
--
- --- ------- - ------- - ----- -_. - Application Program

1620 One-Dimensional Trim Program (1620-MT-OIX)

Program Reference Manual

This program solves the one-dimensional trim problem
encountered in the manufacture of paper and other industries.

This manual contains (1) a description of the application,
including the methods used, the input and output formats,
and sample problems, and (2) operating instructions for
the program.

Copies of this and other IBM publications can be obtained through IBM branch
offices. Address comments concerning the contents of this publication to
IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

CONTENTS

Program Abstract.
General Description .

Purpose
Advantages of the Program.
Methods
Timing
Restrictions and Range
Precision

Program Systems Chart . .
Description of Systems Approach
Input Format

General Instructions
Identification Card
Stock Cards .
Order Cards. . .
Blank Card ...

Data Format Summary
Identification Card
Stock Cards
Order Cards

Output Description
Sample Problems .
Program Modifications .

1443 Printer Output.
Rounded Solution .
Maximum Number of Stock and Order Widths
Field Length

Operating Instructions .
Program Section 1
Program Section 2
Program Section 3
Data Deck Order

Program Setup Sheet
Halt List ..
Storage Map
Bibliography

1
1
1
2
2

10
11
11
12
13
15
15
15
15
16
17
17
17
17
17
18
20
29
29
30
31
31
31
31
32
33
34
35
37
38
39

PROGRAM ABSTRACT

This program provides a linear programming solution to the one­
dimensional trim problem. The one-dimensional trim problem can be
described briefly as follows: We have a supply of material (either
stocked or which we can produce) and a set of orders to be filled using
this material. The material is stocked (or produced) in one or more
fixed widths, each having a fixed cost associated with it. The orders
each specify a width and the number of units of that width required, and
they are filled by cutting up units of the stocked widths into the ordered
widths. The cheapest way of cutting up the supply to fill the orders must
be determined.

The program will solve anyone-dimensional trim problem having up to
16 stock sizes and 35 order sizes. It is adapted particularly to the
problem of cutting paper stock and allows the user to specify certain
restrictions characteristic of the paper industry.

The program is coded in SPS, Symbolic Programming System for the
1620, and requires a 1620 with 20,000 characters of core storage, card
input/output, automatic divide, indirect addressing, and additional
instructions (TNS, TNF, MF).

GENERAL DESCRIPTION

Purpose

The One-Dimensional Trim Program provides a minimum-cost solution
to the trim problem, which is to fill a set of orders for a material that
varies in size in one-dimension (width) from stock whose size is fixed
in that dimension. The orders each specify a width and the number of
units of that width which are desired,,_ and they are filled by cutting
up units of stock into the ordered widths. The stock may be available
in only one or in several widths, each width having a certain cost per
unit associated with it. Given a list of the orders and a description of
the stock available, the problem then is to determine how to cut up the
units of stock into the ordered widths. The output of the trim program
provides this information in th.e form of cutting patterns. Each pattern
indicates the width of stock to be used, the manner in which each unit
of this width should be cut into ordered widths, and the number of units
of this stock width to be cut in this way.

The program will solve any one-dimensional trim problem which falls
within the size limitations of the program. (These are described in the
"Restrictions and Range" section of this manual.) The program is adapted
particular ly to the problem of cutting paper stock and allows the user to
specify certain restrictions characteristic of the paper industry. In this
application the order unit is a roll of paper, the stock widths are the
widths of the machines that produce the paper, and the cost per unit of
stock is simply the cost of manufacturing one roll of paper on the machine
which produces it. As the paper is manufactured, knives on the machine
slit the machine-width roll into rolls of the ordered sizes. Each
pattern from the program output tells which machine size to use, where

1

to set the knives, and how much paper to produce with that setting.

The user is permitted to limit the number of pieces into which a
machine-width roll may be slit, in order to prevent the use of patterns
requiring more knives than are available on the machine. He may also
limit the number of rolls to be produced on each machine, to avoid
overuse of some machines. This last program feature provides the
ability to limit the supply available in each stock size.

Advantage s of the Program

Methods

The chief advantage of the One-Dimensional Trim Program is that it
provides a least-cost solution. Obtaining even a reasonably good set
of patterns by hand, as it has traditionally been done, is a difficult and
time-consuming task, and there is no way of judging whether the solution
so obtained is nearly optimal or far from it. Scheduling an order on more
than one stock width by hand is even more difficult and is rarely attempted.
Herein lies a second advantage of the trim program: it can handle a
number of different stock sizes at once, each with a different cost and
supply. Since total cost rather than trim loss is minimized, the cost
associated with a stock width may be used to reflect the efficiency of
the machine producing the width. The supply limits prevent overuse of
any machine or use of inventory beyond available supply. Trim loss
may be minimized. as a special case by assigning to each stock width
a cost proportional to the width. Finally, large problems, such as long­
range planning problems, can now be solved. For example, the program
can assist in determining a good stock width for a class of orders, a
problem encountered in paper manufacture when a company orders a
new paper machine.

The one-dimensional trim problem is a problem in linear programming
and may be described in the following way. If the stock material is
available in widths WI' W2 , ... , W}., and the orders together require
ql units of width wI' q2 units of width w2 ' ... , and qm units of width
wm ' then the problem becomes:

Minimize

Subject to a .. x. = q.
IJ J 1

i = 1, ... , m

j

where x. is the number of units of stock to be cut up according to the jth

cutting Jattern, Pj is the index of the stock from which the jth pattern

is cut, C is the cost of one unit of the stock width W , and a is
Pj Pj ij

the number of units of width wi produced each time one unit of stock is
cut according to the jth pattern.

2

The solution to the problem is a list. Each entry in this list consists of
a cutting pattern, the number of units of stock which are to be cut into
the pattern, and which stock is to be used. In the notation above, the jth
such pattern is a vector (al ., a2 ., ... , a .), indicating that the jth

J J mJ
pattern consists of alj pieces of width wl' a2j pieces of width w2' ... ,

and a . pieces of width w ; x. units of the stock width W are to be
mJ m J p.

cut in this fashion. J

In some one-dimensional trim applications, some or all of the stock
widt'hs may be available only in limited supply. To express this restriction,
for each stock width W for which the inventory is insufficient to cut

p
the entire order, the following constraint is added to the formulation of
the problem:

where Sp is the number of units of width W p available and j e::: p means

that the jth pattern was cut from stock width W •
p

The trouble with solving the problem with the techniques ordinarily
applied to linear programming problems is that the number of variables
(that is, possible cutting patterns) may be prohibitively great. This
results in a matrix for the simplex method which has a very large number
of columns. Apart from the physical difficulty of storing such a large
matrix in a computer memory, there is also the difficulty of searching
through all the columns at each pivot step, which requires a great deal
of time.

One technique for overcoming this problem is to generate and store some
reasonable number of good cutting patterns and obtain a standard linear
programming solution using only these variables. A "good" cutting
pattern is one having little trim waste (the part of the stock width left
after the ordered widths have been cut from it), and the number of
patterns which would be reasonable would depend on the speed and
storage facilities of the computer on which the problem was solved. The
resulting linear programming problem is still very large, and there is
no way of knowing whether the solution is optimal or not, since only a
fraction of the possible cutting patterns have been permitted in the
solution. This approach is called the "library" method because of the
use of a library of patterns.

Another approach to the problem is to abandon linear programming
entirely and treat the problem by heuristic methods. Very simply stated,
one such method is to generate a good pattern and use it as much as
possible, that is, until the demand for one width is filled entirely by the
use of that pattern. Then a good pattern using the remaining widths is
generated and used as much as possible, until another demand is filled.
This procedure continues until all demands are filled. This idea has

3

been exploited in a program now in use in some paper mills. From the
nature of the method it is clearly impossible to guess how close to optimal
this solution is. Nonetheless, it has one advantage over linear
programming: the amount of each pattern to be cut can be an integer.
This is generally not true of the standard linear programming solution,
and this results in the rounding problem, which is explained below.

