
IBM 1130 Computing System User's Guide

This manual, covering a wide range of subjects that are of interest
to 1130 customer personnel, is designed for insertion in a workbook
along with user-generated materials. It deals with the steps to be
considered in any successful installation program: preinstallation
planning, documenting current applications~Cdesign of new appfica
tions, conversion, program development, testing, and program
documentation.

Additional topics discussed include the 1130 system, the 1130
Monitor, Job Management, Disk Management, Core Management,
File Organization, Disk Data Storage, FORTRAN and the Commer-
cial Subroutine Package, Sorting and System Evaluation - Performance.

It is suggested that the User's Guide be placed in a binder and
that dividers be inserted before the various sections. The resulting
workbook becomes the single major source of installation guidance
when you include your own data processing policies, standards, and
control forms.

C20-1690-0

13 JAN 1970

IBM 1130 Computing System

This first reprint contains a few minor changes to the original edition, but does not in any
way obsolete the original edition.

Copies of this and other IBM publications can be obtained through IBM branch
offices. Address comments concerning the contents of this publication to:
IBM, Technical Publications Department, 112 East Post Road, White Plains, N.Y. 10601

READER'S GUIDE

INTRODUCTION

This section is intended as a guide to help you get
the most out of this manual. Because of the magni
tude of the manual and the differing needs of various
readers, such a guide, or "road map", is particu
larly important.

For purposes of the guide, readers will be
divided into three groups:

1. Top management, who want an overview of
the system.

2. Data processing management, who have
direct responsibility for the installation and man
agement of the 1130 System.

:3. Programmers and systems analysts, who will
actually set up the system, determine the methods
to be used , and/or code the programs.

Groups 2 and 3 are subdivided into those con
cerned with "pure" scientific applications, and
those working in a commercial or mixed scientific
commercial atmosphere.

Figure 01.1 shows a general outline of the man
ual and suggests which sections should be read by
each group. However, the top manager who wants
a more detailed view of the 1130 will find much of
the data processing management material to be
relevant; the data processing manager may want to
read more than Figure 01. 1 indicates; etc.

The effectiveness of this Guide depends entirely
on the responsible manager in your installation.
The Guide contains possible paths to a successful
installation. Since the installation of data process
ing equipment is a disciplined venture that involves
decisions concerning the selection of the best paths,
your management's responsibility is clearly delin
eated. This responsibility began with the creation
of realistic objectives. Control is exercised through
timely reviews in which progress is related to
checkpoints and corrective action is undertaken.

A WORD TO TOP MANAGEMENT

Within the last several years, your company may
have increased its plant capacity to meet growing
needs. Before this new resource became fully
operational, though, many things had to be done.
Management was chosen, an organization chart
drawn up, a plan for startup formulated,a date
picked for the start of production, etc.

Just recently you may have added a new product
or scrvice. The introduction of this product or

Section Subsections Page

01 00 I 00 01

service involved many considerations. Its need was
studied, its function determined, an announcement
date selected, etc.

In both cases, management:
• Defined its objectives
• Made a plan
• Established checkpoints
• Assigned responsibilities
Timely reviews determined whether your plans

were being followed, your objectives met, etc. On
the basis of these reviews, modifications and adjust
ments were made to ensure that the operation was a
success.

Now you are adding another resource to your
organization - an IBM 1130 Computing System. As
before, there are many things that you, as manage
ment, must do if your 1130 installation is to meet
its planned objectives.

Should the installation of a new data processing
system be any less subject to management control
than a new plant, or a new product? The answer is
no. Data processing capability is a resource, just
like the new plant or new product. In fact, a data
processing system is a unique type of resource; it is
one that extends management's ability to control
other resources. '

Your 1130 system may be used to maintain a per
sonnel skills inventory or to schedule plant opera
tions. It may be assigned to keep a close watch on
cash flow or to determine reorder points for your
inventory. In each case, data processing is a re
source being used to control other resources.

In this light, the IBM 1130 Computing System that
you are about to install should take on an added impor
tance. Objectives, checkpoints, and the mechanics
for review should be established for this resource,
just as for any other resource available to you.

The 1130 Computing System, through its stored
program power and random access disk capability,
embodies a new technology. The maximum value
will be derived from this technology only if the sys
tem is oriented toward your objectives and its in
stallation is closely monitored to see that those
objectives are achieved. It is through this type of
involvement that the philosophies and policies of a
manager can be manifested.

The 1130 User's Guide has been designed with
these thoughts in mind. First, it deals with all the
considerations that lead to a successful installation.
Second, it is so organized as to lend itself to the
control and review process. The cornerstone of

Section Subsections Page

01 00 I 00 02

THE READER

DP Programmer/

Mgmt DP Analyst Programmer/

Top (Commercial- Mgmt (Commercial- Analyst

THE TOPIC: Mgmt Scientific) (Scientific) Scientific) (Scientific)

Preinstallation Planning v v v

Documenting Current Applications Introduction Introduction v

Cards vs 0 isk Files v
Preliminary Questions & Answers Safeguarding Data v

Accounting Controls v v

Application Design Forms Design v v

Card Design v v

Disk Design
Program Development Introduction Introduction .J .J

Testing Effectively .; v v v

Documentatio n Introduction v .J " ,j

Conversion ,j .J

The 1130 System v .; v v

The 1130 Monitor v v v v

Job Management v v v "
Layout of 0 isk v v

Disk Management I n creasi ng Space v v

Disk Util. Prog. v v

Core Storage Management v v

Arithmetic v ,j v v

FORTRAN Overlapped I/O v v

Character Handling ,j

Core Saving Tips v .J

Timing v .;

Sorting Introduction v

Use of the Disk for Data Storage
Introduction .. Introduction

Disk Organization and Processing *
Introduction .. * *

Improving Your System - Performance Introduction .; .; .; .J

,j Read this sectio n

.. May be skipped if you don't have, or are not considering using, the disk for data storage

Figure 01.1

this organization is an Installation Activity Schedule,
which highlights all the events leading to a success
ful installation. This is fully described in Section 05.

This Guide should become a working document in
your organization. Although the experience and
specific needs of each organization vary consider
ably, all the events apply to some extent in every
installation.

A WORD TO DATA PROCESSING MANAGEMENT

In addition to the comments directed toward top
management, several thoughts apply here.

You are the men in the middle - between top
management and the programmer/analyst. For this
reason the sections checked for your attention are
those concerned with how to do things the "right"
way; how to avoid potential pitfalls; how to get the
most out of your 1130 system; etc.

A WORD TO THE PROGRAMMER/ANALYST

As Figure 01.1 shows, this manual is directed pri
marily toward you; you should read its entire con
tents. This is especially true for those of you who
are working in a commercial, or mixed, environ
ment.

However, the distinction between a commercial,
or mixed, environment and a "pure" scientific
environment is very tenuous. More and more,
users who once considered themselves "pure"
scientific find their applications taking on aspects
of the traditional commercial job - large data files
are developed, input and output formats become
more critical, alphabetic codes and data are en
countered.

Actually, the subjects checked for the "pure"
scientific reader represent a bare minimum. Any
one who is or expects to be in a mixed environment
should read the entire manual.

SUMMARY OF THE USERIS GUIDE

The Installation Phase

The following listing of the material in this Guide
reflects the major grouping of installation events
and should provide an indication of the Guide1s com
prehensive nature. Comments have been added to
each listed item to relate the manner in which that
subject matter may be used.

• Preinstallation Planning - provides a proven
method of scheduling and reviewing installation
activities, specifically tailored to the 1130 user,

Section Subsections Page

01 00 I 00 03

and illustrates the points where management review
is most essential.

• Documenting Current Applications - concerns
the control and techniques that can be applied to the
documentation of existing procedures. Distinction
is made between manual operations and those already
mechanized.

• Some Preliminary Questions and Answers
Regarding Data Storage - considers the pros and
cons of using either cards or disk for data storage.
Also considers protecting your data - why and how
it should be protected.

• 1130 Application Design - includes card and
form design, record layouts, and flowcharts. The
elements of application design are made clear
through "live" illustrations, which are used through
out. This section also aids in the selection of the
right job-oriented programming language and thus
contributes to the effectiveness of the whole installa
tion effort.

• Program Development - devotes itself to con
verting designs for 1130 applications into tested,
debugged machine programs. The application dis
cussed throughout the Guide is provided to serve as
a teaching aid and time saver for the programmer.
Programming hints and aids are also provided.

• Testing Effectively - shows the methods an
installation should use in testing individual programs
and complete systems.

• Program Documentation - shows how a good
set of working documents, which a computer instal
lation must develop, can be created during the
development phases.

• Conversion - outlines the procedures required
to perform the cutover from your present system to
the 1130.

The Operations Phase

This portion of the Guide contains several sections
of interest to users who have completed the installa
tion phase:

• 1130 Computing System - contains a compre
hensive description of the 1130 System and a brief
description of each component.

• 1130 Disk Monitor System - discusses the
1130 Monitor in general and leads into the more
detailed material of the next three sections.

• Job Management - covers those features of
the Monitor that help you manage the job, or unit of
work.

• Disk Management - describes the layout of
disk storage, how you may use it, and how to get
the most out of it.

Section Subsections Page

01 00 I 00 04

• Core Storage Management - outlines the
facilities the Monitor gives you to manage core
storage with the LOCAL, SOCAL and LINK overlay
systems.

• FORTRAN - General and Commercial -
covers many aspects of FORTRAN that are of inter
est to all users, but with special emphasis on the
needs of commercial programmers. Use of the
Commercial Subroutine Package, arithmetic consid
erations, and core-saving tips are among the major
topics covered.

• Sorting with Your 1130 - describes the sort
ing process and some alternate approaches.

• Use of the Disk for Data Storage - describes
the way data is situated on the disk, and stresses
efficiency.

• Disk Data Files - Organization and Process
ing - continues the previous topic, discussing the
various file organization techniques and how the
processing sequence affects the choice of organi
ation.

• Improving Your System - Performance -
covers performance and how it is affected by (1) the
Monitor, (2) the programmer, and (3) the 1130
itself. Three case studies are presented to illus
trate various approaches to improving through-
put rates and run times.

CONTENTS

Section 01: Reader's Guide

Section 02: Table of Contents

Section 05: Preinstallation Planning
Section Contents. 05. 00. 00
Introduction. .. 05.01.00
General Planning. 05.10.00
Application and Conversion Planning. .. 05.20.00
Programming Planning. 05.30.00

Section 10: Documenting Current
Applications

Section Contents. 10. 00. 00
Introduction. .. 10. 01. 00
Documentation of Manual Systems. 10.10.00
Documentation of Punched Card
Systems. .. 10.20.00
Accounting Controls 10.30.00
Survey Questionnaires 10.40.00

Billing. .. 10.40.10
Accounts Receivable. 10.40.20
Sales Analysis. 10.40.30
Inventory. .. 10. 40. 40
Accounts Payable 10.40.50
Payroll 10.40.60

Manual System Documentation Example-
Payroll. 10.50.00

Introduction 10. 50. 01
Job Description. 10.50.10
Survey Form 10.50.20
Sample Documents 10.50.30
Systems Flowchart. 10.50.40

Section 15: Some Preliminary Questions
and Answers Regarding
Data Storage

Section Contents. 15.00.00
Introduction. .. 15.01. 00
Data -- On Disk or Cards? 15.10.00

General Considerations. 15.10.01
Flexibility in Order of Processing ... 15.10.10
Jobs Involving More than One File ... 15.10.20
Frequency of Changes to Your File. .. 15.10.30
Need for Inquiry into Your File. 15.10.40
Size of Your Data File. 15.10.50
Your Backup Requirements. 15.10.60
Record Size 15.10.70
Other Considerations.......... 15.10.80
Summary. 15.10.90

Section Subsections Page

02 00 I 00 01

How to Safeguard Your Disk Data
Files. .. 15.20.00

Introduction. .. 15.20.01
Know Your Data 15.20.10
Know What Can Happen to Your Data. . .. 15.20.20
Design an Accident-Insensitive
System.. 15.20.30
Detect Errors Before They Do
Damage 15.20.40
Plan Modest-Size, Modular
Programs 15.20.50
Always Back Up Your Disk Files with
a Duplicate Copy 15.20.60
Provide Tested and Documented
Recovery Procedures. 15.20.70

Section 20: 1130 Application Design
Section Contents. 20.00.00
Introduction. .. 20.01. 00
Accounting Controls 20.10.00

Review of Accounting Control
Principles. .. 20.10.10
More Specific Suggestions for
Document and Accounting Controls. .. 20.10.20

Form Design. .. 20. 20. 00
1130 Considerations. 20.20.10
Form Design Principles 20.20.20

Card Design o'.... 20.30.00
1130 Considerations. 20.30.10
Card Design Principles. 20.30.20

Design of Disk Data Files 20.40.00
Introduction 20.40.01
Data. .. 20.40.10
Field Size. .. 20.40.20
Data Sequence 20.40.30
File Organization 20.40.40
Record Format and Blocking. 20.40.50
File Processing. 20.40.60
File Control. .. 20.40.70

Payroll Example 20.50.00
Narrative 20.50.10
Card Forms and Console Keyboard
Input. 20.50.20
Console Printer and Line Printer
Forms for Output. 20.50.30
Disk Record Formats 20.50.40
System Flowchart. 20.50.50

Language Selection 20.60.00
Introduction 20.60.01
Programming Languages. 20. 60. 10

Section Subsections Page

02 00 J 00 02

Application Programs
Which Programming Language or
Application Program Should You
Use?

Section 25: Program Development
Section Contents
Introduction
Programming and Documentation
Standards
Program Change Authorization
Programming Aids

Documenting Variable Usage
Modular Programming

Programming Examples .•...........
Introduction
Example 1: File Creation
Example 2: Add Name to the File .. .
Example 3: Changes to the File
Example 4: Calculations and
Payroll Register•..............
Example 5: Check Writing
Example 6: Check Register
Example 7: 941 Report.

Section 30: Testing Effectively
Section Contents
Introduction
Testing Strategy
Testing Tactics
Testing Hints ..•....................
Summary

Section 35: Program Documentation
Section Contents
Introduction
Installation Manuals

Program Information Manual
Operation Manual

Documentation Examples
Payroll System -- Program
Information Manual•..
Payroll System -- Operation
Manual

Section 40: Conversion
Section Contents
Introduction
Planning for Conversion
Preparing for Conversion
Conversion Methods . 0 •••••••••••••••

Section 45: 1130 Computing System

20.60.20

20.60.30

25.00.00
25.01. 00

25.10.00
25.20.00
25.30.00
25.30.10
25.30.20
25.40.00
25.40.01
25.40.10
25.40.20
25.40.30

25.40.40
25.40.50
25.40.60
25.40.70

30.00.00
30.01. 00
30.10.00
30.20.00
30.30.00
30.40.00

35.00.00
35.01. 00
35.10.00
35.10.10
35.10.20
35.20.00

35.20.10

35.20.20

40.00.00
40.01.00
40.10.00
40.20.00
40.30.00

Section Contents 45.00.00
Introduction 45. 01. 00

The 1131 CPU
Console Printer and Keyboard
Data Switches
Console Display Lamps

Disk Storage
Printers ,.
Card Readers and Punches
Paper Tape Readers and Punches
Plotter
Graphic Display
Optical Readers
Storage Access Channel
Teleprocessing
The 1130 Configurator

Section 50: 1130 Disk Monitor System

45.05.00
45.05.10
45.05.20
45.05.30
45.10.00
45.15.00
45.20.00
45.25.00
45.30.00
45.35.00
45.40.00
45.45.00
45.50.00
45.55.00

General.................. 50.01.00

Section 55: The Monitor - Job Management
Section Contents 55.00.00
Introduction

Job and Subjob "
Stacked Jobs or the Input Stream
Disk Cartridge ID Checking

55.01.00

55.10.00
55.20.00
55.30.00

Section 60: The Monitor - Disk Management
Section Contents 60.00.00
Introduction
Disk Storage Layout

Introduction "
Cylinder 0
IBM Systems Area
Working Storage (WS)
User Area (UA)
Fixed Area (FX)
Summary

Increasing the Amount of Space Avail-
able to the User

Introduction
How Much Room Do I Have?
How Can I Make More Space
Available?
Summary

The Disk Utility Program
Introduction
Format of Material on the Disk
The Most Commonly Used DUP
Functions
Special Options -- Multiple Disk
1130 Users

60.01. 00
60.10.00
60.10.01
60.10.10
60.10.20
60.10.30
60.10.40
60.10.50
60.10.60

60.20.00
60.20.01
60.20.10

60.20.20
60.20.30
60.30.00
60.30.01
60.30.10

60.30.20

60.30.30

Section 65: The Monitor-Core Storage Management
Section Contents. 65. 00. 00
Introduction 65. 01. 00

The Logical Layout of Core Storage. .. 65.10.00
Basic
Flipper•....•......
SOCAL Area
LOCAL Area
Program or LINK Area
COMMON Area
Unused Area

Summary

Section 70: 1130 FORTRAN and the
Commercial Subroutines

Section Contents
Introduction
Arithmetic Considerations ...•.......

General
Integer Mode•..........
Real Mode
Decimal Mode
Summary

Overlapped Input/Output
Introduction•..................
The Commerical Subroutine Package
Overlapped I/O Subroutine
Using the Overlapped I/O System

The Interaction of Arithmetic and 1/0 ..
Character Handling Techniques

General
Code Conversion
Other Character Handling
Techniques

FOR TRAN Core Saving Tips
General
Reducing Program Size
Reducing Subroutine Requirements .. .

FOR TRAN Execution Times
Processing
Summary and Conclusion

Section 75: Sorting with Your 1130
Section Contents
Introduction
Some Preliminary Information
Alternate Approaches

Use of File Organization
Sorting Offline•.............

Methods of Sorting
Introduction•........
Internal Sorting Methods
External Sorting Methods

A Detailed Look at an 1130 Record
Sort
Summary

65.10.10
65.10.20
65.10.30
65.10.40
65.10.50
65.10.60
65.10.70
65.20.00

70.00.00
70.01. 00
70.10.00
70.10.01
70.10.10
70.10.20
70.10.30
70.10.40
70.20.00
70.20.01

70.20.10
70.20.20
70.30.00
70.40.00
70.40.01
70.40.10

70.40.20

70.50.00
70.50.01
70.50.10
70.50.20
70.60.00
70.60.10
70.60.20

75.00.00
75.01. 00
75.10.00
75.20.00
75.20.10
75.20.20
75.30.00
75.30.01
75.30.10
75.30.20

75.40.00
75.50.00

Section Subsections Page

02 00 I
Section 80: Use of the Disk for Data

Storage
Section Contents
General .. ,
The Physical, or Hardware,
Structure of the Disk
The Disk As Seen by the FORTRAN
Programmer •......................
The Interrelationship of the Physical
and Logical Structures

The DE FINE FILE Statement
The *STOREDATA and *FILES
Cards

Record Lengths and Sector
Utilization

A Trick to Get Long Records and/or
Better Packing

Computing Record Length
Shortening Record Length
Some Examples of Disk File Layout .. .

Example 1•.............
Example 2•.............
Example 3•..•..........

Section 85: Disk Data Files --
Organization and Processing

Section Contents•..........
General
Organization•....•...... 0 •••

General
Pure Sequential•.......•...
Indexed Sequential
Direct, or Random, Organizations .. .

Processing•..........
The Interaction of Organization and
Processing

Introduction•..........
Choosing the Organization

Section 90: Improving Your System --
Performance

Section Contents
General
The Role of the Monitor

General•...............
The Effect of the Monitor on
Performance .•........•...........

The Role of the Programmer
Planning for Performance
Organizing for Performance --
How to Use LOCAL's
Programming for Performance

The Role of the 1130 Hardware ..•....

00 03

80.00.00
80.01. 00

80.10.00

80.20.00

80.30.00
80.30.10

80.30.20

80.40.00

80.40.10
80.50.00
80.60.00
80.70.00
80.70.10
80.70.20
80.70.30

85.00.00
85001. 00
85.10.00
85.10.01
85.10.10
85.10.20
85.10.30
85.20.00

85.30.00
85.30.00
85.30.10

90.00.00
90.01.00
90.10.00
90.10.01

90.10.10
90.20.00
90.20.10

90.20.20
90.20.30
90.30.00

Section Subsections Page

02 00 I 00 04

General 90.30.01
Productive Time That Cannot Be
Improved by Hardware Changes 90.30.10
Productive Time That Can Be
Improved by Hardware Changes 90.30.20
Nonproductive Time That Can Be
Reduced by Hardware Changes 90.30.30

Some Case Studies of Performance
Improvements•................

General•...................
Case I
Case II
Case III•...............
Summary

90.40.00
90.40.01
90.40.10
90.40.20
90.40.30
90.40.40

Section 05: PREINSTALLATION PLANNING

CONTENTS

Introduction••.•..•.•.•••••••.••.
General Planning•........
Application and Conversion Planning .. .
Programming Planning

05.01. 00
05.10.00
05.20.00
05.30.00

Section

05

Subsections Page

00 I 00 01

INTRODUCTION

Now that your 1130 computing system is on order,
what should you do next? When the 1130 computing
system was proposed, mention was made that it
could perform both scientific and commercial jobs.
Some typical commercial jobs that may have been
considered at that time are:

• Payroll (used as an example later in the
manual) and labor distribution

• Accounts receivable
• Accounts payable
• Sales analysis
• Inventory control
Planning the use of the 1130 for specific applica

tions such as the above leads to other questions that

Section Subsections Page

05 01 I 00 01

need answers. How will the personnel for your
installation be selected? When will your applica
tions be implemented on the 1130? How will this
job of implementation be carried to completion? In
other words, you need a plan to carry out the in
stallation of this new system.

In answer to the first question, selection of
personnel, your IBM representative can supply you
with the Programmer's Aptitude Test, which will
help you with some of the selection. (It may be that
you will find these people in your company, but you
may also find it necessary to hire someone outside.)

The second and third questions, when will the
implementation be done and how, may be answered
by your general (installation) plan, which is dis
cussed next.

Section Subsections Page

05 10 I 00 01

GENERAL PLANNING

The General Installation Plan is made up of two
items: the Activity List (Figure 05.1) and the
Activity Time Estimates (Figure 05.2)

Your Activity List contains the major areas of
concentration. It answers the questions "who" and
"what". Your Activity Time Estimates answers
the question "when". However, you still do not
have enough detail.

Before going into more detail, go back and be
sure the two lists are fully understood.

The Activity List contains the major installation
activities you need to complete a successful instal
lation. The first two areas, Installation Organiza
tion and Document Current Processes, although not
end products, are most important. They are the
foundation of your installation. The remaining
items on the list are:

• Application Design
• Operations Planning
• Physical Planning
• Conversion and Applications Complete
• Evaluation
These will go smoothly if you ensure that the

first two areas are complete.
Your Activity Time Estimates makes this point

clear; notice that the early parts of your installation
efforts, as mentioned previously, must all have
start dates. If your foundation is firm and on
schedule, the later installation activities will also
be smooth and on schedule.

The later installation activities require more
detail. You may find these items helpful in planning
applications other than those listed.

GENERAL INSTALLATION PLAN
ACTIVITY LIST

I nstallation Organization
Select personnel:

Management
Programmers
Operators

Education
Train management
Train programmers
Train operators

Document Current Processes
Document current:

Payroll and labor distribution procedures
Accounts receivable procedures
Accounts payable procedures
Sales analysis procedures
I nventory control procedures

Determine 1130 documentation standards
Schedule application development and conversion
Management review

Application Design
Application development:

Payroll and labor distribution
Accounts receivable
Accounts payable
Sales analysis
I nventory control

Convert:
Payroll files
Accounts receivable files
Accounts payable files
I nventory files

Operation Planning
Establish operating schedules and procedures

Physical Planning
Physical layout
Management review
Order cables
Physical alterations

System Delivered

Conversion and Applications Complete

Entire Systems Evaluation

Figure 05. 1.

Section Subsections Page

05 10 I 00 02

APPLICATION DEVELOPMENT PLAN

ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Revised
Duration Start (5) or Dates Dates # 1 Dates # 2

in Finish IF)
Activity Weeks Date Start Finish Start Finish Start Finish

Figure 05.2.

Section Subsections Page

05 20 I 00 01

APPLICA TION AND CONVERSION PLANNING

Figure 05.3 is the Activity List for your Applica
tion Development Plan. This corresponds to the
Activity List for your General Installation Plan.
Similarly, Figure 05.4 is the Activity Time Esti
mates for your Application Development Plan.

The Application Development Plan is, in general,
composed of three items:

1. Analysis
a. Review of present system
b. Designing reports and card layouts
c. Flowcharting

2. Evaluation
a. Establishinent of controls

b. Management review
3. Programming of the application
The most important steps in this process are,

once more, the earliest: Analysis and Evaluation.
If these items are complete, that is, if the indiv
iduals and groups involved agree with what you
propose, the remainder of the installation effort
will be relatively free from serious problems.

Figures 05.5 and 05.6 are, respectively, the
Activity List and Activity Time Estimates for the
Conversion Plan.

Notice that the discussion of the Application
Development Plan so far has not included program
ming. The question, how will the programming be
carried to completion, will be discussed next.

APPLICATION DEVELOPMENT PLAN

ACTIVITY LIST

For each application:

Review present system

Design reports and card layouts

Flowchart

Establish controls

Management review

*Program development

*Further detail

Figure 05.3.

Duration
in

Activity Weeks

Payroll and Labor
Distribution

Review present system 2.0
Design reports and
card layouts 2.0
Flowchart 1.5
Establish controls 1.0
Management review 1.0

*Program development 7.0
Accounts Receivable

Review present system 1.5
Design reports and
card layouts 2.0
Flowchart 1.0
Establish controls 1.5
Management review 1.0

*Program development 5.0
Accounts Payable

Review present system .5
Design reports and
card layouts 2.0
Flowchart 1.0
Establish controls .5
Management review 1.0

*Program development 6.0
Sales Analysis

Review present system 1.0
Design reports and
card layouts 1.0
Flowchart 1.0
Establish controls .5
Management review 1.0

*Program development 4.0
I nventory Control

Review present system 1.0
Design reports and
card layouts 2.0
Flowchart 2.0
Establish controls .5
Management review 1.0

*Program development 7.0

* Further detail (Figure 05.8)

Figure 05.4.

Section Subsections Page

05 20 I 00 02

APPLICATION DEVELOPMENT PLAN

ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Revised
Start (S) or Dates Dates # 1 Dates #2
Finish (F)

Date Start Finish Start Finish Start Finish

Section

05

Subsections Page

20 I 00 03

CONVERSION PLAN
ACTIVITY LIST

For each application (where applicable):

Develop conversion procedures

Train conversion personnel

Convert files

Parallel or pilot run

Train other departments

Figure 05.5

Duration
in

Activity Weeks

Develop data preparation and
card punching procedures 1.0

Develop conversion control
plans and procedures 1.0

Train conversion personnel 2.0
Convert payroll and labor

distribution files 2.0
Convert accounts receivable

files 4.0
Convert accounts payable files 4.0
Convert inventory files 6.0
Train other departments --

ali applications 4.0
Parallel runs -- payroll and

labor distribution 4.0
Parallel runs -- accounts

receivable 4.0
Parallel runs -- accounts

payable 4.0
Parallel runs -- inventory

control 2.0
TOTAL CONVERSION 10.0

Figure 05.6.

CONVERSION PLAN

ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Revised
Start (S) or Dates Dates # 1 Dates # 2
Finish (F)

Date Start Finish Start Finish Start Finish

(F) - 4/8/68

PROGRAMMING PLANNING

The Activity List and Activity Time Estimates for
the Program Development Plan (Figures 05.7 and
05.8 respectively) complete the planning.

This is the detailed level of planning on which
your installation depends. For this reason you must
have control over the progress of these activities.
The Progress Charts for Program Development
(Figure 05.9) will provide the necessary control.
Used in conjunction with the Activity Time Esti
mates for the Program Development Plan, these
charts show you, at all times, the progress of
your installation effort. You can determine whether
it is ahead of schedule, on schedule, or behind
schedule and requiring action.

Section

05

PROGRAM DEVELOPMENT PLAN
ACTIVITY LIST

For each application:

Define program

Flowchart

Code

Desk-check and list

Prepare test data

Test

Production test

Subsections

30 I 00

Complete program documentation

Figure 05. 7.

Page

01

Section Subsections Page

05 30 I 00 02

PROGRAM DEVELOPMENT PLAN

ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Revised
Duration Start (S) or Dates* Dates # 1* Dates # 2*

in Finish (F)
Activity Weeks Date Start Finish Start Finish Start Finish

Define PAY 01 (Payroll) .1
Flowchart PAY 01 .1
Code PAY 01 .1
Desk-check, list PAY 01 .1
Test data PAY 01 .1
Test PAY 01 .2
Production test PAY 01 .2
Complete documentation PAY 01 .2

Define PAY 02 (Payroll) 1.0
Flowchart PA Y 02 .5
Code PAY 02 .8
Desk-check, list PAY 02 .2
Test data PAY 02 .2
Test PAY 02 1.0
Production test PAY 02 1.0
Complete documentation PAY 02 .5

Define PAY 03 (Payroll) .5
Flowchart PAY 03 .2
Code PAY 03 .5
Desk-check, list PA Y 03 .1
Test data PAY 03 .1
Test PAY 03 .2
Production test PAY 03 .2
Complete docu mentation PAY 03 .2

Define PAY 04 (Payroll) .5
Flowchart PAY 04 .2
Code PAY 04 .5
Desk-check, list PAY 04 .1
Test data PAY 04 .2
Test PAY 04 .2
Production test PAY 04 .2
Complete documentation PAY 04 .2

Define PAY 05 (Payroll) .5
Flowchart PAY 05 .2
Code PAY 05 .5
Desk-check, list PAY 05 .1
Test data PAY 05 .2
Test PAY 05 .2
Production test PAY 05 .2
Complete documentation PAY 05 .2

Define PAY 06 (Payroll) .5
Flowchart PA Y 06 .2
Code PAY 06 .5
Desk-check, list PAY 06 .1
Test data PAY 06 .2
Test PAY 06 .2
Production test PAY 06 .2
Complete documentation PA Y 06 .2

Define PAY 07 (Payroll) .5
Flowchart PAY 07 .2
Code PAY 07 .5
Desk-check, list PAY 07 .1
Test data PAY 07 .2
Test PAY 07 .2
Production test PAY 07 .2
Complete documentation PA Y 07 .2

*Only one start and finish date should be supplied for each program being developed.

Figure 05.8 (Sheet 1 of 5).

Section Subsections Page

05 30 I 00 03

PROGRAM DEVELOPMENT PLAN

ACTIVITY TIME ESTIMATES

"Must'" Original Schedule Revised Revised
Duration Stant (S) or Dates* Diltes # 1* Dates # 2'

in Finish ('F)
Activity Weeks Date Stant Fi'n,istl Start Finish Start Finish

Define PAY 08 (Payroll) .5
Flowchart PAY 08 .3
Code PAY 08 .5
Desk-check, list PAY 08 .1
Test data PAY 08 .2
Test PAY 08 .2
Product test PAY 08 .2
Complete documentation PAY 08 .1

Define PLD 01 (Labor Dist.) .8
Flowchart PLD 01 .5
Code PLD 01 .5
Desk-check, list PLD 01 .2
Test data PLD 01 .3
Test PLD 01 .5
Production test PLD 01 .2
Complete documentation PLD 01 .2

Define PLD 02 (Labor Dist.) .5
Flowchart PLD 02 .2
Code PLD 02 .5
Desk-check, list PLD 02 .1
Test data PLD 02 .2
Test PLD 02 .2
Production test PLD 02 .2
Complete documentation PLD 02 .2

Define AR 01 (Accts Rec) .1
Flowchart AR 01 .1
Code AR 01 .1
Desk-check, list AR 01 .1
Test data AR 01 .1
Test AR 01 .2
Production test AR 01 .2
Complete documentation AR 01 .2

Define AR 02 (Accts Rec) .8
Flowchart A R 02 .5
Code AR 02 .5
Desk-check, list AR 02 .2
Test data AR 02 .3
Test AR 02 .5
Production test AR 02 .2
'Complete documentation A R 02 .2

Define AR 03 (Accts Reel 1.0
Flowchart AR 03 1.0
Code AR 03 .7
Desk-check, list AR 03 .2
Test data AR 03 .2
Test AR 03 1.0
Production test AR 03 1.0
Complete documentation AR 03 .2

Define AR 04 (Accts Rec) .5
Flowchart AR 04 .2
Code AR 04 .4
Desk-check, list AR 04 .1
Test data AR 04 .1
Test AR 04 .5
Production test AR 04 .5
Complete documentation AR 04 .2

*Only one start and finish date should be supplied for each program being developed.

Figure 05.8 (Sheet 2 of 5).

Section Subsections Page

05 30 I 00 04

PROGRAM DEVELOPMENT PLAN

ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Revised
Dw,ration Start (S) or Dates * Dates 1+ 1* Dates # 2*

in Finish (F)
Activity Weeks Date Start Finish Start Finish Stan Finish

Define AR 05 (Accts Reel 1.0
Flowchart AR 05 1.0
Code AR 05 .7
Desk-check, list AR 05 .2
Test data AR 05 .2
Test AR 05 1.0
Production test AR 05 1.0
Complete documentation AR 05 .2

Define AR 06 (Accts Rec) .5
Flowchart AR 06 .5
Code AR 06 .2
Desk-check, list AR 06 .1
Test data AR 06 .2
Test AR 06 .4
Production test AR 06 .4
Complete documentation AR 06 .2

Define AP 01 (Accts Pay.) .1
Flowchart AP 01 .1
Code AP 01 .1
Desk-check, list AP 01 .1
Test data AP 01 .1
Test AP 01 .2
Production test AP 01 .2
Complete documentation AP 01 .2

Define AP 02 (Accts Pay.) .5
Flowchart AP 02 .3
Code AP 02 .2
Desk-check, list AP 02 .1
Test data AP 02 .1
Test AP 02 .2
Production test AP 02 .2
Complete documentation AP 02 .2

Define AP 03 (Accts Pay.) .4
Flowchart AP 03 .2
Code AP 03 .2
Desk-check, list AP 03 .1
Test data AP 03 .1
Test AP 03 .2

Production test AP 03 .2

Complete documentation AP 03 .2

Define AP 04 (Accts Pay.) .5
Flowchart AP 04 .4
Code AP 04 .2
Desk-check, list AP 04 .1
Test data AP 04 .1
Test AP 04 .2
Production test AP 04 .2
Complete documentation AP 04 .2

Define AP 05 (Accts Pay.) .4
Flowchart AP 05 .2
Code AP 05 .2
Desk-check, list AP 05 .1
Test data AP 05 .1
Test AP 05 .2
Production test AP 05 .2
Complete documentation AP 05 .2

*Only one start and finish date should be supplied for each program being developed.

Figure 05.8 (Sheet 3 of 5).

Section Subsections Page

05 30 I 00 05

PROGRAM DEVELOPMENT PLAN

ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Revised
Duration Start (S) or Dates* Dates ~ 1* Dates # 2~

in Finish IF)
Activity Weeks Date Start Finish Start Finish Start Finish

Define AP 06 (Accts Pay.) .5
Flowchart AP 06 .3
Code AP 06 .5
Desk-check, list AP 06 .1
Test data AP 06 .2
Test AP 06 .4
Production test AP 06 .2
Complete documentation AP 06 .2

Define AP 07 (Accts Pay.) .5
Flowchart AP 07 .4
Code AP 07 .5
Desk-check, list AP 07 .1
Test data AP 07 .1
Test AP 07 .4
Production test AP 07 .2
Complete documentation AP 07 .2

Define INV 01 (Inventory) .1
Flowchart INV 01 .1
Code INV 01 .1
Desk-check, list INV 01 .1
Test data JNV 01 .1
Test INV 01 .2
prod\.lction test INV 01 .2
Complete doc\.lmentation I NV 01 .2

Define INV 02 (Inventory) .4
Flowchart INV 02 .2
Code INV 02 .2
Desk-check, list INV 02 .1
Test data INV 02 .1
Test INV 02 .2
Production test INV 02 .2
Complete documentation INV 02 .2

Define INV 03 (Inventory) .4
Flowchart INV 03 .4
Code INV 03 .4
Desk-check, list INV 03 .1
Test data I NV 03 .1
Test INV 03 .2
Production test I N V 03 .4
Complete documentation INV 03 .2

Define INV 04 (Inventory) .5
Flowchart I N V 04 .4
Code INV 04 .4
Desk-check, list INV 04 .1
Test data INV 04 .1
Test INV 04 .2
Production test I N V 04 .2
Complete documentation INV 04 .2

Define INV 05 (Inventory) .4
Flowchart INV 05 .2
Code INV 05 .2
Desk-check, list INV 05 .1
Test data INV 05 .1
Test INV 05 .1
Production test INV 05 .2
Complete documentation INV 05 .2

*Only one start and finish date should be supplied for each program being developed.

l7igure 05.8 (Sheet 4 of 5).

Section Subsections Page

05 30 I 00 06

PROGRAM DEVELOPMENT PLAN

ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Revised
Duration Start (S) or Dates* Dates # 1* Dates # 2"

in Finish (F)
Activity Weeks Date Start Finish Start Finish Start Finish

Define INV 06 (Inventory) .4
Flowchart INV 06 .2
Code INV 06 .2
Desk-check, list INV 06 .1
Test data INV 06 .1
Test INV 06 .1
Production test I NV 06 .2
Complete documentation INV 06 .2

Define SA 01 (Sales Anal.) .1
Flowchart SA 01 .1
Code SA 01 .1
Desk-check, list SA 01 .1
Test data SA 01 .1
Test SA 01 .2
Production test SA 01 .2
Complete documentation SA 01 .2

Define SA 02 (Sales Anal.) 1.0
Flowchart SA 02 .5
Code SA 02 1.0
Desk-check, list SA 02 .1
Test data SA 02 .1
Test SA 02 .3
Production test SA 02 .4
Complete documentation SA 02 .2

Total, application development 16.0

*Only one start and finish date should be supplied for each program being developed.

Figure 05.8 (Sheet 5 of 5).

PERCENTAGE COMPLETED

Start 11/20 Start 12/4 All

Payroll
AIR Applications

Finish 2/3 Finish 2/3 Start:
I I

11/20/67 ~ 1 1.1

PAY PAY PAY PAY All A/R All Finish:
Activity

01 02 03 04 Payroll 01 A/R 3/11/68
, I II I I

100 100
~J ~ , ..

Define program 100 50 90 100 70 40

Document logic 100 100 100 50 60 100 50 20

Code 100 70 40 20 5

Desk-check 100 10 5

Prepare test data 100 100 20 30 30 10

Test 100
10 5

Production test

Complete documentation 90 20 20 20 30 50 50 10
I t I ~, L

All activities above ' , " 1 " 10' 85 49 33 15 31 35

Figure 05.9. Program development -- progress chart

Section 10: DOCUMENTING CUR.RENT
APPLICA TIONS

CONTENTS

Intr<;>duction
Documentation of Manual Systems
Documentation of Punched Card
Systems•.......................
Accounting Controls
Survey Questionnaires

Billing
Accounts Receivable
Sales Analysis
Inventory

10.01.00
10.10.00

10.20.00
10.30.00
10.40.00
10.40.10
10.40.20
10.40.30
10.40.40

Section Subsections Page

10 00

Accounts Payable
Payroll

Manual System Documentation
Example - Payroll

Introduction
Job Description
Survey Form
Sample Documents ...•...........
Systems Flowchart of Weekly
Procedure

I 00 01

10.40.50
10.40.60

10.50.00
10.50.01
10.50.10
10.50.20
10.50.30

10.50.40

INTRODUCTION

Since the cornerstone of your installation effort,
planning, is now complete, the time to begin docu
menting is at hand.

If you were going to remodel a building, it would
be very important to have the plans of the structure
on which you would be working. You could, of
course, do the job without the plans, but much time
would be wasted in trial and error as you proceeded.

The same situation exists when you are convert
ing an application to the 1130. Proper documenta
tion of the present system will guide you rapidly and
efficiently into the new solution. Rather than
spending your time" rediscovering" the old proce
dures, you can spend it in improving them.

Depending on whether you are converting from a

Section Subsections Page

10 01 I 00 01

manual system or a punched card system, one of the
following two subsections will help you plan this
phase of your preinstallation effort:

Documentation of Manual
Systems (10. 10. 00)

Documentation of Punched
Card Systems (10.20.00)

These introductory subsections are followed by a
discussion of the ways in which your current ac
counting controls can be documented (10.30.00).
Questionnaires used for documenting manual sys
tems are then illustrated (10.40. 00).

A payroll example, which is used also in later
sections, is introduced in 10.50.00. This consists
of:

Job description
Survey forms
Sample documents
Systems flowchart

Section Subsections Page

10 10 I 00 01

DOCUMENTATION OF MANUAL SYSTEMS

Follow these steps if you currently do not use
punched card equipment, or if you are planning to
put additional applications on the computer that are
not now mechanized:

1. Ask questions about details of the job as it is
being done now.

2. Record the procedure by means of a flow
chart.

3. Gather samples of all the documents being
used.

Survey Notes. A set of questionnaires
(10.40.00) is included that assists in surveying the
most common data processing procedures: billing,
accounts receivable, sales analysis, inventory,
accounts payable, and payroll. No questionnaire
can cover all the details of, for instance, all billing
procedures, but a start can be made that will lead
you to discover and analyze the unique elements
that have to be accounted for in your own system.
Before starting your survey with a questionnaire,
review the questions and determine which ones you
already know the answers to, those you want to
check out, and those you know are not applicable to
your company. Then add questions of your own.

Where none of these survey questionnaires are
applicable, record on plain paper the important
elements of the system~ answering the questions
"who" ~ "what", "when", "why", and "how". Notice
the amount of detail called for by the questionnaires,
and get down to that level in your own surveys.

You will often find that the people most familiar
with the details of the job do not see the forest for
the trees, or --to use a more precise metaphor -
they think they have been looking only at elms when
some of the trees have been maples. Wherever
possible, count the files yourself (rough counts are
usually adequate), look at the completed (not the
blank) documents, and talk to the man who actually
does the work, rather than taking someone else's
word for what he does.

Flowcharts. As an understanding of the proce
dure is developed, you should draw flowcharts in
which input/output documents are represented by
one kind of block, processing or handling steps by
another, and the flow of work by arrows, as shown
in Figure 10. 1.

Other symbols can be used for certain variations
of the basic symbols; these are discussed in
greater detail in the IBM manual Flowcharting
Techniques (C20 - 8152) and illustrated in the man
ual examples in this section.

Sample Documents. Samples of each document
used in the procedure should be gathered. Where
pOSSible, filled-in documents should be picked up,
as well as blank documents on which the people
closest to the work have made notes explaining how
the documents are completed.

In other words, you should have at least two
samples of each document in the system:

1. A blank document. This should have the
following information written on it:

a. The volume of these documents produced
each day, week, or month -- both maxi
mum and average.

b. Who produces them.
c. Where they come from, and where they

go, copy by copy.
d. For each different kind of information, or

"field", all possible varieties of infor
mation that can be entered. State how
long the field must or can be, and whether

Symbols

Flow direction line

Processing

Flow direction line

Figure 10.1.

Example

Prepare
Employee

Master Payroll
Cards

Visually
Verify

and File

each individual "position" or character in
the field is strictly numeric, is some
times alphabetic, may be blank, may con
tain special characters $. , '*0=+-&/,
or has any other restrictions on it.

e. For each field, whether the information
in it has limits. For instance, a weekly
salary field could go up to $999.99 and
still consist of only five digits, but you
may want to pull out all of those that go
above $500.00 for special handling.

f. For each field, its origin. If it has been
calculated, show the formula. If it came
from another document, state which one,
and whether it has been altered in the
process. Beware of fields that have the
same name but are slightly different,
such as date of receipt, date of entry,
date of transcription, date of processing.

2. At least one filled-in document. The filling -
in should be done by the man who normally per-

Section Subsections Page

10 10 I 00 02

forms the job, and he or you should annotate the
reasons for and restrictions on each step of his
work. Make sure that all possible ways of filling in
the document have been illustrated.

Summary. When the documentation of manual
systems has been completed, you should have at
hand:

1. Flowcharts
2. Sample documents
3. Survey notes, including:

a. Complete lists of codes
b. Current standards
c. Procedure descriptions, where the flow-

chart is not self-explanatory
d. Reasons for current methods
e. Accounting control procedures
f. Any other facts they may influence or

cause restrictions on the wayan applica
tion may be designed.

All these survey notes should be cross-refer
enced to the flowcharts and sample documents.

Section Subsections Page

10 20 I 00 01

DOCUMENTATION OF PUNCHED CARD SYSTEMS

Follow these steps in documenting your present
punched card applications:

1. Make a list of all your control panels.
2. Arrange the list by job step within applica

tion. For instance, a payroll application, like the
one in 10.50.00, might consist of panels to perform
the balancing of current earnings cards to time
cards, matching current deductions cards to earn
ings cards, preparing the deduction register, and
all the remaining job steps.

3. Obtain copies of all the reports that have
been run using these panels.

4. Collect your current spacing charts and card
layouts and make a checklist of them. Use your
list of control panels to make sure that you have
gathered spacing charts and card layouts for all
the operations. If not, put them on your checklist,
and either find them or get them made up.

5. Check your spacing charts against the cur
rently run copies of your reports, and bring your
spacing charts up to date. Mark them on your
checklist as they are updated.

6. Check your card layouts against your proce
dures as you run them. This will allow you to up
date both the card layouts and the written procedures

to conform with your current actual practice. Mark

the card layouts on your checklist as they are up

dated.
7. Obtain a current schedule of jobs. Use your

list of control panels to verify the schedule.
Having finished these steps, you should have

current and accurate copies of spacing charts and
card layouts. If you do not, your 1130 application
design and program development will suffer, and
you will be forced to retrace your steps to get up-

dated facts. The surveys (in 10.40.00) will either
verify the accuracy of your documentation or in
dicate discrepancies that need to be checked further.

Next, since you have all the information at hand,
you can develop the following items:

1. Updated flowcharts of your applications
2. Job descriptions
3. Calculation descriptions and formulas
These items, if prepared thoroughly (and this is

a very important "if"), can serve as the basis for
your entire 1130 application design effort.

Summary. The important thing in documenting
any procedure is that all the information be made
available to the programmer in concise, easily
understood form.

You will find that these documenting methods
will be very useful in analyzing all the procedures
in your business. By pinpointing bottlenecks, areas
of duplication, etc., they can provide a means of
improving those procedures that you do not plan to
convert immediately to the new system.

Once a program has been completed for an appli
cation, the documentation will become a permanent
record of the procedure. It can be used, for
example, as:

1. A source of information for implementing
future changes.

2. An education device for familiarizing new
operators and management personnel with the pro
cedures.

3. A source of information for your auditors,
who must be familiar with your procedures.

Start documenting your present applications now.
Once the application is documented, programmed,
and operating on your new system, keep the docu
mentation up to date. It will contribute toward an
efficient and productive data processing installation.

ACCOUNTING CONTROLS

Understanding your present controls will help you
design practical and effective controls for your new
system.

Control procedures can be documented in two
places:

Section Subsections Page

10 30 I 00

1. On your flowcharts, where, for instance,
control tapes are balanced to accounting machine
totals.

2. With the survey questionnaires or informal
narratives.

01

For a discussion of various kinds of accounting
controls that may appear in your system, refer to
section 20.10.00.

Section Subsections Page

10 40 J 10 01

SURVEY QUESTIONNAIRES

Survey Questionnaire - Billing

PROCEDURES

1. Bill before shipment or after?

2. Reasons

3. Is completion billing used?

4. Optimum time from order to shipment

5. Are shipments from stock? What percent?

(a) Buy outside %

(b) Manufacture? Drop Ship?

6. Do you send confirmation of order to customer? When?

7. Sold-to and ship-to information required on invoices? % of invoices?

TERMS

1. Standard by customer, variable by customer, or other

2. Do salesmen have protected customers?

3. Pricing flexible - changed to meet competition in field?

4. How many must be acknowledged?

5. Cash sales - volume and how handled?

ITEM QUANTITIES

1. Whole numbers, fractions, or decimals?

2. Will you print quantity ordered, quantity shipped, back ordered?

3. Largest quantity sold (include decimals)

4. Unit of issue

PRICES

1. Standard, volume determines, customer class, variable? How many prices?

2. Percent of billing lines with variable pricing daily

Billing Questionnaire (cont'd)

3. Variable pricing authorized by?

4. Per CM, dz, gross, bd ft, other?

5. Largest unit price

6. Fractional prices

DISCOUNTS

1.

2.

3.

4.

Line item only? Variable or standard?

What governs discounts to customers?

(a) Customer

(b) Type of 'merchandise

(c) Quantity of merchandise

(d) Salesman's quoted price

(e) Total of invoice

(f) Combination of above

(g) Other

Group discounts

Discounts on total invoice?

(a) Standard by customer

(b) V ariab Ie

5. Should discount amount print on invoice?

6. Chain discounts?

(a) Line items

(b) Groups

(c) Invoice totals

7. Chain discount examples

8. Terms or cash discount. Should it be calculated?

Section Subsections Page

10 40 I 10 02

Section Subsections Page

10 40 I 10 03

Billing Questionnaire (cont'd)

COSTING

1. Standard, percent, other?

2. Any lot or job costs?

TAXES

1. How many states?

2. What % of items taxable?

3. Are selected items on an invoice taxable?

4. Other taxes - excise, etc.

5. Whole percents, fractional?

FREIGHT

1. Based upon weight? Volume? Explain

2. Examples of computation

3. Prepaid percent - collect percent

4. Is freight cost known at billing time?

5. At prebilling time?

6. Allowances - examples. How computed?

7 . Flat rates?

8. Minimums?

9. Do items have standard weights?

COMMISSIONS

1. Paid on:

(a) Gross profit

(b) Gross invoice

(c) Variable each line

Billing Questionnaire (cont'd)

(d) Total customer purchase

(e) Other

2. Percentage fixed by:

(a) Product?

(b) Salesman?

(c) Customer?

(d) Volume?

3. If volume, what are the breaks in computing rate?

FORMS INFORMATION

1. Use of copies 1
2

3
4
5
6

7
8
9

10

2. If you prebill, could invoice serve as picking document? As bill of lading?

3. Average number of body lines

4. Minimum depth of form

5. Preprint invoice number? Why?

6. Are back orders noted on invoice?

7. What is the length of item descriptions?

(a) Number and type of special characters included in descriptions?

(b) Can description be conveniently abbreviated?

8. Discount on line item?

9. Largest quantity shipped? Largest unit price? Largest extension?

Section Subsections Page

10 40 I 10 04

Section Subsections Page

10 40 J 10 05

Billing Questionnaire (cont'd)

10. Cash discount printed on invoice? Terms?

11. Length of ship-tol sold-to lines

12. Cost extended - line items?

13. Do credit memos and invoices use same format?

14. Are contractual notes typed on irivoice or credit memo?

(a) If yes, what is longest note?

(b) What is the incidence of use (percent) of total invoices per day?

15. Multi-page invoice? Frequency

16. What class of products is most active? At what time of the year?

17. Are the products of a seasonal nature? When? What is increase in orders?

18. What items make up largest percentage of total sales volume?

19. How much item information is needed on the order? On the invoice? Can it be typed later?

20. How are items coded?

(a) What is the length of part number or code?

(b) Numeric or alphameric?

21. What procedure is being followed as to partial shipments?

(a) How prevalent are they?

(b) Are shipments made daily to all areas? If not, what is the policy regarding shipments?

(c) Is warehouse sequence of items on the order important?

22. Describe miscellaneous data required.

Section Subsections Page

10 40 I 10 06

Billing Questionnaire (cont'd)

ANALYSIS

1. Time from receipt of order to billing of customer

2. Number and jobs of people performing order writing and billing

3. Type of machines and equipment presently being used

CONTROL AND EDITING INFORMATION

1. What is the editing procedure for invoicing? Who is responsible for final approval of invoice?

2. What controls are now established for accuracy?

3. Do you have subsidiary branch locations?

(a) If so, what accounting functions are they performing?

(b) How many invoices is each branch preparing?

(c) Would it be more advantageous to centralize accounting operations, especially billing?

Section Subsections Page

10 40 I 20 01

Survey Questionnaire - Accounts Receivable

PROCEDURES: CASH

1. List all cash credit posting media

2. What discounts are offered? How are they handled?

3. Cash receipts and deposit slip prepared:

(a) Separately

(b) Simultaneously

4. How often do payments include copy of invoice or statement or identification?

5. What percentage of payments are nonstandard?

6. What is policy on overpayments?

7. Can cash be applied to oldest balance or must it be selective?

8. What accounts are involved?

9. Can distribution be made at cash posting time?

10. How many ledger controls are carried?

(a) How are control groups determined?

(b) Illustrate divisions

11. How often is a trial balance taken?

(a) Can trial balance be alternated by control?

(b) Could trial balance, aging, and customer purchasing analysis be prepared simultaneously?

12. When are statements mailed?

13. Attach samples of accounting (A/C) journal used, revised to include additional information you require.

14. Volume and reasons for credit memos

Accounts Receivable Questionnaire (cont'd)

FORMS CONSIDERATIONS - STATEMENTS

1. How many accounts in ledgers?

(a) Total active

(b) Total inactive

(c) Does total fluctuate or remain static?

(d) How are they coded?

2. Open item or balance forward?

3. What percent of customers pay by:

(a) Statement?

(b) Invoice?

(c) Time pay?

4. How many statements mailed?

(a) Total

(b) Weekly

(c) Monthly

(d) Are they mailed to all accounts?

5. If time pay is allowed, explain circumstances.

6. Do statements show:

(a) All transactions for the month?

(b) Open items only?

(c) Aged balances only?

(d) Aged transactions?

7. Any objection to aged balances only, with no reference?

8. What description shows on statement?

Section Subsections Page

10 40 I 20 02

Section Subsections Page

10 40 I 20 03

Accounts Receivable Questionnaire (cont'd)

9. Daily inquiries into customer records?

10. Extent of bad debts

11. Attach a sample statement, complete with various postings.

LEDGER RECORDS

1. What description is shown on ledgers?

2. Credit limit on each card?

3. Purchases to date? Is this desirable?

4. Is aging by invoice? Oldest dollar amount?

5. Attach a sample card, complete with typical postings.

CREDIT REFERENCE

1. Does credit department refer to ledgers? How often?

2. Is a credit record other than ledger kept? If so, attach a sample.

3. When does an account become delinquent?

4. How are delinquents followed?

5. Do you suspend credit buying of delinquent accounts? If so, how is it restored?

6. Are accounts aged?

(a) What breakdowns?

(b) '¥hen?

(c) How often?

ANALYSIS

1. Number of people involved

2. Type of equipment involved

Section

Survey Questionnaire - Sales Analysis

1. Information required by:

(a) Customer

(b) Item

(c) Area

(d) Salesman

(e) Class of trade

2. What reports should management be receiving that they are not now getting?

3. Report information

(a) What information is required on each report?

(1) What records or registers are used to substantiate reports?

(2) What can be added to present reports to make them more meaningful?

(b) Who receives each report?

(c) By what priorities are reports prepared?

(d) Are cost analysis reports generated?

(1) How often?

(2) To whom?

(3) What information?

(4) By what classification?

(e) Are gross reports prepared?

(1) By what classification?

(f) Are comparative sales analysis reports generated?

(1) What period are the results based on?

(g) Are salesman commission statements prepared?

(1) How many salesmen?

10

Subsections Page

40 I 30 01

Section Subsections Page

10 40 I 30 02

Sales Analysis Questionnaire (cont'd)

4. Control information

(a) What are controls and editing procedures for above reports?

5. What is present cost to derive these reports?

Survey Questionnaire - Inventory

1. What percentage of inventory items account for:

(a) High activity?

(b) Medium activity?

(c) Low activity?

%

%

%

Section

10

Subsections Page

40 I 40 01

2. Does the present coding structure have any real significance, such as block code, significant digit, etc. ?

(a) Give example

(b) Are bin locations assigned in sequence by part number?

3. How many transactions are there of each type?

(a) Receipts and returns

(b) Issues

(c) Miscellaneous

4. Are standard or economic order quantities used? If so, how are they determined?

(a) Do you order by vendor group or as required?

5. Does the inventory record reflect planned requirements, such as:

(a) On-hand balance

(b) On-order balance

(c) Reserved balance

(d) Available balance

(e) Minimum balance

(f) Usage data, etc.

(g) Maximum balance

6. What inventory costing method is used?

(a) Average

(b) Last in, first out (LIFO)

Section Subsections Page

10 40 I 40 02

Inventory Questionnaire (cont'd)

(c) First in, first out (FIFO)

(d) Standard

7 . What is the frequency of inventory cost changes? What is the frequency of inventory sales price
changes?

(a) How often are price changes of finished goods made?

(b) Are they made by product line or by item?

8. If partial shipments are made, what is the procedure for handling them?

9. Is there a back-order problem? If so, how is it controlled?

(a) What percentage of orders have items back-ordered, substituted or canceled?

(b) How much $ volume do you lose?

10. How and when is a physical inventory taken? By whom?

11. What controls are set up and maintained on the inventory system?

12. What is the cost of inventory maintenance?

13. What are the present costs of keeping inventory records?

14. What are the types of inventory records and reports?

(a) Do they result in a stock status summary report?

(b) How often are inventory reports prepared?

(c) Who receives them?

15. What is the origin and layout of source documents and what controls are used?

16. How often are inquiries made into inventory records? What are their nature? Who makes them?

17. How are present inventory recordkeeping functions correlated with purchasing, billing, sales,
manufacturing, etc.?

Inventory Questionnaire (cont'd)

18. What comparative information do you need?

(a) Month-to-date

(b) Year-to-date

(c) Same period last year

(d) Percent of comparisons

19. Where must current inventory records be physically located?

Section

10

Subsections Page

40 I 40 03

Section Subsections Page

10 40 I 50 01

Survey Questionnaire - Accounts Payable

REPORT INFORMATION

1. Is a cash requirement register being prepared?

(a) What is the average daily cash requirement to meet payables?

(b) How often is this register prepared?

2. Are amounts being distributed and charged to job orders and expense accounts?

(a) What is the procedure for each of the above?

(1) Number of open job orders

(2) Number of expense accounts

(b) Are departments budgeted?

(1) How often are budgets depleted and how often are analysis reports submitted?

CONTROLS AND EDITING PROCEDURES

1. How are payable accounts reconciled?

2. Who is responsible for editing before releasing checks, and what is the procedure?

3. How often are payable accounts reviewed?

4. What controls are in effect?

PURCHASES

1. Number of vendors active and inactive. What are criteria for active?

2. Are orders placed verbally, by requisition, by purchase order, or other?

3. Is blanket order placed for staggered shipments?

4. How are incoming goods accounted for?

5. How are partial shipments handled?

6. What method is used to notify Accounts Payable regarding overs, shorts, or damaged goods?

Accounts Payable Questionnaire (cont'd)

7. Are purchase orders (P. O. 's) coded by Accounting when written?

(a) If not, when and how are codes assigned?

INCOMING INVOICES

1. Is an invoice register maintained? If not, how are invoices controlled?

2. Pay by statement?

(a) Is early-pay discount given?

3. When is liability recognized?

(a) Receipt of goods

(h) Receipt of invoice

4. Are invoices matched to P. O. 's?

Section Subsections

10 40 I 50

5. Are invoices received from same vendor with different discount dates? How are they handled?

6. Are any invoices paid before arrival of goods?

7. Can one invoice be charged to two or more accounts?

PROCEDURE

1. Is a voucher system presently in use? Ledger system? Other?

2. How are invoices or vouchers filed to ensure that discounts will be taken?

3. Are incoming invoices numbered consecutively?

(a) Upon receipt?

(b) Other?

CHECK WRITING

1. How many banks are checks drawn against?

2. If more than one, can the bank be determined before the voucher is opened?

3. Are checks prenumbered?

4. What accounting (A/C) distribution is required? Attach sample.

Page

02

Section Subsections Page

10 40 I 50 03

Accounts Payable Questionnaire (cont'd)

5. How often are checks written?

6. What is present form of checks, voucher, and remittance advice? Attach sample ..

7. Are discounts computed at check-writing time? If not, when?

8. Is a check register required?

9. Are certain checks written daily? 'If so, estimate number.

DISTRIB UTION

1. Which accounts receive greatest number of distributions?

2. How many income and expense accounts are kept? How many divisions are used?

3. How many controlling accounts? Identify each.

4. What department or person is responsible for AI C distribution of invoice?

5. Is apron or rubber stamp used?

6. What percent of invoices contain items chargeable to different income and expense accounts?

7. Is distribution made directly from invoice? At checkwriting time?

8. How much detail in distribution record?

9. How many items other than invoices (e. g., journal vouchers) are distributed each month?

10. What is cutoff date?

11. When is trial balance secured?

12. How is trial balance secured?

MISCELLANEOUS

1. Is obligation record required?

2. Is purchase journal available? How prepared?

3. Is vendor control card required?

4. Total purchases-to-date by vendor required?

5. Do you, or will you, use group processing method?

6. Do you, or will you, use balance-forward method?

7. Are expenditures compared against budget?

Survey Questionnaire - Payroll

1. How is time figured?

(a) Tenths of hours

(b) Hundredths of hours

(c) Hours and minutes

(d) Other (nearest half or quarter hour)

(e) Incentive or price rates

2. What is overtime?

(a) Over 40 hours

(b) Over 8 hours

(c) Other

3. How prevalent are rate changes? Temporary or permanent?

(a) How many can a man have?

(b) When?

(c) Does job carry a rate?

4. How many shifts are there?

(a) What kind of bonus is there?

(b) How is it calculated?

5. What is employee turnover?

6. What YTD information will appear on check stub?

7. How many timekeepers?

8. Are timeclocks used? Is time recorded in tenths or hundredths of hours?

9. Is there labor distribution?

(a) By job? Department? Operation? Machine?

(b) Is average labor cost used?

Section Subsections Page

10 40 I 60 01

Section Subsections Page

10 40 I 60 02

Payroll Questionnaire (cont'd)

(c) Actual labor cost?

(d) How is overtime handled?

PREPARATION DATA

1. What are pay periods?

2. When does pay period close?

3. What is paying date? P reparation time?

4. How are employees paid?

(a) Check, cash?

(b) Is envelope used?

5. How many copies of journals?

6. Any objection to the use of spot carbon on check?

7 . Should check amount be protected?

8. Is check signer used?

9. Do you write payroll checks on more than one bank?

10. How and when are vacation checks written?

11. How are advances handled?

12. How are terminations handled?

13. How is sick pay handled?

14. How is holiday pay handled?

INCENTIVES, SIDFTS, ETC.

1. How many shifts?

2. What is incentive formula?

3. Are rates for various jobs known by employees?

4. How often is it necessary to pay "make-up" pay?

5. List indirect labor categories

Section Subsections Page

10 40 I 60 03

Payroll Questionnaire (cont'd)

6. Are efficiency standards established?

(a) By machine?

(b) By employee?

DEDUCTIONS

1. Voluntary 1
2
3
4
5
6

2. Involuntary 7

8
9

10
11
12

3. Average deduction amount
(a) Voluntary 1

2
3
4
5
6

(b) Involuntary 7

8
9

10
11
12

4. Percentage of activity
(a) Voluntary 1

2
3
4
5
6

(b) Involuntary 7

8
9

10
11
12

Section Subsections Page

10 40 I 60 04

Payroll Questionnaire (cont'd)

5. Largest month total ($)
(a) Voluntary 1

2
3
4
5
6

(b) Involuntary 7
8
9

10
11
12

6. List the posting media for each 1
of the above 2

3
4
5
6
7
8
9

10
11
12

7. What reports must be furnished? 1
2
3
4
5
6
7
8
9

10
11
12

8. How are salesmen paid?

(a) Salary or standard commission

(b) Explain other

Payroll Questionnaire (cont'd)

9. Reports (payroll and labor distribution)

(a) Form (sequence of information)

(b) Content (size of fields, number of classifications)

(c) Frequency (Presently? With IBM approach to application?)

(d) Distribution

10. Schedule requirements

(a) Length of pay period

(b) When are source documents available for processing?

(c) When does pay period close?

(d) How soon after pay period closes must checks be available?

Section

10

(e) How long does it take for changes to clear through the personnel department?

11. Reporting

(a) Who reports payroll source data? Employees? Timekeeper? Foreman?

Subsections

40 I 60

(b) What degree of control does the accounting department have over the people who report data?

12. Management requirements

(a) Who gets the reports?

(b) What would they like that their present system doesn't give them?

13. Miscellaneous

(a) In what states do you pay payroll ?

(b) What special deduction considerations are there?

(c) Is state or city income tax deducted?

Page

05

Section Subsections Page

10 50 I 01 01

MANUAL SYSTEM DOCUMENTATION EXAMPLE -
PAYROLL

Introduction

This example of a typical manual application con
sists of the following items:

Job Description -- Payroll
Survey Form - filled in for payroll

Samples of all documents being used
Flowchart -- all of payroll procedure

Notice that the illustrations are shown in the
order in which they are ordinarily developed. After
the job description is written~ the survey is com
pleted, and all sample documents are gathered.
Then the procedure that produces the reports, using
the information from the survey form, is drawn in
flowchart form.

Job Description

Section Subsections

10 50 I 10

ment or visitors. Both of these situations occur
frequently during the conversion process.

Page

01

A job description is not always necessary, but is
useful when new people are introduced to an applica
tion, or when presentations are made for manage-

The following is a typical job description. Note
that it is short, describes objectives, and provides
a summary of the procedure.

Payroll -- Job Description

The objectives of the payroll procedure are:

1. To record earnings, deductions, and taxes for historical purposes.

2. To provide state and federal governments, unions, and other agencies with a record of
moneys collected for them.

3. To furnish employees with a personal record of earnings, deductions, and taxes.

4. To write and reconcile paychecks.

5. To provide entries to labor statistics and miscellaneous reports.

To accomplish the above, current period time cards, containing hours worked, are matched to the
production report, and gross earnings are calculated and posted to the payroll register. Then, de
ductions and net pay are calculated and posted to the payroll register, paychecks are written, and
earnings records are updated. Miscellaneous reports are produced from earnings records, and
quarter-to-date information is prepared for 941 and W-2 forms preparation.

Section Subsections Page

10 50 I 20 01

Survey Form

The following is a typical completed survey form.
Note that the answers are short and descriptive.

The survey form is always necessary.

FACTORY PAYROLL

Survey Questionnaire - Pay 1.'011

1. How is time figured?

2.

(a) Tenths of hours

(b) Hundredths of hours X
(c) Hours and minutes

(d) Other (nearest half or quarter hour)

(e) Incentive or price rates

What is overtime?

(a) Over 40 hours X

(b) Over 8 hours X

(c) Other

3. How prevalent are rate changes? ~mpora~or permanent?

(a) How many can a man have? Yvlcut:~)) ID ~ 1.fC0v

(b) When? cL-\. ~ ~~) ~~

(c) Does job carry a rate? ~

4. How many shifts are there? \)l) tyv Q) , ~

(a) What kind of bonus is there? .2,~ <l-. Db
'?>Jul'W/I~

(b) How is it calculated? ~ te ~ ~ ~t 04-~ ~

5. What is employee turnover? 02;5 c/~ c~ ~ ~

6. What YTD information will appear on check stub? ~

7. How many timekeepers? ~ ~ ~

8. L.\P.'I d Are timeclocks used? 6~""" Is time recor ed in tenths or hundredths of hours?

9. Is there labor distribution? ~

(a) By job? V2.:.partmen-g Operation? Machine?

(b) Is average labor cost used? ~

Section Subsections Page

10 50 I 20 02

Section Subsections Page

10 50 I 20 03

(c) Actual labor cost? fu-

(d) How is overtime handled? (U, }~x..~~ ~~

PREPARATION DATA

1. What are pay periods? ~

When does pay period close? h\...<>J.,..,r
·1~j.~~~ ~

What is paying date? '" Pr--eparati6h time? \ ~ .~-(~

2.

3.

4. How are employees paid?

(a) Ehe~ cash?

(b) Is envelope used? \)~ k~ ~

5. How many copies of journals? ~

6. Any objection to the use of spot carbon on check? ''""\le-

7 . Should check amount be protected? ~

8. Is check signer used? ~

9. Do you write payroll checks on more than ope bank? ~

10. How and when are vacation checks written? y:t ~ ~ ~ (ru \l~
11. How are advances handled? .~

12. How are terminations handled? 0-u~~\.A M.Q...¥ ~ ~M.A.,-t~L ~ ~~
~~(J..A/\-U- ~~ L-~ ~~i ~ ~.~ .~.

13. lIow is sick pay handled? ~~ , U

14. How is holiday pay handled? Q:;l,~)ul:t., '>-\ ~\, ~ ~'lL ~ ~ ~.
INCENTIVES, SHIFTS, ETC.

How many shifts? \ ~ c,.'1., '2:> h.~. ~v~
))) (j'~l

What is incentive formula? ~ Ie "\ ~tLt.u_,,'C'\.iu ~~d:LeL ~>v ~IA."'~

1.

2.

3. Are rates for various jobs known by employees? J.L4....-

4. How often is it necessary to pay "make-up" pay? ~\.L.<.,Vu

5.

Section

10

6. Are efficiency standards established? '~'tv

(a) By machine? X

(b) By employee?

DEDUCTIONS

1. Voluntary

2. Involuntary

3. Average deduction amount
(a) Voluntary

(b) Involuntary

-1. Percentage of activity
(a) Voluntary

(b) Involuntary

1

2

3
4
5
6
7
8
9

10
11
12

e~\~
Q4~~~
~

1 ~.5. ~
2 i (). '30
3 "Ii.e-tr

4

5
6

7 1). 1\.5'0
8 ~ 15.0-0
9 ~ 0.35

10 f Y. c-tf

11 t I,~
12

1 ;L5

2 90
3 l
4

5
6
7 qq
810 c
9 15

10 .00

11 COo
12

Subsections Page

50 I 20 04

Section Subsections Page

10 50 I 20 05

5. Largest month total ($)
(a) Voluntary

(b) Involuntary

6. List the posting media for each
of the above

7. What reports must be furnished?

8. How are salesmen paid?

1 1}GJ~
2tl)H-CY
3 1);> i SO

4
5
6

7 t 3)~
8 ~ I) 5D1)

9 -~ I ~D
Ie 'If 7 rrHT)

11 1> i) 1t"i1
12

6

1 ~ttLehl l\./.A,~ Qc~
2 l\,A'-~ (~ ~~
3 ,A~·~~jR &&t.~~.J:.
4 W-(L

5 q L\ \
6 ~~.o..Y... ~~ hWM't
7 ~~tc, '--\-- ~

8 ~\,u..0i(, ,&t.u ... \>->

~~~V~,~~ 
(a) Salary or standard commission Mbv\(s" -t \ 0 '/0 <'V-Ov~) 
(b) Explain other 



Section Subsections 

10 50 I 20 

9. Reports (payroll and labor distribution) 

(a)· Form (sequence of information) Q,tt ~~ 

(b) Content (size of fields, number of classifications) ) . C ) 
~ (1A.C>.Mu-J tv\ k. Jt/~~ (xxxx. X C2~± &~), xXX,X 

.~. eX) JO~,A14~ (xxxx,x) ~t ~(~~I}() 
~ k 3i~:M ex x)(· Ie) :l 0 J~Ii:tL£~ i""-,,. (Joel(') t1:.:J 1vw exxx.x) 
~,~~ (xxxx.x) M~~~'ul (x.>(xx.x) ~~_ ~W(XXXXXIXX) 

(c) Frequency (Presently? With IBM approach to application?) W-U..~ a.Ac.c-~ ~tJ~~ 

(d) Distribution ~~) pe\.A.Lt ,~D./VVt,\,t,~d:, ~\.:.t ~\A." )~~\;') 

1 o. Schedule requirements 

(a) Length of pay period w~~ 

(b) When are source documents available for processing? 

(c) When does pay period close? .~ 

~\~ ~~(l.~ vvu,«-T 

(d) How soon after pay period closes must checks be available? 6 clcUO 
(e) How long does it take for changes to clear through the personnel department? 

11. Reporting 

(a) Who reports payroll source data? Employees? Timekeeper? €em~ 
(b) What degree of control does the accounting department have over the people who report data ? 

~,4~~~0v~~ 
12. Management requirements 

(a) Who gets the reports? ~l\-.Q...u.A.L.u::t I ~v~ Li; -tk ~t) ~~-t (\V\-U.AA",o...tt~ 

Page 

06 

(b) What would they like that their present system doesn't give them? \. ~JLrn .. )z._ Jo,l"O''L Lt~1.{"~A .. ) 
.. <1v\. \( p\ . , h .. ~ .. ~~J..L'Vl~. 

13. Miscellaneous ,::1, 0 ~,OJ j,/\o\ .. tr-. ~ftt~ ~'~ld ~~ 
(a) In what· states do you pay payroll? ~u.." ~, U),\jO')J, J~, 

) ) 

(b) What special deduction considerations are there? ll~'~ I ~ i k-cs-
(c) Is state or city income tax deducted? 1..~ 



Section Subsections Page. 

10 50 I 20 07 

ADMINISTRATIVE PAYROLL 

Survey Questionnaire - Pay i'oll 

1. How is time figured? 

(a) Tenths of hours X 
(b) Hundredths of hours 

(c) Hours and minutes 

(d) other (nearest half or quarter hour) ~ 

(e) Incentive or price rates 

2. What is overtime? 

(a) Over 40 hours X 

(b) Over 8 hours 

(c) Other 

3. How prevalent are rate changes? ~mpo~r permanent? 

(a) How many can a man have? 1~) 4 fU>v '~Al.N 

(b) When? \)~ 

(c) Does job carry a rate? Qtl,~ 

4. How many shifts are there? ~ 

(a) What kind of bonus is there? ~ 

(b) How is it calculated? 

5. What is employee turnover? \S tJ/D O-u.L~~ v'-u"Uv ClLL ~Cv'\A..1'.L-

6. What YTD information will appear on check stub? ~ 

7. How many timekeepers? k 
8. 

~ 
Are timeclocks used?1\ Is time recorded in tenths or hundredths of hours? 

9. Is there labor distribution? ~7 

(a) By job? ~:rtme9 Operation? Machine? 

(b) Is average labor cost used? LGr-



Section Subsections Page 

10 50 I 20 08 

(c) Actual labor cost? ~ 

(d) How is overtime handled? &~u .. ~:\, .. Q....2lJ 

PREPARATION DATA 

G:U.~C.k~I~ . What are pay periods? ,---- - '''-'''-''-'0-

When does pay period close? G.x.~ ~rv 3~_ 
~ j.Ju-~A- . cS 

What is paying date?/\ Preparation time? Q rYv\,cv~,1·-4~ 

1. 

2. 

3. 

4. How are employees paid? 

(a) ~caSh? 

(b) Is envelope used? '-~ 

5. How many copies of journals? ~ 

6. Any objection to the use of spot carbon on check? ll.e-
7. Should check amount be protected? ~ 

8. Is check signer used? ~ 

9. Do you write payroll checks on more than ope bank? ~ 

10. How and when are vacation checks written? Ci.:t...Q.~ ~ ~ \)~ 

11. How are advances handled? .~ 

How are terminations hand~ CULQ.. ~~t ().....{.; ~\U~ ~. _ 
~~~~~t~~ )4 

How is sick pay handled'! ~~, .~~

How is holiday pay handled? ... ~ e>-t :.k J>.-<d..o- ""-' ~

12.

13.

14.

INCENTIVES, SHIFTS, ETC.

1. How many shifts?

2. What is incentive formula? ~~

3. Are rates for various jobs known by employees? ~

4. How often is it necessary to pay "make-up" pay? .~

5, List indirect labor categories ~) W~I~) ~

Section Subsections Page

10 50 I 20 09

6. Are efficiency standards established? ~

(a) By machine?

(b) By employee?

DEDUCTIONS

1. Voluntary

2. Involuntary

3. Average deduction amount
(a) Voluntary

(b) Involuntar~·

.. 1. Percentage of activity
(a) Voluntary

(b) In\'oluntar~·

1

2
3
4

5
6

7
8
9

10
11
12

1
2
3
4

5
6

7
8
9

10
11
12

~ Ic.ao--
t I, cYt~

it i . en)"

• :J..CHY

fl, 40.»
t I.W
J <tr.W

J5
'10
bE)
Ie-

\bIJ

<DD
\ c-tr

5. Largest month total ($)
(a) Voluntary

(b) Involuntary

6. List the posting media for each
of the above

7. What reports must be furnished?

8. How are salesmen paid?

1 ~ b)trnT
2 t 4~
3 t J..h)
4 ~ D60
5
6

7 f ~}~ 8" I..} CT
9 ~ 3)~n

10
11
12

(a) Salary or standard commission ~V-r T \ O~/" MJ.Vv ~

(b) Explain other

Section Subsections Page

10 50 I 20 10

Section Subsections Page

10 50 I 20 11

9. Reports (payroll and labor distribution) '\~

(a) Form (sequence of information)

(b) Content (size of fields, number of classifications)

(c) Frequency (Presently? With IBM approach to application?)

(d) Distribution

10. Schedule requirements

(a) Length of pay period \~_~v....~~~tL\-

(b) When are source documents available'lor processing? ~;.:'" J.:I\'L~"~!s"
.-(

(c) When does pay period close? ,1.{c..A&",'--r

(d) How soon after pay period closes must checks be available? !~"RG cL~
C' {I

(e) How long does it take for changes to clear through the personnel department? l:.:.'1A..l. ('.'---{

11. Reporting

12.

(a) Who reports payro \I source data? Employees? Timekeeper? Foreman? /-4-t.c ~0'L\.,.t4<YL'
(b) What degree of control does the accounting department have over the people who report data ?

\j (-LL--t:Lo:.h·~ ~cS
Management requirements

I). .

(a) Who gets the reports? \~\.L'lL~tl"ct i ~_l'--{"-L\,\.\'ll\.-tl t~t ttu- .~'---<:L

(b) What would they like that their present system doesn't give them? \, ~~ \. C-£L~.'L. ~t)l-lG..L~""LA.
" l\ .-4. \) • .\.c\~ __ o:CLt.(,U'\-.. .

13. Miscel1aneous·;Li j')).A\..t"1· (\'::'\..\lo..u..k 1..t"\.LL ~Q.~e..\.t.. ~C1-c\ f"\.-t.'('''LtJ

(a) In what states do you pay payroll ? t-tc~~) ",(', \~ (: '. I ~_ci __ , I) ::l£J-'
(b) What special deduction considerations are there? 'l,lt.,,---t\"'~_L c--~ LtA..-"--'---t

(c) Is state or city income tax deducted? l-\c.:u
~

SAMPLE DOCUMENTS

The following is a typical collection of sample
documents. Note that both blank and completed
documents are present.

It is always necessary to collect all documents,
both completed and blank. for your current system.

Section

10

Subsections Page

50 I 30 01

Section Subsections Page

10 50 I 30 02

ORDER NO. CUSTOMER SQ. FT. NO. OUT S. U. RUN NO. PI ECES MAN HRS. MANHRS.RUN
TOTAL SET TOTAL

I
TOTALS

CLOCK

NO.
NAME START STOP REG. BONUS MACH. DATE

PI ECES MACH

HRS

SQ. HRS.

SET UP ALLOW

RUN
MAKE

UP

TOTAL BONUS

Form 101

Section Subsections

10 50 I 30

CUSTOMER SQ. FT. NO. OU T S. U. RUN NO. PIECES T~i~t~~i-IMA~~:1tUN
---------- ---------------------+- --,-----f-------f------ r--------~ ------------
ORDER NO. I

le34 J-IN£S MF"G 8000 8000 0 17/3 .34-5 7 9
------r---------------------------+-------r-----r-------___+----j------ --------f___-----
------- ----------------+------+----__tc-------+-----__+-------+----t------

------------f--------------~----_r----t------_r---__t------+_-------f---------

----------f----------------------------ir------+-------t------t-----+----f------+--------

----------- f------------------------t-----_r----+-------f----------t-----f-----+------

-----------f---------------f------+-------+----+--------+-----+-----+------

--------f-------------------+------t-----___+----t-----~------t------j-------

-------- ------------------__+----- ~-------~-----~r__---~----_+----+_-----

------------+--------------I-------+-------+----+------+-------f-------t--------

--------- ------------------f-------f-------+-------+------t--------l------+----

--- -----t------------------------+------+-----t-------t-------t------- -------t------

------------f-------------------+----+-------+------f--------+----- 1---------+-----

------_+---------------------r----------+----------f------+----+------1-----------

I

TOT ALS
=--.---------:::====---::=-=--=====;=====j======t======;:=====r:;===:====r===='==;===~===

C~~~K+ NAME START STOP REG. BONUS MACH.
'!" {)/,__ _ _____ R_. B __ E_D ____ A __ N _____ -t-8_'_· 0_0___t-4--: 0_0_+-_8 __ ---t-__ O_~ I PI EC ES

//3

34-5

DATE
MACH HRS

I
-----rl--------------------------I----~----+------;f___---___+-----~-----~-------

o

--.-===f= __________ -I-__ ~--___t----r_----,f___-S-Q-.-+-8-0_0--0--t--H-R_S.~--9---

_ ._ _ E- ~_===============:======:====-~=:====~-==:======HI-S-~_~-:-P---+--2-7----~A-~-~-:-:--+---:---
I

UP
------------t-. -------------------+----+-----+------+-------11------+--------+---------!---------

-------___+--------------------t-------I------~-----~--_____il TO TAL 9 BON U S

Form 101

Page

03

Section Subsections Page

10 50 I 30 04

MASTER EMPLOYEE TIME SHEET

NAME MON. TUES. WED. THURS. FRio SAT. TOTALS

BROOALONA, J.

CLOY, C.

CRASWELT, F.

DAZDEL, M.

DORLlN, J.

FOLLORE, R.

MI ROHOSE, V.

PANUNI, D.

WALLJAMS, J.

-

Section Subsections Page

10 50 I 30 05

MASTER EMPLOYEE TIME SHEET

NAME MON. TUES. WED. THURS. FRI. SAT. TOTALS

BROOALONA, J. 8 <3 8 B 8 4-0

CLOY, C. 8 3 8 B ~ 4Z

CRASWELT, F. 8~ 8~z 8 8 ~ 42

DAZDEL, M. /0 10 /0 8 8 40

DORLlN, J. 8 8 8 B 8 40

FOLLORE, R. 9 8 8 9 ..9~e 43~

MI ROHOSE, V. 8 8 8 B 8 40

PANUNI, D. 8 8 8 8 8 40

WALLJAMS, J. B 8 8 0 0 24

Section

10

Subsections

50

NAME

SAT.

MON.

TUES.

WED.

THUR.

FRio

I 30

TOTAL FIRST

SAT.

MON.

TUES.

WED.

THUR.

FRio

Page

06

START-STOP

WEEK

TOTALSECON DWEEK

TIME SHEET

TWO WEEKS ENDING

LUNCH

TOTAL HOURS

CHECKED BY

APPROVED BY

HOURS WORKED

NAME J.oo£

START -STOP

SAT.
9-/2

MON.
8-6

8-5 30
TUES.

8-5
WED.

THUR.
8-5

8-5
FRI.

TOTAL FIRST WEEK

SAT.

8-5
MON.

8-5
TUES.

8-5
WED.

THUR.
8-5

FRI.
8-5

TOTAL SECON DWEEK

Section Subsections

10 50 I 30

TIME SHEET

TWO WEEKS ENDING 2/2/(£'8

LUNCH HOURS WORKED

/z-/

/2.30-13~

12. 30_/30

12-1

/2-/

IZ-/

12.-/

/2.-/

/z-/

/z-/

TOTAL HOURS

CHECKED BY

APPROVED BY

.3 -

3 -

8 1/2

8

8

8

44 ~Z

8

B

8

8

8

4CJ

841/2

c./AH

EJ

Page

07

Section Subsections Page

10 50 I 30 08

PRODUCTION & LABOR REPORT
Week Ending Rate Machine Shift

M M
Standard Hours

Non %
Actual Hours Deloy Time Non Actual

DC'
Bonus

Pcs. Sq. Ft. Set-up Run Total Rahd Eff Hours
Rate Overtime Actual

Mach. Man Allow. M/U Bonus Hours
Dollars

M

T

W

T

F

S

S

~
This
Week

Prevo
Wks.

To
Date

~~ ~

PRODUCTION & LABOR REPORT
Week Ending Rate Machine Shift

M M
Standard Hours

Non %
Actua I Hours Delay Time Non Actual

Date
Bonus Actual

Pcs. Sq. Ft. Set-up Run Rated Eff Rate Overtime
Total Mach. Man Hours Allow. M/U Dallars

Bonus Hours

M

T

W

T

F

S

S

I

This
Week

Prevo
Wks.

To
Date

~ ~

Section Subsections Page

10 50 I 30 09

PRODUCTION & LABOR REPORT
Week Ending Rate Machine Shift

/-1]-66' 3.50 7 J --

M ~~ Standard Hours ; N I % Actual Hours I B I Delay Time Non I Actual
on, 0 onuS Rate I Overtime Actual

Sq. Ft. Set-u;- Run Total Rated I Eff Mach. Man I Hours i Allow. M/U Bonus i Hours Dollars
M

Pes.

/- 9 5'J'fJ M /19126; 1.0 I 6.0 7.0 ! 1.0 I ~~ I b.t? 14.2, d, I.t? 1./ I - I .~ ! /C76.

I I I Iii I I
/-10 7c6 T /;J50Z .6 ~.J' 17.4 I .6 193 i 6.tf ,/3.1'1 - 1.6 .j"" I - - i /?92.

/-1/ 43/ w 952~ /'0 50 i to.f 11.2 I cf~ I ~f ! /0.9 I - i 1.0 1.2 I - i - i 1130.

/ 1.'2 .t:'rJO 991"?'? 3 / 9--1--7.-~--11--:-11 90--I,---;--9----r-/-'..,-2T" ! ~ I LL I II I. A I 79 ?-.

- .,/l/(J T U. • ~. • c:. ,.iI I i ~. +-~-=-- __ /,£. __ ~--+-.7---1i--+--T--+--£..-

/-IJ C, JI, IZ70J .5 7.0, 7..r i .f I 94 I 7.0 I /~7'~_ 1.5 .6 I - - 997.

S -t- II ,I ! __ + __ +-_ I ·

S I I I I i

~:~~ 5frZ9 3.4 32.5 J5.9 1./ I 90 132.5 70.1 1/'7 13.4 3.d' - 2.2 5637

~;:: //)7fIJ/ 7. 6 'J, J 70.9 I 9,/ I i9 67. J 14J.0 5.0 I z ~ 6.9 /. 7 :J. 7 /Z7/J!

To I
Date 16}}j{) II.!) 95.1 1{)6.J' 13.2 J>9 99. f 213i 6. i i/O. 7 11),7 I. 7 .f. 9 IJ39.$'"

PRODUCTION & LABOR REPORT
Week Ending Rate Machine Shift

/-I.p-{'f :;).75 I

Date
M I M Standard Hours Non % Actual Hours I Bonus Delay Time Non 'I Actu?1 Actual
piS Ft R t d Eff I H Rate °Hvert,me Dollors cs. I q.. Set-up Run Total a e , Mach. I Man aurS Allow. M/U Bonus ours

/-y 6t?6 M /J7t?6, .6 6J 7.1 .9 i J'9 1 6.t? /J. 71.7 .6 .7 - .J /375.

Nt? MJ' T k~2tJ~1_·6'_ ~-I-~2T·.I' -+9J~~~l4 .. ~L=+ .6 .7 - 1.0 /696.

/-// 675 4/4~31~q I f-! 16.9_~_,(jl ~6 5Y 13.7 ~~¥ /,1 - - /377.

HE' 431 T I 9120 __ 6_r6~~ 7..>--0-'_"74 6.Y I¢.Z ~_.L+.6 .5 - - 90J'.

1-/2 /2M, 28b651~+~-L7.!'+-.R _ 91' ,7.1 15. I ~-_+.7 1.7 - - 2790.

-------~ ---- ---J--- ----)------~ ---------- ---- -----+---l-------t---- ----+----+---+---

S I ! I i

1 1 I

~:~~ l!~!9() J.; JJ,O 36.5 J.5 ~!_J~2.? 71.1 2.J'",?oF 3.7 - I.Y I tfl-16
--+----1 I I I I !

~;:: 171!-PIJJ 7.3'/./ 7.1.1- 4:-0_ I 9_4 Ib6.J If}./ , [/ ! 2'3 1.7.7 /.0 :J.2 1/7.fOJ

0::. ZHt9JI/o.! I/J/.I //1.9 ,f./ 193 15IR..J'tCZ~21 7.6 l/aJ' //,1"[/.tJ i.5/ IC5M9

Section Subsections Page

10 50 1 30 10

YEAR

NAME CLOCK NO. TAX CLASSIF"It;ATION

I
REMARKS

I
ADDRESS AGE DEPT. (1) DEPT. (21

S. S. NO. TEL. NO.
CONSTANT DEDUCTIONS QUART'R EARNED FOAa SI WHTAX CITY OR REASON CODE REASON CODE

OTHER TAX

CITIZENSHIP FIRST ,,"ORK AVAILABLE
WA CATASTROPH E C YEAR SICKNESS

EMPLDYMENT RECDRD ~ DATE RATE PER' SECOND CONTINUED CA DISCIPLINE 0

1 I Z UNAVAILABIliTY
IN OUT REASDN oC THIRD LABOR DISPUTE LD SELF EMPL'D SE

I i 6
FOURTH ...

I I !C TOTAL II:

EARNIN GS DEDUCTIONS AMOUNT CHECK PERIOD HOURS RATE YoITHHOLDING ENDING REG. RATE OVERTIME OTHERS TOTAL F. O. A. B. TAX
A B C 0 OF CHECK NUMBER

1
1-

2
1-

3
1-

4
I-

S
1-

6
--

7
1-

8
1-

9
1-

10
I-

n
-
12
-
13

-

OTR.

14
--
15
1-

16
1-

17
1-

18
1-

19
1-

20
1-

21
1---:-

22
1-

23
1-

24
1-

25
1-

26
1-

OTR.

W-2

NAME CLOCK NO.

[""""

ADDRESS AGE DEPT. m

Section Subsections

10 50 r 30

YEAR ItJ~G
TAX CLASSIF'ICATION /11-2

/.5.38t.1A·1 to. (/(/ ~P.I
20. CJOC: t/.

DEPT. (2)

Page

11

_ --:!:S ~S~N~O!:-______ ~~~ ___ --IIIC=ON=&~TATN T~D E=DUfC~TI~O N~&I QAT CITY OR I .. . TEL. N C. If-::--~, R-c-:::;--+R _'_AR_NE_O -+F_OA_' S-+' _W_H T_AX~OT=H ER~TA,,-X~ Ib .. -=oRK,--;-R :A=V:~ ... ~AB=lE+CO_DE--l---R_EA_SO_N +-C---:ODE

CITIZEI\iS~~ P'~LO~yn;:;M~EN"'T;--O;R;-;;-£C;:;rO:;-;;R-;;-D ---,r.:!~E¥n, :A~~E~R~AT;;-E --..;;;-PER;;-II·-I--t----1I=s'c;:;:co=ND+---+--+--+---lI-.c~~I~~TK,:~~S,~SD ~W~A ~CA~TAS~TR~OPH~E ~c-J
-.--IN---r'-O-UT-.---'- REASON ~ r--r--t--I~=d=~===lfTiiTHiiRiIRD,+--t--+---+----1f!U!.!!!NA~VAillIlA~BITCWITY~CA+DI~SCI~Pl~INE~D

f------+---+-----------<I 6 f----t--+-----11 LABOR DISPUTE LO SELF EMPL'O SE

I I 1-----1f---+--_11--t----t---IIFOURTH

I 1 "'~ 1f-=...,..--+--I----+---+-----II------4---l----J--.j
TOTAL

:~~:~g HOURS RATE

1 1/4
I ~ Ij! 7 4rl1 t(lr

1~/z~
I~ 2/11
I~ 2/5

6 3/1/
71

3/Z5"
1-

B
1-

9
1-

10
-
11
,-

12
:-

13
-

QTR. 7flf.J8
14 -1/8
15 #?Z -
16 4/tff I$r Ilfr
-
17 ~ -
1B 5!ZIl

1-
19 6/3

1-

20 ~/l7
1-

7// 21
1-

22
1-

23
1-

24
1-

25
-
26
-

OTR. ~ll.a

W-2

EARNINGS

REG. RATE OVERTIME OTHERS TOTAL

7t?23

19~5 J5MV.s 1311 I1tJt:J

7~f2~

J6f2~

76fZ3
769?3

76fZ3

~(Ja.'dtJ 5f15.J8

76f?3

7~f'Z3

$;/11/$ IIJ6 11II1j/1t'

7~f'Z:!

76123
7~f?3

7~fL3

7~f'23

6.J$1~/

-0- /£.J/)Z~f

DEDUCTIONS AMOUNT CHECK

F. O. A. 8.
WITHHOLDING A B C 0 OF CHECK NUMBER TAX

32.11 125t1t:J 76' /538 211't:J1/ 5M8S '16.
S'-f-~d 28S()1.? /~t)t) ?~7'¢O 6220

I

32.1/ /2SaJ 716~ 511" 2tJO(J S7?/S 62J3

3231 125t:J0 761 IS3B 2()()() 5~!J5 6JU

323/ 125tJtJ 76? StJB 2tJtJt1 57fl5 Mfb
32'51 /25tJO 76f 1538 ?tlt?tJ 5~8tJ.5' "~7
3231 12500 76f 5()~ 2tltJ~ 57f15 N7f

2441-6 /~.J5~() 51.# 11:i1~ /ZIJ.()() -IJ?I.¢()

31'31 12.1"t1/1 76f 1.1".1,1 ?t1t:JP 5~68ff ~'/I

J251 1t'5t!JtJ 76f ht't7 2t:Jt:Jt1 Y7~L.5 ~/tIZ

- 21/ht:J /t?tlJ 7$/37 ~.F.7

- /Z'1~t1 76f g.Jt! ?tJt1t? 5'~Z6 ltJ/tJ
- /Zf?t1 76f -'tid ZI/(/() ~~~~6 71.1.1
- IZ"" 76f /5.J~ 2tJtJtJ ff~26 727ff
- 12f'O 761 .5tJt! 2()V'tJ 6(/65~ 7J~1

- /2"a 76'1 1556 Z(/t1(J S?~Z6 7119

Jl.!.d,l 21#/t' 1?3.1I1 1~2N)tJI) ~.JZ/.7f

Section Su bsections Page

10 50 I 30 12

EMPLDYEE

10

"
12

13

14

IS

16

I'
18

"
20

21

23

24

25

26

28

29

30

TOTALS THIS SHEET

TOTALS ,.AOM PRECEOING SHEET

TOTALS

Hau •• WQIIKEO

PAYROLL REGISTER

TIlT'"

TIIT_L .DU" .. IIDD
INOI'"

SHEET NO. __ _

PAY PERIOD ENDING

AMDUNT CHIEGK

OF IIHICI NUMI'_

Section Subsections Page

10 50 I 30 13

PAYROLL REGISTER SHEET NO. ___

PAY PERIOD ENDING

CLaCK HOUR8 WORKED TOTAL PERIOD EARNIN Ii. DEDUCTIDN. AMOUNT CHECK
EMPLDYEE ... HOUIII [NDING HOURI RATE

n'.ltA.H QVIITUU OTMII. lOTH '.0 .•.• ' .. A . C D Of CHECK NUMBER ./

1 ..IS ,:?V'/NLAN 753 .4:0 !!/ItDz 55769 5576/f - ItJ.3.00 558. 04.14 5()'X .3f4r;'7 Y-7~

2 ..I.SIELIN(f; 754- 4C1 1!/I~7 7~nJ 769-23 - /C?8'/2 6.67 4-.~ 6¢f.% 7.577

3 M.L.M4NN 755 40 /$~I 57~.f2 57~.f'Z 14.f'2 f/.IC? 5'13 ~f7 7578

4 J/ HeTTINGeR 7ff~ 4C? 1!/IZ¥1 i65.3f' 16£3f - I..¥.~ 7.3/..1.J 7.57r;'

5 R. FERGt/$ON 757 4CJ 1$7/6 .1z,J.ag 31'3~t9 /¢.?tJ 5?~~ 7.bf 2<10.53 7stJO

6 r.C.No~RIS 758 of0 ~IIJ/n ~()tI #./~ 5/4.114 2?~ 82.88 ~3S ¢.~~ .3f7~7 75'81

7 J.MATTh'EWS' 75f 40 II~J 63432 143432 z7.8o /tJ/ffff 9/Cl .tf~5.tJ7 7582

8 J. BURGESON 7~O .# 5If.?.J 5lfZ3 ZZ.9tJ 89:~7 2tJ.0C? 391.76 75tH

9 £J. TERR.4MORSE 7~1 4CJ 5.5769 551t4f 24.5£ fU7 1/.17 S.OC? 425.~3 7584
10 M. c/PYCe 7~2 40 .52.307 IZtJ() 335.P7 11.7? ..7 .. 1.60 /4.0.1 1/.10 24122 7565
11 J REY/VOLOS 763 40 36f/2.5 36~?.5 1~26 58.77 6.67 28755 7~
12 h'. ORLICK 7G4 4tJ ~S3& 2GS.38 1/.7() 421f 21/4f 7587
13 7. 1.. PRITChl4RO 74>5 40 SCJ(J.tJ(} .£v.~ ZZ6tJ stJ.OC? 3?7.4tJ 75'88
14 t(MepOL.e 7~ 40 .]%14 8.?O ~.!f4 177C, ~4./f /f?C?() 303.3'1 75{Y1

15 .L1. LJARAB.4CHErr 7~7 40 7~U3 7~'/.23 - 12~37 8.50 2tJ.()0 ~fi!.3~ 75'1P

16 R. L. ,sh'E'pH'ARO 7~8 40 8~39 ·8GS39 - 14-1.~Z 8M 211M 2t?PO ~5.4>2 75'r;'1

17 T. TR/SSLER 7~? 4tJ JZ3.~ 323.08 #.22 .2/4 9.IG lapp 2.M5'~ 7.5?Z

18 6.6RO,cT 770 40 ~£J8 2~S38 11.70 -1233 21/..35' 75'?.1

19 L.STVOY 771 4tJ ~.14.14 ~N·j¢ Z7.tJtJ 1()/.5ti ff04,78 75'14

20 E.WA6NER 772 40 70/J.,/Z 7tJ8.'l2 - 117'/2 14.12 l.'ltJ 574.IP 7.5?5'
21

22

23

24 i

25

26

27

28

29

3D

TOTALS THIS SHEET 800 l//l?.Iff f1()(J 3.f:.~ 1//7.fltff ~l"O 11J16(J 6f.~ 71l11P #,//1 12~~ .f¢.f(211

TOTALS FROM PRECEDING SHEET /73fi 41flJ.fl 75638 H/..JII $1'11.# In..) ?/4Jn $:fbi lfl.H /i?31? 2f2/Z .5N/6.~//

TDTALS I 25.1fi J8N7.fI 7.%.~ 'ft£~ ~Df1?JJ !I.lf JIll¢! /If.// JlJ.7J 1m.! .J.7?A? "'/J~.57
HOURS WDRKED TOTAL PERIOD

RU:.UTt OY[~TUU OTHUS TOUl '.O.ll . C D
AM.UNT .1 CHECK

HDURS ENDING HOURS RATE
EARNINGS DEDUCTIONS aFCHECK HUMBER

", ..

Section Subsections Page

10 50 I 30 14

I

I I I I I I I I I I I I
1
I
I PERIOD RU. RATE OVIRTIIII OTHUS TOTAL f. O. A. I.

WITHHOLDINC
B C D AMOUNT

I HOURI RATE TAX A
ENDINO OF CHECr

I EARNINGS DEDUCTIONS

I
N~ 8123 I

I THE CONTAINER COMPANY A- CITY TAX C- Mlac.

COLUMBUS, WASH. a-INa. O· CREDIT UNION

I PLEASE DETACH KEEP THIS STUS ,.DR YDUR RECDRD

----~-----------------------------~---------------
I

.- :C:I.J:. 1:1[•
.. _- - _.- --_.

." .. - - - - .
- - .- - .-

N~ 8123
I

THE CONTAINER COMPANY

COLUMBUS, WASH. 123 -4

567

PAY
I

TO THE
ORDER or $

THE CONTAINER COMPANY
PAYROLL ACCOUNT NO.2

TO THE NATIONAL BANK & TRUST CO.

I
OF COLUMBUS, WASH.

I
I

W-l I ."
.-- - --

'" " . --_ •..
I

,,,,,,.'-"0 •••• _,," -, ~ -- -- . ----,- '-
_. - _. _ .. -- ---. - ... -

1 __ :--t=2=-2-=68t=4=O==+==4~150==+=1=80~10==t0 =0 !,===~OO=+=O==,=I0==90F=18=O="",I0==901F=7~18=+l =3=:16 r=I0i==6e=b10==t0 ='=,=1°=4=° =1"===+=""",",,,,*=1 =+==1=29=:1',==18
1

I PERIOD REG RATE OVIRTIIIE OTHIRS TOTAL f. O. A. I. WITHHOLDINC ABC 0 AM 0 U N T
II ~q ~~ UTE~ __ ~ __ -~--~----+ __ ~ __ n_x_~ __ ~--~--~---~DFC"ECr

EARNINGS DEDUCTIONS

I
I I THE CONTAINER COMPANY A· CITY TAX C· Mlac.

COLUMBUS, WASH. a- INa. 0- CREDIT UNION

I PLEASE DETACH KEEP THIS STUB ,.DR YDUR AECDRD

N~ 8123

r---~---

N~ 8123
THE CONTAINER COMPANY

COLUMBUS, WASH. 2-2-68 ~
567

PAY

TO THE ~ \ /!") LA I'J.A
oRDERor ___ ~ ____ ~ __ ~~~~~~'~~' __ ~ __________________ __ $ 129· /8

THE CONTAINER COMPANY QXOJi=O.2 TO THE NATIONAL BANK & TRUST CO.

OF COLUMBUS, WASH.

W-l

SYSTEMS FLOWCHART OF WEEKLY PROCEDURE

Time
Cards

Production
Report

Master
Employee

Time
Sheet

Master
Employee

Time
Sheet

Calculate
Gross
Pay

Post to
Payroll
Register

Machine
Activity
Report

Section Subsections

10 50 I 40

Administrative

Employee
Time

Sheets

Employee
Time

Sheets

Page

01

Section

10

Subsections

50

Earnings
Records

I 40

Page

02

Calculate
Statutory

Deductions,
Voluntary Deductions

and Net Pay

Write Check,
Check Stub, and
Post to Payroll

Register and
Earnings Records

Total Each
Column of

Payroll
Register

Employee
Earnings
Records

Total Earnings
Records

File

Total Each
Column of

Earnings
Records

Post to
Earnings
Records

Calculate
Year-to-Date

Totals

Post to
Earnings
Records

Type
941A

Quarterly Procedure

Write
W2

(year-end only)

Original
941A

Summarize
Earnings, FICA,

and FIT to
941

1st Copy 941A
Sent to Local
Government

Prior 941A

1st Copy
941

Section

10

Subsections

50 1

2nd Copy
941A

40

Page

03

Section 15: SOME PRELIMINARY QUESTIONS
AND ANSWERS REGARDING DATA
STORAGE

CONTENTS

Introduction•........ 15.01.00
Data - on Disk or Cards? 15.10.00

General Considerations ..•..........• 15.10.01
Flexibility in Order of Processing 15.10.10
Jobs Involving More Than One File ...• 15.10.20
Frequency of Changes to Your File 15.10.30
Need for Inquiry into Your File 15.10.40
Size of Your Data File .•.•........... 15.10.50
Your Backup Requirements 15.10.60
Record Size 15.10.70
other Considerations 15.10.80
Summary•..•........ 15.10.90

Section Subsections Page

15 00 I 00 01

How to Safeguard Your Disk Data Files .. 15.20.00
Introduction•......... 15.20.01
Know Your Data 15.20.10
Know What Can Happen to Your Data .. 15.20.20
Design an Accident-Insensitive System 15.20.30
Detect Errors Before They Do
Damage 15.20.40
Plan Modest-Size, Modular Programs 15.20.50
Always Back Up Your Disk Files with a
Duplicate Copy 15.20.60
Provide Tested and Documented
Recovery Procedures 15.20.70

INTRODUCTION

Often, before starting the design of a system, there
are many questions regarding data storage. Two of
the more important are:

Section Subsections Page

15 01 I 00 01

• Should I use cards or disks for my data files?
• How can I safeguard my data?
This chapter answers these questions on a broad

basis, leaving the details for later chapters.

Section Subsections Page

15 10 I 01 01

DATA - ON DISK OR CARDS?

General Considerations

Before you get too far into systems design and pro
gramming, you should ask a basic question about
every data file you intend to use: Should it be stored
on a disk cartridge or in the form of a card deck?

The disk can be an extremely powerful medium
for the storage of your data; however, it can be mis
used. Some data, if placed on the disk, will cause
your programmer more work in the long run than if
a simple deck-of-cards approach had been used.

In order to lessen the possibility of such a situa
tion, let us answer some of the questions that arise
when chOOSing a storage medium for data.

Flexibility In Order of Processing

In general, your data, whether on disk or cards,
contains some master information (names, rates,
balances, etc.) in some order or sequence. When
you process this information, the transactions may
be in another sequence. For example, your em
ployee master data file may be in man -number
sequence, while your employee detail cards are
grouped by department.

In this situation, the disk has a distinct advantage
over cards, since it is a direct access storage de
vice (DASD). This means you can directly access

Section Subsections Page

15 10 I 10 01

any record, regardless of which record was proc
essed last or which record is next. This allows you
complete flexibility in the order of processing.

With your master data on cards, you have to sort
both the master deck and the transaction deck into
the same order, collate them together, and then
process your data in the desired sequence.

Although the disk has a great advantage over
cards, its importance varies with the size of the
file. Are you talking about 100 employees and a
10-minute sorting job, or 1,000 employees and 45
minutes of card handling? In later sections some
other considerations will be discussed that may tip
the scales in favor of cards.

Section Subsections Page

15 10 I 20 01

Jobs Involving More Than One File

The previous topic can be expanded to consider
more than one file, which is the case in many com
mercial applications. For example, many payroll
applications involve a job cost file as well as the
employee payroll file. If an employee detail card
says that man 607 worked 12.5 hours on job 70976,
you can find man 607 in the emp loyee file and add
12.5 hours to his weekly total, then find job number
70976 in the job cost file and add 12.5 hours to its
weekly total, all within one program. A card file
system would involve:

1. Sorting and collating the employee detail
cards with the employee master cards

2. Running the program and punching a new up
dated employee master card

3. Separating the cards
4. Sorting and collating the employee detail

cards again, this time with the job master cards
5. Running a different progrru;, this one punch

ing a new master job cost card
6. Separating the cards and filing them
Depending on the number of cards involved, this

could be a cumbersome process. But again, some
of the considerations discussed later may override
this one.

Frequency of Changes to Your File

A third consideration in deciding on card or disk is
the number of times the data in your file must be
changed, and the difficulty involved in changing it.
Some amount of change is inevitable; in a payroll
file every week will bring raises, new dependents,
changes of address, etc. These minor changes do
not present much of a problem.

With a card file it is very easy; a new card is
punched and substituted for the old card.

With a disk file it is somewhat more involved;
you must run a change program, which reads the
new data from cards or the console keyboard and
inserts it in the proper place on the disk record.

Major changes are another matter - new em
ployees, a new group of items in stock, etc. Here
again, changing a card file is relatively easy, and
changing a disk file more difficult. It is a simple
matter to punch a master card for new item number
1 705 and place it in the card deck between items

Section Subsections Page

15 10 I 30 01

1704 and 1800. It is not quite so simple on the disk,
where items 1704 and 1800 are probably adjacent,
with no space between them. Either item 1 705 is
placed in a special area, with a special routine to
find it, or the entire file is reorganized, moving
every item after 1704 "down" one position to make
room for item 1705. This also would require a
special program or routine.

If a data file is subject to frequent major (organ
izational) changes, you may add a few points to the
"card file" side of the balance. These points may
or may not be enough to swing the decision, since
the first two items (processing order and number
of files) are more important, and generally favor
disk use.

Remember, when you change a field on a card,
you still have the old card; when you change some
data on the disk (usually an entire record at a time!),
the old information is gone. Therefore, special
care must be taken to ensure that disk changes are
processed correctly the first time.

Section Subsections Page

15 10 I 40 01

Need for Inquiry into Your File

In some cases it is very desirable to be able to look
into your data file to get certain current information:
number of pieces of item number 170653 on hand,
year-to-date gross pay of man number 8091, etc.
When your data file is in the form of a card deck,
this is relatively easy, since you merely find the
right card, interpret it, and read the data, much as
you would any other hard-copy file - index cards,
ledger sheets, etc.

People are accustomed to doing- this, and often
resist the change to disk-resident files because they
cannot "see" what is on the disk.

It is true that data written on the disk is somewhat
less tangible than if it were on a deck of cards, but
this is not the overriding consideration it is made
out to be.

True, it takes a special program or subprogram
to read and display data on a disk, so demands for
inquiry do add a few points to the "card file" side of
the balance. However, a properly designed system
can lessen or eliminate these points entirely.

If someone within your company requires, say,
the current status of inventory, it may be possible

to replace his 5" x 8" card file with a daily listing
of stock status, or a weekly listing with daily up
dates. If he insists on immediate response to
up-to-the-minute status, the programmer can build
an inquiry subroutine into every program, calling it
only when some console switch is turned on:'

CALL DATSW(7, MM)
GO TO (9,10), MM

9 CALL INQUR
10 CONTINUE

These four statements would be placed at a con
venient spot in every program. Whenever anyone
wanted to inquire of the disk, he would turn on
switch 7. The subroutine INQUR would soon be
called, and probably request that a part number be
entered through the console keyboard. After the
requested information was looked up on the disk, it
would be typed on the console printer, and the main
program would continue.

Large demands for inquiry sometime s make the
use of card files appear more attractive than disk
files, but proper systems design can often reduce
the importance of this factor. In fact, inquiry into
a disk-resident file is often a plus factor, since the
data obtained would have an up-to-the-minute status.

Size of Your Data File

This item is hard to separate from some of the
other considerations. However, all other things
being. equal, putting very small data files on the

Section Subsections Page

15 10 I 50 01

disk is sometimes not worth the extra effort, and
very large data files will not fit on the disk. Most
files fall somewhere in between, and some factor
other than size will govern the final card or disk
decision.

Section Subsections Page

15 10 I 60 01

Your Backup Requirements

Whenever you work with files containing important
data (payroll, accounting, etc.), you should not
ignore the possibility of accidental destruction of
this information. Many accidents can befall card
decks ~ card jams in the reader, floods, spilt
coffee, misplacement, etc. Because you can re
cover from many of these accidents by patching torn
cards, duplicating watersoaked cards, etc., it is

not too common to find duplicate sets of master
card files maintained.

Data files kept on the disk cartridge are subject
to a similar list of accidents, but with a difference:
it is often impossible to reconstruct the data after
an accident, unless you have planned for just such
an occurrence.

Because of the need for preplanning, the matter
of backup may be considered a disadvantage for the
disk file. In actuality, it may be on the plus Side,
since it forces duplicate files.

Record Size

Because of the physical limitations inherent in a
punched card (80 columns), it can be cumbersome
to process long records that are kept in card form.

Section Subsections Page

15 10 I 70 01

Each record may require four or five cards, which
must be identified and kept in order. On the other
hand, disk records may be as long as 320 words (640
characters). IT long records are required, you have
a few "plus" points for placing the data file on disk.

Section Subsections Page

15 10 I 80 01

other Considerations

In additiQn to the factors noted previously, there may
be others of equal or greater importance - factors
that may be completely unrelated to the particular

data file under study. Some typical factors are the
storage cost of many cards versus one disk, man
agement's wishes, and the desire to train program
mers in disk techniques.

Summary

This section has briefly covered some of the disk
vs-card considerations and attempted to give general
guidelines for making this decision. It would be
ideal if these factors could be presented in the form
of a decision table, score sheet, or other device,
but this is not possible. Lacking such a tool, you
must study each data file, mull over the pros and
cons of disk or cards, and make your own decisions.

Section Subsections Page

15 10 I 90 01

Some companies (especially those installing their
first data processing system), realizing that their
files fall on the borderline, decide to start with card
data files. Their reasoning is correct: The system
may be less sophisticated and require more machine
and operator time, but it is easier to program, use,
and understand. Later, if they decide that a certain
file should be placed on the disk, it is relatively
simple to make the change. The bugs in the system
have been ironed out, the programmers are more
experienced and confident, and the general atmos
phere is more conducive to such a step.

Section Subsections Page

15 20 I 01 01

HOW TO SAFEGUARD YOUR DISK DATA FILES

Introduction

This section is of particular interest to those using
(or considering) the disk for storage of data files.
Accidents will happen, and you must plan ahead to
minimize their effect. This is especially true in
the case of disk, where data is stored in the form
of magnetized spots, recorded at extremely high
densities, and read/written by a precise mechanism.

On the other hand, hard copy data is relatively
insensitive to accidents. Punched cards can be
folded, spindled, and mutilated (even torn, crum-

pled, splattered with coffee, etc.) without disas
trous results. A few minutes (or hours) at the
keypunch can remedy all but the most drastic card
mishaps. Other paper documents (ledger book,
index cards, forms and reports) are not too
difficult to duplicate or reconstruct if the original
is destroyed.

The purpose of this section, however, is not to
discourage the use of the disk for data storage; used
properly, the disk offers advantages that over
shadow the potential hazards. If you follow the
common-sense suggestions in this section, acci
dents can become rare, improbable events - more
a nuisance than a disaster.

Know Your Data

Before starting into a long discussion of how to
protect disk data, let us review the various types
of data fields in your disk records and determine
which, if any, are worth protecting. Naturally,
you don't want any of your data lost, but certain
items are more important than others, since they
are much more difficult to replace.

Take a typical payroll file, where there is a
record for each employee:

1. Employee number
2. Name, address, city and state
3. Indicators - marital status, sex, number

of dependents, etc.
4. Pay rate
5. Year-to-date dollar figures - gross,

taxes, etc.
6. Quarter-to-date dollar figures - gross,

taxes, etc.
7. Miscellaneous cumulative - days vacation,

sick leave taken, etc.

Section Subsections Page

15 20 I 10

The first four items are comparatively static,
seldom changing, but the latter three probably
change every pay period.

01

If an accident occurs (you should assume the
worst possible case), the entire record for every
employee is lost. How would you reconstruct your
data file? The first four items are easy - the
latest information probably exists in the form of
a card deck and can simply be reloaded onto the
disk. That is how it got there in the first place.
However, the last three items present a different
picture - they change each pay period. When you
write the updated disk record, this week's total is
written over last week's total, and last week's
total disappears from the disk. Unless you take
definite steps to save it before writing on top of
it, last week's total will completely cease to exist.

Some disk data fields, therefore, are more
critical than others - particularly those that
change often, are modified on the basis of previous
data (for example, year-to-date gross), or are
not kept in duplicate copies.

Section Subsections Page

15 20 I 20 01

Know What Can Happen To Your Data

Before you can go about safeguarding a disk data
file, you must know what you are safeguarding it
against. Basically, there are three general
classifications of hazards:

1. Physical hazards. Although the disk car
tridge is in a sturdy container, it is certainly not
immune to careless handling, loss, natural disas
ter, etc. The cartridge should be stored at
moderate temperatures, (between 60 and 90 degrees
Fahrenheit) and should not be placed on high shelves
or other precarious places. In general, common
sense prevails.

2. Intentional modification. Payroll data and
other confidential information should be kept on
disk cartridges dedicated to that use, and should
be kept in a secure place. As in the case of
physical hazards, there is very little else that can
be said about this sensitive area except that
common sense must be used.

3. Accidental modification. Every program
that writes on the disk should be given very close
scrutiny. Ask yourself: Is there a chance that
wrong information could be written on my disk
file? Nine times out of ten the answer is yes. All
you need is one mispunched card column, with the
resulting wrong answers, and you have a disk
record with erroneous data. If the data you are
placing on the disk is of a critical nature (as dis
cussed in the preceding pages), you may have
problems.

Later sections will discuss some of the ways
you may avoid such accidental modification, and
how you may easily recover from them. Some of
the potential sources of such accidents are:

1. Programming errors (program not com
pletely debugged, etc.)

2. ErrQrS in input data
3. Mistakes by the 1130 operator (running a

program twice, etc.)

Design an Accident-Insensitive System

The safety of disk data should be a constant consid
eration when designing a system. "An ounce of
prevention is worth a pound of cure" - or, in data
processing terms, a few minutes spent in planning can
save many frantic hours or days in keypunching and

Section Subsections Page

15 20 I 30 01

computer reruns. An accident may never occur,
but it would be foolhardy to ignore its possibility.
By following a few basic guidelines, the system
may be designed so as to be relatively insensitive
to accidents; no matter what may happen, recovery
is quick and straightforward.

Section Subsections Page

15 20 I 40 01

Detect Errors Before They Do Damage

Whenever there is any chance of erroneous data
being written on the disk, you should provide a
series of checks to minimize the damage. If there
is any possibility that input data cards contain bad
data, they should be checked. Your keypunch
operators should be familiar with the business, so
that they can recognize outright mistakes on source
documents. Programmers should be urged to
build reasonableness checks into their programs.

For example, a program that reads employee
labor cards should always check the number of
hours worked and, if the number is questionable,
take appropriate action (such as type a message
and pause).

Program results in the form of printed answers
should be spot-checked before the next processing
phase. Most errors are easily spotted early in
the game, provided someone is there to look for
them.

Plan Modest-Size, Modular Programs

At first thought, it would appear that the best
program is one that does as much as possible. Why
have half a dozen small payroll programs when one
could do everything? Unfortunately, however, a
large program that does many things tends to com
pound errors rapidly.

Let us look at the typical payroll job steps for
each employee:

1. Read employee's payroll labor card(s)
2. Read his master data from disk
3. Compute gross
4. Compute deductions and net pay
5. Compute all YTD and QTD totals
6. Write his new master disk record
7. Print payroll register
S. Print paycheck
9. Print check register
Suppose you wrote one very large program to do

all nine steps and one of the cards for the 56th man
somehow got mixed in with the cards of the 10Sth
man. Your programmer has done a good job of
error checking, so the 1130 types CARDS MIXED
UP and pauses. You have processed 107 employees
- printed the register, written checks, updated
disk records, etc. - with one man (the 56th)
completely wrong. How do you recover?

Correct the cards and rerun from the beginning?
No. Besides printing duplicate checks, that would
compute and write new YTD and QTD totals for
everyone and completely ruin your disk data
records.

Keep going and fix the 56th man later? Possibly,
but how? This would require a special program
to correct his now-erroneous disk record. It would

Section Subsections Page

15 20 I 50

also require a handwritten paycheck, a hand
correction to the payroll register, handwritten
totals, and a lot of explaining to the accounting
department.

01

Reprogram the entire system to be less accident
prone? Yes, but a little too late. It should never
have been written to do so many things.

This example represents an everyday occurrence.
Programs are written this way and cause great
consternation when the inevitable error in input
data occurs - or when the operator enters the
wrong week-ending date, or when the paper in the
printer jams, etc.

A properly planned payroll system, like the
example used throughout the following chapters,
would consist of four programs, not one:

PAY16 • Read Input Cards
• Check for Errors

P A Y04, Part 1 • Read Input Card
• Find Man Number on Master

Disk File
• Perform Calculations
• Update Disk
• Repeat Steps 1 - 4 for All

Employees
P A Y04, Part 2 • When Part 1 Is Finished,

Print Payroll Register Directly
from Master Disk File

PAY05 • Print Payroll Checks Directly
from Master Disk File

PAY06 • Print Check Register Directly
from Master Disk File

The advantages of this plan are obvious:
1. The input cards are checked before they

are used to modify the disk records.
2. Payroll checks are printed after the payroll

register has been inspected for errors.

Section Subsections Page

15 20 I 60 01

Always Back Up Your Disk Files with a Duplicate
Copy

Regardless of how the processing system is de
signed, there should be a duplicate copy of every
disk data file. If you have multiple disk drives,
you can copy from one disk drive onto another; if
you have one drive, you must dump to cards. The
copying (or dumping) should be on a regular basis,
and should not be left to chance or done whenever
there is nothing else to do. Both copying and dump
ing may be done easily with the Disk Utility Pro
gram, as outlined in section 60.

If your 1130 system has only one disk drive, it is
impossible to copy disks, and backup must be in the
form of cards. Either the DUP *DUMPDATA func
tion may be used, or you may write your own dump
program. With large data files, both dumps take a
significant amount of time. For example, it takes
about three hours to dump a 1000-sector data file.

Because of the time involved, there is a natural
tendency to avoid dumping such files. However, an
analysis of a typical situation shows this to be self
defeating.

Assume an 800-man employee file, contained in
400 sectors. To dump it with a 1442, Model 6,
takes about 60 minutes.

The weekly processing sequence is as suggested
earlier:

PAY16 Edit 30 min.
PAY04 Calculations, Disk Update 90 min.

and Payroll Register
PAY05 Payroll Checks 60 min.
PAY06 Check Register 30 min.
For purposes of analysis, assume the worst pos-

sible case - namely, that somehow during PA Y04
the payroll data cartridge is completely destroyed.
(No matter how improbable or infrequent you think
this might be, it can happen.) How do you recover?

If you dump the data file every week, you must:
Reload the dumped deck 30 minutes
Rerun PA Y16 and PAY04 2 hours

You have completely recovered in 2-1/2 hours.
If you dump every other week, and you again con

sider the worst case (your last dump was two weeks
ago), you must get the data cards from last week,
and:

Reload the dumped deck
Rerun PA Y16 and PA Y04 with
last week's cards
Rerun PAY16 and PA Y04 with
this week's cards

30 minutes
2 hours

2 hours

In 4-1/2 hours you have caught up to where you were
before the accident.

If it had been three weeks since your last dump,
the reconstruction time would be 6-1/2 hours; four
weeks, 8-1/2 hours; five weeks, 10-1/2 hours; etc.
Each week adds about 2 hours.

These figures assume that you can immediately
lay your hands on the previous week's data cards in
the proper order. If this is not so, these times
could go up drastically. The figures also assume
that everything goes smoothly during the recovery
phases. This, however, is not a very safe assump
tion, since the operators will be rushed and unfamil
iar with the procedures.

Without knowing the probability of such an acci
dent, it is impossible to compute the optimum dump
frequency. It is probable, however, that you will
not want to be in a 10-1/2-hour recovery position,
no matter how slight the probability, just to save an
hour a week and a few thousand cards.

In this case, the best approach would seem to be
a dump every week for the first few months of the
installation, every other week after everything has
stabilized, and every third week if conditions seem
to warrant it.

Provide Tested and Documented Recovery
Procedures

It does little good to follow the previous advice if
your recovery procedures have not been tested and
documented. Usually, time is of the essence, and
the operator should not have to study program list
ings to determine what to do when accidents occur.
This is inviting trouble and can turn a minor mis
take into a disaster.

Section Subsections Page

15 20 I 70 01

If a program checks the input data for errors (as
it certainly should), the error messages should be
self-explanatory or be keyed to a document that ex
plains exactly what to do. For example, a well
written and well documented program will type a
message such as ERROR NO. 6 and pause, waiting
for the operator to take corrective action. The
"run book", or "operation manual", should contain
a complete description of what happened and what to
do about it. Figure 15.1 shows a typical error re
covery sheet; Figure 15.2 is a blank copy of the
same form.

Section Subsections Page

15 20 I 70 02

IBM 1130 ERROR RECOVERY SHEET

JOB PAYROL.L PROGRAM NAME P~Yfb

PROGRAMMER NAME JP

PAUSE - DISPLAYED IN ACCUMULATOR
MESSAGE TYPED:

ERROR ~ MMMM JJJJ

I I I I I 1 1 1 1
AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 176 , AND:

CL£ARS TOTAL ANO GOES TO .eEAD ,ii D£T~/L C,.c;,e D,
A.5SUM/NG IT 15 THE ,t=/RST CAeO FOR NEW M,4N

DESCRIPTION OF WHAT IS WRONG:

DE7AIL CARD M~AI NUlv18ER JJJJ /.5 LOWER TH~I\I
LI1ST C,LfR.D~ WI-IICH W4~ MMMM-. /75HOUL-O BE'" GQUAL
OR HIGHER

PROBABLE CAUSE:

TilE- DET~/L C~_(?D JUST READ /.5 IIV Tf..IG" WRONG PL~CE".
IT 8eLO:\lGS E~RLIE·R IAI ,HE DECK.

RECOVERY PROCEDURES:

RE.MOV~ 0(/7- 01="- SEQUEAlCF C,L;ROS ~/VD CONTINC/E"
WITI-I JOB. NOL D C..tIRDs k€).-'l()V£D UNT/L PI?OG.f?A,A./f
IS RUN ~GA/M ADJClST CONT~OL TOT/-)LS ,.c;r END
o,c RUN,

COMMENTS; ~) u
/vI.LiKE CERT~/N TH~T t-f/HOEVt:R 1l.s0~TED 7Hli"

c~/eD5 KNOW...5 TI-I,.qr TI-IEY GOOFED!

SCORESHEET

I DATE 1~;;~81;~ffl I I I I I I INITIALS

Figure 15.1.

Section Subsections Page

15 20 I 70 03

IBM 1130 ERROR RECOVERY SHEET

JOB PROGRAM NAME

PROG RAMMER NAME

PAUSE - DISPLAYED IN ACCUMULATOR
MESSAGE TYPED:

I I I I I
AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT

DESCRIPTION OF WHAT IS WRONG:

PROBABLE CAUSE:

RECOVERY PROCEDURES:

COMMENTS:

SCORESHEET

I I I I I I I
DATE

I I I INITIALS

Figure 15.2.

Section 20: 1130 APPLICATION DESIGN

CONTENTS

Introduction. • • . . • . .. 20.01.00
Accounting Controls. • • • • . . . •• 20.10.00

Review of Accounting Control
Principles .••.••••.•.•.•.••.•.•.•. 20.10.10
More Specific Sugge stions for Docu-
ment and Accounting Controls. • 20.10.20

Form Design ..•......•.•••.....•..•. 20.20.00
1130 Considerations. • • 20.20.10
Form Design Principles. • • • . .. 20.20.20

Card Design ..••.•.•....••..••.••..... 20.30.00
1130 Considerations. • . • . • • •. 20.30.10
Card Design Principles. • . • 20.30.20

Design of Disk Data Files. • • • . • • • .. 20.40.00
Introduction. • • . .. 20.40.01
Data. . • . . • • . • . . . • . . • • • •. 20.40.10
Field Size. • . . • • • .. 20.40.20
Data Sequence ••..•.....•.•......•. 20.40.30
File Organization. . . • • . • . . • . • •. 20.40.40

Section Subsections Page

20 00 I 00 01

Record Format and Blocking. 20.40.50
File Processing. 20.40.60
File Control. .. 20.40.70

Payroll Example 20.50.00
Narrative. • • • • • • • • • • •. • • • • • . • . . . • •• 20.50.10
Card Forms and Console
Keyboard Input •••••.••••.•..•..•••• 20.50.20
Console Printer and Line Printer
Forms for Output.. •• •. • . • • • • • . • • • •• 20.50.30
Disk Record Formats. • . • •• • • • •• . • ••• 20.50.40
System Flowchart. 0 • • • • • • • • • • • • • • • •• 20.50.50

Language Selection ••••••..••••..•..•.• 20.60.00
Introduction. • • . • • • • . • • •• • • • • •• • •• •• 20.60.01
Programming Languages •• 0 •••••• 0.. 20.60.10
Application Programs.. • • • • • • •• • • • .. 20.60.20
Which Programming Language or
Application Program Should
You Use? •••••••. 0 •••••••••••••••• 20.60.30

INTRODUC TION

Up to this point, you have been concerned mainly
with planning and gathering facts about the way you
are processing your data now. The next step is to
take this information and mold it into application
designs for the 1130. Follow this plan:

1. Be sure your current-system documentation
is complete. This cannot be overemphasized, be
cause time gained by doing a hasty but poor job in
documentation will be lost later. In fact, it will
probably be lost several times over, because of the
need to sift out errors of omission from other de
sign and programming errors, research the omitted
facts, then rewrite and retest all affected programs.

2. Design or redesign your reports. This must
be done in detail, and all interested parties should
sign off on the new layouts. The forms layouts
illustrated later in this section are sufficient to
guide data processing personnel in their program
ming. The people who will use these forms should
be shown samples, as they will actually appear,
with real data hand-printed in the formats that are
planned.

3. Layout the cards (see 20.30.00).
4. Draw flowcharts of the procedures you will

follow in processing the cards to produce the re
ports. Decide what programming system or ap
plication program (such as 1130 Commercial Sub
routine Package) you will use for each run, and note
it on your flowcharts.

Section Subsections Page

20 01 I 00 01

5. Establish procedures for accounting controls
where you need them. They may be different from
those you are using now.
(Steps 2-5 are usually overlapped to a large extent.
Changes in reports usually require changes in card
formats, procedures, and accounting controls.
Similarly, changes in anyone of the latter three
elements affect the others.)

6. Hold a management review after the first
application has gone through the steps above.

7. Let each person who is programming carry
one of the programs in this initial application
through Program Development (see section 25) to
completion. By so doing, he will broaden his ex
perience quickly, develop a more realistic idea of
the amount of time required for application design,
programming, and testing, and get a clearer idea
of the depth of detail needed in your current sys
tem documentation. After this experience has been
gained, review your activity schedule dates and ad
just them according to what you have learned.

This section reviews the important considera
tions of designing accounting controls, forms, and
cards. Then the same payroll example introduced
in 10.50.00 is presented, along with typical form
and card designs and job flowcharts, as well as the
disk record layouts for the programs required to do
this payroll.

To help you decide which language to use for any
given run, this section also covers the considera
tions that go into language selection. Finally, it
presents an example of a method for estimating the
length of time required to run a program.

Section Subsections Page

20 10 I 00 01

ACCOUNTING CONTROLS

This section covers the subject of accounting con
trols at two levels. The first part, "Review of
Accounting Control Principles", points out the types
of control that are required and serves as a review
if you have set up and used controls before. It ends
with a short summary.

The second part, "More Specific Suggestions for
Document and Accounting Controls", deals with
specific examples of control sheets and methods of
control, and can be used as source material for
setting up your own control documents and proce
dures.

Review of Accounting Control Principles

Accounting controls are an essential part of your
data processing installation. The inherent accuracy
of data processing equipment and the elimination of
many error-prone clerical steps helps reduce the
number of errors in processing; however, good
accountingpractice requires that you have a precise
procedure available to prove and reconstruct the
basic records of the system. Controls are also
necessary to guard the records of your bu~iness
against fraudulent acts.

The accompanying exhibit shows a typical in
formation flow through a system. Information
from source documents is punched into cards. The
first control (AI) ensures that your information was
transcribed correctly and completely. This can be
determined in one of several ways:

1. The cards can be key-verified.
2. Control totals from the source documents can

be balanced against the cOard totals. For example,
an adding machine total of the quantities on a batch
(several source documents) can be balanced against
the total of the quantities in the cards created from
the documents., This same technique can be used
to control other numeric fields, such as employee
number, part number, etc. The total is often
called a "hash" total. If an out-of-balance condi
tion occurs, a listing of the cards provides a means
of comparing the card information with the source
documents, and the error is quickly isolated and
corrected.

3. Document or transaction counts can be used
to ensure that a card document is created for every
trans ac tion.

Since the information in the cards will be used
to update several associated records, accuracy is
of prime importance.

At the time the cards are run through the system
for accumulating control or hash totals, other tests
can be performed.

Fields may be tested for size or reasonableness.
For example, the nature of your business may be
such that the quantities have reasonable limits,
based on the class of an item. Any item exceed
ing the limit can be so noted for review before
processing. This type of test might keep you,
for instance, from shipping 24 bathtubs to a small
country store as a result of mispunching an item
number for pliers.

Batch size (the number of documents included
in a control group) should be small enough to keep
error tracing from becoming too cumbersome. On

Section Subsections Page

20 10 I 10 01

the other hand, it is not reasonable to control each
document separately.

As the documents enter the process (A2) , the
same control list above can be used on a cumulative
basis to ensure that all the cards from the several
batches that constitute a processing run are com
pletely processed.

Card documents being created by the process
can be balanced against your control (A3) totals.

A control should be maintained on all card files
(A4) . The total from (A3) will be used to update
this control as cards enter the file. Before proces
Sing a large card file, it is often advisable to run
a trial balance on the file--particularly if the file
is being updated or used as a source of reference
between processing runs. The purpose of this trial
balance is to catch errors in filing, missing cards,
duplicate cards where a change was made but the old
record was not removed, etc.

A control listing of all cards entering and leaving
the file establishes the control total entry and pro
vides an audit trail if it is necessary to identify
lost or duplicate records.

The accompanying exhibit also shows an example
of a simple control sheet. Each time records enter
the file or are removed, an appropriate entry is
made and the file balance is updated.

It is often possible to provide audit requirements
as a by-product of creating normal reports. For
example, the trial balance of your file might be a
stock status report. The value of separate balancing
runs must be determined by experience for each
application and will vary with the experience and
capability of your operating personnel.

The number and types of controls will depend
a great deal on the application. Your own auditors
should be consulted in determining control proce
dures. Controls and audit trails should conform
with their requirements and should be established
as an integral part of the data processing proce
dure. Much of the material in subsection 20.10.20
will help you and your auditors design adequate
control forms.

In setting up controls that will operate success
fully, the following should be kept in mind:

1. Only those controls that satisfy a need
should be included.

2. The overall system of controls should be
conceived and arranged for when procedures are
being planned. Thus they will be an integral part
of each procedure, and those areas that may have
a tendency to be overcontrolled or undercontrolled
will be spotted.

Section

20

I
I
I
I
I

gl
~I
<XII

£ I
I
I

Subsections Page

10 I 10 02

Processing

Typical control of data processing system

A2

Has the information on the source documents been
transcribed correctly on the cords?

Does every source document or transaction have an
AI associated punched card?

Do figures meet reasonableness tests?

Are all necessary fields filled with information?

Register provides an audit trai I.

Do the card output
records balance to
control?

If so I post to the
fi Ie control.

A3

A4

~I

~I
<XII

" I
"" I 'L ___ _

Balanc ing

Trial
Balance

Register provides
on audit trail

This procedure
would be reversed
when removing
cards from the
file.

Does file balance
to control?

3. Personnel who maintain the controls should be
familiar with machine functions so that they can
locate, determine the cause of, and correct out-of
balance conditions.

4. Controls should be simple and easy to main
tain so that workflow is not disrupted.

5. A description of control operations should be
documented and assembled for reference and train
ing purposes.

Section Subsections Page

20 10 I 10 03

6. Whenever possible, control operations should
be mechanized.

7. When documents to be processed are batched,
batch size should be such that work will continue to
flow steadily.

8. Company auditors should agree with the audit
and control procedures.

9. Department controls should always be estab
lished outside the department, at the source of the data.

Section Subsections Page

20 10 I 20 01

More Specific Suggestions for Document and
Accounting Controls

The following discussion of accounting controls is
concerned with (1) those controls established and
used outside the data processing installation and
(2) those established and used inside the installation.
Outside controls consist primarily of the initiation,
authorization, and verification of source documents
representing accounting transactions. Inside con
trols consist of (1) checking operations, in which
transcribed transaction data is verified, and (2)
balancing operations, which ensure the accurate
processing of all transaction data.

Generally, the necessity for accounting control
increases with the volume of transactions or doc
uments processed and the complexity of operations
performed. A variety of control techniques will be
discussed. The techniques to be employed depend
upon individual conditions within your organization.
It is important that the controls which you use al
ways provide a proper balance between their cost
and their value. Since a system of accounting con
trols may be obsoleted by a change in accounting
procedure, company policy, company organization
and/or data processing equipment, controls should
be examined and evaluated periodically. Company
auditors should participate in establishment and
evaluation of a control system.

Outside Controls

Control techniques described in the following text
are not necessarily limited in use to anyone appli
cation; they are easily modified for use with a vari
ety of applications:

Document register. Control of individual doc
uments can be maintained effectively by the prepa
ration of a register on which each document is
listed at the point of receipt or origin. The register
should include either a description that is sufficient
to identify each document quickly, or a serial iden
tification number. The serial number not only
furnishes positive identification and an effective
method for later reference, but is also most easily
used at the point of entry or origin. When each
document has been completely processed, it is
"checked offT' or canceled on the register. Un
canceled numbers represent documents that either
are in process or have been mislaid. Intermediate
processing operations for each document may be
shown on the register and dated as the document
passes those points in the procedure. The illus
trated document register for sales orders not only

discloses a missing or misplaced document, but
also indicates any delays in processing--as might
be the case with order 12843, which, several days
after its receipt, has not yet been billed.

Serial numbering and the batch control ticket.
Where serial numbers are printed or stamped on
each document, rearrangement in serial number
order and a check for missing numbers may be
performed during, as well as after, processing to
ensure inclusion of all documents. This plan is
particularly adaptable to documents such as checks
or drafts, where each document must be accounted
for. When the document is an IBM card, the serial
number may be punched into, as well as printed or
interpreted on, the card; arrangement of the doc
uments, as well as a count of and sequence check
for missing documents, may then be accomplished
automatically.

Serial numbering may also be used for groups
and batches. If so, the number of documents in
each batch is recorded, together with the batch
serial number, either on the first document or on
a separate form accompanying the batch. For
large-volume operations, batch size should be
predetermined for ease and efficiency in handling.

The illustrated batch control ticket employs a
document count as well as document and batch serial
numbering. By maintaining a file of the batch con
trol tickets, both the sending and receiving depart
ments can account for all documents.

Transmittal and route slips. A letter of trans
mittal describing a group or batch of documents is
frequently employed to establish control and transfer
responsibility when documents move from one depart
ment or location to another. The transmittal slip,
as shown, is usually a printed form with spaces to
indicate the variable information for the batch.

When the volume of work or the number of
people who may perform any given operation is
large, it may be desirable to fix responsibility for
accounting for documents passed from each opera
tion to the next as well as from one department to
another. In this case, a route slip is employed,
either in addition to or in combination with the
letter of transmittal. The route slip is similar
to the batch control ticket shown, except that in
this case each department, or operational step
performed, is identified, along with an indication
of the processing time and the operator or clerk
responsible for each job. Responsibility is fixed,
and the means to effect a degree of work control
as well as document control has been incorporated
into the same form.

Section Subsections Page

20 10 I 20 02

ORDER REGISTER

.ONT" ~
DATE DATE DAn DATE

IIECEIVED
OIlDEIl HU.BEII

AUDino BILLED 5HII'I'ED
liE. AllIS

/ dill/ 12831 I II /11/ I"/Ifi' /II/i'
" 12832 " IU/ /I, /' //.
" 12833 " " "

" 12834 /II//S /11//7 /1//';>

" 12835 /,/I~ /#//~ h/'l ., 12836 " .. "
.. 12837 /0 I/s IP/ll Ilf/IP
" 12838 ItJ /Ij/ "

.,
, 12839 1/

/tJ~"- /,/ " ., 12840 /I " "
I, 12841 " 1 0 /1" IP/17

Itll /~- 12842 I"//,s- /17/17 /tJ/lf

" 12843 ft1 / /., I~~.~
/I 1284~, 1/ III /19 lujl ., II

Order register

..-:::....
l

/ 'r ~ Ke~e/~P~:r
BATC NO TO:

/0 ~V ?~~ V~.:C.
DATE f'ROM:

NUMBERED

.17 /,;{ 3 S .,j-

! /.:ldY/
NO. Of' DOCUMENTS f'ROM TO

RECEIVED ATTACHED DOCUMENTS SPECIFIED ABOVE

DATE I SIGNATURE

I'\,[ASE SIGN AND FORWARD THE CO'Y OF THIS BATCH CONTROL

TICKET TO SENDING O,"T. WITHOUT DHA>.

Batch control ticket

\

CARD SHIPMENT TRANSMITTAL

F'i<e-~ 'po. /fIR
I

I '"0"

I
"'fIR ,0~Vtffer'"

'00'''0,., J.I. ~ ,. ""D·Xou.. ROUTING SLIP

I "'''''' I t'-'···;L?-~~~ 'I ttl /tJ/lj, / ~::I I /7:'S- No,o;::mENTO ~'oo.' '003 = '_0 / 2' 2, II eATCH NO, OAT[

DEPT. TO DATE FWO INITIALS R[MARkS
OfIIHIOl 'OT"'~$

8,OOO~
~ /11/,6 Jc-~

12o;64~.2/
4 ~Qc,. 10\ \i TU"
(JJu4,v /tI/~ Cl-.R tfl7.1~~~ J

[I .. l "'N' turn."",cc:s 1/111 NO 0' OOCUIII[fiIIfS rglt'liu •• OCO .IIIID

RETURN TO CONTROL CLERK

Transmittal and route slips

Section Subsections Page

20 10 I 20 03

Cancellation and time stamps. As a document
is received at a control point or passed through a
given department, it may be "canceled" by a stamp
to indicate that it has reached or passed through a
certain stage in its processing. Any clerk or oper
ator handling documents would automatically reject
or return for checking any document not bearing
the correct cancellation. As shown in the accompa
nying illustration, the use of the time stamp for
cancellation affords, in addition to document control,
a method of achieving work time or production con
trol, since it furnishes an accurate, unalterable
record of elapsed time for handling.

Matching. The reassembly and matching of
duplicate documents can be used to effect control.
This technique is particularly useful when multiple
copies are prepared, as with carbon copies, and
each copy is then used to prepare records at a
different location, for example, purchasing depart
ment and receiving department. When all copies
are reassembled and matched at the predetermined
point, the presence of all copies indicates complete
processing. If the documents are punched cards,
matching and checking can be done automatically.

Control of factors subject to change. Factors
used for calculations and processing may be re
viewed and changed from time to time. Examples
of such factors are discounts, selling prices,
credit limits, commission percentages, and in
ventory reorder levels.

Controls must be established that allow only
authorized changes to be made. This is accomplished
by requiring a signature with each request for change
(see change authorization exhibit). Changes are
documented by printing a register (see change
register exhibit). A copy of the report is routed
back to the initiating department for review and
approval.

Inside Controls

Controls within the data processing installation
should ensure that all transactions are processed
completely and accurately. The series of checks
and balances that make up these controls must
begin with the entry of transactions into the data
processing installation and continue throughout
processing.

PURCHASE ORDER

NEW MEXICO COMPANY
SHOW OUI OADU NO. ON ALL INVOIC[5.
'ACUGlS AND SHIrPING PAP[R~

rOo 56
HOUSTON. TEXAS

DAT[10/12 -, ORDER No. 311
TO

CENERAL MANUl'AC'lURINC COOANY

ENDICOTT, N. Y.

L
SH"

TO AB~ YIA Bi'SI' 'JAY
OUANTITY

40 SQUARE SBAIQC SWIVEL
7~ JUr TOP RIGID
~ Err SHAH VITI BRI:
:: BOI:r AM) It1l' SBAIII:
" RIfD SPR ~ S'l'JM

40 BOLT AM) It1l' SIIAR

lIoun DirT., 0' •. " "rI. I eeL. to "rt. .",O' •. A"M

Time stamp cancellation

r.o. ,.
O(5CII"ION

I CUll I

NAIL INYOIC[5 IN TRIrLICAT[UNLESS
OTNERWIS[SPECIFI[D.

11202
13102
11203
3210,
44101.
62110

c_

"ICI

0
~
~

0

•
:z:-
:3

(0
I

.. •• et TO , tI •• , , .. (CHlDI"O ,. I'CI _!!II'"

."teN All ttIC "I. , •• MA" A"" 01'

we ~ ..

:lO
m
(")
m
<"
Z
(j')

~
~
~
3
m
Z

Section Subsections Page

20 10 I 20 04

IIJ._ ... ~,1 <0"""_' L I_ .. ·I
.. I. - L " • .1.. '-"'7 .. \

E .. 'LOYEE'S AUTHORIZATION ,"" PA""Oll Moue TlON r·· '"'' O.:.c~' 1~1~~~ F.!:Ul lEi, £1; 0# ~~~f.~~.'~ n:';t:,;.,~ ..
f'""· .. ·· .. ·POE J~H';j -is' n~-Fc:, IN'.'J·IT·il.:2: r""-5~~ "1"-;>'"" r,':j" ~

TO. III(QltU"(O U. TN(

.[GtiTlItAnoN DAT& F(Wt .::: MT ':) • HN D. Do ..
us. SAYINGS 10NO .. '-'I~';-' Fte.:'D" R:

"."T
~::::':::~.'::;'::'.:-:; ,AN'I"wH£.rte.
::.::. ~'~:~"C~:,r. "n. , •• , fA •

TO: Machine Accounting Dept. DATE: 11/25

......... ," .0 I I , I FROM: Marketing

THE FOLLOWING PRICE CHANGES SHOULD BE MADE:

ITEM NO. DESCRIPTION NEW PRICE

12 2685 PEA SOUP $ 6.001
12 3074 ORANGE JUICE 3.857
1 3 1111 HAND SOAP 2.200
13 2954 CONDENSED MILK 1 .639
13 4182 TOOTH PICKS .353

AUTHORIZED SI'GNATURE

Change authorizations

CHANGE REGISTER

FACTOR FACTOR

DATE ITEM CODE DESCRI PTION BEFORE AFTER

CHANGE CHANGE

11-26 12 2685 PEA SOUP 5.956 6.001
12 3074 ORANGE JUICE 3.132 3.857
13 1111 HAND SOAP 2.253 2.20v
13 2954 CONDENSED MILK 1.652 1.639
13 4182 TOOTH PICKS .352 .353

-""""'- ..-...L.,..--... -~ ~
.... --

Change register

Section Subsections Page

20 10 I 20 05

Control techniques and devices. A list of con
trol devices and techniques, many of which can be
incorporated into the procedure for any data proc
essing system, includes:

• Serial numbering. The serial numbering of
orders, invoices, checks, etc., provides control
while the data is in transit. Each item or document
in the series or group is assigned a successive
number; an indication of the beginning and ending
numbers accompanies the group.

