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Preface

Construction of a text on computers usually takes one of two directions: (1)
general computer philosophy stressing engineering design, scientific-commercial
applications, and a variety of related subjects such as Boolean algebra, switching
circuit theory, and so forth, or (2) the total organization of a single computer
(possibly an imaginary one) with the tacit assumption that one learns an entire
range of computers by studying a particular one.

There is a variety of excellent books on general computer philosophy (see
“Reading Reference”). However, we have decided to take the latter tack and
generate a book on one specific computer whose popularity makes its choice a
logical one. '

Authorities on computing and computers differ in their opinions as to how
material of this nature should be taught. An example of this is the disagreement
about the necessity of flow charting, the distinction between coding and pro-
gramming, and so forth. At this early stage of computing education there is far
too little experience to rely upon, and consequently, each individual expresses
his beliefs as he feels them to be correct.

The materials in this text are what we believe to be a satisfactory approach
to the pedagogical problem of computer education. Perhaps, with the passage
of time, our opinions will change as computers develop towards goals now
considered in the realm of fantasy.

For the following two reasons, the machine chosen for this total organization
study is the IBM 1620 computer: First, the 1620 is a physically small machine
of good computing power whose size makes its availability to a university, and
subsequently to a student, more practical; second, the 1620 is a computer that
uses the decimal system of arithmetic. It is our belief that a “first” machine
should be decimal in its internal arithmetic. This is not to say that a decimal
machine is superior to a machine using another arithmetic system, or that the
converse is true. There is much to be said for each one. However, the problems
of learning basic machine concepts are difficult enough without confusing the
situation by adding the complexities of a new or less commonly used type of
arithmetic.

It is also our belief that adequate study of this single computer prepares one
for further study on a whole host of other machines, including computers using
binary arithmetic internally.

There is a general concept, romantically propagated by the uninformed,
which assumes that programmers are deep, silent thinkers given only to esoteric
intellectual pursuits. Such is not the case at all. The qualities that make for a
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competent programmer are too elusive to pinpoint. There is, however, one
quality that is common to all programmers: an astonishing ability to absorb
repeated failure. This is because the “first-time correct” program is extremely
rare, and the word “first” can be changed to “second,” “third,” and “fourth”
with the statement still true.

Each person becomes proficient in his art by a study of the classic problems
pertaining to his field. The Euclidian geometry has had its theorems proven
time and again by students of mathematics. The budding musician masters
his art by practicing scales. The beginning programmer obtains one form of
proficiency by analysis and coding of certain “classic” problems. Many of these
have been incorporated here in a chapter consisting solely of problems.

There are many techniques that make a program not only run, but run
efficiently, and one of the tasks of the novice programmer is to discover these
tricks for himself. To the professional programmer, the old saw, “Time is
money,” takes on a whole universe of meaning.

We make no assumptions about the educational background of the reader,
nor do we assume that a 1620 is available for program testing. It is quite
possible, and in some machine installations most practical, for the programmer
never to see or physically operate the computer. Although it is desirable to see
the results of one’s efforts in operation, it is not mandatory for instruction
purposes.

It is true that the majority of the examples in the chapter of problems assume
some technical background, and the chapters dealing with floating point and
Fortran also imply a scientific utilization of the machine. However, the com-
puter may be studied for commercial applications as well as scientific with
equal facility. The text, because of the subject matter, must be technical in its
presentation, but the nonscientifically oriented reader should be able to assimi-
late the material.

The student is to be constantly reminded of two “theorems” associated with
computer programming which, unfortunately, have more truth than humor:

Theorem 1. Every program has at least one error. Theorem 2. Every program
can be shortened.

It is difficult to describe how many people have assisted us in the preparation
of this book, and to thank each of them in the manner that they deserve would
require at least one additional volume.

However, we would be remiss in our responsibilities if we did not mention
those individuals whose tireless efforts reached Herculean proportions. These
people are: Edward Sinanian and Charles Stewart of IBM General Products
Division, San Jose, California, for their review of the manuscript and their
particular attention to the chapters on symbolic programming and Fortran;
Frank Beckman and Kenneth King for encouraging the use of this book in a
classroom situation at the Watson Scientific Computing Laboratories, Columbia
University; Sarah Snook, IBM, New York, Guy Magnuson, IBM, Chicago, and
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Richard King, IBM, Los Angeles for their suggestions based upon geographical
needs; James W. Perry, Numerical Analysis Laboratory, University of Arizona,
Alfred T. Chen, Engineering Mathematics Department, University of Louisville,
and Frederick Way, 111, Associate Director of Computing Center, Case Institute,
for their professional and much needed comments on the original manuscript;
Frances Perrone for her typing, and typing, and typing, and typing.

To all of these people we say simply “Thank you very much.”

FAIR LAWN, NEW JERSEY D. N. LEESON

JuLy 4, 1962 D. L. DIMITRY
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Chapter 1

Introduction to Data
Processing Systems

Data processing is a series of planned actions and operations upon
information to achieve a desired result. The operations are performed
according to precise and strict rules of procedure. The procedures and
devices used are what constitute a data processing system. Recently,
“data processing” has become a generic term for “computing.”

The computer offers to man a means to increase his productivity. This
is accomplished in five ways. (1) Computers through their speed alone
enable man to increase his output per hour. (2) Computers enable man
to make use of many mathematical methods that were previously im-
practical due to the lengthy and time-consuming calculations involved.
Imagine attempting to solve a system of 50 simultaneous linear equations
on a desk calculator. The computer solves this problem in minutes.
(3) Computers have enabled man to develop new mathematical techniques
to solve problems previously thought to be beyond the realm of practical
mathematics. (4) Computers increase accuracy. Extensive analysis has
shown that the human will make at least 5 errors in 100 hand calculations,
making him at best 95 percent effective. The computer closely approaches
100 percent accuracy (99.99+ percent). When an error does occur, it is
usually sensed, and its presence is indicated to the operator. (5) Com-
puters increase productivity by encouraging intelligent planning.

1



2 Introduction to Data Processing Systems

The need for data processing systems is widespread. Technological
growth and advances have been increasing at a rapid and frantic pace.
The demands for information are enormous. The aircraft industry,
manned missiles, an invulnerable defense network, and design engineering
all require an amount of data processing that staggers the imagination.

The 1940’s were a great development period for data processing systems.
The principles of electronics were applied to data processing equipment,
and the first “stored program” computer was developed. At the start,
data processing machines were directed by machine instructions that
were programmed on interchangeable control panels, cards, or paper
tapes. Detailed instructions telling the machine what to do next had
to be wired in or read in as the work progressed. Data put into the
machine were processed according to the instructions contained in these
preset devices. Only in a limited fashion could the computer deviate
from the fixed sequence of its program.

It soon became apparent that these programming techniques inhibited
the speed and performance of the computer. To give the computer
greater latitude in working problems without operator assistance, scien-
tists proposed that the computer store its program in a high-speed
internal memory or storage unit. Thus, it would have immediate access
to instructions as it called for them. With an internal storage system,
the computer could process a program in much the same way that it
processed data. It could even be made to modify its own instructions as
dictated by developing stages of work. To meet this requirement, high-
speed storage devices were developed and the “stored program” com-
puter was born.

All data processing involves at least three basic considerations: (1) the
data or input to the system, (2) the orderly planned processing of the
input within the system, and (3) the end result or output from the
system. ) ‘

The input may consist of any type of data: commercial, scientific,
statistical, engineering, etc. Processing is carried out by a pre-established
sequence of instructions that are followed automatically by a computer.
These instructions are the result of an analysis of the desired output
by a programmer. He then originates a series of instructions to the
computer to produce the end result. The processing terminates with
the end result, which is recorded for further processing or for reports
or data files.

To meet these three basic considerations, data processing systems are
composed of four types of functional units: input, output, storage, and
processing devices. They are designed to process business and scientific
data at electronic speeds. In addition automatic self-checking devices
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insure great accuracy. The key element of these systems is the processing
unit, a high speed electronic computer.

INPUT AND OUTPUT DEVICES

The data processing system requires, as a necessary part of its informa-
tion handling ability, devices that can enter data and instructions into
the system and record data from the system. These functions are per-
formed by input-output devices linked directly to the system.

Input devices read or sense the coded data or instructions that are
recorded on a prescribed medium and make this information available
to the cemputer. Output devices record or write information from the
computer on an output medium. Specific input-output devices relating
to the 1620 Data Processing System, will be discussed in Appendix V.

STORAGE (MEMORY)

Storage devices are capable of receiving information, retaining informa-
tion, and making this information available. All data and instructions
must be placed in storage before they can be processed by the computer.
Each storage location holds a specific unit of data. Information is read
into storage by an input device and is then available for processing.
Each location, position, or section of storage is numbered so that the
stored data or instructions can be readily located by the computer as
needed.

When information enters a storage location, it replaces the previous
contents of that location. However, when information is taken from a
storage location, the contents remain unaltered. Thus, once located in
storage, the same data may be used many times. The computer requires
time to locate and transfer information to and from storage. This is
called access time.

The size or capacity of storage determines the amount of information
that can be held within the system at any one time.

CENTRAL PROCESSING UNIT

The central processing unit is the control center of the entire data
processing system. It is divided into two parts: (1) the arithmetic-logical
unit and (2) the control section.

The arithmetic-logical unit performs such operatlons as addition, sub-
traction, multiplication, division, comparing, transferring, and storing.
It also has logical ability—the ability to test various conditions encountered
during processing and to take one of two or more alternate paths, depend-
ing on the result of the test.
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The control section directs and coordinates the entire computer system
as a single multipurpose machine. These functions involve controlling
the input-output units and the arithmetic-logical operation of the central
processing unit. This section directs the system according to the procedure
(stored program) developed by its human programmer.

STORED PROGRAMS

Each data processing system is designed to perform only a specific
number and class of operations. It is directed to perform each operation
by an instruction. The instruction defines a basic operation to be per-
formed and identifies the data, device, or mechanism needed to carry out
the operation. The entire series of instructions required to complete a
given procedure is known as a program.

For example, the computer may have the operation of multiplication
built into its circuits in much the same way that the ability to add is
built into a simple desk calculator. There must be some means of
directing the computer to perform multiplication just as the adding
machine is directed by depressing keys. There must also be a way to
instruct the computer where in storage it can find the factors which are
to be multiplied.

Further, the comparatively simple operation of multiplication implies
other activity that must precede and follow the calculation. The multi-
plicand and multiplier must be read into storage by an input device.
Once the calculation is performed, the product may be recorded by an
output device.

Any calculation, therefore, implies reading in data, locating factors in
storage, perhaps adjusting the result, and perhaps writing out the com-
pleted result. Even the simplest portion of a procedure involves a
number of planned steps that must be precisely specified to the computer
if the procedure is to be accomplished.

An entire procedure is composed of these individual steps grouped
in a sequence that directs the computer to produce a desired result.
Thus, a complex problem must first be reduced to a series of basic
machine operations before it can be solved. Each of these operations
is coded as an instruction in a form that can be interpreted by the
computer. An instruction in this form is called a “machine language in-
struction.” The instructions are placed in toto, in the storage unit as a
stored program.

The possible variations of a stored program provide the data processing
system with almost unlimited flexibility. One computer can be applied
to a great number of different procedures by simply reading in or loading
the proper program into storage.
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DATA REPRESENTATION

Communication with a computer system requires that data be reduced
to a set of symbols that can be read and interpreted by data processing
machines. The symbols differ from those easily recognizable by man,
because the information to be represented must conform to the design
and operation of the computer. The choice of these symbols and their
meaning is a matter of convention on the part of the designers. The
important fact is that information can be represented by symbols, which
become the language for communication between people and machines.

Information to be used for computer systems can be recorded on
various media. We shall discuss two of them, cards and paper tape.
Data are represented on cards by the presence or absence of holes in
specific locations of the card. In a similar manner, small holes along
a paper tape represent data.

CARDS

The punched card is the most widely used media for communication
with machines. Information is recorded as small holes punched in
specific locations in a card of standard size.! Information represented
(coded) by the presence or absence of holes in specific locations can
be read or sensed as the card is moved through a card-reading device.
Reading or sensing the card is basically a process of automatically con-
verting data recorded as holes to an electronic language and entering
the data into the computer.

The punched card provides 80 vertical columns with 12 punching
positions in each column. The 12 punching positions form 12 horizontal
rows across the card. One or more punches in a single column represent
a character. The number of columns used depends on the amount of
data to be represented. The standard card code uses one or more of the
12 possible punching positions of a vertical column to represent a numeric,
alphabetic, or special character. The 12 punching positions are divided
into two areas, numeric and zone. The first 9 punching positions from
the bottom of the card are the numeric punching positions and have an
assigned value of 9, 8, 7, 6, 5, 4, 3, 2, and 1, respectively. The remaining
3 positions, 0, 11 (synonymously termed X), and 12, are the zone posi-
tions. The 0 position is considered to be both a numeric and zone position.

The numeric characters 0 through 9 are represented by a single punch
in a vertical column. For example, 0 is represented by a single punch
in the 0 zone position of the column. A numeric 5 is represented by a
single punch in the 5 position of the column.

The alphabetic characters are represented by two punches in a single

1 The standard-size card is 738 by 3%iin.
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vertical column, one numeric punch and one zone punch. The alphabetic
characters A through I use the 12 zone punch and a numeric punch
1 through 9. In this fashion the letter A is punched as 12-1, B as 12-2 . .
I as 12-9. The alphabetic characters ] through R use the 11 zone punch
and a numeric punch 1 through 9, respectively. The alphabetic characters
S through Z use the 0 zone punch and the numeric characters 2 through 9,
respectively (see Fig, 1.1).

0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ +.)-$%/, (=03
i i v
pn ] l zone punchine 44 ZONE
[} 00000 b i 0pgenssosdio q[0jo0000000000000000000
1 CERERT 3 VussOa nyy HRINNROUESRTNNNNIINNBRTIANS
" 1 1 IERERRREK ) RERRRRRRRIRERRRRRRE!
122 222222 2 2222223324429 (2h2222222222222222222
1333 3333333 sl 3 333333043043 3/33333333333333333333
uut]L IYYYIIIY) g salddqddeaaaaadDedDeqDiDdaJissnsnansnsnsnsntnsn
555555 555555555 5555 sssl§d84s5555544549s sfs JOIST PUNCHING s 5555555
unsuﬂ 6666656666 sscssfddeces 566666446446 66 6666666666666666666
ERRRRRRRT SRR RRRRRRRARRY SR RRRRRRT AR RRRRAT A RRRRARRERRAEL U RRRRRRRRRRRARARARAE!

sssssssss(idsasssnssssaslpssnsnasfiqesnsss llllllnuluul nm]l ssassssssssnsansee
9999999999 l!!!!999!!!!!lg!il!"!!ﬂﬂl!!!l1!9!!!!!"!!!!!!!!! 9999999999999989899

T23 45070 INIRRMERNINIRNRANENIAANIRUNSRIRBANAVUSMTANNSIRVUBANURNBNQOUERININIRINENTIANN

Fig. 1.1 Standard Punched Card Codes.

Special characters are represented by one, two, or three punches in
a single column of the card and consist of punch configurations not used
to represent numeric or alphabetic data.

PAPER TAPE

Punched paper tape serves much the same purpose as the punched
cards. Data are recorded as a special arrangement of punched holes
along the length of a paper tape. Paper tape is a continuous recording
medium as compared to cards which are fixed in length.

Reading or sensing paper tape is basically a process of automatically
converting data recorded as holes to an electronic language and entering
the data into the computer.

Data are recorded (punched) and read as holes located in eight parallel
channels along the length of the paper tape. One column of the eight
possible punching positions (one for each channel) across the width of
the tape is used to code numeric, alphabetic, special, and functional
characters.
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The lower four channels of the tape (excluding the feed holes) are
labeled 1, 2, 4, and 8, and are used to record numeric characters.. The
numeric characters 1 through 9 are represented as a punch or punches
in these four positions and the character “0” is represented as a punch
in the zero position. The sum of the positional values indicates the
numeric value of the character. For example, a hole in channel 1 is used
to represent a numeric 1; a combination of a 1 and 2 punch represents
a numeric 3, The X and 0 channels are similar to the zone punches in
cards. These channels are used in combination with the numeric channels
to record alphabetic and special characters (see Fig:.1.2).

EL—

x reeoo

0o—— 1000000000000

CHECK— DO OO e o0 00 o (1
® reeoo o0 o0
FEED—— 1000000000000 000000000
4s— 1000 o000 o000

2 ‘000 o0 (X} [ 1 ] (X ]
1—— 10000 06 0 0 00 0 0 O o

Fig. 1.2. Character Coding for Eight-Channel Paper Tape.

To check that each character is recorded correctly, each column of the
tape is punched with an odd number of holes. A check hole must be
present in any column whose basic code (X, 0, 8, 4, 2, 1) consists of
an even number of holes. Internal checking devices in the 1620 investigate
each vertical array of punches to assure that this condition has been
satisfied. :

A punch in the E/L (end-of-line) channel is a specific function char-
acter used to mark the end of a record on the tape. The tape feed code
consists of punches in the X, 0, C, 8, 4, 2, and 1 channels and is used
to indicate blank character positions. A paper tape reader automatically
skips over areas of tape punched with the tape feed code. ,

Figure 1.2 shows the 1620 coding for all characters on an 8-channel
paper tape.

COMPUTER CHARACTERISTICS
MACHINE CYCLES

All computer operétions take place in fixed time intervals called machine
cycles. These time intervals are measured by pulses from an electronic
clock in the system. Within a machine cycle, the computer can perform
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a specific machine operation. The number of machine cycles required
to execute a single instruction depends on the nature and function of
the instruction.

SERIAL AND PARALLEL OPERATION

Computers are classified as either serial or parallel depending on the
method the computer uses to perform arithmetic. Essentially, all arith-
metic is performed by addition.

In a serial computer, numbers to be added are considered one position
at a time (the units position, tens position, hundreds, and so on) in the
same way that addition is done with paper and pencil. Whenever a carry
is developed, it is retained temporarily and then added to the sum of
the next higher order position.

The time required for serial operation depends on the number of
digits in the factors to be added. Serial addition is shown in Table 1.1.

Table 1.1
Ist STEP 2ND STEP 3rD STEP 4tH STEP
Augend 1234 1234 1234 1234
Addend 2459 2459 2459 2459
Carry 1 1
Sum 3 93 693 3693

In a parallel computer, addition is performed on complete data words
(a “word” is made up of two or more storage positions). The words are
combined in one operation, including carries. Any two data words,
regardless of the magnitude of the numbers contained in the words, can

be added in the same time. Table 1.2 shows parallel addition.

Table 1.2
Augend 00564213
Addend 00000824
Carry 1

Final Result

00565037
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FIXED AND VARIABLE WORD LENGTH

“Fixed word length” and “variable word length” are terms used to
describe the unit of data that can be addressed (referenced) and proc-
essed by a computer system.

In fixed word length operation, information is handled and addressed
in units or words containing a predetermined number of positions. The
size of a word is designed into the system and normally corresponds to
the smallest unit of information that can be addressed for processing
in the central processing unit. Records, fields, characters, or factors are
all manipulated in parallel as words.

In variable word length operations, data-handling circuitry is designed
to process information serially as single characters. Records, fields, or
factors may be of any practical length within the capacity of the storage
unit. Information is available by character instead of by word.

Operation within a given data processing system may be “entirely of
a fixed word nature, entirely variable, or a combination of both. In the
1620 Data Processing System, data are stored and processed as single
characters. All arithmetic and data-handling operations are done se-
rially, character by character.



Chapter 2

Introduction to the 1620
Data Processing System

The 1620 Data Processing System (Fig. 2.1) is an electronic digital
computer designed for technological and commercial applications. The
heart of the system is the 1620 Central Processing Unit (Fig. 2.2) which
houses the arithmetic and logical units, the magnetic core storage
(20,000 positions), and the console panel and typewriter. The central
processing unit is augmented by the 1622 Card Read-Punch and/or
the 1621 Paper Tape Reader and the 1624 Paper Tape Punch, depending
on whether the system is to process punched cards, paper tape, or both.

Expansion of the basic system is possible by increasing the size of the
magnetic core storage in increments of 20,000 positions until a maximum
of 60,000 positions is reached (Fig. 2.3). A variety of special devices
and additional instructions is available to increase the power and flex-
ibility of the system.

Data and instructions entered into the system are placed in core
storage as decimal digits. Each core storage position can be referred to
individually and can store one digit of information. The addressing
system provides for the selection of any digit or group of digits in stor-
age. The 1620 can also process alphabetic characters and special char-
acters such as §, X, —, +, etc. A

The arithmetic and logical section of the computer is directed by the
stored program. The 1620 has more than 30 different operations in its

10
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Fig. 2.1. The 1620 Data Processing System.

11
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Fig.

Introduction to the 1620 Data Processing System

2.3. Additional Core Module with Housing.
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repertoire. Among these is a powerful set of branching instructions that
make logical decisions based on the results of tests performed on a
system of indicators and switches.

Addition, subtraction, and multiplication operations are performed by
a table look-up method described in Chapter 4. Addition and multi-
plication tables are stored in specified areas of storage and are auto-
matically referred to when one of the arithmetic operations is being
performed. Division is accomplished by a division simulating program
or by an automatic division feature.

The 1620 is a variable field computer in the complete sense of the
term. Not only can data fields be of different lengths, but these same
variable length fields can also be factors in all arithmetic operations
without editing for size or position. Accuracy of results is insured by
automatic internal checking that operates when data is being entered,
read out, or processed by the system.

The console of the 1620 consists of control keys, switches, indicator
panel, and typewriter. The control keys and switches are used for man-
ual or automatic operation of the system. The console panel provides
“a visual indication of the status of various registers and control circuitry
within the computer. The typewriter is used as an output device, for
direct entry of data and instructions into core storage, and for permanent
logging of the operator’s intervention during the execution of a program.

Information is entered into the system by the input devices: the 1621
Paper Tape Reader, the 1622 Card Read-Punch, and the typewriter.
Eighty-column cards are read at the rate of 250 cards per minute. The
paper tape reader reads an 8-channel paper tape at the rate of 150 char-
acters per second. Speed of typewriter information entry depends upon
the operator’s ability.

The recording of processed information is accomplished by the output
devices; the 1622 Card Read-Punch, the 1624 Paper Tape Punch, and
the typewriter. Cards are punched at the rate of 125 80-column cards
per minute; the tape punch punches information in an 8-channel paper
tape at the rate of 15 characters per second; and the typewriter types
at the rate of 10 characters per second.

Program preparation is simplified by the use of two major program-
ming systems. These are the Symbolic Programming System (SPS) and
Fortran (from “formula translation”), both of which will be discussed
in detail.

SPS, which simplifies program writing by reducing the clerical work
involved, assembles a program written in mnemonic or symbolic nota-
tion by converting the symbols to machine language instructions and
assigning locations in core storage for both data and instructions.

Fortran translates a problem expressed as a series of algebraic state-
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ments into a complete machine language program, generating the step-
by-step instructions necessary to solve the problem. A program written
in Fortran for the 1620, after minor modifications, can also be translated
and executed on other computers such as the IBM 7090, 1401, and many
others.

INTERNAL DATA REPRESENTATION
DIGITS

Each core storage position in the 1620 has a unique address and can
store one digit of information. Each digit is in a binary coded decimal
(BCD) form represented by a 6-bit numeric code. In this code, six posi-
tions of binary notation (0 or 1) are used and each of these positions is
called a bit (binary digit). Each position has one of two conditions:
either a bit is present represented by a “1” or it is not present represented
by a “0.” The six positions are divided into three groups: one check
bit (C bit), one flag bit (F bit), and four numeric bits with the assigned
values of 8, 4, 2, and 1 (table 2.1).

Table 2.1
CHECK FLaG
Bit Bt NuMmEeRIicAL Bits
C F 8 4 2 1

The value of a decimal digit is the sum of the bits present in the
numeric portion of the 6-bit code. Only bit combinations whose sum
is 9 or less are used. Using the notation that a “1” indicates the presence
of a bit and a “0” indicates the absence of a bit, we would represent the
decimal digit 6 as 0110 considering only the numeric positions. The
digit 8 is represented as 1000.

The check bit is used for parity checking purposes. A parity check
is a built-in method of checking the validity of coded information. This
code checking occurs automatically within the computer as the data
processing operations are carried out. Each character in the computer
represented in the 6-bit numeric code must consist of an odd number
of bits. During processing, a character with an even number of bits
causes the machine to signal a parity error. When a digit is read into
the computer by an input device, it is automatically converted to the



Introduction to the 1620 Data Processing System 15

6-bit numeric code and the check bit is automatically added if it is
required. The flag bit, to be discussed shortly, is counted in parity
checking. The check bit alone represents the digit 0.

Table 2.2 shows the 6-bit numeric coding of the decimal digits 0
through 9.

Table 2.2
CueARACTER CODING

C F 8 4 2 1
0 1 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 0
3 1 0 0 0 1 1
4 0 0 0 1 0 0
5 1 0 0 1 0 1
6 1 0 0 1 1 0
7 0 0 0 1 1 1
8 0 0 1 0 0 0
9 1 0 1 0 0 1

The flag bit is used in three ways:

1. Field Definition: The high-order position of a numeric field is defined
by the presence of a flag (the terms “flag” and “flag bit” are used
synonymously). Thus the number 537 would appear in storage with
a flag bit in the core position containing the 5. A flag is denoted by
a horizontal line above a digit, 537.

2. Sign Control: The presence of a flag in the units position of a nu-
meric field indicates that the field is negative. If no flag is present
in the units position of a field, the field is taken to be positive. The
number ~537 would appear in storage as 537.

8. Carries: Flags present in certain digits of the addition table (see
Chapter 4) are interpreted as carries in arithmetic operations.

A record mark character (%) is a nondecimal digit with C-8-2 or F-8-2
‘coding. It is primarily used in input and output operations and in record
transmission within the computer. The novice programmer will find
that a good portion of his errors occur in attempting to do arithmetic
operations on record marks.
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A numeric blank has C-8-4 coding. It is used for the control of blank
columns when cards are being punched, and, like the record mark, can-
not be used in arithmetic operations. Unlike the record mark, it may not
even be present in an instruction.

Alphabetic information is represented in the computer in a double-
digit form. Two core storage locations are required to represent one
alphamerical character. The two digits are referred to as the zone digit
and the numerical digit. The two digits representing one alphamerical
character must be located in adjacent core positions, and the zone digit
must always occupy an even-numbered core position.

Table 2.3 shows the double-digit representation of all the alphameric
characters.

N

Table 2.3
ALpHAMERIC DATA REPRESENTATION

Zone Digit Zone Digit

['*Numerical Digit Numerical Digit
!—Character l_ Character

0f 1 53 ¢ L
00 b (blank) 54 M
03 . 55 N
04 ) 56 (0]
10 + 57 P
13 $ 58 Q
14 * 59 R
20 - 62 S
21 / 63 T
23 s 64 U
24 ( 65 A%
33 = 66 w
34 @ 67 X
41 A 68 Y
42 B 69 Z
43 C 70 0
44 D 71 1
45 E 72 2
46 F 73 3
47 G 74 4
48 H 75 5
49 I 76 6
50 0 77 7
51 J 78 8
52 K 79 9
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FIELDS

A field consists of a number of consecutive digits which are considered
as a group in arithmetic and internal data transmission instructions. A
field is always addressed (referenced) by its low-order digit, which oc-
cupies the highest numbered core storage position of the field. A field
is processed serially from right to left into successively lower core stor-
age positions until a digit with a flag is sensed. The digit with the flag
is treated as part of the field, but no more digits are processed.

The absence of a flag in the low-order position of a field (the addressed
digit) is unconditionally interpreted as a positive field of data.

One-digit fields of data are not allowed. The smallest allowable data
field is two digits.
Figure 2.4 illustrates the processing of a field.

I Field l
XX « « « v v X
Direction Processed
Flag Bit Addressed Digit
(End of Field) (Low-Order Position of Field)

Fig. 2.4. Field Processing.

RECORDS

A record consists of a field or fields of data related to input-output
operations. A record is addressed at its high-order digit, which occupies
the lowest core storage position of the record. Records are processed

Record Mark Record Mark

X X[#[X « o o x|X « . .x[X . . . X|#]X x

Field Field Field
| -— —-— -~ |
-— Record >
———

Arrows Indicate Direction of Processing

Fig. 2.5. Record Processing.
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serially from left to right (high-order to low-order digits). A record
mark (}) defines the end of a record and is located in the highest num-
bered core location.

Figure 2.5 illustrates the processing of a record as compared to the
processing of a field.

NUMERICAL AND ALPHAMERICAL MODES

The input-output instructions of the 1620 cause data to be read or
written in either a numerical or alphamerical mode. The 1620 has no
way to determine if an element entering the system is being entered as
numeric data or alphabetic data unless the appropriate mode is indicated
in the input-output instruction.

In the numeric input mode each character read in is represented in
storage by one decimal digit. Alphabetic and special characters will not
enter storage correctly as they require a double-digit representation.
Only the record mark (i), numeric blank, and the digits 0 through 9
will be represented in storage correctly. In the numeric output mode
each character in storage is represented as a single character on the
output medium. Data in storage in the double-digit code will not be
converted to its single character representation.

In the alphameric input mode each input character is automatically
converted to its double-digit representation and is stored in memory as
two decimal digits. In the alphameric output mode the double-digit
representation of data is automatically converted to single characters
which are then written on the output medium.

MAGNETIC CORE STORAGE

The storage medium utilized by the 1620 Data Processing System is
magnetic core storage. A magnetic core is a tiny ring of ferromagnetic
material a few hundredths of an inch in diameter. The outstanding
characteristic of the core is that it can be easily magnetized, and, unless
deliberately changed, it retains its magnetism indefinitely.

Many of these cores are strung on a screen of wires to form what is
called a core plane (Fig. 2.6).

By sending half the amount of current necessary to magnetize a core
through each of the two wires passing through the core in question we
can magnetize it. Note that no other core in the plane becomes mag-
netized by the current flowing through the two wires. Furthermore, by
reversing the flow of current through the wires, we can magnetize the
core in the other direction. Thus, depending upon the direction of the
current flow, a core can be either positively or negatively magnetized.
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1/2 Current

1/2 Current

Fig. 2.6. A Standard Core Plane.

Cores then can be controlled in two ways: by selecting a specific pair
- of wires, we can decide which core is to be affected; and by controlling
the direction of current flow, we can determine whether it is to be posi-
tively or negatively magnetized. We can now adopt a convention and
say that when a core is positively magnetized it is “on” or contains a
bit. If a core is negatively magnetized it is “off” and does not contain
a bit.

If we stacked six core planes vertically so that a vertical column con-
tained six cores, we could represent the 6-bit numeric coding used by
the 1620 for internal data representation. Each of the six core planes
assumes a specific value—one plane would be the C-bit plane, another
plane would be the F-bit plane, and another plane would be the 8-bit
plane, etc. Thus six vertical cores form a core storage position and can
represent any decimal digit through the 6-bit numeric code signified by
the status of the cores (positive or negative).

In the 1620, core storage is made up of 12 core planes. Thus one
vertical column contains two core storage positions. The top six core
planes represent all the even-numbered addresses, and the bottom six
core planes represent all the odd-numbered core addresses. Figure 2.7
shows the core array in the 1620.

Since all 12 core planes are read out simultaneously, any single core
storage address affects two adjacent core storage positions, one with an
even-numbered address and one with an odd-numbered address. Those
cores with a positive charge are read into a Memory Buffer Register
(MBR). The MBR is a two-position register into which both the odd
and even addressed digits are read from core. If the digit in core posi-
tion 00500 were addressed, the MBR would receive the digits from core
positions 00500 and 00501. If the digit in core position 00501 were ad-
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dressed, the MBR would again receive the digits from core positions
00500 and 00501.

Core storage positions are addressed sequentially from 00000 to the
highest numbered core storage address: 19999, 39999, or 59999. Address-
ing is cyclical in that position 00000 follows the highest allowable address
when incrementing, and precedes the highest allowable address when
decrementing.



Chapter 3

Basic Programming Concepts

Contrary to some popular belief, the digital computer is not a “brain.”
It does not yet possess the intelligence to think. The computer can do
nothing of its own volition, but must rely upon instructions supplied by
humans to perform a given task. Thus a communication between man
and computer is necessary. This communication takes the form of a
set of formal instructions with which we command the computer and
to which the computer responds. Once the computer has received its
instructions, it can perform its task at speeds measured in microseconds.
The combination of the human thought process and the fantastic speeds
at which computers operate form a powerful tool for industry and re-
search.

Chapters 5 through 9 are devoted to a complete detailed description
of all basic 1620 instructions. These instructions fall into five general
categories:

Arithmetic

Internal Data Transmission
Branch

Input-Output
Miscellaneous

GUs o =

The 1620 digital computer utilizes a 12-digit instruction which is
divided into three parts: a 2-digit operation (OP) code, a 5-digit P address
(P Operand), and a 5-digit Q address (Q Operand). Each of the 12 digits
making up an instruction is assigned a unique nctation so that easy

22
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reference may be made to any part of an instruction. The two digits
forming the operation code will be referenced as Oy and O;. The five
digits comprising the P address will be referenced as Py, P;, Py, Ps, and
Ps. Similarly, the five digits comprising the Q address will be referenced

as Q7’ QS) QQ: QlO, a-nd Qll'

Fig. 3.1 illustrates the format of a 1620 instruction.

Oo | O P2| P3| P4+ | P5 | Ps Q7| Qs | Qo | Qo | Qu

0) 4 P Address Q Address
Code

Fig. 3.1. Instruction Format.

The 2-digit operation code specifies which operation is to be executed.
Table 3-1 is a chart of all basic 1620 operation codes and their associated
mnemonics. Mnemonics refer to the alphabetic representation of opera-
tions codes used in the symbolic programming system (see Chapter 11).

The 5-digit P operand has many functions, depending on the instruc-
tion. It may represent the core location (1) that data is transmitted to,
(2) that data is transmitted from, (3) that the program branches to, or
(4) of data to be processed.

Likewise, the Q operand has many functions, depending on the
instruction. It may represent (1) the address from which data is trans-
mitted, (2) the input-output device that is employed, (3) the address of
data to be processed, or (4) the indicator that is interrogated.

The 1620 has an extremely powerful and flexible instruction repertoire.
Certain arithmetic and internal data transmission instructions are labeled
immediate. These instructions use part of the instruction itself as a data
field. The low-order position of the data field is the Q;; position of the
instruction itself. The immediate instructions greatly facilitate pro-
gramming and conserve storage locations by storing constants as part
of instructions.

The instructions that direct the 1620 are stored in the magnetic core
memory of the computer. The high-order digit (O,) of an instruction
must be located in an even-numbered core position. This restriction is
imposed by the workings of the internal circuitry of the computer, with
which we will not concern ourselves at this time. Suffice it to say that
this restriction is easily complied with,

An instruction is referenced by the core location of its high-order digit
(Op). Thus if we refer to the instruction at core location 00012, the
instruction we are referencing is made up of the digits in core locations
00012 to 00023, inclusive.
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Table 3.1
MNEMONIC CoODE
ARITHMETIC INSTRUCTIONS
Add A 21
Add Immediate AM 11
Subtract S 22
Subtract Immediate SM 12
Multiply M 23
Multiply Immediate MM 13
Compare C 24
Compare Immediate CM 14
INTERNAL DATA TRANSMISSION INSTRUCTIONS
Transmit ‘Digit TD 25
Transmit Digit Immediate TDM 15
Transmit Field TF 26
Transmit Field Immediate TFM 16
Transmit Record TR 31
BrANCH INSTRUCTIONS
Branch B 49
Branch No Flag BNF 44
Branch No Record Mark BNR 45
Branch on Digit BD 43
Branch Indicator BI 46
Branch No Indicator BNI 47
Branch and Transmit BT 27
Branch and Transmit Immediate BTM 17
Branch Back BB 42
InpuT-OUuTPUT INSTRUCTIONS
Read Numerically RN 36
Write Numerically WN 38
Dump Numerically DN 35
Read Alphamerically RA 37
Write Alphamerically WA 39
MISCELLANEOUS INSTRUCTIONS
Control K 34
Set Flag SF 32
Clear Flag CF 33
Halt H 48
No Operation NOP 41

The 1620 uses a 2-address instruction system. During normal operation,
program instructions are executed sequentially. For example, if we
start at core location 00000, the instructions at 00000, 00012, 00024, 00036,
and so forth, are executed in that order. This sequential execution of
instructions can be altered by the use of the branch instructions discussed
in Chapter 7.
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In a 2-address system both addresses may reference data. The 2-
address system is in contrast to a 1-over-1 addressing system, in which
part of the instruction itself is used to indicate the location of the instruc-
tion to be executed next. The 2-address system is, in many ways, a much
more powerful and flexible programming system.

In the discussion of the functions of the Q address, it was mentioned
that indicators may be interrogated. The 1620 has internal machine indi-
cators to facilitate the decision-making ability of the computer. The
three indicators of greatest importance are the following;:

1. High Positive (H/P). The High Positive indicator is turned on if the
result of an arithmetic operation is positive and not zero.

2. Equal/Zero (E/Z). The Equal Zero indicator is turned on if the
result of an arithmetic operation is zero.

3. Overflow. The Overflow indicator is turned on if certain overflow
conditions exist.

A more detailed discussion of the on-off status of the indicators is made
in the chapter on arithmetic instructions.

As each instruction is discussed, a formula for computing execution
time will be given. The following abbreviations are used.

D; = Number of digits, including high-order zeros, in the field at the

P address.

D¢ = Number of digits, including high-order zeros, in the field at the
. Q address.

D, = Number of positions compared prior to detection of a digit other
than zero.

R, = Number of digits, including the record mark, in the record at the
Q address.
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The Algorithms of Arithmetic

The heart of the hand calculator is the accumulator unit, which oper-
ates on the principle of the toothed gear. Addition is usually accomplished
by rotating the gear in one direction. As the gear reaches a maximum
position it flips an adjacent gear. In this way carries are propagated in
the addition process. Subtraction is accomplished by rotating the gear
in a direction opposite to that of addition. Multiplication can be con-
sidered as successive addition, and division as a process of iterative
subtraction. The 1620 has no accumulator and does not operate on
the principle of the toothed gear. Consequently, an alternate method of
performing the basic functions of mathematics must be used. The basic
operations of the 1620 are addition and multiplication, and certain areas
of core storage are reserved for addition and multiplication tables. These
operations are done serially, digit by digit, and the computer “looks up”
the result of an operation in these tables. Subtraction utilizes the addition
table but prepares the subtrahend digit before entry into the addition
table. This preparation takes the form of tens or nines complementation.
The process of division is discussed in a special chapter.

The addition table occupies core positions 00300-00399 (see Table 4.1).
Looking at this table, the reader will notice that the number 7 appears
at the following 8 locations: 00307, 00316, 00325, 000334, 00343, 00352,
00361, and 00370. The reader will also notice that a flagged 7 (7)
appears at core positions 00389 and 00398.

You have probably noticed that the sum of the digits in the units and
tens positions of the address is the digit located in that core position.

26 i
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Table 4.1

Add Table

Hig.hTOrder Units Position of Address

::5;:::‘ of o 1 2 3 4 5 6 7 8 9
0030 ol1 |23 |4 |5 |67 |89
0031 1.2 {3 |4 |5 |6 |7 |8]9]0
0032 213 |4 |5 |6 |7 |8f9|0]|T
0033 3|4 |56 |7 |8 |9]|0|T]|2
0034 41516 |7 |8 |9 |0|T]|2]|3
0035 s5l6 |7 1890|717 |2]|3 |4
0036 617 (8|90 |T |23 |33
0037 7 ' 8 |9 |0 |T 3|45 |¢
0038 819 |0 |T |2 3|32 |5 |8]|7
0039 910 |7 |2 |3 |45 |7 |8

It is also obvious in the case of the two flagged 7’s that the flag is present
for the purpose of propagation of carries. Addition is accomplished in the
1620 by literally attaching data digits to a machine-generated address of
003XX to form a 5-digit add table address. The answer is then “looked
up” in the add table.

As a further example note that the sum of the digits 4 and 2 is found
at table address 00342 or 00324.

The addition of two numbers that generates a carry-over produces
the following result: the addition table address generated by the adjacent
digits will be increased by 1.

If a field containing n digits is added to a field containing n + k digits
(k>0), k zeros are inserted automatically to make the fields of equal
length. These zeros are inserted one at a time by internal circuitry of
the 1620. They do not alter the field permanently. (See Fig. 4.1.)

The process of subtraction is almost identical with that of addition.
That is, an address of 003XX is generated with the data digits supplying
the missing positions of the address. However, the subtrahend digit is
inserted in the look-up address in its tens complement form on the first
cycle and in its nines complement form thereafter. If the addition table
yields a flagged digit, the address generated by the contiguous digits will
be increased by 1 (see Fig. 4.2).

Multiplication in the 1620 is also accomplished by combmmg the digits
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Fig. 4.1. Schematic Diagram of Add Operation.

to be multiplied into a table address. The multiplication table, which
occupies core locations 00100-00299 (see Table 4.2), does not yield
as obvious an algorithm as did the addition process.

The computer does not generate a base address of 001XX as might be
expected. Instead, the base address is chosen to be 00XXX. The multipli-
cand digit is inserted into the tens position of the base address. The
multiplier digit is routed through a special device called the doubler. The
doubler is an internal device that doubles a digit. Although the multiplier
digit enters the doubler as a single element, it leaves this unit as a 2-digit
number (see Fig. 4.3). After exit from the doubler, the tens digit of the
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number is incremented by 1 and is then routed to the hundreds digit
of the base address being formed. The units digit of the doubler’s effort
is routed to the units digit of the base address, and this completes the

construction of the multiplication table look-up address.

Unlike the addition process, the multiplication table look-up process
yields not one but two digits as the product of any two elements. These
are found at the table look-up address and the adjacent odd address one
position higher in core. Internal machine operation causes these digits
to be reversed and routed out to a product generation area (see Fig. 4.3).
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Table 4.2

Multiply Table

High-Order Units Position of Address

Positions of 0 1 2 3 4 5 & 7 8 9

Address
0010 oo f[ojojo|[ofjo{o]o]o
0011 ojo|1|{of2]0]|3|[0o]4]0
0012 o|lo 2|04 |06 0|80
0013 oo |3]|0]é6 |09 (o] 2]
0014 ojo 4|08 |l0of2]1]6]N
0015 ojo|5]o0fjo |15 |1]o0]2
0016 oo |s6|o]2]1]8 |1]4]2
0017 oo |7 |o]4 1|1 |2]8]2
0018 oo (8|06 1|4 |2]2]3
0019 ojo|9|ofs|1]7 |2]|6]|3
0020 oo folo]o|oflo jofo]o
0021 510|607 [o0o]|8 |0]9]|o0
0022 ol1v 2|1 |4 |16 |1 ]88
0023 541 |81 |1 |24 |2[7]2
0024 0|2 |4|2]|8 |22 |3 ]6]|3
0025 5/2 0|3 |5 |30 |4]5]|4
0026 0|3 |6|3 |2 (4|8 |4]|4]5
0027 503 | 249 |46 |5]|3]6
0028 0|4 | 8|46 |54 |6 |2]|7
0029 5 (4 |4 |53 6|27 ]1 |8

To the novice, this may seem like a good deal of wind and very little
storm. Popular belief may lead one to the idea that the computer is
intelligent enough to add 2 and 3, or multiply 5 and 6, without extensive
coaching. Unfortunately, in the present state of computer development,
the thinking machine is semifantasy, semifiction.

Some computers have accumulating units, as do hand calculators. But
the methods of arithmetic are generally performed by a cleverly arranged
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Fig. 4.3. Schematic Diagram of Multiply Operation.

sequence of electronic switching circuits rather than by the use of the
toothed gear principle.
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In general, it is not necessary for a programmer to know these arith-
metic algorithms. In the 1620, however, care must be taken not to store
information in the core area reserved for the addition and multiplication
table sections of memory. There is no internal circuitry to prevent
entry into this area or destruction thereof during program operation.



Chapter 5
The Anthmetic Instructions

Fundamentally, a computer is a calculator. Hence, the instructions
that perform arithmetic are among the most important in the repertoire of
commands. This chapter deals only with those arithmetic instructions
that are common to all 1620’s. Divide commands, which are not neces-
sary for a machine installation, are discussed in a later chapter. Special
division-simulating programs perform this operation in a variety of
ways: successive subtraction; approximation of a reciprocal by series,
followed by a multiplication; etc. The statement that “divide commands
are not necessary” does not imply that one may not divide with the
1620. Circuitry, which performs division under command, may not be
present in some machines, in which case one must resort to division
simulators called division subroutines. The choice to have division
command circuitry is made at each machine installation, and such a
choice is generally made with consideration of two factors: necessity
and funds. The difference between subroutine divide and command
circuitry is only one of speed, not accuracy.

Although speed of calculation is not the only factor under considera-
tion when one undertakes a computer survey, it is an extremely critical
one. The reader will notice that all timings of operations are given
in microseconds. It is this remarkable speed factor that makes a com-
puter so valuable.

