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INTRODUCTORY REMARK

We found it convenient to make some minor- changes in the positioning of
the parts of all orders of Table II, and in the specific effect of two among them.

First: We determine that in each order of Table II the memory position
number x occupies not the 12 left-hand digits (cf. the second remark of 7.2, cf. also
8.2), but the 12 right-hand digits. I.e. the digits 9 to 20 or 29 to 40 (from the
left) for a left-hand or a right-hand order, respectively.

Second: We change the orders 18, 19 (the partial substitution orders xSp,
xSp’), so that they substitute these new positions, and these crosswise. l.e. 18
replaces the 12 right-hand digits of the left-hand order located at x (i.e. the digits
9 to 20 [from the left]) by the 12 digits 29 to 40 (from the left) in the accumulator.
Similarly 19 replaces the 12 right-hand digits of the right-hand order located at x
(i.e. the digits 29 to 40 [from the left]) by the 12 digits 9 to 20 (from the left)
in the accumlator.

For the standard farm of a position mark, x, = 27*®x +27°%, as intro-
duced in 8.2, these changes compensate each other and have no effect. Therefore all
the uses that we made so far of these orders are unaffected.

On the other hand the new arrangement permits certain arithmetical uses
of these orders, i.e. uses when the position x is not occupied by orders at all, but
when it is used as (transient) storage for numbers. In this case the new arrangement
provides very convenient 20-digit shifts, as well as certain other manipulations.
These things will appear in more detail in the discussion immediately preceding the
static coding in 10.7.






10.0 CODING OF SOME SIMPLE ANALYTICAL PROBLEMS

10.1 We will code in this chapter two problems which are typical
constituents of analytical problems, and in which the appraximation character of
numerical procedures is particularly emphasized. This is the process of numerical
integration and the process of interpolation, both for a tabulated one-variable
function. Both problems allow a considerable number of variants, and we will, of
course, make no attempt to exhaust these. We will nevertheless vary the formulations
somevwhat, and discuss an actual total of six specific problems.

10.2  We consider first the integration problem.

We assume that an integral [ f(z)dz is wanted, where the function f(z)
is defined in the z-interval 0, 1, and assumes values within the range of our machine,
i.e., size < 1. Actually f(z) will be supposed to be given at N+l equidistant places
in the interval 0, 1, i.e., the values f(h/N), h =0, 1,...,N, are tabulated. We wish
to evaluate the integral by numerical integration formulae with error terms of the
order of those in Simpson’s formula, i.e., 0(1/N%).

This is a method to derive such formulae. Consider the expression

htzu
N
= . h 1 (ghtuy | 9¢h h-u)) z8 1 u
(1) Q(n) £(z)dz [2f(N)E.+ 3 (£( N ) 2f(N) + £( X ) E ]N
h=£u
N
There will be h =0, 1,...,N, 0 £ 1, 0 cu gl

A

Simple calculations, which we need not give here explicitly, give

9(0) = @'(0) =¢"(0) = 0 (indeed ¢'''(0) = 0 and for £=1 even ¢""(0) = 0), implying
@) o = fodu, SPdu [z du,0'G,),

and further

(3)  @'1i(u) = [gnghtaw) o gnchoguy) B2 [gnchty) 4ogn(houy) B2
N N  Ne N N ~ Na

L rerirchtuy _ errrgg E3u
3 G - f (h-w] =52
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(3) transforms into

3
1 =[nh_+£g _ ¢nchtu rirchtuy (1) v &
@' () f(N) f(N)+f (N) 5N1N3+

n(h= - gn(h=uy | oprvrchouy (uz) B g:-
W O N I S >
Crprrrchtay | oprigheuyy (4L p) Eu
[y g g B
Putting

ME"™ = Max lfun(z)| ,
z

we see that (4) yields

(1 202
(5) lor il s agm - 20 EWC
and by (2)
3
6 < ME™ 1 .9 F AT
(6) lotw)| < =T (3-20) =4

Putting u = 1, and recalling (1), we find:
ht§
N
hed £(z)dz
N

(7)

Putting £ = 1 and summing over h = ¥+1, ¥+3,..., k-1 (¥, k =0, 1,..., N,

k-£>0 and even) we get Simpson’s formula:

h 1 (ghtly _ 9pchy 4, £(h=l)) £2711
[2f(N)&+3(f(N) 2f(N)+ (N))E]Nw,

lof s ML= (7-62) &° L

NS

rh+l h h-1.7 1 -
£(z)dz [f\—N—) + 4f(ﬁ)+ f(—N—:] N + 9,

h=1+l,l+§, . oosk-1

ZPe 2

f(§> + 4f(l§l) + 2£(Z-I—;'2-) + 4f(l;—3) Foa+

(8) =

. +o
aek=3) 4 95(k=2 k-l 4 ok
+£(N)+ f(N)+4f(N)+f(N)

L
N 2

< Mf""‘ l..(_:é-./ < Mfllll _1

lo,| ¢ 55~ o € 180 N*
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Putting & =% and swmming over h = X+, J42,.. . k-1 (¥, k =0, 1,... N,
k-2>0 and of any parity) we get the related formula:
1.{‘_...1./2 Pl
N {
{ £(a)a = 3 1ed) & 92p(h) 4+ ghly] L 4 g -
2% Cj N h=rHL, 492, ... ko1 [ P e %
N
= [g(dtL L2 k-1y7 1
(9) [f(N)+f(N)+..,+f(N)]N+
+ [ - gy _oplkely 1)) Lo
[N f(N) (N N]24N 0
gcpa é Mfllll !E-Z_l é Mfl”l -.1- .
2

180 NS 180 N

10.3  We evaluate first by Simpson’s formmla, i.e., by (8), and in
order to simplify matters we put £ = 0, k =N, Hence N must be even in this case

PROBLEM 10.

The function f(z), z in 0, 1, is given to the extent that the values f(h/N),
h =0, 1,..., N, are stored at N + 1 consecutive memory locations p, ptl,..., pM. It is
desired to evaluate the integral fo f(z)dz by means of the formula (8). ----

We could use either form of (8)’s right side for this evaluation. Using
the first form leads to an induction over the odd integers h = 1, 3,...,N-1, but requires
at each step the preliminary calculation of the expression
[(£(h+1)/M) + 4F(h/N) + £ ((h-1)/N)1/3N. Using the second form leads to an induction
over the integers h = 0, 1,..., N, and requires at each step the simpler expression
(2/3N) [£(h/N) ] multiplied by a factor & © % or 1 or 2. This factor is best handled by
variable remote connections. A detailed comparison shows that the first method is about
20% more efficient, both regarding the space required by the coded sequence and the time
consumed by the actual calculation. We will nevertheless code this Problem according to
the second method, because this offers a good opportunity to exemplify the use of vari-
able remote connections.

Thus the expression to be computed is

h=0 h 3
f= % for h =0, N
8 %= 11 for h #0, N and [h even
l= 2f h odd
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This amounts to the inductive definitiam

J1=0

B “Ihat G & f®) forh =0, LN,

J =JN

Let A be the storage area corresponding to the interval of locations
from p to p + N. In this way its positions will be A.0, 1,...,N, where A.h corres-
ponds to p +.h, and stores f(h/N). These positions, however, are supposed to be
parts of some other routine, already in the machine, and therefore they need not
appear when we pass (at the end of the whole procedure) to the final enumeration
of the coded sequence. (Cf. the analogous situation in Problem 3.)

Let B be the storage area which holds the given data (the constants)
of the problem p, N. (It will actually be convenient to store p, N as Po»
(p#N-1) ). Storage will also have to be provided for various other quantities
(0, lo;oit is convenient to store 2/3N; the exit-locations of the variable remote
connections), these too will be accomodated in B. Next, the induction index h
must be stored. h is really relevant in the combination p + h, which is a position
mark (for A.h, storing f(h/N)), so we will store (p*h)o instead. (Cf. the analo-
gous situation in Problem 3.) This will be stored at C. Finally the quantities
which are processed during each inductive step will be stored in the storage area

D.