• Batching with a document or item count. In
batching data with a document or an item count, the
items or documents are counted instead of numbered;
an indication of the count accompanies the group.
This technique can be used to control data, both
before and after it is punched into cards--for ex
ample, requisitions, changes, receiving reports,
and punched cards for various analysis reports.

• Batching with a control total. In batching with
a control total, some data field that is common to
all items or documents is accumulated for the con
trol total, which then becomes the basis for balanc
ing operations during processing. The control field
may be an amount, a quantity, an item code, an
account number, etc.; totals based on an account
number or code are known as "hash" totals. An
advantage of this technique is that balancing can
often be performed during regular machine proc
essing operations at no extra cost in time.

• Crossfooting. Crossfooting is the addition
and/ or subtraction of factors in a horizontal spread
to prove processing accuracy. It can be used on a
payroll register to prove that the final totals of
net pay and deductions equal the final total earnings;
this provides control on report preparation as well
as calculating and card-punching operations. In
posting transactions to records that are temporarily
stored in a computer (for example, accounts re
ceivable), crossfooting is used to prove the accu
racy of posting, either as each transaction is
posted, or collectively at the end of the run, or both.

• Zero balancing. Zero balancing is an effec
tive method of verification when both detail items
(for example, accounts payable distribution cards
or records) and their summary (for example, an
accounts payable disbursement card or record) are
processed together. Each detail item is accumulated
minus, and the summary plus. The result is a zero
balance if both are correct.

• Negative balance test. It is possible to detect
a change in Sign during arithmetic operations and
either stop the machine or signal the condition for
subsequent review. In payroll applications the sign
check is used to indicate the condition in which

deductions exceed gross pay; in accounts receivable,
accounts payable, inventory, and general ledger
applications it can be used to recognize any balance
that becomes negative.

• Blank field test. This means checking any
data field for all blank positions. As a computer
control, it can be used to prevent the destruction
of existing records in storage, indicate when the
last item from a spread card has been processed,
skip calculation if a rate or factor field is blank,
etc.

• Comparing. Comparing; as a control tech
nique, permits data fields to be machine-checked
against each other to prove the accuracy of match
ing, merging, coding, balancing, reproducing,
gang punching, and record selection.

• Sequence checking. Sequence checking is used
to prove that a set of data is arranged in either
ascending or descending order before it is proc
essed. It is generally a mechanized operation and
may be performed in a separate machine run or
simultaneously with another operation in one run.

• Visual comparisons. Comparisons are based
primarily upon experience, past performance, and
a knowledge of trends that have intervened. By
knowing the status as of a certain time and observ
ing trends since that time, it is possible to deter
mine to some degree whether present records
represent a complete and accurate picture. For
example, present-period payroll is often compared
against last-period payroll to spot any questionable
variations.

Controls on processing operations. The number
of available techniques indicates the need for a
thorough study of your application and equipment in
order to come up with a system of controls which
is adequate but which does not overcontrol and delay
processing. In so doing, it is desirable to mechan
ize as many controls as possible. Mechanized con
trols are always performed at a constant, rapid
speed; manual ones are not. A study of the appli
cation will reveal:

1. How closely it is to be controlled.
2. Points in the procedure at which controls

must be placed.
3. The correcting and restart procedures to be

employed at each point, in case the operation does
not balance. If the procedure is a manual one, it
should be clearly documented for operator refer
ence and training purposes.

4. How accounting control responsibilities are
to be divided.

The basis for control during processing must be
established as data enters your installation. This

is generally done when transactions are edited and
may consist of assigning a system of serial num
bers or developing a document count, a transaction
count, an item count, a tape listing and total
of some field such as quantity, amount, or code,
etc., or a combination of these. When these pre
liminaries are taken care of, your transactions are
ready for processing.

During report preparation, the primary control
objective is to prove that all items (accounts or
transactions, etc.) are included in the processing
and that arithmetic is performed accurately 0 It
can be assumed that the data itself is correct, since
punching, summary, and posting operations are
proved as they occur.

To ensure the inclusion of all items in the report,
a final control total is developed during processing
and balanced at the end of the run to a predetermined
one. In cycle billing operations, the control may
be an account number hash total of those accounts
that are in the cycle; for other reporting operations
it may be a control total based upon an amount, a
quantity, or another code field. For control of
arithmetic functions that occur during report prep
aration, the following techniques should be inves
tigated: crossfooting, total transfer, zero balancing,
parallel balancing, reasonableness test, or a com
bination of these.

Built-in checks and controls. Built-in checks
should be taken advantage of and not duplicated by
programmed or manual controls. They function as
a result of internal machine circuitry and are there
fore performed automatically. For example, all
machines have checks which stop the machine for
an operation that is impossible or in conflict with
another.

Computers utilize input/output checks. The
input check ensures that all data is read and coded
correctly. The output check ensures that your out
put characters are correctly set up for punching
and/or printing.

This discussion does not include all built-in
checks; for more information regarding a speCific
piece of equipment, refer to the reference manual
describing the machine.

The audit trail. An audit trail must be in
corporated into every procedure; you should pro
vide for it early so that it becomes an integral part.
In creating an audit trail it is necessary to provide:

1. Transaction documentation that is detailed
enough to permit the association of any transaction
with its original source document.

Section Subsections Page

20 10 I 20 06

2. A system of accounting controls which proves
that all transactions have been processed and that
accounting records are in balance.

3. Documentation from which any transaction
can easily be recreated and its proceSSing continued,
should that transaction be misplaced or destroyed
at some point in the procedure.

The audit trail shown in the accompanying ex
hibit might be found in an accounts receivable ap
plication. The original or entry sales register is
prepared by date of entry immediately after the
cards have been punched or activated from a file.
All punched .information is listed on the register
in detail, so that if a transaction has to be recreated
at some later time, reference to the source doc
ument will not be necessary. To prove the accuracy
of the register's preparation, its final total is
balanced to a predetermined one; if the two are
equal, the final total is also posted to the control
sheet. The sum of these individual totals on the
control sheet establishes the final control total to
which all accounts receivable operations for the
period must balance.

Cards for the cash receipts book are either
punched or activated from a holding file. After
being prepared in detail, the cash receipts book is
balanced to a predetermined total. If it is in bal
ance, the final total is posted to the control sheet
and the receipts are posted to accounts receivable.

When the aged trial balance is run, the final total
should equal the difference between total debits and
total credits to accounts receivable; this difference
is available from the control sheet. If the totals do
not agree, all the transactions for the accounting
period can be sorted into entry date sequence, sum
marized, and checked against the daily entry totals
on the control sheet to isolate the entry date that is
out of halance. The transactions for that date are
relisted; an entry-by-entry comparison on the du
plicate and original entry registers will reveal the
discrepancy so that a correcting entry can be
initiated.

The sales register and cash receipts book pro
vide documentation that is sufficient for reconstruct
ing a transaction or associating it with the original
source document. Balancing each register to a
predetermined total proves that all transactions in
the group have been processed through that point.
The entries on your control sheet provide the means
for balancing accounting records at the end of the
accounting period.

Section Subsections Page

20 10

Eltr SHAN'" ""ITH SRK
sa SHANK RIGID
SOL T ... NO NUl SHANK
ANO SPA RING STEM

FREIGHT

so SOCKET RIGID
CuSTOM BulL T
RND SPA RING STEM
fLAT TOP SWivEL

FRE 16HT

E).lENS ION SHANK
AOJ AD"PTER ROUND
BOL T "NO NUT SH"NK

FREIGI-4T

AT A.NGLE HEAD
SlD PIPE STEM
(uS-10M BUll T

FREIGHT

FLAT TOP RIGID
(uSTOM Bull T
FLAT TOP SWivEL
FLAT TOP AlGID
CuSTOM Bull 1

FREIGt-iT

E"lT S""lAr'iK wi TH BAK
S'; SO(I(, T Swl'lE:..
FLAT TOP SWIVEL
"NO SPR RING STEM
CUSTOM Buill

FRE luHT

Audit trial

I 20 07

O "' .. V·"'(:TU·'_c:O .. " "

SALES "IGtSTE"

CASH "'ClII'TS "EG'STE"

.. il : lNVOIc.a ~
8062 251) 1506 I: i', ~ .92117
8251) .. 7 1 2'00 '691O)

112} 22079 , " I: ~:; ~ 500 100
19285 195: ZZ92 9 5 0 ~ 9 7
)6512 11' Z)18 I: ~:~ ~ 415

1
"

450)5 107. 1686)81 166
58091 2219 2285 I"'" 252'56
610 .. • 1 8 "} I'" 1

761 1'1
59151 1)67 '" I: i:; ~ 1000'00
61221 22·6 2)25 105Slo,
78050 7', 0"52 1'°1

8 1"6161
87652 1616 9562 .1, 6501.0

i I
6915,07 . I

1 7 J 2 liB 7 " 1235

11 0 11 ° 2 1123 101 I " 12351(

21 ° 21123 10 7 1 " lZHl'
",0 2 1123 1011 " ! ~~~~l 0 2 1123 10 ' 1 " 21123

;: :J::I
12)!»

HA!qOWAR£ co 0
C£NTIi'fAL UNION SUPPLY

16102 130!>2 12)52 CH"'NEL.. WHOLES'"'L..E

! !~ & ~ 13052 71)1 123!>2 0 COVENTRY OIL
13052 ~; : i: 12352 HA5K£L.. INO S!JPP CO

, }2 O. 1 052 121!>2 K[;.LVINAIRE CORP
1 0!>2 107 ill 12352 0 MAIZE !qE~INING CO
1 30!>2 10 1

"
121~2 NEWTON .. AAIC "NO co

NEW ME)(I CO CO,-"P"NY

780510. pi 0 0"5 ANO ELEC CO

; :. g~ 1235 vESTAL STEEL co

7:~;~ :,
1>1 1215 WINTERO"LE Fit .. I LWAY

.21 ")1 12351 0
;:~;~Io:, ~:

12l!>
12l!>

l~~~
.'-

I 42 021 30541)1 12)!>4
317 0 I)0541 I 1>1 12354

• >t
121)0541)1 123'H

I)054) 7

~:
1235lt

I 30!>.) i2354

I 31 02 ")5>10, pi 12355
I 5102 2 1)>5 10, ~: 12)5!>
5 32 08 2'355 4 i2l5!>
63108 , 1)5,10,

~: 12355

• >t
10 , 1355 12355

213554 11 12355

2 7"'10')1 12355

I 12 03 2 ,ql 51)1 12'356
, OJ 022 '." , I 12'356
1 l' 0' , .. " , I 11 1235b
, 'I 0' 2 '"

,
" 12)56

• ~I 10 , ' .. 10' I I 1])5&
2 ' .. ~: I 1235& , ... Jl 12 3~b

Totals are posted
to the control sheet

from both
daily registt:rs

18.

"" 2to'

, ,
18,
I~I
<48,
11<0.

111'1 ,
I , ,
'''' 21<>.
<:,>0

'1'''
11: 77

I
I
I ,
I

o

o

20 17~O
50 13~0

'0 llq'fa 89~0

1)4;~O) 01 1198

" 6~0 ,J.8

" 9.175 72:&0 ., 2l~' 16~8

l' 261180 19$5

"t" 42~4

116+5' 907"5

7, 121:50 qt.-O'
" 12l()5 ."'. '0 11000 0
'0 19i.!>O 14~0

" 88~'5 70~'1}

1'1~0' 112+1
714ti) "'i'

1760
13~·0

119~~

1)1
351t8

~$;
211125-
261180
",*,5

I,..

~41116~) ; .
121~O

: 12105
IlfJOO

'"t,>o
Bell7!>

'>2
14 3f2

'" 1b~.

1/:

J

Incoming transactions
listed in detail for permanent
audit reference

ACCOUNTS "ECEIVABU

c:ot(I"lIOL SHIp

._ uI5"5"

1 ,I"" III/ 7s1 \.ll 71",117 I 1/,
, S 1/" " 2ZI.z 1$.1 7.5111.,. Jol~

... 1 .zit " , ~" I~ .J. 11;. ~.z .5ol"S

.Jsl.z.s

I",ffo

.U 7.n'l1s7 91.5n 07 fl¥1l'lI,,, III lJ

J' 7if.2.sI.U , Ifl U f17orl'1 17fl'-l

.... III
____ -...-.--10""" •• r ·

~
Ch~O J/

Trial Balanc~

0

0

492117 , 0
)61165 1,'8
"'90,00 10,00
9)1,95 19,02 0
40 7,02 8,'1
)81,66

5:05

1 ~ ~ l:g l
0 ,

10,,19) Z1110 0
1"6161 I
650,40 I

I
70:86

0
6904121

~

FORM DESIGN

The first part of this section, written for persons
familiar with punched card processing, deals with
1130 considerations only.

Section Subsections Page

20 20 I 00

The second portion is more detailed and serves
as an introduction to the subject for those who are
new to automated data processing.

01

Section Subsections Page

20 20 I 10 01

1130 Considerations

1. The ability of both FORTRAN and the 1130
Commercial Subroutine Package to provide heading
information can greatly reduce the cost of forms.
Standard stock forms can be used for all internal
reports, and appropriate headings can be provided
at the time the report is prepared. Setup time can
be significantly reduced by eliminating the need to
change forms in the printer.

2. The 120-character print line is probably at
least equal to your present capacity. Consider
printing narrow forms two-up --that is, two pages
side by side (on special paper for splitting), printed
at the same time. This teclmique can double your

output or can avoid the need for extra runs or extra
carbon copies where the number of required copies
is large.

3. The extra speed of your printer (1403) may
allow you to make some short runs twice instead of
buying expensive multiple-part paper just for those
runs.

4. Interchangeable chain cartridges for the 1403
allow you to improve the appearance of certain
reports by providing a variety of special characters.
Also, printing speed can be considerably improved
by selecting a character set containing only the
characters you need.

5. The ability to have both the 1403 and 1132 on
line can save time, in some cases, by eliminating
the need for rerunning cards to produce a second,
different report.

Form Design Principles

The design of effective, economical forms reqires a
certain amount of preparatory evaluation and
analysis. The major objectives are legibility,
simplicity, economy, and efficient preparation.
Local IBM representatives should be consulted
early; their guidance and reference materials may
help avoid costly mistakes. steps to be taken in
forms de sign are:

1. Establish the need for the new form. Sim
ilar forms may exist which, with minor changes,
will satisfy the new requirements.

2. Study the machine to be used for printing.
In so doing, use the reference manual for that
machine; most manuals have at least one section
devoted to the tape-controlled carriage and/or form
deSign. These sections contain valuable information
about forms specifications as well as different
printer characteristics and operation.

3. List all types of information to be recorded
and the number of positions that will be allotted for
printing each. In doing this, assemble and study
past and present statistics. These can be evaluated
in light of future plans and then used as an indi
cation of probable needs. One of the greatest
weaknesses in forms design is the tendency to
burden a form with unnecessary information. Since
entire data processing procedures may be geared
to the preparation of a certain report, extraneous
information can be costly.

4. Layout the form on a printer spacing chart.
(See Figure 20.17.) In using the spacing chart the
following tips will be helpful (some will be dis
cussed in greater detail later):

• Use bold type to make special information or
headings stand out.

• In columns for figures allow sufficient space
for the largest amount plus punctuation.

• Place filing information near the top of the
form.

• Ti tIe the form.
• Include form number, date, and page number.
• Keep headings small, to allow room for

written data.
• Consider total headings at the bottom of the

form.
• Use different-colored copies as an aid in

routing.
• Use double-ruled lines to set off sections.
• Avoid horizontal rulings as much as possible.
• Consider guide marks for names, addresses

and folding.

Section Subsections Page

20 20 I 20 01

• If possible, choose a standard form width.
• Make certain that the form length is compatible

with the spacing to be used.
• Include a guide for forms alignment in the

printer.
5. Make a test using a copy of the proposed form.

Examine the report carefully to make certain that
zeros are printing properly and that amoUnt fields
are large enough.

During the creation of a form the designer should
understand and keep in mind the following:

Form width. The overall width of a form is
important in determining printing space. Although
the IBM form-feeding devices available will handle
a great variety of document sizes, certain practical
aspects should be observed.

Form costs can be reduced by confining widths
to the standard sizes of paper stock used by business
forms companies. (These sizes can obtained from
the companies; reference to the individual machine
manual will indicate which are acceptable.)

In addition, width standardization permits (1) pur
chase of report binding and filing supplies in fewer
sizes and greater quantities at reduced cost, (2)
more convenient forms handling, and (3) a reduction
in the setup time of form-feeding devices.

Form length. The total number of body lines in a
form (regardless of whether six-or eight-lines-per
inch spacing is employed) can be any whole number,
up to 132. It should be evenly divisible by two in the
case of double spacing, and by three in the case of
triple spacing.

Horizontal spacing. All printing is ten characters
per inch. Vertical lines separating fields and
decimal positions should be drawn so that each splits
a printing position. If they are drawn between adj
cent positions, paper shrinkage, variations in form
insertion and alignment, as well as other variables,
may prevent satisfactory registration during print
ing.

Vertical spacing. The vertical spacing of the
printers is under operator control and can be set
for six or eight lines per inch. The importance of
this is that double spacing at eight lines per inch
permits 33-1/3% more lines to be li-sted on a page
than double spacing at six lines per inch. While it is
true that six lines per inch at single spacing gives
more items than eight lines per inch at double
spacing, the latter offers increased legibility.

Form skipping. The maximum distance that can
be skipped without losing machine time is not the
same for all printers. The individual machine or
systems reference manual should be read so that
little or no processing time is lost.

Section Subsections Page

20 20 I 20 02

Form alignment guide. If possible, a guide for
form alignment should be determined and preprinted
on each form to facilitate machine setup operations.
It is important that a description of the form align
ment guide and its use be included in the operation
manuals. A delay in machine setup will create a
delay in processing.

Numeric amounts. In determining the number of
print positions needed for numeric fields, the size
of the total must be provided for, rather than the
size ofthe detail amounts. If marks of punctuation
are to be machine-printed, the size of the field
should be checked to make certain that printing
pOSitions have been allotted.

Printable characters. The standard printable
characters are:

A-Z
o - 9

+ / (
- $)

&*=
More information may be foupd .. I '" .• '~ appropriate
machine reference manual.

Marginal perforations. Most forms have a ver
tical perforation 1/2" from each side. Sometimes,
however, forms are designed with dissimilar
margin widths. For example, a form with an over
all width of 9-7/8" may be perforated 1/2" on the
left and 7/8" on the right, to leave an 8-1/2" x 11"
letter-size report after the marginal strips are re
moved. Many such variations in margin size are
used. At least one unused printing position should
be left between a machine-printed character and a
perforation.

Since some report binders utilize the form-feed
ing holes for binding, many reports are set up with
no perforation on the binding side. The practice of
eliminating perforations and letting the form-feeding
holes remain on both sides of the finished reports is
being followed more and more, particularly with
internal reports.

Binding. In most cases, it is desirable to min
imize binding space in order to reduce form cost.
Therefore, information that will be referred to
least should be placed nearest the margin, since it
becomes more difficult to read information near the
binder posts as sheets are added to a binder.

Because of the amount of space required for
headings, many forms can be bound at the top, with
no sacrifice in readability. If it is desirable to bind
continuous forms without bursting them or binding
them on the side, binding hole s can be punched in

both the top and bottom of the forms.
Carbon copies. Substantial savings can be real

ized by mininizing the number of carbon copies.
Some techniques that are effective in doing this are:

1. Side-by-side duplicate reports
2. Consolidation of reports for multiple use
3. Sequence-routing of reports to different de

partments, instead of simultaneous distribution
4. Mechanical or photographic reproduction
Any report that is subject to constant usage, such

as a weekly timesheet, should be prepared on a dur
able grade of paper., For most multiple-copy work,
the first, or original copy and the last copy are
heavier in weight than the intermediate copies.
Lighter weights of paper have less cushioning effect
on the printing impact, and therefore permit more
legible printing on multiple copies. On the other
hand, the paper must be of sufficient weight and
strength to prevent tearing while feeding or ejecting
forms.

The carbon paper used should produce the re
quired number of legible copies without excessive
smudging. Various carbon forms in use include:

1. One-time carbon. This is used once and dis
carded.

2. Carbon-backing paper. The carbon surface is
on all or part of the reverse side of the original.

3. Chemical-coated paper. The chemical coating
on the back on one sheet reacts with the coating on
the face of the next, under the impact of the printing
mechanism.

Type style is also an important consideration for
multiple carbon copies. Standard type gives max
imum legibility. A smaller type style tends to "fill
in" when printed through several sheets of paper;
with a bolder type style the force of the hammer
blow is spread so that sharpness and density are
decreased.

The legibility of some special-purpose type is
limited. Since it is fixed in size, the more char
acters that are crowded within the area, the smaller
each character becomes. Therefore, as the number
of carbon copies increases, the difinitive lines of
each character seem to become broader. The result
is a character that is difficult to read.

In some cases carbon paper is narrower than the
form. It may be held in place by a fastening tech
nique at the horizontal perforations between forms,
or by some other method such as stitching, gluing,
or marginal perforations.

The recommended maximum distances between
fastenings are:

Form Length

1 to 5 inches

5-1/2 to 11 inches

11 to 14 inches

14 to 17 inches

Maximum Distance
between Fastenings

5 inches

11 inches

7 inches

8-1/2 inches

For forms more than 17" in length, the max
imum distance between stitches should be deter
mined by actual test.

Section Subsections Page

20 20 I 20

If staples are used, they must:
• Be located out of the printing area.
• Be properly crimped so they won't catch on

guide edges or staples in succeeding forms.
• Not cause excessive bulging during feeding,

particularly at the out-fold.

03

Form types. Depending on its purpose and des
tination, the form on which a report is printed may
range from the least expensive blank stock to cus
tom design. Imprinted stock forms are standard
size forms which are stocked in large quantities
and upon which lines, headings, markings and some
designs are printed as desired. Custom forms are
those designed to fill special needs of size, com
plexity, and design. Although more expensive, they
can be used advantageously to "sell" your company.

Section Su bsections Page

20 30 I 00 01

CARD DESIGN

This section is divided into two parts. The
first provides information that will be useful to a
person who has had punched card experience but

wants to become familiar with the considerations
unique to the 1130. The second deals with more
basic card design principles. A more extensive
coverage of the subject is contained in the IBM
manual Form and Card Design (C20-8078).

1130 Considerations

1. Lining up similar fields between cards is
desirable for ease of recognition, for offline
punched card processing, and for ease of card
handling. A program can as easily define a field in
one set of columns as in another.

2. The results of calculations often do not have
to be punched into cards. It takes but a few milli
seconds for the computer to recalculate the same
figure the next time it needs it.

3. The EBCDIC character set contains 256
possible codes. However, many of them cannot be
handled by standard FORTRAN programs. Only 53
characters are permitted in card input (see the
FORTRAN manual, C26-3715); of these, only 48
may be printed by the 1132 Printer.

Section Subsections Page

20 30 I 10

4. Normally, an II-punch over the units posi
tion of a field indicates to the 1130 Commercial
Subroutine Package that a field is negative, while

01

a 12-punch or no-zone indicates that it is positive.
The combinations (11-0) and (12-0) are not valid
FORTRAN codes. However, the 1130 Commercial
Subroutine Overlapped I/O Package can handle them.

5. Punching speed for serial punches (1442)
varies with the last column punched. For example,
if the card is to be punched in cc 1-10, 176 cards
per minute can be punched on a 1442, Model 6. The
same data can be punched in cc 71-80 at only 49
cards per minute. Therefore, fields to be punched
should be placed close to column 1. Fields to be
read can then be placed anywhere to the right of
fields to be punched, with no effect on card reading
speed.

Section Subsections Page

20 30 I 20 01

Card Design Principles

Determining Card Data

The first step in card design requires a study
of the final report that is to be printed from the
card and a listing of data needed for it. Next the
procedure is studied, and any data needed for proc
essing but not for the report is added to the same
listing. Every item is recorded on a worksheet.
Provision must be made for recording in the card
all data that is listed, unless it is calculated or
otherwise generated.

A check should be made that the necessary
reference data is included. Reference data should
be sufficient to:

1. Identify the transaction with the original
source document from which it was created.

2. Indicate the date on which the transaction
occurred.

3. Establish some reference, such as invoice
number, batch number, account number, or
salesman number.

Care should be taken to avoid duplicate or un
necessary reference data.

Determining Field Size

The number of pOSitions required to record each
type of information should be determined.

The size of the field for card codes, invoice
number, and account number is determined by the
largest single number to be recorded. With
quantity and amount fields, the largest amount
that will occur on a reasonably frequent basis must
be determined, rather than the largest it could
ever be. If the largest possible amount is lmown
and its chances of occurring are rare, multiple
cards may be punched for the transaction.

After all card data is listed, the number of
columns required should be added. If this is
between 80 and 100, it may be possible to reduce
it to 80. If it is over 100, an additional card is
evidently required. At this point a check should
be made to see whether the fields can be rear
ranged so that all transactions need not have
multiple cards, but could have if necessary.
Master information can be punched in one card and
variable information in the other. Sufficient refer
ence information must be included in the second
card if sorting is required.

Some techniques to be considered for reducing
the number of card columns are:

• Reduce the size of reference fields by repeat
ing the numbering series more frequently. For ex
ample, invoice number may start with 1 each quar
ter instead of each year.

• Record in the eleventh and twelfth punching
positions various codes that may be using a sepa
rate punching position.

• Avoid unnecessary data: for example, the use
of both an order number and an invoice number may
not be necessary if one will provide adequate ref
erence to the other.

• Reduce the size of reference fields by recod
ing. It may be possible to eliminate several posi
tions.

• Reduce the number of columns required for
recording reference data by ignoring positions that
are not essential for this purpose.

If more than one card is to be used to hold a
"record", the division of information between the
cards can be made on the following bases:

1. Place constant information in one card
(master) and temporary information in the second
card (detail).

2. If more than one source document is used,
place the information of each document on a sepa
rate card and code the cards.

3. When one transaction affects two different
accounts, design a card for each account with
differing degrees of detail as required by each
account.

4. For printing a bill, order, or other notice,
design a card for each section of the form. Some
of these cards (for example, name and address
cards, constant data cards) can be reused.

Determining the Sequence of Fields

Four basic factors are involved in determining
field sequence:

1. Sequence of data on the source document
from which the new card will be punched

2. Machines and programs used to process the
new cards

3. Manual operations in which the new card will
be used

4. Location of identical data in other cards with
which the new one will be processed

Keeping the sequence of fields similar to the
order in which the data is read from the source
document will make the keypunching operation
faster and more accurate. This is especially
important since keypunching is a manual operation
and therfore subject to far greater fluctuation in

speed and accuracy than the subsequent mechanized
operations. The sequence of fields can be arranged
to take maximum advantage of machine character
istics. Specifically, field sequence can be designed
to maximize the usage of card punches, sorters,
computers (see 20.30.10), control panel wiring, or
the manual handling of cards. Placing data in the
same columns of the new cards as used in other
cards ensures that sorting and controlling the data
can be speedily performed when the cards are proc
essed together. It also simplifies control panel
wiring where cards are processed by standard
punched card machines. If data on the new card is
to be checked visually by manually fanning a deck of
cards, the fields for that data should be located at
either the left or right end of the card.

Using a Card Layout Form

A multiple-card layout form (X24-6599) should be
used when planning several cards simultaneously
or when planning a new card that will be used with
existing cards. The use of this form makes it easy
to align those fields that are common to more than
one card, where this is desirable. It also makes
working with the formats easier, since they are on
one sheet of paper and can be compared with one
another.

Designing the Card Form

After field size and sequence are established, the
design of the card itself can be done. This is
usually drawn on a special form cons iderably larger
than the punched card. Photographic reduction is
used to create the proper-size print plate (called an
"electroplate", or "electro").

It is not always necessary to design a card form
for each card used in an application. Where the
cards are used only within your data processing
department, are interpreted, and are needed only
in small quantities, it may be advantageous to use
a standard card form, such as the IBM 5081.

Certain principles in the design of card forms
should be kept in mind:

1. Field and box headings should be explicit and
fo rce writing into des ired locations.

2. Adequate space should be allowed for accom
modating written information.

Section Subsections Page

20 30 I 20 02

3. The right-hand side of a box containing hand
written information should be at least five columns
to the left of the columns in which it is to be
punched. This is so that the data will not be ob
scured by the punch station of the card punch
machine when it is time to punch it.

4. Information to be punched should not be hand
wri tten along the bottom edge of a card, since the
shield on the IBM card punch obscures the lower
1/8" of the card.

5. Field headings should be above the zero row
of a card unless interpretation or printing of
punches prevents it.

6. Headings and interpreted data should be kept
between rows, so that punches will not obliterate
them.

7. Preprinted decimals and commas should be
placed where dollar amounts will be interpreted.

8. Colored cards, colored stripes, and corner
cuts may be used for visible distinction between
cards. Also, an identifying punch (called a "key")
may be used.

9. Card column numbers should be preprinted
where possible and digits should be placed where
the numbers can be punched. These aid in reading
the punches in a column.

10. Mark-sensing fields should be placed on the
right-hand side of a card, so that the card can be
easily held and marked.

11. Card or company names should be printed on
the ends of a card.

12. When coded punches are used, decoding
abbreviations should be preprinted on the card.

13. Where no more than 40 columns are needed,
a sectional or "tumble" card may be des igned in
which the layout in columns 1-40 is duplicated
upside-down in columns 41-80. This allows the
card to be used twice and cuts card costs in half.

Testing the Card Layout

After the card layout is developed, the fourth and
final step in card design is performed - namely,
testing the card for its effectiveness. For the test,
the new design must be laid out on several cards
and the cards must be used in their designated
procedure.

Section Subsections Page

20 40 I 01 01

DESIGN OF DISK DATA FILES

Introduction

The formats of cards and form s are the tangible
types of input/ output. You still must design the in
tangible record formats.

Your 1130 Computing System is concerned with
two different intangible records: those in core

storage and those on the disk cartridge. Although
the storage media are different, the design consid
erations are the same.

The items discussed in this section concern the
components of disk records, the order of the com
ponents, and groups of records. Considerations
covered include growth, organization, and content.

More detailed information on many of the topics
covered here may be found in section 80.

Data

The first step in file design requires a study of all
procedures that utilize the file. On the basis of
these studies, record each necessary item on a
worksheet like the one illustrated in Figure 20.1.
Indicate the type of information, the frequency of
occurrence, and the sequence in the source docu
ment, if applicable. The following should be done:

• Check that the necessary reference data is in
cluded, if this is a source file.

• Weigh the effects of media storage costs vs
program execution time for constant-type data, such
as tax-exempt dollars in payroll.

• Include fields obtained by processing, if the
results must be recaptured later.

• Examine all applications that utilize the file,
in order to prevent omission of necessary data.

• Explore future requirements of the current
procedures. For example, it might be judicious to

Section Subsections Page

20 40 I 10 01

include an additional deduction field in your payroll
appl icat ion.

• Determine any additional information needed
for planned applications. It may be more practical
to include an extra field now than to reorganize your
files later.

• Study the feasibility of consolidating existing
data files into a single data file to eliminate dupli
cation of common information, if such a combined
record would not too adversely affect the running
time.

• Ascertain whether material needed in a new
application, for which the data file is to be designed,
is available already in an existing data file.

• Verify that the data file, when set up, will
contain all the basic information to meet the re
quirements of all persons who will be using the pro
ducts resulting from the file processing.

• Consider file maintenance and audit control.

FILE DESIGN WORK~HEET Started ___
Dote

Completed ___

File Nome Designer

Process Cycle Record Characteristics File Dynamics File Media Requirements

DA MO Type: Charactc:r Silt:' NO. REC. YRLY% YRlY% 5 YR % TOT NO. TYPE AMOUNT

WK YR Fixed MIN MAX AV ADD DROP GROWTH REC
Vdr. A B C D E

5(B-C)=D A+AD=E

Inform3tion Required for Processing and Type of Inform J tion Field Size Sequence
Reporting Required IN IN IN REMARKS

TRIAL TRIAL TRIAL FINAL SOURCE RECORD RELATED

OOC FILES

Figure 20. 1. File design worksheet

Section Subsections Page

20 40 I 20 01

Field Size

The number of positions required to record each item
of information should be determined and entered on
a form similar to that shown in Figure 20. 1.

Type of Field

Control and indicative data field size should equal
the total number of digits in the largest single item
to be recorded in the particular field. Occas ionally,
to conserve storage, the high-order digits may be
disregarded for a field such as order number.

Quantitative data field size may equal the total
number of digits in the largest amount to be recorded,
or the number of digits that will occur with reason
able frequency. Procedures can be developed to
handle the rare exceptions.

Recording Medium

Since some media, such as cards and disks, contain
a fixed number of positions per unit of storage (card
field or disk sector or track, etc.), it is essential
to consider this overall limit in order to design
efficient and practical records.

Example:

On the 1130, your disk records are automatically
Itblocked lt within 320-word sectors. A 55-word
record will be blocked 5 records to the sector
with 320-(5x55) or 45 words unused. Rather than
waste these 45 words, you might as well increase
the size of the record to 64 words, which will
still allow 5 per sector (5x64 = 320) with ~
waste. Or, if possible, reduce the record size
to 53 words, which permits 6 records per sector.

File Size (Total Number of Records)

Since the field size affects the total record siz"e, all
unnecessary positions should be eliminated to de
crease I/O time and storage media requirements.

Future Requirements

If the demands to be placed on the information ind i
cate an impending need for another position, it
would be easier to incorporate the additional charac
ter in the design phase so as to avoid reprogramming
and a patched -up record layout.

Field Compaction Techniques

Because a reduction in the length of a record pro
duces such positive results as an increase in DASD
packing and a decrease in time to read and/or write,
field compaction techniques should be investigated
and the cost of the technique evaluated as each file
is designed. Some methods to consider for reducing
the number of positions are found in 80.60.00.

A given compaction technique must be evaluated
for:

1. Amount of core storage required to hold the
encode-decode instructions

2. Encode-decode subroutine timing requirements
3. Compaction percentage achieved
4. Compatibility with programm ing systems
5. Retention of collating sequence
6. Retention of fixed field length
7. Effect on the overall system, including re

lated clerical functions
Some of these methods are discussed in detail in

section 80. For a discussion in depth of compaction
techniques see Record Compaction Techniques
(E20-8252) .

Data Sequence

Data sequence is most critical for those files that
work with source documents. Card punching, term
inaloperations 3 etc., being manual operations, are
subject to the greatest variation in rate of production.
Anything that simplifies these functions tends to en
sure a faster and more accurate operation. The fol
lowing are points to bear in mind:

• Recording of data in the same order as that in
which it is normally read. If the data sequence is
considerably different from that on the source docu
ment, it may be necessary to redesign the source
document and retrain personnel. If the file is to be
used as input to a serial I/O unit, such as disk to
card, the sequence is dictated mainly by the se
quence desired on the output unit.

• Location of like fields in the same relative
record pos itions in files that work together. This

Section Subsections Page

20 40 I 30

ensures that sorting and controlling can be ac
complished if the file is contained in cards; it also
facilitates programming.

01

• Placement of sorting fields adjacent to one
another, with the minor code on the right and each
progressively higher code to the left. Although sort
programs can operate on multiple-control fields,
time is used to extract and combine fields into a
single key.

• Compatibility with computer characteristics
so that data sequence does not affect processing
speed.

• Arrangement of alphabetic/alphameric data in
one area of the record. This facilitates handling of
data, particularly in fixed-word-length machines,
such as the 1130, and permits minimum core and
media requirements.

• Adherence to requirements of programming
systems.

Section Subsections Page

20 40 I 40 01

File Organization

For strictly card- and/or paper-tape-oriented
systems, file organization normally is sequential.
Therefore, the following discussion of indexed se
quential (as in an encyclopedia) vs random organi
zation (as in shuffled playing cards) is oriented
mainly toward the design of disk data files.

Indexed Sequential Advantages

• Both sequential and random transactions can
be handled effectively in most cases.

• Reports arranged in data file sequence can be
obtained without sorting.

• Control over both the proces sing and the stored
file can be more positive.

• Less storage space is required.
• Frequently the entire file need not be online

simultaneously.

Indexed Sequential Disadvantages

• More core storage may be required because
of index handling routines.

• Process time is greater for random input
because of index file seeking and processing.

Random Advantages

• Less core storage is required normally.
• Process time is less for random input.

Random Disadvantages

• To maintain access requirements, frequent
reorgan ization may be neces s ary if the file is dynamic.

• Extensive key analysis and development of
address conversion routines probably are required
for implementation.

A detailed description of the·se techniques may be
found in section 85.

Record Format and Blocking

To select the record format and blocking, each of
the following factors must be considered:

1. File boundaries. Cards are limited to 80
columns of punched data, while the disk has 320
words that may be recorded on each sector.

Section Subsections Page

20 40 I 50 01

2. Core storage requirements. Since rocs
handles physical records for I/o operations and con
tains a core storage area large enough to accommo
date the physical record, you must supply a core
storage area for a logical record. In addition, for
efficient operation, multiple I/O areas may be re
quired for the I/o devices.

Section Subsections Page

20 40 I 60 01

File Processing

Before the file design is finally determined, the run
time and associated costs should be calculated for
the entire system. The results must be evaluated
to determine whether the original design objectives
have been met. If the system is I/O-limited (that
is, if I/o time exceeds prooess time), the following
approaches may be considered:

• Create a second master file splitting awayfrom
the main master file those fields not required on the
primary runs. For example, name and address
records could be kept in a separate name and address
file. This new file would be used perhaps only as
output documents are printed.

• Extract from the master file the active records
for processing. This method is useful if the ratio of
active master records to total master records is
very low.

• Increase the number of input buffers. If the
activity rate is low and processing time per hit is
high, more process time can be overlapped if the
input is queued in additional buffers. Ifprocesstime
requires 250 milliseconds while an input area can
be filled in 50 milliseconds, there will be 200 milli
seconds of unoverlapped process time per hit, with
two input areas. If the number of input areas were
increased to four, only 100 milliseconds would not
be overlapped.

File Control

The design of a data file connot be divorced from
the environment in which the file must function.
Some of the considerations of file control and mainte
nance are now discussed.

Data Validation

The entry of incorrect data into a file should be pre
vented. The following techniques may be used to
control the accuracy of input data:

1. Precoded forms, or standardized and simpli
fied forms, which reduce the possibility of error at
the point of origin of the data.

2. Batch controls that establish totals for a
given group of records to detect the loss or dis
tortion of data during intermediate handling. A
batch may consist of a fixed number of items or the
transactions that occurred in a given period of time.
Typical batch totals are record counts, dollar or
quantity amounts, and "hash" totals of significant
data, such as wage rates. Frequently, batch totals
are recorded in a trailer record to provide auto
matic zero-balance checking.

3. Turnaround documents, such as prepunched
remittance forms, which require little or no extra
recording and a minimum of handling.

4. Character checking, which determines
whether the data in given positions of the record
contain permissible characters. This type of check
can be used to ensure that the proper algebraic
sign is present for the type of transaction or that
alphabetic data is not included in numeric fields,
and vice versa, or that data is present where re
quired (not blank).

5. Field checks that examine the content of a
field for certain characteristics. These include:

• Limit checks, which determine whether data
is within a prescribed range. Such checks can apply
to fields such as employee t s wage rate, amount of
gross pay, etc.

• Historical checks, which use prior experience
as a basis of validation. The public utility industry
often compares, for reasonableness, prior con
sumption for a year or more against current usage.

• Validity checks, which compare the content
of a field against a list of existing "good" numbers.
This prevents posting to nonexistent account numbers.
Matching by control key against a master file indi
cates duplicate and missing numbers.

• Logical relationships, which determine whether
the items of input data have a logical relationship to
one another or to the file they affect. For example,

Section Subsections Page

20 40 I 70 01

if an employee adds a bond deduction, a bond denomi
nation is also required.

• Self-checking numbers, which detect incorrect
identification numbers (such as account number,
employee number, etc.) by performing certain
mathematical calculations on the base number and
comparing the resulting digit against a check digit
appended to the base number.

Operating Controls

The following controls are common methods used to
detect errors caused by poor operator performance,
equipment failure, or malfunctioning programs:

1. Disk cartridge ID checking, which verifies
that the proper cartridge is online before any proc
essing can take place.

2. Record counts, which check that the numbers
of records before and after processing are the same,
in order to guard against accidental loss of a record.

3. File totals, which ensure that the file is in
balance in light of the transactions just processed.
For example, the previous file total for a given
field plus the net change represented in the trans
actions should be equal to the sum of the individual
record fields after the transactions are processed.

4. Intervention logging, which records through
the console printer any intervention by the operator.

Error Analysis

The file control techniques suggested above indicate
the wide variety of methods available. Selection of
the specific control procedures depends on such
factors as the frequency of possible occurrence, the
results if the error were allowed to enter the system,
and the chance that the error might remain unde
tected even through later operations. All errors
should be logged indicating the nature and the cause.
A review of these error logs can serve as a guide
to management to increase or decrease error
control.

When errors are detected, any of the following
procedures can be used:

1. Programmed halts, where the computer is
halted by detection of certain conditions, and the
operator follows prescribed steps dependent upon
the nature of the halt. The trend is away from pro
grammed halts to eliminate operator intervention.

2. Bypass procedures, where the error con
dition is recorded on some output medium, such as
paper tape or console printer, for later analysis,
and the computer continues without stopping.

Section Subsections Page

20 40 I 70 02

3. Suspense accounts, where totals are posted
for invalid records in order to keep in a single
account all items requiring analysis.

Audit Trail

An audit trail may be defined as the means whereby
the source transaction and its corresponding sup
porting documentation can be related to processed
data. Although the audit trail may be a by-product
of normal processing, it may sometimes be addi
tional. The requirements of the auditor should be
discussed to provide the necessary historical infor
mation trail.

Reconstruction

If the information on a file is mutilated, the need for
reconstruction arises. The method selected depends
upon such factors as job priority, the time and cost
required to provide reconstruction data, and the
time and cost required to perform the reconstruction.
Listed below are several approaches:

1. Periodically, a dynamic disk file should be
copied (dumped) on paper tape, on cards, or on
another disk. Often, the copy can be made as a
by-product of a periodic run. All transactions since
the last dump must be retained to update the copy to
current status.

2. To avoid reprocessing of all transactions
since the last dump, write the updated records on
paper tape or cards as the transactions are processed
against the file. In sequential processing, only one
paper tape or card record per active disk record is
written. In case of reconstruction, the record with
the most recent status can be used to replace the
corresponding record on the dumped file.

3. If no output unit is available to record the
updated records, as suggested above, the master
can be flagged, and on a later run the flag can signal
a copy operation for a given record. This technique
requires a rewrite to the file for removal of the flag.

4. The contents of a static file should be available
either by copying to another disk or by dumping onto
paper tape or cards that may be used later to reload
the mutilated file.

PA YROLL EXAMPLE

Narrative

Note: All of the pages in the following example
represent material that you should have developed
by this point in the installation of your system.
When completed, the material becomes a part of
your system documentation (see section 35).

* * *
The corporation consists of six manufacturing

plants, engaged in the fabrication of Liquid Dairy
Product Packaging in Ohio, Indiana, West
Virginia, and Texas. The payroll system was
designed to accommodate all six plants, which
have separate bookkeeping records. However,
the accounting functions are centralized in one
location. Communication is by phone and mail.

The system consists of 16 programs.
The files creation program is first. Data decks

are keypunched for each individual, in sets, by
plant. The data is edited and, when correct, is
loaded on the disk by PAYOl. Three files are
created: a master file, an index file, and a plant
information file. A second data deck with employee
clock number and name is loaded onto the master
file by PA Y02.

Changes to the disk information are made by
PAY03. Documents, received from personnel de
partments at the individual plants, are checked,

Section Subsections Page

20 50 I 10 01

summarized, keypunched, and verified. Time
sheets, submitted by the plant payroll departments,
are keypunched and verified. All these cards are
processed by PA Y16, which edits and generates
control totals. PA Y04 then processes these cards,
performing all payroll calculations. Cards are read,
pay is computed, disk files are updated, and cards
are extended with current pay figures. After all
cards are processed, a payroll register is printed.

Checks are printed by PAY05. A header card is
read and the checks are printed from the disk file.
PA Y06 lists the check register from the disk file.
If an error is made in computing pay, PAY11 pro
vides the means of voiding checks. The extended
time cards from PAY04 are read in and the affected
employee records are reset. The above are
weekly runs.

At month end, registers are prepared showing
each individual's deductions for the month:

PAY13 writes union dues register.
PAY14 writes credit union register.
PAY15 writes stock deductions register.
PAY12 resets charity deductions code.
At the end of the quarter and at the end of the

year, PAY07 and PAY08 are used to balance the
disk files to control totals.

PAY09 produces the 941 tax report.
PAY10 produces a tax worksheet used to deter

mine tax liability.

Section Subsections Page

20 50 I 20 01

Card Forms and Console Keyboard Input

PAYOI

PAY02

PAY03

PAY04

PAY05

PAY06
PAY07
PAY08

PAY09

PAYI0

PAYll

Plant no. - 1 digit - keyboard
Week no. of month - 1 digit - keyboard
Check no. - 2 digits - keyboard
Name - 18 blanks - keyboard
Plant name - 32 characters maximum - keyboard
Figure 20. 3 - card
Plant no. - 1 digit - keyboard
Figure 20. 4 - card
Plant no. - 1 digit - keyboard
Figure 20. 2 - card
Social Security Number, if changed - keyboard
Figure 20. 5 - card
Figure 20. 6 - card
Figure 20. 7 - card
Check no. - 5 digits - keyboard
Week no. of month - 1 digit - keyboard
Maximum check amount allowed - 5 digits - keyboard
Figure 20. 8 - card
Figure 20. 7 - card
Check no. - 5 digits - keyboard
Check maximum amount - 5 digits - keyboard
Clock no. (if requested) - 4 digits - keyboard
Figure 20. 7 - card
Plant no. - 1 digit - keyboard
Figure 20.10 - card
Figure 20.11 - card
Figure 20. 6 - card
Figure 20.12 - card
Figure 20.13 - card
Figure 20.14 - card
Figure 20.15 - card
Figure 20.16 - card
Figure 20.10 - card
Figure 20. 6 - card
Figure 20. 7 - card
Figure 20. 9 - card
Figure 20. 6 - card

If requested:

PAY12
PAY13

PAY14
PAY15
PAY16

Insurance deduction - 4 digits - keyboard
Stock deduction - 4 digits - keyboard
Charity deduction - 4 digits - keyboard
Miscellaneous deduction - 4 digits - keyboard
Plant no. - 1 digit - keyboard
Plant no. - 1 digit - keyboard
Individual amount for a plant - 4 digits - keyboard
Plant no. - 1 digit - keyboard
Plant no. - 1 digit - keyboard
Figure 20. 7 - card
Figure 20. 8 - card

Section Subsections Page

20 50 I 20 02

Clock ..
No. 1l Change Blank

u

0000 00 00000 o 0 0 0 0 00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 46 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

1111 11 11111

2222 22 22222 2.2 2 2 2 2 2 2 2 2 2

3333 33 3 3 3 3 3 333

4444 44 44444 444

5555 55 55555 555~55555555555

6666 66 66666 666

7 77 7 7 7 7 7 7 7 7 777

8888 88 88888 888

9999 99 99999 999
1 2 3 4 5 6 7 I t 1011 12 13 14 15 18 17 II II 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 5253 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 71 71 80

Figure 20, 2,

c: 'C

Social 0 Gross Local Credit ~ "iii ~ J
'" ~l '" Clock Pay Security Earnings FICA FIT Tax Union g ~ Union i~ No. Rate No. ~~ Q) YTD YTD YTD YTD Deduction Vi u Dues Blank Blank
iii.f Jj

00000 000 0000 00 0000 000 0000000 00000 00000 00000 00000 0000 o 0 0 0 000 0000 000000 00 000000000
1 2 3 4 5 6 7 8 9 10 11 12 1314 15161718 192021 22 23 24 25 28 27 28 29 30 31 3233 3435363738 39 40 41 4243 44 45 46 47 48 495051 52 5354 55 56 575859 60 61 62 63 646566 67 68 69 7071 72 73 74 75 76 77 78 7980

11111 111 1111 1-1 1111 111 1 1 1 1 1 1 1 11111 11111 11111 11111 1111 1111 111 1111 111111 11 111111111

22222 222 2222 22 2222 222 2222222 22222 22222 22222 22222 2222 2222 222 2222 222222 22 222222222

33333 3 3 3 3333 33 3 333 333 3333333 33333 3 3 3 3 3 333 3 3 33333 3 3 3 3 33 3 3 333 3 3 3 3 333333 33 333333333

44444 444 4444 44 4444 444 4444444 44444 44444 44444 44444 4444 4444 444 4444 444444 44 444444444

55555 5 5 5 5555 55 5555 555 5555555 55555 5 5 5 5 5 55 5 5 5 55555 5 5 5 5 55 5 5 555 5 5 5 5 555555 5 5 555555555

66666 666 66 6 6 66 6666 666 6666666 66666 6 66 6 6 66666 66666 6666 66 6 6 666 6666 666666 66 666666666

7 7 77 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7777777 7 7 7 7 7 7777'7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 777777 7 7 777777777

88888. 888 8888 88 8 888 888 8888888 88888 88888 88888 88888 8888 8888 888 8 8 8 8 888888 8 8 888888888

99999 999 9999 99 9999 999 9999999 99999 99999 99999 99999 9999 9999 999 9 9 9 9 999999 99 999999999
1 2 3 4 5 8 7 • I 101112 1314 15181711 112021 122232425262728 2930313233 3435363738 39 40 41 4243 44 45 46 47 48 ~9 50 51 52 53545556 575859 60616263 64 65 66 67 68 69 7071 7273 74 75 76 77 78 79 80

Figure 20, 3,

Section Subsections Page

20 50 I 20 03

i~
~u

Clock " No. Name Blank 0>

0000 000000000000000000 00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ~N~~~~~~~~nM~~n~~~~~~«%~~~~~~~~M~~~~~~~~~M~~~H~~nnn~~nnnn~

1111 111111111111111111 11

2222 222222222222222222 22

3333 333333333333333333 33

4444 444444444444444444 44

5 5 5 5 555555555555555555 55

6666 666666666666666666 666G666666666666666666666666666666666666666~66666666666666

7 7 7 7 7777 77 777 7 7 7 7 7 7 7 77 77

8888 888888888888888888 88

9999 999999999999999999 9999999999999999999999919999999999999999999999999999999999
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 ~N~~~~~~~~nM~~n~~~~~~«%~~~~~~~~M~~~~~~~~~M~~~H~~nnn~~nnnn~

Figure 20.4.

Social
g
~ j Clock

Security ::l

~ Pay ~ .~ :g .:,(.

!Ii No. ~ ~ No. Rate u::::> <{ ~ u Blank

0000 000000000000000000 000 00 0000 00 00 0000 0000 0000 0000 0000 0000 000 000000000000000000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2l ~ 24 2! ~2 28~~31 ~n M35 ~37~39 ~41 4243 «% ~ 47 ~ 49 ~51 5253M55 ~57~59 ~ 6162 ~M~~~H~~nnn~~.nnn~

1111 111111111111111111 111 11 1111 11 11 1111 1111 1111 1111 1111 1111 111 111111111111111111

2222 222222222222222222 222 22 2222 22 2 2 2222 2222 2222 2222 2222 22 2 2 222 222222222222222222

3333 333333333333333333 333 33 3 3 3 3 33 33 3333 3 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3333 333 333333333333333333

4444 444444444444444444 444 44 4444 44 44 4444 4444 4444 4444 4444 4444 444 444444444444444444

5555 555555555555555555 5 5 5 55 5 5 5 5 55 55 5 5 5 5 5 5 5 5 5555 5555 55 5 5 5 5 5 5 5 5 5 555555555555555555

6666 666666666666666666 666 66 6 6 6 6 66 66 6666 6666 6666 6666 6 666 6666 666 666666666666666666

77 7 7 777777777777777777 7 7 7 7 7 7 7 7 7 77 777777777777777777

8888 888888888888888888 888 88 8 8 8 8 88 88 8888 8888 8888 8888 8 8 8 8 8 8 8 8 8 8 8 888888888888888888

9999 999999999999999999 999 99 9999 99 99 9999 9999 9999 9999 99 9 9 9999 999 999999999999999999
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 232421 ~2 ~~~31 32 n M35 ~37~39 ~41 4243 «% ~ 47 ~ 49 ~ 51 5253 M55 ~57~59 ~ 6162 ~M~~~H~~nnn~~nnnn~

Figure 20. S.

Section Subsections

20 50 I 20

i~
Blank

..JU

" en

OOO~OO00000000000000000000000000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 46 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

1 11

22

33 33 3 3333333333333333333333333

44

55

66

7 77

88

99
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 41 424344 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 727374 75 76 77 78 79 80

Figure 20. 6.

Total Total Total Total Total
Plant Check Earnings Clock Regular Overtime Bonus Special
No. Date Date Numbers Hours Hours Hours Earnings Blank

0000000 000000 0000000 0000000 0000000 0000000 0000000 OOOOOjOOOOOOOOOOOOOOOOOOOOOOOOOO
1234567 •• 10111213 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35363738 39 40 41 42 43 44 45 46 47 48 ~5O~~~54~56~58~60~~6364~66~68~mnnnu~n77nn8O

1111111 111111 1111111 1111111 1111111 1111111 1111111 11111111111111111111111111111111

2222222 222222 2222222 2222222 2222222 2222222 2222222 22222222222222222222222222222222

3333333 333333 3333333 3333333 3333333 3333333 3333333 33333333333333333333333333333333

4444444 444444 4444444 4444444 4444444 4444444 4444444 44444444444444444444444444444444

5555555 555555 5555555 5555555 5555555 5555555 5555555 55555555555555555555555555555555

6666666 666666 6666666 6666666 6666666 6666666 6666666 66666666666666666666666666666666

7777777 777777 7777777 7777777 7777777 7777777 7777777 77777777777777777777777777777777

8888888 888888 8888888 8888888 8888888 8888888 8888888 88888888888888888888888888888888

9999999 999999 9999999 9999999 9999999 9999999 9999999 99999999999999999999999999999999
1234567 8 • 10 111213 14 15 16 17 18 I. 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 4243 44 45 46 47 48 ~50~~~54~56~58~60~~6364~66~68~mnnnU~n77nn8O

Figure 20. 7.

Page

04

Section Subsections Page

20 50 I 20 05

li~
-JU

Clock Regular Overtime Bonus
.,

Special ~ Special ~ Special " "C

No. Hours Hours Hours
0

Earnings 8 Earnings 8 Earnings Blank 0> U

0000 000 Ii 0 0000 00000 0000000 000000 000000 000
1 2 3 4 5 6 7 8 9 10111213 1415161718 19 20 21 22 23 24 25 26 27 28 29 30 31 3233 34 353637 ~~~~~~~~~~~~OO~~~M~~~~~OO~~~M~"~N~ronn~u~~nnn~

1111 11111 1111 11111 1 1 1 1 1 1 1 111111 111111 111

2222 22222 2222 22222 2222222 222222 222222 222

3 3 3 3 3 3 3 3 3 3333 3 3 3 3 3 3333333 333333 333333 33333333333333';3333333333333333333333333333

4444 44444 4444 44444 4444444 444444 444444 444

5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5555555 555555 555555 555

6666 66666 6666 66 6 6 6 6666666 666666 666666 666

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7777777 777777 777777 777

88 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8888888 888888 888888 888

9999 99999 9999 99999 9999999 999999 999999 999
1 2 3 4 5 6 7 8 9 1011 1213 1415161718 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ~~~~~~~~~~~~OO~~~M~~~~~OO~~~M~"~N~ronn~u~~nnnoo

Figure 20,8,

Total All 3~ Clock Regular Overtime Bonus "C Special ~ Special ~ Special Pay Local Credit Union Other. ~
No. Hours Hours Hours 0 Earnings 8 Earnings Rate FIT Tax Union Dues " U U Earnings Gross Net FICA D.eductlons ro 0>

o 0 0 0 00000 0000 00000 0000000 000000 000000 000 000000 000000 00000 0000 0000 0000 0000 00000 00
1 2 3 4 5 6 7 I 9 10111213 1415161718 19 20 21 22 23 24 25 26 27 28 29 30 31 323334353637 ~39~ 4142 43 ~ 45 ~ 47 48 49 00 51 52 53M55~57 ~ 59 00 61 62~M65 "67 N 69 7071n73 747576 n 78 79~

1111 11111 1111 11111 1111111 111111 111111 111 111111 111111 11111 1111 1 1 1 1 1111 1111 11111 11

2222 22222 2222 22222 2222222 222222 222222 2 2 2 222222 222222 22222 2222 2222 2222 2222 22222 22

3 3 3 3 3 3 3 3 3 3333 3 3 3 3 3 3333333 333333 333333 333 333333 333333 3 333 3 3333 33 3 3 3 3 3 3 3333 33333 33

4444 44444 4444 44444 4444444 444444 444444 444 444444 444444. 44444 4444 4444 4444 4444 44444 44

5 5 5 5 5 5 5 5 5 5 5 5 5 55555 5555555 555555 555555 555 555555 555555 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5555 55555 5 5

6 6 6 6 66666 6 6 6 6 66666 6666666 666666 666666 666 666666 666666 66666 6666 6666 6666 6666 66666 66

77 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7777777 777777 777777 7 7 7 777777 777777

8 8 8 8 88888 8 8 8 8 88888 8888888 888888 888888 888 888888 888888 888 8 8 8888 8 8 8 8 8888 8 8 8 8 8 8 8 8 8 88

9999 99999 9999 99999 9999999 999999 999999 999 999999 999999 9 9 9 9 9 9 9 9 9 9 9 9 9 9999 9999 99999 99
1 2 3 4 5 • 7 I 9 10111213 141518171. ,. 20 21 22 23 24 25 262728293031 32 33 34 35 36 37 ~~~ 4142 43 ~ ~ ~ 47 48 49 00 51 52 ~M55~57 ~ 59 00 61 6263 M65 "67 N 69 7071n73 747576 n 78 79~

Figure 20,9,

Plant
No.

Section Subsections

20 50 I 20

Blank

000 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 00
lJ34567a9W»U~"~~17UUm~~~N~~n~~~~~~M~~V~~~~~~«~~~q~~~~~~ ~$~M~~~~~M~~~u~ronnnu~nnnn~

11

22

33

44

55 5 5 55555555555555555555555 555

66

7 77

8 8. 8

9 9· 9
12345'7a9W»U~"~U17UUm~~~N~~n~~~~~~M~~V~~~~~~«~~~q~~~~~~ ~$~M~~~~~M~~~u~ronnnu~nnnn~

Figure 20. 10.

Clock
No. Blank

00 0 0 0 0 0 0 0 0 0 0 0'0 0 0 0 0 0 00000000000
1 2 3 4 5 6 7 8 910» 121314151617 18 19 m 21 ~ ~ 24 ~ ~ 27 28 29 ~ 31 32 ~ M 35 ~ 37 ~ 39 ~41 4243« 45 ~ 47 q 49 ~ 51 52 ~ ~ ~ $ 57 M 59 ~ 6162 ~ M ~ ~ 67 U 69 70 717273747576 n 78 79 ~

1

22 2222222222222222222L222222

33

44

55

66

77

88

9 9-~ 9
1 2 3 4 5 6 7 8 9 10 » 12 13 14 15 16 17 18 19 m 21 ~ 23 24 ~ 26 27 ~ ~ ~ 31 ~ ~ M ~ ~ 37 ~ 39 ~ 41 42 43 « ~ ~ 47 q 49 ~ 51 52 53 ~ ~ $ 57 M 59 ~ 61 62 63 M ~ ~ 67 U 69 70 71 72 73 74 75 76 77 78 79 ~

Figme 20.11.

Page

06

Section Subsections Page

20 50 I .20 07

Date for ci
z

Reporting Q) Blank
Period !

0000000 00 000
1 2 3 4 5 6 7 8 9 rolln~Uffi~n~"ro~~~u~~~~~~~~~M~~~~~~~~~«~~~~~OO~~~~~~~~~~~~ ~M~~~~"ronnnu~nnnn.

1111111 11

2222222 22 222 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3333333 33 333

4444444 44 444

5555555 55 555

6666666 66 666

7777777 77 777

8888888 88 888

9999999 99 999
1234567 6 9 10 11 12 13 14 15 16 17 18 19 ro 21 22 ~ 24 ~ ~ 27 28 ~ ~ 31 32 ~ M ~ ~ 37 ~ ~ ~ 41 42 43 « 45 ~ 47 ~ 49 00 51 52 ~ ~ 55 ~ 57 ~ 59 ~ 61 62 ~ M ~ ~ 67 ~ 69 70 71 72 73 74 75 76 n 78 79 80

Figure 20. 12.

Company Name Blank

00
123456789rol1n~uffi~n~"ro~~~u~~~~~~~~~M~~~~~~~~~«~~~~~00~~~~ ~~~~~~~~~M~~~~"ronnnu~nnnn.

11:111111111111111111111111111111111111

22

33

44

55

66

7 77

88

9 99 919
123456789rol1n~uffi~n~"ro~~~u~~~28~~~~~M~~~~~~~~~«~~~~~00~~~~ ~~~~~~~~~M~~~A"ronnnu~nnnn80

Figure 20.13.

Section Subsections

20 50 I 20

Street Address Blank

00.00000000 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000
1234567.9W"~"U~~n~~~~~~N~a~~~~~~~M~~n~~~~~~~~~~~~~~~~M "~~~~~~~~M~M~u~ronnnu~nnnn.

1 1'1 1 1 1 1 1 1 1 1 1 1 1 ttl ttl t ttl t t ttl t 1 1 t t t t t t

222z22222222222222222222222222222222

33

44

55

6 6' 6

77

88

99
12345671IWll~"U~~n~~~~~~N~a~~a~~~~M~~n~~~~~~~~~~~~~~~~ M"~~~~~~~~M~M~u~ronnnu~nnnn.

Figure 20. 14.

City and Zip Code Blank

00
1 2 3 4 5 6 7 8 I 10 11 12 13 14 15 18 n 18 II ~ 21 ~ ~ 24 ~ a 27 ~ 29 ~ 31 32 ~ M ~ 36 37 ~ ~ ~ 41 42 43 ~ 45 ~ 47 ~ 49 ~ 51 52 53 M 55 ~ 57 ~ 59 ~ 61 62 ~ M 65 M 67 U 69 70 71 n 73 74 75 76 n 78 79 •

1 t t t t ttl t 1 1 t 1 1 1 1 t 1 1 ttl 1 ttl t 1 1 t 1 1 1 1 1 1 1 1 t 1 1 1 t 1 1 1 1 t 1 1 1 t 1 t 1 1 t 1 1 1 t ttl ttl 1 1 1 1 1 1 1 t 1 1 1 1 t

22

33

44

55

66

7 1 7 7 7 7 7 7 7 7 7 7 7 77 77 7 7

88

99
123458789W"~"U~~n~~~~~nN~a~~29~~~~M~36n~~~~~~~~~~~~~~~~M "~~~~~~~~M~M~u~ronnnu~nnnn.

Figure 20.15.

Page

08

Section Subsections Page

20 50 I 20 09

State Federal
Account Account
No. Blank No. Blank

0000000000 0000000000000000000 0000000000 000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 29 27 28 29 30 31 32 33 34 35 36 37 38 39 ~~~~~~~~~~~~~~M~~~~~~~~~~~~~~~Mnnn~~nnnn~

1111111111 1111111111 111

2222222222 2222222222222222222 2222222222 222

3333333333 3333333333333333333 3333333333 333

4444444444 4444444444444444444 4444444444 444

5555555555 5555555555555555555 5555555555 555

6666666666 6666666666666666666 6666666666 666

7777777777 7777777777777777777 7777777777 7 7 7 7 7 7 7 7 7 7 7 77

8888888888 8888888888888888888 8888888888 888

9999999999 9999999999999999999 9999999999 999
1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 1920 21 22232425 29 27 28 29 30313233343536373839 ~~~~~~~~~~~~~~M~~~~~~~~~~~~~~~Mnnn~~nnnn~

Figure 20. 16.

Section Subsections Page

20 50 I 30 01

Console Printer and Line Printer Forms for Output

PAY01 None
PAY02 None
PAY03 None
PAY04 Figure 20.18

Figure 20.19
PAY05 Figure 20.19
PAY06 Figure 20.20
PAY07 Figure 20.21
PAY08 Figure 20.17
PAY09 Figure 20.22
PAYlO Figure 20.23
PAYl1 Figure 20.18
PAYl2 None
PAYl3 Figure 20. 24
PAYl4 Figure 20.25
PAYl5 Figure 20.26
PAY16 Figure 20.27

~--_._--_._---

IB"1 INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACiNG CHART

Figure 20.17.

,----------~------------------~-------- ----------------------------.----------------------------.- -- -------------------------------------"- ----I
IB~
LINE DESCRIPTION

GL UE

Figure 20. 18.

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
FielD HEADINGS/WORD MARKS 8 Lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443; and 2203 Print Span:

'''''-,-,--.+-,-,---,--,-.--r-rT-r-4--,-~;::::;:;::;:;:~ IBM 1403r,-'+ M __ odels 1 & 4H Ihn~~T~~~~~,r~~~~n.~~~rlh_rT~~nrl-r 11TTnllll-r I

I fTTIT: I n [TTL: I 1 T1 i
IBM 407, 408, 409, and 1403 Models 6 and 7

I
I
I

I I I I I! I I I 1 I 1111 1 11 11 III 11_1 J l 1 J
IBM 1403 !f0dels 2,~~N1 and 1404
llTTTl TiTTTTrT I I I J'Tl:TlTTl TrTrTTnTl

II
If

IBM 1443 Models 1, N 1, an? 2203

_ 0 1 2 3 4 5 6 7 8 9: 10 11:
AH 2345678901,23415167890,1234567890,12.34,5:",718901 2'345678901,23'4151678,9 011.1314'.5,6,lZf42-!011[213T4'5'6,7 81901'2,3,4'51617890112:345,678,9 0,112!3'415 617 8901234567890

1 , , 1 I ILl i _l..'...J...LLLLL +' _I ! ii, ! I ITT-' , ; I I I ' , : _'_ 1---'--' ++++--+"-J'-H,-i-I +-+++-L' -4--t--+-H4--+-++++++-+-H--+-H
2 I I, i I • I I ill I Ii,' :! ' i I I I : , I : I i I I I I : I 1 I ' !,
3 I I _1. ' , , -i' " I!: I' I ' I '

I'

: i I II iii' 'i I:
I 1 I I
I 1

,

II 1
""..' , ..I-=--

en co
l\:) n
0

.....
O·
::J

OJ en
0 c

0-
VI

f--- co
n

Co-' O·
0 ::J

VI

'"U
0 Q)
l\:) co

co

---------------,--------------------- -,-,- ---------------,---------" ----------------~~-----'!;
IB~

INTERNt..TIOt..JAL BUSiNESS MACHINES CORPORL,TlON I
PR!NHR SP,£\CiNG CHt"RT I

FIELD HEADINGS/WORD MA_R_KS __ ,~_-8-Li-n-es-Pe,__r-l-n-ch---__,_I-B-M--4-0)7-'" ,_-,----40_8"'-,,4_09_',, , ____ 1_ 4_W-.-i 3_,_1i 4_W_' ___ 4, __ ", ____ 1 ___ 4",4 __ 3_,_,_c ___ n_d ___ 2_2--,---O_3, _____ .P_'_in_,_t_ S,-,--!pom_: ----TT-------r-----~I

If----r-r-,---,-,--.--,--,-l-r,-,---,-T"-"+"-,--,,,,-.----r, rlTfTTTT:-c-r :-lTiT1TTTI-{'-r-r: r iTT TfT'-';-" '-;~~:;::;:::;:~::;--'~"'T-' 111_' 4~I'00i'3r_ll T il!l-nTt{ ---,"T\-,---,--" _+ir-_, ", ,--,--,--,-,--,,--h

!iiTTTTTcTTnTUllT r-TTTr----;:TT TTTrTT-:-T'TTTITTTT1-lr fiT)T, :' i, I ; -~1 '--1:-:1~1'~1~1~1 =, t;rr~I~I~!?tj~~);7~r'~14,il~r~~~~-Gr'i-m~!d!4~O)~3M~O~de~ls~6 ~a~~dt!~~~~
:j~:::=:::j~~~:::J::~~:::J::::=::~:J:~~~:-~~=:-=1~~~~~~1IB~M~1~403~-M~O?,~de,II\~2,~3~,15,~N~1~a0n~d~1~4~04~~~~~~~

f----_________ rh -,---L--,--'--r~'--r'__'_--,--'--rl-'--1 ~---'--___,-'--,---,__'__-,--_"_--,-'___'_"-'---~~.:..~r~,_'____': T-LIT--Y-',-,-IT-'-i ,---,I ,_ J""T-rLTTTTl r ! i II !i I -IT' iTni rill i ll l illi r'~ '11'11 nTTTTTTTi
.~~~-.-14~~~~-~~~~~~~-'T~~.~r~~~~-~~.~~-~-~-~T~r~.~'~~~1~~~~~~I~~M~1!«~1~3r~o~ls N~la~ 2203

I

I
I'

iii
X :~ I

+H 1
i

I J.qc
I ~

I(II -'rim:
I;! !

2JT].00 I
-1 --.l II i I

,I

ll~' 11lI~

I
TT" ! I

1
I ! ,

I II I 'i!
, I I Jl : j I Ii'

I I i!
II I I I I !- I II i

I "",...
= '= "'""

Figure 20.18. (Cont)

(f)

l:\:) CD
(')

0 r-+ o·
::J

C,)l (f)
0 c

0'"
(J)

- CD
(')

~.

C;.:I 0
::J

0 (J)

0
'iJ
Q)

C;.:I to
CD

IBt.1
LINE DESCRIPTION

GL UE

Figure 20. 19.

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
FIELD HEADINGS/WORD MARKS 8 lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span:

I
.... ---+--IBM 407, 408, 409, and 1403 Models 6 and 7

li-r-"'-'--'I~r~-l'--'-'~l-rJJ--'--'-l'+-"'-'l---rll--rr-.,..--,-ih--T-'---r, I-,---~'T I~I,~--.-r,---,-·-h--~I"!lCnTl! ,I I TTTTTt--rT r:n r ! i fTTT' I Til f II I I I LU I 'J J I l..ill

f
I
I

, L I ,I,!, I ,Ll I
IBM 1403. Models 2, 3~~~1, and 1 .. 404

I I I I ! I Ii T r'rl "n' r UTITTTLL I I ITT, 'l'--'-JT/.-r·-h-'r,·,-,,-,·,,--+ii
IBM 1443 Models 1, Nl, an~ 2203

I I 1 I
o 2 3 4 5 6 7 8 9: . 10 11

.';"'! lCT;2"'3'"'4=<S 716~7~8r.o9t;;0:r.1T.2;r;3"'4'-:-'S;;-r6-;-r-J7 ""'8~0r., lr.;2:r;3;r4'"S~cI6'"7"'"8 9 0 1 2 3 '4 SI6 7 89 O! 1 213 '4 S 6 7 8,9 0 1,213;4, 5' th's 9!oflI2:3i4S16ITS/9 0 1 213' 4:SI6 ,7'819 0 1 23'415617819 () 1 21314 5:67890 1 23 4 S 67 8901 2!3 4 5 6 7 890'

41D.1 , , I I
! : , I ': I ' I !-H I

Ii
I! ! , , ' I I , I

X~
iiI , I I ,i, ,

J(lC.XI U n XII!. :LW lOOXIX ! I ~ AlA ~ ,I: .! I III IX'
~- ±~- _L HI ! 1 L L I ' I

! ...,. -: i II
IXl¥ix \((~ !lID(XX~ IX~ IXOC XX I I

!
' : IX ~IX.IX X : i

, I
: I I

II ; -h±4-: 1 I 'iJ
IltXXIlC I

:
I

i ! I
, I '1

I[" • ~ i i L I i, ! 'I 1.1l1i I
I

! i
I I I

,U. :t I

~+ I ,
i III

I ,

I'
II ! ; I

I ' i ,
!

,

I
, i

, , I I: I I ! iL' I I I I
y.)

en
Cl)

I:\j C')
r-+

0 O·
::J

01 en
0 c

0-
VI

f---
Cl)
C')

~. c,., 0
0 ::J

VI

""C
0 OJ
~ to

Cl)

IBJ.1 INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
LINE DESCRIPTION FiElD HEADINGS/WORD MARKS 8 Lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 2203

ILL J LL

I II

Figure 20, 20,

I
I
I

Print Span: I

1403 "'odels 1 & 4 +-i I I
liL/Lil I III I / LLL J

407, 408. 409, and 1 ~q3 Models 6 end
I

1403 "'odels 2. 3, 5. ,1'-11 and

IBM 1443 Aodels 1 N1 c ~ "''''~

C/)
co

~ (')

0 .-+
O·
~

c.n C/) 0 c
0-
VI

~
co
(')
.-+

V:> O·
0 ~

VI

0 \J
Q) c.n to
co

CIl ro
n

~~~ -----~----------- r 
l\:) ~ 

0 o· 
IBr., INTERNATIONAL BUSINESS MACHINES COR?ORATION I 

PRINTER SPACiNG CHARi I 
:l 

LINE DESCRIPTION FiElD HEADINGS/WORD MARKS 8 lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span: I 
·IBM 1403 Aadels 1 & 4 +i I I 

ill I JI : 1 I i I II! i II 

Ol 
CIl 0 
C 
C"' 
CIl 

'0 407, 4:18, 409, and 1:193 Models 6 clnd "7 

, : ' I j il I i I I I I 11111111 I I III i. 1 

OIJ (J,it ~,./Al JS ... f~ .. i 
IBM 1403 Aodels 2, 3. 5, ,N1 and 1 

I :, I i J J II III I I J I I I LII I I I I I I 1111111 I 11111 I II 
1443 Aodels 1 N1 a,n~ 

~ ro 
n 
::!. 

c,.., 0 
0 :l 

CIl 

i ' 1 -I 
GL ~UE , 6 8 9 10 1 

;;: ."- . ,.' ,- I .1 I 0, :5 
L ' ' I I 

" 
I : I i I I 

w I: I, 1 I 

"'0 
0 til 
0) to 

ro 

. I 1 
1 I, 

~ ~ : I I 
1 I I 

~ 1 ~ ~- I 

I ! e"¥ \I) 

: ~ 0 I'i I : 
I I 

,~ ij I I I .= ~ w 
I I 

11 ;; 

~ ~' ;; ~tc:~ Ii: II !VI} I 1 I 
I I 

c .., . I I 

j g ; 

~ 
. , 

j1 
~ ! Ii 1 J 

I I i 

i ~ ~ ~~~ , . I 1 

I 

il E 

I' 1 I 
I I 

I 

~== ""'"' I I "" I 

Figure 20. 21. 



IB"1 
LINE DESCRIPTION 

GL UE 

Figure 20. 22. 

INTERNATIONAL BUSINESS MACHINES CORPORATION 

PRINTER SPACING CHART 
FIELD HEADINGS/WORD MARKS 8 lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 220'3 

I' i I 

I " , I i I 

Print Span: 

IBM 1403 Models 1 & 4 +-l I 
IBM 407, 408, 409, and 1403 Madels 6 and 7 

IBM 1403 Models 2, 3, 5, N 1 and 1404 

IBM 1443 Models 1, N 1, an~ 2203 

I 
Ii 
I 
I 

10 o 2 3 I 4 5 6 7 8 9: 11 
&1'"'1'-2"-3;"-4-:>"S==6 ""'7 =a '-9hO'""1'-2'-3"4'""S"'6-:T7"'-'a '-9~O'-'-'2r.3.-r4.1CSOr6"'7=r·8 9 0 1 213415.617 89 0,1 2 :l 4 5T6 7 819 011 2,34 S1617'819 0'1 2 3 1 2 3;4:5,67'8!9 0 1 23 4'5 M7 89 () 1 234 5 67 a 90 1 234 S 67 890 1 2;1 4 S 6 7 a 9 O' 

I +J ! I : I I t I I . :-h-.,f--IH-
Il 

+++++-c-"...,,-'.~H-++-H--+:_,--!I--,I:-t-H-++' _'+-L
I +-+'~H-++++++-H~If--H-I++++++-H~H-+++++f.I 

I I II I I I 

! , 
I 

I I Ii 
I I I I I I 

I i I I i I I 

I I : I I 
- ~DC I II ! . 

Ii! 
I: i 

1 
! 1-+ : 

I i I I ! 
I l I 

I I 
.L --i I 

I· Ii ' I 
)( IX ~ l( rIlDC [~ 

Iyllt fill 
, I 

+ I I I 

I 

, II I 
I i 

I I 'II' 
, II 

I 

II 
! 

I 
I ! 

I 

(f) 

~ CP 
(") 

0 .-+ 
O· 
:::::I 

c.n (f) 
0 c 

0-
CIl 

~ 
CP 
(") 

eN =. 
0 0 :::::I 
CIl 

0 "'iJ 
-l ell 

<0 
CP 



en 
(1) 

-- -_._------------- ~-.--~ -- - - -.-~ ._ ... -.---~ ..... -... -.~---- -_._- ----_._------_.- - - - - - --~ I I 
i 

IS", INTERNATIONAL BUSINESS MACHINES CORPORATION : I 

PRINTER SPACING CHART , 
LINE DESCRIPTION FiElD HEADINGS/WORD MARKS 8 Lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span: _L 

1403 ",,-dels 1 &~ -H I 
I L ! !IL U III I L I 

l:\:) () 

0 r+ O· 
~ 

01 en 
0 c 

0" 
(/) 

10 407, 4 )8,. 409, and 1~(?3 Models 6 nd "7 I----
(1) 
() 

- ! I 
1403 Aodels 2, 3, 5, _N1 and 

.1 I LLULI ilLJ! l_L ~ II L LJ I L 

r+ 

~ 
O· 
~ 0 (/) 

'u 1443 Aodels N1. c ~ 

;;~ GL ~UE n ) 1 11 ,. ,-
j 

I 

I I I -
! i I 

" 0 Q) 

00 to 
(1) 

w I I, I . I I 

~ ! : 
I I I 

I I 

I II ~ .' • • 
~ ~ 1 ~ 

I~ 
i"- ' I 

3 e ~ 
~ ~ ~ 

:- ~~ ~. I 
.2 ~ ~ 

'-"-
I 

~~ ~ 
LL 

f-o- ~ . ~ -
~~~ II~ 

! i
f-o- "-

!jn I
, , I-

~ in I ILL il I " - li
~io:::= ~ I ." =i

Figure 20. 23.

INTERNATIONAl~~U~INESS MACHINES CORPORATION -- ------- - - ---~--- -----t
PRfNTER SFAClh1G CHART r

IBAA A07, 408, 409, 1402, 1401,. 1443. and 2203 Print Span: I
IB"1
LINE DESCRIPTION fiELD HEADINGS/WORD MARKS 8 Lines Per Inch

Figure 20.24.

en
CD

~ (")

0 o·
:J

I:)l
CJ)
C

0 0-
fJ)

!----- CD
(")

CJ,:) o·
0 :J

fJ)

0 ""tI
to Ql

c.c
CD

CJ)
Cl)

IB~
!NTERNAT.l0~.JAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART

I:\:) (")

0 !:!'.
0
::J

LINE DESCRIPTION FIELD HEADINGS/WORD MARKS 8 Lines Per Inch IBM .407, 408, 409, 1403, 1404, 1443, and 2203 Print Span:

OJ CJ)

0 C
C-
VI

r-- Cl)
(")

V.:l
!:!'.
0

0 ::J
VI

I : i I i f-' -0
OJ

0 co
J.l L Cl)

, -,.

~l:mw~m~==tttt~~~~~~~~~~=~~~tt:~~T~t0~~~=:~~~:~~==mIk=t~t:~:
~l ~~n~~:~+Hr-----~~rr~~~-~++rrrr~~~~rrn,~~-T~!-~r~-C~'-T~-'~---'~--~~--+-'~~'~-H~r-~r-~~i~"~-7~';'~'~-~~~+---~~~++++rr~~
e~ ~~++I~+++++Hr-----~~rh~~~"+~T+-r

o~+H~rH+Hr-----~~~
.2 ~
• ~ I
.~ g N ~++~~++t++if-------+~++~

,

•

i

, .,.

, ",' ...
L ___ ' 1 ..•. + i~i.L,- .~

.. ;

!~ ~~~~rf-t+Hr-----~rlrre

~ ~ ; ~~...-r++++Hr----.---t;-7Hf-+-A-'

·;_·c .. · -:: ,-- ,
•

1 ~ m~++i~l-~+Hr-----~~rrrr~~~++++rrHH~++++rrrH+~++++++rrH,~-rr+T~--~r-~--~~-~-~'-H~--~7-r~~-+-+it-~rH~~+-++~~~++++rr~~
c~ ~~~...-r++++Hr-----~Hf-++~~~1-4+·rr++~~-++++++~-"~~-~~,rr+!;

j ~ ~wtwtnt~~~====~~~~ql~~~~~~Si~;rtdfji;~ir;;t=t~j~rn+tTf--'~~";'-~-f~-r+"·"-+lf-f-i-~-~,+'i··fH-r~'L~-·!J~~-~H+~"+~Y-'~~~r+~HH-H-~4++h1

~: ~~~...-r++++Hr-----~rlrrrr~~+++T++rr~~~++~~n~-rnm
:~ ~ : ,'"hh-h-+-t-"+t'ri~~-~i-,~rt~+~t~~n-t+H-t--~~-rl+rrl-~+HK+rH+~~~+rH++n++rrt+r~

~--~----b~~~~~±ijl'~~~~tQ~~~~~tg~~tb~~~~tt~=tj±tBl1±t~~1t~3J-±±ttl±1ttEB;;:;~~~~~~~~tt~ilEb~±i~~it~~

-",' j
,

ii
I

J. i ,

.... ~ U.I ; I
! I i: I'
, i I ! ;

I
; I i ! ! L I I

I i I I

I

"""" ""'" I '1 "'~ ...--

Figure 20.25.

IBl1
LINE DESCRIPTION

GL :UE
~ ~ ; .. ,-

" .
~ ! :
~ 1 ~ e l ~

:~
0
~

.~ 5 ;;

.:] W

11 ~

~; 5 ;;

jl ;;
;

j~

-~~ ""-
~

Figure 20. 26.

IBl1
LINE DESCRIPTION

GLIUE
N_O\D())-.,j

Figure 20.27.

FIELD HEADINGS/WORD MARKS 8 Lines Per Inch

I

II I II i I I I IIIIIIIII
il
I

i
)

I, I
II I

I
,

I I
I I I

I

A rr I II~ 1-1 R
I

I I I I

A! i~
I

IAA

' I

I
I

~)(~

rr TA
I

FIELD HEADINGS/WORD MARKS 8 lines Per Inch

INTERNATIONAL BUSINESS MACHINES CORPORATION : PRiNTER SPACING CHART
IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span: I

1403 Madels 1 & 4 t-i
, !

407. 498 409, and 14C ~3 Models 6 c~nd 7_

,n 1403 Models 2. 3, 5, and
I11II I I , I I I I I ! II ! Iii ,1111 I I II! I

,

4 5 6 7
I :

I '! I

I I i I
I I
I I

I
I

I

II I :
II I I ' I

I I

I I I

I

I
I
I

i

~
I

i

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
IBM 407, 408, 409, 1403, 1404, 1443, and 2203

·IBM 1443 lIodels N

~

I
I

,

i
I

!

I
i
I

Print Span:

c ~ """ ...

1

60==""

I
I

:
IBM 1403 Models 1 & 4 -H

TT,,,~-~~,,,~-'r1,,,-,,,,,~~

and 7 IBM 407, ,428, 409, and 1403 Models 6

!-.
-rr-,-l-,--.--.--I' '--+-'-rr-,---,i-,--,-I,,-jl-,I-,I-'---'''-_'--'-'-+o-I-,-I-.-,-[',-1"11,--,-,1-+-.-.-1,-1,-1,,,,11--..1+--,--,--.-1 ,-1 I"T--,r-,IT~I ;! ;:=r_T~::=T I]. t1:121~' -~I ~I ~1 ~rl~T~ lT0-2:ln~T~1~1~ IT~ r0T--7JI t12t' B~~E~~~:;:S IBM 1403 Models 2, 3, _~~ 1404

I I Tn • TTl IT-rTTTfT!!Tr TT1TTTI11 tTTTllTTTI I ! I I I I I I II I I I I I
IBM 1443 Models 1, N 1, an~ 2203

Ii 0 1 2 3 4 5 6 7 8 9: 1 0 11 I
',12345678901234'516789.0,1234561718'90,12345617189 012'345678901 2,3!4f516:i'sf9 0 :45;6: 8,' 012345678901234,56,789012345678901234567890

-~-L,
i

Ii :

I i
,

--r.J-. -.c.::: bb =-

U)

~ CD
(')

0 .-+ o·
::J

Cl1 U)

0 c
0-
C/l

~
CD
(')

W .-+

0 o·
::J
C/l

f-' "0
Q)

f-' to
CD

Section Subsections Page

20 50 I 40 01

Disk Record Formats

Employee File - Figure 20.28
Index to Employee File - Figure 20.29
Company Record in the Corporation File - Figure 20.30

0
z

EMPLOYEE information record ~
(.)

starting at 109 and continuing 0
U thrll 156 is current information"

25 26 30 31 35 36

(
)

I I I

65 66

'" Z
ro
cI) Ql

"0
Cl 0
c:: U
.~ -c

Ql
(.) 0 e

0..

)
) c:

x 0
ttl "c

l- I- ::>
co u: (.) :c
0 ~ --l

U

(
J

I
150151

Figure 20,28,

I I I

III
e
19

I I
110111

(J)
Q)

~
~

0
"~ c: ttl
..c: 0
U "c

::>

Quarter-to-Date

Information

I I I I I I I I

70 71 75 76

e ~
~ ttl ~

~ II: 0 ~ e > ::t: ~ 0
ttl 0 ::t: ttl II: ttl ::t: a. en

dl I- "3 I- ~
en c:

> 0 Ql 0 0 « II: co

I I r I I
115116 120121

Q)
(.)
c:

~ g e (.) For Growth
ii1 E ~ of Record c: en

_I I _I

155156 160

I

I

Section Subsections Page

20 50 I 40 02

}
)

~ ~ I
"~ (J) > "0

en en
~

Q)
0 c. c. e ~ "~

~ E E (.) (J) 0 Ci 0.. ttl
Q)

~ E X X x II:
Name en ~ e: (J) "~ Q)

-.0 0 L1J ~ ttl -c e en >
"!!! E ci) "c (J)

Q) ~ Q) ttl ttl I Q) 0..

~i ::> ~ ~ u. ci) Q)) Q)

~ I

I I I I I I I I I
(

5 6 10 11 15 16 20 21

Year-to-Date Information

40 41 45 46 50 51 55 56 60 61

J e e ttl
0 0 -c 6

Ql ... ::t: 6 Ql
0 -S ~ -c ... Ql

~ 0 -c -c -S u. e: e: co Ql -c Q)
::t: 0 0 Z 0 Ql Ql e:

"c ~ e: 0 0 0 0 Overtime "c 0 ::> ~ 0 ~

~ ~ Previous 13 weeks -
l- e: (.) ";; (.) en Rate 0 Ql :c 0 c: ttl -c c:
>- :c "c ..c: ci) - ~ ..c: 0

U "0 U Ql "c Ql ::> « 0
U ~

::>
:c (.)

Ql 0

I U ci)
I I I I I I I I I I i

80 81 85 86 90 91 95 96 100101 105106

en
Cl en en c: (J) en en
'E en c: c: > >

c: 'E 'E ttl
ttl 0.. >

ttl 'E 0.. ttl >
L1J ttl ttl Ql c:: 0.. ttl «

ttl L1J L1J "0 > .g 0..
U L1J 0 ttl ~

ttl (J)

~ u :2 ttl
(.) Z u. "3 I- ~ en c: ..c: 0 (.)

en 0 0 (5
ttl

Q) ::t: > II: co

I I I I I I I I I I I I I I I I

125126 130131 135136 140141 145146

Section Subsections Page

I

20 50 I 40 03

Each record is composed of 1 word.
The number of records in the file is
the number of employees in the
plant plus 25%. The last entry is
the record number of the last clock
number entered.

Figure 20.29.

This is the plant information record.

I

Trade Association Information

,
I I I I I I I I I I .J I J

20 21 25 26 30 31 35 36

I I

5 6

Available

I I I I I I I I I I I I I I I I I I

65 66 70 71 75 76 80 81

Figure 20. 30.

Plant Name

I I
10 11

I
40 41

for

I I I I

85 86

c:i
z
~ 0 (.)
Q) z

.l:
~ U Q)

.~
Q)

s:
U.

I I
15 16

> c:i
~ > Z
(.) ~ ~ ~ General Ledger Q) c: m !1! Q)

~ .s: ::::J Q) ...

Account Numbers u 0 s: ~ s: Q) .l:
·E]t::l _Z u

for Posting ~« !9 co
~ 0 0 .: l- I- I u.

I I I I I I I I I I I I

45 46 50 51 55 56 60 61

Expansion

I I I I I I I I I I I I I I I I I
90 91 95 96 100101 105106

Section Subsections Page

20 50 I 50 01

System Flowchart

Clock No.
and

Name

EAX..Q.2..
ADD NAMES

File create (initially and as necessary)

Zero Balance
Totals

Clock No.
and

Name

Employee
Earnings
Record

fAY.1§.
INPUT
EDIT

fAY..Ql
FILE

CREATE

Out of Balance

Control Totals

All but
Name

Zerq
Balance
Total

File changes (weekly)

Changes

EAY...1..Q.
INPUT
EDIT

O.K.

Control
Total

Changes

~
FILE

CHANGES

Total on
Adding

Machine

Out of Balance

Section

20

Subsections

50 I 50

Control
Total

Control
Total

Changes

Page

02

Section

20

Subsections

50 I 50

Zero Balance

Payroll
Register

Page

03

Payroll calculations and register (weekly)

Weekly
Time

Sheets

Details

.f8Y.1.§
INPUT
EDIT

Control Totals

Details

PAY 04
CALCULATION

Totals on
Adding

Machine

Control
Totals

Out of Balance

Control
Totals

Zero Balance
Totals

Details

Calculated

Print paychecks (weekly)

PAY 05
PAYROLL
CHECKS

Only When Totals Balance

PAY 06
CHECK

REGISTER

Control
Totals

Pay Checks
and Stubs

Control
Totals

Check
Register

Control
Totals

Section

20

Total on
Adding

Machine

TAPE

Subsections Page

50 I 50 04

Section Subsections Page

20 50 I 50 05

Only When Totals Do Not Balance

Payroll check voiding (as necessary)

Disk
Payroll

File

PAY 11
VOID

CHECKS

Control
Totals

Control
Totals

Details

Details

Union
Dues

Register

Credit
Union

Register

Stock
Deduction

Register

PAY 13
UNION
DUES

PAY 14
CREDIT
UNION

PAY 15
STOCK

DEDUCTION

Payroll deduction registers (monthly)

PAY 12
RESET

MONTHLY
TOTALS

Section

20

Subsections

50

General
Ledger

I 50

Page

06

Section Subsections

20 50

Totals

Calculated
Control
rotals

Tax
Worksheet

I 50

Page

07

PAY 07
AUDIT FILE

BY COMPANY

PAY 09
--s4I

REPORT

PAY 10
TAX

WORKSHEET

Pa}Toll file audit, 941, and tax worksheet (quarterly)

Enter Plant
Number

Plant
Numbers

941
Report

Plant
Numbers

General
Ledger

TAPE

W-2
Reports

Print W- 2 reports (annually)

PAYnn
---w2

REPORTS

Plant
Numbers

Section

20

Subsections

50 I 50

General
Ledger

r---,.~ TAPE

Plant
Numbers

Page

08

Section

20

Subsections

50

Disk
Payroll

File

Individual
Payroll
Record

1 50

Page

09

Error detection and correction (as necessary)

PAY 08
INQUIRY

Use PAY 16
& PAY 03

to Change the
Disk Payroll

Record

Return to
Print Where

Error
Occurred

Only when
entire original
error has been
corrected

Select Desired
Clock Number

Card

Clock
Number

Last Week's
Payroll
Register

Remember, all of these pages are developed by
this point in your system design. In addition, they

Section Subsections

20 50 I 50

now become a part of your system documentation
(see Section 35).

Page

10

Section Subsections Page

20 60 I 01 01

LANGUAGE SELECTION

Introduction

Now that your system has been specified, the im
plementation of the design must be considered.
Since you will be writing a program, the logical
question is "What language shall I use?"

IBM supplies and supports a wide variety of
programming languages and application programs
for the 1130 Computing System. Among the
programming languages (Type I programs) are:

1130 Assembler Language
1130 FORTRAN

Some of the application programs (Type II pro
grams) are:

• Continuous System Modeling Program (CSMP)
• Data Presentation System (DPS)
• Linear Programming - Mathematical Optimi

zation Subroutine System (LPMOSS)
• Mechanism Design System - Gears and

Springs
• Civil Engineering Coordinate Geometry

(COGO)
• Numerical Surface Techniques and Contour

Map Plotting
• Programs for Optical System Design (POSD)
• Programs for Petroleum Engineering and

Exploration
• Project Control System (PCS)
• Route Accounting for Dairies and Bakeries
• Scientific Subroutine Package (SSP)

• Statistical System
• Structural Engineering Systems Solver

(STRESS)
• Type Composition
• Work Measurement Aids
• Commercial Subroutine Package (CSP)
Your IBM representative can help you determine

which programming language or application program
should be used to implement your system.

In addition to these two types of programs, IBM's
Program Information Department maintains a
library of contributed programs and distributes
these programs to interested parties. These are
contributed to the library by:

1. IBM employees (Type III programs)
2. IBM customers (Type IV programs)
Type II and type IV programs have been submit

ted to the Program Information Department for
general distribution in the expectation that they
may prove useful to other members of the data
processing community. The programs and docu
mentation are, es sentially, in the author's original
form and have not been subjected to any formal
testing. IBM serves only as the distribution agent.
It is your responsibility to determine the usefulness
and technical accuracy of the programs in your
own environment. Unlike programming systems
(Type I) and application programs (Type II), these
programs are not part of the IBM support package.

The remainder of this section elaborates on
each of the programming languages and application
programs and discusses some of the considerations
in answering "Which do I use?"

Programming Languages

Assembler Language

The IBM 1130 Assembler Language, while similar
in structure to machine language, replaces binary
instruction codes with symbols and uses labels for
other fields of an instruction. Other features,
such as pseudo operations, expand the programming
facilities of machine language. Thus, the program
mer has available, through an assembler language,
all the flexibility and versatility of machine lan
guage, plus facilities that greatly reduce the ma
chine language programm ing effort.

The IBM 1130 Assembler Language has two
parts: the symbolic language used in writing a
program and the assembler program that converts
the symbolic language into machine language. An
additional component is a library of relocatable I/O,
arithmetic, and functional subroutines.

Symbolic language is the notation used by the
programmer to write (code) the program. A pro
gram written in symbolic language is called a
source program. It consists of systematically
arranged mnemonic operation codes, special char
acters, addresses, and data, which symbolically
describe the problem to be solved by the computer.

The use of symbolic language:
1. Makes a program independent of actual ma

chine locations, thus allowing programs and routines
to be relocated and combined as desired.

2. Allows routines within a program to be
written independently and causes no loss of
efficiency in the final program.

3. Permits instructions to be added to or
deleted from a source program without the user
having to reassign storage addresses.

The assembler program (processor), supplied
to the user by IBM, operates from paper tape, from
punched cards, or under control of the 1130 Disk
Monitor Systems. It converts (assembles) a
symbolic-language source program into a machine
language (object) program.

The conversion is one for one-- that is, the
assembler produces one machine-language instruc
tion for each symbolic-language instruction.

The IBM 1130 Assembler is a two-pass program.
The processor is loaded into the computer and is
followed by the first pass of the source program.
During the first pass, source statements are read
and a symbol table is generated. During the sec
ond pass, the source program is read again and
the object program and/or error indications are

Section Subsections Page

20 60
1

10 01

punched into the first 20 columns of each source
card. If paper tape is used, the second pass results
in the punching of a new tape that contains both
source statements and corresponding object informa
tion. If disk is used, this becomes a one-pass
procedure, the disk being used for intermediate
storage. Both card and tape object programs must
be compressed (via a Compressor Program supplied
with the assembler) into a relocatable binary deck
(or tape) before they can be loaded into core stor
age for execution.

The output from the second pass is called the
list deck (or tape) and can be used to obtain a pro
gram listing of source statements and corresponding
ing object statements. Use of disk automatically
compresses the object program into relocatable
(loadable) form. A program listing is an option if
the one-pass disk procedure is used.

A library of I/o, arithmetic, and functional
subroutines is available for use with the IBM 1130
Assembler.

The user can incorporate any subroutine into his
program by simply writing a statement referring
to the subroutine name. The assembler generates
the linkage necessary to provide a path to the
subroutine and a return path to the user's program.
The ability to use subroutines simplifies program
ming and reduces the time required to write a
program.

A description of available subroutines is con
tained in the IBM 1130 Subroutine Library (C26-5929).

FORTRAN Language

FORTRAN (FORmula TRANslation) is a coding
system with a language that closely resembles the
language of mathematics. It is a system designed
primarily for scientific and engineering computa
tions. Since this system is essentially problem
oriented rather than machine-oriented, it provides
scientists and engineers with a method of communi
cation that is more familiar, easier to learn, and
easier to use than actual computer language.

The IBM 1130 Basic FORTRAN IV Programming
System consists of two parts: the language and the
compiler. The language is a set of statements,
composed of expressions and operators, that are
used in writing the source program. The 1130
FOR TRAN compiler, provided by IBM, is a pro
gram that translates the source program statements
into a form suitable for execution on the IBM 1130
Computing System. The translated statements are
known as the object program. The compiler detects

Section Subsections Page

20 60 I 10 02

certain errors in the source program and writes
appropriate messages on the console printer, 1132

Printer, or 1403 Printer. At the user's option, the
compiler also produces a listing of the source pro
gram and storage allocation.

Application Programs

Continuous System Modeling Program

This program provides engineers and scientists
with a simple but versatile tool for solving dynamic
system simulation problems. For many problems,
this program obviates the need to use an analog
computer facility.

CSMP is a "digital analog simulator" program
using a block-oriented input language in which the
functional blocks represent the elements and organi
zation of an analog computer. A total of 25 stan
dard functional blocks plus the ability to define
special functions are provided. The continuous sys
tem model may be developed and tested, and results
observed in an online interactive mode by means of
the console k.eyboard and output devices. The sim
plicity of the language statements enables a user to
rapidly gain proficiency with the program and facil
itates modification of the model via the console. In
addition, via the console printer, the beginner is
provided instructional comments that can be sup
pressed as experience is gained. Simplicity and
flexibility are the foremost characteristics of the
program.

Data Presentation System

This program can present a large variety of data in
plotted forms such as graphs, charts, schematics,
and modified drawings. It supplies high-quality,
hard-copy, graphic output at exceptionally low cost.
The system can be used independently as a Graphic
Report Generator, or the user can choose one or
two levels of subroutines from the system for in
clusion in his own graphic output programs. These
three levels of access are made even more flexible
by several system modification and expansion
features. The scope and flexibility of DPS make it
valuable in almost every application of the IBM
1130 Computing System.

Linear Programming -- Mathematical Optimiza
tion Subroutine System

LP-MOSS provides the 1130 disk user with a simple,
efficient means of solving linear programming
problems and a means for implementing a variety
of mathematical optimization applications.

Mathematical optimization is any mathematical
technique for determining the optimum use of var
ious resources such as capital, raw materials,
manpower, and plant or other facilities. The

Section Subsections Page

20 60 I 20 01

technique seeks to attain a particular objective
(for example, minimum costs or maximum profit)
when there are alternate uses for the resources.
Linear programming is the most widely used of
these techniques, and has been used to allocate, as
sign, schedule, select, or evaluate the uses of
limited resources for various jobs, such as blending,
mixing, bidding, cutting, trimming, pricing, pur
chasing, planning, and the transportation and dis
tribution of raw materials and finished products.

Mechanism Design System -- Gears and Springs

This program provides design and analysis for five
distinct mechanical components used in a wide
variety of machines in all industries. Spur and
helical gears, compression, extension, and torsion
springs are the components covered. The program
provides the mechanical engineer and mechanism
designer with a low-cost, flexible, easy-to-use
program set which will design new parts or analyze
existing parts.

The engineer is expected to furnish the problem
description in terms of design restrictions and
material parameters. This description is in a
flexible problem language format which greatly
simplifies man-machine communication. Operation
can be either by a batch card input mode or in a
conversational typewriter input mode. In the latter
case, an engineer can readily evaluate parametric
changes and truly use the computer as a design
tool.

Civil Engineering Coordinate Geometry

COGO is a simple, efficient tool designed especially
to assist the civil engineer with a wide variety of
geometric calculations. With COGO, the engineer
can state his problems using familiar terminology
common to the engineering field. No knowledge of
traditional programming is necessary.

The civil engineer requires a simple but efficient
means to solve geometriC problems now being done
laboriously by hand. 1130 COGO provides the
solution to his problem by allowing the engineer to
(1) enter the data for the job into the computer by
typewriter or punched cards, using a language with
which he is familiar, and (2) to have solutions
automatically printed out. COGO is especially use
ful because it provides the facility for the engineer
to try many different methods of solving a problem.

COGO can be used for many different types of jobs,
e. g., control surveys, highway design, right-of-way

Section Subsections Page

20 60 I 20 02

surveys, bridge geometry, subdivision calculations,
land surveying, construction layout.

COGO can, in fact, be used wherever geometric
calculation is required.

Numerical Surface Techniques and Contour Map
Plotting

This program provides a variety of techniques for
describing and operating on surfaces. Surfaces
may be described analytically by equations or nu
merically by sets of data points. In addition, var
ious arithmetic and logical operations may be per
formed on these surfaces. These techniques may
be carried out individually or in various combina
tions by storing intermediate data in the online
disk storage. Final output is commonly in the form
of maps drawn by the 1627 Plotter, but may option
ally be in card form.

Optical System Design

POSD provides the optical designer with a conven
ient' efficient design tool. It is in the Computer
Aided Design (CAD) category of programs, thus
exhibiting a close man-machine relationship through
out the design task. The \130 Computing System is
ideal for this interaction, because it is fast, con
venient, and inexpensive to use.

POSD removes the drudgery and error-proneness
from the innumerable calculations required in the
optical design and evaluation process and allows
the designer to spend his time exercising creative
and critical judgments. The program gives the
designer step-by-step assistance from the very
early stages of the design through to the final opti
mization process. In addition, the designer may
evaluate the quality of his design at any time he
chooses through many data plot or printout routines
or both. Using this program, the optical designer
can tackle virtually any lens system, including
those requiring a high degree of sophistication, with
the assurance that the lens performance will meet
specifications in modeling and manufacture.

Programs for Petroleum Engineering and Explora-"
tion

Economic Evaluation of Petroleum Projects Pro
gram can be used to screen drilling proposals and
rank them according to their profitability. Given
the investment schedule and production forecast for

an exploration and drilling prospect, the programs
compute the payout period and rate of return using
the discounted cash flow method.

Casing Design Program allows the user to design
the most economical combination casing string, in
terms of grade and weight, that will meet the re
quirements of a given well.

Decline Curve Analysis Program computes the
coefficients in the equation best fitting past produc
tion data and the reserves associated with these
data.

Tarner Material Balance Program is an aid in
predicting the performance of a reservoir.

Schilthuis Material Balance Program for a res
ervoir that is subject to water influx, is evaluated
at each past production data point (for up to 28
points). These values are weighted according to
oil production and subjected to a least-squares
solution to compute a most probable value of the
original oil in place.

Two-Dimensional Waterflooding Program allows
the user to determine the pressure distribution
throughout a reservoir, taking into cons ideration
the effect of water injection.

Gas Deliverability Program allows the user to
project the annual rate at which volumes of gas
reserves may be received into gathering systems.

Multi-State Flash Calculation Program is a
general purpose flash claculation program that can
be used for a variety of the computations made by
the petroleum engineer. The program may be used
to design surface separators or to determine the
physical properties of the oil and gas from a sur
face facility. A laboratory differential liberation
may be simulated.

VelOCity Functions from Time-Depth Data Pro
gram permits"a geophysicist to derive a velocity
function and to prepare a tabulated time-depth chart
from well vel oci ty data.

Wave-Front Ray-Path Determination Program
provides a flexible method to compute and tabulate
a seismic wave-front ray-path chart; the geophys
icist uses such a chart to restore seismic reflec
tions to their true subsurface position.

Synthetic Seismogram Program computes and
plots a one-dimensional seismic model from well
log data.

Gravity and Magnetics Continuations, Deriva
tives, and Residual Program provides a method for
computing (1) upward and downward continuations of
gravity and magnetic fields, (2) first and second
derivatives of these fields, (3) residuals of arbitrary
type for gravity and magnetic values.

Theoretical Gravity of a 3-D Mass Program
allows the user to establish a synthetic gravity
anomaly by computing the theoretical gravity of an
assumed mass.

Quantitive Log Analysis Program permits the
user to compute the porOSity and water saturation
on prospective hydrocarbon zones in a well, using
data from several log combinations.

Dipmeter Program is designed to assist in the
analysis of the continuous dipmeter log by calculating
the true dip of intervals in a well.

Project Control System

This program provides a basic tool needed by
management to fulfill its responsibilities in the
planning, supervising, and controlling of project
oriented work. In addition to critical path analysis,
the system provides the capability for summarizing
externally prepared resource and cost.information.

For critical path networks, the 1130 PCS will
process 2,000 activities either in the form of
precedence lists or in ij/PERT / CPM notation. Its
design allows for a simple approach to networking,
but also offers many of the features normally found
only in programs designed for large computers.

Route Accounting for Dairies and Bakeries

This is a set of programs offering the functions of
route settlement and associated report preparation
as required in the dairy and baking industry. Out
put includes order listings, production requirements,
load listings, product load strips, route settlement,
and statistical reports.

Scientific Subroutine Package

SSP is a collection of FORTRAN subroutines that
provide a major addition to those built into
FORTRAN. They are input/output-free, computa
tional building blocks that can be combined with a
user's input, output, or computational routines to
meet his individual needs. The package has wide
spread application to the solution of problems in re
search, development, and design, in both science
and engineering, wherever FORTRAN is used.

Section Subsections Page

20 60 I 20 03

Statistical System

This is a collection of four major tools: stepwise
regression analysis, factor analysis, analysis of var
iance, and orthogonal polynomial curve fitting. This
flexible system accepts user-supplied control cards
(and data) that instruct the system to perform one or
more of the above analyses.

Structural Engineering Systems Solver

STRESS is a powerful tool for solving structural
engineering problems. It is a problem-oriented
language that enables the engineer to communicate
with the computer even though he has had no previous
programming experience.

This program covers many application areas in
the field of structural analysis. Most buildings
and bridges are designed by consulting engineers
or government agencies, but many other types of
structures in other industries can also be designed
using 1130 STRESS. Some of the other industries
and typical applications for each are:

Industry Typical Application
Aerospace Wing members
ManufacUlring Conveyor framing, plant design
Process Supporting towers
Utilities Transmission towers, culvert

sections
Federal Dam design, ship design

Type Composition

This program extends the speed and flexibility of a
digital computer into the composing rooms of the
printing industry. Type compositors can use this
program to provide significant time savings in
transcribing textual material into a form required
by linecasting machines for setting type.

The program is designed to allow computer
acceptance of perforated paper tape containing
(1) the copy that is to appear in print and (2) instruc
tions pertaining to a desired printing format.
From the paper tape, a tape suitable for controlling
the operations of a linecasting machine is produced
and allocated to the proper point in the composing
room. The output tape contains the original copy in
the form of properly justified lines arranged accord
ing to the stylistic and graphic requirements described
by the user with the format instructions. The pro
grams are capable of producing justified lines in
any format within the inherent limitations of the
linecasting machine.

Section Subsections Page

20 60 I 20 04

Work Measurement Aids

This program aids manufacturers who need to
know the time it should take to manufacture a pro
duc t. This task, often referred to as work measure
ment, has traditionally been very time-consuming
and expensive. Work Measurement Aids provides
two programs to assist in setting time standards.
This information also forms the foundation for labor
standards, cost estimates, machine operation
instructions, and scheduling input. The two pro
grams are:

Machinability, which determines optimum ma
chine tool parameters such as speed, feed, horsepower,
tool life, and process time for machining operations.

Work Measurement Sampling, which determines
job standards for long cycle operations (over 15
minutes) and the distribution of time to job activities
(conventional work sampling) .

Commercial Subroutine Package

This program provides the scientific and engineering
user with added capabilities for handling functions
and techniques common to commercial programming.
It is a set of 28 subroutines callable by the
FORTRAN programmer in a similar manner to such
standard functions as sine, cosine, square root,
etc. The subroutines enable the 1130 user to add
commercial applications such as payroll, cost ac
counting, and many others.

The additional functions supplied are variable
length alphameric move, variable length alphameric
compare, variable length alphameric edit, variable
-length conversion from EBCDIC to floating-point,
variable length conversion from floating-point to
EBCDIC, zone manipulation, fill an area with a
specified character, stacker select, variable length
decimal add, variable length decimal subtract,
variable length decimal multiply, variable length
decimal divide, variable length decimal compare,
sign manipulation, overlapping printing and carriage
control, overlapped reading of cards with conver
sion of card codes, overlapped printing on the
console printer, and conversion from one charac
ter per word to two characters per word.

Which Programming Language or Application
Program Should You Use?

In terms of coding ease and elapsed time from
problem definition to operating program, the pro
gramming techniques available to you will generally
rank as follows:

1. Application programs (except Commercial
Subroutine Package and Scientific Subroutine Pack
age)

2. FORTRAN, Commercial Subroutine Package,
and Scientific Subroutine Package

3. Assembler Language
The Assembler Language is rarely used, be

cause FORTRAN, augmented by the Commercial

Section Subsections Page

20 60 I 30

Subroutine Package and Scientific Subroutine Pack
age, is more than capable of handling almost all
applications, is' easier to code, and produces
efficient programs.

The brief descriptions given earlier will help
you to select the best language in which to program
your applications. A preview of the payroll pro
grams given in Sections 25 and 35 will give you a
clearer picture of the kind and amount of writing
required to code some typical commercial jobs.

In addition, Section 70 discusses FORTRAN,
the Commercial Subroutine Package, and how to
use these two tools in implementing your system
design.

01

Section 25: PROGRAM DEVELOPMENT

CONTENTS

Introduction•................
Programming and Documentation
Standards
Program Change Authorization
Programming Aids

Documenting Variable Usage
Modular Programming .•...........

Programming Examples•....
Introduction

25.01. 00

25.10.00
25.20.00
25.30.00
25.30.10
25.30.20
25.40.00
25.40.01

Example 1:
Example 2:
Example 3:

Example 4:

Example 5:
Example 6:
Example 7:

Section Subsections Page

25 00 I 00 01

File Creation 25.40.10
Add Name to the File ... 25.40.20
Changes to the
File 25.40.30
Calculations and
Payroll Register 25.40.40
Check Writing 25.40.50
Check Register 25.40.60
941 Report 25.40.70

INTRODUCTION

This section is a workbook for the programmer.
Primarily by example, and to some extent by nar
rative, he is furnished with a guide to coding.

First, suggestions are made for the adoption of
certain standard practices that will make the pro
gramming job easier and the results more uniform.
Then follows a series of programming aids.

The bulk of this section is occupied by the final
part, a group of examples of coding required to

Section Subsections Page

25 01 I 00 01

implement a significant part of the payroll system
discussed earlier. They will prove useful in pro
viding a starting point for the programmer and il
lustrating proven programming techniques, rather
than in being usable without change for any given
installation's system. Note that programs are
written at this point in the installation of your sys
tem. Also, Variable Summary Sheets are filled in
and flowcharts are drawn. These last two items
now become a part of your documentation (note
references to Section 35).

Section Subsections Page

25 10 I 00 01

PROGRAMMING AND DOCUMENTATION
STANDARDS

For a discussion of the documentation that you
should have upon completion of a program, see
Section 35.

It is advisable to decide on and write down, per
haps following this page, your own standard proce
dures for handling the situations below. You should
have some knowledge of programming before at
tempting to do this.

1. Alternative methods of handling standard
types of errors (for example, missing date card):

a. Assign a standard halt number.
b. Assign a standard halt number and error

message.
c. Assign a standard error stacker; do not

halt.
2. Standard error messages:

a. Establish a log of error messages and
halt numbers and their meaning.

b. Standardize spacing, skipping, location,
and whether to halt for each standard er
ror message.

3. Standard FORTRAN labels:
a. Assign a standard symbolic name for

each I/O device.
b. Assign standard field names for fields

used frequently.
c. Assign standard subroutine names for

routines used frequently.
4. Record layout conventions:

a. Define standard heading (for example,
date to left, title in center, report num
ber and page number to right).

b. Define spacing (for example, when listing,
single-space detail, double after minor,
triple after intermediate and up; when tab
bing, single-space after minor, double after
intermediate, triple after major and up).

c. Define how totals are to be indicated
(with asterisks or message) .

d. Define how final totals and control totals
are to be printed (for example, at bottom
of page, on next page). .

5. Specify when flowcharts are required for pro
gram logic:

a. When a significant number of GO TO or
IF statements are used.

b. When a complex table lookup is per
formed.

c. Whenever the logic of the computation is
so complex that another person would
have difficulty following it without the aid
of a chart (decision tables may be best).

6. Describe how program changes are to be
made:

a. Require changes to be authorized.
b. Assign all changes to a programmer

through the manager of data processing.
c. Keep track of time spent making program

changes by application and by initiator of
change.

d. Require that all necessary documentation
be brought up to date.

7. Outline methods of testing programs:
a. Define conditions in which a test deck is

sufficient.
b. Define conditions in which a program

must be production-tested before instal
lation.

8. Standardize writing of specifications:
a. Establish a standard identification (see the

accompanying FORTRAN coding form).
b. Use a standard form of program identifi

cation, such as a three-character appli
cation code followed by a two-digit
program number (for instance, PAY10,
PAY20, BIL10).

Section Subsections

25 20 I 00

PROGRAM CHANGE AUTHORIZATION unauthorized changes. The following sheet is
suggested as a means of maintaining control.

All changes to an operating program should be
controlled in order to avoid confusion and

PROGRAM CHANGE AUTHORIZATION

Application ______________ _ Program _____________ _

Requested by: _____________ _ Date I I

Change Authorized by' Date Authorized I /

Date Coonge to be Effective / / Actual Effective Date / /

Programmer:

Original Assigned for Change _________ _

Date Assigned / I Date Completed I I

Systems Design Hours Required ____ _

Coding/Debugging Hours Required ___ _

Page

01

Section Subsections Page

25 20 I

IBJ.1
Program

Programmer

r= C FOR COMMENT

tS~~TEMENT i
NUMBER ..3

00 02

I 5 6 7 10 15

I~---- - :ra8 "'UM.61r:U~.
c---- - J

c,----- J>.A'IE. C.OI>IED

c.--- --
c----- .1 ,
c ____ _ , 1

C----I- , 1

c- - - - -

20

1--

1

1- -

,
,

,

c - - - - O.U.IIP.Il.T. FJJ:.L £.5. --

C----f- 1 1 1

c ____ _
I I I

-I- - " - 'I -

1

1 1

I J

I ,
I I

IDote

25

I

1

J

I

.~

.o'tl

.11 .

.21.

3 .

- ,.

FORTRAN CODING FORM
Punching

Graphic 1 I I I I
Punch I I I I I

FORTRAN STATEMENT
30 35 40 45

1 1

1 1 1

1 1

, 1

I

.F.LLc I

Instruction,;

I I /ICard Form'll *

I I II

50 55 60

1 1 1

1

I

J 1

,
, I

Poge

I
73

of

Form X28-7327-4
Printed in U.S.A.

Identification

I 1
80

65 70

1 1

1

J

NA"tI.E , riUM e £ ~ L E IM;..r.H . . RI. COl(b IS .P.E.1l1 .S e C ·1"to.12

I I , , 1 I I 1

, , , 1 , 1 , 1

,
I I

, , 1 1 , 1 1 1

, , 1 , , 1

'I 1- - 1 1- - -I - - 1- -

, 1 I

1

1 1 1

1 1

1 1 1

* A standard card form, IBM electro 888157, is available for punching source statements from this form.

PROGRAMMING AIDS

Documenting Variable Usage

Especially when writing a large program in
FORTRAN, it is difficult to remember the functions
for which the variables have been used. This prob
lem may arise during testing, particularly when
several programs are being tested at one time.
Again, program revision at a later date can be

Section Subsections Page

25 30 I 10 01

difficult, and the problem is intensified if the revi
'sion is being 'done by someone other than the origi
nal programmer.

The Variable Summary Sheet is a suggested form
for recording the usage of variables.

The sample shown here is related to PAY01
shown later in this section. Both the variables used
and the type (I, R, D, A) are indicated in the columns
to the left of thy form.

Section Subsections Page

25 30 J 10 02

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

Vl a..
-c ::21- Application Date
0 w::J MAX. MIN. NAME $ 1-0..

* j:::~ VALUE W '0 VALUE Program Name No. Programmer 0 ~O 0 ci
~ ::2 z

FUNCTION OF VARIABLES

*Mode: I = integer, R = real, D = decimal, A = alphabetic

Section Subsections Page

25 30 I 10 03

VARIABLES IBM T 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

Vl
a..

Date ap'~~7 '"C 2:1- Application PAYROLL SYSTEA? (; w::J MAX. MIN. NAME s: I-a..
* ~~ Khc.E;.. W ..- VALUE VALUE

Program Name Hie C rec:7 /e Cl 0 ~o No./?4YO/ Programmer
0 ci
2: z ~

FUNCTION OF VARIABLES

Ck"MAX' R ~ T /Nt1.~ ¢.¢(/ Md%/h-1t//7l cAecL t:7/?"?ov/J~ /br t:? ./;/e,

COA4P 1/2 /~ I;tJ - - Ct)q;~U'.n!f //t?r.nt:!?

P8PE R ~4 0 ~rP~ ~¢'~ Trdk ~SSoc/pl?on repe:;rh.

Z 1" 1 r v~ed I'n 2)0 /t:?o,P

Ie Z / AI' - - Et7~/;"'a/e/7~ I-GJ .£/1/1

l.lCIICIC r / T
Se-,J ,.t'or

.iJe.q/;?r)//;t:/ ch~c.l;;. "'t;n·?/;~r t://Ae/J uN,'/f/,UI Ch~c.es. each rva

yeo!.. I I T 250 f Record r}~~~er/'1 c/17p/o;/ee ;e://e:s:. se~~ ~..:1
"PL4~1'

fA/£) Z / T /o~ /(;15/ Rle r1u,nbe"" t:P~ /;"'d4?,X Pc:::>r a /,/t?I'?/: ,.0# + /eJO

fA/OEX I 2£ T >(X}(X I~rd(i f/74'~x to ,,0/4"/ /itt:)t.V 6~/"'~ ,Pr~ce;s.sed

L/l/LT I I 0 ¢ ¢ (//7/,0',., I/;/ rI (:, h~,., I' e e

LNI I / r 250 1 P€lct:Jrd ,?vh'?kr /A .1'nd~xe5 ~Em,P~:fee"s:;k

Z,A/Z f I N - - qPI'vt:?k,?/ T~ fA/L

INS .z / AI - - E,/v/v4/t!?n~ ?"o I A/.t

l' A/4- I / AI - - .t6t~/·vtt?Ie'/7r ~Q Z #.1
INS I / AI - - E~V/~4/~/?r 7'oJ/1/1

£/./6
.,.. I AI E~t//'vc?/~/Jr T~IA/:f -' - -

IPP Z / 0 ~ ¢ ;r~c-.;~s S f4!tlS o~ ~cod;,;' ,t'rx~.ssl;"-!1 o/c~

fSC/)oP 17 1,3 0 ¢ [LJ SI./,PtDlt:!?m~rJ"4/ Sl'c~ P~y

ZTCJT lr /1 r 1723 ~ ;lc~ovn~ /lvh1~~r ,t;r posh".,! 1"" /;' ~~Er"'//tedf~1'

rl1/EEK f / T S- .f ~e~ t:)f' r;'~ /J?t::';?rh

*Mode: I = integer, R = real, D = decimal, A = alphabetic

Section Subsections Page

25 30 I 20 01

Modular Programming

General

Modular programming is used to divide your problem
solution into its logical parts or routines so that
each routine may be programmed independently. It
enables your complex problems to be divided into
many simple sections. A building block program is
thereby created that is controlled by a single routine
commonly known as the "main line" .

A modular program utilizes the same communi
cation system as established by an organization
chart. Work assignment decisions are made by the
main line routine, which is not concerned with the
functions of the processing routines. If for some
reason a routine is revised or eliminated, other
processing routines within the program are not
affected. However, a segment of the main line
might be changed.

There are three primary design criteria of mod
ular programming: ease of understanding, ease of
program modification, standardization of program
construc tion.

To prepare and use an operational program
effectively and efficiently, you must be able to
understand the content of the program readily. Ease
of understanding is provided in the following three
ways:

1. Modular flowcharts. A modular system flow
chart gives an overall picture of the major compo
nents and structure of the routine; program flow
charts then progress to any desired level of detail,
depending on the complexity of the routine. The
program coding is referenced throughout.

2. Detailed narrative of each routine. The nar
rative of each routine states the purpose of the
routine, describes the data processed by the routine,
and explains each step of the program logic as por
trayed by the modular flowchart of the routine.

3. Programming conventions. The use of stand
ard labeling conventions and standard program docu
mentation techniques enables a person unfamiliar
with the program to readily understand the program
content.

Years of experience have shown that, with 98%
assurance, all of your operational programs will
require modification and change during their useful
life. Ease of program modification is of cardinal
importance when your program must be converted to
fit a specific new situation. This may be because of
changing company policy, varied environmental
parameters or different management objectives.

Your programmer, then, has the problem of crea
ting a program that can be adjusted to each specific
situation. There are two ways of handling this
problem.

One is to try to anticipate every type of special
situation that might be encountered and write a set
of routines to handle each situation. This would
require a fantastic ability to forecast the future and
would lead to slow, cumbersome programs.

The other alternative is to create a program that
can be quickly understood and easily modified to re
flect changing conditions. Modular programming
aims to accomplish the latter alternative.

Once again, you may more readily prepare and
more quickly implement an operational program if
all the runs (programs) within your application ad
here to a standardized construction. As indicated
above, the logical structure of your program must
be such that modifications and additions can be
easily made.

Consider the problem of multiple routines - for
instance, three economic order quantity routines.
The normal method of lumping these three routines
into a program necessitates setting switches to tell
the program which routine to excute at a given time.
Any attempt to modify one of the existing routines
necessitates trying to extract the routine, patching
up the holes in the flow of the program created by
the changes, and then fitting the modified routine
back in. Anyone who has ever tried to modify a
program written by someone else knows how difficult
it is to dissect and patch another person's logic if
the 'routines are intertwined.

U sing modular programming, each routine is a
separate entity. Your main line routine provides
the master control that ties all of your individual
processing routines together and coordinates their
activity .

Modification of routines is simplified. Further
more, new routines may be added by simply expand
ing the main line routine to transfer control to the
new routine in the proper sequence.

Modular Programming Conventions

Modularity is accomplished by employing the
following conventions:

1. The main line
a. The main line routine makes all decisions

governing the flow of data to the proper
processing routines.

b. No processing routine can direct data flow
to another processing routine.

c. Input and output functions that are common
to more than one processing routine are
controlled by the main line routine.

2. Processing routines
a. A separate processing routine is created

for each logical segment of the program.
It should accomplish one task in its total
ity.

b. Each processing routine is complete with
in itself, with its own defined areas, when
such areas are for the exclusive use of
that routine. No decision made outside
the segment should determine the proc
essing within a segment, and likewise, no
decision within a segment should determine
the processing outside the segment.

c. Each routine is designed so that it is, in
effect, an out-of-line subroutine. Control
is transferred to the processing routine
from the main line routine, and when
the routine has performed its function, it
sends control back to the main line routine.
Entrance to and exit from the routine
never depends on a particular preceding
or trailing segment.

d. A processing routine may transfer control
to a multiple-use subroutine. When that
routine has performed its function, it
transfers control back to the processing
routine.

e. Input or output functions that affect only
one processing routine may be performed
by that routine. All segments should
contain their own initialization to ensure
noninterference with other segments.

f. A debugging aid that is sometimes useful
is the inclusion of pauses at the exit of
processing routines. During testing, the
pause indicates that a particular proc
essing routine has been executed. After
the routine is checked out, the pause is
removed. The insertion of GO TOs into
the program at strategic points may also
be used to bypass the testing of particular
routines. Action to be taken regarding
such PAUSEs and GO TOs must be known
and documented before the testing session.
This technique tends to make good use of
test time.

3. Multiple-use subroutines
a. If the same sequence of statements is used

by two or more processing routines, these
statements should be established as a
multiple-use out-of-line subroutine.

Section Subsections Page

25 30 I 20 02

b. A multiple-use subroutine must be well
documented for the purpose of program
modification. Comments cards should be
used to indicate which processing routines
call upon each multiple-use routine and to
document the linkage established.

Designing a Run

To design a modular program, determine the pro
gram variables. List the requirements, elements,
and functions of the pr0gram as they come to mind,
giving no attention to logical order.

Once the variables have been set down, reviewed,
and revised, determine the logical order of the proc
essing routines, and design the main line of your
program. Construct your main line so that the
largest volume of data is processed by the lowest
number of instructions - that is, in the fastest
possible way. A speedy main line contributes
greatly to the throughput capabilities of your pro
gram.

Once you have established the logic of your main
line, draw the overall, big-picture, system flow
chart. Give careful attention to this diagram be
cause it will tend to reveal most errors in logic.

The following components are generally found to
be present in the main line of typical programs:

1. Beginning of item. Before obtaining a record,
it is often necessary to initialize certain switches,
counters, and areas. Generally, fewer ins tructions
are required to initialize before entering a routine
than after exiting from it, since routines commonly
have several exits.

2. Obtain the item. This segment of the run
retrieves the record, sequence-checks the file, and
updates the input control.

3. Process the item. The processing of the
record is accomplished. The main line transfers
control to the proper processing routines in the
proper sequence.

4. End of item. Generally, there are a few in
structions to be executed just before disposing of a
record. The instructions associated with the clean
up work for the present record should not be con
fused with initialization for the next record.

5. Dispose of the item. This segment of your
run generally puts the record in an output file, up
dates the output controls, and transfers the program
to the beginning-of-item routine to start the loop
again.

Use the modular technique with a block wherever
it simplifies the logic of the processing routine.
Each routine should be as efficient as possible.

Section Subsections Page

25 30 I 20 03

Look for opportunities to consolidate several in-line
routines into one multiple-use subroutine. While
sophisticated programming techniques are acceptable,
the particular degree of skill and knowledge avail
able to maintain and modify the program should be
kept in mind.

The following suggestions may help when pro
gramming and documenting:

1. List the functions of your routine.
2. Plan the logic of your routine and sketch a

flowchart.
3. Program your routine.
4. Draw the final modular flowcharts of your

routine, shown to the necessary levels of detail.
5. Create the test data so that every leg of your

routine will be thoroughly tested.
6. Write the detailed narrative of your routine.

It is easier to document your routine when the
information is fresh in your mind; furthermore, the
documentation thus produced is more meaningful
and more comprehensive.

Summary

It has been found that programs employing the
modular technique are efficient from the standpoint
of both core storage utilization and program execu
tion time. Section 90 illustrates the importance of
these techniques.

Furthermore, extremely comprehensive and
detailed applications, designed and documented
with the use of modular techniques, may be readily
understood by non-pro gram-oriented personnel,
ranging from company executives to novice pro
grammers.

PROGRAMMING EXAMPLES

Introduction

The examples in this section show various basic
programs in the payroll system. Note that these

Section Subsections Page

25 40 I 01 01

examples are programming illustrations and there
fore may not be considered as complete, usable
programs.

The programs are arranged in the order of their
complexity, progressing from the simplest to a
complex file-update run with exception reporting.

Section Subsections Page

25 40 110 01

Example 1: File Creation

This program reads cards containing employee
earnings information. The information is edited
for reasonableness and then written onto the disk.

The program illustrates a simple single-file at a
time run, with a minimum of calculations. The fol
lowing programming techniques have been used:

1. Documenting with comments. Comment
cards have been used to document the program
logic. The program name and other indicative in
formation are documented at the beginning of the
program. Comment cards describing the process
ing to be performed are placed before each logical
section of the program.

2. One-at-a-time input from the console key
board. Data items to be read from the console key
board are requested one at a time (statements 69+1,
69+2, and 69+3). This technique will reduce console
input errors and will notify the operator when a re
quested field has been completed (the keyboard re
quest light will go out).

3. Entering a partial record. Since the com
plete employee record requires more than 80 card
columns, it cannot be punched in one card. 'Fhe
name, which requires 18 card columns, is punched
on a second card. However, to prevent a name
card and its associated employee record card from
becoming separated, the employee name is stored
on the disk by PAY02.

4. Editing for reasonableness. Fields on a
card which have limits, or a range of values, are
checked to ensure that they fall within the range
(statements 100 through 109). This provides an

effective control of the information being stored on
the disk.

5. Program identification numb~ing. The pro
gram identification for the· File Creation Program
in the Payroll System is P1\Y01. This method of
identification uses a three-character alphameric
abbreviation of the application, followed by the two
digit run number in the application .. Identifying
programs and documentation in this manner facili
tates an efficient system of organizing and filing the
documentation and the various decks pertaining to
each computer run.

6. Using packed data. To take full advantage of
the disk storage available, as much information as
possible is packed. This includes the employee and
plant name fields. In addition, where possible,
some values are compressed by storing them as
integers rather than real numbers.

7. Setting up for future reference to the file.
The file organization scheme to be used in the pay
roll system is indexed sequential. This program
must create the index, in addition to creating the
file. Notice that there is an index entry for each
employee. Later programs will be able to locate
any employee by simply searching the index in core
storage and then reading the employee record. The
relative position of the employee number in the in
dex is the record number of the employee in the
file.

8. Variable Summary Sheets. These very im
portant forms are present in the following pages.
They have been prepared for this program and all
other programs in the system.

Start

Initialize
Variables

Setup
Name
Field

Retrieve
Company

Name

Setup
Quarter
to-Date

Information

Check the
Data for

Reasonableness

Yes Initialize
Trade

Association
Information

Section Subsections Page

25 40 I 10 02

Section Subsections Page

25 40 I 10 03

"8 !!! ~ Social .S! Gross Local Credit ~ co ..
Clock Pay

u
Security "'~ ~ Earnings FICA FIT Tax Union 1 .~ Union '5 S)(

No. Rate Jl No. c~ ~ YTD YTD YTD YTD Deduction 6 Dues Blank ::i!(J') Blank .!! x
al W

00000 000 0000 00 0000 000 0000000 00000 00 % 0 00000 00000 0000 0000 000 0000 000000 00 000000000
1 2 3 4 5 • 7 • • 101112 1314 151.171. 1.2021 ~232425282728 21 30 31 3233 34 35 38 37 38 39 40 41 4243 44 45 48 47 48 4950 51 52 5354555& 575&59 60 &1 62 83 &4 85 8& &7 &8 69 7071 727374757677787980

1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 11111 11111 1 1 1 1 1 1111 1111 111 1 1 1 1 1 1 1 1 1 1 11 111111111

22222 222 2222 22 2222 222 2222222 22222 22222 22222 22222 2222 2222 222 2222 222222 22 222222222

33333 333 3333 33 3333 333 3333333 33333 33333 33333 33333 3333 3333 333 3333 333333 33 333333333

44444 444 4444 44 4444 444 4444444 44444 44444 44444 44444 4444 4444 444 4444 444444 44 444444444

55555 555 5555 5 5 5555 555 5555555 55555 55555 55 5 5 5 55555 5555 5 555 555 555 5 555555 55 555555555

66666 666 6666 66 6666 666 6666666 66666 66666 66666 66666 666·6 6666 666 6666 666666 66 666666666

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7777 7 7 7 7777777 777 7 7 77 777777 7 7 777777777

88888 888 8888 88 8888 888 8888888 88888 88888 88888 88888 8888 8888 888 8888 888888 88 888888888

99999 999 9999 99 9999 999 9999999 99999 99999 99999 99999 9999 9999 999 9999 999999 99 999999999
1 2 3 4 5 • 7 • • 101112 13 14 151.171. 1.2021 122232425282721 21 30 31 32 33 34 35 36 37 38 39 40 41 4243 44 45 48 47 48 4950 5152 5354555& 575&59 60 &1 62 63 &4 65 8& 67 &8 69 7071 72 73 74 75 7& 77 7879 &0

Section Subsections Page

25 40 I 10 04

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

VI a.
Date ap~;/07 "0 ~r- Application PAYRoLL SYsrEA? 0 w::J

MAX. MIN.
NAME s: r-a.

* --r- K~(:;k-W '0 r-::J VALUE VALUE
Program Name F; Ie C /'ec7 /e 0 ira No./?4YO/ Programmer

a 0
~ z ~

FUNCTION OF VARIABLES

Ck"MAX R ~ T /Nt!.~ ¢.~(I MdX'/;,y;P/Tl c~ecL c:7,fl?OU/7/- ,!br4 .,/J/e,

COA4P 1/2 I~ I;tJ ~ - Ct)H7~a.n!/ ndn7c?'

R8PE R %'4 0 ~~~ ¢,¢¢ Trt:?k ??SSoc/,g/;on repor/s.

.z I I I v~ed /1"7 .2)0 /00,//

Ie Z / AI' - - Ei'V'/~a/ea:t' rc; .£ A/..I

llcH'c/C' r / r S~" 1t'or
.i3e.q/;?nl/J4 cA~c.i:;. /1"'m.?/;~'" ~;'e/J -Wr</f/NCj ch~ces. each rd/7

Ieo/.. I I T 250 1 Record "tJA?&JerJ5-; E/1;;p/a.'Y~e ';:://es,. ser,,/,.6,:;1
'pLA~~

fA/£) Z 1 T /o~ /(~/ ~/'e rJun7be". t:"~ /"'d~.J< POI'"' a ~/t?~r. p# -,I- /cJO

.L/\/LJEX £ 2£ T x.x><x liP(If{J f,,4e.K to ~/qrJ" /')~'-'t./ 6f!!";"'::J ,Pr~c~sJee/

LA/IT I I 0 ¢ ¢ (//7/,,:'" /11 /,1; 'q t'/::'n ./' e e

JAIl I 1 r 250 :1 Rece:;rd I'?vh?kr /;" Jnd~xe5 ,f,,5rJPk:fe~hk

INZ f / N - - E;p,'vt:?k~/ Tp fA/:/

Z,A./,S .z I AI - - E"VI'v4/~nr: ro I A/.f

1'/t/4- I / A./ - - .6t u/' v"t? / ~ /'J f- ro Z #.:/

.TN'S .E I AI - - E~v/;"'dk/?r 1'o.z 1f/1

I//'6 ~- I AI - - E~t/ / 'vel /~ /JT' 7'".z N.1

IPZ;> Z I 0 t» ¢ Jndtc-#~s S fCp'·PS 0;: //!'cod,.;, ,PrtX~.ssl;":J o/c~

TSC/;OP ..T 13 0 ¢ ¢ SI./;:>~/em~,,;l4/ SI'c./: ~~y

ZTtJT .T II r 1723 ~ ;It:~O(N?/- /1VR1¢t!'r;;,.. ;:,oShl1,ff 1'() /;' ~/?Er"'//4!~~1'

fl1/EEK I 1 T S- .f ~e~ tf)1' ~A r!' /J?t:!);?rh

*Mode: I = integer, R = real, D = decimal, A = alphabetic

Section Subsections Page

25 40 I 10 05

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

III 0-

Application P4 VROLL' ,-:-;-Y5/~.A¢ Date 8j/sh7 "E :2f-
0 w::::l MAX. MIN.

NAME ~ f-a.
* ;::~ Program Name ~/ /e Creq;/e

K//ck:. w '0 VALUE VALUE No./?? ra/ Programmer 0 ii20 0 ci
:2 z !:

FUNCTION OF VAR~ABLES

ZfYJ/A .1 I .AI - - ~u/vt?k~;// ~o ICOL.

/< Z I ;- 9 (2f Lt?S/ qJ,rd /~.s,t

LAST Z / T XxX ¢ £4'.5/ /"C'?cor/ nan/~er //'7 /3/e

L"80 z / N - - E1'/.//va/e',n/ ~o .z-eOL

L.BT r I N - - qu/vok/7/ ~t7 feaL

LAIC £ / AI - - E?U/Vdk,/~~ /0 ZeaL
L57 .r / T 2.50 ;:::>5$ ~tt?.s/ recortr' ,l')vn-"6&,,.. /r; q /) /e

LY,k-WR .I I 0 ¢ ¢ Til /S 'dt?/lr's dCCth??U/lf?ho"'7 tJ,<' hOd"'-,s &ulOr,l:~t?
r~r vt?_~/-;On PQ!?

A4 I I r U'set7 /"" :Do loop
/WAR Z / ~6 2 I A4d~//a.1 ..s-.1',1';:.IS"- (l-s/;'g/ehrP-/Y?drr/'ed)

MI/A/C E I AI - - EPv/vq/~/)f .10 ZC~L

N~tJW/I E / 0 ¢ ¢ 4d~Y;"'rJq/ u.I/,1hA4!1MA9 ~/1'7Pu",~

tVAM6 (/£ 9 ;;~ - - ~P1~I¥ 4r~ ,Iot?/~Cd~c/ s;t/dce hr ""t1me

/f/C#'C"e, I I 0 ¢ ¢ CAec.l:. /7vn?.6er vs-ed /2,,... 7:4/s eh~/O..Ye~

/f/CV L / t;~ X>(.)(''X. at c~~.~;t ~~!,~~;, c~/~r-/c/'~ /'~r~

Alct/~.tJ Z I C) ~ (,tf #o"lh~ C~e~/ (//1/0I"i ~pt!v~ r;OhS (In c/'mes)

NOvE'S r I I;/J Xx.x>(¢ (h,/C;I'1 4ves dtpdvcr-/on

M'¥~S- r / ;;;; xx. xx ¢ .Tr1SVrp4Ce d~~/veh~n

NA4lse E I 0 ¢ (1!l l'f,f/s('"'~I/e1~eat.ls d~d'ucl/o'-?s-

If/t7P.lT £ I / ~ f P/,,,r flv,nbt!!"r

*Mode: I = integer, R = real, D = decimal, A = alphabetic

Section Subsections Page

25 40 I 10 06

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

<J)
c..

Date C3j/S/67 "0 ::2:1- Application PA yROL L SYSTE;-W 0 UJ::>
MAX. MIN.

NAME S I-c..
K' //6 /c::. * f::~ UJ '0 VALUE VALUE Prngram Name "c/ /e ere d /-e. No./34 ;/C / Programmer 0 ~o 0 ci

::2: z ~
FUNCTION OF VARIABLES

A/R/ITc .z I [l;CJ 3yf{ff /2S Ep~/C)'y,ee P&?y .". <:7/t::::~

... s·cX Z I 10a .9 I Sex-(/-/e/7/4/e) ,(2-",14/e)) (3-Ir-UI'Cker)

A/5sAN I 3 Iz;o 1l/t(l4f~S 9tltj,/$ ~oc/a/ SecL/.,. .. ;/;' r?dn7b~/7

WST.45 Z / () 5" /
En-J,Plo~ee .:sl.rlh~s -(/-c.//JN:m.J) ('2- r,..~clc.e""J.,(B-"oa."'l'1ioa)
rvll -h""e).,(4-,,0.-1-u.t?':t:),,.! 'pdrr 1-';~/e)J~--rt!:"',..,n;r1~rt!'d)

/VSTCK I / 11;"0 xx.xx ct slock. ,c'!Rc!vcr'/CJn

A/STkZJ .I I 0 .r;rJ ¢ Mc7/J/h~ s/ocJ:. decluch;;'ns

Nt/A Z I t;tJ X)(.XX ¢ {/rJ/!ec! a/~e'd/ cledvc:l/pr7s

/V't/M .£ / ?;tJ .xX'XX I~~¢ CL'()t:i:- /1 Un? be/"

AlWKUP I 1 0 ¢ ¢ ~n70~rt:?/ ~ee~s e/71/.:;/pye'/

;(//1/,,1(R LJ I / 0 ¢ rtf IfIvn7,be/, (f).'/ r.p('i'-~e~s r:'0/d

NX'M.Pr I / '1;0 /7 ¢' ~eq"ea/ exe'n-1p,t/e,~5

NXM'pS .r I 0 17 ¢ Sid/e exe/i1p-;'-/c/.,Js-

c:;JRTD R % 0 X><>()(·)() ¢.(II¢ C;f./t?r~er-fo-dt1l'e /n~r/7?Qr/on(/)9rOSS/2)/I7;(.3)rIC4" (4)Loc.MX rs),e-IC4 wt:1ges ('~)Slck £)1:1"',._

YTO R ~ 1;0 ~)()C")(.JClc ~~(1f Yed/' - -It) ·dt?J'-~ p?/o~;nqbe:u?(/)g"'t:lS $:/;:') rIC 4, (..3) r10
(4) ,r.rC.4 1AJ4.qes ,(S),sicA:. .00'1. ?~J s~t!'C. A (;1) spec. g~
~)/()C::. -r~)(.;(9) rt2.? hrs.; (/t)) or hrs~(fl) JPr7u$" nrs.,
~Z);"e.~. er/1~, (1,3) O'T~rn$.:04 j 6()~41$ e/'/1s.

*Mode: I = integer, R = real, D = decimal, A = alphabetic

Section Subsections Page

25 40 I 10 07

IB"1
Program P~'(ROl.t..
Programmer

\='ILE
r= C FOR COMMENT

t S~A,TEMENT ~
NUMBER .3

I 5 6 7 10

SYsre""
CftEATION

15

c.----- :fo 61 .fIIA.M.EI

c.-- __ _

c. -- - -- I I

c. - - - - - DAne Co Plif,D

20

FORTRAN CODING FORM
Punching Instructions

Graphic I ¢Ioll III'Ll I IiCard Form 1#

!Date Punch I¢I~I/I:;I;I I II

FORTRAN STATEMENT
25 30 35 40 45 50

1- - fl+IY./J.f I I I I I
(

I I I I I I

I I I I

Co - - - - - .bAnE UP,[)dlr T f-.lJ, 1-- I I I I I I

c.--_--
c----- I I ,f .I,l £ I

c.----- 1 I

c - -- - - ,I,N,P U T F IlL. ~ S, I I I I

c.----- J I I I I I I

t - - - - - O,U,T f>. u, j, Fir, L e s 1-- I

~- - - - - I .I,tJ.

c..----- I I .3

t-- -- I I I I I . .If,

~ -- -- I I I 1 5

I I I I

t. ___ -
I I I

~. _ - - I I I I 1 / fl.1J. I I

I I I I I J.rI.1--t I ,

I I I 1.01 1:,/01'1>1 X, 3, I I / 1/ 31 I I
* A standard card form, mM electro 888157, 15 avallable for punchmg source statements from thlS form.

IB"1 FORTRAN CODING FORM
Punching Instructions

Program PAV'~LL.. SVS1'EM Graphic I¢ lol/lxl%:! I IiCard Form 1#

Programmer
FILKO C(l..EATION

!Date Punch 14> I ~ I I 19Z-1 q I I II
~ C FOR C~MMENT

STATEMENT c
FORTRAN STATEMENT NUMBER .3

1 5 6 7 10 15 20 25 30 35 40 45 50

" ----1- I I I III ,z. f(I»'~ ,4, I I I O.'h I I

t-,- - _ - - I J "I, Irlf>lx.tJ' lOs-, /

C-- - - - - J ,~ I I'Ib ,x ,
J6 'I I

*

55 60

I I

I I

I I

I I

I I

I 1

I

I ,5,d

1.-:-fI) I

I 'I
I :2,~tJ I

I .'1.#. I

./

*

55 60

I .S(J

150 I

3.0 I

c.---- - - -I - - 1- - -I - - 1- - -I - - - - - - - - - - - - - - -
..... ------... -

Page of

Form X28-7327-4
Printed.in II.S.A.

Identification

1~8 :f.JI! '1 I
80

65 70 72

I

I

I

L I

2

I t I

I 1. I

I 2-

I 'Z.

I

I ,3, I

I
/

[32.A I
/

Form X28-7327-4
Printed in U.S.A.

Page of

Identification

IK.13~I~1 I
80

65 70 72

3~o

1.3~O

13 it c)

- - - - - .-

IB,.,
Program

Programmer

r= c FOR C~MMENT

"S~A.TEMENT C
NUMBER .3

5 6 7 10

c - - - --
----- AL.l 0

c-----

c..-----

Date

15 20 25

FORTRAN CODING FORM
Punching Instructions

Grophic Card Form #

PunCh

FORTRAN STATEMENT
30 35 40 45 50

>I< A standard card form, mM electro 888157, is available for Pllnching source statements from this form.

