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Preface 

Construction of a text on computers usually takes one of two directions: (1) 
general computer philosophy stressing engineering design, scientific-commercial 
applications, and a variety of related subjects such as Boolean algebra, switching 
circuit theory, and so forth, or (2) the total organization of a single computer 
(possibly an imaginary one) with the tacit assumption that one learns an entire 
range of computers by studying a particular one. 

There is a variety of excellent books on general computer philosophy (see 
"Reading Reference"). However, we have decided to take the latter tack and 
generate a book on one specific computer whose popularity makes its choice a 
logical one. 

Authorities on computing and computers differ in their opinions as to how 
material of this nature should be taught. An example of this is the disagreement 
about the necessity of Row charting, the distinction between coding and pro­
gramming, and so forth. At this early stage of computing education there is far 
too little experience to rely upon, and consequently, each individual expresses 
his beliefs as he feels them to be correct. 

The materials in this text are what we believe to be a satisfactory approach 
to the pedagogical problem of computer education. Perhaps, with the passage 
of time, our opinions will change as computers develop towards goals now 
considered in the realm of fantasy. 

For the following two reasons, the machine chosen for this total organization 
study is the IBM 1620 computer: First, the 1620 is a physically small machine 
of good computing power whose size makes its availability to a university, and 
subsequently to a student, more practical; second, the 1620 is a computer that 
uses the decimal system of arithmetic. It is our belief that a "first" machine 
should be decimal in its internal arithmetic. This is not to say that a decimal 
machine is superior to a machine using another arithmetic system, or that the 
converse is true. There is much to be said for each one. However, the problems 
of learning basic machine concepts are difficult enough without confusing the 
situation by adding the complexities of a new or less commonly used type of 
arithmetic. 

It is also our belief that adequate study of this single computer prepares one 
for further study on a whole host of other machines, including computers using 
binary arithmetic internally. 

There is a general concept, romantically propagated by the uninformed, 
which assumes that programmers are deep, silent thinkers given only to esoteric 
intellectual pursuits. Such is not the case at all. The qualities that make for a 
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competent programmer are too elusive to pinpoint. There is, however, one 
quality that is common to all programmers: an astonishing ability to absorb 
repeated failure. This is because the "first-time correct" program is extremely 
rare, and the word "first" can be changed to "second," "third," and "fourth" 
with the statement still true. 

Each person becomes proficient in his art by a study of the classic problems 
pertaining to his field. The Euclidian geometry has had its theorems proven 
time and again by students of mathematics. The budding musician masters 
his art by practicing scales. The beginning programmer obtains one form of 
proficiency by analysis and coding of certain "classic" problems. Many of these 
have been incorporated here in a chapter consisting solely of problems. 

There are many techniques that make a program not only run, but run 
efficiently, and one of the tasks of the novice programmer is to discover these 
tricks for himself. To the professional programmer, the old saw, "Time is 
money," takes on a whole universe of meaning. 

We make no assumptions about the educational background of the reader, 
nor do we assume that a 1620 is available for program testing. It is quite 
possible, and in some machine installations most practical, for the programmer 
never to see or physically operate the computer. Although it is desirable to see 
the results of one's efforts in operation, it is not mandatory for instruction 
purposes. 

It is true that the majority of the examples in the chapter of problems assume 
some technical background, and the chapters dealing with floating point and 
Fortran also imply a scientific utilization of the machine. However, the com­
puter may be studied for commercial applications as well as scientific with 
equal facility. The text, because of the subject matter, must be technical in its 
presentation, but the nonscientifically oriented reader should be able to assimi­
late the material. 

The student is to be constantly reminded of two "theorems" associated with 
computer programming which, unfortunately, have more truth than humor: 
Theorem l. Every program has at least one error. Theorem 2. Every program 
can be shortened. 

It is difficult to describe how many people have assisted us in the preparation 
of this book, and to thank each of them in the manner that they deserve would 
require at least one additional volume. 

However, we would be remiss in our responsibilities if we did not mention 
those individuals whose tireless efforts reached Herculean proportions. These 
people are: Edward Sinanian and Charles Stewart of IBM General Products 
Division, San Jose, California, for their review of the manuscript and their 
particular attention to the chapters on symbolic programming and Fortran; 
Frank Beckman and Kenneth King for encouraging the use of this book in a 
classroom situation at the Watson Scientific Computing Laboratories, Columbia 
University; Sarah Snook, IBM, New York, Guy Magnuson, IBM, Chicago, and 
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Richard King, IBM, Los Angeles for their suggestions based upon geographical 
needs; James W. Perry, Numerical Analysis Laboratory, University of Arizona, 
Alfred T. Chen, Engineering Mathematics Department, University of Louisville, 
and Frederick Way, III, Associate Director of Computing Center, Case Institute, 
for their professional and much needed comments on the original manuscript; 
Frances Perrone for her typing, and typing, and typing, and typing. 

To all of these people we say simply "Thank you very much." 

FAIR LAWN, NEW JERSEY D. N. LEESON 

JULY 4,1962 D. L. DIMITRY 
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Chapter 1 

Introduction to Data 

Processing Systems 

Data processing is a series of planned actions and operations upon 
information to achieve a desired result. The operations are performed 
according to precise and strict rules of procedure. The procedures and 
devices used are what constitute a data processing system. Recently, 
"data processing" has become a generic term for "computing." 

The computer offers to man a means to increase his productivity. This 
is accomplished in five ways. ( 1) Computers through their speed alone 
enable man to increase his output per hour. (2) Computers enable man 
to make use of many mathematical methods that were previously im­
practical due to the lengthy and time-consuming calculations involved. 
Imagine attempting to solve a system of 50 simultaneous linear equations 
on a desk calculator. The computer solves this problem in minutes. 
(3) Computers have enabled man to develop new mathematical techniques 
to solve problems previously thought to be beyond the realm of practical 
mathematics. (4) Computers increase accuracy. Extensive analysis has 
shown that the human will make at least 5 errors in 100 hand calculations, 
making him at best 95 percent effective. The computer closely approaches 
100 percent accuracy (99.99+ percent). When an error does occur, it is 
usually sensed, and its presence is indicated to the operator. (5) Com­
puters increase productivity by encouraging intelligent planning. 

1 



2 Introduction to Data Processing Systems 

The need for data processing systems is widespread. Technological 
growth and advances have been increasing at a rapid and frantic pace. 
The demands for information are enormous. The aircraft industry, 
manned missiles, an invulnerable defense network, and design engineering 
all require an amount of data processing that staggers the imagination. 

The 1940's were a great development period for data processing systems. 
The principles of electronics were applied to data processing equipment, 
and the first "stored program" computer was developed. At the start, 
data processing machines were directed by machine instructions that 
were programmed on interchangeable control panels, cards, or paper 
tapes. Detailed instructions telling the machine what to do next had 
to be wired in or read in as the work progressed. Data put into the 
machine were processed according to the instructions contained in these 
preset devices. Only in a limited fashion could the computer deviate 
from the fixed sequence of its program. 

It soon became apparent that these programming techniques inhibited 
the speed and performance of the computer. To give the computer 
greater latitude in working problems without operator assistance, scien­
tists proposed that the computer store its program in a high-speed 
internal memory or storage unit. Thus, it would have immediate access 
to instructions as it called for them. With an internal storage system, 
the computer could process a program in much the same way that it 
processed data. It could even be made to modify its own instructions as 
dictated by developing stages of work. To meet this requirement, high­
speed storage devices were developed and the "stored program" com­
puter was born. 

All data processing involves at least three basic considerations: (1) the 
data or input to the system, (2) the orderly planned processing of the 
input within the system, and (3) the end result or output from the 
system. 

The input may consist of any type of data: commercial, scientific, 
statistical, engineering, etc. Processing is carried out by a pre-established 
sequence of instructions that are followed automatically by a computer. 
These instructions are the result of an analysis of the desired output 
by a programmer. He then originates a series of instructions to the 
computer to produce the end result. The processing terminates with 
the end result, which is recorded for further processing or for reports 
or data files. 

To meet these three basic considerations, data processing systems are 
composed of four types of functional units: input, output, storage, and 
processing devices. They are designed to process business and scientific 
data at electronic speeds. In addition automatic self~checkingdevices 



Introduction to Data Processing Systems 3 

insure great accuracy. The key element of these systems is the processing 
unit, a high speed electronic computer. 

INPUT AND OUTPUT DEVICES 
The data processing system requires, as a necessary part of its informa­

tion handling ability, devices that can enter data and instructions into 
the system and record data from the system. These functions are per­
formed by input-output devices linked directly to the system. 

Input devices read or sense the coded data or instructions that are 
recorded on a prescribed medium and make this information available 
to the c6mputer. Output devices record or write information from the 
computer on an output medium. Specific input-output devices relating 
to the 1620 Data Processing System, will be discussed in Appendix V. 

STORAGE (MEMORY) 
Storage devices are capable of receiving information, retaining informa­

tion, and making this information available. All data and instructions 
must be placed in storage before they can be processed by the computer. 
Each storage location holds a specific unit of data. Information is read 
into storage by an input device and is then available for processing. 
Each location, position, or section of storage is numbered so that the 
stored data or instructions can be readily located by the computer as 
needed. 

When information enters a storage location, it replaces the previous 
contents of that location. However, when information is taken from a 
storage location, the contents remain unaltered. Thus, once located in 
storage, the· same data may be used many times. The computer requires 
time to locate and transfer information to and from storage. This is 
called access time. 

The size or capacity of storage determines the amount of information 
that can be held within the system at anyone time. 

CENTRAL PROCESSING UNIT 
The central processing unit is the control center of the entire data 

processing system. It is divided into two parts: (1) the arithmetic-logical 
unit and (2) the control section. 

The arithmetic-logical unit performs such operations as addition, sub­
traction, multiplication, division, comparing, transferring, and storing. 
It also has logical ability-the ability to test various conditions encountered 
during processing and to take one of two or more alternate paths, depend­
ing on the result of the test. 
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The control section directs and coordinates the entire computer system 
as a single multipurpose machine. These functions involve controlling 
the input-output units and the arithmetic-logical operation of the central 
processing unit. This section directs the system according to the procedure 
(stored program) developed by its human programmer. 

STORED PROGRAMS 
Each data processing system is designed to perform only a specific 

number and class of operations. It is directed to perform each operation 
by an instruction. The instruction defines a basic operation to be per­
formed and identifies the data, device, or mechanism needed to carry out 
the operation. The entire series of instructions required to complete a 
given procedure is known as a program. 

For example, the computer may have the operation of multiplication 
built into its circuits in much the same way that the ability to add is 
built into a simple desk calculator. There must be some means of 
directing the computer to perform multiplication just as the adding 
machine is directed by depressing keys. There must also be a way to 
instruct the computer where in storage it can find the factors which are 
to be multiplied. 

Further, the comparatively simple operation of multiplication implies 
other activity that must precede and follow the calculation. The multi­
plicand and multiplier must be read into storage by an input device. 
Once the calculation is performed, the product may be recorded by an 
output device. 

Any calculation, therefore, implies reading in data, locating factors in 
storage, perhaps adjusting the result, and perhaps writing out the com­
pleted result. Even the simplest portion of a procedure involves a 
number of planned steps that must be precisely specified to the computer 
if the procedure is to be accomplished. 

An entire procedure is composed of these individual steps grouped 
in a sequence that directs the computer to produce a desired result. 
Thus, a complex problem must first be reduced to a series of basic 
machine operations before it can be solved. Each of these operations 
is coded as an instruction in a form that can be interpreted by the 
computer. An instruction in this form is called a "machine language in­
struction." The instructions are placed in toto, in the storage unit as a 
stored program. 

The possible variations of a stored program provide the data processing 
system with almost unlimited flexibility. One computer can be applied 
to a great number of different procedures by simply reading in or loading 
the proper program into storage. 
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DATA REPRESENTATION 
Communication with a computer system requires that data be reduced 

to a set of symbols that can be read and interpreted by data processing 
machines. The symbols differ from those easily recognizable by man, 
because the information to be represented must conform to the design 
and operation of the computer. The choice of these symbols and their 
meaning is a matter of convention on the part of the designers. The 
important fact is that information can be represented by symbols, which 
become the language for communication between people and machines. 

Information to be used for computer systems can be recorded on 
various media. We shall discuss two of them, cards and paper tape. 
Data are represented on cards by the presence or absence of holes in 
specific locations of the card. In a similar manner, small holes along 
a paper tape represent data. 

CARDS 

The punched card is the most widely used media for communication 
with machines. Information is recorded as small holes punched in 
specific locations in a card of standard size.1 Information represented 
(coded) by the presence or absence of holes in specific locations can 
be read or sensed as the card is moved through a card-reading device. 
Reading or sensing the card is basically a process of automatically con­
verting data recorded as holes to an electronic language and entering 
the data into the computer. 

The punched card provides 80 vertical columns with 12 punching 
positions in each column. The 12 punching positions form 12 horizontal 
rows across the card. One or more punches in a single column represent 
a character. The number of columns used depends on the amount of 
data to be represented. The standard card code uses one or more of the 
12 possible punching positions of a vertical column to represent a numeric, 
alphabetic, or special character. The 12 punching positions are divided 
into two areas, numeric and zone. The first 9 punching positions from 
the bottom of the card are the numeric punching positions and have an 
assigned value of 9, 8, 7, 6, 5, 4, 3, 2, and 1, respectively. The remaining 
3 positions, 0, 11 (synonymously termed X), and 12, are the zone posi­
tions. The 0 position is considered to be both a numeric and zone position. 

The numeric characters 0 through 9 are represented by a single punch 
in a vertical column. For example, 0 is represented by a single punch 
in the 0 zone position of the column. A numeric 5 is represented by a 
single punch in the 5 position of the column. 

The alphabetic characters are represented by two punches in a single 

1 The standard-size card is 7% by 31f4in. 
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vertical column, one numeric punch and one zone punch. The alphabetic 
characters A through I use the 12 zone punch and a numeric punch 
1 through 9. In this fashion the letter A is punched as 12-1, Bas 12-2 ... 
I as 12-9. The alphabetic characters J through R use the 11 zone punch 
and a numeric punch 1 through 9, respectively. The alphabetic characters 
S through Z use the 0 zone punch and the numeric characters 2 through 9, 
respectively (see Fig. 1.1). 

0123456789 A8CDEFGHIJKlMNOPQRSTUVWXYZ 

/ 
0 00800 ,. 
11 11111 

222 222222 2 

33 3 3 3333333 330 

H4H 

.I 
444444440 444 44 

155151 5551II55ID 1111 III 

166661& 666661&666 66666 6616 

1171111 71171111117 111111 71111 

1111'11 II 11111111.11. 811.11. 111111 

+.)-h/,(=tID* 

000000 

111111 

222222 2 

333333 3 

444444 4 

551551 I 

616666 1 

111111 7 

111111 • 

2 

3 

4 

5 

6 

7 , 

1 122$NE 
ZONE PUNCHING 11- 2!1>NE 

_ 0810000000100000000 
.nua ••• p ••• nnnMnan ••• 
1 111111 1111111111111 

'2 2222222222222222222 

3 3333333333333333331 

4 4444444444444444444 

5 5 ~ D}~rJ .t!,~C.,H!N..G" 5 5 5 5 5 5 5 5 

6 1666611861166666666 

111711111177117111777 

1 .,"',.,., •••• , •••• 

Fig. 1.1 Standard Punched Card Codes. 

Special characters are represented by one, two, or three punches in 
a single column of the card and consist of punch configurations not used 
to represent numeric Or alphabetic data. 

PAPER TAPE 

Punched paper tape serves much the same purpose as the punched 
cards. Data are recorded as a special arrangement of punched holes 
along the length of a paper tape. Paper tape is a continuous recording 
medium as compared to cards which are fixed in length. 

Reading or sensing paper tape is basically a process of automatically 
converting data recorded as holes to an electronic language and entering 
the data into the computer. 
. Data are recorded (punched) and read as holes located in eight parallel 

channels along the length of the paper tape. One column of the eight 
possible punching positions (one for each channel) across the width of 
the tape is used to code numeric, alphabetic, special, and functional 
characters. 
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The lower four channels of the tape (excluding the feed holes) are 
labeled 1, 2, 4, and 8; and are used to record numeric characters., The 
numeric characters 1 through 9 are represented as a punch or punches 
in these four positions and the character "0" is represented as a punch 
in the zero position. The sum of the positional values indicates the 
numeric value of the character. For example, a hole In channel I is used 
to represent a numeric 1; a combination of a 1 and 2 punch represents 
a numeric 3. The X and 0 channels are similar to the zone punches in 
cards. These channels are used in combination with the numeric channels 
to record alphabetic and special characters (see Figd.2). 

TRACKS 

IE.L.­
x-I ••• 
0- ••••••••••••• 

CHrcK- •••• ••• • •• <. •• 
• •• < 

• ••••••• • 8- •••• •• •• •• 
FEIED- •••••••••••• • -••••••••••••••••• 
4- I... .... .... . ... . .. . .............. . 
2- •••••• •• • ••••••• 
1- ••••••• ••••••••••• 

•• ••• • : .. : .: ".: • 
Fig. 1.2. < Character Coding for Eight-Channel Paper Tape. 

To check that each character is recorded correctly, each column of the 
tape is punched with an odd number of holes. A check hole must be 
present in any column whose basic code (X, 0, 8, 4, 2, 1) consists of 
an even number of holes. Internal checking devices in the 1620 investigate 
each vertical array of punches to assure that this condition has been 
satisfied. 

A punch in the ElL (end-of-line) channel is a specific function char­
acter used to mark the end of a record on the tape. < The tape feed code 
consists of punches in the X, 0, C, 8, 4, 2, and 1 channels and is used 
to indicate blank character positions. A paper tape reader automatically 
skips over areas of tape punched with the tape feed code. 

Figure 1.2 shows the 1~20 coding for all characters on an 8-channel 
paper tape. 

COMPUTER CHARACTERISTICS 

MACHINE CYCLES 

All computer operations take place in fixed time intervals called machine 
cycles. These time intervals are measured by pulses from an electronic 
clock in the system. Within a machine cycle, ,the computer can perform 
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a specific machine operation. The number of machine cycles required 
to execute a single instruction depends on the nature and function of 
the instruction. 

SERIAL AND PARALLEL OPERATION 

Computers are classified as either serial or parallel depending on the 
method the computer uses to perform arithmetic. Essentially, all arith. 
metic is performed by addition. 

In a serial computer, numbers to be added are considered one position 
at a time (the units position, tens position, hundreds, and so on) in the 
same way that addition is done with paper and pencil. Whenever a carry 
is developed, it is retained temporarily and then added to the sum of 
the next higher order position. 

The time required for serial operation depends on the number of 
digits in the factors to be added. Serial addition is shown in Table 1.1. 

Table 1.1 

1ST STEP 2ND STEP 3RD STEP 4TH STEP 

Augend 1234 1234 1234 1234 

Addend 2459 2459 2459 2459 

Carry 1 1 

Sum 3 93 693 3693 

In a parallel computer, addition is performed on complete data words 
(a "word" is made up of two or more storage positions). The words are 
combined in one operation, including carries. Any two data words, 
regardless of the magnitude of the numbers contained in the words, can 
be added in the same time. Table 1.2 shows parallel addition. 

Augend 

Addend 

Carry 

Final Result 

Table 1.2 

00564213 

00000824 

1 

00565037 



Introduction to Data Processing Systems 9 

FIXED AND VARIABLE WORD LENGTH 

"Fixed word length" and "variable word length" are terms used to 
describe the unit of data that can be addressed (referenced) and proc­
essed by a computer system. 

In fixed word length operation, information is handled and addressed 
in units or words containing a predetermined number of positions. The 
size of a word is designed into the system and normally corresponds to 
the smallest unit of information that can be addressed for processing 
in the central processing unit. Records, fields, characters, or factors are 
all manipulated in parallel as words. 

In variable word length operations, data-handling circuitry is designed 
to process information serially as single characters. Records, fields, or 
factors may be of any practical length within the capacity of the storage 
unit. Information is available by character instead of by word. 

Operation within a given data processing system may be entirely of 
a fixed word nature, entirely variable, or a combination of both. In the 
1620 Data Processing System, data are stored and processed as single 
characters. All arithmetic and data-handling operations are done se­
rially, character by character. 



Chapter 2 

Introduction to the 1620 

Data Processing System 

The 1620 Data Processing System (Fig. 2.1) is an electronic digital 
computer designed for technological and commercial applications. The 
heart of the system is the 1620 Central Processing Unit (Fig. 2.2) which 
houses the arithmetic and logical units, the magnetic core storage 
(20,000 positions), and the console panel and typewriter. The central 
processing unit is augmented by the 1622 Card Read-Punch and/or 
the 1621 Paper Tape Reader and the 1624 Paper Tape Punch, depending 
on whether the system is to process punched cards, paper tape, or both. 

Expansion of the basic system is possible by increasing the size of the 
magnetic core storage in increments of 20,000 positions until a maximum 
of 60,000 positions is reached (Fig. 2.3). A variety of special devices 
and additional instructions is available to increase the power and flex­
ibility of the system. 

Data and instructions entered into the system are placed in core 
storage as decimal digits. Each core storage position can be referred to 
individually and can store one digit of information. The addressing 
system provides for the selection of any digit or group of digits in stor­
age. The 1620 can also process alphabetic characters and special char­
acters such as $, *, -, +, etc. 

The arithmetic and logical section of the computer is directed by the 
stored program. The 1620 has more than 30 different operations in its 

10 



Fig. 2.1. The 1620 Data Processing System. 
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Fig. 2.2. The 1620 Central Processing Unit . 

Fig . 2.3. Additional Core Module with Housing . 
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repertoire. Among these is a powerful set of branching instructions that 
make logical decisions based on the results of tests perfonned on a 
system of indicators and switches. 

Addition, subtraction, and multiplication operations are perfonned by 
a table look-up method described in Chapter 4. Addition and multi­
plication tables are stored in specified areas of storage and are auto­
matically referred to when one of the arithmetic operations is being 
performed. Division is accomplished by a division simulating program 
or by an automatic division feature. 

The 1620 is a variable field computer in the complete sense of the 
term. Not only can data fields be of different lengths, but these same 
variable length fields can also be factors in all arithmetic operations 
without editing for size or position. Accuracy of results is insured by 
automatic internal checking that operates when data is being entered, 
read out, or processed by the system. 

The console of the 1620 consists of control keys, switches, indicator 
panel, and typewriter. The control keys and switches are used for man­
ual or automatic operation of the system. The console panel provides 
a visual indication of the status of various registers and control circuitry 

. within the computer. The typewriter is used as an output device, for 
direct entry of data and instructions into core storage, and for pennanent 
logging of the operator's intervention during the execution of a program. 

Information is entered into the system by the input devices: the 1621 
Paper Tape Reader, the 1622 Card Read-Punch, and the typewriter. 
Eighty-column cards are read at the rate of 250 cards per minute. The 
paper tape reader reads an 8-channel paper tape at the rate of 150 char­
acters per second. Speed of typewriter infonnation entry depends upon 
the operator's ability. 

The recording of processed information is accomplished by the output 
devices; the 1622 Card Read-Punch, the 1624 Paper Tape Punch, and 
the typewriter. Cards are punched at the rate of 125 80-column cards 
per minute; the tape punch punches information in an 8-channel. paper 
tape at the rate of 15 characters per second; and the typewriter types 
at the rate of 10 characters per second. 

Program preparation is simplified by the use of two major program­
ming systems. These are the Symbolic Programming System (SPS) and 
Fortran (from "formula translation"), both of which will be discussed 
in detail. 

SPS, which simplifies program writing by reducing the clerical work 
involved, assembles a program written in mnemonic or symbolic nota­
tion by converting the symbols to machine language instructions and 
assigning locations in core storage for both data and instructions. 

Fortran translates a problem expressed as a series of algebraic state-
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ments into a complete machine language program, generating the step­
by-step instructions necessary to solve the problem. A program written 
in Fortran for the 1620, after minor modifications, can also be translated 
and executed on other computers such as the IBM 7090, 1401, and many 
others. 

INTERNAL DATA REPRESENTATION 

DIGITS 

Each core storage position in the 1620 has a unique address and can 
store one digit of information. Each digit is in a binary coded decimal 
(BCD) form represented by a 6-bit numeric code. In this code, six posi­
tions of binary notation (0 or 1) are used and each of these positions is 
called a bit (binary digit). Each position has one of two conditions: 
either a bit is present represented by a ''1'' or it is not present represented 
by a "0." The six positions are divided into three groups: one check 
bit (C bit), one flag bit (F bit), and four numeric bits with the assigned 
values of 8, 4, 2, and 1 (table 2.1). 

Table 2.1 

CHECK FLAG 

BIT BIT NUMEmcAL BITS 

C F 8 4 2 1 

The value of a decimal digit is the sum of the bits present in the 
numeric portion of the 6-bit code. Only bit combinations whose sum 
is 9 or less are used. Using the notation that a "1" indicates the presence 
of a bit and a "0" indicates the absence of a hit, we would represent the 
decimal digit 6 as 0110 considering only the numeric positions. The 
digit 8 is represented as 1000. 

The check bit is used for· parity checking purposes. A parity check 
is a built-in method of checking the validity of coded information. This 
code checking occurs automatically within the computer as the data 
processing operations are carried out. Each character in the computer 
represented in the 6-bit numeric code must consist of an odd number 
of bits. During processing, a character with an even number of bits 
causes the machine to signal a parity error. When a digit is read ipto 
the computer by an input device, it is automatically converted to the 
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6-bit numeric code and the check bit is automatically added if it is 
required. The flag bit, to be discussed shortly, is counted in parity 
checking. The check bit alone represents the digit O. 

Table 2.2 shows the 6-bit numeric coding of the decimal digits 0 
through 9. 

C F 

0 1 0 

1 0 0 

2 0 0 

3 1 0 

4 0 0 

5 1 0 

6 1 0 

7 0 0 

8 0 0 

9 1 0 

Table 2.2 
CHARACTER CODING 

8 4 

0 0 

0 0 

0 0 

0 0 

0 1 

0 1 

0 1 

0 1 

1 0 

1 0 

The flag bit is used in three ways: 

2 1 

0 0 

0 1 

1 0 

1 1 

0 0 

0 1 

1 0 

1 1 

0 0 

0 1 

1. Field Definition: The high-order position of a numeric field is defined 
by the presence of a flag (the terms "flag" and "flag bit" are used 
synonymously). Thus the number 537 would appear in storage with 
a flag bit in the core position containing the 5. A flag is denoted by 
a horizontal line above a digit, 537. 

2. Sign Control: The presence of a flag in the units position of a nu­
meric field indicates that the field is negative. If no flag is present 
in the units position of a field, the field is taken to be positive. The 
number -537 would appear in storage as 537. 

3. Carries: Flags present in certain digits of the addition table (see 
Chapter 4) are interpreted as carries in arithmetic operations. 

A record mark character (:I:) is a nondecimal digit with C-8-2 or F-8-2 
coding. It is primarily used in input and output operations and in record 
transmission within the computer. The novice programmer will find 
that a good portion of his errors occur in attempting to do arithmetic 
operations on record marks. 
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A numeric blank has C-8-4 coding. It is used for the control of blank 
columns when cards are being punched, and, like the record mark, can­
not be used in arithmetic operations. Unlike the record mark, it may not 
even be present in an instruction. 

Alphabetic information is represented in the computer in a double­
digit form. Two core storage locations are required to represent one 
alphamerical character. The two digits are referred to as the zone digit 
and the numerical digit. The two digits representing one alphamerical 
character must be located in adjacent core positions, and the zone digit 
must always occupy an even-numbered core position. 

Table 2.3 shows the double-digit representation of all the alphameric 
characters. 

Table 2.3 
ALPHAMERIC DATA REPRESENTATION 

~
zone Digit 

fNUmeriCal Digit 

r-Character 

0* * 
00 b (blank) 
03 
04 ) 
10 + 
13 $ 
14 * 
20 
21 / 
23 
24 
33 = 
34 @ 
41 A 
42 B 
43 C 
44 D 
45 E 
46 F 
47 G 
48 H 
49 I 
50 0 
51 J 
52 K 

r>?:one Digit r Numerical Digit 

r- Character 

53 L 
54 M 
55 N 
56 0 
57 P 
58 Q 
59 R 
62 S 
63 T 
64 U 
65 V 
66 W 
67 X 
68 Y 
69 Z 
70 0 
71 1 
72 2 
73 3 
74 4 
75 5 
76 6 
77 7 
78 8 
79 9 
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FIELDS 

A field consists of a number of consecutive digits which are considered 
as a group in arithmetic and internal data transmission instructions. A 
field is always addressed (referenced) by its low-order digit, which oc­
cupies the highest numbered core storage position of the field. A field 
is processed serially from right to left into successively lower core stor­
age positions until a digit with a flag is sensed. The digit with the flag 
is treated as part of the field, but no more digits are processed. 

The absence of a flag in the low-order position of a field (the addressed 
digit) is unconditionally interpreted as a positive field of data. 

One-digit fields of data are not allowed. The smallest allowable data 
field is two digits. 

Figure 2.4 illustrates the processing of a field. 

---Field----l 

X X X 

t Direction Processed t 
Flag Bit Addressed Digit 

(End of Field) (low-Order Position of Field) 

Fig. 2.4. Field Processing. 

RECORDS 

A record consists of a field or fields of data related to input-output 
operations. A record is addressed at its high-order digit, which occupies 
the lowest core storage position of the record. Records are processed 

Record Mark Record Mark 

~~x J,.1d 0 X r 0J"1d 0 X I X ~fi'ld~ i X X 

~------Record-------"" 

• 
Arrows Indicote Direction of Processing 

Fig. 2.5. Record Processing. 
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serially from left to right (high-order to low-order digits). A record 
mark (:I:) defInes the end of a record and is located in the highest num­
bered core location. 

Figure 2.5 illustrates the processing of a record as compared to the 
processing of a fIeld. 

NUMERICAL AND ALPHAMERICAL MODES 
The input-output instructions of the 1620 cause data to be read or 

written in either a numerical or alphamerical mode. The 1620 has no 
way to determine if an element entering the system is being entered as 
numeric data or alphabetic data unless the appropriate mode is indicated 
in the input-output instruction. 

In the numeric input mode each character read in is represented in 
storage by one decimal digit. Alphabetic and special characters will not 
enter storage correctly as they require a double-digit representation. 
Only the record mark (t), numeric blank, and the digits 0 through 9 
will be represented in storage correctly. In the numeric output mode 
each character in storage is represented as a single character on the 
output medium. Data in storage in the double-digit code will not be 
converted to its single character representation. 

In the alphameric input mode each input character is automatically 
converted to its double-digit representation and is stored in memory as 
two decimal digits. In the alphameric output mode the double-digit 
representation of data is automatically converted to single characters 
which are then written on the output medium. 

MAGNETIC CORE STORAGE 
The storage medium utilized by the 1620 Data Processing System is 

magnetic core storage. A magnetic core is a tiny ring of ferromagnetic 
material a few hundredths of an inch in diameter. The outstanding 
characteristic of the core is that it can be easily magnetized, and, unless 
deliberately changed, it retains its magnetism indefInitely. 

Many of these cores are strung on a screen of wires to form what is 
called a core plane (Fig. 2.6). 
By sending half the amount of current necessary to magnetize a core 
through each of the two wires passing through the core in question we 
can magnetize it. Note that no other core in the plane becomes mag­
netized by the current flowing through the two wires. Furthermore, by 
reversing the flow of current through the wires, we can magnetize the 
core in the other direction. Thus, depending upon the direction of the 
current flow, a core can be either positively or negatively magnetized. 
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~1/2 Current 

~ ,~~ ',i 

Fig. 2.6. A Standard Core Plane. 
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Cores then can be controlled in two ways: by selecting a specific pair 
of wires, we can decide which core is to be affected; and by controlling 
the direction of current How, we can determine whether it is to be posi­
tively or negatively magnetized. We can now adopt a convention and 
say that when a core is positively magnetized it is "on" or contains a 
bit. If a core is negatively magnetized it is "off" and does not contain 
a bit. 

If we stacked six core planes vertically so that a vertical column con­
tained six cores, we could represent the' 6-bit numeric coding used by 
the 1620 for internal data representation. Each of the six core planes 
assumes a specific value-one plane would be the C-bit plane, another 
plane would be the F-bit plane, and another plane would be the 8-bit 
plane, etc. Thus six vertical cores form a core storage position and can 
represent any decimal digit through the 6-bit numeric code signified by 
the status of the cores (positive or negative). 

In the 1620, core storage is made up of 12 core planes. Thus one 
vertical column contains two core storage positions. The top six core 
planes represent all the even-numbered addresses, and the bottom six 
core planes represent all the odd-numbered core addresses. Figure 2.7 
shows the core array in the 1620. 

Since all 12 core planes are read out simultaneously, any single core 
storage address affects two adjacent core storage positions, one with an 
even-numbered address and one with an odd-numbered address. Those 
cores with a positive charge are read into a Memory Buffer Register 
( MBR) . The MBR is a two-position register into which both the odd 
and even addressed digits are read from core. If the digit in core posi­
tion 00500 were addressed, the MBR would receive the digits from core 
positions 00500 and 00501. If the digit in core position 00501 were ad-
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MBR Even 

Bit Core Plones (Even) 

C 

F 

8 

4 

2 

Bit Core Planes (Odd) 

C 

F 

8 

4 

2 

~---.'V __ --J 

6 4 

Fig. 2.7. 1620 Core Array. 
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dressed, the MBR would again receive the digits from core positions 
00500 and 00501. 

Core storage positions are addressed sequentially from 00000 to the 
highest numbered core storage address: 19999,39999, or 59999. Address­
ing is cyclical in that position 00000 follows the highest allowable address 
when incrementing, and precedes the highest allowable address when 
decrementing. 



Chapter 3 

Basic Programming Concepts 

Contrary to some popular belief, the digital computer is not a "brain." 
It does not yet possess the intelligence to think. The computer can do 
nothing of its own volition, but must rely upon instructions supplied by 
humans to perform a given task. Thus a communication between man 
and computer is necessary. This communication takes the form of a 
set of formal instructions with which we command the computer and 
to which the computer responds. Once the computer has received its 
instructions, it can perform its task at speeds measured in microseconds. 
The combination of the human thought process and the fantastic speeds 
at which computers operate form a powerful tool for industry and re­
search. 

Chapters 5 through 9 are devoted to a complete detailed description 
of all basic 1620 instructions. These instructions fall into five general 
categories: 

1. Arithmetic 
2. Internal Data Transmission 
3. Branch 
4. Input-Output 
5. Miscellaneous 

The 1620 digital computer utilizes a 12-digit instruction which is 
divided into three parts: a 2-digit operation (OP) code, a 5-digit P address 
(P Operand), and a 5-digit Q address (Q Operand). Each of the 12 digits 
making up an instruction is assigned a unique notation so that easy 

22 
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reference may be made to any part of an instruction. The two digits 
forming the operation code will be referenced as 0 0 and 0 1, The five 
digits comprising the P address will be referenced as P2, Pa, P4, P5, and 
P6• Similarly, the five digits comprising the Q address will be referenced 
as Q7, Qs, Q9, QI0, and Qll' 

Fig. 3.1 illustrates the format of a 1620 instruction. 

00 J 01 P21 Pa I P4 I P5 I P6 Q7 I Qs I Q9 I QlO I Qll 

OP P Address Q Address 
Code 

Fig. 3.1. Instruction Format. 

The 2-digit operation code specifies which operation is to be executed. 
Table 3-1 is a chart of all basic 1620 operation codes and their associated 
mnemonics. Mnemonics refer to the alphabetic representation of opera­
tions codes used in the symbolic programming system (see Chapter 11). 

The 5-digit P operand has many functions, depending on the instruc­
tion. It may represent the core location (1) that data is transmitted to, 
( 2) that data is transmitted from, (3) that the program branches to, or 
( 4) of data to be processed. 

Likewise, the Q operand has many functions, depending on the 
instruction. It may represent (1) the address from which data is trans­
mitted, (2) the input-output device that is employed, (3) the address of 
data to be processed, or (4) the indicator that is interrogated. 

The 1620 has an extremely powerful and flexible instruction repertoire. 
Certain arithmetic and internal data transmission instructions are labeled 
immediate. These instructions use part of the instruction itself as a data 
field. The low-order position of the data field is the Qll position of the 
instruction itself. The immediate instructions greatly facilitate pro­
gramming and conserve storage locations by storing constants as part 
of instructions. 

The instructions that direct the 1620 are stored in the magnetic core 
memory of the computer. The high-order digit (00) of an instruction 
must be located in an even-numbered core position. This restriction is 
imposed by the workings of the internal circuitry of the computer, with 
which we will not concern ourselves at this time. Suffice it to say that 
this restriction is easily complied with. 

An instruction is referenced by the core location of its high-order digit 
(00 ), Thus if we refer to the instruction at core location 00012, the 
instruction we are referencing is made up of the digits in core locations 
00012 to 00023, inclusive. 
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Table 3.1 

MNEMONIC CODE 

ARITHMETIC INSTRUCTIONS 
Add A 21 
Add Immediate AM 11 
Subtract S 22 
Subtract Immediate SM 12 
Multiply M 23 
Multiply Immediate MM 13 
Compare C 24 
Compare Immediate CM 14 

INTERNAL DATA TRANSMISSION INSTRUCTIONS 
Transmit 'Digit TD 25 
Transmit Digit Immediate TDM 15 
Transmit Field TF 26 
Transmit Field Immediate TFM 16 
Transmit Record TR 31 

BRANCH INSTRUCTIONS 
Branch B 49 
Branch No Flag BNF 44 
Branch No Record Mark BNR 45 
Branch on Digit BD 43 
Branch Indicator BI 46 
Branch No Indicator BNI 47 
Branch and Transmit BT 27 
Branch and Transmit Immediate BTM 17 
Branch Back BB 42 

INPUT-OUTPUT INSTRUCTIONS 
Read Numerically RN 36 
Write Numerically WN 38 
Dump Numerically DN 35 
Read Aiphamerically RA 37 
Write Aiphamerically WA 39 

MISCELLANEOUS INSTRUCTIONS 
Control K 34 
Set Flag SF 32 
Clear Flag CF 33 
Halt H 48 
No Operation NOP 41 

The 1620 uses a 2-address instruction system. During normal operation, 
program instructions are executed sequentially. For example, if we 
start at core location 00000, the instructions at 00000, 00012, 00024, 00036, 
and so forth, are executed in that order. This sequential execution of 
instructions can be altered by the use of the branch instructions discussed 
in Chapter 7. 
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In a 2-address system both addresses may reference data. The 2-
address system is in contrast to a 1-over-1 addressing system, in which 
part of the instruction itself is used to indicate the location of the instruc­
tion to be executed next. The 2-address system is, in many ways, a much 
more powerful and flexible programming system. 

In the discussion of the functions of the Q address, it was mentioned 
that indicators may be interrogated. The 1620 has internal machine indi­
cators to facilitate the decision-making ability of the computer. The 
three indicators of greatest importance are the following: 

1. High Positive (HIP). The High Positive indicator is turned on if the 
result of an arithmetic operation is positive and not zero. 

2. Equal/Zero (E/Z). The Equal Zero indicator is turned on if the 
result of an arithmetic operation is zero. 

3. Overflow. The Overflow indicator is turned on if certain overflow 
conditions exist. 

A more detailed discussion of the on-off status of the indicators is made 
in the chapter on arithmetic instructions. 

As each instruction is discussed, a formula for computing execution 
time will be given. The following abbreviations are used. 

Dp = Number of digits, including high-order zeros, in the field at the 
P address. 

Dq = Number of digits, including high-order zeros, in the field at the 
Q address. 

De = Number of positions compared prior to detection of a digit other 
than zero.' 

Rq = Number of digits, including the record mark, in the record at the 
Q address. 



Chapter 4 

The Algorithms of Arithmetic 

The heart of the hand calculator is the accumulator unit, which oper­
ates on the principle of the toothed gear. Addition is usually accomplished 
by rotating the gear in one direction. As the gear reaches a maximum 
position it flips an adjacent gear. In this way carries are propagated in 
the addition process. Subtraction· is accomplished by rotating the gear 
in a direction opposite to that of addition. Multiplication can be con­
sidered as successive addition, and division as a process of iterative 
subtraction. The 1620 has no accumulator and does not operate on 
the principle of the toothed gear. Consequently, an alternate method of 
performing the basic functions of mathematics must be used. The basic 
operations of the 1620 are addition and multiplication, and certain areas 
of core storage are reserved for addition and multiplication tables. These 
operations are done serially, digit by digit, and the computer "looks up" 
the result of an operation in these tables. Subtraction utilizes the addition 
table but prepares the subtrahend digit before entry into the addition 
table. This preparation takes the form of tens or nines complementation. 
The process of division is discussed in a special chapter. 

The addition table occupies core positions 00300-00399 (see Table 4.1). 
Looking at this table, the reader will notice that the number 7 appears 
at the following 8 locations: 00307, 00316, 00325, 000334, 00343, 00352, 
00361, and 00370. The reader will also notice that a flagged 7 (7) 
appears at core positions 00389 and 00398. 

You have probably noticed that the sum of the digits in the units and 
tens positions of the address is the digit located in that core position. 

26 
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Add Table 
High-Order 
Positions of 
Address 

0030 

0031 

0032 

0033 

0034 

0035 

0036 

0037 

0038 

0039 

o 

0 1 

1. .2 

2 3 

3 4 

4 5 

5 6 

6 7 

7 8 

8 9 

9 0 
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Table 4.1 

Units Position of Address 

23456789 

2 3 4 5 6 7 8 9 

3 4 5 6 7 8 9 0 

4 5 6 7 8 9 0" "1 

5 6 7 8 9 0 "1 2 

6 7 8 9 0 "1 2 "3 

7 8 9 0 1 2 3 4 

8 9 0" T 2 3" 4" 5 

9 if f "2 '3 4 :5 6" 

0 T 2" "3 4" 5 6" '7 

1 2 3 4" 5 6" '7 8 

It is also obvious in the case of the two flagged 7's that the flag is present 
for the purpose of propagation of carries. Addition is accomplished in the 
1620 by literally attaching data digits to a machine-generated address of 
003XX to form a 5-digit add table address. The answer is then "looked 
up" in the add table. 

As a further example note that the sum of the digits 4 and 2 is found 
at table address 00342 or 00324. 

The addition of two numbers that generates a carry-over produces 
the following result: the addition table address generated by the adjacent 
digits will be increased by 1. 

If a field containing n digits is added to a field containing n + k digits 
(k>O), k zeros are inserted automatically to make the fields of equal 
length. These zeroS are inserted one at a time by internal circuitry of 
the 1620. They do not alter the field permanently. (See Fig. 4.1.) 

The process of subtraction is almost identical with that of addition. 
That is, an address of 003XX is generated with the data digits supplying 
the missing positions of the address. However, the subtrahend digit is 
inserted in the look-up address in its tens complement form on the first 
cycle and in its nines complement form thereafter. If the addition table 
yields a flagged digit, the address generated by the contiguous digits will 
be increased by 1 (see Fig. 4.2). 

Multiplication in the 1620 is also accomplished by combining the digits 



28 

185 
+52 
~ 

Beginning Doto 

~\Ik 
1 8~5= ----------------~ 

?f~\' 

I I 
5t~ ------------------~ 7~\\' 

I , 

Plus 1 Carry * 

The Algorithms of Arithmetic 

·1 
Add Table 

,'\\l/jy 
""7-
1/j\~ 

Add Table 

~\I~ 
1~~ 

I I 
• 1 8N% 

7!~ 

Fig. 4.1. Schematic Diagram of Add Operation. 

to be multiplied into a table address. The multiplication table, which 
occupies core locations OOl()()""()0299 (see Table 4.2), does not yield 
as obvious an algorithm as did the addition process. 

The computer does not generate a base address of OOlXX as might be 
expected. Instead, the base address is chosen to be OOXXX. The multipli­
cand digit is inserted into the tens position of the base address. The 
multiplier digit is routed through a special device called the doubler. The 
doubler is an internal device that doubles a digit. Although the multiplier 
digit enters the doubler as a single element, it leaves this unit as a 2-digit 
number (see Fig. 4.3). Mter exit from the doubler, the tens digit of the 
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number is incremented by 1 and is then routed to the hundreds digit 
of the base address being formed. The units digit of the doubler's effort 
is routed to the units digit of the base address, and this completes the 
construction of the multiplication table look-up address. 

Unlike the addition process, the multiplication table look-up process 
yields not one but two digits as the product of any two elements. These 
are found at the table look-up address and the adjacent odd address one 
position higher in core. Internal machine operation causes these digits 
to be reversed and routed out to a product generation area (see Fig. 4.3). 
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Table 4.2 

Units Position of Address 
23456789 

0 0 0 0 0 0 0 0 

1 0 2 0 3 0 4 0 

2 0 4 0 6 0 8 0 

3 0 6 0 9 0 2 1 

4 0 8 0 2 1 6 1 

5 0 0 1 5 1 0 2 

6 0 2 1 8 1 4 2 

7 0 4 1 1 2 8 2 

8 0 6 1 4 2 2 3 

9 0 8 1 7 2 6 3 

0 0 0 0 0 0 0 0 

6 0 7 0 8 0 9 0 

2 1 4 1 6 1 8 1 

8 1 1 2 4 2 7 2 

4 2 8 2 2 3 6 3 

0 3 5 3 0 4 5 4 

6 3 2 4 8 4 4 5 

2 4 9 4 6 5 3 6 

8 4 6 5 4 6 2 7 

4 5 3 6 2 7 1 8 

To the novice, this may seem like a good deal of wind and very little 
storm. Popular belief may lead one to the idea that the computer is 
intelligent enough to add 2 and 3, or multiply 5 and 6, without extensive 
coaching. Unfortunately, in the present state of computer development, 
the thinking machine is semifantasy, semifiction. 

Some computers have accumulating units, as do hand calculators. But 
the methods of arithmetic are generally performed by a cleverly arranged 
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Fig. 4.3. Schematic Diagram of Multiply Operation. 

sequence of electronic switching circuits rather than by the use of the 
toothed gear principle. 
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In general, it is not necessary for a programmer to know these arith­
metic algorithms. In the 1620, however, care must be taken not to store 
information in the core area reserved for the adaition and multiplication 
table sections of memory. There is no internal circuitry to prevent 
entry into this area or destruction thereof during program operation. 



Chapter 5 

The Arithmetic Instructions 

Fundamentally, a computer is a calculator. Hence, the instructions 
that perform arithmetic are among the most important in the repertoire of 
commands. This chapter deals only with those arithmetic instructions 
that are common to all 1620's. Divide commands, which are not neces­
sary for a machine installation, are discussed in a later chapter. Special 
division-simulating programs perform this operation in a variety of 
ways: successive subtraction; approximation of a reciprocal by series, 
followed by a multiplication; etc. The statement that "divide commands 
are not necessary" does not imply that one may not divide with the 
1620. Circuitry, which performs division under command, may not be 
present in some machines, in which case one must resort to division 
simulators called division subroutines. The choice to have division 
command circuitry is made at each machine installation, and such a 
choice is generally made with consideration of two factors: necessity 
and funds. The difference between subroutine divide and command 
circuitry is only one of speed, not accuracy. 

Although speed of calculation is not the only factor under considera­
tion when one undertakes a computer survey, it is an extremely critical 
one. The reader will notice that all timings of operations are given 
in microseconds. It is this remarkable speed factor that makes a com­
puter so valuable. 

----------~--------------Instruction: Add 
Operation Code: 21 
Symbolic Name: A 

Description: 

The datal that is located at the Q address (Q field data) is added 
to the data that is located at the P address (P field data): The sum 

I Unless otherwise specified, the term "data" refers to a single item. 
33 
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replaces the P field data. The Q field data remains unchanged. A zero sum 
retains the sign of the P field data. A sum other than zero retains the 
sign of the larger valued field. If the number of digits in the Q field data 
is less than the number of digits in the P field data, high-order zeros are 
internally generated to make the fields of equal length. The generated 
zeros do not alter the Q field data. 

The addition process is terminated by the sensing of the Hag over 
the . high-order digit of the P field data. The algebraic sign of the 
result is indicated by the presence or absence of a Hag in the units 
position of the P field data after termination of the operation. 

A correct answer may not be developed if the number of digits in 
the Q field data exceeds the number of digits in the P field data. Only 
the number of digits in the Q field data equal to the number of digits 
in the P field data is used in developing the result. An invalid addition 
is always obtained if the addition causes.a carry beyond the high-order 
position of the initial P field data. The carry is lost and does not affect 
the field contiguous to the high-order digit of the P field data. 

If either of the preceding two conditions is obtained, the Overflow 
indicator will be turned on. Processing does not necessarily terminate. 

On the console of the 1620 there are many switches that have two 
settings: "on" and "off". One of these, the Overflow switch, causes the 
1620 to halt if the Overflow indicator is on and the switch is in the "on" 
position. If the Overflow indicator is on and the switch is in the "ofF' 
position, processing continues. If the Overflow indicator is off, the 
switch setting has no effect upon machine operations. 

If the result of the addition is positive, and not zero, the High/Pos­
itive(H/P) indicator will be turned on. The H/P indicator is turned 
off if the result of an addition is negative or zero. The Equal/Zero (E/Z) 
indicator is turned on if the result is zero and off if the result is not 
zero, regardless of sign. 

Execution time of addition varies according to the number of digits 
in the P field data and also according to whether recomplementation 
is necessary. Recomplementation is necessary if both the following 
conditions exist: 

1. The Q and P fields of data are of opposite sign. 
2. The absolute value of the Q field data is greater than the absolute 

value of the P field data. 

Basic Execution Time in Microseconds: 160 + 80Dll 

Recomplementation Time in Microseconds: 80 (Dll + 1) 
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The following examples demonstrate (1) the proper form of the Add 
command, (2) the action as a result of the command, (3) which indi­
cators are in the on status at the conclusion of the command, (4) the 
time of execution including, where applicable, recomplementation time, 
and (5) the validity of the algebraic result. 

Example: 21 15002 10003 

12962 -, ---'I 
Core location 15002 
before addition 

16969 -'----'1 
Core location 15002 
after addition 

Indicator Condition: HIP on 
Time of Execution: 560 microseconds 
Arithmetic Result: Valid 

Example: 21 00932 17962 

0000010 -, ----'1 
Core location 00932 
before addition 

0001516 ' I 
Core location 00932 
after addition 

Indicator Condition: HIP on 
Time of Execution: 1360 microseconds 
Arithmetic Result: Valid 

Example: 21 00917 01232 

01' 1 

Core location 00917 
before addition 

03 ' I 
Core location 00917 
after addition 

4007 ------,1 
Core location 10003 before 
and after addition 

01526 ' 1 

Core location 17962 before 
and after addition 

0102 ' 1 

Core location 01232 before 
and after addition 

Indicator Condition: Overflow and HIP on 
Time of Execution: 320 microseconds 
Arithmetic Result: Invalid 
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Example: 21 10000 15000 

0521 _.---..., 

Core location 10000 
before addition 

0000 _.---...., 

Core location 10000 
after addition 

Indicator Condition: E/Z on 

Time of Execution: 480 microseconds 

Arithmetic Result: Valid 

Example: 21 18053 19999 

99999991 _. ---'1 
Core location 18053 
before addition 

00000000 _. -----.1 
Core location 18053 
after addition 

The Arithmetic Instructions 

521-' -----.1 
Core location 15000 before 
and after addition 

09 _. -------., 

Core location 19999 before 
and after addition 

Indicator Condition: Overflow and E/Z on 

Time of Execution: 800 microseconds 

Arithmetic Result: Invalid 

Example: 21 15721 18982 

012-.------., 

Core location 15721 
before addition 

015 • I 
Core location 15721 
after addition 

00003 _. ------.1 
Core location 18982 before 
and after addition 

Indicator Condition: Overflow and HIP on 

Time of Execution: 400 microseconds 

Arithmetic Result: Valid 
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Example: 21 18999 17999 

00012 • I 
Core location 18999 
before addition 

00010 -'---""1 
Core location 18999 
after addition 

Indicator Condition: Overflow on 

Time of Execution: 1040 microseconds 

Arithmetic Result: Valid 

Example: 21 00895 01026 

0015 -. ----'1 
Core location 00895 
before addition 

0030 _. ----,1 
Core location 00895 
after addition 

Indicator Condition: All off 

Time of Execution: 480 microseconds 

Arithmetic Result: Valid 

Instruction: Subtract 
Operation Code: 22 
Symbolic Name: S 
Description: 

0000000022 • I 
Core location 17999 before 
and after addition 

15-·----...,1 
Core location 01026 before 
and after addition 

37 

The data that is located at the Q address (Q field data) is subtracted 
from the data that is located at the P address (P field data). The differ­
ence replaces the P field data. The Q field data remains unchanged. A zero 
result retains the sign of the P field data. The sign of a result, other than 
zero, is determined by algebraic analysis of the P and Q fields of data. 

The rules concerning validity of result in the subtract operation are 
identical with those of addition. Execution time is also identical with 
that of addition. Recomplementation is necessary if both of the follOWing 
conditions exist: 

1. The Q and P fields of data are of like sign. 
2. The absolute value of the Q field data is greater than that of the 

P field data. 
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Example: 22 00932 17932 

0000010-' ---'1 
Core location 00932 
before subtraction 

0001536 _. ---, 

Core location 00932 
after subtraction 

Indicator Condition: All off 

Time of Execution: 720 microseconds 

Arithmetic Result: Valid 

Example: 22 15002 10003 

12962 _. ----.1 
Core location 15002 
before subtraction 

08955 -, ---..., 

Core location 15002 
after subtraction 

Indicator Condition: HIP on 

Time of Execution: 560 microseconds 

Arithmetic Result: Valid 

Example: 22 00917 01232 

01 -, ------" 

Core location 00917 
before subtraction 

01-·-----. 

Core location 00917 
after subtraction 

Indicator Condition: Overflow on 

Time of Execution: 560 microseconds 

Arithmetic Result: Invalid 

The Arithmetic Instructions 

01526 -, ---..., 

Core location 17932 before 
and after subtraction 

4007 .... , -----,1 
Core location 10003 before 
and after subtraction 

0102 ------.1 
Core location 01232 before 
and after subtraction 
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Example: 22 10000 15000 

0521 _. ----" 

Core location 10000 
before subtraction 

1042 _. ---'I 
Core location 10000 
after subtraction 

Indicator Condition: HIP on 

Time of Execution: 480 microseconds 

Arithmetic Result: Valid 

Example: 22 18053 19999 

000000 _. ---, 

Core location 18053 
before subtraction 

000001 _. ------, 

Core location 18053 
after subtraction 

Indicator Condition: All off 

Time of Execution: 1200 microseconds 

Arithmetic Result: Valid 

Example: 22 17895 01888 

1000 ------, 

Core location 17895 
before subtraction 

0000 _. ----,1 
Core location 17895 
after subtraction 

Indicator Condition: E/Z on 

Time of Execution: 480 microseconds 

Arithmetic Result: Valid 

0521 _. ----,1 
Core location 15000 before 
and after subtraction 

01 -------, 

Core location 19999 before 
and after subtraction 

1000 _. ------, 

Core location 01888 before 
and after subtraction 

39 
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Instruction: Multiplication 
Operation Code: 23 
Symbolic Name: M 
Description: 

The Arithmetic Instructions 

The data that is located at the P address (P field data) is multiplied 
by the data that is located at the Q address (Q field data). The resultant 
product is placed in core storage beginning at position 00099 and extend­
ing through successively lower numbered core positions. 

There are 20 locations in storage (positions 00080-00099) which, in 
toto, are referred to as the fixed product area. These positions are auto­
matically cleared to zeros before formation of the product begins. The 
multiplication operation is terminated by the flag in the high-order posi­
tion of the Q field data. A flag is placed over the high-order position of 
the product and the sign of the product is indicated by the presence or 
absence of a flag in position 00099. 

A zero product may be either positive or negative depending upon 
the signs of the Q and P fields of data. The algebraic rules of sign 
manipulation are obeyed. 

Since the fixed product area is cleared before multiplication begins, 
chain multiplications, without intermediate saving of results, are not 
possible. 

The length of the product is the sum of the number of digits (high­
order zeros included) in the Q and P fields of data. Although only 20 
core positions are cleared to zero prior to the multiplication, a product 
may be formed whose length is limited only by the number of available 
core storage positions. Thus, the product of two 100-digit numbers (or 
greater) is quite possible in a 20,000-core-position 1620. 

If the product to be developed exceeds 100 digits, the highest num­
bered core position below 00000 will contain the digit immediately 
following that contained in 00000. This feature is sometimes termed 
"wrap-around memory." Thus, a product of two 52-digit numbers will 
have its high-order digit at 19996 and its low-order digit at 00099 in a 
20,000-core-position machine or 39996-00099 in a 40,000-core-position 
machine, and so forth. 

It is the programmer's responsibility to clear any core locations below 
core position 00080 if he intends to use them in development of a product. 
Failure to do this may result in an invalid product. 

The HIP and E/Z indicators are affected by multiplication in the 
same fashion as by addition and subtraction. However, it is not possible 
to obtain an overflow condition through multiplication. 

Execution time varies according to the number of digits in the fields 
of data at the Q and P addresses. 
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Execution Time in Microseconds: 560 + 40Dq + 168DqD, 

Example: 23 15000 16000 

003 _. ------.1 
Core location 15000 before 
and after multiplication 

00000006 -, ---"'1 
Core location 00099 
after multiplication 

Indicator Condition: HIP on 

Execution Time: 3280 microseconds 

Example: 23 19765 00897 

012 -, -----.1 
Core location 19765 before 
and after multiplication 

00132 -, ----.1 
Core location 00099 
after multiplication 

Indicator Condition: All off 

Execution Time: 1648 microseconds 

Example: 23 15000 16000 

OJ -, -----.1 
Core location 15000 before 
and after multiplication 

0001 • I 
Core location 00099 
after multiplication 

Indicator Condition: HIP on 
Execution Time: 1312 microseconds 

Instruction: Compare 
Operation Code: 24 
Symbolic Name: C 
Description: 

00002 -, -----" 

Core location 16000 before 
and after multiplication 

II -. -----.1 
Core location 00897 before 
and after multiplication 

01-'----...... 

Core location 16000 before 
and after multiplication 

41 

The data that is located at the Q address (Q field data 1 is compared 
with the data that is located at the P address (P field data). This com-
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parison is accomplished by subtracting the Q field data from the P field 
data and discarding the digits of the difference. However, this subtraction 
is performed by internal machine circuitry and does not affect the Q and 
P fields of data. If the number of digits in the Q field data is less than 
the number of digits in the P field data, high-order zeros are internally 
generated to make the fields of equal length. The generated zeros do 
not alter the Q field data. 

The result of the comparison triggers indicators (HIP, E/Z, and 
Overflow) which may be interrogated at a later stage of the program. 
In no way is the sequence of the program altered by the act of com­
parison. 

If the P field data is algebraically greater than the Q field data, the 
HIP indicator is turned on and the E/Z indicator is turned off. If the 
P field data is equal to the Q field data, the E/Z indicator is turned on 
and the HIP indicator is turned off. If the P field data is less than the 
Q field data, both the HIP and E/Z indicators are turned off. It is 
a priori obvious that both the HIP and E/Z indicators cannot be on 
simultaneously. 

Comparison proceeds serially from low- to high-order positions of data 
(high- to low-core addresses) until terminated by the flag in the high­
order digit of the P field data. If the number of digits (high-order zeros 
included) in the P field data is less than the number of digits (high­
order zeros included) in the Q field data, the Overflow indicator is 
turned on and the comparison terminates with the high-order (flagged) 
digit of the P field data. The comparison up to that point will have been 
correct and the HIP and/or E/Z indicators affected accordingly. 

If the signs of the two fields differ initially, comparison terminates 
when a digit other than zero is detected in either the P or Q fields of 
data. When two fields contain all zeros, the comparison disregards the 
sign and the E/Z indicator is turned on. In the comparison of two fields 
of unlike sign, the positive field is, of course, the greater. 

The numerical sequence of comparison is, as would be expected, 
ascending from 0 through 9. In alphameric representation, the following 
is the sequential order from lowest to highest: 

b [blank character with repres~ntation of 00] . ) + $ * - / , ( 
=@ABCDEFGHIOJKLMNOPQRSTUVW 
XYZ0123456789 

The record mark and numerical blank (see Chapter 2) are not usable 
in the compare instructions as they were also not usable as data in 
arithmetic instructions. Attempts to use them in such commands will 
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result in memory address register check stop conditions (see Appendix 
VI). The computer halts with a MAR check indication at the console. 

Execution time varies according to the number of digits (high-order 
zeros included) in the P field data if and only if the data fields are of 
like sign. The execution time for fields of unlike sign depends upon the 
number of digits compared before a nonzero digit is detected in either 
data field. 

Basic Execution Time in Microseconds: 160 + 80Dp 

Execution Time in Microseconds for Fields of Unlike Sign: 200 + 80D~ 

Example: 24 10000 15000 

857----" 
Core location 10000 before 
and after comparison 

Indicator Condition: HIP on 

Time of Execution: 400 microseconds 

Example: 24 17862 00953 

99 _. ------,1 

49------,1 
Core location 15000 before 
and after comparison 

00001-----, 

Core location 17862 before Core location 00953 before 
and after comparison and after comparison 

Indicator Condition: Overflow and HIP on 

Time of Execution: 320 microseconds 

Example: 24 19823 19999 

152 _. -----, 1009 -----,1 
Core location 19823 before Core location 19999 before 
and after comparison and after comparison 

Indicator Condition: Overflow and HIP on 

Time of Execution: 400 microseconds 

Example: 24 12345 01976 

01000 _. ------,1 
Core location 12345 before 
and after comparison 

Indicator Condition: E/Z on 

Time of Execution: 560 microseconds 

1000 _. -----" 

Core location 01976 before 
and after comparison 
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Example: 24 18999 18001 

192 _. ----.1 
Core location 18999 before 
and after comparison 

Indicator Condition: All off 

Time of Execution: 280 microseconds 

Example: 24 15000 16000 

150 _. ----'1 
Core location 15000 before 
and after comparison 

Indicator Condition: All off 

Time of Execution: 400 microseconds 

Instruction: Add Immediate 

Operation Code: 11 

Symbolic Name: AM 

Description: 

The Arithmetic Instructions 

98765 _. -----.1 
Core location 18001 before 
and after comparison 

138 -.-----, 

Core location 16000 before 
and after comparison 

In the Add instruction, both the P and Q portions of the instruction 
reference core locations where the two data fields are to be found. In 
the Add Immediate instruction, only the P portion of the instruction 
references a data field. The instruction itself, beginning with the digit 
in position Qll, is chosen as the field of data. Addition then proceeds in 
a fashion identical with that of the standard Add command: digit by 
digit serial addition extending through lower and lower core positions. 

As will be remembered in the case of the Add command, both fields 
require flags to designate their high-order positions, and the high-order 
P field data digit terminates the operation. The rule is identical here, but 
since the Qll digit defines the low-order position of the second data 
field, a flag should be present somewhere within the Add Immediate 
instruction to indicate the high-order position of the field. Without this 
flag, addition may proceed through the Q, P, and Operation portions 
of the instruction and into the contiguous instruction, not necessarily 
halting even there. 

All other information pertaining to the Add Immediate command, 
including execution time, is identical with that of Add. 
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Example: 11 12345 00010 

350-·-----, 

Core location 12345 before 
Add Immediate 

360 -. -----, 

Core location 12345 after 
Add Immediate 

Indicator Condition: HIP on 

Time of Execution: 400 microseconds 

Arithmetic Result: Valid 

Example: 11 19854 08000 

178569 -. -----, 

Core location 19854 before 
Add Immediate 

186569 -. ----, 

Core location 19854 after 
Add Immediate 

Indicator Condition: HIP on 

Time of Execution: 640 microseconds 

Arithmetic Result: Valid 

Example: 11 00500 00000 

5000000000 -.----, 

Core location 00500 before 
Add Immediate 

5050000000 ..... --, 

Core location 00500 after 
Add Immediate 

Indicator Condition: HIP on 

Time of Execution: 960 microseconds 

Arithmetic Result: Valid 

45 
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Exantple: 11 18888 00001 

0500 _. --'-----'1 
Core location 18888 before 
Add Immediate 

0499 -, ----'1 
Core location 18888 after 
Add Immediate 

Indicator Condition: HIP on 

Time of Execution: 480 microseconds 

Arithmetic Result: Valid 

Example: 11 14567 01500 

01326 -'-----,1 
Core location 14567 before 
Add Immediate 

00174 -, -----.\ 
Core location 14567 after 
Add Immediate 

Indicator Condition: All off 

Time of Execution: 1040 microseconds 

Arithmetic Result: Valid 

Example: 11 15000 00100 

000100 -, ----, 

Core location 15000 before 
Add Immediate 

000200 ---'I 
Core location 15000 after 
Add Immediate 

Indicator Condition: Overflow and HIP on 

Time of Execution: 640 microseconds 

Arithmetic Result: Valid 

Instruction: Subtract Immediate 
Operation Code: 12 
Symbolic Name: SM 

Description: 

The Arithmetic Instructions 

The field beginning with the Ql1 digit of the Subtract Immediate 
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instruction is subtracted from the field referenced by the P address. The 
requirements pertaining to the use of the £lag in Add Immediate are 
identical here. All other information, including execution time, is iden­
tical with that of Subtract. 

Exanlple: 12 12345 00010 

610 ------,1 
Core location 12345 before 
Subtract Immediate 

600 -, -------.1 
Core location 12345 after 
Subtract Immediate 

Indicator Condition: HIP on 

Tinle of Execution: 400 microseconds 

Arithnletic Result: Valid 

Exanlple: 12 16543 00101 

1001 -, -----,1 
Core location 16543 before 
Subtract Immediate 

1102 _. -------" 

Core location 16543 after 
Subtract Immediate 

Indicator Condition: HIP on 

Tinle of Execution: 480 microseconds 

Arithnletic Result: Valid 

Exanlple: 12 09527 01000 

00572 _. ---'I 
Core location 09527 before 
Subtract Immediate 

00428 -----" 
Core location 09527 after 
Subtract Immediate 

Indicator Condition: All off 

Tinle of Execution: 1040 microseconds 
Arithnletic Result: Valid 
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Exantple: 12 15222 12345 

125 I 

Core location 15222 before 
Subtract Immediate 

220 _. -------.1 
Core location 15222 after 
Subtract Immediate 

Indicator Condition: OverHowon 

Time of Execution: 720 microseconds 

Arithmetic Result: Invalid 

Exantple: 12 10000 00000 

000000000000 I 
Core Location 10000 before 
Subtract Immediate 

121000000000 I 
Core location 10000 after 
Subtract Immediate 

Indicator Condition: All off 

Time of Execution: 2160 microseconds 

Arithmetic Result: Valid 

Instruction: Multiply Immediate 

Operation Code: 13 

Symbolic Name: MM 

Description: 

The Arithmetic Instructions 

The P field data is multiplied by the field beginning with the Qn digit 
of the Multiply Immediate instruction. Multiplication is terminated by a 
Hag in the high-order position of the multiplier. Since the low-order 
multiplier digit is Qn of the Multiply Immediate instruction, the require­
ments concerning the use of the Hag in previous Immediate-type instruc­
tions are also applicable here. All other information, including execution 
time, is identical with that of Multiply. 
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Exantple: 13 13243 00100 

25 ------.1 
Core location 13243 before and 
after Multiply Immediate 

002500 ----., 

Core location 00099 after 
Multiply Immediate 

Indicator Condition: HIP on 

Time of Execution: 2064 microseconds 

Exantple: 13 00800 00002 

02-,------., 

Core location 00800 before and 
after Multiply Immediate 

00004 -, ----'1 
Core location 00099 after 
Multiply Immediate 

Indicator Condition: All off 

Tinte of Execution: 1688 microseconds 

Exantple: 13 10000 00001 

01 -, -------" 
Core location 10000 before and 
after Multiply Immediate 

00001-' ---I 
Core location 00099 after 
Multiply Immediate 

Indicator Condition: HIP on 

Time of Execution: 1688 microseconds 

Instruction: Compare Immediate 

Operation Code: 14 

Symbolic Name: CM 

Description: 

49 

The P field data is compared with the field whose units position is at 
the Qll digit of the Compare Immediate instruction. The requirements 
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concerning the use of a flag in the previous Immediate instructions are 
also applicable here. All other information, including execution time, is 
identical with that of Compare. 

Exanlple: 14 15000 00123 

135 -, -------.1 
Core location 15000 before and 
after Compare Immediate 

Indicator Condition: HIP on 

Tinle of Execution: 400 microseconds 

Exanlple: 14 17869 ooolI 
000000l1-· -----.1 
Core location 17869 before and 
after Compare Immediate 

Indicator Condition: E/Z on 

Tinle of Execution: 800 microseconds 

Exanlple: 14 15003 12354 

00021789 -, -----.1 
Core location 15003 before and 
after Compare Immediate 

Indicator Condition: All off 

Tinle of Execution: 800 microseconds 

Exanlple: 14 12345 10000 

0500-' ------, 

Core location 12345 before and 
after Compare Immediate 

Indicator Condition: Overflow and HIP on 

Tinle of Execution: 480 microseconds 

Exanlple: 14 13000 00000 

141300000000 -, 
Core location 13000 before and 
after Compare Immediate 

Indicator Condition: Overflow and E/Z on 
Tinle of Execution: 1120 microseconds 
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Problems 

For all Problems, the following core content is assumed: 

CORE LOCATION 

(LOW-ORDER DIGIT) CONTENTS 

00857 320 

10000 95 

12027 15621 

13056 009102 

15007 01 
16029 001 

17926 10 

18522 987651 

19027 9812971 

19558 287028 

State the following for all problems: 
1. Result (Value and location). 
2. Indicator conditions (In the case of multistep programs, state final indi-

cator conditions). 
3. Timings in microseconds. 
4. Validity (In the case of multistep programs, state validity of final result). 
The core content listed above is to be assumed for every problem and the 

results of anyone problem are independent of all others. 

