
VRTX/68000
Timing Reference

Document Number 590092001
December 1983

REV. REVISION HISTORY PRINT
DATE

-001 First printing; 2.10 12/83

Hunter & Ready, Inc. makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. Hunter & Ready, Inc. assumes no responsibility for any errors that may appear in
this document. The information in this document is subject to change without notice.

Hunter & Ready software products are copyrighted by and shall remain the property of
Hunter & Ready Incorporated. Use, duplication or disclosure is subject to restrictions stated
in Hunter & Ready's software license. No part of this document may be copied or reproduced
in any form or by any means without the prior written consent of Hunter & Ready, Inc.

VRTX, VRTX/80, VRTX/86, VRTX/186, VRTX/8002 and VRTX/68000 are trademarks of
Hunter & Ready, Inc. and may be used only to identify Hunter & Ready products.

Copyright <• 1983
Hunter & Ready, Inc.
445 Sherman Avenue

P .0. Box 60803
Palo Alto, CA 94306-0803

415/326-2950
TELEX:278835

All rights reserved.
Printed in U.S.A.

Table of Contents
1. Introduction ... 1

2. Execution Time Formulas .. 2

2.1 Shortcuts -................... 4

2.2 Loops .. 4

2.3 Wait States .. 4

2.4 Dynamic RAM Refresh ... 5

2.5 Cases .. 5

2.6 Reschedule And Timeslice .. 5

2.7 Hooks .. 6

2.8 TCB Chain .. 6

2.9 A·n Example ... 7

3. Interrupts Off Formulas .. 8

4. System Calls .. 9

VRTX/680001 Timing Reference

1 Introd...u.cti.Qn

Real-time programs are inherently time-critical. If a task does not complete its
work on time, ~ system l:la£ ~ just as emphatically as if it had produced
erroneous data. To build a real-time system that consistently delivers ontime
results, the software engineer must be able to precisely characterize the
performance of the hardware and software components from which the system is
constructed. This is not an easy job because of the multitude of factors:
processor type and clock rate, bus and memory design, compiled code quality, and
operating system overhead are but a few these factors. Yet only with detailed
component performance data can running times be estimated with the accuracy
that real-time applications demand.

To aid in this effort, hardware manufacturers customarily supply performance
specifications for their components-processors, memories, buses and the like. In
marked contrast, software vendors traditionally provide little, if any, timing
information. Yet software has no less influence on total system performance.
Breaking with tradition, this Timin~ Reference describes in detail the performance
of Hunter & Ready's VRTX/68000 silicon software component. The description aims
to answer the two performance questions that are vital to real-time applications.

1. How long does it take to execute a system call?

2. How long are interrupts disabled?

The information contained in this document has many uses; among other things it
can help you:

Compare VRTX's performance to that of other real-time executives (bearing
in mind the "apples and oranges" syndrome which complicates direct
comparisons).

Analyze software design alternatives-for example, memory can sometimes be
saved by allocating data structures dynamically; however, the cos~ in
increased execution time may make static allocation the better choice in
some situations.

Evaluate hardware design tradeoffs (e.g., whether you will gain more from a
faster processor or faster- memory).

1. The information presented in this document applies to Version 2.10 of
VRTX/68000.

Copyright 1983, Hunter & Ready, Inc. 1

Verify that VRTX and your hardware can field the worst-case interrupt bursts
anticipated in your application.

The Timin~ Refer™ is primarily organized to facilitate quick calculation of
specific performance figures; should you read it front to back you will find
considerable repetition. (For a short overview of VRTX/68000's performance,
consult YRTX/6.B..QQQ. Timin~ Summary, Hunter & Ready Document No. 02110.) The
material is presented in three sections. The first two sections basically define the
terms used in the third. In the third section, each VRTX call is covered in
alphabetical order. For each call a set of formulas describes how long the call
will take to execute and the maximum interval during which interrupts will be
disabled. The formulas cover every set of hardware and software conditions that
an application is likely to encounter.

To use this material effectively you should be familiar with the VRTX system calls
and should understand microprocessor hardware basics. For example, the term
"wait state" should be familiar to you.

2 Execution Time Formulas

To account for the hardware- and software-related variables that can affect the
execution time of a system call, each call is described by a formula which yields
the total number of ~ cycles consumed by the call. (To convert clock cycles
to microseconds, divide by the processor clock frequency in megaHertz, e.g., 8 for
an 8MHz clock.)

Figure 1 is a flowchart of a hypothetical VRTX system call. How the structure of
this call would be reflected in its timing formula is discussed below. First, the
formula expressed as you would find it later in this book:

Formula

Terms

a + ib

a = 155 + 23ram + 18rom
i = Number of tasks in the system.
b = 29 + 16ram + 8rom

Every formula contains at least the a term; this term represents the execution
time to traverse the "main path" through the code. The main path is the code
that is executed one time per call; it includes the time for the TRAP instruction
that invokes the call and the RTE instruction that ends it. (High-level language
programmers note: the main path does not include interface library parameter
processing.)

2 Copyright 1983, Hunter & Ready, Inc.

TRAP

.,
i
i .
I .

,--.... -·-·J
I
I
I

!O
iO L __ _J

RTE

Legend

- Main Path
Shortcut
Loop

Figure 1. Typical VRTX System Call Flow

Copyright 1983, Hunter & Ready, Inc. 3

2.1 Shortcuts

Notice the "shortcut" in Figure 1. Many system calls contain one or more such
branches which, when executed, effectively shorten the length of the main path,
thereby slightly decreasing the value of a. However, the value quoted for a in this
document consistently assumes that shortcuts are not taken. Thus, the figures you
derive for the a term may be slightly conservative in some cases. The effect is
minimal, however, since taking even all the shortcuts in a call would not reduce
a's value by more than a few percent.

2.2 Loops

The second term in the formula (ib) corresponds to the loop in Figure 1; a call
may contain zero or more loops. Such a loop is a section of code that may be
executed zero or more times (i.e., it is a WHILE loop) in a given invocation of the
call. The value of i when the call is invoked determines the number of iterations
through the loop, while the value of b specifies the time it takes to execute the
loop once. In our hypothetical call, the loop will be executed once for each task
in the system. Multiple loops in a call are denoted by terms of the form jc, kd,
etc.

2.3 Wait States

Both the a and b terms are themselves defined as sub-formulas consisting of three
terms (e.g., a = 155 + 23ram + 18r~m). The first term specifies a number of
clock cycles assuming !l. will. states • The second and third terms specify the
penalties for RAM and ROM wait states respectively, if any; these will be zero in
0-wait state systems. Note that the RAM and ROM referred to here are the code
and data areas associated with VRTX, i.e., the locations used for "VRTX system
RAM" and the area where the VRTX code itself is located. Wait states incurred
by accesses to other memory areas (e.g., to user code or data located on different
boards than VRTX) are irrelevant. To use a sub-formula, substitute for ram and
rom the number of wait states incurred in the corresponding access in your
system. For example, consider the sub-formula

a = 155 + 23ram + 18rom

In a 0-wait state system a evaluates to 155 (i.e., 155 + 0 + 0). In a system with 1
wait state per VRTX RAM access and 2 wait states per VRTX ROM access, a is
214 (i.e., 155 + 23 + 36).