Section

25

55 60

Subsections Page

40

Page

I

of

10

Form X28-7327-4
Printed in U.S.A.

Identification

IPA'lJ¢t I
73 I 80

65 70 72

08

Section Subsections Page

25 40 I 10 09

IB"1 FORTRAN CODING FORM
Punching Instructions

Program Graphic Cord Form #

Programmer Dote Punch

~ C FOR COMMENT

STATEMENT i
FORTRAN STATEMENT NUMBER .3 , 5 6 7 10 15 20 25 30 35 40 45 50

c,----- I I I I I I I I I

c- ____
:r N 1: T IA L..~' t ~ VAtR.rASI. ~.s , I 1 .1 1

~----- 1 I J .1 J

CK.M.AI'X :;Z . .s-.;I(j.d .• I I I I I ,
Ie = II I I

I co L.I= I ,
0:. /II 1: Tl '" 0. J I

J: N 1 '"I I , 1 , 1

I P b "'I as I I

'1).0. .bIA .. 1:.: 11\ 1.3 I I , I 1 -' -'

.b.B I S \J. PIP. <. Z.\ =,0- I I I I I I ,
::I. TO.T (I. \ : I.L I I .L

J:T.O.TI <.2..): L,.2..p. , .1

J:TO'I(3) :.'-1.2.0. I I I I 1 I '-

:J:. \" 0 .TI (5':) : (:>I.:z. s I , I I I I I

I T.6Til. b.) ="12 ' I I I I I I

IT.o:rd7) : 101:2...7 I I I I 1 1

:t T.Q.TI ('E.) .. bl~ g. 1 , I I

~T.O:Td.Cf) :01 1 I I I 1. I I

IITo./IC/./) ~lb35. I I I I 1. .L .L

LYR. HIR.=.~ I I I I I ,
-* A standard card form, mM electro 888157, is available for punching source statements from this form.

55 60

I I

I I

I L

I

I

,
I

I I

I

. I I

I I

I I

I

I I

Page of

Form X28-7327-4
Printed in U.S.A.

Identification

leA Yr</>.I I
73 80

65 70 72

,
I I

1 I

I I

1 .1

1 .

I I

I

I I

I I

,
I I

I I

I I

Section Subsections Page

25 40 I 10 10

IBM Form X2B-7327_4
Printed in U.S.A.

FORTRAN CODING FORM
Punching Instructions Poge of

Program
PAYRoLl.. $Y.sT&:A/I· I epic II III~I I IICard Form fI * Identification Graphic

Programmer
Flui C~EATION IDate 1¢1~l/lrl;1 I II

17~ti:':fJ~ 1 I
Punch 80

r== C FOR COMMENT

,.STATEMENT ~
FORTRAN STATEMENT NUMBER .3

I 5 6 7 10 15 20 25 30 35 40 45 50 55 60 65 70 72

INA J)WU:~ I I I I I I I

IH.C.JJ CIK =6 I I I I I I I I I I I I

IN.CU .1> I D." . tj. I I I I I I I I I I

!N.M:J.SIc.:m I I

NS'Tklb-::~ l I L

I'IWk.MP :.d. I I I 1 I 1 1 ,

H.WIe.PIll.: .th. I I I I I I I I I ,
4>. R.T. hi l.~.'l -=.0. • I I I I I

(i)J:~.T ~d'.) ::..01. I I I I I I I I I

1),0 ,'Iq. .M.::- J I ., J ,J/. I I I I I I I I L

lit YTb(IM\ =~., I I I

c..~-- --- - -I - - ,- - -I - - _1- -

----'-- I

IB,., Form X2B-7327-4
Printed in U.S.A.

FORTRAN CODING FORM
Punching Instructions Page of

Program PAYRoLL SYSTE.N1 1q,lol/lrl~1 I IICard Form fI * Identification Graphic

Programmer
CK..CATION IDote

I¢I ~ I J I ",I.l~ I I II
IE~:rI~1 I

FILE: Punch 73 80

~ C FOR C~MMENT

STATEMENT c
FORTRAN STATEMENT NUMBER .3

I 5 6 7 10 15 20 25 30 35 40 45 50 55 60 65 70 72

c-- - -,- I I I I I I I I I I I I I

C----- R tAlb PLIAN-r ,-..(VMB~R1 .. W~E'I~ 111. IlMI g ~ ti. IA- '" /'}. C H ECkLNVI1.B t:lte ,

c- ---- I I

R ~ A.CI(6 /f,} 1 /l/.o.P.L.J T , I I I , 1 I , 1

R£At>,(' ,if.) I I \,J.E l71k. I 1 I

R £;: A-~(, ,s.} I Ie.liclk I I I I

.1./-- F () .R. .~A r (I J I)

S r-D.R .MIA.. (I 2.) 1

,,----- - -I - - 1- - -I - - 1- - -I - - 1- - - - - - - -I - - 1- - .-r - - 1- - -I -

...... ---- -~

Section Subsections

25 40 I 10

IBM
Progrom

PAYROLL
Progrommer

FJLE
r= C FOR COMMENT

.. STATEMENT .:
NUMBER .3

5 6 7 10

Page

11

SVS7EM

CREATION IDote

15 20 25

FORTRAN CODING FORM

Punching Instructions

Grophic 141 lol/IIIl! I I IICord Form #

Punch 1¢ltl/lql~1 I II

FORTRAN STATEMENT
30 35 40 45 50

*

55 60

Poge of

Form X28-7327-4
Printed in U.<i.A.

Identificotion

IE fl~~ I I
73 80

65 70 72

c.- - --- FIMIS H INrrr.AI/...r~INlr; l/Af<.rPtSLE,$ J..SIT 1

c.----- I I I I I I 1 I 1

:r:f\lD:I/,f/),(j -1-1 t/.O,(',L. 'T I 1 I

I

.~ I L.s T = ~ st:6

Go,O rio s-. Z I I I I I I I 1 1 1 1 I

~~~S~Z~L~S~T~·=.~19~11~~'~_~I~~_~I~~_~I~~-L~~~~I~~-L~~~~~~_~I~~_,I~~~~ 1 1 1 

I,TO,Tlt, ,t/)) ,:,ch 

60,0 ,TlO, S.A, 1 I I I 1 1 1 I I I 

S, ?> L S T: 2.0. ,d; I , 
I -r o-n (I ,dd:: J 7 '2..3. 

I 1 1 

(i.,o -1'"10 ,,(j) 1 I I I 1 1 1 I 

,S".if L ST.:1s'0, I I 1 I 1 1 I 

(;.0 ,TIO 5.7, I I 1 I 1 I 1 1 

ss L S T, ~I 1,S':dJ. I I 1 1 1 I 1 1 I I I 

L,T,Q,TI (,4,) :,rbl I I 1 1 I 1 1 1 1 1 1 

1 1 I 1 1 1 

s cO L S T = 13~, I I 1 1 1 I 1 1 1 I 1 I 

* A standard card form, IBM electro 888157, IS available for punchmg source statements from thiS form. 

IBM Form X28-7327-4 
Printed in U.S.A. 

FORTRAN CODING FORM 
--

Punching Instructions Page af 
--

Progrom PAYROLL 14>1 olllIl~l I IICord Form # * Identificotion 
SVSTE/JI1 Graphic 

Progrommer 
CREA TID'" I Dote 

I ¢ I ~ I J II; I ~ I I II 
'hfJ \t::::I'~ I 1 

FIl-E Punch 80 

,--- C FOR COMMENT 

~STATEMENT .: 
NUMBER ~ FORTRAN STATEMENT 

I 5 6 7 10 15 20 25 30 35 40 45 50 55 60 65 70 72 

S,7 IrOrl(i/--) =<A 1 1 I ~~ I _l~_~_~_~~_.~.~_ L~~ __ J I 

,s-.9 ITOTd/(j) =,Ci6 1 1 1 I I I ~ I I I I ~--

e,----- - -I - - 1- - -I - - 1- - -I - - 1- - -I - - J.::::.._...--:~ --=--L---==----=-.._.~ ,-, -- - 1- - - ~.-. 

.... 
1 -



Section Subsections Page 

25 40 I 10 12 

IBM 
Form X28-7327-4 
P1inled ir. lJ.S.A. 

FORTRAN CODING FORM 

Punching Instructions Pag,e of 

Program 
PPYR.OLL 14'10 II If I~-I I 

"Cord Form # * Identification 
5 YS TEM 

Graphic 

12a:1I(~l Programmer IDote j q> 1 ~l i I ; I " I I II 
/ 

FrLlE CR€.A-rol'l Punch 73 J 60 

~ C FOR COMMENT 

STATEMENT c 
FORTRAN STATEMENT NUMBER ~ 

I 5 6 7 10 15 20 25 30 35 40 45 50 55 60 65 70 72 

c-- - - - I I I , , 
~ / / -------l~~~~L~_._.~~_. _~ .. ~ ___ L~ ___ ~_~~~._.L~ 

c.----- S E'."U P Tr\,~ .N.A fIl,E F I ElL. ~ .Pt./J, D ~ I< T,t<.:r E" V £, '-1:1_ C IC.Oi\1 Pft INY ,V~ I I ~~-

e----- 1 1 , I , , I --L-_~._.L_~~ __ .L.....- 1 , 

"0 REAbIC" .. 3) NA M E 1 I I I , , , 
3 FOR MIA -1.1.AI2..,.1 , , I I , I , j _I 

F\EA.J),(b,~ i), C.OIVlLPI , I I I , I I .1 

I IF 0 I<MIA,( / b,A.2..,) 1 I , 
C,- - - - ___ - - - - - - - - - - - - - - 1- - - - - ..L- _. -I - .. ~- - - .- ,- - -1 -

----- , ,J. 

IBM Form X28-7327-4 
Printed in U.S.A. 

FORTRAN CODING FORM 

Punching Instructions Page of 
-

EAY~oLL L4doll II Lzl I 
IiCard Farm # * Program 

5YST6#1 Graphic Identification 

Programmer 
CREATi ON 

I Dote 
I cp I t I I I'll ~ I I 

" 

IP8:r1~ I / 

F;1.6 Punch 73 60 

,-_. C FOR COMMENT 

~STA1[MENTI~ I 
FORTRAN STATEMENT NUMBER I~ i 

I 5 6 17 10 15 20 25 30 35 40 45 50 55 60 65 70 72 

C,- - --- I , 
/ / / ~ __ ~i.~~_~~ __ . __ _ .. J_ .~ .. ~_._ L __ ..• _u._.~.l_ .. __ ~_~~ .. L~_ .. ___ u I 

C---_- R E A,I>, ALL, Z (I/,t:.o,Il"'l" T 1",0 N F,o,l(, o N~ M P LI o~£J.Al) t. CI/1 E c. /5, I EO (! LIAST~R.b I 

c,- - -- - I I / / 1 I I -----1-. __ .• _. ~ __ L~~~ I ------L 1 

,S,O 0 R.~ ~,D' ( ~ ... } I tI U'" ~1 '" R,A .7'115 .. N~~7--AS SA ";)1 tlx M f!lLy-~b (, I ) "I YT D, (12. ) \'iT,b. (3 ) 
/ '" II , I ,'(,TtJJ 2) Mt.U) it/IriS , ~C;:I ~ N UAI, ....ti...~I,h'LS. .Ml A-f<. i::J 

I 
~ " .; 

2 iF'.O,It,MIA.i (1)(1.1 ~-lf) .:II :.)~ ,I.3) I 2.,) If) IIX) II... )1 F'Z • fl ,IJ r:~.-4 ~ IS' -; J.II.'f, I3 III. 'IX I2. 
.J .. ~ ,J " 

I 1)(1 r I) I I 1 1. 1 
I 

.t..c_----- , , 1 I , -'----'---~--~ .. 1 ~ I I , I 

c--_-- I.S ,T,W:t S 11 H.i lrA S T C A R.D.? ~~~~~L-_~ I I - I 

c-- - - - I Y f; SL - G-OI .T~O~ " 1If, fI, t 1 1 1 1 I , I I I 
I I 

Ie. - - ~ -I-! No , - (;01 To J ,«. I , I / 
___ .J. 

I I 

I 
C - - - -!- I , , , 1 , .L........~. , , , 

i ! 
l,tiJ 'drj, 1.tIL II' F ( kl- q) ...L J. L I .J 

I 

c--- - -[ - -, - - ,- - ,-, - .- 1- - -I - - 1- - -I - - 1- - -I - - 1- - -I - - ,- - -...L -

" I -, L -



Section Subsections Page 

25 40 I 10 13 

IB,., Form X28-7327-4 
Printed in U.S.A. 

FORTRAN CODING FORM 

Punching Instructions Poge of 

Progrom PAYRoLL SYS'TEM 1<Plol' III~I 1 
IICord Form # * Identificotion Grophic 

Progrommer 
r:-rLE C~EAT£o'" IDote 

I¢ 1 ii, 1'.11 ~ 1 1 II 
IP8:11~2 I 

Punch 73 80 

~ C FOR COMMENT 

STATEMENT c 
FORTRAN STATEMENT NUMBER (; 

I 5 6 7 10 15 20 25 30 35 40 45 50 55 60 65 70 72 

c.,.----- 1 I 1 i I I , .1 , , I I , 
c- - __ - 5ETIUfJ E'MIP~oY£IE S TAIT lJ ~ C (') b.E .• 13. rA'r£ i:.x.EMrP.T'":I.o.MS .4)/1]) Q-T -ll I til F O.~./t1. AIT.AI 

~ , 
C----- , I , I I I 1 

N'S.T.AlS.. -, I -' -' I -' I 

tV X.M PIS ::.JJ.~. Mp. Fe , , I , 1 , 1 

Q.R.T.l>1L l j :: y,T.h.( \ )1 I 1 1 I I 1 I -' 

Q.R..T.b,t L.\ :,.Yli.tl.l3.}1 I I I I I I I I 

Q.R.T.!'J (3.~ :,.Y,T.b.l 2..) 1 1 1 

Q.R..T.t>tl.'f ') :.'1'11.1) C8 ), I 1 , I -'- I I 

t----- - . ..., - - 1- ':- - - - 1- - - - - - - -I - - 1- - .--r - - 1- - -I - - 1- - -I -----..... -- 1 -------



IBM FORTRAN CODING FORM 

Punching Instructions 

Program 
-!--'f,YkOL L Sy STEM Graphic 1¢loll II I~I I II Cord Form '# 

Programmer 
r!:t-~ CP.Ff>.:T JoN 

jDate Punch I ¢ I ~II I'fl~ I I II 
~ C FOR COMMENT 

STATEMENT ~ 
FORTRAN STATEMENT NUMBER -3 

1 5 6 7 10 15 20 25 30 35 40 45 50 

t:".-- --- I I I I I , I , , 
C---- - l:: 1:) T- r MA Plr rA~. ,S, i"A,U-5 ,U rJlI~/II hI U~ S h E.P () ,C,TLIO.N. LS Ex 

/ , 

c.- -- - - III ~ C G S <: AIQ'/. M OIl> r ~y ENf,L. DIY EE S 1 T A 1'. VS, c..o .D~~l 1 

C----- , I , , I , 
-r f: CI"1IAR.) 116. I I .0./ .. I. 0. ~ , 

lof,(f) r F( MIA.~ -l) J.(/) 2.,. I. dJ. 2 .. J Id;, I J 

;0' I t111.k ~ JI , I L , I , 1 I 

C.A L L I s.r A,Ci/:::., , 
,ldY.2- II rIAlI b UES ) u/J,3 I/.tlJlI.. 110.' I I , 1 1 , 

1.r/J.3 tI DUElS =.~ I I I I I I I I 

C.A L LIS. rAC IK.. I I , , , 
/,dJ.I/ iIJ.,~ ."l.AS.::..=? 

L~(., I F.CII,O.P.L,T.- 3.) I .2.. IdJ,... I. lSi. I. 2...D. , , , 

/ /.s N.b.U,tIS.=.m. , I , , , , , 
/20 J. r;(/I/i.S£X) ,JdJ.9. II(/) 9 fA IrJ,7 , , 
I.d.t I F. (11,5 ~ X - 3, ), I I.d>. ... I,i.'~, l,/.a. 9 , I , , , , 

/,dJ.g N.<"TA,S.,;.Z- I , , , I , , 
t.f.s E,X, = t. , , , 1 I I I , 
c..f) Tin I J.fh I I I , , I I . , 

j .dJ9 /II.:SEX,:: 2. , I , , I , I I 

CA,L.i-l STAc,Jc , , , I , , 
* A standard card form, IBM electro 888157, is available for punching source statements from this form. 

Section 

25 

* 

55 60 

I 

c... 0 1l. G; , 

, 

I 

I 

, 
, 
I 

I 

I 

, 

, 

Subsections Page 

40 I 

Page of 

10 

Form X28-7327-4 
Printed in U.S.A. 

Identification 

1.fi.8~lq. I 
80 

65 70 72 

I I 

14 

IA N .brit: J 

I ~ _1 

I I 

I 

I J 1 

I 

, 1. 

, , , 
, I 

I L 1 

, I I 

, , , 
I , , 
, , I 

, , , 



Section Subsections Page 

25 40 I 10 15 

IBM Form X28-7327-4 
Printed in U.S.A. 

Program -PAV(Jo~. 
Programmer 

\=.,.\..~ 
r== C FOR COMMENT 

... STATEMENT i 
NUMBER .3 

I 5 6 7 10 

:s '{:: ..... ;;. fl, 
~fFA":::'J,.J IDate 

15 20 25 

FORTRAN CODING FORM 
Punching Instructions 

Graphic [a>[O[I[r[i:[ [ IiCord Form # 

Punch I?I ~ I t I'~I~ I I II 

FORTRAN STATEMENT 
30 35 40 45 50 

c - - - - - - -I - - 1- - -I - - 1 - - -1 - - 1- - -I - - 1- - -I 

r ___ -_ 
I 1 1 1 1 , , 

c---_- I 

, 1 1 I I 

Poge of 

* Identification 

il~6'~'I~ l 1 
73 eo 

55 60 65 70 

, 

, 
1 1 L I 

L- - - - - I 1 I I 'I I I 

WR..I TIE (,N.o 1'1£..1. ' r~()L }NtUMMAMf2 NS s AM Als 1"IASNI b VF.s. NW~.MPIlWtK.,p,il 
~ ~ ~ ~ , 

I 1 1 I ,MJIr.f<... ,NIX,,,,,PF,AI NX,M,PIS IIISIE x.. ,NIR.,A,T,E, 'l.T.1>~, ,G).~.T,T") 
'" .. , J .. ., .., 

2.. 1 L YR HI<. ,N.C,v, IrIC.V/) D. .N.C.,H,Ck. ,NAD,v/.JI.., ,tJ,S "'rIC/:.., ,1lI,t/S.1 
~ .I J .. ~ , 

3 1 1 1 NIM.r.s.c.. .N,VA.. .N..J,T,/<.U"'l. rS,UPP I./V,.r.r, IP,}), , 1 I " ,. , ., " 
Co - - -- - , , 1 ~ 1 , 'I 1 

1 1 t 1 

c-_ -_.:.. 1 1 , 1 , 1 1 , 1 1 I 1 

1 I 1 1 I I , , 1 1 

72 

c - - - - - - -I - - 1- - ,-I - - 1- - ,-, - - I- - ,-1 - - 1- - -'1 - - 1- - -I - - ~- - - I -

1 1 1 , , , 1 1 , 1 I ~ I 

1 1 1 1 1 1 I 1 1 1 I _I I 

* A standard card form, IBM electro 888157, is available for punching source statements from this form. 



Section Subsections Page 

25 40 I 10 16 

IBM Form X28-7327-4 
Printed in U.S.A. 

FORTRAN CODING FORM 
Punching Instructions Page of 

Program 
PAYROl.l... SYS'T€"M 1d>lo II ITI~I 1 

IICard Form # * Identification Graphic 

Programmer 
CI2.EA'T:r:ON IDate 

I ¢ I ~ I I 1
/
;-1 ~ 1 I II 

1~~~I(jl I 
F:J:t..~ Punch 73 80 

~ C FOR COMMENT 

STATEMENT c 
FORTRAN STATEMENT NUMBER j 

I 5 6 7 10 15 20 25 30 35 40 45 50 55 60 65 70 72 

c.----- I I I I I I I I I I I I 

c- ____ 
LA.s T <:. A-Je,.f.) PAs SEEM ~ E~.1l I 

1'----- rNIrrI+L'rJ"lE. T'" ~I E: r fl A-Il>f: ASI..$ (lCl/1"rl () ,,; Ii'" F 0 I?I#l A -rr (J /II I I 

c,----- I I 1 I I J ~ I 

,t..btJI Ib,c>, ,'15~. ,I~II. .~. I I I I _I I 
J 

/:,sdJ IF.I6 RolE: (r. ),:laS I I I I I 

C---_- - '1 - - - - - .. - - - - - - - - - - - t- - - - - - - - - - r- - - ---'-,,- ..I 

IBM t"orm X28-7327-4 
Printed in U.S.A. 

FORTRAN CODING FORM 
Punching Instructions Page IS of I~ 

Program 
PAYROLl.. SYSTEM I cbl 0 I I II I i: I 1 

II Card Form # * Identification Graphic 

Programmer IDate J¢I~IJI/~I~1 I II 
17~&rl~1 I 

~'Tl.~ C R.E:A'T' ro I\i Punch 80 

~ C FOR COMMENT 

STATEMENT c 
FORTRAN STATEMENT NUMBER j 

1 5 6 7 10 15 20 25 30 35 40 45 50 55 60 65 70 72 

!c.----- I I I I I I I I I I I I I 

Lc- - - - - W,f{.r:.I'I.I!:. 7"Jhf. :r.(I/)iE.x. .O.n EM P L In.Y.LE:cSI ~l).R. T Uy{' I PLANT, TO ..b,I S 1<. • 

t.,- - - - - i , ~ I 

L.A.:;. TI :: I.C O. Lt - I I I I I I I .1 

IN R I. TI E ( l: N hi I I.) {I IN bEXI (1: ). L:; I •. L..A-IS. T. ) I , .J 

c----- - -I - - 1- - - - - - - - - - 1- - I - - - - -I - - to- - ,... - - - - -----.......... 



Section Subsections Page 

25 40 I 10 17 

IBM Form X28-7327-4 
Printed in U.S.A. 

FORTRAN CODING FORM 
Punching Instructions Page of 

Program 
PAYROl-L SYSTEM Graphic 1<1>lol,III1:1 I 

IICard Form # * Identification 

Programmer 
FILE C~EAr.IoN jDate I¢I~I Jlqz-I~I I II 

IE 8 rl~l I 
Punch 73 80 

rs;, C FOR C~MMENT 

STA TEMENT c 
FORTRAN STATEMENT NUMBER .3 

I 5 6 7 10 15 20 25 30 35 40 45 50 55 60 65 70 72 

C----- I I I I I I I I I I I I 

c- - - -- 'rJ.fJ...TlrE .TI'flE. A£c..ORb ~ID ~ T U,r . .s. f'L,ANT7io l> . .I 51 k. rU,e III11MIRER Ol~ EflI PIL o. YE.hs , 

(..- - --- I.N. IT 'Ho .PILANT lTD TillE; INJ:d:X AMh STl>, P .1 I 

Ic.- - - -- I I I I I I I 

WR...7..nE (,1. ~ 'I"'{J.P.£. .r,) Co 0 .M,P ·rcd-l.CJ(. II .W.~. E.~, . t=.I.! ,~.t;. .I,ro.7". C..k:.M.AX, 
'" 

, , " 
, 

t----- , , , , , 
WRr..Tir;. (rAl hi' L 's.'T':), L.A-STi , . 

I c.- - - - , I I I I I I 

C.A.L LI ~x I. 7i I , I , , , , I , , 
C-- __ - - -I - - - - - - - - - - - - 1- - - - -. - - .-1 - - ~- - ,--- .- - -

£r/./). I I I I I I I ----- -



Example 2: Add Name to the File 

This program is an extension of PAY01, File Cre
ation. Because the employee record contains more 
than 80 characters, one card is not sufficient. The 
name field for each employee appears on a second 
card which is processed by this program. 

The dummy name field, set up in the disk record 
by PAY 01, is filled in with the actual name on the 
card. 

The program illustrates a simple single-file up
date with no calculations. The following program
ming techniques have been used (see Section 35 for 
a listing of this program): 

1. Updating masters. The master file is updated 
by changin~ the name field in the master record. 
Note that only the variable name in the output list 
has been changed. 

Section Subsections Page 

25 40 I 20 01 

2. Searching an Index. The index to the file 
contains an entry for each employee. The clock 
number is placed in the index at a location corre
sponding to the record number for the employee. 
Each index entry is exam ined to find a match with 
the clock number on the card (statements 120-125). 
When a match is found, the location of the match in 
the index is the employee record number in the disk 
file. 

3. Indicating exceptional conditions. When the 
index is searched, it is possible that the clock 
number on the card will not match any index entry. 
If this occurs, the clock number is printed in the 
following message: 

CLOCK NO XXXX NOT IN FILE. 



Section Subsections Page 

25 40 I 30 01 

Example 3: Changes to the File 

This program illustrates a complex single-file up
date procedure. Anyone of 16 different changes can 
be performed. 

The master file is the file created by PAY01 and 
PAY02. The transaction file is on cards, where 
each card contains the clock number, a code indi
cating where the change should be applied, and the 
new or changed information. 

The one important change this program will not 
perform is deletions from the file. However, this 
may be accomplished by changing the pay rate to 
zero. 

The following programming techniques should be 
noted in this program (see Section 35 for a listing 
of this program): 

1. Setting a switch rather than testing. The 
change code is a two-digit number form 01 to 16 
(statements 105+1 and 106). When it has been vali
dated, proven greater than -zero and less than 16, 

the code is used as the index for a computed GO TO 
statement (statement 140). This saves the program 
a set of IF statements, each statement testing the 
code and deciding on an action. 

2. Detailed data validation. Since PAY01 and 
PAY02 were so careful about building the file and 
making sure the data was correct, common sense 
indicates that the same care should be extended to 
any changes to it. This is done through checks, 
not only on the change code, but on the plant number, 
the clock number, and, where applicable, the 
change itself. Note that the addition to the file of a 
new employee causes a check to see whether that 
employee clock number is already in the index. 

3. Use of the alternate stacker. Any time an 
error is detected, the card involved in the error is 
selected to the alternate stacker of the IBM 1442 
(statements 3 + 1, 8 + 1, 5 + 1, and 7 + 1). This 
will save the operator the task of picking out those 
cards with errors. 



Example 4: Calculations and Payroll Register 

This program cons ists of extens ive calculations and 
report writing. Payroll calculations are performed, 
including calculations of gross pay, taxes, voluntary 
deductions, and net pay. The report shown is the 
payroll register. 

In addition, the calculations are balanced to con
trol totals and each disk record is extended with the 
current period's calculations. 

The following programming techniques have been 
used (see Section 35 for progTam listing): 

1. Arithmetic Statement Function. Since the 
1130 is a binary computer, decimal fractions may 
not be expressed exactly in binary. This inaccuracy 
may be avoided by performing all calculations with 
whole numbers. (See Section. 70.10.20.) When 
calculations are complete, the result must be half
adjusted and the decimal point placed. Since there 
are many calculations in this program, it makes 
sense that the rounding procedure should be set up 
only once and accessed from many different places. 
The Arithmetic Statement Function, PHIL, will be 
used to do this. 

2. Use of data switches. Since the check number, 
week number, and maximum check amount are not 
permanent, a facility must be built into the system 
to change them. By setting the console data switches 
appropriately (statements 3 + 5 and 71), each or all 
of these numbers can be changed. A hard-copy 
record of any changes is produced on the console 
printer. 

3. Zero balance test. The control totals are 
compared with accumulations produced during the 

Section Subsections Page 

25 40 I 40 01 

processing of the file. The original control totals, 
the accumulated totals, and the differences are 
printed. If the differences are not zero, the oper
ator knows that further examination of the output is 
necessary. (See statements 15-18.) 

4. A variety of calculations. The calculations 
performed with this program are more extensive 
than the other sample programs. The first set of 
calculations is used to initialize the program vari
ables, while the second set initializes the plant 
variables. The third set initializes the variables 
for an individual. 

The remaining detail calculations pertain to 
regular, overtime, and bonus earnings, taxes (in
cluding federal, state, and local), and voluntary 
deductions. Finally, the net amount is calculated 
and plant totals are accumulated. 

5. Backup is built into the system. To provide 
a means of recovery when an error condition or an 
out-of-balance condition occurs, the calculated 
information (gross, net, tax, etc.) is punched into 
the employee's weekly card (see statement 9). A 
simple list of these cards will thus supply sufficient 
information to check or reconstruct portions of the 
file. 

6. Another type of half-adjusting. In printing 
the payroll register the dollar and cents figures 
should appear with decimal points. To round off, 
reposition the decimal point, and clear fractions, 
the WHOLE Function (from the Commercial 
Subroutine Package) is used (see statements 515-
515 + 11). 
AMT = WHOLE (AMT + (AMT/ABS(AMT»*0. 5)/100. 



Section Subsections Page 

25 40 I 50 01 

Example 5: Check Writing 

This program demonstrates the use of the Com
mercial Subroutine Package (CSP) in preparing a 
report--namely, the check and check stub. 

In this example, the employee file is accessed 
sequentially. If the paid indicator is set appropri
ately, a check is written. In either case, the next 
employee record is read. 

Control totals are carried, and a zero-balance 
check is performed. 

The following programming techniques should be 
noted in this program (see Section 35): 

1. The use of subroutines. There are three 
specific operations which are used many times (see 
statements 91 + 9 - 95 + 5). These are PUT, MOV E, 
and EDIT. PUT converts from real format to Al 
format, MOVE moves information, and EDIT inserts 

and removes characters. Rather than repeating the 
statements that perform these three operations each 
time, it is much simpler and shorter to make sub
routines out of the statements. This, in addition to 
saving core storage, is much easier to test and 
document. All three subroutines are supplied with 
the 1130 Commercial Subroutine Package. 

2. Editing data for output. The use of the EDIT 
subroutine is a very powerful technique. It requires 
two kinds of data. The first is the data to be edited, 
and the second is a description of the result, the edit 
mask. As can be seen, the edit mask is treated as 
a constant and is initialized at the beginning of the 
program (see statement 4). The result of editing 
can be seen in the amount field of the check speciman 
shown. 



Example 6: Check Register 

This program illustrates a report in which detailed 
items are written, three up, (three items per line). 
A plant file is accessed for each employee (see 
statement 655), and a line containing check number, 
employee clock number, employee name, and net 

Section Subsections Page 

25 40 I 60 01 

check amount is composed. When three employees 
have been placed on one line, the line is printed. 

This technique will produce a very concise report, 
easily read, filed, and used. The technique also 
decreases printer time to produce the report by 
decreasing the number of lines to be printed. 



Section Subsections Page 

25 40 I 70 01 

Example 7: 941 Report 

This program will process multiple files to produce 
the 941 report. One report is produced for each 
plant. 

Note that a count of the lines printed on each page 
is kept (see statements 195 + 5 and 150). In this 

way, headings can be and are printed at the top of 
each page in the report. 

Also, notice that the plant totals are reset only 
when a new plant is to be processed (see statements 
2 + 1 thru 3 - 2), while page totals are reset when 
a new page is to be printed (see statements 4 + 4, 
4 + 5). 



Section 30: TESTING EFFECTIVELY 

CONTENTS 

Introduction .•......................... 3 O. 01. 00 
Testing Strategy ........•.............. 30.10. 00 
Testing Tactics ........................ 30.20.00 

Section Subsections Page 

30 00 J 00 01 

Testing Hints •......................... 30.30.00 
Summary ...•......................... 30.40.00 



INTRODUCTION 

Now that programming is "finished", it is time to 
evaluate what you have in relation to your objectives. 
Do your programs and systems produce the results 
you want? To find this out you must test the pro
grams -- but not until you have a plan. 

Experience has shown that more time can be 
wasted in testing than has originally been allotted 
to testing. 

In other words, testing must be performed ef
fectively. 

* * * * * 
There is a great temptation to get a newly writ-

ten program on a machine and see it run. A little 
extra effort before going to the machine can save a 
great deal of time and effort in the long run. If you 
must travel some distance to test a program before 
the installation of your own machine, it also means 
real money saving. 

The chances are very good (99.99%) that your 
program contains errors of various types: 

1. Programmer clerical errors. It is easy to 
make minor clerical errors when filling out the 
coding sheets. Although they are minor, the pro
gram will not work properly until they are corrected. 

2. Programmer procedural errors. The number 
of procedural errors will depend on the experience 
and proficiency of the programmer. These are 
caused by not adhering to the programming rules as 
outlined in the language manuals. 

3. Card punch errors. Errors may be intro
duced when the program is punched into cards. 
Punching programs into cards is very exacting, and 
the keypunch operator must be very careful. Be
cause of the nature of the information on the pro
gram sheets, it is difficult to achieve speed and 
accuracy in punching. 

4. Program logic errors. Logic errors may be 
caused by poor or incomplete analysis of the problem 
prior to programming, or by incorrect programming 
after correct analysis. In any event the program 
must be able to either process, or properly reject, 
all the various pieces of information that will be 
given. Someone who is intimately familiar with the 
procedure, as it is now being done, should review 
the logic of the program for completeness. 

Section Subsections Page 

30 01 I 00 01 

Most clerical errors, both programming and 
card punching, can be detected by a careful review 
of the material. Key verification should always be 
done, and it is essential to proofread coding sheets 
before they are punched. The most common errors 
occur in the use of 0 and 0, 1 and I, 2 and Z. 
Standards should be adopted in which, for instance, 
alphabetic ° is written 0, zero is 0, Z as..g, I as a 
printed capital (I), and 1 as a straight line (I). It 
is wise to formally familiarize your keypunch oper
ators with the adopted conventions. 

Program procedural errors can often be detected 
by having someone other than the original pro
grammer review the programming sheets. Even 
where the programmers are relatively inexperienced, 
they will often catch errors in syntax (grammar of 
forming statements). This review can also serve as 
an excellent way to improve programmer knowledge. 

During a review of the program, program logic 
errors are more difficult to catch. This is particu
larly true when the person who is familiar with the 
procedure is not also familiar with programming. 
Logic errors are generally caught during testing 
when sample data is processed by the program. The 
sample data must be prepared so that all of the vari
ous exceptions, combinations, and ranges of infor
mation are introduced to the program, insofar as 
it is practical to do so. It should be remembered 
that any element or combination of elements that is 
not tested is very likely to appear eventually; if it 
can happen, it will. 

At the time that your program is assembled or 
compiled on the system you are installing, a series 
of diagnostic tests is also made to detect many of 
the potential errors, and these errors are noted. 

By properly prechecking your programs, you can 
materially reduce the amount of time to get a pro
gram compiled and tested successfully. Care in 
the preparation of test data will also detect logic 
errors so that they can be corrected before the proc
essing of actual data. 

The final test of any program is the successful 
processing of "live" data, after which the results 
can be compared against those obtained by the pre
vious system. 

Note: If the results of this last test do not agree 
with previous results, check again to be sure what 
the right answers should be. Sometimes the old 
system has not produced the correct solutions. 



Section Subsections Page 

30 10 I 00 01 

TESTING STRATEGY 

Any good system is like a successful athletic team. 
Each member must do his job well, and all members 
must work together. These two things are what 
you must accomplish with your testing strategy. 
Each individual program is tested. When all pro
grams give correct results, pairs are tested. When 
the first pair gives correct results, another run is 
added to the system. Finally, all runs are tested 
together, and the entire system is checked out. 

The individual tests are the foundation of the 
system's test. A deck of test cards should be made 
up for each program (or subprogram) and kept for 
use in testing the program again in the future. 

The ideal rule to follow in deciding what test data 
to include is this: include every field at least once 
under every condition in which it can occur, not 
only by itself, but with every possible combination 
of conditions in which all the other fields can occur. 
With a simple program this is easy enough to do, 
but where many fields appear under many conditions, 
the number of possible combinations can become 
enormous. Then your programmer must use his 
judgment in making up a limited set of test cards 
that covers the possibilities adaquately. 

The test cards should be created, then listed. 
For each set of test data, a "prediction" of the re
sults that will appear on the output forms or cards 

should be made. Then, when actual testing is per
formed, your programmer cannot be easily misled 
into believing that his output is correct when it is 
not. 

The first data in the test deck should test only the 
ordinary, easiest, most straightforward conditions. 
Next, multiple conditions can be combined on one 
card or record. Finally, error conditions can be 
tried. The reason for this careful progression is 
that unless the simple situations are proved first, it 
is possible to spend many hours trying to determine 
which of several possible causes for a "bug" is the 
true one. 

Avoid setting up your tests in such a way that you 
count on the output of one program to act as input to 
another. Have at least one independent set of test 
data for each program you are testing. "Merged" 
or "linked" testing is a valuable means of proving a 
system's overall validity, but it should not be done 
until each program is individually tested. 

After a successful test, both the test input and 
output should be retained, as part of program docu
mentation, to make future testing easier. Also, 
when testing program modifications, test not only the 
modifications but the entire program. In other words, 
your sample test data should expand with each modi
fication, so that the entire system may be tested at 
any time. 



TESTING TACTICS 

Many techniques exist to assist your programmer 
during the checkout phase of a program. Each has 
its own advantages and disadvantages. The one to 
be used for a particular problem will depend on 
your programmer's thoughts as to what area of his 
program is in error. Some very useful techniques 
are: 

1. Core Storage Dump. This is a printout of the 
contents of core storage. There are two methods of 
producing it. 

The first is with one of the utility programs sup
plied with the 1130 Programming Systems. These 
utilities will produce a core storage dump in hexa
decimal. 

Since manual hexadecimal-to-decimal conversion 
is very tedious and time-consuming, this method is 
not recommended. 

The recommended method of dumping core storage 
is with the dynamic DUMP facilities of FORTRAN 
and the Assembler Language. The information 
dumped with this method can appear in hexadecimal, 
integer, or real format. 

In FORTRAN, the DUMP facility is accessed 
through use of the PDUMP subroutine. You would 
write CALL PDUMP (A1, B1, F1, ... , An, Bn, Fn). 

Blocks of core storage are dumped. A1 and B1 
are variable data names, subscripted or nonsub
scripted, indicating the inclusive limits of the first 
block of storage to be dumped. Similarly, An and 
Bn indicate the inclusive limits of the nth block of 
storage to be dumped. 

The format of a block is determined by the Fx 
associated with that block. F1 through Fn are in
tegers and are assigned in the following manner: 

o = Hexadecimal 
4 = Integer 
5 = Real 

The Assembler Language dump facilities, DUMP 
and PDMP, are used in a similar fashion. 

All of the core storage dump facilities will pro
duce a printout of core storage, by address. You 
should use these facilities when a program "bug" 
requires, in the judgment of your programmer, an 
examination of all or part of core storage. 

2. Ari thmetic Trace. The use of this technique 
involves subroutines that are executed whenever a 
value is assigned to a variable on the left of an equal 
sign. If Console Entry Switch 15 is turned on at 
execution time, and the *ARITHMETIC TRACE 
FORTRAN control record is used, the value of the 
assigned variable is printed, as it is calculated, with 
one leading asterisk. 

Section Subsections Page 

30 20 I 00 01 

As an optional use, you can elect to trace only 
selected parts of the program by placing statements 
in the source program to start and stop tracing. 
This is done as follows: 

CALL TSTOP (to stop tracing) 
CALL TSTRT (to start tracing) 

Thus, tracing occurs only if: 
• The trace control record is compiled with the 

source program. 
• Console Entry Switch 15 is on (can be turned 

off at any time). 
• A CALL TSTOP has not been executed, or a 

CALL TSTR T has been. executed since the last CALL 
TSTOP. 

If tracing is requested, an *IOCS control record 
must also be present to indicate that either type
writer or printer is needed. If both typewriter and 
printer are indicated in the *IOCS record, the printer 
is used for tracing. 

Use of this facility will increase execution time 
considerably. The trace facility should not be pres
ent in a production program; if it is, you should 
recompile the production program after testing is 
complete, leaving out the trace. 

3. Transfer Trace. In this case, the FORTRAN 
compiler generates linkage to trace routines which 
are executed whenever an IF statement or Computed 
GO TO statement is encountered. If Console Entry 
Switch 15 is turned on at execution time and the 
*TRANSFER TRACE FORTRAN control record is 
used, the value of the IF expression or the value of 
the Computed GO TO index is printed. For the 
expression of an IF statement, the traced value is 
printed with two leading asterisks. The traced 
value for the index of a Computed GO TO statement 
is printed with three leading asterisks. 

The optional use of trace explained under Arithme
tic Trace also applies to Transfer Trace (use of 
TSTOP and TSTRT), as does the information follow
ing optional use. 

4. Extensive Use of PAUSE. It may turn out that 
some parts of your program execute correctly and 
some incorrectly. What you would like to do is to 
check the progress of the program while it is run
ning. A very useful technique is to place PAUSEs 
at strategic places throughout your program. In 
order to know where the program is at any point in 
time, number the PAUSEs consecutively: 

C-----READ INPUT 
PAUSE 1 
CALL READ(IN, 1,80, N) 

C-----IDENTIFY INPUT 
PAUSE 2 



Section Subsections Page 

30 20 I 00 02 

IF(IN(22)-1) 3,4, 5 
3 CALL MOVE (IN, 1, 27, IWK, 1) 
C-----TypE ZERO CARD 

PAUSE 3 
etc. 

The PAUSE number will be displayed in the 
accumulator. Use of this technique will let you fol
low the logic of the program (IFs and GO TOs) wi th

. out severely slowing its execution. 
5. Additional Print Lines. This technique is 

sometimes called" selective tracing". Again, rather 
than severely slowing the execution of a program and 
printing the result of every replacement operation, 

only selected variables and/or fields will be printed. 
Use of the FORTRAN WRITE statement or the 1130 
Commercial Subroutine Package PRINT subroutine 
will allow you to follow the progress of variables 
and/or fields as their contents change during pro
gram execution. 

6. Console Debugging. This technique should be 
used only as a last resort. It involves manual in
quiry into the system via the console switches, dials, 
and keys. In most cases, the previously mentioned 
techniques will provide you with all the information 
necessary to debug. 



TESTING HINTS 

1. To test the logic in a program that uses 
Commercial Subroutine Package I/O, use standard 
FORTRAN READ and WRITE for 1/ O. This makes 
the trace facility available. When finished, use 
Commercial Subroutines READ and PRINT for 
overlapped I/O. 

Section Subsections 

30 30 I 00 

2. Ask yourself: What must be done to re
create information if the disk cartridge is lost? 
How long will it take? 

Page 

01 

3. Keep testing in mind when planning the 
development of various runs. That is, write the 
file creation and maintenance programs before the 
report programs that use the files. 



Section Subsections Page 

30 40 I 00 01 

SUMMARY 

If program testing techniques are properly planned, 
a minimum amount of machine time is consumed 
during program checkout. Manual inquiry into a 
system via the console is extremely expensive in 
machine and operator cost; little is learned in re
turn for dollars expended. Time spent desk 
checking is well invested, since most of the logical 
errors may be detected before the program actually 
enters the computer testing phase. 

In trying to make the maximum number of runs 
during a test session, your programmer may be 
tempted to make rapid patches without pausing to 
annotate such changes thoroughly. Such urgency is 
seldom fruitful in the end. 

The program testing phase should be carefully 
and thoroughly planned, executed, and documented. 
The following checklist should be used as a guide to 
ensure maximum productivity for program testing. 

Mter coding the program and preparing revised 
flowcharts and other supporting documentation, the 
testing procedure begins. 

1. Prepare test data and precalculate results. 
2. Punch and verify program cards. 
3. List program cards. 
4. Desk-check the program. Look for: 

a. Errors in logic 
b. Endless loops 
c. Incorrect use of program switches 
d. Unsatisfied or incomplete coding for 

the problem definition 
e. Inefficient program (time and storage) 
f. Incorrect data field lengths 
g. Improperly signed fields 
h. A name for each variable 

j. Initialization of routines and storage 
k. Duplicate names 
1. Misspelling and punching errors 
m. Invalid operations 
n. Necessary control cards 
o. Improper alignment of card columns 

5. Manually simulate the computer process 
using te st data. 

6. Compile the program. 
7. Perform error analysis with error listing 

and program printout. 

8. Correct the program. 
a. Card programs. Correct the source 

deck and recompile the program. To 
facilitate card handling with object 
decks, label the object deck with a 
marking pen. The first and last card 
of the object deck should be so labeled. 
The top edge of all such cards may also 
be marked. 

b. Disk programs. When the program is 
prepared on disk, corrections are made 
to the source deck. This is accom
plished by placing the corrections in the 
source deck and then recompiling and 
restoring the program. Alter the pro
gram listing and update the program 
flowchart to reflect source deck 
corrections. 

9. Prepare detailed instructions for machine 
operation during the test session. 

10. Pre-test-session familiarization. 
a. Console operation 
b. Input/output devices 
c. IOCS 
d. Utility routines such as clear storage 

and load programs, file generators, 
trace programs, storage and disk print 
programs, sort and merge programs, 
and check point and restart programs. 

11. Test documentation and materials. To re
duce confusion, all materials should be clearly 
labeled with the name of your organization, program 
name, content, and date. Each person should have 
a list of items for which he is responsible: 

a. Program flowcharts 
b. Compiled program listings 

Test data dccl(s and disl~s \"lith test duta 
listing (a duplicate copy may be 
desirable) 

d. Precalculated results of test data and 
listing of expected output with each test 
case 

e. Card and disk record layouts 
f. Internal storage map 
g. Printer carriage control tape 
h. Operator checklist, providing all the 

information the operator needs to set 
up the data processing system for the 
running of each program: 



(1) Job or program name 
(2) Operation name 
(3) Mac hine setup 

(a) Disk cartridge assignment 
(b) Input cards or tapes 
(c) Output cards or tapes 
(d) Carriage tape 
(e) Sense switch settings 

(4) The sequence of events to run the 
test 

(5) Listing of all possible messages 
and halts 

(6) Switch and index listings 
(7) List of paper forms or card stock 

for auxiliary equipment 
i. Object deck or disk cartridge 
j. Blank forms, cards, disks 
k. Source deck and listings 

12. The test session 
a. Plan the test session in advance. De

cide upon the sequence in which pro
grams shall be tested. Programs 
should take precedence in testing 
according to their importance, and the 
most important programs should be re
tested as often as possible until they are 
completely debugged. Schedule a work
load greater than can be accomplished 
in the allotted test time. ASSign duties 
(such as handling the card reader, 
punch, printer, disk cartridges, and 
console) to each person attending. 

b. Arrive early. Confirm the testing 
schedule that was established in advance 
of actual testing. This schedule may 
best be laid out as a series of half-hour 
to full-hour sessions with one- to two
hour breaks in between. 

c. Be familiar with the latest versions of 
all programming systems to be used. 

d. Make certain that the test packet is 
organized properly. Test the higher
priority and larger programs first. 
Each program should have its own input 
test data; one program should not be 
dependent on another program that was 
run earlier in the same session. 

e. Make sure that all units are in the 
proper initial status--for example, 
printer restored, disk units ready, no 
leftover cards in the reader or punch. 

Section Subsections Page 

30 40 I 00 02 

f. Debugging at the console is time
consuming, error-prone, and generally 
nonproductive. When the program hangs 
up, the following steps should be taken 
immediately: 
(1) Note the console status--indicators, 

lights and registers. 
(2) Take core storage dumps. 
(3) Take disk dumps. 
(4) Go on tonext program or cease 

work. 
Even if a program goes to end-of-job 
and appears correct, the above steps 
should be taken in order to simplify 
correcting errors discovered later. 
When a program hangs up, do not force 
it to continue without taking down status 
information, since the conditions caus
ing the original hangup would then be 
destroyed. 

g. Label all core storage dumps, disk 
dumps, console sheets, etc., with date, 
time, and program identification. 

h. Debug off the console with deliberate 
speed. With the above items, there is 
more information to aid in locating the 
reason for the hangup than is available 
at the console. Do not make hurried 
corrections to a program in a false 
effort to maximize usage of test time. 
Do not, however, spend three hours at 
a desk to save five minutes on the 
system. Strive for a reasonable cost 
balance. 

Before testing the program again, 
find all possible bugs, not just the one 
that caused the hang up . Step further 
through the program after each test to 
ensure that the program will not hang up 
on the next instruction or routine. 
Correct all errors in output content and 
format. Strive for perfect output from 
each test. 

i. Note all corrections on the program 
listing. Corrections that affect the halt, 
switch, or index listings should be up
dated accordingly. 

j. Note the reason for the correction 
adjacent to the card itself. Be sure to 
include number and date. A post-test 
listing of cards is desirable for refer
ence when correcting the source deck. 



Section 

30 

Subsections Page 

40 I 00 03 

k. Generate a new program listing after an 
appropriate number of cards have been 
added to the program. Update the pro
gram flowchart to reflect the current 
status of the program. 

1. Keep documentation current. This 
eliminates the waste of time and effort 
trying to pick up changes during testing 
or debugging. 

13. Post-test evaluation. Every test session 
should be followed by a thorough evaluation: 

a. Was the pretest preparation adequate? 
b. Were there any areas of preparation 

that could be improved to yield a more 
effective test? 

c. Were there areas of preparation in 
which you spent too little? 

d. Did the test point up any areas of weak
ness in the coding? If so, are these types 
of errors documented so that stronger 
emphasis can be placed on them during 
future coding and desk checking? 

e. Was each machine session used 
effectively? 

f. Are there any corrections to the testing 
techniques that would make the next test 
mbre fruitful? 

g. What is the status of each program 
tested? 
(1) Is it completely tested? That is, 

has every program loop been 
tested, and do you have any res
ervations about calling this program 
complete? 

(2) Is it tested to the stage where the 
only changes left are in spacing and 
editing of the output data? 

(3) Are there logic errors left in this 
program? 

h. Did the test session achieve its objec
tives? If not, what adjustments in 
present scheduling are necessary? 



Section 35: PROGRAM DOCUMENTATION 

CONTENTS 

Introduction .....•.................. 
Installation Manuals ................ . 

Program Information Manual ...... . 
Operation Manual ................ . 

35.01. 00 
35.10.00 
35.10.10 
35.10.20 

Section Subsections Page 

35 00 I 00 01 

Documentation Examples ............ . 35.20.00 
Payroll System - Program 
Information Manual .............. . 35.20.10 
Payroll System - Operation 
Manual ......................... . 35.20.20 



INTRODUCTION 

The final step in your installation program is to 
document everything you have done. Let us quickly 
review the importance of adequate documentation 
before discussing the form that your documentation 
may take. 

The package of materials describing each pro
gram will become: 

1. A source of information for implementing 
future changes. 

2. An education device for familiarizing new 
operators and management personnel with the pro
cedures. 

3. A means of describing control procedures to 
your auditors. 

It is a modern but well proven adage that a well 
documented installation is a sure sign of a smooth
running operation. 

Section Subsections Page 

35 01 I 00 01 

You should develop two manuals: the program 
information manual and the operation manual. Your 
basic library will consist of these two manuals to
gether with this 1130 User's Guide, physical plan
ning manual, the 1130 functional characteristics 
manual, the programming system reference 
manuals for FORTRAN and Assembler Language, 
the machine reference manuals for the I/O units 
you have ordered, and operating procedures manual 
for FORTRAN, Assembler Language, and Disk 
Monitor System. If you use the Commercial Sub
routine Package, you will also want reference 
manuals and operating procedures manuals for that 
system. Consult the 1130 SRL Bibliography for 
descriptions and form numbers of the manuals, and 
for information about other IBM publications that 
provide further details on the subjects covered in 
this guide. 



Section Subsections Page 

35 10 I 10 01 

INSTALLA TION MANUALS 

Program Information Manual 

Each application should have its own binder, which 
will be used by management, systems analyst, or 
programmer, and will contain: 

1. Job description. This is the same for all 
programs with a job or application. It is a brief 
abstract. 

2. System flowchart. This is also the same for 
all programs within an application, and shows how 
each program fits into the larger picture. 

3. Record layouts. All record formats for the 
application are shown. 

The three items above appear once for the appli
cation, whereas the items below are necessary for 
each program (you may want to place dividers, 
labeled with the program names, in front of each 
group of these): 

1. Form layout. 
2. Variable Summary Sheet. The purpose for 

which program variables are used is apparent at 
the time of writing, but again, as with program 
logic (of which variables are an integral part), the 
programmer rapidly forgets how he used them. The 
Variable Summary Sheet (see Section 25) will serve 
as a testing and program modification aid. 

3. Program flowchart. Experience has proved 
that logic which is clear to the programmer at the 
time of writing is difficult to recall a short time 
later. The logic must, therefore, be documented 
in such a manner that testing will be accomplished 

in a minimum amount of machine time. Well docu
mented logic is also valuable when the program is 
changed from time to time, either by the author or 
by another programmer who may be completely un
familiar with it. 

4. Coding sheets or program listing. To avoid 
confusion, the coding sheets should be discarded 
after the program listing is produced. 

5. Test data listing. Test data should be listed 
and retained. As changes to the program are made, 
they may unintentionally affect parts of the original 
program. All original test data, therefore, along 
with any additional test data necessary for the 
change, should be processed to ensure that the pro
gram is operating properly. 

6. Test output. This includes sample reports 
or cards, as produced by the test data. 

7. Machine setup sheet. This is a guide to the 
operator, describing machine setup, source of input, 
disposition of output, and actions to be taken at 
machine halts. 

8. Detailed program flowcharts. These must 
be included if the programmer is using Assembler 
Language. Since programs written in Assembler 
Language are not as easily read, or as clearly re
lated to the job as FORTRAN programs, it is vital 
that your programmer draw a detailed program 
flowchart that carefully documents the program 
steps he has taken. Each block should cover only a 
few program steps, and should be cross-referenced 
to the program. It is advisable in most cases to in
clude a general program flowchart, which provides 
a quick means of introduction to the logic and is ex
ploded by the detailed flowchart. 



Operation Manual 

Intended for use by the operator, the operation 
manual is arranged so that each application has its 
own section. Usually, these materials are all kept 
in one book, at the 1130 console. In addition to the 
materials suggested below, the operation manual 
should include a copy of the operating procedures 
manuals supplied by IBM for the programming 
system being used. 

Dividers of two kinds should be used: one for 
applications and one for programs within applica
tions. 

Section Subsections Page 

35 10 I 20 01 

Behind each application divider should be a job 
description followed by a system flowchart of the 
entire application. 

Behind each program divider should be all in
structions to the operator. These may include (1) 
procedures to be followed to accomplish accounting 
controls, such as recording totals on a control 
sheet, checking critical items, and noting cross
footing messages, (2) recovery procedures -- that 
is, procedures for reconstructing or continuing a 
run that has been interrupted as a result of an oper
ator, machine, or program error, (3) initial switch 
settings and their meaning, (4) halts, error messages 
and their meaning, and (5) I/O considerations. 



Section Subsections Page 

35 20 I 00 01 

DOCUMENTATION EXAMPLES 

The examples in this section show the necessary 
documentation for those runs in the Payroll System 

which were coded under Section 25. Note that these 
examples are illustrations and, therefore, may not 
be considered complete, usable programs. 



Section Subsections Page 

35 20 I 10 01 

PAYROLL SYSTEM 

Program Information Manual 



Section Subsections Page 

35 20 I 10 02 



Section Subsections 

35 20 

CONTENTS 

Payroll Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
Job Description ....................... 0 0 0 0 0 • 0 0 • 0 • 00 00 0 0 •• 0 0 ••• 0 0 00 • 0 0 000 .0. • 1 
System Flowchart . 0 • 0 0 0 0 • 0 ••••••••••••••••• 0 ••••••••••••••••••••• 0 ••••• 0 • • • • 1 

N arrati ve ........... 0 • 0 •• 0 •••••• 0 0 0 0 0 0 0 0 0 • 0 ••••••••••••••••••••••••••••• 0 1 
Payroll File Create (PAYOl, PAY02, PAYI6) ............. 0 0 •• 0 •• 00 •• 0....... 2 
Payroll File Changes (PAY03, PA Y16) . 0 000 0 • 0 0 0 0 0 '0 0 •• 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 3 
Payroll Calculations and Register (PAY04, PAYI6) 00000000000000000000000000. 4 
Print Payroll Checks (PAY05, PAY06) ...................................... 5 
Payroll Check Voiding (PA Yll) 0 0 •• 0 0 0 ••• 0 •••• 0 0 0 0 •• 0 0 ••• 0 0 0 •• 0 •• 0 0 0 • 0 0 0 • 0 • • 6 
Payroll Deduction Registers (PA Y12 thru PA YI5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Payroll File Audit, 941, and Tax (PA Y07, PA Y09, PA YI0) .. 0 0 •• 0 •• 0 0 • 0 0 • 0 • 0 • • 8 
Print W-2 Reports (PA Ynn) ..... 0 • 0 0 0 • 0 0 0 0 0 •• 0 0 0 •• 0 0 o. 0 • 0 •• 0 ••• 0 0 •• 0 • 0 • • • • • 9 
Error Dete,ction and Correction (PAY09) .... '.' . 0 ••••••••• 0 • • • • • • • • • • • • • • • • • • 10 

Payroll Record Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Card Forms and Console Keyboard Input ... 0 0 •• 0 •••••••••• '0' 0 •••••••• '0... • • 11 
Console Printer and Line Printer Forms for Output 0 0 •••• 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 12 
Disk Record Formats 00000 •••• 0 •••••••• 00 •••••• ',' ••••••••••••••••• 0.0 •• 00. 12 

Payroll Programs .... 0 0 0 ••••••••• 0 0 ••••••••••••••••••••••• 0 ••••••••••• 0 ••• 0 • • • • 34 
PAYOl: Payroll File Create ... 00 0 0 000000000000 0 • 0 0 0 00.00000 0 0 0 0 0 .0.00 0 0 •• 0000 34 

Variable Summary Sheet . 0 0 0 0 0 0 0 • 0 0 • 0 • 0 0 0 0 •• 0 0 0 0 •• 0 0 0 0 • 0 0 •••••• 0 • 0 •• 0 •• 0 • • 34 
PA YOI General Program Flowchart . 0 •••• 0 • 0 • 0 •••••••••• 0 •••••••• 0 0 • 0 • • • • • • 37 
Program Listing ..... 0 ••••• 0 ••••• 0 ••• 0 • 0 0 •• 0 ••••••••••••••• 0 • • • • • • • • • • • • • 38 
Test Data Listing .......... 0 •••••••••••••••••••••• 0 ••••••• 0 • 0 ••••••• 0 • 0 0 • 0 43 
Test Output o. 0 0 • 0 0 0 0 0 0 0 0 0 ••••• 0 • 0 • 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 •• 0 • 0 0 0 0 • 0 • 44 
Machine Setup Sheet 0 •• 0 0 0 0 •• 0 0 0 0 0 ••••••••••• 0 0 • 0 •••••• 0 • 0 •• 0 • • • • • • • • • • • • • • 45 

PAY02: Add Names to the File ............... 0 •••• 000.0 ••••••••• 0 ••••••••• 0.. 47 
Variable Summary Sheet ...... 0 ••••••••• 0 •••• 0 ••••••••• 0 ••••••• 0 • 0 • • • • • • • • 47 
PA Y02 General Program Flowchart . 0 ••• 0 0 ••••••••• 0 • 0 • 0 ••••••• 0 •••••• 0 •• 0 • 50 
Program Li sting .. 0 0 •••••• 0 0 •• 0 0 ••••••••• 0 •••• 0 ••••••• 0 • 0 • 0 ••• 0 0 •• 0 •• 0 • • • 51 
Test Data Listing, ....... 0 •• 0 0 •••• 0 •• 0 • 0 0 • 0 •••• '.' •• 0 0 ••• 0 ••••••••• 0 0 • • • • • • • 55 
Test Output ... 0 •••• 0 0 0 ••••••••• 0 •• 0 ••••••••••• 0 •••• 0 •• 0 • • • • • • • • • • • • • • • • • • 55 
Machine Setup Sheet ... 0 ••••••• 0 ••••••••••••••••••• 0 ••• 0 0 • 0 0 •••••••••• 0 • • • 56 

PAY03: Changes to the File. 0 •••••••••••••••••• 0 •••••••••••••• 0 •• o. . . . . . . . . . . 57 
Variable Summary Sheet ...... 0 •••••••••••••••••••••• 00....... •• •••••••••• 57 
PAY03 General Program Flowchart .......................... 0 ••••• 0 • • • • • • • 60 
Program Listing ..... 0 •••• 0 • 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 61 
Test Data Listing ...... 0 ••••••••••••• 0 000.0.0 •• " •• 0 •• 000 0 0 .00.0.0 •• 0 0 0 • • •• 67 
Test Output 0 0 • 0 • 0 •••• 0 • 0 • 0 0 0 0 0 0 • 0 0 0 0 ••••••••••• 0 ••••• 0 ••••••• 0 •••••••• 0 0 0 68 
Machine Setup Sheet 0 0 0 0 0 ••••••••••••• 0 0 •••••• 0 •••••••• 0 •••• .' 0 0 0 0 0 • 0 ••• 0 0 0 69 

PA Y04: Calculations and Payroll Register 0 ••••••••••••••••••••••••••••••• 0 • • • • 70 
Sample Payroll Register ......... 0 •• 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 00' 0 • 0 • 0 •• 0 0 0 • 0 0 0 0 ••• 0 0 0 70 
Variable Summary Sheet .00000000000.000000. 0 0 0 0 0 0 0 00000.0000 •• 0 0 0 0 '0' 00.0 71 
PAY04 General Program Flowchart 000 ••• 000.0.00000. 0 0 •• 00000. o. 0 0 0 0000000 77 
Program Listing. 0 0 • 0 0 ••••• 0 ••• 0 ••••••••••••• 0 •••••••••••••••• 0 • • • • • • • • • • • 78 
Test Data Listing ........ 0 0 •••••••• 0 •••• 0 0 ••• 0 0 ••• 0 ••••••• 0 0 ••• 0 0 • • • • • • • •• 92 
Test Output ..... 0 ••• 0 0 0 • 0 • 0 0 0 • 0 0 • 0 0 0 0 • 0 0 0 0 ••• 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 •• 0 •••• 0 o. 93 
Machine Setup Sheet 0 0 0 • 0 0 •• 0 0 0 •••• 0 0 ••••• 0 0 ••••• 0 0 •• 0 0 ... 0 ••• 0 0 ••••• 0 •• 0 o. 95 

i 

I 10 

Page 

03 



Section Subsections Page 

35 20 I 10 04 

PA Y05: Check Writing ...................................................... 96 
Sample Check ............................................................ 96 
Variable Summary Sheet .................................................. 97 
PA Y05 General Program Flowchart ....................................•... 103 
Program Listing ......................................................... 104 
Test Data Listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 111 
Test Output .............................................................. 112 
Machine Setup Sheet. . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113 

PAY06: Check Register ..................................................... 114 
Sample Check Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 114 
Variable Summary Sheet .................................................. 115 
PAY06 General Program Flowchart.. . . . ... .. . . .. .. .. ...... .. .. . .. ..... . .... 121 
Program Listing ......................................................... 122 
Test Data Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 126 
Test Output ............................................................... 126 
Machine Setup Sheet ...................................................... 127 

PAY09: 941 Report ......................................................... 128 
Sample 941 Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 128 
Variable Summary Sheet .................................................. 129 
PAY09 General Program Flowchart ........................................ 133 
Program Listing ......................................................... 139 
Test Data Listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 140 
Test Output .......................... ,................................... 140 
Machine Setup Sheet ...................................................... 141 

ii 



Section Subsections 

35 20 I 10 

PAYROLL APPLICATION 

JOB DESCRIPTION 

The Payroll System is composed of 16 different runs. From the source documents, produced 
at the six plant sites, cards are punched. These cards are used to store the payroll informa
tion on the disk cartridge. 

At this point the system uses cards only for transition between jobs. The input data, 
employee records, is read from the disk and updated before being written back. This gives a 
highly flexible system, in which I/o, because of the disk, is very fast. 

The system produces the following reports: 
• Checks and check stubs 
• Check register 
• Payroll register 
• Deduction registers for 

1. Union dues 
2. Credit union 
3. Stock 

• 941 quarterly report 

SYSTEM FLOWCHART 

Narrative 

The system consists of 16 programs. 
The Files Creation program is first. Data decks are keypunched for each individual, in sets, 

by plant. The data is edited and, when correct, loaded on the disk by PAYOl. Three files are 
created: a master file, an index file, and a plant information file. A second data deck with 
employee clock number and name is loaded onto the master file by PA Y02. 

Changes to the disk information are made by PAY03. Documents, received from personnel 
departments at the individual plants, are checked, summarized, keypunched, and verified. 
Time sheets, submitted by the plant payroll departments, are keypunched and verified. All 
of these cards are processed by PAY16 , which edits and generates control totals. PA Y04 
then processes these cards, performing all payroll calculations. Cards are read, pay com
puted, disk files updated, and cards extended with current pay figures. After all cards are 
processed, a payroll register is printed. 

Checks are printed by PAY05. A header card is read and the checks are printed from the 
disk file. PAY06 lists the check register from the disk file. In the event of an error in 
computing pay, PA Y11 provides the means of voiding checks. The extended time cards from 
PAY04 are read in and the affected employee records are reset. The above are weekly runs. 

At month end, registers are prepared showing each individual's deductions for the month: 
PA Y13 writes union dues register. 
PAY14 writes credit union register. 
PA Y15 writes stock deductions register. 
PAY12 resets charity deductions code. 
At the end of the quarter and at the end of the year PAY07 and PAY08 are used to balance 

the disk files to control totals. 
PA Y09 produces the 941 tax report. 
PAY10 produces a tax worksheet used to determine tax reliability. 
At the present time the program for W2 reports has not been written. 

1 

Page 

05 



Section Subsections 

35 20 I 10 

Page 

06 

Clock No. 
and 

Name 

EAY..!l2.. 
ADD NAMES 

Zero Balance 
Totals 

/ 7 

2 

Employee 
Earnings 
Record 

All but 
Name 

f8.Y.J.ft 
INPUT 
EDIT 

fA.Y.JU 
FILE 

CREATE 

TAPE 

Out of Balance 

( Control Totals / / 

All but 
Name 



Zero 
Balance 
Total 

Changes 

~ 
INPUT 
EDIT 

O.K. 

Changes 

~ 
FILE 

CHANGES 

3 

Total on 
Adding 

Machine 

Out of Balance 

Section 

35 

~--------.. ~ TAPE 

Control 
Total 

Subsections 

20 

Control 
Total 

I 10 

Changes 

Page 

07 



Section Subsections 

35 20 I 10 

Page 

08 

Zero Balance 
Totals 

Payroll 
Register 

Weekly 
Time 

Sheets 

Details 

PAY 16 
INPUT 
EDIT 

PAY 04 
CALCULATION 

4 

Totals on 
Adding 

Machine 

Out of Balance 

Control ~ 

~ _____ T_o_ta_ls ______ ~ ~ 

Control 
Totals 

Zero Balance 
Totals 

Details 



Calculated PAY 05 
PAYROLL 
CHECKS 

Only When Totals Balance 

PAY 06 
CHECK 

REGISTER 

5 

Control 
Totals 

Pay Checks 
and Stubs 

Control 
Tot<lls 

Check 
Register 

Control 
Totals 

Section 

35 

Subsections 

20 I 

Total on 
Adding 

Machine 

10 

Page 

09 



Section Subsections 

35 20 10 

Page 

10 

Only When Totals Do Not Balance 

PAY 11 
VOID 

CHECKS 

Control 
Totals 

6 

Control 
Totals 

Details 

Details 



Union 
Dues 

Register 

Credit 
Union 

Register 

Stock 
Deduction 

Register 

PAY 13 
UNION 
DUES 

PAY 14 
CREDIT 
UNION 

PAY 15 
STOCK 

DEDUCTION 

Section 

35 

Subsections 

20 I 10 

General 
Ledger 

~--------------------------------------------------~~TAPE 

7 

PAY 12 
RESET 

MONTHLY 
TOTALS 

Page 

11 



Section 

35 

Subsections 

20 I 10 

Totals 

Calculated 
Control 
Totals 

Tax 
Worksheet 

Page 

12 

PAY 07 
AUDIT FILE 

BY COMPANY 

PAY 09 
~ 

REPORT 

PAY 10 
TAX 

WORKSHEET 

General 
Ledger 

~---------------------------------------------1" TAPE 

( 

Plant 
Numbers 

8 

Plant 
Numbers 



W-2 
Reports 

PAYnn 
'"\fP2 

REPORTS 

Plant 
Numbers 

Section 

35 

General 
Ledger 

~------------------------------------~ TAPE 

9 

Plant 
Numbers 

Subsections Page 

20 I 10 13 



Section 

35 

Subsections 

20 I 10 

Disk 
Payroll 

File 

Individual 
Payro!1 
Record 

Page 

14 

PAY OS 
INQUIRY 

Use PAY 16 
& PAY 03 

to Change the 
Disk Payroll 

Record 

Return to 
Print Where 

Error 
Occurred 

10 

Only when 
entire original 
error has been 
corrected 

Select Desired 
Clock Number 

Card 

Clock 
Number 

Last Week's 
Payroll 
Register 



PA YROLL RECORD LAYOUTS 

Card Forms and Console Keyboard Input 

PAYOI 
Plant no. - 1 digit - keyboard 
Week no. of month - 1 digit - keyboard 
Check no. - 2 digits - keyboard 
Name - 18 blanks - keyboard 
Plant name - 32 characters maximum - keyboard 
Figure 2 - card 

PAY02 
Plant no. - 1 digit - keyboard 
Figure 3 - card 

PAY03 
Plant no. - 1 digit - keyboard 
Figure 1 - card 
Social Security Number, if changed - keyboard 
Figure 4 - card 
Figure 5 - card 

PAY04 
Figure 6 - card 
Check no. - 5 digits - keyboard 
Week no. of month - 1 digit - keyboard 
Maximum check amount allowed - 5 digits - keyboard 
Figure 7 - card 

PAY05 
Figure 6 - card 
Check no. - 5 digits - keyboard 
Check maximum amount - 5 digits - keyboard 
Clock no. (if requested) - 4 digits - keyboard 

PAY06 
Figure 6 - card 

PAY07 
Plant no. - 1 digit - keyboard 

PAY08 
Figure 9 - card 
Figure 10 - card 
Figure 5 - card 

PAY09 
Figure 11 - card 
Figure 12 - card 
Figure 13 - card 
Figure 14 - card 
Figure 15 - card 

PAYI0 
Figure 9 - card 
Figure 5 - card 

11 

Section Subsections Page 

35 20 I 10 15 



Section 

35 

Subsections Page 

20 I 10 16 

PAYll 
Figure 6 - card 
Figure 8 - card 
Figure 5 - card 
If requested: 
Insurance deduction - 4 digits - keyboard 
Stock deduction - 4 digits - keyboard 
Charity deduction - 4 digits - keyboard 
Miscellaneous deduction - 4 digits - keyboard 

PAY12 
Plant no. - 1 digit - keyboard 

PAY13 
Plant no. - 1 digit - keyboard 
Individual amount for a plant - 4 digits - keyboard 

PAY14 
Plant no. - 1 digit - keyboard 

PAY15 
Plant no. - 1 digit - keyboard 

PAY16 
Figure 6 - card 
Figure 7 - card 

Console Printer and Line Printer Forms for Output 

PAYOI - None 
PAY02 - None 
PAY03 - None 
PAY04 - Figure 17 

Figure 8 
PAY05 - Figure 18 
PAY06 - Figure 19 
PAY07 - Figure 20 
PA Y08 - Figure 16 
PAY09 - Figure 21 
PAYI0 - Figure 22 
PAYll - Figure 17 
PAY12 - None 
PAY13 - Figure 23 
PA Y14 - Figure 24 
PAY15 - Figure 25 
PAY16 - Figure 26 

Disk Record Formats 

Employee File - Figure 27 
Index to Employee File - Figure 28 
Company Record in the Corporation File - Figure 29 

12 



Section Subsections Page 

35 20 I 10 17 

Clock 
Change Blank No. U 

o 000 00 00 000 000000000000000000000000000000000000000000000000000000000000000000000 
1234 56 7891011 121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 

1111 11 11111 111111111111111111111111111111111111111111111111111111111111111111111 

2222 22 22222 22222222222222222222222222222222222222222222222222222 2 2 2 2 2 2 2 2 22222222 

3 333 3 3 3 3 3 3 3 333333333333333333333333333333333333333333333333333333333333333333333 

4444 44 44444 444444444444444444444444444444444444444444444444444444444444444444444 

5 555 5 5 5 5 5 5 5 555555555555555555555555555555555555555555555555555555555555555555555 

6 666 6 6 6 6 6 6 6 666666666666666666666666666666666666666666666666666666666666666666666 

7777 77 77 77 7 777777777777777777777777777777777777777777777777777777777777777777777 

8 888 8 8 8 8 8 8 8 888888888888888888888888888888888888888888888888888888888888888888888 

9 999 99 99 9 9 9 999999999999999999999999999999999999999999999999999999999999999999999 
1234 56 7891011 121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 

Figure 1. 

,g i 
t:"2 

0 Social Gross Local Credit ro ~ ":::J 
Clock Pay 

u 
Security d Earnings FICA FIT Tax Union " Union .~ ~ 

ii: No Rate ~ No. YTD YTD YTD YTD Deduction Vi U Dues Blank 2ch Blank en 

00000 o 0 0 00 0 0 00 o 0 0 0 o 0 0 0000000 00 000 o 0 0 0 0 o 0 0 0 0 00000 o 0 0 0 o 0 0 0 00 0 o 0 0 0 000000 o 0 000000000 
12345 678 9101112 1314 15161718 192021 22232425262728 2930313233 3435363738 3940414243 4445464748 49505152 53545556 575859 60616263 646566676869 7071 727374757677787980 

11111 111 1111 11 1111 111 1111111 11111 11111 11111 11111 1111 1111 111 1111 111111 11 111111111 

2222 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2222222 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2222 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 222222 2 2 222222222 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3333333 3 3 333 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333333 3 3 333333333 

44444 444 4444 44 4444 444 4444444 44444 44444 44444 44444 4444 4444 444 4444 444444 44 444444444 

55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 555555 5 5 555555555 

66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6666666 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 66 6 6 6 6 6 666666 6 6 666666666 

77 77 7 777 7777 77 7777 777 7777777 77777 77777 77777 77 77 7 7777 7777 777 7777 777777 77 777777777 

8 8 8 8 8 8 8 8 88 8 8 88 8 8 8 8 8 8 8 8888888 8 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 888888 8 8 888888888 
\ 

99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9999999 999 9 9 9 9 9 9 9 9 9 9 9 9 999 9 9 9 9 9 9 9 99 9 99 9 9 9 9 9 999999 9 9 999999999 
12345 678 9101112 1314 15161718 192021 22232425262723 2930313233 3435363738 3940414243 4445464748 49505152 53545556 575859 60616263 646566676869 7071 727374757677787980 

Figure 2. 

13 



Section Subsections Page 

35 20 I 10 18 

~~ 
Clock 
No. Name Blank '" 

00 0 0 000000000000000000 00000000 DO 0 0 0 0 0 0 000000000000000000000000000000000000000000 
1234 5678910111213141516171819202122 n~~~D~~W~DDN.~n~~W~oa«~%~%~.~~~M~~~~~W~~~~~~D~~ronnnMHffi nn~~ 

1111 111111111111111111 1111111111111111111111111111111111111111111111111111111111 

22 2 2 222222222222222222 2222222222222222222222222222222222222222222222222222222222 

3 3 3 3 333333333333333333 3333333333333333333333333333333333333333333333333333333333 

4444 444444444444444444 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 4 4 4 

5 5 5 5 555555555555555555 5555555555555555555555555555555555555555555555555555555555 

66 6 6 666666666666666666 6666666666666666666666666666666666666666666666666666666666 

7777 777777777777771777 7777777777777777777777777777777777777777777777777777777777 

8 8 8 8 888888888888888888 8888888888888888888888888888888888888888888888888888888888 

9 9 9 9 999999999999999999 9999999999999999999999999999999999999999999999999999999999 
1234 5678910111213141516171819202122 n~~~D~~W~DDN.~n~~W~oa«~%~~~.~~~M~~"~~W~~~~~~D~~ronnnMHffi nnn~ 

Figure 3. 

Social 
Security u " c .~ u Clock Pay '0 0 
No. 5;§ No. V> V> Rate « Vi - ~ u Blank 

DO 0 0 000000000000000000 000 DO DO 0 0 o 0 o 0 00 0 0 00 0 0 000 0 o 00 0 o 0 0 0 o 0 0 0 o 0 0 000000000000000000 
1234 5678910111213141516171819202122 232425 262 28293031 3133 3435 36373839 40414143 «45%47 48495051 51535455 56575859 606161 ~~~~D~~ronnnMHHnn~~ 

1111 111111111111111111 111 11 1111 11 11 1111 1111 1111 1111 1111 1111 111 111111111111111111 

2 2 2 2 222222222222222222 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 222222222222222222 

3 3 3 3 333333333333333333 33 3 33 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 333333333333333333 

4444 444444444444444444 444 44 4444 44 44 4444 4444 , .. '14444 4444 4444 444 444444444444444444 

5 5 5 5 ~ I" ,. I" I" II! I!' e I: I: e I: I: reI: c: I: < < < < < c.c c. c. 5 5 5 5 5 5 55 5 5 5 5 55555555 5 5 5 5 5 5 5 5 5 5 5 555555555555555555 ;JaaaaiJiJiJ"''''''''''''''tJ'''''' ~ ~ ~ ~ ., \J o,JtJo,J 

6 6 6 6 666666666666666666 6 6 6 666666 66 6 6 6 6 66 6 6 6 6 66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 666666666666666666 

7777 777777777777777777 777 777777 77 77 7777 7777 7777 7777 7777 7777 777 777777777777777777 

8 8 8 8 888888888888888888 888 888888 88 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 888888888888888888 

9 999 999999999999999999 9 9 9 999999 9 9 9 9 99 99 9999 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 999999999999999999 
1234 5678910111213141516171819202112 232425 1627 18293031 3133 3435 36373839 40414143 «454647 48495051 5153M55 56575859 606161 636465666768697071 n73747576n 787980 

Figure 4. 

14 



Section Subsections 

35 20 I 

Blank 

0000000000000.000. 0. 0. 0. 0 0. 0000000000. 0. 0. 0. 0 DODD 0. 0. 0. 0. 0. 0. 0 0 0 0 0 0. 0. DO. 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 00000000 
12345678 91011121314151617181920212223242526272819303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

22222222222222222222222222222222222222222222222222222222222222222222222222222222 

33333333333333333333333333333333333333333333333333333333333333333333333333333333 

44444444444444444444444444444444444444444444444444444444444444444444444444444444 

55555555555555555555555555555555555555555555555555555555555555555555555555555555 

66666666666666666666666666666666666666666666666666666666666666666666666666666666 

77 77 7 7 77 77 7 7 77 7 77 7 77 7 77 77 7 77 7 7 7 7 77 7 7 7 77 7 7 77 77 7 77 7 7 7 7 77 7 7 7 7 7 7 7 7 77 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 

88888888888888888888888888888888888888888888888888888888888888888888888888888888 

9 9 9 9 9 9 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
12345678 91011121314151617181920212223242526271829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 

Figure 5. 

Total Total Total Total Total 
Plant Check EJrnings Clock Regular Overtime Bonus Special 
No Date Date Numbers Hours Hours Hours Earnings Blank 

0000000 0.0.00.00. 0.0.00.000 00.000.0.0. 0.0.0.00.0.0. 00.0.000.0. 0.0.0.0000 00.0.00.0.000000000.0.0.0.000.000000.00.000 
1234567 8910111213 14151617181920 21222324252627 28293031313334 35363738394041 41434445464748 4950515253545556575859606162636465666768697071717374757677787980 

1111111 111111 1111111 1111111 1111111 1111111 1111111 11111111111111111111111111111111 

2222222 222222 2222222 2222222 2222222 2222222 2222222 22222222222222222222222222222222 

3333333 333333 3333333 3333333 3333333 3333333 3333333 33333333333333333333333333333333 

4444444 444444 4444444 4444444 4444444 4444444 4444444 44444444444444444444444444444444 

5555555 555555 5555555 5555555 5555555 5555555 5555555 55555555555555555555555555555555 

6666666 666666 6666666 6666666 6666666 6666666 6666666 66666666666666666666666666666666 

7777777 777777 7777777 7777777 7777777 7777777 7777777 7 7 7 7 7 77 7 7 7 7 7 7 77 7 7 7 77 7 7 77 7 7 7 7 7 7 7 7 

8888888 888888 8888888 8888888 8888888 8888888 8888888 88888888888888888888888888888888 

9999999 999999 9999999 9999999 9999999 9999999 9999999 99999999999999999999999999999999 
1234567 8910111213 14151617181920 21222324251617 18293031313334 35363738394041 42434445464748 4950515253545556575859606162636465666768697071727374757677787980 

Figure 6. 

15 

10 

Page 

19 



Section Subsections Page 

35 20 I 10 20 

~~ 
Clock Regular Overtime Bonus Special -g Spec~al -0 Special 
No. Hours Hours Hours u Earnings u Earnings U Earnings Blank Ol 

00 0 0 00 0 0 0 o 0 0 0 00 0 0 0 0000000 000000 000000 0000000000000000000000000000000000000000000 
1234 56789 10111213 1415161718 19202122232425 262728293031 323334353637 38394041424344454647484950515253545556575859606162636465666768697071727374757677787980 

1111 11111 1111 11111 1111111 111111 111111 1111111111111111111111111111111111111111111 

22 2 2 222 2 2 2 2 2 2 22 2 2 2 2222222 222222 222222 2222222222222222222222222222222222222222222 

3 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3333333 333333 333333 3333333333333333333333333333333333333333333 

4444 44444 4444 44444 4444444 444444 444444 4444444444444444444444444444444444444444444 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5555555 555555 555555 5555555555555555555555555555555555555555555 

6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6666666 666666 666666 6666666666666666666666666666666666666666666 

7777 77 77 7 7777 77 77 7 7171717 177717 717777 7777777777777777777777777777777777777777777 

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8888888 888888 888888 8888888888888888888888888888888888888888888 

9 9 9 9 99 9 9 9 9 9 9 9 99 9 9 9 9999999 999999 999999 9999999999999999999999999999999999999999999 
1234 56789 10111213 1415161718 19202122232425 262728293031 323334353637 ~~~~Gg44~%~~~~~D~54~~n~~W~~~~~~n~~ron72nMmM77nm~ 

Figure 7. 

Total All ~~ Clock Regular Overtime Bonus -0 Special Special 
0 

Specii::!1 Pay Local Credit Union Other 
No. Hours Hours Hours u Earnings u Earnings u Earnings Rate Gross Net FIT FICA Tax Union Dues Deductions iii m 

0000 00 0 0 0 00 0 0 000 0 0 0000000 000000 000000 00 0 000000 000003 00 000 o 0 0 0 o 0 0 0 o 0 0 0 0000 o 00 0 0 o 0 
1234 56789 10111213 1415161718 19202122232425 262718293031 323334353637 383940 4142434445% 474849505152 5354555657 58596061 62636465 66676869 70717273 7475767778 79~ 

1111 11111 1111 11111 1111111 111111 111111 111 111111 111111 11111 1111 1111 1111 1111 11111 11 

22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2222222 222222 222222 22 2 222222 222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 222 2 2222 2 2 2 

33 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3333333 333333 333333 33 3 333333 333333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

4444 44444 4444 44444 4444444 444444 444444 444 444444 444444 44444 4444 4444 4444 4444 44444 44 

55 5 5 5 5 !i !i !i !i 5 5 5 5 5 5 5 5 5555555 555555 555555 55 5 555555 555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

66 6 6 66 6 6 6 6 6 6 6 6 6 6 6 6 6666666 666666 666666 666 666666 666666 6 666 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

7777 717 77 1777 717 7 7 1777717 717777 717177 777 777777 177717 77 77 7 7777 7777 7777 7777 77 77 7 77 

88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8888888 888888 888888 8 8 8 888888 888888 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 

9 9 9 9 9 9 9 9 9 99 9 9 9 999 9 9999999 999999 999999 999 999999 999999 9 999 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
1234 58789 10111213 1415161718 19202122232425 262728293031 323334353637 3839~ 414243444546 474849505152 5354555657 58596061 62636465 66676869 707172n 7475767778 7980 

Figure 8. 

16 



Section Subsections 

PIJnt 
No 

35 20 

Blank 

OOOOOOOOOOOOOOOOOOOL~i.~~,noooooooooooooooooooooooooooo00000000000000000000000000 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 ,~ ,& 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

111111111111111111111 i 1 1 11111111111111111111111111111111111111111111111111111111 

22222222222222222222222222222222222222222222222222222222222222222222222222222222 

33333333333333333333333333333333333333333333333333333333333333333333333333333333 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

55555555555555555555555555555555555555555555555555555555555555555555555555555555 

66666666666666666666666666666666666666666666666666666666666666666666666666666666 

7 17 7 17 17 7 7 17 17 17 7 7 7 7 17 17 7 17 7 17 7 7 7 7 17 17 7 17 7 7 7 7 7 7 17 7 7 7 7 7 7 7 7 7 7 7 17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 

88888888888888888888888888888888888888888888888888888888888888888888888888888888 

9999999999999999999999999999999999999999999999999999 9 9 99999999999999999999999999 
12345678 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 

Figure 9. 

Clock 
No Blank 

00000000000000000000000000000000000000000000000000000 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 
12345678 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

2222222222222222222222222222222222222222222222222222 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2222 

3333333333333333333333333333333333333333333333333333 3 3 33 3 3 3 3 3 3 3 3 3 333333333333333 

44444444444444444444444444444444444444444444444444444444444444444444444444444444 

55555555555555555555555555555555555555555555555555555555555555555555555555555555 

66666666666666666666666666666666666666666666666666666 6 66 6 6 6 6 66666666666666666666 

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 71 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

88888888888888888888888888888888888888888888888888888888888888888888888888888888 

9999999999999999999999999999999999999999999999999999 9 9 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 999999999 
12345678 9101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798C 

Figure 10. 

17 

I 10 

Page 

21 



Section 

35 

Subsections Page 

20 I 10 22 

~ Delte for 0 
Z 

Reporting 

l 
Blank 

£ Period 

0000000 o 0 00000000000000000000000000000000000000000000000000000000000000000000000 
1234561 89 10111213141516171819202122232425262128293031,32333435363138394041424344454641484950515253545556515859606162636465666168691011121314151611181980 

1111111 11 11111111111111111111111111111111111111111111111111111111111111111111111 

2222222 2 2 22222222222222222222222222222222222222222222222222222222222222222222222 

3333333 3 3 33333333333333333333333333333333333333333333333333333333333333333333333 

4444444 44 44444444444444444444444444444444444444444444444444444444444444444444444 

5555555 5555555555555555555555555555555555555555555555555555555555555555555555555 

6666666 6 6 666666666666666666666666666666666666666666666666666 66 6 6 6 6 6 6 6 6 6 666666666 

7171717 7777777777777777777777777777777777777777777777777777777777777777777777777 

8888888 8 8 88888888888888888888888888888888888888888888888888888888888888888888888 

9999999 9 9 99999999999999999999999999999999999999999999999999999999999999999999999 
1234567 8 91011121314151617111920212223242526272829303132333435363138394041424344454641484950515253545556515859606162836465666168691011121314151611181980 

Figure 11. 

Company Name Blank 

00000000000000000000000000000000000000000000000000000000000000000000000000000000 
12345616 9101112131415161718192021222324252621282930313233,3435363136394041424344454641484950515253545556515859606162636465866168691011121314151611187980 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

22222222222222222222222222222222222222222222222222222222222222222222222222222222 

33333333333333333333333333333333333333333333333333333333333333333333333333333333 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 4 4 4 4 

55555555555555555555555555555555555555555555555555555555555555555555555555555555 

66666666666666666666666666666666666666666666666666666666666666666666666666666666 

7 7 7 7 7 7 7 7 17 17 7 7 17 7 7 7 7 7 7 17 7 17 7 17 7 17 7 17 7 17 77 7 17 7 7 77 7 7 7 7 7 17 7 17 7 7 71 7 7 71 7 17 7 17 7 7 17 7 7 17 

88888888888888888888888888888888888888888888888888888888888888888888888888888888 

99999999999999999999999999999999999999999999999999999999999999999999999999999999 
12345618 91011121314151611181920212223242526272829303132333435363138394041424344454641484950515253545556515859606162636465666168691011121314151611181980 

Figure 12. 

18 



Section Subsections 

35 20 I 

Street Address 

00000000000000000000000000000000000000000000000000000000000000000000000000000000 
12345678 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

22222222222222222222222222222222222222222222222222222222222222222222222222222222 

33333333333333333333333333333333333333333333333333333333333333333333333333333333 

4 4 4 4 44 44 4 4 4 4 4 44 4 4 4 4 4 44 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

55555555555555555555555555555555555555555555555555555555555555555555555555555555 

66666666666666666666666666666666666666666666666666666666666666666666666666666666 

77777777777777777777777777777777777777777777777777777777777777777777777777777777 

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 

99999999999999999999999999999999999999999999999999999999999999999999999999999999 
12345678 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 

Figure 13. 

City and ZIJ) Code Blank 

000000000000000000000000000000000000000000000000000 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12345678 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

22222222222222222222222222222222222222222222222222222222222222222222222222222222 

333333333333333333333333333333333333333333333333333 3 33 3 3 3 3 3 3 33333333333333333333 

44444444444444444444444444444444444444444444444444444444444444444444444444444444 

55555555555555555555555555555555555555555555555555555555555555555555555555555555 

66666666666666666666666666666666666666666666666666666666666666666666666666666666 

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

88888888888888888888888888888888888888888888888888888888888888888888888888888888 

999999999999999999999999999999999999999999999999999 9 99 9 9 9 9 9 9 9 9 9 99999999999999999 
12345678 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 

Figure 14. 

19 

10 

Page 

23 



Section Subsections Page 

35 20 I 10 24 

StiJte FcdcriJl 
Account Accounl 
No. Blunk No BieHl" 

0000000000 0000000000000000000 0000000000 00000000000000000000000000000000000000000 
12345618910 11121314151617181920212223242526272829 30313233343536373839 4041414344 45 46 47484950515153545556575859606161636465666168691011 1113 14151611 181980 

1111111111 1111111111111111111 1111111111 11111111111111111111111111111111111111111 

2222222222 2222222222222222222 2222222222 22222222222222222222222222222222222222222 

3333333333 3333333333333333333 3333333333 33333333333333333333333333333333333333333 

4444444444 4444444444444444444 4444444444 4 4 4 4 4 4 44 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

5555555555 5555555555555555555 5555555555 55555555555555555555555555555555555555555 

6666666666 6666666666666666666 6666666666 66666666666666666666666666666666666666666 

7777777777 7777777777777777777 7777777777 77777777777777777777777777777777777777777 

8888888888 8888888888888888888 8888888888 88888888888888888888888888888888888888888 

9999999999 9999999999999999999 9999999999 99999999999999999999999999999999999999999 
12345618910 11121314151617181920212223242526211829 30313233343536313839 4041414344454641484950515153545556515859606162636465666168691011111314151611181980 

Figure 15. 

20 



IB~ 
INTERNATIONAL BUSINESS MACHINES CORPORATION 

PRINTER SPACING CHART 
LINE DESCRIPTION FiElD HEADINGS/WORD MARKS 8 lines Per Inch IBM 407, 408, 409, 1403, 1404, 144::', and 2203 Print Span: 

.~ IBM 1403 Models 1 & 4 -H I I 
, I 

II 
nT!T 

IBM 407, 408, 409, and 1403 Models 6 and 7 
hTTTTrTT -T ITTTTT -nTl[ 
Ii IBM 1403 Models 2, 3, 5, N1 and 1404 
I 1 I 

, 
IBM 1443 Models 1, N 1, an~ 2203 

GL UE 0 1 2 3 4 5 6 7 8 9 : 10 11 
;;;: (5 ttl m o,J C'lL,.r:o.WN_ ~ 231456789 01 234151678 9 0,1 2 3 4 5,6 7 8 9 o 1 2 34 5 6'7 89 o 1 23,4567 89012:314'56,7890 ,1 2 3l4'sT617 8 9 0' 1 2 3,4 5 6 7 89 01234,567890 1234567 8901234567890123456789~ 

1 I I I I I I 

12 I I I I i 
, 

l 
" 

3 , .. I I ! i, I , 

I 
4 

I ~ ~ 
I~ 

• 
I I I I 

5 jl I i I 

~ ! : 6 f I I 7 

~ 
, j 

J~ ~~: 
8 I , I 
9 trl IXI i 

10 I ' II 

11 I 
-i- - -

iT1~ 
I 

'." - 12 '- ~ j,. I 
,~~ ;; I 13 " .1 It 'i 

"""" 14' "'-b. I ,.v 
- ~ ~ :d'i, 

Figure 16. 

~! 
IB~ 

INTERNATIONAL BUSINESS MACHINES CORPORATION 

PRINTER SPACING CHART 
LINE DESCRIPTION FIELD HEADINGS/WORD MARKS 8 lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443; and 2203 Print Span: 

IBM 1403 Models 1 & 4 +-i I 
IBM 407, 408, 409, and 1403 Models 6 and 7 

TTTT TTTTTT 
I~M 1403 Models 2, 3, 5, N~T-T\~~~41 ITTTTTTTTT 

IBM 1443 Models 1, N1, an~ 2203 

o 1 2 3 4 5 6 7 8 9: 10 11 
1 '1,1 2 3456789 01 234'567890 1 2 3 4567 Ii 9 0 1 234567890 1 234567890 1 2345 67 8901 1 34,5:6789 0 1 23 4 ,516 7'8,9 0 1 23;4;567 890 1 234 5678,90 1 2·3456,7 890

1
1 2,34 5!>-jZ 890 

2 I I ' I I 

4 I I I 
5 ~ a: r~~ .. 

Cf) 
CD 

W 
() 
r-+ 

01 o· 
:::J 

t>:l 
Cf) 
C 0 0" 
CIl 

r-- CD 
() 
r-+ 

I-' 
o· 
:::J 

0 CIl 

Figure 17 

t>:l 
"iJ 
Q) 

01 co 
CD 



en 
CD 

C;.:l 
(') ..... 

01 O· 
::l 

~ en 
0 c 

0'" 
en 

i--- CD 
(') ..... 

I-' 
O· 

0 ::l 
en 

~ 
""tJ 
Q) 

~ to 
CD 

IBJ.t INTERNATIONAL BUSINESS MACHINES CORPORATION 

PRINTER SPACING CHART 
LINE DESCRIPTION FIELD HEADINGS/WORD MARKS 8 Lines Per Inch IBM 407, 408, 409, 1403, 1404, J 443, and 2203 Print Span: 

1403 Aadels 1 & 4 .} I 
·1 

407, 4J8, 409, and 1 ~q3 Models 6 nd 
I I IT 

1403 Aodels 2. 3, 5, I] and 

I i I 
~443 Aoje-,,- N1. c d 

I I, I 11 ' I I 
GL' :UE ) • ) I 7 ) 

i I 
! II i I II I 

I I; : I, I i 

I 
I 

I 
I 

E . 
I ~ ~ I I I I ~ I II 

! I 
I 

;1., I ~ ! i 
.1 , I I 

I 
I I 

I 

~ 
I 

"""'" 

Figure 17. (Cont) 



IBr., INTERNATIONAL BUSINESS MACHINES CORPORATION 

PRINTER SPACING CHART 
LINE DESCRIPTION FIELD HEADINGS/WORD MARKS 8 lines Per Inch IBM 407, 408, 409, 1403;1404, 1443, and 2203 Print Span: 

IBM 1403 Models 1 & 4 t-l 
II 

I IBM 407, 408, 409, dnd 1403 Models 6 and 7 
I TTTIT tiTTITT -

II IBM 1403 Models 2, 3, 5, Nl and 1~04 
II 

IBM 1443 Models 1, N 1, an~ 2203 

II 0 2 3 4 5 6 7 8 9: 10 11 
.: 1 2 345678901 2345678 01 234567 B 90 1 2,3'4567 B 9 0 1 234567890 1 23145 678901 2 314567'89 0 1 234156789 0 1 234·567890 1 2345678901 2345678901 234567 '8 90' 

1 , 1 • • • 

4 II 
1 1 i 
1 I I I 

I 
! 1 

Figme 18. 

(f) 
(1) 

CI:l (') 
r-+ 

OJ O· 
~ 

~ 
(f) 

0 c 
0" 
(I) 

~ 
(1) 
(') 
r-+ 

~ 
O· 
~ 

0 (I) 

~ 
"1J 
OJ 

-1 CO 
(1) 



IB,., 
LINE DESCRIPTION 

.2 8. 
~ .2 

~] 

FIELD HEADINGS/WORD MARKS 

8~ oH++H~H++HI~----~~~ 
2~ '. ~ .~ ~ 
.s~ "H++H~H++H!~-----~~~ 

INTERNATIONAL BUSINESS MACHINES CORPORATION 

PRINTER SPACING CHART 
8 lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span: 

,IBM 1403 ~odels 1 & 4 I 
1 

407, 408, 409, and 1 13 Models 6 c~nd 

1403 ~odels 2, 3, 5, II' and 

IR, 1443 ~odels N 1 c 

4 

II 

I .!iii 
1 

I 
I 
I 

J 
I 

11 ~ H-t+H'ff-tt-tTtir------T.-';'-t-+-t-
1 ~ 0; H-t++t+t-t+++Hf-------+i*H_1-
jl ~H-t++tI~"t+++Hf------~H_I_H~~++-~~HH~++++++HH~++++++HHrlH~~+++++HHHrl++++++HHHrl~++++~HH~++++~HH~++++++nrHrl+++++THHHH~+++Trr~ 

.~H+HI'.rt+++Hr-----~H-I-H~~++-~~HH~++++++HH~++++++HHrlH~++++++HHHrl+++++THHHrl~+++TrrHH~++++rrHH~++++++nrHrl+++++THHHH~++++rr~ 

Figure 19. 

en 
CI) 

V.:> (') 

01 .-+ o· 
:::J 

~ en 
0 c 

0-
en - CI) 
(') 
.-+ 

..... o· 
:::J 0 en 

~ 
iJ 
Q) 

00 to 
CI) 



, 

IB~ INTERNATIONAL BUSINESS MACHINES CORPORATION 

PRINTER SPACING CHART 
LINE DESCRIPTION fielD HEADINGS/WORD MARKS 8 Lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span: 

1403 r\odels 1 & 4 t I 
407, 4 )8, 409, and 1 13 Models 6 c,nd 

1403 r\odels 2, 3, 5, nand 

1443 Aodels 1 Nl a ? 

! 

I 
Ii 
I' 
I 

~ t :HH++HH~+H,~----~~~~-rHrl~Hrl~-H~~~-HHrl~~~~~~~~~~~~~~~~-rI-H~-~~~~~~1~~~~~~~~~~~~~~~~~~~~++++~ 
tl :HK+H~H++HI~----~~H 
8 ~ ~ HH++HH~+H,~----~7<++__I'_ 
:~ :HK+H~H++HI~----~~~ 
,~ ~ ;; H-tt+tffl-t-t1H-if--------+m-H--
.51 
11 ~ HH++HH~+H-t~----~~_tt_+_c 
~ 5' ~HH++HH~+H,~---~-:-:T++-! 
j 1 ; HH++HH~+H,~----~~+__I'_ 

.HH++HH~+H,~----~~~ 
j ~ s f-t-t-H-t.-t-t++H--jf-------t-ffi+t_' 

~l:~~,~~~~~~~~~~~~~~~~~~~~~~~ 
~~ 

Figure 20. 

CJ) 
CD 

CI:l (") 
.-+ 

CI o· 
::J 

~ CJ) 

0 c 
0-
(I) 

- CD 
(") 
.-+ 

I-' o· 
0 ::J 

(I) 

~ 
"0 
Q) 

~ co 
CD 



IB,., 
LINE DESCRIPTION 

GL UE 
;;::01001" 

INTERNATIONAL BUSINESS MACHINES CORPORATION 

PRINTER SPACING CHART 
fielD HEADINGS/WOlD MARKS 8 lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 220'3 Print Span: 

IBM 1403 Models 1 & 4 +-: I 
IBM 407, 408, 409, and 1403 Models 6 and 7 

!T 
IBM 1403 Models 2, 3,5, N 1 and 1404 

IBM 1443 Models 1, N1, an~ 2203 

o 1 2 3 4 5 6 7 8 9: 10 11 
'12345678901234567890J234567890123456789012345678901~34567~9012345~7890123~56789012345678901234567890123456789 12~4S6789 

I 
I 

J 

~ ! :H4++~++~~~----~~~~~~-H~~-H~-H-H~~-H~~~~~~~4444~444444-H-H-H-H-H-H-H-H-H-H44-H-H-H-H-H-H-H-H-H-H-H-H-H-H++++++++-H++++++++~ 
tl :~tt~jt~~~====~~I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~++++++++++~ 
: ~ ~~ 
.~ a 13 
.~ "i 14 

11 ~! 
l 5 17 

11 :: IXIXIXIX 

j 1 ~~ 

!~ : 
~~ :HH++~++~~~-----4~24H1-H-H-H~-H-H-H-H-H-H-H-H-H-H1H-H-H-H-H-H-H-H-H-H-H~-H-H-H-H-H-H~++++++-H-H-H++++++++++++-H-H-H++++++++++++++~++++++~ 
~~ ~HH++~~+HH~----~~~:~~~~~~~~~~~~~~~~~~~~~HHHHHH~~~~~~~HHHH~~-H-HHHHHHH-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H~ 

~ ~ ;HH++~+++HH~----~~~~~~~~Hr~~~~~~~H-H-~-HHHH-HHH--HHHHH-HH-H-H--HrHH-~HHHH-H~-H-H-HHHHH-HHH-HHH-H-HHHHHHHHH-HHH-H-HHHHH-H-H-H-H-H~ 
~2 :~_~_~~~LU~~----~429~~~~~~~~~~~~~~HHHH~~HHHHHHHHHH-HHHHH~~HH~HHHHHHHH-H-H-H-HHHHH-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-rn. ! l f"ou. ~! 
.~1 EHH++~+++HH~----~~~!~~~~~~~~~~~~~~~HH~~HH-H~-HHH-H~-H~rH-H~~HHHH-H~-HHH-HHHHH-H-H-H-H-H-H-H-H-H-H-HHH-H-H-H-H-H-H-H-H-H~ 

{i ~HH++~+++H~~----~~~~~HH~~~~~~~~~HH~~HHHH~HHHH-HHH-HHH-H-HHH~HH~~HHHH-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H~ 
~1 ~HH++~+++HH~----~~~:~~~~~~~~~~~Hr~~HHHH~~HHHH-H-HHH-HH-HH~~HH~HHrHHH-H~-H-H-HHHrlrlrlrlHH-H-H-H-HHHHH-H-H-H-H-H-H-H-H-H-H-H-H-H~ 

.1 ~ !H4++HH++~~~-----4~:~~-H-H-H~-H-H-H-H-HHH-H-H-H-H~-HHHHH-HHHHHHH-H-H-H41HH-H-H-HHHHH~~HHHHHHHHHHHH~~++~HHHHHH++++++++++~~++++++++++~ 
~! : 
~ ~ HH-t+~-t+t+t-Jr------t7.:~H-It-HHH-HiH-H-HHH-H-H-H--,--j-H-H-H\H-H-H-H--t-: ~--I+H-~H-~~tIt-~~~~~~+-I--~~~~rr~~H--HHH~H-rr~H-H-HHHH~~HHHHHHHHHHHHf-:-t 
11 : 
co... 48 
I~ ~ 
~ .~ 50 
~ ~ ~H4++HH++~~~-----4~~~~-H-H-H4H-H-H-H-H-H-H-H-HHH-H~-HHHHHHHHHHHHH-H-H-H~-H-H-H-HHH++~~~HH~~++~++++++++++~~~++++++++++++++++++++++~ 

~i ~HH++HH++~~~-----4~~!~-H-H-H4H-H-H-H-H-H-H-H-H-H-H1H-HHHHHHHHHHHHH-H-H-H~-H-H~~~-H~++++HH~++++++++++++++++~-H++++++++++++++++++++ft++~ 
~~ ~~~~~LU~~----~~55~~~-H~~-H-H~-H~~-H-H-H~~-H-H-H-H-H·~~+t-H~~-H-H-H-H-H-HH4·-H-++++-H-H-H++++++++-H++-H++++++++++++++++++++++++~ i ~ ~~::o~m~ ~~ 

1~: I~ 
~~L~~·;~~±t~±±ta~~~~~~~~~333J~33jj:833~J33333~~3j33~3j~~~~ji~~~jj~~~~~~~**~~~~~llllllllll11llll~~i!!!iiii!IIiii~!i!!!E 

~~~,~~w-~~-~-. ~ 

Figure 21.

CJ)
ct)

""
()

01 r+ o·
::J

I\:)
CJ)
C

0 0-
en
ct) - ()
r+

I-'
o·
::J

0 en

" ""
Q)

0 co
ct)

.,
IB", INTERNATIONAL BUSINESS MACHINES CORPORATION : PRINTER SPACING CHART I
LINE DESCRIPTION FIELD HEADINGS/WORD MARKS 8 Lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span: I

.In 1403 hodels 1 & 4 .J-1 I
I

~4)8,.409, and 1~q3 Models 6 c!nd
I

1403 hodels 2,3, 5, .N1 and'
I

1443 ~odels 1 N1. c .~

GL tUE 2 ~ 11 1

I I

~ t :

• • • • I
16

I I t ~ :

• 8 f ~
2 ~ ~

~ .~ g r:;
.: -

l " .J.o ...,
~...- ~ ~

,.... ..
~

FiglU'e 22.

en
CD

CI:I
(')
.-+

01 o·
:J

I:\:) en
0 c

C"
en --- CD
(')
.-+

..... o·
0 :J

en

CI:I
""0
Q) CO
CD

(f)
en

CN n
C1 o·

~

IB"1 INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span: LINE DESCRIPTION 8 Lines Per Inch

1403 Aodels 1 & 4 I
407, 438, 409, and 1 13 Models 6 c!nd

I

~
(f)

0 C
cr
VI

~
en
n

I-"
o·
~ 0 VI

1443 00dels 1 Nl c ~
CN ."

Q)
~ to

en

! i

Figure 23.

IB"1 INTERNATJONAl BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
LINE DESCRIPTION FielD HEADINGS/WORD MARKS 8 lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span:

1403 \.Iodels 1 & 4 g I
407, 408, 409, and 1403 Models 6 ,;nd

1403 Ylodels ~3.5, :N1 and

,IBM 1443 lIodels N 1 c

GL~UE 1

Figure 24.

U>
CD

C.:l 0
C1 ~ o·

::J

t\:) U>
0 C

0-
CIl

~ CD
0
~.

..... 0
0 ::J

CIl

"'tl
C.:l C)

C.:l <0
CD

IB~
liNE DESCRIPTION

FiglU'e 25.

IB"1
LINE DESCRIPTION

FiglU'e 26.

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
FIELD HEADINGS/WORD M,\RKS 8 Lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span:

1403 -,adels 1 & 4 +
, I

407, 4)8, 409, _and 1<1 ~3 Models 6 nd
Ii

1403 Aodels 2, 3, 5, II and
I I I I

1443 Aodels 1 Nl, c

2 6 1

" :!

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
FIELD HEADINGS/WORD MARI:S 8 Lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span:

lh-rr"-"-rl-"-"-""-rl-""rr"rl-rr"--r,'--'--rl-,,rrrr"--rl-,,-'--'''---''--rl-rTTTrr!~Ti:r:-~';::::;:::1 i;:::I;:::;:::~~I~BM~I~4~0~3~M~~o:.c:d~el~s';I~&,'4~rti -H'-;I_,---,--,---,--,---,--,---llh-.--,-,--.--r--'-'-.-l~

'! I

o 2 3 4 5

!Ii TI I fi !

'r ,

6

IBM 407, 408, 409, and 1403 Models 6 and 7
Tl T ' I 1 T I I TTrni T I

IBM 1403 Models 2, 3, 5, N 1 and 1404
,I i I I

IBM 1443 Models 1, Nl, an~ 2203

7 8 9 10 11
, 1 2345678901 234 ! 678901 2 3 45167890,1 234,5,6:71890 1 2'3 4567890 1 2.3:4.5 6,7 8901 2 3:4,5,617'8,9 0 1 213,4'5,67819 0 1 '234567 890 1 234567890 1 2345678901 234567890

1 I I : II .! ' II

i:
3 I 1 I •

4 l I i I ! J

:
~
I

C;.:J
<:Jl

t-..?
0

~

t-'
0

C;.:J
fI::>.

CJ)
CD
()
.-+ O·
::::l

CJ)
C
0'
VI
CD
()
.-+
O·
::::l
VI

"'C
Q)

<0
CD

'":t1
QQ.
!;
(l)

IV
u;

;'-l 0

~

u;
U1

U;
0)

~

c-"

r-------
FIT

Local Tax

Credit Union

Charity

Union Dues

Insurance

Stock

Misc.

~Q
:lJ G>
til ...
C) 0

a.~

o

u;
c;;

~
o

~

~
(11

~
0)

C;;
0

~

w U1
w en

~ o

~

~

~

~

Processing Status

Oed. Code

Gross
r-

Avg. Pay Rate

OT Rate

Regular Hours
~

OT Hours

- Bonus Hours
-

- Regular Earnings

OT Earnings

Bonus Earnings -

Other Earnings

Code

Holiday Pay

Vacation Pay -

- Sick Pay

-
Net Pay -
FICA

~

en
(11

en I--
en I-

t
-.j I
o

I--
::!

t
:r

I-

00
01--

~

~
::l III
0';1
3 ~
g. ~
::J ;

YTO Hrs.

Credit Union Oed.

ffi Credit Union Month-to-Oate

~ Check No.

Additional WH

Stock Oed.

Ins. Oed.

~ I Misc. Oed.

~ Char. Oed.

Stock Oed. Month-to-Date

co
U1

co

t
I--

en I-

t

"tI
Cil
<
~.

w

I
~

8tt-----~
o
~ t-

t
o

o
:lJ ~
'" ~ a: ~.

~ I Union Init. Fee J

.-

~t-
0)

I-

t
~1-
~

t
w
U1t-
w en

~r
~t:..
~ en

U1
t

0t--
~

~

;b

~t
~

0(

~
8

~
a o

~ g.

L

---,

t
(111--
0)

r+ ~ m
=fillS:
c ~ "tI
-:i" r
U1 co 0
0) III 0(_ m

g g ~
~ cu a
~ a ~
3: g ~.
o ... 0
.., -' j

g ~. ~
~ co a

Clock No.

z

~

o t-I _______ ~

::::
Social Security
Number

Status

u; Union Dues

C;; Weeks Employed

Weeks Paid

Marital

Fed. Xmps.

~ I State Xmps.

~ Sex

Pay Rate
.- -- --

c-"
CJ)
(1)

01 (")
r-+ o·
::J

N CJ)
0 c

0-
(I)

~
(1)
(")
r-+

..... o·
0 ::J

(I)

c-" ""tJ
Q)

01 CO
(1)

Section

35

~
(

(

(
)

i
~
)
(

~

)

)
(

/

I

Subsections Page

20 I 10 36

Each record is composed of 1 word,
The number of records in the file is
the number of employees in the
plant plus 25%, The last entry is
the record number of the last clock
number entered,

I I I I I I I
25 26 30 31 35 36

Quarter-to-Date

Information

I I I
65 66 70 71 7576

(II

~

~ ~
:l '" ::l

~ ~ en '0 a: '"
0

'" 0 III 1ti :x: 0
e () ~ 0 :x:
'~ -g e (l. a: '" :x: (II

(!) I- :; ::l g. l- e
e 0 0 g> 0 0 « a: IX!
(l.

I I I I I I I
110111 115116 120121

e
(II

~
0

'" '" '0:
,~

~ u

l- I- ::::> 0 e
tl ~ 13 e ~ For Growth

u::
~ 0 ~ 0

~ ~ cil of Record 0 () '0: e
-' () ::::>

I I I

150151 155156 160

Figure 28.

o
z
tl (
c3)

l

Year-to-Date Information

I I I I •• I I I I I I I I I I I I

40 41 45 46 50 51 55 56

'" '" ~ '" -g 6 9
';' :x: ~ 0 -5 ;:: -0

~ e ci -g -g -5 e iii '" -g 0 0 Z 0 e
'0: :2 e 0 0 0 0

0 ::::> .>t: 0 tl ~ :2 Previous 13 weeks
l- e ~ ';:; ~ 0 '5 9 '" -g >-

~ '0: ~ ~ ~ () '0 en ()
::::> « 0

()

~
tl
0

I U cil
I I I I I I

8081 '85 86 9091 95 96

g, [q, [q,
.~

[q, e e
~ ~ e .~ .~ .~ (l.

(l.

w '" e
w W 't.l ~ 0

'" W (II
0 'N :; ::l '"
() :2

l- e ~ '0 g> 0 0 0 '" a: IX! :x: >

I I
125126 130131 135136 140141

32

I I

60 61

Overtime
Rate

I I I I

100101

~ ~ (l. (l.
.>t:
u '" en z

(
)

)
)

'" '" u..
..:
'0:
e
0
'0:
::::>

105106

«
()

u::)

I I ~
145146

Section Subsections Page

35 20 I 10 37

ci
z
~ ci
~ z

This is the plant information record. Plant Name ~ U (l)

.~ ~
u..

I I I
5 6 10 11 15 16

> ci

~
> z

General Ledger <: ~
~ ~ ~ ~

.c ;:J ~ " 0 (l)

Trade Association Information Account Numbers u 0 s: (l) .c . E ~t5 z u
for Posting ~ « (ij

~ :a; 0 0 f- f- u::

I I I I I I I I I
25 26 30 31 35 36 40 41 45 46 50 51 55 56 60 61

Available for Expansion

I I I I I I

65 66 70 71 75 76 80 81 85 86 90 91 95 96 100101 105106

Figure 29.

33

Section Subsections Page

35 20 I 10 38

PAYROLL PROGRAMS

PAY01: PAYROLL FILE CREATE

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

V>
0..

Date ap...:S707 "C :2:1- Application PAYRoLL SYsrEA? 0 U.J::)
MAX. MIN.

NAME s: 1-0..
* ---I- K.fiC~ U.J '0 1-::) VALUE VALUE

Program Name File C/'ea/e 0 ~o No./3IYO/ Programmer
0 c:i
:2: z ~

FUNCTION OF VARIABLES

Ck";14AX R ~ T /N~~ ¢.¢(/ Mt:?K/;npm c.4ecL c7/YJOV/7~ /brt:? /J/e,

COA4P 11ft' I~ J;~ - - Ct)n?/a.n.;/' bda-7C?,

P8PE R ~4 0 ,~rI~ ¢,¢¢ Trdk .1?SSoc/'.:7~on r'eptCJrh.

Z I / r vsecl I'n .2)0 /C)O~

Ie Z / A/ - - E~v/~aka~ I-CJ ZN../

I;CIIC/c .r / r Se" ,t'Jor
..8e.q/~n//;q c,4~c.l;;.. /7",nl(;',-,-. t:.t.//'~/7 U//"/l'/N9 each rc./a Ch~~es.

Ieo!.. I / T 250 1 Recor.:-J nLlrn~erl;"'; E/J/;7/05/~e A/es,. se~~ .6,::1
"PL4n7'-

fA/v - I T /O(I, /¢/ "&/Ie "Llmbe'" t::?~ ,";""dt!!?'x ,,t.:?,,,...... a /,/4.-?r. ,.0# -I- /CJO .l

.L,A/LJEX Z ~ T >(X}(X /~td{i f/7dex to ?/4~/ /?~t.V 6(!"/",,=, ,Prt:7c~s.se'/

Z/\/ZT I I 0 ¢ ¢ (//7/t:;',., 1/)/rI~"'/::'n .,t'ee

.EAlI I I r 250 :f Pece:;rd ;?vh?k,... /~ Jnd~xe:5 ~Erlj/o]/;;':lee"&;k

Z#Z .r / N -- - E;PI'v~k~/ To fA/L

INS .z I IV' - - Ei'VI'v4/~n;': 7"'0 .LA/.t

.J' A/4 7 I J./ - - ~/I;'/A/#nl- ~, ;rA /;/
~ ---z"""'., "-'"'' .- ,"" ...

INS .E / AI - - E~vI;"'dk/?r 7'0 Z /1/1
I/./6 - I AI E'2(./ / Vc7 /~/JT 7'C).z N:f ~ - -
LPL/ Z I 0 t» ¢ hd;c-4~.s S1-Cllps 01' ~cod/;',Prarc~.ssl-":1 ~c~

.T5{/~'p If" 1.3 0 ¢ ¢ S'1./,Pr)/~I'?7~~,,;l4/ SI'c./: 'p4,tf

.z Tt:JT lL /1 r 1172.3 ~ . ;/Ccovn r /1vR1~~r ,t;,-'posltl1.ff rc /;' ~~~r",//eo!J~1'
£I1/EEK I I T S- .f ~e'£:: (/)1' ;/A ~ /J?~"rh

*Mode: I = integer, R = real, D = decimal, A = alphabetic

34

Section Subsections Page

35 20 I 10 39

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

Vl
c..

Date 8j/sA;7 "0 2:~ Application p4YROL~ ,c.:'Y5//c,A4' 0 LU:J
MAX. MIN.

NAME S ~c..
K//cK. * --~

Program Name ~/ /e C/'('4,;-'/"e LU '0 ~:J VALUE VALUE No./?? YC/ Programmer 0 ~O 0 0
~ 2: z

FUNCTION OF VAR~ABLES

£)1/1/A Z J IV - - ~U/v.:?~;;;,.//' ,~., ICOL

/-(' I / /' 9 ¢ LQS/ ~r€'7" /~.s/ /

L~.57 Z / 7 XxX ¢ Lt?s/ /~cort!/ nVP/tber /~ /3/e
L'80 z / AI - - E?/.//J/U/c::'/7/ ~o zeoL
L.BT .L I N - - qC//Vc7~/// 7.0 feeL

LklC £ / AI - - E?,u /v?/k~~r" /:? ZG'(::7L

L57 .L / T 2&:J ~5(2f L't? .. 5"/ recor/ /7t../n-;t6 .. ":?r /r, Q/J/e
LYA~WR I J 0 ¢ (2f Til 1'5 ';;je/1r's d CCt/rr-?u/4hor? CJr hOd,..S UJttJr~~t7'

J"-'br V(7qd~/o;? ?Qy

/W r / T (/~ec/ /" :Do loop

/WAR L I ~6 2 / A44r'//a I S-/dt'vS"'-(I-S/ag/ehr?-.r1'?/2rr/·edj

MI/,1/C E / AI - - qv,'vel/enf ~o.LCaL

AI~tJw/i Z / 0 ¢ ;;d \ . 4c1d/~'c>/?4/ 1.{}':/hA~M/?9 4/?'7PU/7~

tf/AM£ lit 9 ~o - - ~d'mn';lo/' 4r~t? ~~/4.,cd~d s;t.;)~ce /or .ndnJe

;VC/-lC~ £ I 0 (25 (2/ CAeck. /7orrl.6er vs-e./ ~I" 7A/s t?h:7p/oyee

A/cu L / t~ xx. xx af c ;-c>~;t y,.., / t!? ~04 cks---;,{-/c ~ 0 n

N'C(/~£ Z I C) aJ ¢' ;Y/O"/hy c,.~~/// (//1/orJ 4f---7t!vc ~ons (;n c/'mes)

NOvE'S r / ~tJ XX-xx ¢ Ch?/C;1"1 elves d't#dvcr/on

M~_s- I / ~t xx. xx (2J .Tr1svrt://)ce d~t"/vch&'7

N/f4/S{,! Z J CJ a1 ¢ I'/?/sre / /t:;,..., C't'vs d'~c/uc l/or7S'

If/ap.lT £ / r ~ I P/.c:?nr ht./,nber

*Mode: I = integer, R = real, D = decimal, A = alphabetic

35

Section Subsections Page

35 20 I 10 40

VARIABLES IBM 1 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

III 0..

Date Clj/S/6 7 "0 ~I- Application PA yROL L SYSTf;--vt (; w::::> MAX. MIN.
NAME s: 1-0.. .

;::~ f//;';;-/c::.. w '0 VALUE VALUE Program Name ,rC'/ /e C /' e t7 /e No./?4 ;/0/ Programmer 0 ~o 0 0
~ z ~

FUNCTION OF VARIABLES

.1/R/lT.c .z / ll;O 3y1~ /25 Ep1P/C'!;1'I!?c::.::? 'p4y ,. :':7/c.;"

#,';'"e-x Z / (,tJ -' ..3 / Sex -(/-/er.r7??/e) ,(2-/)h:l/e)) (.3-Ir"?/CKer)

A/5sAN' .z 3 Z;o 4/t(lA~S 9(~11/S ~oc/t?/ SecL/"''';'/~ nd/:)'/.6~/7

WST.45 Z / U S- f
Efl"?p/o~ee sldr~:s -(/-C//J;o,v; (2- ';''''~t:lc.e'''.J.,(t3-r7or?'Ur7ior?)
rv/I -hme),c4-r1t:>r1-ur7/t:>"j j:Jdr! hh/e))(2)-:'r-~r'n}/r,~I-~d) --

;1ISTCK Z / V;O xx. xx. cJ1 Slock c'/6?civc//on

A/ST;k"z;J ..E I 0 r;j ¢ M~/?/Ao/ s/oc,t;. e!ec!uc/'a;'?s

Nt/A Z I It) X)(.XX af (/rJ//ec/ a//et.?/ c/edvcr/Clr7S

Nt/M L / ?;a XX-XX 1~11¢ CL'c;cL /? t./ /Y) be".,

AlWKAfP .£ / 0 ¢ ¢ ~ffJ~t!"r t?/ ~e.f:;k's e?;7//.J£ oye./

,A/J1/~R£) r / 0 ¢ rd ¥vn-lbe/i f!),/ ('~Jt"'~e"-:s ~a/C/

NKAI'Pr .E / 1;0 /7 ¢ .f="'eqle,......~/ e X ~ tI'Y1,P~/o,,~ oS

N'xIWPS I / 0 /7 ¢ Sldl'e exe~l1p~/~/.;IS-

4JRTD R ~ 0 X)<>(X~ ¢.¢1¢ cpt../Qr;er-f,,-d'tl!e /n/or/77Q",.on(i)9;-~$S/2)r£7;(.3)rIC/l-,
('1)Loc:m.><',(SJ~IC.4 WQ9..es~ (~)s/ck t9,.t:1tj..

yrD R t 1;0 ~)()C")(.XIC ~~(/J Yet7/'1-t~-~~;~ /,,/a"A'7q~Qn(i)9"'''SS7(?) FIe ~(.3) F17)
(4) /,fC/J aJilt:leS (S)s/ck poc.J~ ('It) spec. A,(';I) spec. B~
(/J)/Qc. rlfl)(~(9) rtej7. hrs.,) (/"J or hrs~(I/) ~~,.,GtlS /'r.$'.,
'1Z)"'e!1' er"s:, (/.iJ 0 r erns ... {/t4) bD"''''$ err7S.

*Mode: I = integer, R = real,D = decimal, A = alphabetic

36

Initialize
Variables

Setup
Name
Field

Retrieve
Company

Name

Setup
Quarter
to-Date

Information

Check the
Data for

Reasonableness

Yes Initialize
Trade

Association
Information

37

Section Subsections Page

35 20 I 10 41

Section Subsections Page

35 20 I 10 42

• II FOR PAYOl

* IOCS(CARD, KEYBOARD ,DISK) PAYOl
** PAYOl PROGRAM PAYOl

• * NAME PAYOl PAYOl
* ONE WORD INTEGERS PAYOl
* EXTENDED PRECISION PAYOl

• * LIST ALL PAYOl
C----- JOB NAME PAYROLL SYSTEM - FILE CREATION PAYOl I C----- JOB NUMBER PAYOl PAYOl

• C----- PAYOl
C----- PROGRAMMER C.R.KLICK PAYOl
C----- DATE CODED 12123/67 PAYOl

• C----- DATE UPDATED PAYOl
C----- PAYOl
C----- FILE FILE RECORD NO. OF RECORDS PAYOl

• C----- NAME NUMBER LENGTH RECORDS PER SECTORPAYOl
C----- INPUT FILES NONE PAYOl
C----- PAYOl

• C----- OUTPUT FILES 1. COLFP 1 160 250 2 PAYOl
C----- 2. WVAFP 2 160 90 2 PAYOl
C----- 3. MNCFP 3 160 200 2 PAYOl

• C----- 4. LBOFP 4 160 50 2 PAYOl
C----- 5. LBTFP 5 160 150 2 PAYOl
C----- 6. LMCFP 6 160 30 2 PAYOl

• C----- 7. PINFO 25 106 6 3 PAYOl
C----- 8. INDXl 101 1 250 320 PAYOl
C----- 9. INDX2 102 1 90 320 PAYOl

• C----- 10. INDX3 103 1 200 320 PAYOl
C----- 11. INDX4 104 1 50 320 PAYOl
C----- 12. INDX5 105 1 150 320 PAYOl

• C----- 13. INDX6 106 1 30 320 PAYOl
C----- - - - - - - - - - - - - - -PAYOl
C----- PAYOl

• C----- ALLOCATE ARRAY STORAGE PAYOl
C----- PAYOl

INTEGER COMP(16) PAVOl

• DIMENSI~N FIBRE(8), INDEX(250) , ISUPP(13) , I TOT (11), NAME (9) , PAYOl
1 NSSAN(3), QRTD(6), YTD(141 PAYOl

C----- PAYOl

• C----- DEFINE THE FILES FOR THIS PROGRAM AS DESCRIBED ABOVE, AND PAYOl
C----- EQUIVALENCE THE VARIAALES FOR NEXT RECORD NUMBER PAYOl
C----- PAYOl

• DEFINE FILE 1(2S0,160,U.ICOL), 2(90,160,U,IWVA), PAYOl
1 3(200,16Q,U.MUNC), 4(50,160,U,LBO), PAYOl
2 S(lSO.160,U.LBT), 6(30,160,U.LMC). 2S(6tl06,UdC), PAVOl

• 3 lOl(250,1,U,IN1). 102(90tl,U,IN2), 103(200tl,U,IN3) ,PAVOl
4 l04(50tl,UtIN4) , lO5(150.1.U.IN5), 106(30tl,UtIN6) PAYOl

EQUIVALENCE (ICOL,IWVA,MUNC.LBO,LBT.LMCI, PAYOl

• 1 (IN1,IN2,IN3,IN4.IN5,IN61 PAYOl
C----- -PAYOl
C----- PAYOl

~ -----------

38

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

PAYOl PROGRAM

C----- INITIALIZE VARIABLES
C-----CKMAX=25000.

IC=l
ICOl-l
IN n-o
IN1-l
IPD-O
DO 68 1 .. 1.13

68 ISUPPIII=O
ITOTIll-111
ITOTl2 I =620
ITOT 1 3 I =620
ITOT151=625
ITOT161=626
ITOT171=627
ITOT181=628
ITOT(9)-0
ITOTIll)-635
lYRHR=O
NADWH-O
NCHCK=O
NCUDO=O
NMISC=O
NSTKD=O
NWKMP-O
NWKPD=O
QRTDISI=O.
QRTO(6)=0.
DO 69 Mal.14

69 YTDIMI=O.
C----- -
C-----C----- READ PLANT NUMBER, WEEK NUMBER. AND CHECK NUMBER
C-----READ(6.41 NOPLT

READ(6,4) IWEEK
READI6.5IICHCK

4 FORMAT Ill)
5 FORMATII21

C----- -
C-----C----- CALCULATE THE FILE NUMBER OF THE INDEX FOR THE CURRENT PLANT.
C----- FINISH INITIALIZING VARIABLES - ITOTI41. ITOT(10). LST
c-----

IND=lOO + NOPLT
GO TO (Cl.52,53,54.55.561,NOPLT

51 LST=250
GO TO 57

39

Section

35

PAGE

PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl

-PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl

-PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl

Subsections Page

20 I 10 43

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 44

PAYOl PROGRAM

52 LST=90
ITOT(10)=O
GO TO 58

53 Lsr=200
ITOTI10)"1723

58 ITOr I 4) =621
GO TO 60

54 LST=50
GO TO 51

55 LST=150
ITOT(4)=0
GO TO 59

56 LST::30
57 ITOT(4)=622
59 ITOT(10)=0

C----C-----
C----- SETUP THE .NAME FIELD AND RETRIEVE THE COMPANY NAME.
C-----

60 READI6,)1 NAME
3 FORMATI9A2)

READI6,ll COMP
1 FORMATI16AZ)

C----- - - - - - - - - - - - - - - - - - - -
C-----

PAGE 03

PAYOl
PAY01
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl

- - - - - - -PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl

- - - - - - -PAYOl

C----- READ ALL INFORMATION FOR ONE EMPLOYEE AND CHECK FOR LAST CARD.
C-----

500 READI2,ZI NUM, NRATE, NSEX, NSSAN, NXMPF, YTD(1), YTDIZJ, YTD(3),

PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl

1 YTDI81, NCU, NINS. NSTCK, NUA. NDUES. MAR. K
Z FORMATI1X.I4.13.Il.13.IZ.14.1X,IZ,F7.0,3F5.0.15.Z14.I3,I4.6X,IZ.

1 8X.Ill
C-----C----- IS THIS THE LAST CARD
C----- YES - GO TO 600
C----- NO - GO TO 10
C----- IFIK-9) 10,600,10
C----- - - - - - -
C-----
C----- SETUP EMPLOYEE STATUS CODE. STATE EXEMPTIONS, AND Q-T-D
C-----

10 NSTAS=l
NXMPS=NXMPF
QRTDIll=YTDlll
QRTDIZI=YTD(3)
QRTD(31=YTDIZ)
QRTO(4)=YTDI8)

C----- - - - - - - -C-----

40

PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl

- - - - -PAYOl
PAYOl

INFORMATNPAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl

-PAYOl
PAYOl

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

PAY01 PROGRAM

C----- EDIT MARITAL STATUS, UNION DUES DEDUCTION, SEX CODE, AND IF
C----- NECESSARY, MODIFY EMPLOYEE STATUS CODE.
C----- IFCMARI 101,101,100

100 IFCMAR-21 102,102tlOl
101 MAR:1

CALL STACK
102 IF(NDUESI 103,104,106
103 NDUES=O

CALL STACK
104 NSTAS=3
106 IFCNOPLT-31 120,115,120
115 NDUES=O
120 IFCNSEXI 109,109,107
107 IF C NSEX-3 I 110,108 tl09
108 NSTAS=2

NSEX=2
GO TO 110

109 NSEX=2
CALL STACK

c----- -
C-----c----- CREATE THE INDEX ENTRY FOR THIS EMPLOYEE AND WRITE HIS RECORD
C----- ONTO THE DISK. THEN GO BACK TO THE READ STATEMENT TO GET
C----- INFORMATION ON THE NEXT EMPLOYEE.
C-----

110INDEXCICOLI=NUM
C-----C----- WRITE TO THE DISK.
C-----WRITECNOPLT'ICOLI NUM, NAME, NSSAN, NSTAS, NDUES, NwKMP. NWKPD,

1 MAR. NXMPF. NXMPS, NSEX, NRATE, YTD, QRTD.
2 LYRHR, NCU, NCUDD, NCHCK, NADWH, NSTCK, NINS,
3 NMISC, NUA, NSTKD, ISUPP, INIT. IPD

C-----C----- GO BACK FOR ANOTHER EMPLOYEE'S INFORMATION
C-----GO TO 500
C----- -
C-----C----- LAST CARD HAS BEEN READ.
C----- INITIALIZE THE TRADE ASSOCIATION INFORMATION.
C-----

600 DO 650 1=1.8
650 FIBRECII·O.

c----- -
c-----
C----- WRITE THE INDEX OF EMPLOYEES FOR THIS PLANT TO DISK.
c-----

41

Section Subsections

35 20 I 10

PAGE 04

PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAVOl
PAVOl
PAY01
PAVOl
PAVOl
PAVOl
PAVOl
PAVOl
PAVOl
PAVOl
PAVOl
PAYOl

-PAVOl
PAVOl
PAVOl
PAYOl
PAVOl
PAYOl
PAYOl
PAVOl
PAVOl
PAYOl
PAVOl
PAYOl
PAVOl
PAYOl
PAYOl
PAVOl
PAVOl
PAVOl

-PAVOl
PAVOl
PAYOl
PAVOl
PAVOl
PAVOl
PAYOl

-PAYOl
PAYOl
PAYOl
PAYOl

Page

45

Section

35

Subsections Page

20

•
•
•
•
•
•
•
•
•
•
•
•

1 10 46

PAYOl PROGRAM

LAST-ICOL-l
WRITE(IND'l) (INDEX(I) ,1-l,LAST)

PAGE 05

PAYOl
PAYOl C----- -PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl

C-----
C----- WR I TE 1~E RECORD FOR TH IS PLANT TO 01 SK, THE NUMBER OF EMPLOYEES
C----- I N THE PLAN T TO THE I NO EX AND STOP. C-----

WRITE(25'NOPt..Tl eOMP, ICHCK, IWEEK, FIBRE. ITOT, CKMAX e-----
WRITE(IND'LST) LAST C----- -- -- ------------- -C-----

C----- STOP C-----
CALL EXIT
END

VARIABLE ALLOCATIONS
I COL -005B IWVA -005B
IN5 .005C IN6 -005e
NSSAN·01Dl COMP -OlEl
NMISC .. 01EA NSTKO·01EB
NUM -01F4 NRATE-01FS
K -OlFE NSTAS"OlFF

STATEMENT ALLOCATIONS
4 -022F 5 ·0231
58 =0343 54 "0346
101 -030B 102 "O"lEl
110 =0417 600 .. 0461

FEATURES SUPPORTED
ONE WORD INTEGERS
EXTENDED PRECISION
10CS

CALLED SUBPROGRAMS

MUNC -005B LBO -005B
FIBRE-0072 QRTD -0084
IC ,,01E2 INIT "01E3
N\f/KMP-01EC NWKPD.O lED
NSEX .01F6 NXMPF=O 1F7
NXMPS-0200 LAST "0201

3 .023, 1 -0236
55 "0351 56 -0350
103 -03E7 104 "03EO
650 =0465

LBT -005B
YTD -OOAE
IPD ·01E4
M .. OlEE
NCU =01F8

2 -0239
57 -0361
106 -03Fl

LMC -005B

-PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl

Ii'll -005C
CKMAX·OOBl INDEX-01AD
I -01E5 LYRHR.01E6
NOPL T.O lEF IWEEK-01FO
NINS .01F9 NSTCK=OlFA

68 *0280 69 ·02F7
59 -0367 60 -0360
115 .03F7 120 -03FB

IN2 -005C
ISUPP-01BA
NAOWH=01E7
ICHCK"OlFl
NUA -OlFB

51 -0327
500 -0379
107 -03FF

• STACK ELD ELOX ESTO ESTOX TYPEZ SREO SFIO SIOAI SIOFX SIOI SUBSC

SOCOM SDAI SDAF SOIX SOF SOl

REAL CONSTANT S
.250000000E 05,,020E .OOOOOOOOOE 00-0211 •

INTEGER CONSTI HS
1-0214 0"021$ 13"0216 • 111-0217 620-0218 625-0219 626-021A 627-021B

14.021E 6-021F 100·0220 250-0221 90=0222 200 .. 0223 1723·0224 621-0225

• 30·0228 622-0229 2"022A 9·022B 3-022C 8-0220 25-022E

CORE REQUIREMENTS FOR PAYOl

• COMMON 0 VARIABLES 526 PROGRAM 672

END OF COMPILATION

G-- - ----~-----

42

I

IN3 ·005C IN4 "005C
ITOT "01C5 NAME ·OlCE
NCHCK·01E8 NCUOO=Ol E9

I INO .01F2 LST -01F3
NOUES=OlFC MAR -OlFO

52 ·0320 53 ·0339
10 -03AB 100 -0305
108 ·0407 109 -0411

I

CAROZ SOFIO SOWt<T

I
628-021C 635-0210

50·0226 150·0227

•
•
•
•
•
•

II JOB
II XEQ PAYOl 3
*F[LES(1,COLFPI,(2,WVAFPI,(3,MNCFPI ,(4,LBOFPI,(5,LBTFPI ,(6,LMCFP),
*FILES(25,PINFO),

Section

35

*F I LES (101, I NDX 11 , (102, I NDX2 I , (103, I NDX3) , (104, I NDX4) , (105, I NDX51 , (106, I NDX6 I
10012142013323060 02
10022613083284339 02
10032142712982119 01
1004261303224 t ~?8 02
10053722614638734 02
10162801541032308 01
11072613213710014 02
1218214L782927112 01
13471711194511234 01
16033722822445678 02

Listing of input cards

1 • 1
01
THE CONTAINER CORP • • THE CONTAINER CORP.
THE CONTAINER CORP.

Console Printer input and output

43

Subsections Page

20 I 10 47

Section

35

Subsections Page

20 I

•
•

10 48

II JOB
II XEQ PAVOl 3
*FILES(1.COLFP).(2.WVAFP).(3.MNCFP),(4.LBOFP).(5.LBTFP),(6.LMCFP),
*FILES(25,PINf) •
*FILESllOl.INDX1).(102.INDX2).(103.INDX3).(104.INDX4).(105,INDX5),(106.INDX6)

Output on printer

44

Section Subsections Page

35 20 I 10 49

IBM 1130 MACHINE SETUP SHEET

PROGRAM PROGRAM
NAME: NUMBER:

PROGRAM APPROXIMATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO. OF COPI ES CARRIAGE TAPE

PRINTER

DRIVE NUMBER: 0 1 2 3 4

DISKS CARTRIDGE
ID:

SWITCH SWITCH SWITCH
SWITCH UP UP UP
SETTINGS DOWN DOWN DOWN

INPUT
CARDS

SOURCE OF INPUT:

DISPOSITION OF OUTPUT:

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

45

Section Subsections Page

35 20 I 10 50

IBM 1130 MACHINE SETUP SHEET

PROGRAM nle C"'4'dl-s PROGRAM PAYO/
NAME: NUMBER:

PROGRAM APPROXIMATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO. OF COPI ES CARRIAGE TAPE

PRINTER SrQ~4'''d L S~4Htr/'rd

DR.IVE NUMBER: 0 1 2' 3 4

DISKS CARTRIDGE ~~rdl/ X X X X 10:

SWITCH NpP6 SWITCH SWITCH
SWITCH UP UP UP
SETTINGS DOWN DOWN DOWN

INPUT
CARDS

(~

~J~ /~~ / I----

(Pf"T'AfL. C~

(/lXEQ~1-/
II JOe,

I I

SOURCE OF INPUT: L C ord' /~u:tt "'12m. 17 S"(;'C4..$S"~'- PAy 1.~ et.1Z r
~i;~ »'1U~ Ide. 12.~t2I/ d/.s.I:. ~1!/J. IZceQ.S: mr

DISPOSITION OF OUTPUT:
e6e1c/'N7' I/h,c,"d
~.D~_ ~/b:d~ (lee. 6'/~/aAle A.
~.f)"~k ~~ ~ us.eJ ~ EHr~ ~b.Lch 5~I2."-U

/;e ~Q./:J. 12e.J{.~

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

46

Section Subsections Page

35 20 I 10 51

PA Y02: ADD NAMES TO THE FILE

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

<J),
~

"0 ~I- Appl ication PAy' RO L L Date 8/22/b7 0 UJ=> MIN. NAME s: I-~ MAX. . '-I- CI.J'5 UJ '0 !3=> VALUE VALUE
Program Name Add NClfnf!.S 0 No·PAY 02 Programmer

0 ci ~o
~ z ~

FUNCTION OF VARIABLES

I I I I 250 I /}sed in 00 (.oop

ICLCJ< I I ! x><xx J.f)t/>¢ ClocK.. Numb~".

leOL I J T '2~O 1- Record nt)mber-

IAID I I i 259 I J<et:.ord numbey of a.n /nc:i/vidiJa./ employee.
INDEX I 2;() I)()(XX 1¢¢tP Index. TO pJa.l)t now be/nr proc.essed

INZT I I T '6f)¢ ¢ Un/on in i t i a.'t ion f'f!e. I

INOX I I T I¢' /PI Inr:Je~ f/le /)/)mb~r (plant: number + /00)

IN!. I I i 250 J. ~co"d n()mbe.r in il)de.x.es to e.ml'/o'lee fjle5

IN2 ! I N - - Equiva..!enr to INJ.

IN3 I I AI - - Eflui'la./e1rt -to IN1

IAl4 I / N - - Et:tviva.J~nt t-o IAJ 1-

I.N5 I I AI - - £ qp i valen r to IN!.

IN6 1 I AI - - c~tJil/4.lef')t: LO IAl1.

ISVPP I 13 7 ~¢¢ ¢ Sl/pp)em~nt:a./ si(.K peLY

IwvA I I AI - - Eflvivet!ent' "to reoL
K. I. I 7 9 ¢ La...st - ca.rd tes"C

LAST I I T 25t/J ¢ La.s"'t -record number in file
LBO I I AI - - €ttviva./~nr t"o reoL
L8T I I AI - - Ef.uiva./ent to IcOL
LMC. I I N - - ctt,uiV4lenr 1:0 TeoL

*Mode: I = integer, R = real, D = decimal, A = alphabetic

47

Section Subsections Page

35 20 J 10 52

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

'"
a.

Date 8122)67 "0 2!f- Application PA YROL t.. (5 w::::l MAX. MIN. NAME s: f-a.
* ---f- Cl..~~~ w '0 f-::::l VALUE VALUE Add Na.mes 0 ~o Program Name No.PAY 02 Programmer
0 ci
2! z ~

FUNCTION OF VARIABLES

LSi I I T 2~O B¢ La.s-C record number i/J a.. -rile

L'IRf-IR I I -r 8¢¢¢ ¢ TI;/5 'Iea.r~ a.CCf./mvla.:r/on 0-1 hovrs worKed
';01'" va.ca:'tion pa.y

MAR I / T Z I Ma."it~1 sta.tUS - (1- Str)C(ie), (Z-IYJa.rried)

M()AJC I I Ai - - cCZuiva..len't" rQ ICOL

NADWH I / T X'i,xx ¢ Additional withholdir,9 (;tmou/) t

NAME A2 , T - - ovmmv area. to a.1/oca.ted spa.ce lor /)a..me

NCJ-/cK. I I T xxxxx ¢ ChecKed I)umber U.5ed for "thiS employee

Ncu I I T x~.xx. ¢ Credit vl)io/} dedf/~-C ion d..m o()nt

NC()OD I I T XX.XX ¢ Mo~t"hlll credl-t fin/on dedllctl()l)S (if) dImes)

NDUES I I T xxXX ¢ Un/O/? dues dfEdvcTiol? a.meN./fit

IVIAIS I I T X'I.'XX ¢ /nS(Jra..l7ce. dedvc.t'IOI7 a,moC)()t

/J1'lfISC I I T XX.xx ¢ Mlscel/a.l'Jeo()s deduc1:iolJ5 Cl.ffJOUl'tt

NOPLr I I I ~ 1- P/a.f)t i/urnbel""

NRATe r I T 3.¢¢ /-25 £rl7?/oyee. ?a.'i ra.te
NSEX I I T 3 1 Sex-(2-R:ma..le), (2-1v'la.le), (3-TrucKer)
NS5AA/ L 3 T iAlwaVS 9dirits S~c.;a..1 S e.cur/-ty number-

NSiAS I I T 5 1 £tnplofee ST:tLC:U5 - (t .. union) /2- trvcKer~ .
·(3_~~~i?·!~OIJ,.p,!11 !lme), (4·l')o/}-ur;;on)p~~ "timeJ)($-terlf7lIJAt8:.D

A J~-rrV -r J T XX,XX tIJ S"toc.k deduc-C/oIJ f'1mount IV., f ', ... , r

N5T/(O I I T XX.Xx ¢ //lo/)th l'f stocK. deci(.Jc"tiOr)5

NUA I I T XX.XX ¢ Un/ted tLppea.! ded (.let 1017 a.molj/i't

*Mode: I = integer. R = real. D = decimal. A = alphabetic

48

Section Subsections Page

35 20 I 10 53

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

VI ~

Application PAYROLL Date 8/22/61 "0 ~f-
0 L.I.J::::> MIN. NAME 3: f-~ MAX.

