IBM

 Systems Reference Library
FARGD for IBM 1401

FARGO (Fourteen-O-One Automatic Report Generating Operation) is a report generator that requires no expert knowledge of programming techniques. This manual explains the writing of report specifications and the preparation of FARGO control cards to produce the desired results. Reports can be prepared on blank paper or preprinted report forms.

The method requires a minimum of 4,000 positions of core storage and is applicable to card input files only.

For a list of associated publications and abstracts, see the IBM 1401 and 1460 Bibliography, A24-1495.

Minor Revision (January 1963)

This publication is a reprint of Form C24-1464-0 incorporating changes released in Technical Newsletter N24-0039. Although the format has been changed to conform to the Systems Reference Library, the original publication and applicable newsletter are not obsoleted. Principal changes in this edition are:

Page 6-General Description Paragraph regarding type of card codes.
Page 16-Program Halts
Paragraph regarding program halt with storage address 3547 displayed.
Page 19-Converting No-Op Instruction Change originally covered by Technical Newsletter N240039.

Page 19-Coding the Patch Subroutines Change originally covered by Technical Newsletter N240039.

Page 48-Figure 24. Example of FARGO patching and linkage using SPS. Originally covered by Technical Newsletter N24-0039.
Page 49-Figure 25. Method of identifying types of cards when a digit is punched in one column and an X in another.

Contents

Introduction 5
General Description 6
Report Specifications 6
Coding Sheets 8
Phase 4 (Form No. X24-6556) 8
Report-Heading Control Cards 8
Field-Headings Control Cards 8
Phase 1 (Form No. X24-6556) 10
Master-Report Control Card 10
Control-Break Control Cards 10
Phase 1 (Form No. X24-6557) 11
Constants Control Cards 11
Phase 3 (Form No. X24-6559) 11
Detail Control Cards 11
Phase 2 (Form No. X24-6558) 13
Total Control Cards 13
Automatic-Carriage-Control Operation 15
Operating Instructions 16
Program Halts 16
Patching 17
Multiply-Divide Optional Feature 20
Multiplication 20
Division 22
Half-Adjustments of Products and Quotients 26
FARGO General Program Operation and 1401 Core- Storage Organization 30
FARGO Report Examples 31
Register of Earnings and Deductions 31
Remittance Statement and Voucher Check 31
Index 50

FARGO, Fourteen-O-One Automatic Report Generating Operation, is a report generator that requires no expert knowledge of programming techniques. It is easy to learn and apply. Developed for the ibm 1401 Data Processing System, FARGO may be quickly adapted to many types of listed reports or groupprinted reports now prepared with unit-record equipment on blank paper or on preprinted forms.

In addition to providing the program for processing the input detail-data cards, FARGO provides for printing one title line, including page number, on each page of the report. It also provides for printing two lines of field headings used to designate the various columns of the report. The printing of this information, normally required when preparing reports on blank paper, is controlled by the carriage tape. One advantage of FARGO is that any number of different reports may be prepared in a continuous mode, provided the reports are prepared on blank paper and that the carriage-tape specifications are standardized for all the reports.

Requirements of the report, such as title and field headings, detail and/or total printing, carriage spacing, skipping, ejecting, etc., are first laid out on an IBM 1403 Printer Spacing Chart. The report specifications are then recorded on specially-designed FARGO con-
trol card coding-sheets (Phases 1, 2, 3 and 4). Control cards for each of the four phases are then punched on standard 5081-type cards. These are inserted behind their respective FARGO condensed-program decks, and all precede the detail data cards to be processed. The file is then loaded into the 1402 file feed. The operation is started by pressing the load key. The 1401 loads each phase of the FARGO program, and generates the program steps from the control cards that follow each phase.

In approximately 20 seconds, report printing is started. It continues without interruption until the report is finished. This procedure is graphically illustrated in Figure 1. If several reports are to be run consecutively, a separator card containing a lozenge ($\square, 12-4-8$) punch in card column one is placed behind the last detail data card for each report. This branches the generated program into the last card routine, ejects to the first printing line of the next form, and immediately begins reading-in the next program deck.

FARGO is designed primarily for IBm 1401 card systems having a minimum of 4,000 positions of core storage, and parallels the 407 approach to report preparation. It is a load-and-go system with no intermediate operations such as symbolic assembly.

General Description

Following is a list of operations that can be performed under FARGO control.
Print one full line (132 positions) of Report Heading on the first line of each page of the report (carriagetape channel- 1 , including page numbers.
Skip to carriage-tape channel-2 and print a maximum of two full lines of columnar- or field-headings on each page of the report.
Skip to the body line of the report (carriage-tape channel-3).
List or group-print the body of the report.
Control on a maximum of four fields anywhere in the detailed data cards regardless of length.
Group-indicate a maximum of four fields on the first line of each minor control group.

Distinguish a maximum of 10 different types of detail cards and print results in the appropriate columns of the report. Each code used to identify a given type of card may be punched in the same column of the detail card, or a separate column may be used to identify each type up to a maximum of 10 . If more than one card-column must be tested to identify a given type of card (multiple column type), a patching routine is generally required. Special provisions have been made within the FARGO program for accomplishing this type of patching. (See Patching.) However, two columns may be tested without patching if, as is frequently the case, a type of card is identified by a digit (1-9) in one column and a zone (usually an X) in another column. Example: 3 in column 6, X in column 80. (See Figure 25.)

Add, subtract, multiply, and divide detail data or totals.

Accumulate and print totals (with or without summary punching) for each control level, plus final totals at the end of the report. Minor totals are rolled into intermediate totals, intermediate totals into major, etc.

Space before or after printing, or skip to predetermined total-lines (carriage-tape channels 4 to 9).

Crossfoot detail data or totals, print the results on desired total levels, and print progressive totals whereever desired.

Print totals horizontally or vertically for each total level on as many lines as desired.

Print multiple lines from one card (MLP).
Print reports on preprinted forms, including inverted forms with MLP printing. In such cases, specifications for report and field headings are not required.

Card count by types of cards and print card count totals on desired total levels.

Overflow or eject from form to form.
Print any number of different types of reports consecutively, provided that reports are prepared on continuous blank paper and that the carriage-tape specifications are standardized for all the reports.

Report Specifications

In developing report specifications, the first step is to lay out the report on an ibm 1403 Printer Spacing Chart (step 1 in Figure 1). This establishes the positions at which the various data will be printed and indicates the spacing or skipping between lines of printing. This step is always required for new reports but may not be necessary for existing reports, that is, reports that have been prepared previously with the 407. In such cases, the same spacing chart used in laying out the report for the 407 can be used with the FARGO system. If minor modifications are made in the conversion of the report from the 407 to the 1401 because of the greater printing capacity, a new layout using the 1403 printer spacing chart is necessary. Once the report layout is completed and the operations to be performed are clearly indicated, the next step (step 2 in Figure 1) is to record the specifications on FARGO coding sheets.

Figure 1. FARGO-Basic Steps

Coding Sheets

Coding sheets (Figure 2) are designed to facilitate the recording of specifications in the FARGO language, following a few simple rules. The statements used to supply the information are based on the logic of the 407. Thus, any person with sufficient knowledge to develop iвм 407 specifications for a given report can learn and apply the FARGO language with very little training.
The areas on the coding sheets labeled Report, Programmed By, Page Nos., and Date are for the convenience of the programmer, but are not punched in the FARGO control cards. If the programmer assigns a number to the program for identification purposes, the number is entered in the area labeled Program Identification, 73-76. This number is later punched in each FARGO control card.
Each line of the coding sheets is identified by a preprinted sequence number in columns 77-80. These sequence numbers should be punched in the control cards. When the control cards for the four phases are properly inserted behind their respective FARGO condensed-program decks, the sequence numbers must be in ascending order as shown here.

Phase	Cards	No. of Cards	Sequence Numbers
1	Condensed Program Deck	50	$0001-0050$
1	Control Cards	variable	$1000-1 \mathrm{lxx}$
2	Condensed Program Deck	32	$2000-2031$
2	Control Cards	variable	$3010-3 \mathrm{xxx}$
3	Condensed Program Deck	33	$4000-4032$
3	Control Cards	variable	$5010-5 \mathrm{xxx}$
4	Condensed Program Deck	12	$6000-6011$
4	Control Cards	variable	$7001-70 \mathrm{xx}$

The coding sheets for the four phases are described in the order in which they are normally filled out.

FORM NO. $\mathrm{x} 24-6556$
Phase 4 - Report-Heading Control Cards (two cards maximum).
Field-Headings Control Cards (four cards maximum).
Phase 1 - Master-Report Control Card (one card maximum).
Control-Break Control Cards (four cards maximum).

FORM NO. $\mathrm{x} 24-6557$
Phase 1 - Constants Control Cards (50 cards maximum).

FORM No. x24-6559
Phase 3 - Detail Control Cards (variable)
FORM No. $\mathrm{x} 24-6558$
Phase 2 - Total Control Cards (variable)

Phase 4 (Form No. X24-6556)

Report-Heading Control Cards

Two report-heading control cards (sequence numbers 7001 and 7002) provide a maximum of 132 positions of report-heading information that may be printed at the top of each page of the report (carriage-tape chan-nel-1). Report-heading specifications are entered in colùmns 1-68 as follows:
Card
Columns
2
3-68
H - Report-Heading Control Card.
1 - First card.
2 - Second card.
Enter report-heading information (66 characters maximum for each card). Card 1 prints in positions 1-66, Card 2 prints in positions 67-132.
RULE: If a report heading is required, two cards always must be punched, and H 1 control card must precede H 2 control card. Depending on the length of the report heading and the print positions selected, either H 1 or H 2 control card may be blank in columns $3-68$. The report heading may include the word PAGE anywhere on the line if page numbering is specified.

If a report heading is not required (preprinted forms), these two control cards are omitted.

