SALES and SYSTEMS GUIDE

IBM BASIC COUNTER UNIT COMPONENT DESCRIPTION AND USER'S GUIDE

This guide describes the organization and use of the IBM Basic Counter Unit. The IBM Basic Counter Unit monitors the various activities of a system and provides data for analyzing a system's performance. Among the systems that can be monitored are:

IBM System/360
IBM 1800 Data Acquisition and Control System
IBM 1130 Computing System

Preface

The IBM Basic Counter Unit is referenced by Field Engineering Publications as the IBM 2989 Model 11 Basic Counter Unit. The type number, 2989 Model 11 is used by the Field Engineering Division for installation and maintenance information recording.

IBM Basic Counter Unit Related Publications:
IBM Basic Counter Unit Probe Assignment Planning Form, ZX22-6946
IBM Basic Counter Unit Patch Panel Planning Form, ZX22-6952
IBM 2989 Model 11 Basic Counter Unit, FETOM, ZY27-2236
IBM Systems Journal, Volume Eight, Number Four, 1969, G321-0019
IBM System/360 I/O Interface, Channel to Control Unit, OEMI, GA22-6843
Introduction to IBM System/360 Direct Access Storage Devices and Organization Methods, GC20-1649
IBM System/360 Principles of Operation, GA22-6821

First Edition (February, 1970)
This edition contains information formerly in, and obsoletes, Form Y22-6934-0. Changes are periodically made to the specifications herein; any such changes will be reported in subsequent revisions.

Requests for copies of. IBM publications should be made to your IBM representative or to the IBM branch office servicing your locality.

This manual has been prepared by the IBM Systems Development Division, Product Publications, Dept. B98, PO Box 390, Poughkeepsie, N.Y. 12602. A form for readers' comments is provided at the back of this publication. If the form has been removed, comments may be sent to the above address.
© Copyright International Business Machines Corporation 1970
IBM Basic Counter Unit 5
Purpose and Function 5
Description 5
Operating the IBM Basic Counter Unit 8
Operating Controls 8
Pushbutton Switches 8
Indicator Lights 9
Counter Display Rotary Switch 9
Decimal Digit Display 9
Connecting the Monitor Probes 9
Monitor Probe Description 9
Junction Box 10
Signal Cable 10
Wiring the Patch Panel 10
Patch Panel Signal Hubs 11
Logic Sections 12
Counters Section 16
Optional Accessory-IBM 1057/1058 Card Punch 19
Operating Procedures 19
Punch Card Format 19
Punch Program Card 19
Power Supply 19
Testing Procedures 22
Basic Counter Unit Testing Procedures 22
Installation Tests 22
Performance Tests 22
Operational Patch Panel-Test 23
Lamp Test 23
1057/1058 Testing Procedures 23
Punch Test 1 23
Punch Test 2 23
Measuring Techniques 24
Terminology 24
Measured System Functions 24
Derived System Functions 24
Examples 24
Example 1 24
Example 2 26
Example 3 26
Example 4 28
Appendix A. Primary Sources 30
Appendix B. Generated Sources 34
Appendix C. Probe Assignment Planning Form 35
Appendix D. Operational Patch Panel 1 36
Appendix E. Operational Patch Panel 2 37
Appendix F. XLF and Test Patch Panel 38
Appendix G. Patch Panel Planning Form 39
Index 41

IBM Internal Use Only

[^0]
PURPOSE AND FUNCTION

Data Processing Management is concerned with optimizing the use of a computing center installation. Their need for the system is to:
Improve performance.
Evaluate requirements for expansion.
Determine the effects of upgrading the system to a larger and faster system.
Evaluate programming improvements.
The IBM Basic Counter Unit (Frontispiece) measures the various activities of a system and provides data for analyzing a system's performance.
The Basic Counter Unit consists of 16 counters. Each counter is 11 decimal digits wide and counts or times events at the maximum rate of 1 MHz . Counter output is obtained by visual display or by punched card.
To meet the wide range of measurement applications, the Basic Counter Unit incorporates a patch panel of combinatorial logic. The user selects time inputs, incident counts, logic functions, or combinations of these by wiring the patch panel. Input signals to the Basic Counter Unit are

Inputs to Basic Counter Unit

Figure 1. General Applications of the Basic Counter Unit
obtained from monitor probes attached to the desired function points in the system being measured. Among the systems that can be monitored by the Basic Counter Unit are:
IBM System/360
IBM 1800 Data Acquisition and Control System
IBM 1130 Computing System
Figure 1 illustrates general applications of the Basic Counter Unit; Figure 2 is an example of a measured system profile.

DESCRIPTION

Monitoring is done by attaching probes at specified points on the equipment to be monitored, by setting up on the patch panel the logic that specifies the functions to be measured on specific counters, and by collecting information in counters and analyzing it.

```
Counter
Number Function
0 Total Time (not manual)
    Compute Time - The time CPU is actually executing instructions.
    Multiplexer Channel Time - The time multiplexer channel is in operation.
    Selector Channel 1 Time - The time Selector Channel }1\mathrm{ is in operation. Note 1
    Selector Channel 1 Time - The time Selector Channel 1 is in operation. Note 1
    Any Channel in Operation - The logical OR of the above 3 channels in
            operation.
6 Any Channel AND Wait State - The logical AND of any Channel in operation
    Any Channel AND Wait State - The logical AND.t compute.
    Selector Channel 1 - Selector Channel 2 Overlap - The logical AND of
        selector channels }1\mathrm{ and 2.
Note 1. Devices on a channel may be in operation for a greater time than the channel.
Summary Profile
```


Compute (1)

Figure 2. Example of a Measured System Profile

The connection of the IBM Basic Counter Unit to the equipment to be monitored is illustrated in Figure 3. The monitor probe cables, 15 feet each, terminate at a centrally located junction box, close to the units to be monitored. The monitor probe cable may be extended from 15 feet to 35 feet by connecting a 20 -foot monitor probe extension cable. The junction box has 10 connectors for receiving the 10 monitor probe cables. From the box, the signals are routed via a signal cable to the Basic Counter Unit. The signal cable is 50 feet long.
The Basic Counter Unit (Figure 4) operator's panel contains: the pushbuttons and lights for operating the Basic Counter Unit, a decimal-digit display for displaying counter contents, a switch for selecting the counter to be displayed, a patch panel, and a desk surface for the operator. The operator wires the patch panel, using the combinatorial logic, for the functions to be measured and the counters to be used in the measurement.

The Basic Counter Unit has 16 counters. A single display on the operator's panel contains 12 windows for displaying the contents of the 16 counters. The leftmost window, backlighted in red, identifies the counter being displayed. Counters $0-15$ are identified by the digits $0-15$, respectively. The other 11 windows display the data for a particular selected counter.

Power and Portability: The Basic Counter Unit weighs 225 pounds and is mounted on locking casters. The standard Basic Counter Unit uses $115-\mathrm{volts}, 60-\mathrm{Hz}$ power. A $50-\mathrm{Hz}$ power version is available for export. The power source for

Figure 3. Basic Counter Unit Configuration
the Basic Counter Unit must be a primary outlet. To avoid electrical interference, do not connect the Basic Counter Unit to convenience outlets on the CPU or I/O devices.

Figure 4. IBM Basic Counter Unit

Operating the IBM Basic Counter Unit

OPERATING CONTROLS

The operating controls on the operator's panel of the IBM Basic Counter Unit (Figure 5) consist of: eight pushbutton switches, four indicator lights, a counter select rotary switch, and a decimal digit display. These controls, when selected in their proper sequence, control the operation and test functions of the Basic Counter Unit.

Pushbutton Switches

Power-On (backlighted)
Power-Off
Start
Stop
Machine Reset
Check Reset
Punch Go (backlighted)
Lamp Test (backlighted)
Power-On activates the voltages within the Basic Counter Unit. The pushbutton is backlighted to indicate when normal power is on.

Power-Off turns off all dc and ac voltages in the Basic Counter Unit beyond the main power control compartment. Note that the backlighted power-on pushbutton is also turned off.

Start enables all counters, allowing monitoring to begin. Note that the count-enable light turns on. If the start hub of the patch panel is wired, it overrides the start and stop pushbuttons. See "Appendix F."

Stop disables all counters, stopping the monitoring. Note that the count-enable light turns off. If the stop hub of the patch panel is wired, it overrides the stop and start pushbuttons. See "Appendix F."

Machine Reset resets the contents of all counters and patch panel latches to zero.

Check Reset resets (turns off) the interface check indicator light. A new punch cycle can now be initiated.

Punch Go initiates a card punch operation. The pushbutton is backlighted and remains on until the completion of the punch operation. The operation punches the contents of 16 counters on four IBM cards. If the punch go pushbutton is inoperative, check the intfc check indicator light.

Lamp Test is pressed to test if the decimal digit display lamps are operating. The lamp-test pushbutton is backlighted and remains on until it is pressed again. Once this switch is set, it is used with the counter select rotary switch to test proper indication of digits $0-9$ on each of the 12 decimal digit display lamps.

Figure 5. Operating Controls

Indicator Lights

Punch Ready
Count Enable
Intfc Check
Test Mode
Punch Ready indicates that the IBM 1057/1058 Card Punch is ready to accept data from the Basic Counter Unit.

Count Enable signifies that timing and counting signals are being accepted by the Basic Counter Unit. This indicator light is activated by the start switch. The light is turned off when either the stop hub is activated or the stop switch or machine reset switch is pressed.

Intfc Check (Interface Check) denotes that an error has occurred during a counter select sequence of a card punch operation or during a data transfer between the Basic Counter Unit and the Punch. The light remains on until check reset or machine reset switch is pressed.