These things being understood, we can now draw the flov diagram, as
shown in Figure 10.1. It will prove to be convenient to store (2/3N) f(h/N)
after II as well as Eh (2/3N) f£(h/N) after III and IV (but not after V) not at D.2,
but in the accumulator, and to transfer it to D.2 in VI only (but also in V). The
disposal of @,, @y, @3, shown in IX, VIII, VI will be delayed until X, and they
will be held over in the accumulator. Finally, the transfer of (A.h+l)  into C is
better delayed from X until after the Cc order in XI, whereby it takes place only
on the - branch issuing from XI, but this is the only branch on which it is needed.



H #*
1
1 |oytec| , i 5 ! x=, if h=0,N
@_’— O toD1 >—1 O+ h —pbp—pd =ty if h¥O,N and even
o« =, K =Kz if h odd
e
I .
& F(L) ¢ D.2
A 3a 5
Y
Il A
#
h=N :
N ©
— h—r h+1
gA+ -Ag
I
(h-N), |XX 5
] 6§ Arf(£) to D2 —4——@
o =0(3—4——< ~
C (A.h¥1 2 A s
e NEFR coa @
: 8y s "I 5
l-..--g-f -a—-f("ﬁ') to D.2 < @
X r Y7
U hes + En g $(5) toD.1] 8 oz 62 F (B mrreoy.
(A.h+1), to C | A Ch ]
-yYr 7Y+
A
pra1i g
8
8 — < A=y
8 X
> l;al

Fleuas 10.1




The static coding of the boxes I-XI follows:

= o
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AL W B W NN

(to II,1)

]
e
W N =

(to VI, 1)

(to VI,1)

(to VIL,1)
VI,1
B.5
V1,2

(to X, 1)

Vii,1
B.6
ViI,2
3

(to VIII,1)
B.7

VIIL,1
(to X,1)

X1
(to X, 1)

-

o

FROowr owo
w_ N
o

=
i
o

’

- ()
[
w

Lo TN ]
F

L L
S

R

D.2

D.2

(d-s)o
B.5

(pN-1)
B.6
IX,1

(d.g)o
B.7

B.3

OO0 o»®
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Ac
11,5

Ac
11,3

Ac

Ac

Ac
D.2

D.2

Ac

Ac

Ac

Ac

Ac

oo

=
g gy

*h

g~

(ag)o

(p‘*‘h)o

(h-(N-1))_

(ag)o

((11)0
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X1 i1,5 Sp 11,5 @ of
2 D.1 Ac Jo1
3 D.2 h Ac A eh 2 f(h)
4 D.1 S D.1 A
(to XI,1)
XI,1 C Ac (p+h)0
2 B.6 h- Ac (h-(N-1)) |
B.8 1
XI,3 B.8 h- Ac (h-N)
4 e Cc
5 C Ac (p+h) |
6 B.8 h Ac (pth +1)
7 C S C (p+h+1)0
(to I1,1)

Note, that box IV required no coding, hence its immediate successor (VI,1)
mustAfollow directly upon its immediate predecessor. However, this box has actually no
immediate predecessor; IV,1 corresponds to p,. Hence it must be replaced there by VI, 1.

The ordering of the boxes is I, II; ITI, VI, X, XI; V, VII, VIII; IX (IV
omitted, cf. above) and X, X, II must also be the immediate successors of VIII, IX, XI,
respectively. This necessitates the extra orders

VIII, 2 X, 1 C
IX,2 X,1 C
XL, 8 11,1 C

04, Og, O3, correspond to III,1, VI,1 (instead of IV,1), V,1. In the
final enumeration the three o's must obtain numbers of the same parity. This may
necessitate the insertion of dummy (ineffective, irrelevant) orders in appropriate
places, which we will mark *.

1-8, C, D.1-2 their actual values, pair the 35
VI 1-2, VII,1-3, VIII,1-2, IX,1-2, X,1-4, XI,1-8
8 the

eir actual values These are expressed in

We must now assign B
orders I,1-6, II,1-5, III,1, V,1- 2,
to 18 words, and then assign I,1-XI,
this table:

1,1-6 0-2 X,1-4 T-9 VIII, 1.2 16 - 16’
11,1-5 3-5 XI,1-8 9- 13 1X,1-2 17 - 17
II1,1,* 5'- 6 V,1.2 13’- 14 B.1-8 18 - 25

VI, 1-2 6'- 1 VII,1-3 14°- 15 C 26
D.12 27 - 28
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Now we obtain this coded sequence:

0 18 , 27s 10 23 h-, 25 h- 20 5,

1 19 , 268 11 e Cc, 26 21 2/3N

2 20 , 58p 12 25h, 268 22 13,

3 26 , 45Sp 13 3¢C, L 23 (pN-1) |
4 - R, 21x 14 28S, 26 24 6,

5 - C', R 15 23 h-, 17 Cc 25 1,

6 -- , 288 16 24 , 1C' 26 --

7 22 , 5Sp 17 20 , 1C' 27 --

8 27 , 28h 18 0 28 --

9 2718, 26 19 P,

The’ durations may be estimated as follows:

I: 225 ¢, IT: 270 p, TIII: 30 p, V: 55w, VI: 75 p: VII: 125 p, VIII: 75 u,
IX: 75 4, X: 150 p, XI: 300 p.
Total: I + II X (N+1) + IIT x 2 + VI x (%‘+1) + (V + vID xl—;‘-+
+ VIII x (21 S1) + IX 4 (X + XT) x(N+1) =
(225 + 270 (N+1) + 60 + 75 (gu) + 180 L;- +175 (g -1) + 75 + 450 (N+1)) p =
(885 N + 1080) p=2 (L9 N + 1.1) m. '

n

10.4 We evaluate next by the formula (9), and this time we keep X, k
general. We had 4, k = 0, 1,...,N and k-¥>0. This excludes k = 0 as well as X = N.
It is somewhat more convenient to write X-1 for X¥. Then X, k = X,...,N and k-420.
Thus (9) becomes

k-%
N
£(2)dz

X ¥+l k-1y11 4
[f(N)+f(N)+...+f(N)]N

X% J
N E-1y | ey - opkely 4 k)] L
(10) + [£( 5 ) f(N) f N ) f(N)] st 0
'QQI < Mf! k:l E P L |
180 Ns 180 N4

Finally the requirement k-Z20 may be dropped, since for k-4< 0

k-% P
N N
% | T kh

4
2
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Thus N and X, k = 1,...,N are subject to no further restrictions.
We state accordingly:

PROBLEM 11.

Same as Problem 10, with this change. It is desired to evaluate the integral
k-%

g}_é ff(Z)dZ (4, k = 1,...,N) by means of the formula (10) (for k 2 4, for k <&
N
interchange &, k). ----

The expression to be computed is

k22X
J=1 3 for {kzl

where J' is defined as follows: Put

,

k X k 2
k':{z , l':{k for{kzl ,
then
Jo= g Lopedely Lopcd) Lopdlel) v gk
244\1[ N (N) N (N)]'
and
kL1
Jr= L5 g
N h=1"' (N)

The last equation amounts to the inductive definition

Jy.1= 0,

1 h
J + = f(@) ,
h-1 N N

Ih
J" = Jkl_l

The storage areas A, B, C, D and the induction index h will be treated the
same way as in Problem 10, but h runs now over &', X'+1,..., k'-1.