Instruction: Add
Operation Code: 21
Symbolic Name: A
Description:

The data® that is located at the Q address (Q field data) is added
to the data that is located at the P address (P field data). The sum

1 Unless otherwise specified, the term “data” refers to a single item.
33
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replaces the P field data. The Q field data remains unchanged. A zero sum
retains the sign of the P field data. A sum other than zero retains the
sign of the larger valued field. If the number of digits in the Q field data
is less than the number of digits in the P field data, high-order zeros are
internally generated to make the fields of equal length. The generated
zeros do not alter the Q field data.

The addition process is terminated by the sensing of the flag over
the high-order digit of the P field data. The algebraic sign of the
result is indicated by the presence or absence of a flag in the units
position of the P field data after termination of the operation.

A correct answer may not be developed if the number of digits in
the Q field data exceeds the number of digits in the P field data. Only
the number of digits in the Q field data equal to the number of digits
in the P field data is used in developing the result. An invalid addition
is always obtained if the addition causes a carry beyond the high-order
position of the initial P field data. The carry is lost and does not affect
the field contiguous to the high-order digit of the P field data.

If either of the preceding two conditions is obtained, the Overflow
indicator will be turned on. Processing does not necessarily terminate.

On the console of the 1620 there are many switches that have two
settings: “on” and “off”. One of these, the Overflow switch, causes the
1620 to halt if the Overflow indicator is on and the switch is in the “on”
position. If the Overflow indicator is on and the switch is in the “off”
position, processing continues. If the Overflow indicator is off, the
switch setting has no effect upon machine operations.

If the result of the addition is positive, and not zero, the High/Pos-
itive (H/P) indicator will be turned on. The H/P indicator is turned
off if the result of an addition is negative or zero. The Equal/Zero (E/Z)
indicator is turned on if the result is zero and off if the result is not
zero, regardless of sign.

Execution time of addition varies according to the number of digits
in the P field data and also according to whether recomplementation
is necessary. Recomplementation is necessary if both the following
conditions exist:

1. The Q and P fields of data are of opposite sign.

2. The absolute value of the Q field data is greater than the absolute
value of the P field data.

Basic Execution Time in Microseconds: 160 + 80D,
Recomplementation Time in Microseconds: 80 (D, + 1)
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The following examples demonstrate (1) the proper form of the Add
command, (2) the action as a result of the command, (3) which indi-
cators are in the on status at the conclusion of the command, (4) the
time of execution including, where applicable, recomplementation time,
and (5) the validity of the algebraic result.

Example: 21 15002 10003

12962 ~—y
Core location 15002
before addition
16969

Core location 15002
after addition

Indicator Condition: H/P on
Time of Execution: 560 microseconds
Arithmetic Result: Valid

4007
Core location 10003 before
and after addition

Example: 21 00932 17962

0000010

Core location 00932
before addition

01526

Core location 17962 before
and after addition

0001516

Core location 00932
after addition

Indicator Condition: H/P on
Time of Execution: 1360 microseconds
Arithmetic Result: Valid

Example: 21 00917 01232
01 |
Core location 00917
before addition

03 |

Core location 00917

after addition
Indicator Condition: Overflow and H/P on
Time of Execution: 320 microseconds
Arithmetic Result: Invalid

0102 ~—
Core location 01232 before
and after addition
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Example: 21 10000 15000

0521 "“—"’"I 521

Core location 10000 Core location 15000 before
before addition and after addition
0000 —

Core location 10000
after addition

Indicator Condition: E/Z on
Time of Execution: 480 microseconds

Arithmetic Result: Valid

Example: 21 18053 19999
99999991 D 09

Core location 18053 Core location 19999 before
before addition and after addition
00000000

Core location 18053
after addition

Indicator Condition: Overflow and E/Z on
Time of Execution: 800 microseconds

Arithmetic Result: Invalid

Example: 21 15721 18982

012 — 00003

Core location 15721 Core location 18982 before
before addition and after addition

015

Core location 15721
after addition

Indicator Condition: Overflow and H/P on
Time of Execution: 400 microseconds

Arithmetic Result: Valid
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Example: 21 18999 17999

00012 ~———
Core location 18999
before addition

30010 ~———
Core location 18999
after addition

Indicator Condition: Overflow on
Time of Execution: 1040 microseconds

Arithmetic Result: Valid

Example: 21 00895 01026
0015 ————
Core location 00895
before addition

37

0000000022 ~—
Core location 17999 before
and after addition

15 —_—
Core location 01026 before
and after addition

0030
Core location 00895
after addition
Indicator Condition: All off
Time of Execution: 480 microseconds

Arithmetic Result: Valid

Instruction: Subtract
Operation Code: 22
Symbolic Name: S
Description:

The data that is located at the Q address (Q field data) is subtracted
from the data that is located at the P address (P field data). The differ-
ence replaces the P field data. The Q field data remains unchanged. A zero
result retains the sign of the P field data. The sign of a result, other than
zero, is determined by algebraic analysis of the P and Q fields of data.

The rules concerning validity of result in the subtract operation are
identical with those of addition. Execution time is also identical with
that of addition. Recomplementation is necessary if both of the following
conditions exist:

1. The Q and P fields of data are of like sign.

2. The absolute value of the Q field data is greater than that of the
P field data.
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Example: 22 00932 17932

0000010 -——I 01526 —
Core location 00932 Core location 17932 before
before subtraction and after subtraction

0001536 ~————|
Core location 00932
after subtraction

Indicator Condition: All off
Time of Execution: 720 microseconds

Arithmetic Result: Valid

Example: 22 15002 10003

12962 4007
Core location 15002 Core location 10003 before
before subtraction and after subtraction

08955 —
Core location 15002
after subtraction

Indicator Condition: H/P on
Time of Execution: 560 microseconds
Arithmetic Result: Valid

Example: 22 00917 01232

01 | 0102 —
" Core location 00917 Core location 01232 before
before subtraction and after subtraction

Core location 00917
after subtraction
Indicator Condition: Overflow on

Time of Execution: 560 microseconds

Arithmetic Result: Invalid
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Example: 22 10000 15000
0521
Core location 10000
before subtraction
1042

Core location 10000
after subtraction

Indicator Condition: H/P on
Time of Execution: 480 microseconds
Arithmetic Result: Valid

Example: 22 18053 19999
000000 -

Core location 18053
before subtraction

000001 ‘-————I
Core location 18053
after subtraction

Indicator Condition: All off
Time of Execution: 1200 microseconds
Arithmetic Result: Valid

Example: 22 17895 01888
1000 ~——|
Core location 17895
before subtraction
0000
Core location 17895
after subtraction
Indicator Condition: E/Z on
Time of Execution: 480 microseconds

Arithmetic Result: Valid

39

0521
Core location 15000 before
and after subtraction

01 ]
Core location 19999 before
and after subtraction

1000 ’—]

Core location 01888 before

- and after subtraction
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Instruction: Multiplication
Operation Code: 23
Symbolic Name: M
Description:

The data that is located at the P address (P field data) is multiplied
by the data that is located at the Q address (Q field data). The resultant
product is placed in core storage beginning at position 00099 and extend-
ing through successively lower numbered core positions.

There are 20 locations in storage (positions 00080-00099) which, in
toto, are referred to as the fixed product area. These positions are auto-
matically cleared to zeros before formation of the product begins. The
multiplication operation is terminated by the flag in the high-order posi-
tion of the Q field data. A flag is placed over the high-order position of
the product and the sign of the product is indicated by the presence or
absence of a flag in position 00099. ’

A zero product may be either positive or negative depending upon
the signs of the Q and P fields of data. The algebraic rules of sign
manipulation are obeyed.

Since the fixed product area is cleared before multiplication begins,
chain multiplications, without intermediate saving of results, are not
possible.

The length of the product is the sum of the number of digits (high-
order zeros included) in the Q and P fields of data. Although only 20
core positions are cleared to zero prior to the multiplication, a product
may be formed whose length is limited only by the number of available
core storage positions. Thus, the product of two 100-digit numbers (or
greater) is quite possible in a 20,000-core-position 1620.

If the product to be developed exceeds 100 digits, the highest num-
bered core position below 00000 will contain the digit immediately
following that contained in 00000. This feature is sometimes termed
“wrap-around memory.” Thus, a product of two 52-digit numbers will
have its high-order digit at 19996 and its low-order digit at 00099 in a
20,000-core-position machine or 39996-00099 in a 40,000-core-position
machine, and so forth.

It is the programmer’s responsibility to clear any core locations below
core position 00080 if he intends to use them in development of a product.
Failure to do this may result in an invalid product.

The H/P and E/Z indicators are affected by multiplication in the
same fashion as by addition and subtraction. However, it is not possible
to obtain an overflow condition through multiplication.

Execution time varies according to the number of digits in the fields
of data at the Q and P addresses.
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Execution Time in Microseconds: 560 + 40D, + 168D,D,

Example: 23 15000 16000

003 ]

Core location 15000 before
and after multiplication
00000006

Core location 00099
after multiplication

Indicator Condition: H/P on
Execution Time: 3280 microseconds

Example: 23 19765 00897
013
Core location 19765 before
and after multiplication
00132
Core location 00099
after multiplication
Indicator Condition: All off

Execution Time: 1648 microseconds

Example: 23 15000 16000
01
Core location 15000 before
and after multiplication

0001

Core location 00099

after multiplication
Indicator Condition: H/P on
Execution Time: 1312 microseconds

00002
Core location 16000 before
and after multiplication

11
Core location 00897 before
and after multiplication

01 ]
Core location 16000 before
and after multiplication

Instruction: Compare
Operation Code: 24
Symbolic Name: C
Description:

The data that is located at the Q address (Q field data) is compared
with the data that is located at the P address (P field data). This com-
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parison is accomplished by subtracting the Q field data from the P field
data and discarding the digits of the difference. However, this subtraction
is performed by internal machine circuitry and does not affect the Q and
P fields of data. If the number of digits in the Q field data is less than
the number of digits in the P field data, high-order zeros are internally
generated to make the fields of equal length. The generated zeros do
not alter the Q field data.

The result of the comparison triggers indicators (H/P, E/Z, and
Overflow) which may be interrogated at a later stage of the program.
In no way is the sequence of the program altered by the act of com-
parison.

If the P field data is algebraically greater than the Q field data, the
H/P indicator is turned on and the E/Z indicator is turned off. If the
P field data is equal to the Q field data, the E/Z indicator is turned on
and the H/P indicator is turned off. If the P field data is less than the
Q field data, both the H/P and E/Z indicators are turned off. It is
a priori obvious that both the H/P and E/Z indicators cannot be on
simultaneously.

Comparison proceeds serially from low- to high-order positions of data
(high- to low-core addresses) until terminated by the flag in the high-
order digit of the P field data. If the number of digits (high-order zeros
included) in the P field data is less than the number of digits (high-
order zeros included) in the Q field data, the Overflow indicator is
turned on and the comparison terminates with the high-order (flagged)
digit of the P field data. The comparison up to that point will have been
correct and the H/P and/or E/Z indicators affected accordingly.

If the signs of the two fields differ initially, comparison terminates
when a digit other than zero is detected in either the P or Q fields of
data. When two fields contain all zeros, the comparison disregards the
sign and the E/Z indicator is turned on. In the comparison of two fields
of unlike sign, the positive field is, of course, the greater.

The numerical sequence of comparison is, as would be expected,
ascending from O through 9. In alphameric representation, the following
is the sequential order from lowest to highest:

b [blank character with representation of 00] . ) + $ * — / , (
=@ABCDEFGHIOJKLMNOPQRSTUVW
XYZ0123456789

The record mark and numerical blank (see Chapter 2) are not usable
in the compare instructions as they were also not usable as data in
arithmetic instructions. Attempts to use them in such commands will
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result in memory address register check stop conditions (see Appendix
VI). The computer halts with a MAR check indication at the console.

Execution time varies according to the number of digits (high-order
zeros included) in the P field data if and only if the data fields are of
like sign. The execution time for fields of unlike sign depends upon the
number of digits compared before a nonzero digit is detected in either
data field.

Basic Execution Time in Microseconds: 160 + 80D,
Execution Time in Microseconds for Fields of Unlike Sign: 200 + 80D,

Example: 24 10000 15000

§57-————| 49 |
Core location 10000 before Core location 15000 before
and after comparison and after comparison

Indicator Condition: H/P on

Time of Execution: 400 microseconds
Example: 24 17862 00953

99 — 60001-————1

Core location 17862 before Core location 00953 before

and after comparison and after comparison
Indicator Condition: Overflow and H/P on

Time of Execution: 320 microseconds

Example: 24 19823 19999

152 ] 1009 —
Core location 19823 before Core location 19999 before
and after comparison and after comparison

Indicator Condition: Overflow and H/P on

Time of Execution: 400 microseconds

Example: 24 12345 01976
01000 ] 1000 -
Core location 12345 before Core location 01976 before
and after comparison and after comparison
Indicator Condition: E/Z on

Time of Execution: 560 microseconds
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Example: 24 18999 18001
192 '——-I 98765

Core location 18999 before Core location 18001 before
and after comparison and after comparison

Indicator Condition: All off

Time of Execution: 280 microseconds

Example: 24 15000 16000

150
Core location 15000 before
and after comparison

138 —
Core location 16000 before
and after comparison

Indicator Condition: All off

Time of Execution: 400 microseconds

Instruction: Add Immediate
Operation Code: 11
Symbolic Name: AM

Description:

In the Add instruction, both the P and Q portions of the instruction
reference core locations where the two data fields are to be found. In
the Add Immediate instruction, only the P portion of the instruction
references a data field. The instruction itself, beginning with the digit
in position Q;, is chosen as the field of data. Addition then proceeds in
a fashion identical with that of the standard Add command: digit by
digit serial addition extending through lower and lower core positions.

As will be remembered in the case of the Add command, both fields
require flags to designate their high-order positions, and the high-order
P field data digit terminates the operation. The rule is identical here, but
since the Qq; digit defines the low-order position of the second data
field, a flag should be present somewhere within the Add Immediate
instruction to indicate the high-order position of the field. Without this
flag, addition may proceed through the Q, P, and Operation portions
of the instruction and into the contiguous instruction, not necessarily
halting even there.

All other information pertaining to the Add Immediate command,
including execution time, is identical with that of Add.



The Arithmetic Instructions

Example: 11 12345 00010

350 '—|
Core location 12345 before
Add Immediate

360 D
Core location 12345 after
Add Immediate

Indicator Condition: H/P on

Time of Execution: 400 microseconds

Arithmetic Result: Valid

Example: 11 19854 08000

178569 ~————l

Core location 19854 before
Add Immediate

186569 '—————|

Core location 19854 after
Add Immediate

Indicator Condition: H/P on
Time of Execution: 640 microseconds

Arithmetic Result: Valid

Example: 11 00500 00000

5000000000 ,._‘

Core location 00500 before
Add Immediate

5050000000 ~—l

Core location 00500 after
Add Immediate

Indicator Condition: H/P on
Time of Execution: 960 microseconds

Arithmetic Result: Valid

45
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Example: 11 18888 00001

0500

Core location 18888 before
Add Immediate

0499

Core location 18888 after
Add Immediate

Indicator Condition: H/P on
Time of Execution: 480 microseconds
Arithmetic Result: Valid

Example: 11 14567 01500
01326

Core location 14567 before
Add Immediate

00174

Core location 14567 after
Add Immediate

Indicator Condition: All off
Time of Execution: 1040 microseconds
Arithmetic Result: Valid

Example: 11 15000 00100
000100

Core location 15000 before
Add Immediate

000200

Core location 15000 after
Add Immediate

Indicator Condition: Overflow and H/P on
Time of Execution: 640 microseconds
Arithmetic Result: Valid

Instruction: Subtract Immediate
Operation Code: 12

Symbolic Name: SM
Description:

The field beginning with the Q,; digit of the Subtract Immediate
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instruction is subtracted from the field referenced by the P address. The
requirements pertaining to the use of the flag in Add Immediate are
identical here. All other information, including execution time, is iden-
tical with that of Subtract.

Example: 12 12345 00010
610
Core location 12345 before
Subtract Immediate
600

Core location 12345 after
Subtract Immediate

Indicator Condition: H/P on
Time of Execution: 400 microseconds
Arithmetic Result: Valid

Example: 12 16543 00101
1001

Core location 16543 before
Subtract Immediate

1102

Core location 16543 after
Subtract Immediate

Indicator Condition: H/P on
Time of Execution: 480 microseconds
Arithmetic Result: Valid

Example: 12 09527 01000

00572

Core location 09527 before
Subtract Immediate

00428

Core location 09527 after
Subtract Immediate

Indicator Condition: All off
Time of Execution: 1040 microseconds
Arithmetic Result: Valid
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Example: 12 15222 12345

125 —mo—ouo

Core location 15222 before

Subtract Immediate

220

Core location 15222 after

Subtract Immediate
Indicator Condition: Overflow on
Time of Execution: 720 microseconds

Arithmetic Result: Invalid

Example: 12 10000 00000

000000000000 ’———l

Core Location 10000 before
Subtract Immediate

121000000000 ]

Core location 10000 after
Subtract Immediate

Indicator Condition: All off
Time of Execution: 2160 microseconds

Arithmetic Result: Valid

Instruction: Multiply Immediate
Operation Code: 13
Symbolic Name: MM

Description:

The P field data is multiplied by the field beginning with the Q,; digit
of the Multiply Immediate instruction. Multiplication is terminated by a
flag in the high-order position of the multiplier. Since the low-order
multiplier digit is Q;; of the Multiply Immediate instruction, the require-
ments concerning the use of the flag in previous Immediate-type instruc-
tions are also applicable here. All other information, including execution
time, is identical with that of Multiply.
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Example: 13 13243 00100

95 RE—

Core location 13243 before and
after Multiply Immediate
002500

Core location 00099 after
Multiply Immediate

Indicator Condition: H/P on

Time of Execution: 2064 microseconds
Example: 13 00800 00002

02 —_—
Core location 00800 before and
after Multiply Immediate

00004 BE—
Core location 00099 after
Multiply Immediate

Indicator Condition: All off

Time of Execution: 1688 microseconds

Example: 13 10000 00001
01
Core location 10000 before and
after Multiply Immediate
00001

Core location 00099 after
Multiply Immediate

Indicator Condition: H/P on

Time of Execution: 1688 microseconds

Instruction: Compare Immediate
Operation Code: 14

Symbolic Name: CM
Description:

The P field data is compared with the field whose units position is at
the Q;; digit of the Compare Immediate instruction. The requirements
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concerning the use of a flag in the previous Immediate instructions are
also applicable here. All other information, including execution time, is
identical with that of Compare.

Example: 14 15000 00123
135

Core location 15000 before and
after Compare Immediate

Indicator Condition: H/P on

Time of Execution: 400 microseconds

Example: 14 17869 00011
00000011

Core location 17869 before and
after Compare Immediate

Indicator Condition: E/Z on

Time of Execution: 800 microseconds

Example: 14 15003 12354
00021789

Core location 15003 before and
after Compare Immediate

Indicator Condition: All off

Time of Execution: 800 microseconds
Example: 14 12345 10000

a500————
Core location 12345 before and
after Compare Immediate

Indicator Condition: Overflow and H/P on

Time of Execution: 480 microseconds

Example: 14 13000 00000

141300000000 ]

Core location 13000 before and
after Compare Immediate

Indicator Condition: Overflow and E/Z on
Time of Execution: 1120 microseconds
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Problems

For all Problems, the following core content is assumed:

Core LocaTiON

(Low-OrpER DicIT) CONTENTS
00857 320
10000 95
12027 15621
13056 009102
15007 01
16029 001

- 17926 10
18522 087651
19027 9812971
19558 287028

State the following for all problems:
1. Result (Value and location).
2. Indicator conditions (In the case of multistep programs, state final indi-
cator conditions).
8. Timings in microseconds.
4. Validity (In the case of multistep programs, state validity of final result).
The core content listed above is to be assumed for every problem and the
results of any one problem are independent of all others.

1. 21 18522 15007 16. 21 12027 17926
2. 21 10000 12027 22 12027 10000
3. 21 12027 10000 17. 21 13056 12027
4. 21 16029 16029 22 13056 19027
5. 21 19027 19558 18. 21 19027 19558
6. 21 17926 16029 21 16029 10000
7. 21 13056 15007 22 19027 16029
8. 22 18522 15007 19. 23 10000 15007
9. 22 10000 12027 20. 23 17926 18522
10. 22 12027 10000 21. 23 18522 17926
11. 22 16029 16029 22. 23 13056 16029
12. 22 19027 19558 23. 23 16029 13056
13. 22 17926 16029 24. 22 10000 15007
14. 22 13056 15007 21 16029 10000
15. 21 12027 10000 23 16029 17926

22 12027 17926 = 25. 22 19027 19558
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26.

27.
28.
29.
30.
31.

32.

33.

22
23
21
21
23
24
24
24
24
21
22
23
24
23
24
11

19027
16029
16029
10000
16029
16029
18522
15007
00857
10000
10000
17926
00099
00857
12027
15007

15007
19027
15007
17926
10000
17926
19558
16029
17926
15007
17926
17926
10000
17926
00099
00001

34,
35.
36.
37.

38.

39.

40.
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11
11
11
22
11
22
12
11
13
14
21
22
13
24
23
24

17926
12027
13056
00857
10000
00857
10000
10000
10000
00099
13056
13056
13056
00099
16029
00099

00003
10000
10000
10000
00010
10000
00010
00001
00100
86000
12027
10000
01000
19027
16029
15007
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Internal Data Transmission

The ability to move data from one internal location to another is
fundamental to computer operations. For instance, it may be necessary
to obtain the sum of two fields and retain both fields unaltered. Thus,
one field must be moved to an alternate location and the addition process
then accomplished.

The variety of ways that data may be internally transmitted distin-
guishes today’s computers from those of five years ago. Computers of
the future will undoubtedly have an even greater repertoire of data
transmission instructions. The 1620 has five such commands in its basic
repertoire.

Instruction: Transmit Digit
Operation Code: 25
Symbolic Name: TD
Description:

The content of the single core position referenced by Q; through Qy;
is transmitted to the single core position referenced by P, through Ps.
The digit at the Q address is not altered. If it contains a flag, the flag
is transmitted also.

Execution Time in Microseconds: 200 (constant)
53
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Example:

6

Example:

Example:

Example:

25 15000 10000

|
Core location 15000 before
Transmit Digit

3

|
Core location 15000 after
Transmit Digit

25 12000 11000

2

Core location 12000 before
Transmit Digit

9

Core location 12000 after
Transmit Digit

25 17000 18000

4

Core location 17000 before
Transmit Digit

5

1
Core location 17000 after
Transmit Digit

25 11111 12222
0

Core location 11111 before
Transmit Digit

¥ |

Core location 11111 after
Transmit Digit

Internal Data Transmission

3

|
Core location 10000 before
and after Transmit Digit

9

Core location 11000 before
and after Transmit Digit

5

1
Core location 18000 before
and after Transmit Digit

3

|
Core location 12222 before
and after Transmit Digit

Instruction: Transmit Field
Operation Code: 26
Symbolic Name: TF

Description:

The Q field data is transmitted serially to contiguous core locations
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beginning at the core position referenced by the P address of the Transmit
Field instruction. Transmission proceeds from low- to high-order digits
of the Q field data (high- to low-core addresses) and is terminated by
the sensing of the flag in the high-order position of the Q field data.

The transmission of data is destructive in nature. That is, the data in
locations P through P — D, + 1 is destroyed by the transmission of the
Q field data digits. The Q field data remains unchanged.

Execution Time in Microseconds: 160 + 40D,

Example: 26 15000 16000
33457 — 00000 v
Core location 15000 before Core location 16000 before
Transmit Field and after Transmit Field
00000

Core location 15000 after
Transmit Field

Time of Execution: 360 microseconds

Example: 26 10000 11000

121344 10

Core location 10000 before Core location 11000 before
Transmit Field and after Transmit Field
121310

Core location 10000 after
Transmit Field

Time of Execution: 240 microseconds

Example: 26 00952 12621
00120 ~——— Sttt

Core location 00952 before Core location 12621 before
Transmit Field and after Transmit F ield

B

|
Core location 00952 after
Transmit Field

Time of Execution: 360 microseconds
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Instruction: Transmit Record
Operation Code: 31
Symbolic Name: TR

Description:

The Q record data is transmitted serially to contiguous core locations
beginning at the core position specified by the P address. Transmission
proceeds from high- to low-order digits of the Q record data (low- to
high-core addresses) and is terminated by the presence of a record mark
in the Q record data. The record mark is transmitted as part of the

record and the Q record data remains unchanged. Record transmission,
like field transmission, is destructive in nature.

Execution Time in Microseconds: 160 + 40R,

Example: 31 15000 16000

ETszZs . l: 414243440001

Core location 15000 before Core location 16000 before
Transmit Record and after Transmit Record

[:r11424344606¢

— Core Location 15000 after
Transmit Record

Time of Execution: 640 microseconds

Example: 31 10000 15500

E113151217102 cos l: 21653%
Core location 10000 before Core location 15500 before
Transmit Record and after Transmit Record

916534217102 . . .

Core location 10000 after
Transmit Record

Time of Execution: 400 microseconds

Instruction: Transmit Digit Immediate
Operation Code: 15

Symbolic Name: TDM

Description:

The digit located at Qq; of the Transmit Digit Immediate instruction
is transmitted to the single core position referenced by P, through Pg.
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The original Q,; digit is not altered. If the Q,; digit is flagged, the flag
is also transmitted. Positions Q; through Q;, are not utilized.

Execution Time in Microseconds: 200 (constant)

Example: 15 10000 12345

6 1

Core location 10000 before
Transmit Digit Immediate
5

Core location 10000 after
Transmit Digit Immediate

Example: 15 11125 00123

i

1
Core location 11125 before
Transmit Digit Immediate

3

Core location 11125 after
Transmit Digit Immediate

Example: 15 00928 88881
2

|
Core location 00928 before
Transmit Digit Immediate
i |
Core location 00928 after
Transmit Digit Immediate

Instruction: Transmit Field Immediate
Operation Code: 16
Symbolic Name: TFM

Description:

The field whose units position is the Q;; digit of the Transmit Field
Immediate instruction is chosen as the data field and is serially trans-
mitted to contiguous core locations beginning at the core position refer-
enced by the P address. Transmission proceeds from low- to high-order
digits of the data field (high- to low-core addresses) until terminated by
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the presence of a flag in the high-order position of the field. The
requirements imposed by the necessity for a flag in the arithmetic
Immediate instructions are identical here.

Execution Time in Microseconds: 160 + 40D,

Example: 16 19999 12345

01986 ~———
Core location 19999 before
. Transmit Field Immediate

12345

Core location 19999 after
Transmit Field Immediate

Time of Execution: 360 microseconds

Example: 16 09000 00000
11117111
Core location 09000 before
Transmit Field Immediate
00000000

Core location 09000 after
Transmit Field Immediate

Time of Execution: 480 microseconds

Example: 16 10000 0ifi
98765
Core location 10000 before
Transmit Field Immediate

Ofits

Core location 10000 after
Transmit Field Immediate

Time of Execution: 360 microseconds



~ Internal Data Transmission

Problems

For all problems the following core location and content is assumed:

(Low-Orper DicrT)

Core LocaTiON

10000
11000
12255
17956

CONTENTS

123142
00000

=l DI
ol
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The core content listed above is to be assumed for every problem and the
results of any one problem are independent of all others. ‘
What and where will be the final arithmetic results for the following

problems?

1. 25
31
21
12

2. 15
15
15
15
26
22

3. 16
25
26
22

4. 26

11001 09998
16995 10995
1700017956
17000 00010
12256 00000
12257 00000
12258 00000
12259 00000
17000 12259
17000 17956
12259 00000
12256 11000
1700012259
17000 17956
12259 10998

15
26
22
5. 381
15
11
21
12
6. 21
25
25
25
26
11
24

12256
17000
17000
10998
10998
11000
11000
11000
11000
19999
11000
10999
19999
19999
11000

00000
17956
17956
09995
00001
00123
12255
00027
09997
11000
10999
19999
11000
00132
19999



Chapter 7

Branch Instructions

The great power of a digital computer is derived not only from its
microsecond speed, but also from its ability to make logical decisions
and choose alternative paths. In fact, the ability to choose one of several
alternate paths is What differentiates the computer from a high-speed
calculator.

As previously stated, the 1620 executes the stored program instructions
sequentially. Obviously, it is often desirable to deviate from sequential
execution of instructions and to “branch” (go to) to some other part of
the program for the next instruction. The question of whether to continue
instruction execution sequentially or to branch to some other portion of
the program requires the computer to make a decision that might be
based on the result of a test. For example, if we were writing a program
to calculate the real roots of a quadratic equation by the formula

2A '

we would first find the value of B2 — 4AC. If this value were positive
we would want to continue and solve for X. However, if the result were
negative we would not want to continue, but would want to go to
another part of the program and perhaps type out an indication that no
real roots existed. The 1620 can be programmed to make certain tests
and to branch to a particular part of the stored program as determined
by the results of the tests. Several tests may be made to effect more
complex decisions.

This chapter is devoted to that class of instructions which enable the
computer to deviate from a sequential instruction execution and to go
to some other portion of the program for the next instruction. The
1620 has in its instruction repertoire 9 Branch instructions, 2 of which
give the programmer the ability to test for any one of 28 conditions.

Branch instructions are of two types, unconditional branches and
conditional branches. As the name implies, an unconditional branch
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will branch to a specified address for the next instruction no matter what
conditions exist at the time. In contrast, a conditional branch will branch
to another part of the program for the next instruction if and only if
some specific condition exists.

UNCONDITIONAL BRANCH INSTRUCTIONS

~ Instruction: Branch
Operation Code: 49
Symbolic Name: B
Description:

The program branches unconditionally to the instruction specified by
the P address. The P address must reference an even-numbered core
location since it is the address of an instruction. The Q portion of the
instruction is not utilized.

The Branch instruction may be used to return to the first of a series of
instructions which are repeatedly executed, with variations in data each
time, until certain conditions are satisfied. This is an iterative process
known in data processing as looping. One execution of a loop is called
a pass. As an example of looping, consider the flow chart of a program
to sum the numbers from 1 to 100.

Set Sum
Field=0
v
Set
i=1
l Comput
— mpute ‘
Sum <+— Sum+i*
v
Set This loop will
- . ——> be executed
14—it 100 times
\/
= >
YES
\
Type Out
* The symbol (=——) means
Sum to replace the value to which
{7 the arrow points by the value
I End I of the expression at the tail of
the arrow.
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The Branch instruction may also be used to return to the main program
after an exception routine is completed or to start a program at any
instruction in core storage.

Execution Time in Microseconds: 200 (constant)

Example: 49 07000 00000

Branch to the instruction
whose address is 07000

Example: 49 00402 89617

' Branch to location 00402 for
‘ the next instruction

Example: 49 08013 00000

This instruction is incorrect
because the address of the in-
struction to be branched to is
odd.

UNCONDITIONAL BRANCH INSTRUCTIONS
WITH VARIATIONS

CLOSED SUBROUTINE

A closed subroutine may be defined as a subprogram that can be
entered from any instruction in a main program and that will provide
for automatic re-entry to the instruction following the exit point in the
main program.

Closed subroutines are frequently desired in stored programs. As an
example, it may be necessary to take the square root of different numbers
at different points in the program. Whenever it is desired to take the
square root of a number, the instructions to do so could be included in
the program sequentially. However, this would mean that the same
series of instructions would reappear whenever we wanted to calculate
a square root. It is more desirable to include the series of instructions
to calculate the square root once in the program, and to make use of
this subroutine whenever required. To do this, three considerations
must be met:

1. The address of the return point in the main program must be made
available to the subroutine for re-entry to the main program.

2. The subroutine must know where the argument(s) is/are located and
the main program must know where the result is stored.
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3. Provisions must be made for transfer out of the sequence of the
main program to the subroutine.

The following three Branch instructions are specifically designed for
programming the closed subroutine.

Instruction: Branch and Transmit
Operation Code: 27

Symbolic Name: BT

Description:

This instruction always performs three functions: (1) the address of
the next instruction in sequence is automatically saved by being stored
in a special register, (2) the Q field data is serially transmitted to
the core storage position whose address is 1 less than the P address.
Transmission of data continues to successively lower numbered core
positions until terminated by the flag in the high-order position of the
Q field data, and (3) the program branches to the instruction at the
P address (the P address must be even).

The field data at the Q address remains unchanged.

As previously discussed, the primary use of the Branch and Transmit
instruction is to facilitate the programming of a closed subroutine. This
one instruction saves the return address, locates the argument, and
branches to the subroutine.

A Branch Back instruction, to be discussed shortly, is used as the last
instruction in the subroutine and provides a branch to the instruction
address that was saved in a special register by the action of the Branch
and Transmit instruction.

Execution Time in Microseconds: 200 + 40D,
Example: 27 15000 12035

XX XXXXX XXXXX 2168@92'61700114999
Next instruction in Core location 15000
sequence before Branch and
Transmit
1. Save the address of 213466261700114999
next instruction in ore location 15000
sequence after Branch and
L Transmit
2. Transmit Q field -
data to 14999 13466
3. Branch to 15000 for Core location 12035
the next instruction before and after

Branch and Transmit
Execution Time: 400 microseconds
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Instruction: Branch and Transmit Immediate
Operation Code: 17
Symbolic Name: BTM

Description:

The Branch and Transmit Immediate instruction performs three func-
tions (1) the address of the next instruction in sequence is automatically
saved by being stored in a special register, (2) the field whose low-order
position is the Q,; digit of the instruction is serially transmitted to the
core storage location whose address is 1 less than the P address. Trans-
mission of data continues to successively lower numbered core posi-
tions until terminated by the flag in the high-order position of the field
being transmitted. Thus, part or all (depending on where the high-
order flag is located) of the instruction itself is transmitted to the P
address — 1, and (8) the program branches to the instruction at the
P address (the P address must be even).

The primary use of the Branch and Transmit Immediate instruction
is to facilitate programming a closed subroutine. The field whose low-
order position is the Q,; digit of the instruction may be the address of
the argument, in which case it is this address that is transmitted to the
P address — 1. The Q;; position of the instruction may be the units
position of the argument, in which case the argument is transmitted to
the P address — 1. In either case the requirement that the argument be
in a location known to the subroutine is satisfied.

Execution Time in Microseconds: 200 + 40D,
Example: 17 10000 12035

XX XXXXX XXXXX 24—138?)92]61700114999
Next instruction in Core location 10000
sequence before Branch and
L———:L’\Transmit
1. Save the address of 212035261700114999
next instruction in !

Core location 10000
after Branch and
Transmit

sequence

2. Transmit Q Data
to 09999

3. Branch to 10000 for
the next instruction

Execution Time: 400 microseconds
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Instruction: Branch Back
Operation Code: 42
Symbolic Name: BB

Description:

Branch unconditionally to the instruction at the address saved by (1)
the execution of the last Branch and Transmit, or Branch and Transmit
Immediate, instruction, or (2) a previous depression of the Save key on
the console (the Save key function is described in Appendix VI). The
Save key function has priority over the Branch and Transmit and Branch
and Transmit Immediate instructions. The P and Q portions of the
instruction are not utilized.

If the main program exits to a closed subroutine with a Branch and
Transmit or Branch and Transmit Immediate instruction, the Branch
Back instruction can be used as the last instruction in the subroutine
to return to the main program.

Execution Time in Microseconds: 200 (constant)

CONDITIONAL BRANCH INSTRUCTIONS

Instruction: Branch on Digit
Operation Code: 43
Symbolic Name: BD

Description:

The program will branch to the instruction at the P address if the core
storage location specified by the Q address does not contain a zero. If
the core position contains a zero, the next instruction in sequence is
executed. The 1, 2, 4, and 8 core planes of the core storage position
specified by the Q address are tested. If any one of these bits is present,
the program will branch. Thus a 1 (C-2-8) will also cause the program
to branch. Since the P operand of the Branch on Digit instruction is the
address of an instruction, it must reference an even-numbered core
position.

Execution Time in Microseconds: 240 if a branch occurs
200 if a branch does not occur



66

Example: 43 15000 10312

The program will not branch
but will execute the next
instruction in sequence

Execution Time: 200 microseconds

Example: 43 12012 19013

The program will branch
to the instruction at
core position 12012

Execution Time: 240 microseconds

Example: 43 12060 04000

The program will not branch
but will execute the next
instruction in sequence

Execution Time: 200 microseconds

Example: 43 06000 13068

The program will branch
to core location 06000

Execution Time: 240 microseconds

Example: The following program will
branch to location 16488 if
any nonzero digit is dis-
covered between positions
19000 — 190083 inclusive

Branch Instructions

0
|
Core location 10312

¥ |
Core location 19013

0 |
Core location 04000

! |
Core location 13068

LocaTioN INSTRUCTION
00500 43 16488 19000
00512 43 16488 19001
00524 43 16488 19002

00536 43 16488 19003
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Instruction: Branch no Flag
Operation Code: 44
Symbolic Name: BNF

Description:

The program will branch to the instruction at the P address if the
core storage location specified by the Q address does not contain a flag.
If a flag is present, the next instruction in sequence is executed. Since
the P address of the Branch no Flag instruction is the address of an
instruction, it must reference an even-numbered core position.

This instruction may be used to test the sign of a data field or to find
the length of a data field by testing for the field-defining flag.

Execution Time in Microseconds: 240 if a branch occurs
200 if the branch does not occur

Example: 44 15000 12013 6 |

Core location 12013
The program will branch
to the instruction at
core position 15000,

Execution Time: 240 microseconds

Example: 44 12068 19012 5

Core location 19012
The program will not branch
but will execute the next
instruction in sequence.

Execution Time: 200 microseconds

Example: 44 15000 00612 i I
Core location 00612

The program will branch
to the instruction at
core position 15000.

Execution Time: 240 microseconds
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Instruction: Branch no Record Mark
Operation Code: 45

Symbolic Name: BNR

Description:

The program will branch to the instruction at the P address if the core
storage location specified by the Q address does not contain a record
mark. If a record mark is present, the next instruction in sequence is -
executed. Since the P address of the Branch no Record Mark instruction
is the address of an instruction, it must reference an even-numbered core
position.

Execution Time in Microseconds: 240 if a branch occurs
200 if the branch does not occur

Example: 45 07000 13268 0
Core location 13268

The program will branch
to the instruction
at location 07000.

Execution Time: 240 microseconds

Example: 45 09024 15012 % |
Core location 15012

The program will not branch
but will execute the next
instruction in sequence.

Execution Time: 200 microseconds

Instruction: Branch on Indicator
Operation Code: 46
Symbolic Name: BI
Description:

The program will branch to the instruction at the P address if the indi-
cator or program switch specified by the Qg and Q, positions of the in-
struction is on. The Q+, Q1o, and Q; positions of the instruction are not

utilized. The 2-digit indicator codes used in the Qg and Q positions of
the instruction are as follows:
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01—Program switch 1

02—Program switch 2

03—Program switch 3

04—Program switch 4

06—Read Check indicator

07—Write Check indicator

09—Last Card indicator

11—High/Positive indicator

12—Equal/Zero indicator

13—High/Positive or Equal/Zero indicator

14—Overflow indicator -

15—Exponent Overflow indicator

16—Memory Buffer Register (MBR)—
Even Check indicator

17—Memory Buffer Register (MBR)—
0Odd Check indicator

19—Any Data Check indicator

Indicator codes 01 through 04 refer to the four program switches lo-
cated on the console. These switches are manually set to either an on
or an off position.

The Read Check (06), Write Check (07), MBR-Even Check (16),
and MBR-Odd Check (17) indicators reflect the results of parity check-
ing during input-output operations and memory read-in and read-out
cycles. If a parity error is discovered, the appropriate indicator is turned
on. '

The Any Data Check (19) indicator is turned on if any one, or more,
of the Read Check, Write Check, MBR-Even Check, or MBR-Odd Check
indicators is on.

The High/Positive (11), Equal/Zero (12), and Overflow (14) indi-
cators are turned on or off during arithmetic operations (see Chapter 5).
The Exponent Overflow indicator (15) is discussed in the appendix
on floating point hardware. The High/Positive or Equal/Zero indica-
tor (13) is turned on if either the High/Positive or the Equal/Zero indi-
cator is turned on.

Except for the Any Data Check indicator, the High/Positive indicator,
the Equal/Zero indicator, and the High/Positive-Equal/Zero indicator,
all indicators are turned off if they are interrogated by their respective
Branch Indicator instruction. The status of the console switches remain
unchanged since they are manually controlled.

Execution Time in Microseconds: 200 if the branch occurs
: 160 if the branch does not occur
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Example: Branch to the address specified
by the configuration of the
program switches as follows:

PROGRAM SWITCHES BrancH TO
1 off 4 off 14000
1 off 4 on 15000
1 on 4 off 16000
1 on 4 on 17000
LocATiON INSTRUCTION

00500 46 00536 00100 - Branch if 1 on
00512 46 15000 00400 1 off and 4 on
00524 49 14000 00000 1 off and 4 off
00536 46 17000 00400 1 on and 4 on
00548 49 16000 00000 1 on and 4 off

Instruction: Branch no Indicator
Operation Code: 47

Symbolic Name: BNI
Description:

The Branch no Indicator instruction is the same as the Branch Indi-
cator instruction except that the branch to the P address occurs if the
indicator specified by the Qs and Q, positions of the instruction is off.

At first glance it may seem a duplication of effort to have two Branch
instructions which test the same indicators for opposite conditions. How-
ever, with a little thought it becomes evident that being able to test
directly for either condition will both simplify programming and save
program steps.

Execution Time in Microseconds: 200 if the branch occurs
160 if the branch does not occur

Example: If program switch 1is off,
branch to location 04688 for
the next instruction. If it
is on, continue sequential
instruction execution.

Solution using Branch Indicator
instruction:

00500 46 00524 00100
00512 49 04688 00000
00524

Solution using Branch no Indicator
instruction:
00500 47 04688 00100
00512
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One program step is saved
using the Branch no
Indicator instruction.

Example: If the data fields at locations
17156 and 12123 are not equal,
branch to location 00500 for
the next instruction.

24 17156 12123
47 00500 01200

Problems

Give the results to the following problems as actual numbers or in an algebraic
symbolic notation. For example, if the first problem summed the numbers from

1001
one to 1000, the answer could be expressed as 3 i
i=1

1. When the following program halts, what will the field whose units position
is core location 13000 contain?
00500 16 13000 00000
00512 11 13000 00001
00524 47 00512 01400
00536 48 00000 00000

2. When the following program halts, what will the field whose units position
is core location 13966 contain?
14168 16 13966 00000
14180 16 06745 00000
14192 11 13966 00002
14204 11 06745 00001
14216 14 06745 00100
14228 47 14192 01200
14240 48 00000 00000

3. When the following program halts, what will the field whose units position
is core location 07000 contain?

00700 16 07000 00000
00712 16 07081 00000
00724 11 07081 00001
00736 14 07081 00100
00748 46 00784 01200
00760 11 07000 00002
00772 49 00724 00000
00784 48 00000 00000
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4. When the following program halts, what will the field whose units position
is core location 17800 contain?

00800
00812
00824
00836
00848
00860
00872

16
16
11
11
14
47
48

00835 00001
17800 00000
17800 00000
00835 00001
00835 00101
00824 01200
00000 00000

5. When the following program halts, what will the fields whose units posi-

tions are core locations 19000 and 17199 contain?

00464
00476
00488
00500
00512
00524
00536
00548
00560
00572

16
16
16
11
23
21
11
14
47
48

17199 00000
19000 00000
00511 00001
17199 00000
00511 00511
19000 00099
00511 00001
00511 00200
00500 01200
00000 00000

6. When the following program halts, what will the fields whose units posi-

tions are core locations 14000 and 18000 contain?

02178
02190
02202
02214
02226
02238
02250
02262
02274
02286
02298

16
16
11
11
14
47
12
46
16
49
48

14000 00003
18000 00000
18000 000C1
02213 00001
02213 00101
02202 01200
14000 00001
02298 01200
02213 00001
02202 00000
00000 00000
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7. The following problem is solving a quadratic equation of the form
AX2 + BX 4+ C = 0 by a trial and error method. An integer solution is

assumed. What is the equation (what are values of A, B, and C)?

07988
08000
08012
08024
08036
08048
08060
08072
08084
08096
08108
08120

16
23
26
13
26
13
21
14
46
11
49
48

18500
18500
19000
19000
19000
18500
19000
19000
08120
18500
08000
00000

00001
18500
00099
00013
00099
00009
00099
00904
01200
00001
00000
00000

8. When the following program halts, what will the field whose units position

is core location 15000 contain?
16 15000 00000
13 00611 00001
21 15000 00099
11 00611 00002
47 00600 01400
48 00000 00000

00588
00600
00612
00624
00636
00648



Chapter 8

The Input-Output Instructions

To be a useful tool, the digital computer must be able to communicate
with man. It must have the ability to receive information and data, and,
after processing this data at microsecond speeds, it must be able to
communicate the results back to man.

The 1620 has the following input-output devices to perform this com-
munication: the typewriter, the card reader, the paper tape reader, the
card punch and the paper tape punch. Only one input-output device may
be selected at any time. The Qg and Q, positions of all the input-output
instructions which will be discussed in this chapter specify the input-
output! device through a 2-digit code as follows:

CopE I/0 DEvice
01 Typewriter
02 Paper Tape Punch
03 Paper Tape Reader
04 Card Punch
05 Card Reader

Instruction: Read Numerically
Operation Code: 36

Symbolic Name: RN
Description:

Numerical information from the input device specified by the Qg and
Qy positions of the Read Numerically instruction is transmitted serially
to the core storage location specified by the P address and through
successively higher core locations until terminated by one of the follow-
ing conditions:

1 The industry accepted abbreviation for input-output is generally 1/0.
74
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1. Sensing of the end-of-line character (written for demonstration pur-
poses as E/L) when the input is from the paper tape reader. At
that time, a record mark is generated automatically by the 1620 and
is placed in core following the last character read from tape.