Test Mode is on when the Basic Counter Unit is in test mode. In this state, the Basic Counter Unit is disabled from accepting input pulses from any external sources. See "Appendix F."

Counter Display Rotary Switch

This 16-point ($0-15$) rotary switch selects the counter to be displayed on the decimal digit display.

Decimal Digit Display

The decimal digit display (Figure 6), a row of 12 decimal digit display indicators, shows the static or dynamic accumulation of any selected counter. The leftmost digit, backlighted in red, indicates which of the 16 counters has been selected for display by the counter display rotary switch. The remaining 11 digits display the decimal value of the selected counter.

Figure 6. Decimal Digit Display

CONNECTING THE MONITOR PROBES

The following standard accessories are supplied with each Basic Counter Unit to monitor signals from systems and I/O devices for measurement:

20 monitor probes with connected monitor probe cables (15 feet each).
10 monitor probe extension cables (20 feet each).
2 junction boxes.
2 signal cables (50 feet each).

Monitor Probe Description

The Basic Counter Unit connects to a system by using a specially designed non-interfering monitor probe. Monitor probes are connected to pin locations on the back panel of the equipment being monitored. The monitor probe connection procedure is similar to the oscilloscope connection procedure used by a customer engineer. See IBM 2989 Model 11 Basic Counter Unit, FETOM,ZY27-2236, for the approved probe attachment points for IBM System/360, IBM 1800 Data Acquisition and Control System, and IBM 1130 Computing System.

In measuring a system, the Basic Counter Unit requires data from primary sources or generated sources or both.

A primary source is when the Basic Counter Unit records data directly from the system to which the monitor probes are attached. Primary sources are listed in "Appendix A" under $A L D$.

A generated source is when the Basic Counter Unit uses a combination of primary sources through its combinatorial (Boolean) logic on the patch panel. Generated sources are listed in "Appendix B" under Combinatorial Logic.

The monitor probe is a high-impedance differential input device that is suitable for monitoring signal lines in most IBM circuit families without disturbing the normal operation of the circuit.
The probe contains a miniature differential amplifier, which is capable of detecting a voltage change from a reference voltage. A voltage at one level during one state (CPU active) will change when the state changes (CPU wait). The differential amplifier in the probe detects this voltage change and drives a signal to the Basic Counter Unit. The operating power for the monitor probe is obtained from the Basic Counter Unit.
Each probe consists of a module with six protruding wires (Figure 7). Supplied with the probes are adapters that slip on to allow attachment to the pins on the systems or I/O devices being monitored. An example of the IBM Basic Counter Unit Probe Assignment Planning Form, ZX22-6946, appears in "Appendix C."

Monitor Probe Cable

The length between the monitor probe and the junction box is called the monitor probe cable. Each Basic Counter

Figure 7. Monitor Probe Module

Unit is supplied with 20 monitor probes with connected monitor probe cables; each monitor probe cable is 15 feet long.

Monitor Probe Extension Cable

Any 10 of the 20 monitor probe cables may be extended from 15 feet to 35 feet by connecting a monitor probe extension cable to a monitor probe cable. Each Basic Counter Unit is supplied with 10 monitor probe extension cables; each monitor probe extension cable is 20 feet long.

Only one monitor probe extension cable may be connected to any monitor probe cable because an inconsistent result may occur due to signal loss.

Junction Box

Each Basic Counter Unit is supplied with two junction boxes. Each junction box (Figure 8) receives signals from up to ten monitor probes for transfer to the Basic Counter

Figure 8. Junction Box

Unit and receives power from the Basic Counter Unit for transfer to the monitor probes.

Each junction box connects a maximum of ten monitor probe cables to one signal cable.

Signal Cable

The length between the junction box and the Basic Counter Unit is called the signal cable; each signal cable is 50 feet long. Each Basic Counter Unit is supplied with two signal cables.

Each signal cable receives signals from up to ten monitor probes through the junction box and transfers the signals to the Basic Counter Unit. Also, each signal cable receives power from the Basic Counter Unit and transfers the power through the junction box to the monitor probes.

WIRING THE PATCH PANEL

The patch panel (Figure 9) is a three-section panel to the left of the operating controls under a cover plate. Monitored signals from the probes are present in the two
location (probe point) on the back panel of the equipment being monitored. A probe point location may be minus (-) or plus (+) as specified by the line name in the ALD pages. A monitor probe connected to a minus (-) probe point location detects either a minus (-) signal level or a plus (+) signal level. Similarly, a monitor probe connected to a (+) probe point detects either a minus (-) signal level or a plus (+) signal level. Circuit conventions used within the Basic Counter Unit define a signal to be true (active) at the patch panel signal hub when the monitor probe detects a minus (-) signal level at either a minus (-) or plus (+) probe point location. A signal is not true (inactive, false) at the patch panel signal hub when the monitor probe detects a plus (+) signal level at either a minus (-) or plus $(+)$ probe point location.

Signal Polarity at Probe Point Location minus (-) probe point location
 plus (+) probe point location
 $\left.\begin{array}{ll}\begin{array}{ll}\text { Monitor Probe Signal } \\ \text { Level Detection }\end{array} & \begin{array}{c}\text { Patch Panel Logic } \\ \text { at Signal Hub }\end{array} \\ \text { minus (-) signal level } & \text { true (active) }\end{array}\right\}$| plus (+) signal level | not true (inactive,
 false)
 true (active) |
| :--- | :--- |
| minus (-) signal level | not true (inactive, |
| plus (+) signal level | false) |

When connecting a monitor probe to a plus (+) probe point location it may be necessary to invert the signal at the signal hub on the patch panel to yield a true state. Inversions of a signal at the signal hub is accomplished by connecting the signal hub with a patch panel wire to the input hub of any NOT function on the patch panel.

Logic Sections

Operational patch panel 1 and operational patch panel 2 provide the following logical functions:
Six AND functions
Four OR functions
Eight NOT functions
Four LATCH functions
Two OR LATCH functions
Four FANOUT functions
Eight Self-Generated True Sources
Operational patch panel 1 and operational patch panel 2 also provide additional logical functions that are derivatives from some of the previously named logical functions:
Using the LATCH as a FANOUT
DOT OR functions
Using Inverted Logic
The XLF (expanded logic function) patch panel provides the following logical functions:
One START/STOP function
One 4×16 Decoder function
The test patch panel provides 20 additional TRUE functions. Other functions on the test patch panel are for maintenance and test use only and are fully described in "Appendix F."

Connections for the AND Functions

The six AND functions are designated A1, A2, A3, A4, A5, and A6 on the patch panel (Figure 26); each has three inputs numbered horizontally 1-3 under the heading IN. Under the heading OUT, each has three outputs: two are true (noninverted) outputs, and the other one (labeled N) is an inverted output.
The AND condition is satisfied when all three input signals are true (Figure 10). The true outputs are then active, and the inverted output is not true. When the AND condition is not satisfied, the output states are the reverse.
When fewer than three conditioning inputs are needed, the unused hubs of the three IN hubs must be connected to a source of a true signal; any of the hubs labeled +1 (A, B, C, D) or $+1(E, F, G, H)$ are used as this source (Figure 11).

A	B	C	T	T	N
1	1	1	1	1	0
1	1	0	0	0	1
1	0	1	0	0	1
1	0	0	0	0	1
0	1	1	0	0	1
0	1	0	0	0	1
0	0	1	0	0	1
0	0	0	0	0	1

Figure 10. AND Function

If All Inputs True \rightarrow Output True
If Any Input Not True \rightarrow Output Not True

Figure 11. Example of AND Function

Connections for the OR Functions

The four OR functions are designated OR1, OR2, OR3, and OR4 on the patch panel (Figure 26). OR1 and OR3 have three inputs, numbered horizontally 1-3 under the heading

IN. Under the heading OUT, each has two true outputs. OR1 and OR3 can serve as either an OR function or as a LATCH function. See "Connections for the OR LATCH Functions."

OR2 and OR4 have four inputs, numbered horizontally 14 under the heading IN. Under the heading OUT, each has two true outputs. When one or more input signals are true, the OR condition is satisfied and the true outputs are active. See Figures 12 and 13.

Figure 12. OR Function

Any Input True $=$ Output True

Figure 13. Example of OR Function

Connections for the NOT Functions

The eight NOT functions are designated $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{~N} 3, \mathrm{~N} 4$, N5, N6, N7, and N8 on the patch panel (Figure 26). Under IN, each has one input; under OUT, each has two outputs. True in equals not true out, not true in equals true out. See Figures 14 and 15.

Input	Output	
1	0	0
0	1	1

Figure 14. NOT Function

True Input $=$ Not True Output Not True Input = True Output

Figure 15. Example of NOT Function

Connections for the LATCH Functions

The four LATCH functions are designated L1, L2, L3, and L4 on the patch panel (Figure 26). Each LATCH has two inputs; one input labeled S (set) and one input labeled R (reset). Each LATCH also has four outputs; two outputs labeled T (true) and two outputs labeled N (not true). A latch is set during the time interval between two events; for example, seek start and seek complete (Figures 16 and 17). A true applied to the S (set) hub produces two true outputs. At this time, the LATCH function is set and remains set until a true is applied to the R (reset) hub. When a true is applied to the reset hub, the LATCH is reset and remains reset until a true is applied to the set hub.