In some applications, it does not make sense to cut a fractional number
of units of stock into a pattern. Consequently, the nonintegral amounts
of the patterns to be cut in the linear programming solution may have to
be rounded up or down to the next whole number to produce an integer
solution. The quantities of the various ordered widths which are
produced by this integer solution may differ slightly from the quantities
which were ordered; there is no way to guarantee a solution which,
rounded, will produce exactly the right quantities of the ordered amounts.
However, the integer solution will be an optimal solution to the slightly
revised problem if the unrounded solution was an optimal solution to the
original problem.

This program treats the problem by linear programming (and hence
inherits the rounding problem), but uses a variation of the usual simplex
method which overcomes the storage and search difficulties mentioned
above. The technique is described in detail in reference 1 (see
Bibliography) . Briefly, however, this approach is made possible by
recognizing that the problem of finding an improving column may be
treated as an auxiliary problem, and indeed is a simple integer
programming problem called the knapsack problem. Hence all possible
patterns are implicitly considered, making the solution optimal, but
only the cutting patterns in the basis are recorded explicitly at anyone
time so that the storage requirement is that of a small linear programming
problem. Specifically, there are m + q basis matrix columns, where
m is the number of ordered widths, and q is the number of stock widths
with limited supply. Since only these columns are stored when the
"pricing out" stage in the simplex algorithm is reached, the auxiliary
knapsack problem must be solved; that is, all of the nonbasic columns
must be generated and evaluated using the current set of linear
programming prices, and the best must be chosen as pivot column. Once
the pivot column has been determined, it is updated by multiplying it by
the inverse of the basis matrix. The remainder of the simplex method,
namely, choosing a pivot row and the Gaussian elimination step, is
unchanged. If no column can be created which will improve the current
solution, this solution is optimal just as in the usual simplex method.

Since the primal simplex method requires a feasible starting solution,
or a separate phase to determine one, the following obvious solution is
used as a starting point. There are m patterns in the starting solution;
the jth of these consists of as many pieces n. of width w as can be cut

J j
from the first stock width for which the supply is sufficient to fill the
whole demand qj for that width by use of the one pattern. The amount

required is qj / nj units. If there is no stock with a supply of this size

remaining, the pattern is cut from an imaginary stock. This imaginary
stock is available in unlimited supply and is as long as the last stock,

4

but has a very great cost per unit. Patterns cut from this imaginary
stock are gradually dropped from the solution by the linear programming
process, provided the total supply of real stock widths is sufficient to
produce the order.

A number of methods for solving the auxiliary knapsack problem have
been developed; they are discussed in references 1 and 2 (see
Bibliography). The scheme used in the One-Dimensional Trim Program
is described in the section which follows. Creating the best new variable
at any step in the linear programming process is equivalent to the
following problem:

(1) Maximize

(2) Subject to

m

i=l

m

1r·a· - C IIp

E wia i S Wp

i=l

a i ~ 0 and integral

for some p, lS p~ J..

The column which maximizes (1) subject to (2) is a pattern consisting of
a1 pieces of width w1 ' a2 of width w2' and so on, cut from stock
width Wp of cost Cp . The current linear programming price for the

width wi is 1ri' i = 1, ... , m.

Strictly speaking, any column which satisfied (2) and for which (1) was
positive could be used as pivot column to improve the current linear
programmi~ solution. However, experiments indicate that if just any
improving column is chosen as pivot column, a very large number of
linear programming steps will be required to reach an optimum solution*,
whereas if the best column is used - "best" in the sense of maximizing
(1) - the number of steps is greatly reduced.

Since the time spent on solving the knapsack problem is the major part
of the time required for the whole problem, and since the time depends
partly on the number of variables in the knapsack (number of different
ordered widths to be combined into a pattern), it is desirable to have
this number of variables as small as possible. To this end, on every
other iteration of the linear programming problem an attempt is made

. to form a pattern from only half of the order widths, namely, those for
which the order quantity is above the median order quantity. This
device not only reduces the number of variables in the knapsack on
alternate iterations but has another even more important effect. Since
a pattern which contains a width with a small demand will generally be
cut a small number of times (at most, enough to satisfy the demand for
that ~idth completely with the one pattern), the entry of such a column into
the linear programming problem cannot very greatly alter the objective

* See (2) for a discussion of this phenomenon.

5

/

function, which is the cost of cutting the whole order. On the other hand,
a pattern containing only widths with large ordered quantities may be cut
a large number of times and hence affect the cost very strongly. If at
any point no pattern so formed will improve the current linear program­
ming solution, the program attempts to form one using all the widths.

The number of widths in the knapsack is further reduced in the following
way. Of the widths being considered for the knapsack, if there is any
width wi whose price is not greater than those of all shorter widths in
the knapsack, then it can be omitted, for any pattern using Wi will have
the same or greater value if the offending shorter width is substituted
for Wi' and the pattern will fit into the same stock width.

After these preliminaries, the next step is to reorder the widths in
descending order of the density of price per unit width; that is:

7r­m

w_
m

where iii is the (reduced) number of widths in the knapsack.

Once the variables in the knapsack have been reduced in number and
reordered by density, the following algorithm is used. It is applied
separately for each stock width W p .

Step 1: In the algorithm the possible vectors (aI' a2' ••• ' am) which
satisfy

ill

(3) ~ a i w i S Wp

i =1

are generated in lexicographically decreasing order*. A test in Step 4
permits many of the possible vectors to be skipped. The process is
started by generating the lexicographically greatest vector which
satisfies condition (3).

* A vector (a l , a2' ••• ' a_) is lexicographically greater than another vector
(b l , b2 , ••• , bm) if the Tirst nonzero element of their term-by-term difference

(a l -bl , a
2

-b
2

, ••• , am -b
iii

) is positive.

6

a--..
m

iii -1

Wp - L:
i=1

w­m

a.w.
1 1

[
w-.. aw] , p 1 1

w2

**

, ... ,

Step 2: If any vector has already been generated which would improve
the current linear programming solution, the current solution vector
(a) is tested to determine whether its value exceeds the cost of the stock
on which the pattern is to be cut by more than the best previous pattern
exceeded the cost of its stock. If the best previous pattern is the vector
(b), cut on stock W q with cost C q' then the amount by which the pattern

value exceeded the cost is:

m

~ L: b. 11". - C
1 1 q

i =1

Then if

m

(4) L: a i 1r i ~ Cp + ~

i=1

the current solution (a) replaces (b) as the best solution, and a is
redefined as

m

a.1r. - C .
IIp

i=1

If no vector has yet been generated which would improve the solution, ~
is defined as zero, and test (4) is applied as before.

** [x] means the greatest integer contained in x.

7

Step 3: k is defined as the highest index such that

a. = 0
1

If k does not exist, that is, if

a = 0
i

for all i = k + 1, ... , iii-1

for all i = 1, ... , iii-1

then all the possible vectors have been considered and the current best
solution (b) is the best pattern for the current linear programming prices.
If (b) does not exist for any stock width W , that is, no vector (b)

t · f· p sa IS les

m

E
i=1

m

i=1

b.r. > C
IIp

b.w. ~ W
IIp

then an optimal solution has been reached for the linear programming
problem.

Step 4: A test is performed to determine whether any pattern with the
first k elements a1 ' a2 , ••• , ak could have a value greater than that

of the current best variable. This is accomplished as follows: the amount
of stock unused by the first k widths is filled out with the (k + 1)st

width with the integer restriction dropped. Since the (k + 1) st width
has the greatest price density (when the first k widths are excluded),
clearly the pattern could have no greater value than that obtained if it
could be filled out perfectly with this width. In other words, if

k

(5) E
i=1

k

ai 1ri + «W p -E
i=1

no pattern (a
1

, a
2

, ... , aiii) whose first k elements are a1 , a2 , ... ,

ak will have greater value than the current best column (b), and all
such patterns may be ignored. Indeed, no downward adjustment in ak ,

which would be the next step in lexicographical order, will help either,
since this would increase the amount of stock to be filled out with the
(k + 1) st width, known to have poorer price density than the kth width.
Hence the present ~ can be set to zero, and returning to the beginning

of Step 4, a new smaller k determined and test (5) repeated.