2. Depression of the Release key on the console when input is from the
typewriter. In this case a record mark is not generated automatically
by the computer. If it is desired to place a record mark in core
storage when entering information from the typewriter, the Record
Mark key on the typewriter must be depressed.

3. Reading into core storage the 80th character from the card input
buffer storage. Here again a record mark is not generated automat-
ically by the computer. If it is desired to place a record mark in
core storage from the card reader, the record mark character (0-2-8)
must be punched in a card. If a record mark is present in a card,
it does not terminate the reading of data from the card input buffer.
A full 80 columns of a card are always read regardless of their con-
tents (excepting parity errors which could cause check stop condi-
tions).

Each numerical character from the input device along with its flag
(if any), is stored in a single core storage location. Check bits, if needed,
are generated internally to observe parity.

The Q7, Qi0, and Q;; positions of the Read Numerically instruction
are not utilized.

Read Numerically is an example of destructive read-in: the old infor-
mation is replaced by the new data for the total area of input.

The execution time of this instruction depends upon the speed of the
input device selected and the number of characters that are read from
that device.

Example: 36 10012 00300

312120694511672E /L
Paper tape input
I: 3121206945+1672%

Core location 10012
after instruction execution

Instruction: Read Alphamerically
Operation Code: 37

Symbolic Name: RA
Description:

Alphameric information from the input device specified by the Qs and
Qo positions of the Read Alphamerically instruction is transmitted seri-
ally to the core storage location specified by the P address and through
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successively higher core locations until terminated by one of the follow-
ing conditions:

1. Sensing of the end-of-line character when the input is from the paper
tape reader, At that time, an alphameric record mark character (a
numeric zero digit followed by a single record mark character) is
generated automatically by the computer and is placed in core stor-
age following the last character read from tape.

2. Depression of the Release key on the console when the input is from
the console typewriter. An alphameric record mark character is not
generated automatically by the computer. If it is desired to place
an alphameric record mark in core storage when entering information
from the typewriter, the Record Mark key on the typewriter must
be depressed.

3. Reading into core storage the 80th character from the card input
buffer storage. A record mark is not generated automatically in core
storage. If it is desired to read a record mark into core storage from
the card reader, the record mark character (0-2-8) must be punched
in a card. The full 80 columns of a card are always read regardless
of their contents (excepting parity errors which could cause check
stop conditions).

The P address of the Read Alphamerically instruction must specify an
odd-numbered core location (the Pg digit must be odd); otherwise, the
input information is not placed in core storage correctly and parity
errors may occur during reading. This is due to the fact that when infor-
mation is read alphamerically, it is automatically converted to the 2-digit
alphameric code. The odd-numbered location must contain the right-
hand (numerical) digit of the 2-digit alphameric code read from the
input device. The zone digit is generated and placed in the adjacent
even-numbered core position automatically.

Information from the input device may be a random mixture of nu-
meric, alphabetic, and special characters. Each character from the in-
put device is stored in core storage as two digits (the alphameric code
discussed in Chapter 2). Flags are not transmitted into core storage
on characters read by the input device; flags already in the core storage
area when the information is read in remain unchanged.

The Q7, Q10, and Qy; positions of the Read Alphamerically instruction
are not utilized. The execution time depends on the input device selected
and the number of characters transmitted.

Example: 37 15001 00300
3ABC271984F+/JiE/L
Paper tape input

T 7341424372777179787446102151040%

L Core location 15000
after instruction execution
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Note:

It is permissible to read alphameric information in the numeric mode
but the characters do not enter the 1620 alphamerically. Table 8.1
demonstrates the translation effect of alphameric information read nu-
merically.

Table 8-1*
CHARACTER CORE REPRESENTATION
I | 1,2 ...,9
.. ,2,...,9
s e e, L 2,83 ...,9
1
821
821
C84
C84
C84
821
F84
F
C

* The period (.), comma (,), and equal sign (=) will behave as a record mark
in the Transmit Record instruction.

l

_|_

Instruction: Write Numerically
Operation Code: 38 '
Symbolic Name: WN

Description:

Numerical information from core storage, beginning with the charac-
ter at the core storage location specified by the P address and continuing
through successively higher core addresses, is transmitted serially to the
output device specified by the Qg and Qy positions of the Write Numeri-
cally instruction.

Transmission of data continues until terminated by one of the follow-
ing conditions:
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1. Sensing of a record mark character in core storage if the output
device is the typewriter or the paper tape punch. If the output
device is the paper tape punch, sensing a record mark character in
core storage causes an end-of-line character to be punched in the
tape. If the output device is the typewriter, sensing a record mark
character in core storage terminates transmission but is not written
on the typewriter.

2. Depressing the Release key on the console.

3. Writing of the 80th position in the card output buffer storage.

Each numerical character in core storage, along with its flag (if any),
is written on the output device. The characters in core storage remain
unchanged. No alphamerical or special character represented in core
storage as two numerical characters can be written on the output device
as a single character by this instruction.

If no record mark is encountered in core storage when the typewriter
or paper tape punch is used as the output medium, and the highest
numbered core storage address is written, the next position transmitted
is 00000 and transmission continues. If the numerical blank character
appears in memory (C-8-4), it will be printed as “@” on the typewriter,
punched as C-8-4 on paper tape, or will leave a blank column on the card.

For typewriter and paper tape output, the P address of this instruction
may not reference a record mark. The Qg Qio, and Q,; positions of the
Write Numerically instruction are not utilized.

The execution time of this instruction depends upon the speed of the
device selected and the number of characters written.

Example: 38 12000 00100
— 316324680. ..

L Core Location 12000
before and after execution

316
Typewriter output

Example: 38 12000 00200
—316124680. . .

L— Core location 12000
before and after execution

316E/L
Paper tape output
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Example: 38 12000 00400
|:316:!:24680 Ces
Core location 12000
before and after execution

816£24680. .. (80 characters)
Card output

Instruction: Write Alphamerically
Operation Code: 39
Symbolic Name: WA

Description:

Alphameric information from core storage, beginning with the char-
acter at the core storage location specified by the P address and continuing
through successively higher core addresses, is transmitted serially to the
output device specified by the Qg and Qy positions of the Write Alpha-
merically instruction.

Transmission continues until terminated by one of the following con-
ditions:

1. Sensing of an alphameric record mark in core storage if the output
device is the typewriter or the paper tape punch. If the output
device is the paper tape punch, sensing an alphameric record mark
in core storage causes an end-of-line character to be punched in the
tape. If the output device is the typewriter, sensing an alphameric
record mark in core storage terminates transmission but is not written
on the typewriter.

2. Depression of the Release key on the console.

8. Writing of the 80th position in the card output buffer.

Each alphameric character in core storage consists of two numeric
digits and is written on the output device as a single alphameric charac-
ter. The characters in core storage remain unchanged. No flags are
written on the output device.

The P address of the Write Alphamerically instruction must be odd
(Ps must be an odd digit), otherwise the information in core storage,
expressed in alphameric (double-digit) code, is not correctly converted
to the single character output representation. The Qz, Qio, and Qi
positions of the instruction are not utilized. For typewriter and paper
tape output, the P address of this instruction may not reference an alpha-
meric record mark.
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The execution time is dependent upon the speed of the output device
and the number of characters written.

Example: 39 09001 00100
E 484159545655494300415541536862496207% . . .

Core location 09000
before and after execution

HARMONIC ANALYSIS
Typewriter output

Example: 39 15791 00200
49556345596541530055560300770% . . .

Core location 15790
before and after execution

INTERVAL NO. 7E/L
Paper tape output

Instruction: Dump Numerically
Operation Code: 35

Symbolic Name: DN
Description:

Numerical information from core storage, beginning with the charac-
ter at the core storage location specified by the P address and continuing
through successively higher core addresses, is transmitted serially to the
output device specified by the Qs and Qy positions of the Dump Nu-
merically instruction. Transmission is terminated after the character
from the highest numbered core storage address of that module has been
written. This is the character at core position 19999, 39999 or 59999
depending on the module that the P address specified. If it is desired
to stop transmission before the character in the highest numbered core
storage position is transmitted, the Release key on the console may be
depressed.

Each numerical character, with its flag (if any), as well as any single
record mark character, is written on the output device. The character
in core storage remains unchanged. If the output device is the paper
tape punch, an end-of-line character is punched in the tape immediately
following the last character dumped by the instruction. This end-of-line
character will be punched into the paper tape only if the instruction has_
been completely executed and will not be punched if the Release key
has been depressed before the highest character in the storage module
has been punched.
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The Q+, Qio, and Qq; digits of this instruction are not utilized. The.
execution time of this instruction depends upon the speed of the output
device selected and the number of characters written on that device.

Example: 35 15000 00100
— 364821004198 . . .

L—Core location 15000 before
and after execution

364821001198 ..
Typewriter output

Problems

State in as few sentences as possible the function of each of the following
programs.

1. 00500 36 10000 00300
00512 38 10000 00200
00524 49 00500 00000

2. 00500 37 10001 00500
00512 39 10001 00400
0?524”*49 00500 00000

3. 00620 37+10001 00500
00632 31 10160 00678
00644 46 00680 00100
00656 39 10001 00400
00668 49 00620 0000%
00680 39 10001 00200
00692 49 00620 00000

4. 00000 35 00000 00400
00012 16 00022 00000

5. 00500 16 19999 00000
00512 36 10000 00500
00524 11 19999 00001
00536 47 00512 00900
00548 15 00000 0000}
00560 88 19995 00100



Chapter )

Miscellaneous Instructions

The five instructions discussed in this chapter complete the basic!
repertoire of 1620 instructions. The functions that they perform are not
closely related, so they are grouped under the general name of miscel-
laneous instructions.

The reader should not let the term miscellaneous connote insignificance.
The Set Flag, Clear Flag, Halt, No Operation, and Control instructions,
if used carefully and thoughtfully, can greatly facilitate and sophisticate
programming.

Instruction: Set Flag
Operation Code: 32
Symbolic Name: SF

Description:

A flag is placed at the core location specified by the P address, and a
check bit is either added or removed to adjust for parity checking. If a
flag is present, the instruction has no effect. The Q portion of the
instruction is not utilized. The digit at the P address is not altered by
the instruction.

The primary use of the Set Flag instruction is to define the high-order
position of data fields. Of course, the data may be flagged when it is
prepared for input, but this is not always practical or desirable.

Execution Time in Microseconds: 200 (constant)

1 See Appendixes I, II, IV for additional 1620 instructions.
82
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Example: 32 10000 00000
6

I
Core location 10000 before
Set Flag

Example: 32 13001 00000
5

Core location 13001 before
Set Flag

Example: 32 11500 00809

I

|
Core location 11500 before
Set Flag

6

|
Core location 10000 after
Set Flag

5

1
Core location 13001 after
Set Flag -

¥

Core location 11500 after
Set Flag

Instruction: Clear Flag
Operation Code: 33
Symbolic Name: CF

Description:

83

The flag in the core location specified by the P address is removed,
and a check bit is either added or removed to adjust for parity checking.
If no flag is present, the instruction has no effect. The Q portion of the
instruction is not utilized. The digit at the P address is not altered by

the instruction.

The Clear Flag instruction may be used when it is desired to make a
negative field positive. The flag in the units position of the field is
simply removed with the instruction. If flags are not wanted as a part
of output, the Clear Flag instruction can be used to remove them.

Execution Time in Microseconds: 200 (constant)

Example: 33 05421 00000
6 |
Core location 05421 before
Clear Flag

Example: 33 12000 68291
2

|
Core location 12000 before
Clear Flag

6

Clear Flag

2 |
Core location 12000 after
Clear Flag

|
Core location 05421 after
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Example: The following program reverses the sign of a data field stored
in locations 01690 — 01699, and then branches to location 06000 for the
next instruction.

LocaTioN INsTRUCTION
00500 44 00536 01699
00512 33 01699 00000
00524 49 06000 00000
00536 32 01699 00000
00548 49 06000 00000

Instruction: Halt
Operation Code: 48
Symbolic Name: H

Description:

Program execution is halted and the computer stops in the manual
mode. Depression of the Start key on the console will cause the computer
to continue program execution beginning with the next instruction in
sequence. The P and Q portions of the instruction are not utilized.

After a Halt instruction has been executed, the address of the Qi
position of the instruction is displayed on the console in the Memory
Address Register indicator lights. Thus, it is possible to distinguish be-
tween several different Halt instructions in the same program.

The Halt instruction has many important uses. It may be employed to
interrupt program execution for operator intervention. The operator may
take advantage of the halt to load a tape, set program switches, investigate
the contents of certain portions of core storage, and so forth. It is also
very helpful in debugging and for error indication purposes. Different
error conditions encountered in a problem may be programmed to branch
to different Halt instructions. By noting the address of the Qi; position
of the Halt instruction in the Memory Address Register lights, we can
tell which error condition stopped program execution. The following
program serves to demonstrate this pnnmple A record mark is assumed
in core location 15001.

00500 14 13000 50000 Compare with 50000
00512 46 00584 01300 Branch if number = 50000
00524 22 15000 13000 Subtract

00536 47 00572 01300 Branch if result negative
00548 38 14996 00100 Type out result

00560 48 00000 98640 Halt—program completed
00572 48 00000 00000 Halt—negative result
00584 48 00000 00080 Halt—number = 50000
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The above program contains three Halt instructions. Two of the Halt
instructions signal error conditions; the third indicates the successful
completion of the program. The error conditions exist if the data field
at core location 13000 is greater than or equal to 50000, or if the result
of the subtract operation is negative. When the program executes a Halt
instruction, the address in the memory address register lights indicates
which Halt instruction terminated program execution. Then, from a
listing of the program it can be determined which condition caused the
program to halt. If the address displayed is 00571, the program was
successfully completed. If the displayed address is 00583, the program
halted because the result of the subtract operation was negative. If the
data field at location 13000 was greater than 50000, the program would
have halted and the displayed address would be 00595.

Judiciously placed Halt instructions are a great aid in program
debugging. Groups of instructions may be checked out by interspersing
Halt statements throughout the program. If the program should “hang
up,” the troublesome portion can be isolated as being between the last
executed Halt instruction and the next Halt instruction in sequence.

Execution Time in Microseconds: 160 (constant)

Instruction: No Operation
Operation Code: 41
Symbolic Name: NOP 2
Description:

Perform no operation and advance to the next instruction in sequence.
The P and Q portions of the No Operation instruction are not utilized.

The No Operation instruction has two major functions. The No Opera-
tion instructions when judiciously placed throughout a program allow
for the insertion of additional instructions at a later time without any
of the program having to be relocated. If only one instruction is to be
inserted, it may be located in the core positions used by the No Operation
instruction. If it is desired to insert more than one instruction, the No
- Operation instruction may be replaced by a Branch instruction, which
will branch the program to an unused part of memory where the addi-
tional instructions will be added.

A second use of the No Operation instruction is to eliminate a Halt
or any other instruction without relocating the rest of the program. The
operation code of the instruction to be eliminated is replaced by the
operation code of the No Operation instruction (41). This may be done
from the console or as a part of the program itself.

Execution Time in Microseconds: 160 (constant)

2 Pronounced no-op.
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Example: In the following program it is desired to branch to a sub-
routine located at 09012 only after the first card is read. The instruction
to branch to the subroutine is in location 00414. Since the same read
instruction will be used to read in all the cards it is necessary to alter
the Branch instruction so that it is operative only after the first card is
read. This is accomplished by having a Transmit Digit Immediate
instruction in the subroutine which changes the operation code of the
Branch instruction (49) to the operation code of the No Operation
instruction (41). Now, as all subsequent cards are read, a branch to
the subroutine will not occur.

00402 36 13000 00500 Read a card
00414 49 09012 00000 Branch to subroutine
00426 11 13010 00100 Main program continues

. . . .

01626 49 00402 00000 Go to read another card
09012 11 06900 00010 Subroutine begins here

09612 15 00415 00001 Modify Branch instructions to NOP
09624 49 00426 00000 Return to main program

Instruction: Control
Operation Code: 34
Symbolic Name: K
Description:

This instruction is used to control the functions of spacing, tabulating,
and returning the carriage on the typewriter. The Qg and Q, positions
of this instruction always contain an 01, specifying the typewriter, since
this is the only unit that can be controlled by this instruction. The Q;,
position specifies the control function desired with a 1-digit code. The
codes are as follows:

CopE Funcrion
1 Space
2 Return Carriage

8 Tabulate



Miscellaneous Instructions 87
The entire P operand and the Q; and Qo portions of the Control
instruction are not utilized.

Execution Time in Microseconds: This is dependent upon the control
function and the position of the typewriter carriage at the time of instruc-
tion execution.

Example: 34 00000 00108
The typewriter is tabulated

Example: 34 99999 90102

The carriage is returned

Example: 34 $£900 00101

The typewriter is spaced one position horizontally. This instruction is
equivalent to depressing the space bar on the typewriter.



Chapter 10

Introduction to a Symbolic
Programming System

We are now at a stage of development where absolute machine
language coding is cumbersome. One must have a complete table of
operation codes and necessary Q address modifiers at hand in order to
write a program. In addition, one must keep track of where program
steps lie in memory, and extensive charts must be kept as road maps
for the internal data arrangement. The housekeeping necessitated by
absolute coding is cumbersome and the flow of logic is difficult to trace.
Lastly, and of greatest importance, errors are easily made and difficult
to locate. If computers are as “intelligent” as is commonly supposed,
why not allow the computer to do its own housekeeping?

Throughout the chapters on machine operations, a symbolic name was
associated with every machine code: 21-A, 34-K, 13-MM, and so forth.
How difficult would it be for a programmer to construct a program to
read an instruction whose operation code was symbolic, replace this
with machine language coding, punch the translated instruction, and
repeat this sequence until all instructions were translated?

On the surface, this may sound like a frightening task. However, it
is not exceedingly difficult; the basic logic is described in the diagram
shown in Figure 10.1. The logic employed is simply one of exhaustion:
check the alphabetic representation of the OP code against all allowable
representations. It must match one of them or it is in error.

88
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Punch this

START ——D

Instruction

Read an Instruction
Alphabetically

YES
Replace with

OP Code of 24

YES
Replace with

OP Code of 14

YES
Replace with

OP Code of 22

e

Are the

Four High-Order

Digits 4100
?

Are the

Four High-Order

Digits 4154
?

Are the
Four High-Order
Digits 6200

Check all Possible
OP Codes and Match

with a Corresponding

Numeric Value

;q___-.

v.

Y

If List is Exhausted and
no Match Has Been Made,

this is a Nonexistent
OP Code and an
Error Condition

Fig. 10.1. Flow Chart of an OP Code Translator.

Note This

89

( Since part of our
information is
alphabetic and part
numeric, it must be
read alphabetically )
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If the input to such a program were A_ 12345 02378 (the underscore
“” is used to indicate a blank character), the output would be
21 12345 02378. The program translated the alphabetic representation
of “A_" into the machine OP code of “21.” (“A_" is “4100” in alphabetic
double-digit representation.) The blank is necessary for it is possible
to have a 2-letter OP code: AM, BD, and so forth. Note also that this
logic scheme would not allow for 3-letter OP codes: TDM, BNF, and
so forth. In that case it would be necessary to check the six high-order
digits instead of the present four. BNR would appear as 425559, and so
forth.

Upon close inspection of the logic diagram of Figure 10.1, one begins
to see all sorts of exceptions that would cause this particular program
to be totally unusuable. However, all of these can be overcome by
more extensive programming until the desired goal of total OP code
translation is obtained. In this way, one would not have to remember
the numeric representation of operation codes but could choose the
corresponding mnemonic form which is more easily retained.

This then is the basic philosophy of a symbolic system: substituting
alphabetic information for numerics and forcing the computer, under
control of a special program, to do the housekeeping.

The performance of this sort of translation implies three elements:

1. An error-catching processor that handles symbolic input and produces
absolute output.

2. A program written in the language acceptable to the processor. This
is called the “source program.”

3. An accurate worker that will understand the processor’s directions
and perform the translation of a source program which it does not
understand to one which it will understand. (The choice of future
tense is quite important.) The worker is the computer and the trans-
lated source program is termed the “object program.”

Consider an instruction such as 34 00000 00102 which, upon execu-
tion, would cause a carriage return on the typewriter. Why not keep
this instruction stored in core and generate it whenever a symbolic
operation code such as RCTY (Return Carriage on the TYpewriter) is
encountered? Also, by the same logic, TBTY (TaBulate the TYpewriter)
would always generate 34 00000 00108 and SPTY (SPace the TYpe-
writer) would yield 34 00000 00101.

Of course, the commands K 00000 00102, K 00000 00108, and K 00000
00101 would also generate the identical instructions but RCTY, TBTY,
and SPTY are more easily remembered.

This philosophy may also be extended to I/0 commands that use a
specific Q address modifier to state which unit is to be employed during
the 1/0 operation. '
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RNTY 12345 (Read Numerically from the TYpewriter) would cause
a Read Numerically (36) command to be generated and also a modifier
of 01 in positions Qg and Q, with all other Q digits 0. Then, the processor
would “slip” the P address of 12345 between the OP code and the Q
portion of the instruction to obtain 36 12345 00100. RNPT 12345 (Read
Numerically from Paper Tape) would generate 36 12345 00300 in a
similar fashion.

Notice that certain portions of instructions are predetermined by the
nature of the instruction. An instruction such as RNPT 10000 followed
by RNPT 12000 would cause two instructions to be generated which
differ only in the P address:

36 10000 00300
36 12000 00300

Branching instructions also follow this logic. A symbolic instruction
to generate a branch on an equal condition might be written as
BI XXXXX 01200. This generates the machine instruction 46 XXXXX
01200. But since the E/Z indicator (12) is as unique as BI, we can
alternatively choose the unique mnemonic BE or BZ. Either of these
would generate 46 XXXXX 01200. Thus, BNH (Branch Not High)
would generate 47 XXXXX 01100 as would BNP (Branch Not Positive).
Continuing in this fashion, we can generate a complete set of unique
mnemonics which comprise our translator’s dictionary of acceptable
operation codes. These symbolic operations are listed in table 10.1 and
form the basic material for a working symbolic processor.

Table 10.1
PoORTION OF
INSTRUCTION

OPERATION UNIQUE MNEMONIC GENERATED
Arithmetics

Add A [ .
Add Immediate AM 11 ——-em e -
Subtract S 29 —ceme e
Subtract Immediate SM 19 e e e e
Multiply M 98 —mm e e
Multiply Immediate MM 18 ccce e e e
Load Dividend® LD 98 ——mm e mmmme
Load Dividend Immediate® LDM 18 ———-=- —-e--
Divide® D X s R
Divide Immediate® DM 19 —ccoe e
Compare C 24 mcmm e mmme
Compare Immediate CM 14 ——ccce meeea
Floating Add* FADD 0l ————-c cmeee
Floating Subtract® FSUB 02 —--oc —c--=
Floating Multiply*® FMUL 08 ———coo —cmeee

Floating Divide® FDIV 09 ~--ee —cmee
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Table 10.1 (continued)
PorTION OF
INSTRUCTION

OPERATION UNIQUE MNEMONIC GENERATED
Internal Data Transmission
Transmit Digit TD 25 mmmmm e
Transmit Digit Immediate TDM 15 mmmee e
Transmit Field TF 26 - e
Transmit Field Immediate TFM 16 - ---- o=
Transmit Record TR ) R
Move Flag* MF Tl —-eme e
Transfer Numeric Strip® TNS T2 —cmee e -
Transfer Numeric Fill* TNF [ J
Floating Transmit Field* TFL 06 ~---n —----
(Transmit Floating Field)
Floating Shift Right® .FSR 08 - -
Floating Shift Left* FSL 05 —--ce emmem
Branching Instructions
Branch B 49 - eeen oo
Branch No Flag BNF 44 oo -
Branch No Record Mark BNR 45 oo oo
Branch on Digit BD 48 —-mmm mmee -
Branch and Transmit BT 2/ (RS .
Branch and Transmit Immediate BTM 17 cemee e
Floating Branch and Transmit*® BTFL 07 —--oe meeo -
(Branch and Transmit Floating)
Branch Back BB 42 ccevn oo
Branch Indicator BI 46 - oo -
Branch Console Switch 1 On BC1 46 - —--- -01--
Branch Console Switch 2 On BC2 46 ----- -02--
Branch Console Switch 3 On BC3 46 - ---- -03--
Branch Console Switch 4 On BC4 46 - ---- -04--
Branch Last Card BLC 46 —---- -09--
Branch High BH 46 ----- -11--
Branch Positive BP 46 ----- -11--
Branch Equal BE 46 ----- -12--
Branch Zero BZ 46 ----- -12--
Branch Not Low BNL 46 - ---- -18--
Branch Not Negative BNN 46 ----- -13--
Branch Overflow BV 46 ----- -14--
Branch Exponent Overflow*® BXV 46 ----- -15--
Branch No Indicator BNI 47 cmmen e
Branch Console Switch 1 Not On BNC1 47 - ---- -01--
Branch Console Switch 2 Not On BNC2 47 ----- -02--
Branch Console Switch 3 Not On BNC3 47 ——--- -03--
Branch Console Switch 4 Not On BNC4 47 - ---- -04--
Branch Not Last Card BNLC 47 —---- -09--
Branch Not High BNH 47 - -11--
Branch Not Positive BNP 47 —---- -11--
Branch Not Equal BNE 47 —---- -12--
Branch Not Zero BNZ 47 - ---- 19—~
Branch Low BL 47 ——--- -183--
Branch Negative BN 47 -~ -183--
Branch No Overflow BNV 47 —---- -14--
Branch No Exponent Overflow*® BNXV 47 ----- -15--
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Table 10.1 (continued)

PorTION OF
INsTRUCTION
OPERATION UNIQUE MNEMONIC GENERATED
Input-Output
Read Numerically RN 86 ~--om —mee-
Read Numerically from Typewriter RNTY 36 ----- -01--
Read Numerically from Paper Tape Reader RNPT ~ 36 ----- -08--
Read Numerically from Card Reader RNCD 36 ----- -05--
Write Numerically WN 88 —-coe -
Write Numerically onto Typewriter WNTY 38 m === -01--
Write Numerically onto Paper Tape Punch WNPT 38 —----- -02--
Write Numerically onto Card Punch WNCD 38 ----- -04--
Dump Numerically DN 85 —---n e
Dump Numerically onto Typewriter DNTY 35 ----- -01--
Dump Numerically onto Paper Tape Punch DNPT 35 ----- -02--
Dump Numerically onto Card Punch DNCD ‘ 35 ----- -04--
Read Alphamerically - RA 87 wceem e
Read Alphamerically from Typewriter RATY 87 —---- -01--
- Read Alphamerically from Paper Tape RAPT 87 —---- -03--
Reader .
Read Alphamerically from Card Reader = RACD 37 —---- -05--
Write Alphamerically WA 89 —--mm e
Write Alphamerically onto Typewriter WATY 39 ----- -01--
Write Alphamerically onto Paper Tape WAPT 39 ----- -02--
Punch
Write Alphamerically onto Card Punch WACD 39 ----- -04--
Miscellaneous
Control K 84 - —eeo
Return Carriage on Typewriter RCTY 834 ----- -01-2
Tabulate Typewriter TBTY 34 ----- -01-8
Space Typewriter SPTY 34 ----- -01-1
Set Flag SF 82 —--om -
Clear Flag CF 88 —-oem e
Halt H 48 - - - — -
No Operation NOP 4] —---- —em

* Items marked by an asterisk have not yet been discussed.

With such a translator, a card-to-card duplication program might look

like this:

LocaTioNn

00500
00512
00524

INSTRUCTION

RNCD 10000
WNCD 10000
B 00500
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A card-to-tape duplication program could be written as follows:

LocATiON INSTRUCTION
00500 TDM 10080 0000%
00512 RNCD 10000
00524 WNPT 10000
00536 B 00512

A card-to-tape or card-to-card duplication program under control of
console switch 1 would be as follows:

LocaTtion INSTRUCTION
00500 BC1 00560
00512 TDM 10080 0000%
00524 RNCD 10000
00536 WNPT 10000
00548 B 00524
00560 RNCD 10000
00572 WNCD 10000
00584 B 00560

Here is an alternate and shorter program for the same problem:

LocATiON INSTRUCTION
00500 TDM 10080 0000t
00512 RNCD 10000
00524 BC1 00560
00536 WNPT 10000
00548 B 00512
00560 WNCD 10000
00572 B 00512

However, even this type of programming is somewhat cumbersome.
There is still too much detail in that absolute addresses are necessary and
we must constantly keep track of instruction locations. After all, it might
be necessary to reference an instruction through a branching operation.

The concept of a dictionary of machine operations alone is necessary
but not sufficient. This dictionary is machine oriented and does not
change from problem to problem. We would like to introduce the con-
cept of a second dictionary, whose word makeup would be dictated by
the programmer. Of course, the processor needs information about the
symbols that will lie in this new dictionary.
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Consider the first program given above (card-to-card duplication):

LocaTioN INSTRUCTION
00500 RNCD 10000
00512 WNCD 10000
00524 B 00500

If we give this same program to a symbolic processor and precede it
with sentences of explanatory nature, it could appear as follows:

Information Sentence 1: This program begins at location 00500.

Information Sentence 2: The symbolic word “Input” is synonymous with
core location 10000.

Information Sentence 3: There is no more information of explanatory
nature. The source program follows.

RNCD INPUT
WNCD INPUT
B 00500

If we add another sentence of explanatory nature, we can symbolize
the entire program:

Information Sentence 1: This program begins at location 00500.

Information Sentence 2: The symbolic word “Input” is synonymous
with core location 10000.

Information Sentence 3: The symbolic word “Begin” is synonymous
with core location 00500.

Information Sentence 4: There is no more information of explanatory
nature. The source program follows.

RNCD INPUT
WNCD INPUT
B BEGIN

Our information sentences cause the second dictionary to be built up.
The first word in this new dictionary can be called the “origin counter”
and it has its initial value given by the first information sentence. In our
case it is 00500. For each instruction proper, this origin counter is
incremented by 12. In this fashion, reference to our origin counter always
yields the location of the instruction presently being processed.

Directly below our first entry in the new dictionary, we now place the
symbol “Input” and, contiguous to it, a 5-digit field, 10000. Any reference
to the symbolic name “Input” would generate the associated absolute
location. The third word in our dictionary, “Begin,” has the address
00500 placed contiguous to it. Similarly, any reference to the symbol
“Begin” causes a substitution of the address 00500.



96 Introduction to a Symbolic Programming System

Some thoughts that come to mind are the following: why was position
10000 chosen as our input area and why did our program begin at
location 005007 Why were the names “Input” and “Begin” chosen rather
than “Data” and “Start” perhaps? The only valid answers to these ques-
tions are (1) personal whim and (2) mnemonic content. The program
might have been written as follows:

Information Sentence 1: This program begins at location 12346.

Information Sentence 2: The symbolic word “Zxpflq” is synonymous
with core location 00825.

Information Sentence 3: The symbolic word “Pfwxyn” is synonymous
with core location 12346.

Information Sentence 4: There is no more information of explanatory
nature. The Source program follows:

RNCD ZXPFLQ
WNCD ZXPFLQ
B PFWXYN

The resultant object program would be:

LocATiON INSTRUCTION
12346 36 00825 00500
12358 38 00825 00400
12370 49 12346 00000

The disadvantage of this program is the impossibly bad choice of
symbolic names. The word “ZXPFLQ” conjures up very little connotation
of an input area of core memory. Nonetheless, the program is perfectly
translatable by the processor. Its dictionary is unique and there are
no contradictions in the command structure of the source program.

However, we have not even begun to exercise the true abilities of our
machine dictionary concept. Consider the following program:

Information Sentence 1: Begin this program at the first available loca-
tion after the addition and multiplication tables.

Information Sentence 2: A symbol “Input” will be used. It is 80 posi-
tions long.

Information Sentence 3: A symbol “Begin” will be used. It is synony-
mous with the location chosen for the first instruction of the source
program.

Information Sentence 4: There is no more information of explanatory
nature. The source program follows.

RNCD INPUT
WNCD INPUT
B BEGIN
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The generated program would be as follows:

LocaTioN INSTRUCTION
00480 36 00400 00500
00492 38 00400 00400
00504 49 00480 00000

The first information sentence stated that our origin counter was to
begin at 00400. (The addition and multiplication tables occupy positions
00100-00399.) The next piece of information in the source program
caused the word “Input” to be placed in the dictionary, associated the
origin counter address with the symbol, and incremented the origin
counter by the length of the defined symbol, 80 positions. The third
sentence placed the symbol “Begin” in the dictionary and the origin
counter address of 00480 was placed contiguous to it as the fourth infor-
mation sentence was encountered.

Carrying this logic a little further, we can decide to build a rule of the
following nature into the processor:

If an instruction bears a symbolic name, the origin counter, at that point,
will be chosen as the synonymous core location to be associated with
that name.

Thus, our source program looks like this:

Information Sentence 1: Begin this program at the first available loca-
tion after the addition and multiplication tables.

Information Sentence 2: A symbol Input will be used. It is 80 positions
long.

Information Sentence 3: There is no more information of explanatory
nature. The source program follows.

RNCD INPUT; THE NAME OF THIS
STATEMENT IS “BEGIN.”

WNCD INPUT

B BEGIN

The resultant object program generated is as follows:

LocATioN INSTRUCTION
00480 36 00400 00500
00492 38 00400 00400

00504 49 00480 00000
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If it were necessary to write all of these cumbersome directions, it
might not be worth the trouble. After all, the computer does not need
such an aggregation of verbs and nouns to tell it what to do. It merely
desires the facts in as concise a form as possible. Let us rewrite again:

ORIGIN:400
INPUT:SYMBOL:80
BEGIN:RNCD:INPUT
WNCD:INPUT
B :BEGIN
END OF PROGRAM

Now this is more like it. Just the facts without the frills have told the
processor where to start, where to stop and also that the symbols “Input”
and “Begin” have been defined.

Everything becomes grist for the processor’s mill. But since we must
be able to differentiate between concepts, let us call instructions to the
processor declaratives. All else are machine instructions in symbolic
form desirous of translation.

In our last example, only one instruction (RNCD:Input) has an iden-
tifying name (Begin). This “label” went into the dictionary and the
instruction received no special treatment beyond that. Of course, the
processor is quite fair; it treats all input in an equal fashion up to a point.
At first glance, it had no idea that the statement “Origin: 400" was a
declarative and not a symbolic instruction. It took a good deal of complex
logic and detailed investigation by the processor to determine that this
input statement belongs to the declarative category. The second state-
ment (Input:Symbol:80) is also recognized to be declarative in nature.
Certain clues, the presence of the word “Symbol” for instance, cause this
statement to be treated in a different fashion than “Origin: 400.”

A processor, then, is a program that has the ability to read information
and classify it into two categories:

1. Directions to itself, of which there are a wide variety.

2. Symbolic instructions that are to be translated according to the
general rules of the processor and the specific instructions of this
translation.

The process of translation is termed assembling a program. The
translator is called an Assembly System. The assembly system for the
1620 is called the Symbolic Programming System and bears the shortened
title “SPS.”

Once an individual has learned the rules of writing in SPS language,
program construction, which is challenging to begin with, can be quite
enjoyable. These rules make difficult taskmasters, however. The assembly
system cannot be told approximately what to do. It must be given exact,
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noncontradictory, properly ordered, carefully chosen statements. The
next chapter gives the rules for the 1620 symbolic system. Although they
are unique for this particular system, the concept of symbolic program-
ming extends to almost all digital computers. Some systems, unique to
other computers, bear rather amusing acronyms: SOAP (Symbolic Op-
timal Assembly Program), SAP (Symbolic Assembly System), and SOS
(Share Operating System ).

"~ The construction of such a system often occupies many man-years. The
1620’s SPS took approximately four man-years to complete.



Chapter 11

The Symbolic

Programming System

In the previous chapter, a pseudo-symbolic system was introduced to
give the student an initial glance at a processor that manipulates symbols.
We now come to a comprehensive analysis of the actual system with its
myriad rules.

All information relevant to coding and subsequent assembly is entered
on an SPS coding sheet as seen in Figure 11.1. The information required
to process a program falls into two main categories:

1. Instructions—Source statements in the symbolic language that specify
the job to be done by the object program. These entries will be trans-
lated into the object program.

2. Declaratives—The actual equivalents of Information Sentences dis-
cussed in the previous chapter. There are three categories of de-
claratives:

(a) Area Definitions—These statements assign core storage for input,
output, and working areas. Area definition statements are never
executed in the object program.

(b) Constant Definitions—These statements allow one to define con-
stants needed in the execution of the object program. The
constants become part of the object program, but the statements
themselves are not executed at the object level.

(c) Processor control operations—These statements allow program-
mer control over portions of the assembly. As in the case of area
and constant definitions, these statements are never executed in
the object program.

USE OF THE CODING SHEET

The identifying information at the top of the coding sheet (“Program,”
“Programmed By,” and “Date”) is not part of the source program and
100



IBM 1620 Symbolic Programming System
® .
Coding Sheet

Program Page No.Ll._z_] of
'

Programmed by Date

LINE LABEL OPERATION| OPERANDS & REMARKS

5]6 nji2 15116 20 25 30 35 40 45 S0 55 60 65 70 78]
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Fig. 11.1 Sample of a 1620 SPS Coding Sheet.
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is not punched in the source tape or card deck.! It is used to prevent
mix-up of programs while the coding is in the source document.

PAGE NUMBER

The 2-character page number will be punched as the first characters of
each source statement. Although there are no “columns” in a paper
tape, we will be able to identify position if we call the first punching
location “column 1.” The page number (00-99) is punched in columns
1 and 2 of the card and tape systems. Their function is to sequence the
coding sheets and also to allow for sorting cards in the event that they
are out of order. (Card dropping is a hazard of the profession.) The
processor does not check for sequential or multiple page numbering.
This is the programmer’s responsibility.

LINE NUMBER

The 3-character line number is punched contiguous to the page number
in columns 3-5 of both card and tape systems. Its function is to sequence
the statements on each coding sheet.

The first 20 lines are prenumbered 010-200. The six unnumbered lines
at the bottom of the page are provided for the entry of statements
inadvertently omitted and/or for sheet extension. If a statement is
omitted and added at a later time, its line number should fall between
those statements where the correction is to be inserted. It will be noted
that provision has been made for up to nine such insertions. If more are
required, it is possible to give a multiplicity of statements the same line
number. However, this partially defeats the purpose of having the line
number. Insertions of the type discussed must be placed in their proper
sequence when a source program is being assembled since assembly is
a serial process and sequence of line numbers is not checked. Thus, a
statement out of order will be assembled out of order.

LABEL

The 6-character label is a symbolic name chosen by the programmer
and is punched in columns 6-11 in both card and tape systems. It is not
necessary to utilize all six positions of the label field. A label is usually
associated with an area being defined or an instruction referred to else-
where in the program. All labels are assigned addresses in storage during

1 The physical preparation of tape and/or cards is referred to throughout this and
subsequent chapters as punching. There is a variety of devices used for preparation of
source program information. ‘



The Symbolic Programming System 103

the assembly. A reference to a label in the program is a reference to
the address of the area or instruction which bears that label. Although
any statement may be labeled, unnecessary labels delay the process of
assembly. Consequently, only those items specifically referred to else-
where in the program should be labeled. Instructions and declaratives
that are unlabeled should contain blanks in columns 6-11.

LABEL RULES

1. A label may contain from 1 to 6 alphanumeric characters at least
one of which must be alphabetic or one of the special characters:

Equal sign ( =)

Period (. )

Solidus ( /)

Commercial at ( @ )
2. Unused portions of a label are left blank.
3. Blanks are not permitted within a label.
4. All labels begin in column 6.

The number of labels permitted in the symbol table is a function of the
core available and the size of the labels employed. In a 20,000-core-
position 1620, approximately 170 6-character labels are permitted.

It is wise ‘to choose labels that have high mnemonic values. Labels
that have obvious meanings provide easily remembered references for
the programmer and also assist others who may assume responsibility
for the program. The following demonstrates a few valid labels:

DATA A21456 TEMP1
INPUT 712345 TEMP2
OUTPUT PPPPP CON
X23BFG GGGG 12A
GO INAREA A=B
START DATAIN X@C1
BEGIN ) SYMBOL 9.23/X
OPERATION

The 4-digit operation field contains the mnemonic representation of (1)
machine language operation codes, (2) declaratives, and (3) macro-
instructions (to be discussed in Chapter 13). Punching in the operation
field is in columns 12-15 of both card and tape systems.

A complete list of mnemonic machine language operation codes may
be found in Table 10.1. Actual 1620 machine codes in their numeric
form are also permitted but, in this case, checking by the processor is not
performed to determine if the numeric OP code is valid.
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OPERANDS AND REMARKS FOR INSTRUCTIONS

If the input to the processor is an instruction rather than a declarative,
the operands and remarks section may contain, at most, 4 items separated
by commas. The entire statement must be terminated by an E/L char-
acter in the paper tape system. This restriction is not applicable in the
card system, but the presence of the record mark (0-2-8) as the last
element of a statement will not affect the processing. Missing operands
are noted by using commas in their place.

Three of the four permitted items are operands and the fourth item,
if present, is a comment which has no effect on the assembly. Such
remarks, if present, are printed during a listing of the assembled program.
The purpose of these comments is to enable one to identify the effect of
certain instructions. It is quite easy to forget why one put this or that
instruction in the program in the first place. Such comments and remarks
can be quite useful if one returns to a program after a prolonged period
of inactivity. The first three items are referred to respectively as the
P, Q, and Flag operands.

1. P Operand—This portion may be either a symbolic, absolute, or
asterisk address 2 and will assemble as the P portion of the object
level instruction.

2. Q Operand—This portion may be either a symbolic, absolute, or
asterisk address and will assemble as the Q portion of the object
level instruction.

3. Flag Operand—This item is always numeric and is used to set flags
in the assembled instruction.

Any instruction may have 0, 1, 2, 3, or 4 items in the “operands and
remarks” portion of the coding sheet. These are punched in columns
16-75 in both the card and tape systems. In the card system, columns
76-80 are not utilized and may contain identifying information if it is
so desired.

OPERANDS AND REMARKS FOR DECLARATIVES

The number of items in a declarative field is variable depending upon
the declarative chosen. Each declarative will be discussed separately.
Punching of declarative operands and remarks occupies columns 16-75,
as do punching of instruction operands and remarks.

DISCUSSION OF OPERANDS

P AND Q OPERANDS
The operands that will be assembled as the P and Q portion of an

2 See pages 105 and 106 for a discussion cf symbolic, absolute, and asterisk
addresses.
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instruction are of three types: actual (synonymously termed absolute),
symbolic, and asterisk.

ACTUAL

An actual address consists of five or fewer digits and is the actual 1620
core storage address of a piece of data or an instruction. High-order
zeros of an actual address may be eliminated. See Figure 11.2 for an
example of instructions where both P and Q addresses are absolute.

3 uliz 15116 20 25
ovol v, A, [42345,,4756.2

2.0

LINE LABEL [OPERATION OPERANDS & REMARKS {
S

0:13:00 4 14

01850 1 4 4 1}

0:8,00 4 |

6.0

0,7,0

18,00 414y

1,00

A
P P [ S —

Fig. 11.2. Sample of Absolute Addressing.

Figure 11.2—Commentary

Assume the location counter is at position 10000 when we encounter these
source statements. If this is the case, the following five instructions will be
generated:

(10000) 21 12345 17562
(10012) 23 00532 01217
(10024) 26 15000 00099
(10036) 48 00000 00000
(10048) 15 19999 00005

The above program has no purpose other than demonstration of actual address
assignment.

Note that the processor fills in high-order positions of P and Q addresses
with zeros if less than 5 digits should be present. Some programmers enjoy the
uniformity of always utilizing 5-digit fields whether or not they are required.

SYMBOLIC

The symbolic address is a name or label assigned by the programmer to
" a piece of data or an instruction. Such a symbolic address is valid if and
only if it appears somewhere in the source program in the Label field.
Either one or both of the P and Q operands may be symbolic. See
Figure 11.3 for an example of symbolic addresses.
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LINE LABEL (OPERATION| OPERANDS & REMARKS

k-3 K nliz 1516 20 25
wol v A, |TEMP1, INPUT

-] B VI SIS S S S S R SR | )
L

07,00 44y NOP. | v v o

0:18,08 4 1 4 4 3 . FINS ST RN U T S SR S S ST SR U 1
N I_EJLL ‘
130,00 4 4 o4 o FUNNTRN T SN T U SN S S S SN U S A S S U 1
I

Fig. 11.3. Symbolic Addressing.