Field-Headings Control Cards

Four field-headings control cards (sequence numbers 7011-7014) provide two full 132 positions for fieldheading information that may be printed on each page of the report following the report heading (carriagetape channel-2). Field-headings specifications are entered in columns 1-68 as follows:
Card
Columns
Control Data
1
.2

3-68
F - Field-Heading Control Card.
1 - First Card.
2 - Second Card.
3 - Third Card.
4 - Fourth Card.
Enter field-heading information (66 characters maximum for each card). Cards 1 and 2 print first line of field headings:

Card 1 - print positions 1-66.
Card 2 - print positions 67-132.
Cards 3 and 4 print second line of field headings:

Card 3-print positions 1-66.
Card 4 - print positions 67-132.
rule: If field headings are required, these four cards must enter the machine in ascending sequence. If not required (preprinted forms), they are omitted.
rule: Whether or not report and/or field headings are specified, a blank card punched with the \# (3-8) symbol in column 1 must be the last card in the combined program deck. In other words, it always precedes the first detail data card. This signals the end of FARGO program loading and the beginning of detail card processing.

Figure 2. FARGO Coding Sheets

Phase 1 (Form No. X24-6556)

Master-Report Control Card

This card (sequence number 1000), always punched M in column 1, specifies:

1. type of report (list or group-print).
2. page overflow, if desired.
3. page numbering, if desired.
4. positions selected to print the page number anywhere on the report-heading line.
5. data to be group-indicated on the first line of each minor control group of a listed report only.
The control data is entered in the various columns of the coding sheet as shown here.

Card Columns	Control Data
1	M - Master-Report Control Card.
2	L - List; Blank - Group Print.
3	O (alpha) - Page overflow to carriage-tape channel-1. Blank - No page overflow.
4	P - Page numbering if desired. Blank - No page numbering.
$\begin{array}{ll} 5-7 & \text { (from) } \\ 8-10 & \text { (to) } \end{array}$	iвm 1403 print positions selected for printing page number on report-heading line. (From indicates the left-hand or high-order print position while to indicates the right-hand or units print position.)
11	First field to be group indicated. M - Move Z - Move and suppress zeros.
$\begin{aligned} & 12-14 \text { (from) } \\ & 15-17 \text { (to) } \end{aligned}$	Location of data in detail card to be groupindicated. (From indicates the left-hand or high-order card column, while to indicates the right-hand or units card column.)
$\begin{aligned} & 18-20 \text { (from) } \\ & 21-23 \text { (to) } \end{aligned}$	ibm 1403 print positions selected for printing first group-indicated field.
24-36	Second field to be group-indicated. Same format as Field 1.
37-49	Third field to be group-indicated. Same format as Field 1.
50-62	Fourth field to be group-indicated. Same format as Field 1.

Control-Break Control Cards

These cards (sequence numbers 1001-1004) always punched B in column 1, specify the four control levels and define the card columns in which the control fields are punched in the detail cards. For a simple listed report with no controls, these cards are omitted. When controls are required, the specifications are recorded in columns 1-8 as follows.

Card		
Columns	Code	Control Data
1	B	Control-break control card.
2	1	First-level control (minor).
	2	Second-level control (intermediate).
	3	Third-level control (major).
	4	Fourth-level control.
3-5 (from)		Location of control field.
$6-8$ (to)		

Split-Control Fields

Normally, information in a given level control, identified by a single card-field heading, is punched in consecutive columns of the card. In some cases, the information may be punched in more than one card field but still in consecutive columns of the card. The various card fields involved may be treated as one-level control merely by specifying the level desired ($1,2,3$, or 4), and the high-order position of the left-most field (from) and the low-order position of the right-most field ($t o$).

When a given level control (for example, minor) is split, that is, represented by two card fields that are not adjacent, one field is specified as minor (code 1) and the other field as intermediate (code 2). Because an intermediate control-break forces a minor totallevel, all the total operations are specified in Tl (minor level) control cards in Phase 2. A single T2 (intermediate level) control card, coded SPS in columns 52-54, follows. However, no total operations are specified on the intermediate level. For each extra B-control card required in Phase 1, one total level is sacrificed in Phase 2.

Phase 1 (Form No. X24-6557)

Constants Control Cards

These cards, punched C or S in column 1, define the length of each constant word, the label used in the program when referring to the constant, and the characters that compose the constant word, with or without a word mark. Constant areas of core storage used to accumulate totals must be given a label. A maximum of 50 constants control cards may be used. Any combination of characters except PGE may be used as a label. The reason PGE cannot be used is that a 4 position constant area is reserved by the program to permit addressing the page number counter. If page numbering is not required, the counter may be used for other purposes in the program, in which case the counter must be referred to by the PGE label.

Because the number of constants control cards may vary from report to report, complete sequence numbers are not preprinted on the form. Only the hundreds position (column 78) need be entered, using 0 for the first 9 lines, then 1's, 2's, etc., as required to' establish sequence. If more than one sheet is needed, skip the first line (sequence no. 1010) on all overflow sheets and continue numbering with the second line (1x20). The same numbering scheme applies to sequence numbers for Total and Detail Control Cards recorded on other forms.

Specifications for constants are recorded in columns 1-72 as follows.

```
Card
Columns Control Data
    l
    2-3
4-6
7-72
```

Columns
1

2-3
4-6
7-72

Control Data
C - Constant with a word mark.
S - Special constant without a word mark. Number of positions in the constant word, including blanks.
Label assigned to identify the constant word when referring to it in the program.
Composition of the constant word (66 characters maximum).
Blank positions are considered characters.

Phase 3 (Form No. X24-6559)

Detail Control Cards

These cards, always punched D in column 1, specify the various operations to be performed for each type of detail card as follows.

1. Recognize type of card upon which operations specified in the same card are to be performed.
2. Move digits or zones from a single column of the detail card.
3. Transfer constant words to print/punch areas.
4. Transfer data from detail card to print/punch areas.
5. Perform arithmetic operations on detail-card data.
6. Print multiple lines from a single card.
7. After printing a detail line, skip to a carriage-tape channel, or space 1, 2, or 3 lines.
Detail-control-card specifications are recorded in columns 1 to 72 as follows.
Card
Column
1
$2-6$

> | Control Data |
| :--- |
| D - Detail Control Card. |
| If only one type of detail card, leave columns |
| 2-6 blank. If more than one type (maximum |
| 10), enter information in columns $2-6$ as |
| specified in the following rule. |

rule: For operations that are to be performed on all detail cards regardless of type, leave column 2 blank and enter $A L L$ in columns 3-5. On the last $A L L$ control card, also enter an asterisk ${ }^{(*)}$ (11-4-8) in column 2. ALL control cards must precede all other control cards punched D in column 1.

For operations that are to be performed on specific types of detail cards, enter in column 2 the type code, in columns 3-5 the column in the detail card that contains the type code, and in column $6 C$ for a character test or Z for a zone test. The C and Z codes in column 6 control the method to be used for determining the type of card indicated in column 2.

Applications of this rule are illustrated in the following examples.

Control Card
 Columns

123456
D ALL)
D ALL (
Operations specified in these control cards
D ALL)
D * ALL) Last ALL control card.
D - 080 C Character test. Operations specified in this control card are performed on cards containing only an X (11-punch) in column 80.
D -080 Z Zone test. Operations specified in this control card are performed on cards containing an X in column 80. This includes characters in the 11-zone (J to R).

D \& 080 C . Character test. Operations specified in this control card are performed on cards containing only a 12 -punch in column 80.
D \& 080 Z Zone test. Operations specified in this control card are performed on cards containing a 12 -punch in column 80 . This includes characters in the 12 -zone (A to I).

D 6080 C Character test. Operations specified in this control card are performed on cards containing a 6 -punch in column 80.
D 6080 Z No-Zone test. Operations specified in this control card are performed on cards containing no-zone punches ($0,11,12$) in column 80. For this type of test, any digit from 1 through 9 can be used in column 2 of the control card.

D Z 080 C Character test. Operations specified in this control card are performed on cards containing the letter $Z(0-9)$ in column 80.
D Z 080 Z Zero-Zone test. Operations specified in this control card are performed on cards containing a zero-zone punch. This includes special character (/) and letters S to Z. For this type of test, any of the characters mentioned can be used in column 2 of the control card.
D 080 C Blank-column test. Operations specified in this control card are performed on cards that are blank in column 80.
D. 080 Z No-Zone test. Operations specified in this control card are performed on cards containing no-zone punches ($0,11,12$) in column 80. This test can be used to differentiate between an X80 or NX80 condition.

Control Data
Card
Columns
Special 4- or 7-position instructions coded in actual IBM 1401 machine language, to be executed for specific types of cards, can be inserted in these columns. Instructions can also be used to branch to patching subroutines written in actual machine language. The specific patch point in the program must be determined by the programmer. Instructions for inserting patching subroutines are given under Patching.
D - Move digit.
Y - Move zone.

Card Columns	Control Data
15-17 (from)	Enter the detail card column that contains the digit or zone to be moved.
18-20 (to)	Enter the card column to which the digit or zone is to be moved. Control-card columns 14 through 20 are used primarily to move credit X-punches from some position of the data card to the units position of an amount field that is to be accumulated or edited. If the position from which the X was moved must be cleared, another control card may be used to move a blank zone into the position from which the X was moved.
21	E - Edit. L - Load edit control word. M - Move constant data. Z - Move and suppress zeros. D - Move digit. Y - Move zone.
22-24	Enter the label assigned to the constant to be transferred to the print or punch areas.
$\begin{aligned} & 25-27 \text { (from) } \\ & 28-30 \text { (to) } \end{aligned}$	Print positions selected to print the constant data.
$\begin{aligned} & 31-33 \text { (from) } \\ & 34-36 \text { (to) } \end{aligned}$	Summary-card columns selected to punch the constant data.
37	E - Edit detail data. M - Move detail data. Z - Move and suppress zeros from detail data. D - Move digit. Y - Move zone.
$\begin{aligned} & 38-40 \text { (***from) } \\ & 41-43 \text { (to) } \end{aligned}$	Location of field to be transferred. ***note: To conserve on 1401 core storage, subsequent references to the same field in the same card types may be made by inserting asterisks in columns 38-40. This also applies to columns 57-59.
$\begin{aligned} & \text { 44-46 (from) } \\ & 47-49 \text { (to) } \end{aligned}$	Print positions selected to print detail data.
$\begin{aligned} & \text { 50-52 (from) } \\ & 53-55 \text { (to) } \end{aligned}$	Summary-card columns selected to punch detail data.
56	A - Add. S - Subtract. (a) - Multiply (4-8 punch). $\%$ - Divide (0-4-8 punch). P - Zero and Add (12-0 punch). 1 - Zero and Subtract (11-0 punch). D - Move digit. Y - Move zone. M - Move. Z - Move and suppress zeros.
$\begin{aligned} & 57-59 \text { (** }{ }^{* *} \text { from) } \\ & 60-62 \text { (to) } \end{aligned}$	Location of field upon which operations coded in column 56 are to be performed.
63-65	Label assigned to constant upon which operations coded in column 56 are to be performed.
66-68	Label of core-storage positions to be used as accumulator, multiplier-product, or quotient-dividend-remainder.