* f:::~ Cf-ICI(
L.I.J '0 VALUE VALUE Program Name Add Names No·PAY 02 Programmer 0 ~o 0 ci
~ z ~

FUNCTION OF VA.RIABLES

NU!V1 J~ I r)o XXX X I¢¢¢ CiccI(/lumber /17 d/sl< recon:l

NUMB A2 , T - - Ernplo'(e.e.. lia . ./ne frofr; ca,rd

I/W;<MP J_. I T xxX.X ¢ .VUrfJbC:r- of wetJ...~s employed

t,/wKPO I I T 5¢ ¢ Number- of we~l(s ?a.id

N'l.MP": I I i 17 ¢ ;:e.dera./ ext?.",?tior)$.
/V'Xk1P$ I I T 17 ¢ St"ate exempt/oils
QR7"O R Gft; T ~i'.x:XK ¢.¢¢ QlA:~rtr.r to da.te. I I7.,Orma:tlan.11 tfY~!$lt'l.) t:lr; S)nCA)

(4)/oc .ta_x \ (5) I="ICA wa.r;es (~) $if:'1(paif

'(TO R I~ T ~X#.)6. ~,¢¢ yea.r to da.te illfol'-mat/o().(;)9rcs~ (2)F'ICA/.3),:'Ir))

(-f) PICA b>tJ..7es) (5) SicK?Q.../) (,,) S?ec. A)

(1) spec., 8; (6) /oe ra..>t;; (9) ref hovrs)

(Ie) or AO{)r5; (II) /::;onv'$ f;O:Jr~ (tt) re9 ef"{)5;
(13) 0 i erN'S, (14) tH.')I')CJS e rll S

*Mode: I = inte~er. R = real, D = decimal, A = alphabetic

49

Section Subsections

35 20 I 10

Page

54

Initialize
Variables

Locate
Employee
Record No.

in Index

Insert Name
in Employee

Record

Stop

50

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

II FOR
* IOCStCARD.TYPEWRITER.KEYBOARD
** PAY02 PROGPAM
* NAME PAY02
* ONE WORD INTEGERS
* EXTENDED PRECISION
* LIST ALL

.DISK)

C----- JOB NAME
C----- JOB NUMBER

PAYROLL SYSTEM - ADD NAMES TO FIL.E
PAY02

C-----C----- PROGRAMMER
C----- DATE CODED
C----- DATE UPDATED
C----C-----
C-----C----- INPUT FILES
C----C----C----C----C----C----C----C----C----C----
C----C-----

C.R.KLICK
12130/67

FILE
NAME

1. INDX1
2. INDX2
3. INDX3
4. INDX4
5. INDX5
6. INDX6
7. COLFP

WVAFP
MNCFP
LBOFP
L.BTFP
L.MCFP

8.
9.

10.
11.
12.

C----- OUTPUT FILES -- 1. COLFP
WVAFP C----- 2.

C----- 3. MNCFP
C----- 4. LBOFP

C----- 5. LBTFP

C----- 6. LMCFP
C----- - - - - - - - -
C-----C----- ALLOCATE ARRAY STORAGE

C-----

FILE
NUMBER

101
102
103
104
105
106

1
2
3
4
5
6

1
2
3
4
5
6

RECORD
LENGTH

1
1
1
1

1
160
160
160
160
160
160

160
160
160
160
160
160

NO. OF
RECORDS

250
90

200
50

1S0
30

250
90

200
~o

150
30

250
90

200
50

150
30

Section

35

PAY02
PAY02
PAY02
PAY02
PAY02
PAY02
PAY02
PAY02
PAY02
PAY02
PAY02
PAY02
PAY02
PAY02

RECORDS PAY02
PER SECTORPAY02

320 PAY02
320 PAY02
320 PAY02
320 PAY02
320 PAY02
320 PAY02

2 PAY02
2 PAY02
2 PAY02
2 PAY02
2 PAY02
2 PAY02

2
2
2
2
2
2

PAY02
PAY02
PAY02
PAY02
PAY02
PAY02
PAY02

-PAY02
PAY02
PAY02

DIMENSION
1

INDExt2501. ISUPP(131. NAME(91, NSSAN(31, NUMB(9).
QRTD(61. YTDtl41

PAY02
PAY02
PAY02
PAY02
PAY02
PAY02

C-----C----- DEFINE rHE FILES FOR THIS PROGRAM AS DESCRIBED ABOVE. AND
C----- EQUIVALENCE THE VARIABLES FOR THE NEXT RECORD NUMBER.
C----- PAY02

DEFINE FIL.E 1(250,160,U.ICOLI, 2(90,160,U,IWVAI. PAY02
1
2
3
4

EQUIVALENCE

3(200,160.U,MUNCI, 4t50.160,U,LBOI. PAY02
5t150.160.U.LBT). 6(30,160.U.LMC), 101(250.1.U.IN1).PAY02
l02(90.l.UtIN21, 103t200tl,UtIN3), l04(SO.1.U.IN41, PAY02
105t150,1.U.IN5). 106t30.1.U.IN6) PAY02

tICOL,IWVA.MUNC.LBO.LBT.LMC). PAY02

51

Subsections Page

20 I 10 55

Section

35

Subsections Page

20 1

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 56

PAYOl PROGRAM

1 (IN1,IN2,IN3,IN4,IN5,IN6)
e----- -
e-----C----- INITIALIZE VARIARLES
c----- IeOL-1

IN1-1
C----- -
C-----C----- READ PLANT NUMBER, CALCULATE THE FILE NUMBER OF THE INDEX FOR
C----- THE CURRENT PLANT. FINISH INITIALIZING VARIABLES.

C-----READ(6,]1 NOPLT
1 FORMA TIll)

C----- INDX=100 + NOPLT

e-----GO TO 180.81,82,83,84.85),NOPLT
80 LST=Z50

GO TO 90
81 LST=90

GO TO 90
82 LST=lOO

GO TO 90
83 LST=50

GO TO 90
84 LST=150

GO TO 90
85 LST=30

e----- -
e-----e----- READ THE EMPLOYEE INDEX FOR THIS PLANT

e-----90 READCINDX'LSTI LAST
READCINDX'll CINDEXCII,I=l,LASTI

C ----- -

e-----e----- READ EMPLOYEE CLOCK NUMBER AND NAME AND CHECK FOR LAST CARD.

e-----100 READC2,2) ICLCK, NUMB, K
Z FORMATII4,9A2,57X,I1)

C-----e----- IS THIS LAST CARD
e----- YES - GO TO 99
e----- NO - GO TO 120
e----- IFCK-91 120.99.120
C----- -
e-----

52

PAGE 02

PAY02
-PAYOl

PAY02
PAVOZ
PAV02
PAYOZ
PAYOZ

-PAYOZ
PAVOZ
PAVOZ
PAYOZ
PAVOZ
PAYOZ
PAVOZ
PAY02
PAVOZ
PAVOZ
PAYOZ
PAYOZ
PAV02
PAVOl
PAYOZ
PAYOZ
PAVOZ
PAYOZ
PAVOZ
PAYOZ
PAVOZ
PAYOZ

-PAYOZ
PAVOZ
PAVOl
PAYOZ
PAYOZ
PAVOZ

-PAYOZ
PAYOZ
PAVOl
PAYOl
PAYOZ
PAVOZ
PAYOl
PAVOl
PAYOZ
PAYOZ
PAVOZ
PAYOZ

-PAY02
PAVOZ

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Section Subsections

35 20 I 10

PAY02 PROGRAM PAGE 03

C----- SEARCH INDEX FOR EMPLOYEE NUMBER

C-----120 DO 125 I ml.LAST
IFIINDEXIII - ICLCK) 125,130.125

125 CONTINUE
C-----C----- IF THE PROGRAM COMES THRU HERE. THE CLOCK NO. IS NOT IN THE
C-----WRITEIl.4) ICLCK

4 FORMATI'CLOCK NO '14' NOT IN FILE')
GO TO 100

C----- -
C-----C----- ~EAD EMPLOYEE RECORD FROM DISK AND VALIDATE CLOCK NUMBERS
C-----

PAY02
PAY02
PAY02
PAY02
PAY02
PAY02

INDEXPAY02
PAY02
PAYOl
PAY02
PAYOl

-PAY02
PAYOl
PAY02
PAY02

130 IND-I
READINOPLT'IND)

1

PAY02
NUM. NAME. NSSAN. NSTAS. NDUES. NWKMP. NWKPD. MAR.PAY02
NXMPF. NXMPS. NSEX. NRATE. YTD. aRTD, LYRHR, NCU, PAY02

2 NCUDD, NCHCK, NADWH. NSTCK. NINS, NMISC. NUA. PAY02
3 NSTKD. ISUPP, INIT PAY02

C-----C----- VALIDATE
C----- MATCH - 140
C----- NO MATCH - 135
C----- IF(NUM • ICLCK) 135tl40.135

135 WRITE(l.S) NUM. ICLCK

PAY02
PAY02
PAY02
PAY02
PAY02
PAY02

5 FORMAT('CLOCK NO '14' IN FILE DOES NOT AGREE WITH CLOCK NUMBER
PAY02

'I4PAY02
PAY02
PAY02

1 ' IN CARD')
GO TO 100

C----- - - - - - - - - - - - - - - - -
C-----C----- UPDATE THE EMPLOYEE NAME FIELD. WRITE HIS
C----- AND THEN GO BACK TO THE READ STATEMENT TO
C----- NEXT EMPLOYEE.
C-----

- - - - - - - - - - - -PAY02
PAYOl

RECORD BACK TO THE DISKPAY02
GET THE NAME OF THE PAY02

PAY02
PAY02

140 WRITE(NOPLTIIND) NUM.
1 MAR,

NuMB. NSSAN, NSTAS. NDUES. NWKMP, NWKPD. PAY02
NXMPF, NXMPS, NS~X. NRATE, YTD. aRTD, LYRHR,PAY02

2 NCU. NCUDD, NCHCK, NADWH. NSTCK. NINS. NMISC, PAY02
3 NUA. NSTKD. ISUPP, INIT PAY02

C-----C----- GO BACK FOR ANOTHER EMPLOYEE'S NAME.
PAY02
PAY02
PAY02 C-----

GO TO 100 PAY02
C-~--- - - - - -
C-----

- -PAY02

C----- LAST CARD HAS BEEN READ. STOP.
C-----99 CALL EX IT

53

PAY02
PAY02
PAY02
PAY02

Page

57

Section Subsections Page

35 20 I 10 58

PAV02 PROGRAI PAGE 04

C----- -PAV02 • END PAV02

VARIABL.E AL.L.OCATIONS • I COL. -0054 IWVA .,0054 MUNC -0054 L.BO -0054 L.BT -0054 L.MC -0054 IN1 -0055 IN2 -0055 IN3 -0055 IN4 -0055
INS -0055 IN6 "0055 QRTO =0065 YTO -008F INDEX-OlBB ISUPP.0198 NAME -01A1 NSSAN-01A4 NUMB -OlAD NOPL. T-01AE
INDX =OlAF L.ST =OlBO LAST ·OlBl I -01B2 ICL.CK-OIB3 K ·01B4 INO -01B5 NUM -01B6 NSTAS-01B7 NDuES-01B8
NWKMP=01B9 NWKPD=OlBA MAR =OlBB NXMPF"OlBC NXMPS.,OlBD NSEX -OlBE NRATE-01BF L.VRHR-01CO NCU -OlCl NCUDO-01C2) NCHCK=O lC3 NAOWH=01C4 NSTCK"O 1C5 NINS =01C6 NMISC-01C7 NUA -01C8 NSTKD-01C9 INI T -OlCA •

STATEMENT AL.L.OCATIONS
1 =0107 2 =0109 .. =OlDF 5 =OlEE 80 -0244 81 -024A 82 -0250 83 -0256 84 -025C 85 =0262 •
90 "0266 100 =0281 120 =0291 125 =02AO 130 -02BO 135 -02F6 140 -0300 99 -033F

FEATURES SUPPORTED I ONE wORD INTEGERS
EXTENDED PRECISION

•
• 10CS

CAL.L.ED SUBPROGRAMS
ElD ESTO TYPEZ SREO SWRT SCOMP SFIO SIOAI 5101 SUBSC CAROZ SOFIO SOREO SOWIH SOCOM •
SDAI SDAF SDIX 501

I INTEGER CONSTANTS •
l=OlCC 6-01CO 100-0lCE 250-01CF 90=0100 200-0101 50-0102 150-0103 30-0104 2-0105

• 9-0106

CORE REQUIREMENTS FOR PAY02 • COMMON 0 VARIABLES 460 PROGRAM 372

END OF COMPilATION

~ ---

54

Section

35

• /1 JOB
/1 XEQ PAY02 2
*FILES(1,COLFP),(2,WVAFP),(3,MNCFP),(4,LBOFP),(5,LBTFP) ,(6,LMCFP),

• *F I LES (101, I NDX 1) , (102, I NDX2) , (103, I NDX3) , (104, I NDX4) , (105, I NDX 5) , (106, I NDX6)

---- -- ------ -- -- -- -- -- -- -- ---------

• 013 32 3060 ROBT B BADEN 1831.01 1831.01
083 28 4339 JOHN A HORN 2202.84 2202.84

• 712 98 2119 ROST L SHORES 1906.65 1906.65
032 24 4378 JOHN W CUSSEN 2286.25 2286.25
614 63 8734 JOSEPH MONTANO 3176.73 3176.73

• 541 03 2308 DONALD MILLER 1342.00 1346.00
213 71 0014 A E TAYLOR 2233.03 2241.03
782 92 7112 DAVID A Hl,;BBARD 1923.58 1923.58

• 194 51 1234 FRANK T DOLEN 1475.89 1475.89
822 44 5678 AL REYNOLDS 311+2.25 3142.25

•
Printer output

•
•
•
•
•

II JOB
II XEQ PAY02 2
*FILES(l,COLFP) ,(2,WVAFP) ,(3.MNCFr),(4,LBOFP),(5,LBTFP) ,(6,LMCFP),
*F I LES (101, I NDX 1) , (102, I NDX2) , (103, I NDX3) , (104. : NDX4) , (105, I NDX 5) , (106, I NDX6)
1001ROBT BRADEN
1002JOHN A HORN
1003ROBT L SHORES
l004JOHN W CUSSEN
l005JOSEPH MONTANO
1009THISISA MISTAKE
1016DONALD ~ILLER
l107A E TAYLOR
1218DAVID A HUBBARD
1347FRANK T DOLEN
1603AL REYNOLDS

Input cards

•
•
•

1
CLOCK NO 1009 NOT IN FILE
CLOCK NO 1017 NOT IN FILE

Console Printer output

55

Subsections Page

20 I 10 59

Section Subsections Page

35 20 I 10 60

I IBM 1130 MACHINE SETUP SHEET

PROGRAM . PROGRAM PAY02 NAME: Add /?t:?d/~S ro /Ae ///e NUMBER:

PROGRAM APPROXIMATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO. OF COPI ES CARRIAGE TAPE

PRINTER Sl-d/7dt:?~d / Sl"drJQdrc/

DRIVE NUMBER: 0 1 . 2 3 4

DISKS CARTRIDGE LX: LX: X X 10: ,P~/,V'//

SWITCH NOA/E SWITCH NONE SWITCH NO/l./E
SWITCH UP UP UP
SETTINGS DOWN DOWN DOWN

INPUT
CARDS

(q

'For t:>"e / /;0/(/1/7,1- f--

(NAME.l~LOCK
NO. CARDS /

(/ I X E:Q PAY02f----!.

1/ JOB l-I.

SOURCE OF INPUT: /. CL?r-d t../?~C/f TOr- a svccess/u/ PA y/~ ec7/T run.
2. .o/$K /?;t;sr b~ lZt::1.;f1.r-t:)// ~:Sk /'rt?rr? P4YO/.

DISPOSITION OF OUTPUT: /. #~le PI'?6'l'C/OCk:. /t.0. Ctlr45 &?re ~/&e/ //; /}/e 8.
£ . .£)/sk yo ~t::. ~S'(!;r::Z.. //7 PAYO~ (;U/I/en S~t!::IU/d
6~ C<L../7 cZ.t::.X'/.

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

56

Section Subsections Page

35 20 I 10 61

PAY03: CHANGES TO THE FILE

VARIABLES IBM 1 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

Vl
a..

Date 8/25/~ 7 "E ~I- Application PAYROLL
0 UJ:;:)

MAX. MIN. NAME * s: 1-0..
UJ '0 ;:::-~ VALUE VALUE Program Name Change.s 10 fJ,e rile. PAY 0:; C.R.K//t:.<
a ~o

No. . Programmer
0 ci
~ z ~

FUNCTION OF VARIABLES

I I I T 25¢ / Used ;17 DO loop

ICHNG I I I ItA / Chan!le codte;

IeLeK Z I I ~ / Fii-sl d/Jt'f of' clacK l'1(./moer

IeOL Z / T 250 / Record nvmi;e,r //7 telf'J,P/o!lee .fIles) sef (//, ~f j'!q,,-f

IilO I / T 2.5¢ / I(ec.ord /7(1m6er of' on /I'J(:/;·vid(.lc/ em?loyt! t;

INDEX I 25C T)(XXX /¢¢¢ I/?dex ~ 'plol'1"1- /70(// be/ng processed

ZNIT I I T I'¢¢ ¢ Un/o/? /n if i 0';; 0" Ie.e.

INDX I / T /¢~ /¢/ Zndex ,c/le. /'1(/m6er (plonf no. + /00)

INI I I T 250 I Recore! I7VI17/;er /n indexes 10 em;oI0!iee /J'les

IN2 Z / N - - £fj.t//vole,,1- fa IN/

IN3 I I N - - £9. ,,;,vo/ent to IN/

IN4 I I N - - £9I.1illt:l/e17';' fa II";/

INS I J IV - - £1j.1.I;'/la/~nf ;'0 INI

ING I I IV - - Etj(./ivolen 7- 10 IN/

ZPD I / T 1; Incl/coles stO'';'(l5 a/record;n ?rac~ss;/1,j cycle

ISt./.::;P I /3 i ¢ S tI,Pplemenfo I s/c~ ?O'j

IWVA I / IV - E~(/;'vo/el7f ta IeOL

k' I I T ¢ Losl-- cord lesf

-'AS"" Z / i ¢ Lasl record n(.lmber 1/7 t;'1e..

LBO I I N - £1. (//vo/el'1t ro ZeOL

*Mode: I = integer, R = real, D = decimal, A= alphabetic

57

Section Subsections Page

35 20 I 10 62

VARIABLES IBM T 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

II)
0..

Date 8/ Z .5/~ 7 "0 ~I- Application PAYROLL
(5 w:::> MAX. MIN. NAME . S t:~

{;'1e C.~.~//cl(w '0 ~:::> VALUE VALUE Chonges 10 lite Cl Program Name No. PA YO.3 Programmer
0 ci 0..0
~ Z ~

FUNCTION OF VARIABLES

LB7" I / N - - E~t/iJ/Qlel7f f"a ICOL

L,Me I / N - - £ ~(//J/(1le'7f 1'0 IeoL

LST I / T 250 3¢ /vIox/mt//l'l /it.//T7be, 01' records 1/7 0 -I'//e

L YRfiR :l / r 3¢¢¢ ¢ Th/s years O'cC(..I/f1(1/ollorl of hoW"S (J.;crhd for ,/ocaf;'on ?0,J

MAR I / 7 2- I)jor.:ldl 5101(/$ - (/ - .s//1J/~), (2- mor,;'ed.)

MI.INC I I N - - £" ~t//J/o/e/'1f fo ICOL

NADWfl I I T XXXX ¢ A del/I;or/ol wilhold//,g 0/770 t//7 f

NAME A2 9 T - - £ml'lo;tee II Cl!11 e

II/CliCK J: / T xxxxx ¢ C nee J.~ /7t//7'l.oe, (.loSea' .f'or -/11/'s e 117 f' IO.;t1 e e

NCU I / T XX.XX ¢ Cred/I- t//1/017 c/edt/cf/ol7 amot/nf

)./CI.IDD Z I T xxx.XX ¢ MOr7f/,j cred/of (//7/on d~d(/cf/()/7s (/n d/l77es)

ND{/['S I I T xx,xx ¢ (/11;017 dt/€£ de ducl/ons om 0 (./1'7;'

NEW I I I xxx.XX ¢ New /"f"rmol-/ol7 (/sed in eho17gc S'p~cJ;ed iJ!J coole (ICIi/lG)

NINS I / T XX.XX ¢ I/7st/ral7c~ dedt/clion 01770(.1171

NMI5C I / T xxxx ¢ IvI/.sc~/lol7eo(..ls ~ due 1/017..5 O/77o(.ln.f

NOPLT I I I ~ I P/cll'7i /7(/mber

NRAT£ I I T 3.¢¢ /,25 Em"%gee. ;;0!l rale

NSEX I / T ;j I .5e x - (1- -f4!l77o/e), (z- /77Q/~), (3 - fr(/cKer j

NSSAN L 3 T j/Wt1Ss ~ d'sits Soc/oj 5 ect./r't'ly /1(/mt;t!r

II/STAS I I T 5 I
.£m'p/ogee .sft:d'tlS,(f-(.Il7ion); (2-l'rucker), (3-/TOI7-(/I7;on
.t,,// flme\(4-ilcn-vn/ol7)/,Qrl flmt:)J (.5-f~rmi;7ld~d))

*Mode: I = integer, R = real, D = decimal, A = alphabetic

58

Section Subsections Page

35 20 I 10 63

VARIABLES ISM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

'"
0...

Date e /2 5 / ~ 7 "0 ::::EI- Application PAYROLL.
0 w::::> MAX. MIN.

NAME :s: 1-0...
* ;:::~ Program Name Chan~e.s 10 I/;e F//e

C.R Klick w '0 VALUE VALUE No.PAY03 0 ~O
Programmer

0 ci
::::E z ~

FUNCTION OF VARIABLES

115TCK I / 7 XX.XX ¢ Stoc.k d4dvc!/O/l amov17f

NsrK.O I I T XX.XX ¢)40171/,1!:I slock ded(/ci/ol7s

J./tJA I / T XX.XX ¢ t/n/tecl o'p'peo/ deduCT/on Ql71o///71

NtJM Z / 7- XX.XX I¢¢¢ C loc): /7C///l~er Ii? d/sK record

IvtJM13
,

1. c7st ,t.hree d/J/fs of c/oc~ num/;er I I 7 xxx xxx
NWKh1P I / T XXXX ¢)/I/m/;~r of' tI.Ieeks em?lo;l~d

IVWI<PD I I T 3rt; ¢ !Vtlm,6~r 01 (.(..;eeKs po/d

NXMP~ I / T 17 ¢ Feder4/ ex e 171)/I/OI1S

NXlv/P.5 r I T I? ¢ Sfcll'"e exelfJ?f;'ol1s

QRTD K 2- T XXXX.XX ¢.¢p
Q(./()rter - i"o - -dCJfe //7f"ormafJorl. (I) gross) (2) F.r 7j --

/s (J)FICA.(4.·)/oc.1'aX l (5) r.ICA U)agt!S, (~) sick .PO!!

YTD R
/4- T ~~.XX,XX ¢.¢¢ Yeor- ';0- dafe Ii?f"ormot;'on - (I) 3ross, (z) rICA,
4·2

(3) FIT) (4) FICA wage.s) (5) 5;<::/(pt:I.!f) (~) spec. A,

(7) S'p~c. t3, (8) joe. fox, (~) reg. ho,//'~ J (/0) 0 T

hOClr.5·
J

(II) L;onus oot/rs, (12) ,r~!J' erns) (/3) 0 T

e r l7S, (14) !; 017,,'5 e,rl?..s.

*Mode: I = integer, R = real, D = decimal, A = alphabetic

59

Section Subsections Page

35 20 10 64

Make
Change to
Employee

Record

Initialize
Variables

Validate
Change
Code

Locate
Employee

Record No.
in Index

60

Yes

Yes

Section Subsections Page

35 20 I 10 65

• II FOR PAY03
* IOCSICARD,TYPEWRITER,KEYBOARD ,0 I SIO PAY03
* NAME PAY03 PAY03 • * ONE WORD INTEGERS PAY03
* EXTENDED PRECISION PAY03
* LIST ALL PAY03 • C----- JOB NAME PAYROLL SYSTEM - CHANGES TO THE FILE PAY03
C----- JOB NUMBER PAY03 PAY03
C----- PAY03 • C----- PROGRAMMER C.R.KLICK PAY03
C----- DATE CODED 01/06/68 PAY03
C----- DATE UPDATED PAY03 • C----- PAY03
C----- FILE FILE RECORD NO. OF RECORDS PAY03
C----- NAME NUMBER LENGTH RECORDS PER SECTO~PAY03 • C----- INPUT FILES 1. COLFP 1 160 250 2 PAY03
C----- 2. WVAFP 2 160 90 2 PAY03
C----- 3. MNCFP 3 160 200 2 PAY03 • C----- 4. LBOFP 4 160 50 2 PAY03
C----- 5. LBTFP 5 160 150 2 PAY03
C----- 6. LMCFP 6 160 30 2 PAY03 • C----- 7. INDXl 101 1 250 320 PAY03
C----- 8. INDX2 102 1 90 320 PAY03
C----- 9. INOX3 103 1 200 320 PAY03 • C----- 10. INDX4 104 1 50 320 PAY03
C----- 11. INOX5 105 1 150 320 PAY03
C----- 12. INDX6 106 1 30 320 PAY03

• C----- PAY03
C----- OUTPUT FILES -- 1. COLFP 1 160 250 2 PAY03
C----- 2. WVAFP 2 160 90 2 PAY03

• C----- 3. MNCFP 3 160 200 2 PAY03
C----- 4. LBOFP 4 160 SO 2 PAY03
C----- S. LBTFP 5 160 150 2 PAY03 • C----- 6. LMCFP 6 160 30 2 PAY03
C----- 7. INDXl 101 1 250 320 PAY03
C----- 8. INDX2 102 1 90 320 PAY03

• C----- 9. INDX3 103 1 200 320 PAY03
C----- 10. INDX4 104 1 SO 320 PAY03
C--"-- 11. INDXS 105 1 150 320 PAY03 • Coo---- 12. INDX6 106 1 30 320 PAY03
C----- - - - - - - - - - - - - - -PAY03
Coo---- PAY03 • C----- ALLOCATE ARRAY STORAGE PAY03
C----- PAY03

DIMENSION INDEX(2S0), ISUPP(13), NAMEI91, NSSANI31, QRTDI61, PAY03 • 1 YTDI141 PAY03 c----- PAY03 C----- DEFINE THE FILES FOR THIS PROGRAM AS DESCRIBED ABOVE, AND PAY03 • C---"- EQUIVALENCE THE VARIABLES FOR THE NEXT RECORD NUMBER. PAY03
C----oo PAY03

DEFINE FILE 1(250,160,U,ICOLI, 2190,160,U,IWVAI, PAY03

61

Section

35

Subsections Page

20 110 66

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

PAGE 02

1
2
3
4

3(200,160,U,MUNC),4(SO,160,U,lBO), PAY03
S(lSO,160,U,LBT), 6(30,160,U,LMC), 101C2S0,1,U,IN1) ,PAY03
102(90,l,UdN2), l03C200,ltUtlN3), 104(SOtl,U,IN4), PAY03
10S(150,1,U.INS), 106C30,1,U,IN6) PAY03

EQUIVALENCE C tCOl, IWVA,MUNC,LBO,LBT,LMC). PAY03
1 (IN1,IN2,IN3,IN4,IN5.IN6) PAY03

C----C-----
- -PAY03

C----- INITIALIZE VARIABLES
C-----1000 ICOl=l

C----C-----
IN1=1

C----- READ PLANT NUMBER, CALCULATE THE FILE NUMBER OF THE INDEX FOR
C----- THE CURRENT PLANT. FINISH INITIALIZING VARIABLES.
C-----READ(2,11 NOPLT

1 FORMAT<lll

C----- INDX=100 + NOPLT
C-----GO TO (80,81,82,83,84,8S),NOPLT

80 LST=250
GO TO 90

81 L.ST-90
GO TO 90

82 LST-200
GO TO 90

83 LST=50
GO TO 90

84 LST=150
GO TO 90

85 LST=30

PAY03
PAY03
PAY03
PAY03
PAY03

-PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03

C----- -PAY03
C----C----C----C----
C-----

READ THE EMPLOYEE INDEX FOR THIS PL.ANT, READ A CHANGE CARD,
CHECK FOR L.AST CHANGE CARD, AND VALIDATE PL.ANT NUMBERS, CHANGE
CODE AND FIND CLOCK NUMBER IN INDEX.

90 READ(INDX'L.ST) L.AST
READ(INDX'11 CINDEXCII,I=l,lASTI

C-----100 READC2,2) ICLCK, NUMB, ICHNG, NEW, K
2 FORMAT(Il,I3,I2,I5,68X,Il1

C-----C----- IS THI: LAST CARD
C----- YES - GO TO 99
C----- NO - GO TO 101

62

PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

C----- IF(K-9) 101.99.101

C-----C----- DO PLANT NUMBERS AGREE
C----- YES - GO TO 1ns
C----- NO - GO TO 95
C-----101 IF(NOPLT-ICLCK) 95.105.95

C-----

Section Subsections

35 20 I 10

PAGE 03

PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03

C----- IF THE PROGRAM COMES THRU HERE. THE PLANT NUMBERS DO NOT AGREE.
PAYO)
PAY03
PAY03 C-----95 WRITE(l.3) ICLCK. NUMB

) FORMAT('PLANT NOS DISAGREE FOR CLOCK NUMBER '11.13)
CALL STACK
GO TO 100

C-----C----- PUT PARTS OF CLOCK NUMBER TOGETHER AND CHECK CHANGE CODE

C-----lOS ICLCK-I(LCK * 1000 + NUMB

C-----C----- ICHNG MUST BE BETWEEN 1 AND 16.
C----- IF NOT GO TO 104
C----- IF O.K. GO TO APPROPRIATE CHANGE ROUTINE.

C----- IF(ICHNGI 104.104.106
106 IF(ICHNG - 16) 110.120.104

C-----C----- CODE 14 INDICATES NEW EMPLOYEE. IF SO. GO TO 500.

C-----110 IF(ICHNG-14) 120.500.120

C-----C----- IF THE PROGRAM COMES THRU HERE. THE CHANGE CODE IS INVALID.

C-----104 WRlTEl1.81 ICLCK
8 FORMATI'INVALID CHANGE CODE FOR '141

CALL STACK
GO TO 100

C-----C----- LOCATE CLOCK NUMBER IN INDEX.

C-----120 DO 125 I-1.LAST
IF(INDEXIII-ICLCKI 125.130.125

C-----C----- GO TO 125 IF MO MATCH. 130 IF FOUND.

C-----125 CONTINUE

C-----C----- IF THE PROGRAM COMES THRU HERE. THE CLOCK NO. IS NOT IN THE

C-----

63

PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAYOl
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAYO]
PAYO]
PAY03
PAY03
PAY03
PAY03
PAY03

INDEXPAY03
PAY03

Page

67

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 68

WRITE 11.41 ICLCK
4 FORMAT('CLOCK NO '14' NOT IN FILE')

GO TO 100
C----- -
C-----C----- READ EMPLOYEE RECORD FROM DISK AND VALIDATE CLOCK NUMBERS.

C-----

PAGE 04

PAV03
PAY03
PAY03

-PAY03
PAY03
PAVOl
PAY03

110 IND-I
READ(NOPLT'INDI

1

PAY03
NUM. NAME. NSSAN. NSTAS. NDUES. NWKMP. NWKPD. MAR.PAYOl
NXMPF. NXMPS. NSEX. NRATE, YTD. QRTD. LYRHR, NCU. PAYOl

2 NCUDD. NCHCK. NADWH, NSTCK. N1NS, NMISC. NUA. PAYOl
3 NSTKD, ISUPP, IN IT PAYOl

C-----C----- VALIDATE
C----- MATCH - 140
C----- NO MATCH - 135

C----- IF(NUM - ICLCK) 135.140,135
135 WRITE(1.51 ICLCK

5 FORMAT('CLOCK NUMBERS DO NOT AGREE FOR '141
CALL STACK
GO TO 100

PAY03
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAY03
PAYOl
PAYOl

C----
C----C----C----C----C----C----
C-----

- -PAYOl
GO TO THE APPROPIATE CHANGE
NRATE - 141 NXMPF - 146
NCU - 142 NXMPS - 146
NDUES - 143 NXMPS - 147
NSTAS - 144 NSEX - 148
MAR - 145 NADWH - 149

ROUTINE.
NSTCK - 150
NINS - 151
NMISC - 152
NUA - 153
INIT - 155

NSSAN - 156
NEW EMPLOYEE - 500

140 GO TO (141.142.143.144.145.146.147.148,149.150.151.152,153.104.
1 ass.156).ICHNG

141 NRATE=NEW
GO TO 550

142 NCU=NEW
GO TO 550

143 NDUES=NEW
GO TO 550

144 NSTAS=NEW
GO TO 550

145 MAR=NEW
GO TO 550

146 NXMPF=NEW
147 NXMPS=NEW

GO TO 550
148 NSEX=NEW

GO TO 550
149 NADWH=NEW

GO TO 550

64

PAY03
PAYOl
PAYOl
PAYOl
PAVOl
PAYOl
PAYOl
PAY03
PAYOl
PAYOl
PAY03
PAVO:;
PAYOl
PAYOl
PAY03
PAVOl
PAY03
PAVO:;
PAYO:;
PAVOl
PAY03
PAY03
PAVOl
PAY03
PAVOl
PAV03

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

150 NSTCK=NEW
GO TO 550

151 NINS=NEW
GO TO 5!'O

152 NMISC=N[1/
GO TO 550

153 NUA=NEW
GO TO 550

155 INIT=NEW
NSTAS=l
GO TO 550

156 WRITEC1.11) NUM
11 FORMATC'ENTER SSAN FOR '14)

READC6,10) NSSAN
10 FORMATCI3,I2,I4)

GO TO 550
500 READ(2,6) NUM, NAME, NSSAN, NSTAS, MAR, NXMPF, NXMPS, NSEX,

1 NCU. NADWH, NSTCK, NINS, NMISC, NUA
6 FORMATtI4.9A2.I3.I2.I4.5Il.13.5I4,I3)

C-----C----- IS THIS NUMBER. NUM, ALREADY IN INDEX
C----- YES - 513
C----- NO - SET UP DISK RECORD
C-----DO 504 I=ltLAST

IFIINDEXII)-NUM) 504.513,504
513 WRITEC1,7) NUM

7 FORMATC'CLOCK NUMBER '14' IS DUPLICATED')
CALL STACK
GO TO 100

504 CONTINUE

C-----C----- O.K. SET UP DISK RECORD AND CREATE INDEX ENTRY.

C----- IPD=O
NSTKD=O
INIT=O
NOUES=O
NWKMP·O
NWKPD=O
DO 501 1=1. 14

501 YTOII)=O.
DO 502 '-1.6

502 °QRTOI I)t J.
DO 503 I=lt13

503 I SUPP I 1)-0
LYRHR=O
NCUDD=O
NCHCK=O

65

Section Subsections

35 20 I 10

PAGE 05

PAYOl
PAYOl
PAYOl
PAYOl
PAYOl
PAY03
PAY03
PAY03
PAYOl
PAYOl
PAYOl
PAYO]
PAY03
PAYOl
PAYOl
PAY03

NRATE,PAY03
PAY03
PAY03
PAY03
PAYOl
PAY03
PAY03
PAYOl
PAYOl
PAY03
PAY03
PAY03
PAY03
PAYOl
PAY03
PAYO]
PAYOl
PAYOl
PAY03
PAYOl
PAYOl
PAY03
PAYOl
PAY03
PAYOl
PAYOl
PAYOl
PAY03
PAY03
PAYOl
PAYOl
PAYOl
PAYO]

Page

69

Section

35

Subsections Page

20

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

I 10 70

PAGE 06

LAST-LAST + 1
INO-LAST
I NDEX I LAS T I aNUM C----- -C-----

e----- WRITE THE EMPLOYEE RECORD TO THE DISK.
C----- GO BACK TO THE READ STATEMENT TO GET ANOTHER CHANGE FOR THIS
C----- PLANT.

PAY03
PAY03
PAY03

-PAY03
PAY03
PAY03
PAY03
PAY03 C-----

550 WRITEINOPLT'INDI
1

PAY03
NUM, NAME, NSSAN, NSTAS, NDUES, NWKMP, NWKPD, PAY03
MAR, NXMPF, NXMPS, NSEX, NRATE, YTD, QRTD, LYRHR,PAY03

2 Neu, NCUDO, NCHCK, NADWH, NSTCK, NINS. NMISC, PAY03
3 NUA. NSTKO, ISUPP, INIT, IPO PAY03 C-----

C----- GO BACK TO READ C-----
C----C-----

GO TO 11'
C----- WRITE BACK TO DISK THE EMPLOYEE INDEX FOR THIS PLANT. e-----

99 WRITEIINOX'LSTI LAST
WRITEIINDX'11 IINDEXI I I .1=l,LASTI

PAY03
PAY03
PAY03
PAY03

-PAY03
PAY03
PAY03
PAY03
PAY03
PAY03 C----- -PAY03 C----- PAY03

C----- READ A CARD. IF K IS NOT 9 THERE ARE CHANGES TO ANOTHER PLANT. PAY03 C-----
REAOI2,91 K

9 FORMAT 179X, III C-----
C----- KNOT 9 MEANS MORE CHANGES. GO TO 1000.
C----- K EQUAL TO 9 MEANS END OF RUN. GO TO 1001. C-----

IFIK - 91 1000.1001,1000 C-----
C----- THIS IS END OF RUN. STOP. C-----

1001 CALL EXIT

PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03 C----- -PAY03

END PAY03

VARIABLE ALLOCATIONS
ICOL -0054 IWVA =0054 MUNC =0054
INS =0055 IN6 -0055 QRTO .00b5
LST "01A7 LAST .01A8 I =01A9
NSTAS"OlBl NOUES=OlBl NWKMP-01B3
NCU -OlBB NCUOO=OlBC NCHCK=OlBO
IPO =01C5

LBO -0054
YTO =008F
ICLCK"OlAA
NWKPO"O 1B4
NAOWH=O 1BE

LBT -0054
I NOEX .. 016B
NUMB "OlAB
MAR ,,01B5
NSTCK=OlBF

LMC .. 0054
ISUPP .. 0198
ICHNG=OlAC
NXMPF=01B6
NINS =OleO

INl =0055
NAME .01A1
NEW .. OlAD
NXMPS=01B7
NMISC=OlCl

STATEMENT ALLOCAT IONS
1 ·OlOB 2 "0100
9 -0259 1000 ,,0271
101 -02DE 95 -02E4
140 =0386 141 .039A
150 -OleE 151 =0304
502 -0473 503 -0468

FEATURES SUPPORTED
ONE WORD INTEGERS
EXTENDED PRECISION
10CS

CALLED SUBPROGRAMS
STACK ELO ESTO
SDWRT SDCOM SDA I

REAL CONSTANTS
.OOOOOOOOOE 00 .. 01C8

INTEGER ~ONSTANTS
1-01CB 2-01CC

1000-01D5 16=0106

3 -01E4 8 -OlFA
80 "028E 81 =0294
105 -02FO 106 c02FD
142 =03AO 143 =03A(o
152 =03DA 153 =03EO
550 =04B8 99 =04F9

ESTOX TYPEl SREO
SOAF SO IX SO I

100-01CD
14"0107

250=01CE
6"0108

CORE REQUIREMENTS FOR PAY03

4 "0209 5 "0218
82 =029A 83 =02AO
110 =0305 104 =0300
144 =03AC 145 ,,03B2
155 =03Eb 15b ,,03FO
1001 =0521

SWRT SCOMP SFIO

90-01CF
0 .. 0109

200,,0100
13.010A

11 =022B
84 =02A6
ll0 -0317
146 =03B6
500 =03FE

SIOAI SIOI

50=0101

• COMMON 0 VARIABLES 456 PROGRAM 858

END OF COMPILATION

L--- --

66

IN2 .,0055
NSSAN=01A4
K =OlAE
NSEX =01B8
NUA =01e2

10 =0236
85 =02AC
125 =032b
147 =03BC
513 =0430

IN3 =0055
NOPL T·OIA5
IND :OlAF
NRATE=01B9
NSTKD=01C3

6 =023A
90 =u2BO
13u =0336
14tl =03e2
504 =043A

IN4 =0055
INDX =01A6
NUM =OlBO
LYRHR=OlBA
INIT =01C4

7 =0247
ll.ll.i ="lCB
135 =037C
14'> =u3eo
501 =045E

SUBSC CAROl SDF 10 SDRt::O

150=01D2 9=0104

I

I

\

I

I

)

I
I

•
•
• ..

Section

35

II JOB
/1 XEQ PAY03 2
*FILES(1.COLFPI.(2.WVAFPI.(3.MNCFPI .(4.LBOFPI.(5,LBTFPI ,(6,LMCFPI.
*F I LE 5 (101, I NDX 11 , (102, r NDX2 I , (103. I NDX3 I , (104, I NDX4) , (105. I NDX 5 I , (106, I NDx6 I
1
10010100261
10040600004
10160500002
10170100261

Input cards

67

Subsections Page

20 I 10 71

I

9

Section

35

Subsections Page

20 1 10 72

• II JOB
II xEQ PAVO! 2
*FILESC1.COLFP).12.WVAFP).C3.MNCFP).14.LBOFP).CS.LBTFP).C6.LMCFP).
*FILESCI01.INDX11.CI02.INDX2),CI03.INDX3I,II04.INOX4).CIOS.INDXS).II06.INDX6J •
~ -
Printer output

68

Section Subsections Page

35 20 I 10 73

IBM 1130 MACHINE SETUP SHEET

PROGRAM CAdr.7.J1&S /~ rAe /3/'c:'" PROGRAM PAY03 NAME: / NUMBER:

PROGRAM APPROXI MATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

PRINTER S~~~4rd / S!4"dqrd'

DRIVE NUMBER: 0 1 2 3 4

DISKS CARTRIDGE Pt79r(:J// X X IX X 10:

SWITCH #o/'7e SWITCH N~/?e SWITCH A/O/7<!!'
SWITCH UP UP UP
SETTINGS DOWN DOWN DOWN

INPUT
CARDS

(9

(q

(MORE -

(q ---
':For fi7r7e /

-
/~/q~

~
(CHANGE.

CARDS
rar e4ch p/t/?/Jl" (q V
4'/ jJ,h C"""''''J~S' I--

p0/"ane /
~/P.?":'

(CHANGE t--
CARDS

(/lXEQ PAY03 ~V
/ // JOe,

t--

SOURCE OF INPUT: 6. CttJlrd /~v~ h-(}k2'2, f2. ~,,-c.ces.~L e~ rica: ~ 't... ~t.L-a.
2,Z)/sk .t!l.«.d'-tie. ,Q,<2:!;tCt2.# d/:'-~ y.L':J~ ~("'=.~.

7

DISPOSITION OF OUTPUT: £Cnd,-,e;l!!! C4r~ r::u-e ~/e"d/a ~./~ c
i!.. .2)(.'s.~ /$ ~<!t<.L.c.a.~d.. /6) s~or4f}e. .I'~c u...s:.e ~/rh
P~'Ct24

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

69

r-----------------.. --~~--------~------- .. -------.--~- -- ---.-----.-------.--~-_________ . _____________ _ ---.---. --- ----·-----~--------l
IB"1
LINE DESCRIPTION

IBM,
LINE DESCRIPTION

INTERNATIONAl BUSINESS MACHINES CORPORATION

PRINTER SPACiNG CHART
FIELD HEADINGS/WORD MARKS 8 lines Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span:

!I 0 l' 2.. 3 4 5 6 7 S 9: 10 11
i'l 2 3 4 5 6789 01,234'567890 1 2345,67 890 1 2.345 6 7 890 1 234567890 1,2,3'4. 5, 617l8f9 0[!]T~S!9 0 1 1 ~~4,5 6 7 8'9 0 1 234567 8901 234567890

~ I II , " ' - H-H-' 41- ' f+H ' : I I ' Ii"!' I , I

[X jxi
I

DC dr- ... 1
.{j:

2l i"!1 71,
(.I'i ' '

I I

I

I I +

I
I
I

--.- ... -------.-- - - .. --------------.---~-----c_ .. ---------------------~-----------+1,

INTERNATiONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
fiELD HEADINGS/WORD MARKS 8 lines Per Inch IBM 407, 408, 409, '1403, 1404, 1443, and 2203 Print Span:

I
IBM 1403 Models 1 & 4 ~

IBM 407, 408, 409, and 1403 Models 6 and 7
1h-T.,-,,,,,-!-,,rTT·l-TTT+,..,..-rTTT.,-,rn,..,-rrr,,,rl-,-... ,-',TTl-+-rTTT-"-rTT+-.rTTT rT IT -n T !T HTT ... nnnnTi .

IBM 1403 Models 2, 3, 5, N 1 and 1404
TtnTH

IBM 1443 Models 1, N1, an? 2203

o 2 3 4 5 6 7 8 9 :10 11

I
I

I

i: 1 234 5678901 2345678901 2 3 4567 890 1 234567'890 1 2345678,90 1 2'3,4 5 6 7 8.9 0 1 2 34 5i6 789 0 1 23 456789 0 1 234,567 890 1 234567890 1 2345678901 23456789 O'

I I
3 I

I'

I'

II

'...,

(f)
(1)

C;,;i ("')

OJ !:!'.
0
:J

t:>:> (f)

0 C
C'"
CII
(1) - ("')
r-+
O·

~ :J
0 CII

-:] iJ
Q)

~ CO
(1)

Section Subsections Page

35 20 I 10 75

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

II>
a..

Application PA r R 0 L L SYS7eM Date 8/29/&7 "0 2~
0 w:;:)

MAX. MIN.
NAME :s: ~a..

* ;:::5
Program NameCq Ie U/d t'-ohS &. P/RNO. PAYOI-Pr~ff~~er ~ '0 VALUE VALUE

~O 0 ci
~ 2 z

FUNCTION OF VARIABLES

A R .3 {J tJ.fj(J _.f1JfI UJ'6ltl ~()r z~ro ,6q ICll7ce check

AD f.(3 T xxx.xx rI,;; UseJ to cdlcu/dte overt/me rd1-e

AoR£t; R 3 7 XXx ¢I¢¢ (J.t'ed fa cd/l'IJ/a'te overT/me rei re

lirA x f{ 3 ., XXAA.~ ti. ¢ (# A .f r~r- - 'fa x /n c "I'M e
8 R 3 T ~.~rj '.;;$ IJsel A,,.. z ere it/It/l'Jet:: cAecK
8NERN R .3 0 xxx.)()((I.. ¢I/J B (lhl.lS erJrn/ngs

8NHR,S p. 3 IsO)()(X. ")(JC ¢.¢; go II v or J h 0 IJ r oS

r' R 3 0 ¢.¢~ ¢.¢¢ Vse d .f1or zero-Ja Idhce ch~ck I...~--

CKMAX I~
I ,. ~i,.(Jt; ¢.~¢ Md ximuht c IJ ack dmtJtll) 1- I'()r d 1',' Ie J'

CNE:T P, 3 0 Xj(){X.xx ~. ¢ fi lie -r qmo (lifT 0 -I /~di~idt.ld / C' ,,~C k

CcMP A2 16 1#0 - - C oPl'pci ~ y n t:/I?'fe

p R 3 0 ().¢¢ ~, ;¢ Use' !'or zer"O- bd 1411c~ checi
ER/'IaS R 3 ., XI.)(.1((~ .. (j~ Flcd fdKdb/e wdfes

f'lBRC R 8 0 XXXlCtQ ~. ¢f/; Tt"dJe drroc;d f;o/7 re porTS ~

'''''R t '? .0 ... S p. 3 0 xxx.)(l(¢,¢¢ Gross dhffJV"1" ~.; /I?I/~/'(/d / c4~cK

l-l (J i, f) Y R 3 0 xx:)()(¢. ¢rJ Il1d/vt'J(ldl's- Aol/tldY ,Ptly

I 1 I ; U.red /n DO lo()p

Ie I I N - - E1v/vcilenr -I-~ IN1
.TCIfCI{ 1 I .,. se1- -I't1r 8e9'/""' tnf c h(!'ct 11(/I1!J~1"" wAe/1 wr,-f,;'f ciecir led~h ,.. (In

ICLCf(1 I T 6 I h ~.r -t- <I'~ 'f'1 r 01" c: loe.t Aum6~,.

*Mode: I = integer, R = real, D = decimal, A = alphabE'tic.

71

Section Subsections Page

35 20 I 10 76

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABL~ SUMMARY SHEET

'"
0..

Application PAYROLL· SY SrcM Date8/2~7 "E ::2:~
0 UJ:::l MAX. MIN. NAME s: ~c..

* ;::5 ~)('1" k UJ '0 VALUE VALUE
Program NameC<ric" Iq t; (,A.f' ~ ~ r;(No.!' A r~4 Progr~~mer 0 ~o 0 c:i

::2: z ~
FUNCTION OF VARIABLES

ICNT I / 0 XiKKX ¢ Serv 4'l'J<:. e nVh1be,.. ~or ,/"I//""" d J
(sA()v/q' corre~~()",1 7"0 ex #)

ICOL 7 / 7 z50 .2 Re'corol nVnJher /n ~1"1?'p/oye~ ~'Ifi'r) se"l-vp
by /,/r/"r

IC(/ I / 0 Xk'XXX ¢ InthYI(/vt:ll~ c" eel/ t vn/oJ? o'ee/vc t /fJ"

IDAT£ f k
"3 1;0 I'qr date

[D£D I I 0 xxx xx ¢ r"rctl 01-' /"d,.l//dvt:JIS /4sv r d"ce) STO(~,cl,qrity
4,l7a mise. dtldvc'f/o~s / 'p~y per/od

IFICA J I 0 XXX)(X ¢ Zn/"v/dVd/:S //C4 r-ti >c-

IFILL I I r 7 ¢ .£"d,cd res de civcT/O;1 noT mdde
IINS I I 0 xx ¢ I"t:!,'v,",!v d l's /l1slIrd../)c e de dvc f /011

j'-~r I I r 250 5 LdsT rec(>;-d I1vmj;,~,.. ,-"'d-{,,'/e

IIv1.!SC I I 0 'Xxx XX ¢ I"/'-,,id vd l's hU·SC. d@dvc -f'ion

IND I I r I" /~I h'/e nt/m6~r C)/ ;ntleJ(A,r d /1(/1'11: f#.,JoO

rNOEX I 2!O -r xxx x /~¢¢ Inei@K fa ,/dl?7- l/oW Jeil11 ~!o~e.f,,~4
INI)X 1 I r 1#' / tI / I,,/eJr jl,'/e '1u",6er (,&I /q,,-r no" +.1. 00)

INIT I I r /(!l¢ ¢ t/n;" 11 ,',,; t/dr/on f'ee
IN) I I I 2.s-0 1. Recorcll1v"",ber /,., /i1.dekt!lS

l'''/~.s
~Q ~h')~/(},.pt!'

£#2 I I N - - £p'u':vt/le"r To INl

IN3 , I N - - Ep'I/;vd.le"r t() IN!
INti- I I N - - C((J;vtJ. lell"" 1'" IN.2

INS J I N - - Ey~/"'dle~;r ttl.L/Y:!
tN6 I I N - - E'~/V'dlelit ~ .IN.!

*Mode: I = integer, R = real, D = decimal, A = alphabetic

72

Section Subsections Page

35 20 I 10 77

VARIABLES IBM r 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

<f) a..
Application PA Y R 0 L L sYS'TGM DateS!2,!G7 "E :2:1-

0 w:::> MAX. MIN. NAME * ~ I-c..
w '0 ;:::5 VALUE VALUE

Program NameC?dk(/4~~~! ~ &NO·?Ar~?~~f:tmer 0 ~O 0 ci
~ z ~

FUNCTION OF VARIABLES

rOTR7 1 I T 5¢¢ (J Ove,,...Ti'me 'pdt rtfr~

IPA~~ I I 0 20 I /?t.fe ,,(/ "'" /, e;-

IPD 1 I 0 ¢ ¢ Intl'/ Cd"" e s ,s1""d to tI.f ,,~ r @co,.d l~
proces.s/~ 9' c.>,~/e

ISTC'1(I I 0 2p" (/; In,lv//cJr2/'s s~cK d'edvc 7-/,;;-'7

.lSIIPP 1 /3 0 xxx.~ ¢ S t/ f'?le 1?'1 e 11 rd I .s /c k.. ~tly

;rOT 1 II T /723 ¢ 1~cOVr1r nv,.".6e",. ~r /41//111 -ro
enertl/ /ed'3fe-

/4

IUA 1 I 0 3rJt/J ~ L/7//V /dtlci /1- c A'd r/ 'l d?/Glc7'i '&)n

Iv/) 1 I 0 15,; ¢];;c/;'v /cI~ d/'.f (/n/c;n cll/~S deduc. -!-/o Yl

IVAAT :I I 0 S~¢ ¢J A veY'd tje ~dy rd "Te

rWEEI< 1 I T S 2 /1/ee~ .;J I' n7 ""r.4
IWVI1 I I N - - £1"" /Y rl Ie .., -r -r-() ..L COL-

I< I I r <1 ¢ Lds-I-C4rd 7-re..rr
IfAIfD 1 I 1 9 ¢ C.C. ¢ '7!c' / 8 ,- ;idr dJ I- c" rd TesT

1<0 Al I 0 5 ¢ Specl'd/ e arn/n.f J c" e
,/

kOD£ I 1- 1 9 ¢ SP~C/~)/ edr/?ll)t7s c·~/e
.3 l ./

kPLNT
...

I 1 , ¢ //d/7-r /JVm~er J.

LAST .I I
..,. xxx ¢ J. fis7 reCDrd 1J1IJ7).Jer ~!e I /1'7

LBO I I N - - Ey'~/"Yci'/ehT 70 JcoL

LBr I I N - - c1 v/ 'rei /e 117' ""/# .TeOL-

'-/N~ 1 I T 50 ¢ L/~e CQ"h-r

*Mode: I = integer, R = real, D = decimal, A = alphabetic

73

Section Subsections Page

35 20 I 10 78

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

'"
a..

ApplicationPAYR OLL S Y S rEM Date 8/29/~ 7 -0 ~ I-
0 w::> MAX. MIN. NAME s: 1-0..

* ~~ • ~ / r: cf 1'/ ~ }<llcJc. w '0 VALUE VALUE Program Name C. q C (/ ti I ()I').r 'I? No. ,?A '0 t Programmer 0 ~o a c:i
~ z ~

FUNCTION OF VARIABLES

~MC I I N - - 5' p-',:/,. '// q len "I- rCJ ZeOL-

I.. ()CAI- .". I 0 xxxx ¢ Locct/ ret x .J.

L..YAH!? 1 I 0 0 ¢ rhis yecir-l.s- ct c.c Y/n :/It;i"'t',.()n :? of' Pi" (,I r .r w~r/(ed
I'or vcic q ','c.Y1 ,P cZ 'I

MAR 1 I ~() 2 / M dritd / sia:t{)S - (I-S /n c//e) , (2 -I'ndrried)
'"

Iv!(,/NC 1 I N - - £" (v/v -:; /:£ll?-t To ICOL
NAPWI-I 1 I 0 XxXX ¢ Acldit-io/?q / wi f'A holcl/n.t elm ovnT

NA ME:. A~ 9 IIO - - E mfJ/oy(fe n<tme

NC/-f .. :,< 1 I 0 xxxxx ~ C/;eck 17(//176el- v.;'ed flo;- fh/.s eMrloyee

/VCGI 1 I ~O ¢ ere/it I

cI~dl/c t/Ol? ~')(.xx (/"10"

IVe (/1)0 I I 0 xxx.x r) IYf()ntl,ly cretl,.r vnlo/1 ded()ct/QI'J! r' ".) (II' Imes

NDiles 1 I 1,0 x", xx ¢ Un/on dv~s d~ d(/c f,'o"

Nf)Wk At 3 1:0 - - ?cty /,1$'''/0'/ dd1'e
IV! NoS 1 I ~O xx. 'Xx ¢ 1 n.$Glr ,In ~ e d~/(,IC t/OI1

NMIsC I I 0 XXX·'lCX ¢ /W/(C @ I/"I?~ () II' dedvc.T,'"",s
NOPt.T / I T , J ,P/an7- nvmber
NRAT£ 1 I IJO 3.¢¢ 1.2S Eh?'ployee /'r:iy r ~ t-e.
NSEX 1 I IJ O 3 1 S,2X (2- remer/e), (z- r)ul Ie)) (j-t""l/ck~r)

NSSAN I J /JO Alwdys /)~'~i t! S~~/a I -- ''';-...;·ec 1,),..,. i / ,'') 1//1) 6er

NSTA$ I I 0 S 1
Cn1rIOy'iN? stc:(7vs - (I-C;I'l/al1), (e-rrllc-<e"),(3-110n-
Vf?i M/ {!vll-t'''''€)J (4-hoI"J-Vl'liOl'l"()(/rt-i/,,,e)) (s-'tffr/t1,'rHI.TeJ)

NSTCi< I I ~O XX.Xx ¢ SrocK. delve T"~n

*Mode: I = integer, R = real, D = decimal, A = alphabetic

74

Section Subsections Page

35 20 I 10 79

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

III
a..

Application PA Y R 0 L.. L Date 8/2 9/67 1: ~I- SYSTEM
0 w::J MAX. MIN.

NAME 3: I-a..
* ;:::~ C Ir. r; n (/ Klick W - VALUE VALUE

Program Name q) C c.Jlctt/~h.s & ~ If No·?A (? Programmer 0 0 ~o 0 ci
~ z ~

FUNCTION OF VARIABLES

NSTl<D 1 I 0 xx.xx ¢ Mont'A 11 ..s-tock. iedtJ, -t/OYl>

NUA 1 I 110 1.'1... 'tx ¢ Un; tr::J A 'pp~t:i / de dvcr/on

NUM 1 I / 10 XXX)(I¢;¢ ¢ C/o,/(n (/ 11?6f!: r

I'IWKMP 1 I 0 xx ¢ NUhlber ()i' week~ ~""f'lo/,el
NJA/Kl)D 1 I 0 xx ¢ N(.Ihiber 0'; weeks- ?Q/c"/

/VXMP,c I I 1)0 /7 ¢ Fe de rei I ~xemo1"/ons ,.

/YXMPS 1 I 0 /7 ¢ S-rdre ex~,-n/,ii'"'' s-
O/ERN R. .3 0 xxx. Xl(¢. ¢¢ Over-r,'n1 Ii? ed 1"",-,,' i""J 1.$

OTHeR A. 3 0 x><x.xx ¢. ¢¢ 51'6?c,'~ I edrn7'~ c/ S
.I

orHIfS R 3 ~O 'tX xx ¢. ¢¢ OYer-T,m e Aovi"'"'S'

Ql?7D R. .i.. 0 XXXl(.)(lc ¢.¢¢ QVd.rf'er -rO-dd""~ /n·l'crrYIt1't'i~r). (I)11-0 s.r (Z)FI7; (3) t='IC A)
18 (~)/~r:. +0)(, (sJ/".ICII Wc1g"er (6)s/ck ~~'Y

,~;'ERN 1< .3 0 XX)(.x~ ;;. ¢¢ R~~~/(j~ ed "'n"~ 1 $

l?GHRS R 3 ~() X'xx.}(~ ¢.¢¢ f?e1 v1a Y'" ;'otJrs

SIC/(~ .3 0 '.(Xl(,>O: I, ~~ S/(~ ,Ptly

SPA I? .3 I xxxx.x,< ¢.¢¢ S"l'ec ,'(j/ eql"l"1//l1! t:lccvMI, I'er /I"]d.

SPS R 3 r)(XX!(,XJ(/.¢¢ S!,f?c/cl/ C'irnil1j.f' dccvm/ /"r Il1d,

SPSC't... R
3 I XX)(.~'(¢.¢¢ jjP~C /d I eel r/1/".1.r '9

r R ~ 0 It)l.X)(X)()(. ~.¢¢ C!s@1 f6 -r-tJ reI I .5l'ec;'d / e qrh/'lf'·(

7r.X 1 I 0 xxxxx ~.¢¢ Ft!!der a I ;v/ "fAl;ol/,~.1 701.'(

IA)(8L. R 3 r 'X x x.X)(; ¢# ¢¢ 7d)(' ct J,/~ e Q r /11'1'1 l' .s

*Mode: I = integer. R = real. D = decimal. A = alphabetic

75

Section Subsections Page

35 20 I 10 80

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

VI a..

S YSr£k/DateS/2 '/67 "0 21- Application PAr f(0 L L (; w:::J MAX. MIN.
NAME ~ 1-0..

* ;:::~ G ,/. /?ftc 4 //I'CK W VALUE VALUE
0 0 ito Program Name cl/cvlt'lf/c?/'i.J ~ fJ'If No. a Programmer
0 0
2 z ~

FUNCTION OF VARIABLES

r~li'S' R 3 I'"~ '1(KX)(XX. ¢,¢¢ 7Otd/ 9'ro.rs Xiii:

-rN£T R 3 7 XXXX"Xl(. ¢. t/J rf; TbTd/ /"lei xx

7-07" R
21

0)(><X)(X)(. r/J. ¢ (j To-t-d I drrc) y
6~ xx

loreN R '3 I X)(,c""xx. ¢.¢¢ 8cJl1V1,f J e? tJ r to fd. I 1'1"'/1,"" soc/rc e doc.

TOTOT r. ~ I)(1<)(\''I()(1(. d. ¢ cd o T ~ ~cJl' rot<i/ /ron? S"tjvrce I
.;,J <toc .

rOTR~ R 3 1 X)(XXltX)!. f/;. ¢ ~ f(~f. hovl" ro/dl ,.."'r~m S",J~)r&"e doc.

rOTS? R ",,;I I XXXlC'XIC')t. tP. rP ¢ .5?.eCl~ / C'drl?/;';:/'; -ford/ -/rOhf ScJ(,)Y'ce doc.
'-'

VACA p. .,
..II 0 xxx.xx (j. ¢ r/J j/dcQ~on 'p~y

X8N ~ 3 0 xY.Y...-xx (ft, ¢ dJ j}on() .s i?O()Y's err!>""" -to-rd /

,rOT I? :3 0 X)(x.)(X ¢.~rP () VC' r -f/rr. e ·/;cJ();-S ~rror '1-0 tq /

'tl?£~ R. 3 0 XX)(.)Ol 1(;. ;CP Ref- ;'~I,/r~ err ",.. -to Td /

>:SP R ;;. ,;;;; 0 ~X)t.X)(¢. ¢ r). S?ec;q/ edrl1/n r f

riD R 14- IjO XXXlCt.)(l(f/J. ~¢ Yedr-To-dtire ;",.f'"rmd'ti·o". (l)yrOSSJ (z.);t:;1j (3)FICA,
92 (4)F"/('A IVdtf~s, (S)slck ,.pdy, (6)Sl'ec. A,

(7) s?et:'. 8) (8) Icc. +q'K , (9)rej" /irs, (0) OT 1t~$1
0/) ~t:l17 v'J ~ r,f (/z.)/'"e~- ('1'"/1 S') (1.1) or ~rl?.!
0<;) b()"~J ~r/1s.

*Mode: I = integer, R = real, D = decimal, A = alphabetic

76

Initialize
Variables

Initialize
Plant

Variables

Initialize
Individual
Variables

Locate
Employee
in Index

Calculate
Regular
Earnings

Calculate
Bonus

Earnings

77

Calculate
Any

Special
Earnings

Calculate
Overtime
Earnings

Sum Regular,
OT and Bonus

Earnings to
Earnings

Update Past
Quarter's
Earnings

Calculate
FICA

Calculate
Federal
Income

Tax

Calculate
Local Tax,

If Any

Calculate
Net

Earnings

If applicable,
calculate
voluntary

deductions

Section

35

Subsections

20 I

Calculate
Net

Earnings

Check Net
Against Max.
Check Amt.

Update
Year·to·Date
Information

Update Quarter·
to·Date

Information

Update
Plant

Totals

Setup
Control

Information

10

Page

81

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 82

II FOR
* IOCSICARD,TYPEWRITER,KEYBOARD,1132 PRINTER,DISK)
* LIST ALL
** PAY04 PROGRAM
* NAME PAY04
* ONE WORD INTEGERS

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

* EXTENDED PRECISION
C----- JOB NAME
C----- JOB NUMBER

PAYROLL SYSTEM - CALCULATIONS + PAYROLL REGISTER
PAY04

PAY04
PAY04
PAY04

C-----
C----- PROGRAMMER
C----- DATE CODED
C----- DATE UPDATED

C----C----C-----
C----- INPUT FILES

C----C----C----C----C----C----C----C----C----C----C----
C----C-----

C.R.KLICK
01/13/68

FILE
NAME

1. COLFP
2. WVAFP
3. MNCFP
4. LBOFP
5. LBTFP
6. LMCFP
7. PINFO
8. INDX1

INDX2
INDX3
INDX4
INDX5
INDX6

9.
10.
11.
12.
13.

C----- OUTPUT FILES -- 1. COLFP
C----- 2. WVAFP
C----- 3. MNCFP
C----- 4. LBOFP
C----- 5. LBTFP
C----- 6. LMCFP
C----- 7. PINFO
C----- - - - - - - - -
C-----
C----- ALLOCATE ARRAY STORAGE.

C----- INTEGER COMP(16), TAX

FILE
NUMBER

1
2
3
4
5
6

25
101
102
103
104
105
106

1
2
3
4
5
6

25

RECORD
LENGTH

160
160
160
160
160
160
106

1
1
1
1
1
1

160
160
160
160
160
160
106

NO. OF
RECORDS

250
90

200
50

150
30

6
250

90
200

50
150

30

250
90

200
50

150
30

6

PAY04
PAY04
PAY04
PAY04
PAY04

RECORDS PAY04
PER SECTORPAY04

2 PAY04
2 PAY04
2 PAY04
2 PAY04
2 PAY04
2 PAY04
3 PAY04

320 PAY04
320 PAY04
320 PAY04
320 PAY04
320 PAY04
320 PAY04

2
2
2
2
2
2
3

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAY04

DIMENSION FIBRE(S)' IDATE(3), INDEX(250), ISUPP(13), ITOTlll)'
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

1 KODE(3), NAME(9), NDWK(3), NSSAN(3), QRTD(6), SPECL(3),
2 TOT(21), YTD(14)

C----C----C----C-----
1

DEFINE THE FILES FOR THIS PROGRAM AS DESCRIBED ABOVE, AND
EQUIVALENCE THE VARIABLES FOR NEXT RECORD NuMBER.

DEFINE FILE 11250,160,U,ICOL), 2190,160,U,IWVA),
31200,160,U,MUNC),4150,160,U,LBO),

78

PAY04
PAY04
PAY04

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Section Subsections

35 20 I 10

PAY04 PROGRAM PAGE 02

2
3
4

EQUIVALENCE
1

5(150,160,U,LBT),6(30,160,U.LMC),
101(250,1,u.IN1), 102(90,1,U.IN2),
104(50,1,U,IN4). 105(150,1,U,IN5),

IICOL.IWVA,MUNC,LBO,LBT,LMC).
IIN1,IN2,IN3,IN4.IN5.IN6)

2516.l06.U.IC). PAY04
l031200tl.UtlN3) ,PAY04
106(30.l.U.IN6) PAY04

PAY04
PAY04

C----- -PAY04
C----C----C-----

DEFINE ~N ARITHMETIC STATEMENT FOR HALF ADJUSTING.

PHILIBET)=WHOLE(IBET + 5.) I 100.)

PAY04
PAY04
PAY04
PAY04

C----- -PAY04
C-----C----- INITIALIZE VARIABLES
C----- ICOl=1

IN1=1
T=O.
XTOT=O.
XBN=O.
XREG=O.
XSP=O.
DO 50 1=1.21

50 TOTII)=O.
IPAGE=O
LINE-50

C----- -
C-----C----- READ PLANT NUMBER. DATE, AND CONTROL TOTALS

C-----

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

- - - - - - - - - - -PAY04
PAY04
PAY04

99999 READ(2.1) NOPLT, IDATE. NDWK. TOTRG. TOTOT. TOTBN, TOTSP, KARD
PAY04
PAY04
PAY04 1 FORMATII1.6A2.7X.4F7.0,31X.Il)

C-----C----- VALIDATE KARD AND NOPLT.
C----- IF VALID - 60
C----- IF INVALID - 55
C----- IFCKARD) 55.51,55

51 IF(NOPLT) 55,55,52
52 IFCNOPLT-6) 60,60,55

C-----C----- FIRST CARD IS INVALID.

C-----55 WRITE(1,2)
2 FORMAT('CHECK CC 1 AND 80 ON FIRST CARD')

PAUSE 1
GO TO 99999

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

C----- - - - . - - - - - - - - - - - - -
C-----

- - - - - - - - - - - - - - - -PAY04
PAY04

C----- READ THE PLANT INFORMATION RECORD FROM DISK. PAY04

79

Page

83

Section

35

Subsections Page

20 1

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 84

PAY04 PROGRAM PAGE

C-----60 READ(25'NOPLT) COMP, ICHCK, IWEEK, FIBRE, ITOT, CKMAX
PAY04
PAY04

-PAY04
PAY04

C----- -
C-----C----- WRITE THE PLANT INFORMATION FOR CONTROL PURPOSES
C----- CHANGES TO IT THRU DATA SWITCH SETTINGS.

C-----62 WRITE(l,]) COMP, IDATE, ICHCK, IWEEK, NDWK, CKMAX
] FORMAT(//16A2,3A2/'CHECK NO 'I5/'WEEK NO 'I1/'W/E

1 F6.0//'MAXIMUM CHECK AMOUNT MAY BE CHANGED
2 / 'SWITCH 15 WILL CHANGE THE CHECK NO AND THE
3 'SWITCHES'/'REQUESTEP AND PRESS START')

PAUSE 1111
CALL DATSWCl5,I)
GO TO (70, 71 It I

70 WRlTEC1,4)
4 FORMATI'ENTER CHECK NO. FIVE DIGITS')

READI6,22) ICHCK
22 FORMAT(IS)

WRlTECl,23)
23 FORMATC'ENTER WEEK NO. ONE DIGIT')

READC6,2'4) IWEEK
24 FORMAT C 11)

GO TO 62
71 CALL DATSWC14,1)

GO TO 172,75)'1
72 WRITE(l,25)
25 FORMATC'ENTER MAXIMUM CHECK AMOUNT. FIVE DIGITS')

READC6,211 CKMAX
21 FORMATIF5.0)

GO TO 62

AND ACCEPT ANY PAY04
PAY04
PAY04
PAY04

'3A2/'NET MAX' PAY04
BY SW ITCH 14. 'PAY04
WEEK NO. SET' PAY04

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAV04
PAV04
PAY04

C----- - - - - - - - - - - - - - -
C-----

- - - - - - - - - - - - - - - - - - -PAY04

C----- INITIALIZE PLANT VARIABLES
c-----75 INDX=NOPLT + 100

GO TO (76.77.78,79,80,81),NOPLT
76 ILST=250

GO TO 83
77 ILST"90

GO TO 83
78 ILST=200

GO TO 83
79 lLST=50

GO TO 83
80 ILST-150

GO TO 83
81 ILST=30

c----- - - - -

80

PAV04
PAV04
PAY04
PAV04
PAY04
PAY04
PAY04
PAV04
PAV04
PAY04
PAY04
PAV04
PAV04
PAY04
PAY04
PAY04

-PAY04

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

PAY04 PROGRAM

C-----C----- READ THE EMPLOYEE INDEX FOR THIS PLANT.

C-----83 READ(INDX'ILST) LAST
READ(INDX'1) (INDEX(II. I-l.LASTI

C----- -
C-----C----- READ A WEEKLY EMPLOYEE RECORD.

C-----90 READC2.5) KPLNT. ICLCK, RGHRS. OTHRS. BNHRS. (KODEII).SPECLCI).
1 1=1.3). KARD

5 FORMATCl1.I3.FS.O.F4.0,FS.O.I1,F6.0,2CIl,FS.OI,42X,I11 C----- _
C-----C----- INITIALIZE INDIVIDUAL VARIABLES

C-----ADREG=O.
AD-O.
HOLDY=O.
IFILL-O
KO=16448
OTHER-O.
SICK"O.
SPA"'O.
SPB=O.
TAX-O.
VACA=O.

C----- -
C-----C----- LAST CARD CHECK AND VALIDATE PLANT NUMBER
C----- IF KAR~ EQUALS 6. PROCESS IT.
C----- IF KAR[EQUALS 9, LAST CARD
C----- OTHERWISE. ERROR
C----- IFCKARD - 6) 100,110,103

103 IFCKARD - 9) 100.500,100

C-----C----- PLANT NUMBER
C-----110 IFIKPLNT - NOPLTI 100,105.100

100 WRITEC1.61 KPLNT, ICLCK
6 FORMAT('CHECK CARD WITH CLOCK NUMBER '11,131

PAUSE 100
GO TO 90

C----- -
C-----C----- LOCATE EMPLOYEE IN INDEX

C-----105 ICLCK=ICLCK + KPLNT * 1000

81

Section

35

PAGE 04

PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAV04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAV04
PAY04
PAY04
PAY04
PAY04
PAY04
PAV04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAY04
PAY04

Subsections Page

20 I 10 85

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 86

PAY04 PROGRAM

DO 115 IND=l.LAST
IFI INDEX(IND) - ICLCK) l15tl25.11S

115 CONTINUE
C-----e----- PROGRAt COMES THRU HERE ONLY WHEN NO MATCH FOUND.

e-----WRITEll,7) ICLeK
7 FORMATI'CLOCK NO '14' IS NOT IN THE FILE')

e-----C----- UPDATE ERROR TOTALS
C-----120 XREGaXREG + RGHRS

XTOTaXTOT + OTHRS
XBN-XBN + BNHRS
XSP.XSp + SPEe~ll) + SPECL(2) + SPEC~(3)
CALL STACK
GO TO 90

PAGE OS

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

C----- -
e-----

- - - - - -PAY04

C----- READ THE EMPLOYEE RECORD FROM DiSk AND VALIDATE CLOCK NUMBER.

C-----
PAY04
PAY04
PAY04

125 READINOPLT'IND)
1

NUM. NAME. NSSAN. NSTAS. NDUES. NWKMP. NWKPD. MAR.PAY04
NXMPF, NXMPS. NSEX. NRATE. YTD. aRTD. LYRHR. NCU. PAY04

2 NCUDD. NCHCK. NADWH. NSTCK. NINS. NMISC. NUA. PAY04
3 NSTKD. I SUPP. IN IT PAY04

C-----C----- VALIDATE CLOCK NUMBER
C----- VALID - 136
C----- INVALID - 135

C----- IFINUM - ICLeK) 135.136.135
135 WRITE(1,8) NUM. ICLCK

8 FORMATI'FILE NO '14' AND INDEX NO '14' DO NOT AGREE')
GO TO 120

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

C----- - - - - - - - - -
C-----

- - - - - - - - - - -PAY04

C----- CALCULATE REGU~AR EARNINGS AND HALF ADJUST

c-----136 RGERN.PHILIRGHRS * NRATE)

PAY04
PAY04
PAY04
PAY04

C----- -PAY04
C-----C----- CALCULATE BONUS EARNINGS AND HALF ADJUST

c-----BNERN.Pt ILIBNHRS * NRATE) c-----
C-----C----- CALCULATE ANY SPECIAL EARNINGS.
C----- EARNINGS. KODE TYPE
C----- 1 SPA

USE CODE TO DETERMINE TYPE OF
KODE TYPE

5 SPB*NRATE

82

PAY04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAY04
PAY04

Section Subsections Page

35 20 I 10 87

PAY04 PROGRAM PAGE 06

C----- 2 SPB 6 VACA PAY04

• C----- 3 SPB*NRATE 7 SICK PAY04
C----- 4 SPB*NRATE 8 HOLDY PAY04
C----- 9 HOLDY * 2 PAY04

• C----- PAY04
DO 139 1=1,3 PAY04
K=KODEtI) PAY04

• IF tK) 100d39,600 PAY04
600 GO TO t601,602,6U3.604,605,606,607,608,609),K PAY04
601 AD=SPECLtI) PAY04

• OTHER=OTHER + AD PAY04
SPA=SPA + AD PAY04
KO=-3776 PAY04

• GO TO 139 PAY04
602 OTHER=OTHER + SPECLtl) PAY04

SPB=SPA + SPECLtl) PAY04

• KO=-352(PAY04
GO TO 139 PAY04

603 KO=-3264 PAY04

• 610 OTHER=PHILtSPECLII) * NRATE) PAY04
SPB-SPB + SPECLII) PAY04
GO TO 139 PAY04

• 604 KO=-3008 PAY04
GO TO 610 PAY04

605 KO=-2752 PAY04

• GO TO 610 PAY04
606 VACA=SPECLII) PAY04

SPB=SPB + VACA PAY04

• GO TO 139 PAY04
607 SICK=SPECLII) PAY04

GO TO 139 PAY04

• 608 HOLDY=8. * NRATE PAY04
AD=AD + HOLDY PAY04

611 SPB=SPB + HOLDY PAY04

• ADREG=800. PAY04
GO TO 139 PAY04

609 HOLDY=16. * NRATE PAY04

• AD=AD + HOLDY / 2. PAY04
GO TO 611 PAY04

139 CONTINUE PAY04

• C----- -PAY04
C----- PAY04 C----- CALCULATE OVERTIME EARNINGS IF APPLI CABLE. USE ~TATUS AND HOURS PAY04

• C----- TO DETERMINE APPLICABILITY. PAY04
C----- PAY04

IFINSTAS-2) 141,131,141 PAY04

• C----- PAY04
C----- NOT APPLICABLE. USE STANDARD RATE. PAY04
C----- PAY04

•

83

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 88

PAY04 PROGRAM

137 IOTRT-NRATE
GO TO 150

C-----141 IFCRGHRSI 137.137.142

C-----C----- OVERTIME APPLIES. CALCULATE OVERTIME RATE.

C-----142 IOtRT=(RGERN + BNERN + ADI * 100. I CRGHRS + ADREGI + 0.5

C-----C----- CALCULATE OVERTIME PAY

C-----150 OTERN=PHILCOTHRS * IOTRTI
C----- - - - - - - - · -
C-----C----- SUM REGULAR. O.T •• AND BONUS EARNINGS

C-----ERNGS=RGERN + BNERN + OTERN
C----- -
C-----C----- CALCULATE AVERAGE RATE AND UPDATE LAST QUARTER AVERAGES.

C----- IFIRGHRSI 143.143.144
143 IVRAT=NRATE

GO TO 160
144 IVRAT=ERNGS * 100. I RGHRS
160 DO 165 1-1.12
165 ISUPP(Il=ISUPP(1+1)

ISUPP(l~I=IOTRT

C----- - - - . -
C-----C----- CALCULATE FICA TAXABLE EARNINGS

C-----ERNGS=ERNGS + VACA + HOLDY + OTHER
C----- -
C-----C----- CALCULATE FICA AND GROSS PAY AND TAXABLE PAY
C----- IFICA=0.044 * ERNGS + 0.5

IFIIFICA + YTD(2) - 29040.)185.180.180
180 IFICA=29040. - YTO(2)

C-----185 GROSS=ERNGS + SICK
C-----TAXBL=GROSS - NXMPF * 1350.
C----- -
C-----C----- CALCULATE FEDERAL INCOME TAX

C-----CALL ITITAXBL.MAR.TAX)

84

PAGE 01

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAY04
PAY04

PAY04 PROGRAM

TAX"TAX + NADWH

• C----- -
C-----C----- COMPUTE LOCAL TAX BY PLANT LOCATION • C-----

GO TO 1230.235.240.230.246.2301.NOPLT

•
•
•
•

230 LOCAL"PHILIGROSSI
GO TO 250

235 I=12S0. * NXMPS + O.~
LOCAL"O.OlOS * IGROSS-Il
GO TO 250

240 IF(NXMPSI 241.241.242
241 LOCAL-0.02 * GROSS

GO TO 250
242 I=NXMPS * 153S.5 + 961.5

LOCAL.IGROSS - II * 0.02
250 IFILOCAL) 246.247.247
246 LOCAL-O C----- -• C-----C----- CALCULATE NET EARNINGS

C-----• 247 ATAX-GROSS - TAX - LOCAL - IFICA C----- -
C-----• C----- CALCULATE VOLI INT ARY DEDUCT IONS. C----- INITIALIZE.
C-----

• IUD=O IUA=O
ISTCK-O

• IINS"O ICU=O
IMISC=O

• C-----C----- IF THE EMPLOYEE RECEIVES SICK PAY. VOLUNTARY DEDUCTIONS ARE NOT C----- TAKEN.
• C-----

IF(SICK) 252.253.252
252 CNET=AT~X

• GO TO 3t S C-----C----- OTHERWISE. DEDUCTIONS NECESSARY ARE TAKEN.
• C----- TAKE UN I ON DUES ACCORDING TO PLANT

C-----
253 IFIIWEEK - 31 255.255.251

• 251 IFINOPLT - 31 280.255.280
255 IF(NSTAS - 21 260,260,282
260 IFIGROSS - VACAI 261,295.261

~

85

Section Subsections

35

PAGE 08

PAY04 I
-PAY04

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04 \
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04 I
PAY04 I
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

-

20
1

10

Page

89

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 90

PAY04 PROGRAM

261 GO TO 1265.265.275.265.265.280).NOPLT
265 IFINOUES - 10000) 270.270.280
270 IUO=NDUES + INIT

NOUES=NOUES + INIT + 10000
INIT=O
GO TO 290

275 IUO-PHILIGROSS - VACA) + INIT
NOUES=NOUES + IUD
INIT=O
GO TO 282

280 IUO-O
C-----C----- CHARITIBLE CONTRIBUTIONS
C-----

282 IFI.WEEK - 2) 290,285.285
285 IFINUA - 10000) 286,290.290
286 IUA=NUA

NUA=NUA + 10000
GO TO 295

290 IUA=O
C-----

PAGE 09

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAV04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

C----- TAKE STOCK. INSURANCE, CREDIT UNION. AND MISCELLANEOUS DEDUCTlONSPAY04
C-----

295 ISTCK=NSTCK
IINS=NINS
ICU=NCU
IMISC=NMISC C----- - - - - - - - - -

C-----

PAY04
PAY04
PAY04
PAY04
PAY04

- - - - - - - - - -PAY04

C----- CALCULATE NET. AT ALL TIMES CHECKING THAT NET IS NOT NEGATIVE.
PAY04
PAY04
PAY04 C-----

IFIATAX - IUD) 300.310.310
300 IFINOPLT - 3) 305.301.305
301 NOUES- NDUES - IUD

GO TO 309
305 NOUES=NOUES - 10000
309 IUO=O

IFILL=l
310 CNET=ATAX - IUD

IFleNET - IINS) 320.325,325
320 IINS=O

IFILL=2
325 CNET=CNET - IINS

IFICNET - ISTCK) 330.335,335
330 ISTCK=O

IFILL=3
335 CNET=CNET - ISTCK

NSTKO=NSTKD + ISTCK
IFICNET - leU) 340,345,345

86

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

PAY04 PROGRAM

340 ICU"O
IFILL.4

345 CNET=CNET - ICU
NCUOO=NCUOO + (leu I 101
IF(CNET .. IUAI 350.355.355

350 IUA-O
IFILL=5
NUA-NUA - 10000

355 eNET=CNET - IUA
IF(CNET - IMISCI 360.365.365

360 IMISC-O
IFILL .. 6

365 CNET=CNET - IMISC c----- . . - - - - - - - - - - -
C-----C----- CHECK NET AGAINST MAXIMUM CHECK AMOUNT AND AGAINST A MINIMUM OF
C----- ONE DOLLAR
C---"-

366 IFICKMAX - CNETI 367.368.368
367 WRtTE(1.121 CNET. ICLCK

12 FORMAT('NET OF ' F7.0' FOR CLOCK NO '141
GO TO 120

368 IF(CNET - 1001 370.375.375
370 TAX=TAX + CNET

CNETIIO
IFILL.7

C----- -
C-----C----- UPDATE YEAR-TO-DATE INFORMATION c---.. -

375 YTO(ll-YTO(ll + GROSS
YTO(2)=YTO(21 + IFICA
YTOI31=YTO(31 + TAX
YTO(4)=YTO(4) + ERNGS
YTO(5)=YTOIS) + SICK
YTO(6)=YTO(6) + SPA
YTO(7)=YTO(7) + SPB
YTO(81=YTO(8) + LOCAL
YTO(9)=YTO(9) + RGHRS
YTO(10)·YtO(10) + OTHRS
YTO(11)-YTO(11) + BNHRS
YTO(12)=YTO(12) + RGERN
YTO(131=YTO(13) + OTERN
YTO(14)=YTO(14) + BNERN

C----- - .. - - - - - - - - - - .. - - - - - - .. - - - - - - - - - - - -
C-----e----- UPDATE QUARTER-TO-DATE INFORMATION

QRTO(l)=QRTO(l) + GROSS
QRTO(2)sQRTOCZ) + TAX

87

Section Subsections

35 20 I 10

PAGE 10

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04
PAYC4
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAV04
PAY04
PAY04
PAY04

-PAY04
PAY04
PAY04
PAY04
PAY04

Page

91

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 92

PAY04 PROGRAt

QRTD(3)=QRTOI31 + IFICA
QRTD(4)=QRTOI41 + LOCAL
QRTD(5)=QRTO(SI + ERNGS
QRTDI61=QRTOI61 + SICK

PAGE 11

PAY04
PAYC4
PAY04
PAY04

C----- - - - - - - - - - -
C-----

- -PAY04

C----- UPDATE PLANT TOTALS

C-----TOTlll=TOTI11 + RGHRS
TOTI21=TOTI21 + RGERN
TOTI31 = TOTI31 + OTHRS
TOT(4)=TOTI4) + OTERN
TOTI51=TOT(SI + BNHRS
TOT(6)=TOT(6) + BNERN
TOTI71=TOT(7) + OTHER
TOTI81=TOTISI + HOLDY
TOTI91=TOTI91 + VACA
TOTI101=TOTI101 + SICK
TOTIlll=TOTllll + CNET
TOTI121-TOTI121 + TAX
TOT(13)=TOTI131 + IFICA
TOT(14)=TOTI141 + LOCAL
TOTI151=TOTI15' + ICU
TOT(16)=TOTI161 + IUD
TOT(171=TOTI171 + IUA
TOT(18)=TOTI181 + ISTCK
TOT(19)-TOTI19) + IMISC
TOT1201-TOT1201 + IINS
TOT(21)=TOTI211 + GROSS

c--.... --
C-----

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAV04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

- - - - - - .. - - - - -PAY04
PAY04

C----- SUM sPECIAL EARNINGS. SUM DEDUCTIONS. AND ExTEND THE EMPLOYEE PAY04
PAY04 C----- WEEKLY CARD

C-----T-T + SPECLlll + SPECLI21 + SPECL(31
IDED=IINS + ISTCK + IUA + IMISC
WRITEI2.91 NRATE. GROSS. CNET. TAX. IFICA.

9 FORMAT(, 1x.!3.2F6.0.I5.414.151
C----~ -C"----

PAY04
PAY04
PAY04

LOCAL. ICU. IUD. IDED PAY04
PAY04

- - - - - - - .. - - - -PAY04
PAY04

C----- SETUP CONTROL INFORMATION. AND WRITE UPDATED EMPLOYEE RECORD BACKPAY04
C----- TO THE DISK.

C-----

C-----

LYRHR=LYRHR + RGHRS
NWKPD=NWKPO + 1
IPD-l

WRITEINOPLT'INDI NUM. NAME. N$SAN. NSTAS. NDUES. NWKMP. NWKPD.
1 MAR. NXMPF. NXMPS. NSEX. NRATE. YTD. QRTD. LYRHR. NCU. NCUDD.

88

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Section

PAY04 PROGRAM

2
3
4
5

NCHCK. NADWH. NSTCK. NINS. NMISC. NUA. NSTKD. ISUPP. INIT.
IPD. IFILL. GROSS. IVRAT. IOTRT. RGHRS. OTHRS. BNHRS. RGERN.
OTERN. BNERN. OTHER. KO. HOLDY. VACA. SICK. CNET, IFICA. TAX.
LOCAL. ICU. IUA. IUD. 1 INS. ISTCI(. IMISC

C-----C----- GO BACK FOR ANOTHER WEEKLY EMPLOYEE CHECK.
C ... ----

GO TO 90
C----- - - - - - - - ~ - - - ~ - ~ - - - ~ - ~ - - - - - - - - - - - -
C-----C----- WRITEi~E PAYROLL REGISTER.
C-----500 ICNT=ICHCK

DO 510 I-1.LAST
READtNOPLT'II NUM. NAME. NSSAN. NSTAS. NDUES. NWKMP. NWKPD. MAR.

1 NXMPF. NXMPS. NSEX. NRATE. YTD. QRTD. LYRHR. NCU. NCUDD.
2 NCHCK. NADWH. NSTCK. NINS. NMISC. NUA. NSTKD. ISUPP. INIT.
3 IPD. IFILL. GROSS, IVRAT. IOTRT, RGHRS. OTHRS. BNHRS, RGERN.
4 OTERN, BNERN. OTHER, KO. HCLDY. VACA. SICK. CNET. IFICA. TAX.
5 LOCAL. ICU. IUA. IUD. IINS. ISTCK. IMISC

C-----C----- CHECK PAID INDICATOR TO SEE IF COMPUTATIONS WERE PERFORMED.
C-----

19

10

IFtIPD - 11 510.515,510
515 RGHRS=WHCLE(RGHRS + tRGHRS 1 ABSCRGHRSII * 0.51 / 100.

OTHRS=WHOLEIOTHRS + tOTHRS I ABSIOTHRSII * 0.51 1 100.
BNHRS=WHOLEIBNHRS + CBNHRS 1 ABSIBNHRSII * 0.51 / 100.
RGERN=WHCLEIRGERN + CRGERN 1 ABSCRGERN1) * 0.5) 1 100.
OTERN=WHCLEIOTERN + 10TERN 1 ABSIOTERN) I * 0.51 1 100.
BNERN=WHCLE(ANERN + (BNERN / ABS(BNERN» * 0.5) 1 100.
OTHER=WHOLE(OTHER + COTHER 1 ABSCOTHER)I * 0.51 1 100.
HCLDY=WHOLECHOLOY + CHOLDY 1 ABSCHCLDY» * 0.51 I 100.
VACA=WHOLECVACA + CVACA 1 ABSIVACA» * 0.5) 1 100.
SICK=WHOLEISICK + (SICK 1 ABSCSICK)1 * 0.5) 1 100.
GROSS=WHOLEtGRnsS + tGROSS 1 ABSCGROSS) I * 0.5) I 100.
CNET=WHOLEtCNET + (CNET 1 ABSICNETI) * 0.5) 1 100.
IF(LINE - 50) 385.380.380

380 IPAGE=IPAGE + 1
WRITE(3.19) COMP, NDWK, IPAGE
FORMAT('1'20x.'FACTORY PAYROLL'.5X,16A2.5X.'W/E ',A2,2C'-',A21.

1 10X.'PAGE NO ',12/1
WRlTE13,101
FORMATI' NUMBR'5X,'NAME'17X,'REG HRS OT HRS BNS HRS REG ERN OT

lERN BNS ERN SPECIAL HOLDAY VACATION SICK GROSS'I

FWT LOCAL C.U. U/D U/A INS STCK MISC NET'I
WRlTE(3.20)

20 FORMAT(' FICA
LINE=O

385 WRITE(3,111 NUM, NAME. ICNT. RGHRS. OTHRS. BNHRS. RGERN. OTERN.
1 BNERN. KOt OTHER. HOLDY. VACA. SICK. GROSS. IFICA.

35

~

89

Subsections Page

20 I 10 93

Section Subsections Page

35 20 I 10 94

PAY04 PROGRAM PAGE 13

2 TAX, LOCAL, leu, IUD, IUA, IINS, ISTeK, IMISC, eNET PAY04

• 11 FORMAT(/,lX,I4,2X,9AZ,15,6(ZX,F6.Z),lX,Al,5C2X,F6.2)/1x,I5,2X,815,PAY04
1 Fe.2) PAY04

FIBRE(NSEX)=FIBREINSEXI + 1 PAY04

• LINE=LINE + 3 PAY04
leNT=leNT + 1 PAY04

510 CONTINUE PAY04 • C----- .PAY04
c----- PAY04
e----- WRITE CONTROL TOTALS PAY04 • C----- PAY04

TGRS=TOTIZ1) PAY04
TNET=TOTI1I) PAY04
WRITEI1,15) TOTRG, TOTOT, TOTBN, TOTSP PAY04

15 FORMATI'INPUT TOTALS ',413X,FS.0» PAY04 •
WRITEI1,16) TOTI1', TOTI31, TOTI51. T PAY04

16 FORMATI'PROCESSED TOTALS '.4IFa.0,3XI I PAY04
WRITEll,17) XREG, XTOT,XSN, XSP PAY04 •

17 FORMATI'ERROR TOTALS ',413X,FS.OII PAY04
A=TOTRG - TOTll) - XREG PAY04
B=TOTOT - TOT(3) - XTOT PAY04 •
~=TOTBN - TOT(5) - XBN PAY04
D=TOTSP • T - XSP PAY04
~RITEI1,18) A, B, e, 0 PAY04 • \

18 FORMATI'THE DIFFERENeES',4(3x.Fa.0» PAY04
C----- - - - - - - - - - - • - ~ - - - - - - - - - - - -PAY04
C----- PAY04 •
e----- wRITE THE PLANT GENERAL LE~G(R INFORMATION AFTER THE TOTAL LINE PAY04
e----- PAY04

FIBRE(3)=FIBRE(3) + TOTll) PAY04 •
FIBRE(4)=FIBRE(4) + TOT(2) PAY04
FIBRE(5)=FIBRE(51 + TOTI31 PAY04
FIBRE(6)=FIBRE(61 + TOTI41 PAY04 •
FIBRE(71=FIBREI71 + TOT(9) PAY04
FIBREISI=PIBREISI + TOTI81 PAY04
DO 520 1=1.10 PAY04 •

520 TOTIII=WHOLEITOTIII + ITOTIII / ABSITOTIIIII * 0.51 / 100. PAY04
WRITEI3,l3) (TOT(I) ,1=ltlOI PAY04
FORMAT(I,' ','FST LINE TOTAL'tlOFIO.2) PAY04 • 13
TOTI211=-TOTI211 PAY04
IPAGE=IPAGE + 1 PAV04
WRITEI3,19) COMP, NDWK, IPAGE PAY04 •
DO 5S0 1=1,11 PAY04
TOTCI+I01=·wHCLEITOTII+I0) + CTOTII+IOI/ABSITOTII+IOI I 1*0.51/100. PAY04

550 wRITEI3,14) ITOTIII, TOTll+101 PAY04 •
14 FORMATI/,20X.I4,5X,F9.Z1 PAY04

C----- -PAY04
c----- PAY04 •
c----- wRITE THE PLANT INFORMATION BACK TO DISK. PAY04

L!----

90

Section Subsections Page

35 20 I 10 95

PAY04 PROGRAM PAGE 14

C----- PAY04

• v,'R I T E (25 ' NOP LT) COMP, ICHCK, IWEEK, FIBRE, ITOT, CKM"X, TGRS, PAY04
1 TNET, ICNT PAY04

C----- - - ------- - - ------- ------ - - -PAY04

• C----- PAY04
C----- STOP PAY04
C----- PAY04

• CALL EXI T PAY04
C----- - - - - - - - - - - ------- ------------- -PAY04

END PAY04
) • VARIABLE ALLOCA T IONS

ICCL &005B IWVA "'005B MUNC =005B LBO "005B L8T =0058 LMC "0058 INl =005C IN2 =005C IN3 "'U05C IN4 "005C

• IN5 -005C IN6 "'005C F18RE"'0072 QRTD =0084 SPECL=0080 TOT -OOCC YTO -00F6 T =OOF9 XTOT -OOFC XBN =OOFF
XREG "0102 XSP "'0105 TOTRG"O 108 TOTOT=O lOB TOTBN=010E TOTSP"Olll CKMAX"'01l4 RGHRS"'0117 OTHRS"'Ol1A BNHRS=O J.l0
ADREG=0120 A::> =0123 HOLDY=0126 CTHER=O 129 SICK .. 012C SPA =012F SPB -0132 VACA "0135 RGERN"0138 BNERN"013B

• OTERN"013E ERNGS=O 141 GROSS=0144 TAXBL=0147 ATAX =014A CNET ",0140 TGRS =0150 TNET "0153 A -0156 B =0159
C =015C 0 =015F IDATE"016D INOEX=0267 I SUPP .. 02 74 I TOT =027F KOOE =0282 NAME =028B NOWK =028E NSSAN"0291
COMP =02Al TAX =02A2 IC "02A3 I -02A4 IPAGE=02A5 LlNE :02Ab NOPLT,,02A7 KARD =02A8 ICHCK=02A9 IvlEEK-02AA

• IN::>X =02AB ILST =O,AC LAST =02AO KPLNT=02AE I CLCK=02AF IF ILL"02BO KO ,,02B1 INO =0262 NUM "02B3 NSTAS-02B4
NOUES=02B5 "WI<.r~P=028b NwKPD"C2B7 MAR "02B8 NXMPF"02B9 NXMPS"02BA NSEX ,,02BB NRATE:02BC LYRHR"02BD NCU "02BE
,\iCUDD"02BF ;,CHCK=02CO NAOWH=02Cl NSTCK"02C2 NINS "02C3 NMISC"02C4 NUA ,,02C5 NSTKO"02Cb 11'111 T =02C7 K =02CIl

• IOTRT=02C9 I V~AT=02C,\ IFICA=02CB LOCAL"02 CC IUD =02CO IUA =02CE IsTCK=02CF I INS =0200 ICU "'0201 IMISC=02Dl

) IDEO =02::>3 IPO "0204 ICN T "02D5

• STATEMENT ALLOCA T IONS
PHIL =0338 1 ",034A 2 =0353 3 -0365 4 =0308 22 =03E8 23 =03EA 24 "03F8 25 "03FA 21 =0410
5 =0412 b =0420 7 =0433 8 "044b 12 =045E 9 =046E 19 =0477 10 =0499 20 =0400 11 =04EE

• 15 "'0507 16 -0515 17 =0524 18 =0532 13 =0540 14 =054E 50 =0589 99999=05A2 51 "05BB 52 =05BF
55 =05C5 bO "05CO b2 =050F 70 =OHE 71 =Ob12 72 "OblC 75 =Ob27 76 =Ob37 77 =Ob30 78 =Ob43
79 =0649 80 "064F 81 "Ob55 83 =Ob59 90 =0674 103 "Ob02 110 =ObOA 100 "ObEO 105 =06EC 115 =0704

• 120 "'0712 125 =0738 135 =077A 13b =0784 600 =07AF bOl "07BC b02 =0708 603 =07F2 bl0 "07F7 b04 =0812
b05 =0819 60b =0820 607 =0831 b08 =083C bll =0849 b09 "0855 139 =08bb 137 =0874 141 =087A 142 =087F
150 "0894 ~ 43 =08Ao 144 =08B3 160 =OBBC lb5 =08CO 180 "08FO 185 =090b 230 =092A 235 =0932 240 =0948

• 241 =094C : 42 "0955 250 =09b9 24b =0960 247 =0971 252 =09A3 253 =09A9 251 =09AF 255 z09B5 2bO =09SB
2bl =09C2 265 =09CC 270 =0902 275 "09Eb 280 =OA05 282 =OA09 2B5 =OAOF 286 =OA15 290 =OA21 295 -OA25
300 "OA30 301 ~OA43 305 =OA4B 309 "OA51 310 =OA59 320 =OAbS 325 =OA70 330 zOA7F 335 =OA87 340 =OA9C

• 345 "OAA4 350 =OABC 355 =OACA 3bO =OAD9 3b5 =OAEl 36b "OAE8 3b7 =OAEF 3b8 "OAF9 370 :(JBOl 375 =OB12

) 500 "OD1E 515 =009C 380 =OE7A 385 =OE98 510 =OEE7 520 =OF9F 550 =103E

• FEATURES SUPPJRTEO
O",E <lORO INTEGERS I
EXTENDED PRECISION

• IOCS

CALLED SuBPROGRAMS

• _/HCLE OATSW STACK IT EA8S EAOO EAOOX ESUB ESU8x EMPY EMPYX EDIV ELO ELOX E5TO
ESTOX ESBR EDVR EOVRX IFIX FLOAT TYPEZ SREO SWRT SCOMP SFIO SIOAI SIOFX 510IX 5lOF
5101 SUBSC PAUSE SNR SUBIN CAROZ PRNTZ SOF 10 SOREO SOWRT SOCOM SOAI SOAF SOIX SLlF

• SOl

• REAL CONSTANTS
.500000000E 01"02Eb .100000000E 03=02E9 .000000000E 00=02EC .800000000E 01=02EF .80000.0000E 03"02F 2
.1bOOOOOOOE 02=02F5 .200000000E 01=02F8 .500000000E 00=02FB • 440000000E-0 1=02FE .290400000E 05=0301

• .135000000E 04,,0304 .128000000E 04,,0307 .1 08000000E-Ol =0 30A • 200000000E-0 1"030D .153850000E 04=0310
.961500000E 03=0313

• INTEGER CONST. HS
1=0316 21=0317 0=0318 50"0319 2=031A 6=0318 25~031C 1111=0310 15=031E 14=031F

100"0320 250=0321 90=0322 200=0323 150=0324 30=0325 3=032b lb448=0327 9=0328 1000"0329

• 377b=032A 3520"032B 32b4=032C 3008=0320 2752=032E 12=032F 10000"0330 4=0331 10=0332 5"0333
7=0334 11=0335 43b9=033b 250"0337

• CORE REQUIREMENTS FOR PAY04
CO"'MON 0 VARIAI3LES 742 PROGRAM 3466

• END OF COMPILATION \ -- --

91

Section

35

Subsections Page

20 I

•
•
•
•
•

10 96

II JOB
II XEQ PAY04 3
*FILES 101,INDX1 , 102,INDX2 , 103,INDX3 , 104,INDX4 , 105,INDX5 , 106,INDX6
*FILES(25,PINFO),
*FILES(101,IND11),(102,INDX2),(103,INDX3),(104,INDX4),(105,INDX5),(106,INDX6)
1022168021568 0044000000165000010500013900
1001040000000001001000800200400 6
1002040000000000002000800300400 6
1003040000250000J03000800400400 6
1005040000300002005000800600300 6
1004040000000000004000800500400 6
1006~4000000000J004000a00500400 8
1016040000500000006001600700400 6
11070400000000025070Q0800B00500 6
1218040000500000~OB000800900600 6
1347040000000003009000800100700 6
1603040000100002001000400200200 6

9

Input cards

•
•
•
•
•
•
•
•

THE CONTAINER
CHECK NO
WEEK NO 1
W/E 021568
NET MAX 25000.

CORP.
1

022168

MAXIMUM CHECK AMOUNT MAY BE CHANGED BY
SWITCH 15 WILL CHANGE ~HE CHECK NO AND
REQUESTED AND PRESS START
CHECK CARD WITH CLOCK NUMBER 1
INPUT TOTALS 44000.
PROCESSED TOTALS 40000.
ERROR TOTALS O.
THE DIFFERENCES 4000.

6
1650.
1650.

O.
o.

Console Printer output

92

SWITCH 14.
THE WEEK NO.

1050.
1050.

O.
O.

SET SWITCHES

13900.
12700.

O.
1200.

Section Subsections

35 20 I

•
•

II XEQ PAY04 3
*FILES(1,COLFP),(2,WVAFP),(3,MNCFP),I4,LBOFPI,(S,LBTFP),(6.LMCFPI,
*FILES(25,PINFO),
*FILES(lOl,INOXll.(102,INDX2I,(103,INDX31,(104,INDX4I,II05,INDX51 ,II06'INDX61

Test output

• FACTORY PAYROLL THE CONTAINER CORP. W/E 02-15-68 PAGE NO 1

NUMBR NAME REG HRS OT HRS BNS HRS REG ERN OT ERN BNS ERN SPEC IAL HOLDA'!' IIACAT ION SICK • FICA FWT LOCAL C.U. U/D U/A INS STCK MISC NET

1001 ROBT B BADEN 40.00 0.00 1.00 104.40 0.00 2.61 2 12.00 0.00 0.00 0.00 • 524 1774 119 a 600 a 276 a 86.08

1002 JOHN A HORN 40.00 0.00 0.00 104.40 0.00 0.00 3 10.44 0.00 0.00 0.00 • 505 1473 114 a 625 0 412 0 83.55

1003 ROBT L ~HORES 40.00 2.50 0.00 85.60 5.35 0.00 4 8.56 0.00 0.00 0.00 • 438 658 99 1000 600 o 1012 0 61.44

1004 JOHN W CUSSEN 40.00 0.00 0.00 104.40 0.00 0.00 5 10.44 0.00 0.00 0.00 • 505 833 114 0 625 0 581 200 86.26

1005 JOSEPH MON T ANO 40.00 3.00 2.00 148.80 11.73 7.44 5 29.76 0.00 3.00 0.00 • 883 3258 200 750 0 724 0 0 142.58

1016 DONALD MILLER 40.00 5.00 0.00 112.00 14.00 0.00 0.00 0.00 16.00 4.00 • 625 896 146 a a a 129.33

1107 A E TAYLOR 40.00 0.00 2.50 104.40 0.00 6.52 0.00 20.88 0.00 8.00 • S80 1898 139 a a 0 0 113.63

1218 DAIIID A HUBBARD 40.00 5.00 0.00 85.60 12.50 0.00 0.00 34.24 0.00 0.00 • 582 2276 132 500 600 a 296 0 88.48

1347 FRANK T DOLEN 40.00 0.00 3.00 68.40 0.00 5.13 1 7.00 27.36 0.00 0.00 • 475 1030 107 a 400 0 624 0 81.53

1603 AL REYNOLDS 10 40.00 1.00 2.00 148.80 4.01 7.44 2 6.00 0.00 0.00 0.00 • 732 1888 166 0 a 1142 300 123.97

GROSS

119.01

114.84

99.51

114.84

200.73

146. 00

139.80

132.34

107.8\1

166.25

FST LINE TOTAL 400.00 1066.80 16.50 47.59 10.50 29.14 84.20 82.48 19.00 12.00 •

Pri nter output, part 1

93

10

Page

97

Section Subsections Page

35 20 1 10 98

• FACTORY PAYROLL THE CONTAINER CORP. W/E 02-15-68 PAGE NO 2

• 111 -996.85

620 -159.84

• 620 -58.49

• ~22 -13.36

625 -22.50

• 626 -34.50

• 627 0.00

628 -5.00

• 0.00

• -50.67

635 1341.21

• ~ - -

Printer output, part 2

94

Section Subsections

IBM 1130 MACHINE SETUP SHEET

PROGRAM 'd '.1 PROGRAM
NAME: G/cU/t7h~r7ST ?d!l~"'t1// k&g/-S"Ter NUMBER: PA y"t::J4

PROGRAM
DESCRIPTION:

APPROXIMATE
RUNNING TIME:

35 20 I

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

PRINTER

DISKS

SWITCH
SETTINGS

INPUT
CARDS

DRIVE NUMBER:

CARTRIDGE
10:

SWITCH _...£/0.....:'4;.,...-__ _
UP v'

DOWN

o

/

2

SWITCH _-.L-/..;:;;S ___ _
UP v
DO'NN

3

SWITCH #t:'//~
UP
DOWN

4

S4'/Y'ch /4 r-t:) cAp1)'e h7t::?x/mt:,h?7 cA~cA:.. ~h1&)v/)r /dr74/ rur/?

c;//') s4//~ch /5" rC' C/Jddtnt!1? cAec/.::. .l?Vh'i'Oer 4.-?d ""t!?e/c.. rJun76e"" ./ .,/ .

(ddd r?lr'.I? ~//J

(

(
WEEKLY

f~J-g~E_V rCONTROl
TOTALS

(IIXEQ PAY04_

/1/ JOE>

SOURCE OF INPUT: 4 tJrd'//t,PuC&4n1 t:I S4t-'Yes £Iu/ ePA Y/@ ed/t Cd/2
.e ihsl< azu-rf ae

1
Payca/l ,.p's:J- tY-A'ff 6ks-

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

95.

10

Page

99

lil4

GL UE
;;=011101 ... lJIa"'WN"

FIELD' HEADINGS/WORD MARKS 8 Lines Per Inch

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER' SPACING CHART
IBM 407, 40B, '409, 1403~ '1:404, 1443, and 2203' Print Span:

",:' IBM 1403 Models 1 & 4 +-l 1
IBM 407,408, 409, and 1403 Models 6 and 7-

;
IBM 1403 Models 2, 3, 5, Nl and'I,404

IBM 1443 Models 1, Nl, an!l 2,203

o 1 3 4 6 7 8 9: 10 11
• 1 2 3 4 5 6 7 8 9 a 1 2 3 4 5 6 7 8 a 1 23 456 7 890 1 2345 6 7 89 a 1 2 3 4 5 6 7 8 9 a 1 2 3 4 5 67 89 a 1 2 3 4 5 6 789 a 1 23 4iS 6 7 89 a 1 234 567 8 9 a 1 234 5 67 890 1 345 6 7 89 1 2 34 5 6 89 .'

~ l a~~~~~~~~~~~~~~~~Jf~~~~~~~~~~~ff~~~~~rr~it~~it~~it~~it~~1J~~rr~itff~~~~l!fI Ii : ~

1t!H+H+~+H~~-----tt~~:~++~H+++HH~++HH~++HH~++HH~++HH++++HH++++HH~~H+++~H+++~H+++HHH+++HH~++HH~++HHH+++HH++~HH+++R
li~~~~~~~~~:ti:~~~~~~~~~~~~~if~~~~~EE~lj~~~fE~jftE~fffE~~~~ff~~jt~~~~~~~lf~~~t! i:~ ~

jl;.~::" __ "_" !H ~ li'!;~:~ot .. ~.t.~.+. .. ~.+-t=====~i~;~~++~~+t~~+t~4++t~++~~++~~++~~++tH~tt~~+t~1++t~4+tt~+++t~+++t~++~~++~~++~4+~

j!iH++H+H+H~r-----n:m:HH++++HH++++HH++++HH++++HH++~HH++~H+++~HH++~HK++HH~++HH~++HHH+++HH++~HH++++HH++HH~++HHH+++HH~~
Ii : ~!

37 ___ 38

~ 39

Cf)
('D

c,., (')
~ c.n o·
::s

l\:) Cf)

0 c:
C"

- ~
(')
~

I-' o·
0 ::s

en

I-'
'"C
Q)

0 CO
0 ('D

Section Subsections Page

35 20 I 10 101

VARIABLES IBM 1 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

'"
a..

Date .9/0/~7 -0 ~f- Application ,0,4 Y/?~L L <:VS/cM 0 w:::> MAX. MIN. NAME :s: f-a..

~' ~ ~ k'''C~ * ~~ w '0 VALUE VALUE
Program Name C.l;ec~ Ilk" 7/79 No. ?4Y'tJ.. Programmer Cl ~O 0 ci

~ z ~
FUNCTION OF VARIABLES

A R 3 0 lai11 iIi{lf;P Used /::Jr :zero bdk7/7Ce cAece:.

..3 I? .3. r (J. (lrJI ,# t/s-ed 4". .2~rt? /.J4Id,4~e Ch6'C.e..

8,1/ ?"fJ"r/ ;f .3 t) ~xxx.~ dr:JdJ 8~"'vf e4//?//15S'

18#'h'RS R .3 I~Ll ~x.xx ¢r:1;1f g()I'lt./S' h~vr.5

8R ~ " 0 XXX.Jj, ~l1tt' fo//7/ c:J1'//CJ/ p?~,¥"//?7u"-? ekek t:?A?O~~,t--"

CK,#/lx J? i3 T ~I~~ ~(J~ A/4J"/~L/m cj~d d#7.c?U4r ,i'or d ,,1/e
cl/£j k 3 0 ~tx Id/~ #81 ?lmoL//J1 d'/~c://v////d/ c.d'ed
CCIJ4P ~2 /~ iI;o - - Com~p",~ nOrY7e

;:18kJ£ R %~ t) " ~I.h"", tftJ¢ Trdde 4SSoC. re/o/"/s IYVXXXXA
' 'V"

GRoss ~ 3 0 XXx'XX ~tP~ GrosS- ?1mt?t://7/' c1/ /;,d0dC/tf// C/Jt!?c~

#OLLJY W 3 0 xX.XX ~~af Lb7d;'//c/t1/s AClh?/~0' PO'l?

Z V T
-./ ' v

/ - - C/5ec/ //7 2)0 /00/

./{} r-
~ / /1/ - - L5;t//vak/J/ro .L/t/./

lTCh"Ck Z / r 58f ~o/'
..8e!Z~;;nl;';q eject /1t///7~e/' u/herJ UJr/I/II7Cj check edch /'th7

LrCAIT f / tl ~X.YXX ~ Se~C/e/7c!e ~~.6e,,- /br ,{ovr/?,:?/ (SAou/c/
. Co .respo ~ To Cnec;.L:::.. #

VCOL L / T 250 .1 R.ecttPrd /?v/?l~r 0:1 e'fl?~/c;/pe ~'/eJ Sf!? r vp
bu.O/d" f ._

JCt/ I / 't/ ~x tP l71'7~v-/~~~ cre~ '/ U/l/~/J de'dtlc~tf)/7
ID4Tc ~e % ~O - - ~'1 Q'q/e

IDt I I 0 ~ iJ .1ST Chec~ r7C/;??ber

ZD2 I / 0 xxxx 0 .fd chd /7 C//r7.be.,..,

*Mode: I = integer, R = real, D = decimal, A = alphabetic

97

Section Subsections Page

35 20
1

10 102

VARIABLES IBM J 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

II> a..
Application P4YRt:?.lL SYSTEM Date~/a7 "E :EI-

~
w:::> MAX. MIN.

NAME * Ca..

Program Name checi:.. J1/r/h/1~ ~/C..£ w '0 1-1- VALUE VALUE No,PAWS rogrammer C :::>:::>
0 0 a.. 0
:E Z ~

FUNCTION OF VARIABLES

IFZ?/; .l I t:l rlXXX if kd'v//u ///!5 ;Z?4 ~PfX
.T~/LL lL-- / T 7 rZf kJdC--L?/e-5 ~~c~~~ /)C'/ hlt?&

.7.£#5 I / 0 XX ~ .Z"/;d/v/;'bt:?/S /a.su/d/l~e 4'E4'UC/;,~/7

lTLST I / T 25"0 s¢ Lt?sl record /?ul7Jber /n &'//:/e
[TAfZ5C .L / k? xttfx ~ .z;Jd/v/df/4,/$ /n/S"C. dfo4i./c~Or7S"

II/OX I / T /~0 /#/ Z/;&y r)k /)t//)/~&/> /P./4/j//Jo. ~./..oo)

I;..I/T Z / 0 lXX'x.xX ~ U/7/0/7 1/;;~2h"cJ/? ~e

.INI I / T 250 .1 #cord//('/I"?t6~r/;".//}d'e)(e5 ~&~h:/~~k

TN!! f I AI - - qv;"vc?k/?/ ;Ib .2/V.I

Z;V3 I I AI - - q~//vdk/J/- /G? ZA./L
IN4 I I 11/ - - 4U/Vc7ka/ -Td .IN.:!
ZA/5 z I AI - - Lj'd/ I/~k?/;l/ /t1 IN' .:I
7;1/0 z I AI - - q t//ya k4./ /af/v:1'
Z07RT z / T s¢'~ ¢ Ot/er~me ~dq/C7k

.LPO I / 0 2 ~ lI/Jdc4b .s6?bs t1//'~c/J,rd;;; j)/.tJ(!~'>57/;g cqc4
/

. ~

.zPN'T I / T 2 5/// ~t/ dtd? 511/1;fA..I1'd/J;;'d~ fJ/Jd$eskll!/~e/J o/"/;';t

lL V ~~ ~
v "." ;'

if5TC/C- / hd/j//dl/d/f s~c~ d'e'd'4/cQP/J
l{2/P.P I 13 0 XXXI'I {J' fdppk;;)e/l~/ $;'::--" Pdt/

..L-Tar .z VI T 1I723 ¢f ~c~O'/l/ 4U//lj/,/, ~r PP'~/1~ ~ /; tf~/lt1/'/.?/#4~
If/A 17 / k? 15t?t?

,/ bd~//utf//J /M/*;;f d~~~~~/7 v ~

*Mode: I = integer, R = real, D = decimal, A = alphabetic

98

Section Subsections Page

35 20 I 10 103

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

V> ~

Application PI'fY..(Jt:Jii SYSTE#/ Date9/~/~7 "0 ~I-
(5 w:J MAX. MIN. NAME 3: I-~

Ir:<h~~ * ;:::~
Program Name CAd'~A ~ / I//Jq W '0 VALUE VALUE

NoAVd5 rogrammer 0 ~O 0 ci z ~ z
FUNCTION OF VARIABLES

/(/1/ ./ / t/ /5# ~ .k~0;/Pd~?- Ufi/i'//J dt/.R5 d 74bcr;b/7
/YR4'T V / tJ #/ ;/ /!;/er#?E? .,P'd¥ /dk
Zlf/f£/ 1" I / 5 1

. '

l~eK c?/ /r.~ /?:/,,(//?(h

Ij)/YA f / AI - - /iW/j/tfl/Rh/ h ./Ct?~ -..,

,/1 .£ / ~ WXIXXX If ~//Ye'/'/ /'Rffukr h~ d;P/'/;';''&~~ ~/~
If? ,;- / kJ ~,« Ii t'b17J/~/'1 ~1/e'r;;PJe' jl'/#/~ Ie /JI'II/; NP'/~ ~/#?
/3 l£ / () ~ ;I ~/}j/~5~U'//L/5 ~d'///5 it //;;;yd,l: #/"///

£4 ~.,.- / (/ ~j ~ UI7J1fi:1 /J;74(//?~·eo~!171~ fc; Fr//rjuJ;/p&ra

.1-p V / tl xxxxx tJ ~/}j/~// &'J/e'/~;)J6' ,f'4r///~!!l~ 1i; "Pr;/;Iob/e ,f}rlJ7

Ze: £ / () xi/iX I ~/1/~r/ ~#//c:/5 earl1</zg5 ro f'l'/arc,bk !01?1j

:7 Z / CJ (IXxX If u/l~/'I tfl#g', l~11''1,il1g5 fi1.PJ1hbb/~ kr'kJ

£~ .t I l) xllft / ~/JJ/4'/'/ AC7//d/¥ /d// 7b //,/;/'&P.d? /J,/'P?

/5/ .£ / c) ~'ftX ff C##~e// .5/Ck Pdt! It' .£l/'//Ii:t~4? /c/',?/

I/! 7 ~d(ttrx
I "

,
J6R?,> 7 0 hr /dClJ/e'/9'/'&.5'5

J?/(/// 4/ Is £} ~Xi· - A1~ ed/C7./ J/#?tt?6,i;/p P#L/

JI/ ~t1fjm lir ~~k/ 4'/#55' ~~q
-~

JlJil7'P' 7 t:J -

J//,4?A IJ/ s T ~ 0 mr /d#J/~;; j/#~;It~
/~ARf} .t I .L 9 ~ c.c: 8(7 4?r 1t?5/~,// /i!?.5/
/(cJ v:J/ / cJ S ~ 5)~c/// t?dri;/~t1s
i,45T £ / T xxx ~ Lt?sl re'ct?r~ ;UQ/~6'/' /4 /}k

*Mode: I = integer, R = real, D = decimal, A = alphabetic

99

Section Subsections Page

35 20
1

10 104

VARIABLES IBM J 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

VI ~

Application ~YRt1/1 SY57EA4 Date ~~7 "E ~I-

~
w:::> MAX. MIN. NAME * I:::~

Program Name a~.£- ~/1/~ No.~)f;5 P~ff:~er w '0
1-1- VALUE VALUE

0 :::>:::>
0 0 ~O
~ Z ~

FUNCTION OF VARIABLES

!~Q' II / II - - EI/U/Vd"n! II ..r (Jill
i~T £ / #' - - 4'd/~/d .. ECt?i
/Jle- E I 1/ - - ~wlR/k/// h /GtJL

~.

L't:C.4L Z / ~ IXXi ~ NCd/ /Q'%

LY~;!~ .I / () ~~X ¢ 7)#/r L.N% dC.(U#p. ??nt!)~ dr A'd/,S
,jQIJI _.L ,~~ ,;~'::"-.. 1_, Mu

AI..4f I I. ~() Z I #///-/y/ .sI~k5 - (/-S';;;9~)) (2-//I4/'r/;:'~
#,f5~ W'I 7 T - - ,Ed/i' /1'/45.1. C.st:)
#A5KZ; 1// 7 r - - Cd// ,#~S'..((zero so/press)

,#//#c r / W - - q't//if/IJt'//:f ~ E coL'
/l/4LJ 11111 Z / 0 rx.~ ¢ ~;~;/1t:1/ /P/dAJtJ/hd~ ~/J1/J///l/
#/1#£ lit 9 .l,tJ - - Em/J/Pl/e'~ /1"$~
Ait')/ck r / tJ 'IxXXX ¢ ac'; /.1##/.J&'/ P':7U fr/, #5 6?~~9f:?c?
A/CC/ ~ / r,~ XX-XX ¢ c:;-~~;/ &//1/;'/7 ~c/t/~~;:;/7.

WCl/LJ?7 I / tJ 'Xxx. X ¢ Jit1I1IJ4 c/R~I tf//J/tf)/J ~ht?~~//5;:hddt~?J
A!JI/t"j' f / .r;tJ XX,XX j!l C#;/;'/J" dl/t!'f ~/ut::'~t1/J
A/£)Jt/..I: ~& 3 .z;tJ - - htl Pe?/'//d hk
,1/cR' 'f1/ 7 0 ~~ ~CJtJ E~/6?c/ 4e'/-

A/ET .I ~/ 7 LJ ~/~ - c~le~ /l(!!'/
A/£TZ' ~ 7 C ~t?~ - . Edl/c;/ /Jt?/-

W£74 ~/ 7 ~. ~t:'~ 0 ,#t?I'6'/ /If?/

"Mode: I = integer. R = real. D = decimal. A = alphabetic

100

Section Subsections Page

35 20 I 10 105

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

U'l
Q..

Date %#7 "C ~~ Application ,L)A'Y~U'LL 5Y57E# 0 w:::> MAX. MIN. NAME 3: ~Q..
* f::S Program Name aec-l:. ~/Y//;f/ 7JIt'l.5 ~/c.£ w '0 VALUE VALUE No."tj4. ~ Programmer 0 ~O 0 ci z ~ z

FUNCTIO~ OF VARIABLES

A//A!5 £ / l(t> XiXf I .l1J5t1rd/JCe kkCOO/7

Ai#/.?c .L / 0 Kxx.~ ~ ffi5Cd'Ik//~?J£/5 d4?/uC/?L:;/.l5

~/j/ ;r / -; b 1 ~4/ /7o/?/~er
W,f'J47E Z / ~t' A;ffl /.~5 E /JfF'~y~e /?d'tj /"t:?k?

#J//TE I / ~T xxXx' ,t ack /.1O'/d.Je~ /br /4 ~~/ p/'//?~/:?~
Als£x Z / l;t1 -3 .I .78X -(/-k,m4~J(?-~4k~L~rr.!/c~eij
#55/1;'/ L .3 ll.,tJ ~/IJIQtls 9th~ll.s .5&C/4/ ~Cd~//;/ /1t1/J1/~/

W.sM5 f / tJ 5 / 6?7~~ec)sr4rC/s-O-~/J/'t:J0/ ('z7/,ucKer,J(.3r /ltl/N//J/f)
I'd// ~e(4-/JrJ/1-t//7ICJ/7PdrT-f//7?r?) /~-;e/'A?//Jd/ted

AI-,7ce .£ / l1;tJ KX.XX ? 5/f:;C-k ~~C~;4
'/

A/5'/,-<'0 I 1 0 xx. xx / #t7/?i//c, .51i:7?L ~~~~jJ//s-
!tit//! f / it;/J xX-XX rP O'/,?/kY /I//~d/ c/edvc~~/7

rt? 1///
~ r

}/!/Aj Z I ,{',vXX aCk.. ~ t://»t3e'/'

W#//JI?' £ / 0 XX If A&/%;ft1"/' ~/ a/(!£?eks Rm~,0'Y'e;-7/ ,
/Y'J¥R'P£J I I 0 XX ? A$#Jtfe'/C7/tfV~eKs .;t?4/P/

;V.1A4~r ;- / ~t> /7 j!5 ~/e-/c:7/ c?x--eq?,obas

#AAf~5 I / 0 17 / Sf-41/eex~/7¥hb/)5
OT£R/V' W 3 0 ~.«~ ~¢¢ Of/erhme e~,n//7q5
~7#ER W 3 0 ~XK l#.~aI .5;oec/a/ e~//7/:a9:5
(J7}1ft?5 k 3 Vt' XXXX' iI~/' (JY~rhP1~ hCl(/~5
I47KlP R ~ 0 ~XX IfJyi 4'Od/: e'r-/t7-/d/e //J/br/7747/CJ//@groSs{.2)FIT

V:?JfiCfif.4) / dc. jd x[S}r'/cA CV.4dl'?S.(6) S/Ck oou./
~ ,

*Mode: I = integer, R = real, D = decimal, A = alphabetic

101

Section Subsections Page

35 20 I 10 106

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

'"
Cl..

Application P/lYROLL SYST.EN'f Date9foJ~7 "E :::?!I-

~
w::::l MAX . MIN. NAME * .!::::Cl.. M 0' '1<7/c~_ w a 1-1- VALUE VALUE c ::::l::::l Program Name Ch6?C k :1""/ "//k7 N0/ftlYo5 Programmer

0 0 Cl..O
~ .J :::?! z

FUNCTION OF VARIABLES

~ERA/ R 3 CJ ~X'f,~ /-r/;I Pt!'tf/ v~r t!' t? /'/J I '"tq s

RcfJ!RS lR 3 ~tJ XKX.~ #~(I'
,r/ h .. t./

Re4{/H?r' 0'.(//,5

5ICK' R 3 0 ~XX~ ltf.~~ 5~k .,At'dq

TA ~ 3 0 ~XXXx ~(I(I .' klP/ q,t:J.5~ ~q CdP7pe?4¥

T4X L I 0 ~XXXX rI.¢f¢ kd/g;/ !fj/,4Jc;k:;1/?;' 1d;
m R'

.. A.t~A rI?/ l7
3 0 t«WXM X;~/ /1e/ /;w C'tf)~d//U'

7G/?5 Ik' ..1 T ~.xx (f.(/r/ rom/ qrt!7;'S
, v

WET If .3 T ,,,~~AI, ¢~~ 7b1d/~/}e/ rvrxxn
'Y

~TgA.l 1/ lB f .,. dtfl¢! 3t1l?tlS i(jt/rs h,lkl /tt!J/?/ .5'~t/ffe a0c,
lCJTOT R 3 Z ~. Pt/~ tJT~d~r5 ;fp,fp/ ~.t//Q s~///ce~c.
lZ'ifr/6 p 3 I ~- pf,¢¢ ~4 ht1.1//'.5' J1,b/ ~~/7/ 5t1#/.c~ ~t:'.
~/5,£J ,() 3 .£ ~. ~/f/ ~e?c/t?/ C?4'/'/-'/~4S *?b/ ~tt?/ff .5~~rG~ abe.
jlA~/i I(3 0 rlX:Y% (/,~~ f{,Ctf/ ;;~/? ~e?;
Y/I/! ~/ T ~~

/ ,.,
7 - ~;6'/ 4'rtP.>s YT.sf?

Y.z;{/~ VJ/ 6 T ~ - ~I/~; ~~rd/ M.K YTLJ
IY~tI/d ~/ 7 1/ ~ - Ed-/iJPd tq".~.s.s Yr.o
'/t'JI/TZ ~

c;;....r

~/ t::, 0 - M?f?~ ~deTd/ 7#x YT£J
Yi£) k1 v~ ~t l.tA ¢.citd 1~'A)j

Yedr-/o-ddre //1/brn7pnbr?- ~) !I;'()S'; (2)nc/l.,(3.J rIJ;
1('4-) ,FIC,.q _A'_~ .(5') s/ck. OdLA./~) ~;'p/,:. A (7) Spc!?c.. 8,

(8) It/c. r-dX, ?9)/e~. ;'ot.lrs'l~~o)OLAfv/"sP/) CJtJ/ltl.r .nt/tlrs.,
V/2L&?e4 erl'1's.a3)t:JT ~rds{/¢)' ,~~ ~,.n.<:;,.

t/ ., -,

"Mode: I = integer, R = real, D = decimal, A = alphabetic

102

Initialize
Variables

No

103

Calculate
Control
Totals

Section

35

Yes

Subsections Page

20 I 10 107

Stop

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 108

II FOR
* IOCS(CARD,TYPEWRITER,KEYBOARD,1132 PRINTER,DISK)
*LIST ALL .
** PAYOS PROGRAM
* NAME PAY05
* ONE WORD INTEGERS
* EXTENDED PRI :ISION
C----- JOB NAME
C----- JOB NUMBER

PAYROLL SYSTEM - CHECK WRITING
PAYOS

C-----C----- PROGRAMMER
C----- DATE CODED
C----- DATE UPDATED
C----C----
C-----C----- INPUT FILES

C----C----C----C----
c----C----
C----C----C----C-----
C----C----C-----
C----- OUTPUT FILES --
C----
C----C----
C----C----C----c----- - - - - - - - -
C-----

C.~.KLICK
01120/68

FILE
NAME

1. COLFP
2. WVAFP
3. MNCFP
4. LBOFP
5. LBTFP

LMCFP
PINFO
INDXl
INDX2
INDX3
INDX4
INDXS
INDX6

6.
7.
8.
9.

10.
11.
12.
13.

1. COLFP
2. WVAFP
3. MNCFP
4. LBOFP
5. LBTFP
6. LMCFP
7. PINFO

C----- ALLOCATE ARRAV STORAGE
c-----

FILE
NUMBER

1
2
3
4
5
6

2S
101
102
103
104
lOS
106

1
2
3
4
S
6

2S

RECORD
LENGTH

160
160
160
160
160
160
106

1
1
1
1
1
1

160
160
160
160
160
160
106

NO. OF
RECORDS

250
90

200
SO

1S0
30

6
2S0

90
200

SO
150

30

2S0
90

200
50

ISO
30

6

PAYOS
PAYOS
PAY05
PAY05
PAY05
PAYOS
PAYOS
PAYOS
PAYOS
PAYOS
PAYOS
PAYOS
PAYOS
PAVOS

RECORDS PAYOS
PER SECTOI~PAYOS

2 PAYOS
2 PAYOS
2 PAYOS
2 PAYOS
2 PAVOS
2 PAY05
3 PAVOS

320 PAVOS
320 PAYOS
320 PAYOS
320 PAYOS
320 PAYOS
320 PAYOS

2
2
2
2
2
2
3

PAY05
PAY05
PAY05
PAYOS
PAYOS
PAYOS
PAYOS
PAYOS

-PAVOS
PAV05
PAY05

INTEGER COMP(l6), TAX, YINl(7), YIN2!61, YOUTl(7), YOUT2(6)
DIMENSION FIBRECS" IDATE(3), ISUPP(l3), ITOTClll, JGROS(7),

PAYOS
PAY05
PAY05
PAVOS
PAVOS
PAY05

1 JOUTlIS), JOUT2(7), JVACA(S), MASK(7), MASK2(7),
2 NAME(9), NDWK(3), NETO(7), NETl(7), NET2(7), NET4(7),
3 NSSAN(3), QRTD(6), YTD(14)

c-----
C----- DEFINE FILES FOR THIS PROGRAM AS DESCRIBED ABOVE, AND
C----- THE VARIABLES FOR THE NEXT RECORD NUMBER.
C-----DEFINE FILE lC250,160,U,ICOL), 2(90,l60,U.IWVA),

104

PAYOS
EQUIVALENCEPAY05

PAYOS
PAY05
PAY05

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Section

35

PAYOS PROGRAM PAGE 02

1
2
3
4

3(200,160,U,MUNC),4IS0,160,U,LBO), PAYOS
~(lSO,160,U,LBTI, 6t30,160,U,LMCI, 2S16,106,U,ICI, PAYOS
101t250,l,U,IN1), 102(90,1,U,IN21, 103(200.1,U,IN3).PAYOS
104tSO.l.u.IN4). 10SI1SO,l.U.INSI, l06130.1.U.IN6) PAYOS

EQUIV.~LENCE t ICOL. IWVA.MUNC .LBO ,LBT .LMC) , PAYOS
1 (IN1.IN2,IN3,IN4,INS,IN6) P~Y05

C----- - - - - - -C-----
- -PAYOS

C----- INITIALIZE VARIABLES
C-----DO 4 I=lt7

MASK2tI)=16448
4 MASK(I)=16448

MASK2(7)=-4032
MASK(4)=23360
MASKtS)=-19264
ICOL=l
INlal
TA-O.
TB=O.
NRITE=O

C----- - - - - - - - -
C-----

PAYOS
PAYOS
PAYOS
PAYOS
PAYOS
PAVOS
PAYOS
PAYOS
PAVOS
PAYOS
PAY05
PAYOS
PAYOS
PAYOS

-PAYOS
PAYOS

C----- READ PLANT NO., DATE.
C----- THE PLANT NUMBER.
C-----

AND CONTROL TOTALS, AND VALIDATE CC 80 AND PAYOS
PAYOs
PAYOs

99999 READt2,1) NOPLT, IDATE, NDWK,
1 FORMATtIl,6A2.4F7.0.38X,I11

C-----c----- VALIDATE KARD AND NOPLT
C----- IF VALID - 60
C----- IF INVALID - 55

C----- IFIKARD) 55,51,55
51 IF(NOPLTI 55.55,52
52 IFtNOPLT - 6) 60,60.55

C-----5S WRITEIlt2)

TOTRG, TOTOT, TOTBN, TOTSP, KARD

2 FORMAT('CHECK CC 1 AND CC80 ON FIRST CARD')
PAUSE 1
GO TO 99999

PAYOS
PAYOs
PAYOs
PAY05
PAYOs
PAYOs
PAYOs
PAYOs
PAYOs
PAYOS
PAY05
PAY05
PAYOs
PAY05
PAYOs

c----- -PAYOS
C----- PAYOS
C----- READ THE PLANT INFORMATION RECORD FROM DISK. PAYOs

PAY05 C-----60 READ(25'NOPLT) COMP, ICHCK,
1 ICNT

C-----
IWEEK, FIBRE. ITOT, CKMAX, TGRS, TNET,PAYOs

PAYOS
PAYOs

C----- wRITE THE PLANT INFORMATION FOR CONTROL PURPOSES AND ACCEPT ANY PAY05

105

Subsections Page

20 I 10 109

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 110

PAves PROGRAM PAGE Ol

c----- CHANGES TO IT THRU DATA SWITCH SETTINGS. PAYOS
c----- PAYOS

3
62 WRlTEtl.3) COMP, IDATE. ICHCK. IWEEK. NOWK, CKMAX PAYOS

FORMATII16AZ' '3A2I'CHECK NO 'IS/'WEEK NO 'Il/'W/E '3A2I, 'CHECK PAYO;
lMAX',F8.011'MAXlMUM CHECK AMOUNT MAY BE CHANGED By SWITCH 14.'/ 'PAYOS
2SWITCH 15 wI~L CHANGE THE CHECK NUMBER'I'SET SWITCHES REQUtSTEO ANPAY05
3D PRESS START') PAY~S

PAUSE 1111 PAYOS
BR=wHOLEICKMAX + ICKMAX I ABSICKMAX)) * 0.5) I 100. PAYOS
CALL OATSwi15,I) PAYOS
GO TO 170,71),1 PAYOS

70 WRITEl1,Zl) PAYOS
21 FORMATI'ENTER CHECK NO - FIVE DIGITS') PAVOS

READI6.22) ICHr.K PAYOS
22 FORMATII;) PAYOS

GO TO 62 PAVOS
71 CALL DATSWI14.I) PAVOS

GO TO 172.75),1 PAYOS
72 WRITE(1.23) PAYOS
23 FORMATC'ENTER MAXIMUM CHECK AMOUNT - FIVE DIGITS') PAYOS

REAOI6.24) CKMAX PAYOS
24 FORMATIFS.O) PAYOS

GO TO 62 PAVO;
C----- PAVOS
C----- COMPLETE VARIABLE INITIALIZATION PAYOS
C----- PAYOS

75 INDX=NOPLT + 100 PAYOS
GO TO 176.77.78,79,80.81),NOPLT PAVOS

76 ILST=2S(PAYOS
GO TO 83 PAYOS

77 ILST=90 PAYOS
GO TO 83 PAYOS

78 ILST=200 PAVOS
GO TO 83 PAYOS

79 ILST=SO PAYOS
GO TO 83 PAYOS

80 ILST=lSO PAYOS
GO TO 83 PAVOS

81 lLST=30 PAYOS
c-.--- - - - - - - - - - ~ - ~ - - · - ~ - - - - · · - - - ~ - - - - - -PAYO;
C-----e----- READ AN EMPLOYEE RECORD FROM DIS~. AND USE THE PAID INDICATOR TO
c----- OECIOE IF A CHECK SHOULD BE WRITT£N.
c· .. •

83 REAO(INDX'ILST) LAST
lCHCK-ICHCK - 1

870 00 700 I-1,LAST
READINOPLT'I) NUM. NAME. NSSAN. NSTAS. NDUES. NWKMP. NWKPO. MAR,

1 NXMPF. NXMPS. NSEX, NRATE, YTO. QRTO, LYRHR, Neu, NeUDO.

106

PAYOS
PAYOS
PAYOS
PAYOS
PAYOS
PAYOS
PAVOS
PAYOS
PAYOS

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Section Subsections

PAY05 PROGRAM

2
:3
4
5

NCHr~. NADWH. NSTCK. NINS. NMISC. NUA, NSTKD. ISUPP. INIT.
IPD, IFILL. Gr~oss. IVRAT. lOTRT. RGHRS, OTHRS, BNHRS. RGERN.
OTERN, BNERN. OTHER. KO, HOLDY, VACA, SICK. CNET, IFICA, TAX.
LOCAL, ICu, IUA, IUD, IINS, ISTCI(.. IMISC

C-----
IF(IPC - II 700,505,860

860 IF(NRITE - NUMI 700,875.700
875 wRITE(1,251

25 FORMAT('ENTER CLOCK NO.' I
READ(6.261 NRITE

26 FORMAT(I41
GO TO 500

C----- -
C-----C----- CALCULATE CONTROLS

C-----505 TA=TA + GROSS
TB=TB + CNET

500 IPD"'2
ICHCK=ICHCK +
NCHCK=ICHCK

C----- - - - - - - - - - - - - - - - -
C-----C----- wRITE UPCATED EMPLOYEE RECORD BACK TO DISK.
C----- CHECK FOR DEDUCTIONS AND MARITAL STATUS
C-----

WRITE(NOPLT'II N~M, NAME, NSSAN. ~STAS, NDUES, NWKMP, NWKPD. MAR,
1 NXMPF. ~XMPS. NSEX. NRATE, YTD, QRTD, LYRHR, Neu, NCUDD.
2 ,'KHCK. NAD\oJH. NSTCK, NINS, !'IlMISC, NUA. NSTKD, ISUPP, INIT.
3 IPD. IFILL, GROSS, IVRAT, IOTRT, RGHRS. OTHRS, BNHRS. RGERN,
4 OTERN, HNE~N, OTHER. KO, HOLDY, VACA, SICK, CNET, IFICA, TAX,
:. LOCAL, ICU, WA, IUD, I INS, ISTCK. IMISC

C-----
IF(IFILll 550,550.510

510 WRITE(1,201 IFILL. NUM
20 FORMAT('DEDUCTION NO '11' NOT MADE FOR '141

550 IF(MAR - 11 5.10,5
10 MAR=-7616

GO TO 15
5 MAR=-1l700 C----- - - - - - - - - - - - - - - - - -

C-----
C----- WRITE FIRST LINE OF CHECK AND PUT TOGETHER SECOND LINE OF CHECK.
C-----

15 WRITE(3,50001 NUM. NDWK, NAME, NSSAN. MAR, NXMPF. NRATE, lOTRT,
1 IVRAT, BR

5000 FOR~AT(:3H1 ,I4,lX.3A2.3X.9A2.1X.l3,l2.l4.1X.Al,l2.3l3,50X.F6.21
CALL DATSW(15,IPNTI
GO TO (90,911,IPNT

107

35 20

PAGE 04

PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05

-PAV05
PAY05
PAV05
PAV05
PAY05
PAV05
PAY05
PAV05
PAV05

-PAV05
PAY05
PAV05
PAV05
PAV05
PAV05
PAV05
PAV05
PAY05
PAY05
PAY05
PAV05
PAY05
PAV05
PAY05
PAY05
PAY05
PAV05
PAY05

-PAY05
PAY05
PAV05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05

I 10

Page

111

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 112

PAY05 p~OGr~AV:

')0 PAUSE 2
C-----

91 11=RGHRS
I2=OTHRS
13=BNHRS
14=RGERN
15=OTERN
I6=!3NERN
I7=OTHER
18=HOLDY
I9=SICK

10. + O.OS
10. + O.OS
10. + O.OS

CALL PUTIJVACA.l.5.VACA * 10 •• 5 •• 11
CALL PUT(JGROS.1.7.GROSS * 10.,S •• 11
CALL ~O\ -;: I MASK2 d. 7, JOUTl tll
CALL MOVEIMA~K2,1.7,JOUT2,11

CALL EDITIJVACA,1.~,JOUT1,1,51

CALL EDITIJGROS.l,7,JOUT2,1,71
C----- -c-----
C----- WkITE SECOND LINE OF CHECK AND PUT TOGETHER THIRD LINE OF CHECK.
C-----WRITE(3,SOOll 11, 12, 13, 14, IS, 16, 17. KO. 18. JOUT1. 19.

1 JOUT2, NAME, IDATE, ICHCK
SOOl FO~MATI' I .314,2I5~lX,215,2X,Al.I4.SA1,15,7Al,8X,9A2.8X,3(A2.1X).

1 14Xtl51
c-----

CALL DATSW(15,IP~TI

GO TO (92.93) ,IPNT
92 PAUSE 3

C-----
C

93 CALL PUTINET4.l,7,CNET * 10.,5.,11
CALL MOV[IMASK2.1.7,NETl.11

CALL MOVEIMASK2,1.7.NET2,11
CALL MOVE:MASK.l.7,NETo.11
CALL EDIT(NET4,1,7.NET1,1,71
CALL f.DIT(NET4,1.7,NET2.1,7)
CALL £DITINET4.3.7,NETO,1,71

C----- -
:-----
c----- wRITE THIRD LINE OF CHECK AND pur TOGETHER FouRTH LINE OF CHECK.
C-----WRITE(3,S002) IFICA, TAX, LOCAL, ICU. IUD, !UA. IINS. ISTCK,

1 IM1SC. NET1, NET2. NETO
5002 FORMAT(I '.21 14,IS) ,3I4.4X,215.6X,7A1.19X.SA1,10x,2Al,20X,7All

C-----
CALL DATSWllS,IPNTI
GO TO 194.9S),IPNT

94 PAUSE 4

108

PAGE 05

PAros
PArOS
PArOS
PAYOS
PAYOS
PAYOS
PArOS
PArOS
PArOS
PAroS
PAYOS
PAY05
PAYOS
PAYOS
PAYOS
PAYOS
PAYOS

-PAY05
PAY05
PAYOS
PAYOS
PAY05
PAY05
PAros
PAYOS
PAYOS
PAYOS
PAY05
PArOS
PAVOS
PAY05
PA.YOS
PAYOS
PAV05
PAVOS
PArOS
PAYOS
PAYOS

-PAYOS
PArOS
PAYOS
PAY05
PAYOS
PAY05
PAY05
PAYOS
PAYOS
PAYOS
PAY05

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

PAY05 PROGRAM

C----
95 CALL PUTCYIN1.1.7.YTO(1) • 10 •• 5 •• 1)

CALL PUTCVIN2.1.6.VTO(3) • 10 •• 5 •• 1)
CALL MOVECMASK2.1.7,VOUT1.1)
CALL MOVECMASK2.2.7.VOUT2.1)
CALL EDIT C v IN1, 1.7 .VOUTh 1. 7l
CALL EOIT(VIN2.1.6.YOUT2.1.6l
101-VTO(2l
102-YTO(8l

Section

35

PAGE 06

PAV05
PAY05
PAVO'
PAVOS
PAVO'
PAV05
PAV05
PAVOS
PAV05

C~-~-- - - - .. - - - .. -PAV05 c-----
C----- WRITE FOURTH LINE OF CHECK AND GO BACK FOR ANOTHER EMPLOYEE. C----

WRITEC3.5004l YOUT1. VOUT2, ~. 102
5004 FORMATC' '.13A1.2I5)

C-----CALL OATSWC15.IPNT)
GO TO (96.700l.IPNT

96 PAUSE 5
C----C---- GO BACK.
c-...... ·

100 CONTINUE

PAY05
PAY05
PAY05
PAY05
PAY05
PAV05
PAV05
PAVOS
PAV05
PAVOS
PAV05
PAV05
PAY05

C----- -PAY05 C---- PAV05
C---- WRITE .1 ~V SPECIAL CHECKS. SIGNAL THIS CONDITION WITH DATA SWITCHPAYO'
C----- ZERO.