1. 21 18522 15007 16. 21 12027 17926 

2. 21 10000 12027 22 12027 10000 

3. 21 12027 10000 17. 21 13056 12027 

4. 21 16029 16029 22 13056 19027 

5. 21 19027 19558 18. 21 19027 19558 

6. 21 17926 16029 21 16029 10000 

7. 21 13056 15007 22 19027 16029 

8. 22 18522 15007 19. 23 10000 15007 

9. 22 10000 12027 20. 23 17926 18522 

10. 22 12027 10000 21. 23 18522 17926 

11. 22 16029 16029 22. 23 13056 16029 

12. 22 19027 19558 23. 23 16029 13056 

13. 22 17926 16029 24. 22 10000 15007 

14. 22 13056 15007 21 16029 10000 

15. 21 12027 10000 23 16029 17926 

22 12027 17926 25. 22 19027 19558 
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22 19027 15007 34. 11 17926 00003 
23 16029 19027 35. 11 12027 10000 

26. 21 16029 15007 36. 11 13056 10000 
21 10000 17926 37. 22 00857 10000 
23 16029 10000 11 10000 00010 

27. 24 16029 17926 22 00857 10000 
28. 24 18522 19558 38. 12 10000 00010 
29. 24 15007 16029 11 10000 00001 
30. 24 00857 17926 13 10000 00100 
31. 21 10000 15007 14 00099 86000 

22 10000 17926 39. 21 13056 12027 
23 17926 17926 22 13056 10000 
24 00099 10000 13 13056 01000 

32. 23 00857 17926 24 00099 19027 
24 12027 00099 40. 23 16029 16029 

33. 11 15007 00001 24 00099 15007 
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Internal Data Transmission 

The ability to move data from one internal location to another is 
fundamental to computer operations. For instance, it may be necessary 
to obtain the sum of two fields and retain both fields unaltered. Thus, 
one field must be moved to an alternate location and the addition process 
then accomplished. 

The variety of ways that data may be internally transmitted distin­
guishes today's computers from those of five years ago. Computers of 
the future will undoubted~y have an even greater repertoire of data 
transmission instructions. The 1620 has five such commands in its basic 
repertoire. 

Instruction: Transmit Digit 

Operation Code: 25 

Symbolic Name: TD 

Description: 

The content of the single core position referenced by Q7 through Q11 
is transmitted to the single core position referenced by P2 through Pa. 
The digit at the Q address is not altered. If it contains a flag, the flag 
is transmitted also. 

Execution Time in Microseconds: 200 (constant) 
53 
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Example: 25 15000 10000 

6 _. -------.1 
Core location 15000 before 
Transmit Digit 

3 ------., 
Core location 15000 after 
Transmit Digit 

Example: 25 12000 11000 

2 ------" 
Core location 12000 before 
Transmit Digit 

9------.1 
Core location 12000 after 
Transmit Digit 

Example: 25 17000 18000 

4 --------.1 
Core location 17000 before 
Transmit Digit 

5 _. ------.1 
Core location 17000 after 
Transmit Digit 

Example: 25 11111 12222 

0-------,1 
Core location 11111 before 
Transmit Digit 

:j:------, 

Core location 11111 after 
Transmit Digit 

Instruction: Transmit Field 

Operation Code: 26 

Symbolic Name: TF 

Description: 

Internal Data Transmission 

3 _. ------.\ 

Core location 10000 before 
and after Transmit Digit 

9 _. -------.1 
Core location 11000 before 
and after Transmit Digit 

5 _. ------,1 
Core location 18000 before 
and after Transmit Digit 

:j:------.I 

Core location 12222 before 
and after Transmit Digit 

The Q field data is transmitted serially to contiguous core locations 
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beginning at the core position referenced by the P address of the Transmit 
Field instruction. Transmission proceeds from low- to high-order digits 
of the Q field data (high- to low-core addresses) and is terminated by 
the sensing of the flag in the high-order position of the Q field data. 

The transmission of data is destructive in nature. That is, the data in 
locations P through P - Dq + 1 is destroyed by the transmission of the 
Q field data digits. The Q field data remains unchanged. 

Execution Time in Microseconds: 160 + 40Dq 

Example: 26 15000 16000 

23457 _. ---"""1 
Core location 15000 before 
Transmit Field 

00000 _. -----.1 
Core location 15000 after 
Transmit Field 

Time of Execution: 360 microseconds 

Example: 26 10000 11000 

1213+4 • I 
Core location 10000 before 
Transmit Field 

121310 _. -----.1 
Core location 10000 after 
Transmit Field 

Time of Execution: 240 microseconds 

Example: 26 00952 12621 

00120 _. ----, 

Core location 00952 before 
Transmit Field 

5H:j::j: _. -----.1 

Core location 00952 after 
Transmit Field 

Time of Execution: 360 microseconds 

00000 _. ----" 

Core location 16000 before 
and after Transmit Field 

10 -, ------.1 
Core location 11000 before 
and after Transmit Field 

5:j::j::j::j: 1 

Core location 12621 before 
and after Transmit Field . 
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Instruction: Transmit Record 

Operation Code: 31 

Symbolic Name: TR 

Description: 

Internal Data Transmission 

The Q record data is transmitted serially to contiguous core locations 
beginning at the core position specified by the P address. Transmission 
proceeds from high- to low-order digits of the Q record data (low- to 
high-core addresses) and is terminated by the presence of a record mark 
in the Q record data. The record mark is transmitted as part of the 
record and the Q record data remains unchanged. Record transmission, 
like field transmission, is destructive in nature. 

Execution Time in Microseconds: 160 + 40Rq 

Example: 31 15000 16000 

[ 121345 ... 

Core location 15000 before 
Transmit Record 

[ 41424344000:j: 

. Core Location 15000 after 
Transmit Record 

Time of Execution: 640 microseconds 

Example: 31 10000 15500 

[ 1:j:3:j:5t217:j:02 ... 

Core location 10000 before 
Transmit Record 

[ 21653:j:217:j:02 ... 

Core location 10000 after 
Transmit Record 

Time of Execution: 400 microseconds 

[ 41424344000:j: 

Core location 16000 before 
and after Transmit Record 

r 21633:j: 

L Core location 15500 before 
and after Transmit Record 

Instruction: Transmit Digit Immediate 

Operation Code: 15 

Symbolic Name: TDM 

Description: 

The digit located at Ql1 of the Transmit Digit Immediate instruction 
is transmitted to the single core position referenced by P2 through Po. 
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The original Qlldigit is not altered. If the Qll digit is flagged, the flag 
is also transmitted. Positions Q7 through QlO are not utilized. 

Execution Time in Microseconds: 200 (constant) 

Example: 15 10000 12345 

6 -, -------, 

Core location 10000 before 
Transmit Digit Immediate 

5 _. ------.1 
Core location 10000 after 
Transmit Digit Immediate 

Example: 15 11125 00123 

+ _.------., 
Core location 11125 before 
Transmit Digit Immediate 

3 ------.1 
Core location 11125 after 
Transmit Digit Immediate 

Example: 15 00928 8888+ 

2 -, ------.1 
Core location 00928 before 
Transmit Digit Immediate 

+ . I 
Core location 00928 after 
Transmit Digit Immediate 

Instruction: Transmit Field Immediate 

Operation Code: 16 

Symbolic Name: TFM 

Description: 

The field whose units position is the Qll digit of the Transmit Field 
Immediate instruction is chosen as the data field and is serially trans­
mitted to contiguous core locations beginning at the core position refer­
enced by the P address. Transmission proceeds from low- to high-order 
digits of the data field (high- to low-core addresses) until terminated by 
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the presence of a flag in the high-order position of the field. The 
requirements imposed by the necessity for a flag in the arithmetic 
Immediate instructions are identical here. 

Execution Time in Microseconds: 160 + 40Dq 

Example: 16 19999 12345 

01986 • I 
Core location 19999 before 
Transmit Field Immediate 

12345 _. ----., 

Core location 19999 after 
Transmit Field Immediate 

Time of Execution: 360 microseconds 

Example: 16 09000 00000 

llllllIl-, --"""1 
Core location 09000 before 
Transmit Field Immediate 

00000000 _. ----'1 
Core location 09000 after 
Transmit Field Immediate 

Time of Execution: 480 microseconds 

Example: 16 10000 O:tt:tt 
98765-·-----.1 
Core location 10000 before 
Transmit Field Immediate 

Ot:ttt _. ----,1 
Core location lOOOO after 
Transmit Field Immediate 

Time of Execution: 360 microseconds 
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Problems 

For all problems the following core location and content is assumed: 

CORE LOCATION 

(LOW-ORDER DIGIT) 

10000 

11000 

12255 

17956 

CONTENTS 

123t42 

600000 

27 

10 
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The core content listed above is to be assumed for every problem and the 
results of anyone problem are independent of all others. 

What and where will be the final arithmetic results for the following 
problems? 

1. 

2. 

3. 

4. 

25 11001 09998 
31 16995 10995 
21 17Q@O·,17956 
12 17000 00010 
15 12256 00000 
15 12257 00000 
15 12258 00000 
15 12259 00000 
26 17000 12259 
22 17000 17956 
16 12259 00000 
25 12256 11000 
26 17000 .. 12259 
22 17000 17956 
26 12259 10998 

15 12256 00000 
26 17000 17956 
22 17000 17956 

5. 31 10998 09995 
15 10998 00001 
11 11000 00123 
21 11000 12255 
12 11000 00027 

6. 21 11000 09997 
25 19999 11000 
25 11000 10999 
25 10999 19999 
26 19999 11000 
II 19999 00132 
24 11000 19999 
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Branch Instructions 

The great power of a digital computer is derived not only from its 
microsecond speed, but also from its ability to make logical decisions 
and choose alternative paths. In fact, the ability to choose one of several 
alternate paths is what differentiates the computer from a high-speed 
calculator. 

As previously stated, the 1620 executes the stored program instructions 
sequentially. Obviously, it is often desirable to deviate from sequential 
execution of instructions and to "branch" (go to) to some other part of 
the program for the next instruction. The question of whether to continue 
instruction execution sequentially or to branch to some other portion of 
the program requires the computer to make a decision that might be 
based on the result of a test. For example, if we were writing a program 
to calculate the real roots of a quadratic equation by the formula 

X = - B±y'B2 - 4AC 
2A ' 

we would first find the value of B2 - 4AC. If this value were positive 
we would want to continue and solve for X. However, if the result were 
negative we would not want to continue, but would want to go to 
another part of the program and perhaps type out an indication that no 
real roots existed. The 1620 can be programmed to make certain tests 
and to branch to a particular part of the stored program as determined 
by the results of the tests. Several tests may be made to effect more 
complex decisions. 

This chapter is devoted to that class of instructions which enable the 
computer to deviate from a sequential instruction execution and to go 
to some other portion of the program for the next instruction. The 
1620 has in its instruction repertoire 9 Branch instructions, 2 of which 
give the programmer the ability to test for anyone of 28 conditions. 

Branch instructions are of two types, unconditional branches and 
conditional branches. As the name implies, an unconditional branch 

60 
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will branch to a specified address for the next instruction no matter what 
~nditions exist at the time. In contrast, a conditional branch will branch 
to another part of the program for, the next instruction if and only if 
some specific condition exists. 

UNCONDITIONAL BRANCH INSTRUCTIONS 
Instruction: Branch 
Operation Code: 49 
Symbolic Name: B 

Description: 

The program branches unconditionally to the' instruction specified by 
the P ad<lress. The P address must reference an even-numbered core 
location since it is the address of an instruction. The Q portion of the 
instruction is not utilized. 

The Branch instruction may be used to return to the first of a series of 
instructions which are repeatedly executed, with variations in data each 
time, until certain conditions are satisfied. This is an iterative process 
known in data processing as looping. One execution of a loop is called 
a pass. As an example of looping, consider the How chart of a program 
to sum the numbers from 1 to 100. 

NO 

This loop will 
be executed 
100 times 

0. The symbol (-) means 
to replace the value to which 
the arrow points by the value 
of the expression at the tail of 
the arrow. 
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The Branch instruction may also be used to return to the main program 
after an exception routine is completed or to start a program at any 
instruction in core storage. 

Execution Time in M icrQseconils: 200 (constant) 

Example: 49 07000 00000 

Branch to the instruction 
whose address is 07000 

'Example: 49 00402 89617 

Branch to location 00402 for 
the next instruction 

Example: 49 08013 00000 

This instruction is incorrect 
because the address of the in~ 
struction to be branched to is 
odd. 

UNCONDITIONAL BRANCH INSTRUCTIONS 
WITH VARIATIONS 

CLOSED SUBROUTINE 

A closed subroutine may be defined as a subprogram that can be 
entered from any instruction in a main program and that will provide 
for automatic re-entry to the instruction following the exit point in the 
main program. 

Closed subroutines are frequently desired in stored programs. As an 
example, it may be necessary to take the square root of different numbers 
at different points in the program. Whenever it is desired to take the 
square root of a number, the instructions to do so could be included in 
the program sequentially. However, this would mean that the same 
series of instructions would reappear whenever we wanted to calculate 
a square root. It is more desirable to include the series of instructions 
to calculate the square root once in the program, and to make use of 
this subroutine whenever required. To do this, three considerations 
must be met: 

1. The address of the return point in the main program must be made 
available to the subroutine for re-entry to the main program. 

2. The subroutine must know where the argument(s) is/are located and 
the main program must know where the result is stored. 
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3. Provisions must be made for transfer out of the sequence of the 
main program to the subroutine. 

The following three Branch instructions are specifically designed for 
programming the closed subroutine. 

------~----------------Instruction: Branch and Transmit 
Operation Code: 27 
Symbolic Name: BT 
Description: 

This instruCtion always performs three functions: (1) the address of 
the next instruction in sequence is automatically saved by being stored 
in a special register, (2) the Q field data is serially transmitted to 
the core storage position whose address is 1 less than the P address. 
Transmission of data continues to successively lower numbered core 
positions until terminated by the Hag in the high-order· position of the 
Q field data, and (3) the program branches to the instruction at the 
P address (the P address must be even). 

The field data at the Q address remains unchanged. 
As previously discussed, the primary use of the Branch and Transmit 

instruction is to facilitate the programming of a closed subroutine. This 
one instruction saves the return address, locates' the argument, and 
branches to the subroutine. 

A Branch Back instruction, to be discussed shortly, is used as the last 
instruction in the subroutine and provides a branch to the instruction 
address that was saved in a special register by the action of the Branch 
and Transmit instruction. 

Execution Time in Microseconds: 200 + 40Dq 

Example: 27 15000 12035 r xx xxxxx XXXXX 

Next instruction in 

246899161700114999 

Core location 15000 
before Branch and 
Transmit 

sequence 

1. Save the address of 
next instruction in 
sequence 

2. Transmit Q field 
data to 14999 

3. Branch to 15000 for 
the next instruction 

213466~61700114999 
Core location 15000 
after Branch and 
Transmit 

13466 ' I 
Core location 12035 
before and after 
Branch and Transmit 

Execution Time: 400 microseconds 
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Instruction: Branch and Transmit Immediate 

Operation Code: 17 

Symbolic Name: BTM 

Description: 

The Branch and Transmit Immediate instruction performs three func­
tions (1) the address of the next instruction in sequence is automatically 
saved by being stored in a special register, (2) the field whose low-order 
position is the Ql1 digit of the instruction is serially transmitted to the 
core storage location whose address is 1 less than the P address. Trans­
mission of data continues to successively lower numbered core posi­
tions until terminated by the flag in the high-order position of the field 
being transmitted. Thus, part or all (depending on where the high­
order flag is located) of the instruction itself is transmitted to the P 
address - 1, and (3) the program branches to the instruction at the 
P address (the P address must be even). 

The primary use of the Branch and Transmit Immediate instruction 
is to facilitate programming a closed subroutine. The field whose low­
order position is the Qn digit of the instruction may be the address of 
the argument, in which case it is this address that is transmitted to the 
P address - l. The Qn position of the instruction may be the units 
position of the argument, in which case the argument is transmitted to 
the P address - l. In either case the requirement that the argument be 
in a location known to the subroutine is satisfied. 

Execution Time in Microseconds: 200 + 40Dq 

Example: 17 10000 12035 

r--XX XXXXX XXXXX 

Next instruction in 
sequence 

l. Save the address of 
next instruction in 
sequence 

2. Transmit Q Data 
to 09999 

3. Branch to 10000 for 
the next instruction 

Execution Time: 400 microseconds 

246899261700114999 
I 
Core location 10000 
before Branch and 
Transmit 

212035261700114999 
I 
Core location 10000 
after Branch and 
Transmit 
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Instruction: Branch Back 

Operation Code: 42 

Symbolic Name: BB 

Description: 
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Branch unconditionally to the instruction at the address saved by (1) 
the execution of the last Branch and Transmit, or Branch and Transmit 
Immediate, instruction, or (2) a previous depression of the Save key on 
the console (the Save key function is described in Appendix VI). The 
Save key function has priority over the Branch and Transmit and Branch 
and Transmit Immediate instructions. The P and Q portions of the 
instruction are not utilized. 

If the main program exits to a closed subroutine with a Branch and 
Transmit or Branch and Transmit Immediate instruction, the Branch 
Back instruction can be used as the last instruction in the subroutine 
to return to the main program. 

Execution Time in Microseconds: 200 (constant) 

CONDITIONAL BRANCH INSTRUCTIONS 

Instruction: Branch on Digit 

Operation Code: 43 

Symbolic Name: BD 

Description: 

The program will branch to the instruction at the P address if the core 
storage location specified by the Q address does not contain a zero. If 
the core position contains a zero, the next instruction in sequence is 
executed. The 1, 2, 4, and 8 core planes of the core storage position 
specified by the Q address are tested. If anyone of these bits is present, 
the program will branch. Thus a t (C-2-8) will also cause the program 
to branch. Since the P operand of the Branch on Digit instruction is the 
address of an instruction, it must reference an even-numbered core 
position. 

Execution Time in Microseconds: 240 if a branch occurs 
200 if a branch does not occur 
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Example: 43 15000 10312 

The program will not branch 
but will execute the next 
instruction in sequence 

Execution Time: 200 microseconds 

Example: 43 12012 19013 

The program will branch 
to the instruction at 
core position 12012 

Execution Time: 240 microseconds 

Example: 43 12060 04000 

The program will not branch 
but will execute the next 
instruction in sequence 

Execution Time: 200 microseconds 

Example: 43 06000 13068 

The program will branch 
to core location 06000 

Execution Time: 240 microseconds 

Example: The following program will 
branch to location 16488 if 
any nonzero digit is dis­
covered between positions 
19000 -19003 inclusive 

Branch Instructions 

0-·-----,1 
Core location 10312 

+ • I 
Core location 19013 

0-'-----..., 

Core location 04000 

7 _. -------, 

Core location 13068 

LOCATION INSTRUCTION 

00500 
00512 
00524 
00536 

43 16488 19000 
43 16488 19001 
43 16488 19002 
43 16488 19003 
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Instruction: Branch no Flag 

Operation Code: 44 

Symbolic Name: BNF 

Description: 
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The program will branch to the instruction at the P address if the 
core storage location specified by the Q address does not contain a Hag. 
If a Hag is present, the next instruction in sequence is executed. Since 
the P address of the Branch no Flag instruction is the address of an 
instruction, it must reference an even-numbered core position. 

This instruction may be used to test the sign of a data field or to find 
the length of a data field by testing for the field-defining Hag. 

Execution Time in Microseconds: 240 if a branch occurs 
200 if the branch does not occur 

Example: 44 15000 12013 

The program will branch 
to the instruction at 
core position 15000. 

Execution Time: 240 microseconds 

Example: 44 12068 19012 

The program will not branch. 
but will execute the next 
instruction in sequence. 

Execution Time: 200 microseconds 

Example: 44 15000 00612 

The program will branch 
to the instruction at 
core position 15000. 

Execution Time: 240 microseconds 

6-·----....,1 
Core location 12013 

5-·-----.\ 
Core location 19012 

:1:-·-----,1 
Core location 00612 
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Instruction: Branch no Record Mark 

Operation Code: 45 

Symbolic Name: BNR 

Description: 

Branch Instructions 

The program will branch to the instruction at the P address if the core 
storage location specified by the Q address does not contain a record 
mark. If a record mark is present, the next instruction in sequence is ' 
executed. Since the P address of the Branch no Record Mark instruction 
is the address of an instruction, it must reference an even-numbered core 
position. 

Execution Time in Microseconds: 240 if a branch occurs 
200 if the branch does not occur 

Example: 45 07000 13268 

The program will branch 
to the instruction 
at location 07000. 

Execution Time: 240 microseconds 

Example: 45 09024 15012 

The program will not branch 
but will execute the next 
instruction in sequence. 

Execution Time: 200 microseconds 

Instruction: Branch on Indicator 

Operation Code: 46 

Symbolic Name: BI 

Description: 

o _. ------,1 
Core location 13268 

:1:-.-----.\ 
Core location 15012 

The program will branch to the instruction at the P address if the indi­
cator or program switch specified by the Qs and Q9 positions of the in­
struction is on. The Q7, QI0, and Qn positions of the instruction are not 
utilized. The 2-digit indicator codes used in the Qs and Q9 positions of 
the instruction are as follows: 
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Ol-Program switch I 
Q2-=----Program switch 2 
03-Program switch 3 
04-Program switch 4 
06-Read Check indicator 
07-Write Check indicator 
09-Last Card indicator 
ll-High/Positive indicator 
12-EqualjZero indicator 
13-High/Positive or Equal/Zero indicator 
14-0verflow indicator . 
15-Exponent Overflow indicator 
16-Memory Buffer Register (MBR)-

Even Check indicator 
17-Memory Buffer Register (MBR)­

Odd Check indicator 
19-Any Data Check indicator 
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Indicator codes 01 through 04 refer to the four program switches lo­
cated on the console. These switches are manually set to either an on 
or an off position. 

The Read Check (06), Write Check (07), MBR-Even Check (16), 
and MBR~Odd Check (17) indicators reflect the results of parity check­
ing during input-output operations and memory read-in and read-out 
cycles. If a parity error is discovered, the appropriate indicator is turned 
on. 

The Any Data Check (19) indicator is turned on if anyone, or more, 
of the Read Check, Write Check, MBR-Even Check, or MBR-Odd Check 
indicators is on. 

The High/Positive (11), Equal/Zero (12), and Overflow (14) indi­
cators are. turned on or off during arithmetic operations (see Chapter 5). 
The Exponent Overflow indicator (15) is discussed in the appendix 
on floating point hardware. The High/Positive or Equal/Zero indica­
tor (13) is turned on if either the High/Positive or the Equal/Zero indi­
cator is turned on. 

Except for the Any Data Check indicator, the High/Positive indicator, 
the Equal/Zero indicator, and the High/Positive-Equal/Zcro indicator, 
all indicators are turned off if they are interrogated by their respective 
Branch Indicator instruction. The status of the console switches remain 
unchanged since they are manually controlled. 

Execution Time in Microseconds: 200 if the branch occurs 
160 if the branch does not occur' 
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Example: Branch to the address specified 
by the configuration of the 
program switches as follows: 

PROGRAM SWITCHES 

1 off 
1 off 
1 on 
1 on 

4 off 
4 on 
4 off 
4 on 

LOCATION INSTRUCTION 

00500 
00512 
00524 
00536 
00548 

46 00536 00100 
46 15000 00400 
49 14000 00000 
46 17000 00400 
49 16000 00000 

Instruction: Branch no Indicator 

Operation Code: 47 

Symbolic Name: BNI 

Description: 

Branch Instructions 

BRANCH TO 

14000 
15000 
16000 
17000 

Branch if 1 on 
1 off and 4 on 
1 off and 4 off 
1 on and 4 on 
1 on and 4 off 

The Branch no Indicator instruction is the same as the Branch Indi­
cator instruction except that the branch to the P address occurs if the 
indicator specified by the Qs and Q9 positions of the instruction is off. 

At first glance it may seem a duplication of effort to have two Branch 
instructions which test the same indicators for opposite conditions. How­
ever, with a little thought it becomes evident that being able to test 
directly for either condition will both simplify programming and save 
program steps. 

Execution Time in Microseconds: 200 if the branch occurs 

Example: 

160 if the branch does not occur 

If program switch I is off, 
branch to location 04688 for 
the next instruction. If it 
is on, continue sequential 
instruction execution. 
Solution using Branch Indicator 
instruction: 

00500 46 00524 00100 
00512 49 04688 00000 
00524 

Solution using Branch no Indicator 
instruction: 

00500 47 04688 00100 
00512 
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One program step is saved 
using the Branch no 
Indicator instruction. 

Example: If the data fields at locations 
17156 and 12123 are not equal, 
branch to location 00500 for 
the next instruction. 

Problems 

24 17156 12123 
47 00500 01200 
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Give the results to the following problems as actual numbers or in an algebraic 
symbolic notation. For example, if the first problem summed the numbers from 

1000 
one to 1000, the answer could be expressed as ~ i 

i=1 

1. When the following program halts, what will the field whose units position 
is core location 13000 contain? 

00500 16 13000 00000 

00512 11 13000 00001 

00524 47 0051~ 01400 

00536 48 00000 00000 

2. When the following program halts, what will the field whose units position 
is core location 13966 contain? 

14168 16 13966 00000 

14180 16 06745 00600 

14192 11 13966 00002 

14204 11 06745 00001 

14216 14 06745 00100 

14228 47 14192 01200 

14240 48 00000 00000 

3. When the following program halts, what will the field whose units position 
is core location 07000 contain? 

00700 16 07000 00000 

00712 16 07081 00000 
-

00724 11 07081 00001 

00736 14 07081 00100 

00748 46 00784 01200 

00760 11 07000 00002 

00772 49 00724 00000 

00784 48 00000 00000 
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4. When the following program halts, what will the fIeld whose units position 
is core location 17800 contain? 

00800 16 00835 00001 
00812 16 17800 00000 

00824 11 17800 00000 
00836 11 00835 00001 
00848 14 00835 00101 
00860 47 00824 01200 
00872 48 00000 00000 

5. When the following program halts, what will the fIelds whose units posi­
tions are core locations 19000 and 17199 contain? 

00464 16 17199 00000 
00476 16 19000 00000 
00488 16 00511 00001 
00500 11 17199 00000 
00512 23 00511 00511 
00524 21 19000 00099 
00536 11 00511 00001 
00548 14 00511 00200 
00560 47 00500 01200 
00572 48 00000 00000 

6. When the following program halts, what will the fIelds whose units posi­
tions an:, core locations 14000 and 18000 contain? 

02178 16 14000 00003 
02190 16 18000 00000 
02202 11 18000 OOOGI 
02214 11 02213 00001 
02226 14 02213 00101 
02238 47 02202 01200 
02250 12 14000 00001 
02262 46 02298 01200 
02274 16 02213 00001 
02286 49 02202 00000 
02298 48 00000 00000 
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7. The following problem is solving a quadratic equation of the form 
AX2 + BX + C = 0 by a trial and error method. An integer solution is 
assumed. What is the equation (what are values of A, B, and C)? 

07988 16 18500 00001 

08000 23 18500 18500 

08012 26 19000 00099 

08024 13 19000 00013 

08036 26 19000 00099 

08048 13 18500 00009 

08060 21 19000 00099 

08072 14 19000 00904 

08084 46 08120 01200 

08096 11 18500 00001 

08108 49 08000 00000 
08120 48 00000 00000 

8. When the following program halts, what will the field whose units position 
is core location 15000 contain? 

00588 16 15000 00000 
00600 13 00611 00001 
00612 21 15000 00099 
00624 11 00611 00002 
00636 47 00600 01400 
00648 48 00000 00000 



Chapter 8 

The Input-Output Instructions 

To be a useful tool, the digital computer must be able to communicate 
with man. It must have the ability to receive information and data, and, 
after processing this data at microsecond speeds, it must be able to 
communicate the results back to man. 

The 1620 has the following input-output devices to perform this com­
munication: the typewriter, the card reader, the paper tape reader, the 
card punch and the paper tape punch. Only one input-output device may 
be selected at any time. The Qs and Q9 positions of all the input-output 
instructions which will be discussed in this chapter specify the input­
output! device through a 2-digit code as follows: 

CODE I/O DEVICE 

01 Typewriter 
02 Paper Tape Punch 
03 Paper Tape Reader 
04 Card Punch 
05 Card Reader 

Instruction: Read Numerically 

Operation Code: 36 
Symbolic Name: RN 

Description: 

Numerical information from the input device specified by the Qs and 
Q9 positions of the Read Numerically instruction is transmitted serially 
to the core storage location specified by the P address and through 
successively higher core locations until terminated by one of the follow­
ing conditions: 

1 The industry accepted abbreviation for input-output is generally 110. 
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1. Sensing of the end-of-line character (written for demonstration pur­
poses as ElL) when the input is from the paper tape reader. At 
that time, a record mark is generated automatically by the 1620 and 
is placed in core following the last character· read from tape. 

2. Depression of the Release key on the console when input is from the 
typewriter. In this case a record mark is not generated automatically 
by the computer. If it is desired to place a record mark in core 
storage when entering information from the typewriter, the Record 
Mark key on the typewriter must be depressed. 

3. Reading into core storage the 80th character from the card input 
buffer storage. Here again a record mark is not generated automat­
ically by the computer. If it is desired to place a record mark in 
core storage from the card reader, the record mark character (0-2-8) 
must be punched in a card. If a record mark is present in a card, 
it does not terminate the reading of data from the card input buffer. 
A full 80 columns of a card are always read regardless of their con­
tents (excepting parity errors which could cause check stop condi-
tions). ' 

Each numerical character from the input device along with its flag 
(if any), is stored in a single core storage location. Check bits, if needed, 
are generated internally to observe parity. 

The Q7, QlO, and Qll positions of the Read Numerically instruction 
are not utilized; 

Read Numerically is an example of destructive read-in: the old infor­
mation is replaced by the new data for the total area of input. 

The execution time of this instruction depends upon the speed of the 
input device selected and the number of characters that are read from 
that device. 

Example: 36 10012 00300 

3121206945t1672E/L 
Paper tape input 

r--3121206945t1672t 
L- Core location 10012 

after instruction execution 

Instruction: Read Alphamerically 
Operation Code: 37 
Symbolic Name: RA 
Description: 

Alphameric information from the input device specified by the Qs and 
Qo positions of the Read Alphamerically instruction is transmitted seri­
ally to the core storage location specified by the P address and through 
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successively higher core locations until terminated by one of the follow­
ing conditions: 

1. Sensing of the end-of-line character when the input is from the paper 
tape reader. At that time, an alphameric record mark character (a 
numeric zero digit followed by a single record mark character) is 
generated automatically by the computer and is placed in core stor­
age following the last character read from tape. 

2. Depression of the Release key on the console when the input is from 
the console typewriter. An alphameric record mark character is not 
generated automatically by the computer. If it is desired to place 
an alphameric record mark in core storage when entering information 
from the typewriter, the Record Mark key on the typewriter must 
be depressed. 

3. Reading into core storage the 80th character from the card input 
buffer storage. A record mark is not generated automatically in core 
storage. If it is desired to read a record mark into core storage from 
the card reader, the record mark character (0-2-8) must be punched 
in a card. The full 80 columns of a card are always read regardless 
of their contents (excepting parity errors which could. cause check 
stop conditions). 

The P address of the Read Alphamerically instruction must specify an 
odd-numbered core location (the P6 digit must be odd); otherwise, the 
input information is not placed in core storage correctly and parity 
errors may occur during reading. This is due to the fact that when infor­
mation is read alphamerically, it is automatically converted to the 2-digit 
alphameric code. The odd-numbered location must contain the right­
hand (numerical) digit of the 2-digit alphameric code read from the 
input device. The zone digit is generated and placed in the adjacent 
even-numbered core position automatically. 

Information from the input device may be a random mixture of nu­
meric, alphabetic, and special characters. Each character from the in­
put device is stored in core storage as two digits (the alphameric code 
discussed in Chapter 2). Flags are not transmitted into core storage 
on characters read by the input device; flags already in the core storage 
area when the information is read in remain unchanged. 

The Q7, QI0, and Qn positions of the Read Alphamerically instruction 
are not utilized. The execution time depends on the input device selected 
and the number of characters transmitted. 

Example: 37 15001 00300 

3ABC271984F + /J:j:E/L 
Paper tape input 

~73414243727771797874461021510+0+ 

L- Core location 15000 
after instruction execution 
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Note: 

It is permissible to read alphameric information in the numeric mode 
but the characters do not enter the 1620 alphamerically. Table 8.1 
demonstrates the translation effect of alphameric information read nu­
merically. 

Table 8-1* 

CHARACTER 

A, B, 

J, K, 
S, T, 

/ 

@ 

) 
( 

* 
+ 

· , 
· , 
· , 

I 

R 

z 

CORE REPRESENTATION 

1,2, . , 9 

1,2, . , 9 
2,3, . . , 9 

1 

821 

821 

C84 

C84 

C84 

821 

F84 

F 

C 

0) The period (.), comma (,). and equal sign (=) will behave as a record mark 
in the Transmit Record instruction. 

Instruction: Write Numerically 

Operation Code: 38 

Symbolic Name: WN 

Description: 

Numerical information from core storage, beginning with the charac­
ter at the core storage location specified by the P address and continuing 
through successively higher core addresses, is transmitted serially to the 
output device specified by the Qs and Q9 positions of the Write Numeri­
cally instruction. 

Transmission of data continues until terminated by one of the follow­
ing conditions: 
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1. Sensing of a record mark character in core storage if the output 
device is the typewriter or the paper tape punch. If the output 
device is the paper tape punch, sensing a record mark character in 
core storage causes an end-of-line character to be punched in the 
tape. If the output device is the typewriter, sensing a record mark 
character in core storage terminates transmission but is not written 
on the typewriter. 

2. Depressing the Release key on the console. 
3. Writing of the 80th position in the card output buffer storage. 

Each numerical character in core storage, along with its flag (if any), 
is written on the output device. The characters in core storage remain 
unchanged. No alphamerical or special character represented in core 
storage as two numerical characters can be written on the output device 
as a single character by this instruction. 

If no record mark is encountered in core storage when the typewriter 
or paper tape punch is used as the output medium, and the highest 
numbered core storage address is written, the next position transmitted 
is 00000 and transmission continues. If the numerical blank character 
appears in memory (C-8-4), it will be printed as "@" on the typewriter, 
punched as C-8-4 on paper tape, or will leave a blank column on the card. 

For typewriter and paper tape output, the P address of this instruction 
may not reference a record mark. The Q7, QlO, and Qll positions of the 
Write Numerically instruction are not utilized. 

The execution time of this instruction depends upon the speed of the 
device selected and the number of characters written. 

Example: 38 12000 00100 

r316t24680 ... 

L Core Location 12000 
before and after execution 

316 
Typewriter output 

Example: 38 12000 00200 

r316t24680 ... 

L Core location 1.2000 
before and after execution 

316E/L 
Paper tape output 
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Example: 38 12000 00400 

,316:1:24680 ... 

L Core location 12000 
before and after execution 

316:1:24680 ... (80 characters) 

Card output 

Instruction: Write Alphamerically 

Operation Code: 39 

Symbolic Name: WA 

Description: 
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Alphameric information from core storage, beginning with the char­
acter at the core storage location specified by the P address and continuing 
through successively higher core addresses, is transmitted serially to the 
output device specified by the Q8 and Q9 positions of the Write Alpha­
merically instruction. 

Transmission continues until terminated by one of the following con­
ditions: 

1. Sensing of an alphameric record mark in core storage if the output 
device is the typewriter or the paper tape punch. If the output 
device is the paper tape punch, sensing an alphameric record mark 
in core storage causes an end-of-line character to be punched in the 
tape. If the output device is the typewriter, sensing an alphameric 
record mark in core storage terminates transmission but is not written 
on the typewriter. 

2. Depression of the Release key on the console. 
S. Writing of the 80th position in the card output buffer. 

Each alphameric character in core storage consists of two numeric 
digits and is written on the output device as a single alphameric charac­
ter. The characters in core storage remain unchanged. No flags are 
written on the output device. 

The P address of the Write Alphamerically instruction must be odd 
(P 6 must be an odd digit), otherwise the information in core storage, 
expressed in alphameric (double-digit) code, is not correctly converted 
to the single character output representation. The Q7, QlO, and Q11 
positions of the instruction are not utilized. For typewriter and paper 
tape output, the P address of this instruction may not reference an alpha­
meric record mark. 
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The execution time is dependent upon the speed of the output deVice 
and the number of characters written. 

Example: 39 09001 00100 
r--48415954565549430041554153686249620+ ... 
L Core location 09000 

before and after execution 
HARMONIC ANALYSIS 
Typewriter output 

Example: 39 15791 00200 
r 49556345596541530055560300770+ ... 
L Core location 15790 

before and after execution 
INTERVAL NO. 7E/L 
Paper tape output 

Instruction: Dump Numerically 
Operation Code: 35 
Symbolic Name: DN 
Description: 

Numerical information from core storage, beginning with the charac­
ter at the core storage location specified by the P address and continuing 
through successively higher core addresses, is transmitted serially to the 
output deVice specified by the Qs and Q9 positions of the Dump Nu­
merically instruction. Transmission is terminated after the charaot:er 
from the highest numbered core storage address of that module has bee~ 
written. 1 his is the character at' core position 19999, 39999 or 59999 
depending on the module that the P address specified. If it is desired 
to stop transmission before the character in the highest numbered core 
storage position is transmitted, the Release key on the console may be 
depressed. 

Each numerical character, with its flag (if any), as well as any single 
record mark character, is written on the output device. The character 
in core storage remains unchanged. If the output device is the paper 
tape punch, an end-of-line character is punched in the tape immediately 
following the last character dumped by the instruction. This end-of-line 
character will be punched into the paper tape only if the instruction has. 
been completely executed and will not be punched if the Release key 
has been depressed before the highest character in the storage module 
has been punched. 
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The Q7, QlO, and Qn digits of this instruction are not utilized. The" 
execution time of this instruction depends upon the speed of the output 
device selected and the number of characters written on that device. 

Example: 35 15000 00100 

C 36482+00+198 ... 

Core location 15000 before 
and after execution 

Problems 

36482+00+198 ... 

Typewriter output 

State in as few sentences as possible the function of each of the following 
programs. 

1. 00500 36 10000 00300 
00512 38 10000 00200 
00524 49 00500 00000 

2. 00500 37 10001 00500 
00512 39 10001 00400 

3. 
re24""" 49 00500 00000 

0620 37"10001 00500 
00632 31 1~160 00678 
00644 46 00680 00100 
00656 39 10001 00400 
00668 49 00620 OOOOt 
00680 39 10001 00200 
00692 49 00620 00000 

4. 00000 35 00000 00400 
00012 16 00022 00000 

5. 00500 16 19999 00000 
00512 36 10000 00500 
00524 11 19999 00001 
00536 47 00512 00900 
00548 15 00000 OOOOt 
00560 38 19995 00100 



Chapter 9 

Miscellaneous Instructions 

The five instructions discussed in this chapter complete the basicl 

repertoire of 1620 instructions. The functions that they perform are not 
closely related, so they are grouped under the general name of miscel­
laneous instructions. 

The reader should not let the term miscellaneous connote insignificance. 
The Set Flag, Clear Flag, Halt, No Operation, and Control instructions, 
if used carefully and thoughtfully, can greatly facilitate and sophisticate 
programming. 

Instruction: Set Flag 

Operation Code: 32 

Symbolic Name: SF 

Description: 

A flag is placed at the core location specified by the P address, and a 
check hit is either added or removed to adjust for parity checking. If a 
flag is present, the instruction has no effect. The Q portion of the 
instruction is not utilized. The digit at the P address is not altered by 
the instruction. 

The primary use of the Set Flag instruction is to define the high-order 
position of data fields. Of course, the data may be flagged when it is 
prepared for input, but this is not always practical or desirable. 

Execution Time in Microseconds: 200 (constant) 

1 See Appendixes I, II, IV for additional 1620 instructions. 
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Example: 32 10000 00000 

6 ... , ------., 

Core location 10000 before 
Set Flag 

Example: 32 13001 00000 

5 _. -------., 
Core location 13001 before 
Set Flag 

Example: 32 11500 00809 

t, \ 
Core location 11500 before 
Set Flag 

Instruction: Clear Flag 

Operation Code: 33 

Symbolic Name: CF 

Description: 

6-------.\ 
Core location 10000 after 
Set Flag 

5---------. 
Core location 13001 after 
Set Flag 

* ' , 
Core location 11500 after 
Set Flag 
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The Hag in the core location specified by the P address is removed, 
and a check bit is either added or removed to adjust for parity checking. 
If no Hag is present, the instruction has no effect. The Q portion of the 
instruction is not utilized. The digit at the P address is not altered by 
the instruction. 

The Clear Flag instruction may be used when it is desired to make a 
negative field positive. The Hag in the units position of the field is 
simply removed with the instruction. If Hags are not wanted as a part 
of output, the Clear Flag instruction can be used to remove them. 

Execution Time in Microseconds: 200 (constant) 

Example: 33 05421 00000 

6------,1 
Core location 05421 before 
Clear Flag 

Example: 33 12000 68291 

2 ... , ------" 

Core location 12000 before 
Clear Flag 

6 ... , ------..1 
Core location 05421 after 
Clear Flag 

2 ' \ 
Core location 12000 after 
Clear Flag 
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Example: The following program reverses the sign of a data field stored 
in locations 01690 - 01699, and then branches to location 06000 for the 
next instruction. 

LOCATION INSTRUCTION 

00500 
00512 
00524 
00536 
00548 

44 005S6 01699 
SS 01699 00000 
49 06000 00000 
S2 01699 00000 
49 06000 00000 

Instruction: Halt 

Operation Code: 48 

Symbolic Name: H 

Description: 

Program execution is halted and the computer stops in the manual 
mode. Depression of the Start key on the console will cause the computer 
to continue program execution beginning with the next instruction in 
sequence. The P and Q portions of the instruction are not utilized. 

After a Halt instruction has been executed, the address of the Qll 
position of the instruction is displayed on the console in the Memory 
Address Register indicator lights. Thus, it is possible to distinguish be­
tween several different Halt instructions in the same program. 

The Halt instruction has many important uses. It may be employed to 
interrupt program execution for operator intervention. The operator may 
take advantage of the halt to load a tape, set program switches, investigate 
the contents of certain portions of core storage, and so forth. It is also 
very helpful in debugging and for error indication purposes. Different 
error conditions encountered in a problem may be programmed to branch 
to different Halt instructions. By noting the address of the Qll position 
of the Halt instruction in the Memory Address Register lights, we can 
tell which error condition stopped program execution. The following 
program serves to demonstrate this principle. A record mark is assumed 
in core location 15001. 

00500 14 13000 50000 Compare with 50000 
00512 46 00584 01S00 Branch if number;:=:: 50000 

00524 22 15000 1S000 Subtract 

00536 47 00572 01S00 Branch if result negative 

00548 38 14996 00100 Type out result 

00560 48 00000 98640 Halt-program completed 
00572 48 00000 00000 Halt-negative result 

00584 48 00000 00080 Halt-number;:=:: 50000 
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The above program contains three Halt instructions. Two of the Halt 
instructions signal error conditions; the third indicates the successful 
completion of the program. The error conditions exist if the data Reld 
at core location 13000 is greater than or equal to 50000, or if the result 
of the subtract operation is negative. When the program executes a Halt 
instruction, the address in the memory address register lights indicates 
which Halt instruction terminated program execution. Then, from a 
listing of the program it can be determined which condition caused the 
program to halt. If the address displayed is 00571, the program was 
successfully completed. If the displayed address is 00583, the program 
halted because the result of the subtract operation was negative. If the 
data ReId at location 13000 was greater than 50000, the program would 
have halted and the displayed address would be 00595. 

Judiciously placed Halt instructions are a great aid in program 
debugging. Groups of instructions may be checked out by interspersing 
Halt statements throughout the program. If the program should ''hang 
up," the troublesome portion can be isolated as being between the last 
executed Halt instruction and the next Halt instruction in sequence. 

Execution Time in Microseconds: 160 (constant) 

Instruction: No Operation 
Operation Code: 41 
Symbolic Name: NOP 2 

Description: 

Perform no operation and advance to the next instruction in sequence. 
The P and Q portions of the No Operation instruction are not utilized. 

The No Operation instruction has two major functions. The No Opera­
tion instructions when judiciously placed throughout a program allow 
for the insertion of additional instructions at a later time without any 
of the program having to be relocated. If only one instruction is to be 
inserted, it may be located in the core positions used by the No Operation 
instruction. If it is desired to insert more than one instruction, the No 
Operation instruction may be replaced by a Branch instruction, which 
will branch the program to an unused part of memory where the addi­
tional instructions will· be added. 

A second use of the No Operation instruction is to eliminate a Halt 
or any other instruction without relocating the rest of the program. The 
operation code of the instruction to be eliminated is replaced by the 
operation code of the No Operation instruction (41). This may be done 
from the console or as a part of the program itself. 

Execution Time in Microseconds: 160 (constant) 

2 Pronounced no-op. 
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Example: In the following program it is desired to branch to a sub­
routine located at 09012 only after the first card is read. The instruction 
to branch to the subroutine is in location 00414. Since the same read 
instruction will be used to read in all the cards it is necessary to alter 
the Branch instruction so that it is operative only after the first card is 
read. This is accomplished by having a Transmit Digit Immediate 
instruction in the subroutine which changes the operation code of the 
Branch instruction (49) to the operation code of the No Operation 
instruction (41). Now, as all subsequent cards are read, a branch to 
the subroutine will not occur. 

00402 36 13000 00500 Read a card 
00414 49 09012 00000 Branch to subroutine 
00426 11 13010 00100 Main program continues 

01626 49 00402 00000 Go to read another card 
09012 11 06900 00010 Subroutine begins here 

09612 15 00415 00001 Modify Branch instructions to NOP 
09624 49 00426 00000 Return to main program 

In8truction: Control 

Operation Code: 34 

Symbolic Name: K 

Description: 

This instruction is used to control the functions of spacing, tabulating, 
and returning the carriage on the typewriter. The Qs and Q9 positions 
of this instruction always contain an 01, specifying the typewriter, since 
this is the only unit that can be controlled by this instruction. The Qll 
position specifies the control function desired with a I-digit code. The 
codes are as follows: 

CODE FUNCTION 

1 Space 
2 Return Carriage 
8 Tabulate 
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The entire P operand and the Q7 and QlO portions of the Control 
instruction are not utilized. 

Execution Time in Microseconds: This is dependent upon the control 
function and the position of the typewriter carriage at the time of instruc­
tion execution. 

Example: 34 00000 00108 

The typewriter is tabulated 

Example: 34 99999 90102 

The carriage is returned 

Example: 34 :1:*900 00101 

The typewriter is spaced one position horizontally. This instruction is 
equivalent to depressing the space bar on the typewriter. 



Chapter 10 

Introduction to a Symbolic 

Programming System 

We are now at a stage of development where absolute machine 
language coding is cumbersome. One must have a complete table of 
operation codes and necessary Q address modifiers at hand in order to 
write a program. In addition, one must keep track of where program 
steps lie in memory, and extensive charts must be kept as road maps 
for the internal data arrangement. The housekeeping necessitated by 
absolute coding is cumbersome and the flow of logic is difficult to trace. 
Lastly, and of greatest importance, errors are easily made and difficult 
to locate. If computers are as "intelligent" as is commonly supposed, 
why not allow the computer to do its own housekeeping? 

Throughout the chapters on machine operations, a symbolic name was 
associated with every machine code: 21-A, 34-K, 13-MM, and so forth. 
How difficult would it be for a programmer to construct a program to 
read an instruction whose operation code was symbolic, replace this 
with machine language coding, punch the translated instruction, and 
repeat this sequence until all instructions were translated? 

On the surface, this may sound like a frightening task. However, it 
is not exceedingly difficult; the basic logic is described in the diagram 
shown in Figure 10.1. The logic employed is simply one of exhaustion: 
check the alphabetic representation of the OP code against all allowable 
representations. It must match one of them or it is in error. 
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START--OI 

Replace with 
OP Code of 21 

Replace with 
OP Code of 11 

YES 

YES 
Replace with Kt-----<:.. 

OP Code of 22 

I 
I 
I , r--------, 
" , k~---J ,L ______________ _ 

• I 
I I L ________ .J 

r--------, 
I I 

Check all Possible 
OP Codes and Match 
with a Corresponding 

Numeric Value 

~---~ ~---------------. I I , : L ________ .J 

, If List is Exhausted and 
no Match Has Been Made, 

this is a Nonexistent 
OP Code and an 
Error Cond ition 

Fig. 10.1. Flow Chart of an OP Code Translator. 
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( Since part of our 
information is 
alphabetic and part 
numeric, it must be 
read alphabetically) 
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If the input to such a program were A.- 12345 02378 (the underscore 
"_" is used to indicate a blank character), the output would be 
21 12345 02378. The program translated the alphabetic representation 
of "A.-" into the machine OP code of "21." ("A..-:' is "4100" in alphabetic 
double-digit representation.) The blank is necessary for it is possible 
to have a 2-letter OP code: AM, BD, and so forth. Note also that this 
logic scheme would not allow for 3-letter OP codes: TDM, BNF, and 
so forth. In that case it would be necessary to check the six high-order 
digits instead of the present four. BNR would appear as 425559, and so 
forth. 

Upon close inspection of the logic diagram of Figure 10.1, one begins 
to see all sorts of exceptions that would cause this particular program 
to be totally unusuable. However, all of these can be overcome by 
more extensive programming until the desired goal of total OP code 
translation is obtained. In this way, one would not have to remember 
the numeric representation of operation codes but could choose the 
corresponding mnemonic form which is more easily retained. 

This then is the basic philosophy of a symbolic system: substituting 
alphabetic information for numerics and forcing the computer, under 
control of a special program, to do the housekeeping. 

The performance of this sort of translation implies three elements: 

1. An error-catching processor that handles symbolic input and produces 
absolute output. 

2. A program written in the language acceptable to the processor. This 
is called the "source program." 

3. An accurate worker that will understand the processor's directions 
and perform the translation of a source program which it does not 
understand to one which it will understand. (The choice of future 
tense is quite important.) The worker is the computer and the trans­
lated source program is termed the "object program." 

Consider an instruction such as 34 00000 00102 which, upon execu­
tion, would cause a carriage return on the typewriter. Why not keep 
this instruction stored in core and generate it whenever a symbolic 
operation code such as RCTY (Return Carriage on the TYpewriter) is 
encountered? Also, by the same logic, TBTY (TaBulate the TYpewriter) 
would always generate 34 00000 00108 and SPTY (SPace the TYpe­
writer) would yield 34 00000 00101. 

Of course, the commands K 00000 00102, K 00000 00108, and K 00000 
00101 would also generate the identical instructions but RCTY, TBTY, 
and SPTY are more easily remembered. 

This philosophy may also be extended to I/O commands that use a 
specific Q address modifier to state which unit is to be employed during 
the I/O operation. 
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RNTY 12345 (Read Numerically from the TYpewriter) would cause 
a Read Numerically (36) command to be generated and also a modifier 
of 01 in positions Qs and Q9 with all other Q digits O. Then, the processor 
would "slip" the P address of 12345 between the OP code and the Q 
portion of the instruction to obtain 36 12345 00100. RNPT 12345 (Read 
Numerically from Paper Tape) would generate 36 12345 00300 in a 
similar fashion. 

Notice that certain portions of instructions are predetermined by the 
nature of the instruction. An instruction such as RNPT 10000 followed 
by RNPT 12000 would cause two instructions to be generated which 
differ only in the P address: 

36 10000 00300 
36 12000 00300 

Branching instructions also follow this logic. A symbolic instruction 
to generate a branch on an equal condition might be written as 
BI XXXXX 01200. This generates the machine instruction 46 XXXXX 
01200. But since the E/Z indicator (12) is as unique as BI, we can 
alternatively choose the unique mnemonic BE or BZ. Either of these 
would generate 46 XXXXX 01200. Thus, BNH (Branch Not High) 
would generate 47 XXXXX 01100 as would BNP (Branch Not Positive). 
Continuing in this fashion, we can generate a complete set of unique 
mnemonics which comprise our translator's dictionary of acceptable 
operation codes. These symbolic operations are listed in table 10.1 and 
form the basic material for a working symbolic processor. 

OPERATION 

Arithmetics 
Add 
Add Immediate 
Subtract 
Subtract Immediate 
Multiply 
Multiply Immediate 
Load Dividend" 
Load Dividend Immediate" 
Divide" 
Divide Immediate" 
Compare 
Compare Immediate 
Floating Add" 
Floating Subtract" 
Floating Multiply" 
Floating Divide" 

Table 10.1 

UNIQUE MNEMONIC 

A 
AM 
S 
SM 
M 
MM 
LD 
LDM 
D 
DM 
C 
CM 
FADD 
FSUB 
FMUL 
FDIV 

PORTION OF 
INSTRUCTION 
GENERATED 

21 
11 
22 
12 
23 
13 
28 
18 
29 
19 
24 
14 
01 
02 
03 
09 
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Table 10.1 (continued) 

PORTION OF 
INSTRUCTION 

OPERATION UNIQUE MNEMONIC GENERATED 

Internal Data Transmission 
Transmit Digit TD 25 
Transmit Digit Immediate TDM 15 j/ 

Transmit Field TF 26 
Transmit Field Immediate TFM 16 
Transmit Record TR SI 
Move Flag" MF 71 
Transfer Numeric Strip" TNS 72 
Transfer Numeric Fill" TNF 7S 
Floating Transmit Field" TFL 06 
(Transmit Floating Field) 
Floating Shift Right" .FSR 08 
Floating Shift Left" FSL 05 

Branching Instructions 
Branch B 49 
Branch No Flag BNF 44 
Branch No Record Mark BNR 45 
Branch on Digit BD 4S 
Branch and Transmit BT 27 
Branch and Transmit Immediate BTM 17 
Floating Branch and Transmit" BTFL 07 
(Branch and Transmit Floating) 
Branch Back BB 42 
Branch Indicator BI 46 
Branch Console Switch 1 On BCl 46 -01--
Branch Console Switch 2 On BC2 46 -02--
Branch Console Switch S On BCS 46 -OS --
Branch Console Switch 4 On BC4 46 -04--
Branch Last Card BLC 46 -09--
Branch High BH 46 -11--
Branch Positive BP 46 -11--
Branch Equal BE 46 -12--
Branch Zero BZ 46 -12--
Branch Not Low BNL 46 -IS--
Branch Not Negative BNN 46 ":IS--
Branch Overflow BV 46 -14--
Branch Exponent Overflow" BXV 46 -15--
Branch No Indicator BNI 47 
Branch Console Switch 1 Not On BNCI 47 -01--
Branch Console Switch 2 Not On BNC2 47 -02--
Branch Console Switch S Not On BNCS 47 -OS--
Branch Console Switch 4 Not On BNC4 47 -04--
Branch Not Last Card BNLC 47 -09--
Branch Not High BNH 47 -11--
Branch Not Positive BNP 47 -11--
Branch Not Equal BNE 47 -12--
Branch Not Zero BNZ 47 -12--
Branch Low BL 47 -IS--
Branch Negative BN 47 -IS--
Branch No Overflow BNV 47 -14--
Branch No Exponent Overflow" BNXV 47 -15--
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Table 10.1 (continued) 

OPERATION UNIQUE MNEMONIC 

Input-Output 
Read Numerically RN 
Read Numerically from Typewriter RNTY 
Read Numerically from Paper Tape Reader RNPT 
Read Numerically from Card Reader RNCD 
Write Numerically WN 
Write Numerically onto Typewriter WNTY 
Write Numerically onto Paper Tape Punch WNPT 
Write Numerically onto Card Punch WNCD 
Dump Numerically DN 
Dump Numerically onto Typewriter DNTY 
Dump' Numerically onto Paper Tape Punch DNPT 
Dump Numerically onto Card Punch DNCD 
Read Alphamerically . RA 
Read Alphamerically from Typewriter RATY 

. Read Alphamerically from Paper Tape RAPT 
Reader 

Read Alphamerically from Card Reader 
Write Alphamerically 
Write Alphamerically onto Typewriter 
Write Alphamerically onto Paper Tape 

Punch 
Write Alphamerically onto Card Punch 

Miscellaneous 
Control 
Return Carriage on Typewriter 
Tabulate Typewriter 
Space Typewriter 
Set Flag 
Clear Flag 
Halt 
No Operation 

RACD 
WA 
WATY 
WAPT 

WACD 

K 
RCTY 
TBTY 
SPTY 
SF 
CF 
H 
NOP 

" Items marked by an asterisk have not yet been discussed. 
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PORTION OF 

INSTRUCTION 

GENERATED 

36 
36 -01--
36 -03--
36 -05 --
38 
38 -01--
38 -02--
38 -04--
35 
35 -01--
35 -02--
35 -04- -
37 
37 -01--
37 -03--

37 -05 --
39 
39 -01--
39 -02--

39 -04- -

34 
34 -01-2 
34 -01-8 
34 -01-1 
32 
33 
48 
41 

With such a translator, a card-to-card duplication program might look 
like this: 

LOCATION 

00500 
00512 
00524 

INSTRUCTION 

RNCD 10000 
WNCD 10000 
B 00500 
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A card-to-tape duplication program could be written as follows: 

LOCATION 

00500 
00512 
00524 
00536 

INSTRUCTION 

TDM 
RNCD 
WNPT 
B 

10080 OOOOt 
10000 
10000 
00512 

A card-to-tape or card-to-card duplication program under control of 
console switch 1 would be as follows: 

LOCATION INSTRUCTION 

00500 BC1 00560 
00512 TDM 10080 OOOOt 
00524 RNCD 10000 
00536 WNPT 10000 
00548 B 00524 
00560 RNCD 10000 
00572 WNCD 10000 
00584 B 00560 

Here is an alternate and shorter program for the same problem: 

LOCATION INSTRUCTION 

00500 TDM 10080 OOOOt 
00512 RNCD 10000 
00524 BC1 00560 
00536 WNPT 10000 
00548 B 00512 
00560 WNCD 10000 
00572 B 00512 

However, even this type of programming is somewhat cumbersome. 
There is still too much detail in that absolute addresses are necessary and 
we must constantly keep track of instruction locations. After all, it might 
be necessary to reference an instruction through a branching operation. 

The concept of a dictionary of machine operations alone is necessary 
but not sufficient. This dictionary is machine oriented and does not 
change from problem to problem. We would like to introduce the con­
cept of a second dictionary, whose word makeup would be dictated by 
the programmer. Of course, the processor needs information about the 
symbols that will lie in this new dictionary. 
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Consider the first program given above (card-to-card duplication): 

LOCATION 

00500 
00512 
00524 

INSTRUCTION 

RNCD 10000 
WNCD 10000 
B 00500 
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If we give this same program to a symbolic processor and precede it 
with sentences of explanatory nature, it could appear as follows: 

Information Sentence 1: This program begins at location 00500. 

Information Sentence 2: The symbolic word "Input" is synonymous with 
core location 10000. 

Information Sentence 3: There is no more information of explanatory 
nature. The source program follows. 

RNCD INPUT 
WNCD INPUT 
B 00500 

If we add another sentence of explanatory nature, we can symbolize 
the entire program: 

Information Sentence 1: This program begins at location 00500. 

Information Sentence 2: The symbolic word "Input" is synonymous 
with core location 10000. 

Information Sentence 3: The symbolic word "Begin" is synonymous 
with core location 00500. 

Information Sentence 4: There is no more information of explanatory 
nature. The source program follows. 

RNCD INPUT 
WNCD INPUT 
B BEGIN 

Our information sentences cause the second dictionary to be built up. 
The first word in this new dictionary can be called the "origin counter" 
and it has its initial value given by the first information sentence. In our 
case it is 00500. For each instruction proper, this origin counter is 
incremented by 12. In this fashion, reference to our origin counter always 
yields the location of the instruction presently being processed. 

Directly below our first entry in the new dictionary, we now place the 
symbol "Input" and, contiguous to it, a 5-digit field, 10000. Any reference 
to the symbolic name "Input" would generate the associated absolute 
location. The third word in our dictionary, "Begin," has the address 
00500 placed contiguous to it. Similarly, any reference to the symbol 
"Begin" causes a substitution of the address 00500. 
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Some thoughts that come to mind are the following: why was position 
10000 chosen as our input area and why did our program begin at 
location 00500? Why were the names "Input" and "Begin" chosen rather 
than "Data" and "Start" perhaps? The only valid answers to these ques­
tions are (1) personal whim and (2) mnemonic content. The program 
might have been written as follows: 

Information Sentence 1: This program begins at location 12346. 

Information Sentence 2: The symbolic word "Zxpflq" is synonymous 
with core location 00825. 

Information Sentence 3: The symbolic word "Pfwxyn" is synonymous 
with core location 12346. 

Information Sentence 4: There is no more information of explanatory 
nature. The Source program follows: 

RNCD ZXPFLQ 
WNCD ZXPFLQ 
B PFWXYN 

The resultant object program would be: 

LOCATION 

12346 
12358 
12370 

INSTRUCTION 

36 00825 00500 
38 00825 00400 
49 12346 00000 

The disadvantage of this program is the impossibly bad choice of 
symbolic names. The word "ZXPFLQ" conjures up very little connotation 
of an input area of core memory. Nonetheless, the program is perfectly 
translatable by the processor. Its dictionary is unique and there are 
no contradictions in the command structure of the source program. 

However, we have not even begun to exercise the true abilities of our 
machine dictionary concept. Consider the following program: 

Information Sentence 1: Begin this program at the first available loca­
tion after the addition and multiplication tables. 
Information Sentence 2: A symbol "Input" will be used. It is 80 posi­
tions long. 
Information Sentence 3: A symbol "Begin" will be used. It is synony­
mous with the location chosen for the first instruction of the source 
program. 
Information Sentence 4: There is no more information of explanatory 
nature. The source program follows. 

RNCD INPUT 
WNCD INPUT 
B BEGIN 
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The generated program would be as follows: 

LOCATION 

00480 
00492 
00504 

INSTRUCTION 

36 00400 00500 
38 00400 00400 
49 00480 00000 
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The first information sentence stated that our origin counter was to 
begin at 00400. (The addition and multiplication tables occupy positions 
00100-00399. ) The next piece of information in the source program 
caused the word "Input" to be placed in the dictionary, associated the 
origin counter address with the symbol, and incremented the origin 
counter by the length of the defined symbol, 80 positions. The third 
sentence placed the symbol "Begin" in the dictionary and the origin 
counter address of 00480 was placed contiguous to it as the fourth infor­
mation sentence was encountered. 

Carrying this logic a little further, we can decide to build a rule of the 
following nature into the processor: 
If an instruction bears a symbolic name, the origin counter, at that point, 
will be chosen as the synonymous core location to be associated with 
that name. 

Thus, our source program looks like this: 

Information Sentence 1: Begin this program at the first available loca­
tion after the addition and multiplication tables. 

Information Sentence 2: A symbol Input will be used. It is 80 positions 
long. 

Information Sentence 3: There is no more information of explanatory 
nature. The source program follows. 

RNCD INPUT; THE NAME OF THIS 
STATEMENT IS "BEGIN." 

WNCD INPUT 
B BEGIN 

The resultant object program generated is as follows: 

LOCATION 

00480 
00492 
00504 

INSTRUCTION 

36 00400 00500 
38 00400 00400 
49 00480 00000 
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If it were necessary to write all of these cumbersome directions, it 
might not be worth the trouble. After all, the computer does not need 
such an aggregation of verbs and nouns to tell it what to do. It merely 
desires the facts in as concise a form as possible. Let us rewrite again: 

ORIGIN: 400 
INPUT:SYMBOL:80 
BEGIN:RNCD:INPUT 

WNCD:INPUT 
B :BEGIN 

END OF PROGRAM 

Now this is more like it. Just the facts without the frills have told the 
processor where to start, where to stop and also that the symbols "Input" 
and "Begin" have been defined. 

Everything becomes grist for the processor's mill. But since we must 
be able to differentiate between concepts, let us call instructions to the 
processor declaratives. All else are machine instructions in symbolic 
form desirous of translation. 

In our last example, only one instruction (RNCD:Input) has an iden­
tifying name (Begin). This "label" went into the dictionary and the 
instruction received no special treatment beyond that. Of course, the 
processor is quite fair; it treats all input in an equal fashion up to a point. 
At first glance, it had no idea that the statement "Origin: 400" was a 
declarative and not a symbolic instruction. It took a good deal of complex 
logic and detailed investigation by the processor to determine that this 
input statement belongs to the declarative category. The second state­
ment (Input:Symbol:80) is also recognized to be declarative in nature. 
Certain clues, the presence of the word "Symbol" for instance, cause this 
statement to be treated in a different fashion than "Origin: 400." 

A procellsor, then, is a program that has the ability to read information 
and classify it into two categories: 

1. Directions to itself, of which there are a wide variety. 
2. Symbolic instructions that are to be translated according to the 

general rules of the processor and the specific instructions of this 
translation. 

The process of translation is termed assembling a program. The 
translator is called an Assembly System. The assembly system for the 
1620 is called the Symbolic Programming System and bears the shortened 
title "SPS." 

Once an individual has learned the rules of writing in SPS language, 
program construction, which is challenging to begin with, can be quite 
enjoyable. These rules make difficult taskmasters, however. The assembly 
system cannot be told approximately what to do. It must be given exact, 
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noncontradictory, properly ordered, carefully chosen statements. The 
next chapter gives the rules for the 1620 symbolic system. Although they 
are unique for this particular system, the concept of symbolic program­
ming extends to almost all digital computers. Some systems, unique to 
other computers, bear rather amusing acronyms: SOAP (Symbolic Op­
timal Assembly Program), SAP (Symbolic Assembly System), and SOS 
(Share Operating System). 

The construction of such a system often occupies many man-years. The 
1620's SPS took approximately four man-years to complete. 



Chapter 11 

The Symbolic 
Programming System 

In the previous chapter, a pseudo-symbolic system was introduced to 
give the student an initial glance at a processor that manipulates symbols. 
We now come to a comprehensive analysis of the actual system with its 
myriad rules. 

All information relevant to coding and subsequent assembly is entered 
on an SPS coding sheet as seen in Figure 11.1. The information required 
to process a program falls into two main categories: 

1. Instructions-Source statements in the symbolic language that specify 
the job to be done by the object program. These entries will be trans­
lated into the object program. 

2. Declaratives-The actual equivalents of Information Sentences dis­
cussed in the previous chapter. There are three categories of de­
claratives: 

(a) Area Definitions-These statements assign core storage for input, 
output, and working areas. Area definition statements are never 
executed in the obiect program. 

(b) Constant Definitions-These statements allow one to define con­
stants needed in the execution of the object program. The 
constants become part of the object program, but the statements 
themselves are not executed at the object level. 

(c) Processor control operations-These statements allow program­
mer control over portions of the assembly. As in the case of area 
and constant definitions, these statements are never executed in 
the object program. 

USE OF THE CODING SHEET 

The identifying information at the top of the coding sheet (''Program,'' 
''Programmed By," and "Date") is not part of the source program and 
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IBM 
~ 

Program _______________ _ 

Progrommed by ___________ _ 

LINE LABEL OPERATION OPERANDS ~ REMARKS 
, 6 II 12 15 16 20 25 

1620 Symbolic Programming System 
Coding Sheet 

Dote ____ _ 

30 '0 

Page No. W of ___ _ 

60 65 70 10 

~IOLU~~~-L-L~~-L-L+_~~-LJ-~~~L-L-L, , I " !-L.~'_L_L~~_J_L_L~~_L_LJ_~~'~!_"_.~I_L_L~~LJ_L_L_~~_L_L_L~~~_L~ 
10.3 

10, • 

. . ! I I 

I I 0 

I 3 0 

I • 0 

I • 0 

I 6 0 

I 1 0 

2 0 0 

Fig. 11.1 Sample of a 1620 SPS Coding Sheet. 
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is not punched in the source tape or card deck.! It is used to prevent 
mix-up of programs while the coding is in the source document. 

PAGE NUMBER 

The 2-character page number will be punched as the first characters of 
each source statement. Although there are no "columns" in a paper 
tape, we will be able to identify position if we call the first punching 
location "column 1." The page number (00-99) is punched in columns 
1 and 2 of the card and tape systems. Their function is to sequence the 
coding sheets and also to allow for sorting cards in the event that they 
are out of order. (Card dropping is a hazard of the profession.) The 
processor does not check for sequential or multiple page numbering. 
This is the programmer's responsibility. 

LINE NUMBER 

The 3-character line number is punched contiguous to the page number 
in columns 3-5 of both card and tape systems. Its function is to sequence 
the statements on each coding sheet. 

The first 20 lines are prenumbered 010-200. The six unnumbered lines 
at the bottom of the page are provided for the entry of statements 
inadvertently omitted and/or for sheet extension. 1£ a statement is 
omitted and added at a later time, its line number should fall between 
those statements where the correction is to be inserted. It will be noted 
that provision has been made for up to nine such insertions. If more are 
required, it is possible to give a multiplicity of statements the same line 
number. However, this partially defeats the purpose of having the line 
number. Insertions of the type discussed must be placed in their proper 
sequence when a source program is being assembled since assembly is 
a serial process and sequence of line numbers is not checked. Thus, a 
statement out of order will be assembled out of order. 

LABEL 

The 6-character label is a symbolic name chosen by the programmer 
and is punched in columns 6-11 in both card and tape systems. It is not 
necessary to utilize all six positions of the label field. A label is usually 
associated with an area being defined or an instruction referred to else­
where in the program. All labels are assigned addresses in storage during 

! The physical preparation of tape and/or cards is referred to throughout this and 
subsequent chapters as punching. There is a variety of devices used for preparation of 
source program information. 
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the assembly. A reference to a label in the program is a reference to 
the address of the area or instruction which bears that label. Although 
any statement may be labeled, unnecessary labels delay the process of 
assembly. Consequently, only those items specifically referred to else­
where in the program should be labeled. Instructions and declaratives 
that are unlabeled should contain blanks in columns 6-11. 