Input		Output				
S (Set)	R (Reset)		T (True)		N (Not True)	
1 True	0 Not True	1 True	1 True	0 Not True	0 Not True	
0 Not True	1 True	0 Not True	0 Not True	1 True	1 True	
0 Not True	0 Not True	0 Not True	0 Not True	1 True	1 True	
1 True	1 True	1 True	1 True	0 Not True	0 Not True	

Figure 16. LATCH Function

Connections for the OR LATCH Functions

OR1 and OR3 each contain three OR input hubs and one H (hold) hub (Figure 26). OR1 and OR3 serve as OR functions when any of the three OR input hubs are used exclusively. OR1 and OR3 serve as LATCH functions when the H hub is used with any of the three OR input hubs. If a

Set = True until Reset
Reset = Not True until Set

Figure 17. Example of LATCH Function
true is first applied to an H hub and if a true is applied to any of the three OR input hubs, a LATCH is set and remains set until reset by a not true at the H hub. Think of the H hub as a hold hub, holding a true signal; the hold is removed when the signal changes from true to not true (Figure 18).

Figure 18. Example of OR LATCH Function

Connections for the FANOUT Functions

The four FANOUT functions are designated F1, F2, F3, and F4 on the patch panel (Figure 26). Each FANOUT has one input labeled IN and two outputs labeled OUT. Think of the FANOUT function as a duplicating function: any true input is duplicated twice as true output and any not true input is duplicated twice as not true output (Figure 19).

Self-Generated True Signals

Four sources of self-generated true signals are designated +1 (A, B, C, D) on operational patch panel 1 , and four sources of self-generated true signals are designated +1 ($\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$) on operational patch panel 2 (Figure 26). These eight

True Input $=$ True Output
Not True Input $=$ Not True Output

Figure 19. Example of FANOUT Function
sources of self-generated true signals are available to satisfy the input requirement of any logical function on the patch panel when a true input is required. For example, if another true input is needed to satisfy an $A N D$ function, any of the hubs labeled $+1(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})$ or $+1(\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H})$ may be used as this source.

Do not confuse +1 ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$) or +1 ($\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$) with plus (+) signal levels in a CPU or I/O device. See "Patch Panel Signal Definition."

Using the LATCH as a FANOUT

If additional FANOUTS are required, a LATCH function can serve as a FANOUT function. If both the set and reset hubs of a LATCH are true, set overrides reset.

If a wait is the input to the set hub and a plus-one (+1) is the input to the reset hub (Figure 20), the true output is active when the wait input is active. The not true outputs are inactive because wait active in the set hub overrides the plus-one $(+1)$ in the reset hub. When the wait input becomes inactive, the plus-one (+1) input in the reset hub causes the not true hub to become active (equal to not-wait).

Note: To use a LATCH in this manner, the Basic Counter Unit must have an EC258994 installed.

DOT OR Function

The logic on the patch panel may be expanded by using the rules of logic to obtain functions from other functions on the patch panel. The DOT OR function is created from two AND functions (Figure 21).

Using Inverted Logic

An AND function can serve as an OR function by inverting the inputs to an AND function through a NOT function

Figure 20. Example of LATCH used as a FANOUT Function

Figure 21. Example of DOT OR Function
and by using the not true output from the AND function as being logically true (Figure 22).

Also, an OR function can serve as an AND function by inverting the inputs to an OR function through a NOT function and by inverting the output from an OR function through a NOT function.

Figure 22. Using Inverted Logic

START/STOP Function

The START and STOP hubs are on the XLF patch panel (Figure 26).
The START hub, when activated, starts the Basic Counter Unit counters from an external source. The source may be an input pulse or patch panel logic. A true signal activates the START function and turns on the count-enable light. The START hub is interlocked with PUNCH GO to prevent data skew while punching out counter contents. If a true is wired to the START hub, the STOP pushbutton becomes inoperative.
The STOP hub, when activated, stops the Basic Counter Unit counters from an external source. The source may be an input pulse or patch panel logic. A true signal activates the STOP function and turns off the count-enable light. If a true is wired to the STOP hub, the START pushbutton becomes inoperative.

4×16 Decoder

A 4×16 decoder, on the XLF patch panel, is provided to decode up to any combination of four true binary inputs into one of 16 true hexadecimal outputs (Figure 26).

The 4×16 decoder (Figure 23) is designated on the XLF patch panel as:
DCDR IN 8, 4, 2, 1 (four positions) STROBE (one position)
DCDR OUT 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F (16 positions)

Decoder Output							
0	0	0	0	0	0	0	0
0	2	4	6	8	A	C	E
0	0	0	0	0	0	0	0
1	3	5	7	9	B	D	F

Figure 23. 4×16 Decoder
DCDR IN, four hub positions, is wired from a true or not true source from any of the logical functions on the patch panel. A true wired to DCDR IN $8,4,2$, or 1 hub defines the presence of a particular bit; a not true wired to DCDR IN $8,4,2$, or 1 hub defines the absence of a particular bit. If DCDR IN $8,4,2$, or 1 hub is not wired, it is treated by the decoder as not true.

The STROBE, one hub position, provides a pulse that controls the decoder's output. The STROBE must be wired from a true signal source. Any combination of four true inputs to DCDR IN plus a true input to STROBE produces a true decoder output.
DCDR OUT, 16 hub positions, provides the decoder output functions. Each position is designated by the hexadecimal value 0-F. Only one of the DCDR OUT hubs may be true at any one time. The decoder output remains true for the duration of the strobe true pulse.

If DCDR IN hubs 2 and 1 are wired from true sources and if the pulse to the STROBE hub is wired from a true source, DCDR OUT hub 3 (and only hub 3) is true (active). See Figure 24.

The decoder can be used to simplify the wiring on the patch panel to measure CPU active time and CPU wait time and to apportion these timings to I/O channels.

The four signal sources and inputs to DCDR IN are:
\quad Signal Sources
Selector Channel 2
Selector Channel 1
Multiplexer Channel
Wait
True is wired to STROBE
Manual is wired to STOP
Not Manual is wired to START
$D C D R I N$
8
4
2
1

1

The decoder provides all possible combinations of CPU, wait, channel, and CPU/channel overlap. The Karnaugh map (Figure 25) illustrates the available combinations of CPU, wait, and channel(s) for a three-channel system. The desired DCDR OUT hubs may be wired to counter timing or counting hubs depending on the user's specific application.

DCDR IN					DCDR OUT							6	7	8	$(10)(11)(12)(13)(14)(15)$						
8	4	2	2	1	0		1	2	3	4	5				9	A	B	C	D	E	F
					T	T															
				T			T														
			T					T													
			T	T					T												
	T									T											
	T			T							T										
	T		T									T									
	T		T	T									T								
T														T							
T				T											T						
T			T													T					
T			T	T													T				
T	T																	T			
T	T			T															T		
T	T		T																	T	
T	T		T	T																	T

Figure 24. Possible Decoder Input and Output Values

Figure 25. Karnaugh Map Showing Use of 4×16 Decoder

Additional Self-Generated True Signals

Twenty hubs, designated ACVT BUS, on the test patch panel may be used as a source of self-generated true signals when the supply of +1 (A, B, C, D) and +1 ($\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$) hubs has been exhausted (Figure 26). The use of ACVT BUS hubs as maintenance functions is described in "Appendix F."

Counters Section

Two counter sections are on the patch panel (Figure 26). One counter section is to the far right of operational control panel 1 and is associated with counters $0-7$. The other counter section is to the far right of operational control panel 2 and is associated with counters $8-15$. For each counter, two hubs are available for input connection: the CNT hub for counting; the TMG hub for timing.
A counter is activated to count or time when an active signal is wired to the respective CNT or TMG hub.

Counting Rate: A maximum of 1 MHz on all counters. Increments once for each occurrence of an event up to a maximum of one million events per second.

Timing Rate: Records the duration of an event(s) at a rate of 1 MHz with a 1 -microsecond resolution. With counters counting at a $1-\mathrm{MHz}$ timing rate, the counter overflows in 27.8 hours.

Counter Accuracy: A slight arithmetic error may occur in the low-order positions of the Decimal Digit Display while measuring a system function. This slight arithmetic error is caused by signal delays through the logic blocks. For example, total elapsed time should equal total compute plus total wait. However, if both total compute and total wait are monitored, the sum of the two will not, in many instances, equal total elapsed time (to eleven digits precision) although both values are derived from the same signal source, the wait latch. The necessity of routing total wait through a NOT function (not total wait=total compute) causes a slight delay. The delay may cause a discrepancy and in some measurements may not occur at all. (This slight discrepancy is mathematically referred to as lack of closure.) The nominal delay time for each logic function is given in Appendixes D and E. Each nominal delay time is listed in nanoseconds (ns) beside each OUT hub under the heading "Hub Title."

Figure 26. Patch Panel Image Card

Optional Accessory - IBM 1057/1058 Card Punch

This section briefly describes the 1057/1058 Card Punch; for further details see IBM 1050 Data Communication System, Principles of Operation, GA24-3474 and IBM 1050 Operator's Guide, GA24-3125.
The IBM 1057/1058 (minimum EC level must be 206345) records the contents of the 16 counters in the Basic Counter Unit on four punched cards that are used as permanent records for future study and analysis.

OPERATING PROCEDURES

To start a punch operation on the $1057 / 1058$, follow the housekeeping procedures for the Basic Counter Unit and the $1057 / 1058$ and refer to the punch operation procedures illustrated in Figure 27.

```
IBM Basic Counter Unit Housekeeping Procedures
Basic Counter Unit and 1057/1058 are connected
Power is on
Probes are connected
Patch panel is wired
Count-enable light is on
Basic Counter Unit is monitoring
IBM 1057/1058 Housekeeping Procedures
Install program card
Place program card starwheels in read position
Load card hopper
Card stacker must not be full
Position card in both read and punch station
Switch card punch from KEY to AUTO
```


PUNCH CARD FORMAT

The contents of four counters are punched on one card. Because 16 counters are used in the Basic Counter Unit, a total of four cards are required to record the contents of the 16 counters (Figure 28). All cards are formatted in an identical manner. (Only 64 columns are used on each card.) Considering one card only, 16 columns are required to reflect the contents of one counter. The punching format is as follows:

Counter identifier digits (2 positions) reflect the counter number ($00-15$) recorded. The following column position is
not used and digit data is then punched in the next 11 columns. Formatting of the other three counters in the same card is effected in the same manner.

