
 Maintenance Library

Installation Procedures

[^0]3033

8271600	$\stackrel{\text { ECNo }}{\text { Dre }}$	${ }_{20}^{278074}$	${ }_{3}^{276707}$

OCoprright International Buxines Mechines Corporation 1978

REPORT NUMBER 000 VOL IM2 M/T 303	SERIAL 0000021740		port date	6NOV82
vol Im2 M/T 3	33 SERIAL 00021740	ITC	821215	
LOGIC NUMBER	description	PART NUMBER	EC Number	feature bm
SYSTEMS DIAGRAMS				
COVER SHT	COVER SHEET	0008271600	000276707	
INST 010	InStallation procedure	0008271601	000214694	
INST 011	installation procedure	0008271665	000214694	
INST 020	INS®ALLAFION-PROCEDURE	0008271602	000214694	
INST 030	installation procedure	0008271603	000211786	
INST 040	installation procedure	0008271604	000213545	
INST 050	installation procedure	0008271605	000214694	
INST 060	installation procedure	0008271606	000213545	
INST 070	installation procedure	0008271607	000213562	
INST 071	InStallion procedure	0008271673	000213562	
INST 080	installation procedure	0008271608	000276474	
INST 082	installation procedure	0004439496	000208332	0004873490
INST 090	installation procedure	0008271609	000211786	
INST 100	installation procedure	0008271610	000213545	
INST 101	installation procedure	0008271661	000278357	
INST 110	installation procedure	0008271611	000213545	
INST 120	installation procedure	0008271612	000279895	
INST 130	installation procedure	0008271613	000208335	
INST 132	installation procedure	0004439497	000213792	0004873490
INST 140	installation procedure	0008271614	000213545	
INST 150	installation procedure	0008271615	000213562	
INST 155	InStallion procedure	0008271674	000211786	
INST 157	installation procedure	0008271686	000213545	0004873490
			Page no	. 0065

REPORT NUMBER 000000	
VOL IM2 M/T 303	33 SERIAL 00021740
LOGIC NUMBER	description
SYStems diagrams	
INST 160 I	Installation procedure
INST 165	installation procedure
INST 170	installation procedure
INST 171	Installation procedure
INST 172	Installion procedure
INST 173	INSTALLION PROCEDURE
INST 174	installation procedure
INST 175	installation procedure
INST 176	installation procedure
INST 177	installation procedure
INST 180	installation procedure
INST 185	installation procedure
INST 190	installation procedure
INST 200	installation procedure
INST 210	installation procedure
INST 220 I	installation procedure
INST 230	installation procedure
INST 231	installion procedure
INST 240	installation procedure
INST 250 I	installation procedure
INST 252	installion procedure
INST 255	installion procedure
INST 256	

REPORT DATE 16NOV82		
ITC	821215 A	
PART NUMBER	EC Number	feature bm
0008271616	000213562	
0008271687	000388707	0004873490
0008271617	000213562	
0008271662	000213562	
0008271675	000208332	
0008271676	000213562	
0008271696	000211786	0004873490
0008271697	000211786	0004873490
0008271698	000213562	0004873490
0008271699	000213562	0004873490
0008271618	000211786	
0008271688	000211786	0004873490
0008271619	000388692	
0008271620	000213545	
0008271621	000211786	
0008271622	000213545	
0008271623	000213562	
0008271677	000213562	
0008271624	000214694	
0008271625	000213562	
0008271678	000213545	
0008271679	000211786	
0004439504	000213562	
	page no.	0066

table of contents

REPORT NUMBER 000000		REPORT DATE 16NOV82		
VOL IM2 M/T 30	33 SERIAL 00021740	ITC	821215 A	
LOGIC NUMBER	description	PART Number	EC Number	feature bm
SYStems diagrams				
INST 257	InStallion procedure	0008271680	000213562	
INST 258	Installion procedure	0008271681	000213562	
INST 259		0004439503	000213562	
INST 260	installation procedure	0008271626	000211786	
INST 270	InStallation procedure	0008271627	000213562	
INST 271	installation procedure	0008271682	000213562	
INST 275	installation procedure	0004439495	000213562	0004873490
INST 277		0004439501	000213545	
INST 278		0004439505	000213562	
INST 279		0004439506	000213562	
INST 280	installation procedure	0008271628	000213545	
INST 281	installation procedure	0008271664	000279895	
INST 290	installation procedure	0008271629	000211786	
INST 291	installation procedure	0008271668	000214694	
INST 300	InStallation procedure	0008271630	000276707	
INST 310	installation procedure	0008271631	000214694	
INST 312		0004439502	000214694	0004873490
INST 320	Installation procedure	0008271632	000213562	
INST 321	installation procedure	0008271670	000208335	
INST 322	Installation procedure	0008271671	000211786	
INST 323		0004439499	000211786	
INST 324		0004439500	000214694	
INST 325	installation procedure	0008271689	000208332	0004873490
			Page no	0067

table of contents

REPORT NUMBER 000000			REPORT DATE 16NOV82		
VoL IM2 M/T 303	33 SERIAL	00021740	ITC	821215 A	
LOGIC NUMBER	description		PART NUMBER	EC NUMBER	FEATURE bM
SYStems diagrams					
INST 326			0004439507	000213562	
INST 330	INSTALLATION	Procedure	0008271633	000214694	
INST 340	installation	Procedure	0008271634	000208335	
INST 342	installation	Procedure	0008271663	000208335	
INST 350	installation	procedure	0008271635	000278357	
INST 355	installation	Procedure	0008271636	000388692	
INST 360	installation	Procedure	0008271637	000211786	
INST 370	installation	Procedure	0008271638	000388707	
INST 371	installation	Procedure	0008271683	000388692	
INST 375	installation	procedure	0008271690	000388707	0004873490
INST 380	installation	Procedure	0008271639	000214694	
INST 381	installation	Procedure	0008271672	000213562	
INST 388	installation	procedure	0008271666	000278357	
INST 389	installation	procedure	0008271667	000213562	
INST 390	installation	Procedure	0008271640	000214694	
INST 395			0004439498	000213545	
INST 400	installation	Procedure	0008271641	000213562	
INST 401			0004439508	000213562	
INST 410	installation	Procedure	0008271684	000214694	
INST 411	installation	Procedure	0008271685	000213791	
INST 412	installation	procedure	0004439509	000214694	
INST 420	installation	procedure	0008271691	000214694	0004873490
INST 421	installation	Procedure	0008271692	000213562	0004873490

table of contents

table of contents

REPORT NUMBER 000000		REPORT DATE 16NOV82		
vol IM2 M/T 303	33 SERIAL 00021740	ITC	821215 A	
LOGIC NUMBER	description	PART NUMBER	EC Number	feature bm
SYSTEMS diagrams				
REMV 180	Removal procedure	0008271659	000213545	
REMV 190	removal procedure	0008271660	000213545	
REMV 200	removal procedure	0008271695	000213545	0004873490
REMV 205	removal procedure	0008271694	000213545	0004873490

page no. 0070

Contents

Contents Contents (Continued)	inst 10 INST 11
Introduction	INST 20
General Information	INST 20
MP Preparation	INST 20
AP Preparation	INST 20
Frame 09 Preparation	INST 20
Leveling Pads.	INST 20
Inspect the EMC Hardware.	INST 20
Safety	inst
Preliminary Procedures	
Customer Preinsalation Requirements	inst 40
Tools and Test Equipment	INST 40
Cable and Hose Identification	INST 40
Overall Installation Work Flow	INST 50
Work Division Chart.	INST 50
Tray Pack.	inst 50
Detailed Work Flow	inst 60
Team A	INST 60
Detailed Work Flow	INST 70
Team 8	INST 70
Teams A and B	INST 70
Frame 09	ins
Frames 14 and 33	inst 71
PDU and CDU.	inst 80
50-Hz Convenience Outlet	
Circuit Grounding	in
Customer Water for the CDU	INST 90
Specifications for Customer-Supolied Chilled Water.	
Frames 10. 11, and 12	inst
Frame 12 (Unattached).	INST 101
Console Cables	INST 110
Gate C Power	INST 110
Diskette Drive and Dispory Cable Routing	INST 110
Console Station A	inst 120
Install Kevboard Cable	INST 120
Install Display Cable	INST 120
Install Frame 12 Cables.	INST 120
3037 Power Connector Safety Check	Inst 130
Power Connector Satety Procedure	INST 130
Check ae Compartment Connections	NS
MG Overvoltage PPretiminary No-Load Overvoltage	
Check)	INST 132
Check MG + 50 Vdc .	INST 132
Machines without Proportional Supply	INST 132
Machines with Proportional Supply	INST 132
Address and Feature Card Plugging	INST 140
Serial Number Plate Locations for UP and	
Model Groups N and \mathbf{S}	INST 150