LABEL RULES 

1. A label may contain from 1 to 6 alphanumeric characters at least 
one of which must be alphabetic or one of the special characters: 

Equal sign ( = ) 
Period ( . ) 
Solidus ( / ) 
Commercial at ( @ ) 

2. Unused portions of a label are left blank. 
S. Blanks are not permitted within a label. 
4. All labels begin in colum~ 6. 

The number of labels permitted in the symbol table is a function of the 
core available and the size of the labels employed. In a 20,000-core­
position 1620, approximately 170 6-character labels are permitted. 

It is wise to choose labels that have high mnemonic values. Labels 
that have obvious meanings provide easily remembered references for 
the programmer and also assist others who may assume responsibility 
for the program. The following demonstrates a few valid labels: 

DATA 
INPUT 
OUTPUT 
X2SBFG 
CO 
START 
BEGIN 

OPERATION 

A2I456 
Z12S45 
PPPPP 
ecce 
INAREA 
DATAIN 
SYMBOL 

TEMPI 
TEMP2 
CON 
12A 
A=B 
X@C1 
9.2S/X 

The 4-digit operation field contains the mnemonic representation of (1) 
machine language operation codes, (2) declaratives, and (3) macro­
instructions (to be discussed in Chapter 13). Punching in the operation 
field is in columns 12-15 of both card and tape systems. 

A complete list of mnemonic machine language operation codes may 
be found in Table 10.1. Actual 1620 machine codes in their numeric 
form are also permitted but, in this case, checking by the processor is not 
performed to determine if the numeric OP code is valid. 
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OPERANDS AND REMARKS FOR INSTRUCTIONS 

If the input to the processor is an instruction rather than a declarative, 
the operands and remarks section may contain, at most, 4 items separated 
by commas. The entire statement must be terminated by an ElL char­
acter in the paper tape system. This restriction is not applicable in the 
card system, but the presence of the record mark (0-2-8) as the last 
element of a statement will not affect the processing. Missing operands 
are noted by using commas in their place. 

Three of the four permitted items are operands and the fourth item, 
if present, is a comment which has no effect on the assembly. Such 
remarks, if present, are printed during a listing of the assembled program. 
The purpose of these comments is to enable one to identify the effect of 
certain instructions. It is quite easy to forget why one put this or that 
instruction in the program in the first place. Such comments and remarks 
can be quite useful if one returns to a program after a prolonged period 
of inactivity. The first three items are referred to respectively as the 
P, Q, and Flag operands. 

1. p Operand-This portion may be either a symbolic, absolute, or 
asterisk address 2 and will assemble as the P portion of the object 
level instruction. 

2. Q Operand-This portion may be either a symbolic, absolute, or 
asterisk address and will assemble as the Q portion of the object 
level instruction. 

3. Flag Operand-This item is always numeric and is used to set flags 
in the assembled instruction. 

Any instruction may have 0, 1, 2, 3, or 4 items in the "operands and 
remarks" portion of the coding sheet. These are punched in columns 
16-75 in both the card and tape systems. In the card system, columns 
76-80 are not utilized and may contain identifying information if it is 
so desired. 

OPERANDS AND REMARKS FOR DECLARATIVES 

The number of items in a declarative field is variable depending upon 
the declarative chosen. Each declarative will be discussed separately. 
Punching of declarative operands and remarks occupies columns 16-75, 
as do punching of instruction operands and remarks. 

DISCUSSION OF OPERANDS 

P AND Q OPERANDS 

The operands that will be assembled as the P and Q portion of an 

2 See pages 105 and 106 for a discussion of symbolic, absolute, and asterisk 
addresses. 
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instruction are of three types: actual (synonymously termed absolute), 
symbolic, and asterisk. 

ACTUAL 

An actual address consists of five or fewer digits and is the actual 1620 
core storage address of a piece of data or an instruction. High-order 
zeros of an actual address may be eliminated. See Figure 11.2 for an 
example of instructions where both P and Q addresses are absolute. 

LlN£ LABH OP£RAlION OP£RANOS I R£MARAS , , UI2 '" " " " 
, 0 A, 1234,5, 17.56,2, 

0 ~ 

M 532 0121 7 
o .0 

TF '1,5,0,0,0 ,g,g, 
0 

, 0 H 

rO,M i1,g,g,g,g, ,5, 
, 0 0 I I I I I I I I 

Fig. 11.2. Sample of Absalute Addressing. 

Figure 1l.2-Commentary 

Assume the location counter is at position 10000 when we encounter these 
source statements. If this is the case, the following five instructions will be 
generated: 

(10000) 
(10012) 
(10024) 
(10036) 
(10048) 

21 12345 17562 
23 00532 01217 
26 15000 00099 
48 00000 00000 
15 19999 00005 

The above program has no purpose other than demonstration of actual address 
assignment. 

Note that the processor fills in high-order positions of P and Q addresses 
with zeros if less than 5 digits should be present. Some programmers enjoy the 
uniformity of always utilizing 5-digit fields whether or not they are required. 

SYMBOLIC 

The symbolic address is a name or label assigned by the programmer to 
a piece of data or an instruction. Such a symbolic address is valid if and 
only if it appears somewhere in the source program in the Label field. 
Either one or both of the P and Q operands may be symbolic. See 
Figure 11.3 for an example of symbolic addresses. 
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UNE LIBEL OPERATION OPERANOS I REMAR~S , , IIll '" . , 
'0 