8

Step 5: If, however, the cutoff test fails, that is:

k (W p - t ai wi)
~ 1=1
L.J ~1ri + . 1rk+l >Cp + &

wk + 1 i=1

then patterns with first elements a1 , ... , ak must be considered. Hence

the next pattern in lexicographical order is generated.

a! =
1

a' = a.
i 1

W
p

i-I

-L:
j=1

W.
1

i = 1, ... , k-l

a~w.
J J

i=k+l, ... , m

The new pattern (a') becomes the current pattern, denoted (a), and
the procedure is repeated by returning to Step 2.

One restriction enters into the generation of possible patterns from the
knapsack. When the program is used for paper trim, patterns with more
pieces in them than there are slitters on the machine must be excluded
from the solution. Since one slitter is required for each piece in the
pattern, the user may specify for each machine a maximum number of
slitters available, and the knapsack routine will exclude any pattern
violating this restriction. This maximum is taken into account in steps
(1) and (5) as the patterns are formed. If at most ~ pieces may be cut

from stock width W p' then

a. = min
1

rather than simply

9

[
(Wp - 1:

j=1

a.w.) /w.] J J 1

i-I

L:
j=1

a.w.) /w.] J J 1

Timing

The amount of time required to solve a particular trim problem is very
difficult to predict. The time increases rapidly with the number of
order widths and, to a lesser extent, with the number of stock widths.
It decreases with the percentage of trim waste in the optimal solution.
That is, a problem for which the optimal solution contains very high
waste may take only a fraction of the time required for a problem with
the same number of stock and order widths which has very low inherent
waste. Since the waste is not known until the solution is determined, it
is impossible to consider this factor in estimating how long a particular
problem may run.

In the low waste problems, generally more linear programming steps
are required than in other problems. Much more important, however,
is the fact that in any problem the time per step increases markedly
as the solution nears the optimum. In fact, in nearly all ,problems for
which the solution time is long, a large percentage of the total processing
time may be spent in proceeding from a very good solution to an optimum
one. Hence it is often practical to interrupt the program after the trim
loss has dropped to an 'acceptable level or has become nearly constant,
and use the current solution instead of the optimum. The program contains
provisions for printing the trim when the user wishes to see it and also
for interrupting the solution (see "Operating Instructions").

Below is a table of computing times for some typical problems which were
run on a Model II 1620. The time figures do not include the time required
for printing the solution, which varies from 5 to 10 minutes, depending
on the amount of typing.

Order Stock Percent
widths widths trim Iterations Minutes

4 1 2.50 5 1
5 1 1. 45 10 2
7 3 . 00 10 2

10 2 .17 29 4
14 1 2.37 22 4
16 1 .12 28 4
16 1 .12 48 5
17 3 3.49 33 3
18 1 .56 58 10
20 1 .05 82 27
20 1 5.17 21 3

20 1 2.73 25 4
20 1 .55 74 14
20 1 .05 82 24
20 15 1. 27 108 43
20 16 .61 46 14
21 1 2.01 37 5
22 1 1. 60 54 6
22 3 .56 90 15
25 1 .62 88 15

10

Order Stock Percent
widths widths trim Iterations Minutes

25 1 9.64 51 6
25 1 .15 71 12
25 1 3.67 45 6
30 1 8.69 76 12
30 1 .21 93 20
30 1 .45 95 25
33 1 .00 77 20

Restrictions and Range

Precision

Because of the limitations of core storage, there may be at most 16
stock widths and 35 distinct order widths. In addition, if there are
stock widths with limited supply, the number of these plus the number
of order widths must not exceed 35. There must be at least two distinct
order widths specified. There may be as many as 125 order cards.

The widths and costs supplied as input to the program may be anywhere
in the range from .1 to 999.99999. The best range for maximum
accuracy is in the upper part of this range, say above 10. The order
quantities may be any integer between 1 and 99, 999, 999, and the
supply quantities may be as large as 999,999, 999. If the supply of a
stock is unlimited, at least for the purposes of a particular problem,
it should, for increased accuracy, be marked as such rather than given
a very large supply.

The calculations in the One-Dimensional Trim Program are carried out
in fixed-point arithmetic. Most of the numbers are ten digits long,
stored in the format

xx. XXXXXXXX

although the widths and costs are stored

xxxxx. xxxxx

and numbers which are integers are stored with the decimal point to the
right of the rightmost digit. Integers whose values will never exceed 99
are stored as two-digit rather than ten-digit numbers.

The program results are accurate from five to eight significant figures.

11

PROGRAM SYSTEMS CHART

Sort order
widths into
descending
order

Compute
median and
total order
quantity

Determine
patterns in
starting
solution

matrix

12

Find eligible
order widths
& sort by
price density

Determine
best pattern
for current
LP prices

Multiply new
column by
inverse of
basis

Find pivot
row

Do Gaussian
elimination
step

no

Compute &
print current

>-~IiiUiI.._~ trim waste

Distribute

DESCRIPTION OF SYSTEMS APPROACH

The One-Dimensional Trim Program is divided into three sections of
code which overlie one another to conserve storage. The first section
sets up the matrix of the linear programming problem. After being
loaded into core, this part of the code first reads the entire data deck,
converting and storing the information required for determining the
cutting patterns by linear programming. All of the stock information
is used. Only the different widths and the total quantity desired of
each are recorded from the order cards. The order widths are then
sorted into descending order. The median order quantity is determined
and the total quantity of material ordered is computed. Next the
starting solution is generated, in the manner described in the "Methods"
section of this manual. The basis matrix, which is determined by the
starting patterns and stock supply constraints but which is not stored
as such, is inverted and the inverse is stored. Finally, the starting
patterns and the order quantities are punched for intermediate storage.

Having set up the linear programming problem, the first section of code
is overlaid by the second, which finds an optimum solution. As explained
in "Methods", a modification of the simplex method is used, and each
iteration of this procedure begins with the solution of an auxiliary
problem - that of generating the best pattern for the current set of
linear programming prices .. This pattern corresponds to one of the
columns in the nonbasis, which are not stored explicitly. The column
generation procedure consists of eliminating some order widths from
consideration, sorting the remaining ones in descending order of the
density of price per unit width, and finally applying the algorithm
described under "Methods". If no column can be created which will
improve the current linear programming solution, cutting patterns
which will minimize the cost of filling the order have been determined,
and the final section of code is brought in to print the program output.

otherwise, the new column formed above is updated to the current
solution by multiplying it by the inverse of the basis matrix and
becomes the pivot column for the ordinary simplex method. The pivot
row is determined in the usual way, and a Gaussian elimination step
is performed. The new column is punched for intermediate storage.

If sense switch 1 is on at the conclusion of the pivot step, the percentage
of trim waste in the current solution is computed and printed so that
the user may observe the progress of the solution. Next sense switch 2
is interrogated; if it is off, the program returns to the beginning of
this section of the code to generate a column for the new linear
programming prices and to perform another Gaussian elimination.
This cycle continues until the solution is optimal (no improving column
can be found), or until sense switch 2 is turned on, indicating that the
user wishes to terminate the linear programming and use the current
solution.

At this point the third and final section of code which prints the output,
is loaded, overlying the second. The first step in this section is to
read the intermediate output, forming a list of order quantities and a

13

matrix of the patterns in the final solution from the information read.
After the intermediate output is read, the quantity of each pattern to be
cut, not generally an integer, is rounded to the nearest integer and the
effect of this rounding on the amount produced of each ordered width
is calculated. At this point the solution is tested to determine whether
there is sufficient stock to cut the order. If not, the approximate shortage
is indicated and the program stops. Otherwise, the data cards are
reread. First, the identification card is read and printed. Then the
stock cards are read and printed, along with the amount of each stock
used in the rounded solution. Finally, the order cards are reread, and
for each ordered width the discrepancy between the total quantity ordered
and the quantity produced in the rounded solution is distributed among
the customers who ordered the width, in so far as is possible within the
customers' tolerances. If all extra or short units of a width can be
assigned, the amount received by any customer is proportional to his
contribution to the maximum that could be assigned within the tolerances.
Otherwise, the customer receives as much as he will accept. This done,
the order widths are printed, along with the total quantity ordered of
each width, the quantity produced in the rounded solution, and, of the
difference, the number which could not be as signed to any customer.