0,610 1 14 4 I BTN R S SRR az

Figure 11.3—Commentary
Assume the following core locations for all elements used in symbolic form:

TEMP1 (404)
TEMP2 (410)

DATA  (420)
INPUT (455)
LOC  (512)

Also, assume that the location counter stands at 800 when these instructions
are encountered by the processor. The following instructions are generated:

(00800) 21 00404 00455
(00812) 23 00410 00404
(00824) 26 00420 00099
(00836) 41 00000 00000
(00848) 45 10000 00512
Note that an instruction may have mixed symbolic and actual P and/or Q
operands. This is exhibited by the “TF DATA,99” and “BNR 10000,L.OC”
instructions. It is customary to differentiate the alphabetic “O” from the
numeric zero. Note that the letter “)” is slashed and the number zero is not.
Of course, this example assumes that at some point in the program all symbols
employed were properly defined by appearing in a label field of an instruction
or declarative.

ASTERISK .

The character, asterisk (*), when used as an operand in the P and/or
Q portions of an instruction, makes reference to the present value of the
location counter. (The location counter is the true correspondent to the
‘origin counter discussed in the previous chapter.) This is equivalent to
the address of the 0y (high-order—left-hand) position of the instruction
which contains the asterisk. See Figure 11.4 for an example of asterisk
addresses. The asterisk rule is somewhat different in the case of a
declarative. Be sure to note it.
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LINE LABEL OPERATION OPERANDS & REMARKS
sle nh2 13 20 23

ool vy i |BNF IFINISH
012,00 4 4 4 4 PRI ST S S T S N S WA E ST
013,00 4+ 4 4 4 BI 1 *I |||||||||||
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—

Fig. 11.4. Asterisk Addressing.

Figure 11.4—Commentary

Assume that location “Finish” is synonymous with core location 15000 and
that the location counter stands at 900 when these instructions are encountered
by the assembly system. The following instructions are therefore generated:

(00900) 44 15000 00900
(00912) 49 00912 00000

The latter instruction is a classic example of how not to use a computer. A
never-ending branch has been developed with no way out.

FLAG OPERANDS

A flag is placed in those positions of the assembled instruction specified
by the flag operand. In the event that an instruction is of the Immediate
type, a flag is automatically placed over the Q; digit of the assembled
instruction. However, the presence of the flag operand takes precedence.
Thus, a flag operand of 8 causes a flag to be set in Qg and not in Q.

If more than one flag is desired in an assembled instruction, the flag
operand must indicate all positions to be flagged. Thus, if a flag is
desired in Q7 and Qy,, the flag operand reads “711.” The order of ele-
ments in the flag operand is quite critical here. If one wishes a flag at posi-
tion Oy and O, the flag operand is written as “01” and not as “10.” This
latter configuration would cause a flag to be placed at position Qo. If
one desires every digit of an assembled instruction to be flagged, the
flag operand would read “01234567891011.”

There is one exception to the rule governing the use of an Immediate
instruction without a flag operand: the instruction Transmit Digit Imme-
diate will assemble with no flag placed on the assembled instruction
unless specifically told otherwise through the use of the flag operand.
See Figure 11.5 for examples of the flag operand in use.

Any instruction may have a flag operand but its use is most effective
in the Immediate type.



108 The Symbolic Programming System

LINE LABEL [(-IPERA‘ION OPERANDS & REMARKS
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Fig. 11.5. Samples of Instructions with Flag Operands.

Figure 11.5—Commentary

Assume the following core locations for all elements used in symbolic form:

DATA  (12027)
INFO  (17956)
COUNT (406)
THERE (2000)

The location counter stands at 512 when these instructions are encountered
by the processor. The following instructions are generated:

11 12027 12057
11 12027 12057
11 12027 12057
12 17956 00100
15 12027 00002
15 12027 00002
16 00406 00157
49 02000 00000
41 00000 00000
48 00000 00000
Note the three commas of the last instruction to denote the three missing

operands before the remarks operand which is present. Also observe that the
presence of the remark did not affect the assembly or generate any coding.
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ADDRESS ARITHMETIC

Any P and/or Q address, symbolic, asterisk, or actual, may be incre-
mented (+ ), decremented ( — ), or multiplied (*) by a numeric constant
or a symbol representing a numeric quantity.® By utilizing a variety of
address arithmetic, any P and/or Q address may assume any variation
of the following form:

AXBXCX*DX . ..

where A, B, C, and D are numeric, asterisk, or symbolic, and multiplica-
tion is of prime order.
Symbolic instructions of the form:

RNCD  INPUT-T79

B START+24
TF LOC*16,DATA+5%L—CONST
AM *-23,5,10

are permissible.
Figure 11.6 contains extensive examples of address arithmetic.

Equivalent

After
P or Q Operands Assembly

START + 40, 04040
Symbols ALPHA - 30, 00970
Used In START+ 2 *L, 04024
Operands Equivalent START * 3, 12000
ALPHA * 5 + 40, 05040
ALPHA 1000 4 * 13 + OUTPUT, 15052
START 4000 START+4 *L -1, 04047
L 12 ALPHA *L, 12000
ORIGIN 600 500 + 20 * 3 - 11, 00549
OUTPUT 15000 OUTPUT - L * ALPHA + ORIGIN 03600

Fig. 11.6. Samples of Address Arithmetic.

3 Note this alternate function of the asterisk symbol. In all, there are four separate
and distinct uses for asterisk of which two have been discussed: (1) an instruction
operand and (2) a symbol implying multiplication.
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DECLARATIVES—CARD AND TAPE SYSTEM

Declaratives, as defined previously, are instructions to the processor for
control of a specific assembly. The variety of declaratives may be
initially confusing but the student is not expected to learn them all
simultaneously. As each declarative is introduced, a variety of examples
will be given. Close study of these should give an excellent understanding
of their function.

The use of the asterisk (*) in a declarative operand has a slightly
different meaning than it has when used as an instruction operand (see
page 106). It is with this third use of the asterisk symbol that the dis-
cussion of declaratives begins.

ASTERISK RULE FOR DECLARATIVE OPERANDS

The character asterisk (*), when used as an operand of a declarative,
makes reference to the low-order digit of the last field whose address was
assigned by the processor. This last field may have been the result of a
declarative statement or an instruction.

DORG (DEFINE ORIGIN)

The code DORG is used to initiate address assignment in that it
initializes the orgin counter to a specified address. It is the true equiva-
lent of Information Sentence 1 of Chapter 10. The rules of the DORG
follow.

1. The operation code DORG appears in columns 12-15 of the opera-
tion field.

2. The address at which assignment is to begin is specified as the first

operand. This operand may be actual, symbolic, or asterisk. If sym-

bolic, the symbol must have been previously encountered in the source

program.4

A DORG may be used at any point in the source program.

The first instruction or declarative entry after a DORG will begin its

location in core at the address specified by the DORG’s operand.

Subsequent entries will be assigned subsequent addresses.

5. If no DORG is encountered as the first statement of a source pro-
gram, the processor begins the assembly at location 00402.

6. The lowest location that should be chosen for a DORG is 00402.

7. The maximum number of operands that may be used with a DORG
is two. The second operand, if present, is a comment and does not
affect the processing.

Ll

See Figure 11.7 for examples of the DORG statement properly written.

4 Any declarative operand that is permitted an actual, symbolic, or asterisk address
is also permitted address arithmetic in that operand.
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OPERANDS & REMARKS
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Fig. 11.7. Examples of the DORG Declarative.

DEND (DEFINE END)

The code DEND is used to inform the processor that it has processed
all of the source statements. The last statement of a source program
must be DEND. The rules of the DEND follow.

1. The operation code DEND appears in columns 12-15 of the operation
field.

2. The address at which the object program is to begin execution may
be stated as the first operand. The object program will then contain
an automatic Branch to this instruction after loading and halting.
This automatic Branch is obtained by depressing the Start key. The
address specified as the first operand may be symbolic, actual, or
asterisk. If symbolic, the symbol must have been previously en-
countered in the source program.

3.. A DEND may not be labeled.

4. The maximum number of operands with a DEND is two. The
second operand, if present, is a comment and does not affect the
processing.

See Figure 11.8 for examples of the DEND statement properly written.

UNE | LABEL orfnmohpsmos & REMARKS

2 516 uli2 15116 20 25 30 35 40
ool o JIDENDE L L
Qu2,00 4\ 44y Lo TSNS U T U TS U SO S TS S SN Y S Y S S TS T S B '
ool vy, JDENDBEGIN vy
0140 I Lod NS VRN U R TN T TN U N S U N NN WY SN O T Y T O T
ool v |IDENDISTART 424 .\ v v i
18000 4 4 a 4 L T T U R N S N SR I
ozl vy DEND402. ,B.EGIN .PRmGR AM AT. sz.u‘»
o,cy‘o P It TR TS T S S TN S S OO W SN S WS Y W A ¥ I 1 L
S R ———

Fig. 11.8. Examples of the DEND Declarative.
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DS (DEFINE SYMBOL)

The code DS may be used to define a contiguous area of core storage
that will contain numeric data. An alternate function is to generate
synonymity between symbols or between symbols and addresses. The
rules of the DS follow.

1.

2.

5.

6.

The operation code DS appears in columns 12-13 of the operation
field.

The label by which this field may be referenced appears in columns
6-11. The label refers to the units (low-order) position of the field.
The length of the field appears as the first operand. The length
operand may be actual, symbolic, or asterisk. If symbolic, the symbol
must have been previously encountered in the source program.

If a second operand is present, the processor assumes a synonymous
relationship between the label and this second operand. This operand
allows the programmer to assign the address of a symbol. The
presence of the synonymity operand does not affect the sequence of
of addresses assigned by the processor. The location counter remains
unchanged regardless of the size of the first operand. The synonymity
operand may be actual, symbolic, or asterisk. If symbolic, it must
have been previously encountered in the source program.

The maximum number of operands in a DS is three. The third
operand, if present, is a comment and does not affect the processing.
Omission of the label in a DS reserves storage which will not be
referred to symbolically. \

See Figure 11.9 for examples of the DS statement properly written.

To demonstrate the variety of uses for the DS statement, a sample
program will be repeated with variations in the programming. Com-
mentary will be presented with each example. Both the source program
and object program are displayed. Only the first example will be shown

UNE | LABEL  [OPERATION]  OPERANDS & REMARKS
516 nhiz 15116 20 25 30 35 40 45
aofLABEL DS 40
1200 ¢ 4 4 1 Rt T SR S T T TR0 S S T N T W T T T S T S WS RO HOUOS WD NONS WU SR SN U S0 SO T W §
KON, . [0S (145 0 v
FET1-1 S 11 B N SO U N T Y WS N U Y S NS T T TN U VO T S O W Y S S
5ol TEMPA, DS, , | LABEL-T \ v\ 0 e

06,0 [ | 111 TR NN TN OO WS TN WY T NN NN TN SN WUNN SR JANNN SO SN TUNS SN SN SN SUNE N SN WY TR N SN N ST A N
0.2, MATRIXDS. , 1,0, THIS, 1.5 THE, FIRST ELEMENT., . ?)
0180 S R ) 121 P ST U TR0 S N SNNU U TN TN TN N SN WU VY TN RN SO ST TR SO TN TR SN S0 S S B SR
A 490,,.,R00M FOR 49, MORE ELEMENTS, ;

100008 4 ¢4 b Lo e a1y 1 TS W U S N T T YOO Y T Y U W OO S S S {

uuo]AREA, L DS, .

22,00 4 40y

Fig. 11.9. Examples of the DS Declarative.

5 A label does not refer to an entire field. It refers to a single core position.



The Symbolic Programming System 113

on a coding sheet while all others demonstrate the actual 1620 type-
writer output listing: source statements on the left, assembled statements
on the right.

The details of assembling a program will be discussed at a later point.
It is sufficient to say that the processor must read the source program
twice.

The first pass of the source program builds up a dictionary of labels,
assigns storage locations, and yields certain error messages. During the
second pass, the source data is re-entered and the following takes place:

1. Operation codes are changed from symbolic to actual.

2. Operands are processed by dictionary look-up and address anthmetlc
is performed where necessary.

3. The assembled instructions (object program) are punched on cards
or tape.

In addition, a variety of error messages may appear during either pass
designating certain error conditions.

The object program for both card and tape systems contains loading
instructions which appear at the beginning of the tape or card deck and
the arithmetic tables which appear at the end.

Thus, a single tape or card deck, consisting of loader, object program,
constants, arithmetic tables, and so forth, is provided by the processor.
An optional listing of the source program versus the assembled program
may also be obtained. It is this listing that is given for each demonstration

program.

Problem

Generate a program to reproduce a deck of punched, 80-column cards. The
program is to run until the card reader is empty, at which point the program
will stop for lack of cards. The cards contain no alphabetic information and
all 80 columns are punched with numeric data. There are no blank columns
in the cards.

LINE LABEL [OPERATION OPERANDS & REMARKS }
sle ulz she 20 28

402, ., ... . ... )
80 . ... .. ...
NPUT,~T79.
NPUT,-79
ool o0 B BEGIN . ..,
A T N
0,7:01 4 4 4 14 Ll IIlIILIIJJIJ)
- e

Example 1A
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01010 DORG 402 00402
01020INPUT DS 80 00481 00080
O1030BEGIN RNCD INPUT-79 00482 36 00402 00500
01040 WNCD INPUT-~79 0oLoL 38 004L02- 00400
01050 B BEGIN 00506 L9 00482 00000
01060 DEND 00000

Example 1B

Example 1—-Commentary

A total of 80 positions is needed for an input area. Consequently the
symbol “Input” is designed to be 80 positions long. Since I/0 commands
reference the high-order position of data, the I/0 P-operand references not
“Input” (the address of the low order position) but “Input-79” (the address
of the high-order position. This disconcerting bit of arithmetic may be justified
by asking yourself how many numbers lie between 0 and 5, inclusive. The
answer is, of course, 6. Similarly, there are 80 positions between Input and
Input-79:

INPUT — [INPUT — 79] + 1.

The processor, having been told to begin its assembly at location 00402 by
the DORG statement, generates an address of 00481 for the units position of
the symbol “Input.” The processor assigns addresses as it encounters informa-
tion. Hence, the instruction labeled “Begin” starts at 00482. Synonymous
with location 00482 is the label name “Begin.” When this label is used as an
operand, as in the case of “B Begin,” the corresponding core location is sub-
stituted.

The DEND statement completes processing of both passes. The listing
shown above is the output of the second pass of the source program.

01010 DORG 402 00402

01020BEGIN RNCD INPUT-79 00402 36 00438 00500
01030 WNCD INPUT-79 00414 38 00438 00400
01040 B BEGIN 00426 L9 00402 00000
01050INPUT DS 80 00517 00080

01060 DEND 00000

Example 2

Example 2—Commentary

This example differs only slightly from Example 1. In this case the definition
of “Input” was made after the symbolic instructions. The object program
thus produced will accomplish the same task but the addresses, of course,
are entirely changed. This is because the location counter came across the
statements in a different order.
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01010 _ DORG 10OOO 10000
01020GPXPL RNCD BPFZQX-79 10000 36 10036 00500
01030 WNCD BPFZQX-79 10012 38 10036 00400
01040 B GPXPL 10024 49 10000 00000
01050BPFZQX DS 80 10115 00080
01060 DEND 00000

Example 3

Example 3—Commentary

In this case the DORG instruction specifies 10000.

This problem is given to demonstrate the fact that the choice of symbolic
names does not affect the processing. It does make the logic more difficult to
follow.

01010 DORG 403 00403
0102060 RNCD DATA-79 ~~~~~~~~~  0Q0LOL 36 004LO 00500
01030 WNCD DATA-79 00416 38 00LLO 00400
01040 B GO 00428 49 QOLOL 00000
01050DATA DS 80 00519 00080
01060 DEND 00000

Example 4

Example 4—Commentary

Notice that the DORG requested an initial address of 403. The processor
will not allow instructions to begin at odd locations. Thus, the location counter
was incremented by 1 before processing the instruction labeled “Go.”

01010 DORG_500 00500
01020START RNCD INPUT-79 00500 36 00512 00500
0103QINPUT DS 80 00591 00080
01040 WNCD INPUT-79 00592 38 00512 00400
01050 B START 006
01060 DEND 00000

Example 5

Example 5—Commentary

The processor has no way to determine that a major programming rule has
been violated in this problem.

After assembly, an attempt to run this program will result in the reading of
just one card. This is due to the fact that the 1620 will attempt execution
of the instruction in location 512 after execution of the instruction in 500.
Unfortunately, there is no instruction in location 512.
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The problem was introduced by defining the symbol between two instruc-
tions which should be contiguous at the object level. This is not an error in
the processor since this type of programming is often desirable. In this case,
however, all we have is an unworkable program.

01010 DORG 402 00402
01020BEGIN RNCC INPUT-79 ER 5

00402 36 00000 00500
01030 WNCD INPUT-79 ER 5

00414 35 00000 00LOO
01040 B BEGIN i 00426 49 00402 00000
01050 DEND 00000

Example 6

Example 6—Commentary

This program demonstrates what will occur should you forget to define a
symbol after having used it as a P and/or Q operand. The ER 5 message
states that an undefined symbol is present in the symbolic instruction to which
it is attached. The resultant instruction has 00000 in that operand which
contained the undefined symbol. A complete list of error conditions will be
discussed at the conclusion of this chapter.

01010 DORG 402 00402
01020 RNCD INPUT=-79 00402 36 00438 00500
01030 WNCD INPUT-79 oo41k 38 00438 00400
01040 B *-20 00426 49 00402 00000
01050INPUT DS 80 00517 00080
01060 DEND 00000

Example 7

Example 7—Commentary

The first instruction of the program has no label. However, we must refer
to it in order to be able to branch to it. Consequently, the asterisk form of
address is employed. Each instruction is 12 digits long, which makes the P
operand of the Branch instruction “*—24” since we wish to reference the
second instruction before the Branch.

01010 DORG 520 00520

01020F IRST RNCD INPUT 00520 36 00556 00500
01030 WNCD INPUT 00532 38 00556 00400
01040 B FIRST 00544 L9 00520 00000
01050INPUT DS 1 00556 00001

01060 DS 79 00635 00079

01070 DEND . 00000

Example 8
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Example 8—Commentary

In this example, the Input declarative was changed. This necessitates a
change in the I/0 statement. However, since all of core is at our disposal after
position 556, is the unlabeled “DS 79” necessary?

01010 DORG 520 00520
01020FIRST RNCD INPUT 00520 36 00556 00500
01030 NCD
01040 B FIRST 00544 49 00520 00000
O1050INPUT DS 1 00556 00001
01070 DEND 00000

Example ¢

Example 9—Commentary

The question posed in Example 8 is answered here: the definition of 79 core
positions contiguous to “Input” is not necessary in this case.

Can the same technique be employed if “Input” is defined as a 1-digit symbol
before the instruction labeled “First”?

01010 DORG 402 00402
UTUZO0GU  RNCU TNPUT 00407 36 15000 00500
01030 WNCD INPUT 00414 38 15000 00400
071040 GO U
010501NPUT. DS , 15000 15000 00000
U100 DERD GO 00402

Example 10

Example 10—Commentary

Notice that “Input” has been made synonymous with position 15000 of core
storage. In truth, there is no need for this concept in this particular program,
but it is presented to demonstrate how a symbol can be located in any desired
location.

Note also the presence of an operand with the declarative DEND.

01010 DORG 402 00402

0T020TNPUT DS 80 00L81 00080
010300UTPUT DS , INPUT=-79 00402 00000
OTOLOSTART RNCD TNPUT-79 00482 36 00L02 00500
01050 WNCD QUTPUT 00494 38 00402 00400
01060 B START 00506 49 00482 00000
01070 DEND START 00482

Example 11
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Example 11—Commentary

Here is an example of synonymity between symbols. We may refer to
“Input-79” or “Output” and achieve the same assembled address. The definition
of the symbol “Input” must appear before definition of “Output” because of
rule 4 of DS statements. However, may the definition of “Output” appear
anywhere after the definition of “Input”?

01010 DORG 5402 00402

01020INPUT DS 80 00481 00080

0T030G0 RNCD TNPUT=79 00482 36 00402 00500
010400UTPUT DS , INPUT=79 00402 00000

071050 WNCD OUTPUT 0049%L 38 00L02 00LOO
01060 B GO 00506 49 00482 00000
01070 DEND 00000

Example 12

Example 12—Commentary

Since “Output” reserves no storage, does not affect the location counter, and
is used to define a synonymous name for core position “Input-79,” it may be
placed anywhere after the definition of the symbol “Input” without adverse
effects. This answers the question posed in Example 11. See Example 5 for a
violation of this concept. ’

Example 13 demonstrates the following problem:

Problem

Generate a program to duplicate card-to-card or card-to-tape. If switch 1
is on, the second alternative is to be chosen. A record mark is available at
location 400 if needed. All card data is numeric and all 80 columns of the
card are punched.

81818 ?gRG lf?uz’w 80, 400 8%8% 25 00578 00400

102 +80, o 5 eg _-
01030 BC1 *+48 00414 46 00L62 00100
01040 RNCD_ INPUT 00426 36 00498 00500
01050 WNCD ™ INPUT 00438 38 00498 00400
01060 B *=2l 00450 49 00426 00000
01070 RNCD INPUT 00462 36 00498 00500
01080 WNPT__INPUT 00474 38 00498 00200
01090 ] B *=2L 00486 49 00L62 00000
01100INPUT DS 1 00498 00001 ;
01110 DEND 402 00402

Example 13
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Example 13—Commentary

Through the proper use of asterisk operands, we can limit the number of
labels to as few as possible. But since the assembly system is available for
the purpose of allowing symbol manipulation, this type of programming is not
desirable for a program of any substantial size.

The first instruction of the program places a record mark at the necessary
location if tape output is the case. If card output is desired, we have wasted
an instruction but have not damaged the intent of the program.

Examples 14 and 15 demonstrate two varieties of the same program.
The first is quite straightforward. The second is shorter but not as easily
followed. This latter problem demonstrates the first example of a concept
unique to digital computers: instruction modification.

Both examples are presented without comment for your study.

Switch 1 On: Card-to-card duplication
Switch 2 On: Card-to-tape duplication
Switch 3 On: Tape-to-tape duplication
Switch 4 On: Tape-to-card duplication

Allow for the possibility of operator negligence concerning switch settings.
A record mark is available in location 400 if needed. Card records are
80 numeric characters. Tape records are 81 numeric characters, the
last of which is an E/L character.

OTOTO DURG 40Z 0002
01020G0 BC1 C2C 00402 46 00570 00100
0710 BCZ  CZ1 0047 46 00522 U0Z00
01040 BC3 Ta2T 00426 46 00LBE 00300
OTO50 BNCH ERRUR 0 >
01060T2€ RNPT INPUT 00450 36 00618 00300
01070 WNCDO—TNPUT 006 Z 006 18 00R00
01080 B T2C 00L74 49 00450 00000
PUT 00486 006 T8 U0300
01100 WNPT INPUT 00498 38 00618 00200
o110 B T2T 00510 49 O0486 00000
01120C2T 1D INPUT+80, 400 00522 25 00698 00400
o130 RNCO—INPUT 0053t 36 006 13 00500
01140 WNPT INPUT 00546 38 00618 00200
Utiou |VAE D VA UUL56 4Y UUS54 UUUUU
01160C2C RNCD INPUT 00570 3¢ 00618 00500
oTT170 WNCU TNPOT 005¢7 38 00610 UOLU0
01180 c2c 00594 49 00570 00000
OTTO0ERROR 006 06 00000 00000
01200INPUT DS 1 00618 00001
02010 DEND—GO 00807
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01010 DORG k02 00402

01020INPUT DS 1 00402 00001

01030 DS <0 00482 00080

01040GO BC1 C2C 00484 46 00628 00100
01050 - BC2 C2T 00496 L& 00592 00200

01060 B8C3 T2T 00508 L6 00268 OOEOO
01070 BNC4 ERROR,,,ALWAYS PREPARE FOR 00520 47 00652 00400
O010E0GENUSE RNPT INPUT,,,THE UNEXPECTED, IT 00?%2 ;6 00402 OOEOO
010S0A WNCD INPUT,,,IS P E TO FOR- 0400

[¢]
01100 B GENUSE,, ,GET SWITCH SETTINGS, 00%26 L9 00%%2 00000
0

01120T2T DM  A+9, 5

01130 B8 GENUSE 00580 49 00532 00000
01150C2T TDM GENUSE+9,5 00592 15 00541 00005
01120 TD  INPUT+80,400 00604 25 00L82 00400
01160 B T2T 0061 9 00568 00000
01170c2c TDM__GENUSE+9,5 00628 15 00541 00005
0110 B GENUSE 006540 L9 00532 00000
O01190ERROR _H 00652 48 00000 00000
01200 DEND GO 00L8L

Example 15

Example 16 demonstrates a solution to the following problem. Can
you write another?

Problem
A B C D
5 Chars. E/L 2 Chars. EAL 3 Chars. EL 7 Chars. EA

Data Representation on Paper Tape

A is of the form XXX.XX

B is of the form .XX

C is of the form XX.X

D is of the form XXXX.XXX

All data is positive and flagged in the high order position of the field. Cal-
culate (A + B) (C + D) to one decimal place of accuracy. The answer is to
be typed.
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01005 DORG 2178 - 02!;8
01010GO RNPT [INPUTA-5 021 3 31 3

01020 RNPT INPUTB-2 02190 36 02316 00300
01030 A INPUTA-T, INPUTB-1 02202 21 02314 02317
01040 RNPT INPUTC-3 02214 36 02319 00300
01050 RNPT INPUTD-7 02226, 36 02323 00300
01060 A INPUTD-3, INPUTC-1 02238 21 02327 02321
01065 M INPUTD-1, INPUTA-1 02250 23 02329 0231k
01070 TF INPUTD-1,95 02262 23 02329 00095
01080 RCTY 02274 34 00000 00102
01090 WNTY INPUTD-8 02286 38 02322 00100
01100 H 02298 48 00000 00000
O1110INPUTA DS 6 02315 00006
01120INPUTB DS 3 02318 00003
O01130INPUTC DS L ~_ 02322 00004
‘O1140INPUTD DS 8 02330 00008

01150 DEND GO 02178

Example 16

Example 16—Commentary

All areas of input are one core position larger than is needed. This is to
allow for the entry of the E/L characters into core. Note the double usage
made of the record mark which entered with the D data as an E/L character.

Example 17 demonstrates a solution to the following problem. Can
you write a second, a third, etc?

Problem

A occupies columns 1-5 of the card and is of the form XXX .XX

B occupies columns 10-11 of the card and is of the form .XX

C occupies columns 15-17 of the card and is of the form XX.X

D occupies columns 20-26 of the card and is of the form XXXX.XXX

All data is positive and flagged in the high-order position of the field. Calculate
(A+B)(C+ D) to one decimal place of accuracy. The answer is to be
typed.
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01010 DORG 402 00402

D _INPUT
01030 A A,B 00414 21 00502 00508
01040 A D-2,C 00426 21 00521 00514
01060 M A,D 00438 23 00502 00523
01070 D oh,L00 00450 25 00096 00400
01080 RCTY - 00462 34 00000 00102
01090 WNTY 88 0DOL7L 38 00088 00100
01100 H 00486 48 00000 00000
Q1110INPUT DS 1 00498 00001 :
01120A DS » INPUT+L4 00502 00000
011308 DS, INPUT+10 00508 00000
01140C DS , INPUT+16 00514 00000
011500 DS, INPUT+25 00523 00000
01160 DEND GO 00402

Example 17

Example 17—Commentary

There were no record marks left over from data input since card reading is
not terminated in the same fashion as is tape. Hence, it was necessary to borrow
the record mark at location 400.

DC (DEFINE CONSTANT)

The code DC may be used to define a numeric constant that will be
used in the computation procedure of the object program. The rules of
the DC follow.

1. The operation code DC appears in columns 12-13 of the operation
field.

2. The label by which this constant may be referenced appears in
columns 6-11. The label refers to the units (low-order) position
of the constant.

3. The length of the constant appears as the first operand. The length
operand may be actual, symbolic, or asterisk. If symbolic, the
symbol must have been previously encountered in the source pro-
gram.

4. The second operand is the constant being defined and is always
numeric.

5. Omission of the first and/or second operands is invalid.

6. If a third operand is present, the processor assumes a synonymous
relationship between the label and this third operand. This operand
allows the programmer to assign the address of a constant. The
presence of the synonymity operand does not affect sequence of
addresses assigned by the processor.” The location counter remains
unchanged regardless of the size of the first operand which, unlike
the DS size operand, must always be present. The synonymity

" operand may be actual, symbolic, or asterisk. If symbolic, it must
have been previously encountered in the source program.



The Symbolic Programming System 123

7. The processor will place a flag over the left-hand (high-order) digit
of the constant.

8. Negative constants are preceded by a minus sign (—) which is
not counted as part of the length operand. The presence of the
minus sign causes a flag to be placed in the units position of the
constant.

9. A record mark may appear only in the units position of the con-
stant field and is written as “@.” This is interpreted by the
processor as “}.”

10. Negative constants containing a record mark (@) will have a flag
placed over the digit preceding the record mark.

11. Constants may not exceed 50 characters.

12. Should the length operand be greater than the number of digits
specified in the constant, the constant will be right justified with
high-order zeros inserted.

13. A length operand less than the number of digits in the specified
constant is invalid.

14. The maximum number of operands with a DC is four. The fourth
operand, if present, is a comment and does not affect the processing.

See Figure 11.10 for examples of the DC statement properly written.

LINE
3 sls

)

0i2.0

0180

6.0 lllllljll 1 Lol ila 1 Loa ST L
o.7,0{RECRD, |D§“ 4. @, % s N i
018,0 Lol 4 4 ) U T W% SN N VK S VO S T W S A RIS TS Y WY SN VUOE WS SO0 VY UL S SR T U UK WAK VU UUOF NN SN SO DU O WY O 1

[IU-JU} SRS B PR YUY SRT SN TR SN YU T X VA OO S0 T WY O N T S U WY T 1.;’

Fig. 11.10. Examples of the DC Declarative.

Examples 18, 19, and 20 are given to demonstrate proper use of the
DC statement. These three examples are different solutions to the same
problem.
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Problem

Given cards of the following form

The Symbolic Programming System

/]

Zeros

with A, B and C integers such that

1. 0=A =09998 in columns 1-4
2. 0=B =992 in columns 5-7

3. 0=C=99984 in columns 8-12

For each input card, generate a single output card with integers X, Y, and Z

such that

1. X=A + 1 punched in columns 1-4
2. Y =B + 7 punched in columns 5-7
8. Z = C + 15 punched in columns 8-12

With the remainder of the card zeros.

Repeat until all cards are exhausted.
All input data is flagged in the high-order position of the field.

01010 DORG uosz goqu'

01030 A A,KON1 00414 21 00477 00557

01040 A B,KCN2 0

01050 A C,KON3 00438 21 00485 00565

01060 WNCD INPUT 00450 38 0

01070 . B GO 0042 49 00402 00000

01080INPUT DS 1 00474 00001

01090 - DS 9 00553 00079

01100A DS, INPUT+3 00477 00000

011108 DS , INPUT+6 00480 00000

01120¢C DS, INPUT+11 00485 00000

O1130KON1  DC  L,1 00557 00004  DOO1

01150KON3  DC 5,15 00565 00005 80015
GO 00402

Example 18
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Example 18—Commentary

The constants needed for proper operation of the program are defined as
Konl, Kon2, and Kon3, respectively. Other than the introduction of the new -
declaratives, this program presents no new ideas.

01010 DORG 402 00402
01020G0 RNCD | NPUT 00402 36 00474 00500
01030 A INPUT+3, CON1 00L14 21 00477 00555
01040 A INPUT+6, CON2
01050 A INPUT+11,CON3 00438 21 00485 00555
01060 WNCD_INPUT

1070 B GO 00462 L9 00402 00000
01080INPUT DS 1 00474 00001
01090 DS 79 00553 0007%
01100CONT _DC__ 2,1 00555 0C002 01
01110CON2 DC 2,7 00557 0000z 07
01120C0N3 D€ 2,15 00559 00002 715
01130 DEND GO 00402

Example 19

Example 19—Commentary

This program is identical with the previous one with the single exception
of size of constants defined. Are more than 2-digit constants really necessary?

01010 DORG L02 00402

0102060 RNCD INPUT 00402 36 00474 00500
01030 AM  INPUT+3,1,10 00414 11 00477 00001
01040 AM__ INPUT+6,7,10 00426 11 00480 00007
01050 AM  INPUT+11,15,10 00438 11 00485 00015
01060 WNCD _INPUT 00450 38 00474 00400
01070 B GO 0042 49 00402 00000
01080INPUT DS 1 00474 00001

01090 DEND GO 00402

Example 20

Example 20—Commentary

The problem is executed in this program by using the Immediate commands
instead of defining constants. In any computer program, space is money!

Examples 21, 22, 23, 24, and 25 present five variations on the same
problem. They are presented without comment for your study.

6 In Examples 24 and 25 what is the purpose of the declarative DORG *—3 which
is so liberally sprinkled throughout the program?
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01010 DORG 402 00402
PUT 0
01030 SF INPUT 00414 32 00642 00000
, G  INPUT+6,CON 0
01050 TAPOUT 00438 L6 00582 01100
Ologo TF 0UTPUT~I,-NPUT+6 00462 26 00734 00648
01080 CF___OUTPUT=7 0
01090 RCTY 00486 34 00000 00102
01100 WNTY OUTPUT -7 00498 38 00728 00100
onzo BNLC GO 00510 47 00402 00300
Ol OCRDOUT CF INPUT 00534 33 00642 00000
1145 WNCD_INPUT 005
81150 ﬁNLC GO 00558 47 00402 00900
O0UT TF  OUTPUT-1, INPUT+6 00582 26 00734 00648
01180 CF__ QUTPUT~7 00594 33 00728 00000
01190 WNPT OUTPUT-7 006 06 i8 00728 00200
01200 BNLC GO 00618 L7 0
02010 H

00630 48 00000 00000
006

2030 DS 79 00721 00079

gzouocon DC %.5oggog .,_______.__Qozzl_nnooa_,,§oonnn__

20500UTPUT DC ,@ 00735 00008 000000%
02060 DEND GO 00402

Example 21

01010 DORG 402 00402

0102060 RNCD_INPUT 00402 36 00626 oosoo
01030 ' SfF ANPXT a 00414 32 00626 00000

+

81050 z; OUTPUT~-1, INPUT+6 00438 26 00624 00632

1070 RCTY 00462 34 00000 00102
01080 WNTY OUTPUT=7 00474 38 00618 00100
01090TEST BNLC GO 00486 L7 00402 00900
0110 H 004 0000 00000
0 I!OAHEAD C INPUT+6, CON 00510 24 00632 00711
01120 BH___TAPE 00522 4 00570 01100
01130 CFINPUT 00534 33 00626 00000
011ko WNCD I NPUT 00546 38 0062600400
01150 B TEST 00558 49 00486 00000
01160TAPE  TF _ QUTPUT-1, INPUT+6 00570 26 0062k 00632
01170 CF ~ OUTPUT-7 00582 33 00618 00000
01180 WNPT QUTPUT-7 _ 00618 00200
01190 B TEST . 00606 L9 00486 00000
012000UTPUT DC _ 8,@ 00625 00008
01210INPUT DS 1 00626 00001
01220 DS 79 00705 00079
01230CON DC  6,500000 00711 00006 500000
01240 DEND GO 00402

Example 22
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01010 DORG 402 00402
01020G0 RNCD INPUT-79 00402 36 00626 00500
01030 SF INPUT~79 O00L1L 32 00626 00000

01040 BNF AHEADi INPUT~73 00426 L4k 00510 00632

5 OUTPUT-1, INPUT-73 00438 26 0062L 00632
01060 CF___OUTPUT-7 __ QQA?O 33 00618 00000
1070 RCTY 00462 34 00000 00102

01080 WNTY QUTPUT-7 00k74 38 00618 00100
O1090TEST BNLC GO 00486 47 00402 00900
01100 - 00498 48 00000 00000
01120AHEAD c INPUT-73,CON 00510 24 00632 00711
01130 BH __ TAPE 00522 46 00570 01100
01150 CF INPUT-79 00534 33 00626 00000
01152 WNCD_INP _
01160 B TEST 00558 49 00486 00000
O1170TAPE  TF  OUTPUT-1, INPUT=73 00570 26 00624 00632
01180 CF  OUTPUT-7 00582 33 00618 00000
01190 WNPT _OQUTPUT -7
01200 B TEST 00606 49 00486 00000
UTPUT 00625 00008  0000000%
01212INPUT DS 80 00705 00080
01230C0ON DC  6,500000 00711 00006 500000
01240 DEND GO 00402
Example 23

01010 DORG hozl 00402 0050
0102060 __RNCD
01030 ?F |N$ga 00414 32 00586 00000
01050 CF  HIGH 00438 33 00502 00000
01060 BNF__AHEAD, X
01070DATAT RCTY 00462 34 00000 00102
01080 WNTY HIGH 00474 38 00502 00100
8‘090TE$Z gNLC GO 00486 47 00402 00900
O1110AHEAD C X,CON 00510 24 00592 00469
01120 BH TAPE 00522 4 00566 01100
01130 CF INPUT 00534 33 00586 00000
01140 WNCD _INPUT 00546 38 00586_00400
01150 B TEST 00558 49 00486 00000
01160 DORG *-3 00566
01170TAPE  WNPT HIGH 00566 38 00502 00200
011 0 B TEST 00578 49 00486 00000

01190 DORG *-3 00586
012000UTPUT DS ,DATA2+10 00508 00000
02010 DC I,@,OUTPUT+I 00509 00001 %
02020HIGH DS OUTPUT
02030CON _ DC 3,§ooooo,DATA117 00469 00006 500000
020Q4QINPUT DS 1 0058600001
02041X DS , INPUT+6 00592 00000
02050 DEND GO . 00402

Example 24
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01010 DORG 402 00402

01020INPUT DS 1 00402 00001

01030 DS 79 , 00481 00079

01040X DS -, INPUT+6 00408 00000

01050G0 RNCD INPUT 00482 36 00402 00500
01060 SF___INPUT 00494 32 00402 00000
01070 BNF  AHEAD, X 00506 LL 00590 00408
01080 TF___ OUTPUT,X . 00518 26 0Q5§a_OQ&QB
01090 CF HIGH 00530 33 00582 00000
O1100DATAT RCTY 00542 34 00000 00102
01120 WNTY HIGH 00554 38 00582 00100
01130TEST __ BNLC GO 00566 L7 00482 00900
0114ODATAZ H 00578 48 00000 00000
01150AHEAD € X,CON 00590 24 00408 00549
01160 BH - TAPE 00602 46 00646 01100
01170 CF___ INPUT 00614 33 00402 00000
01180 WNCD INPUT 00626 38 00402 00400
01190 B TEST 00638 L9 00566 00000
01200 DORG *-3 00656

0 TAP TF__ OUTPUT,X 8 00408
02010 CF - HIGH 00658 33 00582 00000
02020 WNPT HIGH 00670 28 00582 00200
02030 B TEST 00682 49 00566 00000
0 %3 00690

020500UTPUT DS ,DATA2+10 00588 00000

02060 DC _ 1,@,DATA2+11 00589 00001 %
02070HIGH DS ,OUTPUT—6 00582 00000

02080CON DC___6,500000,DATA1+7 00549 00006 500000
02090 DEND GO 00482

Example 25
Problem

Many cards are in the read hopper of the 1622. Each card is punched in
columns 1-7 with a 7-digit number, X, such that:

—9999999 = X = 9999999
No data is flagged in the high-order position. However, negative data does
have a flag over the units position. Perform the following:
1. If X > 500,000, punch the number on tape.
2. If 0 =X = 500,000, punch the number on a card in columns 1-7.
3. If X <0, type the number.
The output number is to be exactly identical with the input number. Terminate
the program after the last card has been processed.

The next examples, which demonstrate the use of the DC, are analogous
to being told the answer and then asked to find the question. Four
intricate programs are presented. What do they do?

The answers to the questions (in truth, the questions to the answers)
are presented on pages 129 and 130. Arrive at your own conclusion as to
their function before looking at the solutions. Do not let their small size
fool you. There is a lot of labor being performed.
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129

07010 DORG 402 00402
01020A TDM 19999,. 00402 15 79999 00000
01030 DC 1,@, 00413 00001
01040 SM A+6 00414 12 00408 00001
01050 CM A+6, LABEL+I 00426 14 00LO8 00451
BNE A 00438 47 00402 01200

01070LABEL H 00450 L8 00000 00000
01080 DEND A 00402

Example 26
01010 DORG L02 00402
01020 19999.KON 2 00402 26 79999 ogl,ﬂ
01030 AM 10,1011 00414 11 00408 000
01040 CM *—lé 9999,8 00426 14 00408 03999
01050 BNE 00438 L7 00402 01200
01060 H 00450 48 00000_00000
~01070KON DC _ 10,-0,% 00461 00010 D000000000
01080 DEND 402 00402

Example 27
01010 DORG 402 00402
01020X100 7D TEMP,KON-9,27 00402 25 50483 Doucl
01030 AM X100+6,1, 1011 0041k 11 00L08 00007
01040 SM__ X100+11,1,1011 00426 12 00413 0000
01050 CM_ X100+11,KON+1 00438 14 00413 DOL7L
01060 BNE- X100 00450 47 00402 01200
01070 H 00462 48 00000_00000
01080KON DC _ 10,1234567890,* 00473 00010  T234567890
01090TEMP DS 10 00483 00010
01100 DEND X100 00402

Example 28
01010 DORG 402 00402

= — — 549 005:
01030 AM  X100+6,1,1011 00414 11 00408 00
01040 SM. xmm-n 1 1011 Q
01050 cM x100+11 KOH+1 00438 14 00413 DO540
01060 BNE X110 0
01070 RCTY 00462 34 00000 00102
01080 WNTY TEMP-Q 00474 38 00540 00100
01090 TFM  X100+6,TEMP 00486 16 00408 B0549
01100 TEM  X100+11,KON=9 00498 16 00413 B0530
01110 TF KON, TEMP 00510 26 00539 00549
_01120 B X100 00522 49 00402 00000
01130 DORG *-3 00530
_011LOKON =
O1150TEMP DS 10 00549 00010
0055000001 4

00170 DEND X100 00402

Example 29

Example 26 causes a record mark character to be placed in core from
positions 19999 to 452 inclusive. When this is accomplished, the pro-

gram halts.
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Example 27 causes the 10-digit field 0000000000 to be placed at 19999,
19989, 19979, ..., 10019, 10009. When this is accomplished, the program
halts.

Example 28 obtains a mirror image of the field 1234567890. The
number thus produced is 0987654321 and is not a field due to the lack
of the high-order field-defining flag. When this is accomplished, the
program halts.

Example 29 is a nonterminating program. There is nothing in the
instruction set to cause the program to stop. A mirror image is made
of the original field 1234567890 to obtain 0987654321. With this new
field as an argument, the process repeats itself indefinitely. See Figure
11.11 for a portion of the output.

As a final comment for all four examples, modification of certain
instruction addresses was necessary. Such modification assumed that
the P field data (an instruction’s P or Q operand) was flagged to allow
for the necessary addition or subtraction. Consequently, the flag operand
was used in locations where it seemed unnecessary. For example, note .
the first instruction of Example 26: TDM 19999,,2.

8765432
T234567890
0987654327
1234567890
_098765432T
1234567890
_098765432T
1234567890
0987654327
7234567890
_098765432T
1234567890
0987654327
1234567890
09876 5432T

Fig. 11.11. Object Program Typewriter Output of Example 29.
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DSS (DEFINE SPECIAL SYMBOL)

The code DSS is identical with the declarative DS, except for the
fact that the label refers to the high-order position of the field as opposed
to the units position in the case of the DS.
~ Except for the above statement and the fact that DSS occupies columns
12-14 of the operation field, all rules of the DSS are identical with those
of the DS.

DSC (DEFINE SPECIAL CONSTANT)

The code DSC is identical with the declarative DC, with the following
two exceptions:

17 The label refers to the high-order position of the constant.
2. The constant will be processed without a high-order field-defining flag.

Except for the above statements, and the fact that DSC occupies
columns 12-14 of the operation field, all rules of the DSC are identical
with those of the DC.

DAS (DEFINE ALPHAMERIC SYMBOL)

The code DAS may be used to define a field that will contain alpha-
meric information. These fields are generally used as I/O areas. The
rules of the DAS follow.

1. The operation code DAS appears in columns 12-14 of the operation
field.

2. The length of the field appears as the first operand and this will be
doubled by the processor. This accommodates the alphameric coding
of data which is in double-digit representation internally. The length
operand may be actual, symbolic, or asterisk. If symbolic, the symbol
must have been previously encountered in the source program.

3. The label by which this field may be referenced appears in columns
6-11. This label refers to the high-order-plus-one position of the
field. Thus, the high-order position of the field is Label—1. The
low-order position of the field is Label+2%L—2, where L is the length
operand.

4. The processor assigns an even address to the high-order digit of the
field, and the label, referring to the adjacent position, thereby refer-
ences an odd core location. This satisfies the I/O rule concerning
alphabetic information.
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5. If a second operand is present, the.processor assumes a synonymous
relationship between the label and this second operand. This operand
allows the programmer to assign the address of a symbol. The label
still refers to the high-order-plus-one position in this case but the
core locgion is not necessarily odd. Thus, when assigning a
synonymity operand for a DAS, one must be certain that the operand
references an odd core location. The presence of the synonymity
operand does not affect the sequence of addresses assigned by the
processor. The location counter remains unchanged regardless of
the size of the first operand. The synonymity operand may be actual,
symbolic, or asterisk. If symbolic, it must have been previously
encountered in the source program.