PUNCH PROGRAM CARD

The program card used in the 1057/1058 Card Punch permits the execution of particular control functions, such as space advance, auto dup, end-of-card detect, etc. These control functions are dependent on the punched format of the program card. An example of a typical punched program card is shown in Figure 29. A punch in a column and row location is indicated by a rectangular bar, a non-punched position is denoted by the absence of the bar. The function of each punch position is:

Punch

Row 1

Row 2

Row 12

Column 64, Row 8

Column 65, Row 0
Columns 66-80, Row 12

Column 80, Row 8

Function

Allows alpha shift, which permits Basic Counter Unit punch controls to punch a blank, thus performing a column space function.

POWER SUPPLY

Interface power is supplied to the $1057 / 1058$ by the Basic Counter Unit through a standard cable that connects both units. The standard cable is furnished by the 1057/1058. Power must be off in the Basic Counter Unit and the $1057 / 1058$ prior to connecting or disconnecting the standard cable.

IBM Internal Use Only

Figure 27. IBM 1057/1058 Card Punch Operating Procedures

Figure 28. Punched Card Output

Figure 29. Example of Program Card

Testing Procedures

This section contains testing procedures for the IBM Basic Counter Unit and the IBM 1057/1058 Card Punch.

BASIC COUNTER UNIT TESTING PROCEDURES

Testing procedures for the Basic Counter Unit consist of:
Installation Tests
Performance Tests
Operational Control Patch Panel Test
Lamp Test

Installation Tests

After the Basic Counter Unit has been placed in position and before it is attached to a unit to be monitored, perform the following tests to ensure that the unit is functioning correctly.

Ones Retention Test

1. Activate the following hubs: TEST 2, FORCE CARRY 9-8, 8-7, 7-6, 6-5, 5-4, 4-3, 3-2, and 2-1.
2. Press MACHINE RESET.
3. Press START nine times. Visual display should read 99.999.999.900 for all 16 counters.
4. Activate INH ADD and move wire from TEST 2 to TEST 1.
5. Press START; allow the Basic Counter Unit to run for 30 minutes.
6. Press STOP; check the visual display for a reading of 99.999 .999 .9 xx on all 16 counters. (The value xx is indeterminate but should be equal for all 16 counters.)

Zeros Retention Test

1. Activate TEST 1 and INH ADD hubs.
2. Press MACHINE RESET and START; allow the Basic Counter Unit to run for 30 minutes.
3. Stop the Basic Counter Unit; check visual display for 00.000 .000 .0 xx in all counters. (The value xx is indeterminate but should be equal for all 16 counters.)

High Speed Count 1 Test

1. Activate TEST 1 and FORCE CARRY 6-5 hubs.
2. Press MACHINE RESET.
3. Press START; allow the Basic Counter Unit to run for 30 minutes.
4. Press STOP; note that digits $2,3,4,5$, and $6,7,8,9$ are equal.
5. Check that all 16 counters are equal.

High Speed Count 2 Test

1. Activate TEST 1 and FORCE CARRY $5-4$ hubs.
2. Press MACHINE RESET.
3. Press START; allow the Basic Counter Unit to run for 15 minutes.
4. Press STOP; note that digits $1,2,3,4$, and $6,7,8,9$ are equal.
5. Check that all 16 counters are equal.

Performance Tests

Broadside Count to All Counters

This test checks that all counters run automatically at a rate of 1 MHz .

1. Connect patch wire from TEST 1 hub on the operational control maintenance panel to one of the ACVT BUS hubs.
2. Press POWER ON, MACHINE RESET and START.
3. Allow the Basic Counter Unit to operate for 2 minutes; then press STOP.
4. Rotate the counter select switch; note that all counters contain the same value.
5. Press MACHINE RESET.
6. Rotate the counter select switch; note that all counters equal zero.

Force Carry to All Counters

1. Connect patch wires from FORCE CARRY hubs 7-6 and 4-3 and TEST 1 hub to ACVT BUS hubs.
2. Press MACHINE RESET, then START; allow counters to run for 2 minutes.
3. Press STOP; check that all counters contain the same value.

Force Carry to All Counters by Single Stepping

This test is similar to the preceding test except that the counters are stepped manually each time START is pressed. Because the change in the displayed counter value may be easily seen, this test also checks that the digital display lamps are functioning.

1. Connect patch wires from all eight FORCE CARRY hubs to ACVT BUS positions.
2. Connect patch wires from TEST 2 hub to an ACVT BUS hub.
3. Press MACHINE RESET, then START.
4. Rotate the counter select switch; note that all counters contain the same value.
5. Single step the counters by repeatedly pressing START. Check that all counters contain the same value after each impression.

Operational Patch Panel Test

The logical functions available at the operational patch panels may be checked by using the plus one $(+1)$ hubs, the TEST 1 OUT and TEST 2 OUT hubs on the test patch panel, and any available counter.

Lamp Test

1. Press POWER ON, MACHINE RESET and LAMP TEST.
2. Refer to Figure 30 and rotate the counter select switch through each position. Note that the lamps displayed correspond with those specified in the figure.

Counter Select Switch	Display Position 0*	Display Position 1-10	Display Position 11
0	0	0,1	0
1	1	1,0	$1 \& 0$
2	2	$2,5,0$	$2 \& 0$
3	3	$3,4,0$	$3 \& 0$
4	4	$4,3,0$	$4 \& 0$
5	5	$5,2,0$	$5 \& 0$
6	6	$6,9,0$	$6 \& 0$
7	7	$7,8,0$	$7 \& 0$
8	8	$8,7,0$	$8 \& 0$
9	10	$9,6,0$	$9 \& 0$
10	11	0	0
11	12	0	0
12	13	0	0
13	14	0	0
14	15	0	
15		0	
* Displayed with red background			

Figure 30. Lamp Test Data

1057/1058 TESTING PROCEDURES

Testing procedures for the 1057/1058 consist of:

Punch Test 1

Punch Test 2

These tests are performed with the punch connected. Under manual control, the contents of the 16 counters are punched into a set of four cards. The 16 counters are identified as 0-15.

A program card must be installed in the card punch. The card must allow the punch interface to control 64 columns of the card. In auto dup mode, the card controls the remaining 16 columns. These 16 columns can be used for job identity, dates, etc., at the discretion of the operator. The program card must be formatted to punch four counter values in 16 character groups.
If a data error occurs during punching, the affected byte is punched as two negative zoned digits. If the program card is improperly punched, a control check occurs. In either case, the interface check indicator is activated on the Basic Counter Unit console.

Note: The punch controls are interlocked with the start and stop pushbuttons on the Basic Counter Unit. Punch go will not activate a punch cycle unless the Basic Counter Unit has been stopped. Start is disabled as long as the punch go latch is active. This interlock will prevent the possibility of data skew during the punch cycle.

Punch Test 1

1. Attach 1058 punch and activate the following hubs: TEST 2, FORCE CARRY 9-8, 8-7, 7-6, 6-5, 5-4, 4-3, 3-2, and 2-1.
2. Press MACHINE RESET.
3. Press PUNCH GO.
4. After punch go light turns off, check the cards for all zeros in the data fields and also check for proper format. The intfc check light must be off.
5. Press START.
6. Press PUNCH GO.
7. After punch go light turns off, check that the cards are equal to the value in the counters.
8. Return to step 5 and continue to check all cards punched through a value of 99.999.999.900.

Punch Test 2

1. Activate the TEST 1 hub.
2. Press MACHINE RESET and START.
3. Allow the Basic Counter Unit to run for approximately 2 minutes, then press STOP and PUNCH GO.
4. Check cards against values in the counters.
5. Remove all wires from test panel and establish different values in all counters by pressing START and wiring each counter's timing hub to a +1 signal for random amounts of time (it is not necessary to exceed 15 seconds for any counter).
6. Press STOP and PUNCH GO.
7. Check cards against values in all counters.

Measuring Techniques

TERMINOLOGY

System functions, measured or derived, are referred to throughout this manual, especially in the examples on measurement techniques. Measured system functions are measured directly by the counters in the Basic Counter Unit. Derived system functions are derived from previously measured system functions by using mathematical formulas. Derived system functions can also be measured directly by the counters in the Basic Counter Unit; however, to achieve maximum efficiency of the Basic Counter Unit, measuring system functions that can be derived should be kept at a minimum.

Measured System Functions

Total Elapsed Time is measured by monitoring the time that a system is not in the stopped state. The stopped state is indicated by the manual light and caused by pressing STOP or SYSTEM RESET on the system control panel. Total elapsed time provides a base of reference against which other comparisons can be computed.

Total Compute is the signal present when bit number 14 of the program status word (PSW) is off, indicating that the processor is executing instructions.

Processor Not Active (Wait State) is the signal present when bit number 14 of the PSW is on, indicating that the processor is not executing instructions.

Channel Busy is a signal made available to the Basic Counter Unit, once for the multiplexer channel, and once for each selector channel on the system.

Any Channel Busy is created by using the combinatorial logic on the Basic Counter Unit patch panel. It is the logical OR of any channel busy.