We can now draw the flow diagram as shown in Figure 10.2. It will be found
convenient to store the contents of E.1-2, (p+k') o’ (p#X') , in the same place where
(p“’k)é, (pt¥)  are originally stored, which proves to be B.1-2. This simplifies II
and reduces the memory requirements, but since we wish to have B.1-2 at the end of
the routine in the same state in which they were at the beginning, it requires restor-
ing B.1-2 in IX. VIII, on the other hand, turns out to be entirely unnecessary.
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E.1 A.k%), c A. L)
2 nt), D O
I i :
(A.K')= (A.K), to E1 : :
AL)= (ALt 2N 5 ) |
Sl : ’JI 31 ¥
2 (A.é)o :: g L ﬁ"fh
’ —
S * * vy
. = ' c . ()
aga; h+1—>h > p --157,.,
pits X
7 77
o G| _(h /) D Jv%J,.,
D As 1 % e
h=k" |—>
e *
(th*l’o fOC
D J
bl |
[ W , {7=s%pkp !
2 1 rekh optill, 8
7o shalfG) -5 )} Aalp -l L@
> J=-Jt D g
X

A.h

£(3)

Ficure 10.2




The static coding of the boxes I-IX follows:

B.1
2
L1
2

3
(to IIL,1)
B.
11,

B = W

© (to 1V,1)

ol
[
(=]

-
o

=W

-

O, O ok WN

(o]
Lo}

(to V,1)

(to VI,1)

B.7

(p+k)o

(p*‘l)o

B.1

B.2 h-
11,1 Ce
(ag_)o

B.3

VII,23 Sp
B.1

s.1 - S
B.2

B.1 S
s.1

B.2 S
(a2)o

B.4

VII,23 Sp
B.2

C S
0

B.5

D S
C

B.1 h-
vIii, 1 Ce
Cc

vlI,3 Sp
- R
p*h R ]

- 00 O w2
[,
(=

o

Ac
Ac

VII, 23

s.1
Ac
B.1
Ac
B.2

Ac
VII,23

Ac

Ac

Ac
Ac

Ac
V1,3

Ac
Ac

Ac



B.8
VII,9

10
11
12

13
14

15
16

17

18
19

20

21

22
23

B.2

VIL,6
B.7

VIL, 5
ptt'-1

pt’
s.1

B.1

VIL, 17
B.7

VIL, 16

ptk'-1

ptk’
s.1
s.1

B.8

== B /) N - ol = of

O
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Ac

Ac

VII,6
Ac

VIL,5

Ac

Ac

Ac

Ac

Ac

VII, 17
Ac

VII, 16

Ac

Ac

Ac

Ac

(p+h+1)o
(p+h+1)0

’(p*l')o

p' h-
r

(p*Z -1)0

pit'-1

£(£=1)
N

g(=1) @l
f(d=ly _ gk
N N

=1y _opdl)
N N

Lopdlely D op
SO (£( N ) f(N))

ny 1oedl-1 - Zl
J +24~N (£( N) f(N))

J +?4N(f(N) f(N))

(p+k')o'
ptk’ h
(p+k'-1)o
p+k'-1 -

_p(kl=1
N

f(kl) - pckl=ly

£y o gkl

£y - gzl
N N

Lo(pckly | opcklel
N (f(N) £( N )

1= qn 1 Y'-1y _ '
J'=J +2 (£( N ) i(N)) +
+ Ly o opcklel
5 ( (-——N) ( N ))
JI
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VIII --

(to e)

X, 1 D - Ac J=-J'
2 D S D J
3 B.1 Ac (p+l)o = (p+k')o
4 s.1 S s.1 (p+1) _
5 B.2 Ac (ptk) = (p+Z')O
6 B.1 S B.1 (p+k)o
7 s.1 Ac (p*l)o
8 B.2 S B.2 (p+l)o

(to e)

Note, that the box VIII required no coding, hence its immediate successor
(e) must follow directly upon its immediate predecessor. However, this box has actually
no immediate predecessor; VIII,1 corresponds to @3, which may appear (by substitution at
I1,2) in the C order VII,23. Hence VIII,1 must be replaced by e in @..

The ordering of the boxes is I, III, IV, V, VI; II; VII; IX (VIII omitted,
cf. above), and IV, V, e must also be the immediate successors of II, VI, IX, respectively.
This necessitates the extra orders:

11,3 v,1 C
VI, 10 v,1 C
IX,9 e C

0y corresponds to VIII,1, i.e., to e (cf. above), @, corresponds to IX, 1.
This implies, as in the corresponding situation in Problem 10, that IX,1 and e must have
in the final enumeration numbers of the same parity. P need not be considered, since it
represents a fixed remote connection and therefore does not appear in the above detailed
coding.

We must now assign B.1-8, C, D, s.l their actual values, pair the 63 orders
1,1-3, 11,1-3, III,1-8, 1Iv,1-4, Vv,1-3, VI, 1-10, VII,1-23, IX,1-9 to 32 words, and then
assign I,1-IX,9 their actual values. These are expressed.in this table:

I,1-3 0-1 v1 1-10 9 - 13" B.1-8 32 - 39
111,1-8 1'- 5 I1,1-3 14 - 15 C 40
vV,1-4 5'. 7 VI1,1-23 15'- 26 D 41

V,1-3 71- 8! X,1-9 = 27-31 s.1 42

e is supposed to have the parity of IX,1, i.e., to be unprimed.
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Now we obtain this coded sequence:

0 32, 33h- 14 34, 26 Sp' 28 32, 425
1 14 Ce, 32 15 5¢, 33 29 33 , 328
2 25s, 33 16 18 Sp, 38 h- 30 42 . 33S
3 32Ss, 42 17 17 s, - 31 eC, --

4 33S, 35 18 -h-, 428 32 (p+k),
5 26 Sp, 33 19 2R, 39x 33 (p+1),
6 40S, 36 20 A1h, 41S 34 e,
7 41S, 40 21 32, 238 35 27,
8 32 h-, 15Cc' 22 38 h-, 23 Sp 36 0
9 40 , 10Sp 23 - -, - h 37 %
10 - R 37x 24 42s, 42R 38 1,
11 A1h, 418 25  39x, 4lh 39 o L
: : AN
12 40 , 38h 26 418, - C 40 --
13  40S, 7C 27 41 -, 415 41 --
' 42 -

The duratibns may be estimated as follows:

I: 125y, II: 125 u; IIT: 300 w, IV: 150 p, V: 125y, VI: 445 p, VII: 1015 p, IX: 350 p.

Total: I + (II or III) + IV + V x (|k-2] + 1) + VI x |[k-¥] + VII + (VIII or IX)
maximum = (125 + 300 + 150 + 125 (Jk-2| +#1) + 445| x-¥| + 1,015 + 350 p =

(570 | k-2 +2,065) p o
(570 (N-1) +2,065) = (570 N + 1,495) p=~ (.6 N + 1.5) m.

maximum
10.5  We pass now to the interpolation problem.
Lagrange’s interpolation formula expresses the unigue polynomial P(x) of

degree M-1, which assumes M given values pj,...,py at M given places xj,...,%y,
respectively:

1.
" N i#i) (x -xj)
= = S ‘=1
(1) P(x) = P(xy, pps---i X Py | %) = 1%1 Pi JM e
.n(ﬁﬁ) ( )
j—_—l Xi-Xj

There would be no difficulty in devising a (multiply inductive) routine
which evaluates the right hand side of (1) directly. This, however, seems inad-
visable, except for relatively small values of M. The reason is that the denominators

Mi#)

=1 are likely to be inadmissibly small.
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This point may deserve a somewhat more detailed analysis.

From our general conditions of storage and the speed of our arithmetical
organs one will be inclined to conclude that the space allotted to the storage of the
functions which are evaluated by interpolation should (in a given problem) be comparable
to the space occupied by the interpolation routine itself. The latter amounts to about
100 words. (Problem 12 occupies together with Problem 13.a or 13.b or 13.c 99 or 101
or 106 words, respectively, cf. 10.7 or 10.8 or 10.9, respectively. Other possible
variants occupy very comparable amounts of space.) One problem will frequently use
interpolation on several functions.- It seems therefore reasonable to expect that each
of these functions will be given at ~ 5 - 100~25 points. (This means that the N of
10.7 will be~s 25 -- not our present M'! Note also, that the storage required in this
connection is N in Problem 13.a, but 2N in Problems 13.b and 13.c.) Hence we may
expect that the points ESTERRFE Y will be at distances of the order~~ 275 between
neighbors.