2. Do not confuse our use of the term "wait state" with the "states" into which
Motorola literature divides the 68000 bus cycle. When we say wait state we mean
one full clock period; Motorola bus states are one-half clock period long.

4 Copyright 1983, Hunter & Ready, Inc.

2.4 Dynamic RAM Refresh

The contents of dynamic RAM chips must be periodically refreshed typically every
2-4 milliseconds. If the processor tries to read or write a location that is being
refreshed, the refresh logic will insert a wait state into the bus cycle. The effect
is to make memory occasionally appear to be slower than it actually is. This
effect should be accounted for in the VRTX performance formulas. Unfortunately,
the diversity of refresh implementations prevents us from doing so. Nevertheless,
if you only need a "ballpark" number, you can add 5% to the RA!\1 clock figures
quoted in the formulas to account for refresh-generated wait states. To obtain a
more precise figure, you will need to work with your hardware engineers to
establish how long refresh takes and how often it occurs. You can then increase
the RAM clock figures by either a statistical or a worst-case amount.

. 2.5 Cases

Often you will find more than one formula given for a system call; this is because
the time required to complete the call depends on the context in which it is
executed. For example, consider SC_POST, which posts a message to a mailbox.
At the time this call is executed one of the following will be true:

1. No task is pended at the target mailbox.

2. A task is pended at the mailbox with a timeout value of 0 (wait
indefinitely).

3. A task is pended at the mailbox with a non-zero timeout value.

Each such condition we call a case. Since the processing required to complete the
call is substantially case-dependent, we provide a separate formula for each case.

NOTE: While all cases which affect timing to any significant degree
are documented, not ~ case is described. To do so is infeasible
and would yield only marginally useful information. If, however, you
identify a case that is crucial to your application, and the case is not
described in this document, contact the Hunter and Ready Service and
Support Group for assistance.

No formulas are provided for error cases (e.g., an SC_POST to a full mailbox)
because such cases should not be encountered in production systems. In any event,
a system call executed under erroneous conditions will always complete faster than
any valid case.

2.6 Reschedule And Timeslice

VRTX has two subroutines, called "resched" and "tslice," that are executed by many
system calls. Basically, resched suspends the executing task and selects the next
task for execution; it constitutes VRTX's basic task switching time. Tslice is only

Copyright 1983, Hunter & Ready, Inc. 5

called when timeslicing is enabled. Then, whenever a task is suspended, including
at the end of a timeslice, tslice is called to move the TCB of the suspended task
to the rear of its priority group on the TCB chain (the TCB chain is explained
later). These routines have variable execution times which are themselves
expressed as formulas. When a system call executes either of these routines, the
routine is simply identified as a term in the system call formula. For example,
the case of a task suspending itself by calling SC_TSUSPEND, has the following
formula:

a + ib + tslice + resched.

The formulas for the tslice and resched routines are defined in the next section
before the system calls themselves.

2.7 Hooks

Some formulas contain one of the following terms: tcrehook, tdelhook or
tswaphook. These terms account for the time spent when VRTX calls a
user-written routine when a task is created, deleted or swapped (switched),
respectively. If no such routine is present (as specified in the Configuration
Table), the term evaluates to O. If a routine is present, the corresponding term is
defined with its own sub-formula, in the manner of resched and tslice. The
sub-formula itself contains a term (yourcreatetime, yourdeltime or yourswaptime)
for which you substitute the time it takes your routine to run. NOTE: when
calculating this time, do not include the RTS instruction that terminates your
routine and returns to VRTX; it is already accounted for in term a of the main
formula.

2.8 TCB Chain

Frequently a term will be defined as the "number of TCBs preceding that of (some)
task." What does this mean? VRTX links the task control blocks of all
non-dormant tasks into an internal data structure known as the TCB chain.
(Dormant TCBs-those that have never been used in an SC_TCREATE system call
and those that have been the target of an SC_TDELETE system call-are not on
the TCB chain.) The TCBs on the chain are ordered by priority, with the TCB of
the highest-priority task at the front of the chain. Equal-priority tasks occupy
adjacent positions in the chain; each such string of equal-priority tasks is called a
Qriority ~· A newly-created task is always inserted at the front of its priority
group, if there is one. Similarly, changing a tasks's priority causes the task's TCB
to be inserted at the front of its new priority group, if there is one. Thus, if
three tasks have priorities of 220, and these priorities have not been changed, the
TCB of the most recently-created task is ahead of the other two, while the oldest
task's TCB brings up the rear (ahead, however, of any lower-priority TCBs).

When timeslicing is enabled, VRTX rotates the tasks in a priority group each time
a task in the group is suspended. For example, suppose three priority-250 tasks
are linked in the chain so that task_b is followed by task_c, with task_a at the
back of the priority group. Task_b is executing (task_c and task_a are both ready)
and it issues an SC_PEND to an empty mailbox. VRTX inserts task_b behind

6 Copyright 1983, Hunter & Ready, Inc.

task_a in the TCB chain and executes task_c which is now at the front of the
priority group. When task_c is suspended, VR TX will place it behind task_b,
making task_a the next to run.

Therefore, when timeslicing is not in effect, the number of TCBs ahead of a
particular task's TCB consists of the following:

all higher-priority tasks;

all younger tasks of the same priority;

all equal-priority tasks whose priority has been changed after the task in
question was created or after the task in question's priority was changed.

When timeslicing is enabled, the TCBs of all higher-priority tasks are ahead of the
TCB in question. If the TCB is in a priority group, from zero to all-but-one of
the TCBs in the priority group can also be ahead of the TCB in question.

2.9 An Example

To help crystallize our explanation of the timing formulas, we now walk through an
example. Suppose your hardware is running an Sm Hz 68000 with one wait state
per ROM access and two wait states per RAM access. You want to know how
long it takes to allocate a block of RAM from a VRTX free pool partition (i.e.,
how long SC_GBLOCK takes). The formula for SC_GBLOCK is given as follows:

Formula

Terms

a+ ib

a = 618 + 68ram + 73rom

i = Number of partitions created after the target
partition was created.

b = 46 + 3ram + 7rom

For this example, suppose no SC_PCREATE calls have previously been executed, so
that the free pool consists of only the single partition which VRTX creates at
initialization-time (i.e., term i = 0). Substituting in the formula we get

a = (618 + (68*2) + (73*1)) = 827
i = 0
b = (46 + (3*2) + (7*1)) = 59

a + ib = 827 + (0*59) = ill. ~ cycles.

Dividing by the processor's clock frequency of 8 yields 103.375 microseconds to
allocate a block of memory. Note that this figure does not include any clock
cycles lost to memory refresh.

Copyright 1983, Hunter & Ready, Inc. 7

Llnterrui;its 0 ff Formulas

During the execution of many system calls, VRTX must disable interrupts while
updating critical data structures. To see why this is so, consider a situation in
which VRTX is in the midst of adding an item to a queue in behalf of a task that
issued an SC_QPOST system call. If VRTX allowed interrupts to be recognized
during the critical update sequence, occurence of an interrupt could ready a higher
priority task which could issue an SC_POST to the same queue. While the
consequence of having thus corrupted the queue data structure is unpredictable, it
would clearly be unacceptable.