Next the cutting patterns in the solution are printed, each indicating the
size and quantity of stock to be used for the pattern, and the manner
in which the ordered widths produced in the pattern are to be distributed
to customers. Following the patterns the individual orders are listed,
each entry indicating the width ordered, the customer, the quantity
ordered, the number of extra or short units received within the
tolerance, and any shortage received beyond the tolerance.

Finally, the program prints the following statistics about the run: the
cost of the linear programming solution, the cost of the rounded
solution, the trim waste in each solution, and the number of iterations
performed in the linear programming solution.

14

INPUT FORMAT

Input to the One-Dimensional Trim Program consists of a description
of the stock available for cutting the order and a description of the order
itself. The deck order is:

1. Identification card
2. Stock cards
3. Order cards
4. Blank card

General Instructions

The "Restrictions and Range" section of this manual contains information
on the permissible range of values for stock and order widths, quantities
and costs. In all fields leading and trailing zeros may be left blank, but
decimal points should not be omitted.

IDENTIFICATION CARD

The first card in the data deck is assumed to be an identification card,
which simply identifies the run on the printed output. It may contain
any alphameric information desired by the user in columns 1-80.

STOCK CARDS

Each stock width is described on a separate card. The first field on
the card is the width of the stock. It is usually given in inches, but any
unit is acceptable provided the same unit is used throughout the run,
both on the stock and the order cards. This field is punched in columns
2-10, with a decimal point in column 5.

The second field on the card is the cost per unit for the stock width. For
example, in paper manufacture this number would be the cost per roll
of paper of the width being described. Here again, any cost unit may be
used, but the cost of all stock widths must be stated in the same units.
Cost is punched in columns 12-20, with the decimal point in column 15.

Since it is the total cost of cutting an order which is minimized rather
than the total quantity of stock used, the cost associated with a stock
may be used to reflect the expense of obtaining or producing or handling
that particular width in comparison to other stock widths. Referring
again to the example of cutting paper stock, suppose that an order is to
be filled from stock produced on two machines, one 90 inches and the
other 100 inches in width. Suppose further that a cost analysis shows
that a roll of paper from the 90 ... inch machine costs $90-.00 to produce,
but that a roll of paper from the 100 -inch machine costs only $95. 00
because of the greater efficiency of the wider machine. Then these
costs may be assigned directly to the stock widths to reflect this
difference in efficiency. The program can also be used to minimize
trim by simply setting the cost per unit of stock equal to the width of
the stock. Under no circumstance should the cost be zero or omitted.

15

The third field on the card contains the maximum number of units of
stock of this width which may be cut up to fill the order. The number
should be punched as an integer, without a decimal point, right-adjusted
in columns 22-30. If there is no limit on the supply ayailable for this
width, the word "unlimited" should be punched in columns 22-30.

The last field on the stock card is the maximum number of ordered
widths that may be cut from the stock width. This information is
required because frequently only a limited number of knives are available
for .cutting the stock widths into ordered widths, and consequently some
cutting patterns must be eliminated from the solution. If this restriction
does not apply, the field should contain any number greater than the
number of times the shortest order width divides the stock width. It is
an integer, punc~ed in columns 34-35, right-adjusted and with no
decimal point.

The columns on the stock card not specifically mentioned above must be
left blank. The stock cards are usually placed in descending order of
width, but they may appear in some other order if the user desires.
There may be as many as 16 different stock widths. Stock cards follow
the identification card and precede the order cards. They are
distinguished by the presence of a decimal point in column 5.

ORDER CARDS

Each order card describes one width required for one order (that is, for
one customer), of the batch which is to be filled. A customer may order
a single width requiring one card, or he may order several, in which
case there will be as many order cards for his order as there are widths.
Likewise, several customers may order the same width, and one card
will be punched for each customer for that width. If no customer
information is associated with the orders to be filled, the order may be
considered to have a single customer, and there will be as many order
cards as there are ordered widths.

The fir st field on the card, columns 1-5, contains the customer name or
order number or whatever alphameric information is convenient to
identify the source of the order. Some nonblank information should be
punched in this field, even if there is only one customer.

The second field contains the width which has been ordered. It is punched
in columns 7 -15, with the decimal point in column 10. The units in which
the width is expressed must be the same as for the stock widths.

The number of units of this width which are required by this customer
is punched in the next field. This order quantity should be an integer
with no decimal point, right-adjusted in columns 18-25.

In some instances of the trim problem, the quantity required of a certain
width may vary within certain limits. Typical orders for paper, for
example, indicate not only a quantity desired but also the amount above
and below this quantity which is acceptable to the customer. This
information is not used in determining the linear programming solution,

16

but when the linear programming solution is rounded (a process which
may produce slight discrepancies between the total number of rolls
ordered and total produced of any width), the tolerances are used to
distribute these discrepancies among the customers as well as possible.
These tolerances may be expressed either as percentages of the order
quantity or simply as numbers of units. If program switch 3 is off, the
tolerances are taken to be percentages; if the switch is on, they are units.
The percentage or number of units below the stated amount of his order
that a customer will accept is punched in columns 26-30, without a
decimal point, right-adjusted in the field. The percentage or number of
units acceptable above the stated order quantity is the last field on the
card, columns 31-35, punched in the same way as the percentage or
amount acceptable below.

Order cards are identified by a decimal point in column 10. They follow
the stock cards in the input deck and may be in any order whatsoever.
The unused portion of the order cards, columns 36-80, may be used
for any purpose the user wishes.

There may be as many as 125 order cards. However, the number of
different order widths plus the number of stock widths for which the supply
is not unlimited must not exceed 35. A typical input deck is in the
"Sample Problems" section of this manual.

BLANK CARD

A blank card must follow the last order card to indicate the end of the
data deck.

Data Format Summary

IDENTIFICATION CARD

Columns 1-80 Alphameric identification

STOCK CARDS

Column 1 Blank
·2-10

11
12-20
21
22-30
31-33
34-35
36-80

Stock width (decimal point in column 5)

Blank
Stock cost (decimal point in 15)
Blank
Stock supply or "unlimited"
Blank
Maximum number of usable pieces
Blank

ORDER CARDS

17

1-5 Alphameric order identification
6 Blank

7 -15 Order width (decimal point in 10)
16-17 Blank

18-25
26-30
31-35
36-80

OUTPUT DESCRIPTION

Order quantity
Tolerance below order quantity
Tolerance above order quantity
Not used

The output format has been designed specifically for use of the program
in cutting paper stock. All of the information necessary for anyappli­
catton is printed, but the headings and formatting are oriented toward
this one application.

The first section of the output is primarily a summary of the input data.
The identification card is printed, followed by a list of all the stock
widths. The stock information appears exactly as in the input deck,
except that one column is added. This is the amount of each stock width
which was used in the rounded solution. Next there is a list of the order
widths, arranged in descending width order. Opposite each width is the
total number of rolls of that width required by all of the orders, the
number of rolls produced when the linear programming solution was
rounded, and, of the difference, the number which could not be absorbed
within the tolerance on some order for that width.

The next section of type contains the most important output of the
program: the patterns which tell how the stock should be cut up. The
patterns are grouped according to the stock width from which they are
to be cut, and each group is headed by the statement "Run on machine
width xxx. XXXXX". In the first column of pattern information is the
number of units of stock to be cut in the pattern. The first number
in the column (for a particular pattern) is the number to be cut for the
rounded solution. In parentheses immediately below it is the number
to be cut in the linear programming solution. The second column of
information for a pattern is the number and size of the order widths
which make up the pattern. If there is any waste in the pattern, the
amount will appear, marked "TRIM", as the .last entry in this column.
Opposite each width in the pattern, in the third column, is a description
of the way in which the amount of that width produced by that particular
pattern is to be distributed among the orders. This description consists
of a list of amounts and orders, running horizontally across the page.

The third section of output lists the orders which the problem comprises.
For each order, the width ordered, the customer identification, and the
quantity ordered are copied from the card as the entries in columns
1, 2, and 3 respectively. In column 4 is the number of extra or short
rolls assigned to the order within the specified tolerance, if any, and
in the last column is the number short beyond the tolerance, if any.
The assignments of rolls to customers within their tolerances are
made as follows: Suppose there were p extra rolls of a certain width
to be distributed, of which q have not yet been assigned to any order;
a total of r can be absorbed by all orders. A particular customer has
ordered s rolls and will take up to t extra. (Here t may have been
specified exactly on the input card or may have been computed as a
percentage of s, depending on the setting of program switch 3.) Then

18

this customer should receive

Min (s + q, s + t, s + [p . t ; r - 1]).