P - Print. Primarily used for MLP printing. A control card is required for each MLP line to be printed from the same type of card. Coding in column 69 is required for all MLP lines except the last. Printing the last line of an MLP card is automatic. All lines printed from an MLP card are single-spaced.
SP - Space after printing a detail line. SK - Skip after printing a detail line.
1-3 - Single-, double-, or triple-space after printing.
4-9 - Skip to corresponding carriage tape channels.
In a listed report, skipping or spacing indicated in columns 70-72 takes place after printing of the detail line for the particular type of card specified in column 2 .
In a group-printed report, skipping or spacing indicated in columns 70-72 causes no carriage operation. In such cases, skipping and spacing is controlled with T (Total) control cards entered in Phase 2.
rule: When several control cards are entered for the same type of detail card, a skip or space instruction must be entered in the last control card of each type.
rule: For printing and punching the same detail data, two separate control cards are required: one to move data to print positions, the other to move data to punch positions. This rule must be observed when entering data in control card columns 22-36 and 38-55.

Phase 2 (Form No. X24-6558)

Total Control Cards

These cards, always punched T in column 1, specify the various operations to be performed for each class of total or each total within the same class. Operations include:

1. Skip to a carriage tape channel, space before and/or after total printing, or eject from form to form.
2. Add one total-level accumulator to a higher-level accumulator. Subtract one total-level accumulator from a higher-level accumulator. Multiply or divide one total by another on the same level.
3. Crossfoot totals on any total level desired.
4. Load or move constant data to the printer output area.
5. Move, move and suppress zeros, or edit accumulated totals to the print or punch areas.
6. Move digits or zones from a single storage position. For example, remove or add a sign to the units position of a total.
7. Clear accumulators.
8. Print constants on total levels to identify totals.
9. Print totals on total lines.
10. Print multiple lines of information read from a single card in Phase 3.
11. Punch summary cards.

Several totals within the same class, designated by field headings, may be printed horizontally on the same line, each under its appropriate column of the report. Or, they may be identified by constants and printed vertically on separate lines in the same column of the report. Examples:

Horizontal Method						
Gross	Withholding	Other				
Earnings	Tax	F.I.C.A.	Net			
150.00	27.00	Deductions	Pay			
	Vertical Method				10.00	107.56
	Gross Earnings	150.00				
	Less WHTax	27.00				
	F.I.C.A.	5.44				
	Other	10.00				
	Net Pay	107.56^{*}				

Similarly, different classes of totals may be printed horizontally under designated report columns or vertically in the same report column.

Total-control-card specifications are recorded in columns 1 to 56 as follows.
Card

Columns
1
2

3-4

6

7-9 (from)
10-12 (to)
13

14-16

17-19 (from)
20-22 (to)
23

5 Enter 1-3 to space number of times designated.
Enter 4-9 to skip to corresponding carriage tape channels.
note: Because normal single spacing is automatic, leave columns 3-5 blank
if normal spacing is desired.

Control Data

T - Total control card.
1 - Minor-total level.
2 - Intermediate-total level.
3 - Major-total level.
4 - Fourth-total level.
5 - Fifth- (final) total level. (Occurs on last card runout with Sense Switch A turned ON .)
SP - Space before total printing.
SK - Skip before total printing.

A - Add.
S - Subtract.
@ - Multiply (4-8 punch).
$\%$ - Divide (0-4-8 punch).
M - Move.
Label of accumulator read out of.
Label of accumulator read into.
L - Load edit control word.
M - Move constant data.
Z - Move and suppress zeros.
Label assigned to constant being moved or loaded.
Print positions selected to print constant data.
E - Edit total or constant data.
M - Move total or constant data.
Z - Move and suppress zeros from total or constant.

Card		
Colun		Control Data
24-26		Label assigned to accumulator or constant.
$\begin{aligned} & 27-29 \\ & 30-32 \end{aligned}$	$\begin{aligned} & \text { (from) } \\ & \text { (to) } \end{aligned}$	Print positions selected to print total or constant data addressed by the label coded in columns 24-26 of the same control card.
$\begin{aligned} & 33-35 \\ & 36-38 \end{aligned}$	$\begin{aligned} & \text { (from) } \\ & (\text { to }) \end{aligned}$	Summary-card columns selected to punch total or constant data addressed by the label coded in columns $24-26$ of the same control card.
rule: For printing and punching from the same accumulator, $\begin{aligned} & \text { two separate control cards are required. One moves data } \\ & \text { to print positions, and the other moves data to punch }\end{aligned}$		
39		D - Move digit (only) portion of a character from one card column to another in punch area. Y - Move zone (only).
40-42		Summary-card column from which digit or zone is to be moved.
43-45		Summary-card column to which digit or zone is to be moved.
46		S - Clear accumulator by subtracting it from itself.
47-49		Label assigned to accumulator to be cleared.
note: When both printing and punching from the same accumulator, clear accumulator on the second control card, after information has been transferred to the print and punch areas.		
50		P - Print total line. All totals within the same level may be printed on one line or on separate lines.
51		P - Punch total summary card. All totals within the same level may be punched in one card or in separate summary cards.
52-53		SP - Space after total printing. SK - Skip after total printing.

Card
Columns
54

Control Data

Enter S to single space.
Enter 1-3 to obtain additional spaces beyond the normal single space (1 for double space, 2 for triple space, 3 for quadruple space).
Enter 1-9 to skip to corresponding carriage tape channels.
note: When skipping to carriage-tape channel-1 after total printing, report and field headings do not print.
rule: When several totals within the same level are printed on separate lines, the last T (Total) control card for each total level must contain a Skip, Space, or Eject instruction. If normal single spacing is desired, the last control card must be coded SPS in columns 52-54.

E - Eject form to carriage-tape channel-1 after total printing. Report and field headings will print on the next page following the eject.

* - The last T control card specified in Phase 2 (Form No. X24-6558) must contain an asterisk (${ }^{*}$) punch in column 56.
rule: When four control levels are specified in the problem, final-total operations are specified on level 5 . When less than four control levels are specified, final-total operations are specified on the next higher level. Examples:
No controls, final-total operations are specified on level 1.
Minor control only (level 1), final-total operations are specified on level 2.
Minor and intermediate controls (levels 1 and 2, respectively), final-total operations are specified on level 3.
Minor, intermediate and major controls (levels 1, 2 and 3, respectively), final-total operations are specified on level 4.
For all the conditions mentioned in these examples, the last final-total control card must contain an asterisk (*) punch in column 56.
If Final Totals are not required, a last-card-runout total-card for level 1, 2, 3, 4 or 5 must contain an asterisk in column 56.

Automatic-Carriage-Control Operation

Page overflow is controlled by the letter O in column 3 of the master-report control card - Phase 1. Ejecting from form to form (carriage-tape channels 12 to 1), and skipping to carriage-tape channels 2 and 3 , occur automatically as shown in Figure 3, depending on the presence or absence of report- and field-headings control cards - Phase 4.

Figure 3. Automatic-Carriage-Control Operation

Operating Instructions

To prepare reports with FARGO, proceed as follows:

1. Ready the ibm 1403 Printer.
a. Insert into the carriage the paper or form on which the report is to be printed. Make the necessary vertical and horizontal adjustments to properly position the form.
b. Insert the carriage tape punched as follows.

Normal Condition

Channel 1 - Report-heading line.
Channel 2 - First field-heading line.
Channel 3 - First body line.
Channels $4-9$, if required. Skip-stops for predetermined line printing.
Channel 12 - Overflow line.
nотE: For conditions other than normal, channels
2 and/or 3 may not be required. (See Figure 3.)
c. Set feed-clutch knob to neutral position.
d. Press carriage-restore key.
e. Turn feed-clutch knob back to drive position.
f. Press check-reset key on the 1403 printer.
2. Ready the 1401 Console.
a. Set mode switch to run position.
b. Set I/O check-stop switch to the on (up) position.
c. Set sense switch A to the on (up) position.
d. Press check-reset key on the 1401 console.
e. Press the start-reset key on the 1401 console.
3. Ready the 1402 read-punch unit.
a. Set reader switch to on.
b. Press the non-process runout read key to clear the read feed.
c. Place FARGO program and detail cards in the 1402 read unit in the sequence illustrated in Figures 1 or 6 .
d. If summary punching, set punch switch to the on position.

1. Press the non-process runout punch key to clear the punch feed.
2. Place cards to be summary punched in the punch hopper.
e. Press check-reset key on the 1402 read-punch unit.
f. Press load key on the 1402 read-punch unit.

If the control cards punched from the FARGO coding sheets contain no errors, the program is loaded in approximately 20 seconds. Processing of detail data cards is started immediately thereafter. When the last card has left the hopper and the machine stops, press the start key on the 1402. If specified in the program, final totals print automatically on the runout.

Program Halts

Program halts may occur not only during the loading of the FARGO program deck (Phases 1 to 4) but also during processing of the detail cards. Halts occurring during Phases 1 to 4 indicate that the control cards punched from the coding sheets are not in the proper sequence as shown in Figure 1. Or, if they are in the proper sequence, invalid codes are punched in column 1 of the control cards. Valid codes are M, B, C, S, T, D, H, F, or \#. Codes other than these are invalid.
Following is a list of program halts, reason for halt, and procedure for restarting. When the halt occurs, the last card in the read stacker (NR) has an invalid code in column 1.