Depending on the call, and on the case (as defined in the last section), VRTX may
disable interrupts zero or more times as it executes a system call. What is of
interest here is not how many times interrupts are disabled, nor the aggregate time
spent with interrupts disabled. It is, rather, the maximum time spent with
interrupts off-since this is what contributes to worst-case interrupt latency.
Accordingly, the interrupts-off formulas defne the lQn"°est period during which
VRTX disables interrupts in the execution of a system call.

As in the previous section, the interrupts-off timing is presented as one or more
formulas. The structure of these formulas is identical to those presented
previously, although the formulas and cases are usually simpler.

To clarify
know the
extended.
below.

how to use the formulas, consider an example. Suppose you want to
maximum time interrupts are disabled when a free pool partition is
The interrupts-off formula for the SC_PEXTEND system call is quoted

Formula

Terms

a + ib

a = 316 + 32ram + 38rom

i = Number of blocks already in the target
partition.

b = 36 + 4ram + 4rom

For purposes of this example, we assume that the hardware is driven by an 8MHz
clock and that one wait state is incurred per RAM access and two wait states per
ROM access. We also assume that the partition to be extended already has 25
blocks. Substituting in the formula we obtain:

8

a = (316 + (32*1) + (38*2)) = 424
i = 25
b = (36 + (4*1) + (4*2)) = 48

a + ib = 424 + (25*48) = 1624 clock cycles.

Copyright 1983, Hunter & Ready, Inc.

Dividing by the processor's clock frequency of 8 yields 203 microseconds during
which the system will be unable to respond to an interrupt. Again, this figure will
have to be adjusted upward to account for memory refresh.

4 System Calls

The VRTX system calls are listed in this section alphabetically. The resched and
tslice routines come first, however, as they are called by other system calls.

Copyright 1983, Hunter & Ready, Inc. 9

Reschedule

Execution

Formula

Terms

Interrui;>ts Off

Formula

Terms

10

Rescheduling Routine

a + ib + tswaphook

a = 846 + 116ram + 84rom ~ '<.U, r;,:, _, .7 o

i = Number of sysi;iend.e.Q TCBs preceding that of the
highest-priority ready task.

b = 56 + 3ram + 9rom
{_,

tswaphook = (54 + 8ram + 5 rom + yourswaptime) if
tswaphook is specified in the Configuration Table;
else tswaphook = 0.

* * *

a

a = O

* * *

Copyright 1983, Hunter & Ready, Inc.

Rotate Priority Group Routine Timeslice

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

Interrupts Off

Case 1

Formula

Terms

Case 2

The task being changed from executing to ready is
the only one in its priority group (i.e., there are no
other non-dormant tasks of the same priority).

a

a = 74 + 5ram + llrom

* * *

Other non-dormant tasks have the same priority as
the task being changed from executing to ready.

a + ib + jc

a = 156 + 13ram + 20rom

i = Number of non-dormant tasks with higher priority
than the target task.

b = 3 6 + 4ram + 4rom (

j = Number of non-dormant tasks with the same
priority as the target task (not including the target
task itself).

c = 56 + 3ram + 9rom

* * *

The task being changed from executing to ready is
the only one in its priority group (i.e., there are no
other non-dormant tasks of the same priority).

a

a = 74 + Sram + llrom 7 '{ (. '(

* * *

Other non-dormant tasks have the same priority as
the task being changed from executing to ready.

Copyright 1983, Hunter & Ready, Inc.

.z

11

Timeslice

Formula

Terms

12

Rotate Priority Group Routine

a+ib+jc

a = 156 + 13ram + 20rom

i = Number of non-dormant tasks with higher priority
than the target task.

b = 36 + 4ram + 4rom ::: /().

j = Number of non-dormant tasks with the same
priority as the target task (not including the target
task itself).

c = 56 + 3ram + 9rom L.

• • •

Copyright 1983, Hunter &: Ready, Inc.

Accept Message From Mailbox

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

hlterrupts Off

Case 1

Formula

Terms

Case 2

Formula

Terms

No message is available.

a

a = 414 + 45ram + 48rom

A message is available.

a

* * *

a = 428 + 47ram + 49rom

No message is available.

a

* * *

a = 200 + 20ram + 24rom

A message is available.

a

* * *

a = 214 + 22ram + 25rom

* * *

Copyright 1983, Hunter & Ready, hlc.

SC_ACCEPT

13

SC_GBLOCK

Execution

Formula

Terms

Interru12ts Off

Formula

Terms

14

Get Memory Block

a + ib

a = 618 + 68ram + 73rom

i = Number of memory partitions that were created
after the partition specified in this call.

b = 46 + 3ram + 7rom

* * *

a

a = 290 + 32ram + 34rom

* * *

Copyright 1983, Hunter &: Ready, Inc.

Get Character

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

Interru~ts Off

Case 1

Formula

Terms

Case 2

Formula

Terms

SC_GETC

A character is available.

a

a = 542 + 56ram + 65rom

* * *

No character is available (GETC buffer is empty).

a + ib + tslice + resched

a = 700 + 7lram + 89rom

i = Number of tasks (not including this one) already
suspended on an SC_GETC call.

b = 44 + 4ram + 6rom

tslice = See Timeslice if timeslicing is enabled, else
tslice = O.

resched = See Reschedule.

* * *

A character is available.

a

a = 328 + 31ram + 41rom

* * *

No character is available (GETC buffer is empty).

a + ib + tslice

a = 300 + 23ram + 46rom

i = Number of tasks {not including calling task)
already suspended on an SC_GETC call.

Copyright 1983, Hunter & Ready, Inc. 15

SC_GETC

16

Get Character

b = 44 + 4ram + 6rom

tsliee = See Timesliee if timeslicing is enabled, else
tslice = o.

* * *

Copyright 1983, Hunter & Ready, Inc.

Get Time SC_GTIME

Execution

Formula a

Terms a = 408 + 45ram + 47rom

* * *
InterruQts Off

Formula a

Terms a = 198 + 20ram + 24rom

* * *

Copyright 1983, Hunter & Ready, Inc. 17

SC_LOCK Disable Task Rescheduling

Execution

Formula a

Terms a= 354 + 43ram + 39rom

• • *
IntertUDtS Off

Formula a

Terms a = 0

• * *

18 Copyright 1983, Hunter & Ready, Inc.

Create Memory Partition SC_PCREATE

Execution

Formula

Terms

lnterrut>ts Off

Formula

Terms

a+ib+jc

a = 974 + 109ram + 117rom

i = Number of existing partitions.

b = 46 + 3ram + 7rom

j = Number of blocks in partition being created.

c = 284 + 28ram + 35rom

* * *

a

a = 152 + 15ram + 19rom

* * *

Copyright 1983, Hunter & Ready, Inc. 19

SC_PEND

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

Formula

Terms

20

Pend For Message From Mailbox

A message is available.

a

a = 430 + 47ram + 50rom

* * *

No message is available and the call specified a
timeout value of O.

a + tslice + resched

a = 574 + 60ram + 72rom

tslice = See Timeslice if timeslicing is enabled, else
tslice = o.

resehed = See Reschedule.

* * *

No message is available and the call specifies a
non-zero timeout value.

a + ib + tslice + rescbed

a = 804 + 81ram + 105rom

i = Number of tasks currently suspended because of
a timeout (SC_PEND with non-zero timeout,
SC_QPEND with non-zero timeout, SC_TDELAY)
whose time remaining is less than the timeout value
specified in the call.

b = 54 + 3ram + 9rom

tslice = See Timeslice if timeslicing is enabled, else
tslice = O.

resched = See Reschedule.