If there is a shortage rather than an excess of p rolls, and the customer
will accept as many as t rolls too few, then he will receive

Max (s - q, s - t, s _ [p . t ; r - 1~).

The final portiop of the output consists of some statistic s about the
problem. The total cost of both the linear programming and rounded
solutions is printed, along with the percentage of trim waste in each.
Finally, the number of iterations performed in the linear programming
solution is printed.

19

SAMPLE PROBLEMS

Both of the following examples describe problems in which orders for
various sizes of rolls of paper are to be cut from rolls produced on
machines of standard widths. In the first example, the manufacturer is
filling the orders from a single machine, 222 inches wide. Since there
is only one machine, minimizing the cost of filling the orders is
equivalent to minimizing the amount of paper used, or again, to minimizing
the amount of waste paper which must be trimmed off. The stock is
available in unlimited supply, because it would be pointless to limit the
supply of the only stock available. The collection of orders to be filled
involves five customers whose various orders have been sorted into
ascending order of ordered width, for some reason dictated by the
manufacturer's procedures.

The input deck for this problem looks as follows:

EXAMPLE PROBLEM 1
222.00000 222.00000 UNLIMITED 10

JONES 22.75000 396 0 1
JONES 23.5 3728 1 0
JONES 31.00000 135 1 1
JONES 31.50 5086 0 1
ABC 35. 2780 0 0
JONES 35. 14 0 1
SMITH 35.25000 5 1 1
XYZ 35.25 1052 5 5
ABC 35.25000 15 0 0
ABC 35.50 10 0 0
XYZ 35.5 1359 5 5
JONES 40. 180 0 1
ABC 44. 360 0 0
JONES 44. 00008 0 1
JONES 45. 213 0 1
JONES 46.00000 0665 0 1
JONES 47.25000 06590 0 1
Sfv11 TH 52. 10 1 1
ABC 52. 2 0 0
JONES 52.25 22 0 1
SMITH 52.25 1400 1 1
XYZ 52.25 100 0 10
ABC 52.25 100 0 0
SMALL 52.25 100 1 5
JONES 53. 498 0 1
JONES 58.75000 635 0 1
XYZ 58.75000 683 5 5
St4 I TH 58.75 1317 1 1
JONES 63.00000 1181 0 1
JONES 65. 625 500 0 1
ABC 65.6250 480 0 a
XZY 65.6250 20 5 5
SMITH 65.62500 1560 1 1
JONES 67.75 3985 0 1
SMITH 68.62500 1032 1 1

20

STEP
STEP
STEP
STEP
STEP
STEP
STEP
STEP
STEP

The first two cards of the deck are the identification card and the stock
width card. Next follows an order from Jones for 396 rolls of 22. 75-inch
paper. Program switch 3 is off, so that the tolerances on the order
cards will be considered percentages of the order quantity . Jones will
not settle for any number of rolls fewer than 396, but will accept up
to one percent (or three rolls) more. The second order is also from
Jones, this one for 3,728 rolls of 23.5-inch paper. On this order, he will
accept up to one percent (37) fewer rolls than specified, but will take no
extras. The last order is from Smith, who wishes 1,032 rolls of width
68.625. He will tolerate a one percent discrepancy in either direction
from his stated figure.

Following is the output from the problem.

009# 02.31 PERCENT WASTE
029# 00.27 PERCENT WASTE
039# 00.20 PERCENT WASTE
049# 00.17 PERCENT HASTE
060# 00.11 PERCENT ~JASTE
066# 00.07 PERCENT HASTE
073, 00.06 PERCENT WASTE
075# 00.06 PERCENT WASTE
078, 00.05 PERCENT WASTE

EXAMPLE PROBLEM 1

MACHINE COST PER NUI,1BER OF ROLLS ROLLS USED r·1AX I ~lUt'" NUt,1B [t{

WI DTH t<tACH I NE RO LL AVAILABLE ROUNDED SOLUTION PI ECES PER RO LL

222.00000 222.00000 UNL I t,.,1 TED 7549 10

WIDTH NUI'1BER OF ROLLS PRODUCED, NUt1B ER OF
ORDERED ROLLS ORDERED ROUNDED SOLUTION UNASSIGNED ROLLS

68.62500 1032 1032
67.75000 3985 3984 1 SHORT
65.62500 2560 2561
63.00000 1181 1181
58.75000 2635 2634
53.00000 498 498
52.25000 1722 1720
52.00000 12 12
47.25000 6590 6590
46.00000 665 665
45.00000 213 213
44.00000 368 368
40.00000 180 180
35.50000 1369 1369
35.25000 1072 1072
35.00000 2794 2794
31.50000 5086 5086
31. 00000 135 135
23.50000 3728 3728
22.75000 396 396