Storage Address Displayed	Phase	Reason for Halt
2639	1	Card has other than M.
2947	1	Card has other than B, C, or S.
2363	2	Card has other than T.
2379	3	Card has other than D.
3090	4	Card has other than H, F, or \#.

To restart from any of these halts, proceed as follows.

1. Remove cards from read hopper.
2. Press non-process runout read key.
3. Remove the last three cards from the read stacker (NR). The first of these three cards is the control card in error.
4. Correct the error.
5. Replace the three cards in front of the cards taken from the read hopper.
6. Place the card file in the read hopper.
7. Press check reset key on the 1402.
caution: Do not press the start reset key on the 1401 console.
8. Press start key on the 1402 read unit.

During processing of detail cards, if the machine stops with the red Stop Light on (1401 Console) and storage address 0157 displayed, a constants label has been referred to in one of the \boldsymbol{T} or D control cards for which there is no corresponding constants control card. This may be due to misspelling the 3 -character label abbreviation on the T or D control card. Or, it may be that constants control card was inadvertently omitted in the constants coding sheet. To restart, proceed as follows.

1. Remove all cards from read hopper and file feed.
2. Press non-process runout read key on the 1402.
3. Locate erroneous control card, make corrections, and restart from the beginning.
If the machine stops with the red Stop Light on and storage address 3547 displayed, the last card in the stacker is a type of card for which no entry was made on the Phase 3 code sheet.

During processing of detail cards, the program may hang up at an unknown address with the following lights on:

pROCESS

Check reset
a- or I-ADDRESS register.
The A-Address Register Light means that an edit control word entered in the constants coding sheet is too small for the data being edited. The I-Address Register Light means that a 1401 operation code represented by an invalid character is detected in storage.

To locate the edit control word that is too small for the data being edited, execute a storage print-out as follows.

1. Set mode switch to storage print-out.
2. Press I-address register key and note address location displayed.
3. Turn hundreds and thousands manual-address switches to digits corresponding to the hundreds and thousands positions displayed.
4. Press start key on the 1401 console.
5. Examine the storage print-out and find the I-address displayed in Step 2.
6. Go back from there to the first load (L) instruction. The A-operand of this instruction contains the storage address of the edit control word that is too small.
7. Locate constants control card, make corrections, and restart from the beginning.
To locate and correct an invalid character used as an operation code execute a storage scan as follows.
8. Set mode switch to storage scan.
9. Set manual-address switches to 0000 .
10. Hold down the start key.
11. Machine stops when an invalid character is detected in storage. The storage position in error is shown in the storage-address display unit. The B-register displays the contents of the storage position in which the error is detected.
12. Locate the control card in which the invalid character is punched and remove it from the program deck.
13. Correct the error by punching a new control card and inserting it in the program deck.
14. To restart, a complete card runout and start reset is necessary.

Patching

The term patching as used in connection with FARGO, means linking a special subroutine or library program to the main FARGO program. The linkage is accomplished by branching from a specific patch point in Phase 3 (detail control cards) or Phase 2 (total control cards) to the patch subroutine, then branching back to the main FARGO program, after the subroutine is executed.
With a 4 k machine, at least 956 storage positions are available for storing patch subroutines. In some cases, depending upon the complexity of the report involved, more storage positions may be available. These subroutines must be entered into the machine in actual 1401 machine language. Therefore, a knowledge of 1401 programming or symbolic programming (SPS) is a prerequisite.
The specific patch point(s) for linking subroutines is determined by the programmer as he normally writes the FARGO instructions. These patch points are first recorded on Phase 3 and Phase 2 coding sheets as 4 - or 7-position no-op instructions. They are changed later to unconditional branch instructions after the exact locations of the patch subroutines are determined.

Phase 3 - Detail No-Op Control Cards

At each point in Phase 3 where branching to subroutines is required, make an entry on the coding sheet in columns 1, 2-6, and 7-10 as shown in Figure 4.

DETAIL CONTROL CARDS - PHASE 3																							
	Type of Detail Card		$\begin{gathered} \text { Special } 4 \text { or } \\ 7 \text { position } \\ 1401 \text { instruction } \\ \text { (actual) } \end{gathered}$		$\begin{array}{r} \text { Column Split } \\ \hline D=\text { Move Digit } \\ Y=\text { Move Zone } \\ \hline \end{array}$			$\begin{aligned} & E=\text { Edit } \\ & L=\text { Load Edit Control Word } \\ & M=\text { Move Constant Data } \\ & Z=\text { Move and Suppress Zeros } \\ & D=\text { Move Digit } \\ & Y=\text { Move Zone } \end{aligned}$						$\begin{aligned} & \text { E Edit } \quad \text { DETAIL CARD DATA } \\ & \mathbf{M}=\text { Move } \\ & \mathbf{Z}=\text { Move and Suppress Zeros } \\ & \mathbf{D}=\text { Move Digit } \\ & \mathbf{Y}=\text { Move Zone } \end{aligned}$									
	$c=$ Char. $z=$ Zone					Label	$\begin{gathered} \hline \text { Print } \\ \text { Positions } \end{gathered}$		Punch Positions		Data Card Columns			$\begin{gathered} \hline \text { Print } \\ \text { Positions } \end{gathered}$		PunchPositions							
		c c	- A	${ }_{8}$					From	To		From	From	To	From	To		***	To	From	To	From	To
	$23 \quad 5$	67	${ }^{8} 810$	1113	14	517	188	212	22.24	$25 \quad 27$	28.30	031	334	637	38.40	0.41	44.46	47 - 49	50	$53 \quad 55$			
-	$x \times 1 \times 1 \times$		V 01010	11		+11	1		1-1	1	1	11	11		1	1	\perp	1.1	\perp	1			
\bigcirc	11		11	+		1	1		1	1	1	1	1		1	1	1	1	1	1			

Figure 4

The D in column 1 is preprinted on the form. This indicates that branching to the patch subroutine is to occur during the detail portion of the program. The codes entered in columns $2-6$ specify the type of detail card for which the patch subroutine is to be executed. The entry, N 000 in columns $7-10$, is the no-op instruction. This is changed later to an unconditional branch instruction ($\underline{B x x x}$), with xxx indicating the actual machine address of the patch subroutine.

Phase 2 - Total No-Op Control Cards

At each point in Phase 2 where branching to subroutines is required, make an entry on the coding sheet in columns 1, 2, and 39-45 as shown in Figure 5.

The T in column 1 is preprinted on the form and indicates that branching to the patch subroutine is to occur during the total portion of the program. Any digit from 1 to 5 entered in column 2 specifies the program level during which the patch subroutine is to be executed. The entry N788788 in columns 39-45 is the no-op instruction. This must be changed later by an instruction in the patch subroutine to an unconditional branch instruction ($\underline{B} \times x \times b b b$), with xxx indicating the actual machine address of the patch subroutine and bbb indicating blanks.

The FARGO program, including the no-op control cards that cause no machine operation, is completely tested with a representative deck of detail data cards and approved before the subroutines are inserted into the program deck. This is necessary because any change in the FARGO control cards after the subroutines are inserted affects the storage locations of the
generated report program, requiring changes in the subroutine instructions.

After the FARGO-generated portion of the report is satisfactorily tested, execute a storage print-out and examine it to determine:

1. the end of the FARGO-generated program.
2. storage location of patch points (no-op detail and total control cards).
The end of the generated program is determined by locating the report-heading information that is loaded into storage immediately after the last instruction from the detail control cards. If report-heading information is not specified in Phase 4, the end of the generated program is the last $\underline{B E 66}$ instruction. This instruction appears following the last generated instruction for each type of detail card specified in Phase 3. Therefore, the end of the generated program is either the last position of the report-heading information (including blanks), or the last BE66 instruction. The area available for storing the patch subroutines extends from this point (storage location 2358 or lower, depending upon the complexity of the report involved) to 3313. Thus, with a 4 k machine, 956 storage positions or more are available for patch subroutines. Obviously, with machines of greater capacity, an additional amount of storage is available, starting with location 4000.

The storage location of each patch point is determined by visually scanning the storage print-out and finding the no-op instructions. Detail no-op instructions are identified by N000. Total no-op instructions are identified by $\underline{\mathrm{N}} 888888$. N 888888 was recorded on the coding sheet as N788788 but changed by the FARGO program to N 888888 .

Figure 5

Converting No-Op Instructions

The control card containing the detail no-op instruction (N000) may be removed from the FARGO deck and replaced with a control card containing an unconditional branch instruction Bxxx. Or, it may remain in the deck in which case the no-op instruction must be converted to an unconditional branch instruction $\underline{B} x x x$ by an instruction in the patch subroutine.

The control card containing the total no-op instruction (N788788) always remains in the FARGO deck. The no-op instruction, therefore, must be converted to an unconditional branch instruction Bxxxbbb by an instruction in the patch subroutine.

Coding the Patch Subroutines

As previously stated, a patch subroutine must be entered in storage in actual 1401 machine language. It may be written in symbolic language and assembled with an assembly processor as described in IBM 1401 Symoblic Programming Systems, Form C24-1480.

To branch back to the main FARGO routine after the subroutine is executed, the last instruction in each patch subroutine must be an unconditional branch instruction. For example, if a detail (Phase 3) no-op instruction (N000 converted to $\underline{B x x x}$) is in locations 1445-1448 as noted in the storage print-out, the last instruction in the subroutine used at this point must branch back to 1449. If a total (Phase 2) no-op instruction (N888888 converted to $\underline{B} x x x b b b$) is in locations 1201-1207 as noted in the storage print-out, the last instruction in the subroutine used at this point must branch back to location 1208.

If coded in SPS, the program is assembled after testing the FARGO portion of the job so that the origin address of the subroutine can be determined from the storage print-out. When the object program deck is created by the SPS assembly processor, the first two cards contain instructions to clear storage. These two cards must be removed from the deck. The rest of the object program deck (one instruction per card) can then be loaded directly behind Phase-4 control cards. Or it can first be condensed into multiple instructions per card with a condensing program as described in IBM 1401 Symbolic Programming Systems, Form C241480.