* * *

Copyright 1983, Hunter & Ready, Inc.

Pend For Message From Mailbox SC_PEND

InterruDts Off

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

Formula

Terms

A message is available.

a

a = 216 + 22ram + 26rom

* * *

No message is available and the call specified a
timeout value of O.

a + tslice

a = 448 + 43ram + 60rom

tslice = See Timeslice if timeslicing is enabled, else
tslice = O.

* * *

No message is available and the call specifies a
non-zero timeout value.

a + ib + tslice

a = 678 + 64ram + 93rom

i = Number of tasks currently suspended because of
a timeout (SC_PEND with non-zero timeout,
SC_QPEND with non-zero timeout, SC_TDELA Y)
whose time remaining is less than the timeout value
specified in the call.

b = 54 + 3ram + 9rom

tslice = See Timeslice if timeslicing is enabled, else
tslice = 0.

* * *

Copyright 1983, Hunter & Ready, Inc. 21

SC_PEXTEND

Execution

Formula

Terms

Interrugts Off

Formula

Terms

22

Extend Memory Partition

a + ib + je + kd

a = 804 + 89ram + 95rom

i = Number of partitions that were created after the
partition specified in this call.

b = 46 + 3ram + 7rom

j = Number of blocks to be added to the target
partition.

c = 284 + 28ram + 35rom

k = Number of blocks already in the target
partition.

d = 36 + 4ram + 4rom

* * *

a+ ib

a= 316 + 32ram + 38rom

i = Number of blocks already in the target
partition.

b = 36 + 4ram + 4rom

* * *

Copyright 1983, Hunter & Ready, Inc.

Post Message To Mailbox SC_,POST

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

Formula

No task is suspended on the target mail box.

a + ib

a = 496 + 49ram + 61rom

i = Number of non-dormant tasks.

b = 52 + 4ram + 7rom

* * *

The highest-priority task suspended on the target
mailbox has timeout value of O.

a + ib + resched

a = 776 + 76ram + 98rom

i = Number
highest-priority
mailbox.

of TCBs preceding
task suspended on

b = 52 + 4ram + 7rom

resched = See Reschedule.

* * *

that
the

of the
target

The highest-priority task suspended on the target
mailbox has a non-zero timeout value.

a + ib + jc + resched

a = 942 + 91ram + 120rom

i = Number
highest-priority
mailbox.

of TCBs preceding
task suspended on

b = 52 + 4ram + 7rom

that
the

of the
target

j = Number of tasks currently suspended because of
a timeout (due to SC_PEND with non-zero timeout,
SC_QPEND with non-zero timeout, or SC_TDELAY)

Copyright 1983, Hunter &. Ready, Inc. 23

SC_FOST

Interru'2ts Off

Case 1

Formula

Terms

Case 2

Formula

Terms

24

Post Message To Mailbox

with less time remammg than highest-priority task
suspended on the target mailbox.

c = 48 + 2ram + 8rom

* * *

Execution of the system call does not result in
rescheduling.

a

a = 108 + 16ram + 9rom

* * *

Execution of the system call results in rescheduling.

a + tslice

a = 108 + 4ram + 20rom

tslice = See Timeslice if timeslicing is enabled, and
during execution of the call a nested UI_TIMER call
decrements VRTX's timeslice count to O; else tslice
= o.

* * *

Copyright 1983, Hunter &: Ready, Inc.

Put Character

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

InterruQts Off

Case 1

Formula

Terms

Case 2

Formula

Terms

SC_PUTC

There is room in the PUTC buffer and there is no
outstanding uncompleted UI_TXRDY system call.

a

a = 576 + 59ram + 69rom

* * *

The PUTC buff er is full.

a + ib + tslice + resched

a = 700 + 71ram + 89rom

i = Number of tasks suspended for an SC_PUTC (not
including the calling task).

b = 44 + 4ram + Grom

tslice = See Timeslice if timeslicing is enabled; else
tslice = O.
resched = See Reschedule.

* * *

There is room in the PUTC buffer and there is no
outstanding uncompleted UI_TXRDY system call.

a

a = 362 + 34ram + 45rom

* * *

The PUTC buffer is full.

a + ib + tslice

a = 300 + 23ram + 46rom

i = Number of tasks suspended for an SC_PUTC (not
including the calling task).

Copyright 1983, Hunter & Ready, Inc. 25

SCJUTC

26

Put Character

b = 44 + 4ram + Grom

tslice = See Timeslice if timeslicing is enabled; else
tslice = O

* * *

Copyright 1983, Hunter & Ready, Inc.

Accept Message From Queue sc __ QACCEPT

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 1

Formula

Terms

Case 2

Formula

Terms

No message is available.

a + ib

a = 542 + 55ram + 67rom

i = Number of queues that were created after the
target queue.

b = 46 + 3ram + 7rom

* * *

A message is available.

a+ ib

a = 688 + 62ram + 9lrom

i = Number of queues that were created after the
target queue.

b = 46 + 3ram + 7rom

* * *

No message is available.

a

a = 200 + 19ram + 25rom

* * *

A message is available.

a

a = 346 + 26ram + 49rom

* * *

Copyright 1983, Hunter & Ready, Inc. 27

SC_QCREATE

Execution

Formula

Terms

Interru~ts Off

Formula

Terms

28

Create Message Queue

a + ib

a = 808 + 82ram + 104rom

i = Number of queues that have been created (not
including the one about to be created).

b = 46 + 3ram + 7rom

* * *

a

a = 152 + 15ram + 19rom

* * *

Copyright 1983, Hunter & Ready, Inc.

Pend For Message From Queue SC_QPEND

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

Formula

Terms

A message is available.

a + ib

a = 674 + 62ram + 88rom

= Number of queues created after the target
queue.

b = 46 + 3ram + 7rom

* * *

No message is available and the call specifies a
timeout value of O.

a + ib + tslice + resched

a = 784 + 91ram + 92rom

i = Number of queues created after the target
queue.

b = 46 + 3ram + 7rom

tslice = See Timeslice if timeslicing is enabled, else
tslice = O.

resched = See Reschedule.

* * *

No message is available and the call specifies a
non-zero timeout value.

a + ib + jc + tslice + resched

a = 1014 + 112ram + 125rom

i = Number of queues created after the target
queue.

b = 46 + 3ram + 7rom

Copyright 1983, Hunter & Ready, Inc. 29

SC_QPEND

Interru~ts Off

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

Formula

Terms

30

Pend For Message From Queue

j = Number of tasks currently suspended because of
a timeout (due to SC_PEND with timeout,
SC_QPEND with timeout, or SC_TDELA Y) whose
time remaining is less than the timeout value
specified in the call.

c = 54 + 3ram + 9rom

tslice = See Timeslice if timeslicing is enabled; else
tslice = O.

resched = See Reschedule.

* * *

A message is available.

a

a = 332 + 26ram + 46rom

* * *

No message is available and the call specifies a
timeout value of o.

a + tslice

a = 476 + 44ram + 66rom

tsliee = See Timeslice if timeslicing is enabled, else
tslice = O.