21

RUN ON MACHINE 111 DTH 222.00000

MACHINE
ROllS PATTERN DIS TR I BUT I ON

80 1 OF 65.62500 80 FOR JONES
79.75158) 2 OF 35.25000 5 FOR St~ I TH 155 FOR XYZ

2 OF 31.50000 160 FOR JONES
1 OF 22.75000 80 FOR JONES
TR I ~1 0.12500

498 . 1 OF 53.75000 498 FOR JONES
498.00006) 1 OF 53.00000 498 FOR JONES

1 OF 47.25000 498 FOR JONES
2 OF 31.50000 996 FOR JONES

325 1 OF 58.75000 137 FOR JONES 138 FOR XYZ
324.78935) 1 OF 47.25000 325 FOR JONES

1 OF 46.00000 325 FOR JONES
2 OF 35.00000 650 FOR ABC

1181 2 OF 67.75000 2362 FOR JONES
0181.00003) 1 OF 63.00000 1181 FOR JONES

1 OF 23.50000 1181 FOR JONES

180 1 OF 52.25000 22 FOR JONES 158 FOR SMITH
179.99987) 2 OF 47.25000 360 FOR JONES

1 OF 40.00000 180 FOR JONES
1 OF 35.25000 180 FOR XYZ

135 1 OF 65.62500 135 FOR JONES
135.00007) 1 OF 58.75000 135 FOR XYZ

1 OF 35.00000 135 FOR ABC
1 OF 31.50000 135 FOR JOr·JES
1 OF 31.00000 135 FOR JONES
TR I r>1 0.12500

164 2 OF 58.75000 328 FOR XYZ
164.48136) 2 OF 52.25000 328 FOR SI11 TH

12 1 OF 52.00000 10 FOR SI·11 TH 2 FOR ABC
12. 00000) 2 OF 47.25000 24 FOR JONES

1 OF 44.00000 12 FOR ABC
1 OF 31.50000 12 FOR JONES

248 4. OF 47.25000 992 FOR JONES
247.84241) 1 OF 31.50000 248 FOR JONES

TR I r>1 1.50000

17 1 OF 52.25000 17 FOR SHITH
17.15687) 3 OF 35.50000 10 FOR ABC 41 FOR XYZ

2 OF 31.50000 34 FOR JONES
TRI M 0.25000

316 1 OF 53.75000 31 FOR XYZ 285 FOR StHTH
316.24797) 2 OF 47.25000 632 FOR JONES

1 OF 46.00000 316 FOR JONES
1 OF . 22.75000 316 FOR JONES

22

24 1 OF 65.62500 24 FOR JONES
23.96233) 1 OF 47.25000 24 FOR JONES

1 OF 46.00000 24 FOR JONES
2 OF 31.50000 48 FOR JONES
TRIM 0.12500

157 1 OF 52.25000 157 FOR SMIHI
156.88614) 1 OF 47.25000 157 FOR JONES

1 OF 35.50000 157 FOR XYZ
2 OF 31.50000 314 FOR JONES
1 OF 23!50000 157 FOR JONES
TR I IJ\ 0.50000

356 1 OF 67.75000 356 FOR JONES
355.99989) 1 OF 47.25000 356 FOR JONES

1 OF 44.00000 348 FOR ABC 8· FOR JO NES
2 OF 31.50000 712 FOR JONES

1032 1 OF 68.62500 1032 FOR SIJ\I TH
(1031.99986) 1 OF 58.75000 1032 FOR Sf1ITH

2 OF 47.25000 2064 FOR JONES
TR I ~1 0.12500

298 5 OF 35.00000 1490 FOR ABC
297.98489) 2 OF 23.50000 596 FOR JONES

213 3 OF 47.25000 639 FOR JONES
213.00007) 1 OF 45.00000 213 FOR JONES

1 OF 35.25000 213 FOR XYZ

1161 2 OF 65.62500 262 FOR JONES 1.i.30 FOR ABC 20 FOR XZY
1560 FOR S~11 TH

0160.64311) 1 OF 35.50000 1161 FOR XYZ
1 OF 31.50000 1161 FOR JONES
1 OF 23.50000 1161 FOR JONES
TRIM 0.25000

633 2 OF 67.75000 1266 FOR JONES
633.49999) 2 OF 31.50000 1266 FOR JONES

1 OF 23.50000 633 FOR JOtlES

519 2 OF 52.25000 738 FOR Slvll TH 100 FOR XYZ 100 FOR I\BC
100 FOR Sf1ALL

519.49709) 1 OF 47.25000 519 FOR JONES
1 OF 35.25000 504 FOR XYZ 15 FOR ABC
1 OF 35.00000 505 FOR ABC 14 FOR JONES

23

SUMMARY OF ORDERS
DIFFERENCE FRor", ORDER

ORDER ROLLS Ii 1 TH IN BEYOND
WIDTH NUI'lBER ORDERED TOLERANCE TO LERANC E

22.75000 JONES 396
23.50000 JOfJES 3728
31.00000 JONES 135
31.50000 JONES 5086
35.00000 ABC 2780
35.00000 JONES 14
35.25000 SHITH 5
35.25000 XYZ 1U52
35.25000 ABC 15
35.50000 ABC 10
35.50000 XYZ 1359
40.00000 JONES 130
44.00000 ABC 360
44.00000 JOHES 8
45.00000 JONES 213
46.00000 JONES 665
47.25000 JONES 6590
52.00000 SI4I TH 10
52.00000 ABC 2
52.25000 JONES 22
52.25000 Si-11 TH 1400 2 SHORT
52.25000 XYZ 100
52.25000 ABC 100
52.25000 SI-1ALL 100
53.00000 JONES 498
58.75000 JONES 635
58.75000 XYZ 683 1 SHORT
58.75000 SMI TH 1317
63.00000 JONES 1181
65.62500 JONES 500 1 EXTRA
65.62500 ABC 480
65.62500 XZ Y 20
65.62500 SI-11 TH 1560
67.75000 JONES 3985 1 SHORT
68.62500 SHI TH 1032

PROGRAM STATI STI CS

COST OF OPTIt~AL SOLUTION 1676042.93
COST OF ROUNDED SOLUTION 1675878.00
PERCENT TRIM WASTE (OPTIMAL) 0.053
PERCENT TRIM WASTE (ROUNDED) 0.053
I TERATI ONS 82

24

The first nine lines are messages printed during the linear programming
phase of the problem when the operator depressed program switch 1 to
see how the solution was progressing (see "Operating Instructions").
The rest of the output is as described previously, under "Output
Description" .

The second example is a much smaller, but in some respects more
illustrative, problem. In this problem, the manufacturer has three
different machine widths available for cutting the ordered widths.
Clearly the 110-inch machine is the most efficient of the three, since
it has a cost of only $100 per roll. However, only 500 rolls from it
can be used for the solution, whereas, 1,000 rolls are available on the
somewhat less efficient 120 -inch machine. Output from the third
machine is available in unlimited supply, but it has the greatest cost
per roll-inch of all.

There are four customers in the problem. A requires ten rolls each of
33- and 29-inch paper and 50 rolls of 20-inch paper. A permits a
blanket five percent tolerance, above and below. Cutomer B wishes

70 rolls of 29-inch paper
950 rolls of 20-inch paper

3000 rolls of 18-inch paper
500 rolls of 17 -inch paper

The only deviations he will accept are five percent above on the 29-inch
order and five below on the 17 -inch order. The last two customers'
orders are:

Customer C: 60 rolls of 33-inch paper
10 rolls of 29-inch paper

1200 rolls of 18-inch paper

Customer D: 20 rolls of 47 -inch paper
80 rolls of 33-inch paper
10 rolls of 29-inch paper

800 rolls of 18-inch paper
180 rolls of 17 -inch paper

1250 rolls of 15-inch paper

Like A, C and D will accept up to five percent above or below the
order quantity. The input deck is as follows:

25

EXAMPLE PROBLEM 2
120.00000 120.00000
110.00000 100.-00000
100.00000 110.00000

A 33.00000
A 29.00000
A 20.00000
B 29.00000
8 20.00000
B 18.00000
B 17.000QO
C 33.00000
C 29.00000
C 18.00000
D 47.00000
o 33.00000
o 29.00000
D 18.00000
D 17.00000
D 15.00000

The output is:

EXAMPLE PROBLEM 2

MACHINE COST PER
WIDTH MACHINE ROLL

120.00000 120.00000
110.00000 100~00000
100.00000 110.00000

WIDTH NUMBER OF
ORDERED ROLLS ORDERED

47.00000 20
33.00000 150
29.00000 100
20.00000 1000
18.00000 5000
17.00000 680
15.00000 1250

1000
500

UNLIMITED
10 5
10 5
50 5
70 0

950 0
3000 0

500 5
60 5
10 5

1200 5
20 5
80 5
10 5

800 5
180 5

1250 5

8
8
8
5
5
5
5
o
a
o
5
5
5
5
5
5
5
5
5

NUtvlB ER 0 F RO LLS
AVAILABLE

1000
500

UNLIMITED

ROLLS PRODUC ED,
ROUNDED SOLUTI ON

20
149

99
1003
4999

68 a
1250

ROLLS USED
ROUNDED SOLUTION

784
500

a

NUMBER OF
UNASSIGNED ROLLS

1 SHORT
1 EXTRA

RUN ON MACHINE WIDTH 120.00000

MACHINE
ROLLS PATTERN DISTRIBUTION

20 1 OF 47.00000 20 FOR D
20.00000) 1 OF 20.00000 20 FOR A

2 OF 18.00000 40 FOR B
1 OF 17.00000 20 FOR B

26

tl\AX I f\1UM NUHB ER
PIECES PER ROLL

8
8
8

58 2 OF 33.00000 10 FOR A 59 FOR C 47 FOR D
58.33333) 3 OF 13.00000 174 FOR B

33 1 OF 33.00000 33 FOR D
33.33333) 3 OF 29.00000 10 FOR A 70 FOR B 10 FOR C

9 FOR D

33 6 OF 20.00000 32 FOR A 166 FOR B
32.50002)

625 5 OF 18.00000 2786 FOR B 339 FOR C
625.00000) 2 OF 15.00000 1250 FOR D

15 1 OF 18.00000 15 FOR C
15.00000) 6 OF 17.00000 90 FOR B

RUN ON MACHINE WIDTH 110.00000

MACHINE
ROLLS PATTERN DISTRIBUTION

285 2 OF 20.00000 570 FOR B
285.00000) 2 OF 18.00000 570 FOR C

2 OF 17.00000 390 FOR B 180 FOR D

215 1 OF 20.00000 214 FOR B 1 UNORDERED
215.00000) 5 OF 18.00000 275 FOR C 800 FOR D

SUMMARY OF ORDERS
DIFFERENCE FROM ORDER

ORDER ROLLS WITHIN BEYOND
WIDTH NUMBER ORDERED TOLERANCE TOLERANCE

33.00000 A 10
29.00000 A 10
20.00000 A 50 2 EXTRA
29.00000 B 70
20.00000 B 950
18.00000 B 3000
17.00000 B 500
33.00000 C 60 1 SHORT
29·. 00000 C 10
18.00000 C 1200 1 SHORT
47.00000 D 20
33.00000 D 80
29.00000 D 10 1 SHORT
18.00000 D 800
17.00000 D 180
15.00000 D 1250

P~OGRAM STAT! ST! CS

COST OF OPTIMAL S~LUTION 144100.00
COST OF ROUNDED SOLUTION 144080.00
PERCENT TRIM WASTE (OPTIMAL) 0.000
PERCENT TRIM WASTE (ROUNDED) 0.000
ITERATIONS 10

27

As can be seen from the j'Number of Rolls Ordered" and "Rolls Produced,
Rounded Solution", exactly the right number of rolls of widths 47, 17,
and 15 were produced in the rounded solution. Of the widths 33, 29, and
18, however, one fewer roll was produced than was required. In the
case of both 33 and 18, the shortage was assignable (to customer C, as
shown in the "Summary of Orders"), but the missing 29-inch roll could
not be assigned to either B, who specified no deviation on that order, or
A, C, or D, who each ordered only ten rolls, five percent of which,
rounded, is zero. The shortage eventually fell, beyond the tolerance,
on D, as is also shown in the "Summary of Orders". Three extra rolls
were produced of the 20-inch paper; two of these were assigned to
customer A (five percent of 50), but the other could not be assigned since
the only other customer specified no extra rolls. It appears, in the
distribution for the last pattern, as "unordered" and will presumably go
into inventory.

