORTABLE PLUS

The Portable Plus' 25-line screen, greater memory capacity, user
confiqurable ROM drawer, and 300/1200 baud modem make it more
powerful than the HP110. It is more IBM compatible than the
HP110, although it is not a true compatible.

The nine-pound Portable Plus comes with a standard 512K of
internal memory. until recently, the memory could only be
expanded by 384K of RAM, but now it can be expanded to as much as

0041- 2
HP Portability: RAM/ROM vs. Disk-Based Approach

4.5 Megabytes (4500K). The standard Plus sells for $2195 (or
$2700 with an internal 1200 baud modem).

Users may then purchase one or two additional drawers, depending
on their own requirements. One drawer, usually reserved for ROM
software, costs $160 plus the price of the ROM software (e.g.,
Lotus, $495). There are twelve sockets in the ROM drawer -- room
for 8 to 15 applications. The other drawer is usually reserved
for additional RAM. This flexibility permits users to build
their own system by purchasing ROM chips and disk-based software
for the electronic RAM disk.

Recent developments have not just enhanced the Portable Plus,
they have made it a brand new machine. The $995 HP 1 megabyte
RAM drawer as well as the Personalized Software/SoftWord 2
megabyte drawer and 1 megabyte RAM/8-socket ROM drawer greatly
expand the computer's memory and capability.

These larger RAM drawers allow full-blown RAM software packages
such as WordPerfect (word processor), Condor 3 (relational data
base manager), and T/Master (spreadsheet, word-processor,
communications, graphics, database), to fit in the Plus' RAM.

RAM/ROM ADVANTAGES

What are the advantages to RAM/ROM disk-based portables? First
of all, they are rugged. Since there are no moving parts other
than the keys, the portables can be dropped without damaging the
unit.

Second, the electronic loading makes input and output fast. For
example, it takes only a few seconds to load Lotus from ROM.
Third, with built-in disks, users don't have to carry disks on
the road or worry about copy protection (e.g., Lotus). Greater
memory capacity means users can pack more in less space at lower
cost.

Perhaps most importantly, the briefcase size and nine-pound
weight make these computers truly portable.

ROM software comes in small chips that can be easily inserted
into the Portable Plus. RAM software comes on 3 1/2" or 5 1/4"
disks that can be run or transferred onto the electronic RAM disk
from an external HP9114 disk drive or an IBM PC.

RAM/ROM DISADVANTAGES

One disadvantage to RAM/ROM portables is the separate disk drive
required for loading, storing, and backing up files and for
making room on the electronic disk. The external disk drive,
which makes use of the HP-IL interface protocol, provides slow
access.

0041- 3
HP Portability: RAM/ROM vs. Disk-Based Approach

The Portable Plus is not a true IBM compatible and, even with
recent price reductions, is still fairly expensive. However, it
certainly should be possible to create an IBM compatible RAM/ROM
machine. As memory prices fall, it should be possible to create
a less expensive machine.

MECHANICAL DISK DRIVE BASED COMPUTERS

Unlike a RAM/ROM disk drive, a mechanical disk drive magnetically
stores information on a flexible disk (or some other medium).
While a motor spins the disk, a delicate, electronic device moves
in very close to read the disk and write on it. These moving
parts make the computer susceptible to damage if dropped. They
also significantly increase the computer's weight.

ENTER THE PORTABLE VECTRA

The new Vectra CS computers (the dual floppy Portable Vectra CS
and the hard disk Portable vectra CS Model 20) function as both
portable and desktop computers. And they are true IBM
compatible computers!

The 17 •6-pound, briefcase-size vectra offers four internal I/O
expansion slots for adding expanded memory, serial ports, a
2400-baud modem, and other devices, without increasing the
computer's size. The Portable Vectra comes standard with an
expansion card that takes up one of the I/O slots and that
contains a parallel centronix port and a monitor interface.
That means the Portable vectra can be easily connected to a
printer and a monochrome, CGA, or EGA color monitor.

Other features include: a large, 12-inch, liquid crystal display
based on new IIsupertwist" technology; a full-size keypad with 12
function keys; a 1.44-Megabyte (1440K), 3 1/2 II flexible disk
drive capacity; and a standard 640 Kbytes of user memory.

Users can also add up to six Megabytes of EMS RAM to the dual
floppy Vectra and up to four Megabytes to the 20 Megabyte hard
disk Portable Vectra Model using the I/O expansion slots. The
NEC V30 CPU speed is twice as fast as the HPII0, the Portable
Plus, or the IBM XT. For certain applications it runs as fast or
faster than an IBM AT.

rhe basic Vectra, with its dual-floppy system costs $2495. The
Vectra Model 20, with its 20 Megabyte system, is a little
heavier than the basic unit and costs $3595.

MECHANICAL DISK DRIVE DISADVANTAGES

Despite a clamshell, closed-case design and extra shock mounting

0041- 4
HP Portability: RAM/ROM vs. Disk-Based Approach

for its mechanical disk drive, the Vectra is not as sturdy as a
RAM/ROM computer and its electronic disk drive.

It is less convenient than the HP110 and Portable Plus; it is
twice as heavy, requires disks, and, although its central
processor (CPU) is faster, its input and output is much slower.

0041- 5
HP Portability: RAM/ROM vs. Disk-Based Approach

SUMMARY COMPARISON CHART OF TWO APPROACHES

The first section of the following chart compares the RAM/ROM
vs. mechanical disk drive approach to portable computing given
the state of today's technology and costs. The second section
compares the Portable Plus to the Portable Vectra in particular.
The differences in the second section reflect design decisions
rather than characteristics inherent in RAM/ROM or mechanical
disk drive machines.

Characteristic Electronic
Disk Drives

Mechanical
Disk Drives

Ruggedness More Less

I/O (Save/Retrieve) Faster Slower

Weight Lighter Heavier

Run off battery Longer Shorter

Backup Harder Easier

storage capacity Less More

Cost More Less

Self-containment:

Short trips More Less

Long trips Less More

Portable Plus Vs. Portable Vectra:

Keyboard Inferior Superior

Screen Smaller Larger

IBM Compatibility Some Complete

Expandability 2 RAM or ROM drawers 4 Adapter slots

CPU Slower Faster

Internal memory 512K Max 4 Meg with EMS'g

0041- 6
HP Portability: RAM/ROM vs. Disk-Based Approach

CONCLUSION

The marketplace has not yet caught on to the true convenience and
portability of RAM/ROM-based computers. Rather, most users still
view the ideal portable as a scaled-down version of their desktop
machines, mechanical disk drives and all. The more a portable
resembles a desktop, the better the portable.

Given this criteria, the new HP Portable Vectra succeeds
admirably. In fact, its ability to hold expansion cards, its
full keyboard, and its 1.44 Megabyte floppy capacity make it
unique. If an external monitor is attached to the Portable
Vectra, the Portable Vectra is virtually indistinguishable from a
desktop computer. When portability is required, it takes only
seconds to detach the monitor and snap on the LCD screen.

However, for people who travel a lot and really need portability,
RAM/ROM machines are the way to go. Mechanical disk drive-based
portables can never match the light weight, ruggedness, and long
battery life of RAM/ROM machines. Hopefully, HP will take the
best of the two technologies to produce an IBM Compatible RAM/ROM
computer with detachable mechanical disk drives.

with its Portable Plus and Portable Vectra, HP has created two
exceptional machines. Unfortunately, although HP has invested
millions of dollars in research and development funds to create
these computers, it has not been willing to spend the money to
educate the marketplace as to the practical value of the two
machines.

Both computers look different from the "typical" portable in the
market. Consequently, neither of the computers has been
especially well-received in the computer press or at the retail
computer dealer level.

Many traveling professionals will find that a 1.5 Megabyte
Portable Plus with Lotus, a word processor, spelling checker, and
communications package all in ROM is the most useful, practical
powerful portable computer in the marketplace. On the other
hand the Portable Vectra with an external monitor is both a full
featured desktop and a portable computer. It is ideal for the
executive who wants a powerful, ergonomic, full-featured, compact
IBM compatible computer for his office that he can easily take
home at night.

My strong hope is that HP will not throwaway its leadership role
in the Portable industry by abandoning its ROM and RAM disk-based
technology. Whether or not HP stays in this RAM/ROM arena, you
can be sure that, eventually, other Portable manufacturers will
pick up the idea and produce IBM PC-compatible RAM- and ROM-based
machines. It is just too good of an approach to Portable
computing not to catch on in the general marketplace.

0041- 7
HP Portability: RAM/ROM vs. Disk-Based Approach

The Seven Wonders of TERMDSM
Dennis Heidner

Boeing Aerospace

Abstract

TERMDSM (Terminal On-line Diagnostic/Support Monitor) is an HP-written utility
program, distributed as part of the Fundamental Operating System (FOS) and
commonly used to fix ''broken'' ports on the HP3000. Most system managers never
fully realize the potential of this wondrous program which understands the internal
system tables (PPDIT, HWDIT, etc). This paper documents more fully the workings
ofTERMDSM, and how the system manager (or data communications manager) may
use it more effectively.

The paper emphasizes the DISPLAY and DUMP commands and explains the various
system tables which may be viewed through their use. (These tables are not
explained in either the TERMDSM manual or the System Tables manual.) This
paper is applicable only to MPE V.

Introduction

TERMDSM is available in the PUB group of the SYS. account. TERMDSM was
written to provide SEs (and later the system manager) a means of correcting port
lock ups without needing a shutdown and restart. This program provides simple
commands which allows the user to determine the hardware status of a port, the
internal MPE software status of the port, and how the port is really configured
(default port or a customized port).

Why study TERMDSM? The best reason is that it is in your own self interest! The
official view from HP is expressed on two consecutive pages in the TERMDSM
manual. First: Generally, the system manager has many troubleshooting
responsibilities and is required to collect and analyze a great deal o/information. It
is oftenhelpful to keepa journal that documents information about past and present
problems. But most importantly, thesystemmanager must know when to call an HP
servicerepresentative. When an HP servicerepresentative is called, he or she should
beprovided with all thepertinent information thatcould aid in theproblemresolution
process.[1] This does not necessarily mean that HP would like all of the system
managers to be handy with a wire cutters, hammer and screw driver. In fact HP is
very quick to point out that: It is Hewlett-Packard'sresponsibility toresolveproblems
that arise from the use ofproducts under the warrantyofa customerservice contract.
When support personnel are presented with complete information, the problem
resolution process is made easier for all concerned. [2]

The Seven Wonders of TERMDSM 0043 -1

The intent of this paper is to provide only a general overview of the tables used by
MPE as information moves to and from users' terminals. The contents of this
paper should not be used to design privileged mode programs which access
or modify the tablesl

MPE Data Communication Principles

The connection between the real world of the user and the HP3000 Central
Processing Unit (CPU) is typically through either an Asynchronous Data
Communications Controller (ADCC), an Advanced Terminal Processor (ATP), or a
Terminal Interrupt Controller (TIC - the Micro HP3000 equivalent of an ATP).
These devices are the port controllers (with many ports to each card). The ATP-type
port controller is capable of "running" independently of the main CPU, transferring
the contents of its buffers to and from the user's terminal. A special control program
sent from the CPU to each port controller contains a complete description of the next
task the controller is to perform. This task could be as simple as "remain idle
waiting for a key to be depressed" or as complicated as detecting a BREAK or modem
disconnect. Unlike the ATP, ADCCs are not "intelligent" and require the intervention
ofthe main CPU for EVERY character transferred to and from the terminals! ADCCs
do not use a control program hut instead a "channel" program. Because of the
performance limitations of the ADCCs, HP has been gently nudging the user
community to migrate away from ADCCs to the newer ATPs.

The control program which is sent to the port controller is "compiled" by the CPU
after referencing a number of special "DEVICE INFORMATION TABLES" or DITs.
These low level DITs are called the Hardware DIT (HWDIT), Protocol and Data
Manager DIT (PDDIT), and Port Protocol DIT (PPDIT). In addition to these special
tables MPE also maintains Terminal Buffers (TBUFs), VFC buffers, Interrupt Linkage
Tables, and Logical Device Tables. Confused? Lost? Rightfully so! Deciphering what
does what and who talks to whom while doing terminal I/O is much like the problem
that a blind-folded tourist encounters when he is "dumped" into a foreign country and
cannot speak the local languageI

Let me clarify how terminal I/O is performed by personifying the tables and processes
used Let's set the scene by saying we have been called to solve a hideous crime.
The inspector general (also known as the system manager) has observed that agent
99 (also known as LDEV 99) has been HUNG! The inspector is fit to be tied The
last several weeks some mysterious criminal element has been wreaking havoc. The
whole country's (system's) network of agents (LDEVs) is concerned that they will be
next. You are presented with a thick dossier of the agents and suspects (the tables).
With the assistance of anew crime-stoppers' tool (TERMDSM) you must identify the
most likely suspects so they can he then tracked down by INTERPOL (your local HP
CE & SE). (In order to makethepapermorereadablelUJd entertaining! deliberatelyblurthedistinction
betweenprocesseslUJd tables!)

The first entry on the inspector's list is a suspect called the Terminal Data Segment
alias TDS. TDS is quite nosy; he has maintained a record of the other suspects'
(DITs') locations and movements. It also appears that TDS may have a split

The Seven Wonders of TERMDSM 0043 -2

personality!

The second suspect is called the Logical Monitor DIT alias MONDIT. Observation of
the MONDIT indicates that he gets a lot of action. MONDIT appears to represent
the "go-between". He has been edgy lately (perhaps due to the lack of sleep).
MONDIT has been seen associating with IOQ, HWDIT, PPDIT, etc. The inspector
does not believe that MONDIT is the culprit although we might be able to squeeze
him for some information.

The third suspect is Protocol and Data Manager DIT alias PDDIT. PDDIT is an
ambassador, he likes strict adherence to protocol. PDDIT will often take documents
passed to him and add additional information to them. PDDIT is very demanding and
complains that the others never worry about time.

Our fourth suspect is called Physical Driver-Hardware Device Information Table alias
HWDIT. HWDIT is our mechanical expert, he spends most of his time working with
something called 'hardwaretl

• The other DITs view him as a social introvertI His only
close friends are CNTRLPROG and CHANPROG (suspects five and six).
CNTRLPROG - Control Program - is a quick and adaptable talker. CHANPROG
Channel Program - has a much more limited vocabulary and requires constant
supervision.

Suspect number seven's name is Terminal Buffer alias TBUF. TBUF has what
appears to be a photographic memory, unless she is overloaded with work. TBUF
likes to be asked to remember bits and pieces of data. TBUF maintains a running
total ofall the requests for work, the fact TBUF has always been handy, and that she
has a number of relatives waiting to help.

Our eighth suspect is quite crafty. Most of the other DITs are convinced that he has
never done anything useful in his life. He appears to take orders from something
called "ATTACHIOtl and after asking for advice from the other DITs he passes the
work on to some other worker. (Sounds like a manager to me!) This suspect uses the
name of Input/Output Queue; IOQ is the nickname he prefers. The inspector has
observed that shortly after IOQ gets into the act, the process which MONDIT belongs
to is often awakened!

Next up we have fraternal quadruplets. Although related, these suspects have unique
personalities. They are the Interrupt Linkage Tables (ILT & ILTX), Driver Linkage
Table (DLT), and Device Reference Table (DRT). The inspector is sure that these
tables are loyal and not the cause. The inspector's analysis is based on the knowledge
that ifanyone of these suspects were compromised, the country would have already
fallen (system failure)!

The next two suspects are the Logiea1-to-Physical Device Table (LPDT) and the
Logical Device Table (LDT). The LPDT is the psychoanalyst in the gang. LPDT
always knows whether the agents (LDEVs) are duplicative, or can accept jobs or data.
The LPDT can immediately tell whether a port is feeling good (UP) or blue (DOWN).
The LDT is a certified public accountant. LDT feels that items such as record length,

The Seven Wonders of TERMDSM 0043-3

printer header & trailers, and access count are not given enough mention.

The two suspects who appear to have most at stake are the Process Control Block
twins, aliases PCB and LDTPCB (process control block associated with LDT). These
two tables appear to be the origin of all input/output on the system. When an agent
working for them hangs, they hang! Conversely if something happens to the PCB
then the agent is left waiting and wondering when more data will come.

The second-to-Iast suspect's name is Vertical Format Control alias the VFC table.
This suspect only visits the scene of port hangs when the port was configured as a
spooled device. It is unlikely that a bad VFC table will cause a hung agent (LDEV);
however, bad VFCs are known to cause erratic and strange evidence (e.g., top-of-form
when it was not called for.)

The last suspect, Port Protocol DIT alias PPDIT, often looks and acts very suspicious
before and after agent hangings (LDE'1 problems). The inspector has noted that the
PPDIT appears to be wishy-washy, constantly changing his story when a different
user is working with our agents. Rumor has it that PPDIT has undergone a "face lift"
from something called a 'Workstation Configurator".

Before we begin our actual investigation of the crime scene, some additional
background information is necessary. Virtually all of the forenamed suspects are
involved with I/O between the CPU and the agent (LDEV). The suspects have been
greatly influenced by something called the "SYSTEM CONFIGURATION". Each
suspect has been read its rights by another computer program called the "Initiator".
Perhaps you've seen the Initiator repeat the rights to all the tables, it looks
something like:

DIRECTORY MAINTENANCE COMPLETED
PART 1 OF 6 COMPLETED - MEMORY RESIDENT TABLES SET UP
PART 2 OF 6 COMPLETED - SL BINDING
PART 3 OF 6 COMPLETED - SYSTEM I/O PROCESS CREATION
PART 4 OF 6 COMPLETED - DRIVER LOADING
PART 5 OF 6 COMPLETED - DISC RESIDENT TABLES SET UP
PART 6 OF 6 COMPLETED - SYSTEM PROCESS CREATION

Mter the Initiator has completed, each table will retain the basic characteristics
specified in the system configuration until one of two events happens: the port is
allocated, or an FCONTROL is issued requesting changes in the port characteristics.
Allocation means that either a user has entered a [RETURN] to logon or the port has
been FOPENed Once a port's characteristics have changed they will remain
in this Dew state until either the port is de-allocated or another
FCONTROL is issued. So what? Well, it is possible to write a very simple "user
mode" program that alters the port's characteristics so that it will work incorrectly
for the next program or make the port appear to be hung. (1 know. 1 have
accidentally done so.) TERMDSM allows you to determine very quickly the
characteristics of any port.

Troubleshooting Tips

The Seven Wonders of TERMDSM 0043 -4

INTROOUCED JOB NAME

MOM 4:11P OPERATOR.SYS
WED 5:51P REV03I,IDLE.SYS
SAT 11 :52A DENNIS, TEM. TEIMS

There are three basic items that are required for fast and effective troubleshooting.
The first is knowledge. Fortunately for the new system manager, there have been
experimenters who have preceded you. The work of Ross Scroggs is still a classic and
should be required reading. In order to troubleshoot, you must be able to distinguish
what appears to be normal (or correct) from what is wrong. Take the time to read
the reference material I have listed Make sure that you keep good notes when you
encounter problems, including what the causes, effects and cures were. The second
basic "thingtl that you need are tools. This does not mean that you must spend
several thousand dollars for data communication analyzers. First learn to use
effectively the free tools that exist on your system. These tools range from the very
basic :SHOWJOB, :SHOWOUT, and :SHOWDEV commands to the more sophisticated
TERMDSM program. The third basic item is a troubleshooting methodology. By
this I mean knowing where to start looking and the sequence of problem areas to
check.

HP's Fundamental Data Communications Handbook contains an entire chapter
devoted to troubleshooting. You should become familar with it. But even before
starting the steps HP lists, I do the following:

1 - If the port is a terminal then : SHOWJOB. Look for an asterisk Ct
•

tI
) in the

state column; it means that MPE has not yet completed the logon sequence for
the session. The JOBNUM and LDEV (JIN/JLIST) will be required for later
tracking.

:SHOWJ08

J08NUM STATE IPRI JIN JLlST

tlS154 EXEC 20 20
tlJ971 EXEC QUIET 10S LP
#S646 EXEC 46 46

3 JOBS:
o INTRO
o WAIT; INCL 0 DEFERRED
3 EXEC; INCL 2 SESSIONS
o SUSP

J08FENCE:: 0; JLlMIT:: 5; SLlMIT:: 30

If the port is a spooled device (plotter or printer), use the : SHOWOUT

command to check the status of the spooler. If the spooler shows it is active
but there is nothing being printed, check for messages on the operator's
console. Make a mental note of the STATE. (Remember, only READY files
print). Also make sure that the priority of your output exceeds the
OUTFENCE.

The Seven Wonders of TERMDSM 0043 -5

:SHf:MlIT

DEV/CL DFID JOBNUM FNAME STATE FRN SPACE RANK PRI tIC
LP 102671 'J959 LP READY 248 o 3 1
LP 102989 #J1064 SSTDLlST READY 104 o 2 1
20 10648 1S154 SSTDLIST OPENED

... ...
46 #103017 #S646 SSTDLI ST OPENED

29 FILES:
o ACTIVE
26 READY; INCLUDING 26 SPOOFLES, 26 DEFERRED
3 OPENED; INCUI)ING 1 SPOOFLES
o LOCKED; INCUIUNG 0 SPOOFLES
27 SPOOFLES: 3888 SECTORS

ClJTFENCE = 3

2 - If you have passed step 1, then have the operator use the : SHOWDEV
command Check to see if the port is available ("AVAIL'') and job accepting
("Aj. If they are not, find out why and take corrective action. A printer can
become "owned" by a user's program ifthe system spooler process for the device
was stopped. Once a printer is privately owned, other users' requests for it will
be denied with a file system error 55 - "device unavailable". If the port is
privately owned, the pin number of the owner will be displayed in the
"OWNERSIllP" column. Jot down the offending pin and look it up with the
: SHOWQ command A port may also be ''DOWNed'' by the operator or by the
security monitor. One other interesting item to look for is the number of files
open at each LDEV. An interactive session waiting at the ":" prompt will only
have two files open. If you see more, it means that the user is running a
program.

:SHCM)EV
LDEV AVAIL

1 DISC
2 DISC (RPS)
6 SPOOLED
7 UNAVAIL
8 AVAil
9 AVAIL

10 A AVAIL
20 A UNAVAIL
21 A AVAIL
22 SPOOLED
23 A AVAil

39 A AVAIL
40 SPOOLED
41 A AVAIL
42 A AVAIL
43 A AVAIL
44 A AVAIL
45 SPOOLED
46 A UNAVAIL

OWNERSHIP

6 FILES
22 FILES
SPOOLER 001
SYS #1

tlS154: 2 FILES

SPOOLER ooT

SPOOLER ooT

SPOOLER ooT
#S646: 2 FILES

VOLID

LOGTAP(ANSI)

DEN ASSOCIATION

3 - Use the : SHOWQ command to check if the process is able to run or to obtain
the Job/Session number of a pin that is holding a printer. Pin numbers which
are preceded with "M" are typically waiting at the ":" prompt. Pin numbers
which are preceded with a 'U" are application programs. System processes (like
spoolers) will not have any letter in front of them.

The Seven Wonders of TERMDSM 0043 -6

:SHOlQ

DORMANT WAITING RUNNING

Q PIN J08NtJt Q PIN J08NUM Q PIN JOBNtIt

1 C M129 ft646
2
3
4

L 16
C "18 15154
C U30 'J971
L 42
L 051 ...971
D M99 'J971
C U112 'J971
C U120 'J971

After you have performed the easy and simple checks it may finally be time to use
TERMDSM. This program has seven wonderful commands that we will cover in this
paper. They are ABORTIO, ABORTJOB, BROKEN, DISPLAY, DUMP, RESET, and
EXIT. (Not covered, but available, are diagnostics for ATP, ASNP, and DMI ports).

Running TERMDSM

TERMDSM may only be run by a user with SM or OP capability. Although the
program is safe (and should not cause system failures), it does give the user the
ability to abort I/O or jobs, and view terminal buffers. The latter should be of special
interest to the security-conscious, since it allows all passwords to be viewed as they
are typed in (even with the new security product installed).

The prompt for TERMDSM is tt_ >It. TERMDSM is accessed by entering

:RUN TERMDSM.PUB.SYS

HP32196G.05.04 - TERMDSM - Terminal Diagnostics (C) Hewlett-Packard
Co.

ADCC software version - G.51.24

Type HELP for aid

HELP

TERMDSM has built into it a help function. In addition to the "high level" help, each
command also will provide additional help.

TheSevenWonde~ofTERMDSM 0043"-7

-> HELP
Valid input at this point is anyone of the following:

DIAGnostics - to enter dialog for running diagnostics on
one or more ATP/ASNP ports

DMIdiag - to enter dialog for running diagnostics on
one or more DMI ports

ABORTJOB - to enter dialog for aborting one or more
jobs

ABORTI 0 - to enter dialog for aborting I/O pending on
an ATP/ADCC/ASNP/DMI port

RESET - to enter dialog for resetting one or more
ATP/ADCC/ASNP/DMI ports and associated tables

DISplay - to enter dialog for displaying ATP/ADCC/ASNP/DMI
tables and terminal buffers

DUmp - to enter dialog for dumping ATP/ADCC/ASNP/DMI
tables and terminal buffers

Broken - to obtain a list of ATP/ADCC/ASNP/DMI
considered broken and/or unfixable
by the driver software

Exit - to exit TERMDSM
The capital letters indicate abbreviated valid input. The
message output when you enter HELP will change depending on
where you are in what dialog.

Anytime 1/ is entered, TERMDSM will terminate.

BROKEN

The command BROKEN is used as a quick check for ports which have encountered
some unusual condition which caused them to "break". Once you have identified a
broken port you may use the TERMDSM RESET command to fix the port. However
not all broken ports can be fixed If the port is unfixable TERMDSM will indicate so.
Unfixable ports can only be reset by shutting the system down and restarting with
either a WARMSTART, COOJ..START or a COLDSTART. An example of the
BROKEN command is:

-> BROKEN
BROKEN PORTS

LDEV#
27
33

DISPLAY

BROKEN UNFlXABLE

*
* *

TERMDSM allows the user to display active information for virtually all of the tables
used by the system for terminal I/O. In fact TERMDSM is the only HP-supported
program which will allow the system manager to find out the terminal type and
termtype file defined for a specific port. With this command you get only what you

The Seven Wonders of TERMDSM 0043 -8

ask for. A sample dialogue with the DISPLAY command is:

-> DISPLAY
DISPLAY

Enter table name or ldev number: HELP
Enter one of LPDT, LOT, TDS, MONDIT, HWDIT, IOQ,
DLT, ILT, DRT, PCB, LOTPCB, PDDIT (ATP/ADCC/DMI),
PPDIT (ATP/ADCC/DMI), VFC (ATP/ADCC/DMI), TBUF (ATP/ADCC/DMI),
CNTLPROG (ATP/ASNP/DMI), CHANPROG (ADCC only), an
ATP/ADCC/ASNP/DMI device LDEV number or just a carriage
return.

There are two sets of tables associated with each
device: queues of tables and single tables. IOQs and TBUFs
are queues of tables while the rest of the tables are individuals.
If IOQ or TBUF is entered, the first table in the queue will
be displayed and you will be prompted whether to continue
with the next. If any other table name is entered, it will
be displayed.

If an ATP/ADCC/ASNP/DMI LDEV number is entered, it is now the
device whose tables are to be displayed, not the device
whose LDEV number was input previously.

If just a carriage return is input, TERMDSM returns to the
outer block.

Enter table name or ldev number: 46
Enter table name or ldev number: VFC

***** VFC Table SIR's *****
MER'PCB = 0
QUEUE 'LENGTH = 0

HEAD 'PCB =0 TAIL'PCB = 0

***** VFC Table SIR's *****
WRO
a 000000 000000 000000 000000

No VFC entry associated with LDEV #46

A more complete explanation of the tables will be given later in the paper.

DUMP

The DUMP command will format "snapshots" of active systems taken by MPE
immediately after a port breaks. Unlike the DISPLAY command DUMP can be used
to RESET-ports or format broken ports. Because it will reset both good and broken
ports, theDUMP command should be used with CAUTION! For ATP-type controllers
the user may request that the PCC memory also be dumped The catch is that in the

The Seven Wonders of TERMDSM 0043 -9

process of dumping the PCC memory, the port will also be resetI TERMDSM will
ask whether or not you want the PCC memory included in the dump. If the port is
already broken then you should say yes; if not and the port is in use, think twice!
The sample tables that are explained later in the paper were dumped from an ADCC
device that was active (ADCCs do not contain PCC memory). TERMDSM will dump
and format the table information for the specified port to a file called TERMnnn,
where nnn is the port logical device number. The file will contain caniage control
characters for "top-of-form". It is best printed by using FCOPY. The dump command
used to format the tables for the paper follows:

-> DUMP
DUMP
Enter ldev number: HELP

Valid input is an ATP/ADCC/ASNP/DMI device LDEV number or just a
carriage return to terminate input. As long as just the carriage
return is not entered, the prompt is repeated until all the
devices that are to be dumped have been input.

Enter ldev number: 46
Do you want to include a message? Y

message-> MODEM CARRIER LOSS, BUT SESSION STILL ACTIVE
message->

Data dumped into file TERM46.
Enter ldev number:

RESET

The RESET command will cause TERMDSM to abort sessions that were using the
device, reset the hardware, and rebuild the internal tables related to the device.
(Please note: If the device was unfixable, (see BROKEN) even RESET cannot fix it!)
I have included a sample dialogue for fixing a typical port. Users who have the DMI
interface should refer to HP's Terminal Online Diagnostic/Support Monitor
(TERMDSM) reference manual.

-> RESET
RESET

Enter ldev number: HELP
Valid input is an ATP/ADCC/ASNP/DMI device LDEV number or just a
carriage return to terminate input. As long as a valid
ATP/ADCC/ASNP/DMI device LDEV number is entered, the prompt will
be repeated until all the devices you want to reset 3re reset.

Enter ldev number: 46
The device entered is currently owned. Resetting this device will
abort the session associated with it. Be sure that you have the
correct logical device number! If you wish to continue with the
reset process, respond with "Y", "Nil or [RETURN]. y

The Seven Wonders of TERMDSM 0043-10

The DEVICE DRIVER does not consider this device broken. However
this does not exclude the possibility of a hung port. If you wish
to continue with the reset process respond with "Y", "N" or
[RETURN] y

EXIT

When you are done and want to leave TERMDSM enter "EXIT" or "/I".
-> EXIT

SAMPLE TABLE DUMP

Perhaps one of the largest drawback to using TERMDSM for our criminal
investigation is simply information overload! If we format the tables for a specific
port, somewhere between 15 and 25 related tables will be printed! For neophytes this
is generally enough to cause immediate panic. Fortunately the information that we
are really after is only a small subset. (This paper is not intended to teach you how
to write device drivers, only how to troubleshoot common problems.) I have
annotated the tables that you should be able to skip with the phrase "beyond the
scope of this paper". For the rest of the dumps (or displays) we must play the part
of the master detective Sherlock Holmes.

The Banner

The DUMP command will automatically include a banner at the beginning of the
formatted file.

HP32196G.05.05 - TERMDSM - Terminal Diagnostics (C) Hewlett-Packard Co. 1983

MOOEM CARRI ER LOSS, BUT SESSION 15 5T1 LL ACTIVE I

DUMP OF LDEV#46 ON SAT, APR 9, 1988, 9:59 AM

Terminal Data Segment (TDS)

Terminal Data Segments contain the Hardware, Protocol, Data Manager DITs, the
control (or channel) program and Vertical Format Control tables. MPE will
automatically create the correct number of TDSs required For systems which
contain ATPs there will be one or two TDSs for each Device Reference Table (DRT)
channel. Because ADCCs are much smaller, only one TDS is required for each DRT
channel.

The Seven Wonders of TERMDSM 0043 -11

***** ADCC Terminal Data 5egnent Header *****
HDOIT'P
HIGHLDEV'\ItD
LCM.DEV'WU
MSGTBL'P

aXOOOO43 PORTAIEA I P
= 58 PORTDUMP Ip
= 20 TBUFTBL I P
::X017677 TDS'VER

mXOOO647 VFCAREA I P
cX017752 WAITHEAD'P
=X022376 WAITTAIL Ip
I: 2

aXOOO247
aIOOOOOO
4177777

***** Software Vers fons *****
SOFTWARE LEVEL
ADCCDRIVER
ADCCINIT
I HANDLER
UWIAGER
LPMON
TDS'VER
TERJI)$M
TERMMON
TERllJTIL

G.51.32
G.04.44
G.04.18
G.04.36
G.04.71
G.04.19
2
G.05.05.0
G.04.28
G.04.27

Now back to our detective role. The TDS maintains pointers to the other DITs
required for the port. If the pointers were bad the port would indeed hang, but more
likely is a system failure! The version numbers are primarily for reference.
Unfortunately our suspect's nosy habits are of little use to us in this case. Mter
viewing the TDS, we can't hold this suspect; the verdict would be innocent.

Terminal Monitor DIT (MONDIT)

The MONDIT contains flags which indicate whether or not a device has been
"DOWNed" or placed in diagnostics (:SHOWDEV will also display this information).
MONDIT also contains the flags for pre-spacing and post-spacing (FCONTROL 1 with
parm equal %100 or %101). The MONDIT is also the place to look to see if the user
is "in BREAK", running an interactive session or job.

***** Terminal Monitor DIT *****
OL 'ACIC' TO :: 0 Ol'LDEV =1000056 OL'READ'TlME I: 0
DL'ACTIVE = 0 OL'LOG =1000000 DL'READ'TO = 0
DL'BINAlY = 0 OL'lOG1 =XOOOOOO DL'READ I TVAL :: 0
OL'BRK'MQD :: 0 DL •LOON I TRLX =1000000 DL'REQUEST = 0
OL'BROICEN :: 0 DL •LOGON' TO = 0 DL'RESET = 0
DL'CFAIL'TO = 0 DL I LOGON I TYP = 1 DL'SAVE'~F = 0
DL'CONSOLE = 0 DL 'MCC' STAT =1000000 DL'SPD'SNS = 0
OL I CONTROLLER = 2 DL'MCC'VER = 0 OL'SSTO I: 0
DL'OATE'COOE =xoooooo DL'MISC =XOO0103 OL'STAIT'SS ::10000
DL'DEVTYPE = 16 DL'MISC3 =X040020 DL I TBUFAVAll = 0
DL'DLTP =X072300 DL'MSC'STAT ::1000000 DL'TEMP =1000000
OL'DMI'STATE =10000 DL'MSC'VER :: 0 OL'TERM = 1
OL 'OONT I CAT = 0 OL'NEXT =XOOOOOO DL'TlCK =1000000
DL I ERROR I COOE :: 0 DL'PCC'STAT =1000000 DL'TlME ::XOOOooO
OL'FLAGS =1140000 DL'PCC'VER = 0 DL I TIME 'FLAG I: 0
DL'FLUSH :: 0 DL'PO'DITP =1012503 DL'TRUEUNIT :: 0
Ol' HANGUP I TO I: 0 DL'PF'REC = 0 DL 'UNFIXABLE sa 0
OL'ILTP =X062704 DL'PREEMPT = 0 DL'UNIT ::xoooooo
DL'INT'MAN ='0000 DL •PRESPACE :: 0 DL'UP :: 1
DL'INT1 = 0 DL 'PRP' LEVEL :: 3 DL'VERSION = 0
DL'IOQP =1005464 DL'QPARM = 3 DL 'WAIT 'RSN = 0

And now a few words of explanation of MONDIT's street slang, so you can follow the
progress of the questioning of our informer:

DL'TERM 1 - device is a terminal

The Seven Wonders of TERMDSM 0043-12

DL'UP

DL'BROKEN

DL'LDEV

DL'PRESPACE

DL'BINARY

DL'SPD'SNS

DL'FLUSH

DL'LOGON'TYP

DL'DATE'CODE

DL'DEVTYPE

DL'SSTO

DL'BRK'MODE

DL'ERROR'CODE

DL' UNFIXABLE

o - device not in use
1 - device has been speed-sensed or

FOPENed

1 - Port is broken

nnn - Logical device number for port

o - Pre-spacing not enabled
1 - Pre-spacing is enabled

o - Not Binary Mode
1 - Binary Mode

1 - Device was speed-sensed

1 - BREAK was seen, and has been processed

o - :DATA
1 - :HELLO
3 - :JOB

contains the ATP hardware date code
(ADCCS not used)

The driver type, 16 for terminals

o - If logon was not successful and
the configured logon timeout is
reached then disconnect the port.

1 - If logon was not successful and
the configured logon timeout is
reached, then reset and start new
speed-sense process.

o - NOT IN BREAK
1 - IN BREAK

ATP failure code

1 - port is unfixable, WARMSTART is required

While interrogating the MONDIT, the detective made the following observations.
The first is that the port was not broken and it was "up". The logical device for this
port is %56 (decimal 46). Pre-spacing was not enabled and a BREAK had not been
seen or processed The device type is 16, just what we would expect for a terminal.
Most of the suspect's ramblings (other fields) were considered not to be relevant to
the investigation. Verdict: innocent.

The Seven Wonders of TERMDSM 0043 -13

Port ProtocolDIT

The characteristics displayed in the PPDIT can be altered by using HP's Workstation
Configurator. Always check the current termtype number and ifa termtype file was
specified. (Termtype can be specified with FCONTROL or at logon by entering
:HELLO user.acct;TERM=nn or TERM=termtype filename). After the PPDIT
fields have been formatted, TERMDSM will also show what special characters are in
effect. If the special characters have been modified (via FCONTROL), it is possible
that many programs will not operate as expected

***** Port Protocol OIT *****

PP' ENQACIC = 1
PP' ENQBLOCK = 80
PP' ENQCHAR = ENQ
PP'EVEN'ENAB = 1
PP'EVEN'PARITY = 2
PP' FF 'NBlCHAR = NUL
PP'FFOIC = 1
PP' FOPEN 'PARITY= 0
PP' HEADTBUF =XOOOOOO
PP'INIT'OEV = 0
PP 'LAST' SSBRK = EM
PP'MIN'SR :: 0
PP'NAME'VAlIO :: 0
PP' NETWRIC 'DEV :: 0
PP'NETWK'WAIT = 0
PP' NOACICACTION = 1

Last termtype file name : none
Current term type : 10
PP'2631B'FIX = 0
PP'ACICCHAR = ACIC
PP'BLOCIC'TRIG = OC1
PP'BLOCICJD)E = 3
PP'BSRESP = 1
PP'CHARSIZE :: 6
PP'CONS'STRIP = 0
PP'DC3'CCTL = 0
PP'DELAY = 0
PP'DELAYCR = 0
PP'DELAYFF = 0
PP'DELAYLF = 0
PP'DO'XQN'TlMER= 0
PP'OTR'LOW'TlME= 0
PP'ECHO = 1
PP'EMSTRIP = 1
PP' ENQ =X050005

*** Special Characters ***

PP'OOO'ENAB = 0
PP'OOO'PARITY I: 0
PP'PARITY'ENAB = 0
PP'STAT'WAIT I: 0
PP'STATUS'RETRY= 0
PP'S\I'XONXOFF :: 0
PP'TAILTBUF =1000000
PP'TBUFS'IN'USE= 0
PP'TRIGGER'CHAR= DC1
PP'VFC =1000000
PP'VFC'OIC :: 0
PP'WRITESTATUS :: 0
PP'XFLOW I: 1
PP'XOFF'DC1 I: 0
PP'XON'TIME :: 60
PP'XSTRIP = 1

Console attention
cancel 1 character
linefeed
Type 1 EOR
Block-mode alert
Cancel line
Subsystem break
Strip and ignore

: SOH
: BS
: IF
: CR
: OC2
: CAN
: EM
: NUL, OEL

Here are the inspector's notes from the questioning of this many-faced suspect:

PP'ECHO 0 - echo disabled
1 - echo enabled

PP'ENQACK 0 - disable ENQ/ACK
1 - enable ENQ/ACK

PP'DELAY 0 - disable delays
1 - enable delays after CR, LF, FF

PP'XFLOW 0 - disable XON/XOFF
1 - enable XON/XOFF

The Seven Wonders of TERMDSM 0043 -14

PP'XSTRIP

PP'EMSTRIP

PP'CONS'STRIP

PP'FFOK

PP'DC3'CONTROL

PP'BLOCKMODE

PP'OO'XON'TIMER

PP'VFC'OK

PP'NAME'VALID

PP'DELAYCR

PP'DELAYLF

PP'DELAYFF

PP' ENQBLOCK

PP'ENQCHAR

PP'ACKCHAR

PP'BLOCK'TRIG

PP'TRIGGER'CHAR

o - do not strip XON/XOFF from read data
1 - remove XON/XOFF from read data

o - do not strip CTRL-Y from read data
1 - strip CTRL-Y from read data

o - do not strip CTRL-A from read data
1 - strip CTRL-A from read data

o - replace form feed (FF) with contents
of PP'FF'NEWCHAR before output

1 - allow FF

o - do nothing
1 - Append DC3 to line after every CR, LF

o - do not start read when DC2 is seen
1 - Line blockmode
2 - Page blockmode
3 - either line or page blockmode

o - do not limit XOFF flow control
1 - start XON timer (see

PP'XON'TlME)

1 - There is a VFC file for the device

o - Use HP FOS termtype files
1 - Use custom termtype file

time in .1 second for delay after CR

time in .1 second for delay after LF

time in .1 second for delay after FF

Size in characters of the ENQ/ACK block

ENQ character

ACK character

DC1 - read trigger character

DCl - normal character-mode trigger

The Seven Wonders of TERMDSM 0043 -15

PP'BSRESP

PP'PARITY'ENAB

PP'FOPEN'PARITY

PP'ODD'ENAB

PP'EVEN'ENAB

PP'EVEN'PARITY
PP'ODD'PARITY

PP'XON'TIME

Action that will be taken for a BackSpace
1 - Nothing
2 - Send End-Of-Medium
3 - Send LF
4 - Send /
5 - Erase the character

o - Parity checking is disabled
1 - Enable parity checking

The parity which should be used
o - Space
1 - Mark
2 - Even
3 - Odd

1 - If odd parity was sensed, parity
checking is enabled

1 - If even parity was sensed, parity
checking is enabled

Indicates what type of parity should be
generated if that parity was sensed.
o - Space
1 - Mark
2 - Even
3 - Odd

The amount of time to wait for XON.
(in seconds)

The detective's analysis of the PPDIT revealed nothing unusual. The port was
configured as type 10, typical for HP terminals. The special character table was what
is considered normal. The trigger character PP'TRIGGER'CHAR was a DCI as
expected I have included PPDIT displays for a spooled Laserjet II and a HP7750
plotter. Can you see any differences?

PPDIT for .Laserjet II

The Seven Wonders of TERMDSM 0043 -16

'"*** Port Protocol DIT '"***

PP'mD'ENAB II 0
PP'OOD'PARITY II 0
PP'PARITY'ENAB = 0
PP'STAT'WAIT a 0
PP'STATUS'RETRY= 0
PP'SV'XONXOFF II 0
PP'TAILTBUF :xoooooo
PP'TBUFS'IN'USEII 0
PPI TRI GGER' CHAR: NUL
PP'VFC =mOO247
PP'VFC'OIC II 1
PP'WRITESTATUS : 0
PP'XFLOW = 1
PP'XOFF'OC1 II 0
PPIXONITIME : 60
PPIXSTRIP = 1

: TTPCL18.PUI.SYS
PP' ENQACK :I 0
PP I ENQBlOClC II 0
PP I ENQCHAR a ENG
PP'EVEN'ENAB a'
PP'EVEN'PARITY = 2
PP'FF'NE\lCHAR II NUL
PPIFFOIC = 1
PP I FOPEN IPARITY= 0
PP I HEADTBUF =XOOOOOO
PP'INIT'DEV : 1
PP 'LAST I SSBRIC II NUL
PP'MIN'SR II 0
PPINAME'VAlID : 1
PP I NETWRIC IDEV : 0
PP'NETWRIC'WAIT : 0
PP I NOACICACTION = 1

Termtype fl lename
PP I 2631B'FlX II 0
PP IACKCHAR II ACIC
PP'BLOCK'TRIG II DC'
PPI BLOCICMOOE II 0
PP 'BSRESP II ,

PP I CHARSI ZE II: 7
PP'CONS'STRIP II 0
PP'DC3'CCll II 0
PP'DELAY II 0
PP'DELAYCR : 0
PP'DELAYFF :::z 0
PP'DELAYLF : 0
PP'DOIXON'TiMER: 1
PPIDTRILOW'TlME: 0
PP I ECHO II 1
PP'EMSTRIP II 1
PP IENQ :::zmoooos

*** Special Characters ***
Console attention
Cancel 1 character
linefeed
Type 1 EOR
Cancel line
S\.t)system break
Strip and ignore

: SOH
: BS
: IF
: CR"
: CAN
: EM
: NUL, DEL

PPDIT for spooled 7550

***** Port Protocol DIT *****

PPlOOOIENAB =0
pplOOOIPARlTY = 0
PP'PARITYIENAB = 0
PP'STAT'WAIT = 0
PP'STATUS'RETRY: 0
PP'S\I'XONXOFF = 1
PP ITAilTBUF :XCOOOOO
PP'TBUFS'IN'USE= 0
PP 'TRI GGER ICHAR= NUL
PP'VFC =XCD0267
PP'VFC'OIC = 0
PP'\lRITESTATUS = 0
PP'XFLOW = 1
PP'XOFF'DC1 = 0
PP'XONITIME = 60
PPIXSTRIP = 1

: TT75S0.PUB. SYS
PP IENQACIC = 0
PP IENQBLOCIC = 0
PP IENQCHAR = ENQ
PPIEVENIENAB = 1
PP'EVEN'PARITY =2
PP IFF I NEWCHAR = NUL
ppi FFOIC : 1
PP I FOPEN I PAR I TY: 0
PP I HEADTBUF =XCOOOOD
PPIINIT'OEV = 1
PP I LAST ISSBRIC = NUL
PP'MIN'SR = 0
PP'NAME'VAlIO = 1
PPINETWICIOEV = 0
PPINETWIC'''AIT =0
PP I NOACICACTI ON = 1

Termtype filename
PP ' 2631B'FlX : 0
PP IACICCHAR II ACIC
PPIBLOCK'TRIG = DC'
PPI BLOCICMOOE II 0
PPIBSRESP = 1
PP'CHARSIZE = 6
PPICONS'STRIP : 0
PPIDC3'CCTl : 0
PP'DELAY : 0
PP'DELAYCR : 0
PP'DELAYFF = 0
PP'DELAYLF = 0
PP'DOIXON'TlMER= 0
PPIDTR'LOW'TlME= 0
PP'ECHO = 1
PP'EMSTRIP : 1
PP I ENQ IImoooos

*** Special Characters ***
Console attention
Cancel 1 character
lfnefeed
Type 1 EOR
cancel line
SUbsystem break
Strip and Ignore

: SOH
: BS
: LF
: CR
: CAN
: EM
: NUL, DEL

VFCTABLE

The Seven Wonders of TERMDSM 0043 -17

VFe tables are used for spooled devices. The dump in this case was of a device
configured as a terminal.

No YFC entry assocIated wIth LDEY f46

VFC claims not that he was not anywhere near the scene of the crime. His alibi
holds up. Terminals do not associate with VFCs. I have therefore taken the
opportunity to include additional VFCs for a Laserjet II and an HP7550.

VFC entry for Laserjet II

***** YFC Entry *****
YFC Fi lename : YFCPCl.PU8.SYS

YFC'DATABUFO =1022515 YFC'IMITBUF =1022410 YFC'USE'caJNT = 1
YFC'DATABUF1 =1022622

***** YFC Initial ization Buffer *****
YORD
o 000000 140000 015532 015505 015446 066061 046000 000000
10 000000 000000 *** SAME TO 77 ***
100 00000o 000000 000000 000000 000000

***** YFC Data Buffer *****
YORD
o 000000 015446 066060 030526 000000 000000 000000 000000
10 00000o 015446 066060 031126 000000 000000 000000 00000o

*** YFC DATA BUFFER DI SPLAY SHORTENED ***

VFC for spooled 7550

***** YFC Entry *****

VFC Fi lename : YFC7550.PUB.SYS

•••••Z.E.&l1L •••

•••&l01Y••••••••
•••&102V••••••••

YFC'DATABUFO =1023034 YFC'INITBUF =1022727 YFC'USE'.COONT = 1
YFC'DATABUF1 =1023141

***** YFC Initial ization Buffer *****
WORD
o 000000 100000 015456 024033 027116 032473 030471 035461
10 034472 015456 044470 030073 035461 033473 030467 035111
20 047073 000000 000000 000000 000000 000000 000000 000000

*** SAME TO 77 ***
100 000000 000000 000000 000000 000000

***** YFC Data Buffer *****
DO
o 000000 000000 000000 000000 000000 000000 000000 000000

*** YFC DATA BUFFER = 0 ***

......(..N5i19i1
9: .. I80ii17i17:1
Mi·············.

Protocol and Data Manager DIT (pDDIT)

The PDDIT brings us closer to the actual port hardware. In the PDDIT we are
finally able to see if a "powerfail" has been encountered, whether or not we are
dealing with a modem, and if so, what the modem status is. The investigator can
easily determine the port speed If the terminal is processing a V/3000 read, that
too is visible.

The Seven Wonders of TERMDSM 0043 -18

Protocol and Data level DIT *****
***** Fixed Area *****

POIALLIPARITY =XOOOOOO
PO IALTCHARSET = 1
PO I BROKEN : 0
POICFICNT :I 0
PO ICFTlM£R =1000000
POICHARSIZE = 0
PO ICLEARF I: 0
PO ICONNECTTYPE = 1
PO ICONTROLLER :I 2
POIDCIMOOEM = 0
POIDPORTSPEED :: 120

***** Variable Area *****

POIDSRTlNER :: 0
POIDTRTlNER II 0
PO IHARD\lARE ITYP=XOOOOOO
POiloolTP =X012341
PO ILlNETYPE = 0
PO'MOOEMISIGNAL= 174
PO'MOOEMISTATE = 6
PO IPARITYENAB = 0
POIPENDINGISTAlIl 0
PO IPORTSPEED :: 120

PDIPORTSTATE = 1
PD'POWERFAIL = 0
PO IPPENTRYNUMB = 10
PO 'PPROTOCOL =1012520
PO IRPARITY = 0
POIRWPORTSTATE = 1
POISPEEDISPECIF: 0
POITERMTYPE = 10
PO IWPAR ITY = 0
PO IXONT IMER =1000000

PD I2631B'RESET = 0 POIESCPAIR :I 0 PO IREAD FLAGS =XOOOOO3
PO'ABSOFfSET =XOOOOO2 PO'FILLING = 0 PO'READLOC = 1
POIALTCHARS =XOOOOOC POIHEADOFFSET =1000002 PO'READTIME = 0
PO IALTEOR = NUL PO IHEADTBUF =X054076 PO IREADTYPE = 1
POIALlSSBREAK :: NUL PO'IOQEOR = NUL PO ISBUF1 =1054076
POIBANIOOJ(8 =X054076 POILASJlSTATUS:: 0 POISBUF1ISTAT = 0
PO IBANKOFFSET =1054076 PO ILASTEOR = NUL PO ISBUF2 =1054076
POIBINARYIMOOE :: 0 POILBLOCICMOOE = 0 PO'SBUF2 ISTAT = 0
PO IBINARYREAD = 0 PO ILDMD IT ::X063244 PO ISBUFREADCCl(pz: 0
PO IBLOCICMOOE :I 0 PO ' LDMOPCOOE = 7 PO ISPOSENSE = 1
PO IBREAK :: 0 PO' LLOMC = 2 PO ISSBREAK = 0
PO' BREAlCENAB = 1 PO ILOGONDEV = 1 PO' SSBRKENAB = 0
PO IBREAICMOOE = 0 PO ILOPCCJtPLETE = 0 PO ISTAT ICOONT '2= 0
POIBRKTBUF =1000000 PO'LOPSTATE = 1 PO ISTATUS =1000000
POIBRooCNT = 0 POINETWKISR'MQO= 0 PO 'STATUS IRETRY= 0
PO'BTANKEO = -1 PO'NETWRKIWAIT = 0 PO'STATUS1WCNT = 0
PO'CHARSET· = 1 PO INEWLINE = 0 POISUSPLOPSTATE= 0
PO'CNTRLX = 1 PO'NE1lTOP = 0 PO'TAILOFFSET =1000002
PO'CONSENAB = 0 POINO'READECHO = 0 POITAILlBUF =1054076
PO'CONSMOOE = 0 PO'NOLF :: 0 POITBUFSIIN'USE:: 0
POICRITICALV = 0 POIOlOXFERCNT = 0 PO'TBUF\lA1T ::XOOooOO
PO'DC2READ = 0 POIc::u.READ = 0 POITIMINGREAD = 0
PO'DEVLINK =1000000 PO'PCC'XON'XOFF= 1 PO'TRANSPARENT =XOOOOOO
PO'DISCNCJlDEV = 0 POIPENDLOPSTATE= 0 PO'VIEWREAD c 0
POIDOISTATREQ = 0 PO'PREADTIMING =1000000 PO'\lAITFORTBUF = 0
PD'EOF = 3 PO'PRINTER :;: 0 POlwe = 0
PDIEOFCNT :;: 0 POIRDTlMEOOTVAL= 0 POIXFERCNT = 0
PO IEOFTBUF =1000000 POIRDTIMERINOEX=XOOOOOO POIXONIRETRYS = 0
PO IERROR = 0 PO'READCNT =279 PO'XON\lA1T =0
PO 10ISCADDR = (D)XOOOOOOOOOOO POIROSTARTIME ="(0) 00000000000

These are some of the diplomatic terms favored by this suspect:

PD'PORTSTATE 1
2
3
4

5-8
9

10
11
12
13

Reading
Writing
Idle
Input save
NOT USED
Selftest
Speed-sensing
setting up port protocol
Set up special characters
Control Modem

The Seven Wonders of TERMDSM 0043 -19

PD'CONTROLLER

PD'LlNETYPE

PD'CONNECTTYPE

PD'BROKEN

PD' POWERFAIL

PD'CF'CNT

PD'PENDING'STAR

PD'MODEM'SIGNAL

PD'PORTSPEED

PD'PENTRYNUMB

PD'TERMTYPE

1 - ATP
2 - ADCC

0 - asynchronous
1 - synchronous

0 - Direct connect, subtype 14
1 - Modem, subtype 1 or 15
2 Modem, subtype 9 or 13

0 - PORT OKAY
1 - PORT BROKEN

0 - No powerfail
1 - Powerfail detected

nn - number of times data carrier has failed
HP3000 will disconnect after 50 times.

o - OKAY
1 - (MODEMS only) A carrier fail was detected

and an operation (port controller command)
is pending. The operation cannot be
started until we have a carrier.

o - NOT USED
1 - Clear to Send
2 - Signal Quality
3 - Data Set Ready
4 - Call origin status
5 - Secondary carrier detect
6 - Ring indicator
7 - Carrier Detect

The terminal (port) speed (Characters per
second)

The terminal type number; if a termtype
file was specified, then this will be 31.

The terminal type now in effect; 0 = termtype
file was specified.

The Seven Wonders of TERMDSM 0043-20

PD'LOPSTATE

PD'NO'READECHO

PD'BREAK

PD'SSBREAK

PD'VIEWREAD

PD'BINARYREAD

PD'ALTEOR

PD'ALTSSBREAK

PD'NEWTOP

PD'BREAKMODE

PD'SSBRKENAB

PD' BREAKENAB

Port Logical Operation state
o - No operation in progress
1 - Reading
2 - Writing
3 - status Request for a device
4 - Reading status
5 - Responding to CTRL-X
6 - Waiting for ENTER or RETURN
7 - write data and wait for read
8 - setup pending read
9 - write and then ask for status

10 - Speed-sense
11 - Set up port protocol
12 - Set up special characters
13 - Set up modem control lines
14 - Not Used
15 - Set up V/3000 read

o - Echo is enabled
1 - Echo is disabled

o - BREAK has not been seen
1 - BREAK key has been detected

o - CTRL-Y has not been seen
1 - CTRL-Y has been detected.

0 - NOT A V/3000 READ
1 - V/3000 READ

0 - Not a binary read
1 - Binary read

EOR character as specified in FCONTROL 41

Alternate subsystem break; (it will not De
stripped from read buffer)

o - not at top of form
1 - at top of form

o - Not in break
1 - In break

o - Ignore subsystem breaks (FCONTROL 16)
1 - Subsystem breaks are processed

(FCONTROL 17)

o - BREAK is disabled (FCONTROL 14)
1 - BREAK is enabled (FCONTROL 15)

The Seven Wonders of TERMDSM 0043 -21

PO'WAITFORTBUF

PD'PCC'XON'XOFF

PO'READTlME

PO'TIMINGREAD

PD'RDTlMEOUTVAL

PD'ERROR

PD'DC2READ

PO'XONWAIT

PD'LBLOCKMODE"'@

PD' BLOCKMODE

PD'BINARY'MODE

o - All okay, not waiting for TBUF
1 - Waiting for TBUFI

o - I/O driver will perform XON/XOFF handshake
1 - Hardware will perform XON/XOFF handshake

Elapsed read time (FCONTROL 22)

o - Terminal input timer disabled
(FCONTROL 20)

1 - Terminal input timer enabled
(FCONTROL 21)

Number of .1 seconds for timed read
(FCONTROL 4)

Driver sensed an error!
1 - Out of buffers
2 Data OVerrun
3 Framing error
4 Not Used
5 Parity error
6 Not used
7 Modem error ?1
8 Not used
9 Not used

o - DC2 not read [ENTER]
1 - DC2 has been read, will initiate

a blockmode or linemode read

o - Not waiting for XON
1 - XOFF was seen, waiting for XON

(only set up software is performing
the XON/XOFF handshake)

1 - Line Blockmode read was made

1 - Blockmode read

o - Not in binary mode (FCONTROL 26)
1 - Binary transfers enabled

(FCONTROL 27)

The Seven Wonders of TERMDSM 0043 -22

PDIREADTYPE

PD'PRINTER

PD'READLOC

PD'STATUS

(Type of read in progress)
o - No read in progress
1 - Character mode read
2 - Spooled read
3 - Idle read
4 - transparent read (no editing)
5 - V/3000 read
6 - Binary read

1 - device is a printer

o - Not Used
1 - Read i.nto TBUF
2 - Read into system buffer
3 - Read into frozen segment (NO-WAIT I/O)

status returned from printer
(Only if port was configured as a
printer)

The detective's review of the PDDIT showed that the port was setup as a 1200 baud
modem (subtype 1 or 15). The port was not broken, and no powerfail had been
encountered The terminal type is 10, (it matches the other tables), and we are not
in a V/3000 read (PD'VIEWREAD=O). The field PD'LOPSTATE says that we are
readjng or waiting for a read The PD'MODEM'SIGNAL is %174 which decodes to
"clear to send", "signal quality", "data set ready", "call origin status", and "secondary
carrier detect", BUT NO CARRIER DETECT! Why? This is very unusual. This
suspect will require closer surveillance, but we should not make a judgement yet
because we still have several more suspects to question.

Hardware DIT (HWDIT)

The HWDIT will reflect the "opinion" of the actual computer hardware. Generally
the contents of the HWDIT should be in agreement with the more sophisticated DITs
already discussed However keep in mind that in some cases such as XON/XOFF,
the actual handshaking may be done by the software driver and not the hardware.
(In that case the flags may actually disagree!) Remember that the HWDIT is a
mechanic, so we are especially interested in the mechanical work that he has
performed A good inspector will look for data format (8 bit mode), which parity is
in effect, any errors, what delays will be used, port speed, has [BREAK] been seen,
echo on or off, and if a modem - what the modem line values are.

The Seven Wonders of TERMDSM 0043 -23

***** ADCC Hardware-level Dit *****
HW'8'BlT'MOOE ::: 1
HW'ACK' CHAR = ACK
HW'ACK'\MlT = 0
HV'BREAK'DETECTs: 0
HV'BROKEN ::: 0
HV'CHAR'BUFFER =XOO3000
HV' CHAR 'MAP =1140344
HV'CONTROL'TYPE::: 2
HV'CpIP =X062731
HV'CRIDELAY ::: 26
HV'CURR' CPVA' NU::: 3
HV'CURRIINT'COO= 32
HV,DELAY , CHAR = NUL
HV'DELAY'ENAB ::: 0
HV,DELAY , INT = 0
H"'DIAG'INTERRU= 0
H"'DIAGIREASON = 0
H"'DIAGNOSTIC = 0
HV'DOIXQN'XOFF = 0
HV'DRT = 31
HV'ECHO = 1
HV'EDIT' SCHRS =1000000
HV' ENQ' BLOCK ::: 80
HV' ENQ' CHAR = ENQ
HV' ENQ' COUNT = 26
HV' ENQ'TI MER =1000000
HV'FFIDELAY = 6
HV' FF IENAB = 1
HV'FLAGS'3 =1101613

HV'FLAGS'4 =1147340
HV'FRAMING'ERRO= 0
HW'INSAVE'BlTS =1000000
HV'INSAVE'BREAK= 0
HV'INSAVE'BUF =1010600
HW'INSAVE'FE = 0
HV' INSAVE 'MODEM= 0
HV' INSAVE 'NOACK= 0
HV'INSAVE'OE = 0
HV'INSAVE'PE =0
HV' I NT'TRACE = 23523
HV' LAST' CPVA' NU= 3
HV'LAST'INT'COO= 14
HV' LDIT'P =X063244
HV'lF'DELAY = 5
HV'L1NE'SPEED = 11
HV'LSTSTATE = 11
HV'MOOEM' CTL =1000052
HV'MOOEM'0UT1 =1000014
HV'MODEM'OUT2 =1000014
HV'MODEM'REF =1000012
HV'MODEMPANEL = 1
HW'NEXflSTATE = 1
HW'NON55 = 1
HW' PARI TV' CHECK= 0
H"IPARlTYIGEN = 0
HW'POIT'P =1012503
HW'PClJERFAll = 0
HW'PRI'SCHRS =1140344

HW'PRISPCL a 1
HW'RD'RIGHT'LEF= 0
HV,READ ,ADDR =!054127
HV' READ' BANI(:4000003
HW'READ'BUFR =1020117
HW'READ'eNT = 134
HV'SAVE'MOOEM =1000372
HV'SAVE'READ =1000000
HW' SEC' SCHRS =1000422
HV'SENSE' TIMER =1000000
HV'SET'PROTOCOLa 1
HV' SETUP 'WAKE = 0
HW'SPEC'CHAR ::: LF
HV' SPEC' SPEED :a 0
HV'STATE ::: 1
HV'STATUS'BITS I: 0
HV'STATUS'FE = 0
HV'STATUS'OE = 0
HW'STATUS'PE ::: 0
HW' OART =XOQ0233
HW 'UNUSED '3 :::1000000
HW'WlI'SCHRS =1000431
HW'WRITE'ADDR =1012437
HW'WI TE 'BANK =1000003
HW'WRITEIBUFR =1010400
HW'WRITE'CNT :::z 0
HW'WT'RIGHTILEFa 0
HV'XON'WAIT = 0
HW'XONENAB :: 1

Here are some our social introvert's favorites topics of conversation:

HW'CONTROL'TYPE 1 ATP
2 ADCC

HW'MODEMPANEL 0 The port is configured as a direct connect,
subtype 14

1 The port is configured for a modem,
subtype 15

HW'WAIT'REASON 1 Abort Pending
(ATP ONLY) 2 The port is being reset

3 Modem disconnect in progress
4 ?
5 Fort just initialized, waiting for modem
6 Hung

HW'ECHO 0 Echo is disabled
1 Echo is enabled

TheSevenWonde~ofTERMDSM 0043 -24

HW'STATE

HW' POWERFAIL

HW'BROKEN

HW'DELAY'ENAB

HW'FF'ENAB

HW'XONENAB

HW'8'BIT'MODE

HW'PARITY'GEN

1 reading
2 writing
3 speed-sensing
4 - 9 = ?

10 reading modem inputs
11 idle read
12 setting up modem
13 monitoring modem signals

o Normal, no powerfail
1 Powerfail has occurred

o The port is not broken
1 The port is broken

o Delays will follow CR,LF or FF
1 No delays are added (NOLs)

o Replace FormFeed (FF) with a Linefeed
1 Pass FF through without editing

o Hardware will not perform XON/XOFF handshake
1 XON/XOFF will be performed

o data is 7 bit with 1 bit parity
1 data is 8 bit data

(FOR 7 BIT DATA ONLY, SEE HW'8'BIT'MODE)

o
1
2
3

ADCC

EVEN
ODD
EVEN
ODD

ATP & TIC

BIT8 =0
BIT8 =1

EVEN
ODD

HW'PARITY'CHECK 0
1

do not check parity for received characters
check received character parity

The Seven Wonders of TERMDSM 0043 -25

HW'LINE'SPEED

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

ADCC

NOT USED
NOT USED

?
?
?
?
600 baud

2400 baud
9600 baud
4800 baud

NOT USED
1200 baud
2400 baud

300 baud
150
110

ATP & TIC

110 baud
300 baud
600 baud

1200 baud
2400 baud
4800 baud

19200 baud
9600 baud

NOT USED
9600 baud
1200 baud

300 baud
?
?
?
?

HW'READ'CNT byte count, reset to 0 after CR

HW'WRITE'CNT byte count, written thus far, reset at CR

HW'FRAMING'ERRO the number of framing errors seen thus far

HW'SPEC'CHAR contains the last special character detected.

HW'MODEM'OUTPUT These are the output lines from the HP3000
(ATP) to the modem

HW'MODEM'OUT1 & 2
(ADCC)

Bit ADCC ATP & TIC

o NOT USED speed select
1 NOT USED ?
2? ?
3? ?
4 Request-To-Send Secondary Request-To-Send
5 Data-terminal-ready call request
6 speed select Request-To-Send
7 Secondary Request-To-Send Data-Terminal-Ready

HW 'MODEM 'REF (reference MASK; "1" = check for change in
state)

The Seven Wonders of TERMDSM 0043 -26

Bit

o
1
2
3
4
5
6
7

**** ADCCs ONLY ****

ADCC

NOT USED
NOT USED

?
Clear-To-Send
Data-Set-Ready
Ring indicator
Data Carrier Detect
Secondary Channel

Detect

ATP & TIC

NOT USED
Clear-To-Send
Signal Quality
Data-Set-Ready
Call Origin Status

Secondary Carrier Detect
Ring Indicator
Carrier Detect

HW'SAVE'MODEM

HW'XON'WAIT

HW'ACK'WAIT

HW' ENQ' BLOCK

HW' ENQ •COUNT

HW' CR' DELAY

HW' LF' DELAY

HW' FF' DELAY

Same format as HW'MODEM'REF but indicates
actual status of the signal lines from the
modem

XOFF has been seen; we are waiting for an XON

ENQ was sent; we are waiting for an ACK to be
returned

The number of characters which will be sent in
between ENQ and ACK. "0" disables ENQ/ACK

The number of characters to be sent to
the terminal before another ENQ will be sent.
(Decreases as each character is sent).

nn * .1 second delay after each CR

nn * .1 second delay after each LF

nn * .1 second delay after each FF

After a long discussion with the mechanic and a close examination of his work, the
detective has concluded that the agent (LDEV) has been instructed to work with 8
bit data, no parity detection or generation, no delays will be added to the data. The
port speed is set to 1200 baud The modem states were quite intriguing! The
HP3000 had set the "clear-to-send" and "data-terminal-ready" control lines. What is
so interesting is that the modem output states are what you would expect for a port
that is either currently connected (it was not) or a port that has had the carrier drop
was disconnected and is now waiting for another call! Something is very fishy! This
suspect will also require closer surveillance.

ATP CNTRLPROG and ADCC CHANPROG

CNTRLPROG and CHANPROG both take their orders from the other DITs and I/O

The Seven Wonders of TERMDSM 0043 -27

process. Since we know that these two suspects do only as they are asked and never
have done anything on their own initiative, the inspector feels that they are innocent.

The ADCC channel & ATP control programs are beyond the scope of this paper.

IOQ

The 10Q is the boundary where we leave the realm of the file system (FOPEN,
FCONTROL, FREAD, FWRITE, etc.) The higher order file system intrinsics act as
guardians to the underworld, checking and ensuring that the user requests are
reasonable. Once past the guardians the user's request is translated into parameters
for an internal procedure called ATTACmO. After entering the world ofATTACHIO,
life is much more difficult, for a simple error in the calling sequence will result in a
SUDDEN DEATH! ATTACmO looks at the parameters it was passed, consults the
appropriate tables and once again translates the user's request into another format.
This last translation has a new twist. ATTACmO will direct the translated command
to one of many formats. If the user requested terminal I/O, the command becomes
a Terminal IOQ entry. When the new command has been successfully added to the
IOQ, ATTACHIO will send a message to the monitoring process for terminals to
awake. This monitoring process will reference both the 10Q and the MONDIT for
the requested device. It should be more apparent why our MONDIT was looking
frayed and tired!

What should our detective look for? What command or function was being requested,
general status, was a [BREAK] being processed, etc.

***** Terminal IOQ *****

Q'ABORT
Q'ACCESS
Q'ADDR
Q'BINARY
Q'BLOCKED
Q'COMPLETED
Q'CONTINUE
Q'COONT
Q'CRITICAL
Q'CTRl'RTRN
Q'DATA'SEG
Q'DB'BASED
Q'DSTN
Q'EOF'COND
Q'EOR'CHAR
Q'FLAGS
Q'FlUSH
QD'SPOOl' ADR

= 0 Q'FUNC
= 0 Q'GEN'STAT
=XOOQ001 Q'ITEM
= 0 Q'lDEV
= 1 Q'LINK
= 0 Q'LOGON'TYPE
= 0 Q'MISC
a -279 Q'OLD
= 0 Q'OW'READ
=11m51 Q'PARITY
=1100544 Q'PARM1
a 1 Q'PARM2
a 356 Q'PCBN
= 3 Q' PRESPACE
= ETX Q'QUAlIFIR
alOO6000 Q'RD'TO'VALU
:z 0 Q'READ'EOR
= (D)XOOOOO6OO000

:: 0
=0
:: 3
=46
=XOOOOOO
= 3
=1000001
=1
= 0
=3
=1000003
=XOOOOOO
:I 49
:: 0
:: 0
:I 3
=NUL

Q'RPlEVEL
Q'SET' RESET
Q'SPEED1
Q'SPEED2
Q'STAT'WORD
Q'STATE
Q'STATUS
Q' SUBSYS'BRK
Q'SUPRESS'LF
Q'SYS'8UF
Q' SYSBF 'PTR1
Q' SYSBF 'PTR2
Q'SYSBUF'PTR
Q' TERM' TYPE
Q'TOICEN
Q'V30oo'READ
Q'WAKE

=0
=3
=3
::: 0
=1000000
::: 0
=1000000
:: NUL
a 0
= 0
=1100544
aXOOOO01
::XOOOOO1
=3
=XOOO003
1:1 0
:: 1

The inspector general's staff has intercepted the cipher from the ATTACHIO
organization. He has provided the following explanation to assist your investigation:

Q ' ABORT 1 = Abort IOQ entry for device

Q'BINARY 1 = Binary read/writes

The Seven Wonders of TERMDSM 0043 -28

Q'BLOCKED 1 = wait for I/O to complete

Q'COMPLETED

Q'FWSH 1

1 = 10Q request has completed

Subsystem break being processed

Q'FUNC o - read (FREAD)
1 - write (FWRITE)
2 & 3 - File open/close (FOPEN/FCLOSE)
4 - Device close
5 - Set time-out interval (FCONTROL 4)
6 - Set speed (FCONTROL 10)
7 - Set speed (FCONTROL 11)
8 - Enable echo (FCONTROL 12)
9 - Disable echo (FCONTROL 13)
10 - Disable system [BREAK] (FCONTROL 14)
11 - Enable system [BREAK] (FCONTROL 15)
12 - Disable subsystem [BREAK] (FCONTROL 16)
13 - Enable subsystem [BREAK] (FCONTROL 17)
14/15 - Enable/disable tape mode
16 - Disable read timer (FCONTROL 20)
17 - Enable read timer (FCONTROL 21)
18 - Get timer value (FCONTROL 22)
19 - Disable parity checking (FCONTROL 23)
20 - Enable parity checking (FCONTROL 24)
21 & 22 - ?
23 - set termtype (FCONTROL 38)
24 - Allocate terminal (FCONTROL 37)

Q'GEN'STAT
o - Not started or completed
1 - Completed Okay
2 - EOF detected
3 - Unusual condition
4 - irrecoverable error

Q'LOGON 'TYPE
o - :DATA
1 - :HELLO
2 - :JOB

Q'~ARITY same as PP'FOPEN'PARITY

Q'PRESPACE Perform Carriage Control before writes
(FCONTROL 1)

Q'QUALIFIER
o - none

11 - Read terminated by special character
13 - parity error
23 - Read timed out

The Seven Wonders of TERMDSM 0043 -29

24 - Block mode transfer time out
33 - :ABORTIO / :ABORTJOB
43 - Data overrun
53 - Data set not ready
63 - Power fail

163 - Read timer overflowed
173 - [BREAK]
213 - Powered on, lost environment
273 - VFC reset

Q'STAT'WORD Q'GEN'STAT and Q'QUALIFIER combined

Q'TOKEN 1 = use first character in buffer
%53 - CR, no LF, 11+"
%55 - triple space
%60 - double space "0"
%61 - go to top-of-form, "1"
(for more information see CCTL in File system manual)

After minutes of tedious deciphering the detective discemed that the last entry made
into the IOQ for this agent was a "read" request (Q'FUNC) which is still pending
(Q'BLOCKED). The [BREAK] key has not been depressed and we are not in a
V/3000 read The 10Q entry does not appear to contain any incriminating evidence.
For now we will assume that the IOQ is innocent.

Logical-to-Physical Device Table (LPDT)

The LPDT is used to map a request for an LDEV into the physical hardware. We
personified the LPDT as a psychoanalyst. The LPDT is whel'e we can check to see
if the device is "real" or imaginary (virtual) - LPDT'VIRT. Real devices are terminals;
virtual devices do not actually perform I/O but pretend to. Spooled device files and
INPs are virtual devices. LPDT can also tell us the state of its mind: interactive
LPDT'INTR, job accepting - LPDT'JOBDATA, or duplicative.

***** L09ical-to-Physical Oevice Table *****

LPDT 'BREAK
LPDT'OATA
LPDT'OITP
LPDT'ORSTATE
LPDT'OUP

::: 1 LPDT'OV'INFO
::: 1 LPDT'EOR
=X063244 LPDT'INTR
=1 LPDT'JOSOATA
=1

=XOOOOOO LPDT 'SSBREAIC
=0 LPDT'ST'INFO
= 1 LPDT' SUBTYPE
= -1 LPDT'VIRT

I: 0
I:X073041
I: 1
I: 0

LPDT'BREAK 1 = [BREAK] seen OR C.I. ignore [BREAK]

LPDT'DATA 1 - Data accepting

LPDT I DRSTATE
o - Not owned by any process
1 - owned by a process
2 - Service request (DEVREC), a [RETURN] has been

pressed on a port that had been logged off.
3 - Device reserved, (:STARTSPOOL in progress)

The Seven Wonders of TERMDSM 0043 -30

LPDT'OUP 1 - device is duplicative

LPDT'EOR End-of-file type
0 - No EOF
1 - Hardware EOF (tape mark), (:EOF: 1?)
2 - : DATA
3 - :EOD
4 - : HELLO
5 - : BYE
6 - : JOB
7 - :EOJ

LPDT'INTR 1 - device is interactive

LPDT 'JOBDATA

LPDT'SSBREAK

LPDT'SUBTYPE

1 - device is Job accepting

1 - [CTRL-Y] has been detected

device subtype (from system configuration)

LPDT'VIRT 1 - virtual device, spooled device file, INP, etc.

After meeting with the LPDT, the detective left with a warm and comfortable feeling
that the LPDT was okay. The detective verified that he was dealing with a real,
interactive device and that the device had not encountered any unusual end-of-file
condition. Verdict: probably innocent.

Logical Device Table (LDT)

Our accountant, the LDT, takes pride in his work. The LDT maintains a count of the
number of FOPENs or allocations made for his device. He calls this number the
FILE'USE'CNT; (it is also visible from : SHOWDEV •) A value of one is typical for
spooled printers, two for devices with interactive sessions waiting with the Command
Interpreter (C.I.) prompt (":'1, and more than two generally means that there is a user
program nmning/accessing the LDEV. Three other fields that interest the detective
are AVAIL'TO'SYS, DOWN'REQUESTED and SPECIAL'FIJRltIS.

***** Logical Device Table (LOT) *****
AVAIL'TO'DIAG = 0
AVAILITOISYS = 1
BAUDIRATEICOOE = 11
CHANNEL 110 =18011
CSIDEVICE = 0
eTL IYIPIN = 0
DEVICE'TYPE :I: 16

DFJlOOTPUT'OEV =46
DFT'TO'CLASSIDX= 0
DOW'REQUESTED = 0
FILEIUSEICNT =2
HEADER ION =0
MAINIPIN = 49
RECD 'WIDTH =40

SPECIAL IFORMS =0
SPOOL ISTATE =0
SPOOLI NG IENAB =0
TERMITYPE'DFT =10
TRAILER ION =0
VDD I INDEX =X000033

The following acronyms are used by our accountant:

AVAIL'TO'DIAG

AVAIL'TO'SYS

1 - The LDEV has been down so TERMDSM can run
diagnostics

1 - The device is not "owned" by a session

The Seven Wonders ofTERMDSM 0043 -31

BAUD'RATE'CODE

DEVICE 'TYPE

DOWN 'REQUESTED

FILE'USE'CNT

HEADER 'ON

RECD'WIDTH

SPECIAL'FORMS

SPOOL'STATE

SPOOLING'ENAB

TRAILER'ON

(: SHOWDEV displays "A")

same as HW'LINE'SPEED in HWDIT

device type defined in your system configuration

1 - The operator has issued a :DOWN nn on this
device. As soon as it is available to the
system it will be marked as "down".

number of active FOPEN calls for port

1 - Print preceding banner (HEADER)
For spooled printers only. Turned
on by :HEADON and off by :HEADOFF

nn = number of words in each record.
(From the system configuration)

1 - Special forms have been requested or are
in use by this printer

o - Not spooled
1 - Input spooled
2 - Output spooled

1 - Spool queues are open (I believe this
means that there is actually output on
the way.)

1 - Print trailing banner. (See HEADER'ON.)

The detective's examinations of the accountant's books turned up a big zero. The
detective verified that the agent (LDEV) was in use by a session (apparently only the
C.I.). A down was not pending. Verdict? INNOCENTI

I have included a DISPLAY of an LDT for a spooled Laserjet II. Can you seen any
difference?

***** Logical Device Table (LDT) *****

AVAlL'TO'DIAG :: 0
AVAIL'TO'SYS = 1
BAlJ)'RATE'COOE = 8
CHANNEL-ID =18011
CS'DEVICE = 0
CTL'Y'PIN = 0
DEVI CE 'TYPE = 32

DFJlOUTPUT'DEV = 0
DFT'TO'CLASSIDX= 0
DC1tIN 'REQUESTED =0
FILE'USE'CNT = 1
HEADER 'ON =1
MAIN'PIN = 14
RECO'WIDTH = 110

SPECIAL' FORMS =0
SPOOL 'STATE =2
SPOOLI NG' ENAB =0
TERM'TYPE'DFT =18
TRAILER 'ON = 1
WD' INDEX =1000051

DRT, DLT, ILT, ILTX

The DLT, DRT, ILT, ILTX tables are beyond the scope of this paper. For more

The Seven Wonders of TERMDSM 0043-32

information consult the MPE V tables manual. (The real adventurous may wish to
investigate the MPE Internals Classes offered by HP.)

Terminal Buffers (TBUF)

TERMDSM displays what are actually two separate pieces of information when you
specify TBUF. The first is the TBUF table and the second is the actual TBUF. The
TBUF table contains one veryimportantfield, the TBUF7JENIED'WRD. If the value
of this field is not 0, then you need to consider changing your system configuration.
Data overruns, poor system performance and HUNG ports may result (or have in the
past) when insufficient TBUFs are available. TBUF photographic memory can
sometimes be misleading, for often TBUF presents a picture not of what currently is
happening to the session in question but of what's happened to somebody else. (This
occurs because MPE does not blank the TBUF before assigning it to the next terminal
read or write.) This photographic memory presents a possible security breach (even
for the security monitor) since it will display the actual key strokes that were typed.

***** TBUF Table *****
TBUF'BUFSIZE = 69 TBUF'L1STHEAD'P=X024635 TBUF'NUM'WRD = 252
TBUF'DENIEO'WRD= 0 TBUF'L1STTAIL'P=X053240 TBUF'READ'SAVED= 36
TBUF'INUSE'WD = 8 TBUF'MAXUSED = 43 TBUF'SIZE'WO =1022105
TOTALREQUESTS = (D) 312445

***** Terminal Buffer (TBUF) *****

YORD .
o 000000 020062 034440 020040 020040 020503 047516 052111
10 047125 042440 042117 020065 030060 020111 036461 026113
20 042531 020114 042516 043524 044015 005040 020062 033466
30 027067 031440 020065 030060 020040 020113 042531 020126
40 040514 052505 020102 052506 024111 024475 045505 054440
50 041125 043106 042522 024111 025511 051524 040522 052051
60 006412 020040 031067 033056 033464 020040 041415 005040
70 020062 033466 027070 020040 020040 020040 020040 020111
100 051524 040522 052040 036440 000000

The detective's notes for the TBUF were:

•• 29 'CONTI
NUE DO 500 1=1,1(
EY LENGTH.. 276
.73 500 KEY V
ALUE BUF(1)=KEY
BUFFER(I+1START)
.. 276.74 C..
276.8 I

START = ..

TBUF'BUFSIZE size of each buffer

TBUF'DENIED'WORD number of times there were insufficient TBUFs

TBUF'INUSE'WRD number of TBUFs currently in use

TBUF'REQUESTS number of requests for TBUFs since last startup

TBUF'MAXUSED maximum number of TBUFs used since last startup

TBUF'NUM'WRD number of TBUFs in TBUF data segment

TBUF 'READ' SAVED number of TBUFs reserved for terminal reads

The detective liked what he saw. Plenty of TB~s available and no TBUFs ever

The Seven Wonders of TERMDSM 0043 -33

denied. The actual contents of~heTBUF were from a terminal write to a port which
we were not interested in. The actual number of valid bytes in the TBUF must be
obtained from the other DITs. Verdict: innocent.

Process Control Block & Logical Process C'AJntrol Block (pCB & LDTPCB)

The PCB and LDTPCB have the same format. Only the LDTPCB is available for
spooled devices. Most of the fields are beyond the scope of this paper; however
because of its importance, I have displayed a complete PCB and then highlighted the
LDTPCBs for a terminal and a spooled device.

***** Process Control Block *****

ALU.,ISOFTIINT :: 0
AWAKE ISOFT 10K :z 0
BLKIDX : 0
BMS :: 0
BOUNDS I FlAG :: 0
BPTLINK : 0
BROTHERIPIN : 135
CORE'RESIDENT : 0
CRITICAL :: 1
CST'MAPIDST :: 0
CSTX IMAP I INDEX :XOOOOOO
DBIISIABSOLUTE :: 1
DELAYED ISOFT :: 0
EVENT FLAGS =1000000
FAC = 0
FATHERIPIN = 147
HASISIR : 0
HOLD'IMPEDIPRI :: 0
HOLDISIRIPRI = 0
INCORE IPROT IEXP= 0
INTERACTIVE = 1
LASTSWAPSEG ICST=XOOOOOO
LASTSWAPSEG INUM=XOOOOOO
LASTSWAPSEG ITYP=XOOOOOO
NEXTIIMPEDIPIN = 0
NEXT IQ IPTR ::XOOOOOO
OA :: 2

Terminal LDTPCB

PIIPENDINGICRIT: 0
PPC II 0
PREEMPT ICAPABLE= 0
PREVIIMPEDIPIN : 0
PREVIQ IPTR :XOOOOOO
PRIORITY = 152
PROCESSIALIVE = 1
PROCESS IDEAD = 0
PROCESS ITYPE = 2
PSEUDO IBREAK = 0
PSEUDOIHARDKlll= 0
PSEUDO IHIBERNAT= 0
PSEUDOIINTIMOOE= 7
PSEUDOISOFTKIlL= 0
PSEUDO'SSBREAIC = 0
PSEUDO ISTOP = 0
QUANTlJI l USED :: 0
QUEUE'CQ = 1
QUEUEIDISPQ = 0
QU£UEIDQ = 0
QUEUEIEQ = 0
QtJEUE'LQ = 0
RITBK = 0
SCHED I ATTN I REQD= 0
SI =0
SLLIPTR =X006636
SONIPIN = 0

STACKIDST'INDEXaX000544
STACK'OVF'ABORTm 0
STACK IOYF IALLOC= 0
STaY :: 0
SYS' COOE IEXEC :: 1
WAIT'BLOCKEDIIO= 1
WAIT IFATHER = 0
WAITIFOR'TlMER = 0
WAITIFORITIMOUT= 0
WAIT IGLOBAL IRIN= 0
WAIT IIMPEDED :;: 0
WAIT I 10 =0
WAIT 'JUNK : 0
WAITILOCAL'RIN = 0
WAn 'LONG = 1
WAIT'MAIl :;: 0
WAIT 'MEMORY :;: 0
WAITIMESSAGE = 0
WAIT'MOURNING :;: 0
WAIT 'SHORT :;: 0
WAIT'SIR :;: 0
WAIT ISON = 0
WAIT'TERMIREAD = 1
WAIT IUCOP :;: 0
WS =0
XDS IDST I INDEX =XOOOOOO

***** LOT Process Control Block (LDTPCB) ****

PROCESS'ALIVE = 1
PROCESS'DEAD =0

INTERACTIVE : 1

LDTPCB for spooled Laserjet II

The Seven Wonders of TERMDSM

WAIT'BLOCICEDIIO= 1

WAIT I IMPEDED = 0
WAITIJO :: 0

WAIT ILONG :: 1

WAIT'MOORNING :;: 0

WAIT 'SIR :: 0
WAIT ISON :: 0
WAIT'TERMIREAD = 1

0043 -34

~ LOT Process Control Block (LOTPCB) ***** .

PROCESS' ALIVE II 1
PROCESS'DEAD II 0
PROCESS'TYPE II 4

Notes on the LDTPCB and PCB:

WAIT' FATHER D 1

VAIT'IO II 0
WAIT 'LONG II 1

VAIT 'sell II 1

INTERACTIVE

PROCESS 'ALIVE

PROCESS 'DEAD

PROCESS 'TYPE

1 - The process is interactive

1 - The process is still considered
active by MPE

1 - The process is beinq eliminated by MPE

o - user process (CREATEPROCESS)
1 - user (:RUN x)
2 - user main (C.I.)
3 - user main task???
4 - system (spoo1ers, DEVREC, etc)
5 - ?
6 - system, UCOP (user controller, it processes

the :HELLO command)
7 - ?

WAIT'BLOCKED'IO 1 - waiting for terminal Read or Write to
complete

WAIT'FATHER 1 - waiting to be awoken by father process
(spooler waiting for data to print)

WAIT'IMPEDED 1 - waiting for a resource to become available

WAIT'IO 1 - waiting for disc I/O

WAIT'LONG 1 - long term wait, remove from dispatch queue

WAIT 'MOURNING 1 - process is mourning the loss of a son

WAIT'SIR 1 - waiting for a system internal resource

WAIT 'SON 1 - waiting for son process to wake me up

WAIT 'TERM 'READ 1 - waiting for a terminal read to complete

The detective was left in awe after meeting with the PCB and his cousin the
LDTPCB. He has not been able to classify these individuals. With the help of the
inspector general, he did ascertain that the "process" was alive, waiting only for a

The Seven Wonders of TERMDSM 0043 -35

terminal read He also recognized that if additional help with the suspects was
required, INTERPOL (HP SE & CE) would need to be involved

CONCLUSION

After a detailed investigation our detective was left with two suspects, the PDDIT
and the HWDIT. Both argued that they were innocent victims. Their attorneys
pointed out that the prosecution only had circumstantial evidence and suggested that
both were being framed! The inspector general could not deny this and therefore
authorized a "wire tap" (data communication analyzer). The wire tap confirmed the
innocence of the suspects and identified the real criminal as an incorrectly configured
Support Link modem. (The modem was never dropping DSR, as it should when the
carrier is lost.)

TERMDSM is a valuable tool for the system manager. We have seen that through
its use we are very quickly able to look at an LDEV from the operating system's
viewpoint. This becomes necessary when foreign (non-HP) devices are installed as
part of your data communications network. TERMDSM allows the user to quickly
verify the termtype (in actual use) that has been customized with the Workstation
Configurator. The system manager may even use TERMDSM to view system tables
such as the PCB while looking for the cause of system performance problems. You
will find that with practice TERMDSM will become a valuable tool in your shop.
Your success with TERMDSM can be further enhanced by keeping a log (or diary) of
problems you have seen, the effects, causes and cures. By taking DUMPs ofproperly
working terminal and printer ports you can build a reference library for later
comparison when problems arise.

Good luck and happy sleuthing...

REFERENCES

[1] TERMDSM Manual, UP part number 32033-90010, Dec 1987, pp 2-2

[2] TERMDSM Manual, pp 2-3

BIBLIOGRAPHY

[1] Fundamental Data Communications Handbook, HP part number 5957-4634

[2] Workstation Configurator Reference Manual, HP part number 30239-90001

[3] Point-to-Point Workstation I/O, HP part number 30000-90250

[4] TERMDSM Manual, HP part number 30144-90013, December 1987

[5] MPE V Tables Manual for MPE V/E, HP part number 32033-90010

[6] ATP/TIC/ADCC Tables Reference Manual, HP part number 84061-1500

The Seven Wonders of TERMDSM 0043-36

[7] Scroggs, Ross, EverythingYou WantedtoKnowAboutInterfacingtotheHP3000
PART 1, Paper presented at the 1982 HP3000 International Users Group
Conference,San Antonio, Texas

[8J Mears, David B., User Control of Terminal Type Characteristics, Paper
Presented at the 1983 HP3000 International Users Group Conference,
Montreal, Quebec, Canada

[9] Scroggs, Ross, EverythingYou WantedtoKnowAboutInterfacingtotheHP3000
- The Inside Story, Paper presented at the 1983 HP3000 International Users
Group Conference, Montreal, Quebec, Canada

[10] Buiteweg, .t\nton J.W., From Terminal To ComputerPort In 232 Easy Steps.,
Paper presented at the 1985 HP3000 International Users Group Conference,
Amsterdam, The Netherlands

[Ill Beetem, Jim and Smith, Catherine, New Trends in Workstation I/O, Paper
presented at the 1984 HP3000 International Users Group Conference, Anaheim,
California

BIOGRAPHY

Dennis Heidner received his BSEE degree from Montana State University, Bozeman,
Montana. Mr. Heidner has written and presented numerous papers at the HP
International Users Group Conferences. Mr. Heidner is a co-author of The
IMAGE/3000 Handbook and the TurbolMAGE Supplement,published by WordWare,
Seattle, Washington. He has written technical articles which have been published in
several magazines. Mr. Heidner is a member of the Association for Compu~ing

Machinery (ACM) and the Institute for Electrical and Electronic Engineers (IEEE).

TheSevenWonders~fTERMDSM· 0043-37

In Search of a Better Mouse Trap

Dennis Heidner
Boeing Aerospace

ABSTRACT

This paper covers basic concepts of "expert systems" and their use in business data
processing. The author discusses several examples of in-house applications which
have been implemented on an HP3000. The cases discussed disprove the beliefs that
artificial intelligence systems must be programmed in PROLOG or LISP, and that
performance is marginal on a small stack machine.

INTRODUCTION

Why Artificial Intelligence? The current
demographics have been radically changing. The
post World War II employees are now nearing the
age of retirement. When they retire, years of
expertise will leave with them. This loss of
knowledge and expertise will have staggering effects
on companies that are unprepared. Artificial
Intelligence (AI) is an attempt to mimic the human
brain with highly processed sand (computer chips)
and retain valuable expertise! In their book
"Artificial Intelligence: Underlying Assumptions and
Basic Objectivesu Nick Cercone and Gordon McCalla
identify the roots for AI as being ''psychology,
philosophy, linguistics, electrical engineering, and
computer science'~[l] (After dabbling in AI for
several years I believe that they left off the most
important root - sheer madness!) The term AI
often causes a considerable debate over what really
constitutes a "smart" system. Currently the field
which has captured the interest of many
researchers is neural nets. Research into neural
networks has been as diverse as attempting to simulate neurons in software or
developing special hardware which actually uses individual brain cells from slugs and
snails. The more traditional areas of AI are expert systems, search and problem
solving, theorem proving and logic programming, knowledge representation, learning,
and miscellaneous game playing.

In Search of a Better Mouse Trap 0044-1

One exciting area of AI research is the study of new man-machine interfaces. A
considerable amount of attention is now being spent on creating programs which
communicate with users on the users' own terms and do not require specialized
training. It is possible to buy pocket chess or backgammon games which demonstrate
a high level of expertise and yet a very simple and clean man-machine interface. This
should be a goal for any expert system. With many newer programs the manual is
built-in as part of a very complete help subsystem. The more sophisticated programs
even provide context sensitive help; the more errors and more trouble you are in, the
more assistance they automatically provide for a specific area.

Expertsystemsare computerprograms whose behavior duplicates, in some sense, the
abilities of a human expert in hisfher area of expertise.[2] Expert programs are
considered to be a knowledge base. This knowledge base generally includes any rules
of thumb (heuristics) and production rules, facts and relations, and special logic used
to present the assertions and questions (the inference engine).

Production rules are similar in appearance to the conditional statements used in
existing third generation languages like FORTRAN, BASIC, and COBOL. For
example:

RULE 1: IF ANIMAL HAS FEATHERS THEN ANIMAL IS BIRD
RULE 2: IF ANIMAL FLIES AND ANIMAL LAYS EGGS THEN ANIMAL IS

BIRD

Facts and relations may be implemented in production rules (as above) or contained
within "frames". Frames allow the knowledge engineer to add an hierarchical
structure to the knowledge, allow inheritance of traits, and provide slots for data,
attributes and rules for interpreting the knowledge. The frame for a bird might look
something like:

Frame name: Bird
Inherited from: Animal
Slot: Skin covering

Type:Feathers
Do-procedure: none

Slot: Reproduction
Type: Eggs
Do-procedure: none

Slot: Extinct species
Type: Dodo
Do-procedure: Takeyicture

The knowledge acquired by the expert is of little value unless the computer can
effectively question and apply the knowledge. This is accomplished with an inference
engine. The engine is the "control tower" for the expert system. It is responsible for
taking the given facts, applying the assertions and deducing the conclusion. With
traditional software systems, the compiler acts as an expert system interpreting the
rules (source code), optimizing the object based on expert knowledge, and generating

In Search of a Better Mouse Trap 0044-2

output suitable for use by the CPU. There are two very basic types of engines.
These are the forward chaining and backward chaining engines.

The forward chaining engine applies the first rule to the known conditions
(antecedents); if it is successful then a conclusion (consequent) is accepted. The
engine then takes the consequent and looks forward for another rule which may be
applied This chaining of antecedent to consequent and consequent to antecedent
continues until there are no more rules to apply or we have reached a goal (the
answer). Sometimes it is possible that all rules have been applied (asserted) but a
goal has not yet been reached; this is the result of either missing information or
inaccurate facts.

A backward chaining engine starts with a goal and, using the known facts, it verifies
that the conclusions are supported by the facts. This is accomplished by checking the
antecedents in the goal for facts that match.' If the facts are unknown then the
current antecedent becomes a "sub-goal" (assumption) which the engine tries to prove
or disprove. If there are no facts to verify the antecedent then the user is prompted
for additional facts.

So far our discussion on the expert system assumes that we live in a perfect world
where all facts are known or readily available. However, in the real world, we must
often make a decision without all the facts. Experts are able to apply heuristics and
make educated guesses for their answers. A good expert system also accommodates
missing knowledge or uncertainty.

Missing knowledge or uncertainty in expert systems may be addressed in several
ways. The first is to ensure that there is a redundancy of facts. This helps assure
that there are fewer holes and provides alternate paths to a solution. A second
method is through the use of fuzzy logic. With fuzzy logic there is no longer a simple
true or false answer but instead "most likely false", "most likely true," and a large grey
area between. When the expert collects the necessary facts to implement the expert
system, he/she also tries to determine a default answer and the probability that it
will be correct if it must be used in place of an actual fact.

We become experts through a cognitive process in which new facts and techniques
are added to our existing knowledge and later reinforced as they are applied to new
tasks. Very few expert systems exist which can learn through the same process.
Instead, as the knowledge expert becomes aware of deficiencies in the knowledge
base, he/she must adapt the knowledge base. The knowledge base for a good expert
system is very dynamic. For this reason it is important to involve the end user early
in the project, and prototype the system whenever possible. (This is a strong
argument for PROLOG and LISP: knowledge prototyping in these languages is
immensely easier than in traditional business languages.)

When developing inference engines using COBOL, BASIC, C, SPL, PASCAL or
FORTRAN, it is imperative that the engine be simple and modular. Concentrate
instead on developing a good user interface, and look for ways to provide redundancy

In Search of a Better Mouse Trap 0044-3

of facts in your knowledge base. Doing so allows your engine to cope with missing
data in an easier manner.

In this paper we will cover three different expert systems. The first is a forward
chaining engine, with a discussion about how it was implemented The second
example demonstrates how several independent expert systems can be connected to
provide an even smarter system. The third case is a backward chaining inference
engine.

THE SEARCH

Within BoeingAerospace we have an organization responsible for operating a resource
library which contains general purpose test and measurement equipment. The
customers (pool users) are the other Boeing organizations which need equipment for
engineering design, manufacturing, facilities maintenance, or calibration of other
equipment. When a pool user has a need for some test equipment, he/she typically
either asks for a specific manufacturer and model number or requests an alternate
item which can be used for the test. This search for an alternate model led to the
title of this paper - "In Search of a Better Mouse Trap".

Types of test and measurement equipment range from the simple balance scale to
highly sophisticated logic analyzers and computer systems. The expert system needs
to be able to recommend an alternate for a logic analyzer as quickly as the solution
for a scale. The design of the expert system begins by trying to replicate the thought
process that an expert instrumentation engineer uses when selecting or looking for
an alternate. This process begins with a specific need - til must weigh a box 4 inches
by 5 inches, with a weight between 1 and 5 pounds. The measurement must be
accurate to within an ounce." The second step in the process is to identify the
manufacturers of scales. The third step is to review the manufacturer literature
looking for a scale which is suitable in dimensions, weight range, and accuracy. Ifstep
three fails, then a fourth step is to look for alternate weight measuring devices which
might be able to perform the measurement with a slightly degraded accuracy.

An early review of our needs identified several basic requirements. First, the expert
system for alternates must be very fast (we already had literature libraries and were
quite adept at manually locating alternates.) Second, because our computer users
varied significantly in education level and typing skills, the user interface must be
friendly and easy to use. Third, we want -to be able to print a catalog (wish list)
containing all the models ir our inventory, with specifications, which could be
distributed to our pool users. 'ibe last requirement is that the engine be flexible
enough to support knowledge for many diverse types of test equipment.

The Mouse Trap

The most difficult task in implementing an expert system is acquiring knowledge from
experts. Many experts must first visualize a problem before they can begin to solve
it. How visualizing helps in resolving problems has been studied in great detail by
psychologists studying information processing. Their conclusion is that the knowledge

In Search of a Better Mouse Trap 0044-4

engineer must "ask theexpert to introspectabout theintemal processes, to reporton
inner experience. '[3] Thus the knowledge engineer must elicit knowledge by asking
the expert to describe what thoughts and feelings were used to reach the conclusion.
The knowledge engineer must be constantly alert for buzz words which result in
missing or uncertainty in the knowledge base. 'References for comparative words like
"better, n neasier, nand ncheapern sometimes are not qualified. If an expert states:
'This is the bettersystem, nclarification is required. Appropriate responsesare: "How
do youknow tD.at?n "Better compared to what?n 'What, specifically, is betteraboutit?n
"Betterfor what purpose?"14]

The experts that we used to collect our knowledge database were our own internal
equipment engineering technical staff. The technical staff comprises four people
(including myself) with more than 100 years combined experience in the field of test
and measurement equipment. Our knowledge engineers were college students on a
summer break or new engineering graduates. The knowledge engineers were given
a list of models for which we wanted specifications and the vendors' literature, then
encouraged "pick our brains." They were told to restrict the amount of information
they amassed to seven or eight of the most critical specifications (COLUMNS) for
each class (NOMENCLATURE) of instruments. An early review of the selection
process showed that most instruments are selected on the basis of only four or five
specifications. We recognized that by restricting the number of fields to only seven
or eight there would be instances in which the inference engine could not definitely
recommend one model over another. In real life that same uncertainty is often
present, even for an experienced instrumentation engineer. Often much more
detailed research must be done in order to finally choose an alternate. Therefore, if
the expert system is able to reduce the field of items to five or six from one hundred
or more, it still can be considered a success!

Each family of instruments is placed into a larger super-class (GEN NOM or
CHAPTER). For example BALANCE SCALES, BATHROOM SCALES, and POSTAGE
SCALES are all collected into a super-class called SCALES. The knowledge engineers
were also requested to identify other classes of instruments which were related or
should be checked if a suitable alternate was not found in the original class. (We
collected this information in the SEE NOM dataset.)

The collection of super-class (GEN-NOM), class (NOMENCLATURE), and slots
(COLUMNS) form a frame, the basis of our expert system. The information for the
frame is contained within four separate datasets. The first dataset, called
CUSTOMIZE, is an array which contains global information and strategies to be used
by the inference engine. An example of a global rule is whether or not the expert
engine will allow "vendor loyalty" to be considered when looking for an alternate. The
second dataset, called NOMCL-DETL, contains the class name, fields to identify the
super-class and any alternate classes, and eight fields which contain pointers to the
definitions for up to eight slots. The definitions for the slots, their units and

In Search of a Better Mouse Trap 0044-5

associated rules are contained in a dataset called NOMH-DETL. The facts which are
unique to each vendor's products are contained within a dataset called SPEC-DETL.
Our frame of knowledge looks like:

facts assertions

SPEC-DETL: MOOEL-COOE, X14
NOMEN-COOE, I <=> NClCCL-DETL: N(J(EN-C(I)E, I
LINE-NUMBER, I NCICENCLATURE, X16 .. class nID8
COLUMN1, R2 GEN-t«IlJ, I" super-class
COLUMN2, R2 SEE-NeIt, I -- alternate class
COLUMN3, R2 HEADING1, I
COLUMN4, R2 HEADING2, I
COLUMN5, R2 HEADING3, I ==> _H-DETL: TACit, I -- rulel
COLUMN6, R2 HWING4, I HEAD_NAME, X8
COlUMN7, R2 HEADING5, I UNITS, X8
COLUMN8, X8 HEADING6, I BETTER-IF, I ==> global

HEADING7, I scorfng rules
from aJSTeItI ZE
dataset

A requirement for our expert system is that it be easy to use. A brief glance at the
knowledge frame above shows that we have several complex relationships which
confuse most non-data-processing personnel. It was for this reason and to ease the
acquisition and implementation of the expert system that the frame was broken into
the four datasets previously shown. Separate data entry routines were provided for
each dataset. These routines provided the means to add, delete, or revise facts and
assertions. The assertions for the frame must be entered first. The rules are
assigned a unique number and may be used by many different frames. A sample
dialogue for adding a new rule is:

Add/Delete/Revise ? ADD
ENTER TAG NO. 9999
ENTER HEADING WEIGHT
ENTER UNITS POUNDS
BETTER IF (=<>X) ? =
** TRANSACTION COMPLETED **

A dialogue revising the assertions for a BALANCE SCALE looks like:

Add/Delete/Revise REV
ENTER NOMENCLATURE BALANCE SCALE
Working with nomenclature: SCALE, BALANCE
NOMENCLATURE GEN-NOM SEE NOM TOTAL COLl COL2 COLJ COL4
SCALE, BALANCE -120 1515 0 J 2 4 6
ENTER FIELD NAME? HEADINGS
ENTER COL 1 9999
Heading: WEIGHT Units: POUNDS
ENTER COL 2
ENTER COL J
ENTER COL 4
ENTER FIELD NAME _
** TRANSACTION COMPLETED **

In Search of a Better Mouse Trap 0044-6

After the rules and class have been established, it is now possible to add the actual
facts into the knowledge base. The inference engine bases its decision on the lowest
and highest ranges specified by the engineer. A sample dialogue for the acquisition
of facts is:

Add/Delete/Revise ? ADD
ENTER MFG NONIN
ENTER MODEL INTEREX
ENTER NOMENCLATURE SCALE,BALANCE
ENTER DESCRIPTION It's really neat
ENTER COST ~l~O _
specification line#: 1
ENTER WEIGHT IN POUNDS _1__
ENTER Heiqht IN inches _
ENTER Width IN inches
ENTER Lenqth IN inches
Specification line#: 2
ENTER WEIGHT IN POUNDS _5 _
ENTER Heiqht IN inches
ENTER Width IN inches
ENTER Lenqth IN inches
Specification line#: 3
ENTER WEIGHT IN POUNDS
QUIT (Y/N)? X
** TRANSACTION COMPLETED **

Once the knowledge has been entered it may be viewed from any terminal connected
to our HP3000. This is an example of what the user sees when viewing the facts just
entered

ENTER MFG NONIN
ENTER MODEL interex___

MANUFACTURER MODEL
NONIN INTEREX

DESCRIPT NOMENCLATURE NEWCOST
It's really neat SCALE, BALANCE $10.

WEIGHT Heiqht Width Lenqth
POUNDS inches inches inches

1 1
2 5

It's Fuzzy

With the knowledge base assimilated, it is now possible to request the expert system
identify alternate make/models. When the inference engine is used, it prompts the
inquirer for a manufacturer name and specific model number. The engine retrieves
the facts for the specific make/model- then by using the nomenclature code (part of
the facts for the model), it connects into the NOMCL-DETL and the NOMH-DETL
to load the appropriate assertions. The engine then reads the global rules stored in

In Search of a Better Mouse Trap 0044-7

the CUSTOMIZE dataset so that it knows how to treat missing facts and what
strategy to use. After the assertions have been loaded onto the stack, the engine
begins to examine other make/models in the same class (nomenclature) as the one
specified by the inquirer. Our engine uses the forward chaining technique for
applying the assertions that it has loaded The potential capability of each model is
"scored" using a point system. Only the scoring results for the top one hundred
make/models are saved While examining each model the reason why each has
received its high marks is saved with the score. Later when we display the results
we can also display the reason why.

In the score card that we use, a perfect match is worth 100 points and is indicated as
"GOOD.It A near match (within 10% of the desired range) is worth 80 points and
remembered as a "FAIR" match. An instrument which comes within 20% of our
original instrument is considered a "POOR" match and receives only 60 points. An
instrument which falls short is given no points for the specific slot unless the slot is
empty because of missing information. In this case 10 points is assigned Each slot
has a multiplier associated with it. The first column, considered to be the most
important, is worth five times more points then the last column. This results in the
following point system:

Column-1--

2
3
4
5
6
7

Multiplier
6
5
4
3
2
1.5
1

The thresholds for poor, fair, good as well as the multiplier values are stored in the
global rule set (CUSTOMIZE) and can be adjusted independently of the facts in the
SPEC-DETL or the assertions in the NOMCL-DETL or NOMH-DETL.

Eeek! A mouse!

The visual format for product comparisons is generally a table which lists the
specifications and features for each selection. Comparisons of this type are seen in
almost every magazine and many newspaper advertisements. Because this is an
accepted method for comparisons with which most people are already familiar, it was
the method that we chose for the inference engine's presentation of equipment
alternates. The only information that the engine needs from the inquirer is a
manufacturer name and the model number. For example:

In Search of a Better Mouse Trap 0044-8

ENTER MFG Heidner
ENTER MOOEL .=.:B723:.=c~~

There are 2 Heidner B723C
MANUFACTURE MOOEL DESCRIPT

Heidner B723C 100Hz-22GHz
NATIONAL STOCK NUMBER:

N(J(ENCLATURE NEWCOST NEWATE
ANLYZ, SPECT $55,555. 01/01/89

iI Freq Resol tn Shape Ft MaxAC In In Pwr
Hz Hz Type dbm dBm

1 100 10 15 30 -134
2 22G 3000K 11 30
ME, LP, NITE, QUIT?~

In Accu Swp Time Unit
+/- cB Sec Requires

.6 1.Ou Stand
3 1500 Alone

The engine first displays the specifications of the item for which you are seeking an
alternate. The inquirer is allowed to choose whether the results of the search are
listed to the CRT (ME)t sent to the line printer (LP)tor submitted as a job to be run
at night (NITE); to quit altogethert he/she enters QUIT. Choosing ME causes the
following to be displayed.

COL1 COL2 COl3 COl4 COL5 COL6 COl7

ALT FOR
Heidner
B723C

Zil MFG

COL1
Freq
Hz

MODEL

COL2 COl3 COL4 COL5
Resoltn Shape Ft MaxAC In In Pwr
Hz Type cbn dBm

COl6 COL7
In Accu Swp Time
+/- dB Sec

1 ELICTRONIX 81412 GOa)

2 ELICTRONIX 8M13 GOa) GOOO GOOO
3 ELICTRONIX 8M18 GOOO GOOO GOOO
4 ELICTRONIX 892A GOOO GOOO
5 ELICTRONIX 8145 GOOO GOOO
6 EllCTRONIX 892P GOa) GOa)

7 EllCTRONIX 892 GOa) GOOO
8 ELICTRONIX 894P GOa) GOOO
9 ELICTRONIX 8M14 GOOO

Press [RETURN] to go on, Z()(JlJ mJrt)er or 'QUIT' to stop: Zoom 1

The engine then proceeds to display the more detailed specifications for the item
chosen by the inquirer.

MANUFACTURER MODEL DESCRIPT NC»CENCLATURE NEWCOST NEWDATE
ELICTRONIX 8M12 2GHz ELIC8000 PI ANLYZ,SPECT $5,000. 01/01/73

NATIONAL STOCK NUMBER:

iI Freq Resol tn Shape Ft MaxAC In In Pwr
Hz Hz Type dbrn dBm

1 1001C 300
2 1800M 30001'
USE YITH:8813 8803 8854

In Accu Swp Time Unit
+/- dB Sec Requires

8000
Mframe

The software required to collect or edit the facts and assertions requires three code
segments, each about 6K words. The inference engine requires two segments each
approximately 8K words long. The st~ck size used is approximately 5K words. This
is quite small compared to what would be expected for a PROLOG or LISP
implementation. However, in exchange for the smaller size and faster execution, we
were required to forego the extra flexibility offered by PROLOG or LISP.

In Search of a Better Mouse Trap 0044-9

THE SCROUNGER

The test equipment pool has almost one thousand customers who use tens of
thousands of items spread throughout western Washington state. The equipment
pool is very dynamic with equipment moving approximately every 50 days. As a
resource organization we are committed to serve our customers with fastest possible
response time at the lowest possible cost. This requires the assistance of master
"scroungers" (like Radar O'Riley from the television program "MAS.H. j Radar's
uncanny ability to "perceive" events about to happen provided him with an edge he
needed to cope with the war, perform his routine activities, and maintain the stock
of supplies for the unit. The ideal expert system "scrounger" should have many of
these same attributes. The scrounger must be able to find "who's got it", ask "can I
get it?", and then try to "grab it!"

WhosgDt it?

The location of all the test equipment in the equipment pool is contained within a
TurbolMAGE database on our HP3000. With access to this database the scrounger
is able to locate all items. That is the easy part! If we have 500 or 600 items of one
make/model, we do not want to make 500 or 600 telephone calls while trying to
negotiate a loan or swap of an item. (This is even more important if there is one
sitting in a stockroom someplace!) We have solved this problem by implementing an
expert system which locates the items and assigns a probability that we can borrow
or loan the item out. The procedure RATEQUIP is a forward chaining inference
engine that also loads rules and strategy from the CUSTOMIZE dataset. The engine
examines all items ofthe specific make/model, checking to see if the item is currently
assigned to a user, if it has been reserved for a future test, if the current schedule is
about to expire, if the current user of the item has many like items, and whether or
not the current user has a history of not fully using the equipment. RATEQillP
returns the asset identification numbers and the score to the procedure
FINDMFGMODEL. Ifan inquirer wishes to see what is available, FINDMFGMODEL
displays more detailed information, with the item which should be picked first at the
top of the list.

Can I get it?

After a list of potential items has been created, it can then be passed on to the next
expert system. This next system uses an engine called CHECKSCHEDULE.
CHECKSCHEDULE takes each item and looks to see ifwe can "squeeze" another use
in for this item. If'we cannot, CHECKSCHEDULE returns an error, along with the
date when the item will be available. If the item is available, then a flag is returned
to indicate we can proceed to schedule this item.

Grab itl

The function which grabs the items has not yet been completed The procedures
have been tried manually and are straightforward: take an item which can be
scheduled, and lock it in.

In Search of a Better Mouse Trap 0044-10

Trade?

Remember the real world? More often than not, the specific item is not available to
be "grabbed". In that case, the inference engine from our specification expert system
is invoked to identify other possible models which could be used. The engine
SCOREMODEL returns a list of up to 100 possible alternates. Each model can, in
tum, be sent back to the RATEQUIP engine which provides a list of items with the
most likely to be loaned at the top of the list. CHECKSCHEDULE is invoked for each
item, those which fail are dropped off the list. Finally the several remaining items
are passed on to the "Grab it" process with the request that soft schedules be placed
on them. (''Soft" means that a firm request for that specific model will take
precedence.) The "Grab it" process is instructed to send an electronic mail message
to the inquirer who requested the make/model explaining what has been done.

Will it work? The modules RATEQUIP, SCOREMODEL, CHECKSCHEDULE,
FINDMFGMODEL, and SENDMAIL have been in production for several years. They
are fast and trouble free. Of all the expert systems discussed so far, the "grab it"
module appears to be almost trivial. The concept of coupling the engines together is
not new - we "experts" currently perform related tasks by hand every day.

THE DOCTOR

COntrolling the cost of software development and maintenance is a major concern of
data processing managers. Software maintenance is labor-intensive work. Anything
which can be done to improve the productivity of the maintainer will, in tum, reduce
support costs. One technique that we have employed is extensive built-in diagnostics
and debugging tools. The programs have been written so when an error is detected,
information is collected which will assist the maintainer in quickly locating and
correcting the problem.[51 A special program called ADPAN reads the information
"snapshot" and attempts to identify where the error occurred.[6] ADPAN acts as a
specialized "doctor" for software. In the process of diagnosing the error ADPAN must
locate the last valid stack marker, play the part of the MPE loader and locate all
subroutines which created stack markers, look for transitions between user-code and
system-code, check trap Plabels, and finally check the status of all files open at the
time of the snapshot. ADPAN contains several inference engines which cooperate
while making the diagnosis. We will concentrate on the simplest, the process used
to find the stack markers.

When we first began implementing snapshots into our programs, we used the MPE
intrinsic STACKDUMP to collect and format the process stack. This originally
provided us with a solution which did not require privilege mode and was supported
by H-P. When a program encountered an error, it entered a procedure which opened
a snapshot file, then directed STACKDUMP to copy the entire stack into it and
format the program's stack markers. Later an analyst could simply use FCOPY to
print the snapshot. Reading the formatted markers required some effort, but at least

In Search of a Better Mouse Trap 0044-11

there was documentation on how to interpret them[7]. That was life with MPE III
and early versions of MPE IV.

Then sometime around MPE IV D-MIT, several bugs were introduced with new
versions of the operating system. The first was somewhat humorous (but a
significant security risk). STACKDUMP allowed the calling procedure to specify a
range to dump. If the range specified was beyond what the user really had
STACKDUMP should dump only up to the limits of the user's stack. The new
undocumented "feature" instead dumped the entire 64K word memory page, complete
with other users' data and passwordsI After reporting the problem H-P provided a
patch. The patch corrected the security problem; however, the stack markers were
no longer formatted!

Without formatted markers the post mortem dumps appeared to be worthless, until
we realized that we could manually look for the pattern which appeared to be a
marker and verify it by hand-tracing back to the initial marker. This required some
effort and was difficult to teach. Unfortunately the new version ofMPE which would
contain the correction to STACKDUMP (Q-MIT) was months away. Mter a little
deliberation we decided to write a program which would replicate what we were doing
manually. This program later became the basis for our backward chaining inference
engine.

The stack for the "classic" HP3000 contains a dynamic region between "DL" and "DB";
the area above DB is called the global area and ranges from DB up to the first stack
marker Qi. Every call to a subroutine (or COBOL PERFORM) causes a new stack
marker to be created and added to the stack. The stack on the HP3000 appears to
"grow" downward until a maximum limit of Z has been reached. The "Top-of-Stack"
(TOS, shown at the bottom of the figure) is called S. The procedure's dynamic local
variables are located between the last stack marker and S.

Stack markers have four special values in them. The first, located at Q, is called
displacement (or delta). The next stack marker can be located by taking the current
address location of Q and subtracting the displacement from it. The second word (Q
1) contains the status of the CPU at the time of the subroutine call. The third word
(Q-2) is called the"P Relative" value. P Relative is the word location in the program
to which the program will return whenthe current subroutine completes. The last
word (Q-3) is an index register. This word can contain any value. For the
experienced gurus out there, this may be quite boring; however from the neophytes,
I can already hear the demands to stop. It should be now apparent why we want an
expert system to assist us in locating the markers.

In Search of a Better Mouse Trap 0044-12

DL +--------------+

DB

Qi

Qi+l

Qi+2

Qi+n
S

= beqinninq of qlobal
data

initial Q "marker"

= second marker

= third marker

= "Top-of-stack"

z +--------------+ = Maximum data limit

The method we use to find all the stack markers is:

1. Start by checking the value at S. If it is not the marker then decrement
the address count by 1 and check this new value.

2. We can prove or disprove that word is Q in a stack marker by applying
the following rules.

A The Delta Q must always be a positive number greater than 4 but
less than the address location of Q.

B. Check P_Relative. It must range between 0 and 16384.

C. The value of STATUS (Q-l) may not be o.
D. The value pointed to by the address of Q minus the displacement

must be a stack marker.

E. If Q=4 and P Relative=O, we are at Qi and have located all the
stack markers-:-

We can more clearly see why this inference engine which locates the markers is
considered to be backward chaining by carefully looking at rule 2D. This requires
we not pass judgement on the starting value we are examining until we have chained
backward and verified each "sub-goal". The FORTRAN source code which is used to
implement the inference engine is listed next.

In Search of a Better Mouse Trap 0044-13

SUBROOTINE FINO MARKERS(Q, IDtMPFIlE,START,END,LASTREC,D8 OFFSET,S, INBUF, IERR,MPE V)
C
C The purpose of this routine is to try to find the stack markers in the~ 1i le, when the marker
C display has been damaged.
C
C Error codes returned are:
C I ERR=O - OK
C IERR=-1 - Problems encOU"ltered trying to read c:Ulpfile
C IERR=1 - Unable to locate a good markerl
C

INTEGER*4 LASTREC,START,END
INTEGER Q,S, IDUMPFIlE, IERR,Q TEST ,DBOFFSET
LOGICAL INBUF(128),MPE V

C
C The algorithm used to find a valid marker is as follows.
C
C 1. Set the absolute maxfnun nutmer are words we wi II try to 2048.
C 2. Set Q TEST = S

Q TEST = S
C
C 3. VERIFY MARKER using the value of Q TEST. If ok then IERR :z 0, and Q = Q TEST, then RETURN.
C Else....
C

DO 100 1=1,2048
CALL VERIFY MARICER(Q TEST, IDUMPFIlE,START,ENO,lASTREC,DB OFFSET,S, INBUF, IERR,MPE V)
IF(lERR.EQ.O) GOTO 200

C
C 4. Decrement Q TEST.
C

Q TEST =Q TEST - 1
c
C 5. Proceed to step 3.
C
100 CONTI NUE

IERR=-9
RETURN

C
C WE FOOND A GOOO MARKER
C
200 Q = Q TEST

RETURN
END

In Search of a Better Mouse Trap 0044-14

SUBROOTINE VERIFY MARKER(Q,IDUMPFILE,START,END,LASTREC,DB OFFSET,S,INBUF,IERR,MPE V)
C
C The purpose of this routine is to take a given value
C for Q and prove or disprove that it is a stack marker.
C
C Error codes returned are: .
C I ERR = 0 Okay. Hypothesi s proven
C JERR = 1 Bad marker, Hypothesis is false
C JERR =-1 Problems encOU'\tered in GETWORD, Hypothesis false
C

I NTEGER*4 START,END ,LASTREC
JNTEGER DB OFFSET,Q, JDUMPFIlE, JERR, S,Q TEST,P RELATlVE,DElTA Q
JNTEGER STATUS
LOGICAL INBUF(128),MPE V

Q TEST = Q
C The rules for checking for a val id stack marker are:
C
C 1. Take the value of Q it IIllSt fall between DB OFFSET and S.
C If not then JERR=1 and return. If ok proceed...
100 JERR=1

JF«Q TEST .LT .DB OFFSET).OR.(Q TEST .GT .S» RETURN
C
C 2. GETUOR[) at address of Q. If error encountered in GETWRD then JERR=-1, and return
C Jf ok proceed••••
C

JERR=-1
CALL GETWORD(Q TEST ,DELTA Q, JDUMPFILE,START,END,LASTREC,DB OFFSET, JNBUF ,NERR)
IF(NERR.NE.O) RETURN

C
C 3. Check value at address of Q, it IIllSt be in range of 4 to address of Q.
C If not then JERR=1 and return. If okay proceed...
C

IERR=1
JF«DELTA Q .LT .4).OR.(DELTA Q.GT.Q TEST» RETURN

C
C 4. GETWORD at Q-2. This is PIRELATIVE. The value for P'RELATIVE IIllSt be
C between 0 and 16384. Jf not then JERR=1, and return. Else proceed....
C

JERR=-1
CALL GETWRO(Q TEST-2,P RELATIVE, IDUMPFILE,START,END,LASTREC,DB OFFSET, JNBUF,NERR)
IF(NERR.NE.O) RETURN
JERR=1
MPE V :: .FALSE.
IF (P RELATIVE .EQ. 140000) MPE V = •TRUE.
P RELATIVE [0:2] = 0

C
C 4B. GETWRD at Q-1. This is STATUS. The value for STATUS rrust not be zerol If it is then IERR=1,
C and return. Else proceed....
C

IERR=-1
CALL GETWORD(Q TEST-1,STATUS,IDUMPFILE,START,END,LASTREC,DB OFFSET, JNBUF ,NERR)
IF(NERR.NE.O) RETURN
IF (STATUS[8:8] .EQ. 0) RETURN

5. Save value at Q Derive del taG. Take Q and subtract value at Q from Q.

Q TEST = Q TEST - DELTA Q
C
C 6. If value of Q :: 4 and P'RELATIVE = 0 then IERR=O and RETURNI OlE HAVE FOOND Qintial).
C

IERR=O
IF«DELTA Q .EQ. 4).AND.(P RELATlVE.EQ.O» RETURN

7. Use the value of the Q - delta Q and a new address for Q. Then proceed to step 1.

'OTO 100
END

In Search of a Better Mouse Trap 0044-15

CONCLUSION

Dr. David Hu characterizes the expert system as:

". An expert system mimics experts or specialists in a specific field - for
example, medicine or computerconJiguration.

• The power ofan expert system lies in knowledge and howit is represented,
not in programming technique.

• The principal components ofcurrent systems are knowledge base, inference
engine, and man-machine interface.

• The knowledge base contains facts and rules that embody an experts
expertise.

• The threecommonly used methods for encoding facts and relationships that
constitute knowledge are rules, frames, and logical expressions.

• Inference engines are relativelysimple. The most commonly used methods
are backward chaining and forward chaining.

• User interfaceis a weakbutcritical element ofexpert systems. Manycurrent
expertsystems are equipped with 'menus" and explanation modules to allow
users to query expert systemsand examine theiroutputstatements"[Bl

We have seen three examples of applications which are expert systems in their
narrow field These systems are been written in the traditional third generation
languages of FORTRAN and SPL. They are fast, use little stack and code space, yet
provide functions which otherwise would consume an expert's time. In the first two
applications the database management system is TurbolMAGE and the third is
accomplished using ordinary MPE file I/O.

REFERENCES

[1] Cercone, Nick and McCalla, Gordon, Artificial Intelligence: Underlying
Assumptions and Basic Objectives, from Journal of the American Society for
Information Science, Volume 35, Number 5 September 1984 pp 280-290

[2] ibid

[3] Evanson, Steven E., How to TALK to an EXPERT, AIEXPERT, February 1988
pages 36-41

[4] ibid

[5] Heidner, Dennis L., The Bug Stops Here, Paper presented at the 1987 HP3000
International Users Group Conference, Las Vegas, Nevada

In Search of a Better Mouse Trap 0044-16

[6] ADPAN is in the public domain contributed software library available from
INTEREX, 680 Almanor Ave. P.O. Box 3439, Sunnyvale, California, 94088-3489

[7] Hewlett-Packard, MPE Debug/Stack Dump referenceManual, part number
30000-90012

[8] Hu, David, Programmer's ReferenceGuide toExpertSystems, (Indianapolis, IN:
Howard W. Sams & Co., 1987) page 10

BIOGRAPHY

Dennis Heidner received his BSEE degree from Montana State University, Bozeman,
Montana. Mr. Heidner has written and presented numerous papers at the HP
International User Group Conferences. Mr. Heidner is a co-author of The
lMAGE/3000 Handbook and the TurboIMAGE Supplementpublished by WordWare,
Seattle, Washington. He has written technical articles which have been published in
several magazines. Mr. Heidner is a member of the Association for Computing
Machinery (ACM) and the Institute for Electrical and Electronic Engineers (IEEE).

In Search of a Better Mouse Trap 0044-17

- a tutorial -

by David G. Robinson

II Power Spee II
International

0045-1

~ ...-.-I

G Structures: "The KEY to PerforlllOlU,=:::J

Abstract

PowQrHousQ
Data StructurQsI "ThQ KQY to pQrformancg ll

TherQ erQ many factors which play an integral pert in thQ overall
performance of an 0Rplication. ThQ obJQcEive of this tutorial
1s to idQntif~ why aata structures arQ the IIKEYII to QfficiQnt
and w9ll tunec apRlications. In order to do this dQsign critQria
will be introducQa and discussed Tor optimizing your sEructurQs.

Soma of thQ criteria to bQ prQsQntQd arel

- Logical Data Base Dssign
• Essential Systems Analysis
• Data Modeling
• Normal ization

- Physical Data Bass Dasign
• lmaga DBMS vs Indexed Files
• Blocksize &Capacites
• Paths/Keys
• Application Considerations

- Prototyping Application using 4GL PowerHousQ

This design critQria introducQd in this tutorial can bQ USQd
Tor applications devQlopQd in othQr 3GL or 4GLs.