* * *

No message is available and the call specifies a
non-zero timeout value.

a + ib + tslice

a = 734 + 69ram + 102rom

i = Number of tasks currently suspended because of
a timeout (due to SC_PEND with timeout,
SC_QPEND with timeout, or SC_TDELA Y) whose

Copyright 1983, Hunter & Ready, Inc.

Pend For Message From Queue SC_QPEND

time remammg is less than the timeout value
specified in the call.

b = 54 + 3ram + 9rom

tslice = See Timeslice if timeslicing is enabled; else
tslice = 0.

* * *

Copyright 1983, Hunter &. Ready, Inc. 31

SC_QPOST

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

Formula

32

Post Message To Queue

No task is suspended on this queue.

a + ib

a = 740 + 66ram + 97rom

i = Number of queues that were created after the
target queue.

b = 46 + 3ram + 7rom

* * *

The highest-priority task suspended on the target
queue has timeout value of O.

a + ib + je + resched

a = 1224 + 104ram + 169rom

i = Number of queues that were created after the
target queue.

b = 46 + 3ram + 7rom

j = Number of TCBs preceding that of the
highest-priority task suspended on the target queue.

e = 46 + 3ram + 7rom

resched = See Reschedule.

* * *

The highest-priority task suspended on the target
queue has a non-zero timeout value.

a + ib + jc + kd + resched

a = l.'390 + 119ram + 191rom

i = Number of queues that were created after the
target queue.

Copyright 1983, Hupter & Ready, Inc.

Post Message To Queue

Interrui;>ts Off

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

Formula

Terms

SC_QPOST

b = 46 + 3ram + 7rom

j = Number of TCBs preceding that of the
highest-priority task suspended on the target queue.

c = 46 + 3ram + 7rom

k = Number of tasks currently suspended because of
a timeout (due to SC_PEND with timeout,
SC_QPEND with timeout, or SC_TDELA Y) whose
time remammg is less than that of the
highest-priority task suspended on the target queue.

d = 48 + 2ram + 8rom

resched = See Reschedule.

* * *

No task is suspended on this queue.

a

a = 206 + 9ram + 34rom

* * *

The highest-priority task suspended on this queue is
behind the calling task on the TCB chain.

a

a = 108 + 16ram + 9rom

* * *

The highest-priority task suspended on this queue is
ahead of the calling task on the TCB chain.

a + tslice

a = 108 + 4ram + 20rom

tslice = See Timeslice if timeslicing is enabled, and
during execution of the call a nested Ul_TIMER call

Copyright 1983, Hunter &. Ready, Inc. 33

SC_QPOST

34

Post Message To Queue

decrements VRTX's timeslice count to O; else tslice
= o.

* * *

Copyright 1983, Hunter & Ready, Inc.

Release Memory Block

Execution

Formula

Terms

InterruDtS Off

Formula

Terms

SC_RBLOCK

a+ib+jc

a = 584 + 64ram + 69rom

i = Number of partitions that were created after the
target partition.

b = 46 + 3ram + 7rom

j = Number of allocated blocks in the target
partition.

c = 56 + 4ram + Brom

* * *

a

a = 246 + 28ram + 28rom

* * *

Copyright 1983, Hunter & Ready, Inc. 35

SC_8TIME Set Time

Execution

Formula a

Terms a = 408 + 45ram + 47rom

* * *
InterruQts Off

Formula a

Terms a= 198 + 20ram + 24rom

* * *

36 Copyright 1983, Hunter & Ready, Inc.

Task Create

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

SC_TCREATE

ID of task to be created is O.

a + ib + tcrehook + resched

a = 1238 + 155ram + 136rom

i = Number of non-dormant tasks with higher priority
than the task being created.

b = 50 + 3ram + 8rom

tcrehook = (106 + 17ram + 9rom + yourcreatetime) if
task create hook is specified in Configuration Table,
else tcrehook = O.

resched = See Reschedule if the created task is of
equal or greater priority than the calling task; else
resched = O.

* * *

ID of task to be created is not O.

a + ib + jc + tcrehook + resched

a = 1266 + 157ram + 140rom

i = Number of non-dormant tasks not including the
one being created.

b = 58 + 3ram + 9rom

j = Number of non-dormant tasks with higher priority
than the task being created.

c = 50 + 3ram + Brom

tcrehook = (106 + 17ram + 9rom + yourcreatetime) if
task create hook specified in Configuration Table;
else tcrehook = 0.

resched = See Reschedule if the created task is of
equal or greater priority than the calling task; else
resched = O.

* * *

Copyright 1983, Hunter &. Ready, Inc. 37

SC_TCREATE

Interrugts Off

Formula

Terms

38

Task Create

a + ib

a = 82 + 7ram + 22rom

i = Number of non-dormant tasks with higher priority
than the task being created.

b = 50 + 3ram + 8rom

* * *

Copyright 1983, Hunter & Ready, Inc.

Task Delay

Execution

Formula

Terms

InterruQts Off

Formula

Terms

SC_TDELAY

a + ib + tslice + resched

a = 744 + 75ram + 96rom

i = Number of tasks currently suspended because of
a timeout (due to SC_PEND with non-zero timeout,
SC_QPEND with non-zero timeout, or SC_TDELA Y)
whose time remaining is less than the time specified
in the call.

b = 54 + 3ram + 9rom

tslice = see tslice if timeslicing is enabled; else
tslice = O.

resched = See Reschedule.

* * *

a + tslice

a = 266 + 15ram + 44rom

tslice = see tslice if timeslicing is enabled; else
tslice = O.

* * *

Copyright 1983, Hunter & Ready, Inc. 39

SC_TDELETE

Executio·n

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

40

Task Delete

Format 3 (delete self).

a + ib + tdelhook + resched

a = 842 + 84ram + 107rom

i = Number of TCBs preceding that of the task to
be deleted.

b = 52 + 4ram + 7rom

tdelhook = (118 + 19ram + lOrom + yourdeltime) if
tdelhook is specified in Configuration Table; else
tdelhook = 0.

resched = See Reschedule.

• • •

Format 2 (delete task with given ID) and target ID
is not that of the caller and the target task is not
suspended due to an SC_GETC, SC_PUTC,
SC_WAITC, SC_PEND (with non-zero timeout),
SC_QPEND (with non-zero timeout) or an
SC_TDELAY call. (The target task could be
suspended due to an SC_TSUSPEND call.)

a + ib + tdelhook

a = 1080 + 105ram + 140rom

i = Number of TCBs preceding that of the target
task.

b = 5 O + 3ram + 8rom

tdelhook = (118 + 19ram + lOrom + yourdeltime) if
tdelhook is specified in Configuration Table; else
tdelhook = o.

• * *

Format 2 (delete task with given ID) and target task
is suspended due to an uncompleted SC_GETC or
SC_PUTC call.

Copyright 1983, Hunter & Ready, Inc.

Task Delete

Formula

Terms

Case 4

Formula

Terms

Case 5

Formula

Terms

SC_TDELETE

a + ib + jc + tdelhook

a = 1276 + 119ram + 167rom

i = Number of TCBs preceding that of the target
task.

b = 50 + 3ram + 8rom

j = Number of tasks suspended for an SC_GETC or
an SC_PUTC before the target task was suspended.

c = 48 + 2ram + 8rom

tdelhook = (118 + 19ram + lOrom + yourdeltime) if
tdelhook is specified in Configuration Table; else
tdelhook = o.