Hence Ixi-xj In,li-j |- 275, and so

M. 2. ' _ '
T_li”ﬁ) (xgx5)| ~ Gi-1) (=) 1 273D
J- .

The round-off errors of our multiplication introduce into all these products absolute

MGt
2°4% | Hence the denominators ]I(J ' (xi-xj), and with them the

errors of the order j

corresponding terms of the sum _% in (1), are affected with relative errors of the
, . =

. -45 M-1
order 2740; (i-1) ! (M-i) ! 2-S(4-1) =4Z§%%EST— (;.1)- The average affect of these

relative errors is best estimated as the relative error

1Mo oMA5 g o g SMAdS Ml
\[M LTRSS M-D! A 1%1 GoD

M1 A -1 M-1) ! A (M- ]2
- QM-1))! 1 o M-45
M [(M-1)1]2

On the other hand, an interpolation of degree M-1, with an interval
length ~ 275 | is likely to have a relative precision of the order ~ C'27, where
C is a moderately large number. (The function that is being interpolated is assumed
to be reasonably smooth.)
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Consequently the optimum relative precision € which can be obtained with
this procedure, and the optimum M that goes with it, are determined by these conditions:

~/ @M-1)! 1 5M-45 . . 9-5M
© [(M-1)1] 2 €2 )

From this
fM = (Z(M_ -122! R 1 21%-45‘/ C.
M [(M-1)1]2
Now we have
M 3 4 5 6 7
fM 8-10-8 102 5 1.8-10% 6:10°

The plausible values of C are in the neighborhood of M = 5, while M = 6 is somewhat
high and M = 4 and 7 are extremely low and high, respectively. Hence under these
conditions M = 5 (biquadratic interpolation) would seem to be normally optimal, with
M = 6 a somewhat less probable possibility. We have

M” 5 I 6

€ “ 1.4-10°7 1.7-10"8

It follows, therefore, that we may expect to obtain by a reasonable
application of this method relative precisions of the order ~ 107®~~2-2°  This is,
however, only the relative precision as delimited by one particular source of errors:
The arithmetical (round-off) errors of an interpolation. The ultimate level of pre-
cision of the entire problem, in which this interpolation occurs, is therefore likely
to be a good deal less favorable.

These things be ing understood, it seems likely that the resulting level
of precision will be acceptable in many classes of problems, especially among those
which originate in physics. There are, on the other hand, numerous and important
problems where this is not desirable or acceptable, especially since it represents
the loss of half the intrinsic precision of the 40 (binary) digit machine. It is
therefore worthwhile to look for alternative procedures.

The obvious method to avoid the loss of (relative) precision caused in

1]1"[(3'7!1)
the formula (1) by the smallness of a denominator A (xi-Xj), is to divide
j=

by its factors X3 -X; (j=1,...,Mand j # i) singly and successively. This must,
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J=
they may cause a comparable loss of (relative) precision by the same mechanism. A

possible alternative to (1), which eliminates both sources of error in the sense indi-
cated, is

M -
. . .. i#i) .
however, be combined with a similar treatment of the numerators A (x-xj), since

M M('f') X -X:
(2) - R A L | . .
P(X) i§1 Pi J=1 xi-xj )

(2) involves considerably more divisions than (1), but this need not be the dominant
consideration. There exists, however, a third procedure, which has all the advantages
of (2), and is somewhat more easily handled. Besides, its storage and induction prob-
lems are more instructive than those of (1) or (2), and for these reasons we propose
to use this third precedure as the basis of our discussion.

This procedure is based on A. C. Aitken’s identity

X -XI

(3) P(xl, Pli- -5 XM PM Ix) = -ﬁﬁrii- P(x2, p2;-;-; M PM IX) +

+ -;%:§1_ P(x], P1i--+5 ¥q.1» PY-1 | x)

Since (3) replaces an M-point interpolation by two M-1 point interpolations, it is
clearly a possible basis for an inductive procedure. It might seem, however, that

the reduction from an M-point interpolation to one-point ones (i.e. to constants)
will involve 2M- steps, which would be excessive, since (2) is clearly an M(M-1)

step process. However, (3) removes either extremity.(xl or xM) of the point system
X],...,%); hence iterating it can only lead to point systems XjreeeaX; i, j=1,....M,

i£j, we will write j = ith-1), of which there are only Nﬁﬂgil ; 1.e., M Mél) , not

counting the one-point systems. Hence (3) is likely to lead to something like an

M g’l) step process.

Regarding the sizes we assume that xj,...,xy as well as x and py,...,py
lie in the interval -1, 1. We need, furthermore, that the differences x;.j-x;,
X-X;, Pj+p-Pj also lie in the interval -1, 1, and it is even necessary in view of
the particular algebraical routine that we use, to have all differences p;i,-p;
(absolutely) smaller than the corresponding x; 4 -X;. (Cf. VI1,19.) I.e., we
must use appropriate size adjusting factars for the p; to secure this "Lipschitz
condition". The same must be postulated for the differences P?+1(x)-PE(x) of the
intermediate interpolation polynomials. All of this might be circumvented to
various extents in various ways, but this would lead us deeply into theé problems
of polynomial interpolation which are not our concern here.

We now state:
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PROBLEM 12.

The variable values xj,...,%y (x1< x9< ...< xm) and the function values
Pl>-.-,Py are stored at two systems of M consecutive memory locations each:
q, qt1, ..., g*tM-1 and p, p*l, ..., p+M-1. The constants of the problem are p, g,
M, x, and they are stored at four given memory locations. It is desired to inter-
polate this function for the value x of the variable, using Lagrange’s formula.
The process of reduction based on the identity (3) is to be used. ----

It is clear from the previous discussion, that we have to form the
family of interpolants

b o
(4) P,(x) =Plx;, pj5+-+i %4110 Pi+hol Ix) for i = 1,...,M,
: ’ h=1,..., M1+l

Applying (3) to P(xi, Pjie++5 X3+h Pi+h | x) instead of P(xy, PLi---5 X Py 1x)
gives

h+1 _X =X h X: =X h

O e L ;ﬂ-x— P,(x) ,
or equivalently

h+l h -X; h h
(5) Pl (X) = Pl(x) + xi+h-xi (P1+](x) - Pl(x))
Combining this with
(6) Pl(x) = p; -
and

_ oM

(7) P(x) = Plxq, P1i---5 M PM [x) = Pl(x) ,

we have a (doubly) inductive scheme to calculate P(x).

. Let A and B be the storage areas corresponding to the two intervals of
locations from p to p+M-1 and from q to qg*M-1. In this way their positions will be
A.1,...,Mand B.1,...,M, where A.i and B.i correspond to p+i-l and q+i-1, and store
p; and x;, respectively. As in the Problems 3, 10, and 11, the positions-of A and B
need not be shown in the final enumeration of the coded sequence.

The primary induction will clearly begin with the Pls--sPAp i.e.,
P%(x),...,‘?&(x), stored at A, and obtain from these P%(x),...,PP%_l(x); then from
these the P?l’(x),...,PﬁQ(x); from these the P%(x),...,Pﬁ_:g(x); etc., etc., to
conclude with Fji/l(x), i.e., with the desired P(x). These successive stages corres-

pond to h =1, 2, 3,... M, respectively. This h is the primary induction index.
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hel Iﬂ ?a531ng froE h to h+l, i.e., from Pl(x) ey HW h+](X) to
Pl (x),..., Py_p(x), the P, (x) have to be formed successively for i =1,...,M-h.

This i is the secondary induction index.

h h
There is clearly need for a storage area C which holds Py(x),...,Py 1 11(x)

at each stage h. As the transition to stage htl takes place, each P?(x) will be re-
placed by P?+1(x}. successively for all i =1, ..., M-h. Hence the capacity required

for C is M-h+l during the stage h, but for h = 1 the Pi(x) = p; are still in A, and
need not appear in C. Hence the maximum capacity for C is Mcl. Accordingly, let C
correspond to the interval of locations from r to r#M-2. In this way its positions
will be C.1,...,M-1, vhere C.i corresponds to r+i-1, and stores i(X)' The positions
of the area C need not be shown in the final enumeration of the coded sequence. All
that is necessary is that they be available (i e. empty or irrelevantly occupied) when
the instructions of the coded sequence are being carried out by the machine.

As stated above, the Ph(x) occupying C.1 have necessarlly h>1l To give
more detail: Ph(x) moves into the locat1on C.1 at the end of the i-th step of stage
h-1, and remalns there during the remainder (the M-h+l-i last steps) of stage h-1 and
dur1ng the 1 first steps of stage h.