6. The maximum number of operands in a DAS is three. The third
operand, if present, is a comment and does not affect the processing.

7. Omission of the label in a DAS reserves storage which will not be
referred to symbolically.

See Figure 11.12 for examples of the DAS statement properly written.

LINE LABEL Jz?fﬂﬂloll OPERANDS & REMARKS

3__sls uliz  she 29 28 30 38 Pry s 30
0.1.0]DATA  |DAS 125 .., AN L e
ov2i0) vou b b e P . "
0.3.0/ALFAINDAS, |

oveof v v b b e ey
0,8.0/LOC, ., [DAS |, INPUTHL2 | o L
oveof v v v by b e e e
ﬁj’|°rARn|

00 vy iy

Fig. 11.12. Examples of the DAS Declarative.

The card-to-card, card-to-tape, and so forth, duplication programs given
as examples of the DS statement had two major faults which were not
discussed at the time. First, blank card columns read numerically pro-
duce zeros internally. Thus, reading a blank card and punching the
input information produces a card with 80 zeros. Second, if the input
information contained mixed alphabetic-numeric characters, the repro-
duction was not necessarily valid.

Since the DAS is discussed after the DS, it was better to define the
statement of the problem in such a fashion as to utilize the DS only (no
blanks, numerics only, and so forth).

Now that the materials are handy to cope with the situation, all-purpose
card-to-card duplication programs are presented for your study as well
as proper use of the DAS. These programs are a slight extension of
the reproduction programs that were demonstrated previously.
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01010 DORG 40% 00402
G Q
01030 - WACD IHPUT 00414 39 00432 00400
01050INPUT DAS 0 00439 00080X2
01060 DEND GO . 00402
Example 30
01010 DORG 402 00402
01020G0  RACD [INPUT 00402 37 00435 00500
01030 WACD INPUT 00414 39 00435 00400
Q1040 B GO 0
01050 DORG *-3 00434
01060INPUT DAS 1 ]
01070 DEND GO 00402
Example 31

Example 32 demonstrates proper low-order addressing of an alpha-
meric field.

Problem

Construct a card-to-card duplicator program such that the input and output
areas are distinct. (Transfer the input data to another area before writing.)

01010 DORG 402 00402
01020G0 RACD INPUT 00402 37 00473 00500
01030 SF INPUT =1 0041L 32 00472 00000
0 TF QUTPUT+2*80-2, INPUT+2*80~ )
01050 CF OUTPUT -1 00438 33 00632 00000
0106 WA QUTPUT
01070 B GO : 00462 L9 00402 00000
01080 DORG *=2 ,WHY *-2 INSTEAD OF *-3 QQ%Z]
01090INPUT DAS &80 00473 00080X2
011000UTPUT DAS 1 00633 00001X2
01110 DEND GO 00402

Example 32

Example 33 is essentially the same problem demonstrated in Example
32, with a single exception. This exception demonstrates the use of the
last card indicator with counting.

Problem

Reproduce N cards with distinct input and output areas. After all cards have
been duplicated, type N. (1 =N =9999)
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37010 DORG 502 00402
01020STA M__COUNT I
0103030 = RACD INPUT 00414 37 00511 00500
PUT+ NPUT +; -

01050 WACD OUTPUT 00438 39 00671 00400
01060  AM COUNT,1,10 00450 11 00508 00001
01070 BNLC GO 00452 47 00L14 00900
01090 WNTY COUNT—3 ootk 38 00505 00100
01100 H 00498 L8 00000 00000
OTT20TNPUT "DAS '?o 00511~ 00080X2

: 00671 00001X2
SHESeouT , INPUT=3 00508 00000
01150 DC  1,@, INPUT=2 0000 00001 4
01155 DC__ 2,0, INPUT 00511 00002 00
01160 DEnp 3tart 00502

Example 33

Example 33—Commentary

On first observation it would seem that the TF instruction will fail. At no
point have we set a flag on the high-order digit of our Input area. However,
the saving grace is the last DC statement of the program. Why?

DAC (DEFINE ALPHAMERIC CONSTANT)

The code DAC may be used to define a constant consisting of alpha-
meric data. These constants are generally used for computer-operator-
programmer communication or for column headings on the printed page
of answers. The rules for the DAC follow.

1. The operation code DAC appears in columns 12-14 of the operation
field.

2. The length of the constant appears as the first operand and this will
be doubled by the processor. This accommodates the alphameric
coding of data which is in double-digit representation internally.
The length operand may be actual, symbolic, or asterisk. If symbolic,
the symbol must have been previously encountered in the source
program. '

3. The label by which this constant may be referenced appears in
columns 6-11. This label refers to the high-order-plus-one position
of the constant. Thus, the high-order position of the field is Label—1.
The low-order position of the field is Label4+-2%L—2, where L is the

_length operand.

The second operand is the alphameric constant desired.

Omission of the first and/or second operands is invalid.

If a third operand is present, the processor assumes a synonymous
relationship between the label and this third operand. This operand
allows the programmer to assign the address of a constant. The
label still refers to the high-order-plus-one position in this case but

o TU
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10.

11.

the core location is not necessarily odd. Thus, when a synonymity
operand for a DAC is assigned, one must be certain that the operand
references an odd core location. The presence of the synonymity
operand does not affect the sequence of address assigned by the
processor. The location counter remains unchanged regardless of
the size of the first operand which, unlike the DAS size operand,
must always be present. The synonymity operand may be actual,
symbolic, or asterisk. If symbolic, it must have been previously
encountered in the source program.

The processor will place a flag over the left-hand (high-order) digit
of the constant.

A record mark may appear only in the units position of the constant
field and is written as “@.” This is interpreted as “0f.”

Constants may not exceed 50 alphameric characters including blanks
and record mark.

A length operand less than or greater than the number of characters
in the specified constant is invalid.

The maximum number of operands with a DAC is four. The fourth
operand, if present, is a comment and does not affect the processing.

See Figure 11.13 for examples of the DAC statement properly written.

LINE LABEL  [OPERATION OPERANDS & REMARKS

sle nliz 13lie 20 28 33

0.1.0fCMNT, . |DAC |14, THE ANSWER L&@

3.0 O.U.T.P.U‘TD‘A‘C. 16. FRFMR f“N"ITI.N@ -

LY7'] BN A S B TR T A

20/STOP  [DAC 5, .S T.O.P@, LO.C 16

L N3 NS TS S TR S N N S S 'S TR T |
o]RECM 1.8,45003 v

osol ooy v oo bo0ov o b0y u e

Fig. 11.13. Examples of the DAC Declarative.

00100 DORG 402 00402
N 1S THE TIME 03000 !
01030CMNT2 DAC 17,FOR ALL GOOD MEN@ 00435 00017X2 FOR ALL GOOD MEN%$
AC__19,T0 COME TO THE AlID@
E{OSOCMNTR DAC 15,0F THEIR PARTY@ 00507 00015X2 OF THEIR PARTY%
01070 WATY CMNTT ’ 005108 39 00403 00100
01080 RCTY. 560 34 00000 00102
01090 _ﬁé}'; CMNT2 005 2 39 00435 00100
“o1110 WATY CMNT3 00596 39 00469 00100
01120 RCTY 08 34 00000 00102
01130 WATY CMNTL4 00620 39 00507 00100
01140 H 00632 L8 00000 00000
01150 DEND GO 00536

Example 34
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Example 34 demonstrates a program the use of which is self-evident.
See Figure 11.14 for the output of this program at object time. What is
the purpose of the @ symbol at the end of each DAC statement?

NOW IS THE TIME

—FOR--ALL GOGD- MEN.. -
TO COME TO THE AID
OF THEIR PARTY

Fig. 11.14. Object Program Output of Example 34.

Example 85 demonstrates a more purposeful use of an operator
message.

Problem

An 80-column card has two 2-digit numbers punched in columns 1-4. All
data is flagged in its high-order position. Type a single message that states
their relationship to one another (larger, smaller, equal). If the first element
(A) is less than, equal to, or greater than the second element (B), state so in
just such a fashion.

01010 DORG 402 0040;
01020BEGIN RNCD INPUT 00402 36 00664 00500
01030 C INPUT+1, INPUT+3 OQE_L
01040 BN'FY A01080 00426 47 00474 01200
Q
01060 WATY CMNT1 00450 39 00559 00100
01030A01080 BH  A01110 00474 46 00522 01100
01100 WATY CMNT2 00498 39 00591 00100
&lIOAQHIO RCTY 00522 34 00000 00102
'8}‘1’8‘: H 005 00000 00000
8-1L§0CMNT2 DAC 17,A IS LESS THAN B@ 00591 00017X2 A |S LESS THAN B%
O1170INPUT DS 1 00664 00001
Q]]é_p _DEND BEGIN 00402

Example 35

Example 36 is a variation of Example 33. That is, it reproduces and
counts cards. The output of this problem is a sentence that reads
“THERE ARE XXXX CARDS.” The number of cards does not exceed
9999.

The original source document is shown here. Notice how letters
which could be confused with numbers are printed. The letter “O” has
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LINE
s

0,140

012:0

013:0

014,0

Q18,0

oie0] ooy A COUNT, 4,40, v v
ool 0., |BNLC[A0103,0 o d
0.0.0/A01,080CF, , [COUNT~=3 . . . . . ha e
.g.o.....T.D..CMNH’ZO COUNT- 3,.“.........
vowol vy, |TD, , |C NT“‘ UNT~

Y R 7.0 . [CM NT+.24,CQUNT i, . o
vzel o0 TD . [CMNT+26 ,COUNT, . ., . ... .. ...
130 RCIY . . v
h;.o.....VIATYCMNT......................,.
1500 4 4 oqoy g H Ly P SRR A S ST L

1,6,0 r"'"T. Ds

1r0]CMNT, , [DAC, 000

e o INPUT, .O.. . RS

19.0|QUTPUT .0..........”,.............

200l 4oy 2,0, INPUTY , vy oy

210}, ., START, » v v v v v v v v vy
Example 36

a slash through it “)” to avoid confusion with the number zero “0”. The
letter “I” is printed in the Roman form to avoid confusion with the
number one (1).

Errors introduced while punching from the source document can be
the most aggravating.

Two more declaratives for both the card and tape systems are available
to the programmer. However, their use is not as instantaneously mean-
ingful as was the use of the previous declaratives. Nonetheless, they are
valuable declaratives even though the beginning programmer may not
realize their potential value. At the point of sophistication where the
coder requires these declaratives, their function will become quite
meaningful. These declaratives are: Define Symbolic Address and Define
Symbolic Block, and are of the area and constant definition category.

DSA (DEFINE SYMBOLIC ADDRESS)

It may be desirable, at some point in a program, to store a series of
addresses as constants. The declarative that performs just such a function
is DSA. The rules of the DSA follow.

1. The operation code DSA appears in columns 12-14 of the operation
field.

2. Each entry in the operands field will cause its equivalent machine
address to be stored as a 5-digit constant flagged in the high-order
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position. The constants are stored contiguous to one another. These
operands may be actual, symbolic, or asterisk. If symbolic, it is not
necessary for the symbol to have been previously encountered in the
source program.

The label field of this statement must contain the symbol by which
this table of constants may be referenced. The label refers to the
units position of the first operand. Subsequent operands are referred
to symbolically as Label+5, Label+10, etc.

Neither a remarks nor synonymity operand is permitted with the DSA.
The maximum number of operands permitted with a DSA is ten.

S

LINE LABEL PERATI ON| OPERANDS & REMARKS
3 _sie

uliz ishe 20 28 30 38 40 (1]
0.0l TABLE IDSA |ALPHA, ORIGIN, 1234, OUTPUT-50, ., .I'

0:2,00 1 1 4 4

PR

e

[ T5- 311 SETU ST U NSRS U AT S U WA S T S S SR N SR [T i B SR ]

Fig. 11.15. Exomples of the DSA Declarative.

See Figure 11.15 for examples of the DSA statement properly written.

In Figure 11.15, the symbols are equivalent to the addresses shown
in Figure 11.6.

In the above statement, the 20-digit constant that is produced is:

01000006000123414950

If the first digit of the entire constant is located at 1200, then the address
of Table is 01204 and the location counter will have been increased by 20.

DSB (DEFINE SYMBOLIC BLOCK)

The code DSB may be used to define an area of core storage for storage
of numerical arrays. The rules of the DSB follow.

1.

The operation code DSB appears in columns 12-14 of the operation
field.

2. The first operand indicates the size of each element in the array.
3.
4. The label employed refers to the units position of the first element

The second operand indicates the number of elements in the array.

in the array.

If a third operand is present, the processor assumes a synonymous
relationship between the label and this third operand. This operand
allows the programmer to assign the address of the first element in the
array. The presence of the synonymity opérand does not affect the
sequence of addresses assigned by the processor. The location counter
remains unchanged regardless of the size of the first or second
operands. *
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6. Any DSB operand may be actual, symbolic, or asterisk. If symbolic,
the symbol must have been previously encountered in the source
program.

7. The maximum number of operands in a DSB is four. The fourth
operand, if present, is a comment and does not affect the processing.

See Figure 11.16 for examples of the DSB statement properly written.

LINE LABEL RATION OPERANDS & REMARKS
sle ul 1slie 20 25 30
o.o/ARRAY, 1058, 140,45, . . . . ..., ....]
TE 7] BTG SRR R N S S S S S S A S
DATA 0S8 (2,450, ,REMARKS, ,
%..oil..‘._ll,., C ]

Fig. 11.16. Examples of the DSB Declarative.

Figure 11.16—Commentary

The first DSB in Figure 11.16 reserves 150 positions of core. The ninth
digit from the leftmost core position is synonymous with “Array.”

The second example reserves 150 2-digit locations for a total of 300 positions.
The first element in the array is called “Data.”

Note: The use of the DSB may be circumvented by the use of two DS
statements. See the following table.

DSB UsaGe DS UsacGe
ARRAY DSB 10,15 ARRAY DS 10
DS 140
DATA DSB 2,150 DATA DS 2
DS 298

Three additional processor control operations are available for both
the card and tape systems. As with DSB and DSA, a certain amount of
programming sophistication is necessary before they can become useful.

These operations are: Transfer Control and Load, Transfer to Return
Address, and Head.

TCD (TRANSFER CONTROL AND LOAD)

This code may be employed during the assembly process so that, during
the loading of the object program, the loading operation may be tem-
_porarily interrupted. During this interruption, it is possible to execute
the portion of the program that has just been read into core. At the
conclusion of such execution, a return to the loader can be accomplished
through the use of a TRA (to be discussed). A further segment of the
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object program can then be entered into memory, overlaying the portion
just executed. In this fashion programs that are too large for existing
core may be segmented by such a chaining technique.

As a TCD is encountered by the processor, the assembly system
punches the arithmetic tables, a loader “interrupter,” a Branch instruction,
and another set of loading instructions. During the loading of this object
program, the Branch instruction is preceded by the arithmetic tables and
loader interrupter, but the new set of loading instructions does not enter
core. These instructions will be called by the TRA command. The ad-

dress of the Branch is specified by the operand of the TCD.
The rules of a TCD follow:

1. The code TCD appears in columns 12-14 of the operation field.

2. The first (and only) operand states the address of an unconditional
branch to be generated by the processor. The address may be asterisk,
symbolic, or actual. If symbolic, it must have been previously encoun-

tered in the source program.
3. A TCD may not be labeled.

Example 37 shows the use of TCD.
Problem

It is necessary to initialize an area of memory to 100 fields. Each field is 5 digits

in length and is of the form: 00000. The last field is to fall with its units

position at 19999. At the conclusion of this initialization procedure, this pro-

gram may be destroyed by entering the remainder of the program over it.
OPERANDS & REMARKS

LABEL  [oPERATION
(3 niz 1Sl 20 25 30

38 40 45 30
TFM |COUNT,, 400,9, INILTIALLZATION BEGINS HERE
TFM #+148,,49999, . . .
TFM (.0 0y
SM_, #~6,8 |, 4
COUNT, 4.,10, N S PN
R A S S A A

LINE
s 58 £

1,0

PR

..... P S S S S S S R A S

0] 1144

1810

1508 4 14y
o|COUNT

9.7,0

.80

0:19.0}

2,0l LA

80}

1,8.,0

REM,

L1

PROGR.AM WHICH OV

N S SR SR S |

.............................

[ 1,6,0

NS S S A R

7.0

i1

TR S B B S R A

40

START,

......... PN SR S

1,90

L
1
L
s

TN B B S A R S S B B S

Example 37
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TRA (TRANSFER TO RETURN ADDRESS)

This code may be used to reinstate the loading procedure that was
interrupted by the cards or tape records produced as a result of a TCD.
Loading of the program will continue until another set of TCD produced
records is encountered or until the records produced by the DEND
interrupt the loading for final execution.

The rules of a TRA are:

1. The code TRA appears in columns 12-14 of the operation field.
2. The TRA produces two instructions to reinstate the loader. These are:
RNCD (RNPT) 0
B 0
3. Labeling the TRA is equivalent to labeling the first of the two pro-
duced instructions as mentioned in (2).
4. A TRA is without operands.

Example 38 shows the use of TRA.

Problem

It is necessary to initialize an input area to 80 fields. Each field is of the
following form: 00. This 160-position area is to have a record mark following
the highest addressed field: 000000. . .00%

The record mark is to fall in position 15128.

At the conclusion of the initialization program, read in the main program and
begin execution.

LINE LABEL OPERATION) OPERANDS & REMARKS
sle uli2 1shie 20 28

) P DORGI402 ., . .. . ... )
20/60 ., |TFM [60+9,80,10, . . .
ol TOM |15428, , . . .

0140 14 L 1 1 JQJ 1 11 ﬂ‘ !‘ 1
osol v\, |TFM [X+6,15427 , . .,
FYPITS ). S TFM {,0,40, 0\ 00y

N SM,_, [60.+9,,,1,,.10. , .,
ool v BE L JOUT
P AM_ [X+6,-2 . ., . ..
1 00F 4 44y ]_Bx L x |||||||||||||
™ DORG[#-3 ., . . . .....
L2olOUT  JTRA ] . o0y, )
ol ... TCD (60 ., ..
e |o.oRGl402, ., .. .. L]
o XKECUTE oo 00 oy
1,6,0] , 1 4 4 1ol 1 11 ‘. ||||||||||

47,00 0 44 i TIPS ST TR S S S0 S B S0 TS S0 S N 1
veol 4y 'QLLLD_ UTE .
;9,00 4 4 1 4 FI T S T T T I T T S S

Example 38
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HEAD

Head cards (or tape records) may be employed whenever a conflict
in label names is apt to occur.

As an example, consider a program written in five sections by five
programmers. These sections appear as

Section 1 Programmer A
Section 2 Programmer B
Section 3 Programmer C
Section 4 Programmer D
Section 5 Programmer E

Unless careful attention is given to labeling before the programming
begins, label conflicts can, and probably will, occur. That is, program-
mers B and D may use the label TEMP such that:

Section 2 — Programmer B

TEMP DS 12

Section 4 — Programmer D

TEMP DS ,LOC-11

These labels cause a conflict in that (1) there is a multiply-defined
label condition existing, and (2) the labels reference entirely different
areas.

To complicate the problem further, assume that programmer E of
section 5 has used the label TEMP and that this label is to refer to the
same area used by programmer D in section 4. On the surface, it appears
that programmer B is in the minority and will have to change all
references to label “TEMP” to, let us say, “TEMPX”. However, it is
conceivable that programmer A has used the label “TEMPX” and thus,
the conflict compounds itself.

One obvious solution is to apportion certain labels to each programmer
before the actual coding begins. However, this not only defeats the
purpose of labeling, but is very restrictive and difficult to implement.
The problem is resolvable, fortunately, by the proper use of Head cards.
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If the sections were written as

HEAD A
Section 1

HEAD B
Section 2

HEAD C
Section 3

HEAD D
Section 4

HEAD E
Section 5

all labels of 5 or fewer characters in each section would be said to be
“headed” by the Head character which introduces that section.

In this fashion, the label “TEMP” of section 2 would be “TEMP”
headed by B. This is not the same as the label “BTEMP.” The “TEMP”
of section 4 would be “TEMP” headed by D. This is not the same as the
label “DTEMP.” On the contrary, heading characters are considered to
be on a different level from the label itself. Thus, all labels of section 1
are said to be headed by A, those of section 2 by B, of section 3 by C, of
section 4 by D, and of section 5 by E. The term “all” in the previous
statement refers only to labels of 5 or fewer characters. Six-character
labels are immune from heading. This is a desirable feature which allows
for cross referencing between sections of a program.

Suppose programmer E wished to branch to a location in section 1
and programmer A is aware of this. They need merely to agree on a
standard 6-character label, which cannot be headed, and utilize it prop-
erly, namely:

HEAD A

Al2345 e } Section 1
HEAD B
. } Section 2
HEAD E

B A12345 } Section 5
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In this way, the use of the 6-character label, and its property of being
immune from heading, allows for cross referencing between sections.

Although the discussion thus far has used Head characters A, B, C, D,
and E, there is no implication that the Head character must be a par-
ticular one. In fact, any character A-Z, 0-9, or blank may be employed
as a valid heading symbol.

The concept of cross referencing between sections may be extended
to include labels of 5 or fewer characters. The symbol a$ preceding any
such label implies that the heading character to be used is o where «
is any allowable Head character.

Thus, if section 1 is headed by A and has a label “Start,” sections 2, 3,
4, or 5 may branch to that location as follows:

B AS$START

If section 3 is headed by C and has an area “LOC”, and section 1
wishes to add the contents of X93 to the contents of LOC of section 3,
this is written as:

A C3$LOC,X93

Suppose that section 5 wishes to add the contents of VKX2 of section 1
headed by A to the contents of 2.8Z of section 4 headed by D. This is
done as: :

A D$2.8Z,A3VKX2

It is in this fashion that labels of fewer than six characters may be cross-
referenced from section to section.

An unheaded section of a program is said to be headed by blank. In
this fashion, reference to a label “KON” in an unheaded section, by a
headed section, is done by referencing “$KON”.

If a programmer wishes to discontinue the heading process at any
- time, a Head statement with a blank character must be used. If two
programmers write three sections of a program, programmer A writing
sections 1 and 3 and programmer B writing section 2, the routine might
look as follows:

HEAD X

HEAD
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Of course, section 1 could have been preceded by a Head card with
blank as the heading character, but this would be superfluous since all
labels of section 1 are assumed to be headed by blank if no Head card
is associated with the section.

If a symbol “A” in a section headed by X is to be identical with a
symbol “A” in a section headed by Y, this can be accomplished through
proper use of the Define Symbol declarative in one of the two sections.
Thus, either

A DS Y$A

will equate the two symbols if it appears in the section headed by X or
A DS X$A

will equate the two symbols if it appears in the section headed by Y.
The rules of the Head statement follow.

1. The processor control operation Head appears in columns 12-15.

2. Any character A-Z, 0-9, or blank may be used as a valid heading
character.

The heading character appears in column 16.

A Head statement may not be labeled.

Six-character labels are immune from heading.

Labels in an unheaded section of a program are said to be headed by
blank.

o GUk @

DECLARATIVES—CARD SYSTEM ONLY

DNB (DEFINE NUMERIC BLANK)

This code may be used to define a contiguous area of numeric blanks
(C-8+4). Itis often desired to punch certain areas of a card with blanks.
The rules of the DNB follow.

The code DNB appears in columns 12-14 of the operation field.

The first operand states the desired number of blanks.

The second operand, if employed, is the synonymity element.

The label refers to the low-order position of the blank field.

The third operand, if present, is a comment and does not affect the

processing.

The first and second operands may be actual, symbolic, or asterisk.

If symbolic, the symbol must have been encountered previously in

the source program.

7. The maximum number of contiguous blanks that may be defined by
a single DNB is 50.

8. In order to move a field of blanks by a TF command, any flagged

digit should appear contiguous to the high-order position of the

blank field.

GU CO o=

o
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LINE LABEL  JOPERATION|  OPERANDS & REMARKS
s uhiz 1sie 20 28 30

NKSIONB. 35 . . v 0o in i

;;;;;;;;;;;;;;;;;

2.0lAREA , [ONB 120,45000 , ,, ., ..,

400 2 1 1) L1 I T S FE B

0i5.0]L®C, ., |ONB [10, SYMBOL , . . ...,

S0} 1 (.4 1 L T T VN S WSS SO R Y T S0 WY S S BN 1
omol v DNB, I5,0.....C.0‘M.M.E.N.T ......

L

Fig. 11.17. Examples of the DNB Declarative.

9. The card punch unit is the only output device that will interpret
C-8—4 coding as a blank. This coding produces the @ sign on the
typewriter and paper tape punch.

See Figure 11.17 for examples of the DNB properly written.

DECLARATIVES—TAPE SYSTEM ONLY

SEND (SPECIAL END)

The code SEND is used to halt the assembly process temporarily to
allow for the mounting of another tape, console switch alteration, etc.
If the SEND statement is encountered in the card version of SPS, it is
ignored. No object coding is generated by a SEND. The rules of the
SEND follow.

1. The operation code SEND appears in columns 12-15 of the operation
field.

2. A SEND may not be labeled.

3. A SEND may not have operands.

4. Depression of the Start key resumes the assembly if a SEND state-
ment has been encountered.

GENERAL PROCESSOR INFORMATION

No statement in the source language may exceed 75 characters. In the
SPS tape version, every source statement is terminated by an E/L char-
acter. A statement that bears an asterisk (*) in column 6 is interpreted
as a comment and does not affect the processing. Extensive use of these
comments which appear on the listing of the assembled statements and
occupy no core assists in the debugging process.
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As a review of the uses for the asterisk symbol, the four functions

follow.

W

As an operand of an instruction.

As an operand of a declarative.

As a symbol implying multiplication.

As a symbol implying a comment statement.

ERROR DETECTION

Error messages arise from improper or careless programming and/or
punching errors. The following 14 errors are detected by the assembly
system and are reported in the form “ERn” where n is the error code.

1.
2.

3.

® N

9.
10.
11.
12.

13.
14.

ER1—A record mark is in the label or operation code field.
ER2—For address adjustment, a product greater than 10 digits has
resulted from a multiplication. '
ER3—An invalid operation code has been detected.
ER4—A dollar sign ($), which is being used as a Head indicator,
is incorrectly positioned in an operand.
ER5—(a) The symbolic address contains more than six characters.
(b) The actual address contains more than five characters.
(¢) An undefined symbolic address or an invalid special character
is used in an operand.
ER6—A DSA statement has more than 10 operands.
ER7—A DSB statement has the second operand missing.
ER8—(a) A DC, DSC, DAC, or DNB has a length operand greater
than 50.
(b) A DC, DSC, or DAC has no constant specified.
(¢) A DC or DSC has a specified length less than the number
of digits in the constant.
(d) A DAC has a specified length not equal to the number of
characters in the constant.
ER9—The table of labels is full.
ER10—A label has been defined more than once.
ER11—An assembled address is greater than 5 digits.
ER12—A Head statement contains an invalid special character as a
heading character.
ER13—A Head statement contains more than one character.
ER14—An invalid special character is used in a label.

The procedure for handling errors will be discussed in Appendix VII,
Console Operating Procedures.



Chapter 12

Floating Point Arithmetic

Scientific and engineering computations frequently involve lengthy and
complex calculations in which it is necessary to perform arithmetic opera-
tions on numbers that may vary widely in magnitude. To obtain a
meaningful answer, problems of this type usually require that as many
significant digits as possible be retained during calculation and that
the decimal point always be properly located. When such problems
are applied to a computer, several factors must be taken into considera-
tion, the most important of which is the decimal point location.

Generally speaking, a computer does not recognize the decimal point
present in any quantity used during a calculation. Thus a product of
414154 will result regardless of whether the factors are 9.37 x 44.2, 93.7 X
0.442, or 937. X 4.42, and so forth. It is the programmer’s responsibility
to be cognizant of the decimal point location before and after the cal-
culation and to arrange the program accordingly. For example, in an
addition operation, the decimal point of all numbers in the operation
must be lined up to obtain the correct sum. Therefore, the programmer
must guarantee this arrangement by shifting the quantities as they are
added.

Example:
XXX . XXXXX A
XXXXXXXX B
X . XXXXXXX C

where A + B + C =999
148
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Program to calculate A+ B+ C

BNF  *424B
SF B-3

A AB-3
BNF *+24.C
SF C-2

A AC-2

If the program were
A AB
A AC

the result would not be accurate (except by chance) since the decimal
points are not properly aligned.

All of the digits in all of the data are not used in the first (correct)
solution to the problem, but under the statement of the problem, there
is little choice in the matter.

Another course might be to define an 11-digit field of zeros, symbolic-
ally called “Zeros,” and produce the following program:

A ZEROS—3,A

BNF  *+436,ZEROS-3

CF ZEROS—-3

SF ZEROS -1

A ZEROS-1,C

BNF  *+36,ZEROS—1

CF ZEROS—-1

SF ZEROS

A ZEROS,B

However, the only portion of the answer that has mathematical

foundation is the portion “Zeros-10” through “Zeros-3” inclusive. The
significant difference is that the first program ignored the possibility of

carries whereas this program extends itself to propagate those carries into
position “Zeros-3.”
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It is conceivable, though, that when numbers that vary greatly in
magnitude are manipulated, the resulting quantity could exceed prac-
tical working limits.

The processing of numbers expressed in ordinary form (for example,
427.93456, 0.0009762, 5382., —623.147, 3.1415927, etc.) can be accom-
plished on a computer only with extensive analysis to determine the
size and range of intermediate and final results. When programmed,
this analysis and subsequent number scaling will frequently require a
larger percentage of the total time needed to solve the problem than
will the actual calculation. Furthermore, number scaling requires com-
plete and accurate information regarding the bounds on the magnitude
of all numbers that come into the computation (input, intermediate re-
sults, output). Since it is not always possible to predict the magnitude
of all numbers in a given calculation, analysis and number scaling
is sometimes impractical.

To alleviate this programming problem, a system must be employed
in which information regarding the magnitude of all numbers accom-
panies the quantities in the calculation. That is, if all numbers are
represented in some standard predetermined format which instructs the
computer in an orderly and simple fashion as to the location of the
decimal point, and if this representation is acceptable to a computer,
then quantities that range from minute fractions having many decimal
places to large whole numbers having many integer places may all be
handled with ease.

The arithmetic system most commonly used, in which all numbers
are expressed in a format having the above features, is called “floating
point arithmetic.” Specialized programs that handle floating point
numbers are called “floating point subroutines.” The notation used in
floating point arithmetic is basically an adaptation of the scientific nota-
tion widely used today. In scientific work, very large or very small
numbers are expressed as a number between .1 and .99..., times a power
of 10. That is, the decimal point of all numbers is placed to the left of
the high-order (leftmost) nonzero digit. Hence, all quantities may be
thought of as a decimal fraction times a power of 10 (for example,
42793456 as 0.42793456 X 10° and 0.0009762 as 0.9762 X 10~3) where
the fraction is called the “mantissa” and the power of 10, used to indicate
the number of places the decimal point was shifted, is called the “char-
acteristic.” In addition to the advantages of uniformity inherent in
scientific notation, the use of floating point numbers during processing
eliminates the necessity of analyzing operations to determine the position
of the decimal point in intermediate and final results since the decimal
point is always immediately to the left of the high-order digit in the
mantissa.
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In the 1620 floating point arithmetic system, each quantity is ex-
pressed as an n digit number (4 =n =47) consisting of a 2-digit char-
acteristic and an (n-2)-digit fractional mantissa. This fraction, in
- absolute value, may extend between 0.100..00 and 0.999..99. This is
shown in Figure 12.1.

XXX. .. XXXXX
—m. ¢

Fig. 12.1. Form of a Floating Point Number.

In Figure 12.1, ¢ represents the characteristic and m the mantissa, as
explained below. The original number is m X 10¢.

The mantissa (m), or fractional part of the number, consists of the
leftmost (n-2) digits of the floating point number. The decimal point
is always tacitly assumed to lie immediately to the left of the high-order
mantissa digit. The sign of the original number is always associated
with the mantissa and is designated by the presence (for negative) or
absence (positive) of a flag in the units position of the mantissa. A
mantissa is called “normal” or “normalized” when its high-order digit
is nonzero. In 1620 floating point, the mantissa must always be normal-
ized. The floating point subroutines always leave normalized floating
point numbers as the result of a floating point operation, with one ex-
ception. The exception to the “normalized mantissa rule” is a floating
point zero which is always expressed as 0.000...00 with a characteristic
of —99.

The characteristic (c) represents the power of 10 used to specify
the location of the decimal point in the original number. It stands for
the number of places the decimal point was shifted in order to place
it to the left of the high-order, nonzero digit. The direction of the shift
is determined by the sign of the characteristic. Thus, if the sign of the
characteristic is negative, the decimal point was shifted to the right
the number of positions specified by the characteristic. If no sign is
indicated—the absence of sign specifying a positive characteristic—the
shift was to the left. Thus, the characteristic can assume a range of
values from -99 to 99, inclusive,

—99=c=99.
Upon combining the ranges and the mantissa and characteristic, we see
that floating point numbers may lie within the range
=+0.100...00 X 107*° to *=0.999...99 x 10%.

In floating point form, both the characteristic and mantissa are always
flagged over their respective high-order digits to indicate the end-of-
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field condition. Table 12.1 demonstrates the conversion of numbers
in ordinary form to 1620 variable-size floating point notation.

Table 12.1
FroaTinG PoiNT
NuMBER NoORMALIZED MAaNTISSA S1zE ForMm
123.45678 ©0.12345678 % 103 8 digits 1234567803
0.00765432 0.765432 x 102 6 digits 76543202
0.00765432 0765432 x 102 10 digits 765432000002 *

—0.1234987623 — 0.1234987623 x 10° 13 digits 123498762300000*
—0.1234987623 — 0.1234987623 x 10° 3 digits T12300%*

— 0.00001 —0.1 x 104 2 digits 1004*
—0.00001 —0.1x 104 8 digits 1000000004
—0.0 — 0.0 x 10° 4 digits 000099*

0.0 0.0 X 10° 4 digits  000099°

* Low-order zeros added to increase mantissa size to desired length.
** Mantissa truncated to reduce size to desired length.

GENERAL NOTES ON 1620 FLOATING POINT SUBROUTINES

In the 1620 floating point subroutines, an attempt to generate a
characteristic of magnitude greater than 99 creates a condition called
“characteristic overflow.” An attempt to generate a characteristic less
than —99 creates a condition called “characteristic underflow.” Should
either of these conditions be generated as a result of an arithmetic
operation, the programmer will be provided with a choice of two
options as follows:

OVERFLOW
1. Program Halt

or
2. The floating point number

99...9999 is placed in
the result field and the
program continues.
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UNDERFLOW
Store
Halt Zeros in
Result Field
0 —
‘é Halt 0 0
R
[ Store _
0 Ninesin 1 1
W Result Field

Fig. 12.2. Overflow-Underflow Schematic.

UNDERFLOW
1. Program Halt

or
2. The floating point number

00...0099 is placed in
the result field and the
program continues.

These options function independently of each other. Thus it is
possible to halt on an underflow and place 9’s in the result field on an
overflow. The converse is also true. The detection of an overflow or
underflow condition will cause the subroutine being executed to examine
core position 00401 to determine the course of action. The programmer
must make manual or programmed provisions for one of the four
conditions in order to exercise his option.

GENERAL NOTES ON THE USE
OF FLOATING POINT ARITHMETIC

During any floating point calculation the size of the two operands
must be identical. Thus, it is not possible to “floating add” a 17-digit
floating point number and an 8-digit floating point number.

Another form of floating point assumes a fixed word size of 10 digits
consisting of a 2-digit characteristic and an 8-digit mantissa. The char-
acteristic precedes the mantissa and a notation called “excess fifty” is
employed. Excess fifty implies that the number 50 is added to the
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characteristic developed. Thus, the characteristic may assume values
between 00 and 99 only. In this fashion, the number 25.3 (0.253 x 102}
becomes 5225300000 in floating point form. Similarly, the number
—0.0000001 (—0.1 x 10~%) becomes 4410000000. This notation has been
widely used in a great variety of decimal computers but does not lend
itself well to variable-word-size floating point.

Problems

I: Convert the following numbers to floating point notation. The number
in parentheses is the mantissa size desired.

1. 15.96(9)

— 50073.(12)
10128.965 (4)
—8.9(15)
0.127(5)

— 0.00001589(6)
—0.0(12)
—0.001248(4)
183.72(10)
0.00000001 (7)

© ® o Utk LN
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II. Convert the following numbers to their fixed point representation. Use
sufficient digits to fully express the number: 100000 is to be expressed as
0.1000 not as 0.1.

53807
956121703
17215202
810219312
6100
752212811
1111111711
211341901
611600
151719121810

© ® N UA D
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Chapter 13

Macro-Instructions

Whenever the use of a subroutine is required by a main program,
it must be suitably incorporated into that program. That is, the sub-
. routine must be logically connected to the main program in such a way
that the subroutine will be executed at the proper time and, at its com-
pletion, will return control to the main program to continue the execu-
tion of the problem.

One method by which this connection can be effected is to insert the
subroutine directly into the larger program where needed. A sub-
routine incorporated in this fashion is called an “open subroutine” or
“direct insert subroutine.” In most cases, however, this method of
connection is not entirely practical or desirable. For example, in a pro-
gram that requires the evaluation of a square root at 15 different places,
it would be superfluous to incorporate the same square root subroutine
15 times. The desirable solution is to store the subroutine once, out of
the main line sequence of the program, and, when required, enter the
subroutine by a branching operation. Provision must also be made to
return control to the main program at the completion of the subroutine.

Subroutines connected in this fashion are called “closed” or “linked”
subroutines. The instructions related to the entry and re-entry function
constitute the linkage. In general, it is necessary for the linkage in-
structions to a closed subroutine to supply three items of information:

155
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The address of the subroutine desired.

The return address after completion of the subroutine.

The address(es) of the argument(s) in question, or the actual
argument(s) itself/themselves.

W o

The instructions that provide this linkage may, of course, be written
by the programmer. However, certain special macro-instructions may
be employed by the programmer to cause automatic generation of these
linkage instructions. A macro-instruction may be defined as a pseudo-
instruction which, during assembly, generates more than one machine
language instruction. For the 1620 Symbolic Programming System!
there are 17 macro-instructions available. Each of these “macros,” when
used in a source program, will generate the instructions necessary to
provide proper linkage to one of the 17 subroutines. The subroutines
are of two categories: arithmetic and functional. Table 13.1 gives a list
of all available macro-instructions.

Thus, by placing in the source program, at the point at which a par-
ticular subroutine is desired, the macro-instruction related to this sub-
routine, the programmer will cause the SPS processor to generate, during
assembly, the linkage to the desired subroutine. In addition, the
processor will arrange for the subroutine to be placed in core storage.
Thus, when required during the execution of the object program, the
subroutine will be transferred to and executed. The data and addresses
required by the subroutine, and supplied by the macro-instruction, are
incorporated into the linkage instructions where they are either (1)
transmitted directly to the subroutine or (2) simply made available for
use.

In this way, the subroutine obtains the information it requires to
perform its given task and also obtains the information required to gen-
erate a return address to the main program. Control is returned to the
main program at the completion of the subroutine by branching to the
return address.

In the discussion of many of the macro-instructions, a reference is
made to Appendix IV, “Floating Point Hardware,” for a description of
their operations. This is not to imply that macro-instructions are genuine
machine commands but rather that their operation simulates the analo-
gous machine code. With the realization that subroutine linkages are
generated by use of these macro-instructions, the programmer may con-
sider them as if they were actual machine commands.

1 There are many versions of SPS, but the most commonly used is one which
assumes a floating point word to always be 10 digits in length (8-digit mantissa and
2-digit characteristic). Another version allows for variability of the mantissa. It is
the former version which is discussed in this chapter. Knowledge of this fixed-word-
size system allows for immediate transition to the variable-mantissa system.
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Table 13.1%*
ARITHMETIC FuncTiOoNAL
Floating Add (FA) Floating Square Root (FSQR)
Floating Subtract (FS) Floating Sine (FSIN)—Radian argument
Floating Multiply (FM) Floating Cosine (FCOS)—Radian argument
Floating Divide (FD) Floating Arctangent (FATN)
Fixed Divide (DIV) Floating Exponential (FEX)—Base ¢

Floating Exponential (FEXT)—Base 10
Floating Logarithm (FLN)—Base e
Floating Logarithm (FLOG)—Base 10
Floating Transmit Field (TFLS)
Floating Branch and Transmit (BTFS)

* Two additional macro-instructions are also available, but their use is greatest with the
variable mantissa version of SPS. These macros are Floating Shift Right (FSRS) and
f‘go_ati?g S?ift Left (FSLS). See Appendix IV “Floating Point Hardware,” for a discussion of

eir function.

LINKAGE

A design for a subroutine linking scheme is generally a compromise
between the maximum amount of information that can be obtained from
the linkage and the minimum core required by the linkage. The primary
linking instructions used by all macro-instructions in the 1620 symbolic
system are as follows:

UNE | LABEL Eﬁmmu’ OPERANDS & REMARKS
3l iz 1841 20 23 30
ool vy FM PICK+K, #423, . . ., . .

1 I o JLINK
0:3:00 4 1 4 4y OQRO*~4 ., , . . ..
ool v [DSAAB G e
180l 444y PRI BT I SR RS ST S S

J— rd

where “Pick” is a subroutine used by all macros and “Link” is the loca-
tion of a secondary linkage.
This secondary linkage generally takes the following form:

LINE LABEL |0PERA1I0!| OPERANDS & REMARKS . . l
sle 11 L1113 20 28 30
wel o\, |TFM [PICKHC,SUB, ., .., .. {
wol oo B PLCKAS, iy, {
1340 1414 TS W TN AN TS SN WY T N N N SN S T SN S A S S N
0 I O N N | 11 1 N T T S NS SN S S TS N S A WS O T |
S, p———

where “Sub” is the address of the desired subroutine and “K,” “C,” and
“T” are constants supplied by the processor.
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In this way the secondary linkage and the Pick subroutine act as
intermediaries between the primary linkage and the actual subroutine
desired. Pick is given the address of the address of the first argument
by the primary linkage. Having this, Pick can then calculate the
address of the address of the second argument, third, and so forth, and
lastly the return address to the main program. The Pick routine is
given the address of the main subroutine by the secondary linkage and
the combination of these items allows Pick to operate as a successful
“middle man.”

All secondary linkages are located after the last instruction generated
by the SPS source program, and the Pick subroutine follows the last of
the secondary linkages. All subroutines follow Pick. Therefore, it is nec-
essary to know the size of all these elements in order to be assured that
the program will not overflow the available core storage. The schematic
of the linkage system is presented in Figure 13.1.

3

BEGINNING
OF PROGRAM
Array of
. > Secondary
. Linkages

.
]
]
J

MZ——COoOXmCW»

PN = Secondary /
______ B Link Associated
Linkage with Primary Link

e e e e e e e o

| C——

END OF
PROGRAM

CORE ASSIGNMENTS

Fig. 13.1. Schematic of Linkage System.

ARITHMETIC MACRO-INSTRUCTIONS
FLOATING POINT

In each of the macro-instructions related to the four floating point
subroutines, two addresses, represented by A and B, must be specified.
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These addresses, which may be symbolic or actual, must reference the
low-order characteristic digit of the floating point data to be added, sub-
tracted, and so forth.

During the execution of the floating point arithmetic subroutines, the
Overflow, H/P, and E/Z indicators will be used. The Overflow in-
dicator is always reset at the beginning of each floating point arithmetic
subroutine. Should its status prior to the execution of such a sub-
routine be desired, the indicator must be tested and its condition
stored before the linkage instructions are executed.

After completion of the operation, the H/P and E/Z indicators will be
set according to the mantissa of the result. All floating point sub-
routines (arithmetic and functional ) require that the floating point quanti-
ties used contain flags over the high-order characteristic and mantissa
digits. If any operation produces a zero result, the form assumed by the
zero in floating point is 0000000099.

FLOATING ADD

1. Macro-instruction:

LINE LABEL RATIO OPERANDS & REMARKS
3 sle s s 20 28 30

PR o, fFA  IALB L

FIVI) BT PITEIE B O S S G S S S S S N S

Y% P11 BEFE S WIS SN AU S S AT WS ST S SO SN S U SAVRA R S

LY1') ENETT AN N EENT NS ST N S T N S S L 0 S0 S S W

2. Operation: The operation of the macro “FA” is identical with that of
the hardware command “FADD” described in Appendix 1IV.

FLOATING SUBTRACT

1. Macro-instruction:

LINE LABEL RATION]  OPERANDS & REMARKS
3_sls i sshe 20 2 30

PYTIR FS . A B .,

12400 4 40 NS BT S TS W S S S S S R S

PTYTY INPENTIN P B PRPPRPRTEPI |

['TUST) BN AR A B nn.nnx:.:nn.:.l.n'

2. Operation: The operation of the macro “FS” is identical with that of
the hardware command “FSUB” described in Appendix IV.



160 Macro-Instructions

FLOATING MULTIPLY

1. Macro-instruction:

LINE LABEL I:)zmml OPERANDS & REMARKS
sls uby 15k \

wol v\,  |FM JA B .\,
a2400 4 4 4 o4 PRRTENS T S S WO T W S T S S S Y SR B 1 .