C-----CALL OATSWCO.II
GO TO C850.855).1

850 WRlTECl.25)
REAOC6.26l NRITE
GO TO 870

PAVOS
PAV05
PAV05
PAVO'
PAV05
PAV05
PAV05

C----- - - - - . -PAVO' C----C----- WRITE CONTROL TOTALS

C----855 ICNT-IeNT - 1
IFCICHCK - ICNT) 800,801.800

800 WRITEC1.100l leNT. lCHCK
100 FORMATC'REGISTER CHECK NO '15'

1NO '15)
GO TO 802

801 WRlTECl.101l
101 FORMATC'CHECK NUMBERS AGREE')
802 AaTGRS - TA

B-TNET - T8

PAV05
PAV05
PAVO'
PAV05
PAV05
PAV05

DOES NOT AGREE WITH THIS RUN CHECK PAVOS
PAVO'
PAVOS
PAVO'
PAVOS
PAVO'
PAV05

WRITEC1.102) TGRS. THET. TA. TB. A. B PAV05
'2C3X.F9.0)/ PAV05 102 FORMATC'REGISTER TOTALS'2C3X.F9.01/'CHECK TOTALS

109

Subsections Page

20 I 10 113

Section

35

Subsections Page

20

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

I 10 114

PAY05 PROGRA~ PAGE 07

1 'DIFFERENCES '2(3X.F9.011 PAY05 C----- -PAY05
PAY05
PAY05
PAY05
PAY05
PAV05

C-----
C----- WRITE UPDATED PUNT RECORD TO DISK C-----

I WEEK-I WEEK + 1
WRITE(25'NOPLTI COMPo ICHCK. IWEEK. FIBRE. ITOT. CKMAX C----- -C-----

C----- STOP C-----
CALL EXIT

-PAV05
PAY05
PAY05
PAY05
PAYO"5 C----- -PAY05
PAY05 END

VARIABLE ALLOCAT IONS
I COL -005B IWVA -005B MUNC -005B LBO -005B LBT -005B LMC -005B IN1 -005C
INS -005C IN6 -005C FIBRE-0072 QRTD -0084 YTD -OOAE TA -00B1 TB =00B4
TOTSP=OOCO CKMAX-00C3 TGRS -00C6 TNET =00C9 BR .. OOCC GROSS=OOCF RGHRS-00D2
OTERN-OOOE BNERN-00E1 OTHER-00E4 HOLDY=00E7 VACA -OOEA SICK -OOED CNET -OOFO
ISUPP-010B ITOT -0116 JGROS=Ol1D JOUTl"O III JOUTl=01l9 JVACA=OllE MASK =0135
NETO =014F NET1 -0156 NET2 -0150 NET4 -0164 NSSAN-0167 COMP -0177 TAX =0178
YOUT2=0192 IC -0193 I =0194 NRI TE"0195 NOPU-0196 KARO =0197 ICHCK=0198
ILST -019C LAST =0190 NUM "019E NSTAS"019F NOUES=OlAO NWKMP .. 01A1 NWKPO=01A2
NSEX -01A6 NRATE=01A7 LYRHR=01A8 NCU -01A9 NCUDD=OlAA NCHCK=OlAB NADWH-OIAC
NUA -OlBO NSTKD-01Bl INIT "OlBl IPO =01B3 IFILL=01B4 IVRAT=01B5 IOTRT-01B6
ICU =OlBA IUA =OlBB IUD -OlBC IINS =OlBD ISTCK=01BE IMISC=OlBF IPNT =OlCO
14 -01C4 IS -01C5 16 -01C6 17 =01C7 16 =01C8 19 =01C9 101 -OlCA

STATEMENT ALLOCATIONS
1 =OlFC 2 -0204 3 -Ol17 21 "0283 22 "0293 23 -0295 24 -02AB
5000 "02CC 5001 -02E2 5002 "02FE 5004 -0316 100 -0310 101 -033F 102 -034B
52 -03E9 55 "03EF 60 -03F7 62 "040F 70 "0440 71 .. 044B 72 .. 0455
78 -047C 79 ,,0482 80 "0488 81 =048E 83 =0492 87u c049D 860 =0519
510 =05B9 550 =05Cl 10 =05C7 5 =05CE 15 =0503 90 "05F8 91 "05 FA
95 =0705 96 =0769 700 -076B 850 ·0770 855 .0788 800 =0794 801 -079E

FEATURES SUPPI UED
ONE WORD INTEGERS
EXTENDED PRECISION
IOCS

CALLED SUBPROGRAMS
WHOLE EABS DATSW PUT MOVE EDIT EADD ESUB EMPY EDIV ELD

IN2 "005C
TOTRG-00B7
OTHRS-00D5
A =00F3
MASKl-013C
Y INl -017F
IWEEK=0199
MAR -01A3
NSTCK=OlAO
KO =01B7
Il =01C1
102 =01C6

25 -OlAD
4 "0397
75 -0460
875 c051F
92 -0690
802 "07A2

ELDX
TYPEZ SRED SWRT SCOMP SFIO SIOAI SIOF SIOI SUBSC PAUSE CARDZ PRNTZ

•
•
•
•

SDCOM SOAI SDAF

REAL CONSTANTS
.OOOOOOOOOE 00-0100

.500000000E 01-01DF

INTEGER CONSTANTS
l=OlEl 7-01E3

l111=OlEC 15-01ED
7616=01F6 11200 a 01F7

SDF 501

.500000000E

16446=01E4
14=01EE

3=01F8

CORE REQUIREMENTS FOR PAY05

00-0103

4032-01E5
100-01EF

5·0 1F9

• COMMON 0 VARIABLES 4b4 PROGRAM 1544

END OF COMPILIITION

L!---- -

.100000000E 03-0106

23360=01E6
250=01FO

4=01FA

-

110

19264=01E7
90=01Fl

43b9-01FB

-

.100000000E 02"0109

0=01E8
lOO=OlFl

l=01E9
50=01F3

IN3 -005C IN4 -005C
TOTOT-OOBA TOTBN-OOBD
BNHRS-00D8 RGERN-OODB
B "00F6 10ATE-OOFE
NAME -0145 NOIo/K -0148
Ylilil -0185 YOUTl"018C
ICNT =019A INDX -019B
NXMPFc01A4 NXMPS=O lAS
NINS -OlAE NMISC=OlAF
IFICA-OIB8 LOCAL-01B9
Il =OlCl 13 =01C3

l6 -OlB7 20 -OlB9
99999-03CC 51 -03E5
76 -0470 77 -0476
505 "052A 50u =053b
93 ·069F 94 =0703

ESTO EDVR IFIX
SDFIO SDRED SDwRT

• 500000000E-OI-0 IDC

b·ulEA
150=01F4

-

~5=v1EB
.10=01F~

I

I

I
I

•
II JOB
II XEQ PAV05 3
*FILES(1,COLFPI,(2,WVAFP),(3,MNCFP) ,(4,LBOFP),(5,LBTFP),(6,LMCFP),
*FILES(2S,PINFOI,

Section

35

*F [LES(101, INDX11, (102, INDX21 ,(103, [NDX3), (104, INDX4), (105, INDXS), (106. INDX6) •
V-

Input cards

1022168021568 0040000000165000010500012100

-

111

Subsections Page

20 I 10 115

I

9

Section

35

•
•
•
•
•
•

Subsections Page

20 I 10 116

THE Co.NTAINER Co.MPANY

PAY TO THE
ORDER OF ROB T B BADEN

DA.TE

02:21: 68

EXACTLY 86 DOLLARS AND 08 CENTS

TO THE NATlo.NAL BANK & TRUST co..
o.F Co.LUMBUS, WASH.

PHECK NO.

$86.08

PAYROLL ACCOUNT

26-3
4'i'2

93

• .~~~~~~~~~~~~~~~~~~~~I

THE Co.NTAINER Co.M!'ANY

.0,,"NO II!!·· aA" .:::~ AVO.

r 100110215681 I ROBT B BADEN

I '0",."'.0,"' I YOU ... N'DAND YOU'CO."N".,D YOU I AYg;" I
"'0'1 D'Y'I ~DN'" ",G. I O.Y. I ,roo::. 10y.,",.,N·I:a·o"DAYIVACAYOONI "" , ,

. 4010. 10. 1°.104,40. ,0. 2,61. 12 1°° .:(] I . I . I 1191°1

THIS IS YOUR EARNINGS STATEMENT - DETACH AND RETAIN

•
•
•
•
•
•
•

.f---.

•
•
•
•

THE Co.NTAINER Co.MPANY

NOT GOOD AFTER 46 DAYS
OROVER $ 250.00 CHECK NO.

PAY TO THE
ORDER OF JOHN A HORN

DATE

02:21: 68

EXACTLY 83 DOLLARS AND 55 CENTS

TO THE NATlo.NAL BANK & TRUST co..
o.F Co.LUMBUS, WASH.

$83.55

PAYROLL ACCOUNT

THE Co.NTAINER Co.MPANY
25-3
412

93

THIS IS YOUR EARNINGS STATEMENT - DETACH AND RETAIN

Printer output

•
•
•

THE CONTAINER CORP.
CHECK NO 1
WEEK NO 1
W/E 021568
CHECK MAX 2~000.

022168

MAXIMUM CHECK AMOUNT MAY BE CHANGED BY SWITCH 14.
SWITCH 15 WILL CHANGE THE CHECK NUMBER

• SET SWITCHES REQUESTED AND PRESS START
CHECK NUMBERS AGREE
REGISTER TOTALS 134121. 99685.

• CHECK TOTALS 134121. 99685.
DIFFERENCES o. o.

•
•

Console Printer output

112

•
•
•
•
•
•
•

Section Subsections Page

35 20 1 10 117

IBM 1130 MACHINE SETUP SHEET

PROGRAM
ChdC/<. ~/'/'/~//;'a

PROGRAM
,PAYOS NAME: -.../ NUMBER:

PROGRAM APPROXI MATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

PRINTER CAecks Chec~.s

DRIVE NUMBER: 0 1 2 3 4

DISKS CARTRIDGE 197...9'/"0// X R R X 10:

SWITCH C) SWITCH /4 SWITCH /S-
SWITCH UP v UP - UP v
SETTINGS DOWN DOWN DOWN

INPUT SaJ/rc.h (tJ/s (/sed r~ rnt:l.l:e· cA~c,l:..s· ",....e//"/~r 4/,he..-? ,,"h~!1' 4"~
CARDS

/'Jor ct:J/"/'e'cl;

St:u/~cA /4/$ (/Jed' Tt:J s~r r~e tr7e?.x/m~~ c:A~c.L nrne;:;un;t.

SIVI/cn /5/s «seq' rtJ .seT rAe CAt!?Ck ~v~6er /-0 .r/~,..r t:v/I~/

t:?"d I'ttJ $:f~ ~e .5":I$;/~~ r~ (7/:j"" rAe ?r/~;t-~r-.

(CONT$20L
TOTALS

(//XEQ PAYO': -
/ 1/ Jo~

f---

SOURCE OF INPUT: /. C~rJ-IC{2 L. ;I"r'd(~ '#""~h7 hie. 2),
2 2)", s-~ !Z2.fL.~t. .&e. .a12Y-C.12L/ ~/j~~

7
~/'a.a:2 hY~~

DISPOSITION OF OUTPUT: /. P'YI-c,ll~&r.s. ~ e ~12.(~ee S
Z Z2t. I~ E ~d~aL. 62 r4.1.s. 'to. tilt:!. (;,L.5tDd ~i.zf4.. ..D&:Ya:6

'Y"'

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

113

VJ
CD

Cr.:l (')

c.n o·
::::J

IB~
INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
IBM 407. 408. 409. 1403. 1404. 1443. and 2203 8 lines Per Inch

t-,:) VJ
0 c

0-en - CD
(')

..... o·
0 ::::J

en

..... -0

..... m
c.o

00 CD

Section Subsections Page

35 20 I 10 119

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

VI
~

Date 9/1.3/~7 "0 :::a: I- Application P,l1YROLL SYSTEM 0 UJ:::> MAX. MIN. NAME ~ I-~
* ;::::~ K11C5 UJ VALUE VALUE Program Name ChecK keqlsteR No·;:'AY tJ~ Programmer Q 0 ~o 0 ci
:::a: z ~

FUNCTION OF VARIABLES

f3I\1ERAI R .3 0 X~XX ¢.¢¢ Bon/./S etl;a//7?S

BAlIt,<JS R .3 LO X,«,YX rJ.lj¢ zjCJI7t/S hours
R

/
T /¢#.I~ (I·¢I HOXlmilnJ cIJec/c o/71()u/Jf fl4 a (}le CKHAX :3

C/IIET R 3 () WXXJ« ¢.I~ AIel" o/l7()L//J1 "/Indv/dvdl ChecK

C()I'IP 12. II, 1;IJ - - COnJPOA!/ nome

~ ¢;{I~
, .

EItJRE R tJ A A Tal(:/e t:7ssociQi;O/7 /1!'p(.)rTs

q~CJSS R .7 0 XXX.x>, ¢>¢I groSS dn70U/l/ o/' //7 ~Yiq¢dl cAfRe;
#OLPY R 3 0 xx. xx ¢.lrI I/?cI/l/iq~o/s .,?o;/dt7~ /,Qy ,

I £ I T //seq in Po /00".0

Ie .z / AI - - E91.//i/o/eal r:o rAl.?
se':s TOr. ,

ZCf/cK r / T eqc run 8e~//7/7;/7~ ch~c.t nl//77b~r when #r';I;;'~cjt'e.ks
, I ,

IeNT I / 0 xxxxx 0 5e~v~/lCE /ll/m6e'r~"'/ov/"/?I// 6AtJdI<lC()rffSf'()rd~&~
reoL £ / T 250 .1 Rec"X./111116er //J e/71p/oj'ile' /I/e~ set' U/,

Au.o, '/1
/

.TeL! Z / 0)(}(X)()(0 .L /lr//J//t/vq/y c/~d/·I L.//7io/J o{:duc17on

T £),.t;TE I I~ () xxXXX 0
TorQ/ 0l/r;c//,//d.t/Q/~ //l5~,rQ';'Ci=} STo~cht?r/r"

i 4' /77/.5C_· d~duc~on.5 /o~r pt:l~)J~r/b
/ /

£O.z £" / 0 xxxxx (I /8' Cft~cK /7um.6~r

£02 L / 0 X'xxx ¢ Is-I c:lock nl/n,.6er

£03 ;12 t 0 - - /~r /llJll7e

I04 I / 0 xxxxx ~ ~11 ~Aeci I7L//77b~r

IOff £ / 0 xxxx rJ 2nd C/()CK nU/l1Qer

*Mode: I = integer, R = real, D = decimal, A = alphabetic

115

Section Subsections Page

35 20 I 10 120

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

III ~'I- Application 'pAYRa,L ..sy.s TEM Date r)~#7 "E
0 w::J MAX. MIN. NAME * ;: 1::::.0..

No. 1!?4 'I ()~ 'P~/r'~~er W a 1-1- VALUE VALUE
Program Name cAt'c~ hflsler 0 ::J::J

0 0 0..0
::i z ~

FUNCTION OF VARIABLES

fLJtP -42
q

0 2 nd /7tlme "7? - -
fLJl I / () xxxxx r' .3 c.d chec.K /JL//TliJ~r

IO& ./ I t} xXXX rJ 3P" clocK I7tl/l7iP~;

/0'1 A~ f tl - - 3 nl /7ame

I~ICA Z / 0 X,KXXX 0 ..7nchvic/vt7/J 7IC' A rox

I~ILL Z I T 7 () Z /? cI;'ct1/~.s ckt/uc .ion /7()j mtl~

.7'£1(.5 Z I 0 xx () L/JQ/J;/C/41QIs !/?.5I//(1/lCe ~r/.t/c;fca

fiST .1 / r 250 30 L Qsf record' /7~m,6~r ;", 0 ///t::

IH.ISC Z / 0 xxxxx 0 Z/)d;vlt/vlJl~ /77/5C. ~c/vc.IJOI7

.1"/v,£;X I / T 1(16 171 f/itl~x //k /JLlmb~r (/;I()nl- /70. r- /00)

.T,NZT Z / () xXx'X'X rI l//)iOrJ Inll/alio/') /~e

fN.1 ;- / T 250 2. R~corcl /?tI/?J~er //7 //?d~x~s ,f:, C'/l1'p/oyee /tks
£/1/2 Z / /II - - E 9'4IIV(7 k/71 10 .7 AIL

IN.3 I J N - .- ;r;v,'pa/~/7T 10 J;V.z

l"/J/'¢ / I /II - - EC;v if/a k/7 f ~ .//1/2
Ziti, Z I AI - - EtJf/ii/tl/~l7f 10 ZAIZ

J#~ L / IV - - E91/1~(7k/l1- ro Z;V.1

IOTR.T Z / T 1"~P ~ c/~er Ii /7'1 e- Pel y ,(l f~
.L~tJ I / 0 2 ~ 7aC/;(:-Cl~.s slblv$ c;! record /17 /t'Jr()(,t"S.fI/if (.,/c/e

ESTel(£ / ~ ?¢¢¢ ;1 ZndlvlC!vals slcck. q"~ ~uc ~ 0.1'7

-Mode: I ::: integer, R ::: real, D = decimal, A = alphabetic

116

Section Subsections Page

35 20 I 10 121

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

III
0..

Date ~ '13/~7 "0 ~I-'- Application ?AYROLL SYSTtfH (5 w::J MAX. MIN. NAME 3: 1-0..
* ~S .~//C~ W '0 VALUE VALUE

Program Name CA~CK R4-~/skr Cl ~o N0."pAV" &, Programmer
0 ci
~ z ~

FUNCTION OF VARIABLES

I5UPP .T 13 0)()(XX (I Sl./p~/~m('/)/Q/ s/("k 'pelf'

ITOT r 1/ T 171'3 ? 4 CCOV/J! /Jvm64'rjf;r I'O$tt?? ro 1/7 f~/7!'nfI/

ILIA z / 0 3{!/J ¢ /ac/IVI ¢VeJ/:S- ChOrll¥ ckdl.lc-fiO/i

/5(1~ ¢
, I

.TL/O Z / 0 .7/7d1V'It!pt7/.~ uO/I)/} ~/t'S ckt:lur::-lio/)
Z//RAT Z I 0 5f1¢ ¢ 4J/eroClt!' pay-' ,ale
.T 11IEEK £ I T s L Mei cJ/IAe /Tl~I?;,4

Z N/l1l Z / IV - - E9t1ivdka!1o .zeoL
J .z / T 9 / I nclt!' X lor l)() /atP~

KC,4RIJ E / I 9 }1 C. C. 81 frr las!- t:L7rd 7;.51-

KO ~I / 0 5 ¢ 5~t!'C/C7 / ~Clr/7//J9s code

L Z / T Z5¢ ~ C'ov/lkr ~ ,cJcct!'s.s /"~c~/d$

L,45T E / r xxx ~ . L tlS I /'/!'c()rc/ /?vm~er //) ~:,t/!d

L80 .z / AI - - Eqt/it/olen! /t> .TCOL

L8T I I II - - E9f/1C/C1knf 10 reoL
L'#C Z / IV' - - Ec;v/va /,n f fi, ECOL

L OC/lL I / 0 xxxx ¢ Locol7t7x /

LYRflR Z / 0 X;(xxX ¢ TIJI s r:ar/s acct//7lt//C7T/O/7 01 /?t::Jurs l1/"r,f'~q
.j:'c;r tlCd riO/? J?ClI/

/1.4R Z / l!o 2 / '/l1ari1iJ / 5" fo 1t/.s l

• (/- ..5//?~ I~) (2- l7lorr/ ecl)
,

Itt/Nt' L / IV - - Epv;'vokntlo ZeOL
//,4LJ VI h" I / 0 xxxX ;i ~ tiel! lio"o / hltA/;()/~/l9 C//lltJtI/l! ,

*Mode: I = integer, R = real, D = decimal, A = alphabetic

117

Section Subsections Page

35 20 I 10 122

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

." a..
"E :!!I- Application ;:?t;YR()Lt :5Y5TE"H Date ~ 'I.1/b7 0 w:;:)

MAX. MIN. NAME . :i: J::::a..

Program Name L /e~k ,&,f/ S kr No.& y O~ P:rfr~~er w a 1-1- VALUE VALUE
0 :;:):;:)

0 ci a.. 0
:!! Z ~

FUNCTION OF VARIABLES

#A#e Vl2 9 1;1) - - .E/77~/oY'4'1!' /lQ/71e

AiC/{CJ(Z / 0 xxux ¢ ~hecf ;/lmbt'r bfed'/ir ~iS ct'mpdJY'~~.
.z / 1;1) rI

, ,
,A/,I/ KK.XX Creekl un/I)/) 4d'vcAon

AI,~tJLJ V I 0 X'xxx (I)lpn/AI" C'ret:l'// v/);(?/) ~/vctiJl?-S

!V/)v£5 Z / J;(j xx. xX rI t//JI't;/1'46'~S ck/vc,fo/J
/V'/)PJK . 1// J It) - hv P£'/'/btl dt?k ,

I ' , ~ 7f.. ;VIAlS Z / II) xx. XX L/15v/,Qnce q~ I/C '/tJ/]

#/{/JC I / 0 X)(~X ~ /I;'.sce Ild/le~l/.5 c/e¢'vc i-tJh5

/YO"o/T Z / T tp 1 ,P/d/1" /1(//l7be'r

)/RRTE E / ~o 3.1¢ /.25 £177~k;fee pt'lr /'d~
/l/SEX f / ~t1 .3 1 5ex. (1:;emtJIeJ (z .. mt:l~ j (J- f,./lcfl'r)

#.5.5,4N .T 3 ~~ Ilw.tlYS 9dtf 1h JOCIO I~c(/;Jt. /J{//71Je"
/

#STA.5 I / () f 1 EmfJ~%4e sto/~.s .. (I-t/l7io/}), (.8-~.r:Kt'~1 z-n"n- 'P7A:J~q'J
tElI/llm~),h-/l()/I-U/}IOI1A:1/,T~l71e r.s--!tr,.,171//7d ~

"/' ~ "' --
/l5TCK V- I I;O xx. xX II s loci: ~g't/~ ion
/V'5TKO Z I 0 XXx X (i Hon/~/q ~/()~) eledPctiJas

/Vu,l/ Z / 1;0 xx.tx , 1!n/J1,/ A~peq/ de~clib/)s
/VI/If Z I if) x'Xxx. I{)I¢ CloeR /ll/l77ot'r

/I/4/,KI1P .z I 0 xX {I #vl77Jl'r 0/ tt/~ek.s t!'171~/c>~tt'cI

;V /Uk',P t? V I 0 xx (I Altlm/Jer of 411't'ls fold
;VXIt,P~ Z / it) 17 P ;;~/tl/ ~e/77PI;;'/J..s

*Mode: I = integer, R = real, D = decimal, A = alphabetic

118

Section Subsections Page

35 20 I 10 123

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

II>
a..

Application ,P,.L?YROL'SVSTEM Date 9;'lJ/6'7 "E ~I-
0 w:::> MAX. MIN. NAME * ;: Ca..

Program Name CAecf &f/f/e-r . -,~/ICK w '0 1-1- VALUE VALUE
0 :::>:::> N0·,PAy' Cl~ Programmer
0 ci a.. 0
~ Z ~

FUNCTION OF VARIABLES

;YXHP5 I 1 0 17 ~ J'?b# e'xempl/ons
t/TERN ,e J 0 xxxx% 1-J1t1 CJ'I'rlime Eora/nqs

1.(1(1 . '
OTHER R .3 0 'txXJ<X Sp~clC)1 ~t1/"71/7?.s

OTIIR5 R 3 Lf) yx.x~ ~f}, tJtI~r~me hrJP/.5

qJRTO R
~
/J 0 x}«X.'1X ~~{J

tiJl/or7't!'r- ro-dal'e /~t'l"mq,/(}/} rt~r'~s~fZ) ,t:/~ (.J) ,c:-/CR,
~41/oc. tQA' (~) /'IC4 HA/lf~S, 6? JSIC J)ull

I,I~
, , .,

I
RGERAJ R 3 0 x'xx.xx Re9. earnintis

~tJ #1.~rJ
! '

R~IIR5 R .3 xxXA Req. hl)(//"s ,

{I I·'sr /lei RAlET.1 R S 0 ~)(x'

RN'ET2 R 3 0 ~.XX ;J 2 17d nef

RNET; R .3 0 ~.xx (J 3~ ner

..sEcK R .7 0 ~X'k':~ 1.1(1 $/ci 'pQY'

~x.atX. ~,fIJ
,

T ~ .3 0 L/5e¢ /0 /0,4,1 spec/oj et.?rrJ//?9S'

TAX 7 I 0 xxX'xx ~~~ ;:;*1"1// IP:7h4tJ/d//;9 Mx
R 3 T

XXXX)l1t • (Jf.1J1J To/Q / tjrass
/

TqR5 ;el(

TNET R J T XX~XJfX.

~/' Tolo/ v/7~f xx

TOT8N .R 3 E ~~~ 11(1 130nvs htJtlrs 1010 / /rt:J/77 5ot/rce t7dc.

TO ToT R J .l xx><x ~I(I/ OT ho(/rs 10 to / I':'om 5{)tlrC~ clpc. xxx
7ZJTR~ . R J I)(~X x

~'I Ret;" Aovrs Iola/ /r()n1 sot/rei' dt,c. xx~ , ,

*Mode: I = integer, R = real, D = decimal, A = alphabetic

119

Section Subsections Page

35 20 I 10 124

VARIABLES IBM I 1130 COMPU'rING SYSTEM

VARIABLE SUMMARY SHEET

. tit ~ 'pAYRtJi, SY5TE# Date f.ft.:r~ 7 "0 Application
NAME

, ~i MAX. MIN. .
~ '0 I-~ VALUE VALUE

Program Name t:'/1,ck' ~/.sd,. No./!4 y () ~ Programmer
0 ~

io
2 !

FUNC'rION OF VARIABLES

. mrs)' ,£ ., I)Ol'!f
X)t • '-I' .J:p4'~iQI ~d/"/?;/lI.s ~.~ IplJn? sovrc, c/&)&. ,

VAC4 ,tJ J () xXK.XX II' YtJc, I; iJ" ~IJ ~
'ITO R ~ J;tJ

X)('I(iX, ", Yell"~" illit~r ImyPl'n14"4,,, (I 'Jl'tlS~ r2) FE'I .. (.J) rz7;'
Xx 14) ,t:"ICAWt:1g,s. g).:SI~l~"v.~).S'j)ic. A. ,/7s.btl!c. A,

~/l1l'.~x '(9)7~.t~(/t1rOr4r~ (ilj;'t>nv.s hrs '
~.J nt;. t!"pJ.~!i. '/.4 1/1. ~/'n!J~ II'll) 'i.. - ~rl1s

,/ 7 7' , ,

*Mode: I .. int.r. A .. real, I) -= decimal, A -= alphabetic

120

No

Start

Inltiali;te
Variables

Initialize
Plant

Variables

No

Put together
Check Register

Information

StOP

121

Section Subsections Page

35 20 I 10 125

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 126

II FOR
* IOCS(CARD.TYPEWRITER.
* NAME PAY06

1132 PRINTER,DISK)

* ONE WORD INTEGERS
* EXTENDED PREcISION
* LIST ALL.
C---- JOB NAME
C----- JOB NUMBER

PAYROLL SYSTEM - CHECK REGISTER
PAV06

C-----C----- PROGRAt ~ER
C----- DATE CODED
C----- DATE UPDATED

C----
C-----c~---c;:---.-C--
C---C----C----C----C----C----C---C---
C-----c--~-

C----C-----

INPUT FIL.ES --

C.R.KLICK
01/27/68

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

FILE
NAME

COLFP
WVAFP
MNCFP
L.BOFP
LBTFP
LMCFP
PINFO
INDXl
INDX2
INDX3
INDX4
INDX5
INDX6

c------ OUTPUT FILES -- NONE
C----- .. - - - - - - - - - - -
C-----C----- ALLOCATE ARRAY STORAGE
c· .. ---

INTEGER (OMPC16). TAX

FILE
NUMBER

1
2
3
4
5
6

25
101
102
103
104
105
106

RECORD
LENGTH

160
160
160
160
160
160
106

1
1
1
1
1
1

NO. OF
RECORDS

250
90

200
50

150
30

6
250

90
200

50
150

30

PAYOo
PAYOo
PAYOo
PAYOo
PAYOo
PAYOo
PAY06
PAY06
PAY06
PAY06
PAY06
PAVOo
PAY06

RECORDS PAY06
PER SECTORPAY06

2 PAY06
2 PAY06
2 PAY06
2 PAYOo
2 PAY06
2 PAY06
3 PAY06

320 PAYOo
320 PAV06
320 PAV06
320 PAY06
320 PAV06
320 PAY06

PAV06
PAV06

-PAY06
PAV06
PAY06
PAY06

DIMENSION FIBRE(8). IDATE(3), 103(9), 106(9), 109(9), ISUPP(13),
PAY06
PAY06
PAV06
PAY06
PAY06
PAY06

1 ITOT(11), NAME(9), NDWK(3), NSSAN(3), aRTD(6), YTD(l~)

C-"---
C----- OEFINE THE FIL.ES FOR THIS PROGRAM AS DESCRIBED ABOVE, AND
C----- EQUIVALENCE THE VARIABLES FOR THE NEXT RECORD NUMBER.

C----- PAY06
DEFINE FILE 1 (250.160.U. H:;OLl. 2 (90. 160 .U. I WVA~ • PAVOo

1
2
3
4

1
EQUIVALENCE

3C200.160.U.MUNC),4C50.160.U.LBO). PAY06
5(150.160.U.LBT). 6C30.160.U.LMC), 25C6.106.U.IC), PAY06
101C250.1,U.IN1), 102(90,1.U,IN2), 103(200,1,U.IN3),PAV06
104(50.1,U,IN4), 105(150.1,U,IN5), 106C30.1,U,IN6) PAY06

C ICOL.IWVA.MUNC,LBO,LBT,LMC), PAY06
(IN1,IN2,IN3,IN4.IN5,IN6) PAY06

C----- - - - . - - - .. - - - - - - - - - - - - -
C-----

- - - - - - - - - - - -PAYOo
PAY06
PAY06 c---·- INITIALIZE VARIABLES

122

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Section Subsections

35 20 I 10

PAGE 02

C----

C-----c-----

ICOl-l
INl-l
TA-O.
TB-O.

C----- READ PLANT NO., DATE, AND CONTROL TOTALS, AND VALIDATE CC 80 AND
C----- THE PLANT NUMBER.

C----99999 REAQC2,l) NOPLT, IDATE, NOWK, TOTRG, TOTOT, TOTBN, TOTSP, KARO
1 FORMATCI1,6A2,4F7.0,38X,Il)

c-_
C----- VALIDATE KARD AND NOPlT
C----- IF VALID - 60
C----- IF INVALID - 55

C----- IFCKARDI 55.51.55
51 IFCNOPLT) 55,55.52
52 IFCNOPlt - 6) 60.60,55

e-----55 WRITEC1.2)
2 FORMATC'CHECK CC 1 AND CC 80 ON FIRST CARD')

PAUSE 1
GO TO 99999

PAY06
PAY06
PAY06
PAY06
PAY06

-PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAV06

C----- - - - - - - - -e---- - - - - - - - - - - - - - - - - - - -PAY06
PAY06

C----- READ PLANT INFORMATION RECORD

C-----
FROM DISK, AND FINISH INITIAlIZING.PAY06

PAY06
60 READ(25'NOPLT) COMP.

1 leNT

C-----

ICHCK. IWEEK, FIBRE, ITOT, CKMAX, TGRS, TNET,PAV06
PAY06
PAY06

C

INDX-NOPLT + 100
GO TO C76,77,78,79.80.811.NOPLT

76 ILST-250
GO TO 83

77 ILST-90

GO TO 83
78 ILST-200

GO TO 83
79 ILST-SO

GO TO 83
80 ILST-150

GO TO 83
81 I LST-30

C----- - - - - - - - - - - - - - - - - - -
C-----c----- INITIALIZE PLANT VARIABLES AND READ

123

PAV06
PAY06
PAY06
PAY06
PAV06
PAV06
PAV06
PAV06
PAV06
PAV06
PAY06
PAY06
PAV06
PAV06

-PAV06
PAV06

AN EMPLOVEE RECORD FROM DISK.PAV06

Page

127

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 128

C-----
5

83 REAOIINOX'ILSTI LAST
WRITEI3.51 COMP. NOWK
FORMATI'1'.50X.'CHECK REGISTER'//ZOX.'FACTORY PAYROLL '.16AZ.5X.

1 'W/E '.ZIA2.'-'I.A2/13(' CHECK NO'7X'NAME'14X'AMOUNT'1/1
T-O.
1.-1
1-0

655 REAO(NOPI.T'LI NUM. NAME. NSSAN. NSTAS. NOUES. NWKMP. NWKPO. MAR.
1 NXMPF. NXMPS. NSEX, NRATE. YTO. QRTO. LYRHR, NCU. NCUOO.
2 NCHCK. NAOWH. NSTCK. NINS. NMISC. NUA. NSTKO. ISUPP. INIT.
3 IPD. IFILL. GROSS. IVRAT. IOTRT, RGHRS. OTHRS. BNHRS. RGERN.
4 OTERN. BNERN. OTHER. KO. HOLOY. VACA. SICK. CNET. IFICA. TAX.
5 LOCAl.. I CU. I UA. IUD. I INS. IS TCK. I M I SC

C----C----- CHECK PAID INDICATOR TO SEE IF CHECK WRITTEN.

C----- IFIIPO - 21 650,651.650

PAGE 03

PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06

C----- -PAY06
C-----C----- PUT TOGETHER CHECK REGISTER INFORMATION.
C-----651 T-T + CNET

1-1+ 1
GO TO (601.602.6031.1

601 I01-NCHCK
ID2-NUM
CALL MOVECNAME.l.9.ID3.1)
RNET1-WHOLE(CNET + (CNET I ABSCCNETI I * 0.51 I 100.
GO TO 650

602 104-NCHCK
I05-NUM
CALL MOvECNAME.l.9.I06.11
RNET2.WHOLECCNET + ICNET / ABSCCNETl) * 0.5) / 100.
GO TO 650

603 ID7-NCHCK
IDS-NUM
CALI. MOVE(NAME.l.9.ID9.1)
RNET3-WHOI.E(CNET + ICNET / ABSCCNETl) * 0.5) I 100.

PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY.06
PAY06
PAY06

C----- - - - - - - - -
C-----

- - - - - - - - - - - - - - - - - - - -PAY06
PAY06

C----- WRITE A LINE OF CHECK REGISTER FOR THREE EMPLOYEES. PAY06
PAY06 C"'---· WRITEC3.1101 101. 102. 103. RNET1, 104.

1 109. RNET3
110 FORMATC3C3X.I5.1X.I5,lX.9A2.1X,F6.21)

1-0
C--"'-- ... - - - - - - - - - - ... - - - ... - ... -
C-----

124

105. 106. RNETZ. 107. I08.PAY06
PAY06
PAY06
PAY06

- - - - - - - - - - - - - -PAY06
PAY06

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

e----- HAVE WE PRoeESSEp THE L.AST EMPL.OYEE RECORD
e----- YES - 657
e----- NO - 655 e-----

650 L..L. + 1
IFIL. - L.AST! 655.655.657 e----- ------- ---------------e-----

e----- IF THERE IS A PARTIAL. L.INE TO WRITE 16151. WRITE IT. e-----
657 IFIll 604.604.615
615 GO TO 1605.6061.1
605 WRITE13,1101 Iplt 102, 103. RNETl

GO TO 404
606 WRITE13,1101 101, 11'2, 11'30 RNET1, 104. 105, 106, RNET2 e----- -- - ----

c-.. ---
e----- WRITE THE PL.ANT TOTAL. C-----

604 T-WHOL.EIT + IT I ABSITII * 0.51 1100.
WRITE C3 ,1111 T

111 FORMATII/50x.·TOTAL. • .F9.21 C----- ----------------------------- .. --e----
C----- STOP C-----

CAI.I. EXIT C----- ----- --------------- .. ------- --
END

VARIABL.E AL.L.OCATIONS
ICOL. .005B IWVA .0058
IN5 .OOSC IN6 .005C
TOTSP.OOCO CKMAX.OOC3
OTERN.OOpE BNERN.OOE1
IpATE .. 0101 11'3 .010A
TAX .OU4 IC -OU5
L. .OlSE I .015F
NSEX -0168 NRATE.0169
NUA -0172 NSTKp.0173
ICU .017C IUA .0170
11'7 .0186 108 .0187

STATEMENT AL.L.! ::ATlONS
1 "019F 2 ·OlA7
76 -0280 77 ,,0286
602 .0369 603 .038C

FEATURES SUPPORTEp

ONE WORD INTEGERS
EXTENpEp PREC I S ION
loes

CAL.L.EO SU8PROGRAMS

MUNC .0058
FIBRE-oon
TGRS .OOC6
OTHER.OOE4
106 ·0113
NOPL. T.01!>6
NUM .0160
L.YRHR-014A
INIT .0174
IUD .017E

5 ·018A
78 "028C
650 -0300

L.80 ·0058 L.BT -005B L.MC =005B
QRTO -0084 YTp .OOAE TA -00B1
TNET .. 00C9 T .OOCC GROSS=OOCF
HOL.OY.OOE7 VACA =OOEA SICK .OOEO
109 ·OllC I SUPP"0129 I TOT .. 0134
KARO -OH7 ICHCK=01s6 IWEEK·0159
NSIAS=0161 NOUES=0162 ~WKMP .. U163
NCU .014B NCUOO-016C NCHCK=0160
IPO =0175 IFIL.L.=0176 IVRAh0177
1 INS .017F ISTCK-0180 IMI S(=0181

110 ·OlF3 111 .01FF 99999=0220
79 ·0292 80 ,,0298 81 ·029E
657 -030C 6l!> -03EO 60!> -03E6

• MOVE WHOL.E EA8S EAQO EMPY EOI V EL.O lOS TO EPVR
SOAF

•
•
•
•

SIOF $101 PAUSE CAROZ PRNTZ SOFIO SOREO SOAI

REAL. CONSTANTS
,OOOOOOOOOE 00-0188

INTEGER CONSTANTS
1-0191 2-0192

30.0198 3-019C

CORE REQUIREMENTS FOR PAY06

.500000000E 00-0188

6·0193
0-0190

COMMON (I VARIABI.ES 392 PROGRAM 668

END OF COMPIL.ATION

.100000000E 03=018E

100=019!> 250-0196

125

PAGE 04

PAY06
PAY06
PAY06
PAY06
PAY06
PAY06

-PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAY06

-PAY06
PAY06
PAY06
PAY06
PAY06
PAY06
PAYOI>

-PAY06
PAY06
PAY06
PAY06
PAYOI>

-PAYOI>
PAY06

INl
TB

=005C
.OOB4

RGHRS-00p2
CNET "OOFO
NAME .. 0130
ICNT =OlsA
NWKPO=0164
NAOWH=016E
IOTRT.0178
101 =0182

51 =0246
83 =02A2
606 ~03F5

WRTYZ sREO
SOF SOl

90-0197

-

IN2 .005C
TOTRG-00B7
OTHRS.OOOs
RNETl-00F3
NOWK =0140
INOX =0158
MAR =0165
i1iSTCK.016F
KO -0179
102 =0183

52 -024A
655 ,,0280
604 =()408

SwRT

200-0198

Section Subsections Page

35 20 I 10 129

I

IN3 "OO,C 11~4 -Oil,C
TOT01·OOl:\A TOTI:IN"OOBO
BNHRS-0008 RGEKN=Ou08
RNET2.00F6 kNEU·OOFIi
NSSAM"'v143 COMP "'\)153
IL.ST =015C L.AST =0150
NXMPF·v166 NX~lPS=0167
hliliS =0170 Ni"ISC"U1 H
IFICA=017A 1.0(AL.-0178
104 "U184 IDS =0185 I

" -U2,O bO "02 'd
6,1 -O3~3 601 =Oj46

SC()MP SF Iv SIUAI

50"'U199 1;.0=019A

-

Section

35

Subsections Page

20 I 10 130

II JOB

• II XEQ PAV06 3

•
*FILES(1,COLFP),(2,WVAFP),(3,MNCFP),(4,LBOFP),(5,LBTFP) ,(6,LMCFP),
*FILES(25,PINFO),
*FILES(101'INOX1),(10~,INDX2).(103,INDX3),(104,INDX4),(105,lNDX5),(106.INOX6)

1022168021568 0040000000165000010500012700

Input cards

•
•
•
•
•
•
•

CHECK REGISTER

FACTORY PAYROLL THE CONTAINER CORP.

CHECK NO NAME AMOUNT CHECK NO NAME

1001 ROBT B BADEN 86.08 1002 JOHN A HORN
4 1004 JOHN W CUSSEN 86.26 1005 JOSEPH MONT ANO
7 1107 A E TAYLOR 113.63 1218 DAVID A HUBBARD

10 1603 'L. REYNOLDS 123097

TOTAL 996.85

1/ JOB
1/ XEQ PAY06 3
*F lLESI ltCOLFP) • I Z.WVAFP). 13 .MNCFP) .14 .LBOFP) • I !;'L.8TFP) .16 .LMCFP) •
*F lL.ESI 25 .PINFO).

\II/E 02-15-68

AMOUNT CHECK

83.55
142.58

88.48

*FILESI 10ltINDX1).1 102.INDX2). II03.INDX3). 1104.INDX4). I lOS. INDX5) .ll06.INDX6)

•

Output on printer

126

NO NAME

3 1003 ROBT L. SHORES
6 1016 DONAL.D M I LL.ER
9 1347 FRANK T DOL.EN

AMOUNT

61.44
129.33
81.53

Section Subsections Page

35 20 I 10 131

IBM 1130 MACHINE SETUP SHEET

PROGRAM Chec~ Reg/'s re.,-. PROGRAM PAYO~
NAME: NUMBER:

PROGRAM APPROXIMATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO, OF COPIES CARRIAGE TAPE

PRINTER Srp;?dd".q ./ S,l-d4c? dr/

DRIVE NUMBER: 0 1 2 3 4

DISKS CARTRIDGE X X 2< X 10: /b!l/"~//

SWITCH
SWITCH /V~...-?~ SWITCH SWITCH
UP UP UP

SETTINGS DOWN DOWN DOWN

INPUT
CARDS

(CONTROL
TOTALS

(I/XEQ PAY~ -
///JOe -

SOURCE OF INPUT: I..D/s!s, i c.Qat~L .J.ot"2.Ls I'roa2, PA yaS

DISPOSITION OF OUTPUT: ~ ~~/e" /~ t2dy."'o// J&cho......,
_,. / "4.£'£ C<;. t:/L~~

..J • .L)/~i:. £'s C!.t:!.t~G1.e.·../ h ~t.;t)~e.,

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

127

I-l
~
00

IBIft

GL UE
;:=;) ~"o,j "'UO UN_

7
8
9

10
11
12
13

15
16
17
18
19
20
21

8 lines Per Inch

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
IBM 407, 408, 409, 1403, 1404, 1443, and 220'3 Print Span:

t I

IBM 1403 Model~ 1 & 4 -H I . I

IBM 407, 408, 409, and 1403 Models 6 and 7-
TrTI~

IBM 1403 Models 2, 3, S, N 1 and 1404

IBM 1443 Models 1, N1, an!l 2203

10 11
3456789 123456789 .

i:; i :; II Ii I i I

I'
I
LI

"

il

Ii ii
I ;j'
ill

; t' II t

1H+~~+H~~-----r.i~~~+++r~++rHHH+++HHH+++HH7+++H~++rH++++rH++~rH~+rHH++~HH+++rHH++rH++++rH~+++H++++rH~+rHH+++rHH+++H

32
33
34
35
36
37
38
39
40
41
42

II

43
44
45

_~46 ________ ~ ____ _
47
48
49

~ 5
53
54

en
CO

(,,) n
c,n r+ o·

:J

~ en
0 c

C"
en - CO n
r+ o·

I-l :J
0 en

I-l -0
Q)

c,.!) CO
~ (1)

Section Subsections Page

35 20 I 10 133

VARIABLES IBM I . 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

III
0..;

9/Zt);i7 "0 ~I- Application ;7AY'£?tliL sY5TE# Date
(5 w:::> MAX. MIN. NAME * s: 1-0..;

w '0 ;:::5 VALUE VALUE Program Name 941
K//CK

0 ~o No. flA Y 09 Programmer
0 0
~ Z ~

FUNCTION OF VARIABLES

A R 3 0 66Jf/t14 ~ {J1(1~ !/secl At ("'Q/ct/6/e t?t/er!;me ;4k

7".lCA i? g 0
XX)(X ¢J.¢¢ "rZCA TC1YcJ/;/e ItA~f~.5 xx. xx

I Z / T L/$4'd //7 LJO /oo~

.Te. L 1 T - - E9///Vt2Ie/JI/;; £/112

ICOL £ / T 25{) .1 Fece>rd nV/TlL;t:'r //7 t!'m/'/"'yI?~ ;tIle set'
L/Jf3 j~1.I L1/o/, r

9
.(0 ' "" ZIJATE .1' "3 - - 'ptu/ dQ~

Z~lItJ1 42 22 To - - /-!.t h;'e 0/ ht'dd//)?

Zlf02 ('12 22 Z;O - - 2(!..d fiae eJ/ heoq;/,g

£#£)3 't12 2~ J;O - - 3 Cd p/?e o//;ead/~j'
ZlfOtf. 42 22 f,(J - - 4 ~ /tne. 0/ h~"t:hn9

r

IL ~/ 1 0 I ~ CQrrlt1pe con/ra/

INtJX I / T 1(1(, I~/ Index f'//e /It//77~~/ ~/"nl Of), -I- 1(0)

INIT Z / 0 ~ I !/aloa 1/?/ItC//0I7 /ees

.TN.1 .T / T 2,0 1 hcor¢ a(/m~t'r //1 /a4ex~J 10 emf?1o yee ;; les

IIv'£ .£ 1 # - - Et;(/i{/(/ lea I /c; .Z'IV.1

£/'13 .z / IV' - - E9t1I~Qk/1f 10 ZAIZ

Zlv'4 .l / ,AI - - E~I/Ivq/t'nf Ii> ..tN.!
1

£/'/5 Z / II - - EjFt//t/d/eal ~ ./11/.?

IN(P I / AI - - Et?t/1t/tlff/?7 /0 fAI.!

IiJA1E 1" / 0 20 / Pt?ge /ltY/77~er
7

*Mode: I = integer. R = real, D = decimal, A = alphabetic

129

Section Subsections Page

35 20 I 10 134

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

Vl c..
"E ~I- Application 'p/lYRtJ/L SYSTE# Date f/Zf?/G7 0 w;:)

MAX. MIN.
NAME ~ I-c..

* ;:::~ No. ~y Ofpr/fr{/n~~r w '0 VALUE VALUE Program Name 94/ Q ~o 0 ci
~ z ~

FUNCTION OF VARIABLES

IjJtJ £ / 0 (J ¢ /acltCtlie.s slolts 0/ record //lj'Jl-oe-ess//7tl cY'c/e
/lLI4 'At'S

SdC/q! Sect.//;r~
"'V

I.5'S~/t/ AI 9 0 912 ~/TS ,
I51.1,P'p ./ 13 0 {IJ {I SO t./~;t:>/e/TJtf'/1/o / S/CR-~Q~

T 2~¢ E 9V'/(/qknllo .zC()L
,

EIY'YA I I I

L,4ST Z / T XXX r;J Losl rectJn:i /It/m.6er In (lIe
/BO Z / N' - - Etjl//~t?k/7/ /0 /CtJt.

LBT I / AI - - E9V/VOk/l;l ~ .zC~L.
L/IV'E 1" / T 5tJ If L Il?e ctJl//? f
fllC Z / Iv' - - Eq(//{/Q/e/J I- If, ZeaL ,
L5T ..T I T ESt) ESp LC15"1 record /It//77Jt'r //7 q ///e

LYR/-IR .z / 0 ~ , Th/S f(~Qr/,s c?CCV/77v/q;/t:)/J 0/ /7ovr5
LU~rlf4d ./'O/' &/~('q"b/] .oQV

#/IR £ I ~() 2 I /¥Qr/$,/ ~/Qlvs .. (i-sl;'9!e, J. (2 - mor/'I/~e:I) , ,

IIPCO Z / 0 Z" {lJ #um~C'r 0/ c!'mp4:Jf'ee.s rl!/'?~/~d~~r C't:7/77Ptl/1Y

I #L/m.b~r 0/ emf//c;y~e5 rer'orkq" ?~r .f't1~e
,

/t.£JLY .z / 0 tI/

/tf//;V, Z / AI - - E9v/vokn! /0 .zeOL
;V' .E / Z ~ I jJ/()/lf /7t//?7.,6er

/V "f t'J N/I I I 0 (I ~ /fddl 1iol?o / k//~~lJld/)? ~m?'t//JI
#.4#E A2 9 'i;() - - j)V/77/77t,/ t7reQ)g d/!d,ClI:c/ :>/JC1ce fir /lC//1?e

/VC/fCK I I 0 ~ (J C),4'~) /)t//l76er I./s~cI ,feJr;%ts e/l7/l/t:J Y4'1!'

I / Z;o xx. X) (I ~r~cItl pni()n q".t"q't/cf;o~
,

/VC'tI

*Mode: I = integer, R = real, D = decimal, A = alphabetic

130

Section Subsections Page

35 20 I 10 135

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

'"
a...

Date 9}?O~7 "E :21- Application PAYROLL sYSTEH
0 w:J MAX. MIN.

NAME ~ I-a...
* f:::~ No.I'AYtJ9 Pr6ffa';;'r
W '0 VALUE VALUE Program Name q~.t. 0 ~O 0 ci
:2 z ~

FUNCTION OF VARIABLES

;VCU~t} .r / t) ¢ ¢)vftf)n~/,/ cre~/

/V1JLlE5 Z I !;IJ Xx.x'X ~ UnIt//? dv~ ckdvc!5ol')

/VIAl5 V / Vti XK.XX (i ..tasvrdnce dedc?f~//

;1/IYISC L / 0 (I (J Hisce //qaet:JtI s de&c//o/'lS

/vRfi'TE £ I 1;0 3.¢~ /.fJ5 Emr'/"yee jJQ~ /'4~
A/SEX Z / ~() 3 L JeK-('/- fol71q~14-mqkl.(.}-lrl/cKer)
#55.4!t1 £ 3 to ,ftWAYS tJj)jyiis "' ') Employee sla/vs-(i- U/Jlbn 1 (z./rtlckt'r

;V.5TAS .7 / 0 6" 1 El77jJ/(;y~e .s-Ioltts -(/- U/7/0/1~ (2 /("vc~r)%-/1Q/1- ~;'J~
./u// i'lme 1. /4-/7t//l-UI7/on a7rrhme 1.. '5-knn/nf/. rJ ,

" , \ ,
/VSTcK L / 1;0 xx. XX ¢ SloCK de dUG/ion
NsrKO Z / 0 (I ~ #t//l~/V .5;0ci' det:/l./c~On.s

#I/A £ / [0 XX.KX {JJ !/aIle;; ~/-,eo/ ~d/./c;fp/7$
,

#L/N ;- / f(O X'XX'X /~rP¢ cloeR /Ju/77bt!'r

##,{'HP , / 0 I ~ ;Y~m6e/" c:;/ tveeh e/77,P/of'e4
,

AlIYKflO , / 0 ¢ t Alum~er 0/ UleeK:.s PQ/c/

;VXNP,c .£ / Il~ 17 ¢5 , 77' hd'"rtl I e,Yl?/77,P. '/ bas

/VXH.P5 I / () 17 ~ .51c1re exe/77,PTio/1s

(JJRTO R
~

0 78 xm-.x~ IrlrI
y;(./qrt~r-ro-.oo;~ //J7/Cl'"l77dTlOn (11.fr"s~ (e);:Il/(3)j:'/~A

(4)loc./bx if) F/C"'tvtJ(j~S f~)5Ick -</tJtI
X'XX'X

~IJ¢
, , ,

ToTA R 3 0 .Xx. xx 70Iai ,t:'"/C/1 /tIdt;es ~er P(79~
X;(J()(

fJ.aJ~
, ,

rOTa R 3 0)()(K~ TO/ell tdt7~e5 p~r p0ge

g XXXJ<
~~¢

!. '
TOTe R 0 xx. xX 7010/ RC/l IUdft's p~; t:"()/17/,I'h?1f

, ,

*Mode: I = integer, R = real, 0 = decimal, A = alphabetic

131

Section Subsections Page

35 20 I 10 136

VARIABLES IBM J 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

III
CI,.

Dat~ ~Ofi:7 "E ~ Application pAYRO!.L S'ls rl:'i'I 0 ~~ MAX. MIN. NAME * 3:
VALUe

·K//(j,/(w '0 :> VALUf,: PrClgr4lm Name f4/ No. PAY r; 9 Programmer 0 ~o 0 0
~ z ~

FUNCTioN OF VARIABLES

TOTt) R 3 0
xx;<x (I. ¢¢ ToIQI It/qf'S 1"1'" c"mpq~9 xx. xX

VTLJ R
/~

1;0 xxx ~.I(/
y"egr- rlJ~.ot1"e 1%:r.mi'lT/lJa II 'f/'()~ liJ. P/CRJ (~) r/ ~

142 xX-. xx i4) rlt'R /;VtJ,t'S ")':IIt>k ;:)&;(/, t1'-JSPt.'IC. A. /'/) .s~"c.8
~.I<?c. 1~)(/tJJ rit'j;~'fr~ 1/ Vor hj~rJ(T lAA/7u«' ~tJllr~. 12're6 I?'",n~ '/~ot!'r/7$.
iii" " I / ./ " '/4) /J"",u$' ~rl1~

*Mode: I = integer, R = real. 0 = decimal, A = alphabetic

132

Yes

No

Initialize
Variables

Initialize
Remaining
Variables

Add to Total
and

Setup Line

Section

35

133

Subsections Page

20 I 10 137

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 138

// FOR
* IOCSCCARD.TYPEWRITER.
* NAME RAY09
* ONE wORD INTEGERS
* EXTENDED PRECISION
* L.IST ALL
C .. ---- JOB NAME
C---•• JOB NUMBER
c-·-.·
c--""'-
c;:- _-
C""'----
C ·.,
c ... --··
C---·C-w .,,. ...

C--,. .. •
C-----c .. _-.. ..
c-_ • C-·-_
C ·_-
c--......
c --
C-----
C-...... --
c-......... •
C-"---

PROGRAMMER
DATE CODED
DATE UPDAT'ED

INPUT IIL.ES

1132 PRINTER.DISK)

PAYROLL SYSTEM - 941 REPORT
PAY09

C.R.KLICK
02103/68

1.
Z.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

FILE
NAME

COLFP
WVAFP
MNCFP
LBOFP
L.BTFP
L.MCFP
INDXl
INDX2
INDX3
INDX4
INDX5
INDX6

FILE
NUMBER

1
2
3
4
5
6

101
102
103
104
105
106

RECURD
LENGTH

160
160
160
160
160
160

1
1
1
1
1
1

C----- OUTPUT FILES -- NONE

NO. OF
RECORDS

250
90

200
50

150
30

250
90

ZOO
50

150
30

PAV09
PAV09
PAV09
PAV09
PAV09
PAV09
PAV09
PAV09
PAV09
PAV09
PAV09
PAV09
PAV09

RECORDS PAV09
PER SECTORPAV09

:2 PAV09
2 PAVQ9
:2 PAV09
:2 PAV09
2 PAV09
:2 PAV09

320 PAY09
~20 PAY09
320 PAYJ9
~20 PAY09
320 PAY09
320 PAY09

PAY09
PAY09

C----- - - .. - - - - - - - - ... - - - - - .. - - - -PAY09 c---·-
c .. _-·
C-........

1

C-----

AL.LOCATE ARRAY STORAGE
PAY09
PAY09

DIMENSION
PAY09

IDATEC]I, IHDIC2Zl, IHD:2(,2Z), IHD3C22,. IHD4C,22), PAY09
ISSAN(9). ISUPPCI3). NAME(9), NSSANC3l, QRTD(6), VTDCI4)PAY09

C----- DEFINE THE FIL.ES FOR THIS PROGRAM AS DESCRIBED ABOVE, AND
PAY;)')
PAY09
PAY09 C----- eQuIVAL.ENCE THE VARIABL.ES FOR THE NEXT RECORD NUMBER,

C-----DEFINE FILE
1
2
3
4

EQUIVAL.ENCE
1

c""'-.... -
C4llll'_----

PAYv9
PAYQ9
PAV09

~C250.160'U,ICOL). 2(90.160,U,IWVAI,
3C200,160.U,MUNC). 4(SO.160,U.LBOI,
5C150,160,U,L.BT), 6C30.160'~'LMC),
lOlC250.1,U.INl" 10:2(90,1,U,IN2),
l04(50.1.U,IN4). 105(150,l,U,IN5),

PAN9
103(,200.1,U.IN3) ,PAY09
106(3Q,1,U,INb) PAY09

(ICOL..IWVA,MUNC.LBO,LBT,LMC),
(IN1,IN2,IN3,IN4.IN5,lN61

PAY09
PAY09

c----· INITIAL.IZE VARIABL.ES ANO READ PLANT NO., DATE, AND PAGE ~O.

-PAY09
PAY09
PAY09
PAY\J9
PAY09 lL.=16448

134

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

e--... _ ...
1000 READI2.1) Nt IDATE, IPAGE

1 FORMATlIl.412)
e----- - - - - - - - - - - - - - - - - - ... - ... - - -e-........ ...
e--... -- IS THIS THE LAST PLANT.
e --.. YES - 99
e----- NO - 110
e----- IFIN) 99,99,100

100 IFIN ... 6) 110.'10,99
C~---~ ~ - - - • - - - - ~ ~ - - - - - - - - - - - - - - - - -
C-----c---..... READ THE PLANT NAME AND ADDRESS. AND INITIALIZE THE REMAINING
C-"'--- VARIABLES. AND WRITE PLANT INFORMATION O~ TOP OF FrRST PAGE.
c---......

110 REAOI2.2) IH01. IHD2, IHD3, IH~4
Z FORMATI2ZAZ)

C"'---'"
MPCO;;O
MPL'I';:O
TOTA=O.
TOTB=o.
TOTe=O.
TOTO=O.
LINE:;O
WRITEI],]) IL, IHDl, IOATE. IPAGE, IH02, IH03. IH04

] FORMATIA1.2X.22A2.2X.2(I2. ' - ') ,I2,lOX.I2/(3X.22A21)
WRITE(3,8)

8 FORMATI'l')
IL.;;-3776
IPAGE:=IPAGE + 1
INDX=N ... 100
GO TO (131,132,133,134.135,136I,N

131 LST=2-;0
GO TO 140

132 LSh90
GO TO 140

133 LST=200
GO TO 140

134 L.ST=50
GO TO 140

135 L.ST=l~O
GO TO 140

136 LST;;30 <;:-----
e----- GET THE NUMBER OF EMPLOYEES

e-----140 READIINOX'LST) LAsr

135

Section Subsections

35 20 I 10

PA~E 02

PAYU':;
PAYQ9
PAY09

-PAY\)9
PAY09
PAYv9
PAY09
PAY09
PAY09
PAY09
PAYQ9

-PAY09
PAY09
PAYU9
PAV09
PAY09
PAY09
PAYJ9
PAY09
PAY09
PAY09
PAY()9
PAye'}
PAY09
PAYO~

PAYQ9
PAY09
PAY09
PAY09
PAYQ9
PAYO'1
PAY09
PAY09
PAY09
PAY09
PA'(09
PAY09
PAY09
PAYQ9
PAYC9
PAY09
PAY09
PAY09
PAV09
PAY09
PAY09
PAY09
PAY09
PAY09

Page

139

Section

35

Subsections Page

20 I

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10 140

C----- - - - - - - .. - - - - - - - - - - - - - - - -
e-----e----- READ AN EMPLOYEE RECORD FROM DISK. AND DECIDE IF IT COUNTS.

e-----DO 275 I=l,LAST
READIN'II NUM. NAME, NSSAN, NSTAS, NDUES. ~WKMP, NWKPD, MAR,

1 NXMPF, NXMPS, NSEX, NRATE. YTO, QRTD. LYRHR. NCU, NCUOO,
Z NeHeK, NAOWH. NSTeK, NINS. NMISC. NUA, NSTKD. ISUPP, INIT,

e-----e----- IF RECORD COUNTS - 150 OTHERwISE - 275

e----- IFIQRTDlll) 150,275,150

PAGE 03

-PAY09
PAY(J9
PAY09
PAY09
PAYiJ9
PAY09
PAY09

IPDPAYO\1
PAY'J9
PAYQ9
PAY;;9
PAY09

e----- - - - - - - - .. - .. - - - - - - - - - -
e-----

- - - - - - -PAY~7
PAY09

e----- THIS ROUTINE CONTROLS THE PAGE FORMAT. IF 40 LINES HAVE BEEN
e----- PRINTED PuT HEADINGS AT TOP OF NEXT PAGE. OTHERWISE DO NOTHING.

PAYQ'J
PAY09
PAYD'} e-----

150 IFILINE - 401 170.170.160
160 MPCO=MPeo + MPLY

TOTe=TOTC + TOTA
TOTO=TOTO + TOTB
TOTA=WHOLEITOTA + ITOTA / ABSITOTAI) * 0.51 / 100.
TOT8=WHOLEITOTq + ITOTB / A~SITOTBI I * 0.5) / 100.

e-----e----- WRITE TOTALS AT THE BOTTOM OF THE PAGE.
e-----WRITEI3.5) MPLY. MPLY. TOTA,TOTB

5 FORMATI'l',30X,I2.8X,IZ,7X,F9.2.4X,F9.2)
MPLY-O

e-----C----- NEXT PAGE
e-----WRITE(3.41 IH01, IDATE, IPAGE. IHD2, IHO), IH04

4 FORMATI'l I ,22A2,2)(,21 12,'-') ,I2,10x,IZ/(3X,2ZAZ) I
WRITE(3.S)

C----
C-"---

LINE=O
IPAGE"IP~GE + 1
TOTA=O.
TOT8=0.

C----- ADD EMPLOYEE INFORMATION TO TOTAL AND SETUP DETAIL LINE.

C-----170 A=NSSAN (1)

CALL PuTIISSAN,1,3,A * 10.,5 •• 1)
A=NSSANIZ)
CALL PuTIISSAN,4.5,A * 10 •• 5.,1)
A=NSSANI31
CALL PuTIISSAN,6.9.A * 10 •• 5 •• 11

136

PAY09
PAY09
PAY09
PAY09
PAY09
PAYO':)
PAY09
PAY09
PAY09
PAY09
PAYOl.)
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAYC9

-PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Section Subsections

35 20 I 10

PAGE 04

A=660000 ... IYTOIll - YTO(5»
IFIA) l80,lfO,175

175 FICA-ORTO(1) - ORTD(6)
GO TO 195

180 FICA=A + ORTO(l) - ORTO(6)
IFIFICA) 185,195,195

185 FICA=O.
195 TOTA=TOTA + FICA

TOTB=TOTB + ORTOIl)
FICA=WH0LEIFICA + IFICA / ABSIFICA» * 0.5) / 100.
ORTOIll'.oJHOLEIORTDlll + (QRTOIli / ABSIORTD(lI» * 0.5) / 100.
MPLV=MPLY + 1
LINE=LINE + 1

PAYO-1
PAYC9
PAY09
PAY09
PAV09
PAY09
PAY09
PAY09
PAY09
PAY09
PAV09
PAV09
PAV09

C----- - - - - .. - - - - .. - - - - - - - - -PAV09

C-----C----- wRITE A DETAIL LINE AND GO BACK FOR ANOTHER EMPLOYEE.
C---....

WRITE(3,6) ISSAN, NAME, FICA, ORTD(l)
6 FORMAT(3X,3Al,lX,2Al,lX,4Al,7X;9A2,11X,F9.2,4X,F9.2)

C-----C----- GO BACK

C-----275 CONTINUE
C-----

PAV09
PAY09
PAY09
PAY09
PAV09
PAY09
PAY09
PAV09
PAY09

-PAYOO:;

C-----C----- THE PROGRAM WILL AUTOMATICALLV GO THRU HERE
C----- HAS BEEN PROCESSED. CREATE AND WRITE PLANT

C-----TOTC=TOTC + TOTA

PAY09
WHEN THE LAST EMPLVEEPAY09
TOTALS ON REPORT. PAY09

PAY09
PAY09

C-----

TOTD=TOTD + TOTB
TOTA=WHOLEITOTA + (TOTA / ABSITOTA» * 0.5) / 100.
TOTB=WHOLE(TOTB + (TOTB / ARS(TOTB» * 0.5) / 100.

C----- WR IfE
C-----WRITEI3,S) MPLY, MPLY, TOTA, TOTB

PAV09
PAY09
PAV09
PAY09
PAY09
PA':'09
PAY09

C----- - - - - - - - - - - - - .. - - - - - - - .. - - - - - - -PAY09
C-----C----- CREATE AND WRITE PLANT CONTROL TOTALS ON CONSOLE AND GO BACK FOR
C----- ANOTHER PLANT

C-----MPCO=MPCO + MPLY
TOTe=WHOLE(TOTC + (TOTC ABS(TOTCI I * 0.5) / 100.
TOTD-WHOLECTOTo + (TOTO / ABS(TOTDI) * 0.5) / 100.

e-----C----- WRITE

C-----WRITE(l,9) IHol
9 FORMATI12A21

137-

PAY09
PAY09
PAV09
PAY09
PAY09
PAY09
PAV09
PAY09
PAY09
PAY09
PAY09
PAY09

Page

141

Section

35

Subsections Page

20

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

I 10 142

WAITE'l.'?) MPCO. TOTC. fOTO
7 FOAMATe 13.2F12.2)

C·"--
C·---- GO BACK
C"'---

GO TO 1000
C .. _ - .. - - • - .. - .. - - - - - • C-----
C .. _· THE PROGRAM COMES THRU HERE WHEN THE LAST PLANT HAS BEEN
C _- PROCESSED. STOP C .. _

99 CALL £XIT
C - - - - ... - - .. - - - .. - - - - - -

END

VARIABLE ALLOCATIONS
ICOL .00S4 IWVA .0054
IN5 .0055 IN6 .0055
IOATE.00A9 11'101 .OOBF
N .0125 IPAGE-0126
NSTAS.012F NDUES.0130
NCU .0139 IIICUOO.OUA
IPO .0143

SfATEMENT ALLOCATIONS
1 .016C 2 .0170
100 -OlES 110 -OlEB
160 .02C2 170 .OU3

FEATURES SUPPORTED
ONE WORD INTEGERS
EXTENDED PREC I S I ON
IOCS

CALLED SUBPROG~AMS

MUNC .0054 LBO -0054
QRTD -006!' YTO "008F
11'102 *0005 11'103 .00Ee
MPCO "0127 MPLY -0128
NWKMP-Ol31 NWKPO-0132
NCHCK IO O13B NAOWH*013C

3 -0113 8 .01811
131 -024C 132 -OB2
175 -0383 180 "OUF

LBT -0054 LMC -0054
tOTA -0092 TOTB -0095
11'104 .0101 ISSAN.010A
LINE -0129 INOX .012A
MAR .OU3 NXMPFIOO134
NSTCK-0130 NINS "OUE

5 -0188 4 -0193
133 -0258 134 -025£
185 -03AO 195 -03A4

PAGE 05

PAV09
PAV09
PAV09
PAV09
PAV09
PAr09

-PAV09
PAV09
PAV09
PAV09
PAV09
PAY09

-PAY09
PAV09

11'11 .0055
tOTC -0098
ISUPP"01l7
LST =0128
NXMPS·0135
NMI SC-013F

6 -OlA6
135 -0264
27!l ~03F~

INZ
TOTO
NAME
LAST
NSEX
NUA

9
136
99

-0055 11'13 .U055 IN4 -0055
"0098 A -009E FICA -OOAl
-0120 NSSAN-0123 IL -0124
-012C I -0120 NUM -012t:
*OUb NRATE"0137 LYRHR-013t1
-0140 NST1'(0-0141 INIT -0142 I

-01B7 7 -OlBA 100U &0107
-026A 140 -U26E 15U -0211C
*048U

WHOLE EABS PuT EADD
SwAT

EAOOX ESUBX EMPY ED I V EI.O ELOX
5101

ESTO ESTOX ESBR EOVR EOVRX
FLOAT wRTVZ sRltO SCOMP SFIO sIoAI SIOFX SIOF CARDZ PRNTZ ·SDFIO SDRE:O SOAI
SDAF SDI

REAL CONSfANTS
.OOOOOOOOOE 00.0148
.660000000£ 06.015 7

INTEGER CONSTANTS
16448.015" 2.0158

200.0164 50-0165

CORE REQUIREMENTS FOR PAY09

.500000000E 00-0148

O-OHO
30-0167

COMMON 0 VARIABI.ES 328 PROGRAM 82'

END of COMPILATION

.100000000E 03*014E .100000000E 02-0151 .!;OOOOOOOOE oh0154

3*OUE 3776*OUF
40*0168 4*0169

-- -

138

}

I

\

•
•
•

Input cards

Section Subsections

35 20 I 10

/1 JOB / // XEQ PAY09 2
*FILESI1,COLFP),12,WVAFP),13,MNCFP),14,LBOFP),(S,LBTFP) ,16,LMCFP),
*FILESI10l,INDX1),1102,INDX2),1103,INDX3),(104.INDX4),(lOS,INDXS),(106,INOX6)
103316801
XYZ MANuFACTURING COMPANY
1642 EAST MIDDLETOWN STREET
ANYTOWN, SOMESTATE 99999
013-32-3060
9

139

Page

143

Section

35

Subsections Page

20 I

-I I
c:.1 AI .,
.1=
.f
•
•
•
•
•
•
•
•
-•
-•
•
•
-•
•
•
•

10 144

CONTINUATION SHEET FOR SCHEDULE A OF FORMS, 941, 941-M, 941SS, OR 943
IIEPORT OF WAGES TAXABLE UNDER THE FEDERAL INSURANCE CONTRIBUTIONS ACT

THE CONTAINER COMPANY
1642 EAST MIDDLETOWN STREET
COLUMBUS, WASHINGTON 99999
013-32-:3060

Typt' or prine in Ihis space employer's identification ",amber. name, and address
eucdy as shown on Ihe ttNtn.

EMIJWYEE'S SOCIA.L SECURITV
ACCOUNT NUMBER

fir :btt is unknO~ri. K~ CiNU!:;;/

013 32 3060
083 28 4339
712 98 2119
032 24 4378
614 63 8734
541 03 2308
213 71 0014
782 92 7112
194 51 1234
822 44 5618

TOTALS FOR THIS PAGE
number of employees.
taxable wages and taxable tips

XYZ MANUFACTURING COMPANY
10 21520.23 21532.23

NAME OF EMPLOYEE
(Plcue tyj)(orpritl1)

ROBERT B BADEN
JOHN A HORN
ROBT L SHORES
JOHN W CUSSEN
JOSEPH MONTANO
DONALD MILLER
A E TAYLOR
DAVID A HUBBARD
FRANK T DOLEN
AL REYNOLDS

140

If this form is used as a continuation I •
sheet for Form 943. Employer's An· "'0
nual Tax Return fot Agricultural r I
rE_rn~p_lo~)'e_es~'~PI~ea~se~ch~ec=k~h~er~e'~~~~~ _______ :1 •

READ INSTRUCTIONS CAREFULLY
Attach only original continuation sheets to your tax

D\~;~~r ~f ~~t~~~~t ~e'::~~~. copy to the U.S. District I
TAXABLE F.'.C.A. WAGES
PoIidlOC'mployC't' in Qu.nt'r

(fkfori-dcdu(lions)
.. Dollars Ctncs

1831. 01
2202.84
1906.65
2286.25
3176.73
1342.00
2233.03
1923.58
1475.89
3142.25

21520.23

FEDERAL COpy

TAXABLE TIPS REPORTED
(See InnruC(ions

.. I~m 20. Form 941)

1831. 01
2202.84
1906.65
2286.25
3176.73
1346.00
2241.03
1923.58
1475.89
3142.25

21532.23

•

•
e::
-< -z

~
o
t,)

~ v.
ci
Z ;e

Ie ,e
I
I.

Section Subsections Page

35 20 I 10 145

IBM 1130 MACHINE SETUP SHf:ET

PROGRAM
J41 R£P/)/(T

PROGRAM

PAY09 NAME: NUMBER:

PROGRAM APPROXIMATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

PRINTER 941 FORMS 94/TAPE
DRIVE NUMBER: a 1 2 3 4

DISKS CARTRIDGE X X L X 10: PAYROLL

SWITCH /l/O..v~ SWITCH SWITCH
SWITCH UP UP UP
SETTINGS DOWN DOWN DOWN

INPUt (9
CARDS

(MORe
_ PL,J;NiS f--

'(rtAN
'-IJ5.PJ%MT NO~ I--

'(~~HNT

For t:Jne ,.p/o" '"
CI"'Y-S7~rr -
CFlFlD

(PLRN-r
AP/)RFSJ --. CARl)

(r>t.f}/Vi
NAME I--
erie/)

(PLAN""
HG'lijEI? I--
CAR

[II XEtp PAY09 I---

/

/1 '/08 f--

SOURCE OF INPUT: /- PI ant i(Jformd:f.iol'1 C4.ro's FraN? File. E
Z- Pd.¥-roll cluj({rom J',(~C~ ~

DISPOSITION OF OUTPUT: I- J4/ ;e.~",.t it> #~Vgr;r;:y:
2- f;h:s/(I.s ~e-tura. - ~o::io : ::
3- p, rLh't l,,'(),.C!1.~ {oQ. ~~~ ~Q ;iI~ E

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOvERY SHEETS

141

Section Subsections Page

35 20 I 20 01

PAYROLL SYSTEM

Operation Manual

Section Subsections Page

35 20 I 20 02

Section Subsections

35 20 I

CONTENTS

Payroll Application ... 1
Job Description . 1
System Flowchart .. 1

Narrative ... 1
Payroll File Create (PAY01, PAY02, PAY16) 2
Payroll File Changes (PAY03, PAY16) 3
Payroll Calculations and Register (PAY04, PA Y16) 4
Print Payroll Checks (PAY05, PAY06) 5
Payroll Check Voiding (PAY11) 6
Payroll Deduction Registers (PAY12 thru PA Y15) 7
Payroll File Audit, 941, and Tax (PAY07, PAY09, PAY 1 0) 8
Print W-2 Reports (PAYnn) ... 9
Error Detection and Correction (P AY09) • 10

Payroll Programs .. 11
PAY01: Payroll File Create... 11

Accounting Controls. 11
Error Recovery Sheet•................... 12
Machine Setup Sheet ... 13

PAY02: Add Names to the File .. 14
Accounting Controls .. 14
Error Recovery Sheet.. 15
Machine Setup Sheet .. 1 7

PA Y03: Changes to the File ··· .. ···················0······· 18
Accounting Controls. 18
Error Recovery Sheet. 19

Machine Setup Sheet .. 25
PAY04: Calculations and Payroll Register•.•..••............•..... 26

Accounting Controls. 26
Error Recovery Sheet .. 27
Machine Setup Sheet•................... 37

PAY05: Check Writing ... 38
Accounting Controls ... 38
Error Recovery Sheet. 39
Machine Setup Sheet ... 50

PAY06: Check Register......... 51
Accounting Controls•........... 51
Error Recovery Sheet.••. .. . ••• 52
Machine Setup Sheet • • • . . • 53

PAY09: 941 Report .. 54
Accounting Controls .. 54
Error Recovery Sheet .. 55
Machine Setup Sheet • 56

20

Page

03

Section Subsections Page

35 20 I 20 04

Section Subsections

35 20 I 20

PAYROLL APPLICATION

JOB DESCRIPTION

The Payroll System is composed of 16 different runs. From the source documents, produced
at the six plant sites, cards are punched. These cards are used to store the payroll informa
tion on the disk cartridge.

At this point the system uses cards only for transition between jobs. The input data,
employee records, is read from the disk and updated before being written back. This gives a
highly flexible system, in which 1/0, because of the disk, is very fast.

The system produces the following reports:
• Checks and check stubs
• Check register
• Payroll register
• Deduction registers for

1. Union dues
2. Credit union
3. Stock

• 941 quarterly report

SYSTEM FLOWCHART

Narrative

The system consists of 16 programs.
The Files Creation program is first. Data decks are keypunched for each individual, in sets,

by plant. The data is edited and, when correct, loaded on the disk by PAYOl. Three files are
created: a master file, an index file, and a plant information file. A second data deck with
employee clock number and name is loaded onto the master file by PA Y02.

Changes to the disk information are made by PAY03. Documents, received from personnel
departments at the individual plants, are checked, summarized, keypunched, and verified.
Time sheets, submitted by the plant payroll departments, are keypunched and verified. All of
these cards are processed by PAYI6, which edits and generates control totals. PAY04 then
processes these cards, performing all payroll calculations. Cards are read, pay computed,
disk files updated, and cards extended with current pay figures. After all cards are processed,
a payroll register is printed.

Checks are printed by PAY05. A header card is read and the checks are printed from the
disk file. PAY06 lists the check register from the disk file. In the event of an error in
computing pay, PAY11 provides the means of voiding checks. The extended time cards from
PA Y04 are read in and the affected employee records are reset. The above are weekly runs.

At month end, registers are prepared showing each individual's deductions for the month:
PAY13 writes union dues register.
PAY14 writes credit union register.
PAY15 writes stock deductions register.
PAY12 resets charity deductions code.

At the end of the quarter and at the end of the year PA Y07 and PAY08 are used to balance
the disk files to control totals.

PAY09 produces the 941 tax report.
PAYI0 produces a tax worksheet used to determine tax liability.

At the present time the program for W -2 reports has not been written.

1

Page

05

Section Subsections Page

35 20 I 20 06

Clock No.
and

Name

.fAX...Q.2..
ADD NAMES

Zero Balance
Totals

2

Employee
Earnings
Record

fAY....1ft
INPUT
EDIT

fAY...Q.1
FILE

CREATE

Out of Balance

All but
Name

TAPE

Zero
Balance
Total

Employee
Payroll Change
Authorizations

Changes

~
INPUT
EDIT

O.K.

Control
Total

Changes

.fAY....Q.J
FILE

CHANGES

3

Total on
Adding

Machine

Out of Balance

Section

35

~--------.. ~ TAPE

Control
Total

Subsections

20

Control
Total

I 20

Changes

Page

07

Section

35

Subsections Page

20 I 20 08

Zero Balance
Totals

Payroll
Register

Weekly
Time

Sheets

Details

~
INPUT
EDIT

PAY 04
CALCULATION

4

Totals on
Adding

Machine

Out of Balance

Control ~

~ _____ T __ o_ta_ls ______ ~ ~

Control
Totals

Zero Balance
Totals

Details

Calculated PAY 05
PAYROLL
CHECKS

Only When Totals Balance

PAY 06
CHECK

REGISTER

5

Control
Totals

Pay Checks
and Stubs

Control
TotDls

Check
Register

Control
Totals

Section

35

Subsections

20 I

Total on
Adding

Machine

20

Page

09

Section Subsections

35 20 1 20

Page

10

Only When Totals Do Not Balance

PAY 11
VOID

CHECKS

Control
Totals

6

Control
Totals

Details

Details

Union
Dues

Register

Credit
Union

Register

Stock
Deduction

Register

PAY 13
UNION
DUES

PAY 14
CREDIT
UNION

PAY 15
STOCK

DEDUCTION

7

PAY 12
RESET

MONTHLY
TOTALS

Section

35

Subsections

20 I 20

General
Ledger

Page

11

Section

35

Subsections

20 I 20

Totals

Calculated
Control
rotals

Tax
Worksheet

Page

12

PAY 07
AUDIT FILE

BY COMPANY

PAY 09
941

REPORT

PAY 10
"""'fAX

WORKSHEET

Plant
Numbers

941
Report

8

Plant
Numbers

General
Ledger

TAPE

W-2
Reports

PAYnn wr
REPORTS

Disk
Payroll

File

9

Plant
Numbers

Plant
Numbers

Section

35

General
Ledger

Subsections Page

20 I 20 13

Section

35

Subsections

20 I 20

Disk
Payroll

File

Individual
Payroll
Record

Page

14

PAY 08
INQUIRY

Use PAY 16
& PAY 03

to Change the
Disk Payroll

Record

Return to
Print Where

Error
Occurred

10

Only when
entire original
error has been
corrected

Select Desired
Clock Number

Card

Clock
Number

Last Week's
Payroll
Register

Section Subsections

35 20 I 20

PAYROLL PROGRAMS

PAYOl: PAYROLL FILE CREATE

Accounting Controls

Balance total gross ($) and total tax withheld YTn ($) from the preceding PAY16 to the general
ledger.

11

Page

15

Section Subsections Page

35 20 I 20 16

IBM 1130 ERROR RECOVERY SHEET

JOB Pd.y.rO// ~qSTt:=""m PROGRAM NAME PAYO/
PROGRAMMER NAME C/2,c //'C k-

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

#'0/\/£ I HI 0 I ~I£ I
AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT

__ ___ N:ttt!'2e ______

DESCRIPTION OF WHAT IS WRONG:

~n-e------ -

PROBABLE CAUSE:

;(/ Q.N"e

RECOVERY PROCEDURES:

A/<2Ne·-

COMMENTS;

Zh~~~ a~L"3' /)<J m@~S08e.s. .or L?o-,!ses ;r=-

SCORESHEET

I
DATE

I I I I I I I I I INITIALS

12

Section Subsections Page

35 20 I 20 17

IBM 1130 MACHINE SETUP SHEET

PROGRAM File Crec?le PROGRAM ?AYO/
NAME: NUMBER:

PROGRAM APPROXIMATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO. OF COPI ES CARRIAGE TAPE

PRINTER SIt:?nQ4rc:T l' S/-d/?ddrd

DRIVE NUMBER: 0 1 2 3 4

DISKS ?c7yro// X X X "', //
CARTRIDGE A 10:

SWITCH A/G7/7e, SWITCH SWITCH
SWITCH UP UP UP
SETTINGS DOWN DOWN DOWN

INPUT
CARDS

f q

~c:::::'r C7ne / /.?/Q'/1/' r---

,DETAIL CARDS

(II XEQ PAYOI f--/
/J1 JOP-> -

SOURCE OF INPUT: t. Card /ne..u.t!.. .£rQt2! a sC/cce5s/'c// ~d~ &a/~
/tva.

7

.z. >O/~.!r:. u:::z«..-;-/ Iz~ e..~c.(2t1 d/S!:;. ~t:.th. ac.~t2. s:. :/0,.
7.

e4.c/t ~/k'H/' t?//c;cc?",£ed.
DISPOSITION OF OUTPUT: L»~,t-t:?t:.L k<Z/'#S. 4/"e /2//r''/ /;-;/jl~ A.

z. .L)/~k CO ~e. ~Lsr::'d La. ?AYC)~ u.~/ch :r.///Y",U
.ho bLll t!:le..c:./-

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

13

Section Subsections Page

35 20 120 18

PA Y02: ADD NAMES TO THE FILE

Accounting Controls

None

14

Section Subsections Page

35 20 I 20 19

IBM 1130 ERROR RECOVERY SHEET

JOB ~~£:?// S§?i~/e..-:r1 PROGRAM NAME PAYOe

PROGRAMMER NAMEC. R. C/,.Ck:.

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

1 #1 INI£ I CLOr:~h0 XX'x6' Nor
0 L.N ':;:'ZL. E .

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /00

DESCRIPTION OF WHAT IS WRONG:

z//c? r:L'-2.ck /J~//J6?r L/? LCie L~nd~ cc7/"d /$
;?/J:/- U? t..h~ //Jde'lS.. a.-/" c:.Lt2Ck a.~n?LJC~;>/'..s.

PROBABLE CAUSE:

LT/;~ e~~~.~ /'~C(2,-d u~d~ ;?{2t! Lad'ded.
t2./'
e7h~ c. L"'2.c.~ /7 &,Lt!Z2.L;er~ /h rAe /r7L?V~ C.::;;;7/'d ,/s

in tJ~rt!?ar. r-

RECOVERY PROCEDURES:
A7'- f-he.. t? .n d ttl7- r /u? r'L/n. r'e a:? QlL.e r-,,~~ c.::;?/'d(,s l So

at2ied ~/'nA? rAe
J

rhP.. da.r~ d~a~ c:7/7d cA~G~

~C1L~~~~~~?h~~~~/~~~~
L?card an The .,..r?/Le f~ 7-..hc!? ca""d LS //.?car/'eaC;
~pun~h rAe. Ct2..cd..dnLT r"B/'~a..

COMMENTS;

SCORESHEET

I I I DATE

I I I I I I I INITIALS

15

Section Subsections Page

35 20 I 20 20

IBM 1130 ERROR RECOVERY SHEET

JOB rb'-!J..r~ t/ 1/ ~.$"feh7 PROGRAM NAME ?AY02
PROGRAMMER NAME CR.C//c£

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:
c-~OG.K::" L1LCJ,)(>< >< X / A/

I NI IMIL I r-/~E 'TJa.rs.. A/c)T c1.~PEE
W/ZH C~aC-k A/o. XX-XX 0
,LA/ C /J,t! D

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /e:?O

DESCRIPTION OF WHAT IS WRONG: £' ~~ :;;ref c~ /.he ~s~ fi(? /$;><?r ~e. ~. 57_ ~ /=~- n- :l;;,ober :n 6=- -hdex d/7d

PROBABLE CAUSE:

....DIsK. d<'2./a ~<2.~ Aec?n c;tLLe.t:::.ed:

RECOVERY PROCEDURES:

-!'mm E? d~~ ~~(;;- r~,/2t2rT ~.6.~ oaC!ur/'"ehce ~/'
t/t/~ t'~ yac.L~ s~.oerIL/~O)-·

COMMENTS;
.Bee{2~s:.e ;T/lt!!!? ~!2e~/'// C. rec.~rd.L.n ,e/-,ror

~~~~~ ~c~7,:'/.$~r~1.Y~f4' 
has::: 7.Pt."t2ba.AI:/ .h~~.h a£.S~~%lPa 

SCORESHEET 

I I I DATE I I I I I I I INITIALS 

16 



Section Subsections Page 

35 20 I 20 21 

IBM 1130 MACHINE SETUP SHEET 

PROGRAM A. . PROGRAM PAY02 NAME: C/d /)d/.7?c?5 ro r~e /)/e NUMBER: 

PROGRAM APPROXIMATE 
DESCRIPTION: RUNNING TIME: 

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE 

PRINTER 5/t?/7d~/"q / SI"t2n q(;?rq 

DRIVE NUMBER: 0 1 . 2 3 4 

DISKS X ~ ... / ~~ ~. // 
CARTRIDGE &3/'&7// /~ 10: //~ 

SWITCH #2/\/E SWITCH NONE SWITCH NONE 
SWITCH UP UP UP 
SETTINGS DOWN DOWN DOWN 

INPUT 
CARDS 

( '1 

rc;r One 7 ////.~;?/ ~ 

(NAMEfCLOCK 
NO. CARDS / 

(/1 XE.Q PAYOZ~ 

/// JOB -

SOURCE OF INPUT: /. Cdrd L/?e..U/-ro~o st./ccess/u/ PAY/0 ec://T r.un. 
2. L?/sk mJ.s/- be e.,durO// ~5k rr~/r> .P4YO/. . , ....",..... 

DISPOSITION OF OUTPUT: /. ,¥O'n?e c7/J4 C/o c."=. /110. cclr4s a,e ~/ec/>/t ///e 8. 
2. L)/sk To.be ~..red //7 PAY03. u./n/ch s/7t?~/c/ ,.. 
6~ ,t:~-'2. n ~ lS:./' 

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS 

17 



Section 

35 

Subsections Page 

20 I 20 22 

PAY03: CHANGES TO THE FILE 

Accounting Controls 

Hash totals of clock numbers, change codes and new fields from preceding PAY16 should 
balance to control totals prepared manually. 

18 



Section Subsections 

35 

IBM 1130 ERROR RECOVERY SHEET 

PROGRAM NAME .DA Y 03 

PROGRAMMER NAME Ck.K//cA-

PAUSE - DISPLAYED IN ACCUM: 

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /00 

20 

RECOVERY PROCEDURES: /he- c-o/'d /~ ~,r/~,r: a/,/// ~~ ~e~c-?1....qd 
To r:6e o//e/'/.?C7/e s/-Qc&2:er. ke.-??o/:-?,r.he card' 

COMMENTS; 7A /< ~r/'V7/' /YJfi('/ /'e.C"o/:r ,/Y?"? s-'L/<,reO? F0c23 
c:rro/'?, Kee.x :pc~~t==>.. '%e A7POQ/"Lj/?-J .·~g/'b/?4 LU//h 
//),q v/d/7/ /;;J/Jd cc//d ~/fd~ /./~&?_< Ae//?a Dr2:f'cessed 
wAd/? rbe Od/~ c>ccc/,,,--c;d Lr1 me e~occc;./"r\S a 
SecQ/)d b;"n "q, /7<2,,0'ty. (jove ~q:ppcV/:ser. 

SCORESHEET I -DATE I 
INITIALS 

19 

I 20 

Page 

23 



Section Subsections Page 

35 20 I 20 24 

IBM 113l ERROR RECOVERY SHEET 

JOB Po/~// £:l.S/e"", 
\OJ 

PROGRAM NAME PA.YO~ 

PROGRAMMER NAME c.R.C~Ck.. 

PAUSE - DISPLAYED IN ACCUM: 
MESSAGE TYPED: 

I /11 1// Ir- I 
&~ (/ir2j/6~' C£20£ 
Ft2A?'xxxx t.? 

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /00 

DESCRIPTION OF WHAT IS WRONG: 

Lh,.o ('l2d~~ COrne £5 n,:2r ~L//)/h -rh~ VtZL/d 
c.t2.~~ LL- ~l. 

PROBABLE CAUSE: 

I<' ~ t2c.LL2 c..6. ...... 7 e. c. CI":J·/' 

RECOVERY PROCEDURES: 

kkru/"/? co/"'d /,2/?d a?:2c.V/?7L!'?~r 
m k~I2u.C?c:.a C),C?p /"'c7~L2L.-"-

/ 

COMMENTS; 

SCORESHEET 

I I I I DATE I I I I I I INITIALS 

20 



Section Subsections Page 

35 20 I 20 25 

IBM 1130 ERROR RECOVERY SHEET 

JOB P4&,/'~/ S.7ls7'efl? PROGRAM NAME PAYc:?3 

PROGRAMMER NAME C RCL>ck 

PAUSE - DISPLAYED IN ACCUM: 
MESSAGE TYPED: 

I h~1 lA' 1£ I CLOC~ /\/a X x25:..,x .A/~T a LN~~£ 
~ 

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /00 

DESCRIPTION OF WHAT·IS WRONG: 

7?,£ L/:?L?LJ/- c/?~d G'MC,k. L2::Yn2c2c~ L~~ /J Q:r ~a t;IJ,e:7-. d 7 
//J_eK. 

PROBABLE CAUSE: 

~T/J~ P~C2~r-?~ 
L/.2~d. 

/'I'2C Q/"d 6 C2 s: a. t2. r' //p~/? 

I)/' , 
?7/Je c./ac..k tt!2. L:/~./J e /l .a.a. ;//5~ C"c?/'d L .... "S.. 

7 
PL'l/?ch e 4 L~2Ct"/r,..c?Cc.r'o/ 

RECOVERY PROCEDURES: 

TI1~ CClt::.d /$ sl.:::1c.~ ec.. Sg/ect:e.c/. P8/7/~E/B :f~ r:2:7/'?:/ 
c2L2d r=1%Ck-- ~~ ~ /J~1~ ~q ~e~~t2/Jr:Je/ L~c£)r-.s. £/;;I;4,c> Ch~~/?~;';;L>:;/, ~~s:: l"!.dr:;'~c~ L~~d 
Me. R~~eel:: /'c;?c?/' ,1~ ~e -//L.~ ~ OT/7p/a//Se 
CQI"'/ cr 1'A6? c.p/"'d ,d/1&7 L.tc>,r-'ljI/? 

COMMENTS; 

SCORESHEET 

I I DATE 

I I I I I I I I INITIALS 

21 



Section Subsections Page 

35 20 I 20 26 

IBM 1130 ERROR RECOVERY SHEET 

JOB Pd~rt.?// .S~~?'e41 PROGRAM NAME PA'YOd 

PROGRAMMER NAME c,R,C//cl'f 

PAUSE - DISPLAYED IN ACCUM: 
MESSAGE TYPED: 
C/Or":k" A/V.d4&EPS .,./)o l,vl A/~7 .A1MR~,,~~.RXXXX, 

C) 

I #'1£ I 
AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /c::/O 

DESCRIPTION OF WHAT ISWRONG: 

,:;:;nec/:§:'5g:~5:;~;~~~~ 9~ ~s/?~r~ ~Aa 
i/J rh,P ~I2U~ C;2rd. 

PROBABLE CAUSE: 

»is~ da.l"'..:Z '/'4."'< heE!'-2 g/?~/,,~d. 

RECOVERY PROCEDURES: 

Cd.rd 4s: sUck~;" .... S'=:'t!~ctt£?d. 
L A"}a::1. e~dLe{:t r~o~rr.. rAe? ~cC.::L/"'/e/;7Ce ,0)~ 
-m/,$ 1"?'c:.L2t2/' "/7:) ~a~c .~~~c::.-'CYLSOL:. 

COMMENTS; 
/)/Sk d/7//:7 n/.2S L)r/)~~'" "'<./.bI' h~ -- des r-.rowed 

7 C7 ..,/ 

SCORESHEET 

I I I DATE I I I I I I I INITIALS 

22 



Section Subsections Page 

35 20 I 00 27 

IBM 1130 ERROR RECOVERY SHEET 

JOB ;::b-!:fE~// ~sle~ PROGRAM NAME PAY03 

PROGRAMMERNAME~A?~//C~ 

PAUSE - DISPLAYED IN ACCUM: 
MESSAGE TYPED: 

ENrER SSAN ~OA? X YX~ I~I CJ I NIE I 
AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 

k~Aaq.cd spLpcr. 

DESCRIPTION OF WHAT IS WRONG: 

MQ~>t? L /7 t= L:5 ~$'7t>Lf:!J ~or_~;Oor /r'(2a2. .£0b t!2?2.Ld 

PROBABLE CAUSE: 

L~e. r? CO.g. Ct:Za-z ,- h4S c::.~/~d /~/' ~q/-JL/r. 

RECOVERY PROCEDURES: 

£/7i:e.r ~~ SO..c'~/ SeC't./".,/'r~ .a.u/rlt6er 
t/;.e mdl.'c.czied eo/L~E? ...r 

h" 

COMMENTS; 

SCORESHEET 

I I I I 
DATE 

I I I I I I INITIALS 

23 



Section Subsections Page 

35 20 I 20 28 

IBM 1130 ERROR RECOVERY SHEET 

JOB p~~// ~s/ea? PROGRAM NAME P~YCJ3 

PROGRAMMER NAME C.R C//CK 

PAUSE - DISPLAYED IN ACCUM: 
MESSAGE TYPED: 

I A/I CI:. !?CLc" l1L(/ff18£ R X~kX I ~I£ I L:5: ./)~/ LCdrp"".£) 0 

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /00 

DESCRIPTION OF WHAT IS WRONG: 

The c Lt2r:p .t::Z(Ln?hp-C. L/-/_ rd~ La L?V~ c:c?r~ ~.o""" 
a oe~ ~/;r~Q~e. /5 /.?L/~L7d~ da ~ d~5:.~ hLP. 

PROBABLE CAUSE: 

L /he Cc::7rd at:?:2: /Jec?/7 -c?aTc:::'/c="d a 
b~eco/?d ~Lh/c:o. 

I"J/' 
/I. L,he CL"2. r k ~~/7'?.6e'" L./7 TA~ //7.::2..:2/ cc7/'d 

L2 //lCC2.L!/,c?cr-
7 

RECOVERY PROCEDURES: 
T/;p ,/''::2/-':;/ ~:- ,:7d'(-k'e/"' -St? /ec..r-e(z"J r:::~ec::.k ~7 

C/C'c&; c::. '/ LcZ. . t.,<) '''- ~£'Fi t!:!/ L ' /~i.' ,.,., ',:: ',/~' /// ", .. , / 
f 

/" __ ,,,:,- ''7/' .--<~-. .r"'!" £.'.t..: /~ 

L/?C!o.nec.t", /'~~~ ~d_W~~' n ~ /s CLJa·c7.i:~ rdse ;; ~~~" ~f!'a57i~Yf~V? PBj f~ T~I J?f:Tf ct' ~e, e c:o ,It e:lf,. I j- ~":., j:...e, j ~ r " r i }(') -f J- <"' 

~Qt::reci::.· 

COMMENTS; 

SCORESHEET 

I I I I I 
DATE 

I I I I I INITIALS 

24 



Section Subsections Page 

35 20 I 20 29 

IBM 1130 MACHINE SETUP SHEET 

~~~~~AM C~.t?0.!l~S /~ rAe /;/~ PROGRAM PAYO,3 NUMBER: 

PROGRAM APPROXIMATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

PRINTER S?'arnMrd / S!g"eTqrd'

DRIVE NUMBER: 0 1 2 3 4

DISKS CARTRIDGE Pt7~rt:)// [)(X IX X 10:

SWITCH /'\/oae SWITCH /i/ t:'"., e SWITCH #~/?~
SWITCH UP UP UP
SETTINGS DOWN DOWN DOWN

INPUT
CARDS

(9

(q

(MORE >--

{ q -

JC"'or "R/7e /
f---

/",%a

(CHANGE..
r--

CARDs
r-ar e4ch ,P/'?/Jr (qv
4//rh Ct"74nyC"s

~or &:7he / r--
/P/dh~

(CHAt-.JGE r--
CARDS

(II XEQ PAY03 ~v
/ // JOe::.

~

SOURCE OF INPUT: t. Ctt::1rd /!?av"L /rf2.trJ. r:2 ~u.c.ces:. r--£d. t'~ r/G:i ~~ i' /'L./a.

2.2)/sk ttz.fLd-be. ~~t.Ct2..t/ @'s'k. u.t2a:J. ~'(~~.
7 J

DISPOSITION OF OUTPUT: t.. C/)/?/7oe Cd A cZ/'e ~'/ed /Q. i//e. C
~ .2)t..s.;C /$ L:.t:!t~Ct2e.d.. rl'!'J s~or't:2.f}e. r?~.c u..~t:::.. U//rh

PA'C:a4

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

25

Section

35

Subsections Page

20 I 20 30

PAY04: CALCULATIONS AND PAYROLL REGISTER

Accounting Controls

Machine totals (regular hours, OT hours, bonus hours, special earnings) must be balanced to
the control totals from the preceding PAY16 run. Information is found on console printer for
this zero-balance check.

26

Section Subsections Page

35 20 I 20 31

IBM 1130 ERROR RECOVERY SHEET

JOB ptJyro/1 Sy.srem PROGRAM NAME PAY04-
PROGRAMMER NAME C. R. k IIC k

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

I I I I I
CHECK CC .J rt4N J) 80
ON ,c/;rsr C'AR~ 0 0 0 J

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 99999

DESCRIPTION OF WHAT IS WRONG:
I. Cdrd colvnln I &(lS d'l it:1.'" f!./ltl'
"P / 4t ", '" ;,vh76er,.

01-

2. Cdrd ~~/1It:!::111. 80 ;s '70"1- <!:'ero.

PROBABLE CAUSE:
£/"~.r d bLdn/(cdrd ~r d a'dr~ cdr';
A q oS De.-tl ~ It'/. ce f:I 117 -I'rfJl2r 0'; "'I-h~
d~ck

RECOVERY PROCEDURES:
Cle<lr rile cdrd' r~d.eler. (NPRO).

'p1(j~e d "Propel' lJec:lder adl-d d-r The J,e g'll1lfl17g

o~ "'~e ~e~l<. !featly ?"he ctircl r edae,- d"t/
/,rfPS'S' P,... ot:..I-d.W'I $7'-11,.+ t:lJ') 7-he conso/e.

COMMENTS;

SCORESHEET

I I I I I I I DATE I I I INITIALS

27

Section Subsections Page

35 20 I 20 32

IBM 1130 ERROR RECOVERY SHEET

JOB I'd yro 1/ SyS'r«m PROGRAM NAME PAY04-
PROGRAMMER NAME C. R. J(II C A:

PAUSE - ulSPLAYED IN ACCUM:
MESSAGE TYPED:
COAfPAN y NHM6 PATe

I I I I I
C'~S~ ~o ~X~kJ(.
~4" J(Jf .!!§c.)\)C)t I I I I
N T NA~ l ¥)("1 "11

~1.-!!~~.v .. ;H..=S1S.~-:Ati2N.!~JX:~~~i- NIl. L

~~11!'},E,~N~')f~CL N'!.Al1N~rJf.c!i.,..N:,.S'67

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT No :N:-

,qllddS <1'd"'l-(j SWirc.he~

DESCRIPTION OF WHAT IS WRONG:
.-.

OPllrdY"Qr c::t/,r~on
.,..()

t;.._.Att,,~e c () n.,f"'d 17 r oS

PROBAB-LE CAUSE:

Prod'rtlh7 a IItJN.J ,I",. rAi s ,Pc ~rJ 6:.//7'")'.

RECOVERY PROCEDURES:

,c,,/lfJN r~ /nsn-VCT/~t:lhJ ,P ,. 1/7 -riC' d' .

COMMENTS;

SCORESHEET

I I I I ~ DATE I I I I I : INITIALS

28

Section Subsections Page

35 20 I 20 33

IBM 1130 ERROR RECOVERY SHEET

JOB /'d y rD II S)"so-rem PROGRAM NAME ,P~Y04

PROGRAMMER NAME C, R. Kilt! k.

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

I I I I I
CH£CK ct'lRI> h' "H

0 0 0 CJ.OCK NtlM8EIl I
X)()(l(

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 90

DESCRIPTION OF WHAT IS WRONG:
/. /~ ,t'/rs+ J"~J~ c~ ""he ~/Q~.4: hVhlb .. ~

t/oe~ naT d~ree .h// .. ~ ~Ae p/t::t;,r
hVnl6er it? +he A~'tlcler cd. Y' eI.

or
2. CdI'd c<'/~,."." eo l ... l" vtlllcl.

PROBABLE CAUSE:
/. Tile dd -rd. ,,~,.. t?r1e p/CZnr /4 lh C I II t/filc/
#/-r~ ~nflt dti1'cI ;01- d n(J ton er ~/d"T.

or
t?, Cdrd dec.~ :,s hO-t' .5'e -I- l/p c: o"'r~ c. r/y .

RECOVERY PROCEDURES:
C /<!'ctl'" ~Ae cctrd r~dcler. The ,t'l/,.. s-t- Cd.".c:/

7t:' c /~dr '/.r rAe cdr' ... " errt:Jr. COl-rec T -I-Ae cdral
;~ I'lecessdry" (fir /'" el"'hove /7- ."t"r()M -J-A ~ c(ec ~ _
A'~/#t:iel d;Jq' r ect t/'y -I-Ae cdrtl red dt!? "... Pr e & S

- ,,0,-6 t:.r ri.h1 S"l-~I'" r ~" .'7'-.Ae ~(lt!!!.~~ /~.

COMMENTS:
7'ht? 'pro t:fr4m lVI-II ;, 0 ,- C" '" rIA v e vn r,'/ .

t:.~~d redd /S" ceJ/"r"ec r. +-ht2

SCORESHEET

I I I I I I
DATE

I I I I INITIALS

29

Section Subsections Page

35 20 I 20 34

IBM 1130 ERROR RECOVERY SHEET

JOB?rt yr()// $y.f' 'i-f!!!n1 PROGRAM NAME ,PAYO<1-

PROGRAMMER NAME C~R. kl,,'cA:

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

I I I I I
C£ oCK NO . .k'XXk IS-
Nor /N "'THe '&-11... E N 0 N E

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 12 CJ

DESCRIPTION OF WHAT IS WRONG:

.. _.
Ih,Pv-r recore/ ~L.p~K /"1V/?1"~r if ",or- on ~;.~

<1/.("",1:'

PROBABLE CAUSE:
/, €,,,,p/,,yee rec.Qrd h a. r I?t:) '1'" D~ f:.;?

led cI~ d.
or

2. .Ine.. v ""'" nv/?,7 ce r /J.. /n c orreC. T.

RECOVERY PROCEDURES:
rhe cC/,.. cI is ..s..7d,/(eJ- --,"e'/ec"e?d. C'tl~c ~

+-Ae. r;.1()~K b. (,It2!.ber ,;vi rA I!!..~ r ~- 0/'1/1 e I .-eCal"d~,
:T,c ~~e .;"'1 (//n be,. ~ . .!' C prr e 'c 7-. /tJ d. tI -r~e .t9",/,/eJ ye@'s
r e Co 0 ,.t:;'. r.f' i ~ i.r //1 C tJ r c.. e Co r. rel!..u"r.,J
tl" t:I • re run.

COMMENTS;

SCORESHEET

I I I I I I I I I DATE I INITIALS

30

Section Subsections Page

35 20 I 20 35

IBM 1130 ERROR RECOVERY SHEET

JOB 'pd yrfJ/1 J'yrTehl PROGRAM NAME ?#yo 11-

PROGRAMMER NAME C', R, K I/c I:

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

FIJ.. E ND,. ><)(>(It ANP

I IN IN IE I /Nllrx Na. XJt' >tk. DQ
h~r A&RFIF (J

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /2. 0

DESCRIPTION OF WHAT IS WRONG: rA e c.loc A: ;, '" /')? 6. c ,.. ~iI Tb.1!!
/"-,v -r c«I"J ~t:1~.s a.t1~ d,:rIPe wl"l-J, +A~

c,/t:)ck 11 VAl J:i II ~ 1/1 +Ae._. 6? I'n '/0 it.. e fr "'~cord.

PROBABLE CAUSE:
p,'sl:::. d<t-rct II f/.r be el'? g It-f;!'- .J~

RECOVERY PROCEDURES:
C<Jrod l.r .£. 7-tlc K. e,... - ss:;: Ie c.Le c/o

I~m.c./"'~'fc:/l!:.. re/,o,.,-r -rJ, ,. oS (;1 c:. c vrre/Jc e r-o
)'t:}~r -.sv,.erv,":..rol"".

COMMENTS:
P/.rK cia t-d dd& .,0"'06. J.IY ~ee", de.('r ro yeti'.

SCORESHEET

I I I I I I DATE I I I I INITIALS

31

Section Subsections Page

35 20 I 20 36

IBM 1130 ERROR RECOVERY SHEET

JOB?d yr lfl // SYSt-en, PROGRAM NAME ,P/1 YO ~

PROGRAMMER NAME C· R. A;/,"cA::..

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

I I I I Ie: NcT O,c- X X X)(XX.
,ct::'R C~ c>C;t: No x)('x>< N 0 N

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 120

DESCRIPTION OF WHAT IS WRONG:

H~'" qmlflu~"" ~~ cA~cl: f!~ C fie clr Ii",,; "'"-

PROBABLE CAUSE:

i· t. /",,'r .re of- Tot:J IDW
pr

2.Errt:Jn~D~J ~qrtl in (!J m ~/(J Jt' ee rec..o,..t:I

RECOVERY PROCEDURES:

I. C/',z" ~e ///17; r arltl ret::.tJl?
t:?r

2. C~r're cT- e.,," eA>y ee re co".. t:/ fin d'
r e..'" i/I't •

COMMENTS;

SCORESHEET

I I I I DATE I I I I I I INITIALS

32

Section Subsections Page

35 20 I 20 37

.·8M 1130·ERROR RECOVERY SHEET

JOB ?dyr,,// ..)y~re'h
PROGRAM NAME· ~,I1Y()4-

PROGRAMMER NAME C', R "t" ~Ck

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

I I I~ I I
INf'Ui' T071J1.5 XXXXX)c:'X~ XXXXX)(~.

~~)()(~~K. ~~~X~XX· IV 0 E

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT
Ne~ + /n Sc:- '1..lJel'lC e

DESCRIPTION OF WHAT IS WRONG: /V'orlli~f.

.-.

PROBABLE CAUSE: £,,~- (J ~- ,L'." rouT i/le /or ""'1'"/'7 r~'A t;" t:'t/ r
C.dnTro/ T~rdl.r ~,..~m A~da'e,.. c~,..d.

RECOVERY PROCEDURES:

COMMENTS;

SCORESHEET

I . DATE I I I I I I I I I INIT·IALS

33

Section

35

Subsections Page

20
1

20 38

IBM 1130 ERROR RECOVERY SHEET

MESSAGE TYPED: =--_______ ---
PRoc€'"S"r£P rorl4£ ~
XXXXx'Xx. X XXXX)()(.

PROGRAM NAME ,P~ Y () 4-
PROGRAMMER NAME C.K! r';''c,t

PAUSE - DISPLAYED IN ACCUM:

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT ___ _
Nex T /n S' e f!"t./enc.e.,

DESCRIPTION OF WHAT IS WRONG: -"N.--=.......;,,::....-r-.~A-'-"~---::.·/1..,fil-______________ _

---------------------------_.-------------------

PROBABLE CAUSE: End-ol'-lr;i> rDIJ'7,'l'1e ir /r//1r~';,7' (1vT
.t2cct./h1vl"r-~cI C"CI""h't-r,,/ 7-Cl7-Q/r.

RECOVERYPROCEDURES: __________________ ------------__

COMMENTS; _____________________________________ __

SCORESHEET I DATE 1
INITIAL~

34

Section Subsections Page

35 20 I 20 39

IBM 1130 ERROR RECOVERY SHEET

JOB Pd-!7'-rC)// ~s/e~ PROGRAM NAME lDAYCJ4
PROGRAMMER NAME c. /?, K/;ck.

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

E,f?R(2R L~uL:£ ~J!(~K..~~)l, i{.t!!X.J!!.~"~~,,

ICY;:; ~)it x ~ "J., K..l!!.l! ~ 1(. I A/ I I~/ 1£ I t2

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT
,..-tLex r //-; .. '5.ec-Zt"/~,rJc:;re.

7

DESCRIPTION OF WHAT IS WRONG:
A/o/h/r-.Jq

V
--_.-

PROBABLE CAUSE:
E/2.cJ. 07"'- ; 0 6 rCJt.Ji..;'rl..t!? tt..s.. .i2rMr;~C; Lldr

4c:.c..ul!2:2uL4l!.ed.. roz!<zL~ {2/ e..rca.C2;?~ ~ ;.~ ;-o~d~.

RECOVERY PROCEDURES:

ErrC:7~' h-5lut!.~.: .rnv.s ~ /:i.e dCCOLJ~l ~ed
r~r- i!Z~"d ct:2..~rpc. "/-~'c2aS ,yJddl!'7 d'S /:/ec ess a ~ l

COMMENTS:

SCORESHEET

I I I
DATE

I I I I I I I INITIALS

35

Section

35

Subsections Page

20 I 20 40

IBM 1130 ERROR RECOVERY SHEET

MESSAGETYPED: __________________ _

711£ iJlrrERENCES >(XXKJ(;(X.xxxxxx><.
KXX xxXX.XI<X>O<XX.

PROGRAM NAME PAyo4
PROGRAMMER NAME C:R. ~I/ck-

PAUSE - DISPLAYED IN ACCUM:

AF-TER PAUSE, CONTROL TRANSFERS TO STATEMENT ___ _

DESCRIPTION OF WHAT IS WRONG: ___________________________ _

____________ ~/L/~=p~r.~b~/~·/?~~~-------------.----~----~------------_

RECOVERYPROCEDURES: ______________________________________ __

COMMENTS: ___ __

SCORESHEET I DATE I
INITIALS

36

Section Subsections Page

35 20 I 20 41

IBM 1130 MACHINE SETUP SHEET

PROGRAM . r ' j. PROGRAM
PAYt:'J4 NAME: w/c~/c/ht!)/?s ?d!ln7// kbg/..5:'jgr NUMBER:

PROGRAM APPROXIMATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO. OF COPI ES CARRIAGE TAPE

PRINTER Sr-::7/Jd4rc/ / Srd/Jde?rd

DRIVE NUMBER: 0 1 2 3 4

DISKS CARTRIDGE /by/'t:/// [>(R X [>(10:

SWITCH L4 SWITCH /6 SWITCH Alt'/.1e.
SWITCH UP V" UP v UP
SETTINGS DOWN DOWN DOWN

INPUT SC/,N/ch /4 ro c""t71/'e 4-7.:::7 x//;)7C-/r?? cA~cA:.- Qrntt:'v/)" /;;',-74' /'0',-/7
CARDS

C;//') s~//ch /S- /0 C/;4r~e. c~ec/c::.. /?v~7oe" 4/)4 ?Vee/' nUhl6er'"

(?;dd r-?/rr; ~//)

[q

/COr C'/7(!' / /~~t'7r ~

(WEEKLY
~~~g1E _V (CONTROL 

TOTALS 

(IIXEQ PAY04 -
/11 JOE:> 

f---

SOURCE OF INPUT: ~ CArd c.qocd:.....4-<1az. t:? ~.({cce:s £~~L L?~ OG2 ~~ t.. CULl. 
Z j)/.~Is. d2.u..~~ ae. t2~L?c2L/ ~ .:;-k zY-1f!J.d:L ~/es: 

7 

DISPOSITION OF OUTPUT: /.un/rat.. b-/tf2.L~ to. £/U! :;] 
.?.D ..... C~L.;::. to ~Le:. /2 

~~,,~~ t~~dtLs~cl>an 
FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS 

37 



Section 

35 

Subsections Page 

20 I 20 42 

PAY05: CHECK WRITING 

A ccounting Controls 

Disk-stored totals -- gross ($) and net ($) -- are balanced to machine-calculated total of checks 
for zero-balance test. This should also be compared with the adding machine tape of checks. 

38 



Section Su bsections 

35 

IBM 1130 ERROR RECOVERY SHEET 

MESSAGETyPED: __________________ _ 

Cl-lrCK eeL AA./Q CCC3Q 
c2N' r/RSr C&,RO 

PROGRAM NAME PAYOS 
PROGRAMMER NAME c.~ i:::hck-

PAUSE - DISPLAYED IN ACCUM: 

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT.99 999 

20 

DESCRIPTION OF WHAT IS WRONG: ____________________ -,--__ 

L: CLV:d Ca/qmn.l lu?,,:- do /Ol/c?//d/z/,:?h.t: 

or 

PROBABLECAUSE:~---~~------~----~-----~~------
EI/h(?r C2 d/t20K. Card or 4 d4rd C~/'d h4S 

COMMENTS; _________________________________________________ __ 

SCORESHEET 
I DATE I 

!NITIALS 

39 

I 20 

Page 

43 



Section Subsections Page 

35 20 I 20 44 

IBM 1130 ERROR RECOVERY SHEET 

JOB P~L/ 0#51&07 PROGRAM NAME PAYOS 
PROGRAMMER NAME C. R.C//Ck-

cc:Ju;J.,fA/Y A/~A4& .1)'97"£ PAUSE - DISPLAYED IN ACCUM: 
MESSAGE TYPED: C/'IECK NC). XXXXX 

I'VE£K /170. :x 
I<' .. ~~ ~::H ~t! ~~jI(. 

I I I I I 
c.~ect:.. ffJ t!1.!?S. xx XXl5.. 

/ / M;4X/MPAf! c#£c.K. A~OI/,vT A-?A Y8e / / 
cRAlV'delC' Il$.,.... 3W77?:N7<;t, JW/7CH7$. 
1!Jt:.~~1,. CN.t!!1.fJL.a:6. Z)%II. t:::.N.4-C..I;:. .du..,~~ 
~~~/kN4S RG"t:!fJv~sr~~/lA/b-~-:Ss 

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT
&Le.X~ /a Set2.Ue.dC ~

~

DESCRIPTION OF WHAT IS WRONG:

tf?pe/'t:2.~Q.r &jL)b~C2 ro CAd4r:ff-e! C!e:J/J~t!~tI'? t!'~ .
7

PROBABLE CAUSE:

P~aa.t:b. a L/.L2«L. .&,t:'2 .zll.; S .,t2..0$ ~./LJ/ h:~

RECOVERY PROCEDURES:

., ~L/t2.~ a::zACh/'n('? r~~d L:,;";;.s ~,..u t:;."'~t:2a.s.

COMMENTS;

SCORESHEET

I I I I I I I I DATE

I I LNITIALS

40

Section Subsections Page

35 20 I 20 45

IBM 1130 ERROR RECOVERY SHEET

JOB 7P~c:.~t/ ~$te*'.27 PROGRAM NAME P~Y'c(JS

PROGRAMMER NAME C. ,+?C//c-':..

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

ENrE,;<!., CLOC/C: A/O. IN I 0 I NIE I
AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 500

DESCRIPTION OF WHAT IS WRONG:

W-L/r-//7& ~,... ~aQd~d_.ld.,aUf':

PROBABLE CAUSE:

C)2era~CJr' /" -/ e r ttt:..6?.r7 r /' t!:) n -r-t:J ~r/nr
e:=. h e~ ¥S;l.

RECOVERY PROCEDURES:

£1'2. 7"'er 71L.~ r:'&>tI~-d/~/'r "-Loc.~ ~tJ.02J.t!!!!.~ ,ec::>"-' ~~

~S~~£~ ~~~~~htla
CJCCdr~ T-ULCl. orr' S-wt..rch zera &7/J~..or~ss EOr'. ,---

COMMENTS;
ZhiS /'t:J)w'//?l!!! 4..L/<2.IWL,S ~t2r /eya.r"'/4r~1Y ~r

/t!)L/? (2/'" A1LS~L,&~r='d ch"'G~s.

SCORESHEET

I I I I I I I I I DATE I INITIALS

41

Section Subsections Page

35 20 I 20 46

IBM 1130 ERROR RECOVERY SHEET

JOB P~~rcJ// ~S ftGJ/Y.7 PROGRAM NAME PAYGJ6-

PROGRAMMER NAME C. Ie Click.

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

.1-:2£ D UC7/t::>N VdY //OT NI /V1'AaF' ."cDR XXXX' I 0 I~/ 1£ I
AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT ..5SCJ

DESCRIPTION OF WHAT IS WRONG:
The. &t::Q~S ,?)/not..//7~' 0/ /6../!!!?' Check-. ~Qr rh~~

e~LJ/Q-!:t.ee-~ {~>/?2 na.T-- 5'.t..!.~//c:/'et!.2.r r a c2.U <;2~ 7'&/'5
LZu.rb. (2c..'-i:.~d ded~c::.6.·a.t:::2.

PROBABLE CAUSE:

c~2L~t~& d~d at?/- a2.C1rK a~L/ .. ~/e@k--.-!.

RECOVERY PROCEDURES:

A/of;~ Ua~j""
J

.,.',[(./ p~rl//~CJ£1 .,

COMMENTS;
r~L.s: L~ ro .at? re~ 0 r z!.-t<=?d' -Lo ~e

eh'll2L~etii? .
7

7

SCORESHEET

I I I
DATE

I I I I I I I INITIALS

42

Section Subsections Page

35 20 I 20 47

IBM 1130 ERROR RECOVERY SHEET

JOB P~ro// S~";d>":'8~ PROG RAM NAME PrlYOS-
PROGRAMMER NAME c. K. ,.t::' //C k.-

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

#0/\./£

I
0

I
0

I
a

I
2

I
AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 9/

DESCRIPTION OF WHAT IS WRONG:

p~~~ t:a I'2L(t~ Y~~.a~·¥Llt!Z,~ar
t:2 e~r" === //?r/~7-I-= 'e S~ =/?d 7L'/7@

c!J~ c j; e c:K..:i

PROBABLE CAUSE:

:.. S=-LdL L i.e b. LS- h(l..s:. t2 t!? &.1"7 ser~ I-h<:;!
~.t?~rL2r..t'>r.

RECOVERY PROCEDURES:

Pre.$.~ P/'1LqLt::lQl Sr{{l~f- ~o Ca/?r/~e...
N~PCL C b..-c:'ci::.:s aM. a .t:j-~e~ r.ur"n rJh Su.,I/'-rr/'y L...57'

COMMENTS;
St:&t.Lz!.~h /,:; ~L// .h~/r or'~ardt!2:::J ~~r dnff

?-~ , 7~ ~ eh'te~e.ar~ _ or-/Y7 r/a~~.a~e_~.)

SCORESHEET

I I I I I I I
DATE

I I I INITIALS

43

Section Subsections Page

35 20 I 20 48

IBM 1130 ERROR RECOVERY SHEET

JOB P£?~~// S:§:t:<).i~ PROG RAM NAME PAY~S

PROGRAMMER NAME C. R Chc,t.,

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

I I I 1

3 I
A/OA/c

0 0 0

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 93

DESCRIPTION OF WHAT IS WRONG:

P4.(./se t~ c2.//L:)~ -rheL .o~/.lh7~L2~ ~ /:d~c..LS
AC!.t!'/.2L::t::;;::. t!2/""/ /.7 /~~-?:!1- the Lh/rd I/'rJe.

7

PROBABLE CAUSE:
~ ");~~·rt:;:.h L. • .1:) A£~ be.e.t:z. .:se/ ~ T~e O£?~/4~eJ~ 7

RECOVERY PROCEDURES:

CAe~ ~~~ S;',~~ ~~.rC:;:::2;;~~ea .

COMMENTS;

SCORESHEET

I I I I I
DATE

I I I I I INITIALS

44

Section Subsections

35

IBM 1130 ERROR RECOVERY SHEET

JOB P~C?<2// SJ1S.le t??

MESSAGETYPED: __________________ _

PROGRAM NAME P~YO~
PROGRAMMER NAME c.P.,t::/./Ck-

PAUSE - DISPLAYED IN ACCUM:

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 9S

20

DESCRIPTION OF WHAT IS WRONG: ______________________________________ _

PROBABLECAUSE:~~--------~----------------~------~----------
Se,v/rch l,j- hAS &~t';2 \5er 4::1 rAe

RECOVERYPROCEDURES: __ ___

COMMENTS: __ __

SCORESHEET I DATE I
INITIALS

45

I 20

Page

49

Section Subsections Page

35 20 I 20 50

IBM 1130 ERROR RECOVERY SHEET

JOB Pa.y.r'~L/ S7~/e.n--7 PROGRAM NAME PAYC}!:>-

PROGRAMMER NAME C. R. C//c.L

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

NOA/£

I
0

I 01 0 Is I
AFTER.PAUSE, CONTROL TRANSFERS TO STATEMENT 700

DESCRIPTION OF WHAT IS WRONG:

£a./LSP to. oL/~..!. Me_--L2/L§1- r.; '~7e'7;1- ~~ C/Jt!PC~S
d!..e/b re L),'/ // ~> ;"y;. The. ·,!!/r~r.. ~/ C2.~

7

PROBABLE CAUSE:

S U/ t!. 'Lc:./2 /~- hd;;. atoP£';2 ~r:e~ ~ ;//7 e q.t2.~ri:7 Tt::J /'? •

RECOVERY PROCEDURES:

h--P~S P"'C/t1[Jde.l sz!:.~~·r ~-2 C;2~lba.;:'.,Le k///e/7
C26.ec k'<)' tZre ~~qrleai .c4,Lra. t:2.&"~/Yc::h L~

.::;7

COMMENTS;

SCORESHEET

I I I I I DATE I I I I I INITIALS

46

Section Subsections

35

IBM 1130 ERROR RECOVERY SHEET

MESSAGE TYPED: ________ _

Me? xxx xx

PROGRAM NAME PA Yo-S
PROGRAMMER NAME C /i?C//C.e:,

PAUSE - DISPLAYED IN ACCUM:

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 80e

20

DESCR I PTION OF WHAT IS WRONG: _---:-______ -----,;-___ ,-;--_____ _

~%!f;r~f~~t~;;£~3!~
PROBABLE CAUSE: _______________________ _

COMMENTS; _____________________________ _

SCORESHEET

47

I 20

Page

51

Section Subsections Page

35 20 I 20 52

IBM 1130 ERROR RECOVERY SHEET

JOB ?t:?~ro// S~/t9#l PROGRAM NAME PAYOS

PROGRAMMER NAME C. "eC//cL

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

ChECK:' /l/vNL[YR...1£ .4GR~

I NI IN 1£ I 0

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT BoZ

DESCRIPTION OF WHAT IS WRONG:

NOLhL~

PROBABLE CAUSE:

En~CJ/- ioh v /:"c?az!"ne

RECOVERY PROCEDURES:

A/oae

COMMENTS;

SCORESHEET

I DATE I I I I I I I I 1 INITIALS

48

Section Subsections

35

IBM 1130 ERROR RECOVERY SHEET

MESSAGETYPED: __________________ _

REd'/.STfR 7lJT~~~ X.J()()(~~XX; ~)()(~)(.
CH£CK rorAL oS' X)(J('Xl('X~x.X)()(~)"(KI(•

.J)lrrf~&AK:.I!'S X)(XX~)J()(X.)()("I()(.~K~·.

PROGRAM NAME PA y OS

PROGRAMMER NAME c: R. L:£/€~

PAUSE - DISPLAYED IN ACCUM:

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT ~X"+

20

PROBABLECAUSE: ____ ~--~~~--------____________ -----------------end ttl! /oh v

RECOVERYPROCEDURES: __ __

COMMENTS; __ __

SCORESHEET I DATE I
INITIALS

49

I 20

Page

53

Section Subsections Page

35 20 I 20 54

IBM 1130 MACHINE SETUP SHEET

PROGRAM
Ch8C/< #/,/f//~

PROGRAM
?AYG?S NAME: NUMBER:

PROGRAM APPROXIMATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

PRINTER C~ec./cs Chec.£"s

DRIVE NUMBER: 0 1 2 3 4

DISKS CARTRIDGE 197-..9',,0// [>(X C0: X ID:

SWITCH C) SWITCH /4 SWITCH /S"
SWITCH UP v UP v- UP v
SETTINGS DOWN DOWN DOWN

INPUT St:,U/rch (Z)/S C/sed' ;-" n-lt:7ke che'c.kS," r'e~/'/~"-:- 4/-he/7:/-6e!:t' t:::('/e
CARDS

/'101 ?tCJ/'/'ecl:

Su//:l-C.h /4/~') (/Se!d TO s&r /-~e?' OJt:?.x/~;;.:.;/?;· cAc:>cL ,q"?7t::::J~",_r.

Sun/en /S/5 c./se4" rc; seT rAe check nv~,6er J-c s/arr U//IA',
4nd ~CJ .s7'CJ/, rle -5"ys/~~J /0 a/j'n r/:e ~r/r/~e,. .

(CONTROL.
TOTALS

(IIXEQ PAY05
I---

/ 1/ Jo~ -

SOURCE OF INPUT: /. Cor.'lco l /C;ldi.r. //"".:;);?-7 //i~ ..2).
2,»./$,~ cZ2~~t. ~~ .a 2YrdL/ rd/~I:. 7

~r' am.- ~~~s..

DISPOSITION OF OUTPUT: /. P~C-A¢X.k,s. i~ e ~Qh.:.f.IPe S
2. 7)£. ~ E c.a~ Irt::.'aL 6:J. i!4/~ "-'/ ~ ~e c<..s:.e.d ?Ut. . .th. JD~O~ ...

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

50

Section Subsections

35 20 I 20

PAY06: CHECK REGISTER

Accounting Controls

Pla.nt total (net) from payroll register is balanced to total on check register, and check register
total (net $) is balanced to adding machine tape of checks.

51

Page

55

Section Subsection.s Page

35 20 I 20 56

IBM 1130.RROR RECOVERY SHEET

JOB ~C/2tL. ,.'Sf:st.:s..t~q7 PROG RAM NAME PAYL/(&J

PROGRAMMER NAME c: P. ,I'://c.£

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

C#cC.L~ CC t. AA/(2

1 01 I I cc.~a t!?N.. ~~rCL.2R.a

I 0 0 /

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT ..9~.99";;

OESeR t·PTION OF WHAT IS WRONG:

L. C tt?r'c? a t2. L<'l~l:.l a i A~~ 4..a //JYd..L/d .. t2.t'~d..r
M a ua:1.,a ec!. j ... ~-

C'/'"
:?e CaGd CaLu.rh tt;2 Ao. £1' r t2. t:2. ",t- zer"o

PROBABLE CAUSE:

£.i ~ e.t:::. d ..6/4..a.k (;'d.r d t::;~.t:2. d~t<2. c-t2./'d
1J.t2..r:. .ae.e.~ aL~,.,-.pd vyuaa:r e!?:/' deGL .

"7

RECOVERY PROCEDURES:
r/eA.r' 7'-he.. c.a.t::d ~~Adl!!?""·c ~/4C.e. a

~#e~.t;A::!;~~':-~~P;;'~r4~
~~,: -"" a Ia ,t-&.~ . t:::.t2.b. ~a 6te. Itr

COMMENTS;

SCQRESHEET

I I I I I I DATE I I I I INITIALS

52

Section Subsections Page

35 20 I 20 57

IBM 1130 MACHINE SETUP SHEET

PROGRAM Chec~ -Pc=y/s .f-er PROGRAM PAYOCP
NAME: NUMBER:

PROGRAM APPROXIMATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO. OF COPI ES CARRIAGE TAPE

PRINTER S/Qr.;ddtl"'.? / S,l-d/7de:?'-c/

DRIVE NUMBER: 0 1 2 3 4

DISKS X X X X CARTRIDGE
/b:f/'~//

-',,-

ID:

SWITCH No/?e SWITCH SWITCH
SWITCH UP UP UP
SETTINGS

DOWN DOWN DOWN

INPUT
CARDS

(CONTROL
TOTALS

(//XEQ PAY~
f---

/// JOB -

SOURCE OF INPUT: .D' I /. _/.5!:;, t:- C QCl. t.eaL .,t.ot~Ls ./rorQ PAYcJ .. ~-

DISPOSITION OF OUTPUT: l C-~ c k Lf7!s/e,-, /~ /::Jo'§jro// 5"&C /~on
r1.. c:.-~aa::.aL~?2.~~/";- LQ tc./c:::. l)
J . .2:J/s i: t: /'~tt:£:.~C2 ~~LQ sic,t::.·t::if!f-e.

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

53

Section Subsections Page

35 20 I 20 58

PAY09: 941 REPORT

Accounting Controls

941 total per plant (Gross $) is balanced to general ledger.

54

Section Subsections Page

35 20 I 20 59

IBM 1130'ERROR RECOVERY SHEET

JOB P~r~// ~..s::/e-'22 PROGRAM NAME ~1l.~9

PROGRAMMER NAME CR K//cA:-

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED:

A/a~~LE INI CJ IN Ie I
AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT .Alt2a~

DESCRIPTION OF WHAT IS WRONG:

_.- .

N£:?/Je

PROBABLE CAUSE:

A/o.l?e

RECOVERY PROCEDURES:

N/2/7e

COMMENTS:

Nr2/7t52

SCORESHEET

I I I DATE I I I I I I I INITIALS

55

Section Subsections Page

35 20 I 20 60

IBM 1130 MACHINE SETUP SHEET

PROGRAM

J41 REPORT
PROGRAM

PAY09 NAME: NUMBER:

PROGRAM APPROXIMATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO. OF COPI ES CARRIAGE TAPE

PRINTER 941 FORMS 94/TAPE
DRIVE NUMBER: 0 1 2 3 4

DISKS CARTRIDGE X X X X 10: PAYROLL

SWITCH /VOA./£ SWITCH SWITCH
SWITCH UP UP UP
SETTINGS DOWN DOWN DOWN

INPUT (9
CARDS

(MDRE
PL,qNTS I---

f(LFlNT lJ5.ft%1VT NO, I---

'(;iRNT
For t:)ne "p/4rJ.f

CIT~ - .5 r~T£ -
CR/flD

(PLPiN-r
~'jfJjf5J -

(,Pt.ANT
NAME -
CRRb

(.PLAN7
H~1tER r-
CAR

fl XEty PAY09 I---

/
II C/08 -

SOURCE OF INPUT: !- PI Clnt inf'()I"ma.:t.ion C4.rds Froln File £
z.- Pd..~rOn ellS/({jom stor~ ~

DISPOSITION OF OUTPUT: f- J41 ,...~"rt io #Overll.~i
2- J)/$!c I.s ,..e-tu,..l1.~= ~o st;;- =:
3- p, «-not {/?~o,.m~ loa a«tTI~ s!Q .file £"

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

56

Section 40: CONVERSION

CONTENTS

Introduction
Planning for Conversion

40.01. 00
40.10.00

Section Subsections Page

40 00 I

Preparing for Conversion
Conversion Methods•..

00 01

40'.20.00
40.30.00

INTRODUCTION

For each application, there will come a day when all
your programs are written and tested, and you will
be ready to convert from your old system to the new.

Section Subsections Page

40 01 I 00 01

Will you be ready? Not unless you have planned
and prepared for conversion. Conversion involves
three major elements, of which the conversion it
se If is the last step.

Section Subsections Page

40 10 I 00 01

PLANNING FOR CONVERSION

As h:a:s been.tressed, the first step is planning.
This involves two basic items:

1. Make a schedule indicating when you will
start conversion of each application and when con
version will be complete. After you have completed
conversion of your first application, you will have a

better feel for what is involved, and will want to re
view the schedule for the remaining areas. You may
also want to reevaluate the conversion techniques
you chose originally.

2. Decide which conversion technique you will
use for each application area. As above, you will
want to periodically reexamine your deCisions as
you become more experienced with each technique.

PREPARING FOR CONVERSION

After making up conversion schedules and choosing
techniques, you should be able to see what must be
done to prepare for the actual conversion. Ask
yourself these questions:

1. Is the old system documented accurately and
completely? (See Section 10.) If it isn't, a smooth
conversion will be difficult.

2. Can the controls of the two systems be com
pared? If not, it will be difficult to compare the
two systems. The new system should have the same
controls as the old, and you may even want to add
controls to the old system to ease conversion.

Section Subsections Page

40 20 I 00

Such controls as grand totals, subtotals, document
counts, etc., will bring quick attention to discrep
ancies between the two systems.

01

3. Is everyone who is involved in the conversion
familiar with both the old and new systems? Mis
understandings regarding the differences between the
old and new can seriously interfere with and delay
the successful completion of even the best planned
conversion effort. Communications should be main
tained with the people involved during the entire
application design and program development phases.
A few weeks before the conversion period, all those
who will be involved indirectly or directly in pre
paring input or using output from the new system
should be taught both systems, in general--and their
particular areas of responsibility, in detail.

Section Subsections Page

40 30 I 00 01

CONVERSION METHODS

There are three common methods for conversion:
1. Parallel operation. With this method, the same

transactions are entered into both the old and the
new systems, and the controls are compared. This
process is continued over a predetermined (usually
short) period of time, until a responsible executive
is satisfied that the new results are accurate.

Make sure that the time period of parallel
operation is one during which a wide variety of
transactions occur. Large volume is not important,
but variety is, since you want to test as many as
pects of the new systems as possible. Pick a slow
time in your business cycle to effect conversion.

Before starting parallel operations, obtain a'
clear understanding of what is to be checked, and by
whom. Since additional personnel or man-hours
will be needed during this period, avoid conflicts
with vacation and holiday schedules.

As far ahead of the parallel period as possi
ble, the personnel who will be preparing the input
cards for the new system should gain experience in
using the new input document and card formats.
This is one of the most common areas of difficulty,
and many "computer" mistakes are eventually traced
back to faulty document preparation, accumulation
of controls, or card punching. Often it is possible
to use new formats exclusively some time before
the computer system arrives, by preparing cards in
the computer-required formats and then reproducing
them into the old formats for use by the current
system.

Parallel operations often encounter problems
that result from significant differences between the
procedures used in the old system and those in the new.
It may be quite difficult to compare results produced
by the two systems, since the important totals in the
new system may not have been prepared previously.
Or you may find it possible to print reports in a
desirable sequence which is not feasible currently,
but which will make it impractical to cross-check
line-items against reports in the old sequence.

Another problem inherent in parallel opera
tions is the doubled probability of errors. There
are twice as many chances for errors to occur, and
when making up a schedule, you must consider the
time spent in tracking errors down and deciding
which system, if either, was right.

2. Pilot Operation. In pilot as in parallel opera
tion, an application is run under both the old and the
new systems. The difference lies in selecting only

one or a few easily observed locations or depart
ments within the company, and performing the
operation only for those sections rather than for the
entire company. The same care must be taken in
setting up controls, scheduling the period during
which the pilot operation is to take place, and train
ing those who prepare the input. In regard to this
last problem, the pilot method offers a training
ground for those who prepare and punch the data, by
allowing different people to get experience every day
or every few hours.

Care should be taken in determining which
part of the job is selected for pilot running. It
should be completely independent and self-contained,
if possible. Therefore, pilot operations may be the
ideal choice for organizations that are divided into
fairly independent units or locations. In any case,
the effect of the pilot run on departments other than
the data processing department must be carefully
analyzed, and those who are affected should be noti
fied we 11 ahead of time.

Again, you must carefully establish who is to
do what and when, if an adequate analysis of the pro
gress and success of the operation is to be made.

3. One-time cutover. As of a given date, the
old system is discontinued and the new system is put
into operation. Careful planning is necessary to
make the transition smooth. For one thing, files
can be built up during a fairly extensive period be
forehand and checked with control figures for accu
racy and completeness while being created .. A
master file of customers can be card-punched
during the month before the preparation of state
ments. Alternatively, only new customers' cards
can be punched, while operations are performed on
the old file to convert them into the new format.
Then both the old and new cards are merged at
month end to create an updated master file ready for
use by the new system. It is often desirable to write
one-time programs to do these file conversions.
Whether the computer or other equipment is used,
time must be scheduled for the coding or procedure
writing, as well as for the operation itself.

Where some data is to be recoded, or coded
for the first time, as in the assignment of a new or
better set of customer numbers, you should get the
job done and checked out in advance.

Another way of smoothing the cutover is to
maintain control procedures that will be required
for both the old and new systems some time before
the critical date. This will eliminate the possibility
of errors in the execution of these procedures.

Cutovers are never truly "one-time" in the
sense that no parallel or pilot operations are per
formed. The difference is in the time at which
these operations are done. With the cutover method,
parallel and pilot operation take place with data that
has already been processed. For instance, after an
accounts receivable procedure has been processed
under a current system, the entire procedure is run
again on the computer. Controls are checked and
errors are cleared up. The accounts receivable
may then be run once more on the computer, and
this process may be repeated, perhaps over more
than one month, until management is satisfied that
it is running correctly.

Although some double manpower requirements
may be eliminated by using the one-time cutover
method, extra man-hours will still be needed--for
example, when a weekend immediately precedes the
cutover date, or when card files are being converted
from one format to another.

* * * *

Section Subsections Page

40 30 I 00 02

You can see 'that no one of the conversion methods
discussed here stands alone and independent of the
others. Use the elements of each that suit your
situation, but develop a realistic plan that will con
sider these factors:

1. Manpower must be available at the right time
to manipulate old data into new formats.

2. Control procedures must be developed and, if
possible, tested ahead of time.

3. Detailed document preparation and card
punching procedures must be developed, and a
reasonable amount of time must be reserved to
practice them before conversion.

4. Procedures must be written for the one-time
aspects of the job, and manpower must be available
at the right time to do so.

5. The word must be spread; education for those
in other departments must be done thoughtfully and
carefully.

It is almost impossible to plan a conversion too
carefully.

Section 45: 1130 COMPUTING SYSTEM

CONTENTS

Introduction. .. 45.01. 00
The 1131 CPU 45.05.00

Console Printer and Keyboard. 45.05.10
Data Switches. .. 45.05.20
Console Display Lamps , 45.05.30

Disk Storage , 45.10.00
Printers. .. 45. 15. 00
Card Readers and Punches 45.20.00

Section Subsections Page

45 00 I 00 01

Paper Tape Readers and Punches 45.25.00
Plotter 45.30.00
Graphic Display 45.35.00
Optical Readers 45.40.00
Storage Access Channel 45.45.00
Teleprocessing 45.50.00
The 1130 Configurator 45.55.00

INTRODUCTION

The IBM 1130 Computing System is a flexible,
modular, and modern data processing system. In
capability, it can range from a small paper-tape
oriented system to a large, multiple-disk system,
with a powerful complement of input/output devices.

Section Subsections Page

45 01 I 00 01

This section describes the system components in
general terms, stressing their potential use, the
various possible combinations of units, and their
corresponding throughput capabilities. For more
detail see IBM 1130 Functional Characteristics
(A26-5881) and IBM 1130 Input/Output Units
(A26-5890).

Section Subsections Page

45 05 I 00 01

1131 CENTRAL PROCESSING UNIT

The 1131 CPU is available with three options:
• With or without disk storage
• 3.6- or 2. 2-microsecond core storage access

time
• 4096, 8192, 16,384, or 32,768 words (16 bits)

of core storage
Although this yields 16 possible combinations, only
9 are currently available, as shown in Figure 45.1.

All 1131 CPUs, regardless of model, have as
standard components:

• A console printer
• A console keyboard
• 16 data switches
• Console display lamps
• Processing functions (index registers, in

direct addressing, multiply/divide, etc.)

Without
Disk With Disk Storage

Storage

3.6 3.6 2.2
Microsecond Microsecond Microsecond

Core
Storage 4K 8K 4K 8K 16K 32K 8K 16K 32K
Capacity

Model
Designation

1A 18 2A 28 2C 2D 38 3C 3D

Figure 45.1. Available 1131 Processing Unit Configurations

The first four components are described below in
more detail, since they may be directly used by
the programmer.

Console Printer and Keyboard

The console printer is a modified SELECTRIC®
typewriter printer and can provide output at 15. 5
characters per second. If it is the primary (only)
printing device on the 1130, it must be used for all
printed output; however, if the system includes an
1132 or 1403 Printer, the console printer will nor
mally be used only for error messages, operator
instructions, etc.

Section Subsections Page

45 05 I 10 01

The console keyboard resembles a standard
typewriter keyboard and allows the 1130 operator to
enter data into the system.

Because it is a manually oriented device, the use
of the keyboard will usually be limited to small
quantities of data (today's date, starting check num
ber, etc.), with the card or paper tape readers used
for more vol uminous data.

Section Subsections Page

45 05 I 20 01

Data Switches

Mounted on the front face of the console printer is
a row of 16 toggle switches, called data switches.
They may be used by the programmer for the entry
of yes-or-no type information into the system. For
example, one payroll program might handle both
factory workers and office workers, with each group

processed separately. The program could be
written to read, say, data switch 6, treating the in
put time cards as factory workers if that switch is
on, and as office workers if it is off.

other uses of the console switches are to bypass
certain portions of a program, activate the
FORTRAN TRACE, etc.

Console Display Lamps

Above the console printer is a panel containing a
large number of indicator lamps (or lights). These
lights indicate the internal status of the 1130 Com
puting System. While most are of little use to the
average programmer, he does have access to one
set of lamps: the accumulator.

The accumulator is displayed as a series of 16
numbers, in four groups of four, which are either
illuminated (backlighted) or not. For example, sup
pose the accumulator indicates the status shown be
low, where the underlined numerals are lit:

10 ! 2 31.1. 5 6 71 ~ 9 10 11 I g 13 14 121
Since the accumulator displays a binary number,

this example means that it contains 0100 1000 1000
1001, or 18569 in decimal. An easier way to repre
sent the number is to use the hexadecimal notation,

IBM 1131 Central Processing Unit with disk drive

Section Subsections Page

45 05 I 30 01

where each group of four "bits" is taken as a hexa
decimal nu mber, obtaining 4889. (For further detail
on number systems, see Appendix A of A26-5881.)

The programmer can use the accumulator
display feature by appending a four-digit number
(from 0001 to 9999) to the FORTRAN PAUSE or
STOP statements. If the programmer inserts a
PAUSE 3322 statement in his program, the CPU will
pause and display 3322 in the accumulator (as a
hexadecimal number) when it executes the PAUSE
statement:

10 .1 2]3.1 4 §. 6 1.1 8 9 .!Q 11112 13 14 151

If the program contains many PAUSEs, each may
be given a different number, and the operator can
determine which PAUSE caused the CPU to halt its
operations.

This facility is useful for indicating error con
ditions, tracing progress through a program, etc.

Section Subsections Page

45 10 I 00 01

DISK STORAGE

Models 2 and 3 of the 1131 CPU contain a disk stor
age drive as an integral part of the console unit. In
addition, these models may contain up to four addi
tional disk drives, mounted in separate enclosures
(the IBM 2310 Disk Storage).

Each disk drive will hold one IBM 2315 Disk
Cartridge. Because the cartridges are removable,
the user may have an unlimited amount of data on
them; only one, however, may be mounted in a disk
drive at anyone time.

The 2315 cartridge consists of a single metal
plate, coated on both sides with magnetic material
and enclosed in a plastic container. When mounted
in an activated disk drive, the metal plate is driven
through a clutch mechanism at 1500 revolutions per
minute. The recording plate never leaves its con
tainer, as it does in the case of some other disk
devices.

Each cartridge is divided into 200 cylinders, in
concentric circles, with each cylinder further di
vided into eight sectors - four on the top surface
and four on the bottom. Since each of the 1600
sectors contains 320 words, each disk cartridge can
hold 512,000 words.

Data is read or written on the disk by two read
write heads attached to a movable arm. One setting
of the arm gives the 1130 access to one cylinder, or
eight sectors. One head reads (or writes) the top
four sectors; the other, the bottom four sectors.
The two heads cannot move independently, since they
are fixed to the same arm.

Because one setting of the arm gives access to
only one cylinder, the arm must be moved in order
to read or write on a different cylinder. For ex
ample, to read from cylinder 10 and then write on
cylinder 15, the arm must move, or "seek", from
cylinder 10 to cylinder 15. Since the arm moves in
steps of one ortwo cylinders, this would require two

2-cylinder moves (from 10 to 12, and from 12 to
14) and one I-cylinder move (from 14 to 15).

Each move, whether one or two cylinders in
length, takes 15 milliseconds (0. 015 seconds). A
five-cylinder "seek", as shown above, would take
45 milliseconds (15+15+15). A six-cylinder seek
would take the same length of time.

Because this can be a relatively lengthy opera
tion (compared with other 1130 functions), you
should attempt to minimize the need for disk arm
movement. Many hints on how to do this are given
later in the manual (Sections 55, 60, 65, 70, 80,
85, and 90).