Further storage capacities are required as follovs: The given data (the
constants) of the problem, p, q, r, M, x, will be stored in the storage area D. (It
will be convenient to store them as p,, (q- p-1),, ry, (M- 1) o) X )  Storage will also
have to be provided for various other fixed quantltlee (10 the exit-locations of the
variable remote connections), these too will be accommodated in D. Next, the two in-
duction indices h, i, will have to be stored. As before, they are both relevant as
position marks, and it will prove convenient to store in their place (M- h) (p+i)0
(i.e., (A.it]) ) These will be stored in the storage area E. Finally, the quanti-
ties which are processed during each inductive step will be stored in the storage area

F.

We can now draw the flow diagram, as shown in Figure 10.3. The variable
remote connections @ and {3 are necessary, in order to make the differing treatments
required for h =1 and for h > 1 possible: In the first case the i(X) are equal to
p; and come from A, in the second case they come from C (cf. above). It should be
noted that in this situation our flow diagram rules impose a rather detailed showing
of the contents of the storage area C.

The actual coding cmtains a number of minor deviations from the flow
diagram,, inasmuch as it is convenient to move a few operations from the box in which
they are showmn to an earlier box. Since we had instances of this already in earlier
problems, we will not discuss it here in detail . On the other hand, sane further
condensations of the coding, which are possible, but deviate still further from the
flow diagram, will not be considered here.
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Ficure 10.3
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D.6
v,1

The static coding of the boxes I-XI follows:

(to I1,1)

(M-l)o
D.1
E.1
(®1)o
D.2
11,4
(By)o
D.3

11,6

Pg
1,
D.4
D.5

E.2
a .
D.4

I11,3

o0 n -
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Ac
E.1

Ac
11,4

Ac
II1,6

Ac

Ac
E.2

Ac
II1,3

Ac
F.1

Ac

Ac
1v,3

V,2

F.2

Ac
Ac
Vi 4

Ac
F.2

(M-1)
(M-1),

(%1)o

(B1)o
Ba C

(p*1),
(p+1)0

Po

P

P%(x) .

py if reached from III,3

Pg(x) i1f reached from IV

(ptl) jif reached from III,4
(p*i) if reached from IX (i.e. y)

P (x)

pti

Pi+]
Pi+1
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(to VIL, 1)
viL, 1 E.2 Ac (pti),
2 D.4 h- Ac i,
3 D.6 h Ac (r+i)°
4 ‘ D.5 h- Ac (r+i-1)o
5 VII, 25 Sp VII, 25 r+i-1 S
6 E.2 Ac _ (p+i)o
D.7 (q-p-l)o
VII, 7 D.7 h Ac (qﬁ-l)o
8 VII, 15 Sp VII, 15 gqti-1 h-
9 VII,21 Sp ViI,21 ghi-1 h-
10 D.1 h Ac (q+i+M-2)o
11 E.1 h- : Ac (qti+h-2) o
12 D.5 h Ac (qri+h-1)
13 Vi1, 14 Sp VII, 14 qtith-1
14 -
gti+h-1 ] Ac X3 +h
15 -- h-
q+i-1 h- ] Ac X3 X4
16 s.1 S s.1 X +h=X;
17 F.2 | Ac p}lﬂ(x)
18 F.1 h- Ac PR, 1 (x)-PR(x)
19 o1 R R P2+1(x)-Pb(x)
Xi+h™ X3
D.8 x
VII, 20 D.8 Ac x
21 -- h- '
( \ qti-1 h- ] Ac X=x;
22 s.1 S s.1 X-X;
X =X h
23 s.1 x Ac m (P}i‘.,,l(x)-Pi(x))
24 F.1 h Ac P (x) = PRx) +
X -X; (
+ X—I:E:?CJI" P§-1+1(X)-l'*1l(x))
25 -- S ‘
r+i-1 S ] C.i Pti"l(x)
(to VILL,1)
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VIII, 1 E.2 Ac (pti),
2 D.5 h Ac (p*i+l)
3 E.2 S E.2 (pti+l),
4 "E.1 h- Ac (p+i+h-M+1)
5 D.5 h- Ac (pti+h-M) |
6 D.4 h- Ac (i+h-M) |
7 X1 Ce
(to IX,1)
IX, 1 F.2 Ac P,y ()
2(to ) F.1 S F.1 P, (x)
X,1 E.1 Ac (M-h)
2 D.5 h- Ac (M-h-1) |
3 E.1 S E.l (M-h-1)
4 D.5 h- Ac (M-h-2)
5 XI1,1 Ce
(to e)
D.9 (d2)o
XI,1 . D.9 : Ac (%2)0
2 II,4 Sp I1,4 o o
D.10 (B)o
XI, 3 D. 10 Ac (B2)o
4 111,6 Sp 111,6 R, C
(to II,1)

The ordering of the boxes is I, II; III; IV; V, VII, VIII, IX; X; XI;
VI, and VII, e, II must also be the immediate successors of VI, X, XI, respectively,
and III,4 and III1,5 must be the immediate successors of IV and IX, respectively.
This necessitates the extra orders

V1,6 VII,1 Cc
X,6 e C
XI,5 I1,1 C
and
1v,4 I11,4 C
IX,3 I11,5 C

44, 0y, B, Bo correspond to III,1, IV,1, V,1, VI,1, respectively.
Hence in the final enumeration III,1, IV,1 nust have the same parity, and V,1,
VI,1 must have the same parity.
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We must now assign D.1-10, E.1-2, F.1-2, g.1 their actual values, pair
the 75 orders I,1-6, II,1-4, III,1-6, IV14 V,1-3, VI,1-6, VII, 1-25, VIII,1-7,
IX,1-3, X,1-6, XI,1-5 to 38 words, and then assign I 1-XI,5 their fmal values.
These are expressed in this table:

I,1-6 0 -2' VII,1-25 11'.23" VI, 1-6 35 -37!
I1,1-4 3 -4' VIII,1-7 24 .27 D.1-10 38 -47
I11,1-6 5.7 IX,1-3 27'.28" E.1-2 48 -49
IV,1-4 8 -9! X,1-6 29 .31' F.1-2 50 .51
V,1-3 10 -11 XI,1-5,* 32 .34' s.1 52
Now we obtain this coded sequence:
0 38 , 85 18 - , - h- - 36 36 Sp, -
1 3%, 45sp 19 52S, 51 37 ’51s, 11¢
2 40 , 7sp' 20 50 h-, 52 = 38 M-1)
3 41 , 42h 21 45 , - h- 39 S, .
4 49s, - C 22 52S, 52x 40 180
5 4 , 6Sp 23 50h, - S 41 Po
6 -, 50Ss 24 49 , 42h 49 1,
7 49 , - C 25 49S, 48 h- 43 r,
8 8 . 95 2 42 h-, 41 h- 44 (g-p-1),
9 , 6C' 27 29 Cc, 51 45 X
10 10 Sp, - 28 50S, 7C~ 46 8
11 51S, 49 29 48 , 42 h- 47 350
12 41 h-, 43 h 30 48 S, 42 h- 48 -
13 42 h-, 23 Sp! .31 32C, eC 49 -
14 49 | 44 32 46 , 4 Sp' 50 -
15 18 sp) 21 Sp* 33 a7, 1Sp! 51 -
16 38 h, 48 h- 34 3c, - 59 -
17 2h, 18Sp 35 41 h-, 43 h

" The durations may be estimated as follovs:

I: 225 y, II: 150 p, III: 225 g, IV: 275 p, V: 125 p, VI: 225y, VII: 1140 p,
VIII: 275 y, IX: 200 p, X: 225 pu, XI: 200 p.

Total: I + II x (M-1) + TII + IV x (M-2) +V x (M-1) + VI x M-12 M-2)

+

(VII + VIII) -MﬁM;ll + X x M'12 M-2) 4 X x (M-1) + XI x (M-2) =

(225 + 150 (M-1) + 225 + 275 (M-2) + 125 (M-1) + 225 SM—--l-lSM-—-l
1,415 _Mih.i_-_l + 200 -iM:llSM—) + 225 (M-1) + 200 (M-2)) o=

-+

u

(920 M2 - 370 M - 575) p =~(.9M® - .4 M - .6) m.
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10.6 We now pass to the problem of interpolating a tabulated function
based on the coding of Lagrange’s interpolation formula in Problem 12.