* * *

Format 2 (delete task with given ID) and target task
is suspended for an sc_w AITC call.

a + ib + tdelhook

a = 1208 + 113ram + 158rom

i = Number of TCBs preceding that of the target
task.

b = 50 + 3ram + 8rom

tdelhook = (118 + 19ram + lOrom + yourdeltime) if
tdelhook is specified in Configuration Table; else
tdelhook = o.

* * *

Format 2 (delete task with given ID) and target task
is suspended for an SC_PEND (with non-zero
timeout), SC_QPEND (with non-zero timeout) or an
SC_TDELAY call.

a + ib + jc + tdelhook

a = 1412 + 131ram + 187rom

Copyright 1983, Hunter & Ready, Inc. 41

SC_TDELETE

Case 6

Formula

Terms

42

Task Delete

i = Number of TCBs preceding that of the target
task.

b = 50 + 3ram + 8rom

j = Number of tasks currently suspended because of
a timeout (due to SC_PEND with non-zero timeout,
SC_QPEND with non-zero timeout, or SC_TDELA Y)
with less time remaining than the target task.

c = 48 + 2ram + 8rom

tdelhook = (118 + 19ram + lOrom + yourdeltime) if
tdelhook is specified in Configuration Table; else
tdelhook = 0.

* * *

Format 1 (delete all tasks in a priority group,
possibly including the calling task) and none of the
target tasks is suspended for an SC_GETC,
SC_PUTC, SC_W AITC, SC_PEND (with non-zero
timeout), SC_QPEND (with non-zero timeout) or an
SC_TDELA Y call.

a + ib + j(c+tdelhook) + resched

a = 786 + 73ram + 103rom

i = Number of non-dormant tasks of higher priority
than the target task group.

b = 58 + 3ram + 9rom

j = Number of tasks in the target priority group.

c = 276 + 24ram + 39rom

tdelhook = (118 + 19ram + lOrom + yourdeltime) if
tdelhook is specified in Configuration Table; else
tdelhook = O.

resched = See Reschedule if the calling task is in
the target priority group; else resched = O.

* * *

Copyright 1983, Hunter & Ready, Inc.

Task Delete

Case 7

Formula

Terms

SC_TDELETE

Format 1 (delete all tasks in a priority group,
possibly including the calling task) and one or more
of the target tasks is suspended for an SC_GETC,
SC_PUTC, SC_W AITC, SC_PEND (with non-zero
timeout), SC_QPEND (with non-zero timeout) or
SC_TDELAY call.

a + ib + j(c + tdelhook) + dl + d2 •• • + dn +
resched

a = 786 + 73ram + 103rom

i = Number of non-dormant tasks of higher priority
than the target task group.

b = 58 + 3ram + 9rom

j = Number of tasks in the target priority group.

c = 276 + 24ram + 39rom

tdelhook = (118 + 19ram + 1 Orom + yourdeltime) if
tdelhook is specified in Configuration Table; else
tdelhook = 0.

dn = Time to delete a task in the priority group:

If task is not suspended for one of above
reasons: dn = o.

If task is suspended for an SC_GETC or
SC_PUTC: dn = (158 + lOram + 23rom) + k(48
+ 2ram + Srom).

If task is suspended for an SC_W AITC: dn = 90
+ 4ram + 14rom.

If task is suspended for an SC_PEND (with
non-zero timeout), SC_QPEND (with non-zero
timeout), or SC_TDELAY: dn = (294 + 22ram +
43rom) + 1(48 + 2ram + Srom).

k = Number of tasks suspended for an
SC_GETC or SC_PUTC before the
target task was suspended.

I = Number of tasks currently suspended
because of a timeout (SC_PEND with
non-zero timeout, SC_QPEND with
non-zero timeout, SC_TDELA Y) with
less time remaining than the target

Copyright 1983, Hunter & Ready, Inc. 43

SC_TDELETE

Interrut>ts Off

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

Formula

Terms

44

Task Delete

task.

* * *

Format 3 (delete self} or Format 2 and ID is that of
calling task.

a

a = 194 + 8ram + 34rom

* * *

Format 2 (delete task with given ID} and target ID
is not that of the caller and target task is not
suspended due to an SC_GETC, SC_PUTC,
SC_W AITC, SC_PEND (with non-zero timeout},
SC_QPEND (with non-zero timeout} or an
SC_TDELA Y call. (The target task could be
suspended due to an SC_TSUSPEND call.)

a

a = 194 + 20ram + 23rom

* * *

Format 2 (delete task with given ID) and target task
is suspended due to an uncompleted SC_GETC call.

a + ib

a = 280 + 22ram + 41rom

i = Number of tasks suspended for an SC_GETC
before the target task was suspended.

b = 48 + 2ram + Srom

* * *

Copyright 1983, Hunter & Ready, Inc.

Task Delete

Case 4

Formula

Terms

Case 5

Formula

Terms

Case 6

Formula

Terms

Case 7

SC_TDELETE

Format 2 (delete task with given ID) and target task
is suspended for an SC_PUTC call.

a + ib

a = 338 + 25ram + 49rom

i = Number of tasks suspended for an SC_PUTC
before the target task was suspended.

b = 48 + 2ram + 8rom

* * *

Format 2 (delete task with given ID) and target task
is suspended for an SC_W AITC call.

a

a = 270 + 19ram + 40rom

* * *

Format 2 (delete task with given ID) and target task
is suspended for an SC_PEND (with non-zero
timeout), SC_QPEND (with non-zero timeout) or an
SC_TDELA Y call.

a + ib

a = 474 + 37ram + 69rom

i = Number of tasks currently suspended because of
a timeout (due to SC_PEND with non-zero timeout,
SC_QPEND with non-zero timeout, or SC_TDELA Y)
with less time remaining than the target task.

b = 48 + 2ram + 8rom

* * *

Format 1 (delete all tasks in a priority group);
calling task is 11.Qi in the target priority group.

Copyright 1983, Hunter & Ready, Inc. 45

SC_TDELETE

Formula

Terms

Case 8

Formula

Terms

46

Task Delete

a

a = 108 + 16ram + 9rom

* * *

Format 1 (delete all tasks in a priority group);
calling task ~ in the target priority group.

a + tslice

a = 108 + 4ram + 20rom

tsliee = See Timeslice if timeslicing is enabled, and
during execution of the call a nested UI_TIMER call
decrements VRTX's timeslice count to O; else tsliee
= o.

* * *

Copyright 1983, Hunter & Ready, Inc.

Task Inquiry

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

Ioterru~ts Off

Formula

Terms

SC_TINQUffiY

Format 3 (calling task).

a + ib

a = 658 + 69ram + 81rom

i = Number of TCBs preceding that of the calling
task.

b = 52 + 4ram + 7rom

* * *

Format 2 (task specified by ID).

a + ib

a = 806 + 86ram + 99rom

i = Number of TCBs preceding that of the target
task.

b = 50 + 3ram + 8rom

* * *

a

a = 108 + 16ram + 9rom

* * *

Copyright 1983, Hunter & Ready, Inc. 47

SC_TPRIORITY

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

InterruDtS Off

Formula

Terms

48

Task Priority Change

Format 3 (change priority of calling task).

a + ib + jc + resched

a = 668 + 73ram + 80rom

i = Number of TCBs preceding that of the calling
task.

b = 5 2 + 4ram + 7rom

j = Number of tasks with higher priority than the
new priority of the calling task.

c = 68 + 4ram + lOrom

resched = See Reschedule.