Having reached the desired cylinder, the arm
takes another 25 milliseconds to stabilize. After
the stabilization period, data may be read or written;
because the disk is rotating, however, it will be
.quite unusual for the desired sector to be passing
under the read/write head at the precise time you
want it. You will have to wait an average of half a
revolution (20 milliseconds) for the sector to reach
the heads, and then 10 more milliseconds for it to
actually be read or written.

Figure 45.2 gives some examples of how long it
takes to move n cylinders, then read one sector.

Average
Move This Seek Stabilization Rotational Read

Many Cylinders Time Time Delay Time or Write Total

None 0 0 20 10 30

1 or 2 15 25 20 10 70

3 or 4 30 25 20 10 85

5 or 6 45 25 20 10 100

199 or 200 1500 25 20 1'0 1555

(maximum)

Figure 45.2.

Section Subsections Page

45 10 I 00 02

IBM 2310 Disk Storage Drive

IBM 2315 Disk Cartridge

Section Subsections Page

45 15 I 00 01

PRINTERS

In addition to the console printer, which is standard,
the 1130 system can be configurated with four com
binations of line printers:

No line printer
An IBM 1132 Printer
An IBM 1403 Printer
Both an 1132 and 1403 Printer
The 1132 and the 1403 Printers have many me

chanical differences, but the primary difference is

IBM 1132 Printer

in printing speed. Both print a line at a time, 120
characters wide; both have a carriage control tape
that controls the vertical movement of forms.

The 1132 has a rated speed of 110 lines per min
ute when printing purely numeric and 80 lines per
minute when printing alphameric information.

The 1403 prints both numeric and alphameric
information at the same speed; 340 lines per minute
(maximum) in the case of the 1403 Model 6, 600
lines per minute (maximum) for the Model 7.

Section Subsections Page

45 15 I 00 02

IBM 1403 Printer

Section Subsections Page

45 20 I 00 01

CARD READERS AND PUNCHES

Five card readers and/or punches are available for
attachment to the 1130 system.

The IBM 1142 Card Read Punch, Model 6, reads
and punches cards, with all input from a single
hopper. It reads at a rated speed of 300 cards per
minute, and punches at 80 card columns per second.

The IBM 1442 Card Read Punch, Model 7, is
similar to the Model 6, but faster, reading at 400
cards per minute and punching at 160 columns per
second.

The IBM 1442 Card Punch, Model 5, cannot read
cards; it can only punch. Its punching speed is 160
columns per second.

The IBM 2501 Card Reader, Model A1, will read
cards at a rated maximum speed of 600 per minute.
It is not able to punch cards.

The IBM 2501 Card Reader, Model A2, is simi
lar to the A1, but operates at 1000 cards per minute
(maximum).

Disregarding speeds for the moment, there are
four combinations of card readers and/or punches
for the 1130:

IBM 1442 Card Read Punch

1. No card readers or card punches
2. An IBM 1442 Card Read Punch
3. An IBM 2501 Card Reader and the IBM 1442

Card Punch, Model 5
4. An IBM 2501 Card Reader and an IBM 1442

Card Read Punch
Aside from speed, the main difference between

combinations is capability - the number of card
paths available.

Configuration 2 (1442 Model 6 or 7) gives the
user only one card path. This means that cards to
be read and cards to be punched must both be placed
in the same input hopper in the proper order.

Configuration 3 (2501 and 1442 Model 5) has sep
arate paths for reading and punching, which simpli
fies programming and operating in certain types of
applications.

Configuration 4 (2501 and 1442 Model 6 or 7) also
has two card paths, differing from configuration 3
in that one path can both read and punch. In cer
tain applications this can be very useful. For ex
ample, you could put a master card deck in one
reader and a detail deck in the other reader, elimi
nating the need to collate (merge) the two together.

Section Subsections Page

45 20 I 00 02

IBM 2501 Card Reader

Section Subsections Page

45 25 I 00 01

PAPER TAPE READERS AND PUNCHES

The 1130 system may include the IBM 1134 Paper
Tape Reader and/or the IBM 1055 Paper Tape
Punch.

IBM lOSS Paper Tape Punch

The 1134 reads punched tape at 60 characters per
second; the 1055 punches tape at 15 characters per
second.

IBM 1134 Paper Tape Reader

PLOTTER

For hard-copy graphic output, the IBM 1627 Plotter
may be attached to the 1130 system. Bar charts,
flowcharts, organization charts, engineering draw
ings, and maps, in addition to graphs or drawings
that depict financial, scientific, or technical data,
can be plotted on the 1627 Plotter.

Two models are available:
Modell
Plotting area:
Step size:
Speed:

IBM 1627 Plotter

11 inches by 120 feet
1/100-inch increments
300 steps per second

Section Subsections Page

45 30 I 00 01

Model 2
Plotting area: 29-1/2 inches by 120 feet
Step size: 1/100-inch increments
Speed: 200 steps per second
The 1627 can plot curves, straight lines, alpha

meric headings, etc., by a series of steps in which
either the pen, the drum, or both, move in
1/100-inch increments.

Section Subsections Page

45 35 I 00 01

GRAPHIC DISPIA Y

A second means of graphic display may be obtained
by attachment of the IBM 2250 to the 1130 system.
The 2250 is an electronic (cathode ray tube) device,

IBM 2250 Display Unit

and therefore capable of faster speeds than the
1627 Plotter, a mechanical device. A "light pen"
enables the operator to communicate with the
system by interacting with the display on the face
of the tube.

OPTICAL HEADERS

The IBM 1231 Optical Mark Page Header reads
positional marks made by an ordinary lead pencil
on paper documents, such as test scoring sheets,
etc. The data contained on these documents can be

IBM 1231 Optical Mark Page Reader

Section Subsections Page

45 40 I 00

read into the 1130 system at a rate of 2000 sheets
per hour.

01

The 1231 is especially suited for applications
such as examination grading, surveys, order entry,
etc., where variable information may be entered by
hand on preprinted forms.

Section Subsections Page

45 45 I 00 01

STORAGE ACCESS CHANNEL

The storage access channel provides an input/ out
put "path" that allows nonstandard components to be
added to the 1130 system. These components may be

IBM - supplied, or user-supplied. Since the
SAC is merely a general purpose input/output
channel, control of the nonstandard component
must be handled by user-supplied hardware and/or
programming.

TELEPROCESSING

By means of the Synchronous Communications
Adapter (SCA), the 1130 may communicate, over

Section Subsections

45 50 I 00

telephone lines, with another 1130, an IBM
System/360, and/or other devices.

Page

01

Section Subsections Page

45 55 I 00 01

THE 1130 CONFIGURA TOR

The accompanying schematic is a copy of the 1130
Configurator (A26-5915).

1130 Configurator

Bose Unit

May only be installed
on 1131 Models 2 and
3, 208/230 volts power

Requires Channel

Multiplexer

Model I, A = 4k, B = 8k
3.6 Microsecond Core Storage

Mode I 2, A = 4k B = 8k C = 16k D = 32k
3.6 M(croseco~d Core St~rage
(Includes Single Disk Storage Drive)

Model 3, B = 8k, C = 16k, D = 32k
2.2 Microsecond Core Storage
(Includes Single Disk Storage Drive)

Sto"dard Features:

Attachment

'7923

: Attachment

'3623

1134 Paper Tape
Reader
60 Ch/Sec

Model 2 has
Supply and
Take-Up Reels

1627 Attachment 1627 Attachment
'7187 '7189

1627 Plotter
Modell
300 Pts/Sec
12" Chart

1627 Plotter
Model 2
200 Pts/Sec
30" Chart

Section Subsections Page

50 00 I 00 01

Section 50: 1130 DISK MONITOR SYSTEM

CONTENTS

GENERAL ••.••••••••••••••••••••••• 50.01.00

GENERAL

This section consists of a general discussion of
the 1130 Disk Monitor System and serves to intro
duce the next three sections:

• Job Management - - how the Monitor helps
you achieve smooth, orderly, automatic transition
from each job to the next.

• Disk Management - - how the Monitor helps
you manage the disk and use it efficiently.

• Core Storage Management - - how the Monitor
allows you to make the most effective use of the
available core storage.

If your 1130 does not have disk capability, you
cannot use the Monitor, and you may skip over this
and the succeeding three sections.

The 1130 Disk Monitor System is a disk-oriented
operating system that allows the user to assemble,
compile , and/or execute individual programs or
groups of programs with a minimum of operator
intervention. Jobs to be performed are stacked
and separated by control records that identify the
operation to be performed.

The Monitor System consists of five distinct but
interdependent programs (see Figure 50.1):

Supervisor Program
Disk Utility Program
Assembler Program
FORTRAN Compiler
Subroutine Library
The supervisor program provides the necessary

control for the stacked-job concept. It reads and
analyzes the monitor control records, and transfers
control to the proper program.

,-- - - --1130 DISK MONITOR SYSTEM - - - - ,

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I L _________________ ~

Figure 50.1. 1130 Disk Monitor System

Section Subsections Page

50 01 I 00 01

The Disk Utility Program is a group of routines
designed to assist the user in storing information
(data and programs) on the disk, and in retrieving
and using the information stored.

The Assembler program converts user-written
symbolic-language source programs into machine
language object programs.

The FORTRAN compiler converts user-written
FORTRAN-language source programs into machine
language object programs.

The Subroutine Library contains subroutines for
data input/output, data conversion, and arithmetic
functions.

The Monitor System coordinates program opera
tions by establishing a communications area in core~
storage that is used by the various programs mak
ing up the Monitor System. It also guides the trans
fer of control between the various monitor pro
grams and the user's programs. Operation is con
tinuous and setup time is minimized, thereby effect
ing substantial time saving and allowing greater
programming flexibility. The complete Monitor
System resides on disk storage, but only those
routines or programs required at anyone time are
transferred to core storage for execution. This
feature minimizes the core storage requirements
and permits segmenting of long programs.

In addition to providing you with an efficient job
to-job transition system, the 1130 Disk Monitor
System significantly reduces the amount of pro
gramming you must do. This is made possible
through the sharing of common subroutines by un
related programs. For example, input/output or
conversion operations are required by most user
programs, whether the programs are written in the
Assembler Language or in FORTRAN. IBM pro
vides a library of subroutines to handle such opera
tions as an integral part of the Monitor System.

The Disk Utility Program (DUP) facilitates
development of a library of user programs. Pro
grams can be stored on cards or paper tape, as is
customary in installations without disk storage.
With disk storage, programs can also be stored
directly on the disk. The disk-stored programs
and data are referred to by name when called for
use. The Monitor System, through the use of a
table known as the Location Equivalence Table
(LET), can locate any user program, subroutine,
or file by a table search for the name. Stored with
the name is the amount of disk storage required
by the program or data.

Any program that is added to the user's disk
stored programs is usually placed at the end of

Section Subsections Page

50 01 I 00 02

the other programs. If a program is deleted, the
remaining program(s) are moved up on the disk
in order to utilize disk storage effectively.

Detailed descriptions of the 1130 Monitor System
and its components may be found in the Systems

Reference Library (SRL). For Version 1 see
IBM 1130 Disk Monitor System (C26-3750). For
Version 2 see IBM 1130 Disk Monitor System,
Version 2, Programming and Operator's Guide
(C26-3717).

Section 55: THE MONITOR-JOB MANAGEMENT

CONTENTS

Introduction. . • • • . . • • • . . • . • • . • • • . . • • .. 55.01.00
Job and Subjob . . • • . • . • . . • • • • • • . • • •. . .. 55.10.00

Section Subsections Page

55 00 I 00 01

Stacked Jobs or the Input Stream. .• •• •• 55.20.00
Disk Cartridge ID Checking .•..••.•.•. 55.30.00

INTRODUCTION

The first function of the 1130 Disk Monitor System
is Job Management -- helping you, the user,

Section Subsections Page

55 01 I 00 01

achieve a smooth, orderly transition from one job
to the next. The Monitor is designed to accept a
continuous stream of input, in the form of jobs and
subjobs.

Section Subsections Page

55 10 I 00 01

JOB AND SUBJOB

A job is defined as:
• A JOB card and all the following control rec

ords, source programs, object programs, and data,
up to, but not including, the next JOB card.

• The processing that takes place from the de
tection of one JOB card (or paper tape record) until
the detection of another JOB card.

A subjob is defined as:
• A monitor control record and all the following

control records, source programs, object programs,
and data, up to, but not including, the next monitor
control record.

• The processing that takes place from the de
tection of one monitor control record (such as DUP
card, FOR card, etc.) to the detection of another
monitor control record.

A job is an independent unit of processing; a
subjob is a unit of processing that is dependent on
the subjob(s) preceding and/or following it. The
successful completion of the job depends on the
successful completion of each subjob within it. In
some cases, a subjob is not attempted if the pre
ceding subjobs have not been successfully completed.

The JOB control record defines the start of a new
job. It causes the Supervisor to perform the job
initialization procedure, which includes:

1. Initialization of constants, parameters, etc.

2. Setting of the temporary indicator if a T is
present in column 8 of the control record. If set,
all programs or data files stored in the User Area
by DUP during the current job will be deleted auto
matically at the end of the job (that is, at the be
ginning of the next job) .

3. The identification of the cartridge(s) to be
used during the current job.

4. The definition of the cartridge on which the
Core Image Buffer for the current job is to be
found. Core image programs can be built faster if
the CIB is assigned to a cartridge other than the
systems cartridge. (This applies only to systems
with two or more disk drives.)

5. The definition of the cartridge whose Working
Storage is to be used by the Monitor system. (This
applies only to systems with two or more disk
drives.) Although all cartridges contain a Working
Storage area, only one will be used by the Monitor
(for its own purposes). Core image programs can
be built faster if the system Working Storage is on
some cartridge other than the systems cartridge.
They can be built even faster if the CIB, the system
Working Storage, and the monitor system itself are
on separate cartridges. Assemblies are also faster
if Working Storage is on a separate cartridge.

6. The starting of a new page. A skip to channel
1 is executed on the 1132 Printer or 1403 Printer;
ten consecutive carriage returns are made on the
console printer.

STACKED JOBS OR THE INPUT STREAM

Figure 55.1 shows a schematic view of a stack of
three jobs:

JOB 1

• Translate an Assembler Language source pro
gram into an object program (subjob 1)

• Store the assembled object program (subjob 2)
• Execute the program (subjob 3)

JOB 2

• Store a program that had earlier been dumped
onto cards (subjob 1)

Section Subsections Page

55 20 I 00 01

JOB 3

• Compile a FORTRAN program (subjob 1)
• Execute it (subj ob 2)
Here, the reason for the job/subjob concept can

be seen clearly. If there were an error in subjob 1
of job 1, the assembly, you would not want to con
tinue with the next two subj obs. The results would
be meaningless.

If those first three items had been made jobs
rather than subjobs, the Monitor would have tried to
perform the second two tasks even though the first
had failed. However, because they are all subjobs,
an error condition encountered in anyone subjob
would cause the Monitor to abandon the remaining
subjobs.

Section Subsections Page

55 20 I 00 02

II JOB

DUP

Source Program C

FORTRAN Control Records
r---------------~/

/ / *comments

Object Program B ----+/ /

~-----

/ / *comments

Source Program A ----+f

Assembler Control Records ~--------------~/

/ / *comments

(see Cold Start
Operating Procedure)

Figure 55.1. Stacked job input

DISK CARTRIDGE ID CHECKING

A second assist given you by the Monitor system is
the checking of disk cartridge ID numbers. Every
cartridge must have an ID number; if you so desire,
you can request that the Monitor check each car
tridge for a certain ID and alert you if the desired
cartridges are not mounted.

Section Subsections Page

55 30 I 00 01

For example, suppose you have placed a payroll
data file on a particular cartridge, and have identi
fied it as cartridge 6066. If you punch 6066 in col
umns 11 through 14 of the JOB card, the Monitor
will read the cartridge ID from the disk on logical
drive 0, and, if it is not 6066, you will be so in
formed with a message.

If you don't care which cartridge is mounted (or,
more likely, if you will check it yourself), those
columns on the JOB card may be left blank.

Section 60: THE MONITOR-DISK MANAGEMENT

CONTENTS

Introduction. • • . . . • • . • • 60.01. 00
Disk Storage Layout.. 60.10.00

Introduction. . . . • . • . . • . • . . • • • .. 60.10.01
Cylinder 0 • • . • . • . • • • • • . . • • .. 60.10.10
IBM Systems Area. • • • • • • . .. 60.10.20
Working Storage (WS)•.••.. 60.10.30
User Area (UA). 60.10.40
Fixed Area (FX) • •. . • • •. •• • •. . .. 60.10.50
Summary. • . . • •• . • • •• . • • . • • •. 60.10.60

Increasing the Amount of Space
Available to the User••..•.•.••.. 60.20.00

Introduction. . . . •• • . . • . •• . • • •• . • •• • .. 60.20.01
How Much Room Do I Have? ..•••.•••• 60.20.10
How Can I Make More Space
Available?•........ 60.20.20

Cylinder 0
IBM System's Area
Fixed Area
User Area/Working Storage

I/o Subroutines for Devices Not on
Your System
Computational Subroutines You Are
Unlikely to Use
Seldom-Used Programs and/or
Data
Unneeded User-Written Programs
and Data

Summary. • •• . • •. • . •• 60.20.30

Section Subsections Page

60 00 I 00 01

The Disk Utility Program. . . . • • • • . • . . 60.30.00
Introduction. . . . • • • • • . • • • • • . • • • • • • . 60.30.01
Format of Material on the Disk. 60.30.10

Data Files
Programs and Subprograms

The Most Commonly Used DUP
Functions......................... 60.30.20

Store a Program or Subprogram
in DSF Format
Store a Program in DCI (Core
Image) Format
Convert a DSF Program to DCI
Delete a Program or Subprogram
Dump a nSF Program or Subprogram
and Reload It
Dump a DCI (Core Image) Program
and Reload It
Dump a Data File and Reload It
Copy a Data File onto Another Area
on Same Disk
Defining and Modifying the Fixed
Area

Special Options -- Multiple Disk
1130 Users........................ 60.30.30

Copy a Data File onto Another Disk
Copy a Program onto Another Disk
Copy an Entire Disk onto Another
Disk

INTRODUC TION

Remember, effective management can make or break
a good installation. ,This also applies to the disk
portion of your 1130. Because the disk is such an
integral part of your system, it is extremely im
portant that you have the knowledge and ability to
manage it effectively. This discussion of the disk,
its layout, and how the Monitor helps you use it,
will give you a good start toward effective disk
management.

Effective use of your disk cartridges requires a
certain amount of planning, especially if the number
of applications on your 1130 is high, or is expected
to grow. Some control must be exercised over what
gets stored on a disk, and which disk cartridge is to
be used for a particular job.

Each installation requires a certain minimum
number of disk cartridges:

• At least one general purpose systems car
tridge, with a complete Monitor system (FORTRAN
and Assembler). It should only be used for testing,
one-time applications, and other odd jobs.

• On multiple disk drive systems, at least one
working or scratch disk for each disk drive over
and above the first.

• One disk cartridge to be used for ordering and
receiving programs from IBM. Some packages are
not available in card form and can be obtained only
by forwarding a cartridge to the Program Informa
tion Department. PID will place the package on
your cartridge and return it to you.

• One disk cartridge (as required) for each of
the major IBM applications programs to be used.
For example, STRESS, COGO, LP-MOSS, and
others each require all or most of a disk cartridge.

• One disk cartridge for each major application
area, such as payroll, accounts payable, plant
scheduling, highway design, etc. In some cases,
two applications must share a disk because they
both use the same data file, but such dual use
should be avoided whenever possible.

Mixing of different applications on the same disk
may lead to several complications, especially if
different programmers are involved. For example:

1. Duplicate program and data file names may
occur, with resulting confusion.

2. One program may inadvertently write into the
disk data area of another program.

3. The amount of Working Storage is decreased
more rapidly as each application area adds pro
grams, subprograms, etc.

Section Subsections Page

60 01 I 00 01

4. Run times may increase as data files are
pushed further apart by the continuous storing and
deleting of programs, data files, etc.

5. Overall control is diminished.
Before discussing disk storage management,

several terms must be defined:

Systems cartridge -- a cartridge that contains
the 1130 Disk Monitor system. If your 1130 has
only one disk drive, all your cartridges must be
systems cartridges.

Non-systems cartridge -- a cartridge that does
not contain the monitor system. As implied
above, such a cartridge would be of use only in
installations with two or more disk drives.

Master cartridge -- a systems cartridge that has
been referenced by the cold start procedure, or
by a Job card. The Monitor system on that car
tridge will be the one in use until another cold
start is initiated, or until a Job card is encoun
tered that switches control to a different car
tridge. Obviously, on a one-drive 1130 system,
the one and only disk cartridge will be both a
systems disk and the master disk.

Satellite cartridge -- any cartridge which is not
the master cartridge. It may be either a systems
or non-systems cartridge.

You see, then, that there is a definite distinction
between these terms. A disk cartridge is either a
systems or non-systems disk, depending on whether
you have loaded the Monitor system onto it. On the
other hand, the master/satellite split does not
occur until the cartridges are placed in the drives,
made ready, and a cold start performed. Then, one
becomes the master, and the others, if any, become
satellites.

The terminology of the disk drives themselves
involves another distinction -- that of physical
drives versus logical drives. Single-drive 1130
users need not concern themselves with this; their
one disk drive is physical drive 0 and logical drive
o -- there are no options. -- ---

• Each disk drive on the 1130 has a physical
drive number; drive 0 is the one contained in the
mainframe of the 1130; drives 1 through 4 are con
tained in the 2310 enclosure, a separate unit. These
numbers are fixed and cannot be changed.

• Each disk drive present on the 1130 may also
be given a logical drive number, which mayor may
not agree with its physical number. The only

Section Subsections Page

60 01 I 00 02

restraint is that a two-drive system may only have
physical and logical numbers 0 and 1; a four-drive
~ystem, 0, 1, 2, and 3; etc.

You assign logical drive numbers when you
prepare a Job card. The Job card may contain a
series of five four-digit numbers, representing the
ill numbers of each cartridge (each cartridge must
be given a four-digit ID when it is initialized). The
first of the five ID's (cc 11-14) informs the Monitor
that logical drive 0 is to be the drive containing

the cartridge with that ill. For example, if this
field contained 1234, the drive in which cartridge
1234 is mounted becomes logical drive O. That
cartridge may be physically located on any drive;
its actual position does not matter.

Cartridge 1234 would also become the master
cartridge, since the cartridge on logical drive 0
will always be the master.

For further detail, see the Monitor reference
manual.

DISK STORAGE LAYOUT

Introduction

Conceptually, disk storage can be divided into five
logical areas:

- Cylinder 0
- IDM Systems Area
- User Area
- Working Storage
- Fixed Area

Section Subsections Page

60 10 I 01 01

The contents and use of these areas are discussed
in detail in the Monitor SRL manual, and in general
terms here.

Note that these areas are logical or symbolic,
rather than physical areas. They are not neces
sarily intact or contiguous. Some of the items in one
logical area may, in fact, be physically located be
tween two items in another logical area.

The term "logical", as it is used here, denotes
a system organized for ease of understanding,
rather than for accurate technical detail.

Section Subsections Page

60 10 I 10 01

Cylinder 0

This area contains certain key information that is
present on every disk cartridge. The exact contents
of this area differ, depending on whether the disk in

question is a systems disk (in which case it contains
the Monitor) or a non-systems disk; the area, how
ever, is always present, and always occupies one
cylinder, Cylinder o.

IBM Systems Area

The IBM Systems Area is present on all disk car
tridges that have been built as systems disks (that is,
disk cartridges on which the Monitor system has
been loaded).

Section Subsections Page

60 10 I 20 01

This area consists of (1) a basic Monitor package
of 152 sectors, which must be present, (2) two
optional items, which may be removed:

FORTRAN compiler (88 sectors)
Assembler (32 sectors)

and (3) the Core Image Buffer (16 sectors), which
may be deleted from a satellite cartridge but must
be present on the master cartridge.

Section Subsections Page

60 10 I 30 01

Working Storage (WS)

Working Storage is used for temporary storage of
programs and data. Since it is used for this pur
pose by both you and the Monitor, you should not
leave material in WS if you wish to use it later. If

you wish to retain a program or data file, it should
be transferred with DUP to either the User Area or
the Fixed Area, and given a name.

The size of WS is variable, since it consists of
whatever space on the disk is not taken up by the
other four areas.

User Area (UA)

As mentioned earlier, programs and data that you
want retained must be moved from WS to either the
User Area or the Fixed Area.

The size of the UA is also variable, since it
expands and contracts as material is stored in it or
deleted from it.

The process of transferring a program or data
file from WS to UA is done in a unique manner,
made possible by the use of a "floating" boundary
between the two areas. Because material placed in
WS is at the "lower" end of WS which is adjacent to
the "upper" end of UA, all that is necessary to trans
fer it from WS to UA is to move the boundary. (See
Figure 60.1.)

The term "User Area" should not be taken to
mean that only user-written programs will be found
there. Nearly the entire IBM subroutine library is
placed in the UA (occupying about 50 sectors), where
it may be called for use by other programs.

The UA may contain:
• Data, in disk data format (DDF)
• Programs and subprograms, in disk system

format (DSF)
• Programs, in disk core image format (DCI)
The major differences between these three for

mats are discussed in subsection 60.30.10.
The Location Equivalence Table (LET) is a direc

tory of the contents of the User Area. It exists on

Section Subsections Page

60 10 I 40 01

Floating
Boundary

U"" Moo ! Wo,k;,. Sto,,'.,

Beto" [r---II ---JI IA I III 1'1' E'-----------.u'um~
~~-----.vr-----...J/I'-v--'1 I
I Programs and data I Program or data I
I previously stored I to be stored I
I I I I
I I I I
I I Floating I
I I Boundary I
I I I I
I User Area : I Working Storage I
~r-_____ ---'A'--___ ~I_---,\t~1

At", I II I 1111111 E~
Figure 60.1. Transferring a program or data file from WS to UA

every disk cartridge -- systems and non-systems.
Basically, it contains an entry for every program,
\subprogram, and data file that has been placed in the
UA. Each entry in the table contains the name,
size, and other properties of that program or data
file.

Section Subsections Page

60 10 I 50 01

Fixed Area (FX)

The Fixed Area, like the User Area, is a place
where the user may store programs and/or data
files. There are five major differences between
tne FX and the UA:

1. There is no Fixed Area on a cartridge unless
you specifically define one (see 60.30.20).

2. You specify the size of the FX, whereas the
UA expands and contracts as items are added to or
deleted from it.

3. Like the UA, the FX may contain both pro
grams and data, but the programs must be in disk
core image (DCI) format. They cannot be in disk
system format (DSF).

4. Programs or data files stored in the FX may
be deleted, but the FX will not be repacked, as is
the case with the UA. Once an item is stored some
where in the FX, it stays in the same location until
it is deleted.

5. The directory of the FX is FLET, the Fixed
Location Equivalence Table, rather than LET, which
is the directory to the UA.

Summary

Figure 60.2 illustrates the five logical disk areas
and shows the general properties of each.

Logical Area Sub-Areas

Cylinder 0

IBM Systems Basic
Area

Core I mage Buffer

FORTRAN
Compiler

Assembler

Fixed Area FLET
(FX)

Contents of
FX

User Area LET
(UA)

Contents of
UA

· User data files

· User programs

· IBM subrou-
tine library

Working Contents of WS
Storage
(WS)

Section Subsections Page

60

Present?

Always

Only on a systems disk

Can be removed from Non-Sys_

May be removed

May be removed

Not unless defined by user

Not unless defined by user

Always

Always. As delivered, the
UA contains the IBM
Subroutine Library

Always

10 I 60 01

Approximate Size, Sectors

Systems Non-Systems
Disk Disk

152 152

16 16

88 88

32 32

Fixed by the user when he
defines a fixed area

o (LET is part
ofCyl. 0)

Varies as material is stored
and deleted

Varies in size - WS is
whatever is left over.
Every sector added to UA
is subtracted from WS;
every sector deleted from
UA is added to WS.

Figure 60.2. The five logical areas of the disk

Section Subsections Page

60 20 I 01 01

INCREASING THE AMOUNT OF SPACE AVAILABLE
TO THE USER

Introduction

As Figure 60.2 shows, there is another way to look
at a disk cartridge. Simply stated, at any point in
time, the disk can be split into two portions:

• The portion now being used.
• The portion not now being used and therefore

available to you.

If you have a data file that you want to store on a
disk, you can ask several pertinent questions:

How much room do I need?
How much room do I have?
How can I make more room, if necessary?
The first question is covered in Section 80; the

other two are answered in 60.20.10 and 60.20.20,
respectively.

How Much Room Do I Have?

It is quite easy to determine how much room is
available on any particular disk cartridge; all you
need to do is to run the DUP *DUMPLET job. The
last item on the printout will have the name 1DUMY
(a dummy entry representing empty space), its size
in disk blocks (a disk block is 20 words, or 1/16 of
a sector), and its starting address (in disk blocks).

Section Subsections

60 20 I 10

Convert the two hexidecimal numbers to decimal:

49F3
1AOD

becomes 18931
becomes 6669

Divide by 16 (16 disk blocks per sector):

18931/16
6669/16

is
is

1183 3/16
416 13/16

Page

01

This block of empty space is equivalent to Work
ing Storage, the area where you may place addi
tional programs and data files.

Figure 60.3 shows the last page of a typical
DUMPLET printout. Note the last entry:

The first number (1183 3/16) is the size in sectors
of Working Storage; the second (416 13/16) is the
sector at which it begins. The fact that the two add
up to 1600, the total number of sectors on a disk,
confirms the accuracy of the arithmetic.

PAGE

=C I CN
1234

4

1DUMY

SFPAO
OIAl

49F3

=FPAD
OlAl

1AOD

=CIBA
0118

lET

=UlET
0128

=FlET
0000

SCTR NO. UA/FXA. WORDS AVAIL. CHAIN AOOR.
0002 0130

PRCG FOR DB DB
NA~E MAT CNT ADDR

PTt-'OL
OMP80
OM1DO
OMTXO
DMPDl
OMPXl
FlIPR
SY SUP
ADRWS
COpy
01 SC
DLCIB
OSLET
I DENT
10
MOCIF
PTUTl
CAlPR
FSlEN
FSYSU
RDREC

DSF 0009 1700
DSF 0007 1716
DSF OOIA 1710

DSF OOIE 1737

DSF 0007 1755
DSF 0036 l75C
DSF 0010 1792
DSF OOlC 17.A2
DSF 0036 17BE
DSF OOlE l1F4
OSF 0037 1812
DSF OOOC 1849
DSF OOlA 1855
OSF 0057 186F
DSF 0009 18C6
DSF 0007 18CF
DSF OOOB 1806

OSF 0015 18El

ENC OF DUMPLET/FlET

Figure 60.3.

009C 0000

PROG FOR DB DB
NAME MAT CNT AD DR

ECHAR
ECHRX
ECHRI
VCHRI
EGRID
HOL48
HOLCA
HXCV
PRNT2
SCATI
STRTB
EPlOT
ERULE
EMOVE
EINC
FCHAR
FCHRX
FCHRI
WCHRI
FGRID
FPlOT

DSF 0005 18F6
DSF 0025 18FB

OSF 0008 1920
OSF 0008 1928
DSF 0006 1930
DSF 0004 1936
DSF DOlE 193A
OSF 0041 1958
DSF 0006 1999
DSF 0005 199F
DSF DaDA 19A4

DSF 0005 19AE
DSF 0025 19B3

DSF 0008 1908
DSF 0004 19EO

PROG FOR DB DB
NAME MAT CNT AODR

FRULE
FMOVE
FINC
PlOTI
PLOTS

DSF 0009 19E4

DSF 0003 19EO

PLOTX DSF OOOA 19FO
POINT DSF 0008 19FA
SCALE DSF 0002 lA02
SCALF OSF 0002 lA04
XYPLT DSF 0007 lA06

eMY 49F3 l~

PRO·
NAME

Section Subsections Page

60 20 I 20 01

How Can I Make More Space Available?

Using Figure 60.2 as your guide, take a look at
each of the five logical areas, with an eye toward
removing items you don't need:

Cylinder 0

Since Cylinder 0 is always present and necessary on
every disk cartridge, there is nothing you can do to
reduce its size.

IBM Systems Area

Every system disk cartridge, after initial loading
with the Monitor, contains the Assembler and
FORTRAN compiler, two programs of substantial
size. The Assembler occupies 32 sectors; the
FORTRAN compiler occupies 88 sectors.

If you rarely compile programs written in Assem
bler Language, you will probably want to delete the
Assembler from all disk cartridges except the one
used for odd jobs.

Most 1130 users program in FORTRAN, but it is
still possible to eliminate this compiler from some
disk cartridges. Suppose you have a large inventory
file that requires all the room you can get. Why
keep the FORTRAN compiler on that disk?

During the test phase, when you are compiling
many FORTRAN programs, you certainly need the
compiler; once the programs have been debugged,
however, you can eliminate it and increase the size
of your file by 88 sectors. If it becomes necessary
to change a program on a particular disk, you can
recompile the new version using a disk that does
contain the compiler, dump the new program on
cards with the DUP, remove the FORTRAN disk,
replace it with the inventory (no FORTRAN) disk,
and load the new card program with DUP. Because
this takes a few minutes, you will probably not want
to eliminate the FORTRAN compiler from any disk
unless the space is needed.

To delete these two programs from a disk, you
must use the DUP *DEFINE function, as shown
below

12 3 4 5 6 7 89 10 II 1213 1415 1617 1819 2021 2223 2425 12E27 2829 3031 3233 3435 ~37 3839 4(~1 ~2 3 ~~
II JOB

III! I/)Ut.

~~ Er I/oiE vo I/J ~,).:> /jL E~

and/or

12 3 4 5 6 7 8 910 1112 1314 1516 1718 1920 2122 2324 52627 2829 3031 3233 3435 3637 3839 140~1 2~3~45

11/ JOIR

VI loultl
~/) ElF / VJiE va jirJ ~k? ~T ~~~

I
L
I'

I .. L

Fixed Area

Because of the way in which the Fixed Area is handled
by the Monitor, you should not define one lUlless you
have a specific purpose in mind for it. Remember
that the size (and existence) of the Fixed Area is
entirely up to you. If you define a 20-cylinder Fixed
Area and use only half of it, the other half is com
pletely wasted; the empty space is not transferred
to the UA or WS.

To determine what is in the fixed area, you may
rlUl the DUP job:

I 2 3 4 5 6 7 8 9 10 II 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 14(J~1 ~*3 14' 45

II !JOB
II/ ~UjJ
ill u~ p[t' L EI7

If it is not full, you may reduce its size (see 60. 30. 20)
accordingly, automatically transferring the released
area to Working Storage. If later you wish to place
something in FX, you may then increase its size.

User Area/Working Storage

Because the UA and WS interact, they must be con
sidered together. Basically, there is never any
room in the User Area -- it is always full. Even if
you remove something from it, it is still full, since
it is immediately packed, and the free space is
transferred to WS.

Your job, therefore, is to remove lUlneeded items
from UA, decreasing its size and thereby increasing
the size of WS. The entire contents of WS are, after
all, available for transfer back to the UA whenever
you have something you wish to store on a permanent
basis.

The following sections discuss some items that
can be removed from the UA.

I/O Subroutines for Devices Not on Your System.
As mentioned earlier, the Monitor, as delivered and
loaded on each disk, is a complete system and in
cludes subroutines for every device that can be in
stalled on an 1130 system -- plotter, paper tape
reader, etc. If you do not have a plotter, it makes
sense to delete the plotting subroutines. As with the
FORTRAN compiler and the Assembler, you must

Section Subsections Page

60 20 I 20 02

make the decis ion and do the deleting. The Monitor
will not check for the presence or absence of a
plotter and delete those subprograms on its own.
Although you do specify to the Monitor loader (with
the REQ cards) which devices are on your system,
the loader does not use this information to selectively
load the subroutine library. All subroutines are
loaded onto the disk, regardless of your 1130 con
figuration.

Figure 60.4 illustrates what subroutines can be
deleted, and how many sectors can be gained. The
subroutines noted can be deleted the same as any
other subroutine -- for example:

12 3 4 5 6 78 910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 ~1132 ~34 3536 ~738 94C I 2~3fc-4 45

II JOB
VJ bu~
'II) EL Elf PL OTX

I f you don't have
this equipment
(or if no program on this disk You may delete And gain this

will use these devices) these subroutines number of sectors

IBM 1627 Plotter PLOTX FCHAR ECHAR 10
PLOTl FGRID EGRID
POINT FPLOT EPLOT
XYPLT SCALF SCALE
FCHRI ECHRI FRULE ERULE
FCHRX ECHRX

IBM 1132 Printer PRNTl DMPDl 6 1/16
PRNTZ DMPXl
PRNT2

IBM 1403 Printer PRNT3 CPPT3 4 8/16
PRNZ PT3EB
EBPT3 PT3CP
PTHOL

IBM 1442 Card Read Punch, CARDO 2 12/16
Model60r 7 CARDl

CARDZ

IBM 1142 Card Punch, P.NCHO 2 2/16
Model 5 PNCHl

PNCHZ

IBM 2501 Card Reader READO 1 4/16
READl
READZ

IBM 1134 Paper Tape PAPTl PAPPR 7 14/16
Reader and/or 1055 Paper PAPTN PAPHL
Tape Punch PAPTZ PAPEB

PTLJTL PAPTX

IBM 1231 Optical Mark Page OMPRl 1 1/16
Reader

Synchronous Communication HOL48 SCATl 9
Adapter (Teleprocessing) HXCV PRNT2

STRTB EBC48
HOLCA

2310 Disk Drive COpy 1 12/16

Figure 60.4. I/O subroutines which may be deleted

Section Subsections Page

60 20 I 20 03

Computational Subroutines You Are Unlikely To Use.
Let's take the example again of the disk used ex
clusively for a large inventory file. You have elimi
nated the compilers, the plotter subroutines, etc.
Is there anything else on this disk that you won't
need? Unless you have an unusual inventory system,
the answer is yes. Do the inventory programs re
quire the computation of any sines, cosines, etc?
If not, you may gain 7 sectors by deleting the trig
onometric and logarithmic subroutines:

FSQR ESQR
FTANH ETANH
FATN EATN
FAXB EAXB
FEXP EEXP
FLN ELN
FSIN ESINE

Seldom-Used Programs and/or Data. Because the
1130 Monitor makes it so easy to do so, many people
tend to "overstore" the disk. This is particularly
true of programs, which are often *STOREd as a
matter of course, with no rules regarding what gets
*STOREd and what doesn't. As a practical matter,
however, many programs should not be placed on
the disk, but should be compiled each time they are
used. For example, suppose that program XYZ is
a stand-alone program that does nothing but read a
deck of cards and produce one or two pages of results.
It is run monthly, cons ists of 150 FORTRAN source
cards, and uses 2100 words of core storage. To

compile (without listing) and execute it, will take
about:

Compile
Execute

2 minutes
3 minutes

Total 5 minutes
To load it from the disk and execute it, will take
about:

Load
Execute

Total

1/2 minutes
3 minutes

3 1/2 minutes
By storing this program on the disk, you will

save 1 1/2 minutes per month, but will use 2100
words of disk storage, or about seven sectors.

Is it worth it? That depends on your installation.
If disk space is scarce, the answer is: "No -- don't
store it!" If there is plenty of room on the disk, the
answer is: "Yes, why not?"

Obviously, some programs should or must reside
on the disk:

- Often used subroutines and functions
- Programs called as LINKS by other programs
- Frequently used programs
- Very large programs
- Programs that are run with a series of other

programs, as one batch JOB.

Unneeded User-Written Programs and Data. This
usually applies more to programs than data. Over
a period of months, the typical disk becomes clut
tered with numerous abandoned, obsolete, and/or
useless programs and SUbprograms. The LET /FLET
should be dumped periodically and inspected for such
items. Anything not really needed should be deleted.

Summary

To illustrate how much room can be available on a
systems disk, let's assume you have an 1132 Printer
and a 1442 Card Read Punch, and you wish to place
a very large commercial-type data file on the disk.
There is no Fixed Area.

After originally loading the Monitor, you
*DUMPLET and determine from the last 1DUMY
record that the size of Working Storage is 49F3 disk
blocks, or about 1183 sectors, 74% of the disk.

To increase this amount, you can take the three
steps suggested earlier:

1. Delete the FORTRAN compiler and the Assem
bIer, gaining 120 sectors.

2. Delete the I/O subroutines you don't need, in
this case gaining about 37 1/2 sectors.

Section Subsections Page

60 20 I 30 01

3. Delete the technically oriented computational
subprograms, gaining about seven sectors.

You thereby have increased the available disk
space (WS) by 164 sectors, to 1347, or 84% of the
disk. Of course, you cannot compile any programs
with this disk, nor can you execute any jobs (noncom
mercial) requiring some of the computational sub
routines that have been deleted. From the number
of sectors available you must subtract the space re
quired for your programs. The remainder is avail
able for your data file(s).

The task is easier with a non-systems disk. One
cylinder (eight sectors) is always required for the
Cylinder 0 area, plus two more if you have defined
a Fixed Area. That leaves either 1584 or 1576
sectors for your programs and data files.

Section Subsections Page

60 30 I 01 01

T HE DISK UTILITY PROGRAM

Introduction

The Disk Utility Program (DUP) gives you the facili
ties necessary to manage your disk storage capa
bility. With DUP you can:

• Store programs and data files on the disk
• Make the programs and data files on the disk

available in printed, punched card, or punched
paper tape form

• Remove programs and data files from the disk
• Determine the contents of disk storage through

a printed copy of LET /FLET, the directory to
the disk

• Alter certain system parameters and, to a
limited extent, the contents of the system

• Perform other minor disk maintenance functions
The Monitor manual explains the details required

to use DUP (card layouts, etc.). This section will
cover only the most commonly required DUP functions
and the information needed to execute them.

Format of Material on the Disk

Essential to the understanding of DUP is a basic
knowledge of the various formats used in the storing
of programs and data on the disk.

Although DUP gives you many format options,
this section discusses only those that apply to the
average user, writing a typical FORTRAN program.
Users with unusual combinations (for example, a
data file in DCI format) will have exercised this
option with a specific purpose in mind and will be
well aware of the details involved.

Data Files

Under normal circumstances, data files are always
stored on the disk in the Disk Data Format (DDF).

Programs and Subprograms

Under normal circumstances, programs and sub
programs will be stored on the disk in one of two
formats:

Disk System Format (DSF)
Disk Core Image Format (DCI)

Section Subsections Page

60 30 I 10 01

The main difference between the two lies in what is
stored, rather than how it is stored.

A program in DCI format cons ists of a complete,
self-sufficient core load or program package -- the
mainline program, plus all the subroutines it re
quires. The entire package is in absolute form;

. that is, all addresses are actual core storage lo
cations rather than relative locations. Subprograms
cannot be in DCI format.

On the other hand, an item in DSF consists of that
item and only that item. Nothing else is included
with it. It may be:

• A program or a subprogram
• Absolute or relocatable (but usually relocatable)
• In either WS or UA (but not in the FX)
As would be expected, a program occupies more

space on the disk in DCI form than it would in DSF,
since it includes more material. However, it may
be loaded into core storage (when called by an
XEQ card) much faster, since the Core Load Builder
need not assemble all the necessary subroutines and
calculate actual core storage addresses.

Section Subsections Page

60 30 I 20 01

The Most Commonly Used DUP Functions - Single
Disk Drive Systems

Of the many things that can be done with DUP, a
few stand out as common, everyday tasks in the
typical 1130 installation. The following is a guide
to these common jobs:

Store a Program or Subprogram in DSF Format

After compiling a program or subprogram, you will
commonly store it on the disk for later reference
or execution.

Because the FORTRAN Compiler (or Assembler)
leaves the compiled program in Working Storage,
all that need be done is to move it from WS to UA.
To do this, DUP moves the boundary between UA
and WS so as to include in UA whatever is in WS.
For example, suppose you have just compiled a
program called PROG Z, which requires 812 words
of core storage. If you follow the END card of the
program with

12 34 5 6 78 910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3i31 394(~1~2~3 45

E!N;:;

1// lDL/lo
~s TO WE IJtis VA 1(0 qZ

DUP will move this program (move the boundary)
from WS to UA, and enter the name PROGZ in LET,
with the proper identification codes. UA increases
in size by about 812 words; WS decreases by the
same amount. Note that you did not have to know
how large the program was -- DUP handles that.
Note also that the DUP card is not preceded by a
JOB card.

Store a Program in DCI (Core Image) Format

You can, after compilation, also store a program in
DCI format, by simply using the *STORECI card in
place of the *STORE card. Note that the *FILES,
*LOCAL, and *NOCAL cards are placed after the
*STORECI card and that the number of such cards
is punched in columns 27-30 of the *STORECI card.

Because this takes longer than the *STORE option,
it usually will not be done unless you are fairly
certain that the program is free of bugs.

Convert a DSF Program to DCI

For speed of loading, commonly used programs
should be stored in DCI "(core image) format. This
eliminates the need to build a core load each time
you execute the program.

If you have a program called MAIN6 stored on the
disk in DSF (by a STORE card), you can convert it to
DCI with the following sequence:

12 3 4 56 78 910 1112 1014 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 3940 4142

/ / 1I~~
/ / I/)I/p
-I/'J) l/~~ JlA ws A / """ lis TO Ril CI IPiS U'II IVA 'HEN 2-
IL OC AL - - - - - -

11 / II £5 - - - --

/ I VIO'S
/ / blJllp
Itll ELIE 17£ ~ / N~

Note that the name of the program had to be
changed.

43445

Section Subsections Page

60 30 I 20 02

Delete a Program or Subprogram

This is one of the simplest of the DUP jobs, since
you need not be concerned with either the format,
the location, or the type (program, subprogram, or
data) of the item to be deleted.

The sequence of cards

12 34 56 78 9 10 II 1213 1415 1611"18 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 39140 4142 ~3~1~

II IJOV3
II 1& LlI.&
t~ EL £'17 f WA WElt'

will delete NAMEP wherever and whatever it is.

Section Subsections Page

60 30 I 20 03

Dump a DSF Program or Subprogram and Reload It

As a backup procedure, you can dump your often
used programs and subprograms onto cards or paper
tape. If anything happened to the disk cartridge,
these items could be reloaded much faster than they
could be recompiled. The job

12 3 4 56 7 B 9 10 1112 1314 1516 171B 1920 2122 2324 2526 2728 2930 3131 1114 lS16 3B8 3940 412 ~14H5

/ / j08

I / Il/lP

i/) ,niP /1,4 elo IT £11
01 on/; co rei 5 Cl,b o"t One L!7 c;,

will cause ITEM to be punched into the deck of blank
cards following the *DUMP card, 54 words per card.
In addition, a header and end-of-program card will
be punched.

Since the program is punched in such a compact
form, very few programs w ill require more than an
inch of cards (about 140 cards, or 6300 words).
Extra, unpunched cards will be bypassed automati
cally by DUP.

To reload this dumped program, the *DUMP card
should be replaced with

12 3 4 56 78 9 10 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3131 1114 3516 3718 394(123 45

'15 TQ RE el.e LJA TIT Ld'1

(if the program was in DSF) and run as another job.

Dump a DCI (Core Image) Program and Reload It

If the program to be dumped and reloaded is in core
image format, the procedure must be changed some
what.

The dump to cards can be accomplished in the
same way, with the *DUMP card.

However, to reload, the STOREDATACI option
is required, and the card count must appear in
columns 27 -30. For example, a program called
XXXXX, dumped into a deck of 108 cards, would be
reloaded with the card:

12 3 4 56 78 910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3131 3314 lS16 3718 3940 414243 45

i-'" TO R£ AT AC i'CO lIA)(X xxx 01 08

Dump a Data File and Reload It

More important as a backup procedure, you can
dump your data files onto cards or paper tape. In
case anything happens to the disk cartridge, the data
file may be reloaded.

To dump a data file, you must know its size in
sectors.

The sequence of cards

12 3 4 56 78 910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 3940 4142 3~45

/I 11 Oil

I I 1iJ11.I1.c

fir. ilV1[t; 14 TH 1/;14 ell" I,.: I LeX 0 ~1.5
el7 OL/ IqlA 101 1 d' Ctl dIS I/o ~o Iia II i Ie

will dump the 65-sector data file, FILEX, from the
UA to cards (CD).

The data file is punched into the blank card deck,
54 words per card. No header or trailer cards are
punched.

To reload, you must know the number of cards
in the dumped deck.

To continue the previous example of a 65-sector
file (20,800 words), the dumped deck would have
required about 386 cards.

To reload, then, you need the cards

12 3 4 567 89 10 II 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 14041 42~3 ~45

II .I 01,'1

I I tIld l

"

115 tkl lelt- Ifl14 TiA CD UA !L IFIX ol~ k5~
t~e VkI WP ItW kJa 14 1/1 Ie 61~ cK

Section Subsections Page

60 30 I 20

Copy a Data File onto Another Area on the Same
Disk

04

Another method of data file backup is to copy the
file onto another portion of the disk. Typically this
would be done before running a job that modifies the
file. If the file is 100 sectors long and called MEN,
the job

123 4 5 67 89 1011 1213 1415 16 17 1819 2021 2223 2425 2627 2829 3(31 3233 3435 3637 3839 14041 2~3 45

II II olA
/ I lr.ul.c
*1/) ilV! pi/] ~17f4 IUA lIS 5 ~EltV 01 00

170 *5 KIE Ifl~ 17H ~I" luA rj~ E~ 01 I;: It:

will move it to Working Storage, then include it in
the User Area with a different name (TMEN).

If the program you wish to run operates satis
factorily, updating the file MEN, you need do nothing
except DELETE TMEN.

If on the other hand, some error occurs that ruins
the file MEN, you have a duplicate file (TMEN)
ready to replace it. The steps shown below will
replace MEN, which has been ruined, with TMEN:

12 3 4 567 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 14041 42 3 4445

/I JO~
/ / bu~
lk? EL- EITE HEN
jf() A ~~ 1~5 T~ Av 01 Ofl

tfs TO fRlE itJA TA iW5 Id4 I1EN 01 01;;

fO EL E17£ T~ c~

Now you may rerun the job. Be especially care
ful not to *DELETE TMEN until you are sure
everything went according to plan.

This protects you from accidental programmed
loss of a data file; however, it does not protect
against physical loss or destruction of the disk
cartridge itself.

Section Subsections Page

60 30 I 20 05

Defining and Modifying the Fixed Area

If you want a Fixed Area on a disk cartridge, you
must not only instruct the monitor to create one,
but you must specify its size.

If you want a Fixed Area of 20 cylinders, you can
run the job

12 3 4 56 78 910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 ~I 32 3334 3536 3738 3940 4142 3 4 5

II VolE
1/ kJ Iv I,c;
~f) £~ doVE FI XEO ~R IE4 OiJ 21

and you have it. Note that we specified 21 cylinders
as the size of the Fixed Area. One cylinder will be
used for FLET; the other 20 are available for your
programs and data files.

If later you wish to increase the size of FXby 6
cylinders, you can use

12 34 5 6 78 910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 35~ 3738 3940 41~2 3 45

,;,; lOE.
I I IN/

foIlD I£~ Ud ~I xltlo ~~ IE 14 at: ol~

or, if you wish to decrease its size by 3 cylinders

12 3 4 5 6 78 91Q 11112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 39140 ~I 2 ~3~45

II //)18

II I1V~

il-k:lE IW Ii, !,tl l(IE~ 4,(' itA 0/1 a~1j-

You should keep a record of whether a particular
cartridge has a Fixed Area or not. If you ran the
first job, then forgot you ran it, and ran it again,
you would have a 41-cylinder Fixed Area. When in
doubt you may use the DUMPLET DUP option, which
will print the contents of FLET.

Special Options -- Multiple Disk 1130 Users

Copy a Data File onto Another Disk

If you have more than one disk drive, you will usu
ally take this option rather than the ones described
earlier -- dump to cards for backup, or copy to
another part of th. same disk. This requires a two
step procedure, s~ce data files cannot be copied
directly from the UA on one disk into the UA on
another disk. The transfer must be via WS.

Suppose you have an 88-sector file, called DAT AX,
in UA on cartridge 1075, and you want to copy it into
the UA on cartridge 1077. Assume that cartridge
1075 is on drive 0, and 1077 is on drive 1. The
following card sequence will accomplish this task:

12 5 4 , 6 7 8 910 1112 1314 "" 1718 19 20 2 12223 24~ 2627 2829 30~1 325334 35363738 394041 24344~

1/ / (j~ 1~ 7j 10 ,77 1/17'"
// nvp
,i- TA (114 W5 47 4X 0 7S
~ I ... ~.5 ~4 ~7 IAIX IV It III 717

You can see that the file was first moved from UA
to WS on cartridge 1075, then from WS on 1075 to
UA on 1077. The file now exists on both cartridges,
and each has the same name: DATAX.

Section Subsections Page

60 30 I 30 01

Copy a Program onto Another Disk

If you have multiple disks, you may also choose to
back up your programs by copying them to another
disk, rather than dumping to cards. This is similar
to the previous task, but eas ier, since you do not
have to know the size of the program, as was the
case with a data file. You must still, however, go
via WS in the two-step procedure:

12 54 , 6 78 910 1112 1314 1516 1718 19 20 2122 2324 2526 2728 2930 3132 3334 3536 3738 3940 412 ~3~45

1/ 1J01i [./1 7~ 10 III 111 71.,
/I i!;/lip

I-IJ 1I/'t ip (J,4 J'tS PR OyX 10 7 1i to 7'
is 1/1 Rl w5 1/,4 DR Oil< to 75 to 77

This copies the program or subprogram called
PROGX from cartridge 1075 to cartridge 1077. As
before, the program now exists on both cartridges,
each of which has its own LET.

Neither the format (DSF or DCI), nor the type
(program or subprogram) need be known, or specified.

Copy an Entire Disk onto Another Disk

This is not done with the Disk Utility Program (DUP)
but with a Disk Maintenance Program called COPY,
which is supplied with the Monitor. If you want to
copy the entire contents of cartridge 1967 onto car
tridge 1968, you execute COpy:

12 3 4 5 6 78 910 1112 1314 15" 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 3940 ~142 34445

II //1'" t9 ~7 19 '8
II I Xl' /'/1 py

ir 01 '1~ 7 19 ~o

Section Subsections Page

65 00 I 00 01

Section 65: THE MONITOR - CORE STORAGE MANAGEMENT

CONTENTS

Introduction. • • • . . . • • .. 65.01. 00
The Logical Layout of Core Storage. . . •. 65.10.00

Basic •...•.•..•..•....•.•.......... 65.10.10
Flipper. • . . . • • • • • . . . • • . • . • 65.10.20
SOCAL Area. . • • . . . • • • . • • • . • • • . . • • .. 65.10.30

General
Overlay 1
Overlay 2
Overlay 3

The SOCAL Overlay Scheme
Possible Improvements to the
SOCAL Scheme

Reduce the Size of the Largest
SOCAL Overlay
Combine Overlays 1 and 3

LOCAL Area ...•..•.••••••••..•.... 65.10.40
General
IB M -Supplied (Systems)
Subroutines

Program or LINK Area. . . . • •. 65.10.50
COMMON Area•..••••••••..... 65.10.60
Unused Area. . • • . • . • • • • • • • • • . • 65.10.70

Summary............................ 65.20.00

INTRODUCTION

The 1130 Disk Monitor System gives you three ex
tremely powerful and useful means of managing
core storage. All three involve the sharing of core

Section Subsections Page

65 01 I 00 01

storage by two or more programs (LINKs), sub
programs (LOCALs), or groups of subprograms
(SOCALs). This section describes these three
schemes in detail, after discussing the 1130 core
storage layout in terms of its seven logical areas.

Section Subsections Page

65 10 I 00 01

THE LOGICAL LAYOUT OF CORE STORAGE

You can think of core storage as consisting, like the
disk cartridge, of several logical areas. Again,
this layout may bear little or no resemblance to the
actual, physical layout; it is merely a device to help
you understand the dynamic nature of core storage.
The seven logical areas are as follows:

Basic
Flipper
SOCAL Area
LOCAL Area
Program Or LINK Area
COMMON
Unused

These areas are described below in general terms.
Complete details may be found in the appropriate
Monitor reference manual. Note that all core sizes
given are based on:

1. A typical FORTRAN program --commercially
rather than scientifically oriented.

2. Approximate subroutine sizes, usuallyad
justed to multiples of 10.

3. Version 2, Modification Level 0, of the 1130
Disk Monitor System.
Because some of the package sizes may increase in
the future, you should not plan on using all of the
available core storage; it might be more prudent to
use about 95% of it.

Basic

This is a set of programs that is always in core and
whose size varies only slightly from job to job. It
consists of:

1. Resident Monitor
2 . Transfer Vector
3. Several commonly used subroutines kept in

core storage at all times (IFIX, FLOAT, ELD,
ESTO, NORM, etc.). These are all subprogram
subtypes 0 -- see discussion of subtype under
"SOCAL Area".
A good average size for this area is 740 words.

Unused

COMMON

Program area

lOCAL area

SOCAl area

Flipper

Basic area

Core Storage

Section Subsections Page

65 10 I 10 01

~

Section Subsections Page

65 10 I 20 01

Flipper

This routine handles both the SOCAL and LOCAL
overlay system. Flipper is not required (core size
= 0) if there are no SOCALs or LOCALs: if there
are, its size is about 100 words.

Unused

COMMON

Program area

LOCAL area

SOCAL area

Flipper

Basic area

Core Storage

SOCAL Area

General

Unused

COMMON

Program area

lOCAL area

SOCAl area ~

Flipper

Basic area

Core Storage

The word SOCAL is an acronym derived from
"System Overlay on Call". The SOCAL area is that
area of core storage where the SOCAL subroutines
reside. The SOCAL subroutines, in turn, are de
fined as those subprograms that:

1. Are used by the mainline program to be ex-
ecuted.

2. Have been designated as subtype 1, 2, 3, orS.
3. Have not been made LOCAL.
If a subprogram has not been designated as sub

type 1, 2, 3, or S, it will be located in one of three
areas:

1. The LOCAL area if it has been specified as
LOCAL.

2. The Basic area if it is an IBM -supplied sub
program (IFIX, FLOAT, ELD, EST, etc.) and has
not been made a LOCAL.

3. The Program area if it is a user-supplied
subprogram and has not been made a LOCAL.

The 1130 Monitor system you receive from IBM
includes a subroutine library in which each sub
routine is assigned a subtype number. These may
be called the standard subtypes, and will yield a
SOCAL system as described in the Monitor manual
and in later subsections of this Guide. However,
these subtype numbers may be changed at your
discretion. Furthermore, you may assign subtype
numbers to your own subprograms. Both steps will
yield a nonstandard SOCAL system. Several ideas
on this subject are presented later in this subsection.

The SOCAL system involves the grouping of the
SOCAL subroutines into three groups, called overlays,
which will be manipulated by the Core Load Builder
as it goes about its job of loading your program into
core storage.

Section Subsections Page

65 10 I 30 01

Overlay 1. This is made up of all those subroutines
and functions designated as subtype 2 or S. The
ARITHMETIC, PAUSE, and STOP routines are sub
type 2; the functionals (SIN, COS, etc.) are sub
type S.

The "typical" commercial program will probably
add, subtract, multiply and divide (in extended pre
cision), PAUSE, STOP, and read the data switches.
The subroutines required to do this will occupy about
520 words of core storage. If the program does not
divide, the size of this overlay will be reduced by
ISO words.

Commercially oriented 1130 programs will
probably be limited to these subroutines, while
technical-type jobs may use the SIN, COS, SQRT,
etc., functions and require-up to several hundred
more words.

Section Subsections Page

65 10 I 30 02

Overlay 2. Overlay 2 is composed of all subtype 3
subroutines--those required for non-disk input/
output. The basic component is SFIO, the Format
Interpreter, which is required if the program to be
executed contains any non-disk FORTRAN I/O state
ments. In addition, each I/O device requires its
own I/O subroutine and often several code conver
sion routines.

The size of this overlay varies considerably,
depending on the I/O devices specified ·on the *IOCS
card (whether they are used or not). The following
table may be used to calculate the approximate size
of this overlay.

a)

b)
c)
d)
e)

f)

g)
h)

i)

j)

If your program
contains any:

Non-disk formatted
input/ output (SFIO)

WRITE on the 1132
WRITE on the 1403
WRITE on the 1442-5
WRITE on the console

printer (typewriter)

This many words will be
included in overlay 2:

1150

190
190

70
60

READ or WRITE on the 160
1442-6 or 7

READ from the 2501
READ from the key-

board (cannot be
done without writing
on console printer)

READ from keyboard
2! 2501 or 1442-6, 7

READ or WRITE on
paper tape

Total

60
30

190

225

Consider, for example, a FORTRAN program
compiled with the card:
*IOCS (1132 PRINTER, TYPEWRITER, KEYBOARD)
Referring to the table above, this program will re
quire the following:

Item Reason No. of Words

a There will be formatted I/O 1150
using non -disk units.

b The 1132 printer is specified. 190
e The typewriter is mentioned. 60
f The 1442 is included. 160
i The program READs from the 190

1442.
This program, therefore, will require a 1750-word
overlay. (Note again that it is the *IOCS card, not
your program, that determines the size of this
package.)

Overlay 3. This is the FORTRAN disk I/O package,
which may contain:

SDFIO (620 words), the disk I/O package
SDFND (80 words), the disk FIND package
SUFIO (730 words), the disk unformatted
I/O package

All three subroutines are subtype 1. The size of
this package, therefore, ranges from 0 (no disk
I/O) to 1430 words.

Note that SDFND is not included unless your
FORTRAN program contains a FIND statement.
SDFIO is included if the *IOCS (DISK) card is pre
sent; SUFIO if the *IOCS (UDISK) card is present.

The typical program will require SDFIO and
SDFND, for an overlay size of 700 words.

Section Subsections Page

65 10 I 30 03

The SOCAL Overlay Scheme

Just before you execute a program or store one in
core image format (DCI) , the Core Load Builder
(CLB) is given the task of building a complete core
load, or program package, which will fit into core
storage.

CLB assembles your program and all its required
subroutines, and determines how much core storage
they will require. In so doing, it considers the
subroutines that are to be LOCAL. The CLB then
tries to inc lude the last remaining elements, the three
SOCAL overlays, in four steps:

1. As a first step, CLB attempts to fit all three
overlays in core with no sharing. Using the typical
overlay sizes, this will require 520 +1750 +700 or
2970 words of core.

2. A second step is taken if there is not enough
room to hold all three packages at the same time.
This involves the sharing of core storage by overlay
1 (arithmetic) and overlay 2 (non-disk I/O). The area
they share must be large enough for the larger of the
two overlays, in this case (and almost always) the
non-disk I/O subroutines, overlay 2. The size of
the SOCAL area will now be 1750 +700 or 2450 words,
a reduction of 520 words, the size of overlay 1.

As required by the user's program, Flipper will
read each overlay from the disk whenever it is needed,
placing it on top of the last overlay. Overlay 3, the
disk I/O, will remain in core at all times. Because
Flipper is now needed, your net gain is 520-100 or
420 words.

3. The third step is taken if there is still not
enough room in core storage. It involves the shar
ing of core storage by all three packages, in an area
the size of the largest of the 3 overlays. As before,
this will probably be the non-disk I/O overlay, at
1750 words.

4. If step 3 fails to provide enough room in core,
step 4 will so advise you with a message.

Summarizing the C LB makes a step-by-step
attempt to fit your program and its subprograms into
the available core storage space.

Step 1 involves the most core storage -- typically
about 2970 words.
Step 2 requires about 520-100 or 420 words less
than step 1.
Step 3 requires about 700 words less than step 2.

Figure 65.1 shows the three steps, or overlay levels,
in graphic form. Note that the discussion of this typ
ical program did not include the program itself. Only
the subprograms have been considered.

Section Subsections Page

65 10 I 30 04

If you place an L in column 14 of the / / XEQ
card, the Core Load Builder will print a core map
showing which subprograms, if any, are in which
SOCAL overlay, and the size of each overlay. (See
Figure 65.5 for such a map.)

3000 r

2500 t-

2000 t-

1500 t-

1000 f-

500 t-

o

Step 1
Overlay Level 0

T Overlay
3 Net Gain

Non-Disk -'-I/O

Overlay
2

Non-Disk
I/O

Step 2
Overlay Level 1

~f
Overlay Net Gain

Step 3.
Overlay Level 2

3

-- -'~r---- ---,
1 I I
I 1 1
1 I I

I
Unused 1 1 Unused Overlay Unused 1

2 1 I
Overlay

I I 1
2 1 I I

I I I

1""--1 I
r---

Overlay Overlay Overlay Overlay
1 1 1 3

Arithmetic

Flipper Flipper

Figure 65.1. Core storage layout at each overlay level

Possible Improvements to the SOCAL Scheme

Figure 65.1 illustrates, to a rough scale, the layout
of the SOCAL area at each overlay level. One fact
is apparent: overlay 2 is much larger than either
overlay 1 or overlay 3, and is, in fact, larger than
the two combined. Since the SOCAL area must be at
least as large as the largest of the three overlays,
a certain amount of core storage is unused in some
circumstances.

On the basis of this fact, there are two techniques
that may be used to make the standard SOCAL sys
tem more effective:

Reduce the size of the largest SOCAL overlay.
Since LOCALs, discussed later, take precedence
over SOCA.Ls, you have a means to remove sub
programs from the SOCAL area and to force them
into the LOCAL area. Naturally, you would do this
only to subprograms in the largest overlay, usually
the non-disk I/O package.

Because one LOCAL cannot call another LOCAL,
you must be somewhat careful here. For example,
you cannot LOCALize both the 1132 subroutine and
a subroutine that calls it. One or the other may be
LOCAL, not both.

If you are sure such a situation does not exist,
you can make the following subroutines LOCAL:

Approximate

Name Required for Size in Words

CARDZ 1442 Card Read Punch 160
PNCHZ 1442-5 Card Punch 70
READZ 2501 Card Reader 60
TYPEZ Console Printer 60
WRTYZ Console Keyboard and 90

Printer
PRNTZ 1132 Printer 190
PRNZ 1403 Printer 190
PAPTZ Paper Tape Units 225

(If you accidentally do make one LOCAL call
another LOCAL, the LOADER will call it to your
attention with an error message.)

Each of these routines, if made LOCAL, releases
as much core storage as the size of the routine. It
is unlikely, however, that you can reduce overlay 2
to the same size as the other two overlays unless
you LOCALize the entire 1150-word Format Inter
preter (SFIO).

To see what that would do to the SOCAL system,
let us observe what the three overlays would be if
SFIO were LOCAL (and therefore not SOCAL):

Overlay 1 ARITHMETIC (about 520)
Overlay 2 CARDZ, PRNTZ, TYPEZ,

etc. (about 600)
Overlay 3 DISK I/O (about 700)
You have not saved the entire 1150 words of

SFIO, because now your disk I/O package, overlay
3, at 700 words, is the largest. Your net gain in
the SOCAL area is 1750-700 or 1050 words of core
storage. Furthermore, the LOCAL SFIO at 1150
may now be the largest of the LOCALs, consequently
enlarging your LOCAL area; so you may not really
have saved 1050 words. If the largest LOCAL pre
viously was 800 words in length, and the LOCAL
area is now 1150-800, or 350, words larger, your
net gain is 1050-350 or 700 words. This is still
substantial.

Because all READs and WRITEs (except to the
disk) use SFIO, making SFIO LOCAL rules out the
possibility of making LOCAL any subroutine con
taining non-disk I/O. This may hamper your flex
ibility in using LOCALs and further reduce your
700-word saving.

3000 ~

2500 r-

2000 r-

1500 -

1000 -

500 r-

o

Step 1
Overlay Level 0

Overlay
2970

2

Non-Disk
I/O

Overlay
1

Arith.
and

Disk I/O

Figure 65.2.

Step 2
Overlay Level 1

r---
I Overlay

I Unused 2

I Non-Disk
I/O

Overlay
1

Arith.
and

Disk I/O

Flipper

Step 3
Overlay Level 2

Nonexistent

1750

Section Subsections Page

65 10 I 30 05

Combine Overlays 1 and 3. Again observing
Figure 65.1, you see that overlay 2 is larger than
overlays 1 and 3 together (1750 is greater than
520+700). Why not, therefore, combine these two
overlays into one? This will not save any core, but
it may reduce the amount of time spent in overlaying
one package with another.

Since the subprograms in overlay 1 are all sub
types 2 and 8, and those in overlay 3 are all subtype
1, you need only change SDFIO, SDFND, and SUFIO
from subtype 1 to subtype 2, and they will be included
automatically in overlay 1.

To do this, you may *DUMP SDFIO, SDFND and
SUFIO from the User Area to cards, *DELETE
them, then reload the cards with a 2 punched in
column 11 of the *STORE cards.

If your programs run more slowly or no longer
fit in core, *DELETE the subtype 2 routines and
reload the card decks, this time with a 1 in column
11 of the *STORE card. This will restore them to
their original state.

Figure 65.2 illustrates how your SOCAL area is
affected by this change. For the typical program,
overlay 2 remains at 1750 and overlay 1 grows to
520+700 or 1220 words. Since there are no longer
any subtype 1 subroutines, overlay 3 will have a
size of zero words, and the CLB will, in effect,
skip step 3.

Section Subsections Page

65 10 I 40 01

Local Area

General

Unused

COMMON

Program area

LOCAL area 1-11-
SOCAL area

Flipper

Bas·ic area

Core Storage

The LOCAL (LOad -on -CAL.l) area is a second area
in core storage where the Monitor will overlay sub
programs, although in a manner different from the
SOCAL scheme in these respects:

1. You must specifically designate a subprogram
as LOCAL. It is not automatic.

2. These subprograms are not grouped by any
subtype. Each subprogram forms one overlay, and
each overlay contains one subprogram.

3. You are not limited to three overlays. If you
have 17 subprograms, you may make all of them
LOCAL, thus creating 17 LOCAL overlays.

Like the SOCAL area, the LOCAL area will be
as large as the largest LOCAL subroutine.

LOCALs and SOCALs do not overlay one another.
There are two areas in core storage for subprogram
overlays--one as large as the largest SOCAL over
lay and another as large as the largest LOCAL sub
program.

To give some examples of how LOCALs are
used, take a program that uses five functions and/or
subroutines, called SUB1, SUB2, SUB3, SUB4, and
SUB5. You may designate none, one, two, three,
four, or all five as LOCAL. Those that are LOCAL
will overlay one another, being read from the disk
whenever required; those that are not LOCAL will
remain in core storage at all times.

Subroutines must be specified as LOCAL, with
the *LOCAL card, every time a nSF program is
executed, or at the time a core load is built with
a *STORECI card. Suppose you have a main pro
gram XXXX, which uses the five subprograms
mentioned above:

SUB1 300 words
SUB2
SUB3
SUB4
SUB5

60 words
378 words
406 words

19 words

Total 1163 words

If you execute XXXX with the cards

1.2 3 4 56 78 910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 132~ 3435 j36 7 31~9 4(41 ~2 3 ~I~

II l!o~
1/ xv 14: ~x xx 1
~I! 0(' AL IXX xix It I~ lillA t s ~12 ,s ItJlt3 511 ~4 I, 1/, If I-

you will reduce your core storage requirements by
1153-406 or 747 words, since only enough room for
the largest, SUB4, at 406 words, is needed, rather
than enough for all five, 1153 words.

If you execute xxx:x with the cards

12 34 5 6 7 89 10 II 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 36~7 13139 4(~1 *3~45

1/ JOt3

/ / Kif Ixx Ix >(1
~L Olr 1.4 il xix xx ,s ~8~ 51/ 84

you will reduce your core requi rements by the size
of SUB3 (378 words), since it and SUB4 will overlay
each other. SUB1, SUB2, and SUB5 will be in core
all the time, since they are not mentioned on your
*LOCAL card.

There are several other options in the prepara
tion of the *LOCAL card. For example, the above
example could also have been

12 3 4 5 6 7 89 10 II 1213 14 15 1617 1819 20~i 2223 2425 2627 2829 3031 32133 3435 [3137 3839 14(~1 2 3~45

1/ Vb~
II lxlEitJ IYx KIx I.::
III L OC ~l lXx xl>< 1,15 u~ 3,
".L 10"" ~I.dj ~~

where the comma after SUB3 implies continuation,
or

12 f4 5 6 78 910 1112 1314 15 16 1718 1920 2122 2324 2526 2728 2930 3132 ~34 35iJ' 37138 39 140 ~1~2 344~

1/ JtJi,d
/ / Xlli~ x~ Ixx Z

'iL oc IAl xix Ixlx 1,I.s lu~.3
fl i?C AL x)(XIX ,is 141814

If the program to be executed has just been
compiled, it is located in Working Storage and there
fore has no name. The *LOCAL card in this case
would appear as

12 34 5 6 78 9 10 1112 1314 1516 1718 1920 ~122 2324 2526 2728 2930 ~132 3334 35iJ' ~n8 3940 ~1~2 3441«

1/ l/OB
II IX' Elt'l t-
IL olr At. ~s 1)18.3 151/ lilI4

without a name for the Mainline (calling) program.
(Note the comma in its place.)

If program XXXX calls program Z Z Z Z as a
LINK ((CALL LINK (ZZZZ)), you must specify the
LOCALs for ZZZZ also, at the time you tell the
Monitor to execute (or *STORECI) XXXX

12 34 56 78 9 10 1112 1314 1516 1718 1920 2122 2324 2526 2728 293Q 3132 3334 35[lE 3738 3940 ~1~2

1/ Vo~
1/ ~IE" ,~ il(x' IX IX Z
¥t- oe 4LX 1\1 "1 1.Q3 .5iLJ 1A4
r/L olr I4/z 2'12 51) 1E7? .5~ ~'11t l'i ~3

where SUB77 and SUB91 are other subroutines
LOCAL to ZZZZ.

34445

Section Subsections Page

65 10 I 40 02

IBM-Supplied (Systems) Subroutines

In addition to your own subprograms, you may
also deSignate many of the IBM-suppliedsubpro
grams as LOCALs. All subroutines and functions
except ILSOO, ILS01, ILS02, ILS03, and ILS04, the
Interrupt Level subroutines, can be made LOCAL.
As a practical matter, however, it is often difficult
to LOCALize such subroutines, because many of
them call several other subroutines, and one LOCAL
cannot call another LOCAL.

This was mentioned earlier, when it was sug
gested that some subprograms, ordinarily SOCALs,
could in fact be made LOCAL instead.

Section Subsections Page

65 10 I 50 01

Program or LINK Area

Unused

COMMON

Program area

lOCAL area

SOCAl area

Flipper

Basic area

Core Storage

This area will contain
1. Your mainline program
2. All of your subprograms that are not LOCAL

or SOCAL.
3. All of the IBM-supplied subprograms that are

not LOCAL, SOCAL, or subtype O.

4. All data (variables and constants) used by the
mainline and/or its subprograms, not placed in
COMMON.

This forms the third area in core where overlays
may be employed; in this case one program package,
or LINK, will overlay another.

As in the case of LOCALs, this is not done auto
matically; it must be planned and executed by you.

Suppose you have written a very large (10,000-
word) program, named BIG. When you try to ex
ecute it, you are informed by the Monitor that it is

too big. Looking at the program, however, you see
that it can actually be thought of as four program s,
connected as shown in Figure 65. 3 .

If you split BIG into four programs and place the
CALL LINK statements in the proper places, the
four will run essentially the same as one large pro
gram (although possibly a little slower). Each pro
gram or LINK may have its own SOCALs, LOCALs,

variable data, subprograms, etc. However, if the
LINKs must communicate with each other through
core-resident data (rather than disk data), this data
must be placed in the COMMON area, with the
COMMON statement (see next subsection). During
execution of such a program, while the location and
contents of the SOCAL, LOCAL, and LINK areas
may be continually changing, the COMMON area
does not change. It stays in the same place and is
not involved in any overlay.

BIG1

CALL LINK (BIG2)

,
"

BIG2

CAll LINK (BIG3)

1r

BIG3

BIG4

If not If CALL EXIT
finished: finished:

CALL LINK (BIG2) CALL LINK (BIG4)

Figure 65.3. A program. "BIG". segmented into four links

COMMON Area

Unused

~ ___ C~O_M_M_O~N~~-4~
Progra[n:area

LOCAL area

SOCAL area

Flipper

Basic area

Core Storage

The COMMON area, because it is not over-laid,
provides a means by which SOCALs, LOCALs, and
LINKs may communicate with each ot}ler via core
storage. SOCALs and LOCALs, because they are
subprograms, may also communicate through the
arguments in the CALLing statement. One LINK,
on the other hand, must use COMMON to pass data
to another LINK.

You must determine what data has to be passed
from one LINK to another. If BIG 1 obtains X from
a card, and BIG2 requires it for a computation, X
must be placed in COMMON. If BIGI obtains DATE
from a card, and BIG4 uses it in a printed summary,
DATE must be passed from BIGI to BIG2, from
BIG2 to BIG3, and from BIG3 to BIG4, even though
BIG2 and BIG3 do not need it. In other words, DATE
(or its equivalent) must appear in the same relative
position in a COMMON statement in all four LINKs.

To illustrate, suppose six items must be passed
from one program to another: DATE, TABLE, K,
X, Y, and ANS. The following table shows how the
four LINKs use these six items:

Variable Description BIGI BIG2 BIG3 BIG4 ----
DATE Real variable X X
TABLE Array of 100 X X X

items
K Integer X X
X Real variable X X
Y Real variable X X
ANS Real variable X X

Section Subsections Page

65 10 I 60 01

There are many different ways yo.u can accom
plish this, the easiest being to compose one COM
MON statement

COMMMON DATE, TABLE (100), K,X, Y,ANS

and include it in BIG1, BIG2, BIG3, and BIG4.
Another way would be to use the following COM

MON statements:

in BIGI
in BIG2
in BIG3
in BIG4

COMMON DATE, TABLE (100)
COMMON DATE, TABLE (100), K, X, Y,
COMMON DATE, TABLE(lOO),K,X, Y,ANS
COMMON DATE, TABLE(lOO),K,X, Y,ANSWR

Here you see that the size of COMMON in BIGI and
BIG2 is reduced, since unneeded items are not
retained. Some unneeded items (like K in BIG3)
cannot be eliminated, since you must preserve the
relative location (structure) of COMMON from one
program to the next, not just the name.

Note that the name of the last variable changes
from ANS to ANSWR in LINKing from BIG3 to BIG4.
This does not matter, since only the relative posi
tion in core storage is important, not the name.

There are many other ways in which COMMON
may be arranged. To take advantage of the fact
that BIG4 does not use X, Y, or the TABLE
array, we may use

in BIGI
inBIG2
inBIG3
in BIG4

COMMON DATE,K,ANS, TABLE(lOO),X, Y
COMMON DATE,K,ANS, TABLE(lOO),~, Y
COMMON DATE,K,ANS, TABLE (lOO)X,Y
COMMON DATE,K,ANSWR

which reduces the core requirements of BIG4 by
102x3 (or 2) words, depending on the precision
used.

Section Subsections Page

65 10 I 70 01

UNUSED Area

This is whatever core storage remains after the
other six areas have been loaded. It must be zero

or more words in length. Good programming
practice suggests that it should be at least 100
words, to provide for future growth of the Monitor
System, IBM subroutines, and/or your programs.

Unused

COMMON

Program area

LOCAL area

SOCAL area

Flipper

Basic area

Core Storage

SUMMARY

This section has described the seven logical areas
of core storage, with the emphasis on their overall
roles rather than on exact details. As mentioned
earlier, all quoted subroutine sizes are approximate,
and are based on a so-called "typical" commercial
type program, coded in FORTRAN. You should not
necessarily conclude that these figures will apply to
your "typical" programs; they mayor may not.

The bulk of the material in this chapter concerns
SOCALs, LOCALs, and LINKs--how they work.
Section 90 concerns how they should be used and how
they affect program performance.

Figure 65.4 graphically summarizes what has
been covered in this chapter.

Figure 65. 5 shows a "core map", printed if you
punch an L in column 14 of the I / XE Q card. From
this printout you can determine the exact sizes of
some of these packages:

• The size of the Unused area is contained in
the R41 message.

Approximate
logical Sub- Typical When

Area Area Size Present Comments

Monitor Rasident 740 words Always
Monitor

Transfer Vector

I n Core Subprog.
Subtype 0

Flipper 100 words Only if LOCAL's or
SOCAL's are used

SOCAl Overlay 1 520 words Almost always Approximate, typical
(Arithl size will be either
---- ---1------ 2970 Or 2450 or 1750

Overlay 2 1750 words Almost always words
(Non-DiSk I/O)

---- - -- ----
Overlay 3 700 words Only if Disk I/O
(Disk I/O) is used

lOCAL lOCAL No.1 Size of Only if user in-
lOCAL No.2 largest cludes a LOCAL

LOCAL card
subprogram

lOCAL No. n

Program Non-50CAL or Unknown; Always
or lOCAL Sub- depends on

Link programs program
coding

Data

Object
Mainline
Program

Common Unknown; Only if user in-
depends on cludes COMMON
program statement on
coding program

Unused
Unknown; See the R41 message

whatever is of the core map for

left over exact size

Figure 65,4.

Section Subsections Page

65 20 I 00 01

• The size of the SOCAL area can be determined
from the largest value contained in the R43, R44,
and/ or R45 message.

• The size of the LOCAL area may also be
determined from the core map. If SOCALs are
present, the size of the LOCAL area is the address
of the lowest SOCAL subroutine, less the address
of the next higher non- LOCAL. In this case it
would be 170C - 1567, or, in decimal, 5900-5479
or 321 words,

• Flipper (FLIPH), if present, is always about
100 words in length.

• The sizes of the other areas--Basic, Pro
gram, and COMMON--cannot easily be determined
from the load map.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1/ XEQ PAYRO L 2
*F I LES (1, F I LEI~)
*LOCALPAYRO,SURW,SUHZ,SUHY1,SUHY2,SUBY3
FILES ALLOCATION

1 01A3 0001 7061 FILEN
22 0000 0001 7061 01A7

STORAGE ALLOCATION
R 40 03E3 (HEX) ADDITIONAL CORE REQUIRO
R 43 01FC (HEX) ARITH/FUNC SOCAL liD CNT
R 44 06E8 (HEX) FI/O, 110 SOCAL WD (NT
R 45 02A2 (HEX) DISK FIIO SOCAL WD CNT
R 41 OOA4 (HEX) WDS UNUSED BY CORE LOAD
CALL ~RANSFER VECTOR

DATSW 1902 SOCAL 1
SUBY3 1701 LOCAL
SUBY2 17C9 LOCAL
SUBY1 17(9 LcicAL
SUBZ 1701 LOCAL
SUBW 1765 LOCAL

LIBF TRANSFER VECTOR
HOLTB lEBR SOCAL 2
EADDX 1883 SOCAL 1
XDD 1988 SOCAL 1
FARC 1966 SOCAL 1
XMD 1924 SOCAL 1
ELDX 1528·
i\lOkl'vl 1594
HOLEZ 1E52 SOCAL 2
EBCTB lE4F SOCAL 2
GETAD lE06 SOCAL 2
IFIX 1568
PAUSE 18Ee SOCAL
ESBR 18D8 SOCAL
EADD 187D soeAL
EDIV 1824 SOCAL
EMPY 17F6 SOCAL
EDVR 17DE SOCAL
FLOAT 155E
SUBSC 1540
ESTO 1516
ELD 152C
PRNTZ 1D48 SOCAL 2
CARDZ 1C9E SOCAL 2
wRTYZ 1C62 SOCAL 2
SFIO 18D9 SOCAL 2
SDFIO 1885 SOCAL 3

SYSTEM SUBROUTINES
ILS04 00C4
ILS02 00B3
ILS01 1EC2
ILSOO 1EDD
FL'"IPR 15De

1467 (HEX) IS THE EXECUTION ADDR

Figure 65,5.

Section 70: 1130 FORTRAN AND THE COMMER
CIAL SUBROUTINES

CONTENTS

Introduction•.....•...••..•.•.. 7 0.01.00
Arithmetic Considerations .••.••...... 70.10.00

General•......•...•••..••.••. 7 O. 10. 01
Integer Mode 0...................... 70.10.10
Real Mode •.•....••••...•....••..•• 70.10.20

General
Real -- Floating Point
Real -- Fixed Point
Rounding
Accuracy and Magnitude
Output of Large Real Numbers
Multiplication of Large Real Numbers

Decimal Mode •......•....••.....•.. 70.10.30
Introduction
General Principles
The Decimal Arithmetic Subroutines

Addition
Subtraction
Multiplication
Division

Constants
Te sting and Modifying Signs
Moving Signs
Comparing Decimal Fields

Summary •.•...•..•.....•.••.......
Overlapped Input/Output ..•..•.•......

Introduction •.•........•••....•.....
The Commercial Subroutine Package
Over lapped I/O Subroutine s ..•.....••

General
Head a Card, 1442-6 or 7
Punch a Card, 1442-6 or 7
Select Stacker, 1442-6 or 7
Print on 1132
Skip on 1132
Type on Console Printer
Accept Data from Console Keyboard
A precaution -- IOND

Using the Overlapped I/O System
General
Orerlapping and Your Program
FOR TRAN TRACE Not Permitted
Alphabetic Headings

The Interaction of Arithmetic and I/O ...
Character Handling Techniques ••...••.

General .•.••...•..••...••..•.••...•

70.10.40
70.20.00
70.20.01

70.20.10

70.20.20

70.30.00
70.40.00
70.40.01

Section Subsections Page

70 00 I 00 01

Code Conversion. 70.40.10
Integer to Real -- FLOAT
Real to Integer -- IFIX
Al to Real -'- GET
Al to Integer
Real to Al -- PUT
Integer to Al
Al to Decimal -- AIDEC
Deci~al to Al -- DECAl
Al to A2 -- PACK
A2 to Al -- -UNPAC
Other Code Conversions

Other Character Handling Techniques. . 70.40.20
Editing Output -- EDIT
Moving Data Fields -- MOVE
Filling a Field with a Specific
Character -- FILL
Comparing Alpha Fields -- NCOMP

Match/No Match Alpha Compare
High/Low/Equal Alpha Compare

Working with Zone Punches -- NZONE
The NZ ONE Subroutine

FOR TRAN Core Saving Tips
General '
Reducing Program Size

Use the DATA Statement
Keep FORMAT Statements Compact
Code Efficient 1/ 0 Statements
Avoid Long Subroutine Argument
Lists
Avoid Arithmetic with Variables
Having Constant Subscripts

Reducing Subroutine Requirements ...
Raising a Real Number to a Whole
Power
SQRT vs **.5
Don't Include Unneeded I/O Devices
on *IOCS Card
Remove FIND Statements If You
Have SOCAL's or LOCAL's
Remove the TRACE from Production
Status Programs

FORTRAN Execution Time s
Processing
Summary and Conclusion .•...••.•..

70.50.00
70.50.01
70.50.10

70.50.20

70.60.00
70.60.10
70.60.20

INTRODUCTION

The primary purpose of this chapter is to discuss
the use of 1130 FORTRAN in a commercial environ
ment. Many of the topics, however, will also be of
use to the technically oriented user. Topics include:

• Arithmetic considerations -- a discussion of
integer, real, and decimal arithmetic, with partic-

Section Subsections

70 01 I 00

ular attention to the accuracy and magnitude of
numerical values

Page

01

• Input! output--explaining the overlapped Ilo
subroutines and how they can improve performance

• The interaction between inputloutput and
arithmetic

• Core storage saving tips for FORTRAN
programmers

• Estimating run time of FORTRAN programs

Section Subsections Page

70 10 I 01 01

ARITHMETIC CONSIDERATIONS

General

Of prime interest to commercial 1130 users is the
precision and accuracy of their arithmetic cal
culations. Many engineering and scientific appli
cations have very little need for answers with more
than five or six digits of accuracy. Much of the
input data comes from physical measurements (6. 34
pounds, 18.97 inches, etc.) that are only approximate
anyway, so the resulting answers (with some ex
ceptions) must also be considered approximate.

However, in an accounting application,
$713,403.14 is exactlythat--$713,403.14. If you
add up your sales by area, by salesman, by item,
by customer, etc., the grand total for each had
better be the same, right down to the last penny.

For this reason, commercial programmers must
be familiar with the ways the 1130 does arithmetic,
and aware of their advantages and disadvantages.

For purposes of discussion, three are four ways
to do arithmetic on the 1130 system:

Integer mode
Real mode, floating point
Real mode, fixed point
Decimal mode

Integer Mode

An integer is defined as a whole number, a number
with no fractions. Using 1130 FORTRAN, integers
are limited to a magnitude of +32767 to -32768.
This range is due to the fact that an integer must fit
in one 16-bit word. 32767 is the largest positive
number that can fit in one word (0111111111111111,
where the first bit represents the sign); -32768 is
the largest negative number.

Because of these two limitations (magnitude, and
lack of fractions) you must be careful in your use of
integer mode arithmetic. Integer mode is generally
used for counters and indicators. However, if you
desire to keep track of the position of the decimal
point yourself, you can use integer arithmetic to
process data with implied decimal points.

Section Subsections Page

70 10 I 10 01

For example, if you lmow that pay rates at your
company range from $1. 25 to $6.50 per hour, you
could represent these rates as integers ranging from
125 to 650 cents per hour. If rates ranged from
$1. 250 to $6.500 per hour, with some rates involv
'ing fractions of cents (say $3.375 per hour), they
could be represented as integers from 1250 to 6500
mills per hour.

Since mixed mode arithmetic is permitted in 1130
FORTRAN, ,there is no problem involved in multi
plying the integer IRATE by the real HOURS:

PAY = HOURS * IRATE
If IRATE is 3125 ($3.125 per hour) and HOURS is
33.5, PAY will be 104687.5. After the multipli
cation you must be careful to reposition the decimal
point in the proper place ($104.6875) and round off
($104.69) before printing the result or accumulating
totals.

Section Subsections Page

70 10 I 20 01

Real Mode

General

A real number may be defined as a number with a
decimal point; fractions are allowed. If you use 1130
FORTRAN for real arithmetic, the arithmetic sub
routines will keep track of the decimal point for you,
and the output subroutines will place it in the proper
place in the output results.

On the 1130, a real number may be thought of as
having four components:

1. The whole portion
2. The fractional portion
3. A pointer indicating the location of the

decimal point
4. A positive or negative sign

For example, the number 267.4 has:
1. A whole portion, 267
2. A fractional portion, .4
3. A pointer indicating that the decimal point

is between the 7 and the 4
4. A positive sign
Since the 1130 is a binary computer, these four

components are represented in binary form as
follows:

• The 267 as 100001011
• The. 4 as .011001100110--"'"-
• A pointer of 9 showingthat the binary point is

between the ninth and tenth bits
• The sign is positive (a 0 bit)
Rearranging and simplifying somewhat, this can

be written as (9, +, 100001011, .011001100110----)
The first value, the 9, is , in decimal, the number

of bits in the whole portion; the second item is the
sign; the third value is the whole portion itself; the
last value is the fraction.

The number of bits available for the whole and frac
tion combined depends on the precision option selected:

• Standard precision allots 23 bits for these
two items.

• Extended preciSion allots 31 bits for them.
The whole portion of the number, since it is more

significant, gets first choice of the available bits.
In this case, the whole portion (267) requires 9 bits,
leaving either 14 or 22 bits for the fraction, depend
ing on the preciSion chosen.

This can cause inaccuracies, since most fractions
cannot be represented exactly in 14 or 22 bits, or in

any number of bits, for that matter. To see why,
let us see how . 4 in the above example is repre
sented in binary notation. You are probably familiar
with the binary system for whole numbers (1,2,4,8,

012 345 16 , 32, etc., or 2 , 2 , 2 , 2 , 2 , 2 , etc.,
respectively) . In the case of fractions, the values
proceed from the decimal (or binary) point to the
right as 1/2, 1/4, 1/8, 1/16, 1/32, etc., or 2 -1,
2-2, 2-3 , 2-4 , 2-5 , etc., respectively.
For example, .625 is

.1010000000
or 1/2 plus 1/8
or .5000 plus .125.

It can be represented exactly in only three bits;
however, this is unusual.

The example, .4, appears to be a rather simple
number, and you might think that it also can be re
presented exactly as a binary fraction. The table
below shows that this is not true:
Bit Used = 1
Position Value Not Used = 0 Subtotal

1 .5 0 .0
2 .25 1 .25
3 .125 1 ,.375
4 .0625 0 .375
5 .03125 0 .375
6 .015625 1 .390625
7 .0078125 1 .3984375
8 .00390625 0 .3984375
9 .001953125 0 .3984375

10 .0009765625 1 .3994140625
11 . 00048828125 1 .39990234375
12 .000244140625 0 .39990234375

You see that the binary representation can come
close to .4 but never hit it. With 12 bits
(.011001100110) the decimal value is .39990234375;
with 16 bits, .399993896484375; with 20 bits,
.3999996185302734375; etc.

The fraction chosen, .4, is not an unusual number;
it is typical of most fractions.

Unlike fractions, whole numbers can be represented
exactly in binary form. However, you do reach a
limit, depending on the number of bits available. In
standard precision, if you use all 23 bits for the
whole portion, you -can attain a magnitude of
8,388,607. With extended precision, the 31 avail
able bits yield 2,147,483,647.

Real--Floating Point

The term "floating point" implies that the decimal
point is permitted to "float" among the digits in a
real number. In other words, the 1130 aritlunetic
subroutines will keep track of the location of the
decimal point and move it about to maintain the
validity of the number. If you multiply $1. 78 per
hour by 32.20 hours, the answer becomes $57.3160.
The decimal point "floats", thus remaining correctly
positioned at all times.

As you saw before, though, the result may not be
exact, since . 316 probably cannot be represented
exactly as a binary number. In fact, the 1. 78 and
the 32.20 were both probably inexact, too.

If you are doing an engineering or other non
commercial job, the answer is probably good enough;
it matters little whether the result is 57.316000 or
57.316003 or 57.315999. If your application is com
merciallyoriented, however, close is not good
enough, since you are probably dealing with cash.
Because accounting balances are so important,
answers must he exact, down to the last unit
(penny, box). It is not that people will worry about
the penny itself, but that unbalanced totals tra
ditionally indicate an error. If the face value of
600 payroll checks totals $12345.67, while the
system ts grand total is $12345.68, something may
be seriously wrong somewhere. The fact that the
net error is only one cent is immaterial; there
may be 300 people overpaid by one cent, and 299
underpaid by one cent.

Section Subsections Page

70 10 I 20 02

Real-- Fixed Point

To eliminate the inaccuracies described above, you
can use real arithmetic in a "fixed point" mode.
"Fixed point" means that the decimal point is kept
fixed to the right of the least significant digit, elim
inating fractions altogether.

Earlier, you saw that 1. 78 times 32.20 gave
57.3160, an answer that probably was inexact. If,
however, you had used real, fixed point arithmetic,
you would have multiplied 11\78. by 31\220., and
obtained 571\3160., exactly. All three numbers,
since they involve no fractions, will be exact, not
just close. Note that the 1\ is used to locate the
implied decimal point.

This puts a slight burden on your programmer:
instead of letting the subroutines keep track of the
decimal point for him, he must now do it himself.

Using the values mentioned above, 1. 78 times
32.20 is 57.3160 (dollars), while 11\78. times 321\20.
is 571\3160. (ten thousandths of dollars). In the
latter case, you must remember that the true
decimal point is four places to the left of the one
supplied by the system.

Section Subsections Page

70 10 I 20 03

Rounding

Suppose you have just calculated an employee I s gross
pay as 107/\5673. (understood to be $107.5673) and
wish to apply a deduction of $19.733 (represented as
19,,733.). Notice that the decimal points are not
"lined up"; the units are not the same--the gross is
in hundredths of cents, and the deductions are· in
tenths of cents.

How do you perform this subtraction?
a. 107,,5673. - (19,,733. x 10.)
b. (107,,5673. /10.) - 19,,733.
c. (107,,5673./10000.) - (19,,733./1000.)

None of these is correct. Before subtracting, you
must round these two quantities -- commonly to the
nearest cent.

In the case of the 107,,5673. gross, you must add
1/2 cent or 50. hundredths, obtaining 107,,5723. ,
then divide by 100, to get 107,,57.23. Now, since
the. 23 is both inexact and meaningless, it must be
eliminated. The WHOLE function supplied with the
Commercial Subroutine Package converts the
fractional part of the number to zeros.

All three functions-- round, shift and clear
fractions -- can be done in one statement. The
statement

GROSS = WHOLE «GROSS + 5~.)*~. 01+0. 5)
rounds off GROSS, shifts it two places to the right,
and clears everything remaining to the right of the
decimal point to zeros. Note that multiplication
rather than division was used (see Section 70.50.00).

In the case of the deduction, you would say
DEDUC = WHOLE «DEDUC +5.) *0.1+0.5)

Now both values have been rounded and are in whole
cents, with all extraneous fractions cleared. Note
what would have happened if the fractions had not
been cleared:

10757.23
1973.80
8783.43

The correct answer is:

10757.00000
1973.00000
8784.00000

You may wish to code several arithmetic statement
functions, each one shifting a predetermined number
of places to the right:
RND1(X) = WHOLE (X+X/ ABS(X)*5. 0)/10. +0.5)
RND2(X) = WHOLE «X+X/ ABS(X)*50. 0)/100. +0. 5)
RND3(X) = WHOLE «X+X/ ABS(X)*500. 0)/1000. +0.5)
etc.
where the fourth character of the FUNCTION
name indicates the number of places to be shifted.

Accuracy and Magnitude

Suppose you are using extended precision real
numbers, where 31 bits are available for the whole
number and fraction combined. How large a number
can you have? 2,14.7, 4S:3 ,6.47?N()., th~.tis just
the largest number that can fit in 31 bits. Values
much larger are possible-- for example,
1,000,000,000,000,666,777,888., which can easily
be handled in the 1130.

The decimal point indicator can be as large as
64 in binary, or about 38 in decimal, meaning
that extremely large real numbers can be repre
sented on the 1130.

The drawback is their accuracy. Especially in
commercial applications, numbers must be precise.
Thenumber 1,000,000,000,000,666,777,888. can be
read into the 1130, but it will be accurate only to
nine or ten decimal digits. In other words, the nine
most significant digits will be retained, but the re
maining digits will be lost. The decimal point indi
cator will show the proper magnitude, but the
number is not accurate.

If you want accurate results, you must not exceed
the 31 bits (2,147,483,647.) or 23 bits (8,388,607.)
available.

Furthermore, if you want accurate numbers, you
must not allow any fractions to be generated.

Combining the above two warnings, then, means
that you should limit real numerical values to the
whole numbers between -2,147,483,648. and
+2,147,483,647. Any number outside this range
will probably not be exact; most fractions will
probably be inexact.

If you work commercial problems in cents, you
are limited to $21,474,836.47 (carried as a whole,
fixed point real number). The limit is $2,147,483.647
if you wish to work in mills.

These limits are usually ample for jobs such as
payroll, etc., but may be troublesome in
accmmting-type work, where year-to-date sales,
total assets, etc., may exceed $21 million. If this
is the case, the decimal arithmetic subroutines of
the 1130 Commercial Subroutine Package may be
used.

Output of Large Real Numbers

A second precaution must be taken with very large
numbers, and it falls in the area of output. Because
most fractions are inexactly represented and will
al ways be less than the true decimal value, the
FORTRAN output routines (including the TRACE)
always add a single bit in the low-order position of
the number, attempting to compensate for this
inaccuracy. For this reason, you rarely notice the
inaccuracy.

For example, if you multiplied 0.35 by 100.0,
you would expect to get 35., exactly. The binary
result, however, converted to decimal, is

34.9999999999999999757138713 ...
(because the multiplier of 0.35 is an inexact
fraction). That is not the result you see, though,
since the FORTRAN output routine adds its one low
order bit, resulting in

35.0000000298023223634091838 ...
Although that is no more exact than the previous
value, it looks better; in fact, you would never
notice the extra

.0000000298023223876953125
unless you output the number with a format like
F40.20, which would be unusual.

If your number is large, however, this "little
extra" can cause the output to be noticeably in error.
For example, the whole number 2111111111. , while
represented exactly in core storage, will be output
as 2111111112., an -error of 1. unit.

This problem will occur with numbers in the
range 1,073,741,824. to 2,147,483,647. if they are
output with a standard FORTRAN F format. For
this reason, you may wish to limit the magnitude of
all numbers to 1,073,741,824., or, easier to
remember, nine digits (999, 999, 999.)

This problem does not occur if the value is printed
as alphabetic data, converted by the PUT subroutine
of the Commercial Subroutine Package. This
routine will not add the extra bit, and all whole
numbers up to 2, 147, 483, 647. will be output exactly.

Section Subsections Page

70 10 I 20 04

Multiplication of Large Real Numbers

Because of the manner in which the 1130 performs
multiplication, a product is accurate only to 30 bits.
This means that a product exceeding 1,073,741,823.
may not be exactly correct, In fact, there is a 75-25
chance that it will be correct, and a 25-75 chance
that it will be off by 1. unit.

While this is quite satisfactory for technical
work, it cannot be permitted in most commercial
applications. For this reason, you should avoid
multiplications that might yield such a large product.

Note that this limitation does not apply to addition
and subtraction, where all 31 bits may be used -
and the upper limit is 2,147,483,647.

Section Subsections Page

70 10 I 30 01

Decimal Mode

Introduction

In addition to integer and real mode arithmetic,
there is a third alternative: decimal arithmetic.
This capability is furnished by a group of subrou
tines supplied with the Commercial Subroutine
Package (1130-SE-25X). This mode of arithmetic
permits variable precision.

Using the decimal arithmetic system, you select
the number of digits to be used for each variable.
If a grand total can attain a magnitude of 15, 000,
000,000.00, you can allocate 13 digits for it; if the
number of employee dependents never exceeds 99,
you may allocate only two digits for that value.

You are not limited by magnitudes of 32767,
2,147,483, 647., etc. You decide how large a
number can become and set aside enough digits
for its storage.

General Principles

This arithmetic system operates on digits stored
as integers, one digit per word. For example, the
value 1968 would be stored in a four-position array
NYEAR as

NYEAR (1) 1
NYEAR (2) 9
NYEAR (3) 6
NYEAR (4) 8

or in a six-position array as
NYEAR (1) 0
NYEAR (2) 0
NYEAR (3) 1
NYEAR (4) 9
NYEAR (5) 6
NYEAR (6) 8

or in any size array you desire.
Negative values carry the minus sign with the

low-order (or rightmost) digit. However, since

the 1130 cannot represent -0, a special method has
been devised to show negative numbers. If the
number is negative, the low-order digit is carried as
one less than its true value.

For example, -1968 is actually held in core
storage as

NYEAR (1) 1
NYEAR (2) 9
NYEAR (3) 6
NYEAR (4) =-9
For ease of reference, we will refer to this as

1968, where the minus sign is written over the
low-order digit.

You need not worry about this unless you are de
fining negative constants, which should be unusual.
If a negative number is read from a card, this con
version will be done for you, with the AIDEC
subroutine.

The magnitude of each value will be shown by the
number of digits: 001968 implies a six-digit or
six-word value, 0000001968 implies a ten-word
value.

Each decimal arithmetic value requires three
identifying parameteTs:

• The NAME of the array in which it is stored.
• KSTRT, the position (or subscript) of the
high-order (leftmost) digit in the array.
• KLAST, the position of the low-order digit in
the array
When referring to decimal arithmetic values, a

shorthand abbreviation will be used, enclosing these
three parameters in parentheses:

(NAME,KSTRT, KLAST)
For example, if you had a 20-word array called

NUMBR:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
000136430 077 B 3 0 0 081 3

then
(NUMBR, 1, 6) 000136 or -136
(NUMBR, 1,5) 00013 or 13
(NUMBR, 7,19) 4300778300081
(NUMBR, 15,20) = 00081a or -813

The Decimal Arithmetic Subroutines

The IBM 1130 Commercial Subroutine Package fur
nishes subroutines to perform the following four
arithmetic operations:

ADD to add two decimal values
SUB to subtract two decimal values
MPY to multiply two decimal values
DIV to divide two decimal values

All four have similar calling sequences, requiring
three basic elements:

The identification of the first variable
The identification of the second variable
An error code

Since the identification of each variable requires
three parameters (e.g. ,NUMBR, 1,6), each sub
routine has a total of seven parameters.

If no error conditions occur, the subroutine
leaves the error code, NER, set to whatever value
it had when the subroutine was called. Note that the
subroutines merely set the indicator NER. They
do not pause, print a message, or take any other
definite action. It is up to you to set NER before
calling the subroutines, and to test it after each is
complete.

Addition. The general form of the ADD sub
routine is

CALL ADD (addend, augend, error code)

where the addend is added to the augend, and the
result is left in the augend.

There are two possible error conditions. Both
are illustrated in the accompanying examples (Fig
ures 70.1 through 70.6).

Subtraction. The general form of the Subtract
subroutine is

CALL SUB (subtrahend, minuend, error code)

where the subtrahend is subtracted from the minuend,
and the result replaces the minuend.

There are two possible error conditions. Both
are included in the accompanying examples (Figures
70.7 through 70.11).

Multiplication. Because of its nature, multiplica
tion is somewhat more involved than addition and
subtraction. For example, if you multiply two

Section Subsections Page

70 10 I 30 02

two-digit numbers, 95 and 86, your result is 8220,
a four-digit number. If you multiply a three-digit
number, 666, by a two-digit number, 55, your
answer is 36630, a five-digit number. The result
of a multiplication, the product, may have as many
digits as the sum of the number of digits in the
multiplier and the multiplicand. Therefore, you
must provide that many digits for the result.

The MPY subroutine accomplishes this in a very
straightforward manner. The multiplicand field,
which will be the eventual location of the product,
is extended to the left the same number of digits as
are contained in the multiplier. For example, if
you multiply a four-digit number by a two-digit
number, the subroutine will extend the four-digit
field to the left two places, to hold the six-digit
product.

It does this regardless of what was in these posi
tions previously. Obviously, you must consider this
fact when laying out your data areas in core storage.

Figures 70.12 and 70. 13 present several ex
amples of the use of the MPY subroutine.

Division. The divide subroutine, DIV, has the
calling sequence

CALL DIV (divisor, dividend, error code)

with the result placed in the dividend field.
Before covering the DIV subroutine, a quick re

view of division might be in order. If you divide
13 by 4, the result i!3 3 1/4, where

13 is the dividend
4 is the divisor
3 is the quotient
1 is the remainder

In other words:

dividend
divisor

quotient + remainder
divisor

This is the form of the result after use of DIV -
a quotient of 3 and a remainder of 1. Note that the
result is not 3.25. For this reason special care
must be taken when half-adjusting the result of a
division. Also note in Figures 70.14 through 70.17
that the length of the remainder field will be the
same as the length of the divisor.

Section Subsections Page

70 10 I 30 03

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION

BEFORE X = Extraneous Data

IWORK: Will remain unchanged

11.1213141516171819110 1111

IK~PKI :rT;r:r 18191101111121131

~

I

" • CODING
~ADDEND AUGEND, THEN SUM~

SUBTRAHEND .. - MINUEND, THEN SUM

MULTIPLIER - MUl TlPLieAND':==:I
THEN PRODUCT

DIVISOR - DIVIDEND,

NER =D THEN QUOT AND REM

A J.. , V ,
CALL (NER) ,--,--, ,--, -r-'

,)1..)

./
y ,

/
r

AFTER
-- NER =

IWORK: Unchanged J

I

1

1213141516171819110 111 I t KWORK: Result

I
1

12131415161718191
1
11131

COMMENTS

Section Subsections Page

70 10 I 30 04

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION AO£)/T/O/v Or TWcJ ;-/VE-,L)/6/T ";:/ELDS

BEFORE x = Extraneous Data OOO~6
00010

IWORK: Will remain unchanged
0OO4B

1 2 3 4 5 6 7 8 9 10 11

/ .3 X
KWORK: Will contain result

(/ 0 0 X X)(X- X 1 2 3 4 5 6 7 8 9 10 11 12 13

X X X 0 (/ 0 3 0 X X .,.'><..'), />(

~

,
"' I

CODING
t=:ADDEND :~ AUGEND, THEN SUM-=:::j

SUBTRAHEND MINUEND, THEN SUM

NER=lol
A A

CALLALW
I V ,

(£J1/?1RK ,~, ..5,KWORK; 4,a ,NER)

L- JI,.,)

/ ~ ~

AFTER /
,

--

J

NER = 0

IWORK:

1 2 3 4 5 6 7 8 9 10 11 t
() 0 X

KWORK: Result
0 / 3 X X X X >< 1 2 3 4 5 6 7 8 9 10 11 12 13

X X >< U 0 0 4 9 X X X >< X

COMMENTS

NER IS STILL 0., SO THE
ADDITION W~S CORRECT.

Figme 70,1,

Section Subsections Page

70 10 I 30 05

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION A,OLJ/T/OA/ 0; TJ1/0 4 -o/6/T P/ ELOS:
I1/H'ER£ o/V£ /S /VEG4)'7J/E. SU'/W/Sp,oS/77Ve

BEFORE X = Extraneous Data 0030
-OO2~

IWORK: Will remain unchanged
0004

1 2 3 4 5 6 7 8 9 10 11

- KWORK: Will contain result
X X X >< 0 0 2 ~ X X >< 1 2 3 4 5 6 7 8 9 10 11 12 13

THE GO 15 0 0 3 0 X X X X X X X X X

ACTUALLY IN ~
CORE STOeAGE
,4.5-7

" • CODING

:~ I:==": ADDEND AUGEND, THEN SUM==:!

SUBTRAHEND MINUEND, THEN SUM

NER = @]
A A.

I V ,
CALL ADD (IWO£K , 5, a ,KWc/k'K, --L-, 4- ,NER)

, JI.. .J

./ y ,
.1.

AFTER /
r

-- NER = 0

IWORK:

1 2 3 4 5 6 7 8 9 10 11

- KWORK: Result t
X X X)((2 0 2 G X X X 1 2 3 4 5 6 7 8 9 10 11 12 13

a 0 0 4 x x x x x x x X ><

COMMENTS

Figure 70. 2 •

Section Subsections Page

70 10 I 30 06

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION AO£)IT/O/1/ c:Jr- TJ1/0 ~-L)/G/T F/ELOS~

WHERE ONE /S/vEGAT/VE. Sc/U /S NEC?ATIVE

BEFORE X = Extraneous Data -000065
000010

-000055
IWORK: Will remain unchanged

1 2 3 4 5 6 7 8 9 10 11

a 0 0 CJ L CJ X
KWORK: Will contain result

X X X ><

1~1;1:1:1;1~171819 [1lTl31
THE:5 /s /NCORE~
STORAG€ AS-~ ,

" .-
CODING

t=:ADDEND :t AUGEND, THEN SUM ==:I
SUBTRAHEND MINUEND, THEN SUM

NER = [QJ
A A

I)r \
CALLAOO (I wa~ ,~, c;:; ,k""Wt?RK, ~, ~ ,NER)

, I\,)

/ ~ .
AFTER /

,
-- NER = c7

IWORK:

1 2 3 4 5 6 7 8 9 10 11

~ 0 0 CJ 0 / 0
KWORK: Result

X X X X X 1 2 3 4 5 6 7 8 9 10 11 12 13
-

0 0 () 0 .5 5 X)(X >< X X X
S IN CORE ,4.5-6

COMMENTS

Figure 70, 3.

Section Subsections Page

70 10 I 30 07

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION ADDI//OA/ o.".c A .:f-D/G/T F/CLLJ Tc:JA
S-D/6/T ~/.EL~ BOTHPO.~.5/ T/Vc

BEFORE X = Extraneous Data 00077
/

000 78
IWORK: Will remain unchanged

1 2 3 4 5 6 7 8 9 10 '11

X >< X X 1 X X X >< X X
KWORK: Will contain result

1 2 3 4 5 6 7 8 9 10 11 12 13

t) 0 0 7 7)(>< >< X X X X X

~

,
" I

CODING
t=:ADDEND :~ AUGEND, THEN SUM==:!

SUBTRAHEND MINUEND, THEN SUM

NER = @]
A A

I ,(,

CALLAO£> (IWORK , ..5 , .5 ,KIYORk ,~. f, NER)

l Jl)
Y ; ./' ~

AFTER /
I

-- NER = 0

IWORK: J
1 2 3 4 5 6 7 8 9 10 11

* 1
KWORK: Result

X X X X / X X >< X X 1 2 3 4 5 6 7 8 9 10 11 12 13

a 0 0 7 13 X x x X- x)<. x ><

COMMENTS

Figure 70.4.

Section Subsections Page

70 10 I 30 08

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION-ALJ.!)/T/CJA/ c:JF rwo g-LJ/G/T F/fLDS
-St/M 2/0£5 /VCJT F/T /N ALLOTTE.£) AREA

BEFORE X = Extraneous Data 50
75

IWORK: Will remain unchanged
1 2 3 4 5 6 7 8 9 10 11

X X X 7 .5 X X >< X X ><
KWORK: Will contain result

1 2 3 4 5 6 7 8 9 10 11 12 13

X S 0 X X >< X >< X X X >(X

~

,
"- .-

CODING :t t=:;ADDEND AUGEND. THEN SUM-==:!

SUBTRAHEND MINUEND, THEN SUM

NER = [QJ
A A

I V ,

CALL 4P...o (IWO,.eX , 4, 5,KWt?R/<, 2,..3 ,NER)

,)\. J

./ y ,
.1..

AFTER /
J

--
J

NER = .3
IWORK:

1 2 3 4 5 6 7 8 9 10 11

~
7 15)(

KWORK: Result
X X X X X X)(X 1 2 3 4 5 6 7 8 9 10 11 12 13

X 9 9 X X X X X X X X X .x

COMMENTS - T,HE SU/W 4REA /5 ~/LLE.o W/T# S~
-NER /S SET TeJ T#'c I/~Lt/E O~ T#£

C;;~h PARA/wErcR

Figure 70.5.

Section Subsections Page

70 10 I 30 09

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION A£)£)IT/~A/ o"c TWa "c'/ELOS, N#ERE T#E
,4Z/oENO /s LO/V6ER Th'AN THe A(/C7END

BEFORE x = Extraneous Data 0008
+00680

IWORK: Will remain unchanged
1 2 3 4 5 6 7 8 9 10 11

0 X. X X X
KWO R K: Will contain result

~ ~ t3 0 X X 1 2 3 4 5 6 7 8 9 10 11 12 13

(:) a C) 8 X X X x x x x x x

"
,

, • CODING t:=-: ADDEND :t AUGEND, THEN SUM-=:::I

SUBTRAHEND MINUEND, THEN SUM

NER = [g
A A

I)()

CALL 400 (.IWORK ,..L,..s ,kPY'''RK,..L, ~ ,NER)

\ 1\. J

./ y
I

AFTER /
,

-- NER =
IWORK:

1 2 3 4 5 6 7 8 9 10 11

0 0 0 8 a x- x X
KWORK: Result t

X X X 1 2 3 4 5 6 7 8 9 10 11 12 13

0 Cl 0 8 X X X X X X X X X

COMMENTS NOrE- EVEN THOc./G# TNE RESUL~ ~Ba-,
11/0CLO r/T /N' 4 ,lJ/6/TS,T#E ALJO
5u8Rour/A/E)1//L-L MOT AO~ S/NCc
T#/5/.5 ,4 POTENT/ALL Y .2)ANGEROVS
S/7c/AT/ON. NER /sser /0 4.

Figure 70. 6.

Section Subsections Page

70 10 J 30 10

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION SUBTRACT ONE 5-.0/6// F/ELO FRO/W
ANOTHER 5-DIG/T F/ELD

BEFORE X = Extraneous Data 000/4
-000/8

IWORK: Will remain unchanged
-OOOO¢

1 2 3 4 5 6 7 8 9 10 11

X 0 8
KWORK: Will contain result

)(X X 0 C; / X)(1 2 3 4 5 6 7 8 9 10 11 12 13

X X X X >< X)(x: 0 0 0 / 4
a.

I
" 1

CODING

:~ t=:AOOENO AUGEND, THEN SUM-==:!

SUBTRAHEND MINUEND, THEN SUM

NER =~
" A-

I)()

CALL SUB (ZWORX , S, 9 ,KNV'-PK, 9, /./! ,NER)

" /
)\.

~
)

AFTER /
,

--

J

NER= 0

IWORK:

1 2 3 4 5 6 7 8 9 10 11

~ 8
KWORK: Result

X ><)(X 0 0 t:J / X X 1 2 3 4 5 6 7 8 9 10 11 12 13

-
X X X X X X)()(0 0 0 0 4-

COMMENTS

Figure 70. 7.

Section Subsections Page

70 10 I 30 11

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION S{'/8TR4CT ONE /O-'z)/6/T F/eLD FROM'
4 /2'-£)/6/7 /=/EL£). RESULT /S' A/e64T/V£

BEFORE X = Extraneous Data OOOOOSS55S55 - OOO~~b0GG~

IWORK: Will remain unchanged
-00000 / / / I / / /

1 2 3 4 5 6 7 8 9 10 11

CJ 0 0 0 r;; {;-; ~ ~ ~ ~ X
KWORK: Will contain result

1 2 3 4 5 6 7 8 9 10 11 12 13

X () 0 0 a 0 s S .5 S .5 S ..r.-
-.J

..

I
" • CODING

t=:ADDEND :~ AUGEND, THEN SUM==:!

SUBTRAHEND MINUEND, THEN SUM

NER = [Q]
A A

I)(,

CALL SUB (IWORX ,1, /O,K'WCJRX,--E.., /3,NER)

L-.. JI.)

./ ~ .1..

AFTER /
r

--
J

NER = 0
IWORK:

1 2 3 4 5 6 7 8 9 10 11

~
C::J til ~ ~ t4 X

KWORK: Result
0 0 0 ~ & 1 2 3 4 5 6 7 8 9 10 11 12 13

-
X 0 0 0 0 0 I / / / / / .1
Z /05 IN CORE 4S -'2 ~

COMMENTS

Figure 70.8.

Section Subsections Page

70 10 I 30 12

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION SUBTRACT A 3-"£)/6/T ~/ELD FRO/w
A R-'o/GIT FIELD,

BEFORE X = Extraneous Data 09
-003

IWORK: Will remain unchanged
1 2 3 4 5 6 7 8 9 10 11

0 Cl 3 X X X X X X X x:
KWORK: Will contain result

1 2 3 4 5 6 7 8 9 10 11 12 13

X X X X >< 0 9 X x: X X X X
j

I

" .-
CODING

CADDEND :t AUGEND, THEN SUM-==:I

SUBTRAHEND MINUEND, THEN SUM

NER = @]
A A r V ,

CALL 5t/B (IW~RK ,1, .3 ,k~RK, 6, ~R)
L..-)1..)

/ y

I ..

/
r

AFTER
7 --

J

NER =

IWORK:

1 2 3 4 5 6 7 8 9 10 11

t 0 0 3
KWORK: Result

X X X >< >(>< X >< 1 2 3 4 5 6 7 8 9 10 11 12 13

X X X >(.>(0 9 X X X X- X X
VNCHA/IIocD,1

COMMENTS NOTe,' -NER SET TO 7
- sUBTRACT/ON #OT C,L/RR/ELJ

CJc/T BECAUSE OF POTE/VT/.4L
ERROR CONO/T/OA/

Figme 70,9,

Section Subsections Page

70 10 I 30 13

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION SU!3TRACT A AlEGATIVE ,3-LJ/G/T F/EL.o
FROM ,4 POS/T/VE 4-£J/C7/T ;,C/ELO

BEFORE X = Extraneous Data 0988
- (-45)

IWORK: Will remain unchanged
1033

1 2 3 4 5 6 7 8 9 10 11

X 4-15 X X X
KWORK: Will contain result

X- X >< X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 -$/S/NCORE X X X X 0 9 8 8 X X X X X
AS-(O

~

,
" • CODING I:==: ADDEND :~ AUGEND, THEN SUM==:!

SUBTRAHEND MINUEND, THEN SUM

NER == I U' I
A A

I)r)
CALL Sc:/b' (IWOIq,~, G, 8 ,f{yt/uiPK,..:5 ,8 ,NER)

"---- Y
),

Y
)

~ ,
AFTER /

,
-- NER = 0

IWORK:

1 2 3 4 5 6 7 8 9 10 11 - KWORK: Result

-X X X X X 0 4 5 X X X 1 2 3 4 5 6 7 8 9 10 11 12 13

X >(X X .1 0 3 3 X ,xc X- X X

COMMENTS

Figure 70, 10,

Section Subsections Page

70 10 I 30 14

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION SUBTRACT A N£GATIV~ 2- DIGIT FIELD
FROM A PO.5/TIV§ 2-D/617 FI£LD.RESULT700LAe-G!

BEFORE X = Extraneous Data 88
(-)- (08

IWORK: Will remain unchanged
1 2 3 4 5 6 7 8 9 10 11

X X)(0 8 X X X X X X
KWORK: Will contain result

1 2 3 4 5 6 7 8 9 10 11 12 13

X X B 8 X X X X X X X X X

~

,
" I

CODING I:==: ADDEND :1: AUGEND, THEN SUM-=:j

SUBTRAHEND MINUEND, THEN SUM

NER = [QJ
A. A.

I \{ ,
CALL ..sU8 (IWOEK ,L,~,KWORK ~ 4- NER) ,-,-,

\)1..)

/ y

I

AFTER /
f

-- NER = 4

IWORK:

1 2 3 4 5 6 7 8 9 10 11

- KWORK: Result t
X X X ~ 8 X X X X X X 1 2 3 4 5 6 7 8 9 10 11 12 13

X X fj :2 X X X X X X X X X

COMMENTS NOTE"- R'G'...5ULT FIELD FILLED WITH 9$
- NER SET TO 4

Figure 70. 11.

Section Subsections Page

70 10 I 30 15

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION MULTIPLY TWO 4- DIGIT NUM8ERS
1111 *" 2222 = 02.46:;, 8(;; 42-

BEFORE X = Extraneous Data

IWOR K: Will remain unchanged
1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 X X X X X X X
KWORK: Will contain result

1 2 3 4 5 6 7 8 9 10 11 12 13

X X X X 2 2 2 2 X X X X X

~

I

CODING §AD~END
I

- AUGEND, THEN SUM-=::::::j

SUBTRAHEND .. - MINUEND, THEN SUM -
MULTIPLIER .. MULTIPLICAND,:=:!

THEN PRODUCT

DIVISOR DIVIDEND,

NER =~
THEN QUOT AND REM

A A
I)r)

CALL MPY (IWORK ,L,~,KWORI(, S ,~,NER)
\ JI..)

Y ,
./'

AFTER /
,

--

J

NER = 0

IWORK: Unchanged

1 2 3 4 5 6 7 8 9 10 11

~
/

KWORK: Result
/ / / X X X X X X X 1 2 3 4 5 6 7 8 9 10 11 12 13

0 2 4- ~ 8 ~ 4 2 X X X X X

COMMENTS NOTE TH.47 THE PRODUCT t4REA (KWORK)
Ht4S BEEN £XT£ND£"D 4 PL. 4CES TO TH£ LEFT.

Figure 70,12.

Section Subsections Page

70 10 I 30 16

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION MULT/PLY rwo 4-..o/G/T /vVA4Bek~'-3J
SH'O~NG- 4N ERRoR cO/V'v/ T/oN

BEFORE X = Extraneous Data

IWORK: Will remain unchanged

1 2 3 4 5 6 7 8 9 10 11

.f :f d I X X X X >(X X
KWO R K: Will contain result

1 2 3 4 5 6 7 8 9 10 11 12 13

X X 2- 2 2 2 X X X X X X x..
-.

l
CODING §AD~ND

T .
AUGEND, THEN SU~

SUBTRAHEND MINUEND, THEN SUM

MULTIPLIER
MULTIPLICAND,
THEN PRODUCT

DIVISOR DIVIDEND,

NER = ~ THEN QUOT AND REM

A A r \r . ,

CALLA4PY (IWORK I 4 /~"(fYO,.(~/.3 C; NER) ,--,--, ,--,~,

\ J\.. J

./ y , -
AFTER /

r

--

J
NER = GO

IWORK: Unchanged

1 2 3 4 5 6 7 8 9 10 11

~ KWORK: Result

I / I / X X X X X /\ X 1 2 3 4 5 6 7 8 9 10 11 12 13

.X X 2 ? 2 2 X X ,~ ,x .~ X .X <-

COMMENTS NER IS SET TO G 8£CAU S'E ThERe
WAS NOT E/VOt../GP ROOk? T?i EXTc/ .. '~
Tl-le PRC}DUC:T 4REA 4PLAC£S TO --he / ..

LE~T

Figure 70, 13,

Section Subsections Page

70 10 I 30 17

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION DIVIDE 0/3 By 04

BEFORE X = Extraneous Data

IWORK: Will remain unchanged
1 2 3 4 5 6 7 8 ·9 10 11

X X X X X 0 4 X X X X
KWORK: Will contain result

1 2 3 4 5 6 7 8 9 10 11 12 13

X X 0 / 3 X X X X X X X X

~

I

EAD~ND
I

CODING
AUGEND. THEN SUM ===I

SUBTRAHEND MINUEND, THEN SUM

MUL TIPLIER -- .. MUL T!PLlCAND'::==:I - THEN PRODUCT

DIVISOR .. DIVIDEND,

NER = @] THEN QUOT AND REM

A. A. ,)(,
CALL D/V (IWORK ,~,L,KWO.eK,~, S ,NER)

\)1-)

/ y ,
AFTER / 0 -- NER =

IWORK: Unchanged

I' 1
2

1
3
1

4

1
5

1 ~ I; 1
8

1
9

1'0 I" I KWORK: Result t
I ~ I~ I; I ~ I; 1

6

1
7

1
8

1
9

1'lTl31
'---y--J

~'--y--J
1 J

COMMENTS ~ RE.SULT IS;31..~
:. ~

"BEC~(/S£ ,1-11: DIVISOR /s g OIGITS WID~ Th'G KWO,€K
FIELD f-IAS BeeN EXTENOEO 2 'pOSITIONs 70 THE: LEf:~
AND THE R€M/JINOER OCCUPIES THe RIGHTMOST
g OIGIT..sf'

Figure 70. 14

Section Subsections Page

70 10 I 30 18

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION DIVIOE 0/5 .By 008

BEFORE X = Extraneous Data

IWORK: Will remain unchanged
1 2 3 4 5 6 7 8 9 10 11

IX
KWORK: Will contain result

0 0 8 X X X X X X X

1:1~1:1;1:1;17181911lTT31
4

I

CODING gAD:ND
I AUGEND, THEN S§

SUBTRAHEND - MINUEND, THEN SUM

MULTIPLIER .. MULTIPLICAND,
THEN PRODUCT

DIVISOR DIVIDEND,

NER = [QJ - THEN QUOT AND REM

A A
f)()

CALL DIV (rWO.eK ,_I_,~, KWO.eK ,L,.£...,NER)

\)\..)

/' y , .
AFTER / 0 --

J
NER =

IWORK: Unchanged

1 2 3 4 5 6 7 8 9 10 11 ,
KWORK: Result

0 0 6 X X X X X X X X 1 2 3 4 5 6 7 8 9 10 11 12 13
'---y--/

0 0 / 0

~
0 7

~~.

COMMENTS ~ - RESULT/.5'/2~
~ - 8

TH€ KWO~K FIELD B£C~USE TH€ /JIVI.50R IS ~ OIGITS WIOBj

H/iS 8EliN G"XTENDED a POSITIONS TO TI-IG LEF0 /IN£)

THE ~EM,4IN[)£R OCCUPI£S THE RI6)-/TMO.sT ~ DIGITS. Q

Figure 70, is,

Section Subsections Page

70 10 I 30 19

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION DIVIDE A NEGA71VE NUMBER 8Y.4 of-
POSITIVE NUM8£R-S/2 =-2-~2 OR-3 r2

BEFORE X = Extraneous Data

IWORK: Will remain unchanged
1 2 3 4 5 6 7 8 9 10 11

0 2 X X X X X X X X X
KWORK: Will contain result

I' 121;1~1;161718191'lTl31
..

,
CODING

§AD;END

I

AUGEND, THEN SU~
SUBTRAHEND MINUEND, THEN SUM

MULTIPLIER
MUL TIPLICAND,
THEN PRODUCT

DIVISOR - .. DIVIDEND,

NER = @] THEN QUOT AND REM

A A. t '\(,
CALL D/V (IWORK I 2 KWOleK ..3 .s NER) ,--,--, ,--,--,

\)")
Y Y

.."" , .
AFTER /

I

-- NER = 0

IWORK: Unchanged

1 2 3 4 5 6 7 8 9 10 11

~ KWORK: Result
0 2 X X X X X X X X X

I~I~I~I~I; 161718191'lTT31
COMMENTS - THE SIGN I~ CAR~/E"D W/TI-I 7HE' QUOT.

Figure 70.16.

Section Subsections Page

70 10 I 30 20

r---------------------------'-----------.--.--.--------,

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION DIV/S/ON BY ZERG~ /S ./,i/VAL/D

BEFORE X = Extraneous Data

IWORK: Will remain unchanged
1 2 3 4 5 6 7 8 9 10 11

0
KWORK: Will contain result

0 0 X X)(X X. X X)(1 2 3 4 5 6 7 8 9 10 11 12 13

X X X 7 0 8 X X X X ~ X X ..

I
,~ ~..I .-

§AD~N"-
I

CODING
AUGEND, THEN SUM-==I

SUBTRAHEND .. MINUEND, THEN SUM

MULTIPLIER MUL TIPLICAND':::=:1
THEN PRODUCT

DIVISOR DIVIDEND,

NER = 101 THEN QUOT AND REM

A A , ~r ,
CALL..DIV (/Wo.Rk / 3 !{kvt;R,K 4- ~ NER) ,--,-,-, ,--,--,

\ J\ J
Y

~ ../'
AFTER /

,
-- NER = (p

IWORK: Unchanged

1 2 3 4 5 6 7 8 9 10 11

0
KWORK: Result ~

0 0 X X ;>(X X X X X 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 0 7 0 8 X)<.. X X X X X

COMMENTS - NO J)/V/S/OA! IS PERFO"t?MED
-NER /5 2>cT ;0 cP

Figure 70.17.

Section Subsections Page

70 10 I 30 21

Constants

There are four ways in which you may create con
stants such as 1968, 40, 6600, etc. To illustrate,
suppose you wish to create the constant 660000 (the
Social Security deduction base, in cents) to be
stored in an array named ISSD, DIME NSIONed as
ISSD (6). The four options are:

1. Use FORTRAN equalities.

ISSD (1) = 6
ISSD (2) = 6
ISSD (3) = 0
ISSD (4) = 0
ISSD (5) = 0
ISSD (6) = 0

2. Use the DATA statement.

DATA ISSD/6, 6, 0,0,0,0/
or
DATA ISSD/2*6, 4*0/

3. Use the TILL subroutine.

CALL FILL (ISSD, 1,2,6)
CALL FILL (ISSD, 3,6,0)

4. Read it from a card, tape, keyboard, or disk.

Option 2 is preferred, since it consumes less core
storage than the other three meth~ds.

Negative constants are handled in much the same
way. Because of their special representation, how
ever, it would be wise to make the constants pos itive
and change the arithmetic. For example, rather
than set up -1 and add it to something, it would be
easier to subtract +1.

Testing and Modifying Signs

To facilitate testing and modifying the signs of deci
mal arithmetic fields, the subroutine NSIGN is
available. It has four parameters:

NARR Y The name of the array
NPOS The position in the array to be tested
NEWS "New sign", indicating what you want

done to the previous sign:

+ 1 Make it positive
o Reverse it
-1 Make it negative
NOLDS Leave it alone

NOmS "Old sign", returned to you, indicating
what the previous sign was:

+ 1 It was positive
-1 It was negative

You, the programmer, send the subroutine the
first three parameters; it returns the last. To
illustrate, suppose you wish to test the sign of the
18th position in the K array:

• Case 1: It Is Now Positive:
NOLDS is returned as +1
K(18) is made + if you said

CALL NSIGN (K, 18, +1, NOLDS)
K(18) is changed to - if you said

CALL NSIGN (K, 18,0, NOLDS)
K(18) is made - if you said

CALL NSIGN (K, 18, -1, NOLDS)
K(18) remains + if you said

CALL NSIGN((K, 18, NOLDS, NOLDS)
• Case 2: It Is Now Negative:

NOLDS is returned as -1 and
K(18) is made + if you said

CALL NSIGN (K, 18, +1, NOLDS)
K(18) is changed to + if you said

CALL NSIGN (K, 18,0, NOLDS)
K(18) is made- if you said

CALL NSIGN (K, 18, -1, NOLDS)
K(18) remains - if you said

CALL NSIGN (K, 18, NOLDS, NOLDS)

Moving Signs

The NS1G N routine may also be used to move signs.
The two statements

CALL NS1GN (NARRY, I, NOLD, NOLD)
CALL NS1GN (KARRY, J, NOW, JUNK)

will make KARRY (J) have the same as NARRY (I).

Section Subsections Page

70 10 I 30 22

Comparing Decimal Fields

The FUN eTION ICOMP is used to compare two
variable length decimal fields. In practice, it is
typically used within the parentheses of an IF state
ment;

IF (ICOMP (IWORK, 1,5, KWORK, 6, 10))1, 2,3
This statement will compare (IWORK, 1,5) with
(KWORK,6,10), and branch to

Statement 1 if the first is less than the second.
Statement 2 if they are equal.
Statement 3 if the first is greater than the second.
As was true with the ADD and SUB subroutines,

the first field must not be longer than the second.
Since no error code is returned from this sub
program, there is no way to tell that such an error
has occurred, and the results will therefore be
meaningless.

Section Subsections Page

70 10 I 40 01

Summary

If exact results are desired, you must take certain
precautions regarding arithmetic calculations.

1. Use one of the following:
Integer arithmetic
Decimal arithmetic
Real, fixed-point arithmetic, with no

fractions
2. If fractions are allowed to occur (floating

point real arithmetic), your results are likely to
show inaccuracies. These inaccuracies will be
slight, but enough to cause significant problems.

3. If no number will ever exceed 8,388,607. ,
you may use standard precision, real, fixed-point
arithmetic.

4. If no addition will ever exceed
2,147,483,647., you may use extended precision,
real, fixed-point arithmetic.

5. If the result of a multiplication will exceed
1,073,741,823., you should consider using deci
mal arithmetic, since real extended precision
arithmetic will be inaccurate above this limit.

6. If the result of an addition or subtraction
falls in the range 1,073,741,824. to
2,147,483,647., you should not attempt to output
it with the standard FORTRAN F Format; use the
PUT subroutine instead.

7. If any number will exceed 2,147,483,647.
(now or in the foreseeable future), use decimal
arithmetic rather than real arithmetic.

OVERLAPPED INPUT/OUTPUT

Introduction

As a machine, the IBM 1130 Computing System is
capable of performing many tasks simultaneously.
For example, it can print, type, read a card, and
compute, all at the same time. This can be done
through its "cycle-stealing" I/O channels and the
priority interrupt system. Each I/O device may,
through an interrupt, signal the CPU that it requires
service, and steal a cycle (3.6 or 2.2 microseconds)
from some other process to do what it needs done.
This process is commonly referred to as "over~
lapping',' .

For example, in the case of the disk, one data
word travels past the read/write heads every 27. 8
microseconds. However, it only takes one cycle
(3.2 or 2.2 microseconds) to transfer that word
from core storage to the disk (if it is being written)
or from the disk to core storage (if it is being read).

Section Subsections Page

70 20 I 01 01

This means that only a little more than 10% of the
CPU time is required to read and write on the disk;
the remainder is available for other use.

Although most of the 1130's I/o devices can be
overlapped, standard 1130 FORTRAN permits only
two of them to operate in this fashion: the disk and
the 1403 Printer. There are several good reasons
for this limitation. For example, suppose you
wrote a program to read two numbers from a card,
add them together, and print the result. With full
overlap, the addition could conceivably be under
way before the two numbers had even been placed in
core. Obviously, this would not be satisfactory.

To take full advantage of the potential of the
machine, in FORTRAN, it would be necessary to
develop a special FORTRAN, which would then
violate the USASI standards set up for that pro
gramming language. Avoiding this, IBM has
developed the Commercial Subroutine Package
(CSP) -- a set of subroutines operating within the
FORTRAN system, rather than as part of the
FORTRAN language itself.

Section Subsections Page

70 20 I 10 01

The Commercial Subroutine Package Overlapped
I/ 0 Subroutines

CSP subroutines may be divided into three groups:
The I/o subroutines themselves
Several I/o utility subroutines
Those character handling routines necessary for

proper use of the I/o routines
This section discusses the former two groups; the
latter is covered later in this section under "Charac
ter Handling Techniques".

General

All of the overlapped I/o subroutines operate on
data in Al format -- one alphabetic character per
word, left-justified. If you wish to read 80 card
columns, you must set up an array 80 positions long
to receive the data, and convert the Al data to what
ever format you require for later processing. There
are no FORMAT statements; you must handle all
conversions (see "Character Handling Techniques").

Unlike standard FORTRAN, the overlapped I/O
subroutines are oriented toward a sign punch over
the low-order digit of a field. For example, a nega
tive number or credit of -$6. 50 would be punched
with an II-punch over the zero, rather than in a
separate column, as would be done if FORTRAN
FORMAT were used.

In general, for your non-disk I/O, you must
choose either one system or the other: FORTRAN
FORMAT or overlapped I/O .. They may not be mixed
within the same program.

For further detail on these subroutines, see the
SRL manual H20-0241.

READ a Card, 1442-6 or 7

The subroutine READ will read a card from the 1442
Model 6 or 7, overlapping reading with the conversion
from card code to Al format. The CPU will not
proceed any further until the last des ired card
column has been read and converted. Therefore you
need not be concerned that processing will be started
before the desired values have reached core storage.

A typical call to this routine would be

NER = -1
CALL READ (INOUT, 1, 80, NER)

which would read and convert 80 columns, and place
the result in the array INOUT. It should be followed
by a

IF (NER) xxx, xxx, xxx

If NER is still -1, everything is normal; if it is
zero, the card just read was the last card in the
hopper; if it is +1, there was a read or feed check
(1442 malfunction).

It is equivalent to

DIMENSION INOUT(80)
77 FORMAT (80A1)

READ (2,77) INOUT

PUNCH a Card, 1442-6 or 7

The subroutine PUNC H will punch a card on the 1442
Model 6 or 7. Nothing will be overlapped with this
activity. A typical use is

NER =-1
CALL PUNCH (INOUT, 1,20, NER)

which will punch the first 20 words of the INOUT
array into the first 20 columns of a card.

It is equivalent to

DIMENSION INOUT (80)
77 FORMAT (80A1)

WRITE (2, 77) (INOUT(K), K=1, 20)

The use of the error parameter, NER, is identi
cal to the READ subroutine.

Section Subsections Page

70 20 I 10 02

Select STACKer, 1442-6 or 7

Subroutine STACK permits the FORTRAN programmer
to direct a card into the alternate stacker on the 1442
Model 6 or 7. After the statement

CALL STACK

the last card read (and only the last card) will be
selected into the alternate stacker.

The placement of the CALL STACK statement is
important:

• If the program reads and punches into the same
card, the statement may be placed between the READ
and WRITE, or after the WRITE.

• If the program reads (but doesn It punch), the
CALL STACK goes after the READ statement that
read the card to be stacked.

• If the program only punches (and does not read),
the CALL STACK should be placed after the WRITE
statement that punches the card to be stacked.

Section Subsections Page

70 20
1

10 03

PRINT on 1132

Subroutine PRINT enables you to write on the 1132
Printer, overlapping printing with other processing.
A typical use of this routine is

NER = 1
CALL PRINT (INOUT, 1, 120, NER)

This will initiate the printing of the 120-word array
INOUT on the 1132, then continue processing. Be
cause of its overlapped capability, it can drive the
1132 Printer substantially faster than the equivalent
FORTRAN/FORMAT statements:

DIMENSION INOUT (120)
88 FORMAT (120A1)

WRITE (3, 88) INOUT

Like READ and PUNCH, it should be followed
with a test of NER:

• If it is still 1, nothing unusual happened.
• If it is 3, the line being printed matches with

a channel 9 punch on the carriage control tape.
• If it is 4, the line being printed matches with

a channel 12 punch in the carriage control tape.

Note that the first pos ition is not used to control
the printer carriage, as it is with stacdard FORTRAN.
The SKIP routine must be used if you wish to skip to
channell, double-space, etc.

SKIP on 1132

Subroutine SKIP permits full use of the carriage con
trol tape mechanism on the 1132. Skipping is signifi
cantly faster than printing blank lines and should be
used wherever possible. A typical use of this routine
is

CALL SKIP (KODE)

where the allowable values of KODE, and their
meaning, are as shown in Figure 70.18.

Value Action Taken
of KODE by the 1132

12544 Immediate skip to channel 1

12800 Immediate skip to channel 2

13056 Immediate skip to channel 3

13312 Immediate skip to channel 4

13568 I mmediate skip to channel 5

13824 Immediate skip to channel 6

14592 I mmediate skip to channel 9

15360 I mmediate skip to channel 12

15616 I mmediate space of 1 space

15872 I mmediate space of 2 spaces

16128 I mmediate space of 3 spaces

0 Suppress space after printing

Figure 70.18. SKIP codes for 1132 Printer

Type on Console Printer

Subroutine TYPER will initiate typing on the console
printer, and then continue processing. Actual print
ing time will be overlapped with other processing
(printing on the 1132, reading cards, computing,
etc.). A typical call is

CALL TYPER (INOUT, 1,50)

which will type the first 50 values of the IN OUT
array. There is no error parameter connected with
this routine.

In addition to printing, this subroutine also per
mits several typewriter control functions. If the
values listed below are inserted in the INOUT array,
the corresponding action will be performed at that
point:

Value Action

1344 Tabulate
5184 Shift to black

13632 Shift to red
5696 Backspace
5440 Carrier return
9536 Line feed

Because TYPER does not start each line with an
automatic carrier return, you may want to place a
5440 in position 1 of the output array.

Section Subsections Page

70 20 I 10 04

Accept Data from Console Keyboard

Subroutine KEYBD will read characters entered from
the console keyboard, Only 60 characters at a time
may be read with this routine. This activity is not
overlapped with any other function. An example of
the use of this subroutine is

CALL KEYBD (INOUT, 1, 30)

which will read 30 characters from the keyboard.
This is no error parameter.

Section Subsections Page

70 20 I 10 05

A Precaution -- laND

Because of the properties of the overlapped I/o sub
routines, all I/o activity must be completed before
you cause the 1130 to PAUSE or STOP. The sub
routine laND will do this for you by testing the status
of the interrupts and looping until none are pending.

laND is required only when Vers ion 1 of the
Monitor is used; it should not be used if Version 2 of
the Monitor is in use.

The call to laND should always be placed im
mediately before each PAUSE or STOP statement:

or

CALL laND
PAUSE 1234

CALL laND
STOP 5678

Using The Overlapped I/O System

General

If you are to gain the full potential of the over lapped
I/o routines, you should lmow several basic princi
ples of this system:

• You must decide whether your non-disk I/O
will be done by FORTRAN FORMAT READs and
WRITEs or by the overlapped I/O subroutines. A
program cannot use both. Note that the disk I/o is
completely independent of the overlapped I/O system
and,does not enter into this discussion.

• Certain devices are not overlapped by these
routines, making the placement of the subroutines
CALLs quite important.

Overlapping and Your Program

As far as your program is concerned, only two I/o
devices are really overlapped: the 1132 Printer and
the console printer. The other devices are either
not overlapped at all or overlapped with various
housekeeping chores (for example, code convers ion)
rather than with your program. In other words:

These subroutines
initiate an action,

then continue
processing:

PRINT
SKIP
TYPER

These subroutines start
an action and finish it
before they continue

processing:

READ
PUNCH
KEYBD

Thus the sequence in which you use these rou
tines becomes important. For example, suppose
you have a program that develops some result, then
must print a line on the 1132 and punch a card. How
should this be done?

Alternative A

Develop results
CALL PRINT ()
CALL PUNCH ()

Section Subsections

70 20 I 20

Alternative B

Develop results
CALL PUNCH ()
CALL PRINT ()

Page

01

With alternative A, PRINTing is initiated, then
PUNCHing, and the two I/O functions are overlapped.
Alternative B, on the other hand, does not overlap
these two functions, since the 1130 will wait until
PUNC Hing is completed before starting PRINTing.
Alternative B does, however, overlap whatever
follows the PRINT statement.

To gain maximum overlap, then, the three truly
overlapped routines (PRINT, SKIP, and TYPER)
should be placed as early in the processing cycle
as possible. Figure 70.19 gives some examples
of good and bad usage of these routines.

Example Bad Practice Good Programming

I
processing I p""~';ng

1
processing processmg

CALL PRINT CALL SKIP

CALL SKIP CALL PRINT

I
processing processing

processing CALL PRINT
2

CALL PRINT processing

CALL PRINT CALL PRINT

1
CALL PUNCH { CALL PRINT

3
CALL PRINT CALL PUNCH

1
WRITE disk 1 CALL PRINT

4
CALL PRINT WRITE disk

Figure 70. 19.

Section Subsections Page

70 20 I 20 02

FORTRAN TRACE Not Permitted with Overlapped
1/ 0 Routines

If you use the overlapped I/O routines, you must not
include any of the non-disk I/O devices on the *IOCS
control record; only *IOCS (DISK) is permitted.
This means that you may not take advantage of the
standard FORTRAN TRACE facility, but must
instead program your own trace. If this is done
while the program is being developed, it presents
little difficulty.