0045-2

Data Structures: liThe KEY to PerformanceU

First, aa. aa ••

II • II.. N8Xt,

How to stor8 th8

Data 7

Physical
Data Base

Design

Logical
Data Base

Design
Define aa.

What is the
Data 7

0045-3

L ~ StructtJn!S: UTIle KEY to Performance::=:J

Analysis Phase
Logical

Data Base
Design

. Formal methodology
· Essential Systems Analysis (ESA)

[Top-Down Approach]
· Data Flow Diagram (DFO)
· Mini specifications

. . Data 0 i ct i onary
• 81 i tz

· Data Mode 1i ng
. Entity relationships

• Entity Relationship Diagrams (ERO)
• 1 to 1
• 1 to n

* 4GLs are perfect fit for Data Modeling
0045-4

Logical
Data Base

Design

0:0 Structures: liThe KEY to PerforlllClnCP::::J

Analysis Phase

. Informal methodology
Identifyins data entities and their attributes
. NormalizIng data structures

II Does each data element depend on its ker,.
the whole key and nothing but the key 7 1

. Boyce-Codd Normal Form <BCNF)

II Every determinant (attribute) must be a
candidate key of the relation (enti ty) II

0045-5

Data Structures: liThe KEY to Performance II

. PHDict Entities

CASE Tools - EXCELERATOR
. data analysis

. automates

. val idates

PHLEX by Co~nos

Link to
EXCELERATOR b~ Index Technolo~~ Corpa

0045-6

PDBD

DFD
Data Structures: liThe KEY to Performance II

Mini Sp8CS
OCC8pt ord8r
. For 80ch lin8-it8m

. multip18 qty * pric8 =8xt8nsion

Data Dictionarv
custom~r = [cust id, nam~, addr~ss, curr~nt balanc~]

0045-7

PhasQ

Physical
Data Base

Design
data structures

What data structures are supported 7
HP - MPE/lndexed/lmage DBMS

DEC - Indexgd/RMS/R db

DG- - Infos
0045-8

fJ ·

Design Criteria

Data Base Structure
· Image DBMS or Indexed (KSAM)

· Number of Paths/Keys

· Physical Data Structures
· Blockin9 Factors
· CapacitIes

· Application Considerations

· Other Software Alternatives
0045~9

L na:a Structures: liThe KEY to Performanc:;::J

II Adatabase models the dynamic behavior of its entities
and their attributes by means of entries ll

Alfredo Rego

~ C) • HP Image DBMS IINetwork StructureII with two levels
• of hierarchy

. Masters

. Oetai Is

What ar8 th8 advantag8s of using Imag8 7
disadvantag8s 7

0045-10

Data Structures: liThe KEY to Performance II

How can I access records in Image 7

• ~~lationshi~ for these nmters stored in llitails
• II[hainin~ 3 - CDnb!nts-orimted access Ithod

• Image~

. Mso SlWDrts ftorimted access ~thods

. Serial
• Directed .

0045-11

Data Structures: liThe KEY to Performance II

· Backup &Recover~ Features
. Transaction lo~qing

. STARTLOG &STOPLOG for PowerHouse

· Image DBMS Utilities

· Third party Utilities
. Adager/DBGeneral

Advantages of using Image DBMS as data structures !

~ASTERs · Referential Data Integrit~

VImo~Q ~~~~

0045-12

Criteria For Masters ~

· Optimal Block Size (BLOCKMAX)
. REBLOCK feature of ADAGER or DBGENERAL

· Set capacities to odd number
· Improve "hashing algorithims"

· Keys
· Types of X,U,and Zreduce migrating secondaries
· For numeric fields < 5 digits declare as Jl

. PowerHouse type INTEGER size 2
* . For numeric fields < 10 digits declare as J2

. PowerHouse type INTEGER size 4
· For numeric fields > 10 declare as PACKED size n

0045-13

II

© ~
* J2 Master Keys

If value does not exceed the capacity ... II

II ••• Then record# of entry will egual to its KEY value ... II

Results
· Master set will contain no synonyms

Disc space (sectors) will not be wasted
· Entries can be batch loaded faster than hash entries
• Physically order the entries in any desired seguence

Mark Trasko.
"The Future of Database Technology"

Supergroup Association Magazine. Jury 1986

0045-14

Data Structures: liThe KEY to Performanceu

/I Poor Master set rerformance ... affect Details 'l

© ~

Design Criteria for Details!

· Optimal Block Size (BLOCKMAX)

· Avoid more than two paths

· Avoid sorted paths if at all possible

*. Determine optimal Primary Path
0045-15

lata Structures: liThe KEY to Performance:

II Select most frequent PATH with more than one entry point II

Invoice-Hdr

A-Inv-Mstr

~finv-m
1to n

..• Primary Path should be *cust-no 'in this example ••.
0045-16

Data Structures: liThe KEY to Performance"

Disadvantages of using Image DBMS data structures!
II The ltree Serfs of III II

FrefWhite

II III IJS'! til! dxJv'! with comiWI'!~t III II

I Imagt!!EMS allocates all nmsory disc~ "t¥rmC

I Vitlrut third jl!fty utilitil!S em 00 til! constmIing fir
I fil'! reorgs. '!tc II I '

I Papa Boor
.~ 8e<r
" Bdly Beer

- Int~ K'!~
- Sorted Paths
- No. of Patrn

0045-17

Data Structures: liThe KEY to Performance II

How can I access records for Indexed Files!