, , lA, T,E,M P,l, ,I.N PUT 
, 

L~~~ 

M T,E,MP,2, TEMP 1 . , -L-L-'--'-; 
TF 'D,A T A ,g,g .....L-1.~ 

0 

, 0 N,d),P 

IB,NR 1,O,Q,0,0. Ld),C, 
, , , 

~~~ I I , 

Fig. 11.3. Symbolic Addressing. 

Figure n.S-Commentary 
Assume the following core locations for all elements used in symbolic form: 

TEMPI 
TEMP2 
DATA 
INPUT 
LOC 

(404) 
(410) 
(420) 
(455) 
(512) 

Also, assume that the location counter stands at 800 when these instructions 
are encountered by the processor. The following instructions are generated: 

(00800) 
(00812) 
(00824) 
(00836) 
(00848) 

21 00404 00455 
23 00410 00404 
26 00420 00099 
41 00000 00000 
45 10000 00512 

Note that an instruction may have mixed symbolic and actual P and/or Q 
operands. This is exhibited by the "TF DATA,99" and "BNR 10000,LOC" 
instructions. It is customary to differentiate the alphabetic "0" from the 
numeric zero. Note that the letter "¢" is slashed and the number zero is not. 

Of course, this example assumes that at some point in the program all symbols 
employed were properly defined by appearing in a label field of an instruction 
or declarative. 

ASTERISK 

The character, asterisk (*), when used as an operand in the P and/or 
Q portions of an instruction, makes reference to the present value of the 
location counter. (The location counter is the true correspondent to the 
origin counter discussed in the previous chapter.) This is equivalent to 
the address of the 00 (high-order-Ieft-hand) position of the instruction 
which contains the asterisk. See Figure 11.4 for an example of asterisk 
addresses. The asterisk rule is somewhat different in the case of a 
declarative. Be sure to note it. 
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LINE LABEL OFfRATlDN OPERANDS I REMARKS . '" 
, , ,. 

. B,NF F,I,N,I,S.H, • 

B, ., . 
Fig. 11.4. Asterisk Addressing. 

Figure 1l.4-Commentary 

Assume that location "Finish" is synonymous with core location 15000 and 
that the location counter stands at 900 when these instructions are encountered 
by the assembly system. The following instructions are therefore generated: 

(00900) 
(00912) 

44 15000 00900 
49 00912 00000 

The latter instruction is a classic example of how not to use a computer. A 
never-ending branch has been developed with no way out. 

FLAG OPERANDS 

A Hag is placed in those positions of the assembled instruction specified 
by the Hag operand. In the event that an instruction is of the Immediate 
type, a Hag is automatically placed over the Q7 digit of the assembled 
instruction. However, the presence of the Hag operand takes precedence. 
Thus, a Hag operand of 8 causes a Hag to be set in Qs and not in Q7' 

If more than one Hag is desired in an assembled instruction, the Hag 
operand must indicate all positions to be flagged. Thus, if a flag is 
desired in Q7 and Qll, the Hag operand reads "711." The order of ele­
ments in the flag operand is quite critical here. If one wishes a Hag at posi­
tion 0 0 and 0 1, the Hag operand is written as "01" and not as "10." This 
latter configuration would cause a Hag to be placed at position QlO' If 
one desires every digit of an assembled instruction to be Hagged, the 
Hag operand would read "01234567891011." 

There is one exception to the rule governing the use of an Immediate 
instruction without a flag operand: the instruction Transmit Digit Imme­
diate will assemble with no Hag placed on the assembled instruction 
unless specifically told otherwise through the use of the Hag operand. 
See Figure 11.5 for examples of the Hag operand in use. 

Any instruction may have a flag operand but its use is most effective 
in the Immediate type. 
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LINE LABEL OPERATION OPERANOS & REMARKS , . II It IS 16 o , " " " 
IA.M. iD.A.TA .t905.7. 

" , AM iD,A T A .i,2M 7 ,7, . 
U"0.57,t'0: 

I I I I I I I I 

.ill AM DATA I I ,~.~~ 

,6,0 

, 0 15.M lu F.d! .. 1,0,0" ,9. ...-.L...l.....---.-I-.J.---'--1 

" , 
TOM DATA 2 

, ,0, t I I I I I I I I I 

IT,D,M D,A,T,A, .2, ,1,1 .. , 
, TFM ;,ib,U NT ,1,5,7, 8 
, 4 0 

, , 0 B. T,H,E,R E 2 
, 0 

, N,d),P 01234567891011 
, 
•• 0 H PR.ib,G,R,A,M ,I,S, ,c.ib,M P,LE.T E 
• 0 0 

Fig. 11.5. Samples of Instructions with Flag Operands. 

Figure n.5-Commentary 

Assume the following core locations for all elements used in symbolic form: 

DATA (12027) 
INFO (17956) 
COUNT (406) 
THERE (2000) 

The location counter stands at 512 when these instructions are encountered 
by the processor. The following instructions are generated: 

11 12027 12057 

11 12027 12057 

11 12027 12057 

12 17956 00100 

15 12027 00002 

15 12027 00002 

16 00406 00157 

49 02000 00000 

41 om)(jO 00000 
48 00000 00000 

Note the three commas of the last instruction to denote the three missing 
operands before the remarks operand which is present. Also observe that the 
presence of the remark did not affect the assembly or generate any coding. 
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ADDRESS ARITHMETIC 

Any P and/or Q address, symbolic, asterisk, or actual, may be incre­
mented ( + ), decremented ( - ), or multiplied (*) by a numeric constant 
or a symbol representing a numeric quantity.s By utilizing a variety of 
address arithmetic, any P and/or Q address may assume any variation 
of the following form: 

where A, B, C, and D are numeric, asterisk, or symbolic, and multiplica­
tion is of prime order. 

Symbolic instructions of the form: 

RNCD 
B 
TF 
AM 

are permissible. 

INPUT-79 
START+24 
LOC*16,DATA +5*L-CONST 
*+23,5,10 

Figure 11.6 contains extensive examples of address arithmetic. 

Equivalent 
After 

P or Q Operands Assembly 

START + 40, 04040 

Symbols ALPHA - 30, 00970 

Used In START + 2 *L, 04024 

Operands Equivalent START * 3, 12000 
ALPHA * 5 + 40, 05040 

ALPHA 1000 4 * 13+ OUTPUT, 15052 

START 4000 START + 4 *L - 1, 04047 

L 12 ALPHA *L, 12000 

ORIGIN 600 SOO + 3) * 3 - 11, 00549 

OUTPUT 15000 OUTPUT - L * ALPHA + ORIGIN 03600 

Fig. 11.6. Samples af Address Arithmetic. 

3 Note this alternate function of the asterisk symbol. In all, there are four separate 
and distinct uses for asterisk of which two have been discussed: (1) an instruction 
operand and (2) a symbol implying multiplication. 
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DECLARATIVES-CARD AND TAPE SYSTEM 
Declaratives, as defined previously, are instructions to the processor for 

control of a specific assembly. The variety of declaratives may be 
initially confusing but the student is not expected to learn them all 
simultaneously. As each declarative is introduced, a variety of examples 
will be given. Close study of these should give an excellent understanding 
of their function. 

The use of the asterisk (*)in a declarative operand has a slightly 
different meaning than it has when used as an instruction operand (see 
page 106). It is with this third use of the asterisk symbol that the dis­
cussion of declaratives begins. 

ASTERISK RULE FOR DECLARATIVE OPERANDS 

The character asterisk (*), when used as an operand of a declarative, 
makes reference to the low-order digit of the last field whose address was 
assigned by the processor. This last field may have been the result of a 
declarative statement or an instruction. 

DORG (DEFINE ORIGIN) 

The code DORG is used to initiate address assignment in that it 
initializes the orgin counter to a specified address. It is the true equiva­
lent of Information Sentence 1 of Chapter 10. The rules of the DORG 
follow. 

1. The operation code DaRe appears in columns 12-15 of the opera­
tion field. 

2. The address at which assignment is to begin is specified as the first 
operand. This operand may be actual, symbolic, or asterisk. If sym­
bolic, the symbol must have been previously encountered in the source 
program.4 

3. A DaRe may be used at any point in the source program. 
4. The first instruction or declarative entry after a DaRe will begin its 

location in core at the address specified by the DaRe's operand. 
Subsequent entries will be assigned subsequent addresses. 

5. If no DaRe is encountered as the first statement of a source pro­
gram, the processor begins the assembly at location 00402. 

6. The lowest location that should be chosen for a DaRe is 00402. 
7. The maximum number of operands that may be used with a DaRe 

is two. The second operand, if present, is a comment and does not 
affect the processing. 

See Figure 11.7 for examples of the DORG statement properly written. 

4 Any declarative operand that is permitted an actual, symbolic, or asterisk address 
is also permitted address arithmetic in that operand. 
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UIE LABEL OPEIlATlOII OPERANDS 1 REMA~ . '" 
, , ~ .. 5 • 4. ., ,. 

D,t,RG i,5,O,O,O 

,5, ID,Ib,R,G i,0,5,2,8, . 
D.Ib,R,G 4i7 

7 D,Ib,RG S YM8,Ib,L +2 2 

Q,U.G Q,A T A -,5,2,7 
, ,. . U,R.G .,-3 

. . , .... LM N,t, ,Q,t,R,G, ,S,H,Ib,U.L.Q, ,B,E,G,I,N, ,B,E,L.ib,W, 4,0,2, 
, .. 

Fig, 11,7, Examples of the DORG Declarative, 

DEND (DEFINE END) 

The code DEND is used to inform the processor that it has processed 
all of the source statements. The last statement of a source program 
must be DEND. The rules of the DEND follow. 

1. The operation code DEND appears in colu~ns 12-15 of the operation 
field. 

2. The address at which the object program is to begin execution may 
be stated as the first operand. The object program will then contain 
an automatic Branch to this instruction after loading and halting. 
This automatic Branch is obtained by depressing the Start key. The 
address specified as the first operand may be symbolic, actual, or 
asterisk. If symbolic, the symbol must have been previously en­
countered in the source program. 

3.. A DEND may not be labeled. 
4. The maximum number of operands with a DEND is two. The 

second operand, if present, is a comment and does not affect the 
processing. 

See Figure 11.8 for examples of the DEND statement properly written. 

LINE LABEL OPEllAilON OPERANDS & REMARKS , . 
'" 

, ,. .. , ,. .. . 
IO,END 

,5 • OEN,O IB,E,G,IN . 
". o END START+24 '-'-~ 

~-~ 

7 DE N.Q 4.0.2.8,E 6 I N P R.ib.G.R,A,M ~~o.2."-'-'1. 
". 

Fig. 11.8. Examples of the DEND Declarative. 
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DS (DEFINE SYMBOL) 

The code DS may be used to define a contiguous area of core storage 
that will contain numeric data. An alternate function is to generate 
synonymity between symbols or between symbols and addresses. The 
rules of the DS follow. 

1. The operation code DS appears in columns 12-13 of the operation 
field: 

2. The label by which this field may be referenced appears in columns 
6-11. The label refers to the units (low-order) position of the field. 5 

3. The length of the field appears as the first operand. The length 
operand may be actual, symbolic, or asterisk. If symbolic, the symbol 
must have been previously encountered in the source program. 

4. If a second operand is present, the processor assumes a synonymous 
relationship between the label and this second operand. This operand 
allows the programmer to assign the address of a symbol. The 
presence of the synonymity operand does not affect the sequence of 
of addresses assigned by the processor. The location counter remains 
unchanged regardless of the size of the first operand. The synonymity 
operand may be actual, symbolic, or asterisk. If symbolic, it must 
have been previously encountered in the source program. 

5. The maximum number of operands in a DS is three. The third 
operand, if present, is a comment and does not affect the processing. 

6. Omission of the label in a DS reserves storage which will not be 
referred to symbolically. 

See Figure 11.9 for examples of the DS statement properly written. 
To demonstrate the variety of uses for the DS statement, a sample 

program will be repeated with variations in the programming. Com­
mentary will be presented with each example. Both the source program 
and object program are displayed. Only the first example will be shown 

UNE LABEL OPERATION OPERANOS I REMARKS .. 1112 1516 ,. " .. " .. ., 
, • LA·A E.I Ins 10 

.. , K,dI,N OS 15 I I I I I . 
TFMP1 Ins LA.BE L-7 I I I I I ~, .... 

, MATRI.X os 10 THIS IS THE f I ~E,!",EJ!E NT 

OS 49,0, R,U,M f,GI,R 49 MJiR E ELEMENTS 
, 

75:0,0:0, ,C,GI.M'M E N T S ~Nl1 R E M~R K~ , • A,R,f,A, D,S, 
, 

Fig. 11.9. Examples of the OS Declarative. 

Ii A label does not refer to an entire field. It refers to a Single core position. 
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on a coding sheet while all others demonstrate the actual 1620 type­
writer output listing: source statements on the left, assembled statements 
on the right. 

The details of assembling a program will be discussed at a later point. 
It is sufficient to say that the processor must read the source program 
twice. 

The first pass of the source program builds up a dictionary of labels, 
assigns storage locations, and yields certain error messages. During the 
second pass, the source data is re-entered and the following ta1ces place: 

1. Operation codes are changed from symbolic to actual. 
2. Operands are processed by dictionary look-up and address arithmetic 

is performed where necessary. 
3. The assembled instructions (object program) are punched on cards 

or tape. . 

In addition, a variety of error messages may appear during either pass 
designating certain error conditions. 

The object program for both card and tape systems contains loading 
instructions which appear at the beginning of the tape or card deck and 
the arithmetic tables which appear at the end. 

Thus, a· single tape or card deck, consisting of loader, object program, 
constants, arithmetic tables, and so forth, is provided by the processor. 
An optional listing of the source program versus the assembled program 
may also be obtained. It is this listing that is given for each demonstration 
program. 

Problem 

Generate a program to reproduce a deck of punched, 80-column cards. The 
program is to run until the card reader is empty, at which point the program 
will stop for lack of cards. The cards contain no alphabetic information and 
all 80 columns are punched with numeric data. There are no blank columns 
in the cards. 

UNE LABEL OPERATION OPERANOS l REMARI\S 

". , , .n . 
10.'.R.G 14.0.2. 

INPUT OS 80 
!a.E.G.I.N. IR.N.CD I I.N.P.U.T - 7.9, 

W.N.C.D Ir.N P.u.T -.7.9 
lB. a E,G,IN 
O.E.N.O 

, 

Example lA 
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01010 
OJ020lNPlJI 
01030BEGIN 
OJ040 
01050 
01060 

DORG 
ps 
RNCD 
WNCD 
B 
PEND 

402 
80 
INPUT-79 
I NPlJI-79 
BEGIN 

Example l-Commentary 

The Symbolic Programming System 

Example 18 

00402 
00481 00080 
00482 36 00402 00500 
00494 38 00402·00400 
00506 49 00482 00000 
00000 

A total of 80 positions is needed for an input area. Consequently the 
symbol "Input" is designed to be 80 positions long. Since I/O commands 
reference the high-order position of data, the I/O P-operand references not 
"Input" (the address of the low order position) but "lnput-79" (the address 
of the high-order position. This disconcerting bit of arithmetic may be justified 
by asking yourself how many numbers lie between 0 and 5, inclusive. The 
answer is, of course, 6. Similarly, there are 80 positions between Input and 
Input-79: 

INPUT - [INPUT - 79] + 1. 

The processor, having been told to begin its assembly at location 00402 by 
the DORG statement, generates an address of 00481 for the units position of 
the symbol "Input." The processor assigns addresses as it encounters informa­
tion. Hence, the instruction labeled "Begin" starts at 00482. Synonymous 
with location 00482 is the label name "Begin." When this label is used as an 
operand, as in the case of "B Begin," the corresponding core location is sub­
stituted. 

The DEND statement completes processing of both passes. The listing 
shown above is the output of the second pass of the source program. 

01010 
01020BEGIN 
01030 
01040 
01050lNPUT 
01060 

DORG 
RNCD 
WNCD 
B 
DS 
DEND 

402 
INPUT-79 
I NPUI-79 
BEGIN 
80 

Example 2-Commentary 

Example 2 

00402 
00402 36 00438 00500 
00414 38 00438 00400 
00426 49 00402 00000 
00517 00080 
00000 

This example differs only slightly from Example 1. In this case the definition 
of "Input" was made after the symbolic instructions. The object program 
thus produced will accomplish the same task but the addresses, of course, 
are entirely changed. This is because the location counter came across the 
statements in a different order. 
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01010 OORG 
0] 020GPXPL RNCo 
0]030 WNCo 
01040 B 
,0] OSOBPfZOX PS 
01060 oEND 

10000 
BPfZQX-79 
BPfZOX-79 
GPXPL 
80 

Example S....;Commentary 

Example 3 

In this case the DORG instruction specifies 10000. 

115 

10000 
10000 36 10036 OOSOO 
10012 a8 10036 00400 
100249 10000 00000 
lOllS OOOSO 
00000 

This problem is given to demonstrate the fact that the choice of symbolic 
names does not affect the processing. It does make the logic more difficult to 
follow. 

01010 
01020GO 
01030 
01040 
010S0oATA 
01060 

DORG 
RNCD 
~vNCD 
B 
OS 
DEND 

403 
DAu'-79 
DATA-79 
GO 
80 

Example 4-Commentary 

Example 4 

00403 
00404 36 P0440 pOSOO 
00416 3800440 00400 
00428 49 00404 00000 
00S19 OOOSO 
00000 

Notice that the DORG requested an initial address of 403. The processor 
will not allow instructions to begin at odd locations. Thus, the location counter 
was incremented by 1 before processing the instruction labeled "Go." 

01010 
01020START 
01030lNPUT 
01040 
OIOSO 
01060 

DORG 
RNCD 
OS 
WNCo 
B 
DEND 

500 
I NPUT-79 
80 
INPUT-79 
START 

Example5-Commentary 

Example 5 

00500 
OOSOO 36 00SI2 OOSOO 
00S91 00080 
00S92 38 00SI2 00400 
00604 49 OOSPO OpOOO 
00000 

The processor has no way to determine that a major programming rule has 
been violated in this problem. 

After assembly, an attempt to run this program will result in the reading of 
just one card. This is due to the fact that the 1620 will attempt execution 
of the instruction in location 512 after execution of the instruction in 500. 
Unfortunately, there is no instruction in location 512. 
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The problem was introduced by defining the symbol between two instruc­
tions which should be contiguous at the object level. This is not an error in 
the processor since this type of programming is often desirable. In this case, 
however, all we have is an unworkable program. 

01010 DORG 402 
01020BEGIN RNCD INPUT-79 

01030 WNCD INPUT-79 

01040 B BEGIN 
01050 DEND 

Example 6-Commentary 

Example 6 

00402 
ER 5 

00414 38 00000 00400 
00426 49 00402 00000 
00000 

This program demonstrates what will occur should you forget to define a 
symbol after having used it as a P and/or Q operand. The ER 5 message 
states that an undefined symbol is present in the symbolic instruction to which 
it is attached. The resultant instruction has 00000 in that operand which 
contained the undefined symbol. A complete list of error conditions will be 
discussed at the conclusion of this chapter. 

01010 
01020 
01030 
01040 
01050lNPUT 
01060 

pORG 402 
RNCD INPUT-79 
VlNCD INPUT -79 
B *-24 
DS 80 
DEND 

Example 7-Commentary 

Example 7 

00402 
00402 36 00438 00500 
00414 38 00438 00400 
00426 49 00402 00000 
00517 00080 
00000 

The first instruction of the program has no label. However,.we must refer 
to it in order to be able to branch to it. Consequently, the asterisk form of 
address is employed. Each instruction is 12 digits long, which makes the P 
operand of the Branch instruction "*-24" since we wish to reference the 
second instruction before the Branch. 

01010 

010 0 
0Igt0INPUT 

01020F I RST 
010aO 

01 0 
01070 

DORG 
RNCD 
VlNCD 
B 
OS 
OS 
DEND 

520 
INPUT 
INPUT 
F IRST 
1 
79 

Example 8 

00520 
00520 36 00556 
00532 38 00556 
00544 49 00520 
0~56 00001 
o 35 00079 
00000 

00500 
00400 
00000 
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Example 8-C ommentary 

In this example, the Input declarative was changed. This necessitates a 
change in the I/O statement. However, since all of core is at our disposal after 
position 556, is the unlabeled "DS 79" necessary? 

01010 
01020F IRST 
01030 
01040 
01050lNPUT 
01070 

OORG 520 
RNCO INPUT 
WNCO INPuT 
B FIRST 
OS 1 
OENO 

Example 9-Commentary 

Example 9 

00520 
00520 36 00556 00500 
00532 38 00556 00400 
00544 49 00520 00000 
00556 00001 
00000 

The question posed in Example 8 is answered here: the definition of 79 core 
positions contiguous to "Input" is not necessary in this case. 

Can the same technique be employed if "Input" is defined as a I-digit symbol 
before the instruction labeled "First"? 

01010 
01020GO 
01030 
01040 
01050lNPUT 
u106O-

OORG 402 
RNCD INPOI 
WNCO INPUT 
B GO 
OS ,15000 
OEMt'GU 

Example lO-Commentary 

Example 10 

00402 
00402 36 15000 UU5UO 
00414 38 15000 00400 
00426 49 00402 00000 
15000 00000 
00402 

Notice that "Input" has been made synonymous with position 15000 of core 
storage. In truth, there is no need for this concept in this particular program, 
but it is presented to demonstrate how a symbol can be located in any desired 
location. 

Note also the presence of an operand with the declarative DEND. 

01010 
01020lNPOT 
010300UTPUT 
01040SlART 
01050 
01060 
01070 

OORG 
OS 
os 
RNCD 
WNCD 
B 
OENO 

402 
80 
,INPUT-79 
INpOT-79 

OUTPUT 
START 
START 

Example 11 

00402 
00481 00080 
00402 00000 
00482 36 00402 00500 
00494 i8 00402 00400 
00506 9 00482 00000 
00482 
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Example ll-Commentary 

Here is an example of synonymity between symbols. We may refer to 
"Input-79" or "Output" and achieve the same assembled address. The definition 
of the symbol "Input" must appear before definition of "Output" because of 
rule 4 of DS statements. However, may the definition of "Output" appear 
anywhere after the definition of "Input"? 

01010 OORG 402 
010201 NPUT os ·80 

01050 wNCO OTpOT 
01060 B GO 
01010 DEND 

Example 12-Commentary 

Example 12 

00402 
00481 00080 
00482 36 00402 00500 
00402 00000 
00494 38 00402 00400 
00506 49 00482 00000 
00000 

Since "Output" reserves no storage, does not affect the location counter, and 
is used to define a synonymous name for core position "Input-79," it may be 
placed anywhere after the definition of the symbol "Input" without adverse 
effects. This answers the question posed in Example 11. See Example 5 for a 
violation of this concept. 

Example 18 demonstrates the following problem: 

Problem 

Generate a program to duplicate card-to-card or card-to-tape. If switch 1 
is on, the second alternative is to be chosen. A record mark is available at 
location 400 if needed. All card data is numeric and all 80 columns of the 
card are punched. 

01010 DORG 402 
M020 TD I NPUT+80,400 
01030 BCl *+48 
01040 RNCD INPUT 
-OfQ50----·WNCD-,N"'P.nUT;i;--------
01060 B *-24 

1070 RNCD INPUT 
010BO WNPT INPUT 
01090 B *-24 
JtLlOOINPUT DS 1 
lijT10DEN~D~4~O~2----------------------:5rr.~~~~------

Example 13 
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Example 18-Commentary 

Through the proper use of asterisk operands, we can limit the number of 
labels to as few as possible. But since the assembly system is available for 
the purpose of allowing symbol manipulation, this type of programming is not 
desirable for a program of any substantial size. 

The first instruction of the program places a record mark at the necessary 
location if tape output is the case. If card output is desired, we have wasted 
an instruction but have not damaged the intent of the program. 

Examples 14 and 15 demonstrate two varieties of the same program. 
The first is quite straightforward. The second is shorter but not as easily 
followed. This latter problem demonstrates the first example of a concept 
unique to digital computers: instruction modification. 

Both examples are presented without comment for your study. 

Switch IOn: Card-to-card duplication 
Switch 2 On: Card-to-tape duplication 
Switch 3 On: Tape-to-tape duplication 
Switch 4 On: Tape-to-card duplication 

Allow for the possibility of operator negligence concerning switch settings. 
A record mark is available in location 400 if needed. Card records are 
80 numeric characters. Tape records are 81 numeric characters, the 
last of which is an ElL character. 

01010 
01020GO 
01030 
01040 
01050 
01060T2C 
01070 
01080 
01090121 
01100 
01110 
01120C2T 
01130 
01140 
01150 
01160C2C 
01170 
01180 
01190ERROR 
01200lNPUT 
02010 

DORG 402 
BCl C2C 
BC2 C21 
BC3 T2T 
BNC4 ERROR 
RNPT INPUT 
WI~CD II~PUT 
B T2C 
RNPi INPOI 
WNPT INPUT 
~ T2T 
TO I NPUT+80,400 
I'<I~CO II~PtJT 
WNPT INPUT 
~ C2T+12 
.RNCO INPUT 
WNCD iNPOi 
B C2C 
1"1 
OS 1 
OEI~O rlO 

Example 14 

00402 
00402 46 00570 00100 
00414 46 00522 00200 
00426 46 00486 00300 
00438 lf7 00606 00lf00 
00450 36 006 18 00300 
00462 38 0D618 00400 
00474 49 00450 00000 
00486 36 006 18 00300 
00498 38 00618 00200 
00510 49 00486 00000 
00522 25 00698 00400 
0053436 006la 00500 
00546 38 006 18 00200 
00558 49 00534 00000 
00570 36 00618 00500 
00582 3800618 00400 
00594 49 00570 00000 
006 D6 4tl 00000 00000 
00618 00001 
00402 
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01010 OORG 402 
01020lNPUT OS 1 
01030 os 00 
01040GO BCl C2C 
01050 BC2 C2T 
01060 BC3 T2T 
01070 BNC4 ERROR",ALWAYS PREPARE FOR 
01080GENUSE RNPT INPUT ••• THE UNEXPECTED. IT 
010S0A WNCO INPUT",IS POSSiBLE to FOR-
01100 B GENUSE".GET SWITCH SETTINGS. 
01120T2T tOM A+9,2 
bll~O B GENUSE 
01140C2T TOM GENUSE+9,5 
O"~O TO I NPUT+80.400 

011 ·0 B GENUSE 
01190ERROR H 
01200 DE NO GO 

Example 15 

00402 
00402 00001 
00482 00080 
00484 46 00628 00100 
00496 46 00592 00200 
00508 46 00~68 OoaOO 
00520 47 00 52 00 00 
00~t2 36 00402 OoaOO 
00 4 38 00402 00 00 
005t6 49 00~2 00000 
005 8 15 00 53 00002 
00580 49 005a2 00000 
00592 15 005 1 00005 
00604 25 00482 00400 
00616 49 00568 00000 
00628 15 00541 00005 

004 4 

Example 16 demonstrates a solution to the following problem. Can 
you write another? 

Problem 

A B C 
5 Chars. 

ElL 
2 Chars. 

ElL 
3 Chars. 

ElL 

Data Representation on Paper Tape 

A is of the form XXX. XX 
B is of the form . XX 
C is of the form XX.X 
D is of the form XXXX. xxx 

0 
7 Chars. 

ElL 

All data is positive and flagged in the high order position of the field. Cal­
culate (A + B) (C + D) to one decimal place of accuracy. The answer is to 
be typed. 
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01005 DORG 
01010GO RNPJ 
01020 RNPT 
01030 A 
01040 RNPT 
01050 RNPT 
01060 A 
01065 M 
DIO~O TF 
010 0 RCTY 

2178 
INPUTA-5 
INPUTB-2 
INPUTA-I,INPUTB-l 
INPUTC-3 
INPUTD-7 
INPUTD 3,INPUTC-I 
INPUTD-I,INPUTA-l 
INPUTD-I,95 

01090 WNTY INPUTD-8 
01100 H 
OIIIOINPUTA DS 6 
01120lNPUTB DS 3 
01130lNPUTC DS 4 
01140lNPUTD DS 8 
01150 DEND GO 

Example 16-Commentary 

Example 16 

02178 
02178 36 02310 00300 
02190 36 02316 00300 
02202 21 02314 02317 
02214 36 02319 00300 
02226 36 0232300300 
02238 21 02327 02321 
02250 23 02329 02314 
02262 23 02329 00095 
02274 34 00000 00102 
02286 38 02322 00100 
02298 48 00000 00000 
02315 00006 
02318 00003 
02322 00004 
02330 00008 
02178 

121 

All areas of input are one core position ·larger than is needed. This is to 
allow for the entry of the ElL characters into core. Note the double usage 
made of the record mark which entered with the D data as an ElL character. 

Example 17 demonstrates a solution to the following problem. Can 
you write a second, a third, etc? 

Problem 

I 

A C D 

A occupies columns 1-5 of the card and is of the form XXX.XX 
Boccupies columns 10-11 of the card and is of the form. XX 
C occupies columns 15-17 of the card and is of the form XX.X 
D occupies columns 20-26 of the card and is of the form XXXX, XXX 
All data is positive and flagged in the high-order position of the field. Calculate 
(A + B) (C + D) to one decimal place of accuracy. The answer is to be 
typed. 
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01010 
01020Go 

OORG 402 
RNCO INPUT 

00402 
00402 36 00498 oosoo 

01030 
01040 
01060 
01070 
01080 
01090 

A A,B 
A D-2.,C 

ReTY 
WNTY 88 

MAD 
TQ 9l.400 

00414 21 00502 00508 
00426 21 00521 00514 
00438 23 00502 00523 
00450 25 00096 00400 

01100 
Ql110 INPUT 

H 
OS 

h00462 34 00000 00102 
_0474 ~8 .00088 00100 

01120A 
01130B 
01140c 

. .011500 
01160 

os 
os 
OS 
OS 
DENO 

, I NPUT+4 
, I NPUT+l0 
, I NPUT+16 
,INPUT+2S 
GO 

Example 17-Commentary 

Example 17 

00502 00000 
00508 00000 
00514 00000 
00523 00000 
00402 

There were no record marks left over from data input since card reading is 
not terminated in the same fashion as is tape. Hence, it was necessary to borrow 
the record mark at location 400. 

DC (DEFINE CONSTANT) 

The code DC may be used to define a numeric constant that will be 
used in the computation procedure of the object program. The rules of 
the DC follow. 

1. The operation code DC appears in columns 12-13 of the operation 
field. 

2. The label by which this constant may be referenced appears in 
colwnns 6-11. The label refers to the units (low-order) position 
of the constant. 

3. The length of the constant appears as the first operand. The length 
operand may be actual, symbolic, or asterisk. If symbolic, the 
syml?ol must have been previously encollntered in the source pro­
gram. 

4. The second operand is the constant being defined and is always 
numeric. 

5, Omission of the first and/or second operands is invalid. 
6. If a third operand is present, the processor assumes a synonymous 

relationship between the label and this third operand. This operand 
allows the programmer to assign the address of a constant. The 
presence of the synonymity operand does not affect sequence of 
addresses assigned by the processor. The loclltion counter remains 
unchanged regardless of the sjze of the first operand· which, unlike 
the DS size operand, must always be present. The synonymity 
operand may be actual, sYIIlbolic, or asterisk. If symbolic, it must 
have been previously encountered in the source program. 
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7. The processor will place a Hag over the left-hand (high-order) digit 
of the constant. 

S. Negative constants are preceded by a minus sign (-) which is 
not counted as' part of the length operand. The presence of the 
minus sign causes a Hag to be placed in the units position of the 
constant. 

9. A record mark may appear only in the units position of the con­
stant field and is written as "@." This is interpreted by the 
processor as "t." 

10. Negative constants containing a record mark (@) will have a flag 
placed over the digit preceding the record mark. 

11. Constants may not exceed 50 characters. 
12. Should the length operand be greater than the number of digits 

specified in the constant, the constant will be right justified with 
high-order zeros inserted. 

13. A length operand less than the number of digits in the speCliJled 
constant is invalid. 

14. The maximum number of operands with a DC is four. The fourth 
operand, if present, is a comment and does not affect the processing. 

See Figure 11.10 fot examples of the DC statement properly written. 

UN! LABll 1lPEllAIIOl OP£RAlDs l RthRliS , .. .. •• .. .. .. .. . 
iX. D.C. tB.4.!I 

:.'.N. ,D.C. 12 .. 1.5. 
~", 

III.R . lo.c. 14 .• 2. e ....... -.1.0. . . ,. IR.E.C.R.O. II).c. 11 ..•.• ~" 

I'.U.T P.U:t lo.C. 11.1. .a 

Li.N.4.], IO.C. I J. ,.1.t..L.'.C. . 

T.E .... P. ID.C. 11.5. ,.0 .. C .•. U.E.N.T. 

... . 1.1144.5 . ·.H.t.S .. S.T."".E1I.1;.II.T .. l.S .. UlU, Tn . 
, .e, 

." U.N, ID.C. 2 .. US.? .T.H.U .. S.U.T.E.M.E.ttT .. t.! .. t.N.V.U.t.O. 

fig. 11.10. lixamples of the DC Declarative. 

Examples 18, 19, and 20 are given to demonstrate proper use of the 
DC statement. These three examples are different solutions to the same 
problem. 
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Problem 

Given cards of the following form 

J 

A B C Zeros 

with A, Band C integers such that 

1. 0 ~ A ~ 9998 in columns 1-4 
2. 0 ~ B ~ 992 in columns 5-7 
3. 0 ~ C ~ 99984 in columns 8-12 

For each input card, generate a single output card with integers X, Y, and Z 
such that 

1. X = A + 1 punched in columns 1-4 
2. Y = B + 7 punched in columns 5-7 
3. Z = C + 15 punched in columns 8-12 

With the remainder of the card zeros. 

Repeat until all cards are exhausted. 
All input data is flagged in the high-order position of the field. 

01010 DORG 402 00402 
01020GO RNCD INPUT 00402 36 00474 00500 
01030 A A,KONI 00414 21 00477 00557 
01040 A B, KQN2 00426 21 00480 0056 a 
01050 A C,KON3 00438 21 00485 00565 
01060 WNCD INPUT 00450 38 00474 00400 
01070 6 GO 00462 49 00402 00000 
~l~TL~D~S __ ~I ________________________ ~o~O~~~Q~OIL-__ 
01090 OS 79 00553 00079 
01100A DS, INPUT+3 00477 00000 
011106 DS ,1~PUT+6 00480 00000 
01120C DS ,INPUT+ll o048Ul.OOOU-.-____ _ 
01130KONI DC 4,1 00557 00004 0001 
011 4oKON2 DC 3,7 0056 a 00003 n.aI-__ 
01150KON3 DC 5, 15 0056 5 00005 00015 
01160 DEND GO 00402 

Example 18 
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Example is-Commentary 

The constants needed for proper operation of the program are defined as 
Konl, Kon2, and Kon3, respectively. Other than the introduction of the new 
declaratives, this program presents no new ideas. 

01010 
01020GO 
01030 
01040 
01050 
01060 
01070 
01080lNPUT 
01090 
OIIOOCONI 
01110CON2 
01120COiJ3 
01130 

DORG 
RNCD 
A 
A 
A 
WNCD 
B· 
OS 
OS 
DC 
DC 
DC 
DEND 

402 
INPUT 
INPUT+3,CON1 
INPUT +6. COtn 
I NPUT+II,CON3 
INPUT 
GO 
I 
79 
2. I 
2,7 
2.15 
GO 

Example i9-Commentary 

Example 19 

00402 
00402 36 00474 00500 

o 38 21 004 5 00559 
00450 38 00474 00400 
00462 49 00402 00000 
00474 00001 
00553 00079 
00555 00002 el 
00557 00002 7 
00559 00002 IS 
00402 

This program is identical with the previous one with the single exception 
of size of constants defined. Are more than 2-digit constants really necessary? 

OJOJO 
OJ020GO 
01030 
01040 
01050 
01060 
01070 
010S0lNPUT 
01090 

DORG 
RNCD 
AM 
AM 
AM 
WNCD 
B 
OS 
DEND 

402 
INPUT 
I NPUT+3,I,JO 
I NPUT+6,7,10 
INPUT+l1,15,10 
INPUT 
GO 
1 
GO 

Example 20 

Example 20-Commentary 

00402 
00402 36 00474 00500 
00414 II 00477 00001 
00426 11 00480 000~7 

00462 49 00402 00000 
00474 00001 
00402 

The problem is executed in this program by using the Immediate commands 
instead of defining constants. In any computer program, space is money! 

Examples 21, 22, 23, 24, and 25 present five variations on the same 
problem. They are presented without comment for your study.6 

6 In Examples 24 and 25 what is the purpose of the declarative DORG *-3 which 
is so liberally sprinkled throughout the program? 
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i)1 01 Q DORG 402 00402 
OJ020(j0 {3NCP I NP\IT .00402 j6 00642 OOSOO 
01~O SF INPUT 00414 32 00642 00000 
01QAtP c. I NPUIt6,CON 00426 24 OCX;48 00727 
01050 E!H TAPOUT 00438 46 00582 01100 
Ql~Q SNE Ca~OUT.INPUT*6 P04So 44 00534 00648 

02010 H 00630 4 00000 00000 
~O~2~02~O~INruP~U~I~D~S __ 41=-____ ~ __________ ~ __ ~0~CX;~42 00001 
02030 OS 79 00721 00079 
~~204~O~CO~N:""""""..4DC~..,.lq,",.~5~QOIaoO!.!o!Q.!LO _________ ~0¥o07~2~7~0~OQ~ ~OoD.llO.-

2Q5000TPl,IT DC "S,@> 00735 00008 lJoooooo* 
92,&0 DEND GO 00402 

E~ample 21 

01010 DOf\G 402 00402 
Q1Q~OGQ RN~D INPUI 00402 36 0CX;26 OOSOO 
01P30 SF· INPUT 00414 3200626 00000 
010;0 SMF AHEAD, I NPUT+6 .. IS NUM. NEG. 00426 44 00510 0C¥>32 

01070 i RCTY 00462 3 0.0000 Q0102' 
Q]O§Q WNTY 0l,JTPUT-7 00474 38 0c¥>1& 0010.0 

01230CON DC 6,500(100 00711 00006 ;00000 
01240 D~ND GO 00402 

Example 22 
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01030 s~ I NPUT-79 0041 32 00626 00000 
01040 BNF AHEAD,INPUT-73 00426 44 09510 00632 
01050 TF OUTPUT-I, I NPUT-73 06438 26 O~2Z; 00632 
OHlEiO CF OUTPUT-L 00450 33 00618 '>0000 
01070 RCTY 00462 3ij 00000 00102 
01080 WNTY OUTPUT-7 00474 18 00618 O~ 
01090TEST BNLC GO 00486 47 00402 00900 
~0~ll~0~0~~~H~~~~=-~~~~ ____ ~ __ ~0~04~98~4~a~~~~~ 
01120AHEAD c. I NPUT-73,·CON 00510 24 00632 00]11 
01130 BH TAPE 00522 46 00570.0110.0 
01150 CF INPUT -79 00534 .33 00626 00000 
01152 WNCD INPUT -79 OQ54Q ~8 00626 00400 

01200 B TEST 00606 49 00486 00000 
012100UTPUT DC 8,@ 00625 ooooaaOOOOOOt 
012121NPUT os 80 00705 00080 
01230CON DC 6,500000 00711 00006 ~OOOQO 
01240 DEND GO 00402 

Example 23 

0101 0 DOI~G 402 00402 
Ol020GO RNCD I NPVI 08402 39 0051 00500 
01030 SF INPUT a 414 32 005 00000 
01040 TF OUTPUT, X 00426 26 00508 00592 
01050 CF HIGH 00438 3300502 00000 
0]060 BNF AHEAD,X 00450 44 00510 00592 
01070DATAI RCTY 00462 34 00000 00102 
01080 WNTY HIGH 00474 38 00502. 00]00 
01090TEST BNLC GO 00486 47 00402 00900 
01100DATA2 H 0049§ 48 00000 00000 
01 I 10AHEAD C X,CON 00510 24 00592 00469 
01120 BH TAPE 00522 46 00566 O.Ll.OO..... 
01130 CF INPUT 00534 33 00586 00000 

Jl..1Llt:Q WNCD I NPUT __ ~~_--,0,,-,,0~5L&.~lLOO~~ 00400 
01150 B TEST 005584900 00000 
01160 DORG *-3 00566 

-Ort.70TAPE WNPT HIGH 00566 3/3 00502 00200 
01180 B TEST 00578 49 00486 00000 
01190 DORG *-3 00586 
012000UTPUT OS ~AT A2+l 0 . ______ ._---¥0~05~08~Q~0~0~0¥_0-_:__--~ 
02010 DC 1,@l,OUTPUT+I 00509 00001 * 
02020HIGH OS OUTPUT-6 .Q.Q5Q.2 COCOO 
~O~2~03!cl0~C~ON~~0~C~""'6~,5~0"!"0400.o;:O~,~DA~T=A~I+-7------~00469 00000 ;00000 
02049 I NPUI os 1 OQsS6. 00001 
0204IX OS ,INPUT+6 00592 00000 
02050 OEND GO!!-____________ ...lOllo04a!L02'--_~ ____ _ 

Example 24 
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01010 OORG 402 00402 
01020lNPUT OS 1 00402 00001 
01030 os 79 00481 00079 
01040X OS,INPUT+6 00408 00000 
010SOGO RNCO INPUT 00482 36 00402 00500 
01060 SF INPUT 00494 32 00402 00000 
01070 8NF AHEAD,X 00506 44 00590 00408 
~0,"!-10~8~0!---~,""""--:!T""F_~0~UT~P-:-"U ..... TO..!.,X1...-_~ ________ ....:QQ5.tiL2.6._0Q.5RiL.'O.OM.1L 
01090 CF HIGH 00530 33 00582 00000 

~0H-l-!-,l O~O~O""A..wT A=ul'---,?1RC~T~Y,---;-o;-;:;;-,;,.--___________ .~0~0~54;:,tl2,,-?3.!:L.o.QQQ(Ll101O.L 
01120 WNTY HIGH .00554 38 00582 00100 

.,.0H-l+1l.u.0~T,.,..E~STr.:--,Bi"tN""L""C-,G .... 0<--____________ ~7 00482 00900 
011It:ODATA2 H· 00578 48 00000 00000 
01150AHEAO C X.CON 00590 24 00408 ~ 
151100 BH 'TAPE 00602 46 00646 01100 
~0,!-1 tJ17~O~_-!C¥.F=-!-+1 N~P~UTl:-___________ ..0.06..14 33 004OLQOQOtL 
01180 WNCO INPUT 00626 38 00402 00400 
01190 B TEST 00638 49 00566 00000 
01200 OORG *-3 00646 
01210TAPE TF OUTPUT,X 00646 26 00588 o04Oa~ 
02010 CF HIGH 00658 33 00582 00000 
02020 WNPT H I GH _JlO670 38 0058.LQQ2Q.lL 
02030 B TEST 00682 49 00566 00000 
02040 OORG *-3 00690 
020500UTPUT OS ,OATA2+10 00588 00000 
.Q2..060 __ JC 1 ,@,OAIA2ill 00589 00001 * 
02070HIGH OS OUTPUT-6 00582 00000 
.Q2..Q~Q.C.QN DC 6,500000,DATAl±L_______ 00~0006 >OJlOruL 
02'090 DENDGO 00482 

Example 25 

Problem 

Many cards are in the read hopper of the 1622. Each card is punched in 
columns 1-7 with a 7-digit number, X, such that: 

-9999999 ~ X ~ 9999999 
No data is flagged in the high-order position. However, negative data does 
have a flag over the units position. Perform the following: 
1. If X > 500,000, punch the number on tape. 
2. If 0 ~ X ~ 500,000, punch the number on a card in columns 1-7. 
3. If X < 0, type the number. 
The output number is to be exactly identical with the input number. Terminate 
the program after the last card has been processed. 

The next examples, which demonstrate the' use of the DC, are analogous 
to being told the answer and then asked to find the question. Four 
intricate programs are presented. What do they do? 

The answers to the questions (in truth, the questions to the answers) 
are presented on pages 129 and 130. Arrive at your own conclusion as to 
their function before looking at the solutions. Do not let their small size 
fool you. There is a lot of labor being performed. 
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01010 bORG 402 00402 
01020A TOM 199·99 •• 2 00402 15 T9999 00000 
01030 DC 1 ,@l. * 
01040 SM A+6.1 
01050 CM A+6,LABEL+l 
01060 BNE A 
01070LABEL H 
01080 DENO A 

01030 AM *- 10.1011 
-i0~1c;;0~4i<-0 __ --.:;C"'M;:- *-18. 9999. 8 

01050 BNE *-36 
01060 H 
01070KON DC 10,-0.* 
01080 OEND 402 

Example 26 

Example 27 

00413 00001 * 
00414 12 00408 00001 
00426 14 00408 00451 
00438 4~ 0040201200 
00450 4 00000 00000 
00402 

00414 11 0 0 oooTO 
00426 k4 00408 0~999 
00438 7 00402 01200 
O~O 48 00000 00000 
o 1 00010 0000000000 
00402 

0101 0 DORG 402 00402 
01020XI00 TD TEMP,KON-9,27 00402 25 00483 00464 

01090TEMP DS 10 00483 00010 
01100 DENO XI00 00402 

Example 28 

01010 DORG 402 00402 

glg~gxlO0 I~ ~~~tron ------.-- Ogtlt 11 ooro§ OOO!= 
01 040 SM xlOO±11 1 1 0l1'----______ ---':oLLJo~4L£l!6~if_2--1D~n~4.L,13~0!lJO!Ul~~ __ 
01050 eM XI00+ll;KOiHI 00438 14 00413 00540 

-D1060 BNE XIOO 00450 47 00402 01200 
01070 RCTY 00462 34 00000 00102 

_Q1ruwL ___ ~~T~FMmP~-~9~~ _________ ~0~M~7~4~38~OwO~~4~0~0~01~0~0~ __ 
01090 TFM X I 00+6. TENP 00486 16 00408 00549 
01100 TFM XIOQ±II,KON-9 00498 16 oM13 n0530 
01110 TF KON,TEMP 00510 26 00539 00549 
01120 B XI 00 D0521-..Jl~L.o.oliDLOUlOO""O.u..O,--_ 
01130 DORG *-3 00530 
01140KON DC 10, -123li567890 00539 OOO! 0 I2345678911 
01150TEMP OS 10 00549 00010 
01160 DC 1,@ 00550 00001 * 
00170 DEND XIOO 00402 

Example 29 

Example 26 causes a record mark character to be placed in core from 
positions 19999 to 452 inclusive. When this is accomplished, the pro­
gram halts. 
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Example 27 causes the 10-digit field 0000000000 to be placed at 19999, 
19989, 19979, ... , 10019, 10009. When this is accomplished, the program 
halts. 

Example 28 obtains a mirror image of the field 1234567890. The 
number thus produced is 0987654321 and is not a field due to the lack 
of the high-order field-defining flag. When this is accomplished, the 
program halts. 

Example 29 is a nonterminating program. There is nothing in the 
instruction set to cau~e the program to stop. A mirr.9r image is made 
of the original field -1234567890 to obtain 0987654321. With this new 
field as an argument, the process repeats itself indefinitely. See Figure 
11.11 for a portion of the output. 

As a final comment for all four examples, modification of certain 
instruction addresses was necessary. Such modification assumed that 
the P field data ( an instruction's P or Q operand) was flagged to allow 
for the necessary addition or subtraction. Consequently, the flag operand 
was used in locations where it seemed unnecessary. For example, note . 
the first instruction of Example 26: TDM 19999,,2. 

~98765432I 

I23456789~ . 

~.65.!.tllL 

I23456789tl 

~876543lL 

I234S678~ 

~9876 543..fL 

I23456789~ 

~98765432I 

I23456789tl 

~98765lt32L 

I23456789~ 

tl98765432.L 

I23456789~ . 

~98765432I 

Fig. 11.11. Object Program Typewriter Output of Example 29. 
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DSS (DEFINE SPECIAL SYMBOL) 

The code DSS is identical with the declarative DS, except for the 
fact that the label refers to the high-order position of the field as opposed 
to the units position in the case of the DS. 

Except for the above statement and the fact that DSS occupies columns 
12-14 of the operation field, all rules of the DSS are identical with those 
of the DS. 

DSC (DEFINE SPECIAL CONSTANT) 

The code DSC is identical with· the declarative DC, with the following 
two exceptions: 

1: The label refers to the high-order position of the constant. 
2. The constant will be processed without a high-order field-defining flag. 

Except for the above statements, and the fact that DSC occupies 
columns 12-14 of the operation field, all rules of the DSC are identical 
with those of the DC. 

DAS (DEFINE ALPHAMERIC SYMBOL) 

The code DAS may be used to define a field that will contain alpha­
meric information. These fields are generally used as I/O areas. The 
rules of the DAS follow. 

1. The operation code DAS appears in columns 12-14 of the operation 
field. 

2. The length of the field appears as the first operand and this will be 
doubled by the processor. This accommodates the alphameric coding 
of data which is in double-digit representation internally. The length 
operand may be actual, symbolic, or asterisk. If symbolic, the symbol 
must have been previously encountered in the source program. 

3. The label by which this field may be referenced appears in columns 
6-11. This label refers to the high-order-plus-one position of the 
field. Thus, the high-order position of the field is Label-I. The 
low-order position of the field is Label+2*L-2, where L is the length 
operand. 

4. The processor assigns an even address to the high-order digit of the 
field, and the label, referring to the adjacent position, thereby refer­
ences an odd core location. This satisfies the I/O rule concerning 
alphabetic information. 
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5. If a second operand is present, the,processor assumes a synonymous 
relationship between the label and this second operand. This operand 
allows the programmer to assign the address of a syrhbol. The label 
still refers to the high-order"plus-one position in this case but the 
core loceion is not necessarily odd. Thus, when assigning a 
synonymity operand for a DAS, one must be certain that the operand 
references an odd core location. The presence of the synonymity 
operand does not affect the sequence of addresses assigned by the 
processor. The location counter remains unchanged regardless of 
the size of the first operand. The synonymity operand may be actual, 
symbolic, or asterisk. If symbolic, it must have been previously 
encountered in the source program. 

6. The maximum number of operands in a DAS is three. The third 
operand, if present, is a comment and does not affect the processing. 

7. Omission of the label in a DAS reserves storage which will not be 
referred to symbolically. 

See Figure 11.12 for examples of the DAS statement properly written. 

LINE LABEL OPERATiON OPERANOS I REMARAS .. 1112 15 16 ,. .. .. " .. 'S 5 • 

• OAT A OAoS, i2L5c 

ALFAIN OAS 8.0. . I I I I I I I I I 

L.e,C, OAS INPUT+12 '--'-
,s, 

E N,e,u G:H: :F:tBl :UE. ,C.A,R 0 , ARO CAS 18,0 J U,S,T UI,NG 
.s, 

Fig. 11.12. Examples of the DAS Declarative. 

The card-to-card, card-to-tape, and so forth, duplication programs given 
as examples of the DS statement had two major faults which were not 
discussed at the time. First, blank card columns read numerically pro­
duce zeros internally. Thus, reading a blank card and punching the 
input information produces a card with 80 zeros. Second, if the input 
information contained mixed alphabetic-numeric characters, the repro­
duction was not necessarily valid. 

Since the DAS is discussed after the DS, it was better to define the 
statement of the problem in such a fashion as to utilize the DS only (no 
blanks, numerics only, and so forth). 

Now that the materials are handy to cope with the situation, all-purpose 
card-to-card duplication programs are presented for your study as well 
as proper use of the DAS. These programs are a slight extension of 
the reproduction programs that were demonstrated previously. 
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01010 
01020GO 
01030 
01040 
01050lNPUT 
01060 

01010 
0102pGO 
01030 
P1P40 
01050 
01060INPUT 
01070 

DORG 402 
MCD INPUT 
WACO IIJPUT 
B GO 
DAS 80 
DEND GO 

DORG 402 
MCP INPUT 
VlACD INPUT 
B GP 
DORG *-3 
DAS 1 
DEND GO 

Example 30 

Example 31 

133 

00402 
00402 37 0043Q 00500 
00414 39 0043~ 00400 
00426 49 00402 OOpOO 
00439 00080X2 
P04p2 

00402 
P04P2 37 00435 00500 
00414 39 00435 00400 
00426 49 00402 00000 
00434 
00435 OOOOlX2 
00402 

Example 32 demonstrates proper low-order addressing of an alpha­
meric field. 

Problem 

Construct a card-to-card duplicator program such that the input and output 
areas are distinct. (Transfer the input data to another area before writing.) 

01010 DORG 402 
01020GO BACD INPUT 
01030 SF ItJPUT-I 
01040 TF OUTPUT+2~'80-2,INPUT+2*80-2 
01050 CF OUTPUT-1 
01060 vlACD OUTPUT 
01070 B GO 
01080 DORG *-2,WHY *-2 I NSTEAD OF ~'-3 

01110 DEND GO 

Example 32 

00402 
00402 37 00473 0050P 
00414 32 00472 00000 
0042~ 26 00791 00631. 
00 3 33 00632 00000 
00450 39 00633 004pp 
00462 49 00402 00000 
Oorl 
00 73 00080X2 
00633 00001 X2 
00402 

Example 33 is essentially the same problem demonstrated in Example 
32, with a single exception. This exception demonstrates the use of the 
last card indicator with counting. 

Problem 

Reproduce N cards with distinct input and output areas. After all cards have 
been duplicated, type N. (1 "'" N "'" 9999) 
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01010 
01020START 

DORG 402 
TFM COUNT •• 8 

01030::;0 
01040 

RACD INPUT 
TF OUTPUT+158.INPUT+158 
WACD OUTPUT 9 01050 

01q)0 
010~0 
010 0 
01090 
01100 
011201 NPUT 
011300UTPUT 

AM COUNT. 1 .10 
BNLC GO 
BCn 
WNTY COUNT-3 
H 
DAS 
PAS 

80 
1 

004 6 38 00505 00100 
00498 48 00000 00000 
00511 000SOX2 
00671 ODDOl X2 

01140COUNT 
01150 

DS 
pC 

,I NPUT-3 
1 ,@, INPUT -2 

01155 
01160 

DC 
PEND 

Example 33 

Example 33-Commentary 

On first observation it would seem that the TF instruction will fail. At no 
point have we set a flag on the high-order digit of our Input area. However, 
the saving grace is the last DC statement of the program. Why? 

DAC (DEFINE ALPHAMERIC CONSTANT) 

The code DAC may be used to define a constant consisting of alpha­
meric data. These constants are generally used for computer-operator­
programmer communication or for column headings on the printed page 
of answers. The rules for the DAC follow. 

1. The operation code DAC appears in columns 12-14 of the operation 
field. 

2. The length of the constant appears as the first operand and this will 
be doubled by the processor. This accommodates the alphameric 
coding of data which is in double-digit representation internally. 
The length operand may be actual, symbolic, or asterisk. If symbolic, 
the symbol must have been previously encountered in the source 
program. 

3. The label by which this constant may be referenced appears in 
columns 6-11. This label refers to the high-order-plus-one position 
of the constant. Thus, the high-order position of the field is Label-I. 
The low-order position of the field is Label+2*L-2, where L is the 
length operand. 

4. The second operand is the alphameric constant desired. 
5. Omission of the first and/or second operands is invalid. 
6. If a third operand is present, the processor assumes a synonymous 

relationship between the label and this third operand. This operand 
allows the programmer to assign the address of a constant. The 
label still refers to the high-order-plus-one position in this case but 
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the core location is not necessarily odd. Thus, when a synonymity 
operand for a DAC is assigned, one must be certain that the operand 
references an odd core location. The presence of the synonymity 
operand does not affect the sequence of address assigned by the 
processor. The location counter remains unchanged regardless of 
the size of the first operand which, unlike the DAS size operand, 
must always be present. The synonymity operand may be actual, 
symbolic, or asterisk. If symbolic, it must have been previously 
encountered in the source program. 

7. The processor will place a flag over the left-hand (high-order) digit 
of the constant. 

8. A record mark may appear only in the units position of the constant 
field and is written as "@." This is interpreted as "0:1:." 

9. Constants may not exceed 50 alphameric characters including blanks 
and record mark. 

10. A length operand less than or greater than the number of characters 
in the specified constant is invalid. 

11. The maximum number of operands with a DAC is four. The fourth 
operand, if present, is a comment and does not affect the processing. 

See Figure 11.13 for examples of the DAC statement properly written. 

LINE lABEL OPERATION OPERANDSIREMms , . 1112 '" t , 0 " MNT o AC 114 TH.f ANS,WER I,S'@ 

Idlu T pm In.A.r. . ll; ERlldlRr.'.'N O'T'T'IiIIN~ . .....l...-.L..I I I I I I I I 

5 T.dlp In.A.c 5 5 T.iII.pilll L.iII.C.-,1,6, , , , , 'L.L~ 

0 

, 0 R.f.C M.K lou If./ill 15003 L-L..Li 

Fig. 11.13. Examples of the DAC Declarative. 

00 I 00 OORG 402 00402 
01020CMNTI OAC 16.NQW IS THE TIME@ 00403 0OO16X2 NOW IS THE TIMEt 
0103OCMNT2 OAC 17,FOR ALL GOOD MEN@ 00435 00017X2 FOR ALL GOOO MEN* 
~AL-19.TO COME TO THE AIO@ 00469 000l9X2 IO COME !O !!iE AID* 
01050CMNT4 DAC 15,OF THEIR PARTY@ 00507 00015X2 OF THEIR PARTY* 

_.Q.l06 aGO RCTY ____ ----'o,,o.o5~36~3"'4LUO""00wO .... 0'--"0.u.01uO ... 2'--__ --' __ 
01070 WA TY CMNTl 00548 39 00403 001 00 

M08O.. __ . ..JjRJ..CTLYL--_~_. ________ -Ll0.u.oS6:;d:l.10~3~4..JOw0l!-0WOtuo..J0LllOJJI..IJOLL2 _____ _ 
01090 WATY CMNT2 00572 39 00435 00100 

_01100 ....B.ClL. ___________ -'JOtuO;)J5B"'4~3 ... 4-'OwOOuw,OWOl....0UlOUJ1u.0u:2 _____ _ 
01110 WATY CMNT3 00596 3900469 00100 

.JllllO........ _.....IS!RC"-'Tuy'--__ - 011> 08 34 00000 001 02 
01130 WATY CMNT4 00620 39 00507 00100 
01140 H 00632 48 00000 00000 
01150 DEND GO 00536 

Example 34 
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Example 34 demonstrates a program the use of which is self-evident. 
See Figure 11.14 for the output of this program at object time. What is 
the purpose of the @ symbol at the end of each DAC statement? 

NOW IS THE TIME 
-F-O.R--ALl, GOOD- MEN­

TO COME TO THE AID 
OF THE-iR PARTY 

Fig. 11.14. Object Program Output of Example 34. 

Example 35 demonstrates a more purposeful use of an operator 
message. 

Problem 

An 80-column card has two 2-digit numbers punched in columns 1-4. All 
data is flagged in its high-order position. Type a single message that states 
their relationship to one another (larger, smaller, equal). If the first element 
(A) is less than, equal to, or greater than the second element (B), state so in 
just such a fashion. 

01010 DORG 402 
01 02.0BEG IN RllCD INPUT 
01010 C INPU~+!.INPUT+3 
010 0 6NE AOI0 0 
01 O~O RCTY 
0100 0 ~IA TY CI1NTl 
010~0 H 
010:0AOI080 6H AOIII0 
01090 BCD 
01100 WATY CMNT2. 
011 05 H 
0111 OA<l111 0 RCTY 
01120 WATY CMNT3 
01130 H 
o 114OCMNT! oAC Hi rA IS EOUAL TO B@ 
01150CMNT2. DAC 17,A IS LESS THAN 6@ 
o 116QCMtIT3 PAC 20rA I S GREATER THAN B@ 
01170lNPUT OS 1 
01180 PEND BEGIN 

Example 35 

00402 
00402. 36 00664 00500 
00~14l4 00665 00667 
00 2.67 00474 01200 
00438 34 00000 00102 
00450 39 00559 00100 
00462 48 00000 00000 
00474 46 00522 01100 
00486 34 00000 00102 
00498 39 00591 00100 
oOSIO 48 00000 00000 

00546 8 00000 00000 
00559 00016X2 A IS EOUAL TO Bt 

0066 00001 
00402 

Example 38 is a variation of Example 33. That is, it reproduces and 
counts cards. The output of this problem is a sentence that reads 
"THERE ARE XXXX CARDS." The number of cards does not exceed 
9999. 

The original source document is shown here. Notice how letters 
which could be confused with numbers are printed. The letter "0" has 
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lIlE LABEL ~R.\TlON OPERANOS l REMARKS , , .ft .0 Oft .. . 
0,t,R.' 4,Q,2 

START TFII C,Il,UNT 8 ... A,Q,1030 RA,C,D II,NPUT 

· TF Ii:U~PllT.+1~8 IN P U T+l,5,8 
,0, I"'. 1" "" P'u.T, ... A,II. C,Il,UNT 1 10 
, 8NLC AOI030 "-'--'--'-A,IH08,( CF C,I,U N,T.-,3, 
.. T,D, IC,MNT+20 C.i.UNT-3. 
, Tn ~.IlN T ,t.'.'. .r.'''U N T -.'. 

TD CJoI,NTt24 "c,Il,UNT-l 
Tn MNT+,'fI ·r.IlU NT .. R.C,T,Y 
IWAn MNT 
H 

, . CI,UNT DS &,0,108,0,+11 

· r.:ii:tiT: fil:ir." 21 THERE ARE 0000 C,A.RDSIIII 
0 I,N,P,U,T, lu,s, 18,0, 

· 6.U,TP,H,1 In,4,!\ IA,n, 

· In.r.. .n.T·N PU T 
r'lll In,F"N,~ S,T,4,i/,T 

Example 36 

a slash through it "cj)" to avoid confusion with the number zero "0". The 
letter "I" is printed in the Roman form to avoid confusion with the 
number one (1). 

Errors introduced while punching from the source document can be 
the most aggravating. 

Two more declaratives for both the card and tape systems are available 
to the programmer. However, their use is not as instantaneously mean­
ingful as was the use of the previous declaratives. Nonetheless, they are 
valuable declaratives even though the beginning programmer may not 
realize their potential value. At the point of sophistication where the 
coder requires these declaratives, their function will become quite 
meaningful. These declaratives are: Define Symbolic Address and Define 
Symbolic Block, and are of the area and constant definition category. 

DSA (DEFINE SYMBOLIC ADDRESS) 

It may be desirable, at some point in a program, to store a series of 
addresses as constants. The declarative that performs just such a function 
is DSA. The rules of the DSA follow. 

1. The operation code DSA appears in columns 12-14 of the operation 
field. 

2. Each entry in the operands field will cause its equivalent machine 
address to be stored as a 5-digit constant flagged in the high-order 
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position. The constants are stored contiguous to one another. These 
operands may be actual, symbolic, or asterisk. If symbolic, it is not 
necessary for the symbol to have been previously encountered in the 
source program. 

3. The label field of this statement must contain the symbol by which 
this table of constants may be referenced. The label refers to the 
units position of the first operand. Subsequent operands are referred 
to symbolically as Label+5, Label+lO, etc. 

4. Neither a remarks nor synonymity operand is permitted with the DSA. 
5. The maximum number of operands permitted with a DSA is ten. 

LINE LABEL OPERATION OPERANOS l REMARKS , . 11 12 '" ,. . . 
• T.A.B.L.E. D.S.A .A.L P H.A •. t.R.IG.J N 1.2.3.4 .•. U T PUT -.5.0 . 

Fig. 11.15. Examples of the DSA Declarative. 

See Figure 11.15 for examples of the DSA statement properly written. 
In Figure 11.15, the symbols are equivalent to the addresses shown 

in Figure 11.6. 
In the above statement, the 20-digit constant that is produced is: 

01000006000123414950 

If the first digit of the entire constant is located at 1200, then the address 
of Table is 01204 and the location counter will have been increased by 20. 

DSB (DEFINE SYMBOLIC BLOCK) 

The code DSB may be used to define an area of core storage for storage 
of numerical arrays. The rules of the DSB follow. 

1. The operation code DSB appears in columns 12-14 of the operation 
field. 

2. The first operand indicates the size of each element in the array. 
3. The second operand indicates the number of elements in the array. 
4. The label employed refers to the units position of the first element 

in the array. 
5. If a third operand is present, the processor assumes a synonymous 

relationship between the label and this third operand. This operand 
allows the programmer to assign the address of the first element in the 
array. The presence of the synonymity operand does not affect the 
sequence of addresses assigned by the processor. The location counter 
remains unchanged regardless of the size of the first or second 
operands. . 
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6. Any DSB operand may be actual, symbolic, or asterisk. If symbolic, 
the symbol must have been previously encountered in the source 
program. 

7. The maximum number of operands in a DSB is four. The fourth 
operand, if present, is a comment and does not affect the processing. 

See Figure 11.16 for examples of the DSB statement properly written. 

lIlE LABEL OPERAtiON OPERANOS l IE.AIIIS 

'" , .. , . 
ARRAY 05.8. 1.0. 15 

." DATA 058 2 150 R.EMARK 5 . 
Fig. 11.16. Examples of the D58 Declarative. 

Figure 1l.16-Commentary 

The first DSB in Figure 11.16 reserves 150 positions of core. The ninth 
digit from the leftmost core position is synonymous with "Array." 

The second example reserves 150 2-digit locations for a total of 300 positions. 
The first element in the array is called "Data." 

Note: The use of the DSB may be circumvented by the use of two DS 
statements. See the following table. 

DSB USAGE 

ARRAY DSB 10,15 

DATA DSB 2,150 

DS USAGE 

ARRAY DS 10 
DS 140 

DATA DS2 
DS 298 

Three additional processor control operations are available for both 
the card and tape systems. As with DSB and DSA, a certain amount of 
programming sophistication is necessary before they can become useful. 

These operations are: Transfer Control and Load, Transfer to Return 
Address, and Head. 

TCD (TRANSFER CONTROL AND LOAD) 

This code may be employed during the assembly process so that, during 
the loading of the object program, the loading operation may be tem-

. porarily interrupted. During this interruption, it is possible to execute 
the portion of the program that has just been read into core. At the 
conclusion of such execution, a return to the loader can be accomplished 
through the use of a TRA (to be discussed). A further segment of the 
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object program can then be entered into memory, overlaying the portion 
just executed. In this fashion programs that are too large for existing 
core may be segmented by such a chaining technique. 

As a TeD is encountered by the processor, the assembly system 
punches the arithmetic tables, a loader "interrupter," a Branch instruction, 
and another set of loading instructions. During the loading of this object 
program, the Branch instruction is preceded by the arithmetic tables and 
loader interrupter, but the new set of loading instructions does not enter 
core. These instructions will be called by the TRA command. The ad­
dress of the Branch is specified by the operand of the TeD. 

The rules of a TeD follow: 

1. The code TCD appears in columns 12-14 of the operation field. 
2. The first (and only) operand states the address of an unconditional 

branch to be generated by the processor. The address may be asterisk, 
symbolic, or actual. If symbolic, it must have been previously encoun­
tered in the source program. 

3. A TCD may not be labeled. 

Example 37 shows the use of TeD. 

Problem 

It is necessary to initialize an area of memory to 100 fields. Each field is 5 digits 
in length and is of the form: 00000. The last field is to fall with its units 
position at 19999. At the conclusion of this initialization procedure, this pro­
gram may be destroyed by entering the remainder of the program over it. 

LINE LABEL OPERATION OPERANOS & REMARKS 

.IG.III 
TfM H18 19999 

, .. TFM 0 
SM .-6 5 

RH .• ADINGINSTRUCTUN L.dI.CATEOHE"RE SE E TRA DE SC RI PT,U,N 
TCD Gill 
Dill R G 4112 

, START 

llMA't:ND,ER ,III,F PR,t,GRAM WHICH ,dI.VERlAY,S, IN,I,T,I41.TlATT.nN 

• DENDSTART 

Example 37 
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TRA (TRANSFER TO RETURN ADDRESS) 

This code may be used to reinstate the loading procedure that was 
interrupted by the cards or tape records produced as a result of a TCD. 
Loading of the program will continue until another set of TCD produced 
records is encountered or until the records produced by the DEND 
interrupt the loading for final execution. 

The rules of a TRA are: 

1. The code TRA appears in columns 12-14 of the operation field. 
2. The TRA produces two instructions to reinstate the loader. These are: 

RNCD (RNPT) 0 
B 0 

3. Labeling the TRA is equivalent to labeling the first of the two pro­
duced instructions as mentioned in (2). 

4. A TRA is without operands. 

Example 38 shows the use of TRA. 

Problem 

It is necessary to initialize an input area to 80 fields. Each field is of the 
follOWing form: 00. This 160-position area is to have a record mark following 
the highest addressed field: 600000 ... 00* 
The record mark is to fall in position 15128. 
At the conclusion of the initialization program, read in the main program and 
begin execution. 

LIME LABEL OPERATIOM OPERANOS I REMARIIS , 
'" 

, , • 0 .. 
In"D, ,n,~, 

IGot, TFM G,e,+,g, .8,0, ,1.0 
,', T,O,M 1,5,1,2,8 

lo,c, i, .... ,., 

ii, TFM X +6 .1.5.127 
,', lx, TF,M, o· ,1.0. 
.7, SM G.eH, 1 10 

." 8,i! e,U.T, 
A.ttl X+6 -.2, 

,0, B, X 
O,It,R.G 'b3, 

•. U.T. T,RA 
,I, T,C,O, G,e, 

0 D,e,R,G 4,o,~, 
X.E,C,U T 

,e, 

7 

~ '~M ,~~ "T.E, 
,', 

Example 38 
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HEAD 

Head cards ( or tape records) may be employed whenever a conHict 
in label names is apt to occur. 

As an example, consider a program written in five sections by five 
programmers. These sections appear as 

Section 1 
Section 2 
Section 3 
Section 4 
Section 5 

Programmer A 
Programmer B 
Programmer C 
Programmer D 
Programmer E 

Unless careful. attention is given to labeling before the programming 
begins, label conHicts can, and probably will, occur. That is, program­
mers Band D may use the label TEMP such that: 

Section 2 - Programmer B 

TEMP DS 12 
• 

Section 4 - Programmer D 

TEMP DS ,LOC-ll 

These labels cause a conHict in that (1) there is a multiply-defined 
label condition existing, and (2) the labels reference entirely different 
areas. 

To complicate the problem further, assume that programmer E of 
section 5 has used the label TEMP and that this label is to refer to the 
same area used by programmer D in section 4. On the surface, it appears 
that programmer B is in the minority and will have to change all 
references to label "TEMP" to, let us say, "TEMPX". However, it is 
conceivable that programmer A has used the label "TEMPX" and thus, 
the conHict compounds itself. 

One obvious solution is to apportion certain labels to each programmer 
before the actual coding begins. However, this not only defeats the 
purpose of labeling, but is very restrictive and difficult to implement. 
The problem is resolvable, fortunately, by the proper use of Head cards. 
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If the sections were written as 

HEAD A 
Section 1 

HEAD B 
Section 2 

HEAD C 
Section 3 

HEAD D 
Section 4 

HEAD E 
Section 5 

all labels of 5 or fewer characters in each section would be said to be 
"headed" by the Head character which introduces that section. 

In this fashion, the label "TEMP" of section 2 would be "TEMP" 
headed by B. This is not the same as the label "BTEMP." The "TEMP" 
of section 4 would be "TEMP" headed by D. This is not the same as the 
label "DTEMP." On the contrary, heading characters are considered to 
be on a different level from the label itself. Thus, all labels of section 1 
are said to be headed by A, those of section 2 by B, of section 3 by C, of 
section 4 by D, and of section 5 by E. The term "all" in the previous 
statement refers only to labels of 5 or fewer characters. Six-character 
labels are immune from heading. This is a desirable feature which allows 
for cross referencing between sections of a program. 

Suppose programmer E wished to branch to a location in section 1 
and programmer A is aware of this. They need merely to agree on a 
standard 6-character label, which cannot be headed, and utilize it prop­
erly, namely: 

HEAD A 

A12345 .' .' .' .' } 

HEAD B 

HEAD E 

< A12345} 

Section 1 

Section 2 

Section 5 
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In this way, the use of the 6-character label, and its property of being 
immune from heading, allows for cross referencing between sections. 

Although the discussion thus far has used Head characters A, B, C, D, 
and E, there is no implication that the Head character must be a par­
ticular one. In fact, any character A-Z, 0-9, or blank may be employed 
as a valid heading symbol. 

The concept of cross referencing between sections may be extended 
to include labels of 5 or fewer characters; The symbol a$ preceding any 
such label implies that the heading character to be used is a where a 
is any allowable Head character. 

Thus, if section 1 is headed by A and has a label "Start," sections 2, 3, 
4, or 5 may branch to that location as follows: 

B A$START 

If section 3 is headed by C and has an area "LOC", and section 1 
wishes to add the contents of X93 to the contents of LOC of section 3, 
this is written as: 

A C$LOC,X93 

Suppose that section 5 wishes to add the contents of VKX2 of section 1 
headed by A to the contents of 2.8Z of section 4 headed by D. This is 
done as: 

A D$2.8Z,A$VKX2 

It is in this fashion that labels of fewer than six characters may be cross­
referenced from section to section. 

An unheaded section of a program is said to be headed by blank. In 
this fashion, reference to a label "KON" in an unheaded section, by a 
headed section, is done by referencing "$KON". 

If a programmer wishes to discontinue the heading process at any 
. time, a Head statement with a blank character must be used. If two 

programmers write three sections of a program, programmer A writing 
sections 1 and 3 and programmer B writing section 2, the routine might 
look as follows: 

HEAD X 

HEAD 
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Of course, section 1 could have been preceded by a Head card with 
blank as the heading character, but this would be superfluous since all 
labels of section 1 are assumed to be headed by blank if no Head card 
is associated with the section. 

If a symbol "A" in a section headed by X is to be identical with a 
symbol "A" in a section headed by Y, this can be accomplished through 
proper use of the Define Symbol declarative in one of the two sections. 
Thus, either 

A DS ,Y$A 

will equate the two symbols if it appears in the section headed by X or 

A DS ,X$A 

will equate the two symbols if it appears in the section headed by Y. 
The rules of the Head statement follow. 

1. The processor control operation Head appears in columns 12-15. 
2. Any character A-Z, 0-9, or blank may be used as a valid heading 

character. 
3. The heading character appears in column 16. 
4. A Head statement may not be labeled. 
5. Six-character labels are immune from heading. 
6. Labels in an unheaded section of a program are said to be headed by 

blank. 

DECLARATIVES-CARD SYSTEM ONLY 

DNB (DEFINE NUMERIC BLANK) 

This code may be used to define a contiguous area of numeric blanks 
( C-8-4). It is often desired to punch certain areas of a card with blanks. 
The rules of the DNB follow. 

1. The code DNB appears in columns 12-14 of the operation field. 
2. The first operand states the desired number' of blanks. 
3. The second operand, if employed, is the synonymity element. 
4. The label refers to the low-order position of the blank field. 
5. The third operand, if present, is a comment and does not affect the 

processing. 
6. The first and second operands may be actual, symbolic, or asterisk. 

If symbolic, the symbol must have been encountered previously in 
the source program. 

7. The maximum number of contiguous blanks that may be defined by 
a single DNB is 50. 

B. In order to move a field of blanks by a TF command, any flagged 
digit should appear contiguous to the high-order position of the 
blank field. 
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LINE LABEL OPERATION OPERANOS 1 REMAR!S .. 1112 , , . " . . 
• B,LANKS DNB 35 

AREA ON B 20 15000 

L,tC DNB 10 SY MB",L .. 
, DNB 50 C,\b.MMENT 

Fig, 11.17, Examples of the DNB Declarative. 

9. The card punch unit is the only output device that will interpret 
C-8-4 coding as a blank. This coding produces the @ sign on the 
typewriter and paper tape punch. 

See Figure 11.17 for examples of the DNB properly written. 

DECLARATIVES-TAPE SYSTEM ONLY 

SEND (SPECIAL END) 

The code SEND is used to halt the assembly process temporarily to 
allow for the mounting of another tape, console switch alteration, etc. 
H the SEND statement is encountered in the card version of SPS, it is 
ignored. No object coding is generated by a SEND. The rules of the 
SEND follow. 

1. The operation code SEND appears in columns 12-15 of the operation 
field. 

2. A SEND may not be labeled. 
3. A SEND may not have operands. 
4. Depression of the Start key resumes the assembly if a SEND state­

ment has been encountered. 

GENERAL PROCESSOR INFORMATION 

No statement in the source language may exceed 75 characters. In the 
SPS tape version, every source statement is terminated by an ElL char­
acter. Astatement that bears an asterisk (*) in column 6 is interpreted 
as a comment and does not affect the processing. Extensive use of these 
comments which appear on the listing of the assembled statements and 
occupy no core assists in the debugging process. 
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As a review of the uses for the asterisk symbol, the four functions 
follow. 

1. As an operand of an instruction. 
2. As an operand of a declarative. 
3. As a symbol implying multiplication. 
4. As a symbol implying a comment statement. 

ERROR DETECTION 
Error messages arise from improper or careless programming and/or 

punching errors. The following 14 errors are detected by the assembly 
system and are reported in the form "ERn" where n is the error code. 

1. ERI-A record mark is in the label or operation code field. 
2. ER2-For address adjustment, a product greater than 10 digits has 

resulted from a multiplication. 
3. ER3-An invalid operation code has been detected. 
4. ER4-A dollar sign ($), which is being used as a Head indicator, 

is incorrectly positioned in an operand. 
5. ER5-(a) The symbolic address contains more than six characters. 

(b) The actual address contains more than five characters. 
( c ) An undefined symbolic address or an invalid speci~l character 

is used in an operand. 
6. ER6-A DSA statement has more than 10 operands. 
7. ER7-A DSB statement has the second operand missing. 
8. ER8-(a) A DC, DSC, DAC, or DNB has a length operand greater 

than 50. 
(b) A DC, DSC, or DAC has no constant specified. 
(c) A DC or DSC has a specified length less than the number 

of digits in the constant. 
(d) A DAC has a specified length not equal to the number of 

characters in the constant. 
9. ER9-The table of labels is full. 

10. ERI0-A label has been defined more than once. 
11. ERll-An assembled address is greater than 5 digits. 
12. ERI2-A Head statement contains an invalid special character as a 

heading character. 
13. ERI3-A Head statement contains more than one character. 
14. ERI4-An invalid special character is used in a label. 

The procedure for handling errors will be discussed in Appendix VII, 
Console Operating Procedures. 



Chapter 12 

Floating Point Arithmetic 

Scientific and engineering computations frequently involve lengthy and 
complex calculations in which it is necessary to perform arithmetic opera­
tions on numbers that may vary widely in magnitude. To obtain a 
meaningful answer, problems of this type usually require that as many 
significant digits as possible be retained during calculation and that 
the decimal point always be properly located. When such problems 
are applied to a computer, several factors must be taken into considera­
tion, the most important of which is the decimal point location. 

Generally speaking, a computer does not recognize the decimal point 
present in any quantity used during a calculation. Thus a product of 
414154 will result regardless of whether the factors are 9.37 X 44.2,93.7 X 

0.442, or 937. X 4.42, and so forth. It is the programmer's responsibility 
to be cognizant of the decimal point location before and after the cal­
culation and to arrange the program accordingly. For example, in an 
addition operation, the decimal point of all numbers in the operation 
must be lined up to obtain the correct sum. Therefore, the programmer 
must guarantee this arrangement by shifting the quantities as they are 
added. 

Example: 

xxx .XXXXX • A 

.XXXXXXXX • B 

X. XXXXXXX • C 
where A + B + C ~ 999 
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Program to calculate A + B + C 

BNF *+24,B 

SF B-3 

A A,B-3 

BNF *+24,C 

SF C-2 

A A,C-2 

If the program were 

A A,B 

A A,C 

the result would not be accurate (except by chance) since the decimal 
points are not properly aligned. 

All of the digits in all of the data are not used in the first (correct) 
solution to the problem, but under the statement of the problem, there 
is little choice in the matter. 

Another course might be to define an ll-digit field of zeros, symbolic­
ally called "Zeros," and produce the following program: 

A ZEROS-3,A 

BNF *+36,ZEROS-3 

CF ZEROS-3 

SF ZEROS-l 

A ZEROS-I,C 

BNF *+36,ZEROS-l 

CF ZEROS-I 

SF ZEROS 

A ZEROS,B 

However, the only portion of the answer that has mathematical 
foundation is the portion "Zeros-IO" through "Zeros-3" inclusive. The 
significant difference is that the first program ignored the possibility of 
carries whereas this program extends itself to propagate those carries into 
position "Zeros-3." 
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It is conceivable, though, that when numbers that vary greatly in 
magnitude are manipulated, the resulting quantity could exceed prac­
tical working limits. 

The processing of numbers expressed in ordinary form (for example, 
427.93456, 0.0009762, 5382., -623.147, 3.1415927, etc.) can be accom­
plished on a computer only with extensive analysis to determine the 
size and range of intermediate and final results. When programmed, 
this analysis and subsequent number scaling will frequently require a 
larger percentage of the total time needed to solve the problem than 
will the actual calculation. Furthermore, number scaling requires com­
plete and accurate information regarding the bounds on the magnitude 
of all numbers that come into the computation (input, intermediate re­
sults, output). Since it is not always possible to predict the magnitude 
of all numbers in a given calculation, analysis and number scaling 
is sometimes impractical. 

To alleviate this programming problem, a system must be employed 
in which information regarding the magnitude of all numbers accom­
panies the quantities in the calculation. That is, if all numbers are 
represented in some standard predetermined format which instructs the 
computer in an orderly and simple fashion as to the location of the 
decimal point, and if this representation is acceptable to a computer, 
then quantities that range from minute fractions having many decimal 
places to large whole numbers having many integer places may all be 
handled with ease. 

The arithmetic system most commonly used, in which all numbers 
are expressed in a format having the above features, is called "floating 
point arithmetic." Specialized programs that handle floating point 
numbers are called "floating point subroutines." The notation used in 
floating point arithmetic is basically an adaptation of the scientific nota­
tion widely used today. In scientific work, very large or very small 
numbers are expressed as a number between .1 and .99 ... , times a power 
of lO. That is, the decimal point of all numbers is placed to the left of 
the high-order (leftmost) nonzero digit. Hence, all quantities may be 
thought of as a decimal fraction times a power of 10 (for example, 
427.93456 as 0.42793456 X 103 and 0.0009762 as 0.9762 X lO-3) where 
the fraction is called the "mantissa" and the power of 10, used to indicate 
the number of places the decimal point was shifted, is called the "char­
acteristic." In addition to the advantages of uniformity inherent in 
scientific notation, the use of floating point numbers during processing 
eliminates the necessity of analyzing operations to determine the position 
of the decimal point in intermediate and final results since the decimal 
point is always immediately to the left of the high-order digit in the 
mantissa. 
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In the 1620 floating point arithmetic system, each quantity is ex­
pressed as an n digit number (4 """ n """ 47) consisting of a 2-digit char­
acteristic and an (n-2)-digit fractional mantissa. This fraction, in 
absolute value, may extend between 0.100 ... 00 and 0.999 ... 99. This is 
shown in Figure 12.1. 

xxx ... XXXXX ...... .,~ 

in c 

Fig. 12.1. Form of a Floating Point Number. 

In Figure 12.1, c represents the characteristic and m the mantissa, as 
explained below. The original number is m X lOc• 

The mantissa (m), or fractional part of the number, consists of the 
leftmost (n-2) digits of the floating point number. The decimal point 
is always tacitly assumed to lie immediately to the left of the high-order 
mantissa digit. The sign of the original number is always associated 
with the mantissa and is designated by the presence (for negative) or 
absence (positive) of a flag in the units position of the mantissa. A 
mantissa is called "normal" or "normalized" when its high-order digit 
is nonzero. In 1620 floating point, the mantissa must always be normal­
ized. The floating point subroutines always leave normalized floating 
point numbers as the result of a floating point operation, with one ex­
ception. The exception to the "normalized mantissa rule" is a floating 
point zero which is always expressed as 0.000 ... 00 with a characteristic 
of -99. 

The characteristic (c) represents the power of 10 used to specify 
the location of the decimal point in the original number. It stands for 
the number of places the decimal point was shifted in order to place 
it to the left of the high-order, nonzero digit. The direction of the shift 
is determined by the sign of the characteristic. Thus, if the sign of the 
characteristic is negative, the decimal point was shifted to the right 
the number of positions specified by the characteristic. If no sign is 
indicated-the absence of sign specifying a positive characteristic-the 
shift was to the left. Thus, the characteristic can assume a range of 
values from -99 to 99, inclusive, 

-99"""c"""99. 

Upon combining the ranges and the mantissa and characteristic, we see 
that floating point numbers may lie within the range 

±0.100 ... 00 X 10-99 to ±0.999 ... 99 X 1099 • 

In floating point form, both the characteristic and mantissa are always 
flagged over their respective high-order digits to indicate the end-of-



152 Floating Point Arithmetic 

field condition. Table 12.1 demonstrates the conversion of numbers 
in ordinary form to 1620 variable-size floating point notation. 

Table 12.1 

FLOATING POINT 
NUMBER NORMALIZED MANTISSA SIZE FORM 

123.4567~ 0.12345678 X 103 8 digits r234567803 

0.00765432 0.765432 X 10-2 6 digits 76543202 

0.00765432 0765432 X 10-2 10 digits 765432000002 0 

- 0.1234987623 - 0.1234987623, X 100 13 digits r23498762300000 0 

- 0.1234987623 - 0.1234987623 X 100 3 digits 1230000 

- 0.00001 - 0.1 X 10-4 2 digits 10040 

- 0.00001 - 0.1 X 10-4 8 digits 10000000040 

-0.0 - 0.0 X 100 4 digits OOOOm} 0 

0.0 0.0 X 100 4 digits 0000'99 0 

• Low-order zeros added to increase mantissa size to desired length . 
•• Mantissa truncated to reduce size to desired· length. 

GENERAL NOTES ON 1620 FLOATING POINT SUBROUTINES 

In the 1620 floating point subroutines, an attempt to generate a 
characteristic of magnitude greater than 99 creates a condition called 
"characteristic overflow." An attempt to generate a characteristic less 
than -99 creates a condition called "characteristic underflow." Should 
either of these conditions be generated as a result of an arithmetic 
operation, the programmer will be provided with a choice of two 
options as follows: 

OVERFLOW 

1. Program Halt 
or 

2. The floating point number 

99 ... 9999 is placed in 
the result field and the 
program continues. 
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o 
~ Halt 

R 

[ Store 
o Nines in 
W Result Field 

Halt 

1 

UNDERFLOW 

Store 
Zeros in 
Result Field 

o 

1 

Fig. 12.2. Overflow-Underflow Schematic. 

UNDERFLOW 

1. Program Halt 
or 

2. The floating point number 

00 ... 0099 is placed in 
the result field and the 
program continues. 
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These options function independently of each other. Thus it is 
possible to halt on an underflow and place 9's in the result field on an 
overflow. The converse is also true. The detection of an overflow or 
underflow condition will cause the subroutine being executed to examine 
core position 00401 to determine the course of action. The programmer 
must make manual or programmed provisions for one of the four 
conditions in order to exercise his option. 

GENERAL NOTES ON THE USE 
OF FLOATING POINT ARITHMETIC 

During any floating point calculation the size of the two operands 
must be identical. Thus, it is not possible to "floating add" a 17-digit 
floating point number and an 8-digit floating point number. 

Another form of floating point assumes a fixed word size of lO digits 
consisting of a 2-digit characteristic and an 8-digit mantissa. The char­
acteristic precedes the mantissa and a notation called "excess fifty" is 
employed. Excess fifty implies that the number 50 is added to the 
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characteristic developed. Thus, the characteristic may assume values 
between 00 and 99 only. In this fashion, the number 25.3 (0.253 X 102 ) 

becomes 5225300000 in floating point form. Similarly, the number 
-0.0000001 (-0.1 X 10-6 ) becomes 4410000000. This notation has been 
widely used in a great variety of decimal computers but does not lend 
itself well to variable-word-size floating point. 

Problems 

I: Convert the following numbers to floating point notation. The number 
in parentheses is the mantissa size desired. 

1. 15.96(9) 

2. - 50073. (12) 

3. 10128.965(4) 

4. - 8.9(15) 

5. 0.127(5) 

6. - 0.00001589(6) 

7. - 0.0(12) 

8. - 0.001248(4) 

9. 183.72(10) 

10. 0.00000001 (7) 

II. Convert the following numbers to their fixed point representation. Use 
sufficient digits to fully express the number: 100000 is to be expressed as 
0.1000 not as 0.1. 

1. 53807 

2. 956121703 

s. 1721520:2 

4. 810219312 

5. 6100 

6. 7522128I1 

7. IUllllnI 

8. 21134190I 

9. 611600 

10. 151719121810 
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Macro-Instructions 

Whenever the use of a subroutine is required by a main program, 
it must be suitably incorporated into that program. That is, the sub-

, routine must be logically connected to the main program in such a way 
that the subroutine will be executed at the proper time and, at its com­
pletion, will return control to the main program to continue the execu­
tion of the problem. 

One method by which this connection can be effected is to insert the 
subroutine directly into the larger program where needed. A sub­
routine incorporated in this fashion is called an "open subroutine" or 
"direct insert subroutine." In most cases, however, this method of 
connection is not entirely practical or desirable. For example, in a pro­
gram that requires the evaluation of a square root at 15 different places, 
it would be superfluous to incorporate the same square root subroutine 
15 times. The desirable solution is to store the subroutine once, out of 
the main line sequence of the program,and, when required, enter the 
subroutine by a branching operation. Provision must also be made to 
return control to the main program at the completion of th~ subroutine. 

Subroutines connected in this fashion are called "closed" or "linked" 
subroutines. The instructions related to the entry and re-entry function 
constitute the linkage. In general, it is necessary for the linkage in­
structions to a closed subroutine to supply three items of information: 
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1. The address of the subroutine desired. 
2. The return address after completion of the subroutine. 
3. The address ( es ) of the argument (s ) in question, or the actual 

argument (s) itself/themselves. 

The instructions that provide this linkage may, of course, be written 
by the programmer. However, certain special macro-instructions may 
be employe9, by the programmer to cause automatic generation of these 
linkage instructions. A macro-instruction may be defined as a pseudo­
instruction which, during assembly, generates more than one machine 
language instruction. For the 1620 Symbolic Programming Systeml 

there are 17 macro-instructions available. Each of these "macros," when 
used in a source program, will generate the instructions necessary to 
provide proper linkage to one of the 17 subroutines. The subroutines 
are of two categories: arithmetic and functional. Table 13.1 gives a list 
of all available macro-instructions. 

Thus, by placing in the source program, at the point at which a par­