3033 Processor Complex and 3033 Processor Complex Model Groups \mathbf{N} and S Cabling	
Schematic-Cables and Coolant Hoses	INST 150
Serial Number Plate Locations for MP	INST 155
3033 Multiprocessor Complex Cabling	
Schematic-Cables and Coolant Hoses	
Serial Number Plate Locations for AP	
3033 Attached Processor Complex Cabling Schematic-Cables and Coolant Hoses	INST 157
Cable Connector Locations for UP, MP,	
and Model Groups N	
Cable Connector Locations for AP	
External Cable Charts for AP, MP, UP, and	
Model Groups N and S	INST 170
External Cable Charts for AP, MP, UP, and	
Model Groups \mathbf{N} and S (Austria, Germany,	
and South Africa)	INST 171
Additional External Cable Charts for MP	inst
Additional External Cable Charts for MP	
(Austria, Germany, and South Africa)	INST 173
External Cable Charts for 3042 AP	INST 174
Additional External Cable Charts for 3042 AP	INST 175
External Cable Chars for 3042 AP (Austria,	
Germany, and South Africa).	ins
Additional External Cable Charts for 3042 AP	
ustria, Germany, and South Africa	INS
Install Water Hoses for AP, MP, UP, and Model	
Groups N and S	INST 180
Install Water Hoses for 3042 AP	ins
fill Expansion Tank and Check	
Rotation	T
Fill Expansion Tank	0
Check Pump Rotation	INST 190
Adjust Water Temperature	INST 190
Check Quality of Water	INST 190
Backflush Flow Loops	INST 190
Demineralize System Water	0
Add Corrosion Intibitor	0
Power Up the Console	INST 210
Console Microdiagnostic Te	
Test the Unit Emergency Switch	20
Install the Batteries	0
Install the 3033 Processor	INST 230
Install the 3033 Processor (Continued)	INST 231
Install F	INST 240
Remove the Outriggers	INST 240
Install the Channels	INST 250
Install the Spacer Frame for AP or MP	
Install Frame 09 to Frame 08 for AP or MP	INST 255
Install the Remaining Spacer Frame for AP or MP	

Install the Remaining Spacer Frame for AP or MP (Continued) MP (Continued)	INST 257	Frame 04 Voltage Adjustments for Machines Having B/M 8261502 (Continued).	INST 323
Install Frames 14 and 33	in	Frame 04 Volrge Adiustments for Mac	
Reposition Outriggers	INST 258	Having B/M 5867725.	INST 324
Connect Frame 33 to frame 14	INST 258	Frame 03 Voltage Adjustments for AP	Ns
Install Frames 14 and 33		Voltage Adjustments for Frame 33	INST 326
(Continued) ${ }^{\text {a }}$.		Voltage Adjustments for Processor Channet	
Connect Frames 33 and 14 to Frame 04	INST 259	Frames	
Remove Outrigg			
Install the Trace Probe and Scope Assembly	INS	Test Power-On Sequence Install Covers on Frame 08 Dispose of Shipping Materia Dispose of Shipping Material	INST 340 INST 340 INST 340
Interframe Connections on Frame 08 for		Install the EMC Covers	
Connect Cables to Tailgat	INST 270	Complex	
Install frame 08 Cables.	INST 270	Align the Covers and Inspect the EMC	
Interframe Connections on Frame 08 MP or AP	INST	Hardware	inst 355
Connect Czbles to Tailgates	inst 271	Check Alignment of the Covers	INST 355
Install frame 08 Cables.	inst 271	Align the Covers Vertically.	INST 355
		Align the Covers Horriontallv	
ctions on	INST 275	Adiust the Cover Gaps	INST
Connect Cables to Tailgates	inst 275	Check the Cover Latches	INST
Inssall Frame 08 cables.	INST 275	Adiust the Cover Latches	INST
Route and Install Interframe Cables.	inst 277	Inspect the EMC Hardware	INST
Install Interframe Cables from Frame 03 to		Install the Blower Assemblies Install the Top Housings	
Frame 33		Install the Covers on the Processor Complex	
Install UEPO and Power Adapter Cables	INST 279	and the Multiprocessor Complex	INST 370
Install UEPO Cable in Frame 04	ins	the 3038	
Install Power Adapter Cable from Frame 04 to		Install the Covers	INST 371
Frame 33. . . .	INST 279	Install the Cov	
Install Channet Cables	INST 280	Complex	INST 375
Install Frame 06 Cables.	inst 280	Run the Microdiagnostic Tests	INST 380
Install CTCA Cables	ins	Run the System IMPL Tests	INST 380
Install Cables from Frame 04 Having B/M		Run the Channel Microdiagnostic Tests	INST 380
4400900 to Frame 03.	INST 290	Run the Hardcore Tesss.	NST 380
Install Cables from Frame 04 Having B/M		Test the Channel- to Channel Adapter Feature ICTCA1 and CTCA2)	INST 381
8261501, B/M 8261502, or B/M 5867725			
to Frame 03	inst 291	Connect the Data Communication (TP) Cable and Check Out the TP Facilities	INST 388
Interface Cable Chart	INST 300	TP Hardware Defininition	INST 388
Frame 05 Tailgate	Inst 30	United States and Canada	INST 388
Interface Cables for Frame 06	INST 300	Japan	inst
Inspect Tri-Lead Connections.	INST 310	Italy	INST 388
Power Up Frames.	INST 310	Connect the Data Communication (TP) Cable	
Final MG Adjustment	inst 312	(Continued)	
Without Proportional Supply	INST 312	Iraly (Continued)	INST 389
With Proporional Supoly	INST 312	Worla Trade Countries Using External Modems	INST 399
Voltage Adjustments for Processor Frames	Inst 320	Common TP Checkout Procedure	inst 389
Frame 04 Votrage Adjustiments	INST 320	Processor Functional Diagnostic Tests	INST 390
Frame 04 Voltage Adjustments for Machinas		Storage Functional Diagnostic Tests	INST 390
Having BiM 4400900	20	Bias Frame 33	INST 390
Frame 04 Voltage Adjustments for Machines		Processor Special Functional Diagnostic Tests	INST 390
Having 8/M 8261501	INST 321	Processor Maintenance Mode Diagnostic Tests	INST 390
Frame 04 Voltage Adjustm		Perform the Card Vibration Test	INST 395
Having 8/M 8261502.	INST 322	General Instructions.	INST 395

ain the Water from the Processor	remov 20
Drain the Water from frame 15	EmoV
Drain the System Water from Frame 16	aemor 20
Orain the Customer Water from Frame 16	mov
Orain the Water from Frames 01	pemov 30
Drain the Water from Frame 09	
Disconnect the Processor and the Pow	
Coolant Distribution Unit.	
Disconnect Frames 15 and 1	
Disconnect Frame 04 Having B / M	
4400900	
Disconnect Frame	
8/M 8261502 , or B/M 5867725	
Disconnect Frames 02, 03, and 08	EEMOV 60
Disconnect Frame 01	еMOV 70
Disconnect Frames 05-07	еммо
Disconnect Frame 06 (Feature)	Emo
Disconnect Power Adapter Cable	Emov
Disconnect UEPO Cable	remov
Disconnect Frame 33 Interirame Cables	aEmov 73
Disconnect Frames 14 and 33	Remov 74
Install Outriggers	Remov 74
Disconnect Frames	emov 74
Disconnect Frames 14 and 33 (Continued)	Emov 75
Disconnect Frame 33 from Frame 14:	remov 75
Reposition Outriggers	remov 75
connect the Console	Remov 80
Disconnect Frame 11	remov 80
Disconnect Frame 11 (Contin	
Disconnect frame 12	
Packing Instructions	remov 100
Pack the Processor Frames	Rem
Pack Frames 01.04 for Shipment in a Padded	
Van	Ren
Pack Frames 01.04 for Shipment by Aiffeight	remov 110
Pack Frame 05 for Shipment in a Padded Van	remov 120
Pack Frame 05 for Shipment by Airfreight	REmoV 130
Pack Frame 06 (Feature)	Remol
Pack Frame 07 for Shipment in a Padded Van	remov 140
Pack Frame 07 for Shipment by Airfreight	remov 140
Pack Frame 08	Remov
Pack the Console Frames	
Pack Frames 10 and 12 (Artached) for Shipment in a Padded Van	
Pack Frames 10 and 12 (Atrach	
Shipment by Aiffeight	Remov 150
Pack Frame 11 for Shipment in a Padded	aemov 160
Pack Frame 11 for	
Pack Frame 10 (Stand Alone) for Shipment	
Pack Frame 10 (Stand Alone) for Shipmen	
by Airfreight	
2 ISta	