An example of a patch subroutine coded in actual machine language is shown in Figure 23-G. Another example of FARGO patching and linkage using SPS is shown in Figure 24.

NOTE:

If the 1401 does not have a Multiply-Divide optional feature, the Multiply-Divide Subroutines discussed in the 1401 Reference Manual can be patched into the FARGO program.

1. Combined FARGO Program and FARGO Control Cards
2. Last card in Phase 4 punched \# in columns 1 and 2
3. Patch subroutine(s)
4. Trailer card containing instructions to clear the read-in area, and branch to 3314 (C14).
5. Report Detail Data Cards

Figure 6. FARGO with Patch Subroutine

Loading the Patch Subroutines

All patch subroutines are loaded immediately after the Phase- 4 control cards. Normally, the last Phase- 4 control card is punched \# in column 1 of a blank card. To signal the FARGO program that patch-subroutine instruction cards are to be read into the system after Phase 4 is completed, this same card must also have a \# punched in column 2. This causes the program to clear the read-in area (locations 1-80), set a word mark in location 001, read the next card, and then branch to location 001.

After the last patch subroutine is loaded, a clear-and-branch trailer card must follow to clear the readin area, and branch to location C14 (3314), this being the starting location of the permanent FARGO program. The report detail cards immediately follow the trailer card.

The cards are run through the machine in the sequence illustrated in Figure 6.

Multiply-Divide Optional Feature

If the multiply-divide optional feature is installed in the 1401, direct multiplication and division can be specified with FARGO detail and/or total (Phases 3 and 2) control cards. Before the proper entries can be made in these coding sheets, however, several factors must be considered.

Multiplication

Whenever FARGO report specifications involve a multiplying operation, the first thing that must be decided is the size of the product to be developed. As explained in the ibm 1401 Data Processing System Reference Manual, A24-1403, this is done by adding 1 to the sum of the number of digits in the multiplier and the multiplicand. Assuming a 3 -digit multiplier and a 4 digit multiplicand, the size of the product can then be readily determined by the following formula:
3 (multiplier) plus 4 (multiplicand) plus $1=8$ (size of product).
The multiplier may be fixed; that is, not punched in the detail cards but set up as a constant with an identifying label in Phase 1 for later reference in

Phases 3 or 2. Or, it may be variable; that is, punched in each detail card or some specific type of card within a control group.
A fixed multiplier (example: 125) may be set up as a constant in one of several ways as shown in Figure 7.

A variable multiplier may be punched in known columns of all or specific types of detail cards.

Multiplicands are always variable and may be punched in known columns of all or specific types of detail cards. Or, they may be developed as a total in an accumulator and identified with an appropriate label. Although any 1-, 2 -, or 3 -character label may be used to identify an accumulator, many users of FARGO prefer to use labels corresponding to 407 counters; for example, $2 \mathrm{~A}, 2 \mathrm{~B}$, etc., $4 \mathrm{~A}, 4 \mathrm{~B}$, etc.

Experience has shown that this method of labeling accumulators often simplifies the conversion of report specifications from the 407 to the 1401.

Having determined the size of the product, set up a work area in storage for developing and retrieving the product. This is done by making two successive entries on the constants control cards coding-sheet (Phase 1) as shown in Figure 8.

CONSTANTS CONTROL CARDS - PHASE													
or	$\begin{gathered} \mathrm{No} \\ \mathrm{p} \end{gathered}$	tabel											
23			Column $1 \mathrm{C}=$ Constant with a word mark; $\mathrm{s}=$ Constant without a word mark Columns 2.3 $=$ Size of Constant Word Columns $4.6=$ Label to identify Constant Word Columns $7.72=$ Field for punching Constant Word (66 characters maximum)										
	03	12	\| $2151 \mid$										
		H	\| ل		ل								
c	03	F1X	(2151\|										
		or											
	0	$x \times x$	112151 (xocx standing for any three characters chosen by the programmer)										

Figure 7

Figure 8

The first entry, C (constant with a word mark), sets up the three high-order (left-hand) positions of the product work area into which the 3-digit fixed or variable multiplier will be moved later with a T or D control card.

The second entry, S (constant without a word mark), sets up the five low-order (right-hand) positions of the product work area, thus establishing an 8 -position product work area somewhere in storage.

Multiplying in Phase 3 with a Fixed Multiplier

Multiplying with a fixed multiplier (125) can be specified for all or any specific type of detail card by making the entries in columns $56-68$ as shown in Figure 9.

The first or second entry? (whichever one is used) zeros (resets) and adds the constant 125 in the three high-order (left-hand) positions of the product area.

Entry @ multiplies the 4-digit multiplicand punched in columns $31-34$ of the detail card by the fixed multiplier (125). When the multiplying operation is completed, the product is in the seven low-order positions of the product area, thus destroying the multiplier. The
fixed multiplier, however, is still available for subsequent operations from the area labeled 125 or FIX.

Following the multiply operation @, another entry moves the product either to print positions and/or to an accumulator identified by a constant label. If the product is to be punctuated, an edit control word is first loaded into the desired print positions. The prodduct is then moved to the same print positions with an E (edit) instruction.

Multiplying in Phase 3 with a Variable Multiplier

Multiplying with a variable multiplier can be specified for all or any specific type of detail card by making the entries in columns 56-68 as shown in Figure 10.

Entry ? zeros (resets) and adds the variable 3-digit multiplier punched in columns 21-23 of the detail card into the three high-order (MPR) positions of the product area.

Entry @ multiplies the 4-digit multiplicand punched in columns $31-34$ of the detail card by the variable 3 -digit multiplier punched in columns $21-23$ of the same card. The product is developed in the same manner as previously described.

Figure 9

Figure 10

Multiplying in Phase 2

Multiplying in Phase 2 (total control cards) always involves three labels. One label identifies a fixed- or group-multiplier. A second label identifies an accumulated multiplicand, while a third label identifies the product.

In establishing the size of the product, the same rule applies. However, because the multiplicand factor is an accumulated total, the maximum number of digits expected in the multiplicand must be predetermined before setting up a product work area.

Having determined the size of the product, make the appropriate C and S entries on the constants control cards coding-sheet (Phase 1) to set up the product work area.

During the Phase-3 (detail) portion of the program, a fixed multiplier set up with a constant control card, or a group multiplier punched in a specific detail card within the control group, is moved to the MPR portion of the product work area. The detail multiplicands are accumulated in a storage area labeled, for example, MCD. On any given total level in Phase 2, multiplication is specified by making the entry in columns $6-12$ as shown in Figure 11.

Entry @ multiplies the accumulated multiplicand labeled MCD (or any other label chosen by the programmer) by the fixed- or group-multiplier moved to the MPR portion of the product work area during Phase 3. The product is developed in the product work
area labeled PDT (or any other label chosen by the programmer). For example, in a payroll application, the multiplier might be labeled RTE (rate), the multiplicand HRS (hours), and the product GES (gross earnings). In another application, the multiplier might be labeled UNP (unit price), the multiplicand QTY (quantity), and the product AMT (amount).

Division

Whenever FARGO report specifications involve a dividing operation, a work area for accommodating the dividend and developing the quotient and dividend/ remainder must be set up in storage with constants control cards in Phase 1. The size of this work area must be equal to the sum of the number of digits in the divisor and dividend, plus 1. Assuming a 3-digit divisor and a 4-digit dividend, the size of the work area can be readily determined by the following formula:

3 (divisor) plus 4 (dividend) plus $1=8$-position work area.
Having determined the size of the work area, set up the area in sections to permit addressing specific locations of the quotient, dividend, and dividend/ remainder. These sections must be set up in proper sequence, which may vary, depending on the size of the dividend and the divisor. For the example used, the following analysis of the problem illustrates how this sequence is established.

Figure 11

PROBLEM ANALYSIS

$|||||||\mid$ 8-position area required for example used. $|||||||\mid$ Counting from the low-order position of the work area, draw a line to the left of the length of the divisor plus 1. 3 (divisor) plus $1=4$.

To the left of this line, a 4-digit quotient is developed.
The units position is the address of the quotient upon completion of the divide operation.

The 4-digit dividend with a plus sign in the units position is placed in the loworder positions of the work area with a zero and add instruction (?).
The high-order position of the dividend must be addressed when executing the divide instruction.
Quot. Div/Rem

The units position of the work area is the address of the dividend/remainder upon completion of the divide operation. With a 3-digit divisor, the dividend/remainder is always less than the divisor. Therefore, the position immediately to the right of the quotient is always zero.

To set up the three sections of the work area in the sequence established by the foregoing analysis, make three entries in the constants control card coding-sheet as shown in Figure 12.

Entry C (constant with a word mark) sets up the 4-digit quotient section of the work area.

The first entry S (constant without a word mark) sets up the high-order position of the dividend. This position is addressed when executing the drvme instruction.

The second entry S sets up the remaining low-order positions of the work area, thus establishing the 8position work area required for the example used.

In some problems, the analysis will show that the quotient area and the dividend area overlap; that is, the high-order position of the dividend extends further to the left than the low-order position of the quotient. Example: 5-digit dividend, 2-digit divisor.

> Quot. ${ }^{\mathrm{D} / \mathrm{R}}$
> $|\underline{\mathbf{x}}| \mathbf{x}|\mathbf{x}| \mathbf{x}|\mathrm{x}| 0|\mathbf{x}| \mathbf{x} \mid$
> Dividend
> $||||\mathbf{x}| \mathbf{x}| \mathbf{x}| \mathrm{x}| \mathrm{x} \mid$

In such cases, the work area is set up in four sections as shown in Figure 13.

Other variations are presented later in this manual under Half-Adjustments of Products and Quotients.

Figure 12

Figure 13

Dividing in Phase 3 with a Fixed Divisor

Assuming that the fixed divisor (3 digits) is set up in storage with a label fix, and the 4 -digit dividend is punched in detail card columns 21-24, the divide instructions are recorded in detail control cards Phase-3 coding-sheet as shown in Figure 14.
Entry ? zeros (resets) and adds the dividend punched in columns 21-24 in the four low-order positions of the work area placing a plus sign in the units position, if the dividend is positive.
Entry \% addresses the high-order position of the dividend, divides it by the fixed divisor, and develops a 4 -digit quotient in the high-order positions of the work area labeled QNT.
Following the divide operation, another entry moves the quotient to print positions and/or to accumulator identified by a constant label. If the quotient is to be punctuated, an edit control word is first loaded into the desired print positions; the quotient is then moved to the same print positions with an E (edit) instruction.