ticular subroutine is desired, the macro-instruction related to this sub­
routine, the programmer will cause the SPS processor to generate, during 
assembly, the linkage to the desired subroutine. In addition, the 
processor will arrange for the subroutine to be placed in core storage. 
Thus, when required during the execution of the object program, the 
subroutine will be transferred to and executed. The data and addresses 
required by the subroutine, f,l.nd supplied by the macro-instruction, are 
incorporated into the linkage instructions where they are either ( 1 ) 
transmitted directly to the subroutine or (2) simply made available for 
use. 

In this way, the subroutine obtains the information it requires to 
perform its given task and also obtains the information required to gen­
erate a return address to the main program. Control is returned to the 
main program at the completion of the subroutine by branching to the 
return address. 

In the discussion of many of the macro-instructions, a reference is 
made to Appendix IV, "Floating Point Hardware," for a description of 
their operations. This is not to imply that macro-instructions are genuine 
machine commands but rather that their operation simulates the analo­
gous machine code. With the realization that subroutine linkages ~re 
generated by use of these macro-instructions, the programmer may con­
sider them as if they were actual machine commands. 

1 There are many versions of SPS; but the most commonly used is one which 
assumes a floating point word to always be 10 digits in length (8-digit mantissa and 
2-digit characteristic). Another version allows for variability of the mantissa. It is 
the former version which is discussed in this chapter. Knowledge of this fixed-word­
size system allows for immediate transition to the variable-mantissa system. 
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ARITHMETIC 

Floating Add ( FA) 
Floating Subtract (FS) 
Floating Multiply (FM) 
Floating Divide (FD) 
Fixed Divide (DIV) 
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Table 13.1* 

FUNCTIONAL 

Floating Square Root (FSQR) 
Floating Sine (FSIN)-Radian argument 
Floating Cosine (FCOS)-Radian argument 
Floating Arctangent (FATN) 
Floating Exponential (FEX)-Base e 
Floating Exponential (FEXT)-B'ase 10 
Floating Logarithm (FLN)-Base e 
Floating Logarithm (FLOG )-Base 10 
Floating Transmit Field (TFLS) 
Floating Branch and Transmit (BTFS) 

• Two additional macro-instructions are also available, but their use is greatest with the 
variable mantissa version of SPS. These macros are Floating Shift Right (FSRS) and 
Floating Shift Left (FSLS). See Appendix IV "Floating Point Hardware," for a discussion of 
their function. 

LINKAGE 
A design for a subroutine linking scheme is generally a compromise 

between the maximum amount of information that can be obtained from 
the linkage and the minimum core required by the linkage. The primary 
linking instructions used by all macro-instructions. in the 1620 symbolic 
system are as follows: 

LINE LABEL OPERATION OPERANQS l REMARI'oS .. II It" 00 •• .. .. 
TFM P.I.C.K+ K *+.2.3. 
8 LINK 
D .•. RG *-4 

ft<O DSA A 8 C . . 

where "Pick" is a subroutine used by all macros and "Link" is the loca­
tion of a secondary linkage. 

This secondary linkage generally takes the following form: 

LINE LABEL OPERATION OPERANDS l REMARKS . II It 00 ,. " .. 
HM PICK+C SUB 
8 PICK+J 

. 
where "Sub" is the address of the desired subroutine and "K," "C," and 
"1" are constants supplied by the processor. 
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In this way the secondary linkage and the Pick subroutine act as 
intermediaries between the primary linkage and the actual subroutine 
desired. Pick is given the address of the address of the first argument 
by the primary linkage. Having this, Pick can then calculate the 
address of the address of the second argument, third, and so forth, and 
lastly the return address to the main program. The Pick routine is 
given the address of the main subroutine by the secondary linkage and 
the combination of these items allows Pick to operate as a successful 
"middle man." 

All secondary linkages are located after the last instruction generated 
by the SPS source program, and the Pick subroutine follows the last of 
the secondary linkages. All subroutines follow Pick. Therefore, it is nec­
essary to know the size of all these elements in order to be assured that 
the program will not overflow the available core storage. The schematic 
of the linkage system is presented in Figure 13.1. 
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Array of 
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Linkages 

} 
Secondary 
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Fig. 13.1. Schematic of Linkage System. 
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ARITHMETIC MACRO-INSTRUCTIONS 
FLOATING POINT 

In each of the macro-instructions related to the four floating point 
subroutines, two addresses, represented by A and B, must be specified. 
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These addresses, which may be symbolic or actual, must reference the 
low-order characteristic digit of the floating point data to be added, sub­
tracted, and so forth. 

During the execution of the floating point arithmetic subroutines, the 
Overflow, HIP, and E/Z indicators will be used. The Overflow in­
dicator is always reset at the beginning of each floating point arithmetic 
subroutine. Should its status prior to the execution of such a sub­
routine be desired, the indicator must be tested and its condition 
stored before the linkage instructions are executed. 

After completion of the operation, the HIP and E/Z indicators will be 
set according to the mantissa of the result. All floating point sub­
routines (arithmetic and functional) require that the floatin,g point quanti­
ties used contain flags over the high-order characteristic and mantissa 
digits. If any operation produces a zero result, the form assumed by the 
zero in floating point is .0000000099. 

FLOATING ADD 

1. Macro-instruction: 

U!IE LA8EL .TIO OPERA.OS l REIARIIS 
II I 

F.A. iA .. B. 

,. .. .~. 

2. Operation: The operation of the macro "FA" is identical with that of 
the hardware command "F ADD" described in Appendix IV. 

FLOATING SUBTRACT 

1. Macro-instruction: 

UI£ LA8El 0P£1IA1I0 OPEIOOS l REIARIS 
III I .. . .. s. 

FS A 8 

2. Operation: The operation of the macro "FS" is identical with that of 
the hardware command "FSUB" described in Appendix IV. 
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FLOATING MULTIPLY 

1. Macro-instruction: 

LIME LABEL ~RATIOM OPERANDS I REMARIIS . III I , .. .- Oft 

IF.M. IA .. R. 

2. Operation: The operation of the macro "FM" is identical with that 
of the hardware command "FMUL" described in Appendix IV. 

FLOATING DIVIDE 

1. Macro-instruction: 

LINE LABEL OPERATION OPERANDS I REMARKS . . '" , ~-A 
.ft .. . . Fn 

2. Operation: The operation of the macro "FD" is identical with that 
of the hardware command "FDIV" described in Appendix IV. 

FIXED POINT 

FIXED DIVIDE 

1. Macro-instruction: 

LINE LABEL OPERATION OPERANOS I REMARKS .. II 12 , ,. "' .-
IO.I.V. IA .. R .. 10 D 

... 

2. Operation: The macro operand "LD" is identical in operation to the 
hardware command "Load Dividend" discussed in Appendix II in the 
section on "Automatic Division." This operand may be symbolic or 
actual. 
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The macro operand "D" is identical in operation to the hardware 
command "Divide" discussed in Appendix II. This operand may be 
symbolic or actual. 
The operands A and B specify the dividend and divisor respectively. 
A description of the macro "DIV" can be best obtained by referring 
to the sections explaining the hardware commands "Load Dividend" 
and "Divide" in Appendix II. 

FUNCTIONAL MACRO-INSTRUCTIONS 

At the conclusion of any functional subroutine, the status of the HIP, 
E/Z, and Overflow indicators will not necessarily reflect the result of 
the operation. These indicators will be in constant use during the 
execution of the subroutine and therefore their status at the conclusion 
of any subroutine should not be construed to be their status prior to 
the execution of the subroutine. 

Several pairs of subroutines have been combined into single sub­
routines due to their mathematical similarity (sine-cosine; logwloge; 
eX-WiD). This is done to reduce the number of program steps that are 
COmmon to both and, simultaneously, reduce storage requirements. The 
subroutines are distinguished from one another by their entry point 
and their correct use is obtained through the use of the macro pertain­
ing to the particular subroutine desired. 

As in the case of arithmetic macro-instructions, two addresses, sym­
bolic or actual, are· specified. These addresses reference the units 
position of the characteristics of the floating point numbers. 

FLOATING SQUARE ROOT 

1. Macro-instruction: 

LIME LABEL IIrRATlOII OPERANDS l RENARIS . . .. .. , . 
IF.S.O.R IA .. B. 

,', 

,', 

2. Operation: The floating point data referenced by B will have its 
square root extracted and the resultant floating point number will be 
stored with its low-order characteristic digit at the core position 
referenced by A. The floating point number referenced by B is not 
altered. 
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FLOATING SINE AND COSINE 

1. Macro-instruction: 

LINE LABEL !oPERATION OPERANOS l REMARKS 
III I I ,. .. 3. 

FS I,N A ,a, 
FC.t,S A .R . 

. 

2. Operation: The sine/cosine of the floating point data referenced by 
B (which must be in radian measurement) will be computed and the 
resultant floating point number will be stored with its low-order 
characteristic digit at the core position referenced by A. The floating 
point number referenced by B is not altered. 

FLOATING ARCTANGENT 

1. Macro-instruction: 

LINE LABEL OPERATION OPERANDS l REMARKS . '" " 
F ATN A .8, 

LL 

Ii. 

2. Operation: The arctangent of the floating point data referenced by 
B will be computed and the floating point result, in radians, will be 
stored with its low-order characteristic digit at the core position 
referenced by A. The floating point number referenced by B is not 
altered. 

FLOATING EXPONENTIAL 

1. Macro-instruction: 

LINE LABEL OPERATION OPERANDS l REMARKS 

'" , , , 
FEX A ,8. 
F.[X.' A. ,8" 
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2. Operation: The antilogarithm of the floating point data referenced 
by B will be computed and the floating point result will be stored 
with its low-order characteristic digit at the core position referenced 
by A. The floating point number referenced by B is not altered. If 
the argument is negative, the subroutine operates with the absolute 
value of the argument and then computes the reciprocal value by 
division. 

FLOATING LOGARITHM 

1. Macro-instruction: 

LINE lABEL OPERATION OPERANDS l REMARKS .. II 12 , , •• .. 
F.L.N. A.B. 
FLU IA .. 8, 

2. Operation: The logarithm of the floating point data referenced by 
B will be computed and the floating point result will be stored with 
its low-order characteristic digit at the core position referenced by A. 
The floating point number referenced by B is not altered. 

FLOATING TRANSMIT FIELD (TRANSMIT FLOATING FIELD) 

1. Macro-instruction: 

LINE lABEL PERATION OPERANDS l REMARKS . II It '" " .. '0 
IT.FU iA. ,B. 

'"" 

2. Operation: The operation of the macro "TFLS" is identical with 
that of the hardware command "TFL" described in Appendix IV. 
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FLOATING BRANCH AND TRANSMIT 

(BRANCH AND TRANSMIT FLOATING) 

1. Macro-instruction: 

lIlE LABEL QP£RATIOI OPERA.OS l REIARKS 

'" .. 
B.T.F's A ... B. 

2. Operation: The operation of the macro "BTFS" is identical with that 
of the hardware command "BTFL." This is described in Appendix IV. 

RESTRICTIONS ON FUNCTIONAL ROUTINES 

1. FSQR-The argument must be positive. If the argument is less than 
zero, the subroutine executes a programmed halt. The operator may 
either (a) manually branch back to the main program or (b) depress 
the Start key and compute the square root of the absolute value of 
the argument. 

2. FSIN/FCOS-The subroutine will execute a programmed halt if the 
characteristic of the floating point argument is greater than 08. For 
all arguments with exponent less than or equal to 03, the maximum 
error produced will not exceed 10-8• For arguments whose charac­
teristic is greater than 03, the accuracy decreases as the characteristic 
increases. 

3. F ATN-The Arctangent subroutine accepts any number in the float­
ing point range. 

4. FEX-An argument that exceeds 227.95592 results in exponent over­
flow. An argument less than -227.95592 causes exponent underflow. 
Should such a condition arise, the subroutine examines core position 
00401 to determine the course of action. 

5. FEXT-An argument that exceeds 98.900000 results in exponent 
overflow. An argument less than -98.900000 causes exponent under­
flow. The course of action is identical with that of exponent over­
flow/underflow for FEX. 

6. FLN/FLOG-The subroutine will execute a programmed halt if the 
argument is less than or equal to zero. A return to the main program 
can then be effecte.d by the operator. 



Macro-Instructions 165 

GENERAL MACRO-INSTRUCTION INFORMATION 

In addition to creating linkage instructions to the subroutine desired, 
the use of a macro-instruction will cause the subroutine ( s) required to 
be punched into the object program tape or card deck. The necessary 
subroutines will thus be loaded into core storage during the loading 
of the object program. 

Incorporating the subroutines into the object program requires that 
all subroutines be available to the processor during assembly. Since 
their physical size precludes their being in core along with the processor, 
a separate tape or card deck containing all of the subroutines must be 
assembled in conjunction with the source program. The subroutine(s) 
required will be selected from the subroutine tape or deck, assigned core 
storage space, and punched into the object tape or deck. 

Subroutines will be assigned to an area in core storage which imme­
diately follows the Pick subroutine, Care must be exercised by the 
programmer to provide, between the last location assigned by the 
processor and 19999 (39999, 59999), sufficient space to accommodate 
the subroutines called for. 

Each subroutine will be complete with the constants and working 
areas it requires for proper execution. These constants and working 
areas may be common to several subroutines and will be assembled 
into the object program only once. Sharing common storage and con­
stants eliminates redundancy and minimizes storage requirements. It 
should be noted that four subroutines require the division operation. If 
a machine installation is without the automatic division feature, the 
division subroutine will be called in its place; core storage should be 
alloted for this. This decision is a function of which subroutine deck is 
utilized. The four subroutines are (1) Floating Divide, (2) Floating 
Arctangent, (3) Floating Exponential, and (4) Floating Logarithm. 

A macro-instruction may be labeled in the source program. During 
assembly, a reference to this label will be a reference to the first 
instruction generated by this macro. The A address therefore is 

LABEL+23 
and the B address is 

LABEL+28 

where "Label" is the symbolic name given to the macro. 
A macrocinstruction may not contain a flag operand or a remarks 

operand. 
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SPECIFICATIONS OF THE PICK SUBROUTINE 

The Pick subroutine is. common to all subroutines. During the 
execution of the object program, the Pick subroutine performs five 
major functions. These are: 

1. The A and B operands are located in working areas. 
2. A return address (to the main program) is calculated. 
3. The subroutine is branched to. 
4. The calculated result is stored in the proper location. 
5. The return to the main program is eHected. 

In addition to the five functions described above, the Pick subroutine 
has the following three secondary functions: 

1. All error messages are initiated by the Pick subroutine. 
2. If the error condition is such that the processing may continue, the 

Pick subroutine returns to the subroutine in question. 
3. Constants and working storage are prOvided by Pick. 

The material in Table 13.2 gives the approximate core size for all sub­
routines that would be utilized on a 1620 without the automatic division 
feature. Following this, in Table 13.3, is the analogous chart for those 
subroutines that utilize the automatic division feature. 

Table 13.2 

Storage ReqHirements for Subroutines without Automatic Division 

SUBROUTINE FIXED MANTISSA VARIABLE MANTISSA 

PICK 872 1136 
DIV 1047 1035 
FA. FS (Combined) 543 
FM 239 1207° 
FD 523 
FSQR 579 659 
FCOS, FSIN 843 1098 
FATN 1077 1487 
FEXT,FEX 784 1258 
FLOG,FLN 886 1209 
FSRS 279 279 
FSLS 372 372 
TFLS 31 31 
BTFS 79 79 

• All four arithmetic ftoating point subroutines are combined in one set to save storage. 
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Table 13.3 

Storage Requirements for Subroutines with Automatic Division 

SUBROUTINE FIXED MANTISSA VARIABLE MANTISSA 

PICK 872 1136 
DIV" 187 199 
FA, FS (Combined) 543 
FM 239 1163 .... 
FD 335 
FSQR 579 659 
FCOS, FSIN 843 1054 
FATN 989 1379 
FEXT,FEX 740 1118 
FLOG, FLN 842 1145 
FSRS 235 279 
FSLS 279 372 
TFLS 372 31 
BTFS 79 79 

• One may use the DIV macro-instruction with this deck. However. in this case the 
macro consists of hardware divide instructions. This is not the most efficient machine 
utilization technique. but it does allow one to assemble. on a machine with the division 
feature. those programs which were written utilizing the division macro. Also. no program­
ming changes are necessary . 

•• All four arithmetic floating point subroutines are combined In one set so that storage 
may be utilized more economically. 

NOISE 
In operations associated with floating point arithmetic, a process 

termed "normalization" often takes place. Normalization is a left shifting 
operation which eliminates high-order zeros in the mantissa of a float­
ing point number produced by a calculation. Thus, a product of two 
numbers 

produces the result 

and not 

(11002) X (11002) 

(12103) 

(01204) 

Often, however, this left shift introduces zeros into the units position 
of a mantissa. Thus, a result before normalization might appear as 

(00812506) 
and after normalization as 

(81250004) 

A zero is chosen as the "fill" digit only because there is no knowledge 
of the digit that should be selected. When a digit other than zero is 
selected as the fill digit, the calculation is said to be performed in the 
"noisy" mode. The fill digit is termed the "noise" digit, or simply "noise." 
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In the normal execution of arithmetic, because the results are always 
truncated,l small, unavoidable errors are introduced in the results of 
the arithmetic operations. These errors may accumulate to the point 
where the final results are greatly affected. The noisy mode is used to 
detect the sensitivity of a computation to the growth of truncation errors. 
In the noisy mode, the results are modified slightly to determine the 
effect of such slight perturbations. 

The 1620 linkage system allows the programmer to specify any noise 
digit he wishes. This can be any digit zero through nine. However, if 
a programmer runs a problem twice, once -in the zero fill mode, and 
once in the nine fill mode, and no significant difference in his results 
are noted, it is probable that his results are good. If, on the other hand, 
a significant difference is noted between the two runs, the programmer 
should suspect that the computation is very sensitive to truncation error. 
Much numerical experimentation of these points remains to be done. 

A noise digit must always be specified in any program which uses 
macros. This is done by preceding the DEND statement by the state­
ment. 

DAC 1,X 

where "X" is the noise digit requested, 0 through 9. 

Failure to specify a noise digit in the exact manner stated may cause 
a failure in the assembly process and also in the running of the object 
program. 

This noise digit will be transferred to location PICK-1 by the sub­
routine processor and may be altered during the running of the object 
program by referencing 

NOISE + 20*K 

where "Noise" is the label of the statement 

DAC 1,X 

and "K" is the number of secondary linkages. 
As an example, assume that the main body of the following sample 

program begins at location 

ZEROFL+ 12 

and that five separate macro-instructions have been employed. If the 
programmer begins execution of the object program at location 

1 The terminology concerning error unfortunately is very vague. Truncation is 
generally understood to imply "cutting off" certain digits in order to carry a constant 
number of digits per data field. Thus, the product of two n-digit numbers produces 
a result of length 2n, but only the first n digits are retained. It is not generally under­
stood that a "round" mayor may not take place before the truncation. The purpose 
of rounding is to improve the accuracy of the data field that is retained. 
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START 

he will utilize zero fill or nine fill depending upon the setting of console 
switch 1. If he chooses to begin his program at 

ZEROFL+12 
the fill digit will be 5. 

LINE LABEL OPERATION OPERANOS 1 REMARKS , . 1112 , ,. , 
" 

, 
, 

,', 

START BC1 Z E RIII,F L 
TOM N:i.ISE+1-:D:O 9 
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Chapter 14 

Introduction to Fortran 

The past few years have seen vast technological advances made in 
computer design. Storage devices with access speeds measured in micro­
seconds and even nanosecondsl have been developed; solid-state circuitry 
has greatly increased circuit reliability; highspeed magnetic tape units 
and disk files have been developed. The three advances listed here by 
no means exhaust the list; they serve as but a small sample from a large 
population. With these technological advances in computer design in 
mind, one might pose the question, have any advances been made in 
programming systems? Certainly this is a reasonable question. 

We have studied in detail the Symbolic Programming System. It was 
noted that the symbolic system relieves the programmer of the tedious 
and error-breeding task of keeping track of numerical addresses; easy 
to remember mnemonics are substituted for numbers. This results in 
reducing programming time and thus reflects a monetary saving to the 
computer user. A large portion of the cost of solving a problem on a 
computer is programming time. It is not uncommon for a programmer 
to spend months programming an application and then have the com­
puter execute the program and produce the results in a few minutes. 

The reader will recall that each symbolic instruction produces one 
machine language instruction, except macro-instructions which generate 
more than one machine language instruction. Although the symbolic 
system eases the programming task, it is still necessary for the programmer 

lOne nanosecond is one one billionth of a second. 
170 
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to write down the same number of program steps (macros excepted) to 
solve a problem as in machine language. Let us now imagine a proc­
essor so powerful that it can generate many machine language instruc­
tions for each source statement it receives. In this way we could issue 
a source statement such as A = B + C + D + E and have the proc­
essor generate all the machine language instructions necessary to satisfy 
the requirements of the source statement. Such processors do exist. 
Fortran, Cobol, and Algol are all programming systems incorporating 
these powerful processors. 

Fortran is the name that was given to a programming system devel­
oped primarily for use in the scientific and engineering areas. The pur­
pose of the Fortran system is to simplify programming by allowing the 
programmer to state in a relatively simple language, closely resembling 
that of ordinary algebra, the steps of a procedure to be carried out for 
the solution of a problem, and to obtain automatically from the computer, 
under direction of the processor, an efficient machine language program 
for this procedure. The term "efficient" is very significant. It would 
not benefit us greatly in overall job time if programming time were 
decreased only to have the generated machine language program take 
four or five times as long to run as a hand-written machine language or 
SPS program. The 1620 Fortran system generates a highly efficient ma­
chine language program. 

The following definitions of terminology are used in this and subse­
quent chapters: 

1. Fortran language-A set of statements, similar to the expressions used 
in ordinary algebra. These statements are used by a programmer to 
define a problem. 

2. Source statement-One Fortran language statement. 
3. Source Program-A program written in the Fortran language. It is 

made up of a series of source statements. 
4. Fortran Compiler (or Translator)-A machine language program 

which analyzes the source statements and converts them to machine 
language instructions. 

5. Object Program-The totality of machine language instructions pro­
duced by the Fortran processor by operating on the statements of the 
source program. 

The name "Fortran" comes from "FORmula TRANslation" and was 
chosen because many of the statements which this system accepts look 
like algebraic formulas. The Fortran system consists of two parts: the 
Fortran language and the Fortran compiler or translator. The program­
mer writes his instructions to the computer in the Fortran language. 
The Fortran processor is an extensive set of machine language instructions 
that direct the 1620 to translate the Fortran language statements into a 
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machine language program. This process of translation is called "com­
pilation." Use of the Fortran system consists of the following steps: 

1. Read the Fortran processor program into the 1620. 
2. Each Fortran statement is read in and analyzed by the processor pro­

gram, and the machine language instructions to satisfy the require­
ments of the source statement are punched. 

3. Read in the subroutines and punch those required by the object 
program. Subroutines are prewritten programs that perform standard 
routines such as calculating the sine and cosine of an angle, raising a 
number to a power, or taking the natural logarithm of a number. 

4. Read in the object program and the data. 

The above steps are represented by Figure 14.1. 

Fortran Language 
Statements 

~I Object Program 

~R_es_ul_ts ______ ~I~ 
Object Program 

Data 

Fig. 14.1. Steps in the Fortran System. 

Virtually any numerical procedure may be expressed in the Fortran 
language. As an example of the power of the Fortran system let us write 
the Fortran statement to evaluate one of the roots of a quadratic equation 
given by the formula 

x = _-_B_+_v_B_2 ___ 4_A_C 
2A 

The Fortran statement expressing this formula is 

Xl = (-B + SQRT(B**2-4.*A*C) )/(2.*A) 

This statement would cause the processor to generate the machine lan­
guage instructions to evaluate the function to the right of the equal 
sign. The variable to the left of the equal sign would then be set equal 
to this value. 

The Fortran system is available not only for the 1620, but also for many 
other computers. The Fortran language is very similar for each system 
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and only minor changes to the source program need be made to run it 
on any computer. Each computer, however, has its own unique Fortran 
processor-this is to be expected since each computer has its own unique 
machine language codes. 

These are a variety of Fortran systems for the 1620. The follOwing 
chapter will discuss in detail one particular system, Basic Fortran.2 

However, with a knowledge of Basic Fortran, the more advanced Fortran 
systems can be easily learned. 

2 This system is also known as "Fortran with Format." 



Chapter 15 

Basic 1620 Fortran 

Fortran is an automatic coding system consisting of two major parts: 
the Fortran language and the Fortran compiler. The Fortran language 
is a set of statements, similar to the expressions used in ordinary algebra. 
These statements are used by the programmer to describe his problem. 
The Fortran compiler converts the Fortran language statements into 
machine language instructions which at a later time are executed by the 
computer to solve the problem. 

Since Fortran is a programming language closely related to the lan­
guage of ordinary algebra, it must provide a means for expressing cer­
tain elements basic to a mathematical language. These elements are: 
numeric constants, variable quantities, subscripted variables, operations, 
and expressions. 

In the Fortran language, variables and constants may each be ex­
pressed in one of two modes: fixed point (restricted to integers) or 
floating point. Each floating point number is represented internally 
(in the core storage) in the floating point form (mantissa and character­
istic) discussed in Chapter 12. However, basic Fortran does not permit 
a variable-length mantissa; the mantissa is of a fixed length-8 digits. 
Each fixed point number is represented internally by 4 decimal digits 
with a field-defining flag over the high-order digit. All quantities in the 
Fortran system are represented internally in either the fixed point mode or 
the floating point mode. 

Obviously, the Fortran system must provide for two different types 
of arithmetic calculations: fixed point and floating point. Floating point 

174 
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calculations are performed through the use of floating point subroutines. 
Floating point calculations are carried out on two decimal numbers to 
an accuracy of 8 places. Fixed point calculations are also performed by 
subroutines. However, in the fixed point mode, calculations are carried 
out on integers only. No decimal portions of numbers are used. 

The following illustrates floating point and fixed point arithmetic 
calculations: 

Floating Point 

ARITHMETIC STATEMENT 

A = 6.2 + 3.171 
B=9.74. 

Fixed Point 

C = 1. - 3.2 + 1.6 
D = 25. X 2.5 
E = 1. 7 3. 
F = (2.572.) X 6.21 

ARITHMETIC STATEMENT 

A=5x2 
B=5+3-1 
C=872 
D=972 
E=(572)x(1073) 

RESULT 

A = 9.371 
B = 2.25 
C = -0.6 
D = 62.5 
E = 0.33333333 
F = 7.7625 

RESULT 

A= 10 
B=7 
C=4 
D=4" 
E=6 .... 

• The true answer is 4.5; however. the 0.5 is truncated . 
•• Truncation causes this to be calculated as 2 X 3. 

CONSTANTS 
Constants may appear as part of the source program or as input data. 

They may be written in one of two forms: fixed point or floating point. 
The type of arithmetic calculation to be performed on the constant 
determines in which form it should be written. If the constant is to be 
used in floating point calculations, it should be written in the floating 
point form; if it is to be involved in fixed point calculations only, it 
should be written in the fixed point form. If a constant is to be used 
in both fixed and floating point calculations, it must appear in both forms. 

FIXED POINT 

Fixed point constants are characterized by being from 1 to 4 decimal 
digits in length. (Internally fixed point constants are always 4 digits in 
length, the high-order zeros being automatically supplied if required.) 
The range, then, of a fixed point constant is from 0 to ±9999. The decimal 
point is always assumed to be to the right of the right-most digit; e.g., 
375 means 375.0. However, the decimal point is always omitted in the 
representation of a fixed point constant. If a fixed point constant with 
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more than 4 digits is written, only the 4 low~order digits are processed. 
Fixed point constants may be positive or negative. If positive, they 

are written with or without a preceding plus sign. If negative, a minus 
sign must precede the constant. 

General Form 

One to four decimal digits without a decimal point. A preceding plus sign is 
optional. A minus sign is required if the constant is negative. 

Examples 

398 
9 
+6 
06 
-2832 
o 

FLOATING POINT. 

Floating point constants may be written in two forms: without ex­
ponents or with exponents. 

WITHOUT EXPONENTS 

Floating point constants without exponents are represented by any 
number of decimal digits, with a decimal point at the beginning, at the 
end, or between any two digits. 

The decimal point must be written. 

Floating point constants may be positive or negative. If positive, they 
are written with or without a preceding plus sign. If negative, a minus 
sign must precede the constant. Although any number of digits is per­
missible, only the 8 most significant digits are processed. 

General Form 

Any number of decimal digits with a decimal point. A preceding plus sign 
is optional. A minus sign is required if the constant is negative. 

Examples 
3.14176 
+36000. 
-82.5 
.000065 
-.00312 
O. 
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WITH EXPONENTS 

Floating point constants with exponents are represented by· any number 
of decimal digits, with a decimal point at the beginning, at the end, or 
between any two digits. The decimal point must be written. This 
part of the number is called the mantissa. The mantissa (including 
decimal point) is followed by the letter "E," which is followed by a 1- or 
2- digit exponent. The exponent is a fixed point constant that signifies 
the power of 10 by which the mantissa is to be'multiplied. The exponent 
may be positive or negative. If positive, the exponent may be written 
with or without a preceding plus sign. If negative, a minus sign must 
precede the exponent. 

General Form 

Any number of decimal digits with a decimal point, followed by the letter "E" 
and a 1- or 2-digit exponent. Both the exponent and mantissa may be signed. 
A preceding plus sign is optional. A minus sign is required if the constant or 
exponent is negative. 

Examples 

17.1E3 (17.1 X 103) 
-16.0E+6 (-16.0 X 106 ) 

+397,017E2 (397.017 X 102) 
2.E32 (2. X 1032 ) 
-126.1E+10 (-126.1 X 1010) 
-6.0E-3 (-6,0 X 10-3) 
-132.6E+12 (-132.6 X 1012 ) 
50.0E13 (50.0 X 1013 ) 

The following statements may prove helpful in writing or identifying 
fixed and/or floating point constants. 

1. A fixed point constant never has a decimal point associated with it. 
2. A floating point constant always has a decimal point associated with it. 

Problem 

Identify the following as either a permissible floating point constant or a per­
missible fixed point constant or neither. 

1. 0 9. 6.28E+2 
2. -916 10. -12E-12 
3. 01234 11. 97.EI2. 
4. 9,123 12. 14.001E+99 
5. 3.14161713 13. 21349 
6. -88.9610002 14. 23.67. 
7. -.00000000098765E-21 15. .86-8' 
8. 3E34 16. +92.12E-15 
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VARIABLES 

Variables, like constants, may be fixed point or floating point depending 
on whether they are being used to represent an integral value or a 
decimal value. Names (for example, A, B, DELTA, Xl) are assigned 
by the programmer to variables, and the variable names appear as part 
of the source program. 

In order to distinguish between a floating point variable and a fixed 
point variable certain rules must be adhered to in assigning names to 
the variables. 

FIXED POINT 

Fixed Point variables are restricted to integral values and may take on 
only those values allowed fixed point constants. Fixed point variables 
are distinguished by the fact that the first character of the symbolic 
name chosen to represent the variable must be one of the following: 
I, J, K, L, M, or N. These symbolic names may be from one to five 
alphabetic or numerical characters in length. Special characters are not 
allowed as part of a variable name. 

General Farm 

One to five alphabetic or numerical characters (no special characters) of which 
the first must be I, J, K, L, M, or N. 

Examples 

I 
M2 
JOBNO 
L2345 
N 

FLOATING POINT 

Floating point variables may take on only those values allowed floating 
point constants. The symbolic name chosen to represent the floating 
point variable is from one to five alphabetic or numerical characters in 
length. The first character must be alphabetic and other than I, J, K, L, 
M, or N. Special characters are not allowed as part of a variable name. 

General Farm 

One to five alphabetic or numerical characters (no special characters) of which 
the first must be alphabetic but not I, J, K, L, M, or N. 
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Examples 
DELTA 
A 
A614 
Z3A2 

Problem 
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Identify the following as either a permissible fixed point variable or a per­
missible floating point variable, or neither. 

l. B 6. SAVING 
2. RATE2 7. LOAD 
3. L 8. A1/B 
4. M1234 9. DELTA 
5. 2L1 10. A+3 

CHOOSING VARIABLE NAMES 

As in the symbolic programming system, it is advisable when possible 
to assign names with a high mnemonic content to variables .. For example, 
if one wished to compute electric current from the formula I = E -;- R, 
he might choose the names CURR, VOLT, and OHMS to represent the 
variables I, E, and R respectively. Of course, these names assume that 
the variables will take on floating point values. If fixed point arithmetic 
were being used, the names assigned might have been I, IVOL T, and 
IOHMS, respectively. 

OPERATIONS 
There are six basic operations associated with the Fortran language. 

Each operation is represented by a specific symbol as follows: 

OPERATION SYMBOL EXAMPLE 

Addition + A + B 
Subtraction A - B 
Multiplication * A*B 
Division I AlB 
Exponentiation ** A**B (AB) 
Equality = A = B 

The equality operation (=) has a different meaning in the Fortran 
language than it does in an algebraic equation. This new meaning is 
discussed in the section on "Arithmetic Statements." 

EXPRESSIONS 
An expression in Fortran is a sequence of one or more constants andlor 

variables joined by any of the operation symbols (except the equality 
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symbol) to indicate a quantity or series of calculations to be performed. 
The following are some simple Fortran expressions: 

A+B-C 
X**2 

IDELT/J2 

Expressions are used in forming certain statements in the Fortran lan­
guage. They must be formed according to a set of rules, which will be 
discussed later. 

Parentheses are used in expressions to specify the order of operations 
just as they are used in ordinary algebra. In the expression (A + 2.)*B 
the addition would be performed first and the sum would be multiplied 
by B. In the expression A**(2. + Y) the Hoating point addition would 
be performed first and the variable A would then be raised to the (2. + Y) 
power. If the parentheses had been omitted so that the expression was 
A**2. + Y, it would have been calculated as (A**2.) + Y. 

If parentheses are not used to specify the order of operations, the 
hierarchy of operations is as follows: 

1. Exponentiation 
2. Multiplication and Division 
3. Addition and Subtraction 

Thus the Fortran expression A + B*C**D would be interpreted to mean 
A + (B X CD) and A + (B*C)**D would be interpreted to mean 
A + (B X C)D. 

There are three exceptions to Fortran expression compatibility with the 
ordinary rules of mathematical notation. These are as follows: 

1. In ordinary notation AB means A times B. Howt!ver, in Fortran AB 
never means A times B, rather it is interpreted as a floating point 
variable with the symbolic name "AB." The lfiuidpiication symbol 
cannot be omitted in Fortran. The violation 6£ this rule is one of 
the most common errors in Fortran programming. 

2. In ordinary notation, expressions such as A/BoC and A/B/C are con­
sidered to be ambiguous. In Fortran, however, such statements are 
acceptable and are interpreted as follows: 

A/B*C 
A*B/C 
A/B/C 

means 
means 
means 

(A/B)*C 
(A*B)/C 
(A/B)/C 

When expressions contain a string of operation symbols of equal rank 
in the hierarchy table, the order of operations is taken from left· to 
right. As a further example: 
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W*AB*CDjX*E/D means ««W*AB)*CD)/X)*E)jD 
and 

A + B - C + D - E means « (A + B) -C) + D) - E 
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3. In ordinary notation the expression ABO is meaningful. However, the 
corresponding Fortran expression A**B**C is not allowed in the 
Fortran language. It should be written as A**(B**C) if ABO is 
meant or as (A**B)**C if (AB)O is meant. 

Rules for Forming Expressions 

1. All the variables and constants in an expression must be in the same 
mode. They must either be all floating point numbers or all fixed 
point numbers. Thus the following expressions are not allowable 
because they contain mixed-mode variables and/or constants. 

A + 21*C 
I*J + 2. 
A + B - JDELT 

The following expressions are allowable: 

A + 21.*C 
I*J + 2 
IA + IB - JDELT 

Exceptions. An exception to this rule is as follows: a floating point 
number may have a fixed point exponent. Thus the following 
Fortran expressions are valid: 

A**2 
A + B**(I + 2) 

Exponentiation in Expressions. The following are valid forms which 
exponentiation may take in an expression: 

A**B 
A**I 

where A and B are any floating point expressions and I is any fixed 
point expression. Exponentiation of the form I**A and I**J is not 
permitted. The following are examples of valid and invalid expres­
sions. 

EXPRESSION 

A**(I + 2.) 

RAD**2 
3. 1417*RAD**2. 
DIST**I 
A**(B + 3.) 
I**(J + 3) 
MON**2. 
3.1417*HEIGT*ALENG*R**3 

VALIDITY 

Invalid (mixed mode 
within parentheses) 

Valid 
Valid 
Valid 
Valid 
Invalid 
Invalid 
Valid 
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2; An operation symbol (excepting the equality symbol to be discussed 
shortly) must not precede a plus or a minus sign used to signify that 
a variable or constant is positive or negative. Use parentheses to 
enclose the sign and the variable or constant. 

INVALID· EXPRESSIONS 

A*-B 
A/+BDELT 

VALID EXPRESSIONS 

A*(-B) 
A/(+BDELT) 

Table 15.1 shows an algebraic statement and a correct and incorrect 
Fortran expression for it. 

ALGEBRAIC 

STATEMENT 

A(-B) 
XY 
AI+2 
AE+2B 
AB/CD 

Problem 

Table 15.1 

INCORRECT FORTRAN 

EXPRESSION 

A*-B 
XY 
A**I + 2 
A**(E + 2)*B 
A*B/C*D 

CORRECT FORTRAN 

EXPRESSION 

A*( -B) 
X*Y 
A**(I + 2) 
A**(E + 2.)*B 
(A*B)/(C*D) 
or A*B/(C*D) 
or A/C*B/D 

Write Fortran expressions for the following algebraic statements. 

1. A - (B + C) 

2. A(B + C) 

3. A 
Jj+N 

4. AX2 + BX + C 

5. X+37 +C 
19D 

6. (19 + 10)3 

7 - (2N) 
7. AXH 

8. 1030X 

-CB 
9. (B2 - 4AC) II. 

10. Assuming the following Fortran statement to be valid, determine if it will 
produce the correct result 

(B**2 - 4.*A*C)**(1/2) 
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FORTRAN STATEMENTS 
There are five types of Fortran statements that are permitted in a 

source program. They are as follows: 
1. Arithmetic statements 
2. Control statements 
3. Input-output statements 
4. Specification statements 
5. Comments 

Arithmetic statements specify how variables should be calculated. 
Control statements enable the programmer to specify when the normally 
sequential execution of machine operations should be altered. Input­
output statements provide for the entry of data and the output of 
results. Specification statements provide information to the processor as 
did SPS declaratives. Comment statements are not compiled. They are 
used for indentification purposes by the programmer. 

ARITHMETIC STATEMENTS 

An arithmetic statement in the Fortran language looks like a sim­
ple statement of equality in ordinary algebra (for example, A = B, 
A = C +2.*B). The left side (to the left of the equality symbol) of an 
arithmetic statement may be either a floating point variable or a fixed 
point variable. Constants and expressions involving an operation symbol 
are not allowed to the left of an equality symbol. The right side of all 
arithmetic statements are expressions. 

The equality symbol takes on a unique meaning in the Fortran lan­
guage. It literally means "to evaluate the expression on the right side 
and assign the result to the variable whose symbolic name is on the left 
side." Thus the statement X = X + 1. has a valid meaning in the Fortran 
language whereas in ordinary algebra the statement is meaningless. 

General Form 
a=b 
where a is a variable (fixed or floating) and b is an expression (fixed or float­
ing). By the above definition, statements of the form A = I and J = Bare 
permissible where I and B are any entirely fixed or floating expressions (for 
example, A = I + J2; J = B + C - 16.). 

Examples 
A= B + 2. 
AD = C**2 
PI = 3.14 
DELT = I*J 
I=A+1. 
X = (- B + (B**2 - 4.*A*C)**.5)/(2.*A) 
L=B 
C=K 
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If the expression to the right is in fixed point form and the variable on the 
left is in floating point form, the calculation is performed in fixed point 
arithmetic, put in floating point form, and stored in the location specified 
by the symbol on the left and vice versa. 

Consider the quadratic equation .'3X2 + 1.7X - 31.92 = O. The alge­
braic representation for one of the two roots is 

x = - B + VB2 - 4AC 
2A 

A Fortran program that describes this calculation is as follows: 

A=3. 
B = 1.7 
C = -31.92 
ROOT = (-B+(B**2 -4.*A*C)**.5)j(2.*A) 

The first statement means: "Assign the value 3. to the variable A." The 
next two statements have a similar meaning. The fourth statement means: 
"Evaluate the expression on the right side and assign the result to the 
variable ROOT." 

Of course, the program also could have been written as follows: 

ROOT = (-1.7+ (1.7**2-4.*3.*( -31.92) )**.5) /(2.*3.) 

STATEMENT NUMBERS 

Fortran programs are sequential in nature. That is, the computer 
executes instructions in the object program in the order that they were 
compiled from the source statements. For example, if the fourth state­
ment in the program above were to be moved up and made the first 
statement, the computer would evaluate ROOT before obtaining the 
desired values of A, B, and C. ROOT would therefore be evaluated 
using some arbitrary unknown values for these variables. 

As in machine language and the symbolic programming system, it 
is not always desirable to execute program instructions sequentially. 
Some means, then, must be provided to assign a unique label or number 
to a statement so that it may be referenced when required. The Fortran 
language provides for this by allowing the programmer to assign state­
ment numbers to those statements which will be referenced by another 
statement at some time in the program. 

A statement number is in the form of any unsigned fixed point constant. 
Leading zeros are not required. It is advisable to number only those 
Fortran statements that will be referenced. Actually almost any Fortran 
statement may be assigned a statement number, but unnecessary and ex-
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cessive numbering wastes core storage and delays the compilation process. 
Statement numbers need not be sequentially assigned and the pro­

grammer may choose any fixed point number he wishes. However, no two 
statements may be assigned the same statement number. If it were de­
sired to reference all the statements in the program to solve for one root 
of the quadratic equation, the program could be written as follows: 

96 A = 3. 
2 B = 1.7 

1321 C = -31.92 
10 ROOT = (-B + (B**2 -4.*A*C)**.5)/(2.*A) 

The Fortran programs illustrated thus far have been necessarily trivial 
since no methods of deviating from sequential instruction execution have 
been presented. Also, no input-output commands have been presented. 
The following two sections are devoted to (1) control statements which 
allow for deviation from sequential instruction execution and (2) input­
output statements. 

CONTROL STATEMENTS 

Normally, Fortran statements are executed in the same sequence in 
which they occur in the source program. Control statements provide the 
means of deviating from this sequential instruction execution. As in SPS, 
two types of control statements are provided. One type provides for un­
conditional branching whereas the other type provides for branching 
only if some specific condition is met. Statement numbers provide the 
means for cross referencing Fortran statements. 

Unconditional Go To Statement 

General Form 
GO TOn 
where n is a statement number. 

Examples 
GO TO 6 
GO TO 199 

The unconditional Go To statement is used to specify, at some point 
in a program, that the next statement to be executed is not the one 
following as it normally would be. Instead, the statement bearing state­
ment number n is executed next. 

This statement is similar to the unconditional Branch instruction in SPS. 
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Example 
Fortran Source Program: 

SUM =0. 
X=l. 

12 SUM = SUM + X 
X=X+l. 
GO TO 12 

Basic 1620 Fortran 

The above program will evaluate the sum of the numbers from 1 to 
infinity: 

The first two statements are called initialization statements. The state­
ment SUM = O. will assign the value zero to the variable SUM. This is 
done because the variable SUM will be used to develop a total; if the 
value of SUM is not zero to start with, an incorrect total will be developed. 
The statement X = 1. assigns an initial value of 1 to the variable X. The 
statement 12 SUM = SUM + X develops the sum of the numbers. The 
next statement causes the value of X to be increased by 1. The statement 
GO TO 12 causes statement 12 to be executed next. Thus a loop is 
developed and the last three statements of the program will be continually 
executed with the value of X being increased by 1 each time. 

Actually, the above program will halt when the value in SUM exceeds 
the highest allowable floating point value (9999999999). When this 
occurs, an overflow condition will be indicated. 

Computed Go To Statement 

General Form 
GO TO (n1> n2, ... , nm ), i 
where nl> n2, "', nm are statement numbers and i is an unsigned fixed point 
variable (1 ~ i ~ m)" 

Examples 

GO TO (6,7,13,2,5), I 
GO TO (199,2), MKVD 

The computed Go To . statement is used to transfer control to one of 
several Fortran statements depending on the value of some fixed point 
variable. If, at the time of execution, the value of the fixed point variable 
i is j, then control is transferred to the statement with statement num­
ber nj. 

" i > m is allowable but the object program will not run correctly except by chance. 
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Example 
JDEL= 3 
GO TO (196, 2, 47, 63, 1), JDEL 

Commentary 
The statement numbered 47 will be executed next 

Example 
Fortran Source Program: 

SUM=O. 
TOTAL=O. 
ADD=O. 
1=0 
X=1. 

1 SUM = SUM + X**3 
X=X+1. 
1=1+1 
GO TO (1, 1, 1, 1, 1, 1, 1, 1. 9), I 

9 X=2. 
1=0 

3 TOTAL = TOTAL + X**2. 
X=X+2. 
1=1+1 
GO TO (3,3,3,3,3,3,3,3,4), I 

4 X=3. 
1=0 

5 ADD = ADD + X**S. 
X=X+3. 
1=1+1 
GO TO (5, 5, 5, 5, 5, 5, 5, 5, 6), I 

6 Complete program by writing out results 

Commentary 
9 

SUM = L: is 
i=l 

9 

TOTAL = 1: (2i)2 
i=l 

9 

ADD = L: (3i)S 
i=l 

187 

The statement with statement number 6 in the above program is nota legal 
Fortran statement but is merely inserted to express a completion condition 
since Input-output and Stop commands have not yet been discussed. 

Example 
Fortran Source Program: 

SUM=O. 
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ID = 1 
X=l. 

15 SUM = SUM + (X**5.2 + 2.*X + 6.)/3. 
GO TO (8, &, 8, 8, 2),ID 

2 X=X+2. 
GO TO 15 

8 X=X+l. 
ID=ID+l 
GO TO 15 

Commentary 
f; 0:: 
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SUM = L (iG.2 + 2i + 6) -;- 3 + L ((2j + 1)5.2 + 2(2j + 1) +6) -;- 3 
i=l j=3 

The above program is presented solely to demonstrate the computed Go To 
statement. It is not a realistic program since no provisions have been made 
for ending the program. 

Example 
The following is an example of a never-ending multiple switching network. 

10 N=1 

8 GO TO (1, 12, 31, 14, 10), N 
1 N =2 

GO TO 8 
12 N =3 

GO TO 8 
31 N =4 

GO TO 8 
14 N =5 

GO TO 8 

If Statement 

General Form 

IF (a) n l , n2, na 
where a is any expression (fixed or floating) and nl, n2, and na are statement 
numbers. 

Examples 
IF (A) 1,2,3 
IF (1-2) 17,9,8 
IF (A/B*C) 8,9,8 

The expression a is evaluated. If the value of the expression is less 
than zero (negative), statement number nl is executed next. If the value 
of the expression is zero, statement number n2 is executed next. If the 
value of the expression is greater than zero, statement number na is 
executed next. 
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Suppose the variable XCORD has just been calculated in a Fortran 
program. If the value of XCORD is negative, an error routine at state­
ment number 8 should be executed next. If the value of XCORD is zero, 
a special routine at statement number 2 should be executed next, and 
if the value of XCORD exceeds zero, statement number 102 is to be 
executed. The Fortran statements to accomplish this are as follows: 

XCORD = B**2 - 4.*A*C 
IF(XCORD) 8, 2, 102 

The single Fortran statement shown below will accomplish the same 
branching conditions. 

IF(B**2 - 4.*A*C) 8,2,102 

The If statement is an excellent tool for use in programs where looping 
(repeating the same operations with different data) is desired. Example 
number 1 illustrates the use of the If statement in controlling the number 
of times a loop is to be executed. 

Example 1 

The following is a Fortran program to sum the numbers from 1 to 1000. 

SUM = 0.0 
A = 1.0 

3 SUM =A+ SUM 
A=A+1. 
IF(A - 1000.) 3,3,6 

6 Complete program by writing out results 

Example 2 
The following program will find the positive root of the following equation 
correct to two decimal places, X2 + 0.9X - 6.3 = O. The positive root lies 
between 1 and 10. 

1=1 
X=O. 

1 X=X+1. 
15 ROOT = X**2 + .9*X 

GO TO (3, 4, 18), I 
3 IF (ROOT -6.3)1, 7, 6 
6 1=2 
4 IF (ROOT -6.3) 10, 7, 12 

12 X = X -.1 
GO TO 15 

10 1= S 
18 IF (ROOT -6.3) 21, 7, 7 
21 X = X + .01 

GO TO 15 
7 End of program 
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IF SENSE SWITCH l 

General Form 

IF (SENSE SWITCH i) n1> n2 

Basic 1620 Fortran 

where nl and n2are statement numbers and i is 1, 2, 3, or 4. 

Examples 

IF (SENSE SWITCH 2) 10,3 
IF (SENSE SWITCH 4) 1,119 

The Sense switch corresponding to i is interrogated. If it is in the "on" 
position, the next statement to be executed is statement number nl' If 
the program switch is "off," the next statement to be executed is state­
ment number n2. The four program switches are located on the 1620 
console. The only method of setting or altering the settings of the 
switches is to position the switch manually to the "on" or "off' position. 

INPUT-OUTPUT STATEMENTS 

The Fortran language includes seven I/O statements to allow for the 
transfer of data between core storage and the input-output devices. The 
Input-output statements must specify three things: (1) What exactly 
is to be done. This may be to read a card, read paper tape, punch" a 
card, and so forth. (2) How the data fields are arranged on the input 
medium or are to be arranged on the output medium. The arrangement 
of data is called "Format." (3) Which data fields are to be transmitted. 
The data is specified by the variable name chosen by the programmer. 

The Fortran I/O statements specify items 1 and 3 in the above list. 
The Format (item 2) is specified by special Format statements which 
are referenced by the I/O statements. The I/O statements will be de­
scribed first, then the Format statements will be discussed. 

All I/O statements contain three things: (1) The instruction name 
that specifies what is to be done. (2) A statement number that references 
a Format statement which describes the arrangement of the data, and 
( 3) A "list" that describes which data fields are to be transmitted. 

SPECIFYING LISTS OF QUANTITIES 

A list consists of one or more variable names separated by commas. 
The list specifies what quantities are to be transmitted between core 
storage and the I/O device. It may contain any number of variables 
(fixed and/or floating). The only limiting factor is the permissible 

1 "Sense switch" is synonomous with "program switch." 
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length of the Fortran statement, which in 1620 Fortran may not exceed 
72 characters. 

Examples of lists are as follows: 

DELTA, J, ONE 
A 
SIGMA, COUNT, IDENT, X, Y 
I, DELTA, 99 (This list is invalid because 

it contains a constant) 

INPUT STATEMENTS 

Read Statement 

General Form 

READ n, List 
where n is the statement number of a Format statement, and "list" is as 
described above. 

Examples 

READ 2, A, DELTA, I 
READ 106, A, B, C, D, E, F 
READ 37, POUND, OHMS 

The Read statement causes quantities to be read from a card in ac­
cordance with the specified Format statement. The variables in the list 
take on the respective values read from the card. 

As an example, assume that a card is punched as follows: 

CARD COLUMNS 

6-7 
22-25 
26-32 
50-51 

78 

In a source program the Read statement 

CONTENTS 

13 
-10 
+ 399124 

01 
9 

READ 2, I, DELTA, QUAN, NUMBR, IDEN 

would cause the card to be read and the variable I to be assigned a 
value of 13, DELTA a value of -10, QUAN a value of +399124, 
NUMBR a value of 1, and IDEN a value of 9. Computations may 
then take place and control may pass back to the same Read state­
ment. This. would cause another card to be read and the quantities 
on this card assigned to the variables. Of course, the above descrip­
tion assumes a correct Format statement. It is the Format statement 
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that supplies the information as· to the card columns where the data 
is to be found. 

Accept Tape Statement 

General Farm 

ACCEPT TAPE n, list 
where n is the statement number of a Format statement and list is as previously 
described. 

Examples 

ACCEPT TAPE 16, A, B, C, 
ACCEPT TAPE 99, I, DELTA, A, MM 

The Accept Tape statement causes quantities to be read from paper 
tape in accordance with the specified Format statement. The variables 
in the list take on the respective values read from the tape. 

Accept Statement 

General Farm 

ACCEPT n, list 
where n is the statement number of a Format statement and list is as previously 
described. 

Examples 

ACCEPT 12, A 
ACCEPT 1, JDEL, RADI, ARC 

The Accept statement causes the carriage on the typewriter to return, 
and the computer awaits manual entry of data from the keyboard. 
Data is entered in accordance with the specified Format statement. 
The variables in the list take on the respective values entered from the 
typewriter. 

OUTPUT STATEMENTS 

Punch Statement 

General Form 

PUNCH n, list 
where n is the statement humber of a Format statement and list is as previously 
described. 
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Examples 

PUNCH 999, ARC, SLOPE, I 
PUNCH 4, COUNT, MAG 
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The Punch statement causes the values of the variables in the list, 
as determined by the program, to be punched in a card or cards in ac­
cordance with the specified Format statement. 

Punch Tape Statement 

General Form 

PUNCH TAPE n, list 
where n is the statement number of a Format statement and list is as previously 
described. 

Examples 

PUNCH TAPE 1234, A, I 
PUNCH TAPE 16, SUM, VALUE, C 

The Punch Tape statement causes the values of the variables in the 
list, as determined by the program, to be punched in paper tape in 
accordance with the specified Format statement. 

Print Statement 

General Form 

PRINT n, list 
wher~ is the statement nu~ber of a Format statement and list is as previously 
described. 

Examples 

PRINT 1, DELTA, X, Y 
PRINT 42, ZDEL, Xl, Y2 

The Print statement causes the values of the variables in the list, as 
determined by the program, to be printed on the typewriter in accordance 
with the specified Format statement 

Type Statement 

General Form 

TYPE n, list 
where n is the statement number of a Format statement an'Q list is as previously 
described. 



194 Basic 1620 Fortran 

Examples 

TYPE 6, Xl, X, Y2 
TYPE 888, CONI, DELTA, MIX 

The Type statement causes the values of the variables in the list, as 
determined by the program, to be printed on the typewriter in accordance 
with the specified Format statement. The Type statement and the Print 
statement serve the same purpose and can be used interchangeably. 

FORMAT STATEMENTS 

In order for quantities to be transmitted correctly from the input 
medium to the computer, or from the computer to the output medium, 
it is necessary that the computer be told in what form the data exists. 
Special subroutines are used to convert data to and from the floating 
point (characteristic and mantissa) and fixed point (4-digit) forms 
internally used by Fortran. The subroutines must be supplied informa­
tion as to what forms the data £l.elds are in and into which form they are 
to be converted. The Format statement specifies this. 

General Form 

n FORMAT (specification) 
where n is a statement number referenced by an I/O statement, and where 
specification is as described below. The specification must be enclosed in 
parentheses. 

Example 

2 FORMAT (F6.2,EB.I,5XI2,FB.2) 
3 FORMAT (2HX = FB.2) 

SPECIFICATIONS 

The speci£l.cation specifies what forms the data fields are in ,and to what 
form they are to be converted. There are three types of conversion for 
numeric data, as illustrated below. The ,conversions are used for both 
input and output. 

INTERNAL 

DATA FORM 

Floating Point 

Floating Point 

CONVERSION 

CODE 

E 

F 

EXTERNAL 

DATA FORM 

Floating Point 
(with exponent) 
Floating Point 
(without exponent) 

Integer I Integer 

Let us consider the three types of numeric conversion for input data. 
If the input quantity on the input medium is in the floating-decimal-
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with-exponent form (for example, 3146.E - 2, 9875. 167E + 13), the E­
type conversion is specified. If the input quantity is in the floating­
decimal-without-exponent form (for example, 4.678, 2., 1001.1), the F­
type conversion is specified; and if the input quantity is in integer form, 
the I-type conversion is specified. 

The conversion codes are used in a similar fashion for output. If 
the output quantity is to be in the floating-decimal-with-exponent form, 
the E-type conversion is specified. If the output quantity is to be in the 
floating-decimal-without-exponent form, F-type conversion is specified, 
and if the output quantity is to be in integer form the I-type conversion 
is specified. 

The following chart illustrates how numbers might appear as printed 
output for the conversion specified. Although printing is being used 
as an example, the same examples could apply for card or tape out­
put. This holds true for all examples given. 

E-Type Conversion. Numbers printed by E-type notation are printed 
in the floating~decimal-with-exponent notation. Typical output might be: 

NUMBER 

167.12 
-.0001842 
91.2 
100039. 

PRINTED OUTPUT 

.16712Eb03 
-.1842E-03 

.912Eb02 

.10039Eb05 

F-Type Conversion. Numbers printed by F-type conversion are printed 
in the "normal" decimal notation without exponent. Typical output 
might be: 

69.21 
1841.3 

-2.1 

-13627.399 
1986. 

1.01 

I-Type Conversion. Numbers printed by I-type conversion are printed 
as integers. Typical output might be: 

1421 
-17 
368 

2 
88 

167 

If the numbers in the above examples were input quantities the same 
type conversions would be used for the input Format statements. 

The conversion codes alone do not give sufficient information to 
allow for the proper conversion of input or output data. Certain ad­
ditional information must be supplied to the conversion subroutines. 
For input data the subroutine must be given the number of columns 
( card, tape, or typewriter) reserved for the input variables. For instance, 
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in one problem the first input variable may be punched in card columns 
1~10, whereas in another problem the first input variable may be punched 
in card columns 1-6 and the second variable may be punched in columns 
8-15. For output data the subroutine must be given the number of 
columns (card, tape, or typewriter) the programmer wishes to reserve 
for the various output variables. 

To supply this information the conversion codes when used in the 
specification portion of the Format statement are used in the following 
forms: 

Iw 
Ew.d 
Fw.d 

where I, E, or F represent the types of conversion, and w represents the 
field width including sign (if any) and decimal point (if any) for the con­
verted data, and d represents the number of places to the right of the 
decimal point. Since d specifies the number of places to the right of 
the decimal, the actual decimal point need not be punched or typed 
on input data. The correct number of decimal places will be assigned 
from the Format statement. The decimal point between the w and d 
in the E and F specifications is required punctuation. 

I Specifications Iw. When used as an output specification, w places are 
reserved for the number. If the number of significant digits in the quantity 
is less than the width specification, the number is right-justified in the out­
put field, and the left-most spaces are filled in with blanks. If the quantity 
to be converted contains more than w digits, the high-order portion of 
the number is lost. If the quantity is negative, the space preceding the 
left-most digit will contain a minus sign. Included in the count w must 
be a space for the sign. 

The following examples show how each of the quantities on the left 
is printed according to the indicated specifications. 

INTERNAL 

613 
12 
9 
o 
-812 
-1 
8666 
-10 
6 

SPECIFICATION 

14 
13 
13 
13 
14 
12 
13 
12 
12 

• Inaccurate due to insufficient specification. 

PRINTED 

b613 
b12 
bb9 
bbO 
-812 
-1 
b66" 
-0" 
b6 
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When used as an input specification, w columns are examined by the 
subroutine for the input quantity. The number must be right-justified 
within the input field. 

If the input data is positive, it is not necessary to punch the plus sign. 
If this item is not present, it is not included in the count w. If a positive 
or negative sign is present, it is included in the count w. 

The following examples show the required specification for the input 
quantities on the left. 

INPUT DATA 

bS1 
1421 
-1421 
-1421 
10 
2 
bb42 
OSI 
+67 

SPECIFICATION 

IS 
14 
15 
14" 
12 
II 
14 .... 
13 
13 

* Inaccurate due to insufficient specification. *. Notice that the number is right-justified within the input field. 

F Specifications Fw.d. When used as an output specification, w places 
are reserved for the number. If the number of decimal places in a 
number to be converted exceeds d, the low-order positions are truncated. 
If the number of places reserved for the decimal portion of the number 
exceeds the number of decimal digits, low-order zeros are supplied. 
If the number of places reserved for the integer portion of the quantity 
is insufficient, the F specification is ignored and the number is placed on 
the output medium in the E14.8 specification (see E conversion). If the 
number of places reserved for the integer portion exceeds the number of 
integer digits, high-order blanks are supplied. Included in the count w 
must be a space for the decimal point and sign. 

The following examples show how each of the quantities on the left 
is printed according to the indicated specifications. 

INTERNAL SPECIFICATION PRINTED 

32.1 FSo4 b32.1000 
-.9 F5.2 b-.90 
-S. F5.1 b-S.O 
1S.67 F6.2 b18.67 
9.17 F5.2 b9.17 
-397.221 FS.3 -397.221 
-S6.221 F7.3 -86.221 
12.1 F4.1 . 12100000E+02 
41.6745 F5.2 o41674500E+02 
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When used as an input specification, w specifies the number of places 
reserved for the input quantity including sign (if any) and decimal 
point (if any). Because the number of decimal places are specified in 
the d part of the specification the actual decimal point need not be 
punched or. typed. The input quantity must be right-justified within 
the input field. 

The following examples show the required speci6cation for the input 
data on the left. 

INPUT DATA 

123.146 
-123.146 
b123.146 
+123.146 
-96.1 
8111.987532 
3987 
b123146 
1 
00 
b15 
3100 

SPECIFICATION 

F7.3 
F7.3" 
F8.3 
F8.3 
F5.1 
F11.6 
F4.2 
F7.3 
Fl.O 
F2.1 
F3.1 
F4.0 

(39.87) 
(123.196) 
(1.0) 
(0.0) 
( 1.5) 
(3100.) 

* Inaccurate due to insufficient specification. 

E Spedfications Ew.d. When used as an output specification, the field 
width w includes four spaces for the exponent, one for the decimal point, 
and one space that must be allowed for sign. The exponent is the power 
of 10 to which the number must be raised to obtain its true value. The 
exponent is written with an "E" followed by a minus sign if the exponent 
is negative, or a plus sign is the exponent is positive, and two spaces for 
the exponent. If the number of digits in the quantity exceeds the number 
of places reserved, the low-order positions of the number are truncated. 
If the number of digits in the number is less than the number of places 
reserved, low-order zeros are supplied. If the specification is not large 
enough, the program automatically converts to the E14.8 form .. 

The following examples show how each of the quantities on the left 
is printed according to the indicated specmcations. 

INTERNAL 

-67.3211 
982. 
-6.12 
.00000132 
-642.0068 
12345678. 

SPECIFICATION 

E13.7 
E1O.3 
E10.3 
E1O.3 
EllA 
E10.0 

PRINTED 

-.6732110E+02 
b9.820E+02 
-6.120E-00 
b1.320E-06 
-6A200E+02 
b1234.E+04 " 

* Last· digits of accuracy are lost due to insufficient specification. 
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When used as an input specification w specifies the field width in­
cluding sign (if any), decimal point (if any) and exponent. The d 
portion of the specification signifies how many decimal places there 
are. Because of this the actual decimal point need not be punched or 
typed. 

The following examples show the required specification for the input 
data on the left. 

INPUT DATA 

200.674E+13 
-2.98E-16 
+100.648E-16 

98.E+15 
101E+14 

SPECIFICATION 

E11.3 
E9.2 
E12.3 
E7.0 
E7.1 (10.1 X 1014 ) 

ADDITIONAL RULES FOR SPECIFYING FORMAT 

The following rules permit variation in specifying Format: 

1. If a decimal point is punched or typed in an input data field and its 
position is different from that indicated in the Format statement, it 
takes priority over the decimal as indicated in the Format statement. 
The following examples illustrate this: 

INPUT DATA 

36.91 
900.1 

-1.6121 
1.81 
16.lE+17 

SPECIFICATION 

F5.1 
F5.3 
F7.1 
F4.2 
E8.2 

VALUE ASSIGNED TO 

INPUT VARIABLE 

36.91 
900.1 

-1.6121 
1.81 
16.1 X 1017 

2. Field width greater than required may be specified in order to provide 
for spacing. Thus, if a number is to be converted by I -type conver­
sion and the number is not expected to exceed five spaces including 
sign, a specification of 110 will reserve five leading blanks. Similarly 
with an input specification; assume that a floating point quantity is 
punched in columns 5-13 of a card and the first four columns are 
blank. The first four columns can be included in the w portion of 
the Format specification. Thus if the card was punched as follows: 

bbbb35645.983 

the following Format statement would apply 

6 FORMAT (F13.3) 

A Format statement of the fonn 

6 FORMAT (F9.3) 
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would cause only the first nine columns to be examined and the 
number 35.645 would be assigned the input variable. 

3. Successive specifications may be written in a single Format state­
ment by separating them with commas. Thus (12, E10.2) might be 
used to convert two separate quantities, the first an integer and the 
second a floating point quantity. The only limiting factor to the 
number of successive specifications in a Format statement is the 
permissible length of the Fortran statement which is 72 characters. 
The following are all valid Format statements: 

1 FORMAT (F6.4, F6.3, 12, E10.1) 
2 FORMAT (11, 12, E18.6) 

138 FORMAT (FlO.2, FlO.2, F10.2, FI0.2, FlO.2, FI0.2) 

Let us examine the Format statement numbered 1 above and consider 
it as being used with the Read statement below 

READ 1, X, Y, INDEX, POLY 

Assuming a card input (the same applies for tape or typewriter 
input) the first six card columns would be analyzed according to the 
specification F6.4, the quantity would be converted to the internal 
floating point form and assigned to the variable X. The quantity in 
columns 7 through 12, inclusive, wonld be converted according to 
specification F6.3 and assigned to the variable Y. The quantity in 
card columns 13 and 14 would be converted according to specification 
12 and assigned to the variable INDEX. Finally, the quantity in 
columns 15 through 24 would be converted according to specification 
ElO.l and assigned to the variable POLY. 
Notice that in the example given the quantities had to be punched 
in successive card columns. Assume that such was not the case but 
that the card was designed in the following manner. 

CARD COLUMNS 

1-5 
6-11 

12-14 
15-20 
21-24 
25-26 
27-29 
30-39 

CONTENTS 

blanks 
X 
blanks 
Y 
blanks 
INDEX 
blanks 
POLY 

The following Format statement could be used. 

1 FORMAT (Fll.4, F9.3, 16, E13.1) 

Actually all that has been done is to make each field longer by 
including leading blanks. Each quantity meets the requirement of 
being right-justified within the field. 
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If instead of blanks, the unused card columns had contained unused 
data the above solution could not be applied, since by lengthening 
the fields in the Format statement, the unused data would be included 
and would change the values of the desired variables. To cope with 
this situation a special conversion code is used to allow for the 
skipping of columns. This is the X-type conversion and will be dis­
cussed in the next section. 

4. The specifications in a Format statement must have correspondence 
in mode with the items in the Input-output statement; integer quan­
tities require integer conversion, and floating point quantities require 
floating point conversion. Thus, the following statements are com­
patible: 

PRINT 2, A, B, I 
2 FORMAT (F6.4, EI0.2, nO) 

The following statements are not compatible: 

READ 1, A, DEL T, I 
1 FORMAT (F10.3, EI4.2, F8.2) 

The third variable in the I/O list is a fixed point variable whereas 
the third specification in the Format statement is for a floating point 
variable. 

5. Successive items in the I/O list are transmitted by successive cor­
responding specifications in the Format statement until all items in' 
the list are transmitted. If there are more items in the I/O list than 
there are specifications, control transfers to the preceding left paren­
thesis of the Format statement. Thus parenthesis may be included 
within a specification for the above purpose. 
For example, suppose the following statements are written into a 
program: 

PRINT 10, A, B, C, D, E, F, G 
10 FORMAT (F10.3, E12.4, F12.2), 

then the following table shows the variable transmitted in the column 
on the left, and the specification by which it is converted in the 
column on the right. 

VARIABLE TRANSMITTED 

A 
B 
C 
D 
E 
F 
G 

SPECIFICATION 

FlO.3 
E12.4 
F12.2 
F10.3 
E12.4 
F12.2 
F10.3 

Suppose that in the above example the Format statement had been 

10 FORMAT (F1O.3, (E12.4,F12.2)). 

Then the table would look as follows: 
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VARIABLE TRANSMITTED SPECIFICATION 

F1O.3 
E12.4 
F12.2 
E12.4 
F12.2 
E12.4 
F12.2 

A 
B 
C 
D 
E 
F 
G 

6. A comma is used to separate successive numeric specifications and to 
avoid ambiguity. The comma is nqt necessary when the numeric 
specifications are separated from one another by a special character 
such as ( and /. The example given above 

10 FORMAT(F1O.3,(E12.4,F12.2)) 

could have been written as 

10 FORMAT(F10.3(E12.4,F12.2)) 

7. It is permissible to omit the E on input data in the floating point 
constant with exponent form if a plus or minus sign precedes the 
exponent. Thus, the following forms are valid: 

16.8+03(I6.8>< 103 ) 

18.1-02(18.1 X 10-2 ) 

The omission of the E is permissible only on input data. It may not 
be omitted in a Fortran statement. Thus, the state A=B*16.8+03 
is not valid; A = B*16.8E+03 is valid. 

X-Type Conversion for Blank Fields. Blank characters may be provided 
for output records or characters of an input record may be skipped by 
means of the X-type specification. 

The general form is wX where w is the number of blanks to be pro­
vided or the number of characters to be skipped. The w must be less 
than or equal to 49 (w ~ 49). When X-type conversion is used in a 
specification, it need not be followed by a comma. 

When the wX specification is used with an input record, w characters 
are skipped over no matter what they are. For example, if a card has 
numbers punched in columns 1-10, 13-15, and 20-30, the following 
Fortran statements may be used. 

READ 8, A, B, CDEL 
8 FORMAT (F1O.3, 2XI3, 4XE11.2) 

When the wX specification is used with an output record the number 
of characters specified by w are left blank. As an example, suppose 
that four fixed point integers with five blanks between each one are 
to be punched. The following Fortran statements may be used. 
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PUNCH 7, IDl, ID2, ID3, ID4 
7 FORMAT (IS, 5XI3, 5XI5, 5XIS) 

H-Type Conversion for Alphameric Fields. Alphameric fields may be 
read in or used as output by using the H-type conversion. The specifica­
tion wH followed by w alphameric characters may be used in a Format 
statement to provide for alphameric fields. The w must be less than 
or equal to 49 (w ~ 49). When H -type conversion is used in a specifica­
tion, it need not be followed by a comma. 

The effect of the wH specification depends on whether it is being 
used with an input or an output statement. If it is used with an input 
statement, w characters are extracted from the input medium and re­
place the w characters included with the specification. If it is used 
with an output statement the w characters following the specification 
(or the w characters that replaced them as a result of input operations) 
are written as part of the output record. If blanks are desired they are 
included in the count w. If no list is associated with the I/O statement, 
the comma after the Format statement number is not mandatory punc­
tuation. 

Example 

PRINT 11 
11 FORMAT (21HMATRIXbMULTIPLICATION) 

These statements would cause the following output to be printed: 

Example 

READ 1 

MATRIX MULTIPLICATION 

1 FORMAT (28Hbbbbbbbbbbbbbbbbbbbbbbbbbbbb) 
PRINT 1 

Assume the first card contained the following information in columns 1-28: 

CONVEYORbCALCULATIONbNO.b367 

This information would be printed on the typewriter or punched in an output 
card if the Print statement were replaced by a Punch statement. 

Example 

Suppose that in the above example instead of being punched in columns 1-28, 
the information was punched in columns 5-33. To read the card and print 
the information as before the following Fortran statements could be used. 
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READ 1 
1 FORMAT (4X28Hbbbbbbbbbbbbbbbbbbbbbbbbbbbb) 

PRINT 1 

Example 

READ 1 
1 FORMAT (7HRESULT=) 

PRINT 1 

Basic 1620 Fortran 

Assume that the first card contained the following information in columns 1-7 

1-7 362.111 

The Print statement would cause the following to type out: 

362.111 

Specification for M ultirecord Format. The solidus (!) is used when 
more than one printed line, punched card, or tape record is to be specified 
in one Format statement. The / may cause any of the following, de­
pending on the I/O statement it is used with: Another card may be 
read, another card may be punched, another line may be printed, or 
another tape record may be read or punched. Using the /, several one­
line Formats may be specified in one Format statement. A comma need 
not follow a / when it is used in a Format specification. 

Example 

READ 3, A, B, I 
3 FORMAT (FB.2jE12.4jI2) 

Three cards would be read. The value of A would be taken from the first 
card, B from the second card and I from the third card. 

Example 

PRINT 6, A, B, C, D, I 
6 FORMAT (F6.2, E12.4jFB.2, FB.2, 5X15) 

This would cause two lines to be printed. A and B would be printed on the 
first line according to specifications F6.2 and E12.4, respectively. The second 
line would have C, D, and I according to specification FB.2, FB.2, 15, respectively. 

Example 

PRINT 193, X, Y, Z, W 
193 FORMAT (2HX = F6.2, 5X2HY = F6.2, 5X2HZ = F6.2/5X2HW = F6.2) 

The following printed lines might result. 

X =121.11bbbbbY = 132.10bbbbbZ = b67.12 
bbbbW = 9B2.11 
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Example 

READ 6, A, B 
6 FORMAT (F6.2//FlOA) 

The value of A will be read from the first card and the value of B will be 
read from the third card. The second card will be read and ignored. 

Example 

READ 10, X, DELTA, I 
10 FORMAT (5X3Hbbb6XF10.3, E14A, 6XI4) 

The values of X, DELTA, and I would be taken from one card in the following 
card columns: 

VARIABLE 
X 

DELTA 
I 

CARD COLUMNS 
15-24 
25-38 
45-48 

The characters from columns 6-8 would replace the three blanks in the H 
specification. 

The following chart may prove helpful in analyzing the control of a 
Format statement. The chart is read as follows: The left-hand column 
indicates certain characters encountered in a Format statement. The 
three right-hand columns indicate what functions take place when the 
character in the left-hand column is sensed. The column labeled "Reset 
for New Record" means to read or punch another card or tape record 
or print another line depending on the I/O statement. 

Go BACK TO LAST 
INTERROGATE I/O LEFT PARENTHESIS 

CONVERSION LIST FOR LAST IF MORE VARIABLES RESET FOR 
TYPES VARIABLE IN LIST NEW RECORD 

) Yes Yes Yes 

/ No No Yes 

Numeric Yes No No 

H and X No No No 
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Note that both the right parenthesis and the solidus reset for a new 
record, so that in the following example the variables A and B would 
be printed on one line and the variables C and D on a second line. 

PRINT 10, A, B, C, D 
10 FORMAT (F6.2, F6.2) 

In the following example each variable will be read from a different 
card according to the specification E14.4 

READ 63, A, DELTA, X, Y, Z 
63 FORMAT (E14.4) 

Pause Statement 

General Farm 

PAUSE 

Example 

PAUSE 

When a Pause statement is executed, the computer will halt in the 
manual mode. Depressing the Start key on the console causes program 
execution to continue. The operator may take advantage of the halt 
to exercise manual control from the console. 

Stop Statement 

General Farm 

STOP 

Example 
STOP 

When a Stop statement is executed, the computer halts in the manual 
mode. The carriage on the typewriter returns and the word "stop" 
types. Program execution cannot be continued by depressing the Start 
key on the console. Depressing the Start key will repeat the sequence 
given above. 

PROCESSOR CONTROL OPERATION 

End Statement 

General Farm 
END 
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Example 

END 

207 

The End statement must be the last statement in a Fortran source pro­
gram. It is a signal to the compiler that the final statement of the source 
program has been received. 

We now have all the tools at our command to write complete Fortran 
programs. Two examples follow. 

Example 

Suppose that we have a large number of quadratic equations of the form 
AX2 + BX + C = 0 to solve. For each equation the values of A, B, and Care 
punched in a card as follows: 

CARD COLUMNS 

1-5 
10-14 
20-24 

VARIABLE NAME 

A 
B 
C 

FORM 

XXX.XX 
XXX. XX 
XXX. XX 

It is desired to print both roots of each equation along with the values of 
A, B, and C. If the discriminant is negative, a message to this effect is to be 
printed. Provisions should also be made to allow for typewriter entry of the 
data. A program to accomplish the above is: 

lO IF (SENSE SWITCH 1) 1, 2 
1 READ 21, A, B, C 

21 FORMAT (F5.2, 4XF5.2, 5XF5.2) 
GO TO 6 

2 ACCEPT 21, A, B, C 
6 DISCR = B**2 - 4.*A*C 

IF (DISCR) 7, 9, 9 
9 DENOM = 2.*A 

DISCR = DISCR**.5 
ROOTl = (-B + DISCR) /DENOM 
ROOT2 = (-B - DISCR) /DENOM 
PRINT 22, A, B, C, ROOT1,ROOT2 

22 FORMAT (F6.2, 5XF6.2, 5XF6.2, 5XF7.2, 5XF7.2) 
GO TO 10 

7 PRINT 23, A, B, C 
23 FORMAT (F6.2, 5XF6.2, 5XF6.2, 5X13HCOMPLEXbROOTS) 

GO TO 10 
END 

Commentary 

1. Format statements may be located anywhere in the program. They do not 
have to immediately precede or follow the associated I/O statement. 

2. More than one I/O statement may reference the same Format statement. 
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3. By calculating DEN OM = 2.*A, it was necessary to perform this calculation 
just once. 

Example 

It is desired to prepare a table of the factorials of the numbers from 1 to 15. 
The following Fortran program will prepare this table. 

PN = 15. 
8 SFACT = 1. 

A=PN 
2 SF ACT = SF ACT*A 

A=A-1. 
IF (A - 1.) 4,4,2 

4 PRINT 271, PN, SFACT 
271 FORMAT (F4.0, 10XEI4.0) 

PN = PN-1. 
IF (PN) 3, 10, 8 

10 PRINT 17 
17 FORMAT (16HPROGRAMbCOMPLETE) 

3 STOP 
END 

SUBSCRIPTS AND SUBSCRIPTED VARIABLES 
In many mathematical problems we find ourselves working with arrays 

or matrices. In mathematical notation the elements of the array are 
subscripted for ease of notation. Thus Aj7, might refer to the element 
in the ;th row and kth column. Fortran provides for the subscription of 
variables. This facilitates the programming of many complex problems.2 

Any variable (fixed or floating) can be made to represent any element 
in a one or two dimensional array by appending to it a single or double 
subscript. The variable is then a subscripted variable. The subscripts are 
fixed point quantities whose values determine which element of the 
array is being referred to. 

SUBSCRIPTS 

A subscript may be an expression in anyone of the following forms: 

1. An unsigned fixed point constant (for example, 3, 199, 81) 
2. A fixed point variable (for example, I, JDEL, MON) 
3. A fixed point variable ± a fixed point constant (for example, I + 2, 

JDEL -180) 

No subscript may itself be subscripted. 

2 All previous commentary referencing variables may be considered as accurate if 
the words "subscripted variables" are substituted. 
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SUBSCRIPTED VARIABLES 

A subscripted variable is a fixed or floating point variable followed 
by parentheses enclosing one or two subscripts. If two subscripts are 
used, they are separated by a comma. 

For each variable that is subscripted, the size of the array, that is, the 
maximum values which the subscripts can attain, must be stated in a 
Dimension statement (see below) preceding the first appearance of the 
variable. 

Example 

A(I) 
B(M + 4) 
K (2) 
AB (I, J) 
Z(IDEN + 7, J + 3) 

Problem 

Identify the following as being a subscripted variable in a correct form or 
incorrect form. 

1. A(1l2) 
2. A(1l,7) 
3. FLOW (MAX) 
4. TORQUE (MIN) 
5. INC (I + 2, J + 3) 
6. TORQ (I, J, K) 

Dimension Statement 

General Form 

DIMENSION v, v, v ... 

7. TORQ (I + 3) 
8. X (-3456) 
9. Y 0*2) 

10. Xl (+2) 
11. DELT (FACT) 
12. ABS (2-J) 

where each v is a fixed or floating point variable subscripted with one or two 