PROBLEM 13.

The variable values Y1 ---1IN (y1< ¥9< ooe < yN) and the function values
q1,- -Gy are stored at two systems of N consecutive memory locations each:
4, q*l,...,§N-1 and p, p+l,...,p*N-1. The constants of the problem are p, g, N, M,
Y, to be stored at five given memory locations. It is desired to interpolate this

function for the value y of the variable, using Lagrange’s formula for the M points
y; nearest to y. ----

The problem should be treated differently, according to whether the
y]1:-+-»YN @re or are not to be equidistant.

PROBLEM 13.a.

¥1,---»YN are equidistant, i.e., y; = a *+ il (h.a). In this case
only y1 = a and yy = b need be stored. ---- N-1

PROBLEM 13.b.
yl,..,,yﬁ, are unrestricted. ----
In both cases our purpose is to reduce Problem 13 to Problem 12, with

X]y.-.,%y equal to Yicr «++ 0 YicMd- 1 and Plr--+ 2Py equal to Oies + + 1 deM-1s where
k =1,...,N-M*1 is so chosen that the Yo+« 1 Yi+M-1 lie as close to y as possible.

10.7 We consider first Problem 13.a.

In this case the definition of k, as formulated at the end of 10.6,
KM-2 ()
N-1
should lie as close as possible to y. This is equivalent to requiring that their

amounts to this: The remoter one of y, = a + 53% (b-a) and -1 - @t

mean, %(yk+yk*M-l) =at %%ﬁﬂi% (b-a), lie as close as possible to vy, i.e.,, that
k lie as close as possible to (N-1) ilﬂ - M§§ .
-a

There are various ways to find this k = k, based on iterative trial and
error procedures. Since we will have to use a method of this type in connection with
Problem 13.b, we prefer a different one at this occasion.

This method is based on the function {z}, which denotes the integer
closest to z. Putting

= [(Ne1) Y2 Mﬁ} ,
{ b-a 2

we have clearly
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1 for k* £ 1,
k* for 1 £ k £ N-M*1,
N-M+1 for k* 2 N-M+l

=1
"

Now the multiplication order (11, Table II), permits us to obtain {z)
directly. Indeed, the round off rule (cf. the discussion of the order in question)
has the effect that when a product uv is formed, the accumlator will contain

é
v = 27%° {23%yv)}, and the arithmetical register will contain w = 2%%y - (2%,
Hence putting u = 272°(N-1) and v = E:Q - 2%&?1) will produce T = 2799 (2%9yy] = 2799+
. -a -

in the accumulator.

After k* and K have been obtained, we can utilize the routine of Problem 12
to complete the task. This means, that we propose to use the coded sequence 0-52 of
10.5, and that we will adjust the coded sequence that will be formed here, so that it
can be used in conjunction with that one of 10.5.

Among the constants of Problem 12 only p, q, and x need be given values
which correspond to the new situation. x is clearly our present y. p,...,pM-1 are
the positions of the py,...,py of Problem 12, i.e., the positions of our present
qgs- - 9g4M-1» 1-e., they are p*k-1,...,p*%k*M-2. Hence p = p*k-1. q,..., gM-1 are
the positions of the xj,...,%y of Problem 12, i.e., the positions of our present
YE»+++1YE#M-1- Since we determined in the formulation of Problem 13.a, that only
y1 = a and yy = b will be stored, but not the entire sequence yj,...,yy, this means
that the desired sub-sequence yf,...,yg4.1 does not exist anywhere ab initio.

Consequently q may have any value, all that is needed is that the posi-
tions q,...,q*M-1 should be available and empty (or irrelevantly occupied) when the

coded sequence that we are going to formulate begins to operate. This sequence must
then form

Xi yl?ﬁ-l a +t —N-—i— (b-a)

and place it into the position q*i-l for all i = 1,...,M.

It might seem wasteful to form x; first, then store it at q+i-1, and
finally obtain it from there by transfer when it is needed, 1i.e. during the period
VII,1-19 of the coded sequence of 10.5. One might think that it is simpler to form
x; when it is actually needed, i.e., in VII, 1-19 as stated above; the quantities
needed are more specifically Xjs Xj+,» in the combination EI;E:;% ), and thus avoid
the transfers and the storage. It is easy to see, however, that the saving thus
effected is altogether negligible, essentially because the size of our problem is
proportional to M® (cf. the end of 10.5), while the number of steps required in
forming and transferring the xi's in. the first mentioned way is only proportional
to M. (Remember that M is likely to be 2 7, cf. the beginning of 10.5.) It does
therefore hardly seem worthwhile to undertake those changes of the coded sequence

of 10.5 which the second procedure would necessitate, and we will adhere to the
first procedure.
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In assigning letters to the various storage areas to be used, it must be
remembered that the coded sequence that we are now developing is to be used in con-
junction with (i.e., as a supplement to) the coded sequence of 10.5. The latter
requires storage areas of various types: D-F, which are incorporated into its final
enumeration (they are 38-51 of the 0-52 of 10.5); A (i.e., p,...,p*M-1), which will
be part of our present A (i.e., of p,...,pN-1, it will be p+k-1,...,p*kiM-2 ; B
(i.e., q,...,qM-1), which may be at any available place; and C (i.e., r,...,rM-2),
which, too, may be at any available place. Therefore we can, in assigning letters
to the various storage areas of the present coding, disregard those of 10.5, with
the exception of B, C. Furthermore, there will be no need to refer here to C (of
10.5), since the coded sequence of 10.5 assumes the area C to be irrelevantly occupied.
It will be necessary, however, to refer to B (of 10.5), since it is supposed to con-
tain the x; = ypy; 1 (4 = 1,...,M) of the problem. We will therefore think of the
letters which are meant to designate storage areas of the coded sequence of 10.5 as
being primed. This is, according to the above, an immediate necessity for B. We
can now assign freely unprimed letters to the storage areas of the present coding.

Let A be the storage area corresponding to the interval from p to
ptN-1. In this way its positions will be A.l,....,N, where A.i corresponds to
p*i-1 and stares q;- As in previous problems, the positions of A need not be
shown in the final enumeration of the c aled sequence.

The given data of the problem are p, M, N, a, b, y, also the q, r of
the coded sequence of 10.5. M, r are already stored there (as (M-1),, r, at 38, 43}
and y, too (it coincides with x at 45). q, however, occurs only in combination with
k (as (q-p-1), = (q-ﬁ-ﬁ)oat 44) and p, of course, contains k (as p, = (p+k-1) at
41); and K originates in the machine. Hence, 41, 44 must be left empty (or, rather,
irrelevantly occupied) when our present coded sequence begins to operate, and they
must be appropriately substituted by its operations. q, however, must be stored as
one of the constants of our present problem. Hence the constants requiring storage
now (apart from M, r, y which we stored in 0-52, cf. aboe) are p, q, N, a, b.
They will be stored in the starage area B. (It will be cmvenient to store them as
a, b, (N-l)o, (5-1)0, (q-l)o. We will also need 27°° and 1; we will store the
former in B and get the latter from 42.) The induction index i is a position mark;
it will be stored as (q+i-1), (i.e.,(B'.i) ) in the storage area C. The quantities

which are processed during each inductive step will also be stored in the storage
area C.

Our task is to calculate k; to substitute p, = (p+§-1)o and
(q-p-l)o = (3-p-k), into 41 and 44; and then to transfer X; = Yg+i.1 from A.kK+-1
to B'.i. This latter operation is inductive. Finally, the control has to be sent,

not to e, but to the beginning of 0-52, i.e., to O.

We can now draw the flow diagram, as shown in Figure 10.4.
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The actual coding will again deviate in some minor respects from the flow
diagram, as in previous instances. In connection with this we will also need same
extra storage capacity in C (C.1.1).