Indexed Files
[KSAMJ

index

· KEY access

· Partial KEY (Generic KEY Retrieval) access

~ Serial

· Directed

~~~D~. • PowerHouse products allow generic retrievals
~ ~ for QUIZ &DTP &QUICK

0045-18



Data Structures: liThe KEY to Performanceu

The good and bad of using Indexed data structures !
II The good II

Indexed Files~ · more flexibilty
. data structure easier to change

index · generic retrieval for character keys

· less disc resources
. data fiIeallocated in extents

II The bad II

· increase memry requirements in multi-user enviromnent

· no built in referential data integrity like Image
Masters to Details

0045-19



© °l!iiiif
Design Criteria for Indexed Data Structures!

Indexed Fi les II II' referential data integrity I II II

index I ~ int~it1 con ~m lSi~ rOlE
I ~(EtQl' to ~tail tw~ relotiOffilli~

.loo~,

.liM~ of screens
. rassi~eceiYi~ fil~

·WeOO moo Focessi~
. ~tail file'

0045-20



Application Considerations

· KEYS (Paths)
. Number of k~ys

• Mor~ k~ys incr~ase inquiry capabilities
· Mor~ keys also increase 110 in Updates

. Concatenated keys (Indexed Files)
· Retrieval of records in ascending order

(key = [claim no + diary date])

· Securi ty .
· ~ay require additional data structures

. QUICK Screen functional Menus

. Password Security ~y 10
· Audi ts

· Additional files to track (audit) changes, etc

0045-21



r::::::a StructurQS: liThe KEY to Performonc-;::T

(Q)===O[]:;;]tf;;;;;:J_'

DQsign CritQria for QUICK ScrQens

· Mirror data base design
· For each Master a screen
· For each Detail a screen

· Same for multiple indexed files
. Build in referential data integrity

· Exception is usage of Append Mode Processing
· Detai 1 Fi les

· 1 to n relationship for two files on single screen

· Incorporate Locking Strategies
· For multi-user environment

· Screen LOCK Base/File or LOCK/UNLOCK Verbs

· Closing Files Explicitly

0045-22



o ·
~

to:: Da~ Structures: UThe KEY to Performan~

. Develop/prototype application using Indexed structures
• Easier to change structures

. Once data base design is accepted can change to Image

@
. Large Blocking Factors for batch processing

. QUIZ and erp serial reads

• Small Blocking Factors for screen processing
. QUICK recora retrieval

0045-23



Data Structures: liThe KEY to Performance II

Oth8r Softwar8 Alt8rnotiv8s

OMNIDEX / OMNIQUIZ b~ Da IaSaC

(Q) Dr.=t" I --~. _DO + ~m[~ ~ ~~Il ~ ~lr

. Advantage to end-user
. Allows search on non-key fields, etc

. Advantage to data base administrator
. Change search criterie without reorgs

. Change only OMNIDEX structures
0045-24



~

Data Structures: liThe KEY to Performance ll

II Prototyping Application ll

ItdUtld -) • 11&

ll'!firit -) Silpl!" SJMi

II Is feasible in a 4GL environment II

0045-25



Data Structures: liThe KEY to Performance II

Advantages of Prototying in 4GL

· Confirms users specifications (LOBO)

• Encourages users participation .
· validating inputs and outputs of the system
· determine data base design is efficient or lack of
· easier to evaluate then written specifications

· Shortens development cycle
· Staff could be developing other modules at same time

• Prototype can be done on Micro computers using PowerHouse PC
• After acceptance; code transportable to minI (HP, VAX, DG)

'CY==o[]:;;;;:J+
~l ~

II committment from DP staff and end-users II

0045-26



Data Structures: liThe KEY to Performance II

Logical
Data Bass

Design

• ESA
• DFD
• Mini Specs
• DO

• Data Mode ling
Normalization / BCNF

Physical
Data Base
Do~;nn-_.:::J

Design Criteria !

• I~ DBMS vs Indexed Files
• OptImizing Data Structures

• Blocking Factors
• No. of PathslKeys
• File ~iti9S
• Primcry Path

v • SortedP~
• Appl ication Considerations in QUICK

• Locking Strategies

Prototyping is a viable solution I

© 0 Jig • II Data structures are KEYS to PowerHouse Performance II

0045-27



t:~a Structures: "The KEY to PerforllKllC;::::T

Author.

David G. Robinson is considered one of the leading authorities
on PowerHouse software. He is founder and general __partner of
PowerSpec International the world's premier PowerHOuse training
center. David is an active member in the user community having
prasented many techical papers on PowerHouse in Europe and the
Uni ted StatQs.

He is aleo co-editor of TNT. a quartlerly publication of Tips.
NQws. and TQchniques on PowerHouse. which Is distributed world
wide.

0045-28



EFFECTIVE BACKUP STRATEGIES FOR THE HP3000

Bud Beamguard
Syntex corporation

3401 Hillview Avenue
Palo Alto, CA 94304

Let us start out with a thought:

"Risk is a theoretical concept until you have been burned. II

A backup is the transferal of data from a more volatile
medium to a less volatile medium, in order to provide a
temporary second copy of the data offline. On the HP3000,
this usually means storing off the contents of discs to
magnetic tape, using SYSDUMP, STORE, DESTORE, etc. With
SYSDUMP a complete copy of the system can be made.

We do backups of various kinds in order to preserve the
integrity of the system:

1. The System Directory
2. System I/O configuration, system tables and parameters
3. System software: FOS and subsystems from HP
4. Third-party packages
s. In-house software
6. User data

Several additional reasons why backups are done:

1. Because HP tells you to
2. Legal liability
3. Government regulations
4. Loss of financial records
s. Non-reconstructable data, e.g., data from real-time

instruments
6. Corporate/governmental auditing requirements

There are plenty of things that can happen to a system, both
at the hardware and software levels:

1. Disc head crashes and other disc problems
2. Corrupt system directory
3. Volume table destroyed, must perform RELOAD
4. Inappropriate use of PM capability resulting in carnage
s. Not enough free space on LDEV 1 during load

Effective Backup Strategies for the HP3000
0046-1



6. Sabotage and security breaches
7. Fire. water. acid. etc. in computer room
8. Earthquakes. tornadoes. floods. meteor strikes.

lightning. war. the End of Civilization As We Know It.
etc.

Any of these can develop into a recovery situation. i.e .•
situations where data (or even the system itself) must be
recovered from previously prepared backup tapes.

By their nature. emergencies are unforeseen. For purposes
of developing a backup strategy. it is not important what
causes emergencies: software, hardware. or human error.
Rather we attempt to be prepared as best we can WHEN and IF
they happen. It cannot be emphasized enough that no uni
versal solution exists. particularly where extensive Turbo
IMAGE databases are in use.

Our goal is to be able to:

1. Bring MPE back up with as little delay as possible
(Obvious? How are you going to get anything done with a
dead system? How long will it take to recreate MPE from
you last MPE upgrade tapes?) -

2. Bring back the accounting structure/system directory/UDC
structure/passwords
(How long will it take to reconstruct all of this by
hand? How complete is the documentation?)

3. Recover the system I/O configuration. system tables.
system operating environment

4. Recovery software (MPE, subsystems. user-developed)
s. Recover user data

User data gets the most attention in discussions of
backup strategies, but it can be useless without a
coherent system to run it on. Applications are often
highly dependent upon a particular system environment.

Although backup tapes are frequently useful for recovering
files which have been accidentally purged or otherwise
ruined during day-to-day operations. this function is
secondary. Backups should not be approached as archival
operations. either.

Ideally. we should be able to restore the system to the
exact state it was at the time of the outage. Even more
ideally. we should be able to do this on a completely
different hardware setup. should the old machine be
physically destroyed. Usually we have to settle for a
system as it was during the most recent backup.

Effective Backup strategies for the HP3000
0046-2



A backup strategy goes hand-in-hand with a disaster recovery
plan. A disaster recovery plan will clarify your needs and
goals based on YOUR specific environment. and make you aware
of the often cold realities of recovery operations. With a
good set of backup tapes and a reasonable level of technical
competence. you can recover from an emergency and come out
looking like a genius. The exact opposite is also possible
if you are not prepared I Develop a backup strategy that
will provide you with the means to approach an emergency
with confidence. Draw up a comprehensive recovery plan. A
routine reload of the system. done to repack disc files. is
an excellent opportunity to test such a recovery plan and to
eliminate the glitches which occur during reloads. If you
feel up to it. get out your DUS tape and practice loading
and using SADUTIL. SADUTIL can be a life-saver in that it
is able. in some cases. to rescue files which would
otherwise be lost: sometimes there are vital files for which
a timely backup copy does not exist.

A few general considerations about backups:

1. Backups are a form of insurance.
Unless you intend to go naked. you are going to have to
get some of this insurance.

2. Backups are an attempt to keep risk wi thin acceptable
limits. They DO NOT eliminate risk. Even tapes have
their problems and limitations.

3. Like insurance, backups cost money. The cost is
directly proportional to the coverage obtained.

4. Remember that system downtime is a major cost factor.

s. Only YOU know the acceptable level of risk in your
situation.

6. The acceptable level of risk is going to be different
for every set of files or databases on the system.

7. You are going to have to balance cost versus coverage
when deciding on a backup strategy.

8. Backups must be a design requirement in any application
system.

9. Be very careful about promising more than you can
deliver. Never underestimate the potential complexities
of a recovery, and never overestimate your technical
abilities.

Effective Backup Strategies for the HP3000
0046-3



Backups require downtime. or at the minimum intervals during
which applications and data are not available for use. It
is this non-availability which is the major problem for most
system managers.

Several suggestions to deal with the downtime dilemma:

1. Make sure that upper management understands what backups
are and why they are necessary. It is your job to help
them appreciate this necessity.

2. Make certain that backups occur on an iron-rigid
schedule. Users can get used to anything as long as you
are punctual and consistent. Discipline on your part
helps them to utilize downtime for other purposes. to
best advantage.

3. See to it that backups are included during the require
ments phase of system/appl ica t ion planning. Beware of
situations where backups are unfeasible due to uptime
demands. because this is a no-win situation for you.

4. Try to present backups in a posi tive manner. not as a
waste of time and money.

5. What goes up (MPE) must come down: nobody ever promised
either a fail-safe operating system or a perpetual
motion hardware setup. Make sure that everybody
realizes this. Sometimes people expect reliability
levels out of a computer which they would never ask from
a car or airplane. Hasten to correct these delusions.

SYSDUMP

Every system manager is familiar with SYSDUMP. An
understanding of its operation can provide ideas for an
effective backup strategy.

SYSDUMP performs the following steps (in order):

1. Asks ANY CHANGES?

2. Asks for dump date.
Will backup all files created or modified ON or SINCE
this date. on the basis of their file labels.

3. Asks for dump file set.
Identical with a STORE command parameter string.

4. Asks whether to do a dump list.

Effective Backup Strategies for the HP3000
0046-4



5. Dumps the System Directory. the' system SL. the I/O
configuration. the FOS files from PUB.SYS. etc. onto the
tape.

6. Activates STORE as a son process. which carries out the
remaining three steps:

7. Searches the System Directory and disc file labels for
files matching the date and file-set parameters
specified.
Prepares a list of these in a temp file called GOOD.

8. Stores the files listed in GOOD to tape.

9. If specified, prepares a printed list of the files,
using GOOD.

Here is an example of a job stream to perform a full backup:

1 minutes »

« any changes »
« dump date »
« dump file set »
« dump file set »
« dump file set »
« dump file set »
« progress message every
« list files dumped »

IJOB SYSDUMP.MANAGER.SYS,OPERATOR;HIPRI;outclass=lp,4,l
ICOMMENT This jobstream does a full backup of the system.
IFILE T;DEV=TAPE
IFILE DUMPLIST;DEV=LP.4,l
ISYSDUMP *T,*DUMPLIST
NO
o
@.PUB.SYS.&
@.@.SYS-@.PUB.SYS,&
@.@.@-@.@.SYS;&
FILES=24000;&
PROGRESS=l
YES
IEOJ

The dump file set specification in this job stream will
cause the contents of PUB.SYS to be dumped first, then the
SYS account minus PUB. SYS. then everything else minus the
SYS account. All files are dumped only once. The tape set
thus created allows you to restore "first things first"
during a recovery or a reload. For example. COMMAND.PUB.SYS
is extremely important because it contains the UDC structure
of the system, and can be restored quickly since it is
toward the beginning of the first tape reel. Similarly. the
PUB.SYS group can be restored and a measure of order restored
to the system environment before the user accounts are
recovered. It may be possible to release certain applica
tions even while the recovery is still in progress.

Several frills to add to your backUp jobstreams:

1. STARTCACHE commands

Effective Backup Strategies for the HP3000
0046-5



2. Do a run of BULDACCT.PBU.TELESUP. This program will
create three jobstreams. JOBACCT. JOBACCTB. and JOBCUDC.
These streams can be used to recreate the System Direc
tory. They contain ALL your passwords I

3. LIMIT and JOBFENCE commands to keep stray users off the
system.

4. Tape validations using VALIDATE or FCOPY.
time. but may be worth it.)

(These take

An enhanced version of a full backup:

IJOB SYSDUMP.MANAGER.SYS.OPERATOR;HIPRI;outclass=1p.4.1
ICOMMENT*****************************
ICOMMENT This jobstream does a full backup of the system.
ICOMMENT*****************************
ILIMIT 0.0
IJOBFENCE 14
ICOMMENT*****************************
ICOMMENT Make sure disc caching is turned on.
ICONTINUE
ISTARTCACHE 1
ICONTINUE
ISTARTCACHE 2
ICONTINUE
ISTARTCACHE 3
ICONTINUE
ISTARTCACHE 4
ICOMMENT*****************************
ICOMMENT Execute BULDACCT
IPURGE JOBACCT.OPERATOR.SYS
IPURGE JOBACCTB.OPERATOR.SYS
IPURGE JOBCUDC.OPERATOR.SYS
IRUN BULDACCT.PUB.TELESUP
ICOMMENT*****************************
ISHOWTIME
ICOMMENT*****************************
IFILE T;DEV=TAPE
IFILE DUMPLIST;DEV=LP.4.1
ISYSDUMP *T.*DUMPLIST
NO « any changes »
o « dump date »
@.PUB.SYS.& « dump file set »
@.@.SYS-@.PUB.SYS.& « dump file set »
@.@.@-@.@.SYS;& « dump file set »
FILES=24000;& « dump file set »
PROGRESS=1 « progress message every 1 minutes »
YES « list files dumped »
ICOMMENT*****************************

Effective Backup strategies for the HP3000
0046-6



lPURGE JOBACCT.OPERATOR.SYS
lPURGE JOBACCTB.OPERATOR.SYS
lPURGE JOBCUDC.OPERATOR.SYS
lLIMIT 5.45
lJOBFENCE 2
lCOMMENT*****************************
ISHOWTIME
lCOMMENT*****************************
lCOMMENT validates the tape(s) using VALIDATE.PUB.TELESUP
JRUN VALIDATE.PUB.TELESUP
N «PRINT THE TAPE DIRECTORY ? »
N «PRINT THE FILE LABEL INFO ? »
Y « VALIDATE THE ENTIRE TAPE ? »
N « PRINT LIST ON LINE PRINTER (LP) ? »
lCOMMENT*****************************
JSHOWTIME
ICOMMENT*************~**~************

lEOJ

A widely used backup strategy is to use SYSDUMP to perform a
full system backup once a week (often on weekends). with a
partial backup on each working day thereafter. using the
date of the full backup as the dump date of the partial; all
files modified on or after that date are then dumped. This
strategy is so popular that the commands FULLBACKUP and
PARTBACKUP were recently added to MPE to facilitate opera
tions. This is an excellent approach to backups: the tape
sets thus created make recoveries quick and straight-forward.
If downtime and operator time are not a problem. this is
certainly a recommended backup strategy.

Nevertheless. this strategy contains plenty of redundancy
(i.e .• overkill):

1. MPE. the System Directory. I/O configuration. etc. are
repeatedly backed up. perhaps needlessly should the
system be static.

2. The "@.@.@" fileset specification will cause the
machine to examine EVERY FILE LABEL ON THE SYSTEM.
which takes plenty of time; again perhaps needlessly.

3. A great many possibly unimportant files will get backed
up. usually several times; this takes more downtime.

4. A large number of backup tapes are generated. with
resulting storage/security problems.

5. FULLBACKUP and PARTBACKUP use an unqualified II@.@.@II as
the fileset. creating tapes which may be clumsy to use
in a recovery. It is usually better to use SYSDUMP and
fix up your own sequence.

Effective Backup Strategies for the HP3000
0046-7



If your site is under pressure to keep downtime to a
minimum, there are alternatives which mayor may not be
appropriate for your situation.

1. Perform partials based on the date of the previous par
tial (or fUll, whichever is more recent). This will
tend to reduce redundancy and thus shorten backup
time. The downside of this approach is that during a
recovery situation a RESTORE must be run on each of the
partials, in correct order by date; an error-prone and
time-consuming process.

2. Extend the time between fUll backups, e.g., to the
first of each month. This may be a good plan in
situations where the same set of user files gets
modified and hence backed up day after day, while the
system environment is stable.

3. In situations where the MPE environment is stable,
consider the following strategy:

a. Prepare a SYSDUMP tape containing @.PUB.SYS. based
on a dumpdate of o. This tape can be used to
recover MPE and its environment.

b. Use STORE to perform full and partial backups.

The redundant backup of the MPE environment is
eliminated.

4. Establish an Account structure in which active or cri
tical files are kept in special groups by themselves.
Examples would be major database, or a source code
library. During the backup use a dump file subset
which contains only these selected groups. The amount
of time consumed by the directory search will be
greatly reduced. This is at some risk to files NOT in
these groups (which may be tolerable).

5. Sometimes a TurboIMAGE database contains datasets which
are extremely volatile, and other datasets which are
static. Consider breakinq off the volatile datasets
into a second separate database. In this manner the
static sets will not be backed up merely because of
activity in the volatile datasets.

6. If there are several large, unrelated applications all
on the same system, consider dividing the applications
among two or more networked (new) machines, thus
reducing the overall time that the applications are

Effective Backup Strategies for the HP3000
0046-8



unavailable. This approach is especially good if one
of them "just has to be up". since the others will not
be exposed by its uptime demands.

7. Remember that an old. slow. antique tape drive costs
lots of money in downtime and in operator time. Use
this fact to cost-justify a new drive. Your HP Sales
Rep will be only too glad to help.

8. Use one of the third-party data-compression packages
that are available. This can greatly shorten your
backups. But before you buy. be sure to test your
ability to recover your system with the resulting
tapes. preferably by doing an actual full RELOAD. Do
not bUy unless you are happy. since it is not worth the
worry. Find out what HP has to say about the package.

A few considerations about backup tapes:

1. Store your tapes offsite or in another building.
Obviously do not keep them in the computer room. where
they could go up in smoke along with the machine.

2. The best place to keep tapes is in a fire-proof vault
with a lock. even though vaults are very costly and
there never seems to be enough room in them.

3. Remember that SYSDUMP tapes contain the entire System
Directory. and hence ALL your passwords. If you use
BULDACCT. the passwords are even easier to find since
they are contained in the JOBACCT. JOBACCTB. and
JOBCUDC jobs. Keep the tapes in a secure place (like a
vault) .

4. Tapes do wear out. Replace them every three years or
so.

5. Data stored on tapes can fade away magnetically after a
period of years. Use TDTCOPY or TAPECOPY (in TELESUP)
to create new copies.

6. The current "live" set of backup tapes (full and
partials) should be kept in a definite. easily found
place where they can be retrieved quickly. Do not mix
them with other tapes. You may have to tell people
where to find them -- over the telephone.

7. Use good-quality tapes for your backups.

8. Have a retention schedule for backup tapes.

Effective Backup Strategies for the HP3000
0046-9



Discs which contain lots of dead wood are obviously going to
take plenty of backup time, especially over the long haul:

1. Do not unwittingly use your discs as an archive.
Insist that inactive data be removed to TAPES. Get rid
of seldom-referenced accounts: TELESUP and the CSL
accounts are often in this class. If certain programs
are used from these accounts, copy them to special
groups in SYS.

2. Make sure that the application people are not creating
huge TurboIMAGE databases which remain mostly empty.
Sometimes dataset sizes are specified on the basis of
what might happen years down the road. During the
meantime YOU are going to have to backup all that empty
space.

3. Do not assume that your users have an understanding of
what disc space means. Watch out for people who create
monster files without realizing what they are doing.
Consider putting limits on sector usage.

4. REPORT will tell you who is eating up your disc space.
If you do not know why, find out.

A few suggestions to keep you prepared for a recovery:

1. Retain the System Coldload Tape and the Diagnostic
Utility System tape created during the most recent MPE
upgrade, as instructed by Hewlett-Packard.

2. Using SYSDUMP, create a separate coldload tape with a
dumpdate of 0 and a fileset of @.PUB.SYS.
If it turns out that your backup tapes cannot revive
MFE, this tape can be used for a coldload, and a great
deal of time saved (not to mention nerves).
It can also be used to restart the system after a
system failure.
Update this tape every time a configuration change is
made, and keep the tape in the computer room.

3. Keep up-to-date copies of the system I/O configuration
in your files and taped to the computer room wall.
SYSINFO will provide a comprehensive listing of all
system parameters, both for you and for your CE.

4. Keep a list of the Disc Volume Table in your files and
taped to the computer console. Ditto for the LOAD,
START and DUMP parameter settings for the system, even
if default settings are used.

Effective Backup Strategies for the HP3000
0046-10



5. Occasionally practice loading your DUS tape. and keep
up to speed on the use of SADUTIL. SADUTIL can be of
considerable help during a recovery -- but that is not
the time to figure it out from the manual.

6. Prepare a written recovery procedure based on RELOAD.
Validate this procedure with a live testl Work the
bugs out and know what you are going to do BEFORE the
moment of truth arrives. Involve your operators. and
remember that plenty of recoveries have had to be done
over the phone.

7. Maintain control over your backup tape library. and
know exactly where everything is.

8. Do not put too much stock in the war stories that
people tell about recoveries. You only hear about the
successes (just like the stock market). Do not be
duped into believing that recoveries are easy.

It is my heartfelt wish that you will never have to recover
from a flames-and-ashes cataclysm (or even from a IIroutine ll

system failure). Hopefully. these suggestions will help you
to be ready for a quick and confident recovery. should it
come. In the meantime. you will sleep better knowing that
you have addressed some of the more dreadful possibilities
in the life of the system manager.

wp/3410d

Effective Backup Strategies for the HP3000
0046-11





I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
(Food For Thought For Penniless System Managers)

George T. Blessing
City of Pasadena

100 N. Garfield Ave, B-29
Pasadena, CA 91109-7215

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-1



There is a seemingly steady flow of new products designed to
help the System Manager take care of his system. Some of
us, however, don't have the funds to pay the big-ticket
prices associated with some of these items. For those of us
in this situation, this paper suggests a few simple (and
relatively cheap) methods to help us do our jobs more
effectively without spending a lot of money or time.

More specifically, I will deal briefly with three major
concerns: Backup strategies, Disc Space Management, and File
Capacity Management. We've all been told repeatedly that
attention to details is the most important concern a system
Manager can have. But paying attention to details can be
time-consuming. What I have done at our site is to try to
develop strategies for system management which require the
least amount of time and give the largest benefits. In this
paper, I will outline a few of these strategies and provide
the listings for processes I've written where applicable.

BACKUP STRATEGIES

One of the problems facing us was a shrinking window for our
overnight processing. At our site, we do a Full BackUp on
Monday morning, and a Partial BackUp on Tuesday-Friday
mornings. The backup took 3 to 3.5 hours for the FUll, and
1.5 - 2 hours for the Partial. We also had only one
operator who was working a split shift: coming in as early
as 4:00 in the morning and then coming in later to do other
work at night. Since additional staffing was out of the
question and we needed more open time at night and better
use of the operator we had, I decided something would have
to be done.

I decided that the first thing to do was shorten the backup
time, by cutting it into two pieces. We had two 6250bpi
tape drives, but TurboSTORE was not yet released. I split
the backup in half by defining two files with explicit
account names in them, and doing a backUp to each tape drive
of different accounts. The format of the file containing
the account names looks like this:

@.@.ALDON
@.@.BUDGET
@.@.CENTRAL
@.@.CLERK

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-2



@.@.INFOSYS
@.@.LICENSE

I stored the lists in two files called ACCT7 and ACCT17 (7
and 1 7 are the LOEV numbers of our tape drives), and we
began splitting the backup by running one on each of two
terminals. The backup commands for the backup to the LDEV
17 tape drive are:

:FILE SYSLIST;DEV=LP
:FlLE TP17;DEV=17
:SYSDUMP *TP,*SYSLIST
Enter dump date: 10/1/87
Enter Subset of files:
!ACCT17
List files dumped to printer: Y

This change produced terrific results. The full backup was
split into two halves Which took similar amounts of time.
The length of the full backup dropped to 1:50. The partial
the next day dropped to about 0: 55. Then I realized that
the moment's paradise was slipping away fast. I now had two
files which had to be maintained manually, and if they qot
out of Whack, part of the system would not be backed up.

So I thought to myself "I need a way for the machine to
maintain these, or I'll get burned for certain." I decided
it wouldn't take me long to build an account and forget to
put it in. So I picked an HP command which provides a list
of all the accounts on the system which can be dumped into a
file, and edited. I wrote JCL to create this file, text it
into the editor, change it to the format I needed, and split
it into two pieces, saving them as ACCT7 and ACCT17. I ran
the job, and after a few tries, the output was correct. I
went home with the satisfaction of a job I thought was well
done.

I returned to the office to find trouble. The partial
backup had taken t.oo long and users were about to start
complaining. The problem proved the theory that most things
that look simple are actually not. The split which worked
so well for the Full Backup, had soon proven to be
unbalanced for the Partial. Though it was not so obvious on
Tuesday, by wednesday, the difference between the two sets

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-3



THIS JOB EXAMINES THE ACCOUNTING STRUCTURE
OF THE SYSTEM AND PREPARES EXPLICIT BACKUP
LISTS, INSURING THAT NO ACCOUNT GETS LEFT
OUT OF A BACKUP. IT SHOULD BE RUN EACH DAY
IN THE EVENING TO CAPTURE ANY ACCOUNTS BUILT
DURING THE DAY.

was severe. Some accounts had more activity than others,
and they happened to be on the same tape drive. So, I went
back to the drawing board.

I modified the JCL for the job which sets up the files
(ACCTJOB), changing it so that it did two splits, the first
one for the expected balance for a full into FACCT? and
FACCTl7, and the second one for partial backups into PACCT7
and PACCT17. I told the operator of the change. He was not
thrilled that he would have to change his already typed
documentation, and prepared for the worst. The changes
worked well anyway, and after a couple tweaks to the partial
side, it got even better. Here is the final listing of the
JCL for ACCTJOB, with comments on what different commands
are doing:

IJOB ACCTJOB,MANAGER.SYS
!OCSSTART
!COMMENT
!COMMENT
1COMMENT
1COMMENT
!COMMEHT
1COMMENT
lCOMMENT
!COMMENT THE FOLLOWING LINES PURGE THE CURRENT SPLITS.
!CONTINUE
!PURGE ACCTLIST.SYSOP.SYS
!CONTINUE
IPURGE PACCT7.SYSOP.SYS
1CONTINUE
!PURGE PACCT17.SYSOP.SYS
!CONTINUE
!PURGE FACCT7.SYSOP.SYS
!CONTINUE
!PURGE FACCT17.SYSOP.SYS
1COMMENT
!COMMENT NOW, A REPORT IS DONE TO A TEMPORARY FILE.
!COMMENT
!FILE RLIST=RLIST:REC=-80"F,ASCII;NOCCTL
lREPORT BUGGER.@,*RLIST
lCOMMENT
!COMMENT THE FILE IS TEXTED INTO THE EDITOR AND MODIFIED
!COMMENT TO PRODUCE A FULL ACCOUNT LIST (ACCTLIST)
1COMMENT
lED
T RLIST

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-4



SET TIME=9000
CQ 9 TO "_" IN ALL
FQ 1
WHILE

FQ "_"
DQ *(*)/*(LAST)

CQ 1 TO "@.@." IN ALL
CQ II II TO 1111 IN ALL
DQ 1/2

:COMMENT AT THIS POINT THE FULL LIST IS FINISHED.
: COMMENT
: COMMENT MODIFY FAMISX REFERENCE TO EXCLUDE THE
:COMMENT GROUP @.DATA.FAMISX.

CQ "@.@.FAMISX" TO n@.@.FAMISX-@.DATA.FAMISX" IN ALL
:COMMENT SAVE THE FULL LIST
K ACCTLIST.SYSOP.SYS,UNN

: COMMENT THE FIRST SPLIT IS FOR PARTIAL BACKUPS
: COMMENT (PACCT7 , PACCTl7 ) •
: COMMENT THE ACCOUNT MENTIONED BELOW - FQ "acctname"
: COMMENT WILL BE THE LAST ACCOUNT IN THE FIRST SET.

FQ FIRST
FQ "FAMTEST"
K PACCT7.SYSOP.SYS(FIRST/*),UNN
FQ FIRST
FQ "FAMTEST"
K PACCT17.SYSOP.SYS(*+1/LAST),UNN

: COMMENT THE SECOND SPLIT IS FOR FULL BACKUPS
: COMMENT (FACCT7 , FACCTl7) •
FQ FIRST
FQ "LICENSE"
K FACCT7.SYSOP.SYS(FIRST/*),UNN
FQ FIRST
FQ "LICENSE"
K FACCT17.SYSOP.SYS(*+1/LAST),UNN

: COMMENT CLEAR OUT THE BUFFER
DQ ALL
YES

:COMMENT TEXT IN SET 2 OF THE PARTIAL (PACCT17)
T PACCT17.SYSOP.SYS

: COMMENT ADD ONE LINE TO THE BEGINNING TO GET
: COMMENT @.PUB.SYS AND @.DBLOG.@ ONTO THE FIRST
: COMMENT TAPE.
A .5

@.PUB.SYS,@.DBLOG.SYS
1/
:COMMENT KEEP SET 2 OF THE PARTIAL (PACCT17)
K
YES

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-5



: COMMENT
: COMMENT TEXT IN SET 2 OF THE FULL (FACCTl7)
T FACCT17.SYSOP.SYS

: COMMENT ADD ONE LINE TO THE BEGINNING TO GET
: COMMENT @.PUB.SYS AND @.DBLOG.@ ONTO THE FIRST
: COMMENT TAPE.
A .5

@.PUB.SYS,@.DBLOG.SYS
II
: COMMENT KEEP SET 2 OF THE FULL (FACCT!7)
K
YES

: COMMENT
: COMMENT CLEAR OUT THE BUFFER

DQ ALL
YES
EXIT

!COMMENT
!EOJ

For those of you who have a contributed library; I recommend
the use of BULDACCT (sometimes in pub.telesup) at the end of
this jobstream to build current files with the
accounting/udc structures in them to be backed up in the
morning. This eliminates another one of those things you
always want to do but never get around to.

This change was a solution, but not a complete one. I still
wanted to get more mileage from my operator on Partial days.
I examined the listings from the Partial backup, and after a
few minutes, several items drew my immediate attention. Big
datasets. Big datasets that got backed up every partial. I
mean, datasets over 200,000 sectors a piece. So I picked up
my expensive analytical tools (calculator and highlighter)
and went to work. It shouldn't have been a surprise, but it
was. Most of the backup for the first day or so was made up
of datasets from the major applications.

Well, if you've been thinking about Image/TurboImage
logginq, and data recovery hasn't been enough of an issue to
get you to do it, here are two more reasons to do it.
First, if you're going to log a database and create that
extra overhead, you may as well turn on Autodefer, since the
log is written to disk whether Autodefer is on or not.
Also, most people who didn't pay attention to the manuals or
classes haven't noticed that performance with logging and
Autodefer enabled is actually better than without it.

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-6



Second ( and I must admit that this was my primary
motivation), if you backup the log files on the partial, you
don't need to backup the database itself. Now if your
databases aren't much of your system, this will be
meaningless, but if they are, think of the difference it
would make. I did, twice, because I couldn't believe it the
first time. Think of it. A 400,000 sector dataset receives
10 DBPUT's to it on Monday afternoon, and you're backing up
the whole thing on Tuesday's partial. On a 6250bpi tape
drive that's about 2/3 of one tape! Well, maybe I'm not a
genius, but it didn't take me long to figure out that this
would be the answer I was looking for.

So we tried it on two databases, then four, then nine. It
was a hit. Response titne on some database operations got
faster, the backup got even shorter, and the night
processing window grew to a fat 13 hours. We developed
templates for different tasks to make the logging easier to
manage and prevent us from being unprepared in case of
corruption.

First, we developed a job stream to do a roll-forward
recovery for one database. For each one of the databases
which is logged, there is a copy of this job stream with the
information for that database filled in. This enables us to
recover by restoring the the database from the last full
backup tapes and then applying the best available copy of
the logfile against it by streaming the recovery job. Here
is the template of the recovery file:

!JOB dbname,dbcreator.dbaccount,dbgroup
!COMMENT THIS JOB RECOVERS THE DATABASE FROM
!COMMENT THE LAST FULL BACKUP BY APPLYING TRANSACTIONS
!COMMENT CONTAINED IN THE CURRENT LOG FILE.
!COMMENT
!COMMENT FIRST SET FLAGS IN THE DATABASE
IRON DBUTIL.PUB.SYS
DISABLE dbname FOR ACCESS
ENABLE dbname FOR RECOVERY
EXIT

!COMMENT
1COMMENT NOW, PERFORM THE RECOVERY
!RON DBRECOV.PUB.SYS
CONTROL NOSTAMP,NOSTORE
RECOVER dbname
RUN

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-7



THERE MUST BE TWO LINES PER LOGGING PROCESS
INSERTED BELOW IN THE FOLLOWING FORMAT:

!FILE P=dbname.DBLOG.dbaccount;SAVE
IPURGE *p

!COMMENT
!COMMENT THEN SET FLAGS BACK IN THE DATABASE
lRUN DBUTIL.PUB.SYS
ENABLE dbname FOR ACCESS
DISABLE dbname FOR RECOVERY
EXIT

!COMMENT DATABASE IS READY TO BE LOGGED AGAIN
!EOJ

We prepared jobstreams to handle the starting, restarting,
and stopping of the logging processes, in order to reduce
the error possibility. You will notice references in all
three to the "existence l ' of a particUlar file. To allow the
jobs to start logging processes, they need to be granted the
capability of using the LOG command. To do this we have the
jobs start, send a message to the console, and then wait for
the existence of a partiCUlar file. When the operator sees
the message, he enters the command SYSALLOW, which allows
the job the LOG command and then builds the file. Here is
are the listings of the three jobs, LOGSTRT, LOGRSTRT, and
LOGSTOP:

IJOB LOGSTRT,OPRSM.SYS
IPURGE SYSALLOW.DBLOG
!COMMENT THIS JOB STARTS ALL LOGGING PROCESSES
!COMMENT IT MUST BE RUN ONLY AFTER THE FULL BACKUP!
!COMMENT
1COMMENT
1COMMENT
!COMMENT
!COMMENT
!COMMENT
!COMMENT
lCOMMENT ***** Account: CLERK *****
!FILE P=recdc.DBLOG.clerk;SAVE
!PURGE *p
!COMMENT
lCOMMENT ***** Account: CP *****
!FILE P=cpdl.DBLOG.cp~SAVE

!PURGE *p
!COMMENT
!COMMENT ***** Account: ENG *****
!FlLE P=pwrdf.DBLOG.eng:SAVE
IPURGE *p
!COMMENT
lCOHMENT ***** Account: LICENSE *****

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-8



!FILE P=falldb.DBLOG.license;SAVE
!PURGE *p
!FILE P=fblldb.DBLOG.license;SAVE
!PURGE *p
!FILE P=fb12db.DBLOG.license;SAVE
!PURGE *p
!COMMENT
!COMMENT ***** Account: PASADENA *****
!FILE P=citsdb.DBLOG.pasadena;SAVE
!PURGE *p
!COMMENT
!COMMENT ***** Account: PMSPAS *****
!FILE P=bsprdb.DBLOG.pmspasiSAVE
!PURGE *p
IFILE P=bssidb.DBLOG.pmspas;SAVE
!PURGE *p
!COMMENT ***** End of File Maintenance *****
!COMMENT
!TELLOP ***************************************§
!TELLOP * YOU HAVE 3 MINUTES TO ISSUE THE *
!TELLOP * FOLLOWING COMMAND OR THE LOGGING *
!TELLOP * WILL NOT START....... *
!TELLOP * :SYSALLOW *
!TELLOP ***************************************
!COMMENT THE FOLLOWING PROGRAM CHECKS FOR EXISTENCE
!COMMENT OF THE FILE SYSALLOW.DBLOG.SYS EVERY 15 SECS
!COMMENT FOR 3 MIN. IF FOUND THE PROCESS CONTINUES.
!RON FILEINQP.COMP.OCS;PARM=15;INFO="12,SYSALLOW.DBLOG"
!PURGE SYSALLOW.DBLOG
lCOMMENT THERE MUST BE ONE LINE PER LOGGING PROCESS
!COMMENT INSERTED BELOW IN THE FOLLOWING FORMAT:
!COMMENT lLOG dbname,START
!COMMENT
!LOG recde,START
!LOG falldb,START
!LOG fblldb,START
1LOG fb12db,START
lLOG citsdb,START
!LOG bsprdb,START
lLOG bssidb,START
1LOG cpdl, START
!LOG pwrdf,START
!EOJ

!JOB LOGRSTRT,OPR.SYS
!PURGE SYSALLOW.DBLOG
!COMMENT THIS JOB RESTARTS ALL LOGGING PROCESSES
!COMMENT IT MUST BE RUN AFTER THE PARTIAL BACKUP!

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-9



lCOMMEHT
lTELLOP ***************************************§
!TELLOP * YOU HAVE 3 MINUTES TO ISSUE THE *
!TELLOP * FOLLOWING COMMAND OR THE LOGGING *
!TELLOP * WILL NOT RESTART..... *
!TELLOP * :SYSALLOW *
!TELLOP ***************************************
1COMMENT THE FOLLOWING PROGRAM CHECKS FOR EXISTENCE
!COMMENT OF THE FILE SYSALLOW.DBLOG.SYS EVERY 15 SECS
!COMMENT FOR 3 MIN. IF FOUND THE PROCESS CONTINUES.
IRON FILEINQP.COMP.OCS;PARM=15iINFO="12,SYSALLOW.DBLOG"
!PURGE SYSALLOW. DBLOG
!COMMENT
!COMMENT THERE MUST BE ONE LINE PER LOGGING PROCESS
!COMMENT INSERTED BELOW IN THE FOLLOWING FORMAT:
!COMMENT !LOG dbname,RESTART
!COMMENT
lLOG recdc,RESTART
!LOG falldb,RESTART
!LOG fbl1db,RESTART
!LOG fb12db,RESTART
!LOG citsdb,RESTART
!LOG bsprdb,RESTART
lLOG bssidb,RESTART
!LOG pwrdf,RESTART
!LOG cpdl,RESTART
!EOJ

!JOB LOGSTOP,OPR.SYS
!PURGE SYSALLOW. DBLOG
!COMMENT THIS JOB STOPS ALL LOGGING PROCESSES
!COMMENT IT MUST BE RUN BEFORE FULL OR PARTIAL BACKUP!
!COMMENT
!TELLOP ***************************************§
!TELLOP * YOU HAVE 3 MINUTES TO ISSUE THE *
ITELLOP * FOLLOWING COMMAND OR THE LOGGING *
ITELLOP * WILL NOT SHUT DOWN... *
!TELLOP * :SYSALLOW *
!TELLOP ***************************************
!COMMENT THE FOLLOWING PROGRAM CHECKS FOR EXISTENCE
!COMMENT OF THE FILE SYSALLOW.DBLOG.SYS EVERY 15 SECS
!COMMENT FOR 3 MIN. IF FOUND THE PROCESS CONTINUES.
!RON FILEINQP.COMP.OCS;PARM=15;INFO="12,SYSALLOW.DBLOG"
!PURGE SYSALLOW.DBLOG
!COMMENT
1COMMENT THERE MUST BE ONE LINE PER LOGGING PROCESS
!COMMENT INSERTED BELOW IN THE FOLLOWING FORMAT:
1COMMENT ! LOG dbname, STOP

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-10



!COMMENT
!LOG recdc,STOP
fLOG falldb,STOP
1LOG fblldb,STOP
!LOG fb12db,STOP
lLOG citsdb,STOP
!LOG bsprdb,STOP
!LOG bssidb,STOP
!LOG pwrdf,STOP
!LOG cpdl,STOP
!EOJ

To keep the logged databases themselves from being backed up
during a partial backup, I created a jobstream which
prevents them from being picked up by sysdump. Basically,
the jobstream requests a store of the chosen files. The
operator streams this job before doing the real partial, but
never replies to the request for LDEV number for the tape.
This keeps the files from being backed up by the other
processes as they are in use by STORE. When the partial is
completed, the operator replies to the request with an LDEV
number of 0, and the jobstream terminates. The list of
files to be kept from backup is kept in a separate file
which can be edited. For those who have HPDESKMANAGER on
their system, if you do a MAILMAINT each night, you may
choose not to backup the mail databases in the morning (the
MAILMAINT job does a store of the databases before the
mailmaint takes place). Here is the listing of the JCL for
the lockdown job, DBLLOCK, and its configuration file,
DBLLIST:

!JOB DBLLOCK,OPR.SYS
!TELLOP ***********************************************
!TELLOP * THIS HAD BETTER BE A PARTIALl§ BACKUP... *
!TELLOP * IT IS OK TO BEGIN THE REAL PARTIAL BACKUP *
!TELLOP * ONCE THE REQUEST FOR "LOCKTAPE" HAS COME *
!TELLOP * FROM THIS JOB... *
ITELLOP ***********************************************
ITELLOP * IF THIS ISN'T A PARTIAL, REPLY '0' TO THE *
!TELLOP * REQUEST FOR "LOCKTAPE" NOW. *
!TELLOP ***********************************************
!TELLOP * AFTER THE PARTIAL BACKUP HAS COMPLETED, *
!TELLOP * REPLY '0' TO THE REQUEST FOR "LOCKTAPE". *
!TELLOP ***********************************************
!FILE LOCKTAPE;DEV=TAPE
!STORE !DBLLIST;*LOCKTAPE;SHOW

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-11



!EOJ

RECDC@.PUB.CLERK
FAL1DB@.DATA.LICENSE
FBL1DB@.DATA.LICENSE
FBL2DB@.DATA.LICENSE
CITSDB@.PUB.PASADENA
BSSIDB@.DATA.PMSPAS
BSPRDB@.DATA.PMSPAS
@.@.HPOFFICE

So, with the implementation of the split backup, image
logging, and no backups of logged databases on partial days,
the full backup now takes about 1:45 to complete, and the
partials vary from 20 - 30 minutes. We do a full backup now
on Monday, since it has the largest processing window in
front of it, and partial backups on Tuesday through Friday.

DISC SPACE MANAGEMENT

The next problem I tackled is a difficult one to deal with:
The use/abuse of disc space. This is particularly tough in
a development environment where people are leaving their
sometimes not-so-little test files around for posterity.
It's not possible for you to watch everything that goes on,
so let the machine do everything possible for you. I don't
want to plug anyone's software, but I confess that a great
deal of this function is being handled by MPEX from Vesoft.

I use two jobstreams to monitor the appearance of files on
the system: one that alerts me to new files being built, and
a second one that lists files not accessed. The first job
logs on at 2AM on Saturday morning, and does a special LISTF
of all files created during the past week. You should try
it just to see what shows up. Huge files with no records
often appear with misspelled names that seem to elude their
creator's dustpan.

!JOB NEWFlLES,MGR.OCS
!COMMENT THIS JOB LISTS ALL FILES CREATED IN THE LAST
!COMMENT WORK WEEK WHICH ARE LARGER THAN 500 SECTORS.
!FILE PP;DEV=PP;ENV=LP4.HPENV.SYS
!CONTlNUE
! RUN MPEX. PUB. VESOFT

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-12



SET DEFAULT,LISTF,!
LISTF @.@.@(CREDATE>=*-7 & DISCSPACE>500),2;*PP
EXIT
!EOJ

Then at around JAM the second job logs on. It also uses
MPEX and does a listf of all files that have not been
accessed in the last 90 days. This listing often reveals
only items Which need to be archived, but occasionally a
choice find appears. It's a good practice to get into, but
again, one which takes time to run and time to review. So
let the machine at least take care of running it while
you're not around.

!JOB OLDFILES,MGR.OCS
!COMMENT THIS JOB LISTS ALL FILES NOT ACCESSED IN THE
!COMMENT PAST 90 DAYS.
!FILE PP;DEV=PP;ENV=LP2.HPENV.SYS
!CONTINUE
lRUN MPEX.PUB.VESOFT
SET DEFAULT,LISTF,!
LISTF @.@.@(ACCDATE<*-90),2;*PP
EXIT
lEOJ

I also believe that it's important to watch for sudden
changes in freespace on your system. The Hewlett-Packard
utility FREE5.PUB.SYS (as we all know) is supplied with the
fundamental operating system and is quite capable of
creating its own instant I/O bottleneck when running. The
output of this program can be useful in determining how
fragmented the freespace on your disos is or the amount of
total freespace on the system. I have found that having a
record of the total freespace can help determine what has
been happening on the system. Obviously, if the amount of
free sectors drops by 1.2 million, someone is building some
hefty files. To facilitate having the operator record the
freespace on a daily basis, I wrote a jobstream to supply
him with only the information I was interested in.

IJOB FREEJOB,MGR.OCS
!CONTlNUE
!PURGE FREE50UT
IBUILD FREE50UT;REC=-80"F,ASCII;NOCCTL

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-13



IRUN FREE5.PUB.SYS;STDLIST=FREE50UT
!IF Jew < FATAL THEN
! CONTINUE
! ED
T FREE50UT
F FIRST
WHILE

FQ "LARGEST"
DQ *1*+7

DQ 1
CO LAST-l TO 1
A .5

SYSTEM FREE SPACE
II
CQ 1 TO ":TELLOP II IN ALL
K TEMPUSE, OHN
USE TEMPUSE
: PURGE TEMPUSE
DQ ALL
YES
EXIT
!ENDIF

This jobstream runs FREE5.PUB.SYS and directs the output to
a file. It then runs EDITOR.PUB.SYS and massages the
discspace information until it becomes a series of :TELLOP
commands. The alt.ered file is saved in the file TEMPUSE,
then USEd by the editor to send messages to the console
showing only the total freespace for each disc drive and the
system as a whole. Al though this output is rather
rUdimentary and was intended for a written record, if you
have access to a PC with a spreadsheet application, time
comparisons can be made. I am hoping to write an
application later in this year to go a little further and
evaluate the condition of the discs based on t.he
fragmentation information as well as the freespace.

FILE CAPACITY

The last thing I'd like to discuss is database capacities.
If you are involved in a small shop, it's very likely that
as the System Manager you work many different jobs.
Probably you are also acting as the Database Administrator.
There is very little (with the possible exception of a
system failure) that annoys me as much as having a dataset
fill up unexpectedly. OUr system has a grea't many small

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-14



applications running on it, producing an endless supply of
databases. Keeping track of how full each of them is could
be a full-time job in itself. In fact, on our system just
keeping track of where they are could be a full-time job.
So while I was wearing the DBA hat one day I decided it
would be wonderful if the HP3000 could just tell me when
sets were filling up.

Evidently, other people were thinking the same thing because
I've noticed at least one commercial product that seems to
do this to some degree. But my no-cost procedure at least
gives me a list of the sets which have passed a particular
threshold. Hewlett-Packard provided the means to accomplish
this quite a while back, perhaps without even knowing it.
When they introduced TurbolMAGE, they also introduced a
special group in the SYS account called CONVALL. For those
of you who haven't checked it out, I suggest that you do.
It contains several goodies like TMPCONVP, a program which
lets you change your session log-on without losing your
capabilities or UDC's. Aside from that, it also contained a
utility which searches the system, looking for g.atabases,
and creates a JCL from a supplied template file for each one
it finds. Its original use was to convert each DB to
TurbolMAGE. The CONVALL programs were well-documented and
is able to insert variables such as the creator, passwords,
etc. into the template you supply. I imagine that this
utility is still available with some coaxing from your S.E.
or may be on one of your old tapes.

I decided to use this utility in combination wi th a
contributed program called DBANALYS. DBANALYS can provide a
list similar to FORM SETS in QUERY, but also shows the
percentage of each dataset in use. I know there are other
contributed programs floating around which provide similar
output. I've been using this one for some time now and have
stuok with it. I wrote a sequence of jobstreams which
essentially performs three tasks: 1) find all of the
databases on the system and produce JCL to run DBANALYS
against each database, appending the output from DBANALYS to
a single file 2) launch the new JCL 3) massage the output
from DBANALYS and produce a report. Below are the listings
of DBCAPJ1, DBCAPJ3, and a sample report from the process.

!JOB DBCAPJ1,MANAGER.SYS,SYSOP
!OCSSTART
!COMMENT **********************************************
lCOMMENT * THIS JOB IS THE FIRST OF THREE JOBS USED *

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-15



tCOMMENT * TO CHECK FOR DATASETS OVER 85% FULL ON *
!COMMENT * THE SYSTEM... *
lCOMMENT **********************************************
!COMMENT
!COMMENT **********************************************
!COMMENT * FIRST, PURGE EXPENDABLE FILES... *
lCOMMENT *********.************************************
IPURGE DBCAPX.SYSOP
!PURGE DBCAPJ2.SYSOP
!PURGE JCONVERT.SYSOP
IPURGE TEMPLATE. SYSOP
!COMMENT **********************************************
!COMMENT * THEN, BUILD NEW FILES... *
!COMMENT **********************************************
!BUILD DBCAPX;REC=-80,128,F,ASCIliDISC=100000,32,1
!RELEASE DBCAPX.SYSOP
lCOMMENT **********************************************
!COMMENT * BUILD THE TEMPLATE FILE... *
!COMMENT **********************************************
lED
A
IRUN TMPCONVP.CONVALL.SYS
\FILE,\LOGON

I

FILE DBCAPX=DBCAPX.SYSOP.SYSiACC=APPEND
CONTINUE
RUN DBANALYS.UTIL.SYSiSTDLIST=*DBCAPX

BASE
\FNAME

5
SETS
EXIT
II
CHANGE "''',''!II IN ALL
:COMMENT * NOW KEEP THE TEMPLATE FILE... *
K TEMPLATE, UNN
EXIT
!COMMENT **********************************************
!COMMENT * FIND ALL OF THE DB'S... *
lCOMMENT **********************************************
IBUILD JCONVERT;REC=-80,128,F,ASCII;OISC=lOOOOO,32,1
IFILE TEMPLATE.CONVALL.SYS=TEMPLATE.SYSOP.SYS
!RON CONVALL.CONVALL.SYS
@.@
IFILE NEWCON=JCONVERT,OLD
!FILE OLDCON=JCONVERT,OLDTEMP
!FCOPY FROM=*OLDCONiTO=*NEWCON
!PURGE JCONVERT,TEMP

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-16



!COMMENT **********************************************
!COMMENT * CREATE THE JOBSTREAM DBCAPJ2... *
!COMMENT **********************************************
lED
T JCONVERT
A.5

\
JOB DBCAPJ2,MANAGER.SYS,SYSOP
OCSSTART

II
A
IRUN TMPCONVP.CONVALL.SYS
DBCAPJ2,MANAGER.SYS,SYSOP

IIF JCW < FATAL THEN
SCHEDULE IDBCAPJ3"

Y
OCSNORMAL
SET STDLIST=DELETE
ELSE
OCSABNORM
ENDIF
EOJ

II
CHANGE .. I" TO n! I' IN ALL
K DBCAPJ2, UNN
EXIT
!COMMENT **********************************************
!COMMENT * READY FOR DBCAPJ2 TO EXECUTE... *
!COMMENT **********************************************
!IF JCW < FATAL THEN
lSCHEDULE "DBCAPJ2"
Y
!OCSNORMAL
!SET STDLIST=DELETE
!ELSE
!OCSABNORM
!ENDlle'
!EOJ

!JOB DBCAPJ3,MANAGER.SYS,SYSOP
IOCSSTART
lED
T DBCAPX
SET TIME=9000
CQ 67 TO "I" IN ALL

:COMMENT **************************************************
:COMMENT ** THE FOUR LINES FOLLOWING ENSURE REPORTING OF **
:COMMENT ** THE CAPACITY OF THE ITEM-HEADER SET IN HPDESK *
:COMMENT ** WITHOUT RESTRICTION BY PERCENTAGE **

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-17



FQ FIRST
F "LOCAL"
F "ITEM-HEADER"
CQ "1","" IN *
:COMMENT **************************************************

CQ 8 II," 0" IN ALL
CQ 9 "," 0" IN ALL
CO 80"," 0" IN ALL
CQ 81"," 0" IN ALL
CQ 82", II 0" IN ALL
CQ 83 11 ," 0" IN ALL
CQ 84"," 0" IN ALL
CQ 8","8" IN ALL
CO 9","9 11 IN ALL
CQ II,"" IN ALL
FQ IRST
WHILE

FQ "I"
DQ *

FQ FIRST
FO "EXIT"
COPY *-1/* TO 1
COpy 1 TO .5
CHANGE "_>" TO IIREPORT OF DATASETS WITH LOADING >85% OF CAPACITY"
FQ FIRST
WHILE

FQ "_>"
DO */*+13

:COMMENT NEW STUFF ADDED 12/16/87
C 26 TO "I" IN ALL
FQ FIRST
WHILE

FQ II I"
DQ*

C "I" TO 1111 IN ALL
C 5 TO "I" IN ALL
FQ FIRST
WHILE

FQ II I"
BEGIN

CQ "SETls" TO "ISETIS" IN *-1
FQ *+2
END

FQ FIRST
WHILE

FQ " SETtS"
DQ *

C "I" TO 1111 IN ALL

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-18



26, 1988
97

REPORT
SETS

11
SETS

6
8

SETS
5

L ALL,UNN,OFFLINE
EXIT

!IF Jew < FATAL THEN
!OCSNORMAL
!SET STDLIST=DELETE
!ELSE
!OCSABNORM
!ENDIF
!EOJ

OF DATASETS WITH LOADING >85% OF CAPACITY
OF DATABASE: OBV.FGLSRC.BUDGET MAY

PERSONNEL DETAIL 3000 2920
OF DATABASE : PHONDB.DATA.CENTRAL

ODX'M-IRN MANUAL 809 726
ODX'M-IRN-TREE DETAIL 62 58

OF DATABASE : SURP.DATA.CENTRAL
RDETAIL DETAIL 18984 16101

90
94

85

This process now runs at night once a week and enables us to
review quickly what datasets are reaching the threshold and
need attention without having to wade through a stack of
printouts.

I have also felt somewhat remiss in the amount of attention
which I can pay to the loading of the disc drives. As files
tend to move if they are built on class DISC, it can be
difficult to follow them around. I was particularly
interested in datasets and the problems that develop when
two related or heavily traveled sets reside on the same
LDEV. When I started to evaluate them after the last
reload, I stopped almost immediately. It is difficult to
remember that in database AIDS the critical sets are 10, 14,
and 15, and not 12, 16, and 17. After creating a paper
nightmare and still not effectively solving the problem, I
called on myoId friend EDIT/3000 one more time. Since
datasets are built on one LDEV (unless you mess with them),
I reasoned that the output from LISTDIR5 with the MAP option
would provide me with the LDEV number for any file I chose
to list.

So, I began to work on this problem. I built a small editor
file in which I placed the names of several datasets (e.g.
AIDB04.PUB.SO) and a brief description of each set (to

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-19



remind me of their contents). I wrote a jobstream which
texts in that file, and changes it into a series of commands
for LISTDIR5. It then runs LISTDIR5 using the new file of
commands as its $STDIN. The output from LISTDIR5 is
captured in a new file, which is brouqht into the editor
again. The editor massages the data, passes it through a
sort by LDEV number and filename, and then on to a printed
report. The report lists the files and their respective
LDEV numbers and shows at a glance which files are on which
disc drives. Below is a listing of the files DLCONFIG,
DLJOB, and a sample report.

CITSDB01.PUB.PASADENA
CITSDB02.PUB.PASADENA
CITSDB04.PUB.PASADENA
CITSDB07.PUB.PASADENA

FMMASTER. DATA. FAMIS
FMMASKEY.DATA.FAMIS

CPDL05.PUB.CP
CPDL07.PUB.CP
CPDL13.PUB.CP
CPDL20.PUB.CP
CPDL21.PUB.CP
CPDL23.PUB.CP
CPDL26.PUB.CP
CPDL28.PUB.CP

!JOB DLJOB,MANAGER.SYS,SYSOP
!PURGE DLIN
! PURGE DLOUT
IPURGE DLUSE
lED
SET TIME = 9000
T DLCONFIG.SYSOP.SYS
CQ 2 TO "I" IN ALL
FO FIRST
WHILE

FQ " I"
DO *

CQ Q I II , .. ,. IN ALL
CQ 31/72 TO lin IN ALL
CO 1 TO "LISTF " IN ALL
A
EXIT

M,CITATION
A,LICENSE
D,VEHICLE-ID-NO
D,BAIL-DISPOSITION

KSAM, FAMIS MASTER
KSAMK, FAMIS MASTER KEYFILE

A,M-CITE-KEY
A,M-COURT-KEY
A,M-IRN
D,CDISPO
D,CHARGES
D,CHISTORY
D,COURT
D,MASTER

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-20



II
K DLIN,UNN
EXIT
!COMMENT
!BUILD DLOUT;REC=-72,7,F,ASCII;DISC=1000
!RON LISTDIR5.PUB.SYS;STDIN=DLIN;STDLIST=DLOUT
!COMMENT
·1 ED
SET TlME=9000
T DLOUT
CQ 2 TO "I" IN ALL
FQ FIRST
WHILE

FQ II I"
DQ *

CO "I" TO "" IN ALL
FQ FIRST
WHILE

FQ "FeODEn
DO * I "DISC DEV"

FQ FIRST
WHILE

FQ "DISC TYPE"
DQ * I It>"

FQ FIRST
WHILE

FQ "LISTF"
DQ * I *+1

CQ "*"," " IN ALL
CQ 3 TO "I" IN ALL
FQ FIRST
WHILE

FQ .. I"
DQ *

CQ "I","" IN ALL
CQ " 1"," " IN ALL
FQ FIRST
WHILE

FQ "ACCESSED:"
DQ *(*) I *(72)

CO .. :"," .. IN ALL
CQ "FILE: ","+" IN ALL
G ALL
DQ 1/2
DQ LAST
K
EXIT
lED

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-21



SET TIME=9000
T DLOUT
FQ FIRST
WHILE

FQ "+"
DQ *

CQ 32 TO \C 31 TO "\ IN ALL
CQ 43 TO \" IN *+1\ IN ALL
K DLUSE,OHN
T DLOUT
CQ 2 TO "I" IN ALL
FQ FIRST
WHILE

FQ " I"
CQ *

CQ "+( .. , .... IN ALL
A .5

II
FQ FIRST
USE CLUSE
K
EXIT
!FILE DLLIST;DEV=LP
!RON SORT.PUB.SYS
I DLOUT
o *DLLIST
K 32,1
K 31,1
K 1,8
V
END
!TELL MANAGER.SYS;DLJOB COMPLETED!
!EOJ

FMMASTER. DATA. FAMIS 1
CITSDB04.PUB.PASADENA 3
FMMASKEY.DATA.FAMIS 3

CITSDB01.PUB.PASADENA 9
CITSDB07.PUB.PASADENA 12
CITSDB08.PUB.PASADENA 12
CITSDB02.PUB.PASADENA 13

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-22



I realize that my methods are no panacea, and could be
easily expanded upon. I'm certain that those who pick up
where I have stopped will continue to evolve some of these
ideas into even more efficient and practical tools, and I
expect mainly to spark the curiosity and imagination of
others.

I Haven't Got a Lot of Time - I Haven't Got a Lot of Money
0047-23





Remote PC Information Network

John Wilson
Dan MacFayden

Coles Book stores Limited
90 Ronson Drive
Rexda1e, ontario

M9W 1C1

I would like to introduce myself, my name is John Wilson
and I am the Systems Development Manager for Coles Book
Stores. I am speaking to you this morning along with Dan
MacFayden, the Project Leader responsible for our network
systems.

This paper is a bi-product of the development of a PC
based store information network for a retail book chain with
192 loctions across Canada and a head office in Toronto
utilizing two HP3000s (a 68 and a 70)

with 100 locations now up and live, we hope-to share
with you some of our findings on how to integrate PCs into a
distributed DP environment.

THE ENVIRONMENT

I would like you to consider the following corporate
environment:

* The existance of multiple business locations
spread across a large geographic area.

* A centralized corporate office supporting the
business functions common to all locations.

This type of environment is common to many industries
because it makes good business sense to exploit the
advantages associated with an economy of scale.

Examples - Customer Service Organizations with multiple
depots.

- Branch Sales and Distribution Operations
located close to the customers.

- Retail specialty chains commonly found in malls
across the country.

Remote PC Info Network 0048-1



The centralized business functions are supported by a
computing facility running customized business application
software for:

- Financia1s
- Order Processing
- Invoicing
- Shipping

and most other facets of the business to improve both the
company's profitability and level of support to its customer
base and remote sites.

Traditionally, much of the activity in the remote sites
is used to feed the systems at H.O. with only limited
information being sent back to the remote sites to support
"their" own business activities.

Herein lies both the problem and the opportunity.
Access to the corporate information data base is essential
to the optimum operation of the remote sites. At the same
time, the value of the corporate data is only as good as the
accuracy and timeliness under which it is acquired from
those same remote sites. There are two basic opportunities
available in moving the access to corporate data and
business applications out to the remote sites:

1. An online network to provide access to the corporate
information and applications.

2. A PC network with remote application software and a
subset of the corporate data updated using batch
data communications to keep the remote and
corporate data bases syncronized.

Both of these alternatives are feasible but up until
recently, the online network has usually been the choice of
most corporations willing to bear the costs of developing
and running a network. However, the availability of low
cost micro computers, comprehensive software development
tools and solid data communications software has meant that
our second alternative is now both feasible and cost
justifiable.

When making a decision on which alternative to select,
given the environment under consideration, the main
consideration is based on a need for information updated
minute by minute at the remote sites or will remote
information updated on a daily basis be sufficient. The
answer to this question will indicate whether a batch
integrated distributed environment is applicable or not for
your business.

Remote PC Info Network 0048-2



BENEFITS

There are many benefits to be obtained from implementing the
integrated PC solution in the remote sites:

- Savings: There is the opportunity to save manhours
through the automation of tasks at the remote sites.

- Improved Operations and Profitability: Operations
at the remote site can be improved in its efficiency
and profitability through access to accurate and timely
information at the remote site. (eg. reduced inventory
levels, faster reorder cycles, better customer service,
improved margin with better costs and price controls,
improved cash flow)

- the corporate facilities do·not have to be enhanced to
support an online network with all of its added
complexity and back up requirements.

- There is no single point of failure with the concept of
distributed processing.

- Much of the processing requirements are at the remote
site with little impact on the corporate resources.

The data communication costs are substantially less in
volume, can be done during non-business hours and do
not even require dedicated phone lines at each remote
site.

- Tailored application systems can be developed for the
remote PCs without the high cost of mUltiple site
licenses from software vendors.

- onsite service is available across the country for all
hardware

Lets first take a look at the overall framework of a
distributed data processing environment using PCs. We will
then delve further into what the structure of the remote PCs
data base should be and the actual components that will make
the distributed process work.

THE FRAMEWORK

The concept of developing applications to run on a
remote PC is based on taking a subset of the corporate data
base as it is applicable to a particUlar remote site and to
put it on a pc. Applications are then written for the PC to

Remote PC Info Network 0048-3



support the business activities at the remote site using the
information on the PC data base.

Any transaction affecting the remote data base must be
accumulated~for transmission to H.O. to be used as input to
the production systems and update the corporate data base.
Conversely, any online or batch production activity on the
corporate systems that affects the remote PC data base must
be accumulated for transmission to the remote site.

What is important is the ability to develop a
distributed environment where the remote and corporate
databases cannot go out of sync. Controls must be built
into the database update processes to ensure that the
databases cannot be corrupted by duplicate, lost or bad
data. This means that transactions unsuccessful in updating
a database must be cycled back to the originating location
for the necessary action. The measure of how solid the
systems are at both ends, inclUding the data communications
software, will dictate the number of error situations to be
dealt with. A word of advice to those of you contemplating
development of a distributed processing environment: if
your present corporate systems are not solid don't
extrapolate your problems by spreading your errors around
onto additional machines.

FRAMEWORK
CORPORATE

ACTMTY

BP3000
CORPORATE
DATABASE

REMOTE PC
ACTMTY

REMOTB
PC

DATABASB

Remote PC Info Network 0048-4



PC only
data and

individual

STRUCTURE

Let us consider one more area when looking at the
framework of a distributed environment and that is the
logical structure of the databases on the corporate and
remote system. Corporate systems are usually made up of
"static master file" data such as product, vendor,
department information and secondly, "transaction based
data" such as purchase orders, invoices, etc. Integrated
corporate systems structure the data to support both company
level processing and for production based systems focused at
the remote business activity level (eg. creating purchase
orders or invoices).

The processing requirements for the remote
require those pieces of static master file
transaction based data as is necessary for tiJ.at
remote site to function.

ie. Products carried, related vendors, store orders,
associated sales history

What we can recommend is that the structure of the
remote data base must reflect the data base structure on the
corporate systems. This gives you a situation which is
straight forward to understand and possible to keep
synchronized. without the similar structures, it would be
extremely difficult if not impossible to even detect when
the systems are out of sync let alone know how to go about
correcting the situation.

COMPONENTS

The process of keeping the corporate database and the
remote locations' data bases synchronized is comprised of a
number of component activities. These components can be
viewed separately in order to more easily understand and
maintain the integrated processing that is involved:

Remote PC Info Network 0048-5



C06PONINTS

[Corpor~r:-::t.lI_ ]
S1IP 8

STEP 4 GeDerate
PC TrUlAotloD8

S1IP 5

step 1 Generate corporate Transactions

Every corporate system, (online or batch), that
alters masterfile or transaction data on the
corporate database that is also carried on the
remote PC database must qenerate a transaction
that can be used to update the remote databases.

There are two alternatives for the transaction
record format: The first is to simply send all
information about the record to be updated or
secondly, to develop complex techniques that
identify the pieces of data that have been changed
and only send this data. This will obviously have
an impact when considerinq your data communication
costs.

Remote PC Info Network 0048-6



step 2

step 3

Accumulate All Transactions by Remote Location

The transactions that have been generated by the
corporate systems must be accumulated by remote
location and organized by date and time so the
same processing sequence will occur at the remote
sites. It will also be necessary to append
transactions to any remote site's files that have
not transmitted since the last time this
accumulation was run.

On the HP3000 it is advisable to set up separate
groups for each remote site to hold the files that
are specifically for that location.

Data Communications from Bead Office to the Remote
PC

There are a number of products available today
that are able to provide error free data
transmissions between an HP3000 and remote PCs.
There are, however, a number of other features of
the communications component that are not only
desirable, but essential, if communications with a
large number of remote PCs is to be successful.
These include:

the ability to initiate communications
without requiring manual intervention at the
remote locations or at head office for
unattended after hours transmission

an automatic restart capability beginning
from the last successfully transmitted
transaction, whenever communications is
interrupted.

file integrity routines such as traditional
batch header control techniques to ensure the
correct data is being processed by the proper
location.

the ability to maintain and monitor the
transmission status for each transmit file,
coupled with the ability to retransmit
unsuccessfully transmitted files in the next
run.

Remote PC Info Network 0048-7



of network management
performance and trend
as daily problem and

step 4

step 5

step 6

the availability
information for
reporting as well
exception reporting.

Update the Remote PC

Software on the remote PC will process the Head
Office transactions and update the data base.
Controls should be built in to insure the
integrity of the remote database is not threatened
by corrupt incoming transactions or by failure
during the transaction processing. The update
component can also provide the ability to generate
reports to be printed at the start of the next
day. New versions of programs can be implemented
at this time (if they have been down loaded from
the corporate machin~). A transaction activity
summary should be generated to inform the remote
site of the activity that occurred over night and
any transactions that could not be processed
successfully should be added to an error file to
be transmitted back to the corporate site for
reivew.

Generate PC Transactions

All systems on the PC that update master file data
or generate dynamic data that impacts corporate
systems must generate a logical transaction that
can be sent back to the corporate site.

Accumulate All Transactions on the PC

Before setting up for data communications this
component has to create the files containing:

the new transactions to be processed at head
office
any previously rejected head office
transactions
relevant PC database and disk utilization
statistics to be used at head office to
manage and support the remote PCs

Remote PC Info Network 0048-8



step 7

step 8

Data communications from the Remote PC to Head
Office

This process is the same as the head office to
store data communications with the same controls
and restart capabilities.

Update the Corproate Database

The incoming transaction files from the remote
loctions must be split up by transaction type and
the transactions integrated into the associated
corporate production systems.

Any transactions that can not be successfully
processed should be reported at head office for
investigative and corrective action, and the
remote loation should be informed via the next
transmission.

DATA COMM SCHEDULING

There are two basic alternatives for driving the
communications process--either the central HP3000 or the
remote PCs can initiate or drive the communications process.
Software products exist to support either of these
alternatives.

In our opinion, PC initiated communications is viable in
a mUltiple remote-location scenario if the volume of
transactions per location is small or predictable enough for
you to schedule the incoming calls sUfficiently far apart to
avoid contention. It is also viable if you can afford to
add enough incoming communication lines to avoid contention.
But recognize that when the remote sites are scheduling the
upcoming calls there are certain factors that you cannot
control which can cause contention:

- the corporate HP3000 may be unavailable
- the initial data communication attempt may fail,

forcing an unscheduled re-dial
- increased transaction volumes can require longer

connect times than planned

So, if your corporate processing resources are limited, or
your transaction volumes are volatile, we recommend using
the corporate HP3000 to poll the remote PCs.

Remote PC Info Network 0048-9



DATA COMM SCHEDULING

Chara~ters Transmitted (OOO's)
800,....------------~--~----------,

Days

This allows you to handle planned and unplanned
transmission variances such as the planned release of
software revisions or an unplanned increase in transaction
volumes. From head office you can also reschedule any redial
attempts later in your transmission window whenever a
communication link has been unsuccessful without causing
contention with other sites.

The priority of communications with specific remote PCs
can also be parameterized and controlled. Indeed, it is
much easier to alter the entire polling pattern (based on
volume changes, business activity changes, special
circumstances, etc.) when you have control of the data comm
at head office.

Once you have purchased your hardware and your network
has been developed and is now operational, the'greatest cost
you will incur will be your data communication cost. A
centralized polling facility with consolidated network
performance reporting gives you the best opportunity to
control your data comm costs.

Remote PC Info Network 0048-10



MAINTAINING A DISTRIBUTED PC NETWORK

NoW that you have your network up and functional with
nightly data communication processes to maintain the remote
and corporate systems, you must be prepared to support the
remote sites.

For most companies, technical support is only available
at the central site due to its high cost. Not only is
technical expertise unavailable at the remote sites, but in
a PC environment the level of computer expertise will
usually be limited to the use of business application
software only. This makes it unwise to rely on personnel at
the remote sites for any computer maintenance related
activity that might usually be found in a corporate mini or
mainframe environment. Remote personnel cannot be relied
upon to perform computer-problem diagnostics as part of
their job responsibilities.

We have addressed this limitation of a lack of expertise
at the remote sites by employing a strategy that provides
for centralized network support, that can resolve any PC or
network problem from the central location. In order to
achieve this objective we have developed the following tools
and procedures:

1. A PC software product that allows access to the remote
PC by corporate support personnel. This provides
access to MS-DOS level commands and diagnostics.
Software problems at the remote location can also be
investigated by running versions of the same
application programs on a corporate PC while utilizing
the remote PC's data.

2. Tools similar to the HP3000 Image database utilities
are used to remotely rebuild a PC database or dataset
as well as perform other necessary database management
functions. It is worth emphasizing that these remote
utilities must have a sufficient level of data
communications integrity to insure that corruption of
the remote data is not caused by the investigation
process.

3. A facility is used at the corporate site to download
program revisions and special corrective programs to a
single site or to all sites as part of the daily
transmit process. Instructions and manual updates can
also be sent with any program revisions.

Remote PC Info Network 0048-11



4. In the event of a disaster where the hard disk is lost,
software is available to recover and rebuild the
systems for a remote site. This can be done from a
local backup, or from the corporate database which
contains the subset of data that constitutes the remote
site's database. This is one of the biggest benefits
of keeping the remote and corporate databases in sync.

5. Escalation routines are in place to insure problems are
not left unresolved. Included in these routines is an
adequate hardware service contract for each remote
site.

6. Network support reporting is used to:

- monitor database and disk capacities for the
remote sites

- provide historical trend analysis by transaction
type

- provide daily operational and management reporting
of network data communications activity and costs

We have found that reporting on an exception basis for
the network support staff is most useful in focusing
attention on possible problems.

7. A messaging facility is used to keep the remote sites
informed whenever potential problems are discovered or
solutions are introduced as well as to introduce new
processses, complete with the manual updates.

INSIGHT

Based on our experience at Coles, we would like to
relate the following "bleeding edge" lessons to anyone who
is considering using PCs in a distributed DP environment.

1. Ask yourself how up-to-date the information on your
remote PCs has to be. If you really need minute-by
minute updates then the process we have described may
not be appropriate.

2. If your corporate systems are not in place and stable,
or if you anticipate dynamic changes in your corporate
systems, then you should probably defer the development
of the PC network until the work is completed.

Remote PC Info Network 0048-12



Moving from a centralized DP environment to a
distributed approach with many locations cannot be done
overnight. Your corporate systems must be able to
support both remote locations on the existing process
and allo the integration of the distributed PCs as they
are implemented. Also recognize that business does not
stand still and changes will be required as new
business opportunities dictate. There will be a need
to maintain and evolve both the new and the old systems
during your conversion process.

3. Prototype your remote PC application before developing
the interfaces with the corporate systems. This allows
the flexibility of fine tuning the PC design before
developing the interfaces to the corporate systems.

4. If the number of remote sites is low, then you may not
require the level of automation we have described for
data communications, remote support, network
management, etc. Twenty local sites is about the
maximum that can be implemented in a "manual" mode.
More sites or a greater geographical spread will
require automation of many of your processes.

5. Set up separate project teams and the necessary project
controls in the areas shown in the following diagram.
Don't short change on the requires planning effort.

PROJECT ACTIVITIES

HARDWARE
ACQUISITION

IQUIPMINT
SIRVICING

IKPLBKBNTATION
PROCBSS

DATA PROTOTYPB REMOTE
• DBV.LOP SYSTEMS

COMMUNICATIONS SOFTYARB BUILD

~ TRAINING NETWORK
SUPPORT

NETWORK
KANA-GBM.NT

RBPORTING

Remote PC Info Network 0048-13



6. Buy or develop the best data comm software you can
find. It's an important cornerstone to your network.

7. Be prepared to develop your own in-house technical
expertise on both the HP3000 and the PCs to create and
maintain your network.

8. stagger the remote site implementations to give
yourself opportunities to learn, revise, and improve
before your support level becomes to high. For
instance, bring up 1 site, then 5, then 20, then 100,
with time in between each group to evaluate and make
appropriate changes.

SUMMARY

The advent of micro computers has given us the ability
to put processing power into the hands of remote PC users.
At the same time, MIS_has retained the responsibility for
the corporate information resource. The issue that
continually faces those of us in MIS is how do we provide
the access and update capability of the corporate data base
to the remote PC user without threatening the integrity of
the corporate data base. The answer of course is that only
by using the same development methodology and processing
controls and standards as we use in developing corporate
systems can the full functionality of corporate data access
be passed down to the remote PC user. I stress the use of
controls and standards because the hardware, software
development tools and data communiations software already
exist to do the job. All that is needed is the ability to
apply these technologies within a constant framework. This,
I think, we have done with the development of the Coles
Store Information Network.

Remote PC Info Network 0048-14



IMPLEMENTATION OF AN AUTOMATED CODE ENFORCEMENT SYSTEM VIA
THE INTEGRATION OF THIRD PARTY AND IN-HOUSE DEVELOPED

SOFTWARE IN A MIXED 3rd and 4th GL ENVIRONMENT

Kathleen P. Metz Edwards
City of Plano
Plano, Texas

INTRODUCTION

Before I launch into a discussion on the merging or co
developing of third party and in-house developed software, I
will describe the process by which my organization, the City
of Plano, Texas, decided to embark on this means of systems
development. Following the discussion on Why, I will
discuss the implementation phase, as well as the benefits to
the city and to the contracting third party vendor. Lastly,
I will conclude the paper with discussion of the question,
"ls it for everyone"?

DEFINITION OF PROJECT ALTERNATIVES

While many users may look at this means of project
development as a substitute for good design work, they are
mistaken. As with all systems development projects, the
design phase is absolutely critical to the ultimate success
of the project.

The process of automating the City's permits and inspections
began with a definition of the current, albeit manual
system. In 1985 the City's Code Enforcement Department
manually issued nearly 12,000 building permits and tracked
98,609 supporting inspections to accommodate a 300 percent
increase in growth. Permits were issued via eight separate
documents and inspections were tracked using 13 different
posting cards. The reSUlting paperwork was time consuming
and inefficient. Documents were lost and inquiries were
impossible.

An internal review of procedures was jointly performed by
the Code Enforcement and Data Processing Departments. The
review resulted in the replacement of the permit and posting
forms by single forms designed for each function. These
forms were implemented nine months prior to the installation
of the software. This nine month leeway allowed the users
to become accustomed to the new forms, without the added
burden of automation. It also defrayed some of the fear of
change that was to be expected in a project of this
magnitude. In addition to training Code personnel, meetings
were also held for developers and contractors as the new

Integrating 3rd PartylIn-House SOftware 0049-1



forms would drastically alter what they had traditionally
become accustomed to. Lastly, the city published documented
working procedures in support of the streamlined processing.
Construction guides for both residential and commercial
projects were also published and released to the public in
conjunction with the new forms and procedures.

Data Processing and Code Enforcement were then ready to
begin the definition of requirements for an Automated Code
Enforcement System (ACES). The requirements were compiled
and a Request for Proposal was sent out to prospective
vendors. At the same time, Data Processing, with the
support of the users, prepared a Detail Design strategy,
defining the systems' basic program functionality
(attachment 1).

The systems' requirements were divided into five broad
functional areas: major file maintenance arid report
programs, other file maintenance and inquiry programs,
other file maintenance report programs, operational report
programs and management report programs.- Each broad
functional area was then further subdivided into programs.
Admittedly, we designated these subdivisions as "programs"
for purposes of evaluation. In practice, if the City had
decided on an in-house solution, a single "program" might
have become several actual programs.

Each of the "programs" was assigned a "relative degree of
difficulty", i.e., "H" (hard) - 10 days, "M" (medium) - 5
days, and "s" - 2 days (simple). The programs were then
factored with the assigned values. Please note that the
document was not a Detail Design. It merely identified the
functions requiring design work and some "guesstimates" that
would be used for comparative purposes. Using this
methodology, we estimated we would need 245 days to complete
a detail design document.

As a public institution, the City also had the option of
reviewing and implementing pUblic domain software. This
option was considered in the evaluation process, recognizing
that the software would require changes to meet our specific
requirements.

The time estimates for the implementation of an in-house
developed system and the three modified public domain
systems were evaluated via the programming estimates form
(attachment 2). A separate programming estimates form was
completed for the in-house development option, as well as
for the three pUblic domain options. Analysis revealed the
City would need an additional 640 days to code and test in
house developed programs. Time to code and test public

Integrating 3rd PartylIn-House Software 0049-2



domain software systems included 447 days, 540 days and 580
days.

Vendor responses to the RFP were scrutinized in a similar
manner to determine if the City would incur additional
costs. For example, did the vendor include all travel and
training expenses in his proposal? Were all reports coded
or was the City expected to code them using a report
generator or QUERY? Would the vendor provide source code?
Was the system written in COBOL, IMAGE and V/PLUS? Would
the vendor offer flexibility in maintenance contracts
especially during the implementation phase? Lastly, if a
vendor omitted any costs, they were added by the City as
part of the evaluation process.

The City also applied an additional $34,545 to each
alternative, i. e., in-house, pUblic domain or vendor for
parallel testing and system documentation.

DECIDING ON A COURSE OF ACTION

A cost analysis was performed on the options described
above. The recap figures for the alternatives are attached
(attachment 3). The cost of development ranged from
$293,205 to $61,545. The City selected Interactive Computer
Applications Development (ICAD) of Sarasota, Florida not
solely on the basis of cost. ICAD was willing to work with
the Data Processing staff to customize the software to meet
the City's specifications and to provide flexibility in
meeting the City's long term goals.

In addition to the cost analysis, I would like to briefly
mention the goals of the organization in evaluating the
criteria. Plano is a rapidly growing City. The City has
many automation needs that have yet to be defined. While we
knew in time the City would implement a parcel/geo-file
system as a basis for permits, we simply did not have the
time to implement a system of that magnitude - we needed
automated permits and inspections yesterday. Therefore we
wanted to make sure that the system we implemented would
accommodate an interface to a geo-based system. Since we
were not clairvoyant, we obviously needed the source code to
ensure our ability to interface. Additionally, the City
fully intended to assume the long term maintenance of this
software.

IMPLEMENTATION

The system we selected met approximately 75 percent of our
requirements as demonstrated. Namely, the system issued
permits and tracked historical inspection data. The system

Integrating 3rd PartyjIn-House Software 0049-3



did not calculate permit fees or provide for on-line
inspection requests, two critical requirements.
Additionally, the software was built upon a land use parcel
system. Since the City was not ready to implement parcel
management at the time, it did not wish to pay for software
that might never be used. Through discussions, verified by
contract, the vendor agreed to modify the software to
calculate fees and to process on-line inspection requests.
The City agreed to develop two sUb-systems, specifically,
the Street Index for street verification and the contractor
sUb-system for registering and licensing contractors/sub
contractors. The Street Index system would be used in lieu
of the parcel system. While the vendor's software supported
contractor registration, it did not meet Texas legislative
nor, Plano's City Council requirements. Lastly, the City
agreed to interface the software to its existing systems.

A WORD ABOUT COMMUNICATIONS

I would like to digress here and speak briefly about
communications. Before the project was completely
implemented, it would touch on personnel in Florida - the
selected vendor, Texas - the City of Plano and California 
the 4GL vendor. Our contract with the vendor called for
only two on-site visits; the costs of additional visits, if
needed, would be borne by the City. During the vendor's
first visit, we discussed the necessary modifications to
meet our require~ents. The vendor returned to install his
portion of the software on the second, and last visit. All
other communications were via the telephone or letter.

The need for good communications cannot be overstated.
Coordinating the implementation of the software required
many hours in preparation of written correspondence. I
firmly believed that projects fail because they lack clear,
concise, written communications. Programming has proven to
be the smaller part of any project but frequently we have
been under pressure to begin coding before questions have
been answered and problems resolved.

All successful automated projects have required consistency
in the definition of the user's requirements. As I have
previously stated, this method of systems development was
not a panacea. In any new project, the users needs must be
outlined and agreed upon prior to beginning software
development. Admittedly, this consistency was easier said
then done.

The successful implementation of integrated in-house and
vendor developed software was also dependent on the
delineation of duties. Each entity understood fUlly what it

Integrating 3rd PartylIn-House SOftware 0049-4



was to accomplish to make the project a success. This
delineation was also contractually stated, however, if it
was not understood, all the legalese in the world would not
have gotten the job done.

Lastly, the successful integration of in-house and vendor
developed software was facilitated in part by recognizing
the need for a single contact point on either side. While
several programmer/analysts worked on the project, all
questions to the vendor were directed through a single
individual. Along the same line, we directed all our
questions to a single individual in the vendor's office.
This arrangement worked well throughout the implementation
process.

The system when it was implemented on November 1 , 1986,
consisted of 20,245 lines of on-line COBOL, 100 V/PLUS
screens, and 39,267 lines of batch COBOL written by the
vendor, and 52 Speedware modules written by the city to meet
its portion of the agreement. The total elapsed time from
the definition of manual permit processing to the
implementation of on-line permit processing was 13 months.

OTHER IMPLEMENTATION REQUIREMENTS

Naturally, to be successful in this environment you must
have access to an experienced HP programming staff. During
the 13 month implementation period, there was at least one,
and at times four members of the Data Processing staff
working on the project. The staff members worked in the
definition phase, as well as in the final implementation
phase. Without the expertise of the various staff members,
the project could not have been completed within the 13
month time frame.

Simply stated,
available, you
development.

if you do not have this type of expertise
would not be a good candidate for co-

INTERFACING VENDOR & IN-HOUSE SOFTWARE

The vendor sent the source code tape to the City several
weeks prior to his arrival for installation and training.
This lead time allowed the City the time to compile the
programs in its own environment. We experienced only one
compatibility problem due to a disparity in operating system
releases, specifically, the vendor was on a later release of
COBOL. The vendor made some minor changes and we were ready
to continue.

Integrating 3rd PartylIn-Bouse SOftware 0049-5



CONTRACTOR/SUBCONTRACTOR SUB-SYSTEM

At the same time we were defining ACES, the City made the
decision to replace its C/PM micro computers with IBM PC
clones. Code Enforcement had a simple contractor/sub
contractor system in place on its C/PM micro that needed
immediate replacement. Because of the short time frame, we
developed a Contractor/Sub-contractor System using
Speedware. We originally intended this sub-system to be a
temporary one, however, as our evaluation progressed, we
realized that the system we developed was preferential to
others on the market.

Over time, the contractor sub-system has evolved into a full
Contractor/Sub-contractor management information system. In
addition to using the system for permit validation, it has
also been used for a variety of other functions.
Specifically, using Reflections, we have downloaded data to
MS Word and sent out contractor renewal notices,
newsletters, ordinance changes and a variety of other
correspondence. This feature has allowed the user the
flexibility to design and run reports independently.

Integration of this system with the vendor's software was
accomplished without problem. We simply sent the vendor a
copy of the contractor's schema. We also defined the edit
criteria that we expected for acceptance of permit
applications and for issuance of permits.

STREET INDEX SUB-SYSTEM

The Street Index Sub-system was established to verify
streets in the absence of a geo-file. The street Index sub
system was simply designed to be what its name implies - a
listing of street names. We designed the Index to store the
streets in geo-file format, i.e, storing street name, street
type and direction. This format will allow the City to make
the transition to a geo-file/parcel system as resources
become available. The "Map Name" that appears on the
reverse side of the city's map was also stored in the street
Index. All data elements were designed for maintenance by
the Engineering Department.

Since the City did not have the Streets resident on the
3000, we uploaded the names from a Lotus file, formatting
the records via Speedware. We also developed the Street
Index in Speedware as we had a limited time frame and we
knew that the City intended to migrate to a parcel
management system in the future. While the Index is a
simple "add", "delete", "modify" and "inquiry" type of
application, it has served the City quite well. Due to the

Integrating 3rd PartylIn-House Software 0049-6



overlap in school district boundaries, the City had
experienced a problem in issuing permits outside it
boundaries. The street Index prohibited this error and
provided uniformity in spelling street names.

We experienced no major technical problems in the street
Index integration, however, we encountered a minor problem
in the handling of numeric fields in Speedware vs. COBOL.
This problem has since been resolved; we circumvented the
problem at the time by changing a particular numeric field
to an alphanumeric field as the particular application did
not absolutely require the use of a numeric field. We were
then able to manipulate the data in the receiving COBOL
program. As with the Contractor SUb-system, we forwarded a
copy of the street Index schema to the vendor. He made the
necessary calls to the Index, and applied the desired edits
for street validation.

TAX AND UTILITY BILLING INTERFACES

In order to issue a permit for an existing structure, Code
Enforcement needed to validate the structure's existence
within the City. While the City's utility Billing System
contained the address information on any structure receiving
water in the City, Code Enforcement had no means to access
the data. Code Enforcement also needed to determine the
parcel's legal description so that the permits could be
forwarded to the Central Appraisal District for tax
purposes. While the Tax Master held this information, it
was not readily available to any other department. Code
personnel manually searched appropriate sub-division plat
maps and recorded the lot, block and subdivision. This
process was time consuming and resulted in permit processing
delays.

These interfaces posed quite a challenge as Tax and utility
Billing were driven by disparate keys; the Tax key was a
composite of the lot, block and subdivision - the very items
that were unknown. utility Billing's primary key was an
account number that had no significance to any other City
department. While its alternate key was street address, the
streets in the system were not verified upon entry and
therefore varied to exact nomenclature. The primary key to
ACES was an application/permit number with an alternative
street address key in the fixed geo-file format.

We could not seriously consider a conversion of either
utility Billing or Tax in the time frame that we had defined
for ACES implementation. We solved the interface problem
through the application of Speedware's "Speedex" to both
systems. Since neither system had the security for outside

Integrating 3rd PartylIn-Bouse SOftware 0049-7



inquiry, we built separate "lookup'" screens and files for
each system, selecting required data elements and applying
"Speedex" to owner name and address. Admittedly, this
approach required a 50 percent increase in data storage
however, it markedly reduced the effort necessary to process
permits. Additionally, permit turn around time decreased
and data accuracy improved dramatically. The "lookup" files
are rebuilt through weekly batch runs. The utility Billing
"lookup" extracted and rebuilt nearly 40,000 active utility
accounts, running in less than two hours; the Tax "lookup"
extracted and rebuilt nearly 60,000 real property accounts,
running in less than three hours. Both these jobs run on
the weekends and have exclusive access to the HP3000; if run
during normal business hours, run time will increase
sUbstantially.

We encountered some minor, but time consuming problems in
establishing batch run streams for the "Speedex" "rebuilds".
Speedware was designed for on-line processing and its manual
provided little in the way of documentation for batch
processing. Running the "rebuilds" on-line required the
presence of an operator, a costly and in this case, needless
expense. These problems were repeated with the installation
of Speedware's version 5.0.

"Speedex" allowed the user to obtain required information
without knowing the record key. It also allowed the user to
process data using a "wild card" character, i.e., if the
user knew only a portion of the element to be searched, the
"Speedex" software returned records that had matching
entries. Specifically, the Tax "lookUp" allowed multiple
key access via owner, property location or legal
description; the utility Billing "lookup" allowed mUltiple
key access via customer name, property location, driver's
license number or social security number. While the
"lookups" were designed specifically for Code Enforcement,
they are now popularly used by many other City departments
that have the need to process owner/ occupant information.
These departments include streets and Traffic, Solid Waste,
Planning, Capital Projects, Engineering, Health, Police,
etc.

The "lookups" have been further enhanced to allow the users
to selectively download names and addresses via Reflections
to Micro Soft Word where they have been used for a variety
of notification purposes. This feature has saved the City
many hours in addressing and preparing correspondence.

As time permits, we will add "Speedex" directly to the Tax
master and eliminate the need for the duplicate data. This
effort will require some reprogramming to ensure security

Integrating 3rd PartylIn-House SOftware 0049-8



regarding tax payments. There are no immediate plans to add
"Speedex" to the utility Billing master as the master is a
KSAM file; Adding nSpeedex" to the UB master would require a
migration to IMAGE.

Although "Speedex" has proven to be of great benefit to the
City, a word of caution is advised. "Speedex" was not a
sUbstitute for quality design. We still needed to strive
for logical and optimum key paths. If an item was truly
unknown, "Speedex" could help you find it. For example, we
directly added "Speedex" to both the Contractor's company
name and to the Contractor's owner name several months after
we had implemented the Contractor/Sub-contractor System. We
discovered that Contractors frequently sent representatives
to obtain permits who did not know the Contractor's
registration number. This was not surprising as the City
did not actually require the Contractors to carry the
registration card for permit issuance. We also discovered
that representatives did not know the actual registered
company name _(an alternate key). "Speedex" allowed us to
circumvent these problems and located the proper records
quickly. We justified the "Speedex" overhead in this case
to provide better service to the Citizen. since the
Contractor data base was a relatively small one, the added
"Speedex" data sets did not consume a great deal of space.

INTEGRATION OF THE SOFTWARE MODULES

As discussed above, we encountered, no ma jor problems in
tying the Street Index and the Contractor SUb-system to the
vendor's software. The integration of these three modules
was controlled through standard calls to IMAGE.

We did encounter a problem in pUlling the software together
under a single menu. The vendor's software contained a
"Main Menu" that was to coordinate all automated Code
Enforcement processes. We had the menu set up to call the
Speedware modules when requested. For example, if the user
wished to register a new contractor in the Contractor/Sub
contractor (Speedware ) system he would enter the proper
option in the V/PLUS controlled menu and depress ENTER. The
on-line COBOL program would then execute the proper call to
Speedware and return with the desired Speedware sub-menu.

We struggled initial:ly to make the call successful. We
encountered a problem with bounds violations; the problem
was solved when we determined the correct account
capabilities and applied them as necessary. We encountered
a second problem with Speedware loosing a temporary file
designation. The problem was solved via resetting the file

Integratinq 3rd PartylIn-House SOftware 0049-9



designation in the specification file just prior to exiting
Speedware to return to COBOL.

While we solved the problems in the COBOL/Speedware
interface, we discovered the call required 15 - 25 seconds
to complete. Over time, the users found the delay
unacceptable. The timing problem was resolved when we added
a Speedware "Main Menu" as the driver, and allowed Speedware
to call COBOL. Although we never performed an in-depth
analysis of why the Speedware to COBOL required less time,
we conjectured that each time COBOL called Speedware,
Speedware had to reinitialize its overhead. Apparently, if
the system was designed with Speedware as the controller,
the overhead would be executed a single time, with the
initial call to Speedware.

Infocentre did not encourage the COBOL to Speedware
interface. In fact, the Speedware manual contained no
instructions on how to effect the call. The manual did
however, contain instructions for a Speedware to COBOL
interface.

BENEFITS TO THE ORGANIZATION

The primary benefit to the City was increased speed of
implementation. As described above, we had calculated 245
days to complete a detailed design document and calculated
an additional 645 days to code, test and document the
software. We needed 3.4 man years to complete the project
and we simply did not have the time.

Secondly, the approximate cost of in-house development was
calculated at $159,330. The projected cost of a co
developed project was approximately $61,545. This figure
included the actual salary costs for the Data Processing
personnel during the implementation period. The city saved
an estimated $97,785.

A third benefit to this type of arrangement, was reduced
long term cost to the City for maintenance. While in-house
maintenance required in-house staff, it did not require the
monthly cash outlay to a third party vendor. While
organizations have paid monthly maintenance fees to outside
vendors for software usage, these fees do not negate the
need to have staff on hand to support the software releases.
In theory, support for software releases should require less
time than in-house maintenance however, many
programmer/analysts earn their living doing just that.

A fourth and perhaps most important benefit to the City was
the increased flexibility this type of arrangement allowed.

Integrating 3rd PartylIn-Bouse SOftware 0049-10



As contractually stated, the City received the vendor's
source code. The City did not have the right to sell the
code, nor could it be given away under the purview of public
domain. However, after a six month warranty period, the
City had the right to make any modifications or enhancements
that it deemed necessary.

ACES has by no means remained static. As of March 31, 1988,
17 months after implementation, ACES programming statistics
have increased significantly. The City has added 1000 lines
in on-line programming, yielding a total of 21,245 lines of
on-line code. 38,332 lines of batch COBOL programming have
been added, yielding a total of 77,599 lines of batch code.
29 Speedware modules have also been added, yielding a total
of 81 Speedware modules.

The City has retained COBOL as the batch reporting language
as the added programs handle data in much the same manner as
the original 20 supplied by the vendor. A major sub-system
supporting Zoning Enforcement was developed during this time
period and accounts for most of the added Speedware modules.

A fifth benefit to the City in this type of arrangement was
the sense of security that source code provided. The City
received four bid proposals in response to the RFP. The
high bid provided for a vendor to design and implement a
customized Code Enforcement system. The next two bids were
submitted by vendors that no longer exist under the same
legal identity as they did when the bids were submitted. If
the City had accepted either bid, a new contract would have
been necessary. A renegotiated contract might not have been
favorable to the City. The low and selected bid provided
the City an excellent system as well as the source code for
future growth and development.

Lastly, the City has derived great benefit from the Tax and
utility Billing "lookups". Few departments in the City do
not use one or the other of these modules. As a result of
their popularity, the City will be able to justify the cost
of reformatting the Tax and utility Billing keys to provide
automatic access through a common key, namely street
address. This conversion will eliminate rekeying of needed
data. The conversion will also serve a second goal of
preparing both utility Billing and Tax for interface to the
postal tape, allowing the City to implement zip plus four.

The reformatting of Tax addresses will be a step towards the
City's goal of a parcel management system. Additionally,
Code Enforcement has requested support for the storage of
permanent parcel data in the forthcoming fiscal year. A

Integrating 3rd PartylIn-House Software 0049-11



permanent parcel data set, combined with a reformatted Tax
Master, will provide the City with a geo-base cornerstone.

BENEFITS TO THE VENDOR

While the benefits of co-development to the City entity were
somewhat obvious, the vendor also derived benefit from this
type of arrangement. The major benefit to the vendor was
reduced development costs. The City purchased software that
had been running in test mode at another site. The vendor
programmed and unit tested the contracted enhancements.
However the City, as the first live site, worked with the
vendor to correct any problems and implemented the software
into production.

A second benefit to the vendor was another happy customer.
While Plano's situation was somewhat unique, I am sure we
were not the first HP site that did not wish to enter into a
long term maintenance agreement with an outside vendor. We
have been very satisfied with our arrangement and when
asked, we will provide an excellent vendor's reference.

Lastly, the vendor's product was enhanced considerably
during the implementation process. On-line inspection
requests, and automatic calculation of fees were missing
from the system that was originally demonstrated. While the
vendor programmed and tested these changes, the City had
defined a need that would be of benefit to any governing
body issuing building permits. The vendor was now free to
market these enhancements.

IS IT FOR EVERYONE?

The long and short terms goals of the organization need to
be evaluated in answering this question. If the contracting
entity did not have a trained HP staff and had no intention
of hiring such a staff, then this method of development
would not be appropriate. However, if the entity wished
flexibility to grow and to add to its systems in a logical
and productive environment, then this method would be of
obvious benefit.

In conjunction with the organization's goals, would it be
willing to provide the programming and analysis time that
was obviously required in this type of development?
Approximately 13 man months of Data Processing support were
required during the 13 month period. At one point during
the project's development, four members of the Data
Processing staff were dedicated to the implementation. This
was a large commitment of resources, requiring total
management support.

Integrating 3rd PartylIn-Bouse SOftware 0049-12



Secondly, integration of third party and in-house developed
software assumed that a third party had the software
available to meet a reasonable percentage of the entity's
needs. If the software was not developed, would the vendor
add the code to bring it to a satisfactory level? This was
a tough question as it involved jUdgment and compromise so
that a reasonable solution could be met. Resolving this
issue could also cost money and a decision would have to be
made as to who would pay the costs.

The third question that had to be answered was, could the
entity find a vendor willing to engage in a joint
development process? Part of the answer to this question
goes back to my discussion on communication.
Correspondingly, the vendor might have viewed this type of
development as too expensive. In a large software
development environment, the vendor must sell many systems
to remain profitable. Many vendors consider customization
too costly.

~astly, could the contracting bodies resolve the legal
1ssues ar1s1ng in a co-development environment? .Naturally,
the vendor wished to protect his investment 1n systems
development. He obviously wanted to retain the sales
rights to his product. Also, would he be willing to
relinquish the maintenance fees frequently associated with
purchased software? On the other hand, could the
contracting agency provide the assurance to the vendor that
it would protect his rights as well?

IN SUMMARY .••

In writing this paper on the integration of third party and
in-house developed software, I have merely described how
this method of development worked in my organization. The
success of this method is dependent on many factors, only a
few of which have been noted. Each organization is unique,
complete with its own set of idiosyncrasies. Suffice to
say, that in the proper environment, co-development can be a
cost effective and productive process.

Integrating 3rd PartylIn-House SOftware 0049-13



ATTACHMElfT 1
DETAIL DESIGH STRATEGY

MAJOR FILE MAIHTEBABCE ABD REPORT PROGRAMS

MAIH MENU
APPLICATION DATA EHTRY VERIFICATION , UPDATE
PLANS EXAMINING ENTRY VERIFICATION , UPDATE
APPLICATION INQUIRY
PERMIT DATA ENTRY VERIFICATION , UPDATE
PERMIT INQ
OOIfTRACTOR PERMIT IIQ
OOHTRACTOR IHQ
IHSPECTIOH REQUEST
INSPECTION REQUEST PRINT , RPT
INSPECTIOH POSTING
DAILY REPORT OF INSPECTIONS MADE
PERMIT FINALIZATIOH

OTHER FILE MAINTEHABCE AHD INOUIRY PROGRAMS

FEE SCHEDULE FILE MAIHT , IHQ
PERMIT TYPE FILE MAIHT , IHQ
CLASS OF WRK FILE MAIlfT , IHQOIRY
TYPE USE FILE MAIHT , IIQ
IISPECTIOH TYPE FILE MAIHT , IIfQ
PERMIT STATUS FILE MAIIfT , IHQ
PLAKO STREET IHDEX FILE MAlNT , IHQ
IISPECTOR HUMBER/KAME FILE MAINT , IHQ
OFFICE PERSONlfEL HUMBER/HAME FILE MAlIfl' , IHQ
IISPECTIOI STATUS FILE MAlNT , IlfQ

OTHER FILE MAIlfTDAHCE REPORT PROGRAMS

FEE SCHEDULE RPT
PERMIT TYPE RPT
CLASS OF WORK RPT
TYPE USE RPT
IISPECTIOI TYPE RPT
PERMIT STATUS RPT
PLAlO STREET IHDEX RPT
IISPECTIOI lfUMBER/KAME RPT
OFFICE PERSONNEL lfUMBER/NAME RPT
IKSPECTIOI STATUS RPT

RELATIVE
DEGREE OF
DIFFICULTY

H
H
H
H
H
H
H
M
M
M
M
M
H

H
M
M
M
M
M
H
M
M
M

S
S
S
S
S
S
S
S
S
S

Integrating 3rd Party/In-Bouse SOftware 0049-14



OPERATIOlfAL REPORT PROGRAM

DAILY PERMIT DETAIL RPT
WEEKLY PERMIT DETAIL
MONTHLY RPT OF INACTIVE & FINALED PERMITS
AlfHUAL REPORT OF ARt]IIVED PERMITS RPT

KAliAGEMENT REPORT PROGRAMS

HONTHLY PERMIT ACTIVITY RPT
MONTHLY CENSUS RPT
DAILY RPT OF INSPECTIONS MADE
HOBTHLY SUMMARY OF IBSPECTIONS MADE BY INSPECTOR
MONTHLY SUMMARY OF INSPECTIONS MADE BY DISTRICT
MONTHLY RPT OF COMMERCIAL NEW CONSTRUCTION
, APARTMEBTS

MONTHLY RPT OF APPLICATIOBS SUBMITTED
i/O AI ADDRESS

TOTAL , OF "H" (HARD) = 11 X 10 110
TOTAL , OF "II" (MEDIUM) =23 X 5 115
TOTAL , OF nS" (SIMPLE) = 10 X 2 20

245 TOTAL lfUMBER
OF DAYS FOR
DETAIL DESIGN

M
M
H
H

M
M
H
M
M

M

M

Integratinq 3rd PartylIn-House SOftware 0049-15



ATTACHMENT 2

SYSTEM: CITY OF PLAlO PROGRAMMIIG ESTIMATES

FNCT EASY TIME OLD NEW LANG ** MAJOR FILE MAINTENAICE
TO REQ. PGMS PGHS USED & REPORT PROGRAMS **
DO

YIN YIN DAYS CIS

If N 15 C MAIN MENU

N N 30 C APPLICATION DATA ENTRY VOIFIUPD

30 C PLANS EXAMINING ENTRY VERIFIUPD

N N 15 C APPLICATION INO

N H 30 C PERMIT DATA ENTRY VERIFIUPD

15 C PERMIT 110

N I 15 C CONTRACTOR PERMIT 110

If 10 C CONTRACTOR 110

H I 10 C INSPECTIOI REQUEST

If N 10 C INSPECTION REQ PRllfTIRPT

N N 10 C INSPECTION POSTIIG

I 10 C DAILY RPT OF IISPECTIOIS MADE

H N 15 C PERMIT FINALIZATIOI

========================= **OTHER FILE MAINT AND IlfQUIRY PGMS. **

N 30 C FEE SCHEDULE FILE MlfT & 110

I 5 S PERMIT TYPE FILE MIT , INQ

N 5 S CLASS OF WORK FILE HIT & INQ

I 5 S TYPE USE FILE MNT & INO

N 5 S INSPECTIOlf TYPE FILE HITIINO

I 5 S PERMIT STATUS FILE MITIIIQ

Integrating 3rd PartylIn-Bouse SOftware 0049-16



FNCT EASY TIME OLD NEW WG ** OTHER FILE MAINTENAlfCE
TO REO. PGHS PGHS USED REPORT PROGRAMS **
DO

Y/N Y/N DAYS CIS

N 15 S PLANO STREET INDEX FILE MlfTIINO

N 5 S IISPECTOR lAME/NO FILE MlfTIINO

N 5 S OFC. PERSNEL lAME/NO. FILE

MlfT/IHO

N 5 S INSPECTION STATUS FILE MlfT/INO

N 15 C FEE SCHEDULE REPORT

N 5 S PERMIT TYPE REPORT

N 5 S CLASS OF ~RK REPORT

N 5 S TYPE USE REPORT

5 S IISPECTION TYPE REPORT

N 5 S PERMIT STATUS REPORT

N 30 5 S PLANO STREET INDEX

I 5 S INSPECTION NAME/NO. REPORT

5 S OFFICE PERSONNEL NAME/NO. REPORT

N 5 S IIfSPECTIOI STATUS REPORT

========================== **OPERATIOIAL REPORT PGK. **

I If 15 C DAILY PERMIT DETAIL REPORT

15 C WEEKLY PERMIT DETAIL PERMIT

N N 15 C MTHLY RPT OF INACTIVE/FIIAL PRMTS

N N 15 C ANNUAL RPT OF ARCHIVED PRMTS RPT

Integrating 3rd PartylIn-House Software 0049-17



FRCT

YII

EASY
TO
DO
YII

TIME
REO.

DAYS

OLD
PGHS

HEW
PGMS

LANG
USED

CIS

** OTHER FILE MAIlfTDAlCE
REPORT PROGRAlIS **

I

I

N

H

I

5

5

5

5

5
.-
5

5

**MAlAGEMEIT REPORT PGMS. **

S

S

S

S

S

S

S

HTHLY PERMIT ACTIVITY REPT

MTHLY CENSUS REPT

DAILY REPT OF INSPECTlOIS MADE

HTHLY SOOY OF liSPS MADE BY INSP

KTHLY SUMRY OF INSPS MADE BY DIST

JlTHLY RPT OF CHRCL lEW CONST &

APTS

MTHLY RPT OF APPS SUBMITTED i/O

ADDRESSES

lUMBER OF DAYS NEEDED (AT 6 EFFECTIVE BRS PER DAY): 640

PROGRAM COUNT:

NEW COBOL PROGRAMS TO WRITE: 19

lEW SPEEDWARE PROGRAlIS TO WRITE: 29
(T,HESE ARE LOGICAL, lOT PHYSICAL
PROGRAlIS)

Integrating 3rd PartylIn-House SOftware 0049-18



lfllClDlllT 3

RECAP OF ALTERNATIVES

OPTIOIf

VENDOR A
Ilf-HOUSE DEVELOPMElfT
PUBLIC DOMAIN A
PUBLIC DOMAIIf B
PUBLIC DOMAllf C
VElfDOR B
VENDOR C
SELECTED VElfDOR

TIME
MAl{ YEARS

If/A *
3.4
3.1
3.0
2.6
N/A
If/A
If/A

TOTAL COST

$293,205
$159,330
$150,870
$145,230
$139,617
$116,870
$ 68,045
$ 61,545

* implementation times were not calculated for vendor options as times would vary by contract.

Integrating 3rd PartylIn-House SOftware 0049-19



:i



DISAPPEARING DIAL-UP
James D. Ham

Southeastern Public Service Authority
of Virginia

723 Woodlake Drive
P. O. Box 1346

Chesapeake, Virginia

Are you planning to move your data processing center?
No doubt you have ordered the raised floor, halogen fire
suppression system, environmental unit, patch panel, ups,
isolator/regulator, vacuum cleaner, and microwave oven, but
have you installed and tested the new dial-up service from
your local telephone company? This simple "standard II

element of your system has tremendous problem potential.
Our recent experience with a deteriorating communications
network may help you to avoid the pitfalls which we leaped
into.

Our organization has a dial-up network of HP150
microcomputers located at widely scattered transfer sites.
Each of these 150s call our HP3000 twice each night: once
to upload the day's transactions then later to download a
newly updated customer file. We use ADVANCELINK as our
communication software. Recently, after much preparation,
we moved our data center to an adjacent municipality. Prior
to the move, our electrical engineer checked the power
supply and the environmental systems, and we had verified
that the new dial-up lines were live, (ie: we had used a
telephone to make calls to and from the new site.

The move was accomplished, and the computer was set up
and operational the same day. Our administrative users, who
did not move with us, were up and running at 9600 baud via
leased line and 8 channel muxes that same day. The first
week the success rate of uploads and downloads on the dial
up network slipped from its' previous high percentage, but
we did not become alarmed. There were many other issues
related to the move occupying us, and we were accustomed to
missing a site now and then due to excessive line noise, cut
cables, or operator error. However, after two weeks the
success rate dropped rapidly, and by the end of si:{ weeks
was around ten percent!

The symptoms varied, but the essence was that the
HP150's could not maintain the line connection long enough
to complete the data transmission. Most of the time the
ADVANCELINK error message was "connection failed".
Occasionally we would get a "no carrier" message, or the
transmission would stop mid-file with the 150 just sitting
there and the modem at the HP3000 remaining in a busy state.

DISAPPEARING DIAL-UP 0050-1



A data analyzer could have shown us just what was coming
across the line, but as we were not experiencing bad data,
just no data, we did not try to obtain one. Well, intuition
told us that the problem had to lie with the new telephone
lines. They and the AC power supply were the only new
elements in the system, and the AC had checked okay.
However, after the telephone company technician tested our
lines, he informed us that our lines were within
specifications for "voice" grade service (dial-up) and there
was nothing he could do. We checked with the phone company
business office and received the same response. There was
nothing they could do to improve our service.

Since relief from the phone company did not appear
imminent, and the data had to be moved daily, we devised a
three part plan to attack the problem: (1) implement an
alternative method of moving the data for immediate relief,
(2) find a way to use the dial-up lines as they were for
the short haul, and (3) pursue with determination convincing
the phone company to improve our service as a permanent
solution.

In our case, the alternative to the telephone lines was
a "sneaker net" with 3.5" diskettes as the medium. Our
courier visited all but two of the sites daily, and transfer
trucks visiting those two sites could deliver diskettes to a
common location where the courier could pick them up. We
quickly produced operating procedures for the diskette
upload and download processes and installed corresponding
command files on the remote computers. One problem with
this solution was that the sites presented a hostile
environment to the 150's, and some of the diskette
drives were no longer operable. Success with the telephone
network had made the expense of maintaining the diskette
drives no longer seem necessary.

Our bridges hadn't been burned, just allowed to decay!
Replacement and repair of the drives was accomplished as
rapidly as possible. In the interim, some sites had to be
visited daily to collect the previous days' transactions. A
fixed drive was connected to the transfer sites' 150 and the
transactions were copied from their fixed disc to the
portable drive. The collected data was then uploadaed to
the HP3000 back at the Data Center.

In trying to make the degraded phone service work we
discovered that if the transfer site operator executed
ADVANCELINK and typed in the telephone number, instead of
letting a command file establish connection, we could get a
20 to 30 percent connect rate. Once connected, the file

DISAPPEARING DIAL-UP 0050-2



transfer usually completed successfully. This confirmed our
belief that our hardware and software were not the source of
these problems. This operator intervention required us to
transmit during working hours, which often resulted in
customers waiting in line at the site. Still, it was better
than driving to the site with a fixed drive! Trial and
error in modifying the command files disclosed that
eliminating having the 150 wait for the HP3000 to respond
with the terminator character (ctrl/Q) and slowing the 1505
down improved the transmission success rate to about 60
percent and made daytime transmission unnecessary. Pauses
were inserted after commands such as II HELLO II and "BVE" ,
e>~tra newl i nes sent to the 3000 before and after II HELLO" ,
"8cDSCOPy lI

, II BYEII , etc., and the character delay times
increased to achieve the improvement.

The third area of effort was directed at the telephone
company. We called the business repair office repeatedly
with complaints of a degradation of service compared with
that at our previous location. Their technician was called
back to check our lines again, with the same results. A
former telephone company employee had informed us that
different levels of service existed for each line type, and
suggested that we inquire as to our service level. Oh yes,
we had consulted many persons and organizations during the
course of the problem. Part of our problem solving
procedure is to search the available experience bank. While
doing so we received one solid lead, much sympathy, and two
offers of a complete communications evaluation; for a fee.
We followed the lead and escalated our complaints to the
manager of the local central office with requests for a
service upgrade. Suggestions by the phone company that we
install leased data circuits were rejected with the
insistent request that they provide us dial-up service equal
to that which we had previously. We did not want the
monthly expense of multiple data circuits, or the
vulnerability of one multipoint circuit linking sites in
eight cities and counties and crossing two telephone
companies at that time. In addition, all of our modems were
dial-up and would have to have been replaced with non
dialing units. .By this time the telephone companys'
busine~s office, maintenance office, engineering section,
and public relations office had all been brought into the
discussions with our organization.

In support of our efforts with the phone company, and
in devising workarounds, we went through the standard
problem identification steps, evaluating the hardware,
software, procedures, and environment. One element at a

DISAPPEARING DIAL-UP 0050-3



time every link in the dial-up network except the HP3000 was
replaced. On our order, the phone company installed one of
their data jacks on our line, with no results. From the
phone company entry panel, we ran new twisted pair to the
computer room via a different route, replaced the remote
modem, the local modem, the modem and telephone cables at
each end, and replaced the HP150. We also tried different
versions and different copies of ADVANCELINK and the
ADVANCELINK command files. We discovered that dialing any
other computer from our remote sites worked fine, and that
dialing out on one of our new lines and back in on the other
compounded the problem so badly that we could not use an
HP150 in the data center to test modems, etc. Testing had
to be done from a remote site. Of course, all of these
efforts confirmed our belief that the dial-up service was
the problem, but more importantly, the tests supported our
negotiations with the phone company, and assured management
that every avenue of relief was being explored. Some
improvement in connectivity was gained by using the same
make of modem at the host site and the remote site.
Previously we had not done this. We also found that MNP
error correction modems and modems with adaptive
equalization will not solve all ommunications line pr-oblems.
Modems with these features were obtained on approval from
vendors for some of our tests.

The phone company had measured our lines several times
and reported to us that the decibel (power) level and slope
(decibel loss), while within their "voice" grade specs,
definitely would not support "high speed" data transfer,
(1200 baud). We were at the end of that particular service
line, the wires were old, etc. They also told us that there
was no tariff within their rate structure which would allow
them to upgrade our service. Our next step was to request
that they quote us a price for upgrading the equipment or
devising a new tariff and to let them know that we were
willing to bear the cost of correcting our problem.
Persistence pays! After five months of discussion at
various levels between our organization and the phone
company they announced that they were going to fix the
problem, and they did, within two weeks! In essence, the
phone company solved our problems by installing MFT's,
(metal frame terminators>, on our lines in their
central office. An MFT increases line frequency. We had
been asking whether MFT's might help our situation since
learning of their existence from their former employee. A
simple solution at the end of a complex path. No special
charges or rate changes were levied against us by the phone
company!

DISAPPEARING DIAL-UP 0050-4



In conclusion I would suggest that: (1) New dial-up
service be thoroughly tested with your production
configuration, or as close as you can manage, in advance of
the move. We may have discovered our problem sooner if we
had taken a 150 to the new center and tried communicating
with a remote site. If your new service will not be ready
prior to the move it may be feasible to test the phone
service from another organization located near your new data
center and on the same service line. (2) Try tweaking the
communications software or command files while waiting for
the phone company to correct the situation. Some service
was better than no service in our case. And (3)
Comprehensive testing, and presenting an organized case are
helpful in dealing with the telephone company bureaucracy.

DISAPPEARING DIAL-UP 0050-5





Paper No. 0051

THE EVOLVING NETWORK

A. Jay Gross
Product Manager, Multiplexers
Paradyne Corporation
(813) 530-2785





THE EVOLVING NETWORK

The ideal data communications network is invisible to the user and
appears to be no more than a piece of wire or direct connection
between the originating and destination points. And like the local
electric power company, it should be so reliable and easy to use
that the user takes it for granted. Today, networks have the
ability to approach this ideal. The array of existing tools and
emerging technology makes this possible. In many respects, the
future is here today.

The beginning of modern data communications can be traced back to
the 50's. It was then that American business and industry began a
trend towards decentralization that created new problems and set
the stage for the migration of centralized data bases out to remote
locations. It became apparent that new technology would be
required to transfer information from one location to another. The
pressure was on for business equipment manufacturers to develop
methods and systems for moving the massive volumes of information
being generated. Solutions to the communications bottleneck had to
be found.

The modem, which became the foundation for an enti~e new industry,
ushered in the era of data communications in the 60's and
distributed processing in the 70's. Most early concerns were
easily addressed even though available options were few. ~imple

point-to-point and multidrop configurations predominated. Most
applications required less than 2400 bps with 110 bps and 300 bps
dial being used extensively into the mid and even late 70's.

The network planner's goal for providing the user a cost-effective
and efficient data communications system was always met. After
all, as traffic and locations grew, users could add more cheap
lines and drops, along with modems that had started decreasing in
price. In many cases, the best use of resources or most effective
network design had very little to do with actual system
implementation. Multiple lines to single locations were common.

Interestingly, at that time network control and diagnostics were
considered to be of little value. By process of elimination, a
problem usually could be narrowed down to one of two network
components--lines or modems. Besides, no more than two points of
contact for service were usually required - the telephone company
or the modem vendor. Many times, one call to Telco took care of
everything since both the modems and the lines were leased from
them.

The good old days - less demand from users, reasonable costs, few
products and services to deal with, simple problem determination
and resolution. Uncomplicated network solutions that worked!

Well, the 80's changed all of that. It seems that almost
overnight, users had more applications than ever, and of course,
they all required better response times. Remember what happened
when everyone bought a personal computer and wanted it on line.

0051-1



Or, when the local telephone company increased their access charges
dramatically, as well as their lead times for lines. And loss of a
single point of contact for service made life unbearable as users
screamed about uptime or the lack of itl Increased product
offerings from multiple vendors became a double-edge sword. Often,
older equipment was not compatible with newer technologies. And,
of course, service offerings from the Telco's based on voice
standards only added to both the confusion and frustrations. The
network could grow no further using existing hardware.

The communications evolution has now reached its next logical step.
The changing technology, regulations, pricing and user requirements
are the causes of both today's problems and opportunities in
network design. We have entered an era where the network has
become as critical as the information source itselfl Many
businesses in our increasingly service-oriented society have
discovered that the network is the tool that gives them the edge
over competition. Most have discovered the time value of
information.

Attention must be given to understanding the nature of the network
from a business perspective - the products, markets, competition,
and underlying management philosophy. Ask where did we come from,
where are we today, and where are we going. Thus, as planners look
toward growing the network, their goals must be to:

decrease costs
increase profitability
increase productivity
increase network availability
seek new markets and business opportunities

Modems alone can no longer meet these goals, although they continue
to play an important role in the network of the 80's. The network
planner must now seek consolidation by acquiring technology that
will add value in terms of both cost savings and increased function
to existing systems. Thus, the trend is towards consolidation and
integration (figure 1). A broad group of devices has emerged as a
powerful way to meet these objectives: multiplexers,
concentrators, and nodal processors.

Their primary function is to concentrate a large number of
low-speed incoming lines onto one or more high-speed transmission
facilities. This functionality, coupled with highlevel, built-in
intelligence, not only reduces line costs but provides a uniform
means of dealing with the total communications requirements of the
organization. Enhanced service offerings, increased network
availability, improved diagnostics, and a migration path for future
applications are only a few of the benefits.

Simple, low-end concentrators include modem-sharing devices,
point-to-point Statistical Time Df~t3ion Multiplexers, telephone
central office 04 channel banks, and point-to-point T1
multiplexers. Advanced designs rarige from networking statistical

0051-2



multiplexers and T1's to packet switches. These intelligent
multiplexers are usually referred to as communications processors
or nodal processors.

Unifying network architecture through the use of multiplexers takes
the comprehensive approach to consolidation and integration. But,
implementation of such a design must be well thought out. In
addition to the business goals just mentioned, there are obviously
technological issues. Everything from type and volume of traffic
to applications, network control, and geography must be taken into
account.

Three basic technologies have emerged with capabilities that can
meet the needs of different situations. Statistical multiplexers,
packet switching, and T1 are the choices to be considered.

Statistical multiplexing is used primarily in situations where
asynchronous communications predominate. Because this method
dynamically allocates bandwidth as needed, the short character-at
a-time transmission used in asynchronous communications can produce
tremendous efficiencies. The ratio of aggregate channel speeds to
the link speed can easily be 10-to-1 or greater. In other words,
ten devices of ij800 bps each, for a total aggregate ij8,000 bps,
could be statistically multiplexed over a link running at ij800 bps
(figure 2). Not only is the cost of nine lines saved, but the
speed of the modems used between the two multiplexers is much less
than one might expect!

This is not to say that the laws of physics are altered. Instead,
a statistical multiplexer takes advantage of the fact that all of
these devices probably won't be transmitting at the exact same
moment in time. Even in a "heads down" order entry application, an
asynchronous terminal is sending data only about 10 or 15 percent
of the time during an eight-hour day. Besides, how many operators
do you know that can type at ij800 bps? That would be the
equivalent of about 36,000 words per minute!

To look at it another way, if each operator were typing at ijO words
per minute, which is about 5 bps, 900 devices transmitting
simultaneously would be needed to fill up ij800 bps worth of
bandwidth! Of course, there are other considerations which, from a
practical point of view, make this compaction ratio much higher
than we could really obtain. The point is, all users are virtually
guaranteed a time slot on demand. That's why the apparent
throughput in this example is 48,000 bps even though the real rate
of the link is only 4800 bps. ----

Here's how its done. The data from each device forms a frame that
is sent to the remote statistical multiplexer. Included with this
frame is additional information for error control, addressing, flow
control and signaling. Most multiplexers use an international
standard protocol for framing called HOLe (high-level data link
control). This is the same transport protocol used in X.25 packet
SWitching networks (figure 3).

0051-3



Each frame can contain up to 256 bytes of information, although
most statistical multiplexer vendors use 128 bytes. Using this
technique, all users will get at least several bytes of data into a
given frame if requested. If there is not enough data to fill up
the 128 bytes, the frame will automatically adjust down. In our
example, the ten terminals will have at most 40 bytes per minute
times 10 devices, divided by 60, or a total of about seven bytes of
data to send per frame.

As efficient as this is, another 20S can be gained by stripping the
start, stop, and parity bits of the asynchronous data at the
sending statistical multiplexer and then adding them back at the
receiving end.

Another important feature of a statistical multiplexer is its
ability to buffer data. Should all operators manage to hit a key
at the exact same moment in time, data will not be lost. A buffer
size of 4 to 16K will usually suffice, depending on the number of
terminals and their respective speeds. This situation will change
as printers and batch devices are added. Compaction ratios of
10-to-1 are no longer valid. Instead, a more adequate rule of
thumb would be ratios of 4-to-1 for printers (up to a few pages at
a time) and 2-to-1 for batch devices.

Instead of increasing the buffer size in order to handle the demand
created by these bandwidth hogs, flow control is used. When about
80S of the buffer is full, a command is issued by the statistical
multiplexer to both the local OTE's and the remote statistical
multiplexer. The remote multiplexer will, in turn, signal the
sending device to stop sending data. The most common method of
doing this is an in-band scheme known as Xon/Xoff. As the name
implies, the proper software flow control signal is sent to start
and stop normal data flow from the originating device to its
destination. Xon will usually be given when the buffer empties to
about 40S of its capacity. Because this activity is in-band and
a~tomatic, the operator will have no knowledge of the occurrence.

Hardware flow control can also be used. EIA control signals such
as Clear to Send (CTS) and Data Set Ready (OSR) are used.

As most users already know, there is not much in the way of error
control in the asynchronous world. At least not until statistical
multiplexers arrived on the scene. Like most synchronous
protocols, HOLC uses a redundancy check algorithm in conjunction
with an Automatic Request for Repeat (ARQ) for end-to-end error
control. So, not only is every device virtually guaranteed a time
slot, users can count on the information arriving at its
destination error freel

Today's network planner can utilize the intelligence inherent in a
statistical multiplexer to take this one step further. A
comprehensive network solution can be implemented by using building
blocks available from one of a handful of networking statistical

0051-4



multiplexer vendors. From four channels to 240 channels, an
integrated family of products will allow an asynchronous network of
any size to be designed. Some vendors have even integrated
multiplexers into their network management and control centers.
Now a single point of control exists for multiplexers, modems, and
DDS equipment such as OSU/CSU's (figure 4). The ultimate approach
for consolidation and control of the asynchronous network would
certainly seem to be statistical multiplexing.

What happens when we consider synchronous data? In a mostly
asynchronous environment with some synchronous traffic, today's
statistical multiplexers are the way to go. But, as the percentage
of synchronous traffic approaches 20~, alternatives should be
considered. And, when this number exceeds 40~, the statistical
multiplexer becomes inadequate very quickly. Packet switching may
be a better answer.

A packet switch is no more than a very sophisticated statistical
multiplexer. As stated earlier, both use HOLC as their protocol
which is considered to be the transport layer of X.25, known as
X.25 level II. Packet switching utilizes the next layer which is
X.25 level III. In addition to the HOLC protocol, this level
contains an advanced addressing structure resulting in only one
channel being assigned to one frame. The result is block oriented
(figure 5).

This multilayered addressing structure, combined with the enormous
power built into packet switches, gives it the ability to support
diverse vendor-specific protocols. Thus, packet switching seems to
better satisfy synchronous network design applications,
particularly large networks with multiple synchronous protocols.

Packet switching also differs from statistical multiplexing in its
hardware makeup. There are packet nodes and packet assemblers/
disassemblers (PADs).

The node forms the network backbone. Its software enables the node
to communicate with adjoining nodes so that traffic information is
constantly exchanged and updated. In other words, it acts as a
trunk-interfacing tandem switch. Like a telephone company central
office, call requests are properly directed to the destination node
over the path with the shortest delay.

The PAO connects remote terminals directly into the network nodes.
Typically, they will packetize several devices of a specific
protocol into a single X.25 network interface. The PAD can be
located locally to the node or remotely via a pair of modems and a
dedicated line. At the host site, a PAD can be installed so that,
in effect, the packet network becomes transparent by interfacing at
the port level, or instead, one of the node trunks could support a
connection to a single host port configured to de-mux multiple
virtual circuits at the X.25 level (figure 6).

0051-5



Another important feature of packet switching is the sophisticatednetwork management tools available. In addition to network controland diagnostics, a packet network control center can providecapacity management as well as usage accounting and billing.
Capacity management ensures that packets are sent to the receivingparty by the most efficient available route, based on networktraffic at the time of call setup. This operation automaticallysmooths peak load that otherwise would require additional capacity.
Usage information can be important to organizations that chargenetwork time to departmental cost centers or customers. Theadvantages of packet switching are becoming clear. Its ability toprovide a vendor independent solution for large diverse networks isthe key. Packet thrives on multiple hosts, protocols,applications, and locations.

The third area of multiplexer or concentrator technology is Tl.
In recent years, the term Tl has been used to refer to any digitalarrangement operating at 1.5ijij Mbps. 11 has been used in thiscountry for almost 25 years, yet for many, it continues to be avague and mysterious technology. And, indications are that 11'semepgence as the transport technology of the future is only nowbeginning.

The first T~carrier facility was introduced into the otherwiseanalog telephone network in the early 60's to interconnect centraloffices. By digitizing voice signals and multiplexing them usingtime-division techniques, the 11 link permitted 2ij voice-frequencychannels to be carried over just two pairs of wires. The firstgeneration of Tl central office termination equipment was the 01channel bank.

By the late 70's, this evolved into the Dij channel bank. Althoughvoice digitizing and channelling techniques had changed, basictechnology remained the same; a very large time divisionmultiplexer (TOM) with 2ij channels and a link speed of 1.5ijij Mbps(figure 7a).

In 198ij, several things happened to change the way 11 was perceivedand utilized. First, AT&T made 11 more accessible by increasingthe number of facilities installed and lowering the cost. Thisbecame known as Accunet 1.5. With the advent of divestiture, othercarriers, inclUding the Regional Bell Operating Companies (RBOes)increased competition and availability by installing even morehigh-speed circuits, much of it being fiber.

It was at this point that vendors began to see the real potentialTl offered for voice and data integration. An updated version ofthe Dij channel bank was introduced--second generation equipmentsimply known as 11 multiplexers. By adding microprocessors forintelligence, the bandwidth could be subdivided into more than 2ijchannels. Supervisory capabilities were added and limited

0051-6



networking was achieved (figure 7b). At about this same time, the
idea of a voice and data integrated services digital network (ISDN)
started to emerge with T1 playing a key role.

What seemed like a stable and known technology with interface and
framing specifications cast in concrete suddenly became complex and
overwhelming primarily due to a lack of understanding in the data
communication marketplace. Even a fundamental grasp of these
concepts will lead to advanced networks able to take advantage of
T1 economies of scale and newer equipment designs.

What does it mean to be T1 compatible? Today, the answer is not a
simple one, as there are different levels and framing formats.
Obviously, to start with, the multiplexer must at least transmit
and receive a signal at 1.544 Mbps. This is OS-1 compatibility and
includes electrical characteristics.

When a DS-1 signal is used for 04 service, it consists of frames of
193 bits each. This represents an 8-bit byte for each of the 24
sub-channels, plus an extra bit for framing. Sampled at 8,000
times/second, each of these 24 slots represents 64 Kbps of
bandwidth or a total of 1.536 Mbps of usable bandwidth. The 193rd
bit, also sampled at 8,000 times a second, accounts for the
remaining 8 Kbps of the total 1.544 Mbps bandwidth. Twelve of
these 193 bit frames are known as 04 superframes and represent the
framing level of compatibility. (See Table 1)

The next level is 04 Channelization, required of T1 circuits that
terminate at the central office. A OS-1 signal made up of 24
subchannels, each taking 8 bits at a time, is now needed. These
are numbered OS-O 1 through OS-O 24. For premises-to-premises
transmission, the user must only maintain the 193rd bit p~ttern-

everything else is transparent.

The third and final level is signaling compatibility. Here, the
6th and 12th frame of every superframe have the 8th bit of the
user's information robbed. These signaling bits are used for basic
telephone control, such as on-hook/off-hook indications.

It is only when each of these three levels of compatibility are met
that a T1 multiplexer is truly 04 compatible; framing,
channelization, and signaling. It is at this point that the user
can take full advantage of new and existing tariff offerings.

Since they are TOM's, T1 multiplexers can be bit or byte
interleaved. Bit-interleaving, being the most efficient of the
two, involves transmitting each bit as it is received from the
incoming channels. The advantage is that, unlike statistical
multiplexers and ~acket switching, only a small amount of buffer is
needed--on the order of several hundred bytes per port or less.
Since the multiplexer does not need to wait for an entire character
to arrive before putting information on the T1 pipe, bandwidth is
maximized and delay is minimized. However, bit-interleaved
multiplexers cannot be used to interface with many of AT&T's

0051-7



service offerings such as Customer Controllable Reconfiguration
(CCR), also known as DACS (digital access and cross-connect
system). The ideal T1 multiplexer is programable as either bit or
byte-interleaved. As a practical matter, bit-interleaving can and
should be used in most situations.

Today's T1 multiplexer has become so powerful that it is correctly
referred to as a nodal processor, supporting multiple links, large
channel capacities, and features such as automatic alternate
routing and bandwidth contention. Virtually any application can be
supported, including synchronous, asynchronous, voice, video, and
high-speed data needs right up to 1.536 Mbps. Integrating these
applications appears to be the key to using T1 effectively (figure
8).

Table 2 compares the relative merits of each of the three
technologies discussed.

CONCLUSION

Because there are choices, it is tempting to pick the one direction
that seems to offer the best overall fit. But, do network planners
have to lock themselves into one way of thinking or one type of
technology? Most corporate networks are really a collection of
different applications and even separate networks based on common
business interests. Thus, it may make sense to examine the
integration of these technologies.

Integration can take place by simply sharing high-speed trunks to
common locations. This allows smaller, independent networks to
remain autonomous while reducing the overall line costs. But, as
each individual network grows, reallocation of the backbone trunk
bandwidth will be necessary, resulting in performance constraints.
Also, sharing is fixed to the extent that traffic on one network
cannot borrow bandwidth from the others during peak traffic periods
or in times of link failures.

A better and more fully integrated approach is the hybrid design.
This network also uses high-speed backbones, but combines private
and public facilities as needed. This mix and match approach
tailors the architecture to traffic characteristics.

The mechanism for interconnections are multifunction gateways.
More than protocol converters, gateways are intelligent access
points that integrate one network into another. As applications
and requirements change, so does the personality of the network.
Gateways enable the network planner to take advantage of existing
service offerings from AT&T. Currently, these include CCR, M24,
and Software Defined Network (SON). Public and private packet
networks can also be accessed.

0051-8



Then there's ISDN. Touted as the ultimate solution for integrating
all forms of information, ISDN is being carefully designed to
retain compatibility with existing switching and transmission
equipment, most notably T1. In fact, the number of rapidly growing
T1 based private backbone networks are in effect private ISDN
facilities. Thus, a network solution incorporating T1 will allow
migration towards ISDN as it becomes available.

The best solution for network needs is based on hard Questions and
even harder decisions. Those willing to invest the time and energy
in this process will develop a comprehensive communications
strategy for today and the future.

0051-9



PIINT-Ia-PIINT LINES

......-
0051-10



caNsalla.'EI NEIID••1e .,

0051"-11



S'ITISTlell MUlTI'lEIINII .leClaNE

4800 bpI

AGGREGIITE • 48,001 bps

lOOTE'S

AT

4800 bpI

........
0051-12



PICIET S.ITCHINI NETWaRK

8

c

.....-
0051-13

II

D



05-0
05-0
D5-0

05-0

TI TECINllO"

1.544 nbp.

05-1

8 IITS X 24 eHAIIELS • 192 IITS

192 IITS X 1.000 SA"'LESISEC • 1.536 "It,•
• 8.TS X '.000 SA"PLESISEC • 64 Ie,,.

......-
0051-14



TABLE 1

STITISTICll MUlTIPLEllMI
UI.

PICICET S18ITCHIMIi

STAT nUl PACKET

ALTERIATE IOUTI. o GOOD EXCELLE~T·

ASYICHIOIOUS EXCELLED GOaD

SYIICHIa..US fAil EXCELLEI'

IITEIACTI'E EXCELL£IIT EXCELLEIIT

BATCH fAil fAIR

fR1I01 COI'lal EXC£LL£IT EXCELLEI'

"AIAGE"EIT GOOD EXCELLEIT

HIGH SPEEDIYOLU"E fAil fAil

COS, LOW HIGH

pu--
0051-15



THE 11'1111 NEllle.1e

.....-
0051-16



The Spectrum Instruction Set, A 3000 Hacker's View

By Robert M. Green
(c) 1988, Robelle Consulting Ltd.
8648 Armstrong Road, R.R. #6
Langley, B.C. V3A 4P9 Canada

(604) 888-3666

I have been writing and debugging code for the Classic 3000 instruction set for over 15
years. Like most of you, I have been impatiently awaiting Hewlett-Packard's new line
of computers, code-named "Spectrum". Now that actual SpectruQl machines are spewing
forth from Hewlett-Packard factories in ever-increasing numbers and going into
production in my customers' computer rooms, it is time to start learning about these
CPUs.

By the way, Hewlett-Packard prefers us to refer to their new computer family as the
HPPA (HP Precision Architecture), not as the Spectrum.

I called HP's Dire.ct Marketing group at (800) 538-8787 and used my VISA card to order
a manual on the HPPA instruction set:

Precision Architecture and Instruction Reference Manual,
HP part number 09749-90014.

Like everyone else, I had read numerous articles from Hewlett-Packard about the
objectives of the Precision Architecture, but I found clean, solid facts about the MPE
XL machines hard to pin down. I needed some basic information to build on and the
hardware instructions themselves seemed like a good base. Whatever software we
eventually run on the HPPA machines will all be coded in the HPPA machine
instructions.

Starting from the HP manual, I set out to compare the HPPA instructions with the
Classic 3000 instructions and see what interesting differences I could uncover. Whether
you ever personally write machine code for the HPPA or not, it can't hurt you to know
something about these basic building blocks.

Goals of the Spectrum Project

A computer is a tool to execute programs built from sequences of simple "instructions".
A typical instruction is something like "Add these two numbers together". The Classic
HP 3000, designed in 1970, has a "complex instruction set", meaning that the instructions
which programmers use are not the real hardware instructions. Each complex instruction
is implemented by a hidden microprogram written in the real instructions.

The HPPA is a RISC machine, a "Reduced Instruction Set Computer", meaning that the
microprogrammed instructions were removed. The programmers use the machine's real
hardware instructions. Any task too complex for the RISC hardware is done by
executing a series of the basic machine instructions, either as in-line code or by calling a
subroutine.

0052-1 Spectrum Instruction Set



The HP manual describes the observations that led to the idea of RISC computers:

"Extensive research into patterns of computer usage reveals that general-purpose
computers spend up to 80% of their time executing simple instructions such as
load, store, and branch. The more complex instructions are used infrequently.
On architectures with large, complex instruction sets, the simple,
often-executed instructions incur a performance penalty caused by the overhead
of additional instruction decoding, the use of microcode, and longer cycle time
resulting from increased functionality..."

liThe RISC features implemented with the HP Precision Architecture include:

Direct hardware implementation; no microcode.
Fixed instruction size, one word in length.
Small number of instruction types.
Small number of addressing modes.
Reduced memory access -- only load and store."

A primary goal of the HPPA is to complete the execution of one instruction in each
machine cycle, and to keep that cycle time as short as possible.

General Structure of Spectrum Machines

According to the Hp· manual, the HPPA machines have 32 general registers available to
the programmer, each with 32 bits. They are referred to as GR 0 to GR 31. Only GR
0, GR 1, and GR 31 have a hardware-defined special purpose, although other registers
may be reserved by software convention. GR 0 is the bit bucket; when used as a source
of data, it always provides zeroes. When used as a target, it throws away the result. GR
1 is used as the target in the Add Immediate Left instruction and GR 31 is used in the
Branch and Link External instruction.

This general-register organization contrasts strongly with the stack organization of the
older 3000. In the Classic 3000, the programmer has access to a push-down stack and to
16-bit registers whose hardware function is highly specialized (i.e., Q points to local
variables, DB to global variables, etc.). The closest thing to a general register is the
Index Register, and it is used for special functions in many instructions.

All HPPA instructions are 32 bits long, with the first 6 bits reserved for the Major
Opcode. This allows 64 major opcodes, allocated as follows:

23 opcodes are currently illegal (allowing HP lots of room for expansion),
27 opcodes are single instructions (e.g., 1 is Load Byte, LOB),
12 opcodes are instruction groups (e.g., 0 is the System Operation group),
I opcode for up to 4 tightly-coupled Special Function Assist processors,
1 opcode for Co-processors, including 15 floating-point instructions.

The 27 major opcodes that invoke a single instruction provide load, store, branch, and
other functions (e.g., LDB, STB, LDW, STW, etc.).

The 12 instruction groups expand into 108 unique instructions, as shown below. I show
the opcodes for the 12 groups as Hexadecimal (base 16) values with a $ prefix. You

Spectrum Instruction Set 0052-2



should brush up on your Hex arithmetic, because the Spectrums are definitely Hex
machines.

Opcode
$00
$01
$02
$03
$3A

Instruction Count / Type
II system control instructions
19 memory management instructions
31 arithmetic/logical instructions
15 indexed and memory instructions
4 unconditional branch instructions

$25
$2C
$2D

$34
$35

$09
SOB

Floating Point

6

4

8

immediate arithmetic instructions

extract/deposit instructions
"

co-processor load and store instructions

The floating-point co-processor follows the IEEE standard. It provides 15 functions,
including square root, on three sizes of number: 32-bit, 64-bit, and 128-bit. Please
note, however, that MPE XL versions of HPPA also support the Classic 3000 format for
floating-point, via software emulation. The two formats are not compatible. For
maximum performance I assume that you must convert your data files to the IEEE
standard and also convert all of your application programs and third-party or
contributed tools.

Another source of HPPA information, the book Beyond RISC! published by SRN,
describes the floating-point problem this way:

"The HP 3000 uses 9 bits for the exponent and 22 bits for the mantissa... The
IEEE format defines a single precision number to contain 8 bits for the
exponent and 23 bits for the mantissa. While the difference is small, it affects
the size of the numbers that can be stored... The floating point format can be a
problem in migration if the format is used extensively in disc files and
databases."

The Fortran/XL and Pascal/XL compilers have options to force use of the old Classic
3000 floating point, but remember: this uses software instead of hardware for arithmetic.
There is no good way that I am aware of to tell which format is being used for the
floating point numbers in a particular database or file.

Total Instruction Count

If my arithmetic is correct, that makes a total of 155 instructions for the HPPA. Many
of these are minor variations or are of interest only to low-level systems programmers.

0052-3 Spectrum Instruction Set



How Does the Spectrum Multiply?

When comparing the Classic 3000 architecture with the HPPA, two of the most obvious
deletions are the Integer Multiply and Integer Divide instructions. Since these
instructions are used less than 1% of the time, neither the HPPA nor the Classic 3000
has the expensive hardware needed to do fast Integer Multiply and Divide. On the
Classic 3000, the designers use a complex microprogram that is hidden from the
customer and may vary from model to model. The HPPA designers wanted to multiply
with reasonable performance without the microprogram or special hardware.

There is an interesting article about this problem in the Proceedings of the Second
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS II)," October 1987, published by The Computer Society of
the IEEE. Whew! The paper is:

Integer Multiplication and Division on the HP Precision Architecture
Daniel J. Magenheimer, Liz Peters, Karl Pettis, Dan Zuras.

In their search for a fast method to multiply and divide, the HPPA team started out with
general algorithms for subroutines to multiply and divide two integers. The usual
algorithm for integer multiply, called "Booth encoding", involves looping through the
multiplier two bits at a time replacing strings of zeroes or ones with a constant.

The HPPA stores numbers as 32-bit words, each bit or binary digit being capable of
storing a one or a zero. If two bits are processed per loop, the Booth algorithm requires
16 such loops. To support this clever and tricky algorithm, machine designers often
include a Multiply Step (and Divide Step) instruction to perform the two-bit processing.
However, the HPPA designers found that the special Multiply Step and Divide Step
instructions would have made their CPU more complex and increased the basic cycle
time. This was not acceptable because it conflicted with the goals of a RISC
architecture.

The HPPA designers attacked this problem in the same way that we often attack
performance problems with database systems. They did a frequency analysis of actual
multiplications in real user programs (and divisions -- the strategies in the IEEE article
apply to divide as well as to multiply). They found that 91% of multiply tasks include a
constant operand known at compile time, that the constant operands tend to be small,
that non-constant operands also tend to be small, and that standard results occur more
frequently than extended results (Le., 32-bit answer versus 64-bit).

"In the spirit of the philosophy espoused by RISC architects we should atttempt
to optimize the most frequent cases, even at the cost of decreasing performance
of the less frequent cases... By recognizing the inherent non-uniformity and
special cases of operands (and results), we may be able to increase the overall
performance."

Rather than implement a costly Multiply Step instruction that would slow down the basic
cycle time for ill instructions, they decided to take advantage of some hardware that the
HPPA needed for another purpose. Remember, the HPPA is a byte machine, meaning
that the byte (8 bits) is the basic unit that it can manipulate. All of memory is
referenced via consecutive byte addresses, such as byte I, byte 23, byte 4,567,890.
However, most numbers are stored as words (4 bytes, 32 bits), half-words (2 bytes, 16

Spectrum Instruction Set 0052-4



bits), or double words (8 bytes, 64 bits).

If you have a table of words starting at byte address 4000 and you want the 30th word
in the table, you must compute the byte address of that word. The calculation is simple:
4 times 30 + 4000 = 4120. The position of the 30th word after byte 4000 is "4 times 30"
because there are 4 bytes per word.

The HPPA has basic instructions to access elements in tables of words, half-words, and
double-words. To ensure that these instructions execute in one CPU cycle, the HPPA
includes hardware called a "pre-shifter"; it can multiply any register by 2, 4, or 8 prior
to adding it with another register. It is called a shifter because it shifts bits to the left;
in binary arithmetic, shifting one bit to the left is the same as multiplying by 2, shifting
two bits is multiplying by 4, and shifting 3 bits is the same as multiplying by 8.
(Computers like powers of 2, such as 4, 8, 16, 32...)

Since this "pre-shifter" was already needed, the HPPA designers could inexpensively
include nine instructions to make the shifter accessible to the programmer. Each
instruction shifts any of the 32 registers, adds it to any register, and stores the result in
any register. The shift count can be one, two, or three bits and the add can be
INTEGER, LOGICAL, or INTEGER with TRAP on OVERFLOW.

SH1ADD Shift One and Add
SH1ADDL Shift One and Add Logical
SH1ADDO Shift One, Add and Trap on Overflow
SH2ADD Shift Two and Add
SH2ADDL Shift Two and Add Logical
SH2ADDO Shift TWO, Add and Trap on Overflow
SH3ADD Shift Three and Add
SH3ADDL Shift Three and Add Logical
SH3ADDO Shift Three, Add and Trap on Overflow

Overflow - An Aside.
When the result of a multiplication won't fit in the 32-bit word that the HPPA uses
to hold numbers, an "overflow" occurs. Some programming languages insist that
overflow errors be detected and handled in a special way. Other languages, such as
C, have no special requirements. Most computation instructions on the HPPA have
a form that traps for overflow and another form that does not trap.

Now they have very fast instructions that allow both a shift (i.e., a multiply by two,
four or eight) and an add. This is a powerful building block for fast multiplication.

Multiplying By Constants

Let's look at multiplying by a constant first, since that happens so often in practice.
Multiplying a number by 10 is the same as adding the number together 10 times, or
multiplying by 5 twice. The key to implementing constant multiplication is that any
multiply operation can be converted to a series of additions and smaller multiplies:

120 10 times 12
120 (5 times 12) + (5 times 12)
120 .(4 times 12 + 12) + (4 times 12 + 12)

0052-5 Spectrum Instruction Set



The only tricky step above is the last one. We converted to this format because
computers like to multiply by powers of 2 (e.g., 2, 4, 8). Remember, our Shift-and-Add
instructions give us the abihty to multiply any register by 2, 4 or 8 in a single
instruction. The compiler can convert any multiplication by a constant into a series of
specific Add and Shift-and-Add instructions. Generally, the HPPA can do such a
multiply in four or fewer instructions, often in only one or two.

To multiply register R by 10, we would use the following two instructions:

SH2ADD R, R, R ; shift R two (multiply by 4), add to original R, store in R.
ADD R, R, R ; add R to R (double R) and store back in R.

The first instruction leaves us with (5 times R) in register R and the second instruction
doubles R, leaving us the (10 times R) in register R.

In our example, R would have the value 12:

SH2ADD
ADD

12 * 4 =48 (shift two), 48 + 12 =60 (add to original).
60 + 60 = 120

Multiplication by small constants occurs often in programs because of the need to index
into tables. In order to compute the byte address of the table element, the program must
multiply the element number by the element size in bytes (usually small!).

Multiplying By Variables

Examine the following statement from a Pascal program:

ExtendedPrice := Quantity * unitPricei

It multiplies "quantity" by Itprice" to give the extended price. Neither the quantity nor
the price is known when the program is written, since this statement will be executed
for many different parts on many different orders. In this case, the HPPA needs a
multiply method that can handle any possible values for the operands.

When neither of the operands is known at compile-time, we have "multiply-by-variablelt
•

You can construct a very simple, but slow, method of multiplying by an arbitrary
variable using just three basic computer functions: addition, divide by two (arithmetic
right shift), and bit test. This "naive" algorithm loops 32 times, processing one of the 32
bits each time. A simple optimization is to exit the loop as soon as the shifted multiplier
is zero. Since most operands have many leading zero bits, this improves the "average"
multiply by at least 40 percent. For example, the number 40 is represented in the
computer as 26 leading zero digits, followed by 101000.

Here is the algorithm to multiply A times B giving Result, represented in a high-level
language:

Result := 0
while A not zero do

if A odd then Result:=Result+B (add if last bit = 1)
B : = B + B (double B; multiply by 2; shift left 1 bit)
A : = A / 2 (shift right I bit, get next bit to test)

Spectrum Instruction Set 0052-6



Each time through the loop, we add the current value of B to the Result if A has a one
in the last bit (i.e., is odd), then we double the value of B and shift A right one bit to
bring up the next bit to be examined. Although this may seem obscure, it is actually the
same process you apply when you do decimal multiplication by hand. The only
difference is that we are using Base 2 instead of Base 10.

The Spectrum's Shift-and-Add instructions allow us to examine several bits at a time
from both the multiplier and multiplicand, reducing the worst case and the average case.
But this is just the start of optimizing based on frequency analysis:

"It is rarely the case that both operands are large, say larger than 16 bits,
because the result will be an overflow... If the multiplication does not result in
an overflow, at least one of the operands must be representable in less than 16
bits. With a simple test and possible swap, we have reduced the maximum
number of times through the loop to four and the average to two."

The HPPA team then noticed that each time through the loop multiplies the multiplicand
by a number between 0 and 15. Because the HPPA can do any small constant multiply
in three instructions or less as described above, they introduced a CASE statement to
include in the loop the explicit code for each possible constant multiply. They also
observed that one of the operands is less than 16 over half the time, so they optimized
for single loop multiply. Finally, they added a quick exit for values of zero and one,
and special checks for positive operands (which occur 90% of the time).

Here is how they describe their optimization results:

"Multiplication by compile-time constants can generally be performed in four
or fewer (single-cycle) instructions; multiplications by variables, including full
overflow checking, can be obtained in an average of 20 (single-cycle)
instructions... on the Precision Architecture the average multiply requires about
six cycles."

The HPPA designers chose to concentrate on speeding up the most-often requested
multiplication tasks at the expense of the least-often used tasks. They used a
shift-and-add algorithm to accomplish this, because the hardware for this algorithm was
ufree". When the desired multiply operation includes large values, loops similar to those
on a Classic 3000 are executed. When the operands include a constant or a small
variable value, the multiply is executed in a very few of the HPPA's fast instructions.
The result is better overall performance, with the proviso that the operations will be
harder to spot during program debugging. The corollary is that frequency analysis is the
first step in optimization.

What does this mean to you? If the compiler writers use these ideas fully, the code
generated should give excellent performance. However, when you are debugging
programs with the System Debugger, don't expect to see a simple MPY instruction, nor
even an obvious subroutine call. You may see one of many methods of doing an integer
multiply, depending on the operand values, on the compiler's intelligence, and perhaps
on the level of optimization you requestedI

0052-7 Spectrum Instruction Set



Spectrum Instruction Format

The basic HPPA instruction format is 6 bits for the major opcode and 10 bits to specify
the source registers (if any).

Opcode

6 bits

Source2

5 bits

Source1

5 bits

Rest of Instruction I
16 bits

Source2 and Sourcel select input registers for the instruction. The position of the target
register (if any) can vary, but is often at the end of the instruction.

The only memory reference instructions are Load and Store; there are no instructions to
add memory, as in the Classic 3000. Let's look at a typical memory reference
instruction, Store Word (STW):

STW - store Word

$lA . 1 Base-Reg I Data-Reg I S I Offset

6 bits 5 bits 5 bits 2 bits 14 bits

The function of STW is to store 32 bits from a specified General Register (Le.,
Data-Reg) into memory. The effective byte address is computed by adding the 14-bit
Offset value in the instruction to the 32-bit Base address in another General Register
(i.e., Base-Reg). The computed address for a Word load or store must be at a multiple
of 4 bytes, just as the address for a Half-word load or store must be at a multiple of 2
bytes.

Storage Boundaries on the Spectrum

The HPPA is a byte-address machine, but as the manual says...

"All addressable units must be stored on their naturally aligned boundaries. A
byte may appear at any address, halfwords must begin at even addresses, and
words begin at addresses that are multiples of 4."

The Classic 3000 usually stores 16-bit values at even-byte addresses, like the HPPA, but
does not force 32-bit values to be on 32-bit boundaries. In this matter, the two
machines are incompatible. If you restore a Classic-3000 file or database onto the
HPPA, the machine will not be able to use the Load and Store Word instructions to
reference mis-aligned fields. Instead, it will have to use pairs of Load Halfword and
Store Halfword instructions. You will use fewer instructions if you convert your files to
be HPPA-aligned and re-compile your programs, but we can't say whether this
improvement will even be measurable until we can run some performance tests.

If you have an MPE V file (i.e., aligned on 16-bit words) and you access it via a
native-mode MPE XL program, you must be certain that your compiler is aligning fields
in data buffers on 16-bit boundaries. Otherwise, your program will read and update the
wrong fields. The Native-Mode compilers have options to cope with alignment issues
and the details vary from compiler to compiler. This issue is well explained in the
Beyond RISe! book from SRN.

Spectrum Instruction Set 0052-8



Delayed Branches

We have seen that one of the primary goals of the HPPA is to complete the execution of
a useful instruction in each machine cycle: 80 ns on the 950. Note: the "official"
machine cycle of the 950 is subdivided into four sub-cycles, in order to implement the
different phases of an instruction. This allows HPPA to work on several instructions at
once. Thus it actually takes a minimum of three machine cycles to execute an
instruction, but the effective throughput is one instruction completed every cycle. We
will tend to ignore these details, except where necessary.

The branch operation is a serious stumbling block to these HPPA goals. Branch
instructions are difficult to implement in one cycle because they must first compute the
branch location, then actually retrieve the new instruction at that location.

The HPPA is a pipelined computer, meaning that it has a pipeline of instructions that it
is preparing to execute while it is actually executing the current instruction. As long as
the instructions execute in sequence, the hardware to pre-retrieve the following
instruction is fairly straightforward. When we branch, we cannot have the instruction at
the branch destination in our pipeline, because we don't know in advance which
instruction it is.

The choice seems to be between using two cycles to execute the branch or stretching the
length of the basic cycle time to allow for retrieving the branch location from memory.
Neither choice seems attractive.

What the HPPA does is ingenious and profoundly disturbing: the HPPA delays the
execution of the branch for one cycle. This strategy is frequently used in microcode
(see the HP 3000 6x and 7x machines, for example), but this is the first time I have seen
it in an official instruction set.

Here is how the Precision Architecture manual describes the concept of Delayed
Branching:

"All branch instructions exhibit the delayed branch feature. This implies that
the major effect of the branch instruction, the actual transfer of control, occurs
one instruction after the execution of the branch. As a result, the instruction
following the branch (located in the 'delay slot' of the branch instruction) is
executed before control passes to the branch destination."

When you look at assembler listings of MPE XL native-mode programs, you will
sometimes see instruction sequences like this:

BL opencarton
NOP

;branch and link
;delay slot

The compilers and/or optimizers could not find anything useful to do in the cycle after
the branch (lithe delay slot"), so they inserted a NOP (no operation). Effectively, this
sequence is a two-instruction branch.

Or, you may see an instruction sequence like this:

BL closecarton ; branch

0052-9 Spectrum Instruction Set



LDW 26 •.• ; load word in the delay slot

The BL branch instruction is executed before the LOW instruction, but does not take
effect until one cycle later. The LOW instruction that comes after the BL instruction is
actually executed while the BL completes. The LOW in this case is probably loading one
of the parameters needed by the 'closecarton' subroutine.

Let me see if I can make this a little more clear with an analogy. If you are taking an
airplane trip to Minneapolis, you follow a program with instructions like these:

1. book flight
2. reserve hotel
3. pay for ticket
4. reserve rental car
5. pack bags
6. fly to Minneapolis