unsigned fixed point constants. Any number of v's may be given in a Dimen­
sion statement. 

Example 

DIMENSION A(10), B(20, 25), XY(100) 
DIMENSION A(3), 1(10, 3), B(17) 

The Dimension statement is used to specify to the Fortran compiler 
how much storage is required for one and two dimensional arrays used 
in the source program. Every subscripted variable appearing in the source 
program must appear in a Dimension statement. If no subscripted vari-
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abies appear in the source program, the Dimension statement is not 
necessary. One Dimension statement may be used to dimension any 
number of arrays. The only limiting factor is the permissible length of 
the Fortran statements. The programmer may find it convenient to place 
all Dimension statements at the beginning of his Fortran program to 
meet the requirement that a subscripted variable be listed in a Dimension 
statement before it is encountered in the program. 

Example 

DIMENSION A(5), B(2, 15),1(6,6) 

The Fortran compiler will reserve space for five values of A, 30 values of B, 
and 36 values of I. 

Note: Subscripts of variables in a Dimension statement must be unsigned 
fixed point constants, not variables. Dimensioning for less than one element 
in a one-dimensional array or two elements in a two-dimensional array is not 
allowed. 

To facilitate the programming of subscripted variables, the Fortran 
language includes two additional statements-Do and Continue. 

Do Statement 

General Farm 

DO n i = ml, m2, m3 

where n is a statement number, i is a nonsubscripted fixed point variable, and 
m h m 2 , m3 are each either an unsigned fixed point constant or a non subscripted 
fixed points variable. If m3 is not stated, it is taken to be 1. Also 0 < ml == m2' 

Examples 
DO 30 1 = 1,10 
DO 21 JOB = 2, 18, 2 

The Do statement is a command to "Repeatedly execute the state­
ments immediately following the Do statement, up to and including the 
statement numbered n, first with i equal to mI, then with i incremented 
by ma for each succeeding pass until the value of i equals or reaches the 
highest quantity in the sequence without exceeding m2, and then to 
execute the statement following statement n." 

A Do statement in which ma is not specified will assume m3 to be l. 
Thus, the first time the range of the Do is executed, i will be equal to mI, 
subsequently i = ml + 1, i = ml + 2, ... , finally i = m2' 

The range of a Do statement is defined as "the set of statements which 
will be executed repeatedly; it is the sequence of consecutive statements 
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immediately following the Do, up to and including the statement num­
bered n. After the last execution of the range, the Do statement is said to 
be satisfied. The index of a Do statement is the fixed point variable i, 
which is controlled by the Do in such a way that its value begins at ml 
and is increased each time by rna until it is about to exceed m2' Through­
out the range it is available for computation, either as an ordinary fixed 
point variable or as the variable of a subscript. 

As an example of a Do statement, consider the following program in 
which control has reached statement 10: 

10 DO 11 I = 1, 10 
11 A(I) = B(I) + C(I) 
12 ................ . 

The range of the Do is statement 11, and the index is I. The Do sets 
I = 1 and control passes into the range. B ( 1) + C ( 1) is computed and 
stored in A ( 1) . N ow, since statement 11 is the last statement in the 
range of th~ Do and the Do is unsatisfied, I is increased by 1 to 2 and 
control returns to the beginning of the range, statement 11. B (2) + C (2) 
is computed and stored in A(2). This continues until statement 11 has 
been executed with I = 10. Since the Do statement is satisfied, control 
passes to statement 12. 

DO'S WITHIN DO'S 

One or more Do statements may be included within the range of an­
other Do statement. This is called nesting. There are, however, certain 
rules which must be observed. 

1. If the range of a Do statement includes another Do statement, all 
statements in the range of the second statement must also be in the 
range of the first Do. The following diagram illustrates this rule: 

Permitted Violation of Rule 1 

DO DO 
DO 

[ 00 

IT [ 00 [ 
0 [ [ 

A set of DOs satisfying this rule is called a nest of DOs. 



212 Basic 1620 Fortran 

2. No transfer of control by If or Go To statements is permitted into 
the range of any Do statement from outside its range, since such 
transfers would not permit the Do loop to be properly indexed. The 
following diagram illustrates this rule: 

Permitted Violations of Rule 2 

DO 

3. The range of a Do cannot end with a transfer statement; that is, the 
statement numbered n cannot be a Go To or If type of statement. 

4. The first statement in the range of a Do cannot be one of the follow­
ing type of statements: Dimension, Format, or Continue; 

5. The execution of a nest of Do's proceeds from the innermost Do to 
the outmost Do in that order. 

PRESERVATION OF INDEX VALUES 

When control leaves the range of a Do statement by the Do becoming 
satisfied (i 5: m2) and control passes to the next statement after the range, 
the exit is said to be a "normal" exit. When a "normal" exit occurs, the 
main value of the index (i) is lost and it may not be used unless it is 
redefined. 

If an exit occurs by a transfer out of the range, the current value of 
the index remains available for any subsequent use. If the exit occurs 
by a transfer which is in the ranges of several Do statements, the current 
values of all the indices controlled by them are preserved for any sub­
sequent use. 

RESTRICTION 

Almost every type of calculation is permitted in the range of a Do 
statement. Only one type of statement is not permitted, namely, any 
statement which redefines the value of the index or of any of the indexing 
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parameters. In other words, the indexing of a Do loop must be com­
pletely set before the range is entered. 

Continue Statement 

General Form 

CONTINUE 

Example 

CONTINUE 

Continue is a dummy statement which does not generate any instruc­
tions in the object program. Its major use is as the last statement in the 
range of a Do to fill the requirement that the last statement in the range 
of a Do cannot be a transfer statement. As an example of a program 
that requires a Continue, consider the table search program: 

10 
11 

121 
20 

DO 121 I ::;: 1, 100 
IF(A - B(I)) 121, 23, 121 
CONTINUE 

The Program will examine the 100-entry B table until it finds an entry 
that equals A, whereupon it will exit to statement 23 with the successful 
value of I available for fixed point use. If no entry in the table equals A, 
a normal exit to statement 20 will occur. 

The following are examples of Fortran programs utilizing Do statements 
and subscripted variables. 

Example 

On page 189 a program was illustrated to sum the numbers from 1 to 
1000, using an If statement to control the number of times through the loop. 
The following program will develop the same sum using a Do statement to 
control the loop. 

SUM =0.0 
A = 1.0 
DO 3 I = 1, 1000 
SUM=SUM+A 

3A=A+1. 
PUNCH 10, SUM 

10 FORMAT (F10.0) 
STOP 
END 
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Example (presented without commentary for your study) 

X= -1.0 
DO 5 1= 1,21 
Y = X**3 + 3.0*X**2 - 4.0*X + 2.1 
PRINT 2, X, Y 

2 FORMAT (F4.1, 5XF8.3) 
5 X=X+.1 

STOP 
END 

Example 

Assume that 1000 numbers are punched one per card. The following pro­
gram will read in the numbers, sum the positive numbers, print the negative 
numbers, and do nothing with zeros. 

DIMENSION A (1000) 
DO 1 I = 1, 1000 

1 READ 15, A(I) 
SUM =0.0 
DO 4 I = 1, 1000 
IF (A(I)) 3, 4, 2 

2 SUM = SUM + A(I) 
GOT04 

3 PRINT 15, A(I) 
4 CONTINUE 

PUNCH 16, SUM 
15 FORMAT (F8.3) 
16 FORMAT (FI0.3) 

STOP 
END 

Commentary 
Notice the dimensioning of the subscripted variable. Note that all the A's 

are read into core storage first and then operated upon. Actually this is a 
waste of storage space since the values of the variables are not needed once 
they have been operated on. Rewrite the above example without using sub­
scripted variables. 

Example 
Given Xi' Y., Z, for i = 1, 2, ... ,10 i = 1, 2, ... , 30 

Compute PROD = C~ Ci ) (tl Z£ ) 

Where: 

Ci = X.2 + Y. + 2X. if Xi > Yi 
Ci = X i+ Y i2 + 2Y. if Xi < Yi 

Ci = 0 if Xi = Yi 
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The 30 values of Z are punched five per card. There are ten cards with the 
corresponding values of X and Y on the same card. Thus Xl and Y 1 are on 
the first card and XlO and YlO are on the 10th card. The six Z cards follow. 
The following Fortran program is a solution: 

DIMENSION Z(5) 
SUMC=O. 
DO 12 1= 1,10 
READ 3, X, Y 

3 FORMAT (FS.3, FS.3) 
IF (X - Y) 9, 12, 11 

9 SUMC = SUMC + X + Y**2 + 2.*Y 
GO TO 12 

11 SUMC = SUMC + X**2 + 2.*X + Y 
12 CONTINUE 

SUMZ = O. 
DO 15 1=1,6 
READ 4, Z(1), Z(2), Z(3), Z(4), Z(5) 
DO 15 J = 1,5 

15 SUMZ = SUMZ + Z (J) 
4 FORMAT (E14.4, E14.4, E14.4, E14.4, E14.4) 

PROD = SUMZ*SUMC 
PRINT 10, SUMC, SUMZ, PROD 

10 FORMAT (E14.4, E14.4, E14.4) 
STOP 
END 

FUNCTIONS 

Frequently in programs it becomes necessary to calculate the sine or 
cosine of an angle or to take the natural logarithm of a number. Fortran 
has incorporated in it the necessary subroutines to calculate some of the 
more commonly required functions. It is possible in Fortran to do the 
following: calculate the sine of an angle, the cosine of an angle, the 
square root of a number, the natural logarithm of a number, the arc­
tangent of a number, and to raise e to a power. 

General Farm 

The name of the function being used must be written as represented below 
with the function name followed by the argument enclosed in parenthesis. The 
argument must be a floating point variable or constant. The argument may be 
an expression and, if desired, may contain another function. Should the 
argument be a floating point variable it may be subscripted. A function may 
be the argument of a function. 
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ALLOWABLE FUNCTION N AMES3 

SIN (X) meaning sine of x (x in radians) 
COS (X) meaning cosine of x (x in radians) 
LOG (X) meaning logex 
EXP (X) meaning e'" 
SQRT(X) meaning the square root of x 
ATAN(X) meaning the tan-Ix 

Examples 
COS (B) 
SQRT(A*B - C) 
LOGF(SIN (A» 
ATAN(A(I, J) 
SIN(B(I) + 2.) 

Basic 1620 Fortran 

For each of the functions shown, there exists a subroutine within the 
Fortran system that computes the function of the argument enclosed 
in parenthesis. These subroutines will be compiled into the object pro­
gram automatically when called for by a statement containing a function. 

Functions may be used in any arithmetic expression. 

Examples 
A = COS (DELTA) + 6.*X 
IF(LOG(FIN) + SQRT(A + B» 1, 2, 2 
XCOOR= (SIN(R) +COS(S»;2. 
BA = EXP(T(I + 2» + X**2. 

COMMENT STATEMENT 

Any statement whose first three characters are the letter "C" followed 
by two blanks is interpreted as a comment and does not affect the pro-

,. cessing. Such comments are particularly helpful if one returns to a 
program after a prolonged period of inactivity. 

Example 
CbbTHIS PROGRAM CALCULATES 

ADVANCED PROGRAMMING EXAMPLES 

Example 
In this example, a program is required to determine the current in an 

alternating-current circuit consisting of a resistance, an inductance, and a 
capacitance, having been given a number of sets of values of resistance, induc­
tance, and frequency. The current is to be determined for a number of 
equally spaced values of the capacitance (which lie between specified limits 
which are input data) for voltages of 1.0, 1.5, 2.0, 2.5, and 3.0 volts. 

3 An allowable alternate name for any of the functions listed above is the permis­
sible form of the name with a terminal "F''' added. Thus, SINF', COSF', LOGF', 
EXPF', SQRTF' and ATANF' are permissable. 
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The equation for determining the current Howing through such a circuit is 

E 
i = --;::=============== 

~R2 + [271" FL __ 1_J2 
271"FC 

where i = current, amperes 
E = voltage, volts 
R = resistance, ohms 
L = inductance, henrys 
C = capacitance, farads 
F = frequency, cycles per second 
71" = 3.1416 

The Fortran program could be written as follows: 

1 FORMAT (F8.2, FI0,2, F8.2) 
2 FORMAT (F6.2, F8.2) 
3 FORMAT (F8.2) 

10 READ 1, OHM, FREQ, HENRY 
11 READ 2, FRDl, FRDMX 
12 VOLT = 1.0 
15 FARAD = FRDI 
14 PUNCH 3, VOLT 
16 AMP = VOLTjSQRTF(OHM**2 + (6.2832*FREQ*HENRY 

- 1./ (6.2832*FREQ*FARAD) )**2) 
17 PUNCH 2, FARAD, AMP 
18 IF (FARAD - FRDMX) 19,21,21 
19 FARAD = FARAD + .00000001 
20 GO TO 16 
21 IF (VOLT - 3.0) 22,10,10 
22 VOLT = VOLT + 0.5 
23 GO TO 15 
24 END 

Commentary 

Statement 10 causes the values of the resistance, the frequency, and the 
inductance to be read from the first card, and statement 11 causes the initial 
and final values of the capacitance to be read from the next card. The initial 
value of the voltage is introduced and punched (statements 12 and 14). State­
ment 15 causes the initial value of the capacitance to replace the current 
value of the capacitance (denoted as FARAD). The actual calculation, together 
with the current value of the capacitance, is then punched (statement 17). 

The current value of the capacitance is compared with the final value to 
determine whether or not all values have been investigated (statement 18). 
If not, the expression is negative and the program proceeds to statement 19, 
which causes the value of the capacitance to be increased by the given incre­
ment. This is followed by a transfer (statement 20) to statement 16 which 
causes the calculation to be repeated for the new value of the capacitance. If 
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the expression in statement 18 is zero or positive, all values of the capacitance 
have been investigated and the program transfers to statement 21. 

At this point the value of the voltage is compared with the upper bound 
to determine whether or not all specified values of the voltage have been used. 
If not, the expression in statement 21 is negative and the program proceeds 
to statement 22 which causes the value of the voltage to be increased. Follow­
ing this, a transfer (statement 23) is made to statement 15, causing the new 
value of the voltage to be punched; and the entire process of investigating all 
values of the capacitance is begun again. If all values of the voltage have 
been used (the expression in statement 21 is zero or positive), the calculations 
for the current set of values of resistance, frequency, and inductance are 
finished. The program is returned to statement 10 so that the two cards 
defining the next case may be read and the program repeated. This process is 
repeated until all of the cases have been considered, that is, all of the cards 
have been read. 

Example 

The following is an example of a Fortran program to do matrix multiplication 
for matrices of a maximum size of 15 by 15. Assume that the elements are 
punched one per card by rows. 

Given a matrix A with dimensions N X L, and the matrix B with dimensions 
L xM the resultant product matrix G will be of size N X M. 

To compute any element Gij , select the i row of A and the i column of B, 
and sum the products of their correspoIiding elements. The general formula 
for this computation is 

1 

G!j = L:: AikBkj 
k=l 

DIMENSION A(15, 15), B(15, 15), C(15, 15) 

10 FORMAT (I2, 12, 12) 

11 FORMAT (F8.2) 
12 FORMAT (14, 14, F8.2) 

READ 10, L, N, M 
DO 1 1=1, N 
DO 1 J = 1, L 

1 READ 11, A(I, J) 
DO 2 1=1, L 
DO 2 J = 1, M 

2 READ 11, B(I, J) 
DO 4 1=1, N 
DO 4 J = 1, M 
C(I, J) = 0.0 
DO 20 K = 1, L 

20 C(I, J) = C(I, J) + A(I, K) * B(K, J) 
4 PRINT 12, I, J, C(I, J) 

STOP 
END 
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Example 

The following Fortran program will sort up to 300 floating point numbers 
into ascending sequence. The exchange method of sorting is used. The 
numbers are punched one per card in columns l-S. A header card is read in 
first; in columns 1-3 of this card is the number of numbers to be sorted. In 
the exchange method of sorting the first two numbers are compared. If the 
first number is greater than the second they are interchanged. If the second 
number is greater than the first the procedure continues with no interchange. 
The second and third numbers are then compared and if the second number is 
greater, they are interchanged. This process continues until finally the last 
number and the preceding one are compared. At this time the largest number 
will be at the end of the list of numbers in its proper place. The process is 
then repeated starting with the first number. At the completion of this second 
pass the next largest number will be in its proper place. Thus if N is the 
number of numbers a maximum of N-l passes are required to put them in 
ascending sequence. 

If the following items are noted the time required for the complete sort may 
be reduced. 

1. The numbers are in sequence when no interchange has occurred in a 
complete pass. 

2. During a pass all the numbers beyond the last interchange are in 
sequence. Thus if 100 numbers are being sorted and on the first past 
the last interchange is made between the 79th and SOth numbers in 
the list, on the next pass and numbers beyond the 7Sth and 79th 
need not be compared since they will be in the proper sequence. 

Cbb FORTRAN SORT PROGRAM-EXCHANGE METHOD 
DIMENSION A(300) 

1 FORMAT (13) 
7 FORMAT (FS.2) 

11 FORMAT (FS.2, FS.2) 
36 SUM = 0.0 

SUMI = 0.0 
IND =0 
READ 1, KOUNT 
DO 2 I = 1, KOUNT 
READ 7, A(I) 

2 SUM = SUM + A(I) 
Cbb THIS IS A CHECK TOTAL TO BE COMPARED WITH 
Cbb A TOTAL TAKEN AT THE END OF THE PROGRAM 

INDEX = KOUNT - 1 
3 DO 5 I = 1, INDEX 

IF (A(I + 1) - A(I) )6,5,5 



220 Basic 1620 Fortran 

6 SAVE::::: A (I + 1) 
A(I + 1) = A(I) 
A(I) = SAVE 
!HOLD = I 
IND = 1 

5 CONTINUE 
IF (IND) 9, 8, 9 

9 INDEX = !HOLD 
IND=O 
GO TO 3 

8 DO 4 I = 1, KOUNT 
SUM1 = SUM 1 + A(I) 

Cbb THIS IS THE SECOND CHECK TOTAL DEVELOPED 
4 PRINT 7, A(I) 

PRINT 11, SUM, SUM1 
GO TO 36 
END 

GENERAL INFORMATION 

1. Statements may be punched anywhere in card or tape. 
2. Source statements may not exceed 72 characters including blanks and 

statement numbers. 
3. An ElL must be the last character of every Fortran statement in the 

tape system and is included in the 72 character count. 
4. The card system does not require the record mark as a terminating 

character of the statement, but the presence of such a character does 
not affect the processing. 

5. The programmer may utilize the last 8 columns of the card for any 
identifying information he wishes. This will not affect the processing. 

6. Object time input records may not exceed 72 characters. Object time 
output records may not exceed 72 characters except for typewriter 
records which may not exceed 87 characters. 
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Problems 

SECTION 1. BASIC MACHINE LANGUAGE PROBLEMS 

All problems in this section may be attempted with a knowledge of 
machine language coding only. Unless otherwise stated, input data is 
assumed to be flagged at the high-order position and, if negative, at the 
low-order position. A 20,000-core-position machine with card and paper 
tape I/O devices is assumed. Other than these features no other equip­
ment is available. A record mark is assumed to be in position 00400 if 
needed. Programs may begin at any even location above 00400. Any 
assumptions needed for proper solution of the problems are valid. 

1.1 Five positive unflagged 4-digit integers are punched in paper tape. They 
are separated by ElL characters and an ElL character follows the fifth 
and last item. Construct a program to generate and print the product 
of the five numbers. 

1.2 Assume that the data in the previous problem is punched in columns 1-4 
of five separate cards. Construct a program to type the product of the 
five numbers. Data is unflagged. 

1.3 Five positive unflagged 4-digit integers are punched in one record on 
paper tape. Following the last item there is an ElL character. There are 
no blanks separating the data. It may be considered as a 20-digit number 
Generate and type the product of the five numbers. 

1.4 A single card is punched with five unflagged 4-digit numbers as follows: 

xxxx 
xxxx 
xxxx 
xxxx 
xxxx 

Columns 1-4 
Columns 7-10 
Columns 15-18 
Columns 26-29 
Columns 75-78 

Generate and type the product of the five numbers. 
221 
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1.5 N cards are punched with the following information: 

A (XXX.XX) 
B(.XXXX) 
C(XXX) 
D(XX.) 

Columns 1-5 
Columns 6-9 
Columns 10-12 
Columns 13-14 

Decimal points are not punched in the cards. Thus a number of the form 
A may be 35.6 and will be punched as 03560. The range of the numbers 
is as follows: 

-999.99 ~ A ~ 999.99 
-.9999 ~ B ~ .9999 
-9.99 ~ C ~ 9.99 
-99. ~D~99. 

For each input card type a single line of output information which con­
sists of A, B, C, D and SUM, where 

SUM = A + B + C + D. 

Calculate SUM to two decimal places and round the result to one decimal. 
Terminate the program after processing the last card. 

1.6 N cards are in the read hopper of the 1622. Write a program to type N 
(N ~ 500). High-order zeros are not to be typed. Thus if 23 cards are 
in the read hopper, the result appears as 23, not as 023. 

1. 7 N records are on paper tape. Each record is 5 characters long (4 digits 
and one ElL character), except for the last, which is 6 characters long 
(4 digits, one record mark, and one ElL character). Write a program 
to type N (N ~ 8500). High-order zeros are not to be typed as part of 
the result. 

1.8 Five 10-digit numbers are on paper tape, separated by ElL characters. 
An ElL character follows the fifth and last element. Write a program to 
sort the data in increasing order and punch it into paper tape. The output 
tape is to consist of the sorted data separated by ElL characters and 
an ElL character is to follow the fifth and last element. No two elements 
are equal and the data are not necessarily all of the same sign. 

1.9 N cards each contain a single 2-digit number Xi (XX.) punched in col­
umns 14-15. Generate coding to calculate and print the following: 

N 
Nand L: Xi 

i= 1 

where N ~ 9999 and ~ Xi ~ 99999. 

1.10 This problem is identical with the previous one, with the following two 
exceptions: 

1. The first card has a 4-digit number P (P ~ 9999) punched in col­
umns 2-5. 

2. There are P + 1 cards. 
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SECTION 2. MACROLESS SYMBOLIC CODING 

All problems in this section may be attempted with a knowledge of 
SPS coding. Macro-instructions are not employed. For all problems, 
assume a 20,000-core-position 1620 with card and paper tape I/O. 
You may assume any alternate attachments, at the instructor's discretion. 
Any assumptions for the proper solution of these problems are valid. 
Unless otherwise stated, all data is assumed to be flagged on the input 
medium. 

2.1 A, B, and C are on paper tape separated by ElL characters, and an 
ElL character lies after the third and last element. 

A(XXX.) ~ 300 
B(XXX.) ~ 400 
C(XXX.) ~ 200 

Generate the coding for G = A + B - C 
( -500 ~ G ~ 900) 
If G > 0, print G and halt. 
If G = 0, print A, B, C, G, and halt. 
If G < 0, print G, A, B, C, and halt. 
Do not print high-order zeros for any data. 

2.2 Six cards are in the read hopper of the 1622. 

Card 1: N (X.) -Column 1 
Card 2: A(XXX.)-Columns 1-3 
Card 3: B(XXX.)-Columns 1-3 
Card 4: C(XXXX.)-Columns 1-4 
Card 5: D(XX.)-Columns 1-2 
Card 6: E(XXX.)-Columns 1-3 

If N = 1, calculate and print Y where 
Y = A + B + C + D + E (Y ~ 9999) 

If N = 2, calculate and print Y where 
Y = A • B • C • D • E (Y ~ 99999999) 

If N = 3, calculate and print Y where 

Y = C - A - B - D - E (Y ~ 9999) 

If N >3, print N and the following error message: 

INCORRECT CODE IN FIRST CARD 

2.3 On tape, in a single record, are Ai (i = 1,100). Ai ~ 999 for all i. An 
ElL character follows AlOO ' Each Ai is three characters. Calculate and 
print: 

100 

L~ 
i = 1 
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2.4 On 510 cards, Ai, Bi (i = 1,510). 

Each Ai' Bi occupies a single card. 
Ai: Columns 1-3 (Ai ~ 800) 
Bi: Columns 5-8 (Bi ~ 9000) 

Generate 510 cards such that: 

Ai: Columns 5-7 
Bi : Columns 1-4 
Ci : Columns 75-78 (C ~ 5000)" 

where Ci = Ai + Bi 

2.5 This problem is identical with the previous one with the following three 
exceptions: 

1. There are N (~5000) cards. 
2. i = 1, N 
3. After producing the N-th card, punch an (N + l)st card with N in 

columns 77-80. 

2.6 There are two records on paper tape. 
The first consists of Ai (i = 1,75). 

The second consists of Bj (i = 1,38). 

Ai (XX.) ~99 
Bj (XXX.) ~ 999 

Calculate and print: 

38 
75 

L: AiBj 
i = 1 
i = 1 

(~ 99999999) 

An ElL character separates the two records and an ElL character termi-

.. In many computer problems, the theoretical final result does not agree with the 
actual final result. In this case it seems that Ci might obtain a maximum value of 
9800. A comparison might be made to a payroll operation where an employer has 
100 employees, and each makes a maximum of $100 per week. This does not 
necessarily imply that the employer must have $10,000 ready to meet his payroll. 
Previous experience has told him that his payroll has never exceeded $5,000 in any 
one week, even though it is theoretically possible for it to be twice as high. This is 
one of the great problems in fixed point arithmetic: extremely tight bounds on all 
input data must be known, and checks are generally established along the program's 
path to assure that all data stay within these bounds. Determining the historical 
background of a data processing or scientific problem can often take much longer 
than the actual program construction. 
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nates the second record. The first record is 151 characters in length. 
The second record is 115 characters in length. 

2.7 On tape there are six records. 

Record 1: M (2 digits) 
Record 2: N (2 digits) 
Record 3: P (2 digits) 
Record 4: Ai (i = 1, M. Each ~ ~ 999.) 
Record 5: Bj U = 1, N. Each Bj ~ 99.) 
Record 6: Ck (k = 1, P. Each Ck ~ 99.) 

Calculate and print: 

P 
N 
M 

L AiBPk (~1010) 
i=1 
i = 1 
k=1 

The count of the number of digits in each record given above does not 
include the ElL character. Therefore, Record 1 is 3 characters long, 
and so forth. 

2.8 Analyze and comment on the following program. Give a timing estimate 
at the object level. 

LINE LABEL OPERATION OPERANOS l REMARl.S .. 1112 o o. 

D .•. R.~ 4,0,2, 
START TFM C,ID,UNT 

AM :,ID,U NT ,1. . BNV *-12 
H 

;,ID,U N,T, OS • , O,E,NO STA~T 

2.9 One hundred cards are in the read hopper of the 1622. Each card has a 
4-digit number punched in columns 1-4. There is a record mark in 
column 80 of each card. Reproduce this deck in ascending, sorted order. 
No data is necessarily unique. 
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2.10 Write a program to generate and print the following: 

0000 1100 
0001 1101 
0011 1111 
0010 1110 
0110 1010 
0111 1011 
0101 1001 
0100 1000 

The above binary-type coding is to be generated through the use of 
iterative coding, not through the use of 16 DC statements. 

2.11 Generate and print the following: 

0123456789 
1234567890 
2345678901 
3456789012 
4567890123 
5678901234 
6789012345 
7890123456 
8901234567 
9012345678 

Similarly, do not use 10 DC statements, but rather iterative coding. 

SECTION 3. FULL SYMBOLIC CODING WITH 
MACRO-INSTRUCTIONS 

All problems in this section may be attempted with a knowledge of full 
symbolic coding. For all problems, assume a 20,000-core-position 1620 
with card and paper tape I/O. You may assume any alternate attach­
ments, at the instructor's discretion. Any assumptions for the proper 
solution of these problems are valid. Unless otherwise stated, all data 
is assumed to be flagged on the input medium. All problems done 
in floating point assume a 10-digit floating point word. With adequate 
modifications of the statement of the problem, any floating point word 
size may be assumed. 

3.1 N cards are in the read hopper of the 1622. Each card contains three 
floating point numbers punched as follows: 

A: 1-10 
B: 11-20 
c: 21-30 
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For each input card punch a single output card with the following 
information: 

A: 1-10 
B: 11-20 
C: 21-30 

Xl: 31-40 
X2 : 41-50 

Blank: 51-80 

where Xl and X2 are the solutions to the quadratic system: 

AX2 + BX + C = 0 

If the discriminant of the quadratic is negative, punch the following 
information to avoid complex roots: 

A: 1-10 
B: 11-20 
C: 21-30 

Discriminant: 31-40 (B2 - 4AC) 
Blanks: 41-80 

3.2 Given a matrix Amn punched in cards by rows, where each element of 
the matrix is a floating point word and each card contains a maximum of 
8 words. This matrix has 9 rows and 7 columns. Calculate a matrix 
Bmn where: 

1. blj=ajj (j=1,7) 
2. b 9j =a9j (j=1,7) 
3. bi! = ail (i = 2, 9) 
4. b i7 = ai7 (i = 2, 9) 
5. b ij = 1f4ai _ l,j + 1f4ai + l,j + 1f4abj _ I + 1f4ai,j + I 

for i = 2, 8 
i = 2, 6 

The Bmn matrix is developed by superimposing itself on the Amn matrix. 
At the conclusion of the program, the Amn matrix has been overlain 
completely. Punch the resultant matrix on cards packed 8 words per 
card, except for the last card which is blank in the last 10 columns. 

3.3 This problem is identical with the previous one, with the following 
exceptions: 

1. Preceding the matrix is a single card with the following 
information: 

(a) Columns 1-2: m (XX) ~ 40 

(b) Columns 3-4: n (XX) ~ 40 

2. m and n are not necessarily equal. 
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Calculate the matrix Bmn where: 

1. hlj ::::: alj (f = 1, n) 
2. hmj = amj (f = 1, n) 
3. hi! = ail (i = 2, m) 
4. bin = ain (i = 2, m) 
5. bij = 1f4ai _ hj + 1f4ai + l,j + 1f4a;,j _ 1 + 1f4a;,j + I 

for i = 2, m-l 
j::::: 2, n-l 

Problems 

3.4 Calculate and print the following tabulation with alphabetic headings. 
All calculation and all output is in floating point form. 

X(RADIANS) SIN (X) COS (X) 
where: 

0~X~2II 

~X = .0001 radians 

3.5 A 2-digit record (XX ~ 40) is terminated by an E/L character on paper 
tape. A second record consists of the upper half of a square symmetrical 
matrix: (by rows) 

allal2 ... alja22a23 .•. a2ja33 ••. aSj ..• ajj 

where ai} = aji. 

The second record consists of i(f ;--D 
elements, each one of which is a floating point number. The first record 
is j. The second record is terminated by an E/L character. 
Generate and punch the complete square symmetrical matrix from the 
information given about the upper half. Data are to be punched in 
paper tape in a single record. The complete matrix is to be punched 
as follows: 

Thus, if j = 3, the input information is: 

and the output information is: 

3.6 Assume a machine without divide hardware for the following problem. 
Tabulate a list of X and I/X for 1 ~ X ~ 1000 with ~X = 1. Calculate 
all reciprocals to three decimals. Use fixed point arithmetic. 
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X l/X 
1 1000 
2 500 
3 333 
4 250 

1000 001 

3.7 Evaluate and print X and F (X) for the following polynomial: 

F(X) = 2.7X7 + 3.2X6 - 2.1X5 + X4 + 3X3 - 2X2 + X + 17 
o :=: X:=: 10 l::,. X = .1 

Hint: Nest the polynomial as follows: 

(( ... ((2.7X + 3.2)X - 2.1)X + ... )X + 17 

All calculation and output is to be done in floating point form, with the 
following tabulation: 

X F(X) 

3.8 Write a program to generate Va using the Newtonian method of succes­
sive approximation: 

x" + 1 = lJ2 (x" + a/x,,) 

where x" + 1 is the (n + 1) st approximation to Va. 
Calculate and print all a and va for 1 :=: a :=: 1000 with ~ a = 1.0. Do 
not use the square root macro. Do all arithmetic in floating point. 

3.9 Construct a generalized float routine with input from paper tape and each 
number is separated from the next by an ElL character. Punch the floated 
data on tape in the same form (separated by E/L characters). Data may 
be signed or unsigned with a maximum of 8 decimal digits. A decimal 
point is always present. Thus a maximum record is 11 characters, in­
cluding E/L character. A minimum record is 3 characters, including E/L 
character. The desired output record for each input record is the input 
number expressed in floating point form. Input data is not flagged, 
namely. 

123.4E/L-.00lE/L75.9832E/L.1E/L ... 

- / - 1 __ - _ "" _ ~ _ 
1234000003E/L1000000002E/L7598320002E/LIOOOOOOOOOE/L ... 

3.10 Construct a generalized fix routine with input from paper tape in a 
fashion identical with the output of the previous problem. Positive data 
are to be printed unsigned, and negative data are to be printed with 
sign. The range of the characteristic of the floating point number will 
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not exceed 07 or be less than 07. Print the number with decimal point 
and 8 digits, namely: 

1234000003 yields 123.40000 

1000000002 yields -.00100000 

7598320002 yields 75.983200 

9999999907 yields 9999999.9 

1234567807 yields .00000001 

SECTION 4. FORTRAN PROBLEMS 

All problems in this section may be attempted with a knowledge of 
basic 1620 Fortran. 

4.1 Any centesimal year not divisible by 400 is not a leap year. Type a list 
of all leap years from the year 1599 to the present year. If the present 
year is a leap year, include it in the list. 

4.2 Calculate and print the following tabulations with alphabetic headings. 

X (RADIANS) SIN (X) COS(X) 

for 0 ~ X ~ 2 and A X = .001 radians. 

4.3 Assume typewriter input for all necessary parameters. Design a Fortran 
program to evaluate 

by Simpson's rule.! 

A +nh =B 

B 

f Ln(x)dx 

A 

f f(x)dx = h/3(f(xo) + 4f(Xl) + 2f(X2) + 4f(xg) + 2f(x4)+'" 

A 

where 

1. Xi+h=Xi+l 
2. A = Xo 

3. B = A + nh = x,. 

1 For a complete discussion of numerical integration see: 
(a) Milne, W. E., Numerical Calculus. Princeton, N. J.: Princeton University 

Press, 1949. pp. 100-200. 
(b) Hildebrand, F. B., Introduction to Numerical Analysis. New York: McGraw­

Hill Publishing Company, Inc., 1956. pp. 64-84. 
(c) Scarborough, J. B., Numerical Mathematical Analysis. Baltimore, Md.: The 

Johns Hopkins Press, 1958. pp. 131-167. 
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4.4 Design a Fortran program to perform the numerical integration of the 
preceding problem employing Weddle's rule.2 

A+nh=B 

f f(x)dx = 3hjl0 (t:f(Xi)) 

A 

where k = 1, 5, 1, 6, 1, 5, 2, 5, 1, 6, 1, 5, 2, ... , 1 

4.5 Design a Fortran program to perform the same numerical integration as 
the previous two problems, employing Gauss' Quadrature formula.s 
B f f(x)dx = (B - A) (R1CP(Ul) + R2CP (U2) + ... + Rncp(un) ).0 

A 

using the transformations 

x = (B - A)u + a + b 
2 

y -f (x) = f ( (B - A) U + a + b) = cP (u) 
2 

4.6 Write a Fortran program to generate Va using the Newtonian method of 
successive approximation: 

xn + 1 = 1h (xn + ajxn) 

where Xn + 1 is the (n + l)st approximation to va. Calculate and print 
all a and Va for 1 ~ a ~ 1000 with t:..a = 1.0. Do not use the Fortran sl,lb­
routine SQRT or SQRTF. 

4.7 Examine the following Fortran program for error. It is designed to yield 
two routs of a quadratic if the discriminant is positive and not zero. 
If the discriminant is zero, it types one value for the double root. If 
the discriminant is negative an unconditional halt is obtained. 

2 Ibid. 
3 Ibid. 

6 READ 1, A, B, C 
1 FORMAT (F8.2) 
5 FORMAT (F8.4) 

X = B**2 - 4.*A*C 
IF (X) 2,3,4 

2 STOP 

o For values of Rand u for extensive n see Scarborough, pp. 148-149. For the 
most extensive tables of Gauss coefficients ever published, see "Tables of the Zeros 
of the Legendre Polynomials of Order 1-16 and the Weight Coefficients for Gauss' 
Mechanical Quadrature Formula," by A. N. Lowan, Norman Davids and Arthur 
Levinson, in Bulletin of the American Mathematical Society, vol. 48, no. 10, October 
1942, pp. 739-743. 
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3 X = -B/2.*A 
PRINT 5, X 
GO TO 6 

4 ROOT 1 = (-B + SQRT(X))/2.*A 
ROOT 2 = (-B - SQRT(X))/2.*A 
PRINT 5, ROOT 1, ROOT 2 
GO TO 6 

Problems 

4.8 There are I+J+K+l cards in the read hopper of the 1620. 
The I cards have ai (I ~ 10) 
The J cards have b j (J ~ 15) 
The K cards have c" (K ~ 17) 
The first card in the sequence has I, J, K punched in colunms 1-2, 3-4, 
5-6 respectively. All ai, bj , c" are of the form :±: XXX.XXX and are 
punched, one per card, in columns 1-8 of the I+J+K cards. Calculate 
and print: 

K 
J 
I 

L: a;bjc" 
i = 1 
j=l 
k=l 

4.9 Generate a Fortran program to construct a matrix aij where aij = 
1/ (i + i + 1). Parameters i and i may be entered into the system in any 
fashion. 

1 ~ i ~ 30; 1 ~ i ~ 30 

4.10 Calculate one root of the following polynomial using a technique of exam­
ination of sign changes of f (x) . 

X4 - 5x3 + 5x2 + 5x - 6 = 0 

All roots lie between -3 and 1 inclusive. 
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Additional Instructions 

The three instructions discussed in this chapter are not considered as 
part of the standard 1620 hardware and therefore are not included among 
the 1620 basic instructions. 

The Move Flag, Transfer Numerical Strip, and Transfer Numerical Fill 
instructions are extremely useful where it is necessary to read and write 
all data in the alphameric mode. 

Instruction: Move Flag 

Operation Code: 71 

Symbolic Name: MF 

Description: 

The flag bit at the core storage position specified by the Q address is 
transmitted to the core storage position specified by the P address. If the 
core position specified by the Q address contains a flag, a flag is placed 
at the core position specified by the P address and the flag at the Q 
address is cleared. If no flag is present at the Q address, the flag at the 
core position specified by the P address is cleared. The digits at the P 
and Q addresses are not altered. 

Execution Time in Microseconds: 240 (constant) 
233 
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Example: 71 19000 00409 

2 • , 
Core location 19000 
before Move Flag 

2' , 
Core location 19000 
after Move Flag 

Example: 71 15000 16000 

3 • , 
Core location 15000 
before Move Flag 

3 , 
Core location 15000 
after Move Flag 

Example: 71 13876 14998 

S· I 
Core location 13876 
before Move Flag 

8 • I 
Core location 13876 
after Move Flag 

Example: 71 13810 16950 

5. I 
Core location 13810 
before Move Flag 

"5 
1 

Core location 13810 
after Move Flag 

Example: 71 12998 13000 

004169 • , 
Core location 13003 
before Move Flag 

004169 • I 
Core location 13003 
after Move Flag 

Additional Instructions 

o _. --------., 
Core location 00409 before 
Move Flag 

o -. ------.1 
Core location 00409 after 
Move Flag 

7-.-----., 
Core location 16000 before 
Move Flag 

7-·------, 
Core location 16000 after 
Move Flag 

5 -. ------., 
Core location 14998 before 
Move Flag 

5 _. ------,1 
Core location 14998 after 
Move Flag 

4 _. -------.1 
Core location 16950 before 
Move Flag 

4-.-----., 
Core location 16950 after 
Move Flag 
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The preceding example shows how a Move Flag instruction is used to 
lengthen a field. 

The Transfer Numerical Strip and Transfer Numerical Fill instructions 
facilitate programming where all input and output is in the double­
digit alphameric code. They greatly simplify the conversion of the 
double-digit representation of numerical data to single-digit codingre­
quired for use in arithmetic operations, and the reconversion to double­
digit coding for alphameric output. 

During the discussion of these two instructions the terms "P field" and 
"alphameric field" will be used. Though technically the term "field" is 
incorrect because, as will be discussed, no field-defining flag is necessary, 
the terms will be used to avoid a repetitive verbose description of the 
areas referenced. The terms "p field" and "alphameric field" used inter­
changeably will refer to the core position specified by the P address and 
all contiguous lower numbered core positions which contain data used 
by the instruction. 

The symbol D; will be used to represent the number of digits in the 
"P field" as described above. 

Instruction: Transfer Numerical Strip 

Operation Code: 72 

Symbolic Name: TNS 

Description: 

This instruction converts double-digit alphameric data into single-digit 
numerical data with sign. The units position of the alphameric field is 
specified by the P address of the instruction and must always be an odd­
numbered core location. The units position of the numerical field is 
specified by the Q address. The digits in the odd-numbered core storage 
locations of the alphameric field (P field) are transmitted without change 
to the adjacent positions of the numerical field. 

Transmission of data proceeds from the position addressed, through 
successively lower numbered core storage locations, until a flag is sensed 
in the numerical field in other than the units position. The flag must be 
placed in the numerical field prior to the Transfer Numerical Strip in­
struction to define the high-order position. It remains unchanged by the 
instruction. Except for the field-defining flag, all previous contents of the 
numerical field are erased by the new contents. The erasure includes the 
units position sign flag that designates a previous negative value. The 
alphameric field remains unchanged. 

The zone digits in the even-numbered core storage locations of the 
alphameric field are ignored except for a 5, 2, or a 1 in the units zone 
position. A 5 in a units zone position of an alphamerically coded numeri-
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cal field indicates a negative number read from an input card, a paper 
tape, or a typewriter. A 2 in a units zone position occurs when an X 
alone, representing a negativ,e zero, is read from input card or paper tape. 
A 1 occurs when a negative zero (X,O) is read from paper tape. A 5, a 
2, or a 1 in the units zone position is converted by the Transfer Numerical 
Strip instruction to a flag which is placed over the units digit of the 
numerical field. Any number other than a 5, 2, or 1 results in no flag 
over the units digit. 

Flags in the even-numbered zone positions of the alphameric field are 
ignored. However, flags present in the odd-numbered core locations of 
the alphameric field are transmitted with the digit to the corresponding 
positions of the numerical field. Because such flags, when transmitted, 
may effect the length or sign of the numerical field, all flags in the odd­
numbered core positions of the alphameric field should be cleared by 
instructions at the beginning of the program. Such extraneous flags may 
be the result of the previous use of the core storage locations or the fact 
that the Read Alphamerically instruction does not destroy any flags 
which are in core. 

Note carefully that the TNS instruction transmits data from the P­
address location to the Q-address location. This is directly opposite to 
the general philosophy of all other 1620 instructions. 

Execution Time in Microseconds: 160 + 40D/ 

Example: 72 16235 17464 

71727354 • I 
Core location 16235 
before and after 
Transmit Numerical Strip 

Execution Time: 480 microseconds 

Example: 72 09813 09000 

787379757176~ 
Core location 09813 
before and after 
Transmit Numerical Strip 

Execution Time: 560 microseconds 

7890 • I 
Core location 17464 before 
Transmit Numerical Strip 

1234 -·-----.1 
Core location 17464 after 
Transmit Numerical Strip 

21300 -, ---..." 
Core location 09000 before 
Transmit Numerical Strip 

39516 _. -----rl 
Core location 09000 after 
Transmit Numerical Strip 
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Instruction: Transfer Numerical Fill 

Operation Code: 73 

Symbolic Name: TNF 

Description: 

237 

This instruction moves and expands single-digit numerical data with a 
sign into double-digit alphameric data. The units position of the alpha­
meric field is specified by the P address of the instruction and must 
always be an odd-numbered core location. The units position of the 
numerical field is specified by the Q address. 

The digits in the field whose units position is specified by the Q address 
are transmitted without change to the corresponding odd-numbered 
positions of the field specified by the P address. The contents, including 
Hags of the odd-numbered core positions of the P field, are replaced by 
the Q field data. The even-numbered positions of the P field are filled 
with 7's, giving the double-digit representation of the single-digit numeri­
cal Q field data. 

Transmission of data proceeds from the units position of the Q field 
data through successively lower numbered core locations, until terminated 
by the sensing of the Hag defining the high-order position of the Q field 
data. The flag terminating data transmission is not transmitted to the P 
field. The Q field data is not altered by this instruction. 

If the numerical field specified by the Q address is negative, a 5 is 
placed in the even-numbered units zone position of the alphameric (P) 
field. During a Write Alphamerically instruction, a negative zero, repre­
sented by a zone digit five and a numerical digit zero, is converted to X 
coding in paper tape, to X, 0 coding in an output card, and to a minus 
sign (-) on the typewriter; All other negative units positions having a 
zone digit 5 type and punch as the letters J through R (i through 9) 

Execution Time in Microseconds: 160 + 40Dp 

Example: 73 16257 17394 

01627400 ---'1 
Core location 16257 before 
Transfer Numerical Fill 

77787951-, ----, 

Core location 16257 after 
Transfer Numerical Fill 

Execution Time: 480 microseconds 

7891 -, ----., 
Core location 17394 
before and after 
Transfer Numerical Fill 
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Example: 73 06421 19003 

00000000000000 7842162 

Core location 06421 before 
Transfer Numerical Fill 

77787472717672 

Core location 06421 after 
Transfer Numerical Fill 

Core location 19003 
before and after 
Transfer Numerical Fill 

Execution Time: 720 microseconds 

Problems 

For all Problems the following core content is assumed: 

CORE LOCATION 

LOW-ORDER DIGIT CONTENTS 

13123 
07000 

05555 

06000 
15321 

777871727374 

0000 
73797851 
999 
6431 

For each problem show the contents of the P field and Q field after the 
instruction (s) have been executed. 

The core content listed above is to be assumed for every problem and the 
results of anyone problem are independent of all others. 

1. 72 13123 07000 
2. 73 13123 07000 
3. 71 06998 06999 

71 06997 06998 
72 13123 07000 

4. 72 05555 06000 
5. 72 05555 15321 
6. 73 13123 05555 
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Direct Divide 

Although the division subroutine is adequate, some computer installa­
tions cannot afford to relinquish the core storage required by the sub­
routine. Also, when many divisions are required, it may be desirable to 
increase the processing speed of division. The Divide feature increases 
the processing speed of division by two to four times that of the sub­
routine, and saves storage since only one instruction need be given to 
divide. The Divide feature also simplifies programming since it provides 
the programmer with four additional commands to facilitate the position­
ing of the dividend and divisor in core storage. 

The Divide feature imposes no limitations upon the size of the 
dividend, divisor, or quotient. The quotient and remainder are developed 
in the fixed product area (00080-00099). When a quotient length plus 
remainder length exceeds 20 digits, core storage positions below 00080 
(00079, 00078, etc.) must be cleared to zeros by programming· prior to 
the execution of the Divide instruction. This is similar to the multiply 
operation when a product greater than 20 digits is required. As an 
example, suppose that 30 positions are required for the quotient and 
remainder. Core positions 00070-00079 must be set to zeros by prograI!1-
ming before the Divide instruction is given. 

The four instructions provided with the Divide feature are: Load 
Dividend, Load Dividend Immediate, Divide, and Divide Immediate. 
When the timing of these instructions is discussed, the following abbrevia­
tion will be used: QT = number of digits in the quotient. 

239 
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The dividend must be placed in the fixed product area before a Divide 
command is given. The Load Dividend and Load Dividend Immediate 
instructions may be used to satisfy this requirement. 

Instruction: Load Dividend 

Operation Code: 28 

Symbolic Name: LD 

Description: 

The Load Dividend instruction automatically resets the fixed product 
area (00080-00099) to zeros. The data (the dividend) that is located 
at the Q address is transmitted serially to the core location specified by 
the P address and to successively lower core positions. The Bag in the 
high-order position of the Q field data terminates the transmission. 

The P address of the Load Dividend instruction is 00099 minus the 
number of zero positions desired to the right of the dividend. For 
example, if it were desired to add 3 places to the dividend 2634, the 
dividend would be transmitted to core location 00096. The algebraic 
sign of the dividend is automatically placed in 00099 regardless of where 
the low-order dividend digit is placed by the P address. 

Execution Time in Microseconds: 400 + 40Dq 

Example: 28 00096 00748 

09820005000111429876., 

Core location 00099 ~ 
before Load Dividend 

00000000000034782000~ 

Core location 00099 
after Load Dividend 

Execution Time: 600 microseconds 

Example: 28 00099 00909 

97000000001623000000., 

Core location 00099-.J 
before Load Dividend 

00000000000000029754., 

Core location 00099-.J 
after Load Dividend 

Execution Time: 640 microseconds 

84782 _. ----., 

Core location 00748 before 
and after Load Dividend 

029754 ----'1 
Core location 00909 before 
and after Load Dividend 
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Note: 

If a Load Dividend instruction is not used to position the dividend in 
the fixed product area, it is the programmer's responsibility to clear the 
remainder of the fixed product area to zeros. This is also applicable to 
the Load Dividend Immediate instruction. 

Instruction: Load Dividend Immediate 

Operation Code: 18 

Symbolic Name: LDM 

Description: 

The Load Dividend Immediate instruction automatically resets the 
fixed product area (00080-00099) to zeros. The data (the dividend) 
whose units position is the Ql1 digit of the instruction is transmitted 
serially to the location specified by the P address and to successively 
lower core positions. The flag in the high-order position of the dividend 
terminates the transmission of data. The P address is determined in the 
same manner as in the Load Dividend instruction. 

The algebraic sign of the dividend is automatically placed in 00099 re­
gardless of where the low-order dividend digit is placed by the P address. 

Execution Time in Microseconds: 400 + 40Dq 

Example: 18 00098 09850 

0000011112987 4621004 ~ 

Core location 00099 before J 
Load Dividend Immediate 

00000000000000098500 ----, 

Core location 00099 after---1 
Load Dividend Immediate 

Execution Time: 600 microseconds 

I nstruction: Divide 

Operation Code: 29 

Symbolic Name: D 

Description: 

The dividend whose high-order position is specified by the P address 
is divided by the field whose units position is specified by the Q ad­
dress. Division is accomplished by successive subtractions of the divi­
sor from the dividend. The P address of the Divide instruction positions 
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the divisor for the first subtraction from the high-order position(s) of 
the dividend, as in manual division. 

Each successful subtraction causes the quotient digit to be increased 
by 1. Quotient digits are developed in the units position of a special 
register. An overdraw initiates a correction (the divisor is added once) 
and the next subtraction occurs one place to the right. The first (high. 
order) quotient digit is stored at the address specified by the P address 
of the Divide instruction minus the length of the divisor. A flag is 
generated and stored with the first quotient digit. Division is terminated 
after a quotient digit is developed, by subtractions, with the units 
position of the divisor at 00099. 

The quotient and remainder replace the dividend in the product 
area. The address of the quotient is 00099 minus the length of the 
divisor. The algebraic sign of the quotient (determined by the signs 
of the dividend and divisor) is automatically placed in the low-order 
position of the quotient. The address of the remainder is 00099 and a 
flag is automatically placed in the high-order position. The remainder 
has the sign of the dividend and the same number of digits as the 
divisor. 

The High/Positive indicator is turned on or off, depending on whether 
the quotient is positive or negative. The Equal/Zero indicator is turned 
on if the quotient is zero. The quotient must be at least two digits in 
length. Improper positioning of the divisor with respect to the dividend 
can cause an overflow condition which is discussed in detail on page 245. 

Execution Time in Microseconds: 160 + 520DqQT + 740Q7' assuming an 
average value of 4.5 for each quotient digit 

Example: 

Figure All. 1 shows the manner in which the 1620 solves the problem 
4906 -+- 23 = 213 with a remainder of 7. 

Instruction: Divide Immediate 

Operation Code: 19 

Symbolic Name: DM 

Description: 

The dividend whose high-order position is specified by the P address 
is divided by the field whose units position is the Ql1 digit of the Divide 
Immediate instruction. 

Division is accomplished as described in the Divide instruction. 

Execution Time in Microseconds: 160 + 520DqQ7' + 740QT, assuming an 
average value of 4.5 for each quotient digit. 
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Instruction 

2800099 00500 

2900096 00600 

Data At 
Memory 

Addresses 

00500 00600 
4906 23 

Description 

Load Dividend 

Subtract divisor 

Overdraw 

Add divisor bock to correct overdraw. 

Store first (high-order) digit of quotient (0) 
and flag bit 

Subtract divisor one place to the right 

No overdraw 

Subtract divisor 

No overdraw 

Subtract divisor 

Overdraw 

Add divisor back to correct overdraw 

Store second digit of quotient (2) 

Subtract divisor one place to the right 

No overdraw 

Subtract divisor 

Overdraw 

Add back divisor to correct overdraw 

Store third digit of quotient (1) 

Subtract divisor one place to the right 

No overdraw 

Subtract divisor 

No overdraw 

Subtract divisor 

No overdraw 

Subtract divisor 

Overdraw 

Add bock divisor to correct overdraw 

Store fourth digit of quotient (3) 
and flag bit, if negative. Opera-
tlon stops w,th quotient (213) and 
remainder (07) in product area. 

Fig. AII.1. Example of Divide Command. 
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N M ..,. U') <l1 "- co 0-0- 0- 0- 0- 0- 0- 0-
88 0 8 0 0 0 8 0 0 0 0 00 0 0 0 '" 0 0 

0 0 0 0 4" 9 0 6 

- 2 3 

11 + 2 3 
---
0 0 4 

0 o '9; 0 4 9 0 6 

- 2 3 

-I: I: 
If - 2 3 

~ + 2 3 

0 0 3 

0 0 0*0 , " 3 0 6 

- 2 3 

~ 
007 

- 2 3 

n + 2 3 I 
0 01 7 

0 0 0 2 ;1~ 0 7 6 

- 2 3 - r-r-
0 5 3 

- 2 3 

- r-r-
0 3 0 

- 2 3 
- r-r-
0 0 7 

- 2 3 
- r-r-
9 8 4 

+ 2 3 - r-r-
0 0 7 

0 0 0 2 1 ~ -1,0 7 
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Example: 

Figure AII.2 shows the 1620 solution of the divide problem 
-212 -:- 24 = -8.83 with a remainder of 8. 

Instruction 

180009700212 

190009500024 

Description 

Data 

Reset 00080 - 00099 to zeros. Transmit On to 00097. 
On sign to 00099. 

Subtract Dv from On starting at 00095. 

Overdraw 

Correction 

Store first quotient digit (0) & flag bit 

Subtract one place to the right 

Overdraw 

Correction 

Store 2nd quotient digit (0) 

Subtract one ploee to the right 

Successful subtraction 

Seven more successful subt (7 x 24 :: 168) 

Overdraw 

Correction 

Store quotient digit (8) 

8succesdul subtractions (8 x 24 = 192) 

(Overdraw & Correction Not Shown) 

Store quotient digit (8) 

3 successful subtractions (3 x 24 = 72) 

Overdraw 

.Correction 

Store quotient digit (3) 

S~ore flag o~r high-ord~r posi,ti,on of remainder. 
Sign of quotrent over units position (00099 - Dv, 
where Dv is length of divisor). 

O ..... "'M-.:tl()-or.....OOQ. 

§§§§§§§§§§ 

0 0 0 0 0 :2 \ 2 0 6 

- 2 4 
1-1-1-

9 7 8 

+ 2 4 
f'-I-f-
0 0 2 

0 0 O;~ 0 2 \ 2 0 ii 

- 2 4 
f-f-f-
9 9 7 

+ 2 4 
f-f-f-
0 2 \ 

0 0 0 ii:~ 2 \ 2 0 6 

- 2 4 
l- I-

\ 8 8 

-\ 6 8 
l- I-
0 2 0 

- 2 4 
l- I-
9 9 6 

+ 2 4 
l- I-
0 2 0 

0 0 0 6 0*2 0 0 ii 

-\ 9 2 

0 0 8 

0 0 0 ii 0 8 ~~ 0 8 0 

- 7 2 
t-H ..... 

0 8 

2 4 
I-f-f-
9 8 4 

+ 2 4 
:'-f-

0 0 8 

0 0 0 ii 0 8 8 *0 li 

0 0 0 ii 0 8 8 j ii ii 

Fig. AII.2. Example af Divide Immediate Command. 
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INCORRECT DIVISOR POSITIONING 

The following error conditions are caused by an incorrect P address 
in the -Divide instruction: 

D 

1. Overflow. As illustrated in Figure AII.3, an incorrectly positioned 
divisor can cause more than nine successful subtractions and an in­
correct quotient. The Overflow indicator is turned on, but proc­
essing does not stop unless the Overflow switch is set to "stop." 

o- N M 

~~ "''' ",0-

I nstruct ion Description 00650 88 0-0- §§ 0- 0-gg 8 0 
00 08 

2 1 0 0 0 0 0 2 1 2 0 0 

29 00097 00650 Successful Subtraction No.1 - 2 1 
f- f- f-

1 9 1 

" " No. 2 - 2 1 
'-f- f-

1 7 0 

" " No.3 - 2 1 
f-l-I-

1 4 9 

" " No. 4 - 2 1 
f- f-I-

1 2 8 

" " No.5 - 2 1 
f-l-I-

1 0 7 

" " No.6 - 2 1 
- l-I--
0 8 6 

" " No. 7 - 2 1 
- - f-
0 6 5 

" " No.8 - 2 1 
- - I-
0 4 4 

" " No.9 - 2 1 
- - I-

/' 
0 2 3 

" " No. 10 - 2 1 
f- f- f-

0 0 0 0 0 0 0 2 0 1i 

Fig. AII.3. Incorrect Divisor Positloning. 

2. Loss of one or more dividend high-order digits. The high-order digit 
of the dividend is assumed by the 1620 to be one position to the left 
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of the high-order digit of the divisor. Figure AlIA shows how the 
high-order digits of the dividend are lost if the divisor is positioned 
too far to the right. Processing continues with no indication of an 
incorrect quotient. 

Instruction Description 00650 ~~ ~~ ~ 
29 00098 00650 Divide (Incorrect P Address) 19 2 023 0 

-1 9 

004 

-1 9 
'- ..... f.--
985 

+1 9 
f.-- ~f.--
004 
I 

2 l' 0 4 0 

" 
- 1 9 

o 2 1 

-1 9 
f.--f.--~ 
002 

-1 9 
1-1-I-
9 8 J 

... 1 9 
f.--f.--~ 
002 

2 T~ o 2 

Fig. AII.4. Incorrect Divisor Positioning. 

SUMMARY OF AUTOMATIC DIVISION RULES 

1. Load Dividend (28-LD or 18-LDM) 
(a) P address = 00099 minus the number of zeros desired to the 

right of the units position of the dividend. 
(b) Q address = units position of the dividend. 

2. Divide (29-D or 19-DM) 
(a) P address = 00100 minus the length of the quotient. The quo­

tient length must be at least two digits. 
(b) Q address = units position of the divisor. 

3. Quotient address = 00099 minus the length of the divisor. 
4. Remainder address = 00099 
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5. Sign of quotient-determined by the algebraic signs of the dividend 
and divisor. 

6. Sign ~f remainder-same as that of the dividend. 
I 

Problems 

For all Problems the following core content is assumed: 

CORE LOCATION 

(LOW-ORDER DIGIT) CONTENTS 

13124 
14000 
00900 

63780 
004 
13684221 

For each problem give the contents of the fixed product area (00080-00099) 
including flags after the Divide or Divide Immediate instruction has been 
executed. 

The core content listed above is to be assumed for every problem and the 
results of anyone problem are independent of all others. 

1. 28 00096 13124 
29 00092 14000 

2. 25 13124 13120 
28 00098 13124 
29.00094 14000 

3. 18 00098 12345 
19 00094 0000S' 

4. 15 13999 00002 
28 00095 13123 
19 00092 00032 

5. 28 00095 00900 
19 00087 00003 

6. 22 00900 13124 
28 00098 00900 
29 00091 14000 



Appendix III 

Indirect Addressing 

Indirect Addressing saves program steps and computer time by pro­
viding a direct method of address modification. Its primary use is in 
programs where multiple instructions have the same P or Q addresses 
and this address is to be modified in each of the instructions by the 
program. With the utilization of the Indirect Addressing special feature, 
it is not necessary to modify directly each instruction separately, instead 
one 5-digit address can be modified-this, in effect, serves to modify 
each of the multiple instructions. 

Normally, an instruction address (P and/or Q) is the location of 
data to be used during the execution of the instruction. This is known 
as "direct addressing," since the address refers directly to the location 
of the data. However, if an instruction address (P and/or Q) is an 
Indirect address, it does not refer directly to data. Rather it is the lo­
cation of a second address; this second address is the location of the 
data to be used by the instruction. In effect, this second address is a 
substitute for the Indirect address at instruction execution time. 

For example, suppose that in the Add instruction 21 15000 17000, the 
Q address 17000 is an Indirect address. Locations 16996-17000 contain 
the 5-digit field 18000. When the instruction is under execution the 
data at location 18000 is added to the field at 15000. If the Q address 
had been a Direct address, the data at location 17000 would have been 
added to the field at 15000. 

A flag in position P6 and/or Qn indicates that the P and/or Q ad-
248 
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dresses of an instruction are Indirect. Thus the P address of an instruc­
tion is Indirect if there is a flag in the P6 position of the instruction. 
The Q address of an instruction is Indirect if there is a flag in the Q11 
position of the instruction. Any P and/ or Q address can be Indirect if 
it is the address of an instruction, digit, field, or record. Any 1620 in­
struction can have Indirect addresses except Branch Back, Control, Halt, 
and No Operation. Table AIl!.l shows which instructions can contain 
both P and/or Q, or P only, Indirect addresses. 

Table AIII.l 

Indirect Address Operation Codes 

MNEMONIC CODE P AND/OR Q P ONLY 

Arithmetic Instructions 
Add 
Add Immediate 
Subtract 
Subtract Immediate 
Multiply 
Multiply Immediate 
Compare 
Compare Immediate 

Internal Data Transmission 
Instructions 

Transmit Digit 
Transmit Digit Immediate 
Transmit Field 
Transmit Field Immediate 
Transmit Record 

Branch Instructions 
Branch 
Branch No Flag 
Branch No Record Mark 
Branch On Digit 
Branch Indicator 
Branch No Indicator 
Branch and Transmit 
Branch and Transmit Immediate 
Branch Back 

Input-Output Instructions 
Read Numerically 
Write Numerically 
Dump Numerically 
Read Alphanumerically 
Write Alphanumerically 
Control 

A 
AM 
S 
SM 
M 
MM 
C 
CM 

TD 
TDM 
TF 
TFM 
TR 

B 
BNF 
BNR 
BD 
BI 
BNI 
BT 
BTM 
BB 

RN 
WN 
DN 
RA 
WA 
K 

21 
11 
22 
12 
23 
13 
24 
14 

25 
15 
26 
16 
31 

49 
44 
45 
43 
46 
47 
27 
17 
42 

36 
38 
35 
37 
39 
34 

x 

x 

x 

x 

x 

x 

X 

X 
X 
X 

X 

x 
x 

x 
x 

x 

X 

X 

X 
X 

X 

X 
X 
X 
X 
X 
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( continued) 

MNEMONIC CODE P AND/OR Q P ONLY 

Miscellaneous I nstrtlctions 
~~ X SF 32 
Clear Flag X CF 33 
Halt 
No Operation 

Additional Instructions 
Move Flag 
Transmit Numeric Strip 
Transmit Numeric Fill 
Load Dividend 
Load Dividend Immediate 
Divide 
Divide Immediate 

H 
NOP 

MF 
TNS 
TNF 
LD 
LDM 
D 
DM 

48 
41 

71 X 
72 X 
73 X 
28 X 
18 X 
29 X 
19 X 

If the P address of an immediate instruction is Indirect, the Q data can­
not be more than 6 digits in length because the Hag in the units position 
of the P operand would also serve to define the high order digit in the im­
mediate field. 

The data field specified by the Indirect address is always interpreted 
as being 5 digits in length regardless of the presence or absence of Hags 
within the field. Thus, no high-order Hag is necessary to define the 
high-order position of the field at the Indirect address. Should the field 
specified by the Indirect address contain a Hag in its units position, it 
also is treated as an Indirect address. This chaining effect continues 
until a Hag is not present in the units position of the field specified by 
an Indirect address; this field is then treated as a Direct address. 

An instruction with the P and/or Q addresses Indirect is in no way 
altered in core storage as the result of Indirect addressing. Only internal 
registers are changed. 

Execution Time: Each address that is interpreted as an Indirect address 
requires four additional memory cycles. An instruction with one Indirect 
address requires an additional 80 microseconds processing time. An 
instruction with two Indirect addresses requires an additional 160 micro­
seconds and so forth. 
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Example: 21 15000 16091 

10032-· ----'1 
Core location 15000 before 
and after Add 

00213 _. ----'1 
Core location 10032 
before Add 

Execution Time: 640 microseconds 

Example: 11 00900 31416 

13168 _. -----.1 
Core location 00900 before 
and after Add Immediate 

Execution Time: 880 microseconds 

Example: 

009lO • I 
Core location 
13500 

16225 • I 
Core location 
17005 

INSTRUCTIONS IN CORE STORAGE 

21 15000 17005 
21 15000 17005 
21 15000 17005 
21 15000 17005 
21 09225 15000 

Example: 49 13000 00000 

04686 

Core location 13000 before 
and after Branch 

251 

1247 _. -------., 

Core location 16091 before 
and after Add 

01460 _. ----,1 
Core location 10032 
after Add 

00198421-· ---'1 
Core location 13168 before 
Add Immediate 

00229837----, 
1 

Core location 13168 after 
Add Immediate 

13500 --:J 
Core location 
09225 

18005· I 
Core location 
15000 

EFFECTIVE INSTRUCTIONS 

21 15000 17005 
21 15000 16225 
21 18005 17005 

21 18005 16225 
21 00910 18005 

The program will branch to 04686 for the next instruction. 

Example: 

A program to list all core storage locations which contain a record mark 
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refers to each location in the Branch No Record Mark instruction and 
also in the Write Numerically instruction when the addresses are typed. 
Both need to be modified. Following are two programs to do this-one 
utilizing Indirect addressing and the other without Indirect Addressing. 

WITHOUT INDIRECT ADDRESSING WITH INDIRECT ADDRESSING 

00600 16 00623 00000 00600 16 00690 00000 
00612 45 00660 00000 00612 45 00648 00690 
00624 26 00702 00623 00624 34 00000 00102 
00636 34 00000 00102 00636 38 00686 00100 
00648 38 00698 00100 00648 11 00690 00001 
00660 11 00623 00001 00660 14 00690 20000 
00672 14 00623 20000' 00672 47 00612 01200 
00684 47 00612 01200 00684 48 00000 t 
00696 48 00000 t 

Example: 

Each element A, in a table of 8-digit numbers with addresses from 13016 
to 1S808 (units positions) is to be replaced by At/5 if the element ex­
ceeds 5,000,000. 

Solution: 

01600 16 01623 IS016 Initialize 
01612 24 01726 lS016 Compare field to 5,000,000 
01624 46 01672 01300 Branch if 5,000,000::::A1 

01636 28 00099 01623 Position dividend XXXXXXXX 
01648 19 00092 00005 Divide 
01660. 26 01623 00097 Move quotient XXXXXXXX 
01672 11 01623 00008 Change address 
01684 14 01623 13816 Test if done 
01696 47 01612 01200 Branch if not done 
01708 48 00000 00000 Terminate program 
01720 5000000 
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Floating Point Hardware 

It is possible to obtain a special device that performs floating point 
calculations.! The advantage of this feature is that, like the division hard­
ware, the core storage required for macro-generated subroutines may be 
used by the main program. In addition, the linkage instructions are 
eliminated and, in their place, a single machine language instruction is 
employed. Lastly, the hardware commands are substantially faster. 

The arithmetic that one enjoys through the use of the floating point 
hardware is, for all practical purposes, completely variable in mantissa 
size. The actual maximum limit to the length of the mantissa is 99 digits. 
The characteristic (synonymously termed exponent) is only and always 
2 digits, with or without sign and/or field-terminating flag. The mini­
mum mantissa length is 2 digits. 

The length of the floating point number is generally specified by the 
mantissa length. Thus the maximum floating point number is said to 
be 99 digits instead of 10l. 

One restriction is imposed upon floating point hardware arithmetic: 
arithmetic is permissible only on floating point numbers of equal mantissa 
lengths. This restriction is easily complied with since the hardware 
contains mantissa shortening and lengthening commands as part of its 
standard instruction repertoire. It is permissible to perform a series of 
calculations on floating point numbers with identical mantissa lengths, 
alter the mantissa lengths, perform subsequent calculations, alter the 
mantissa lengths, and so forth. Thus, the restriction as stated above is 
imposed only on any single calculation. 

! This chapter presupposes a knowledge of the material contained in Chapter 12. 
253 
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With the exception of two commands, all floating point hardware in­
structions address the units characteristic position of the specified float­
ing point numbers. These will be referred to as A and B for the P and 
Q operands respectively. There are eight commands in the floating point 
hardware repertoire: 

Floating Add 
Floating Subtract 
Floating Multiply 
Floating Divide 
Floating Transmit Field 
Floating Branch and Transmit 
Floating Shift Right 
Floating Shift Left 

Instruction: Floating Add 
Operation Code: 01 
Symbolic Name: FADD 
Description: 

The floating point number specified by B is added to the floating point 
number specified by A. The floating point sum replaces A. The floating 
point number specified by B remains unchanged. 

Execution Time in Microseconds: 400 + 100L (average) 
Recomplementation Time in Microseconds: 80L 

where L is the mantissa length. See Chapter 5 for a discussion of re­
complementation. 

Example: 01 10000 15000 

100002----,1 

Core location 10000 before 
Floating Add 

130002 -----'1 
Core location 10000 after 
Floating Add 

Example: 01 17000 19000 

500000010 _. --'1 
Core location 17000 before 
Floating Add 

3000000I1 ----'I 
Core location 17000 after 
Floating Add 

300001 -----'1 
Core location 15000 before 
and after Floating Add 

250000011-------., 

Core location 19000 before 
and after Floating Add 
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Example: 01 02000 03000 

1101 _. -----.' 
Core location 02000 before 
Floating Add 

I102-.----~, 

Core location 02000 after 
Floating Add 

Instruction: Floating Subtract 

Operation Code: 02 

Symbolic Name: FSUB 

Description: 

255 

9901-' -------.\ 
Core location 03000 before 
and after Floating Add 

The floating point number specified by B is subtracted from the floating 
point number specified by A. The floating point difference replaces A. 
The floating point number specified by B remains unchanged. The execu­
tion time is identical with that of F ADD. 

Example: 02 10000 15000 

1200 _. -----'1 
Core location 10000 before 
Floating Subtract 

1000 _. -----., 
Core location 10000 after 
Floating Subtract 

Instruction: Floating Multiply 

Operation Code: 03 

Symbolic Name: FMUL 

Description: 

2001 _4 -------., 

Core location 15000 before 
and after Floating Subtract 

The floating point number specified by A is multiplied by the floating 
point number specified by B. The resultant floating point product, with 
length identical to that of A and B, appears at A and not at 00099. 

The fixed product area is employed to generate a product whose length 
is 2L, and the L most significant digits are chosen by the hardware as the 
mantissa of the floating point product. Thus, should the mantissas of the 
multiplier and multiplicand be greater than 10 digits, it is the pro­
grammer's responsibility to clear a sufficient area below core location 
00080. 
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As an example, the multiplication of two 14-digit floating point numbers 
would require core locations 00072-00079 to be cleared to zeros before 
the FMUL command. 

Execution Time in Microseconds: 1120 + 80L + 168U (average) 

Example: 03 10000 15000 

12303 -, -----'1 
Core location 10000 before 
Floating Multiply 

14104 _. ------,1 
Core location 10000 after 
Floating Multiply 

Example: 03 17000 19000 

999991:5 -, ------, 

Core location 17000 before 
Floating Multiply 

8888703 _. -----,1 
Core location 17000 after 
Floating Multiply 

Instruction: Floating Divide 

Operation Code: 09 

Symbolic Name: FDIV 

Description: 

11502 .. , -----.1 
Core location 15000 before 
and after Floating Multiply 

8888812 -, -----., 

Core location 19000 before 
and after Floating Multiply 

The floating point number specified by A is divided by the floating 
point number specified by B. The resultant floating point quotient, with 
length identical to that of A and B appears at A and not at 00099. The 
fixed product area is employed to generate a quotient and remainder, 
each of length L. Thus, should the mantissas of the divisor and dividend 
be greater than 10 digits, it is the programmer's responsibility to clear 
a sufficient area below core location 00080. 

Attempt at division by zero causes the overflow check indicator (14) 
to be turned on. The mantissa of A is not altered but the characteristic 
of A( CA) is changed to CA - CB • 

Execution Time in Microseconds: 880 + 940L + 520U (average) 
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Example: 09 10000 15000 

45002 -, ---""1 25003 _. ----., 

Core location 10000 before 
Floating Divide 

Core location 15000 before 
and after Floating Divide 

18006 -'---..... 1 
Core location 10000 after 
Floating Divide 

Instruction: Floating Transmit Field (Transmit Floating Field) 

Operation Code: 06 

Symbolic Name: TFL 

Description: 

The characteristic and mantissa of the floating point number specified 
by B are transmitted so that the units characteristic position occupies the 
core location specified by A and the units mantissa position occupies 
the core location specified by A-2. 

Execution Time in Microseconds: 240 + 40L 

Example: ·06 10000 15000 

12345678901 • I 
Core location 10000 before 
Transmit Floating 

12345613412-. -_I 
Core location 10000 after 
Transmit Floating 

13412 • I 
Core location 15000 before 
and after Floating Transmit 

Instruction: Floating Branch and Transmit (Branch and Transmit 
Floating) 

Operation Code: 07 

Symbolic Name: BTFL 

Description: 

The description of this operation is identical with that of Branch and 
Transmit with the exception that the argument, specified by the B 
address, is assumed to be in floating point form. This argument is trans­
mitted to the location specified by Pless 1. The mantissa of the argu­
ment therefore appears at location P-3. Exit from a subroutine entered 
through the use of BTFL is, of course, by a Branch Back (BB) command. 

Execution Time in Microseconds: 280 + 40L 



258 

Instruction: Floating Shift Right 

Operation Code: 08 

Symbolic Name: FSR 

Description: 

Floating Point Hardware 

The field whose units position is specified by the Q address is shifted 
right so that this units position occupies the location specified by the 
P address. Thus, the effect of this instruction is to shrink the mantissa 
of a floating point number. Vacated high-order positions are set to zeros. 
An existing flag bit at the units position of the original mantissa is re­
tained for algebraic sign. The high-order mantissa flag is transmitted 
with the mantissa field. 

Execution Time in Microseconds: 200 + 40L 

Example: 08 10000 09995 

12345678907-' -""1 
Core location 10002 before 
Floating Shift Right 

00000123407 _. ---'1 
Core location 10002 after 
Floating Shift Right 

Example: 08 00521 00520 

12301-· ---""1 
Core location 00523 before 
Floating Shift Right 

01201-· ------.1 
Core location 00523 after 
Floating Shift Right 

Example: FSR P-2, P-4 

9876543 _. -----, 

Symbolic core location P 
before Floating Shift Right 

0098743 _. ~-----'I 

Symbolic core location P 
after Floating Shift Right 
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Instruction: Floating Shift Left 

Operation Code: 05 

Symbolic Name: FSL 

Description: 

259 

The field whose units position is specified by the Q address is shifted 
left. This shift is terminated when the high-order digit of the field in 
question is at the core location specified by P. Thus, the effect of this 
instruction is to expand the mantissa of a floating point number. 

At the conclusion of the shift, the old field-defining high-order flag bit is 
removed and a zero fill operation begins at the new mantissa units posi­
tion plus 1. This zero fill operation is terminated by a flagged digit. 

Thus, if the mantissa is expanded to a length greater than 2L, any 
extraneous flags in core between the old high-order mantissa position and 
the new low-order mantissa position must be removed. An existing flag 
bit at the Q address is retained for algebraic sign. 

Execution Time in Microseconds: 200 + 40L + 40L' 
where L' is the amount of increase in the field size introduced by the shift. 

Example: 05 09998 10000 

... 7805 _. ----.1 
Core location 10002 before 
Floating Shift Left 

· .78005 _. --'I 
Core location 10002 after 
Floating Shift Left 

Example: FSL P-5, P-2 

· .1264515 _. ------" 

Symbolic core location P 
before Floating Shift Left 

· .1450015 _. ----.,1 
Symbolic core location P 
after Floating Shift Left 
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Example: FSL P-I0, P-2 

· .23456712301-----'1 
Symbolic core location P 
before Floating Shift Left 

· . I2300712301-' --.." 

Symbolic core location P 
after Floating Shift Left 

Floating Point Hardware 

Comment: Failure to. clear the flag at location P-5 caused the zero fill 
operation to terminate when the flagged 7 was encountered. This is 
therefore an incorrect mantissa 'expansion. 

Example: CF P-5 
FSL P-I0, P-2 

· .23456712301-----., 

Symbolic core location P 
before Clear Flag 

· .12300000001-. ---., 

Symbolic core location P 
after Floating Shift Left 

GENERAL INFORMATION ON FLOATING POINT HARDWARE 

When a floating point computation results in a zero mantissa, a special 
floating point zero is created of the form 00 ... 0099. Zeros entered as 
floating point data should be in the special floating point zero form. 

The HIP, E/Z, and H/P-E/Z indicators reflect the status of arithmetic 
operations performed by floating point hardware. Thus, a floating point 
computation which produces a positive mantissa will cause the HIP 
indicator to be turned on and the E/Z indicator to be turned off. The 
E/Z indicator is turned on and the HIP off if a floating point computa­
tion produces a zero mantissa. 

The exponent check indicator (15) is turned on by exponent overflow 
or underflow. This condition arises when an exponent greater than 99 
or less than -99 is generated. When the former condition occurs, the 
mantissa is set to all 9's. The sign is determined by the algebra of the 
operation. The HIP indicator will be set accordingly. 

Should the latter condition occur, the mantissa is set to plus zero. The 
E/Z indicator is also turned on. In case of exponent overflow, the 
exponent is automatically set to 99. In case of exponent underflow, the 
exponent is automatically set to -99. 

An exponent underflow is not indicated if a zero mantissa is developed 



Floating Point Hardware 261 

through a normal fashion (addition of two numbers that have the same 
absolute value but unlike signs; multiplication of a number by zero, 
and so forth). 

Program operation, in the event of an exponent overflow or underflow 
is determined by the console overflow check switch. The symbolic com­
mands for testing the exponent overflow indicator are 

1. BXV (Branch on Exponent Overflow) 
2. BNXV (Branch No Exponent Overflow) 

All floating point hardware commands may be indirectly addressed at 
P and/or Q. 
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Input-Output Devices 

The 1620 Data Processing System can process either punched cards 
or paper tape or both. The 1622 Card Read-Punch is the input-output 
device for punched card processing, whereas the 1621 Paper Tape 
Reader and the 1624 Paper Tape Punch are the input-output devices for 
paper tape processing. The console typewriter is also an input-output 
device allowing for typewritten output documents and the manual entry 
of information into the system. 

This chapter will discuss the functions of the keys, lights, and switches 
necessary for the manual and automatic control of each input-output 
device. 

1621 PAPER TAPE READER 
The Paper Tape Reader reads an 8-channel paper tape at the rate 

of 150 characters per second. A photoelectronic device senses the 
characters; they are then automatically converted to the 6-bit numeric 
code and placed in the core storage positions specified by the Read 
instruction. 

If a parity error is detected in the input area, or if an invalid character 
is detected on the input tape, the Read Check indicator light on the 
console of the 1620 is turned on. Reading of tape continues until an 
E/L character is sensed. If the I/O Check switch on the console is set 
to the "Stop" position, the computer then stops. If the switch is set to 
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the "Program" position, processing continues. Sensing of the El L char­
acter from the paper tape causes a record mark to be placed in storage 
as the right-most character of the input record. 

The front panel of the Paper Tape Reader (Fig. A V.I) consists of the 
following components: 

Fig . AV.1. Tape Reader. 

1. The Read Head. The paper tape must be properly positioned over 
the read head in order to be sensed by the photoelectronic reader. 

2. Photoelectronic Reader. This device senses the characters in the 
paper tape. 

S. Tape Guides. Two tape guides help position the paper tape over 
the read head. 

4. Tape Rollers. Two rollers guide the tape as it is being read. 
5. Stationary Buffer Rollers and Buffer Arm Rollers . One stationary 

buffer roller and one buffer arm are located on each side of the read 
head to apply a steady tension to the tape. 

6. Take-up Reel. This reel takes up the paper tape after it has been 
read. 
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7. Supply Reel. This reel guides the paper tape as it approaches the 
read head. 

8. Idler Roller. The roller positions the tape on the supply reel. 
9. Tape Guide Stand. This stand guides the tape from the center roll 

feed. 

OPERATING KEYS, SWITCHES, AND LIGHTS 

10. Reel Power Key. Depression of this key operates the supply and 
take-up reels to position the paper tape for reading. The buffer 
arms are lowered to apply tension. 

11. Power Switch. This switch when turned to the "On" position 
supplies all necessary power to the tape reader. 

12. Reel-Strip Switch. This switch controls the manner in which tape 
is read. When short strips of tape are to be read, they may be 
loaded directly over the read head. The switch should then be set 
to the "Strip" position. The "Reel" position is used when the paper 
tape is loaded in the conventional manner, as will be discussed. 

13. Non-Process Run-Out Key. Depression of this key causes paper tape 
to feed. No information is transferred into storage. The tape 
continues feeding until the end of the tape is sensed by the read head. 

14. Power-On Light. This light is turned on when the Power switch 
is on. 

LOADING THE PAPER TAPE READER 

Paper tape can be loaded in three different forms: center roll feed, 
strip feed, and reel feed. 

CENTER ROLL FEED 

Paper tape is wound inside out making the starting end of the paper 
tape roll the inner end. The center roll feed device is attached to the 
front of the Paper Tape Reader and eliminates the necessity for rewind­
ing the paper tape rolls. 

The roll of tape is placed surrounding the circular guide in the middle 
of the center roll feed with the inside end going in a counterclockwise 
direction. The inner edge of the paper tape is passed into the center 
guide and. partially around the center spindle exiting from the space 
on the right of the center guide. The tape then goes over the supply reel, 
around the read head, and onto the take-up reel. The exact procedure 
for loadin~ tape is ~s follows: 

1. Position the Reel-Strip switch to "Reel." 
2. Position the tape roll on the center roll feed device as described 

above and unwind approximately 5 feet of tape to work with. 
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3. Raise the reel buffer arms until they latch. 
4. Open the tape guides and form an inverted U (11) with the center 

section of the first 5 feet of tape. Wrap the paper tape around the 
read head meshing the tape feed holes with the pins on both sides 
of the read head. The tape should be mounted so that there is a 
minimum of free play. 

5. Close the tape guides. 
6. Pass the leading section of the tape under the guide roller and be­

tween the stationary buffer rollers and the latched buffer arm rollers. 
Then fix the front end of the tape on the take-up reel. 

7. Thread the paper tape from the right side of the read head, under 
the guide roller, between the stationary buffer rollers and the latched 
buffer arm rollers, over the supply reel, and through the tape guide 
stand. Figure AV.2 shows the positioning of the tape at this point. 

Fig. AV.2. Threading Tape from Center Roll Feed . 

8. Lower the idler roller onto the supply reel. 
9. Gently lower the buffer arms. 

10. Depress the Reel Power key. The buffer arms should swing down-



266 Input Output Devices 

ward to a neutral position applying tension to the paper tape. Figure 
AV.3 shows a tape fully loaded . 

Fig . AV.3 . Center Roll Feed-Loaded. 

STRIP FEED 

Small strips of paper tape may be loaded directly onto the read head. 
The procedure is as follows: 

1. Position the Reel-Strip switch to "Strip." 
2. Position the paper tape over the read head as described in step 4 

of the center roll feed procedure. 
3. Close the tape guides. 

REEL FEED 

A reel of paper tape may be mounted by removing the rubber drive hub 
from the supply reel and mounting the reel of tape in its place. Figure 
AVA shows a loaded paper tape reel. 
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Fig. AVA. Reel Feed . 

TAPE HANDLING TIPS 

1. To avoid mounting a tape backwards on the paper tape reader, check 
to see that an El L character is not the first character on the tape. 
If the first character is an El L character, the tape is backwards. 

2. Check the tape on the read head to make sure that the tape is 
mounted correctly. Loosely positioned tape will cause a Reader No 
F eed condition. 

3. Lower the buffer arm rollers gently; do not let them snap down. 
4. A dirty read head may cause a read check. Wipe it off with a clean 

handkerchief. 
5. Be sure that there is sufficient tape on the tape punch to punch all 

results . 
6. Have approximately 5 feet of leader on tape being punched. 
7. The feed holes are closer to the bottom of the tape than to the top. 

In this way it is possible to tell if the tape is upside down. 
8. Label all tapes. 
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1624 PAPER TAPE PUNCH 
The Paper Tape Punch punches data received from core storage at 

the rate of 15 characters per second. Each character is automatically 
translated from the 6-bit numeric code to the coding used on paper tape. 
When a Write Numerically or a Write Alphamerically command on the 
paper tape punch is given, the record mark in core storage which stops 