* * *

Format 2 (change priority of a task specified by ID
number).

a + ib + jc + resched

a = 834 + 91ram + lOOrom

i = Number of TCBs preceding that of the target
task.

b = 50 + 3ram + Srom

j = Number of tasks with higher priority than the
new priority of the target task.

c = 68 + 4ram + lOrom

resched = See Reschedule.

* * *

a + ib

a = 300 + 19ram + 47rom

Copyright 1983, Hunter &: Ready, Inc.

Task Priority Change SC_TPRIORITY

i = Number of tasks with higher priority than the
new priority of the calling task.

b = 68 + 4ram + lOrom

* * *

Copyright 1983, Hunter & Ready, Inc. 49

SC_TRESUMB

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

IoterruQts Off

Case 1

Formula

Terms

50

Task Resume

Format 2 (resume task with a specified ID).

a + ib + resched

a = 718 + 78ram + 86rom

i = Number of TCBs preceding that of the target
task.

b = 50 + 3ram + 8rom

resched = See Reschedule.

* * *

Format 1 (resume all tasks of a specified priority).

a + ib + jc + resched

a = 604 + 59ram + 77rom

i = Number of tasks with· higher priority than the
target task group.

b = 58 + 3ram + 9rom

j = Number of tasks in the target priority group.

c = 74 + Sram + llrom

* * *

Execution of the system call does not result in
rescheduling.

a

a = 108 + 16ram + 9rom

* * •

Copyright 1983, Hunter & Ready, Inc.

Task Resume

Case 2

Formula

Terms

SC_TRESUME

Execution of the system call results in rescheduling.

a + tslice

a = 108 + 4ram + 20rom

tslice = See Timeslice if timeslicing is enabled, and
during execution of the call a nested UI_TIMER call
decrements VRTX1s timeslice count to O; else tslice
= o.

* * *

Copyright 1983, Hunter & Ready, Inc. 51

SC_TSLICE Enable/Disable Timesliced Scheduling

Execution

Formula a

Terms a = 434 + 45ram + 52rom

* * *
Interrur;>ts Off

Formula a

Terms a = 108 + 16ram + 9rom

* * *

52 Copyright 1983, Hunter &: Ready, Inc.

Task Suspend

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

Formula

Terms

SC_TSUSPEND

Format 3 (suspend calling task).

a + ib + tsl.ice + resched

a = 808 + 81ram + 102rom

i = Number of TCBs preceding that of the calling
task.

b = 52 + 4ram + 7rom

tsl.iee = See Timesliee if timeslicing is enabled; else
tslice = O.

rescbed = See Reschedule.

* * *

Format 2 (suspend task with given ID).

a + ib + tsl.ice + resched

a = 1028 + 103ram + 130rom

i = Number of TCBs preceding that of the target
task.

b = 50 + 3ram + 8rom

tsliee = See Timesliee if timeslicing is enabled; else
tsliee = o.

resched = See Reschedule if target task is calling
task; else resehed = O.

* * *

Format 1 (suspend all tasks in a priority group).

a + ib + jc + resehed

a = 726 + 67ram + 96rom

i = Number of tasks with higher priority than the
target priority group.

Copyright 1983, Hunter & Ready, Inc. 53

SC_TSUSPEND

InterruQts Off

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

Formula

Terms

54

Task Suspend

b = 58 + 3ram + 9rom

j = Number of tasks in the target priority group
(including the caller, if applicable).

c = 74 + 5ram + llrom

resched = See Reschedule if calling task is in target
priority group, else resched = O.

* * *

Format 3 (suspend calling task).

a + tslice

a = 360 + 23ram + 58rom

tslice = See Timeslice if timeslicing is enabled; else
tslice = O.

* * *

Format 2 (suspend task with given ID).

a + tslice

a = 464 + 41ram + 63rom

tslice = See Timeslice if timeslicing is enabled; else
tslice = O.

* * *

Format 1 (suspend all tasks in a priority group).

a + tslice

a = 396 + 26ram + 63rom

tslice = See Timeslice if timeslicing is enabled; else
tslice = O.

* * *

Copyright 1983, Hunter & Ready, Inc.

Enable Task Rescheduling SC_UNLOCK

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

Interru~ts Off

Formula

Terms

No timeslice has expired in the interval between
execution of the preceding SC_LOCK call and this
SC_UNLOCK call. (A timeslice expires when
timeslicing is enabled and a UI_TIMER call zeros
VRTX's timeslice counter.)

a + resched

a = 404 + 46ram + 46rom

resched = See Reschedule.

* * *

Timeslicing is enabled and a timeslice has expired in
the interval between execution of the preceding
SC_LOCK call and this SC_UNLOCK call.

a + ib + jc + resched

a = 662 + 70ram + 79rom

i = Number of non-dormant tasks of higher priority
than the task whose timeslice has expired.

b = 36 + 4ram + 4rom

j = Number of non-dormant tasks of same priority as
the task whose timeslice has expired (not including
that task).

c = 56 + 3ram + 4rom

resched = See Reschedule.

* * *

a + tslice

a = 108 + 4ram + 20rom

tslice = See Times.lice if timeslicing is enabled, and
during execution of the call a nested UI TIM ER call
decrements VRTX's timeslice count to O; else tslice
= o.

Copyright 1983, Hunter & Ready, Inc. 55

SC_UNLOCK Enable Task Rescheduling

* * *

56 Copyright 1983, Hunter & Ready, Inc.

Wait For Special Character SC_WAITC

Execution

Formula

Terms

Interrur;?ts Off

Formula

Terms

a + tslice + resched

a = 572 + 6lram + 70rom

tslice = See Timeslice if timeslicing is enabled; else
tslice = O;

resched = See Reschedule.

* * *

a + tslice

a = 318 + 20ram + 52rom

tslice = See Timeslice if timeslicing is enabled; else
tslice = O

* * *

Copyright 1983, Hunter & Ready, Inc. 57

UI_EXIT

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

InterruDtS Off

Case 1

58

Exit From Interrupt

No timeslice expired during execution of this
interrupt handler (including any nested handlers).

a + resched

a = 486 + 64ram + 48rom

resched = See Reschedule if this interrupt results in
a task switch (e.g., the handler posts a message to a
mailbox where a higher-priority task is pending); else
resched = o.

* * *

Timeslicing is enabled and a timeslice has expired
during the execution of this interrupt handler. (The
expiration is caused by execution of a UI_TIMER call
that zeros VRTX's internal timeslice counter. The
UI_TIMER call may have been issued by this
interrupt handler, in which case this is the timer
handler, or by a different handler invoked by a
nested interrupt.)

a + ib + jc + resched

a = 744 + 88ram + 81rom

i = Number of non-dormant tasks of higher priority
than task whose timeslice has expired.

b = 36 + 4ram + 4rom

j = Number of non-dormant tasks of same priority as
the task whose timeslice has expired (not including
that task).

c = 56 + 3ram + 9rom

resched = See Reschedule.

* * *

Execution of the system call does not result in
rescheduling.