7. (wasted time, read a book perhaps)
8. collect baggage
9. get rental car
10. check into hotel

Everything takes about the same time ("one machine cycle"), except for the actual flight.
This takes more than one machine cycle, leaving a wasted time period when you catch
up on reading or napping.

Now, imagine that you are a HPPA computer, determined not to waste a single machine
cycle. How would your trip be programmed?

1. book flight
2. reserve hotel
3. pay for ticket
4. reserve rental car
5. fly to Minneapolis
6. (pack baggage during the delay slot)
7. collect baggage
8. get rental car
9. check into hotel

Using the HPPA airplane, our trip took only 9 cycles instead of 10. How did we
shorten the time? By packing our bags while we are flying to Minneapolis. If this
sounds like "being in two places at the same time" to you, you're right! The HPPA can
work on several tasks at the same time due to the power of pipelining. The HPPA
compilers try to take the last step in your program before the branch and move it to
after the branch. In this_way, it can be executed during the time that the branch is
delayed.

Of course, there are a few catches.

If the branch is a conditional one, such as "branch if register two equals zero", then we
couldn't move any instruction that might change the value of register two. We would
have to find an instruction that could not have any impact on whether the branch would
be taken.

Spectrum Instruction Set 0052-10



Another wild and unbelievable implication of the delayed branch is spelled out very
dryly in the instruction set manual, as follows:

"Consider the situation in Figure 4-2.

Figure 4-2. Branch instruction in the delay slot

Loc.
100
104
108
10C

Instruction Reference#
STW
BV rO(r7) branch vectored to location 200 11
BL r4 rO lA relative branch to location 400 12
ADD r2,r6,r9 next instruction in linear code sequence

200
204

400
404

LDW
ADD

LOW
STW

0(r3),r11 target of BV instruction 11
next instruction, never executed!

target of BL instruction 12

13

14
15

"A taken branch instruction, 12, is executed in the delay slot of a preceding
taken branch, 1I. When this occurs, the first branch 1I schedules its target
instruction, 13, to execute after 12, and the second branch, 12, schedules its
target instruction, 14, to execute after 13. The net effect is the out-of-line
execution of 13, followed by the execution of 14. Also, if 13 were to be a taken
branch, its target, 15, would execute after 14, and 14 would also have been
executed out of its spatial context."

How can we translate this strange computer situtation into a real life analogy? It would
be as if, on our flight to Minneapolis, we were high-jacked to New York, but the
high-jackers were unable to keep us from stopping in Minneapolis just long enough to
lose our bags (i.e., one cycle).

When I first saw this example in the manual, 1 was at a loss to think of any practical use
for it. But it is never wise to assume that anything in the HPPA is by accident. On
further reflection, I thought I could see a way to use two branch instructions in a row to
good advantage. Classic 3000 hackers are aware of the XEQ instruction, which allows
you to execute another instruction, one that is not known until execution time. The
HPPA does not have an XEQ instruction. But, by combining the above example with
the fact that the HPPA does not distinguish between code and data as strongly as the
Classic 3000 does, you might be able to produce a reasonable facsimile of the XEQ
instruction.

The HPPA delayed branch is not just an intellectual curiosity that you can ignore. It
has may practical implicatons. When you are using the system debugger to set a
breakpoint near a branch instruction, it is very difficult to remember that the instruction
after the branch will be executed before the target of the branch. Deciding where to set
the breakpoint can sometimes seriously strain your imagination.

0052-11 Spectrum Instruction Set



Memory Addressing

One of the goals of the HPPA project was to allow programs to address enormous
amounts of memory, many times more than the current hardware technology can deliver.
The memory Load and Store functions compute an effective byte address by adding an
Offset value to a 32-bit Base address held in one of the 32 registers.

The effective address, however, is not a real memory address, nor is it an address in the
stack Data Segment (as in the Classic 3000). It is an address within a Space. The HPPA
can have thousands of spaces active and the program can access eight of them at any
instant using eight hardware Space Registers. Within the memory reference instructions,
the S field tells how to select the Space Register. If S is I, 2, or 3, the instruction uses
the space defined by Space Register I, 2, or 3. If S is 0, it 'uses the space defined by 4
plus the upper two bits of the address in the Base-Reg value (i.e., 4, 5, 6, or 7).

Spaces are similar to Segments in the Classic 3000 architecture, but can be much larger.
Only SR 0 has a hardware-defined purpose; it is used for the return address of
interspace calls. Software conventions define SR 4 as the code space, SR 5 as the stack
space, SR 6 as a space for shared data, and SR 7 for public operating system code,
literals, and data. SR I, SR 2, and SR 3 are available to the programmer as temporaries
for the construction of 64-bit long pointers (Le., pointers into any space).

Quadrants

When the Space field in the instruction is 0, the target Space Register is selected by
adding 4 to the upper two bits of the 32-bit address. Two bits allows four possible
values: 0 selects SR 4, I selects SR 5, 2 selects SR 6 and 3 selects SR 7. However, to
keep the hardware simple, the entire 32-bit word is the byte address within that space,
not just the 30 bits after the space selector. This is called short pointer addressing' since
only 32 bits are used to select both the space and the offset within the space. With long
pointers, a full 32-bit word is used for the space number and another 32 bits for the
offset within the space.

Because the upper two bits that select the Space Register are included as part of the
address, you can only address a quarter of the potential addresses in a space using a
short pointer. HP describes the restriction as follows:

"Only one fourth of the space is directly addressable by the base register with
short pointers and the region corresponds to the quadrant selected by the upper
two bits. For example, if a base register contains the hex value $40020000,
space register 5 is used as the space identifier and the second quadrant of the
space is directly addressable."

In 32 bits, we can address the first quadrant of the space pointed to by SR4, the second
quadrant of SR5, the third quadrant of SR6 and the fourth quadrant of SR7. This
makes for some very large memory addresses, and can be quite surprising to an old-time
3000 programmer. To get at the other 3 quadrants of those spaces we must use a long
pointer where the desired space register is not encoded in the 32-bit offset value.

Bounds checking of subroutine parameter addresses is a more complex issue on the
HPPA than on the Classic 3000. On the Classic, you check a parameter address to see if
it is between the DL and S registers. On the HPPA, a legitimate parameter address may
not even point to the user's data space, and read/write security within a space can

Spectrum Instruction Set 0052-12



theoretically vary from page to page (a page is 4096 bytes). Anyone who understands
this issue is invited to correspond with the author.

Pipelining and Register Interlock

In order for the HPPA to complete the execution of an instruction in each machine cycle
and to have that cycle be as fast as possible, it has pipelining. It has a pipeline of
instructions that it is preparing to execute while, at the same time, it is actually
executing the current instruction. A major obstacle to completing an instruction in
every cycle is the Memory Load operation.

What happens with memory loads on the HPPA is similar to what can happen with your
checking account. You deposit a check to your 'account on Monday, but if you try to
withdraw that amount on Tuesday, you may be blocked by the bank. They claim it
takes two cycles for the check to clear.

The same thing happens with memory load instructions. It takes one cycle just to
compute where in memory you want to load data from. Then it takes another cycle to
retrieve that data and put it in the desired register.

The machine designers faced a choice: they could either make the basic cycle time
longer to allow for both the computation of the effective address and the load from
main memory. Or, they could go on to the next instruction before they had finished
with the load instruction.

This second choice is what the HPPA does. When you load from memory, the pipeline
has already prepared the next instruction for execution. The HPPA goes ahead and
starts executing that instruction, even though it has not completed the preceding load
operation.

Question: What happens if the next instruction requires the data that is being loaded?

Answer: Register Interlock.

You should not refer to the target of a Load instruction in the instruction that follows a
Load instruction. If you do, you get a Register Interlock. This pauses the program for
one cycle, allowing the load from memory into the register to complete.

The compilers and optimizers on the HPPA attempt to re-order the machine instructions
to avoid Register Interlock. For example, a sequence that does Load-Store, Load-Store
and causes two Register Interlocks, can be converted to Load-Load, Store-Store with no
interlock delays.

A := B; LOW 31 load B LOW 31 load B
C := 0; STW 31 store A LOW 30 load D

LDW 30 load D STW 31 store A
STW 30 store C STW 30 store C

six cycles four cycles

The first code sequence with alternating LDW and STW instructions takes two cycles
longer than the second code sequence, which does both LDWs first, then both STWs.

0052-13 Spectrum Instruction Set



The ability of the compilers to reorder instruction sequences to avoid register interlocks
is important to attaining the theoretical speed of the HPPA.

The 930 Register Interlock is not as smart, nor as expensive, as the 950. Rather than
check the type of the next instruction to see if it could contain a reference to a register,
the 930 just looks for the 5-bit pattern of the register number in the position in the
instruction where register numbers usually appear. Of course, if you are executing an
instruction like LDIL (load immediate left), with its 21-bit constant operand, the 5-bit
pattern of the register may occur in the constant operand by chance. Unfortunately, you
get a register interlock anyway. The 950 avoids this trap with extra AND and OR logic.

The only reference to Register Interlock in the HP manual is on page 5-16:

"Execution is faster if software avoids dependence on register interlocks.
Instruction scheduling to avoid the need for interlocking is recommended. This
does not restrict the delay a load instruction may incur in a particular system to
a single execution cycle; in fact, the delay will be much longer for a cache
miss, a TLB miss, or a page fault."

Register Arithmetic Vs. Stack Arithmetic

The Classic 3000 has 19 arithmetic instructions that operate on the top of stack values.
The functions provided are Add, Subtract, Compare, Zero, Multiply, Divide, And, Not,
Or and Xor.

The Classic 3000 provides Add, Subtract and Compare for 16-bit and 32-bit integers and
for 16-bit unsigned integers. Zero pushes a 16-bit or 32-bit zero value onto the stack.
And, Not, Or and Xor (exclusive OR) are provided for 16-bit values only. In all cases,
the operands are -taken off the top of the stack and the result, if any, is pushed onto the
stack. All instructions compute and set Overflow, Carry and Condition Code fields in
the status register, whether you need them or not.

The HPPA has similar arithmetic functions, but the operands are always 32-bit values.
If you want to Add two 16-bit values together, you actually do a 32-bit Add and then
manually check the result for overflow of 16 bits using another instruction. The
arithmetic functions take two of the 32 general-purpose registers as input and one of the
registers as output. The Multiply and Divide functions are not included in the HPPA
instructions set and were discussed in detail earlier in this article.

Addition

There are numerous variations on each of the basic arithmetic functions. For example,
here are the ways you can Add two registers and put the result in a third:

ADD Add (32-bit signed addition)
ADDO Add and Trap On Overflow
ADDC Add with Carry
ADDCO Add with Carry and Trap on Overflow

ADDL Add Logical (32-bit unsigned addition)

The regular ADD instruction does not trap on integer overflow; there are variations on

Spectrum Instruction Set 0052-14



the instruction for trapping. Languages differ in their treatment of overflow conditions.
Pascal has very precise requirements for overflow traps, while the C language explicitly
says that it does not trap on overflow - the result is undefined. "With Carry" means that
the carry bit from a previous add function is included in computing the answer. ADDL
is an unsigned 32-bit addition, where all numbers are treated as positive values.

Nullification

On the Classic 3000, arithmetic functions adjust bits in the status register which you can
then test in a branch instruction. For example, you might subtract one number from
another and branch if the result is zero. On the HPPA, arithmetic instructions allow you
to "nullify" the next instruction if a certain condition, such as zero result, occurs or does
not occur. Rather than have numerous conditional branch instructions, the HPPA puts
the conditional logic in the arithmetic instructions. This is similar to many other
machines that have "skip" conditions in instructions (if something happens, skip the next
instruction). Experienced programmers who have worked with the HPPA at the
machine-language level report that having Nullify in so many instructions is a big aid to
writing tight code.

Subtract

There are even more variations on Subtract than there are on Add:

SUB
SUBO
SUBB
SUBBO
SUBT
SUBTO

Subtract (32-bit signed SUbtraction)
Subtract and Trap On Overflow
Subtract with Borrow
Subtract with Borrow and Trap On Overflow
Subtract and Trap on Condition
Subtract and Trap on Condition or Overflow

Subtract "with Borrow" is similar to Add "with Carry": it means that the borrow bit from
a previous subtract operation is to be included in computing the answer. As with Add,
there are versions of Subtract to trap or not on overflow. The "trap on condition"
instructions give you the ability to trap to an error routine if a certain condition results
after doing the subtraction. Having a trap instead of a skip on the condition means that
you can test the condition in one instruction instead of two, but the usefulness of this is
limited to tests that will likely abort the program when the condition occurs. These are
probably included for doing efficient bounds checking of array indices.

Compare Function

COMCLR is the Compare and Clear function. The two input registers are compared and
the next instruction can be conditionally skipped, based on the result. In addition, you
have the ability to clear another register in the same cycle. Some day you may
appreciate being able to compare and clear in the a single instruction. For example,
using the Nullify field in the COMCLR instruction with a following Add Immediate
Instruction, you could compare two registers and leave a zero or one in another register
that reflects the'result of the compare.

0052-15 Spectrum Instruction Set



Logical Functions: And, Not, Or, Xor

The HPPA has basically the same logical functions as the Classic 3000, except that the
operands are any of the 32-bit registers rather than the 16-bit values currently at the top
of the stack. There is one unusual instruction:

ANDCM And with Complement

ANDCM complements the value of one register, then ANDs it with another register,
leaving the result in a third register. The ANDCM instruction can produce the same
result as the Classic 3000's NOT instruction; ANDCM r, r , r flips the bits in register r,
ANDs them with the register r and stores the result back in register r, effectively a NOT
of register r.

Immediate Functions

The HPPA has 19 machine instructions with .constant or "immediate" operands:

Opcode
LDO
LDIL
ADDIL
ADDI
ADDIT
ADDIO
ADDITO
SUBI
SUBIO
COMICLR
COMIBT
COMIBF
MOVIB
ADDIBT
ADDIBF
DEPI
VDEPI
ZDEPI
ZVDEPI

Operand-Size
14 bits
21 bits
21 bits
11 bits
11 bits
11 bits
11 bits
11 bits
11 'bits
11 bits
5 bits
5 bits
5 bits
5 bits
5 bits
5 bits
5 bits
5 bits
5 bits

Function
Load Offset
Load Immediate Left
Add Immediate Left
Add to Immediate
Add to Immediate and Trap On Condition
Add to Immediate and Trap on Overflow
Add to Immediate and T,.ap on CondjOvfl
Subtract from Immediate
Subtract from Immediate and Trap on Overflow
Compare Immediate and Clear
Compare Immediate and Branch if True
Compare Immediate and Branch if False
Move Immediate and Branch
Add Immediate and Branch if True
Add Immediate and Branch if False
Deposit Immediate-
Variable Deposit Immediate
Zero and Deposit Immediate
Zero and Variable Deposit Immediate

The Classic 3000 has only 10 immediate instructions and they all have an 8-bit constant
operand. The Classic 3000 has MPYI and DIVI, but lacks the Deposit Immediate
instructions. The HPPA has more immediate instructions, but they are all· "basic"
one-cycle instructions (i.e., no multiply immediate instruction).

The size of the immediate operand on the HPPA varies: 5 bits (-15 to +15) for branches
and bit deposits, 11 bits (-IK to +IK) for most immediate functions, 14 bits (+8K to
-8K) for Load Offset which can also add, plus Load and Add Immediate Left (they take
a 21-bit operand that is shifted left to have 11 zeroes after it). Using LDIL and LDO
together, you can load any 32-bit constant into any register in two machine cycles. The
LDIL instruction has another interesting use: to embed statement numbers in the object
program. When the compilers want to leave road markers in the code, they use LDIL to

Spectrum Instruction Set 0052-16



register 0, which is a null operation. The constant parameter refers back to the source
code statement number or line number!

The Classic 3000 has one Add Immediate Instruction (ADDI). The HPPA has at least 6.
The HPPA can add an II-bit signed constant to a register and store the result in another
register, with four varations: no trap (ADDI), trap on overflow (ADDIO), trap on one
of 16 conditions such as less than zero (ADDIT), or trap on overflow or a condition
(ADDITO). ADDI and ADDIO can also specify one of 16 conditions for nullifying the
next instruction (Le., never, <, =, odd, etc.). Two other instructions, ADDIBT and
ADDIBF, allow you to add a 5-bit signed constant to a register, test a condition, and
branch if the condition is true or false. The conditions that can be tested in the Add
Immediate instructions (and in most HPPA arithmetic instructions) replace eleven
separate branch instructions on the Classic 3000 (e.g., BRO, BRE, BCC, and so on).

0052-17 Spectrum Instruction Set



Conclusions

The design of the Classic 3000 instruction set was heavily influenced by programmers.
Their desire was to avoid the programming problems they had encountered writing
systems software in Assembler on HP's earlier 2100 computer line. As such, the
instruction set represented their practical feel for what would be nice to program in.

The HPPA instruction set is striking in the degree to which it is based on measurements,
not feelings. Everywhere you look, it shows signs of hard engineering tradeoffs. If
measurements showed that few real programs used a particular function, that function
didn't have much chance of making it into HPPA. Conversely, if you find a particular
function in the instruction set, it probably has a valuable use in some large class of
programs (no matter how obscure it looks to you).

The Classic 3000 code is more compact and easier for people to read and write, but the
HPPA code is mOr:~ powerful. Not only can the HPPA instructions access vastly more
memory, but they are at least a hundred times more flexible than their Classic 3000
equivalent. The HPPA instructions resemble the internal microcode of the Classic 3000
much more than they resemble the official "machine" instructions of the Classic.
Because of the many options available, the HPPA depends on adroit compilers to select
the best instruction for each situation.

When Hewlett-Packard announced their intention to build a RISC machine, the
theoretical papers on RISe led me to expect a machine with 30 to 50 instructions. When
I first looked at the HPPA, I was surprised to find over 150 instructions. As I studied
HPPA, however, I started to get a feel for it. The instructions have incredible
complexity and power, but they also have "reduced complexity" from a computer
engineer's point of view. They are easy to implement in fast, elegant hardware.
Although this strategy has shifted many complex problems from the hardware to the
software, the HPPA designers appear to have provided the programmers with the power
they need to solve their problems.

Spectrum Instruction Set 0052-18



PERFORMANCE MONITORING
AND

CAPACITY PLANNING ON MPE XL

Robert S. Apgood
strategic Systems, Inc.

10502 11th Ave. NE
Seattle, Washington 98125

(206) 525-3309

I. INTRODUCTION

A vast number of excellent papers and seminars have been
presented in recent years describing the steps to and
complexities of Performance Monitoring and Capacity Planning in
the classic HP 3000 environment. While most users acknowledge
that the ideas presented in those papers and seminars would
certainly be useful, not too many-shops have actually taken steps
to implement an on-going function of monitoring and analysis to
evaluate current utilization levels and project trends of
resource demands.

The intent of this paper is not to re-hash how it's done, what
the numbers should look like, or what spiffy things our products
do to make it easy for you to accomplish this task (even though
that is true). Rather, we are going to look a common scenario
and discuss ~ this needs to be done in the classic HP 3000 shop
and, even more importantly (is that really a word?) why it must
be done in the MPE XL environment.

This paper can be viewed as an "intrOduction" to the concepts and
concerns of performing monitoring and analysis. It is the first
in a series of papers to be presented by Strategic Systems, Inc.
on the subject and will be followed in later conferences with
progressively more technical and complex presentations.

II. TWENTY-TWENTY HINDSIGHT

Historically, in the MPE/V environment, most shops haven't really
experienced the need for trend tracking. Why? The basic answer
to this question is that they haven't really needed to. For the
majority of its life, the HP 3000 hardware has been able to
exceed the capabilities of the MPE operating system. Then, as
the processing demands of most shops increased, the capabilities
and performance of MPE kept pace with those demands and the user
was lulled into a false sense of security that "trusty Old Clem"
was actually able to handle the throughput demands all along.
This feeling was further compounded by the fact that most shops
experienced a need for greater connectivity (more terminals or

Paper 0054 - 1



higher capacity discs) and upgraded to boxes that allowed this
increase before (and in many cases well before) they ran out of
other, more fixed in capability, resources (memory, CPU and
channels).

Not heeding the ~ndirect warnings coming from HP and users who
had experienced similar phenomena in DP environments such as IBM
shops, resource utilization tracking seemed unnecessary and no
plans for implementing this tracking were made in the average HP
shop. And then one day •••

"HI! I'm your friendly neighborhood BRICK WALL!"

A look with your favorite monitoring tools shows you:

CPU UTILIZATION
I/O UTILIZATION
MEMORY UTILIZATION
RESPONSE TIME

99%
87%
98%
(Well, feel like taking an early
lunch? You certainly have the
time! )

So, now what? You call your HP sales rep and he tells you, "We
can upgrade you to a Series 70!"

"Great!", you reply, "When can I take delivery?"

"September!", he cheerfully informs you, "I know it's a little
ways away, but we've had quite a few orders for them recently."

Considering that today's May 13 (a Friday, wouldn't you know it),
it seems that you're not the only ones who've had this little
problem.

Sound familiar? Take solace in the fact that it's a frequent
occurrence. But "what if" (poignant pause) yOU'd known for
several months that you were going to run out of CPU sometime in
May and yOU'd long since placed your upgrade order, and HP was
installing it tomorrow••.

What we're talking about here is nothing new. This same type of
situation has been occurring in DP shops for years. In the HP
world, in the IBM world, in the DEC world, in shops with every
type of computer hardware ever made. The only difference is that
very few of us in the HP world ar& truly prepared for it.

III. THE IIINDIUM INFORMATION NEEDED

To effectively track resource utilization and response trends, a
minimum set of information must be maintained over a period of

Paper 0054 - 2



time. First, we must understand what the primary components of
our systems are:

1) CPU
2) Disc I/O and capacities
3) Memory

The effectiveness (or lack thereof) of the performance of each
and all of these components are the contributors to the overall
effectiveness of processing efficiency. The most apparent
measurement of this effectiveness is the user's perceived
response time. If the CPU is experiencing an abnormally high
demand from the various processes executing, the perceived
response time is lengthened. If an abnormally large number of
disc I/O's are being required at the particular point in time,
the requests are "queued" for servicing and the user must wait
until the disc can service his/her particular request(s). A
similar situation occurs when a process requires memory and none
is currently available. When this happens, the Memory Manager is
"awakened" and it is its duty to make the required space
available to the process. If any (or commonly, a combination) of
the above demands occurs, the user process is "stopped" until the
request has been serviced.

So, it becomes rapidly apparent that tracking resource
utilization over an extended period of time is required if we
want to "see" how our processing demands are growing.

CPU:
Monitoring CPU utilization is probably the most critical and
important of the major system resources. The reason for this is
quite simple•.• it costs the most to replace. Luckily, except in
rare circumstances (adding a new, major application, for example)
does this utilization rate climb at a drastic rate. Therefore,
planning for a CPU upgrade can easily be done in a time frame
that allows for bUdgeting and ordering so as not to be caught off
guard by the requirement. As stated before, however, this is the

. priciest of the major system components to enhance and, as such,
close scrutiny to the performance of the other components should
be made to determine that the bottleneck encountered or
anticipated is, indeed, the processor.

DISC:
Disc is the second costliest resource to enhance. Unfortunately,
it is frequently quite true that when the determination is made
to add more disc to the system is required, the error factor is
generally fairly low. Face it, if you need more disc space, you
need more disc space. No surprises there. If you're looking for
a rule of thumb, then if you've hit 85% disc space filled, you'd
better call your sales rep. The assumption, of course, is that
you've already purged @.@.GAMES, @.LASTYEAR.ACCTING and
@.BACKUP.REFLECT.

Paper 0054 - 3



DISC 1/0:
Disc I/O is a frequently overlooked bottleneck. Unfortunately,
Disc I/O bottlenecks have a nasty habit of disguising themselves
as Memory Shortages. The last thing you want after waiting two
weeks for your memory upgrade is to discover that your
performance problem didn't go away. The common misconception is
that since disc I/O rates are high, and Disc Caching is turned
on, then Disc Caching must be the cUlprit and adding more memory
will solve the problem (especially since that memory sales rep
told you it would)! Now, don't take me wrong, more memory has
its place, as I will discuss further, but right now we're looking
at disc I/O. Entire papers and products have been written about
disc caching, so I won't go into an extended discussion about it
here. However, just as often as memory is the problem with disc
I/O, so too is the caching configuration.

A second common problem with disc I/O is that the load placed on
the discs is just too great for your current hardware
configuration. This is particularly true with Series 70's. More
than once has a system been configured with six 7933's all daisy
chained together nice and pretty and then hung on one GIC on one
1MB. Sure, it's pretty••. and pretty slow. As with Disc caching,
a multitude of papers has been presented on hardware and disc
load balancing, so pursuing the details involved doesn't fall
within the scope of this paper. The point being made is that
before a decision to upgrade hardware is made, information must
be gathered over an extended period of time and a careful
analysis of the existing environment is mandatory.

MEMORY:
A shortage of memory will, without argument, cause a serious
system performance degradation. If application programs are
segmented poorly, or a large number of distinct processes are
competing for the memory available, or the current disc caching
configuration is causing a large number of write hits to dirty

. pages or a large number of cache domains are resident, then
memory manager activity will definitely cause performance
problems. However, most machines being sold today are generally
intelligently configured with memory and another cause will
frequently lead one to believe that a memory shortage exists.
True, additional user load and/or new applications can create a
need for additional memory. Unfortunately, not nearly so often
as is suspected. Yes, more memory will hide a 'caching problem in
many instances. However, a close look at and "twiddle" of
caching fetch quantums will often "solve" a "memory shortage"
problem. Again, more knowledgeable authors than I have addressed
this syndrome in great detail and I refer yo~ to their expertise.

IV. BOW THE "BIG BOYS" DO IT

Paper 0054 - 4



Albeit new to the HP world, resource tracking and trend analysis
is not new technology.

In one form or another, disc caching has been around for many
years on other vendors hardware and fairly exacting methods for
monitoring its effectiveness have been developed. The same holds
true for memory utilization reporting, disc utilization reporting
and response time analysis. What appears to many to be new
technology, as some of you "Big Blue" expatriots well know, just
isn't so.

So, what do we need to see?

RESPONSE TIMES vs. USERS
The best place to start is to determine what the "average"
response time is based upon the number of users on the system.
This type of trend analysis encapsulates the effectiveness of all
the systems resources in the manner in which it affects the
users. This historical information is valid on a daily, weekly,
monthly, quarterly and annual basis.

As the "Response Times vs. Users" diagram indicates, it is
possible to get a good feel for system efficiency just by
tracking the average response time and mapping it into a
predefined "acceptable" limit. The "acceptable" limit is a
subjective response level defined by the system administrator.
This is the level that the system administrator assigns as the
maximum time in which a transaction must occur in order to
accomplish the tasks of his/her environment.

Also provided by the system administrator is a "projected"
response level, based upon past performance, that he/she
anticipates the users will experience sUbject to the number of
current users.

The "observed" response times for users are then tracked and
mapped to this projection thereby providing the system
administrator with a "snapshot" view of historical system
performance. When a significant deviation is noted in the
"observed" vs. "projected" slopes, the system administrator is
quickly made aware of the fact and a more in-depth analysis can
be made to ascertain the cause. Frequently, a deviation can be
ignored if it still falls within the "projected" or "acceptable"
limits. However, when this is not the case, sUbsequent reporting
must be available to track the cause.

CPU UTILIZATION
Another, critical piece of information is an historical view of
CPU utilization over an extended period of study. As with
Response Times vs. Users, this report is useful for indicating
peak CPU usage hours (daily), peak CPU usage days (weekly and

Paper 0054 - 5



monthly) and, to a lesser degree, is useful on a quarterly and
annual basis.

Tracking CPU utilization quickly indicates the peak demand
periods for this critical resource and provide~ the system
administrator with the information he/she needs to determine what
steps can be taken to balance this demand.

As the "CPU Utilization" diagram indicates, tracking this
information over the period of interest and computing an average
CPU utilization demand gives invaluable insight into growing use
of the processor. Tracking the "average" information on a
quarterly or annual basis shows trends in increased CPU usage and
allows for proactive steps in meeting a CPU saturation point as
described in the above scenario.

DISC UTILIZATION
This is the most easily understood report and is self-describing.
We note that disc utilization (disc space filled) is fairly
static on most systems from day-to-day. In our example "Disc
Space utilization" diagram, we note that at the end of the month,
a significant increase in space utilization occurs. In our
example, we've added a new, large application and it demands a
fair amount of all resources. Referring back to CPU utilization
and Response Times vs. Users, they support this observation. The
rule-of-thumb here is, "If you try to put ten pounds of dirt in a
five pound sack, it just doesn't fit. Period."

DISC IIO RATES
Whereas, Disc Space Utilization is an important subject of
monitoring, Disc I/O Rates give a more informative description of
the "pulse" of your disc I/O demands. Unfortunately, there are
no "magic formulas" or rules that can be followed. This is due
to the fact that virtually every machine has its own unique
configuration. So, what is the ceiling on one Series 58 may well
be the floor on another. This is particularly true in the Series
6x, 7x environment where you can have mUltiple IMB's, and a
significant number of GIC's; which all can be processing disc
I/O's effectively, simUltaneously.

The diagram "Disc I/O's Per Second" shows that we've established
an "acceptable" limit of 70 I/O's per second. This configuration
is on a Series 48 with two 7933 drives each on their own GIC. At
an average rate of 35 I/O's per second each, an "acceptable" rate
of 70 I/O's per second total is within limits. If, on the other
hand, You have a Series 70 with two IMB's, at a supported limit
of two high-speed GIC's per IMB and a single Eagle drive on each
of those GIC's, you could mUltiply the 70/sec rate by a factor of
2.5 and have a more-than-reasonable "acceptable" level.

So, you can see that this is certainly an environment specific
mandated report. The concept, however, is applicable to any

Paper 0054 - 6



business computing environment.

MEMORY UTILIZATION
Memory utilization is, probably, the most misunderstood concept.
Each vendor has it's own method of memory management and in some
environments, the actual percentage of memory currently occupied
is a valid measurement of memory requirements. This holds true
on the classic HP 3000 for those systems that do not have disc
caching nor AUTOALLOCATE turned on.

In our diagram "Memory Utilization", we note that memory
utilization starts at approx. 91% and rapidly hits the 100% mark.
This, in and of itself, doesn't necessarily indicate that we are
experiencing a "memory pressure" situation. An initial glance at
this report leads the experienced system manager to believe that
AUTOALLOCATE is in effect and that further study is required.
If, on the other hand, AUTOALLOCATE is not in effect, and a look
at SHOWCACHE doesn't alarm us, then we probably need to assess
our memory capacity and seriously consider adding more memory to
the system, or modify our caching configuration to better utilize
the memory currently available.

An excellent (excellent=inexpensive) method of assessing caching
effectiveness is to use CDTMGR (contributed by Bryan Carroll, HP)
found on the VEGAS swap tape. This little tool provides a real
wealth of cache performance and lets you monitor the
effectiveness of any cache configuration changes you make.

MEMORY MANAGER ACTIVITY
Probably the most accurate method of analyzing memory
effectiveness is by monitoring Memory Manager activity. This
means that you wish to observe how often the memory manager is
required to "make room" for a particular structure (code, data,
etc. ) • Although the measurement varies from vendor to vendor,
the concept is the same regardless of the type of hardware you
have. Whereas, on a FlREBLAST 6000, memory pressure is measured
in nibble-faults-per-footpound; on a classic HP 3000, memory
pressure is measured in cycles-per-second. Conceptually, the
activity is the same; some indicator of memory management is used
to measure how much time the Memory Manager is spending servicing
the memory requirements of a particular process.

As a brief synopsis, on the classic HP 3000, when a request is
made by a process for memory, the memory manager "cycles" through
memory looking for available space to place the required
structure in memory. The greater number of times (per second)
that the Memory Manager needs to look through all of the memory
available to find (or create) that space, the longer the process
has to wait to continue.

As in the case of our example ("Memory Manager Cycles"), for the

Paper 0054 - 7



majority of the month, Memory Manager "found" the space it needed
with a minimum of cycling required to satisfy the request.
However, we note, at the end of the month (after loading our new
application) the number of times that MM had to cycle through
memory increased drastically before a particular request could be
completed. So, although Memory utilization certainly didn' t
indicate that we were experiencing memory pressure, Memory
Manager Activity certainly did!

V. BOW IT APPLIES TO MPE XL

Now that we have an historical perspective of the concepts of
resource utilization tracking, along with an indication of how it
applies to the classic HP 3000 environment, let' s turn to the
applicability of these concepts to the MPE XL environment.

In the MPE XL environment we have the following resources that
contribute to the processing of a particular task:

1) CPU
2) DISC
3) MEMORY

So what's new? ..• Nothing.

The only change in that processing is the manner in which certain
tasks are performed and in the capabilities of the resources.
CPU is faster. Disc I/O is faster. Memory is more abundant and
addressability is qreater. BU~ the concepts are exact1y the
same!

RESPONSE TIMES vs. USERS
We still have online users who still have a perceived response
time from the system. Therefore, we still need to track (and
project) what that response time is based upon the number of
current users.

CPO
We still have a CPU that is capable of performing a finite
(albeit greater than the classic HP 3000) number of tasks in a
given period of time. Therefore, we need to track the
utilization of that processor over a period of time to determine
what our historic needs have been, what our current needs are,
and to project what our future needs will be. This becomes
particularly important in the HPPA/MPE XL environment due to the
cost and availability of upgrades. They're inevitable, so we
need to anticipate when they must occur and plan and bUdget for
them accordingly.

DISC UTILIZATION
The only surprise we may experience here is that we use up disc
space faster than we did in the classic HP 3000 environment.

Paper 0054 - 8



This is no surprise. In a RISe based architecture, the compilers
generate more numerous instructions to accomplish a task than do
their else counterparts. Additionally, we've grown into the HPPA
environment, basically, due to the fact that the shear volume of
our processing and data demands have increased. Additionally,
with the advent of virtual mapping of data structures, among
other items (such as the size of MPE XL, itself), our "virtual
memory" requirements have increased.

Paper 0054 - 9



DISC 1/0 RATES
Certainly, Disc I/O rates will increase due to the fact that we
now enjoy the benefit of a much more efficient I/O facility.
However, we can't ignore this aspect of resource monitoring. The
concept of load balancing (both file locality and physical
hardware configuration) doesn't change. If a channel or disc is
busy, it's flat busy, and the hardware can only perform a single
item of work at··any single given instant.

MEMORY UTILIZATION
For the exact same reasons mentioned above, if there is memory
available, it will be used. The only real change that we will
note here is that the Disc Caching Facil i ty (actually, the
conceptual process) is now an integral part of the I/O and Memory
facilities. To "change caching configuration" becomes a
meaningless concept in that the function is, essentially,
performed dynamically. The MPE XL experts out there, I'm sure,
will take issue with the "imbedded caching" analogy. For their
benefit, I confess that the technical implementation is far more
sophisticated and pervasive ~-than the analogy leads one to
believe. Please bear in mind that the intent is to convey the
concept and not to discuss the technical aspects of the
implementation of that concept. So, to them, I extend my
apologies and challenge them to make a presentation describing
how, from a technical perspective, my analogy is meaningless.

MEMORY MANAGER ACTIVITY
As in any other vendor environment, measuring Memory Manager
activity is still the best method of evaluating the effectiveness
of the memory resource. If Memory Manager activity is high,
something needs to change. A close scrutiny of the HPPA
implementation clearly reveals that memory is a critical (!)
resource to efficient throughput. I now start to support the
memory proponents to a greater degree in the assumption that
"More Memory Makes Bottlenecks Disappear. i' Although, as is true
in any other environment, this is not an absolute, in the MPE XL
environment it is an excellent first assumption. Series 9xx
buyers take note: BUY LOTSA MEMORY!

VI. WHY YOU NEED TO START NOW
It has been-the intent of this paper to make the reader aware of
the necessity and benefits of performing an on-going function of
resource monitoring and utilization trend analysis.

As has been pointed out, this function is applicable in any
computing environment (yes, even on micros, to a certain extent).
The idea is to implement a vehicle for informing the user of the
use and abuse of available system resources and to have the
information available that assists him/her in planning for future
growth.

Paper 0054 - 10



As our examples have shown, a fairly m1n1mum set of information
can provide enough data to the planning process to inform you in
a timely manner as to when you can expect to increase the
quantity or capability of a resource that is approaching a
saturation point.

For those of you who are planning to upgrade to the HPPA
environment, this can be of exceptional benefit. On the first
hand, it may well show you that enhancing a particUlar resource
may enable you to defer the upgrade for an extended period of
time. Just as important, this information can give you concrete
data for presentation to management to justify the upgrade for
which you have been pushing. Either way, knowing what is
happening on your system ensures that you' re prepared to make
whatever changes you will need to make in an informed,
intelligent manner.

Paper 0054 - 11



Response Times vs. Users

January '88

I"'d 10
C»
't:S
(I)
1-1 Acceptable
0
0 8 0In
~ .....-...

Ul Projectedu

~ ~

t- Q) 6
ObservedN .E

r-
Q)
Ul

4c
0
0-
Ul
Q)
a:

2

0
5 15 25 40 60 80 100

10 20 30 50 70 90
Number of Users



'"d 100
D)

"0
~

t1

0
0 80VI
~

-0
.... OJ
w ~ 60

~
C
Q)

~ 40Q)
0...

CPU Utilization

January '88

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Day of Month

Observed

Average



'"d
C»
't:l
(1)
t1

0
0
VI
~

"'0
OJ

..... ~
~ ~

+-'c
OJ
~
OJ

0....

Disc Space Utilization

January '88

100.---------------------:---1

801-----

601-.---------------

401----------------------1

201----'------------------

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Day of Month

Observed

Average



o .I

o
U1
~

....
VI

Disc I/O's Per Second

January '88

80...------------------.,

60 ---....---..------.-....-----.---f------.-..-\---I

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Day of Month

Acceptable
~

Observed



Memory Utilization

January '88

100
~~

Q)

"0
ObservedCD

t1

0 80
0
VI

Average~

-0
Q)

~
~ 60

0\ ~
C
Q)

~ 40Q)
Q..

20

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Day of Month



~
Q)

"0
CD
11

0
0
VI
~

-0
C

..... 0
U-..J (1)

U1

"Cf)
(1)

~
U

Memory Manager Cycles

January '88

3.-----------------------.

2.5 _.-._..__.- -.-..-.-..__.- - - -.--..---- _ _..-- -.-.h.-.-..- ..-._.._._ _ ---tI....-~

2

1.51-----

1 --.---.----.-----------------

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Day of Month

Observed

Average





SALES FORCE AUTOMATION: A Case Study
Nolan M. Alexander

Bepex Corporation
P.O. Box 880

Santa Rosa, CA 95402

BACKGROUND --

Bepex Corporation is an international company with
facilities in Chicago, California and Minneapolis in
addition to sites in Scotland, Holland and West Germany.
Bepex manufactures process equipment for the food and
chemical processing industries and maintains a domestic
(U.S. and Canada) sales force of nine people.

PROJECT HISTORY --

Bepex Corporation's entry into the area of Sales Force
Automation began in 1985 when the company president tasked
the Information Services Department (ISO) to investigate the
possibilities of placing micro computers in the offices of
our field sales representatives. At the time the specific
goals of the project were vague but centered around
electronic mail and imprOVing the processing of call
reports. Information on several systems was collected and
forwarded to the president but no action was taken and the
project was placed on hold in favor of more pressing needs.

In mid 1986 ISO was again tasked to evaluate possible
systems for the field sales offices. At this time we
examined the HP Portabl~, the HP150, the Telecompaq and the
HP VECTRA. The VECTRA was recommended for its ability to be
a HP terminal (via AdvanceLink 2392) and its IBM software
compatibility. By now the project was defined as trying to
improve communications with the field sales offices.
Specifically, to get call reports on a more timely basis and
respond to requests from the field and possibly, to allow
direct access to manufacturing systems and order status in
the HP3000 by the salesmen. Estimates of the hardware and
software costs were prOVided to management along with a
schedule for implementation.

In late 1986 the project suddenly moved into high gear.
Could ISO acquire at least one sample system and prepare a
presentation/demonstration for the annual sales meeting the
folloWing February? Simultaneously, Hewlett-Packard was
introducing Sales Force Automation to the installed base.
Our HP salesman was aware of Bepex's interest in this area
and urged us to attend the Sales Force Automation seminar.
The success of HP test program and the transformation of the
Portable to the Portable Plus caused us to recommend to the

SALES FORCE AUTOMATION: A Case Study
0057-1



company president that we scrap the plan to put VECTRA~s in
the field and use the Portable Plus and HPDESKMANAGER IV.
This last-minute change caused the president to seriously
doubt if we really knew what we were talking about but he
did agree.

The system configuration settled on was:
HP PORTABLE PLUS with 512K and built in modem
Think jet printer
Portable disk drive
Advance Mail with Reflection software
Lotus 1-2-3
Memo Maker with Time Manager
Executive Card Manager

After shopping around several sources we entered int~

a purchase agreement with a local HP dealership for eight
systems and took delivery of one system right away for
prototype .development and as a demonstrator for the sales
meeting.

The e~tire project was now more clearly defined.
consist of two principal phases.

PHASE I:

It would

Get the portables into the' field sales offices.
Install HPDESKMANAGER IV on the HP3000.
Start the flow of communications between the
company offices and the field sales offices via
electronic mail.
Give the sales force additional tools in the form
of the software on the Portable Plus.

PHASE II:

Additional Portable systems available for
executives, managers and salesmen to use when away
from their offices in California and Minneapolis.
A general inqUiry SUbsystem to be written for
Bepex users that will allow them to log onto the
HP3000 and, in a single log-on, access inquiry
screen for any Bepex software system. A kind of
executive level inquiry.
Custom basic program for the portables that would
contain proprietary formulas to be used as sales
tools.

Now we had a plan and a prototype; the only other thing we
needed was a couple of salesmen with the willingness, or
even better -- enthusiasm, to be the beta test group. It

SALES FORCE AUTOMATION: A Case Study
0057-2



was decided to present the project at the annual sales
meeting and hope that at least two volunteers would
surface. Taking a page from Hewlett-Packardls book, the
presentation was based on a series of "What ifls". What if
a salesman could directly access the order database or what
if he could have direct access to the desk of the company
president when a $500,000 order hung in the balance? What
1f he could prepare customized charts and graphs based on
his customers I requirements? What if he could take word
processing, electronic mail and spreadsheet capability on
the road with him in a machine that could withstand the
everyday bumps and grinds of traveling? The response to the
presentation was much more than our expectations; out of
eight eligible candidates we had eight eager volunteers.

TFAINING --

Given the response from the field sales force we decided to
go ahead with a group of four, instead.of two, for our pilot
group. The four systems were delivered to the California
facility where they were assembled by ISO and configured.
Then the systems were shipped to Chicago where the training
would take place.

The training program is eight hours of introduction ·to
personal, portable, computing and was segmented into three
sessions. The first session was four hours and covered the
following:

Hardware (setup and basic operations)
System configurations
Memomaker
Time manager
Introduction to Advance Mail

At the end of the session the students were given reading
assignments and exercises to complete for the next day. The
second session was two hours and covered Advance Mail
exclusively. Most of this session was spent generating
messages, transferring them via modern to the 3000 in
California and picking up mail from the 3000. At the end of
this session the students were given additional reading
assignments and exercises. The final two hour session
consisted of an hourIs review of Advance Mail and an
introduction to Lotus 1-2-3 and Executive Card Manager.

The training sessions were very carefully designed to keep
in mind that the students had little or no background in
personal computing. Careful attention was given to
terminology, specifically to define new terms and to avoid
using interchangeable terms that tend confuse new users.

SALES FORCE AUTOMATION: A Case Study
0057-3



Now that the field personnel were trained it was necessary
that they have someone to communicate with. The training of
HP3000 users in HPDESK was started. Users were trained
individually or in groups of two. In review, this was
probably a mistake. It used a lot of time on the part of
the trainer and produced results too slowly. Another
problem was encountered involving the· terminals. Most of
the key personnel that we needed to get into the electronic
mail network were using 264X series terminals. These
terminals are supported by DESKMANAGER IV but not for all
features. The most critical feature not supported was the
function key labels. These labels are critical to new
HPDESK users because they remind the user what his or her
options are in any given function of HPDESK. The 2640B
terminal (we had four) doesn't support the full screen edit
function for entering or editing text and the users found
that the subset of Editor was difficult to learn and use.

CURRENT STATUS

At this time, seven systems have been distributed to the
field sales personnel.. Two salesmen do not yet have
machines but they operate out of offices in California and
Minneapolis where they have access to HPDESK via terminals.
All HP3000 users have been trained and older model terminals
have been replaced with units that support all the functions
of DESKMANAGER IV. Phase II of the project has been
postponed in favor of more pressing reqUirements for
manUfacturing operations. Phase I of the project is
complete and is considered by all involved to be a success.

All personnel who are part of the network are required to
check their electronic mail at least once each day.
Portable users tend to perform this function more on the
order of twice each day as they generate the most traffic.

Portable Plus users are also reaping additional benefits
from the additional software packages available on the
Portable Plus. MemoMaker is allOWing them to perform light
word processing duties and with the recent announcement of
ink for plain paper this feature has become even more
valuable. Executive Card Manager allows the salesmen to
maintain a personalized database of their customers and
contacts. Lotus 1-2-3 prOVides a means to calculate and
plot technical data for presentation to clients and sales
prospects.

USER EVALUATIONS

SALES FORCE AUTOMATION: A Case Study
-. 0057-4



The following are excerpts from evaluations of the Portable
Plus, Advance Mail and other software by the salesmen.

"Basically, the HP-Portable Plus System is a welcomed
addition to my office. The packaged programs have given me
flexibility in my one man field sales operation my
written response time to customer requests was slower
because most responses were hand written prior to giving the
information to the secretary. This doesn1t mean I don1t need
a secretary, but my need is reduced by using form letters
saved on the discs and getting urgent letters out quickly."

IITelephone tag is a way of life today. The system has
allowed me to send timely messages to our various offices
without wasting time trying to get the party on the
phone ... " .

tiThe system is excellent and easy to use with the exception
of the users manuals. They are totally confusing. I found
the Commodore manuals and software manuals more easy to
use."

"Lotus 123 has been useful for Field Test Reports. Graphing
techniques and spread sheets have been helpful in preparing
these reports. However, it was absolutely grueling to learn
how to graph from both the tutor and manual. It

"Time Manager: I use Calendar for important business
followup calls. The name & address files are used for direct
dialing of important customers with info such as the
secretary's name and her extension. 1t

IIAfter several days of operation I would like to offer the
folloWing comments.

The only program I've tried is AdvanceMail. This system of
transferring messages is excellent and I think it eventually
will prove to be much more than adequate in meeting our
goals of imprOVing communications.

I know I'll put much more in writing than I tended to in the
past because I don't have to deal with a trip to the Post
Office and the subsequent 3-4 day delay in transit."

"The system meets all expectations I may have held. If
anything, it is eas ier to use ... "

system meets all expectations - is "user friendlylt
and, as a complete neophyte with computers, I've had minimum
trouble picking up operation. One area of shortcoming
some of the manuals are hard to learn and confusing - makes

SALES FORCE AUTOMATION: A Case Study
0057-5



for a lot of frustrations in mastering
particularly ECM manual."

a feature,

"Most useful to date - Time Manager - also like it best ... "

"Time Manager: Most useful - I work more efficiently, get
more tasks done in one day, etc. helps with all planning for
each day, week, and long term, etc. This feature/product
can organize anyone, and make them more efficient should
never miss a followup date ... "

"Executive Card Mgr: Most useful - One disk stores so mUCh.
Like the ability to call up key fields for trip planning, or
installation data with customers. This feature greatly
enhances efforts for sales calls in key areas - shortens
planning time. Also great for customer contact with
autodial feature."

ISO EVALUATION --

Phase I of this project must be counted as a success. The
users of the the system. those on the HP3000 and those using
the Portable Plus, are enthusiastic and all agree the system
has enhanced our ability to communicate between the factory
and the sales offices. There were however, some areas that
could have been improved upon.

1. The Portable Plus users were trained and eqUipped
before the HP3000 users. This was clearly an error in
timing. The portable users were left with all that new
capability and potential but had no one to communicate
with except each other. We were fortunate their
enthusiasm carried them through the times they had to
wait for someone to be tra.1ned to receive their
messages.

2. We didn't understand the level of diffiCUlty that would
be encountered by trying to use HPOESK on 264X
terminal~. The delay in replacing these units hurt the
project by preventing key personnel from becoming part
of the system sooner. We also feel HP could have made
a stronger point of just how much more difficult it is
to use HPDESK on these terminals.

3 Installing and configuring the Portables was straight
forward and greatly aided by the manuals and
installation guides except for one .area. The
Reflection software bundled with the Advance Mail
product is totally dependent on the batch and
configuration files that are used to accomplish the
various modes of mail transfer. Yet, there is only one

SALES FORCE AUTOMATION: A Case Study
0057-6



documentation file on the utility disc along with
several sample files. This documentation is clearly
insufficient! An experienced user and system analyst
with more than fifteen years in data processing had a
great deal of difficulty in putting together files that
would do the job. The final result was a combination
of educated guesswork, trial-and-error, calls to the
response center, calls to other users and luck. An
inexperienced user with little or no data processing
or datacomm background hasn't got a prayer! Generally
speaking, the user isn't supposed to have to do
anything with these file anyway. It's the job of the
HPDESK Administrator. Unfortunately, the HPDESK
administrator manuals don't provide any relief either.

It is our opinion that if HP is going to sell the
Reflection software as part of a bundle that they ought
to bundle the documentation with it too. Many useful
features 'of Reflection remain unknown to us until we
come across them by accident. For example, configuring
Reflection on the Portable Plus to emulate the HP 26248
instead of the HP 2392A will enable forms cache and, at
1200 baud over the modem, that is a significant
feature.

4. When we first put this project together we had leaped
at the chance to dazzle our customers with our high
tech capability by using the Portable Plus from their
offices to check on order status or product
availability. We have since moved away from this
policy, indeed we now tell our salesmen to never use
the units in the customer's office for communications.
In most remote transfers the call goes through on the
very first try but, through no fault of the user or the
computer hardware, there are times when the call will
not go through at all. Data communications via voice
grade telephone lines has improved much in the last few
years but it is still far from perfect. To avoid the
acute embarrassment of being unable to make the
connection after pumping up the customer we insist that
our salesmen not take the chance. We do however,
encourage them to use the stand alone features of the
system in the customer's office if it will help the
sale.

FUTURE PLANS

Company management and Information Services are currently
redefining Phase II of this project. Early in Phase I we
planned for a time when Portable users would use the units
to call up the system and log-on as a regular interactive

SALES FORCE AUTOMATION: A Case Study
0057-7



session to interrogate the manufacturing and order databases
for information concerning their orders. We no longer view
this as a desirable and, interestingly, neither do the
salesmen. They prefer not to have to log-on and look up the
data but would rather have a order status report, for just
their orders, sent as a message on Monday mornings.

Another feature we#re investigating is setting up access for
the other companies who act as our sales representatives.
Using Security 3000 from VESOFT, we are confident about
protecting our system and applications while prOViding these
companies with the limited access they need. While these
companies would probably not be using Portables, we feel
that DESKMANGER IV, with its Foreign Service Connection, is
the appropriate avenue this type of data exchange.

Bepex Corporation is satisfied with its entry into this area
of data processing and the value of our investment in
hardware and software to support it. We view the future of
the project as open-ended, continuing to evolve in tandem
with the other systems we use to support our manufacturing
and marketing efforts.

SALES FORCE AUTOMATION: A Case Study
0057-8



Unorthodox IMAGE Accessing for Power

Joseph Berry
Kiryat Telz Stone 116A

D.N. Harei Yehuda, Israel

Noel Magee
Telephone Employees Credit Union

123 S. Marengo Avenue
Pasadena, CA 91101

Introduction

Traditionally, large databases are difficult to manage and
manipulate. Datasets with millions of records cannot be
unloaded and loaded whenever desired. Broken chains cannot,
therefore, be easily repaired. Large numbers of records
cannot easily be deleted.

For databases meeting certain logical and physical criteria,
a technique is presented here for performing the almost
instantaneous removal of millions of historical records from
a detail dataset and moving them to an archive. This
technique additionally allows access to as many of those
archived records as the user wishes, subject only to the
constraint of disc space. Modifications to application
software is minimal. As many detail records as are present
will be accessed by the application software.

Additional advantages to this technique include never having
a fragmented detail data set and being able to produce
historical reports in a very timely manner, even when
millions of records need to be scanned.

Description of the Problem

At the Telephone Employees Credit Union we provide credit
union services to communication industry employees in the
Southern California area. We are, at present, the eleventh
largest credit union in the United States. In addition to
standard savings and withdrawal accounts, we provide access
to over 10,000 Automated Teller Machines, lines of credit
(both personal and equity based), Automated Voice Response,
interbank/automatic funds transfer and other standard
financial services. In order to provide these services in a
timely fashion we use "two Series 70s at a central site
running Silhouette/3000 and Filepro trom Carolian, MTS, RJE,
NS/3000, 08/3000, and a variety of other third party
packages. Our ten branches ( located over the Southern

Unorthodox IMAGE Accessing for Power 0058-1



California area) communicate with the' central site using 3270
protocol and remote 3274 look-alike controllers.

During the past seven years TECU has experienced a growth
rate of 10-20~ per year in transaction volume. In 1988 we
averaged 40,000 online and 30,000 to 40,000 batch
transactions per day. Analysis showed that the growth rate
would problably not change in the near future. Additionally
several new services needed to be implemented in the 1988
time-frame. These increases were reflected in two primary
history data sets, HSTRY-SHARE-FILE and HSTRY-LOAN-FILE.
From a base or 400,000 entries in 1979 the HSTRY-SHARE-FILE
grew to over 4 million by September of 1987 and occupied some
1.5 million sectors or disc. This, of course, presented us
with a .file on the verge or all MPE and IMAGE limitations.

The principle difficulties with which TECU was attempting to
deal were, first, the deletion time for inactive records and,
secondly, the disc space required for so large a file. In
the fo~er case we had a deletion program which ran some 56
hours simply to delete the oldest thirty days of history.
This amount of time was required due' to the fact that the
structure was a single large IMAGE detail. In fact, prior to
Turbo-IMAGE, we could not do daily reporting from this due to
the fact that a chain, keyed by date, would have been too
long .for IMAGE. Secondarily, the file was so large that,
while one might have sufficient disc space in total, the
extent sizes sometimes prevented a simple restore ot the
tile. Often we ended up condensing volumes simply to acquire
large enough blocks of free space to accomidate the extents;
more often, we ran out of space. Also, since we updated the
tile on a daily basis, it was being stored on a nightly
basis. This resulted in trom one to three additional tapes
(at 6250bpi) being generated per night and .from 9 to 27
additional minutes of down time. Both of these problems
became critical when, in 1985, we moved to 18 hours/day
operation with the addition of proprietary and networked
ATMs. In 1986/1987, the problems were compounded. when we
moved to a new headquarters building and started to look at
full 24 hour, non-stop availability. Fumdamentally, we could
no longer afford either the maintenance nor the disc space
problems in our coming environment.

Proposed Solutions

Prior to the changes to be described, share history data was
kept in the database, TECUDB, in the HSTRY-SHARE-FlLE detail
data set. This data set was chained otf the manual master,
SUB-SHARE-FlLE.

Unorthodox IMAGE Accessing .for Power 0058-2



\ / SUB-SHARE-FILE

I
v

HSTRY-SHARE-FlLE

The decision was made to solve the problems associated with
the large HSTRY-SHARE-FILE detail data set and a number of
alternative solutions were considered. These included
multiple KSAM files and multiple IMAGE data sets.

The primary advantage o~ KSAM as the file mechanism for
storing the data was that since it was not inside an IMAGE
structure, maintenance would be easier. It's disadvantage was
that it did not have the nice item lists of IMAGE; thus
entailing more II up front II work (i.e., more severe
modifications to existing programs). This difficulty could be
overcome by making the KSAM file self-describing and the
appropiate user SL routines cognizant of that fact. The
dynamic allocation of storage space which KSAM uses would
save disc usage. The greatest disadvantage of using KSAM was
the time required to build the key file whenever the data
were moved from the TECUDB database.

Two IMAGE designs were also investigated. One design
consisted of a number of data set pairs as shown here:

\ /

I
v

\ /

I
v

\ /

I
v

This technique required that a separate database be built
containing pairs of data sets for each month (or t~e period)
in the past that is desired. Each master/detail would have
the same format as the current master/detail.

A number of advantages were presented by this design. Each
period's history data is defined as an data set pair. If
there was not enough room on the system tor all the
historical data, then as many data sets as would fit would be
maintained. To delete a month's worth of history data, the

Unorthodox IMAGE Accessing for Power 0058-3



data set linkage ~or that month wouldn't really have to be
erased. It is possible to physically purge the two data sets
and rebuild them. This procedure would take a minimum amount
of time. There is no reason to limit the number of time
periods. Depending on disc space availability, many more
months' worth of data can be stored. In all cases, the
II active" number of data sets and which pair of data sets
represents which time period would be determinable by
inspecting a stand-alone control master data.

A major disadvantage of this technique is that the large
master data set must be duplicated for each month. This
would be a large waste of disc space. Furthe~ore, in order
to profit from the purging and rebuilding ot individual data
sets, privileged mode (PM) access will probably have to be
used.

An alternative variation to the above IMAGE design was to
link all the detail data sets to one master data set. This
solution eliminates all the excess disc space. However,
similar to KSAM, an inordinate amount of time would be spent
building (or updating) the pointer in~ormation in the master
data set as historical data is added to it.

\ /
-------

I I I
I I I
v v v

Proposed Solution

Given the problems associated with the database TECUDB, we
will describe an efficient and e~fective solution for
IIsplitting up" the HSTRY-SHARE-FlLE data set of the TECUDB
database, making it considerably more manageable.

Our minimum requirements were to continue maintaining more
than three months' worth of history data in order to process
statements and quarterly postings. An important point here
is that except tor the current month, no information is added
or updated (the only exception being by the TECU Information
Services staft when repairing bad data).

Unorthodox IMAGE Accessing tor Power 0058-4



The proposed enhancement required a change in the
relationship between these two data sets. We changed the
data set structure to the following new structure:

\ / \ / SUB-SHARE-F1LE-A (AUTOMATIC)

SUB-SHARE-FILE I
(MANUAL) v

HSTRY-SHARE-FILE

We took the SUB-SKARE-FILE data set and removed the
connection to the detail data set (how this was accomplished
is explained further). In addition, we added a new automatic
master that essentially replac~d one of the functions of the
previous SUB-SRARE-FILE, i.e., chained access to the detail.
The effect of this change on existing programs that access
either of these data sets is interesting: no program changes
were required! Note that if a chained read into
HSTRY-SHARE-PILE is needed, the DBPIND references the name ot
the detail data set and not the master (therefore, no
change). It a by-key access is required into the master to
retrieve stored information, the DBGET references the master
data set name, SUB-SHARE-FILE, which is now the name of our
standalone master.

Obviously, data sets SUB-SHARE-FILE and SUB-SHARE-FILE-A have
the same key, ACCOUNT-SUFFIX. Due to changes in the blocking
factor of the SUB-SHARE-FILE, the resulting structure with
three data sets actually consumes less disc space than the
old structure consisting of two data sets.

With respect to performance degradation (i. e., increasing
numbers ot l/Os due to the additional data set), there is a
very slight increase in the number of total l/Os .
Specifically, adding a record to the HSTRY-SHARE-FlLE data
set with the existing schema took approxtmately seven
physical l/Os (not including logging). With the three data
set structure, the number of l/Os increases to eight.

In addition to the changes in the structure ot the TECUDB
database, a new, additional database, called HISTDB, was
added to the system having the following structure:

Unorthodox IMAGE Accessing for Power 0058-5



CNTL-MSTR

\ /

A-MSTR

\ /

I
v

A-DETL

B-MSTR

\ /

I
v

B-DETL

C-MSTR

\ /

I
v

C-DETL

In an operational mode, the automatic master and detail data
set from the TECUDB database will be moved into this new
database when the data in the original detail data set fills
beyond a certain limit. Each pair of master/detail data sets
will represent one arbitrary length of history data. The
master data set- is a duplicate of SUB-SHARE-FlLE-A (which is
now much smaller as an automatic master data set) while the
detail is a duplicate or HSTRY-SHARE-FlLE. Database TECUDB
will only contain data for the current period. The CNTL-MSTR
data set, pictured above, contains various kinds of
identification information.

A number of advantages result from this solution:

1. When deleting the history data, the data in
HSTRY-SHARE-FlLE doesn't really have to be erased. The two
data sets are simply purged and rebuilt. This procedure
takes almost no time. In reality, instead or purging this
pair of data sets, we rename them into the database that
stores the historical information. We then create a new pair
of empty data sets for TECUDB. Therefore, there is never any
deleting of the records in HSTRY-SHARE-FlLE (more on this bit
of magic later).

2. There is no reason to limit the number of time periods.
Depending on disc space availability, many periods' worth of
data can be stored. In all cases, the "active" number of
data sets and which pair of data sets represents which period
is determined by inspecting the stand-alone control master
data data set.

3. If a broken chain is found in the master/detail data set
pair of the active TECUDB database, the repair can be
accomplished as soon as there is a period turnover. This
data set pair is moved to our new database and is only read
accessed. A duplicate of the data set pair can be repaired on
one of the backup computers and when corrected, these two
files would replace the original ones.

Unorthodox IMAGE Accessing for Power 0058-6.



An interface procedure, HDBGET, was written to allow all the
applications to access either the normal data set pair or one
of the data set pairs from the new HISTDB database in a
transparent manner. The interrace procedure accepts almost
the same calling sequence as DBGET. It is responsible for
calling the real HSTRY-SHARE-FILE data set in the TECUDB
database. If, during a backwards chained read we arrive at
the beginning of the chain in this data set, we must then
access the most recent data set pair in the new database and
return its information to the user. We must then store
information reminding us of where we were and in which
database in order to continue our chained read. This
information must also be stored for serial access reads.

All programs that perform DBGETs on the HSTRY-SHARE-FILE
needed to be modified. Instead ot calling DBGET directly,
these programs called HDBGET. The size of the status array
was slightly enlarged and two parameters were added.

Structure of the HISTDB Data Base

The HISTDB database, when in normal operation, consists of
zero or more (up to 24) physical pairs ot SUB-SHARE-FlLE-A
masters and HSTRY-SHARE-FlLE details. These data set pairs
are moved into HISTDB via ItRENAMElts of the data sets (see the
HISTUTIL program below). In addition, there may be zero to
24 pairs of data sets associated with loan information (this
is not currently implemented except in HISTDB and procedure
HDBGET) .

In order to fool IMAGE into believing that this database
actually has so many data sets (48 pairs x 2), the schema
file was actually configured with the 96 data sets.

In addition, there is a stand-alone master data set that
controls access to the various data set pairs. This data set
marks which data set pairs actually exist and what their date
ranges consist of.

Below we see the layout of the CNTL-MSTR manual master data
set. This data set contains two records: one for transaction
history information (the detail data set being
HSTRY-SHARE-PlLE) and the second being for loan inro~ation

(the detail being HSTRY-LOAN-FILE). Within each record, the
remaining fields are replicated (indexed) 2~ times. This
represents the 24 possible data set pairs that can be present
in the HISTDB database.

Each index represents one data set pair. The indices are
maintained in backwards chronological sequence ( i. e., the
most recent date is in index 1, the first index). Since the

Unorthodox IMAGE Accessing for Power 0058-7



data in the detail data set (as it came from th4? TECUDB
database) was never modified, the data is always in physical
chronological order. Therefore, by examining the first and
last records of the data set, the date/time range can be
quickly determined.

There is really no connection between the data set pairs and
where they are located. The data sets of HISTDB were
arbitrarily given the logical names HISTDB02, HISTDB03, ... ,

. HISTDB97 (the master data set was HISTDB01). Thus, the
logical and physical names of the data sets are identical.
When a data set pair are moved from database TECUDB to
HISTDB, in1'ormation is inserted into the control data set
according to the BEGIN-DATE date. The name of the detail data
set that is assigned to this pair_ is inserted into variable
OS-NAME. In this way, the assignment of the data set pairs
can be managed, controlled, and accessed by the data
contained in the CNTL-MSTR data set.

Layout of CNTL-MSTR file:

key

ISETIBEGIN-DATE I END-DATE I BEGIN-HOUR I END-HOUR I DS-NAMEI
lID I x24 I x24 I x24 I x24 I x24 I

Elements in CNTL-MSTR:

Element Type Size Remarks

SET-ID I 1 Data set number of the data set from
the TECUDB database (i.e., there
will be one for the HSTRY-SHARE-FILE
and one for the HSTRY-LOAN-FILE).

BEGIN-DATE I 2 YYMMDD of beginning date of dat set
pair. 24 subitems.

END-DATE I 2 YYMMDD of ending date of data set
pair. 2~ subitems.

BEGIN-HOUR I 2 HHMMSS of beginning t~e of data set
pair. 24 subitems.

END-HOUR I 2 HHMMSS of ending time of data set
pair. 2~ subitems.

DS-NAME X 16 Name of the detail data set that
contains the records for this
date/ttme range. 24 subitems.

Unorthodox IMAGE Accessing tor Power 0058-8



HISTUTIL Utility

HISTUTIL was designed to perfo~ two basic functions: (1) To
take HSTRY-SBARE-FILE data set pairs from the TECUDB database
and move them to the HISTDB database, updating its CNTL-MSTR
data set. (2) To store/restore portions of data from the
HISTDB database to and· from tape. We designed the syntax ot
HISTUTIL to always relate to the HISTDB database. This was
necessary because we needed a consistent point of reference
for all commands.

This program, written in PASCAL, performs privileged mode
functions without actually going into privileged mode (PM).
The main reason for requiring PM was to be able to rename the
data set pairs from the TECUDB database into the HISTDB.
TECU already owns a program that can perfo~ this function:
MPEX from VESOFT, Inc. A phone call to VESOPT gave us the
technique for communicating program-to-program with MPEX.
This is accomplished with the MPEMAIL intrinsics: SENDMAIL
and RECElVEMAIL. HISTUTIL, therefore, created the MPEX
process as a son and transferred commands to it via SENDMAIL.
The following two procedures demonstrate this (error branches
have been removed and procedure calls simplified).

procedure create_mpex (var pin:smallint);
var

progname : string[30];

procedure createprocess; intrinsic;

( beginning of procedure
begin
progname := 'MPEX.PUB.VESOPT ';

createprocess(progname, pin);
end;

procedure talk_to_mpex(pin:smallint;var message:string);
var

status, messlen : smallint;

procedure activate; intrinsic;
function sendmail: smallint; intrinsic;

{ beginning of procedure }
begin
message := '1' + message + ' ';
messlen := strlen(message) div 2;
status := sendmail(pin, messlen, message, 1);

Unorthodox IMAGE Accessing for Power 0058-9



activate(pin, 3);
end;

Since all the PM code was isolated into a known program,
MPEX, it was easier and certainly less "dangerous" to debug.
The other function that MPEX performs is a copy function.
When HISTUTIL renames the data set pair trom being a part of
TECUDB to HISTDB, an empty data set pair must be copied into
that location. For this purpose, we created a special group
called HOLD that held an empty version of those two data sets
(i.e., two IMAGE data set files). The MPEX "peOpy" command
with the ",PASTil option was used to copy these two privileged
mode files into the proper group. The copy is usually done
automatically atter the rename unless overridden with a
HISTUTIL NOREPLACE control word. .

The standard command for adding data to the HISTDB data base
is as follows:

ADD HSTRY-SHARE-PlLE PROM TECUDB

The second major function of HISTUTIL is to store (or
archive) data trom HISTDB to tape (particularly data that is
older than a certain date). The user runs HISTUTIL and enters
the command STORE. The program presents the user with a list
ot the current data set pairs (with their date ranges) which
he/she then chooses. The program generates a job stream for
storing the appropriate files. These files are first moved
into a holding area (group HOLD) with a copy of CNTL-MSTR
data set to be able to quickly identify the contents of the
data set pairs being stored.

The data set pairs are then· archived to tape. In a similar
manner, HISTUTIL contains a control verb option that allows
data set pairs to be reloaded into HISTDB from the archives.
This is accomplished by restoring an archive tape into group
HOLD and executing HISTUTIL with the following command:

ADD HSTRY-SHARE-FlLE FROM HOLD

Two options that were added to HISTUTIL include displaying
the contents of the current HISTDB database and initializing
the CNTL-MSTR data set.

Procedure Hdbget

In order to minimize converting all the application software
to tne new HISTDB design, it was imperative that the new

Unorthodox IMAGE Accessing tor Power 0058-10



interface procedure would be as transparent as possible in
order to minimize coding changes. We started with the syntax
to DBGET and were, in the end, rorced to add two variables to
the parameter list for reasons discussed below. Our new
HDBGET supports the rollowing syntax and modes:

A A I A A A A
hdbget(pribase, dset, mode, status, list, buffer, argument,

I A
secbase, secstatus);

mode 1: re-read; like normal IMAGE

mode 2: serial read, with data-set switch capability

mode 3: backward serial read, with data set switch capab
ility

mode 5: chained read, based on secbase and secstatus rela
tive record numbers. With data set switch capab
ility

·mode 6: backward chained read, based on secbase and sec
status relative record numbers. Actual directed
dbget with data-set switch capability

Since this procedure was to reside in an SL, all variables
used by the procedure were locally defined (Q-relative).
That is, it is not possible to save info~ation on previous
calls within the procedure itself. It was seen that two
variables had to be added to the procedure call. Variable
SECBASE performs the same function as PRIBASE, i. e., to
identiry the previously opened secondary database (HISTDB).

Variable SECSTATUS is a 15 word array. The first ten words
are used as the status array for the IMAGE calls made within
HDBGET. The last five words contain the following
information:

word 11:
12:
13:

14-15:

database id of current database
data set number of current data set
unused
record number of current record

Let's .take a look at how HDBGET processes some of the
specific modes: Mode 2, or forward serial mode, assumes we
start from the oldest records (the beginning of the data

Unorthodox IMAGE Accessing tor Power 0058-11



base) to the newer records. Therefore this mode starts by
accessing the HISTDB database. If the database doesn't exist,
it immediately goes on to database TECUDB. HDBGET starts
with the oldest data set pair in HISTDB (as determined by
CNTL-MSTR). It is accessed in forward serial sequence and the
data is returned to the user. If HDBGET reaches the end of
data set, the next oldest detail data set is accessed. When
no more data sets are to be found in HISTDB, HDBGET continues
with the appropriate detail data set in TECUDB until the end
of data set is reached. At this time, the user is given an
"end of file ll error message.

The more difficult transaction types to emulate were mode 6
and mode 5. Mode 6 , for example, is the backward chained
read. Here we start with the latest information in the chain
and go backwards in time. Processing begins with the TECUDB
database. A DBFIND is performed to the detail data set,
HSTRY-SHARE-FlLE. The status array returned contains the
address of the last entry in the chain. DBGET, mode 4 is
executed using this address, retrieving the information for
the user. SECSTATUS words 11-14, are updated to contain the
next address to "be retrieved. Each subsequent call to HDBGET
uses the information in SECSTATUS to do the DBGET, mode 4,
read. When an end of chain error is encountered, HDBGET
dete~ines which data set pair in HISTDB is to be used next
(the next most current). A DBFINO followed by a DBGET is
executed (as above) and the information is updated in the
SECSTATUS array. When all data is exhausted, an "end of
chain" error is returned to the user.

To initialize the item list (for successive accesses via
.. *; .. ), HDBGET is called when the HISTDB database is still
closed (i.e., when SECBASE is still zero). This will force
HDBGET to open the HISTDB database and properly initialize
all of its data set lists. If the user wants/needs to change
the default item list in mid-program, then the HISTDB
database must first be completely closed (DBCLOSE, mode=1)
and SECBASE set to zero.

The return condition codes have been slightly altered to
logically reflect the functionality of the HDBGET call. For
example, it is assumed that a call to HDBGET will succeed and
return data (more correctly, it is assumed that the key
exists). Therefore, an invalid key will return a condition
code of 14 (on a mode=3 access), which is a beginning of
chain. It is as if we had gotten to the beginning of the
chain and had not found any data. In such a case, portions of
the DBEXPLAIN message may not be accurate. Specifically, the
data set name and the mode may display erroneous results.
This is due to the various other database accesses that
HDBGET performs on the HISTDB database. The only item that is
really examined is the condition code. Further information

Unorthodox IMAGE Accessing for Power 0058-12



can be gleaned (if one really wants to) by examining the
SECSTATUS array.

Implementation of Solution

The implementation of the HISTDB database into an operational
reality required careful and meticulous planning. The
following steps describe the overall process that lead to the
successful implementation the reorganization ot the
HSTRY-SHARE-PILE data set. Rerer to the accompanying chart
below.

[A] Test the process ot converting the current TECUDB
structure to the new TECUDB structure. Use the
procedure described below.

[B] Design and build the HISTDB and place a working copy on
the secondary computer system.

[C] Store a copy of SUB-SHARE-FILE and HSTRY-SHARE-FILE
onto the secondary system. Using a contributed library
program, SELCOPY, begin extracting historical data
(sorted by date) from HSTRY-SHARE-FILE and store into
data base HISTDB as a number of data set pairs.

[0] Identify all source code that accesses the
HSTRY-SHARE-PILE with a view towards identifying the
types of source code changes that need to be made with
the new structure.

[E] Write and debug the procedure that accesses the new
HSTRY-SHARE-FILE and the HISTDB database (procedure
HDBGET). Once debugged: install into production system.
(It should function ill a pass-through mode since the
HISTDB database won't exist yet.)

[F] Make any changes to existing programs (as identified in
[D]) that access HSTRY-SHARE-FILE to also access the
new HISTDB database. Use the procedure(s) written in
[E] .

[G] Define and setup, in detail, the procedure for
switching the HSTRY-SHARE-FILE from TECUDB to the new
database (on a history set interval changeover). This
will result in a utility that will perform or invoke
all the functionality automatically (HISTUTIL).

[8] Perform full system test of the online system and other
programs that access the HSTRY-SHARE-FlLE.

Unorthodox IMAGE Accessing for Power 0058-13



[I] When ready to make the changeover to the new database
structure, store the latest copy of SUB-SHARE-FlLE and
HSTRY-SHARE-FlLE from the primary system onto the
secondary system. If there are space constraints,
store the historical data temporarily to tape.

[J] On the secondary system, use SELCOPY to extract the
remaining data from HSTRY-SHARE~FlLE that have not yet
been extracted, sort the data by date, and write it to
HISTDB. Delete the SUB-SHARE-FlLE and HSTRY-SHARE-FlLE
from the secondary system.

[K] Convert the production TECUDB database to the new
structure

[L] Move HISTDB to the primary system.

-- [J] -------[L]
\ /

\ /
\ /

[K]

[A] ----------\
\

\
\
\

\ \
-------\\

\\
-- [F] --------- [8]--[1]

/
/

/
------------------/

[B] ---------- [C] -----
\
\-------\
\ \

\ [D]---[E]
\

\
\

[G]

Prior to Conversion Day

(I) Build a new database using TECUDB's new structure.

SUB-SHARE-FlLE SUB-SHARE-FlLE-A

\A / \B / \ / \ / \D /
-- 01 02 -- 04 05 07
\ / / / \

\ / / / \
v v v v v

03 06 08 09

Iroot I I C I I E I I F I

Other data sets HSTRY-SHARE-FILE Other data sets

Unorthodox IMAGE Accessing for Power 0058-14



(2) Store the database root file and data sets
SUB-SRARE-FILE (04), SUB-SHARE-FlLE-A (05), and
HSTRY-SHARE-PlLE (06) to tape. Remember, that these data
sets are empty.

Conversion Day

(3) Save the manual master data by performing a data set
unload of SUB-SHARE-FlLE from the live TECUDB database using
program DICTDBU. This takes about 30 minutes on a
stand-alone series 70.

(4) Store SUB-SHARE-FILE and HSTRY-SHARE-FlLE from the live
TECUDB to tape and RESTORE onto the secondary system where
the HISTOB will be updated to the present date.

SUB-SHARE-PlLE
------ --_.-.--

\A / \B / \ / \0 /
-- 01 02 04 06
\ / I / \

\ / I / \
v v v v v

03 05 07 08

Irootl I C I I E I I P I

Other data sets HSTRY-SHARE-FlLE Other data sets

(5) Working with the live TECUDB database, physically rename
data set 08 to 09, 07 to 08, and 06 to 07 (i.e., all the data
sets after HSTRY-SHARE-FlLE). Then delete data set 04 and
05.

------ ------
\A / \B / \D /
-- 01 02 07
\ / / \

\ / / \
v v v v

03 08 09

Irootl I c I I B I I P I

(6) RESTORE the root file and data sets 04, 05, 06 that were
created above in step (2). We now have a database in the new
structure.

Unorthodox IMAGE Accessing tor Power 0058-15



(7) Load the SUB-SHARE-PILE data set with the data that was
previously unloaded above in step (3). Using DICTDBL, this
takes approximately 70 minutes.

(8) Save the new database to tape.

( 9) During the testing stage, STORE the database to tape
(define the database with small capacities). This will give
an additional verification that IMAGE accepts this newly
built data base.

Problems Encountered with the Implementation

Our original HSTRY-SHARE-FlLE data set contained
approximately 4 million records. We couldn't delete all this
data when we converted to the new structure since credit
union members inquire on their recent transaction history.
Since this data represented approximately three to four
months' worth of transaction history, we decided to extract
the data on monthly bounderies, creating data set pairs (see
step [C] above). We knew that the data needed to be sorted by
date and time (since we had to do serial reads and extracts
through the detail data set to find the appropriate date
range) and, therefore, used SELCOPY's sort feature to sort
this data (SELCOPY uses HP's SORT intrinsics). Unfortunately,
we had had no idea that many of the transactions that had
been processed by the online system were being completed in
less than 0.1 seconds. This was the time resolution that we
maintained in the data. In other words, it frequently
happened that two transactions for a particular member had
identical time stamps. It wasn't until our first day live
with the new system that this problem was discovered. A look
at the transaction history of a member showed the
transactions to be out of order (imagine shuffling your
checkbook entries the total 1s correct but the
inte~ediate results are wrong). It required some fast
hacking to repair the historical data.

Related to the problem of breaking the detail data set data
into manageable chunks was the problem of disc space. While
we had a second series 70 with six 7933 disc drives, this
system was being used to silhouette the primary, production
system and therefore already had one full copy of the
database on it. Much data set shuffling was done via magnetic
tape and a 7978B tape drive.

The disc space problem was aggravated when we tried to build
the HISTDB database. The schema specified 24 data set pairs
for the HSTRY-SHARE-FlLE information plus an additional 24
data set pairs for the loan information (to be implemented in

Unorthodox IMAGE Accessing for Power 0058-16



the future). These data sets were defined with "reasonable"
capacities. We ran DBSCHEMA and error-terminated with the
infamous file system error 46 (out of disc space). It was
then that our back of the envelope calculations showed that
we needed at least 14 million sectors of disc space to build
HISTDB (we had nothing near that much disc space available).
The real problem was that we didn't really need all those
data sets, just the definitions in the root file so that
IMAGE would recognize them when present. Our solution was
simple: we created the database root file using DBSCHEMA.
Using DISKED5, we changed the flag in the root file from a
"virgin" database to a functional database. IMAGE was
happy.

We encountered one problem that almost spelled the end to the
entire system. After we had created one of the data set
pairs (due to an extraction with SELCOPY), we inserted the
data -into the framework of the new HISTDB database. We then
tested the structure of the new database by trying to access
various data with QUERY and comparing it against the original
-TECUDB database. Much to our shock, QUERY's FIND did not
work! In the original database, FIND retrieved the correct
data. Using HISTDB, FIND did not find anything. What was
wrong? Careful examination of the structures of the two
databases eventually revealed up the difference: the blocking
factors of the respective data sets. While we had known that
the capacities of the master data sets must be identical in
order for the hashing algorithm to work, we had forgotten our
IMAGE internals knowledge that the actual record address is a
function of the block number and record within the block. We
had to build our data sets with the correct blocking factors.
Unfortunately, there is no utility that sets the blocking
factor to that which we wanted. Nevertheless, a technique was
found. We built the data set with a BLOCKMAX specification
slightly larger than necessary and with a capacity of one too
large. The credit union owns ADAGER; this program was then
used to reduce the capacity by one and to reblock the data
set. The new blocking factor then became identical to the
o~iginal one in TECUDB.

We tested the integrity of the data after moving a data set
pair from 'l'ECUDB to HISTDB. While the FIND command within
QUERY worked (after fixing the above problem) the FORM SETS
command did not. The display of the current number of
entries was incorrect, garbage. A little more internals'
knOWledge reminded us that the current number of records is a
calculated value, based on the capacity. Our HISTDB database
detail data set had been built with a capacity of one million
entries. We had transferred HSTRY-SHARE-PILE from TECUDB with
4+ million entries. While the output from QUERY's FORM SETS
was incorrect, no processing was affected by it so long as no
attempt was made to add any data.

Unorthodox IMAGE Accessing tor Power 0058-17



During the testing of the HDBGET procedure, we uncovered one
further interesting problem. The online application
software, as part of its start up procedures, automatically
accesses every data set needed in the database in order to
initialize the IMAGE list parameter (for later use via the
It.; II construct). With the addition of the HISTDB database,
this wasn't properly extended. We had to add code to HDBGET
to perform the same functionality within the procedure.

General Conclusions for Future Power Users

We once told one of the analysts here that, "Anyone who says
he doesn't need to know the machine code tor the machine he's
working on is blowing smoke ... somewhere. II Unfortunately
we still believe this. In order to accomplish the
HSTRY-SHARE-FILE split we needed an understanding of the
application, IMAGE, and MPE. One of the most critical
elements was a knowledge of the dependancies between the root
file, the master file, and the detail data sets. The
isolation ot details from root and master files provided us
with the tirst of two bases for the entire project and almost
trashed the project three quarters of the way through. A
late-night discovery of the dependance between the root tile
and the master data set, an unintentional Adager reblock, and
the problems associated with recovering these misfortunes
certainly convinced us that an exact understanding of IMAGE
internals was critical.

The second basis for the HSTRY-SHARE-FILE split is that of
'SL isolation.' By that we simply mean isolating the actual
data structure behind an SL routine. The critical point to
this is that you are able to isolate the data structure and
debug existing code BEFORE the actual structual changes are
ever made. This gives you a staged implementation rather
than simply going for broke; essentially the old CYA
principle. Over the past four years TECU has used SL
isolation in three (now tour) major cases with dramatically
successful results. One such implementation saved 24 hours
of run time per quarter and 10 hours per month, eliminated
the down time caused in both those periods, and was
accomplished with only one minor problem.

The driving idea behind this exercise is that of a 'logical
data structure.' Certainly we have heard much of this with
regard to relational DBMSs but very little has been said in
the non-relational field. Logically speaking, TECU had a
single data structure, HSTRY-SHARE-FILE, which contained
multiple periodic entities. We split the periodic entities
into separate physical parts while retaining the logical
continuity; thus providing physical 'flexibility while
retaining logical support for the extant data structure.

Unorthodox IMAGE Accessing for Power 0058-18



Perhaps we've been living right (dubious, at best) or perhaps
we got lucky (highly probably) but we did obtain some
unexpected advantages from the conversion. Pirst t we are now
able to size'the details arbitrarily (so long as we retain
the auto master and detail blocking ractors) and we may have
an arbitrary number of details. Secondly t because of the
nature ot TECU's applications, the physical sequence of the
data now corresponds to the chronological sequence ot the
records. This allows for such minor items as a chronological
binary search of a detail to find all records inside a given
period. This in turn allows us to quickly find and access
records in a given period where we previouly would have had
to search the entirety of the detail data set. or course,
sometimes one neither lives right nor gets lucky and then
structural damage to one's database may occur. Prior to the
HSTRY-SHARE-FILE split there was no way to recover from
something as simple as a broken chain.. Now we can simply
wait until the pair with the break rolls out of the HISTDB.
This is made even more ~pressive when one considers the fact
that TECU has not done an unload/reload on their primary
database since 1980!

Finally, there is one overriding consideration to each and
every step ot this procedure; we are doing this for
intermediate and end users. Thus we must look at the
external interfaces from the users' perspective; in this
respect we failed in one sense and succeeded in another. In
the first case we failed to realize that operations does not
care about data set pairs but, rather, about HSTRY-SHARE-FILB
date ranges. Theretore we used the pair IDs tor moves into
and out of HSTRY-SHARE-PlLE as well as HISTDB. Additionally,
we overlooked the loss of access to the structure through
Query, Inform, Report, etc. In the latter case we succeeded
rather admirably with our programmers in that they noticed
little or no coding/performance differences between the old
and new calls.

Traditional techniques offered no solution to our problems of
managing a large data set. Due to the particular
characteristics or the TECU database, we were able to design
a technique utilizing safe privileged mode access that
sunnounted these obstacles. While these techniques cannot
always be used in every environment, recognizing the
existence ot such techniques can be helpfUl for other
companies designing sophisticated applications. This design
became reality in August, 1987, when the Telephone Employees
Credit Union went live with the new HISTDB database.

Unorthodox IMAGE Accessing for Power 0058-19





COMPUTER TRAINING:
HOW TO TRAIN THE COMPUTER PHOBIC

Christine Dale
Kaiser Foundation Health Plan of Colorado

2045 Franklin St.
Denver, CO 80205

Resistance and Fear

Why are people afraid of using computers? There are many
reasons why people are afraid of us i ng computers, rang i ng
from not knowing how to type to the fear that they will be
replaced. As technology moves in the direction towards
automation, people are very much concerned about their own
positions being taken over by computers.

You and I know, just by working in computers, that the
previous statement is just not true! How many times have we
discovered that by freei ng the people we teach from the
every day manual repet it ion, it 1eaves those people more
time for creativity in their jobs? Over and over I have
encountered the resistance to using computers caused by the
notion that saving time will reduce the amount of work to be
done. This time savings translates into direct labor
savings from management's perspective, which has the support
staff fearing for their jobs.

For example, I have seen a group of secretaries very upset
because management had said that by us i ng computers, the
secretarial staff would be cut. Each one of the secretaries
was concerned about losing her job. Overcoming their
resistance to training was very difficult. If the directive
to 1earn to use computers comes from management wi th the
assurance that jobs will be enhanced, not el iminated, the
employees will be excited, not fearful for their future.

Many people are afraid to admit that they don't know how to
type. In this case, I like to give them a lot of
encouragement to 1earn to type. There are good typi ng
tutorials for PC's on the market. As time goes by, more and
more software is function key or window driven and the need
to be a skilled keyboard user is diminishing. But, learning
is more difficult for the person who is trying to learn how
to use computers and to figure out where the keys are at the
same time.

Computer Training: How to Train the Computer Phobic
0059-1



Motivation

Working with the training staff, management must sell the
benefits of training. Adult learners need to be assured of
a positive learning experience. They need to be motivated
through measures which include the emphasis for new
opportunities. Once adults are convinced of the benefits of
learning, the barriers of resistance will come tumbling
down. This must be a concentrated effort between management
and trainers.

One method I found very beneficial to people who are going
to be learning about a system is to demonstrate it in a
non-threatening environment, such as a departmental meeting.
To "sell" the system and its benefits bef~re training is
very important. By presenting the system a step at a time,
everyone's comfort zone is preserved.

In one company, I had to train 20 managers and 40
secretaries. They either had no or very little knowledge of
computers. I was implementing a variety of programs on PC's
as well as on the HP3000, so I had a challenge ahead of me.
Initially, I met with each of the managers and their
secretaries to get input from them as to what they'd like to
use their computers for. After we selected the hardware and
software, I held demonstrations for the groups, one for the
managers and one for the secretari es. I showed them what
they were getting and allowed them time to sit down at the
machines and play. I also included some games and
encouraged each of them to play the games. The company was
a real estate fi rm, so I gave them copi es of Real Estate
Baron and Type Attack. They had a great time playing the
games and even had some competition among themselves. It
was fun to see the managers teasing the president as he lost
his money. Later they had their real training sessions.
From this initial fun session they felt comfortable with at
1east the bas ics of us i ng the computer before they began
getting down to business.

In another company, we had installed their HP3000 just
before Christmas. At the annual department Christmas party
we had everyone play the games in GAMES.SYS such as
Blackjack and Othello. Again, everyone had fun while
learning the basics.

While you are making the training fun, you cannot lose sight
of the object ives. That object ive is to teach them to
become comfortable (and thereby, productive) using computers
in their jobs.

Computer Training: How to Train the Computer Phobic
0059-2



Teach;ng Methods and Tools

1. Class Environment

The class environment is very important, especially for
the begi nner. If the student is uncomfortable, then
his/her span of attention is short. Do you want
everyone jumping up for coffee every 15 minutes? Do
start with something good to eat, (it does help) but if
the room is crowded and stuffy, everyone will either be
asleep or leaving all the time.

The size of class depends on whether or not you want to
be a neurotic at the end of the session. The best (and
therefore, most expensive) way to teach is individually.
This way you know that you have their attention and they
also have yours. I have taught a number of high-level
management people this way. You have to adjust your
teaching style to their learning style. Some will allow
you to teach as though you were in a classroom. Others
have told me to teach them exactly what they want to
know and not anything else! I call this speed-teaching,
something akin to speed-reading. It is good for getting
the general idea, but not good for details. These
people will usually be back for more.

The more common1y used method for teach i ng isin sma11
groups. Each student can have his/her own terminal or
have two students share the terminal, but no more than
two per terminal. The advantage to having each student
having his/her own terminal is that they have much more
time for hands-on training during class. But if two
peop1e are shari ng the termi na1, they can help each
other along and reinforce the lessons. I have no
preference for either way. I usually have no more than
4 terminals at one time, for up to 8 people. Any more
than that and the class goes too slow.

2. Team Teaching

Whenever possible, have a user be a part of the training
team. At the real estate firm, there were two of us who
taught the classes. I taught the technical parts, and
the other person from the user area taught the
application parts. We blended well with each other and
monitored the progress of the students by monitoring
each other. She called herself the "dummy". For the
first few times we taught, she'd make me explain in more
simpler terms if I became too technical. She drew upon
the group's experiences to relate back to what was being
taught.

Computer Training: How to Train the Computer Phobic
0059-3



Be sure to use plain English and define ALL terms. One
helpful hint is to label all the parts of the equipment
and have a picture to give them, with, of course, all
the parts labeled.

3. Start at the Very Beginning

If the user is being trained on a terminal or PC
attached to the HP3000, give them a tour of the computer
room. Again, have labels on the equipment in the
computer room. Once a user understands that they are a
part of the big picture, they can understand what goes
on in the "big black holen called the computer room.

4. Teach One Thing at a Time

Give the students outlines and quick reference guides at
the beginning of class. While teaching them, refer to.
the outline and the quick reference guide often. Even
though you may have a reference book to give them, DON'T
teach from that book.

Apply the K. I.S.S. (Keep It Simple, Stupid) method to
teaching. Have the student perform only one function at
a time making sure you clearly define the end result. A
step-by-step approach is a must. If you have the
students doi ng mul t i pl e tasks, you wi 11 only confuse
them.

A1so, if there is more than one way to do someth ing ,
only show them one way at first. Once they have
mastered the first way, then show them the other ways or
the shortcuts. For example, if you teach a product like
HPDESK, there are many ways to move around the desk.
ONLY show them how to move around the desk by using the
function keys. Then, after they are used to the
function keys, have them move around the desk by using
the numbers.

5. HELP-HELP-HELP

Most software comes with a nhelp" facility. As a part
of class, emphasize the use of "help". Practice going
into and out of the help screens so they can become
comfortable with using the feature. This way, after
class, they can become self-sufficient.

Give the students names of people who work around them
who also know the software. Many users like being
resident experts as long as it doesn't start being the
primary part of their job.

Computer Training: How to Train the Computer Phobic
0059-4



At Kaiser, we have given out a brochure to all -users of
PC's and Office Automation software describing the
Technical Support Services that we provide. One service
we have implemented is a "HELP LINE" phone number. This
number, along with a system ID, is attached to
everyone's equipment. The "HELP LINE" is always staffed
during working hours and everyone can get their
questions answered immediately. We document the
questions and can 'tell if a person needs further
training in specific areas (or if the initial training
didn't take). Not only do we answer questions, but we
provide the personal attention neophyte users often
need.

After the Class -- FOLLOW UP

It is very hard to have an effective training program
without providing follow up on the training. I tell the
students to go back to their offices and take time to go
through the class exercises again and just practice. I also
tell managers that they MUST allow their employees time to
practice before giving them real work to do.

To get people started using Electronic Mail, I wrote
messages to people to get them to write messages back to me.
We scheduled training classes through Electronic Mail. I..
a1so encouraged everyone to wri te messages to each other.
One manager was complaining he didn't get any Electronic
Mail. When the other managers heard this, they started
sending him messages just so he wouldn't feel left out. Try
to find a champion among the users and this person will do
more for spreading enthusiasm for using the system than all
the Data Processing people combined.

A very good source for additional training after the class
is the on-line tutorials that come with most software. I'm
impressed by the qual i ty of some on-1ine tutori a1s I've
seen. Several years ago, there was no such thing. It's
wonderful that software companies are realizing people need
more than reference books! I particularly like the
"learndesk" feature of HPDESK. If time is at a premium, or
if you can't hold a formal class, the on-line tutorials can
be substituted for classroom training.

Computer Training: How to Train the Computer Phobic
0059-5



Conclusion

I have been training people how to use computers for many
years and I still learn new techniques daily. I find that
making learning fun and non-threatening goes a long way in
making a training program a success. When you see a person
who has never used a computer become one of the most excited
computer users around, it is worth all the effort!

Computer Training: How to Train the Computer Phobic
0059-6



A Guide To Breaching HP 3000 Security

Phil Curry
Carter, Schaefer &Company

Houston, Texas

Introduction

People have been intrigued by secret codes and security for years. Take
for example the decoder pins given away as premiums during the 1930's.
A kid with his Captain Midnight or little Orphan Annie decoder pin could
send a "secure" secret message to his or her pal and keep would be
"spies" from deciphering the message.

In the 1980's people are no different. With a relatively cheap computer
or terminal one can try their hand at breaking security on a computer
system. Most of the time it's not that the computer system has anything
of any real value, it's just the fun of breaking the security and
finding the codes to get into the computer.

What I'm going to reveal about you Hewlett Packard 3000 computer systems
will make most system managers weak and wonder why in the world am I
telling everyone this. The answer is simple. To prevent you from
having a breach of security. Chances are you have already had a breach
and never knew it. I'm not necessarily talking about someone logging on
and moving money into their checking account or changing their hourly
pay rate. I'm talking about someone having access to your system and
potentially having this capability without your even knowing it. Someone
may know they can have access to your computer or system account anytime
they wish and are waiting for the right time to use it, like one week
after they are layed off work or fired.

What this paper will do is give you an idea of how a Hacker thinks and
can gain access to your system. It speaks from the view of the Hacker
and tells how you as the system manager can prevent the breach of
security. In some cases, one can't. Also note that I'm not giving away
all my secrets. like a magician I must keep the mystique of knowing how
to get into a system to myself. Their are ways that if told could do
more harm than good.

There is a misconception of what a Hacker really is. A Hacker is not
one of these kids seen in movies like War Games that attempts to call
computers and break into them. The name they give themselves is
"Phreaks". A Hacker is a one who really gets down to bits and bytes
with the computer.

A Guide To Breaching
HP 3000 Security 0060-1



Real Hackers .....

1. patch the object code. It's much faster than the edit,
compile, and prep process.

2. use the ASSEMBLE statement in SPL.

3. can perform Binary, Octal, Hex, and Decimal conversion
in their head.

4. know at least 4 languages (at least 5 if you count
Basic).

I'll now remove my system manager hat and put on my Hackers hat and
reveal how you can potentially break security on an HP 3000. Again,
note that this is done to tell you how to prevent a breach and NOT to
let people know how to get into your system.

Chapter I - Gaining Access To An HP 3000

The first thing one needs to do to breach security on an HP 3000 is to
get access to one. If you have access to a personal computer and an
autodia1 modem, you can do this.

In the movie "War Games", a high school student uses his home computer
(an archaic Imsai 8080) to dial successive numbers in a telephone
exchange looking for modems. You can do this too! There are many "War
Games Dialers" available on computer bulletin board systems. If you
can't find one, their easy enough to write. Anyone can go to Toy's Are
Us and buy a Commodore 64 computer and a modem and do exactly what was
done in the movie to find modem numbers to computers. Looking at the
figures in the March 30, 1987 issue of Infowor1d magazine, IBM has sold
over 7 million personal computers. In early 1988, IBM announced they
have sold over 1 million PS/2s, which raises the number to over 8
million. This figure doesn't even count compatibles, such as Compaq.
Considering the cost of these systems, imagine how many less expensive
Apple and Commodore computers are in the marketplace. Anyone of these
computers with a modem can access an HP 3000.

Some system managers are crafty and will buy modems that will not run at
lower speeds to keep cheap 300 and even 1200 baud modems from connecting
to their system. Even harder to overcome is the use of dial-back modems.
Whenever someone wants access to the computer they must enter their name
or access code. Then the line is disconnected and the computer calls
the phone number it has stored for the password and connects to the
terminal or computer. This keeps one from hacking into the system since
even though we know a password, the computer will hang us up and dial
the number it has associated with the logon.

A Guide To Breaching
HP 3000 Security 0060-2



Chapter II - You Have A Colon Prompt, Now What?

Ok, you now have access to an HP 3000. Now you need to log on to it.
You need to know a user and account that is on the computer system.
Hear are some user. account combinations to try:

MANAGER.SYS
OPERATOR.SYS
MGR.TELESUP
FIELD. SUPPORT
MGR.MAINLIB
MGR.CSL3000
MANAGER. TECH
MGR.INTX2
MGR.SCRUG
MGR.BWRUG
MGR.DETROIT
MGR.GAMES

Password: HPONLY

Password: HPONLY
Password: HPONLY

If you already have a valid account on the system you're way ahead of
the game.

To keep you from finding out passwords, good system managers will never
use default passwords, HP's or third party vendor's. Passwords may be
hard to guess since the best passwords are meaningless, like license
plates. Combinations of letters and numbers not the name of the user's
child or dog. Also three passwords could be needed; account, user and
group.

A Guide To Breaching
HP 3000 Security 0060-3



Chapter III - Your On The Computer, Now What?

If you didn't log on as MANAGER.SYS or FIELD.SUPPORT you will have
limited access to the computer. You want as much access as you can
get. You can do the following things to find other person's passwords.

I. The Fake Restore

The MPE Store format is documented in the Systems Managers
Reference Manual. The STORE command will disallow one from
restoring files from one account into another. However, what
you can do is write a program to read the STORE tape and load
the files into your account. Program files are no good. The
good ones will need to be run in an account with PM capability
anyway. Good files are CATALOG.PUB.SYS and any file that looks
like a stream file (files in groups named JOB). Don't let
10ckwords scare you, they are just part of the data on the
tape. If you have a SVSDUMP tape, that's even better since the
system directory is on the front of the tape. Get a source
code listing of STAN from the Contributed Library, it can help
immensely.

After you've written your program, tell the operator that you
accidently purged a file and need to restore it from the last
backup tape. Tell him you'll do the RESTORE command when he
mounts the tape. Then run your program and the unsuspecting
operator will mount the tape and reply to it.

II. Intercept Terminal I/O

Look for the program called PEEKABOO. This contributed program
allows one to monitor all terminal activity to a device. For
example, you can run PEEKABOO on the console, device 20, or on
the system manager's port.

III. The Fake Prompt Trick

Write a program to emulate the MPE command interpreter. The
steps are as follows:

1. Open file on another terminal
2. Read device.
3. If input is not a HELLO command send appropriate

error message and go to step 2.
4. Scan for missing passwords (user didn't enter password

during logon)
5. Prompt for password(s)

A Guide To Breaching
HP 3000 Security 0060-4



6. Give fake MPE error message (such as account out of
time, cannot open UDC catalog, etc.)

7. Close the terminal.
8. Write the passwords to a file to read later.

You can get as elaborate as you wish. You could even fake a
logon and parse the users commands and any of them that are
programatic (LISTF, REPORT, SHOWJOB, etc.).

IV. The Trojan Horse

Write a GREAT program that is a game or utility that a10t of
people will run. When the unsuspecting system manager puts it
in an account where everyone can run it, you can get their
passwords. The steps are as follows:

1. Do a programmatic LISTUSER to a RELEASED file in your
account. Be sure the file equation for the LISTUSER
accesses the file with append access.· If the command
fails, then the password is of little value since it
doesn't even give you account manager capability,
proceed to step 3.

2. Do a programmatic LISTACCT to the RELEASED file in
your account. The command won't fail since the
program got this far. Also, if the user has SM
capability, you just got ALL account passwords.

3. Begin game or utility program.

A Guide To Breaching
HP 3000 Security 0060-5



v. The Terminal Emulator Trojan Horse

A good terminal emulator is hard to write, but you can write a
simple one. Some are available with source code, like KERMIT,
from local bulletin boards or personal computer user groups.
Once you have the program, some simple modifications will help
you get other user's passwords. What you do is give a copy of
the program to someone who has a password to the system that
you desire. Remember, the program you gave them sees
EVERYTHING the user types. So, what you do is write code to
look for the user's logon and the MPE welcome. You will need
to write another program on the HP 3000 and release it. The HP
3000 program will perform a file transfer by doing the
following:

1. Reads the terminal until some end· of file indication.
2. Appends the HELLO command and accompanying passwords

to a RELEASED file in your account.

On the PC end, your emulator will need to do the following:

1. look for HELLO command
2. Look for MPE welcome with revision of the operating

system and terminal read.
3. Issue command to MPE (remember, you have control) to

run your program described above.
4. Transfer logon information to the HP 3000.
5. Begin normal terminal emulation.

A Guide To Breaching
HP 3000 Security 0060-6



VI. Use Unknown Bugs Or Features Of Programs

The program SLS is a widely used program from the Contributed
Library. It allows one to stream jobs while interacting with
the user for information before doing the STREAM. The program
writes the stream file to a file named JXXXA then calls the
COMMAND intrinsic with the command STREAM JXXXA then purges the
file. The original source does not disallow file equations to
the file JXXXA so by doing the following you can see the
passwords in the stream file:

1. :FILE JXXXA=$STDLIST
2. Now do the normal steps to do the SLS job

Example: :SLS BACKUP

The entire JOB stream, including passwords will be displayed on
your terminal.

If the system manager has locked you out of using the compilers
or system utilities such as FCOPY, PREP or RELEASE, find access
to a utility that allows programmatic calling of these commands
or allows running programs inside them. Good examples are
EDITOR, QUAD, and SPOOK. Try putting a colon in front of the
command if just typing the command does not work. QUAD gives
you access to the compilers as well as MPE commands so it is a
good choice.

There are some other undocumented features on the HP 3000 that
are interesting.

1. In QUERY, after doing a FIND type the command NUMBERS.
This will display the relative record numbers of the
records you just found.

2. In EDITOR when saving a file and asked if you wish to
"PURGE OLD?" you can enter "OK" in place of nyu.

3. Most HP utilities will let users with PM capability
to type DEBUG at the prompt and will drop them into
PRIV MODE DEBUG.

4. There is a program in PUB.SYS called IOCDPNO that is
disguised as a card punch driver left there for SE's to
be able to call ATTACHIO directly. If you enter HELP at
the prompt, you can cause a system failure.

A Guide To Breaching
HP 3000 Security 0060-7



5. There used to be a back door in MPE. You could type
=DEBUGG (yes, two g's) at the console at drop right into
PRIV MODE DEBUG.

If programmers at Hewlett/Packard are allowed to leave
undocumented commands in the software, there just may be some
back door waiting to be found.

VII. Look For Files In PUB.SYS And Other Accounts You Can Run

Most system managers have no idea what is in PUB.SYS. Unless
otherwise altered, most programs in this group can be run by
everyone. Sometimes, the lazy system manager will put
utilities in this group so several people can run 1 copy of the
program and hope user ignorance will keep others from running
the program. Some useful programs to look for include:

1. PEEKABOO
2. ALLOWME
3. STAN
4. GOD
5. JSPOOK

Also, look for any released program files in PUB.SYS. You can
write a program with PRIV MODE capability and copy it on top of
the RELEASEd file.

1. Write PRIV MODE program and compile it.
2. PREP without PM capability (you need PM to PREP with

PM)
3. Patch the object code to give program PM capability.

You can do this with DECOMP from the Contributed
Library using the REPREP command.

4. FCOPY released program to your account.
S. Copy your program on top of RELEASED program file.
6. Run program.
7. FCOPY original file back (destroy the evidence).

A Guide To Breaching
HP 3000 Security 0060-8



Epilog - What Have We learned?

Now I'll take off my Hackers hat and put my system managers hat
back on and re-cap what we learned.

1. Be careful who is dialing into your computer system. If
really necessary, use dial-back modems to verify the
user.

2. Put passwords on All accounts no matter how little
access they have. Once a person is on, they could
access things you never thought of. And NEVER leave the
passwords on the accounts SYS and SUPPORT at their default.

3. Do not mount SYSDUMP or STORE tapes for users to read.
If a user lost a file, RESTORE it for him.

4. Don't keep PEEKABOO lying around.

5. When logging on, suspect that you have a fake colon
prompt when logging onto the machine. Type :EOF: to close
the device, then press RETURN to get another prompt.

6. Never take programs written by users and place them in
accounts where all users can run them unless you have
source code. Then, recompile the program and put THAT
object code where everyone can run it. Sometimes this
isn't possible, like Contributed library programs.
BEWARE of persons bearing gifts.

7. limit access to the MPE command interpreter to users.
As you can see, this is where all the trouble starts.
Get a menu system and allow users to only run what is
needed. You can pass it off as a "User friendly
interface" and get away with it.

8. look at all files in accounts everyone has access to.
Make sure none of them are RELEASED. Make the access to
the file minimal. For example, utilities like SLPATCH
should have its access X:CR to allow access only by the
creator, not everyone.

9. Don't place anything in PUB.SYS that didn't come from
HP. Utilities should go in a different group and
maybe a different account if no PRIV MODE is needed.

10. Security is a never ending battle.

A Guide To Breaching
HP 3000 Security 0060-9



Appendix
Listing Of A IIWar Games Dialerll

10 ,******* AUTOMATIC SEQUENCE DIALER (a la IIWargamesll ) **********************

20 'Written for the IBM PC and HAYES SMARTMOOEM by Steve Klein 9/25/83
30 'Modified (Steve wouldn't recognize it anymore) with enhancements (starting

40 'nuJi)er, printer on/off option, abort/hang up) by John Siers 12/28/83
45 ' **************************************************************************
50 'This program wi II dial nlilbers in sequence looking for coqxJter carrier

60 'signals. When carrier is found, phone # is listed to printer and/or screen.
75 ' **************************************************************************
100 CLEAR , ,2000:XY=2
110 KEY OFF:COlOR 0,7:ClS:LOCATE 10,25:PRINT "Wargames Dialer Programll

120 LOCATE 12,26:PRINT IIWritten by Steve Kleinll:LOCATE 14,26:PRINT lIModified by

John Siersll

125 FOR 1=1 TO 5000:NEXT
130 A$=II":AB$='III:CLS:PRINT n PLEASE ENTER PREFIX DIGITS (IF ANY), THE AREA CODE
(IF ANY), AND THE":PRINT "FIRST THREE NUMBERS [hyphens may be used to separate
e.g.9-1-nnn-nnn]: ":INPUT n_-->II,A$

140 INPUT IISTART DIALING AT # (lAST 4 DIGITS)lIiSN:IF SN>9999 OR SN<O THEN 140

ELSE N1 =1 NT (SN/1 000): N2=I NT«SN- (N1*1 000) )/100):

N3=INT«SN-(N1*1000+N2*100»110):N4=SN-(N1*1000+N2*100+N3*10)
160 PRINT uUST COMPUTER CONNECTIONS TO <S>CREEN ONLY OR <P>RINTER AND SCREEN?II
170 PRINTONS=INKEY$: I F PRINTONS<>uSII AND PRINTONS<>usll AND PRINTONs<>upn AND
PRINTONS<>up" THEN 170
200 ' *** Begi n diali ng sequence ***
205 ClS
210 FOR E=N1 TO 9:FOR B=N2 TO 9:FOR C=N3 TO 9:FOR D=N4 TO 9:N1=0:N2=0:N3=0:N4=0
220 OPEN IICOM1 :300,n,8,1,CS,DSIi AS #1 :R=32:PRINT #1,IIATDTIIA$iE;BiC;D
225 DIAL=E*1000+B*100+C*10+D:DLS=STR$(DIAL): I F LEN(DLS)=2 THEN DN$=uOOO"+
RIGHTS(DlS,1) ELSE IF LEN(DL$)=3 THEN DN$=1I-001l+RIGHT$(DLS,2) ELSE
IF lEN(DlS)=4 THEN DNS=II-0"+RIGHTS(DLS,3) ELSE DN$=II_u+RIGHTS(DlS,4)

230 GOSUB 500:lOCATE 25,1 :PRINT "DIALING uiASiDNSi : LOCATE 25,35:
PRINT "T1ME lEFTII;Ri"SECONDS: [A]=ABORT [H]=HANG UP "i
240 ,*** Check for input to Corml buffer (carrier) ***

250 A=lOC(1):IF A>(20+LEN(AS» THEN 280
260 IF R>O THEN 230

270 CLOSE:FOR 1=1 TO 3000:NEXT:NEXT D,C,B,E
275 LOCATE 25,1:PRINT STRINGS(79,32)i:LOCATE 25,1:
PR INT "END OF DIAL ING SEQUENCE: II i : INPUT II PRESS ENTER TO CONTI HUE -- -->" i XXS:
GOTO 130
278 ,*** Found Oneill ***

280 SOUND 150,5:XY=XY+1:LOCATE XY,1:PRINT ASiDN$:IF PRINTON$=upn OR
PRINTON$=IIp" THEN LPRINT AS;DN$

290 GOTO 270
500 ,*** Countdown time and check for abort/hang up ***
510 LET R=R-1:FOR 1=1 TO 1050:NEXT:ABS=INKEYS:IF ABS=IIAII OR AB$=ua" THEN 520
ELSE IF AB$=IIHII OR ABS=lIh ll THEN 530 ELSE RETURN

520 PRINT #1,IIATHI':CLOSE:LOCATE 25,1 :PRINT STRING$(79,32); : LOCATE 25,1:
INPUT IIDIALING ABORTED: PRESS ENTER TO CONTINUE ---->lIiXXS:GOTO 130
530 PRINT #1,IIATHlI:R=0:RETURN

1000 ' ***********************************************************************
1010 ' Another helpful program from Steve Klein
1020 ' With enhancements by John Siers (who found the original on the
1030 ' Lehigh Valley BBS, Allentown PA -- 12/83)

A Guide To Breaching
HP 3000 Security 0060-10



Training a New Operator - Where Do You Begin?

Flo Barley
Pekin Memorial Hospital

Court &Fourteenth Streets
Pekin, Illinois 61554-5098

Introduction:

You're gett'ing a new operator - whether replacing one that left or adding a new
person - either way - they need to be trained. Where do you start? You'ue
shoun them the computer center, 50 nou they knou where it is - they're just
wondering uhat to do with it. There's books and manuals that can bury them for
months, but is that the place to start? There's operator-classes at the
nearest training center, but what else do they need to know about your
operations and applications that they can't get anywhere but from you? Hou
much can you throu at them and expect them to absorb?

If you liue in an area uhere there aren't lany HP shops, you could haue a
problem with finding anyone with HP experience - let alone anyone with operator
experience on any machine. This leaves you vith quite a job ahead of you. You
haue a capable body in front of you, eager to learn and ready to tackle
anything that comes his or her way. You're wondering how to get them pointed
in the right direction without scaring a resignation out of them on the first
day.

I viII atteapt to set up a step by step guideline that any shop - no matter hou
small or how complex - can use, adding as they see fit to suit their particular
needs. Using basic steps, a trainer can set up an outline to assure himself
that he's couering all the items needed. This can be expanded as you go to
include not only hardware, but also software. This should giue your new
operator a strong training base and you enough confidence that your department
will continue to operate to it's fullest capacity.

Training a Heu Operator 0061-1



Operator Training can be and ;s a never-ending task. Each environment is
different and must be approached from a different angle. You not only have
your HP systea with both hardware and software, but you also have various
software packages ranging from financial system reporting to hardware
monitoring tools.

There are well structured training classes offered at various locations in the
U.S. by Hevlett Packard and other training facilities, along with the software
training for the packages you have installed, but if it's not cost efficient
for your organization to send your operators or the timing factor is not right
for them to be gone, you need some type of organized training plan to get them
started. Training must be an on-going process since modern technology never
stops in this day and age and just keeping up with what's nev in the world of
computers is a never-ending battle. Once you get a basic outline of a training
plan that will fit into your organization, you must keep it updated and each
time it's used for new operator training, the operator's vill be at an euen
leuel once they have finished.

All of my operators have been trained in-house and this type of training seems
to york somewhat successfully for me. I say somewhat, because there still is
the problem with keeping them updated on current issues. It is difficult to
have initial traini~g sessions with all the operators at once if you haue a a
small data center with varied shifts, but it can be done at a much slower pace
with regularly scheduled sessions during non-peak hours. Aslower pace may not
be quite as effective for initial training if you have an iI.ediate need for an
operator, but one-on-ones with the operator for basics is a workable method to
start, then having a more intensive training session for approximately 5 to 6
hours a month with all the operators together can couer a lot of ground and get
them on a lore conslstent level with each other. I have tried this .ethod
since my training was catch-as-catch-can to start and haue gotten great results
frOM my operators who have responded to these sesslons posltluely.

Training a Heu Operator 0061-2



No matter uhat type of background your operator has come from, there uill be
some type of. initial training needed. If they are from an HP enuironment,
there would be minimal training as far as harduare except for the differences
in the operating system and types of equipment you use as opposed to what they
uere used to. Someone not fa.iliar with HP or any co.puter system would have
to haue more extensive training as far as harduare. I haue not had the
pleasure to train anyone who has COle from an HP enuironment, 50 my training
has basically been from scratch. Training can feel like an endless job and can
be so oueruhelming to the trainer let alone uhat it seems like to the trainee.
It has to be looked at as part of the everyday routine and learning so much
each day doesn't make it look quite so bad.

It was difficult for me to break doun the training into a set pattern for
everyone to use because the software will differ with each organization, but
setting up a flouchart to begin with will allow you to branch off in whatever
direction necessary to completely couer all the areas needed.

Intro to Equipment
1

________1 _

1
1

Harduare
I
I

Miring &Connections
I
I

Startup/Shutdown
1

I
Configuration

I,
Accounting Structure

Training a Hew Operator 0061-3

I,
Software

I
1

nPE
I
I

Commands
I
I

Help Subsystem
I
1

Uti lities,
I

Data Base nanageaent
I
I

System Monitors
I
I

languages



IAIDIIAIE

The first step is to get them acquainted with the equipment. Let them knou all
the different types of equipment you haue throughout the business, and then get
them accustomed to the equipment they uill be working with. Start with what it
is, uhat it does and how it's used. Also include uhat type of maintenance it
needs, such as ribbons, cleaning, paper, etc., and who to call or when to call
HP for seruice and if they haue that privilege.

Explain uhat the system hardware consists of including:

1. Stack Architecture
2. Uirtua1 t1emory
3. Disc Caching
4. r1PE
5. Wiring and Connections
6. Terminals and Console
7. Disc Driues &Tape Driues
8, Modems and Multiplexors

Key terms to understand:

1. MPE
2. CPU
,. CIC
4. SIB
5, ALU
6. AlB
7, RAM
8. ROM
9, Caching

10. RS232
11. RS422
12. Input/Output

Understanding of Configuration would include:

1, Term Types
2, LDEU "5
3. Device Classes
4. "emory Allocation
5. Ui rtua1 Memory
6, System Tables
7, UoluE Table
8. Directory Info
9. Programming Info

10. System Logging
11. Scheduling Info

Training a Hev Operator 0061-4



HIIDIAIE (cont'd)

Understanding of the Accounting Structure is necessary:

1. Groups
2. Users
3. Accounts
4. Capabi Hties
5. Homegroup
6. Lockwords/Passuords

58FTlIIE

Uhat 1S MPE and what does it offer:

1. Configurator
2. Power fail/Auto restart
3. Backup/Restore Facility
4. logging Facility
5. Utility Intrinslcs
6. loader
7. SegMenter
8. Process Manager
9. Job/Session Scheduler

10. Spooling Facility
11. Tape labels Facility
12. Serial Disc Interface
13. Priuate Uolumes Facility
14. Disc Space Manager
15. Uirtual Memory Manager
16. Input/Output System
17. File Management System
18. Command Interpreter
19. Application Message Facility
20. System Console Manager
21. Initiator
22. Support for Disc Caching
23. Batch Processing

Training a Hev Operator 0061-5



Shou them hou to use the help subsystem, hou to use the nPE Quick Reference
Guide and uhat HP manuals to read. Haue them knou uhere to look and find
pertinent information regarding the nPE Message System, the configuration
guidelines for setting up systel tables, and the different subsystem utilities.

MPE Commands most commonly used:

1. ABORT
2. RBORTIO
3. ALLOCATE
4. ALLOU
5. -"ALTACCT
6. AlTGROUP
7. AlTJOB
8. AlTSPOOlFIlE
9. ALTUSER

10. BREAKJOB
11. BUILD
12. BYE
13. CRCHECOHTROl
14. CONSOLE
15. DEALLOCATE
16. DElETESPOOlFIlE
17. DISALLOU
18. DOUN
19. EDITOR
20. FCOPY
21. HERDOFF
22. HEADON
23. HELLO
24. HELP
25. JOB

26. JOBFEHCE
27. JOBPRI
28. LUnT
29. lISTF
30. OUTFENCE
31. PURGE
32. RECALL
33. REDO
34. REHAnE
35. REPORT
36. REPLY
37. RESETACCT
38. RESTORE
39. RESUME
40. RESUnEJOB
41. RESUnELOG
42. RESUnESPOOL
43. RUH
44. SAUE
45. SETCATALOG
46. SETJCU
47. SHOUAllOU
48. SHOUCACHE
49. SHOYCATAlOG
50. SHOUDEU

51. SHOUJCU
52. SHOYJOB
53. SHOULOC
54. SHOUlOGSTATUS
55. SHOynE
56. SHOWOUT
57. SHOUQ
58. SHOUTInE
59. SPEED
60. STARTCACHE
61. STARTSPOOl
62. STOP"CACHE
63. STOPSPOOl
64. STORE
65. STREAM
66. STREAMS
67. SUSPEHDSPOOL
68. SUITCHlOG
69. SYSDUMP
70. TELL
71. TEllOP
72. TUNE
73. UIHIT
74. YARN
75. "ELCOnE

Training a Heu Operator 0061-6



Utility programs, standard with each system and their use:

1. Edit/3000
2. FCopy/3000
3. Sort-Merge/3000

What types of Data Base nanagement used:

1. Turboimage/3000
2. Query/3000
3. Ksal8/3000
4. UPlus/3000
5. Adager

System "onitors:

1. OPT/3000
2. AP5/3000
3. 5005E
4. Tuner
5. Surueyer
6. TERMOSM

languages used:

1. COBOL II
2. RPG
3. FORTRAN
4. BASIC
5. PASCAL
6. SPl
7. C
8. TRAHSACT/3000

Training a Heu Operator 0061-7



They will need to know how to monitor the system and lanage jobs, sessions and
spoolfiles. This uould include the use of SPOOK, DOC's, STREAM, file types and
equations.

It uill be necessary for them to knou hou to start and shutdoun the system and
uhat processes are necessary 1n your environment. This area uould also include
uhat to do uhen there is a system failure or halt, ie: is there a downtime log
or failure/halt log to complete, who to call, what steps are needed before
startup such as string dumps, memory dUMps, and uhat type of recovery is
needed. They should nou the difference betueen Uarmstart, Coolstart and
Coldload and the i.portance of each. Uhat is a Reload and uhen and uhy should
it be done? Hou should it be done? What can be done to saue data uhen a
system is doun and there is no current backup available? Uhat is a sysdump and
uhy is it done? Uhat types of backup are there?

These are all good topi~s to cover and~·periodically these types of questions
can be put together in a test format and giuen to the operators. I have
several of these and giue them to my new operators to use as a uorksheet or a
learning tool. They have the manuals to use for ansuers and it forces them to
find the ansuers and knou uhere to look for them. It can also shou you weak
areas that may need to be covered in future training sessions. Some of the
questions that I have for them are:

Training a Heu Operator 0061-8



1. What are the four parameters that can be used uith the AlTSPOOlFIlE
command?

2. What command uould you use to log off only session 211?

3. Uhat cOlaand uould you use to abort job 21?

4. What is a UDC?

5. What are tuo uays that spoolfiles can be deleted (purged)?

6. Hou can you raise the priority of a JOB in the IAIT state?

7. The OUTFEHCE is set at 14. Hou do you print spoolf\le 10412?

8. Hou do you find the filenames for all files that begin with the
letter S, that are in the SYS account and the PUB group?

9. Can the systeM's configuration be changed from a:
SYSDUnp YES HO
COOlSTART YES NO
WARMSTART YES NO
COlDSTART YES NO

10. Can you log on to a non-console terminal uia HEllO OPERATOR.SYS?

11. Ihat's the difference betueen a full SYSDUMP and a STORE @.~.@?

12. Explain what a file equation does and the parameters that can be used.

13. Hou do you correct the largins on a terminal if they are set wrong?

14. No reports have printed and in doing a SHOUOUT you notice that LP
shous a report as 'ACTIUE' - uhat are four reasons the printer isn't
printing?

15. The console is 'beeping' - uhat should you look for?

Training a Heu Operator 0061-9



This is by far, not a complete list, but hopefully enough to get you started
uith your oun in-house training, if necessary. By branching off at the key
areas uhere you need to uork in your Dun softuare and pertinent infor.ation to
your organization, you should have a uorking outl'ne for tra'ning.

All of this information can put fear into a neu operator - but putting them at
ease from the start and setting lilitations as to uhat they can do on their Dun
uill help them gain a co.fort level. They'll never knou everything because I
doubt that there are too many people uho do fully understand what the system
does and uhat it's capable of doing, but your operators uill knou uhat is
necessary to keep your systel up and running and uhat to do uhen it uon't!

Training a Heu Operator 0061-10



TITLE: Parity Pitfalls

AUTHOR: Karen Davis-MackIe

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING

PAPER NO. 0062





Addressing the Problems of Program Documentation

Claire M. Perkins
Kaibab Industries
4602 E. Thomas Rd
Phoenix, AZ 85018

Doc~unentation ha~ long been a thorn in the side of many data processing
departments. Ted~~V~ to prepa~e, it is often left until the last stage
of system developmelit and "done sloppily, incompletely or not at all.
Major maintenance problems ,occun when the only 'documentation for a sys
tem exists in some programmer's:head -- al~d he~s no longer around.

As programmers, we have all felt the lack of quality documentation at
one time or another when we were expected to maintain a system with
which we were totally unfamiliar. We probably did everything short of
creating a voodoo doll of the programmer who left us this mess of
spaghetti code with not so much as a data flow diagram for a roadmap.
Unfortunately, someone somewhere out there was probably thinking much
the same thing about the systems we left behind.

As programming managers, we have felt the lack of quality documentation
each time we've watched minor maintenance requests evolve into major
time consumers. We have sweated over deadlines and smoothed users'
ruffled feathers as time ticked away while our staff struggled to find
the right source code, the right compile job and all the relevant parts
and pieces that make up the system. And we have sworn that we would
put an end to the problem by creating the missing documentation, or up
dating and organizing what little documentation we had. But not this
time, not this project, because we were already pressed for time.

As end-users, we have often thought we might just as well have asked
for a new system when we asked for maintenance work from the DP depart
ment. We just couldn't understand why a simple request should take so
long and cost so much. When the programmer in charge of the project
suggested that we should allow even more time for the project so that
documentation could be created, we were convinced that the DP
department's motives were completely self-serving.

Everyone, it seems, has felt the effects of the problem, but like the
weather: "Everyone complains, but no one does anything about it."

While the weather is something beyond our control, the documentation
problem is not. Each of us; programmer, programming manager and

Addressing the Problems of Program Documentation
0063--1



end-user, has the power to improve the situatlon. Okay, ::so where do we
start? Well, like all good analysts and programmers, we(start with th~

basics: defining terms and defining the problem.

H!HAT IS DOCUMENTATION?

Documentation is a collection of documents. Gett~ng out my good old
Funk and Wagnalls I see that a document is "something written or print
ed that furnishes conclusive information or evidence." Conclusive
means "putting an end to the question." I guess that means that those
old binders full of paper which usually create more questions than they
answer don't qualify as documentation.

There are many categories of documentation to be found in the typical
DP shop. Some categories of documentation and the things they may con
tain are as follows:

Policies and Procedures--used to define the guidelines under
which the department should operate.

Project Documentation--includes project plans, estimated time
and cost for project completion, critical path diagrams,
status memos and meeting minutes.

System Documentation--includes high level HIPO charts, a nar
rative system overview, and a list of all the programs, job
streams, data files and reports contained in the system.

Program Documentation--includes a narrative description of
the program, some kind of flowchart or other diagram il
lustrating logic flow, a maintenance history, and narrative
descriptions of any complicated sections of code.

Operations Documentation--includes instructions for streaming
and/or monitoring jobs, instructions in case a job aborts,
report distribution instructions, and a list of contact
people for each of the systems maintained.

User Documentation--includes instructions for data entry,
pictures of screens used and reports generated by the system,
and helpful hints for problem resolution.

Different DP shops will have different combinations of the kinds of
documentation listed above. This is due, in part, to a different style
of work and a different range of needs from shop to shop. It is also

Addressing the Problems of Program Documentation
0063--2



due to the fact that programming is a relatively high turnover field.
As your programming staff changes and evolves, so does the prevelant
style of documentation.

This trend seems to continue because documentation is often considered
to be the sole responsibility of the programming department. No one
has attempted to standardize the process, so the content, accuracy and
format of the documentation is left to the discretion of the
programmer.

",'HOSE DOCUMENTAT/ON IS IT, ANYWAY?

Documentation belongs to everyone in the company. End-users,
operators, managers and programmers all benefit when the do~umentation

of DP systems and procedures is accurate, current and complete. Since
most smaller companies cannot afford to staff a full-time technical
~7iter, the actual creation of documentation may fall to the program
mer(s). But the entire responsibility for defining documentation stan
dards and absorbing the cost of creating and maintaining quality
documentation should not rest with the DP department.

Everyone who benefits from good documentation has to commit to the idea
of defining and enforcing documentation standards. Each part of the
company needs to realize how they would benefit in the long run by
taking the time and effort to confront the problem. If your DP depart
ment consistently supplied quality documentation for all DP systems,
these are some of the ways that everyone would benefit:

Policies and Procedures--would ensure that all necessary
documentation was being created and maintained.

Project Documentation--would provide ongoing communication
about the resources required to carry out a request, as well
as a historical record on which to base future time
estimates.

System Documentation--would provide an overview of each sys
tem, giving new programming staff a shorter learning curve
toward efficiently maintaining those systems.

Program Documentation--would make minor maintenance requests
the short and simple things they should be, and make major
modifications less complicated than they might otherwise
become.

Addressing the Problems of Program Documentation
0063--3



Operations Documentation--would allow the operations staff to
do their job more quickly and efficiently.

User Documentation--would provide end-users with quick
reference information, allowing them to solve some of the
problems that come up without having to incur the cost of
programmer or operator time.

Generally speaking, better documentation would lead to faster, better
service from the entire DP staff. Whether you work in an environment
where DP costs are billed directly to each department, or absorbed as
overhead, time savings will always mean money savings.

Virtually every DP shop has some level of documentation available, yet
often that documentation is not doing its job of "putting an end to the
questions".

WHAT ARE THE PROBLEMS?

I've run into all of the following problems to some degree:

Paper Overload-- This is when the documentation for the sys
tem you have just inherited consists of six three-inch bind
ers, thirty-seven assorted manilla folders and a box or two
of program listings. Every note that was ever taken during
the life of the system has been saved ... somewhere. Good luck
finding anything that makes sense!

Inaccurate Information-- This includes misinformation, mis
leading information and obsolete information. The scary part
is, this kind of documentation often looks very complete,
very organized and very "official". It may have been top
quality documentation at one time, but unfortunately it was
so pretty that no one wanted to mess it up by updating it as
the system changed.

Missing Pieces-- Somehow, the one piece of information that
is vital to your understanding of the system is not avail
able. Either it did not seem important at the time the
documentation was created, or it seemed like the kind of
thing that was just generally understood, or it used to be
there but it disappeared at some time and was never replaced.
By the time you figure it out you are so frustrated, you
probably won't add your discovery to the existing

Addressing the Problems of Program Documentation
0063--4



documentation. Let the next guy struggle through it like you
had to!

Unorganized Information-- Lack of organization can cause the
same problems as missing documentation. The information may
all be there~ but if you can't find it, it still doesn't do
you any good.

Unstandardized Documentation-- When generations of program
mers and analysts have created documentation when and how
they saw fit~ you may end up with a wealth of perfectly valid
documentation that is simply impossible to digest. The for
mat, content and style of the documentation is upredictable
from system to system. The lack of consistency prevents any
intuitive familiarity with a system you've not worked with
before. Every new system you are assigned to maintain is
going to have its own set of problems. Does it have to have
its own style of documentation too?

No, it doesn't. None of the problems listed above are unsolvable.
Actually, they are all related. They are all surface problems,
symptoms of a set of deeper, interrelated problems. They stem from the
lack of defined documentation standards, which in turn stems from the
unwillingness to invest the necessary time and money in first defining
the standards and secondly living by them.

U"HY STANDARDIZE?

Many people fight standardization. They feel that it stifles their
creativity, or they equate standardization with bureaucracy. This is
especially true of programmers and analysts whose job is to creatively
solve problems.

But let's face it. Documentation is supposed to be a factual represen
tation of our systems, not an exercise in creativity!

The real reason most people resist standardization is because it is
forced upon them. If you don't give people any say in the rules they
have to live by, they are going to fight tooth and nail against them.
They are going to fight whether they agree with the rules or not, sim
ply because they feel imposed upon.

Involve the people who will create and use the documentation in defin
ing the documentation standards. This approach fosters cooperation and

Addressing the Problems of Program Documentation
0063--5



commitment. Also, these are the people who can best define exactly
what it is that is needed.

Build a team of qualified Itexperts", pulled from the programming staff,
the operations staff, DP management ~nd the end-user population.
Assign them the task of defining documentation standards. The project
should basically follow these steps:

I Define your needs
II Explore your options

III Detail your requirements
IV Select your tools
V Streamline

VI Write it down!
VII Put it to work

IX Revise and refine

Defining your needs is a critical first step. Appendix A lists the
components we felt were important to include. This may give you a
star~ing point, but it is essential to the success of the project that
you define your own needs as clearly and completely as poss~ble.

What is important from the user's viewpoint m~y be quite different from
what is important to the programmer. The first time through, don't
overlook anything. Keep track of all the ideas that come up. It may
be helpful to group the ideas into categories like system· documenta
tion, program documentation and user documentation.

Exploring your options means looking at all kinds of available tools.
Tools range from paper and pencil to sophisticated case tools and PC
packages. Your shop may already have some forms that have been used
successfully, but maybe they would be easier to use if you set them up
as Vplus forms on the HP3000. Or maybe there is a PC package out there
that produces the same kind of document, but provides some additional
benefits like an integrated data dictionary system. Your final
documentation system could be completely on paper, completely on-line
on the HP3000, completely on floppy disk, or any combination of the
above.

Detail your requirements. Now that you have a list of general needs
and an idea of the tools available to you, you can become more specific
abou~ the form your documentation will take. There are many difficult
choices involved, but the object is to match the right tool(s) to your
requirements. At this stage, you want to define the essential in
gredients for your shop's documentation. You want to define not only
~he general areas of documentation, but the actual details required in

Addressing the Problems of Program Documentation
0063--6



each of those areas. For instance, if you have decided that you need
documentation on data files you may decide that that will include
record layouts, blocking information, cross-referencing to all programs
Nhich update the file, or many other possibilities.

Selecting your tools now becomes much easier, because you can eliminate
any that will not support your requirements. Having narrowed your
range of choices, you must now find a balance between such considera
tions as ease of use, cost, training requirements and effectiveness.
These choices apply whether you are comparing one PC package to
another, an automated tool to paper and pencil methods, or anything in
between. Pick the single tool or combination of tools that best meets
your requirements.

Streamline. Review the list of requirements and the selected tool(s).
Now is the time to take a hard look at your decis ions. It would be
nice to have every one of your documentation needs met, but is it prac
tical? The reality is, if your standards are too cumbersome they will
be worked around. Make some compromises, if necessary, so that you
don't doom the standards to failure even before implementation.

Write it down! Your team has done a lot of work to define these stan
dards. Don't leave their implementation to chance. Prepare a document
that explicitly defines the new standards. Provide samples where pos
sible. Provide instructions for using all the tools you have selected.
Publish the standards and distribute them to everyone who is expected
to follow them.

Put it to work. You need to plan for the implementation of the new
standards. If they represent a major change from the old style, you
may need to ease into the changes. People will have questions, and you
will run into situations that have not been planned for and don't quite
fit into your guidelines. It's not a bad idea to hold some status and
review meetings to keep things on track.

Revise and refine. Keep in mind that just because you have defined
some standards, you have not set anything in concrete. You'll need to
work with the new standards on a day-to-day basis for quite some time
before you can really see what's working and what's not. Don't
paralyze yourself waiting for the perfect tool or the perfect solution.
Give it your best shot, then work with it for a while. Over a period
of time, the standards will be revised and refined until they really
are meeting your needs.

Once you have a really good, workable set of documentation standards
and guidelines, you will begin to see real gains made in the area of

Addressing the Problems of Program Documentation
0063--7



quality documentation. That first step leads to increased programmer
and operator productivity, increased program and system quality, and
better user support from the entire DP staff. Appendices A and B have
been designed to give you some ideas and to help you get started. Keep
in mind that the documentation effort needs continuing support from
eve~one involved: DP staff, management, and end-users. Given that
support, you can break out of the cycle of:

poor documentation
I
I
V

high-cost, low-quality system support
I
I
V

poor documentation

and into the more desirable cycle of:

good documentation
I
I
V

high-quality, low-cost system support
I
I
V

good documentation

Addressing the Problems of Program Documentation
0063--8



APPENDIX A
Documentation Requirements

Policies & Procedures

* Documentation Standards Defining the required documents

* Coding Standards Mainly used for COBOL, defining
standards like paragraph numbering,
format of IF constructs, use of in
trinsics, copylibs and macros

* Production Account Standards Defining security conventions,
naming standards, account structure

* Project Management Guidelines Guidelines on making time es
timates, recording progress, making
status reports

* Administrative Policies Policies regarding things like work
hours, vacation, sick leave

Project Documentation

* Service Request

* Statement of Scope

* Project Plan

Every request for service from the
programming, operations or tecnical
services staff is recorded on a
numbered service request. The
request is used as a vehicle to
record estimated and actual time
spent on a project, and to record
the project sign-offs.

A narrative on the scope of the
project, used mainly on larger
projects

Includes plan of action, time and
cost estimates for the project.
Can be free form, or follow a pre
printed outline of the typical
project phases (analysis, code,
test, etc ... )

Addressing the Problems of Program Documentation
oo63-A-l



* Project Log

* Status Memos

* Meeting Minutes

System Documentation

APPENDIX A
Documentation Requirements

Details action taken by date and
amount of time spent

Required on a regular basis for any
substantial project

Minutes for any meeting involving
the user and/or the project team

* System Flow Diagram

* Cross-reference of Jobs,
Programs, Files, Reports

* System Problem Log

* Contact List

Program Documentation

* Flow Chart, Warnier or
HIPO

* Program Narrative

* Maintenance History

* Imbedded Narrative

High level input/process/output

Defining the interdependence of
processes and files

Includes date and time of problem,
who reported it, who worked on it
and how it was resolved

List of contacts for the system in
cluding programmer and/or analyst,
main user contact, controller

High level illustration of main
logic flow

Narrative description of purpose

A running report of changes made
including date, version number
programmer and one-line descrip
tion. Should include reference to
the service request number.

Imbedded comments anywhere they are
needed to clarify the code

Addressing the Problems of Program Documentation
oo63-A-2



APPENDIX A
Documentation Requirements

* Compile Instructions

* Current compiled listings

Operations Documentation

* Job Descriptions

* Job Run Instructions

* Job Restart Instructions

* Report Distribution List

* System Contacts

User Documentation

* User Manuals

* On-line Documentation

* Data Services Handbook

Which production compile job should
be used and/or related copylibs,
macro files or special prep
requirements

Stored in hanging folders, sorted
by system

Narrative of job purpose

Operator instructions for streaming
and/or monitoring the job

Operator instructions in case of
job abort or system failure

List of who is to receive report(s)

List of contacts for the system in
cluding programmer and/or analyst,
main user contact, controller

Include system overview, data entry
instructions, sample screens and
reports, help section

Where possible use self-explanatory
input screens and/or on-line help
facilities

Defines who's who in the DP what
services are offered, and how to
get help

Addressing the Problems of Program Documentation
oo63-A-3



APPENDIX B
Pitfalls and How to Avoid Them

Programmer Resistance--First, be sure to involve the programmers in
defining the standards. Secondly, select the tools carefully to en
sure ease of use. Avoid defining standards which appear to be no
more than red tape to the people who must create and maintain the
documentation. Keep the programmers involved in fine-tuning the
documentation process.

Management Resistance--Sometimes it's the programmers who feel the
problems of unstandardized documentation the most. Management may
not be terribly cooperative, however, if they are approached only
with complaints about the current state of things. Do some of the
ground work before approaching management. Define the problem(s) in
detail, look into some of the available tools and solutions. Go to
management with a plan for change, well outlined and thought
through, not simply another complaint.

End-User Resistance--In our shop, the users pay cold, hard cash for
our services. They resist the idea of paying for more programmer
time to create documentation. You need to involve the users in the
definition of the standards so that they understand what you are
asking them to pay for. You need to foster the idea that they are
investing time and money now in order to save time and money later.
Perhaps you can compromise by billing for only half the time spent
on documentation.

Overkill--Once you have decided to define standards where there have
been none, it is easy to get carried away. Eve~one involved in the
process of defining standards must keep in mind that in order for
the standards to work, they must be easy to follow. Having end
users on the team will help in this respect because they will
require that you explain exactly why each document is needed. They
will not want to pay for busy work.

Reinventing the Wheel--The definition of standards is important, and
for the most part your needs will be unique. It is possible,
however, to spend far too much time defining your standards and
developing processes to support them. One thing to keep in mind is
that the goal is not perfection, or even excellence. The real goal
is to make steps in that direction.

Addressing the Problems of Program Documentation
oo63-B-l



APPENDIX B
Pitfalls and How to Avoid Them

Anything can be designed to death, including standards. Set a time
limit at the outset of the project. Set a date by which you will
have the Documentation Standards document complete and stick to it.

It is also possible to spend more time than you anticipated in the
implementation stage if you decide to design your own forms or, as
we did, your own on-line system. Be sure you take enough time up
front to investigate the tools that are already available before you
decide to design your own. The Data Processing field is notorious
for reinventing the wheel. If that leads to a new and improved
model, that's great! But it's awful disappointing to spend months
in development and then discover there was a good solution already
available.

Addressing the Problems of Program Documentation
0063-B-2





Asynchronous and SJllchronou8
Auto Dialing Equipnent on the BP 3000

Why, When, and Bow

Benedict Bruno
STR Software Company

PO Box 12506
Arlington, Virginia 22209

Most HP 3000 computer systems have asynchronous modems connected to CPU
ports to support remote terminal users. If connectivity to other HP 3000
or IBM mainframe (or compatible) computers is desired, then synchronous
modems may also be connected to the Intelligent Network Processor (IMP)
accessed by subsystems such as Remote Job Entry (RJE) , Multi-leaving
Remote Job Entry (MRJE), and Distributed Systems (DS).

Very few people truly understand the fundamentals of data communications.
Even fewer understand how the task of dialing the requested telephone
number is performed. Believe me, it is not peformed by "magic", but
rather by several different well defined methods.

In this presentation, I will describe how automatic dialing equipment
performs in both asynchronous and synchronous environments. This will
include the RS-366 interface as defined by the Bell 801C automatic call
unit specification guide, the Hayes modem (and compatible) automatic call
facility, and other dialing systems. In particular, proper MPE I/O
configuration, troubleshooting suggestions, and sample programs to
support automatic calling from an asynchronous terminal port will also be
discussed.

Asynchronous Background Information

The HP3000 is not a full duplex machine with respect to asynchronous
communications. This should not be a surprise to any of you now that you
have been using your BP3000 for quite some time. Let us review how the
BP3000 actually communicates with an HP (or compatible) terminal.

Since the HP3000 is not a full duplex machine, the designers created a
flow control and character echo scheme that is quite unique in the
computer industry. The scenario is the following: the terminal may only
send when the HP3000 says it is ready. Furthermore, the HP3000 may only
send data in a maximum of 80 character transmissions whenever the
terminal acknowledges that he is ready. This strategy is known as the HP

Auto Dialing Equipment on the HP 3000
0064-1



inquiry and acknowledge protocol or better known as EHQ-ACK. This
strategy is found in Figure 1 below:

HP3000

FWRlTE of data where
data <= 80 characters ---------->
inquiry (ENQ) ------------------>

Terminal

<----------- OK, send more (ACK)

(Repeats until all data sent from CPU to terminal)

FREAD informs the terminal
that the HP is ready for data

Read trigger (DC1) ------------>
Terminal sends data

<------------ terminated with CR

Figure 1: HP3000 ENQ/ACK protocol

Notice how this protocols works: The terminal connects to the CPU (either
modem or hardwired) and issues a carriage return. The HP3000 senses the
correct speed and parity and echoes the received carriage return and adds
a line feed. The BP3000 is then ready to receive an MPE command (the
:BELLO command) by issuing the read trigger, i.e., the DCl character.
This read trigger is actually sent to the terminal when the FREAD (or
READ or READX) intrinsic is executed. This DCl character inhibits or
unlocks the keyboard in order for you the terminal user to actually begin
keying your command. Until this DCl character arrives, you cannot begin
keying any data.

The BP3000 will echo each character that you type at the keyboard.
Depending upon the asynchronous terminal driver that you are using, this
echo is implemented differently. The Asynchronous Terminal Controller
(~) on the Series II and Series III machines would pass every received
character directly to the CPU in order for the character to be echoed.
Thus each character keyed at the keyboard would interrupt the CPU. This
same technique is employed on the Asynchronous Data Communications
Controller (ADCC) on the Series 30,33,40,44,48. With the creation of the
Asynchronous Terminal Processor (ATP) the CPU is no longer interrupted
tor each character. Notice the term "processor"l The ATP ·provides the
character echo directly to the terminal user. When the data is completed

Auto Dialing Equipment on the HP 3000
0064-2



with the carriage return, the ATP then interrupt$ the CPU by passing the
data buffer direct~. You can see the obvious advantages of this method.

Row you are all experts on the ENQ/ACK protocol. But how do we attach a
modem to an asynchronous port on the BP3000? More specifically, to an
jfC, ADCC, or ~ port? Well, this does not seem that hard but we need
some more background information.

All devices in the world of computers fall into two categories: either a
DTE or DeE. Loosely defined, a device is classified as data terminal
equipment (DTE) if it provides computer processing support (a CPU) and
user input/output (a CRT). A device is classified as data communications
equipment (DCE) if it provides transmission capability (modems, PBX, and
so on). So what is the HP3000? A DTE of course. Wrong! Why? The
HP3000 actually is a DTE in function, but it is cabled as a DeE device.
This causes alot of people to incorrectly construct their cables. Why
did HP do it this way? Because an HP terminal is a DTE device and a
modem is a DCE device. If the HP3000 is cabled as a DeE device, then the
same cable could be used between the terminal and the HP3000 or between
the terminal and the modem!

Figure 2 below shows the data flow relationship between a DTE and DCE.
The 25-pin DB25 connector usually associated with RS-232-C devices
specifies that pin 2 is used for transmit data by the DTE device.
Furthermore, pin 3 is used for receive data by the DTE device. A DeE
device is exactly the reverse. Notice that the direction of the arrow
points to the DeE for pin 2 and to the DTE for pin 3. This is
fundamental in constructing our cable between the HP3000 and the modem.

Pin , DTE DeE

2 -------> ------>
3 <------- <------

Figure 2: DTE vs DeE data flow

But how do I connect a real DeE device such as a Hayes modem to the
BP3000, that is, how does one connect two similar devices? Using Figure 1
and the state fact that a DTE transmits on pin 2, two like devices (DTE
to DTE or DeE to DCE) must cross the transmit and receive pins. This
crossover is simply constructed with pin 2 on the CPU end wired to pin 3
on the modem end. Next pin 3 on the CPU end is wirted to pin 2 on the
modem end. The remaining signals necessary tor modem controls must also
be crossed as well. This includes pins 20 (data tenninal ready or DTR)
and pin 6 (data set ready or DSR), pin 4 (request to send or RTS) and pin

Auto Dialing Equipment on the HP 3000
0064-3



8 (carrier detect or CD), while pin 7 (signal ground or GND) is wired
straight through. This cable is simply known as the BP3000 dataset cable
with part number HP30062B. It is diagrammed in Figure 3 below. Motice
that the additional signal of ring indicator (RI) on pin 22 is crossed
with clear to send (CTS) to provide uniformity with products overseas and
in the United States.

CPU end Modem end

pin 2

pin 3

pin 4

pin 8

~ ~pin2 (TO)

pin 3 (RD)

pin 4 (RTS)

. pin 8 (CD)

pin 6 pin 6 (DSR)

pin 20 pin 20 (DTR)

pin 7 ~<--------~)J pin 7 (GND)

pin 5 ~'-------~') pin 22 (RI)

Figure 3: Connection of a modem to an BP3000 CPU port

MPE I/O Configuration

Now that the HP3000 is connected with the data set cable to the Hayes
modem, the next step is to configure the modem within the MPE I/O
configuration. The NfE :SYSDUMP program is used to modify the I/O
configuration. The System Operation and Resource Management reference
manual documents the :SYSDUMP program and its options. The items of
importance here are the terminal type, subtype, and speed.

The terminal type of 10 specifies the standard supported HP terminal
protocol of EHQ/ACK. The terminal type of 18 specifies any non-HP type
of terminal and does not use ENQ/ACK. Specify the terminal type based
upon the device that this modem will be calling. Since the incoming
:BELLO command can specify the terminal type (;TERM=nn) and the outgoing
program can specify the terminal type (FCONTROL 10), the terminal type
should be for the device that will mostly use this port.

The subtype specifies whether the device is hardwired connection "r a
modem connection. Subtype of zero (0) specifies a hardwired connection

Auto Dialing Equipment on the HP 3000
0064-4



and the HP3000 requires only three computer signals of transmit data (pin
2), receive data (pin 3) and signal ground (pin 1). Thus only three
wires are necessary to connect an HP (or compatible) terminal to the
HP3000 CPU using RS-232-C. This tact reduced the connector size for what