Dividing in Phase 3 with a Variable Divisor

Dividing with a variable divisor can be specified for all or any specific type of detail card. Assuming that the 4 -digit dividend and the 3 -digit divisor are punched in columns 21-24 and 25-27, respectively, the
entries are made in columns $56-68$ as shown in Figure 15 .
Entry ? zeros (resets) and adds the dividend punched in columns 21-24 in the four low-order positions of the work area placing a plus sign in the units position, if the dividend is positive.
Entry \% addresses the high-order position of the dividend, divides it by the divisor punched in columns 25-27, and develops a 4 -digit quotient in the highorder positions of the work area labeled QNT placing a sign in the units position of the quotient.

Dividing in Phase 2

Dividing in Phase 2 (total control cards) involves an accumulated factor that may be either the dividend or the divisor. Once the sizes of these factors are known, appropriate C and S entries, as previously described, are made on the constants control cards cod-ing-sheet (Phase 1) to set up the work area.
Assume that the accumulated factor developed in Phase 3 (detail portion of the program) under the label AMT (amount) is to be used as the dividend. The divisor is either a fixed- or a group-divisor, properly identified with any label chosen by the programmer. On any given total level in Phase 2, division is specified

Figure 14

Figure 15
by making the entries in columns $6-12$ as shown in Figure 16.

Entry ? zeros (resets) and adds the accumulated amount (AMT) in the low-order positions of the work area (D / R).

Entry \% addresses the high-order position of the dividend (DIV), divides it by the divisor (xxx), and develops the quotient in the high-order positions of the work area labeled QNT.

Assume that the accumulated factor developed in Phase 3 under the label QTY (quantity) is to be used
as the divisor. The dividend is either a fixed- or a group-dividend properly identified with any label chosen by the programmer. On any given total level in Phase 2, division is specified by making entries in columns 6-12 as shown in Figure 17.

Entry ? zeros (resets) and adds the fixed- or groupdividend (xxx) into the low-order positions of the work area (D/R).

Entry \% addresses the high-order position of the dividend (DIV), divides it by the accumulated quantity (QTY), and develops the quotient in the highorder positions of the work area labeled QNT.

Figure 16

Figure 17

Half-Adjustments of Products and Quotients

Products and/or quotients may be half-adjusted (rounded) by adding 5 to the position in the product or quotient immediately to the right of the wanted result. If the position to which the 5 is added stood at $5,6,7,8$, or 9 , a carry occurs to the units position of the wanted result, thus rounding the product or quotient by adding the carry-over 1. If the position stood at $0,1,2,3$, or 4 , the carry does not occur and the product or quotient is not adjusted. This procedure is often used to round out results to the nearest cent.
The following examples illustrate.
Product Adjustment
Assume a 4-digit multiplicand (with two decimals) and a 3 -digit multiplier (all decimals).

EXAMIPLE
Rule for placing the decimal point in the product:
34.85 The sum of the number of decimal

Product $\quad \frac{\times .125}{4.35}$ positions in the multiplicand and $1 / 2$ adjust $\quad 500 \quad$ of decimal positions in the product.

Rounded Product ${ }^{4.36}$ Dropped decimals
PROBLEM ANALYSIS
||||||||| 4-digit multiplicand plus 3-digit multiplier plus $1=8$-position work area.
MPR
$|\mathbf{x}| \stackrel{ \pm}{\mathbf{x}} \stackrel{\mathbf{x}}{\mathbf{x}}||||\mid$ 3-digit multiplier area (label MPR).
125
PRODUCT \pm
$|0| x|x| x|x| x|x| x \mid$
$\underline{0} 04.35625$
Ł Units position of developed product (label PDT). Upon completion of multiply operation, sign in this position must be moved to the units position of Constant 500 (label RND).
500 RND with sign must then be added into the 3 low-order positions of the developed product.
ADJ PDT Units position of wanted product.

To set up the three sections of the 8 -position work area (MPR, ADJ, PDT), the constant 500 (RND), and an edit control word (ECW) to edit the adjusted product, five entries are made in the constants control cards coding-sheet as shown in Figure 18.

Characters \&CR in the edit control word are not required if the products are always positive. The zero (0) to the left of the decimal point suppresses all insignificant zeros to the left of the decimal point, and the $\&$ causes a space between the units position of negative amounts and CR symbols. Examples of edit printing:

$$
\begin{gathered}
.09 \\
4.36 \\
15.08 \\
.07 \mathrm{CR} \\
8.39 \mathrm{CR} \\
29.06 \mathrm{CR}
\end{gathered}
$$

To make proper entries on the coding sheets for this example, base the specifications on the following assumptions.

1. Multiplication is to be accomplished for all detail data cards (Phase 3).
2. Multiplier is punched in columns $21-23$, with an X punch in column 23 if negative.
3. Multiplicand is punched in columns $31-34$, with an X punch in column 34 if negative.
4. Adjusted product (positive or negative) is to be edited and printed in print positions 101-109, with no sign if positive, and CR symbols if negative.
To accomplish item 4, make the following entries in addition to those required to perform the basic multiplication.
5. Move the plus or minus sign from the units position of the developed product to the units position of the constant RND 500.
6. Add RND with sign to the low-order positions of the developed product (PDT).
7. Move the sign from the units position of PDT to the units position of the adjusted product (ADJ).
8. Load edit control word (ECWbb0.bb\&CR) to print positions 101-109.
9. Edit and print ADJ in print positions 101-109.

Seven entries are required in various columns of detail control cards (Phase 3) coding-sheet as shown in Figure 19.

Figure 18

Figure 19

Quotient Adjustment

Assume a 6-digit dividend (with two decimals) and a 3-digit divisor (with no decimals).

```
EXAMPLE
            0034.856 \longleftarrow-Extended quotient adjusted to 34.86 by
    125\longdiv{4357.120}}\mathrm{ adding 5 to the units position.
            375
            607 Rule for placing the decimal point
                500 in the quotient:
                \frac{1000}{712}\mathrm{ (end of actual}
                    dividend)
                625
                870 (dividend
                extended)
            750
            \overline { 1 2 0 } \text { (end of}
                division)
```

PROBLEM ANALYSIS

Figure 20

Figure 21

FARGO General Program Operation and

1401 Core-Storage Organization

The following table describes in summary the sequence of events occurring during the loading of the combined FARGO program decks and the control cards punched from the coding sheets.

[^0]
FARGO Report Examples

Register of Earnings and Deductions

This report will be listed on blank paper. Specifications include the following operations:

1. Report and Field Headings with overflow and page numbering.
2. Minor and Intermediate Controls.
3. Group-indication of control fields.
4. Addition and Subtraction (two types of detail data cards).
5. Three minor totals, three intermediate totals and three final totals. All amounts listed and totalprinted will be edited.
Report format and completed FARGO coding sheets are shown in Figures 22-A to 22-E. An example of the finished report is shown in Figure 22-F.

Remittance Statement and Voucher Check

Statement and voucher check will be prepared on preprinted inverted forms. Statement portion of form provides for listing of debit and credit accounts payable items (4 types of detail data cards punched 1-4 in column 7), total printing of date, vendor number, and an edited statement total with floating \$.
Voucher check provides for date, vendor number, check number, and edited check amount with floating $\$$ on one line. This is followed by a space and 3-line printing of name, address, and city read into storage from a card punched - (11-punch) in column 7. A fourth line address, when required, is read into storage from a trailer address card punched \& (12-punch) in column 7. Name and address cards precede detail data cards.

Specifications include punching of a summary card for both valid and void (overflow) checks. The summary cards, including those punched for void checks, will be used to prepare check registers and for check reconciliation.
Valid checks are printed and summary punched with FARGO instructions. Void checks are printed and summary punched with instructions from a patching subroutine.

Format of Remittance Statement and Voucher Check and completed FARGO coding sheets are shown in Figures 23 -A to 23 -G. Patch subroutine card format is shown in Figure 23-H. Examples of statements and checks are shown in Figure 23-J.

international business machines corporation

FARGO REPORT SPECIFICATIONS - Phases 4 and 1
PROGRAM IDENTIFICATION

REPORT HEADING CONTROL CARDS - PHASE 4

H	ט	Two Cards (one line)			Card 1 $=$ Print Positions 1-66; Card $\mathbf{2}=$ Print Positions 67-132												Sequence Number			
1	2	3	5.	10	15	20	25	30	35.	40	45	50	55	60	65	68	777888			
H																		\bigcirc		01