Wait and Any Channel Busy is created by using the combinatorial logic on the Basic Counter Unit patch panel. It is the logical OR of any channel busy, and the resultant output of the OR ANDed with processor not active.

Channel Overlap is a measurement of the time the input/output channels are operating simultaneously. The logical AND of selector channel-one busy and selector-two busy provides this measurement.

Derived System Functions

Total Wait is the total elapsed time minus total compute.

Wait Only (System Idle) is the total wait minus wait and any channel busy.

Compute and Any Channel Overlap is any channel busy minus wait and any channel busy.

Compute Only is the total compute minus compute and any channel overlap.

EXAMPLES

The user must decide on and develop his own techniques and define his own system functions, but certain examples may prove helpful to him in formulating plans. Several examples are presented in this section that illustrate basic measurement techniques. The numbers shown in the examples are for illustration only and are not to be considered as standard cases.

Each example given consists of three parts:
Objectives
Patch Panel Wiring Diagram
Summary

Example 1

During the processing of a job or jobs on System/360, the CPU either overlaps or non-overlaps the I/O channels. Overlap and non-overlap are interrelated and influence the efficiency of a system. Overlap exists when one or more I/O channels perform I/O operations while the CPU simultaneously executes instructions. Non-overlap exists when I/O channels perform I/O operations at one time and the CPU executes instructions at another time.

Objectives

Measure total elapsed time, any channel busy, compute and any channel overlap and total compute. Derive compute only, total wait, wait and any channel busy, and wait only.

Wiring

The wiring for this example is shown in Figure 31.
The stop state on a System/360 (indicated by a manual light and caused by pressing STOP or SYSTEM RESET on the system control panel) is being monitored. One stop state signal is wired to the STOP hub, another stop state signal is wired as input to a NOT function, the NOT function output is then wired to the START hub and causes total counter stoppage if either STOP or SYSTEM RESET on the system control panel is pressed.
Any +1 hub is wired to a TMG hub and results in total elapsed time.

> Legend: $\begin{aligned} \text { A } & =\text { AND } \\ \text { OR } & =\text { OR } \\ \text { L } & =\text { LATCH } \\ N & =\text { NOT (Invert) } \\ F & =\text { FANOUT } \\ \text { R } & =\text { Reset } \\ T & =\text { True } \\ N & =\text { Not True } \\ H & =\text { Hold } \\ S & =\text { Set }\end{aligned}$

Figure 31. Wiring for Example 1

The signals from selector channel 1, selector channel 2, and the multiplexer channel are wired as inputs to the OR function. One OR output is wired to a TMG hub and results in any channel busy. Another OR output is wired as input to an AND function.
The wait signal is wired as input to a NOT function. One NOT output is wired to a TMG hub and results in total compute.
Another NOT output is wired as another input to the AND function. The AND output is wired to a TMG hub and results in compute and any channel overlap.

Summary

The counter results are:

Counter 0:	$154,011,000$	Total elapsed time
Counter 1:	$32,417,300$	Any channel busy
Counter 2:	$19,450,100$	Compute and any channel overlap
Counter 3:	$81,800,500$	Total compute

At the timing rate of 1 MHz (1 microsecond) provided by the Basic Counter Unit, the readings can be converted to:

Counter $0:$	154.0 seconds	Total elapsed time
Counter 1:	32.4 seconds	Any channel busy
Counter 2:	19.5 seconds	Compute and any channel overlap
Counter 3:	81.8 seconds	Total compute

Additional functions were derived from the counter results by use of formulas:

Compute only	$=($ Total compute $)-($ Compute and any channel
	overlap)
	$=($ Counter 3$)-($ Counter 2$)$
	$=(81.8$ seconds $)-(19.5$ seconds $)$
	$=62.3$ seconds
	$=($ Total elapsed time $)-($ Total compute $)$
	$=($ Counter 0$)-($ Counter 3$)$
	$=(154$ seconds $)-(81.8$ seconds $)$
	$=72.2$ seconds

Wait and any
channel busy $=$ (Any channel busy) - (Compute and any channel overlap)
$=($ Counter 1$)-($ Counter 2$)$
$=(32.4$ seconds $)-(19.5$ seconds $)$
$=12.9$ seconds
Wait only $\quad=$ (Total wait) - (Wait and any channel busy)
$=(72.2$ seconds $)-(12.9$ seconds $)$
$=59.3$ seconds

The measured and derived functions can also be expressed in percentages:

Compute only: Compute and any channel overlap:	$\mathbf{6 2 . 3}$ seconds	40.5%
Wait and any channel busy:	12.5 seconds	12.6%
Wait only:	59.3 seconds	8.4%
Total elapsed time:	154.0 seconds	100.0%

Each function should be pictured as a series of many short events. For example, the compute time is a series of short compute times, separated by short wait times. Each compute time is then followed by a short channel time, sometimes partially overlapped with the compute time. Figure 32 gives the relationship between the total-compute and total-channel times, which is a valid way of measuring systems performance. The numeric values shown in this example are for illustration only and are not to be interpreted as standard cases.

Example 2

IBM System/360 has one or more selector channels and a multiplexer channel. These channels can operate at different times or channel operations can overlap each other. Channels overlapping each other can also overlap the operation of the central processing unit.

Objectives

To measure total elapsed time, total compute, any channel busy, selector channel 1 busy, selector channel 2 busy, multiplexer channel busy, and selector channel 1/selector channel 2 overlap.

Wiring

The wiring for this example is shown in Figure 33.

Summary

The counter results are:

Counter 0:	$25,368,941,208$	Total elapsed time
Counter 1:	$14,297,542,167$	Total compute
Counter 2:	$7,254,382,997$	Selector channel 1 busy
Counter 3:	$2,101,837,595$	Selector channel 2 busy
Counter 4:	$981,021,355$	Multiplexer channel busy
Counter 5:	$9,962,951,012$	Any channel busy
Counter 6:	$505,942,833$	Selector channel 1/selector chan-
		nel 2 overlap

At the timing rate of 1 MHz (1 microsecond) provided by the Basic Counter Unit, the readings can be converted to:

Counter 0:	25,369 seconds	Total elapsed time
Counter 1:	14,298 seconds	Total compute
Counter 2:	7,254 seconds	Selector channel 1 busy
Counter 3:	2,102 seconds	Selector channel 2 busy
Counter 4:	981 seconds	Multiplexer channel busy
Counter 5:	9,963 seconds	Any channel busy
Counter 6:	506 seconds	Selector channel 1/selector chan-
		nel 2 overlap

The measured functions can also be expressed in percentages:

Total elapsed time	25,369 seconds	100.0%
Total compute	14,298 seconds	56.3%
Selector channel 1 busy	7,254 seconds	28.5%
Selector channel 2 busy	2,102 seconds	7.9%
Multiplexer channel busy	981 seconds	3.8%

Figure 32. Summary Profile for Example 1

Any channel busy Selector channel $1 /$ selector channel 2 overlap	9,963 seconds	39.2%
	506 seconds	1.9%

Example 3

As many as 15 programs may reside in a system simultaneously and share the same processor by using the multiprogramming facilities of System/360 Operating System on an IBM System/360 Model 65. Actually, each program resides in a separately protected memory partition and shares the processor at different time intervals.

Objectives

To measure the total compute time and the amount of compute time used by each of three protected memory partitions and the amount of compute time used by the system's supervisory program.

Wiring

The wiring for this example is shown in Figure 34.

Summary

The counter results are:

Counter 8:	$9,925,541,174$	Total compute
Counter 9:	$1,432,154,273$	Supervisor
Counter 10:	$2,418,010,710$	Partition 1
Counter 11:	$2,943,892,715$	Partition 2
Counter 12:	$3,131,483,476$	Partition 3

Additional functions may be derived by using the formulas in Example 1. The numeric values shown in this example are for illustration only and are not to be interpreted as standard cases.

Figure 33. Wiring for Example 2

Figure 34. Wiring for Example 3

At the timing rate of 1 MHz (1 microsecond) provided by the Basic Counter Unit, the readings can be converted to:

Counter 8:	9,926 seconds	Total compute
Counter 9:	1,432 seconds	Supervisor
Counter 10:	2,418 seconds	Partition 1
Counter 11:	2,944 seconds	Partition 2
Counter 12:	3,132 seconds	Partition 3

The measured function can also be expressed in percentages:

Total compute	9,926 seconds	100.00%
Supervisor	1,432 seconds	14.34%
Partition 1	2,418 seconds	24.19%
Partition 2	2,944 seconds	29.45%
Partition 3	3,132 seconds	31.32%

Additional functions may be derived by using the formulas in Example 1. The numeric values shown in this example are for illustration only and are not to be interpreted as standard cases.

Example 4

The IBM 2314 Direct Storage Facility Model A1 or 1 contains eight separate modules. In a case study, the IBM System/360 Operating System for an IBM System/360 Model 50 was resident on two 2314 modules.

Objective

Measure the percentage of time that the two system residence modules of the 2314 are used and the percentage of time that the CPU is waiting for the system residence modules. For comparative purposes, measurements are made of the following other functions: total wait, any channel busy, selector channel 1 time (2314 residence), and total elapsed time.

Wiring

The wiring for this example is shown in Figure 35.