A matter of somewhat greater importance is this: We have noted before
that since our machine recognizes numbers between -1 and 1 only, integers X must be
stored in sane other form. Frequently the form of a position mark, lo, is per se
more natural than any other (cf. 8.2); occasionally 273°1 can be fitted more easily
to the algebraical use to be made of I (cf. I in the present coding); sometimes
is most convenient. (We could, of course, add to this list, but the three above” forms
seem to be the basic ones.) The transitions between these three forms are easily
effected by using multiplications and divisions, but it seems natural to want to
achieve the transitions between the two first ones (I, and 27°°[) in a more direct
way.

This can be achieved by means of the partial substitution orders 18, 19
of Table IT (x Sp, x Sp’), if they are modified as indicated in the Remark imme-
diately preceding this chapter. We propose to use these orders now for arithmetical
rather than logical (substitution) purposes, for positions x which contain no orders
at all, but which are storing numbers in transit. Specifically: With lo in the
accumulator, x Sp’ produces 27?°f at the position x; with 272°Y in the accumulator
x Sp produces 272°) at the position x, and a subsequent x h produces 10 in the
accumulator.

We mention that i can be obtained from 10 or 273 by dividing them
into 1  or 2°38, respectivelyg and this without more than the usual loss in precision:
Indeed, our division p : 0 is precise within an error 2°2°, no matter how small ¢ is
(subject, of course, to the condition| g|>|p|), provided that P, O are given exactly.
(If they are not given exactly, then their errors are amplified by 51 o respectively.
In this case a small O is dangerous, even though | ol >|pl .) In the present case

p, 0 are given exactly. Forming 1, I, as well as 27°°, 27%%Y  involves no round-
offs.

(o]

These methods will be used in our present coding: For transitions
between 10 and 2739f cf.I,22-23, II1,3-4; VII,1-3; For forming reciprocals: ﬁli
from (N-1)_ as 1: (N-l)o in VIII,4-5, and the very similar case of §%§§IT from

M-3),, (N-1), as (M-3) 20‘-1)0 in I,9-15. Regarding ﬁli we also note this:

We need b-a in VIII. We will form 1= (N-1) _ first and b-a - 1 (b-a)
N-1 N-1 ° o N- N-1
afterwards. Forming 1 * (b-a) first and ﬁl% = [lO X (b~a)]:(N-1)o afterwards

would lead to a serious loss of precision, since 1, X (b-a) plays the role of p
above, and as it involves a round-off it is not given exactly, and hence may cause
a loss of precision as indicated there.

We will have to refer in our present coding repeatedly to 0-52 in
10.5. It should therefore be remembered that this coded sequence is now supposed
to be changed insofar that 41, 44 are irrelevant and 45 contains y. 38, 43 contain

M-1), r,, as in 10.5.
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Ac
Ac

Ac
Ac

Ac

Ac
Ac

Ac

Ac
Ac

Ac

Ac
Ac

b

b-a
b-a
Yy

y-a
¥-a
b-a
¥-a
b-a
¥-a
b-a

(N-1),
2(N-1),
2(N-1),
(M-1),
(M-2)
(M-3),

M3 3)
2(N-1)  2(N-1)

M-3

2(N-1)
M-3
2(N-1)

Y-a
b-a

(N-1)

u = 273%(N-1)
273%* = qv
2-3%*

2-39k*
2-39(kt_1)
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I11,1 B.3 Ac (N-l)o
2 B he Ac (N-M)
3 42 h Ac (N-M+1)0
4 Cc.1l.1 Sp' C.1.1 2-39(N-M+1)
5 c.1 Ac 2739
6 c.1.1 h- Ac 2-39(k* _N+M-1)
7 v,1 Ce
(to VI, 1)
1v,1 B.4 Ac 2-3% = 2739
(to V,2)
v,1 c.1.1 Ac 2-88F = 2739(N_M+1)
c.1 S C.1 2-39
(to VII,1)
VI,
(to VII,1)
VII, 1 c.1 Ac 2-39
2 s.1 Sp s.1 2-19¢
3 5.1 h Ac k, = 27 19F4279%%
B.5 (5—1)0 .
VIL, 4 B.5 h Ac (5+E-1)
5 41 S 41 (F+&-1)
6 s.1 S s.1 (p*k-1)
B.6 (q-l)o _ »
VIIL,7 B.6 Ac (q-1),
8 s.1 h- Ac (q-p-K),
9 44 s 44 (q-p-K),
(to VIIL,1)
VIII,1 B.2 Ac b
2 B.1 h- Ac b-a
3 s.1 S s.1 b-a
4 42 Ac 10
1
1 .
5 .3 + R = = O
B NI (N1,
6 s.1l x Ac ﬁ‘:%
’ 11 1.1 b-a
1 C S C No1
b-a
8 C.1.1 R R N1
9 C.1 Ac 2-8¢g
10 B. = n= A;C 2-3 9(!2—1)
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VIII,11 s.1 S8 sl 2-39(k-1)
12 s.1 vx R %(b-a)
13 | A - Ac | l%%(b-a)
14 ‘Bl h Ac x, =a+ KEdb-a)
15 c.1 S C.1 x
16 B.6 - Ac (q-1),
17 42 h Ac %
18 C.2 S C.2 q,
(to IX, 1) .
X, 1 C.2 Ac (qH-1),
2 IX,6 Sp 1X,6 qti-1 S
3 42 h Ac (q+i),
4 C.2 S C.2 (q+i),
5 C.1 Ac ‘ X3
6 - S
( ~ qti-l S ] B'.1 X3
7 C.1.1 h Ac X;4] T % ;—:%
8 c.1 S C.1 X; 41
(to X,1)
X1 C.2 Ac (q"’i)o
2 38 h- Ac (qti-M+1)
3 B.6 h- Ac (i-M#2)
4 42 h- Ac (i-M+1),
5 42 h- Ac (i-M),
6 e! Cc
(to IX,1)

Note, that the box VI required no coding, hence its immediate successor
(VII) must follow directly upon its immediate predecessor (III).

The ordering of the boxes is I, II, IV; III, VII, VIII, IX, X; V and
VII, IX must also be the immediate successors of V, X, respectively, and V,2 must be
the immediate successor of IV. This necessitates the extra orders

v,3 VII,1 Cc
X,7 IX,1 Cc
and
1v,2 v,2 Cc l

As indicated in Figure 10.4, e' is 0.
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We must now assign B.1-6, C.1-2, 1.1, s.1-2 their actual values, pair the
82 orders I,1-25, II,1-3, II1,1-7, 1V,1.2, V,1.3  VII,1-9, VIII, 1-18, IX,1-8, X,1-7 to
41 words, and then assign I,1-X,7 their actual values. We wish to do this as a continua-
tion of the code of 10.5. We will therefore begin with the number 53. Furthermore the
contents-of C.1-2, C.1.1, s.1-2 are irrelevant like those of 48-52 there. Hence thev
may be made to coincide with these. We therefore identify them accordingly . Summing
all these things up, we obtain the follovwing table:

1,1-25 53 -65 VII, 1-9 711.75" V,1-3 921.93"
II,1-3 65'-66' VIII, 1-18 76 -84' B.1-6 94 .99
Iv,1-2 67 -61' IX,1-8 85 -88' C.1-2 48 -49

II1,1-7 68 -T1 X,1-7 89 -92 c.lL1 50

s.1-2 51-52

Now we obtain this coded sequence:

53 95 ., 94 h- 69 42h , 50 Sp' 85 49 , 87 sp'

54 51S, 45 70 48 , 50h- 86 2h, 495

55 9% h-, 51+ | 11 92 Cc', 48 87 48 , - S

56 A, 518 72 518, 51h 88 S0h, 485S

57 9% , 9% h 73 %Bh , 4158 89 49 , 3B h-

58 52S, 38 74 51S , 99 90 99 h-, 42 h-

59 42 h-, 42 h- 75 51 h- , 445 91 42 h-, 0 Cc

60 52 +, A 6 95 , 94h- 92 85C, 50

61 52s, 5l 7 51 , 42 93 48s, T1C'

62 52 h-, 518 78 96 + , 5l «x 94 a

63 51R, 96 79 50S , 50R % b

64 52 Sp, 52 x 80 48 , 97 h- 96 (N-1)

65 48S, 48 81 51S , 51«x 97 22

66 97 h-, 68 Cc 82 A, %h | 9 (5-1),

67 97 , 9cC 83 48s , 9 99 (q-1),

68 9% , 38 h- 84 2h , 498

For the sake of completeness, we restate that part of 0-52 of 10.5
which contains all changes and all substitutable constants of the problem.