\square CONTROL BREAK CONTROL CARDS - PHASE 1

CONSTANTS CONTROL CARDS - PHASE 1

FARGO REPORT SPECIFICATIONS • Phase 3

DETAIL CONTROL CARDS - PHASE 3																								
	$\begin{gathered} \text { Type of } \\ \begin{array}{c} \text { Detail } \\ \text { Cord } \end{array} \\ \hline c=\text { Char. } \\ z=\text { Zone } \end{gathered}$	Special 4 or 7 position 1401 Instruction (actual)		Column Split		$\begin{aligned} & E=\text { Edit } \\ & L=\text { Load Edit Control Word } \\ & M=\text { Move Constant Data } \\ & \mathbf{Z}=\text { Move and Suppress Zeros } \\ & \mathbf{D}=\text { Move Digit } \\ & Y=\text { Move Zone } \end{aligned}$					$\begin{aligned} & E=\text { Edit } \quad \text { DETAIL CARD DATA } \\ & M=\text { Move } \\ & z=\text { Move and Suppress Zoros } \\ & D=\text { Mooe Digit } \\ & Y=\text { Move Zone } \end{aligned}$						$\begin{aligned} & \text { A }=\text { Add; } S=\text { Subtract } \\ & @=\text { Multiply; } \%=\text { Divide } \\ & ?=Z \text { Zero Add; }:=\text { Zero Subtract } \\ & D=\text { Move Digit; } Y=\text { Move Zone } \\ & M=\text { Move } \\ & Z=\text { Move and Suppress Zeros } \\ & \hline \end{aligned}$					Sequance		
				$\begin{aligned} & D=\text { Move Digit } \\ & Y=\text { Move Zone } \end{aligned}$		La	$\begin{gathered} \begin{array}{c} \text { Print } \\ \text { Positions } \end{array} \\ \hline \end{gathered}$		$\begin{aligned} & \text { Punch } \\ & \text { Positions } \end{aligned}$		Data Card Columns		$\begin{gathered} \text { Print } \\ \text { Positions } \end{gathered}$		$\begin{gathered} \text { Punch } \\ \text { Positions } \end{gathered}$		Data Card Columns							
	$\begin{array}{\|l\|l\|l\|} \hline \stackrel{\circ}{\circ} & \begin{array}{c} \text { card } \\ \\ \hline \end{array} & \text { cols. } \\ \hline \end{array}$	P A	B	\downarrow From	To		From	To	From	To	\downarrow ***	To	From	To	From	To	\downarrow \| \downarrow ***	To	From	To				
	23.5	$78 \quad 1011 \quad 13$		$1415 \quad 1718 \quad 20$			25.27	$28 \quad 303$	$31 \quad 33.34 \quad 36$		3738 40	41.43	44	47495	50		565759	60.62	$63 \quad 65$	6868	69707172	$7778{ }^{80}$		
-	07242	11	1	11	1	2 EICIM	01215	013	11	11	E 01716	01810	01215	01315	1	11	A $*$ 米 $* *$	01810	-	E\|A1I		,	10	
D	$01714 z$	11	11	11	-	L EICIW	0.416	01576	11	11	$E * 1 * 1 *$	01810	01416	01516	-1	1	$A * * *$	4810	1	$W\|P\| I$	Sp ${ }^{\prime}$		20	
	0.7142	-11	11	11	1.1	L ELCW	$0 \cdot 315$	01415	11	1	E O1216	01810	01315	01415	1	1	A * $* * * *$	01810	1	D\|E	I		5.	0
	0.7142	-11	11	0174	9.810	EICW	01416	01576	11	11	$E * 1 * 1 *$	0810	01416	01576	1	11	* * $*$ *	01810	11	W\|P		s\|p/	50	40
0	1	11	11	11	11	1	11	1.1	11	11	11	11	11	1	1	1	1	1 -	11	1		5	50	
D	1	11	1.1	11	11	11	\perp	1	11	11	11	$1 \perp$	11	11	1	11	1	1	1	1.		5	60	
-	1	11	11	11	11	11	-	11	11	1	11	11	11	1	11	-	11	1	-11	1		5	70	
\bigcirc		11	11	11	11	11	11	1.	1	11	11	1.	11	-	-	- 1	1	-	-	-		5	80	
-	1	1	11	11	11	11	11	\perp	11	11	11	$1 \perp$	11	11	1	1	11	1	1	1		5	- 0	
D	11	11	11	11	11	1	1	1	1	1	11	1.	11	1	1	$1 \perp$	1	$1 \cdot 1$	11	1	1	5	00	
-	1	1	1	11	11	11	11	-	11	11	11	11	$1 \perp$	11	11	11	11	11	1.1	-	1	5.	10	
D	1	11	11	11	11	1	11	11	11	11	11	11	11	11	1	11	1	11	11	11		5	20	
\bigcirc	11	11	11	11	11	11	11	1	1	11	11	1	1	11	11	11	11	11	11	1		5.	310	
\bigcirc	1	11	11	11	11	11	11	11	11	11	11	11	11	11	1	11	11	11	11	11		5	0	
-	1	11	11	11	1	11	11	11	11	11	11	11	1	11	11	11	11	11	11	11	1	5	50	
\bigcirc	11	11	11	11	11	1	11	11	11	11	11	11	11	11	1.1	11	11	11	1	1	1	5.	60	
-	11	11	1.	11	11	11	11	11	11	11	1.	1	11	11	11	11	1	11	1	11	1	5	70	
-	11	11	1 1	11	11	11	11	11	1.1	11	11	11	11	1.1	1.1	11	1 L	11	11	11	1	5	8.0	
D	11	11	1.1	11	11	11	11	11	11	L1	1	11	11	11	11	11	11	$\llcorner 1$	11	11	1	5	- 0	
D	1	11	11	11	11	11	11	11	1.1	1	11	11	11	11	\ldots	11	11	11	11	11	1	5	00	
					1	1	+1.	1														5	10	

INTERNATIONAL BUSINESS MACHINES CORPORATION
REPORT Apgister of E ingandadeduction IBM 1401 DATA PROCESSING SYSTEM FARGO REPORT SPECIFICATIONS
poocrames or I. f hin am
PROGRAM IDENTIFICATION

112149 | 112479 |
| :--- |
| 73377570 | DATE $12 / 15 / 61$ Page 4 of 4

Figure 22-F. Register of Earnings and Deductions Report

IBM 407, 408, 409,1403 AND 1404 PRINTER SPACING CHART

IBM

INTERNATIONAL BUSINESS MACHINES CORPORATION
REPORT ftmittrue Atatemantand Obueker Check IBM 1401 DATA PROCESSING SYSTEM

FARGO REPORT SPECIFICATIONS

- Phases 4 and 1

IBM

international business machines corporation

							FARGO REPORT SPECIFICATIONS - Phase 3										DATE $12 / 10 / 6 /$				Page 3 - of 6			
DETAIL CONTROL CARDS - PHASE 3																								
	Type of Detail Card	$\begin{gathered} \text { Special } 4 \text { or } \\ 7 \text { position } \\ 1401 \text { Instruction } \\ \text { (actual) } \\ \hline \end{gathered}$		Column Split		$\begin{aligned} & \mathbf{E}=\text { Edit } \\ & \mathbf{L}=\text { Load Edit Control Word } \\ & M=\text { Move Constant Data } \\ & \mathbf{Z}=\text { Move and Suppress Zeros } \\ & \mathbf{D}=\text { Move Digit } \\ & Y=\text { Move Zone } \end{aligned}$					$\mathrm{E}=$ Edit \quad DETAIL CARD DATA$M=$ Move$z=$ Move and Suppress Zeros$D=$ Move Digit$Y=$ Move Zone						$\begin{aligned} & \text { A = Add; } \mathrm{S}=\text { Subtract } \\ & @=\text { Multiply; } \%=\text { Divide } \\ & ?=\text { Zero Add; }!=\text { Zero Subtract } \\ & =\text { Move Digit; } \mathbf{Y}=\text { Move Zone } \\ & n=\text { Move } \\ & \text { L = Move and Suppress Zeros } \\ & \hline \end{aligned}$					Sequence Number		
	$\begin{aligned} & \mathrm{c}=\text { Char. } \\ & \mathrm{z}=\text { Zone } \end{aligned}$			$\begin{aligned} & D=\text { Move Digit } \\ & Y=\text { Move Zone } \end{aligned}$			$\begin{gathered} \hline \text { Print } \\ \text { Positions } \end{gathered}$		Punch Positions		Data Card Columns		$\begin{gathered} \text { Print } \\ \text { Positions } \end{gathered}$		Punch Positions		Data Card Columns							
			B	From	To	From	From	To	From	To	$\sqrt{\text { *** }}$	To	From	To	From	To	$\sqrt{* * *}$	To	From					
	$23 \quad 56$	78	1113	15.17	8	22.24	25.27	8.30	31.33	34	38 _40	1	44.46	7.49	50	3	5657	- 62	365	,				
																	M01011	01015		Ew			010	
	* A L L	B K1011	it wa		tp PK	P1 (2991).	This	is the	startin	t		paych	pbп).	11		1	11	1	1			- 20	
-	010172		11	L		11	11	11	1.1	- 」	1.1	11	L1	11	$1 \perp$	11	M 01018	$0_{1}{ }^{3} 11$		VMIE			$\bigcirc^{-1} 3$	
	010172			1		1	$1 \perp$			11	11	11	11	11	11	1	M 01312	01513		$D \mid D$			${ }^{4}$	
-	0.017 z			11		1	-1	11	11	11	11	11	-	11	11	11	MO 514	01713	11		SP'		${ }^{-1} 50$	
-	80.0172			1		11	11	1	11	1.	11	11	11	11	11	11	$\ln 0,312$	O1513		T 1 LL	SPI		0.0	
-	010175			11	11	I\| $D \mid A$	0115	0119			E 01018	-1911	01115	-1/19	11	11	1					5	070	
-	017 c		$\perp 1$	1		- 1	11	11	-	1	20112	0115	01319	01214	-1	11	1	11	1	-			$\bigcirc 80$	
-	$0.017 c$			11	11	Lecir	01216	01315	11		E0311	0317	01216	01315	11	11		11	\ldots	L			090	
D	01017 c		11	1.1		L1	11	11	1		m01017	-017	01416	01416	11	11	-1	11		11	1		100	
-	0017 C			11		- Excı ${ }^{\prime}$	0419	0558	11		**	01317	9419	01518	11	11	A* * $* *$	01317	1.1	$T T^{1}$	S\|P			110
	$20017 c$			11		$L I\|D\| A$	01115	0119	1	11	E01018	-1111	이 15	01119	L	11	1	11	1	11			12	
0	$00^{0} 7 \mathrm{c}$	- 1		\perp		1.				11	20.12	0115	이지1	$0 \cdot 1214$		1	\perp	-	\perp	1			130	
-	$2.01017 c$	L		11	,	LEC\|I	${ }^{-1} 216$	01315	11	1	01311	01317	01216	O1315	11	11	1	11	1	1	1		1.40	
D	$20.017 c$			+1		LI	1	11	11	1.1	m 01017	$0 \cdot 97$	41416	0,416	1	1	1	1	1	L			150	
-	$0.017 c$		1	1		E, C_{1}	01419	01518			* ${ }^{*}$ \| $*$	01317	01419	0151	1	1	* * $*$	01317	1	TIOIT	SIPI		1.0	
-	301076	L		11		$L I D \mid A$	- 01115	01119	-		E9018	0111	O115	0119	1	11	11	11	\perp	11			170	
-	$0,017 c$						11				20112	-1115	01211	01214	11	1	1	1.	\perp	L			180	
	$0 \cdot 017 c$		-1-1	1	1	LECS1	01316	01415	11	11	E 01311	01317	01316	0.415	11	11	11	11	1.1	11	1		1.0	
	301017 C	1		11	11	1.1	11	11	11	1-1.	M 0.017	01017	01416	94.6	$\square 1$	11	$\perp \perp$	11	」	$1 \perp$	1		200	
	301076	-	1	y 0,06	0.37	7 EE1	0,4,9	0,518	1		E $* * *$	0,317	10419	1, 518		1		01317		TOMT	SP1 1		2.1	

international business machines corporation

IBM
nternational business machines corporation
REPORT Shenttance statement and Fouchar Check IBM 1401 DATA PROCESSING SYSTEM
FARGO REPORT SPECIFICATIONS • Phase 2
TOTAL CONTROL CARDS - PHASE 2