Several methods may be used -- for example:
• A series of numbered pauses, to display your

progress through the program.
• A set of extra PRINT or TYPER statements,

to function much the same as the standard TRACE.
It might be useful to code a subroutine called TRACE,
which would do this after testing Data Switch 15.

Alphabetic Headings with the Overlapped I/O System

Since you may not use FORMAT statements in con
junction with the overlapped I/O routines, you must
enter alphabetic headings and other constants in
some other manner. Several methods are available.

1. Use the DATA statement. This allows alpha
betic constants to be entered, in the proper format,
at the start of the program.

2. Read the alphabetic data from the card deck.
You may layout all the alphabetic data required
(headings, error messages, etc.) so as to fit in one
large array, then read that array from a deck of
cards each time the program is executed. Because
it is done only once, those program steps could be
made into a LINK, in which case it could use
FORTRAN I/O, regardless of which system the
main program used.

3. Same as 2, except that the read-in program
is run only once and places the array of heading
information on the disk. This data is then read from
the disk each time the main program is executed.
This is somewhat more foolproof, since you do not
have to worry about assembling the card deck each
time the main program is run.

THE INTERACTION OF ARITHMETIC AND I/O

You have seen that two options are available for I/O:

Standard FORTRAN FORMAT
Overlapped I/o subroutines

You have also seen that, for all practical purposes,
two options are available for arithmetic:

FORTRAN real arithmetic
Decimal arithmetic, variable length.

While you may choose any des ired combination,
certain combinations appear easier to use than others.
You can see from Figure 70.21 that some provision
must in all cases be made for convers ion from input
code to some arithmetic code, then from some
arithmetic code to output code. If you use standard
FORTRAN exclusively, you specify, with the FORMAT
statement, what conversions you want. If you use
any of the other three combinations, you must specify
the des ired code convers ion with the character
handling routines supplied by the Commercial Sub
routine Package: GET, PUT, EDIT, DECAl, A1DEC,
PACK, and UNPAC. (These routines are covered in
later sections of this Guide.)

Figure 70. 22 summarizes the advantages and
disavantages of each alternative. You can see that
the convenience items (ease of programming, read
ability, etc.) are gradually sacrificed in order to
make gains in the area of capability and performance.

Convenience
Items

Maximum
Easily Size. of

Easily Readable Easy to Numerical
Programmed Program Debug? Values

? ? Trace? ?

Standard FORTRAN easy very good yes 9 digits

Standard FORTRAN a little very good yes 9 digits
Extended with GET, PUT harder
and EDIT

Standard FORTRAN Arith, a little very good no 9 digits
with GET, PUT and EDIT, harder
and overlapped I/O

FORTRAN I/O with a little good can trace, unlimited
GET, PUT, EDIT and harder but not too
Decimal Arith. effectively

Overlapped I/O with a little good no unlimited
Decimal Arith. harder to fair

Figure 70. 22.

Figure 70.21.

Standard
FORTRAN

Standard
FORTRAN

Section

70

INPUT

OUTPUT

Capability and Performance
Items

Read a
Record Zone I/O

of Unknown Edited Punches Over-
Format Output Allowed lapped

? ? ? ?

no no no no

yes yes no no

yes yes yes yes

yes yes no no

yes yes yes yes

Subsections

30 I

Overlapped
I/O

Overlapped
I/O

00

Page

01

Section Subsections Page

70 40 I 01 01

CHARACTER HANDLING TECHNIQUES

General

A great deal of the programming effort in most com
mercial applications falls into the general classification

of character handling -- code conversion, editing,
moving data, testing zone punches, comparing alpha
betic data, etc. This section covers many of these
tasks in detail, showing how they may be accom
plished with the Commercial Subroutines.

Code Conversion

As you saw earlier, code conversion is essential to
any program, commercial or technical. If you use
standard FORTRAN, you must specify the desired
conversions with the FORMAT statement. If you
are using FORTRAN augmented by the Commercial
Subroutines, you can also use the GET, PUT and
EDIT subroutines for special formatting. If you
are using the overlapped I/o routines, you must
specify all the code convers ions with the Commercial
Subroutines (except Al format), since no FORMAT
statements may be used.

Basically there are five internal codes with which
you might be concerned:

Integer
Real
Alphabetic -- one character per word (AI)
Alphabetic -- two characters per word (A2)
Decimal -- one digit per word

Very few programs can avoid converting from one
code to the other. Figure 70.23 shows the tools at
your disposal to effect all possible conversions. The
common ones are handled by a single subroutine;
those less often needed require a combination of two
or three subroutines.

The Al code is particularly important since all
the overlapped I/O routines require data in that
format. In addition, GET, PUT, and EDIT work
with data in the Al format.

The A2 code is used primarily when writing
alphabetic data on the disk, since it holds twice as
much data per word as Al format.

Decimal code is encountered only if you are using
the decimal arithmetic, variable length routines of
CSP.

FROM Integer Real

Integer

Real

Alphabetic (All IFIX (GET) GET

Alphabetic (A2) UN PAC, then UN PAC, then

GET, then GET
IFIX

Variable Length OECA 1, then OECA 1, then
Decimal GET, then GET

IFIX

Figure 70. 23.

TO

Alpha (A 1) Alpha (A2) Decimal

PUT (FLOAT) FLOAT,then FLOAT,then

PUT, then PUT, then
PACK A1DEC

Section Subsections Page

70 40 I 10 01

Integer to Real -- FLOAT

The FLOAT function, a FORTRAN standard, is used
to convert an integer to a real number. A typical
use of this function is

x = FLOAT (K)

which will set the real variable X equal to the value
of K. The same conversion can also be accomplished
by coding

X=K

This also uses the FLOAT function, even though it
does not appear.

Real to Integer -- IFIX

The IFIX function, also a FORTRAN standard, is
used to convert a real number to an integer. A
typical use is

K = IFIX(X)

which will take the real variable X, convert it to an
integer, and store it as K. If X is 6.0, then K = 6;
if X is 87.9, then K = 87; and so on.

This can also be accomplished by coding K = X;
this too uses the IFIX function.

Section Subsections Page

70 40 I 10 02

A1 to Real -- GET

IBM supplies the GET function as part of the 1130
Commercial Subroutine Package (CSP). The original
A1 data may have resulted from a FORTRAN READ
with an A1 FORMAT, or from use of one of the CSP
Over lapped Input routines, which always results in
A1 format.

If you have a five-place array, in A1 format

and you say

then X = 19868.

K(l) = 1
K(2) = 9
K(3) = 8
K(4) = 6
K(5) = 8

x = GET(K, 1, 5, 1. 0)

The last parameter (1. 0) is a shift factor, and
will usually be 1. 0 if you want accurate results. (If
it had been. 1, X would be 1986.8; however, since
the fraction . 8 is present, you could expect it to be
inaccurate.) Subsection 70. 10.20 explains why
fractions should be avoided in commercial work.

Basically, the above use of GET can be thought
of as equivalent to an F5. 0 in a FORMAT statement.
A shift factor of .1 would be an F5. 1; a shift of .01
would be F5. 2; a shift of .001 would be F5. 3; etc.

A1 to Integer

As shown in Figure 70.23, this step requires use
of both IFIX and GET, in the following manner:

J = IFIX(GET(K, 10,12,1. 0»

where positions 10 through 12 of the K array are
converted first to a real number, then to an integer
called J.

Real to A1 -- PUT

This step is quite commonly required -- if you are
us ing the over lapped II 0 routines, if you wis h to do
further editing, etc. It is accomplished with the
PUT subroutine supplied with CSP.

Suppose you have just computed a gross pay figure,
GROSS, which might have a typical value of 275869. ,
understood to be mills. Again, note that you are
working,in whole numbers, so that no fraction prob
lems are encountered. This value is to be rounded
off and the result placed in the first ten postions of
array I}GROS for ,later editing and output. The
statement

CALL PUT (KGROS, 1, 10, GROSS, §..,~)

will take GRQSS, add 5. to it, truncate the last 1
digit, and place it in A1 format in the KGROS array
as 0000027587, with leading zeros and no decimal
point.

The last two parameters, the adjust factor and the
truncate factor, usually form a logical pair. Obvi
ously, if you add 5. to half-adjust, you won't want
to print the resulting digit. The table below shows
the common pairs:

5th parameter
(half-adjust factor)

.5
5.
50.
500.
etc.

6th parameter
(how many digits to

truncate from right end)

o
1

2
3
etc.

Half-adjust factors of less than. 5 should not be
used, since this will bring up the problem of inexact
fractions.

If GR'OSS is negative, an 11-zone punch will be
added to the code for the low-order digit. For ex
ample, if GROSS is -275869., the result will be
000002758P, where the character P is equivalent to
a 7,11 punch.

Secti0n Subsections Page

70 40 I 10 03

Integer to A1

This requires two steps, since PUT operates on
real numbers, not integers. If you have an integer
I, which you want converted to A1 format, you must
first convert it to real format:

x = I
or X = FLOAT(I)

then use the PUT subroutine. Or, in one step:

CALL PUT (KGROS, 1, 10, FLOAT (I) , 5. ,1)

will perform this conversion.

Section Subsections Page

70 40 I 10 04

Al to Decimal -- A1DEC

This convers ion will be needed if you have chosen
to use the decimal arithmetic system of CSP. The
Al field being converted was read by FORTRAN with
an Al format, or by the overlapped 110 routines.

Suppose a card contained 1968 in columns 1 through
4, and you read it with the overlapped I/O CALL
READ. It would be in Al format, in an array KOL,
one character per word:

KOL (1) contains the alphabetic 1b
KOL (2) conta ins the alphabetic 9b
KOL (3) contains the alphabetic 6b
KOL (4) contains the alphabetic 8b

If you want to use this value in decimal arithme
tic computations, it must be converted to decimal
format, one digit per word. To do this, you simply
code

CALL A1DEC (KOL, 1,4, NER)

and it will be converted, in place. Note that the Al
coding is replaced by the decimal coding. The NER
is an error parameter, and will be set to the pos ition
at which it last encountered an invalid character
(not 0 through 9 or a blank).

The exception to this is the last (rightmost)
character, which may contain an 11 or 12 punch,
indicating a sign. See the table below for allowable
punches;

Digit or
character
without a

zone punch with an 11 punch with a 12 punch

blank - (dash) &

0 (- zero) (+ zero)
1 J A
2 K B
3 L C
4 M D
5 N E
6 0 F
'7 P G
8 Q H
9 R I

Decimal to Al -- DECAl

If you are using decimal arithmetic, you must print
the answers either with a series of I1 formats, or
in Al format. The latter will be the case if you
desire any editing or are using the overlapped I/o
routines.

The DECAl subroutines will perform this con
version, thus operating in reverse fashion from
A1DEC.

A typical use would be

CALL DECAl (IWORK, 6,10, NER)

which will convert the 6th through the 10th items in
the IWORK array from decimal to Al format. The
NER error parameter is present but should be of
limited use, since the decimal arithmetic routip.es
should not leave any invalid digits in the field.

The rightmost digit is assumed to carry the sign
and, if negative, will be converted to the proper
character plus an 11 punch.

Al to A2 -- PACK

This conversion is very desirable if you wish to
store alphabetic data on the disk. For input, output,
and editing, your data must be in Al format, how
ever, A2 format will pack twice as much data in an
equivalent number of words.

The PACK subroutine gives you the ability to con
vert from Al to A2 format. For example, suppose
the array IUNPK contains 123bGO:

IUNPK (1) contains an alphabetic 1
IUNPK (2) contains an alphabetic 2
IUNPK (3) contains an alphabetic 3
IUNPK (4) contains an alphabetic blank
IUNPK (5) contains an slphabetic G
IUNPK (6) contains an alphabetic 0

Now suppose we say

CALL PACK (IUNPK, 1,6, IPAKD, 1)

The data is packed and moved from IUNPK to IPAKD:

IPAKD (1) contains an alphabetic 1 and 2
IPAKD (2) contains an alphabetic 3 and blank
IPAKD (3) contains an alphabetic G and 0

The IUNPK array remains unchanged. An even num
ber of characters will be packed. Therefore, the
Al field should contain an even number of characters;-
otherwise, the last character in the IPAKD array
will be meaningless.

Section Subsections Page

70 40 I 10 05

A2 to AI.-- UNPAC

To convert A2 data back to AI, the UNPAC sub
routine may be used. A typical call to UNPAC would
be

CALL UNPAC (IPAKD, 1,3, IUNPK, 1)

which would unpack the I23bGO packed in the pre
vious example.

Section Subsections Page

70 40 I 10 06

Other Code Conversions

As Figure 70.23 shows, there are other code con
versions that you may require. However, since

they are unusual and can be performed as a com
bination of several other steps, they will not be
discussed in detail.

Other Character Handling Techniques

Editing Output--EDIT

Most commercial applications are strongly oriented
toward the format and appearance of the output re
sults, as opposed to the technical job, where all
you want is the answer. For example:

• Dollar amounts should have commas, dollar
signs, and so on.

• Invoices should show a CR symbol after neg
ative values.

• Balance sheets should have a minus sign fol
lowing a negative item.

• Punched card output should have leading zeros,
so that the cards may be handled properly with a
mechanical sorter.

The EDIT subroutine enables you to do all these
formatting tasks. Its use requires two fields,
stored in Al format in integer arrays:

1. The source field or the field which will be
edited

2. The edit mask, a field which you have coded
to indicate how you want the edited output to appear.
A typical call to the EDIT subroutine is

CALL EDIT (KSOUR, 1, 10, MASK, 1, 13)
where the source field consists of items 1-10 in the
KSOURarray, and the mask consists of items 1-13 in
the MASK array. After editing, the MASK field is
replaced by the edited source field; if you wish to
use it again, therefore, you must save it some
where else. Usually, the mask will be moved into
the output area, and the source field will be edited
into the output array. Thus the original mask is
not destroyed. For example:

CALL MOVE (MASK, 1,13, KOUT, 36)
CALL EDIT (KSOUR, 1,10, KOUT, 36,48)

Figure 70.24 is a worksheet that you may use
for setting up an edit mask. The principles in
volved are shown best by examples (see Figures
70.25-70.30).

Section Subsections Page

70 40 I 20 01

Moving Data Fields --MOVE

Often it becomes necessary to move the data in one
array into another array--especially if you are
using CSP. The MOVE subroutine has been in
cluded in CSP to facilitate such operations. Its use
is quite simple, since it does no more than move

. data from one place to another. For example:

CALL MOVE (IFROM, 6,8, ITO, 14)

will move

IFROM (6) to ITO (14)
IFROM (7) to ITO (15)
IFROM (8) to ITO (16)

leaving the IFROM array undisturbed.
Note that the ending position in the ITO array is

not supplied -as. one of the parameters.
The format of the data items is not affected.

They may be AI, A2, decimal, or integer (but not
real).

Section Subsections Page

70 40 I 20 02

PROGRAM

COMMENTS:

STEP 1.

STEP 2.

STEP 3.

STEP 4.

STEP 5.

STEP 6.

STEP 7.

STEP 8.

EDIT WORKSHEET

PROGRAMMER

FILL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD, ANDWHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION 10F THE SOURCE FIELD IN POSITION~ OF THE MASK, AND SO ON, LEFT TO RIGHT.

IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

NOTE: THIS DOES NOT APPLY TO *'5 (ASTERISKS), b's (BLANKS), OR $'s (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE: ALLOWABLE SPECIAL CHARACTERS ARE A THRU Z, 1 THRU 9, AND /,. + = etc.

FILL IN LINE b,SHOWING HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

WHAT DID YOU DO WITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)

a) LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

DATE

b) REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

c) REPLACED THEM WITH BLANKS? IF SO NOTE THE RIGHTMOST BLANK AND PUT A ZERO IN THE MASK IN THE SAME POSITION.

d) REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbb$). IF SO, NOTE THE POSITION OF THE
DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.

FILL IN LINE c, SHOWING A TYPICAL NEGATIVE FIELD, AND HOW YOU WANT IT TO APPEAR.

WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR? CHOOSE ONE.

a) NOTHING, FIELD WILL NEVER BE NEGATiVE ••••••••.......••..••••..•. DO NOTHING.

b) LETTERS 'CR' AFTER THE FIELD - •••••• ; •••••••••••••••••••••••••••••.• PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

c) MINUS SIGN IN ITS OWN COLUMN, AFTER THE FIELD •••••..•••.••......• PUT A MINUS SIGN IN THE POSITION RIGHT
--- AFTER THE FIELD.

d) 11·PUNCH OVER ONE OF THE CHARACTERS ••.•••••••....••••••.•.....• SAME AS OPTION C, THEN USE NZONE SUBROUTINE
-- / TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

CAUTION: "CERTAIN ZONE PUNCHES (11, 0 AND
CALL NZONE (MASK,ct, 5, NOLDZ) 12,0) CANNOT BE HANDLED BY

MOVE ZONE FROM HERE TO HER?, FORTRAN I/O. IF THESE PUNCHES

CALL NZONE (MASK,D, NOLDZ, JUNK)

HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD?"'8 a

HOW MANY BLANKS REMAIN IN THE MASK?................... b

CAUTION: a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER!

WI LL OCCUR, YOU MUST USE CSP I/O."

DON'T FORGET; THE SOURCE FIELD MUST BE IN A1 FORMAT, WITH THE SIGN OVER THE RIGHTMOST CHARACTER.

SOURCE FIELD DESIRED EDITED OUTPUT

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17· 18

LINE a - LARGEST

b LINE b - ZERO b

CL-1--L-1_L-1-JL-1~L-1-JL-1-l-L_IN_E-C_-_T_Y-PI_C_A_L_N-EG--A_T_IV_E __ ~~~_+~~+_~_+~--+_~_+~-+_~_+~-+_+_~~ c

123456789101112131415161718

IMPLIED SIGN
REQUIRED EDIT MASK -----1

Figure 70. 24.

Section Subsection~

70 40 I
EDIT WORKSHEET

PROGRAM PROGRAMMER DATE

COMMENTS: JIIONET/I!lY FIELD TO BE PUNCIiEi1 /N7"O C.QRLJ #Irll LE.t9L}/Nq ZEROS
DE..5/Rc~ BUT #0 CO#;f~:S OR .iJEC .or. f/ PI/NCII OVER RI(jHTNOST
/bN/TS) pO.5ITION IF Ncq.4TIJ/E.

STEP 1.

STEP 2.

STEP 3.

STEP 4.

FILL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD. AND WHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION 10F THE SOURCE FIELD IN POSITION 1. OF THE MASK, AND SO ON. LE;FT TO RIGHT.

IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

NOTE: THIS DOES NOT APPLY TO *'5 (ASTERISKS), b's (BLANKS), OR $'5 (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE: ALLOWABLE SPECIAL CHARACTERS ARE A THRU Z, 1 THRU 9, AND /,. + = etc.

FILL IN LINE b,SHOWING HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

WHAT DID YOU DO WITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)

a) LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

b) REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

STEP 5.

STEP 6.

STEP 7.

STEP 8.

c) REPLACED THEM WITH BLANKS? IF SO NOTE THE RIGHTMOST BLANK AND PUT A ZERO IN THE MASK IN THE SAME POSITION.

d) REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbb$). IF SO, NOTE THE POSITION OF THE
DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.

FILL IN LINE c, SHOWING A TYPICAL NEGATIVE FIELD, AND HOW YOU WANT IT TO APPEAR.

WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR? CHOOSE ONE.

a) NOTHING, FIELD WILL NEVER BE NEGATiVE ••••••••...•.•••••••.•••••• DO NOTHING.

b) LETTERS 'CR' AFTER THE FIELD ••••.••••••••.••••••••••••••••••••••• PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

c) MINUS SIGN IN ITS OWN COLUMN, AFTER THE FiELD ••.•••••••••• , •••..• PUT A MINUS SIGN IN THE POSITION RIGHT
AFTER THE FIELD.

d) 11·PUNCH OVER ONE OF THE CHARACTERS •...•••••...•.••••••••.....• SAME ASOPTION C, THEN USE NZONE SUBROUTINE
-- ~ TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

~ CAUTION: "CERTAIN ZONE PUNCHES (11,0 AND
CALL NZONE (MASK,y, 5, NOLDZ) 12,0) CANNOT BE HANDLED BY

MOVE ZONE FROM HERE TO HER?, FORTRAN I/O. IF THESE PUNCHES
WI LL OCCUR, YOU MUST USE CSP I/O."

CALL NZONE (MASK,D. NOLDZ, JUNK)

HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD? •• 0 a

HOW MANY BLANKS REMAIN IN THE MASK? •••••••••.••••.•.•• ~ b

CAUTION: a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER!

DON'T FORGET; THE SOURCE FIELD MUST BE IN A1 FORMAT, WITH THE SIGN OVER THE RIGHTMOST CHARACTER.

SOURCE FIELD DESIRED EDITED OUTPUT

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a9999'99999

bOOOO'OOOOO

t-L_�N_E_a_-_LA_R_G_E_ST __________ ~~~9~9~9~9~9~9~9~9~9~~~~t_~~~a
LINE b - ZERO 000000000 b

CL-1-1-1-J~~~~~~~~:L~:L-L_1-I-L-I-NE--C---T-Y-PI-C-A-L-N-EG-A-T-1-V-E----~~-+O:+O:+:04=0~.=04=~~~~~~~~_+_+_+_4~~--~ c·

1 2 3 4 5 6 7 8 9 101112131415161718

IMPLIED SIGN
REQUIRED EDIT MASK ------...... r~l/; b 6 /; b " b b b b

Figure 70. 25.

20

Page

03

Section Subsections Peg~

70 40 I 20 04

EDIT WORKSHEET

PROGRAM PROGRAMMER DATE

COMMENTS: NOIVET"tl/?y F/E~~, N/Tfi FLO.-9T/N'q. -1, /lNO /IIcv19T/Yt /No/cnTO/? (8-/N

STEP 1.

STEP 2.

STEP 3.

STEP 4.

STEP 5.

STEP 6.

STEP 7.

STEP 8.

1 2

a 9 9

CoLU;tf# FOLtOtA//N(f).

FILL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD, AND WHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION lOF THE SOURCE FIELD IN POSITlON~ OF THE MASK, AND SO ON, LEFT TO RIGHT.

IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO'THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

NOTE: THIS DOES NOT APPLY TO *'s (ASTERISKS), b's (BLANKS), OR $'s (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE: ALLOWABLE SPECIAL CHARACTERS ARE A THRU Z, 1 THRU 9, AND /,' + = etc.

FI LL IN LINE b, SHOWI NG HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

WHAT DID YOU DO WITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)

a) LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

b) REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

3

c) REPLACED THEM WITH BLANKS? IF SO NOTE THE RIGHTMOST BLANK AND PUT A ZERO IN THE MASK IN THE SAME POSITION.

d) REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbb$). I F SO, NOTE THE POSITION OF THE
DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.

FILL IN LINE c,SHOWING A TYPICAL NEGATIVE FIELD, AND HOW YOU WANT IT TO APPEAR.

WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR? CHOOSE ONE.

a) NOTHING, FIELD WI LL NEVER BE NEGATiVE •.....••.......•........... DO NOTHING.

b) LETTERS 'CR' AFTER THE FIELD PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

c) MINUS SIGN IN ITS OWN COLUMN, AFTER THE FIELD .••.• : ..•.•..•.••... PUT A MINUS SIGN IN THE POSITION RIGHT
AFTER THE FIELD.

d) 11·PUNCH OVER ONE OF THE CHARACTERS •..............•..••.•...... SAME AS OPTION C, THEN USE NZONE SUBROUTINE
-- ~ TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

CAUTION: "CERTAIN ZONE PUNCHES (11, OAND
CALL NZONE (MASK,9' 5, NOLDZ) 12,0) CANNOT BE HANDLED BY

MOVE ZONE FROM HERE TO HER?, FORTRAN I/O. IF THESE PUNCHES
WI LL OCCUR, YOU MUST USE CSP I/O."

CALL NZONE (MASK,D, NOLDZ, JUNK)

HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD? .. ~ a

HOW MANY BLANKS REMAIN IN THE MASK? •••••••••..•••.•••. ~ b

CAUTION: a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER!

DON'T FORGET; THE SOURCE FIELD MUST BE IN A 1 FORMAT, WITH THE SIGN OVER THE RIGHTMOST CHARACTER.

SOURCE FIELD DESIRED EDITED OUTPUT

4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17' 18

9 9 99 9 9 99 LINE a - LARGEST $ 9 9 9 99 <) 9 9 lJ9 a
I)

b () 00 0 00 00 0 0 LINE b - ZERO iO 0 0 b

c I I , I 1 LINE c- TYPICAL NEGATIVE J I I / I , - c

IMPLIEDSIGN~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18

REQUIRED EDIT MASK b bIJ bhh b I b • /J h-I 1

Figure 70. 26.

PROGRAM

COMMENTS:

STEP 1.

STEP 2.

STEP 3.

STEP 4.

STEP 5.

STEP 6.

STEP 7.

STEP 8.

Section Subsections

70 40 I 20

EDIT WORKSHEET

PROGRAMMER DATE

SOC/Rl. .5cCt./R/TY NO.

FI LL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD, AND WHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION lOF THE SOURCE FIELD IN POSITION~ OF THE MASK, AND SO ON, LEFT TO RIGHT.

IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO'THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

NOTE: THIS DOES NOT APPLY TO *'s (ASTERISKS), b's (BLANKS), OR $'s (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE: ALLOWABLE SPECIAL CHARACTE RS ARE A THRU Z, 1 THRU 9, AND /, - + = etc.

FI LL IN LINE b, SHOWING HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

WHAT DID YOU DOWITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)

a) LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

b) REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

c) REPLACED THEM WITH BLANKS? IF SO NOTE THE RIGHTMOST BLANK AI\ID PUT A ZERO IN THE MASK IN THE SAME POSITION.

d) REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbb$l. IF SO, NOTE THE POSITION OF THE
DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.

FILL IN LINE c,SHOWING A TYPICAL NEGATIVE FIELD. AND HOW YOU WANT IT TO APPEAR.

WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR? CHOOSE ONE.

a) NOTHING, FIELD WILL NEVER BE NEGATiVE ••••••.•...•••.•.•.•••....• DO NOTHING.

b) LETTERS 'CR' AFTER THE FIELD .•••••••••••••••••••••••••••••••••••• PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

c) MINUS SIGN IN ITS OWN COLUMN,~ THE FIELD .••.•••.••..•..•.... PUT A MINUS SIGN IN THE POSITION RIGHT
AFTER THE FIELD.

d) 11-PUNCH OVER ONE OF THE CHARACTERS •..•.••.••..••••••••••••...• SAME AS OPTION C, THEN USE NZONE SUBROUTINE
-- ~ TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

~ CAUTION: "CERTAINZONEPUNCHES(ll,OAND
CALL NZONE (MASK,ct, 5. NOLDZ) 12,0) CANNOT BE HANDLED BY

MOVE ZONE FROM HERE TO HERE7 FORTRAN I/O. IF THESE PUNCHES
JI WILL OCCUR, YOU MUST USE CSP I/O."

CALL NZONE (MASK,D. NOLDZ, JUNK)

HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD? .• W a

HOW MANY BLANKS REMAIN IN THE MASK? ••••••••..••.•...•. 0 b

CAUTION: a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER!

DON'T FORGET; THE SOURCE FIELD MUST BE IN A1 FORMAT, WITH THE SIGN OVER THE RIGHTMOST CHARACTER.

SOURCE FIELD DESIRED EDITED OUTPUT

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17' 18

a / I I 223 3 3 3 LINE a - LARGEST I I I - 2 2 - 3 .3 33 a

b LINE b - ZERO b

LINE c- TYPICAL NEGATIVE

cLL~~LL~~LLr-------------'~+4~~+4~~++~~~
c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18

I h bb -" b - b bo h IMPLIED SIGN
REQUIRED EDIT MASK -----1

Figure 70. 27.

Page

05

Section Subsections Page

70 40 I 20 06

EDIT WORKSHEET

PROGRAM PROGRAMMER DATE

COMMENTS: L)/iTc

STEP 1.

STEP 2.

STEP 3.

STEP 4.

STEP 5.

STEP 6.

STEP 7.

STEP 8.

FILL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD, AND WHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION 10F THE SOURCE FIELD IN POSITION 1 OF THE MASK, AND SO ON, LEFT TO RIGHT.

IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO'THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

NOTE: THIS DOES NOT APPLY TO *'s (ASTERISKS), b's (BLANKS), OR $'s (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE: ALLOWABLE SPECIAL CHARACTERS ARE A THRU Z, 1 THRU 9, AND /,. + = etc.

FILL IN LINE b,SHOWING HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

WHAT DID YOU DO WITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)

a) LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

b) REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

c) REPLACED THEM WITH BLANKS? IF SO NOTE THE RIGHTMOST BLANK AND PUT A ZERO IN THE MASK IN THE SAME POSITION.

d) REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbb$). IF SO, NOTE THE POSITION OF THE
DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.

FILL IN LINE c, SHOWING A TYPICAL NEGATIVE FIELD, AND HOW YOU WANT IT TO APPEAR.

WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR? CHOOSE ONE.

a) NOTHING, FIELD WILL NEVER BE NEGATiVE •.••••••....••••••.••••...• DO NOTHING.

b) LETTERS 'CR' AFTER THE FIELD ••••••••••••••••••••••••••••••••••••• PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

c) MINUS SIGN IN ITS OWN COLUMN, AFTER THE FIELD •••••...••...•.••... PUT A MINUS SIGN IN THE POSITION RIGHT
AFTER THE FIELD.

d) 11·PUNCH OVER ONE OF THE CHARACTERS •.•....•••....••••••••.....• SAME AS OPTION C, THEN USE NZONE SUBROUTINE
-- ~ TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

~ CAUTION: "CERTAIN ZONE PUNCHES (11,0 AND
CALL NZONE (MASK,c;J. 5, NOLDZ) 12,0) CANNOT BE HANDLED BY

MOVE ZONE FROM HERE TO HER7 FORTRAN I/O. IF THESE PUNCHES
WILL OCCUR, YOU MUST USE CSP I/O."

CALL NZONE (MASK,D, NOLDZ, JUNK)

HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD? •. W a

HOW MANY BLANKS REMAIN IN THE MASK? ••••••.•.........•. [II b

CAUTION: a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER!

DON'T FORGET; THE SOURCE FIELD MUST BE IN A1 FORMAT, WITH THE SIGN OVER THE RIGHTMOST CHARACTER.

SOURCE FIELD DESIRED EDITED OUTPUT

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LINE a - LARGEST
I 2 I 0 !I! (;,1 a

b LINE b - ZERO b

LINE c- TYPICAL NEGATIVE c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

IMPLIED SIGN ·b REQUIRED EDIT MASK -----1 b /b b /II})

Figure 70. 28.

Section Subsections

70 40 I
EDIT WORKSHEET

PROGRAM PROGRAMMER DATE

COMMENTS: Or} TE

STEP 1. FILL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD, AND WHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION 10F THE SOURCE FIELD IN POSITIONl OF THE MASK, AND SO ON, LEFT TO RIGHT.

STEP 2. IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO'THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

STEP 3.

STEP 4.

NOTE: THIS DOES NOT APPLY TO *'s (ASTERISKS), b's (BLANKS), OR $'s (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE: ALLOWABLE SPECIAL CHARACTERS ARE A THRU Z, 1 THRU 9, AND /,' + = etc.

FILL IN LINE b, SHOWING HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

WHAT DID YOU DO WITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)

a) LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

b) REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

STEP 5.

STEP 6.

OR

STEP 7.

STEP 8.

c) REPLACED THEM WITH ~ IF SO NOTE THE RIGHTMOST BLANK AND PUT A ZERO IN THE MASK IN THE SAME POSITION.

d) REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbb$l. IF SO, NOTE THE POSITION OF THE
DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.

FILL IN LINE c, SHOWING A TYPICAL NEGATIVE FIELD, AND HOW YOU WANT IT TO APPEAR.

WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR? CHOOSE ONE.

a) NOTHING, FIELD WILL NEVER BE NEGATiVE •.•••••••...••••....•.•..•. DO NOTHING.

b) LETTERS 'CR' AFTER THE FIELD ••.••••••••••.••••••••••••••••••••••• PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

c) MINUS SIGN IN ITS OWN COLUMN, AFTER THE FIELD ••.••••••.•••..••... PUT A MINUS SIGN IN THE POSITION RIGHT
AFTER THE FIELD.

d) 11·PUNCH OVER ONE OF THE CHARACTERS •••...•..•..•••••.••......•• SAME AS OPTION C, THEN USE NZONE SUBROUTINE

r--------------------......., ~ TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

~ CAUTION: "CERTAIN ZONE PUNCHES (11, OAND
CALL NZONE (MASK,9, 5, NOLDZ) 12,0) CANNOT BE HANDLED BY

MOVE ZONE FROM HERE TO HERE7 FORTRAN I/O. IF THESE PUNCHES
, WILL OCCUR, YOU MUST USE CSP I/O."

CALL NZONE (MASK,D, NOLDZ, JUNK)

HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD? •• 0 a

HOW MANY BLANKS REMAIN IN THE MASK? ••••••••........••• 0 b

CAUTION: a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER!

DON'T FORGET; THE SOURCE FIELD MUST BE IN A 1 FORMAT, WITH THE SIGN OVER THE RIGHTMOST CHARACTER,

DESIRED EDITED OUTPUT

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

H 0 ::: / 2 /)/1 y' :: 0 to y~ =II ~ 7 a
I I

LINE a - LARGEST

b LINE b - ZERO b

LINE c- TYPICAL NEGATIVE

cLL~~LL~~-Lr_------------~+4~~++~~++~~~
c

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18

,4.f () ;::iJ b I IJ A y' :: " b , y K ::.~ b IMPLIED SIGN
REQUIRED EDIT MASK ----_1.

Figure 70.29.

20

Page

07

Section Subsections Page

70 40 I 20 08

EDIT WORKSHEET

PROGRAM PROGRAMMER

COMMENTS: NOAl£T4I?Y FIELD, #/T# c/(SYMBOL.
J

LE4/)INt; f

STEP 1.

STEP 2.

STEP 3.

STEP 4.

FILL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD, AND WHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION 10F THE SOURCE FIELD IN POSITION 1 OF THE MASK, AND SO ON, L~FT TO RIGHT.

IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

NOTE: THIS DOES NOT APPLY TO "5 (ASTERISKS), b's (BLANKS), OR $'s (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE: ALLOWABLE SPECIAL CHARACTERS ARE A THRU Z, 1 THRU 9, AND I, - + = etc.

FILL IN LINE b,SHOWING HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

WHAT DID YOU DO WITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)

a) LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

DATE

b) REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

STEP 5.

STEP 6.

c) REPLACED THEM WITH BLANKS? IF SO NOTE THE RIGHTMOST BLANK AND PUT A ZERO IN THE MASK IN THE SAME POSITION.

d) REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbb$). IF SO, NOTE THE POSITION OF THE
DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.

FILL IN LINE c, SHOWING A TYPICAL NEGATIVE FIELD, AND HOW YOU WANT IT TO APPEAR.

WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR? CHOOSE ONE.

a) NOTHING, FIELD WILL NEVER BE NEGATiVE •••••••••....•••••.•••••.•. DO NOTHING.

b) LETTERS 'CR' AFTER THE FIELD ••••••••••••••••••.•••••••••••••••••• PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

c) MINUS SIGN IN ITS OWN COLUMN, AFTER THE FIELD •••••...•••.••.•...• PUT A MINUS SIGN IN THE POSITION RIGHT
AFTER THE FIELD.

d) 11-PUNCH OVER ONE OF THE CHARACTERS •••.•.••......••••••••.•...• SAME AS OPTION C, THEN USE NZONE SUBROUTINE
-- ~TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

~ CAUTION: "CERTAIN ZONE PUNCHES (11, OAND
CALL NZONE (MASK,9, 5, NOLDZ) 12,0) CANNOT BE HANDLED BY

MOVE ZONE FROM HERE TO HER?, FORTRAN I/O. IF THESE PUNCHES
WILL OCCUR, YOU MUST USE CSP I/O."

CALL NZONE (MASK,D, NOLDZ, JUNK)

STEP 7.

STEP 8.

HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD? .• ~ a

HOW MANY BLANKS REMAIN IN THE MASK? ••••••••••.••••••.. @] b

CAUTION: a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER!

DON'T FORGET; THE SOURCE FIELD MUST BE IN Al FORMAT, WITH THE SIGN OVER THE RIGHTMOST CHARACTER.

SOURCE FIELD DESIRED EDITED OUTPUT

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a 9 9 9 999 9 9
booaooooo
c / 2 .3 4-

IMPLIED SIGN

Figure 70. 30.

LINE a - LARGEST

LINE b - ZERO

LINE c- TYPICAL NEGATIVE

REQUIRED EDIT MASK ------1

If. 999 , 999

* 1f-* * ** *0
~* it ~* ** z
1 2 3 4 5 6 7 8

b 6/J 6 , b-1f b

'3 ~

OD

.3 4C Il
9 10 11 12 1314 15

6 " e ~

16 17 18

16 17 18

a

b

c

Filling a Field with a Specific Character--FILL

If your program requires that you create long strings
of the same digit or character, the FILL subroutine
may be used. The statement

CALL FILL (KAHHY, 10,36, IT)

will place the coding of IT in positions 10-36 of the
array KAHHY. IT may be any integer between
+32767 and -32768.

In a standard FOHTHAN program, this is a
useful way to clear a set of totals to zero.

If you are using the decimal arithmetic routines,
this can also be used to clear a total field to zero.

When using the overlapped I/O routines, it is
often necessary to fill an area with blanks, dashes,
or some other character.

A table of the decimal equivalent of various
EBCDIC (AI) characters may be found in the CSP
manual. However, it is usually easier to obtain
their value indirectly with a DATA statement. For
example, to fill a printer output line with dashes,
you would place a DATA statement in the beginning
of your program:

DATA IDASH/' - '/

placing the dash character between the quotes or
apostrophes. Then the FILL statement

CALL FILL (lOUT, 1,120, IDASH)

would fill the lOUT array with the Al code for a
dash.

Section Subsections Page

70 40 I 20 09

Comparing Alphabetic Fields--NCOMP

The requirements for alphabetic comparisons
can usually be broken into two main classifications:

1. Comparing to determine whether there is a
match/no match condition.

2. Comparing to determine whether one field is
higher than, lower than or equal to another
field.

Because the first is quite a bit simpler than the
second, these two types of alphabetic compares will
be discussed separately.

Section Subsections Page

70 40 I 20 10

Match/No Match Alpha Compare. This operation
is common to many commercial applications:

• An employee time card may contain a four
letter code describing what job he worked on,
and the program must look up a corresponding
rate.

• An inventory card may contain a two-letter
code indicating unit of measure--LB, GR, EA,
etc.

• The name field on eachinput card is compared
with the name field on the preceding card; if they
are not the same, branch to the "control break"
section of the program.

If the fields to be compared are one or two
characters long, they may be read into a single
integer variable and compared like any other
intergers. For example, if their names are ITHIS
and ITHAT, the statement:

IF(ITHIS-ITHAT) 1,2,1

will branch to statement number 2 if they are iden
tical, and statement number 1 if they are different.
The format (AI or A2) does not matter, except, of
course, that it must be the same for both.

If the fields are longer than two characters,
they should be read into integer arrays, in Al
format, and compared with the NCOMP function.
Using the previous example, suppose ITHIS and
ITHAT are arrays, each containing ten alphabetic
characters.

IF(NCOMP(ITHIS, 1, 10, ITHAT, 1»1,2,1

will work the same as the simple IF statement
shown earlier.

Don't try to compare alphabetic fields that have
been stored as real variables. Two six-character
fields, called THIS and THAT, may be read from
a card and moved about in core just like any other
real variables; however, they cannot be compared
validly. The statement

IF(THIS-THAT)1, 2, 1

will not always branch to statement number 1 if
the two fields are different.

High/Low/Equal Alpha Compare. Everything said
about the Match/No Match compare also applies
here, with two exceptions:

1. The fields to be compared should always be
in Al format.

2. The Al representation for a blank must be
changed if you want it to fall in the proper
collating sequence.

Figure 70. 31 shows the decimal representation of
various characters in Al format. Note that the
blank falls after the letters and numbers. If it is
left there, alphabetic compares will yield an ascending
sequence--for example:

Character

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q

R

Figure 70.31.

WILLIAMSON
WILLIAMSbb
WILLIAMbbb

A1
Decimal

Equivalent Character

-16064 S

-15808 T

-15552 U

-15296 V

-15040 W

-14784 X

-14528 't

-14272 Z

-14016 0

-11968 1

-11712 2

-11456 3

-11200 4

-10944 5

-10688 6

-10432 7

-10176 8

-9920 9

A1
Decimal

Equivalent Character

-7616 blank

-7360 . (period)

-7104 <(less than)

-6848 (

-6592 +

-6336 &

-6080 $

-5824 "
-4032)

-3776 -(minus)

-3520 /

-3264

-3008 %

-2752 #

-2496 @

-2240 , (apostrophe)

-1984 =

-1728

Section

70

rather than the correct

WILLIAMbbb
WILLIAMSbb
WILLIAMSON

Subsections

40 I 20

This can easily be corrected if blanks are
converted from 16448 to something less than
-16064, the letter A. In fact, you might as well
change it to -16448. With a DO loop, the input
record can be scanned for + 16448s, and each one
found can be changed to -16448.

Page

11

They need not be converted back to +16448 for
printed output, since any invalid character (such
as -16448) will be printed as a blank anyway. For
punched output, however, this will not be so, and
the -164488 should be changed back to +16448s.

A1
Decimal

Equivalent

16448_

19264

19520

19776

20032

20544

23360

23616

23872

24640

24896

27456

27712

31552

31808

32064

32320

-
Note
position
of blank

Section Subsections Page

70 40 I 20 12

Working with Zone Punches -- NZONE

The top three rows of the data processing card are
commonly called the "zone" rows, and a punch in
one of them is called a zone punch. The top row is
called the 12 zone; the next, the 11 zone; and the
next (the 0 row), the 0 zone. (See Figure 7 O. 32.)
A digit overpunched with .a 12 zone punch is taken
to be positive; an 11 punch indicates negative. This
is quite reasonable, since an 11 punch alone is a
minus sign, and a 12 punch is an ampersand (&) or
plus sign (+), depending on the coding scheme and
cardpimch used. (While many people use the term
"X punch" instead of 11 punch, both mean the same.)

The 12 punch is rarely used, since it is easier
to have no zone punch for positive numbers.

The zone punch, when used to indicate the sign,
should be placed over the units (rightmost) position
of the field. For example, -1675 would be punched
with an 11 punch over the 5.

This practice will result in a card code equiva
lent to one of the letters J through R, or a negative
·zero. The table below shows the card code equiva
lents:

These punches Mean either this Or this

11,0 -0 0

11,1 -1 J

11,2 -2 K

11,3 -3 L

11,4 -4 M

11,5 -5 N

11,6 -6 0

11,7 -7 P

11,8 -8 Q

11,9 -9 R

If the card containing the 1675 field were inter
preted, or listed character for character, it would
appear as 167N, where the character N is equiva
lent to a 5 and an 11 punch.

In a few cases, zone punches may also be found
in card columns other than the low-order digits of
a numeric field. This is particularly true in instal
lations that once had a unit record, or punched card,
system. In such a system, zone punches provided
an easy way to pack additional data into a punched
card.

One of the advantages of the CSP overlapped
I/O routines is that they allow the input and output
of fields with zone punches. This is normally quite
difficult with standard FORTRAN READs and
WRITEs, since the 11,0 (- zero) punch is not per
mitted.

etc,

.------ An 11-punch, X-punch, or minus sign

...---- A 12-punch, &, or plus sign

An N or a 5 with an 11-punch

':(~l

I
I I

0000000000000000000000000000900000000000
1111 5 6 18 910111113111511111111212122232125161111213031313331353131313911

11

2 2 2 2 2 2 2 2 2 Z 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 22 2 2 2 2

333

4 4 4 4 4 4 4 4 4 4 4 • 4 4 4 4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 44 4 4 44 44 4 44

555555515555555555555555555555555555555555

6666666666666666666666&666666666666666&6&6

7 7 7 7 7 7 1111'11 11 7 1 11 1 1 I 11111 1 1 I 11111 111 1111

8 I 8 8 8 8 8 8 8 8 8 8 8 8 18 88 8 8 8 I

ggJ99999999~9999999992999999999999999999
I 2 3 4 ~ 6 1 , 9 10 11 12 13 14 IS 16 11 11 II 20 21 22 23 24 2~. 25 21 21 21 31 31 32 13 S. :t5 l5 11 1I 31 41

Figure 70.32.

The NZ ONE Subroutine. The NZ ONE subroutine
has been included in CSP to allow you to interrogate
a zone punch, obtaining a code that indicates its
status, and to modify a zone punch. If you wished
to operate on the 18th character in the INOUT array,
the call to NZ ONE would be

CALL NZONE (INOUT, 18, NEWZ, NOLDZ)

NOLDZ will be returned to you, indicating what
zone punch was present:

NOLDZ Zone Punch Character

1 12 A--I

2 11 J--R

3 0 S--Z

4 none 0--9

more than 4 special character

Note that an NOLDZ of 4 or more does not tell
you what zone punch was present, but only that
INOUT (18) contains a special character.

Section Subsections Page

70 40 I 20 13

You supply the NEWZ parameter, indicating to
the subroutine what you want done with the old zone
punch:

NEWZ Action Taken

1 Make the zone a 12

2 Make the zone an 11

3 Make the zone a 0

4 Remove the zone

more than 4 Let the zone alone

Section Subsections Page

70 50 I 01 01

FOHTHAN COHE SAVING TIPS

General

The way in which you code your FOH THAN programs
will have a considerable effect on their size. The
difference between efficient and inefficient coding
might be as much as several hundred words. This
may mean the difference between a program that
fits in core and one that doesn't, or the difference
between one that requires many time-consuming
overlays and one that requires none.

In general, the larger a program, the more
slowly it will run--not because it does more, but
because of the overlays(SOCALs, LOCALs and
LINKs) required to fit it into core. When writing
your programs, therefore, you should make every
effort to keep them small. One way to do this is
to know which FORTRAN techniques save core
storage, and which ones consume it excessively.
A better way is to design programs that do just one
job, rather than many. (Subsection 25.30.20 con
tains a discussion of the advantages of modular
programming.) Still another way is to use efficient
overlays (see Section 65).

The core storage requirements for any particular
program can be split into three major elements:

• The object code generated by the compiler
• The subroutines, which actually do the

work
• The data area, where all variables and

constants are stored
You should realize that very little actual work

is done "in line" by your program; when the end-of
compilation summary says your program size is
1000 words, it means that your program has been
translated into 1000 words of branches or linkages
to subroutines, plus some housekeeping to prepare
the linkages. The exception to this statement is
integer arithmetic, which is done in line, without
subroutines. However, all subscript calculation,
real arithmetic, and input/output is accomplished
by subroutines.

Some of the core saving tips in this section are
directed toward reducing the subroutine require
ments, while others will reduce the amount of
in-line coding.

If you modify an existing program, incorporating
some of these tips, don't expect to find all the sav
ings reflected in the end-of-compilation summary.
Check the list of required subroutines; you may
have eliminated some of them.

Reducing Program Size

Use the DATA Statement

The DATA statement is a recent addition to 1130
FORTRAN, having been incorporated into Version 2
of the 1130 Monitor System. Basically, it is used
to create constants at the time the program is com
piled, rather than each time the program is exe
cuted. It saves some time, but this should not be
enough to notice in the overall run time of most
programs. Much more important, the DATA state
ment saves core storage.

It is a nonexecutable statement, like the TYPE,
DIMENSION, EQUIVALENCE, etc., statements,
and requires no core storage. It provides only a
starting value for variables. For exact rules con
cerning the use of the DAT A statement, see the 1130
FORTRAN manual; in this section you will see some
examples of its use.

• Case 1: Initialize Tables at the Beginning of
a Program

Almost every program begins with statements
such as

DO 16 J = 1,50
TOT(J) = 0.0

16 SUBT(J) = 0.0
This coding, which requires about 27 words of
storage, can be replaced with

DATA TOT/50*0. 0/, SUBT/50*0.0/
which requires no storage.

Let us stress three facts at this point:
1. You still require two 50-position arrays.

The DATA statement merely takes care of initial
izing their values.

2. If you say TOT (1) = 1. 5 later in the program,
this will be done, and TOT (1) will no longer be O. O.

3. If you want to clear out these tables again
during the execution of the program, you must use
the conventional DO loop. You cannot GO TO or
reexecute the DATA statement, since it is a non
executable statement and, in fact, no longer exists
once the program is loaded.

Section Subsections Page

70 50 I 10

• Case 2: Initialize Indicators, etc.
The program PAY04, listed in Subsection

70.50.30, contains the following FORTRAN
statements:

T = O.
IERR = 0
ICOL = 1
INI = 1
XOT:::: O.
XBN = O.
XSP = O.
XREG = O.
IPAGE = 0
LINE = 50

01

which require 40 words of object coding. They may
be replaced by

DATA T/O./, IERR/O/, ICOL/l/, etc., etc.

• Case 3: Setting a Variable to Different Values
Again inspecting the same program, PAY04, we

find
GO TO (76,77,78,79,80,81), NOPLT

76ILST=250
GO TO 83

77ILST=90
GO TO 83

78ILST=200
GO TO 83

79ILST=50
GO TO 83

80ILST=150
GO TO 83

81ILST=30
83 continue

which requires 44 words of object coding. It may be
replaced by a combination of

DIMENSION IFACT (6)
DATA IFACT/250, 90, 200, 50, 150, 30/

and the statement (using eight words)
ILST = IFACT(NOPLT)

PlaCing the six constants in the IFACT array adds
no core requirements, since they were in core
before, as INTEGER CONSTANTS (see listing at
end of compilation).

Section Subsections Page

70 50 I 10 02

• Case 4: Creating Alphabetic Masks for the
EDIT Subroutine

If you want to print or punch you.r FOR TRAN re
sults with commas, floating dollar signs, etc., you
are probably using the EDIT subroutine found in CSP.
This subroutine requires an Edit mask, which may
look like

bb, bb$. bbCR
There are two ways to obtain this mask, which must
be in Al format in an eleven-word integer array
(call it MASK). You can read it off a card, or you
can look up the decimal equivalents of the EBCDIC
codes, and set each one equal to the desired
character:

MASK (1) = 16448 blank
MASK (2) = 16448 blank
MASK (3) = 27456 comma
MASK (4) = 16448 blank
MASK (5) = 16448 blank
MASK (6) = 23360 dollar sign
MASK (7) = 19264 period
MASK (8) = 16448 blank
MASK (9) = 16448 blank
MASK (10) = -15552 letter C
MASK (11) = -9920 letter R

The DATA statement allows you to eliminate this
sixty-six-word series of commands, replacing it with
DATA MASK/'b', 'b',',', 'b', 'b', '$', '.', 'b', 'b', 'C', 'R'/
where b indicates a blank.

Keep FORMAT Statements Compact

1130 FORTRAN includes a very flexible repertoire
of FORMAT codes, and often gives you several
different ways to achieve the same results. For
example, you can specify either (F6.2, F6.2, F6.2)
or (3F6. 2). With alphabetic heading data, there are
more options. To type a line which reads

bbbbbbbbbTOT AL
you can use as FORMAT statements the following:

a. FORMAT (14HbbbbbbbbbTOT AL)
b. FORMAT('bbbbbbbbbTOTAL')
c. FORMAT(9X, 'TOTAL')
d. FORMAT(9X,5HTOTAL)

etc.
If you suspected that some options used more core
storage than others, you would be correct. Options
a and b force the compiler to allocate nine words for
this FORMAT STATEMENT; options c and d only
require six words.

The main difference between the two styles is the
manner in which you have generated nine blank
columns -- 9X or 'bbbbbbbbb'. The 9X is coded and
compressed into one word; the 'bbbbbbbbb' requires
one word, plus a string of five words, each contain
ing two alphabetic blanks.

The difference does not appear to be great, but
consider your typical commercial report writing
program with its many long FORMAT statements.
The difference between the best (smallest core
requirement) and what the programmer has actually
used may be substantial.

This topic is further complicated by the fact that
the X specification is best for large numbers of
spaces, while the literal or ' , specification is best
for small numbers. In summary, to get one or two
spaces, it is best to enclose blanks within quotes
(or use the H specification). To get three or more
spaces, use the X specification.

Code Efficient I/O statements

The manner in which you code your I/O statements
can have a significant effect on the size of your
program. The FORTRAN compiler will generate a
certain fixed amount of coding for each READ or
WRITE:

READ 3 words
WRITE 4 words

plus a certain additional amount (average) for each
item in the I/O list:

variable -- e. g., AB or I 2 words
variable, constant subscript --

e. g. , X(3) 4 words
variable, variable subscript --

e. g., X(J) 5 words
array name 3 words
implied DO loop e. g., (X(N) , N=l, 6)

19 words
If you wish to WRITE a line containing eight real
variables, you may code

WRITE (3,XXX) A, B, C, D,E, F, G, H
and use 4 + (8 x 2)or 20 words. Or vou could
EQUIVALENCE each of the eight items to a variable
in the ANSWR array

EQUIVALENCE (A, ANSWR(l»
EQUIVALENCE (B,ANSWR(2»
etc.

and code
WRITE (3, XXX) ANSWR

which would require only 4 + (1 x 3) or 7 words.
You would not want to use

WRITE (3,XXX) (ANSWR(K),K=l, 8)
since that would require 23 words, more than the
original. In fact, the implied DO loop I/O format
should be avoided wherever possible. This can
usually be accomplished with the EQUIVALENCE
statement. For example, if you want to WRITE
the first six items of the eight-item ANSWR array,
you would code

DIMENSION ANSWR(8), ANS6(6)
EQUIVALENCE (ANS6(1), ANSWR(l»

WRITE (3, XXX) ANS6
saving 23-7 or 16 words.

Section Subsections Page

70 50 I 10

Avoid Long Subroutine Argument Lists

The coding generated for CALLs to subroutines is
quite similar to that of READs and WRITEs -- an
initial CALL (two words) plus a certain number of
words for each argument:

03

Type of Argument
None

Approximate
Core Required

o words
Constant -- e. g. ,6
Unsubscribed Variable -- e. g., X or I
Array Name, -- e. g., IARRY
Variable with Constant Subscript --

e. g. ,A(7)
Variable with Variable Subscript --

1 word
1 word
1 word

8 words

e. g. ,A(N) 13 words
You can see that there is quite a difference' between

a. CALL SUB 2 words
b. CALL SUB (X, Y, Z) 5 words
c. CALL SUB (lARRY) 3 words
d. CALL SUB (A(l), A(2), A(3» 26 words
e. CALL SUB (A(I),A(J),A(K» 41 words

There are many ways to avoid those types of CALLs
that consume core storage.

Item d, CALL SUB (A(l), A(2), A(3», could be
replaced by

and

EQUIVALENCE (A(1),X)
EQUIVALENCE (A(2), Y)
EQUIVALENCE (A(3), Z)

CALL SUB (X, Y, Z)
or by

and

DIMENSION XA(3)
EQUIVALENCE (XA(1), A(1»

CALL SUB (XA)
or by placing the A array in COMMON and using

CALL SUB
with no arguments.

Item e, CALL SUB (A(I) , A(J), A(K», could be
replaced by

CALL SUB (A, I, J, K)
which would require a revised subroutine but would
save 41 -6 or 35 words. Or it could be replaced by

CALL SUB (I, J, K)
with the A array placed in COMMON.

Section Subsections Page

70 50 I 10 04

Avoid Arithmetic with Variables Having Constant
Subscripts

In the average arithmetic statement, a variable with
a constant subscript (TOTAL(10)) will require two
words more coding than an unsubscripted variable
(TOTDF). Such usage can always be avoided by an
EQUIVALENCE statement such as

EQUIVALENCE (TOTDF, TOTAL(10»
Then, rather than say

TOTAL(10) = TOTAL(10) + AMT
you would code

TOTDF = TaI'DF + AMT
and save two words.

In a large program, the saving can be consider
able. Furthermore, it makes the program more
readable, since TOTDF can be a more descriptive
name than TOTAL(10).

The data can be referred to by either name:
• TOTDF when doing arithmetic
• TOTAL(10) when you want it subscripted --

for example, when clearing an array of totals, when .
writing an array of totals on the disk, etc.

Reducing Subroutine Requirements

Raising a Real Number to a Whole Power

FORTRAN allows you two ways to do this. For
example, to square X, a real number, either X**2
or X**2. may be used. While the two look almost
identical, the first will use the "real base to integer
exponent" routines (about 82 words) and the second
will use the "real base to a real exponent" routines
(about 242 words).

In this case you should code X**2 and save about
160 words of core storage, unless, of course, your
program really requires a real·base to a real
exponent somewhere else.

A programmer will often use this form of arith
metic to obtain the various powers of ten -- for
example:

10**N
10**0 = 1
10**1 = 10
10**2 = 100

However, if this is the only way in which the
double asterisk is used in a particular program, it
will usually be more economical to code:

DATA TEN/I. ,10. ,100. ,1000. ,etc. /
and then use subscripting

'" TEN (N+1)
This will eliminate the 82-word subroutine.

Section Subsections Page

70 50 I 20 01

SQRT vs **.5

To take the square root of a number, you have two
alternatives: the SQRT function or the 1/2 power
option (**.5). While both will give the same result,
the core storage required is quite different. The
SQRT routine is about 76 words in length; the "real
base to real exponent" routine, about 242 words.
The difference, about 166 words, is substantial.

Of course, if your program must use the "real
base to real exponent" routine (for example ~**A),
you need those routines anyway. If that is so, use
the **.5 option rather than SQRT; otherwise, you
will have both packages in core storage.

Section Subsections Page

70 50 I 20 02

Don't Include Unneeded I/O Devices on *IOCS Card

In many installations, a stack of all-purpose *IOCS
cards is left on the card reader, or nearby, to save
the. trouble of punching a new card for every pro
gram. However, you should be aware that the card
*IOCS(CARD, DISK, TYPEWRITER, KEYBOARD,
1132 PRINTER)

will cause all those I/O routines to be added to your
program, whether you use the devices or not. The
size of the package to handle those devices listed
above is about 620 words for the disk, and 1780
words for the non-disk group. Because of the way
in which the SOCAL system operates, your program
may still fit in core, but with more overlays, thus
causing it to run more slowly.

It would be wiser to maintain a set of cards with
only one device per card

*IOCS(CARD)
*IOCS(1132 PRINTER)
*IOCS(DISK)
etc.

and use only those that are really needed. In this
way no unnecessary I/O packages will be included
with your program.

Remove FIND Statements If You Have SOCALs or
LOCALs

Even if you have included FIND statements in your
program, they will not be executed if SOCALs or
LOCALs are being used. The FIND subroutine
(SDFND), however, remains in core storage.

Therefore, if you know you are going to have
SOCALs or LOCALs, remove all FIND statements,
and you will save about 80 words of core storage,
plus three words for each statement.

Remove the TRACE from Production-status
Programs

The trace features furnished in 1130 FORTRAN are
an invaluable aid in debugging. Most users, when
they compile their programs, include the *ARITH
METIC TRACE and *TRANSFER TRACE cards,
just in case something goes wrong. However, since

Section Subsections Page

70 50 I 20

these features consume both core space and time,
they should be eliminated when no longer needed.

03

Core requirements are increased by about 140
words, and execution time is slowed down for each
equal (=) sign, IF statement, or computed GO TO
executed. This is true regardless of the status of
Sense Switch 15. In addition, the object coding
generated may be slightly greater.

Section Subsections Page

70 60 I 10 01

FORTRAN EXECUTION TIMES listings, and count the average number of times the
operations shown in Figure 70.33 will be executed.
Then use the times shown in Figure 70.33 to
estimate the total execution time.

Processing

It is possible to estimate the length of time it will
take to execute an arithmetic block of FOR TRAN
coding. Inspect your coding sheets, or program

Note that you must consider the probability of
execution, not just the number of appearances. If
a certain loop will be executed 15 times, on the

Operation

GET
PUT
EDIT
MOVE
FILL
WHOLE
NCOMP
NZONE
ICOMP
NSIGN
ADD
SUB
MPY
DIV

A1DEC
DECA1

A1A3
A3A1
PACK
UNPAC
DPACK
DUNPK

SIN
COS
ATAN
SQRT
EXP
ALOG
TANH

Approximate* time in
Microseconds,** each execution

(time for standard precision
use in parentheses)

Operation
Approximate* time in
Microseconds,** each execution

(time for standard precision
use in parentheses)

2250 + 2190C
3450 + 3090 C
630+ 90S+ 180M
300+ 45 C
300+ 30 C

1400
250+ 75 C
350
500 + 95 C
240

2160+ 216 L
2160+ 216 L
2400 + 120 P
4000 + 0(445 + 667 DIV)

700+ 54 A
180+ 117 A

470 + 1084 A
545 + 156 A
360+ 63A
420 + 66 A
3920
3600

5400 (3000)
5900 (3400)
8900 (5300)

10400 (4500)
4400 (2000)
8000 (5100)
8100 (4300)

real =

integer =

+real
+integer
-real
-integer
*real
*integer
/real
/integer

real**real
integer**integer

FLOAT
FIX

subscript (no variabl e)

subscript (one variable)

subscript (two variables)

subscript (three variables)

DO
IF (real)
I F (integer)

GO TO
GO TO (), N

N
C

=
=

The number of times through the DO loop
Length of the field, in characters

S
M
P

A
0
L

0
DIV

=
=
=

=
=
=

=
=

Length of the source field
Length of the edit mask
Length of the multiplier field x length of the multiplicand field
(significant digits only - don't count leading zeros)
Length of the A 1 field
Length of the packed decimal (04) field
Length of the longer of the two fields (significant digits only -
don't count leading zeros)
Number of significant digits in the quotient (result) field
Number of significant digits in the divisor (denominator) field

300 (360)
22

440(460
12

490 (560)
12

790 (560)
30

2100 (800)
80

13300 (8000)
4700 (3800)

330
140

25

280

390

530

22 + 50 N
190 (210)

30

7
7

* Most timings are approximate and are based on test runs of "typical" cases, using fields of "average" size,
magnitude, etc. Unusual cases may (or may not) differ significantly from the timings obtained from the
given equations. This is particularly true of the decimal arithmetic routines (ADD, SUB, MPY, DIV).

** Based on 3.6-microsecond CPU cycle speed. Multiply by 0.6 to obtain timings on 2.2-microsecond CPU.

Figure 70.33.

average, every operation within it should be counted
15 times. If, in the other hand, a certain routine is
only executed half the time, it should be counted as
half an execution. To illustrate:

X=X+6
IF(X-77.)1, 2,1

1 Z=X*14.
GO TO 3

2 Z=X*16./W
3 CONTINUE

If you assume extended precision, and a proba
bility of one-third for path 1 and two-thirds for
path 2, the estimated execution time is

Section Subsections Page

70 60 I 10 02

Operation No. of Times x Unit Time * Total *
1 +1/3+2/3=2 330 660

+ 1 440 440
1 490 490

* 1/3+2/3=1 790 790
/ 2/3 2100 1400

FLOAT 1 330 330
(6 to 6.0)
IF (real) 1 190 190
GO TO 1 7 7

4307
*In microseconds

On the average, then, this portion of your pro
gram will require 4307 microseconds, or 4.307
milliseconds, or . 004307 seconds.

Figures 70.34 through 70.40 show some
additional examples.

Section Subsections Page

70 60 I 10 03

FORTRAN TIMING ESTIMATE WORKSHEET

CODING

X =X+~
IF (X -77.) ~ ~ /

~Z~X ~/4~ ONE t:?U'T ~.,c EYERY .3 T//4£..5

GO T03

C£Z=X~/r;,·8 TJA/CJ c)i/T OF THReE. T/ME.5

3 CV'A/T/NC/c

Number Time per Execution, Extension,
Component of M i croseco nds Microseconds

Executions

re:t:l/ == /,Lf.§ 7'~ ..:330 (; ~ 0

1'- r~t?/ I 4¢() 4- ~ 0

~LGJ4r / 330 3 .3 0

-r~t?/ / 49CJ 4 9 0

/F V--~.'7/) / /9~ / 9 cl

GeJ /-r;;;) / 7 7
:1: r~c// ~I-% 790 7 57 0

/ rr:Jt1/ o/.§ 2/00 / <1 CJ 0

TOTAL = 4 Z. / 7

Figure 70. 34.

Section Subsections Page

70 60 I 10 04

FORTRAN TIMING ESTIMATE WORKSHEET

CODING X (I) := X(I)+~
Ir(X (I)-7h) 0 2.; L

.1 Z= x(rJ */4,
GO ro .3

Z Z.:. X (r)~ /~./J1/

.3 C ~N)"/Nt.'%C"

5Qme 05 r/.!lvre 7c:? 3¢ exee~/ ;-/;41-
X /5 St/e5.sCr?r,,,

Number Time per Execution, Extension,
Component of Microseconds Microseconds

Executions

S-~/?;l~ #. '$ hgw ~~ 7t:7.3..-/ ~ Z / 7

lW.6scl"~tt rvtl. -: 4 2i'LJ / / Z 0

TOTAL = 15 3 13 7

Figure 70. 35.

Section Subsections Page

70 60 I 10 05

FORTRAN TIMING ESTIMATE WORKSHEET

CODING

C COC/;/.,/7' TO /c:JoCl - £)0 Lc)OP

00 17 I=-d
./ /000

- -. ,.
~ .

"
17 C-O#7/A/,/c;-

Number Time per Execution, Extension, I Component of Microseconds Microseconds
Executions

;)0 lOG? /COC 22' -I- 5t;',~ ;J ;:- 0 0 2 2 '-"

f----.

TOTAL = 5 0 0 2- Z.

Figure 70. 36.

Section Subsections Page

70 60 I 10 06

FORTRAN TIMING ESTIMATE WORKSHEET

CODING
C/NTcGERS) C Ct:JO'N'T Tt:l 1 (JtJt:)

I::. 0

7 If=" CI -/t:JtJCJ) I; 2) 2'
~ .£::=..z~:f

GO 7"0 7

2 caNT/,A./vE

Number Time per Execution, Extension,
Component of

Executions
Microseconds Microseconds

$k~~r~ /000 22 2 2, 0 0 0

-~k96'r /ttJoL /2 I 2 0 / 2-

/Frf/;kye/) /~t/.1 ..30 3 LJ 0 3 0
v

GCJ rc; /t!Jt:JO 7 7 Cl 0 0

-I-//Jk~er /C?ot:? /c / '2 (/ 0 0

TOTAL = 8 " ~ 4- Z

Figure 70. 37.

Section Subsections Page

70 60 I 10 07

FORTRAN TIMING ESTIMATE WORKSHEET

CODING C COG/NT TCJ /OC)O

C sTAN.o/J,,{?O PRECiS/aN
x=o·o

7 JF (x-/ooo) ~2)2
i x = >< ~ f,

60 TO 7
2 Cc;?NT/NUE

Number Time per Execution, Extension,
Component of Microseconds Microseconds

Executions

/'~/ .:: /000 360 3 ~ 0 0 0 0

-re'4/ /ao/ SbO 5 G 0 s b 0

/~(/e4/) /co/ 190 / 9 CJ / 9 0

GOTe? /c:?cJO 7 7 t/ t:? 0

-rre4/ /000 460 4- ~ 0 0 (/ CJ

TOTAL =
/4 5 7 7~ 7 5 0

"I

Figure 70. 38.

Section Subsections Page

70 60 I 10 08

FORTRAN TIMING ESTIMATE WORKSHEET

CODING
C COL/NT TcJ /CJCJGJ

C EXrEN£)££/ PREC /S/t;?/V
)(: 0, t:/

7 /r ,x-/c/oo.) /,.? 2~ 2
:1 X = x-r.f.

GO Tc:/ 7
2 CO/V'7/NUE

Number Time per Execution, Extension,
Component of

Executions
Microseconds Microseconds

/' ttPtfI / ::: /cJOO 3.30 3 3 0 0 0 0

-/'~t?/ /00/ 49CJ ~ 9 0 4 9 0

/rVe'~1) /?JO/ /9~ / :3 0 / 9 0

GCJ7CJ /tJoo 7 7 0 0 0

f /" e.' t:1 / /(/00 ~¢o 4 4- 0 0 0 C

TOTAL = 4- 5 7 ,6 8 0 / I

Figure 70.39.

Section Subsections Page

70 60 I 10 09

FORTRAN TIMING ESTIMATE WORKSHEET

CODING
C COt/AlT TO /ClClc:J.) !)£CIMAL. AR/TH
C A55t/ME .z X Fie!.. 0 TEN D/t;//TS Lv#~'

C ASSUME TJ1/0-0/~/T Cc::JA/.5T.4A/T O,-C a.IVE (K1)

c ASSL/ME TE/\/-LJ/t;7/T cONsrAlA//" c/"c /OOOCff/Ot::q)

C4LL F/LL (I0 1;10;1 (j)

7 IF (//COM.P{£ X/ 1,ltJ; ,1(/OOOJ I J /0)) 0 27 2

1 C/iLL 40D(£X)I.; 10) I-(~~ 2) N£)

GO 707
2 CCJA/?/NG/c

Number Time per Execution, Extension,
Component of Microseconds Microseconds

Executions
-
l,c(/;'/eye~ /£)0/ ..3c 3 0 cJ 3 0

GO 70 /C)oo 7 7 0 0 0

~/LL .t 30o..,t./Ox,,90 C; 0 0

#i.?O.4'l" r? /00/ 250 7'-/0 X 75 I () 0 I cJ 0 0

,4£.ILJ /c::;oo 2/60 -f- 4 X 2/r;;; 3 0 Z 4- tJ tJ 0

TOTAL = 4 () 6 Z ~ .3 C)
-'I ""

Figure 70,40,

Summary and Conclusion

From the examples shown you may draw some
conclusions:

1. Integer arithmetic is much faster than real
arithmetic.

2. Extended precision and standard precision
real arithmetic are of essentially the same speed.

Section Subsectiors Page

70 60 I 20 01

3. Decimal arithmetic is fairly slow.
4. Subscripting adds a considerable amount of

time to arithmetic calculations. (It also increases
the size of your program.)

5. Unnecessary use of mixed mode expressions
can add somewhat to execution time.

Section Subsections Page

70 60 I 20 02

FORTRAN TIIViING ESTIMATE WORKSHEET

CODING

Number Time per Execution, Extension,
Component of Microseconds Microseconds

Executions

TOTAL =

Section 75: SORTING WITH YOUR 1130

CONTENTS

Introduction .. 0 • 0 0 ••••••••••••• 0 75.010 00
Some Preliminary Information• 75.10.00
Alternate Approaches•.. 75.20.00

Use of File Organization ..•....... 75.20.10
Pure Sequential
Indexed Sequential
Random

Sorting Offline•.• 0 ... 0 •••• 75.20.20
Methods of Sorting .•.•••... 0 . 0 .•.. 75.30.00

Introduction•. 0 ..••.•.. 75.30.01
Key Compare vs Key Value
(Radix) Techniques
Sequence-Creating vs
Sequence Reducing Techniques

Section Subsections

75

Degree of pat a Accessibility
Degree of Generality

00 I 00

Page

01

Internal Sorting Methods .•........ 75.30.10
Selection
Exchanging
Merging
Insertion
Replacement Selection
Address Calculation

External Sorting Methods 75.30.20
Key (Tag) Sorting
Key Sort vs Record Sort

A Detailed Look at an 1130 Record
Sort •• 0 ••••••••••••••••••••• 75.40.00
Summary••......•...•.•. 75.50.00

INTRODUCTION

Most data processing applications require a sequen
tial arrangement of the information to be processed.
Frequently, a collection of related information, or
file of data records, is to be updated by adding,
deleting, or changing information as new transac
tions occur. Before the new transactions can be
applied against the main or master file, however,
a method must be established whereby a transaction
can be associated with a master. One such method
would be to arrange the transactions in the same
sequence as the master file (see Figure 75.1). For
this purpose, the master and transaction files are
sequenced by some common identifying character
istic, such as part number, account number,
employee number, etc. Similarly, when payroll
earnings are to be computed or data is to be tabu
lated in accordance with some scheme of classifi
cation, it is necessary to arrange the information
in a sequence that facilitates processing.

Sorting is simply a systematic method for
arranging or rearranging a file of data records in
sequence by some group of characters that consti
tute the control field, or control word, of the
record. (Control words are sometimes called the
key.)

This section discusses sorting with your 1130
but attempts first to show you (1) a possible way to

Section Subsections Page

__ --....,A ----..
Record '
Num

4

106

107

108

109

308

ber
Cant

67

81

303

809

Master File

75 01 I 00

Transaction or Detail File

Figure 75. 1. Transaction file and master file in same sequence

avoid sorting with your 1130 and (2) a way to ease
the task of writing a sort program, if one must be
written.

01

Section Subsections Page

75 10 I 00 01

SOME PRELIMINARY INFORMATION

It may be useful to review the meaning of some
basic terms and concepts that are part of sorting
terminology. As already stated, sorting concerns
the arrangement of a file which is a collection of
related data records stored in a data storage
medium (cards or disk). The file size specifies
the total nurrber of records contained in the file.
The input file is the collection of data records
introduced as input to the sorting process, while
the output file represents the collection of records
properly sorted and stored.

To place a file into a specified sequence, each
of its records must somehow be uniquely identi
fiable. The identification is made by means of the
control key, a group of characters arranged in a
certain way. The contiguous groups of characters
that are placed in order within the control key. are·
called control fields. Each of the control fields
bears certain identifying information, such as pay
roll number, name, organization code, address to
which checks are sent, etc. The data record con
trol field that is most irEportant in sequencing the
records is called the major control field. When
two records contain identical data in their major
control field, they must be compared by the next
most significant, or IT, inor, control field in order
to be sorted into the proper sequence. If even the
minor control fields are equal, the next most
significant or minor control field must be consid
ered, and so on. Thus, for the purpose of suc
cessive comparison, all the control fields within
the control key are arranged in major-minor (that
is, decreasing) order of significance (see Figure
75.2) .

Since the control fields of a record may consist
of numbers, letters, or special characters ($, -,
+, etc.), an order must be prescribed for the
characters of the control field to determine which
is greater and which is less. Such an order of
characters, upon which the sequencing of records
is based, is known as the collating sequence. In
the 1130, the collating sequence is A-Z, 0-9,
blank, and special characters, in ascending order
(see 70.40.20). The collating sequence determines
the proper order of the control keys.

Using these definitions, sorting may now be
defined more accurately as the process whereby
a file of records is placed in order by the collating
sequence of the control keys of the records.

A considerable body of specific sorting terms
has been generated over the years. To simplify

Disk or
card record:

Assembled into
control key
or tag

Salesman

JONES

SMITH

HILLIAMS

Figure 75. 2.

Control Field or Word

Major Control
Field

A

B

9

C

X

A

9

Amount

6.10
14.67
17.76
14.01

376.35
1.98

706.13
37.38

309.76
101.37

67.42
8.77

336.75
601.32
706.14
975.93

Second Minor

Customer
Name Date

xxxx xxxx
xxxx xxxx
xxxx xxxx

xxxx xxxx

the ensuing discussion, some of the more commonly
used terms are explained here.

The object of a sort is (to restate it) to place a
file of records in a desired sequence. Any group
of data records in which the control keys are in the
desired collating sequence is called a "sequence"
-- or, sometimes, a "string". The length of each
sequence can be one or more data records. It has
been assumed till now that a sort must be in
ascending sequence; that is, the final sequence of
records is such that the control key of each suc
cessive record collates (compares) equal to or
higher than that of the preceding record. This need

not be the case, however. A sort can be in a des
cending sequence, with the control key of each suc
cessive record collating equal to or lower than that
of the preceding record.

Frequently, two or more sorted files have to be
merged into a single file of sequenced records. In
general, "merging" is a technique that collates
several sequences of data records to form a single
sequence. The number of files to be combined
during a merging operation is known as the order
of merge, or "merge order". Thus, a merge of
order m is called an "m-way merge". The proc
essing of all the records once through the merge
is termed a "merge pass", or simply, a "pass".
The object of a pass is to reduce the number of
sequences (strings) by increasing the number of
records contained in each sequence. During a
single pass, the number of sequences is usually
reduced by a factor equal to the order of merge
(m). Several intermediate passes may be required
to reduce the file to a single sequence. A multi
pass sort is a sort program designed to sort more
data than can be contained within the internal stor
age of the central processing unit. In this case,
intermediate storage (disk) is required.

It is customary to segment a sort program into
a number of phases, each of which is executed as
one core storage lo.ad. For example, a typical
sort may be divided,into four phases: an initiali
zation phase, an internal (presort or premerge)
phase within core storage, a merge phase (for
combining the sequences), and a final output phase.

The sequencing of a group of data records con-
tained at one time in core storage is known as an
"internal sort". The size of the internal sort

is the nUli ber of data records (abbreviated G) that
can be sequenced at one time in core storage.
Note, however, that since the num ber of data
records to be sorted usually exceeds G (the num
ber contained at one time in core storage), the
internal sort process must generally be repeated
until all the records in the file have been sequenced
into strings that may later be combined, or
merged.

It has been implied that sorting consists of mov
ing data records around until their respective con
trol keys are in the proper collating sequence. This
is not always the case. In some sorting methods,
the control keys upon which sequencing is based
are read from the record and combined with the
record number (called tag) to form a key-tag pair.
Then the keys are sorted, rather than the original
records. A fter sorting, the tags serve as an index
for later retrieval of the data records in the desired
sequence (see Figure 75.3).

I n core storage

before sorting:

Key NREC

085 1

603 2

143 3

801 4

013 5

035 6

109 7

706 8

431 9

307 10

010 11

444 12

Section Subsections Page

75 10 I 00

Key

085

2 603

3 143

4 801

5 013

Record Number 6 035
NREC

7 109

8 706

9 431

10 307

11 010

12 444

I n core storage
after sorting:

Key NREC

Keys are p.hysically

sorted (moved around)
---. with each corresponding

record number (NREC)

moved with it

010

013

035

085

109

143

307

431

444

603

706

801

Now, either physically move the
disk data records

or
process (e.g., print report)
by obtaining disk records
in the order found in the
NREC table.

11

5

6

1

7

3

10

9

12

2

8

4

02

Figure 75. 3. Tag sort

The effectiveness of a sort program is measured
by the time it takes to sort a file of data records.
If the sorting method alone determined the overall
performance and speed, the choice of the best
method would be relatively simple. In actuality,
though, sort performance is the result of a complex
interaction between the characteristics of the data
file, the data processing system, the sorting
method used, the objectives desired, and a number

Section Subsections Page

75 10 I 00 03

of other characteristics. Thus a great many fac
tors play a role in determining the efficiency and
speed of a sort program.

Among the more important data file characteris
tics, the following may be cited: the degree of
original ordering of the file (that is, is it in random
order or do natural sequences exist?); the length,
range, and location of control word data; and the
number and length of the records.

Equally important in influencing sort perform
ance are the characteristics of the storage facilities
and the CPU of the computer. Among storage char
acteristics of interest are the capacity of the main
internal storage and the mode of addressing it, as
well as the availability and access times of exter
nal storage devices, such as disk files. Relevant
machine and CPU characteristics include simul
taneous read, write, and processing capability; the
basic processing speeds of compare, add, and
move operations; the structure of the OP-code set;
and the availability of indexing, table lookup, etc.

For a given sorting method, the data file charac
teristics influence the primary sorting statistics,
such as the total number of arithmetic operations
or comparisons and the total number of passes.
For a file of a given size, each method also has
some inherent characteristics that influence the
complexity and speed of the sort -- for example,
the required working storage, the required number
of comparisons, transfers, and exchanges, etc.

Finally, realistic sorting objectives must con
sider the specific data processing requirements,
as well as the complexity and cost of the sort pro
gramming effort. A specific sort program should
try to provide an optimum match between the speci
fied data file, the given machine configuration, and
the chosen technique. In sorting large files, a
single sorting technique cannot always provide this
optimum match. Frequently, therefore, a program
combines two methods in order to take advantage of
special machine features, minimize the effects of
storage limitations, and provide increased speed.

ALTERNATE APPROACHES

Before you write a sort program for your 1130,
examine your files and the reports to be produced

Section Subsections Page

75 20 I 00 01

from them. You may find that sorting on your 1130
is not necessary, or that sorting can be avoided.

Some alternate approaches to sorting on your
1130 are:

Use of file organization
Sorting offline

Section Subsections Page

75 20 I 10 01

Use of File Organization

Is it possible to keep mulitple copies of your files,
each in the sequence of a report to be produced?
If so, you can avoid sorting. If not, however, as
is likely with moderate to large files, the impor
tance of your file organization scheme emerges.

Pure Sequential

An answer for files organized in a pure sequential
manner is to maintain multiple copies on multiple
disk cartridges. This eliminates sorting but may
cause problems in processing. (See Figure 75.4.)
Generally, with pure sequential files that are too
large for multiple copies, the solution is offline
sorting.

2

3

4

5

6

Jones

Jones

Jones

Jones

Smith

Smith

1
Williams

2

3

00103

00109

00110

00115

00131

r
87961

Indexed Sequential

Is it possible to keep multiple copies of your index,
with each index in the sequence of a report to be
produced? Since your index is considerably smaller
than your file, this may be the ideal solution. Proc
essing against the file would be random. (See Fig
ure 75.5.) Again, if this solution cannot be used,
you can still sort offline.

Random

In this case your files are usually organized in a
sequence that does not relate to a report. The
transactions (say, cards containing only control
keys) must be sequenced appropriately; a sort is
necessary. Hence, the only way to avoid sorting
using your 1130 is to sort offline.

in part number in salesman
sequence,

for sales report
sequence, for inventory

report

Figure 75.4. Same data in two files, but in different sequence

Master File

2

3

4

5

6

99

100

Man number

010

015

017

021

036

043

055

591

603

~
Record Man
Number Number

010

2 015

3 017

4 021

5 036

6 043

7 055

8

99 591

100 603

Index, in man number
sequence (same as file)

To run payroll, etc., look
up employee in this index.

Birth date

/
Birth Record
date number

Index, in birth date sequence

To run birth date report,
print from this index

Figure 75.5. One file, but with a multiple index system

Section Subsections Page

75 20 I 10 02

Section Subsections Page

75 20 I 20 01

Sorting Offline

Sorting offline can be either a manual or a mecha
nized procedure. A manual procedure (by hand)
should not be used unless volumes are very small.
Even with small volumes, you will need a program
to sequence-check the sorted cards.

A mechanized procedure involves the use of a
sorter. IBM has mechanical sorters available that
can process up to 2000 cards per minute.

The rule-of-thumb procedure for timing offline
mechanized sorts is:

1. Compute the card-passing time for each
column in the control key.

2. Sum these times.
3. Add 10% for card handling.

You must decide whether the time and money spent
sorting offline will be less than the cost of pro
gramming and running a sort for your 1130.

METHODS OF SORTING

Introduction

Sorting and merging methods can be classified in accor
dance with certain distinguishing characteristics.

Key Compare vs Key Value (Radix) Techniques

Most sorting methods compare control keys of two
or more records at a time and sequence the records
on the basis of a high, low, or equal comparison of
th~ keys. Despite variations, all key compare
techniques are essentially similar in concept. An
example of a key compare technique is the card
player's way of inserting new cards into his hand
in proper sequence, by comparing the value of each
new card with the values of those he is already
holding.

In some sorts, action is taken on the basis of
the value of the individual digits in the key and
their pOSition, rather than by comparison of two
keys. The value of the key digits -- or, more gen
erally, of the key number base (radix) -- is used to
determine into which particular slot each record
should go. Key value or radix techniques are also
known as digit sorts, which is a narrower term.
The mechanical punched card sorter, with separate
pockets for each key value, is an excellent example
of a radix technique. Another illustration is the
distribution of a deck of cards into four piles (or
files), one for each suit.

Sequence- Creating (Internal) vs Sequence -Reducing
(External) Techniques

Another fundamental way of viewing sorting is to
distinguish between techniques that create sequences
(starting with a random or unsorted file) and those
that reduce the number of existing sequences to one.
In theory, most techniques capable of creating
sequences of at least two records, or keys, are also
capable of lengthening those sequences to a point
where, finally, all records are contained within a
single sequence. In practice, however, the
sequence-creating or internal sorts are usually
only the prelude to the main or merge phase of the
sort (hence the terms "presort" and "premerge").
Initial sequences are created by loading a group of

Section Subsections Page

75 30 I 01

records into core storage, sorting the records
internally, and placing the resulting sequence on

01

an intermediate storage device. This internal sort
process is repeated until the input file is exhausted.
The sequences thus created internally are then
reduced to one by an external merge. If the entire
file can be contained within core storage at one
time, the sort is exclusively internal. In most
cases, however, both internal (sequence-creating)
and external (sequence-reducing) techniques are
necessary to sort a large file.

Degree of Data Accessibility

Sorts also may be distinguished in accordance with
their relative need of data accessibility. Most of
the internal techniques are best suited to storage
media that can provide rapid access to many groups
or sequences of records. Core storage provides
the most rapid and direct access, while disks fur
nish a lesser degree of data accessibility. A num
ber of methods work well with disk.

Degree of Generality

Finally, sort programs may be categorized by the
relative degree of specificity or generality for which
they are designed. A large range of objectives
exist between narrow, highly specific sorts and
broad, generalized programs. On one end of this
range there are specific sorts designed to operate
on a specified input file and a specific computer
configuration. Somewhere in between are general
ized sorts that will accept the introduction of some
parameters at execution time to adapt the sort pro
gram to the characteristics of the particular file
and computer configuration. At the other extreme
of the range, there are highly sophisticated, gen
eralized sorts and sort generators that, virtually
without user intervention, can generate a great
variety of ordered results on a variety of file and
computer configurations.

In most instances, a specific sort program will
satisfy your sorting needs. The remainder of this
subsection discusses some sorting methods (both
internal and external) of the types described above.
In addition, one of the easily implemented sorts
is expanded in flowchart form for your more detailed
examination.

Section Subsections Page

75 30 I 10 01

Internal Sorting Methods

Internal sorting is defined as the sequencing of a
group of data records contained in the core stor
age of your 1130. It generally involves reading
successive records from disk storage into core
storage, sorting the group in storage by one of
the methods to be described, and then writing the
sequenced group onto disk.

Since internal sorting is generally a part or a
phase of other processing and programs, you' must
distinguish between methods according to the ulti
mate purpose they serve. Thus, some sorting
routines found in compilers, assembly programs,
and other applications are strictly internal; that is,
a group of items is to be sequenced only in core
storage, not written onto disk. On the other hand,
in most generalized and specific sort programs,
the file of records is too large to be contained, at
one time, within core storage. Here the internal
sort passes serve only as a prelude to the subse
quent external merge phase of the sort and, hence,
are frequently called presorts or premerge sorts.
The purpose of the internal sort, then, is to form
a number of sequences, or strings, which are
placed into the output and subsequently merged.
The more efficient the premerge sort, and the
longer the strings it generates, the fewer external
merge passes required.

In addition to the purpose of the sort, the follow..:..
ing considerations apply in selecting an internal
sort technique and evaluating its suitability for a
specific application:

1. Characteristics of the machine (basic proc
essing speed, internal storage capacity, etc.)

2. Input/ output characteristics (number of disk
drives).

3. Number and length of data records.
4. Length and range of control keys.
5. Degree of original file ordering (natural

sequences) .
6. The associated program.
Since there is no single best method for all types

of applications, most sort programs represent a
compromise between conflicting requirements. In
general, they attempt to incorporate the following
in as nearly optimal a manner as possible:

1. Sort internally as many records as can be
packed into core storage.

2. Minimize total process time per record.
3. Function in a manner compatible with I/O

operations and strive for a maximum overlap of
read, write, and processing time.

4. Utilize existing sequences in the input file,
if possible.

5. Write routines that are compact and that can
be modified easily.

6. In a generalized program, accept and sort
variable length records with any size control key.

Generally, records can be sorted by (1) physi
cally moving them about until they are in order,
(2) forming tables of record numbers (tags) in stor
age, which are then sorted, or (3) combining the
control key and record number and sorting the
resulting short key-tag pairs. Either tag sorting
or key sorting is the preferred method today. The
sorted keys are then used as an index to the file.

In addition to an explanation, the advantages and
limitations of each sorting method will now be eval
uated briefly with respect to major file and machine
characteristics. Additional methods and additional
information on each of the methods discussed may
be found in Sorting Techniques (C20-1639).

Selection

Sorting by selection -- perhaps the simplest, and
also the slowest, of the internal sorting methods -
consists essentially of an examination of the input
file to find the record with the smallest key (for an
ascending sort) and placing this record or its key
in the output area as the first item of the new file.
The source file is then scanned for the smallest
key of the remaining records, which becomes the
second item of the new file, and so on, until all
items have been placed in the output file.

When the selection process is carried through
the entire file in one stage, it is called "linear
selection"; when the original file is broken up into
groups, and the smallest key of each group is
chosen, and then the smallest of these smallest
keys, the process is termed "quadratic selection".

Selection requires a relatively small working
storage area in core, equal to the number of items
being sorted internally. However, the number of
passes over the file also equals the number of items
(one for each record), and the total number of
comparisons required increases with the square
of the number of items to be sorted (for linear
selection); this rapidly becomes inefficient for a
large file.

Section Subsections Page

75 30 I 10

Exchanging

The technique of sorting by exchanging consists
essentially of comparing the keys of successive
records -- either one by one or pair by pair -
and exchanging out-of-sequence items. The sort
is completed when no exchanges are made during
a pass through the file. Many variations of this
general procedure are possible.

02

The major advantages of exchange techniques are
the relative ease of their programming and the fact
that all work is done in the area in which the origi
nal file is stored; no separate working storage
area is required. Among the drawbacks are the
dependence of exchange methods upon the distri
bution of the control fields in the original file and
upon the number of records in the file. If the file
is almost in sequence, one pass will generally
suffice. In the worst case, reverse sequencing,
the number of passes may equal the number of
items (G) to be sorted, and the number of exchanges
(key and/or record movements) may become
very large. Since the number of comparisons
required increases with the square of the number
of items to be sorted, exchange methods are most
efficient for sorting a relatively small file of
records. Perhaps the simplest exchange technique,
and the easiest to program, is pair exchange. The
keys of adjacent records are compared; whenever
they are not in as cending sequence, they are inter
changed. During the first pass, the keys of the
first and second records are compared, then of
the second and third, of the third and fourth, and
so on, until all keys in the file have been compared
and interchanged, when necessary. Each succes
sive pass will process one less record. The sort
is completed when no interchanges occur during a
pass. The example below illustrates the proce
dure. In general, the maximum number of passes
(for the worst case) is equal to G - 1. The aver
age total number of comparisons (C) is

G(G-1)
2

where G is the total number of items to be sorted.

Section Subsections Page

75 30 I 10 03

Input and Pass 1

13 r 13 13 13 13 13

69 69 56 56 56 56

56 56 r69 L-02 02 02

02 02 02)~69 08 08

08 08 08 08r 69 L- 21

21 21 21 21 21~69

Pass 2

13 r 13 13 13 13

56 56 r 02 02 02

02 02 56)~ 08 08

08 08 08 56 r 21

21 21 21 21 56

69 69 69 69 69

Pass 3 Output

13 r 02 02 02 02

02 13 08 08 08

08 08 r 13 r 13 13

21 21 21 21 21

56 56 56 56 56

69 69 69 69 69

The size of the file is of great importance, since
the total number of comparisons and interchanges
increases roughly with the square of the number of
records in the file.

Merging

Merging is the process of combining several
sequences of records to form a single specified
sequence. The same rules by which sequences are
combined may also be used to form sequences (of
two or more items). Thus, the merging process
has, essentially, a dual nature: it can be used for
creating sequences (usually in an internal sort),
and it is also capable of reducing previously created
sequences to one (usually in an external sort). This
dual capability contrasts with the selection and
exchange techniques described thus far, which are
useful prim arily for internal sorting of relatively
short files of records. The versatility, speed, and
simplicity of merging make it one of the most widely
used sorting techniques.

There are two basic methods of merge sorting:
(1) straight or standard merging, with fixed-length
sequences, and (2) natural merging, with variable
length sequences, or strings. (The words "sequence"
and "string" are often used interchangeably in
merging terminology.)

In straight merging, the input file is distributed
initially into two or more work areas, depending
upon the number of sequences to be combined dur
ing each merge (that is, the order of merge). For
example, in a method of two-way straight merging,
the first merge pass alternates between two stor
age areas to form strings of two records, one from
each area. Subsequent passes double the length
of the strings each time (for example, 4, 8, 16,
etc.), until the last pass produces a single sequence
of all the records. The length of the strings during
each pass and the number of passes are fixed.

The natural merge sort takes advantage of
"natural" sequences in the original file, w hi ch
occur with a certain "probable" frequency. The
length of the strings on each pass is no longer fixed,
but depends upon the existing sequences. The total
number of passes required to sort a given file, then,
also depends on the number of natural sequences in
the original file. For a file that is in correct
sequence, only a single pass is required --- to verify
that sequence. In the worst case, the number of
passes is the same as for straight merging.

Insertion

A fairly effective method for sorting a small num
ber of items, the insertion technique, places each
item in sequence as soon as it is encountered. The
records (or tags) are brought into storage one at a
time, the key is examined, and the item inserted
in the correct place of an output file. Earlier
members of the partial file are moved aside, when
necessary, to make room for new items. The
method is straightforward and easy to program,
but is relatively slow compared with other
techniques.

Sorting by simple insertion has two inherent
drawbacks: (1) the partial file must be searched
each time to locate the correct place for inserting
the new item, and (2) excessive shifting of the
sorted records is necessary for each new insertion.
The first limitation can be overcome, to some
extent, by sUbdividing the area that must be
searched in order to locate the correct position
of each new item. The second drawback -- the
large amount of record movement -- can be avoided
by sorting record numbers (tags), rather than the
record themselves. Even with these improvements,
the method is too slow for larger files.

Section Subsections Page

75 30 I 10 04

Replacement Selection

The internal sorting methods described thus far
are all capable of sorting a group of records (G)
that can be contained at one time in core storage.
The maximum string length is, therefore, limited
to G items. An auxiliary technique, known as
replacement (sometimes, replenishment), tries
to keep the core storage area filled with G items
by replacing records that have been withdrawn dur
ing the sort. As a result, for a file in random
order, an average string length of 2G items is
developed in an area with a capacity of only G
records. For a given amount of available core
storage, the replacement technique produces the
maximum possible sequence length. This charac
teristic makes the technique eminently suitable as
a premerge sort and permits a Significant reduc
tion in the number of merge passes required for a
subsequent external (disk) sort. The price paid
for this advantage is increased complexity of pro
gramming, relatively long processing time per
record, and a slight increase in the required work
ing storage. Also, the number and length of the
sequences are variable and, hence, not predict
able. Most replacement sorts, however, will
generate string lengths approximating 2G.

Essentially, the replacement selection method
determines the lowest record in the record storage
area, moves it to the output area, and then replaces
it with a new record from the input file. If the
new record is lower than the one just moved to the
output, it cannot be part of the current sequence
and, therefore, is flagged or held for the next
sequence. The process then continues with the
selection of the next-lowest record, and so on,
until there are no more replacement records in
the record storage area that fit into the current
sequence. A new sequence is then started, and the
procedure continues until the entire input file is
processed.

Section Subsections Page

75 30
1

10 05

Address Calculation

When the approximate distribution of the key values
is known, it becomes possible to sort a file inter
nally by estimating the eventual (sorted) position
of each key. This method is called "address cal
culation" or "pigeonhole sorting".

Briefly, it consists of calculating the correct
record number of each item within the file by a
predetermined linear formula of the form y= a +bx.
If the location at that record number is empty, the
item (record or key) is placed there; if it is full,
a search is made to find the closest empty space in
the viCinity of the calculated record number. The
item at the calculated record number and the adja
cent items are then moved so that the new item can
be inserted in its proper place in the sequence.

Address calculation is similar to the insertion
method in that each item is placed directly in its
proper relative position within the file, and the
entire file is in order just after the last item has
been inserted. The method differs from insertion,
however, in that some foreknowledge of the range
and distribution of the keys is required to estimate
the relative location for each item. When this is
available, address calculation is a relatively simple
and rapid method for sorting a medium-size file
(several hundred to a few thousand items) of small
to medium-length records. The major disadvantage
of the method is the need for a fairly large storage
area -- about two or three times the size of the area
needed for the original file. If only a relatively
small working storage area is available, or if the
distribution within the file is not as forecast, a great

deal of processing time will be spent in redistrib
uting the records.

To illustrate this method, let us consider a
hypothetical case: Many years ago, the ABC Com
pany set up a man-number system based on a three
digit number. Since they had about 150 employees,
each man was assigned, in alphabetic order, a num
ber evenly divisible by 5 (005, 010, 015, 020, 025,
... ,995). However, there are now about 240 em
ployees, and the system is not quite as neat as it
once was.

Some of the men (50 of them) have been assigned
num bers out of the normal pattern (for example,
862 in between 860 and 865). They are still in alpha
betic order, though.

The address calculation sort could be used to
place this employee file onto the disk in alphabetic
(man-number) sequence in the following way:

1. Set up a file containing 500 records.
2. As each man-number is encountered, divide

it by 2.5, and convert the result to an integer (call
it N).

3. Check record number N to see whether there
is already an employee there.

4. If there isn't, put the man just processed into
that record.

5. If there !E someone there already, move the
adjacent records up (or down) until there is room
to insert the new man.
This will be quite fast, provided the "moving around"
(step 5) is not required too frequently. If it is, the
file could be increased to 600 records, and the man
number divided by 2. This, however, would waste
a considerable amount of space on the disk.

External Sorting Methods

When a file cannot be contained within core storage,
additional external passes and intermediate storage
devices, such as disks, are required to sort the
file. The internal sort, then, is only one phase of
a generalized multiphase (or multipass) sort that
may have three or four phases. In such a multi
phase sort, the internal sort phase is concerned
with the creation of suitable sequences from the
main file, while the external sort, or merge phases,
are devoted to the reduction of those sequences to
one continuous sequence.

Practically all the internal sorting techniques
described earlier can also be used -- with varying
success -- for external sorting by changing the
terms of reference appropriately. Thus, the inter
nal storage area is replaced by several input and
output areas on disk.

It has been suggested earlier that sorting tech
niques could be categorized according to the degree
of and relative need for data accessibility. Thus
far, sorting techniques suitable for one extreme of
data accessibility have been described. The inter
nal sorts were seen to be best suited to high-speed,
direct (random) access storage media, such as
magnetic core storage. In these media, any record
or string of records can be accessed immediately,
without the need for passing over other, unwanted

Section Subsections Page

75 30 I 20 01

records.
Despite their name, direct (random) access file

storage media (such as disks) provide a degree of
data accessibility less than core storage. The time
to access a record in these devices is not com
pletely independent of the location of the previously
accessed record (as in core storage), but neither
does it depend on the entire sequence of records
stored before it (as in magnetic tape). The time to
access the next record depends on the number of
cylinders the access mechanism must be moved
from the previous record. (Each one or two cyl
inder move on the 2310 disk drive requires 15
milliseconds.) However, since internal core
storage is generally insufficient to hold an entire
file, auxiliary storage devices such as disks are
usually necessary.

With disks some attention must be given to the
relative advantages of key or tag sorting and sort
ing of complete records. It has been found in inter
nal sorting that key or tag sorting (involving either
record numbers only or short control records) is
conSiderably faster than sorting of complete re
cords. However, because of the substantial seek
time, this is no longer true for disks, when the
orginal records must be retrieved at the end of the
sort.

The follOWing paragraphs explore some of the
considerations pertinent to disk sorting.

Section Subsections Page

75 30 I 20 02

Key (Tag) Sorting

In general, key sorting consists of extracting the
control key from each record and adding the record
number to form a key-tag pair. These pairs,
rather than the original records, are then sorted.
(Sorting is done with the key; the record number is
merely moved about so as to remain with its asso
ciated key.) After sorting is completed, the pairs
provide an index for later retrieval of the data rec
ords in proper sequence. The obvious advantage of
key sorting is the more rapid processing of the key
tag pairs, rather than the much longer original re
cords. During internal sorting, more pairs can be
sorted into strings; thus, fewer strings and, prob
ably, fewer merge passes will result. The even
tual retrieval of the data records (if needed) from
external storage is done using the final sorted key
tag file.

A typical key sort with disk storage proceeds in
either two or three phases, depending upon whether
final retrieval of the data records is necessary.
Phase 1 is an internal key sort; phase 2 merges the
internally formed strings of key records; and phase
3, if required, retrieves the input records in
proper sequence. The approximate procedure dur
ing each phase is described below.

Phase 1 (Internal Sort) consists of the following
steps:

1. Place input records on the disk file in order
of occurrence.

2. Form key-tag pairs by lifting the control
field(s) from each input record and adding to it
(them) the disk record number.

3. Read G key-tag pairs at a time into core
storage and sort them internally (by any standard
method) into strings of length G. (G refers to the
number of items that can be contained at one time in
internal core storage.)

4. Write the stings of G pairs successively
onto the disk file, using as many sectors or files as
necessary (usually no more than five files of strings).

Phase 2 (Merge). The merge phase of the sort
consists of merging the strings of pairs from the
separate files on disk. The merge is completed
when a single sequence of key-tag pairs has been
written onto disk. During the final merge pass, the
control keys are stripped from the key-tag pairs,
leaving only the disk record numbers or tags.

These record numbers then serve as an index for
placing the input records in sequence. At your
option, sorting can end at this point.

Phase 3 (Record Retrieval). This phase is
necessary if the data records are to be retrieved
from the disk file in their sorted order. (Remember,
only the tags have been sorted, not the records
themselves.) The manner in which this is done has
a greater effect on overall timing than phases 1 and
2 combined. The simplest way (also the slowest)
consists of retrieving the records one by one in the
order indicated by the successive disk record num
bers. If the original input records constitute a
large file extending over several cylinders of the
disk, the probability is high that a seek must be
executed for the retrieval of each record. This will
add considerably to the time required, since the
seek time necessary to retrieve the records will
probably dominate the overall sort time.

A number of ways have been devised to minimize
this seek time during the retrieval of records in
phase 3. One method consists of bringing the disk
record numbers (from phase 2 of the sort) into
internal storage in some multiple of the output
blocking factor. The disk record numbers are then
sorted internally in ascending sequence, thereby
reducing the seek time between records. The
input records are read initially from the disk in
ascending record number sequence; blocks of re
cords are then placed in proper sequence (in ac
cordance with the original sequences of disk record
numbers); and the sorted records are finally written
back onto the disk file. The method reduces seek
time substantially, at the expense of more complex
programming.

Another method of modifying the key sort con
sists of blocking the sorted keys so that the number
of items in each block plus an equal number of
original records just fills the core working area.
The items in each block are then sorted again to
place the disk record numbers in ascending se
quence. As before, the records indicated in each
block can then be retrieved sequentially from the
file and sorted internally into the proper sequence.

It will be found, however, that in most cases, and
for large files in particular, these methods of re
ducing the seek time still result in a greater overall
sort time than might have been requi red to perform
a complete record sort.

Key So.rt vs Reco.rd So.rt

Usually, key so.rting is o.f no. advantage, even with
large disk files, when mo.st o.r all o.f the o.riginal
records are to. be retrieved. Mo.difying the so.rting
and reading schemes to. minimize the to.tal seek
time can have a co.nsiderable effect, but the advan
tage, generally, still lies with reco.rd so.rting.
Whether a reco.rd so.rt o.r a key so.rt sho.uld be used
to. so.rt a disk file depends largely o.n the ultimate
disPo.sitio.n o.f the so.rted reco.rds.

Sectio.n Subsectio.ns

75 30 I 20

If o.nly an index o.f so.rted reco.rds is necessary,
and few o.f the so.rted reco.rds are actually used,
key so.rting Wo.uld appear to. have the edge.
Exceptio.n repo.rts extracted fro.m the so.rted file
are an example o.f this type o.f situatio.n. On the
the o.ther hand, if mo.st o.r all o.f the original

Page

03

reco.rds are to. be retrieved, record so.rting is
preferable to. key So.rting. Mo.reo.ver, the advantage
increases with the size o.f the file.

Section Subsections Page

75 40 I 00 01

A DETAILED LOOK AT AN 1130 RECORD SORT

An improvement on the simple exchange technique
consists of making alternate passes in opposite
directions, attempting to move the high records to
the bottom and the low records to the top of the file.
This is called an alternating pair exchange sort.

The procedure starts in exactly the same manner
as in pair exchange, by comparing the keys of
successive records. After an exchange is made,
the high key is compared with the key of the next
record in sequence, and these comparisons con
tinue until either a higher key is found or the end of
the file is reached. All intermediate records (and
their keys) are shifted up one pOSition. During this
first downward pass, therefore, a high record can
move down many positions, but lower records can
move up only one pOSition.

The second pass is in the upward direction (from
the bottom to the top of the file) and tends to move
the smaller records closer to the beginning. Dur
ing this, and during every other even-numbered
pass, a high record can move down only one position,
but a low record can move up many positions.
Successive passes continue to alternate, with odd
numbered passes in ascending sequence and even
numbered passes in descending sequence. The file
is in sequence when no interchanges occur during
a pass. A final output pass is required to verify the
correct sequence.

The example below illustrates the alternating
exchange technique. The first pass, proceeding
downward, recognizes that 89 and 56 are out of se
quence and exchanges them. The high of the com
pare, 89, is then compared, in turn, with 02, 08,
and 21; since 89 is higher in each case, it moves to
the bottom of the file. The low of the compare, 56,

moves up one, and all intermediate keys also move
up one pOSition. In the second pass, the compari
sons start with 89 and move upward. The first out
of-sequence keys are 02 and 56. The 56 drops down
one pOSition, while the 02 moves up two positions,
since it is lower than the 13. During the next down
ward pass, the 56 and 08 are out of sequence; the 08
moves up one position, and the 56 moves down two
positions, since it is higher than the intermediate
21. During the fourth (upward) pass the out-of-se
quence 08 and 13 are interchanged. The final out
put pass is needed to check the completion of the
sort.

End
Input Pass 1

End End End
Pass 2 Pass 3 Pass 4

13 13 02 02 02

8K56- / 13 13~08
56 02:><--"'5~0~ -----13
02 08 08 21 21
08 21 21 56 56
21 8

1
9 89 89 89

t t ~ t

Output

02
08
13
21
56
89

The arrows indicate the direction of the pass.
The example shows that the maximum number of
passes is equal to the distance, measured in num
ber of keys or records, which is the largest sepa
ration of a key from its final place in the sequence.
In this case, 89 is four pOSitions away from its final
(bottom) position in the file and, therefore, at most
four passes (plus the output pass) are required to
complete the sort. In general, the alternating
exchange method requires slightly more complex
programming than the earlier exchange method, but
it results in a smaller number of compares and,
frequently, fewer passes. The following pages
show this method in more detail.

START

Initialize:

NSTRT

NEND

NRL

first rec.
number

last rec.
number

record
length

Housekeeping:

NRECI
NRECT
M = 1

NSTRT
NEND
N=O

NRPC =
(320/NRLl*8

NRW = 1

DISK

NRW,-M,NRECI
NRL,NRPC,
NARAY,NRECT

Move bottom of
NARAY to top
when M>O, top
to bottom when
M<O

DISK

1,M,NREC2,NRL,
NRPC,NARAY,
NRECT

FIND

NREC1

SORT

NEXS,LARRY,
NRL,KS,KE

N = N + NEXS

NRW=2

L

DISK

,....-----__ ~ 2,M,NREC 2- (M)*

(NRPC),NRL,NRPC,
NARAY,NRECT

NREC2 = NREC1

NREC1 = NSTRT

N=O

M=-M

Move bottom
of NARAY to top
when M>O, top
to bottom when
M<O

NRECT = NEND

NSTRT = NREC1

Section Subsections

75 40 I 00

DISK

2,-M,NREC1,
NRL,NRPC,
NARAY,NRECT

STOP

NRECT = NSTRT
NEND = NREC1

NREC2 =
NREC1 + (M)(NRPC)

Page

02

Section Subsections Page

75 40 I 00 03

VARIABLES IBM I 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

en a.. . . ~LT£RNA'7/NG PA/R
Date/q/f!3/67 "E ~I- Application EXC/-/4A/&E 30/'?7 0 LU::> MAX. MIN. NAME s: I-a..

* 1-
Program Name g.t?//'J //~e LU '0 1-::> VALUE VALUE No. Programmer 0 ~O 0 0

~ Z ~
FUNCTION OF VARIABLES

j)/5X - - - - - /}su!Jrt:Jdf//?e /-0 (/)7; // TAt:!' RSA U///~ d/JsC)/,led
/'L?ct:}/2?'s oa4<2.,)e/77/;JTo/ The RS/1 t:JT S'o/'~~./ r~ct:Jr4's

,c//,/LJ
The Fi::JRrRAA./ srt:?/en1t!?n" rCJ /7701/<!p #;e l?'/s~

=-- - - - - dccess /7'l!?chOa,,'.Sn? /~ t7~ ~"e~/4'.p~et:/ /bs;5/o/-J

~k£ .z /
~el" t/.5el";"

/ &/ (J/ The CO/1fro/ ke..~ /Is e/Jd/J:J po.s/i5~n f ~;;I/t:7/?

*"KS I /
tfser t/ser

/ .8e.9/~"";"'~ 0/ ;l-h~ Ctt7nr,.o/ ke~ ,.'/s smrh~y.,PDs/h;'n I ~/r;~"

~ARRY Z /
t/.J't!!~ tf'5er

S/~jtf Len.:J.,h or .;V4'R;9~ rhe ReatJr-d .s'c)rd~e 4~t:T. S,Aac//d ~e~/
Z cJ/l'?/!J/J '6'4sr r~.o cf/H;'derJ-(S/2CJ).'#If1.J-e r1'1QK~;"'VA? /;, t7//oWC7J/~ CQa?

A1 I / T / -/ ~/-ec~~/,) LJ/ SO""/' vp ~e IJk tPr ck~// rA,h/'e -/ or +/.

Z / T ~Jb/he I ,4 CcJV/}/- c/"/ I-~R /1VR7be/, t!:J~ eKC,,7d49~S //7 t2 .,o4SS 'r7t/dllJe:j{
rec{7r,

,.1/,4R4Y 41 I~ T - - ~n1e of? drrdt/ /b,- P~card S~ro.ge u?s;91
'*"¥ENL? I ~e/ t/.J€'r>

/ I /J/'?/~a 2 7h~ rt!'ctCJrQ' /7d/17'oer C)/ ~Ae /".5"7 reclJ!7n//;' He..,4l:!

!V'eXS' Z / T
Uj) rp

¢' 'The /)V.-rlbero C)~ e~ch'f"?5es dC/~/'r;9 rhe s~#-
AlR,.ot? '£)/1 4 .P d //? 11>/ C.9'VAa'er,.s-.

#'R'£cT I / T AlLAID ~T..f>T ae ;r-.ecor# nvn'16&ro e/J/';"'-9 d "LJdSS

;t/~EC/ II / T WEA/L.> / me record /u.N1?bt!?r /l;r WR/7/::~ .d4c;f ~rA~r;~

WA'ECZ V I T AlEA/LJ / 7Ae /"ect!:J,..d nVh7ber ~r RE4D/;;~ h,n The IJ/e.

*/\/RL z: 1
jc/.5t'1"

.32~ 2 lhe reCLJrq /e/?grh . Z

A"Rpc .L / / /Z80 8 A/c/fr1b~/' o/' reco,-~ 'per C'qh~der;

A/RIf/ I I T 2 / RE4Cj 'p(/,f'/TE 5.:,v/·-/Ch, ,-96>44=/; M/k::t?

~#STA?T I /
t/fer I/ser>

.Me recor-t:T /'1vrnber 0/ .,tA~ A;-'s/ ,ec~r///7 rA~ ~~ l' ~I'/o", /

SORT
/l sC/6rClv~/;,e r(!) SCJr-~ rhe co/) 7t!!'rlr:s t:!JT - - - - - N,4R4~ fAe /'ect?r/ srore:?'4e area.

¥: #l.Isl be .s e;/ 0;;1 Me V.$'e/'.

*Mode: I = integer, R = real, D = decimal, A = alphabetic,

1=1

>

L = 0-1)*NRL+1

N = I*NRL

*

NREC = NREC+M

L = H(NRPC+I-1)*

NRL

N = (NRPC+I)*NRL

NREC = NREC-M

1 = 1+1

Section Subsections . Page

75 40 I 00 04

Section Subsections Page

75 40 I 00 05

VARIABLES IBM 1 1130 COMPUTING SYSTEM

VARIABLE SUMMARY SHEET

Vl
0.. . . .4LTERN.47/,vG P,4/R Date/~3/&7 "E ::2!1-

ApplicatIOn £Xc#A7A/6e SORT 0 w:J MAX. MIN. NAME :s: 1-0..
* ;::::~ VALUE

Program Name.2)/Sk 5 ~b""Ofl1"I"C-W '0 VALUE No. Programmer 0 ~o 0 ci
~ ::2! z

FUNCTION OF VARIABLES

I I I / AiR.PC / Used tlS /~dex /~ 'p~(;1d/IV/1/:fe /~~

J V / T 25C;¢ / Used' //7 /rJc7eXeQ Pedc/ /h/r/ I-e

i. I I T ~5GOO-Wk't' of / / gt?!JI"'''/~g or cur~t!!?n,t ,record ~e/~.:7 r~4~r/He'7

AI f / .T r/ -/ /W.:-/use ~~ Aq//o/' A//IRA>{H-=,t/ V.fe~//dn7l1)q/f1

;t/ I I· T 256~ A/JPL 6/o/cC///'e'/7/ /~C.c7rd ~e/~.q tfet?d',IJ!t.///en

~1/4,{JAY /II 5'1t % - - ~/77e' C'/' ??/'rd~ A,- /f~Cl!Jrd' S/o"..qge (RS,q)

/l/r ~ / I S~7~1 / /'lYe numOe"'" /0 b~ $or/ed'

~k'cC f / ~ 13276 7 1 C!O,r/,<!?/7/ recl!7/'d /7t://77~6?r /br ;0
~RcC/ r / I 13'z76"7 / L~.51 r6'cord /J((/m~l!?/? /~ 7'h/s P'?SS

~NP.L. ~ / I .5'G'() / ~cG?,d ~/?g/~

#'A//f7PC .T / I 128'/ 8 A/c/A'7.,6e~ o~ records p@/' c~~~d&'".,

*NRN .I / r ~ / Rt?dd/J(/;I'vr'e SW/?bh. R~dt1'=;'~/'/e"=~

I

~ Cd//;~9 PC?/'d/?7e/ers

*Mode: I = integer. R = real, D = decimal. A = alphabetic.

Start

NEXS = 0

J=LARRY-NRL

NEX= 0

K = 1

NCOMP

NARAY,K+KS-1,
K+KE-1,NARAY,

K+NRL+KS-1

MOVE

NARAY,K,
K+NRL-1,ITEMP

1

MOVE

NARAY,K+NRL,
K+NRL+NRL-l,

NARAY,K

MOVE

ITEMP,1,NRL,
NARAY,K+NRL

NEX = NEX+1

Section Subsections Page

75 40 I 00 06

K=K+NRL

J=J-NRL

NEXS=NEXS+NEX

Section Subsections Page

75 40 I 00 07

VARIABLES IBM I 1130 COMPUTING SYSTEM

, VARIABLE SUMMARY SHEET

V'I
a..

Application 4L/cR-A/AT/A./G PA'//c:::::::. Date/q/e~7 "E ~, I-
0 f-::> MAX. MIN. EKCHAA./6E SOR T

NAME * :5:
___ 0-

W '0
f-I- VALUE VALUE

Program NameSor.f- SuLJrou///?e No. Programmer Cl :::>::>
0 0 0..0
2 z ~

FUNCTION OF VARIABLES

7T£!WP 41 V,(l I - - A ,te,n/,:or'd""'Y C7reQ ~O'- s-;42,-':.ny O/7e ,record'
dv/"//?'g &7/7 eKC.l7dr7ge

J J / T .57/8 4,10& The /dS";/- ret=orL7' ~ur t::)/'CJrd~r

/< Z / T ..57/8 / {/sed d$ //7d'e~ /~ /t::>o,r:"

~KE f / Z
User

2 E.nd ~/ rAe C0/77ro/ ke:p /h- 8a.td/J:;1 /i:!Js/'h~~ CJ;p?}b~

~kS .L / Z
(/ser) .8~/~,:,//J.:I or rhe Conrro/ kt5?.::/; /rs dorr//7,9
tqlJhb" P-cs/ r/O/7

LARRY Z / I
;;/ser S/ZO .Ie/1.:J"h o/'rh~ ~ct!Jrd $/o~S7e4/eq~s4) tJ,tJl/b/7

UtJV£ - - - - - /I .:500/''t7v/e ~o /?70V~ C? rec~r-d

~RAY /// W"Zl: I/tJ - - Ak,/Y7e O/'4/"'/dY /or-- 7rbcon::/ sn;.roj7e ~SA)

;1iCU'M.P - - - - - 4 sC/,6rc7/./r//Je :1-0 cCJ~t:?re ~o co/? rro/ +eys

;VeX .L / T :h-';t%. CJ ~ coc/.ar if ~he "t./n?oer ~r eKchd~.7es dU"-/'~9
ih2c!!,/s d S//7BLe /aJo-cq~;'dt!?/' sorT "OdSS

~E%S I / % very-
h~4e c:J /) cc>v/?;L CJ/ r-Ae rort;7/ /7G/,,?-?oer e>r exchd/Jges

dV/"//Jt:3

*AIRL .T I Z 320 2 T/;~ record /t!!?/Jg/h

-1F 4////Jq p4rdn?e/ers

*Mode: I = integer, R = real, D = decimal, A = alphabetic

SUMMARY

Generally there are two approaches to sorting with
your 1130:

1. Avoid sorting
2. Write a sort program
The ways in which you can avoid sorting are:
1. Maintain multiple copies of your files.

Section Subsections Page

75 50 I 00 01

2. Maintain multiple copies of your index, if an
index exists.

3. Sort offline.
If you decide that sorting is necessary, many

techniques are available. The methods avail
able and a brief evaluation of each were given
earlier.

Section 80: USE OF THE DISK FOR DATA STORAGE

CONTENTS

General. • . • 80.01.00
The Physical, or Hardware, Structure
of the Disk ... ~. 80.10.00
The Disk as Seen by the FORTRAN
Programmer 80. 20. 00
The Interrelationship of the Physical
and Logical Structures 80.30.00

The DEFINE FILE Statement. 80.30.10
The *STOREDATA and *FILES Cards.. 80.30.20

Section Subsections Page

80 00 I 00 01

Record Lengths and Sector Utilization.. 80.40.00
A Trick to Get Long Records
and/or Better Packing 80.40.10

Computing Record Length. 80.50.00
Shortening Record Length 80. 60. 00
Some Examples of Disk File Setup 80.70.00

Example 1 80.70.10
Example 2 80.70.20
Example 3 80.70.30

GENERAL

To make effective use of your disk storage capability,
you need to know the way the disk is organized and
the way your data will be set up on it. This section
deals exclusively with the use of the disk as a data
storage device. Although it is desirable (and often
necessary) to store programs and subprograms on
the disk, these normally present little difficulty,
since the 1130 Monitor system handles most of the
details involved.

Section Subsections

80 01 I 00

The way in which the disk is used can signifi
cantly affect:

Page

01

1. The amount of data that can fit into the avail
able disk space

2. The running speed of programs using disk
data files

3. The basic practicality of many jobs. (An
improperly organized disk file can make the space
and time requirements of some jobs appear excessive,
w hen in reality they need not be.)

Section Subsections Page

80 10 I 00 01

THE PHYSICAL, OR HARDWARE, STRUCTURE OF
THE DISK

Each IBM 2315 disk cartridge contains 512,000 words
organized into 200 cylinders of eight sectors each;
a sector, in turn, contains 320 words (see Figure
80.1). This is a very rigid organization dictated by
the basic design of the 1130.

A word

A sector,
320 words
+ address

A cylinder,
2 tracks,
8 sectors

A cartridge,
200 cylinders
512,000 words
1600 sectors

•

Figure 80.1. Disk storage definitions

Read-write
heads

An entire cylinder (eight sectors) is accessed by
one setting of the disk read/write heads. If you wish
to read or write from a cylinder other than the one
at which the heads are now set, the disk arm must
be moved to the new cylinder. The disk mechanism

moves the arm directly from the old position to the
new position in steps of one or two cylinders. (It

does not return to a "home" position first, as some
other disk units do.) Both single steps and double
steps take the same length of time: 15 milliseconds
(.015 seconds). To move nine cylinders, you need
four 2-cylinder moves (4x15 or 60 milliseconds)
plus one I-cylinder move (15 milliseconds) -- a
total of 75 milliseconds. A move of ten cylinders
takes the same amount of time -- five 2-cylinder
moves (5x15 or 75 milliseconds). Figure 80.2 shows
some representative arm movement times.

Average
Move This Seek Stabilization Rotational Read

Many Cylinders Time Time Delay Time or Write Total

None ° 0 20 10 30

1 or 2 15 25 20 10 70

30r 4 30 25 20 10 85

5 or 6 45 25 20 10 100

199 or 200 1500 25 20 10 1555

(maximum)

Figure 80.2.

THE DISK AS SEEN BY THE FORTRAN
PROGRAMMER

When programming in 1130 FORTRAN, the disk
appears to be an entirely different device than the
one just described. It consists of a data area which
can be subdivided into any number of files, whose
physical size, symbolic names, and symbolic num
bers have been determined by you.

You may further subdivide each file into some
number of equal-size blocks known as records. You
choose the size of the record, and each record has
a symbolic record number, starting with 1.

Section Subsections Page

80 20 I 00 01

Within the record you can place fields, which may
be real, decimal, or integer numbers, oralphameric
data.

This is an extremely flexible system, as opposed
to the rigid subdivisions and addresses of the actual
hardware. It is still one and the same disk, how
ever, and you must have a good knowledge of both
systems to use the disk effectively. This section
presents the basic guidelines by which you can relate
these seemingly diverse systems:

The physical, or hardware, system
The logical, symbolic, or software system

Section Subsections Page

80 30 I 10 01

THE INTERRELA TIONSIDP OF THE PHYSICAL
AND LOGICAL STRUCTURES

The DEFINE FILE Statement

For every data file you wish to access on the disk,
there must be a DEFINE FILE statement in your
FORTRAN program specifying certain details. A
typical DEFINE FILE statement is

DEFINE FILE 47(400,85, U,NEXT)

which indicates a file numbered 47, having 400 rec
ords of 85 words each. The U is always required
and specifies an unformatted record. NEXT is the
name of an integer variable that will always be set
to the record number of the next record in the file,
a number between 1 and 400. For example, if you
have just given the command

READ (47'K) A, B, I,J

where K was 96, NEXT will equal 97, the record
number of the next record. The incrementing of
NEXT occurs automatically and you may choose to
ignore it completely. In this case, you are addressing
your file by the symbol K, doing your own manipula
tion of K, and not using NEXT at all. If you wish to
read the next record, you can say either

READ (47'NEXT) A, B, I, J

or

K=K+1

READ (47'K) A, B, I, J

An 85-word disk record allows three records per
sector (Figure 80.2), so that your file of 400 records
will require 134 sectors (the exact answer, 133 1/3,
must be adjusted upward to the next higher whole
number).

(If your record length could somehow be shortened
to 80 words, you could place four records per
sector, reducing the sector requirement from 134 to
100, a substantial savings -- see 80.40.00.)

If you do not want to save this data file for use by
a subsequent program, the DEFINE FILE statement
is the only place you need reference it.

The DEFINE FILE statement specifies a mixture
of physical (actual) and logical (symbolic) sub
divisions:

File number (symbolic)
Number of records (symbolic)
Number of words per record (actual)

Cylinders, sectors, and fields are nowhere men
tioned.

The READ (or WRITE) statements specify only
symbolic designations:

File number (symbolic)
Record number (symbolic)
Field names (symbolic)

The *STOREDATA and *FILES Cards

In some programs, the DEFINE FILE statement is
all that is required to specify the details of a data
file. The file is placed in Working Storage (WS) ,
and records may be read or written by that program
and/ or its subprograms.

If, on the other hand, you have a data file that is
to be used by more than one program, you must do
more than just specify it in a DEFINE FILE state
ment. You must get it out of Working Storage (WS)
and into the User Area (UA) or Fixed Area (FX),
where 'it will be protected from accidental destruc
tion. Working Storage is true to its name: it is
strictly a work area. Data placed in WS may still
be there when it is needed; then again, it may not,
since the IBM compilers, DUP, and other programs
all use WS.

Working with data files in the User Area or Fixed
Area requires the use of two additional cards: the
*STOREDA TA card and the *FILES card.

The *STOREDA TA card is used first to create an
entry in the LET or FLET, specifying the name,
location, and size of your data file. In this case
the *STOREDATA card, despite its name, does not
really store your data; actually, your data has not
even been written yet.

In the preceding example (file 47 -- 400 records
of 85 words each, requiring 134 sectors) you must
run a disk utility job

12 3 4 567 8 9 10 II 1213 14 15 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 401 42 3 ~45

II 17~,ll

1/ lI;fI~
lsi.,. 74 Iws WA I4IY fI?/. 0/ ~4 19 Gl7 19 ~I

which sets aside 134 sectors in the User Area (UA)
of disk cartridge 1967 and labels it PA YRL.
Notice that:

1. The information contained on the

DEFINE FILE 47(400,85, U, NEXT)

card does not appear anywhere on the *STOREDATA
card (and vice versa).

2. The *STOREDATA job is run before there is
any data to place in the PA YRL file.

Section Subsections Page

80 30 I 20 01

3. The *STOREDATA card contains mixed type
information -- both actual (number of sectors) and
symbolic (file name and cartridge identification
number).

At this point you have run the *STOREDATA job,
specifying certain data about the file named PAYRL,
and compiled your FORTRAN program referencing
the file numbered 47. How, when, and where can
you tell the 1130 that these two files are one and the
same?

How? With the *FILES card, which in this case
would read

123 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 30~1 3233 3435 ~37 3839 140 41 42 3~45

r!f 1/ E~ 147 ,&4 ylKL I? ~17)

When and where? This depends on the format (DSF
or DCI) of your program. If the program is in DSF
format, you must place the *FILES card after the
execute card every time you execute the program.

12 3 4 567 89 10 II 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 14O~1 2~*445

II vo~
/1 P< Elf II
;:It //. Its I(4!7 p~ Y~L lzt? 67/

If the program is to be built into core image format
(DCI) , the *FILES card must be placed after the
*STORECI card

12 3 4 5 6 78 910 II 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 13839 14O~1 ~2 3 ~14!

EW!O
/ / 111./1:-

f51 RE II ~L5 k1A ,yf4 HIE 11 9~ 7 119 617
~If 1/ ES (4!7 .t:1A Y!k/' /9 (; 7)

and not after the / / XEQ card.

Section Subsections Page

80 30 I 20 02

As mentioned earlier, data m~y be-pl-aeed in
Working Storage (WS) if you do not intend to save it -
that is, if it is to be used for temporary storage
within one JOB. In fact, data will be written in WS
unless a *FILES card is used; likewise, any HEAD
commands will assume that the data is in WS if no
*FILES cards are present.

Using the *STOHEDATA and *FILES combination,
however, you have a choice as to where your data file
will be placed -- either in the User Area (UA) or
Fixed Area (FX). In most cases it does not matter
which is chosen, since both areas are safe from
accidental destruction. The main difference is

that files in the Fixed Area are in a fixed position
and will not be moved about as other files and pro
grams are deleted.

This option is exercised by the characters
punched in columns 17 and 18 of the *STOHEDA TA
card -- UA indicating User Area, FX indicating
Fixed Area. Columns 13 and 14 always contain
WS, since the *STOHEDATA always takes some
number of sectors from WS and adds them to UA
or FX.

Note that there is no Fixed Area on a disk car
tridge unless you have defined one with a *DEFINE
FIXED AREA card.

RE CORD LENGTHS AND SECTOR UTILIZATION

Remember, the disk is physically composed of
sectors, each containing 320 words. A symbolic
record may not cross the boundary between two
physical sectors; in other words, a record must
lie entirely within one sector of 320 words. This
means that a record cannot exceed 320 words in
length. (Actually, it is possible to have records
longer than 320 words, using a trick covered in a
later subsection.) It does not mean that only one
record may occupy a sector; it is possible that
many records will be placed on one sector. For
example, if your record size is twelve words, you
may place 26 records onto each sector (26x12 = 312
words), with eight words (320-312) words remaining.
These eight words will not be used for two-thirds of
the 27th reco.rd, since that would violate the rule
spelled out above. The remaining eight words will
not be used, and are inaccessible to the FORTRAN
programmer.

It goes without saying that you will gain the most
efficient use of your disk if you utilize all 320 words
of every sector. As the previous example shows,
however, this may not always occur. Figure 80.3
shows the relationship between record size and
sector utilization.

Clearly, certain record lengths result in very
poor disk utilization. Take a 65-word record, for
example. It will allow four records per sector,
using 4x65 or 260 words, but leaving the remaining
60 words (about 20% of the sector) unused. On the
other hand, if you could reduce the length of that
record by one word, to 64, you could fit five records
in a sector, using 5x64 or 320 words, and wasting
none.

Inefficient use of the disk can have two major
effects on your overall system:

1. A given number of records may require more
space than is available on the disk. If you have 800
employee records at two per sector, you need 400
sectors or 50 cylinders, fully 25% of the disk. If
you could fit three records per sector, your total
sector requirements would drop to 234, or 30
cylinders. It is entirely possible that there are 30
cylinders available on a particular disk, but not 50.

Section Subsections Page

80 40 I 00 01

In this case you either have to abandon the job, delete
something else from the disk, or shorten the record
size.

2. Even if 50 cylinders are available, you can
not escape the fact that you are using them ineffi
ciently. If your 800 employee records are spread
out over 50 cylinders, rather than 30, you will spend
proportionately more time in disk arm movement.
Your records will be 67% further apart, and your
disk arm seek time will be about the same percent
age greater.

Thus you have two incentives to make your disk
records as short as possible. Several techniques
for doing so are given in the subsection 80.60.00.

For long records (46 words or more), you should
inspect your record size to determine whether it is
at or slightly above a boundary, or break point --
46, 54, 65, 81, 107, or 161 words. (See Figure
80.3.) If this is the case, it is worth considerable
effort to shorten this record enough to increase the
"packing factor" by one.

For medium records (19 to 45 words in length) the
record size is always near a boundary or break point,
so the packing factor can be increased by one or two
with a small reduction in record length. With records
of this length, however, it becomes more difficult
to find ways to shorten the records.

For short records (9 to 18 words in length), even
greater improvements are theoretically possible,
but are proportionately more difficult to obtain.

NOTE: When shortening disk record lengths,
always keep future needs in mind.

Record Records Record Records Record Records Record Records

Length per Sector Length per Sector Length per Sector Length per Sector

320 10 32 19 - 20 16 41 - 45

160 11 29 21 15 46- 53

106 12 26 22 14 54- 64

80 13 24 23 - 24 13 65 - 80

64 14 22 25 - 26 12 81 -106

53 15 21 27 - 29 11 107 - 160

45 16 20 30- 32 10 161 - 320

40 17 18 33- 35 cannot exceed 320

35 18 17 36 - 40

Figure 80.3.

Section Subsections Page

80 40 I 10 01

A Trick to Get Long Records and/or Better
Packing

If you have records exceeding 320 words in length,
or records of a length that yields very poor packing,
you may wish to employ a trick, or, more properly,
an unorthodox usage of FORTRAN. This usage takes
advantage of the fact that an 1130 FORTRAN READ/
WRITE I/O list will be satisfied, regardless of the
FORMAT or DEFINE FILE statement.

For example, if we say

DIMENSION ITEMS(500)

READ (6'N) ITEMS

500 ITEMS will be read from the disk, starting at
record number N. It would not matter if the state
ment:

DEFINE FILE 6(100,100, U, NEXT)

were used, indicating 100-word records. In fact,
no matter what the DEFINE FILE statement contains,
the entire ITEM array will be read,whether it ex
ceeds 320 or not.

The DEFINE FILE statement has one effect, how
ever, in that it still defines the length of the "defined"
record at 100 words. Reading the 500-word array
merely means that we have read five "defined"
records. If N were 100, you would have to increment
it by five to read the next 500 words or block of
five 100-word records.

The DEFINE FILE statement, then, must define:
1. A file that contains enough space to hold all

the data to be placed in it
2. A record length less than 320
3. Preferably, a record length evenly divisible

into 320 -- that is, 320, 160, 80, 64, 40, 32, 20,
16, 10, 8, 5, 4, 2, 1.

To illustrate, suppose you have a file containing
100 records, each with 400 words. Since

DEFINE FILE 1(100,400, U, N)
is not allowable, you could alternately specify

DEFINE FILE 2(200,200, U, N)
DEFINE FILE 3(400,100, U, N)
DEFINE FILE 4(800,50, U, N)
DEFINE FILE 5(500,80, U, N),

etc.

Note that all four files fulfill the first two rules:
same number of words as file number 1 (40,000) and
record length less than 320. However, only FILE 5
meets the third rule; 80 is evenly divisible into 320,
while 200, 100, and 50 are not.

The reason for the third rule should be self
evident in light of the previous material in this
section:

• The FILE 2 combination (200, 200) results in
only one record per sector, with 320-200 or 120
words on each wasted. Total file size would be
200 sectors.

• FILE 3 (400, 100) gives three records per
sector, with 320 -3 x 100 or 20 words wasted. Total
file size is 400/3 or 134 sectors.

• FILE 4 (800, 50) yields six records per sector,
with 320 -6 x 50 or 20 words wasted. Total file
size is also 134 sectors.

• FILE 5 (500, 80) results in four records per
sector, with 320 -4 x 80 or no words wasted. Total
file size is 500/4 or 125 sectors.

To implement this trick, you need change only
the DEFINE FILE statement and the incrementing/
decrementing logic in existing programs. For
example, if you have a file that formerly contained
400 records of 196 words each:

DEFINE FILE 6 (400, 196, U, NEXT)

you now realize that it will use each sector quite
inefficiently. Therefore, you choose instead to
use

DEFINE FILE 6 (1600, 50, U, NEXT)

which replaces the old 196-word record with four
50-word records. (In addition to better packing,
you gain four words in each record.) In the body of
your program, where you coded

N=N+1
READ (6'N) data

you use instead
N=N+4

and so on throughout the program.
Where you use the automatically incremented

parameter NEXT

READ (6'NEXT) data

you need do nothing; NEXT will automatically reflect
the number of defined records that have been proc
essed, and will be incremented by 4 rather than 1.

COMPUTING RECORD LENGTH

Once you have decided what data will be included in
your disk record, you may easily calculate the
length of the record by listing the fields in the record,
totalling the number of real fields (called R), the
number of integer fields (called I), and using the
table below to determine the number of words:

*EXTENDED No
PRECISION Precision
Card Used Card Used

*ONE
WORD
INTEGERS WORDS = WORDS =

Card Used (3xR) +I (2xR) +I

No
Integers WORDS = WORDS =

Card Used (3xR) +(3xI) (2xR) +(2xI)

Section Subsections Page

80 50 I 00 01

In the case of fields comprising the items of an
array (often alphameric data), the number of items
is the size of the array. For example, if you have
a field conSisting of a 16-character name, placed
two characters per word (A2 format) in the array
NAME, this will count as eight items rather than
one, when you are calculating 1.

The task is simplified by the fact that *ONE
WORD INTEGERS should always be used, reducing
all integers to one word per field. Except in very
unusual cases, you should compile all of your pro
grams using the *ONE WORD INTEGERS control
card.

Section Subsections Page

80 60 I 00 01

SHORTENING RECORD LENGTH

The following suggestions will help you shorten the
length of disk records. The first three should be
taken regardless of record length, since they rep
resent good programming practice and involve little
or no effort. Suggestions 4-7 involve more pro
gramming effort and core storage. You must deter
mine how much effort it is worth to gain more space
on the disk.

1. First and foremost, each item in the disk
record should be inspected to determine whether it
really must be in this record. Can it be eliminated
entirely, or placed in a separate file?

2. You should decide whether standard or ex
tended precision should be used. The decision is
usually based on other considerations; extended
precision is normally used, but it does no harm
to re-ask this question.

3. You should make certain that the *ONE WORD
INTEGERS control record is included when compiling
all programs. If not, each integer will occupy two
or three words, depending on the use of standard or '
extended precision.

4. Each real (floating point) field should be
studied with an eye toward converting it to integer
mode. Remember, in most cases integers require
only one word; real fields, three words. Integers
are limited to a magnitude of 32767, but many items
in your application may never exceed this limit,
which may be thought of as

32767
327.67
3.2767

units, pieces
dollars, hours, percent
pay rate, etc

where the decimal points are implied and handled
by you. Some typical items that lend themselves
to such treatment are:

• Discount and interest rates
• Prices or price differentials
• Inventory -- quantity on hand, quantity on

order, etc.
• Payroll -- savings bond deduction, city and

state taxes, miscellaneous deductions

5. Alphabetic data should be placed on the disk
with two characters per word (A2) rather than one
(AI). In many cases, data (numeric and alphabetic)
will be read from a card using Al format (one char
acter per word) for later processing with the Com
mercial Subroutine Package. Before this data is
written on the disk, it may be compressed into
two-characters-per-word format (A2) , using the
PACK subroutine supplied with CSP. Typical items
in this category include names and addresses, de
scriptions, Social Security numbers, etc.

6. If necessary, three alphabetic characters can
be placed in one word for disk storage. This can be
done by subroutine that involves a table of 40 EBCDIC
codes and a packing/unpacking formula. Only 40
characters are allowed -- for example:

0123456789ABC XYZb-.,

where b signifies a blank.
If you have just read the three characters B2-

(called LTRl, LTR2, and LTR3 respectively) from
a card with Al format, the subroutine can look up
their positions in the table and find that:

LTRl, a B, is 12th
LTR2, a 2, is 3rd
LTR3, a -, is 38th

Then, using the formula

INA3 = LTR3 + 40*LTR2+ (LTRI-20)*1600
or INA3 = 38 + 40*3 + (12-20) * 1600

the subroutine obtains -12642.
This is a unique representation of the three char

acters B2-, and can be placed on the disk as one
word.

To decode after reading from the disk, the sub
routine manipulates INA3 to obtain LTRl, LTR2,
and LTR3:

I - I (32,000 + INA3)/1600 if negative I - 2
LTR - I INA3/1600 + 20 if positive - 1

LTR2 = (INA3 - 1600 * LTRl-20)/40 = 3
LTR3 = (INA3 - 1600 * (LTRI-20) - 40*LTR2) = 38
Looking up these three codes from the same table,

you may return to Al format.

7. In many cases, several values may be com
bined into one word. For example, in a payroll file,
you might have four different variables:

IE (Exempt or nonexempt)
1 = EXEMPT
2 = NONEXEMPT

MSC (Marital Status Code)
1 = SINGLE
2 = MARRIED

MORF(Male OR Female)
1 = MALE
2 = FEMALE

NDEP(Number of DEPendents)
o through 99

One way to compress these four items into a five
digit word (called KODE) is:

Digit 1 2 3 4 I 5

Exempt Marital Male Number

Description or status or of
nonexempt code female dependents

Variable
IE MSC MORF NDEP

Name

For example, if KODE = 22103, this employee is:
• Nonexempt (digit 1 is 2)
• Married (digit 2 is 2)
• Male (digit 3 is 1)
• With three dependents (digits 4 and 5 are 03)

Section Subsections Page

80 60 I 00 02

To compress these values before writing on the
disk, all you need do is

KODE= (IE*10000)+(MSC*1000)+MORF*100)+NDEP

To decompress the word KODE after reading it
from the disk, you could use a function similar to
the one below, called NDIG

FUNCTION NDIG (N, IT)
DIMENSION IZ (6)
DATA IZ/32767, 10000, 1000, 100, 10, 1/
NDIG = IT/IZ(N+1)-IT/IZ(N)*10
RETURN
END

Using this function
IE = NDIG (1, KODE)
MSC = NDIG (2, KODE)
MORF = NDIG (3, KODE)
NDEP = NDIG (4, KODE) *10+NDIG(5, KODE)
etc.

In this case, such a packing technique will save
three words on each disk record (by using one word
rather than four). This mayor may not be worth
the added programming involved, the additional
core storage required for the function, and the
packing/unpacking coding.

Don't forget that KODE is an integer, and its
magnitude is limited to 32767. To be safe, you
should plan for a limit of 29999 for such compressed
words.

Section Subsections Page

80 70 I 10 01

SOME EXAMPLES OF DISK FILE SETUP

Example 1.

A program reads a deck of cards and builds two
large tables of data. The individual data items are
of no particular interest; however, after the last
input card has beenprocessed, you want to sum
marize the data tables and print a summary report.
The data tables required are so large that they can
not fit in core storage; therefore, you decide to use
the disk as an extension of core storage to accu
mulate the two tables.

After this job has been run, you have no need for
the data, so you decide to keep it in Working storage
(WS).

Two files are required, numbered 1 and 2, and
any disk cartridge may be used. Each of the two
files contains 100 records of 150 words each.

Since the files are of a temporary nature and
will remain in Working Storage, neither a *STORE
DATA card nor a *FILES card is required; con
sequently the files have no names, only numbers.
The next two exhibits show how the Disk File Lay
out Worksheet would be filled in for these two files.

Description
of File

File
Number

Next
Indicator

Number of
Words per
Record

*FILES

OR *FILES

DISK FILE LAYOUT WORKSHEET

Cartridge
10 Number

Section

80

If ID number is not used

DEFINE FILE)

File to be
placed in:

WS UA ,
Don't need
*STORE DATA

*STORE DATA

Record Records
Length per Sector

320

FX

WS

13 14 17 18

Recore! Records Record Records Record
Length per Sector Length perSectol Length

10 32 19-20 16 41 - 45

29 21 46 - 53

26 22 54 - 64

13 24 23 - 24 13 65 - 80

22 25 - 26 12 81 - 106

·15 21 27 - 29 107 - 160

16 20 30 - 32 10 161-320

17 18 33 - 35 cannOt exceed 320

18 36 - 40

Number of
Records per
Sector

21 22 23 24 25

File
Name

27 28 29 30

Number of
Sectors

Records
per Sector

Subsections

70 I

37 38 39 40

Cartridge
10 Number

10

Page

02

Section

80

Subsections Page

70 I 10 03

DISK FILE LAYOUT WORKSHEET

Description
of File 7/18L£ O..c SALES ,By 4RfA
File
Number

Next
Indicator

Number of
Words per
Record

DEFINE FILE

File to be
placed in:

card

*STORE DATA

OR

wiLl

/50

13 14

Record Records
Length per Sector

320

160

106

80

64

53

45

40

36

Number of

17 18

)
Record Records
Length per Sector

10 32

11 29

12 26

13 24

22

15 21

16 20

17 18

18 17

Record
Length

19-20

21

22

23 - 24

25 - 26

27 - 29

30 - 32

33 - 35

36 - 40

Cartridge
ID Number

Record
per Sector Length

16 41 - 45

15 46 - 53

54 - 64

13 65 - 80

81 - 106

107 - 160

161 - 320

cannot exc~ed 320

Number of
Records per
Sector

21 22 232425

File
Name

27 28 29 30

Number of
Sectors

Records
per Sector

37 38 39 40

Cartridge
ID Number

Description
of File

File
Number

Next
Indicator

Number of
Words per
Record

DEFINE FILE

File to be
placed in:

card

*STORE DATA

*FILES

OR *FILES

1/llzl

DISK FILE LAYOUT WORKSHEET

Record Records
Length per Sector

320

160

106

80

53

45

40

35

Number of

13 14 17 18

Record Records Record
Length per Sector Length

10 32 19 -20

11 29 21

12 26 22

13 24 23- 24

22 25 - 26

15 21 27 - 29

16 20 30- 32

17 18 33- 35

18 17 36-40

Records

Cartridge
ID Number

Record
per Sector Length

16

15 46- 53

14 54-64

13 65- 80

12 81 - 106

11 107 -160

10 161 - 320

cannot exceed 320

Number of
Records per
Sector

21 22 232425

File
Name

27 28 29 30

Number of
Sectors

Section

80

Records
per Sector

Subsections

70 I

37 38 39 40

Cartridge
ID Number

10

Page

04

Section Subsections Page

80 70 I 20 01

Example 2.

A payroll and project cost accounting system in
volves four disk data files:

EMPS - 300 employee records with 60 words
per record.

PROJ - 100 project records with 20 words
per record.

DDESC - 20 records of 18 words each, con
taining some alphabetic information
for each of 20 departments.

SUBT - 20 records of 60 words each, con
taining an array of subtotals of
department worked for vs department

charged to. This is a temporary
file used only as an extension of
core storage, not saved from job to
job.

Assume you have only one disk drive and don't
care which disk cartridge is mounted. (You really
do, but you, rather than the Monitor, will make
sure the correct disk is being used.)

With this basic data, you can fill in the Disk File
Layout Worksheets and punch the necessary cards.
Note that file 9 (SUBT) does not need a *FILES OR
*STOREDATA card, since it is not to be saved
from one job to another. It does require a DEFINE
FILE card.