Summary

The counter results are as follows:

Counter 8:	$395,044,983$	Total elapsed time
Counter 9:	$161,597,391$	Total wait
Counter 10:	$92,214,125$	Total any channel
Counter 11:	$47,014,497$	Total system residence
Counter 12:	$41,501,691$	System residence and wait
Counter 13:	$73,941,095$	Selector channel 1 busy

At a timing rate of 1 MHz (1 microsecond) provided by the Basic Counter Unit, the readings can be converted to:

Counter 8:	395.0 seconds	Total elapsed time
Counter 9:	161.6 seconds	Total wait
Counter 10:	92.2 seconds	Total any channel
Counter 11:	47.0 seconds	Total system residence
Counter 12:	41.5 seconds	System residence and wait
Counter 13:	73.9 seconds	Selector channel 1 busy

The measured system function can also be expressed in percentages:

Total elapsed time	395.0 seconds	100.0%
Total wait	161.6 seconds	40.8%
Total any channel	92.2 seconds	23.3%
Total system residence	47.0 seconds	11.9%
System residence and wait	41.5 seconds	10.5%
Selector channel 1 busy	73.9 seconds	18.7%

Because this example measures only a portion of the total operation (channel time), the individual times do not add up to the total elapsed time. Other desired functions, such as compute only, must be calculated by using the formulas in Example 1. The numeric values shown in the examples are for illustration only and are not to be interpreted as standard cases.

IBM Internal Use Only

Figure 35. Wiring for Example 4

Appendix A. Primary Sources

True Function

2040 Processing Unit
Manual
Wait State
Not Memory Protect Key 1, Current PSW Bit 11 Off
Not Memory Protect Key 2, Current PSW Bit 10 Off

Not Memory Protect Key 4, Current PSW Bit 9 Off
Not Memory Protect Key 8, Current PSW Bit 8 Off

Selector Channel 1 Busy
Selector Channel 2 Busy
Mpx Channel Busy
2044 Processing Unit
Manual
Not Wait
Current PSW Bit 8
Current PSW Bit 9
Current PSW Bit 10
Current PSW Bit 11
Selector Channel 1 Not Busy
Selector Channel 2 Not Busy
Mpx Channel Busy

2050 Processing Unit
Manual State
Run State
Wait State
Compute State
Not Memory Protect Key 1, Current PSW Bit 11 Off

Not Memory Protect Key 2, Current PSW Bit 10 Off
Not Memory Protect Key 4, Current PSW Bit 9 Off

Not Memory Protect Key 8, Current PSW Bit 8 Off
Problem State

Line Name
ALD
HOLD CONDITION KH142
(No line name available) KH171
+CPU TAG REG BIT 3 KU011
+CPU TAG REG BIT 2 KU011
+CPU TAG REG BIT 1 KU012
+CPU TAG REG BIT 0 KU013

- OPERATIONAL IN LATCH SC1 GG513
- OPERATIONAL IN LATCH SC2 HG513
- IF OPERATIONAL IN MX FA031
- MANUAL STOPPED STATE PK032
(No line name available) KK081
- SPLS OUTPUT BUSED BIT 0 KZ341
- SPLS OUTPUT BUSED BIT 1 KZ341
- SPLS OUTPUT BUSED BIT 2 KZ341
- SPLS OUTPUT BUSED BIT 3 KZ351
+OPL IN CH 1 GA011
+OPL IN CH 2 HA011
-OPERATIONAL IN FX191
- MANUAL TRIGGER B KS721
+MANUAL TRIGGER KS721
- WAIT BIT PSW 14 KS261
+WAIT BIT PSW 14 KS261
+CPU STOR PROT BIT 3 RP201
+CPU STOR PROT BIT 2 RP201
+CPU STOR PROT BIT 1 RP201
+CPU STOR PROT BIT 0 RP201
- MONITOR BIT PSW 15 KS261

True Function	Line Name	$A L D$
Supervisor State	+MONITOR BIT PSW 15	KS261
Processor Cycles to Support I/O		
Data Transfer	- I/O RTNE MODE	KE311
Main Storage Not Cycling	+ALLOW WRITE	MA031
Selector Channels 1, 2, 3 Interface		
Service In Active	-SERVICE-IN	GS111
Selector Chan Busy	-OPER-IN A	GS121
Command Out Active	+COM OUT NOT ACTIVE	GS131
Address Out Active	+ADDR OUT NOT ACTIVE	GS131
Service Out Active	+SRV OUT NOT ACTIVE	GS131
Address In Active	- ADDRESS-IN	GS111
Status In Active	-STATUS-IN A	GS111
Run Meter	-CPU CLOCK RUNNING	PK061
Selector Channels 1, 2, 3 Bus Out		
Bus Out Bit 0 Active	(No line name available)	GN101
Bus Out Bit 1 Active	(No line name available)	GN111
Bus Out Bit 2 Active	(No line name available)	GN121
Bus Out Bit 3 Active	(No line name available)	GN131
Bus Out Bit 4 Active	(No line name available)	GN141
Bus Out Bit 5 Active	(No line name available)	GN151
Bus Out Bit 6 Active	(No line name available)	GN161
Bus Out Bit 7 Active	(No line name available)	GN171
Bus Out Bit P Active	(No line name available)	GN181
Selector Channels Bus In Interface		
Lines:	(Indicate channel)	
Bus In Bit 0 Not Active	+BUS IN POS 0	GN101
Bus In Bit 1 Not Active	+BUS IN POS 1	GN111
Bus In Bit 2 Not Active	+BUS IN POS 2	GN121
Bus In Bit 3 Not Active	+BUS IN POS 3	GN131
Bus In Bit 4 Not Active	+BUS IN POS 4	GN141
Bus In Bit 5 Not Active	+BUS IN POS 5	GN151
Bus In Bit 6 Not Active	+BUS IN POS 6	GN161
Bus In Bit 7 Not Active	+BUS IN POS 7	GN171
Mpx Channel Interface Tag Lines:		
Mpx Channel Busy with a Control Unit	- OP IN A	FA361
Request In Active	- REG IN	FA371
Select In Active	- SEL IN	FA361

True Function

Address In Active
Status In Active
Service In Active
Metering In Not Active
Command Out Active
Service Out Active
Address Out Active
Mpx Channel Interface Bus In Lines:
Bus In Bit P Not Active
Bus In Bit 0 Not Active
Bus In Bit 1 Not Active
Bus In Bit 2 Not Active
Bus In Bit 3 Not Active
Bus In Bit 4 Not Active
Bus In Bit 5 Not Active
Bus In Bit 6 Not Active
Bus In Bit 7 Not Active
Mpx Channel Interface Bus Out Lines:
Bus Out Bit P Not Active
Bus Out Bit 0 Not Active
Bus Out Bit 1 Not Active
Bus Out Bit 2 Not Active
Bus Out Bit 3 Not Active
Bus Out Bit 4 Not Active
Bus Out Bit 5 Not Active
Bus Out Bit 6 Not Active
Bus Out Bit 7 Not Active

2065 Processing Unit

Manual
Wait
Not Memory Protect Key 1, Current PSW Bit 11 Off

Not Memory Protect Key 2, Current PSW Bit 10 Off
Not Memory Protect Key 4, Current PSW Bit 9 Off

Not Memory Protect Key 8, Current PSW Bit 8 Off

Line Name
ALD

- ADDR IN FA351
- STATUS IN FA351
- SVC IN FA351
+CHO ME-I FA471
-COM OUT FA141
-SVC OUT FA141
-IF ADDR OUT FA131
+BUS IN BIT P FA002
+BUS IN BIT $0 \quad$ FA002
+BUS IN BIT 1 FA002
+BUS IN BIT 2 FA002
+BUS IN BIT 3 FA002
+BUS IN BIT 4 FA002
+BUS IN BIT 5 FA002
+BUS IN BIT 6 FA002
+BUS IN BIT 7 FA002
+BUS OUT LTH P FA051
+BUS OUT LTH 0 FA051
+BUS OUT LTH 1 FA051
+BUS OUT LTH 2 FA051
+BUS OUT LTH 3 FA051
+BUS OUT LTH 4 FA051
+BUS OUT LTH 5 FA051
+BUS OUT LTH $6 \quad$ FA051
+BUS OUT LTH 7 FA051
- MANUAL TGR KW031
-PSW BIT 14 RW121
+STORAGE KEY BIT 11 RW081
+STORAGE KEY BIT 10 RW081
+STORAGE KEY BIT $9 \quad$ RW081
+STORAGE KEY BIT $8 \quad$ RW081

True Function

Line Name
ALD

2075 Processing Unit
Not Manual
Wait
Current PSW Bit 8
Current PSW Bit 9
Current PSW Bit 10
Current PSW Bit 11

2860 Selector Channel
Selector Channel 1 Busy
+MANUAL MODE PY061
-PSW BIT 14 TO INTRPT RE231

- LHPSW 8 TO STG PROT RG211
- LHPSW 9 TO STG PROT RG211
- LHPSW 10 TO STG PROT RG211
- LHPSW 11 TO STG PROT RG221

Selector Channel 2 Busy
Selector Channel 3 Busy
Service In
Service Out
I/O Command
Bus Out Bit 0
Bus Out Bit 1
Bus Out Bit 2
Bus Out Bit 3
Bus Out Bit 4
Bus Out Bit 5
Bus Out Bit 6
Bus Out Bit 7

2870 Multiplexer Channel
Mpx Chan Busy

2311 Disk Storage Drive
Seeks (Total)
Seeks (Arm Movements)
Not Module Busy
2314 Direct Access Storage Facility
Seeks (Total)
Seeks (Arm Movements)
Upper Module Busy
Lower Module Busy
-SSC OR MPLX OP IN MX127

+ACCESS READY	FD020
+DETENT-IN	FD056
+MOD SELECT LINE 1	FD060

- FILE BUSY

FL/FU053
+DETENT-IN LATCH
FL/FU053
-MOD SEL (Does not include seek time) FU021
-MOD SEL (Does not include seek time) FL021

Appendix B. Generated Sources

Problem

2030-2075 Processing Units
CPU Active
Any Channel Busy
Wait and Any Channel Busy
Selector/Selector Overlap

2030-2065 Processing Units
CPU-Channel Overlap

Partition "N" Compute
2311 Disk Storage Drive 2314 Direct Access Storage Facility

Total Seeks
Seek (Arm Movements)

True Function
Wait, Manual
Mpx Busy, Selectors
$1,2, \ldots$ N, Busy

Any Channel Busy Wait
Selector 1 Busy, Selector 2 Busy

Channel "N" Busy, Wait

PSW Bits 8-1 1

Access Ready
Detent-In

Combinatorial Logic

Not Wait and Not Manual
Mpx, or Selector 1, or Selector 2, or Selector "N" Busy

Any Channel Busy and Wait
Selector 1 Busy and
Selector 2 Busy (and
Selector 3 Busy)

Any Channel Busy and Not Wait
Storage Protect Key " N " and Not Wait

Not Access Ready
Not Detent-In

Appendix C. Probe Assignment Planning Form

The IBM Basic Counter Unit Probe Assignment Planning Form, ZX22-6946, is available in units of 25 sheets per pad. Users are advised to plan their work on this form before connecting the monitor probes to the assigned probe points on a CPU, channel, control unit, or I/O device.