Pack Frame 12 (Stand Alone) for Shioment by Airferght Pack the PDU and CDU Frames Pack Frame 15 for Shiomenest in a Padded Van
Pack ack Frame 15 for Shipment by Airfeight Pak Frane 16 for Shipment in a Padded Van Pack Frame 16 for Snipment by Aifrreight Pack the Cables Pack the MCU Frame Pack Frame 09 for Shioment in a padd
 (Continued) Frame 09 with 0 -tailate Attrached

REMOV 170
REMOV 180
REMOV
REMO REMOV 180 REMOV 180
REMOV 190 REMOV 190 REMOV 190 remov 200 REMOV 200
REMOV 200
REMOV 205 REMOV 205
REMOV 205

Introduction

general information

These installation procedures are designed to permit efficient installa tion of the IBM 3033 Processor Complex, the IBM 3033 Multiprocesso Complex, the IBM 3033 Processor Complex Model Groups N and S , and the IBM 3033 Attached Processor Complex. Two dedicated CE team perform parallel operations by following the flowcharts.

The following apply to the installation procedures:

- The processor complex is usually shipped with covers and to housings installed.
- All floor cutouts have been completed as specified in $18 M 303$ Processor Floor Cutout Aid, GC22-7067.
- All preinstallation visit checks have been completed as specified in the IBM :System/370 Installation Manual-Physical Planning GC22.7004.
- All cables are at the customer location and are sequenced and labeled.
- Open box 1 first; cable sequence number 1 is in this box. See cable chart on INST 170
- The console is usually shipped in two sections with all parts assembled (display, operator panel, keyboard, and diskette drive).
- All logic manuals and MLMs are in binders and are shipped in carts.

These installation procedures are a guide to installing the following machines

IBM 3033 Processor Models U, M, and A
IBM 3033 Processor Model Groups N and S
IBM 3036 Console Model I
IBM 3037 Power and Coolant Distribution Unit Model 1 IBM 3038 Multiprocessor Còmmunication Unit Model 1 IBM 3042 Attached Processor Model 1 or Model 2
These installation procedures contain instructions for assembling the machines, for installing the covers (if not installed) and cables, for connecting the cooling equipment, and for making appropriate tests.

Installation procedures for $1 / \mathrm{O}$ devices are in the Installation Manual for the particular device.

After completing the installation, retain this manual as part of the System Maintenance Library

Diskettes and NDM tapes on both sides of an AP or MP complex must have identical part numbers and EC levels to ensure functional compatibility on multiple processor complexes.

up Preparation

Note: In case 1, one processor may have the extended addressing feature and the other may not The result is an incompatibility. The feature and the other may not. The result is an incompa
extended addressing feature must be disabled (see INST 412)

There arc three cases for installing an MP:
Case 1: One 3033 Processor was installed previously. Install a 3038 MCU and install one 3033 Processor.
Case 2: Two 3033 Processors were installed previously. Install a 3038 MCU.

Case 3: No 3033 Processors were installed previously. Install two 3033 Processors and a 3038 MCU .

ap preparation

Note: In case 1, one processor may have the extended addressing Nore. In case , one processor may have is an incompatibility. The extended addressing feature must be disabled (see INST 412)

There are three cases for installing an AP:
Case 1: One 3033 Processor was previously installed. Install a 3038 MCU and install a 3042 Attached Processor
Case 2: One 3033 Processor and a 3038 MCU were previously installed Install a 3042 Attached Processor.

Case 3: No processors were installed previously. Install one 3033 Processor, a 3038 MCU , and a 3042 Attached Processor.

frame 09 preparation

If this installation is installing a frame 09 between two processors. nsure that the space between each frame 08 is 89.75 inches $(279.65 \mathrm{~mm}$). Note that this clearance is measured between the frame members, not the covers. Extra precaution should be taken to ensure that the frames of the processors are level and at the same height.

Frame 09 is shipped with the spacer frames bolted together. The \mathbf{Q} tailgates are attached to frame 09. The Q -tailgates will have to be moved to the spacer frames.

If special handling was required, the 0 -tailgates will be shipped in the spacer frames. The cables from frame 09 will have to be connected to the Q -tailgate

LEVELING PADS

A For machines installed in areas susceptible to earthquakes, the following may be installed on the leveling pads: cover (part 5584216), screw (part 234347), and washer (part 5584213). The screw and washer are not installed on leveling pads that are not accessible. These parts are in the shipping group under $B / M 5610399$

inspect the emc hardware

- The door seals are made of conductive rubber, and the paint on the frames is conductive. Ensure that the doors contact the strips.
- Ensure that the seals between the frames contact each other.
- Braided straps are installed on frames 05 and 07 (and frame 06, if present). Ensure that the straps are installed.
- Ground straps or ground clamps are installed on the console inter frame cables. Ensure that the straps or clamps are installed.
- The interface connectors are plated with aluminum. Ensure that the aluminum olating contacts the metal tailgate.
- Ensure that all tailgate covers are installed.
- Ensure that the bus bars, terminal strips, and tri-lead cables on the power supplies are connected.
- The paint on the perforated metal screens on the top of the frames is conductive. Ensure that the mounting screws are tight.
- Ensure that the braided pigtails to all the shielded interface cables are attached tightly to the metal tailgate.

3033	$\begin{gathered} \text { Part } \\ 8271602 \end{gathered}$	EC No. Date	276474 20Jan78	388692 10Aug79	$\begin{aligned} & 388707 \\ & 1 D e c 79 \end{aligned}$	208335 IJunso	211786 5 San 81	$\begin{aligned} & 213562 \\ & 4 \operatorname{SSep} 81 \end{aligned}$	$\begin{aligned} & 214694 \\ & 9 A p r 82 \end{aligned}$

Safoty

- Observe all safety precautions as stated in CE Saferty Practices, S229-0230. During installation, practice the following safety regulations:
- Wear safety glasses when using soldering iron, chemicals, solvents, compressed Wear safety glasses when using soldering
- Do not wear jewelry, watches, or rings during installation or maintenance.
- Do not work alone on equipment when power is on the machines. At least two men should be present when any work is being done with power on.
- Remember that ac power is present in the PDU even when power is turned off. Before working in the power area, disconnect the power connectors from their source.

DANGER
Before customer power is applied to the motor generator, visually check for proper grounding connections at both the PDU and the MG set.

Frames 01, 02, 03, 04, 09, 11, and 12 (unless supported, bolted together, or placed on outriggers) may be tipped over if side pressure is applied.

During the zap test, voltages of 2.5 kV can develop.

caution

The power cord plug supplied with this product must be connected to a properly rounded receptacle to avoid electrical shock. In the United States and Canada cord and plug meet the relevant country standards.
'UL: Underwriter's Laboratories. CSA: Canadian Standards Association.

Preliminary Procedures

CUSTOMER PREINSTALLATION REQUIREMENTS

fllowing

1. The $415 \cdot \mathrm{~Hz}$ and 50 or $60-\mathrm{Hz}$ power under the floor at the PDU location. Either 50 or $60-\mathrm{Hz}$ power must be provided under the floor for all I/O devices. All ac power must be checked for correct voltage and phase rotation.
2. Room air conditioning. Air conditioning requirements are described Room air conditioning. Air conditioning requirements are described in the Installation Manual-Physical Planning. Some air conditioning
3. Water coolant at the CDU location. The customer supply and return coolant manifolds must be installed near the CDU and must be purged.
4. Cable access holes. The underfloor cable access holes must be provided and marked for each frame in the processor complex.