LFE Y7.] B EN S AT S A A S A A .1.:4_LJ
018000 3 ¢ g g )1 l|||l|l||lx|l|L4J)

2. Operation: The operation of the macro “FM” is identical with that
of the hardware command “FMUL” described in Appendix IV.

FLOATING DIVIDE

1. Macro-instruction:

LINE LABEL RATION OPERANDS & REMARKS
sle nh sl 20 23 30
PYTI) PR FO . |A,B .\, v N
0,200 4 4 4y PSS R SRR S S A P
+T71 ERPETENS SETN BT N W R RS S YT S S S S
gievol 4 4y v b ool L i ey
e

2. Operation: The operation of the macro “FD” is identical with that
of the hardware command “FDIV” described in Appendix IV.

FIXED POINT

FIXED DIVIDE

1. Macro-instruction:

LINE -|  LABEL IOPERA"MIl OPERANDS & REMARKS ’
3__sle uly il 20 28 30

o0l v, DIV JA BLLD,O L

2.0 4 440y I ST S S S W S W S ST ST S

7] ST SENEE B UV RIS NN Y ST AU IR S |

9:01:.11||||||||||.x.|...LL"

2. Operation: The macro operand “LD” is identical in operation to the
hardware command “Load Dividend” discussed in Appendix II in the
section on “Automatic Division.” This operand may be symbolic or
actual.
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The macro operand “D” is identical in operation to the hardware
command “Divide” discussed in Appendix II. This operand may be
symbolic or actual.

The operands A and B specify the dividend and divisor respectively.
A description of the macro “DIV” can be best obtained by referring
to the sections explaining the hardware commands “Load Dividend”
and “Divide” in Appendix II.

FUNCTIONAL MACRO-INSTRUCTIONS

At the conclusion of any functional subroutine, the status of the H/P,
E/Z, and Overflow indicators will not necessarily reflect the result of
the operation. These indicators will be in constant use during the
execution of the subroutine and therefore their status at the conclusion
of any subroutine should not be construed to be their status prior to
the execution of the subroutine.

Several pairs of subroutines have been combined into single sub-
routines due to their mathematical similarity (sine-cosine; logio-loge;
€*-10%). This is done to reduce the number of program steps that are
common to both and, simultaneously, reduce storage requirements. The
subroutines are distinguished from one another by their entry point
and their correct use is obtained through the use of the macro pertain-
ing to the particular subroutine desired.

As in the case of arithmetic macro-instructions, two addresses, sym-
bolic or actual, are specified. These addresses reference the units
position of the characteristics of the floating point numbers.

FLOATING SQUARE ROOT

1. Macro-instruction:

LINE LABEL  [OPERATION OPERANDS & REMARKS
3 sle mi wslie 20 23 30

ool i F.SQR

-] BT

% N1 EEFE TS S ISR SISO T S S S SV N S R | 1t

[T IT"1 RO S S U OV [N N U N T S N A S A G St

2. Operation: The floating point data referenced by B will have its
square root extracted and the resultant floating point number will be
stored with its low-order characteristic digit at the core position
referenced by A. The floating point number referenced by B is not
altered.
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FLOATING SINE AND COSINE

1. Macro-instruction:

LINE LABEL RATION) OPERANDS & REMARKS ‘
Sl s 1she 20 28 30

ovol v, JFSINA )
020} iy F.COS _

91310

CTUST-1 SNV NS UG VOV T ROV O ANV OV S S S SN S Y S A T Y R

2. Operation: The sine/cosine of the floating point data referenced by
B (which must be in radian measurement) will be computed and the
resultant floating point number will be stored with its low-order
characteristic digit at the core position referenced by A. The floating
point number referenced by B is not altered.

FLOATING ARCTANGENT

1. Macro-instruction:

LINE LABEL leRA\’IOI OPERANDS & REMARKS
20 23

sle uliz islie 30

ool v F,AT!!!A,Q A PP {

0120 1 1 41 TR SRR DA S N SR P

Qadi0f oox o Lo a1y

FYTYT-3 ST W SN N TN A0 N N S SO TR TN T S ST A T S VY B S W RS
el

2. Operation: The arctangent of the floating point data referenced by
B will be computed and the floating point result, in radians, will be
stored with its low-order characteristic digit at the core position
referenced by A. The floating point number referenced by B is not
altered.

FLOATING EXPONENTIAL

1. Macro-instruction:

LINE LABEL kﬂwlﬂ OPERANDS & REMARKS
Sle ul

wshe 20 28 30
0.0,080 44 4 2 s F.E,x. AL |B|jlllll U T W S S W T
020 ¢ 14y FEXTIA,B .\ 00w vuy N
owsiol v v v by b e
el vy by b e e




Macro-Instructions 163

2. Operation: The antilogarithm of the floating point data referenced
by B will be computed and the floating point result will be stored
with its low-order characteristic digit at the core position referenced
by A. The floating point number referenced by B is not altered. If
the argument is negative, the subroutine operates with the absolute
value of the argument and then computes the reciprocal value by
division.

FLOATING LOGARITHM

1. Macro-instruction:

LINE LABEL PERATION|  OPERANDS & REMARKS

3__sle uls sle 20 28 30
PRI B FLNJA B .\ 0o
o.iziof vy FLOGA,B . . . .
0:3,00 4 1 4 4 G T T T T N T T TSN T N TR T S T
oveod vy v v b b vy vy

2. Operation: The logarithm of the floating point data referenced by
B will be computed and the floating point result will be stored with
its low-order characteristic digit at the core position referenced by A.
The floating point number referenced by B is not altered.

FLOATING TRANSMIT FIELD ( TRANSMIT FLOATING FIELD )

1. Macro-instruction:

UNE | LABEL  [OPERATIONf  OPERANDS & REMARKS
3 Sle i [k L] 20 25 30
PYTITY I TFL )

012,01 1 2 4 1 PRTTES ST S T S S S S S R W R B R | N

0300 10 oo 4 bn e e g a1 )

LYTIT) U SIS SNV N U ST YA I SO0 S IO T S I S S G

2. Operation: The operation of the macro “TFLS” is identical with
that of the hardware command “TFL” described in Appendix IV.
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FLOATING BRANCH AND TRANSMIT
(BRANCH AND TRANSMIT FLOATING )

1.

2.

Macro-instruction:

LINE LABEL  [OPERATIO OPERANDS & REMARKS
3__3le uly [t 20 28 30

0.1 50) 4.4 4

Q2.0 4 4240y PENTT SO S S S S T ST S R S R T A

oo v v v 4o b s

01000} 1 {4 1 TEEN N BB R S SR B N SR T SR

Operation: The operation of the macro “BTFS” is identical with that
of the hardware command “BTFL.” This is described in Appendix IV.

RESTRICTIONS ON FUNCTIONAL ROUTINES

1

FSQR—The argument must be positive. If the argument is less than
zero, the subroutine executes a programmed halt. The operator may
either (a) manually branch back to the main program or (b) depress
the Start key and compute the square root of the absolute value of
the argument.

FSIN/FCOS—The subroutine will execute a programmed halt if the
characteristic of the floating point argument is greater than 08. For
all arguments with exponent less than or equal to 03, the maximum
error produced will not exceed 10-8. For arguments whose charac-
teristic is greater than 03, the accuracy decreases as the characteristic
increases.

FATN—The Arctangent subroutine accepts any number in the float-
ing point range.

FEX—An argument that exceeds 227.95592 results in exponent over-
flow. An argument less than —227.95592 causes exponent underflow.
Should such a condition arise, the subroutine examines core position
00401 to determine the course of action.

FEXT—An argument that exceeds 98.900000 results in exponent
overflow. An argument less than —98.900000 causes exponent under-
flow. The course of action is identical with that of exponent over-
flow/underflow for FEX.

FLN/FLOG—The subroutine will execute a programmed halt if the
argument is less than or equal to zero. A return to the main program
can then be effected by the operator.
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GENERAL MACRO-INSTRUCTION INFORMATION

In addition to creating linkage instructions to the subroutine desired,
the use of a macro-instruction will cause the subroutine(s) required to
be punched into the object program tape or card deck. The necessary
subroutines will thus be loaded into core storage during the loading
of the object program.

Incorporating the subroutines into the object program requires that
all subroutines be available to the processor during assembly. Since
their physical size precludes their being in core along with the processor,
a separate tape or card deck containing all of the subroutines must be
assembled in conjunction with the source program. The subroutine(s)
required will be selected from the subroutine tape or deck, assigned core
storage space, and punched into the object tape or deck.

Subroutines will be assigned to an area in core storage which imme-
diately follows the Pick subroutine, Care must be exercised by the
programmer to provide, between the last location assigned by the
processor and 19999 (39999, 59999), sufficient space to accommodate
the subroutines called for. ‘

Each subroutine will be complete with the constants and working
areas it requires for proper execution. These constants and working
areas may be common to several subroutines and will be assembled
into the object program only once. Sharing common storage and con-
stants eliminates redundancy and minimizes storage requirements. It
should be noted that four subroutines require the division operation. If
a machine installation is without the automatic division feature, the
division subroutine will be called in its place; core storage should be
alloted for this. This decision is a function of which subroutine deck is
utilized. The four subroutines are (1) Floating Divide, (2) Floating
Arctangeni, (3) Floating Exponential, and (4) Floating Logarithm.

A macro-instruction may be labeled in the source program. During
assembly, a reference to this label will be a reference to the first
instruction generated by this macro. The A address therefore is

LABEL+23
and the B address is
LABEL+28

where “Label” is the symbolic name given to the macro.
A macro-instruction may not contain a flag operand or a remarks
operand.
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SPECIFICATIONS OF THE PICK SUBROUTINE

The Pick subroutine is, common to all subroutines. During the
execution of the object program, the Pick subroutine performs five
major functions. These are:

The A and B operands are located in working areas.

A return address (to the main program) is calculated.
The subroutine is branched to.

The calculated result is stored in the proper location.
5. The return to the main program is effected.

Ll

In addition to the five functions described above, the Pick subroutine
has the following three secondary functions:

1. All error messages are initiated by the Pick subroutine.

2. If the error condition is such that the processing may continue, the
Pick subroutine returns to the subroutine in question.

3. Constants and working storage are provided by Pick.

The material in Table 13.2 gives the approximate core size for all sub-
routines that would be utilized on a 1620 without the automatic division
feature. Following this, in Table 13.3, is the analogous chart for those
subroutines that utilize the automatic division feature.

Table 13.2

Storage Requirements for Subroutines without Automatic Division

SUBROUTINE Fixep MANTISSA VARIABLE MANTISSA
PICK 872 1136
D1V 1047 1035
FA, FS (Combined) 543
FM 239 1207*
FD , 523
FSQR 579 659
FCOS, FSIN 843 1098
FATN 1077 1487
FEXT, FEX 784 1258
FLOG, FLN 886 1209
FSRS 279 279
FSLS : 372 372
TFLS 31 31
BTFS 79 79

* All four arithmetic floating point subroutines are combined in one set to save storage.



Macro-Instructions 167

Table 13.3

Storage Requirements for Subroutines with Automatic Division

SUBROUTINE Fixep MANTISSA VARIABLE MANTISSA
PICK 872 1136
DIiv# 187 199
FA, FS (Combined) 543
FM 239 1163%*
FD 335
FSQR 579 659
FCOS, FSIN 843 1054
FATN 989 1379
FEXT, FEX 740 1118
FLOG, FLN 842 1145
FSRS 235 279
FSLS 279 372
TFLS 372 31
BTFS 79 79

* One may use the DIV macro-instruction with this deck. However, in this case the
macro consists of hardware divide instructions. This is not the most efficient machine
utilization technique, but it does allow one to assemble, on a machine with the division
feature, those programs which were written utilizing the division macro. Also, no program-
ming changes are necessary.

** All four arithmetic floating 1point subroutines are combined in one set so that storage
may be utilized more economically.

In operations associated with floating point arithmetic, a process
termed “normalization” often takes place. Normalization is a left shifting
operation which eliminates high-order zeros in the mantissa of a float-
ing point number produced by a calculation. Thus, a product of two
numbers _

(11002) x (11002)
produces the result
(12103)
and not
(01204)

Often, however, this left shift introduces zeros into the units position

of a mantissa. Thus, a result before normalization might appear as

(00812506
and after normalization as _ _
(81250004 )

A zero is chosen as the “fill” digit only because there is no knowledge
of the digit that should be selected. When a digit other than zero is
selected as the fill digit, the calculation is said to be performed in the
“noisy” mode. The fill digit is termed the “noise” digit, or simply “noise.”
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In the normal execution of arithmetic, because the results are always
truncated,! small, unavoidable errors are introduced in the results of
the arithmetic operations. These errors may accumulate to the point
where the final results are greatly affected. The noisy mode is used to
detect the sensitivity of a computation to the growth of truncation errors.
In the noisy mode, the results are modified slightly to determine the
effect of such slight perturbations.

The 1620 linkage system allows the programmer to specify any noise
digit he wishes. This can be any digit zero through nine. However, if
a programmer runs a problem twice, once 'in the zero fill mode, and
once in the nine fill mode, and no significant difference in his results
are noted, it is probable that his results are good. If, on the other hand,
a significant difference is noted between the two runs, the programmer
should suspect that the computation is very sensitive to truncation error.
Much numerical experimentation of these points remains to be done.

A noise digit must always be specified in any program which uses
macros. This is done by preceding the DEND statement by the state-
ment.

DAC 1X
where “X” is the noise digit requested, 0 through 9.

Failure to specify a noise digit in the exact manner stated may cause
a failure in the assembly process and also in the running of the object
program.

This noise digit will be transferred to location PICK-1 by the sub-
routine processor and may be altered during the running of the object
program by referencing

NOISE + 20*K

where “Noise” is the label of the statement
DAC 1X

and “K” is the number of secondary linkages.
As an example, assume that the main body of the following sample
program begins at location

ZEROFL + 12

and that five separate macro-instructions have been employed. If the
programmer begins execution of the object program at location

1 The terminology concerning error unfortunately is very vague. Truncation is
generally understood to imply “cutting off” certain digits in order to carry a constant
number of digits per data field. Thus, the product of two n-digit numbers produces
a result of length 2n, but only the first n digits are retained. It is not generally under-
stood that a “round” may or may not take place before the truncation. The purpose
of rounding is to improve the accuracy of the data field that is retained.
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Chapter 14

Introduction to Fortran

The past few years have seen vast technological advances made in
computer design. Storage devices with access speeds measured in micro-
seconds and even nanoseconds! have been developed; solid-state circuitry
has greatly increased circuit reliability; highspeed magnetic tape units
and disk files have been developed. The three advances listed here by
no means exhaust the list; they serve as but a small sample from a large
population. With these technological advances in computer design in
mind, one might pose the question, have any advances been made in
programming systems? Certainly this is a reasonable question.

We have studied in detail the Symbolic Programming System. It was
noted that the symbolic system relieves the programmer of the tedious
and error-breeding task of keeping track of numerical addresses; easy
to remember mnemonics are substituted for numbers. This results in
reducing programming time and thus reflects a monetary saving to the
computer user. A large portion of the cost of solving a problem on a
computer is programming time. It is not uncommon for a programmer
to spend months programming an application and then have the com-
puter execute the program and produce the results in a few minutes.

The reader will recall that each symbolic instruction produces one
machine language instruction, except macro-instructions which generate
more than one machine language instruction. Although the symbolic
system eases the programming task, it is still necessary for the programmer

1 One nanosecond is one one billionth of a second.
170



Introduction to Fortran 171

to write down the same number of program steps (macros excepted) to
solve a problem as in machine language. Let us now imagine a proc-
essor so powerful that it can generate many machine language instruc-
tions for each source statement it receives. In this way we could issue
a source statement such as A=B+ C+ D +E and have the proc-
essor generate all the machine language instructions necessary to satisfy
the requirements of the source statement. Such processors do exist.
Fortran, Cobol, and Algol are all programming systems incorporating
these powerful processors.

Fortran is the name that was given to a programming system devel-
oped primarily for use in the scientific and engineering areas. The pur-
pose of the Fortran system is to simplify programming by allowing the
programmer to state in a relatively simple language, closely resembling
that of ordinary algebra, the steps of a procedure to be carried out for
the solution of a problem, and to obtain automatically from the computer,
under direction of the processor, an efficient machine language program
for this procedure. The term “efficient” is very significant. It would
not benefit us greatly in overall job time if programming time were
decreased only to have the generated machine language program take
four or five times as long to run as a hand-written machine language or
SPS program. The 1620 Fortran system generates a highly efficient ma-
chine language program.

The following definitions of terminology are used in this and subse-
quent chapters:

1. Fortran language—A set of statements, similar to the expressions used
in ordinary algebra. These statements are used by a programmer to
define a problem.

2. Source statement—One Fortran language statement.

3. Source Program—A program written in the Fortran language. It is
made up of a series of source statements.

4. Fortran Compiler (or Translator)—A machine language program
which analyzes the source statements and converts them to machine
language instructions.

5. Object Program—The totality of machine language instructions pro-
duced by the Fortran processor by operating on the statements of the
source program.

The name “Fortran” comes from “FORmula TRANslation” and was
chosen because many of the statements which this system accepts look
like algebraic formulas. The Fortran system consists of two parts: the
Fortran language and the Fortran compiler or translator. The program-
mer writes his instructions to the computer in the Fortran language.
The Fortran processor is an extensive set of machine language instructions
that direct the 1620 to translate the Fortran language statements into a
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machine language program. This process of translation is called “com-
pilation.” Use of the Fortran system consists of the following steps:

1. Read the Fortran processor program into the 1620.

2. Each Fortran statement is read in and analyzed by the processor pro-
gram, and the machine language instructions to satisfy the require-
ments of the source statement are punched.

3. Read in the subroutines and punch those required by the object
program. Subroutines are prewritten programs that perform standard
routines such as calculating the sine and cosine of an angle, raising a
number to a power, or taking the natural logarithm of a number.

4. Read in the object program and the data.

The above steps are represented by Figure 14.1.

Fortran Language
Statements

Fortran Translator

} {1 1620 >| Object Program

Fortran Subroutines

Results < 1620 |

Fig. 14.1. Steps in the Fortran System.

Object Program

Virtually any numerical procedure may be expressed in the Fortran
language. As an example of the power of the Fortran system let us write
the Fortran statement to evaluate one of the roots of a quadratic equation
given by the formula
‘ _ —B+V/B?—4AC
a 24

The Fortran statement expressing this formula is
X1 = (—B + SQRT(B**2—4.xA%C))/(2.%A)

This statement would cause the processor to generate the machine lan-
guage instructions to evaluate the function to the right of the equal
sign. The variable to the left of the equal sign would then be set equal
to this value.

The Fortran system is available not only for the 1620, but also for many
other computers. The Fortran language is very similar for each system

X
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and only minor changes to the source program need be made to run it
on any computer. Each computer, however, has its own unique Fortran
processor—this is to be expected since each computer has its own unique
machine language codes.

These are a variety of Fortran systems for the 1620. The following
chapter will discuss in detail one particular system, Basic Fortran.2
However, with a knowledge of Basic Fortran, the more advanced Fortran
systems can be easily learned.

2 This system is also known as “Fortran with Format.”



Chapter 15

Basic 1620 Fortran

Fortran is an automatic coding system consisting of two major parts:
the Fortran language and the Fortran compiler. The Fortran language
is a set of statements, similar to the expressions used in ordinary algebra.
These statements are used by the programmer to describe his problem.
The Fortran compiler converts the Fortran language statements into
machine language instructions which at a later time are executed by the
computer to solve the problem.

Since Fortran is a programming language closely related to the lan-
guage of ordinary algebra, it must provide a means for expressing cer-
tain elements basic to a mathematical language. These elements are:
numeric constants, variable quantities, subscripted variables, operations,
and expressions.

In the Fortran language, variables and constants may each be ex-
pressed in one of two modes: fixed point (restricted to integers) or
floating point. Each floating point number is represented internally
(in the core storage) in the floating point form (mantissa and character-
istic) discussed in Chapter 12. However, basic Fortran does not permit
a variable-length mantissa; the mantissa is of a fixed length—8 digits.
Each fixed point number is represented internally by 4 decimal digits
with a field-defining flag over the high-order digit. All quantities in the
Fortran system are represented internally in either the fixed point mode or
the floating point mode.

Obviously, the Fortran system must provide for two different types
of arithmetic calculations: fixed point and floating point. Floating point

174
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calculations are performed through the use of floating point subroutines.
Floating point calculations are carried out on two decimal numbers to
an accuracy of 8 places. Fixed point calculations are also performed by
subroutines. However, in the fixed point mode, calculations are carried
out on integers only. No decimal portions of numbers are used.

The following illustrates floating point and fixed point arithmetic
calculations:

Floating Point

ARITHMETIC STATEMENT REsuLT
A=62+ 3171 A =90.371
B=9.+4, B =225
C=1.—-32+1.6 C=-06
D=25.x25 D =62.5
E=1.=+3. E = 0.33333333
F=(25+2.) x 621 F =17.7625

Fixed Point

ARITHMETIC STATEMENT ResuLT
A=5X%X2 A=10
B=5+3-1 B=17
C=8-+2 C=4
D=9=2 D =4*
E=(5+ 2) X (10+3) E =6**

* The true answer is 4.5; however, the 0.5 is truncated.
** Truncation causes this to be calculated as 2 X 3.

CONSTANTS

Constants may appear as part of the source program or as input data.
They may be written in one of two forms: fixed point or floating point.
The type of arithmetic calculation to be performed on the constant
determines in which form it should be written. If the constant is to be
used in floating point calculations, it should be written in the floating
point form; if it is to be involved in fixed point calculations only, it
should be written in the fixed point form. If a constant is to be used
in both fixed and floating point calculations, it must appear in both forms.

FIXED POINT

Fixed point constants are characterized by being from 1 to 4 decimal
digits in length. (Internally fixed point constants are always 4 digits in
length, the high-order zeros being automatically supplied if required.)
The range, then, of a fixed point constant is from 0 to =9999. The decimal
point is always assumed to be to the right of the right-most digit; e.g.,
875 means 375.0. However, the decimal point is always omitted in the
representation of a fixed point constant. If a fixed point constant with
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more than 4 digits is written, only the 4 low-order digits are processed.

Fixed point constants may be positive or negative. If positive, they
are written with or without a preceding plus sign. If negative, a minus
sign must precede the constant.

General Form

One to four decimal digits without a decimal point. A preceding plus sign is
optional. A minus sign is required if the constant is negative.

Examples

398

9

+6

06
—2832
0

FLOATING POINT

Floating point constants may be written in two forms: without ex-
ponents or with exponents.

WITHOUT EXPONENTS

Floating point constants without exponents are represented by any
number of decimal digits, with a decimal point at the beginning, at the
end, or between any two digits.

The decimal point must be written.

Floating point constants may be positive or negative. If positive, they
are written with or without a preceding plus sign. If negative, a minus
sign must precede the constant. Although any number of digits is per-
missible, only the 8 most significant digits are processed.

General F orm

Any number of decimal digits with a decimal point. A preceding plus sign
is optional. A minus sign is required if the constant is negative.

Examples

3.14176
+36000.
—82.5
.000065
—.00312
0.
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WITH EXPONENTS

Floating point constants with exponents are represented by any number
of decimal digits, with a decimal point at the beginning, at the end, or
between any two digits. The decimal point must be written. This
part of the number is called the mantissa. The mantissa (including
decimal point) is followed by the letter “E,” which is followed by a 1- or
2- digit exponent. The exponent is a fixed point constant that signifies
the power of 10 by which the mantissa is to be multiplied. The exponent
may be positive or negative. If positive, the exponent may be written
with or without a preceding plus sign. If negative, a minus sign must
precede the exponent.

General Form

Any number of decimal digits with a decimal point, followed by the letter “E”
and a 1- or 2-digit exponent. Both the exponent and mantissa may be signed.
A preceding plus sign is optional. A minus sign is required if the constant or
exponent is negative.

Examples

17.1E3 (17.1 x 103)
—16.0E+6 (—16.0 X 10)
+397.017E2 (397.017 x 102)
2.E32 (2. X 1032)
—126.1E+10 (—126.1 x 101)
—6.0E—3 (—6.0 X 10-8)
—132.6E+12 (—132.6 X 1012)
50.0E13 (50.0 x 1013)

The following statements may prove helpful in writing or identifying
fixed and/or floating point constants.

1. A fixed point constant never has a decimal point associated with it.
2. A floating point constant always has a decimal point associated with it.

Problem

Identify the following as either a permissible floating point constant or a per-
missible fixed point constant or neither.

1. 0 9. 6.28E+2

2. —916 10. —12E—12

3. 01234 11. 97.E12.

4. 9,123 12. 14.001E+99
5. 3.14161713 13. 21349

6. —88.9610002 14. 23.67.

7. —.00000000098765E—21 15. .86-—8’

8. 3E34 16. +92.12E—15
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VARIABLES

Variables, like constants, may be fixed point or floating point depending
on whether they are being used to represent an integral value or a
decimal value. Names (for example, A, B, DELTA, X1) are assigned
by the programmer to variables, and the variable names appear as part
of the source program.

In order to distinguish between a floating point variable and a fixed
point variable certain rules must be adhered to in assigning names to
the variables.

FIXED POINT

Fixed Point variables are restricted to integral values and may take on
only those values allowed fixed point constants. Fixed point variables
are distinguished by the fact that the first character of the symbolic
name chosen to represent the variable must be one of the following:
I, J, X, L, M, or N. These symbolic names may be from one to five
alphabetic or numerical characters in length. Special characters are not
allowed as part of a variable name.

General Form

One to five alphabetic or numerical characters (no special characters) of which
the first must be I, J, K, L, M, or N.

Examples

I
M2
JOBNO
L2345
N

FLOATING POINT

Floating point variables may take on only those values allowed floating
point constants. The symbolic name chosen to represent the floating
point variable is from one to five alphabetic or numerical characters in
length. The first character must be alphabetic and other than I, J, K, L,
M, or N. Special characters are not allowed as part of a variable name.

General Form

One to five élphabetic or numerical characters (no special characters) of which
the first must be alphabetic but not 1, J, K, L, M, or N.
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Examples

DELTA
A

A614
Z3A2

Problem

Identify the following as either a permissible fixed point variable or a per-
missible floating point variable, or neither.

1. B 6. SAVING
2. RATE2 7. LOAD
3. L 8. Al/B
4. M1234 9. DELTA
5. 9L1 10. A+3

CHOOSING VARIABLE NAMES

As in the symbolic programming system, it is advisable when possible
to assign names with a high mnemonic content to variables. For example,
if one wished to compute electric current from the formula I = E + R,
he might choose the names CURR, VOLT, and OHMS to represent the
variables I, E, and R respectively. Of course, these names assume that
the variables will take on floating point values. If fixed point arithmetic
were being used, the names assigned might have been I, IVOLT, and
IOHMS, respectively.

OPERATIONS

There are six basic operations associated with the Fortran language.
Each operation is represented by a specific symbol as follows:

OPERATION SyMmBoL ExAMPLE
Addition + A+ B
Subtraction - A—B
Multiplication * AXB
Division / A/B
Exponentiation Sk AX*B (AB)
Equality = A=B

The equality operation (=) has a different meaning in the Fortran
language than it does in an algebraic equation. This new meaning is
discussed in the section on “Arithmetic Statements.”

EXPRESSIONS

An expression in Forfran is a sequence of one or more constants and/or
variables joined by any of the operation symbols (except the equality
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symbol) to indicate a quantity or series of calculations to be performed.
The following are some simple Fortran expressions:

A+B-C
XAk
IDELT/J2

Expressions are used in forming certain statements in the Fortran lan-
guage. They must be formed according to a set of rules, which will be
discussed later.

Parentheses are used in expressions to specify the order of operations
just as they are used in ordinary algebra. In the expression (A + 2.)*B
the addition would be performed first and the sum would be multiplied
by B. In the expression A**(2. + Y) the floating point addition would
be performed first and the variable A would then be raised to the (2. + Y)
power. If the parentheses had been omitted so that the expression was
A**2, 4+ Y, it would have been calculated as (A%**2.) + Y.

If parentheses are not used to specify the order of operations, the
hierarchy of operations is as follows:

1. Exponentiation High
2. Multiplication and Division
3. Addition and Subtraction Low

Thus the Fortran expression A + BXC**D would be interpreted to mean
A+ (BXC?) and A+ (B*XC)**D would be interpreted to mean
A+ (B x C)>.

There are three exceptions to Fortran expression compatibility with the
ordinary rules of mathematical notation. These are as follows:

1. In ordinary notation AB means A times B. Howegver, in Fortran AB
never means A times B, rather it is interpreted as a floating point
variable with the symbolic name “AB.” The multiplication symbol
cannot be omitted in Fortran. The violation of this rule is one of
the most common errors in Fortran programming.

2. In ordinary notation, expressions such as A/B+C and A/B/C are con-
sidered to be ambiguous. In Fortran, however, such statements are
acceptable and are interpreted as follows:

A/B*C means (A/B)*C
AxB/C means = (A%*B)/C
A/B/C means (A/B)/C

When expressions contain a string of operation symbols of equal rank
in the hierarchy table, the order of operations is taken from left to
right. As a further example:
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WABXCD/X*E/D means ((((W*AB)*CD)/X)*E)/D
and
A4+B—-—C+D~—E means (((A+B)—C) +D) —E

3. In ordinary notation the expression 45C is meaningful. However, the
corresponding Fortran expression AX*XB**C is not allowed in the
Fortran language. It should be written as A%k (B**C) if ,8C is
meant or as (A**B)**C if (,8)¢ is meant.

Rules for Forming Expressions

1. All the variables and constants in an expression must be in the same
mode. They must either be all floating point numbers or all fixed
point numbers. Thus the following expressions are not allowable
because they contain mixed-mode variables and/or constants.

A + 21%C
IX] + 2.
A+ B — JDELT

The following expressions are allowable:

A+ 21.%C
IX] + 2
IA + IB — JDELT

Exceptions. An exception to this rule is as follows: a floating point
number may have a fixed point exponent. Thus the following
Fortran expressions are valid:

Axk
A+ Bk (1 +2)

Exponentiation in Expressions. The following are valid forms which
exponentiation may take in an expression:

Ax%B
Axk]

where A and B are any floating point expressions and I is any fixed
point expression. Exponentiation of the form I*%*A and I**J is not
permitted. The following are examples of valid and invalid expres-

sions.

ExprESsION VALIDITY

Adx (14 2.) Invalid (mixed mode
within parentheses)

RAD**2 Valid

3.1417*%RAD**2, Valid

DIST**] Valid

Ax*(B + 3.) Valid

XX (J 4 3) Invalid

MON**2, Invalid

3.141T*HEIGT*XALENG*R**3 Valid
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2. An operation symbol (excepting the equality symbol to be discussed
shortly) must not precede a plus or a minus sign used to signify that
a variable or constant is positive or negative. Use parentheses to
enclose the sign and the variable or constant.

INvALID EXPRESSIONS VALID EXPRESSIONS
A*x—B A*x(—B)
A/+BDELT A/(+BDELT)

Table 15.1 shows an algebraic statement and a correct and incorrect
Fortran expression for it.

Table 15.1
ALGEBRAIC INCORRECT FORTRAN CoRRECT FORTRAN
STATEMENT ExpPRESSION EXPRESSION
A(—B) A*x—B A*x(—B)
Xy XY XxY
Al+2 AXKI + 2 Axx (I +2)
AFB+2B AXxk (E + 2)%B Axk (E + 2.)%B
AB/CD AXB/C*D (A*B)/(C*D)
or AXB/(C*D)
or A/C*B/D
Problem
Write Fortran expressions for the following algebraic statements.
1. A= (B+C)
2. A(B+C) .
3. A N
B +
4. AX2+BX+C
5. X+37+C
19D
6. (I°+10)3
7 — (2N)
7. AX+2
8. 103°X
—CB

9. (Bz—4AC)*

10. Assuming the following Fortran statement to be valid, determine if it will
produce the correct result

(B¥*2 — 4. %AXC) %% (1/2)
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FORTRAN STATEMENTS

There are five types of Fortran statements that are permitted in a
source program. They are as follows:
1. Arithmetic statements
2. Control statements
3. Input-output statements
4. Specification statements
5. Comments

Arithmetic statements specify how variables should be calculated.
Control statements enable the programmer to specify when the normally
sequential execution of machine operations should be altered. Input-
output statements provide for the entry of data and the output of
results. Specification statements provide information to the processor as
did SPS declaratives. Comment statements are not compiled. They are
used for indentification purposes by the programmer.

ARITHMETIC STATEMENTS

An arithmetic statement in the Fortran language looks like a sim-
ple statement of equality in ordinary algebra (for example, A = B,
A = C +2%B). The left side (to the left of the equality symbol) of an
arithmetic statement may be either a floating point variable or a fixed
point variable. Constants and expressions involving an operation symbol
are not allowed to the left of an equality symbol. The right side of all
arithmetic statements are expressions.

The equality symbol takes on a unique meaning in the Fortran lan-
guage. It literally means “to evaluate the expression on the right side
and assign the result to the variable whose symbolic name is on the left
side.” Thus the statement X = X + 1. has a valid meaning in the Fortran
language whereas in ordinary algebra the statement is meaningless.

General Form

a=Db

where a is a variable (fixed or floating) and b is an expression (fixed or float-
ing). By the above definition, statements of the form A =1 and J =B are
permissible where I and B are any entirely fixed or floating expressions (for
example, A=1+]J2; J=B+ C — 16.).

Examples

A=B+2.

AD = C*%2

Pl =3.14

DELT = I%]

I=A+1.

X=(—B+ (Bx*2 — 4 XAKXC) %% 5)/(2.%A)
L=B
C=K
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If the expression to the right is in fixed point form and the variable on the
left is in floating point form, the calculation is performed in fixed point
arithmetic, put in floating point form, and stored in the location specified
by the symbol on the left and vice versa.

Consider the quadratic equation 3X% 4+ 1.7X — 31.92 = 0. The alge-
braic representation for one of the two roots is

x— B+ VB —4AC
- 2A
A Fortran program that describes this calculation is as follows:
A =3
B=17
C=-3192

ROOT = (—B+ (B**2 —4 *A*C)**.5)/(2.*A)

The first statement means: “Assign the value 3. to the variable A.” The
next two statements have a similar meaning. The fourth statement means:
“Evaluate the expression on the right side and assign the result to the
variable ROOT.”

Of course, the program also could have been written as follows:

ROOT = (—1.7+ (1.7%%2—4.*3.% (—31.92) )**.5) / (2.%3.)

STATEMENT NUMBERS

Fortran programs are sequential in nature. That is, the computer
executes instructions in the object program in the order that they were
compiled from the source statements. For example, if the fourth state-
ment in the program above were to be moved up and made the first
statement, the computer would evaluate ROOT before obtaining the
desired values of A, B, and C. ROOT would therefore be evaluated
using some arbitrary unknown values for these variables.

As in machine language and the symbolic programming system, it
is not always desirable to execute program instructions sequentially.
Some means, then, must be provided to assign a unique label or number
to a statement so that it may be referenced when required. The Fortran
language provides for this by allowing the programmer to assign state-
ment numbers to those statements which will be referenced by another
statement at some time in the program.

A statement number is in the form of any unsigned fixed point constant.
Leading zeros are not required. It is advisable to number only those
Fortran statements that will be referenced. Actually almost any Fortran
statement may be assigned a statement number, but unnecessary and ex-
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cessive numbering wastes core storage and delays the compilation process.

Statement numbers need not be sequentially assigned and the pro-
grammer may choose any fixed point number he wishes. However, no two
statements may be assigned the same statement number. If it were de-
sired to reference all the statements in the program to solve for one root
of the quadratic equation, the program could be written as follows:

96 A = 3.
2B=17
1321 C = —31.92
10 ROOT = (=B + (B**2 —4*XA*C)**5)/(2.*A)

The Fortran programs illustrated thus far have been necessarily trivial
since no methods of deviating from sequential instruction execution have
been presented. Also, no input-output commands have been presented.
The following two sections are devoted to (1) control statements which
allow for deviation from sequential instruction execution and (2) input-
output statements.

CONTROL STATEMENTS

Normally, Fortran statements are executed in the same sequence in
which they occur in the source program. Control statements provide the
means of deviating from this sequential instruction execution. As in SPS,
two types of control statements are provided. One type provides for un-
conditional branching whereas the other type provides for branching
only if some specific condition is met. Statement numbers provide the
means for cross referencing Fortran statements.

Unconditional Go To Statement

General Form
GO TO n

where n is a statement number.

Examples

GO TO 6
GO TO 199

The unconditional Go To statement is used to specify, at some point
in a program, that the next statement to be executed is not the one
following as it normally would be. Instead, the statement bearing state-
ment number n is executed next.

This statement is similar to the unconditional Branch instruction in SPS.
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Example

Fortran Source Program:
SUM = 0.
X=1

12 SUM = SUM + X
X=X+1
GO TO 12

The above program will evaluate the sum of the numbers from 1 to

infinity:
(Z)

The first two statements are called initialization statements. The state-
ment SUM = 0. will assign the value zero to the variable SUM. This is
done because the variable SUM will be used to develop a total; if the
value of SUM is not zero to start with, an incorrect total will be developed.
The statement X = 1. assigns an initial value of 1 to the variable X. The
statement 12 SUM = SUM + X develops the sum of the numbers. The
next statement causes the value of X to be increased by 1. The statement
GO TO 12 causes statement 12 to be executed next. Thus a loop is
developed and the last three statements of the program will be continually
executed with the value of X being increased by 1 each time.

Actually, the above program will halt when the value in SUM exceeds
the highest allowable floating point value (9999999999). When this
occurs, an overflow condition will be indicated.

Computed Go To Statement

General Form
GO TO (ny, ny, ..., ny), i

where ny, n,, ..., n,, are statement numbers and ¢ is an unsigned fixed point
variable (1 =i=m)*

Examples

GO TO (6,7,13,2,5), 1
GO TO (199, 2), MKVD

The computed Go To .statement is used to transfer control to one of
several Fortran statements depending on the value of some fixed point
variable. If, at the time of execution, the value of the fixed point variable
i is §, then control is transferred to the statement with statement num-
ber n;.

* i > m is allowable but the object program will not run correctly except by chance.
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Example
JDEL = 3
GO TO (196, 2, 47, 63, 1), JDEL

Commentary

The statement numbered 47 will be executed next

Example
Fortran Source Program:
SUM = 0.
TOTAL = 0.
ADD = 0.
I=0
X=1.
1 SUM = SUM -+ X*%3
X=X+1.
I=1+1
GOTO (1,1,1,1,1,1,1,1. 9), I
9 X=2.
I=0
3 TOTAL = TOTAL + X*%2,
X=X+ 2.
I=14+1
GO TO (3,3,3,3,3,3,3,3,4), I
4 X=3.
I=0
5 ADD = ADD + X*%3,
X=X+43.
I=1+4+1
GO TO (5,5,5,5,5,5,5,5,6), 1
6 Complete program by writing out results

Commentary
9

SUM= ) @
i=1
9
TOTAL = )" (2i)2
i=1

9
ADD = ) (3i)?

=1

The statement with statement number 6 in the above program is not a legal
Fortran statement but is merely inserted to express a completion condition
since Input-output and Stop commands have not yet been discussed.

Example
Fortran Source Program:

SUM = 0.
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ID=1
X =1.
15 SUM = SUM + (X*%5.2 + 2. %X + 6.)/3.
GO TO (8, 8,8,8,2),ID
2 X=X+2
GO TO 15
8 X=X+1.
ID=ID+1
GO TO 15

Commentary

SUM = 2(15-2+2i+6) +3+4 Z((2f+ 1)524+2(2i+1) +6) =3
: i=1 i=s

The above program is presented solely to demonstrate the computed Go To
statement. It is not a realistic program since no provisions have been made
for ending the program.

Example

The following is an example of a never-ending multiple switching network.
10 N=1
8 GO TO (1, 12, 31, 14, 10), N
1 N=2
GO TO 8
12 N=3
GO TO 8
31 N=4
GO TO 8
14 N=5
GO TO 8

If Statement

General Form
IF (a) nj, Ng, Ng

where a is any expression (fixed or floating) and n;, n,, and n; are statement
numbers.

Examples

IF (A) 1, 2,3

IF (I-2) 17, 9, 8
IF (A/B*C) 8,9, 8

The expression a is evaluated. If the value of the expression is less
than zero (negative ), statement number n; is executed next. If the value
of the expression is zero, statement number n, is executed next. If the

value of the expression is greater than zero, statement number n; is
executed next.
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Suppose the variable XCORD has just been calculated in a Fortran
program. If the value of XCORD is negative, an error routine at state-
ment number 8 should be executed next. If the value of XCORD is zero,
a special routine at statement number 2 should be executed next, and
if the value of XCORD exceeds zero, statement number 102 is to be
executed. The Fortran statements to accomplish this are as follows:

XCORD = B**2 — 4 *A*C
IF(XCORD) 8, 2, 102

The single Fortran statement shown below will accomplish the same

branching conditions.

IF(B**2 — 4 XAXC) 8, 2, 102

The If statement is an excellent tool for use in programs where looping
(repeating the same operations with different data) is desired. Example
number 1 illustrates the use of the If statement in controlling the number
of times a loop is to be executed.

Example 1
The following is a Fortran program to sum the numbers from 1 to 1000.

SUM = 0.0
A=10
3 SUM =A 4+ SUM
A=A+1.
IF (A — 1000.) 3, 3, 6
6 Complete program by writing out results

Example 2

The following program will find the positive root of the following equation
correct to two decimal places, X2 4+ 0.9X — 6.3 =0. The positive root lies
between 1 and 10.

I=1
X =0.
1 X=X+1.

15 ROOT = X**2 + 9k%X
GO TO (3, 4, 18), 1
3 IF (ROOT —6.3)1, 7, 6
6 I=2
4 IF (ROOT -6.3) 10, 7, 12
2 X=X-.1
GO TO 15
10 I=3
18 IF (ROOT —6.3) 21, 7, 7
21 X=X+ .01
GO TO 15
7 End of program
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IF SENSE SWITCH'

General Form

IF (SENSE SWITCH i) n,, n,
where n,; and n, are statement numbers and i is 1, 2, 3, or 4.

Examples

IF (SENSE SWITCH 2) 10, 3
IF (SENSE SWITCH 4) 1, 119

The Sense switch corresponding to i is interrogated. If it is in the “on”
position, the next statement to be executed is statement number n;. If
the program switch is “off,” the next statement to be executed is state-
ment number n,. The four program switches are located on the 1620
console. The only method of setting or altering the settings of the
switches is to position the switch manually to the “on” or “off” position.

INPUT-OUTPUT STATEMENTS

The Fortran language includes seven I/0 statements to allow for the
transfer of data between core storage and the input-output devices. The
Input-output statements must specify three things: (1) What exactly
is to be done. This may be to read a card, read paper tape, punch a
card, and so forth. (2) How the data fields are arranged on the input
medium or are to be arranged on the output medium. The arrangement
of data is called “Format.” (3) Which data fields are to be transmitted.
The data is specified by the variable name chosen by the programmer.

The Fortran I/O statements specify items 1 and 3 in the above list.
The Format (item 2) is specified by special Format statements which
are referenced by the I/0 statements. The I/O statements will be de-
scribed first, then the Format statements will be discussed.

All I/O statements contain three things: (1) The instruction name
that specifies what is to be done. (2) A statement number that references
a Format statement which describes the arrangement of the data, and
(3) A “list” that describes which data fields are to be transmitted.

SPECIFYING LISTS OF QUANTITIES

A list consists of one or more variable names separated by commas.
The list specifies what quantities are to be transmitted between core
storage and the I/O device. It may contain any number of variables
(fixed and/or floating). The only limiting factor is the permissible

1 “Sense switch” is synonomous with “program switch.”
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length of the Fortran statement, which in 1620 Fortran may not exceed
72 characters.
Examples of lists are as follows:

DELTA, ], ONE
A

SIGMA, COUNT, IDENT, X, Y
I, DELTA, 99 (This list is invalid because
it contains a constant)

INPUT STATEMENTS

Read Statement
General Form
READ n, List

where n is the statement number of a Format statement, and “list” is as
described above.

Examples

READ 2, A, DELTA, I
READ 106, A, B,C, D, E, F
READ 37, POUND, OHMS

The Read statement causes quantities to be read from a card in ac-
cordance with the specified Format statement. The variables in the list
take on the respective values read from the card.

As an example, assume that a card is punched as follows:

Carp COLUMNS CONTENTS
6-7 13
22-25 —10
26-32 + 399124
50-51 01
78 9

In a source program the Read statement

READ 2, I, DELTA, QUAN, NUMBR, IDEN

would cause the card to be read and the variable I to be assigned a
value of 13, DELTA a value of —10, QUAN a value of +399124,
NUMBR a value of 1, and IDEN a value of 9. Computations may
then take place and control may pass back to the same Read state-
ment. This. would cause another card to be read and the quantities
on this card assigned to the variables. Of course, the above descrip-
tion assumes a correct' Format statement. It is the Format statement
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that supplies the information as to the card columns where the data
is to be found.

Accept Tape Statement

General Form

ACCEPT TAPE n, list
where 7 is the statement number of a Format statement and list is as previously
described.