Appendix D. Operational Patch Panel 1

The 100 position operational patch panel 1 contains the Basic Counter Unit input and logical functions for counters $0-7$. (An overall view of the patch panel is shown in Figure 26.)

A-K (1, 2)			$(5,6)$
	SIGNAL	20 positions -- provide the Basic Counter Unit input signals from an external source. Grid positions 1 and 2 furnish a two-way distribution of the same signal to provide flexibility.	G (7, 8)
A ($3,4,5$)	ANDI In	3 positions -- provide the logical input to AND1. To perform combinatorial logic, all inputs must be wired.	$\begin{aligned} & H(3) \\ & J(3) \\ & H(6) \end{aligned}$
A (6,7$)$	ANDI Out True (60 ns)	2 positions -- provide the True function of ANDI.	J (6)
A (8)	ANDI Out Not True (85 ns)	1 position -- provides the Not True function of ANDI.	$\begin{aligned} & J(4,5) \\ & H(7,8) \end{aligned}$
$B(3,4,5)$	AND2 in	3 positions --provide the logical input to AND2. All positions must be wired.	$\begin{aligned} & \mathrm{J}(7,8) \\ & \mathrm{K}(3) \end{aligned}$
$B(6,7)$	AND2 Out True (60 ns)	2 positions -- provide the True function of AND2.	K (6)
B (8)	AND2 Out Not True (85 ns)	1 position -- provides the Not True function of AND2.	K (4, 5)
C ($3,4,5$)	AND3 in	3 positions -- provide the logical input to AND3. All positions must be wired.	$K(7,8)$
$C(6,7)$	AND3 Out True (60 ns)	2 positions -- provide the True function of AND3.	A-H (9)
C (8)	AND3 Out Not True (85 ns)	1 position -- provides the Not True function of AND3.	A-H (10)
D ($3,4,5$)	ORI In	3 positions -- provide the logical input to ORI. Any True input position satisfies the function.	
D (7, 8)	ORI Out True (60 ns OR Latch Set) (110 ns OR Latch Reset)	2 positions -- provide the True function of ORI.	$K(9,10)$

Hub Title

Grid Position	(Nominal delay in nanoseconds)
D (6)	ORI Hold
E ($3,4,5,6$)	OR2 In
$E(7,8)$	OR2 Out True (60 ns)
F (3)	LATCHI Set
F (4)	LATCHI Reset

$\mathrm{F}(5,6)$	LATCHI Out
	True $(60 \mathrm{~ns} \mathrm{Set)}$
	(85 ns Reset)

G (3)

$$
G(4)
$$

Description

Description

1 position -- when wired, causes OR 1 to operate as a latch and provides the reset function to ORI. A True input allows the latch to remain set and a Not True input resets the latch.

4 positions -- provide the logical inputs to OR2. Any True input position satisfies the function.

2 positions -- provide the True function of OR2.
1 position-- provides the logical set to LATCH1. A True input sets the latch.
1 position -- provides a reset function to LATCH1. A Not True input allows the latch to remain set and a True input resets the latch.
2 positions -- provide the True function of LATCHI.

2 positions -- provide the Not True function of LATCHI.

1 position -- provides the logical set to LATCH2. A True input sets the latch.
1 position -- provides a reset function to LATCH2. A Not True input allows the latch to remain set and a True input resets the latch.
2 positions -- provide the True function of LATCH2.

2 positions --provide the Not True function of LATCH2.

4 positions -- provide invert functions for incoming or patch panel generated signals. Each NOT block is a single-legged function.

8 positions -- provide the output functions for the four NOT blocks. Each NOT block has two output hubs.

2 positions -- provide a means of distributing incoming or parch panel generated signals. The logical definition of the signal remains unchanged.

4 positions -- provide the output functions for the FANOUT hubs.

8 positions -- provide the input signals to each of the eight counters to count the number of occurrences of an event.

8 positions -- provide the input signals to each of the eight counters to time the duration of an event.
4 positions -- provide a True level for ANDI, 2, and 3 if all inputs are not wired to logical functions. In this way unused AND inputs are wired to satisfy the logical function.

LATCH2 Out True (60 ns Set) (85 ns Reset)	2 positions -- provide the True function of LATCH2.
LATCH2 Out Not True (85 ns Set) (110 ns Reset)	2 positions --provide the Not True function of LATCH2.
NOTI In NOT2 In NOT3 in NOT4 In	4 positions -- provide invert functions for incoming or patch panel generated signals. Each NOT block is a single-legged function.
NOT1 Out (35 ns) NOT2 Out (35 ns) NOT3 Out (35 ns) NOT4 Out (35 ns)	8 positions -- provide the output functions for the four NOT blocks. Each NOT block has two output hubs.
FANOUTI In FANOUT2 In	2 positions -- provide a means of distributing incoming or patch panel generated signals. The logical definition of the signal remains unchanged.
FANOUTI Out (60 ns) FANOUT2 Out (60 ns)	4 positions -- provide the output functions for the FANOUT hubs.
EVENT COUNT	8 positions -- provide the input signals to each of the eight counters to count the number of occurrences of an event.
EVENT TIME	8 positions -- provide the input signals to each of the eight counters to time the duration of an event.
${ }_{+1}^{+1} B C D$	4 positions -- provide a True level for ANDI, 2 , and 3 if all inputs are not wired to logical functions. In this way unused AND inputs are wired to satisfy the logical function.

‘

The 100 position operational patch panel 2 contains the Basic Counter Unit input and logical functions for counters $8-15$. (An overall view of the patch panel is shown in Figure 26.)

Grid Position	Hub Title (Nominal delay in nanoseconds)	Description
D (6)	OR3 Hold	1 position -- when wired, couses OR3 to operate as a latch and provides the reset function to OR3. A True input allows the latch to remain set and a Not True input resets the latch.
$E(3,4,5,6)$	OR4 In	4 positions --provide the logical inputs to OR4. Any True input position satisfies the function.
E (7, 8)	OR4 Out True (60 ns)	2 positions -- provide the True function of OR4.
F (3)	LATCH3 Set	1 position-- provides the logical set to LATCH3. A True input sets the latch.
F (4)	LATCH3 Reset	1 position -- provides a reset function to LATCH3. A Not True input allows the latch to remain set and a True input resets the latch.
F (5,6)	LATCH3 Out True (60 ns Set) (85 ns Reset)	2 positions -- provide the True function of LATCH3.
F (7, 8)	LATCH3 Out Not True (85 ns Set) (110 ns Reset)	2 positions -- provide the Not True function of LATCH3.
G (3)	LATCH4 Set	1 position -- provides the logical set to LATCH4. A True input sets the latch.
G (4)	LATCH4 Reset	1 position -- provides a reset function to LATCH4. A Not True input allows the latch to remain set and a True input resets the latch.
$G(5,6)$	LATCH4 Out True ($60 \mathrm{~ns} \mathrm{Set)}$ (85 ns Reset)	2 positions -- provide the True function of LATCH4.
G (7, 8)	LATCH4 Out Not True (85 ns Set) (110 ns Reset)	2 positions -- provide the Not True function of LATCH4.
$\begin{aligned} & H(3) \\ & J(3) \\ & H(6) \\ & J(6) \end{aligned}$	NOT5 in NOT6 In NOT7 In NOT8 in	4 positions -- provide input functions for incoming or patch panel generated signals. Each NOT block is a single-legged function.
	NOT5 Out (35 ns) NOT6 Out (35 ns) NOTT Out (35 ns) NOT8 Out (35 ns	8 positions -- provide the output functions for the four NOT blocks. Each NOT block has two output hubs.
$\begin{aligned} & \mathrm{K}(3) \\ & \mathrm{K}(6) \end{aligned}$	FANOUT3 in FANOUT4 in	2 positions -- provide a means of distributing incoming or patch panel generated signals. The logical definition of the signal remains unchanged.
$\begin{aligned} & K(4,5) \\ & K(7,8) \end{aligned}$	FANOUT3 Out (60 ns) FANOUT4 Out (60 ns)	4 positions -- provide the output functions for the FANOUT hubs.
A-H (9)	EVENT COUNT	8 positions -- provide the input signals to each of the eight counters to count the number of occurrences of an event.
A-H (10)	EVENt time	8 positions -- provide the input signals to each of the eight counters to time the duration of an event.
$\begin{aligned} & J(9,10) \\ & K(9,10) \end{aligned}$	${ }_{E}^{+1} \text { F G H }$	4 positions -- provide a True level for AND4, 5, 6 if all inputs are not wired to logical functions. In this way unused AND inputs are wired to satisfy the logical function.