TOOLS AND TEST EQUIPMENT

The following tools and test equipment are required to install and test the processor complex:
For hookup and cabling:
CE tool kit
$1 / 8$ inch open-end wrench (part 9525046)
Four-step ladder stoo
Frame aligment gaye (part 1312055) in tray pack
Hex-head drivers for attaching tri-lead connectors and adjusting covers (in tray pack)
I Wrench (part 6834434) for adjusting console leveling pads
For testing:
Tektronix ${ }^{1}$ 475A Oscilloscope with DM44 Option or equivalent Digital multimeter (part 1749233), Fluke 2 8600A or similar tool ESD simulator (zapper)
EMC gate test plate
AC meter (part 460880) or similar too
Distilled water

T
Trademark of Tektronix, Inc.
${ }^{2}$ Trademark of John Fluke Manufacturing Company, Inc

CAble and hose identification
External cables and hoses are labeled as follows:

1. A red label on a cable or a blue label on a hose identifies the From end (end away from the processor).
2. A white label on a cable or hose identifies the To end (end toward the processor)
3. Each label contains part number, EC number, key number, length and From and To designations.

\square

Overall Installation Work Flow

tray pack

The tray pack column shows the location of the parts needed. In the example, the first three digits are the last three digits of the B / M number that is used to select the tray. The letter identifies the pocke in the tray that contains the parts needed for that step. The number in parentheses is the quantity needed for that part.

Examole

Parts that do not fit into the trays are packaged separately.

Detailed Work Flow (Part 1 of 2)
team a

[^1]Detailed Work Flow (Part 2 of 2)
Notes:
2. Full duplex consists of (a) a 3033,3038 , and 3033 or (b) a 3033 , 3038 , and 3042 .

installation procedures
© Copyright Interrational Business Machines Corporation 1978

Frame 09

Frames 14 and 33

PDU and CDU

Tray Pack
(See INST 50)

1. Position frame 15 .Note: Leveling pads are to be installed if the floor is not level.\square
2. Remove the side covers (2) next to frame 16 if necessary to facilitate \square
2. Remove the side covers (2)
bolting the frames togethe
If floor is trem, 0 to stre
A 3. Install the leveling pads (part 5584215), as required.
\qquad
3. Level the frame by adjusting the leveling pads.
B 5. Align frame 16 couplers (part 5612673) with pins in frame 15 If the floor is level, go to step 8 .
C 6. Install the leveling pads (part 5584215), as required. 7. Level frame 16 to frame 15 by adjusting the leveling pads.
4. Install the bolts (part 127712), washers (part 161351), and nuts \square (part 25793) to draw the frames together
The couplers are used to control the top frame-to-frame clearance. The frame alignment gauge is used to adjust the bottom frame to.frame clearance.
Insert the frame alignment gauge between the hinge and latch (or hinge and hinge), and tighten the nut until the gauge is snug Repeat this procedure for the other side of the frame.
5. Install the covers removed in step 2.
6. Return to the work flow chart for team A.
\qquad

$017 P^{014}$ | $\begin{array}{lll}017 & 0 & (8) \\ 017 & 0 & (4)\end{array}$ |
| :--- | :--- | :--- |

\square
\square

50. Hz Convenience Outlet Circuit Grounding

Some local regulations require that the common output of the convenience outiet transformer ($T 1$) be connected to frame ground. Check the local requirements with your Installation Planning representative.
If local regulations do not require grounding of the T 1 common output, eturn to the work flow chart for team A.
local regulations require that the common output of $T 1$ be grounded, omplete the following steps.
. Open the cover of the PDU ac compartment.
A 2. A ground jumper is fastened between the lower mounting screws of contactors K 1 and K 2 . Loosen the mounting screw on K2 and retighten the mounting screw.
B 3. Remove the plastic safety shield from ' $T 1$ TB1 and connect the end of the jumper removed above to $\mathrm{T} 1 \mathrm{~TB} 1-3$. Reinstall the plastic afety shield.
4. Return to the work flow chart for team A
\square

Frame 15
AC Comparment (Rear)

© Copyright international Business Machines Corporation 198

Customer Water for the CDU

CAUTION

Shut off the customer water supply feed valves under the floor before attempting to attach customer water manifold hoses; if not, water will spray out when attachment is attempted. Attachment will be difficult or impossible to complete.

SPECIFICATIONS FOR CUSTOMER-SUPPLIED CHILLED WATER

Maximum pressure on customer supplied chilled.water lines should not exceed 150 psi $\left(10.5 \mathrm{kgf} / \mathrm{cm}^{2}\right)$.
Hardness of water shall not exceed 200 ppm calcium and magnesium. Water pH shall be between 7 and 9 .

The customer-supplied chilled water may vary $\pm 15 \%$ in flow rate and $\pm 7.5^{\circ} \mathrm{F}$ $\left(\pm 4.2^{\circ} \mathrm{C}\right)$ in temperature. However, the $60^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)$ maximum temperature may not be exceeded

Consult your installation planning representative about any problem in this are

INSTALLATION PROCEDURES

Frame 12 (Unattached)

A 1. Remove frame 12 outrigger by removing the two bottom screws (part 38686) and bolt (part 36112), being careful not to tip the frame.
[6. 2. Install on the vertical frame member: screws (part 186914). lockwashers (part 6935), washers (part 3550), and nuts (pan 3960).

C 3. Install on the horizontal frame member: screws (part 59648) lockwashers (part 6935), washers (part 3550), and nuts (part 3960).
4. Route the cables shown in the figure on INST $110 \mathbf{G}$ Return \square to this procedure.
D 5. Install frame 10 left-rear side cover (part 4872873) with scew \qquad (part 32042) for the bottom and screws (part 236849) for the top.
E. 6. Install frame 10 left-front side cover (part 4872872) with screws (part 32042) for the bottom and screws (part 236849) for the top.
Note: For ease of cover installation, remove the upper bracket from frame 12 and attach the bracket to the cover; then install the cover.
F. 7. Connect frame 12 front and rear covers (part 4872861) by installing two screws (part 32042) to the top of each cover.
G. 8. Install the leveling pads as directed for frame 11.
\square 9. Install covers removed in the previous procedures.

Console Cables

A Install the following gate T cables.
Cable Part
T.02A 4873231
$\begin{array}{ll}\text { T.02B } & 4873224 \\ \text { T.03A } & 4873236\end{array}$
$\begin{array}{ll}\text { T.03A } & 4873236 \\ \text { T.03B } & 4873430\end{array}$
$\begin{array}{ll}\text {.03B } & 4873430 \\ .04 \mathrm{~A} & 4873432\end{array}$
$\begin{array}{ll}\text { T.04A } & 4873432 \\ \text { T.04B } & 4873434\end{array}$
T.01A and T.01B (tri-lead cable)

GATE C POWER

B. To install cable (part 4400959), attach wire 1 to bus 1 , and wire 2 tobus 2 . The buses are on the hinge end of gate C

DISKETTE DRIVE AND DISPLAY CABLE ROUTING
Note: The following cables are connected or INST 120.
Route diskette drive cable (part 4873242) along the front top of frame 11 and through the clamp strap as shown.
caution
Ensure that the correct cable is routed. Components can be damaged if the keyboard cable is mistakenly terminated in the diskette drive.
D. 2. Connect the clamp strap on the diskette drive frame to the braided area on the cable. Position the clamp to relieve any strain on the cable connector

E 3. Route diskette drive power cable (part 4401159) along the bottom of the frame and through the clamp strap as shown. Tighten the of the frame and through the clamp strap as shown. Tighten the
clamp strap, allowing sufficient slack for strain relief. Push the connector into the cutout on the diskette drive frame. Plug the diskette drive cable into this connector. Attach the ground wire to the clamp that holds cable (part 4873242).
24. Check the resistance of the motor frame to the frame ground screw. If the resistance is greater than 5 ohms, check the ac power plug of the motor for correct connections. (See ALD page YD011.
5. Route cables (parts 4873240 and 4873236) as shown. Install the
clamp straps along the top of the frame.

G 6. Route cables (parts 4873237 and 4873241) as shown if frame 12 was not attach to frame 10.

INSTALL KEYBOARD CABLE

A. 1. Loosen screw (part 4686784)

B-2. Pivot the keyboard slightly to remove screw (part 81693). Pivot the keyboard the other way to remove the other screw (part 81693) Remove the faceplate (part 1559981).
C-3. Loosen screws (part 10170), push forward on the faceplate, and remove the faceplate (part 4872798)
[2] 4. Remove the pan from under the keyboard by loosening the screws and sliding the pan over the slots.
E
5. Route cable (part 4873240) through the bracket (part 1559985), into the keyboard, plug the cable into the keyboard connector and use the O-ring (part 2162840) to hold the connector in the exposed braiding on the cable and to the ground pad on the keyboard base.
caution
Ensure that the correct cable is routed. Components will be damaged if the diskette drive cable is mistakenly terminated in the keyboard. Install the covers and screws removed in the previous steps.