In this last pattern, 215 rolls are to be cut from the 110-inch machine.
Each roll so cut is to contain one 20-inch piece and five 18-inch pieces.

Note:
1 (20) + 5 (18) = 110

so that there is no trim waste at all in this particular pattern. This will
produce 215 rolls of 20-inch and 5 x 215 = 1075 rolls of 18-inch paper.
Of the 215 rolls of 20-inch paper, 214 are for B, who previously received
736 rolls, and as mentioned before, one simply was not ordered. The
1075 rolls are split as follows: 275 to C, who has already received the
other 924 he will receive, and 800 to D, who has not previously received
any 18-inch rolls.

28

PROGRAM MODIFICATIONS

1443 Printer Output

The program output has been written so that if a printer is available,
the program can be modified fairly easily for this kind of output. The
following changes should be made. Cards

07260
07270

07l-&a
07270

ReTY,
\~ AT Y HO L. 0,

should be replaced by

WA HOL.O,900
NOP ,

"IS DOWN, TERMINATE
"SOLUTION. OTHERWISE

, , ISO N, S TO P .
,,0THERvJI SE

in part 2 of the program. In part 3, cards

13140FILL.OWATY-FILL.0+1,
13150 BB,
131~O DORG*-3
13170PRNT.OWATY-PRNT.0+1,
13180 B SKIP.O,
13190SKI P.2RCTY,
13200 NOP ,
13210SKIP.ORCTY,
13220 BB,
13230 DORG*-9
13240EMPT.ODS ,SKIP.O
13250REST.ODS ,SKIP.2

should be replaced by

1314frPRNT.OSM PRNT.O-1,01,10
13144PRNT.1TR WBUF,-PRNT.O+1
13148 NOP ,
13152EMPT.OWA WBUF+1,900
13156 TFM PRNT.1+6,WBUF
13160 TR WBUF,PBUF-1
13164 TR WBUF+78,PBUF-1
13168 BB,
13172 DORG*-3
13176FILL.OSM FILL.O-1,Ol,10
13180 TR -PRNT.1-6,-FILL.O+l
13184 AM PRNT.l+6,Ol,10
13188FILL.IAM PRNT.l+6,02,10
13192 BNR FILL.1,-PRNT.1-6
13196 SM PRNT.l+6,01,10
13200 BB

29

"WRITE PARTIAL LINE
"AND RETURN.
, ,
"WRITE ALL OR REST OF LINE
"AND RESTORE AND RETURN.
"SPACE TWO LINES
"AND RETURN.
"SPACE ONE LINE
"AND RETURN.
, ,

- "Ef--1 P T Y W R I T E B U F FER (0 U MM Y) •
"RESTORE TO NEW PAGE(DUMMY).

"WRITE REST OR ALL
"OF LINE FROM WBUF.
, ,
"AFTER PRINTING RESTORE
"ADDRESS TO BEGINNING
"OF BUFFER.
, , CLEAR BUFF ER,
"AND RETURN.
I ,

"PLACE PARTIAL LINE
"IN BUFFER WBUF.
"COMPUTE LOCATION OF
"NEXT AVAILABLE SPACE
"IN BUFFER.
, ,
"RETURN.

13204 DORG*-3 , ,
13208SKfP.2K ,951 "SPACE TWO LJNES AND

"RETURN. 13212 NOP ,
13216SKfP.OK ,951 "SPACE ONE LrNE

"AND RETURN. 13220 BB,
13224 DORG*-3 , ,
13230REST.OK ,971 "RESTORE PAGE AND

"RETURN. 13240 BS,
13250 DORG*-9

"

1G9-10

1&919

11930

11930

Furthermore, if a printer is available, the user may wish to have the
patterns for each stock size on a separate sheet. If this is desired,

BTM SKIP.2,0 "PR I NT HEADING

should be replaced by:

BTM REST. 0, 0 "PR tNT HEAD IN-G

and

BTM SKJP.2,0 "AFTER ALL PATTERNS PRINTED,

should be replaced by:

8TM REST.O,O "AFTER ALL PATTERNS PRINTED,

ROUNDED SOLUTION

The way in which the quantities of the patterns to be produced in the
linear programming solution are rounded to integers for the rounded
solution is governed by a parameter in the program, THETA. If X
units of a certain pattern are to be cut in the linear programming
solution, then the number to be cut in the rounded solution will be
greatest integer contained in [X + THETA] . The present value of
THETA is . 5, defined by the card

()7540THE-TA DC 10,500000000(} "ROUND-UP LJM~T.

so that if the fractional part of the pattern quantity is one -half or greater,
the quantity is rounded up. Otherwise it is rounded down.

This parameter can be changed to any number between 0 and 1. 0 the
user wishes. For instance, if the user wished always to round up, he
would reassemble the program with

07540THETA DC 10,9999999999 "ROUND-UP LIMIT.

If he always wished to truncate, the card defining THETA would be changed
to

0754eTHETA DC 10,0000000000 "ROUND-UP LIMIT.

30

MAXIMUM NUMBER OF STOCK AND ORDER WIDTHS

The limits on the number of stock widths, order widths, and order cards
are set by parameters at the beginning of the program. Symbolically,
the maximum number of stock widths is defined as LDIlVI, presently
equated to 16. The maximum number of distinct order widths is MDIM,
now set at 35; this number is also the limit on the sum of the number of
order widths and the number of stock widths with limited supply. The
maximum number of separate order cards is defined as CDIM, presently
125: These particular values were chosen to make- the program as
generally useful as possible within the limitations of 20K storage.

If more storage is available or if a different arrangement is desired,
these limits may be changed as desired, with two restrictions: (1) because
of the way the variables L through SCALE are attached to the vector
KUT in the program, LDIM should always be at most MDIlVI-17, unless
these variables are redefined elsewhere in DC statements; (2) if MDIM
exceeds 39, the buffer PBUF must be doubled in length, and every
statement which punches from or reads into PBUF must be replaced by
two statements which write and read both halves of the buffer.

FIELD LENGTH

The field lengths defined symbolically early in the program at DS, DI,
DB, DF, and DC must not be altered. The program logic depends
materially on the present choice of values.

OPERATING INSTRUCTIONS

Operating procedure for the One-Dimensional Trim Program divides into
three phases which correspond to the three over lay sections of the
program. The steps which occur in the processing of a single problem
are outlined by section below, with specific operating procedures numbered
and indented.

Program Section 1

The first section of code performs various initialization steps, reads
the data deck, sets up data arrays for section 2, and punches a few cards
of intermediate output. To prepare the 1620 system for this program
section, the operator should:

1. Set console check switches. The arithmetic check switch (0 FLOW)
should be set to PROGRAM. The other switches (I/O, PARITY, and,
on Model II only, DISK) should be set to STOP.

2. Set program switches. PROGRAM SWITCH 1 may be ON or OFF (see
"Program Section 2" below). SWITCH 2 must be OFF. Switch 3
should be OFF if the order quantity tolerances are expressed as
percentages, ON if they are expressed as units, as explained in the
"Input Format lT section of this manual.