Section

80

DISK FILE LAYOUT WORKSHEET

Description
of File

EA4?LCJYEE RECORDS

File
Number

Next
Indicator

Number of
Words per
Record

DEFINE FILE

Filetobe
placed in:

WS

+ Don't need
*STORE DATA
card

*STORE DATA

*FILES

OR *FILES

INl
60

13 14

40

36

Number of

17 18

18 17 36-40

Cartridge
10 Number

If 10 number is not used

Record
Length per Sector

46 - 53

54 - 64

65 - 80

107 - 160

161 - 320

cannot exceed 320

Number of
Records per
Sector

21 22 23 2425

File
Name

27 28 29 30

Number of
Sectors

Subsections

70 I 20

37 38 39 40

Cartridge
10 Number

Page

02

Section

80

Subsections Page

70 I 20 03

DISK FILE LAYOUT WORKSHEET

Description
of File /VIAsrcR PROJECT COSTS

File
Number

Next
Indicator

Number of
Words per
Record

DEFINE FILE

File to be
placed in:

WS ,
Don't need
*STORE DATA
card

*STORE DATA

*FILES

OR *FILES

22

13 14

121Rlo Idl Cartridge
ID Number

Number of

17 18

18 17 36-40

If ID number is not used

Record Records
length per Sector

41 - 45

46- 53

54 -64

65-80

81 -106

107 - 160

161-320

cannot exceed 320

Number of
Records per
Sector

21 22 232425

File
Name

27 28 29 30

Number of
Sectors

37 38 39 40

Cartridge
10 Number

Description
of File

File
Number

Next
Indicator

Number of
Words per
Record

DEFINE FILE

File to be
placed in:

WS

+ Don't need
*STORE DATA

card

*STORE DATA

*FILES

OR *FILES

/8

DISK FILE LAYOUT WORKSHEET

Record ~~s Length per Star

320 \

160

106

80

64

53

45

40

35

Number of

13 14 17 18

Recore! Records Record Records Record
Length per Sector Length per Sector Length

10 32 19 - 20 16

11 29 21 46 - 53

~
26 22

13 24 23 - 24 13 65 - 80

22 25 - 26 12 &1 - 106

1 21 27 - 29 107 - 160

16 20 30- 32 10 161-320

17 18 33- 35 cannot exceed 320

11"",8 17,/ 36 - 40

Number of
Records per
Sector

21 22 232425

File
Name

27 28 29 30

Number of
Sectors

Section

80

Records
per Sector

Subsections

70 I

37 38 39 40

Cartridge
ID Number

20

Page

04

Section

80

Subsections Page

70 I 20 05

DISK FILE LAYOUT WORKSHEET

Description SUB rOTA LS
of File

File
Number

Next
Indicator

Number of
Words per
Record

DEFINE FILE

File to be
placed in:

card

/

*STORE DATA

9

*FILES

OR *FILES

13 14 17 18

b5k/18ITI

21 22 232425

File
Name

Cartridge
ID Number

If I D number is not used

27 28 29 30

Number of
Sectors

37 38 39 40

Cartridge
ID Number

Example 3.

This is the same job as in example 2, except
that two disk drives are now available and you are
going to be more careful about which disk cartridge
is mounted on which drive unit:

DRIVE 0 DRIVE 1

CARTRIDGE ID 0012 CARTRIDGE ID 0019

WS UA FX WS UA FX

EMPS SUBT PROJ

DDESC

First, you have decided that cartridge 0012 will
be on drive 0 and cartridge 0019 on drive 1. How
is this communicated to the Monitor? It is done
with the II JOB card, which must be punched

12 3 4 56 78 910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 132 3334 3536 3738 3940 ~1~2 344i4!

1// j/lill k::Ik:' 12 l"lv 1'/

Section Subsections Page

80 70 I 30 01

File SUBT, since it is in WS, really does not need
a name (or a *FILES or *STOREDATA card). How,
then, can you tell the 1130 Monitor on which disk
drive it should be placed? Again, with the II JOB
card. Columns 41-44 should contain the cartridge
ID number of the disk to be used for Working
storage, in this case 0019.

The special II JOB card

12 3 4 5 6 78 910 1112 1314 1516 1718 1920 12223 2425 2627 2829 3C~1 3233 3435 136[37 3139 4C1 ~2 3 ~
II j • ./Ilil:3 bit: IZ 00 1'1 1617'

must be used when running the DUP *STOREDATA
jobs and when executing the programs that use
these files. Needless to say, the disk cartridges
should be placed in the proper disk drive units.

The remaining three files (EMPS, PROJ, AND
DDESC) are handled in a different manner. Since
they are to be in the UA, they do require *FILE S
and *STOREDATA cards, which contain a field
for placing the cartridge ID number. These are
shown on the Disk File Layout Worksheets follow
ing.

Section

80

Subsections Page

70 I 30 02

DISK FILE LAYOUT WORKSHEET

Description
of File

File
Number

Next
Indicator

Number of
Words per
Record

DEFINE FILE

File to be
placed in:

WS

+ Don't need
*STORE DATA

EA4PLOYEE

*FILES

OR *FILES

IN)

*STORE DATA

13 14

Record Records
Length perSeclor

320

160

106

80

64

53

45

40

=Vi

Number of

17 18

Cartridge
ID Number 101011 121

If I D number is not used

)
Record Records Record Record
Length per Sector Length per Sector Length

10 32 19 - 20 16 41 - 45

29 21 46 - 53

12 26 22 54 - 64

13 23 - 24 13 65 - 80

22 25 - 26 12 81 - 106

21 21 - 29

16 20 JO - 32 10 161 - 320

11 18 33 - 35 cannot exceed 320

18 11 J6 - 40

Number of
Records per
Sector

21 22 23 24 25

File
Name

27 28 2930

Number of
Sectors

perSecfor

s:>

37 38 39 40

Cartridge
ID Number

Section

80

DISK FILE LAYOUT WORKSHEET

Description
of File

File
Number

Next
Indicator

Number of
Words per
Record

DEFINE FILE

File to be
placed in:

WS

+ Don't need
*STORE DATA
card

/WA'STc/2

*FILES

OR *FILES

22

*STORE DATA

13 14

PROJECT COSTS

)

Record Records Record
Length per Sector Length

320 10

160 11

106 12

80 13

64 14

53 15

45 16

40 17

35 18

Number of

17 18

Records Record
per Sector Length

32 19 - 20

29 21

26 :;t:2

24 23 - 24

22 25 - 26

21 27 - 29

20 JO - 32

18 33- 35

17 36-40

Cartridge •
10 Number

Records Record
per Sector Length

16 41 - 45

15 46- 53

14,) 54 - 64

13 65 - 80

12 81 -106

11 107 -160

10 161 - 320

cannot exceed 320

Number of
Records per
Sector

21 22 23 2425

File
Name Sectors

per Sector

Subsections

70 I

37 38 39 40

Cartridge
ID Number

30

Page

03

Section

80

Subsections Page

70 I 30 04

DISK FILE LAYOUT WORKSHEET

Description
of File DESCR/PT/O/t/S OF LJEP4RTAdEA/TS

File
Number

Next
Indicator

Number of
Words per
Record

DEFINE FILE

File to be
placed in:

WS

+ Don't need
*STORE DATA

*STORE DATA

*FILES

OR *FILES

/6

Record
Length per Sector

320

160

106

80

64

53

45

40

35

Number of

13 14 17 18

ecord Records Record
Length per Sector Length

12

13

15

16

32 19 - 20

29 21

26 22

24 23 - 24

22 25 - 26

21 27 - 29

20 30- 32

21 22 23 2425

File
Name

Cartridge
ID Number

If I D number is not used

Records Record
per Sector Length

16

15 46 - 53

54 - 64

13 65 - 80

81 - 106

107 - 160

10 161 - 320

cannot exceed 320

27 28 29 30

Number of
Sectors

per Sector

37 38 39 40

Cartridge
ID Number

Section

80

DISK FILE LAYOUT WORKSHEET

Description
of File SUBTOTALS

File
Number

Next
Indicator

Number of
Words per
Record

Number of

DEFINE FILE

File to be
placed in:

card

*STORE DATA

*FILES

OR *FILES

Record Records
Length per Sector

320

13 14 17 18

Cartridge
ID Number

If I D number is not used

Record Records Record Record

Length per Sector Length per Sector Length

10 32 19 - 20 16

29 21 15 46 - 53

12 26 22 14 54 - 64

23 - 24

14 22 25 - 26 12 81 - 106

15 21 27 - 29 107 - 160

16 20 30 - 32 10 161 - 320

17 18 33- 35 cannot exceed 320

18 17 36 - 40

Number of
Records per
Sector

21 22 23 2425

File
Name

27 28 29 30

Number of
Sectors

Records
per Sector

Subsections

70 I 30

37 38 39 40

Cartridge
ID Number

Page

05

SECTION 85: DISK DATA FILES -- ORGANIZATION
AND PROCESSING

CONTENTS

General•.•....••••..•........ 85.01.00
Organization. • •• . • . • • . . . 85.10.00

General ..•.•..••..........••..... 85. 10. 01
Pure Sequential. • • . • • •• ••• . . . 85.10.10

Searching a Pure Sequential File
Adding Items to the File

Indexed Sequential .••.•••••••••.... 85.10.20
Choosing an Index Step Size
Building the Index
Searching the Index
Maintaining the Index
Adding Items to the File

Section Subsections Page

85 00 I 00 01

Direct, or Random
Organizations 85. 10. 30

Direct
Computed Direct
Partitioned Direct
Summary

Processing•.. 85.20.00
The Interaction of Organization and
Processing••.......•....•... 85.30.00

Introduction. ••. 85.30.01
Choosing the Organization.......... 85.30.10

GENERAL

Data records should be filed according to a plan.
The relationships between file organization and data
processing should be carefully considered before
this plan is chosen. With a disk, both storage and
processing can be accomplished by either of two
basic methods - sequential or direct (or random).
Thus the following four storage-processing ap
proaches are available:

Sequential processing of sequentially organized
data

Random processing of sequentially organized
data

Section Subsections Page

85 01 I 00

Sequential processing of randomly organized
data

Random processing of randomly organized
data

The first two are the most commonly used ap
proaches. The third and fourth are of limited use

01

in most applications. However, the fourth offers
some benefits (in selected applications), particularly
when the data files undergo frequent additions and
deletions, or when most of the transactions must be
processed randomly.

Section Subsections Page

85 10 I 01 01

ORGANIZATION

General

In a sequentially organized file, records are stored
on the disk in control key sequence, so that records
with successively higher control keys have succes
sively higher record numbers. It is not necessary
(or customary) for the control key to be the same
number as the record number. The only require
ment is that the control keys be in sequence, and in
sequential (not necessarily consecutive) locations.
Often, to narrow the search for a record in a se
quential file, an index is consulted for the record
number. This index is a sequential list of the keys

of selected data file records with their correspond
ing record numbers. An example of a sequentially
organized data file is a telephone directory, in which
people are listed one after the other, in alphabetic
order, the control key being the last name/first
name combination, and the data being the telephone
number.

In a randomly organized file, the records are
generally stored in the sequence of their control
keys. However, a mathematical transformation of
the control key yields the record number. To find
a record in such a file, the record number is com
puted from the control key by using the same trans
formation formula. In the random approach no index
tables are required.

Pure Sequential

In a purely sequential disk data file, your records
are placed on the disk in some logical order, with
no attempt to organize them or to keep track of
where they are placed. If a certain record is de
sired, the disk is searched sequentially until that
record is found.

Searching a Pure Sequential File

Searching a pure sequential file is simple, but
finding any particular record may be time-consuming
in the case of large files. (If you are processing
only a small number of records, however, the effect
on the overall running time may be slight.) If you
have a file of 1000 records, you can search for the
item with key KEYXX, using the following FORTRAN
statements:

DO 14 NREC=l, 1000
READ (NFILE'NREC) KEY
IF (KEY -KEYXX) 14, 77, 14

14 CONTINUE

77 KEYXX has been found at record NREC.

KEY is the control key on the disk record, and
KEYXX is the key you are searching for. If
KEYXX is the 608th item, you will read, check, and
get "no hit" on 607 items before reaching the 608th.
A better way to search such a file is obvious: read
every nth record until you pass the key being sought,
then back up one record at a time until you find
KEYXX.

DO 14 NREC=l, 1000, NTH
IREC = NREC

8 READ (NFILE'IREC) KEY
IF (KEY-KEYXX) 14, 77, 66

66 IREC = IREC-1
GO TO 8

14 CONTINUE

77 KEYXX has been found at record IREC.

If n is 20, you will read and check 32 records
(1, 21, 41, 61, 601, 621) until you have
passed the desired item (KEYXX, the 608th). Then
13 more records in the backing-up portion of the
search (620, 619, 618, 609, 608) must be
read. Here, the "skip" search has reduced your
disk reads from 608 to 45, with a concurrent drop
in processing time.

Section Subsections Page

85 10 I 10 01

A further improvement can be made if you search
first in large increments (say 100), then, when you
pass the desired item, back up with a smaller in
crement (say 20) and, after passing the desired
item the second time, switch to an increment of 1.
Again, looking for the 608th item, the search will
be - 1, 101, 201, 301, 401, 501, 601, 701, 681,
661, 641, 621, 601, 602, 603, 604, 605, 606, 607,
608, which involves 20 disk reads.

All the methods shown above, however, have one
disadvantage: because they start at record number
1, the disk arm must move back to that record
each time. A more elegant search technique would
involve starting from wherever you found the last
record, rather than from the beginning of the file.
This assumes that the disk arm is still positioned
over the last record, but it will not be so pos itioned
if you have meanwhile used LOCAL or SOCAL sub
routines or accessed a record in another file on the
same disk. This technique, therefore, is often
impractical.

Another technique involves the method of halving,
sometimes called a binary search. Suppose you
have a file of 1000 records and you want to find the
record whose key is KEYXX. First, halve the file
size to obtain 500, and check the 500th record. If
you do not find KEYXX there, halve the 500 to obtain
250 and, if the 500th record KEY was higher than
KEYXX, check 500-250 or 250 next; if it was lower,
check 500+250 or 750 next. The increment next
becomes 125, then 63 (62. 5 rounded upward), then
32 (31. 5 rounded upward), etc. Using the previous
example (KEYXX is the 608th item), your search
pattern would have been:

500 first try
low, so +250

750 second try
high, so -125

625 third try
high, so - 63

562 fourth try
low, so + 32

594 fifth try
low, so + 16

610 sixth try
high, so 8

602 seventh try
low, so + 4

606 eighth try
low, so + 2
hit 608 ninth try

a sequence of only nine disk reads.

Section Subsections Page

85 10 I 10 02

Programming such a search is easy:

3

8

10

9

NREC = 0
INC = 500
INC = (INC+ 1)/2
READ (NFILE'NREC) KEY
IF (KEY-KEYXX) 8,9,10
NREC = NREC + INC
GO TO 3
NREC = NREC-INC
GO TO 3
KEYXX has been found at record NREC.

Adding Items to the File

Adding new records to a sequential file involves
some advance planning. If your employee file now
consists of 188 employee records in man number
sequence

018, 023, 067, 107, 109, 667, 691, 806, 902

where should you put the newest employee, who has
just been assigned man number 098? You could
rebuild the entire file, but that might prove time
consuming in the case of large files.

One way to handle file additions is to set up a
separate "addition area" on the disk, either as a
separate file or as a special area in the main file.
With the latter option, new employees would be
placed at the end of the file, starting with the last
record and working backward.

For example, suppose the 188 employee records
have been placed in a 200-record file. When man
number 098 is added, it is placed in record number
200; the next new man number goes in 199; and so
on.

The search programming becomes somewhat
more involved: if a man number is not found in the
main (sequential) portion of the file, the "addition
area" is searched. If it is not found in either place,
an error message is printed.

Since this added work will slow the running of the
program, the file should be reorganized periodically,
and new man numbers put in their proper places in
the sequential file.

Indexed Sequential

An indexed sequential file is essentially the same as
a pure sequential file except that you maintain a
table or index to the file, making it eas ier to find
records. Suppose you have an inventory file con
taining 2500 items, with stock numbers ranging from
00001 to 28406. The stock number is kept as an
integer, and the items have been placed on the disk
in stock number sequence. In order to find an item
on the disk, you will maintain an index consisting of
the stock number of every 25th item. This will be a
FORTRAN array in core storage. It will require
2500/25 or 100 entries in the index table:

INDEX (1) = 67, the stock number of the 25th
item

INDEX (2) = 103, the stock number of the 50th
item

INDEX (~ ;;; 297, the stock number of the 75th
item

INDEX (99) ;;; 28073, the stock number of the
2475th item

INDEX (100) = 28406, the stock number of the
2500th item

When it comes time to find an item on the disk,
you first look for it in the core storage array INDEX.
You probably will not find that particular item in the
INDEX array, but you can get a good idea of its
location. Suppose you have just read a card con
taining ITEM number 181. You look it up in the
INDEX table as follows:

INDEX (1) = 67, which is lower than 181
INDEX (2) = 103, which is lower than 181
INDEX (3) = 297, which is higher than 181

The search stops here, since it is obvious that you
have just passed item number 181 in the process of
moving from INDEX (2) to INDEX (3). Since INDEX
(2) is the 2x25 or 50th disk record and INDEX (3) is
the 3x25 or 75th disk record, you know item 181 is
between records 51 and 75.

Now resume your search for item 181, this time
on the disk rather than in core. You may start at
51 and work your way up, or at 74 and back down.
In the latter case, your program reads record 74,
checks the stock number to see if it is 181, then
reads record 73, 72, 71, 70, 69, 68, etc., down to
record 51. If 181 is on the disk and in the right
order, you will find it relatively qUickly.

Section Subsections Page

85 10 I 20 01

Choosing an Index Step Size

In the above example, 25 was arbitrarily chosen as
the index step size; in other words, every 25th item
in the file is recorded in the index table. What is
the best index step size? First, for convenience, it
should be an even divisor of the number of records
in the file. If it is not, it complicates programming.
Second, it should be about the same as or less than
the number of records in a cylinder. For example,
say your record size is 48 words. This allows six
records per sector, and 8x6 or 48 records per cylin
der. If you have 5000 records, you can choose 40 as
your step size, making your INDEX array length
5000/40 or 125. The smaller the step size, the more
likely you are to hit the right cylinder on the first
disk arm movement. The probability that you will
find the des ired record on the first cylinder accessed
is:

1 - ((STEP SIZE-1)/ (2 * NO RECS PER CYL»

or in this case:

1 - ((40-1)/(2x48»

or about 0.6.
In other words, with 48 records per cylinder, and

an index of every 40th record, there are s'ix chances
in ten that the desired record can be found with one
disk arm movement (seek), and four chances in ten
that a second seek and read will be reqUired. Such
a second step will take about 65 milliseconds.

If you processed 225 inventory items, this second
seek and read would add about one minute to the
total running time of the job.

If you increase your step size to 50, the size of
your index table in core drops from 125 to 100 items,
but your probability of a second seek and read in
creases from. 40 to .51.

On the other hand, if you decrease your step
size to 25, your index table requires 200 entries,
but your probability of a second seek drops to .25.

Section Subsections Page

85 10 I 20 02

Building the index

Building your index of every 25th (or 90th, or
whatever) item in your file presents no difficulty.

Option 1: Build the index at the same time that
you load the data on the disk. All you need do is to
keep a sequential number for each item (NO) and
place its item number (or stock number, or em
ployee number) in the INDEX array at position

NO / (ISS + 1) + 1

where ISS is the index step size. In FORTRAN,
keeping an index of every four ITEMs (1SS=4) can be
done like this:

ISS = 4
NO = 1

55 READ (card) ITEM
K = (NO-I) /ISS+l
INDEX (K) = ITEM
WRITE (file 'NO) ITEM, etc.
NO = NO + 1
GO TO 55

Tracing through this coding, you will see that in
addition to creating the data file on the disk:

The ITEM will be placed and at this
number from on this disk position in
this card record the INDEX table

first 1 1
second 2 1

third 3 1
fourth 4 1
fifth 5 2
sixth 6 2
seventh 7 2
eighth 8 2
ninth 9 3

etc.

When finished, the INDEX table will contain the
ITEM numbers of the 4th, 8th, 12th, 16th, etc.,
records on the disk, just as desired. The INDEX
can now be written on the disk as a separate file,
for further use.

Option 2: Create an index file after the data
records have been placed on the disk. This is
even easier, since you need only read every 4th
(or 20th, etc.) record from the disk and place its
ITEM number in your INDEX table. Because this
would be relatively slow, you would want to do it
only once, with a separate program, storing the
INDEX as a separate data file. Then, each program
using the file could read it from the disk.

Section Subsections Page

85 10 I 20 03

Searching the Index Figure 85.1 illustrates a typical method of search
ing an index.

Unlike pure sequential organization, which is
searched on the disk, indexed sequential gives an
index to search in core storage. The simplest
approach is to search the table sequentially, one
entry at a time, starting at the top. When you find
an equal-or-less-than condition, you have found
what you are looking for. The subroutine shown in

You would CALL the subroutine FINDM with the
known values of:

ITEM -- the item you are searching for
ITABL -- the name of the index table
LTABL -- the length of the index table
ISS -- the index table step size
NFILE -- the number of the file

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Figure 85. 1.

1/ FOR
*EXTENDED PRECISION
*TRANSFER TRACE
*ONE WORD INTEGERS
*LIST ALL
*ARITHMETIC TRACE

SU8ROUTIN~ FINDM(NREC,ITEM,NFILE,ITABL,LTABL,ISS,IER)
DIMENSION ITABL(l)
IER = 1
DO 1 N = 1 , LTABL
IF (ITEM - ITABL(N)) 2 , 2 , 1

1 CONTINUE
C ITEM IS LARGER THAN THE LARG~ST VALUE IN THE INDEX TABLE

IER = 2
RETURN

2 NREC = ISS * N
DO 3 N = 1 , ISS
READ (NFILE t NREC KEY
IF (KEY - ITEM) 4 , 5 , 6

6 NREC = NREC - 1
3 CONTINUE
C ITEM IS NOT IN THE FILE IN THE AREA WHERE IT SHOULD BE
4 IER = 3
5 RETURN

END
VARIABLE ALLOCATIONS

N (I) =0000 KEY (I) =0001

STATEMENT ALLOCATIONS
1 =0033 2 =0042 6

FEATURES SUPPORTED
TRANSFER TRACE
ARITHMETIC TRACE
ONE WORD INTEGERS
EXTENDED PRECISION

CALLED SUBPROGRAMS

=005B 3

SIAR SIIF SUBSC SUBIN SDRED

INTEGER CONSTANTS
1=0004 2=0005 3=0006

CORE REQUIREMENTS FOR FINDM
COMMON 0 VARIABLES 4 PROGRAM

END OF CCMPI~ATION

=0001 4 =006A 5

SDI

108

=006E

Section Subsections Page

85 10 I 20 04

The subroutine returns:

NREC -- the record number where ITEM
may be found

IER -- an error code:

1 -- ITEM has been found on the disk.
2 -- ITEM is larger than any entry in

the index table.
3 -- ITEM is not on the disk where the

index table indicates that it
should be.

If IER is 2 or 3, the value of NREC returned is
meaningless.

For example, suppose you have an index of 150
entries, called ITABL, representing every 60th
item in an inventory file. After reading an inven
tory detail card containing a field called ITEM,
you want to find the inventory record for that item.
By using subroutine FINDM

CALL FINDM (NR, ITEM, NFILE,
ITABL, 150,60, IER)

you obtain, perhaps, an NR of 731 and an IER of 1,
meaning that the desired ITEM has been found, at
record 731. You can now read the inventory record
for that item:

READ (NFILE'NR) data

Maintaining the Index

When using an indexed sequential disk data file, you
must make sure that the index agrees completely
with the file. If you rearrange records in the file
without rebuilding the index, you may expect great
difficulty in locating items in the file. Rebuilding
the index is a rather simple matter, and two
methods are given in a preceding section.

The file index is typically stored on the same
disk as the file itself, and is read into core once,
at the beginning of each program that uses the file
it indexes.

Adding Items to the File

Adding items to an indexed sequential file can
be handled in much the same manner as for pure
sequential files. New records are placed in a
separate file, or at the "high" end of the main
file.

These new items will not be reflected in the
index, but this does not matter too much. The
index may be used to facilitate looking up records
in the main portion of the file, and, if an item is
not found there, it can be sought in the addition
area.

Direct, or Random, Organizations

Direct

The simplest of all organizations exists when the
record number is the same as the control key. For
example, in a payroll application requiring one
record per employee, the record number would be
the same as the employee number. If you had a
three-digit employee number, 001 to 999, you
would set up a file of 999 records:

DEFINE FILE 1 (999,XXX, U,NEXT)

If you read an employee number from a card

77 FORMAT (14)

READ (2,77) NEMP

you can immediately find that employee on the disk
with

or
READ
WRITE

(1 'NEMP) data
(1 'NEMP) data

The advantages of this scheme are obvious, but
the disadvantages may override them. In all proba
bility, although there are 999 employee numbers,
there are not really 999 employees, so there will
be many "holes", or unused records, on the disk.
Furthermore, 999 records, if they are large, may
take up an inordinate amount of space on the disk.
Even if they do fit on the disk, they will be spread
out so far that programs using this file will run
very slowly, because of the amount of "seeking",
or disk arm movement, required.

One remedy would be to make the employee
numbers more compact. If there are 300 employees,
why not renumber them from 001 to 300? Or
renumber your customers in a billing file? Or
renumber your part numbers? Or job numbers?

Usually, this is more easily said than done, and
you can expect difficulty in convincing management
that they should change established systems just to
make it easier for you or the computer.

Section Subsections Page

85 10 I 30 01

Computed Direct

Sometimes it is possible to take an employee
number (or part number, etc.) and modify it to
make a usable record number. For example, if
you have 300 employees with employee numbers
between 3000 and 9000, you could take this number,
NEMP, subtract 3000, divide by 20 (which is
(9000-3000)/300), and add 1:

NREC = (NEMP-3000) / 20 + 1

This results in an NREC between 001 and 301. This
is compact and wastes no space; however, two (or
more) employee numbers may quite possibly result
in the same record number. These are known as
synonyms. There are many ways to handle this
problem, but they require a certain added amount
of programming and disk space.

Section Subsections Page

85 10 I 30 02

Partitioned Direct

The disk addressing used by 1130 FORTRAN makes
this method applicable in some cases. At one in
stallation, there are about 150 employees, each
with a four-digit employee number. The first two
digits indicate the department number; the second
two digits are sequential numbers. The distribution
is as follows:

Number of
Maximum Range of Possible

Dept. No. of Employee Employee
No. Employees Numbers Numbers

1 5 101 - 110 10
3 35 301 .. 340 40
4 10 401 - 420 20
5 10 501 - 520 20
6 30 601 - 650 50
7 60 701 - 770 70

10 10 1001 - 1020 20
11 20 1101 - 1130 30
12 20 1201 - 1230 30
15 50 1501 - 1570 -1.Q.

250 360

This user noticed that he could use this break
down of employee numbers to advantage by setting
up ten files:

DEFINE FILE
DEFINE FILE
DEFINE FILE
DEFINE FILE
DEFINE FILE
DEFINE FILE
DEFINE FILE
DEFINE FILE
DEFINE FILE
DEFINE FILE

1 (10,X,U,Nl)
3 (40, X, U, N3)
4 (20,X, U, N4)
5 (20,X,U,N5)
6 (60,X, U, N6)
7 (70,X, U, N7)

10 (20, X, U, NlO)
11 (30,X, U, NIl)
12 (30, X, U, N12)
15 (70,X, U, N15)

requiring a total of 360 records to hold 250 em
ployees. This wastes about one-third of the available
records but results in much simplified programming,
since the user can read the employee department
and man number from a card:

77 FORMAT (I2, 12)
:READ (2,77) NDEP, NEM

and access that employee with a

READ (NDEP'NEM) data
statement.

Many numbering systems fit this general type and
may lend themselves to this disk organization approach.

Summary

Each of the techniques described above has its advan
tages and disadvantages, as has been pointed out
earlier. Ingeneral, indexed sequential files require
more core and disk storage (because of the index)
and tend to increase processing time because of the
searching invoived. Random (direct) organizations
make for fast access, with little extra core or disk
requirements, but are usually difficult to set up
because of the synonym problem.

PROCESSING

Just as sequential and random are two basic ways
to organize a file, they are also two ways to process
or access a file.

If you process records in the same order as that
in which they lie on the disk, you are processing
sequentially; if you process in a different order, you
are processing randomly. Thus the same two words
(sequential and random) have substantially different
meanings when used in the area of processing, since
the definition of each depends on the organization of
the file. This was not so when considering organi
zation; a file was sequential or random depending on

Section Subsections Page

85 20 I 00

the order in which control keys were placed on the
disk.

01

Consider the telephone directory -- a sequential
file because the control keys (names) are in alpha
betic order. If you scan through the directory, from
front to back, looking for people who live on Main
Street, or for men whose first name is John, you are
processing sequentially, in the same order as the
keys.

If you are looking for the telephone numbers of
three friends -- J. DOE, P. ADAMS and L. SMITH -
and you look for them in that order (not alphabetic),
you are processing randomly. On the other hand, if
you sort them into alphabetic order -- ADAMS, DOE,
and SMITH you are processing sequentially.

Section Subsections Page

85 30 I 01 01

THE INTERACTION of ORGANIZATION and
PROCESSING

Introduction

As you have seen, the two factors, organization and
processing, are tied together quite intimately.
Often, for this reason, it is not easy to make the

basic decision as to which combination of techniques
to use:

Sequential organization, sequential processing
Sequential organization, random processing
Random organization, sequential processing
Random organization, random processing

Actually, it is often impossible to use only one type.
You can (and, perhaps, must) process in many
sequences; but your file can have only one organi
zation at anyone time.

Choosing the Organization

Because of the interaction between processing and
organization, there are few concrete guidelines for
the user who must make this decision. However, the
following outline will help lead the way toward one
organization or the other. The payroll application
is given as the example.

1. List the processing that must be done to this
file and the required order of inputs and outputs
(see Figure 85.2).

Required Order of:

Application
INPUT OUTPUT

No order Same

or Doesn't as

doesn't matter Other matter input Other

Edit input Same as

cards later J
process,

Calculations Employee .;
number

Payroll Employee

register number ,J

Payroll Employee
,J

checks number

941 report Employee
,J

number

Name and

address ,J J
stickers

Figure 85. 2.

Section Subsections Page

85 30 I 10 01

2. How many different sequences are there?
a. None. No one really cares what the proc

essing sequences are (order of card in
put, order of output on reports, etc.).
Make sure this is so. If it is, go to step 3.

b. One. There is only one basic processing
sequence des ired; go to step 4.

c. More than one. This complicates the
matter. Go to step 5. Processing
sequences needed:
1.
2.
3.
4.
5.

3. No one cares what the processing sequence is.
This is unusual but does sometimes occur. If this
is so, you can forget about processing, and choose
an organization as an isolated problem, entirely
separate from processing.

4. This file will never be processed in more than
one sequence. Therefore, it would seem like a good
idea to organize it either sequentially or randomly,
in the same order as that required by processing.

5. This file must be processed in more than one
order; however, it can be in only one order at anyone
time. Recheck step 1. Can any of the inputs be hand
or machine-sorted into the same order as another in
put? Can some of the output orders be relaxed? Can
you somehow reduce the number of orders required?
If you can reduce it to one, you can go to step 3 or 4.
If not, you must sort your file from one order to the
other, or otherwise work around this problem.

Section 90: IMPROVING YOUR SYSTEM -
PERFORMANCE

CONTENTS

General
The Role of the Monitor•........

General
The Effect of the Monitor on
Performance

The Role of the Programmer ..•.......
Planning for Performance•....
Organizing for Performance --
How to Use LOCA Ls•....•..
Programming for Performance

Reducing Core Storage
Requirements
Programming Techniques to
Increase Speed

The FIND Statement
The Role of the 1130 Hardware•..

General
Productive Time That Cannot be
Improved by Hardware Changes

90.01. 00
90.10.00
90.10.01

90.10.10
90.20.00
90.20.10

90.20.20
90.20.30

90.30.00
90.30.01

90.30.10

Section Subsections Page

90 00 I

Productive Time That Can be
Improved by Hardware Changes

Plotting
Card Reading
Card Punching
Printing
Computing

Nonproductive Time That Can be
Reduced by Hardware Changes ...•...

Additional Core Storage
Additional Disk Drives

Some Case Studies of Performance
Improvements .•.•...••....•.•••..••..

General•...•...............
Case I••......•.••.•..•.....
Case II•.......•....•....
Case III•..•...•.•.•..........
Summary

00 01

90.30.20

90.30.30

90.40.00
90.40.01
90.40.10
90.40.20
90.40.30
90.40.40

GENERAL

This section covers many items of interest to all
1130 users:

• How to conserve core storage
• How to increase the running speed of a pro

gram
• How to segment programs
• The proper (and improper) use of LOCAL

and SOCAL subroutines, etc.
The general theme of this chapter, is, however,
how to improve your system, or, how to increase
system performance.

The performance of your programs should be one
of the major considerations of your programmer.
Unfortunately, however, performance is all to often

Section Subsections Page

90 01 I 00 01

forgotten in the drive to produce a working program.
The programmer, usually working against a deadline,
devotes all his energy and ingenuity to the TEST /
DEBUG/CORRECT/RETEST cycle, finally produc
ing an error-free program with no time to spare,
and with little thought given to efficiency.

Hemember, however, that this program now
enters production status, to be run weekly, or
possibly daily, where its performance may greatly
affect the overall operation of the 1130 system.

Program performance is affected by three fac
tors, each of which will be discussed in more de
tail:

The Monitor, or software
The programmer
The system itself, or 1130 hardware

Section Subsections Page

90 10 I 01 01

THE ROLE OF THE MONITOR

General

The 1130 Monitor system has an outstanding feature,
lmown as the "system overlay scheme", designed to
assist you in fitting your programs into core storage.

This scheme is covered in some detail in Section
65, under "SOCALs".

Recapping that section briefly, the Core Load
Builder, which is given the task of building a core
load, or ready-to-execute package, also is given
the task of resolving the problem of more program
than core storage (if this problem arises).

Typically, many blocks of programming are
competing: for core storage: your programs, your
subprograms, the IBM subprograms, and the
Monitor control package itself. All must be in
core storage when required.

As a first step, the CLB attempts to fit the en
tire package into core storage simultaneously. If
that does not fit, the CLB splits the IBM subpro
grams into four groups:

Group 0 Basic
Overlay 1 Arithmetic (add, subtract, multiply,

etc.)
Overlay 2 Non-disk Input/Oltput (cards,

printer, etc.)
Overlay 3 Disk Input/Output

As step 2, the CLB determines whether the
package will fit in core if Overlay 1 and Overlay 2
share the same area in core storage (the SOCAL
area). The SOCAL area must be large enough to
contain Overlay 3 plus the larger of Overlays 1 and
2.

If this does not provide enough room, step 3 is
taken. Here, all three overlays (1, 2, and 3) will
share the same area, which must now be as large.
as the largest overlay.

Step 4, taken if step 3 does not work, consists
of a message informing you that this program is
too large to fit in core storage.

To illustrate this graphically, Figure 90.1 shows
the layout of the SOCALs required by a "typical"
commercial job. This "typical" program:

• Is written in FORTRAN.
• Adds, subtracts, multiplies, and divides.
• Uses the 1132 Printer, the 1442 Card Read

Punch, and the console typewriter (but not the
keyboard).

• Contains at least one PAUSE, STOP, and
CALL DATSW statement.

• Contains disk READ, WRITE, and FIND
statements.

If you punch an L in column 14 of the / / XEQ
card, the CLB will print a core storage map of
your program and all its subprograms, indicating
which are SOCAL or LOCAL, and what overlay
level is in effect.

3000 -

2500 I-

2000

1500 -

1000 -

500 -

o

Figure 90. 1.

Step 1
Overlay Level 0

2970

Overlay
3

Disk
I/O

(700)

Overlay
2

Non-Disk
I/O

(1750)

Overlay
1

Arith.

(520)

Step 2
Overlay Level 1

Overlay 2450
3

Disk
I/O

(700)

Overlay
2

Unused

Non-Disk
I/O

(1750)

Overlay
1

Arith.

(520)

r--

Unused

Overlay
1

Arith.

(520)

Step 3
Overlay Level 2

1750 --,
I

Overlay
I 2

Unused
I

I
Non-Disk I

I/O I
(1750) I

I
Overlay

3

Disk
I/O

(700)

Section Subsections Page

90 10 I 01 02

Section Subsections Page

90 10 I 10 01

The Effect of the Monitor on Performance

To return to the main subject of this chapter, you
may ask, "How does all this affect performance?"
To answer this, we can construct a flowchart of a
"typical" commercial job. Let us say it is basi
cally of the type:

1. Head a card.
2. Taking a key item number from the card,

look up its approximate disk location in an index
table (indexed sequential organization).

3. Head a disk record.
4. Determine whether it is the right disk record.

If it is, continue; if not, decrease the record num
ber by 1 and go back to step 3.

5. Do some calculations based on the data
obtained from the disk and from the card.

6. Write an updated disk record.
7. Print a line of answers on the 1132 Printer.
8. Do some arithmetic (reset indicators, clear

totals, etc.) and go back to step 1.
For the purposes of this analysis you may ignore
routines that are executed only once (initialization,
final totals) or infrequently (error messages, etc.).
Figure 90.2 shows this job in the form of a rough
flowchart.

If this program is of a size that requires no
over lays, it will run at some base speed or through
put rate. If its size is such that it must run at
SOCAL level 1, Overlay 1 (Arithmetic) and Overlay
2 (Non-disk II 0) must be read from the disk when
ever required. Figure 90.3 shows when these over
lays would be required. This will lengthen the
base running time.

Each pass will require four overlays and two
disk arm moves. The arm moves are required
because the disk data file and the SOCAL overlays
are on different areas of the same disk. The time
required for these arm movements varies, depending
on several factors, but it may be considerable.
A good average might be about 250 milliseconds or
1/4 second.

If the program must run at Overlay level 2, the
picture changes considerably, as seen by Figure
90.4. If it hits the correct disk record on the first
try, it will require seven overlays and four disk
arm moves. For each additional disk read looking
for the correct record, add two overlays and two
arm moves. Running time will be further length
ened.

Initialization
Arithmetic

_J

--.
Read Card

• Look up key
item number
in index table

_J

--.
Read a disk
record for

an item

t
- Check it against
Not the item number

found on the card

Found t
Calculations

t
Write a new
disk record

t
Print results

t
Not

finished Finished _ Print E Miscellaneous Grand ... arithmetic - Totals

XIT

Figure 90.2. "Typical" commercial job -- rough flowchart

Initialization
Arithmetic

r--____ ~_I OJlERLAY JlRITII
... -• ...----WITII NON-DiSK I/O

Read Card

• OYERLAY NON-DISK
..----- WITH ARITii

Look up key
item number
.n index table

NOVE DISK ARM
~ ___ ~ __ I FROM OVERLAY

-. ..----AREA rOFILE AREA

Read a disk
record for

an item

_ Check it against
Not the item number

found on the card

Not
finished

Found ~

Calculations

Write a new
disk record

MOVE f)ISK ARM
F.I?OJl1 FILE AREA

I .---- TO OVERLAY AREA

.--_---:,l..-.... ~~ Ot/ERLAY A R I T 1-1
WITH AlON-OISK £/0

Print results

• Ot/ERLAY NON-DISK
.---- WITH ARITHMETIC

Miscellaneous
arithmetic

Finished _ - Print
Grand
Totals

~XIT

Figure 90.3. Overlays and disk arm movements required at

SOCAL level 1

Section Subsections

Initialization
Arithmetic

90 10

......-____ ~ .. I OJlERLAY JlRITfI
-. ...----WITII NON-DI.5K I/O

Read Card

• OYERLAY NON-DISK
..----- WITH ARITii

Look up key
item number
in index table

NOVE DISK ARM
.-----.aM _I FROM OVERLAY

--. ..----AREA rOFILE AREA

r-----L--~__, OVERLAY All/TN WITH

Read a disk
record for
an item

DISK I/O

MOVE ARM TO OV£III.AY
I .---- ,qR£A

I

,...-__ ,_~_---. OVERI.,l/Y LJISK I/O WITH
I'1RITIIMET/C

_ Check it against
Not the item number

found on the card

Found t
Calculations

10

OVERLAY /Ill/TN WITN
I ..---OI$K I/O

, 4-- MOVE ARM TO FILE ,qIU',I/
,..-----------.

Not
finished

Write a new
disk record

MOVE f)ISK ARM
F.I?OJl1 FILE AREA

I .---- TO OVERLAY AREA

,...--__ '_ _-. Ot/ERLAY tJISK
WITH AlON-OISK £/0

Print results

Ol/ERLAY NON-DISK t .---- WITH ARITHMETIC

Miscellaneous
arithmetic

Finished _ ...
Print

Grand
Totals

~XIT

Figme 90.4. Overlays and disk arm movementS required at

SOCAL level 2

Page

02

Section Subsections Page

90 10 I 10 03

Figure 90.5 summarizes the overlay pattern as it
varies with the disk search.

You can see the Overlay level 1 will not hurt
performance too much. If each arm movement
takes about 1/4 second, the processing time per
card might jump from 8 to 8 1/2 seconds. Overlay
level 2, on the other hand, may cause this program
to run significantly more slowly. A typical indexed
sequential file might require 15 disk reads to find
the correct record. This would increase the time
per card from 8 seconds to 16 seconds, or half the
throughput rate. This could become even worse if
the data file being searched were large or distant
from WS, since the SOCAL area would be proportion
ately further away from the file area.

The overlay time itself may be ignored, since
it is quite small compared with the disk arm move
ment time.

This example illustrates two principles:
1. The disk data file must be organized so that

items may be found qUickly (see Section 85).
2. For programs involving disk search tech

niques, as does the example, you should try dili
gently to avoid SOCAL Overlay level 2.

The difference between level 2 and level 1 is
either 620 words (HEAD and WRITE disk) or 700
words (HEAD, WRITE, and FIND disk), but this
does not mean that you must cut 620 or 700 words
from your program to drop from level 2 to level 1.

The CLB will use level 2 if the program is too big
for level 1. (It may be one word too big or 700
words too big.) Every word you can cut from
the size of the program increases the probability
that the program will fit at level 1 rather than level

Number of disk Overlay level 0 Overlay level 1 Overlay level 2
READs to find

the desired Arm Arm Arm
record Overlays moves Overlays moves Overlays moves

1 0 0 4 2 7 4

2 0 0 4 2 9 6

3 0 0 4 2 11 8

4 0 0 4 2 13 10

5 0 0 4 2 15 12

10 0 0 4 2 25 22

15 0 0 4 2 35 32

20 0 0 4 2 45 42

Figure 90.5. Single-drive 1130 system

2. For this reason, you should strive to keep your
programs as small as possible. Several means of
doing this are discussed in the next subsection.
Also, Section 70 gives many FOHTRAN core saving
tips.

Note that the above analysis applies to single
disk drive 1130 systems; the addition of a second
disk drive would eliminate all the overlay-caused
arm movements -- assuming of course, that you
have placed your data file on one disk and Working
Storage on another.

THE HOLE OF THE PHOGHAMMEH

In reading the preceding subsection, you may have
got the idea that the 1130 Monitor has the major ef
fect 011 the performance of your programs and that
you do not enter the picture unless the "system
overlay scheme" fails to squeeze your program into
core storage.

Nothing could be further from the truth. The
program the CLB was manipulating was, after

Section Subsections Page

90 20 I 00 01

all, planned, organized, and programmed by you,
not by the CLB.

Anyone of these three functions, if not
properly done, can force the CLB into building
an inefficient package - ... one that may take five
or ten times longer in execution than a similar (but
better planned) program doing the same job.

As mentioned earlier in this section there are
many things you can do to avoid such inefficiencies;
most of them are easy to understand, remember,
and implement.

Section Subsections Page

90 20 I 10 01

Planning for Performance

The major factor affecting program performance is
core storage and how it is used. Therefore, you
should try to avoid core storage difficulties by
planning for reasonably sized program packages.
It may seem quite efficient to have the entire pay
roll processed by one comprehensive program, but,
overall, it would probably turn out to be quite
inefficient. Because it would be a very large

program, it would probably involve many overlays
and could run for eight hours, whereas four smaller
programs might take only five or six hours.

Section 60 contains many hints on how you may
write small, modular programs. Besides helping
to gain performance, modular programs have many
other advantages over large, all-inclusive ones
(they are easier to test, tend to keep errors from
spreading, etc.).

Organizing for Performance -- How to Use LOCALs

After its scope has been determined, a program
should be organized into logical blocks that lend
themselves to efficient segmentation. You should
organize your program expecting to have problems
concerning core storage. If you do not have prob
lems, very little time is lost. If you do, as is
typical in most cases, you are in a position to create
your own overlay scheme, if that of the loader will
degrade the performance of your program.

As you have seen, in Section 65, the Monitor
gives you two overlay or segmentation methods:
LOCAL subprograms and program LINKs. These
two overlay schemes are entirely planned and
executed by you, in contrast to the Core Load
Builder's automatic SOCALs.

The three interact in one important way: If you
can conserve enough core with LOCALs and LINKs,
the C LB will not have to resort to SOCALs. As you
saw earlier, SOCAL Overlay level 2 can seriously
degrade the performance of some programs, partic
ularly those that search a disk data file looking for a
certain key (man number, part number, etc.).

If you have a program such as this running at a
comparatively slow rate, you should investigate it
closely; if the program is using level 2 overlays,
you should make a determined effort to reduce its
size enough to allow CLB to use level 1. (To find
out which overlay level is in use, execute the
program with an L punched in column 14 of the
/ / XEQ card.)

Figure 90.6 shows the same program used earlier
as an example. To it has been added:

INIT The Initialization routine
WRAP The wrap-up routine (grand totals)

and three exception subroutines:
BADCD "Bad input card" message
NOHIT "No such item on disk" mes sage
NEWPG Page heading routine

In addition, the following have been made into sub
routines:

READC
CALC1
CALC2

Read card
Calculations Part 1
Calculations Part 2

CALC3 Calculations Part 3
MISC Miscellaneous arithmetic
How should you go about reducing the size of this

program? Many programmers, irked at the fact that
their program does not fit in core storage, take
an "I'll show 'em" attitude and make all subrou
tines LOCAL. This probably will eliminate

Initialization
Arithmetic

Section

90

Subsections

20 I 20

Read Card e

Look up key
item number
in index table

Read a disk
record for

an item

Check it agai nst
Not the item number

found on the card

Found

Calculations

Figure 90.6.

~ ERROR ROUTINE
~ 8,1;,0 CRI?,o

~ ERROR ROIJTINE

..--- ITEM NOT ON OISK

Page

01

Section Subsections Page

90 20 I 20 02

the need for Overlay level 2, but is a rather extreme
case of over-reacting to a problem. Figure 90.7
shows the way in which this program would run, if
all seven subroutines were LOCAL and Overlay
level 1 were used. Each card processing cycle
would involve 11 overlays (7 LOCALs, 4 SOCALs)
and i arm movements (these figures are not depend
ent on the number of times the disk must be read
before finding the desired item).

Reviewing Figure 90. 7, it seems that you are
somewhat better off than if you had used Overlay
level 2, but you still require an excessive number
of over lays and arm movements.

It would have been far more prudent to LOCALize
only BADCD, NOHIT, and NEWPG, three subroutines
that are only used occasionally. This would reduce
your LOCAL overlays drastically and might save
enough core storage for Overlay level 1 to be used.

Another technique that would reduce the size of
this program is the use of LINKs. The blocks
called INIT and WRAP could easily be separated
from the main program, and made into what can be
called "one-shot LINKs". This might save enough
core storage to eliminate the need for LOCALs and
SOCAL level 2 altogether.

Another LINK is possible here -- a type you might
call a "repetitive LINK". Suppose you split the main
program into:

PARTI
a. Read card
b. Look up key in index
c. CALL LINK (PAR T2)

PART2
a. Read disk
b. Check if correct record found
c. Calculations
d. Write new disk record
e. CALL LINK (PART3)

PART3
a. Print results
b. Miscellaneous arithmetic
c. CALL LINK (PARTl) if not finished

CALL LINK (WRAP) if finished
This arrangement is particularly good, for several
reasons:

• It cuts the original program into five pieces
(two small and three large).

• It isolates the I/o into separate LINK.s -- for
example:

PARTI uses neither the disk nor the printer.
PART2 uses neither card nor printer.
PART3 uses neither card nor disk.

This reduces the sizes of these LINKs substantially
• It probably eliminates the need for SOCALs

and LOCALs altogether.

Initialization
Arithmetic

Read Card
):0 e ,....------,;;:;

'----r----~ E.R.ROR ROUTINE
@-- SRb CRNb

Look up key
item number
in index table

Read a disk
record for

an item

8-0
.....-----......;::::::;

~ ERRORROUnNE-
Check it against TEM NOr 011 DISK
the item number .--- / _____ ---J Not

found

Not
finished

Found

Calculations

Write a new
disk record

Print results

Miscellaneous
arithmetic

/.: L OCR/. OVERLI1Y

S = SOCRJ. OVEIUR'I'

Figure 90.7.

Finished

e,0
,....-------~~
5KIP TONElli PRf;E
AND PRINT NERD/NtiS
WileN NECE»RR'I

Print
Grand
Totals

,Al0 = MOYE I1RN TO OV£~LA'I AIUR

ND" "'"VE AIIN TO DI17R 'Ii~ AR~A

To summarize, a typical program has been seg
mented in several different ways, and the probable
effect of each way on performance has been dis
cussed. The purpose has not been to illustrate that·
LINKs are better than LOCALs, or that LOCALs
are better than SOCALs, or any other hard and fast
rule. The purpose has been to illustrate that the
options must be chosen wisely, not blindly. The
easiest way, letting the CLB do it with SOCALs,
mayor may not be the best in terms of performan,ce.
The next easiest way -- LOCALs -- mayor may not
be best. The only way to determine which is best
is to :lraw a flowchart of the type shown and to
tailor the overlay option to the program.

You can generalize ::;omewhat, with some
common -s ens e do's and don'ts:

1. DON'T worry about the performance of a
program that runs for only a few minutes, or that
is used only occasionally. Concentrate your efforts
on the long-running, everyday jobs.

2. DON'T place an overlay, or cause one to be
placed, within a loop that reads from the disk. For
example, take the problem discussed above, where
you have a loop of the type:

Read disk record
Compare disk key to sought-for key
If not equal, repeat

SOCAL level 2 will overlay the Disk I/o package
,required for the Disk READ) and the Arithmetic
package (required for the subtraction within the IF
statement parentheses). Furthermore, the disk
READ command requires the disk arm to move away

Section Subsections Page

90 20 I 20 03

from the SOCAL disk area. This repetitive disk arm
movement may have a disastrous effect on the
running time of the program.

If you place a LOCAL subroutine within this loop,
it will have the same effect as if the CLB had in
cluded a SOCAL.

3. DON'T LOCALize subprograms that are
always used, unless it is absolutely necessary to
get the program into core storage. DO LOCALize
subprograms that are the exception rather than the
rule (error messages, new page headings, initial
ization, final totals, unusual payroll deductions,
etc.).

4. DO minimize the amount of coding between
DISK I/O commands. This, in turn, will minimize
the chance of an overlay (SOCAL or LOCAL) which
will require that the disk arm move from the data
area to the overlay area and back again.

5. Also, DON'T LOCALize a subprogram that is
called between two disk statements. For example,
suppose a program has the following sequence:

DISK I/o
CALL SUB
DISK I/o

In this case SUB should not be made LOCAL, since
it will force excessive disk arm movement.

6. DO plan for problems with performance -
either a program too large for core or a program
that does not run as fast as it might. Keep the
scope (and therefore the size) of each program
modest; program as a series of LINKs; design the
exception routines as subprograms; etc.

Section Subsections Page

90 20 I 30 01

Programming for Performance

You have seen in the preceding examples that system
performance is very closely related to the size of a
program. In general, the larger the program, the
more slowly it will run. This degradation is not
evidenced in a gradual way; because of the SOCAL
and LOCAL system, it will show up in sudden jumps
or drops in throughput rates. Suppose you have an
1131 Model 2B (SK) and the familiar "typical"
program. With no overlays you have about 4500
words for your program; with Overlay 1, about
4920 words; with Overlay 2, about 5620 words.
Assuming these figures to be exact, this means that:

If your program size is It will:
1 -- 4500 words Fit with no overlays
4501 -- 4920 words Require Overlay 1
4921 -- 5620 words Require Overlay 2
5621 words or more Not fit in core stor-

age without further
work

If you add 1 word to a 4920-word program, it will
suddenly require Overlay 2 and may take twice as
long to execute. (It may also take no longer than
before -- this depends on the pr~gram.)

Conversely, if you have a program at level 2,
it may take anywhere from one word to 700 words to
make it drop to level 1. If it was 4921 before, it
will take only one word; if it was 5620, it will take
7:'0 words.

Reducing Core Storage Requirements

To make a long story short, every word counts.
You should always keep this fact in mind and strive
to write efficient programs. Section .70 gives many
core saving tips; Section 65 also gives some ideas
for improving the SOCAL system. Repeating the
FOR TRAN tips (the details are given in Section
70. 50.20):

1. Use the DATA statement wherever possible.
2. Keep FORMAT statements compact.
3. Take square roots and raise numbers to

powers in the most efficient manner.
4. Code efficient I/O statements.
5. Avoid long subroutine argument lists.
6. Don't include unneeded I/O devices on the

*IOCS card.
7. Avoid arithmetic with constant subscripts.
S. Remove the TRACE from production status

programs. The trace package requires about 140
words of core storage. In addition, it requires that
Data Switch 15 be interrogated every time you
"execute" an equal sign, IF statement, or computed
GO TO. This requires 150 to 200 microseconds
each time; some programs may do this tens of
thousands of times in the course of one run.

Programming Teclmiques to Increase Speed

Just as reduced program size can improve per
formance, so can several programming teclmiques.
All involve utilizing the overlapped I/o capability
of the 1130. The hardware of the 1130 allows for the
overlapping of almost all I/o devices; however, the
programming system used determines which units
can actually be made to run concurrently with
other units, or with the central processor. (See
Figure 90.8.)

Overlapping means that you can:
1. Tell the devfce vlhat it is to do.
2. Start it going (printing, punching, etc.).
3. Then continue with other processing before

the device has actually finished what it has started.
This section covers those units that can be over

lapped by standard FORTRAN. The use of the
overlapped I/O feature of the Commercial Sub
routine Package is discussed in Section 70.

FORTRAN
with Commercial

Unit FORTRAN Subroutine Package Assembler

1442-6 or -7 Reader Yes Yes

1442-6 or -7 Punch Yes Yes

1442-5 Punch Yes Yes

Console Typewriter Yes Yes

Console Keyboard Yes

1132 Printer Yes Yes

1403 Printer Yes Yes Yes

Disk - Arm Movement (FIND) Yes Yes

- Reading Yes

-Writing Yes

2501 Reader Yes Yes

1627 Plotter Yes

1134 Paper Tape Reader Yes

1055 Paper Tape Punch Yes

Figure 90. 8. Pro gramming systems permitting overlapped operations

Section Subsections Page

90 20 I 30 02

The FIND Statement. Because it is an optional
feature of FORTRAN, some programmers are un
aware of, and/or neglect, the use of the FIND state
ment. However, in many disk-oriented programs
it can increase performance significantly. It can be
added to any program quite easily and is simple to
use.

Suppose your program calls for a disk read from
record NR of file 6:

READ (6'NR) DATA
The disk subroutine will automatically compute
where that record resides, move the disk arm to the
proper position, and read the data. As mentioned
many times earlier, the second job, the movement
of the disk arm, may take much longer than the
other two functions.

The FIND statement
FIND (6'NR)

ahead of the READ (or WRITE) will cause the sub
routine to compute the location of record NR, start
the disk arm moving to that location, and then con
tinue processing other FORTRAN statements.

The secret of the FIND statement is self-evident:
it should be placed as far in advance of the actual
READ or WRITE statement as possible. In this way
you can get the arm moving, overlapping its move
ment or "seek" time with computations, printing,
etc.

Let us take a portion of a FORTRAN program
that looks like this:

FIND (6'NR)

other FORTRAN coding

READ (6 'NR) DATA
Suppose it takes 700 milliseconds to move the

disk arm to record NR from where it happens to be
now. Suppose also, that the "other FORTRAN
coding" shown takes 300 milliseconds. Without
the over lapping gained by the FIND statement, the
~otal time would be 700+300 or 1000 milliseconds.
With the FIND statement, the total time would drop
to 700 milliseconds, since the 300 milliseconds
is "buried" within the 700 milliseconds seek time.
Figure 90. 9 illustrates this graphically. This
.night amount to only 20 or 30 minutes a day,
but it is so easy to implement that it is certainly
worth the trouble of punching a few FIND cards.

If you are using LOCALs, and/or the CLB has
included SOCALs, the FIND statement will not be
executed. The Monitor will take care of this auto
mati cally. The reason is obvious: if you FIND a

Section Subsections Page

90 20 I 30 03

record then call a LOCAL or SOCAL subprogram,
the entire purpose of the FIND will liave been
negated, and you will wind up increasing disk seek
time rather than decreasing it. If you know you

Without the FIND statement:

READ

•
Compute

will have LOCALs or SOCALs, you may want to
remove all the FIND statements from your program,
eliminating the SDFND subroutine, which is approx
imately 80 words long.

Other Read

Coding
Location Arm Movement

Record
Continue

of Record

I---300 m,,< ----.~~I I--X-... ~IIoI -------700 msec

Total time = 700 + 300 + X + Y
X is small compared with the others.

With the FIND statement:
READ

F IND , .. 700 msec -
I ,

Compute Arm Movement Compute
Read

Location

I
Location

Record
of Record Other Coding of Record

x x y

Total time = 700 + X + X + Y
X is small compared with the others.

Figure 90.9.

THE ROLE OF THE 1130 HARDWARE

General

The last component in the user/hardware/software
trio is the 1130 hardware itself. Because this sec
tion is concerned primarily with increasing perform
ance, the discussion will concentrate on the ways
you can improve throughput by the use of alterna
tive hardware configurations.

The first step is the separation of run time into
four basic elements:

1. Productive time that cannot be improved by
hardware changes

Section Subsections

90 30 I 01

2. Productive time that can be improved by
hardware changes

Page

01

3. Nonproductive time that cannot be improved
by hardware changes

4. Nonproductive time that can be improved by
hardware changes

The third is included only for completeness; using
the definitions, there are no meaningful items to dis
cuss in this area.

Productive time is the time that the 1130 occupies
itself doing something you wantitto do. Nonproduc
tive time applies to activities that may be necessary,
but that are unproductive from your point of view.
Some examples of the latter are disk seeks, reading
LOCAL and SOCAL overlays, etc.

Section Subsections Page

90 30 I 10 01

Productive Time That Cannot Be Improved by Hard
ware Changes

Some of the 1130 system components are available
in only one model; therefore, it is impossible to in
crease performance by changing them. The type
writer, the console keyboard, the paper tape reader,

and the paper tape punch are four such devices. In
addition, the reading/writing speed of the disk is
constant, which means that the reading/writing of
your data records cannot be speeded up through
hardware changes. However, because more disk
drives may be added, certain other times relative
to the disk (seeks, reading of overlays) may be re
duced; they are therefore covered in a later section.

Productive Time That Can Be Improved by Hard
ware Changes

There are five elements of productive time that
can be improved by changing the model or speed of
an 1130 component. That is, you can:

• Heduce plotting time by switching to a faster
plotter

• Reduce card reading time by obtaining a
faster card reader

• Reduce card punching time by obtaining a
faster card punch

• Reduce printing time by obtaining a faster
printer

• Reduce computing time by changing to a
faster CPU

Plotting

This is a somewhat special case; two plotting
speeds are available, but they are tied to carriage
sizes. The 1627 Modell, with an II-inch carriage,
is twice as fast as the Model 2, which has a 29 1/2-
inch carriage. However, most users have chosen
one model or the other on the basis of carriage size,
rather than speed, and are not in a position to
change models just to increase speeds.

Section Subsections Page

90 30 I 20 01

Card Reading

There are four different card readers that may be
attached to the 1130 system, each with a different
card-read time:

Reader
1442 Model 6
1442 Model 7
2501 Model Al
2501 Model A2

Milliseconds per card (approx.)
200
150
100

60
If your programs use standard FORTRAN, none

of the specified card read time will be overlapped
with any other activity.

If you have a 1442-6 on your 1130, for example,
the time to read ten cards will be 10 X 200 or 2000
milliseconds. This is in addition to whatever manip
ulation must be performed on the data on those
cards. In a FORTRAN program, the system must,
at the very least, convert the Hollerith card codes
to EBCDIC, break that down according to the speci
fied FORMAT statement, and, finally, place the
resulting data in the proper core location.

The rated speed of the 1442-6 is 300 cards per
minute, but this assumes that the 1130 reads a card
every 200 milliseconds. It is true that the reading
of each card will take 200 milliseconds, but the
system may not read a card every 200 milliseconds.
If the intervening processing takes 100 milliseconds,
it will read one card every 300 milliseconds,
yielding a speed of 200 cards per minute.

You see, then, that rated I/O device speeds are
difficult to use when evaluating potential system
improvements. You must compare alternatives
on the basis of the time per card that the CPU is
prevented from doing something else.

Suppose you have a 1442-6, and you time one of
your representative jobs. It reads 2100 cards, and
runs for ten minutes (600,000 milliseconds). You
lmow, from the timing table, that the 1130 must
have spent 2100 X 200 or 420, 000 milliseconds
reading cards, and 600,000-420,000 or 180,000
milliseconds doing something else.

If you changed to a 1442-7, the card read time
would drop to 2100 X 150 or 315, 000 milliseconds,
the "something else" would remain at 180,000
milliseconds, and the total run time would drop
from 600,000 milliseconds to 495,000 milliseconds,
or from ten minutes to about 8 1/4 minutes.

Section Subsections Page

90 30 I 20 02

The 2501, because of its clutch arrangement,
requires a special analysis. The 2501-A1, the 600-
card-per-minute reader, will read at fixed speeds of

600 cpm (100 millisec)
300 cpm (200 millisec)
200 cpm (300 millisec)
150 cpm (400 millisec)
120 cpm (500 millisec)
100 cpm (600 millisec)
etc.

and the 2501-A2, the 1000-card-per-minute reader,
will read at fixed speeds of

1000 cpm (60 millisec)
500 cpm (120 millisec)
333 cpm (180 millisec)
250 cpm (240 millisec)
200 cpm (300 millisec)
166 cpm (360 millisec)
etc.

To calculate the expected improvement in timing
due to a 2501-A1, we must, as before, substitute
100 milliseconds for the 200 milliseconds (1442-6),
to get 2100 x 100 or 210,000 milliseconds read
time, add the 180,000 milliseconds other time,
obtaining 390,000 milliseconds or 15 minutes.
Dividing this into the number of cards read (3000),
we find that this yields a rate of 323 cards per
minute.

However, the clutch arrangement of the 2501-A1
will not allow it to run at 323 cards per minute, so
the next lower speed (300 cpm) must be assumed.
2100 cards at 300 cpm yields a total time of seven
minutes.

A similar analys is for the 2501-A2 gives a
theoretical speed of 412 cpm, but, choosing the next
lower speed, 333 cpm., the total run time is calCU
lated as 6.6 minutes.

Card Punching

Three different card punches are available for use on
the 1130 system; all three operate in the same mode,
punching one column at a time.

Card Punch Millisec0nds per Card Column
Punched or Spaced

1442 Model 6 12. 5 plus 12. 5 per column
1442 Model 7 6. 5 plus 6. 5 per column
1442 Model 5 6. 5 plus 6. 5 per column
Models 6 and 7 both read and punch; Model 5 only
punches.

The overall speed is determined by the last
column punched, rather than the l'lIlmlber of columns
punched. If you skip the first 20 columns and punch
into the 21st, you have punched or spaced 21 columns
and the time for that number will apply. Figure
90.10 gives the punching time for the three models,
as they vary with the last column punched.

To continue the previous example, suppose that
of the 2100 cards read, the program punched into

1000

900

800

700

600

VI
"0 c:
0

500 (,.)

~
~

400

300

200

100

o 10 20 30 40 50 60 70 80

Last Column Punched

Figure 90.10.

the first 20 columns of 500 of them. For the 1442-6,
the breakdown now becomes:

Operation Milliseconds
Read 2100 cards 420,000
Punch 20 columns, 131,250
500 cards
Something else

Total

With the 1442-7, it becomes:

48,750
600,000

Read 2100 cards 210,000
Punch 20 col. 500 cards 68,250
Something else 48,750

Total 327,000
or 5.5 minutes

N ate that the times shown apply only to the time
actually spent punching. If the card being punched
was previously read, the punch time may be simply
added to the total. If the card being punched was
not previously read, you must add 200 or 150
milliseconds of read time per card to allow for the

(feeding of cards past the read station, even
though they were not read. This will always be
the case with the 1442-5, which cannot read cards.

Section Subsections Page

90 30 I 20 03

Printing

Three different line printers may be attached to the
1130 system, each having different print and skip
times:

Printer Approximate Time in Milliseconds
Print 1 Line Skip 1 Line

1132 750 16

1403 Model 61 175 (3.6-
or microsec-

ond CPU) 5
Model 7 100 (2.2-

microsec-
ond CPU)

To illustrate the improvement pOSSIble III this
area, let us take an example similar to the last one.
Suppose you have a program that is essentially a card
listing job. In ten minutes it reads 600 cards,
prints 600 lines, and skips 100 lines. This can be
broken down as follows:

Operation
Read card (1442-6)
Print (1132) 600 @ 750
Skip 100 @ 16
"Everything else"

Total

Milliseconds
120,000
450,000

1,600
28,400

600,000 (10
minutes)

If you replace the 1132 with a 1403-6, your print
and skip times drop:

Print (600 @ 175) 105,000
Skip 100 @ 5 500

Added to the card read time and the "everything else"
time, which remains the same, this results in a total
time of 253,900 milliseconds, or about 4 1/4 minutes,
as opposed to 10 minutes.

Note that despite this dramatic increase in
throughput, the 1403 is printing at only 141 (600/4.25)
lines per minute, far below its rated speed of 340.
The 1132 was also below its rated speed of 80 lpm,
since it printed 600 lines in ten minutes, or 60 lpm.

This shows again that rated speeds of cards per
minute, lines per minute, etc, cannot be used when
investigating alternate approaches to improving
throughput. The only usable figure is the length of
time the CPU is tied up-- that is, prevented from
doing something else.

This example has assumed a 3. 6-microsecond
CPU; if the 1130 were a Model C (2.2 microseconds),
a 1403 time of 100 milliseconds would be used. The
overall time would drop to 3.5 minutes, for a speed
of 172 lpm.

In all cases of 1403 timing investigations, you
must calculate the resulting lines per minute to make
sure that it does not exceed the rated speed of the

Section Subsections Page

90 30 I 20 04

printer. Fo-r example, an analysis that indicates a
1403 speed of 450 lpm must be modified if the printer
considered is a 1403-6, which cannot exceed 340 lpm.

The 750-millisecond time for the 1132 is based on
standard FORTRAN, which is not overlapped.

The 176 (or 100) millisecond time for the 1403
consists mainly of the conversion from EBCD1C to
1403 code - the 1403 itself is buffered, and the time
required to fill the buffer is quite small. The 176
milliseconds drops to 100 on a 2.2 microsecond
CPU because of the faster CPU. See the next sub
section.

Computing

The 1131 Central Processing Unit is available with
one of two basic cycle times: 3.6 microseconds
(Models 1 and 2) or 2.2 microseconds (Model 3). In
more basic terms, the Model 3 will compute in .61
the time of the Model 1 or 2.

However, in this area it is not quite as easy to
calculate the improvement to be expected from the
faster CPU. The problem is that you often don It
lmow how much time you were computing before
(with a 3. 6-microsecond CPU), in which case you
cannot possibly tell what effect the 2. 2-microsecond
CPU will have.

Let us review the previous example: 1442-6 and
1132; ten minutes run time, read 600 cards, print
600 lines, skip 100 lines. The times in milliseconds,
were:

Card read 120,000
Print and skip 451,600
"Everything else" 28,400

Total 600,000 (10 minutes)
The only way you determined the 28,400 milliseconds
of "everything else" was by subtracting one lmown
value (I/O times) from another known value (total
run time).

If you lmow that all 28,400 milliseconds were
spent in computing, you can calculate that the 2.2-
microsecond CPU will do the same amount of work
in 61% of that time, or 17,300 milliseconds, a
reduction of 1,100 milliseconds or 1. 8 minutes.

If those 28,400 milliseconds had included any disk
operations, you could not have made the above esti
mate, since you would have had no way to determine
the split between disk activity and computing. Aside
from a good estimate, which would be quite an
achievement, the only way to evaluate the effect of
a new CPU in this case would be to take your program
to such an 1130, run it, and time it.

Nonproductive Time that Can Be Reduced by Hard
ware Changes

By definition, three items fall into this category:
1. DISK seek, to get from one data record to

the next
2. DISK seek, to get from data area to overlay

area, and vice versa
3. DISK read to read overlay

All three items are necessary, but unproductive as
far as you are concerned. Note that item 1 is re
quired whenever you are using data files, item 3
whenever you are using overlays (SOCALs, LOCALs,
and/or LINKs), and item 2 whenever you have both
overlays and data files.

The time requirements of all three are difficult
to determine, so an exact analysis will not be
attempted, as with the card readers, punches, etc.

There are two hardware changes that will reduce
these times:

1. More core storage, which will probably
eliminate overlays, and therefore items 2 and 3.

2. More disk drives, which will allow a re
distribution of files and overlays, and reduce items
1 and 2.

Section Subsections Page

90 30 I 30 01

Additional Core Storage

Asside from programmer convenience, the main
advantage in adding more core storage is its probable
effect on performance, or run time. If you can
execute your programs without any overlays, they
can be expected to run at some "top" speed,
governed mainly by the amount of productive work
you want done.

Additional Disk Drives

Unlike core storage, which will probably be aug
mented to improve performance, additional disk
drives are likely to be considered primarily to
increase capability -- the capability to copy disks,
the additional storage gained, etc. In many cases,
however, the move from a single to a multiple disk
1130 system may be accompanied by a gain in
throughput or performance. This will be true only
if you plan your system so that the LOCAL/SOCAL
overlays are on a cartridge other than the one on
which the data files reside.

The location (cartridge ill number) of the data
files is specified on the *FILES card. The LOCAL/
SOCAL overlays are either (1) in Working Storage,
if the program is executed immediately after
compilation, or (2) with the mainline program (in
UA or FX), if the program has been stored in core
image format. If they are in Working Storage, the
Monitor should be informed, with the JOB card, to
use the Working Storage on a disk cartridge other
than the data file cartridge. If they are with the
mainline program (in UA or FX), you should make
sure the core load is stored on a cartridge other
than the data file cartridge.

Section Subsections Page

90 40 I 01 01

SOME CASE STUDIES OF PEHFOHMANCE
IMPHOVEME NTS

General

This section is designed to present a general guide
to the principles involved in improving performance.
It also shows many of the techniques used to fit a
large problem into core, stressing how to do so
without adversely affecting performance.

In order to best illustrate these principles, three
case studies, or sample problems, are shown in de
tail:

• Case I -- a commercial job, typical of a
payroll-type application

• Case II -- a commercial job, typical of an
accounting type application

• Case III -- a scientific or technical job, in
volving mostly computation, with little or no input!
output

All examples are based on an 8K 1130 system,
but the principles are the same for any size machine.

Case I

The first example uses a typical payroll-type
application to show one approach to improving per
formance. It may not be the best approach, but it
results in a set of programs that produce the

Section Subsections Page

90 40 I 10 01

desired result, fit in core storage, and operate at
a near-maximum throughput rate.

A rough block diagram of this job, marked
to show what action has been taken, is included
with each step.

Section Subsections Page

90 40 I 10 02

Step 1

The first time we are able to try to execute the
program PA YRO we are informed that it does not
fit in core storage, needing 388 (hexadecimal) or
904 words.

~.-

• ;.-
-.

II XEQ PAYRO L
*FILES(1,FILEi'l)
FILES ALLOCATIO~

1 01A3 0001 7U61 FILEN
22 0000 UOOl 7U61 OlA7

STORAGE ALLOCATION
R 40 07AD (HEX) ADDITIONAL CURE REQUIRD
R 43 OlFC (HEX) ARITH/FUNC SOCAL WD CNT
R 44 06E8 (HEX) FIIO, 110 SOCAL we CNT
R 45 02A2 (HEX) DISK FIIO SOCAL ~J CNT
R 40 0388 (HEX) ADDITIONAL CORE REQUIRD
R 18 PAYRO LOADI~G HAS BEEN TERMINATED

step 2

In order to test the program, we make all five sub
routines LOCAL and find that it now fits in core,
but requires SOCAL level 2. Running of the pro
gram is accompanied with quite a bit of disk arm
movement, which slows it down considerably.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

II XEQ PAYRO L 2
*FILES(l.FILEN)
*LOCALPAYRO.SUBW.SUBl.SUBY1.SUBY2.SUBY3
FILES ALLOCATION

1 01A3 0001 7061 FILEN
22 0000 0001 7061 01A7

STORAGE ALLOCATION
R 40 03E3 (HEX) ADDITIONAL CORE REQuIRO
R 43 01FC (HEX) ARITH/FUNC SOCAL ~D CNT
R 44 06E8 (HEX) FI/O. 110 SOCAL WD CNT
R 45 02A2 (HEX) DISK FIIO SOCAL WD CNT
R 41 00A4 (HEX) WDS UNUSED BY CORE LOAD
CALL TRANSFER VECTOR

DATSW 1902 SOCAL 1
SUBY3 1701 LOCAL
SUBY2 17C9 LOCAL
SUBY1 17C9 LOCAL
suez 1701 LOCAL
suew 1765 lOCAL

lIBF TRANSFER VECTOR
HOLTB 1EBB SOCAL 2
EADDX 1883 SOCAL 1
XDO 1988 SOCAl 1
FARC 1966 SOCAL 1
XMD 1924 SOCAL 1
ELDX 1528
NORM 1594
HOLEl 1E52 SOCAL 2
EBCTB 1E4F SOCAL 2
GETAo lE06 SOCAl 2
IFIX 1568
PAUSE 18EC SOCAl
ESBR 1808 SOCAl
EADD 1870 SOCAL
EoIV 1824 SOCAl
EMPY 17F6 SOCAl
EDVR 17DE SOCAl
FLOAT 155E
SUBSC 1540
ESTO 1516
ElO 152C
PRNTl 1048 SOCAL 2
CAROl 1C9E SOCAl 2
wRTYl 1C62 SOCAL 2
SFIO 1809 SOCAl 2
SoFIO 1885 SOCAl 3

SYSTEM SUBROUTINES
ILS04 00C4
ILS02 0063
I LS01 1£C2
IlSOO 1EDD
FLIPR 15DC

1467 (HEX)

Section Subsections

90 40 I 10

The subroutines are:
SUBW -- Error message (hardly ever called)
SUBZ -- New page headings (once every 25
employees)
SUBYI -- FICA routine (almost always called)
SUBY2 -- Special deductions (one out of every
six employees).
SUBY3 -- Savings Bond deduction (one out of
every three employees)

LOCAL Sl/4W

LOCAL st//JY I,
SVIIY2,

___ s_v~., y 3

LOC.IIL SC/8Z

Page

03

Section Subsections Page

90 40 I 10 04

Step 3

Studying the flowchart, we see that this program
could be split into three smaller programs, or
LINKS:

PGMAB, which is made up of blocks A and B
PGMX, which was block X
MAIN, which is the main program

Executing with no LOCALs, we find that the program
MAIN requires SOCAL level 2 to fit into core, and
that it runs no faster than before.

• .11 XEQ MAIN L
*FILES(1,FILE,'!)

• FILES ALLUCATION
1 01A3 0001 7061 FILEN

22 UOuu uuUl 7u01 UIA7

• STORAGE ALLOCATIUN
R 40 03C5 (HEX) ADDITIONAL C0RE REQUIRv
R 43 01FC (HEX) ARITM/FuNC SOCAL Wi) CNT

• R 44 06ES (HEX) FI/O, I/U ~UCAL wO CNT
R 45 02A2 (HI::.X) DISK FI/O ~OCAL WD CNT
R 41 005E (HEX) wDS UNUSED BY CORE LOAD

• CALL T~ANSF~R V~CTOH
SUBW 1753
SUBZ 1627

• SUBYl 155F
SUl3Y2 13CF
SUl3Y3 123F

• DATSI'I 1946 SOCAL 1
L1BF THA"'lSFER VtCTUR

rlvLT6 lEFF SUCAL 2

• EADDX 10(7 SOCAL 1
XCI) 19CC SOCAL 1
FA"C 19AA SOCAL 1

• X;'lD 1968 SOCAL 1
ELDX 114()
;~Or<,'111 1788

• HOL.EZ lE96 SOCAL 2
El3CTt3 lE93 SOCAL 2
(JETAO lE4A SOCAL 2

• IFIX 175C
PAUSE 1930 SOCAL
ESi:JR 191C SOCAL

• EADD ItlCl SOCAL
tDIV 186H SOCAL
Ei'<;PY 183A SUCAL

• EDVR 1822 SOCAL
FLUAT 1176
SUBSC 1158

• C:STO 112E
ELI) 1144
PR,'1TZ lOBC SOCAL 2

• CAROL lCE2 SOCAL 2
WfHYZ lCAo SOCAL 2
SFIO 191D SOCAL 2

• SDFIO 18CQ SOCAL 3
SYSTEi>1 SUBROUTINES

ILS04 iJOC4
ILS02 OU63 • ILS01 1F06
ILSOO IF21

• FLIPR 1762
10CF (HEX) IS THE EXECUTIUN ADDR

MM<.E TIIESE
INTO LINKS

Step 4

Making all five subroutines LOCAL again, we find
this is just enough to eliminate SOCALs, but does

• II XEQ MA Ii" L
*LOCALMAIN,SUBW,SUBZ,SUBY1,SUBY2,SUBY3

• *FILES(1,FIU:,'I)
FILES ALLOCATION

1 01A3 0001 7061 FILEN

• 22 (JOJO 0001 7061 01A7
STORAGE ALLOCATION
R 41 0004 (HEX) wDS UI'IUSED BY CORE L0AD

• CALL TRAi"SFER VI::CTOR
DATSw 1 t:l7 E
SUtlY3 lE9F LOCAL

• SUtlY2 IF67 LOCAL
SUBYl IF67 LOCAL
SUtlZ lE9F LOCAL

• SUBI'i lF03 LOCAL
L I BF TI~AI\jSFER VECTOR

HOLTB 1059

• I:: Al.!OX lAFF
XOD 1CDC
FARC lCtlA

• XtvlD lC78
ELDX lA12
,~ORr~ lC4E

• HOLEl lC18
EBCTtl lC15
GETAD IdCC

• IFIX IBAO
PAUSE iB68
ESBR 1B54

• I::ADD lAF9
EDIV 1AAO
EMPY 1A72

• EDVR 1A5A
FLOAT 1A48
SUtlSC 1A2A

• ESTO lAOO
ELO lA16
PRIHZ 193E

• CAROZ 1894
wRTYZ 1858
SFIO 14CF

• SOFIO 1109
SYSTEivl SUBROUTINES

ILS04 00C4

• ILS02 00B3
ILSOl IF74
ILSOO IF8F
FLIPR 107A • 10CF (HEX) IS THI:: txECUT ION AODR

Section Subsections Page

90 40 I 10 05

not speed up the program, since SUBY1, the
FICA routine, is called for almost every employee
and causes the disk arm to be moved from the data
file area back to the overlay area, and vice versa.

THE.Se: ARe:
.sTILl.. LINk'S

LOCAL. S-V4W

L.OCAI.. Sf/BY /,
Sc/8Y 2,
51.181 3

J. OCAL SV8Z

Section Subsections Page

90 40 I 10 06

Step 5

Since SUBYI as a LOCAL is slowing down the pro
gram, we must try to keep it in core storage at all
times. However, the previous load map showed that
there are only four words unused by the package,
and SUBYI is 400 words long. If we could free up
396 words, SUBYI could be taken out of the LOCAL
category, and the program would be speeded up.

(Realize, of course, that SUBYI could easily be
made non-LOCAL, but that SOCALs would then be
required. The secret is to avoid both SOCALs and
a LOCAL SUBYl).

Note also that SOCALs would cause the program
to run even slower. Since the sequence of the
program is a repetition of

a. I/o
b. DISK
c. ARITH, including SUBYI
d. DISK
e. ARITH
f. I/O

SOCAL level 1 will cause the disk arm to be moved
between the data area and the overlay area between
steps

a and b
band c
c and d
d and e

while SUBYI as a LOCAL will require such a move
ment only between steps

band c
c and d

After considerable study, we decide that there is
very little that can be done to further improve the
performance of this program, unless, of course, we
can reduce its size by 396-100 or 296 words (Flip
per would no longer be required).

Because SUBYI handles the FICA calculation, it
will be called less and less as the year progresses,
since more employees will attain a "paid up" status.
(This won It be true, however, if your test for "paid
up" is done inside the subroutine: It should be made
in the mainline program, otherwise SUBYI will be
called every time, whether the employee gets a deduc
tion or not.)

Discussion of Case I

Here you have seen one way to fit this "typical"
program into core, at little or no sacrifice in
throughput. There may be other ways to do the same
thing; there may be better ways.

Basically, common sense is used -- a step-by
step segmentation of the program, with each step
having a greater effect on performance:

1. Make LOCALs out of those subroutines that
are not always called~

2. Break the program into LINKs.

Case II

This program is of a basically different organization
than Case 1. It is typical of a job in which the input
consists of a master card followed by a variable
number of detail cards, with the sequence repeated
many times. Some good examples of this type of
job are billing, accounting, cost systems, etc.

Section Subsections Page

90 40 I 20 01

Assume that this application is some type of project
cost system, with a master card for each project,
followed by a series of detail or change cards per
taining to that project. These detail cards may be
due to labor or materials charges against the
project or, in a few cases, an accounting depart
ment adjustment.

Section Subsections Page

90 40 I 20 02

Step 1

After several tries, the program COST achieves a
successful compilation, only to be met by the R40

•
•
•
•
•

II XEQ CUST L.
*FIL.ES(loFIL.EN)
FIL.ES AL.L.OCATIO~

1 01A3 0001 7061 FIL.EN
22 0000 UOOl 7061 01A7

STORAGE AL.L.OCATION
R 40 084C (HEX) ADDITIONAL CORE REQUIRD
R 43 01E6 (HEX) ARITH/FUNC SOCAL WD CNT
R 44 06E8 (HEX) ~I/O, 1/0 SOCAL WD CNT
R 45 02A2 (HEX) DISK FIIO SOCAL. WD CNT
R 40 043E (HEX) ADDITIONAL CORE REQUIRD
R 18 COST LOADING HAS BEEN TERMINATED

and R18 messages shown. Even after SOCAL level
2 has been attempted, this program package exceeds
core storage by 43E or 1086 words.

X. Type Error
message

master card;
one in 8.

t
D. Update disk

for last
master

t
Z. Skip to new

page, print
headings

t
E. Print totals

for last
master

t
F. Clear totals

for last
master

t
G. GET data from

master card
just read

• H. Read disk
record for
new master

+

L.

bad
card

labor card;
40ut of8.

t
GET data from
labor card
just read

M. Calculations

t
N. Add to job

totals

O. Print detail
line

"

A. Initialize

B. Read a
card

C. Check the
card code

0 to B

last
card

material card;
3 out of 8.

t
P. GET data from

material card
just read

Q. Calculations

+
R. Add to job

totals

S. Print detail
line

••

Y. Print grand
totals

T.

adjustment
card; unusual.

+
GET data from
adjustment
card just read

U. Calculations

t
V. Add to job

totals

W. Print detail
line

'P

Section Subsections Page

90 40 I 20 03

Section Subsections Page

90 40 I 20 04

Step 2

Observing the flowchart, we see that we are fortu
nate in having several subroutines that are seldom,
if ever, called:

• BADCD, the illegal card message
• NEWPG, the skip to new page routine
• FINAL, the final total routine
• T, U, V, W, four routines involved in the

processing of an accounting adjustment card (an
unusual occurrence)

These seven subroutines are ideal LOCALs, and,
executing COST in this mode, we get the load map
shown. The program (at SOCAL level 2) runs, but
quite slowly. Checking the flowchart, we see we
have two blocks involving disk READs/WRITEs, D
and H, bracketing blocks E, F, and G, which use both
arithmetic and non-disk I/O functions. Obviously,
this will cause continuous disk arm movement be
tween the disk data file area and the overlay area.

The only way we can reduce this time-consuming
function is to eliminate the need for overlays between
the disk READ and WRITE.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
••

II XEQ COST L 2
*FILES(l,FILEN)
*LOCALCOST.FI~AL'NEWPG,BADCD,T,U,V'W
FILES ALLOCATION

1 01A3 0001 7061 FILEN
22 0000 0001 7061 01A~

STORAGE ALLOCATION
R 40 02FE (HEX) ADDITIONAL CORE REQUIRU
R 43 01~6 (HEX) ARITH/FUNC SUCAL wD CNT
K 44 06E8 (HEX) FI/O, 110 SOCAL WU CNT
K 4' U~A~ IH~XI UISK fI/U SUCAL WU CNT
K 41 U1/4 IH~XJ ~U~ UNUS~D ~y CUR~ LUAU
CALL TRANSFER VECTOR

G 1410
F 1355
E 12F1
D 1280
DATSw 181A SOCAL 1
w 162F LOCAL
V 15CB LOCAL
U 16F7 LOCAL
T 15CB LOCAL
BAOCD 1567 LOCAL
NEwPG 162F LOCAL
FINAL 1693 LOCAL

LIBF TRANSFEK VECTOR
HOLTS 1DE9 SOCAL 2
EADOX 1781 SOCAL 1
XDD 18AO SOCAL 1
FARC 181E SOCAL 1
XMD 183C SOCAL 1
ELOX 10C6
NOKM 1452
HOLEl 1080 SOCAL 2
EBCTB ID10 SOCAL 2
GETAO 1034 SOCAL 2
IFIX 1426
ESBR 1806 SOCAL
EADD 17AB SOCAL
EOIV 1752 SOCAL
EMPY 1724 SOCAL
EOVR 170C SOCAL
FLOAT 10FC
SUBSC 100E
ESTO 1064
ELD 10CA
PRNTl 1C16 SOCAL 2
CAROl 16CC SOCAL 2
WRTYl 1690 SOCAL 2
SFIO 1801 SOCAL 2
SOFIO 1763 SOCAL 3

SYSTEM SUBROUTINES
ILS04 00C4
ILS02 0083
ILSOI IDFO
ILSOO lEOS
FLIPR 14A6

1048 (HEX) IS THE EXECUTION ADOR

BAPcJ)

master card;
one in 8.

D. Update disk
for last
master

E. Print totals
for last
master

F. Clear totals
for last
master

G. GET data from
mastercard
just read

H. Readdisk
record for
new master

bad

A.. Initialize

s. Reada
card

card C. Check the

labor card;
4 out of 8.

L GET data from
labor card
just read

M. Calculations

N. Addtojob
totals

o. Print detail
line

card code

material card;
3 out of 8.

P. GET data from
material card
just read

a. Calculations

R. Addtojob
totals

So Print detail
line

F/NAL

LOCALs
ARE.

CIRCLSD

adjustment card;
UNUSUAL

Section Subsections Page

90 40 I 20 05

Section Subsections Page

90 40 I 20 06

Step 3

As mentioned in Step 2, we now realize that there
is no real reason for blocks E, F, and G to be
sandwiched between the disk READ and the disk
WRITE.

Rearranging the program slightly, to make the
sequence Z, E, F, G, D, H, we reexecute and find
that the program runs substantially faster than be
fore. There is still some disk arm movement, but
it is not quite as frequent. Actually, as long as we
have disk data files and overlays, there will be
some disk arm movement. The goal is to reduce it,
if it cannot be eliminated altogether.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

II XEQ COST L 2
*F ILES(ltF ILEN)
*LOCALCOST,FINAL,NEWPG,BADCD,T,U.V.W
FILES ALLOCATION

1 01A3 U001 7061 FILEN
22 0000 0001 7061 01A~

STORAGE ALLOCATION
R 40 02FE (HEX) ADDITIONAL CORE REQWIRu
R 43 01~6 (HEX) ARITH/FUNC SUCAL WD CNT
~ 44 06~8 (HEX) FI/O. 110 SOCAL WU CNT
K 4~ U~A~ IH~X) uISK rIIU SOtAL wu tNT
K 4~ U~(4 IH~AJ wu~ UNU~~D bY CUR~ LUAu
CALL TRANSFE~ V~CTOR

G 141D
F 1355
E 12F1
D 128D
DATSW 181A SOCAL 1
W 162F LOCAL
V 15CB LOCAL
U 16F7 LOCAL
T 15CB LOCAL
BADCD 1567 LOCAL
NEWPG 162F LOCAL
FINAL 1693 LOCAL

LIBF TRANSFER VECTOR
HOLTS lDE9 SOCAL 2
EADDX 17Bl SOCAL 1
XDD 18AO soeAL 1
FARe 187E SOCAL 1
XMD lS3C SOCAL 1
ELDX 10e6
NO~M 1452
HOLEZ lD80 soeAL 2
EBCTB 1D7D soeAL 2
GETAD lD34 soeAL 2
IFIX 1426
ESBR 1806 soeAL
EADD 17AB SOCAL
EDIV 1752 SOCAL
E~PY 1724 soeAL
EDVR 170C SOCAL
FLOAT 10FC
SUBSC lODE
ESTO 10B4
ELD 10CA
PRNTZ lC76 SOCAL 2
CARDl 18CC SOCAL 2
WRTYZ 1890 SOCAL 2
SFIO 1807 SOCAL 2
SDFIO 1763 SOCAl 3

SYSTEM SU8ROUTI~ES
ILS04 00C4
ILS02 00B3
ILS01 lDFO
ILSOO 1EOB
FLIPR 14A6

104B (HEX) IS THE EXECUTION ADDR

BADe/)

master card;
one in 8.

D. Update disk
for last
master

E. Print totals
for last
master

F. Clear totals
for last
master

G. GET data from
master card
just read

bad

A. Initialize

B. Read a
card

card C. Check the

labor card;
4 out of 8.

L. GET data from
labor card
just read

M. Calculations

N. Add to job
totals

o. Print detail
line

card code

r------L.~ MOI/E

H. Read disk
record for
new master

BLOck'D
POWN
HE-Re!

material card;
3 out of 8.

P .. GET data from
material card
just read

Q. Calculations

R. Add to job
totals

s. Print detail
line

FINAL

Section

LOCALs
ARE.

CIRCLED

adjustment card;
UNUSUAL

90

Subsections Page

40 I 20 07

Section Subsections Page

90 40 I 20 08

Step 4

In step 3, we have prevented overlays from oc
curring between disk READs/WRITEs. The next
logical step is to eliminate overlays altogether, or,
if that is impossible, limit overlays to LOCALs or
SOCALs that are infrequently called.

Further study of the flowchart reveals that a
master card is somewhat exceptional, even though
every eighth card or so is a master card. Adding D,
E, F, and G to the LOCAL list, we again execute
and find that the program now runs even faster than
before, with disk arm movement only when a master
card is encountered. The load map shows that
SOCALs are no longer required.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

II XEQ CUST L
*LOCALCOS T, F I'J~AL, NEWPG, ~ADCD, T 'u, v, W ,I) ,!;, F ,G
*FILES(1,FILEi~)
FILES ALLOCATION

1 01A3 0001 7061 FILEN
22 UuJU UU01 7061 OlA7

STORAGE ALLOCATIOJ~
R 41 OOUA (HEX) WDS UNUSED BY CORE LOAD
CALL TRA~SFER VECTOR

DATSW 1AEE
G 1!;33 LOCAL
F 1DCF LOCAL
E 1DCF LOCAL
D 1EFB LOCAL
W 1E97 LOCAL
V 1E33 LOCAL
U 1F5F LOCAL
T 1E33 LOCAL
BADCD 1DCF LOCAL
NEWPG 1E97 LOCAL
FINAL 1EFB LOCAL

LIBF TRANSFER VECTOR
HOLTB 1CC9
EADDX lA85
XDD 1C4C
FARC 1C2A
XMD 1BE8
ELDX 1998
NORM 1tiBE
HOLEZ 1688
EBCTB 1685
GETAD 1B3C
IFIX 1610
ESBR lADA
EADD 1A7F
EDIV 1A26
EI~PY 19F8
EDVR 19EO
FLOAT 19CE
SUBSC 19BO
ESTO 1986
ELD 199C
PRNTZ 18C4
CA~DZ l81A
wRTYZ 17DE
SFIO 1455
SDFIO ll5F

SYSTEM SUBROUTINES
ILS04 00C4
ILS02 0063
ILSOl lF6C
ILSOO lF87
FLIPR 1DOE

104B (HEX) IS THE EXECUTION ADDR

master card;
one in 8.

H. Read disk
record for
new master

bad

A. Initialize

B. Read a
card

card C. Check the

labor card;
4 out of 8.

L. GET data from
labor card
just read

M. Calculations

N. Add to job
totals

O. Print detail
line

BLOCK 0
HAS 8£E/II
MOVE/)
OOWN
HERE

card code

material card;
3 out of 8.

P. GET data from
material card
just read

Q. Calculations

R. Add to job
totals

S. Print detail
line

Section

LOCALs
ARE.

CIRCLED

adjustment card;
UNUSUAL

90

Subsections Page

40 I 20 09

Section Subsections Page

90 40 I, 20 10

Discussion of Case II

Here, as in Case I, we take a similar series of
common-sense steps to improve performance:

1. Make the exception subroutines LOCAL.

2. If that still requires SOCALs, consider sep
arating the program into LINKs. In this case, this
approach did not seem to be too effective.

3. Since SOCALs seem unavoidable, we try to
rearrange our program steps to reduce their effect.

Case III

Here you have a technically oriented job, with a
great deal of iterative or trial-and-error computa
tion and very little input/output. The program reads

Section Subsections Page

90 40 I 30 01

a deck of ten cards, computes for quite some time,
then prints a page of answers. On the basis of a
similar program, you estimate that the computations
should take about 15 minutes.

Section Subsections Page

90 40 I 30 02

step 1

Attempting to execute this program, TECH, for the
first time, we are informed that it exceeds core
storage by 2AO or 528 words.

•
•
•
•
•

II XEQ TECH L
*FILES(l.FILENI
FILES ALLOCATION

1 01A3 0001 7061 FILEd
22 OOOU 0001 7061 01A7

STORAGE ALLOCATION
R 40 068C (HEXI ADDITIONAL CORE REQUIRO
R 43 01C4 (HEXI ARITH/FUNC SOCAL wD CNT
R 44 06E8 (HEXI FI/O. 110 SOCAL W~ CNT
R 45 02A2 (HEXI DISK FIIO SOCAL WD CNT
R 4U 02AO (HEXI ADDITIONAL CORE REQUIRD
R 1& TECH LOADING HAS BEEN TERMINATED

1111_ .. 3111_
N 3111_
P --Q --X lill_
Y 3111_
Z 1111_

step 2

Noting that the program may be split into three
separate programs or LINKs, we make some minor
modifications and obtain:

• INPUT, made up of the first two blocks, A
andB

•
•
•
•

II XEQ TECH1 L
FILES ALLOCATION

1 OOUO 0001 7061 01A7
22 0001 0001 7061 01A7

STORAGE ALLOCATION
R 40 047A (HEX. ADDITIONAL CORE REQUIRD
R 43 01C4 (HEX' ARITH/FUNC SOCAL wD CNT
R 44 0514 (HEX' FI/O. 110 SOCAL WD CNT
R 45 02A2 (HEX. DISK FIIO SOCAL WD C~T
R 40 008E (HEX. ADDITIONAL CORE REQUIRD
R 18 TECH1 LOADING HAS BEEN TERMINATED

Section Subsections Page

90 40 I 30 03

• j\NSWR, the printing of the results, formerly
block K

• TEem, the main program
Executing, we find that INPUT and ANSWR fit with
room to spare, but TECH1 is still too large; how
ever, it now exceeds core by only BE or 142 words.

_of", --
L 1011_
M 3011_
N
P

3011_ --
Q --X 1011_
Y 3011_

MAKE THIS
... LINK..

CALLED IWSWR

Section Subsections Page

90 40 I 30 04

Step 3

Reexecuting TECH1 with all eight subroutines as
LOCALs (L, M, N, P, Q, X, Y, Z), we learn from
the load map that this strategy not only gets the
program into core storage, but eliminates the need
for SOCALs. It runs quite slowly, however, and

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

II XEQ TECH1 l 2
*FIlES(1.FI1..ENI
*lOCAlTECH1.l.M.N,P.Q.X,Y,l
FILES AllOCATION

1 01A3 0001 7061 FILEN
22 0000 0001 7061 01A7

STORAGE AllOCATION
R 41 0132 (HEX) WDS UNUSED BY CORE lOAD
CAll TRANSFER VECTOR

l lD4D lOCAL
Y 1E15 lOCAL
X lD4D LOCAL
Q 1£79 LOCAL
P lE79 LOCAL
N lE15 LOCAL
M lE15 LOCAL
L lD4D LOCAL

LIBF TRANSFER VECTOR
EADDX lAA3
XDD lC12
FARC lBFO
XMD lBAE
ELDX 19B6
NORM lB84
EBCTB lB81
GETAD lB38
IFIX lBoe
ESBR lAFA
EADD lA9D
EDIV lA44
EMPY lA16
EDVR 19FE
FLOAT 19Ee
SUBSC 19CE
ESTO 19A4
ELD 19BA
WRTYl 1964
SFIO 15DB
SDFIO 12E5

SYSTEM SUBROUTINES
lLS04 00C4
ILS02 00B3
FLIPR lcac

110A(HEX) IS TH~ EXECUTION ADDR

takes nearly 60 minutes to go to completion, com
pared with the 15 minutes we expected. The sound
of the disk arm moving gives us a clue to what is
wrong: we have caused an overlay to be placed
between the disk READ/WRITE commands. In this
case the LOCAL subroutines L, P, and Q are the
culprits.

;£NPifT

I. Type message:
"STEP NUMBER n"

If not complete

A. Read input cards

B. Initialize

C. Compute:
Call L-~
Call M-*
Call N-*

D. Write disk
record

E. Compute:
Call L--If-
Call P-:If
Call Q-*

F. Write disk
record

G. Read disk

H. Compute
Call X-*
Call y-*
Call Z-7f-

Sizes of the
Subroutines used:

"ih 100 words
-;toM 300 words

*N 300 words

*P 400 words
~Q 400 words
7fX 100 words
*y 300 words
:*z 100 words

*MAK£
1"1-1£5£

LOCAL

ANSWR

J. Wrap-up
computations

K. Print results,
EXIT

Section Subsections Page

90 40 I 30 05

Section Subsections Page

90 40 I 30 06

Step 4

Leaving L, P, and Q off the LOCAL card, we again
execute TEC HI, but find that it runs even more
slowly, since we now need SOCAL level 2 to fit into
core storage.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

II XEO TECHl L 2
*LOCALTECHl,M,N,X,y,Z
*FILES(l,FILEN)
FILES ALLOCATION

1 01A3 0001 7061 FILEN
22 0000 0001 7061 01A7

STORAGE ALLOCATION
R 40 OlDC (HEX) ADDITIONAL CORE REQUIRD
R 43 01C4 (HEX) ARITH/FUNC SOCAL ~D CNT
R 44 J514 (HEX) FIIO, 110 SOCAL WD CNT
R 45 02A2 (HEX) DISK FI/O SOCAL WD CNT
R 41 0274 (HEX) WDS UNUSED ~y CORE LOAU
CALL TRANSFER VECTOR

L 1607
P 15A3
Q 1413
Z 1745 LOCAL
Y 1800 LOCAL
X 1745 LOCAL
N 1800 LOCAL
M l~OD LOCAL

LIBF TRANSF'ER VECTOR
EADDX 18C5 SOCAL 1
XDD 1992 SOCAL 1
FARC 1970 SOCAL 1
XMD 192E SOCAL 1
ELDX 124C
NORM 163C
EBCTS lD29 SOCAL 2
GETAD lCEO SOCAL 2
IFIX 1610
ESBR 191A SOCAL
EADD 18BF SOCAL
EDIV 1866 SOCAL
EMPY 1838 SOCAL
EDVR 1820 SOCAL
FLOAT 1282
SUBSC 1264
E5-TO 123A
ELD 1250
WRTYZ 1CA4 SOCAL 2
SFIO 191B SOCAL 2
SDFIO 18C7 SOCAL 3

SYSTEM SUBROUTINES
ILS04 00C4
ILS02 00B3
FLIPR 1684

llDA (HEX) IS THE EXECUTION ADDR

At this point, you have a choice: accept the
program as a one-hour job, or work on it further
to speed it up. Since it is used quite often, you
decide to give it one last check.

INPUt

I. Type message:
"STEP NUMBER n"

If not complete

A. Read input cards

B. Initialize

F. Write disk
record

G. Read disk

H. Compute
Call X-~
Call y-*
Call Z_~

Sizes of the
Subroutines used:

L 100 words

*" M 300 words

*' N 300 words
400 words

Q 400 words

"* X 100 words

*'"
y 300 words

*Z 100 words

*MAK£
TI-IEoSE
L()c,.QL

ANSW!f

J. Wrap-up
computations

K. Print results,
EXIT

Section Subsections Page

90 40 I 30 07

Section Subsections Page

90 40 I 30 08

Step 5

After some study, we notice that the typewritten
message, block I, is the only non-disk input/output
in the entire program. It looks innocent enough, but
because of it, the entire Format Interpreter (SFIO)
is required, plus the Typewriter routine (WRTYZ)
and the typewriter code conversion routine (EBCTB).
The total size of this package may be determined
from the previous R44 message -- 514 (hexadecimal)
or 1300 words.

• II XEQ TECH2 L
*FILES(l,FILEN)

• FILES ALLOCATION
1 01A3 0001 7061 FILEN

22 aoua 0001 7061 01A7

• STORAGE ALLOCATION
R 41 00F2 (HEX) vlDS UI'WSED flY CORE LOAl)
CALL TRANSFER VECTOR

• N lCA3
M HH7
L lA4B

• p 19E7
Q 1857
l 16C7

• Y 1663
X 1537

L I BF TRAI ... SFER VECTOR

• EADDX lD63
XDD lE88
FARC lE66

• XMD 1E24
ELDX 1DCA
NORM lDFA

• ESBR lDE6
ESTO lDB8
EADD 1D5D

• EDIV 1D04
EMPY lCD6
EDVR lCBE

• FLOAT lCAC
SUBSC 14BE
SDFIO 12CA

• SYSTEM SU~ROUTINES
ILS04 00C4
ILS02 00B3

• llD7 (HEX) IS THE EXECUTION ADDR

Removing that message -- and the *IOCS
(TYPEWRITER) Card! -- we recompile the program
(calling it TECH2) and find, on execution, that it
runs with no SOCALs or LOCALs.

It now executes to completion in 15 minutes, as
we hoped, and the disk arm movement is reduced to
an occasional "click" as it moves from one cylinder
to the next in the data file area.

If a typewritten message is really needed, consider
using the TYPER routine of CSP - it is quite small
and does not use SFIO.

INPUT

IJROP T#/.5
PA~T OF THE
P/?OG-I<AM ./
t/SE TYPE/(
CSP !?OUTINE
IF MESSAGE /S
REALLY AlEEOEJ)

If not complete

A. Read input cards

B. Initialize

C. Compute:
Call L
Call M
Call N

D. Write disk
record

E. Compute:
Call L
Call P
CallQ

F. Write disk
record

G. Read disk

H. Compute
Call X
CallY
Call Z

J. Wrap-up
computations

Sizes of the
Subroutines used:

L 100 words
M 300 words
N
P
Q

X
Y
Z

300 words
400 words
400 words
100 words
300 words
100 words

NO
LOCALS

Re.OUIRe.D/

AN5W~

K. Print results,
EXIT

Section Subsections Page

90 40 I 30 09

Section Subsections Page

90 40 I 30 10

Discussion of Case III

This type program, although quite different from
the previous two cases, is analyzed in much the
same way:

1. The main program is split into three LINKs:
Input, Processing, and Output.

SOCAL's, LOCAL'sarwt/Oil LINK's are used

Overlays Used
No <>-lays Continuously, Overlays Used
• SOCAL's Limited to But Not in in between
• LOCAL's SeIdcJm..UsKt between Disk DiskR-uwrite
• LINK's Blocks StatemenIs Statemen1s

No Disk Program Program will
Data will run at run at less
Files some basic Top

"Top~n. ~",but

probably not

enough to be
noticed.

Smalto Program Program will Program will Program will
Medium- will run at run at less run noticeably run slowly;
Size some basic 'Top beIcwv"Top many ann
FilesN..- "Top~'. ~',but ~',but IIIINa'IIeIIIS of
WS (lddle probably not not too much, short distance
End of enough to be since overlay . will be needed.
WSI noticed. _isnottoo

flIr-..,from
datafile_.

Very Program Program will Program will The combination
I..-ge will run at run Id less run slowly, of many ann
Disk some basic than "Top since overlay rnovsnent:s. and
Data "Top~'. ~",but _ispro- long dislances.
Files, probably not portionately will cause this
011 Small enough to be funher-.., type program
Files Deep noticed. from data 1D run con-
insideUA file_. siderabIy beIcwv

"Top~'.

Worst case!

Figure 90. 11.

2. Since all subprograms are called during each
pass, we try to LOCALize only those that do not
appear inside the main disk READ/WRITE loop.

3. With excessive overlays still required, we
~ttack the main program and try to shorten it or
eliminate some of the subroutines it uses.

Case 1

Temporary files.
residing in WS,
are close to
overlay area

Case 2

File is in UA,
but still close
10 overIay_

Case 3

File is in UA,
but far removed
from overlay -

Figure 90. 12.

Average ann

movement
distance

Summary

To recapitulate the lessons learned in the preceding
three case studies, performance depends on five
major factors:

1. The size of the program. When writing any
program, you should anticipate problems with
core storage and performance. Plan pro
grams of reasonable scope, and code them as
a series of LINKs, if at all possible.

2. The subroutines required by the program.
Realize that many seemingly innocent
FORTRAN statements can cause sizable sub
routines to be included in your core load.
Some examples are PAUSE, STOP, FlND,
division, use of the data switches, etc.
FORTRAN control cards can have a similar
effect -- for example, unnecessary *IOCS
cards, the TRAC E, etc.

3. The way the program is structured. When
flowcharting and coding your programs,
always keep in mind the location of the disk
arm, so that you do not invite excessive arm
movement between the overlay area and the
data area. Place as little coding as possible
between disk READ/WRITE loops so that the
chance of an intervening overlay is reduced.
Figure 90.11 shows the various combinations
of data files and overlays.

Note that the location of the overlay has a
great effect on performance. If you must
move the disk arm from one area to the other,
you can at least try to minimize the number
of times it is required (or reduce the distance
involved, by making data files compact).

4. The overlay scheme used. If your program
is of such magnitude that some overlaying is
required, you should have a good feel for
how each works and how each can affect per
formance. Figure 90.11 shows that there is
no differentiation made between LOCALs,
SOCALs, and LINKs -- they are all overlays.

Note also that the number of times an over
lay is required is not as important as the disk

Section Subsections Page

90 40 I 40 01

arm movement that may be necessary to get
it. For this reason you should take particular
care to avoid causing an overlay to be placed
in between disk READ/WRITE statements.

LOCALs, because they are selected by
the programmer, will often yield better per
formance than SOCALs, which are chosen by
the CLB according to predetermined rules.
However, if you select LOCALs without
regard to their effect on performance, it is
possible that they can slow down execution
time even more than SOCALs.

5. The size and location of the data file. Since
you are concerned with minimizing disk arm
movement time, you should try to shorten
the distance involved.

The overlay area is always at the end of the
UA or at the beginning of WS, whichever way you
prefer to look at it. The data files may be either:

• In the UA or FX, if you have put them
there with the *STOREDATA card

• At the end of UA (beginning of WS), if you
have not used a *STOREDA TA or *FILES
card

If you have a temporary file, in WS, your arm
movement times will be minimized, since the
files and the overlays are as close as they can
be. If your file is in the UA, however, the
picture may be quite different, depending on
how "deep" it lies in the UA. If a DUMPLET
shows that there is a great deal of distance
between the file and the end of UA, you should
consider moving the file. Figure 90.12 shows
three possible situations.

The key to gaining good program performance is
knowledge:

• Knowledge of the way in which the three
overlays work

• Knowledge of the basic workflow of your
program

INDEX

AlDEC: 70.30.00,70.40.10
Accidents: lS.10.60, lS.20.01, lS.20.10, lS.20.30, lS.20.S0, 15.20.60,

lS.20.70
Accounting controls: 10.30.00,20.01.00,20.10.01,20.10.10,20.10.20,

2S.40.40,40.20.00
Accounts payable: 10.40.S0
Accounts receivable: 10.40.20
Accumulator: 30.20.00, 4S.0S.30
Accuracy: 70.10.01,70.10.20
ADD: 70.10.30
Addend: 70.10.30
Addition area: 8S.10.10
Address calculation sorting: 7S.30.10
Alphabetic fields, comparing: 70.40.20
Alternating exchange sort: 7S.40.00
Arithmetic: 70.10.01

Binary: 70.10.20
Constant sUbscripts: 70.50.10
Decimal: 70.10.20,70.10.30
Extended precision: 70.10.20
Fractions: 70.10.20
Integer: 70.10.10
Interaction with I/O: 70.30.00
Real: 70.10.20
Real fixed point: 70.10.20
Real floating point: 70.10.20
Standard precision: 70.10.20
Variable precision: 70.10.20

Arithmetic statement function: 2S.40.40
Assembler: SO.01.00, 60.10.20
Assembler Language: 20.60.01
Audit: 20.10.10

Control: 20.30.10
Trail: 20.40.70

Auditors: 20.10.10
Augend: 70.10.30
Backup: lS.10.60, lS.20.60, 2S.40.40
Batch size: 20.10.10
Batch controls: 20.10.20,20.40.70
Billing: 10.40.10
Blocking factor (see "packing factor")
Bugs (see "errors")
CALL LINK: 65.10.S0
CALL PDUMP: 30.20.00
CALL TSTOP: 30.20.00
CALL TSTRT: 30.20.00
Cancellation: 20.10.20
Card data files

Backup: lS.IO.60
Changes to: lS.10.30
Size: lS.IO.S0

Card: IS.10.01
Design: 20.30.10
Formats: 40.30.00
Layout: 10.20.00
Layout form: 20.30.10
Paths: 4S.20.00
Punches: 4S.20.00
Punching: 30.01.00
Punching standards: 30.01.00
Readers: 4S.20.00
Verification: 20.10.10
Zone punches: 70.20.10,70.40.10,70.40.20

CARDZ: 6S.10.30
Cartridge identification: SS.10.00
Cathode ray tube: 4S.3S.00
Check, reasonableness: lS.20.40
Check register: 2S.40.60
Check writing: 2S.40.S0
COGO: 20.60.01
Collating sequence: 7S.10.00

Section Subsections

I

Commercial Subroutine Package: 20.30.10,20.60.01,30.20.00,30.30.00,
70.10.20,70.10.30,70.20.01,70.20.10,
70.20.20, 70.30.00, 70.40.10, 70.40.20,
70.60.10,80.60.00,90.20.30

COMMON: 6S.10.S0
Comparing fields: 70.10.30
Components, nonstandard: 4S.4S.00
Computed GO TO: 30.20.00
Configurator: 4S.SS.00
Console

Debugging: 30.20.00
Display lamps: 4S.0S.30
Keyboard: lS.IOAO, 4S.05.10, 70.20.10
Keyboard input: 2S.40.1O

Continuous Systems Modeling Program: 20.60.01
Contour map plotting: 20.60.01
Control

Field, major: 7S.10.00
Field, minor: 7S.10.00
Key: 7S.10.00, 8S.10.30
Panel, punched card: 10.20.00
Tape: 10.30.00
Word: 7S.01.00

Controls (see "accounting controls")
Conversion: 40.1O~00, 40.20.00

Methods: 40.30.00
Copy a data file: 60.30.20
Copy a data file onto another disk: 60.30.30
Copy an entire disk onto another disk: 60.30.30
Copy a program onto another disk: 60.30.30
COpy program: 60.30.30
Core image format (see "disk data formats", "disk core image")
Core image buffer: SS.10.00, 60.10.20
Core load builder: 60.30.01, 6S.IO.30, 90.10.10, 90.20:00, 90.20.20,

90.30.40
Core storage

Dump: 30.20.00
Factors affecting:8S.1 0.30
Logical layout: 6S.10.00
Management: SO.01.00, 6S.01.00
Map: 6S.10.30
Reducing requirements: 90.20.30
Saving: 70.S0.00

Crossfooting: 20.10.20
CRT (see "cathode ray tube")
CSP (see "Commercial Subroutine Package")
Cutover: 40.30.00

One-time: 40.30.00
Cycle stealing: 70.20.01
Cylinder: 4S.IO.00, 80.10.00
Cylinder zero: 60.10.10,60.20.20
DASD (see "direct access storage device")
Data: lS.10.01

Area on disk: 80.20.00
Live: 30.01.00
Packing: 25.40.10
Switches: lS.10.40, 2S.40.40, 4S.0S.20, 6S.10.30
Types: 15.20.10

DATA statement: 70.10.30,70.20.20,70.40.20, 70.S0.1O, 70.50.20
Data Presentation System: 20.60.01
DCI (see "disk core image")
Debugging (see "programs, testing of')
Debugging, console: 30.20.00
DECAl: 70.30.00,70.40.10
Decimal arithmetic: 70.10.20, 70.10.30
Decision tables: 25.10.00
DEFINE FILE: 80.30.10,80.30.20,80.40.10,80.70.10, 8S.10.30
*DEFINE VOID ASSEMBLER: 60.20.20
*DEFINE VOID FORTRAN: 60.20.20
DELETE: 60.30.20
Desk checking: 30.40.00

Page

01

Section Subsections Page

I 02

Direct access storage device: 15.10.10
Disk (see "disk data file", "disk cartridge", etc.)
Disk arm movement time: 45.10.00
Disk cartridge: 15.20.20,45.10.00, 80.10.00

Checking of ID numbers: 55.30.00
Format of material: 60.30.01
ID numbers: 50.01.00
Number required: 50.01.00
Scratch: 50.01.00
Space on: 60.20.10

Disk core image: 60.30.01,80.30.20
Disk core image: format (see "disk data formats")
Disk data file: 15.10.01,45.10.00

Adding items: 85.10.10,85.10.20
Addition area: 85.10.10
Backup: 15.10.60,15.20.60
Changes: 15.10.30
Design: 20.30.10
Duplicate copies: 15.20.10
Hazards: 15.20.20
Inquiry: 15.10.40
Intentional modification: 15.20.20
Jobs involving more than one: 15.10.20
Organization: 85.10.01,85.10.20
Organization, choosing: 85.30.10
Organization, direct: 85.10.30
Organization, indexed sequential: 20.30.10,75.20.10,85.10.20
Organization, partitioned direct: 85.10.30
Organization, pure sequential: 85.10.10
Organization, random: 20.30.10,75.20.10,85.10.30
Organization, searching a pure sequential: 85.10.10
Organization, sequential: 75.20.10
Processing: 85.20.00
Processing, random: 85.20.00
Processing, sequential: 85.20.00
Reorganization: 15.10.30,85.10.10
Safeguarding: 15.20.01
Setup: 80.70.10
Size: 15.10.50
Space required: 80.40.00

Disk data formats: 60.30.01, 80.30(20
Conversion: 60.30.20

Disk drives
Logical: 50.01.00
Physical: 50.01.00

Disk file (see "disk data file")
Disk management: 50.01.00
Disk Monitor System: 50.01.00

Version I: 70.20.10
Version II: 65.10.00,70.20.10

Disk storage (see "disk data file", "disk cartridge", etc.)
Disk system format: 60.30.01
Disk Utility Program: 50.01.00,60.30.01
DIV: 70.10.30
Dividend: 70.10.30
Divisor: 70.10.30
Documentation: 10.01.00,15.20.70

Current system: 20.01.00
Old system: 40.20.00
Standards: 25.10.00

Document controls: 20.10.20
Document register: 20.10.20
DSF (see "disk system format")
Dump: 60.30.20
Dump a data file and reload: 60.30.20
Dumplet: 90.30.40
*DUMPLET: 60.20.10
DUP (see "Disk Utility Program")
Duplicate files: 15.10.60
EDIT: 25.40.50,70.30.00, 70.40.10, 70.40.20
Editing: 25.40.10

Input cards: 85.30.10
EDIT mask: 70.40.20, 70.50.10
Employee numbers: 85.10.30

EQUIVALENCE statement: 70.50.10
Error recovery sheet: 15.20.70
Errors: 15.20.20, 15.20.40, 15.20.50, 15.20.60, 15.20.70, 30.10.00,

40.30.00
Card punch: 30.01.00
Program logic: 30.01.00
Programmer clerical: 30.01.00
Programmer procedural: 30.01.00

Exchanging sorting: 75.30.10
Execution time (see "running time, factors affecting")
Executive: 40.30.00
Exponentiation: 70.50.20
Extended precision: 70.10.20,80.50.00,80.60.00
Fields: 10.10.00,80.20.00
Field size: 20.30.10
File maintenance: 20.30.10 (see also "disk data file, organization")
File organization: 20.30.10
FILES: 80.20.00, 80.30.20, 80.70.10, 90.30.30
FILL: 70.10.30,70.40.20
FIND: 65.10.30,70.50.20,90.20.30
Fixed area: 60.10.50,60.20.20,80.30.20,80.70.10
Fixed Location Equivalence Table: 60.10.50,80.30.20
Fixed point arithmetic: 70.10.20
FLET (see "Fixed Location Equivalence Table")
Flipper: 65.10.20,65.10.30
FLOAT: 70.40.10
Floating boundary: 60.10.40
Floating point arithmetic: 70.10.20
Flowcharts: 10.10.00,20.01.00,25.10.00,25.30.20,30.40.00
Format, AI: 70.40.10
Format, A2: 70.40.10
Formats, core storage required: 70.50.10
Forms

Design: 20.20.10,20.20.20
Preprinted: 45.40.00

FORTRAN: 20.60.01
Compiler: 50.01.00,60.10.20

Fractions: 70.10.20
FUNCTION, arithmetic statement: 25.40.40
FX (see "fixed area")
GET: 70.30.00,70.40.10
GO TO, computed: 30.20.00
Graphic output: 45.30.00,45.35.00
Half-adjust: 25.40.40,70.40.10
Hash total: 20.10.10,20.40.70
Hazards (see "disk data file, hazards")
Hexadecimal numbers: 30.20.00,45.05.30
High/low/equal compare: 70.40.20
IBM System/360: 45.50.00
IBM systems area: 60.10.20,60.20.20
ICOMP: 70.10.30
IFIX: 70.40.10
IF statement: 30.20.00
ILSOO: 65.10.40
ILS01: 65.10.40
ILS02: 65.10.40
ILS03: 65.10.40
ILS04: 65.10.40
Index: 25.40.20
Index to a disk data file: 85.10.01, 85.10.20

Maintaining: 85.10.20
Indexed sequential (see "disk data file, organization, indexed sequential")
Input data, errors: 15.20.70
Input stream: 55.20.00
Inquiry: 15.10.40
Insertion: 75.30.10
Inside controls: 20.10.20
Installation: 05.01.00, 05.30.00
Integer arithmetic: 70.10.10
Integers: 70.10.10,80.60.00

One-word: 80.50.00, 80.60.00
Interchangeable chain cartridge: 20.20.10
Internal sort: 75.10.00
Interrupt: 70.20.01

Inventory: 10.40.40, 85.10.20
Involution: 70.50.20
*IOCS card: 65.10.30,70.20.20,70.50.20,90.30.40
IOND: 70.20.10
JOB: 55.10.00
Job management: 50.01.00
Job-to-job transition: 50.01.00
KEYBD: 70.20.10, 70.20.20
Keyboard, console: 45.05.10
Keypunching (see "cards, punching")
Key-tag pair: 75.10.00
Key verification: 20.10.10
Language selection: 20.60.01
Large real numbers: 70.10.20
LET (see "Location Equivalence Table")
Light pen: 45.35.00
Linear Programming: 20.60.01
LINK: 65.10.60,70.20.20,90.20.20,90.30.40
LINK area: 65.10.50
Load on call: 65.10.40
LOCAL: 65.10.20,65.10.30,70.50.20,85.10.10,90.20.20,90.20.30,

90.30.40
LOCAL area: 65.10.40
Location Equivalence Table: 50.01.00,60.10.40,80.30.20
Magnitude: 70.10.20
Main line: 25.30.20
Manpower requirements: 40.30.00
Master cartridge: 50.01.00
Matching: 20.10.20
Match/no match: 70.40.20
Mechanism Design System: 20.60.01
Merge order: 75.10.00
Merging: 75.10.00, 75.30.10
Minuend: 70.10.30
Modular programs: 15.20.50, 25.30.20
Monitor control record: 55.10.00
MOVE: 25.40.50,70.40.20
MPY: 70.10.30
NCOMP: 70.40.20
Negative balance: 20.10.20
Next record number indicator: 80.30.10,80.40.10
Nonstandard components: 45.45.00
Non-systems cartridge: 50.01.00
NSIGN: 70.10.30
Numbers

Binary: 45.05.30
Hexadecimal: 30.20.00,45.05.30

Numerical Surface Techniques: 20.60.01
NZONE: 70.40.20
Object code: 70.50.01
Operation manual: 15.20.70
Optical reader: 45.40.00
Optical System Design: 20.60.01
Order entry: 45.40.00
Outside controls: 20.10.20
Overlap: 70.20.01
Overlays: 65.10.30
PACK: 70.30.00,70.40.10
Packing factor: 80.40.00
Paper tape punch: 45.25.00
Paper tape reader: 45.25.00
PAPTZ: 65.10.30
Parallel operations: 40.30.00
Partitioned direct (see "disk data file, organization, partitioned direct")
Pass: 75.10.00
Patches: 30.40.00
PAUSE: 30.20.00,45.05.30,65.10.30,70.20.10
Payroll: 10.40.60, 15.10.20, 15.20.10, 15.20.50,55.30.00,80.60.00,

85.10.30,85.30.10
PDUMP: 30.20.00
Performance (see "running time, factors affecting")
Personnel: 05.01.00
Petroleum Engineering and Exploration: 20.60.01
PID (see "Program Information Department")

Pigeonhole sorting: 75.30.10
Pilot operation: 40.30.00
Planning: 05.10.00

For conversion: 40.10.00
For testing: 30.01.00

Plotter: 45.30.00
PNCHZ: 65.10.30
Precision: 70.10.01
Preinstallation: 05.01.00
PRINT: 70.20.10,70.20.20
Printer, console: 45.05.10
Printers: 45.15.00
Priority interrupt system: 70.20.01
PRNTZ: 65.10.30
PRNZ: 65.10.30
Processing, order: 15.10.10
Programmers, experience: 15.10.90
Program

Area: 65.10.50
Change authorization: 25.20.00
Changes: 25.10.00,25.30.20
Comments: 25.40.10
Modular: 15.20.50,25.30.20
Patches: 30.40.00
Testing: 30.01.00, 30.10.00
Type I: 20.60.01
Type II: 20.60.01
Type III: 20.60.01
Type IV: 20.60.01

Section

Program Information Department: 50.01.00
Program informatiom manual: 35.10.10
Programming

Aids: 25.30.10
Modular: 25.30.20
Standards: 25.10.00

Project Control System: 20.60.01
PUNCH: 70.20.10,70.20.20
Punched card systems: 10.20.00
Punching cards (see "cards, punching")
PUT: 25.40.50,70.10.20,70.30.00, 70.40.10

Subsections

I

Random file organization (see "disk data file, organization, random")
READ: 70.20.10, 70.20.20
Read/write heads: 45.10.00, 80.10.00
READZ: 65.10.30
Real arithmetic: 70.10.20
Real numbers: 80.60.00

Output of large: 70.10.20
Multiplication of large: 70.10.20

Record
Layout: 30.40.00
Length: 80.40.00,80.40.10
Length, computing: 80.50.00
Length, shortening: 80.60.00
Number: 85.10.30
Size: 15.10.70

Records: 80.20.00
Recovery: 15.20.60
Replacement selection: 75.30.10
Resident monitor: 65.10.10
Rotational delay: 45.10.00
Rounding: 70.10.20
Route accounting: 20.60.01
Route slip: 20.10.20
Run book: 15.20.70
Running time, factors affecting: 80.01.00,80.40.00,85.10.20,85.10.30
SAC (see "storage access channel")
Sales analysis: 10.40.30
Sample documents: 10.10.00
Satellite cartridge: 50.01.00
SCA (see "synchronous communications adapter")
Scientific Subroutine Package: 20.60.01
Scratch disk: 50.01.00
SDFIO: 65.10.30
SDFND: 65.10.30,70.50.20

Page

03

Section Subsections Page

I 04

Searching an index: 85.10.10
Sectors: 45.10.00,80.10.00,80.40.00

Utilization: 80.40.00
Seek time: 45.10.00
Selective sorting: 75.30.10
Selective tracing: 30.20.00
Sequential organization (see "disk data file, organization, sequential")
Serial numbering: 20.10.20
SFIO: 65.10.30
SKIP: 70.20.10,70.20.20
SOCAL: 65.10.10,65.10.20,70.50.20,85.10.10, 90.10.10,90.20.20,

90.20.30, 90.30.40
SOCAL area: 65.10.30
Sorting: 15.10.10,15.10.20,75.01.00,75.10.00,85.30.10

Mechanical: 70.40.20, 75.20.20
1130 flowchart: 75.40.00

Sort phases: 75.10.00
SQRT: 70.50.20
Stabilization time: 45.10.00
STACK: 70.20.10
Stacker select: 25.40.30
Standard precision: 80.50.00, 80.60.00

Arithmetic: 70.10.20
Standards

Documentation: 25.10.00
Error handling: 25.10.00
FORTRAN labels: 25.10.00
Programming: 25.10.00

Statistical System: 20.60.01
Stock status: 15.10.40
STOP: 45.05.30,70.20.10
Storage access channel: 45.45.00
Storage costs: 15.10.80
*STORE: 60.30.20
*STORECI: 65.10.40
Store core image: 60.30.20
*STOREDATA: 80.30.20,80.70.10
Store data core image: 60.30.20
Strategy, testing: 30.10.00
STRESS: 20.60.01
String: 75.10.00
SUB: 70.10.30
Subjob: 55.10.00
Subprograms, subtypes of: 65.10.10
Subroutine library: 50.01.00
Subroutines: 25.30.20, 70.50.01

Devices not on your system: 60.20.20
Logarithmic: 60.20.20
Long argument lessons: 70.50.10
Trigonometric: 60.20.20
Unlikely to be used: 60.20.20

Subtrahend: 70.10.30
SUFIO: 65.10.30
Supervisor program: 50.01.00
Survey: 10.10.00
Survey questionnaire

Accounts payable: 10.40.50
Accounts receivable: 10.40.20
Billing: 10.40.10
Inventory: 10.40.40
Payroll: 10.40.60
Sales analysis: 10.40.30

Synchronous communications adapter: 45.50.00
System overlay: 65.10.30
Systems cartridge: 50.01.00
Systems testing: 30.10.00
Table lookup: 25.10.00
Tag: 75.10.00

Tag sort: 75.10.00,75.30.20
Teleprocessing: (see "synchronous communications adapter")
Temporary indicator: 55.10.00
Test decks: 30.10.00
Testing: 30.10.00,30.20.00,30.30.00,30.40.00
Throughput (see "running time, factors affecting")
Time

Rotational delay: 45.10.00
Stabilization: 45.10.00
Stamps: 20.10.20

Timing: 70.60.10
Trace: 30.20.00,30.30.00,45.05.20,70.10.20,70.20.20,70.50.20
Transfer vector: 65.10.10
Transmittal slip: 20.10.20
TSTOP: 30.20.00
TSTRT: 30.20.00
Type Composition: 20.60.01
TYPER: 70.20.10,70.20.20
TYPEZ: 65.10.30
UA (see "user area")
UDISK: 65.10.30
UNPAC: 70.30.00,70.40.10
Unused area: 65.10.70
User area: 60.10.40,60.20.20,80.30.20,80.70.10
Variable precision arithmetic (see "arithmetic, variable precision")
Variable summary sheet: 25.30.10
Verifier: 20.10.10
WHOLE: 25.40.40,70.10.20
Work Measurement Aids: 20.60.01
Working storage: 60.10.30,60.20.20,80.30.20, 80.70.10
WRTYZ: 65.10.30
WS (see "working storage")
X-punch: 70.40.20
Zero balance: 20.10.20,25.40.40
Zone punch: 20.30.10,70.40.10,70.40.20
lDUMY: 60.20.10
11-punch: 70.20.10,70.40.10,70.40.20
11-zone: 70.40.20
12-punch: 70.40.20
12-zone: 70.40.20
941 report: 25.40.70
1055 Paper Tape Punch: 45.25.00
1130 Configurator: 45.55.00
1131 Central Processing Unit: 90.30.20
1132 Printer: 45.05.10,45.15.00,70.20.10,90.30.20
1134 Paper Tape Reader: 45.25.00
1231 Optical Mark Page Reader: 45.40.00
1403 Printer: 45.05.10,45.15.00,70.20.01,90.30.20
1442 Card Read Punch: 45.20.00,70.20.10, 90.30.20

Model 5 Card Punch: 45.20.00
1627 Plotter: 45.30.00,90.30.20
2250 Display Unit: 45.35.00
2315 Disk Cartridge: 45.10.00, 80.10.00
2501 Card Reader: 45.20.00, 90.30.20

READER'S COMMENT FORM

IBM 1130 Computing System User's Guide C20-1690-0

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

C20-1690-O

YOUR COMMENTS PLEASE •••

Your comments on the other side of this form will help us improve future editions of this pub
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your mM
system should be directed to your IBM representative or the IBM branch office serving your
locality.

fold

.'

..
fold

.. ~ .. .

Attention: Technical Publications

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains, N. Y. 10601

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

..

fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.IOSOI
[USA Only]

[BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

fold

C20-1690-0

TIrn~
®

International Business Machines Corporation
Data Processing Division
112 East Post Road, Whit.e Plains, N. Y. 10601
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

	0001
	0002
	01.00.00.01
	01.00.00.02
	01.00.00.03
	01.00.00.04
	02.00.00.01
	02.00.00.02
	02.00.00.03
	02.00.00.04
	05.00.00.01
	05.01.00.01
	05.10.00.01
	05.10.00.02
	05.20.00.01
	05.20.00.02
	05.20.00.03
	05.30.00.01
	05.30.00.02
	05.30.00.03
	05.30.00.04
	05.30.00.05
	05.30.00.06
	10.00.00.01
	10.01.00.01
	10.10.00.01
	10.10.00.02
	10.20.00.01
	10.30.00.01
	10.40.10.01
	10.40.10.02
	10.40.10.03
	10.40.10.04
	10.40.10.05
	10.40.10.06
	10.40.20.01
	10.40.20.02
	10.40.20.03
	10.40.30.01
	10.40.30.02
	10.40.40.01
	10.40.40.02
	10.40.40.03
	10.40.50.01
	10.40.50.02
	10.40.50.03
	10.40.60.01
	10.40.60.02
	10.40.60.03
	10.40.60.04
	10.40.60.05
	10.50.01.01
	10.50.10.01
	10.50.20.01
	10.50.20.02
	10.50.20.03
	10.50.20.04
	10.50.20.05
	10.50.20.06
	10.50.20.07
	10.50.20.08
	10.50.20.09
	10.50.20.10
	10.50.20.11
	10.50.30.01
	10.50.30.02
	10.50.30.03
	10.50.30.04
	10.50.30.05
	10.50.30.06
	10.50.30.07
	10.50.30.08
	10.50.30.09
	10.50.30.10
	10.50.30.11
	10.50.30.12
	10.50.30.13
	10.50.30.14
	10.50.40.01
	10.50.40.02
	10.50.40.03
	15.00.00.01
	15.01.00.01
	15.01.01.01
	15.10.10.01
	15.10.20.01
	15.10.30.01
	15.10.40.01
	15.10.50.01
	15.10.60.01
	15.10.70.01
	15.10.80.01
	15.10.90.01
	15.20.01.01
	15.20.10.01
	15.20.20.01
	15.20.30.01
	15.20.40.01
	15.20.50.01
	15.20.60.01
	15.20.70.01
	15.20.70.02
	15.20.70.03
	20.00.00.01
	20.01.00.01
	20.10.00.01
	20.10.10.01
	20.10.10.02
	20.10.10.03
	20.10.20.01
	20.10.20.02
	20.10.20.03
	20.10.20.04
	20.10.20.05
	20.10.20.06
	20.10.20.07
	20.20.00.01
	20.20.10.01
	20.20.20.01
	20.20.20.02
	20.20.20.03
	20.30.00.01
	20.30.10.01
	20.30.20.01
	20.30.20.02
	20.40.01.01
	20.40.10.01
	20.40.20.01
	20.40.30.01
	20.40.40.01
	20.40.50.01
	20.40.60.01
	20.40.70.01
	20.40.70.02
	20.50.10.01
	20.50.20.01
	20.50.20.02
	20.50.20.03
	20.50.20.04
	20.50.20.05
	20.50.20.06
	20.50.20.07
	20.50.20.08
	20.50.20.09
	20.50.30.01
	20.50.30.02
	20.50.30.03
	20.50.30.04
	20.50.30.05
	20.50.30.06
	20.50.30.07
	20.50.30.08
	20.50.30.09
	20.50.30.10
	20.50.30.11
	20.50.40.01
	20.50.40.02
	20.50.40.03
	20.50.50.01
	20.50.50.02
	20.50.50.03
	20.50.50.04
	20.50.50.05
	20.50.50.06
	20.50.50.07
	20.50.50.08
	20.50.50.09
	20.50.50.10
	20.60.01.01
	20.60.10.01
	20.60.10.02
	20.60.20.01
	20.60.20.02
	20.60.20.03
	20.60.20.04
	20.60.30.01
	25.00.00.01
	25.01.00.01
	25.10.00.01
	25.20.00.01
	25.20.00.02
	25.30.10.01
	25.30.10.02
	25.30.10.03
	25.30.20.01
	25.30.20.02
	25.30.20.03
	25.40.00.01
	25.40.10.01
	25.40.10.02
	25.40.10.03
	25.40.10.04
	25.40.10.05
	25.40.10.06
	25.40.10.07
	25.40.10.08
	25.40.10.09
	25.40.10.10
	25.40.10.11
	25.40.10.12
	25.40.10.13
	25.40.10.14
	25.40.10.15
	25.40.10.16
	25.40.10.17
	25.40.20.01
	25.40.30.01
	25.40.40.01
	25.40.50.01
	25.40.60.01
	25.40.70.01
	30.00.00.01
	30.01.00.01
	30.10.00.01
	30.20.00.01
	30.20.00.02
	30.30.00.01
	30.40.00.01
	30.40.00.02
	30.40.00.03
	35.00.00.01
	35.01.00.01
	35.10.10.01
	35.10.20.01
	35.20.00.01
	35.20.10.001
	35.20.10.002
	35.20.10.003
	35.20.10.004
	35.20.10.005
	35.20.10.006
	35.20.10.007
	35.20.10.008
	35.20.10.009
	35.20.10.010
	35.20.10.011
	35.20.10.012
	35.20.10.013
	35.20.10.014
	35.20.10.015
	35.20.10.016
	35.20.10.017
	35.20.10.018
	35.20.10.019
	35.20.10.020
	35.20.10.021
	35.20.10.022
	35.20.10.023
	35.20.10.024
	35.20.10.025
	35.20.10.026
	35.20.10.027
	35.20.10.028
	35.20.10.029
	35.20.10.030
	35.20.10.031
	35.20.10.032
	35.20.10.033
	35.20.10.034
	35.20.10.035
	35.20.10.036
	35.20.10.037
	35.20.10.038
	35.20.10.039
	35.20.10.040
	35.20.10.041
	35.20.10.042
	35.20.10.043
	35.20.10.044
	35.20.10.045
	35.20.10.046
	35.20.10.047
	35.20.10.048
	35.20.10.049
	35.20.10.050
	35.20.10.051
	35.20.10.052
	35.20.10.053
	35.20.10.054
	35.20.10.055
	35.20.10.056
	35.20.10.057
	35.20.10.058
	35.20.10.059
	35.20.10.060
	35.20.10.061
	35.20.10.062
	35.20.10.063
	35.20.10.064
	35.20.10.065
	35.20.10.066
	35.20.10.067
	35.20.10.068
	35.20.10.069
	35.20.10.070
	35.20.10.071
	35.20.10.072
	35.20.10.073
	35.20.10.074
	35.20.10.075
	35.20.10.076
	35.20.10.077
	35.20.10.078
	35.20.10.079
	35.20.10.080
	35.20.10.081
	35.20.10.082
	35.20.10.083
	35.20.10.084
	35.20.10.085
	35.20.10.086
	35.20.10.087
	35.20.10.088
	35.20.10.089
	35.20.10.090
	35.20.10.091
	35.20.10.092
	35.20.10.093
	35.20.10.094
	35.20.10.095
	35.20.10.096
	35.20.10.097
	35.20.10.098
	35.20.10.099
	35.20.10.100
	35.20.10.101
	35.20.10.102
	35.20.10.103
	35.20.10.104
	35.20.10.105
	35.20.10.106
	35.20.10.107
	35.20.10.108
	35.20.10.109
	35.20.10.110
	35.20.10.111
	35.20.10.112
	35.20.10.113
	35.20.10.114
	35.20.10.115
	35.20.10.116
	35.20.10.117
	35.20.10.118
	35.20.10.119
	35.20.10.120
	35.20.10.121
	35.20.10.122
	35.20.10.123
	35.20.10.124
	35.20.10.125
	35.20.10.126
	35.20.10.127
	35.20.10.128
	35.20.10.129
	35.20.10.130
	35.20.10.131
	35.20.10.132
	35.20.10.133
	35.20.10.134
	35.20.10.135
	35.20.10.136
	35.20.10.137
	35.20.10.138
	35.20.10.139
	35.20.10.140
	35.20.10.141
	35.20.10.142
	35.20.10.143
	35.20.10.144
	35.20.10.145
	35.20.20.01
	35.20.20.02
	35.20.20.03
	35.20.20.04
	35.20.20.05
	35.20.20.06
	35.20.20.07
	35.20.20.08
	35.20.20.09
	35.20.20.10
	35.20.20.11
	35.20.20.12
	35.20.20.13
	35.20.20.14
	35.20.20.15
	35.20.20.16
	35.20.20.17
	35.20.20.18
	35.20.20.19
	35.20.20.20
	35.20.20.21
	35.20.20.22
	35.20.20.23
	35.20.20.24
	35.20.20.25
	35.20.20.26
	35.20.20.27
	35.20.20.28
	35.20.20.29
	35.20.20.30
	35.20.20.31
	35.20.20.32
	35.20.20.33
	35.20.20.34
	35.20.20.35
	35.20.20.36
	35.20.20.37
	35.20.20.38
	35.20.20.39
	35.20.20.40
	35.20.20.41
	35.20.20.42
	35.20.20.43
	35.20.20.44
	35.20.20.45
	35.20.20.46
	35.20.20.47
	35.20.20.48
	35.20.20.49
	35.20.20.50
	35.20.20.51
	35.20.20.52
	35.20.20.53
	35.20.20.54
	35.20.20.55
	35.20.20.56
	35.20.20.57
	35.20.20.58
	35.20.20.59
	35.20.20.60
	40.00.00.01
	40.01.00.01
	40.10.00.01
	40.20.00.01
	40.30.00.01
	40.30.00.02
	45.00.00.01
	45.01.00.01
	45.05.00.01
	45.05.10.01
	45.05.20.01
	45.05.30.01
	45.10.00.01
	45.10.00.02
	45.15.00.01
	45.15.00.02
	45.20.00.01
	45.20.00.02
	45.25.00.01
	45.30.00.01
	45.35.00.01
	45.40.00.01
	45.45.00.01
	45.50.00.01
	45.55.00.01
	50.00.00.01
	50.01.00.01
	50.01.00.02
	55.00.00.01
	55.01.00.01
	55.10.00.01
	55.20.00.01
	55.20.00.02
	55.30.00.01
	60.00.00.01
	60.01.00.01
	60.01.00.02
	60.10.01.01
	60.10.10.01
	60.10.20.01
	60.10.30.01
	60.10.40.01
	60.10.50.01
	60.10.60.01
	60.20.01.01
	60.20.10.01
	60.20.20.01
	60.20.20.02
	60.20.20.03
	60.20.30.01
	60.30.01.01
	60.30.10.01
	60.30.20.01
	60.30.20.02
	60.30.20.03
	60.30.20.04
	60.30.20.05
	60.30.30.01
	65.00.00.01
	65.01.00.01
	65.10.00.01
	65.10.10.01
	65.10.20.01
	65.10.30.01
	65.10.30.02
	65.10.30.03
	65.10.30.04
	65.10.30.05
	65.10.40.01
	65.10.40.02
	65.10.50.01
	65.10.60.01
	65.10.70.01
	65.20.00.01
	70.00.00.01
	70.01.00.01
	70.10.01.01
	70.10.10.01
	70.10.20.01
	70.10.20.02
	70.10.20.03
	70.10.20.04
	70.10.30.01
	70.10.30.02
	70.10.30.03
	70.10.30.04
	70.10.30.05
	70.10.30.06
	70.10.30.07
	70.10.30.08
	70.10.30.09
	70.10.30.10
	70.10.30.11
	70.10.30.12
	70.10.30.13
	70.10.30.14
	70.10.30.15
	70.10.30.16
	70.10.30.17
	70.10.30.18
	70.10.30.19
	70.10.30.20
	70.10.30.21
	70.10.30.22
	70.10.40.01
	70.20.01.01
	70.20.10.01
	70.20.10.02
	70.20.10.03
	70.20.10.04
	70.20.10.05
	70.20.20.01
	70.20.20.02
	70.30.00.01
	70.40.01.01
	70.40.10.01
	70.40.10.02
	70.40.10.03
	70.40.10.04
	70.40.10.05
	70.40.10.06
	70.40.20.01
	70.40.20.02
	70.40.20.03
	70.40.20.04
	70.40.20.05
	70.40.20.06
	70.40.20.07
	70.40.20.08
	70.40.20.09
	70.40.20.10
	70.40.20.11
	70.40.20.12
	70.40.20.13
	70.50.01.01
	70.50.10.01
	70.50.10.02
	70.50.10.03
	70.50.10.04
	70.50.20.01
	70.50.20.02
	70.50.20.03
	70.60.10.01
	70.60.10.02
	70.60.10.03
	70.60.10.04
	70.60.10.05
	70.60.10.06
	70.60.10.07
	70.60.10.08
	70.60.10.09
	70.60.20.01
	70.60.20.02
	75.00.00.01
	75.01.00.01
	75.10.00.01
	75.10.00.02
	75.10.00.03
	75.20.00.01
	75.20.10.01
	75.20.10.02
	75.20.20.01
	75.30.01.01
	75.30.10.01
	75.30.10.02
	75.30.10.03
	75.30.10.04
	75.30.10.05
	75.30.20.01
	75.30.20.02
	75.30.20.03
	75.40.00.01
	75.40.00.02
	75.40.00.03
	75.40.00.04
	75.40.00.05
	75.40.00.06
	75.40.00.07
	75.50.00.01
	80.00.00.01
	80.01.00.01
	80.10.00.01
	80.20.00.01
	80.30.00.01
	80.30.20.01
	80.30.20.02
	80.40.00.01
	80.40.10.01
	80.50.00.01
	80.60.00.01
	80.60.00.02
	80.70.10.01
	80.70.10.02
	80.70.10.03
	80.70.10.04
	80.70.20.01
	80.70.20.02
	80.70.20.03
	80.70.20.04
	80.70.20.05
	80.70.30.01
	80.70.30.02
	80.70.30.03
	80.70.30.04
	80.70.30.05
	85.00.00.01
	85.01.00.01
	85.10.01.01
	85.10.10.01
	85.10.10.02
	85.10.20.01
	85.10.20.02
	85.10.20.03
	85.10.20.04
	85.10.30.01
	85.10.30.02
	85.20.00.01
	85.30.01.01
	85.30.10.01
	90.00.00.01
	90.01.00.01
	90.10.01.01
	90.10.01.02
	90.10.10.01
	90.10.10.02
	90.10.10.03
	90.20.00.01
	90.20.10.01
	90.20.20.01
	90.20.20.02
	90.20.20.03
	90.20.30.01
	90.20.30.02
	90.20.30.03
	90.30.01.01
	90.30.10.01
	90.30.20.01
	90.30.20.02
	90.30.20.03
	90.30.20.04
	90.30.30.01
	90.40.01.01
	90.40.10.01
	90.40.10.02
	90.40.10.03
	90.40.10.04
	90.40.10.05
	90.40.10.06
	90.40.20.01
	90.40.20.02
	90.40.20.03
	90.40.20.04
	90.40.20.05
	90.40.20.06
	90.40.20.07
	90.40.20.08
	90.40.20.09
	90.40.20.10
	90.40.30.01
	90.40.30.02
	90.40.30.03
	90.40.30.04
	90.40.30.05
	90.40.30.06
	90.40.30.07
	90.40.30.08
	90.40.30.09
	90.40.30.10
	90.40.40.01
	index-01
	index-02
	index-03
	index-04
	replyA
	replyB
	xBack