INSTALL DISPLAY CABL

F 1. Remove the front cover of the display by pushing down on the latch and pulling forward on the top of the cover
c
Remove the side covers by pushing the lever toward the front With a thin screwdriver and pulling out on the cover at the rear (The key must be removed from the right side.)
H. 3. Route cable (part 4873236) through the same bracket as the keyboard cable. Connect the cable ground clamp to the stud near the short end of the cable into the lower left front of the display. Snap on the spring to hold the cable in place.

54. Route the other connector through the hole in the center of the display frame, and plug the connector into the LED board

[^2]If frame 12 is not attached when it is received, the cables are attached the same as for the other console station. Cable (part 4873237) is onnected to the display, and cable (part 4873241) is connected to the keyboard.
\square[256 6 (1)

3037 Power Connector Safety Check

Step
Cplt

The 3037 power connector safety check contains the steps to be fol lowed when a customer power cable connector is used for the first time and when doubt exists that a cable connector is wired correctly This power connector safety check procedure is mandatory for a new machine installation or when a machine is relocated and a new powe cable connector is used.

- Read the entire procedure before starting the power connector safety check.
- Remain alert and exercise all possible safety precautions.

DANGER
DO NOT TOUCH the connector until you have completed the following test to ensure that the connector is correctly wired. Line voltage can be present on the metal shell of the customer's power receptacle/connector.

Check with the customer or the Installation Planning Representative (PR) to locate a reliable building ground (such as an electrical conduit, a water pipe, or another properly grounded IBM machine). For your safety, use a CE meter with insulated test probes. If any problems are encountered at a procedure step, turn off primary power, stop the installation, and notify the customer. When the customer has corrected the problem, repeat the entire checkout procedure.

POWER CONNECTOR SAFETY PROCEDURE

Have the customer locate the branch circuit distribution breaker (wal switch) that supplies power to the 3037 power connector. Instruct the customer to turn off this power source CB. Refer to the power connec tor drawing for the following steps

1. Set the multimeter to the 500 Vac range. Check for 0 volts between the building ground and the connector shell, between the building ground and the three connector voltage contacts, and between the connector shell and the connector ground contact.
2. Set the meter to the RX1 range and zero the meter. Check for a continuity of 1 ohm or less between the building ground and the connector shell, and between the connector shell and the connector ground contact.
3. Set the meter to the 500 Vac range. Connect the meter leads between the building ground and the connector shell.

DANGER

The remaining steps of the procedure contain measurements that are taken with power on. Remember that lethal voltages are present.
4. Turn on the power source CB and check for 0 volts between the Turn on the power source $C B$ and check
building ground and the connector shell.
5. Turn off the power source CB. Connect the meter leads between the building ground and one of the voltage contacts.
6. Turn on the power source CB and ensure that line voltage is present. This step also verifies that the correct power panel CB is in use.
7. Turn off the power source CB. Connect the meter leads between the connector shell and the connector ground contact.
8. Turn on the power source CB and check for 0 volts between the connector shell and the connector ground contact.
9. Turn off the power source CB

The preceding safety procedure must be followed for all power source metal-shell cable connectors that supply power to the machine. Continue the installation/relocation procedures only after all the preceding cable connector safety requirements have been met.

DANGER
Before customer power is applied to the MG, visually check for
proper grounding connections at both the PDU and MG ends of the prober
cable.

A 1. When the electrician has connected the $415 \cdot \mathrm{~Hz}$ and the $50 / 60 \cdot \mathrm{~Hz}$ power to the PDU, with power turned off, visually check that the ac compartment connections are routed through the proper access holes and that the wires are properly connected.
2. Reinstall the cover on the ac compartment with the 24 screws provided
3. Turn off CB1 through CB5 and CB15 and turn on CB13on the PDU.
4. Ask the customer to turn on the $50 / 60 \cdot \mathrm{~Hz}$ power and the MG 415-Hz power to the PDU.
mG overvoltage (preliminary no-load overvoltage

Note: Ask the customer to do steps 1-4.
Ask the customer to first set the MG overvoltage adjustment with the system power turned off. Final overvoltage adjustment is set after pro cessor power is turned on

1. Set the MG overvoltage adjustment for the highest trip point.
2. Adjust the $M G$ ac output for a reading of +60 V dc at either the MG TB or the +50 V dc test points by using the MG local output control.
3. Change the MG overvoltage trip adjustment until the ac output of the MG drops (overvoltage trip), which causes the dc voltage at the TB to fall below +48 V dc. Bring the MG ac voltage adjustment down slightly.
4. Adjust the $M G$ ac voltage for a reading of +50.0 V dc at the $T B$.

Machines without Proportional Supply

Note: Ask the customer to do steps 1.3
Step
Colt
Turn off CB1 through CB5 and CB15 and turn on CB13 on the PDU. Ask the customer to adjust the proportional power supply on the MG Ask the customer to adjust the proportional power supply on the MG
for an output of +50 Vdc with 208 V rms output on the generator. The ac meter used for this adjustment should be accurate to better than $\pm 1 / 2 \%$. A digital multimeter (part 1749233) or equivalent should be used.

1. The MG is set for local sensing (Local/Remote switch at the MG) with no load. (Turning off CB1 through CB5 and CB15 removes the system load.)
2. Measure the generator voltage at the MG MS connector with a true rms meter, and set the MG local output control for 208 V rms ne -to-tine average. Measure the dc voltage at either the MG or the DU +50 V dc test points, and adjust the MG +50 V dc output ontrol of the proportional supply to +50.0 Vdc . Recheck both the adjustments. Lock the +50 V dc adjustment potentiometer.
3. Switch the MG to remote sensing. Measure the dc voltage at either \square the MG or the PDU +50 V dc test points, and adjust the MG atput control for +50.0 V dc. Lock the MG remo adjustment potentiometer and leave the MG set for remote sensing.
4. Using a digital multimeter (part 1749233) or equivalent, check fo \square $+50 \pm 1 \mathrm{Vdc}$ at the 50 Vdc test points on the PDU (near the 415 HZ ON neon indicator). The voltage tolerance in thissep is 10 tim better than normal to serve as a calibration check.

If +50 V dc is out of tolerance, the customer must adjust it (steps 1.3).
Note: If the $415 / 441 \cdot \mathrm{~Hz}$ input source for the 3037 does not meet specifications for the MG used with the 3033 Processor Complex, 3033 Processor Complex Model Groups N and S. 3033 Multiprocesso Complex, and 3033 Attached Processor Complex as shown in this ual, contact your local IBM installation planning representative.

B Machines with Proportional Supply

1. Refer to ALD page YC101 for local/remote connections.
2. Attach a digital multimeter (part 1749233) or equivalent to the +50 V dc test jacks on the PDU.
3. Turn the system on and check for $49 \mathrm{~V} d \mathrm{dc}$ to 51 V dc. If the voltage is not between these limits, have the customer adjust the $415 \cdot \mathrm{~Hz}$ source output up or down as required to meet the limits.

Address and Feature Card Plugging

1. Check the feature-definition card plugging on LADS page A6012for Model U, A5999 for Model N, and A6010 for Model S.
2. Check the failing storage address prugging on card $01 \mathrm{~A} \cdot \mathrm{C} 3 \mathrm{~T} 2$ in theinstructions on LADS page A6013 for Models N and U , and A6011 for Model S.
A 3. Check the console addresses on cards 10A-B1S2 and 10B-A1S2.(See LADS page PA002.)
B 4. Check that the select-out bypass is plugged for high or low priority on cards 10A-A1B4 and 10A-A1B5. (See LADS page PA003.) Check the card plugging with the customer.
3. Check the modem jumpers on LADS page PAOO4.
4. Check the modem card on LADS page PA005.
5. Check the director LADS pages for plugging on the following:

AA930 for CTCA feature address
AA921 for CTCA feature priority and mode selection AA610 for hold-out control AA854 for data-suppression block multiplexer

A Card Location 10B-A1S2 for A-side, 10A-B1S2 for B-side

Address Jumpering:
Jumper bits that are off
Maintain odd parity.
SRF example is address 80
2955 emulator example is address 81

B Card location 10A-A1B4 for A-side, 10A-A1B5 for B-side

3033 Processor Complex and 3033 Processor Complex Model Groups N and S

Cabling Schematic-Cables and Coolant Hoses

[^3]

Serial Number Plate Locations for AP

3033 | $\begin{array}{c}\text { Part } \\ \text { 8271686 }\end{array}$ | $\begin{array}{c}\text { EC No. } \\ \text { Date }\end{array}$ | $\begin{array}{c}388707 \\ 1 \text { Doc79 }\end{array}$ |
| :---: | :---: | :---: |

707 208335
Jun80
${ }^{211786}$

213545
15 Jun 81

© Copyright International Business Machines Corporation 1979

3033 Attached Processor Complex Cabling Schematic-Cables and Coolant Hoses

Note: For the 3042 Attached Processor, see INST 165.