Examples

ACCEPT TAPE 16, A, B, C,
ACCEPT TAPE 99, I, DELTA, A, MM

The Accept Tape statement causes quantities to be read from paper
tape in accordance with the specified Format statement. The variables
in the list take on the respective values read from the tape.

Accept Statement

General Form

ACCEPT n, list _
where n is the statement number of a Format statement and list is as previously
described.

Examples

ACCEPT 12, A
ACCEPT 1, JDEL, RADI, ARC

The Accept statement causes the carriage on the typewriter to return,
and the computer awaits manual entry of data from the keyboard.
Data is entered in accordance with the specified Format statement.
The variables in the list take on the respective values entered from the
typewriter.

OUTPUT STATEMENTS

Punch Statement

General Form

PUNCH n, list
where n is the statement number of a Format statement and list is as previously
described.
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Examples

PUNCH 999, ARC, SLOPE, I
PUNCH 4, COUNT, MAG

The Punch statement causes the values of the variables in the list,
as determined by the program, to be punched in a card or cards in ac-
cordance with the specified Format statement.

Punch Tape Statement

General Form

PUNCH TAPE n, list
where n is the statement number of a Format statement and list is as previously

described.

Examples

PUNCH TAPE 1234, A, I
PUNCH TAPE 16, SUM, VALUE, C

The Punch Tape statement causes the values of the variables in the
list, as determined by the program, to be punched in paper tape in
accordance with the specified Format statement.

Print Statement

General Form

PRINT n, list
where n is the statement number of a Format statement and list is as previously
described.

Examples
PRINT 1, DELTA, X, Y
PRINT 42, ZDEL, X1, Y2

The Print statement causes the values of the variables in the list, as
determined by the program, to be printed on the typewriter in accordance
with the specified Format statement:

Type Statement

General Form

TYPE n, list
where n is the statement number of a Format statement and list is as previously
described.
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Examples

TYPE 6, X1, X, Y2
TYPE 888, CON1, DELTA, MIX

The Type statement causes the values of the variables in the list, as
determined by the program, to be printed on the typewriter in accordance
with the specified Format statement. The Type statement and the Print
statement serve the same purpose and can be used interchangeably.

FORMAT STATEMENTS

In order for quantities to be transmitted correctly from the input
medium to the computer, or from the computer to the output medium,
it is necessary that the computer be told in what form the data exists.
Special subroutines are used to convert data to and from the floating
point (characteristic and mantissa) and fixed point (4-digit) forms
internally used by Fortran. The subroutines must be supplied informa-
tion as to what forms the data fields are in and into which form they are
to be converted. The Format statement specifies this.

General Form

n FORMAT (specification)

where n is a statement number referenced by an I/O statement, and where
specification is as described below. The specification must be enclosed in
parentheses.

Example

2 FORMAT (F6.2,E6.1,5XI12,F6.2)
3 FORMAT(2HX = F6.2)

SPECIFICATIONS

The specification specifies what forms the data fields are in-and to what
form they are to be converted. There are three types of conversion for
numeric data, as illustrated below. The conversions are used for both
input and output.

INTERNAL CONVERSION EXTERNAL
Data Form CopE Data Form
Floating Point E Floating Point
(with exponent)
Floating Point F Floating Point
(without exponent)
Integer I Integer

Let us consider the three types of numeric conversion for input data.
If the input quantity on the input medium is in the floating-decimal-
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with-exponent form (for example, 3146.E—2, 9875.167E+13), the E-
type conversion is specified. If the input quantity is in the floating-
decimal-without-exponent form (for example, 4.678, 2., 1001.1), the F-
type conversion is specified; and if the input quantity is in integer form,
the I-type conversion is specified.

The conversion codes are used in a similar fashion for output. If
the output quantity is to be in the floating-decimal-with-exponent form,
the E-type conversion is specified. If the output quantity is to be in the
floating-decimal-without-exponent form, F-type conversion is specified,
and if the output quantity is to be in integer form the I-type conversion
is specified.

The following chart illustrates how numbers might appear as printed
output for the conversion specified. Although printing is being used
as an example, the same examples could apply for card or tape out-
put. This holds true for all examples given.

E-Type Conversion. Numbers printed by E-type notation are printed
in the floating-decimal-with-exponent notation. Typical output might be:

NUMBER PriNTED OUTPUT
167.12 .16712Eb03
—.0001842 —.1842E—-03
91.2 912Eb02
100039. .10039Eb05

F-Type Conversion. Numbers printed by F-type conversion are printed
in the “normal” decimal notation without exponent. Typical output
might be:

69.21 —13627.399
1841.3 1986.
—2.1 1.01

I-Type Conversion. Numbers printed by I-type conversion are printed
as integers. Typical output might be:

1421 2
—17 88
368 167

If the numbers in the above examples were input quantities the same
type conversions would be used for the input Format statements.

‘The conversion codes alone do not give sufficient information to
allow for the proper conversion of input or output data. Certain ad-
ditional information must be supplied to the conversion subroutines.
For input data the subroutine must be given the number of columns
(card, tape, or typewriter) reserved for the input variables. For instance,
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in one problem the first input variable may be punched in card columns
1-10, whereas in another problem the first input variable may be punched
in card columns 1-6 and the second variable may be punched in columns
8-15. For output data the subroutine must be given the number of
columns (card, tape, or typewriter) the programmer wishes to reserve
for the various output variables.

To supply this information the conversion codes when used in the
specification portion of the Format statement are used in the following
forms:

Iw
Ewd
Fw.d

where I, E, or F represent the types of conversion, and w represents the
field width including sign (if any) and decimal point (if any) for the con-
verted data, and d represents the number of places to the right of the
decimal point. Since d specifies the number of places to the right of
the decimal, the actual decimal point need not be punched or typed
on input data. The correct number of decimal places will be assigned
from the Format statement. The decimal point between the w and d
in the E and F specifications is required punctuation.

I Specifications Iw. When used as an output specification, w places are
reserved for the number. If the number of significant digits in the quantity
is less than the width specification, the number is right-justified in the out-
put field, and the left-most spaces are filled in with blanks. If the quantity
to be converted contains more than w digits, the high-order portion of
the number is lost. If the quantity is negative, the space preceding the
left-most digit will contain a minus sign. Included in the count w must
be a space for the sign.

The following examples show how each of the quantities on the left
is printed according to the indicated specifications.

INTERNAL SPECIFICATION PRINTED
613 14 b613
12 13 b12
9 13 bb9
0 13 bb0
—812 14 —812
-1 12 -1
8666 13 b66*
—10 12 —0*

6 12 b6

* Inaccurate due to insufficient specification.
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When used as an input specification, w columns are examined by the
subroutine for the input quantity. The number must be right-justified
within the input field.

If the input data is positive, it is not necessary to punch the plus sign.
If this item is not present, it is not included in the count w. If a positive
or negative sign is present, it is included in the count w. '

The following examples show the required specification for the input
quantities on the left.

InpuT DATA SPECIFICATION

b81 13

1421 14
—1421 15
—1421 14*

10 12

2 11

bb42 I4%*
081 13

+67 13

* Inaccurate due to insufficient specification.
** Notice that the number is right-justified within the input field.

F Specifications Fw.d. When used as an output specification, w places
are reserved for the number. If the number of decimal places in a
number to be converted exceeds d, the low-order positions are truncated.
If the number of places reserved for the decimal portion of the number
exceeds the number of decimal digits, low-order zeros are supplied.
If the number of places reserved for the integer portion of the quantity
is insufficient, the F specification is ignored and the number is placed on
the output medium in the E14.8 specification (see E conversion). If the
number of places reserved for the integer portion exceeds the number of
integer digits, high-order blanks are supplied. Included in the count w
must be a space for the decimal point and sign.

The following examples show how each of the quantities on the left
is printed according to the indicated specifications.

INTERNAL SPECIFICATION PRINTED

32.1 F8.4 b32.1000

—.9 F5.2 ° b—.90

—8. F5.1 b-8.0

18.67 F6.2 b18.67

9.17 F5.2 b9.17

—397.221 F8.3 —397.221
—86.221 F7.3 —86.221

12.1 F4.1 .12100000E+02

41.6745 F5.2 .41674500E+02
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When used as an input specification, w specifies the number of places
reserved for the input quantity including sign (if any) and decimal
point (if any). Because the number of decimal places are specified in
the d. part of the specification the actual decimal point need not be
punched or typed. The input quantity must be right-justified within
the input field.

The following examples show the required specification for the input
data on the left.

InpuT DATA SPECIFICATION
123.146 F7.3
—123.146 F7.3*%
b123.146 F8.3
+123.146 F8.3

—96.1 F5.1
8111.987532 F11.6

3987 F4.2 (39.87)
b123146 F7.3 (123.196)
1 F1.0 (1.0)
00 F2.1 (0.0)
bl5 F3.1 (1.5)
3100 F4.0 (3100.)

* Inaccurate due to insufficient specification.

E Specifications Ew.d. When used as an output specification, the field
width w includes four spaces for the exponent, one for the decimal point,
and one space that must be allowed for sign. The exponent is the power
of 10 to which the number must be raised to obtain its true value. The
exponent is written with an “E” followed by a minus sign if the exponent
is negative, or a plus sign is the exponent is positive, and two spaces for
the exponent. If the number of digits in the quantity exceeds the number
of places reserved, the low-order positions of the number are truncated.
If the number of digits in the number is less than the number of places
reserved, low-order zeros are supplied. If the specification is not large
enough, the program automatically converts to the E14.8 form.

The following examples show how each of the quantities on the left
is printed according to the indicated specifications.

INTERNAL SPECIFICATION PRINTED
—67.3211 E13.7 —.6732110E+4-02
982. E10.3 b9.820E-+02
—6.12 E10.3 —6.120E—00
.00000132 E10.3 b1.320E—06
—642.0068 Ell14 —6.4200E+-02
12345678. E10.0 b1234.E+04*

* Last digits of accuracy are lost due to insufficient specification.
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When used as an input specification w specifies the field width in-
cluding sign (if any), decimal point (if any) and exponent. The d
portion of the specification signifies how many decimal places there
are. Because of this the actual decimal point need not be punched or
typed.

The following examples show the required specification for the input
data on the left.

InpuT DATA SPECIFICATION
200.674E+13 E11.3
—2.98E—16 E9.2
+100.648E—16 E12.3
98.E+15 E7.0
101E+14 E7.1 (10.1 x 101#)

ADDITIONAL RULES FOR SPECIFYING FORMAT
The following rules permit variation in specifying Format:

1. If a decimal point is punched or typed in an input data field and its

position is different from that indicated in the Format statement, it

~ takes priority over the decimal as indicated in the Format statement.
The following examples illustrate this:

VALUE ASSIGNED TO

Input DATA SPECIFICATION INPUT VARIABLE
36.91 F5.1 36.91
900.1 F5.3 900.1
—1.6121 F7.1 . —1.6121
1.81 F4.2 1.81
16.1E+17 E8.2 16.1 x 1017

2. Field width greater than required may be specified in order to provide
for spacing. Thus, if a number is to be converted by I-type conver-
sion and the number is not expected to exceed five spaces including
sign, a specification of 110 will reserve five leading blanks. Similarly
with an input specification; assume that a floating point quantity is
punched in columns 5-13 of a card and the first four columns are
blank. The first four columns can be included in the w portion of
the Format specification. Thus if the card was punched as follows:

bbbb35645.983
the following Format statement would apply
6 FORMAT (F13.3)
A Format statement of the form

6 FORMAT (F9.3)
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would cause only the first nine columns to be examined and the
number 35.645 would be assigned the input variable.

. Successive specifications may be written in a single Format state-

ment by separating them with commas. Thus (12, E10.2) might be
used to convert two separate quantities, the first an integer and the
second a floating point quantity. The only limiting factor to the
number of successive specifications in a Format statement is the
permissible length of the Fortran statement which is 72 characters.
The following are all valid Format statements:

1 FORMAT (F64, F6.3, 12, E10.1)
2 FORMAT (11, 12, E18.6)
138 FORMAT (F10.2, F10.2, F10.2, F10.2, F10.2, F10.2)

Let us examine the Format statement numbered 1 above and consider
it as being used with the Read statement below

READ 1, X, Y, INDEX, POLY

Assuming a card input (the same applies for tape or typewriter
input) the first six card columns would be analyzed according to the
specification F6.4, the quantity would be converted to the internal
floating point form and assigned to the variable X. The quantity in
columns 7 through 12, inclusive, wonld be converted according to
specification F6.3 and assigned to the variable Y. The quantity in
card columns 13 and 14 would be converted according to specification
12 and assigned to the variable INDEX. Finally, the quantity in
columns 15 through 24 would be converted according to specification
E10.1 and assigned to the variable POLY.

Notice that in the example given the quantities had to be punched
in successive card columns. Assume that such was not the case but
that the card was designed in the following manner.

Cagrp CoLUMNS CONTENTS
1-5 blanks
6-11 X
12-14 blanks
15-20 Y
21-24 blanks
25-26 INDEX
' 27-29 blanks
30-39 POLY

The following Format statement could be used.

1 FORMAT (F11.4, F9.3, 16, E13.1)

Actually all that has been done is to make each field longer by
including leading blanks. Each quantity meets the requirement of
being right-justified within the field.
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If instead of blanks, the unused card columns had contained unused
data the above solution could not be applied, since by lengthening
the fields in the Format statement, the unused data would be included
and would change the values of the desired variables. To cope with
this situation a special conversion code is used to allow for the
skipping of columns. This is the X-type conversion and will be dis-
cussed in the next section.

4. The specifications in a Format statement must have correspondence
in mode with the items in the Input-output statement; integer quan-
tities require integer conversion, and floating point quantities require
floating point conversion. Thus, the following statements are com-
patible:

PRINT 2, A, B, I
2 FORMAT (F6.4, E10.2, 110)

The following statements are not compatible:

READ 1, A, DELT, I
1 FORMAT (F10.3, E14.2, F8.2)

The third variable in the I/0 list is a fixed point variable whereas
the third specification in the Format statement is for a floating point
variable.

5. Successive items in the I/O list are transmitted by successive cor-
responding specifications in the Format statement until all items in®
the list are transmitted. If there are more items in the I/0 list than
there are specifications, control transfers to the preceding left paren-
thesis of the Format statement. Thus parenthesis may be included
within a specification for the above purpose.

For example, suppose the following statements are written into a
program:
PRINT 10, A, B,C, D, E, F, G
10 FORMAT (F10.3, E12.4, F12.2),
then the following table shows the variable transmitted in the column
on the left, and the specification by which it is converted in the
column on the right.

VARIABLE TRANSMITTED SPECIFICATION
A F10.3
B El12.4
C F12.2
D F10.3
E El2.4
F F12.2
G F10.3

Suppose that in the above example the Format statement had been
10 FORMAT (F10.3, (E12.4,F12.2)).
Then the table would look as follows:
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VARIABLE TRANSMITTED SPECIFICATION
A F10.3
B E124
C F12.2
D El124
E F12.2
F El124
G F12.2

6. A comma is used to separate successive numeric specifications and to
avoid ambiguity. The comma is not necessary when the numeric
specifications are separated from one another by a special character
such as ( and /. The example given above

10 FORMAT(F10.3,(E12.4,F12.2))

could have been written as
10 FORMAT (F10.3(E12.4,F12.2))

7. It is permissible to omit the E on input data in the floating point
constant with exponent form if a plus or minus sign precedes the
exponent. Thus, the following forms are valid:

16.8-+03(16.8 x 10?)

18.1—02(18.1 x 10-2)
The omission of the E is permissible only on input data. It may not
be omitted in a Fortran statement. Thus, the state A=B*16.8403
is not valid; A = BX16.8E+03 is valid.

X-Type Conversion for Blank Fields. Blank characters may be provided
for output records or characters of an input record may be skipped by
means of the X-type specification.

The general form is wX where w is the number of blanks to be pro-
vided or the number of characters to be skipped. The w must be less
than or equal to 49 (w=49). When X-type conversion is used in a
specification, it need not be followed by a comma.

When the wX specification is used with an input record, w characters
are skipped over no matter what they are. For example, if a card has
numbers punched in columns 1-10, 13-15, and 20-30, the following
Fortran statements may be used.

READ 8, A, B, CDEL
8 FORMAT (F10.3, 2X13, 4XE11.2)

When the wX specification is used with an output record the number
of characters specified by w are left blank. As an example, suppose
that four fixed point integers with five blanks between each one are
to be punched. The following Fortran statements may be used.
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PUNCH 7, ID1, ID2, ID3, ID4
7 FORMAT (I8, 5XI8, 5XI5, 5XI8)
H-Type Conversion for Alphameric Fields. Alphameric fields may be
read in or used as output by using the H-type conversion. The specifica-
tion wH followed by w alphameric characters may be used in a Format
statement to provide for alphameric fields. The w must be less than
or equal to 49 (w =49). When H-type conversion is used in a specifica-
tion, it need not be followed by a comma.

The effect of the wH specification depends on whether it is being
used with an input or an output statement. If it is used with an input
statement, w characters are extracted from the input medium and re-
place the w characters included with the specification. If it is used
with an output statement the w characters following the specification
(or the w characters that replaced them as a result of input operations)
are written as part of the output record. If blanks are desired they are
included in the count w. If no list is associated with the 1/0O statement,
the comma after the Format statement number is not mandatory punc-
tuation.

Example

PRINT 11
11 FORMAT (21HMATRIXbMULTIPLICATION)

These statements would cause the following output to be printed:

MATRIX MULTIPLICATION

Example

READ 1
1 FORMAT (28Hbbbbbbbbbbbbbbbbbbbbbbbbbbbb)
PRINT 1

Assume the first card contained the following information in columns 1-28:

CONVEYORbCALCULATIONDbNO.b367

This information would be printed on the typewriter or punched in an output
card if the Print statement were replaced by a Punch statement.

Example

Suppose that in the above example instead of being punched in columns 1-28,
the information was punched in columns 5-33. To read the card and print
the information as before the following Fortran statements could be used.
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READ 1
1 FORMAT (4X28Hbbbbbbbbbbbbbbbbbbbbbbbbbbbb)
PRINT 1
Example
READ 1
1 FORMAT (7THRESULT=)
PRINT 1
Assume that the first card contained the following information in columns 1-7
1-7 362.111
The Print statement would cause the following to type out:
362.111

Specification for Muliirecord Format. The solidus (/) is used when
more than one printed line, punched card, or tape record is to be specified
in one Format statement. The / may cause any of the following, de-
pending on the I/0O statement it is used with: Another card may be
read, another card may be punched, another line may be printed, or
another tape record may be read or punched. Using the /, several one-
line Formats may be specified in one Format statement. A comma need
not follow a / when it is used in a Format specification.

Example
READ 3, A, B, 1
3 FORMAT (F8.2/E12.4/12)

Three cards would be read. The value of A would be taken from the first
card, B from the second card and I from the third card.

Example
PRINT 6, A, B, C, D, I
6 FORMAT (F6.2, E12.4/F8.2, F8.2, 5XI5)

This would cause two lines to be printed. A and B would be printed on the
first line according to specifications F6.2 and E12.4, respectively. The second
line would have C, D, and I according to specification F8.2, F8.2, I5, respectively.

Example

PRINT 193, X, Y, Z, W
193 FORMAT (2HX = F6.2, 5X2HY = F6.2, 5X2HZ = F6.2/5X2HW = F6.2)

The following printed lines might result.

X =121.11bbbbbY = 132.10bbbbbZ = b67.12
bbbbW = 982.11
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Example
READ 6, A, B
6 FORMAT (F6.2//F10.4)

The value of A will be read from the first card and the value of B will be
read from the third card. The second card will be read and ignored.

Example

READ 10, X, DELTA, I
10 FORMAT (5X3Hbbb6XF10.3, E14.4, 6XI4)

The values of X, DELTA, and I would be taken from one card in the following
card columns:

VARIABLE Carp CoLUMNSs
X 15-24
DELTA 25-38
I 45-48

The characters from columns 6-8 would replace the three blanks in the H
specification.

The following chart may prove helpful in analyzing the control of a
Format statement. The chart is read as follows: The left-hand column
indicates certain characters encountered in a Format statement. The
three right-hand columns indicate what functions take place when the
character in the left-hand column is sensed. The column labeled “Reset
for New Record” means to read or punch another card or tape record
or print another line depending on the I/O statement.

Go Back 1O LAST
InTERROGATE 1/O LEFT PARENTHESIS ;
CONVERSION LisT ror LasT IF MORE VARIABLES RESET FOR
TypPES VARIABLE N List NEw RECORD

) Yes Yes Yes

/ No No Yes
Numeric Yes No No
H and X No No No
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Note that both the right parenthesis and the solidus reset for a new
record, so that in the following example the variables A and B would
be printed on one line and the variables C and D on a second line.

PRINT 10, A, B, C, D
10 FORMAT (F62, F6.2)

In the following example each variable will be read from a different
card according to the specification E14.4

READ 63, A, DELTA, X, Y, Z
63 FORMAT (El14.4)

Pause Statement

General Form
PAUSE

Example
PAUSE

When a Pause statement is executed, the computer will halt in the
manual mode. Depressing the Start key on the console causes program

execution to continue. The operator may take advantage of the halt
to exercise manual control from the console,

Stop Statement

General Form
STOP

Example
STOP

When a Stop statement is executed, the computer halts in the manual
mode. The carriage on the typewriter returns and the word “stop”
types. Program execution cannot be continued by depressing the Start
key on the console. Depressing the Start key will repeat the sequence
given above.

PROCESSOR CONTROL OPERATION

End Statement

General Form
END
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Example
END

The End statement must be the last statement in a Fortran source pro-
gram. Itis a signal to the compiler that the final statement of the source
program has been received.

We now have all the tools at our command to write complete Fortran
programs. Two examples follow.

Example

Suppose that we have a large number of quadratic equations of the form
AX2 4+ BX 4+ C = 0 to solve. For each equation the values of A, B, and C are
punched in a card as follows:

Carp COLUMNS VARIABLE NAME ForMm
1-5 A XXX.XX
10-14 B XXX.XX
20-24 C XXX.XX

It is desired to print both roots of each equation along with the values of
A, B, and C. If the discriminant is negative, a message to this effect is to be
printed. Provisions should also be made to allow for typewriter entry of the
data. A program to accomplish the above is:

10 IF(SENSE SWITCH 1) 1, 2
1 READ 21, A, B, C
21 FORMAT (F5.2, 4XF5.2, 5XF5.2)
GO TO 6
2 ACCEPT 21, A, B, C
6 DISCR = Bx*2 — 4 XA%C
IF (DISCR) 7, 9, 9
9 DENOM = 2.%A
DISCR = DISCR**.5
ROOT1 = (—B + DISCR) /DENOM
ROOT2 = (—B — DISCR)/DENOM
PRINT 22, A, B, C, ROOT1,ROOT2
22 FORMAT (F6.2, 5XF6.2, 5XF6.2, 5XF7.2, 5XF7.2)
GO TO 10
7 PRINT 23, A, B, C
23 FORMAT (F6.2, 5XF6.2, 5XF6.2, 5X13HCOMPLEXbROOTS)
GO TO 10
END

Commentary

1. Format statements may be located anywhere in the program. They do not
have to immediately precede or follow the associated 1/0O statement.
2. More than one I/O statement may reference the same Format statement.
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3. By calculating DENOM = 2.%A, it was necessary to perform this calculation
just once.

Example

It is desired to prepare a table of the factorials of the numbers from 1 to 15.
The following Fortran program will prepare this table.

PN = 15.
8 SFACT=1.
A =PN
2 SFACT = SFACT*A
A=A-—-1.

IF (A—1)4,4,2
4 PRINT 271, PN, SFACT
271 FORMAT (F4.0, 10XE14.0)

PN =PN — 1.
IF (PN) 3, 10, 8
10 PRINT 17
17 FORMAT (16HPROGRAMbCOMPLETE)
3 STOP
END

SUBSCRIPTS AND SUBSCRIPTED VARIABLES

In many mathematical problems we find ourselves working with arrays
or matrices. In mathematical notation the elements of the array are
subscripted for ease of notation, Thus Aj;, might refer to the element
in the jth row and kth column. Fortran provides for the subscription of
variables. This facilitates the programming of many complex problems.?

Any variable (fixed or floating) can be made to represent any element
in a one or two dimensional array by appending to it a single or double
subscript. The variable is then a subscripted variable. The subscripts are
fixed point quantities whose values determine which element of the
array is being referred to.

SUBSCRIPTS

A subscript may be an expression in any one of the following forms:

1. An unsigned fixed point constant (for example, 3, 199, 81)

2. A fixed point variable (for example, I, JDEL, MON)

3. A fixed point variable = a fixed point constant (for example, I 4 2,
JDEL — 180)

No subscript may itself be subscripted.

2 All previous commentary referencing variables may be considered as accurate if
the words “subscripted variables” are substituted.
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SUBSCRIPTED VARIABLES

A subscripted variable is a fixed or floating point variable followed
by parentheses enclosing one or two subscripts, If two subscripts are
used, they are separated by a comma.

For each variable that is subscripted, the size of the array, that is, the
maximum values which the subscripts can attain, must be stated in a
Dimension statement (see below) preceding the first appearance of the
variable,

Example

A(I)

B(M + 4)

K (2)

AB(L])

Z(IDEN + 7, J + 3)

Problem

Identify the following as being a subscripted variable in a correct form or
incorrect form.

1. A(112) 7. TORQ (I + 3)
2. A(1L,7) 8. X (—3456)

3. FLOW (MAX) 9. Y (J*2)

4. TORQUE (MIN) 10. X1 (+2)

5. INC (I1+2, J+3) 11. DELT (FACT)
6. TORQ (I, J, K) 12. ABS (2—])

Dimension Statement

General Form
DIMENSION v, v, v...

where each v is a fixed or floating point variable subscripted with one or two
unsigned fixed point constants. Any number of v’s may be given in a Dimen-
sion statement.

Example

DIMENSION A(10), B(20, 25), XY(100)
DIMENSION A(3), I(10, 3), B(17)

The Dimension statement is used to specify to the Fortran compiler
how much storage is required for one and two dimensional arrays used
in the source program. Every subscripted variable appearing in the source
program must appear in a Dimension statement. If no subscripted vari-
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ables appear in the source program, the Dimension statement is not
necessary. One Dimension statement may be used to dimension any
number of arrays. The only limiting factor is the permissible length of
the Fortran statements. The programmer may find it convenient to place
all Dimension statements at the beginning of his Fortran program to
meet the requirement that a subscripted variable be listed in a Dimension
statement before it is encountered in the program.

Example :
DIMENSION A(5), B(2, 15), I(6, 6)

The Fortran compiler will reserve space for five values of A, 30 values of B,
and 36 values of I.

Note: Subscripts of variables in a Dimension statement must be unsigned
fixed point constants, not variables. Dimensioning for less than one element
in a one-dimensional array or two elements in a two-dimensional array is not
allowed.

To facilitate the programming of subscripted variables, the Fortran
language includes two additional statements—Do and Continue.

Do Statement

General Form
DO n i =m;, my, my

where n is a statement number, i is a nonsubscripted fixed point variable, and
my, My, My are each either an unsigned fixed point constant or a nonsubscripted
fixed points variable. If my is not stated, it is taken to be 1. Also 0 < m; = ..

Examples
DO 30 I=1, 10
DO 21 JOB=2, 18, 2

The Do statement is a command to “Repeatedly execute the state-
ments immediately following the Do statement, up to and including the
statement numbered n, first with i equal to m;, then with i incremented
by ms for each succeeding pass until the value of i equals or reaches the
highest quantity in the sequence without exceeding m,, and then to
execute the statement following statement n.”

A Do statement in which m; is not specified will assume m3 to be 1.
Thus, the first time the range of the Do is executed, i will be equal to m;,
subsequently i =m; + 1, i=m; + 2, ..., finally i = ms,.

The range of a Do statement is defined as “the set of statements which
will be executed repeatedly; it is the sequence of consecutive statements
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immediately following the Do, up to and including the statement num-
bered n. After the last execution of the range, the Do statement is said to
be satisfied. The index of a Do statement is the fixed point variable i,
which is controlled by the Do in such a way that its value begins at m,
and is increased each time by m; until it is about to exceed m,. Through-
out the range it is available for computation, either as an ordinary fixed
point variable or as the variable of a subscript.

As an example of a Do statement, consider the following program in
which control has reached statement 10:

10 DO111I=1,10
11 A(I) = B(I) + C(I)
12 i

The range of the Do is statement 11, and the index is I. The Do sets
I = 1 and control passes into the range. B(1) 4+ C(1) is computed and
stored in A(1). Now, since statement 11 is the last statement in the
range of the Do and the Do is unsatisfied, I is increased by 1 to 2 and
control returns to the beginning of the range, statement 11. B(2) + C(2)
is computed and stored in A(2). This continues until statement 11 has
been executed with I = 10. Since the Do statement is satisfied, control
passes to statement 12.

DO’'S WITHIN DO'S

One or more Do statements may be included within the range of an-
other Do statement. This is called nesting. There are, however, certain
rules which must be observed.

1. If the range of a Do statement includes another Do statement, all
statements in the range of the second statement must also be in the
range of the first Do. The following diagram illustrates this rule:

Permitted Violation of Rule 1
DO DO
[3]¢]
DO 5 DO

o
OI IO

DO

-

A set of DOs satisfying this rule is called a nest of DOs.
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2. No transfer of control by If or Go To statements is permitted into
the range of any Do statement from outside its range, since such
transfers would not permit the Do loop to be properly indexed. The
following diagram illustrates this rule:

Permitted Violations of Rule 2

DO DO ;
00 _ o

3. The range of a Do cannot end with a transfer statement; that is, the
statement numbered n cannot be a Go To or If type of statement.

4. The first statement in the range of a Do cannot be one of the follow-
ing type of statements: Dimension, Format, or Continue.

5. The execution of a nest of Do’s proceeds from the innermost Do to
the outmost Do in that order.

PRESERVATION OF INDEX VALUES

When control leaves the range of a Do statement by the Do becoming
satisfied (i = ms) and control passes to the next statement after the range,
the exit is said to be a “normal” exit. When a “normal” exit occurs, the
main value of the index (i) is lost and it may not be used unless it is
redefined.

If an exit occurs by a transfer out of the range, the current value of
the index remains available for any subsequent use. If the exit occurs
by a transfer which is in the ranges of several Do statements, the current
values of all the indices controlled by them are preserved for any sub-
sequent use,

RESTRICTION

Almost every type of calculation is permitted in the range of a Do
statement. Only one type of statement is not permitted, namely, any
statement which redefines the value of the index or of any of the indexing
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parameters. In other words, the indexing of a Do loop must be com-
pletely set before the range is entered.

Continue Statement

General Form
CONTINUE

Example
CONTINUE

Continue is a dummy statement which does not generate any instruc-
tions in the object program. Its major use is as the last statement in the
range of a Do to fill the requirement that the last statement in the range
of a Do cannot be a transfer statement. As an example of a program
that requires a Continue, consider the table search program:

10 DO 121 1=1, 100

11 IF(A —B(I)) 121, 23, 121
121 CONTINUE

20 i,

The Program will examine the 100-entry B table until it finds an entry
that equals A, whereupon it will exit to statement 23 with the successful
value of I available for fixed point use. If no entry in the table equals A,
a normal exit to statement 20 will occur.

The following are examples of Fortran programs utilizing Do statements
and subscripted variables.

Example

On page 189 a program was illustrated to sum the numbers from 1 to
1000, using an If statement to control the number of times through the loop.
The following program will develop the same sum using a Do statement to
control the loop.

SUM = 0.0

A=1.0

DO 3 I=1, 1000

SUM =SUM + A

3A=A+1

PUNCH 10, SUM
10 FORMAT (F10.0)

STOP

END
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Example (presented without commentary for your study)

X=-1.0

DO5I=1,21

Y = X&k3 4 3.0%X**2 — 4.0%X + 2.1

PRINT 2, X, Y
2 FORMAT (F4.1, 5XF8.3)
5X=X+.1

STOP

END

Example

Assume that 1000 numbers are punched one per card. The following pro-
gram will read in the numbers, sum the positive numbers, print the negative
numbers, and do nothing with zeros.

DIMENSION A (1000)
DO 1 I=1, 1000

1 READ 15, A(I)
SUM = 0.0
DO 4 I=1, 1000
IF (A(I))3, 4, 2

2 SUM = SUM + A(I)
GO TO 4

3 PRINT 15, A(I)

4 CONTINUE
PUNCH 16, SUM

15 FORMAT (F8.3)

16 FORMAT (F10.3)
STOP
END

Commentary

Notice the dimensioning of the subscripted variable. Note that all the A’s
are read into core storage first and then operated upon. Actually this is a
waste of storage space since the values of the variables are not needed once
they have been operated on. Rewrite the above example without using sub-
scripted variables.

Example
Given X, Y;, Z;fori=1,2,...,10 j=1,2,...,30
10 30
Compute PROD=( >~ ¢, ) (Y 2
i=1 i=1
Where:

Ci=X2 4+ Y, +2X, if X,>Y,
C;=0 if X,= Y,
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The 30 values of Z are punched five per card. There are ten cards with the
corresponding values of X and Y on the same card. Thus X; and Y; are on
the first card and X,, and Y,, are on the 10th card. The six Z cards follow.
The following Fortran program is a solution:

DIMENSION Z(5)
SUMC = 0.
DO 121=1, 10
READ 3, X, Y
3 FORMAT (F8.3, F8.3)
IF (X—Y) 9, 12, 11
9 SUMC = SUMC + X + Yk*2 + 2.%Y
GO TO 12
11 SUMC = SUMC + X**2 + 2.%X + Y
12 CONTINUE
SUMZ = 0.
‘DO 15 1=16
READ 4, Z(1),Z(2), Z(3), Z(4), Z(5)
DO 15 =15 ‘
15 SUMZ = SUMZ + Z(])
4 FORMAT (E14.4, E14.4, E14.4, E14.4, E14.4)
PROD = SUMZ*SUMC
PRINT 10, SUMC, SUMZ, PROD
10 FORMAT (El4.4, E14.4, E14.4)
STOP
END

FUNCTIONS

Frequently in programs it becomes necessary to calculate the sine or
cosine of an angle or to take the natural logarithm of a number. Fortran
has incorporated in it the necessary subroutines to calculate some of the
more commonly required functions. It is possible in Fortran to do the
following: calculate the sine of an angle, the cosine of an angle, the
square root of a number, the natural logarithm of a number, the arc-
tangent of a number, and to raise e to a power.

General Form

The name of the function being used must be written as represented below
with the function name followed by the argument enclosed in parenthesis. The
argument must be a floating point variable or constant. The argument may be
an expression and, if desired, may contain another function. Should the
argument be a floating point variable it may be subscripted. A function may
be the argument of a function.
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ALrLowaBLE Funcrion Names3

SIN (X) meaning sine of x (x in radians)
COS (X) meaning cosine of x (x in radians)
LOG (X) meaning log,x

EXP(X) meaning e®

SQRT (X) meaning the square root of x
ATAN (X) meaning the tan—1x

Examples
COS(B)

SQRT (A%B — C)
LOGF (SIN(A))

ATAN(A(L J))
SIN(B(I) 4+ 2.)

For each of the functions shown, there exists a subroutine within the
Fortran system that computes the function of the argument enclosed
in parenthesis. These subroutines will be compiled into the object pro-
gram automatically when called for by a statement containing a function.

Functions may be used in any arithmetic expression.

Examples

A = COS(DELTA) + 6.%X

IF (LOG(FIN) + SQRT(A + B))1, 2, 2
XCOOR = (SIN(R) + COS(S)) /2.

BA = EXP(T(I+ 2)) + X**2.

COMMENT STATEMENT

Any statement whose first three characters are the letter “C” followed
by two blanks is interpreted as a comment and does not affect the pro-
cessing. Such comments are particularly helpful if one returns to a
program after a prolonged period of inactivity.

Example
CbbTHIS PROGRAM CALCULATES ....

ADVANCED PROGRAMMING EXAMPLES

Example

In this example, a program is required to determine the current in an
alternating-current circuit consisting of a resistance, an inductance, and a
capacitance, having been given a number of sets of values of resistance, induc-
tance, and frequency. The current is to be determined for a number of
equally spaced values of the capacitance (which lie between specified limits
which are input data) for voltages of 1.0, 1.5, 2.0, 2.5, and 3.0 volts.

3 An allowable alternate name for any of the functions listed above is the permis-

sible form of the name with a terminal “F” added. Thus, SINF, COSF, LOGEF,
EXPF, SQRTF and ATANF are permissable.
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The equation for determining the current flowing through such a circuit is
E

V |
R2+[21rFL—— ]

27 FC

i =

where i = current, amperes
E = voltage, volts
R = resistance, ohms
L = inductance, henrys
C = capacitance, farads
F = frequency, cycles per second
- = 3.1416

The Fortran program could be written as follows:

1 FORMAT (F8.2, F10.2, F8.2)

2 FORMAT (F6.2, F8.2)

3 FORMAT (F8.2)

10 READ 1, OHM, FREQ, HENRY

11 READ 2, FRD1, FRDMX

12 VOLT = 1.0

15 FARAD = FRD1

14 PUNCH 3, VOLT

16 AMP = VOLT/SQRTF (OHM**2 + (6.2832xFREQ*HENRY
— 1./(6.2832XFREQXFARAD) ) **2)

17 PUNCH 2, FARAD, AMP

18 IF (FARAD — FRDMX) 19, 21, 21

19 FARAD = FARAD + .00000001

20 GO TO 16

21 IF (VOLT — 3.0) 22, 10, 10

22 VOLT = VOLT + 0.5

23 GO TO 15

24 END

Commentary

Statement 10 causes the values of the resistance, the frequency, and the
inductance to be read from the first card, and statement 11 causes the initial
and final values of the capacitance to be read from the next card. The initial
value of the voltage is introduced and punched (statements 12 and 14). State-
ment 15 causes the initial value of the capacitance to replace the current
value of the capacitance (denoted as FARAD). The actual calculation, together
with the current value of the capacitance, is then punched (statement 17).

The current value of the capacitance is compared with the final value to
determine whether or not all values have been investigated (statement 18).
If not, the expression is negative and the program proceeds to statement 19,
which causes the value of the capacitance to be increased by the given incre-
ment. This is followed by a transfer (statement 20) to statement 16 which
causes the calculation to be repeated for the new value of the capacitance. If
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the ‘expression in statement 18 is zero or positive, all values of the capacitance
have been investigated and the program transfers to statement 21.

At this point the value of the voltage is compared with the upper bound
to determine whether or not all specified values of the voltage have been used.
If not, the expression in statement 21 is negative and the program proceeds
to statement 22 which causes the value of the voltage to be increased. Follow-
ing this, a transfer (statement 23) is made to statement 15, causing the new
value of the voltage to be punched; and the entire process of investigating all
values of the capacitance is begun again. If all values of the voltage have
been used (the expression in statement 21 is zero or positive), the calculations
for the current set of values of resistance, frequency, and inductance are
finished. The program is returned to statement 10 so that the two cards
defining the next case may be read and the program repeated. This process is
repeated until all of the cases have been considered, that is, all of the cards
have been read.

Example

The following is an example of a Fortran program to do matrix multiplication
for matrices of a maximum size of 15 by 15. Assume that the elements are
punched one per card by rows.

Given a matrix A with dimensions N X L, and the matrix B with dimensions
L XM the resultant product matrix C will be of size N X M.

To compute any element C,;, select the i row of A and the j column of B,
and sum the products of their corresponding elements. The general formula
for this computation is

l
Cu = Z AikBkj
k=1

DIMENSION A (15, 15), B(15, 15), C(15, 15)

10 FORMAT (12, 12, 12)

11 FORMAT (F8.2)

12 FORMAT (14, 14, F8.2)
READ 10, L, N, M

DO11=1, N
DO1J=11L

1 READ 11, A(L, J)
DO 21I=1,L
DO 2J=1 M

2 READ 11, B(L, J)
DO 4I=1, N
DO4J=1,M
C(L J) = 0.0

DO 20 K=1, L
20 C(L J) =C(I, J) + A(L, K) * B(K, J)
4 PRINT 12, L, J, C(L J)

STOP

END
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Example

The following Fortran program will sort up to 300 floating point numbers
into ascending sequence. The exchange method of sorting is used. The
numbers are punched one per card in columns 1-8. A header card is read in
first; in columns 1-3 of this card is the number of numbers to be sorted. In
the exchange method of sorting the first two numbers are compared. If the
first number is greater than the second they are interchanged. If the second
number is greater than the first the procedure continues with no interchange.
The second and third numbers are then compared and if the second number is
greater, they are interchanged. This process continues until finally the last
number and the preceding one are compared. At this time the largest number
will be at the end of the list of numbers in its proper place. The process is
then repeated starting with the first number. At the completion of this second
pass the next largest number will be in its proper place. Thus if N is the
number of numbers a maximum of N-1 passes are required to put them in
ascending sequence.

If the following items are noted the time required for the complete sort may
be reduced.

1. The numbers are in sequence when no interchange has occurred in a
complete pass.

2. During a pass all the numbers beyond the last interchange are in
sequence. Thus if 100 numbers are being sorted and on the first past
the last interchange is made between the 79th and 80th numbers in
the list, on the next pass and numbers beyond the 78th and 79th
need not be compared since they will be in the proper sequence.

Cbb FORTRAN SORT PROGRAM-EXCHANGE METHOD
DIMENSION A (300)
1 FORMAT (I3)
7 FORMAT (F8.2)
11 FORMAT (F8.2, F8.2)

36 SUM = 0.0
SUM1 = 0.0
IND =0

READ 1, KOUNT
DO 21=1, KOUNT
READ 7, A(I)
2 SUM = SUM + A(I)
Cbb THIS IS A CHECK TOTAL TO BE COMPARED WITH
Cbb A TOTAL TAKEN AT THE END OF THE PROGRAM
INDEX = KOUNT — 1
3 DO 5 I =1, INDEX
IF (A(I+1) —A(1))8, 5, 5
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6 SAVE=A(I+1)
A(I+1) =A(I)
A(I) = SAVE
IHOLD =1
IND=1
5 CONTINUE
IF (IND) 9, 8, 9
9 INDEX = IHOLD
IND =0
GO TO 3
8 DO 41 =1, KOUNT
SUMI = SUMI + A(I)
Cbb THIS IS THE SECOND CHECK TOTAL DEVELOPED
4 PRINT 7, A(I)
PRINT 11, SUM, SUMI1
GO TO 36
END

GENERAL INFORMATION

1.
2.

3.

Statements may be punched anywhere in card or tape.

Source statements may not exceed 72 characters including blanks and
statement numbers.

An E/L must be the last character of every Fortran statement in the
tape system and is included in the 72 character count.

The card system does not require the record mark as a terminating
character of the statement, but the presence of such a character does
not affect the processing.

The programmer may utilize the last 8 columns of the card for any
identifying information he wishes. This will not affect the processing.
Object time input records may not exceed 72 characters. Object time
output records may not exceed 72 characters except for typewriter
records which may not exceed 87 characters.
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Problems

SECTION 1. BASIC MACHINE LANGUAGE PROBLEMS

All problems in this section may be attempted with a knowledge of
machine language coding only. Unless otherwise stated, input data is
assumed to be flagged at the high-order position and, if negative, at the
low-order position. A 20,000-core-position machine with card and paper
tape I/0 devices is assumed. Other than these features no other equip-
ment is available. A record mark is assumed to be in position 00400 if
needed. Programs may begin at any even location above 00400. Any
assumptions needed for proper solution of the problems are valid.

1.1 Five positive unflagged 4-digit integers are punched in paper tape. They
are separated by E/L characters and an E/L character follows the fifth
and last item. Construct a program to generate and print the product
of the five numbers.

1.2 Assume that the data in the previous problem is punched in columns 1-4
of five separate cards. Construct a program to type the product of the
five numbers. Data is unflagged.

1.3 Five positive unflagged 4-digit integers are punched in one record on
paper tape. Following the last item there is an E/L character. There are
no blanks separating the data. It may be considered as a 20-digit number
Generate and type the product of the five numbers.

1.4 A single card is punched with five unflagged 4-digit numbers as follows:

XXXX Columns 1-4

XXXX Columns 7-10
XXXX Columns 15-18
XXXX Columns 26-29
XXXX Columns 75-78

Generate and type the product of the five numbers.
221
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1.5

1.6

1.7

1.8

1.9

1.10

Problems

N cards are punched with the following information:
' A (XXX.XX) Columns 1-5
B (.XXXX) Columns 6-9
C(X.XX) Columns 10-12
D(XX.) Columns 13-14

Decimal points are not punched in the cards. Thus a number of the form
A may be 35.6 and will be punched as 03560. The range of the numbers
is as follows:
—999.99 = A = 999.99
—.9999 = B = .9999
—9.99=C=9.99
—99. =D =99,

For each input card type a single line of output information which con-
sists of A, B, C, D and SUM, where

SUM=A+B+C+D.

Calculate SUM to two decimal places and round the result to one decimal.
Terminate the program after processing the last card.

N cards are in the read hopper of the 1622. Write a program to type N
(N =500). High-order zeros are not to be typed. Thus if 23 cards are
in the read hopper, the result appears as 23, not as 023.