IBM Internal Use Only

Appendix F. XLF and Test Patch Panel

The 100 position XLF (Expanded Logic Functions) and test patch panel contains all of the Basic Counter Unit maintenance functions. (An overall view of the patch panel is shown in Figure 26.)

The IBM Basic Counter Unit Patch Panel Planning Form, ZX22-6952, is available in units of 25 sheets per pad. Users are advised to plan their work on this form before wiring the various functions on the patch panel. By using the
patch panel planning form, the user increases his understanding of the logical functions on the patch panel and diminishes the possibility of error when wiring the patch panel.

TBM. Basic Counter Unit - Patch Panel Planning Form

Accessory		
Optional, 1057/1058 Card Punch		19
Standard, Patch Cords 11		
Accuracy of Counter 16		
Activate Bus (ACVT BUS) 38		
AND Function		
Connections for 12		
Operational Control Panel 1		
Operational Control Panel 237		
Any Channel Busy 24		
Approved Probe Attachment Points		
Basic Counter Unit		
Description 5		
Housekeeping Procedures 19		
Junction Box 10		
Measurement Techniques 24		
Monitor Probes 9		
Operating Controls		
Optional Accessory 19		
Patch Panel 10		
Patch Panel Planning Form 11		
Power and Portability 6		
Probe Assignment Planning Form 9		
Purpose and Function 5		
Standard Accessories 9		
Testing Procedures 22		
Boolean Algebra 11		
Channel Busy 24		
Channel Overlap 24		
Check Reset Switch 8		
Closure, Lack of 16		
Compute and Any Channel Overlap 24		
Compute Only 24		
Connecting the Monitor Probes		
Control Panel Image Card 17		
Control Panel Switches 8		
Control Panels 1 and 211		
Controls and Indicators 8		
Count Enable Indicator Light		
Counter		
Accuracy 16		
Counting Rate 16		
Display Rotary Switch		
Timing Rate 16		
Counting Rate of Counter 16		
Convenience Outlet 6		
Decimal Digit Display 9		
Decoder 15		
Derived System Function		
Compute and Any Channel Overlap 24		
Compute Only 24		
Total Wait 24		
Wait Only 24		
Display Indicators 9		
DOT OR Functions 14		

Accessory
Optional, 1057/1058 Card Punch 19
Standard, Patch Cords 11
Accuracy of Counter 16
Activate Bus (ACVT BUS) 38
AND Function
Connections for 12
Operational Control Panel 136
Operational Control Panel 237
Any Channel Busy 24

Basic Counter Unit
Description 5
keeping Procedures

Measurement Techniques 24
Monitor Probes 9
Operating Controls 8
Optional Accessory 19

Patch Panel Planning Form 11
Power and Portability 6
Probe Assignment Planning Form 9
5
Standard Accessories 9
Testing Procedure
11
annel Busy

Check Reset Switch 8
Closure, Lack of 16
Compute and Any Channel Overlap 24

Connecting the Monitor Probes 9
Control Panel Image Card 17
Control Panel Switches 8
Control Panels 1 and 211
Controls and Indicators 8
Count Enable Indicator Light 9
Counter

Counting Rate 16
Display Rotary Switch 9
Timing Rate 16

Convenience Outlet 6

Decimal Digit Display 9
Decoder 15
Function

Compute Only 24
Total Wait 24
Wait Only 24

DOT OR Functions 14

Event
Counting 36
Timing 36
Evolution of Signal 11
Expanded Logic Function and Test Panel 38
Extension Cable for Monitor Probe 10
External Signal Connections to Basic Counter Unit 6

FANOUT Function
Connections for 14
Operational Control Panel 136
Operational Control Panel 237
Force Carry Hub 38
Force Carry to All Counters 22
High Speed Count 1 Test 22
High Speed Count 2 Test 22
Identifier, Counter 9
Indicator Lights
Count Enable 9
Intfc Check 9
Punch Ready 9
Test Mode 9
Inhibit (INH) Add Hub 39
Input Connections to Basic Counter Unit 9
Installation Tests
High Speed Count 1 Test 22
High Speed Count 2 Test 22
Ones Retention Test 22
Zeros Retention Test 22
Intfc Check Indicator Light 9
Inverted Logic, Using 14
Junction Box 10

Lamp Test 23
Lamp Test Switch 8
LATCH as FANOUT 14
LATCH Function
Connections for 13
Operational Control Panel 136
Operational Control Panel 237
Logic, Inverted 14
Machine Reset Switch 8
Measured System Function
Any Channel Busy 24
Channel Busy 24
Channel Overlap 24
Processor Not Active 24
Total Compute 24
Total Elapsed Time 24
Measuring Techniques
Derived System Functions 24
Example 124
Example 26
Example 36

Measuring Techniques (Continued)	
Example 428	
Measured System Functions	24
Terminology 24	
Monitor Probes	
Assignment Planning Form	9
Attachment Points 9	
Cable 10	
Connecting the 9	
Description 9	
Extension Cable 10	
Nominal Signal Delay 16 NOT Function	
Connections for 13	
Operational Control Panel 1	36
Operational Control Panel 2	37
Not True (+ level) 11	
Ones Retention Test 22	
Operating Controls 8	
Operating Procedures for	
Basic Counter Unit 8	
1057/1058 19	
Operational Control Panel 1	36
Operational Control Panel 2	37
Operator's Panel 8	
Optional Accessory, 1057/1058	Card Punch
OR Function	
Connections for 12	
Operational Control Panel 1	36
Operational Control Panel 2	37
OR LATCH Function	
Connections for 13	
Operational Control Panel 1	36
Operational Control Panel 2	37
Outlets	
Convenience 6	
Primary 6	
Patch Panel	
AND Function 12	
Cords 11	
Description 10	
FANOUT Function 14	
Image Card 17	
LATCH as FANOUT 14	
LATCH Function 13	
Operational Control Panel 1	36
Operational Control Panel 2	37
OR Function 12	
OR LATCH Function 13	
Signal Definition 11	
Test 23	
Test Panel 38	
Wiring the 10	
XLF Panel 38	
Performance Tests 22	
Pin Locations 9	
Plus (+1) A B C D 14	
Plus (+1) E F G H 14	
Power and Portability 6	
Power-Off Switch 8	
Power-On Switch 8	
Primary Outlet 6	

Probe
Assignment Planning Form 9
Attachment Points for
1130 Computing System 9
1800 Data Acquisition and Control System 9
System/360 9
Description 9
Processor Not Active 24
Program Status Word (PSW) 24
Punch Go Switch 8
Punch Ready Indicator Light 9

Rotary Switch, Counter Display 9

Self-Generated True Signals 14
Signal Cable 10
Signal, CPU or I/O 11
Signal, Patch Panel 11
Standard Accessory 9
Start Hub 15
Start Switch 8
Starting the Basic Counter Unit 8
Stop Hub 15
Stop Switch 8
Stopping the Basic Counter Unit 8
Strobe 15
Switches
Check Reset 8
Lamp Test 8
Machine Reset 8
Power-Off 8
Power-On 8
Punch Go 8
Start 8
Stop 8

Test 1 Hub 38
Test 2 Hub 38
Test Mode Indicator Light 9
Test Panel 38
Testing Procedure for Basic Counter Unit 22
1057/1058 23
Timing Rate of Counter 16
Total Compute 24
Total Elapsed Time 24
Total Wait 24
True (- level) 12
True Signals, Self-Generated 14
Wait and Any Channel Busy 24
Wait Only 24
Wiring for
Example 127
Example 27
Example 38
Example 49
Wiring the Patch Panel
AND Function 12
FANOUT Function 14
LATCH as FANOUT Function 14
LATCH Function 13
NOT Function 13
OR Function 12
OR LATCH Function 13

Zeros Retention Test
 22

4×16 Decoder 15
1057/1058 Card Punch
Housekeeping Procedures 19
Operating Procedures 20
Power Supply 19
Program Card Format 19
Punch Card Format 19
Testing Procedures 23
1130 Computing System
Monitored by Basic Counter Unit 5
Probe Assignment Planning Form 9
1800 Data Acquisition and Control System
Monitored by Basic Counter Unit 5 Probe Assignment Planning Form 9

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
[USA Only]
IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Your comments about this publication may be helpful to us. If you wish to comment, please use the space provided below, giving specific page and paragraph references.

Please do not use this form to ask technical questions about the system or equipment, or to make requests for copies of publications; this only delays the response. Instead, direct technical questions to the nearest Field System Center. Make requests for publications to your IBM representative or to the IBM Branch Office serving your locality.

Reply requested

Yes

\square No \square

Name \qquad
Job Title \qquad Address \qquad
\qquad
\qquad

WTC users must add postage.

YOUR COMMENTS, PLEASE \qquad

This Sales and Systems Guide is part of a classified Marketing Aids Library that serves as a reference for IBM representatives and system engineers. Each reply will be carefully reviewed by the persons responsible for writing and publishing this material. All comments and suggestions become the property of IBM.

Note: Direct technical questions to the nearest Field Systems Center. Make request for publications to your IBM representative or to the IBM Branch Office serving your locality.
fold

BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390

POUGHKEEPSIE, N.Y. 12602

ATTENTION: PRODUCT PUBLICATIONS, DEPT. B98

International Business Machines Corporation
 Data Processing Division
 112 East Post Road, White Plains, N.Y. 10601
 [USA Only

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

[^0]: IBM 1058 Printing Card Punch Model 2 Attached to IBM Basic Counter Unit