This is 38-52:

38 M-1), 43 r, 48 --
39 5, 44 -- 49 -
40 10, 45 y 50 -
41 -- 46 8o 51 -
42 1, 47 35, 52 --

The durations may be estimated as follows:

I: 1,220 y, II: 125 y, III: 275 p, IV: 150 p, V: 125 b, VIIL: 350 w, VIII: 915 ,
IX: 300 p, X: 275 p.
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Total: I + II + (IVor (IIT +V) or III) + VII + VIIT + (IX +X) xM =
maximum = (1,220 + 125 + 400 + 350 + 915 + 575 M) p =
= (575 M+ 3,010) p =~ (.6M +3) m.
Hence the complete interpolation procedure (10.5 plus 10.7) requires

((9M2 +.2M+ 2.4) m.

10.8 We consider next Problem 13.h. We are again looking for that
k =1,...,N-M+1, for which Yo+ -+ Yk+M-1 lie as close to y as possible (cf. the end
of 10.6), i.e., for which the remoter one of vk and ypum_1 lies as close to y as
possible. :

Since yj,...,YN are not equidistant, we cannot find k by an arithmetical
criterium, as in 10.7. We must proceed by trial and error, and we will now describe a
method which achieves this particularly efficiently. ’

We are then looking for a k = k which minimizes py = Max (y-yk, yk+M_1-y)
in k = 1,...,N-M+1, :

Let us first note this: y-y, > y-yj4], hence y-y; > ypy-y implies
Y-Yk > Wc+], and therefore g > 1447. On the other hand yp_1-Y < Yy, hence

Y-Yk $ YiaM-Y implies 1y £ yj -y, and therefore py < iy 4. Hence > or <y,
according to whether y-y, > or ¢ Y=Y 1-€s Vit VM- 2y <or 2 0.

In order to keep the size between -1 and 1, it is best to replace
Yk ¥ YieM-Y - 2y by

(1) zk =

DN

Y %YHM—Y

z) is monotone increasing in k. Therefore z) < 0 implies z; < 0 and hence py > by 4]
for all h gk, i.e., b >4 > ... >y >iy,). Similarly zp 2 0 implies zp 2 0 and
hence 1 < My 41 for all'h 2 ﬁ, ie., i S 1441 € -0 S UNM § HNM+l- From these we

may infer

) z <0 implies Kk >k,

zy 2 0 implies that we can choose Kk £ k.
Consequently we can obtain Kk by "bracketing' guided by the sign of z.

Note that zj can be formed for k = 1,...,N-M only, but not for k = N-M+l.
The "bracketing' must begin by testing the sign of z for k =1, if it is +, then k =1,
if it 1s -, then we continue. Next we test the sign of z) for k = N-M, if it is -, then
k = N-M+l, if it is +, then we continue. In this case we know that 1<k < N-M. Put
k: =1, kt = N-M. Consider more generally the case where we know: that k; <k g k; .
‘This implies k;-k; > 1. If k;-k'i =1, then k = k;; if k;-k'i > 1, then we continue.
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In this case we use the function [w] which denotes the largest integer g w. Put

[ + -
(3) e ldadpa,
and test the sign of zy for k = kg, if it is + then k ¢ k° if it is - then k > k°
We can therefore put ki = k;, k;+1 = kg or k4 = k k 1 k; , respectively.

This completes the inductive step from i to i+l. Sooner or later, say for i = io’

+ - . . .
k; - k; = 1 will occur, and the process will terminate.

Note, that k,1-kfy1 € 204 - 15 + 1), der, WG 2 200K L,
i.e., k1 1-k{_1 2 2(k -k )-1. For 1 =3 o however k -k =1, k1 1-Ki-1 1,

-2
hence ki_1-k;71 2 2. Thus k;‘o_l - k{o_l 22, kio_z - k-io_z 23,..., kj-k] 2 2 12,

However, ki-ki = N-M-1, therefore,
(4) io < 2log (N-M-2) + 2.

The virtue of this "bracketing' method is, of course, that the number
of steps it requires is of the order of 2log N, and not, as it would be with most
other trial and error methods, of the order of N. (Note, that N is likely to be
large compared to M, which alone figures in the estimates of 10.5 and 10.7.)

After K has been obtained, we can utilize the routine of Problem 12
to complete the task, just as at the corresponding point of the discussion of
Problem 13.a in 10.7. This means that we propose to use the coded sequence 0-52
of 10.5, and that we will adjust the coded sequence which will be formed here,
just as in 10.7.

The situation with the constants of Problem 12 is somewhat simpler
than it was in 10.7. Again, p, q, and x need be given values which correspond to
the new situation. x is clearly our present y. p,...,ptM-1 and q,...,q"M-1 are
the positions of the py,...,py and xp,...,%y of Problem 12, i.e., the positions of
our present qp ,...,qgs-1 and yg, - "YEHW 1» i.e., they are p+k-1,...,p+k*M-2 and

qtk-1,...,qtk*M-2. Hence p = ptk-1, q = g*k-1. The complications in 10.7, connected
with q, or, more precisely, with the YR+ o YE4M-17 do not arise here, since Problem
13.b prov1ded for storing the entire sequence yy,...,yN-

In assigning letters to the various storage areas to be used, it must
be remembered, just as at the corresponding point in 10.7, that the coded sequence
that we are now developing is to be used in conjunction with (i.e., as a supplement
to) the coded sequence of 1U.5. As in 10.7, we have to classify the storage areas
required by the latter, but this classification now differs somewhat from that one
of 10.7: We have the storage areas D-F, which are incorporated in the final enumera-
tion (they are 38-51 of the 0-52 of 10.5); A and B (i.e., p,...,pM-1 and q,...,q*M-1),
which will be part of our present A and B (i.e., of p,...,pN-1 and q,...,q*N-1, they
will be p+k-1,...,p+kM-2 and g+k-1,...,3+k*M-2); and C (i.e., r,...,r+M-2), which
may be at any available place. Therefore, we can, in assigning letters to the
various storage areas in the present coding, disregard those of 10.5, with the
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exception of C. Furthermore, there will again be no need to refer here to C (of
10.5), since the coded sequence of 10.5 assumes the area C to be irrelevantly
occupied. We will, at any rate, think of the letters which are meant to desig-
nate storage areas of the coded sequence of 10.5 as being primed. We can now
assign freely unprimed letters to the storage areas of the present coding.

Let A and B be the storage areas corresponding to the intervals from
p to pN-1 and from g to qiN-1. In this way their positions will be A.1,...,N
and B.1,...,N, where A.i and B.i correspond to p+i-1 and g+i-1 and store g; and
¥;- As in previous problems, the position of A and B need not be shown in the
final enumeration of the coded sequence.

The given data of the problem are p, g, M, N, y, also r of the coded

sequence of 10.5. M, r are already stored there (as (M-1) , ro at 38, 43); and
y, too (it coincides with x at 45). The definitions of p,oq involve k (p=p+k-1,

=g*k-1), and Kk originates in the machine. The form in which p is stored accord-
1ngly involves Kk (as p, = (p*k-1), at 41); while the form in which q is stored does
not happen to involve 'K (as (q-p-1)~ (q-p-l) at 44), Hence 41 must be left empty
(or rather, irrelevently occupied) when our present coded sequence begins to operate,
and it must be appropriately substituted by its operation. 44 might be used to store
(q-p-1)  from the start, but we prefer to leave it, too, empty (i.e., irrelevantly
occup1e8) and to substitute it in the process. Hence the constants requiring storage
now (apart from M, r, y which are stored in 0-52, cf. above) are p, q, N. They will
be stored in the storage area C. (It will be convenient to store them as (p-1) ,
(q-l) (N-l) .) The exit-locations of the variable remote connections will also
be accommodated in C.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>