BP classities as "direct connect" ports on the ATP. Direct connect ports
on the ATP use a special three pin connector rather than the standard
DB25 connector associated with RS-232-C. Furthermore, with only three
signals, the additional modem signals of data terminal ready, data set
rea~, carrier detect, etc. are not provided.

Could we attach a modem to either the three pin direct connect or the 25
pin "modem port" on the ATP (or ADCC or ATe ports) and configure the MPE
I/O configuration for this port as hardwired? Certainly, but remember
that the HP3000 CPU will not provide data terminal ready to the modem.
Thus the Hayes modem would have to be strapped for forced data terminal
ready. This means that the Hayes modem will always answer an incoming
call regardless if the BP3000 CPU is really up. Not really a good idea.

The proper way to attach a modem to the HP3000 is with the subtype ot 1
specifying modem support. All modem signals are supplied with subtype 1.
Remember from our earlier discussion that all the signals are reversed at
the CPU end! The CPU monitors data terminal ready raising the signal
when the HP3000 is running. The signal is momentarily dropped when a
disconnect occurs, when the remote user issues the :BYE command, or when
the :ABORTJOB command is used on the session number of the remote user
active on this port. This sounds more of what we want, control ot our
session in the case of disconnects and logoffs.

The last item, speed, is really of no consequence because MPE will
"sense" the speed from that specified with the character string received
at the CPU. A Hayes modem supports speeds of 300, 1200, and 2400 baud.
Depending upon the speed of the remote terminal user, the local modem at
the CPU will synchronize with the remote modem at the terminal. The
HP3000 CPU will then sense the correct speed and echo the carriage return
with a line feed and the colon prompt.

AsynChronous Auto Dialing

Our objective is to have a program open the logical device number with
our Hayes modem attached. With our configuration parameters above, can
we do it? Almost. The Hayes modems provide a simple command mode
interface that can easily be written by any DTE device. We can specifY
any speed of 300, 1200, and 2400 baud with the FCONTROL intrinsic. But
we cannot open the port and issue an FWRlTE (with the Hayes "AT"
commands) without the HP3000 knowing that the "unit (modem) is ready".
By this we mean that the HP3000 must see carrier detect (CD) and data set
ready (DSR) high from the modem in order for the FWRlTE 'to complete.

Auto Dialing Equipment on the HP 3000
0064-5



The Hayes modem has dip switches specifying a number of options. One ot
the options specifies the signals of carrier detect and data set rea4y as
either normal or forced on. We need this to be forced on. While we are
at it, specify the dip switches as in Figure 4 below:

DTR from interface
Terse command mode responses
Enable command mode responses
Disable echo of command characters
Auto answer enabled
CD and DSR forced high
Enable command mode

CTS forced on
Dial-up operation
Blind dialing method
Asynchronous operation

Figure 4: Bayes modem strap settings

Rotice that DTR is specified from the interface, i.e., from the HP3000.
With subtype 1 the HP3000 provides this signal; otherwise we would have
to force it high for subtype o. Commands executed by the Hayes modem
always return a response. This response can be a character string such
as "OK", "CONNECT", etc. or can be a single digit also known as terse
mode. In terse mode, the Bayes modem transmits a single ASCII character
terminated by a carriage return. Just what we want, data terminated with
a carriage return. Obviously we want these responses to our command and
we do not want the command characters echoed back to the CPU. The
remaining signals are self explanatory. One should notice that the only
signal we MUST have is that of CD and DSR forced high. All of the
remaining signals can be specified with an appropriate AT command that we
may send programmatically.

Program Pseudo Code

Row that we have the NPE I/O configuration correct, the Hayes modem
strapped, and the cable connecting the modem and the CPU, we are now
ready to develop our program to use the autodialer~and control the modem.
will describe this as a series ot steps that can be programmed in any
language on the BP3000.

Step 1: Open the port

We must first open the logical device number assigned in our I/O
configuration to the attached modem. The FOPEN intrinsic may be used

Auto Dialing Equipment on the HP 3000
0064-6



with a file reference to specifY which logical device number the modem is
on as follows:

:FILE PORT;DEV=ldevnumber
fi1enum =FOPEN (·PORT, ~4oo, ~4, -80)

lIotice that the FOPER intrinsic references the formal designator of
"·PORT" requiring that a tile equation tor PORT be present. The tile
options (FOPrIONS) ot octal 400 (~400) specify carriage control and a new
file. More on carriage control later. The access options (AOPl'IOHS)
value ot ~4 allow us to read and write to this device. The record size
ot 80 bytes is tor a standard terminal. You may need to increase this to
talk to your device.

Step. 2: Disable echo

Since the modem will respond to our ~ commands with a response, we do
not want the HP3000 to echo back this response to the modem. Recall, the
BP3000 always echoes incoming data back to the sending device. This will
obviously contuse the modem if this data is echoed back! Use the
FCONTROL intrinsic with the returned file number from step 1 as follows
below:

FCONTROL (filenum, 13, Idummy)

lIotice that parameter 13 disables the echo feature. No parameter value
is required to disable echo. Bence the value of the "ldummy" variable is
meaningless and unused.

Step 3: Specify modem speed

Recall that the modem supports a variety of speeds. We must specify the
speed of the modem to match that of the device that we are trying to
call. The FCONTROL intrinsic allows for the specification ot the input
and output speed. As it turns out, the HP documentation states that
specification of both the input and output speed may cause problems.
Therefore. we only need specify the output speed with option 11. The
speed is actually specified in characters per second (not as the baud
rate) in the ldummy parameter. Values of 30. 120. and 240 characters per
second correspond to 300. 1200, and 2400 baud respectively. This can be
done as follows:

ldummy =30
FCONTROL (filenum, 11. ldummy)

Auto Dialing Equipment on the HP 3000
0064-7



Step 4: Disable MPE automatic CR/LF

For each record received by the BP3000, i.e., tor each read completed
with a carriage return trom the device, the HP3000 will eeho an automatie
carriage return and line teed back to the device. Obviously, this will
create havoc for the modem when we have just received the command
response. This automatie carriage return and line feed can be disabled
with the FSETMODE intrinsic as follows:

FSETMODE (tilenum, ~4)

~: Change DCl read trigger to eft

Recall trom the background discussion earlier, that the HP3000 will
transmit the DCl character as the read trigger. The remote device may
only transmit data to the HP3000 when this read trigger character
arrives. The Hayes modem has no idea what to do with the Del character.
The solution is to define some character that the HP3000 may send as the
read trigger that will in turn complete the information that the modem
wants. How about a carriage return? By using a carriage return as the
read trigger, whatever data was previous~ transmitted by the HP3000 in
the FWRlTE will now be complete from the FREAD! Not on~ that, but we
are guaranteed at the HP3000 of being ready for the modem response.

The Del read trigger is changed to a carriage return with the
FDEVICECONTROL intrinsic. This intrinsic accesses the Work Station
Configurator in order to perform the change. The Work Station
Configurator is a nice product supplied by HP to change many of the
attibutes in communicating with an asynchronous device. These "changes"
are placed into terminal type or TT files in PUB.SYS and can be
referenced programmatically and within the I/O configuration.

The FDEVICECONTROL specifies that the read trigger character be placed in
an integer variable (16 bit word). The actual character is placed in the
second halt of the word, i.e., bits 8 thru 15. The first half of the
word is ignored and should be set to binary zero. The parameter of 192
specifies the Work Station Contigurator. The parameter value of 32
specifies the read trigger should be accessed. The parameter value of 3
specifies first change the read trigger to that supplied in I and then
display the value in I. This validates the change. It an error occurs,
the value is returned in the error variable which can be used in a call
to the FERRMSG intrinsic to locate the message from the error catalog.

I=~000015

FDEVICECONTROL (filenum,I,1,192,32,3,error)

Auto Dialing Equipment on the HP 3000
0064-8



Step 6: Enable terse messages; disable command echo

As discussed earlier, using terse messages trom the Hayes modem yields a
single ASCII digit response to our AT commands. This digit response is
completed with a carriage return. The modam must not echo the command
responses because the HP3000 will think it is valid input trom the remote
device. The echo of command data should be disabled. Terse messages and
disabling command echo can be requested with a single command to the
modem. Notice that the data is not terminated with a carriage return
(nor a line teed) as specified with the FWRlTE parameter of octal 320.
Why? Because we will transmit the carriage return as the read trigger
when we execute the FREAD intrinsic.

FWRITE ("ATVOEO", -6, ~320)

Step 7: Read digit response terminated with CR

Once the modem completes our command in step 6, a single ASCII digit is
returned terminated with a carriage return. This can be requested by the
HP3000 using a two character terminal read. The received data can be
checked against the valid responses supplied by the modem manufacturer.
The Hayes specification states that zero (0) indicates successful
completion ot the previous command.

FREAD (answer, - 2)

Step 8: Dial the number

Now that the modem is ready, we can simply send the dialing sequence.
This dialing sequence will include the digits of the telephone number,
delay characters, wiqait tor second dial tone, etc. Place the dialing
sequence in a buffer and send it to the modem with the FWRlTE intrinsic
as in step 6 above. Note that the FWRITE specifies no carriage return.

FWRITE r'ATDT 1-703-689-2525", -length, ~320)

~: Read the modem response

As betore , the previous command is completed by issuing the FREAD
intrinsic. The FREAD transmits the read trigger character (carriage
return) and awaits a two character response trom the modem. The modem
places the call and determines status. Locate the list of valid
responses for your particular modem. You may also wish to enable a timed
read for the modem response. Use the FCONTROL with a parameter ot 4 and
an integer value tor the number of seconds that the HP3000 must wait tor
a response.

Auto Dialing Equipment on the HP 3000
0064-9



FREAD (answer, -2)

Step 10: Continue programmingl

Assuming a connected response from the modem, you are now able to
continue with your program. Don't forget now that you are connected, the
carriage return may be inappropriate as the read trigger." This depends
on the device to which you are communicating.

Should you wish to disconnect abnormally, the Bayes modems may be
interrupted while connected and return to command mode. The default
string of three plus characters (+++) when received by the modem invokes
command mode. Bow might we do this? Simply issue a two character FWRITE
of "++", change the read trigger with FDEVICECONTROL to "+", and then
issue the FREAD. You will then be in command mode. Remember to then
change the read trigger back to a carriage return in order to continue
with the AT disconnect command.

Synchronous Auto Dialing

The Intelligent Network Processor (IMP) provides all synchronous
communications capabilities for the HP3000. One of the most important
features of the IMP is its ability to establish the telephone call of
switched (dialup) telephone lines automatically, eliminating manual
intervention. Autodialing with the IMP is completely different than that
described above with the Bayes autodialing method. As before, let's
describe how to configure and cable the lIP for autodialing. Then
continue with a discussion of the auto call unit itself.

Configuring the IMP

Depending upon the HP3000 series computer, different hardware and
software capabilities are available on the IMP. The IMP for the Series
III requires two boards which unfortunately do not support the automatic
call feature. The IMP for the Series 30, 33, 4x, 6x and 70 computers has
been available as the original non-auto dial feature (part number 30020A
or 'A' board) and as the current auto dial feature (part number 30020B or
'B' board). The IMP board for the Series 37 also provides auto dial
support but is completely different from the 'B' board and cannot be
interchanged. The reader should note that HP otfers the IMP within its
'Link Services' product ~.:terings making it somewhat easier to bundle the
INP, cable, and download software within one product.

The :SYSDUMP command invokes the MPE I/O and system configurator program.
Many parts of this dialogue are also supplied with any of the system
startup procedures, i.e., WARMSTART, COOLSTART, UPDATE, COLDSTART, and
RELOAD. I am sure that most of you have created or updated the system
I/O configuration of your own BP3000. However, should you wish to add

Auto Dialing Equipment on the HP 3000
0064-10



the automatic calling feature to your IMP, you may no'tice that i't is
readily documented within any of the HP3000 manuals. This ·iDcludes the
IMP Installation Reference Manual. So what is the trick? How does one do
it?

The 'three promp'ts of 'DIAL FACILITY', 'ARSWER FACILITY', and 'AUTOMATIC
ANSWER' are provided by the SYSDUMP dialogue in order to properly
configure the dial and answer capabilities of 'the equipment connected to
this IMP. Obviously the 'DIAL FACILITY' prompt appears related to
specifying 'tha't this IMP is to utilize the automatic calling feature but
the System Operation and Resource Management Reference Manual and the
Data Communications Handbook specify that values of 'YES', 'NO', or
[RETURN] are the only valid responses. The YES response specifies that a
telephone handset is attached in order for the operator to manually dial
the phone; the NO response is identical to the [RETURN] response in that
no telephone handset is attached. The reader should note that MPE issues
a system console request with the specific phone number that must be
dialed. When the connection is made, the operator simply replies to this
console request.

However, this still does not answer the question of enabling the
automatic dialing feature. Since BP did not want to add another prompt
to the dialogue, the developers decided to allow another value. By
supplying the logical device number of the IMP to the 'DIAL FACILITY'
prompt (which is obviously the value supplied to the first prompt of
'LOGICAL DEVICE "), we enable the IMP to support automatic dialing.

Furthermore, how can you determine from a SYSDUMP (or for that matter
SYSIRFO) listing of the I/O configuration and CS devices which IMPs have
the automatic calling feature enabled and which do not? Consider the
output from the SYSDUMP program in Figure 5. Two identical INPs are
displayed utilizing 4800 bps modems. One IMP provides automatic dial
support and the other provides manual dial support. Which is which? You
guessed it, there is no way to determine itl When a customer explained
having difficulty in establishing the automatic dialing feature on the
IMP, the first thing I did was to configure the entry once again. This
way I was certain that the I/O configuration was correct.

Auto Dialing Equipment on the BP 3000
0064-11



Figure 5: List I/O and CS Devices

DEV , H R Y TYPE TERMINAL WIDTH DEV NAME CLASSES, I AP TYPE SPEED
T HE

11 181 0 o 11 0 0 0 IOINPO IHP
12 181 0 o 11 0 0 0 IOINPO INP

LDN PM PRT LCL TC RCV LCL CON MODE TRANSMIT 'I'M BUFFER D DRIVER
MOD TMOUTTMOUTTMOUT SPEED SIZE C OPrIONS

11 0 X X X 20 60 900 OIA 600 1 1024 N 0
12 0 X X X 20 60 900 OIA 600 1 1024 N 0

Notice that most ot the columns are selt explanatory. I was happy to see
that with the Update #1 (January 1985) release ot the System Operator and
Resource Management Reference Manual the values of the 'MODE' field are
now documented. The reader is referred to page 1-4 for a description of
each of the heading and entry values. The mode of 'OIA' specities dial
out, manual answer, and automatic answer. We do not know if the auto
dial feature is enabled or disabled. Maybe an additional mode value of
say 'u' (from aUtomatic dial) can be added to the list and. displayed if
the automatic dial feature is enabled.

The reader should also notice that both logical device numbers of 11 and
12 specify the same Device Reference Table (DRT) entry. Thus an INP may
have multiple configurations in order to support several devices and
capabilities. Therefore, you may enable auto dial support on ldev 11 and
disable auto dial support on ldev 12. I strongly suggest that you add
meaningful device class names of 'AUTODIAL' and 'MANDIAL' respectively in
order to avoid f~her confusion!

The reader should also beware that if the auto dial feature is enabled on
ldev 11, that MPE will expect to find an automatic calling unit attached.
If not, then nothing will happen. No console request will be issued for
the operator to dial the remote number should you attach a telephone
handset to place the call manually. The same is true if the IMP is
configured without auto dial support and you connect an automatic cailing
unit to the IMP.

HP30221G Auto Dial Cable

The automatic dial facility requires a special cable between the INP
junction panel connector and the necessary external equipment of the
modem (2400bps, 4800bps t etc) and the automatic calling unit. This is
the first mention of the automatic calling unit. Synchronous modems were
developed requiring an external device place and control the dialing of
the telephone number. This is far different than many of the asychronous

Auto Dialing Equipment on the HP 3000
0064-12



modems ot today that are 'Hayes compatible' in that the modem and the
dialer are all in one nice package.

The defacto standard for the automatic calling unit is the Bell 801C auto
call unit (ACU). Connection to the Bell 801C ACU requires the RS-366
interface. This interface is well documented in the Bell 801C-LI/2 Data
Auxiliary Set Interface Specitication, PUB 41203.

Although the RS-366 interface utilizes the same DB-25 connector as the
RS-232-C interface, the two are vastly different. Attachment of the ACU
and modem to the INP requires the HP30221G cable (or 'y' cable as it is
often called) as diagrammed in Figure 6. Notice that the connectors
differ "at each end of the cable. The connection to the INP requires a 37
pin connector in order for all 27 signals be passed to the INP. The
connection to the ACU and the modem utilize the standard 25 pin male
connector. However, notice that the pins used by the ACU appear similar
to the modem signal usage. This appearance is totally misleading.

Figure 6: HP30221G cable schematic

®

(!) 37 pin 0 type MALE shield ® 25 pin 0 type MALE shield ® 25 pin 0 type MALE shletd

M

N

o

TEST

Q

R

S

u

w

z
y

w

20 TEST
0 0

g e
M 22

10_
N 23 11_
0 24

_25
12-

13-

H

J

K @) Shielded 27 Conductor

11.- 24 gauge wife

37
19_

® ~i=9'3 Conductor

Q

U

e23

e24

e25 13

Ground (pin 7) should
be tied together at modem
connector 2.

Auto Dialing Equipment on the HP 3000
0064-13



The pin designation of the as-232-C standard is diagrammed ~ Figure 1.
Notice that the direction ot the signal clarities whether it is an
inbound or outbound signal. For example, the HP3000 raises data terminal
ready (DTR) on pin 20. The modem then reacts by raising data set ready
(DSR) on pin 6 when the link is established. The remaining signals will
not be discussed.

Figure 1: RS-232-C Pin Designations

To IMP «---)
Pin Kame To modem (-» Description

1 FG
2 Tn
3 RD
4 RTS
5 CTS
6 DSR
7 SG
8 DeD
9

10
11
12 SDCD
13 SCTS
14 STD
15 TC
16 SRD
17 RC
18
19 SRTS
20 DTR
21 SQ
22 RI
23
24 TC
25

Frame ground
------------> Transmit data
<------------ Receive data
------------> Request to send
<------------ Clear to send
<------------ Data set ready

Signal ground
<------------ Data carrier detect
<------------ Positive DC test voltage
<------------ Negative DC test voltage

Unassigned (not used)
<------------ Secondary data carrier detect
<------------ Secondary clear to send
------------> Secondary transmit data
<------------ Transmitter clock
<------------ Secondary receive data
<------------ Receiver clock
------------> Receiver dibit clock
------------> Secondary request to send
------------> Data terminal ready
<------------ Signal quality detect
<------------ Ring indicator
------------> Data rate select
------------> External transmitter clock
------------> Busy

Auto Dialing Equipment on the HP 3000
0064-14



The pin designation of the RS-366 standard is diagrammed in Figure 8.
Rotice that the signals do not resemble any of those specified in the
RS-232-C standard in Figure 7.

Figure 8: RS-366 Pin Designations

To IHP «---)
Pin Name To ACU (---» Description

1 FG
2 DPR
3 ACR
4 CRQ
5 PHD
6 PWI
7 SG
8
9

10
11
12
13 cos
14 NB1
15 NB2
16 NB4
17 NBS
18
19
20
21
22 DLO
23
24
25

Frame ground
------------> Digit present
<------------ Abandon call, retry
------------> Call request
<------------ Present next digit
<------------ Power indicator

Signal ground
Unassigned, not used
Positive DC test voltage

-Regative DC test voltage
Unassigned (not used)
Unassigned (not used)

<------------ Call origination status
------------> Value 1 of digit
------------> Value 2 of digit
------------> Value 4 of digit
------------> Value 8 of digit

Unassigned (not used)
Unassigned (not used)
Unassigned (not used)
Unassigned (not used)

<------------ Data line occupied
Unassigned (not used)
Unassigned (not used)
Unassigned (not used)

The pin assignments in Figure 8 require some explanation. The digit
present (DPR) signal on pin 2 is set high by the IMP whenever the digit
is sent by the IMP on pins 14, 15, 16, and 17; otherwise it is set low.

The abandon call retry (ACR) signal on pin 3 is set high by the ACU to
indicate the probability of an unsuccessful completion of the call
attempt. The IHP alerts the user with a CS error 59 suggesting another
call attempt.

The call request (CRQ) signal on pin 4 is set high by the IHP to request
the ACU to originate a call. This signal remains high througout the

Auto Dialing Equipment on the HP 3000
0064-15



entire data communications transfer and is set low when the IMP wishes to
disconnect the telephone.

The present next digit (PHD) signal on pin 5 is set high by the ACU to
control the presentation of digits on the digit signal circuits. When
set on, the ACU is ready to accept the next digit indicated on pins 14,
15, 16, and 17 as set by the liP. The digit is read when the IMP sets
DPR high. When set low, the lIP may set low DPR and again present the
next digit on pins 14, 15, 16, and 17.

The power indication (PWI) signal on pin 6 is set high when the ACU
detects available power.

The call origination status (COS) signal on pin 13 is set high when the
ACU has completed the call request function. Previously, this signal was
named data set status (DSS) and later renamed to the call origination
status. Once set high by the ACU, the IMP begins its data transfer
depending upon the specific protocol being emulated, i.e., 3780 on RJE,
HASP on MRJE, etc.

~e digit signal circuits on pins 14 (RB1), 15 (NB2), 16 (NB4), and 17
(NBS) present the binary coded value of the digits 0 through 9.
Obviously, this is the reason why NONE ot the SP data communications
subsystems (RJE, MRJE, DS, 1M!', and MTS) allow for any characters in the
phone number other than the digits separated by the dash character.
Thus t the Bayes modem phone number values such as t k ' or ',' for pause
cannot be issued. This misconception was always a common question asked
by customers when I was at BP.

The last signal ot data line occupied (DLO) on pin 22 is set high
indicating that the data communications channel is in use for automatic
calling, data transfer, voice, or testing. When set low and the power
indication signal is set high, i.e., the unit is powered on, then the INP
may initiate a call request.

Now that the signals are discussed, let me simply explain the automatic
calling process between the IMP and the ACU. The process is diagrammed
in Figure 9. The initial signals of the ACU are set low when the power
is off. When the ACU detects available power when the unit is turned on,
then the PWI signal on pin 6 is set high by the ACU. This will be the
true 'idle state' of the ACU when not in use by any of the HP3000 data
communications subsystem software. The INP initiates the call request by
setting the call request signal on pin 4 high. The ACU responds by
setting both the present next digit signal on pin 5 and data line
occupied signal on pin 22 high. The data line occupied signal remains
high throughout the entire call until the INP terminates the line. The
ACU requests the value of the telephone digit when the present next digit
signal is high. At this point the IMP places the digit in the digit

Auto Dialing Equipment on the HP 3000
0064-16



signal circuits on pins 14, 15, 16, and 11. Once complete, the IMP
incates the digits are present by setting pin 2 high. Once detected by
the ACU, the present next digit and digit present signals are set low by
the ACU and IMP respectively. This process repeats tor each ot the
digits of the telephone number to be dialed, i.e., ACU sets high PHD, INP
sets digit signal circuits and high DPR, ACU sets low PHD, and IMP sets
low DPR. Once the phone number is complete, the ACU attempts the call.

The ACU must indicate successful completion or failure to the IMP. The
call origination status (COS) signal on pin 6 is set high if successful
or low for a failure. In addition, the abandon call retry signal on pin
3 is set high for a failure.

If successful, then the ACU is released from the data transmission
circuit in that the INP now sends and receives signals from the modem.
When the IMP is ready to terminate the data communications activity, the
DTR signal is set low which releases the modem and the CRQ signal is set
low which releases the ACU. The ACU responds by setting low the call
origination status, data line occupied, and present next digit. This
leaves all equipment in the 'idle state' ready for the next call request.

Figure 9: INP-ACU Interface

INPTO
MOOEM

~] INITIAL
ACR& DTAf STATEOPRICRa&COStPWIt

Loop for
alldtglts

I
CRa,

~
PNOf OLOf

I
.__---.... SET DIGIT ON NB1, NB2, N84, &NBS

I
CPRI

I
PNDl
CPRl

I
L...------PNDf

I
ANSWER TONE DETECTED (BY ACU)

I
COSt

I
INP DATA TRANSFER WITH MODEM

I
CRa&

I
COSI

~
DLOI PNDI

PND&OLO&

HIGHa'

LOW=l

Auto Dialing Equipment on the HP 3000
0064-17



Supported External Modems and ACUs

Hewlett-Packard tested and certified specific modems and auto call units
when the auto dial support was added 'to the IMP in late 1981. Vendor
equipment froID both Bell and Racal-Vadic were used. Specifically, the
Bell 801C and Racal-Vadic VA811 auto call units were certified in
connection to the IMP. Lab engineers connected the Bell 201C and Be~l

208B synchronous 2400 bps and 4800 bps modems to the IMP.

HP concluded that any Bell 801C compatible ACU and Bell 201C or Bell 208B
compatible modem are supported by the IMP. However, customers were
warned that other vendor equipment must be tested and certified. This
process could be performed with HP assistance on a time and materials
basis.

Case History Example

Over the years, I have been involved with several customers attaching
equipment other than Bell and' Racal-Vadic to the INP for automatic
dialing of the HP data communications products. Each of the HP sales
offices used either the Bell 801C or the Racal-Vadic VA811 with no
installation or operational' difficulties. However, I have experienced
some problems with testing and certifying other vendor equipment to the
IMP. Most of these were resolved, but by far the most interesting and
troublesome case deserves mention here.

Mel Telecommunications, Inc. had already been using nearly every data
communications product to implement the MCI Mail Electronic Mail Network
(see "Integrating HP Data Comm for Electronic Mail", INTERACT, October
1986). However, MCI wanted to automatically dial remote computers using
DSN/RJE with the 3780 protocol.

Rich Oxford, MCI Technical Support Manager, contacted HP for assistance
when the Penril 8208 modem (Bell 208B compatible at 4800 bps) already
installed and working on the HP3000 Series 64 could not function with the
Penril 8801C ACU (Bell 801C compatible) with the IMP configured for auto
dial. Tom Benedict, HP Network Consultant and I (HP Senior Applications
Engineer at that time) responded.

We first determined that the I/O configuration was indeed correct. When
RJE attempted the dial sequence from the IRJIN command, the ACU and modem
performed the correct signals as in Figure 9., The IMP appeared hung,
experiencing a brief period of idle activity terminating in CS error 59.
This included the call request by the IMP, the present next digit by the
ACU, the digit sequence, and so on." The ACU just never released control
ot the telephone line to the modem in order for the IMP to continue.

Auto Dialing Equipment on the HP 3000
0064-18



We suspected either the ACU or the MCI constructed cable. The ACU and
modem were sent 'to Penril for repair while we checked the cable on 'the HP 
sales office machine. The cable tested fine with the HP3000 Series 68 in
the Rockville Sales Office. The ACU and modem were verified from the
Penril engineers. So what was the problem?

Atter no success on site, we connected the Mel equipment on the BP3000
Series 68 at the Rockville Sales Otfice. Again with no success. At this
point, Tom and I reached the time committment of the support contract and
suggested that all continuing work would be on a time and materials
basis. (I offered to assist Rich at night on my own time 'to develop a
solution. I was intrigued by this one!)

Returning to MCI, Rich and I studied the 801C specification directly from
the Bell technical publication given to us from Tom. Rich decided to
place breakout boxes and data scopes between both the ACU and the modem.
This permitted us to not only monitor but bridge any signals from the
equipment.

We solved the problem with some clever observations by Rich. The call
origination status (COS, pin 13) is always low on the Penri1 ACU. Data
line occupied (DLO, pin 22) is set high by the ACU when the IMP initiates
the call request (CRQ, pin 4). In the previous discussion of Figure 9,
the SOlC specification clearly states that DLO must remain high by the
ACU during the entire call. Using the breakout box between the ACU and
the IMP, Rich noticed that when the ACU detected answer tone thereby
releasing the phone line to the modem, the DLO signal was set low! Which
is totally wrong based upon the Bell specification, i.e., not truly Bell
801C compatible! How could this ever work? Both vendors (HP and Penri1)
specify their equipment worked satisfactorily and yet we noticed that
they did not worked together!

Therefore the Penri1 tailed on two Bell 801C requirements. DLO must
remain high during the entire call and secondly COS follows the DSR
signal. The trick is to make the DLO signal appear high to the IMP when
the Penril equipment mistakenly sets it low. This must happen once the
ACU detects answer tone thereby releasing the line to the modem. The
modems synchronize which sets the DSR signal high. At this point, the
COS and DLO signals were jumpered with DSR (pin 6) of the modem cable and
IT WORKED! The COS, DLO, and DSR signals all remained high, the IMP
detected connection, and RJE continued with the user commands. The line
terminated correctly when the RJEND command was encountered.

The final conclusion involved the construction of an adaptor cable
between both the ACU and modem to the IMP cable as diagrammed in Figure
10. Hotice that 'two 1H4001 diodes and a 3.3k ohm resistor are required
in this cable. Us ing layman terms, let me explain how the cable works.

Auto Dialing Equipment on the HP 3000
0064-19



Figure 10: Penril adapter cable

A

Diode
1N4001

25 Pin Female to CPU Cable

I
<-'f

22 20 17 16 15 14 ~3 7 6 5 4 3 2 1

25 Pin Male to ACU

• 114 Walt3.3lcohm

25 Pm Female to CPU Cable

1 2 3 • S 6 1 8 14 15 16 17 20 22 23 24
~ ~

I
B
Diode 'N400'

1 2 3 • S 6 7 8 1. 15 16 17 20 22 23 24

25 Pin Male to Modem

The resistor and pair of diodes are connected as a hardware logical OR
gate. A diode permits positive voltage to flow through the direction of
the arrow. When DLO (pin 22) goes high by the ACU, diode A permits this
voltage to flow through to the pin 22 at the CPU end. Furthermore, this
positive voltage cannot pass through to pin 6 of the modem nor pin 13
because of diode B (notice the direction of the arrow). When the call is
answered, DLO goes low by the ACU, but the DSR signal is set high by the
modem. This positive voltage passes to COS (pin 13) and through diode B
in effect making DLO appear high to the INP. In fact, the INP never even
notices that the signal drops at alII

The cab~e corrects the misinterpreted implementation of the Bell
specification by the Penril ACU. The resistor is necessary in order to
bias the diodes. The call origination status (COS) signal was previously
named distanct station connected (DSC) which typically is set the same as
data set ready (DSR). This explains why the COS lead on the CPU end is
tied to· the DSR lead in order to make the COS signal follow that of DSR.
Incidently, total cost of the components from Radio Shack was only $2.20.

The Bell B01C ACU is implemented by a number of vendors. As you can see,
its actual function is quite well defined.

Auto Dialing Equipment on the HP 3000
0064-20



Additional Features

Synchronous modems have been further enhanced during the past several
years. Modems have become faster, cheaper, smaller, and more efficient
at utilizing switched telephone lines. One of the most notable
enhancements to the synchronous modems is the addition of a built in auto
dialer which e!minates purchasing a separate 80le type ACU. In fact, a
4800 bps (Bell 208B compatible) synchronous modem with built in BOle ACU
is packaged even smaller than the older SOlC ACU from the Bell System!
(Of course, even less expensive.)

In addition to combining the auto call unit function within the modem
itself, manufacturers are now offering other types of dialing interfaces.
It is possible to utilize an asynchronous port to control the auto
dialing function of a rack of synchronous modems (usually 16 modems).
The synchronous data conun products on 'the HP3000 require the use of an
IMP and does not allow for this asynchronous type of auto dial control.

Another type of dialing control mechanism is implemented directly by the
modem only. In this particular method, the host CPU initiates a
synchronous dialogue to control the auto dial feature of the modem. This
feature was pioneered by Racal-Vadic as the Synchronous Auto Dial Link or
better known as SADL. The SADL method provides IBM bisynchronous and
BOLC protocol support. Using SADL with bisynch, the host computer would
control the modem as if it were another computer in that it would send to
and receive from the modem auto dial information directly. Once the
modem makes the remote connection, the auto dial function has been
completed and control is no longer needed.

SAOL is a very effective and interesting method of controlling the auto
dial function for synchronous lines. However, in the current
implementation of the BP3000 RJE product by HP, it cannot be used as a
viable dialing option from the INP. We must resort to the standard B01C
auto call unit.

Summary

In this paper I have discussed the types of auto dialing equipment in use
in both asynchronous and synchronous environments on the HP3000. The
pseudo code programming example provides the essentials for accessing an
asynchronous auto dial modem from an HP3000 terminal port. The case
history example disproves the fact that "oh, any compatible equipment
will work". Good luck!

Auto Dialing Equipment on the BP 3000
0064-21



References

1. Bell 801C-LI!2 Data Auxiliary Set Interface Specification, November
1976, Bell System Data Communications Technical Reference.

2. System Operation and Resource Management Reference Manual, Update '1,
January 1985, Hewlett-Packard Company.

1981,AprilEdition,Third3. Data Communications Handbook,
Hewlett-Packard Company.

4. Penril 8801C Automatic Calling Unit Operations Manual, Publication
88o1C-OM-0381, Penril.

5. Penril Data Modem 8208A!B Instruction Manual, 60A047A01-01, Rev A,
Penril.

Au~o Dialing Equipment on the HP 3000
0064-22



Data Download
HP3000 to any Vectra Clone

Andre Cruz
Douglas L. Grossman

Merrill Lynch & Co., Inc.
May 18th, 1988

The purpose of this article is to show, by example, the concept of a
Data Download. The body of this work is divided into four parts: 1) A
definition of the topic; 2) an overview of the application detailed in
this story; 3) traversal of the products and techniques involved in
constructing this specific application; and, 4) a conclusion.

The Definition

Given the migration of defined, fixed end user functionality from the
central host to one or more local processors, the Data Download . is the
scheduled data refresh, via electronic connectivity, providing local
application processing input without continuous, direct online host
interface during local application execution.

The term Data Download is not new. It should not be confused with
Application Download. The former is a far more extensive topic. There,
the central maintenance and downloading of common local application
programs is involved, not only the refresh of the data. Its scope is
beyond the confines of this small column.

The Application

The client organization processes compensation payments for salesmen
located in branch offices. The product is insurance. The salesmen are
known as Regional Insurance Specialist (RIS). An RIS requires monthly
statement generation detailing compensable transactions. Statement
processing is handled centrally from home office by the Compensation
Unit. Paper statements are couriered to the RIS force in the branch
offices.

Sale of product results in issuance of production credits. These are
reflected in the monthly compensation sheet of the RIS. Production
credits can be likened to green stamps, i.e., Sale of product accrues
various amounts of production credits; US dollars are distributed to the
RIS as a percentage of total production credits collected, etc. Product
returns and cancellations cause chargeback against the compensation sheet
of the RIS. In essence, payout must be calculated and reported to the
branch sales force in an exact and timely manner.

Data Download: HP3000 to any Vectra Clone, page 0065-1



Previously, Compensation Unit personnel transcribed individual
transactions from home office generated host production reports. These
figures became input to local processors for ultimate statement
generation and distribution. As volumes grew, transcription time
increased proportionately. The client requested a more expedient
methodology.

The Technique

Prior to implementing the download, the existing system was composed
of the following. Weekly production reports detailing RIS compensation
were produced on the host HP3000 series 70. The output was recorded and
summarized for entry into a local DBase 111+ application, resident on a
stand alone IBM PC/XT. The HP produced the Total RIS Compensation
Report; the PC generated the Individual RIS Compensation Statement. A
procedure was needed to remove the human element needed to reenter data
into the PC.

The HP report was generated via a COBOL program. It accesses
multiple Image sets to create the printer spool file. The first step was
to modify the program enabling it to additionally write output to an MPE
disk file. Because statements were produced on a monthly basis, some
modifications were required to summarize the weekly data. These changes
were not extensive. They were incorporated into weekly batch production.

Next, a package called DataExpress was used. The product is supplied
by a firm known as Imacs Systems, Corp. in Marina del Rey, California.
"DataExpress is a program that allows users to extract data from multiple
files and/or data bases on the HP3000, to manipulate and reformat it for
use in another application program. It allows users to make use of the
e~tracted data in programs on their microcomputer, or to use the data in
other HP3000 programs." [*1] A review of the DataExpress package is not
possible. For now, let it suffice that pleasurable results have been
attained from product usage.

DataExpress was used to convert the -MPE file to DBase format. The
output from DataExpress resides on the HP until downloaded. DataExpress
has an option that allows downloading of the file when processing is
completed, but this requires the user to run DataExpress online, from the
pc. The example uses a combination of SuprToo1, a product by Robelle,
and DataExpress. SuprToo1 was used to extract the information quickly
from an HP Image dataset. This is done because DataExpress is much
slower doing "simple" extractions. The SuprToo1 output, an MPE file, is
now read into the DataExpress procedure, where it is sorted, on three
items, and summarized on each level. (Note: DataExpress will not allow
summarizing unless it sorts the file first, therefore, it is of no use to
sort the file prior to using DataExpress.)

Data Download: HP3000 to any Vectra Clone, page 0065-2



Another problem arose in this SuprTool/DataExpress interface. Numeric
output to SuprTool ASCII files is not padded with leading zeros.
DataExpress generated a data exception when attempting to read a numeric
field with leading spaces. A COBOL program was written to inspect the
field and replace spaces with zeros.

DataExpress requires interface with another package to perform the
actual file transfer. In this case, a product called Reflection-3, by
Walker Richer & Quinn, stationed in Seattle, was used. "Reflection
enables the IBM Personal Computer or workalike PC to emulate, or operate
like, the terminal of a much larger computer system. Reflection emulates
Hewlett-Packard ... You can transfer data between the PC and a host
computer, and send data from the display memory of the PC to a printer
or a disk file." [*2]

Reflection requires no added PC hardware.
standard serial ports soft labelled COM 1 and
direct connections are acceptable.

The program utilizes the
COM 2. Either modem or

Originally, usage of the Reflection product was ceded to operations.
Because the generation of the compensation figures and the DBase file was
a production job, operations controlled the actual download. ~onthly,

operations invoked Reflections on a PC earmarked for production usage.
The operator would execute a canned Reflection procedure that would
initiate an HP session, download the compensation file to a Drive A
floppy disk on the PC and terminate the HP session. This floppy was
handed to Compensation Unit personnel. Workers in that unit could then
insert the floppy into Drive A prior to invocation of the DBase process
that generated the compensation statements. No prompted input was
necessary from the user.

The ultimate scenario is to design for a direct download into the PC
of the end user, bypassing operations completely, as shown in the example
on the following pages. In the example, the user invokes a Reflection
Command File that will initiate an HP session, wait for user passwords,
download the data to the correct hard disc directory on their PC, and
terminate the HP session. If any errors occurred in the actual download,
the user is given the opportunity to re-try the download.

Arguments can be made that good procedures would dictate that
communications, specifically file transfers of a non ad hoc, fixed
production nature, would best be handled and controlled by production
operation. Additionally, stand-alone workstations do not have online
host communication requirements other than for the download of limited
scheduled production data. In such a case, a single sharable download
workstation could serve sufficiently and align communications costs. The
decision would vary based on the users requirements.

Data Download: HP3000 to any Vectra Clone, page 0065-3



The Conclusion

The concept of a Data Download was new to this technical and end user
community. The first installation has been a substantial success. The
client has requested other downloads. Some financial reports are being
considered. Overall, experience with the products mentioned and the
concepts presented has been very favorable.

Footnotes

*1 Imacs Systems Corp., DataExpress Reference Manual,
11/87, p. 1-1.

*2 Walker Richer & Quinn, Inc., Reflection User Manual,
10/86, p. 3.

Data Download: HP3000 to any Vectra Clone, page 0065-4



ANNUDX(AJC.MTEST)

DataExpress Procedure and Explanation

Procedure Review Report

created on 87.09.25 by AJC page 1 of 1

OUTPUT FILE FORMAT: Report listing Type of output that
is to be created

OUTPUT FILE LAYOUT: Suppress detail records Display only total
lines when each
sort item changes

ISSUE-DATE X(4)
PROD-ID X(8)
POLICY-STATUS X(2)
subtotal (FACE) S9(11)
subtotal (PC) S9(12)

SORTED BY: Items are to be
sorted in the
following order

ISSUE-DATE X(4)
PROD-ID X(8)
POLICY-STATUS X(2)

SUMMARIZED BY: What fields are
sununarized. As
each item changes
these fields will
contain totals

ISSUE-DATE X(4) subtotal (FACE) Print the total FACE
for given date

subtotal(PC)
count (FACE) Print the number of

records for given
date

count(PC)
PROD-ID X(8) subtotal(FACE)

subtotal(PC)
count (FACE)
count(PC)

POLICY-STATUS X(2) count (FACE)
count(PC)

Data Download: HP3000 to any Vectra Clone, page 0065-5



SELECTED BY:

ISSUE-DATE
and PROD-ID
and POLICY-STATUS
and FACE
and PC

FILE ACCESS PATH:

ANNUOUT(type=MPE)
1 filler
5 ISSUE-DATE
9 filler

12 PROD-ID
20 filler
21 POLICY-STATUS
23 FACE
33 PC

annuity sununary

X(4)
X(8)
X(2)
9(10)
9(11)

X(4)
X(4)
X(3)
X(8)
X(1)
X(2)
9(10)
9(11)

To report only
certain records,
the user can use
the following
choices for
selection. Enter
blanks to use
all records

MPE input file
and layout.

Data Download: HP3000 to any Vectra Clone, page 0065-6



Reflection Command File Example and Explanation

THIS IS A COMMAND FILE USED TO DOWNLOAD DATA FROM
THE HP3000 TO THE IBM/PC. THE HP FILE IS CALLED
M0078P06, WHILE THE IBM/PC FILE IS TISFILE.DB3
IN DIRECTORY DBASE\COMPnn, WHERE "nn" IS THE YEAR.

,
LET V1=0
: PROMPTER
TRANSMIT "-M"
WAIT 0:0:2 FOR ":"

IF NOT FOUND
LET V1=V1+1
IF V1>3

DISPLAY "-[&dA HOST NOT READY"

WAIT 0:0:5
EXIT

ENDIF
GOTO PROMPTER

ENDIF
WAIT 0:0:2
TRANSMIT "HELLO DOUG.MTEST -M"
HOLD 0:0:30 FOR "HP3000"

IF NOT FOUND
TRANSMIT "-M"
WAIT 0:0:1
TRANSMIT "-M"
WAIT 0:0:1
TRANSMIT "-M"
WAIT 0:0:1
DISPLAY "-[&A LOGON FAILED"
WAIT 0:0:10
EXIT

ENDIF
WAIT 0:0:15 FOR "-Q"

Data Download: HP3000 to any Vectra Clone,

Sets counter V1 to zero
Label name
Transmit a Carraige Return
Wait up to 2 seconds for the

colon prompt
Result determined by above WAIT
Increment V1 by 1
If V1 is 4 or above, then

Display message on terminal,
in inverse video

Wait 5 seconds
Return to PC

Go to PROMPTER label

Transmit MPE "HELLO" Conunand
Wait 30 seconds for system to

return Logon Banner
At this time the user goes

from Reflections Mode
to HP Mode, allowing
the user to enter the
password(s).

If the user has not entered
the password(s) within
the 30 seconds, HOLD
will automatically end
put the user back into
Reflections Mode, and
this conunand file will
continue.

If Logon Banner wasn't displayed
Transmit 3 Carriage Returns

to exit HP Security,
if it was active

Display message on terminal

Wait for DC1 character to be
returned from host

page 0065-7 ,



:TRANSFER
CONTINUE

Label name
This will cause the command file

to continue whether an error
occurred or not

Purge old M0078P06 file

Display message on terminal,
with Carriage Return and
Line Feed

Accept user response of 1 char.

RECEIVE C:\DBASE\COMP88\TISFILE.DB3 FROM M0078P06.DATA ASCII DELETE

Transfer file M0078P06.DATA from
the HP to the PC directory
DBASE\COMP88. If the file
already exists, delete it.

IF ERROR If there is an error in transfer

DISPLAY " ERROR TRANSFERRING DATA TO PC. TRY AGAIN (Y or N)? -flCJ"

ACCEPT V2 LIMIT 1
IF V2="Y"

GOTO TRANSFER
ENDIF

ELSE
TRANSMIT "PURGE M0078006.DATA-M"
WAIT 0:0:5 FOR ":"
TRANSMIT "RENAME M0078P06.DATA,M0078006.DATA -M"

Rename datafile for storage
ENDIF
TRANSMIT n-M"
TRANSMIT "-M"
TRANSMIT "BYE -M"
WAIT 0:0:5
EXIT

Data Download: HP3000 to any Vectra Clone, page 0065-8



Inteqrated Information Enqineerinq
Peter Ney

Richard Irwin Associates (RIA)
Postbus 15348

1001 MH Amsterdam, The Netherlands

ove~iew

Much industry attention is currently being focused on
methods of creating production environments within
Information Systems departments that effectively support
corporate strategy. There is a powerful drive to improve the
efficiency and quality of the IS function, as the growing
cost of maintenance of systems that have been poorly
designed, managed and constructed is appreciated. There is
a pressing requirement for a comprehensive environment that
supports the management, design, construction,
documentation, change management and maintenance of
informations systems. Clearly the data dictionary and its
associated tools are seen as the core of such an
environment.

The HP3000 community at the moment does not have access to
truly integrated and user-friendly facilities that support
such an environment. It is most likely that in the near
future this area will be addressed with a release of a new
range of products, but meanwhile there are techniques and
methods that can be used to approach the ideal information
engineering support environment reasonably close with
existing tools and facilities.

This paper discusses what is currently a very dynamic area
in the HP community, that of System Dictionary, its
associated products, integration services and Computer Aided
Software Engineering (CASE). Because of certain
developments currently taking place in this area, I have
decided not to submit the full paper for inclusion here, as
some of its detail is very likely to be affected by these
developments, thus effectively making the paper "out of
date" by the time it is presented at the Conference.

The presentation will examine the strategy and methods
leading to integrating data, functional and resource
information on a corporate level using the System Dictionary
on the HP3000.

Inteqrated Information
Enqineerinq 0066-1



The System Dictionary, when considered as the hub of the IS
department, must be structured to effectively support the
development and production functions. Currently System
Dictionary has many critical problem areas. Some of these,
such as the poor user interface, no access via 4GLs, lack of
true version control or support for coexistance with
Dictionary/V, can be "lived with" in the hope that these and
other annoying shortfalls will be resolved by HP in the near
future. There are some problem areas, however, that actively
discourage the use of System Dictionary to successfully
support the IS environment, and these must be overcome by
the user in the short term if effective use of the product
can be currently made.

One of the main problem areas is the current open-endedness
of the System Dictionary coreset that does not encourage a
sophisticated use of the product. There is, for example, no
standard provision for data and functional analysis (eg.
EAR models and Data Flow Diagrams),' and users have to
independently customise the coreset to support this area.
Not surprisingly, many choose not to bother.

Partly linked to this is the current lack of a standard
interface to CASE tools, the use of which is spreading in
the HP3000 community.

In the presentation I hope to discuss ways of coping with
the available tools and attempt to create a corporate
integrated information engineering environment in order to
give effective support to today's IS department.

Inteqrated Information
Bnqineerinq 0066-2



Data Center Management and Efficiency

Betsy Leight
Operations Control Systems

560 San Antonio Road
Palo Alto, California

INTRODUCTION

The efficiency and security of data processing operations is a
major concern to corporate data processing managers.

To assess their data center's performance, management often
conducts a review of the following areas: standards and
procedures, operational work flow and control, scheduling, data
security and access control, equipment utilization, and
environment.

If the data center management and staff understand the concerns of
upper management and the information that is needed, the operations
review can proceed more smoothly, and the results can be more
beneficial to the entire organization.

corporate direction for data center management focuses on control
issues, automation procedures and the gray area in between. The
data center manager reviews the operations and interprets corporate
objectives to the operations staff. Because this article focuses
on the concerns often overlooked by the data center manager, it can
be a useful check list for improving daily operations as well as
preparing for a data center operations review.

Data Center Management & Efficiency
Paper 0067 - Page 1



STANDARDS AND PROCEDURES

Data center managers should verify that standards and procedures
exist and are enforced. These written rules are the controls;
they should include:

* Ensuring proper timing in running programs and jobstreams.

* Inserting changes into production runs; entering run dates.

* Using correct data for programs; accesses the correct data
files.

* protecting data and programs from accidental or intentional
destruction.

* Specifying methods of physically moving input and output.

* Scheduling work and getting work rerun in the event of an
error.

* Keeping records of work performed and session logons.

* Determining and recording sufficient resources for the work.

* Performing maintenance and general housekeeping associated
with the operation of the data center.

The data center manager should ensure that formal standards exist
for systems development and maintenance, program and system
testing, file conversion, program and system change control,
library operations, computer operations and documentation.

For each aspect of standards and procedures, your installation can
implement procedures using automation software as shown in the
following chart.

Data Center Management & Efficiency
Paper 0067 - Page 2



Task Description Controlled Automated Controlled Automated
Operation Controls Automation Operation

......................

Run Programs User Task User with User who Scheduling
Scheduler Schedules Software

Change Jobstreams User Task User with User who Job Change
Editor Edits Jobs Software

Verify Data File User Task User with User who File Scan
File Scan Scans Files Software

Moni tor Jobs User Task User with User who Jobst ream
Jobstream Monitors Monitor
Monitor Jobst reams Software

Control Master Files User Task User with User who File XFER
File Copy Copies fi les Software

OPERATIONAL WORK FLOW AND CONTROLS

The data center manager should investigate specific items in this
area, inclUding whether:

* Input data from other departments is complete and entered on
time.

* The data center keeps job accounting and session logon
information.

* Job accounting information is evaluated and used by
management.

Error control procedures should also be reviewed. Specific
questions to ask include:

* Is anyone notified in case of a production processing error?

* Are batch processing errors and logon violations documented?

* Are error statistics accumulated or ignored?

* Are errors followed up on so that they do not recur?

The data center manager should also confirm that downtime is
reported and statistics compiled. A log of late reports and jobs
should be maintained.

Data Center Management & Efficiency
Paper 0067 - Page 3



There should be a formal communications channel between data center
operations and other departments; operational tips and other
advice should be passed to all operators.

All problems encountered at the computer, as well as any action
taken to prevent their recurrence, must be documented. Operators
must also receive feedback on reported problems.

The data center manager scrutinizes output report distribution and
disposal and determines whether:

* All reports have been distributed to the proper user
departments.

* Procedures have been established to control the distribution
of sensitive output.

* Procedures exist for disposing of confidential reports when
they are no longer required.

Finally, the data center manager should ensure that jobstream run
instructions are kept up to date.

SCHEDULING

Efficient and effective scheduling is extremely important in
providing a high level of reliability and predictability to data
center operations. The data processing manager should determine
whether:

* Daily processing activities are scheduled and a daily
contingency schedule is maintained.

* Actual run times are recorded for batch programs and
jobstreams.

* This data is used to calculate expected run times for a
given day.

* Expected run times are compared with actual execution time
to ensure that processes have not terminated abnormally.

* Unscheduled runs are supported by a work request or other
written authorization. Schedule deviations should be
documented and followed up on by a supervisor.

* User-submitted jobs are recorded to allow forecasting of
future schedules, resource requirements, and special
processing considerations.

Data Center Management & Efficiency
Paper 0067 - Page 4



Scheduling software enforces controls and totally automates the
data center operations. Manpower reductions can result depending
on implementation. A chart on scheduling appears below:

Task Description Controlled Automated Controlled Automated
Operations Controls Automation Operation

.....................

Create Schedule User Task User with User who Scheduler
Streamer Schedules Software

Monftor Run Tfmes User Task User wUh User who Monitor
Job log logs Jobs Software

Job History Report User Task User with User who Data Base
Job log Coq>ares Report
Data Base Job logs Generator

DATA SECURITY AND ACCESS CONTROL

Data base and master file information should be protected from
unauthorized access or loss. Employees must be instructed about
their responsibilities concerning confidential information.
Management should periodically review and update controls and
security provisions relating to data.

Live production programs should be physically separated from
development. The staff should be prohibited from running test
programs against live files, and operations personnel should be
denied access to sensitive data files.

Secured file management is not limited to source aIm object
control. Data center managers should ensure that procedures have
been established for:

* Accepting and transferring programs from development to
production.

* Program library changes are formally approved.

* Acceptance testing of changed programs before transference
to the production libraries.

* Updating production documentation after changes.

To maintain security, operators should be prohibited from renaming
or transferring programs without supervisory approval. Internal
labels must be used from all data and program files.

Passwords and lockwords should be used to protect accounts, users,
data files and port access. Passwords, lockwords, dates and

Data Center Management & Efficiency
Paper 0067 - Page 5



constants should be introduced at run time, eliminating the need to
hard-code sensitive data in jobstreams.

Data security and access control software can bring automation to
the data center; with automation you can expect a more efficient
system operation as summarized in the chart below:

Task Description Automated Controlled Automated
Controls Automation Operation

... __ .... __ ... -- .... -- ... __ ..... . .............

Separate development User who User with File Librarian
and product i on areas moves files file mover Software

Restrict live file User who User with Protected Fi le
access locks files lockwords sets to User Sets

Approval pre-step to User who User with Automated File
Production Move moves fi les fi le mover move after Approval

Project/memo notes User who User with Onl fne dialogue
Related to Changes cOt11'letes text editor request i ng memo

forms software text at save time

EQUIPMENT UTILIZATION AND EFFICIENCY

Once it has been determined that the entire data processing
department is following a properly implemented set of standards and
procedures, the data center manager should review equipment
utilization.

The data center manager should collect raw data from the system log
files in order to report the following information:

* How much machine time is spent on reruns?

* Whether reruns are analyzed?

* Whether certain jobs are especially susceptible to reruns?

with reported resource utilization information, the data center
manager should check that the full mUltiprogramming capability of
the system is being used. It then follows that multiple jobstreams
should run concurrently, if there are no data file bottlenecks.

The data center manager then reviews whether many jobs can be
restarted without rerunning the entire job. Jobstep tracking and
restart software should be implemented for efficient data center
operations.

Data Center Management & Efficiency
Paper 0067 - Page 6



ENVIRONMENT

The data center manager should review the work space to ensure that
it is adequate for the number of employees. The environment should
be neat, and supplies should be easy to locate.

Auxiliary items located outside the computer room, such as bursters
and de-collators, should be accessible for the flow of work in the
department. Tapes, discs and other storage media should be stored
in a closed, fire-protected, limited-access area.

RECOMMENDED COURSE OF ACTION

The data center manager should make the organization aware that the
following steps can enhance the operations review:

* Providing the data center management with as much
information as possible.

* Implementing software systems that leave clearly defined
audit trails~

* Keeping accurate records, log files and file history
information.

* Maintaining formal written standards and procedures.

* Implementing an effective data security system and access
control facility.

Following the data center manager's recommendations and procedures
for operations can yield an efficient, secure and automated data
center.

Data Center Management & Efficiency
Paper 0067 - Page 7





An HP 3000 Approach to IBM's LIBRARIAN Techniques

Betsy Leight
OPERATIONS CONTROL SYSTEMS

560 San Antonio Road
Palo Alto, CA

As HP data center become more sophisticated, users are attempting to
introduce more standards and controls into their environments.
During the early stages of growth, the need for controls resulted in
automated batch processing, access restrictions, menu drivers, and
non-user scheduling. In today's environment more sophisticated
concepts such as file management and accountability are beginning to
come under scrutiny. File management concepts are not new. In
fact, IBM mainframe users have been controlling their development
files for years with the aid of PANVALET and ADR/LIBRARIAN. These
products separate test and production files, control source code
libraries, archive modUles, and perform audit functions. Many HP
users now recognize the benefit to be derived from these techniques.

In this paper I will discuss the problems inherent in current
control techniques and describe possible solution pathways,
however, it is essential to establish uneqUivocally that the current
approach to development tracking is inadequate. Whether it is
recognized as such or not, one of the major functions of any data
processing department is the creation and maintenance of software.
This is not a process confined to development houses alone. Every
day, any MIS department could receive requests to modify software
and data. The efficiency and cost of development are instrumental to
the corporation's success because oomputer applications have beoome
an integral factor in the competitive struggle for market position.
The software alone can represent corporate assets valued at hundreds
of thousands or even millions of dollars.

Surprisingly, there are many environments that have no source access
or ohange restrictions. Programmers oan access production source
directly. This approach should never be allowed, for two reasons:
First, the original source code can be destroyed. If a production
error results from programmatic ohanges, the original version is not
easily restored. Therefore, produotion oan be delayed for several
hours, or in the worst oase, for days. Seoond, there is no aud!t
track. Programmers are not restricted trom making unauthorized
modifications directly to production files. Doesn't this
possibility worry you?

Even in oases where some restrictions exist, other problems can
arise.

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-page 1



Current development procedures often result in a discrepancy between
source and object code. In other words, the master source file does
not recompile into the production object file. Since it is
extremely difficult to recreate source code from a load module,
there is no way to ascertain that all the object code features exist
in the source. Should the source require a change, there is no
guarantee the resultant object will have the same functionality as
the original load module. Production can and does often fail as a
result.

Another common scenario involves multiple programmers who make
change simultaneously to the same source module. In this case, the
last programmer to update production wins because previous fixes are
obliterated. The net result is wasted effort and invalid object
code.

Although these and other problems are obvious to many, a dichotomy
begins to appear when it is discovered that many HP 300 centers
continue to operate in a reactive mode without introducing
standards. Direct user support is considered the primary function
of development and operations. This translates to a daily goal
centered on processing user-requested jobs, completing batch
production, and distributing reports. Although these functions are
routine tasks of operations, one should not overlook the basic fact
that the efficiency and accuracy of operations' output rely upon the
cohesiveness of the software components. Just as a solid house
cannot be built upon shaky foundations, reliable computer processing
cannot be achieved unless the associated code shows internal
integrity.

The component integrity problem is one HP 3000 centers are not
managing effectively. Instead, the issue is currently relegated to
the "wish list" and usually escapes notice. This policy is not a
solution. Although operations can proceed error-free for months,
inevitably a simple oversight snowballs into a catastrophe.

The important point is that software development and file
maintenance procedures directly affect operations. Should programs
tail, run out of order, or produce invalid data, the operations
department will be required to rerun procedures. To avoid erratic
production problems, tile management issues need to graduate trom
the "wish list" to the "current projects list"

It would be inaccurate to give the impression that HP users are not
addressing this problem at all. Some are, but the degree and depth
of resolution vary widely. Let's examine some checkpoints along
this range.

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-page 2



Various Approaches

The simplest procedure is no procedure. In other words, programmers
merely log directly into the production account, modify the code,
test it, and recompile. All three steps occur within the production
location. As mentioned earlier, this method has no safeguards and
is extremely risky.

A slightly more sophisticated approach requires programmers to FCOPY
or CHECKOUT source code from the production account and move it into
a development location. Unless stringent controls exist, there is
no guarantee that only one individual has checked out a particular
module. Furthermore, programmers are not restricted from accessing
production accounts, nor is there any way to audit their access.

The production-to-development strategy just described can be
envisioned at three levels. At the lowest level, the development
area may be nothing more ,than an amalgamation of programmer groups.
In this case, each programmer copies, develops, and tests in his own
group. There is no standardized testing environment. A second
level maintains a development account that duplicates the production
account. ThUS, each programmer can be confident that alpha testing
is occurring in an environment that closely resembles production
with accurate, up-to-date object and load modules.

Ideally, production and development accounts should exist on
separate CPUs to eliminate completely the possibility of direct
access to master files. Of course, this approach is not always
possible and separate accounts on one CPU will produce adequate
results.

Once the development effort has been completed, what happens to the
code? My experience suggests the same developer simply overlays the
original production files with the enhanced code. Such alpha
testing does not represent adequate control because the programmers
who test their own work can easily overlook bugs. Besides, they tend
to test what works rather than attempting tests to "break the coden.
For this reason, it is strongly sugsested that a Quality Assurance
(QA) process be initiated.

There are several ways to initiate such a procedure, depending upon
company size and resources. Smaller companies may have alternate
programmers QA tes t their colleagues' development efforts. The
retests are usually performed in the development account. Larger
organizations may hire an individual or staff whose sole function is
QA testing. When the process develops to this extent, there is
generally a separate QA test account that reflects both the

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-Page 3



production and development environments.

Should a QA process exist, it is vital that the developer relinquish
all claim to the code when it moves to the QA phase. Only one copy
of the developing oode should reside in either the development or QA
area. If both accounts contain separate copies, undocumented changes
to the development files may not be incorporated in the QA version.
Thus, the final production version would not include all code
changes. This safeguard is commonly overlooked. Similarly, if the
QA analyst locates a discrepancy in the modules tested, the code
should be returned to the original developer for revision. It is
now QA's turn to relinquish all claim to the code until it is
returned by the programmer.

At the conclusion of QA analysis, another step can exist. A higher
level manaser should perform a final approval on the development
effort to ensure all checkpoints and tests have been satisfactorily
completed.

Followed final approval, the enhanced code is ready to be moved into
the production location. An FCOPY or move will overlay the original
modules. The destruction of the earlier version could be
detrimental if the revised code contained errors and no backup copy
of the original files existed. Therefore, the original modules must
be stored to tape prior to enhancement installation.

The update step can be both time-eonsuming and error prone,
especially when large numbers of files are involved. To make
matters worse, a compile step and JCL update must also be
coordinated. Standards cannot be eliminated at this final stage.
If they are, production may be under old JCL or inaccurate object
code resulting in production that aborts in the middle of the night.
Sound familiar?

When they exist, the aforementioned procedures are usually tracked
on paper with a form. An originating service request often moves
with the code from production to the programmer to the QA analyst.
Each step along the process is signed off on the form. Such a
tracking method is inadequate for several reasons. Most simply, the
paper can be lost or misplaced, or any member of the chain can fail
to record his involvement. Most importantly, there is no assurance
that the form really reflects what has occurred.

Individuals have been known to misrepresent information for a
variety of reasons -- often in the name of speed. A manual paper
tracking method can be synonymous with no tracking method. An
appropriate, complete, and acourate tracking procedure should be a
primary concern to the development and audit staff.

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-Page 4



Obviously, development solutions are very flexible. They can evolve
through a number of steps and can encompass varying levels at each
step.

An idealized strategy

It is possible at this point to extract an idealized development
strategy based on the previous discussion. Needless to say each
environment will require additions to or deletions from this ideal.
However, the following does describe a general goal based on my own
experience.

In this idealized scenario, three accounts exist: a production or
master, a development, and a test account. Each account structure
is a carbon copy of the others to the extent that files moved from
location to location retain their original jobname and group
designators. Only the account names change. In this way, it is easy
to visualize the link between a developing program and its
originating master.

When files move between the production location and the development
area, a copy should be made. The original source should never be
destroyed. However, movement between development and test should
result in only one copy at either location.

Once QA has approved all changes, a project leader or manager should
verify that adequate and accurate test procedures have been
followed. Only at this point should code be moved into the
production library. Such updates could occur once a day if desired
and should be performed by operations or a production librarian.
The latter is my recommendation as it restricts the responsibility,
control, and audit functions to one individual.

Prior to update, the original production should be verified and
stored. Without this step it is much more difficult to return to a
prior version in the case of error.

Software tools that perform file tracking and auditing procedures
automatically without information loss are available. The tools
also force participants to conform to structured rules to ensure
steps are performed in sequence along the development pathway.

In order to implement a structured development strategy with some
components of the idealized route in your. environment, it is vital
to define soals. Possible goals include but are not limited to:

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-Page 5



1. Establishing controlled access of production modules.

2. Creating a set of rules to minimize file transfer and
maximize efficiency.

3. Ensuring a link between compatible .object and source
code.

4. Verifying all associated files, such as JCL and
databases, are saved and moved to production
concurrent with source and object updates.

5. Developing a methodology to track file movements
accurately.

Development strategies, an idealized solution, and the goals to
consider in achieving the ultimate solution have been described. To
configure your site along the ideal path, four steps are necessary.
First, identify and flowchart the specific attributes of your best
solution to software development based on your needs. Second,
assess the components of the development strategy that are currently
employed. Third, compare the current sti'ucture to your idealized
80al and prioritize change requirements. Fourth, develop a project
plan trom the priority list and implement the necessary changes.

Unfortunately, it is not possible to provide flowcharting
assistance in this article. Each development effort is unique.
However, the scenarios previously described should provide hints and
suggestions for the first step.

Several areas of concern can be identified during the evaluation
process of current strategies. Questions that should be asked during
this analysis are included here.

After these data are collated, it is possible to perform a
comparison between current methodologies and the site specific
optimal development path. This third or comparative step is, once
again, SUbjective. Each individual must determine for himself where
the current procedure diverges from the idealized goals.

Prioritization of differences is dependent on site-defined needs.
For example, the auditors may be clamoring for file movement
control. Thus the implementation of tracking procedures would be the
primary concern. On the other hand, QA testing can be the vital
link. In either case, auditors can prove to be a wonderful resource
in this evaluation process. The comparison step is often the
easiest in the four-step strategy. It draws results from the
analysis required to accomplish.the previous steps.

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-page 6



analysis required to accomplish the previous steps.

Following prioritization, implement a project plan to attain the
stated gpals. Generalized solutions should have evolved through the
process of current assessment, goal derivation, and priority
setting.

To summarize, the need to control and track the software development
cycle in becoming increasingly apparent. Without standardized
controls it is virtually impossible to establish the validity of
software modifications. This is most important in larger
environments, especially those that manage enhancements for remote
locations.

Therefore,it is important to move toward an idealized software
development process. This goal can be accomplished by comparing
the optimal solution to present controls and implementing plans to
minimize strategy gaps. Manual tracking procedures can be used for
this purpose, if necessary. Fortunately, the industry" also offers
software tools for an automatic solution.

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-Page 7



Evaluating Software Development

1. FILE LOCATION: Where do the production files reside?
Are all files contained in one account? Several
accounts?

2. DEVELOPMENT ACCOUNTS: How are the development areas
configured? Does each programmer maintain a unique
development group or does all development occur within
the same group?

3. ACCESS RULES: What rules are implemented to control
file movement between production, development, and
testing? Who has access to these locations? When
does access occur? Are there any preconditions, such
as management approval?

4. ACCOUNT STRUCTURE: What is the structure of the
production, development, and test accounts? Are they
duplicates of one another?

5. VISIBILITY: How much visibility of file movement
exists? Can only one programmer gain acoess to·a
file at any time? Can all changes made by each
programmer be verified in the content of the tinal
code? Does a validation check for compatibility of
source and object occur?

6. QA ANALYSIS: Is there an established need for
separate Quality Assurance testing? Does the current
development effort include QA testing? Are there
plans to move in that direction? Where will QA
testing occur? Does the account structure duplicate
production and/or development accounts?

7. FINAL APPROVAL: Does tested code pass through a final
checkpoint prior to re-entrance into the production
account? Who is responsible for this final check?

8. UPDATE STEP: Who is responsible for moving tested code
into the production account? At what time(s) does
this occur? How much error exists within the current
strategy? What can be done to reduce inaccuracies at
this step?

9. VERSION CONTROL: Are original production files
by newly modified code? Where do copies of old
versions reside? Are all versions verified and
tracked? What type of recovery procedure is available
if new code tails? How does this occur? How complex
is the recovery?

10. AUDIT TRACKING: How are tile movements tracked? Is
there Visibility of when, Why, how, and by whom files
are moved? Can inadvertent purges be identified?

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-Page 8



Foundation for HP Data Security

INTRODUCTION

Data security is an issue for any organization relying on HP3000
computers. Assets such as operating systems, applications and
data files exist irrespective of an entity's size or purpose.
Although the degree of any given file's sensitivity and
recoverability varies, an expense is attached to any data that
must be recreated.

These statements are as applicable to relatively small HP3000
users as they are in State Farm's case. However, the degree of
applicability may be greater for State Farm, as it develops a
network of hundreds of HP3000s to support and perform the
sensitive task of insurance claims processing. The fact that
application and network development were underway several years
prior to any coordinated data security effort further complicates
matters.

Consequently, substantial effort has been expended over the past
three years of our HP data security program to "catch up and keep
Up". While I would not claim that State Farm has the ultimate HP
security strategy for every other organization, our approach's
effectiveness is due to a foundation of components that I feel
should be considered by all other programs. Hopefully, the HP
data security directions and experiences that follow will lend
benefit to your company's computer security program.

BASIC GOAL IDENTIFICATION AND STRATEGY

Any project or task addressed by State Farm's HP data security
program is undertaken to further at least one of the following
two goals:

1. A user's system access and activity should be uniquely
identified.

2. A user's computer, application and file access should be
limited to only those resources necessary for satisfactory
job performance.

Transforming these statements from philosophy to HP secu:ity
practice in a large HP operation can be a time consum1ng,
frustrating, misunderstood and political process. While
developing an HP3000 data security program can sometimes be an
unnerving experience, I have found that its negative
possibilities can be greatly diminished through coordination of
the following components:

0069-1



1. Security administrator education

2. Exposure identification

3. Management backing

4. User awareness

5. System access control

6. File access control

The presented order of these six points is deliberate. As much
as is practical, for example, I feel that security administrator
education should precede all other aspects of the program. As a
further illustration, I believe that implementation of any
computer-based access control must follow management approval and
user awareness. With the advance understanding that none of
these six security building blocks can stand on its own, the
following sections explore each of them in greater depth.

SECURITY ADMINISTRATOR EDUCATION

State Farm was almost exclusively an IBM shop for many years
prior to the entrance of HP3000s onto its scene. Consequently,
like many analysts "on the HP side" today, my background was that
of an IBM application programmer. I had much to learn about MPE
and State Farm's usage of HP3000 systems before I would be
competent to lead any effort to improve my company's HP data
security program.

MPE Education

My formal HP educational background consists of the "Programmer's
Introduction" and "System Manager" classes. The former served as
a satisfactory primer on topics such as system access commands,
UDCs and file access security matrices. Roughly half of System
Manager focuses directly or indirectly on security issues such as
file access control and the power of PM and SM capabilities.

Informally, I have tried to tone my HP security awareness through
such references as the Systems Operation and Resource Management
Reference Manual. This resource notes the functions of the
various MPE capabilities and details the purpose and usage of
relevant MPE commands (like NEWACCT) .

0069-2



HP's Communicator manuals, published with new releases of the
operating system, can also be an excellent source of data
security-related information. One of the most helpf~l MPE
enhancements in our data security effort was disclosed 1n the
UB-Delta-l Communicator. It stated that U-MIT would allow an
SM-capability userid to perform all userid and group maintenance,
discontinuing the security administrator's prior need to access
the systems via hundreds of AM-capability userids assigned to the
various accounts.

Data security-related articles in period~cals such as INTERACT
and The HP Chronicle have also presented a wide range of facts
and commentary. I'd like to close by noting one of the newest
MPE educational tools: the MPE/XL Account Structure and Security
Reference Manual. While identifiable with MPE/XL, the data
security practitioner should find nearly all of its content
applicable to MPE and nicely encapsulated in this functionally
specific resource.

Organizational Education

Effective HP data security administration required that my
operating system education be coupled with a familiarization of
State Farm's'HP3000 usage. This process began with orientations
conducted by other HP-related areas, committee work and informal
conversations. Through these experiences, I began to generally
understand our HP program's strengths and weaknesses, and what
area's were responsible for the various support functions
(teleprocessing, system performance, application development,
etc.) .

The organizational understanding attained through these
experiences has proven to be a key factor in reducing State
Farm's HP system exposures. For example, several areas have
agreed to relinquish their PM and SM capability assignments,
alternatively allowing analysts in the system management area to
perform sensitive tasks (e.g., file updates in the SYS account)
for them.

What follows is a sampling of data security-related topics
relative to State Farm's HP3000 usage. While the associated
responses are unique to my environment, I invite you to consider
what your answers might be. The point of this exercise is to
develop a "big picture" of the challenges that your data security
program faces:

0069-3



What primary business purpose(s) does my company's HP3000s serve?

The automated processing of insurance claims.

What is my company's policy on PM/SM capability availability?

Availability should be as limited as practical. This policy also
applies to PM-prepped program development. The negative
potentiality of PM and SM on system security is too severe to
tolerate passive assignment of these capabilities.

Have other areas been designated to assist in the HP security
administrative effort?

1. Each of State Farm's twenty-five regions has at least one
data security administrator. However, his/her
responsibilities also span to the IBM systems. In addition,
these administrators currently possess minimal HP security
background and few software tools to effectively maintain a
se~urity program.

2. Users are responsible for the security of their userid(s).
However, many users currently lack the HP security education
and password assignments necessary to protect their userids
to even a minimal degree.

Where are my company's HP3000s located?

State Farm's HP systems are located in restricted areas of its
corporate headquarters, regional offices and larger claims
service centers.

What are my company's most sensitive HP3000 files?

1. Claims-related databases

2. Operating systems

3. Teleprocessing systems

4. Electronic mail systems

What is my company's HP userid policy?

1. Userids should be unique in the session name- or user-level
qualifier and be identifiable within a given individual or
process.

0069-4



2. Userids should be password protected.

3. A user is responsible for all system activity via his/her
userid.

4. For security reasons (ironically), most users lack the AM
and/or SM capability assignment necessary to maintain their
own MPE password{s).

Data Security Education: A Closing Thought

A final point about HP data security education: the process
never ends. I found that it is all too easy to formulate
security policy based on an educational plateau, failing to
invest time to additional research that may result in
reevaluation of current practices. For example, PS (Programmatic
Sessions) capability's availability was restricted until further
investigation revealed that it did not grant its user carte
blanche access to the systems through the userids of others. I
feel that the data security function owes a duty to its
organization to reexamine its policies in light of improved
understanding and changing conditions.

MANAGEMENT BACKING

Just as many of State Farm's HP analysts have IBM "roots", so too
does our data processing management structure. In many
instances, DP management is responsible for pursuits in both the
HP and IBM environments. Even in those areas totally committed
to HP3000-related development, managers are often too busy with
their areas' respective responsibilities to devote much if any
time to data security issues.

Given this scenario, it became clear at an early stage that the
success of State Farm's HP data security program was very
dependent upon management's appreciation of the issues. I have
delivered the message in various forms. For example, an article
detailing the data security ramifications of PM and SM
capabilities was addressed to all first-line DP managers with
HP-related responsibilities. I have discussed the power and
public nature of the MANAGER.SYS userid with the manager
responsible for operating system integrity. (He now maintains
his own list of authorized MANAGER.SYS users.) In varying
degrees, several managers became involved as their areas
relinquished their PM and/or SM capability assignments. A memo

0069-5



briefed a data processing vice president on the exposure to our
regional office HP3000 exposure caused by Corporate analyst
access to our X.25 network-connected Corporate gateway computer.
Admittedly in varying degrees, presenting management with issues
such as these as resulted in endorsement of our HP data security
program.

Last mentioned but far from least important is the backing of my
data security manager. Of all of State Farm's DP management, he
has unquestionably been the most important individual for me to
brief on HP security developments. This practice has not only
helped him promote HP data security at his organizational level,
but it has also enabled him to more effectively critique my
ideas.

As I have stated, State Farm's HP data security program has had a
lot of "ca:tching up'" to do. Sensitive capability assignments and
obsolete userids have been removed, file access has become more
restricted, etc. Management education and backing has greatly
facilitated these sometimes delicate processes.

USER AWARENESS

I have seen examples of impressive data security awareness
pamphlets, videos, etc. While I soon hope to pursue these more
structured user awareness techniques (e.g., HP data security
seminars for trainees and for on-board personnel), our area's
priorities and staffing have dictated more informal approaches to
date. Examples of these follow.

Committee Work

Committees can offer an excellent opportunity to express
security-related op1n1ons and suggestions, often at the assigned
task's ground level. Committee charges in my environment have
included dial-up procedures for non-State Farm users, userid
implementation on new systems and HPDESK password procedures for
regional office users. Analysts from a spectrum of other
functions are exposed to security concepts in this manner.
Committees are also an effective vehicle when the primary topic
is HP3000 data security (e.g., security software evaluation,
procurement/development and implementation). This latter case
has rendered the added benefit of allowing others to participate
in and understand State Farm's HP security direction.

0069-6



Security Articles

This approach can make HP security a much less bitter pill to
swallow. In a totally non-confrontational manner, users can
learn more about their HP3000 environment and its security
function. I have written articles on the security implications
of PM/SM/OP/AM capabilities, group passwords and accounts without
userids. A future topic is the comparison of our third-party
system access security package with MPE. I would also like to
explore the benefits and drawbacks of released files in an
educational article.

Implementation Announcements

Third-party system access password implementations are in
progress for State Farm's Corporate users. Rather than simply
activating these passwords, I mail· explanatory memos to the
affected analysts a couple of weeks in advance. The notice
details how the password will be implemented (e.g., on user-level
qualifiers, (the "MANAGER" in MANAGER.SYS) or on specific session
names of a user-level qualifier), illustrates what the new system
access process will look like and explains how to change the
password value. This vehicle has al·lowed users to become more
aware of their HP system security responsibility without becoming
confused and irritated with new procedures.

Informal Conversations

One-on-one telephone conversations or break area discussions can
facilitate user awareness. This vehicle is more personal than
memos, and it may be more appropriate than the committee setting
for ad hoc HP security issues. In addition, sensitive issues can
be dealt with in confidence. As an example, I have found this
approach very useful when persuading users to relinquish their
assignment of sensitive system capabilities. Rather than risking
user embarrassment and/or resentment via the committee or memo
approach, many sensitive capability assignment have quietly been
eliminated.

0069-7



Closing Comments

As much as practical, you want a supportive 'user base for your
HP3000 data security program. Even with management's backing,
your efforts will only result in a lukewarm level of
effectiveness if your users are indifferent or opposed to them.
Finally, it is humanly and programmatically impossible for me to
notice every HP security shortcoming in a network as extensive
and dynamic as State Farm's. I (and probably you) need to draw
on users' expertise to flag exposures missed by standard security
procedures.

SYSTEM ACCESS CONTROL

HP3000 system access control at State Farm rests on a developing
foundation of security administrator experience, management
backing and user awareness. These three factors coalesced in
meetings of representatives from the various HP areas. In the
early stages of discussion ,it became clear that State Farm's
usage of HP3000s necessitated a software solution beyond the
access security capabilities of MPE.

I'll begin by examining MPE's system access security shortcomings
relative to State Farm's needs. My company supports a system
access security policy of centralized creation, modification and
deletion of userids, but decentralized password maintenance
responsibility. Unfortunately, MPE requires that the userid and
password functions either both be centralized or decentralized.
In other words, AM and SM capability assignments may be severely
restricted, with the controlling area responsible for userids and
passwords. Alternatively, these capabilities may be widely
available, with the various areas able to attend to their own
userids and passwords. (In the latter case, however, HP3000
access security is based on the honor system at best.)
Additionally, State Farm promotes a standard of user
identifiability for all HP3000 access. For userids like
MANAGER.SYS, system access uniqueness must be derived from the
session name-level qualifier (the "KELLY" in KELLY,MANAGER.SYS).
Unfortunately, MPE cannot require usage of the session name
qualifier. Finally, in the absence of HP's Security Monitor
product, MPE passwords are unencrypted. AM and SM capabilities
can be abused to disclose the MPE system access passwords of
others. Once again, this MPE feature's effectiveness is reliant
on the very restricted availability of AM and SM capabilities.

0069-8



To address these system access security drawbacks, State Farm
recommended a third-party vendor product to enhance MPE. It
disallows system access to unauthorized userids. While
centralizing userid administration, the package decentralizes
password maintenance. Users may be allowed to change their own
vendor and MPE passwords, regardless of AM/SM capability
assignment. The software also may enforce the supply of specific
session name qualifiers at system access. Vendor passwords are
encrypted and may be assigned to both the "user.account" and
"session name,user.account" formats. Finally, security adminis
tration is not conducted through the MANAGER.SYS userid.
Therefore, the userid upon which a system's access security is
based need not be shared with areas responsible for other system
management functions.

Simply implementing unique userids and encrypted passwords upon
an HP3000 network like State Farm's is a sizeable task (well over
10,000 userid profiles are administered at Corporate Headquarters
alone). However, the chosen access security product also
provides for future "fine tuning" with features such as
time-of-day restrictions, port restrictions and userid
deactivation. These options, plus expanded usage of the
product's reporting capability, will continue to strengthen the
system access control component of State Farm's HP3000 data
security foundation.

FILE ACCESS CONTROL

At State Farm, the HP data security administrator's job doesn't
stop at the system gate. Whether uniquely identified or not, no
HP3000 user is authorized to access all MPE files in all modes.
System managers are not supposed to be reading the electronic
mail of others. Programmers have no authority to recompile
vendor code. No State Farm user is to be using TELESUP files
from the TELESUP account. (We have established a separate
account loaded with authorized TELESUP files for analyst use.)

Security administrator education in the area of MPE file access
control is very important at this point. File access is
determined by a matrix of account-, group- and file-level rules.
Examining a single array of the matrix is most often misleading.
For example, a particular file's file- and group-level access
arrays may specify that any system user can take any action with
that file, but the account-level array may limit some or all
modes of the file's access to users logged into the file's
account.

0069~9



Security administrator education in the area of file access
control must also extend to MPE's limitations. Matrix research
via MPE is limited to the LISTSEC command in MPE's
LISTDIRS.PUB.SYS (or "LISTF filename,4" in MPE/XL). On HP3000s
like State Farm's, possessing millions of MPE files, an effective
matrix evaluation via operating system tools would be impossible.
Even a regular file examination of key accounts like SUPPORT, SYS
and TELESUP would require a prohibitive time investment. Yet,
with every system user able to identify every file via LISTF
@.@.@, such regular, thorough access evaluations should be
conducted.

Once again, State Farm has chosen a third-party vendor product to
enhance its HP3000 file access security program. The software is
used, for example, to flag released files. Another application
may be identification of those PM-prepped program files with
system-wide WRITE access. Scheduling these reports to be
generated on a regular basis further strengthens this component
of State Farm's HP data security program.

But what about identification of "mysterious" file creation,
modification or deletion? We have a program that uses the system
log to remedy these situations. It summarizes userid file
activity or file usage regardless of userid for a given day or
week. Hopefully, the aforementioned efforts to appropriately
limit system and file access will diminish the need to invoke
this utility.

CONCLUSION

From a very humble beginning, State Farm's HP3000 data security
program has, by necessity, progressed rapidly to uniquely
identify system access and practically limit file access. My
hope for our program is that it is recognized within our
organization as a partner in State Farm's insurance claims
processing effort. To be an effective participant, however, our
function must be based on a sound and growing program of
administrative competence, exposure identification, management
support, user awareness, system access control and file access
control. While a sizeable HP operation like State Farm must
address these components with large user solutions, I feel that
the same data security foundation can be developed by
organizations of all sizes to foster an effective and respected
program.

0069-10



Where's the Space
Joe Berry

Pekin Memorial Hospital
Court and Fourteenth Streets

Pekin, IL 61554-5098

INTRODUCTION

The management of space is crucial to any system. Most of U5 have had to learn
about space manage;ent on the run and when we were short of disc space.

It is not difficult to manage free space. You can even delegate if your
procedures provide good written instructions. Afew .inutes daily is all it
takes.

I am not planning to unveil great new Ideas. What I am writing about is
methods that I have used that eliminate the ·surprises·. The key is to plan
ahead and have your policies in writing.

This paper brings together many ideas learned from a wide array of sources.
Hopefully it will help everyone eliminate hearing uwhere's the space?"

Where's the Space 0070-1



Space management includes three equally important components that lUst be
IOnitored on a regular schedule. These three components are:

1. The management of free space on all disc drives.
2. The management of image data set capacities.
3. The management of KSAn and HPE file capacities.

Failure to monitor theae components on a regular schedule can lead to a variety
of system problems. These Asurprisesu can vary in severity from annoying to
devastating. Some examples of the problems caused by the failure to monitor
system space regularly are:

1. Slow down of response time.
2. Programs abort due to insufficient sort space.
3. Your month end update program aborts because a crucial

data set filled up.
4. NPE shuts the spooling system down.

There are many ways to manage each component. The only incorrect way is
failure to monitor each component regularly.

The single most important step is to plan ahead and develop policies and
procedures. It is much easier to evaluate all of the ways to manage space when
you have both time and space available.

A good space management program contains written poiicies that are distributed
to all users. The policies should be backed by upper management. They should
be reviewed and revised as necessary on at least an annual basis. This will
bolster user relations by preventing misunderstandings and by enforcing the
management of space consistently across the entire user base.

Interna~ step by step procedures that detail all aspects of space management
should include the IIhow to U to enforce the policies. The procedures will guide
your staff on the proper steps of effective space management. These are
procedures that cannot be left on a shelf to gather dust. No matter how much
free space you have now it will mysteriously disappear in a relatively short
.time. Then everyone will yell "Where's the Space1u and point fingers at the
system manager. Be prepared by planning ahead and following all steps of your
space management program regularly.

It would be ideal to have pre-determined levels of free space that can are
considered nurgentn and "critical". This would make everyone aware of the
levels to watch for in numbers of sectors. It can even go deeper and identify
levels by device. This would help point out the need to move files from one
device to another.

Where's the Space 0070-1



One of the building blocks to easier space management is to implement and
enforce a policy of naming conventions. All accounts, groups, and files should
be named according to a lister plan. Be sure that you can identify Itest S data
and uone tileS programs and filea. INTEREX has simple but effective naming
conventions for the CSL file.

An archiving policy needa to be developed. Each group of files needs to have a
plan for archiving that includes the type of files, the time frame, and the
medium used. An internal step by step procedure also needs to be developed and
followed to enforce the policy.

Where1s the Space 0070-3



ttANAGING 01SC FREE SPACE

nPE allows the system manager to limit the alOunt of space that each user and
each account can use. The NEWACCT, NEWUSER, AlTACCT, and ALTUSER commands have
a parameter that limits the number of sectors allowed for each user and
account. This is the most effective way of planning for future needa as well
as managing current space. It is very simple to implement. It works well in a
stable environment; however, in a fast paced environment it could cause more
problema than it solves. If used, the nPE security must be enforced so that
only the proper people have access to the NEWACCT, NEWUSER, ALTACCT, and
AI.TUSER cOllUl8nds.

There are many tools available for managing disc free space. The contributed
library has several, third party software vendors have several and ~ commands
and utilities round out the vast array of tools available.

There are simple and painless taaks using contributed library programs that
conserve free space <and speed backup). You can SQUISH source code files (or
any other files) using the program SQUISHER from the TECH account of the
contributed library. This will save about fifty percent of the space. Large
NPE or KSAM files can be re-blocked to a more space efficient blocking factor.
There are several prograss available in the contributed library to calculate
blocking factors. These are just two from the contributed library - there are
IDlny more.

Third party software vendors have a wide array of utilities. MPEX by Vesoft is
one of the most well known. MPEX can re-block files to the most efficient
blocking factor Ind squeeze them to eliminate Wlsted space past the EOF. There
are other third party programs that will compress data and many other space
saving manipulations.

nPE offers FREE5, STORE, and REPORT as space management tools. Each of these
have their place in effective management of disc free space. FREES is the
essential tool - a report of all disc free space. REPORT can help pinpoint
what group/account has grown rapidly. This is particularly useful if you have
historic REPORT listings to use for comparison. STORE is effective in
archiving files to tape and when used with the PURGE paral8ter can delete the
files from the system after archiving to tape.

An MPE utility that is essential for effective apace management is VINIT.
Using the COND command, all disc drives should be CONDensed on a regular basis.
CONDensing re-packs free space and eliminates fragmentation. This will enhance
systel response time and help keep the free apace in the best format possible 
large chunks of contiguous apace.

Where's the Space 0070-4



After system failures a Cooistart and a Recover Lost Disc Space should be done.
This recovers space that the system no longer recognizes due to the system
failure. If a recover lost disc space is not done reguJarly after system
failures thousands of sectors can be lost. LOSTDISC from the contributed
library is a program that analyzes how much "lostH apace will be recovered when
a recover lost disc space ia executed. This is a valuable program because it
can help you decide whether it will be worth doing a recover lost disc apace.

The one tool that system managers hesitate to use for space management is a
reload. Granted this ia a last resort; however, you should plan to do reloads
regularly. I schedule reloads every six to nine months to eliminate
fragmentation that VIMlT CONDenses cannot re-pack. Areload packs the data and
leaves the free space in large contiguous chunks.

0070-5



~nagement of Data Set Capacities

The management of data let capacities will prevent IIny problems and enhance
overall syatem free space. This component of space management must be
monitored daily to eliminate Hsurprisesl ranging from inconvenient to critical.

Failure to maintain data sets at their proper capacities can reduce overall
free space if the capacities are too high. If the capacities are set too low
then performance suffers and there is an increased risk of filling up a data
set. Filling up data sets usually happen at a bad time during the most
critical jobs and wreak havoc.

~nitoring on a daily basis will catch those data sets that are filling up
fast. These can sneak up on you and be full in a few days.

The single most important tool to monitor data sets is a QUERY F~ SETS
listing for each active data base. This listing shows each data set, the
current capacity, and the current entry count. There are contributed library
programs that enhance this listing; however, the F~ SETS listing is all that
is needed to monitor data sets. It is a very simple task and takes only a few
minutes. Write a procedure for you operators, and they can do this task daily
for you.

There are third party programs available that will create a data base from the
data in the FORMS SETS listing. This allows for trends and comparisons. This
type of program would be helpful for an environment with many data bases.

There are third party programs that will help manage data set capacities. Many
have features that allow background processing for the actual setting of the
capacities. These programs make the management a little easier and offer other
capabilities as well.

Where's the Space 0070-6



Management of MPE and K5A" File Capacities

The management of nPE and KSAn files is the IOlt time consuming of the three
space management components. This is due both directly and indirectly to the
volume of nPE and KSAn filea on the system.

nPE and KSAM files must be built with the proper blocking factor, the proper
number of extents, the correct number of extents initially allocated, and a
reasonable number of records. A written policy has to be developed and
enforced. Staff who build MPE files and/or KSAM files must follow a plan for
building files; otherwise, human nature will take over and files will be built
very large and with poor blocking factors.

A review.of these factors for both MPE and KSAM files should be done on a
regular basis. There are programs in the contributed library that will help
you with ·this task. Vast numbers of sectors can be saved when files have been
built without regard to space considerations. Special attention should be made
to files with a blocking factor of 1 and to files that have all extents
initially allocated. These are two potential space hogs that can be identified
easily from a lISTF,2 listing.

KSAM files need to be re-organized on a regular basis to remove the records
marked for deletion. KSAM files need to be evaluated for activity to determine
how often they need to be re-organized. Hot only will the re-organization
potentially save diSC space it will also enhance performance for the file.

Both KSAM and MPE files need to be evaluated for correct capacities to prevent
files from filling up during update proce5sing~ Naming conventions will help
here to determine which files actually are processed for updates. With a
LISTF,2 listing for that fileset 8 quick review will determine if capacities
need to be revised.

Where's the Space 0070-7



Conclusion

Space management is not difficult nor is it time consuming. Afew minutes
daily is all it takes.

The most elemental part of a space management program and the most
difficult is developing policies and procedures. They both provide the
framework for the remainder of your program. Without both~ policies and
~ proceedures your space management program will be alot more difficult,
if not impossible, to manage.

The policies, proceedures, and daily monitoring will eliminate surprises.
The ·system manager will keep abreast of all the space management components and
no one will ask -where', the space1u

Where', the Space 0070-8



.....................................
• DATA PROCESS IHG PROCEDURE t1ANUAl •.....................................

SAnPLE

Subject: CONDensing DISC DRIVES

~ To enhance response time and pack freeapace all disc drives
will be CONDensed weekly. The CONDenses will be done on weekends.
Check the CONDense log to determine which drives need to be CONDensed.

Prodedure:
I. Do a full back-up per usual procedure.

II. After back-up set the limit to 0,0.

III. Print a FREE5 listing.

1. Label printout uBEFORE COND" and list the drives
that are being CONDensed.

2. Log off all other terminals except console.

IV. Type "UINITH and at the II)" prompt type "COHO nil.

f.. NOTE: n· LOGICAl DEVICE NUt1BER FOR DISC BEING CONDensed

u. Warning messages will display on console.

A. At the beginning of each CONDense "HH:Mn/tsnnn/nnl
WARNING'System logging disabled while CONDensing
(PUWARN 179) II •

B. At the end of the CONDense "HH:MM/ISnnn/nn/WARNING'
system logging enabled by CONDense (PUWARN 180)8.

VI. After the appropriate drives have been CONDensed successfully:

A. Repeat step IU-E if time permits more drives to be
CONDensed.

B. Exit the VINIT UTILITY.
C. Record CONDenses in the CONDENSE LOG.
D. Run a FREE5 listing.

1. Label printout uAFTER COHO", and list the drives that
were CONDensed.

2. Send FREES listings to DATA Processing Supervisor.

Where IS the Sp.ace 0070-9





Application Software as a Long Term Investment

Arthur J. King
SOTAS,Inc.

192 Merrimack Street

Haverhill, MA 01830

Introduction

The purchase cycle of fmancial software has evolved considerably over the last
decade. It has become a complex and sometimes confusing period for the purchasing
company. More and more; people are realizing that the software they are purchasing should
be viewed from the long term as opposed to the short term, "How do I solve today's
problems?", perspective. This session will examine this evolution as well as the importance
oflooking at the "bigpicture" whenreviewingyoursoftwareneeds. Thefour steps necessary
to ensure a solid, long term investment: 1) Investment Planning, 2) Deciding on the Right
Investment, 3) Protecting Your Investment, and 4) Reaping the Rewards ofYour Investment
will be discussed in detail. This session will also cover the importance of having a close
working relationship between the software purchaser and the software vendor to ensure an
investment that will meet their current needs and create a solid "Foundation for the Future".

I. EVOlution of the Financial Software Industry

In the late 1970s, the financial software industry had just begun to get its feet wet and
was experiencing its first growing pains. Many software companies were begun as one
system shops. If the user wanted to purchase Accounts Payable and General Ledger, for
example, the user wouldprobably buy two different products from two different companies.
This was because certain companies had established a reputation for having a good Ledger,
yet they would have either no Accounts Payable or a weak: AP system at best to offer. The
only way to come up with a satisfactory solution for their organization was to purchase the
applications separately. This meant that there were two different communications channels,
two different support organizations to call, two differently designed systems and worst ofall
there were two separate learning curves. Unfortunately, just because the user knew how to
logon and run jobs on the General Ledger system, the user would still be a novice as far as

Aoplication Sa,ftware as a Long Term Investment
0071-1



the Accounts Payable systemwas concerned. This becameaneven morefrustrating situation
to the userwhentheyrealized that there weremanycustomchanges made to their system that
were not documented or supported by the vendor. These changes OCCUlTed because there
were usually some features or functions that were missing from the "standard" system. As
the vendor had to survive on the basis ofone application, they would generally try to add a
quick fix to that client's system. This patch might address the client's initial problem, but as
future releases of the system were sent, these patches would become outdated. The vendor
mighthave arecordofthese fixes, buteven ifthey did, itwas often a lostcause trying to patch
them into the new system. Usually, the user was left with two choices: 1) reinvent the wheel
by rewriting a new patch, or 2) give up on the new release and struggle with the old one.
Despite this gloomy situation, many users were satisfiedwith their situation mainly because
there was no alternative. The other problem came in the area of bridging information from
one application to another.

Many users wanted the information from their sub-ledger products such as Accounts
Payable and Accounts Receivable to be passed automatically to the General Ledger system.
With two separate applications, the only way to pass information to the General Ledger
system was to either key the information in manually from an Accounts Payable report or to
write their own bridge program. If the user chose the latter option, they had to carefully
monitor any new releases to either system and make changes to their bridge program
accordingly.

As the software industry evolved, the vendors realized that they could no longer
survive as a one product company. The survivors began to expand their product breadth, in
one of two ways. The fIrSt method was to establish a separate task force that was out of the
mainstream so that they could develop a system faster and without interruptions. This
procedure was good enough to develop their fIrst module, so they felt that it should work for
anyothermodule. Theproblemwith this methodwas thatitwas slow and although thepeople
coulddevelop aFixedAssets system, itdidn't guarantee that they coulddevelop areasonable
General Ledger system. The second method was to acquire the software from some other
vendor with the promise to make it different and to not compete with that vendor with the
same product. The problem with this approach is that the vendor had very little knowledge
of the application that they were supposed to be selling and supporting. In either case, the
second and subsequent systems produced by the vendor seldom bore any resemblance to the
system on which they had built their reputation. This was because styles are different and the
separatedevelopmentgroup had theirown stylejustas thecompanythatoriginallydeveloped
the acquired software had theirs.

Many vendors ended up choosing the acquisition route because it was faster, and to
some extent, the software that they were purchasing had already proven itself in the real
world. This meant that the product lineoffered by avendorwas stronger in that they now had
morecompetitiveproducts tooffer. In fact, to this day, thereason that someapplications look
alike from vendor to vendor is because of the rampant interbreeding of some applications.

A,wlication Software as a Long Term Investment

0071-2



Product Line In Late 19705

General
Ledger

Figure 1-1

With the situation changed at the vendor level, the user had some extra choices to
make when they decided to purchase software. Although Vendor A's General Ledger was
stronger than Vendor B's, Vendor B's Accounts Payable system might have significantly
more bells and whistles than Vendor A's. The user would then have to decide whether the
advantages of having the "best" systems (buying one from each vendor), were outweighed
by the advantages of purchasing both systems from one vendor. There would be some cost
savings through purchase price discounts, multiple product support licenses and the ability
to contactone organizationfor all their software needs. However, there was still the problem
with the learning CUlVe, because even if both systems were from the same vendor, they
probably looked different. The vendor might possibly build the bridge between the sub
ledger systems and the General Ledger system for the user, and if the user was persistent
enough, they might even maintain these bridges as new releases came out. To some extent,
there was still the problem with customization as many users pressured the vendor to add
features to the system so that they would not lose as much by purchasing from one vendor
instead ofpurchasing the two best systems. Although more and more users were switching
to a one vendor solution, there were still many users who preferred dealing with multiple
vendors to get the best solution.

As the 1980s progressed, the software industry matured even further. Many vendors
realized that the key to increased sales was through two avenues. One was to improve user
friendliness and the other was to make the entire product line more similar. This increased
the likelihood that the user would purchase more than one software product from the vendor.
As the features and functions became more and more similar betwp..en vendors, the buzzword

Almlication Software as a Lone Term lnyestment
0071-3



became "user friendly". In other words, systems were finally being designed so that they
couldbe usedby theenduserwithout heavy involvementfrom the dataprocessingstaff. This
meant that documentation, screens and procedures ha4 to be redesigned in such a way that
it was understandable at a nontechnical leveL Another change to improve user friendliness
was the increased use ofcommon tools that could be used by more than one application to
make the data entry and reporting options easier. The vendors also established some design
standards so that systems would look and function somewhat similar. This helped the user
reduce their learning curves as the knowledge they had on one system was somewhat
transportable to the other systems. Since the core applications were very similar between
vendors, they had to search for new ways to differentiate their products. Software vendors
began to realize that there were many areas outside the core ofthe application that they could
focus on. Theybegandeveloping QuerylReportingfacilities,Securityfacilities, Links topes
and hooks into other applications.

Product Line In Mid • 19805

Figure 1-2

This latest step in the evolution cycle was a welcome change to the ~nd user. Firstly,
they no longer had to sacrifice majorfeature/functionality when choosing between vendors.
When evaluating software, the user could spend more time focusing on how the software fit
in their environment from a usability standpoint. This change in focus put a much higher
priority on the user friendliness ofinput screens, the flexibility ofreporting and general ease
of use of the applications. Also, the user did not have to be as concerned with software
customization because, with the widerange ofchoices available, they no longer need aquick
fIX to meet their needs. Most of the changes could be made external to the application or
through the useofthe hooks that thevendor hadestablished. Itwas becomingmore and more
advantageous topurchase allofthefmancial systemsfrom onevendorbecauseofthereduced
learning curves that resulted from the similarity ofproducts as well as the ease ofhaving one

Aqulication Software as a Long Term Investment

0071-4



contact for all the user's systems. It was also areal time saver ifthe user was interfacing sub
ledger products to the ledger. The interfaces were already written and supported by the
software vendor. There were no longer any worries that when a new release came out the
systems would not interface with each other. In summary, there was a much wider and more
complex choiceofsolutions for the user. The advantages ofgoing with onevendorwerevery
clear; the concern was in choosing the right one. One way to help clarify the decision is to
take a look at what the future of financial software applications.

In the 1990s, the evolution of the financial software industry will focus even further
away from the individual core applications and it will focus on integration and other external
factors. The user of financial software in the 1990s will also be focusing on l!1any
nonapplication specific areas. Thesechanges will be in three areas: 1) UserTailoredDrivers,
2) Integrated/Shared Databases and 3) Comprehensive Services.

Product Line In 1990s

Comprehensive Services

User Tailored Driver

Security PC Integration
Reporting Screen Painters

~ General
~_ledger ~

Ghared DatabasB>
Accounts Accounts
Payable • • Receivable

Figure 1-3

In the area of user tailored drivers, the usercommunity will demand and the software
vendor will supply more PC oriented applications that work as an integral part of the main
application. This will allow the user who has invested in PCs and LANs to be even more
productive with the tools that they are already using. These PC modules may serve as an
entire subsystem or they may serve as a tool to enhance an existing application process. The
end result is that it will make the applications more accessible to more users. Another area
thathas alreadyreceived attentionis the areaofsecurity. As the softwareapplicationhas been
opened up to a wider range of users, there has been a need for tighter control over who can
access what information. As the applications become integrated even further, there will be
a need for user defined security down to the level ofrestricting certain users from accessing

Armlication SQftware as a Long Term Inyestment
0071-5



certain fields while performing certain tasks. These security modules will reside over all
applications and will allow the user to have complete control over the level of security that
they are looking for. As always, there will also be a need for completely flexible reporting
and inquiry tools. Softwarevendors will enhanceexistingcannedreports to allow for greater
flexibility from both a format and a data selection standpoint. There will be a change in
philosophy in regards to report writers with a greater dependence on tools that already exist
that can access any application. Many software vendors will turn away from writing their
own report generators and instead integrate their software with the report and inquiry tools
that the users are already using at their site to access their existing applications. Another im
portant piece of the User Tailored Driver facility will be the screen painters. These screen
painters will allow the user to tailor all of their screens, whether they are input or inquiry
screens, to their environment. The software vendor will supply skeletons of prepainted
screens with prelabelled fields. Ifthe user wants to change these labels so that they are more
meaningful, it would be a simple matter of entering the new name into the system through
the screenpainterfacility; and thatnew field label would be displayed throughout the system.
These UserTailored Drivers allow the user to custom tailor the system to their specific needs
without modifying the system. This drastically improves the maintainability of the system
for both the user and the vendor.

In the caseofintegrateddatabases, this would mean a fundameQtal change in the way
that both the user and the vendor view financial applications. Currently, a fmancial
application is considered a separate module that performs a specific function; such as,
General Ledger, Fixed Assets, or Payroll. As the applications and sophistication ofboth the
user and the vendor has evolved during the last decade, the borders between these applica
tions are starting to bebroken down. As you have already seen, there has been atrend towards
making applications look similar, integrating applications and the sharing of application
tools. This has allowed the user to easily navigate between two separate applications.
However, ifyou step back and take alook at the whole picture, you will see that each of these
so called modules, you will see that each of them is really a function of the entire financial
process. If, for example, your company was to purchase a machine that manufactured
widgets, and you produced those widgets for wholesale widget distributors, you might step
thru five separate functions which would encompass five separate financial systems. First,
you would write a purchase order for the widget machine using the purchase order system.
Next, you would enter the invoice for the machine on the Accounts Payable system. You
would then have to set up the machine on the Fixed Assets system for depreciation purposes.
After the machine is up and running, you must keep track of the manufactured widgets thru
the Inventory Control system. Orders for the new widgets are entered thru the Order Entry
system and finally all billing for these orders would be processed thru the Accounts
Receivable system. There are six different but related accounting functions which would
requirejournal entries to the General Ledger system. In the financial system ofthe future this
would be handled by six functions within one umbrella financial application sharing one
database. Some of these functions would be automatically generated for the user instead of

Alwlication Sqftware as a Lone Term lrryestment

0071-6



~
l.=:I~

t.=I

rAR1
1=.1

~
1=.1

Bill Order
for Widgets

Take Order for Widgets

~

Financial Function Financial Application

Order Widget Machine r-;o-}

~l.=:I
Pay fOfidget Machine ISy~~mI
Depreciate ~
Widget Machine 1=.1

~
Makeldgets

Figure 1-4

being manually entered thru six separate systems. The redundancy of data would be
significantly reduced thru the integration ofthe financial software database. In short, the user
would have increased control and simplified input of infonnation. It would help streamline
the entire financial function.

The third change that will take place in the product line of the 1990s is the increase
of built-in and add-on services from the vendor. The one area of fmancial software that has
not yet evolved is the area of software services. In many cases, the only support that a client
may receive from the vendor is telephone support. Any major new enhancements may be at
an additional charge. The software vendor of the future will see this as an area in which they
can offer a major advantage over the competition. These new services are already starting

Awlication So.ftware as a Long Term InYestment
0071-7



to take hold as users aredemandingabettervaluefor theirmaintenancedollar. These services
could include Comprehensive support which covers the user from installation and planning
thru custom enhancements and upgrades. Phone support will be augmented by dial-in
support and increased use ofelectronic mail. This will speed up the problem solvingprocess.
Systems may be shipped with self-diagnostic modules that will assist the user in pinpointing
and solving the problem. There will also be a noticeable change in the relationship between
the user and the vendor. There will be an increased sharing of ideas. Vendors will work
closely with their user base to plan and develop new ideas. Users will share their ideas and
modifications that they have made with the vendor. It will no longer be an us against them
relationship as both the user and the vendor will realize the benefits ofworking together. The
user will be able to get the enhancements that they want into the system, resulting in a happy
customer reference base which will subsequently enhance their sales. It will truly be a joint
relationship for the good of all.

Now that wehave examined theevolutionofthe fmancial softwareindustry, let's take
a look at how this impacts the software purchasing cycle.

II. Ensuring a Solid Long Term Investment

The evolution of the financial software industry has drastically changed the way in
which users purchase software. In the 1970s many users when through a limited evaluation.
This was becauseofthereputations thathad been establishedby the softwarevendors. Unless
there was an extraordinary need, there were certain vendors from whom users knew they
should buy certain software. As the industry evolved, the purchase cycle became more
complex and more involved, users began to do more research into which product orproducts
would best fit their needs. They began talking to other users, reading documentation and
having demos. As the product lines evolved even further, it became even more critical to
review in detail all of the factors prior to making the purchase decision. As users began to
view the purchase of software as a long term investment, it became important to take a
calculated step-by-step approach to making and nurturing that investment..

The rest ofthisdiscussion will focus on afour step approach: 1) InvestmentPlanning,
2) Deciding on the Right Investment, 3) Protecting Your Investment and 4) Reaping the
Rewards of Your Investment.

A,wlication Saftware as a Long Term Investment

0071-8



Reaping the
Rewards of

Your
Investment

ill. Investment Planning

The first step is Investment Planning. At some point prior to making the purchase
decision, you should go through a cost analysis to detennine how much it would cost to
develop and support the application in house versus purchasing the software and the support
from a software vendor. Generally speaking, you will find that there are significant savings,
especially in the areaofmaintenance, by purchasing the application. This will give you a cost
bench mark to use for comparison purposes. It is very important to decide what your needs
and priorities are before getting seriously involved in the purchase decision. For example,
before shopping at a car dealership, you would first determine your basic type of car
preference and which options were high priorities.

To do this you must assemble a team made up ofusers, accountants, data processing
staff and other appropriate decision makers. This will help assure that everyone that is
affected will be represented in the decision process. It is also important to spread the
responsibility of the research amongst several members of the team so that not just one or
two people bear the total responsibility of the decision, especially in the early stages, when
you should get as many different opinions as possible. Next, a list of your needs from
hardware to detailed features and functions and from service, to future plans should be
compiled. Each of these detailed items should be prioritized, and then you should determine
the vendors that could possibly meet those needs. The avenues that can be pursued to come
up with a long list of potential vendors include scanning directories, talking to other
companies that you know have financial software, getting information from your hardware
vendor and talking to other users at a hardware user conference such as this one. Ask for
brochures and as much information as you can from the vendors and have the team review
the materials. After you feel comfortable that you have reviewed enough materials from
enough vendors, you should narrow your focus to the best three to five vendors; this will
become your short list. One more step to deal with before going forward with your short list
is to project where yourcompany will be heading in the next five to ten years. Try to forecast
what your accounting needs will be during that period so that you can select a solution that
meets your needs now and in the future. This would include examining your hardware plans,
usage of PCs and any other needs that you can envision. After you have completed this,
youwill be ready to proceed to the next step of the decision process.
Application Software as a Long Term Inyestment

0071-9



Reaping the
Rewards of

Your
Investment

IV. Deciding on the Right Investment

Now that you have narrowed your potential solutions down to a short list, it is time
togetdownto the serious businessofdecidingon therightinvestmentcloselyexaminingeach
of the options. The frrst step to take with your short list is to assemble the list of your needs
and to produce a document generally referred to as a Request for Product (RFP). Next you
should meet with the vendor's sales representative and have a discussion that covers such
topics as an overview of the vendor's company, the vendor's goals and philosophy as well
as a discussion on the user's goals and objectives. It is also the point in time where the RFP
should be given to the software vendor's sales representative. You should give the vendor
a reasonable amount of time to review the RFP and return a written response to you for your
review and you should also schedule a follow up meeting for a detailed presentation. Mter
sitting down and evaluating the responses andcomparing them to the priorities that you have
determined for each issue, you should determine what follow-up questions must be asked in
the detailed presentations. It is important that the detailed presentations be conducted in two
parts; the frrstpartbeing adetailedoverviewofthe systemwith the secondbeing ademo. The
detailed presentation should be scheduled at a time when the entire team can attend and it
should be uninterrupted time so that all team members can attend all aspects of the
presentation. Questions from the RFP thatpneededfurtherclarification shouldbe asked at this
time.

This are also twocriticalpiecesofinformation that should be addressed at thedetailed
review.

First, obtain a list of some ofthe vendor's users that you can talk to and find out their
impressions of the software, services and the performance of the software vendor. It is
usually a good idea to talk to the chairperson of the vendor's user group. This will tell you
whether there is a strongrelationship between the vendorand the usercommunity and ifthere
is a user group. A good sign of an investment that will grow with you is if there is already
a mechanism in place for the users to work with the vendor on ideas. The chairperson is also
a good sounding board for the mood ofthe entire user base as opposed to the narrower focus
you might get from one user. You also will usually get a less biased picture from the chair
person than you would get from a vendor selected reference.

Awlication Software as a Long Term Investment

0071-10



Secondly, review the future plans of the company for its product line. This will help
you determine if the vendor has taken the time to sitdown to plan for the long termorwhether
they are still focussing in on the short term. When I say long term, I am talking three to five
years down the road, not just plans for the next release. This will give you a chance to see
if the vendor is a good partner for the long term and whether the vendor's plans and your
long term plans are along the same line.

Mter completing the detailed review it is time to make the fmal decision. Using the
information from the RFP, the detailed review and the users' references, it is time to come
to a decision and negotiate a final contract. Ifyou have followed the above process, it should
become quite evident who the final choice should be. If there is any question at all and you
are at a toss-up between twovendors, you should gowi~ the vendor that appears mostwilling
to work with all of its users and who appears to be positioned with the best future plan. This
is not to say that you should buy "vaporware". In fact, you should be able to predict which
vendor will have the least likelihood for "vaporware" selling by who has spent the most time
determining where the future of the industry lies. Usually, the vendor who has enough
confidence in what they are doing that they does not have to sell future products because they
have committed to a long term goal. That goal would be damaged if they began promising
pieces ofitbefore they coulddeliver them. Also beware the vendorthatpromises to complete
all of the development projects that you are interested in this year and is willing to shift their
development plans just for you. This vendor probably makes the same promises to all of its
prospective users and never delivers once the contract is signed. Look for the vendor that is
willing to give an honest answer even if it might not be what you want to hear because that
vendor is more likely to deliver in a timely manner. The bottom line is that you are making
a long term investmentand it is important to take the time to make sure thatyou leave no stone
unturned and that you have all the information that you need to make the right decision. The
main difference between a short term solution and a long term solution is in what you choose
to do after the purchase.

Awlication Software as a Long Term Investment
0071-11



Investment.....~__...
Planning

v. Protecting Your Investment

The investment cycle does not end with the purchase of the software. If you were
buying a car, you would take the time to tune it up regularly, change the oil and performed
other maintenance tasks designed to make your car last longer. This is the same idea that you
should follow for your financial software. It is especially important to get started offon the
right foot. This means taking the time to sit down with the vendor to plan an implementation
sched&le that includes training on the systems for all the individuals who will be involved
with the system. This would include accountants, data entry clerks andeven the management
staff that will be requesting certain fmancial reports. The more everyone understands how
the system works, the easieritwill be to get thingsdone. Theimplementation schedule should
be spreadoutin such a way thatdifferent systems arebeing installed atdifferent times because
chances are that many of the same people will be involved in each system. As I said before,
each application is merely one step in the financial function, not a totally different function
that would be handled by totally different people. It is also helpful if you set up a procedure
for calling the vendor's support. It is generally a good idea to have the sameone or two people
making the phone calls so that both parties get a chance to build a strong working rapport.
Once your applications have been implemented smoothly and you have established a
procedure for calling the vendor, it is tempting to just sit back and take the changes as they
come. You must become an active rather than passive participant in the process ifyou want
to protect your investment. You should subscribe to vendor or user newsletters to keep on
top of what is happening. You should immediately become an active participant in the user
group ofthat vendor's users just as you have taken the time to come to this conference. Many
valuable pieces of information are learned and shared at conferences such as this. First and
foremost, you get to meet other users from other companies and learn how they use their
system. It is a great opportunity for discussing "what ifl" ideas with your peers. It is also
an opportunity to influence the future direction of the vendor's product line. Software
vendors should welcome the chance to work with their users. It is to everyone's benefit,
especially the vendor's, if everyone is pulling together in the same direction. These user
groups generally have some form of committee that acts as a planning staff with the vendor
as the vendor begins planning new releases. Ifyou want to protect your investment, then you

Application Sq,ftware as a Long Term Investment

0071-12



must be a participant in this process. As I stated earlier, the software industry is evolving to
thepointwhere there is anintense sharing between thevendorandtheuser. Ifyou donotmake
the effort to share ideas, then you are taking arisk that your investment may become outdated
because your needs were not addressed.

Investment....-...-. _
Planning

pro~~~~ng r'~~
....._ Investment ~ Rewards of~1

"'--·~~;d

VI. Reaping the Rewards of Your Investment

As is the case with any investment, the more you put into it, the greater the return. If
you take the time to sit down and analyze both your current and future needs, review all
available options prior to making the purchase, and become an active participant after the
purchase, the rewards can be great. You will reap a system that will meet the demandsofyour
company and will build a solid relationship with your vendor. More importantly, you will
make an investment that can grow with you and change to meet your needs as you change.
You will.end the dreaded cycle of having to trade in your software every few years because
it no longer meets your needs. Granted, it takes a commitment of time and people up front,
and it has to involve many resources. However, if you take the time to do a thorough job up
front, there is no reason why you will have to trade in the software again.

&zplication Saftware as a Lonv Term Investment
0071-13



Vll. Conclusion

In summary, it is important that you look at the long term ramifications of your
investment decision. Take a look at where the industry and your company are headed and
determine if the vendor is prepared to handle any new changes.. Verify the fact that the
vendor is willing to work together with their client base. Explore every option prior to the
purchase, but don't let it end there. Like any other worthwhile relationship, you must
constantly work at it to keep it strong. If you sit back and let the events happen without
providing any direction or input, you will only have yourself to blame if the software does
not meet your future needs. Take the time to make an investment ofyour time in the software
investment process and you will have built a solid "Foundation for the Future".

AQQlication Software as a Long Term Investment

0071-14



TITLE: Twisted Pair: A Thing of the Past and

The Wave of the Future

AUTHOR: Mark Indermill

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING

PAPER NO. 0073





PLAYIBG TBB WROBG CJAIIB:
IlBASUlUBG PROGIUUDlBR PRODUCTIVZTY
XB A .tGL BIIVl:ROBIIBI1T

Gene Harmon
AH Computer services, Inc.
8210 Terrace Drive
El Cerrito Ca. 94530

There are many answers which were developed in response to some
extremely difficult questions posed as part of the development of
the period we now term the third generation of computer
technology. The question considered in this paper will be the one
which asks: "How does one measure programmer productivityll ••• to which
we will add the phrase: "in a 4GL environment." This question is
being heard with increasing frequency lately, and it, in turn implies
a series of other questions Which can be thought of as part of an agenda
which has been left to us as part of our heritage from the third
generation of programmers, their managers and their users. I see these
other implied questions as the following:

-Is there such a thing as a programmer in today's 4GL environment?

-What is the definition of work for today's knowledge worker?
And who does what?

-What is the end-product desired in such an environment?

-And. • • what is the best way to ensure a successful delivery of that
product?

-What are the impediments to excellence?

These are all questions which come up and are covered with endless
regularity at this and every other conference i~ the world, and my
experience is that when I attend these types of lectures, I am both
amused and enlightened: and when I look around, (expecially if it is a
good speaker,) I can see a sea of nodding heads. So, it would be a
mistake to say that yet another utterance by me will solve these
seemingly perennial problems • • • yet, it does seem that, over the
years, the environment provides enough change to prompt for a serious
re-evaluation of our tasks in the workplace. Some of the new by-words
in the market-place are :

0074-1



- Competition
- Responsiveness to the Market
- Lean and Hungry
- Innovation
- Quality

[the Japanese]
[developement cycle]
[fire middle management]
[RISC architecture]
[Chips, Cameras, and VCR's]

Although all of the words have an effect on each and every one of us,
no matter what our job in the marketplace may be, it is the last word
"Quality" which would seem to exert the most leverage in our topic for
today. No, this is not going to be a talk on the merits of quality
control; so please don't have the reaction of the American who was
caught in the wrong place in the jungle with his Japanese and French
co-entrepreneurs • • • immediately prior to execution they were allowed
to say one last thing: the French person asked to be allowed to sing
his national anthem; the Japanese wished to deliver his lecture on
quality control one last time; and the American requested that he be
shot before the Japanese so that he would not be forced to listen to
the lecture one more time. So, the only stave in the quality control
lecture I shall use to beat you over the head with is the following
quote from David Halberstam's book, "The Reckoning" :

"••• quality was not some minor function that could be acoomplished
by having some of the workers at the lowest levels attend a class or
two, or by appointing a certain number of inspectors to keep an eye on
things. True quality demanded a totality of commitment that began at
the very top: if top management was committed to the idea of quality
and if executive promotions were tied to quality, then the priority
would seep down into the middle and lower levels of management, and
thus inevitably to the workers. It could not, as so many American
companies seemed to expect, be imposed at the bottom. American
companies could not appoint some medium-level executive, usually one
whom no division of the company particularly wanted, and for lack of
something better to do with him, put him in charge of something called
quality. The first thing that an executive like that would do, Deming
said, and quite possible the only thing, was to come up slogans and
display them on banners. If the company treated quality as a gimmick
or an afterthought, then true quality would never result. Above all he
was saying, quality had to be central to the purpose of a company."

This book is well worth reading, and one of the most telling incidents
in it concerns an American visitor to the Nissan automobile factory who
politely asks where the holding area is for cars Which did not pass
inspection and must be repaired. There, of course, is no need for such
an areas the the Nissan factory, although each American factory has a
repair bay at least the size of a football field to hold its rejects.

Now, the lesson here is not how to make better cars. The point is that
anyone who makes a committment to quality and who positively refuses
to compromise or surrender that committment, can expect superior results.
Another lesson this book makes, in a very excellent point, is that
there is no one operational improvement that one make which suddenly
transforms your world; rather, it is a series of reasoned, methodical
changes made by a team striving toward a goal of excellence.

Considering the plight which really does affect us all, I think it

0074-2



behooves us to consider the questions posed earlier in the talk, and to
do all that we can possibly do to provide answers to them--which just
might mean that our jobs ten years from now will still be in the
computer business rather than in the fast food business. If this
statement seems at all bizarre or laughable to you, as you are
enjoying the ambience of this resort atmosphere on tax deductible
money, remember that just 15 years ago, people with similar messages
were being laughed out of the boardrooms of the big three auto makers
who are now existing at the sufferance of voluntary quotas by Japan and
Korea, and by the mercy of government bailouts; to paraphrase Sinclair
Lewis: "It Can Happen Herel"

Question '1: Is there such a thing as a programmer in today's
4GL environment?

I speak today as a refugee from the 3GL environment where I was first
a trainee, then a programmer, then a programmer/analyst, than a senior
programmer/analyst, then a systems engineer, than a technical
consultant, then a contract programmer, and now a senior consultant who
is back to typing in his own code (even a programmer got to hand his
coding sheets over to a key-punch operator back in the old days).
In some ways, it seems I have come full circle while theoretically
having advanced to the 4th generation of programming languages. • •
while I can enter three statements which will cause a processing
screen to be built which can add, update, and delete a
record with many fields in it, I find myself pondering escape sequences
to send commands to laser printers. What has changed? Primarily; the
combination of new hardware and software has released business
organizations from the total dependance upon a hierarchical data
processing staff. Although there may be large DP staffs associated
with 4GL envionments, they are typically popUlated by individuals with
a wide range of skills. They are no longer limited in their activities
by archaic job titles with corresponding specialized narrow ranges of 
action. They consider it a part of their normal activities to consult
with the user, design databases, write and test programs, and consider
new hardware/software options as solutions to user requirements. In a
word, the old definition has "vanished".

-Old Specialized Skill~ Vs. I!ml~ nUl Sets

Repeating my theme of initiation into the world of data processing via
the third generation, I can recall taking the IBM programming test
which was to measure my aptitUde for programming. High emphasis was
placed on that test, and I imagine that the sales representatives for
that organization were required to take an entirely different test.
The litmus test for those who would succeed in today's world would seem
to me to be a hard one to construct. The requirements for success are
so varied and so demanding that it seems unfair to ask anyone person
to fulfill them all. It is not unusual nowadays for a two or three
person staff to be responsible for the complete data processing
requirements for companies doing millions of dollars of business a
year. These circumstances require that from the resources and talents
of these few people; all user interface, hardware and system require-



ments, software and programming needs, vendor interface, internal
management, and planning for the future- must be satisfied. Such high
demands cannot be met by the static requirements of job descriptions
dredged up from old 3GL references, they require a data processing staff
willing to learn a wide range of technical, business, and interpersonal
skills; whatever the cost, and wherever they can find them.

=Qll~ Knowledge Pipeline YI..L~~ Pipeline

The 3GL workplace was one in which information about new products,
whether hardware or soft~are, arrived via the vendor salesperson,
from some comment a manager might hear at DPMA dinner, or perhaps in the
pages of ComputerWorld. Information of this sort might or might not
filter down to the person actually dealing with the problems, and users
typically had to make do with DP solutions which have been developed
five to ten years prior, and hope that his latest requests might be
handled by some anonymous maintenance programmer. Much of that
scenario has now changed. It is not uncommon to see the entire staff
of a 4GL installation in attendance at popUlar user group meetings,
even those which might require traveling hundreds of miles. At these
meetings each staff member has the opportunity to sample the wares of
dozens of vendors and attend technical talks where he might encounter
an entirely new solution to his problems entirely by chancel This new
market pipeline of access to vendors and peers represents both a
challenge to select from the marketbasket of offerings and a
requirement to maintain current knowledge of the latest hardware and
software solutions.

Question *2. What is the definition of work for today's knowledge
worker, and who does what?

- Re-evaluation. of on-site and off-site time
- Redefinition of roles

Much of what has to be dealt with here for this question is a natural
outgrowth of the first question; the new responsibilities foster a new
definition of tasks for today's knowledge worker. In order to provide
the user a satisfactory solution to his problems, the person providing
that solution can no longer exist in a cubicle laying out lines of
code; the systems analyst can no longer rely on tried and true methods
of batch processing to present monthly and annual reports from which
the accounting department must extract the information needed to
generate financial information. Time well spent by the worker of today
consists of such varied tasks as reading the latest technical
magazines, experimenting with the latest software package,'and
attending every users group meeting possible. These activities are no
longer the domain of just a privileged few in the DP organization, they
are an obligation of all who would maintain functionality in a 4GL
environment. It is necessary that all staff members who have the task
of implementing user requirements also develop the expertise to extract
those requirements from the user; those who have no direct feeling for
the user's needs will not be able to focus their full implementation
talents on a refinement and enhancement of those needs. There is a
book written by Nevil Shute about a religion which has sprung up
amongst a fraternity of aircraft engineers in Asia which contains the

0074-4



lines:

"Aeroplanes come to grief because of wrong cravings and wrong hatreds
and illusions in men's hearts. One of you may say, "I have not got the
key to the filler of the oil tank. I cannot find it. I looked
yesterday and there was plenty of oil. It is probably all right
today." So accidents are born, and pain and SUffering and grief come
to mankind because of the sloth of men••• ' • •• It was the same
message that he had preached so often in the hangar at Bahrein, that
the maintenance of aeroplanes demanded men of a pure and holy life, men
who would turn from the temptations of the flesh to serve their calling
first. II

The analogies to a DP worker are easy to see here; though one might
reasonably draw the line at certain sacrifices hinted at, the spirit
of dedication to the task at hand is surely admirable.

Question #3. What is the end-product desired in such an environment?
• • • and what is the best way to ensure a successful
delivery of that product?

Questions such as this one surely lurked in ~ programmers' minds of
the third generation; usually any programm that ran bug-free to
end-of-job was considered a roaring success ••• if one could do it
quickly and often enough it was a passport to the next job-step or to
the next job for more money. Data processing empires were built and
turfs were staked out in fights over personnel and bUdgets; although
many of these fiefdoms still exist, they are slowly being undercut by
users getting their hands on PC's and sometimes using their own budgets
for small mini-computers which can be tailored specifically to their
needs. Thus, the end-product has really been redefined by the new
technology and the ability of the users to insist that their needs be
directly satisfied. This new definition of the end-product means that
the 4GL DP person must learn how it is that the business is run, and
then make sure that the system of programs used accurately reflects
that flow; this is quite different from capturing information from
after-the-fact forms and then churning out reports. The main
difference seems to be that while a 3GL allowed one to report upon the
state of the business, the new 4GL allows day-to-day operation and
control of all business operations. These new abilities mean that the
end-product of DP endeavors is now very closely tied with the goals of
the business which it serves. An effort must be made to make sure that
these business goals are fully understood, lest the new technology
hi~der rather than help them.

Question '4. What are the impediments to excellence?

Everyone, I"m quite sure has personal experience with these
impediments, whether they be political blockades or short-sighted
economies. Many times it is impossible to exert the leverage necessary
to overcome these impediments; however, it is possible not to construct
them yourself. In many environments, it possible to get users to sign
off on systems which fall short of doing the job that could be done,

0074-5



and then allow yourself to become the victim of inertia and merely
maintain your position instead of going forward ••• do not let this
happen. Allow yourself to be open to new methodoloqies, but do not
surrender yourself and all your existing systems to them.

COBCLDSIOBS

mE~ QE IMPROVEMENT

- commitment to Quality
- statement of Goals
- An Agenda

It seems to me that once you are determined to do the best you can
possibly do in your particular environment (or possibly change the
environment itself), a committment to quality which emanates from
management throughout your organization is an excellent first step in
the cycle of improvement. Remember that each step of this cycle, as
well as the total aspect of quality consists of many smaller
increments, and of many choices. Remember also that some of these
choices may be difficult ones; ones which may not be accepted by

. everyone, and with which you may not be in love yourself. Lastly,
always remember what Walter Bagehot, a 19th century British essayist
said:

"One of the greatest pains to human nature is the pain of a new idea"

It is also necessary to state what the goals of your partiCUlar
organization are • • • note that is easy to develop beautiful systems
while, at the same time, failing to meet the needs of the user of those
systems. The goals developed must be in alignment with the reason for
your organization's existence. Once you have made you committment to
quality and stated your goals, you must then develop an agenda, or a
plan for action. You should not fall into the trap of running your
organization as the Harvard Business School would run it:

"••• too much information, too many options, too little feeling about
the product."

Just say "NO" and try to do a few things well before going on to the
next group of a few things that need doing.

My own feeling is that the cycle of improvement is very much an
iterative process which very much demands constant re-examination and
tinkering. Before it becomes necessary to include the measurement of
programmer productivity into this cycle (for the want of something to
do with your time) I hope that all of us here have graduated to the
5th GL and are totally occupied with a brand new set of challenges.

0074-6



TITLE: Integrating Paperless Systems in a

Fortune 100 Company

AUTHOR: R. L. Pringle

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING

PAPER NO. 0075





HOW TO TRAIN A TERMINAL USER
TO BE AN EFFECTIVE PC USER

Jack K. Marshall
Solano County Management Information Systems

601 Kentucky Street
Fairfield, California 94533

SCOPE OF THIS PAPER

This paper addresses the transition from a terminal to
microcomputer-based workstation environment for the user
community in a county government. The paper will focus on the
training needs of these users and how these needs have been
addressed by our training department.

BACKGROUND/ENVIRONMENT

When I joined Solano County MIS in March of 1984, the bulk of the
processing work was performed on Hewlett-Packard 26XX series
terminals connected to our then single HP 3000 series 68.

Today the County has over 400 terminals connected to three HP
3000 series 70's. In addition, we now have 75 HP 150 Touchscreen
and 30 HP Vectra microcomputers.

Along with a growth in the
the 3000's, there has been a
workstations.

sheer volume of devices attached to
shift away from terminals to PC

When new management arrived in 1983, there came the addition of
the first series Hewlett-Packard Series 68 and a dramatic growth
in the number of on-line systems written and purchased for use
on the 68. Financial systems, case tracking systems, client
services systems. And all were to be accessed using terminals.

GROWTH OF THE TERMINAL INSTALLED BASE

As applications systems were completed and installed on the
3000/68, terminals were purchased and installed in the user
departments. The user was given a terminal operation manual and
told to now perform the job they had done manually for years
using their new terminal.

You can imagine how smoothly the transition went. Department
management often used the "big stick" approach to force the use
of these terminals and the users learned only enough to perform
their immediate tasks and nothing more. These expensive computer
resources were vastly under-utilized.

0076-01

How to Train a Terminal User to be an Effective PC User



In fairness, the customer support staff at that time consisted of
a single staffer transferred from a data entry position. She was
responsible for unpacking, delivering and installing all
terminals and printers. She was also responsible for help desk
coverage and what little training that could be prOVided to users
on a one-on-one basis.

The position of Customer Services Manager was created and I was
hired to fill the slot in 1985. I have ~ince built the Customer
Services Department to a staff of four. The installation, help
desk and training functions are each now full-time equivalent
jobs. For over two years, Customer Services has conducted a
regularly scheduled program of classes in all areas of
information processing. However, four years after systems and
terminals started proliferating, we are still playing "catch-up",
trying to locate and train all those first terminal users who
never received adequate training and continue to use their
terminals in a sub-optimal manner.

When our MIS Department outgrew our single facility, we had to
acqUire an additional building. I was able to negotiate for a
separate Training Center in the new bUilding. We installed four
2392A, four 2628A terminals, a letter quality and a line printer.

Creation of the Training Center was central to establishing a
quality training program for the County. It enabled me to train
a large group of students at one time in a controlled atmosphere
with no di~tract~ons. A dedicated training facility is a must if
you can pry the resources loose!

TRAINING ISSUES: TERMINALS

In order to assist our users in becoming more proficient in the
use of their terminals, I developed and our department offered,
at no charge, a regUlar schedule of classes in what I refer to in
Figure 1 (page A1) as Levell courses:

Beginning HP DeskManager, 4 hours
Advanced HP Deskmanager, 4 hours

covering the following major topics:

keyboard operation

logon/security procedures

basic troubleshooting

0076-02

How to Train a Terminal User to be an Effective PC User



how to find information 1n hardware and software
manuals

using HP Deskmanager

Additionally, we offered training courses 1n specific HP 3000
based applications including:

Beginning HP Word/3000, 18 hours in 3 sessions

Advanced HP Word/3000, 6 hours

HP Llstkeeper, 4 hours

Data Entry, 18 hours in 3 sessions

Optlcalc, 12 hours in 2 sessions

GROWING NEED FOR MICROCOMPUTERS

My background before joining the County was in the private sector
as a PC and multiuser PC systems integrator. One of my first
lobbying efforts at Solano County was to show the need for
microcomputers. I was surprised that with the sizeable
investment in computing resources, there were only a handful of
PC's scattered around the County and no plan to incorporate
microcomputers in to the overall office automation plan.

My efforts concentrated on the performance improvements which
could be made by distributing some of the processing out to
microcomputers and off of the HP 3000. Several existing
performance and environmental factors supported my claims:

The response time on our single HP 3000/68 was increasing
daily as we approached 200 users, many of them using HP Word
3000.

Disc storage space was getting scarce as HP Word 3000 and HP
Listkeeper users created, but never purged documents and
files.

The number of transaction-intensive 3000-based applications
being written for and installed on the 3000 was increasing
and further degrading response time.

Users ~ere becoming more sophisticated as to the
availability of office automation applications available on
the 3000 (I'd like to think that this was a result of our
increased training effort) and were using the~e applications
with greater frequency.

0076-03

How to Train a Terminal User to be an Effective PC User



Users were becoming more sophisticated in their use of the
office aut.omat.ion applications and created "custom"
applications with these products which strained processing
and storage resources. Some examples:

The Sheriff's Department developed a fingerprint
identification system using HP Listkeeper.

The District Attorney's office used HP Listkeeper as a
case tracking system.

The Customer Services department developed a case
calendaring system for Superior Court using HP
Word/3000 to create the documents and HP Deskmanager to
distribute them.

The increasing use of office automation applications: HP
Word/3000, Opticalc, HP Draw and EasyChart put additional
strain on the overworked 3000 CPU and response time for
these products became almost unacceptable.

Additional response time and downtime problems were
increasing as remote users attempted to run HP Word 3000
over point-to-point data communications equipment.

realized many of these problems could be resolved or
ameliorated by moving many office automation applications off of
the 3000 and on to microcomputer.

TRANSITION PATH: TERMINAL TO HP 150 TOUCHSCREEN MICROCOMPUTER

We decided to make our MIS managers the "test market" for the PC
experiment and purchased the first HP 150 Touchscreen
microcomputers to replace eXisting HP 2628A terminals for the 5
MIS Managers. The transition was not without its rough points
but, basically, I was surprised that the managers all rapidly
became PC "converts". Even our MIS Director, a card-carrying
mainframe/mini"computer "techie tl since the days of the Series III
and before, became a champion of the Touchscreen PC.

A primary reason that we selected the HP 150 Touchscreen over
other true IBM compatibles was the Touchscreen's HP Word 3000
terminal emulation capability. At Solano County, we have many
departments with heavy dedicated word processing requirements.
County offices are also geographically disperse and there are
extensive requirements to share documents between departments
with remote offices. HP Word/3000 solved the logistics problem
but failed to perform efficiently and reliably over the data
communications network. Microwave channels drifted, multiplexers
overflowed, modems failed, data circuits died and users
complained.

0076-04

How to Train a Terminal User to be an Effective PC User



In fairness, HP never intended HP Word/3000 to operate over data
communications equipment so we were the ones "stretching" the
technology to serve our own requirements.

In addition to continuing to run HP Word 3000 on the
Touchscreens, we installed HP Word/lSD, Advance 1 ink , Lotus 1-2-3
and RBase 5000 PC software and worked increasingly in the stand
alone PC mode.

TRAINING ISSUES: TERMINAL TO TOUCHSCREEN PC

As a test case, the MIS manager group was a complete success.
We all adapted readily to the working on the Touchscreens with
our PC applications. It seemed that every day, someone would come
into my office with another Lotus macro to share.

No formal training classes were given to the MIS managers as we
were initially the only staff with Touchscreens and were still in
the learning phase. As training manager, I was encouraged by
this example and assumed that our enthusiasm for the new
technology and willingness to " se lf-teach" would be shared by our
users as they, too, received new Touchscreen PC's.

The motivation was certainly ~here. Many users had publicly
voiced the desire to have independence from MrS, to control their
own computing and be free from MIS CPU charges and inconvenient
batch processing schedules. They would surely "take the micro and
run" and have no need of our training classes.

As the 1985-86 bUdgets were approved, Touchscreen microcomputers
were purchased in volume and installed in departments where on
line performance was the worst and the need to work in stand
alone PC mode th~ greatest.

Unfortunately, the average non-MIS department user did not take
to the Touchscreens as readily and enthusiastically as the MIS
managers had. Many continued to use only the terminal portion of
the Touchscreen to run HP Word and the other 3000-based terminal
applications they had been running on their old 26XX terminals.
The 10MB 9153 disc drives served only as a convenient base to
place the Touchscreen terminals on. Even users who had used
terminals extensively and had received formal terminal training
were confused. Calls for assistance with the new PC's
increased.

0076-05

How to Train a Terminal User to be an Effective PC User



One of the primary functions of my Customer Services Department
1s to staff the help desk, a phone line for user assistance with
computer-related problems. We monitor the types of calls for
assistance received by application type and we could see that
the calls relating to the new Touchscreen's were representing an
increasing proportion of the calls received. These calls were
enlightening. Some examples:

User; II I'm working in HP Word. II Help desk staffer: "HP
Word on the 3000 or on the microcomputer?1I Caller; "l don't
know. II

III lost some Lotus 1-2-3 files. 1I IICan you have Operations
restore them from tape for me?"

liThe manual says I have two disc drives but I only see one!1I

Obviously, my assumption that non-MIS users would self-train on
the Touchscreen and operate more efficiently (and autonomously)
was incorrect. The Customer Services staff met to assess this new