Program: Patch Subroutine for Remittance Statement and Voucher Check PAGE 6 of 6
Programmer: F. Johnson Date: 12/10/61

Figure 23-G. Patch Subroutine Instructions

PATCH SUBROUTINE CARD FORMAT

NOTES: Card columns $1-4, \$-11$, and $60-80$ are prepunched as recommended in the IBM 1401 Reference Manual, Form A24-1403, under PROGRAM LOADING routine.

Underscored positions indicate position of word marks set by leader cards 1,2 and 3.
Card columns 5-7 and 12-18 are key punched from the IBM 1401 Program Chart (Figure 23-G).

After loading the patch subroutine the clear and branch card clears read-in area 1-80 and branches to location C14 (3314). This is the address of the first instruction in the permanent FARGO program.

Figure $23-\mathrm{H}$. Patch Subroutine Card Format

Figure 23-J. Remittance Statement and Voucher Check

Figure 23-J. (2)

Page No. $L_{1}^{L} L_{2}$ of \qquad
Programmed by
Date
Identification ${\underset{76}{1}+1.1}_{L_{80}}^{1}$

LINE	COUNT66	8 LABEL	$\begin{array}{\|l\|} \hline \text { OPERATION } \\ 14 \\ \hline \end{array}$	(A) OPERAND			(b) Operand				40 COMMENTS $\quad 55$	
				${ }_{17} \quad$ address $\quad \left\lvert\, \begin{aligned} & \pm \\ & 23\end{aligned}\right.$	CHAR. ADJ.	$\|\underset{27}{\underset{2}{2}}\|$	$\begin{array}{\|l\|l\|} \hline \text { 28. } & \text { ADDRESS } \\ \hline & \pm \\ \hline \end{array}$	CHAR. $A D J .$	$\left\|\begin{array}{l\|} \frac{2}{2} \\ 38 \end{array}\right\|$			
$0,1,0$			C TIL	$33, \ldots$								
$0,2,0$		$*, E, X, A, M, P$	L EI	O,F, F, A,RIG	O P	A	T, C, H, N, C	N, D		L		N,K,A,G,E, U, S, I, NG, S, F, S
$0,3,0$		*,	$\cdots!$, , , , , ! !								
$0,4,0$			O, R, G	$1,4,4,5$,			!					, PA, T, $H_{1}, P, 0,1, N, T, 1$
$0,5,0$			B,	$D, P, A, T, C, i+1$!					, , N, K, T, O, D, P, A, T,,H,
$0,6,0$			$O R, G$	$1,2,0,1,1$, 1, , , !					$T_{1} P_{1} T_{1} C_{1} H_{1} P O_{1} N_{1} N_{1}$
$0,7,0$			B,	$T, P, A, T, C, H:$								$, 1, N, K, T, 0, T, P, T_{1}, H_{1}$,
$0,8,0$	0.3		D, C	*			1					$, H R E E, B, L, A, N, K, S, 1$
$0,9,0$			O, R1G	2, 4, 0, 0),			$!$, $, G, 1, N, P, A, T, C, H, A, R, E, A$
$1,0,0$		D, P, A, T, C, H										N, S, T, R, U, C, T, $1,0, X, S, F, T, R$
1, 1, 0				$1 \rightarrow$	ail		Pat ah, Lubtori	ane				E, $, A, I, L, P, A, C, H, 1,1$
1, 2, 0			1	1								$S, \cup, B, R, O, U, T, N, E_{1}, \ldots$
$1,3,0$				1.1			1					
1, 4, 0			B.	$1,4,4,9$,			1 i					, $, B, A, C, K, T, O, A, R, O$
$1,5,0$		T,P,A,T,C,H	1	1)i			! !					, N, T, R, U, C, T, 1, O, N, S, F, O,R
$1,6,0$				1								, O,TA, $L_{1}, P_{1} A_{1} T_{1} C_{1} H_{1}, 1,1$
$1,7,0$				$\rightarrow \sqrt{10} t$	10		h seubraritep					, U $B, N, 0, U_{1} T_{1}, N_{1} E_{1}, 1,1$
$1,8,0$				1.1								
1,9,0			B, i	1,2,0,8,			1, , , , :					, R, $B, A, C, K, T, O, F, A, R, G, 0$
$2,0,0$			$E N D$	3,3,1,4								L, EA, R, A ND, B, R, A, C, H

NOTES: Entry 040 -- ORG 1445 specifies the location of NO00 (detail No-Op) in the FARGO generated program.
Entry 050 -- B DPATCH will be converted during assembly to an actual machine language instruction (in this case BMOO) and loaded over No00 in 1445-1448. Entry 060 -- ORG 1201 specifies the location of N 888888 (total No-Op) in the FARGO generated program.
Entry 070 -- B TPATCH will be converted during assembly to an actual machine language instruction and loaded over N888 followed by three blanks (entry 080). Entry 090 -- In this example, the patch area begins in location 2400 converted to M00 during assembly. The last instruction in each subroutine must branch back to the proper point (B1449 and B1208) in the FARGO generated program.
Entry 200 -- The END card must branch back to 3314 to the first card read instruction of FARGO.

Index

Automatic-Carriage-Control Operation 15
Coding Sheets 8
Coding the Patch Subroutines 19
Constants Control Cards 11
Control-Break Control Cards 10
Converting No-Op Instructions 19
Detail Control Cards 11
Detail No-Op Control Cards 17
Dividing in Phase 2 24
Dividing in Phase 3 with a fixed Divisor 24
Dividing in Phase 3 with a Variable Divisor 24
Division 22
Example method of identifying types of cards when a digit is punched in one column and an X in another 49
Example of FARGO patching and linkage using SPS 48
Examples of Card-Type Coding 37, 46, 47
FARGO General Program Operation and 1401 Core- Storage Organization 30
FARGO Report Examples 31
Field-Headings Control Cards 8
General Description
10, 32,
Group Indication 10, 32, 33,
Half-Adjustments of Products and Quotients 26
Horizontal Method of Total Printing 13
Introduction 5
Inverted Forms 31, 46, 47
Loading the Patch Subroutines 19
Master-Report Control Card 10
Multiplication 20
Multiply-Divide Optional Feature 20
Multiplying in Phase 2 22
Multiplying in Phase 3 with a Fixed Multiplier 21
Multiplying in Phase 2 22
Multiplying in phase 3 with a Variable Multiplier 21
No-Op Control Cards 17, 18
Operating Instructions 16
Overflow 10, 46
Page Numbering 10
Patch Subroutine Card Format 45
Patch Subroutine for Remittance Statement and Voucher Check 44
Patching 17
Phase 1 (Form No. X24-6556) 10
Phase 1 (Form No. X24-6557) 11
Phase 2 (Form No. X24-6558) 13
Phase 3 (Form No. X24-6559) 11
Phase 4 (Form No. X24-6556) 8
Problem Analysis-Division 23
Problem Analysis--Product Adjustment 26
Problem Analysis-Quotient Adjustment 28
Product Adjustment 26
Program Halts 10
Quotient Adjustment 28
Register of Earnings and Deductions 31, 37
Remittance Statement and Voucher Check 31, 46, 47Report Specifications6, 32, 38
Report-Heading Control Cards 8
Rounding Products and Quotients 26
Rules-Detail Control Cards 11, 13
Rules-Field-Headings Control Cards 8
Rules-Report-Heading Control Cards 8
Rules-Total Control Cards 14
Specifications for Register of Earnings and Deductions Report 32
Specifications for Remittance Statement and Voucher
Check 38
Split-Control Fields 10
Total Control Cards 13
Total No-Op Control Cards 18
Total Printing 13
Vertical Method of Total Printing 13

[^0]: Code in
 Column 77 Program Operation and Core-Storage Organization
 $0 \quad$ FARGO Phase 1 program is loaded temporarily into locations 2618-3313.
 FARGO program is loaded permanently into locations 3314-3699 during Phase 1.
 1 Phase-l control cards coded M, B, C, and S modify the permanent FARGO program, load up to 50 constants into storage beginning with location 333, and set up a table in locations 3700-3999 indicating the location of each constant.
 2 FARGO Phase-2 program is loaded temporarily into locations 2306-3313, canceling out the temporary FARGO Phase-1 program.
 $3 \quad$ Phase-2 control cards coded T generate total instructions and load them into locations immediately following the constant area.
 4 FARGO Phase-3 program is temporarily loaded into locations 2301-3313, canceling out the temporary FARGO Phase-2 program.
 5 Phase-3 control cards coded D generate detail instructions and load them into locations immediately following the total instructions. The last instruction generated in Phase 3 will be BE66.
 6 FARGO Phase-4 program is loaded into locations 3023-3313, canceling out a portion of the temporary FARGO Phase-3 program.
 7 Phase-4 control cards coded H load the report-heading information into locations immediately following the last BE66 instruction generated in Phase 3. The constant table in locations 3700-3999 set up during Phase 1 is cleared and the Phase 4 control cards coded F load the field-headings information into this area.
 Location 2358 (or less) up to location 3313 is available for storing patch subroutines.