N records are on paper tape. Each record is 5 characters long (4 digits
and one E/L character), except for the last, which is 6 characters long
(4 digits, one record mark, and one E/L character). Write a program
totype N (N = 8500). High-order zeros are not to be typed as part of
the result. '

Five 10-digit numbers are on paper tape, separated by E/L characters.
An E/L character follows the fifth and last element. Write a program to
sort the data in increasing order and punch it into paper tape. The output
tape is to consist of the sorted data separated by E/L characters and
an E/L character is to follow the fifth and last element. No two elements
are equal and the data are not necessarily all of the same sign.

N cards each contain a single 2-digit number X; (XX.) punched in col-
umns 14-15. Generate coding to calculate and print the following:
N
N and ) X,
i=1
where N = 9999 and 3 X; = 99999.

This problem is identical with the previous one, with the following two
exceptions:

1. The first card has a 4-digit number P (P = 9999) punched in col-
umns 2-5.
2. There are P + 1 cards.
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SECTION 2. MACROLESS SYMBOLIC CODING

All problems in this section may be attempted with a knowledge of
SPS coding. Macro-instructions are not employed. For all problems,
assume a 20,000-core-position 1620 with card and paper tape I/0.
You may assume any alternate attachments, at the instructor’s discretion.
Any assumptions for the proper solution of these problems are valid.
Unless otherwise stated, all data is assumed to be flagged on the input
medium.

2.1 A, B, and C are on paper tape separated by E/L characters, and an
E/L character lies after the third and last element.

A(XXX.) = 300
B(XXX.) = 400
C(XXX.) = 200

Generate the coding for G=A+ B —C
(—500 = G =900)

If G> O, print G and halt.

If G=0, print A, B, C, G, and halt.

If GO, print G, A, B, C, and halt.
Do not print high-order zeros for any data.

2.2 Six cards are in the read hopper of the 1622.

Card 1: N(X.)—Column 1

Card 2: A(XXX.)—Columns 1-3
Card 3: B(XXX.)—Columns 1-3
Card 4: C(XXXX.)—Columns 1-4
Card 5: D(XX.)—Columns 1-2
Card 6: E(XXX.)—Columns 1-3

If N =1, calculate and print Y where
Y=A+4+B+C+ D+ E (Y=09999)

If N = 2, calculate and print Y where
Y=A+*B+*Ce+*D-+E (Y=299999999)

If N = 8, calculate and print Y where
Y=C—-—A—-B—D—E (Y=9999)

If N >3, print N and the following error message:

INCORRECT CODE IN FIRST CARD

2.3 On tape, in a single record, are A; (i =1,100). A; =999 for all i. An
E/L character follows Ao, Each A; is three characters. Calculate and
print:

100

3 A

i=1
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2.4 On 510 cards, A;, B; (i = 1,510).

Each A;, B; occupies a single card.
A;: Columns 1-3 (4, = 800)
B;: Columns 5-8 (B,;=9000)

Generate 510 cards such that:

A;: Columns 5-7
B;: Columns 1-4
C;: Columns 75-78 (C = 5000)*

where C; = A; + B;

2.5 This problem is identical with the previous one with the following three
exceptions:

1. There are N (= 5000) cards.

2. i=1, N

3. After producing the N-th card, punch an (N + 1)st card with N in
columns 77-80.

2.6 There are two records on paper tape.
The first consists of A; (i = 1,75).

The second consists of B; (j = 1,38).

A; (XX.) =99
B, (XXX.) = 999

Calculate and print:

38

75

Z AB;  (=99999999)
i=1
i=1

An E/L character separates the two records and an E/L character termi-

* In many computer problems, the theoretical final result does not agree with the
actual final result. In this case it seems that C; might obtain a maximum value of
9800. A comparison might be made to a payroll operation where an employer has
100 employees, and each makes a maximum of $100 per week. This does not
necessarily imply that the employer must have $10,000 ready to meet his payroll.
Previous experience has told him that his payroll has never exceeded $5,000 in any
one week, even though it is theoretically possible for it to be twice as high. This is
one of the great problems in fixed point arithmetic: extremely tight bounds on all
input data must be known, and checks are generally established along the program’s
path to assure that all data stay within these bounds. Determining the historical
background of a data processing or scientific problem can often take much longer
than the actual program construction.
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nates the second record. The first record is 151 characters in length.
The second record is 115 characters in length.

2.7 On tape there are six records.

2.8

2.9

1, M. Each A; = 999.)

B; (j=1, N. EachB,;=99.)

Record 1: M (2 digits)
Record 2: N (2 digits)
Record 3: P (2 digits)
Record 4: A; (i=
Record 5:

Record 6:

Calculate and print:

»‘v -~
R

[

C, (k=1, P. EachC, =99.)

AB,C, (= 1010)

The count of the number of digits in each record given above does not
include the E/L character. Therefore, Record 1 is 3 characters long,

and so forth.

Analyze and comment on the following program. Give a timing estimate

at the object level.

LINE
s

0,

012.0

030}

BNV,

Qisi0f 1

LABEL T10N| OPERANOS & REMARKS
s npe 10 20 23
ol i 402, . .

TFM |COUNT, ol
AM , [COUNT, 1 P |

0:8:0

=12, 0

TN ST S

H
[0S, .

9.6.0

W

_l0EN

01740

a8.00 0 4 140

START, , ., .\ .

e

15

One hundred cards are in the read hopper of the 1622. Each card has a
4-digit number punched in columns 1-4. There is a record mark in
column 80 of each card. Reproduce this deck in ascending, sorted order.

No data is necessarily unique.
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2.10 Write a program to generate and print the following:

0000 1100
0001 1101
0011 1111
0010 1110
0110 1010
0111 _ 1011
0101 1001
0100 1000

The above binary-type coding is to be generated through the use of
iterative coding, not through the use of 16 DC statements.

2.11 Generate and print the following:

0123456789
1234567890
2345678901
3456789012
4567890123
5678901234
6789012345
7890123456
8901234567
9012345678

Similarly, do not use 10 DC statements, but rather iterative coding.

SECTION 3. FULL SYMBOLIC CODING WITH
MACRO-INSTRUCTIONS

All problems in this section may be attempted with a knowledge of full
symbolic coding. For all problems, assume a 20,000-core-position 1620
with card and paper tape I/0. You may assume any alternate attach-
ments, at the instructor’s discretion. Any assumptions for the proper
solution of these problems are valid. Unless otherwise stated, all data
is assumed to be flagged on the input medium. All problems done
in floating point assume a 10-digit floating point word. With adequate
modifications of the statement of the problem, any floating point word
size may be assumed.

3.1 N cards are in the read hopper of the 1622. Each card contains three
floating point numbers punched as follows:

A: 1-10

B: 11-20
C: 21-30
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3.2

3.3

For each input card punch a single output card with the following
information:

A:  1-10

B: 11-20

C: 21-30

X;: 31-40
X,: 41-50
Blank: 51-80

where X; and Xj are the solutions to the quadratic system:
AX24+BX+C=0

If the discriminant of the quadratic is negative, punch the following
information to avoid complex roots:

A:  1-10
B: 11-20
C: 21-30

Discriminant: 31-40 (B2 — 4AC)
Blanks: 41-80

Given a matrix A,,, punched in cards by rows, where each element of
the matrix is a floating point word and each card contains a maximum of
8 words. This matrix has 9 rows and 7 columns. Calculate a matrix
B,., where:

1. blj—a]j j=117)
2. byj=ay; (j=1,17)
3. by=a, (i=2,9)
4. by=ay; (i=2,9)
5. by="Ya; _1,j+ Yaa; 1,5+ Yaa,; 1+ Yaay; 4
for i=2,8
i=2,6

The B,,, matrix is developed by -superimposing itself on the A,,, matrix.
At the conclusion of the program, the A,,, matrix has been overlain
completely. Punch the resultant matrix on cards packed 8 words per
card, except for the last card which is blank in the last 10 columns.

This problem is identical with the previous one, with the following
exceptions:

1. Preceding the matrix is a single card with the following
information:
(a) Columns 1-2: m (XX) =40
(b) Columns 3-4: n (XX) =40

2. m and n are not necessarily equal.
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3.4

3.5

3.6

Problems

Calculate the matrix B,,, where:

b]j:a]j (j=1n)
bmi:ami (j: ]-, n)
by=ay, (i=2m)
binzain (z:2,m)
by ="Ya; _1,;+ Ya; , 1,; + Yaa,; _ 1+ Yaa,; 4
for i=2,m—1
i=2 n—1

S

Calculate and print the following tabulation with alphabetic headings.
All calculation and all output is in floating point form.

X (RADIANS) SIN(X) COS (X)
where:
0=X=21
AX = .0001 radians

A 2-digit record (XX = 40) is terminated by an E/L character on paper
tape. A second record consists of the upper half of a square symmetrical
matrix: (by rows)

Q11012 .+« . Qyjloalsy . . - Goilzg . . . A3j . . . Gjj
where a;; = a;;.
i(i+1)

2
elements, each one of which is a floating point number. The first record
is j. The second record is terminated by an E/L character.
Generate and punch the complete square symmetrical matrix from the
information given about the upper half. Data are to be punched in
paper tape in a single record. The complete matrix is to be punched
as follows:

The second record consists of

ay1Qyo . . . A1j021020023 - . « Agj« -« aj1Gjs .« Qj;

Thus, if § = 3, the input information is:
ay; Qg2 4g3
11012013022023033
Q22 Qo3

as3
and the output information is:
) 11 Q12 G313
11012013021022023031032033
A21 Gh2 Qo3

gy A3z a33

Assume a machine without divide hardware for the following problem.
Tabulate a list of X and 1/X for 1 = X = 1000 with AX = 1. Calculate
all reciprocals to three decimals. Use fixed point arithmetic.
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3.7

3.8

3.9

3.10

1/X
1000
500
333
250

A Do

1000 001

Evaluate and print X and F (X) for the following polynomial:

F(X) = 2.7X7 + 3.2X6 — 2.1X5 + X* + 3X® — 2X2 + X + 17
0=X=10 AX=.1

Hint: Nest the polynomial as follows:
(... (27X +32)X—-21)X+... )X+ 17

All calculation and output is to be done in floating point form, with the
following tabulation:

X F(X)

Write a program to generate \/ @ using the Newtonian method of succes-
sive approximation:

Xp+1= Y (x, + a/x,)

where x,, | is the (n + 1)st approximation to Va.
Calculate and print all @ and \/a for 1 =a = 1000 with A a = 1.0. Do
not use the square root macro. Do all arithmetic in floating point.

Construct a generalized float routine with input from paper tape and each
number is separated from the next by an E/L character. Punch the floated
data on tape in the same form (separated by E/L characters). Data may
be signed or unsigned with a maximum of 8 decimal digits. A decimal
point is always present. Thus a maximum record is 11 characters, in-
cluding E/L character. A minimum record is 3 characters, including E/L
character. The desired output record for each input record is the input
number expressed in floating point form. Input data is not flagged,
namely.

123.4E/L—.001E/L75.9832E/L.1E/L . . .

1234000003E /L1000000002E, /L7598320002E /L.1000000000E /L . . .

Construct a generalized fix routine with input from paper tape in a
fashion identical with the output of the previous problem. Positive data
are to be printed unsigned, and negative data are to be printed with
sign. The range of the characteristic of the floating point number will
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not exceed 07 or be less than 07. Print the number with decimal point
and 8 digits, namely:

1234000003 yields 123.40000
1000000002 yields —.00100000
7598320002 yields 75.983200
9999999907 yields 9999999.9
1234567807 yields .00000001

SECTION 4. FORTRAN PROBLEMS

All problems in this section may be attempted with a knowledge of
basic 1620 Fortran.

4.1 Any centesimal year not divisible by 400 is not a leap year. Type a list
of all leap years from the year 1599 to the present year. If the present
year is a leap year, include it in the list.

4.2 Calculate and print the following tabulations with alphabetic headings.
X(RADIANS) SIN(X) COS(X)
for 0=X=2 and AX=.001 radians.

4.3 Assume typewriter input for all necessary parameters. Design a Fortran
program to evaluate

B ,
/Ln(x)dx
A
by Simpson’s rule.!
A+nh=B »
/ F(x)dx = B3 (F(x0) + 4 (xy) + 2 (xa) + 4 (xa) + 2 (x)+ - .
A .
+2f (%5.9) + 4f (x5.1) +f(%4))
where
L ox+h=2 4,

2. A:xo
8. B=A+nh=x,

1 For a complete discussion of numerical integration see:
(a) Milne, W. E., Numerical Calculus. Prmceton, N. J.: Princeton University
Press, 1949 pp. 100-200. i
(b) Hildebrand, F. B., Introduction to Numerical Analysis. New York: McGraw-
Hill Pubhshmg Company, Inc., 1956. pp. 64-84.
(c) Scarborough, J. B., Numerical Mathematwal Analysis. Baltlmore, Md The
" Johns Hopkins Press, 1958. pp. 131-167.
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4.4 Design a Fortran program to perform the numerical integration of the
preceding problem employing Weddle’s rule.2

A+nh=B

f(x)dx = 3h/10 < Zkf(x,.)>
i=0
A

wherek=1,5,1,6,1,5,2,5,1,6,1,5,2,...,1

4.5 Design a Fortran program to perform the same numerical integration as
the previous two problems, employing Gauss’ Quadrature formula.?

B
/f(x)dx= (B — A) (Rug (u13) + R (uz) + . . + Rogp (1))
A

using the transformations

x=(B—Au+a+b
2

y—f(x) =f((B—A)u+a+Db)=¢(u)
2

4.6 Write a Fortran program to generate \/a using the Newtonian method of
successive approximation:

Xp +1— l/z(xn+a/xn)

where x,, , ; is the (n + 1)st approximation to Va. Calculate and print
all @ and /a for 1 = a = 1000 with Aa = 1.0. Do not use the Fortran sub-
routine SQRT or SQRTF.

4.7 Examine the following Fortran program for error. It is designed to yield
two roots of a quadratic if the discriminant is positive and not zero.
If the discriminant is zero, it types one value for the double root. If
the discriminant is negative an unconditional halt is obtained.

6 READ 1, A, B, C
1 FORMAT (F8.2)
5 FORMAT (F8.4)
X = BhX2 — 4. XAXC
IF (X) 2,8, 4
2 STOP

2 Ibid.

3 Ibid.

* For values of R and u for extensive n see Scarborough, pp. 148-149. For the
most extensive tables of Gauss coefficients ever published, see “Tables of the Zeros
of the Legendre Polynomials of Order 1-16 and the Weight Coefficients for Gauss’
Mechanical Quadrature Formula,” by A. N. Lowan, Norman Davids and Arthur
Levinson, in Bulletin of the American Mathematical Society, vol. 48, no. 10, October
1942, pp. 789-743.
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4.8

4.9

Problems

3 X = —B/2.%A
PRINT 5, X
GO TO 6

4 ROOT 1 = (—
ROOT 2 = (—
PRINT 5, ROO
GO TO 6

There are I+J+K++1 cards in the read hopper of the 1620.

The I cards have a; (I =10)

The J cards have b; (J =15)

The K cards have ¢;, (K=17)

The first card in the sequence has I, J, K punched in colunms 1-2, 3-4,
5-6 respectively. All a;, b;, ¢; are of the form = XXX.XXX and are
punched, one per card, in columns 1-8 of the I+J+K cards. Calculate
and print:

—B + SQRT(X))/2.%A
B — SQRT(X))/2.%A
T 1, ROOT 2

abic;,

..MN&N

i
et

1

k
Generate a Fortran program to construct a matrix a; where a; =
1/(i+j+ 1). Parameters i and j may be entered into the system in any
fashion.

1=i=30;1=;=230

4.10 Calculate one root of the following polynomial using a technique of exam-

ination of sign changes of f(x).
—ox3 4522 4+5x—6=0

All roots lie between —3 and 1 inclusive.
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Additional Instructions

The three instructions discussed in this chapter are not considered as
part of the standard 1620 hardware and therefore are not included among
the 1620 basic instructions.

The Move Flag, Transfer Numerical Strip, and Transfer Numerical Fill
instructions are extremely useful where it is necessary to read and write
all data in the alphameric mode.

Instruction: Move Flag
Operation Code: 71
Symbolic Name: MF
Description:

The flag bit at the core storage position specified by the Q address is
transmitted to the core storage position specified by the P address. If the
core position specified by the Q address contains a flag, a flag is placed
at the core position specified by the P address and the flag at the Q
address is cleared. If no flag is present at the Q address, the flag at the
core position specified by the P address is cleared. The digits at the P
and Q addresses are not altered.

Execution Time in Microseconds: 240 (constant)
233
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Example:

Example:

Example:

Example:

Example:

71 19000 00409

2. - ]
Core location 19000
before Move Flag

2

I
Core location 19000
after Move Flag

71 15000 16000

3

|
Core location 15000
before Move Flag

3

Core location 15000
after Move Flag

71 13876 14998

8

Core location 13876
before Move Flag

8

Core location 13876
after Move Flag

71 18810 16950

5

Core location 13810
before Move Flag

5

Core location 13810
after Move Flag

71 12998 13000
004169

Core location 13003
before Move Flag

004169 -

Core location 13003
after Move Flag

Additional Instructions

0

|
Core location 00409 before
Move Flag

0

1
Core location 00409 after
Move Flag

7

|
Core location 16000 before
Move Flag

7 l
Core location 16000 after
Move Flag

5

B
Core location 14998 before
Move Flag

5

Core location 14998 after
Move Flag

4

—
Core location 16950 before
Move Flag

4

|
Core location 16950 after
Move Flag
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The preceding example shows how a Move Flag instruction is used to
lengthen a field.

The Transfer Numerical Strip and Transfer Numerical Fill instructions
facilitate programming where all input and output is in the double-
digit alphameric code. They greatly simplify the conversion of the
double-digit representation of numerical data to single-digit coding re-
quired for use in arithmetic operations, and the reconversion to double-
digit coding for alphameric output.

During the discussion of these two instructions the terms “P field” and
“alphameric field” will be used. Though technically the term “field” is
incorrect because, as will be discussed, no field-defining flag is necessary,
the terms will be used to avoid a repetitive verbose description of the
areas referenced. The terms “P field” and “alphameric field” used inter-
changeably will refer to the core position specified by the P address and
all contiguous lower numbered core p051t10ns which contain data used
by the 1nstruct10n

The symbol D will be used to represent the number of digits in the
“P field” as described above.

Instruction: Transfer Numerical Strip
Operation Code: 72

Symbolic Name: TNS

Description:

This instruction converts double-digit alphameric data into single-digit
numerical data with sign. The units position of the alphameric field is
specified by the P address of the instruction and must always be an odd-
numbered core location. The units position of the numerical field is
specified by the Q address. The digits in the odd-numbered core storage
locations of the alphameric field (P field) are transmitted without change
to the adjacent positions of the numerical field.

Transmission of data proceeds from the position addressed, through
successively lower numbered core storage locations, until a flag is sensed
in the numerical field in other than the units position. The flag must be
placed in the numerical field prior to the Transfer Numerical Strip in-
struction to define the high-order position. It remains unchanged by the
instruction. Except for the field-defining flag, all previous contents of the
numerical field are erased by the new contents. The erasure includes the
units position sign flag that designates a previous negative value. The
alphameric field remains unchanged.

The zone digits in the even-numbered core storage locations of the
alphameric field are ignored except for a 5, 2, or a 1 in the units zone
position. A 5 in a units zone position of an alphamerically coded numeri-
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cal field indicates a negative number read from an input card, a paper
tape, or a typewriter. A 2 in a units zone position occurs when an X
alone, representing a negative zero, is read from input card or paper tape.
A 1 occurs when a negative zero (X,0) is read from paper tape. A 5, a
2, or a 1 in the units zone position is converted by the Transfer Numerical
Strip instruction to a flag which is placed over the units digit of the
numerical field. Any number other than a 5, 2, or 1 results in no flag
over the units digit.

Flags in the even-numbered zone positions of the alphameric field are
ignored. However, flags present in the odd-numbered core locations of
the alphameric field are transmitted with the digit to the corresponding
positions of the numerical field. Because such flags, when transmitted,
may effect the length or sign of the numerical field, all flags in the odd-
numbered core positions of the alphameric field should be cleared by
instructions at the beginning of the program. Such extraneous flags may
be the result of the previous use of the core storage locations or the fact
that the Read Alphamerically instruction does not destroy any flags
which are in core.

Note carefully that the TNS instruction transmits data from the P-
address location to the Q-address location. This is directly opposite to
the general philosophy of all other 1620 instructions.

Execution Time in Microseconds: 160 + 40Dp,
Example: 72 16235 17464

71727354 RS 7890

Core location 16235 Core location 17464 before
before and after Transmit Numerical Strip
Transmit Numerical Strip

1234
Core location 17464 after
Transmit Numerical Strip

Execution Time: 480 microseconds

Example: 72 09813 09000

787379757176 ~——

Core location 09813
before and after
Transmit Numerical Strip

Execution Time: 560 microseconds

21300
Core location 09000 before
Transmit Numerical Strip

39316
Core location 08000 after
Transmit Numerical Strip
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Instruction: Transfer Numerical Fill
Operation Code: 73

Symbolic Name: TNF

Description:

This instruction moves and expands single-digit numerical data with a
" sign into double-digit alphameric data. The units position of the alpha-
meric field is specified by the P address of the instruction and must
always be an odd-numbered core location. The umts position of the
numerical field is specified by the Q address.

The digits in the field whose units position is specified by the Q address
are transmitted without change to the corresponding odd-numbered
positions of the field specified by the P address. The contents, including
flags of the odd-numbered core positions of the P field, are replaced by
the Q field data. The even-numbered positions of the P field are filled
with 7’s, giving the double-digit representation of the single-digit numeri-
cal Q field data.

Transmission of data proceeds from the units position of the Q field
data through successively lower numbered core locations, until terminated
by the sensing of the flag defining the high-order position of the Q field
data. The flag terminating data transmission is not transmitted to the P
field. The Q field data is not altered by this instruction.

If the numerical field specified by the Q address is negative, a 5 is
placed in the even-numbered units zone position of the alphameric (P)
field. During a Write Alphamerically instruction, a negative zero, repre-
sented by a zone digit five and a numerical digit zero, is converted to X
coding in paper tape, to X, 0 coding in an output card, and to a minus
sign (—) on the typewriter. All other negative units positions having a
zone digit 5 type and punch as the letters J through R (1 through 9)

Execution Time in Microseconds: 160 + 40Dp

Example: 73 16257 17394
01627400 ‘———] 7891

Core location 16257 before Core location 17394
Transfer Numerical Fill before and after

Transfer Numerical Fill
77787951

Core location 16257 after
Transfer Numerical Fill

Execution Time: 480 microseconds
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Example: 73 06421 19003

00000000000000 7842162
Core location 06421 before Core location 19003
Transfer Numerical Fill before and after

Transfer Numerical Fill
77787472717672

Core location 06421 after
Transfer Numerical Fill

Execution Time: 720 microseconds

Problems

For all Problems the following core content is assumed:

Core LocAaTiON

Low-OrpER DicIT CONTENTS
13123 777871727374
07000 0000
05555 73797851
06000 999
15321 6431

For each problem show the contents of the P field and Q field after the
instruction (s) have been executed.

The core content listed above is to be assumed for every problem and the
results of any one problem are independent of all others.

1. 72 13123 07000
2. 73 13123 07000
3. 71 06998 06999
71 06997 06998
72 13123 07000
72 05555 06000
72 05555 15321
73 13123 05555

o G
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Direct Divide

Although the division subroutine is adequate, some computer installa-
tions cannot afford to relinquish the core storage required by the sub-
routine. Also, when many divisions are required, it may be desirable to
increase the processing speed of division. The Divide feature increases
the processing speed of division by two to four times that of the sub-
routine, and saves storage since only one instruction need be given to
divide. The Divide feature also simplifies programming since it provides
the programmer with four additional commands to facilitate the position-
ing of the dividend and divisor in core storage.

The Divide feature imposes no limitations upon the size of the
dividend, divisor, or quotient. The quotient and remainder are developed
in the fixed product area (00080-00099). When a quotient length plus
remainder length exceeds 20 digits, core storage positions below 00080
(00079, 00078, etc.) must be cleared to zeros by programming prior to
the execution of the Divide instruction. This is similar to the multiply
operation when a product greater than 20 digits is required. As an
example, suppose that 30 positions are required for the quotient and
remainder. Core positions 00070-006079 must be set to zeros by program-
ming before the Divide instruction is given.

The four instructions provided with the Divide feature are: Load
Dividend, Load Dividend Immediate, Divide, and Divide Immediate.
When the timing of these instructions is discussed, the following abbrevia-
tion will be used: Qr = number of digits in the quotient.
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The dividend must be placed in the fixed product area before a Divide
command is given. The Load Dividend and Load Dividend Immediate
instructions may be used to satisfy this requirement.

Instruction: Load Dividend
Operation Code: 28
Symbolic Name: LD
Description:

The Load Dividend instruction automatically resets the fixed product
area (00080-00099) to zeros. The data (the dividend) that is located
at the Q address is transmitted serially to the core location specified by
the P address and to successively lower core positions. The flag in the
high-order position of the Q field data terminates the transmission.

The P address of the Load Dividend instruction is 00099 minus the
number of zero positions desired to the right of the dividend. For
example, if it were desired to add 3 places to the dividend 2634, the
dividend would be transmitted to core location 00096. The algebraic
sign of the dividend is automatically placed in 00099 regardless of where
the low-order dividend digit is placed by the P address.

Execution Time in Microseconds: 400 + 40D,

Example: 28 00096 00748

098260060001114§9§7?:] 34782

Core location 00099 Core location 00748 before
before Load Dividend and after Load Dividend

00000000000054782005)]

Core location 00099
after Load Dividend

Execution Time: 600 microseconds

Example: 28 00099 00909
97000000001623000000——| 029754

Core location 00099 Core location 00909 before
before Load Dividend and after Load Dividend

000000000000006297§f:]

Core location 00099
after Load Dividend

Execution Time: 640 microseconds
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Note:

If a Load Dividend instruction is not used to position the dividend in
the fixed product area, it is the programmer’s responsibility to clear the
remainder of the fixed product area to zeros. This is also applicable to
the Load Dividend Immediate instruction.

Instruction: Load Dividend Immediate
Operation Code: 18

Symbolic Name: LDM

Description:

The Load Dividend Immediate instruction automatically resets the
fixed product area (00080-00099) to zercs. The data (the dividend)
whose units position is the Qy; digit of the instruction is transmitted
serially to the location specified by the P address and to successively
lower core positions. The flag in the high-order position of the dividend
terminates the transmission of data. The P address is determined in the
same manner as in the Load Dividend instruction.

The algebraic sign of the dividend is automatically placed in 00099 re-
gardless of where the low-order dividend digit is placed by the P address.

Execution Time in Microseconds: 400 + 40D,
Example: 18 00098 09850
00000111129874621004 ——_|
Core location 00099 before
Load Dividend Immediate

00000000000000098500 ~—__|

Core location 00099 after
Load Dividend Immediate

Execution Time: 600 microseconds

Instruction: Divide
Operation Code: 29
Symbolic Name: D
Description:

The dividend whose high-order position is specified by the P address
is divided by the field whose units position is specified by the Q ad-
dress. Division is accomplished by successive subtractions of the divi-
sor from the dividend. The P address of the Divide instruction positions
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the divisor for the first subtraction from the high-order position(s) of
the dividend, as in manual division.

Each successful subtraction causes the quotient digit to be increased
by 1. Quotient digits are developed in the units position of a special
register. An overdraw initiates a correction (the divisor is added once)
and the next subtraction occurs one place to the right. The first (high-
order) quotient digit is stored at the address specified by the P address
of the Divide instruction minus the length of the divisor. A flag is
generated and stored with the first quotient digit. Division is terminated
after a quotient digit is developed, by subtractions, with the units
position of the divisor at 00099.

The quotient and remainder replace the dividend in the product
area. The address of the quotient is 00099 minus the length of the
divisor. The algebraic sign of the quotient (determined by the signs
of the dividend and divisor) is automatically placed in the low-order
position of the quotient. The address of the remainder is 00099 and a
flag is automatically placed in the high-order position. The remainder
has the sign of the dividend and the same number of digits as the
divisor. :

- The High/Positive indicator is turned on or off, depending on whether
the quotient is positive or negative. The Equal/Zero indicator is turned
on if the quotient is zero. The quotient must be at least two digits in
length. Improper positioning of the divisor with respect to the dividend
can cause an overflow condition which is discussed in detail on page 245.

Execution Time in Microseconds: 160 + 520D,Qr + 740Qr assuming an
average value of 4.5 for each quotient digit

Example:

Figure AIl. 1 shows the manner in which the 1620 solves the problem
4906 -+ 23 = 213 with a remainder of 7. '

Instruction: Divide Immediate
Operation Code: 19

Symbolic Name: DM
Description:

The dividend whose high-order position is specified by the P address
is divided by the field whose units position is the Q;, digit of the Divide
Immediate instruction.

Division is accomplished as described in the Divide instruction.

Execution Time in Microseconds: 160 + 520D,Q + 74007, assuming an
average value of 4.5 for each quotient digit.
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Data At ool <] o]0l mlw
Instruction A':!‘:::Zs Description é é % é % é é %
1 00500 | 00600 -
2800099 00500 | 4906 | 23 | Lood Dividend ojolofo|Z|9]ofe
29 00096 00600 Subtract divisor -12]3
Overdraw 91811
Add divisor back to correct overdraw. +12(3
0{0}4
::‘:reﬂ:ngrs:ﬂ('hlgh-order) digit of quotient (0) olo ::O:‘ olalolole
Subtract divisor one place to the right -1213
No overdraw 216
Subtract divisor -12]3
No overdraw 0jo|3
Subtract divisor =123
Overdraw 91(8(0
Add divisor back to correct overdraw +1213
0]0}3
Store second digit of quotient (2) ofo|0 ;\%2 0|3|0fé
Subtract divisor one place to the right —-{213
No overdraw 0jo}7
Subtract divisor -12]3
Overdraw 918(4
Add back divisor to correct overdraw +12|3
0017
Store third digit of quotient (1) ofold]2 } o|7]e
Subtract divisor one place to the right ~{213
No overdraw 0(513
Subtract divisor -12]3
No overdraw 0130
Subtract divisor -12]3
No overdraw 0(0}|7
Subtract divisor -{2]3
Overdraw 91814
Add back divisor to correct overdraw +(2|3
0107
e gt O olofa||s s

Fig. AIL1.

tion stops with quotient (213) and
remainder (07) in product area.

Example of Divide Command.
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Example:

Figure AIL2 shows the 1620 solution of the divide problem
—212 + 24 = —8.83 with a remainder of 8.

— N 0N DO
Instruction Descripﬁorfu § % § g § g % § % g
Data
18 00097 00212 g:ses:g(:‘o?jooao”oo?w to zeros. Transmit Dn to 00097, olololo]olz]1]2(0]d
- Subtract Dv from Dn starting at 00095. —12]4
19 00095 00024
Overdraw 9718
Correction +12(4
0f{o0f{2
Store first quotient digit (0) & flag bit oofofKo|2|1]2]ofd
Subtract one place to the right —1214
Overdraw 91917
Correction +l214
0|21
Store 2nd quotient digit (0) ofojo|apid2|1|2]0]d
Subtract one place to the right ~1214
Successful subtraction 1[(8]8
Seven more successful subt (7 x 24 = 168) -1]6}8
020
~-12|4
Overdraw 91916
Correction +214
ofz210
Store quotient digit (8) ofofofo|op2{o]o|o
8 successful subtractions (8 x 24 = 192) - 11912
(Overdraw & Correction Not Shown) ofols
Store quotient digit (8) olofo]d|o|sfiqos|o
3 successful subtractions (3 x 24 = 72) -7]2
0|8
~1214
Overdraw 918 |4
.Correction +|2 14
0jo(8
Store quotient digit (3) olofo|do|a|af¥ o]z
Store flag over high-order position of remainder. ofofo|D|o(s|8s|3[{0]8

Sign of quotient over units position (00099 - Dv,
where Dv is length of divisor). <~

Fig. All.2. Example of Divide Immediate Command.
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INCORRECT DIVISOR POSITIONING

The following error conditions are caused by an incorrect P address
in the Divide instruction:

1. Overflow. As illustrated in Figure AIL3, an incorrectly positioned
divisor can cause more than nine successful subtractions and an in-
correct quotient. The Overflow indicator is turned on, but proc-
essing does not stop unless the Overflow switch is set to “stop.”

. L RIS RIR|R|R|&
Instruction Description 00650 § § % § § § § § § §
2 1|ojojolo|o|2|1|2|0]0

D 29 00097 00650 Successful Subtraction No, 1 =120

11911

" " No. 2 —-12{1

11710

" " No. 3 =121

114(9

" " No. 4 =121

112(8

" " No. 5 -2

1107

" " No. 6 -12]1

0(8)6

" " No, 7 -12{1

0|65

" " No, 8 =121

0|4|4

" " No, 9 ‘ —-{2]1

— 0123

" " No. 10 —|2]1
oflofojofojofo|2(0]|D

Fig. All.3. Incorrect Divisor VPositfoning.

2. Loss of one or more dividend high-order digits. The high-order digit
of the dividend is assumed by the 1620 to be one position to the left
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of the high-order digit of the divisor. Figure AIl.4 shows how the
high-order digits of the dividend are lost if the divisor is positioned
too far to the right. Processing continues with no indication of an
incorrect quotient.

Instruction Description 00650

N 1100095
© 100096
N 100097
« 100098
© 100099

29 00098 00650 Divide (Incorrect P Address) 19

NI
T
ny
=)
E-N
=)

N
-l
T
IRN
(=]
N

Fig. All.4. Incorrect Divisor Positioning.

SUMMARY OF AUTOMATIC DIVISION RULES

1. Load Dividend (28—LD or 18—LDM)
(a) P address = 00099 minus the number of zeros desired to the
right of the units position of the dividend.
(b) Q address = units position of the dividend.
2. Divide (29—D or 19—DM)
(a) P address = 00100 minus the length of the quotient. The quo-
tient length must be at least two digits.
(b) Q address = units position of the divisor.
3. Quotient address = 00099 minus the length of the divisor.
4. Remainder address = 00099
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5. Sign of quotient—determined by the algebraic signs of the dividend
and divisor.
6. Sign of remainder—same as that of the dividend.
Problems

For all Problems the following core content is assumed:

Core LocaTioN

(Low-OrpER DiGIT) CONTENTS
13124 63780
14000 004
00900 13684221

For each problem give the contents of the fixed product area (00080-00099)
including flags after the Divide or Divide Immediate instruction has been
executed.

The core content listed above is to be assumed for every problem and the
results of any one problem are independent of all others.

1. 28 00096 13124
29 00092 14000
2. 25 13124 13120
28 00098 13124
29 00094 14000
3. 18 00098 12345
19 00094 00005
4. 15 13999 00002
28 00095 13123
19 00092 00032
5. 28 00095 00900
19 00087 00003
6. 22 00900 13124
28 00098 00900
29 00091 14000
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Indirect Addressing

Indirect Addressing saves program steps and computer time by pro-
viding a direct method of address modification. Its primary use is in
programs where multiple instructions have the same P or Q addresses
and this address is to be modified in each of the instructions by the
program. With the utilization of the Indirect Addressing special feature,
it is not necessary to modify directly each instruction separately, instead
one 5-digit address can be modified—this, in effect, serves to modify
each of the multiple instructions.

Normally, an instruction address (P and/or Q) is the location of
data to be used during the execution of the instruction. This is known
as “direct addressing,” since the address refers directly to the location
of the data. However, if an instruction address (P and/or Q) is an
Indirect address, it does not refer directly to data. Rather it is the lo-
cation of a second address; this second address is the location of the
data to be used by the instruction. In effect, this second address is a
substitute for the Indirect address at instruction execution time.

For example, suppose that in the Add instruction 21 15000 17000, the
Q address 17000 is an Indirect address. Locations 16996-17000 contain
the 5-digit field 18000. When the instruction is under execution the
data at location 18000 is added to the field at 15000. If the Q address
had been a Direct address, the data at location 17000 would have been
added to the field at 15000.

A flag in position Pg and/or Q;; indicates that the P and/or Q ad-

248
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dresses of an instruction are Indirect. Thus the P address of an instruc-
tion is Indirect if there is a flag in the Pg position of the instruction.
The Q address of an instruction is Indirect if there is a flag in the Qy
position of the instruction. Any P and/or Q address can be Indirect if
it is the address of an instruction, digit, field, or record. Any 1620 in-
struction can have Indirect addresses except Branch Back, Control, Halt,
and No Operation. Table AIIL.1 shows which instructions can contain
both P and/or Q, or P only, Indirect addresses.

Table AIII.l

Indirect Address Operation Codes

MneEMoNIC CopbE P anpb/orQ P OnLy

Arithmetic Instructions

Add A 21 X
Add Immediate AM 11 X
Subtract S 29 X
Subtract Immediate SM 12 X
Multiply M 23 X
Multiply Immediate MM 13 X
Compare C 24 X
Compare Immediate CM 14 X
Internal Data Transmission
Instructions )
Transmit Digit TD 25
Transmit Digit Immediate TDM 15 X
Transmit Field TF 26
Transmit Field Immediate TFM 16
Transmit Record TR 31
Branch Instructions
Branch B 49 X
Branch No Flag BNF 44 X
Branch No Record Mark BNR 45 X
Branch On Digit BD 43 X
Branch Indicator BI 46 X
Branch No Indicator BNI 47 X
Branch and Transmit BT 27 X
Branch and Transmit Immediate = BTM 17
Branch Back BB 49
Input-Output Instructions -
Read Numerically RN 36 X
Write Numerically WN 38 X
Dump Numerically DN 35 X
Read Alphanumerically RA 37 X
Write Alphanumerically WA 39 X

Control K 34
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(continued)

Mnemonic  Cope P anND/OR Q P ONLY

Miscellaneous Instructions

Set Flag SF 32 X
Clear Flag CF 33 X
Halt H 48

No Operation NOP 41

Additional Instructions

Move Flag MF 71 X

Transmit Numeric Strip TNS 72 X

Transmit Numeric Fill TNF 73 X

Load Dividend LD 28 X

Load Dividend Immediate LDM 18 X
Divide D 29 X

Divide Immediate DM 19 X

If the P address of an immediate instruction is Indirect, the Q data can-
not be more than 6 digits in length because the flag in the units position
of the P operand would also serve to define the high order digit in the im-
mediate field. '

The data field specified by the Indirect address is always interpreted
as being 5 digits in length regardless of the presence or absence of flags
within the field. Thus, no high-order flag is necessary to define the
high-order position of the field at the Indirect address. Should the field
specified by the Indirect address contain a flag in its units position, it
also is treated as an Indirect address. This chaining effect continues
until a flag is not present in the units position of the field specified by
an Indirect address; this field is then treated as a Direct address.

An instruction with the P and/or Q addresses Indirect is in no way
altered in core storage as the result of Indirect addressing. Only internal
registers are changed.

Execution Time: Each address that is interpreted as an Indirect address
requires four additional memory cycles. An instruction with one Indirect
address requires an additional 80 microseconds processing time. An
instruction with two Indirect addresses requires an additional 160 micro-
seconds and so forth.
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Example: 21 15000 16091

10032<————| 1247

Core location 15000 before - Core location 16091 before
and after Add and after Add

00213 <—————| 01460

Core location 10032 Core location 10032
before Add after Add

Execution Time: 640 microseconds

Example: 11 00900 31416

13168 ‘———I 00198421
Core location 00900 before Core location 13168 before
and after Add Immediate Add Immediate

00229837

Core location 13168 after
Add Immediate

Execution Time: 880 microseconds

Example:
00910*——] 16225 - 13500 Da— 18005
Core location Core location Core location Core location
13500 17005 09225 15000
InsTrUCTIONS IN CORE STORAGE EFFECTIVE INSTRUCTIONS
21 15000 17005 21 15000 17005
21 15000 17003 21 15000 16225
21 15000 17005 21 18005 17005
21 15000 17003 21 18005 16225
21 09225 15000 21 00910 18005

Example: 49 13000 00000
04686
Core location 13000 before
and after Branch

The program will branch to 04686 for the next instruction.

Example:

A program to list all core storage locations which contain a record mark
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refers to each location in the Branch No Record Mark instruction and
also in the Write Numerically instruction when the addresses are typed.
Both need to be modified. Following are two programs to do this—one
utilizing Indirect addressing and the other without Indirect Addressing.

WitHOUT INDIRECT ADDRESSING WiTH INDIRECT ADDRESSING
00600 16 00623 00000 00600 16 00690 00000
00612 45 00660 00000 00612 45 00648 00690
00624 26 00702 00623 00624 34 00000 00102
00636 34 00000 00102 00636 38 00686 00100
00648 38 00698 00100 00648 11 00690 00001
00660 11 00623 00001 00660 14 00690 20000
00672 14 00623 20000 00672 47 00612 01200
00684 47 00612 01200 00684 48 00000 i

00696 48 00000 i

Example:

Each element A, in a table of 8-digit numbers with addresses from 13016
to 13808 (units positions) is to be replaced by A,/5 if the element ex-
ceeds 5,000,000.

Solution:
01600 16 01623 13016 Initialize
01612 24 01726 13016 Compare field to 5,000,000
01624 46 01672 01300 Branch if 5,000,000=A,
01636 28 00099 01623 Position dividend XXXXXXXX
01648 19 00092 00005 Divide
01660 26 01623 00097 Move quotient XXXXXXXX
01672 11 01623 00008 Change address
01684 14 01623 13816 Test if done
01696 47 01612 01200 Branch if not done
01708 48 00000 00000 Terminate program
01720 5000000



Appendux IV

Floating Point Hardware

It is possible to obtain a special device that performs floating point
calculations.! The advantage of this feature is that, like the division hard-
ware, the core storage required for macro-generated subroutines may be
used by the main program. In addition, the linkage instructions are
eliminated and, in their place, a single machine language instruction is
employed. Lastly, the hardware commands are substantially faster.

The arithmetic that one enjoys through the use of the floating point
hardware is, for all practical purposes, completely variable in mantissa
size. The actual maximum limit to the length of the mantissa is 99 digits.
The characteristic (synonymously termed exponent) is only and always
2 digits, with or without sign and/or field-terminating flag. The mini-
mum mantissa length is 2 digits.

The length of the floating point number is generally specified by the
mantissa length. Thus the maximum floating point number is said to
be 99 digits instead of 101.

One restriction is imposed upon floating point hardware arithmetic:
arithmetic is permissible only on floating point numbers of equal mantissa
lengths, This restriction is easily complied with since the hardware
contains mantissa shortening and lengthening commands as part of its
standard instruction repertoire. It is permissible to perform a series of
calculations on floating point numbers with identical mantissa lengths,
alter the mantissa lengths, perform subsequent calculations, alter the
mantissa lengths, and so forth. Thus, the restriction as stated above is
imposed only on any single calculation.

1 This chapter presupposes a knowledge of the material contained in Chapter 12.
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With the exception of two commands, all floating point hardware in-
structions address the units characteristic position of the specified float-
ing point numbers. These will be referred to as A and B for the P and
Q operands respectively. There are eight commands in the floating point
hardware repertoire:

Floating Add

Floating Subtract

Floating Multiply

Floating Divide

Floating Transmit Field
Floating Branch and Transmit
Floating Shift Right

Floating Shift Left

Instruction: Floating Add
Operation Code: 01
Symbolic Name: FADD
Description:
The floating point number specified by B is added to the floating point

number specified by A. The floating point sum replaces A. The floating
point number specified by B remains unchanged.

Execution Time in Microseconds: 400 + 100L (average)
Recomplementation Time in Microseconds: 80L

where L is the mantissa length. See Chapter 5 for a discussion of re-
complementation.

Example: 01 10000 15000
100062‘_—-1 300001
Core location 10000 before Core location 15000 before
Floating Add and after Floating Add
130002
Core location 10000 after
Floating Add

Example: 01 17000 19000

500000010 "_—'l 250000011

Core location 17000 before Core location 19000 before
Floating Add and after Floating Add
300000011

Core location 17000 after
Floating Add
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Example: 01 02000 03000
1101 R §951'—————|

Core location 02000 before Core location 03000 before
Floating Add and after Floating Add

1102

Core location 02000 after
Floating Add

Instruction: Floating Subtract
Operation Code: 02
Symbolic Name: FSUB
Description:
The floating point number specified by B is subtracted from the floating
point number specified by A. The floating point difference replaces A.

The floating point number specified by B remains unchanged. The execu-
tion time is identical with that of FADD.

Example: 02 10000 15000

1200 2001

Core location 10000 before Core location 15000 before
Floating Subtract and after Floating Subtract
1000

Core location 10000 after
Floating Subtract

Instruction: Floating Multiply
Operation Code: 03
Symbolic Name: FMUL
Description:

The floating point number specified by A is multiplied by the floating
point number specified by B. The resultant floating point product, with
length identical to that of A and B, appears at A and not at 00099.

The fixed product area is employed to generate a product whose length
is 2L, and the L most significant digits are chosen by the hardware as the
mantissa of the floating point product. Thus, should the mantissas of the

multiplier and multiplicand be greater than 10 digits, it is the pro-

grammer’s responsibility to clear a sufficient area below core location
00080.
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As an example, the multiplication of two 14-digit floating point numbers
would require core locations 00072-00079 to be cleared to zeros before
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