need and develop new training classes to meet the need. I refer
to these classes as Level 2 (see Figure 1, page Ai). These
courses included:

HP 150 Microcomputer, 4 hours

covering the following topics/areas:

online (to the HP 3000) versus stand alone operation of the
microcomputer

information transfer between HP 150 and HP 3000

working with diskettes

installing software

information retrieval

use of the P.A.M. (Personal Applications Manager) facility

Beginning Lotus 1-2-3, 6 hours

Advanced Lotus 1-2-3, 6 hours

Beginning HP Word/PC, 18 hours in 3 sessions

Advanced HP Word/PC, 6 hours

0076-06

How to Train a Terminal User to be an Effective PC User



We also negotiated for the resources to upgrade the Training
Center equipment. We replaced the four 2392A terminals with
Touchscreen microcomputers (on-line to the HP 3000) equipped
with 2225A Thinkjet printers.

Note, also that we make attendance at the HP 150 microcomputer
~lass a prerequisite to attending either of the applications
classes.

TRANSITION PATH: HP 150 TOUCHSCREEN MICROCOMPUTER TO HP VECTRA
MICROCOMPUTER

As our HP 150 Touchscreen microcomputer
Customer Servil.p.~ grew to lovp. many of the
this microcomputer.

base grew, we, in
features unique to

As a CP/M, then DOS "purist", initially regarded the
Touchscreen/PAM features as novelties which would remain largely
unused by most users. As a trainer, I grew to love the feature's
simplicity and ease of use for the first-time microcomputer user
and, yes, my DOS skills did become a bit rusty during the period
when a Touchscreen graced my desk but I, too used and loved them!

Our users complained loud and frequently about the Touchscreen's
lack of compatibility with the IBM PC and its clones; but, as the
one responsible for installing, distributing and controlling the
whereabouts of the County's microcomputer software, I was
thankful for the non-standard MS-DOS format on the indestructible
3.5/1 diskettes. Also, in that Touchscreen environment, we did
not spend hours on the phone trOUbleshooting a problem only to
find that the root cause of the problem was a user-installed
bulletin board provided utility!

Needless to say, standardiZing on microcomputer software packages
and prOViding regular training classes for this software was much
easier given the limitations in software initially available for
the Touchscreen.

I was able to standardize on HP Word/150 (then PC), Lotus 1-2-3
and RBase 5000 as the basic packages for microcomputer
applications within the County. Even now, many departments still
use their Touchscreens only for word processing and to access HP
Desk and other terminal~based applications.

But technology advanced and as the price for the HP Vectra /lAT"
dropped below that of a similarly configured Touchscreen in the
Fall of 1987, we made a decision to fill all new requests for
microcomputers with a one of two standard configuration Vectra's:

0076-07
How to Train a Terminal User to be an Effective PC User



the ES model 21 with monochrome monitor for II s tandard" use to
replace the 640KB, Touchscreen/9153

the ES-12 model 42 with 2MB extended memory, 80287 co
processor, color monitor and mouse for users requiring large
spreadsheets, graphics and as a future bridge to the New
Wave or OS/2 environments

Both Vectra models were ordered with a 3.5" disc drive in
addition to the standard 5.25" flexible drive. This was
done to facilitate transfer of files created on the 3.5 11

media used by the Touchscreen microcomputer.

TRAINING ISSUES:
MICROCOMPUTER

TOUCHSCREEN MICROCOMPUTER TO VECTRA

Once again, we began the transition by replacing the MIS
manager~s Touchscreens with Vectra ES-12~s.. Once again, the
managers were enthusiastic as spreadsheets could expand in size
and recalculate faster, as graphics loaded and displayed faster
and as print buffers carved out of the extra 2MB of memory
allowed a 10 page document to print to the Quiet jet while another
program was running. But there were problems.

Where was the familiar Touchscreen? (learn to use the mouse).
Where is a full-function PAM screen? II You mean I have to type
out a DOS command to do copy and backup? II (learn to install these
commands on the Vectra~s PAM program).

Even though the Touchscreen
manufactured by the same
Vectra started to surface:

and Vectra were both microcomputers
company, many issues unique to the

How to we perform the daily tasks like copy, backUp and
format? We used to just touch a box on the Touchscreen PAM
screen.

How do we transfer files created on the Touchscreen to the
Vectra?

How do we access HP Word 3000 documents?

Which word processing package should we use?

How do we move documents created on the Vectra using
WordPerfect to HP Desk and mail or store them in HP Library?

0076-08

How to Train a Terminal User to be an Effective PC User



We, in the Customer Services department could see that this would
be an even more difficult transition for our users than the move
from terminal to Touchscreen and we broke the project down into
major tasks:

Standardize the Vectra's config and autoexec files and PAM
screens to "automate" many of the common utility functions
such as copy, backup and format. Yes, we were recreating
the Touchscreen environment!

Identify the training needs unique to the Vectra, plan and
schedule classes based on these needs.

Obtain four ES model 21 microcomputers to upgrade the
Training Center.

We realized that we would need a training course on the Vectra,
separate from the training course on the Touchscreen. We also
recognized the need to provide a separate course on using DOS.

As of the current time, we offer the following courses for Vectra
users. These are referred to as Level 4 courses on Figure 1,
page Ai.

Vectra Microcomputer, 4 hours

Beginning DOS, 4 hours

Intermediate DOS, 4 hours

Advanced DOS, 4 hours

These courses cover the following major topics:

Operation of computer hardware and interfaces

Working with diskettes

Software installation

Setup of applications in PAM

File management: storage, retrieval copy and backup

Hard disc directory management

MS-DOS commands

0076-09

How to Train a Terminal User to be an Effective PC User



Creating and modifying autoexec, config and batch files
using EDLIN

Working as a terminal using the HP terminal program

Additionally, those receiving a Vectra as their first workstation
will generally also attend the HP Deskmanager course.
We plan to combine the Vectra Microcomputer and Beginning DOS
classes into a single one-day course. We have found that there
is generally a lag between the time users take the Vectra and DOS
classes and without a basic review of DOS, users have had
difficulty working with the Vectra.

The following application software courses are currently offered
on the Vectra:

Beginning Lotus 1-2-3, 6 hours

Intermediate Lotus 1-2-3, 4 hours

Advanced Lotus 1-2-3, 4 hours

Beginning HP Word/PC, 18 hours/3 sessions

Advanced HP Word/PC, 6 hours/l session

As th~ demand increases, we plan to offer courses in WordPerfect
and RBase 5000.

TRANSITION PATH: MICROCOMPUTERS FROM STAND-ALONE AND POINT-TO
POINT CONNECTIVITY TO LOCAL AREA NETWORKING (LAN)

As part of our planning for FY 88-89, we have requested funding
for a 12 node HP Starlan 10 network. As before, our plan is to
install this LAN at MIS and research the training reqUirements by
learning the system and developing a training plan based upon our
experience.

Currently, the County Counsel department is the only user
department to have requested a LAN (an 18 node Star Ian with a
bridge to the HP 3000) for this bUdget year but I know that the
requirement for LANS will increase as the number of installed
microcomputers grows.

0076-10

How to Train a Terminal User to be an Effective PC User



Already, we have identified some potential areas for concern for
the transition to LAN:

Will primary support for the management of the LAN be at the
user department or MIS Customer Services level? If the
support comes from Customer Services, how will we charge the
user? If the support is at the department level, how will
this person be selected, trained and compensated? In
speaking with my colleagues at other California counties, it
appears that support of a LAN of this size warrants close to
a full-time position.

Which applications will be run "shared" or networked versus
stand-alone?

How will data backUp be accomplished?
responsible?

Who wi 11 be

How will peripherals be shared? Will a microcomputer server
or HP 3000 using Resource Share be used?

Some of these training issues have been identified as Level 4
requirements on Figure 1, page Al.

As this topic of transition to LANS is really outside the area of
concentration of my paper, I will not spend further time on it
now. The topic is critical, however, and we will be devoting
considerable resources to it in the coming year.

APPENDIX FIGURES

TRAINING REQUIREMENTS: TERMINAL TO PC (Figure 1)

Figure 1 on Page A1 graphically represents the training
requirements necessary to support the current and anticipated
workstation configurations at Solano County.

The training topic areas on this graph are cumulative; all prior
level topics must be incorporated into training for the highest
level of training reqUired. For example, the user receiving a
terminal as his or her first workstation, need only take Level 1
courses. The user receiving a Vectra PC as a first workstation
must take all level 1,2 and 3 courses.

0076-11

How to Train a Terminal User to be an Effective PC User



Levell courses include:

Beginning HP DeskManager, 4 hours

Advanced HP DeskManager, 4 hours

HP Llstkeeper, 4 hours

Data Entry, 18 hours in 3 sessions

Opticalc, 6 hours

Level 2 courses include:

HP 150 Touchscreen Microcomputer, 4 hours

Beginning Lotus 1-2-3, 6 hours

Intermediate Lotus 1-2-3, 4 hours

Advanced Lotus 1-2-3, 4 hours

Beginning HP Word/PC, 18 hours in 3 sessions

Advanced HP Word/PC, 6 hours

Level 3 courses include:

HP Vectra Microcomputer, 4 hours

Beginning DOS, 4 hours

Intermediate DOS, 4 hours

Advanced DOS, 4 hours

Level 4 courses include (proposed):

LAN Management

Specific courses in working with networked versions of
microcomputer software such as RBase System 5 multiuser

0076-12

How to Train a Terminal User to be an Effective PC User



WORKSTATION TRANSITION PATH (Figure 2)

Figure 2 on Page A2 shows the transition path of workstations at
Solano County.

This path is chronologie, showing our workstation transition
over time from terminal to LAN. As workstation hardware has
evolved and become more powerful (and less expensive from a
price/performance standpoint), we have purchased the newer model
and incorporated it into our installed base.

This path is also applicable on a task-complexity and user
sophistication basis. As the user's tasks to be performed become
more complex, and as that user becomes more sophisticated in his
or her knowledge of workstation capability, the workstation
needed to support those tasks becomes more sophisticated.

From a training standpoint, there are several implications:

We must maintain an ongoing training program for all levels
of courses because all types of workstations are in use
within the County.

County staff move within departments and must be trained on
the workstations in use within their current departments.

Departments are constantly
technology and their staffs
the new workstations.

upgrading to new workstation
must be trained in the use of

Since our MIS Department is a chargeback agency, purchasing and
then leasing workstations and peripherals to County departments,
we keep these devices cirCUlating through the departments on a
"task/technology" matching basis. When a department outgrows a
terminal and reqUires a microcomputer, we select the appropriate
microcomputer and move the terminal to a department reqUiring its
capabilities. In this way, we can maximize the "field time" of
these devices, control inventory, minimize new purchases and
lower the overall computer hardware costs to the County.

There are many other economies of
centralized computer hardware management
the scope of this paper.

0076-13

scale we
but those

derive from
are outside

How to Train a Terminal User to be an Effective PC User



SUMMARY

Training the terminal user to be an effective PC user requires
several actions:

Workstation hardware must be standardized to leverage the
training effort over large groups of students.
Standardization will also provide for a lower overall
training bill for the organization as staff can move between
departments and likely find the same (or similar)
workstations and software in use there.

A Training Center
provide for the
staff.

must be
ongoing

established and maintained to
education of the organization's

The concept of an ongoing training program must be "sold lt

(and continually resold) to senior management. The training
manager is the only one in the position to know and sell the
cost benefit (to the organization) of maintaining a quality
training program.

As new workstation technology is brought into the
organization, before it is widely distributed to the non
technical users, it must first be adopted by those
responsible for training. The training staff must assess
training requirements for the new technology and develop and
offer applicable courses to the users at the same time as
the new workstations are distributed to the users.

The Training Program must provide standardized courses on a
regular basis to accommodate the schedules of staff to be
trained. These courses must be offered at no or low cost in
order to encourage attendance. We have found that it is
wise, however, to charge a Itno-show" fee in order to ensure
full classes and maximize training resources.

Calls for assistance from the help desk or help line must be
periodically reviewed in order to determine if existing
training courses should be modified or combined or if new
courses need to be developed.

A student/course database should be established in order to
provide statistics on the training effort. These statistics
can be used to show such trends as:

Period to period changes: How many sections of a
particular course have been given over the previous
year. How many students have been trained?

0076-14

How to Train a Terminal User to be an Effective PC User



Which training courses are no longer desired/required?

Which courses need to be offered more frequently?

Which students
the student a
ineffective?).

frequently repeat the same course (is
slow learner or is the course

Which departments have never received formal training?

Which students are broadly trained and might be
candidates for department level support contacts or
future Customer Services staff.

Training the terminal user to be an effective PC user is an
ongoing effort. The resources devoted to this training effort
must increase as the technical complexity and capability of PCI S
increases. The training staff must be "detectives" and actively
seek out user training needs. Finally, the training manager must
maintain a quality training program and continually "sell" the
program to users and management.

0076-15

How to Train a Terminal User to be an Effective PC User



MAJOR TOPICS
COVERED:

lEVEL 4-LAN
LAN MANAGEMENT
SERVER BACKUP
PERIPHERAL SHARING

lfVtl 3- VECTRA PC
SOFTWARE TRANSFER
PAM.
OfIlCTOOIES
~-oos

lEVEL 2-HPtiO PC
PAM
STORA<EBACKUP
RETRIEVAl.
INSTALl SIW
D1SKEITES

lEVEL 1- lERMfNPJ.

HPlISK PEG/KJV
MANUAlS
BASIC TROUBLESHOOTING
lOGONlSECURIlY
KE'YBOARD OPERA~

TRAINING REQUIREMENTS - TERMINAL TO PC

L£VEl4

RGURE 1

0076-16



WORKSTATION TRANSITION PATH

~ ..~ ..g ..g-~
TERMINAL HP160 PC HP VECTRA ESJNOO 21 HP VECTRA E&-12IMOO 42 LAN

2 MB EXTENDED MEMORY

TA8KS: TASKS: TASKS: TASKS: TASKS:

DATA ENTRY TERMINAL TASKS ALL TERMINAL TASKS ALL TERMINAL TASKS ALL TERMINAL TASKS
PlUS: EXCEPT HPtVORD 3000 EXCEPT HPWORD 3000 EXCEPT HPftlORD 3000

CLEfS
STAND ALONE: STAND ALONE: ALL STANO ALONE TASKS ALL STANO ALONE

ON UNE INQUIRY FOR VECTRA ESIMOD 21 MICRO TASKS

HP DESK WORD PROCESSING WORD PROCESSING
HPWORDPC LARGE LOTUS 1-2-3 SHARE CEPARTMENTAL

WICONVERSiON Ton:ROM WMDPERFECT SPREADSHEETS BASED INFORMATION
WORD PROCESSING
~PWORD300<» HPWORD 3000

lOTUS~2-3
SHARE LOCAL

DESK TOP PUBlISHING PERIPHERALS:
HP3000 L01\lS1-2-3 RBASE6000 PRINTERS
NlPUCAlION HPNEWW~EOR PlOTTERS
PROGRAMS RBASE6000 APPUCATION SOFTWARE OS/2 OPERATING

AVAlLABl£ IN STANDARD ENVIRONMENT CD ROM
HP150 SOFlW\f£ PC-OOS FORMAT

CORaM

Page A2

0076-17

FIGURE 2





Documentation: The Necessary Evil
Robert M. Gignac

Motorola Information Systems
9445 Airport Road

Brampton, Ontario (Canada)
L6S 4J3

Abstract

The systems we are developing today will ·become our
'foundations for the future'. The cornerstone of our
foundations should be an array of clear, concise, and well
written documentation. Do not misinterpret the title,
documentation is far from 'evil', the keyword is 'necessary'.
The ' evil' designation is in the eyes of the analysts and
programmers in charge of developing our systems. Of the many
steps involved in a project, documentation is the one we all
agree is required, but is the one nobody wants the
responsibility of -writing, let alone maintaining. To further
undermine our foundation, documentation is the area most
likely cut from a proj ect as costs rise and deadlines draw
near.

1.0 Introduction

A tremendous amount of time, resources and knowledge must
be expended in the development, programming and testing of
computer based systems. The results of these efforts must be
carefully organized so the myriad of details related to the
programs within these systems can be recorded in a clear and
orderly fashion. This means significant information about the
programs and the systems must (not should!) be written and
stored in a clear and concise fashion. The creation and
maintenance of this information is called DOCUMENTATION.
Documentation is a vital part of every system, and in order
to build 'foundations for the future', documentation must be
one of the cornerstones of that foundation.

Unfortunately, as vital as documentation is, it remains
possibly the weakest link in the computer systems field. If
you need confirmation of why this is so, perform the
following informal survey of your programmers and analysts:
ask them to list their 15 favorite tasks on a sheet of paper
and when they are done, sit down and review them. More often
than not, the words 'documenting systems/programs' will fail
to appear on the paper. Why? Documentation isn't trendy,
machine oriented, technically stimulating, and most
programmers and analysts consider it beneath them to
document. When your staff approaches the task of
documentation with this attitude it is easy to see why

Documentation: The Necessary Evil 0077- 1



documentation has been neglected, completely ignored, or
written in a haphazard manner in many DP shops.

There are two hazards encountered when writing about the
subject of documentation. The first hazard is the fact the
term encompasses a variety of different forms, all having
different meanings to different people. G. Prentice Hastings
and Kathryn King in their book Creating Effective
Documentation for Computer Programs make reference to the
following levels of documentation: Reference Charts,
Operator's Guide, User's Training Document, Student
Workbooks, Reference Manuals, Management Guide, System
Administrators Guide, Logic Diagrams, Microcode List,
Technical Manuals, User's Manual, and Installation Guide. I
am not about to cast judgement on how much of this
documentation is really required or even practical to create.
A decision on this matter would depend on the size of the
system you are creating and the needs of your individual
company. The second hazard arises from the subjective nature
of documentation. Like anything subjective, changes in
documenting procedures may make things better, worse, or
leave them much the same - and often there are no easy
answers about what to do. Every change or implementation of
new ideas involves trade-offs - What type of documentation?
Structure? Amount? Who will write it? - which are significant
in determining what needs to be done. This paper is,
therefore, by no- means an attempt to provide definitive
'yes/no' answers. However, if this paper proceeds to equip
you with the knowledge required to reach your own conclusions
about ~hy documentation is not evil, it will have done its
job. The scope of this paper will be two areas of the
documentation field that I feel are key, yet are often left
incomplete, incorrect or nonexistent: Program Documentation
and Application Software Documentation.

2.0 Program Documentation

It remains a fact that even today many programs are
delivered for which there is little or no documentation to
accompany them, or the documentation that does exist bears no
resemblance to the source code. On the surface you could ask
"So what?", because the program/systems will run whether or
not the documentation exists. As long as the program runs,
this remains true. Unfortunately, I have seen very few
programs that ran forever without 1) going crash in the
night, or 2) requiring some form of maintenance. Addressing
the first issue, we all know that it will be late one Friday
night that the XYZ analysis program which has run flawlessly
for 27 months will abort with some cryptic Image error,
requiring someone to dig out the program documentation. If we

Documentation: The Necessary Evil 0077- 2



can find it, we are a step ahead of the game. If it really
matches what the program is doing, your maintenance staff
will love you. More likely, you will have documentation that
is either: a) incomplete, or b) lacking the revisions Peter
Programmer made last June before he left the company.
Addressing the second issue, I have yet to see in my
relatively short experience in the field (6 years) any
program that has run for 2 years or more without ever
requiring some form of modification. Fixes to old bugs, fixes
to new bugs caused by fixes to old bugs, report format
changes, company policy changes, "etc. The reasons why you
might change code are endless, but you can be sure that if
your program is important it will need to be changed at some
point. There is also a third possibility, which I have seen
only once, that may be valid in your shop -- extremely
accurate documentation of very poorly written programs. While
not as severe a problem as the first two, it deserves some
recognition as well.

Given all these potential problems, don't despair, you
won't be the first to encounter them (or the last). However,
to ensure that they don't happen more than once, we should
discuss some solutions. The most obvious (and since it is
obvious, it is probably the least effective) is to write
standards and directives for what you expect to find in your
shops program documentation and make compliance with these
directives a requirement for continuing employment. We will
assume you are doing this already, and if it is working, fine
-- but if it isn't, we require some additional tactics. More
humane and perhaps more sensible might be to seek out
programming methodologies with built-in documenting
enhancements. But don't be mislead here: structured
programming by itself (regardless of language) won't solve
the documentation problem (despite what your programmers
say ... ). Choose whatever documentation method you feel is
best for your shop, then it is up to management to insist
that the guidelines are followed. It still appears that after
all this time there is no mechanical substitute for old
fashioned management control.

2.1 Program Documentation - Implementing Change

In order to get your DP staff to follow the new
management guidelines, you will have to get them to change
the standard and widely held view of documentation: "Those
who can, do, those who can't , document". Do not expect this
change to happen easily, as people resist change in any
number of ways, and for many different reasons. Key among
them are lethargy and fear. Phillip Metzger in his book

Documentation: The Necessary Evil 0077- 3



Managing Programming People outlines the following options as
possibilities:

1) Serious Threat: "Do it or I'll kill you"

2) Appeal to Self-esteem: "You don't want the people in
Linda's department to make us look bad, do you"

3) Opportunity: "We finally have a chance to look into this
new opportunity to improve ourselves"

4) More Opportunity: "Here's a chance to blaze a trail for
the rest of the department"

5) Bribery: "Do this and I'll remember it when salary review
time rolls around"

On the surface, these options appear quite humorous, but
they are some of the methods you may have to use if you are
to change the opinions of your staff towards documentation.
Believe it or not, people will actually resist the
opportunity to increase their skill levels or improve their
credentials in this area (ask my former supervisor). In part,
this may be due to the mistaken belief that good
documentation skills are not seen as a marketable asset, as
are courses in structured design, database methodology, 'c'
programming, etc. As an analyst or manager, you may face an
additional problem. You may have programmers reporting to
you (whom you can convert), but you in turn report to someone
who may hold the same beliefs as your programmers. It will
probably be easier to get your technical people to try new
things than it will to get management to join. Management's
reasons may be as follows:

1) If the group spends too much time on this, other projects
may fall behind (yet time for this should have been
planned in advance ... )

2) How do we know it will do any good?

The best way to answer managements concerns would be by
analogy. You have to look at program documentation as
insurance. If not~ing ever goes wrong at your site then the
effort may appear to be wasted. On the other hand, when
things do go wrong (and they will ... ) your first line of
problem solving will be a referral to the program code and
the accompanying documentation in order to: a) find the cause
of the problem, b) fix it, and c) get the system rolling
again. It is because of this fact that documentation is often
viewed in nebulous terms, you can't tell management how much

Documentation: The Necessary Evil 0077- 4



value documentation has until a cr1S1S arises, and by then it
is too late to start documenting.

2.2 Program Documentation - Assembling the Material

Hopefully, we have determined that program documentation
is actually required. We will assume it doesn' t exist, and
that attitudes on the part of programmers and management can
be changed. Just what kind of information should we create?
The following chart sununarizes one of many possible
alternatives for creating a program dOGumentation manual.

1) Title Page

2) Revision Page

3) Abstract

4) System
Flowchart

The title page should contain the program
name, system of which the program is a
part, original programmers name, and the
date released to production.

The revision page is required to document
the history of the program. Contents
should include the name of the original
programmer, date released to production,
estimated time to complete progranuning.
On this page in chart form, provisions
should be made to document all subsequent
revisions, descriptions of them, names of
the parties responsible for them, and the
date the revised program was released to
production. In order to ensure this page
is always up to date, do not allow
programs to be moved into the production
environment until it has been verified
that the revision has been documented.

The program abstract should contain a
general purpose and description of the
program, frequency of use, input and
output files, subprograms called, and a
list of programs that are prerequisite
for this one to run.

The system flowchart documents the flow
of data through the system, providing a
visual means of identifying input and
output files used in the required steps
of the total processing cycle. (There
will be those who feel this process is
becoming obsolete.)

Documentation: The Necessary Evil 0077- 5



5) Logic
Description

6) Test Data

This section should provide a detailed
description of the program including
special editing performed, sequence
checking, reasonableness checks, tables
used in the program, special forms
required, and operator instructions. The
detailed program logic must be
illustrated using program flowcharts,
decision tables, or pseudo code.

A listing of the test data used in
testing the program, and a sample of the
program output should be provided in the
documentation manual. Test data should be
sufficient to test all routines within
the program.

At Motorola Information Systems we are using a
combination of the items mentioned in the above list as
shown in Fig. #1, #2 and #3 (see appendix). These documents
must be completed for every program released to production,
and no program will be run in the production environment
before these pages are verified to be complete. These pages,
as good as they may be, are only half of the battle. The
remaining program documentation must be carried out in the
program code itself.

2.3 Program Documentation - Using your code

. As mentioned earlier, some programming languages lend
themselves to documenting. COBOL for example can be somewhat
self documenting if certain standards for documentation are
enforced. Require COBOL programs to contain a purpose,
description and brief history in the REMARKS section .of the
code. Require that sections or paragraphs be commented if the
paragraph performs complex routines or calculations that
would not be obvious to someone unfamiliar with the code.
Require that all COPYLIBS and SUBPROGRAMS be identified as in
Fig. #4 (see appendix).

In case you feel that I am the only person 'crazy' enough
to feel this way, I offer the following quote: "In my
opinion, there is nothing in the programming field more
despicable than an uncommented program. A programmer can be
forgiven many sins and flights of fancy; however, no
programmer, no matter how pressed for time, no matter how
well intentioned, should be forgiven for an uncommented and
undocumented program". This quote comes directly from Edward
Yourdon, author of Techniques of Program Structure and

Documentation: The Necessary Evil 0077- 6



Design. Do keep in mind however, that commented code is not
an end to itself, as good comments are not a substitute for
bad code, nor is good code a substitute for lack of
comments. Program code obviously tells us what the program is
doing, but it cannot tell us why it was done in a certain
fashion. Before you decide that code documentation will be
the key to solving your problems, be prepared to hear the
following excuses from your staff:

- I don't have enough time

- My program is self-documenting

- Any competent programmer can understand my code

- This is a one shot program, its not worth it

- The program will change dramatically during the testing
and debug phase, so any documentation will be useless
by the time the program is finished (if this is the
case, perhaps you should question their design skills
before they start to code?)

- I understand the code, I'll be here to fix it

- ~y programs will take too long to compile

- Who will read the stuff anyway?

We have all heard these arguments before, and perhaps we
have even used one or two of them on occasion. In order to
combat them we may choose any of the techniques for change
outlined earlier by Metzger, or we may choose to implement
documentation as a philosophy across a department. Actually
putting program documentation methods into practise is not
that difficult if it is kept in mind at all times (perhaps a
system welcome message that reads 'Have you documented your
code today?'). Good documentation habits are generally best
exemplified by personnel who work for consulting firms.
Reassignment to another task is a common occurrence, and for
the success of the project (and perhaps the firm), it is
imperative that the next person be able to pick up the system
where the last one left it. Arguments will be raised here as
well, because people feel they work in a relatively stable
environment, so this precaution is not necessary. One only
has to look at DP turnover rates to see why it is necessary.
The average length of employment with one firm is less than
three years, and the easiest way to turn programs or systems
over to new people is with decent accompanying documentation.

Documentation: The Necessary Evil 0077- 7



2.4 Program Documentation - Reducing Maintenance Costs

Programs spend most of their life being maintained.
Often, considerably more time and money is put into extending
and changing programs than was spent at the initial
development. If this surprises you, it shouldn't. New systems
and their associated programs change the environments in
which they are used. In turn this changes the way they work,
and when work habits change, changes in the system are a
natural result. Barry Boehm in his book Software Engineering
Economics reports that DP shops are currently spending over
50% of their budgets on maintaining their existing systems
(see Fig. #5 in appendix). Over the past 10 years this figure
has increased by about 25%,· and will probably continue to
increase in the future. If you wish to reduce your costs (and
who doesn't?), you'can use reducing your.maintenance costs as
a selling point for program documentation. Below is a list of
why maintenance costs are so high, and it is easy to see how
program documentation may reduce these costs.

- Often programs are released to production that still
have a significant number of bugs. Due to this, what is
often called maintenance is really. just an extension of
the testing phase.

- When maintenance is required, the original programmer
has often left the company, or has been reassigned to
a different project.

- Programmers do not often view maintenance as
glamourous work.

- Most people have difficulty understanding other
peoples code.

Documentation that accompanies most programs is just
short of awful. Some testing in university settings has
indicated that maintenance programmers would be better
off removing all of the comments accompanying a program
and then trying to find bugs or implement improvements.
Because of this, many firms are now paying the price
for poor documentation standards of the past, as their
maintenance times and costs increase.

2.5 Program Documentation - A Dissenting Opinion

As with most concepts in the systems field, there are
people who are 'for' the concept and those who are 'against'
the concept. I feel I would be remiss if I didn't at least
address the viewpoint of the 'against' delegation. John

Documentation: The Necessary Evil 0077- 8



Boddie in his book Crunch Mode, approaches program
documentation as follows, "On some projects there is a rush
at the end to produce 'program documentation' -descriptions
of the code in the system. This is done in the name of
maintenance. What it is, really, is stupidity.". On this
issue I must disagree. If the proj ect was properly planned
and the documentation completed at each step in that plan,
they wouldn't be running around at the end of the project
trying to complete program documentation. Mr. Boddie goes on
to state that the original programmers design documents, plus
the comments that were put in the code should be adequate
enough for the maintenance staff to pick up the system and
maintain it. "These comments are the 'program
documentation' ", and project leaders will insist on it as
good programing practice. Unfortunately, in the past, project
leaders have not insisted on this, and many do not to this
day. As for the design documents and program comments being
adequate program documentation, could you imagine trying to
piece together the relationship of a complex system from the
program design documents and the source code?

Don't let your staff, or your management try to avoid the
issue of program documentation by using any of the excuses
mentioned in this section. Any program or system that is of
any value (and why would we bother to create them if they
weren't?) will remain active for some period of time,
increasing the odds of some other individuals coming into
contact with it. Perhaps one of the best ways to impress the
importance of this on a young programmer is to give them a
'rats nest' program to maintain, debug and modify (you know,
the kind we all used to write). If this is done to them early
in their career it can have a strong and beneficial impact on
their programming habits. This in turn will only make things
that much easier for you to convince them of the benefits of
program documentation, and they in turn may help you to
convince the rest of your staff.

3.0 Application Software Documentation

Application software documentation (often referred to as
the 'users manual') serves as the primary interface between
the end user and the application software. Despite the
importance of this documentation as a factor in both program
and system success, software maintainability, proper system
use and user satisfaction, application software is often paid
little more than lip service by DP departments. Application
documents have long been considered evils of doubtful
necessity, and because of this, the manuals that are produced
often try the users patience. It would appear that when
programmers are good, they are very good; but when they

Documentation: The Necessary Evil 0077- 9



write, they are terrible. The reason for bad writing getting
out is the same as for bad programs getting out: tasks aren't
planned well enough, plans aren't executed well enough, and
the results aren't tested well enough. For these problems to
exist, the finger must point at management for letting poor
writing and documentation get by them.

3.1 Application Software Documentation - Inherent Problems

The AUdience:
It is generally well known that most occupational reading

is 'reading-to-do' rather than 'required reading'. Many
people only use application documentation to improve
performance of seldom performed tasks. Due to this, if the
documentation is difficult to understand, users may abandon
the written material in favor of alternative methods: trial
and error, consulting more experienced users, or forgetting
about the whole thing if possible. Users view the application
documentation the same way we view documentation from
companies whose software we use. If the documentation is
poorly written or contains errors and inconsistencies, we
attribute the same negative quality to their software. If we
feel this way about the documentation we use, why shouldn't
the end users feel the same about the documentation we
provide for them?

Structure Differences:
The problem that arises here is due to the way

documentation is created, especially in smaller DP shops. In
many DP shops, the programmers or analysts are responsible
for creating the application documentation. Unfortunately,
when there are multiple systems being developed by different
people, there will be different styles of documentation
produced. Differences will appear in terms of layout, scope,
wording, technical orientation, etc. Ideally, having access
to a technical writer would help simplify the problem. In
reality, since most shops cannot afford this luxury,
documentation standards should be communicated to all
responsible parties so consistent documentation will be
produced.

Inadequate Current Documentation:
One of the most prevalent problems with the current state

of documentation is the amount of it that is missing
(whereabouts unknown), incomplete (lacking relevant
information) , inaccurate (missing latest revision), or
obsolete (program. no longer in production). Existing user
manuals often lack a sufficient number of relevant examples
to accommodate the needs of users. Error codes may go

Documentation: The Necessary Evil 0077- 10



unexplained, and recovery procedures in case of error may be
inadequately described.

Resistance to Document:
This topic has been discussed so many times that we

should be able to abandon it by now (see section 2. 1 ,on
implementing change). DP personnel involved in the software
development process are often those responsible for
documenting the systems due to their higher understanding of
the end product. The problem is that writing is one of the
least interesting' software related activities and little
linkage is perceived between improved documentation and the
organizational reward structure. Another part of this
resistance to document may come from the basic educational
system our programmers are now corning from. In a College or
University setting there is no incentive to document your
programs as you are the only person-who ever has to deal with
them. Users manuals are not required, and the whole issue of
how educators view documentation can be summed up in a
discussion I had with one of my college professors during a
3rd year systems design course. Being naive as I was at the
time, I asked Ivan Chapman just what we would do with
ourselves once we had been hired by a firm and had completed
computerizing every possible activity known to mankind. His
response: "Then you document". This attitude clearly makes
documentation look like an unnecessary task, something to do
once everything else has been completed. It is only in the
newer systems texts that the concept of complete system
documentation is being covered, and in fact, there is now an
entire body of texts dedicated to the topic of creating
documentation for computer systems. Eventually, this trend
will filter its way into the educational system, and when it
does, we should finally be able to hire programmers who do
not view documentation as undesirable.

Inadequate Managerial Planning:
Often there is a perceived lack of managerial guidance,

policy, support or review of documentation efforts. Efforts
to minimize the software development time and cost may occur
at the expense of perceived minimum benefits from
documentation activities.

Lack of Testing:
You must schedule writing, editing and rewriting of

documentation as carefully as you schedule design,
programming and testing for the code. Documentation should
not be left to the last two days before system delivery. If
possible have your documentation written by people who like
to write and are proficient at it rather than by the
programmers who wrote the code (and who probably don't want

Documentation: The Necessary Evil 0077- 11



to anyway). As well, you must test your documents. No, you
didn • t misread that last sentence -- you must test your
documents. This can be done through the use of structured
walkthroughs and review sessions. The user manual is really
the only tangible item that you deliver to your users, and
how they view it will often be how they view your system.
Test your document by giving copies of it to your systems
people who had nothing to do with the design or 'programming
of the system and see if they can follow the logic. If
everything makes sense, turn them loose on the test system,
as systems people love to try to crash software and they may
try things the users wouldn' t think of. As well, use key
personnel from the user areas if possible, as their
understanding of what their system is supposed to do may
expose flaws in the design, or highlight areas that need to
be more clearly defined in the manual.

3.2 Application Software Documentation - Putting it Together

In order to create good user documentation, we must begin
by asking questions. Who will be reading this? How much to
they know already? What do they need to know to do their job?
What aspects will be confusing to them? Given the task we
have to complete, what information should we provide the user
with? The following chart summarizes one of many possible
alternatives for creating application software documentation.

1) Introduction

2) Equipment

3) Operation

4) Using the
Terminal

The introduction should contain the
purpose of the system, objectives it
accomplishes, and relationships with
other systems.

If possible, provide pictures of the work
environment the user will be in. There
are still many cases where we install
systems in areas where terminals,
printers and modems are foreign objects.

Provide the user with brief descriptions
of the following items: Terminals,
keyboards, printers and modems.
Descriptions should include how to turn
all equipment on/off and operating
features of each device.

This section will cover the basic
operations required before the system is
active. It should cover basic user
questions such as: How do I sign-on the

Documentation: The Necessary Evil 0077- 12



5) System Features

6) Error Recovery

7) Hardware
Maintenance

system? What are function keys? Who do I
call if it doesn't work? How do I sign
off the system?

This section will compriRe the maj ority
of the user manual. Explanations of the
system menus, types of operations
available, explanations of how each
transaction works, limitations and
security in the system, processing flow,
numerous relevant examples, where to turn
for help, descriptions of all
forms/screens/reports used, and what the
user responsibilities are.

Even though it is difficult and time
consuming, all possible errors should be
described in tabular fashion, listing
symptoms and cures. Problems indicitive
of hardware should be separated from
those associated with system problems and
application problems.

It is surprising that many people feel
computer equipment needs no care. This
section might include basic maintenance
the user can carry out (cleaning screens
and keyboards, adding paper to the
printer, changing printer ribbons, etc).
As well include a list of items to be
referred to the service department and
appropriate contacts when things go
wrong.

As I stated earlier, the above list is only one possible
setup for a user manual, your own needs will dictate your end
result. Once the design has been chosen, there are still
various hurdles to overcome in this process that will
directly affect the creation of your manual, and they are
listed below:

1) The orientation of user manuals should be to work
functions where the terminal is just a tool, instead of
a manual solely about terminal procedures.

2) Some familiarity with the subject matter should be
presumed. This allows entire sections to be devoted to
specific tasks, such as, "How to perform a Query", "How
to perform a Delete", etc.

Documentation: The Necessary Evil 0077- 13



3) For ease of training, pictures of screens, keyboards,
printers, and other equipment should be included near the
beginning.

4) References to other manuals are confusing; any situation
that is not 'normal' to a user usually results in a
request for assistance.

5) Jargon, mnemonics and excessive abbreviations should be
avoided.

6) If the same physical screen layout is used to perform
more than one procedure it is better to repeat it than
refer to another section; this ensures that a single
section can cover an entire procedure.

7) Any reference to function keys should be emphasized by
bold type or preferably, a drawing of a key top. Rather
than, "When a field has been entered - press ' SEND' " ,
it may be more effective to have:

"When a field has been entered - press ISEND;

3.3 Application Software Documentation - Perceived Benefits

In the abstract for this paper, I mentioned there are
benefits to be gained by maintaining accurate documentation.
While one may not be able to assign a dollar value to all of
them, the list below covers some of the key benefits.

Cost Savings:
While good documentation will in fact save you money, it

is not always obvious how much. As mentioned earlier in the
analogy regarding· insurance, the cos t savings may only be
realized once things start to go wrong. In the case of a
software firm which produces documentation to accompany its
products, the cost savings may be viewed as money not lost
through sales. If you had purchased a piece of software and
the documentation was so poor it made the program unusable,
would you recommend it to someone else? Software with good
documentation gets reconunended, therefore, if you produce
software for the marketplace, it is worthwhile to spend the
time and effort to produce quality documentation.

I would like to be able to tell you that every hour you
spend in documenting programs/systems would yield you a cost
savings of $15.00-20.00 but I cannot. Well designed
documentation will help facilitate efficient and effective
software development and will decrease training, operation
and maintenance costs. In addition, having current

Documentation: The Necessary Evil 0077- 14



documentation of software under development can reduce the
risk of duplication of effort by your staff.

Managerial Benefits:
Documentation will increase the flexibility of managers

in dealing with turnover or reassignment problems with
respect to both end users and system staff. Given the
traditional rates of turnover, the benefits should be
obvious.

Software Marketing Tool:
Presence of comprehensive, understandable documentation

attests to the quality of the related software, and can lead
to favorable user beliefs concerning system integrity and
reliability. The best conceived, written and implemented
system will fail if the accompanying documentation renders it
useless. On the other hand, excellent documentation can make
a somewhat limited system appear to be far better than it is.
Although some would feel this applies only to companies
producing software for the marketplace, it impacts on systems
developed for internal use as well.

Improved Communication:
Documentation can serve as an important tool for

communicating within and between phases of a software project
that is spli t among different groups. Documentation can be
used as a quick refresher of both user and DP staff memories,
and serve to lessen the potential for conflict and
misunderstanding between users and DP staff, as well as
between different groups on a software project.

Vehicle for User Participation:
Documentation provides a common baseline for discussion

within and between groups. In fact, many DP shops (Motorola
included) are currently riding a trend to allow the end users
to participate in writing the users manuals for systems they
will be using. Participation such as this can stimulate user
feedback, morale, commitment and confidence in the software
the end user will eventually receive.

4.0 Where do we go from here?

Regardless of' your role, be it the programmer of a
specific software application, programming mangers, DP
director or a technical writer, you must have a good
understanding of the five primary ground rule for
documentation.

1) In order to solve a problem rather than contribute to it,
you must first recognize and acknowledge that it eXists.

Documentation: The Necessary Evil 0077- 15



2) Both technical and user documentation must include
sufficient information to be used as both reference and
instructional material in order to be considered valid.

3) Writers of computer documentation are instructors.
Therefore, they must understand the needs of the people
they are going to write for and the level of detail
required to satisfy them.

4) Every project must be treated as a training assignment in
order to maximize the instructional value of the content
and the context of the documentation.

5) The eventual success of documentation depends on
writer's abilities and the company's willingness
provide end users with sufficient detailed
instructional information.

the
to

and

It would probably come as a major surprise to many
writers, DP managers and programmers that their documentation
often fails to meet the needs of the user. In many cases the
documents were never' tested or subjected to a formal/informal
review process. A study cited by Hastings and King revealed
that over 85% of all supportive documentation offends the
intellect of the end user while failing to do what it is
supposed to -- instruct.

Data processing departments generally sense that
something is wrong when systems start to fail after
implementation, but rarely do they associate this problem
with their documentation. This should not be surpr1s1ng
because these are the same· people who have the attitude,
"Documentation is just a necessary evil and no one is going
to read it anywayl It. Take a minute to think about that, for
if the people who create the documentation have this
attitude, who would want to read the results of their
documentation process?

4.1 A little commitment please ...

It cannot be stressed enough that the documentation
effort must be treated as an integral part of the system
development process if it is to support the product/systems.
DP departments must have a commitment to turning out quality
documentation for every system they produce. Unfortunately,
this commitment must be more than a mental attitude; it is
knowing the tasks to be performed and who will be performing
them when the project is started. True coinmitment requires
taking the time to give everyone involved a complete

Documentation: The Necessary Evil 0077- 16



understanding of what is expected of them and refusing to
accept anything less. As overused as the term "management
control" seems to be, the push for better documentation must
come from the top, it will not happen if left to the
programmers. Once a dedicated effort is begun to improve the
documentation standards, enforce proper and consistent
compliance, improvements will certainly be seen.
Documentation is not 'evil', but a necessity that we can no
longer afford to ignore.

Documentation: The Necessary Evil 0077- 17



DOCUMENTATION:
THE NECESSARY EVIL

(APPENDIX)

Documentation: The Necessary Evil 0077- 18



Fig. #1

Motorola Information Systems
Program Documentation

Program: SMCRP075 (Daily Widget Counting) Eff: 01/01/88
Page: 1 of 3

Input: INTRANS.FLS.PROD (Verified Transactions)
METTRAN.FLS.PROD (Metric Conversion File)

Output: AUDTRAN.FLS.PROD (Audit Transactions)
REPORTiDEV=LASER,10,4iCCTL (Widget Count Report)

Database Files:

SYSDB.DBM.PROD (System Database) Read Add Chg Del
- SYS-CTL-DTL (Control File) X

MTLDB.DBM.PROD (Materials Base)
- MTL-IMF-MST (Item Master File) X X
- MTL-SCF-DTL (Cost File) X X
- MTL-OBS-DTL (Obsolete File) X X

PCSDB.DBM.PROD (Production Base)
- PCS-PIF-MST (Purchased Items) X X

Frequency: Daily

Prerequisite: SMCAN070 (Production Analysis)

Special Forms: N/A

Additional Resources:

SORTFILEiDISC=450000;DEV=14

Written by: Date:

Approved by: Date:

Approved by: Date:

Documentation: The Necessary Evil 0077- 19



Fig. #2

Motorola Information Systems
Program Documentation

Program: SMCRP075 (Daily Widget Counting) Eff: 01/01/88
Page: 2 of 3

Purpose: This program will access the validated
transaction file and access the database to
verify inventory levels in the distributed
stockroom. Items that fall outside control levels
will be reported.

Input: INTRANS.FLS.PROD (Validated Transactions)
METTRAN.FLS.PROD (Metric Conversion File)

Output: AUDTRAN.FLS.PROD (Audit Tran~actions)

REPORT:DEV=LASER,10,4:CCTL (Widget Count Report)

Reports: Daily Widget count Report - 4 copies

Langauage: Informix-4GL

Estimate: 2-3 days

Frequency: Daily

Process Flow:

Access validated transaction file, search item master for
matching key, if exists, update quantity counts, check
for cost changes, see if item exists as suspected
obsolete. If below safety stock levels access purchased
item file and issue order message. The printed report will
contain the Item-nbr, Qty Used, Qty on hand, Qty on
order, Value of stock in-house and on order, and a
warning message if the item is suspected obsolete.

Written by: Date:

Approved by: Date:

Approved by: Date:

Documentation: The Necessary Evil 0077- 20



Fig. #3

Motorola Information Systems
Program Modification Tracking

Program: SMCRP075 (Daily Widget Counting) Eff: 01/01/88
Page: 3 of 3

System Applied To: Codex Canada

Module:

MCS INT'L

Modified Program/Form/Menu/Job: _

Screen (If applicable)

Program (If applicable)

MSR Reference Number

Effective at Release

Discontinued as of

Due to (KPR,MSR,Release): _

Production Release: Codex Canada MCS INT'L

Release App·lied
Y!N Date

Responsible Which Accounts?

Documentation: The Necessary Evil 0077- 21



Pig. #4

$CONTROL DYNAMIC, BOUNDS
IDENTIFICATION DIVISION.
PROGRAM-ID. SMFDR225.
DATE-WRITTEN. MON. SEP 17, 1987, 2:12 AM.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.
SPECIAL-NAMES.

CONDITION-CODE IS CC.
DATA DIVISION.
WORKING-STORAGE SECTION.

$PAGE
**********************************************************
* INVENTORY CONTROL SUBSYSTEM *
* *

01 PROGRAM-IDENTIFICATION.
05 PROGRAM-NAME PIC X(8) VALUE "SMFDR225".
05 PROGRAM-VUF PIC X(8) VALUE "A.12.01".

* *
* PROGRAM NAME - SUPPLY/DEMAND INQUIRY *
* MODULE - MCS *
* VIEW FORM - CUSO *
* FUNCTIONS - ADD,CHG,DEL,INQ *
* SUBCOMMANDS - NONE *
* SUBPROGRAMS - SMFMI200, SMFMI210 *
* *
* THIS PROGRAM MAINTAINS INVENTORY COUNT RECORDS *
* *
* FILES TYPE GET PUT DEL UPD SRT I 0 I/O *
* --------------- -------- *
* MTL-DMF-DTL IMAGE X X X *
* MTL-IMF-MST IMAGE X X *
* MTL-OIF-MST IMAGE X X X X *
* SYS-MSF-DTL IMAGE X *
* SYS-TGF-MST IMAGE X X X *
* COUNTERK KSAM X *
* AUDITFLE MPE X *
**********************************************************

Documentation: The Necessary Evil 0077- 22



Fig. #5

Hardware/Software Cost Trends

100 I
I
I
I
I
I

80 I Hardware..l.-
I
I

% of I
I

Total I
I

Costs 60 I
..l.-
I
I
I
I
I
I

40 I
..l.-
I
I
I
I
I SoftwareI

20 I Maintenance..l.-
I

0
1955 1970 1985

(Year)

Source: Barry Boehm, Software Engineering Economics
Prentice-Hall, 1981

Documentation: The Necessary Evil 0077- 23



Boddie, John

Gore, Marvin
Stubbe, Jim

References

Cruch Mode
Yourdon Press
Englewood Cliffs, New Jersey
1987

Elements of Systems Analysis
Wm. C. Brown Company
Debudue, Iowa
1975

Hastings, C. Prentice
King, Kathryn J. Creating Effective Documentation for

Computer Programs
Prentice-Hall Inc.
Englewood Cliffs, New Jersey
1986

Hedin, Anne

Metzger, Phillip

Shelly, Gary B.
Cashman, Thomas J.

Yourdon, Edward

Unburden the User
Data Processing Digest
Vol. 31 No. 3 (March 1985)
Los Angeles, California

Managing Programming People
Prentice-Hall Inc.
Englewood Cliffs, New Jersey
1987

Business Systems Analysis and Design
Aneheim Publishing Company
Fullerton, California
1978

Techniques of Program Structure
and Design
Prentice-Hall Inc.
Englewood Cliffs, New Jersey
1975

Documentation: The Necessary Evil 0077- 24



The Secrets of Project Kanaqement

Robert Mattson
9545 Delphi Road. S.W.

Olympia, Wa 98502

Introduction

So much of the work we do in "systems" is in the form of
"projects." The problem seems to be that there are a lot of
ways a systems project can get messed up. I've been
challenged by the nature of such projects for a number of
years. From this I've concluded that there are some key
concepts project managers need to understand and focus on to
succeed on system projects. Therefore, the first goal, in
this paper, is to pass on these "secret" concepts as "food
for thought." The second goal is hopefully to provide
something that will help further the success of your
projects.

The Seven Secrets

with those goals in mind, I'm going to discuss seven
"secrets" of system project management. I don't claim that
these are the only important concepts/secrets. In fact,
there are so many different challenges in system projects
that no single set of answers will ever exist. However,
I'm convinced that understanding and focusing on these seven
"secrets" can result in many significant benefits. Further,
my experience and research has led me to the conclusion that
a lot of experts are missing key points or focusing on the
wrong ones. To the extent that I haven't seen the points
that follow discussed or emphasized•.. I call them "secrets."
Finally, the "secrets" are applicable to any type of project
although my emphasis throughout is that of a system project.
So, let's get started at looking at these "secrets."

Understanding "Goals" and "Success"

Understanding "goals" and "success" is where system pro
jects should start ... unfortunately I believe, too few do!

Let's take the issue of "goals" first. A common error is
to focus on the goals of a "systems" nature over those of

The Secrets of Project Management
0078-1



the "business" and "user." System nature goals have to do
with things like "trying a new language", or "ease of
coding". The user's goals are usually oriented toward
doing a "business'" or "organization's" function better,
faster, easier and cheaper. The key is to understand what
this means for the user! Too many times I see the key
systems person on a project unable to express these "user's
goals" in users terms. I believe this situation accounts
for much bad press about how systems people cannot
"understand" or "talk" in terms of the "user". Therefore,
we need to focus on and clearly understand the user's goals.
We, also, need to make these a prime driving force in system
projects.

Related to the area of "goals" is the understanding of
the meaning of the word "success." I've made the strong
point in previous paper, Why System Projects Don't Quite
Succeed, that each key player in the-system project "game"
measures the "success" score differently. The following is
a chart showing how key players usually measure "success".

Functionality Time/Cost Internal Style
("User Goals") Quality

Users 80% 10% 0 10%
"Programmer" 30 40 30 0
User Mgmt 15 80 0 5
Top Mgmt 5 80 0 15

Note the differences in how the various groups and people
measure success. Of special significance is how much weight
management places on time and cost in measuring success.
Equally, note how the user places an equally disproportio
nate weight on functionality. The significance of these
differences is that if you please the user to the detriment
of time and cost then many times the project will be jUdged
less than a success by top management. Conversely, there
are many completed systems projects that top management
thinks were very "successful" which resulted in achieving
only a marginal functionality. Further many of these
systems may have very high life cycle costs. Top management
based its belief on the fact these system projects were on
time and on budget. Many "PC" projects are like this.

One may argue with the above percentages •.. but that
doesn't really negate the key point. That is, different
people view "success" differently. This knowledge doesn't
necessarily solve every trade-off problem a project manager

The Secrets of Project Management
0078-2



faces. It does ,however, help us understand how different
players in the project will jUdge the project and by
association those working on the project team. This
knowledge is very important in understanding the "politics"
of projects. with it, we can better balance our actions,
goals and emphasis to achieve the result we desire.

So the first secret is:

One needs to understand a system project's many goals
and measures of success in order to maximize desired
results.

People versus Techniques

We now have a clearer understanding of the meaning of
"goals" and "success" in system projects. So, let's focus
on how we can achieve them. Our first step is to explore
the people versus technique issue. To do so, we start with
what appears to be an "assumption" hidden in a lot of
literature on project management. This assumption is that
with the application of the "right" project management
"techniques", one can make any project a success. This may
sell books, but from my experience and observations it's not
that easy! In fact, other things being equal, give me a
person with "right" knowledge, skills, experience and
attitude over any magic project management techniques.

What I am saying is that the first assignment and empha
sis for the software project manager is to find the right
people rather than focusing on "technique." Given the right
people the chances for success go up tremendously. Con
versely, without the right people chances for success are
less than good no matter how great the project management.

Unfortunately, most managers appear to have less than
full leeway in finding, selecting and getting rid of people
on projects. In addition, our knowledge of how to find and
select the person we need is less than perfect. It is when
we are faced with this common reality, that we'd better
understand and know how to apply all the rest of the secrets
of project management and any other useful techniques. But
let us not lose sight of the fact that the "right" person is
worth a pound of techniques.

The place you can really notice the lack of attention to
the value of people is in the area of "people resources".

The Secrets of Project Management
0078-3'



Books on system project management almost universally gloss
over the fact that there are ten to one or more differences
in capabilities of people •. In other words, the time it will
take and the very quality of the product in systems is
intimately tied to who does it. The nature of most system
tasks and system personnel differences is such that no real
assumption can be made about how long it will take an
"average" systems person to do it. Yet, over and over again
I see project management books or lectures treat system
people as units such as "programmer" or "system analyst".

A related issue has to do with the commonly held belief
of "staff or p~~sonnel development." Many managers' per
formance is rated on their success in developing personnel.
Although, it may be heresy, I'm going to suggest that our
ability and knowledge about how to "develop" people may be
far less than we commonly believe. In addition, on many
projects, the time and resources are just not available
accomplish the needed development. For validation of this
idea, try looking squarely at how much time and energy you
have spent trying to "develop/change" a person. How
successful was it? Was it really a good "business
decision?" I would suggest that project managers may be way
ahead to spend their time figuring out how to get "wrong" or
"unmatched" people off their projects rather than trying to
change them.

So the second secret is:

The "right" people are more important than "right
management" techniques in system projects.

Communication

A great deal of the problems that arise in projects stem
directly from "communication" related behavior that is in
conflict with human limitations. As a consequence, people
up and down the project organization "think" they've
"communicated" "things" successfully when in fact they
haven't. The "things" that are communicated in a project
are major items like coordinating directions, specifications
and requirements.

If we COUld, I'd like to magically measure the number of
times in projects that an action isn't taken because the

The Secrets of Project Management
0078-4



person never "heard" the request. Then I'd like magically
to measure all the time spent by people doing the task as
they thought someone wanted it done, but which later was
found to be not on target. The number of times and more
importantly the consequential cost of these two situations
would be very significant. In fact, many projects fail or
are much less than successful because of the poor quality of
the communication going on.

Thus from this standpoint, project management is largely
about how we communicated what, who, when, why and how much.
It's about how successful we are in communicating up and
down and across the project organization.

There are many challenges when one is trying to improve
communications. For a discussion of many of these see the
paper Communications - Why do Systems People Have Such a
Hard Time With It? Although there are many problems
related to communications, the heart of many of the solu
tions involve an emphasis on written over verbal communi
cations. This especially applies to system project manage
ment ••• usually it's the lack of clear "hard copy" of
various kinds that leads to many of the projects problems.

So the third secret is:

Good project manaqement must include qood communication.

Task Management

There is no more key concept in the "management" of
projects than that of understanding "task management."
Projects are made up of a whole bunch of SUb-projects or
"tasks." From this perspective "project management" is made
up of a whole bunch of "task management. II It amazes me to
see people worried about how they are going to manage a
project when ..• they can't tell you how to manage a single
task that makes up the project. To belabor the point, if
one can't manage the tasks that make up the project •.. one
can't manage the project!

The best example in software systems is that of the lowly
program. If you can figure out how to manage the develop
ment of a single program and you're on your way to under
standing how to plan and manage a "system." Conversely, if
you are having problems with managing the development of a

The Secrets of Project Management
0078-5



single program••• then you probably will have even more
problems with the whole system.

So to improve, we need to focus our attention on the
"tasks" and their management first. How do we manage a
task? First we need to understand that each task is a
project. Sounds like circular reasoning, but it isn't
really. What it means is that the same techniques and
concepts that apply to "projects" also apply to the "tasks"
in the project. It also follows, if we are having a problem
managing this "task" then we need to figure out what its
sub-tasks are and how to manage those. Our goal is to
reach a point where we are "successfully" managing a task.
When we achieve this goal we are ready to move up a "level"
in our management.

So the fourth secret is:

Focus on manaqinq ..tasks" before "projects."

Managing for Quality

A little discussed issue is that of how to manage for
"quality." Quality, in the sense I mean, deals with the
measurement of the excellence of the "deliverable" or
"product" of a task or project. Quality is the third leg of
the project "triangle." A project triangle describes the
balance between cost/resources, time and quality. Changing
anyone of the parameters most likely affects the others.
The understanding and "managing" of this relationship is a
significant part of what "project management" is all about.

In spite of the fact that we need to manage all three
areas, the emphasis in almost all the project management
thought is on the time and cost parameters. In fact, out of
all the pages in the texts on project management I've read,
less than 2% deal with this issue of the management of
quality. In part this emphasis is due to a lack of
understanding of the importance of quality. Also, the
"management" of cost and time is "easier" than that of
quality. Finally, remember that "top management" is
emphasizing cost and time in its jUdgement of project
success.

Why do I feel this lack of attention is unwarranted and
significant? In software projects it is the quality of the
product that greatly affects both long term success and

The Secrets of Project Management
0078-6



costs. If we place too much emphasis on initial project's
time and cost then I will almost guarantee that the quality
of the product will suffer.

Why will quality suffer? It is because people doing a
project will tend to place their emphasis and effort in the
areas where they are being measured. So when "managers"
emphasize time and cost their "task workers" will do so
also. Add to this the fact that the majority of original
system estimates for time and cost are understated. And, as
commonly happens, these estimates become "gospel." Finally,
we usually don't plan for or "measure" product quality. The
net result of this scenario is that people know they can let
product quality slide a little in order to meet the time and
cost deadlines!

So how do we manage for quality? The keys are 1)
defining the quality parameters 2) defining levels of
achieving on each parameter 3) assigning "value" to each
parameter/level agreed to 4) measuring against this
definition 5) analyzing and adjusting our actions to
improve overall quality for the next time. For a more
complete discussion of this topic see the paper Quality 
Let's Discuss this "Can of Worms".

We will have achieved a significant milestone in systems
when our project management includes managing for quality.

So the fifth secret is:

Manaqe a project's quality as well as its time and cost.

Planning and Re-planning

Few would disagree that management of a system project
can be helped greatly by the use of a "good" plan. And, in
general, the best plan is one that is as accurate as
possible. But most plans lose their "accuracy" rapidly. So
one could conclude that to keep a plan of value it must be
constantly updated. The truth is that most plans are not
updated anywhere near as often as they should be. As a
consequence, most system project plans are nearly useless!

Why are inaccurate plans of little value? It is because
one of the prime uses of plans is as a communication tool.
A good plan communicates at least the who, What, when and
how much of the tasks of the project. When this data is not

The Secrets of Project Management
0078-7



accurate on a plan, people will rapidly ignore the plan.
They will ignore it for planning their own work. More
significantly, they will not provide needed updates to a
plan they perceive as worthless.

Additionally and unfortunately, when we don't re-plan we
don't re-think. Much of the value derived from planning
comes from the thinking we do about the tasks. If this
thinking is not being done, then critical issues affecting
the project may easily be overlooked. Revising a plan
should provide the impetus to step back and see the forest
as well as the trees.

Based on my experience in the systems arena, most tasks
should be re-planned based on the following rules.

Re-plan when:

1) we are at 10%, 50% and 70% of elapsed time

2) once a day

AND

3) when any fact comes to our attention that we feel
may affect, by greater than 2%, the schedule
completion date, resources required or quality.

In producing a plan or a "re-plan" we need to be sure
that we understand what is in a plan. A "plan" tells who,
When, how long, Why, how much, what products and of what
quality. This may sound pretty obvious. Unfortunately, I
believe that the majority of the "plans" done each day leave
out at least one of these items. This is unfortunate,
because leaving out any this data diminishes the usefulness
of the plan. It follows that when we "re-plan", we must
also re-specify all these items in a plan.

Another often missed feature of most re-plans is that of
changes and comparisons. We should in our re-plan compare
it to the original plan. The re-plan should point out our
tasks added, tasks removed and tasks completed. It should
also highlight variances between the "original" plan and the
re-plan as to who, when, how long, how much, and the
quality.

The Secrets of Project Management
0078-8



So the sixth secret is:

The latest "good" plan is worth many times the former.

Self-Management versus Managing others

The chances for project success go up directly in rela
tionship to how well each person on the team accepts indivi
dual responsibility for its success. This in a sense could
be called "self-management." Conversely, if we try to
"manage" people into doing what is right, in the right
amount of time, by the right date, etc •..• we will almost
surely not achieve it. My experience and observation has
convinced me that trying to control a project by externally
monitoring and controlling others is much less successful
than commonly believed.

If self-management in a project is desired, then how do
we achieve it? The way you get everyone to be responsible
and their own self manager has to do with the personnel
issue. In line with earlier comments, I believe it is not
easy to develop or change someone into a self manager. But
it can be done sometimes. Mostly, this is another issue
where having the people with the right attitudes on the team
is worth a great deal. Give me someone who wants to do
something over someone who has to do something!

It may be helpful to focus on what the self manager on a
project or task takes as their responsibility. They need to
take responsibility for implementing the concepts("secrets lt

)

discussed so far. It also means accepting responsibility
for achieving the plans as to time, resources and product
quality. So responsibility in a project or task includes
the following:

Understanding Goals and Success
Correct Staffing/Knowledge/Skills
Right Type, Timing and Quality of Communication
understanding and Managing for Quality
Planning and Re-planning
Reporting of Problems with Re-plans
Periodic status Reports
Review of Future Plans
Task/Project Reviews for Time, Resources and Quality
Achieving the Plans and Goals for Time, Resources and

product Quality.

The Secrets of Project Management
0078-9



If you do get everyone on the project team to accept
responsibility for the above items then the likelihood of
success goes up tremendously. The job of project manager
then becomes much more one of coordinator. On the other
hand, if we try to "manage" and/or "control" people in these
areas the job is much harder and success less certain.

So the seventh secret is:

The best manaqement on a project is self-manaqement.

Tools and Techniques

This section really isn't about any secrets. Rather it's
about the value of many of the tools and techniques for the
management of projects. Some techniques and tools are use
ful but some are very overrated. But, if you have~

successfully dealt with the "secrets" I've discussed then
these "other" tools and techniques probably become more
important.

Project management software is one of the magic answers
that has been pushed in recent times. Unfortunately, most
of the software available is much better suited for a
project such as "building a house" than for the development
of software. Two key characteristics of software projects
are its high level of change and differences in project
personnel. Most project management software works best on
projects with much less change and personnel uncertainty
than is typical of software projects. There is a real
potential for this type of tool to help us in our software
projects. We unfortunately are just not there yet in the
state of the art.

Here are some additional techniques/concepts which I feel
are very overrated for most system projects:

Critical Path Method
Pert Charting
Networks
Contingency Planning
Risk Analysis
Float Calculations
Milestones
Skills Inventory/matrices
Earned Value Concepts

The Secrets of Project Management
0078-10



Time and space does not allow me to make the case for why
the above are overrated. Nevertheless, one of the real
challenges for those people involved in managing software
projects is to not waste time trying to apply techniques and
methods of dubious value. Focusing on the right techniques
and issues will pay the largest dividends.

So the final "non-secret" is really a philosophical
challenge:

KDowinq what technique not to apply is often times as
important as kDowinq what to apply.

Conclusions

I've spent considerable time studying, dealing with and
thinking about system project management. The breadth of
the issues and the challenges are amazing. There are no
easy "silver bullets" to slay the beast. Many of the tools
and techniques exposed are sorely inappropriate to many
environments and projects. What may have worked on a multi
billion dollar missile project mayor may not work on your
mult-thousand dollar software project.

I believe that the "secrets" I've outlined are very
significant to the successful management of software
projects. Maybe I believe it's as simple as that .•• clear
understanding, clear goals, clear people, clear plans, clear
tasks, clear responsibility, clear quality means clear
success! If that sounds too simple and easy it probably is.
If there is one thing I've learned over the years there is
usually one or more new challenges on each project. As the
saying goes ••. I may not have all the answers but I sure
admire the problem!

The Secrets of Project Management
0078-11



REFERENCES

Mattson, Robert R., "Why System Projects Don't Quite
Succeed," Proceedings 1985 International Meeting - HP3000
Users Group, Washington, D.C., September 8-13, 1985.

Mattson, Robert R., "Communications - Why do Systems People
Have Such a Hard Time With It?", Proceedings 1987 North
American Conference of Hewlett-Packard Business Computer
Users, Las Vegas, Nevada, September 20-25, 1987.

Mattson, Robert R., "Software Quality - Let's Discuss This
"Can of Worms.", Proceedings 1988 North American HP Business
Computer Users Conference, Orlando, Florida, August 7-12,
1988.

The Secrets of Project Management
0078-12



Software Quality

Let's Discuss This "Can of Worms"

Robert Mattson
9545 Delphi Road S.W.

Olympia, Wa 98502

:t=ntroduction

I assume everyone developing software wants it to be of
the "highest quality." Recently, I've focused my attention
on this goal, what it means and how to move toward achieving
it. This has led me to some insights about some key
concepts that affect the achievement of the goal "high
quality software." Further, I've developed a practical
technique for "defining" and "measuring" quality. I wish I
had understood these concepts and this technique years ago.
It would have improved a lot of software with which I've
been associated. I hope the following discussion provides
"food for thought" and a technique you can apply. My goal
is to contribute something that will be used to improve the
"quality" of software.

Why Care About Quality?

It seems that our lives are filled with the "reasons" for
producing high quality products. Publications, television
and people appear to be constantly communicating the reasons
for and exhortation to the production of high quality.

The storyline is the same related to systems/software.
There are numerous books and technical articles which tell
of the high cost of "poor quality" and the savings from
"high quality" systems work. The cost of poor quality in
terms of system development cost, development time, user
dissatisfaction and software maintenance is today stagg
ering, if one extrapolates from the published numbers.

Yet, what would we find if we could "magically" measure
the "quality" of all the software produced this last year
with that of ten years ago? Have we made significant gains
in the "quality" of software? I imagine that we could find
some examples of higher quality software than that of ten
years ago. But what about the average piece of software
from last year? I'm afraid I'd have to say that, in my

Software Quality - Let's Discuss This "Can of Worms"!
0079-1



opinion, on average it isn't significantly better than ten
years ago. The literature tends to support this opinion.

I heard a well traveled "guru" of this business recently
state that "the majority of systems people haven't read a
systems related book since they got out of school." If this
is truly the case, is it any wonder our software isn't of
the highest quality or at least getting better.

If this is the case, why is it? Partly, I believe it
stems from the "cultural attitudes" of the people developing
the software. Systems workers in this regard have been
influenced by the same "cultural attitudes" as the "blue
collar" worker or any other worker in our country. The
average worker in the u.S. today would not rate "producing
what they produce at the highest quality" as even close to
their most important goal in life or more significantly "at
work." They might pay lip service to it but you probably
wouldn't find it rated very high if you could tap their true
value system.

There are other reasons that software is not of the
highest quality. Many times we are not asked to produce
high quality. Or we are asked but not given the resources.
Or we see that what is rewarded is not high quality, so we
"play the game." There are numerous other "environmental"
causes.

In spite of the gloom, there is a brighter view. There
are people and groups of people who greatly value the goal
of excellence and believe in producing high quality products
including software. These people want to and, in some
cases, are producing top quality software. Others want to
increase the quality but aren't sure how. Hopefully, it is
to this latter group that the rest of the concepts and
techniques outlined will be of the greatest benefit.

Why is "Software Ouality" a "Can of Worms"?

This issue of "software quality" is a "can of worms" ...
because there seems to be so many rigid "beliefs" about what
is "True". As I started to explore this issue, I asked a
number of people to tell me what makes for "high quality
software". The answers were anything but in agreement.
Some people said "maintainability", some "efficiency", some
"meeting the users expectations". Some even talked in terms
of the fact that there are "probably a number of things".

Software Quality - Let's Discuss This "Can of Worms"!
0079-2



But the general trend was definitely toward one or two
strongly felt parameters.

Additionally, this area is one that has a lot of "nerves"
attached to it. If you want verification of the sensitivity
of the subject, try leading or doing some code/software or·
design "walkthrus." Such discussions can easily and quickly
degenerate into heated arguments if someone happens to touch
another persons pet quality belief (nerve).

The literature I found didn't seem to add much enlighten
ment to the issue of software quality. There seem to be a
number of "camps" or "approaches." Probably the most
visible approaches are the "better testing" and "structured
analysis" ones. As an aside, what is most surprising is how
little one can find on the SUbject that goes beyond vague
generalities.

A significant consequence of this disagreement and lack
of attention about what constitutes software quality is
either lower software quality or at least not much
improvement. Why is that? Well first of all, two people
with rigidly held opposing views seldom talk or learn from
each other. And we know, when people can't or don't discuss
an issue they seldom can learn much from each other. It
follows that if we aren't learning we aren't improving.
Additionally, people pay lip service to "quality" without
realizing the fuzziness of their meaning. This lack of a
clear "model" and definition many times results in each
person "doing their own thing."

So, what can we do to get control of this "can of
worms?" I believe the first step is to look at the whole
issue in a new way. The second step is to apply the new
techniques that flow from this new view.

Software Quality Viewed as Ouality Parameters and Values

The key to understanding software quality is to apply a
new "model" to it. This nMattson Model of Quality" starts
with an understanding of the mUlti-dimensionality of the
"quality parameters" related to software. Additionally, one
needs to understand the concept of "values", or the "weight"
placed on a parameter. Then to complete the model we need
to understand about the differences between the "judges."
Finally, for greatest benefit, we need a technique to apply
the "model." Let's take each in turn.

Software Quality - Let's Discuss This "Can of Worms"!
0079-3



Quality Parameters

What do I mean by "quality parameters" or "QPs" if you
will? "QP"s is a description for all the categories or
areas of measurement by which one might jUdge software
quality. For example a common QP is "speed". Another
common QP is "documentation." Following is a reasonable
list of the QPs for a "program".

Program Quality Parameters:

Functional Specifications
Suitability / Job Effectiveness
Speed / Responsiveness
Resource Impact
Robustness / Forgivingness
Adaptability / Flexibility
User Acceptance / satisfaction
Business Cost Effectiveness
User Independence / Support
User Documentation
Ease of Learning
Ease of Use / User Efficiency
Implementation / Installation
User Interface Uniformity
Development Task Management
Cost to Develop
Time to Develop
Test Plan / Testing
Technical Review / Walkthrus
Defects / "Bugs"
Maintenance Time/Cost
Maintainability
System/Internal Documentation
Adherence to Standards
Integration

The most important thing to notice is that there are
many different "quality parameters" by which we can measure
software. conversely, there is not just a single measure.
In other words, "bugs/defects per line of code" or
"structured code" or "maintainability" are only one of many
possible QPs. Notice also that each of these QPs has itself
potentially "sub-QP". In other words, "documentation"
might be divided into "user" and "system" documentation.

Software Quality - Let's Discuss This "Can of Worms"!
0079-4



Part of the challenge in this approach is coming up with a
list of Qp that is comprehensive without being unmanageable.

How then do we measure each QP? Some QPs such as
"speed" may have quantitative measures. But for most QPs
there is no clear quantitative measurement. For example
what is the quantitative measurement for the "quality" of
"system. documentation". The strategy that seems to work best
in these cases is to discuss the parameter in terms of three
levels: unacceptable, ok, excellent. Thus, taking our .
example of the QP "system documentation" we can usually
define what is unacceptable, what would be ok, and what
would be excellent. Many times it helps to use examples or
references to standards to communicate these levels.

Ah, but you say, what is not acceptable "speed" for one
program is excellent for another. That is why there is no
such thing as THE quality way, technique or point. Rather,
excellence must be defined for each situation. That is why
we must discuss and come to agreement as to what the various
levels are for each particul~r piece of.software (for
example each program). This discussion helps define the
different views of quality for each QP. This is.very
important. We assume too often, I'm afraid, that each party
involved in the development of software have the same'
measure of excellent quality for any particular QP.

How does one start to apply this concept? Refer now to
Exhibit #1. This is a "Software Quality Form" that is used
for documenting "quality" for a program. This form shows a
reasonable set of QPs for writing a program and has room for
documenting key points related to the different quality
levels. See Exhibit #2 for what this form would look like
when we fill out the "Quality Level" fields.

This form is filled out before a program is developed.
Let's focus for the moment of the columns labeled "Quality
Parameters", "Unacceptable", "Ok" and "Excellent". The·
person who is responsible for doing a program fills out the
"Quality Level" columns on the "standard" program version of
the form. In addition, they add any other QPs that might be
of special significance. The description of the levels for
each QP is discussed with the persons project leader and/or
supervisor. Some of it can be discussed with the user. The
purpose of the discussion is to get an agreed understanding
between the parties as to the definition of levels of
quality for each QP for this program.

Software Quality - Let's Discuss This "Can of Worms"!
0079-5



You may have noticed some other columns on the form. To
understand the reason for these and their use we need to
address the next dimension of the problem••• that of "value"
ratings.

The concept of "Values".

I've describe above how to establish the QPs and specific
quality levels by which we can jUdge the software. Now we
need to discuss the concept 'of how much "value" we place on
each.

The concept of "value" has to do with the "weighting" we
put on achieving the "excellent" or "ok" level of "quality"
on any QP for this program. In this technique a "value" is
placed on the achieving of the "ok" and "excellent" level of
each QP defined. These are "relative" values. In other
words giving one QP level a 10 and another a 20 means that
achieving the second( 20 pt value ) is twice as important as
achieving the first ( 10 pt value ).

Why do we need/want to do this? First, because sometimes
the aChieving of an excellent level in two QPs are counter
to each other. For example code size and user flexibility
are usually mutually exclusive. In this case the developer
needs to know which QP to emphasize. other times the QPs
are not counter to each other but there is simply not enough
"time" or "resources/dollars" to achieve excellence in all
areas. In this latter situation, we must know where to
place our emphasis.

The numeric "values" also give us more information than
such statements as "speed is important" or "I want us to
emphasize maintainability". The relative values of the
numbers provide us with much better information on "how
much" we want to emphasize one QP over another.

Let me give you an example. I want to develop a program
that makes a "fix" to my database and I know I'll only use
it one time. This database has 100 million records. I
define the QP "speed" in terms of unacceptable, ok, and
excellent. I define the QP "system documentation" in terms
of'its three levels. Note: I'm only using two QPs for
clarity but one would have "defined" many QPs and placed
"value" on aChieving their different levels of quality.
Here's how those "values" might look.

Software Quality - Let's Discuss This "Can of Worms"!
0079-6



----- Quality Level -----
"OK" "Excellent"

Speed
System Documentation

10
5

50
10

Now if I had to make a choice between achieving the
excellent level in "speed" or "documentation" which would I
want? What if chasing one means the other QP will only be
achieved at the "OK" level?

I believe software professionals make these kind of
trade-offs in their head. At the same time I've found that
far too many times the trade-offs made by one person are in
disagreement with those another might have made. This
model/technique allows for the good communication of the
possible trade-offs. This model/technique will help avoid
the frustration, conflict, wasted dollars and effort
associated with making the "wrong" trade-offs.

Implied in this technique is an associated rule. The
rule is that unless agreed to by the "players" in the
process (i.e. user, manager, project leader, programmer team
associates, etc) it is not acceptable to achieve the
"unacceptable" level for any QP. This is true even if this
QP has little value. If the "significant others" agree to
achieving the "unacceptable" level then it is alright to do
this. Note, this new agreement has really just been to
define "ok" to mean whatever "unacceptable" had been. A
special case is when a QP is valued at zero. This means
that no value is placed on this parameter and anything is
probably acceptable.

Now, the reason for the "value" columns on the Software
Quality Form is clear. This is where the "values" can be
"set" for a piece of software. The doer assigns "values"
after filling out the description of the quality levels.
These are also discussed with the supervisor and/or leader
and where appropriate with the user. All parties come to
agreement on what the relative values of each achievement
for each QP will be. Notice, there is not a value column

. for the "Unacceptable" level; this is because there is NO
value in doing this!

Software Quality - Let's Discuss This "Can of Worms"!
0079-7



A Word About IIJudgesll

There are a number of people who will ultimately jUdge
the "quality" of a piece of software. These "judges"
include the "builder", the builder's associates, the users,
the builder's manager, "outsiders", etc. We may not wish to
have it jUdged but it is a "fact of life."

It may be obvious by now, two different people ("judges")
would probably do the following differently if asked to do
it "separately".

1) Describe the QPs by which to jUdge software Quality.
2) Describe what "unacceptable", "ok" and "excellent"

levels of achievement are for a particular QP for a
particular piece of software.

3) Rate the relative" importance (values) of the QPs and
their levels for the piece of software.

The important thing to understand is that this happens
all the time in the "real world." What confounds us many
times is that we unconsciously assume that the result of the
three steps above is same for both parties. Then we wonder
why our supervisor is less than happy about the "excellent"
work we just completed. Or if we are a supervisor we wonder
about the "competence" of our employee who completed such
"poor quality" work. Further, because we have no formal and
written quality specification we have to rely solely on our
memories of whatever discussions we might have had about
this program. If it is obvious that the parties "disagree"
on the "quality" of the software, relying on memories will
usually not lead to a productive and positive resolution.
Rather, what usually happens is either no discussion takes
place or one does but it results in emotional e~changes.

It is very enlightening to take a Software Quality Form
for which we've completed the quality level specifications
only and give it to all "interested" parties. It will be
enlightening to see how the different people will value the
different QPs and levels of quality.

Is there a better way to deal with the differences that
so commonly arise currently? Yes, the better way is to
apply the "model/technique" I've outlined.

Software Quality - Let's Discuss This "Can of Worms"!
0079-8



using the Technique --- The Software Quality Form

You've already been introduced to the Software Quality
Form. The use of it is fairly straight forward but there
are a few additional steps in its use. Here are the steps:

1) Discuss, decide and list the QPs that you want to use
in the jUdging of this type of software.

2) Discuss, decide and document what each level of
achievement for a QP would be.

3) Discuss, "agree on" and document the relative "values"
to place on each level of achievement for each QP.

4) Add up the Excellent column of "values"
5) Have the builder and one or more of the other "judges"

rate each QP for achievement of the goal.
6) Total the rating points for each "jUdge" and calculate

the percent of "Excellent" achieved.
7) Discuss the difference in ratings and the ways to

increase the "excellence" ( percentage ) next time.

It sounds simple, doesn't it? And really it is! It does
take a little time. But the time is very small compared to
most software development efforts. The second time it is
done will be faster than the first, the third time faster
than the second, and so on. The QPs will tend to be
established and not changed for each new program. What will
change is the definition of "Ok" and "Excellent" levels of
achievement as well as the value placed on each. But even
there, you'll see a lot of re-use of descriptions and
similar values for somewhat similar software.

The use of this form will improve the quality of
software. Why? First, just using this technique will be
helpful in discovering how often "quality" is poorly
defined. Everyday, you'll see the "word" quality used as if
its meaning was unmistakable. Having a better understanding
of the nature of "quality" will allow one to handle this
fact. Secondly, people will spend time thinking about what
excellence is. Consequently, they will have clearer goals
for achieving quality. Therefore, they will be much more
likely to develop the features that result in "quality."
Conversely, less time will be spent doing the wrong thing or
emphasizing the wrong QP.

Software Quality - Let's Discuss This "Can of Worms"!
0079-9



Conclusions

There is no "absolute", "universal", and "always" way to
measure the level of achieved software quality. Neither,
however, is quality only in the eye of the beholder. There
is a middle ground. The quality of most software can be
jUdged on the basis of some "quality parameters" or QPs.
For each QP there are unacceptable, ok and excellent levels
of achievement. Each of these levels has a relative
importance to the various "judges" of the software. The
QPs, levels, and values can be established for any piece of
software. The product produced can then be evaluated
against these pre-established measures. We can then
calculate the "level of excellence" achieved as a percentage
of total excellence conceived. This model/technique makes
significant improvements over the simplistic and/or poorly
defined methods commonly employed.

This conceptual model can be applied to the "real world".
The use of the Software Quality Form is an efficient way to
do this. The benefits of applying ,this model are easily
worth the time/cost spent. "Quality" will improve because
we will have a clearer picture of what it is. what we want
and whether we are attaining it!

Software Quality - Let's Discuss This "Can of Worms"!
0079-10



The Goal IS Excellent Systems

Software Quality Form
System Name: Est. Time:
Program Name- Actual Time:
Date: / / Assigned To: Reviewed By:

Quality Quality Level Rating
Parameters Unacceptable OK lIalue Excellent lIalue Doer Rev.

F-.n:tional
Specif i eat fens

SUi tabi l f ty
Job Effectiveness

Speed
Respons Iveness

Resource I~t
Overhead

Robustness
forgivingness

Adaptebi l I ty
Flexlbtl ity

User Acceptance
Satisfaction

BusIness Cost
Effect iveness

User Independence
SUpport R~i red

User Doamentation

Eese of Leomlng

Ease of Use
User Efficiency

laplementatfon
Installation

User Interface
Uniformity

Developnent Task
Management

Cost to Develop

Time to Develop

Teat Plen
Testing

Technical Review
Walkthrus

Defects
uBUIIS"

MaIntenonee
Time & Cost

Maintafnabil ity
Int. DocUDentat ion

Acl\erence to
Standards

Integration

Comments: TOTALS

% of Excellent
Copyright 1988 By R. Mattson

Exhibit #1

---~-------------------------------------------------- ------
Software Quality - Let's Discuss This "Can of Worms"!

0079-11



. Software Quality Form
System Name: ~$/AJG- Symm Est. Time: tJo nIlS.
Program Name·I?4iSOOa -:TN1J01C.e Ai9(e$,$O(' Actual Time::Ir,.~,I:\::h:I":'~:~=::====:=====~
Date: .,. lu IS8 Assiqned TO:S.1'At«6/e. Reviewed By: 7?lYIa'/kbJ

Quality Quality Level Ratinq
Parameters Unacceptable OK alUE Excellent alUE Doer Rev.

s~~~~~~ Mr«18. D.""~ ])eLI Q~Q tSA:l!. 2.0 ••ro;,:l!E.~S~~e.. ~ 40 40

uss~~~ ~:~.::- tot ~eQ. ~C£rUJ. rAWr..~ 5 t-.~~:, '-l~r'S /0 5 S
User Doc&lllentation No Ul!l.~ c:,~ l...I.t!ln 1=,lJp 2 ~:::~ M&!L~nl.c ell 4 2. Z

Ease of Learning ~~~~" L T: 'b~' G.T. INIl. 2 l~:~~~q;~~1dI 4 4 4

Deve..=n~alk 'iio~~:~,t.:; ~ ~:~::I!.~Z· 10% /D ~~~~&J)~~=: 20 ID /0
Coat to Develop _... -.... ~ ;-'.It.A &'O~-20~ 10 l .7••'000 2D JD 10

Time to Develop G.T. 8b I\L~ I 4D-R~ Jab.. 10 1...7. 4D I\~ 20 If:) 10

1--------+---"-----c""\"'"'7""'zt\tr>'O. .\J),~ ~J.-~ ~

Copyrtght 1Y88 BV R. Mattlon \ The Goal is Excellent SyatCllS

Exhibit #2

------------------------------------------------------------
Software Quality - Let's Discuss This "Can of Worms"!

0079-12



strategic Planning In Small MIS Shops
Terry W. Simpkins
spectra-Physics

Retail Systems Division
959 Terry Street
Eugene, OR 97402

Strategic Planning, what is it, why is so much attention
being paid to it these days, why should it be done, and
assuming that it should be done, how does one go about it?
All very good questions that don't have obvious answers but
need to be understood by every MIS manager; especially in
small shops where resources are extremely limited.

What Is Strategic Planning?

This paper does not pretend to be the definitive
explanation of the topic, but rather to highlight the
experiences of one small shop that has gone through the
exercise. The state of the literature on strategic planning
for MIS outlines a massive project covering every
conceivable aspect of systems, lasting well over a year,
employing several dedicated people, and having a
considerable price tag. The results of this process is a
document of considerable weight and volume. Every detail of
future systems would be explained, and a considerable amount
of the initial design work for these future systems might
well be included. Detailed forecasts of the expected volume
of transactions going through the systems may be outlined
along with pages of explanations for the volume changes.
While this may be possible (even reasonable) for a large
installation (say Ford Motors), the concept is laughable in
a small shop of say 5 people. The small HP3000 shop
normally consists of 1 to 6 people and is completely buried
already, the thought of adding something of this magnitude
is simply not within reason. Faced with this situation, we
undertook the task of developing a workable strategic plan.
However before we could begin the process, we had to develop
the methodology that would be used. This is a description
of that methodology and some of the reasoning that went into
it. For the small shop it is very important to plan,
perhaps even more important than for large installations,
since we as small entities are more sensitive to change.
But we must also consider the very limited resources
available to us and keep the amount invested in the planning
process in perspective. Because of this our effort will by
definition be much smaller and of less detail. The crux of
the issue is to develop realistic expectations of the
planning process and to resist the desire to develop an all
encompassing document that is all things to all people.

Strategic Planning 0080 - 1



Define exactly what you expect the process to produce and
focus on the activities that will address those goals, and
stick to them. In my opinion, realistic expectations are
deyeloping an outline of what the upper management of your
company (or division) expects the environment to be for the
next several years, and what are the types of systems
required to support that environment. Any more detail, and
the level of confidence drops quickly.

Why Plan?

If you are considering the development of a strategic
Plan, I assume that you are aware of the reasons planning is
important. Perhaps you are here because your boss has told
you that you are going to develop a plan. Which ever is
true, a quick review of the major reasons that I see for
planning is in order.

1) Businesses change over time, as do the systems
requirements of the business, while installed software
stays perfectly constant without human intervention.

2) Non-trivial computer systems. take a considerable
length of time to develop and install. This m~y include
definition, design, selection, coding, training, etc.
Whether you create or purchase the software, it is not an
overnight project.

3) All resources are finite, and we want to make the
best possible use of them. If we can avoid spending
valuable resources on short term needs in favor of
addressing needs that will be with us for a longer period
of time, we have probably gotten more value for those
resources. Likewise if we address the most important
needs of our users first, we develop credibility with
management and that has several benefits.

4) By having a better understanding where we are headed
we minimize "mid-course corrections". This saves
valuable time and effort and gives the appearance that we
know what we're doing.

5) We generate enthusiasm and user buy-in when they
understand the direction systems are taking. Even if
they don't totally agree with the direction, they will be
more cooperative if the at least know what is going to
happen. There are more reasons why a strategic plan
should be developed, but as MIS professionals, you should
already understand them and if you don't there is plenty
of published material on the subject.

st~ategic Planning 0080 - 2



Purpose of the MIS Plan

1) The MIS plan should provide an overview of the state
of the current systems and how they got where they are.
This historical perspective may not add value to the
future plans, but will provide good background
understanding for why we are planning now and some of the
problems that can be avoided by planning.

2) The plan should provide insights into the direction
of MIS both from a broad general perspective as well as
some of the specific needs that are identified. And a
general time frame for when these changes should be in
place.

3) You need to measure how far you currently are from
where you want or expect to be. This provides a basis
for priority setting and resource allocation. It also
prepares management for the requests you are going to
make and gives them a measure of how reasonable and
realistic the plan.

4) Finally once the target is established and you
understand how far away you are from that target, you can
outline what is needed to move toward your goals and how
quickly you can expect to get there.

Composition of the MIS Plan

I. Introduction/Narrative Summary

In order to provide a basis for the plan a brief
historical recap of the current set of systems is included
to help define where we are today. Trends are discussed as
well as the reasons for the major decisions that have been
made. the purpose is not to justify or condemn, but to
provide better understanding of why we are where we are.
The next section covers where we want to go in very general
terms. This is the visionary portion of the plan, my chance
to gaze into the crystal ball and present my vision of what
MIS should be and the role it should play in the business.
Included in this are the type of resources required to
support that vision, people, hardware, software, business
commitment, etc. All of the requirements may not exist, but
I can describe what I need anyway. A review of the current
role of MIS is include to compare and contrast the current
environment with my vision of the future. Next a review of
the MIS organization. Describing how we are organized, the
equipment currently in place and a recap of the departments
strengths and weaknesses. Finally a brief comparison with
other MIS departments in organizations similar to ours. Size

Strategic Planning 0080 - 3



of staff, machine capacity, services performed, and bUdget
as a percent of sales comparisons provide a relative measure
of our performance.

II. Existing Systems Profile

For each system, a narrative is created covering in
detail the basic function of the system, state of the code,
documentation, user understanding, MIS understanding. Also
discussed are the things the system does well and the areas
that the system doesn't address or that it addresses poorly,
including major known bugs or omissions. A general
description of the backlog of change requests for the system
provides a basis for management to jUdge the validity of our
assessment of the system. We then recap the expected impact
of these changes in terms of cost, time, stability and
probability of success. Ideally your business has or will
develop a Strategic Plan for the entire business, if so you
will be able to use that plan as input to the MIS plan and
build from it. If not then portions of that general
business plan must be developed either explicitly or
implicitly in order to proceed further.

III. Comparison of Existing and Future operating Environments

For each functional area of the business a projection of
the future environment is required if we are to understand
and project the information and systems requirements. This
projection must be that of the functional manager, it is not
required that he/she actually create it, but he/she must
agree with it and be willing to sign his name to it. The
purpose of this projection is to compare the current
environment with that of the future and to understand the
impact of the changes on the information needs of the
business and the ability of the current systems to meet
those needs. Each functional area is divided into the
processes that compose it. For example Marketing might be
broken into the following SUbcategories: Promotion &
Advertising, Sales, Market Research, and ~arket Planning.
For each of these areas, a profile is created listing the
important attributes, a description of the current
environment and the expected future environment (see form
#1) • The information on this form is strictly business
oriented, it should be completed by the users and not
consider systems at all. If a strategic Plan already
exists, or is being developed in conjunction with the MIS
plan, this should be a part of that plan. If not, you must
develop it at this point in the process, since the rest of
the plan builds upon it. The next step in the process
identifies the important "information systems" used in the
operation of the business. These systems are not necessarily
computer systems, but rather the way information of

Strategic Planning 0080 - 4



collected arranged or used. Systems could be defined as
processes or functions (ie. Master Scheduling, Purchasing,
etc), or along the lines of the current computer software
packages if that is felt appropriate. The important thing
here is not the way "information systems" are defined, but
the listing and explanation of the critical factors that
impact these systems and the informational nature of these
critical factors. The intent here is to highlight the type
of information that is needed to support the future business
environment. Form #2 is one method of ferreting out this
information. Each critical factor is then described
according to how is is impacted by the seven information
characteristics listed across the top of the form. Any
factor listed must, by definition, relate to at least one of
these characteristics. It may relate to more than one, but
seldom to all of them. These descriptions are then the
basis tor evaluating current systems and any alternative
systems or designs (see forms #3 & #4). Because these
factors are "critical" and they impacted by certain
information characteristics, they are the obvious basis for
analysis and comparison of alternative systems. Of course
there will be other criteria in the selection process such
as cost, complexity , support available, interconnectivity
with other systems, etc.; but this list of critical factors
and the informational requirements will be a vital part of
the requirements definition. In our case a proposed
replacement system had already been identified and we
focused our attention on that alternative. The process being
that if that alternative didn't SUfficiently meet the users
needs, then we would start from scratch to evaluate other
systems. It should be noted here that the outcome of
completing form #3 could be that the current systems
satisfactorily meet the needs of the the enterprise. In
fact this conclusion would be expected where systems had
been recently replaced. This would not mean that the
exercise was wasted effort, but rather that those involved
in the planning process had verified t~at business needs
were being met. Businesses periodically examine the market
segments they participate in to insure that they are in the
correct ones, and should likewise examine there systems to
insure that they are appropriate and providing the required
information. It is critical that user complete these forms.
The MIS staff should assist to insure that a proper level of
detail is included and that the descriptions are measurable
and quantifiable, however in order for there to be a
meaningful result the users must "own" the information that
comes from the exercise. In my experience, the generation
of the forms used in the proj ect is very important. The
format of the information gathering must assist in the
extraction of the information required to construct the plan
or you will find it very difficult to communicate your goals
to all involved parties. The forms should lead the users

Strategic Planning 0080 - 5



through the process and force them to provide the required
focus on business issues and information requirements.
Another tool to help and guide the users is to create a
"straw man" list of business attributes, information systems
and critical factors for each of the areas. This list
should not be cast in stone, but should provide "food of
thought" for the users, seeds to start their thought
process. As the future information needs of the various
areas are assembled, the cost of meeting the needs and the
impact of not meeting these needs must be understood, along
with the relative importance of the needs in order for
management to make correct resource allocation decisions.

IV. Plans to Meet Future Needs

Once the futUre needs of the business have been
identified, quantified, and ranked, a plan to meet those
needs must be developed. This may include the selection
process for new software, a list of modifications to current
software, and an installation/project plan. Project
management skills and tools play a very important role in
this section of the plan. It is not critical that the
actual details of the process be included in the plan,
rather that the process that will be used is defined and
understood so that management can buy off on it. This
section will also include the sequence of projects to be
undertaken. This will reduce the "mid-course corrections"
caused by misunderstood priorities and increase the
confidence level in the plan since management has reviewed
and "blessed" it. This is the place to address the hardware
required to make the software plan possible. Where
possible, link hardware needs with specific projects, to
reflect the true cost of various alternatives and projects.
Keep in mind that hardware requirements are usually a step
function and seldom follow a smooth curve. Form #5 is one
method of presenting the action items required to "fill the
Gaps" between the current state of systems and the state
required to meet the future needs of the organization.

Human Resources Planning

As a part of your plan be sure to address the people
portion of your department. This is your greatest asset and
deserves attention just like your software and hardware.
Succession planning, career development and professional
training are all part of a complete Human Resources Planning
effort (see form #6). Personnel planning is important for
several reasons. Much time and money has been invested in
your programming and operations staff to get them to their
current level of understanding of your systems, by failing
to provide an effective career plan for these employees you

strategic Planning 0080 - 6



risk losing them and having to reinvest in training their
replacement. This retraining effort also has opportunity
costs associated with it in addition to the cost of the
training; that being the value of the projects that cannot
be undertaken while this training is taking place. These
costs can very often be avoided with good career planning.
Remember too that happy employees are more willing to work
the long odd hours often required in our profession and are
always more productive than unhappy ones. By developing
your staff and expanding the knowledge base of each employee
you also reduce your exposure in the event that an employee
does leave. By having several people who can perform each
job or support each system, you have designed in back up for
everyone and you improve the quality of systems because
interactions and interfaces are better understood by
everyone.

In order to assist in your understanding the forms and
give you a starting point, I have enclosed excerpts from our
finished plan. These examples show what we considered to be
an appropriate level of detail and some of the major points
we are concerned with. I have also included a copy of our
planning outline and organizational structure used in the
development of the overall strategic Plan.

As stated at the beginning, this paper is not designed to
be an exhaustive study in the art of strategic Planning, but
rather to reflect some of the insights gained by performing
it in a small shop environment. All portions will not be
applicable to every installation, but the general
requirements and approaches I feel are common through all
companies. Feel free to use the forms and modify them to
best serve your needs.

strategic Planning 0080 - 7



o
o
(X)

o

functional
Area

Oep.rt_nt

Bus Iness Attribute

BUSIH£SS [WIRO_IT

Toda, YS. future

Todl, future (5 Years)



a.. I. '.'or.' I........
Due '0

DIe"," ,,, •• ,.... r..,'r_t

o
o
CD
o

_ ..t~t

',,'.....1.
Iy•••

c•• e:a.u••'

Crltlal Fec'or
, ... Drl"•• or,..-ct. 'M

'.for."011
5.,.'.

He- QiIIldI',

Upd.'''' &_.e"••'.

''''or.' 1011
~.II"

5.. h'.
AerOIt U••

,GrOUll' &
WJllcl'l Grovo.

'lid•••••
Sor...

Or".

...,.~

"'.torr ,.
Reaulr'"

Acen.lbillt,

... CrItic.'
I. "01•••
Accurecw



Department

Functional
Area.

en
r+
t1
OJ
r+
ro
to
1-'-
o
t"(j
.....
OJ
~

~
1-'-
~ Information/Functional Re ufrementto

o
o
co
o

GAP ANALYSIS

Information Needs ~ Current System
"'Ij
o
t;
3



o
o
(X)

o

Functional
Area

Department

Information/Functional Re uirement

GAP ANALYSIS

Information Needs YS Proposed System



o
o
en
o

FUNCTIONAL
STRATEGIES

GAP ANALYSIS

STATE
REQUIRED

CURRENT GAPS

nJNCTION

t'Sj
o
11
S



FORM #6

Are assumptions upon which the strategic plans are based
realistic regardinq human resource requirements?

OVer time, what skills will become obsolete, change in
nature, or be eliminated?

For what functional skills/positions
encounter a shortage of qualified
marketplace, now or in the future?

are we likely
candidates in

to
the

Do the present managers within the function have adequate
technical/managerial skills to meet the strategic changes
occurring at RSD?

What are the principal H/R obstacles to achieving the
function's strategic objectives?

Are age patterns in the organization imbalanced, suggesting
high future attrition or career path blockage?

Is there adequate or excessive turnover in any group, at any
particular level?

Is there a
professional,
function?

proper balance
technical, and

(staff mix) of
support staff

managerial,
within the

What are the most significant skill deficiencies within the
function organization? How will such gaps be addressed?

Strategic Planning 0080 - 13



FORM '6 (cont.inued)

Are the organization and st.ructure and staffing of the
function appropriate for the achievement of strategic
objectives?

To what extent will qualifications for existing positions
change in light of strategic plans? How will such changes
be addressed?

Do the strategic plans/objectives call for projects or
processes that have no precedent at RSD? What are the
implications for staffing requirements? Design of the
present function organization?

Which positions, if not filled, will have the most
detrimental effect on achieving the function's objectives?

What impact would a product line de-emphasis or
discontinuance have on the responsibilities of the function
staff?

Strategic Planning 0080 - 14



Presentation Outline

Purpose of Planning

Organization of the Planning
Exercise

Planning Output Results/Format

Details of the MIS Planning Effort

1/17/" Tn

Strategic Planning 0080 - 15



o
o
CO
o

Strategic Planning Organizoti~n Structure

steering
Committee

I I

Product Line Product line Product Line
Team II Team 12 Team 13

I I I

I I I I I

Manufacturing Marketing Engineering fiIIIn ~urces Controller's
Func'l Team Func'l Team Func'l Team fune'} Team Func'l Team

I I I I

MIS
Func'l Team



Details of MIS Planning Effort

o Basic Assumptions/Requirements

o Information Needs Derived from Functional Plans

o GAPS Identified Be Analyzed

o GAP Analysis Form Generated

o Specific System Reviewed for Fit

o Comparision of Current System to Candidate System

o Specific Recommendations Made

o Rough TIme-line Created

o Implementation Structure

'/17/" 1WS

Strategic Planning 0080 - 17



Basic Asumptions &: Requirements

o Designed for HP3000. not a retro-fit

o Vendor expected to be in business 5 years from now

o At least 100 installations of the product

o Complete MRPII package

o Integrated system linking all major business sections
sharing common data

o Profitable company

o Regular release schedule of product enhancements

o Customer inputs used to select and prioritize
enhancements to product

o Good record of customer support

Strategic Planning 0080 - 18



Definition of Future Requirements

Marketing
o Sales
o Promotion & Advertising
o Market Research & Analysis
o Competitor Tracking

Finance
o General Accounting
o Payroll
o Cost Accounting / Analysis
o Financial Reporting / Forecasting
o Investment Analysis
o Auditing
o Planning / Budgeting

Human Resources
o Compensation
o Benefits
o Recruiting
o Training / Development
o Counseling
o Organizational Development

1"7/" Tn

Strategic Planning . 0080 - 19



Definition of Future Requirements

Operations
o Materials
o Production Planning
o Production Method / Organization
o Resource Usage Tracking
o Quality Assurance Measurement
o Workforce Composition
o Product Structure

Engineering
o Product Conception
o Project Management
o Product Design
o Technology Auditing
o Technology Development
o Product Documentation
o Prototype Production

MIS
o Source Code Tracking
o Asset Tracking
o Project Management
o Resource Usage Measurement
o Cost Allocation
o Production Scheduling
o Tape Library Management

1/17IM 1ft

Strategic Planning 0080 - 20



Crlfla' 'actor
Tllet Do'''' or

IllP8CtI the
.",....t ••

Sr·t •o
o
(X)

o

,.ctiCIMI
AI'.

I
I
II I..,......

I Ip'.
(MItt r.-u....J

....ur-.t 0'
_a'aetar'ng
coat

a.. Itt 1"'.......011 Meeds
0. to

eM.. 'ft Bu,'ftH. Inv.r_t

CaNmOUlR'S

I I
COST-tCDJUIIfna I

I tn'ona.ton TI. I I
~ I .tall LeY., ~.lIt, ~ ~ 1 Ace.,••b.II., I Accar!C!

I S.. OIta I 1 I
.... OU'elll, I Acros. USer .M...., ..~ I 1HDw Crlt.c:e' I

Upda.ed & I &roup. & lGr'ed HI••ory I. 1 -.0 c.. I I. A"ol.t. ,
A.a"ebl. I Whlets Group. !-I_...;Or~d.~_-!_--:.;;R!g;:,;s.:.u.:.:.lr~ed::-.!--:Ic;.:;::;:;ea::.::';.:.'..:QI::.t:.:a~~I!.......;Ic=cu::.r:;:acr:l-~I

I I I "
Ute of repatltl.,. I ..... day an- I 8r defined ..."1 Ubor Input I Br H ....,' .2 _tM Account I"" I I/O _t ..,-,
_a'aetur'ng ...11 aly.,. 0' ~" cant.. • I~ .ltlt I .Itltt" ..II roiling production I atte. to pay- I
, low Inpu' and I process .t.,. I ,.yroll .y.t.1 cant. lap••"or. ad 1 roll .,.t.,

product.OR I for t."'''' I I -eger., I I......'
ou'put I .1HI'rect cot" I 1 .t.I., ClDfttro' controlI I I .,.t_

I I I
.....hl'.... I 8r part ........" ...t.I.'. ,... I
.rl., an. dayl .,....., type I put and pro- 1
'ollowlng •••t 'or .t.-Ial. 1duc"on output
p'pplnG de, I .lth .t.I••

I ClDfttro'
I

tGlt. collected
I.. proe...
-buell.t.
r.ttt. tttl"
.1.0••

..... of .....
b.i..

Abll'" to
group~
.....1... 'or

"''''80'1'' of
ClOt' data

..,ede.,......



GAP ANALYSIS

Functional
Area CONTROLLER •S

cosT
ACCOUNTING

Information Heeds lli Current System

I. Measurement of Manufacturing
Costs

o
o
(X)

o

IV
IV

A. Use of repet f t f ve IDInufactur
ing work f1 ow

1. Next day analysts of cost a Transactions for labor, A/P and Inventory IIIOvement collected weekly
f nput and product f on output

a dOCS Is a weekly batch process system

2. Monthly sunnarles one day 0 Due to labor processing at corpprate, we recehe the labor files 2
following last shipping day working days after last shipping day. JOCS weekly and monthly process

ing done on 3rd working day with reports avat lable the morning of the
4th work Ing day

3. Data defined by work cen- a OP codes available but not currently used in JOCS
ters or process steps for
labor and Indirect costs

4. Monthly swmaartes by part- 0 Current MacPac/JOCS tnterface reports by JO. Hodt flcatfon of exlsttng
number/asseft)ly type for program 1liiy allow reporting as desired
IUtertals

5. Collect costs in process 0 Costs aRlst be collected through JOs on JOCS
-buckets - rather than JOS



GAP ANALYS IS

Infonnatton/Functlonal R ulrement

Informat Ion Needs.!!!.. Current System

CONTROLLER •S

cosT
ACCOUNTING

Functional
Area

Department

o labor Is currently collected ,Ia our timecard entry/payroll syste.

o
o
(X)

o

N
W

6. Labor Input comnon with
payrol1 system

7. Material Input and produc- 0 Multiple systea Interfaces are used to colle,t In,entory lID,e.nt
tton cOftlnOn with Nterlal transactions for processing within JOCS
control

8. Data arrangement by assem- 0 Primary data arrangement Is by .10 w/OP code as secondary for labor
bly within work center

9. Htstorlcal data - 12 ImS. 0 JOts pro,ldes a cumnulathe history report through the year. At
rol1 Ing year end history ftles are archhed to tape and purged off the syst_.

With modi ftcat Ions could provide 12 IIOnths rolling. (JOts year,
June - Hay)

10. Data accessible to account- 0 Multiple copies of reports Ire currently distributed
tng, product Ion supervisor
Ind Nnlgers, Ind material
control

11. Material and labor trans- 0 Interface systesas. currently In place. do not pro,tde 1001 accuracl
actions must balance to the
payro11 and In,entory
control systems

8. NUJlber of Assed»1les

1. Abll Ity to group connon
assembly for averaging 0'
cost data

o Blocks of .10 nu.ers are assigned for each product line. Within the bloct
assignment to assembly/model numbers ts randOlQ



IIDt cr.t'cel

.,•• 1Dr. If
bo... ....
..,III"ed

'" S end project
leed.

"'S/flel I It...,. I MIIol".
gen. acct.-'A I

I
,,'S/f.c" .tl.. I A"ol.t.

I
I
I
I
I

..... ecef./FA.I A............
rec.'.'nll I A•••t type

I
GAI'A - I
'Hllltl.. I

I
I
I
I

CM",. '" .",...... Need.
0. '0

Cf'Ieng.. 'n Bulin... £ft¥'r~t

.....111' up
cia'..

011" Input.
weeki, upd.t..1

I
I
I
I

M'S
Functlona'

ArM

I I 1 ,,,'__t'on TI. I 1
1 Crlt'ca' 'ector Il!!!!!.!!!!!!.l OItl" ....., e-.llt, ~ .!!!!tl!!!!. 1 Ace...lbll ••, 1 Accurecy
1 TMt & .... or 1 1 5.. Ott. 1 1
1 In'onetl. I..ct••h. I flow Qulekl, I Aero•• U••r Ind..... Haw MIce. I I Ibt Crl"ca'
I Sy.'. I",...tlan I Updated & I Group. & Sor.ed HI••ory I. I _ C.. 1 I. Ablolu••
I (;;.;;HD;;.;'_Co!p=I;,,;;;U-.'.='..'_~_~5YI,,;;;,._t.;;=-._-!'~..;,;A..;,;v.;;,,;,I_.a=b_I.~_~I ~__""~IC=";..Gr~ou~p~. !--.;Or=d.=-_-f--.;.:;R!Q=u;.:.'r.=;ed=--!I_...:Acc=..:::;.:.• ...:Ot:::..;.;:.:...-~I!.........;Ac=cu:;.;.r=.:!CJ:.&-~

I 1 I I 1'0 ProJec. cost labor cost reporl-I Weekly ..teft I By r.sovrce P.yroll. tR Project. r... ' ..evw beckl "'S end project ~.
1 'reck'ttI Ing I an d_ftd r.- lOUI'e. 1 leed.
I I port. I
I I I
I ...... 0' ..-oJect P.,odle Oft All ..peet. 0' Project. cat...1' ..evw beckl M'S onl,
I __ltd project. gory. ••• I' rr. ,.t.,.

I F~ I
I I
I I
10 Project ,1...- ....... 0' proJ- On --'d. I.. A" ..,eet. 0' ReIowe.. I ....gt.. 0'
I Ittl .ct•• ,'a./ca.- r.I-". project 8ftd •••k."'- I ,roJ.ct
I plnl', 0' proJ- t ••k. 8ftd r.- deIIcl.. I
I .c" I
1 I
10 .....dwr. r... of JobI Auto upda.. A' JHI.... IOR Bra Job ••/ I 2 ,ra••,,,. "IS onl,
I sourca ..age .,. 0' ....Ion ~to upd... ,...1 '0 trIck ecd. r..ourc
I d..r. c:epec' ty Auto upd.t. 'r8ftd.

I
10 ",••t fradl''',1 ...... 0' ......
I "I'. I
I I
I I 'r~u.cy 0'
I I ....t .,...

I I
I I
I I
I I

o
o
CD
o

WlITWSIltt'OHEEM'ag. 1



functional
Area

Depart_nt

'_MI5_·_,

, I

GAP ANAL'5 I5

Informat Ion Needs.!!!. Current 5ysteRI

o
o
(X)

o

Project cost track tng

ProJec.t planning

Hardware resource usage

Asset tracking systeta

Product Ion scheduling

Tape tracking

Source code tracking

Office supply charge-back

ws/D2/TNS/gapanal.18

o Ttmely reports not aval lable
o JOCS systelll cud»ersome and not well suited for detatled project report Ing

o Available on PC only

o Current software lleets 751 of needs
o Hot as flexible as needed
o All requ Irements can be met wi th current software If enhanced

o Current system does not provide timely or reliable Infonaatton
o All maintenance tracking done _nually
o AI I PCs manually tracked due to no ·category· or ·group· feature In current

asset system
o Current systell tracks at a high level so coqJonents have no visibility
o Transfer of assets Is cUllbersome and tl. consuming
o No -assigned-to· feature for tracking loanable assets

o All done cOllpletel, manuln,

o All done cOIllPletel, IIInuall,

o All done cOIIpletely _nually

o Issues IIIInual1, logged and totalled
o Manual JVs created to trans fer costs



Action Required
to FIll Gaps

o Install so-Yt-
ware.

o Provide addlt lonal bustness
training to MIS staff
through Involve.nt tn pro
fess lona I groups such as
APICS. W. etc.

o Develop software In-house
to augment systeal for
specific division needs.

Current Gaps
State

Required

FUNCTIONAL GAP ANALYSIS -- __~M:.:..;IS~_F.UNctiON

o Department .nagers deter
IIlne speel ftc Infonut Ion
requt rements.

o Install and other
systellS as required.

o Software that cleanly· links 0 Redundant/conflicting data. 0 Install and Integrate
all parts of the busfness. 0 Hessy/unreltable Inter- additional systees as

faces. requIred.
o Hult Iple entry of sa..

data.

o -'-atcliWOrY soTtware used
only by Spectra-Physics.

o Unsound. unclear transac
t tona1 software.

o "IS resources dedicated to
Ntntalnfng unsound soft
ware.

o Software difficult and
risky to enodtfy.

o Some software IqJosslble
to IIIOdlfy.

o Usable Inforlllltion avall- 0 Not timely.
able as needed. 0 Requires IIInlpulatlon.

o Not comp1ete•

Functtonal Strategies

o Provide Integrated SystMS
that IIIItch business
• thods and are:
- Flexible
- Shared Infof'llltion
- Timely
- Accurate
- Approprl ate

o Focus "IS efforts on unfque 0 Adaptable veridor supporfed
lSD business Issues software that provides

bas Ic transact Ion proces-
sing and is modifiable to
lI1eet unique LSD needs. MIS
free to address LSD unique
needs and opportunIt Ies •

o
o
OJ
o

software

-Accounts Payab'e.
-Qualtty.

with options entry.
-Exa.lne
when released.

o Reconfigure 80Ms to -.cIullr
o Evaluate IFPS and FeS,

choose one.
o Evaluate
o lInk IMrket tng PC database

to

o Install
modules:

o Inadequate/Illnua1.

o JO based only.

o No conftgurat tons flext
btl tty/efficiency.

o Non-extstent.-Market develo,.ent/
Inalysts.

-Sales order and servtce
track Ing.

-Repet It Ive costing. 0 Non-existent/Illnual.
-Real-time decision Nktng. 0 Fragmented/Inadequate.
-Project _nage.nt. 0 Fragmented/Inadequate,
-Product restructuring. 0 "anual/awkward.
-Asset management. 0 Inadequate/lMnua'.

o Software that supports:
-State-of-the-art .fg•
• thads (JIT. etc.).

-Option ready products.



o -Evaluate use of
o Develop and tnstlll fheed

asset track tng system.
o Evaluate Inventory

tracking/analysts and
develop addtt tons as
requtred.

o AutOlMttc exchange of data 0 Matl and Fax only. 0 HP 1IIt1 tnstalled.
between LSD and other S-P 0 Hard copy ..st be produced. 0 Users trained on HP llatl
enUt les. Dtrect data 0 Telephone used extenstvely. and fUe transfer (unct Ion.
access capabtltty. Ftle 0 Lt.tted ftle trlnsfer. a tnstalled to replace
t rans fer capabt It ty. SOPS/BARS •a MIS trained on HP IIItI sup-

port and trouble-shooUng.

FUNCTIONAL GAP ANALYSIS -- M.;..;;IS-FUNCtlON

o
o
CD
o

Functtonal Strategtes

o Elt_tnate IIIInual data ex
change between LSD Ind
other SP ent t t t es

State
Requtred Current Gaps

Actton Requtred
to Ft 11 Gaps

o All risks not known.
o Opt tons unexplored.
° "0 plan tn pllce.

o Adequate Iccess to personal 0 Fragmented knowledge, no 0 IdenUfy spectftc resource
computers based upon usage. central point. to be focus point.
Central hed In-house ex- 0 ProblellS and needs handled a Develop tn-house resource
perttse In both hardware reactively, not proacthely to teep current on trends
Ind software. a Inadequate Iccess In SOlIe and technology.

o Networked cDq»uttng re- areas. 0 Provide IIIOre generll use
sources to facll ttate dlta 0 Matnly stand-Ilone PCs re- coqJuters.
transfer and exchange. qutrtng redundlnt dlta 0 Develop cOllPrehenstve net-

entry. work Ing strategy.

o FleXible autOlllt tc progra. 0 None tnstalled. 0 Exa.tne Ivatlable softwlre
schedul tng software. and select best ,tt. .

o Train Operattons staff and
tnstall software.

o Develop c~rehens tYe
disaster recovery plan.o Risks tdenltfted Ind

evaluated.
o Recovery opt tons tdentt·

fted .nd evaluated.
° Plan of act ton ready.

o Selecttve use of offtce
autollit ton to t ncrease
efftclency

o AutOlllllte coqJuter opera
ttons to reduce heldcount
growth rate

o Be able to .et c~uttng
needs tf nonnal cOll1'uttng
resources dtsrupted



ep'PP,ri.gp Af~ IDlIIU b bUn .IDbU

Ra~ed on a scal. of 0 - 5 where:
Where : 0 • doesn'~ provide

5 • perfect aatch to needs

Real Time
Da~a Integration
Produ~ Option Support
Rep.~i~ive Mfg
JIT Methods
BOM Manipulation
Product Line Differentiation
Planning/Forecasting
Purchasing Module
Quality Module
JIRP
Barcode Support
-What-ifW Modeling
Project Management
Aa.e~ Management

- Accounts Recievable
- Inventory
- Pixed Asseta

Accuracy/Confidence
Adap~abili~y/Fl.xibility
Support Required

eurr.n~

IUtm'Ba

1
1
o
o
1
1
2
o
1
o
3
o
o
1

2
2
o
3
1
1

Future
IDUU

3
3
4
3
3
2
3
3
3
1
3
1
1
1

4
3
o

"3
3

total 20 51
possible : 105

percentage 1" 4"
Syst_ match-Up

~
KACPAC
JOCS
SOPS/BARS
FGI

Iliac systems

GAP. ~o be filled by: additional systems ie. Fixed Asset
Proje~ Mgmt

(?)
(1)

Pile down-load to PC software

Strategic Planning 0080 - 28



Security Tips and Techniques for Beginners
Terry W. Simpkins
Spectra-Physics

Retail Systems Division
959 Terry Street

Eugene, OR 97402

This paper is not the definitive answer for all security
issues or questions. It is designed to be a relatively
high-level primer for people who are either new to the 3000
environment, who have just taken over responsibilities for
security, who have suddenly become interested and aware of
security, or who are looking for some general tips to help
them get started in the right direction.

I will not go into dramatic detail on anyone of the
areas, but rather give you several areas and parameters of
security to look at, consider and evaluate. You decide
which ones are the biggest risk for you and would have the
most value for you to pursue further.

The general areas that I will talk about are: passwords;
hardware access security; message system that MPE provides;
specific programs to be aware of that represent a potential
security risk; and monitoring activity and looking for
trends--closing the barn door after the cows have escaped,
so to speak.

First, let's talk about passwords. Everybody knows
passwords are good, kind of like motherhood and apple pie.
Auditors believe that everybody should have a password and I
probably agree with them. At least one level of password
security is appropriate for almost everything. Although
there may be a couple of exceptions, they're few and far
between. Should you use the MPE security system and the
password mechanisms in it, or one of the aftermarket
products? That's up to you. Your decision will be driven
by your user's preference, your preference, your bUdget, and
what kind of system you want to design and provide for your
users. Any answer can be the correct one, if your logic is
sound.

There are a couple things that are important: one,
passwords should be non-trivial, that is, they should not be
obvious, they should not be one letter, and they should not
be the defaults from your vendor~ two, they should be at
least three letters long and relatively easy to remember.
Passwords can be non-trivial, non-obvious, and still easy to
remember. The worst scenario is to create a great password,
just to have people write it down and tape it to their
terminal. You have to strike a balance between security and

Security Tips 0081 - 1



workable security. Passwords should not be carved in stone,
that is, they should be changed on a fairly frequent basis.
I have found every three to six months is a reasonable
timeframe. You want people to remember their password so
don't change it every week because they'll have to write it
down to remember it, and you don't want them to write it
down. At the same time, you don't want passwords to become
widely known. You should, if possible, utilize a scheme
where passwords are only valid for certain people at certain
devices. For example, "ASK," the software package that we
primarily use, has a mechanism for restricting what commands
are executable by which password, and this is not your MPE
password, but rather your ASK password which you have to
supply to get into the software. The ASK password allows
you to use specific passwords to restrict users to specific
databases. If you have a test database, a production
database, and a development database, a given password may
only allow access to the test database, or it may restrict
access to the development and the test databases but not the
production, or allow access to all three, or any
COmbination. The password can also restrict you to what
commands you can run and let you restrict what MPE user may
log into the ASK system under this password. For example,
if my ASK password is Terry and my MPE logon is
Simpkins.Manman, I can setup the system so that to use the
ASK password, Terry, one has to be logged onto the MPE user
Simpkins.Manman. Now, "Terry" (my first name) is a lousy
password to have in ASK, but it is a good mechanism to use
so that you can control more closely what users are doing in
your system. Don't misunderstand me, I'm not doing a sales
pitch for ASK--I'm only one of their customers. I'm merely
using ASK features as examples of what you can do in an
applications security scheme. There are other methods,
there are other applications security schemes, I'm not
encouraging one over the other.

The next security area we need to talk about is hardware
access. Hardware access can be gained three ways: direct
connect, i.e., to an ATP or ADCC; through a phone line via a
modem; or a DS line from another system. Hardwired--pretty
straight forward. If people have access to your building
and if they have access to a terminal, they're in. At that
point, you're faced with controlling physical access to your
building and physical access to the terminal. Are your
terminals in a locked room, or do you encourage terminal use
and set them on peoples' desks? You probably do the latter
-you set them on peoples' desks. If you do that, you have
to rely upon an informal security network which is someone
walking in on an unauthorized user and saying, "hey Bob,
what are you doing on this terminal, you're not supposed to
be here." Or, you rely on your password and applications
software security mechanisms to prevent unauthorized access.

Security Tips 0081 - 2



Telephone lines are a different issue. Dial back modems,
modems with passwords, etc., are all options you may choose.
What you use will depend upon how many phone lines you have,
how frequent the access is, and how varied the audience or
the user base is. If only your programmers use the modem,
it's probably less of an issue, or actually, maybe it's more
of an issue, because you don't want those call-back
mechanisms or passwords to have to be used. One scheme that
I've seen used successfully is to write a very simple SPL
program, that is a logon, no break, UDC, that every user
goes through when logging on. All this program does is ask,
"am I running on LDev21? Yes or no." If no, I'm done. If
yes, "ls the person logging on authorized to use LDev21?"
If yes, fine, let them proceed, if no, bounce them. You can
define what is an acceptable logon as narrowly or broadly as
is appropriate for your organization. This is a pretty
simple program to write. All you need is the "WHO"
intrinsic, and the "WHO" intrinsic is relatively simple to
call from SPL, or COBOL.

with dial-up-lines, I'm a firm believer in changing your
telephone number to the modem on a frequent basis. The
exchange that the phone number comes in on (the first three
numbers in the telephone number) should be different than
your company's voice telephone lines (your published phone
number) just to make it a little bit more difficult for
people to discover. It's not that difficult for your
average grade school or teenage hacker to write the program
described in War Games, one that dials all the telephone
numbers in all the local exchanges and finds all the ones
with carriers. If you wrote such a program, you'd probably
be surprised how many carriers you would find--there are a
lot of computers out there with a large number of dial-in
lines. I recommend that you change the phone number on a
fairly frequent basis and always change it when someone that
knows the number leaves your company. When you change it,
don't just increment the number by one or decrement it by
two, take it to a different exchange. The price associated
with changing the phone number is not very great, where we
are it's about $50; therefore, we do it every three to six
months. We notify the programming staff the day the number
changes--we don't give them a lot of notice. If they happen
to be absent that day, they don't find out about it until
they return.

If you are more concerned about restricting access to
your phone lines, you have a couple of other options. One,
you can "down" the phone lines. If you have 24-hour a day,
7-day a week coverage by your operations staff, this is
probably a viable alternative. For example, say a

Security Tips 0081 - 3



programmer wants to logon, he calls in and says, "hey Bob,
up the modem, I'm going to call in and do some work." Then
the operator can "down" the modem when he sees the
programmer log off. If you don't have that much coverage,
or maybe you don't have any coverage at all by the
operations staff, (you're it) this is not the easiest
solution. There are lots of ways you can get around it,
they just take more effort. I would venture to say that at
least 90% of us have at least one modem on our machine, and
that's the one HP sent us. Even though you don't use the
support link for anything other than sending your HPTRENO
Reports to HP, or the occasional Response Center call,
someone out there is trying to find your system, and how to
get into it.

OS access is a little bit tougher to control because you
probably have a couple of machines OSed together, and you
have batch jobs logging on back and forth all the time at
random occasions to transfer files, or trip flags, or look
up data for validation. In this case, "downing" the device
isn't necessarily a very good option for you. The best
alternative I can come up with if you're extremely concerned
about access is a variation on the modem security program.
Have another table that you check for valid logons that
says, "oh, yea, he's coming in across the OS lines and he's
logged on to that corporate account, that's ok, we'll let
him go," otherwise bounce him.

If you have a person that you have reason to suspect as
being a security risk at another division or location of
your company, or on another computer, a variation on the
modem security program might be a viable, and fairly
intelligent solution for you. Remember this about OS
access, on certain versions of MPE, capabili'ties of the
session on the source machine travel with the user to his
session on the target machine. I don't remember which
version(s) of MPE had this "feature" but it used to exist.
One of your alternatives is obviously to down your OS lines
and require people on the remote machine to ask you to up
the DS line. The problem is if you have batch-oriented
processes this procedure can get a little bit cumbersome and
hard to manage. You will need to either have the operators
at the other machine call up, or yOU'll have to define a
very specific time window for batch processes access your
machine.

The point I want to make with all of these scenarios,
Passwords, Modem Access, OS Access, and Local Hardwired
Access, is not that anyone particular security method is
better or worse than another. They all have pluses and
minuses and they're all appropriate in some instances and
inappropriate in others. The message here is that to make

Security Tips 0081 - 4



points with your auditor, you first have to think through
the issues as they relate to your installation. You need to
have defined your objectives--what it is you're trying to
accomplish--to spell out the alternative you're going to use
and then have clear, concise reasons regarding why you're
using one particular approach versus another to meet the
needs·as they're defined for your installation. If you have
that, what you'll find is that the auditors will give you a
lot of points. They mayor may not agree with your
approach, but they will at least understand what you're
doing and why you're doing it. They will be able to score
you in a rational, thoughtful manner, as opposed to reacting
like, "you haven't thought about it, therefore, it's bad."

Best laid plans of mice of men often fail and, for some
reason, somebody that you don't necessarily want to access
your machine has, in fact, gained access. How can you
minimize the damage? First, don't make it easy for them.
Don't paint them a road-map. This is where the message file
can be a real friend of yours, or, as it's delivered from
HP, actually be somewhat of an enemy. Take a good look at
some of those messages. The messages are very user-friendly
and try to help people understand exactly what they are
doing correctly and incorrectly. As System Manager in
charge of security this is a problem for you because message
files can be a road map to hacking. I would refer you to an
article in the September 1987 issue of Interact on this very
topic. Here again, let's refer to our War Games example.
You have a kid that doesn't know a HP 3000 from a bag of M &
Ms, but he's got a carrier and now he's going to try and get
in.

The point is that with trial and error, it doesn't take
very long with the way the messages are structured, and he's
going to have the exact format and the context that he needs
to logon. Now, it's a matter of hitting a valid combination
of user and account name. Then he simply takes his little
Basic program that he used to find your dial-up phone
number, modifies it to try every combination of alpha
numeric, eight character long words, and records the message
that he gets back. Pretty soon, he's going to get you.
Then he's going to be down to trying passwords, and guess
What, now he can take the exact same program and try it with
all 36th-to-the-8th power combinations of letters and
numbers and he's going to come up with a valid password-
he's going to get in. I've never really tried this, but I
would guess that within the course of a couple of nights, he
could break almost every machine. If you're diligent, and
you happen to look at your console logs, you might catch
this and you'll say, noh, jeez, somebody's out there hacking
away at my modem," and yOU'll down your modem. But, what if
you happen to have the scenario where you can't "down the

Security Tips 0081 - 5



modem."
Quickly!

Now, you have problems. Change the phone number!
Think about Police involvement and traces!

Ok, you need to keep an eye on what's happening on your
machine. Like I mentioned, you get somebody hacking away at
night and, unless you happen to read the console log every
morning (which I'm sure is not on the latest best seller
list) you're not going to see a lot of those messages. What
we have done and I recommend tha~ you all do, is to write
several little programs to monitor what's going on in our
system. Recap the information in a format that is easy and
quick to read so you can make some sense out of it.'

First thing we've done is write a program that looks at
the log files.- You tell it which log files you want to look
at and it will scan those log files and report out facts or
information I want to see on a regular basis.

First thing you do is modify your Cold Load configuration
to log everything. It doesn't take up that much disc space
and you're riot going to keep these log files in your system
for very long anyway. All you need to do is use this
information once to solve a problem and you're going to pay
for a lot of $15 tapes used to store these log files.

What I do is log all console messages. This lets me go
back, read the log files, and report security violations
that have appeared on my console. I can use' log files,
then, to look for trends. Do I see a lot of them coming for
one particular LDev? Do I see people trying to hack a given
user? Does there seem to be a lot of them coming late at
night· when there's nobody here but the security guard?
Things like that. Do a lot of them come in across my modem?
Ah, maybe somebody has learned my phone number, I need to go
change my modem phone number--that's .the first thing.

Secondly, I can keep track of Who's purging files. By
logging file closes, you can record all file purges. This
might be real interesting to help you discover if the
purging of a file was an accident. It might also show you
that somebody was trying to cover their tracks. If you see
somebody purging one of your log files, then you might want
to go look at that log file very closely and find out why
somebody would want that particular log file to disappear.
What kind of incriminating evid~~ce is in that log file?

Lastly, certainly not least, is that I look at all logons
on certain LDev's. Specifically, the ones that I look at
very closely are, anybody logging in on my dial-up modem,
and anybody logging in across the DS line. Are those the
people I expect, or is there something funny going on?

Security Tips 0081 - 6



All these programs ~'ve just talked about are on the swap
tape here in Orlando. These programs were originally
written by Harold Jensen. Harold used to be a tech support
programmer with Spectra Physics. He is now an SE at HP. I
do not know if Harold has ever contributed these programs
before; they were a part of a system that he used to track
and report resource usage and trends. We have cloned some
of his software, combined a couple of programs, taken out
some functionalities to fit our specific needs.

The next thing we have done is to make use of a part of
MPEX to read the system directory. We used MPEX because it
uses Privmode to go right into the directory, we did not
want to write that kind of code and then have to maintain
it. We had the MPEX product already and it was a relatively
simple thing to create some job streams to do what we're
looking for. We use MPEX to look at all programs on the
system that are prepped with PM, tell us what those are,
tell us if those have lock words on them, tell us when they
were last accessed, and tell us if they're released. The
way we do that is through a series of "listf" steps with our
own defined listf mode which MPEX allows.

The last thing we did was to use the indirect reference
to a disk file of the LISTDIR5 command. We list off all
~ccounts, groups, and users to a disk file. Then we have a
straight forward little COBOL program that reads the file
created as output from LISTDIRS, and reports any user, any
account, or any group that has specific capabilities, and
whether or not it has a password. By definition, all of our
users should at least have one password. This method lets
us track our compliance to our standards. We want to make
sure that we have certain accounts and groups passworded
because of the relatively sensitive nature of information in
those groups and accounts. At this point, I'd also like to
remind people, just because you have a password on a group,
a user, an account, doesn't mean it's secure. A lot of the
third party vendors (HP falls into this category) have
default passwords that go with their software. That
password is the same on every system in the whole wide world
with that piece of software. Why would that make your
system secure just because there's a password on it?
Everybody in the world knows what the password is. So, in
the article published in the September 1987 Interact, I've
listed some of the more commonly used 3rd party software and
the default passwords that come from the vendor. You should
look at these and make sure you are using different
passwords.

All these problems go away if you change your passwords
on a regular basis as discussed earlier. Take a look at the
list, if nothing else, pick up a phone and call up your

Security Tips 0081 - 7



vendor. Tell them who you are, ask them what their default
password is, and make sure yours isn't the same. A perfect
example of this would be your HP support accounts, like
TeleSup and Support. These accounts are standard on every
HP machine in the world. These accounts contain PM code and
their passwords should be changed to one that is unique to
your site. Also access to the accounts should be restricted
to account users.

The last thing I want to mention is some of the PM
(privilege mode) programs that you need to be aware of that
could be on your system and represent a hazard to you. I
mentioned how we used MPEX, to look for released PM programs
that are not locked or protected.

Let me bring your attention to a few programs you should
keep your eyes on.

The first one, named "God" is from VeSoft. "God" is a
neat program because it'll let you do about anything you
want to as far as giving yourself capabilities during your
session. Fortunately, VeSoft lockwords that program when
they ship it to you. First thing I do is "Restore
@.@.VSoft," and as soon as that's done, purge "God." I
would· recommend the same thing, you have the tape, you can
always restore it. Get it off the system.

The next one I would lock up is called MakeSmop. It
comes from Kelly if any of you have their RAM disc. I don't
have personal experience with this one, but I've heard that
it will let you give yourself SM or OP capabilities no
matter where or who you are so that's one you want to be
aware of.

In addition, there are many such programs in the Telesup
and Support Accounts. I'm not going to list all of them
here, but I would recommend you sit down, talk to your SE
about what all of these programs are and what do they do.
These programs should be stored on a tape. Put the tape in
your desk drawer; you can always restore the program if
needed or restrict· access to the Support and Telesup
accounts to account users and keep them well passworded.

As mentioned earlier, this is not an all-encompassing
security tutorial. Rather, use this as a starting point in
evaluating your system's security needs. Security is much
more than a password.

Security Tips 0081 - 8



MAKING SHORT SHRIFT OF SORTS

Charles Sullivan
RunningMate Software

3001 I street
Sacramento, California 95816

l:BTRODUCTION

This discussion examines the variables that affect sort
performance. Benchmarks will be presented which compare
both the hardware and the software of the various HP3000
systems. An attempt is made to compare HP3000 sort perform
ance to the Digital Equipment VAX 11/780.

ABOUT THE BENCHMARKS

Most of the benchmarks shown here were run several
times to ensure that the results presented are reasonable.
Unless otherwise noted, the Series 48 and Series 70 had MPE
disc caching turned on, the Series 48 had three megabytes of
main memory, the Series 70 had eight, and the Series 950 had
thirty-two. Each system had two or three disc drives which
were a combination of 7933H and 7937H discs. The Series 950
was running the 1.0 release of MPE XL and the other two were
using M~E V, either UB-Delta-1 or V-Delta-1.

KPE Dl:SC CACRl:NG

MPE disc caching, as implemented by MPE V SOftware, has
an interesting effect on sort performance. When there is
plenty of stack space for the sort intrinsics, disc caching
actually degrades performance. But when stack space becomes
relatively scarce, disc caching speeds up sort performance,
sometimes very dramatically.

For these tests, whose results are shown on the next
page, the parameters for MPE disc caching, when turned on,
were: sequential fetch quantum = 96 sectors; random fetch
quantum = 16 sectors; block on write = no. The computer was
a Series 70 and 100,000 records were processed.

MAKING SHORT SHRIFT OF SORTS 0082-1



TABLE 1: EFFECT OF DISC CACHING ON SORT PERFORMAHCE

CPU seconds
CPU TIME DATA

MPE disc caching
Words available for

Sort/V workspace OFF ON

24,40<;> 128 163
20,000 134 181
16,000 143 204
12,000 159 234

8,000 190 309
4,000 312 568

WALL TIME DATA
Elapsed seconds

MPE disc caching
Words available for

Sort/V workspace OFF ON

24,400 346 366
20,000 392 417
16,000 444 490
12,000 584 498

8,000 838 770
4,000 1886 1053

PROCESSOR COMPARISON

As you would expect, the more powerful the CPU, the
quicker the sort. At least this is true between the MPE V
computers. But the Series 950 is quite a contrast to the
Series 70. A sort running with no competing jobs will
usually finish sooner on the Series 950, but will consume
more CPU resources. One supposes that the "fault" for this
lies in the software of the 950, rather than in the hard
ware.

MAKING SHORT SHRIFT OF SORTS 0082-2



TABLE 2: BPFECT OF SYSTEM PROCBSSOR ON PBRFORMANCB

CPU Minutes
Number of 128-
byte records Series 48 Series 70 Series 950

10,000 0.74 0.22
20,000 1.61 0.49
30,000 2.52 0.76
40,000 3.51 1.07
50,000 4.48 1.40 2.02
60,000 5.45 1.72
70,000 6.54 2.03
80,000 7.49 2.35
90,000 8.54 2.67

100,000 9.56 3.01 4.20
200,000 7.00 9.21
300,000 10.54 14.15
400,000 14.60 19.83
500,000 18.05 25.08

CPU TIME DATA

Total Elapsed Minutes
Number of 128-
byte records Series 48 Series 70 Series 950

10,000 1.20 0.58
20,000 2.61 1.24
30,000 4.10 1.95
40,000 5.66 3.00
50,000 7.35 3.85 2.18
60,000 9.09 4.69
70,000 10.70 5.64
80,000 12.42 6.46
90,000 13.94 7.05

100,000 15.65 7.73 5.28
200,000 17.20 18.04
300,000 29.58 27.13
400,000 39.95 36.51
500,000 50.56 45.97

WALL TIME DATA

ALGORZTJDI COMPARZSON

Hewlett-Packard's standard sort package uses Floyd's
Treesort algorithm while SortMatePlus uses Singleton's
Quickersort variant. Another, equally important, consider
ation is that HP's sort confines itself to the user's stack
while SortMate uses extra data segments.

MAKING SHORT SHRIFT OF SORTS 0082-3



For these tests, 100,000 128-byte records were sorted
with MPE disc caching turned on. The sort was initialized
by calling SORTINIT, the records were sent to the sort with
the SORTINPUT procedure, and records were retrieved by the
SORTOUTPUT procedure.

TABLE 3: EFFECT OF ALGORITHM ON SORT PERFORMANCE

CPU TIME DATA CPU Seconds

Processor Work Space HP Sort SortMateP1us

Series 48 16K words 638 380

Series 48 2SK words 523 380

Series 70 16K words 204 114

Series 70 24K words 163 114

WALL TIME DATA Total E1apsed'Seconds

Processor Work Space HP Sort SortMateP1us

Series 48 16K words 1034 482

Series 48 2SK words 800 482

Series 70 16K words 490 189

Series 70 24K words 366 189

THE VAX, THE HP3000, AND BACK-END PROCESSORS

For better or worse, Digital Equipment's VAX 11/780
has become an industry-standard reference point. For years,
it was stated that the VAX 11/780 was rated at about one
million instructions per second (1 MIP). [I use the MIP
only because it is a widely-used way to compare different
computers.] Now most observers believe that the 11/780 exe
cutes at about 0.5 MIP in a commercial processing environ
ment. The upshot of all this is that the HP3000 Series 68
and 70, which were always considered merely the equal of the
VAX 11/780, can now be seen as clearly superior machines.

MAKING SHORT SHRIFT OF SORTS 0082-4



The VAX benchmarks are taken from the February 1, 1986
issue of Computer Design, Database Accelerator system
Relieves Sorting Bottlenecks, by Walter A. Foley. Mr. Foley
is president of Accel Technologies (San Diego). Accel makes
the DBA 1000, a specialized sorting machine which can be
used to off-load a host processor. In the following bench
marks, the DBA 1000 was attached to the VAX 11/780 via
Ethernet. According to Mr. Foley, the Ethernet connection
was not a bottleneck in the test, rather it was the speed
of the VAX file system which prevented even better results
for the DBA 1000 benchmark.

TABLE 4: VAX 11/780 VS. BP3000 SORT PBRI'ORlmlfCB

Host CPU seconds

HOST CPU TIME DATA Number of 20-byte records

Sort Environment 50,000 250,000 500,000

VAX 11/780 100 500 1150

VAX 11/780 and DBA 1000 20 30 50

HP3000/70 [Sort/V] 48 270 609

HP3000/70 [SortMate] 29 161 323

HP3000/950 [Sort/XL] 27 153 312

Total Elapsed seconds

WALL TIME DATA Number of 20-byte records

Sort Environment 50,000 250,000 500,000

VAX 11/780 550 2600 5700

VAX 11/780 and DBA 1000 120 225 600

HP3000/70 [Sort/V] 69 429 900

HP3000/70 [SortMate] 35 205 413

HP3000/950 [Sort/XL] 27 177 480

SORTIBG PECULIARITIES AND TIPS

Sort/V grabs all its necessary resources when you call
SORTINIT. If your system is out of disc space, you will
know immediately. This is better than having to wait for
two hours before finding out that you need to free up some

MAKING SHORT SHRIFT OF SORTS 0082-5



more disc sectors. However, this has an unwanted side-effect
which is caused by the way the file system allocates disc
file extents. When you allocate all the extents for a file
when it is created, all the extents must reside on a single
disc drive. Therefore, allocating all extents at once will
increase the probability of having your job flushed because
you are "out of disc space." To eliminate this problem with
the Hewlett-Packard sort, simply issue the following file
equation:

:FlLE SORTSCR;DEV=,32,1

The COBOL compiler, probably for simplicity and reli
ability, opens files for buffered access. This means that
the sort intrinsics will probably find enough room on the
stack for their work area, but it also means that a COBOL
file-to-file sort will almost always run slower than neces
sary. (SortMatePlus, which replaces the sort intrinsics,
will attempt to re-open buffered files for MR-nobuff access.
This can lead to a measurable speed increase.) If you can,
you should remove sorts from within COBOL programs and use
a sort utility program such as SORT.PUB.SYS or SortMate.

Sort/V allows you to alter the collating sequence. If
you need to sort upper- and lower-case letters properly,
using an alternate collating sequence is necessary. Here is
how you do it.

:RUN SORT.PUB.SYS
>DATA IS ASCII SEQUENCE IS ASCII
>ALTSEQ MERGE "A-Z" WITH "a-z"

Pretty simple, no? However, using an alternate collating
sequence does slow down the sort process, but that's another
story.

ANOTHER STORY

When developing SortMatePlus, I needed to allow for
alternate collating sequences. There is a powerful machine
instruction which is tailor-made for just such a purpose:
the "compare translated strings" [CMPT] instruction (Which
is probably used by Sort/V). After about 4 hours of puzzle
ment and growing frustration, I concluded that CMPT does
not work in split-stack mode. Knowing that I would en
counter difficulties trying to convince Hewlett-Packard to
modify the microcode on thirty thousand installed computers,
I began writing a software routine that emulates the CMPT
instruction.

On the next page you will find a program which makes
use of the final software routine which emulates the CMPT
machine instruction. Notice how cumbersome (and incompre
hensible) it appears.

MAKING SHORT SHRIFT OF SORTS 0082-6



SCONTROL USL I NIT,NOLI ST
BEGIN

I NTEGER INDEX,
KEY'POSITION:=O, «starting position of key»
KEY'LENGTH:=10i «byte length of key»

BYTE ARRAY BYTERECORD1(0:9) : =IICHARLI E001 11 i
BYTE ARRAY BYTERECORD2(O:9):="CHARLlE002I1 i
BYTE ARRAY TRANSLATIONTABLE(O:255)i

« Initial ize the translation table »

FOR INDEX:=O UNTIL 255 DO TRANSLATIOHTABLE(JNDEX):=INDEXi

ASSEMBLE (LDX KEY' FIRSTPOSITIONi
LRA BYTERECORD1, I,Xi
LRA BYTERECORD2, I,X)i

TOS := KEY'LENGTHi
GOTO ENTRYPOI NT i

LOOP:
ASSEMBLE (DABZ EQUALi LDXI 1i LRA S-2, I ,Xi STOR S-3i

LRA S-1, I,Xi STOR S-2)i
ENTRYPOINT:

ASSEMBLE (CMPB 0) i
IF = THEN GOTO EQUAL i
ASSEMBLE (LOB S-2, Ii STAX,NOPi LDB TRANSLATIONTABLE, I,Xi

LDB S-2, Ii STAX,NOPi LDB TRANSLATIONTABLE, I ,Xi
CMP,NOP)i

I F = THEN GOTO LOOP
ELSE IF < THEN BEGIN «record1 < record2» END
ELSE IF> THEN BEGIN «record1 > record2» END
ELSE

BEGIN
EQUAL: «record1 = record2 »

ENDi
ASSEMBLE (SUBS 3)i «ltlJst delete words left on stack »

END.

Now an example of a program which uses the CMPT machine
instruction. Notice how clear and simple the code appears
in contrast to the emulation code above.

$CONTROL USLINIT, NOLI ST
BEGIN

I NTEGER INDEX,
KEY'POSITION:=O, «starting position of key»
KEY'LENGTH:=10i «byte length of key»

BYTE ARRAY BYTERECORD1(O:9):=IICHARLIE001 I1 i
BYTE ARRAY BYTERECORD2(O:9):=uCHARLlE002I1 i
BYTE ARRAY TRANSLATIONTABLE(O:255)i

« Initial ize the translation table »

FOR INDEX:=O UNTIL 255 DO TRANSLATIONTABLE(JNDEX):=INDEXi

TOS := &lTRANSLAT I ONTABLE i
TOS : = QBYTERECORD1(KEY' FI RSTPOSIT ION) i
TOS := KEY'LENGTHi
TOS := GlBYTERECORD2(KEY'FIRSTPOSITION)i
TOS := KEY'LENGTHi
ASSEMBLE (CON %20477, %7)i «creates the CMPT code »
IF < THEN BEGIN «record2 < record1» END
ELSE IF > THEN BEGIN «record2 > record1» END
ELSE BEGIN «record2 = record1» ENDi

END.

MAKING SHORT SHRIFT OF SORTS 0082-7



The surpr1s1ng fact is this: the machine-level CMPT
instruction is faster than the software routine in only one
case--when the first characters are not equivalent. The
software routine gains its efficienty because it only goes
to the translation table when negessaryi the CMPT code goes
to the translation table for every comparison, eV$n when it
is obviously unnecessary. For example, there is no need
to go to the table if string1 is "CHARLIE" and string2 is
also "CHARLIE". Similarly, you do not need to go to the
translation table until the lOth byte if the first nine
bytes are exactly the same.

still, you might be wondering which way is better in
reality. If, during a sort, 75% of the comparisons need to
examine only one byte, then the CMPT instruction will
probably be faster. So here is some "real" data to examine.
I extracted all the keys from a master dataset where each
key was 12 bytes long. I sorted on the first 10 bytes so
some of the keys were "duplicates." These 23,553 records
required 375,453 comparisons before they were sorted. Here
is how the comparisons were broken down:

Comparisons decided by the 1st byte 114,383
Comparisons decided by the 2nd byte 86,971
Comparisons decided by the 3rd byte 65,911
comparisons decided by the 4th byte 28,593
Comparisons decided by the 5th byte 50,666
Comparisons decided by the 6th byte 10,152
Comparisons decided by the 7th byte 2,197
Comparisons decided by the 8th byte 492
Comparisons decided by the 9th byte 153
Comparisons decided by the 10th byte 2,984
Comparisons in which keys were equal 13,005

About 70% of the comparisons needed to examine more
than one byte, so in this case, using the CMPT instruction
would be slower than using the software routine. A large
proportion (probably 90%) of sorts encountered in practice
will run faster with the software routine. .

MAKING SHORT SHRIFT OF SORTS 0082-8



DEVELOPING A FASTER IMAGE

Charles Sullivan
RunningMate Software

3001 I Street
Sacramento, California 95816

INTRODUCTION

This paper examines some performance concerns most of
us have about TurboIMAGE. I have tried to examine topics
which have not been empirically studied, such as the degrada
tion caused by logging and the correlation between capacities
and DBPUT performance for master datasets.

ABOUT THE BBNCJIIIARKS

Any benchmarks shown here were run several times to
ensure that the results presented are reasonable. Unless
otherwise noted, the Series 48 and 70 had MPE disc caching
turned on. The Series 48 had 3 megabytes of main memory,
the Series 70 had eight, and the Series 950 had thirty-two.
Each system had two or three disc drives which were a combi
nation of 7933H and 7937H drives. The Series 48 and 70 were
using either UB-Delta-1 or V-Delta-1 of MPE V and the Series
950 was running the 1.0 release of MPE XL.

TRANSACTION LOGGING PERFORMANCE

Transaction logging has not been treated with a great
deal of rigor when discussing performance. For many years
the received wisdom was that transaction logging exacted a
severe performance penalty. Now the party line has become
that the overhead associated with logging every DBUPDATE,
DBPUT, and DBDELETE is negligible.

The database used to obtain the following results was
configured as follows. The master dataset had a 10-byte key
with a capacity of 9999, an entry size of 110 words and a
blocking factor of four. The detail dataset had an entry
size of 110 words, a blocking factor of four, and one search
path. In all tests, 5000 records were added, updated, or
deleted. Auto defer was off.

DEVELOPING A FASTER IMAGE 0083-1



TABLE 1: DEGRADATION CAUSED BY TURBOIJlAGE LOGGING

SERIES 70

MPE disc caching Karameters Degradation
Sequential fetc -96
Random fetch=32 CPU Wall
Block on write-YES Time Time

Master dataset DBPUT 18% 11%

Master dataset DBDELETE 20% 15%

Master dataset DBUPDATE 21% 19%

Detail dataset DBPUT 12% 5%

SERIES 48

MPE disc caching harameters Degradation
Sequential fete =96

WallRandom fetch=16 CPU
Block on write=NO Time Time

Master dataset DBPUT 18% 16%

Master dataset DBUPDATE 20% 15%

SERIES 950

32 megabytes main memory Degradation

CPU Wall
Time Time

Master dataset DBPUT 29-57% 36-59%

Master dataset DBDELETE 19-45% 34-48%

Master dataset DBUPDATE 28-50% 31-60%

The results on the Series 70 and Series 48 were easy
to reproduce. But tests run on the Series 950 had a wide
range of values. Logging degrades performance much more on
the Series 950 than on machines running MPE V.

Before you begin TurboIMAGE logging, the performance
penalty of ten to twenty percent for most DBPUTs, DBDELETEs,
and DBUPDATEs is worth pondering.

DEVELOPING A FASTER IMAGE 0083-2



SBLECTING A MASTER DATASBT CAPACITY

B. David Cathell presented at the Interex conference in
Los Angeles in 1984 a pioneering paper about master dataset
capacities called IMAGE: An Empirical study. He concluded
that capacities for master datasets based on a prime number
were not better (or worse) than non-prime capacities. He
examined the synonym distribution over different capacities
of the same data.

In the course of solving a severe response-time problem
that we experienced, I had occasion to write a program which
has allowed me to confirm Cathell's result and to extend it.
The program simulates taking the current entries in a master
dataset and loading them into a dataset of different capa
city. The program determines the number of synonyms that
will exist and a "clustering" index. This clustering index
is the number of 50-record chunks which contain 50 entries.
For example, a dataset which is empty except for entries in
the first 100 records would have a cluster index value of
fifty-one. The higher this value, the longer a OBPUT will
take to execute, on average. [See Identifying Opportunities
for Performance Improvement by George B. Scott in the 1986
Detroit Interex proceedings for data about clustering.]

On the next page you will find a sample of the values
that were obtained for a dataset with a 20-character (X20)
key and 29967 entries.

Cathell concluded that the only capacity to absolutely
avoid was one which is a power of two. Look at the result
for a capacity of 65,536. Here the cluster index becomes
the "Custer" index--whoever chooses that capacity is going
to get massacred by unhappy data-entry employees.

Given a partiCUlar set of data and a partiCUlar dataset
capacity, you cannot predict its DBPUT performance without