Notes:
Oies:
Oummy connectors (part 5270772)
with pin 3 jumpered to installed in all unused positions
For ease of assembly, install J 38
through J 48 in sequence.
3. For Model Group S. frame 06 is
3. For Model Group S. frame 06 is
not available.
4. Frames 14 and 33 are available
only with Models U24 and A24.

Cable Connector Locations for AP

1
Frame 03, Card Side

External Cable Charts for AP, MP, UP, and Model Groups N and S

Remove the EMC covers and install the cables according to the following charts; refer to INST 150

BENT PIN

Notes:

1. Assemble EMC covers tightiy with all screws provided. Loose covers
will lower the machine's zap level
2. For machines installed in Austria, Germany, and South Africa, use INST 171.

Cable Group	Key No.	Part	From	To	$\begin{array}{\|l\|l\|} \hline \text { Sea } \\ \text { No } \end{array}$	Note
3362	A	2281630	06 TE2	10 V16	49	1,12
J316	A	4873684	15 J	07 CN72	50	3
3364	A	5372977	Non-IBM	08 W5	51	Dir ctil
3364	в	5372980	Non-18M	08 w6	52	Dirct
3365	A	5700306	IBM Sys.	08 w5 or W6	53	Dir
3366	A	5700306	10 V	Control	54	6
3366	B	5700306	10 V	Control	55	6
3367	A	5700306	10 V	Mpx chan	56	6
3367	8	5700306	10 V	Mpx chan	57	6
3368	A	5700306	10 V	Slı chan	58	6
3368	B	5700306	10 V	Str chan	59	6
3369	A	5700306	10 V	ctca	60	4.6
3369	B	5700306	10 V	CTCA	61	4.6
3370	A	5700306	07	CtIcht 3	62	4.6
3370	B	5700306	07	Ctlent 3	63	4.6
3371	A	5700306	07	Mpx cht 3	64	4.6
3371	в	5700306	07	Mpx cht 3	65	4.6
3372	A	5700306	07	SIrcht 3	66	4.6
3372	B	5700306	07	SIrcht 3	67	4.6
3373	A	5700306	07	ctca	68	4.6
3373	B	5700306	07	ctca	69	4.6
3380	A	8626691	15 J 7	33.04	70	16
3380	B	4444301	$15 J 75$	33 J 05	71	16
3380	c	3626687	$15 \mathrm{J76}$	33 J 1	72	16

110 V 17

4		

6 Direct control
Charr 4. Bus Tag Locations
Bus in
Tag in
Bus out
Tag out
Bus in
Tag in
Bus out \square

1. Extended channels feature for Models U, M, A, and N.
2. Extended channels feature for Models U, M, A, and N.
3. For'so. Hz cables only See Chart 2 tor $50 . \mathrm{Hz}$ cables.
4. These cables must be clamped in the cable trough in trame 07 .
5. Channel.to-channel adapter feature.
6. Install 02116 and 023177 after 020107 and $02 j 08$.
7. See Chart 4 tor
8. See Chart 4 lor bus tag locations:
9. For MP. use kev 3394 A or 3395 A . See INST 172 .
10. For AP or MP. install cable groue 3390 or 3392

Ssequence number 71 I next. See INST 172 .
9. Not reauired for Model
9. Not reauired for Model Group N.
10. Required for Model Group N .

12. Not reatired for Model Group s

- 13. Reauired for Model Group S .

13. Required for Model Gro
14. For AP, see INST 175 .
15. If dilficultry is encountered when installing this cable,
align ithe arsow shaped pin in frame 10 with the
1 16. Required for Models U24 and A24 only.

OCopyright International Business Machines Corporation 1978

External Cable Charts for AP, MP, UP, and Model Groups N and S (Austria, Germany, and South Africa)
Remove the EMC covers and infall the cables according to the following charts; refer to INST 150 and NST 160 for lecations. To reinstall the EMC

1. Assemble EMC covers tightly with all screws provided. Loose cover
will lower the machine's zap level
. For machines installed at all locations except Austria, Germany, and
South Africa, use INST 170.

$\begin{aligned} & \text { Cable } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \text { Key } \\ & \text { No. } \end{aligned}$	Part	From	To	$\begin{aligned} & \text { Sea } \\ & \text { No. } \end{aligned}$	Note
3809	A	8626696	04 J24	$02 \mathrm{J10}$	26	16
3809	B	8626696	04 J 25	02 Jo9	27	16
3355	A	5719799	15 J54	16 J 101	28	
3347	A	5271716	15 J53	05 J01	29	
349	A	5271716	15 J52	10.04	30	
3353	A	5271716	15 J 51	04 J05	31	
3357	A	5466456	11 vo5	15 J 55	32	15
3814	в	8626887	15 J38	10.02	33	
3813	A	8626888	15 J 39	07 CN71	34	3
3815	A	8626689	15 J 40	16102	35	
3814	A	8626690	15 J 41	$10 \mathrm{JO1}$	36	
3810	A	8626691	15 J 42	04.301	37	
3811	A	8626691	15 J 43	05 CN51	38	3
3812	A	8626691	15 J 44	06 CN61	39	1.3.11
3818	A	8626693	15 J 45	10 J03	40	
3810	B	8626692	15 J46	04.02	41	
3816	A	8626693	15 J 47	04.03	42	
3356	A	5466456	11 U04	$04 J 06$	43	15
3363	A	4872897	10 V 17	08 w 1	44	13.15
3363	в	4872897	10 V 18	08 W 2	45	6.13.15
3358	A	5466456	11 V 06	07 T810	46	15
3361	A	2281630	10 V 14	05 TE2	47	8.11.15
3161	A	2281630	10 V 14	05 TE2	47	9, 12, 15
3361	B	2281630	10 V 15	05 TK2	48	8.11, 15
3162	A	2281630	10 V 15	05 TK2	48	10, 15

Cable Group	$\begin{aligned} & \text { Kev } \\ & \text { No. } \end{aligned}$	Part	From	To	Seq No.	Note
362	A	228163	06 TE2	10 V16	49	1.11, 15
3817	A	8626697	15 J48	$07 \mathrm{CN72}$	50	3
3364	A	5372977	Non.lim	08 w5	51	Dir ctl
3364	в	5372980	Non.18M	08 w6	52	Dir ct
3365	A	5700306	IBM Sys- tem $/ 350$	08 W5 or W6	53	Dir cti
3366	A	5700306	0 V	Control	54	5
3366	в	5700306	10 V	Control	55	5
3367	A	5700306	10	M Px chan	56	5
3367	в	5700306	10 V	Mpx chan	57	5
3368	A	5700306	10	Slı chan	58	5
3368	${ }^{\text {A }}$	5700306	10 V	SII chan	59	5
3369	A	5700306	10	CTCA	60	2.5
3369	B	5700306	10 V	CTCA	61	2.5
337	A	5700306	07	CtICht 2	62	2.5
370	B	500306	07	Cll cht 2	63	2.5
3371	A	5700306	07	Mpxcht 2	64	2.5
3371	B	5700306	07	Mpxcht 2	65	2.5
3372	A	5700306	07	Sircht 2	66	2,5
3372	B	5700306	07	Sircht 2	67	2,5
3373	A	5700306	07	CTCA	68	2,5
3373	B	5700306	07	CA	69	2.5
3388	A	8626691	174	J04	70	14
33	B	8626693	15 J75	J05	71	14
3388	c	8626887	15.76	33 J 01	72	14

Chart 3. Bus Tag Locations

Chart 4. Tailgate W on Frame 08

Fart 5. E/ME/A' Standard Lengin Cables

	57197998257568	46	14

| 57197998257567 | 16 | 5 |
| :--- | :--- | :--- | :--- |

8626696	8257569	23	7
546456	725554	4	14

5466456	8257564	46	14
4			

4872897	8257552	46	14

2281630	8257545	46	14

IBM World Trade Europe/Midale

Chart 2. Tailgate T Cables on Frame 07

4. These cables must be clamped in the cable trough in frame 07 at the exposed braiding.
4nstal 01111 and 01112 after 01106 and 01007 . Instal 02116 and 02117 after 02107

O2J08.
See Chart 3 for bus tag location
5. See Chart 3 for bus tag locations.
6. For MP, use key 3394 A or 3395 A . See insT 173 .
7. For AP or MP install cable group 8820 or 3821 (sequence number 71) nex.