Copyright 1983, Hunter & Ready, Inc.

Exit From Interrupt

Formula

Terms

Case 2

Formula

Terms

ULEXIT

a

a = 108 + 16ram + 9rom

* * *

Execution of the system call results in rescheduling.

a + tslice

a = 108 + 4ram + 20rom

tslice = See Timeslice if timeslicing is enabled, and
during execution of the call a nested UI_TIMER call
decrements VRTX's timeslice count to O; else tslice
= o.

* * *

Copyright 1983, Hunter & Ready, Inc. 59

Ul_POST

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

Formula

Terms

60

Post Message From Interrupt

No task is suspended on the target mailbox.

a + ib

a = 442 + 47ram + 53rom

i = Number of non-dormant tasks.

b = 52 + 4ram + 7rom

* * *

Highest-priority task suspended on the target mailbox
has a timeout value of O.

a + ib

a = 722 + 74ram + 90rom

i = Number
highest-priority
mailbox.

of TCBs preceding
task suspended on

b = 52 + 4ram + 7rom

* * *

that
the

of the
target

Highest-priority task suspended on the target mailbox
has a non-zero timeout value.

a + ib + jc

a = 888 + 89ram + 112rom

i = Number of TCBs preceding the highest-priority
task suspended on the target mailbox.

b = 52 + 4ram + 7rom

j = Number of tasks currently suspended because of
a timeout (due to SC_PEND with non-zero timeout,
SC_QPEND with non-zero timeout, or SC_TDELAY)
with less time remaining than the highest-priority
task suspended on the target mailbox.

Copyright 1983, Hunter & Ready, Inc.

Post Message From Interrupt UI_.POST

c = 48 + 2ram + 8rom

• • *
Interrur;its Off

Formula a

Terms a = 60 + 3ram + 9rom

* * *

Copyright 1983, Hunter & Ready, Inc. 61

Ul_QPOST

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

Formula

Terms

62

Post Message To Queue From Interrupt

No task is suspended on the target queue.

a + ib

a = 686 + 64ram + 89rom

i = Number of queues that were created after the
target queue.

b = 46 + 3ram + 7rom

* * *

The highest-priority task suspended on the target
queue has a timeout value of O.

a+ib+jc

a = 1170 + 102ram + 161rom

i = Number of queues that were created after the
target queue.

b = 46 + 3ram + 7rom

j = Number of TCBs preceding that of the
highest-priority task suspended on the target queue.

c = 46 + 3ram + 7rom

* * *

The highest-priority task suspended on the target
queue has a non-zero timeout value.

a + ib + jc + kd

a = 1336 + 117ram + 183rom

i = Number of queues that were created after the
target queue.

b = 46 + 3ram + 7rom

Copyright 1983, Hunter & Ready, Inc.

Post Message To Queue From Interrupt ULQPOST

Interrur;>ts Off

Case 1

Formula

Terms

Case 2

Formula

Terms

j = Number of TCBs preceding that of the
highest-priority task suspended on the target queue.

c = 46 + 3ram + 7rom

k = Number of tasks currently suspended because of
a timeout (SC_PEND with non-zero timeout,
SC_QPEND with non-zero timeout, or SC_TDELAY)
with less time remaining than the highest-priority
task suspended on the target queue.

d = 48 + 2ram + 8rom

* * *

No task is suspended on the target queue.

a

a = 206 + 9ram + 34rom

* * *

One or more tasks are suspended on the target
queue.

a

a = 70 + 3ram + 12rom

* * *

Copyright 1983, Hunter & Ready, Inc. 63

UI_RXCHR

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

Case 3

Formula

Terms

Interru~ts Off

Formula

Terms

64

Post Received Character From Interrupt

The GETC buff er is not full and no task is
suspended for an SC_GETC.

a

a = 576 + 61ram + 70rom

* * *

The GETC buffer is empty and one or more tasks
are suspended for SC_GETC's.

a

a = 706 + 76ram + 85rom

* * *

The received character is the one for which a task
suspended by an SC_W AITC is waiting.

a

a = 538 + 59ram + 65rom

* * *

a

a = 0

* * *

Copyright 1983, Hunter & Ready, Inc.

Post Time Increment From Interrupt Ul_TIMER

Execution

Formula

Terms

Interru1,1ts Off

Formula

Terms

8 + ib

a = 644 + 64ram + 82rom

i = Number of tasks currently suspended because of
a timeout (due to SC_PEND with timeout,
SC_QPEND with timeout, or SC_TDELA Y) with only
one tick remaining.

b = 284 + 22ram + 42rom

* * *

a

a = 56 + 2ram + lOrom

* * *

Copyright 1983, Hunter & Ready, Inc. 65

UI_TXRDY

Execution

Case 1

Formula

Terms

Case 2

Formula

Terms

InterruDts Off

Formula

Terms

66

..
Post Transmit Ready From Interrupt

The PUTC buffer is full and one or more tasks are
suspended for SC_PUTCs.

a

a = 690 + 78ram + 82rom

* * *

The PUTC buffer has a character available and no
tasks are suspended fo~ SC_PUTCs.

a

a = 526 + 61ram + 61rom

* * *

a

a = 0

* * *

Copyright 1983, Hunter &: Ready, Inc.

	vrtxtim0001_a
	vrtxtim0002_a
	vrtxtim0003_a
	vrtxtim0004_a
	vrtxtim0005_a
	vrtxtim0006_a
	vrtxtim0007_a
	vrtxtim0008_a
	vrtxtim0009_a
	vrtxtim0010_a
	vrtxtim0011_a
	vrtxtim0012_a
	vrtxtim0013_a
	vrtxtim0014_a
	vrtxtim0015_a
	vrtxtim0016_a
	vrtxtim0017_a
	vrtxtim0018_a
	vrtxtim0019_a
	vrtxtim0020_a
	vrtxtim0021_a
	vrtxtim0022_a
	vrtxtim0023_a
	vrtxtim0024_a
	vrtxtim0025_a
	vrtxtim0026_a
	vrtxtim0027_a
	vrtxtim0028_a
	vrtxtim0029_a
	vrtxtim0030_a
	vrtxtim0031_a
	vrtxtim0032_a
	vrtxtim0033_a
	vrtxtim0034_a
	vrtxtim0035_a
	vrtxtim0036_a
	vrtxtim0037_a
	vrtxtim0038_a
	vrtxtim0039_a
	vrtxtim0040_a
	vrtxtim0041_a
	vrtxtim0042_a
	vrtxtim0043_a
	vrtxtim0044_a
	vrtxtim0045_a
	vrtxtim0046_a
	vrtxtim0047_a
	vrtxtim0048_a
	vrtxtim0049_a
	vrtxtim0050_a
	vrtxtim0051_a
	vrtxtim0052_a
	vrtxtim0053_a
	vrtxtim0054_a
	vrtxtim0055_a
	vrtxtim0056_a
	vrtxtim0057_a
	vrtxtim0058_a
	vrtxtim0059_a
	vrtxtim0060_a
	vrtxtim0061_a
	vrtxtim0062_a
	vrtxtim0063_a
	vrtxtim0064_a
	vrtxtim0065_a
	vrtxtim0066_a
	vrtxtim0067_a
	vrtxtim0068_a
	vrtxtim0069_a