examining the distribution of ALL the data in the dataset.
Here are some guidelines I now use:

1. Half-empty datasets usually produce an excellent
cluster index. Oatasets which are 60% full are
acceptable,' but 70% produces OBPUT performance
which is erratic. Eighty percent and above is to
be avoided. Selecting a prime number guarantees
nothing.

2. Be very careful selecting capacities which are
very close to being a power of two. From the fol
lowing table, you can see that 65536 and 65537 are
execrably bad, but 65540 would be tolerable.

DEVELOPING A FASTER IMAGE 0083-3



TABLE 2: SDOIIYJI COUft AND CLUSTBR XNDBX VALUES
FOR SBLECTED MASTBR DATASET CAPACITIBS

KEY TYPE = 120 DATASET ENTRIES = 29,967

New Percent Cluster
Capacity Full Synonyms Index

40,007 74.9 8,977 883
40,008 74.9 9,847 1,129
40,009 PRIME 74.9 8,927 1,314
40,010 74.9 9,160 1,183

45,006 66.6 8,356 348
45,007 PRIME 66.6 8,268 225
45,008 66.6 9,608 239

49,998 59.9 7,825 54
49,999 PRIME 59.9 7,697 15
50,000 59.9 8,737 17
50,001 59.9 7,593 44
50,002 59.9 7,704 °
55,000 54.5 7,939 15
55,001 PRIME 54.5 7,130 8
55,002 54.5 7,281 °
59,998 49.9 6,803 °59,999 PRIME 49.9 6,613 °60,000 49.9 8,262 °
64,000 46.8 10,872 162
64,001 46.8 6,631 3
64,002 46.8 6,804 0

65,535 45.7 10,092 1,772
65,536 45.7 16,165 14,165
65,537 PRIME 45.7 11,366 11,751
65,538 45.7 8,479 986
65,539 PRIME 45.7 7,372 245
65,540 45.7 7,501 161

69,999 42.8 5,789 °70,000 42.8 6,897 °70,001 PRIME 42.8 5,802 0

DEVELOPING A FASTER IMAGE 0083-4



SELECTING A GOOD VALUE FOR BUFFSPECS

TurboIMAGE on MPE V machines allocates an entire extra
data segment for data bUffering. I tried to determine if
altering the number of buffers affected performance. My
working assumption was that, in a multi-user environment,
setting BUFFSPECS=16(1/120) would produce poor throughput
compared to setting BUFFSPECS=64(1/120).

My results showed no difference between such divergent
values for the BUFFSPECS parameter. I do not, however,
consider this result conclusive. More testing needs to be
done.

SINGLB THREADING

TurboIMAGE allows some mUlti-threading of database
intrinsics. The Hewlett-Packard reference manual states
that a "two level resource priority locking scheme is
used within the DBB to allow single-buffer operations to
access the control block concurrently. This involves
DBGET, DBFIND and DBUPDATE processes. DBPUT and DBDELETE
operations are unable to access the DBB concurrently. These
multi-buffer operations must hold a global lock on the DBB
throughout the operation." Although the wording is not
exactly clear, it does appear that serial read DBGETs also
lock the DBB until intrin~.ic completion.

Single-threading should only be a concern when most
of your programs access a single database and your CPU is
spending a good portion of its time paused for disc I/O.
Although each CPU essentially holds all data in a single
database, we have found that our CPUs are not often paused
for disc I/O despite single-threaded DBPUTs. The reasons
for this are three-fold: 1) MPE disc caching tends to make
a system CPU-bound rather than disc-bound; 2) Handling
terminal I/O for sixty users over an X.25 network consumes
any free time the CPU might have; 3) All our serial reads
bypass the DBB entirely (see the next paragraph), thus we
have essentially made TurboIMAGE multi-threaded.

If you have performance problems because of single
threading, I recommend that you invest in one of the several
software products available which executes fast serial reads
and use it with your reporting programs and job streams.
These MR-nobuff products do not lock the DBB and hence you
should experience more database concurrency and throughput.

DEVELOPING A FASTER IMAGE 0083-5



SPBBDIBG UP SBRIAL AND CHAlKED READS

Several software products are available which can speed
serial access to datasets by a factor of three to ten. An
early discussion regarding such MR-nobuff techniques can be
found in Overview of Optimizing (On-Line and Batch) by
Robert M. Green from the Interex 1982 proceedings in San
Antonio.

Speeding up non-serial access to TurbolMAGE databases
is less of a sure-thing. In developing I/O-Mate, it was
found that the best overall performance for a calculated
(mode=7) DBGET was achieved when just one block of data was
fetched at a time. On the other hand, it was found useful
to vary the fetch size for chained (modes=5,6) and random
(mode=4) DBGETs. I/O-Mate dynamically adjusts fetch size
based on the efficiency of recent fetches. I/O-Mate also
tries to do things only once. For example, it keeps the two
most recent lists for each dataset handy. I/O-Mate also
caches the two most recently accessed datasets for even
faster access. Finally, although it stores data in extra
data segments, it never performs an EXCHANGEDB procedure
call. All these optimizations allow I/O-Mate to outperform
a "vanilla" DBGET(modes=4,5,6) by fifteen to fifty percent.

DEVELOPING A FASTER IMAGE 0083-6



APPENDIX: BASHING ALGORITHM

DOUBLE PROCEDURE HASH(KEY, HASHEDKEY,KEYlENGTH,CAPACITY);
VALUE HASHEDKEY, KEYLENGTH, CAPACI TY;
ARRAY KEY; lOGICAL HASHEDKEY; INTEGER KEYlENGTH; DOUBLE CAPACITY;

BEGIN

PUSH(STATUS); ASSEMBLE(TRBC 2); SET(STATUS) ;

DECA;

HASH2:

HASH1:

HASH3:
END

ELSE
BEGIN

ASSEMBLE (LOAD KEY; LOAD KEYLENGTH; LADD, DECA;
LDD S-O I)-

IF KEYlENGTH = 1 THEN ASSEMBLE (ZROB)
ELSE ASSEMBLE (DLSL 1; DlSR 1);
TOS := TOS - 1D;
IF < THEN

BEGIN
ASSEMBLE (DDEL,DEL) ;
GOTO ALL'DONE;

END;
ASSEMBLE (CAB,DEL);

END;

TOS := CAPACITY;
I F HASHEDKEY THEN

BEGIN
ASSEMBLE (lDD KEY, I; lOAD KEYlENGTH; DUP, STAX;

BRE HASH1; DLSR 16;
DLSL 1; LOAD KEY; ADXA, lDXA; INCA, NOP;
lSR 1; DXCH, NOP;
DECM S-2; BlE HASH3; DECM S-3; DECM S-3;
lDD S-3, I; DDUP, NOP; lDI 31; LDIV, DElB;
STAX, DXCH; DCSL 1,X; DADO, NOP; BR HASH2;
DXCH, DDEL; DLSR 1);

ASSEMBLE (LOAD S-3; STAX);
IF <> THEN

ASSEMBLE (LDXA; SCAN 0; XAX, NEG; STAX, DOUP; DLSR 16,X;
DElB, lDIV; DEL, DUP; LOD S-5; CAB, LMPY;
DXCH, MPY; ZERO, DADO; DSUB, DZRO; INCA, DADD;
LOD S-3; DSUB;

CHECKCC: BE EQ; BG MORE; LDD S-3; DADD; BR CHECKCC;
MORE: OOUP; lOD S-5; DSUB; BL OK; DXCH, DDEL; BR MORE;
OK: DDEl; DXCH, DDEL)

ELSE ASSEMBLE (DXCH,DELB;
LOIV, ZROB);

ASSEMBLE (DZRO, INCA;
EQ: DADD);

AlL'DONE:
HASH := TOS;

END; «DWBLE PROCEDURE HASH »

DEVELOPING A FASTER IMAGE 0083-7





DISASTER RECOVERY

CAN YOUR BUSINESS REALLY RECOVER?

Presented by:

THOMAS J. DOOLEY, JR.

Consultant to Management
9422 Braeburn Glen

Houston, Texas

(713) 774-8846





DISASTER RECOVERY - CAN YOUR BUSINESS REALLY RECOVER?

1. INTRODUCTION

DISASTE R RECOVE RY PLAN: A collection of well planned and tested
procedures and data assembled into a single document which, when used, will
direct the re-establishment of ALL functions necessary to support day to day
business operations, which have been interrupted or rendered inoperative by
some uncontrollable event.

One can ci te many tect'lnical and business reasons for developing and
maintainin~ a disaster recovery strategy, but the fact of the matter is that the
subject rarely comes up, and when it does it always gets the lowest priority. In
fact, however, it should be first and foremost on the minds and in the plannin~

efforts of the top management of all companies. Trite as it may sound, most
companies today can do very little business, if any at all, without the
capabilities provided by their computers and networks. Bein~ without a
computer is comparable to not having anyone to answer the telephone.

Corporate management and the Boards of Directors are directly liable to the
owners and shareholders for the stewardship of the company, and as such are
constantly reminded by their auditors that they should maintain a reliable
Business Recovery Plan, which includes the complete recovery of all computin~

facilities available for business operations. One may be led to believe that this
type of admonition would cause more companies to put a high priority on
developing such a plan, but unfortunately, the advice goes unheeded or gets the
lowest of all priorities.

For those that heed the admonition of their auditors and shareholders more
advice can be passed alon~. A business recovery plan is not something that can
be developed overnight, scribbled into a 5 page document and then stuffed into
the DP Manager's center desk drawer, merely to satisfy the auditor's request in
his mana~ement report. It is a very serious facet of corporate management's
responsibilities. It involves the entire company (personnel, equipment, facilities,
profits, etc.) and should receive as much attention as would be given to the
development of a major business system.

Preparation of the Business Recovery Plan should also follow the same
procedures that are used to develop other systems. Definition, preparation,
testing, implementation, and maintenance are the majors areas of concern, and
the requirements, as well as the necessary project steps, are the subject of this
paper.

Each portion of the development phase is important in its own right, but
without the proper planning and definition, none of the other phases can be
properly executed. Figure 1.1 illustrates the relative importance of these
phases and tasks. Once Phase 1 or the Detailed Requirements Definition is
properly completed, the remainin~ phases become very easy to accomplish and
the time for their execution will have been greatly reduced.

PLANNING FOR DISASTER RECOVERY

0086 - 1



DETAILED REQUIREMENTS DEFINITION

DOCUMENT PREPARATION IMPLEMENTATION

Figure 1.1

TEST MAINT

2. DETAILED REQUIREMENTS DEFINITION

There are at least eleven major tasks that must take place in order to complete
the major definition of the direction and scope of the Business Recovery Plan.
Just as in systems design, the more effort put into the requirements definition
phase, the more complete and efficient the Plan will be. These tasks are not
all encompassin~, but are considered essential to a good plan. They are
detailed here to give the developer some guidance and insight into the
development process.

2.1 Definition of Scope

How inclusive should the recovery plan be? Document ALL areas of the
business that should be included in the plan. This list should include all
computer sites to be covered (mainframes, mini's and micros). Other areas of
the corporation which are considered critical to its existence should be covered
in the plan.

2.2 Catastrophic Events

What types of calamities should be expected? Prepare a list of all possible
catastrophic events which could disrupt the operations of the business facilities
previously identified.

2.3 Results of Catastrophic Events

What disruptions can be expected as a result of the previously identified
calamities? A list must be prepared, detailin~ specific disastrous results to be
expected from each catastrophe that has been identified. In addition, the
impact of each catastrophe on the various areas of the corporation should also
be defined.

How long should it take to recover? Determine the time required to recover
from the results of each catastrophic event that has been defined. Each result
of a catastrophic event should be considered individually and an estimate of the
time that will be required to return to normal operation for each event should
be completed.

PLANNING FOR DISASTER RECOVERY

0086 - 2



2.4 Methods of Recovery

How will we recover? This is decision that must be made by top management.
In order for them to make the decision, all alternatives must be documented and
presented (Hot sites, cold sites, mutual agreements, dual sites, etc.). Each
alternative should be accompanied by a broad range of associated costs.

2.5 Critical System Definition

What recovery priority should be given to each system? This is probably the
lengthiest and most important aspect of the detailed requirements definition
phase. Each system must be examined in light of being impacted by the defined
exposures and by the resulting impact on the corporation's existence. Standard
risk analysis programs are available for this process. Having determined the
risk, each system should be given a priority and ranked accordin~ly. This list
will ~reatly influence the definition of the recovery objectives.

2.6 Resource Requirements

What resources are required to execute each system? All resources required by
each system must be identified. This includes manual systems as well as those
that are automated. Resources include hardware requirements, communication
requirements, special operating software, personnel, special sUDplies, special
facili ties, vendor participation, outside services, etc. The final document will
be a matrix of applications and resources. It will also be used in the definition
of the recovery objectives.

2.7 Plan Objectives

Based on the information that has been gathered and refined in the above
project steps, a detailed statement of recovery requirements must be composed.
This statement, in detail, must set forth all contingency or recovery plan
objectives, all areas or functions that will be affected, and a statement
concerning the importance of each function's continued operation.

After a complete review of this document, it should be presented to
Management for their concurrence.

2.8 Current Plan Review

Is the existing recovery plan, if one exists, still current? If a plan exists, it
must be reviewed and compared with the requirements that have been developed
in this current exercise. The results of this review will be a schedule
identifying the existing plan's strength for each of the currently defined critical
systems. These strengths will be considered for entry into the new recovery
plan.

2.9 External Services and Products.

What types of products and services are available to accommodate all
requirements? In order to accomplish this task, a list of services and products
that are required to ensure the plan's success, must be completed. A
determination can then be made regarding vendor organizations which can

PLANNING FOR DISASTER RECOVER Y

0086 - 3



supply these services and products. Meetin~s should be scheduled with each
reliable vendor to determine the scope of each particular service or product and
to gather other pertinent information. After the meetin~s are concluded, a
schedule must be prepared listing all requirements which can be satisfied with a
particular vendor's product or service. A second schedule will list all
requirements not satisfied with external services or products.

2.10 Internal Services

Are there services within the company which will satisfy some requirements? A
schedule should be prepared, identifying all processing alternatives which may
be available within the organization. Once this is accomplished, a
determination may be made as to the capaci ties required and those available to
absorb the proc.l~ssing loads. A schedule can then be prepared showing all costs
related to internal processing alternatives.

Finally, a list must be prepared showin~ all requirements that have not been
satisfied with either external or internal services.

2.11 Alternative Summary

The final process that must be accomplished in the detailed requirements
definition is the preparation of analysis schedules for each critical system or
area of the company, identifying all requirements and all available alternatives.
All costs should also be included in the schedule.

In addition, all unsatisfied requirements must be identified and resolved, by
determining possible methods, techniques or services which can be utilized to
meet the requirements.

Finally, these requirements and their specific solutions must be evaluated,
alternatives recommended and documented for a presentation to management.
The presentation should result in management's approval to proceed with the
actual preparation of a Business Recovery Document.

3. DOCUMENT PREPARATION

All of the detail requirements that have been approved by management must
now be translated in detailed procedures and lists which will become the actual
document, called "The Business Recovery Plan" or "The Contingency Plan".
Figure 3.1 indicates the structure of the document. While this may not exactly
fit every company's needs, it represents the very basic elements of a plan which
can be tailored to fit any company.

3.1 Table of Contents

This, of course, is the very last section that is completed. It merely indicates
the sections and all sub sections with their respective reference numbers. If
the plan is developed using a good word processing package, this section will be
generated automatically. The table of contents should list procedure numbers
rather than page numbers.

PLANNING FOR OISASTER RECOVERY

0086 - 4



DISASTER RECOVERY PLAN STRUCTURE

3.2 Organization

Section 1
Section 2
Section 3
Section 4
Section 5
Section 6
Section 7
Section 8
Section 9

Table of contents
Organization
Team Definitions
Backup Procedures
Recovery Procedures
Off-Site Recovery Facilities
Lists/Inventories
Specifications and Testing
General Items

Figure 3.1

This section deals mainly with the organization of the plan, maintenance
responsibility, and the overall structure of a recovery effort. It should contain
entries detailing at least all of the following procedures and definitions:

A statement of objectives developed in the detailed requirements
definition and formatted for inclusion in the document.

A definition of the number of copies to be distributed and the
location and owner of each copy.

A procedure for the on-goin~ maintenance of the plan, with the
name and phone number of those responsible.

A form listing all revisions that have been made to the original
plan.

A bar chart or ~antt chart depictin~ each event in the recovery
process as it relates time wise to all other events.

A procedure detailing the initiation of the recovery plan in the
event of a disaster and for the notification of all parties affected
by the disaster or participating in the recovery effort.

3.3 Teams

The successful execution of the business recovery plan depends upon the
personnel assigned to carry out the various tasks defined in the procedure
section of the plan. Figure 3.2 lists many of the various areas requiring some
sort of team effort. Each of these areas should have a page in the plan listing
the names of a team captain, an alternate captain, and team members. The
responsibilities of each team must also be listed on the team page. These
responsibilities will be expanded on in procedural form later in the document.

PLANNING FOR DISASTER RECOVERY

0086 - 5



These are just a few of the essential teams needed for effecting a business
recovery. Some companies may decide to name the teams differently or to
subdivide others to more closely match their own situation. The smaller the
business, the fewer number of teams, but the essential functions still remain the
same.

DISASTER RECOVER Y - TEAM REQUIREMENTS

Recovery Management
Damage Assessment
Facllities Recovery
Operations Recovery
Software Recovery
Communications Recovery
Input Recovery
Special Forms
Logistics

Figure 3.2

3.4 Backup Procedures

Most businesses have a portion of this topic under control, but more than likely
it only relates to computer data and programs. The scope of total backup is
much broader than computer data and programs. It should cover peripheral
systems, documentation, special forms, remote site data, original data, micro
computer data and programs, etc.

This section should contain procedures for all backup scenarios, includin~

frequencies and methods for storing or filing of all backup data. All systems
design should consider backup as a part of the original design project, thus
insuring that the programs and the data are automatically insured against a
disaster.

All areas of a business must also consider backup as a part of the normal way
of conducting business. Original documents must be marked and stored for easy
retrieval, and personnel must be trained in the execution of both the backup as
well as the recovery procedures.

3.5 Recovery Procedures

The engine that makes the recovery plan run properly is the recovery and
restoration procedure section. Procedures are required for each recovery team
as well as for a variety of other recovery related tasks. Fi~ure 3.3 lists a
number of procedures that should be included in the plan. This list is by no
means complete, but those procedures listed are considered essential.

PLANNING FOR DISASTER RECOVERY

0086 - 6



Each procedure should be written in script form, lelative to each responsible
party. No detail should be spared or omitted. A walk-through should be
conducted for each procedure before it is included in the plan.

DISASTER RECOVERY - RECOVERY PROCEDURES

Recovery Management
Dama~e Assessment
Facilities Recovery
Operations Recovery
Software Recovery
Communications Recovery
Input Recovery
Special Forms
Logistics

3.6 Off-site Recovery Facilities

Alternate Site Recovery
Micro Computer Recovery
Return of Backup Materials
Emergency Shutdown
Halon System
Perioheral Subsystem Recovery
Evacuation
Salvage

Figure 3.3

Even if a decision has been made not to employ a hot-site for recovery
purposes, certain information relative to off-site recovery processes is essential.
Information regarding contracts and other negotiations or agreements should be
located in this section. Each off-si te location should be described in detail,
complete with names and phone numbers of contacts, maps of the immediate
area as well as maps of the location itself, and a detailed listin~ of all
available equipment and services.

3.7 Lists and Inventories

Perhaps the most difficult portion of the recovery plan is the collection of all
the lists and inventories required to support the many procedures in the
recovery section. These lists are varied and any particular list may have many
parts, such as the Inventory Checklist. Figure 3.4 contains some of the many
lists and inventories necessary for a well thought out recovery plan.

3.8 Specifications and Testing

This portion of the plan should contain specifications describing the
construction requirements for the recovery library or off-site storage facility.
It should also contain a list of all the required contents. This list will be used
in the auditing procedure, which must also be included. The audit procedure
should detail the frequency of audi ts and a method for evaluating the audi t
results.

The most important part of this section, however, is the procedure for initiating
and evaluating tests of the recovery plan.

PLANNING FOR DISASTER RECOVERY

0086 - 7



3.9 General Topics

This section is a catch all for anything that doesn't fit in any of the other
sections, such as a procedure for the use of plastic equipment covers.

DISASTER RECOVERY - LISTS &: INVENTORIES

Contact Checklists
Employees, Users
Vendors, Contractors

Inventory Checklists
Hardware, Software
Special Forms, Facilities

Off-site Storage Facilities
Locations, Contents, Maps

Insurance Information
Covera~e, Pictures

Recovery Headquarters

Data Entry Backup Facilities
Hot Site/Shell Facilities
Printing Services
Travel and Transportation

A~encies, Accommodations
Delivery Services

Facili ty Layouts
Emergency/First Aid

Equipment, Personnel
Radio &: TV Stations
Emer~ency Phone Numbers

Figure 3.4

4. IMPLEMENTATION AND TESTING

Now that the recovery plan has been researched, proceduralized and put on
paper, it can be installed properly. This is accompllshed through training, a
final pass to check for inaccuracies, and a thorough test cycle. Without any of
these three elements, the recovery plan is totally incomplete.

4.1 Training

To properly insure that all parties involved with the recovery operation are
fully informed and versed in the procedures, it is mandatory that orientation
and training sessions be conducted prior to full acceptance.

The trainers must first prepare a traininR course outline, covering both
orientation sessions for management and others who need only to be aware of
the major functions of the plan, as well as full training sessions for those who
will be involved in the execution of all procedures. All training course
materials must be prepared for both types of sessions, followed by a schedule
for all courses and sessions. Once the courses are completed, the plan is ready
to be fully tested.

4.2 Implementation

Before testin~ commences, a quality assurance test should be made of all
required items in the plan. The following assurances should be tested:

PLANNING FOR DISASTER RECOVER Y

0086 - 8



That all contracts for alternate processing si tes have been
negotiated and signed.

That all systems and programming changes that were to be
implemented as a result of the plan have been completed.

That all additional equipment has been delivered and installed.

That all addi tionaI communications services have been or will be
delivered and installed on time.

That all construction, resulting from the plan, has been completed.

That all required supplies and materials have been ordered and will
be delivered on time.

4.3 Testing

The final phase of the business recovery plan, before the final stamp of
approval can be issued, is the testing phase. Without a proper and conclusive
test the plan is nothing but a book, but with the proper testing, mana~ement

can rest assured, knowin~ that their business can rise from the ashes of a
disaster.

The two most important steps in the testing phase are the "walk-through" and
the "test audit". The walk-through will acquaint all parties with their
responsibilities, without a large expenditure, and the audit will provide an
outside opinion of the viability of the entire plan. Figure 4.1 details some of
the items to be included in the testing phase.

DISASTER RECOVER Y - TESTING PHASE

Prepare procedures for testin~ the recovery of all systems
Prepare a test schedule for all systems
Assemble all test materials
Conduct a user "walk-through" to review all test plans
Conduct the test
Record problems and resolve procedures and methods where necessary
Distribute corrections
Notify all parties of formal implementation

Figure 4.1

PLANNING FOR DISASTER RECOVERY

0086 - 9



5. CONCLUSION

If you have followed and completed all the items referred to in this paper, you
will have spent a great deal of time and effort for a worthy cause. You
probably will have discovered a few weaknesses in some of your systems and
hopefully will have corrected them. You have also had to review your hardware
situation, your communication network and your micro computer proliferation,
and you have probably had to make some adjustments in all three. But, for all
your work, your management can rest easier now and the stockholders can feel
a Ii ttle more secure about their investments.

PLANNING FOR DISASTER RECOVERY

0086 - 10



INFORMATION AS A COMPETITIVE WEAPON

BY

DAVID ASHTON

COGNOS INCORPORATED
3755 RIVERSIDE DRIVE

P. O. BOX 9707
OTTAWA, ONTARIO
CANADA KIG 3Z4

0087





Introduction

This paper will evaluate the trend behind Mission Critical Systems (M.C.S.)
also known as Strategic Infonnation Systems (S.I.S.). We will see what the
forces are behind the S.I.S., including the fonnulation of corporate
strategies. After reviewing some defmitions and examples we will explore
how to look for and capitalize on opportunities for S.I.S. This will then
bring us to evaluate the impact that S.I.S. will have on corporations and in
the industry at large.

Although these are four phases to developing S.I.S. (Business strategic plan,
Infonnation Systems strategic plan, detailed systems analysis and file
structures design), this paper will only address the fast two stages. These
stages differ the most from regular development process.

Information ~.s a
Competitive \Veapon 0087-1



Historical Perspective

In the early years of data processing by computers, the limits imposed by
hardware (mostly batch oriented main frames) and the software
(sequentiale file systems and single tasking operating systems) made it
hard to automate anything but very basic functions. So the original areas
of automation were the easy ones to automate. We did not spend much
time on cost benefits or economic justification analysis. The basis for
automation was driven by some characteristics:

Need to process large number of homogenous transactions

Regular processing at pre-detennined schedules

Routine processing of highly repetitive transactions that could
be collected in batches

By the 1960's, higher level languages like COBOL made programming
easier. In addition many companies, having been successful at automating
some repetitive paper crunching tasks, started to automate the balance of
their back office applications. This expansion into new application areas
still dealt mostly with back office operations that were not mission critical.
The risks of implementation were still quite low.

During the 1970's, the trend to automation continued, as the costs of
hardware kept dropping, while the power of computers increased. Most
back office functions were automated one-at-a-time with little or no
integration among them. Two significant trends of the 1970's were the
mini-computers and the packaged software solutions.

The early 1980's saw tremendous advances in the industry. The hardware
environment has seen 32 bit mini-computers and powerful
micro-computers dramatically increasing the price/performance
relationship. The software component has seen fourth generation
languages and user driven tools for the managers. Also, advances in
telecomlnunications and networking are now opening up databases to users
at reluote locations.

Informalion as a
COml)clili,'c Wcapon 0087- 2



A New Era: Mission Critical Systems

The rapid evolution of our industry has increased the limits of what can be
done. In the past decade, the raw power of computers has increased
18 fold. Between 1958 and 1980, the time to execute one electronic
operation has decreased by a factor of 80,000,000. It is now 8,000 times
less expensive to process information by computer than it was by manual
operation 30 years ago. Through the use of 4GL's, it is 50 to 100 times
faster to build applications than it was in the early 1960's.

As a result, we are now poised at the edge of a second, and ultimately more
important, wave of automation that holds the promise of changing the way
that business is conducted. We are now entering the phase of mission
critical (or strategic) automation that will see Information Services (LS.)
evolve from the operational and tactical to the strategic level of
corporations.

A mission critical (or strategic information) system (S.LS.) is a system
which directly supports the creation and implementation of an
organization's strategic plan. If successfully implemented, an S.LS. can
provide significant competitive advantages through increased product
differentiation, improved customer and supplier relationships, altered
industry structures and even brand new business opportunities.

The classic case of a S.I.S. is American Airline's Sabre reservation system.
When the system was started management decided to use it as a
competItive tool. It was decided that Sabre should provide all airlines'
schedules to make it more attractive to travel agents, who represent the
distribution network for airline seats. As a result of this strategic decision,
Sabre became a tool for travel agents. American Airlines listed their own
flights first and many travel agents never went further, resulting in
increased market share for them. Today, Sabre is used by
48 percent of the automated travel agents in the U.S. and it generates net
earnings of over $170 million for it's parent company.

Information as a
Competith'c \Vcapon 0087-3



Formylation of the Corporate Strategy

Before we take a look at the M.I.S. component of Strategic Information
Systems, let's discuss how a corporation sets up a strategy. The ideas for
the formulation of a strategy came from Michael E. Porter's, " How
Competitive Forces Shape Strategy" in the Harvard Business Review of
March-April 1979.

Once a coporation's strategic planning team has assessed the forces
affecting competition in their industry, they can identify their own
strengths and weaknesses.

The action plan is then devised. It can include:

1) Positioning the company in a way that its capabilities provide
the best defense against competitive forces;

2) Influencing the balance of the forces through strategic moves in
order to improve the company's position;

3) Anticipate shifts in the market place and respond to them with a
competition strategy before the competitors take action.

The most forward thinking companies have already established the new
function of Chief Information Officer who participates in the strategic
planning process. Their role is to look for ways that the information
technology can help meet the strategic plan. If there is no such person in
an organization, it is the M.I.S. director's role to understand the corporate
mission, it's business and the competitors. To help understand the
business, the M.I.S. director might arrange to spend a few days on the road
with one of the sales representatives, meeting customers and hearing them
talk about their needs. Another way would be to spend a few days on the
telephone, answering requests from customers and/or suppliers.

Information as a
Competitive Weapon 0087- ..



Next, the M.LS. Managers need to understand how their senior executives
think. It is important to understand the style as well as the vision of those
executives. The M.LS. Manager must then become creative in thinking
about a way that Information Technology (LT.) can serve. While dealing
with the executives, it is important to remember that there are two distinct
classes of executives: the administrator and the manager. An
administrator believes that whatever is not specifically pennitted is
prohibited. A manager thinks that what is not forbidden must be
pennitted. It is usually the "manager" type that will drive new strategic
applications.

How to look for S.I.S. Opportunities

We have seen that the new technology has opened up new opportunities
for a company to re-deploy its assets and re-think its strategy. With a
S.I.S., the stakes are so much higher than with regular back office
applications that this must be a well-planned decision. When technology
had limited function, you were not betting the company on it; with mission
critical systems, you do.

In "Information Technology Changes the Way You Compete", Harvard
Business Review May-June 1984, F. Warren McFarlane came up with a way
to evaluate the ultimate impact of S.LS. Companies must search answers to
five questions.

1. Can we build barriers to entrY with a S.LS.?

For example, a distributor built an on-line network allowing
customers to enter orders directly in their computer. As a
result, customers can get access to deli very dates and
availability of stock, as well as suggested replacement items.
This move was very successful and gained high acceptance by
customers. It also built an entry barrier preventing other
competitors to replicate the approach. Customers did not want
computer equipment from several vendors on their premises.

Information as a
Competith'c Weapon 0087- 5



2. Can switching costs be increased with a S.I.S.?

Can we encourage customers to rely increasingly on our
electronic support? This is done by building the system into
their operations to create increased operational dependency,
making switching to a competitor more expensive. A kitchen
cabinet manufacturer has built a system to help determine the
materials needed to remodel or build a kitchen. Contractors can
dial in, get a plan and quote for material that the cabinet
maker sells. Switching to another supplier would be very
difficult as this tool is saving time for contractors.

3. Can we change the basis of competition with a S.I.S.?

In a significant paper for Harvard Business Review of
July-August 1985, M.E. Porter and V.E. Millar introduced the
concept of the value chain to evaluate competitive moves. A
company's value chain is a system of interdependent activities
connected by linkages. To gain competitive advantage over
competitors a company must perform those activities at a lower
cost or in a way that leads to differenciation and a premium
price (more value).

In the mid 1970's a major distributor of magazines concluded
that they were in an industry segment dominated by cost driven
competition. It changed the basis of competition by using LS. to
identify what was selling on the customer's newsstand and
compared the profitability by square foot with data from other
newsstands in similar socio-economic areas. It was able to
improve the product mix of its customers, allowing the company
to raise it's prices and shift the competitive nature of the
segment from cost to product differentiation.

InfornUllioll .IS a
COIl1I)clilivc \Vcal)On 0087- 6



4. Can the S I.S change the balance of power in supplier
relationships?

A retailer has hooked his purchasing system to the order entry
systems of his major suppliers. The result means that the
retailer can monitor inventory levels of suppliers, alert them
when they expect to place a large order and shop for best prices
all around. In a cost competitive segment like retailing, a
system that supports better, more reliable and cheaper buying
activities is viewed as strategic.

5. Can the S.I.S. generate a new business?

Could the computer systems' extra capacity or the company's
corporate data be turned into a product?

For example, Citibank, which offers financial data and services
has teamed up with McGraw-Hill, which collected data on
commodities. They created a joint venture called Global
Electronic Markets Co. that allows traders to get information
instantly, 24-hours per day, and to make deals and transfer
money.

Ho,v to Capitalize on the Opportynities

Now that we have discovered S.I.S. opportunities, how do we start
capitalizing on them?

I. Evaluate the infonnation intensity of products

A company's executives should start by evaluating the
information content of their own products as well as the
information intensity of the value chain. The degree to which
infornlation technology can be used to competitive advantage
depends on actual and potential information intensity of the

Inf()rm~.tion as a
Cumpctith'c \Vcapon 0087-7



business' products. As implied in Table 1, a high intensity in
the value chain might. include a large number of complex
processes to build the product, a large number of customers
or suppliers dealing directly with the company, products
whose acquisition requires the customer to be extensively
trained. The information intensity of the product would
include products and/or services whose content is mostly
information.

The most likely S.I.S. areas would be in the high product
information and high intensity of the value chain.

2. Detennine the role of I.T. in industry structure

The company's executives must understand how LT. may
structurally charge their industry and look for ways to lead
the change. USA Today is an example of fundamental change
to an industry's structure. This daily newspaper, with
distributed printing facilities and with articles shipped by
electronic transmission, changed the competition
from a regional scope to a national one. They have also used
technology to give a different look to the paper.

3. Find and rank potential competitive advantages for S.I.S.

Each product or service has both a physical and an
information component. An Information Technology
competitive advantage is created when the information
component of the product is altered~ resulting in an advantage
over rival forces. The questions that executives must ask
themselves is: what additional information could be bundled
with the product? Will this result in a sustainable competitive
advantage?

The activities of the value chain that represent a significant
portion of the total cost or that could best be used for
differenciation usually have the most potential for
automation.

Inform:llion as a
COml)ctili,'c \Vcapon 0087- 8



INFORMATION·

INTENSITY MATRIX

HIGH

INFORMATION

INTENSITY OF

THE VALUE

CHAIN

LOW

LOW HIGH

Information as a
Competitive \Veapon

INFORMATION CONTENT OF THE PRODUCT

0087- 9



4. Develop a S.I.S. plan

The action plan will have to include the investments required
in hardware, software tools and development time. Any
structural changes induced by the S.LS. should also be
documented and agreed upon. The impact on existing
management processes and systems must also be evaluated,
as some systems could become absolete with the
implementation of the S.LS.

Because of the complex nature of S.I.S., outside help may be
needed to support the system. Finally, a realistic
implementation plan must be drawn. The implementation
schedule must include time for presentation to, and
approval by, senior mangement as well as enough time to
possibly change parts of the company's culture.

The S.LS. plan should support the overall corporate strategic
plan; it should not dominate it.

The Challenge of S,I.S,: What Needs to Change Inside Companies.

In order to effectively make use of the new advances in information
technology, corporations and their information services will need to make
several changes:

1. Infonnation Services Officers

It is important for companies to create a new function of
Chief Information Officer (C.I.O.) reporting directly to the
C.D.O (Chief Operation Officer). The C.I.O. must become part of
the strategic planning team to ensure that infonnation
services are sought. understood and planned for within the
executive committee. The presence of the C.I.O. will also
bring options that otherwise would not be even dreamt of.

Infornultion as a
Compctith'c \"capon 0087- 10



This also means that the traditional role of the M.I.S. manager
will evolve. He/she will have to grow into a business
strategist and problem solver. Rather than controlling the
technology, the C.I.O. will be coordinating architectures and
standards and provide coaching to several information
systems units for their development needs.

2. Companies will need to increase LS. spending

As mission critical systems become a competitive necessity t

corporations will have to increase their expenditures on I.S.
by a factor of two to three times over the next 5-10 years.
This will be caused by the enormous complexity of SJ.S. as
well as by the fact that many companies will have to replace
or significantly upgrade their current systems in order to
integrate them with the new S.I.S.

Companies that resist this increase will find themselves
fighting competitors at a rapidly increasing disadvantage.
Even companies that take a technology lead will have to keep
investing to remain ahead of a reacting competition.

3. Simple rules guiding "S. expenditures must disappear

Comparing I.S. costs to other companies' performance via a
percentage of sales or profits is very dangerous and short
sighted. The market leader of tomorrow may be the greatest
spender of today. Then again, the spender of today may be
dead tomorrow. The I.S. expenditures should be measured
against the total strategic potential and appropriately funded.

This also means that systems justification should no longer
be based on a R.O.I. (return on investment) or cost savings
alone. This justification process is typically cost driven and
made by a financial officer. It generally excludes the
positive impact of a S.I.S. on revenues.

Infornmtion ~lS a
COml)ctitivc \Vcapon 0087- II



4. Cor,porations must learn to protect the confidentiality
of their S.I.S. plans

Nobody would think of discussing a new manufacturing
process with a competitor. Yet when it comes to data
processing, papers are presen ted at industry meetings
discussing the corporation's strategic implementation of
systems. This co-operation has been with the industry since
its inception. It existed because no strategic advantages
were derived from data processing. Co-operation helped solve
computer/technical problems. Now that strategic advantages
can be obtained from technology, companies must become
more careful and protective of their I.S. plans.

5. Creativity must enhance logic

Problems should be tackled with a new wave of creativity to
complete the logic that has driven I.S. New technologies can
now be incorporated into very creative solutions that may
change the way that business is conducted, who the
competition is and even what makes the product. The
boundaries around the problem solving have expanded
considerably. This new dimension must be included in the
creation process of problem solving.

Impact of S.I.S. on the Industry

The whole data processing industry will feel the impact of strategic
information systems being developed by more companies. The first impact
will be an increase in spending that will create good opportunities for well
positioned suppliers.

We can also expect more standards to be enforced by the vendors of
hardware, software, and telecommunications. These will be required by
conlpanies as they try to integrate solutions from several sources.

Informution ;IS ;1

Compctitivc \\'cnpon 0087-12



The software tools and languages vendors in particular will be forced to
view logical transactions in network environments and provide solutions
for that new concept. The best positionned software tools vendors are
those that already support complete logical transactions across different
file structures. The logical transactions will be needed to ensure data
integrity, rollback and recovery across several systems.

Companies will demand application solutions that have built-in logic and
data exchange facilities to integrate with other systems. The corporations
will also require that any application package be easily customizable to
satisfy their strategic needs. This will favor solutions written with fourth
generation languages.

We can also expect new methodologies and approaches to be built for
developing and implementing S.LS. Most likely these methodologies will
be developed for fourth generation languages.

A new consulting/system integration industry segment will emerge to
tackle SJ.S needs. Their "main suppliers will be the leading edge and
multi-environments hardware vendors, the fourth generation languages
and associated methodologies creators and the packaged software
developers using 4GL technology and open design architectures.

ConclusioD

We are now entering the next era of data processing. Some have rightly
called it the information age. Information systems are emerging as the
critical next battle groud of corporate wars. Information is moving from
being a defensive weapon to an offensive one that carries a lot of might. It
will leave behind a lot of market leaders and create many new and exciting
opportunities. Is your company ready for it?

Inform:,Hon as a
Competitive \Veapon 0087-13





Experiences in Migration
James S. L. Cohen
Mecca Leisure Ltd

76 Southwark Street
London SEI OPP

1. Introduction

Much has been written and said over the last eighteen months about the
ease (or lack of ease) while migrating from a 'classic' HP3000 to a Precision
Architecture HP3000. It is the intention of this paper to look at the steps taken at
Mecca Leisure to complete a successful migration from an HP3000 Series 70 to an
HP3000 Series 950 - in a true user environment.

The paper will discuss the hardware and software related issues of migration, and
the preparations that should be made well prior to delivery of the HP3000 Series
900.

It is intended to answer as many of the questions, you might have regarding
the ins and outs of migration, without clouding the issue by getting unnecessarily
technical.

Since it is the intention to look at the experiences that Mecca actually had,
it is necessary to undertake a very brief look at the configuration prior to the
migration. Mecca Leisure was running two, HP3000 Series 70's, one being used for
Office Automation and one being used for commercial applications, such as
Accounts, Marketing Systems and Payroll. The intention was to upgrade the
second of the two HP3000's." Figure 1.1 is a schematic of the configuration prior to
the installation of the HP3000 Series 950 and Figure 1.2 the final configuration.

Prior to Migration

Figure 1.1

Experiences in Migration
0090-1



Final Configuration

JIIE=+==~s...
"1I'JiUII\

IAI33II

Two.
tRMIQA---

Figure 1.2

Connected to the machine that was to be migrated, were a number of
devices that would not be supported on the HP3000 Series 950 (for example X.25
connected via INP's) and printers such as an HP2608A (these too would not be
supported on the HP3000 Series 950).

When migrating from a 'classic' HP3000 to a Precision Architecture system,
it is important that you decide what level of migration is acceptable in the first
instance. Many of your application systems might not be best suited to migration.
If there are many calls to subsystems that require compatibility mode segmented
library calls, these programs might best be left in compatibility mode. Programs
written in SPL, that do not require Privilege Mode, could be well left as they are,
and your finite resources (programmers) made to concentrate on those programs
that can be easily migrated to the maximum benefit of the company.

Experiences in Migration
0090-2



2. Prior to Order

Once you have decided that for what ever reasons you require to
upgrade from a 'classic' HP3000 to a Precision Architecture HP3000, it is
essential that you have a careful look at the peripherals you have hung off
your current HP3000. There could well be a number of peripherals, that will
not be supported at first (or subsequent) release of MPE/XL. Failure to list
and check every single terminal type (sometimes with ROM release), every
printer, every tape drive and every disc drive, could well result in you
having to order peripherals at the last moment, which in turn could well
escalate the costs significantly.

For example :-

Have you invested in HP7933/37 XP disc drives?

These are not supported, but if you ask your Engineering Manager
nicely, he will downgrade them to HP7933/37 H drives for you. In due
course, when' the XP drives are supported, they will be upgraded again
for you.

Have you any HP2624A's left?

These need upgrading. However, beware of the HP700 series terminals;
these are not supported (but if you configure the terminal identifier
to 2392A, they seem to work fine).

Why is it that so few current devices are supported on the HP3000 Series
900's ? Is it because they ·are so fundamentally different? It is simply because
Hewlett Packard, didn't have time to test every existing/emerging peripheral
device, so although you should step with care, it is not impossible to use
nominally unsupported peripherals. Similarly it would have been a waste of effort
to write the necessary drivers for obsolete devices, rather than concentrate of
optimizing MPE/XL for current peripherals.

If you have any doubts, as to peripheral support the best single point of
reference is a document published by Interex following the Detroit conference in
which all peripheral and their levels of support across the entire HP3000 range is
listed.

Experiences in Migration
0090-3



3. After Order has been Placed

Now that you have finalised your order and convinced your management
into the purchase of a Series 900, the fun really can start. Assuming that Hewlett
Packard have given you a delivery date, you have little time to relax.

You must analyse all the code you have currently running on your
system, and if you use code developed and maintained by third parties
you must get them to analyse t~eir code. ".

You must decide which applications (or part thereof) you are going to
migrate fully or partially to Native Mode and which applications are
going to remain in Compatibility Mode. Remembering of course that
the only Hewlett Packard's supplied Native Mode. compilers are
COBOL (74 and 85 ANSI standard), Fortran '77 and Pascal. If you
have code in SPL it either needs rewriting or the use of a third party
product.

You must develop a full migration plan, covering the installation,
testing and final switch over to the new system.

What criteria should you use in determining whether or not to migrate to
Native Mode ?

Below is a list of questions, that I believe has to be answered :-

Is the program written in a supported Native Mode Language?

Does the program call any routines, that themselves cannot be
migrated into Native Mode?

Is the program regularly run?

Is the program to be run on both Classic and Precision
Architecture systems, perhaps at different sites?

What is your Disaster Plan? Do you intend to utilize a Classic
HP3000~ as part of your Disaster Plan ?

Are you making use of third party products, (that themselves
remain in Compatibility Mode) ?

The answer to all these questions effects your decision in how far to go in
migration, how many of the new features you are going to make use of in the
short term.

In effect the question could be :

"How much RISe are you going to take ?" .

Experiences in Migration
0090-4



because not only have you to decide as to how far you are to go with Native
Mode, but also how many of the new features you are going to permit your
programmers to use. These features are not just limited to new intrinsic calls
(SORTINIT/HPSORTINIT) but also do you use SETVAR instead of SETJCW.

So now lets start looking at specific things for you to do.

Experiences in Migration
0090-5



4. Training

It may appear almost irrelevant, but get your training booked now, ensure
that all relevant staff attend the two MPE/XL courses (Systems Manager and
Programmers). Beware however, these courses are not suitable for staff who have
not had considerable exposure to HP3000's, they are very much conversion
courses. At time of writing no MPE/XL for beginners courses are available,
although they must be under consideration by Hewlett Packard.

The two courses are a three day, MPE/XL Systems Manager Course and
seven day MPE/XL Programmers Course. While the Systems Manager course is
common across most HP3000 installations, the Programmers course covers a
multitude of systems based applications that you may not need to know or
migrate. For example, how to migrate Fortran'?? where real numbers are used,
how to migrate SQL/V to SQL/XL. It is quite likely that many of the constituent
parts of the course are not relevant to your installation, if this is the case
consider getting Hewlett Packard to run your own subset of the Programmers
course. In the case of Mecca the seven day course was reduced to three days,
without any problems.

The reduction in length of the programmers' course to three days would
only be cost efficient if you are running your own in house training.

Experiences in Migration
0090-6



s. Analysis of your Application Software

Now that you are aware of the new features and internal architecture of
the Precision Architecture HP3000's, it is time to take a long clear look at the
application software running on your HP3000.

Hewlett Packard have produced a number of analysis tools to help you in
the process (Product Number HP32428A) and you should arrange to have them
installed as early as possible in your migration process on your classic HP3000.

There are a number of elements to the Migration Toolset, that will help you
identify most, but not all, of the areas where some effort in migration is
required. The Migration Toolset will find most of the code incompatibilities, such
as intrinsics that are no longer available on the Precision Architecture HP3000's.
The Run Time Monitor makes heavy use of the system log files. and it is essential
that you have enough disc space to handle these.

5.1 Run Time Monitor

The RTM must be run for at least one full period (ie at least one
calendar/accounting month), so that it, has a chance to monitor all the events you
expect to migrate, since it monitors executing applications recording events into
the MPE log file. When starting RTM it is possible to determine which of eight
events to monitor, however there is practically no system overhead in using RTM
and I would recommend that all events be logged. Keep a close eye on the disc
space being used by MPE log files, if you were using one 2046 sector log file a
day, you could now be using four. Your system could soon clog up with MPE log
files, if this is the case - then update your MPT database and then store the files
to tape using LOGSNAP (from the TELESUP account). There is no noticeable
overhead in running this product, although Hewlett Pa<;kard' do warn you that
you could overrun a stack (this was never experienced at Mecca, and can be
avoided by running programs with NOCB at runtime).

A report program is provided to report directly on the MPE log files, but a
more meaningful report can be generated by using the log files in conjunction
with MPT (See 5.3). A quick look at a summary report from RTM is worth while
and why it reports on certain events.

Experiences in Migration
0090-7



Example of RTM Repor·t
HP30364X.C)t.C) A1W - DETAIL BY PAOGRMt FI.E LOG Dt\TE: 1HU. FEB a .. AI& 233

PAOCiAAM FI.E lIME QS SEGMENI' DELTAP $TAlUS EVENT IESCAPIION
MEMIM.PAOG.QI&M 4.23 PM PAOG MOO 007434 062005 710 D8UNLOCK Id'HIN l'RANSN:lION

4't8 PM PAOG MOO 007434 062005 no D8UNLOCK WITHIN l'RANSN:lION
2:30 PM iISC1 PROG MOO 007434 060001 710 D8UNLOCK WI1'HW 1'RANSAC11ON
3:01 PM H1830 PSI. M27 007434 060011 770 D8UNLOCK~ 1'IW&C11ON
2:47 PM jl$t83I PSI... 007434 0600CM 75t IB.OCK MODE 5
4:44 JIM jl$m2 PSI... 007434 0600CM 75t IB.OCK MODE 5
2:47 PM HtB32 PSI...a07 007434 060005 165 DBOPEN MODE 5 TO MODE 9
2:37 PM .stJ33 PSI...a07 007434 060005 • DBOPEN Mooe 5 TO MODE 9
2:47 PM .stD4 PSI. WOO7 007434 060005 T10 D8UNLOCK~ l'RANSN:lION
4:53 PM Ha PSI. 1006 007434 062005 710 D8UNLOCK WI1HIt 1'IW&C11ON

TAPEDUUJBIWIYJEGO 4~ PM jl$t84Q GSL 15001 000006 062005 99 CAU. TO GE1'PAM*X)E
4~PM jl$184t GSL W)()I 000006 062005. CALL TO GETPRNMODE
45 PM HIM. GSL W)()I ooooe5 060005 m CALL TO XCON'I'RAP

. 4:!55 PM ..... GSL MOt «X1f17 060005 200 CALL TO COMNMD
8:20 AM..... GSL MOt «»rJ7 060005 m CAU. TO XCON'I'RAP

QFERA~ 8:22 1M jUM() PAOG MOt 06000I 060005 342 FFILSNFO ITBt=42
8:23 AM "'JI4O PAOG M04 06«)03 060005 405 FGE11NFO ITEW=6
8:24 AM "'JI4O PAOG MOt 060005 062005 405 FGElINFO ITBP5

Figure 5.1

5.2 Object Code Analyser

A second application called the Object Code Analyser should be run in
conjunction with RTM. The main difference between RTM and OCA, is that
RTM analyses object code as it is run, while OCA cannot determine run time
parameters. The OCA scans designated accounts and analyses SL and files with
the file code of 'PROO' and .reports on potential incompatibilities in all object
code, within the designated account(s). I would highly recommend that when you
are running OCA that you logon into the DS queue, otherwise you might well
grind your existing applications to a halt (or run OCA in batch).

Since OCA cannot determine run time parameters, it cannot be sure if an
intrinsic call is incompatible in Native Mode or not. Therefore it reports on all
suspect intrinsic calls.

Experiences in Migration
0090-8



Example of OCA Report
OCA HP3CDI6A.OQ.OI (A.oo.ot WED. HOY a 1987. 10:12 AM Page: 1
Report rot MEMNA.PAOG.CUJBMAN :BRIEF

GENERAL INFORMA TION

ProcJam was prepped with~
ProcJam ortt con... ClIft user mode seaa-ts

UNRESOLVED EXTERNAL PROCEDURES

POTENTIAL INCOMPA TILITIES

h:GmpatIJIities dItacted in b ..... fie -...eNNA.PAOG.a..a.awt'
COMNAY):'" ~temDefined ~ttiIity ...

- The COMMAND i'\trinsic -.orts III'OCeSS e:teation WIder
MPEnCL CMICM 2521

- 1he meaning of -parm- ...NUn by tile COMMAND
has changed ...MP£nCL ICMINN 251
SUMMARY INFORMATION

NM ()dy Incompatibilties: 0
CMlNM~tMtes: 1
uaJaIIIe Ptoc:eclns Deteeted: 0

Figure 5.2

Figure 5.2 is extracted from an OCA report and as can be seen it produces a
considerable amount of information, most of it is purely detail, however it is well
worth the effort of checking as it reduces the amount of work required in
migration, by identifying only those programs that require any effort.

5.3 Migration Planning Tool

The third application and the one that pulls all the migration toolset
products together is called the Migration Planning Tool. MPT fulfils two issues,
the first is predicts the disc requirements required for Native Mode (of which
more later) and extracts from the MPE log files events recorded by RTM. All the
information from MPT is recorded in an Image database and a number of reports
can be generated from it. Each one serves a different purpose and it is worth
having a brief look at each. There are seven levels of report and a General
Information Report.

The General Information Report (Figure 5.3) gives you an estimate of the
growth in disc space required. The growth in disc space assumes a fully Native
Mode final system, if you have any Compatibility Mode code (that you have run
through the Object Code Translator) your programs will occupy at least five times
more disc space than they currently occupy. Some data files are also likely to
grow, if you align all your data on 32 bit, rather than 16 bit word boundaries.

Experiences in Migration
0090-9



Example of MPT
General Inforlllation Report

MPTI3000 A.OlOO REPORT GENERAL INFORMATION ..Mecca .....PLC - HP3000 Series JO 02I0M8 tHIPage t
8699 FILES WERE SELECTED
134 FILES WERE ADDEO FOR MFEIXL 05.398 MEGA8V1ES
1328 FUS WERE IEIEIED CI03.6 MEGA8'ITES
1HE NPEN SYSTEM AEOUAED AT LEAST 2283.412 MEGABYTES OF OSC SIW:E
DiE MPEIXL SYSTEM WILL REQUfE AT LEAST 22ttJ562 MaWM'ES rs DISC SPIIa

FOR AGROWlH RATE OF 8.091 NEGA8VTES OR 0.4.

nt£ fOLIDMNG FILE SETS WILL BE INCUI)EI) .. THE REPORT :......
THE FOUDMHG ALE SETS WIll. BE EXCWDED FROM THE REPORT:
....svs
nt£ NlGMTlON OPTIONS FOR THIS REPORT ARE :

o OB.ETE :FNAME··••CREA~
t DELE1E :FNAME .suPPQAr
3 IBETE :RWE .HPIU,
4 OB.ETE ;FNAME='EAAOAI.OG.e."
5 DELETE :FNAME='LOGH....svs-
6 DELETE ;CLASS-'NLOCr
7 use CW ;Q..ASSa'SL':l.ANGUAGea'SPL' etc

Figure 5.3

The Level 1 Syste~ Summary Report (Figure 5.4), will tell you something
that you probably never knew before, namely how many programs you have are
written in each language, it also gives you the file count by file code.

Given that TELESUP, PUB.SYS etc are ignored, this gives you a fairly clear
picture of what object code you have on your system. In Figure 5.4 is an abstract
of the actual report from Mecca Leisure's HP3000 Series 70, with the object code
the report shows how many potential problems there may be when moving to
Native Mode. The second page, dealing with non object code files, gives an
indication of the growth in disc space required to handle the data files (not
shown).

Experiences in Migration
0090-10



ExalIlple of part of MPT
System Summary Report

MPTI3000 A.DI.OO REPQAT LEVEL 1CSVS1'EM QMMIM .. MICal UIUe PLC - HP3000 SIdes JO 0i2II*88 ..,. 1

SL & PROGRAM ~ FILES OOMPA1l8IUTY MODE NATNEMODE
L.ANGtW:;E FILES V~a.uD ALES AJNES POSS WARN EAAOA POSS wMN EAAOA

BASIC 12 t382 0 0 7 0 0 8 13 0
COBOL 620 43.020 244 232.041 362 22 0 G30 • 28
D8SCHENA 0 J)O() Q 25.910 0 0 0 0 0 0
FCJRTRAN 88 4.499 20 1.E03 95 0 0 205 9 10
PASCAL 71 4.062 13 IU58 sa 1 0 117 9 0
APG 0 .000 1 1 0 0 0 0 0 0
SPL 564 42.347 42 20.940 58t 133 " 122 4_ 85
STREAM 0 .000 861 41._ 35 30 13 35 • 13
TDPALE 0 .000 69 S8.252 0 0 0 0 0 0
TRANSACT 9 .000 85 24.654 0 0 0 0 0 0
we 0 .000 1150 9.630 25 34 32 25 ~ 32
UNClASS 65 1094 IS ~t 74 10 0 93 42 6

Figure 5.4

The Level 2 report is an account summary of the information given on a
system wide scale in the Level I report, and the Level 3 report a group summ~ry.

Level 4 is a file summary of all the files on the system, their file code, file
size etc. If the file is a program it lists the number of possible inconstancies, the
number of warnings and the number of errors likely to be encountered on a
Compatibility and Native Mode basis. The report also includes such details as the
stack size (Compatibility Mode only) and the likely increase in disc space in
Native Mode. On a medium size system the Level 4 report runs to about 400
pages.

Level S of the MPT report is an even longer report, but reports by file each
possible error encountered. For example, a job (or UDC) that compiles is likely to
have reference to the PREP command, since this is replaced by the LINK
command under MPE/XL, this file has as possible error reported on it.

However the report that was found to be the most useful, and only one
hundred pages long for the full system, was the Level 6 report on event details.
This contains a page per questionable event, and then lists all the files in which
the event occurs.

Experiences in Migration
0090-11



ExalIlple of MPT
Event Details Report

• Rnt EVENTS •

IEVENT 2001 COMMAND IN1RNSIC - CHECK FOR USE OF OBSOLEte MPE COMMANDS

caa.tibiIity Mode Severity lAweI is POSSSLE
Native Mode s.enty .... is,POSSIBLE

The MPE )(L command interPreter .. not accc!Pt certab MPE Vc:ommandL
A program -"icIl calli the COt&tAND intrinsic lllight attealpt to execute one of tile theM c:ccnmandL

ACTION: ExaaIN tile PfOSJld"S use of the COt&tAND intrintiC to inUe
......... aaIr lOlI! XL--.
~ GROtP RLEISI
a.uBMAN PAOG NattN MEN5A MENNA
DISC Pte OBINSTAL DSIInL

TURBO DBIUTL
INFOSVS OSN DESIGNER DESIGNG

GS REACTOR
OSCAR pt8 0SC2680 OSCMN

Figure 5.5

The only slight problem with this report is that it was written with
HPImage in mind. All 'DB' calls that cannot be directly changed to an 'HP' call
are reported on. More usefully any program calling the COMMAND intrinsic is
listed, since the formats of some MPE commands have changed and could affect
programs (for example LISTF returns a slightly different result).

Using the information you have gathered you are now in a position to
consider migrating. Hopefully Hewlett Packard would have assigned to you a
migration trained AE, he will help you analyse the reports and advise you on
what changes are required. For example, job streams that compile can be changed
well in advance to any attempt to migrate.

Given that Mecca Leisure do not utilise any non standard code, what
doesn't the MPTIOCA reports tell you ?

There are problems (bugs) in linking Fortran'77 routines called
from Cobol. In fact it appears easier either to recode the Fortran
into Pascal or Cobol, or to leave the programs in Compatibility
Mode.

There is a change in the number of parameters when calling
SORTINITIXL. The sixteenth (cailed 'spare' on SORTINITIV)
no longer exists.

Experiences in Migration
0090-12



Calls to the KSAM intrinsics from Cobol are suspect, but can
easily be replaced by REWRITE etc.

If you attempt a CKOPEN to a non KSAM file, on the MPE/V
machines you will receive a warning tombstone, on an MPE/XL
machine you will suffer an abort (with no tombstone).

If you divide by zero in COBOL/V the result of the divide is
zero 1! On COBOL/XL an attempt to complete a divide by zero
results in an error, which can be either fixed by using the ON
SIZE ERROR code or by setting a run time variable.

Does not report on calls to COBOLLOCK/COBOLUNLOCK
intrinsics which are obsolete on Precision Architecture HP3000's,
as they are superseded by the EXCLUSIVE/UNEXCLUSIVE
statements in Cobol.

You might have heard that a file can be built of infinite size,
yet occupy zero sectors and zero extents. This is true, so long as
you call the HPFOPEN intrinsic programmatically. If you use
the BUILD command, it calls the FOPEN intrinsic, and you
remain restricted to current MPE/V file limitations.

5.4 Analysis from Migration Toolset

Using all this information, makes determining where effort is needed
considerably easier, but the reports need careful filtering. Much of the
information is hidden in a cloud of errors reported on many Image calls, that
would have needed changing when and if you move from TurboIniage to
HPImage. It is a great shame that the effort was not made to remove the HPImage
errors, once it had been decided to migrate TurboImage'to Native Mode and to
delay HPImage.

Experiences in Migration
0090-13



6. Suggested Steps In Migration

Now that you have the' information necessary in determining what changes
are required in migrating your system, you can make many of the changes prior
to formal migration :-

any SPL routines that you are going to rewrite, say into Pascal, should
be rewritten and tested on an existing HP3000. This is important as it
will ensure that any problems you have will be limited to purely
migration issues. Any attempt to change code simultaneously with
migration is liable to fail.

when you come to migrate, migrate initially using 16 bit alignment (as
used on the 'classic' HP3000), once you are sure that the application is
fully migrated, then and only then consider recoding to utilise 32 bit
alignment.

never consider making program changes, as part of the migration
process. Make any changes on a classic HP3000, fully test the changes,
and then migrate.

6.1 Migration Steps

The steps to be followed, once you have access to a Precision Architecture
HP3000, whether in a Migration Centre or your own utility, should be as follows
:-

Test Programs in Compatibility Mode

Put any programs that are to remain in Compatibility Mode, through
the Object Code Translator

Test Programs in Native Mode, with no optimization

Test Programs in Native Mode, with optimization

Change data alignment

The decision as to whether or not to change the data alignment should be made
based on the answers to the questions listed in Section 3. However, if there is any
intention to run the same programs and data on a 'classic' HP3000 as on the
Precision Architecture HP3000, then remember to keep Native Mode and CM
mode programs (in separate groups).

To make the transfer of accounting and UDC information as simple as possible
there is a program on the Precision Architecture HP3000's called DIRMIG that
will migrate these. Using the DIRMIG command on a Precision Architecture
HP3000, rebuilds your accounting structure and sets the UDC's. Restore the
accounts and ensure that all your systems (with the possible exception of some
Privilege Mode code) work in Compatibility Mode. Mecca's experience of this is

Experiences in Migration
0090-14



that all our own and third party applications work well. Before using DIRMIG
use the opportunity to clean up your COMMAND.PUB.SYS file - over the years
this file has probably become cluttered with UDC's from accounts that have been
purged etc. Use the program UDCWHO.PUB.TELESUP to list all the UDC's that
are recorded in the COMMAND file, then build the accounts/users and reset the
UDC's. This will give a clean COMMAND.PUB.SYS file (at least to start with) on
your new HP3000. One area that DIRMIG does not work, is in the. moving of any
groups you may have set up in the SYS or TELESUP accounts, therefore you will
have to restore these separately from the main migration.

The next stage is to recompile into Native Mode, those programs for which
you have source code. If you have third party products that are called as
intrinsics, then ensure that the suppliers have provided you with Switch Stubs,
that enable your Native Mode applications to call Compatibility Mode intrinsics
(if they have not yet produced them you can produce the Pascal code yourself
using the program SWAT).

The programs which are written in SPL (or any other language that is not
available in Native Mode) and third party products that you do not have the
source code for, should be run through the Object Code Translator (OCT). OCT
adds to the end of the program code that would normally be produced at run time
by the CM Emulator. For a program, this reduces considerably the time taken to
load the program. Any program that has been run through OCT or compiled using
the compatibility mode compilers, will still run on a 'classic' HP3000 - so long as
you ensure that the program occupies one disc extent on the 'classic' HP3000 (the
system does not automatically ensure this).

Compatibility Mode is clearly as good as Hewlett Packard suggest it is going
to be, but how does it perform? Our tests indicate that CM on an HP3000 Series
930 is very similar in performance to an HP3000 Series 70, with the HP3000 Series
950 running about 1.6 times faster. If object code is run through OCT then the
CM program runs about 15% faster than before it was enhanced.

The area of real improvements are seen when code is run through a Native
Mode compiler and where possible optimized to level 2 (Optimizatio~ level 2, at
time of writing, does not work for Cobol). If performance is the be all and end
all of life, then a number of small programming changes can be made to increase
performance greatly. For example change all data definitions from 16 bit integers
to 32 bit integers, a'nd ensuring those 16 bit integers there are, are word aligned.

To give an example of what can be achieved on an HP3000/930, by making
a number of small programming changes, a program was written in Fortran and
Cobol to complete an iterative loop 4 million times. The performance figures are
as follows :-

Experiences in Migration
0090-15



Compatibility Mode
Compatibility Mode, with OCT
Native Mode, no code changes
Native Mode, Levell (Cobol)

Level 2 (Fortran)
Native Mode, 32 bit aligned

with in line performs
Native Mode, 32 bit aligned

level 2 optimization

Run Time in Milliseconds
~:!!iin-------£abol

96,198 187,050
20,059 80,120
9,034 12,537

11,535
3,020
6,031 11,037

8,034

1,010

As can be seen 32 bit alignment is a slight benefit to Cobol, but of enormous
benefit to Fortran (and Pascal).

6.2 Precautionary Step

At all times ensure that you maintain a copy of object code and job streams
that will run on a 'classic' HP3000. Until such time that you are sure that you
will never have to attempt a backwards migration, ensure that you maintain
groups for true Compatibility Mode code and for job streams that do not include
any of the MPE/XL extensions. While this is a management overhead, it is well
worth the trouble.

Disaster Recovery must always be at the back of .your mind, since no
disaster service currently offers an HP3000 Series 900 as a backup. So if you have
a disaster plan based on an HP3000 Series 70, remember that you must keep
compatible programs, job streams and data. Only when you can be sure that you
will never again need to recover onto an existing 'classic' HP3000 can you finally
and fully migrate.

While looking at precautionary steps, remember that the format of store
tapes has changed. If you are going to produce tapes for use on a 'classic' HP3000,
then you must use the TRANSPORT option on the st~re command. The set back
in using the 'transport' option is that you cannot make use of anumber of the
new features of the MPE/XL store command such as FULLSTORE (which makes
partial stores, less easy), DIRECTORY (which stores the directory elements
needed for the equivalent of an accounts reload) or STORESET, used when
storing to multiple tapes simultaneously. Once you are sure that you need never
move back to a 'classic' HP3000, then you can stop using the TRANSPORT option
and make use of all the new features. This in turn will increase the time your
system is available to users, by dramatically reducing store times.

6.3 Database Logging Migration

If you have database transaction logging in place, you may well have to
reconsider your recovery strategy. Currently if you use a private volume for
rollback recovery, this should not be used on an HP3000 Series 900, since the
rollback recovery transaction log files h~s to be in the same disc class domain as

Experiences in Migration
0090-16



the database it is logging (because of the file recovery system, implemented under
MPE/XL).

This gives you a number of options:

Continue to use rollback recovery, but risk the fact that your log file
could be lost - in a disc failure with your database.

Use rollback recovery, but log to tape

Continue using a private volume, but use roll forward recovery.

We chose to use roll forward recovery, since this maintained the integrity of
keeping the transaction log file on a private volume. It had the added benefit of
the use of autodefer at all times, with the performance benefits that autodefer
implies.

6.4 Job Stream Migration

Linked with program migration is job stream migration. Jobs that complete
stores, sysdump's etc have to be changed to reflect the changes in the store
systems. Equally jobs that stream other jobs, just to switch logon groups can be
changed to make use of the CHGROUP command.

Since it could well be that you need streams to run both on MPE/V and
MPE/XL system, you may well not wish to make changes beyond those required
by MPE/XL.

6.5 House Keeping Activities

Since FULLBACKUP and PARTB'ACKUP are not part of MPE/XL and
there are numerous other changes to the SYSDUMP type functions :-

You must very carefully document your revised house keeping
instructions.

You must ensure that cold boot tapes are regularly completed (using
SYSGEN).

That the accounting directory is regularly stored (using the
DIRECTORY option on the MPE/XL store command).

I would recommend that any store that is not being prepared with the
TRANSPORT mode option, is always prepared with the DIRECTORY option.

If you have more than one tape drive, and do not need to produce transport
mode tapes at all times; the MPE/XL store command will allow concurrent
backup across a number of tape drives. This would allow very fast backup's of
the system and increase the time that your system is available to your users. Since
transport mode tapes take much longer to produce, only cut them when it is
absolutely necessary.

Experiences in Migration
0090-17



7. Conclusions

Migration is a complex process and should be planned, in conjunction with
your migration application engineer. If it planned meticulously it should be
relatively easy to achieve a successful migration, so long as you remember what I
consider the three golden rules in migration :-

any SPL routines that you are going to rewrite, say into Pascal, should
be rewritten and tested on an existing HP3000.

when you come to migrate, migrate initially using 16 bit alignment (as
used on the 'classic' HP3000), then once you are sure that the
application is fully migrated, and only then consider recoding to
utilise 32 bit alignment.

never consider making program changes, as part of the migration
process. Make any changes on an classic HP3000, fully test the
changes, and then migrate.

Expec~ there to be problems, so leave yourself plenty of time for the
unexpected. So long as you test all your job streams, as well as the programs, there
should be no insurmountable problems.

Acknowledgements

1 would like to record my thanks to the following, who have been of invaluable
assistance during thi! Migration Project at Mecca Leisure :-

Nick Blaney
Chris Cotton

Howard Gillman
David Guy

Chris Haird
Jim Harrington
Thomas Lacker

Andrew Popplewell
David Poskett

Coggon Computers, Sheffield
Hewlett Packard, Cheadle
Hewlett Packard, Redhill
Hewlett Packard, Redhill
Hewlett Packard, Redhill
T J Systems, Beaconsfield

Hewlett Packard, Boeblingen
Hewlett Packard, London
Hewlett Packard, London

Experiences in Migration
0090-18



DON'T LET YOUR PROGRAMMER GROW UP TO WRITE OPERATIONAL DOCUMENTATION

OR SHOULD YOU?

J. B. Watterson
ORI/CALCULON Corporation
P.O. Box 270
Germantown, MD 20874

SOME FOOD FOR THOUGHT

How many of you actually enjoy writing and maintaining documentation? I
thought so. At the risk of incurring the reaction "Oh not again!", I submit
that you can actually enjoy developing online system operational
documentation. Although there are no magic remedies for documentation
problems, there are some tools and practices to assist us in creating
good, useful documents. Creating good documentation can be easy and it can
be fun! The best way to accomplish this is to make documentation
development an integral part of the programming and maintenance process.

After all, you are accustomed to working at your terminal. You actually
enjoy programming, and aren't afraid of the computer hardware or software.
With some guidelines, techniques, and encouragement, you can document.
And, you might even enjoy doing it.

Let's first look at some observations.

o Most of us don't like to write! Since we don't enjoy writing, we
often don't create the documents we need. And when we do create
them, they are often unreadable. Unreadable documents are unusable
documents.

o Most of us would agree that an application is only as good as its
documentation. Yet documentation is typically inadequate, and is a
neglected by-product of the software development process.

o Poor documentation adds costs. User training costs increase
because it takes longer to bring the user up to speed. Maintenance
costs are higher because program applications are not documented
properly - internally or externally.

o Good documentation requires some extra effort on the part of each
of us. If provided with guidelines and time, documentation can
become a fun and challenging part of your job. You will accept and
enjoy your documentation responsibilities. The result good
documentation.

So, let's take a brief look at how we do it today:

Operational Documentation 0092-1



o Our systems documentation generally consists of a System Reference
Manual and a System Maintenance Directory.

o Traditionally, operational documents are created as paper
documents. maintained by support programmers or technical writers,
and distributed by a technical reference librarian.

OUR APPROACH TO OPERATIONAL SYSTEMS DOCUMENTATION GENERALLY CONSISTS OF
A SYSTEM REFERENCE MANUAL FOR USERS, AND A SYSTEM MAINTENANCE DIRECTORY
FOR SUPPORT PROGRAMMERS.

We have taken the general FIPS PUB Federal government standards and design~d

customized operational documentation guidelines tailored to our environment.
These guidelines provide for consistency without rigidity. Our
documentation then reflects the needs of the users of a wide variety of
systems.

Our structural approach to operational systems documentation generally
consists of:

o System Reference Manual for users.

o System Maintenance Directory for support programmers.

The System Reference (User) Manual describes interactive terminal operating
procedures and software/operational capabilities for user organizations. We
use non-ADP terminology. This manual is the primary user document. serving
both first-time and experienced users.

The manual provides complete instructions for use of the system by the
users. It is used as the primary reference during user training. It is the
standard reference to which users turn during production operation of the
system. This document is structured in such a way that its effective use
does not depend on prior data processing experience on the part of the
users.

The scope of the manual includes initiation of system operations. data entry
and correction, production of reports, and system recovery procedures. A
hardcopy manual complements the systems online menus, screens. and prompts.

Quick Reference Cards~ are also provided, as needed. for quick and
easy assistance to the users. They provide easy access to information that
users need often while they are online, such as codes or special commands.
The QRCs are printed on bright. heavy card stock, in a "z" fold fashion.
The cards are easily maintainable and can be distributed with inexpensive
plastic cases which users can attach to their terminals.

Operational Documentation 0092-2



The System Maintenance Directory is designed to acquaint the maintenance
programmers with the system processes, system programs, and files. It
serves primarily as a road map to the entire online system. It identifies
the components of the system and their interrelationships. The directory
generally includes an introduction, system overview, processes, program
names and files. Files include data base schemas and data sets.
Supplementary information, as required, is included as an appendix.

Unlike the Program Maintenance Manuals of the past, we no longer include
flow charts, program descriptions, or a detailed logic flow for each
program. Information of related standard software packages that can be
obtained easily from other sources are also not included.

Program-level documentation for each program is part of the source code and
is updated whenever a program is modified.

The operational documentation, hardcopy or online, should be easy to
use, and simple to maintain. Yet, it must provide the necessary information
for the users and support personnel to run and maintain the system.

TRADITIONALLY OPERATIONS DOCUMENTS ARE CREATED AS PAPER DOCUMENTS,
MAINTAINED BY SUPPORT PROGRAMMERS OR TECHNICAL WRITERS, AND DISTRIBUTED
BY A TECHNICAL REFERENCE LIBRARIAN.

For years, system user reference and program maintenance documentation have
been created as paper documents during the operational documentation phase
of the systems development life cycle. The programmer scribbles these
documents (reluctantly when they find the time). They are typed, printed
and distributed by the hundreds by the technical reference librarian.

Then the poor maintenance programmer has to try and update the documents
(again reluctantly) and the cycle continues. If you are lucky enough to
have a technical writer, you can be assured the grammar and spelling are
correct and the i's are dotted. And don't forget those distribution lists
have to be updated -- or are they?

Current documentation development practices are expensive, difficult to
manage and maintain, and often lead to products of inconsistent quality.
I'll ask my question again -- how many of you actually enjoy writing and
maintaining hardcopy documentation? I think you are getting my message.

My history lesson is over. Let's talk about some tools and practices you
can use to enjoy developing good documentation.

Here's how we can revolutionize our documentation procedures:

o We need to use
distribution tools.

our computers as information
Drop the paper and pencils.

gathering and

Operational Documentation 0092-3



o Write like you talk. Reach the point where you
conversational style. Use words that are easy to
avoid jargon. Write as if the reader is:

Unprepared.

Insecure.

Confused.

Incompetent.

can write in a
understand and

o We need a commitment to user-friendly communications: online
documentation.

These are the areas we are going to discuss from here on in this
presentation. First, this isn't a 1, 2, 3 "how to" presentation, but one to
give you some ideas and make you think about them. Take these ideas back to
your own organization and implement the ones that will work in your
environment.

WE NEED TO USE OUR COMPUTERS AS INFORMATION GATHERING AND DISTRIBUTION TOOLS

For years, we have been providing the users with-systems to gather, edit,
manipulate, store and report information. Documentation is information. So
why haven't we used these system capabilities? One obvious answer -- no
shoes for the shoemaker's kids. We need to use our computers as
information gathering and distribution tools for operational documentation.

We have our editors, HP Text Data Processor (TDP) , word processing, graphics
packages, and now desktop publishing. We have the computers, albeit
mainframe, HPs and the PCS. And, we have communication packages like HPs
Distributed Systems (DS). So let's start using these tools to develop our
operational documentation. We still need some hardcopy documentation, but
we need lots more online documentation. So start using some of your
computer hardware and software to your advantage.

Why?

1. You will love it. This is your natural habitat. You feel warm and
cuddly wi~i~and ca~develop documentation as you program. If you use a
word processor, it probably features a spelling check, perhaps even editing
features. Some shops have put together some menu interfaces to create
documentation skeletons you can fill out at your terminals. And, there are
commercial packages available to assist with documentation. By using some
of the methods I'm about to discuss, you can easily write like you talk and
create much of your documentation online.

Operational Documentation 0092-4



And wouldn't it be easier for you if the inventories of your application
programs were stored as online data sets? They would be easier to update
than having them printed in a hardcopy System Maintenance Directory.

2. Documentation is easy to maintain when it's online. Whether
updated by a programmer~ a technical writer, or a word processing-person;
modifications can be made easier and quicker. Editor bars can be inserted,
date of modification indicated and new pages added. Even a revised table of
contents can be generated automatically, if needed. Desktop publishing
puts the means for producing quality hardcopy operational documentation in
the hands of the developers.

3. Most users like online documentation. For one of our new major
systems, we developed both online documentation and a paper System Reference
Manual (SRM). We found that the paper document was used infrequently. We
have about 80 active users on this system, but only a dozen hardcopy SRMs
are now available. Our users prefer using the online documentation and the
Quick Reference Cards (QRCs). For other systems, we have database managers
updating access tables and error message tables. The maintenance programmer
no longer has to perform these clerical chores.

For one of our large, complicated budget systems, we developed five QRCs.
The first card contains general information, i.e., title, system modules,
points of contact, logon/logoff procedures, and command conventions. The
other four cards represent each of the system modules. With these QRCs and
online documentation, only a few of the users needed a hardcopy System
Reference Manual.

4. If ~ develop documentation using the computer, we can use the
computer to distribute technical documents. For example, our Departmental
Accounting System, operating on the Hewlett-Packard, provides a method for
storing all operational systems documentation as files, and transferring
text from/to the host HP to the word processing equipment. The modified HP
files are transmitted electronically to the ten accounting sites for
internal printing and distribution.

Someday we hope to have online user documentation for this system, but it
is always easier to develop it for new systems than to go into an existing
system. Documentation experts estimate that it costs from 4 to 10 times as
much to document software after it is written than to do it while a program
is being developed.

5. Finally, there has to be! cost savings associated in using our
computers as information gathering and distributing documentation. The
savings are generated by providing online documentation at time of
programming and eliminating much of the hardcopy printing and distribution.
When these documents are updated online by the maintenance programmer and
released to the production system, they are immediately available to the
user. A major savings in costs and other resources.

Operational Documentation 0092-5



It is virtually impossible to determine the price that we pay for faulty
documentation. We may know what it costs to document something properly,
but what does it cost to not document? Consider, for example, the costs of
training and maintenance for a poorly documented system. It takes users
longer to come up to speed, and how much longer does it take a maintenance
programmer to fix a bug? Who knows?

I had one programmer develop all of his documentation on the HP3000 using
TDP and an HPIOO lap-top PC. Then he devised a way to transfer it to an IBM
PC, which was connected to our NBI word processing machine. The word
processing folks did some reformatting, clean up, and spelling checks. They
printed a beautiful draft copy for review and modifications.

Others have done something similar using the IBM mainframe and word
processing packages on a PC and transferred the document to our centralized
word processor. My point is they enjoyed it. It worked, and the company
saved money.

Something that can't be measured in dollars is the online documentation
psychology. The programmers and users like it. Management is pleased. Good
documentation is available and not a forgotten entity. We were
electronically sending documentation for one system, but realized that no
one was copying and distributing it. To our embarrassment, our own
programmers hadn't even gotten a copy of the revisions. The online
documentation psychology makes for high morale, updated information and cost
savings. Try it -- you'll like it!

WRITE LIKE YOU TALK

We write it as if we are trying to write. And we shouldn't. We should
write it as if we are speaking. We ought to talk it. Because in talking
it, we automatically put some emotion into what we are saying. We eliminate
the technical, archaic, flowery, meaningless, tongue-twisting wordiness.
This comes with getting our pencil or terminal into gear before our brains
have thought it all out. We get diarrhea of the fingers.

Now let's discuss some reader-based writing techniques. These will make it
easy fer you to develop good documentation -- and even enjoy it.

Have you ever done much writing? Probably not. Few of us ever feel an itch
to write. The rest - 99% or more of us - were born non-writers. Writing
has always been an unpleasant chore - something like a visit to the dentist
or a car dealership! Most everyone has to do a certain amount of writing in
their job.

Why don't we enjoy writing? The reasons are numerous. But one common
reason is we are afraid our grammar, punctuation, usage and spelling are not
up to snuff. Therefore, we are afraid to write -- we hate writing. But

Operational Documentation 0092-6



you don't need more grammar,
develop good documentation.

punctuation or usage (spelling maybe) to

Most of us need a basic change in attitude. Let's look at a new and
different way of approaching the whole problem. Again, forget the correct
grammar, good English, and mistakes to avoid. Reach the point where you can
"talk on the computer" or paper, if you insist. Write like you talk!

We've already established the fact that you are comfortable using terminals
and pes. So why not continue to use these tools to develop documents? If
you develop online documentation, you must use these tools. If you still
need hardcopy documents and online narrative, establish guidelines and use
the computer to write. Sorry, I meant to say "write like you talk."

The trick is to remind yourself to write in a conversational tone, and in
informal surroundings. Try to imagine yourself talking to one reader in
person. After all, your reader is alive, hopefully well, and likes talking
in the everyday conversational mode. All the ones we work with certainly
do.

When most people read, they have a voice inside them speak to them. Write
assuming that your reader will read your documentation the same way. How
many of you enjoy talking? (If necessary, be honest). Writing can be just
as easy and fun as talking. Write as you talk. You'll be surprised at
the quality of the finished document if you use a conversational rather than
a literary style.

You needn't impress a user or maintenance programmer with big words,
technical jargon, and a barnyard full of bull. Chances are they won't
be impressed. So, write like you talk. Go over what you've written and then
listen to it. If it doesn't sound like talk, change it.

Rudolf Flesch has written an excellent, short, easy-to-read book on "How To
Say What You Mean in Plain English". In his book, he describes seven
ground rules (specific style devices) that will make your writing look and
sound like spoken English. By the way, these rules may apply to all
writing, not just systems documentation.

I've modified these rules and included a few of my own which will assist you
in developing documentation the easy way. Here they are:

1. Use active voice.

2. Use simple whole declarative sentences.

3. Use short words.

4. Use short sentences.

Operational Documentation 0092-7



5. Limit paragraphs to only two to six sentences.

6. Use contractions like it's or doesn't.

7. Use direct questions.

8. Use the pronoun "you" as much as possible.

9. Use bullets.

Are you starting to get the drift of what I'm talking about? Let's look at
some of the rules in a little more detail.

The active voice expresses action. It is something which the doer does.
This example is from an ad in one of the Washington papers.

"I will listen to you for $5.00 an hour. Call :::-::::.

Here's one from one of our user documents. UFunction keys 5 (left) and 6
(right) scroll the columns to the left and right for you to view."

Be specific - eliminate all generalities.

"The world is round."

See how the active voice "I will listen" and "for you to view" are action
packed statements. No generalities in any of the above statements. Easy
for you to write. Easy for the reader to understand. You've got to accent
the conversational, eliminate the jargon, and don't mess with Mr ..
In-between.

Use Simple Whole Declarative Sentences

Remember the old saying, "Tell it like
itself. So easy to write, yet so powerful.

it is?" The sentence declares
Use it regularly.

You might remember back in the 60s when President Kennedy made a famous
speech and talked about development of the space program. He said something
like this. "Before this decade is out, we shall put a man on the moon."
This is simple, but short. Everyone knew exactly what he said. A recent
cartoon in the Washington Post updated this quote like this, "Within this
decade we will send a man to the Soviet space center and bring him back."

"The man who is in
it was put in both the

Here's how
possession

a famous ad
of one should

could have been written.
be asked." Fortunately,

Operational Documentation 0092-8



active
famous.

voice and in a declarative sentence
"Ask the man who owns one."

or it wouldn't have become

So tell it like it is! Again easy to write -- easy to understand. If you
only knew this kind of writing is acceptable, wouldn't you use it? Sure you
would.

So why do people use long words in writing? There are many reasons, but who
cares? Just don't use them. Long words and technical words come between
the writer and the reader. If you want your reader to understand you, then
use short words. Besides, you probably won't have to worry about spelling
a short word. The user won't have to look it up in a dictionary.

Here's some do and don't use words for system documentation:

yes
no
help
follow
send
ask for
end or stop

affirmative
negative
assist
comply
forward
request
terminate

Use simple, short words whenever you can. Do you think you can argue with
this technique? Probably not.

Use Short Sentences

The average person can only read so many words at a time before their eyes
give up and take a short rest. Newspaper writers and editors try to keep
the number of words in a sentence down to plus or minus 20. It's so
much simpler to construct a short sentence than a long complicated one with
semicolons, colons, parentheses, and etc ....

All you need to do is make short sentences with an occasional comma and a
period or question mark. You will love it and so will your user. Not much
grammar to worry about. Mostly a subject and a verb. And yes, it is
possible to put a preposition at the end. We use prepositions at the end
when we talk. No one has had to go directly to jail - do not pass go - do
not collect $200 for putting a preposition at the end.

Here's a good example of a poorly written long sentence
document I received. A total of 46 words!

from a real life

Operational Documentation 0092-9



"In consideration of this implication, our first and fundamental
recommendation concerning the future HQs supplied system (software) end user
documentation is that it and the locally developed and maintained accounting
system documentation each acknowledge and compliment the information
provided by the other, both conceptually, and logistically."

Why not just write "Our first recommendation is :::::::::::::."?
Shortening your sentences is one of the best and easiest ways to improve
your writing style. Surely you can use the short sentence technique.

Keep Your Paragraphs Short

If using short words and short sentences make sense, why doesn't the same
logic apply to paragraphs? It does.

Here's an excerpt from a document I received. A good example of how not to
write a paragraph with only one sentence. By the way, this has 52 words in
it.

"In other words, are sufficient Human and material resources available
(commitment) to prepare and/or update the Documentation at the same time
that particulars of its subject change, and does the method of communication
of the Documentation material (logistics) support rapid and reliable
dissemination to the targeted End Users of the Documentation."

Now don't ask me what that paragraph says. Because, I don't know. You
understand what I am saying. Keep your words short. Keep your sentences
short. Keep your paragraphs short. Easy to write. Easy to read.
Any of us can write this way.

Use Contractions

There are fifty or so contractions that are commonly used in writing. I
don't want to take the time to list them all. A few examples are: I'm,
you're, he's, she'll, aren't, haven't, won't, don't, and let's. I've used a
plenty of them in my presentation.

Don't get weird and invent your own like it'd and this'll. Stay with the
accepted ones.

So, use contractions because that's what we use when we talk. You probably
use them too.

Use Direct Questions

There's nothing like a direct question. Use them freely, especially in
preparing online documentation. Do you want to continue? Do you want to
edit your input? Do you need help? All the user has to do is type in a Y
or N. Keep the questions short and direct. Let the user answer as simply

Operational Documentation 0092-10



as possible. There's nothing like a direct question to get some feedback to
what you are saying.

Use Pronouns As Much As Possible

When you're talking to people, don't you use I, me, you, we and they? Sure
you do. Why not use pronouns when you are documenting? I love the word
"You" when you are explaining something to the user or maintenance
programmer. Consider the following examples:

o You do this.

o You enter.

o To help you.

How about using this techniques as it makes documentation personal and
warm. You are talking directly to one person. Only one person - you.

See how easy it is for you to talk as you write?

Use Bullets

Although you don't talk using bullets, I like to use this technique in
documenting for the following reasons:

o It makes writing easier.

Phrases, statements or sentences may be used.

Little or no punctuation is used.

Statements can be broken down to at least four levels.

Not much grammar to worry about as you don't even need to write
complete sentences.

No numbering scheme is necessary; e.g. w l.a, l.b, etc .....

o It makes reading easier.

The facts aren't all jammed together in a paragraph.

It's easy to make notes or references to a line item.

You can easily concentrate on one line at a time.

See how clean this looks and each line jumps out at the reader. If you need
to go to lower levels, here's how we break it down:

Operational Documentation 0092-11



o level one

level two

00 level three

level four

',bis technique is easy for you to use, and it makes your documentation easy
for the reader to read.

ONLINE DOCUMENTATION

We need a commitment to user-friendly communications: online documentation.

So much for tradition. Let's make it easy for us and our users. Let's
start developing online operational documentation for the mainframes, the
HPs and the microcomputers (PC) systems. The PC folks have been doing this
for years. Why not strive for a paperless society?

Did you notice the statements on the income tax instructions about form
reduction? What a laugh! And, their instructions are something else,
aren't they? The instructions are user-nasty. The IRS hasn't really
helped us this year. To illustrate, here's a cartoon from the Washington
Post:

"Dear Tax Accountants:

I'd like to get your help in figuring out the new tax instructions and this
year's tax forms. They've really got me stumped.

Sincerely, John Q. Jones IRS Agent Treasury Dept. . .. Washington, D. C. "

Well, let's not be like the IRS. Go for online documentation. You can
still have some hardcopy documentation or Quick Reference Cards available.
Or even tell your users they can print a screen if they need to for a paper
reference. Isn't this much easier than looking something up in a three-inch
documentation manual? Sure it is.

We've established that tradition is out, and you' can write like you talk.
And, you can develop documentation in your own environment using the skills
and tools you already have. Now we'll talk about some methods to provide
online text. This subject could be a technical discussion all by itself, so
I will only touch on it lightly.

Operational Documentation 0092-12



Tutorials

You should provide the user with tutorial assistance screens. This provides
first-time users and maintenance programmers with the basic information on
"how to use the system". This is also a valuable tool for initial and.
ongoing training seminars. Tutorials are also good for describing screens
and error messages. Remember to write like you talk.

Screen Design

Very briefly, design the screens to help the user. Design them to create
a paper document if necessary. Provide user guidance and prompting
assistance. Highlighted movable lightbar (block cursor) prompting is great.
If you have the luxury of color monitors, take advantage of using color.
Highlight errors and provide a brief description at the bottom of the
screen.

Online menu screens provide prompts and help. They should provide the
ability for the user to request more detailed online help. Develop screen
guidelines to use for screen consistency.

Help Prompts

Context sensitive help is provided through alternate PF key selection.
Offer help prompts on all level I screens. Briefly define the prompt at
the bottom of the screen; for example, l~help, 2~next, 3=previous, 4=create,
5=report, and l2=quit. Try and keep the PF keys consistent within a system
whenever possible. For more user assistance, help overlay or level 2
screens may be initiated by pressing the PF keys designated on the screens.

System Maintenance Directory

The hardcopy segment of this programmer's document is truly a directory. It
serves as a road map to the entire online system. Why shouldn't this
document be online for the maintenance programmer? Sure it can. Store your
inventory of programs and files online for easy updating by the programmers.
All narrative can also be online for easy browsing and maintenance.

Internal Program Documentation

Every program developed must have comments within the program to document
it. If you aren't doing this - please start immediately!

At the beginning of each program, there should be a description of the
function performed by the program. Include all files used the by program,
data sets accessed or modified, and all entry points. Also, all sections
that perform major functions 01: contain cO'm-p1.i.cateo. cone 8'\\0'\1\.0. ~e e1"..~\.a\.'t\eo.

by comments throughout the program.

Operational Documentation 0092-13



A log of all changes to a program should be kept at the beginning of the
program for future reference. This log must include the date of
modification, change or problem request number, initials of programmer
making change, and the reason for change.

The use of new 4GL languages heightens the importance of internal
documentation. COBOL has been with us for a long time. Most programmers
are experienced with it and consider COBOL reasonably straightforward and
easy to follow. C language, for instance, is full of peculiarities and may
be hard to follow if it isn't carefully documented.

For all of our mainframe CICS applications, we have developed standard front
-end programs and screens. These include a system entry program with
administrative routines; for example, date conversion. Other examples
include a message file, a system owner file, and a tutorial broadcast file.
Each of these are defined online for the programmer's use. The
programmer can then concentrate on the specifics for the application system.
We even have a hotline report to indicate user problems. The report
contains such information as abends, error message numbers, and user
terminal. The hotline programmer can give quick response in helping the
user.

In summary, online text is more easily modified and maintained than paper
documents, and may be used to create paper documents if needed. Online
screen displays are easier to illustrate, and the text can provide the user
with online assistance and reference capabilities. Tutorials lead
first-time users through the basic job tasks by means of a series of
exercises. And, you can develop this documentation as you program.

CONCLUSION

This technical session has provided you with some practical guidelines. I
trust it has stimulated an awareness of how you can provide quality, easy-to
-use operational system documentation.

Documentation methods are giving us new power to improve the state of our
documentation. These techniques and tools will help to make it easier for
us to create better documents, and of course provide better products - but,
only when our attitude towards documentation changes. This includes us, our
staffs, and our users.

I would like to challenge each of you to continue to develop innovative
methods for producing quality documentation. Use methods that integrate
online and hardcopy media in a cost-effective manner throughout your systems
life cycles.

And even more important, from a technical perspective, why ~~ grow ~
to write online operational documentation. And, ~ can enjoy it!

Operational Documentation 0092-14



The Use and Abase 01 Non-bashlq Keys In IMAGE

Fred White
Adager

Apartado 248
Antigua

Guatemala

BACKGROUND

The fIrst set of specifications for IMAGE/3000 proposed that all master dataset primary
address assignment be accomplished by hashing the key of each master entry and reducing
the result modulo the capacity of the master dataset.

In late November of 1971. some reviewers suggested that application designers might want
the application to have control of this primal)' address assignment and requested that we
modify our specifications to provide such a capability.

Our initial response was to require the key field of such masters to be a 16-bit (or 32-bit)
integer whose value would be treated as invalid if it was less than 1 or greater than the
capacity.

If we had left it at that, we would have provided the user with master datasets using this
simple direct access method.

This was aesthetically displeasing in that it restricted both the length of keys and the values
of keys.

We eliminated the former restriction by allowing any key length while using only the low
order 31 bits as input in calculating the primal)' address.

We eliminated the latter restriction by reducing this 31-bit value modulo the capacity N
(with a zero result mapping into N).

The user also had to have some method of specifying to IMAGE, via the database schema,
which type of primary address calculation to apply for each master dataset.

It seemed only natural that IMAGE should apply hashing to keys of data types U and X
and that the "integer" data types It J and K were perfect for use in the generalized direct
access method of primal)' address assignment. It was less obvious which method to employ
with data types Pt Z and R.

Then one of us noticed that the HP 3000 internal representations of the mantissas for
IMAGE data types I, Jt K and R were all in binary format and that P and Z were not. On
this rather weak basis we decided that all keys of non-binary format would employ hashing
and that the others would not.

Thus, the hashing/no-hashing decision is implicit in the data type of the designated search
field with hashing employed if the the data type is U, X, P, or Z and non-hashing for data
types I, J, K and L.

0093"':1



SYNONYMS

Two or more key values are said to be synonyms if they are assigned the same primary
address.

Whenever a new entry is assigned a primary address which matches that of one or more
existing entries, IMAGE locates it at an alternate address close by its synonyms.

It attempts to place it in the block containing the entry at the primary address. If this block
is filled, IMAGE serially searches subsequent blocks until it finds an unoccupied location
to place the new entry.

IMAGE links all synonyms for a given primary address together into what is known as a
synonym chain.

If there is no severe clustering (see below) and if the dataset is not almost full and if the
blocking factor is large relative to the average chain length, most synonym chains will
reside in a single disc block and thus have little impact on performance since they can all be
made present in memory with a single disc read.

For hashing keys, the average synonym chain length can be kept small by:

1. using keys at least 10 (preferrably 12) characters long. (IMAGE's hashing algorithm
does a better job with long keys than with short ones.)

2. using key values which are not excessively uniform in their content

3. using capacities 15 to 30 percent larger than the expected number of entries

Also, their negative impact on performance can be reduced by:

1. making the blocking factor large relative to the average synonym chain length.

2. not allowing the dataset to become nearly full.

For heavily accessed masters, try to have a blocking factor of at least 6 or 8. If your
blocking factor is less than 6, consider replacing the manual master with an automatic
master and a related detail containing the data portion of the original manual master.

CLUSTERING

It is entirely possible, particularly for non-hashing keys, that many of the records of a
dataset will fill contiguous blocks in one or more portions of a dataset while other portions
are empty, or nearly so. Such a phenomenom is referred to as clustering.

Clustering is harmless as long as there are no synonyms. Otherwise, clustering is typically
dangerous, as we shall see.

THE USE OF NON-HASHING KEYS

An excellent use of the direct access method provided by non-hashing keys would arise if
the key, for example, were DAY-Of-YEAR.

In this situation, the master dataset would only need a capacity of 366 (any higher would be
wasted disc space).

The data item DAY-OF-YEAR could be defined as type I and the key values would be the
positive integers 1, 2, ... , 366.

0093-2



As long as the application prevented other key values from occurring. no synonyms would
ever arise, there would be no waste space, and IMAGE performance would be optimal.

Note also that the record with key value of 1 would be record number 1, the one with key
value of 2 would be record number 2, and so forth. This "natural" ordering might be of
some advantage to your application.

You may find other such situations, perhaps involving badge numbers, building numbers,
or whatever, where you might want to employ integer keys (i.e., data types 11 or 12) in this
manner. Usually, however, this will involve some wasted disc space. Only you can decide if
the wasted space is too exorbitant for the benefits offered.

THE ABUSE OF NON-HASIUNG KEYS

1. The Clustering Pitfall

My first live encounter with a misuse of integer keys arose in 1978.

One Friday in 1978 I received a phone call from an insurance fum in the San Francisco
Bay Area. I was told that ~eir claims application was having serious performance problems
and that, in an attempt to improve the situation, they had, on the previous Friday,
performed a DBUNLOAD, changed some capacities and then started a DBLOAD which
did not conclude until the early hours of Tuesday morning!

They were a $100,000,OOO-plus company which couldn't stand the on-line response they
were getting and couldn't afford losing another Monday in another vain attempt to resolve
their problems.

Investigation revealed that claims information was stored in two detail datasets with paths
to a shared automatic master. The search fields for these three datasets was a double
integer key whose values were all of the form YYNNNNN (shown in decimal) where YY
was the two-digit repesentation of the year (beginning with 71) and where each year
NNNNN took on the values 00001, 00002, etc. up to 30,000.

Although the application was built on IMAGE in late 1976, the earlier claims information
(from 1971 thru 1976) was loaded to be available for current access. I do not recall the
exact capacity of the master dataset but, for purposes of displaying the nature of the
problem (especially the fact that it didn't surface until 1978) I will assume a capacity of
370,000.

Although the number of claims per year varied the illustration will also assume that each
year had 30,000.

The frrst claim of 1971 was claim number 7100001 to which, using a capacity of 370,000,
IMAGE would assign a primary address of 70,001. This is because 7,100,001 is congruent
to 70,001 modulo 370,000.

The 30,000 claims of 1971 were thus assigned the successive addresses 70,001 through
100,000.

Similar calculations show that the claims for each year were stored in clusters of successive
addresses as follows:

0093-3



Year Claim Numbers Assigned addresses

1971 OO1-7125000סס71 70,001-100,000
1972 OOססOO1-723סס72 170,001-200,000
1973 ooססoo1-733סס73 270,001-300,000
1974 7400001-7430000 1-30,000
1975 OOססOO1-753סס75 100,001-130,000
1976 OOסס7600001-763 200,001-230,000
1977 OOססOO1-773סס77 300,001-330,000

Note that no two records had the same assigned address and thus that there were no
synonyms and that all DBPUTs, DBFINDs and keyed DBGETs were very fast indeed!

Along came 1978!!!

Unfortunately 7,800,001 is congruent to 70,001 so that the first DBPUT for 1978 creates
the very first synonym of the dataset. It is, in fact, a synonym of claim 7100001.

DBPUT attempts to place this synonym in the block occupied by claim 7100001 but that
block is full so DBPUT performs a serial search of the succeeding blocks to fmd an unused
location. In this case, it searches the next 60,000 records before it finds an unused address
at location 130,001! Even with a blocking factor of 50, this required 1200 additional disc
reads making each DBPUT approximately 200 times as slow as those of all previous years!!

Note that the next claim of 1978 (with claim number 7800002) is congruent to 70,002 so is a
synonym of 7100002 and also leads to a serial search which ends at location 130,002! Thus
each successive DBPUT results in a search of 60,000 records 59,999 of which it had
inspected during the preceding DBPUT!!

Clustering had claimed another victim!! The designer of this system had unknowingly laid a
trap which would snap at a mathematically predictable time, in this case 1978. After
struggling with this problem for months, the user escaped the clustering pitfall by
converting to "hashed keys" (in both the database and the application modules); a very
expensive conversion!

Note that the problem was not a synonym problem in the sense that synonym chains were
long nor was it a "fullness" problem since the master dataset was less than 57% full when
disaster struck.

The problem was due to the fact that the records were severely clustered when the first
synonym occurred and DBPUT's space searching algorithm is efficient only in the absence
of severe clustering.

Note that the performance of DBFIND and DBGET was excellent.

A similar, more modest pitfall would have been encountered if, in the above example, the
claim numbers had been of the form NNNNNYY with the same capacity of 370000. In this
case, the performance of DBPUTs, DBFINDs and keyed DBGETs would all degrade over
time but would never reach the disastrous level of the DBPUTs of the example. In this
case, the degradation would arise due to the length of synonym chains and due to local
clustering.

Note that this modest pitfall can be eliminated simply by changing the capacity, for
example, to 370010.

0093-4



Note however that this problem would still arise if the capacity were merely changed, for
example, to 370001.

2. The Synonym PitfaU

An even worse case would arise if the designer elected to use a key whose data type was R4
and whose key values were greater than zero and less than 10 million.

To understand why, one must be knowledgeable about the format of 64-bit reals as
represented on the HP 3000 family of computers.

The leading bit is the sign bit, the next 9 bits are the exponent, and the remaining 54 bits
are the mantissa excluding the leading bit.

As a consequence, the floating point format of all integers less than 8,388,609 (2**23+ 1) is
such that the low order 31 bits are all zeroes. Therefore ALL entries would be in a single
synonym chain having the dataset capacity as its primary address!

In adding a new entry, DBPUT would have to traverse the entire synonym chain to ensure
that the key value of the new entry was not a duplicate before adding it to the chain. This
would have a negative impact on performance proportional to the number of entries and
inversely proportional to the blocking factor.

Also, each DBFIND or mode 7 DBGET would, on average, be forced to traverse half of
the chain to locate the desired entry!

I hope that you will NEVER use fields of data type R as key fields.

SUMMARY

Remember that, in electing to use non-hashing keys, the designer has taken the
responsibilty for primary address assignment out of the hands of IMAGE and placed it in
the hands of the application.

This should be done only if:

• some benefit will be derived by their use

• the application has absolute control over key value assignments

• the values so assigned, together with the assigned dataset capacity, assure the
designer that the application will never encounter the clustering or synonym pitfalls

FOOTNOTE

Avid readers of IMAGE articles might be surprised at the absence of any reference to
primary numbers as capacities for master data sets.

The reason for this is that I consider any argument for or against their use as, at best, an
academic exercise in futility and, at worst, a "red herring." Application designers and
database administrators can realize far greater performance improvements by dealing with
other, more significant, issues such as those addressed in this paper.

0093-5





Using a Task Manager to Improve User Productivity
Barry Polhemus

ETC Corp.
284 Raritan Center Pkwy.

Edison, NJ 08818-7808

Introduction.

The HP3000 is reasonably 'programmer friendly' when it comes to
application development. Particularly if using TRANSACT/FASRTAN,
it is easy in a prototyping shop such as ours for many
applications to be developed rapidly as company needs arise. Most
of our applications are transaction based and the user
environment is highly interactive. The problem is, however, that
as the company grows, the number of transactions also grows. As
the needs grow, so do the number of applications. Soon, not
having CPU horsepower to burn, the HP3000 could not keep up with
our system needs. It became necessary to make some adjustments in
the way work was being done on the system. There were many steps
in our ongoing solution including spreading applications across
mUltiple Series 70 machines. What I will present here is one of
the steps taken to make our system (and users) more productive by
decreasing interactive user time.

Many of the functions performed in applications can be separated
into foreground and background tasks. By background task, I don't
mean a batch process which could be handled by a periodic job
stream, but rather a function which must be performed in a short
time frame. These functions or tasks obviously require user
initiation but do not require a user to sit in front of a
terminal until the task completes. If the user can put together
necessary information to perform a given task in the form of a
work request, and simply submit that request to a background
process to have the work carried out, the user becomes more
productive. The time spent waiting for a CPU intensive task to
complete can now be spent doing other work.

Drawbacks of a Simple Solution.

The design of a system to function in this manner could be built
around MPE message files, but there are distinct disadvantages to
relying exclusively on message files. First, let's look at this
simple approach. There will be a submit process which puts
together a work request and writes it to a message file. There
will also be a background process to read the message file and
carry out the requested task. The work request will be lost if
the background process reads the request from the message file
but is aborted before completing its task. If you have a means of
determining what request was lost, you can requeue it, but there
may be problems if the application requires the order of requests
in the queue to be maintained. To avoid losing requests, we could
first do a non-destructive read followed by a destructive read
after the request has been processed. This technique will work

Using a Task Manager 0094-1



for a single background process, but not if you want mul tiple
background processes to distribute the load for the same type of
work request. There is no way to coordinate which process is
working on which request.

Another diffculty will arise when you want to see what requests
are pending for the background process. You can't just read the
message file (eg. FCOPY) since that will wipe out your work
requests. We can use COpy access to look at the message file
which does non-destructive reads, but this requires exclusive
access to the file. This means the background task which reads
the file can't be running at the same time. Then there's the
problem of starting and stopping the background process. If it's
running in job mode, how do you let it know that you want it to
stop without simply aborting it? If you write a request
indicating self termination, how do you get it past the other
pending requests in the message file? Reordering the requests in
the message file would be difficult at best while the process is
running. Actually, in addition to a termination request, the
ability to reorder requests might be might come in handy if we
needed to move a priority request to the front of the queue.

For a single application there could be a single background job
to process requests, but when our number of applications
increases to ten or twelve, we would get twelve separate jobs
being fed by twelve separate message files each with their own
set of maintenance difficulties as described above. As you can
see, the number of messy details in our simple solution is
increasing rapidly. Let's consider an alternate, more practical
approach.

The Real Solution.

Even though message files have their drawbacks, they can be
useful if used with discretion. Let's say there will be a submit
process which will format a work request and write it to a
message file. There will also be a background process to perform
the intended task, but now it will be a son process running under
a father/monitor process in a single job. The monitor process
will act as a work request buffer between the sUbmitting process
and the process which does the work. It will pick up the incoming
requests from the message file and store them internally. Even
though there can be many sUbmitting processes, there will be only
one receiving process. The delay between writing a request and
having it read is now minimal. We don't need to rely on the
message file to hold requests until they are processed and we
don't have to do any tricks to get the request from the message
file while worrying about whether or not the work request will
complete successfully.

The monitor will automatically maintain the order of the incoming
requests as well as keep track, since there can be mUltiple son
processes, of which requests belong to which son processes. Son
processes can each perform a different function and/or they can

Using a Task Manager 0094-2



be duplicate sons used to distribute processing of a given
function. There will be a separate queue for each son process
and now that we no longer have the message file restrictions,
managing the queues is now a much simpler task. We can now list
the individual queues, reorder requests within a given queue, and
move requests between queues. Of course, the latter may not make
sense unless the source and destination queues handle the same
type of request.

Queue management also involves starting and stopping individual
queues. We need to selectively change a given queue's status
without bringing down the whole monitor system. To accomplish
these queue management functions, we need to send commands to the
monitor from the outside world. outside here refers to the
inter-session environment. MAIL intrinsics suffice for father/son
(intra-session) communication, but we need to send commands from
an interactive session to a background process running in job
mode. So we must go back to our trusty message file only now we
don't have to wait for all preceding requests to be processed
before our command gets through.

since input to the monitor process may be an incoming request or
some sort of command, we need some minimal structure to the
incoming message. Each must contain a command identifier
followed by data such as process number, request number, or
whatever might be pertinent to that command. Incoming requests
will be regarded as commands meaning pick up the request buffer
and store it. As for requests, however, a little more flexibility
incorporated into request routing will go a long way later. The
need is simply to associate an incoming request with a particular
son process. Good style suggests that we avoid things like
hard-coding destination son process names into our submit
programs since if we change our son process name, we also have to
change our submit program. Also, in cases where there are
multiple son programs to distribute load, we need a mechanism to
submit requests such that our submit process doesn't care how
many son processes might be available to perform the requested
work. Even more important, we don't want to require our users to
follow the load and explicitly submit to a given son process in
the group.

The 'Chain' Mechanism.

We can achieve the flexibility we desire by using a method which
I will call chaining. The mechanism will work as follows. Submit
processes will put an identifier called a chain id in the
request. There will be an external reference (chain file) which
will relate a given chain id (request) to a specific son process
number. The monitor will deal with its son processes by number.
There is another external reference (configuration file) used by
the monitor which contains program file names and provides an
association between program file and process number. This way,
the chain file as well as submit program are independent of
physical file names. As the monitor receives a request, it will

Using a Task Manager 0094-3



look up its chain id and queue it to the appropriate son process.
The chain file may indicate a single son process number or a
list. In the latter case, the monitor can chose among the list of
potential recipient sons based on which are active and how many
requests are pending for each that is active. Thus load balancing
among active duplicate son processes is automatic. since we can
start/stop specific son processes, we can regulate the throughput
for a given request function. For example, if we have three son
processes to handle a given request type and all are active, we
can have requests distributed automatically between all three. At
times when the load is lower, we can shut down (stop) one of the
three so that requests will be distributed only among the two
active sons. Also, since we can move requests between sons, any
pending requests for the process we shut down can be moved to one
of the remaining active processes.

Perhaps the most significant feature of the chain mechanism is
also the reason for the name 'chain'. In the chain file, along
with each chain id there can be a second chain id called the
'next chain id'. When a request is completed, the next chain id,
if there is one, will become a chain id on the same request as it
goes back to the monitor. This means that requests can be
'chained' from one son process to another automatically using the
same physical requests. Thus it is possible for a son process to
insert additional data into the request before it gets passed on
to the next son. We now have the freedom to modularize background
processing in any way we chose. Requests may follow different
paths through the same group of son processes. For example, say
we have three son processes through which a given request will
follow through in sequence. We also have a similar request type
which needs only the first and third sons. By simply supplying
the appropriate chain id on the original request, we can direct
it through either path via the chain file. Suppose we want to
insert a new module in a given chain. All we need do is modify
the chain sequence in the chain file and set up the new process
in the monitor. We don't need to change any of the submit or
associated son processes.

Communicating with the outside World.

So far, I have only discussed the communication of information
from the outside world to the monitor system (monitor process and
associated sons). We also need a means of getting messages back
to the outside world as to what's going on inside. There are two
types of information we want to see. First, general information
regarding the status of the system such as which son processes
are active, how many requests are pending. for each, the
processing order and content of the pending requests, which
requests are currently being processed, etc. Since all of this
information can be kept in files dynamically updated by the
monitor, all we need is a utility program which understands the
structure of these files and can then display status information
about the monitor system. We don't want any synchronization
problems, so we won't allow the utility program to make changes

Using a Task Manager 0094-4



to these files. Should we want to effect some change to the
system, such as shut down a particular son process, the utility
program will send a command to the father process and the father
will actually make the change. The utility program can then be
used to verify that the did actually took place. The change won't
necessarily be instantaneous since we're dealing with
communication between two separate processes (actually, three in
the example of shutting down a son).

The second type of information the monitor must provide are
messages from the various son proceses regarding errors
encountered while performing intended functions. That is, if the
request didn't complete successfully, we want to know that it
failed and probably why it failed. If son processes simply write
error messages to $STDLIST the entire monitor process would have
to be shut to check for errors. A more practical method is to log
error messages to a file. This file could then be reviewed
without disturbing the monitor process. Since there is usually no
need to keep the error messages indefinitely, a circular file is
a suitable choice. The simplest way to handle error logging is
to have the father process do the actual writing to the logging
file. The son processes can send a command containing the error
message to the monitor which will then log it to the error file
including a time and date stamp and process ide There can be a
separate program to read the error log file and display error
messages without affecting the monitor system.

Implementation.

Now that I have laid the groundwork for the monitor system, I
will give some details of our implementation and describe more of
the features of such a system. Though we are basically a TRANSACT
shop, the monitor program (named Monitor/JOOO) was written in SPL
for practical reasons. The son processes, as well as the submit
processes can be written in any language. I will discuss these
later. The monitor functions to link the submit process to the
son process (es) which eventually carry out the given task by
passing the work'request from one to the other. Only the submit
and son processes need understand the content of the request.
The actual request does include some header information, however,
on the request as received by the monitor such as a request
indicator to identify it as a request as well as the chain ide
The rest of the request is blindly passed along to the
appropriate son.

There are several files used by the father process for storing
requests, maintaining queuing information, maintaining status
information, as well as the chain and configuration files
mentioned earlier. The configuration file contains not only the
list of program files that represent the various son processes
but also contains the file names of the other internal files used
by the monitor system. This way, all of this configuration
information can be obtained by the monitor program via a generic
file equation without hard-coding any file names into the monitor

Using a Task Manager 0094-5



program. We can now set up mUltiple monitor systems on a given
HP3000 by simply setting different file equations. The associated
utility program previously mentioned works in the same manner.
There is only one physical utility program which gains access to
the various monitor systems via a different file equation before
running the program.

Mission Control - the utility Program.

The control of the monitor system really lies in the utility
program. It, too, is coded in SPL for practical purposes. By
practical, I am referring mainly relative to TRANSACT, given what
the program needs to do. The utility program gains access to all
of the monitor system files via the configuration file
back-referenced through a file equation. The utility program can
display the overall state of a given monitor system including
number of son processes, the current status of each, and the
number of pending requests for each. The requests' content can be
explicitly listed in octal and/or ascii formats. A given request
can be prioritized by moving it to the front of the queue for its
destination son process. As mentioned before, requests can be
moved from one son to another (provided they can service the same
type of request as per the configuration file). Requests can also
simply be purged.

The utility program functions not only to manage requests but
also the state of individual son processes. There are three main
states in which a son process can be. First, there is Down, which
means that son has no associated physical process (no PIN). There
is Inactive, which means that son process has been created, but
it is not activated. A son cannot process requests in either of
these states. Finally, there is Wait which means the son has been
activated and is waiting for a request to process. Once there is
a pending request, the status will be Active, implying that a
request is currently being processed. The contents of that
request can be listed even while it is active. There is also a
special case when that occurs when a son is started up with
requests pending. This Busy status means that the monitor process
has sent a request to the son but the son has not yet received it
because it is busy going through its start up procedure.

utility program commands exist to change a given son between the
three states. There is CR (create) to go from down to inactive,
and SU (start up) to go from inactive to active. These correspond
to MPE Intrinsics CREATE and ACTIVATE. There is SO (shut down)
which moves a son from wait/active to inactive. The currently
processed request, if any, is allowed to complete. During this
time while the request is completing, the status will appear as
Shut Pending for that son. As it completes, the son is suspended.
There is also KI (kill) which removes the son immediately from
the system. If there is a request being processed it is left in
the queue.

Using a Task Manager 0094-6



Before continuing, let me digress a bit and discuss queue
integrity. The first concern is in not losing requests. The
monitor system I am describing meets that requirement. Since it
stores the requests internally, the requests remain intact until
they are either completed as determined by the monitor itself via
notification from the son which processed it, or an explicit
purge request is received. Whenever a request is being processed
and does not complete normally due to the son process being
killed, the entire monitor process being shut down or even
aborted, or even a system failure, that request is left in the
queue and will be dealt back to the appropriate son when the
system is restarted. (Of course, this is under 'semi-normal'
circumstances, there isn't much that can be done for disc
crashes, for example.) The other concern with queue integrity is
maintenance of chronological order of requests. In most
applications this is not a necessity but in others it can be
vital that requests be processed in the order submitted even if
not processed right away. Again with queue integrity in mind, our
monitor design includes periodic (whenever a change takes place)
posting of queuing infomation to disc. Thus the individual queues
remain intact even if the entire monitor system is aborted. .

There are a few remaining utility program commands which I will
mention. BR (break) can be used to abort processing of the
current request and have the son continue with the next request.
GO and SH are the commands which start and stop the entire
monitor system. There are also some commands not for use by the
average user such as those to initialize (IN) all the queues
(wiping out all requests for all sons) and a renew (RN) command
which rebuilds all the queues from scratch but destroys
chronological order. VR (verify) causes the monitor process to do
an internal verification of its queuing buffers and lists. These
commands are shielded from the typical user by a security code.
Another protected command allows the priority of individual sons
or the father itself to be changed among CS, OS or linear queues.
There are some realistic checks built in here, however. You can't
put a son in the linear queue at a priority higher than the
father or at a priority higher than the the low end (highest
priority) of the CS queue.

The remaining commands are harmless. There is a pair of commands
which function like OUT=LP and OUT=TERM commands in QUERY. Output
from the listing or status commands can be sent to a file or
printer. The ID command will display version id and some
configuration parameters. There are some semi-arbitrary limits on
the monitor system such as the maximum number of sons that can be
included in a given monitor system as well as the maximum number
of requests that can be stored internally. In our system, we have
set the maximum sons at 15 and the maximum requests at 2000. When
a son process aborts (or is shut down), the pending requests will
continue to accumulate until it is restarted. If enough requests
back up, the monitor will no longer accept requests until room is
made available by either purging requests or processing them. In
the meantime, requests simply accumUlate in the message file.

Using a Task Manager 0094-7



When the internal request limit has been reached, the monitor
periodically displays a message on the console indicating a
request overflow has occurred. Display of this message can be
turned off or on via a utility command. Once you realize that an
overflow has occurred, there is usually no need to continue the
console messages. In some applications, 2000 requests may be much
too many to take advantage of the overflow warning system. The
number of requests that will be accepted by the monitor is
configurable up to the maximum allowed, so if 2000 requests
constitute a month of work, it is probably better to set the
internal limit at more like 200 instead.

The Workers - Son Processes.

Enough said about the utility program. Now I'll discuss some
aspects of developing/converting applications to run under the
moni tor, namely submit programs and son programs. The submit
program has a simple task. It only has to collect any information
necessary to perform the task in question, put it in a format
that will also be understood by the destination son process, and
write it to the request message file. The request has some header
information (such as the chain id) followed by up to 480 bytes of
data. In some of our applications, the request consists of only a
file name but in others it may contain a fairly wide IMAGE record
right in the request. Since both our submit programs and son
programs are written in TRANSACT, it is a common practice to put
the request buffer definition in an include file for use by both
submit and son programs. This insures that no discrepancies exist
in the request contents and tends to make programs more
understandable because the same variable names are used.

The son programs need to carry out the intended task based only
on information from the request. The physical process of request
handl ing , ie. getting requests from the monitor (father) and
letting the monitor know when the task has been completed, is
provided in the form of a monitor interface. For our TRANSACT
applications, there is a file which is to be included at the
beginning of the program which does all of this dirty work. The
interface code will do a perform to a predesignated label for
each request it receives. It also performs to another label for
initial item listing and one for any initialization code. The son
program then only needs to include the interface file and provide
the appropriate labels and need not be concerned with details of
request passing. Once code is developed to perform a function,
making it run as a son process is quite simple. This same style
has been extended to other languages as well. We have one son
application written in SPL and we have done some testing in
PASCAL. In these cases, the interface is in the form of
procedures placed in an SL or RL such that the main body of the
program does nothing more than call the interface procedure. The
son program will have one main procedure (other than 'main' body)
for processing a request whose calling address is passed to the
interface procedure so that it can be called from there. Three
other procedures can be included, one for initialization upon

Using a Task Manager 0094-8



startup, one for processing upon restart after a shut down, and
one for processing prior to a shut down. The latter of these
procedures is only used in case of a normal shut down command as
described above. For a normal shut down, the father process tells
the son to suspend when it has finished processing its current
request, if any, and the son can perform any shut down functions
prior to suspending. If the son is killed, no shut down
processing can be performed.

The design of a monitor process (submit/son pair) is basically
separating the information needed to perform a task from the task
itself. A typical application will include both an interactive
section to specify what has to be done, and a section to do the
work. In cases where the task is simple, creation of a monitor
process may not be practical. However, a task which is CPU
intensive relative to the interactive front end is a prime
candidate. Another situation might be when the tasks are very
simple but numerous and can be queued sequentially as a batch.
Let me give an example to differentiate. Suppose there is a chain
in an IMAGE data set and we need to perform some action for each
entry in the chain. The submit program can queue just the key
value in the request such that the son reads the chain and
processes accordingly. The alternative is to have the submit
program read the chain and send requests for each entry. The
latter approach involves a lot more request traffic but for some
applications this trade off is necessary. In either case, the
user is supplying only the key.

One more comment about developing son processes concerns error
handling. Different coding styles usually i'~volve different
degrees of error handling. Monitor son processes must be made as
robust as possible so that if anything goes wrong during
processing of a given request, short of major catastrophe such as
a corrupt data base, the error will be handled gracefully and the
son process will continue with subsequent requests. In the above
example where the son process accepts a key value to read in an
IMAGE data set, and the key value is invalid, the son process
should just log an error message and move on to the next
requestrather than abort. Error logging is as simple as putting
pertinent information in a buffer and calling a procedure (or
perform for TRANSACT) supplied as part the monitor interface. The
more son processes abort on their own, the more attention must be
paid to son process status and management. It is certainly more
desirable for the sons stay running without paying attention to
them, especially if there is a high volume of requests being
processed. If a high volume son aborts, the incoming requests
will back up quicj ly and if not discovered soon enough, the
backlog may be difficult to recover from. This is an example of
why one might configure the total requests held internally by the
monitor to less than the maximum so that if a son aborts and the
queue backs up, the console warnings give an earlier indication
that a problem exists.

Using a Task Manager 0094-9



Real-Life Examples.

I will now give an example of some of the ways we use our monitor
system. We have a chemical analytical lab which generates data
on a variety of intruments, predominantly HP1000 based mass
spectrometers. Data files containing analysis results are
transferred from the HP1000 to the HP3000 and subsequently a
request is written to a monitor message file which contains only
a file name. A son process receives this request and will load
the file into a transitory review data base. Once the file is
loaded sucessfully, the file is purged. The loading process looks
up some pertinent information from another data base and stuffs
it back into the request. The request is then chained to a second
son which takes the added information from the request and
performs some other cross referencing functions. This processing
is all automatic.

The data is then reviewed in the temporary data base with
interactive processes. There are batch oriented calculations done
by a different son process which are also reviewed sUbsequently
via an interactive process. When review is complete, data
organized into groups which represent the final reports, and sent
to another pair of data bases which will hold the data
indefinitely. The problem is that these data bases are on another
HP3000. The solution lies in a another son process that handles
generic file transfer via a remote I ·1 session as well as
simultaneous (part of the same request) writing of a supplied
buffer to a message file on the remote system. The remote message
file is, as you might guess, an input request file for a monitor
running on the remote system. The request to the transfer son
process contains a local file name, remote file name, remote
message file name, and buffer to write to the remote message file
along with some options such as overwriting the remote file and
purging the local file after transfer. The program is designed to
handle file transfer only, message transfer only, or both.

The user flags a series of groups in a given batch of results
that are ready to be transferred and then queues the batch name
to a son process which will find the flagged groups, put each
group into a file, and queue the files to the transfer process
process described above. That son process transfers the file to
the remote system and writes a record to a remote message file
which effectively queues a son process on the remote system to
pick up the file and put the data away into the appropriate data
base. These remote requests get chained to a second son process
which print reports from the data in the data base. Since there
is a significant volume of these reports queued directly from the
remote system, we have two copies of the son process which
produces the reports to avoid building a backlog. However, due to
some improvements made to our report program, a single copy has
been able to keep up with the load so that the dynamic load
balancing trick mentioned earlier isn't really necessary. A
third son process in the chain can take the data for the report
and put it into our electronic mail system where our clients can

Using a Task Manager 0094-10



dial in and view their data before the hard copy reports are
mailed.

Another of our applications for monitor processing involves data
base synchronization bewteen two HP3000 systems. We have some
master data sets (as in master/slave, not IMAGE master) on one
system with mirror image, read only slave copies on a second
system. Any time a change is made to master side, the changes are
queued to the transfer process described above in the form of a
file or for cases of a single record update, the whole IMAGE
record is put in the request. The request that ultimately reaches
the son process on the slave (remote) system is encoded as to
type of update in terms of file, single record, add, update,
delete, and what else is in the remainder of the request. The
single record updates occur in very high volume but are processed
rapidly including transfer as the transfer process not only
remains logged on to the remote system as long as it's active but
also leaves the remote message file open as long as the message
file writes are to the same message file. We saw to it that this
was the case to avoid a file opens (for the message file) on a
per request basis, let alone remote logins. Since much of the
synchronization involves client order changes, maintaining
chronological order of the changes is critical as well as just
not losing the changes. In other words, queue integrity is
important even across systems.

Conclusion.

We have gotten a lot of mileage out of the monitor concept. We
even have a monitor system on the HPlOOO mass spec data systems
mentioned above for processing raw data from the instruments,
reporting the processed data, and archiving the raw data to tape
automatically. As a matter of fact, our HP3000 monitor concept
grew out of the HPIOOO version. The physical mechanisms are as
different as RTE is from MPE but the basic functionality is the
same. The HP1000 monitor is an integral part of the Aquarius
software package developed by ETC which is now comes standard
with HP's RTE mass spec systems.

Even though the design I've described satisfies our needs,
further extent ions are certainly possible. A simple extention
might involve capturing statistics such as the volume of requests
and even processing time. It might then be possible to build in
some 'smarts' to the monitor program to evaluate request load and
automatically startup/shutdown son processes based on the load.
Another extent ion might be to build in some time delay before the
submitted request can be processed or, in effect, be able to time
schedule certain requests.

We feel the monitor systems have been a tremendous success in
making our computers do what they do best without making the
computer users wait thereby increasing their productively. If the
users had only computer tasks to perform we would probably be in
trouble, but even with our great degree of computer automation, a

Using a Task Manager 0094-11



number of paper tasks still remain, and our users now have more
time to devote to these tasks.

Using a Task Manager 0094-12



MAXIMIZING PERFORMANCE FOR IMAGE DATA BASES

Kathy S. McKittrick
Dynamic Information Systems Corporation

910 15th Street - Suite 640
Denver, Colorado 80202

What exactly is the value of the data that is contained in the data bases on your
system? How can you measure that value and what components contribute to the
equation?

For years we data processing professionals have been busy developing systems to
capture and disseminate information. We do this based on user requirements and
requests, often times without understanding or examining how those systems will
effect our company's success.

Why is it important that we understand this? Put more specifically, why is it
important that a programmer understand the value of a report that he or she is
writing a program for? There are two reasons. First, the programmer stands a much
better chance of fulfilling the user's requirement if he/she understands its purpose.
The communication between a user and a programmer is often challenging and an
understanding of the business problem being solved enhances that communication.

Secondly, the programmer's job satisfaction will be greatly enhanced by
understanding the use of his/her finished product. If a programmer is simply
juggling bits and bytes around, the job becomes like that of an assembly line worker
who bolts on door handles, but never gets to see the finished product. We all enjoy
our jobs better when we can see the tangible fruits of our labors.

So the first step is understanding the business problem(s) being solved. The next step
is quantifying the value of solving that problem.

Let's agree on one basic, simple truth: that users benefit from the information they
GET OUT of the system, not the information that they put into the system. "Wait a
minute!" you might say, "You can't get any information out of the system until its
been entered into the system!" True enough! But entering information into the
system is not the goal. It's the necessary evil. You can enter customer information,
orders, invoices, and receivings all day long but unless you have a good mechanism
for retrieving that information in meaningful formats, all that entry is useless. Most
computer systems contain vast amounts of data; much of which is difficult or
impossible for users to get at. And how ironic! If users can't get to it, it has no
value!

Let's talk about some of the types of information that are "locked" inside computer
systems and data bases. Then we'll talk about why its so difficult to get at and some
of the strategies that we can employ to do a better job of making information
available.

INFORMATION THAT IS "LOCKED" INSIDE YOUR.SYSTEM

During this discussion, be thinking about how our hypothetical company (ACME
Distributing Company) may have some similarities to your own company, at least
in-so-far as applications go. ACME Distributing uses an HP3000 series 68 for
processing orders, processing shipments, invoicing, accounts receivable and accounts
payable. There are fifty order entry operators on the system during business hours

0095-1



and if things are going well they are entering orders throughout the day. There are
four terminals in shipping so that orders can be updated with a "shipped" status as
soon as they've left the loading dock. There are five receivables clerks and five
payables clerks using the system fairly consistantly during the day to enter payments.
request checks, and do collections.

There are also ten executive and mid-level managers who have on-line access to the
system. A couple of years ago the MIS department purchased a report writer so these
management users could easily (meaning without a programmer), extract information
from the system. Prior to using the report writer, management had received reports
from the system, however these often included too much detail or a summary of all
information. Typically, management wants to see only the exceptional information.

About six months ago, the MIS Director had a meeting with the executive staff to
discuss system performance. After many complaints from users on the system being
too slow, an investigation was done to discover the cause of the bottle neck. The MIS
Director reported that two things had to be done to improve performance:

1. Reports run by management often required serial reads and these reports
would now be run only at night.

2. The series 68 machine must be upgraded to a series 70.

It turns out that the management reports were already taking from 20 minutes to two
hours to run and managers 'impatient for faster results, were disappointed to hear
they were the ones being knocked off of the system. But they also understood the
wisdom of servicing customers as quickly and efficiently as possible, so they didn't
complain too much.

They now had to wait a full day to get answers to their questions; questions that
sometimes affected what inventory was purchased or moved from one location to
another. They soon found that this also affected customer service. The management
information so critical to doing business on an hour-by-hour basis was "locked" inside
their computer system and unavailable to those who would benefit from it.

This is a common story in our industry. High priced decision makers are prohibited
from getting timely information upon which to base their decisions. The priority is
given to ENTERING the information when the prime benefit of entering the
information is BEING ABLE TO RETRIEVE IT.

Anytime you say to a user, "I'm sorry, you can't run that during the day", you may be
impacting your company's bottom line or their ability to do business.

The Sales Manager at ACME, for example, heard one day from a sales representative
that a large order for blue pens would be placed later in the week by an important
customer. The Sales Rep stressed that it was important that ACME be able to deliver
the pens the next day. There wasn't enough stock in the local warehouse so the Sales
Rep wanted to know if the Sales Manager could have inventory shipped in from other
locations. This required the Sales Manager to run a report which looked at blue pen
inventory in all twenty area locations, subtract inventory that had been committed
during sales that day, and predict how much could be shipped without impacting the
other locations. This report was DISALLOWED during the day.

Maximizing Performance 0095-2



So, the Sales Manager set it up to run that night. Unfortunately, he entered the part
number incorrectly and when he came in the next morning he discovered that nothing
came out on the report. Even though it had run for two hours.

Back to the drawing board. He resubmitted the job to run that night. Now he'd have
his answer on Wednesday. (He was more careful about entering the part number this
time).

Wednesday morning. The important customer's order comes through. The Sales Rep
is on the phone to the Sales Manager. The report has come through but just a little
too late. It turns out that inventory has been committed at the alternate locations and
can't be shipped to the important customer. The Sales Manager has already called the
factory and they can drop-ship the pens to the customer by Friday afternoon. Not
good enough. The Sales Manager has a decision to make. Either divert the inventory
in stock to the important customer and make many smaller customers angry or deliver
to the smaller customers as promised and risk losing the important account.

And all because ACME was trying to save on system performance. If the Sales
Manager could have run the report on Monday morning and again on Monday
afternoon after his initial error, the manufacturer could have delivered in time.

When situations like this occur it becomes clear that we must find a way to provide
timely information and there is always a solution. It becomes a question of "cost
versus benefit" not "possible versus impossible".

WHY IS IMPORTANT INFORMATION LOCKED IN???

We've talked about system performance as a culprit in making critical information
unavailable. But what are the underlying reasons for the poor performance?

There are many. We'll talk about three key areas in this paper but understand that in
complex multi-user, multi-application systems, there are no simple answers. Each
individual component of a system must be examined as-well-as taken as a part of a
whole.

The three areas we'll focus on here are:

- Data Base Design
- Volume of Data
- Available Indexing/Retrieval Methods

Data Base Design

The design of a data base that is being used to provide information to users on a
regular basis can have an enormous impact on performance and therefore, the users'
ability to retrieve information. For example, if we need to obtain information from
fifteen different data sets for a particular report, we're going to be expending far
more disc I/Os than if we retrieved information from only one data set. And in a
reporting or inquiry application disc I/O is generally the most significant factor in
the performance equation.

The single biggest reason for poor data base design is that we try to use a single data
base for too many purposes. We cannot for example, optimize a design for transaction

Maximizing Performance 0095-3





DESIGN FOR THROUGHPUT

CUSTOMERS

ORDERS

FIGURE 1

0095

ORDER-LINES



throughput and data retrieval both. By trying to use one design to solve both
problems we wind up with a design that is not optimized for either task.

In a sales application for example, if we were designing to optimize throughput with
no thought to retrieval requirements, we might have a design similar to the one you
see in Figure 1. We have a customer master containing name and address
information, an order detail containing information such as the date of the order, the
total dollar amount of the order, bill-to and ship-to information, and an order line
detail, with one record for each line on the order. This data set would contain the
inventory item number, unit price and quantity information. Notice in this design I
have included only one path to each detail data set; the ACCOUNT-NUMBER of the
CUSTOMERS master links to each detail set. Remember, I've designed this data base
in order to optimize throughput (adding records), and as a result I've minimized the
I/O overhead when adding records by limiting the number of paths.

It is important to note that each path on an IMAGE detail data set requires an
average of four I/Os each time a record is added or deleted.( I) By minimizing the
number of paths on a set, you reduce update overhead.

So adding records to the ORDERS and ORDER-LINES data sets will be extremely
efficient.

Now let's look at a second data base design. This one will be optimized for retrieval
purposes and will include only the ORDERS data set. The ORDERS data set contains
the following fields:

ACCOUNT#

DATE-ORDERED

SALES-REP

REGION

STATUS

ORDER#

ORDER-TOTAL

STATUS-YRMO

(the customer's account number)

(the date the order was placed)

(the Sales Representative's initials)

(the sales region)

(the status of the order, ie., shipped, back ordered,
invoiced, etc.)

(a sequentially assigned sales order number)

(total dollar amount of the order)

(a concatenation of the status field and the year and
month of the order)

We'll further assume that our users need to select records based on DATE-ORDERED,
SALES-REP, REGION, STATUS, and STATUS-YRMO. Given this scenerio, this
"Informational" data base would probably be designed as shown in Figure 2.
Remember, we're not concerned here with update overhead, just retrieval capabilities.
So we've provided our users with a path for each field that will be used as selection
criteria.

(1) Robert M. Green, F. Alfredo Rego, Fred White, David J. Greer, Dennis L. Heidner,
The IMAGE/JOOO Handbook, (Wordward 1984).

Maximizing Performance
0095-4



DESIGN FOR RETRIEVAL

STATUS-YRMO

DATE-oRDERED

\ /

STATUS

ORDERS

FIGURE 2

0095

SALES-REP

.....---.'S;7
'V

REGION



THE COMPROMISE

CUSTOMERS

ORDERS ORDEA-UNES
\ /

/
/

STATUS ~ORDER III

V
FIGURE 3

0095



It is easy to see that these two data base designs are very different due to the fact
that they are being used for two different purposes. But this is not the way that we
usually design systems. Typically we come up with a data base design that is a
compromise between our retrieval and update requirements. In our order entry data
base example, it would look something like the design in Figure 3. We've provided
our users with the bare minimum in terms of paths in order to minimize the update
overhead. This means that due to many retrievals the ORDERS data set will have to
be serially read. We may have to limit our users access to the information.

In addition, as we add orders, we're going to be incurring more overhead due to the
additional paths that we decided are essential. The compromise data base is less
efficient for updating AND retrieving information.

To compare the efficiency of a compromise data base versus a "split" data base
approach we'll run through a possible scenerio. Refer to Figures 1, 2, and 3 for
design information. To do this we'll make some basic assumptions:

1. 600 orders are entered into the system on a daily basis.

2. An average order includes one ORDERS entry and ten ORDER-LINE entries.

3. There are 250,000 entries in the ORDERS data set.

4. The ORDER8 entries are 256 bytes in length and are blocked at five records
per block.

5. There are 20,000 shipped orders (STATUS of "8H").

6. There are 2,000 orders that were entered in March of 1987.

7. There are 200 orders that were entered in March that are in a shipped status.

8. A report is run daily selecting orders that have shipped in the current month.

First, we'll run through the numbers for the compromise data base. In order to
calculate the I/O required to enter the orders, we'll use the following equation:

600 X (3 + (4 x 3» 9,000 I/Os (ORDERS data set)

(10 x 600) x (3 + (4 xl» = 42,000 I/Os (ORDER-LINE data set)

TOTAL 51,000 I/Os to enter orders

Remember that our formula for I/Os to add detail data set records is 3 + (4 x #paths).
One ORDERS record and ten ORDER-LINE records are used per order.

Now, to provide the report (on all orders shipped in March), we need to use the
STATUS path of the ORDERS data set. Since STATUS is not likely to be the
primary path for this set, we assume that to read each record in this chain requires
one I/O, and performing the DBFIND to find the chain head for the "8H" (shipped)
path costs one I/O.

Maximizing Performance )095-5



DBFIND for chain head
DBGETs to read chain

TOTAL

1
20,000
20,001

In summary, to enter orders on our "compromise" data base costs us 51,000 I/Os per
day and to run the report costs us 20,001 I/Os.

Entry 51,000 I/Os

Retrieval 20,001 I/Os
TOTAL 71,001 I/Os for daily processing

Now let's look at what it takes to accomplish these same tasks using our split data
base approach. In this case, we have only one path on the ORDERS data set, so the
calculation for adding orders would be:

600 X (3 + (4 xl) = 4,200 I/Os (ORDERS data set)

(10 X 600) x (3 + (4 xl» = 42,000 I/Os (ORDER-LINE data set)

TOTAL 46,2~O I/Os to enter orders

To update the data base designed for retrievals (we'll talk about how to do this later)
the calculation would be:

600 x(3+(4 X 5» = 13,800

To run the report from our data base designed for retrievals, we can use the
STATUS-YRMO path, and read only the 200 records that qualify for our selection
criteria. Adding the one I/O for the DBFIND, this gives us:

DBFIND for chain head
DBGETs to read chain

TOTAL

1
200
201

The total number of I/Os for daily processing on the split data base approach is:

Entry
Update

Retrieval

TOTAL

46,200 I/Os
13,800 I/Os

_--:2=.;:0:.::,1 I/Os

60,201 I/Os for daily processing

And how does that compare with the I/Os it took to process on the compromise data
base?

Compromise data base
Split data bases

71,001 I/Os
60,201 I/Os

10,8001/0s DIFFERENCE!!!!!

By splitting the data bases we reduce our I/O overhead by 15%! We will increase the

Maximizing Performance 0095-6



amount of disc space used, but disc space is a one time cost whereas the cost of slower
processing occurs over and over again. Just imagine improving your own system
performance by 15%!

Let's look at what the disc space differences might be for the sample data bases.
First the compromise data base. For simplicity sake, let's assume that each of our
three main data sets (CUSTOMERS, ORDERS and ORDER-LINES) contain media
entries that are 256 bytes (or one sector) in length. Let's also assume that we have
10,000 customers, 250,000 orders, and 2,500,000 order lines.

For our auto masters (ORDER# and STATUS) we need to calculate based on the size
of each field plus the chain pointers times the number of different values likely to be
contained in each set. Let's assume that there are ten possible status codes and that
STATUS is a two-byte field. In the case of ORDER#, let's assume an eight-byte
field. Since there will be a unique ORDER# for each ORDERS record there will be
250,000 records in this auto master.

140 bytes
5,000,000 bytes
2,560,000 bytes

64,000,000 bytes
= 640,000,000 bytes

711,560,140 bytes
or

2,779,532 sectors

(2 + 12) * 10
(8 + 12) * 250,000

256 * 10,000
256 * 250,000
256 * 2,500,000

STATUS
ORDER#
CUSTOMERS
ORDERS
ORDER-LINES

Now let's compare that with our split data base approach. For the data base designed
for throughput, the disc space required would be:

CUSTOMERS
ORDERS
ORDER-LINES

256 * 10,000
256 * 250,000
256 * 2,500,000

2,560,000 bytes
= 64,000,000 bytes

640,000,000 bytes

706,560,000 bytes
or

2,760,000 sectors

The disc space required for the data base designed for retrieval would be:

ORDERS 256 * 250,000
STATUS (2 + 12) * 10
DATE-ORDERED (6 + 12) * 220
SALES-REP (4 + 12) * 100
REGION (4 + 12) * 10
STATUS-YRMO (6 + 12) * 120

= 64,000,000 bytes
140 bytes

3,960 bytes
1,600 bytes

160 bytes
2,160 bytes

64,008,020 bytes
or

250,032 sectors

(NOTE: We are making the following assumptions for the number of records in each
of the automatic masters:

Maximizing Performance 0095-7



STATUS - we established earlier we would assume 10 status codes

DATE-ORDERED- assuming here one years worth of data;
approximately 220 work days per year.

SALES-REP - we assume 100 Sales Reps

REGION - we assume 10 regions

STATUS-YRMO - given 10 possible status codes and 12 months, there
are 120 possibilities here.

Furthermore, w: add 12 bytes to the length of each record to account for the chain
pointers and chain count in the master sets).

For both the throughput and retrieval data bases:

2,760,000 sectors
+ 250,032 sectors

TOTAL 3,010,032 sectors
versus

2,779,532 sectors (for the compromise data base)

In conclusion, by using more disc space and designing separate data bases for separate
purposes, we are providing the business with more benefit from the computer system.
The cost benefit when measured in terms of resources looks like this:

BENEFIT

230,500 sectors disc space 15% throughput improvement

There's one issue that we have yet to discuss regarding this split data