For AP or MP.
See INST 173.
See INST 173.
8. Not required for Model Group N.
8. Not required tor Model Group
9. Reauired for Mooel Group N.
10. Extended chanoels teate
10. Extended channels feature for Model Groups N and S.

12. Required for Model Gras.

15. See Chart 5 ; use the longest length.
16. See Chart 5 , use the shortest length.
© Coovright Interational Businem Machines Corporation 1978

Note: For machines installed in Austria, Germany, and Sourth Africa, use INST 173.

If you are installing frame 09 to one processor only, use the appropriate chart (for processor A or processor B)
Install the following cables in the positions shown:

Frame 09 External Cable Chart for Processor B

Notas: Instal this cable only when the power-up tests have been completed on boit 2. Recossors:

17 you inv mmulina his coble ne enonstring processor cable group, 33638
will be installed to the console. Uso cable group 33638 instead of 3394 and
3395.

will be
3395.

© Copyright International Busineas Machines Corporation 1979

installation procedures

Additional External Cable Charts for MP (Austria, Germany, and South Africa)

Note: For machines installed at all locations except Austria, Germany, and South Africa, use INST 172.
If you are installing frame 09 to one processor only, use the appropriat chart (for processor A or processor B).

Install the following cables in the positions shown

Frame 09 External Cable Chart for Processor A
Cable Group Kev
Part

Cable Group	Kev	Part	From		To		Seq No.	Note
3821	A	5719799	815	J36	809	17	71	3
3823	A	8631148	815	${ }^{3} 3$	809	J8	72	
3821	c	8626695	815	J26	B09	J6	73	
38	8	862669	B15	J27	во9	J5	74	
3397	A	4872897	08	W2	80	R2	75	4
3395	A	4872897	810	v18	809	R1	76	3
3399	A	4872897	810	V17	B08	w1	77	3

Notess:

1. Install this cable only when the power-up tests have been completed on both ${ }_{2}$ processors.
2. If vou are installing this cable to an existing processor cable group. 33638
will be installed to console port 4 . Use cable group 33638 instead of 3394 and 3395 .

3. See E/ME/A Standard Length Cables chart on this opge. Use longest tength
4. See E/ME/A Standard Length Cables chart on this page. Use shorest length

3033 | $\begin{array}{c}\text { Part } \\ \text { 827676 }\end{array}$ | $\begin{array}{c}\text { EC Nc } \\ \text { Date }\end{array}$ | $\begin{array}{l}388692 \\ \text { 10Aug79 }\end{array}$ | $\begin{array}{l}388707 \\ \text { 1Dec79 }\end{array}$ |
| :---: | :---: | :---: | :---: | © Copyright International Business Machines Corporation 1979

External Cable Charts for 3042 AP

Remove the EMC covers and install the cables according to the following charts; refer to INST 157, INST 160 and INST 165 for locations. To reinstall the EMC covers, refer to INST 342 .

Chart 1. $60+\mathrm{Hz}$ Cables								
$\begin{aligned} & \text { Cabie } \\ & \text { Group } \end{aligned}$	Key	Part	From		To		Seq No.	Note
3143	3143C	5719799	815	133	APU 03	J18	1	
3141	3141 F	5719799	815	132	APU 01	J12	2	1
3141	3141 E	5719799	815	331	APU 01	J11	3	1
3142	3142 N	5719799	815	J35	APU 02	J16	4	1
3142	3142M	5719799	815	J34	APU 02	J15	5	1.2
3141	3141A	2574276	815	J 01	APU 01	101	6	
3142	3142A	2574276	815	J02	APU 02	J07	7	
3142	31428	2574276	815	J03	APU 02	J01	8	
3141	31418	2574276	815	J04	APU 01	J09	9	
3142	3142 C	2574276	815	506	APU 02	J14	10	
3143	3143A	2574276	815	$J 07$	APU 03	16	11	
3143	31438	2574276	815	J08	APU 03	117	12	
3142	31420	2574275	815	J09	APU 02	J02	13	
3141	3141 C	2574276	815	110	APU 01	J10	14	
3141	31410	2574275	815	$\mathrm{J11}$	APU 01	107	15	
3142	3142 E	2574275	B15	J12	APU 02	J13	16	
3142	3142 F	2574275	815	J15	APU 02	J05	17	
3142	31426	2574275	815	117	APU 02	J03	18	
3142	${ }^{3142 \mathrm{H}}$	2574275	815	J18	APU 02	J08	19	
3142	3142 J	2574275	815	120	APU02	J04	20	
3142	3142 K	2574275	815	J21	APU 02	J11	21	
3142	3142 L	2574275	815	${ }^{24}$	APU 02	J12	22	

Trilgate W on Frame os				Chart 3. Bus Tag Locations		
110 V 17	-	7		Bus in	1	
210 V 18	-	8		Tag in	2	
3 -	-	9		Bus out	3	
-	-			Tog out	4	
	SM1			Bus in	5	
	SMI	12		Tagin		
				Bus out	7	
				Teg out	8	
3033	Part 327169	EC No. Date	$\begin{aligned} & 388707 \\ & \text { 1Dec79 } \end{aligned}$	$\begin{aligned} & 208332 \\ & 1 \text { Mer80 } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 2003338 } \\ \text { IJun90 } \end{array} \end{aligned}$	$\begin{aligned} & 211788 \\ & 5 \text { 5Jan81 } \end{aligned}$

For machines installed in Austria, Germary
use INST 176.

$\begin{aligned} & \text { Cable } \\ & \text { Group } \end{aligned}$	Kev	Part	From		To		Seq. No.	Note
3155	3155A	5719799	815	54	816	J101	23	
3147	3147A	5271716	815	53	APU 05	J01	24	5
3149	3149A	5271716	815	52	B10	J04	25	
3153	3153A	5277716	815	51	APU 03	J05	26	
3157	3157A	5466456	811	05	B15	J55	27	
3152	3152 B	4401198	B15	38	810	J02	28	
3151	3151A	5795730	815	39	APU 07	CN71	29	5
3154	3154 A	5795729	815	40	B16	J102	30	
3152	3152A	5795731	815	41	810	J01	31	
3146	3146 A	2555057	815	42	APU 03	J01	32	
3148	3148 A	2555057	815	43	APU 05	CN51	33	5
3178	3178A	4873684	815	45	810	J03	34	
3146	31468	2574274	815	46	APU 03	J02	35	4
3174	3174A	4873684	B15	47	APU 03	J03	36	
3156	3156A	5466456	811	04	APU 03	F101	37	
3158	3158 A	5466456	B11	06	APU 07	T810	38	5
3160	3160A	2281630	810	14	APU 05	TE2	39	5
50	150 A	281630	810	15	APU 05	TK2	40	5
3144	3144A	2574276	APU 01	05	APU 03	J19	41	4
3144	31448	2574276	APU 01	6	APU 03	J20	42	
3145	5A	2574276	02	10	APU	J21	43	4
3145	31458	2574276	02	9	APU 03	J22	44	
3176	3176A	4873684	815	48	APU 07	CN72	45	4.5
3164	3164A	5372977	Non.IIM		APU 08	W5	46	Dir cril
3164	31648	5372980	Non-IBM		Puo	w6	47	Dir ctr
3165	3165A	5700306	To IBM System/36		APU 0	w or w6	48	