data transmission is punched as an ElL character in the paper tape. 
If an invalid character is transmitted from core storage, it is punched 
but the tape feed does not advance. The computer stops in the automatic 
mode and the Punch No Feed and Write Check lights on the console 
are turned on. 

Incorrect punching of a valid character causes the computer to stop in 
the automatic mode. The tape feed does not advance and the Punch No 
Feed light on the console is turned on. Program processing can continue 
if the following procedure is employed: 

1. Position the 1624 Tape Feed switch on. This is a two-position switch. 
When turned to the "On" position, it causes the tape to feed and the 
tape feed code (a punch in channels 1-7) is punched. The tape 
reader passes tape punched with the tape feed code but no char­
acters are transmitted into storage. \Vhen the switch is turned on, 
the feed code (all punches) is punched over the incorrectly punched 
character and the Punch No Feed light on the console is turned off. 
The computer is returned to manual mode. 

2. Depress the Start key. The correct character is punched and the 
computer continues processing. 

If the 1624 runs out of paper tape, the computer stops in the automatic 
mode and the Punch No Feed light on the console turns on. The above 
procedure is used to resume operation after a new roll of tape is loaded. 

LOADING THE PAPER TAPE PUNCH 

Place the roll of unpunched tape on the turntable and thread as shown 
in Figure A V.5. The tape retainer (F) must be rotated to the left by 
pushing back on its extended left edge. This also moves the tape lever 
( D) forward. The tape is then threaded as follows: 

1. Through tape guide (A). 
2. Inside tape guide (B). 
3. In front of tape tension guide (C). 
4. In back of tape lever (D). 
5. Between the punching mechanism and the punch guide block (E) 

which can be seen in front of the tape. 
6. Between the guides on the tape retainer (F). 

With the end of the tape held to the left, the tape retainer (F) is re­
turned to normal position, which causes the pins on the feed roll to punch 
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Fig. AV.S. Paper Tape Punch. 

through the blank tape. The tape lever simultaneously returns to its 
normal position with the top guide above the tape. 

The Tape Feed switch (G) is used to repetitively punch the tape feed 
code to provide a lead section of paper tape. Approximately 60 inches 
of lead are needed for threading paper tape on the Paper Tape Reader. 
The lead section is threaded into the take-up reel so that the top edge 
of the tape is at the outside of the reel. 

1622 CARD READ-PUNCH 
The 1622 Card Read-Punch (Fig. A V.6 ) provides punched card input 

and output for the 1620 Data Processing System. The reader and punch 
units are both housed in the 1622, but they function independently and 
are entirely separate units. Each unit has its own card feecl, control 
switches and lights, checking circuits, stackers, and buffer. The reader 
can read cards at the rate of 250 per minute; the card punch can punch 
cards at the rate of 125 per minute. 
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Fig . AV.6. 1622 Card Read -Punch . 

Each unit has its own buffer storage so that reading, punching, and 
processing can occur simultaneously. When a card is read, the informa­
tion is transmitted to the buffer and then into core storage. Thus, informa­
tion from a card is read into the buffer before it is called for by the 
stored program. When a read command is given, the information from 
the buffer is transmitted into core storage and the next card is read into 
the buffer. Data is transmitted from buffer to core storage in 3.4 milli­
seconds. A read cycle takes 240 milliseconds (250 cards a minute). 
Since only 3.4 milliseconds are required to transmit information from 
buffer to core storage, the remaining 236.6 milliseconds are available for 
processing. 

After cards are read or punched, they fall into radial stackers located on 
the front of the unit. Properly read cards are stacked in the right-most 
stacker. If a read error is detected, the card causing the error is selected 
into the second stacker from the right. The same principle applies to the 
punch side. Properly punched cards fall into the left-most stacker and 
improperly punched cards are selected into the second stacker from the 
left . The middle stacker is not used. 

Figure AV.7 is a schematic diagram of the keys, lights, and card feeds 
on the 1622 Card Read-Punch unit. 
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CARD READER 

The Card Reader is the unit on the right side of the 1622. Cards to be 
read are placed in the read hopper 9-edge first, face down. Depression 
of the reader Start key or Load key causes the first card to be read and 
checked, and the information to be transferred to the buffer. There­
after, all card feeding is under stored program control. 

Each card is read at two different stations; a check station and a read 
station. The card is first read at the check station and the information 
is stored. When this card is read at the read station, the information is 
compared with the information stored at the check station. If an unequal 
comparison or a parity error is detected, the reader stops, the Reader 
Check light is turned on, and the Ready status of the card reader is 
terminated. 

A read command transfers data from the input buffer to core storage. 
The transferred data is parity checked. If a parity error is detected 
in core storage the Read Check light on the console is turned on. The 
Read Check indicator (06) is also turned on. If the I/O check switch 
on the console is set to the "Stop" position, processing terminates. If the 
switch is set to the "Program" position, processing continues. 

After data has been correctly transferred to core storage, a card feed 
cycle follows immediately to reload the input buffer with the information 
previously read and checked at the read station. At the same time new 
data is read at the read station, and the following card data is read at the 
check station and stored for comparison on the next card feed cycle 
when it will be read at the read station. Figure A V. 8 illustrates the 
data flow in a read operation. 

OPERATING KEYS, SWITCHES, AND LIGHTS 

1. Power Switch (Reader Off-Reader On Switch). This switch is used 
to supply power to the reader. The 1620 Power switch must be on 
to make the 1622 Power switch active. 

2. Load Key. This key causes data from the first card to be checked, 
read into buffer storage, and automatically transferred in numerical 
mode to core storage positions 00000-00079. Upon completion of 
this data transfer, another card feed cycle occurs which loads buffer 
storage with data from the second card. The 1620 then executes the 
instruction at core position 00000. Thus the instructions from the 
first card, now in core storage 00000-00079, can be used to continue 
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06 READ 
CHECK INDICATOR 

loading the program or begin processing. The 1620 must be reset 
and in manual mode ora 48(H) must appear in the OP register to 
make the Load key active. 

3. Reader Start Key. Depression of this key causes one card to be read 
and the information checked and read into buffer storage. The in­
formation in the buffer is transmitted to core storage only when a 
Read Numerically or Read Alphamerically instruction is executed. 
When the feed hopper runs out of cards, a Reader No Feed condition 
initiates. To:read in and process the cards remaining in the feed, the 
Reader Start key is depressed. The Reader Start key is also used to 
restore a Ready status after the reader has been stopped with the 
;Reader Stop key, an empty hopper, a full stacker, or an error condition. 

4. Reader Stop Key. This key is used to stop the read feed at the end 
of the card cycle in progress and/or to remove the reader from a 
Ready status. The computer continues processing; the next read card 
command cau~es a Reader No Feed stop. 
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5. Non-Process Run-Out Key. This key is used to run cards out of the 
read feed after a Reader Check error, or after the Stop key has been 
used to stop the reader. The cards are run-out into the read error 
select stacker without a buffer storage to core storage transfer. The 
Reader Check light and check circuits are turned off. Cards must be 
removed from the hopper to make the Non-Process Run-Out key 
active. 

6. Power Ready Light. This light is turned on to indicate that power 
has been supplied to the reader by setting the Power switch to the 
"Reader On" position. 

7. Reader Ready Light. This light is turned on to indicate that the 
first card has been loaded into buffer storage with the Reader Start 
key or Load key, without a reader check error. It remains on until 
one of the following conditions occur: depression of the Stop key, 
an empty hopper, a full stacker, a reader check error, a transport 
jam, or a misfeed. 

8. Reader Check Light. This light is turned on by an unequal com­
parison between the read and check stations or by incorrect parity 
detected in buffer storage. The reader is stopped, Ready status is 
terminated, and the buffer storage data just read cannot be transferred 
to core storage on the next Read command. 

CARD PUNCH 

The Card Punch is the unit on the left side of the 1622. Cards are 
placed in the punch hopper 12-edge first, face down. A write command 
causes data to be transferred from core storage to output buffer storage. 

The data is parity checked in the 1620 core storage. If a parity error 
is detected, the Write Check light on the console and the Write Check 
indicator (07) are turned on. If the I/O Check switch on the console 
is set to "Stop," processing terminates before the data is punched. If it is 
set to the "Program" position, processing continues. 

If no parity error is detected, the data is stored for comparison, its 
parity is checked and the data punched into the card. If a 1622 
parity error is detected, the data is punched and, if the Select Stop 
switch is set to "Stop," the punch stops, Ready status is terminated and 
the Punch Check light is turned on. The error card is selected into the 
error select stacker. When the Select Stop switch is set to the "N-Stop" 
position, processing continues, the punch remains in a Ready status, and 
the error card is selected into the error select stacker. If no parity error 
is detected the card that was punched is read at a check station and 
compared with the data stored. An unequal comparison has the same 
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effect as a 1622 parity error. An equal comparison causes processing 
to continue. Figure AV.9 illustrates the data How in a punch operation. 

PUNCH PUNCH 
STATION 

L_H_o_pp_ER--=:::::t---- ~ ----- SELECT 
STATION 

STORE 

NON­
SELECT 

STACKER 

ERROR 
SELECT 

STACKER 

~ '--'E""Q"'UA""L~ _________ -0- READY 

/1' 

, 1 / PUNCH +-__ --;~11622 PAR1TY~E~RR~O~R ----!.-X "" 
. CHECK . SELECC -/'-/.I .::- ~HECK 

STOP 
SWlTCH 

I STOP PUNCH I 

::~~ --~----t----:P:R~R:O~--------~~ .:: 
~ .. CHECK V CHECK 

/1' 

Fig. AV.9. Data Flow in a Punch Operation. 

OPERATING KEYS, SWITCHES, AND LIGHTS 

07 WRITE 
CHECK INDICATOR 

1. Power Switch (Punch off-Punch on Switch). This switch is used to 
supply power to the punch. The 1620 Power switch must be on to 
make the 1622 Power switch active. 

2. Punch Start Key. This key is used to feed cards to the punch station 
initially or after an error and non-process run-out condition, and to 
re-establish the Ready status after a Punch Stop key depression, an 
empty hopper, a full stacker, a transport jam, or a misfeed. 

3. Punch Stop Key. This key is used to stop the punch feed at the end 
of the card cycle in progress and/or to remove the punch from a 
Ready status. 

4. Check Reset Key. This key is used to reset error circuits and turn 
off the Punch Check light. A Punch Start key or Non-Process Run-
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Out key depression follows, as described in the "Error Restart Proce­
dures" section. 

5. Select Stop-Select N-Stop Switch. This switch is used to control the 
punch Ready status when error cards are sel~cted into the punch 
error select stacker. With the switch set to "Stop," the punch feed 
stops with the error card in the select stacker. With the switch set 
to "N-Stop," the error cards are selected into the punch error select 
stacker and processing continues. 

6. Non-Process Run-Out Key. This key is used to run cards out of the 
punch feed after a punch check error or after the Stop key has been 
used to stop the punch. The cards are run out into the left-most 
stacker. This key must be used to run out and check the last punched 
card of a job. Cards must be removed from the punch hopper to make 
the Non-Process Run-Out key operative. If a punch error has oc­
curred the Check Reset key must be depressed before the Non­
Process Run-Out key is operative. 

7. Power Ready Light. This light is turned on to indicate that power 
has been supplied to the punch by setting the Power switch to the 
"Punch On" position. 

8. Punch Ready Light. This light is used to indicate that the 1622 is 
waiting for and will respond to a write command from the 1620. 
The ready light is turned off by a Stop key depression, an empty 
hopper, a full stacker, a punch check error, a transport jam, or a 
misfeed. 

9. Punch Check Light. This light is turned on when an unequal com­
parison occurs between the data punched and the data read (one 
card feed cycle later at the punch check station), or when a 1622 
parity error is detected. 

OPERATOR LIGHTS COMMON TO BOTH READ AND PUNCH UNITS 

1. Chip Light. This light turns on when the chip box is full. 

2. Stacker Light. This light is turned on when any stacker is full. Both 
feeds are stopped and removed from the Ready status. When the 
full stacker is either entirely or partially emptied, operation auto­
matically resumes. 

3. Transport Light. The Transport light is turned on when a card in 
either the read or punch feed does not feed properly. When this 
occurs, both feeds are stopped and removed from a Ready status. 
Both Start keys must be depressed to resume operation after the 
condition is corrected. 

4. Fuse Light. This light turns on to indicate a blown fuse. 

5. Thermal Light. This light is turned on if the internal temperature 
of the 1622 becomes excessive. After several minutes delay, the 1620 
console Reset key may be depressed to turn off the Thermal light. 
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If depression of the Reset key turns off the Thermal light, the 1620 
Power switch must be turned off and then on again. Operation may 
be resumed after the Power Ready light is turned on. 

ERROR RESTART PROCEDURES-CARD INPUT AND OUTPUT 

READER CHECK ERROR 

Cause: An unequal comparison between the data at the read and check 
stations of the Card Reader or an input buffer storage parity error. The 
reader stops with the error card in the select stacker (last card). The 
data from the error card has not been transferred to core storage. 

Indicators: 1622 Reader Check light on; 1622 Ready Light off. 
Restart Procedure: 

1. Remove the remaining cards from the read hopper. 
2. Depress the Non-Process Run-Out key. 
3. There will be three cards in the select stacker: the error card and 

the following two cards which were at the check and read stations 
respectively. Remove these three cards from the stacker. 

4. Place these three cards in front of the cards removed from the read 
hopper and replace the deck in the hopper. 

5. Depress the Start key. The card that caused the error is read into 
the buffer storage again and if an equal comparison is obtained, the 
interlocked read instruction is executed and processing continues.1 

1620 READ CHECK ERROR 

Cause: A parity error detected on information just transmitted into 
core storage from the input buffer. The reader stops with the error card 
in the nonselect stacker (the last card). 

Indicators: 1620 Read Check light on. 1622 Reader Ready light on. 
Read Check indicator (06) on. 

Restart Procedure: 

1. Remove the cards from the read hopper. 
2. Depress the Non-Process Run-Out key. The two cards in the read 

feed at the time of the error will be run out into the select stacker. 
3. Remove the last card from the nons elect stacker and the two cards 

from the select stacker. 
4. Place these three cards in front of the cards removed from the read 

hopper. The error card from the nonselect stacker is to be read 
in first. 

1 However, if a card is punched with an invalid code, it will never be correctly read. 
The card must be corrected. 
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5. Use manual restart procedures to return the stored program to the 
instruction that transfers the error card data from the input buffer 
storage to core storage. 

PUNCH CHECK ERROR 

Cause: An unequal comparison between the data punched and the 
data read (one card feed cycle later, at the punch check station), or a 
1622 parity error while punching data from the output buffer storage. If 
the Select Stop N -Stop switch is set to "Stop," the punch stops with the 
error card in the select stacker. Another card has been punched. 

Indicators: 1622 Punch Check light on. 1622 Punch Ready light off. 

RESTART PROCEDURE 

1. Depress the Check Reset key. 
2. For manual correction of error card. 

(a) Remove the remaining cards from the punch hopper. 
(b) Depress the punch Non-Process Run-Out key. Three cards will 

be run out into the nonselect stacker. The first card out will be 
the first card punched after the error card was punched. The 
last two cards are blank cards. 

(c) Remove the error card from the punch error select stacker. 
Correct the error card (if possible) and place it in front of the 
last three cards in the nonselect stacker. Remove the last two 
cards from the nonselect stacker. These will be blank cards 
run out when the Non-Process Run-Out key was depressed. 

(d) Place blank cards in the punch hopper. 
( to) Depress the Start key. The interlocked write command for the 

second card following the error card· can now be executed. 

1620 WRITE CHECK ERROR 

Cause: A parity error. The error has not been punched into a card. 
Indicators: 1620 Write Check light on. Write Check indicator (07) on. 
A type-out of the core storage positions that were transferred to the 

output buffer indicates whether the trouble is in core storage or the punch. 

CONSOLE TYPEWRITER 

The typewriter (Fig. AV.I0) is used as both an input and an output 
device. The keyboard is similar to that of a standard typewriter except 
for the positioning of the digits 0-9 and the inclusion of the special char­
acters required by the system. Except when data is being entered, the 
typewriter keyboard is locked preventing its use as an off-line device. 
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Fig. AV.l0. 1620 Con sole Typewriter . 

The typewriter is equipped with a shift key. When this key is depressed, 
only numeric data may b e entered. A Read Numerically instruction 
specifying the typewriter, automatically causes the keyboard to b e 
locked in the shift position. A typing line contains a maximum of 88 
positions. Margins and tab stops may be set manually. 

A ' iVrite command specifying the typewriter as the output device 
causes data to be transmitted from core storage to the typewriter which 
types it. Transmission of data is terminated by the sensing of a record 
mark in core storage; the record mark is not typed. As data is trans­
mitted from core storage to the typewriter, it is parity checked. If a 
character with incorrect parity is detected , the Write Check indicator 
(07 ) is turned on, and a character2 is printed with a horizontal bar 
across its center; for example, B , B-, -£; -B-. The output operation is com­
pleted, and processing is continued or terminated depending upon the 
position of the console I/ O Check switch. If an invalid character with 
correct parity is sensed, a special symbol character (* ) is printed. 

A Read command specifying the typewriter allows for the manual 
insertion of data. The input data is parity checked before it enters core 
storage. If a character with incorrect parity is detected the Read Check 
indicator (06 ) is turned on. After completion of the input operation, 
processing continues or terminates depending upon the setting of the 
I/O Check switch. 

2 The 1620 will print the character that it is best able to interpret. 
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Depression of the Insert key on the console unlocks the keyboard and 
locks it in the shift position, permitting numeric data to be entered into 
core storage, starting at location 00000. Each depression of a typewriter 
key enters the character into core storage one location higher than the 
previous character. Each character is parity checked. After the 100th 
character is entered, the computer automatically enters the manual mode 
locking the keyboard. Depression of the Start key causes the instruction 
at core location 00000 to be executed. If less than 100 characters are 
entered, the Release key on the console is depressed to give an end­
of-record indication. The keyboard locks and the computer enters the 
manual mode. 



Appendix VI 

The 1620 Console 

The console (Fig. AVI.1) is an integral part of the 1620 Data Proces­
sing System. It consists of control keys and lights, switches, an indicator 
panel, and a typewriter. 1 The main function of the console is to serve 
as a communication link between the operator and the computer. 

This communication takes various forms. Lights on the indicator panel 
provide a visual indication of the status or contents of the various registers 
and indicators within the 1620. The control keys allow for manual or 
automatic operation of the system. They allow the operator complete 
flexibility in running under stored program control and then interrupting 
the program to perform desired operations from the console. Control 
may then be returned to the stored program. 

The console typewriter provides the operator with the means of in­
serting data or instructions directly into core storage. It also allows the 
operator to examine portions of the memory by having the contents of 
the desired core locations typed out on the typewriter. 

This chapter will describe in detail the console components and the 
part they play in the overall picture of program writing, debugging, and, 
finally, running the corrected program. The following chapter will 
describe the console procedures to follow when assembling SPS or For­
tran and performing other operations from the console. 

1 The typewriter is considered as a part of the console even though it is physically 
removed from the console. 
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Fig . AVl.l. The Complete 1620 Console . 
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Fig. A V1.2 . Console Panel. 

CONSOLE PANEL 
The console panel ( Fig. A VI.2) consists of a display selector and 

six sections of indicator lights. They are as follows: 

Fig . AVI.3 . Instruction a"d Execute Cycle Lights . 
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SECTION NUMBER 1 (Fig. A V1.3) 

I STRUCTION AND EXECUTE CYCLE INDICA TOR LIGHTS 

This set of indicator lights is used primarily for diagnostic testing by 
customer engineers. 

Fig . A VIA. Control Gate Indicators. 

SECTION NUMBER 2 (Fig. A VI.4 ) 

CONTROL GATE INDICATOR LIGHTS 

This set of indicator lights is used primarily for diagnostic testing 
by customer engineers . However, during manual single instruction ex-
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ecution of a program, certain of these lights display information that 
may be useful for debugging purposes. 

1. HIP (High-Positive) Indicator Light. This light shows the status of 
the internal HIP indicator as determined by the last arithmetic or 
compare operation. The light will be on if and only if the HIP 
indicator is on. 

2. E/Z (Equal-Zero) Indicator Light. This light shows the status of the 
internal E/Z indicator as determined by the last arithmetic or com­
pare operation. The light will be on if and only if the E/Z indicator 
is on. 

3. RECOMP (Recomplement) Light. This light indicates that the result 
of an add or subtract operation will be recomplemented upon com­
pletion of the computation. 

4. REC MARK (Record Mark) Light. This light shows that a record 
mark was sensed in core storage. 

5. BRCH (Branch) Light. This light is turned on if a branch is to be 
taken in a conditional Branch instruction. If the light is not on, the 
next instruction in sequence will be executed. This is true for the 
BI instruction set. For the BNI instruction set, the above sequence 
is reversed. 

SECTION NUMBER 3 

INPUT-OUTPUT INDICATOR LIGHTS 

The input-output indicator lights are used primarily for diagnostic 
testing by customer engineers. 

SECTION NUMBER 4 (Fig. AVI.5) 

OPERATION REGISTER 

These two rows of five lights each display the bit configuration of 
the 2-digit operation code of the instruction last executed. The flag 
bits are not displayed. The row of lights labeled "T," displays the 0 0 

digit; the row labeled "U," displays the 0 1 digit. 

MULTIPLIER 

This 5-light register displays each multiplier digit as it is used during 
a multiply operation. As in the operation register, flag bits are not 
displayed. This register is useful for displaying the multiplier digits 
when executing a Multiply instruction with the SCE (single cycle ex­
ecution) key. 
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fi g . AVI.5. Register Display Indicators . 

SENSE AND BRANCH 

Two rows of five lights each display the Qs and Q9 positions of each 
Branch Indicator, Branch No Indicator, all Input-Output instructions, 
and the Control instruction. The row of lights labeled "T" displays the 
Qs position; the row of lights labeled "u" displays the Q9 position. 

SECTION NUMBER 5 (Fig. A V1.5 ) 

MEMORY BUFFER REGISTER (MBR) 

Two rows of six lights each display the contents of the two core loca· 
tions eHected by a core storage address. If the core storage address is 
odd, its digit is displayed in the row of lights labeled "0" (odd); the 
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digit in the next lower core location is displayed in the row of lights 
labeled "E" (even). Should the core storage address be even, its digit 
is displayed by the lights in the row labeled "E"; the digit in the next 
higher core location is displayed in the row of lights labeled "0". This 
register is especially useful in the alphabetic mode, since the complete 
2-digit representation of an alphamerical character is displayed at one 
time. 

MEMORY DATA REGISTER (MDR) 

One row of six lights displays the bit configuration of the digit in the 
core storage position addressed. This same digit will also be displayed 
in the Memory Buffer Register in either the E or 0 row depending on 
whether the addressed digit is located at an even or odd core location. 

DIGIT REGISTER 

These two rows of six lights each are used primarily for diagnostic 
testing by customer engineers. 

SECTION NUMBER 6 (Fig. A VI.5) 

MEMORY ADDRESS REGISTER 

Five rows of five indicator lights display the bit configuration of the 
5-digit address in anyone of the eight MAR registers. The specific 
register to be displayed is selected by the Memory Address Register 
Display Selector switch; a depression of the Display MAR key then 
causes the address to be displayed in the lights. 

MEMORY ADDRESS REGISTER DISPLAY SELECTOR 

This is an 8-position rotary switch that permits the selection of any 
one of the eight MAR registers for display in the Memory Address 
Register lights. The position of this switch may be changed at any 
time without altering the display; it is the depression of the Display 
MAR key that causes the Memory Address Register lights to display the 
contents of the selected register. The display selector switch should 
not be repositioned simultaneously with the depression of the Display 
MAR key. The following registers may be chosen by this selector: 

IR-I. Contains the address of the next instruction. 
OR-I. Contains the Q address of the instruction in OP register. 
OR-2. Contains the P address of the instruction in OP register. 
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IR-2. Contains the address saved by a Branch and Transmit or Branch 
and Transmit Immediate instruction. 

PR-1. Contains the address saved by a depression of the Save key. 
OR-3, PR-2, PR-3. Used in the multiply operation. 

fig. A V1.6 . Indicator UlSplays and Switches . 

CONSOLE SWITCHES AND INDICATOR LIGHTS (Fig. A V1.6 ) 

PARITY CHECK SWITCH 

This is a 2-position switch that is manually set to either the "Stop" 
or "Program" position. When the switch is in the "Stop" position and 
a parity error occurs, the computer immediately terminates processing. 
If the switch is set to the "Program" position, processing continues. 

PARITY CHECK INDICATOR LIGHTS 

1. MBR-E CHK (Memory Buffer Register-Even ) Light. This light re­
flects the status of the Memory Buffer Register-Even Check indicator 
(16 ) . The indicator is turned on when a parity error is detected in 
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the even address digit in the MBR register. Processing continues or 
terminates depending upon the setting of the Parity Check switch. 
The indicator and light are turned off if the indicator is interrogated 
by a Branch Indicator or Branch No Indicator instruction. 

2. MBR-O CHK (Memory Buffer Register-Odd) Light. This light re­
flects the status of the Memory Buffer Register-Odd Check indicator 
(17). The indicator is turned on when a parity error is detected in 
the odd address digit in the MBR register. Processing continues or 
terminates depending upon the setting of the Parity Check switch. 
The indicator and light are turned off if the indicator is interrogated 
by a Branch Indicator or Branch No Indicator instruction. 

3. MARS CHK (Memory Address Register Storage) Light. This light is 
turned on when a digit in the MAR has a parity error. It is also 
turned on when the MAR receives a nonexistent address or a non­
existent OP code in some later versions of the 1620. When this 
light is turned on the computer immediately stops processing regard­
less of the setting of the Parity Check switch. 

110 CHECK SWITCH 

This is a 2-position switch that is manually set to either a "Stop" or 
"Program" position. When this switch is set to the "Stop" position and 
a parity error is detected in an input or output operation, the computer 
terminates processing after the I/O operation is completed. When the 
switch is set to the "Program" position and an error is detected, proces­
sing does not stop but continues. 

110 CHECK LIGHTS 

1. RD CHK (Read Check) Light. This light reflects the status of the 
Read Check indicator (06). The Read Check indicator is turned on 
when an input character with a parity error is detected prior to con­
version of the input data to the BCD coding. Processing continues 

. or terminates depending upon the setting of the I/O Check switch. 
2. WR CHK (Write Check) Light. This light reflects the status of the 

Write Check indicator (07). The Write Check indicator is turned 
on when an output character with a parity error is detected after the 
conversion of the output data from BCD coding to the output code. 
Processing continues or terminates depending upon the setting of the 
I/O Check switch. However, if a parity error occurs while paper 
tape is being punched, the computer will terminate processing im­
mediately, regardless of the setting of the I/O Check switch. 

OVERFLOW CHECK SWITCH 

This is a 2-position switch set manually to either a "Stop" or "Program" 
position. When this switch is set to a "Stop" position and an overflow 
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occurs as the result of an arithmetic operation, the computer terminates 
processing at the end of the instruction being executed and the manual 
mode is initiated. Depression of the Start key causes the computer to 
continue processing. 

When the Overflow Check switch is set to the "Program" position, and 
an overflow condition is detected, processing continues. 

OVERFLOW LIGHTS 

1. ARITH CHK (Arithmetic Check) Light. This indicator light reflects 
the status of the internal overflow indicator. When the indicator is 
on, the light is on. The Overflow indicator (14) is turned on when­
ever an overflow condition is detected. It is turned off in only two 
ways: (1) depression of the Reset key or (2) interrogation of the 
indicator with a Branch Indicator or Branch No Indicator instruction. 

2. EXP CHK (Exponent Check) Light. This indicator light reflects the 
status of the internal exponent overflow indicator. When the indicator 
is on, the light is on. The Exponent Overflow indicator (15) is turned 
on whenever an attempt is made to generate an exponent greater than 
99 or less than -99. It is turned off in a fashion identical with that 
of indicator 14. 

PROGRAM SWITCHES 

There are four program switches numbered 1 through 4, which may be 
set to either an "On" or "Off" position by the operator. It is these switches 
that are interrogated by the Branch Indicator and Branch No Indicator 
instructions with a modifier of 01, 02, 03, or 04. (See page 69). These 

. switches belong exclusively to the operator as the only way to set or alter 
their position is to move them physically to an "On" or "Off' position. 
Their position may be altered at any time during program execution. 

CONSOLE KEYS AND SIGNAL LIGHTS (Fig. AVI.7) 

POWER SWITCH 

This is a 2-position (on and off) switch that is used to apply electrical 
power to the computer when it is turned to the "On". position. 

POWER ON LIGHT 

This light is turned on when the power switch is on. 

POWER READY LIGHT 

The Power Ready light comes on after the Power switch has been 
turned on and when the internal machine temperature and voltages 
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Fig. AYJ.7 Control Keys and Signal Lights . 

reach proper operating values. There is a delay from the time the 
Power switch is turned on until operating conditions are obtained. The 
time delay varies with room temperature and the time elapsed since 
power was last turned off. When the computer is turned on the first 
thing in the morning, the delay may be from 5 to 15 minutes. 

RESET KEY 

Depression of the Reset key restores all machine status indicators 
and signal lights to their initial or reset condition and initiates the 
manual mode. This key is inactive when the computer is in the auto­
matic mode. 

THERMAL LIGHT 

This light is turned on if the internal temperature of the computer 
becomes too high. Power is turned off and the Power Ready light is 
turned off. Depression of the Reset key turns off the Thermal light 
after the internal temperature has returned to normal. To apply power 
to the 1620, the Power switch must be turned off and then on again. 



292 The 1620 Console 

PUNCH NO FEED LIGHT 

This light is turned on by the following conditions: (1) When a 
Write command is executed and there are no cards in the punch hopper 
or there is no tape on the paper tape punch. (2) When a Write com­
mand is executed and the card punch is not in a Ready status. (3 ) 
When a parity check occurs while paper tape is being punched. All 
the above conditions stop the computer in the automatic mode with 
both the Automatic and Punch No Feed lights turned on. When a parity 
error occurs, the I/O Write Check light is also turned on. Depression 
of the Reset key, while in the manual mode, turns off the Punch No 
Feed and I/O Write Check light. Manual correction and restart pro­
cedures can begin after depression of the Release and Reset keys. 

READER NO FEED LIGHT 

This light is turned on when the computer attempts to execute a read 
from the paper tape reader or card reader and the reader is not in a 
Ready status. Improperly mounted paper tape, failure to depress the 
Reel Power key, no tape mounted in the reader, no cards in the read 
hopper, failure to depress the Reader Start key, and an end-of-file 
condition, all will cause the Reader No Feed light to go on.2 

DISPLAY MAR KEY 

Depression of the Display MAR key causes the register to which 
the MAR Display Selector switch is set to be displayed in the Memory 
Address Register lights. This key is operative only when the Manual 
light is on and the Automatic light is off. The MAR display selector 
should not be turned simultaneously with the depression of the Display 
MAR key. 

SAVE KEY 

Depression of the Save key causes the address of the next sequential 
instruction to be saved in a special register. A subsequent Branch Back 
instruction will cause the computer to go to the core location saved for 
the next instruction. However, a multiply operation will cause the saved 
address to be lost. The Save key function takes priority over a Branch 
and Transmit or Branch and Transmit Immediate instruction when a 
Branch Back instruction is executed. If preceding the execution of a 

2 Due to the high speed of internal processing this light appears to be continually 
on as cards are being read. Actually it is being turned on and off at a high rate of 
speed. This action does not indicate that a reader no feed condition exists. 
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Branch Back instruction, the Save key had been depressed and a Branch 
and Transmit or Branch and Transmit Immediate had been executed, 
the Branch Back instruction would branch to the address saved by the 
Save key depression. 

SAVE LIGHT 

The Save light is turned on by the depression of the Save key. 

INSERT KEY 

The Insert key is operative only when the computer is in the manual 
mode (when the Manual light is on). Depression of the Insert key 
activates the typewriter in the numeric shift so that direct entry of 
instructions can be made. The first digit typed goes into core location 
00000; the succeeding digits typed go into successively higher core loca­
tions. Up to 100 digits (8-12 digit instructions) may be typed in, after 
the 100th digit is entered an automatic release occurs and the manual 
mode is entered. 

INSERT LIGHT 

The Insert light is turned on by the depression of the Insert key. 

RELEASE KEY 

Depression of the Release key will terminate any input-output opera­
tion. The manual mode is initiated and the manual light turned on. 
When instructions are entered from the typewriter in the insert mode, 
depression of the Release key after the entry of the last digit causes the 
insert mode to be terminated and the manual mode is initiated. The 
Release key is operative only when the computer is in the automatic mode. 

START KEY 

The Start key is used to start program processing. Depression of the 
Start key puts the computer in the automatic mode. It is operative only 
when the computer is in the manual mode. Depression of the Insert, 
Release, and Start keys in that order causes the computer to go to core 
location 00000 for the first instruction to be executed. Therefore, if any 
instructions were entered while the computer was in the insert mode they 
would be executed since the first instruction entered went into core loca­
tion 00000. 
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AUTOMATIC LIGHT 

The Automatic light is on when the computer is in the automatic mode. 
This occurs when the stored program is being executed or when informa­
tion is being entered into core storage from the typewriter. 

MANUAL LIGHT 

The Manual light is on when the computer is in the manual mode. The 
compute!' is in the manual mode when all operation has been terminated. 
Operator intervention may take place at this time. The manual mode is 
initiated in the following ways: the execution of a Halt instruction, de­
pression of the Release key, or the depression of the Stop key. The manual 
mode is terminated in the following ways: depression of the Start key, 
depression of the Insert key, or depression of the Display MAR key. The 
Save light and/or a no feed light can be on when the Manual light is on. 

Both the Manual and Automatic lights are on when an instruction is 
single cycled with the SCE key. 

STOP / SIE (SINGLE INSTRUCTION EXECUTE) KEY 

Depression of the Stop SIE key during program execution causes the 
computer to stop in the manual mode at the end of the instruction being 
executed when the key was depressed. This key also serves as a single 
instruction execute key, since successive depressions of this key cause 
one instruction to be executed for each depression. 

INSTANT STOP/SCE (SINGLE CYCLE EXECUTE) KEY 

Depression of the Instant Stop SCE key causes the computer to stop at 
the end of the 20-microsecond machine cycle in progress at the time the 
key is depressed. Successive depressions of this key cause single machine 
cycles to take place. Both the Manual and Automatic lights are on. 

CHECK STOP LIGHT 

This light is turned on when the 1620 stops because of a parity check. 
One or more of the Parity or I/O Check indicators will also be on, indicat­
ing what condition caused the stop. The Check Stop light will be turned 
off when the check indicator (s) is/are reset (by depressing the Reset 
key), or when the Parity or I/O switch is set to the "Program" position. 

EMERGENCY OFF SWITCH (Fig. A VI.8) 

This switch is for emergency use only. If this switch is turned off, all 
power in the computer is turned off. The blowers that cool the electronic 
circuits are stopped. 
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Fig. AVI.8. Emergency Off Switch . 



Appendix VII 

Console Operating Procedures 

This chapter describes console procedures. They are designed to aid 
the console operator when he is performing certain functions from the 
console. The procedures may be modifIed as required to meet individual 
requirements. 

Instruct the Computer from the Typewriter. 

Operator Action 
1. Depress Instant Stop key 
2. Depress Reset key 

3. Depress Insert key 

4. Type instructions 

5. Depress Release key 

6. Depress Start key 

Explanation 
Processing is halted. 
Indicators are reset and the manual 
mode is initiated. 
The typewriter is conditioned to enter 
numeric data into core storage begin­
ning at core location 00000. 
Instructions are entered into core stor­
age at location 00000 and successively 
higher core locations. The operator 
may enter a maximum of 100 digits 
of information. After the 100th digit 
is entered, an automatic release ini­
tiates and the computer enters the 
manual mode. 
The typewriter is released and the 
computer enters the manual mode. 
The computer begins executing in­
structions sequentially starting with 
the instruction at location 00000. 
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Clear Core Storage to Zeros 

Operator Action 
1. Depress Instant Stop key 
2. Set the Parity Check switch and 

the I/O Check switch to the "pro­
gram" position. 

3. Depress Reset key 

4. Depress Insert key 

5. Type one of the following: 
26 00008 00009 
16 00010 00000 
31 00003 00002 

6. Depress Release key 
7. Depress Start key 

8. Depress Instant Stop key 

Program Entry from the Typewriter 

Operator Action 
1. Clear core to zeros (if desired) 
2. Depress Reset key 
3. Depress Insert key 
4. Type: 

36 XXXXX 00100 
49 XXXXX 

5. Depress Release key 
6. Depress Start key 

7. Type program instructions and 
data 

8. Depress Release key 
9. Depress Start key 

Explanation 
Processing is halted. 
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Instruction execution is to continue 
even if a parity error is detected. 

Indicators are reset and the manual 
mode is initiated. 
The typewriter is conditioned to enter 
numeric data into core storage begin­
ning at location 00000. 
Enter anyone of these three instruc­
tions to clear core to zeros. 

The typewriter is released. 
The instruction entered in step 5 is 
executed. Approximately 0.8 seconds 
are required to clear 20,000 core po­
sitions. 
The operation is stopped at the end 
of the machine cycle in progress. 

Explanation 

Enter instructions to read numerically 
from the typewriter into the first posi­
tion of program storage XXXXX and 
branch to the first program instruction. 

The Read Numerically instruction en­
tered in step 4 is executed. 
The characters are entered into loca­
tion XXXXX and successively higher 
core storage positions. 
Terminates the Read instruction. 
The Branch instruction, entered in 
step 4 is executed and program execu­
tion begins. 
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Print Core Storage Data on Typewriter 

Operator Action 

1. Depress Insert key 
2. Type one of the following: 

39 XXXXX 00100 
48 

38 XXXXX 00100 
48 

35 XXXXX 00100 
48 

3. Depress Release key 
4. Depress Start key 

Explanation 

Write alphamerically beginning at lo­
cation XXXXX (must be odd) and 
continuing until a record mark is 
sensed. 
Write numerically beginning at loca­
tion XXXXX and continuing until a 
record mark is sensed. 
Dump numerically beginning at loca­
tion XXXXX and continuing until the 
content of core location 19999 is 
typed or the Release key is depressed. 

The instruction entered in step 2 is 
executed. 

Program Alteration and/or Data Entry 

Operator Action 

1. Depress Stop key 

2. Depress Save key 

3. Depress Insert key 
4. Type: 

36 XXXXX 00100 
42 

5. Depress Release key 
6. Depress Start key 

7. Type instructions and/or data 
8. Depress Release key 
9. Depress Start key 

Explanation 

Processing is halted and the manual 
mode is initiated. 
The address of the next instruction in 
sequence is saved in PR-1. 

Enter instruction to read numerically 
from the typewriter beginning at the 
first position of data entry (XXXXX), 
and branch to the address saved in 
PR-l by the depression of the Save 
key in step 2. 

The Read instruction entered in step 4 
is executed. 

The next sequential instruction which 
is the Branch Back instruction entered 
in step 4 is executed and a branch to 
the instruction at the address saved in 
step 2 is effected. 
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Single Instruction Execution of a Program 

Operator Action 
1. Depress Stop/SIE key 

2. Depress Stop/SIE key 

3. Depress Instant Stop/SCE key. 

4. Depress Stop/SIE key 

Explanation 
Processing is halted and the manual 
mode is initiated. 
Each depression causes the execution 
of one instruction. The OP code of 
the instruction iust executed is dis­
played in the OP register lights. 
One machine cycle is executed. The 
OP code and the address of the in­
struction that is about to be executed 
are displayed in the OP register and 
MAR lights respectively. 
The instruction displayed in step 3 is 
executed. Steps 3 and 4 can be al­
ternated to display succeeding instruc­
tions. 

PROCEDURE TO TURN OFF THERMAL LIGHT 

If the Thermal light comes on when the Power switch is turned on, 
depress the Reset key. Then turn the Power switch off and back on again. 
If the Thermal light remains on there is a possibility that the Emergency 
Off switch has been pulled. Notify the supervisor of your machine 
installation. 

PROCEDURE FOR ASSEMBLING SPS PROGRAMS 
ON A 1620 TAPE SYSTEM 

ASSEMBLING AN SPS SOURCE PROGRAM 

The symbolic assembly system consists of six tapes: the SPS processor 
tape, two SPS subroutine tapes for computers with the automatic division 
special feature (one tape for variable-mantissa-size floating point sub­
routines and the other for fixed-mantis sa-size floating point subroutines), 
and two subroutine tapes for computers without the automatic division 
feature (one tape for variable-mantis sa-size floating point subroutines and 
the other for fixed-mantissa-size floating point subroutines). The fifth 
subroutine tape is for a computer with floating-point hardware. 

The assembly system is a 2-pass system-the source statements must be 
read in twice. The first pass builds up the table of labels; no punching 
occurs in Pa:ss I. The second pass actually assembles the source state­
ment. The sequence of operations in obtaining an object program is as 
follows: 
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Pass I 

1. Clear the core memory to zeros. 
2. Set the Overflow Check switch to "Program" and the I/O and Parity 

Check switches to "Stop." 
3. Set the console program switches. The function of the program switches 

during pass I are as follows: 

Switch lOn-The input is from the paper tape reader. 
Off-The input is from the typewriter. 

Switch 2 On-If an error is detected by the processor, the entire state­
ment may be re-entered from the typewriter. 

Off-If an error is detected, it is noted but ignored and the 
processing continues (to be explained in section on errors, 
pages 303 and 304). 

Switch 3 Not used by tape SPS. 
Switch 4 On-Normally off, but used for correcting statements keyed in 

improperly at the typewriter. When the programmer de­
tects such an entry he should 
(a) throw switch 4 on, 
(b) depress Release and Start keys, 
( c) throw switch off, 
(d) re-enter complete statement. 

4. Load the tape punch with approximately 5 feet of leader. 
5. Mount the processor tape in the Paper Tape Reader. The following proce­

dure is used to read the processor tape: 
(a) depress Reset key, 
(b) depress Insert key, 
( c ) type 36 00000 00300, 
(d) depress Release key, 
(e) depress Start key. 

6. The processor tape will be read, and the computer will halt in the 
manual mode. 

7. Mount the source tape (only applicable if source statements are on paper 
tape) . 

8. Depress Start key. Pass I processing will begin. 
9. Two methods of source program input may be used under control of pro­

gram switch 1. 
(a) If the source statements are entered from the typewriter (switch 1 

off), the processor will transfer control to the console typewriter to 
await the first statement. Type one source statement followed by a 
record mark. Depress the Release and Start keys. The statement 
will be processed and the typewriter carriage will return to await 
entry of the next statement. As each statement is processed, it is 
punched on the tape punch so that at the end of Pass I an exact 
copy of the source statements entered from the typewriter have been 
punched on tape. This tape is then used as input to Pass II. 



Console Operating Procedures 301 

(b) If the source statements are being entered from paper tape (switch 1 
on), each statement is read and processed individually. 

10. Sensing of the DEND statement signals the processor that the entry of 
source statements is completed. The computer will halt in the manual 
mode and the following message will be typed: 

END OF PASS I 

Pass II 

11. Set the program switches for Pass II. The functions of the program 
switches for Pass II are as follows: 

Switch 1 On-A complete listing is typed out; that is, entire input state­
ment together with the machine language instructions. 

Off-No listing is typed out. 
Switch 2 On-Same as Pass 1. 

Off-Same as Pass 1. 
Switch 3 On-Same as Pass 1. 

Off-Same as Pass 1. 
Switch 4 On-No object program is punched except loader and arith­

metic tables. 
Off-Object program is punched. 

Note: The purpose of Switch 4 is to allow the assembly process to 
take place for the purpose of error detection only. 

12. If a complete listing is to be typed, set typewriter margins and tab stop. 
Recommended settings are as follows: 
Margins: extreme right and left 
Tab Stops: tab stop at 55. 

13. Mount the source tape (the original or that which was produced from the 
typed-in statements) on the paper tape reader. 

14. If source statements were entered from the typewriter in Pass I, the paper 
tape punch will require reloading. This should be done leaving about 
5 feet of leader. 

15. Depress the Start key on the console. Pass II processing will begin. Each 
source statement will be read in and processed. The machine language 
statements will be punched. Error messages are typed out when certain 
errors are detected. The setting of program switch 2 determines the course 
of action to be taken. See pages 303 and 304. 

16. When all the source statements have been processed, the computer will 
halt in the manual mode and one of the following messages will be typed: 

END OF PASS II 

LOAD SUBROUTINES 

17. If "END OF PASS II" is typed omit the next two steps. 
18. Mount the appropriate subroutine tape on the paper tape reader. 
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19. Depress the Start key on the console. If the subroutine tape with the 
variable-mantissa-size floating point subroutines is used, the following mes­
sage will be typed: 

ENTER MANTISSA LENGTH 

The operator must'then type in the mantissa size with a flag over the 
high-order digit (XX). Depress Release and Start keys. The subroutines 
will be read in and those requested through the use of macro-instructions 
will be selected and punched. The following message will be typed: 

END OF PASS II 

20. A table of all the labels and their associated addresses will then be typed. 
If it is desired to suppress the typing of ' this table, turn switch 4 on­
but turn it on only after the message "END OF PASS II" begins to type. 

21. Depress the Tape Feed switch on the paper tape punch and let about 2 
feet of tape be punched with the tape feed code. Remove the tape from 
the punch. This is the complete object program tape. 

ERROR DETECTION IN SOURCE PROGRAM 

Error messages will be typed out when certain errors are detected in 
the form of the input statements. The messages are of the form "ERn" 
where n identines the error. When an error is detected during the first 
or second pass, the error message will refer to the last denned label plus 
the number of statements from this labeled statement to the statement in 
error. If, however, during the second pass, a full typewriter listing is 
requested, error reporting is of the following nature: the source state­
ment is typed followed by the error message. At that point, the setting 
of Switch 2 determines the subsequent course of action. 

The following errors are detected by the system: 

ER1 A record mark is in the label or operation code field. 
ER2 For address adjustment, a product greater than 10 digits has resulted 

from a multiplication. 
ER3 An invalid operation code has been detected. 
ER4 A dollar sign ($), which is being used as a Head indicator, is incor­

rectly positioned in an operand. 
ER5 (a) The symbolic address contains more than six characters. 

(b) The actual address contains more than nve characters. 
(c) An undefined symbolic address or an invalid special character 

is used in an operand. 
ER6 A DSA statement has more than 10 operands. 
ER7 A DSB statement has the second operand missing. 
ER8 (a) A DC, DSC, DAC, or DNB has a length operand greater than 50. 

(b) A DC, DSC, or DAC has no constant specified. 



Console Operating Procedures 303 

ERg 
ERI0 
ERll 
ER12 

ER13 
ER14 

(c) A DC or DSC has a specified length less than the number of 
digits in the constant. 

(d) A DAG has a specified length different than the number of 
characters in the constant. 

The table of labels is full. 
A label has been defined more than once. 
An assembled address is greater than five digits. 
A Head statement contains an invalid special character as a heading 
character. 
A Head statement contains more than one character. 
An invalid special character is used in a label. 

PROCEDURES FOR HANDLING ERRORS 

Program Switch 2 On 

The entire statement should be entered correctly from the typewriter. 
The statement must be terminated by a record mark. The carriage auto­
matically returns to accept the corrected statement. It should be noted 
that, when the source statements are entered at the tape reader, errors 
detected during the first pass will again be detected, and will again 
require correction, during the second pass. When the input is from the 
typewriter, however, first pass error correction will be incorporated in 
the symbolic tape being prepared. 

Program Switch 2 Off 

Errors are handled as follows: 

ERI 

ER2 
ER3 

ER4 
ER5 
ER6 

ER7 
ER8 

ERg 
ERI0 

The label is treated as blank and a NOP instruction, 410000000000, 
is assembled and the next statement is read in. 
The operand is assembled as 00000 and the processing continues. 
The label is treated as blank and a NOP instruction, 410000000000, 
is assembled and the next statement is read in. 
The operand is assembled as 00000 and the processing continues. 
The operand is assembled as 00000 and the processing continues. 
Only the first 10 operands are assembled and the remaining are 
ignored. 
The statement is assembled as a DS with a length of 50. 
( a ) If the declarative is a DC, it will be treated as a DS with a length 

operand of 50. 
(b) If the declarative is a DSC, it will be treated as a DSS with a 

length operand of 50. 
(c) If the declarative is a DAC, it will be treated as a DAS with a 

length operand of 50. 
(d) If the declarative is a DNB, its length operand is chosen to be 50. 
The label is treated as a blank label. 
The label is treated as a blank label. 
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ERll 
ER12 
ER13 
ER14 

The operand is assembled as 00000 and the processing continues. 
The Head character is assumed to be a blank. 
The first nonblank character is assumed to be the Head character. 
The label is treated as a blank label. 

RUNNING THE OBJECT PROGRAM 

The object tape contains a load routine, all the constants and instruc­
tions, the required subroutines, and the arithmetic tables. The object 
program is run in the following manner: 

1. Mount the object tape on the tape reader. 
2. Clear core memory to zeros. 
3. (a) Load the tape punch if the output is to be punched. 

(b) Set margins and tab stops if the output is to be typed. 
4. Set Overflow Check switch to "Program" and the parity and I/O Check 

switches to "Stop".! 
5. Depress Reset key. 
6. Depress Insert key. 
7. Type 36 00000 00300. 
8. Depress Release key. 
9. Depress Start key. 

10. After the object tape is read in, the computer will halt in the manual mode. 
11. If data is being entered from tape, mount the data tape on the tape 

reader. 
12. Depress the Start key. If the DEND statement contained an operand, 

the computer will perform a branch to the address specified in the 
operand. If no operand was present in the DEND statement, the operator 
must manually branch to the first instruction he wishes executed in his 
object program. 

ERROR MESSAGES AT OBJECT TIME 

In the 1620 floating point subroutines, the presence of certain special 
conditions will cause an error message of the following form to be 
typed out: 

XXXXXOOXX 
'-v-' ~ 

R S 
R is the address of the next instruction in sequence in the main program 
and S is a code which identifies the special condition. 

Except in the Gase of characteristic overflow or underflow where the 
subsequent course of action depends on the digit at 401, a subroutine 

1 These are only suggested settings. The programmer may position them at his 
discretion. However, the subroutines utilize the Overflow indicator by branching on 
its condition; therefore, if macro-instructons are used, the Overflow check switch 
must be set to the "Program" position. 
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will always halt immediately after typing the error message. The code in 
the error message tells the operator why the subroutine has stopped. 
He may then use the return address and insert a Branch instruction at 
location zero that will return control to the main program, or in some 
cases he may continue execution of the subroutine by pressing the Start 
key on the console. 

The following are the special conditions that can arise in the floating 
point subroutines and the error code associated with each one: 

01 FA, FS 
02 FA, FS 
03 FM 
04 FM 
05 FD 
06 FD 
07 FD 

08 FSQR 

09 FSIN, 
FCOS 

10 FSIN, 
FCOS 

11 FEX 
FEXT 

12 FEX 
FEXT 

13 FLN 
FLOG 

14 FLN 
FLOG 

Characteristic overflow. 
Characteristic underflow. 
Characteristic overflow. 
Characteristic underflow. 
Characteristic overflow. 
Characteristic underflow. 
Attempt to divide by a floating point number with a zero 
mantissa. May not continue execution of the subroutine. 
Attempt to take the square root of a negative number. May 
press the Start key to continue execution of the subroutine, find-
ing the square root of the absolute value of the number, or may 
branch back to the main program. 
Input argument has a characteristic greater than L (mantissa 
length) . May not continue execution of the subroutine as all 
significance would be lost in the result. 
Input argument has a characteristic greater than or equal to OS 
and less than or equal to L (mantissa length). May continue ex­
ecution of the subroutine with some loss of significance in the 
result. 
Characteristic overflow. Course of action depends on digit at 
location 401. 
Characteristic underflow. Course of action depends on digit at 
location 401. 
Input argument has zero mantissa. May not continue execution 
of the subroutine. 
Input argument is negative. May continue to execute the sub­
routine, computing with the absolute value of the number. 

PROCEDURE FOR COMPILING FORTRAN PROGRAMS 
ON A 1620 PAPER TAPE SYSTEM 

COMPILING A FORTRAN PROGRAM 

Four tapes are provided for the 1620 FortJ!an system: the Fortran 
compiler tape, the Fortran subroutine tape for computers with the 
automatic division special feature, a subroutine tape for computers with­
out the automatic division feature, and a subroutine tape for computers 



306 Console Operating Procedures 

with the floating point hardware special feature. The sequence of opera­
tions in obtaining an object program is as follows: 

1. Load the tape punch with about 5 feet of leader. 
2. Clear core memory to zeros. 

3. Set the Overflow Check switch to "Program" and the I/O and Parity 
Check switches to "Stop". 

4. Mount the compiler tape in the paper tape reader. The following proce­
dure is used to read in the compiler tape: 
( a ) Depress Reset key 
(b) Depress Insert key 
(c) Type 36 00000 00300 
( d) Depress Release key 
(e) Depress Start key. 

5. The compiler tape will be read in and punching will occur. The load 
routines are punched. When the loading of the compiler tape is com­
pleted, the computer will halt in the manual mode, and the following 
message will be typed: 

ENTER SOURCE PROGRAM, PUSH START 

6. If the source program is to be entered from the paper tape reader, mount 
the source tape. 

7. Set the console program switches. The functions of the program switches 
at compile time are as follows: 

Switch lOn-Causes the source statements and the object time address 
of the first compiled instruction to be listed at the console 
as they are processed. Statements will be listed with the 
object time address of the first instruction compiled from 
the source statement. 

Off-Source statements are not listed. 
Switch 2 On-Causes trace instructions to be compiled. (The trace 

feature is discussed on page 309.) 
Off-Trace instructions are not compiled. 

Switch 3 On-Input to the compiler (that is, the source statements) is 
being entered via the console typewriter. 

Off-Source program entered from the paper tape reader. 
Switch 4 This switch is used in conjunction with switch 3 if and only 

if switch 3 is in the "on" position. It provides the operator 
with the ability to restart the typing of a statement if an 
error has been made. Switch 4 is normally Off. When a 
typing error is made in a source statement and is to be 
corrected, Switch 4 is placed on, the Release and Start 
keys are depressed, and then Switch 4 is turned Off. The 
operator can now retype the statement. 

8. Depress the Start key. Compilation will begin. 
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9. Two methods of source program input may be used under control of 
program switch 3. 
(a) If the source statements are entered from the typewriter (switch 3 

on), the compiler will transfer control to the console typewriter to 
await the first statement. Type one source statement followed by a 
record mark. Depress the Release and Start keys. The statement 
will be compiled and the machine language instructions punched. 
The typewriter carriage will return after each statement has been 
processed to await the entry of the next statement. This routine is 
repeated until an End statement is sensed. 

(b) If the source statements are being entered from paper tape (switch 3 
on) each statement is entered individually. It will be compiled and 
the machine language instructions punched. 

10. Sensing of the End statement signals the compiler that the entry of source 
statements is completed. The computer halts in the manual mode and the 
following message will be typed: 

PROG SWI ON FOR SYMBOL TABLE, PUSH START 

11. If it is desired to get a listing of the symbol table put program switch 1 
on. If the listing is not desired, turn program switch 1 off. 

12. Depress the Start key on the console. If program switch 1 is on, a listing 
of the symbol table is typed. 

13. The computer will halt in the manual mode and the following message 
will be typed: 

SWI OFF TO IGNORE SUBROUTINES, PUSH START 

14. The operator is given a choice. He may process the subroutines at this 
time, or he may wait until he runs the object program to process the 
subroutines. 

15. If it is desired to process the subroutines at this time, turn program switch 
Ion. If program switch 1 is turned off depress the Start key on the 
console. The message in step 18 is typed and the procedure in step 19 
should be followed. 

16. Mount the appropriate subroutine tape on the paper tape reader. 
17. Depress the Start key on the console. The subroutine tape will be read 

in and the required subroutines will be selected and punched. 
18. After the required subroutines have been punched, the computer will halt 

in the manual mode and the following message will be typed: 

PROCESSING COMPLETE 

19. Depress the Tape Feed switch on the paper tape punch and let about two 
feet of tape punch with the tape feed code. Remove the tape from the 
tape punch. This tape is the object program tape. 

ERRORS IN THE SOURCE PROGRAM 

During compilation, a number of tests are made for source program 
errors. If an error is found in a source· statement an error message in the 
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form "ERROR NO. n" is typed, where n is the error code, and processing 
continues. The errors detected are as follows: 

ERROR No. CONDITION 

1 Incorrectly formed statement. 
2 Subscripted variable for which no Dimension statement has 

previously appeared in the program, or a dimensioned variable 
is used without subscripts, or a variable used in a Dimension 
statement has already appeared in the source program. 

3 Floating point number not in allowable range of values, or fixed 
point number contains more than 4 digits. 

4 Symbol table full. 
5 Mixed mode expression. 
6 Variable name in an expression contains more than 5 characters. 
7 Switch number has been omitted in an If (Sense Switch) state­

ment or the first character following the right parenthesis in an 
If statement or If (Sense Switch) statement is not a digit. 

8 A comma follows the statement number in a Do statement. (for 
example, DO 1, 1= 1, 10) 

9 A Dimension statement ends with a comma, or more than two 
dimensions have been specified in a Dimension statement (for 
example, DIMENSION A (10, 10, 10)) 

10 A Format statement does not have a statement number. 
11 Incorrect representation in a Format statement. 

(a) Used special characters (=, +, -, and so forth) in a 
numerical field specification. 

(b) Alphabetical characters other than E, F, or I in a numerical 
field specification. 

(c) A decimal point is omitted in E- or F-type numerical field 
specifications. 

(d) Number of positions to the right of the decimal has not 
been given in an E- or F -type numerical field specification. 

(e) A record mark appears in the numerical field specification 
or an alphameric field specification. 

(f) The first character following the word "Format" is not a 
left parenthesis. 

12 The total record width specified in a Format statement is greater 
than 87 characters. 

13 A Format statement number has been omitted in an I/O state­
ment. 

Another error message is typed if the compiled instructions and 
required data storage not including relocatable subroutines will, at object 
time, exceed the storage capacity of the 1620. This message is typed at 
the point in the compilation of the source program where overlap occurs. 
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Compilation will continue, and the message will be typed after each 
statement thereafter. 

If the inclusion of any of the relocatable subroutines causes an overlap 
the following message is typed as the subroutines are loading 

OVERLAP XXXXX POSITIONS 

The XXXXX is the number of core storage positions of overlap between 
the end of the object program and the data storage area. 

FORTRAN TRACE FEATURE 

The Fortran processor will, under console switch control (console 
switch 2 on), compile certain instructions into the object program that 
will enable the operator to trace the flow of the program and check its 
correctness. When the object program is executed, console switch 4 
performs the following functions: 

Switch 4 On-Causes compiled trace instructions to be executed. 
Off-Trace instructions are not executed. 

The trace output provided is the evaluated left-hand side of each 
executed arithmetic statement, typed at the left margin. Normal output, 
resulting from Punch, Print, and Type statements, is not inhibited. The 
output format of the trace data is E14.8 in the case of floating point 
results or I (w-i) where w is the specified width. 

Note that console switch 4 serves a dual function during execution 
of the object program, that is, provision of trace data and correction of 
input data incorrectly entered at the console keyboard. Thus when 
running in the trace mode, the operator should tum off CS4 before typing 
input data. Following the entry of the last item on the list, he should 
(after depressing Release) depress SIE three times, tum the switch on, 
and depress the Start key. 

RUNNING THE OBJECT PROGRAM 

The object tape contains a load routine, all the constants and instruc­
tions, the arithmetic tables, and the required subroutines if they were 
processed at compile time. The object program is run in the following 
manner: 

l. (a) Clear core memory to zeros. 
(b) Set the Overflow Check switch to "Program" and the I/O and Parity 

Check switches to "Stop". 
( c) Mount the object tape. 
( d ) Depress Reset key. 
( e ) Depress Insert key. 
(f) Type in 36 00000 00300. 
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(g) Depress Release key. 
(h) Depress Start key. The object tape will read in. 
Note: Once a source program has been debugged and compiled, it is 
necessary to load the object tape only to run the program at some future 
date. The process of compilation does not have to be repeated. 

2. After the object tape has been read in, one of two of the following mes­
sages will be typed and the computer will halt in the manual mode. 

LOAD DATA or 
ENTER SUBROUTINES, PUSH START 

3. The message "LOAD DATA" will type if the subroutines were processed 
at compile time. If this message types, omit the next three steps. 

4. If the message "ENTER SUBROUTINES, PUSH START" types, mount 
the appropriate subroutine tape on the paper tape reader. 

5. Depress the Start key on the console. The subroutine tape will be read 
in, and the required subroutines selected and stored for use by the 
object program. 

6. After the required subroutines have been selected· and stored, the com­
puter halts in the manual mode and the following message is typed: 

LOAD DATA 
7. If data is being entered from tape, mount the data tape on the paper 

tape reader. 
8. Set margins and tab stops on the typewriter as desired. This will apply 

only if the output is to be typed. If the output is to be punched, load 
the tape punch with approximately 5 feet of leaJ:!er. 

9. Set the program switches. 
Program switches 1, 2, and 3 are completely at the operator's disposal 
at object time. If the source program contained If (Sense Switch) state­
ments, the switches are set accordingly. 
Program switch 4 has a dual function at object time. 
Switch 4 On-If trace instructions were compiled (program switch 2 on 

at compile time), they will be executed. 
Off-Compiled trace instructions are not executed. 

When data is entered from the typewriter (through use 
of the accept statement) this switch provides the ability 
to correct a typing error. Switch 4 is normally ofI.2 
If an error is made, set switch 4 on, depress the Release 
and Start keys, and turn switch 4 off. The data may now 
be retyped. 

10. Depress Start key. Program execution will begin. 

TYPEWRITER ENTRY OF DATA 

When data is to be entered from the typewriter, the typewriter carriage 
returns and control is transferred to the typewriter. Enter the data 

2 If switch 4 is on to execute trace instructions, it must be turned off prior to data 
entry from the typewriter. After the data has been correctly entered and the Release 
key has been depressed, depress the Stop/SIE key three times. Switch 4 may then be 
turned on again and the Start key depressed. 
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according to the format specification. Depress the Release and Start keys 
on the console. Processing will continue. 

ERROR MESSAGES AT OBJECT TIME 

A number of error checks have been built into the Fortran subroutines. 
The basic philosophy that has been followed with respect to an error 
situation is to have an error message typed out, to set the result of the 
operation equal to the most reasonable value under the circumstances, 
and to have the program continue. Listed below are the error checks 
that exist in the subroutines, the error codes that are typed out, and the 
value to which F AC is set before the program continues. In the list, it 
will be noted that the terms overflow and underflow occur several times. 
Overflow means that the characteristic of the result has exceeded 99. 
Underflow means that the characteristic of the result is less than -99. 

ERROR CHECK 

Overflow in FAD or FSB. 

Underflow in FAD or FSB. 

Overflow in FMP. 

Underflow in FMP. 

Overflow in FDV or FDVR. 

Underflow in FDV or FDVR. 

Zero divisor in FDV or FDVR. 

Zero divisor in FXD or FXDR. 

Argument in FIX ~ -10000" 

Argument in FIX ~ 10000" 

Loss of all significance in FSIN or 

FCOS. 

Zero argument in FLN. 

Negative argument in FLN. 

Overflow in FEXP or FEXN. 

Underflow in FEXP or FEXN. 

Negative argument in FAXB. 

Negative argument in FSQR. 

Input data in incorrect form or is out­
side the allowable range. 

Output data outside allowable range 
or in a form not acceptable to the 

ERROR 
CODE 

El 

E2 

E3 

E4 

E5 

E6 

E7 

E8 

E9 

E9 

F1 

F2 

F3 

F4 

F5 

F6 

F6 

F7 

applicable format specification. F8 

" Floating point hardware system only. 

CONTENTS 
OF FAC 

9999999999 

0000000099 

9999999999 

0000000099 

9999999999 

0000000099 

9999999999 

9999 

9999 

9999 

9999999999 

9999999999 

Ln Ixl 

9999999999 

0000000099 

lAIR 

vrxr 
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Input or output tape or typewriter 
record is longer than 87 characters, 
or there is an element in an input 
or output list for which there is no 
specification in the corresponding 
Format statement. F9 

PROCEDURE FOR ASSEMBLING SPS PROGRAMS 
ON A 1620 CARD SYSTEM 

ASSEMBLING AN SPS SOURCE PROGRAM 

The symbolic assembly system consists of six card decks: the SPS 
processor deck, two SPS subroutine decks for computers with the auto­
matic division special feature (one deck for variable-mantis sa-size floating 
point subroutines and the other for fixed-mantissa-size floating point 
subroutines), and two subroutine decks for computers without the auto­
matic division feature (one deck for variable-mantis sa-size floating point 
subroutines and the other for fixed-mantis sa-size floating point sub­
routines). The fifth subroutine deck is for a computer with floating point 
hardware. 

The assembly system is a 2-pass system-the source statements must 
be read in twice. The first pass builds up the table of labels; no punching 
occurs in Pass 1. The second pass actually assembles the source state­
ments. The sequence of operations in obtaining an object program is 
as follows: 

Pass I 
1. Clear thc core memory to zeros. 
2. Set the Overflow Check switch to "Program" and the I/O and Parity 

Check switches to "Stop." 
3. Set the console program switches. The function of the program switches 

during Pass I are as follows: 

Switch lOn-The input is from the card reader. 
Off-The input is from the typewriter. 

Switch 2 On-If an error is detected by the processor, the entire state­
ment may be re-entered from the typewriter. 

Off-If an error is detected, it is noted but ignored and the 
processing continues (to be explained in section on errors, 
page 316.) 

Switch 3 Must be off in Pass I. 
Switch 4 On-Normally off, but used for correcting statements keyed in 

improperly at the typewriter. When the programmer de­
tects such an entry he should: 
(a) throw switch on, 
(b) depress Release and Start, 
(c) throw switch off, 
( d) re-enter the complete statement. 
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4. Depress Reset key. 
5. Place the processor deck in the read hopper. 
6. Depress the Load key. The processor deck will be read in and the com­

puter will halt in the manual mode (a 48 will appear in the operation 
register lights). 

7. If the source program is on cards, place the source deck in the read hopper 
and depress the Reader Start key. 

8. If the source program is to be entered from the typewriter, place blank 
cards in the punch hopper and depress the Punch Start key. 

9. Depress the Start key on the console. Pass I processing will begin. 
10. Two methods of source program input may be used under control of 

program switch 1. 

(a) If the source statements are entered from the typewriter (switch 1 
off), the processor will transfer control to the console typewriter to 
await the entry of the first statement. Type one source statement 
followed by a record mark. Depress the Release and Start keys. The 
statement will be processed and the typewriter carriage will return 
to await entry of the next statement. As each statement is processed 
it is punched on a card so that at the end of Pass I, an exact copy of 
the source statements entered from the typewriter have been punched 
on cards. These cards are then used as the input to Pass II. 

(b) If the source statements are be entered from cards (switch Ion), 
each statement is read in and processed individually. 

11. Sensing of the DEND statement signals the processor that the entry of 
source statements is completed. The computer will halt in the manual 
mode and the following message will be typed: 

END OF PASS I 

Pass II 
12. Set the program switches for Pass II. The functions of the program 

switches for Pass II are as follows: 

. Switch 1 On-A complete listing is typed out; that is, entire input state­
ment together with the machine language instructions. 

Off-No typed listing. 
Switch 2 On-Same as Pass I. 

Off-Same as Pass I. 
Switch 3 On-A compressed deck is produced. 

Off-A listing deck is produced. This is a deck which may be 
listed on peripheral printing equipment. 

Switch 4 On-No object program is punched except loader and arith­
metic tables. If switch 4 is on, switch 3 must be on. 

Off-Object program is punched. 
Note: The purpose of switch 4 is to allow the assembly process to take 

place for the purpose of error detection only. 

13. If a complete listing is to be typed, set typewriter margins and tab stop. 
Recommended settings are as follows: 
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Margins: extreme right and left 
Tab stops: tab stop at 55, 

14, Place the source deck (the original or that which was produced from the 
typed-in statements) jn the read hopper and depress the Reader Start key, 

15, Place blank cards in the punch hopper and depress the Punch Start key, 
16, Depress the Start key on the console, Pass II processing will begin, Each 

source statement will be read in and processed, The machine language 
statements will be punched, Error messages are typed out when certain 
errors are detected, The setting of program switch 2 determines the 
course of action to be taken, See page 316, 

17, When all the source statements have been processed the computer will 
halt in the manual mode and one of the following messages will be typed: 

END OF PASS II or 
LOAD SUBROUTINES 

18, If "END OF PASS II" is typed omit the next two steps, 
19, Place the appropriate subroutine deck in the read hopper and depress the 

Reader Start key, 
20, Depress the Start key on the console, If the subroutine deck with the 

variable mantissa size floating point subroutines is used, the following 
message is typed: 

ENTER MANTISSA LENGTH 

The operator must then type in the mantissa size with a flag over the 
high-order digit (XX), Depress Release and Start keys, The subroutines 
will be read in and those requested through the use of macro-instructions 
will be selected and punched, The following message will be typed: 

END OF PASS II 

21. A table of all the labels and their associated addresses will then type out, 
If it is desired to suppress the typing of this table, turn switch 4 on, 
but turn it on only after the message "END OF PASS II" begins typing, 

22, With the Non-Process Run-Out key run the cards out of the punch feed, 
The object deck is in the punch stacker. Remove the last two cards which 
will be blanks, 

ERROR DETECTION IN SOURCE PROGRAM 

Error messages will be typed out when certain errors are detected in 
the form of the input statements, The messages are of the form "ERn" 
where n identifies the error, 

When an error is detected during the first or second pass, the error 
message will refer to the last defined label plus the number of statements 
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from this labeled statement to the statement in error. If however, during 
the second pass, a full typewriter listing is requested, error reporting is 
of the following nature: the source statement is typed followed by the 
error message. At that point, the setting of Switch 2 determines the 
subsequent course of action. _ 

The following errors are detected by the system: 

ERI 
ER2 

ER3 
ER4 

ER5 

ER6 
ER7 
ER8 

ERg 
ER10 
ERll 
ER12 

ER13 
ER14 

A record mark is in the label or operation code field. 
For address adjustment, a product greater than 10 digits has resulted 
from a multiplication. 
An invalid operation code has been detected. 
A dollar sign ($), which is being used as a Head indicator, is incor­
rectly positioned in an operand. 
(a) The symbolic address contains more than six characters. 
(b) The actual address contains more than five characters. 
( c ) An undefined symbolic address or an invalid special character is 

used in the operand. 
A DSA statement has more than 10 operands. 
A DSB statement has the second operand missing. 
(a) A DC, DSC, DAC, or DNB has a length operand greater than 50. 
(b) A DC, DSC, orDAC has no constant specified. 
(c) A DC or DSC has a specified length less than the number of digits 

in the constant. 
(d) A DAC has a specified length different than the number of char-

acters in the constant. 
The table of labels is full. 
A label has been defined more than once. 
An assembled address is greater than five digits. 
A Head statement contains an invalid special character as a heading 
character. 
A Head statement contains more than one character. 
An invalid special character is used in a label. 

PROCEDURES FOR HANDLING ERRORS 

Program Switch 2 On 

The entire statement should be entered correctly from the typewriter. 
The statement must be terminated by a record mark. The carriage auto­
matically returns to accept the corrected statement. It should be noted 
that when the source statements are entered at the card reader, errors 
detected during the first pass will be again detected, and will again 
require correction, during the second pass. When the input is from the 
typewriter, however, first pass error correction will be incorporated in 
the symbolic deck being prepared. 
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Program Switch 2 Of] 

Errors are handled as follows: 

ERI 

ER2 
ER3 

ER4 
ER5 
ER6 

ER7 
ER8 

ERg 
ERI0 
ERll 
ER12 
ER13 
ER14 

The label is treated as blank and a NOP instruction, 410000000000, 
is assembled and the next statement is read in. 
The operand is assembled as 00000 and the processing continues. 
The label is treated as blank and a NOP instruction, 410000000000, is 
assembled and the next statement is read in. 
The operand is assembled as 00000 and the processing continues. 
The operand is assembled as 00000 and the processing continues. 
Only the first 10 operands are assembled and the remaining ones are 
ignored. 
The statement is assembled as a DS with a length of 50. 
(a) If the declarative is a DC, it will be treated as a DS with a length 

operand of 50. 
(b) If the declarative is a DSC, it will be treated as a DSS with a 

length operand of 50. 
(c) If the declarative is a DAC, it will be treated as a DAS with a 

length operand of 50. 
(d) If the declarative is a DNB, its length operand is chosen to be 50. 
The label is treated as a blank label. 
The label is treated as a blank label. 
The operand is assembled as 00000 and the processing continues. 
The Head character is assumed to be a blank. 
The first nonblank character is assumed to be the Head character. 
The label is treated as a blank label. 

RUNNING THE OBJECT PROGRAM 

The object deck contains a load routine, all the constants and instruc­
tions, the required subroutines, and the arithmetic tables. The object 
program is run in the following manner: 

1. Clear core memory to zeros. 
2. Place the object deck in the read hopper. 
3. (a) If the output is to be punched, place blank cards in the punch hopper 

and depress the Punch Start key. 
(b) If the output is to be typed, set the margins and tab stops. 

4. Set the Overflow Check switch to "Program" and the Parity and I/O Check 
switches to "Stop".3 

5. Depress the Load key, The object deck is read in and the computer will 
halt in the manual mode. 

6. If data is being entered from cards, place the data cards in the read hopper 
and depress the Reader Start key. 

3 These are only suggested settings. The programmer may position them at his 
discretion. However, the subroutines utilize the Overflow indicator by branching on 
its condition; therefore, if macro-instructions are used, the overflow Check switch 
must be set to the "Program" position. 
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7. Depress the Start key on the console. If the DEND statement contained 
an operand, the computer will execute a branch to the address specified 
in the operand. If no operand was present in the DEND statement, the 
operator must manually branch to the first instruction he wishes executed 
in his object program. 

ERROR MESSAGES AT OBJECT TIME 

In the 1620 floating point subroutines, the presence of certain special 
conditions will cause an error message of the following form to be 
typed out: 

xxxxxooxx 
~ ~ 

R S 
R is the address of the next instruction in sequence in the main program 
and S is a code that identifies the special condition. 

Except in the case of characteristic overflow or underflow where the 
subsequent course of action depends on the digit at 401, a subroutine 
will always halt immediately after typing the error message. The code 
in the error message tells the operator why the subroutine has stopped. 