base strategy. That is keeping the information in the second data base up
to date. There are several approaches that you can take.

There are several products on the market which are designed to keep two or
more data bases in sync. (Silhouette and BackChat are two that I know
of.) In some cases these products allow you to mirror only selected data
sets, and at configurab1e intervals.

If you cannot use a separate machine for informational data bases consider
running a nightly process to move records from the "operational" or
throughput data base. This approach will save your on-line users from the
overhead of updating the informational data base.

Finally, make sure that your operational and informational data bases
reside on separate disc drives. If at all possible, providing a separate
machine for informational systems is the most effective solution of all.
This way there is no impact on the operational. users even when updating
the informational data base during on-line hours.

Maximizing Performance 0095-8



Volume of Data

Sometimes the shear volume of data that we must extract information from
is a limiting factor, even when the operational and informational data is
separate. In the case of the sales order information, it is not unlikely
or unreasonable in some businesses to keep three year's of sales
information available for management reports.

So, if we keep three year's worth of information in our informational data
base, and we need to report on total sales dollars for a particular region
in a particular time frame, what are we looking at in terms of reporting
time? Let's take a closer look.

Remember that we had 250,000 ORDERS in our data base that contained one
year's worth of information. Based on that figure let's assume that three
years worth of information would be three times that figure or 750,000
records.

Now we need to select on both the REGION (one of the paths defined in our
informational data base illustrated in Figure 2) and the DATE-ORDERED.
Let's say, hypothetically, that we're looking for orders in Region 7
during March of 1987.

Based on the fact that there are ten sales regions in ACME Distributing
Company, let's assume that 10% of the records (or 75,000) would be orders
for Region 7.

Let's further assume that since we have three years worth of history, that
apprOXimately 21,000 sales occurred each month. If one-tenth of those
total sales occurred in Region 7, then 2100 records would ultimately
qualify for our report selection. But how many records do we have to read
in order to get to those 2100 records of interest?

Refer again to Figure 2, our data base designed for retrieval. You can
see that the only IMAGE path available to us is the "REGION" path. We
can't use the DATE-ORDERED path because we're selecting on a RANGE of
dates, not specific dates. IMAGE will only allow us to use full key
values when doing a chained read.

We can therefore assume that we're probably going to do 75,000 I/Os in
order to select the 2100 records of interest. Why will we get no benefit
from the blocking factor? Because unless the records are sorted in
sequence by region before they are added to this data base, (a scenerio
that is highly unlikely), it is unlikely that any of the records for
Region 7 will wind up in the same block. Refer to Figure 4. You can see
how records for region 7 are spread throughout the detail data set. Since
one I/O is performed per block (not taking disc caching into account) and
we only get one record of interest per block, we will do 75,000 I/Os to
read 75,000 records.

Figure 5 shows the advantage we would realize if we were to make REGION
our primary path and reload this detail set in primary path sequence.
Because our blocking factor is 5 we would do one-fifth the I/Os after a

Maximizing Performance 0095-1



reload. Products that can perform highspeed single set reloads are
Adager, Dbmgr and Dbgeneral.

But is it practical to make REGION our primary path? Only if it is the
path that we will most often use to retrieve information. That is the
whole purpose of specifying a primary path; to allow for more efficient
retrievals. Unfortunately, REGION is unlikely to be a candidate for
primary path.

So, in fact, it looks like we'll do approximately 75,000 I/Os to obtain
the information we need.

Unless we use some alternative method for retrieving the data. We have
two choices:

- Large blocked reads (called MR NOBUF)
- Alternative indexing methods

Why have I not included MPE caching as an alternative? Because MPE caching
uses the RANDOM FETCH QUANTUM when doing serial reads of IMAGE data sets,
not the sequential fetch quantum. The whys and wherefores of this are
beyond the scope of this paper but you can test this yourself as I did.
Take a data set within an IMAGE data base and perform a serial read in a
batch job (a QUERY .fFIND All lI command will do). Then write all the
records in the set out to a flat file. Using the same blocking factor as
in the IMAGE data set. (Be sure and set the MPE record size large enough
to account for the MEDIA record length, so that you're comparing apples to
apples.) Then do a serial read on the MPE file in a batch job. Compare
the time it takes for each and you'll find that the read of the MPE file
is much faster. This, of course, assumes that your sequential fetch
quantum is set fairly high and your random fetch quantum fairly low (as
recommended by HP).

So .•. back to our two alternatives; large blocked reads and alternative
indexing methods. The method that you choose here will depend largely on
how many records are being selected from the whole and whether or not you
need to select from more than one data set.

The way large blocked reads work (these are also known as MR NOBUF or
multi-record no buffering) is to read many thousands of bytes of
information per physical disc I/O. This method can significantly reduce
the time an I/O intensive job takes (such as our report) by reducing the
number of disc reads required. In the case of our report, to read the
REGION chain took 75,000 I/O's. Now let's look at what a serial read
using an MR NOBUF tool such as SUPRTOOL by Robel1e would take.

The default buffer size for SUPRTOOL is 14,366 words, or 28,732 bytes.
Given that our ORDERS records are 128 words (256 bytes) in length, we can
read 112 records per disc I/O. Given that we have 750,000 records in the
ORDERS data set, this would mean that we can accomplish our task using
6,697 disc I/Os -- a savings of more than 68,000 I/Os over our chained
read! (See Figure 6).

Maximizing Performance 0095-10



21,000 record polntera for -8703-
64 recordpolntera per 1/0-- =329 1/0.

75,000 record pointer. for ·07·
64 record pointer. per 1/0 =1,172 1/0.

1,5011/0.

10 retrieve the reoorcIa
1181111 relative reoord
nu )

FIGURE 8

0095

2,100 1/0.

3,801110.





The second possibility we'll look at is alternative indexing techniques.
Amethod available for multi-field selection on IMAGE data bases is
OMNIDEX by DISC. Using this method to index the REGION field and the
first four characters of the DATE-ORDERED field (which contain year and
month) we can select the same 2,100 records using only 3,601 I/Osl Let me
explain.

The way this indexing technique works, in simple terms, is to maintain an
index of values and their associated record pointers. With IMAGE detail
data sets the relative record number is used as the internal record
pointer. (In the case of master data sets, the IMAGE search item value is
used as the internal record pointer).

Selection criteria (or indexed values) can be words within fields or
specific portions of fields, such as year and month from the date field.

When selecting records by two or more selection criteria, OMNIDEX simply
reads each set of record pointers into stack and finds the intersection of
those two sets. Figure 7 illustrates what a subset of our sales history
report selection might look like. This Figure illustrates what the
selection of the 2,100 entries for our report entails. There are several
record pointers which appear in both lists. These constitute the
intersection.

Now it turns out that each physical index record contains up to 64 record
pointers. What this means is that 64 record pointers are read per disc
I/O, if there is no benefit realized from blocking. (These index sets can
be reloaded so that up to seven index records or 448 record pointers are
retrieved per I/O). Figure 8 shows the calculations used to arrive at our
figure of 3,601 disc I/Os using Omnidex indexing methods to retrieve
records for this report.

From this example, you can begin to see how the method used to improve
pe~formance is dependant upon the number of records that are ultimately
used. Using sophisticated indexing techniques was by far the best way to
perform this retrieval. In fact, half the number of I/Os were used as
compared to the number used for an MR NOBUF serial read.

But let's look at another example that shows a different result. If
instead of looking for one month's sales for Region 7, we were looking for
one year's sales, the numbers would look different for the indexed
retrieval.

We stated earlier that the 750,000 ORDERS records represented three year's
worth of sales. Let's assume, then, that in 1987 there were a total of
250,000 orders, or one third of the total. If we can again assume that
since Region 7 is one of ten regions, that 10% of those 250,000 orders in
1987 will be in Region 7, then 25,000 total orders will be selected for
our report.

Looking back at Figure 6 at the calculations for an MR NOBUF read, we see
that the retrieval will take 6,697 I/Os. These numbers do not change when
we select a different number of records because we're not dealing with

Maximizing Performance 0095-11



record pointers.

However, Figure 9 shows that our indexed retrieval is no longer our best
choice. When we qualify this large a number of records, large blocked
reads are our best choice.

CONCLUSION

The bottom line then is that once we understand and buy into the value of
providing certain timely information to our users, there is no one answer
or nblack boxn that we can plug into our application in order to optimize
performance. There are a few basic rules, however that you can follow
that will help guide you in your quest for providing information quickly:

1. Provide Management Reporting Systems using data bases designed
specifically for retrieval purposes. Don't try to cut corners on
disc space at the expense of timeliness of information.

2. Don't assume that using an IMAGE chain is always more efficient
than a serial read. Depending on the number of entries in the
chain and the blocking factor of the data set, even a standard
IMAGE serial read may be more efficient.

3. Use tools such as Adager to reload detail data sets where you often
do retrievals, particularly where chains are long and/or blocking
factors high.

4. For on-line applications, ad-hoc reports and exception reporting,
use sophisticated indexing techniques such as Omnidex to maximize
performance.

S. For applications that extract large volumes of data, use a MR NOBUF
tool such as Suprtool to minimize I/Os.

6. A combination of these techniques implemented intelligently can
provide users with an extremely valuable informational system.

Maximizing Performance · 0095-12



250,000 record pointer. for -87-
-64 record polntera-per 1/0-- =3,907 I/O.

75,000 record pointer. for -07-
64 record pointer. per I/O =1,172 1/0.

5,0791/0a

25,000 I/O.

30,079 I/O.

FIGURE 9

0095



REGION

-----------'

i
I

L..--...J-~--------~

~---

75,0001/0s

FIGURE 4

AFTER SORTING
REGION

'---~~-----
ORDERI

15,000 1/0.
FIGURE 5

0095



CHAINED READ

75,000 RECORDS WITH REGION =·07·

75,000 1/08

MR NOBUF READ

28,732 BYTESIIO

256 BYTES/RECORD

750,000 RECORDS

112 RECORDS/IO

=112 RECORDS I 1/0

=6,697 1/08

FIGURE e

0095



·07· ·810~·

123 79
~ 132

5oi6~~
5183 ~

6021 4976
6111 5111
6821 5547

11 11
7495

FIGURE 7

0095



MPE/XL PROGRAMMING
by Eugene Volokh

VESOFT, Inc.
1135 S. Beverly Dr.

Los Angeles, CA 90035

ABSTRACT

In 1983, I wrote a paper called "MPE PROGRAMMING"
(presented at the INTEREX Montreal conference), which showed
how you could do some remarkable things with MPE alone,
without the aid of a custom-written program. HPE Programming
was the art of writing system programs entirely in the
"language" of CI commands (possibly with some help from
standard, HP-supplied utilities).

The main advantages of MPE Programming were ease of
writing and ease of maintenance. The idea was that a couple
of dozen MPE commands in a job stream were easier to deal
with than a custom-made SPL or COBOL program, especially
since when you write a program, you'll have to always keep
track not just of the job stream, but also the program's
source and object files. UNIX, incidentally, has a very
powerful "Command Interpreter Programming" facility (such
programs are called "shell scripts"); UNIX users often write
very many shell scripts to do things that would otherwise
require some rather cumbersome C or PASCAL system programs.

Unfortunately, MPE/V (and earlier MPE versions) were not
really designed for any sort of sophisticated HPE
programming. Many of the tricks I showed in my original
paper bordered, I must admit, on the perverse. For instance,
to find out if you're in job mode or session mode (without
writing a program that calls WHO), I suggested that you
execute the :RESUME command.

Why the :RESUHE command, of all things? Well (almost by
accident), the :RESUHE command returns one error condition
if done in a job and another if done in a session (but not
in break). We could then completely ignore the actual
function of the :RESUME command, and look only at its "side
effect" the value of the CIERROR JCW, which told us
whether we were in a job or sesion.

Similarly, to see if a file eXisted, we'd do a :LISTF
j$NULL of it. This was not because we wanted to see
information about this file (if we did, we wouldn't put on

0096-1



"PE/XL PROGRAMMING

the j$NULL) rather, we wanted to see if the :LISTF
su~ceeded or failed. If it failed with a CIERROR 907, this
meant that the file didn't exist -- if it succeeded, the
file did exist.

"PE/XL was intended to make many of these things a lot
simpler to do instead of weird, indirect techniques,
mechanisms would be provided for easily getting environment
information (your logon mode, etc.), file information (does
a file exist?), and so on. Seemingly using UNIX as a
prototype (in spirit if not always in detail), MPE/XL sought
to make MPE Programming a straightforward proposition.

To a large extent, HP succeeded -- MPE/XL has a number of
new commands and features that let you do much more powerful
things from the Command Interpreter. In some ways, though,
some of the features seem at first glance to be more
powerful than they really are, and quite a few things that
you'd like to do remain tantalizingly out of your reach.

In the process of converting my MPEX/3000 and
SECURITY/3000 products to MPE/XL -- and in the process of
implementing most of the MPE/XL user interface features in
the MPE/V version of MPEX (and in SECURITY/3000's STREAMX
module), usable by "classic HP 3000 11 users -- I learned a
good deal about the new MPE/XL features, their strengths and
their weaknesses. This paper will try to objectively discuss
both; to show you how to use the strengths to their utmost
and how to work around some of the weaknesses.

0096-2



MPE/XL PROGRAMMING

THE NEW FEATURES OF MPE/XL

What exactly are the new HPE programming-related features
of HPE/XL? There are several:

* First of all, MPE/XL supports VARIABLES. Think of them
as JeWs that can have string values as well as integer
values. (Actually, they can have boolean and 32-bit
integer values, too.) E.g.

:SETUAR FHAME UFOO.DATA.PRODU

* MPE/XL PREDEFINES some variables to values such as your
user name, your account name, your capabilities, etc.
For instance,

:SHOldUAR @
HPACCOUNT = UESOFT
HPDATEF = TUE, FEB 9, 1988
HPGROUP = DEU
HPINPRI = 8
HPINTERACTIOE = TRUE
HPJOBCOUNT = 2
HPJOBLIHIT = 2
HPJOBFENCE = 7
HPJOBNAME = EUGENE
HPJOBNUM = 268
HPJOBTYPE = S
HPLDEUIN = 20

(Don't you wish you'd had this all along???)

* MPE/XL lets you SUBSTITUTE the values of variables (and
even EXPRESSIONS involving the variables) into MPE
commands just as you could always substitute the
values of UDC parameters. For example,

:SETUAR FHAME "FOO.DATA.PROD"
:PURGE !FHAME

is equivalent to

:PURGE FOO.DATA.PROD

Then you could also say

0096-3



MPE/XL PROGRAMMING

!BUILD !FNAHE;DISC=\[lOO*NUHUSERS+251;RECa -64"F,ASCII

it will build a new FOO.DATA.PROD file with room for
100*NUHUSERS+25 records (presumably NUMUSERS 1s an
integer variable previously set with a :SETVAR).

* As shown in the above example, MPE/XL lets you use
EXPRESSIONS in variable substitution, in the :SETVAR
command, in the :IF command, and in the new :WHILE and
:CALC commands:

;SETUAR EXPECTEDFLIHIT 100*NUHUSERS+25
:SETUAR FNAHE "SII+HODULENAHE+",PUB.SYSII
:SETUAR HODULENAHE STRCFNAHE,2,POS(II,II,FNAHE)-2)
:IF HPACCOUNT<>"SYS II

TH~N

;IF POS(IlSH",HPUSERCAPF):zO THEN «user doesn't have SH »

As you can see, the expressions can involve either
numbers or strings, and a number of useful operators
have been defined, such as:

+ to concatenate strings;
STR to extract SUbstrings;
P~S to find the position of one string in another;
UPS to upshift a string;

and many others.

* Perhaps the most useful of the defined operators is
FINFO, which takes a filename and an option number and
returns a piece of information about that file:

FINFO(filename,O)
FINFO(filename,1)
FINFOCfilename,4)
FINFO(filename,8)
FINFOCfilename,-8)
FINFOlfi1ename,9)
FINFO(filename,-9)
and much more.

a TRUE if file exists, FALSE if it doesl
• string with fully-qualified filename
• string containing file's creator
• file's creation date, formatted strinl
• file's creation date, integer format
:IS file's string filecode (e.g. "EDTCT")
• file's integer filecode (e.g. 1052)

For example, to check if a file exists, you can say

:IF FINFO('HYFILE' >0) THEN

To check if a file's EOF is within 10\ of its FLIMIT,
l?OU might enter

:IF FINFOC'HYFILE' ,19»mFINFO('HYFILE' ,12)*9/10 THEN

0096-4



MPE/XL PROGRAMMING

FINFO mode 19 gets you the EOF; FINFO mode 12 gets you
the FLIMIT. (The mode numbers are taken from the
FLABELINFO intrinsic -- one of the weaknesses of FINFO
is that you have to remember these silly item numbers.)

* Commands have been added to OUTPUT and INPUT data:

:ECHO NOW WE'LL ASK YOU FOR A FILENAME.
: INPUT FNAHE, PROHPT="Please enter the fllename: II

:ECHO FNAHE z !FNAHE, FLIM1T = ![F1NFO(FNAHE,12)]

The :INPUT command can even have a timeout (wait for no
more than X seconds) option.

* In addition to MPE/V control structures like :IF,
:ELSE, and :ENDIF, MPE/XL implements the :WHILE /
:ENDWHILE construct, e.g.

:SETJCW I = 295
:ldHILE I < 314

ABORTJOB IJ!I
SETJCW I I: 1+1

:ENDWHILE

* Instead of setting up UDCs, you can set up COMMAND
FILES. If you want to define a command called S that
does a :SHOWJOB, you can build a file called S.PUB.SYS
that contains the lines:

PARM WHAT=" II

SHOWJOB JOB=@!WHAT

Now, whenever you type

:5 J

(for example), MPE/XL will execute the file S.PUB.SYS
passing "J" to it as a parameter. Same as a UDC, but no
need to :SETCATALOG.

* Actually, whenever you type a command (like S in the
example above) that isn't a normal MPE command, MPE/XL
doesn't just check for it in PUB.SYS. It instead looks
at the variable (remember those?) called HPPATH, and
tries to find the file in the groups listed in the
variable.

0096-5



MPE/XL PROGRAMMING

By default, HPPATH is set to

IHPGROUP,PUB,PUB.SYS

This means "first look in IHPGROUP (i.e. your group),
then in the PUB group (of your own account), and then
in PUB.SYS". You can change HPPATH to tell MPE/XL to
look in UTIL.SYS, PUB.VESOFT, PUB.TELESUP, or what have
you.

* In addition to letting you execute command files by
just entering their names, you can also run a program
just by entering its name (IMPLIED RUN). If you say

:SPOOKS

MPE/XL will search the groups specified in HPPATH -- if
the first file it finds is SPOOKS.PUB.5YS (a program
file), itlll run it just as if yould said

:RUN SPOOK5.PUB.SYS

Similarly, to run a program in your own group, you can
just say

:HYPROG

and MPE/XL will automatically supply the :RUN
(remember, MPE/XL will look in HPPATH to determine
which groups it should search -- by default, your group
is one of them). If you say

:HYPROG "BANANA",5

itlll run MYPROG with INFO-"BANANA" and PARH=S (other
:RUN command parameters are not available).

* Finally, a few odds and ends:

The :CALC command works as a general-purpose integer
and string calculator.

Users can now redefine their own prompt by setting
the HPPROMPT variable.

:SETCATALOG lets you add a new UDC file (or remove
one) without retyping the names of all the other UDC
files (which is cumbersome and risks accidentally
unsetting an important file).

0096-6



MPE/XL PROGRAMMING

You can :REDO not just the last command, but one of
the last 20 commands (or even more than 20 if you so
choose). This is actually a very powerful tool -- 1 1 m
only including it in "odds and ends" because itls not
directly relevant to MPE/XL programming.

These are the features -- what are the benefits?

THINGS THAT ARE NOW EASY TO DO

*1. ENVIRONMENT VARIABLES

One example in my original "MPE Programming" paper
involved a UDC finding out whether it's being executed in a
session or in a job. This might, for instance, be a logon
UDC that you use to set your function keys -- it outputs a
whole bunch of escape sequences, which you want to see when
you'r~ online, but which will only garble your printout if
printed in a job.

In MPE/V, if you recall, checking job/session mode was
done this way:

SOFTKEYSINIT «the logon UDC name »
OPTION LOGON
SETJCW CIERROR=O
CONTINUE
RESUME
IF CIERROR<~978 THEN

« lnitiallze the 50ftkeys »
ENDIF

Very straightforward, isn't it? The :RESUME command, of
course, is not used for :RESUMEing at all; rather, we count
on it to generate an error condition -- error 978 if in
batch, but a different error (warning 1686) if online.

MPE/XL makes this lapghably simple:

SOFTKEYSINIT
OPTION LOGON
IF H~INTERACTIOE=l THEN

« lnitialize the 50ftkeys »
EHDIF

0096-7



MPE/XL PROGRAMMING

Essentially, MPE/XL automatically presets some Jews to
interesting values -- HPINTERACTIVE, HPLDEVIN (your terminal
number), HPUSER (your logon user id), etc. This process
actually started in MPE/V with the HPYEAR, HPMONTH, HPDATE,
HPDAY, HPHOUR, and HPMINUTE JCWs, but MPE/XL has added a lot
of new and useful ones.

Some more practical applications are readily apparent and
others (the best kind) aren't. For instance, a really nice
typing-saver is:

:NE~USER JACK;CAP=!HPUSERCAPF

" HPUSERCAPF" stands for "USER CAPabilities, Formatted".
It's a STRING variable that indicates which capabilities you
currently have, e.g. "AM,AL,GL,ND,SF,PH,DS,IA,BA". The "! II

before the "HPUSERCAPF" works much as it would before a UDC
parameter -- it tells MPE to substitute in the VALUE of the
HPUSERCAPF variable in place of its name.

Thus, the command might end up being:

:NEWUSER JACK;CAP=AH,AL,GL,ND,SF,PH,DS,IA,BA

You didn't have to type in all of those capabilities -- the
IHPUSERCAPF automatically put in all the ones you have.

You might even say

:NEWUSER JACK,CAP::![HPUSERCAPF-"AH,1I1

Saying ![xxx] tells MPE: "Evaluate the expression xxx and
substitute in its result". SUbtracting two strings in MPE/XL
removes the first occurence of the second string from the
first -- thus, the :NEWUSER command will become

:NEWUSER JACK,CAP=AL,GL,ND,SF,PH,DS,IA,BA

(since "AM,AL,GL,ND,SF,PH,DS,IA,BA"_uAM,"
II AL , GL, ... , BA" ) .

Another nice example is:

:FILE SYSLIST=BKIHPYEARIHPHONTHIHPDATE,NEWjDEUaDISC;SAUE
:STORE ~L@.@, *T

This will do a system backup and send the listing to a disc file
IDENTIFIED BY THE BACKUP DATE.

0096-8

is



HPE/XL PROGRAMMING

Thus, you can keep many of your backup listlngs online (so you
could easily tell which tape set and reel number a file was on);
each one will be stored in its own file.
For instance, on 20 November 1988, the above commands will be
executed as:

:FILE SYSLISTcBK881120,NEW;DEU=DISC;SAUE
:STORE @.@.~; *T

Unfortunately, itls not quite this simple. (Almost, but
not qUite.) What if we do the :FILE SYSLIST- on the 9th of
April? Then, weld get

:FILE SYSLIST=BK8849, .. I

-- not qUite what we want. Weld like the month and day to be
zero-padded, so that the file names will be more
comprehensible and a :LISTF will show them in the right
order (i.e. not show BK8849 after BK88410 and BK881231). How
can we do this? Well, how about

:FILE SYSLIST=BK![10000*HPYEAR+l00*HPHONTH+HPDATEl;. I I

Instead of sUbstituting the month and the day in directly,
we calculate the value 10000*HPYEAR+100*HPHONTH+HPDATE.
Since this is arithmetic, not textual sUbstitution,
"zero-padding" will occur -- the 9th of April of 1988 will
yield 880409. Then, we textually substitute the resulting
value into the :FILE equation:

:FILE SYSLIST=BK880409;. "

Even the additional power of HPE/XL doesnlt remove the
need for a little ingenuity.

Finally, one more useful little UDC:

HIPRI IJOBNUH
ALTJOB IJIJOBNUH;INPRI=14
SETUAR OLDJOBLIHIT HPJOBLIHIT
LIHIT ![HPJOBCOUNT+ll
LIMIT !OLDJOBLIHIT
DELETEUAR OLDJOBLIHIT

Three guesses as to what this does? Give up? Well, you
:STREAH a job and find it at the bottom of the WAIT queue;
you want it to execute, but you donlt want to let any of the
other WAITing jobs through.

0096-9



MPE/XL PROGRAMMING

This UDC:

* Alters the job to input priority 14 (the highest
priority possible).

* Saves the old job limit (indicated by the built-in
variable HPJOBLIMIT) in an MPE/XL variable
(OLDJOBLIMIT) .

Sets the
currently
topmost
through.

* job limit to HPJOBCOUNT -- the number of
executing jobs -- plus 1, thus letting the

WAITing job (the one you just :ALTJOBd)

* Sets the job limit back to what it was before.

* Just for cleanliness, deletes the OLDJOBLIMIT variable.

Voila! The one problem I can see is that the UDC expects
only a job NUMBER, not the leading "#J" -- if a user types

HIPRI fJ123

then the very first line will be

ALTJOB IJIJ123;INPRI=14

MPE wonlt like this much. Weld like to let the user type
either

HIPRI 123

or

HIPRI IJ123

whichever he prefers.

The solution is again fairly simple, taking advantage of
MPE/XLls provisions for strings and for string operators:

HIPRI IJOBNUH
IF UPS(LFT(IIIJOBNUM",2»=lIfJ" THEN

ALTJOB IJOBNUM;INPRI=14
ELSE

ALTJOB IJIJOBNUH;INPRIc 14
ENDIF
SETVAR OLDJOBLIHIT HPJOBLIHIT
LIMIT ![HPJOBCOUNT+1l
LIMIT IOLDJOBLIMIT
DELETEUAR OLDJOBLIHIT

0096-10



MPE/XL PROGRAMMING

The key here is the :IF expression -- it extracts the
leftmost 2 characters of the string containing JOBNUH
(LFT("!30BNUM",2», upshifts them (UPS(LFT("!JOBNUH",2»),
and then compares them against "#3". If the characters are
equal to "#J", then we just do an :ALTJOB !JOBNUH; if the
characters are something else (presumably the start of the
job number), then we insert a #J in front of them.

#2.

One of the most valuable new features of the HPE/XL CI
is the ability to obtain FILE INFORMATION. Remember the old
MPE trick of finding out if a file exists or not?

SETJCW CIERROR=O
CONTINUE
LISTF HYFILE;$NULL
IF CIERROR=907 THEN

« file doesn1t eXlst »
ELSE

<~ file eXlsts »
ENDIF

Again, what we're doing here is executing a command (:LISTF)
not for its main purpose, but rather for a side effect -- if
we give :LISTF a file that doesn't exist, it'll set the
CIERROR JeW to 907; if the file exists, CIE~OR will rnmain
o.

HPE/XL is much more straightforward:

IF FINFO('HYFILE' ,0) THEN
« file exists >}

ELSE
« file doesn1t exist »

ENDIF

The FINFO function returns information about the file whose
name is passed as the first parameter. The second parameter
tells FINFO which information is to be gotten; 0 means a
TRUE/FALSE flag indicating whether or not the file exists.
Other values ask for other things, such as file code, EOF,
FLIHIT, etc.

Applications for this abound. For instance, your job
stream might check to see if a file has 100 or more free
records:

0096-11



MPE/XL PROGRAMMING

:IF FINFO('DATAFILEI ,19) ) FINFO('DATAFILE ' ,12)-100 THEN
TELLOP File DATAFILE is &

![FINFO('DATAFILE' ,19)*100/FINFO('DATAFILE' ,12)]% fulll
:ELSE

FINFO(xxx,19) returns xxx's EOF; FINFO(xxx,12) returns xxx's
FLIMIT; if EOF > FLIMIT-l00, we send a message to the
operator indicating how full the file is (again, the wonders
of expression sUbstitution).

Another application is that we can now :BUILD files that
are the right size (rather than choose some number and hope
that the file won't overflow) --

:BUILD NE~FILE;DISC=![FINFO('DFILE1' )19)+FINFO('DFILE2 1 )19)+100j

This builds NEWFILE to be large enough to fit all of DFILE1,
all of DFILE2, and 100 more records on top of that.
Unfortunately, note that we still can't figure out, say, the
number of entries in an IMAGE database (which you might very
well want to use in calculating a file limit) -- we're still
restricted to the rather limited set of features that HP in
its wisdom chose to provide to us.

There are, in fact, two pretty serious problems with
FINFO:

* For one, there are still a number of things that FINFO
just doesn't provide. To name a few:

The NUMBER OF SECTORS in a file. I found myself
wanting to write a command file that compared the
number of sectors a file occupied before and after
a certain operation, but there was no way of
getting this information.

The file's LAST ACCESS DATE/TIME and LAST RESTORE
DATE/TIME (FINFO gives us the creation date and
the last modify date, but not the last access date
or the last restore date).

The file's security information
:RELEASEd/:SECUREd flag, security matrix, etc. It
would be quite nice, for instance, to check the
access you're allowed to a file before running a
program that might abort qUite bizzarely if it
isn't given the access it wants.

0096-12



MPE/XL PROGRAMMING

Whether or not the file is currently IN USE (and
if it is, in what mode).

The NUMBER OF EXTENTS in a file, the number of
user labels, and others.

In fact, if you look at the FINFO option numbers,
you'll find that they're pretty much a subset of the
option numbers of the FLABELINFO intrinsic, which also
lets you obtain file information. Why a subset? Why not
just implement all the FLABELINFO options (though even
that would still leave some options out).

All the file attributes -- certainly all those listable
with :LISTF,2 and MPE/XL's new :LISTF ,3 -- should be
easily obtainable from the CI.

* Perhaps more important than the omitted functions is
the fact that

. ALL THE FINFO OPTIONS ARE "MAGIC NUMBERS".

When you saw the command

:IF FINFO('DATAFILE' )19) > FINFO('DATAFILE' )12)-100 THEN

was it clear to you what FINFO(xxx,19) and
FINFO(xxx,12) did? If HP is going to implement file
access functions, why not have an FFLIMIT('DATAFILE'),
an FEOF('DATAFILE'), an FFILECODE('DATAFILE') and so
on? Or, if you want a single function, why not let the
user say

FINFO(IDATAFILE' )'FLIMITI)

or

FINFO('DATAFILE' )IEOF I
)

Sure, it would take a little bit of extra time to
parse, but think of the advantages in clarity.

Of course, you can remedy this problem yourself by
setting up (probably in a logon UDC) variables or JCWs
that are set to the the appropriate FINFO values, e.g.

SETUAR FIFILECODE 9
SETUAR FIFLIHIT 12
SETUAR FIEOF 19

0096-13



HPE/XL PROGRAMMING

You'd probably have to set either 14 or 18 of these
variables, and then you could say

:IF FINFO('DATAFILE' ,FIEOF»FINFO('DATAFILE' ,FIFLIMIT)-lOO THEN

Unfortunately, you and I both know most people won't do
this -- they'll use the IImagic numbers" and let you try
to figure out what's going on.

Even if you set up all the variables and use them
consistently, yOU'll lose one of the greatest
advantages of command files: their stand-alone nature.
Your IIMPE programs" will now rely on your logon UDC and
its SETVARs if it gets deleted, they'll stop
working. If you want to copy your job stream or other
HPE program onto some other machine, yOU'll have to be
sure that the other machine has the same logon UDCs.
The point is that HP shouldn't have made you (or let
you) use "magic numbers" in the first place.

This might seem like looking a gift horse in the mouth -
for fifteen years, we had nothing, and now, when they give
us something, we want more. However, it seems almost a shame
that HP, having made the CI so much more powerful, didn't
implement such reasonable and useful features.

#3. INPurr ':-':IND OUTPUT

A major shortcoming of MPE/V was the absence of any
general output command. Why, to output a simple message, you
had to have a UDC like

DISPLAY !STUFF
OPTION LIST
COMMENT !STUFF

The OPTION LIST would cause the UDC body -- in this case
COMMENT followed by the DISPLAY parameters -- to be output;
to output any message, you'd say

DISPLAY "HI THERE!II

Unfortunately, this would display not HI THERE!, but rather

COMMENT HI THERE!

To avoid the output of the "COMMENT , you had to output
special escape sequences to backspace the cursor and clear

0096-14



HPE/XL PROGRAMMING

the line of course, this wouldnlt work on a printing
terminal. All this bother just to display some text!

MPE/XL does things the right way -- it simply has an HPE
command to do the job. Just say

ECHO HI THERE I

and that1s it. The only thing I can complain about is the
command name -- ECHO's pretty unintuitive. UNIX, of course,
calls its command ECHO (along with calling its PURGE command
RM and its text search command GREP), and MPE/XL borrowed
the name. lid rather HP called it DISPLAY or TYPE or OUTPUT
or something like that, but it's hardly a big deal.

Of course, outputting variables and expressions can be
easily done with the ECHO command -- just use the !xxx and
![xxx] syntaxes:

ECHO YOU'RE SIGNED ON AS !HPUSER.IHPACCOUNT, X = ![UPStX)]

The only trick you need to know here is this: how do you
output a string with leading blanks? Like all MPE commands,
all blanks between the command name and the first parameter
are skipped, so

ECHO HI THERE!

and

ECHO HI THERE!

produce exactly the same output -- IIHI THERE!II with no
leading blanks. Stumped? Just say

CALC II HI THERE!II

The CALC command takes an expression parameter (in this
case, just a string constant), evaluates it, and outputs the
result. Since the parameters start at the quote, all the
blanks between the quote and the HI are NOT ignored, and are
output. (Be careful, though, of using the CALC command for
general output purposes -- it works quite well for strings
and booleans, but for integers it outputs more than just the
integer's value.)

In addition to the :ECHO command for output, HPE/XL also
has an input command, fortunately called :INPUT. For
instance, you might have a UDC that says:

0096-15



MPE/XL PROGRAMMING

MOUE !FROMFILE, !TOFILE
SETJCW CIERROR=O
IF FINFO("ITOFILE",O) THEN

COMMENT Target file already exists!
INPUT PROMPT:z"OK to purge !TOFILE? "; NAHE=PURGEFLAG
IF UPS(STR(PURGEFLAG,l,l)=uyn THEN

PURGE !TOFILE
ENDIF

ENDIF
RENAME !FROMFILE, ITOFILE

If TOFILE already exists, the UDC will ask the user if it's
OK to purge it. UPS(STR(PURGEFLAG,l,l)) merely means Uthe
upshifted first character of PURGEFLAG U -- this way, Y, YES,
and YOYO will all be accepted as a YES answer.

Actually, there's one pretty big temptation with the
:INPUT command that should be resisted. You should think
twice (or more) before using the :INPUT command to prompt
for UDC (or command file) PARAMETERS. For instance, a UDC
such as

HOUEP
INPUT PROMPT=IIFrom file? "; NAME=FROHFILE
INPUT PROHPT="To file? "; NAHE=TOFILE
SETJCW CIERROR~O

IF FINFO(II!TOFILE")O) THEN
COMHENT Target file already exists!
INPUT PROHPT:a"OK to purge !TOFILE? II; NAME=PURGEFLAG
IF UPS(STR(PURGEFLAG,l,l»:zuyll THEN

PURGE !TOFILE
ENDIF

ENDIF
RENAHE IFROHFILE, !TOFILE

may not be a very good idea at all. Unlike the parameterized
UDC we showed above, this one can only be conveniently used
directly from the CI. Say that you want to write another UDC
that runs a program and renames one of its output files
(LISTFILE) into LISTFILE.ARCHIVE. With the parameterized
MOVE UDC, we could say:

RUN HYPROG
HOUE LISTFILE, LISTFILE.ARCHIVE

and then have the MOVE UDC prompt the user if
LISTFILE.ARCHIVE already exists. The unparameterized MOVEP
UDC can't be used here at all, since it always prompts the
user for the input and output files, which in this case are
fixed and should not be prompted for.

0096-16



MPE/XL PROGRAMMING

In other words, this is the same reason why the best
third-generation language procedures take their input values
as parameters rather than prompt for them -- a parameterized
procedure is much more reusable than a prompting one.

One very interesting use of the :INPUT command, though,
might be in cases such as this:

MOUE !FROHFILEsa: 1I
II, !TOFILE=1f II

IF II!FROHFILE ll c ll
II THEN

INPUT PROHPT="From file? II; NAHE=l)ARFROHFILE
ELSE

SETUAR VARFROHFILE "!FROHFILE II

ENDIF
IF II I TOFILEIl=1I II THEN

INPUT PROHPT=IITo file? II; NAHE=VARTOFILE
ELSE

SETUAR UARTOFILE f1!TOFILEIl
ENDIF
SETJCW CIERRORzO
IF FINFO(II!fJARTOFILE",O) THEN

COMMENT Target file already existsl
INPUT PROMPT=1I0K to purge !OARTOFILE? "; NAME=PURGEFLAG
IF UPS(STR(PURGEFLAG,l,l))=IlYII THEN

PURGE IUARTOFILE
ENDIF

ENDIF
RENAME IUARFROHFILE, !UARTOFILE

This UDC can accept its input either from its parameters or
from the terminal. If itls used from within another UDC or
by a knowledgeable user, it can be passed parameters -- if a
novice user is using it, he can just type

: MOVE

and be prompted for all the input (for instance, if hels
unfamiliar with what parameters the UDC takes). Actually,
this may not be so useful for a simple UDC like this, but a
really complicated UDC with many parameters can be made much
more convenient with "dual-mode" processing like this.

There are plenty of other uses for the :INPUT command -
menus, error processing (IlAbort UDC or continue? II), etc.
There are also a lot of rather devious, non-obvious uses for
it, too (more about those later). The only thing that bears
keeping in mind is that :INPUTs should not entirely take the
place of parameter passing.

0096-17



*4. WHILE LOOPS

HPE/XL PROGRAMMING

No programming language is really complete without some
sort of looping capability. In MPE/V, you could.sometimes
make do with the pseudo-looping capabilities of EDITOR/3000
(for things like taking the output of one program and
translating it into input for anotherJ and the ability of
: STREAMs to stream other jobs. For instance, one thing that
we at VESOFT used to make multiple production tapes was a
tape-making job stream that at the end streamed itself, thus
forming a sort of "infinite loop". (This was before we
implemented :WHILE and other MPE/XL functions in our STREAMX
Version 2.0, which makes things much easier.)

In one respect, MPE/XL's :WHILE command gives you all the
looping that you need (any loop, including the FOR x:-y TO z
and the REPEAT ... UNTIL constructs, can be emulated with a
:WHILE)j however, as we'll discuss later, it falls
tantalizingly short in some areas.

First the good news:

SETUAR JOBNUH 138
WHILE JOBNUH<=174 DO

ABORTJOB IJ!JOBNUH
SETUAR JOBNUH JOBNUM+l

ENDWHILE

This is an example of how the :WHILE loop can iterate
through a set of integers. This simply aborts a whole range
of jobs, from #J138 to #J174. (Seems useless? Try SUbmitting
fifty jobs in one shot -- all of them with the same silly
error! I did this the day before I wrote the paperj the
:WHILE loop sure came in handy.) Similar things can be done
in some other cases -- for instance, you can use this to
purge LOG####.PUB.SYS system log files IF you know the
starting and ending log file numbers (unless you're willing
to start at LOG0001 and work your way up).

Another example, taken roughly from Jeff Vance and John
Korondy's excellent paper "DESIGN FEATURES OF THE MPE XL
USER INTERFACE" (INTEREX Las Vegas 1987 Proceedings):

PRT Fl, F2 zllU , F3=1J1I, F4alfll , F5=1t1l, F6=ult
COMMENT Prints Fl, F2, F3, F4, F5, and F6 to the line printer
FILE OUT;DEU=LP
SETUAR I 1
SETUAR F' "" « to termlnate the loop »
WH ILE '! II F! I II I <>

0096-18



HPE/XL PROGRAMMING

IF FINFO( I ! "F! I" I ,0) THEN
ECHO PRINTING !"F!III
PRINT ! "F! I" , *OUT

ELSE
ECHO ERROR: !FII!I II NOT FOUND, SKIPPED.

ENDIF
SETUAR I 1+1

ENDLJHILE

The WHILE loop here iterates through the 6 UDC parameters,
making it unnecessary to repeat its contents once for each
one. The construct !"F!I" is actually rather interesting. If
I is 3, it gets translated into !"F3", which in turn gets
replaced by the value of the F3 parameter.

Another example might be checking a parameter to make
sure that it's, say, entirely alphabetic (in preparation for
passing it to some program that will abort strangely and
unpleasantly if there are any non-alphabetic characters in
it) :

SETUAR I 1
WHILE I<=LENlPARH) AND UPS(STR(PARH,I,1»)>="A" AND &

UPS(STR(PARM, 1,1» <="2" DO
SETUAR I 1+1

ENDWHILE
IF I>LEN(PARH) THEN

COMMENT Hit the end of the strlng wlthout findlng a non-alpha
RUN MYPROG; INFOzz II ! PARM"

ELSE
ECHO Error! Non-alphabetlc character found:
CALC U!PARM"
SETUAR BLANKS
SETUAR J 1
WHILE J< I

SETUAR BLANKS BLANKS+" "
SETUAR J J+1

ENDWHILE
CALC BLANKS+II All

ENDIF

Note the little "bell-and-whistle"
non-alphabetic character, we use a
concatenate together several blanks and
output looks like:

Error! Non-alphabetic character found:
FOOBAR.XYZZY

if there's a
:WHILE loop to

an so the

Many parsing operations can actually be done more simply
with the POS function (which finds the first occurence of

0096-19



MPE/XL PROGRAMMING

one string in another); however, some complicated operations
(such as the ones we just showed) may require :WHILE loops.

Finally, one other place where :WHILE should find a lot
of use is the :INPUT command:

INPUT PROHPT=1I0K to proceed ('of/N)? u, NAME=ANSLJER
LJHILE UPSCANSLJER)<>IIYII AND UPS(ANSLJER)<>IIYESII AND &

UPS(ANSLJER)<>IIN II AND UPSCANSldER)<>IINO II DO
ECHO Error: Expected YES or NO.
INPUT PROMPTa:"OK to proceed (Y/N)'? II, NAHE=ANSLJER

ENDLJHILE

Most good UDCs and command files that use :INPUT should have
some sort of input error checking, and this kind of :WHILE
loop is a convenient way of doing it.

With all this power, what's there to complain about?
After all, with an :IF and a :WHILE any language is
theoretically complete -- any algorithm can be implemented.

Well, not qUite. Control structures can get you only as
far as the data access primitives are able to take you. Take
some of the iterative operations that you'd REALLY want to
implement:

* WHILE there are files in a fileset, DO something to
them.

* WHILE there are jobs left, ABORT them (in preparation
for a backup).

* WHILE there are records in a fileset, DO some
processing on them -- perhaps write some of the records
into another file, or pass them as input to some other
program.

You can't do any of this (straightforwardly) because MPE/XL
doesn't prOVide you any functions to read files, to handle
filesets, to find all jobs, etc. You'd like to be able to
say:

:WHILE FRECORDC'MYFILE' ,RECNUH)<>, I

:ENDWHILE

where FRECORD would return you a particular record of the
specified file; unfortunately, no FRECORD primitive exists.
The :WHILE command is only as powerful as the conditions you
can specify; unfortunately, at the moment, this seems mostly
limited to numeric iteration and to checking command

0096-20



MPE/XL PROGRAMMING

success/failure.

Another thing you'd like to be able to do with :WHILE is
to repeat a particular command every given number of seconds
or minutes -- for instance, to have a job stream wait until
a particular file is built or becomes accessible. Unless
you're Willing to spend lots of CPU time in the loop, you
need to have some way of pausing for a given amount of time,
e.g.

:WHILE NOT FINFO('HYFILE' ,0) DO
PAUSE 600 «600 seconds »

:ENDWHILE

Unfortunately, there is no :PAUSE command or PAUSE function
provided by MPE/XL (although as we'll see shortly, there are
some tricks you could do ... ).

*5. COt··1MAND FILES

Command files were implemented more for convenience than
for additional power; however, they can be convenient
indeed.

Simply put, a command file is a replacement for a UDC. If
you want to implement a new command called DBSC to run
DBSCHEHA, you used to have to write a UDC:

DBSC !TEXT="$STDIN", !LISTcIlSSTDLIST"
FILE DESTEXT=!TEXT
FILE DBLIST=!LIST
RUN DBSCHEHA, PUB, S'tS ;PARM= 3

You'd add this UDC to your system UDC file, :SETCATALOG the
file, and presto! you have a new command.

In HPE/XL, you could use a command file to do the same
thing. You could build a file called DBSC.PUB.SYS that
contains the text:

PARM ITEXT="SSTDIN", ILIST="SSTDLIST"
FILE DBSTEXT=ITEXT
FILE DBLIST=!LIST
RUN DBSCHEHA.PUB,SYS;PARH=3

Then, the very presence of the DBSC.PUB.SYS file will
implement the new command -- no need to :SETCATALOG it. You
can just say

0096-21



MPE/XL PROGRAMMING

DBSC HYSCHEHA, *LP

and MPE will check to see if DBSC.PUB.SYS exists, find that
it does, and execute it much like it would have a
:SETCATALOGed UDC.

Why is this so nice? Well, remember all the nonsense you
had to go through to change a :SETCATALOGed UDC file? You
had to build a new file with a different name, :SETCATALOG
it in the old onels place, and even then it wouldnlt take
effect for another session until it logged off and logged
back on! Most people ended up having several versions of the
system UDC file, since you couldnlt purge the old file until
everybody who had been using it was logged off.

With command files, simply build the file, and there you
have it. No need to worry about whether the UDC file is in
use (unless the command is actually being executed at that
very moment, it wonlt be in use); no need to choose a new
name for the file; no need to remember to re-specify all the
other UDC files on the :SETCATALOG.

In fact, the MPE/XL compiler commands are actually
implemented this way :PASXL, for instance, is just a
command file (PASXL.PUB.SYS) that sets up several file
equations and runs PASCALXL.PUB.SYS (the actual compiler
program file -- you still need programs for something!).

Whenever I give an example in this paper that involves
UDCs, chances are very good that it will work with command
files, too (in fact, you'd probably want to do it with
command files). I only use UDCs in the examples to keep
things as familiar as possible.

You could also implement account-wide commands by just
putting the command files into your PUB group, and
group-wide commands by putting them into your own groups. In
fact, MPE/XL has a special variable called HPPATH that
indicates where it is to search for command files; by
default, HPPATH is set to "'HPGROUP,PUB,PUB.SYS II

, i.e.
"search your group (!HPGROUP) first, then the PUB group,
then the PUB.SYS group". You could actually change it to
something else, e.g.

:SETUAR HPPATH II!HPGROUP,PUB,PUB.UESOFT,CHD.UTIL,PUB.SYSIt

In fact, it's probably a good idea to keep your own command
files not in PUB.SYS (where they'll just get lost among all
the other files) but in a special group, say CMD.UTIL. This
way, a simple

:LISTF @.CHD.UTIL

0096-22



MPE/XL PROGRAMMING

will show you all the system-wide command files that you've
set up. Of course, you'll have to have a system-wide logon
UDC that sets up the HPPATH variable to include CMD.UTIL.

A similar feature of MPE/XL is "implied run". Just
entering a program file name will AUTOMATICALLY cause that
program to be run; e.g.

:DBUTIL

will automatically do a

:RUN DBUTIL.PUB.SYS

WITHOUT your having to have a UDC or a command file for this
purpose. You can also specify a parameter, which gets passed
as the iINFO· string to the program being run:

:HYPROG FOa
:PROG2 "TESTING ONE TWO THREE II

and also a second parameter, which gets passed as the
iPARM-:

:HYPROG ,10
:HYPROG FOOBAR,5

(Other parameters -- jLIB·, jSTDINc, jSTDLIST-, etc. can not
be passed; you have to do a real :RUN for that.) Also note
that MPE/XL looks for the program file in exactly the same
places in which it looks for a command file: all those
groups listed in the HPPATH variable.

These features are all very convenient, and can save you
a good deal of effort and some typing. There is, however,
one problem with both command files and implied :RUNs (and
also UDCs) that limits their usefulness:

* THERE'S NO WAY FOR PASSING THE *ENTIRE REMAINDER OF THE
COMMAND LINE* TO EITHER A COMMAND FILE, AN IMPLIED
:RUN, OR A UDC.

For example, say that I want to implement a new command
called :CHGUSER that executes my own CHGUSER.PUB.SYS command
file. I want it to look much like MPEls :NEWUSER and
:ALTUSER -- I'd like to let people say

:CHGUSER XYZZY;CAP--BA,+DS,+PH;PASS=SRANDOM

0096-23



MPE/XL PROGRAMMING

The CHGUSER.PUB.SYS command file could then take the entire
remainder of the line as a single parameter, and then
perhaps pass it to some program that would process it.

Unfortunately, this simply can't be done! Since the
parameter list includes "j"S, ",Us, and "·"s, MPE/XL views
them as delimiters (it would view blanks as delimiters,
too); there's no way of specifying in the command file that
delimiter checking is to be turned OFF, and that the entire
remainder of the command is to be passed as one parameter.
Of course, you could require the user to enclose the
parameter in quotes, but you'd rather not do that. (If
you're thinking that declaring CAP·, PASSe, etc. as keywords
to the command file will work, it won't -- look at the ","s
in the CAPa parameter.)

In fact, MPE's own :FCOPY command couldn't be implemented
as an auto-RUN or as a command file for this very reason -
each : FCOPY command always includes delimiters, and that
won't work. I can see why HP doesn't like delimiters in an
implied :RUN (so that the jPARM- value can be specified as
well as the ;INFOa), but why not have some sort of option
for command files? Personally, I'd rather be able to pass
the entire remainder of the command as one parameter than be
able to specify a ;PARMa value.

In fact, UNIX does have a way of treating the parameter
list (of either a program or a command file) as either a
sequence of individual parameters or as one single string;
UNIX programmers frequently use this feature. Again, this
may be looking a gift horse in the mouth, but it would have
been so easy for HP to implement something like this.

TRICKS

We've pretty much covered all the things you can do
straightforwardly with MPE/XL. Of course, if this was all I
had to say, lid never have written this paper. People who
know me know that I NEVER do things straightforwardly ...

MPE/V had the (small) set of things you can do easily and
the far larger set of things you could do if you really
stood the system on its head. Similarly, MPE/XL has the
larger set of things you can do easily, and the bigger still
number of things you can do with a little bit of trickery.
This is where the fun begins.

0096-24



#1.

MPE/XL PROGRAMMING

PAUSING FOR X SECONDS

At a certain point in your job stream, a particular file
may be in use. You don't want this to abort the job
rather, you want the job to suspend until the file is no
longer in use.

A first attempt at this might be:

WHILE FINFO('HYFILE' ,fileisinuseflag) DO
PAUSE one mlnute

ENDWHILE

While the file is in use (surely there must be an FINFO
option for this!), pause for a minute, and then check again.
This shouldn't be too much of a load on the system (though
without the :PAUSE this would be a heavy CPU hog indeed!).

Of course, you face two problems. First of all, there is
no FINFO option to check to see if the file is in use or
not. (OK, everybody, submit those SRs!) Old MPE programming
hands, however, shouldn1t despair:

FILE CHECKER=MYFILEjACC=OUTKEEPjSAUE
SETJCW CIERROR=O
CONTINUE
PURGE *CHECKER
WHILE CIERROR<>O DO

PAUSE one minute
SETJCW CIERROR=O
CONTINUE
PURGE *CHECKER

ENDWHILE

See what we're doing? The :FILE equation tells the file
system to open the file with jACC-OUTKEEP (so the data won't
get deleted) and close it with disposition jSAVE (so the
file itself won1t get purged) -- the :PURGE command will
thus not purge the file at all, but just try to open it with
exclusive option. As long as the :PURGE is failing, we know
that the file is in use (unless, of course, it doesn't exist
or we1re getting a security violation).

We do this check once before the :WHILE loop; then, if
CIERROR<>O, we pause for a minute, do the check again, and
keep going until the check succeeds.

The only problem that remains is, of course, that MPE/XL
has no :PAUSE command -- without it, the entire exercise is
academic.

0096-25



MPE/XL PROGRAMMING

What can we do? Well, one solution is to write a program.
Call it PAUSE.PUB.SYS -- itlll take a ;PARM- value, convert
it to a real number, and call the PAUSE intrinsic. Then, any
of your command files could say

:RUN PAUSE.PUB.SYS;PARH=60

or just use the implied :RUN, as in

:PAUSE ,60

I don't like this. I don't like it for several reasons:

* The program, though not by any means difficult, is not
trivial to write. If you know SPL, it's only a few
lines; what if you only know COBOL? You can't even call
the PAUSE intrinsic from COBOL (at least from COBOL
'74), since COBOL can't handle real numbers (which the
PAUSE intrinsic expects).

From FORTRA~, you could call PAUSE, but you also need
to call the GETINFO intrinsic (quick! do you know it's
parameter sequence?). What if you had to write a
program that checked to see if the file was in use?
You'd have to call FOPEN, figure out the right foptions
and aoptions bits (\1 and \100, if you're curious), and
then use an intrinsic to set a JCW appropriately.

*

*

Once you write it, you have to keep track of it. You
put its object code into PAUSE.PUB.SYS -- where do you
keep the source code? What if you lose it? Will you
write documentation for it, or add a HELP option?

Finally, the more external programs you use, the less
self-contained the job stream will be. What if you move
the job to one of your machines? You'll have to move
the PAUSE program, too, and probably its source code
and documentation, just to be safe.

For vendors like VESOFT, the problem becomes even
greater our installation job stream has to be able
to run on a system where NONE of our software currently
exists. We canlt rely on your PAUSE.PUB.SYS or what
have you.

You might agree with me or you might not. It's qu te
possible that the only problem with an external program f le
is that it somehow affects some silly esthetic sense of m ne

0096-26



MPE/XL PROGRAMMING

that my mind is too twisted to appreciate a simple,
straightforward solution. In any event, here's my answer to
the problem:

:BUILD MSGFILE;TEMP;MSG
:FILE HSGFILE,OLDTEHP
:RUN FCOPY,PUB,SYS;STDINlII*HSGFILE;INFOcll:INPUT DUHHY;WAIT=60"

Nice, eh? I build a temporary message file called MSGFILE,
and then I run FCOPY with jSTDINlII redirected to it. Then, I
tell FCOPY to execute an :INPUT command, telling it to WAIT
for 60 seconds for input! (Of course, the only reason I use
FCOPY here is to have it execute the MPE/XL command ":INPUT
DUMMYjWAIT-60" -- FCOPY's convenient for this because we can
pass the command to it as an INFOa string.)

Of course, the input will never come, since MSGFILE is
emptyj and, I must admit that the :INPUT jWAIT- parameter
was almost certainly intended to wait for TERMINAL input.
However, it also works perfectly well when the input is
coming from a $STDIN file that was redirected to a message
file. When the 60 seconds are up, the :INPUT command will
terminate and return control to FCOPY, which will then
return back to the CI.

Now, our job stream is complete:

:BUILD HSGFILE;TEHP;MSG
:FILE HSGFILE,OLDTEHP
:FILE CHECKER=HYFILEjACC=OUTKEEP;SAUE
:SETJCW CIERROR=O
:CONTINUE
:PURGE *CHECKER
:WHILE CIERROR<>O DO

RUN FCOPY,PUB,SYS;STDIN=*HSGFILE;INFO=II:INPUT DUHHY;WAIT=60"
SETJCW CIERROR=O
CONTINUE
PURGE *CHECKER

:ENDWHILE

Complete, of course, except for the many :COMMENTs that I'm
sure that you, as a conscientious programmer, will certainly
include ...

Some may say that only a computer freak can think that
the above solution is simpler than just running a program
that loops doing FOPENs and PAUSEs.

They may be right.

0096-27



MPE/XL PROGRAMMING

READING A FILE

The :REPORT command nicely shows you all the disc space
used by each account on the system (actually, on MPE/XL 1.0
the disc space :REPORTed is sometimes erroneous, but I'm
sure that'll be fixed soon). Unfortunately, it doesn't show
you the total disc space used in the entire system, which is
a useful piece of information. For instance, you might want
to subtract the free and the used disc space counts from the
total space on your discs, thus finding out how much lost
space there is.

The :REPORT command can send its output to a file, which
is good. But what can you do to read the file?

Well, let's start at the beginning. First, let's do a
:REPORT into a disc file:

:FILE REPOUT;REC=-80,16,F,ASCII;NOCCTL;TEMP
:CONTINUE
:REPORT XXXXXXXX.@,*REPOUT

What's the XXXXXXXX.@ for? The : REPORT command usually
outputs information on accounts and on groups; in our case,
we don't want to have any group information at all. By
specifying a group that we know doesn't exist in any account
(I hope that you don't have a group called XXXXXXXX) we can
make MPE output only the account information and no group
information. It'll also print an error (NONEXISTENT GROUP),
but that's OK.

Now, we have a temporary file called REPOUT, which
contains two header lines and one line for each account.
We'd like to extract the number of sectors used from each
account line and add everything up. This is where the real
trickery comes in.

One thing we might do is use EDITOR. The principle here
is that we'll take the :REPORT listing, which looks like

ADHIN
CUST
DEU

15502
3062
7080

**
**
**

1046
o

18
**
**
**

8372
o
8

**
**
**

and "massage" it into a sequence of HPE/XL commands:

0096-28



:SETUAR TOTALSPACE TOTALSPACE+
:SETUAR TOTALSPACE TOTALSPACE+
:SETUAR TOTALSPACE TOTALSPACE+

15502
3062
7080

MPE/XL PROGRAMMING

We can then execute all these commands, and TOTALSPACE will
be the total used disc space count.

Doing this is simple (?):

:PURGE REPOUT)TEHP
:FILE REPOUT;REC=-80,16,F,ASCII;NOCCTL;TEMP
:CONTINUE
:REPORT XXXXXXXX.@,*REPOUT
:SETUAR TOTALSPACE 0
:EDITOR
/TEXT REPOUT
/DELETE 1/2 « delete the header lines »
/CHANGE 23/72,1111 )ALL << delete ever~thing right of the count >>
/CHANGE 1/8)":SETUAR TOTALSPACE TOTALSPACE+" «delete the left »
« now, each line looks like: »
« :SETUAR TOTALSPACE TOTALSPACE+ 15502»
/KEEP REPUSE,UNN
/USE REPUSE « execute the :SETVARs »
/EXIT

Now, the TOTALSPACE variable is set to the total disc space!

This is very much like what we did in pre-MPE/XL uMPE
PROGRAMMING" we used EDITOR as a means of taking a
program's or a command's output and making it another
program's (in this case, also EDITOR's) input. In fact,
UNIX's "sed" editor is very frequently used for this purpose
by UNIX programmers (although it's much more adapted to this
than EDITOR/3000 is).

The trouble with this solution is that it's inherently
limited to plain textual substitution. What if we wanted to
sum the disc space of all accounts that used more than
20,000 sectors? EDITOR has no command that can easily check
the value of a particular field in a line. What we'd really
like to do is use all the power of HPE/XL's :WHILE loop and
expressions to process the :REPORT listing one line at a
time.

As I mentioned before, MPE/XL unfortunately has no "get a
record from a file" function. However, not all is lost.

0096-29



MPE/XL PROGRAMMING

Let's set up two command files. One (TOTSPACE) will look
like this:

FILE REPOUT;RECm-80,16,F,ASCII;NOCCTL;TEHP
SETUAR OLDHSGFENCE HPHSGFENCE
SETUAR HPHSGFENCE 2
PURGE REPOUT,TEHP
CONTINUE
REPORT XXXXXXXX.@,*REPOUT
SETUAR HPHSGFENCE OLDHSGFENCE
FILE REPOUT,OLDTEHP
CONTINUE
RUN CI.PUB.SYS;PARH=3;INFO="TOTSPAC2";STDIN=*REPOUT;STDLIST=$NULL
ECHO TOTAL USED DISC SPACE = ITOTALSPACE

There are two new things here. One is

SETUAR OLDHSGFENCE HPHSGFENCE
SETUAR HPHSGFENCE 2
CONTINUE
REPORT XXXXXXXX.@,*REPOUT
SETUAR HPHSGFENCE OLDHSGFENCE

Whatts all this HPMSGFENCE stuff? Well, remember that the
REPORT XXXXXXXX.@,*REPOUT command will almost certainly
output an error message (NONEXISTENT GROUP). This is to be
expected, and we dontt want the user to have to see this.

So, we set the HPHSGFENCE variable to 2, indicating that
error message are not to be displayed (setting it to 1 would
inhibit display of warnings, but still print errors).
However, since we want to reset HPHSGFENCE to its old value
later, we save the old value of HPHSGFENCE, set the value to
1, do the command, and then reset the old value.

Personally,
reqUired. In
%NOMSGj saying

I think that this is a bit more effort than
HPEX, I simply added a new command called

%NOHSG REPORT XXXXXXXX.@,*REPOUT

makes MPEX execute the :REPORT command without printing any
messages. Similarly, HP could have had a :NOMSG command (for
suppressing errors and warnings) and a :NOWARN command (for
suppressing only warnings). This would have saved all the
bother of the saving of the old HPMSGFENCE, setting it, and
resetting it. In fact, to be really clean, I should even do
a

:DELETEUAR OLDHSGFENCE

after doing the :SETVAR HPHSGFENCE OLDMSGFENCE.

0096-30



« to SklP the flrst header line »
« to Sklp the second header line »

MPE/XL PROGRAMMING

In any case, the HPHSGFENCE solution is better than no
solution at all in MPE/V, the warning message would
always be displayed, and users might get quite confused by
it.

The only other little trick (in this command file) is

RUN CI,PUB,SYS;PARH=3;INFO=IITOTSPAC2 11 ;STDIN=*REPOUT;STDLIST=SNULL

What on earth does this mean?

In MPE/XL, the CI is not some special piece of code kept
in the system SL. Rather, it's a normal program file called
CI.PUB.SYS when a job or a session starts up, the system
creates a new CI.PUB.SYS process on the job/session's
behalf. However, CI.PUB.SYS is also :RUNable just like any
other programj you can run it interactively by saying

:RUN CI,PUB.SYS

or just

:CI

Alternatively, you can run it and tell it to execute exactly
one command:

:RUN CI,PUB.SYS;PARH=3;INFO=llcommand to be executed"

(jPARM c 3 tells the CI not to display the :WELCOME message
and to only process the jINFO= command, rather than prompt
for more commands other jPARM= values do different
things.)

In our case, we're running CI.PUB.SYS with
jINFO-"TOTSPAC2" (telling it to execute our TOTSPAC2 command
file), and with jSTDIN= redirected to our :REPORT command
output file. We redirect jSTDLISTm to $NULL, since the eI
will otherwise echo its jINFOIC command -- ":TOTSPAC2" -
before executing it.

Now we can see what TOTSPAC2 contains:

:INPUT DUHMY
: INPUT DUt"1HY
:SETUAR TOTALSPACE 0
:SETUAR HPHSGFENCE 2 «to ignore any error messages »
:WHILE TRUE DO « loop untll we get an error »

INPUT REPORTLINE «get a :REPORT detail Ilne »
« extract the disc space -- 15 columns starting with »

0096-31



HPE/XL PROGRAMMING

« column 9 -- and add it to TOTALSPACE »
SETUHR TOTALSPACE TOTALSPACE + ![STR(REPORTLINE,9,lS)]

:ENDLJHILE

See the trick? CI.PUB.SYS's jSTDINm is redirected to a disc
file, so all :INPUT commands will read from that disc file.
For each line we read in, we extract the account disc space
(STR(REPORTLINE,9,15)), and do a

:SETUAR TOTALSPACE TOTALSPACE + extracted_account_disc_space

When we run out of input lines, the :INPUT command will get
an EOF condition, and the command file will stop executing.
TOTALSPACE is now set to the total disc space.

Both the EDITOR and the two-command-files solution can be
used online, though both require two files (the first
approach would require a disc file that contains all the
required EDITOR commands). In a job, the EDITOR approach can
be completely self-contained, since the EDITOR commands can
just be put into the job stream; the second approach can
also be self-contained if you create the TOTSPAC2 command
file within the job (by using EDITOR or FCOPY).

Finally, one more variation on the same theme:

FILE REPOUT;REC=-248"U,ASCII;NOCCTL;HSG;TEHP
SETUAR OLDHSGFENCE HPHSGFENCE
SETUAR HPHSGFENCE 2
CONTINUE
PURGE REPOUT,TEHP
REPORT XXXXXXXX.@,*REPOUT
SETUAR HPHSGFENCE OLDHSGFENCE
FILE REPOUT,OLDTEHP
CONTINUE
RUN CI.PUB.SYS;PARH=3;INFO="INPUT DUHMytI;STDIN=*REPOUT;STDLIST=SNULL
RUN CI.PUB.SYS;PARM=3;INFO=IIINPUT DUMHylI;STDIN=*REPOUT;STDLIST=SNULL
SETUAR TOTALSPACE 0
WHILE FINFO('*REPOUT' ,19»0 DO

RUN CI,PUB,SYS;PARH=3;INFO="INPUT REPORTLINE";STDIN=*REPOUT;&
STDLIST=$NULL

SETVAR TOTALSPACE TOTALSPACE + ![STRCREPORTLINE,9,lS)]
ENDLJHILE
ECHO TOTAL USED DISC SPACE = !TOTALSPACE

Intuitively obvious, eh?

* The :REPORT command output is sent to a MESSAGE FILE.

0096-32



MPE/XL PROGRAMMING

* To read a line from the file, we say

RUN CI,PUB.SYS;PARt1=3;INFO=IIINPUT REPORTLINE";STDINa:*REPOUT;&
STDLIST=SNULL

This essentially tells the CI to read into REPORTLINE
the first record from *REPOUT -- since it's a message
file, the record will be read and deleted; the next
read will read the next record.

* We loop while FINFO('*REPOUT' ,19)
file is greater than o. When
out, we stop.

REPOUT's end of
the file is emptied

This is entirely self-contained, and in some respects
more versatile (we can, for instance, prompt the user for
input in the middle of the :WHILE loop, since our $STDIN is
not redirected). The output-to-a-message-file and
run-the-CI-to-get-each-record constructs are essentially a
poor man's FREAD function. On the other hand, this approach
runs CI.PUB.SYS once for each file -- even on a Spectrum
this'll take some time!

One other glitch: each one of those :RUNs prints out one
of those pesky IIEND OF PROGRAM II messages. In MPE/XL, you can
actually avoid them -- as long as you use an implied :RUN
rather than an explicit :RUN command. We can't use an
implied :RUN because we need to redirect the STDIN and
STDLIST. This is another good argument for using the
two-command-file solution, which does only one :RUN and thus
prints out only one END OF PROGRAM message.

*3. A PSCREEN COMMAND FILE

One of the most useful contributed programs for the HP
3000 is PSCREEN. (If you've been living in Katmandu for the
past ten years, you might not know that it prints the
contents of your screen to the line printer.) It works by
outputting an ESCAPE-IId" sequence to the terminal, which
causes almost any HP terminal to send back (as input) the
contents of the current line on the screen. PSCREEN sends
one ESCAPE-lid" for each line, picks up the output
transmitted by the terminal, and prints it to the line
printer.

0096-33



MPE/XL PROGRAMMING

Now, PSCREEN is already up and running, so there's really
no reason to implement it as a command file; however, it's
quite interesting to try it, both as an example of the power
of MPE/XL and of the trickery you need to resort to in order
to work around some restrictions on that power.

The process of reading the data from the terminal is
actually qUite straightforward:

CALC CHR(27)+'H'
WHILE there are more lines on the screen DO

INPUT CURRENTLINE;PROMPT=![CHR(27)+tld"]
ENDWHILE

CHR(27) means a character with the ascii value 27 -- the
escape character. "![CHR(27)+'d']" is the string ESCAPE-d,
which when sent to the terminal (by the jPROMPT-) will cause
the terminal to input (into CURRENTLINE) the current line on
the screen. The CALC command outputs ESCAPE-H (home up) to
send the cursor to the top of the screen.

(Actually, it turns out that we can't just display the
home up sequence in the :CALC since :CALC will then output a
carriage return and line feed, and we'll skip the first line
on the screenj instead, we have to incorporate the ESCAPE-H
into the first :INPUT command prompt.)

The only twist here (one that the "real" PSCREEN has to
deal with, too) is finding out how many lines there are on
the screen. If we send an ESCAPE-d after we've already read
the last data line, the terminal will just send us a blank
line, and will be happy to do this forever.

There are two ways of solving this problem. One is to
output (at the very beginning) some sort of "marker" to the
terminal, e.g. "*** PSCREEN END OF MEMORY ***"; then, we can
keep INPUTing until we get this marker line, at which point
we know we're done. (We should also then erase the tag line
so that SUbsequent PSCREENs won't run into it.)

Another solution is to ask the terminal itself. If we say

INPUT PROHPT=II![CHR(27)+'FI+CHR(27)+l a l]II.;NAME=CURSORPOS

then the terminal will be sent an ESCAPE-F (HOME DOWN, i.e.
go to the end of memory) and an ESCAPE-a. The ESCAPE-a will
ask it to transmit information on the current cursor
position, in the format "!&a888c999R", where the "!" is an
escape character, the "888" is the column number, and the
"999" is the row number. This string will be input into the

0096-34



MPE/XL PROGRAMMING

variable CURSORPOS. Then, the value of the expression

![STRCCURSORPOS,8,3)]

will be the row number of the bottom of the screen.

The old PSCREEN uses the first approach (write a marker),
probably because it's more resilient; I suspect that some
old terminal over some strange datacomm connection can't
handle the ESCAPE-a sequence right.

In any event, reading the data from the screen isn't that
hard. The question is: how can we output it to ~he printer?

As we showed in our previous discussion, it's quite hard
to read data from a file into a variable. It's harder still
to output the data from a variable to a file.

The solution lies in running CI.PUB.SYS with ;STDLIST=
redirected, thus letting the :ECHO command output to a file
rather than to the terminal. (This is much like doing file
input by running CI.PUB.SYS with jSTDIN- redirected.) Here's

. what the full PSCREEN script actually looks like:

SETUAR PSCREENTERH "*** PSCREEN HARKER ***11
ECHO IPSCREENTERH
SETUAR PSCREENLINE 0
INPUT PSCREENIPSCREENLINE;PROHPT=tl![CHR(2i')+'H'+CHR(2i')+'d ' ]U
WHILE PSCREENIPSCREENLINE (> PSCREENTERH DO

SETUAR PSCREENLINE PSCREENLINE+l
INPUT PSCREEN!PSCREENLINE;PROHPT=1I![CHR(27)+ld l l ll

ENDWHILE
CALC CHR(2i')+lIA"+CHR(27)+"lC lI «clear the PSCREEN HARKER line »
FILE PSCROUT;DEU=LP
RUN CI.PUB.SYS;PARH=3;INFO="PSCREENX II ;STDLIST=*PSCROUT
RESET PSCROUT
DELETEUAR PSCREEN~

Note that we're reading all the lines into variables called
PSCREENO, PSCREEN1, PSCREEN2, PSCREEN3, etc. These variables
will then be read by the PSCREENX command file, which looks
like this:

SETUAR PSCREENI 0
~ILE PSCREENI<PSCREENLINE DO

ECHO ![PSCREENIPSCREENIl
SETUAR PSCREENI PSCREENI+l

ENDLJHILE

0096-35



MPE/XL PROGRAMMING

There it is, in all its glory! Again, the PSCREEN program
works just fine -- probably even better than these command
files -- but this is just an example of the kind of things
you can do.

One little glitch you'll run into with these command
files is that the first line of every printout will read
":PSCREENX". That's because CI.PUB.SYS will echo its ;INFO=
command to the ;STDLIST- file. For PSCREEN, this should be
fairly harmless; however, what if you simply want to write
the contents of a variable to a disc file without the
echoing getting in the way?

The solution is this:

PURGE TEMPOUT,TEHP
BUILD TEHPOUT;NOCCTL;REC=-508"O,ASCII;TEHP
FILE TEMPOUT,OLDTEHP,SHR,GMULTIjACC=APPEND
RUN CI.PUB,SYS;INFO=IIECHO IHYOAR";STDLIST=*TEHPOUT
FILE TEHPOUT,OLDTEMP
FILE DISCFILE;ACC=APPEND
PRINT *TEHPOUT,OUT=*DISCFILE,START=3

We run the CI and tell it to echo the variable MYVAR to a
temporary file called TEMPOUT. Then we do a :PRINT command
(a new feature of MPE/XL) that appends to DISCFILE the
contents of TEMPOUT starting with record #3. Record #1 is
CI.PUB.SYS's echo of the ":" prompt; record #2 is its echo
of the "ECHO !MYVAR" command; record #3 is the actual
contents MYVAR variable.

What a bother, and relatively slow, too (that's why we
ran the CI only once in the PSCREEN script). A built-in
MPE/XL FWRITE function would have been so much simpler ...

*4. EXPRESSIOI'-~S AND PROGRAt4S

One of the most interesting possibilities of the MPE/XL
command interface has nothing to do with command files (or
UDCs or job streams) at all. I've never seen it implemented
before, so it might have a good deal of practical problems;
however, I think that it has a lot of potential for power.

Consider a program that prints the contents of one of
your specially-formatted data files. If it were a database,
you could use QUERY, with its fairly sophisticated selection

0096-36



MPE/XL PROGRAMMING

conditions you could specify exactly what records you
want to select.

However, if you're writing a special custom-made program,
how can you let the user specify the records to be selected?
There are 1,000 records in the file (17 pages at 60 lines
per page), and the user only wants a few of them. If you
don't put in some sort of selection condition, the user
won't be happy; if you put in the ability to select on one
particular field, I'll bet you that the user will start
asking for selection on another field. What about ANDs? ORs?
Arithmetic expressions (SALARY<>BASERATE+BONUSRATE)? Soon
they'll be asking for you to write your own expression
parser!

What you really want is a GENERALIZED EXPRESSION PARSER,
usable by any sUbsystem that wants to have user-specified
selection conditions (and user-specified output formats).
You could tell it about the variables that you have defined

e.g., define one variable for each field in the file,
plus some other variables for some calculated values that
the user may find handy. Then, you tell it to evaluate a
user-supplied expression.

Think of all the various programs that could use this!

* V/3000 could have used this for the input field
validity checks (rather than having its own parser);

* QUERY could have used this for the >FIND command
(rather than having its own parser, Which,
incidentally, can't handle parenthesized expressions);

* MPE/V could have used it for the :IF command logical
expressions;

* LISTLOG could have used it to let you select log
l"'ecords;

* QUERY could have used it to output expression values in
>REPORTs (rather than have that silly
assembly-language-style register mechanism);

* EDITOR or FCOPY could have implemented a smart string
search mechanism (find all line that contain "ABC" OR
II DEF II ).

HP could have saved itself man-years of extra effort,
while at the same time standardizing those expression
evaluators that exist AND implementing expression evaluation
in a lot of places that need it! Not to mention the uses

0096-37



MPE/XL PROGRAMMING

that you and I could put it to!

The point here is that with MPE/XL you can -- in a way -
do this yourself. Take that file-reader-and-printer program
of yours and prompt the user for a selection condition.
Then, for each file record, use the HPCIPUTVAR intrinsic (or
pass the COMMAND intrinsic a :SETVAR command) to set AN
MPE/XL VARIABLE FOR EACH FIELD IN THE RECORD. Now, do a

Finally, do an HPCIGETVAR to get the value of the
SELECTIONRESULT variable; if it's TRUE, the record should be
selected -- if it's FALSE, rejected.

In other words, you're using the :SETVAR commands
expression handling to do the work for you. You set MPE/XL
variables for all the fields in your record, and the user
can then use those variables inside the selection condition.
The condition can use all the MPE/XL functions -- a, <>, <,
>, +, STR, POS, UPS, etc.; it can reference integer,
string, or boolean variables. A sample run of the program
might be:

:RUN SELFILE

SELFILE UerSlon 1.5 -- this program prints selected records from
the PS010 KSAM file; please enter your selection condltion:

>UPSCSTATUS)<>lIXXlI AND LJORK_HOURS*HOURLY_SALARY>=lOOOO

Meantime, the program is doing:

FOR each record from PS010 DO
BEGIN
:SETUAR STATUS value_of_status_field_file
:SETUAR NAME value_of_name_fleld
:SETUAR WORK_HOURS value_of_work_hours_field
:SETUAR HOURLY_SALARY value_of_hourly_salary_field
:SETUAR DEPARTMENT value_of_department_field

:SETUAR SELECTIONRESULT &
UPSCSTATUS){> lI XX Il AND ldORIC_HOURS*HOURL'f_SALARY>=10000

IF value of SELECTIONRESULT variable = TRUE THEN
output the record;

END;

(The :SETVAR commands in the pseudo-code should probably be
calls to the HPCIPUTVAR intrinsic.)

0096-38



There are
approach:

several

MPE/XL PROGRAMMING

non-trivial problems with this

* You're restricted to INTEGER, STRING, and BOOLEAN
variables -- no dates, reals, etc.

* You're restricted to those
provides, which are rather
powerful).

functions that
limited (though

HPE/XL
fairly

* Host importantly, all those
some time! If you're reading
file, you might encounter
problems.

intrinsic calls will take
through a 100,000 record

some serious performance

As I said, to the best of my knowledge nobody's ever
implemented this sort of facility -- for all I know, it may
just not be practically feasible. However, I suspect that
for quick-and-dirty query programs (and also input checking,
output formatting, etc.) where performance is not a major
consideration, it can be very powerful. You can use it to
give a lot of control to the user, with very little
programming effort on your own part.

CONCLUSION

The HPE/XL user interface is much more powerful and much
more convenient than the "classic MPE" interface. (I didn't
even mention some features, like multi-line :REDO, which are
convenient indeed.) It lets you easily do many things that
used to require a lot of effort; however, some key features
are unfortunately missing.

Fortunately, with a little bit of ingenuity, even the
apparently "impossible" can be achieved -- I'd be happy if
all this paper did was let you know that there are
possibilities to HPE/XL beyond those that are apparent at
first glance. We HP programmers did some pretty amaZing
things with the limited capabilities that classic HPE
offered us -- with HPE/XL, we should be able to write some
very powerful stuff.

0096-39



MPE/XL PROGRAMMING

One thing that the new MPE/XL features should do is whet
the appetites of all the poor people who still have to stick
with MPE/V (or, heaven forbid, MPE/IVI) for some time in the
future. After seeing all those wonderful things on the new
machines, how can we bear to live with the old stuff?

There is actually a product out now (called Chameleon,
from Taurus Software, Inc.) that implements MPE/XL
functionality on HPE/V; VESOFTls own MPEX/3000 Version 2.0
release, tentatively scheduled for a June 1988 release,
should do the same (in addition, of course, to all the other
stuff that HPEX has always done fileset handling,
\ALTFILE, new \LISTF modes, hook, etc.). MPEX Version 1.6
has, for the past year, already implemented the multi-line
: REDO feature, both in MPEX, and in other programs, such as

-EDITOR, QUERY, TDP, QEDIT, etc.

VESOFT's STREAHX also implements many MPE/XL-like
features (including variables, :WHILE loops, expressions,
etc.) for job stream submission, an area unfortunately
neglected by HP. Personally, I think that variable input,
expression evaluation, input checking, etc. are even more
useful at job stream SUBMISSION time than they are in
session mode and at job stream execution time.

Finally, there are several other papers available about
MPE/XL, all of which I can recommend highly. Jeff Vance &
John Korondy of HP had the "Design Features of the MPE/XL
User Interface" paper in the 1987 INTEREX La~ Vegas
proceedings; David T. Elward published the "Winning with
HPE/XL" paper in the October and November 1988 HP
Chronicles. Also, the MPE/XL Commands Manual actually has a
lot of useful documentation on command files (including some
very interesting MPE/XL Programming examples!) -- live seen
several versions, and it seems that the most recent ones
have the most information. And, of course, the recently
released "Beyond RISC!" book is an indispensable tool for
anybody who deals or will be dealing with Precision
Architecture machines.

Thanks to Rob Apgood of Strategic Systems, Inc. and Gavin
Scott of American Data Industries for their input on this
paper; thanks especially to Gavin for letting me test out
all the examples on the computer in the two hours between
the time I finished writing it and the time I had to Federal
Express i~ up to BARUG.

0096-40



MPE/XL PROGRAMMING

Finally, any errors in this paper are NOT the fault of
the author, but were rather caused by cosmic rays hitting
the disc drives and modifying the data ...

0096-41





The role of Data Dictionaries in Application Development,
with an Emphasis on System Dictionary.

Raymond Ouellette
Infocentre Corporation

3100 Cote Vertu
St. Laurent, Quebec

Canada H4R 2J8

The idea behind a data dictionary is easy to understand. You create a
description of the data available on your computer system and store it on the
computer itself. In this way, programmers (or programs) can find out exactly
what information is supposed to be on the machine and where and how to find it.
This results in less error caused by confusion over the format of the data and
makes it possible for end users to create reports without prior knowledge of the
structure of the data.

Unfortunately the realities of implementing a working data dictionary
environment are much more complex than the basic idea would suggest. It is
therefore advisable to understand the general principles of data dictionaries
before closely looking at a particular product.

This discussion of data dictionaries is in three parts.

Firstly there is an analysis of the benefits possible when a dictionary is available
and the type of information which needs to be stored in order to achieve these
benefits.

This is followed by a description of the problems which must be considered
before implementing a data dictionary in a realistic environment.

Finally the ways in which System Dictionary can address these subjects in the
HP3000 environment are discussed.

Audience level of my abstract: 3+ years.

This paper would best fit in track 3.

The role of Data Dictionaries
0097-1



Introduction

Data dictionaries provide a means by which we can manage information.
Dictionaries are simply a tool that facilitate the management of data, and the
conversion of data into corporate information.

An effective implementation of a data dictionary can help manage this critical
corporate resource. An ineffective implementation will hinder more than it will
help.

Implementing a data dictionary is a major undertaking. A great deal of analysis,
design and planning is required to set standards and procedures regarding the
role and use of the dictionary. A number of technical and operational issues
must be addressed, such as: dictionary maintenance, security, version control, and
deciding on the number of physical dictionaries to be implemented.

The strategy chosen may be different for each of several uses of the data
dictionary. The dictionary may be called upon to serve different roles in
application development, end user computing, in conjunction with purchased
application packages as opposed to in-house systems.

Using Hewlett-Packard's System Dictionary as a point of reference, let's
concentrate on application development, and examine an approach to effective
dictionary implementation.

The role of Data Dictionaries
0097-2



1.1 Objective of Data Dictionaries

Data dictionaries are generally used for a combination of the following functions.

1) Centralized documentation of the data and programs on a computer.

2) Storing physical file specifications and record layouts so that programs
always address the data correctly.

3) Storing logical attributes of the data which can be used to generate programs
automatically.

4) Storing descriptions of the data on a computer which enable end users to
generate reports.

1.1.1 Documentation

In the old days, all good system analysts used to fill in special forms which
defined the record layouts for all of the files in the systems they were designing.
Each programmer was given a copy of any layouts which affected his/her
programs so that there could be no chance for confusion. Of course, in practice,
the analyst would change the layouts quite regularly with the result that each
programmer would end up with a different version of the file specifications.

The idea of data dictionaries emerged as a method of using the computer to
ensure that documentation is always up to date.

Data dictionaries are not, however, the only possible solution to the problem. One
of the most useful features of modern database systems is that they usually
include some form of self-documentation of their structure. For example, all the
vital information concerning an IMAGE database can be found by running
QUERY and using a simple command. To some extent this has delayed the
necessity to introduce data dictionaries since storing information in a dictionary
is rather pointless if the same information is easily available to everyone anyway_

However, it is unlikely that any database system will ever be able to contain
enough information about itself to make a dictionary totally redundant. An
important function of a data dictionary is to keep a record of which programs
process the various databases and data elements on the system. This information
is particularly vital for finding which programs will be affected by changes to a
database but cannot be obtained directly without checking every program on the
system indivually.

Whereas the definitions of individual entities in a system could theoretically
always be stored within the entity itself, the only way to effectively document
the relationships between the elements is in a dictionary. Unfortunately, this sort
of information is very difficult to maintain correctly since it is not easy to
ensure that all of the relationships are actually included in the dictionary. If

The role of Data Dictionaries
0097-3



there were some automatic way of verifying that the dictionary were complete,
there would be no need for the dictionary in the first place!

1.1.2 Storing physical file specifications

The most immediate benefits of a data dictionary almost always come from the
ability of programs to extract physical data attributes directly from the
dictionary.

This fact was realised long ago when it became popular to establish COBOL
COpy libraries containing the record layouts of the files on a system. Whenever
a COBOL program was compiled the relevant layouts were extracted from the
library by the compiler. This freed the programmer from worrying about the
hand-written record layouts mentioned above.

The system worked very well but was obviously limited by the restriction to a
single language and by having to recompile all programs every time the library
changed. Actually compiling the programs was no real problem but remembering
which programs needed to be compiled was much more difficult.

With a proper data dictionary it is possible to extract file specifications from the
dictionary every time the program is run so that any changes in the dictionary
are always reflected automatically without altering or recompiling programs. To
anyone who has used COBOL with copy libraries on a large system this sounds
marvelous but as we shall see run-time access to a dictionary introduces all sorts
of other problems.

It is worth noting that database systems such as IMAGE have to some extent
reduced the benefits of extracting physical attributes from a dictionary since the
same information is readily available from the database itself. In fact, it would
probably be true to suggest that a program or compiler should never obtain
physical data attributes from a dictionary. In the ideal world a database should,
at the very minimum, hold a complete description of its physical structure and all
programs should use this description to get at the data.

1.1.3 Logical Data Definitions

As well as storing a description of how the data is physically held on a computer
we can also include the logical attributes of the data such as standard heading
text or edit masks for data elements in the dictionary.

It is very important to understand the difference between "physical" and "logical"
attributes.

As an example, ~onsider the description of an IMAGE item in a dictionary. The
physical specification defines the length and type of the item. These are physical
facts which can never be sensibly contradicted by any program. The logical
attributes, however, are not absolute and can often be altered for an individual
program without obtaining invalid results.

The role of Data Dictionaries
0097-4



In some cases the logical attributes are merely suggestions for programmers who
need not take any notice if they do not wish to. In other cases, the attributes
may represent "standards" which a program must follow unless there are good
reasons for not doing so.

Just as the physical attributes of a database can be included in the database
itself, there is no reason why some of the logical attributes could not also be
included. But whereas the physical attributes of a database are finite, the
possible logical attributes are limitless and for this reason it is very difficult to
devise database systems which can fully cope with logical attributes.

Physical attribute definitions can be safely extracted from a dictionary
automatically during program development without necessarily informing the
programmer what is happening, however for logical attributes, the programmer
must be given the opportunity to ignore the attributes if he/she wishes.

In the context of application processing, three methods for extracting logical
attributes from a dictionary are possible:

I) Run Time. The logical attributes are freshly calculated every time a program
is run.

2) Compile Time. Alterations to logical attributes in the dictionary will take
effect only when a program is recompiled.

3) Development Time. The logical attributes are copied into the programmers
code automatically when the code is initially developed. Alterations to
attributes are not reflected in existing programs unless the programs are
actually altered.

In fact, it is not likely that we would wish for logical attributes to be decided by
a production program at run time. The effects of changing the edit mask for an
item might be disastrous on a report where the print positions had been carefully
counted by the original programmer.

The same sort of problems also arise when attributes are extracted automatically
at compile time. Programmers are forced to test their programs everytime they
compile them even if they haven't actually changed the code.

1.1.4 Describing Data for End Users

Most application systems offer the user some helpful information about how to
operate the system and what data presented on screens or in reports represents.

A user trying to work with a report generator is not usually so lucky. The report
generator itself will of course be able to explain how to create reports but will
not know anything about the data being inspected or what it means.

Users can only look in the dictionary to try to find out what there is in the
databases available to them. It is quite possible that the physical and logical

The role of Data Dictionaries
0097-5



attributes described in the dictionary, together with the documentation intended
for the computer department, will be enough to get the intelligent user started.
However, the user needs information about the data which is of no use to the
computer staff and will not exist in the dictionary unless it is put there
specifically for this purpose.

1.2 Problems Associated With Data Dict.lonarles

Having looked at the uses of data dictionaries we now concentrate on the
difficulties which inevitably arise when attempting to actually take advantage of
the benefits.

These problems are described under the following headings.

1) Standardisation

2) Security

3) Conflicts between Applications

4) Version Control

5) Administration

6) Prototyping

7) System Performance/Reliability

8) Proliferation of Dictionaries

1.2.1 Standardisation

It is extremely unlikely that there will ever be a single standard for data
dictionaries even for one particular computer. Even if a such a standard were to
emerge, there would be features missing which someone would need to use.

Suppliers of 4GLs often provide their own data dictionary for use with their
product and are reluctant to base their language around any possible "standard"
dictionary which does not really fit their needs anyway.

The result is that there are often several varieties of dictionary on the same
machine all containing the same information but in a different format. Often
the dictionaries deteriorate from their role as a centre for data definition into
files which have to be maintained simply because 4GLs will not run if they are
not present.

1.2.2 Security

A data dictionary contains some extremely important information and a lot of
people. are going to be legitimately inspecting and altering its contents.

The role of Data Dictionaries
0097-6



The result of someone accidentally changing something when he shouldn't can be
extremely traumatic, especially if programs are accessing data definitions at run
time.

A dictionary therefore requires a security system which permits people to access
what is available to them but can stop anyone going where they are not allowed.
In fact, the security requirements for a data dictionary are much more intricate
than we would expect from a typical application system.

1.2.3 Conflicts Between Databases

On large computer installations where several different databases are present, it
can be difficult to represent all the databases conveniently in a single dictionary.

It is possible that each database uses a different name for what is essentially the
same thing or uses the same name for completely unrelated entities. Somebody
has to take the time to sort out the conflicts and however this is achieved, the
resulting dictionary is likely to be very confusing.

This problem is most likely to occur on sites which are trying to establish a
dictionary after many years of working without one. If a dictionary is used from
the start the need to avoid conflicts between databases can be turned into an
advantage.

1.2.4 Versions

It would be nice if it were always possible to establish a dictionary which never
changed once it had been set up. Unfortunately, computer systems usually
develop even after they are "live" and the dictionaries must also change.

When a change is required in the dictionary it is necessary to create a new
version or copy of the dictionary so that the amendments can be tested while the
old version is still in use. Once the new version is tested and the relevant
program alterations have been implemented and tested, the old dictionary can be
replaced by the new copy at the same time as the new versions of the programs
are moved into production.

Problems start when several unrelated amendments to a system are being
implemented at the same time and each programmer makes his own version of the
dictionary to test his changes. We have to be sure to control these test versions of
the dictionary very carefully and ensure that when a test version becomes the
production version, it actually includes all of the changes which may have been
implemented since the copy was originally taken.

A possible solution to this is to only allow one test version to exist at any given
time. However, this leads to a situation where there· is always something in the
test dictionary which is not actually working yet and so the dictionary can never
go live. In order to actually get the dictionary into production new developments
must be suspended until current work is completed.

The role of Data Dictionaries
0097-7



1.2.5 Administration

Any data dictionary needs an administrator to keep control of the contents of the
dictionary.

Without such control, a dictionary is liable to degenerate to the lowest state which
is capable of supporting the 4GLs which use it. It will probably become cluttered
with definitions which are not actually used but cannot be removed for fear that
they are.

The administrators main job is to ensure that the contents of the dictionary are
complete and correct. Given the diversity of information in the dictionary and
the range of people who will use it, this is not a simple job and usually requires a
dedicated (and expensive) individual.

1.2.6 Prototyping

Contrary to accepted opInIon, using a data dictionary makes system prototyping
very difficult if the designer has to enter definitions into the dictionary before
he can gel anything working. The modern approach to prototyping which
involves the programmer and end user working together is strongly inhibited
when the user cannot request immediate alterations and additions to data
specifications.

For successful prototyping with a dictionary, we need a development system
which can make changes to the dictionary immediately during the design process
or can temporarily function independently of the dictionary during the
prototyping phase.

Both these methods deviate from the standard approach of most 4GL systems
which regard the data dictionary as a relatively static predefined source of
information.

1.2.7 System Performance/Reliability

As we have seen there are an enormous number of potential users for a data
dictionary ranging from production batch programs attempting to obtain the
attributes of a file to end users trying to generate their own reports. At the same
time we also require that the dictionary should have a sophisticated security
system and be accessible in a friendly interactive fashion.

However good the software, there are bound to be problems with the speed and
reliability of such a complicated system.

Since everyone on the computer is theoretically connected to the dictionary, there
will be a bottleneck as all of the various programs atttempt to extract
information. Worse still, a failure in the dictionary will bring the whole
computer to a halt.

The role of Data Dictionaries
0097-8



Careful consideration must also be given when taking backups of the dictionary
or bringing a new version into use. These will be operations which may require
every single user on the machine to stop working and, on larger sites, this may
not be f easible.

Obviously, these problems can be reduced by ensuring that the data attributes are
extracted at compile time so that production systems do not access the dictionary.
Even so, program development and end user reporting systems will still be
vulnerable to weaknesses in the dictionary software.

1.2.8 Proliferation of Dictionaries

A simple solution to the many of the inherent drawbacks of data dictionaries is
to create several dictionaries rather than a single master dictionary.

Instead of keeping a centralized dictionary it may be better to provide a separate
dictionary for each application on the computer. A special dictionary for the end
user report generator would also normally be appropriate in this case.

Some control over the creation of dictionaries must be maintained because if
things get out of hand, it is likely that there will be a separate dictionary for
each program and each user on the system. Programmers may even keep dozens
of versions of different dictionaries on tapes in their desks!

Once this happens, the basic advantages of centralized documentation are lost.
There is no longer a single place which gives the correct definition of the data
and although the individual dictionaries may be useful for the functions that
they support the need for a ltmaster" dictionary will inevitably arise.

2 SYSTEM DICTIONARY

System Dictionary is much more than a simple data dictionary since it is intended
to be used for many purposes other than the storage of data definitions. We
shall, however, concentrate on its role as a data dictionary in this paper.

2.1 The System Dictionary Database

System Dictionary is basically a database designed specifically to store
information about a computer system. As its name suggests, System Dictionary is
intended to be a central database and it is not expected that there will be vast
numbers of dictionaries on a single machine. It may be that the proliferation
effect will eventually overtake the initial aims but it is evident that many of the
features of the dictionary are intended to prevent this happening.

For readers familiar with IMAGE, a brief comparison of an IMAGE database
with System Dictionary is a good introduction.

The System dictionary contains 'entities' and 'relationships' which are very
roughly equivalent to the master and detail records in an IMAGE database. The
entities and relationships have 'attributes' which are like the fields of an IMAGE

The role of Data Dictionaries
0097-9



dataset.

The key to an IMAGE Master set may be any length or type, but access to an
entity type in the System Dictionary is always achieved through a a 32 byte 'key'.

The names of relationship types in the dictionary are always formed from the
names of the entity types which they relate. This is equivalent to suggesting that
detail sets in an IMAGE database should contain the names of the master sets to
which they are chained. For example, a detail set representing an order line on
an invoice would be called something like "ORDER contains STOCK-ITEM" if it
were transformed into an equivalent relationship type in a System Dictionary.
This is more descriptive than "ORDER-LINE" (or even worse "ORDER-DETAIL")
which is the name usually selected for this purpose.

Finally System Dictionary allows variable length attributes to be assigned to
entities. Variable length fields are not supported by IMAGE and most modern
relational databases but this capability is vital for databases which are to be used
as a dictionary.

In summary the following expressions are roughly equivalent:

SYSTEM DICTIONARY

Master Dataset

Master Record

Detail Dataset

Detail Record

Field

Entity Type

Entity

Relationship Type

Relationship

Attribute

This new terminology may seem irritating but for once there is a good reason for
introducing new jargon. Remember that the dictionary will be used to store data
about data. We will have entity types called "RECORD" and "IMAGE-DATASET"
etc. and we can at least avoid some confusion by using new words.

2.2 Features of System Dictionary

In order to make the System Dictionary database suitable for use as a dictionary
several special features have been included which would not normally be
expected in a more conventional database system.

2.2.1 Extensibilty

Unlike IMAGE, there is no schema for a System Dictionary. It is fully flexible so
that entity types and attributes can be added or altered at any time. When a new
dictionary is created (using the utility SDINIT) it always contains a standard set
of entity and relationship types called the core set. You can then customize the

The role of Data Dictionaries
0097-10



dictionary for your own needs by adding new entity and relationship types or
changing the attributes of existing types.

The motivation for providing this exstensibilty in the dictionary is to overcome
the problem of standardisation which forces software suppliers to produce their
own dictionaries. Since the System Dictionary can be customized, it is not
necessary to rely on the original specifications of the core set and software
suppliers can add new features to the standard dictionary if they wish.

In reality, there is still great pressure on everyone to conform to the accepted
standards. It takes some courage to invent a completely new entity type
especially if it is likely that several other people will do exactly the same thing
but use a different name.

2.2.2 Programmatic Access

A command driven utility program is automatically supplied, to serve as a user
interface to the dictionary. This interface can be augmented or replaced with
user written programs that access the dictionary programmatically via a set of
documented intrinsics. In this way, special purpose user interfaces or utility
programs may be written with the capability to access the full set of dictionary
functions. This enables dictionary users to create their own customized interfaces
to the dictionary.

2.2.3 Security and Scopes

Any user or program which opens a dictionary must specify a SCOPE and the
relevant password before access is granted. The scope name is like a user name
which everyone has to provide when opening the dictionary in the same way that
as everyone has to give a name before logging on to MPE. Entities and relations
are always accessible to the scope which created them but can be secured against
read or modify access by other scopes.

Note that security works at the entity level. This is equivalent to being able to
secure individual records in an IMAGE database.

2.2.4 Domains

A single system dictionary may be split into several domains which are
effectively "logical" dictionaries within the same physical dictionary. This is
intended primarily for situations where many applications run on the same
computer but have very little else in common. Each domain behaves as an
individual dictionary and functions independently of the other domains which
reside in the same physical dictionary.

The aim is to avoid needless conflict while still keeping all the domains under the
control of the same dictionary.

All dictionaries initially contain a single domain called the common domain and
new domains are created as required by the dictionary administrator.

The role of Data Dictionaries
0097-11



2.2.5 Verslons

System Dictionary recognises the need for different versions to exist at the same
time and permits creation of many versions of each domain within a single
dictionary. The versions are labelled "test", "production", or "archive" and the
software prevents you from updating production or archive versions.

This method of creating versions within the same physical dictionary ensures that
programmers cannot simply use COpy to create new versions at will but the
administrator must still overcome the inherent problems of version control
described earlier. System Dictionary allows several test versions to co-exist and
he must always ensure that when a test version becomes a production version it
includes any updates which have taken effect since it was originally created.

2.2.6 Aliases

An alias is an alternate name for an entity or relationship which is to be used
instead of the actual name in a particular situation. The most common type of
alias is the IMAGE-ALIAS for an entity which will be the name to be used when
the entity appears in an IMAGE database.

Typically it is preferable not to use aliases but there are circumstances especially
when databases have already been designed with no consideration for System
Dictionary, when it is appropriate.

For example, we may have a database where item names have been prefixed for
some reason so the item name for customer number is AIOO-OOI-CUS. This is not
really a suitable name for the element in the dictionary and it would be better to
call the element CUSTOMER-NUMBER and include the actual item name as the
IMAGE-ALIAS.

2.2.7 Synonyms

A synonym is an alternate name for an entity which is used for a completely
different purpose to the aliases. If the actual name of an entity is long, it is nice
to be able to supply a short name which may be used by anyone who accesses the
entity regularly.

If an element were called "INDIVIDUAL-CUSTOMER-NUMBER", the
administrator might supply "ICN" as a synonym to save typing the full name.
Any number of synonyms may be given to a single entity.

2.2.8 Internal and External Names

Every entity type and entity in the System Dictionary has an internal and an
external name. Normally these names are the same but it is possible to alter the
external names of entities or entity types.

When a program opens the System Dictionary, it specifies whether it will use the

The role of Data Dictionaries
0097-12



external or internal names to access the dictionary. By using internal names, the
program can ensure that the names in the core set have not been changed. This
mode is intended for standard software which will operate on many different
sites.

Programs developed for a particular dictionary can use the local external names
which will be known to the users of that particular dictionary only.

2.3 Representing IMAGE and MPE Files

Although the System Dictionary is totally flexible, the core set of entity and
relationship types imposes standards on how the structure of IMAGE databases
and MPE files should be represented.

The following list shows the most important entity and relationship types from
the core set which are used for this purpose.

Entities:

Relationships:

ELEMENT
RECORD
lMAGE-DATASET
KSAMFILE
FILE
IMAGE-DATABASE

RECORD contains ELEMENT
IMAGE-DATASET contains RECORD
KSAMFILE contains RECORD
FILE contains RECORD
IMAGE-DATABASE contains IMAGE-DATASET
IMAGE-DATASET key ELEMENT
KSAMFILE key ELEMENT
lMAGE-DATASET IMAGE-DATABASE chains

The role of Data Dictionaries
0097-13



2.3.1 Representing an Image Database

Each item in an IMAGE database corresponds to an entity with type ELEMENT
in the System Dictionary. Although there is no single attribute which defines the
IMAGE item type, the attributes COUNT, ELEMENT-TYPE and BYTE-LENGTH
can be combined to form the IMAGE type. Other attributes of the elements such
as DISPLAY-LENGTH, DECIMALS, EDIT-MASK etc. enhance the item
specification beyond what is included in the IMAGE schema.

The datasets are represented by the entity type IMAGE-DATASET which has an
attribute called IMAGE-DATASET-TVPE to specify whether the set is a master
or a detail. It may seem reasonable to expect a relationship type called
'IMAGE-DATASET contains ELEMENT' to be used to assign elements to the
datasets. In fact, we need to create another entity of type RECORD and the
elements are associated with this entity using the relationship type 'RECORD
contains ELEMENT'. The start position of each element within the record is
indicated by an attribute of this relationship. The dataset is then linked to the
record by establishing a relationship of type 'IMAGE-DATASET contains
RECORD' between the dataset and the record.

The database itself is represented by an entity called IMAGE-DATABASE and
the datasets are assigned to the database using the relationship type
IMAGE-DATABASE contains IMAGE-DATASET.

Finally we need to indicate the keys and chains in the database. For master sets
the relationship type 'IMAGE-DATASET key ELEMENT' is used to define one
element which is the key to the dataset. The chains to a detail set are
represented by a complicated relationship which links five entities and specifies
the dataset, search element, sort element, master dataset and database involved in
the chain.

There are other entity and relationship types in the core set concerning security
classes and the devices used to store datasets but these are not described here.

Vou will notice that the method for representing a database is fairly flexible in
that it permits us to assign datasets to more than one database and to assign
records to several datasets. This could be useful in situations where two
databases contain copies of the same dataset or where two datasets in a database
have the same fields. It remains to be seen whether it will become common to
take advantage of this flexibility or whether people will prefer to create a
separate entity for each dataset.

2.4 Maintaining the System Dictionary

Several tools are available for maintaining the contents of the system dictionary.

Firstly there is a utility called SDMAIN which is a command driven tool for
directly accessing the dictionary. There are commands for adding, amending or
deleting entities and relationships as well as facilities for achieving

The role of Data Dictionaries
0097-14



administrative functions such as customisation or creating new versions and
domains.

The big disadvantage with SDMAIN is that it is cumbersome to use and extremely
unfriendly. It achieves for System Dictionary what QUERY does for IMAGE.

Another method of setting up a dictionary involves running a standard utility
program called SDDBD which loads the format of an existing IMAGE database
into a dictionary. The resulting definition only includes information which can
be extracted directly from the database so logical attributes such as standard
headings or edit masks are not loaded.

3.0 Utilizing the Dictionary in Application Development

Having identified the objectives of data dictionary use, and some of the common
pitfalls lets examine the role a data dictionary can serve in an application
development environment, using System Dictionary as a point of reference. When
integrating application development with a data dictionary, we should be careful
to capitalize on the strengths of the dictionary while avoiding its weaknesses,
such that we use the tool effectively. In this context two feature:) of System
Dictionary are particularily intruiging: programmatic access, and extensiblity.

Programmatic access means there is a set of intrinsics making it possible for a
program to open a dictionary, read information from it, update information and
so on. This may not be of practical importance to many HP3000 shops, however
it presents an opportunity to software suppliers to interface application
development software with the data dictionary.

This opportunity is made even more attractive by the capability to extend the
structure of the dictionary. System Dictionary can be customized to fit the needs
of any application development effort. It does not have to be language,
application, or vendor specific. The possibility of having one centralized system
wide dictionary becomes a feasible reality.

To picture this opportunity envision your application development tools (text
editor, flow charts and diagrams, COBOL generators, COPYLIBS etc.) being
replaced by sophisticated application generator software. This software becomes
the analysts' workbench, and it is actively involved in the definition of all
application system processing; ie: data entry and inquiry screens, reports, batch
processing, command procedures, security, and menus. The software also develops
and stores the underlying file structures (IMAGE, KSAM, MPE), and generates
source code for the application as a natural result of the development effort.

Application generator software represents the state of the art in fourth
generation development tools. Along with tremendous increases in system
development productivity, it also brings changes to the roles of application
developers, end users, and the data dictionary.

With the application generator automating the detailed programming tasks,
analysts are able to focus their energies on system analysis and design. Users can

The role of Data Dictionaries
0097-15



actively participate in the design phase, assisting the analyst in prototyping
sessions made feasible by the capabilities of the software.

As one proceeds through the design and construction of an application, the system
generator can be in constant communication with the data dictionary, offering
lookups to existing entity definitions, as well as the opportunity to load new
entities and relationships into the dictionary.

With this approach we create a symbiotic relationship between our application
development tools and the data dictionary. When working with the application
generator we retain full functionality of its native operating characteristics, but
at the same time, avail ourselves to the centralized store of existing data
documentation. The data dictionary can be maintained and updated
automatically in a consistent fashion by the application generator.

In this role, the data dictionary is accessed at system development time, offering
time saving assistance to the system developers. Existing data definitions can be
extracted as programs are developed. Not to act as a constraint however, we can
also create new entities for this application as needed. This is crucial in order
for prototyping activities to succeed. When the development project is completed,
the software can update the dictionary automatically, loading the definitions of
any new entities created for the application. We can also load new relationships
into the dictionary, identifying the data entities accessed by this application.
These "where used" relationships will facilitate impact analyses required when
changes to data definitions are contemplated.

The programmatic interface between the application generator and the dictionary
can be implemented with the following objectives in mind:

1) The existence of the dictionary should be reasonably transparent to the
average user. The dictionary is there to assist in the development effort - we
should not be unduly tied to it or restricted by it.

2) Since the application generator holds all of the specifications of our
application - both data and processing - it should be responsible for loading
definitions into the dictionary.

3) The presence of the dictionary should not discourage or hinder application
prototyping.

4) The application generator already maintains information about the
application. There is no need to duplicate this information in the dictionary,
unless it would be of use in the development of other applications.

3.1 Accessing System Dictionary

When contemplating how the dictionary can best serve our interests in application
development, we must consider two general situations with respect to our data:

The role of Data Dictionaries
0097-16



1) The application database(s) already exist, and are defined in the dictionary.

2) The application database(s) do not yet exist, and are not defined in the
dictionary.

The term database as used above, refers to the aggregate of data processed by the
application. This data may reside in one or more Image Databases, KSAM, or
MPE files. The two general situations outlined above may be combined to
formulate additional situations; eg: some of the files already exist, but some do
not; of the files that do not yet physically exist, some of them are defined in the
dictionary; etc.

How we approach these situations with respect to dictionary usage impacts on our
development methodology.

If we adopt an approach that demands all data elements be defined in the
dictionary prior to being referenced in the creation of an application program,
then prototyping will be very effectively stifled. This approach requires a
development methodology that begins with a rigorous definition of all of the
application data. These definitions would be held in the dictionary and be
accessible during program development. This latter activity of designing the
application processing would need to proceed in a very predetermined fashion.

A development methodology centered around prototyping relies on the ability to
draw on existing definitions, amend existing defintions, and create new
definitions, of both data and processing, throughout the design phase. With the
proper tools and expertise, this methodology can result in an application
engineered to the customer's needs.

A flexible approach to interfacing with the dictionary can accomodate either
development methodology. Accessing the dictionary can be approached this way:

1) Existing data definitions can be extracted from the dictionary as needed,
during program development. This applies to data structures (Databases or
files) that already exist, as well as new data structures that we need to create.
Consider that for a new file or Database under development, individual field
definitions or complete record layouts may already be defined in the
dictionary, belonging to another file or database.

2) New data definitions can be created "on the fly", as needed. This is required
in order to undertake effective prototyping. The new definitions would
initially be stored locally, specific to this application. At some point in time,
these new defintions can be uploaded to the dictionary.

Once the application is complete, it can be loaded into the System Dictionary so
that a complete list of the entities processed by the application is available.

3.2 Customizing tbe Dictionary

A certain amount of customisation may be required to a System Dictionary for it

The role of Data Dictionaries
0097-17



to suit our application development purposes. This customization can be
undertaken by using the "extensibility" feature, adding additional entities and
relationships to the core set.

Firstly, we may have a need for additional logical attributes, describing
individual data elements. The core set already provides several logical attributes
such as DISPLAY-LENGTH, DECIMALS, and EDIT-MASK. Depending on your
needs you may wish to extend this list with other attributes like
MATCH-PATTERN for example.

Another useful attribute can be attached to a number of entities, marking them
"Private" to this application. Elements or Records marked as "Private" would not
be accessable to other applications. Once the development effort is completed,
new entities created by the application can have their definitions marked
"Public", and hence be available to other development projects.

A number of customized relationship types might also be in order, such as:

• SYSTEM processes ELEMENT
• SYSTEM processes RECORD
• SYSTEM processes IMAGE-DATASET
• SYSTEM processes IMAGE-DATABASE
• SYSTEM processes KSAMFILE
• SYSTEM processes FILE
• SYSTEM owns ELEMENT
• SYSTEM owns RECORD
• SYSTEM owns IMAGE-DATASET
• SYSTEM owns IMAGE-DATABASE.

The first group of relationship types are used to identify the entities which are
processed by a particular application. The second group is used to indicate which
application was responsible for creating the entities in the database. Later on,
these relationships can be extracted from the dictionary, providing valuable data
administration information.

3.3 Loading Applications into the System Dictionary

At any time during development of an application, it should be possible to load
the application into the System Dictionary. Definitions of new data elements
created for this application must be loaded, as well as a complete set of
relationships, such as: which application created this element, which application
processes it.

The loading process is very important. It constitutes the updating of a valuable
corporate resource, and as such should be controlled under the data
administration function. It makes sense then to approach the loading in a batch
fashion, at the conclusion of the development project.

Having the application generator accomplish the loading of the dictionary is one
of the more important benefits of integrating development tools with the

The role of Data Dictionaries
0097-18



dictionary. It ensures that the dictionary will be updated automatically,
consistently, and accurately.

3.4 A Summary of the Dictionary In terface

The most important aspects of the dictionary interface can be summarized by the
following points.

1) There is no run-time access to the dictionary. The interface is entirely in the
application generator module.

2) The presence of the data dictionary does not impose a development
methodology. One can choose to use the dictionary or not use it, draw
existing defintions from the dictionary, create new definitions as needed.

3) Once an application is complete, the following information can be loaded
automatically into the dictionary.

i) A complete definition including logical attributes of the data accessed by
the application.

ii) Relationships which specify the databases, datasets, files and elements
processed by the application.

Summary

A comprehensive dictionary product, such as Hewlett-Packard's System
Dictionary, combined with sophisticated application development tools can go a
long way toward solving a number of traditional dictionary implementation
problems.

The features of System Dictionary make it possible to implement a single,
system-wide dictionary database. (What a data dictionary was meant to be in the
first place!) The dictionary administrator is provided with the necessary tools to
address security and version control issues. Extensiblity facilitates
standardisation - one dictionary can suit all (or most) purposes.

The new breed of fourth generation software can be interfaced to the dictionary
such that we obtain the benefits of a centralized repository of data definitions,
with few of the traditional problems. Prototyping is not stifled, the dictionary is
accessed neither at run time nor at compile time, alleviating some system
performance and reliability bottlenecks. The development software maintains the
dictionary automatically, consistently, and accurately.

The data dictionary assumes an unobtrusive, yet immensely helpful role in
application development.

The role of Data Dictionaries
0097-19





Using MPE Message Files - An Applications Approach.

Patrick Fioravanti
Infocentre Corporation

7420 Airport Road
Suite 201

Mississauga, Ontario
Canada L4T 4ES

Message files are a feature of the MPE file system that permit two or more
processes (programs) running concurrently to communicate with each other.
Typically this Inter-Process communication is used to coordinate the activites of
the two processes. In this light, the processing of an application task (Order
Entry for example) can be distributed across a number of different programs,
yielding useful benefits in an efficient manner.

This paper takes an applications approach to describing the purpose and
functionality of Message files, rather than a hard core technical approach. It
illustrates in layman terms how this under utilized feature of the file system can
be incorporated into the design of many application systems. The discussion will
be augmented with programming examples taken from an Order Entry
Application developed in Speedware, to show how Message files are accessed and
manipulated. Along the way some of the application design parameters that can
be tweaked in order to maximize the benefits from a Message file
implementation, will be discussed.

Audience level of my abstract: 1-3 years.

This paper would best fit in Track 3.

Using MPE Message Files
0098-1



What are Message Files and why would one use them?

Message files are a feature of the MPE File System, available to HP3000
applications. They are a specific type of sequential file intended for applications
that use Inter Process Communication. IPC is a mechanism whereby two programs
running concurrently can pass information back and forth to each other. Message
files were designed for ease of use and efficient communication between
processes. They have some intriguing characteristics:

•

•

•

•

•

•

•

FIFO Queues. Typically two or more programs will be accessing the message
file concurrently. The program that Reads the file, will read the records in
the order in which they were written to the file.

Destructive Reads. As records are read from the message file, they are
deleted. Note that the programmer can influence this with a call to
FCONTROL, Control code 47.

The MPE File System causes programs to wait until their Message File I/O is
complete. Readers wait on a read request until there is a record to be read.
Writers wait on a Write until there is room in the file to accomodate the
record. Optionally the programmer can limit the wait to a pre-specified
number of seconds.

When reading, an EOF condition is returned by the File System when there
are no records in the file and no Write processes have the file open. This
characteristic may also be influenced by the programmer via a call to
FCONTROL, Control code 45.

Unidirectional flow. A program can Read from a message file, or Write to it
but not both. Access is specified at file open time.

Many concurrent Readers and Writers are permitted, although One Reader and
one or many Writers is typical.

Performant. Message files are partially memory resident, and partially disc
based. Usually most I/O's are done in memory.

Given these characteristics of Message Files, some interesting applications come to
mind. The nature of message file behaviour makes it feasible to distribute
application processing across several processes, and coordinate the activities of
those processes. Often it is the case that an On-Line task is stream lined (to make
it run faster) leaving some clean up work for a subsequent batch task. Consider
as an example an Order Entry application. The On-Line task is the entry of the
Customer Orders. To prevent this process from being bogged down, usually the
printing of the Order form or invoice is deferred to a nightly batch run. The
entry of the order at the terminal along with the printing of the invoice
constitutes the whole order process. It has been split into On-Line and nightly
batch tasks in order to stream-line the on-line task. What if.... we still want the

Using MPE Message Files
0098-2



On Line task streamlined, but we also want the Invoices printed as we continue
entering orders? This can be accomplished by running the Batch Print Routine in
the background as the terminals are entering the orders. As each order is entered,
Inter Process Communication is required for the On-Line process to tell the Batch
Process to Print an invoice for the Order I just entered, and send the output to the
printer located beside my desk. An ideal application for Message Files.

Why use a Message File in the above Scenario? First off let's clarify how the
Message file might be used. In the Data Entry routine, as each Order is Entered,
a new record can be written to the Message file, identifying an order by its Order
Number, and supplying additional processing instructions. There are multiple
terminal sessions doing Order Entry, and each of these sessions have the Message
file open for Write Access. The Print routine opens the Message file for Read
Access. It waits in the background for a record to be written to the Message file.
When a record comes in, the Print routine Extracts the Order information and
formats and prints the invoice, then waits for the next Message file record. This
Print Routine can be run On-Line or in Batch, in the BS, CS, DS, or ES Queues,
the choice is yours.

A message file is well suited to this application because:

•

•

•

•

The Print Routine will suspend on the Read, waiting for an order to print. It
doesn't waste CPU seconds looping around looking for something to do.

Since Message files are a FIFO Queue, Orders are printed in the order in
which they were entered. Furthermore, the list of orders to be printed
maintains itself, once a record is read from the message file it is also deleted
from the file.

The Print Routine will not receive an EOF condition from the File System
until all records have been read, and no other processes have the file open
for Write access. So when the terminal operators stop entering orders, and all
the queued invoices have been printed, the Print Routine can be programmed
to automatically terminate.

Performance. The reading and writing of records to/from the message file
will involve few if any Disc I/O's. Furthermore this approach requires the
launching of only one process to print all of the day's invoices as they are
entered. Other approaches might involve launching a separate process or job
to print each invoice as it was entered.

How would we implement this solution in a Speedware Application? The first
step is to define the message file. For this example, the message file is used to
pass an Order Number from the Data Entry process to the Print process.
Additionally we may want a general purpose Character field in the Message file
layout for future use. Our Order Number is a J2 field, and we will tack on an
eight character text field. Accordingly we need a Message file with a Logical
Record Length of 12 characters.

:BUILD MSGFlLE;REC=-12"F,ASCII;DISC=100;MSG

Using MPE Message Files
0098-3



The MPE BUILD --command illustrated above will create the Message file. This is
a typical BUILD command with the exception of the ;MSG parameter, which of
course tells MPE to create the file as a Message file. The file limit you specify is
significant. Because of the nature of Message File operation, the file limit is set
according to the number of records that the file must hold at anyone time.
Remember that records are deleted from the file as they are read. When setting
the file capacity, ask yourself this question: Assuming that the On-Line processes
can dump records into the file faster than the Print routine can read them, what
is likely to be the biggest number of orders queued for printing at any time?
This number (plus a bit more) should be your file limit. Temper your judgement
with the understanding that Write Processes will be forced to wait for the Write
to complete, if the Message file is full. In the above example, no Blocking Factor
was set, and MPE will decide on one itself. The Blocking Factor for Message
Files doesn't have a big impact on I/O performance since most or all of the Reads
and Writes are done in memory. The Blocking Factor will influence the amount
of Disc Space consumed by the Message file at BUILD time (along with other
factors like Record Length, File Limit, and extents).

Once the Message file is built, it may be accessed from Speedware Applications.
The Speedware Programmer will code a FILE Section to describe the Record
Layout, and from there can read or write to the file using the FOR and CREATE
commands.

For our example, we could code a File section like this:

FILE-MSG: (MSGFILE.DATA.INFOSYS)

ORDER#
TEXT

EXIT;

[1-4] TYPE(JO);
[5-12];

Before running our application and accessing the Message file we need to supply
some of the file Access Options to be used when the file is opened. We specify
these options with an MPE FILE command. The FILE command for the Writers
(On-Line processes doing the Data Entry) would look like this:

:FILE MSGFlLE.DATA.INFOSYS;MSG;ACC=OUTiSHRiGMULTI

;ACC=OUT specifies that we will be writing (OUTPUT) records to the Message
File. Remember that a given process can only have one type of Access to a
Message File; either Read or Write.

;SHR means that we won't have exclusive access to the file, rather a number of
concurrent processes can access the f He.

;GMULTI means that the shared multiple access is GLOBAL. In other words, the
multiple processes can belong to different jobs/sessions. If we specify ;MULTI
instead, then the multiple processes accessing the file must all have been spawned

Using MPE Message Files
0098-4



from the same terminal session or batch job.

For the Print Routine, a different FILE command is necessary, this one
specifying Read Access:

:FILE MSGFILE.DATA.INFOSYS;MSGiACC=IN;SHR;GMULTI

Now let's address the programming details.

1) The Data Entry Screen.

Let's suppose that our application already contains a data entry screen used 'to
enter new orders. Currently this Screen is comprised of two formats: the first one
writes a record to the Order-Header Dataset, and the second format is concerned
with the line items, maintained in the Order-Detail Dataset. Order entry is
completed when the t~rminal operator completes both formats.

This Screen Program can be modified to write a record into the Message File at
the conclusion of Data Entry for each order. A COMPUTE paragraph called
from this screen in both Add and Modify modes can accomplish the task.

The COMPUTE code might look like this:

COMPUTE-ADDMSG: AM;

CREATE FILE:MSGFILE WITH
ORDER-NO ORDER#,
'PRINT IT' = TEXT;

EXIT;

2) The Print Routine.

Our application already has a Report Program that is used to print the invoices.
This Report uses the Order Number as a key to access the Order Header and
Order Detail files, and from there is able to directly access Customer and Product
information. All of this data is extracted, sorted, then printed on the Invoice
Form.

Using MPE Message Files
0098-5



This Report program can be modified to be driven by the Message file. The
coding of the Extraction Phase might look like this:

FOR FILE:MSGFILE
BEGIN;

(* Read Message File *)

FOR ORDER-HEADER.ORDER-NO<ORDER#>
BEGIN;

END;
END;

SORT ON •

As you can see, the records are read from the Message File as they come in.
From there, the Extraction proceeds, beginning with the access - of the
Order-Header record identified by the key value contained in the Message File
ORDER# field.

3) Coordination of the two processes.

We need to exercise some control over the activities of the Data Entry and Print
processes so that they work in harmony. It makes sense for the Print Routine to
execute in batch: that way it won't be dependent on a terminal session, and by
default it will operate in the DS queue at a lower priority than the On-line
sessions. Having decided that, we need automatic mechanisms in place to start
the job when users begin entering orders, and to stop the job when the users are
finished. As described earlier, the standard functioning of Message Files dictates
that Readers waiting for a record will be supplied an EOF condition when the
last of the Writers closes the Message File. It would seem that the MPE File
System automatically provides us with the job shutdown mechanism, since an
EOF on the Message File will terminate the FOR Loop driving the Report
extraction phase. As we all know, things are never this simple. In addition to
the automatic shutdown provided by an EOF condition, we should also have the
means available within the application for the user to request the termination of
the Print Routine. Additionally the Print Routine needs to have its Extraction
Phase adjusted for it to be of much use. As it stands now, the Extraction Phase
will not terminate until it reaches EOF on the Message File (ie: The end of the
day when users have stopped entering orders), at which time the Sort and Print
Phases will be activated. The end result is, no orders will be physically printed
until the end of the day, and then they will all be printed. That's not what we
want. Orders should be printed as they are entered, one at a time.

Using MPE Message Files
0098-6



Let's address these coordination issues one at a time:

i) Automatically launching the Print Job.

The batch job that runs the Report must be executing when terminal operators
are entering orders, otherwise records will just queue up in the Message File and
nothing will be printed. We want the submission of the job to happen
automatically, but we only want the job submitted if an operator is about to do
some Order Entry and the job has not already been submitted. This is a job for
an EXEC Procedure. As terminal operators make a menu selection to do Order
Entry, they will be sent to an EXEC which will Stream the Print job if it's not
already running, then send the operator into the Order Entry Screen. The EXEC
could be coded like this:

MENU: "Order Entry", KEY("Order Entry"),
(EXEC-ORDERS, SCREEN-ORDERS),

EXEC-ORDERS:
$IF DATA-PRINTER.DATA.INFOSYS $CANCEL
$*
$* Please wait a moment while I initiate
$* the Invoice Print Job.
BUILD PRINTERiREC=-256,1,F,ASCIIiDISC=1
$GS STREAM-PRINT-INV
$*
$ASKR 1 \Okay, we're all set now, <cr> To continue\
EOJ

The EXEC needs to test a condition to know whether or not the job is already
running. EXEC procedures can check many types of conditions, one of them is
the existence of a disk file. So for this application we'll establish a convention
whereby whenever the Print job is running there will be a file created called
PRINTER.DATA.INFOSYS. Upon job completion, the file will be purged.
Therefore, if the file PRINTER.DATA.INFOSYS exists, then we can say that the
job is running.

Using MPE Message Files
0098-7



Ii) Terminating the Print Job.

The Print job must be set up in a such a way that it will print one invoice at a
time, and be receptive to requests for termination.

We can use the Message File to send commands to the Batch routine in addition to
Order Numbers. So if we wish to be able to terminate the Job from our On-Line
Session, we can establish a convention whereby the value STOP in the TEXT field
will command the routine to terminate. Let's change the Extraction Phase of the
Report to look something like this:

CALCUL 'NO' = #EXTRACTED;
FOR FILE:MSGFILE BEGIN

IF TEXT <> 'STOP' (* Cue to terminate *)
THEN BEGIN;

CALCUL 'YES' = #EXTRACTED;
DISPLAY ORDER#, $TlMES;
FOR ORDER-HEADER.ORDER-NO<ORDER#>

BEGIN;

END;

BREAK;
END;

END;
(* Exit after Reading 1 Record *)

IF #EXTRACTED = 'NO' (* EOF or STOP *)
THEN BEGIN;

COMMAND ('PURGE PRINTER.DATA.INFOSYS');
DISPLAY 'I QUIT';
END;

SORT ON •

Using MPE Message Files
0098-8



The BREAK Command limits the extraction phase to processing one Message file
record. There are three possible outcomes:

•

•

•

The Message File record will contain an Order Number. This Order will be
extracted from the Database and the Invoice will be printed.

The Message File record will contain the value STOP in the TEXT field.
Accordingly, it won't extract an order for printing.

An EOF condition will be returned by the File System. The Report will not
extract an order for printing.

Based on the outcome, the flag #EXTRACTED will take on a value of YES or
NO which conditionally triggers the COMMAND to purge the PRINTER file, and
ultimately end the job.

The last missing piece is another EXEC procedure to control the operation of the
Batch Report. This EXEC will establish a loop, continually actioning the Report
which as we have seen will extract and print one order at a time. Based on the
presence (or absence) of the PRINTER file, the EXEC will also control job
termination. It looks something like this:

EXEC-BATCH:
!$TAG LOOP
!$IFF DATA-PRINTER.DATA.INFOSYS $GOTO EXIT
!$GS REPORT-PRINTINV
!$GOTO LOOP
!$TAG EXIT
!EOJ

Recalling that the Report uses the COMMAND Command to purge the Printer
File upon receiving an EOF condition or STOP from the Message File, we can see
that after the printing of each invoice we check for the presence of the PRINTER
file. When the PRINTER file is purged, the job terminates.

A programming detail we have not covered yet is the On-Line transaction which
sends the STOP command to the Message File. This would probably be set up as
a menu selection restricted to the Order Entry Supervisor. Regardless of the
menu security, the Menu Action would lead to an EXEC which checks for the
existence of the PRINTER file. If it exists, then a Prompt Screen would be
presented wherin the user would confirm the intent to stop the job, then write the
appropriate record into the Message file. The Menu selection and associated
processing is illustrated on the next page.

Using MPE Message Files
0098-9



MENU: "stop the Invoice Printing Job", EXEC-STOPINVi

EXEC-STOPINV:

$IFF DATA-PRINTER.DATA.INFOSYS $GOTO OOOPS
$PROMPT SCREEN-STOP
$CANCEL
$TAG OOOPS
$* Oooops. You wanted to stop the Printer Job, However
$* my indications are that it is not running. I cannot
$* stop a job that is not executing.
$* For your convenience I will show you a list of
$* currently executing jobs:
$PAUSE
SHOWJOB JOB=@J
$PAUSE
EOJ

SCREEN-STOP: $PROMPT, Ai

10,20, "stop the JOB (Y,N)", REC[1-1], MATCH (Y,N),
CALCUL A("REC[l-l] = #1"),
COMPUTE-STOP;

END;

COMPUTE-STOP: A;

IF #1 = 'Y' THEN
CREATE FlLE:MSGFILE WITH

o ORDER#,
'STOP' = TEXT;

EXIT;

In operation this example works quite smoothly. Order Entry operators are able
to perform their task without being aware that they are actively communicating
with the batch print routine, with one exception: the first terminal operator (each
day) is automatically taken through the EXEC procedure which submits the batch
print routine. As they are generated, the invoices can be printed on any device
including a departmental printer local to the data entry operators. The Invoices
are printed in batch, at a lower priority than the On-Line processes so as not to
impose a negative influence on terminal response times. The mechanism for
initiating, feeding, and terminating the batch process is completely automated,
and a manual override to stop the job is also available.

The design of this example involved the application of a Message File using one
Reader (the batch Report) and multiple Writers. This configuration can be
changed. For example, if there is a sufficient number of Order Entry terminals,

Using MPE Message Files
0098-10



orders may be entered faster than they can be printed. It may therefore be
desirable to have multiple Readers; ie: more than one Batch report job feeding
from the Message File. Another configuration may involve multiple Print jobs
and multiple Message files, with each Print job dedicated to one Message File.
This might be useful if there are several pools of data entry people located
throughout the organization each with their own local printer. Each print job
could send its invoices to a specific printer, and based on the terminal operator's
User Security Environment each user would feed a specific Message File.

This is just one example of using MPE Message files in a Speedware application.
Some other applications might be:

Feeding transactions to another system. Many sites use Speedware to embellish
or customize the Data Entry and reporting functions of a purchased
application package. In these instances there is often the need to interface
the Speedware system with the processing routines provided with the package.
Message files could send transactions to a Background processing routine
which would update the Application Database.

Undertaking physical deletes. Speedware provides an optional Logical Delete
mechanism which provides several benefits in an On-Line Environment.
When one adopts a strategy of doing Logical Deletion of data, the need is
presented for the periodic physical deletion of the data. Often we defer this
to a nightly/weekly/monthly batch job, however the Physical deletion could
be done by a background processor, as records are flagged for deletion
On-Line. The benefit to this approach is that the physical delete procesing
remains a batch task (On-Line performance benefit), yet the processing is self
scheduling.

Using MPE Message Files
0098-11



It is the intent of this paper to introduce the general concepts behind MPE
Message Files and illustrate how they might be put to good use in a Speedware
application. If more technical information is required, the following sources
offer a starting point for your research:

1) Reactor Reference Manual, Infocentre Corporation,

Product Number RCT 5.00.00. A source for more detailed information
regarding SCREEN formats and processing, FILE definitions, COMPUTE and
REPORT processing.

2) MPE File System Reference Manual, Hewlett-Packard,

Part Number 30000-90236. Provides the detailed documentation of the
Operating characteristics, features, and file system intrinsics for Message
Files. See Chapter 8.

3) "Interprocess Communication Using MPE Message Files",

A technical paper submitted to the Detroit INTEREX Conference 1986, by
Lars Borresen, Hewlett-Packard. Paper 3112 in the Conference Proceedings.

Using MPE Message Files
0098-12



Distributed Application Processing and How to use it.
or

Stop Wasting those PC Mips!

Patrick Fioravanti
Infocentre Corporation

7420 Airport Road
Suite 201

Mississauga, Ontario
Canada L4T 4E5

As Fourth Generation software and data communications technology becomes
more prevalent throughout the HP3000 community, the number of opportunities
available for networking the mini with our PC's grows significantly.

With many organizations reaching and exceeding the computing capacity of their
HP3000, the concept of redistributing the load, moving some of the application
processing to the micro computer becomes very attractive. Distributed processing
is a reality today, but for many shops it represents a new frontier that should be
approached with caution, in a premeditated way.

This paper will take a close look at distributed application processing, involving
the networking of the HP3000 with personal computers. We will first introduce
some of the concepts at work, then describe the various data communication
topologies that can be implemented. Having set the foundation for the discussion
we can move on to application design possibilities - investigating how new
applications might be designed in order to capitalize on the system resources
made available through the networked configuration. Along the way, we will be
providing some guidelines for effective use of this distributed processing concept
based on the capabilities, strengths, and weaknesses of the various system
components (both hardware and software) within the network.

Distributed Application Processing
0099-1



Introduction

Historically, within the HP3000 environment we have seen the flow of corporate
information managed almost exclusively by the central computing facility.
Serious business applications have been developed and implemented on our
HP3000s. With many organizations reaching and exceeding the computing
capacity of their HP3000, the concept of redistributing the load, moving some of
the application processing to the microcomputer becomes an attractive alternative.
Pursuing this avenue has led a number of UP installations into the realm of
distributed processing, where applications are developed that utilize PC hardware
and software resources in addition to HP3000 based resources.

What are the perceived benefits of distributed processing?

The benefits associated with the integration of PCs with the current computing
environment can be discussed under these headings:

• Offloading the central machine,
• Red ucing costs,
• Reducing application downtime.

Offloading the central machine

Today the HP3000 is used typically by data processing professionals and end
users alike. Programmers, analysts, database administrators define, develop,
implement, and maintain production application systems. End users access these
implemented systems, undertaking the application processing. In a lot of cases,
the combination of system development and production activities strain the
system resources, sometimes yielding unacceptable levels of performance during
the peak processing hours of each business day. Something has to give.

Consider that each of the PCs sitting on desks in the user community as well as
the DP department, has its own CPU coupled with significant storage and
memory capacity. Aggregated, there is a lot of computing power in our PCs
waiting to be harnessed effectively. Using PCs that are already cost justified, to
potentially double the available computing power represents a significant
opportunity to shift some of the current load away from the HP3000.

Reduced costs

A number of computing costs can be reduced by migrating some of the processing
from the HP3000 to the PC. Hardware acquisition is one of these costs. It is not
difficult to acquire a PC with a generous configuration for about the same price
as a good quality display terminal. The same applies to software, as PC software
is available for a fraction of the price of minicomputer software possessing
similar functionality. Once the PC is established as an extension of the central
facility, the incremental cost of hardware or software additions is substantially
lower than on an HP3000.

Distributed Application Processing
0099-2



Thirdly, we can look for decreases in communication costs. In cases where
remote terminal workstations are replaced with PCs, the PC can execute the
application locally. While doing so it may be possible to sever the link to the
HP3000, thereby reducing data communication costs significantly.

Reduced application downtime.

With the PC comes the ability to collect local transactions on an attached disk
system that can later be used to update the minicomputer. The PC then acts as a
spare machine that can be pressed into service should the HP3000 be unavailable.
Furthermore, a termporarily defective PC can be replaced far more easily than
can an HP3000. With PCs, hardware redundancy becomes affordable.

Distributed processing - How?

If you accept that there are real benefits associated with PC integration, then we
should examine the necessary tools, as well as some of the concepts behind them.

Ensuring success in distributed processing hinges largely on the compatiblity
between the various machine environments. Application developers and users
must be able to move easily between PC and HP3000 based processing. We can
accomplish this by adopting an application development environment that
operates on both machines. Specifically we require the same programming
language, and the same database management system. A common application
development environment provides two very important benefits:

•

•

The application development staff can build PC applications with minimal
retraining. All existing skills relative to the programming language and
database design, creation, manipulation are transferable.

Application development activities can be undertaken either on the PC or the
HP3000 regardless of where the finished product will ultimately run.

There are a number of strategies for distributing application development and
processing. A very simple strategy results in standalone applications being
developed for processing on one or more PCs. This strategy is useful, but
generally finds itself restricted to simple applications processing non critical data.
More sophisticated strategies are required for applications that must be
distributed across a number of machines. That is, the processing may be split
between the HP3000 and PCs as well as the data. Implementing distributed
applications in this fashion requires a communication facility - a means to
transfer data between the two machine environments.

We need to set in place appropriate data security and access control procedures.
In the past, with all application processing taking place on the HP3000, we have
not felt the need to be concerned with these issues. MPE provides reasonable
facilities for access control and data security. Operational procedures are already
in place to ensure proper backup copies of data are taken on a regular basis.
None of this security environment is automatically available on a PC. Rules need

Distributed Application Processing
0099-3



to be implemented that ensure PC resident data will be adequately protected.
Furthermore PC application security is needed to control, as much as possible,
access to the processing capabilities provided by the workstation.

With these tools and controls in place, we can turn our attention to developing
and delivering distributed applications. These applications must be designed
wisely, distributing the data, the processing, and fine tuning the various
connections such that the application satisfies the users requirements and makes
optimal use of all available computing resources.

The communication facility.

A communication facility is a central requirement for implementing distributed
applications. The inter-machine communication enables the activities on the
machines to remain coordinated. There are several ways to design the PC to
HP3000 communication, lets examine first a batch approach.

Using standard PC - HP3000 file transfer utilities it is quite straightforward to
implement a batched, bidirectional communication facility. This can be used
during system development to transfer text source files between machines, and
equally during system processing to transfer text or binary data files back and
forth. With this approach we can design distributed applications that are batch
integrated. This can be useful with applications that are based on processing
cycles. During a processing cycle, transactions can be entered and captured on a
PC. At the end of the cycle (nightly, weekly, monthly, etc.) the detailed
transactions can be extracted from the PC database and uploaded to the HP3000
where they are posted to the central database. At the same time, updated versions
of the reference or master files can be extracted from the HP3000 and
downloaded to the PC(s). Software products are available that will work in
conjunction with the file transfer utility to automate a scheduled transfer of
files.

On the surface, it may not be immediately obvious how it is that this distributed
processing approach provides benefits. Consider however that the processing
involved with data editing and general transaction processing is offloaded from
the HP3000. The PC earns its keep. For remote workstations, there can be
savings realized in data communications costs. The workstation need not be
connected all day, and when the connection is made, a concentrated stream of
pre-edited transactions is efficiently transferred.

The batch integrated approach, although simple to implement, may not be suitable
to all applications. It carries several disadvantages:

• The master files may be so large as to make their downloading impractical, if
not impossible.

Distributed Application Processing
0099-4



•

•

The downloaded files are duplicated on multiple PCs. Duplication of
corporate data profoundly complicates data and information management.

Often the data entry workstation needs real time access to HP3000 data.
Batch updates may not be sufficient.

Distributed applications requiring more timely access to large, sensitive corporate
data files are better served by an interactive networking strategy. This more
sophisticated form of communication results in a tighter, more cohesive
integration strategy. Interactive networking enables an application running on a
PC to instantly access information (read, write, or update) regardless of where
that information resides, in a fashion that is transparent to the application and
the user.

Interactive networking is accomplished using data communication software
resident at each end of the connection. The PC resident component sends
requests to the HP3000 whenever access is required to centralised data. The
HP3000 resident component acts as a server to the PC. It waits for data access
requests emanating from the PC, and responds to them. Typically the response
involves formulating an Image access call, then sending the result of the call back
to the PC. In general the type of service provided by the host resident software
need not be restricted to accessing Image databases, however this seems to be a
very useful service to offer a PC.

This arrangement is conceptually similar to accessing remote Image databases
within a OS network of HP3000s. It would be simple enough to implement fDS'
type intrinsic calls within the PC resident software. These intrinsics could be
invoked by the application whenever access is required to HP3000 resident
datasets. Another approach involves defining the remote datasets within the
schema of the PC database. A mechanism is required permitting the database
designer to designate one or more datasets as being 'logical' datasets. They are
part of the application, but physically reside on another machine. This approach
carries three advantages over the 'OS' approach:

1) Accessing remote files is transparent to the application programs. The
programs issue a read, write, or update request against a specific record or
file. The Database Management System determines where the file physically
resides, and hence what is required to satisfy the application request.

2) The local database knows the structure of the remote files since they are
defined in the schema. Accordingly any interrogations of the remote dataset
structure can be responded to locally, there is no need for remote
communications to satisfy the request. This is tremendously beneficial for
applications that make extensive use of the DBINFO intrinsic.

3) Within the PC database schema, the remote dataset definition can be a logical
view of the actual dataset definition. The PC schema need only define the
items of the remote dataset required by the application. Only the items
defined in the PC schema will be transferred, thereby optimizing the data
communications.

Distributed Application Processing
0099-5



To visualize how this works, take as an example, a manufacturing application
involving a large Parts master file. We can undertake transaction entry and
processing on the PC, designating the Parts file as a logical dataset, physically
resident on the HP3000. At run time, any "DBGETs" directed against the parts
file will be trapped by the PC Database software, and sent via the communication
link to the HP3000. The request is accepted by the network server, and
formulated into a "DBGET" directed at the appropriate Image database. The
result of the call (the record buffer if successful, otherwise the status array with
the appropriate error information) is then transferred back to the PC where it is
accepted by the Database software and returned to the application program. The
same concept applies to other database access calls (writes, deletes, updates, locks).

Although simple in concept, the actual implementation of this communication
facility can be quite complex, allowing for all of the possible data communication
configurations, data compression techniques (for faster data transfer rates), and
data encryption (for securing data as it is passing through the communication
link).

The interactive networking facility permits the definition of physical (local) and
logical (remote) datasets when defining the application database. A third type of
dataset can be considered; a blend of local and remote. The implementation of
this type of dataset provides a form of Caching. For example, if a request is
received to read a record from our parts file, the DBMS looks for the record in
the local dataset. If it does not exist there, it is retrieved from the HP3000 and
written to the local dataset. The next time we wish to access the same record we
may retrieve it without a remote access. Over time, the local dataset will be
populated, on an 'as needed' basis, until it holds all of the master records
required by this PC workstation. Although this implies data duplication, it means
that at some point in time the communication link can be severed without service
disruption. This concept is well suited to applications that operate according to
Paretos' Law, where eighty percent of the processing is directed against twenty
percent of the data records.

Regardless of the options chosen, the principle remains the same. By defining the
structure and the location of application data within the database, the run time
component of the DBMS is able to handle the data communication. Access to the
remote files happens automatically in a fashion that is transparent to the
programmer and the user. Distributed processing is made possible.

Connections

PCs using the communication facility are connected to the HP3000 in a standard
fashion. Once connected, there are several means we can consider to optimize the
connection.

At its simplest, the connection takes the form of a serial communication line from
the PC to a terminal port on the HP3000. In reality, this connection might be
direct, or pass through a very complex data communication network, including
modems, multiplexors, and packet switching networks. Generally speaking, if we

Distributed Application Processing
0099-6



can connect the PC such that it can initiate a terminal session, then we can
acomplish batch or interactive networking through the connection.

When using interactive networking, the PC can initiate a terminal session, and
within the session activate the HP3000 resident portion of the communication
software. This process might be activated automatically from the PC as part of
the "DBOPEN" and similarity terminated automatically as part of the nDBCLOSEn.

It may be considered wasteful (or perhaps excessive) to allocate a terminal port,
MPE session, and network communication process to each PC in the application
network. We can optimize this somewhat by dedicating resources to the
application.

If it is known that a specific port or ports will be used only for interactive PC
networking, then it becomes possible to launch a single communication server
process that treats the ports as files, and waits to service requests emanating from
the attached PCs. This strategy reduces the number of HP3000 processes (one per
network instead of one per port), and the number of MPE sessions (the PCs don't
initiate a terminal session), at the expense of dedicating the port(s) and
scheduling the systematic initiation and termination of the network server.

Depending on the design of the application, there may not be sufficient volume
of data traffic to warrant the allocation of one port per PC. In many HP3000
shops ports are expensive and scarce resources. In situations whel'e specific ports
are dedicated to interactive networking we can attach several PCs to one port and
enhance the communication facility to channel the data messages separately for
each PC sharing the port. This serves to optimize port utilization.

We can extend this concept further. If it is known that all of the pes in a given
network will be processing the same application, then the HP3000 based server
can be customized for the application. By always having files and databases
open, and other initialization type processing completed, the PC will never have
the servicing of its request delayed unnecessarily.

These options pose a tradeoff: optimizing resource utilization versus flexibility.

Application Design - Resources

Having covered the concepts and some of the possibilities, let's concentrate on
putting them into practice. By evaluating the various software and hardware
components that we have at our disposal, we can develop application design
guidelines that result in optimal use of the resources.

Distributed Application Processing
0099-7



II Available pool of software:

MPE
Image / File System
Development Language

III Hardware:

Disk (lots, shared)
Memory (limited, expensive)
CPU (powerful, shared)
Peripherals (high speed)

IIII Data Communication Link:

- Data transfer rate
- Expense
- Reliability

lC.

MS-DOS
Image Clone
Same Language
Personal Applications

Disk (less, dedicated)
Memory (limi ted, cheap)
CPU (powerful, dedicated)
Peripherals (few, low capacity)

(slow)
(varies with configuration)
(varies with configuration)

An evaluation of the respective strengths and weaknesses of the available
resource pool shapes our application design guidelines.

On the software side, MPE provides more sophisticated file system and security
facilities. Included with the MPE file system is automatic multi user capability.
By equipping ourselves with the same application development environment on
both machines, we make Image and our chosen development lanaguage generally
available. The PCs have an edge with readily available, powerful and friendly
personal application software that can be used for data analysis (spreadsheets),
graphics, and text processing.

Of the available hardware resources, the PC complement is dedicated to a single
user, while the HP3000 hardware is shared among several (many) competing users.
Generally speaking, the hardware devices connected to the HP3000 are higher
capacity and boast Caster access speeds, although in reality they may service an
individual user in a more sluggish Cashion when heavily subscribed.

The data communication network is arguably the weakest link in the chain. Even
the Castest of serial data transfer rates pale in comparison to the rate at which
data is transferred Crom disk to memory inside an HP3000. Furthermore, the
network is susceptible to unavailability due to a software or hardware failure of
the host (HP3000), or failure of any component of the communication network.

Application Design - Guidelines

The remaining challenge is to design distributed applications wisely. In our

Distributed Application Processing
0099-8



wisdom we must distribute the processing as well as the data storage in a manner
that most effectively utilizes the available resources. Based on our evaluation of
resources we should:

•
•
•
•

fully exploit the availability of PC hardware,

offload personal data analysis tasks to the PC

reduce dependence on overtaxed HP3000 resources.

economize on interactive data transfers

• use the MPE file system when data must be shared, or data
security/protection is critical.

This translates into:

1) Utilize the computing capability of the PC for things like data entry tasks.
Data edits, validations, calculations, error handling, screen compilations and
screen I/O are then offloaded from the HP3000. The data entry operator will
appreciate the consistently crisp response that can be provided by the PC.

2) Distribute data such that files requiring shared access remain on the HP3000.
These files can of course be accessed through the interactive communication
network. For most applications, this guideline results in reference files
(frequently the "Master" datasets) residing on the HP3000, while the
transactions ("Detail" da tasets) can be captured on the PC. Regular
validations (lookups) to the reference files during data entry can be handled
by the communication facility, the output of the data entry (the transactions)
in many cases need not be communicated to the host. This strategy offloads
a significant amount of disk I/O from the host and also minimizes traffic on
the data communication network. Should the PC resident transactions be
required on the HP3000, for batch reconciliation or reporting purposes, we
can consider a batch transfer at off hours to accomodate this.

Although on the surface it may seem advantageous to leave all the files on
the HP3000, this strategy heavily taxes the communication network (the weak
link), and in some cases floods the HP3000 with file access requests.

3) Design the application to be fault tolerant. Local processing should still be
possible during temporary periods of host unavailability. This can be
accomplished by making some data edits or validations optional (flag the
transactions as requiring some sort of batch validation later on). When host
unavailablity is predictable, an optional downloading of the master files (or
some subset of them) can be done ahead of time, and the data entry programs
instructed to access the local files. This is similar to the application caching
concept that automatically downloads remote records as they are accessed,
and permits disconnection from the HP3000 without service disruption.

Distributed Application Processing
0099-9



4) Leave large volume batch oriented tasks on the HP3000. The host has the
speed, power, and large volume peripheral devices to handle these tasks
efficiently.

These points offer general application design guidelines that may prove useful as
a starting position when conceptualizing the design of distributed applications.

Summary

The technology exists today making distributed processing a reality. For many
HP3000 shops this constitutes a new frontier, presenting new opportunities to
address traditional problems of computing resource allocation and utilization. It
also adds a new dimension to application design considerations.

It is through a solid understanding of the underlying concepts, and available
options that we can adopt and implement an effective distributed processing
strategy that will help to achieve the stated goals of PC integration.

Distributed Application Processing
0099-10


	Index by Paper Number
	Index by Author
	Index by Title
	Index by Category
	The HP Employment Market - What Every Hiring Manager Should Know
	Symbolic Debugging: An Introduction
	Separating Data and Processing or Building Databases for Systems Yet to Come
	Using Inform, Protos, and QUIZ - a User's Experiences
	The Information System Lifecycle
	Minimizing Coding, Maximizing Production
	Electronic Forms: Another Step on the Road to the Automated Office
	How To Keep Your Audltor Happy
	User Friendly Security
	AI-The Three Toed Sloth
	Controlling the Datacom Monster: One Company's Approach
	4GL's, COBOL and Data Communications
	Fourth Generation Languages and Processing Efficiency
	Integrated Information Management - Get The Connection?
	Capacity Planning: Getting Started
	Data Integrity and Recovery
	Pitfalls of Offloading Applications to PCs
	Decision Support System
	Understanding Migration
	Dodging Bullets in Your DP Shop
	Migration Made Easy
	The Face of Data Processing
	MPE/XL Variables and Command Files
	Computer Assisted VIEW, IMAGE & SPL
	Using COBOL II's Facilities
	A Beginner's Guide to UDC's and JCW's: How to Use Them to Your Benefit
	Adding Multi-Plant Features to a Large, Integrated Manufacturing Package
	HP Portability: RAM/ROM vs. Disk-Based Approach
	The Seven Wonders of TERMDSM
	In Search of a Better Mouse Trap
	Data Structures: "The KEY to Performance"
	Effective Backup Strategies for the HP3000
	I Haven't Got a Lot of Time - I Haven't Got a Lot of Money (Food For Thought For Penniless System Managers)
	Remote PC Information Network
	Implementation of an Automated Code Enforcement System via the Integration of Third Party and In-House Developed Software in a Mixed 3rd and 4th GL Environment
	Disappearing Dial-Up
	The Evolving Network
	The Spectrum Instruction Set, A 3000 Hacker's View
	Performance Monitoring and Capacity Planning on MPE XL
	Sales Force Automation: A Case Study
	Unorthodox IMAGE Accessing for Power
	Computer Training: How to Train the Computer Phobic
	A Guide To Breaching HP 3000 Security
	Training a New Operator - Where Do You Begin?
	Parity Pitfalls
	Addressing the Problems of Program Documentation
	Asynchronous and Synchronous Auto Dialing Equipnent on the HP 3000 Why, When, and How
	Data Download HP3000 to any Vectra Clone
	Integrated Information Engineering
	Data Center Management and Efficiency
	An HP 3000 Approach to IBM's LIBRARIAN Techniques
	Foundation for HP Data Security
	Where's the Space
	Application Software as a Long Term Investment
	Twisted Pair: A Thing of the Past and The Wave of the Future
	Playing the Wrong Game: Measuring Programmer Productivity in a 4GL Environment
	Integrating Paperless Systems in a Fortune 100 Company
	How to Train a Terminal User to Be an Effective PC User
	Documentation: The Necessary Evil
	The Secrets of Project Management
	Software Quality - Let's Discuss This "Can of Worms"
	Strategic Planning In Small MIS Shops
	Security Tips and Techniques for Beginners
	Making Short Shrift of Sorts
	Developing a faster IMAGE
	Disaster Recovery, Can Your Business Really Recover?
	Information As a Competitive Weapon
	Experiences in Migration
	Don't Let Your Programmer Grow Up to Write Operational Documentation - or Should You?
	The Use and Abuse of Non-hashing Keys In IMAGE
	Using a Task Manager to Improve User Productivity
	Maximizing Performance for IMAGE Data Bases
	MPE/XL Programming
	The role of Data Dictionaries in Application Development, with an Emphasis on System Dictionary
	Using MPE Message Files - An Applications Approach
	Distributed Application Processing and How to Use it, or Stop Wasting those PC Mips!