3. Set typewriter margins. The left margin should be as far left as
possible and the right margin at 85 or beyond.

31

4. Clear memory and reset computer. On Model I the procedure is:

On Model II:

Depress INSTANT STOP key
Depress RESET key
Depress INSERT key
Type 260000800009 ~ and wait 10 seconds
Depress INSTANT STOP key
Depres s RES ET key

Depress INSTANT STOP key
Depress RESET key
Depress MODIFY and CHECK RESET keys simultaneously
Depress START key
Depress START key
When MANUAL light appears, depress RESET key

5. Ready the punch. Clear any cards presently in the punch by remoVing
new cards from the punch input hopper and depressing the punch
NON-PROC RUN OUT key for a few seconds. Discard any cards left
in the stackers. Place a supply (200 or so) of blank cards in the
punch hopper. These cards should be different in color both from the
data deck and from the program deck. Depress PUNCH START key on
the reader-punch.

6. Load program and data. Place the data deck, including the blank
trailer card, between the cards numbered 065 and 066 in the program
deck. The program deck cards are numbered sequentially in columns
78 -80. Place the program deck with the imbedded data in the read
hopper, and depress the LOAD key on the reader-punch.

As soon as the LOAD key is depressed, section 1 of the program is loaded
into core and begins execution. In rapid succession, it reads the data
deck, punches a few cards of intermediate output, and initiates loading
of Section 2.

Program Section 2

Program Section 2 performs the basic linear programming step iteratively
until the solution is optimal or is interrupted. One step consists of
generating a pattern and performing a Gaussian elimination step. During
each such step, one card of intermediate output is punched. Execution
of section 2 begins automatically after loading. Unless the problem is
unusually small or easy, this section will take some time to execute -
exactly how much time is impossible to estimate, although some idea
may be obtained from the table under "Timing" in the "General
Description" section of this manual. The operator has two options to
exercise during this part of the program:

32

1. He may inspect the progress of the solution at any time by turning
PROGRAM SWITCH 1 to ON. As long as the switch is ON at the end
of each iteration of the linear programming solution, the percentage
of trim waste in the current solution and the number of iterations
completed are typed out.

2. He may terminate the solution at the end of the current linear
programming step by putting PROGRAM SWITCH 2 ON (see remarks
under "Timing").

Since one iteration may take several minutes under certain circumstances,
the program should not be expected to respond immediately to either
switch.

As soon as section 2 has reached an optimal solution (or been interrupted
by PROGRAM SWITCH 2), it initiates loading of the third and final
section of the code.

Program Section 3

The last section of the program reads the intermediate output which was
punched by the first two sections, rereads the data deck, and types out
all of the program output. Loading of this section proceeds until the
last card of the program deck has fed part way into the reader. At this
time, the computer will pause with the console light READ INTERLOCK on.
The operator should:

1. Clear the punch. Again, remove blank cards from the input hopper,
and depress the punch NON - PROC RUN OUT key for several seconds.
The last card of punched intermediate output followed by two blank
cards will fall into the leftmost stacker behind the other punched cards.

2. Re-enter intermediate output. Take the punched card deck from the
leftmost stacker, remove the two blank cards at the end, and place
the deck in the read hopper.

3. Re-enter data. Remove the data deck from the program deck, most
of which is now in the rightmost stacker (the last two cards are
still in the reader). Place the data in the reader, behind the punched
output.

4. Depress READER START key on the reader-punch.

The last cards of the program are now loaded and the computer pauses
with MANUAL lighted on the console. To initiate execution of the final
section of code, the operator should:

5. Depress START key on the console.

This section begins by reading the punched output and the first part of the
data deck. It then types the identification card and stock information
and reads the rest of the data deck. As the last card of the data deck
(the blank card) feeds into the reader, the computer will again pause

33

with READ INTERLOCK (READ NO FEED) lighted on the console. The
operator should:

6. Depress READER START key on the reader punch. The program
will type the rest of the output and stop at 19150.

Data Deck Order

• Identification card
• Stock cards
• Order cards
• Blank card

The cards are placed between cards 65 and 66 of the object deck.

34

PROGRAM SETUP SHEET

One-Dimensional Trim Program

Program Sections 1 and 2

1620

INPUT

Unit Description Source Unit

1622 Data Keypunch 1622
reader punch

1622 Blank cards
punch

Program Sw. * 1

On or Off x

Off

Console Check Switches

o FLOW

I/O

PARITY

DISK

2 3 4

x Not
used

x Not
used

PROGRAM

STOP

STOP

STOP

Typewriter margins: Left 0 and right 85.

1. Clear memory and reset computer.
2. Press PUNCH START.

OUTPUT

Description Disposition

Intermediate Input to
output section 3

3. Place data deck, including the blank trailer card, between cards 065
and 066 of program deck, and then put program deck with imbedded
data in reader.

4. Press LOAD.

* Note: Switches 1 and 2 may be used to inspect and terminate the
solution respectively, as described under "Operating Instructions".

35

One-Dimension Trim Program

Program Section 3

Unit

1622
reader

1622
reader

INPUT

Description

Intermediate
output

Data

1620

Source Unit

Sections Type-
1 and 2 writer

Keypunch

OUTPUT

Description Disposition

Program Management
results

Console check switches are the same as in sections 1 and 2. The only
program switch which affects this section of the program is switch 3.
It should be ON if order quantity tolerances are expressed as units, OFF
if they are percentages.

1. Clear punch and place intermediate output in reader (after removing
two blank cards at end).

2. Remove data from program deck and place in reader, after inter­
mediate output.

3. Depress READER START.
4. Depress START.

36

HALT LIST

There are seven error halts in the program. Except for the last one,
no messages are provided; the cause of the stop may be determined
from the Memory Address Register and the table below. On a 1620,
Model I, Memory Address Register contains the origin of the halt
instruction +11; on Model II, it contains the origin +10.

Program Origin of Cause Correction
section halt instruction of stop procedure

1 16330 More than 16 Reduce number of
stock width cards. stock widths.

1 16666 More than 125 Combine orders or
order cards. otherwise reduce

number of cards.

1 16848 More than 35 Reduce number of
distinct order order widths.
widths.

1 17898 . An ordered width Supply a stock of
exceeds all stock adequate width or
widths. remove the offending

order width.

1 18548 Sum of distinct Reduce one or the
order widths and other or both.
stock widths with
limited supply
exceeds 35.

2 18568 Uncontrollable See note.
roundoff error.

3 15332 Supply of stock Increase supply by at
insufficient to cut least the amount
entire order. specified in the typed

message.

Memory must be completely cleared for proper execution of the program.
If core is not properly cleared, a checkstop may occur, the location of
the check depending on the part of core not cleared. If this occurs,
clear memory and restart the program.

After any error stop, the data must be corrected and the entire problem
rerun.

The normal end-of-program stop instruction origins at 19150.

Note: this -stop should never occur. It is placed in the program to prevent
erroneous results in the event that the data should produce a pivot column
with no acceptable pivot row. A slight change in the order data should
eliminate the problem.

37

STORAGE MAP

Section 1 Section 2 Section 3
o I I

Arithmetic tables I
I I
I I

Data Area 1 I
I

400

1982
I J

;
I

Data I
I
I

Area 4

I
I
I

Data Area 2
I
I
I
I
I

14208 I
I

15448 I

Data Area 3
16142

Program
Program Program section 3
Section 1 section 2

18886

Unused
20,000

38

BIBLIOGRAPHY

1. Gilmore, P. C., and R. E. Gomory, "A Linear Programming Approach
to the Cutting Stock Problem", Operations Research 9, 849-859,
Number 6, November - December, 1961.

2. Gilmore, P. C., and R. E. Gomory, "A Linear Programming Approach
to the Cutting Stock Problem, Part II", Operations Research
11, 863-888, Number 6, November - December, 1963.

3. Vajda, S., Mathematical Programming, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1961.

f

4. Wade, C. S., Cutting Stock 1 (PK CSS 1), SHARE Library program

39

Number 1485, IBM Data Processing Division Program Distribution
Service.

H20-0102-0

TIrnJk1r
lID

International Business Machines

Data Processing Division
112 East Post Road, White Plains, New York 10601