He may then use the return address and insert a branch instruction at 
location zero that will return control to the main program, or in some 
cases he may continue execution of the subroutine by pressing the Start 
key on the console. 

The following are the special conditions that can arise in the floating 
point subroutines and the error code associated with each one: 

01 FA, FS 
02 FA, FS 
03 FM 
04 FM 
05 FD 
06 FD 
07 FD 

08 FSQR 

09 FSIN, 
FCOS 

10 FSIN, 
FCOS 

11 FEX 
FEXT 

Characteristic overflow. 
Characteristic underflow. 
Characteristic overflow. 
Characteristic underflow. 
Characteristic overflow. 
Characteristic underflow. 
Attempt to divide by a floating point number with a zero 
mantissa. May not continue execution of the subroutine. 
Attempt to take the square root of a negative number. May 
press the Start key to continue execution of the subroutine, 
finding the square root of the absolute value of the number, 
or may branch back to the main program. 
Input argument has a characteristic greater than L (mantissa 
length). May not continue execution of the subroutine as all 
significance would be lost in the result. 
Input argument has a characteristic greater than or equal to 
03 and less than or equal to L (mailtissa length). May continue 
execution of the subroutine with some loss of significance in 
the result. 
Characteristic overflow. Course of action depends on digit at 
location 401. 
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12 FEX 
FEXT 

13 FLN 
FLOG 

14 FLN 
FLOG 

Characteristic underflow. Course of action depends on digit at 
location 401. 
Input argument has zero mantissa. May not continue execution 
of the subroutine. 
Input argument is negative. May continue to execute the sub­
routine, computing with the absolute value of the number. 

PROCEDURES FOR COMPILING FORTRAN PROGRAMS 
ON A 1620 CARD SYSTEM 

COMPILING A FORTRAN PROGRAM 

Four card decks are provided for the 1620 Fortran system: the Fortran 
compiler deck, the Fortran subroutine deck for computers with the auto­
matic division special feature, a subroutine deck for computers without 
the automatic division feature, and a subroutine deck for computers with 
the floating point hardware special feature. The sequence of operations 
in obtaining an object program is as follows: 

1. Clear core memory to zeros. 
2. Depr~ss Reset key. 
3. Set the Overflow Check switch to "Program" and the I/O and Parity 

Check switches to "Stop." 
4. Place blank cards in the punch hopper and depress the Punch Start key. 
5. Place the Fortran compiler deck in the read hopper. 
6. Depress the Load key. The compiler deck will be read in and the load 

routine will be punched. 
7. When the compiler deck has been read in, the following message will be 

typed, and the computer will halt in the manual mode. 

ENTERSOURCEPROGRAM,PUSHSTART 

8. Set the console program switches. The functions of the program switches 
at compile time are as follows 

Switch lOn-Causes the source statements and the object time address 
of the first compiled instruction to be listed at the console 
as they are processed. Statements will be listed· with the 
object time address of the first instruction compiled from 
the source statement. 

Off-Source statements are not listed. 
Switch 2 On-Causes Trace instructions to be compiled. The Trace 

feature is discussed on page 322. 
Off-Trace instructions are not compiled. 

Switch 3 On-Input to the compiler (that is the source statements) is 
being entered via the console typewriter. 

Off-Source program entered from card reader. 



Console Operating Procedures 319 

Switch 4-This switch is used in conjunction with switch 3 if and 
only if switch 3 is in the "On" position. It provides the 
operator with the ability to restart the typing of a state­
ment if an error has been made. Switch 4 is normally off. 
When a typing error is made in a source statement and is 
to be corrected, switch 3 is placed on, the Release and 
Start keys depressed, and then switch 4 turned off. The 
operator can now retype the statement. 

9. If the source program is to be entered from cards, place the source deck 
in the read hopper. Depress the Reader Start key. 

10. Depress the Start key on the console. 
11. Two methods of source program input may be used under control of 

program switch 3. 
(a) If the source statements are entered from the typewriter (switch 3 on) , 

the compiler will transfer control to the console typewriter to await 
the first statement. Type one source statement followed by a record 
mark. Depress the Release and Start keys. The statement will be 
compiled and the machine language instrnctions punched. The type­
writer carriage will return after each statement has been processed 
to await the entry of the next statement. This routine is repeated 
until an End statement is sensed. 

(b) If the source statements are being entered from cards, each state­
ment will be entered separately. It will be compiled and the machine 
language instructions punched. 

12. Sensing of the End statement signals the compiler that the entry of source 
statements is completed. The computer halts in the manual mode and the 
following message will be typed: 

PROG SWI ON FOR SYMBOL TABLE, PUSH START 

13. If it is desired to get a listing of the symbol table, put program switch 1 
On. If the listing is not desired, turn program switch 1 off. 

14. Depress the Start key on the console. If program switch 1 is on, a 
listing of the symbol table is typed. 

15. The computer will halt in the manual mode and the following message will 
be typed: 

SWI OFF TO IGNORE SUBROUTINES, PUSH START 

16. The operator is given a choice. He may process the subroutines at this 
time, or he may wait until he runs the object program to process the 
subroutines. 

17. If it is desired to process the subroutines at this time, turn program switch 
Ion. If program switch 1 is turned off depress the Start key on the 
console. The message in step 20 is typed and the procedure in step 21 
should be followed. 
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18. Place the appropriate subroutine deck in the read hopper. Depress the 
Reader Start key. 

19. Depress the Start key on the console. The subroutine deck will be read 
in and the required subroutines will be selected and punched. 

20. After the required subroutines have been punched the computer will halt 
in the manual mode and the following message will be typed: 

PROCESSING COMPLETE 

21. With the Non-Process Run-Out key run the cards out of the punch feed. 
The object deck is in the punch stacker. Remove the last two cards as 
they will be blanks. 

ERRORS IN THE SOURCE PROGRAM 

During compilation a number of tests are made for source program 
errors. If an error is found in a source statement, an error message in the 
form "ERROR NO. n" is typed, where n is the error code, and processing 
continues. The errors detected are as follows: 

ERROR No. CONDITION 

1 Incorrectly formed statement. 
2 Subscripted variable for which no Dimension statement has 

previously appeared in the program, or a dimensioned variable 
is used without subscripts, or a variable used in a Dimension 
statement has already appeared in the source program. 

S Floating point number not in allowable range of values, or fixed 
point number contains more than 4 digits. 

4 Symbol table full. 
5 Mixed mode expression. 
6 Variable name in an expression contains more than 5 characters. 
7 Switch number has been omitted in an If (Sense Switch) state­

ment or the first character following the right parenthesis in an 
If statement or If (Sense Switch) statement is not a digit. 

8 A comma follows the statement number in a Do statement 
(for example, DO 1, I = 1, 10). 

9 A Dimension statement ends with a comma, or more than 2 
dimensions have been specified in a Dimension statement (for 
example DIMENSION A (10, la, 10)). 

10 A Format statement does not have a statement number. 
11 Incorrect representation in a Format statement. 

( a ) Used special characters ( =, + , -, and so forth) in a 
numerical field specification. 

(b) Alphabetic characters other than E, F, or I in a numerical 
field specification. 

( c) A decimal point is omitted in E- or F -type numerical field 
specifications. 

( d ) N umber of positions to the right of the decimal has not been 
given in an E- or F-type numerical field specification. 



Console Operating Procedures 321 

(e) A record mark appears in the numerical field specification 
or an alphameric field specification. 

(f) The first character following the word Format is not a left 
parenthesis. 

12 The total record width specified in a Format statement is greater 
than 87 characters. 

13 A Format statement number has been omitted in an I/O state­
ment. 

Another error message is typed if the compiled instructions and 
required data storage not including relocatable subroutines will, at object 
time, exceed the storage capacity of the 1620. This message is typed at 
the point in the compilation of the source program where overlap occurs. 

Compilation will continue, and the message will be typed after each 
statement thereafter. 

If the inclusion of any of the relocatable subroutines causes an overlap 
the following message is typed as the subroutines are loading: 

OVERLAP XXXXX POSITIONS 

The XXXXX is the number of core storage positions of overlap between 
the end of the object program and the data storage area. 

SEQUENCE CHECKING THE FORTRAN COMPILER AND 
SUBROUTINE DECKS 

FORTRAN COMPILER 

The cards comprising the Fortran compiler deck are punched with 
sequence numbers in columns 76 through 80 and the deck must be 
loaded in sequence. If the first card read is not card number 1, the 
machine will stop with an operation code of 00 displayed in the Opera­
tion Register lights. If cards 2 through 24 are not read in the proper 
sequence, the message "CARDNN," where NN is the number of the 
missing card, will be typed on the console typewriter and the com­
puter will halt. The cards must be removed from the reader and placed 
in proper order. Core storage must be cleared to zeros before the deck 
is read in again starting with card 1. 

Beginning with card number 25, if any card is out of sequence, the 
console typewriter carriage will be returned, and the following message 
will be typed, 

CARD ONNNN OUT OF SEQUENCE 

and the computer will halt. When this occurs, the card numbered 
ONNNN has been read in out of sequence. Remove the cards from the 
reader and put the proper card in place of the one out of sequence. 
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Put that part of the deck that has not yet been loaded into the read 
hopper, starting with the card replacing card number ONNNN. Depress 
the Reader Start key, and continue reading by depressing the Start 
key on the 1620 console. 

FORTRAN SUBROUTINES 

The cards in the subroutine deck have a sequence number punched 
in columns 76 through 80, and they must be loaded in sequential order, 
If cards numbered from 1 through 8 are not read in proper sequence, 
the computer will halt with an invalid operation code displayed in the 
Operation Register lights. If this occurs, remove the cards from the 
reader, place them in proper sequence, and replace the deck in the read 
hopper. Depress the Reset key and then the Load key. 

Any other card out of sequence will cause the message. 

CARD OUT OF SEQUENCE 

to be typed on the console typewriter, and the computer will halt. The 
card which has been read out of sequence is the second card from 
the back in the read stacker. All preceding cards have been loaded 
properly. Remove from the reader the cards that have not been loaded, 
put them into the correct sequence, and replace the deck in the read 
hopper. To continue reading the subroutine deck, depress Reader 
Start and Start keys. 

Note: Once a source program has been debugged and compiled it is necessary 
to load the object deck only to run the program at some future date. The 
process of compilation does not have to be repeated. 

FORTRAN TRACE FEATURE 

The Fortran processor will, under console switch control (console 
switch 2 on), compile certain instructions into the object program that 
will enable the operator to trace the flow of the program and check its 
correctness. When the object program is executed, console switch 4 per­
forms the following functions: 

Switch 4 On-Causes compiled trace instructions to be executed. 
Off-Trace instructions are not executed. 

The trace output provided is the evaluated left-hand side of each 
executed arithmetic statement, typed at the left margin. Normal output, 
resulting from Punch, Print, and Type statements is not inhibited. The 
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output fonnat of the trace data is E14.8 for floating point data or I(w-l) 
where w is the specified width. 

Note that console switch 4 serves a dual function during execution of 
the object program, that is, provision of trace data and correction of 
input data incorrectly entered at the console keyboard. Thus when 
running in the trace mode, the operator should tum off CS4 before typing 
input data. Following the entry of the last datum on the list, he should 
(after depressing the Record Mark and Release keys) depress SIE two 
or three times, tum the switch on, and depress the Start key. 

RUNNING THE OBJECT PROGRAM 

The object deck contains a load routine, all the constants and instruc­
tions, the arithmetic tables, and the required subroutines if they were 
processed at compile time. The object program is run in the following 
manner: 

1. ( a) After the message in step 20 (see page 320) of the compiling pro­
cedure has been typed, remove the object deck from the punch 
stacker. (Remember to Non-Process Run-Out the last card) and 
place the deck in the read hopper. Depress the Reader Start key 
and the Start key on the console. The object deck will read in. 

(b) If the object program is being run at some future time after com­
pilation the following procedure is used. 
( 1 ) Clear core memory to zeros. 
(2) Depress the Reset key. 
(3) Set the Overflow Check switch to "Program" and the I/O and 

Parity Check switches to "Stop". 
( 4) Place the object deck in the read hopper. 
(5) Push the Load key. The object deck will read in. 

2. After the object deck has been read in, one of the following messages will 
be typed and the computer will halt in the manual mode. 

LOAD DATA 
or ENTER SUBROUTINES, PUSH START 

3. The message "LOAD DATA" will type if the subroutines were processed 
at compile time. If this message types omit the next three steps. 

4. If the message "ENTER SUBROUTINES, PUSH START" types, place the 
appropriate subroutine deck in the read hopper and depress the Reader 
Start key. 

5. Depress the. Start key on the console. The subroutine deck will be read 
in, and the required subroutines selected and stored for use by the object 
program. 

6. After the required subroutines have been selected and stored the com­
puter halts in the manual mode and the following message is typed: 

LOAD DATA 
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7. If data is being entered from cards, place the data cards in the read hopper. 
8. Set margins and tab stops on the typewriter as desired. This will apply 

only if output is to be typed. If the output is to be punched, place blank 
cards in the punch hopper, and push the Punch Start key. 

9. Set the program switches. Program switches 1, 2, and 3 are completely 
at the operators disposal at object time. If the source program contained 
If (Sense Switch) statements, the switches are set accordingly. Program 
switch 4 has a dual function at object time. 

Program Switch 4 On-If trace instructions were compiled (program switch 
2 on at compile time), they will be executed. 

Off-Compiled trace instructions are not executed. 
When entering data from the typewriter (through use 
of the Accept statement) this switch provides the 
ability to correct a typing error. Switch 4 is normally 
off.4 If an error is made, set switch 4 on, depress the 
Release and Start keys, and turn switch 4 off. The 
data may now be retyped. 

10. Depress Start key. Program execution will begin. 

TYPEWRITER ENTRY OF DATA 

When data is to be entered from the typewriter, the typewriter car­
riage returns and control is transferred to the typewriter. Enter the data 
according to the formal specification. Depress the Release and Start keys 
on the console. Processing will continue. 

ERROR MESSAGES AT OBJECT TIME 

A number of error checks have been built into the Fortran subroutines. 
The basic philosophy that has been followed with respect to an error 
situation is to have an error message typed out, to set the result of the 
operation equal to the most reasonable value under the circumstances, and 
to have the program continue. Listed below are the error checks that 
exist in the subroutines, the error codes that are typed out, and the value 
to which F AC is set before the program continues. In the list it will be 
noted that the terms Overflow and Underflow occur several times. Over­
flow means that the characteristic of the result has exceeded 99. Under­
flow means that the characteristic of the result is less than -99. 

4 If switch 4 is on to execute trace instructions, it must be turned off prior to data 
entry from the typewriter. After the data has been correctly entered and the Release 
key has been depressed, depress the Stop/SIE key three times. Switch 4 may then be 
turned on again and the Start key depressed. 
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ERROR CHECK 

Overflow in FAD or FSB. 

Underflow in FAD or FSB. 

Overflow in FMP. 

Underflow in FMP. 

Overflow in FDVor FDVR. 

Underflow in FDV or FDVR. 

Zero divisor in FDV or FDVR. 

Zero divsor in FXD or FXDR. 

Argument in FIX ~ -10000" 

Argument in FIX ~ 10000" 

Loss of all significance in FSIN or 
FCOS. 

Zero argument in FLN. 

Negative argument in FLN 

Overflow in FEXP or FEXN. 

Underflow in FEXP or FEXN. 

Negative argument in FAXB. 

Negative argument in FSQR. 

Input data in incorrect form or is out-

ERROR 

CODE 

E1 

E2 

E3 

E4 

E5 

E6 

E7 

E8 

E9 

E9 

Fl 
F2 

F3 
F4 

F5 

F6 

F6 

side the allowable range. F7 

Output data outside allowable range 
or in a form not acceptable to the 
applicable format specification. F8 

Input or output card record is longer 
than 72 characters, or typewriter 
record is greater than 87 char­
acters, or there is an element in 
an input or output list· for which 
there is no specification in the cor-
responding Format statement. F9 

" Floating point hardware system only. 

CONTENTS 

OF FAC 

9999999999 

0000000099 

9999999999 

0000000099 

9999999999 

0000000099 

9999999999 

9999 

9999 

9999 

9999999999 

9999999999 

Ln Ixl 
9999999999 

0000000099 

IAIB 
VTxf 

325 



Appendix VIII 

The Internal Organization 
of Basic 1620 Fortran 

The purpose of this material is to give the student a basic knowledge 
of the construction of the Fortran compiler. 

The heart of the Fortran system lies in the proper organization of 
three major tables. These are: 

1. The Symbol Table 
2. The Table of Encountered Operations 
3. The Table of Addresses of Encountered Symbols. 

THE SYMBOL TABLE 

The symbol table occupies core locations 19999 to 17490 at compile time. 
During an initialization phase a special 10-digit field is placed in the 
symbol table area from its beginning to location 17499. This symbol 
consists of 8 zeros and 2 record marks (00000000:1::1:). A single 10-char­
acter field, consisting of 9 zeros and a single record mark, is then located 
at 17489. This special symbol (000000000:1:) signifies the end of the 
symbol table. 

A symbol table look-up operation occurs each time a variable, constant, 
or statement number is encountered. If the symbol is in the table, its 
object time address is determined and stored. If the symbol is not dis­
covered to be in the table, it is placed there and its object time address 
is also determined and stored. 

326 
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In order to determine if a symbol is in the symbol table, a brute force 
comparison is made with every occupant of the symbol table until (1) 
a successful comparison is made (the symbol was placed in the table at 
some previous time), (2) the symbol OOOOOOOOH is encountered (this is 
the end of the symbol table at present and also the first_available location 
for storing the symbol at hand) or (3) the symbol 000000000+ is en­
countered (the symbol table is full). In this fashion, mere mention of 
a symbol defines it. 

The first 12 symbols in the symbol table are special function names of 
relocatable subroutines supplied with the system. A listing of these 
follows. 

LOCATION NAME NUMERIC FORM 

19999-19990 SIN 6249550000 
19989-19980 SINF 6249554600 
19979-19970 COS 4356620000 
19969-19960 COSF 4356624600 
19959-19950 ATAN 4163415500 
19949-19940 ATANF 4163415546 
19939-19930 EXP 4567570000 
19929-19920 EXPF 4567574600 
19919-19910 LOG §:356470000 
19909-19900 LOGF 5356474600 
19899-19890 SQRT 6258596300 
19889-19880 SQRTF 6258596346 
19879-19870 OOOOOOOOH 

17499-17490 QOOOOOOOH 
17489-17480 000000000+ 

In the event that a subroutine is added to the subroutine tape or card 
deck, its name will appear in the symbol table after the entry of SQRTF. 
Should the spelling of a function name be changed, the numeric form 
of the symbol table entry will be altered accordingly. 

The address of the special function area's last entry (19889 in our case) 
is retained, and any subsequent successful table look-up operation, whose 
object time address is greater than or equal to the retained address, is 
assumed to be a subroutine name as opposed to a genuine symbol. 

THE TABLE OF ENCOUNTERED OPERATIONS 

As operation symbols are encountered during the scan of a statement, 
they are stored in this table. Compilation can begin before a statement has 
been completely scanned and depends upon the difference of rank within 
a hierarchy between the operation at hand and the one previously dis­
covered. 
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THE TABLE OF ADDRESSES OF ENCOUNTERED SYMBOLS 

The object time address of all symbols in any statement are discovered 
by use of the symbol table look-up operation and are stored in this table 
(T AES ). Each entry is a 5-digit address plus certain information about 
the symbol at hand (fixed, floating, and so forth). 

Distinction should be made concerning the compile time address of a' 
symbol and the object time address of a symbol since they are not 
necessarily the same. 

THE FLOATING ACCUMULATOR 

A special 10-digit location has been reserved for computational pur­
poses. This area, known as the floating accumulator (F AC ), occupies 
positions 51-60 of core at object time. All object time floating point 
arithmetic and most fixed point arithmetic is done using the floating 
accumulator as an intermediary device. 

DETERMINATION OF CATEGORY 

The presence or absence of an equal sign determines whether or not 
any source statement is an arithmetic statement. The only exception to 
this rule is the Do statement. However, a Do contains an equal sign, a 
comma, and no left parenthesis. In this way it is identified as such. 

Events which Precede Determination of Category: 

1. Place a record mark after the first nonblank character in a scan from right 
to left.! 

2. Test for comment statement. 
3. Left-justify statement by forcing out all leading blanks. 
4. Process statement number if existent. 
5. Force out all blanks in the statement unless a Format statement. 
6. Scan for an equal sign. 

CATEGORIES 

Category 1 will refer to all arithmetic statements. Category 2 will refer 
to all statements of a nonarithmetic nature. 

Certain subroutines are assumed to be at fixed object time locations. 
These subroutines are referenced and utilized by statements of both 
categories. Below is a list of all nonrelocatable subroutines by name, 
symbolic name, and, where necessary, function. Symbolic names marked 
by an asterisk will call for the relocatable EXP and LOG (base e) sub-

! Card system only. -
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routines. The size of this nonrelocatable package causes object time 
programs to begin at location 08300. 

NAME 

Floating Subtract 
Floating Add 

SYMBOLIC NAME 

Floating Multiply 
Floating Divide Reverse 
Floating Divide 
Floating A-B 
Floating AB 
Floating A-I 
Floating AI 
Fixed Subtract 
Fixed Add 
Fixed Multiply 
Fixed Divide Reverse 
Fixed Divide 
Change Sign 
Bring to Accumulator 
Take from Accumulator 
Fix a Floating Number 
Float a Fixed Number 
Read Card 
Read Tape 
Read Typewriter 
Write Card 
Write Tape 
Write Typewriter 
Input/Output 

Category I Statements 

FSB 
FAD 
FMP 
FDVR 
FDV 
FAXBN" 
FAXB" 
FAXIN 
FAXI 
FXS 
FXA 
FXM 
FXDR 
FXD 
RSGN 
TOFAC 
FRMFAC 
FIX 
FLOAT 
RACD 
RAPT 
RATY 
WACD 
WAPT 
WATY 
I/O 

FUNCTION 

FAC-B ,FAC 
FAC+B • FAC 
FAC*B , FAC 
I/(FAC/B) • FAC 
FAC/B • FAC 
l/e(B*LOG(A)) - FAC 
e(B*LOG(A)) , FAC 
I/(A*A*A* ... *) -FAC 
A*A*A* ... *A -FAC 
FAC-J ,FAC 
FAC+J - FAC 
FAC*J .FAC 
l/(FAC/J) , FAC 
FAC/J ' FAC 
-FAC FAC 
B -FAC 
FAC ·B 
B - J 
J - B 

The logic of scanning arithmetic statements is similar to a method 
employed by the Polish Logician J. Lukasiewicz. This method, some­
times termed "Polish Notation" consists of separating an algebraic state­
ment into two stacks. One of these consists of operations and the other 
consists of operands. Thus, the statement A - B is written as AB-. The 
statement A + B*C may be written as AB + C* or ABC + *. 

The Fortran scan builds up two tables, the combination of which 
simulates this notation. 

These tables, described previously as the Table of Addresses of En­
countered Symbols (TAES) and the Table of Encountered Operands 
(TEO), rely upon an order of rank in a hierarchy in arithmetic operations. 
Both tables may be likened to an accordion: initially closed, expanding, 
contracting, expanding, contracting, and finally closed. As the statement 
is scanned, these tables expand. But certain conditions can cause them 
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to expel information and contract before further expansion. The ex­
pelled information becomes the compiled instructions. 

Compilation of arithmetic statements relies upon the following rank 
in the hierarchy of operations: 

Lowest :I: 
) 
+ and -
* and / 
** 

Highest F 
No Value ( 

The :I: and F are not part of the programmer's repertoire of Fortran 
instructions and are internally generated. The record mark is generated 
to end a statement in the card system and appears there automatically 
in the tape system. The F is entered as an operation whenever an in­
struction requests a relocatable subroutine linkage (Sine, Cosine, and 
so forth). 

The left parenthesis has no hierarchal value and may be considered 
neutral. The function of a left parenthesis is to act as a mate for the 
right parenthesis. 

During the scan, each operation that is encountered causes investigation 
of the operation previously encountered. If the present operation is of 
lower or equal hierarchal rank to the previous operation, compilation 
begins immediately. 

Thus, the statement 
Y = A + B*C 

requires complete dissection before compilation is forced (by the record 
mark) since the operations are encountered in the following order: 

l. 
2. + 
3. * 

The statement 
Y = A*B + C 

will begin compilation when the + is encountered because the operation 
previous to + is * which is of greater hierarchal rank. Note also that 
the statement 

Y = A*B + I 
which is illegal (mixed mode), will not be noted as such until after the 
compilation of A*B. 
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Also during the scan, the symbols have their object time addresses 
determined by the symbol table look-up scheme. These addresses are 
stored in T AES. Likewise, each operation is either (1) put in TEO, 
(2) forces compilations and is then put in TEO, or (3) forces compilation 
and is neutralized as in the case of the right parenthesis. Often, an 
operation may force compilation many times before being allowed en­
trance into TEO, as we shall soon see. The t, having lowest hierarchal 
value, acts as a universal forcer and causes everything to be expelled 
from the tables into compiled form. Thus, the entry of the t into 
TEO signals the end of compilation for a statement. 

Example: X = A + B 

TAES 
X 
A 
B 

TEO 

+ 

The scan routine had set up the above two tables just before the record 
mark was encountered. The presence of the record mark, having 
hierarchal rank lower than +, causes compilation. 

The last element in TEO is + which requires two operands and these 
are chosen to be the last two entries in TAES. 

The + generates two model statements which would suffice for the 
addition of any two floating point numbers. These statements, with 
addresses yet to be supplied are as follows: 

BTM TOFAC, 
BTM FAD, ___ _ 

These missing addresses are supplied by T AES. This generates a com­
plete model for the addition of the floating point numbers A and B. 

BTM TOFAC, A 
BTM FAD, B 

The FAD routine assumes that one argument is in F AC and that the 
address of the other has been given to it. 

These two instructions, being complete, are expelled from the system 
and our tables are reduced to the following: 

TAES 
X 
TEMPI 

TEO 

The TEMPI entry in T AES denotes two very critical items both of 
which seem utterly unnecessary at first glance. 
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1. TEMPI is the location of a temporary storage location should it be 
needed during further portions of the compilation. 

2. Since this temporary location is not in use (a code digit is missing 
in a specific location), there must be a previous result in FAC. 

A temporary location in use will be denoted by underlining it in TAES. 
In general, an operation that causes compilation does four things: 

1. Certain model statements are generated. 
2. The missing operands of these model statements are filled in using 

addresses (always the last two) of TAES. 
3. The operation and associated operands are removed from TEO and 

TAES permanently. 
4. A notation is made in T AES which signifies that something has just 

been compiled and the result, at object time, will have been left 
in FAC. 

Thus, the compiler, upon further compilation, does not know what 
has been done. It is only informed that something was done and the 
result has been left in F AC. 

In the example, sufficient coding has been generated to handle A + B, 
but coding must be generated to transfer this result to X. 

The record mark continues to force compilation of the program. The 
next element found in TEO is =, and the model statements generated 
are 

BTM TOFAC, __ _ 
BTM FRMFAC, __ 

The required addresses are found in TAES and this yields 

BTM TOFAC, TEMPI 
BTM FRMF AC, X 

However, since coding information in T AES tells the compiler that 
TEMPI is not in use, the first statement is determined to be unnecessary 
and is eliminated. This yields a complete compilation of X = A + B. 

In the same fashion, 

BTM TOFAC, A 
BTM FAD, B 
BTM FRMF AC, X 

X = A - B yields: 
BTM TOFAC,A 
BTM FSB, B 
BTM FRMF AC, X 

X = A*B yields: 
BTM TOFAC, A 
BTM FMP, B 
BTM FRMF AC, X 
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x = A**B yields: 

X = A yields: 

BTM TOFAC, A 
BTM FAXB, B 
BTM FRMF AC, X 

BTM TOFAC, A 
BTM FRMF AC, X 

X = -A yields: 
BTM TOFAC, A 
BTM RSGN 
BTM FRMF AC, X 

1= J - K yields: 
BTM TOFAC, J 
BTM FXS, K 
BTM FRMF AC, I 

I = A - B yields: 
BTM TOFAC, A 
BTM FSB, B 
BTM FIX 
BTM FRMF AC, I 
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Since numbers go into the symbol table just as genuine symbols do, 
the statement 

X = 2.*.0056 yields: 
BTM TOF AC, 2. 
BTM FMP, .0056 
BTM FRMFAC, X 

where the symbols 2. and .0056 represent the locations in the symbol 
table. At those locations, the numbers are stored as 

2000000001 
and 

~600000002 

Example: X = A + B*C/D 

Up to the point where the * is encountered, the tables have been 
developed to the following point: 

TAES 
X 
A 
B 

TEO 

+ 
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When the * is encountered, compilation is not forced because of the 
hierarchal relationship between * and +. Thus, the tables become as 
follows: 

TAES 
X 
A 
B 
C 

TEO 

+ 
* 

As the / is encountered, compilation is forced since / and * are of 
equal rank within the hierarchy. The compiled instructions are then 
as follows: 

BTM TOFAC, B 
BTM FMP, C 

Our tables are reduced to: 

TAES 
X 
A 
TEMPI 

TEO 

+ 

The / is now added to TEO and D is placed in TAES. 

TAES 
X 
A 
TEMPI 
D 

TEO 

+ 
/ 

The record mark (not shown) generates the remainder of the coding: 

BTM TOFAC, TEMPI 
BTM FDV, D 

The first instruction is seen to be unnecessary by the same logic as 
before. This yields: 

BTM FDV, D 

This leaves the tables as follows: 

TAES 
X 
A 
TEMPI 

The following is now compiled: 

BTM TOFAC, A 
BTM FAD, TEMPI 

TEO 

+ 

Now, TEMPI, not being in use, causes a composite of these instruc­
tions to be generated: 

BTM FAD, A 
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Our tables are further reduced. 

TAES 
X 
TEMPI 

The last instructions to be generated are 

TEO 

BTM TOF AC, TEMPI 
BTM FRMF AC, X 
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Only the second instruction is chosen and the compilation is complete. 

BTM TOFAC, B 
BTM FMP, C 
BTM FDV,D 
BTM FAD, A 
BTM FRMFAC, X 

These Fortran generated instructions are equivalent to the following 
algebraic statement: 

x = A + (B)(C) 
D 

The Fortran processor must make the assumption that at some 
point in the object program, the symbols A, B, C, and D will be 
properly defined before the Fortran generated coding for the statement 
X = A + B*C/D is encountered. 

For all further examples, whenever two instructions are generated 
and only one is chosen, we will show only the chosen one. 

'" 
Example: X = A*B + C**D/E 

The construction of the tables up to the point where the + is en­
countered is as follows: 

TAES TEO 
X 

A * 
B 

The + generates compilation of 

BTM TOFAC, A 
BTM FMP, B 

TAES 
X 
TEMPI 

TEO 

The + is now entered into TEO and C is placed in T AES. 

TAES 
X 
TEMPI 
C 

TEO 

+ 
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The ** is now encountered and placed in TEO as D is placed in T AES. 

TAES 
X 
TEMPI 
C 
D 

TEO 

+ 
** 

If two addresses are placed in T AES after any temporary location, it is 
automatically called into use. Since there is only one F AC, the reader will 
readily see that this is a necessary and sufficient condition for this action. 
This generates the following: 

BTM FRMF AC, TEMPI 

This changes the tables to the following: 

TAES TEO 
X = 
TEMPI + 
C ** 
D 

The / is encountered which generates the ** coding. 

BTM TOFAC, C 
BTM FAXB, D 

TAES TEO 
X 
TEMPI + 
TEMP2 

Now / may enter TEO and E may enter TAES. 

TAES TEO 
X 
TEMPI + 
TEMP2 I 
E 

The record mark generates the remainder of the coding. 

BTM FDV, E 

TAES 
X 
TEMPI 
TEMP2 

BTM FAD, TEMPI 

TAES 
X 
TEMP2 

BTM FRMFAC, X 

TEO 

+ 

TEO 
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The complete coding thus generated is: 

BTM TOFAC, A 
BTM FMP, B 
BTM FRMFAC, TEMPI 
BTM TOFAC, C 
BTM FAXB, D 
BTM FDV, E 
BTM FAD, TEMPI 
BTM FRMF AC, X 

The algebraic equivalent to this statement is 

CD 
X= E+ (A)(B) 
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Example: The following statement is presented algebraically so that the 
Fortran statement can be made more meaningful. 

A+B 
X = (C)(D) - E(F+G) 

X = (( A + B) / ( C* D)) - (E* (F + G) ) '* 

The scan proceeds until the tables appear as follows: 

TAES 
X 
A 
B 

TEO 

( 
( 

+ 
The right parenthesis forces coding and cancels one left parenthesis. 

BTM TOFAC, A 
BTM FAD, B 

This reduces the tables. 

TAES 
X 
TEMPI 

Further scanning increases the tables. 

TAES 
X 
TEMPI 
C 
D 

TEO 

TEO 

( 
/ 
( 

* 
" The extra parenthesis ar¢ in the statement for demonstration purposes. 
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The second operand in T AES after TEMPI forces coding. 

BTM FRMF AC, TEMPI 

TAES 
X 
TEMPI 
C 
D 

TEO 

( 

/ 
( 

* 
The encountered right parenthesis forces coding and cancels one left 

parenthesis. 

BTM TOFAC, C 
BTM FMP, D 

The tables are reduced. 

TAES 
X 
TEMPI 
TEMP2 

TEO 

( 

/ 

A second right parenthesis is encountered and continues to force coding. 

BTM FDVR, TEMPI 

The tables are reduced. 

TAES 
X 
TEMP2 

Further scanning increases the tables. 

TAES 
X 
TEMP2 
E 
F 

TEO 

TEO 

( 

* ( 
The second operand in T AES after TEMP2 forces coding. 

BTM FRMF AC, TEMP2 

TAES 
X 
TEMP2 
E 
F 

TEO 

( 

* ( 



The Internal Organization of Basic 1620 Fortran 

Further scanning increases the tables. 

TAES 
X 
TEMP2 
E 
F 
G 

TEO 

( 

* ( 
+ 

The encountered right parenthesis forces coding. 

BTM TOFAC, F 
BTM FAD, G 

The tables are reduced. 

TAES 
X 
TEMP2 
E 
TEMP3 

TEO 

= 
( 

* 
A second right parenthesis continues to force coding. 

BTM FMP, E 

The tables are reduced. 

TAES 
X 
TEMP2 
TEMP3 

TEO 

= 

The record mark forces the remainder of the coding. 

BTM FSB, TEMP2 
BTM RSGN 
BTM FRMFAC, X 

Thus, the entire compilation yields: 

BTM TOFAC, A 
BTM FAD, B 
BTM FRMFAC, TEMPI 
BTM TOFAC, C 
BTM FMP, D 
BTM FDVR, TEMPI 
BTM FRMFAC, TEMP2 
BTM TOFAC, F 
BTM FAD, G 
BTM FMP, E 
BTM FSB, TEMP2 
BTM RSGN 
BTM FRMFAC, X 
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INCLUSION OF RELOCATABLE SUBROUTINES 

Whenever a subroutine name is encountered, the address placed in 
T AES is the address, less 9, where the function name sans terminal F is 
stored. Even should the programmer use the terminal F form of the 
subroutine name, the address is still as described above. Thus, SQRT 
or SQRTF generates an address of 19890 in TAES. ATAN or ATANF 
generates an address of 19950 in T AES, and so forth. 

In addition, the operation F is stored in TEO. The programmer has 
no control over the F operation since it is internally generated. 

During compilation, a linkage is made to the address contained in 
TAES. At object time, a second link, located in that portion of the symbol 
table which originally contained the function name, will carry us to the 
subroutine's actual location in core storage. 

This location must be determined in the following fashion: at the 
end of compilation, the last location used by the object program is 
known through the location counter's value. Thus, if a Fortran program 
ends at location 12000, and relocatable subroutines have been called for, 
they are added, one at a time, beginning at location 12002. 

Since a subroutine's length is part of the information contained in the 
subroutine, the last location occupied by a specific subroutine of the re­
locatable type can be determined. Similarly, the first location needed 
for the next relocatable subroutine is determined. 

These first locations are used as the second, unconditional linkage point 
in the symbol table. 

The address of the argument is stored, by use of a BTM command, 
where the function name with terminal F was stored at compile time. 

Example: X = SQRT(B) 

TAES 
X 
19890 
B 

TEO 

F 
( 

The right parenthesis cancels the left parenthesis and the record mark 
generates all coding. 

BTM 19890, B 
BTM FRMF AC, X 

Example: X = A*SIN (B) 

TAES 
X 
A 
19990 
B 

TEO 

* F 
( 
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The right parenthesis cancels the left parenthesis and the record mark 
generates all coding. 

BTM 19990, B 
BTM FMP, A 
BTM FRMF AC, X 

Example: X = A + B*SQRT(C + ATANF(LOG(D*E) + SIN(P») 

The following coding is generated and we leave the verification to the 
interested student. 

BTM TOFAC, D 
BTM FMP, E 
BTM 19910, FAC 
BTM FRMFAC, TEMPI 
BTM 19990, P 
BTM FAD, TEMPI 
BTM 19950, FAC 
BTM FAD, C 
BTM 19890, FAC 
BTM FMP, B 
BTM FAD, A 
BTM FRMF AC, X 

SPECIAL NOTE ON THE SCAN 

The logic employed here is sufficient even for statements of the form: 

X=-(-A-B) 
BTM TOFAC, A 
BTM RSGN 
BTM FSB, B 
BTM RSGN 
BTM FRMF AC, X 

However, the 1620 Fortran compiler is able to reduce this statement 
to its algebraic equivalent before compilation. This yields 

X=A+B 
BTM TOFAC, A 
BTM FAD, B 
BTM FRMF AC, X 

This latter coding is much more desirable because of its brevity, and 
this is exactly what is produced by 1620 Fortran. 

In this way, a Fortran user may, from time to time, note discrepancies 
between the true object program he receives and the object program he 
expects to receive. This is due to the unary minus (- ( - A» and the 
exception given to this case in the algebraic decoding at compile time. 
It is this excellent feature which allows for identical compilations of such 
statements as 
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X=A*B 
X=(-A)*(-B) 
X=-A*(-B) 
X=-(A*(-B)) 

BTM TOFAC, A 
BTM FMP, B 
BTM FRMFAC, X 

Category 2 Statements 

I. DIMENSION 

A. Single Dimensioning: 

B. 

DIMENSION A(10), B(17) 
The symbol for which dimensioning has been requested is placed 
in the symbol table at the first available location. This is most likely 
the first statement encountered in a source program and hence will 
fall immediately following the last function name entry.2 Immediately 
below the symbol there are two code fields contained in one word.s 
The first field is five digits long and is the address of the last element 
in the array at object time. The second field is contiguous to the 
first and is a 4-digit number representing the amount of I index 
requested in the Dimension statement. 

The above example 

DIMENSION A(10), B(17) 
will yield the following symbol table entries assuming that they are 
encountered as the first statements of a source program. 

ENTRIES LOCATIONS 

4100000000 19879 

0001019789 19869 

4200000000 19859 

0001719619 19849 

Double Dimensioning: 

DIMENSION A(10, 15), BBAA(2, 7) 
The symbol table entries for the double Dimension are identical with 
the single Dimension entries. 

2 It is not mandatory to have the Dimension statements as the first statement in a 
source program in the 1620 Fortran system. 

3 In this discussion, a word is considered to be a 10-digit symbol table entry. 
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The above example 

DIMENSION A(lO, 15), BBAA(2, 7) 
will yield the following symbol table entries assuming that they 
are encountered as the first statements of a source program. 

ENTRIES LOCATIONS 

4100000000 19879 

0001018389 19869 

4242414100 198.59 

ClOO0218249 19849 

The digits in locations 19860 and 19840 of both examples have no 
significance. They are left-over elements. This is always true of 
the high-order digit of the second word required by single or double 
dimensioning. 

II. GO TO n: 

The Fortran location counter (called "L") is an increasing counter 
which states where the Fortran statements will fall at object time. Its 
initial address is 08300. If a Fortran statement generates two 12-digit 
instructions, the L counter is increased by 24 and will read 08324 as the 
next Fortran statement begins compilation. 

The assembly of Go To statements is highly dependent upon this 
counter but is totally independent of the order of encounter. Thus, the 

GOTOn 

may precede or follow the statement numbered n. For clarity, however, 
let us first consider the case where the Go To has preceded the numbered 
statement. 

A symbol table look-up operation is performed on nand n is stored as a 
fixed point, 4-digit number. Let us call this symbol table location Y. Thus, 
n is stored at locations Y through Y--3, inclusive. 

At some later point in the processing a statement with statement num­
ber n is encountered. Again a symbol table operation is performed on 
the 4-digit, fixed point number n but, this time it is found to have been 
stored previously at location Y. When this occurs, a 5-digit field repre­
senting the present value of the L counter is stored in the same word but 
at locations Y-5 through Y-9. 

Also, when the Go To statement was encountered initially, the following 
statement was generated: 

B Y-9 
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At load time of the object program the field at Y-5 through Y-9 is 
shifted right two positions and a Branch operation code (49) is inserted 
at location Y-9 and Y-8. The original digits at Y-4 and Y-3 have been lost. 

Thus, we have developed two successive Branch instructions. The first 
(B Y-9) carries us to a symbol table area where another branch takes 
us to the first instruction of that statement which bore statement num­
ber n. The Branch instruction generated by the Go To is only 7 digits 
long. Since the 1620 allows instructions to begin only at even locations, 
the L counter is increased by eight for every Branch instruction generated 
by Fortran. 

Example: 

1 GO TO 2 
2 GO TO 1 

The first available symbol table location is immediately after SQRTF. 
Thus, the statement number of the first statement is located in the symbol 
table thus: 

SQRTF 
0830000001 

19889 

19879 

Thus, the instruction 4919860 is generated by GO TO 2. The L counter 
is increased by eight and the next statement is read in. 
The GO TO 2 statement places the number "2" in the symbol table and 
generates a branch to that location minus nine. 

SQRTF 
0830000001 

0000000002 

19889 

19879 

19869 

Thus, statement 4919860 is generated by GO TO 2. The L counter is 
increased by eight and the next statement is read in. 

Statement 2 GO TO 1 is compiled as 4919870 and the symbol table 
appears as follows: 

SQRTF 
0830000001 

0830800002 

19889 

19879 , 
19869 

The two generated instructions are 4919860 and 4919870. 
At load time, the symbol table is altered to read (in part) 

SQRTF 19889 

4908300001 

4908308002 

19979 

19969 



The Internal Organization of Basic 1620 Fortran 

The combination of these four branches results in the following: 

III. PAUSE 

08300 
19860 
08308 
19870 

49 19860 
49 08308 
49 19870 
49 08300 

The Compiler generates a Halt instruction: 

48 XXXXX XXXXX 

Depressing the Start key allows the program to continue. 

IV. STOP 

The following four instructions are generated: 

RCTY 
WATY"STOP" 
H 
B *-36 
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Depressing the Start key causes the above sequence to be repeated. 
Note that "Stop" generates 44 digits as opposed to "Pause" which 
generates 12 digits. 

V. IF (SENSE SWITCH i) nl, n2 

The compiler generates two instructions. 

BCi STLOCnl 
B STLOCn2 

where STLOCnj is the symbol table location (less nine) corresponding 
to the symbol table look-up on the statement numbers nl and n2. A 
second branch is placed there in a fashion identical with that of GO TO n 
instructions. 

VI. IF(A) nl, n2, ns 

The compiler generates the following instructions: 

BTM TOFAC,A 
BD * + 20, 51 
B STLOCn2 
DORG*-3 
BNF STLOCng, 58 
B STLOCnl 
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VII. IF ( I) nl, n2, n3 

The compiler generates the following instructions: 

BTM TOFAC, I 
CM FAC, 0, 8 
BE STLOCn2 
BH STLOCn3 
B STLOCnl 

VIII. IF(EXPRESSION) nl, n2, n3 

The expression is evaluated and left in F AC. The rules for evaluation 
of an arithmetic statement have been discussed under Category 1 state­
ments. With the argument in F AC, the instructions generated are iden­
tical with those of IF (A) or IF (I) depending upon the nature of the 
expression. 

IX. COMPUTED GO TO 

GO TO (nb n2, ... , nj), N 
Each element in the array is treated in a fashion similar to an un­

conditional GO TO n. That is, an entry is made in the symbol table for 
each distinct statement number ni and also for the fixed point variable N 
(N = 1, j). 

Thus, if N is 1, a branch is generated to the first symbol table entry, nl' 
If N is i, a branch is generated to the i-th symbol table entry, ni' If N is 
Nmax, a branch is generated to the j-th symbol table entry, nj. The symbol 
table locations which are the intermediary stopping points for these 
branches will have their secondary addresses filled in as the numbered 
statements are encountered. 

A tabular array of these symbol table locations are contained in the 
object program but not as 5-digit addresses. The units digit of the 5-digit 
address is removed since all branches to the symbol table have a zero in the 
P 6 position. 

If the i-th way branch is to be taken (N = i), the i-th 4-digit set is 
placed in a Branch instruction of the form 49XXXXO. 

Example: GO TO (1, 12, 3, 4), N 

STATEMENT NUMBER 

1 
12 
3 
4 

SYMBOL 

N 

SYMBOL TABLE ENTRY 

19859 
19849 
19839 
19829 

SYMBOL TABLE ENTRY 

19819 
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The compiled instructions are always of the following form: 

MM 
SF 
AM 
TF 
TF 
B 
DORG 
DC 
DC 

DC 

N, - 4,10 
95 
99, * + 4* Nmax + 47 
* + 23, 99 
* + 17 
XXXXO 
*-3 
4, XXXX (symbol table loc nj) 
4, XXXX (symbol table loc nj -1) 

4, XXXX (symbol table loc n1) 

Let N = 2 for purposes of the example. 

LOCATION 

08300 
08312 
08324 
08336 
08348 
08360 
08368 
08371 
08375 
08379 
08383 

COMPILED INSTRUCTIONS 

MM N, -4, 10 
SF 95 
AM 99, 8387 
TF 8359, 99 
TF 8365 
B XXXXO 
DORG *- 3 
DC 4, 1982 
DC 4, 1983 
DC 4, 1984 
DC 4, 1985 
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Instructions 1, 2, and 3 above yield an address of 08379 in locations 95-99. 
Note also that location 08379 contains the first.digit of the field 1984 which 
are the first four digits of the symbol table location for the statement 
number 12. This composite, with the aid of the two TF instructions at 
8336 and 8348 produces 4919840 at location 8360. At location 19840, 
at object time, a second branch will then take the program to. the in­
struction generated by that statement which bore statement number 
12 at compile time. 

X. DO STATEMENTS (DO n 1= J, K, L) 

The following statements are generated by a Do: 

LaC TF(M) 
A(M) 
C(M) 
BNH 

I, J (, 8) 

I, L(, .8) } 
I, K(, 8) 
LOC+ 12 

Beginning of DO 

Outer Range 

The material in parenthesis refers to the use of Immediate instructions 
which are employed if the indices of the Do statement are fixed point 
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constants as opposed to fixed point variables. If the L index is not 
specified, the first statement of the outer range is 

AM 1,1,8 

Note that the outer range of the Do statement is generated immediately 
and later located at that point in the object program immediately follow­
ing the instructions compiled for the statement with statement number n. 

XI. CONTINUE 

If a Continue statement is not associated with a Do statement, it 
generates nothing. If it is associated with a Do statement, it is equiv­
alent to attaching its statement number to the instructions generated for 
the outer range of the Do statement. This is to circumvent the rule 
concerning Fortran DO-loops not ending in a branch: 

DO 1 1=1,100 

IF(A)I, 2, 2 
1 CONTINUE 
2 .......... . 

GO TO 1 

XII. INPUT/OUTPUT and FORMAT 

Examination of the I/O statement leads one to suspect that the coding 
generated by any I/O must be able to find a path to the coding generated 
by the associated Format statement independent of the physical rela­
tionship between them. Thus, the statements 

READI, A, B, I 

1 FORMAT (FIO.5, E7.4, 13) 

must operate at object time in a fashion identical with 

1, FORMAT (FlO.5, E7.4, 13) 

READ1, A,B, I 

and the order of encounter of these "mated" statements must be of no 
significance. 
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Format generates certain coding in the object program at that point 
where the Format statement is encountered. Thus, the associated I/O 
statement must find this information in the object program at the object 
level. 

Consider as a first case, the I/O statement encountered before the 
associated Format statement. 

All I/O statements use two symbol table words. If the I/O statement 
is encountered first, the setup in the symbol table is as follows: 

QOOOOQ~ZZZ 
OOOOOQZZZZ 

Y 
Y + 10 

where Q is a code identifying an I/O-Format entry in the symbol table 
and ZZZZ is the statement number referencing the Format statement. 

As the associated FORMAT statement is encountered, the symbol Y 
has more information added to it. After the associated FORMAT state­
ment is compiled, the symbol Y + 10 will have more information added 
to it. Thus, the symbols are altered to appear as follows: 

~XXXXQ~ZZZ 
YYYYYQZZZZ 

Y 
Y+ 10 

where XXXX is essentially the L counter value at the time the Format 
statement is encountered and YYYYY is the first even location in core 
after the material generated by the Format statement. 

A third and final change is made to these symbols at the object level 
so that their final appearance is in the following form: 

49XXXXXZZZ 
49YYYYYZZZ 

Y 
Y+ 10 

The I/O statement itself generates N + 1 instructions where N is the 
number of elements in the I/O list. The middle N - 1 instructions are 
of the form 

BTM I/O, Al 
BTM I/O, Az 
BTM I/O, As 

BTM I/O, An _ 1 

The N + 1st instruction is of the form 

BTM FINISH, An 

and the first instruction depends upon which I/O device is requested. 
However, it is of the general form 

BT SUB, Y - 3 
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where SUB is a specific subroutine such as RAPT W ACD, etc. and 
Y - 3 is the object time address of that symbol table area where the 
address of the Format information may be found. 

Thus, READ 1, A, B, I will generate the following: 

BT RACD, LOCI - 3 (location of 
BTM I/O, A the statement 
BTM I/O, B number 0001 less 
BTM FINISH, I three) 

The statement TYPE 5, A, B, C, D, E generates the following: 

BT WATY, LOC5 - 3 
BTM I/O, A 
BTM I/O, B 
BTM I/O, C 
BTM I/O, D 
BTM FINISH, E 

The only exception to the above rule is in the statement 

READ 1 

or another of that nature. In that case, a notation is made that no 
elements are in the list signifying Hollerith input or output. 

When the Format statement is encountered the compiler generates 
one instruction and P pieces of information where P is dependent upon 
the Format specification. 

The first information generated is an instruction of the form B Y + l. 
At object time, Y + 1 contains a second branch which carries us around 
the Format coding. 

The remainder of the information consists of a 5-digit code specifying 
the type of Format [E, F, I, / , ), ( , H, X], and, if the Format is Hollerith, 
the actual double-digit representation of the Hollerith information. 

If the FORMAT information is of the E, F, or I type, the 5-digit code 
is of the form 

Xwwdd 

where ww is the width of the field, dd is the number of decimal places 
after the decimal, and X is a code digit specifying E, F, or I type con­
version (5, 6, and 9 respectively). 

If the format information is of the Hollerith or X type, the five digit 
code is of the form 

HHHHH 

and contiguous to the code, the size of the Hollerith Field and the double­
digit representation of the Hollerith information. 
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The 5-digit code for a left and right parenthesis will be noted as 
LLLLL and RRRRR respectively. Slash will be noted as SSSSS. 

Thus the following material will be generated by the statement 

5 FORMAT (4HAb = bE14.8, 6HbbBb = b/FlO.2) 

B STLOC5 + 1 
LLLLL 
HHHHH044l003300 
51408 
HHHHH06000042003300 
SSSSS 
"fH002 
RRRRR 

B STLOC5 + 1 will carry us around this Format information when 
it is encountered during the sequential operation of the object program 

As a further example, consider the Format statement 

3 FORMAT (13, lOX/ / /F7.2, 13HTHEbANSWERbIS) 

The information generated is as follows: 

B STLOC3 + 1 
LLLLL 
90300 
HHHHHIOOOOOOOOOOOOOOOOOOOOO 
SSSSS 
SSSSS 
SSSSS 
60702 
HHHHHI363484500415562664557004955 

In the event that a Format statement is encountered before the cor­
responding I/O statement, the only difference that will occur in the 
construction of the output information is the setup of the symbol table 
words Y and Y + 10. These words will have been completely formed 
before the I/O statement is encountered. If the I/O statement is en­
countered first, symbol table words Y and Y + 10 are only partially 
complete when the Format is encountered and are completed therein. 

Problems 

For the- following examples, give the proper Fortran statement needed 
to produce the correct algebraic result and show the coding generated 
by the compiler. 
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1. X = A +B - C - (D) (E) 

2. X = -v' A2 - C---r£)- EJ 
3. X=A+ B 

---
C+D 

=--=-
E+F 

---
G+H 

4. Z = LOG VTE-=Fj2 
5. X = A + B (E) (F) 

C-D G-,;-H 

6. ALFA = BETA + GAMMA + RHO - CHI 

7. <p = a2 + {32 - 10 

8. A = 150(LOG(SIN(COS(A))) ).3 

9. Z=TAN-l(G)-A-13-C-D-E-F-,;-G 

Given the following Fortran object programs, construct the Fortran source 
programs which generated the coding. 

1. BTM TOFAC,A 
BTM FRMF AC, X 

2. BTM TOFAC,A 
BTM RSGN 
BTM FRMFAC, X 

3. BTM TOFAC,A 
BTM FAXI, I 
BTM FAD,B 
BTM FRMFAC, X 

4. BTM FAC, A 
BTM FAD,B 
BTM FRMF AC, TEMPI 
BTM TOFAC,C 
BTM FAD, D 
BTM FMP, TEMPI 
BTM FRMF AC, TEMP2 
BTM TOFAC,E 
BTM_FAD, F 
BTM FMP, TEMP2 
BTM FRMF AC, TEMP3 
BTM TOFAC,G 
BTM FAD, H 
BTM FMP, TEMP3 
BTM FRMFAC, X 
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5. 8300 TFM 1,1,8 

8312 BT RACD, STLOC2 - 3 

8324 BTM I/O, A 

8336 BTM FINISH, B 

8348 BTM TOFAC,A 

8360 BTM FAD,B 

8372 BTM FRMFAC,X 

8384 BT W ACD, STLOC3 - 3 

8396 BTM FINISH, X 

8408 AM 1,1,8 

8420 CM 1,100,8 

8432 BNH 8312 

8444 H 

8456 B STLOC2 + 1 

LLLLL 

60502 

60401 

RRRRR 

8484 B STLOC3 + 1 

LLLLL 

HHHHH 1067003300000000000000 

60502 

RRRRR 



Glossary 

Absolute Address-An instruction address in which five or fewer numeric digits 
are used to specify an actual 1620 core storage location. Also called actual 
address. 

Access Time-The time required to transfer a unit of information to or from 
storage from or to the central processing unit. 

Accumulator-A unit in a computer or hand calculator where the results of 
an arithmetic operation may be formed. 

Acronym-A name which is formed from the initial or other letters of a phrase 
(for example, "SOAP" for "Symbolic Optimal Assembly Program"). 

Actual Address-See absolute address. 
Addition Table-That area of core storage (00300-00399) which contains the 

table of numbers utilized during the table look-up concept of addition. 
Address-A designation, usually numerical, of a location where information 

is stored. Also that part of an instruction which specifies the operand. 
Address Arithmetic--Addition, subtraction, or multiplication performed on 

allowable operands of instructions or declaratives. 
Alphameric--An acronym formed from the words "alphabetic" and "numeric." 

It signifies that data may contain both alphabetic and numeric information. 
BCD (Binary Coded Decimal)-A coding system utilizing bits to represent 

the decimal digits (0-9). Each bit has a positional value. The decimal 
digit is obtained by adding the positional values of those bits in an "On" 
condition. 

Buffer-An intermediate storage device not under programmers control which 
reduces to a minimum the amount of interlock time necessitated by an 
1/0 operation. 

Bug-Data processing jargon for an error in a computer program. 
Chain Multiplications-The successive products of more than two data fields 

(for example a X b X c). 
Characteristic--See scientific notation 
Characteristic Overflow-A condition generated in floating point arithmetic 

if an attempt is made to generate a characteristic greater than 99. 
Characteristic Underflow-A condition generated in floating point arithmetic 

if an attempt is made to generate a characteristic less than -99. 
354 
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Closed Subroutine-A subroutine which may be entered from any instruction 
in the main program, and which provides for automatic re-entry to the 
main program. Also called a linked subroutine. 

Compiler-A computer program which has the ability to manipulate and 
translate symbols into a machine language program. The compiler may 
generate many machine language instructions from one source statement. 

Conditional Branch-A type of instruction which causes a deviation from 
sequential program execution if and only if a specific condition, which 
is being interrogated by the conditional Branch instruction, exists. 

Console-That part of a data processing system that allows for operator com­
munication with the computer. 

Data Processing-A series of planned actions and operations upon informa­
tion to achieve a desired result. 

Data Processing Systems-The procedures and devices used to accomplish 
data processing. 

Debugging-The process of determining the correctness of a computer pro­
gram, locating any errors in it, and correcting them. 

Declaratives-Statements to a symbolic processor which control the specific 
details of assembly. 

Diagnostic Tests-Tests performed by a competent, specially trained engineer 
to determine if a computer is functioning properly. 

Direct Address-An instruction address which is the address of data to be 
processed. 

Direct Insert Subroutine-See "Open Subroutine." 
Disk Files-A storage medium consisting of a number of rotating disks each 

of which is coated with a special material on which information may 
be stored. 

Division Simulator-See "Division Subroutine." 
Division Subroutine-A series of instructions which simulate division by proc­

esses such as iterative subtraction, approximation of a reciprocal through 
series expansion, and so forth. Also called a "division simulator." 

Doubler-An internal device, used in the multiplication process, which doubles 
a given digit. 

Equal-Zero Indicator-An internal computer indicator which is turned on if 
the result of an arithmetic operation is zero. 

Error Messages-Messages put out by a processor, subroutine, or object pro­
gram to denote a variety of error conditions. 

Execution Time-The total time required to execute a given command. 
Field-Data in two or more adjacent core positions to be treated as a unit. 

A flag is used to define the high-order position of a field. 
Fixed Product Area-See "Product Generation Area." 
Fixed Word Length-Condition in which all storage fields have a set length 

or capacity, in contrast to variable word length. 
Flag Operand-The third operand of a symbolic instruction specifying which 

digits of the object level instruction are to be flagged. 
Floating Point-A form of number representation in' which quantities are rep­

resented by one number multiplied by a power of the number base. 
Floating Point Arithmetic-An arithmetic system which has the ability to 

operate on numbers represented in floating point form. 
Floating Point Subroutines-Subroutines which will handle floating point 

numbers as arguments. 
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Hang Up-Data processing jargon for the failure of a program to operate 
properly and to terminate for unknown reasons. 

High-Positive Indicator-An internal computer indicator which is turned on 
if the result of an arithmetic operation is positive and not zero. 

Immediate Commands-'Certain specialized 1620 commands where the Q field 
data begins at position Qn of the immediate instruction. 

Indirect Address-An instruction address which is the address of a second 
address. This second address is the address of data to be processed. 
This is single~level indirect addressing. However, the second address 
may also be indirect giving a second level of indirect addressing. By 
following this concept a third, fourth, fifth, and so forth, level of Indirect 
Addressing may be attained. 

Input-Any information which enters a computer for the purpose of being 
processed or to aid in processing. 

Input Area-A part of storage allocated to receive information from an input 
unit. 

Label-A symbolic name given to an instruction or pieces of data. It is 
generally chosen for its high mnemonic content. 

Linkage-Instructions related to the entry and re-entry function of a closed 
subroutine. 

Linked Subroutine-See "Closed Subroutine." 
Load Routine-A self-contained subprogram which after loading through oper­

ator action loads an object program in entirety. 
Location Counter-A program-controlled counter used by a processor to ascer­

tain the object time address of an instruction or constant being processed. 
Also called origin counter. 

Loop-A programming technique whereby a group of instructions is repeated 
with modifications of the instructions in the group and/or with modifica­
tion of the data or the address of data being operated upon. 

Machine Cycle-A fixed time interval in which the computer can perform a 
specific number of operations. 

Macro-Instruction-A source language instruction which during assembly gen­
erates more than one machine language instruction. 

Magnetic Core-A tiny ring of ferromagnetic material which may be easily 
magnetized to a negative or positive flux, and once magnetized retains 
the charge indefinitely unless deliberately changed. 

Magnetic Core Memory-See "Magnetic Core Storage." 
Magnetic Core Storage-A storage medium consisting of planes of magnetic 

cores. Information is represented by the magnetic state of the core. Also 
called magnetic core memory. 

Magnetic Tapes-A storage medium consisting of specially treated tape on 
which information may be stored and retrieved at high speeds. 

Mantissa-See "Scientific Notation." 
Memory-See "Storage." 
Microsecond-One one millionth of a second. 
Mnemonic-A name chosen for its memory retention ability. 
Module-A segment of core storage containing 20,000 addressable locations. 

Three such segments are available for the 1620. 
Multiplication Table-That area of core storage (00100-00299) which con­

tains the table of numbers utilized during the table look-up concept of 
multiplication. 
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Nines Complement-Given a digit x, the nines complement is defined as a 
digit y such that y = 9-x. 

Noise-See "Noisy Digit." 
Noisy Digit-The digit chosen to be inserted into the units position of a man­

tissa during left-shifting operations associated with normalization of float­
ing point numbers. Also called "noise." 

Noisy Mode-Pe,rforming floating point arithmetic with a noisy digit other 
than zero. . 

Normalized-A mantissa is "normalized" if its first digit is nonzero. 
Object Program-A machine language computer program received as the 

result of assembling or compiling a source program. 
One over One Address System-A system in which the machine language 

instructions utilize two addresses, one of which may reference data. 
Op Code-See "Operation Code." 
Open Subroutine-A subroutine which is inserted in the main line program 

directly where needed. Also called a direct insert subroutine. 
Operation Code-The segment of a 1620 instruction occupying instruction 

positions 0 0 and 0 1, It designates the operation to be performed. Also 
called Op code. 

Origin Counter-See "Location Counter." 
Output-The results produced by a computer, usually in the form of tape, 

punched cards, or printed documents. 
Output Area-A part of storage allocated to hold information to be written on 

an output unit. 
Overflow Indicator-An internal computer indicator which is turned on if an 

overflow condition exists as the result of an arithmetio operation. 
P Address-The segment of a 1620 instruction occupying instruction positions 

P2 through P6 inclusive. Also called the P operand. 
P Field Data-Data whose low-order position is specified by the P address 

of an instruction. 
P Operand-See P address. 
P Record Data-Data whose high-order position is specified by the P address 

of an instruction. 
Parallel Operation-Arithmetic or data transmission operations performed 

simultaneously on all digits of a data field. 
Pass-One execution of the group of instructions constituting a loop. 
Polish Notation-A technique attributed to the Polish logician J. Lukasiewicz 

which consists of treating an algebraic statement as a manipulatable 
string of symbols followed by a manipulatable string of operations. 

Principle of Toothed Gear-A mechanical method of counting which relies 
on the ability of a maximum positioned gear to rotate an adjacent gear 
for the purpose of the propagation of carries. ' 

Processor-A term generally given to a computer program which is an as­
sembler or compiler. 

Product Generation Area-A specific area (0080-00099) of core storage where 
the product in a multiply operation is developed. Also called fixed product 
area. 

Program-Noun: A set of machine instructions which causes a computer to 
process data and to produce specific results. 
Verb: To plan the method of approach and the necessary instructions to 
process specific data completely. 
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Q Address-The segment of a 1620 instruction occupying instruction position 
Q7 through Qn inclusive. Also called the Q operand. 

Q Field Data-Data whose low-order position is specified by the Q address 
of an instruction. 

Q Operand-See "Q address." 
Q Record Data-Data whose high-order position is specified by the Q address 

of an instruction. 
Recomplementation-An internal process which performs nines or tens com­

plementation on the result of an arithmetic operation when required. 
Record-Data in one or more adjacent core positions to be treated as a unit. 

A record mark is used to define the low order position of a record. 
Relocatable Subroutine-A subroutine whose effect is independent of its 

physical location in memory, and whose object time location is deter­
mined by the processor. 

Relocation-The alteration of core storage assignments (instruction locations, 
data areas, and so forth). 

Scientific Notation-A notation in which quantities are expressed as a frac­
tional part (mantissa) and a power of ten (characteristic). 

Serial Operation-Arithmetic or data transmission operations performed one 
character at a time. 

Solid-State Circuitry-The utilization of transistors in place of vacuum tubes 
in computer circuitry. 

Source Program-A program written in a higher level programming language 
as opposed to machine language coding. 

Storage~Any device into which information may be entered, held, and re­
trieved at a later time. Also called memory. 

Storage Position-A device capable of storing one. character of information. 
Stored Program-A program which is located within the storage area of a 

computer. 
Stored Program Computer-A computer whose functions are controlled by 

coded instructions stored in the memory device of the computer. 
Subroutin~A short or repeated sequence of instructions necessary to solve 

a part of a problem. 
Symbolic Address-A symbolic instruction address in which labels are used 

to reference data. This is opposed to an absolute address. 
Symbolic Programming System-1620-The symbolic assembly system peculiar 

to the 1620. 
Symbolic Assembly System-A programming system consisting of two parts: 

a language called the symbolic language and a computer program called 
a processor which translates a source program written in the symbolic 
language to a machine language object program. 

Tens Complement-Given a digit x, the tens complement is defined as a number 
y such that y = 10 - x. 

Two-Address Instruction System-A system in which the machine langnage 
instructions utilize two addresses, both of which may reference data. 

Unconditional Branch-A type of instruction which causes a deviation from 
sequential program execution regardless of existing conditions. 

Variable Word Length-Condition in which the number of positions in a stor­
age field is completely under the control of the programmer. 

Wrap Around Memory-A feature of the 1620 in which core position 00000 
follows the highest allowable address when incrementing, and precedes 
the highest allowable address when decrementing. 
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Absolute address, see Actual address 
Accept statement, 192 
Access time, 3 
Actual address, 105 
Add Immediate instruction, 44-46 
Add instruction, 33-37 
Addition, 26-27 
Address arithmetic, 109 
Addresses 

absolute (actual), 105 
asterisk, 106-107 
indirect, 248-252 
symbolic, 105-106 

Addressing, indirect, 248-252 
Algorithms, arithmetic, 26-32 
Alphamerical mode, 18 
Arithmetic 

algorithms of, 26-32 
floating point, 148-154 
floating point hardware, 253 

Arithmetic instructions, 22,24, 33-52, 91 
Arithmetic-logical unit, 3 
Arithmetic macro-instructions, 158-161 
Arithmetic statements, 183-184 
Assembling a program (definition of), 98 
Assembly System, 98 
Asterisk address, 106-107 
Asterisk symbol, uses for the, 147 
Automatic division feature, 13 
Automatic light, 294 

Branch and Transmit Immediate instruc-
tion,64 

Branch and Transmit instruction, 63 
Branch Back instruction, 65 
Branch instructions, 13, 22, 24, 60-73, 92 

conditional, 65-73 
unconditional, 61 

with variations, 62-65 
Branch on Digit instruction 65-66 
Branch on Indicator instruction, 68-70 
Branch no Flag instruction, 67 
Branch no Indicator instruction, 70-71 

Card Read-Punch (1622), 10, 13, 74, 
269-277 

Index 

Cards, punched, 5-6 
Central processing unit, 3-4 

arithmetic-logical unit, 3, 10 
control section, 3, 4 
1620, 10, 12 

Characteristic, 150, 151, 152 
Characteristic overflow, 152-153 
Characteristic underflow, 152-153 
Check Stop light, 294 
Clear Flag instruction, 83-84 
Closed subroutines, 62, 155 
Coding sheet (SPS), 100-103 
.Comment statements, 146, 183, 216 
Compare Immediate instruction, 49 
Compare Instruction, 41~44 
Compilation, 172 
Computed Go To statement, 186-188, 

346-347 
Computers 

advantages of use of, 1 
characteristics of, 7-9 
parallel, 8 
1620, see Data processing system 
serial, 8 
"stored program," 2 

Conditional branch instructions, see 
Branch instructions 

Console (1620), 10, 13,281-325 
indicator lights, see Indicator lights 
keys and signal lights, 290-295 
operating procedures, see Operating 

procedures 
panel, 283-288 
switches, see Switches 

Console Typewriter, see Typewriter 
Constants 

fixed point, 175-176 
floating point, 176-177 
Fortran system, 175-177 

Continue statement, 213-215, 348 
Control gate indicator lights, 284-285 
Control instruction, 86-87 
Control sehlion of central processing unit, 

3,4 
Control statements, 185-190 
Conversions in format, 194-203 
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Core array (1620), 19,20 
Core plane, 18, 19 

DAC (define alphameric constant) declar­
ative, 134 

DAS (define alphameric symbol) declar­
ative, 131 

Data processing 
basic considerations in, 2 
defined, 1 

Data Processing System (1620) 
alphamerical mode, 18 
console, 10, 13, 281-295 

keys and signal lights, 290-295 
operating procedures, see Operating 

procedures 
panel, 283-288 
switches and indicator lights, 

284-290 
expansion of basic system, 10 
field processing, 17 
input-output devices, 13, 262-280 
internal data representation, 14-18 
introduction to the, 10-21 
magnetic core storage, 18-21 
numerical mode, 18 
programming concepts, basic, 22-25 
programming systems, 13 
record processing, 17-18 

Data processing systems 
data representation, 5-7 
defined, 1 
development of, in 1940's, 2 
functional units, 2-4 
input devices, see Input-output devices 
processing unit, see Processing devices 
introduction to, 1-9 
storage devices, see Storage devices 
stored programs, 4 

Data representation, 5-7 
on cards, 5-6 
on paper tape, 6-7 

DC (define constant) declarative, 122 
Declarative operands, asterisk rule for, 

110 
Declaratives, 100 

card and tape system, 110-145 
card system only, 145-146 
DAC (define alphameric constant), 

134 
DAS (define alphameric symbol), 131 
DC (define constant), 122 
defined, 98, 110 
DEND (define end), III 
D NB (define numeric blank), 145 
DORG (define origin), 110 
DS (define symbol), 112 

364 

Declaratives (cont.) 
DSA (define symbolic address), 137 
DSB (define symbolic block), 138 
DSC (define special constant), 131 
DSS (define special symbol), 131 
remarks for, 104 
SEND (special end), 146 
tape system only, 146 
TCD (transfer control and load), 139 
TRA (transfer to return address), 141 

DEND (define end) declarative, III 
Dictionary of machine operations, concept 

of, 94-98 
Digit Register, 287 
Dimension statement, 209-210, 342-343 
Direct divide, 13, 239-247 
Direct insert subroutine, 155 
Display MAR key, 292 
Divide feature, 239-247 
Divide instruction, 241-242 
Division subroutines, 33, 239 
DNB (define numeric blank) declarative, 

145 
Do statement, 210-213, 347-348 
DORG (define origin) declarative, 110 
Doubler, 28 
DS (define symbol) declarative, 112 
DSA (define symbolic address) declar-

ative, 137 
DSB (define symbolic block) declarative, 

138 
DSC (define special constant) declara­

ative, 131 
DSS (define special symbol) declarative, 

131 
Dump numerically, 80-81 

E-type Conversion, 195 
Emergency off switch, 294-295 
End Statement, 206-208 
Equal Zero indicator, 25 
Error detection, 147, 302-305, 307-308, 

311-312, 314-315 
Error restart procedures, 277-278 
Error, procedures for handling, 303-304, 

315-316 
Expressions, Fortran language, 179-182 

F-type Conversion, 195 
Field processing, 17 
Fixed word length, 9 
Flag operands, 104, 107-108 
Floating accumulator (F AC), 328 
Floating Add instruction, 254, 255 
Floating Branch and Transmit instruction, 

257-258 



Floating Divide instruction, 256-257 
Floating Multiply instruction, 255-256 
Floating point arithmetic, 148-154 
Floating point hardware, 253-261 
Floating point subroutines, 150, 152-153 
Floating Shift Left instruction, 259-260 
Floating Shift Right instruction, 258 
Floating Subtract instruction, 255 
Floating Transmit Field instruction, 257 
Format statements, 194-206, 348-351 
Fortran, 13-14, 170-220 

basic 1620, 174-220 
internal organization of, 326-353 

compiling programs on a 1620 card sys­
tem, 318-325 

compiling programs on a 1620 paper 
tape system, 305-312 

constants, 175-177 
determination of category, 328 
expressions, 179-182 
floating accumulator, 328 
functions, 215 
introduction to, 170-173 
operations, basic, 179 
problems, 230-232 
processor control operation, 206-208 
statements, 183-206 
subscripted variables, 209-215 
subscripts, 208 
symbol table, 326-327 
table of Addresses of Encountered Sym­

bois, 328 
table of Encountered Operations, 327 
variables, 178-179 

Fortran Compiler (or Translator), 171, 
174 

Fortran language, 171, 174 
Fortran with format, see Fortran, basic 

Glossary, 354-358 
Go To Statements, 185-188, 343-345 

H-type conversion for alphameric fields, 
203 

Halt instruction, 84-85, 345 
Head cards, 142-145 
High Positive indicator, 25 

I-type Conversion, 195 
If Sense Switch, 190, 345 
If statement, 188-189, 345-346 
Indicator lights 

control gate, 284-285 
digit register, 287 
input-output, 285 

Indicator lights (cant.) 
instruction and execute cycle, 284 
memory address register, 287 
memory buffer register, 286-287 
memory data register, 287 
multiplier, 285 
operating register, 285 
parity check, 288-289 
sense and branch, 286 

Indicators 
Equal Zero, 25 
High Positive, 25 
Overflow, 25 

Indirect addressing, 248-252 
Information sentences, 95-97, 100 
Input-output devices, 2, 3, 262-280 

Card Read Punch (1622), 10, 13, 74, 
269-277 

error restart procedures, 277-278 
Paper Tape Punch (1624), lO, 13, 74, 

268-269 
Paper Tape Reader (1621), lO, 13, 74, 

262-267 
1620 Data Processing System, 13, 74, 

262-280 
typewriter, console, 278-280, 281 

Input-output indicator lights, 285 
Input-output instructions, 22, 24, 74-81, 

93 
Input-output statements, 190--194, 348-

351 
Insert key, 293 
Insert light, 293 
Instruction and execute cycle indicator 

lights, 284 
Instructions 

Add, 33-37 
Add Immediate, 44-46 
arithmetic, 22, 24, 33-52, 91 
Branch, 13,22,24,60--73,92 
Branch and Transmit, 63 
Branch and Transmit Immediate, 64 
Branch Back, 65 
Branch no Flag, 67 
Branch no Indicator, 70--71 
Branch no Record Mark, 68 
Branch on Digit, 65-66 
Branch on Indicator, 68-70 
Clear Flag, 83-84 
Compare, 41-44 
Control, 86-87 
Divide, 241-242 
Divide Immediate, 242 
Dump Numerically, 80-81 
Floating Add, 254-255 
Floating Branch and Transmit, 

257-258 
Floating Divide, 256-257 
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Instructions (cant.) 
Floating point hardware, 254-260 
Floating Shift Left, 259-260 
Floating Shift Right, 258 
Floating Subtract, 255 
Floating Transmit Field, 257 
Halt, 84-85, 345 
Input-Output, 22, 24, 74-81, 93 
internal data transmission, 22, 24, 53-

59,92 
Load Dividend, 240-241 
Load Dividend Immediate, 241 
machine language, 4 
miscellaneous, 22, 24, 82-87, 92 
Move Flag, 233-235 
Multiply, 40-41 
Multiply Immediate, 48-49 
No Operation, 85-86 
Read Alphamerically, 75-77 
Read Numerically, 74-75 
remarks for, ~03-104 
Set Flag, 82-83 
Subtract, 37-39 
Subtract Immediate, 46-48 
Transfer Numerical Fill, 237-238 
Transfer Numerical Strip, 235-236 
Transmit Digit, 53-54 
Transmit Digit Immediate, 56-57 
Transmit Field, 54-55 
Transmit Field Immediate, 57 
Transmit Record, 56 
Write Alphamerically, 79-81 
Write Numerically, 77-79 

Internal data transmission instructions, 
22,24,53-59,92 

I/O check lights, 289 
I/O check switch, 289 

Label, 102-103 
Light 

thermal, 291 
procedure to turn off, 299 

Lights, see Indicator lights; Signal lights 
Line number, 102 
Linkage system, 157-158 
Linked subroutines, 155 
Load Dividend Immediate instruction, 

241 
Load Dividend instruction, 240 

Machine cycles, 7-8 
Machine language instruction, 4 
Machine language problems, basic, 

221-222 
Macro-instructions, 155-169 

arithmetic, 158-161 
defined, 156 
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Macro-instructions (cont.) 
full symbolic coding with problems, 

226-230 
functional, 161, 164 
general information concerning, 165 
list of, 157 

Macroless symbolic coding problems, 
223-226 

Magnetic core storage, 18-21 
Mantissa, 150, 151 
Manual light, 294 
Memory address register, 287 
Memory address register display selector, 

287-288 
Memory Buffer Register (MBR), 19, 21, 

286-287 
Memory Data Register (MDR), 287 
Miscellaneous instructions, 22, 24, 82-87, 

92 
Mnemonics, 23 
Move Flag instruction, 233-235 
Multiplication, 27-29, 40-41 
Multiply instruction, 40-41 
Multiplier 5-light register, 285 
Multiply Immediate instruction, 48-49 

No Operation instruction, 84-86 
Noise, 167-169 
Normalization, 167 
Numerical mode, 18 

Open subroutine, 155 
Operands, 104-108 

Flag, 104, 107-108 
P,104-107 
Q,104-107 

Operating procedures, console, 296-325 
assembling SPS programs on a 1620 

card system, 318-325 
assembling SPS programs on a 1620 

tape system, 299-305 
clear core storage to zeros, 297 
compiling Fortran programs on a 1620 

card system, 318-325 
compiling Fortran programs on a 1620 

paper tape system, 305-312 
instruct the computer from the type­

writer, 296 
print core storage data on typewriter, 

298 
program alteration and/or data entry, 

298 
program entry from the typewriter, 297 
single instruction execution of program, 

299 
to turn off thermal light, 299 

Operati0n register indicator lights, 285 



Output devices, see Input-output devices 
Output statements, 192-194 
Overflow check switch, 289-290 
Overflow indicator, 25 
Overflow lights, 290 

P address, 22 
P operand, 104-lO7 
Page number, 102 
Paper tape, punched, 6-7 
Paper Tape Punch (1624), lO, 13, 74, 

268-269 
loading the, 268-269 

Paper Tape Reader (1621), 10, 13, 74, 
262-267 

components, 263-264 
loading the, 264-266 
operating keys, switches, and lights, 

264 
tape handling tips, 267 

Parallel computers, 8 
Parity check indicator lights, 288-289 
Parity check switch, 288 
Pause statement, 206, 345 
Pick subroutines, 166 
"Polish Notation," 329 
Power On light, 290 
Power Ready light, 290-291 
Power switch, 290 
Print statement, 193 
Problems, 221-232 

basic machine language, 221-222 
Fortran, 230-232 
full symbolic coding with macro-in­

structions, 226-230 
macroless symbolic coding, 223-226 

Processing devices, 2, 3-4 
Program switches, 290 
Programming concepts, basic, 22-25 
Programs, 4 

stored, 4, 10 
Punch, see Paper Tape Punch and Card 

Read Punch 
Punch check error, restart procedure, 278 
Punch No Feed light, 292 
Punch statements, 192 
Punch Tape statement, 193 
Punched cards, see Cards, punched 
Punched paper tape, see Paper tape, 

punched 

Q address, 22, 25 
Q operand, lO4-lO7 

Read Alphamerically instruction, 75-77 
Read check error, restart procedure, 277-

278 

Read Numerically instruction, 74-75 
Read statement, 191-192 
Reader, see Paper Tape Reader and Card 

Read Punch 
Reader check error, restart procedure, 

277 
Reader No Feed light, 292 
Record processing, 17-18 
Register 

digit, 287 
memory address, 287 
memory buffer, 19, 21, 286-287 
multiplier, 285 
operation, 285 

Release key, 293 
Reset key, 291 
Restart procedures, 277-278 

punch check error, 278 
read check error, 277-278 
reader check error, 277 

Save key, 292-293 
Self-checking devices, 2 
SEND (special end) declarative, 146 
Sense and Branch indicator lights, 286 
Serial computers, 8 
Set Flag instruction, 82-83 
Signal lights 

Automatic, 294 
Check Stop, 294 
Insert, 293 
Manual, 294 
Power On, 290 
Power Ready, 290-291 
Punch No Feed, 292 
Reader No Feed, 292 
Save, 293 
Thermal, 291 

Source Program, 171 
Source statement, 171 
Start key, 293 
Statement numbers, 184-185 
Statements 

Accept, 192 
Accept Tape, 192 
arithmetic, 183-184 
comment, 183,216 
Computed Go To, 186-188, 346-347 
Continue, 213-215, 348 
control, 185-190 
Dimension, 209-210, 342 
Do, 210-213, 347-348 
End, 206-208 
Format, 194-206, 348-351 
Fortran, 183-206 
Go To, 185-188, 343-345 
If, 188-189, 345-346 
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Statements (cant.) 
If Sense Switch, 190 
input-output, 190-194, 348-351 
Pause, 206, 345 
Print, 193 
Punch, 192 
Punch Tape, 193 
Read, 191-192 
specification, 194-206 
Stop, 206, 345 
Type, 193-194 
Unconditional Go To, 185-186 

Stop SIE key, 294 
Stop statement, 206, 345 
Storage devices, 2, 3, 170 
"Stored program" computers, 2 
Stored prograins, 4, 10 
Subroutines 

closed (linked), 155 
floating point, 150, 152-153 
open (direct insert), 155 
Pick, 166 

Subscripted variables, 209-215 
Subscripts, 208 
Subtract Immediate instruction, 46-48 
Subtract instruction, 37-39 
Subtraction, 27 
Switches 

emergency off, 294-295 
I/O check, 289 
overflow check, 289-290 
parity check, 288 
power, 290 
program, 290 

Symbol Table, 326-327 
Symbolic address, 104, 105-106 
Symbolic Programming System (SPS), 

13, 23, 88-147 
assembling on a 1620 card system, 

. 312-318 
assembling on a 1620 tape system, 

299-305 
coding sheet, 100-104 
declaratives, see Declaratives 
error detection, 147,302-303,307-308, 

314-315 
introduction to, 88-99 
operands, 104-108 
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Table of Addresses of Encountered sym­
bols, 328, 329 

Table of Encountered Operations, 327, 
329 

Tape handling tips, 267 
TeD (transfer control and load) declara­

tive, 139 
Thermal light, 291 

procedure to turn off, 299 
TRA (transfer to return address) declara­

tive, 141 
Transfer Numerical Fill instruction, 237-

238 
Transfer Numerical Strip instruction, 

235-236 
Transmit Digit Immediate instruction, 

56-57 
Transmit Digit instruction, 53-54 
Transmit Field Immediate instruction, 57 
Transmit Field instruction, 54-55 
Transmit Record instruction, 56 
Truncation errors, 168 
2-address instruction system, 24-25 
Typewriter, console, 278-280, 281 

instructing the computer from the, 296 
print core storage data on, 298 
program entry from the, 297 

Unconditional branch instructions, see 
Branch instructions 

Unconditional Go To statement, 185-186 

Variable word length, 9 
Variables 

fixed point, 178 
floating point, 178-179 
subscripted, 209-215 

Word length 
fixed, 9 
variable, 9 

Write Alphamerically instruction, 79-81 
Write check error, 278 
Write Numerically instruction, 77-79 

X-type conversion for blank fields, 202 
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