$\begin{aligned} & \text { Cobl } \\ & \text { Group } \end{aligned}$	Key	Part	From	To	eq. No.	Note
3166	3166 A	5700306	810	Ctrichert 3	49	3
3166	31668	5700306	B10	Cirl chart 3	50	3
3167	3167 A	5700306	810 V	Mpx chart 3	51	3
3167	B	5700306	810	Mpx chart 3	52	3
3168	3168 A	5700306	810	Sir chan	53	3
3168	31688	5700306	810	S.r chan	54	3
3169	3169 A	5700306	810	CTCA	55	3
3169	31698	5700306	810	CTCA	56	3
3170	3170 A	5700306	APU 07 -	Ctrichart 3	57	3.5
3170	31708	5700306	APU 07 -	Ciric chart 3	58	3.5
3171	31714	57003	APU 07 -	Mpx chart 3	59	3.5
3171	31718	5700306	APU07-	Mpx chart 3	60	3.5
3172	3172A	5700306	APU 07 -	Str chare 3	61	3.5
3172	3172 B	5700306	APU 07 -	SIr chara 3	62	3.5
3173	3173A	5700306	APU 07 -	CTCA	63	3.5
3173	${ }^{31738}$	5700306	APU 07 -	CTCA	64	${ }^{3} 5$

Notes:
1. Instal

1. Install 01311 and 01512 ater 01.106 and 0107 Insall 02116 and 02.17 a fte 02007 and 02308.
2. See Chart 3 forp 3192 (sequence number 65) next. See INST 175.
3. For $60 \cdot \mathrm{~Hz}$ cables only. Seee Chart 2 for $50-\mathrm{Hz}$ cables.
4. For $60 . \mathrm{Hz}$ cables only. See Chart 2 for $50-\mathrm{Hz}$ cables
5. Required for 3042 Model 2 only.

Chatr 2. 50-Hz Cablean

Additional External Cable Charts for 3042 AP

Note: For machines installed in Austria, Germany, and South Africa, Use INST 176.

If you are installing frame 09 to one processor only, use the appropriate chart (for processor A or processor B).
Install plug (part 2671901) in position B15 J53 if installing a 3042 Model 1. Plug is in the 3042 shipping group.

Install the following cables in the positions shown:
Frame 09 External Cable Chart for Processor A

$\begin{aligned} & \text { Cable } \\ & \text { Group } \end{aligned}$	Key	Part	From		To		Sea. No.	
3198	3198A	5271798	A15	157	815	157	57	Note
3190	3190 A	5719799	A15	336	A09	J03	58	
3191	3191A	4417777	A15	137	A09	j04	59	
3190	3190 C	2574275	A 15	126	A09	J02	60	
3190	31908	2574276	A15	J27	A09	J01	61	
3196	3196A	4872897	08	W2	A09	R02	62	
3194	3194 A	4872897	A10	V18	A09	R01	63	
3189	3189A	4872897	A10	V17	A08	w1	64	

Frame 09 External Cable Chart for Processor

$\begin{gathered} \text { Cable } \\ \text { Group } \end{gathered}$	Key	Part	From		To		Seq. No.		
3192	3192A	5719799	815	J36	Bo9	107	65		
3193	3193A	4417777	815	J37	809	J08	66		
3192	3192C	2574275	B15	J26	B09	106	67		
3192	31928	2574276	815	127	во9	J05	68		
3197	3197A	4872897	APU08	w2	B09	R02	69		
3195	3195A	4872897	810	v18	809	R01	70		
3199	3199A	4872897	810	v17	808	w1	71		

Noto: Inst
processors.

External Cable Charts for 3042 AP (Austria, Germany, and South Africa)

Remove the EMC covers and install the cables according to the following charts; refer to INST 157, INST 160, and INST 165 fo locations. To reinstall the EMC covers, refer to INST 342.

Chart 1. $60 . \mathrm{Hz}$ Cables								
$\begin{aligned} & \text { Cobl } \\ & \text { Group } \end{aligned}$	Key	Part	From		To		Seq No.	Note
3827	c	5719799	815	J33	APU 03	318	1	5
3825	F	5719799	815	332	APU 01	112	2	1.5
3825	E	5719799	B15	331	APU 01	J11	3	1.5
3826	N	5719799	815	335	APU 02	116	4	1.5
3826	M	5719799	815	J34	APU 02	115	5	1,2.5
3825	A	8626696	${ }^{1} 15$	J 01	APU 01	J01	6	
3826	A	8626696	815	J02	APU 02	J07	7	
3826	B	8626696	815	J03	APU 02	J01	8	
3825	в	8626696	B15	J04	APU 01	J09	9	
3826	c	8626696	815	J06	APU 02	114	10	
3827	A	8626696	815	107	APU 03	116	11	
3827	B	8626696	815	J08	APU 03	117	12	
3826	D	8626695	B15	J09	APU 02	J02	13	
3825	c	8626696	B15	J10	APU 01	110	14	
3825	0	8626695	815	J11	APU01	J07	15	
3826	E	8626655	B15	312	APU 02	113	16	
3826	F	8626695	815	J15	APU 02	J05	17	
3826	G	8626695	815	117	APU 02	103	18	
3826	H	8626695	B15	$J 18$	APU 02	J08	19	
3826	J	8626695	815	J20	APU 02	J04	20	
3826	K	8626695	815	J 21	APU 02	J11	21	
3826	L	8626695	815	$J 24$	APU 02	J12	22	

Note: For machines installed at all locations except Austria, Germany, and South Africa, Use INST 174

Chart 1. $60 . \mathrm{Hz}$ Cables (Conturued)								
$\begin{aligned} & \text { Cab:e } \\ & \text { Group } \\ & \hline \end{aligned}$	Kev	Part	From		To		Sea. No	Note
3155	A	5719799	815	J54	B16	J101	23	6
3147	A	5271716	815	153	APU 05	101	24	4
3149	A	5271716	815	152	B10	J04	25	
3133	A	5271716	B15	151	APU 03	J05	26	
3157	A	5466456	811	U05	815	J55	27	5
3832	в	8626887	B15	J38	810	J02	28	
3151	A	5795730	${ }^{\text {B15 }}$	$J 39$	APU 07	CN71	29	4
3834	A	8626889	B15	140	B16	J102	30	
3832	A	8626690	B15	J41	810	J01	31	
3830	A	8626691	815	${ }^{42}$	APU 03	j01	32	
3148	A	2555057	815	143	APU 05	CN51	33	4
3833	A	8626693	815	${ }^{3} 45$	B10	j03	34	
3830	B	8626692	B15	J46	APU 03	102	35	
3831	A	8626693	815	147	APU 03	J03	36	
3156	A	5466456	${ }^{1} 11$	004	APU 03	F101	37	5
3158	A	5466456	811	006	APU 07	TB10	38	4.5
3160	A	2281630	810	V14	APU 05	TE2	39	4.5
3150	A	2281630	810	V15	APU 05	TK2	40	4.5
3828	A	8626696	APU01	J05	APU 03	J19	41	6
3828	B	8626696	APU 01	J06	APU 03	J20	42	6
3829	A	8626696	APU 02	נ10	APU 03	J21	43	6
3829	B	8626696	APU 02	J09	APU 03	J22	44	6
3163	A	4873758	${ }^{1} 15$	J48	APU 07	CN72	45	4
3164	A	5372977	APU 08	w5	Non-18M		46	Dictil
3164	B	5372977	APU 08	w6	Non.18M		47	Dirctir
3165	A	5372980	$\text { To } 1 B M$ System		APU 08	W5 or W6	48	

rt 1. $60 . \mathrm{Hz}$ Cables (Continued)						
Cable Group	Kev	Part	From	To	Sea No.	Note
-3166	A	5700306	B10 V	Crir chart 3	49	3
3166	в	5700306	810	Ctric chart 3	50	3
3167	A	5700306	810	Mpx chart 3	51	3
3167	в	5700306	810	Mpx chart 3	52	3
3168	A	5700306	810	Str chan	53	3
3163	B	5700306	810 V	Str chan	54	3
3169	A	5700306	810	CTCA	55	3
3169	B	5700306	B10 V	CTCA	56	3
3170	A	5700306	APU 07 -	Ctrichart 3	57	3.4
3170	в	5700306	APU 07 -	Cirichart 3	58	3.4
3171	A	5700306	APU 07	Mpx chart 3	59	3,4
3171	B	5700306	APU $07-$	Mpx chart 3	60	3,4
3172	A	5700306	APU $07-$	Str chart 3	61	3,4
3172	в	5700306	APU $07-$	SII chart 3	62	3,4
3173	A	5700306	APU 07 -	CTCA	63	3,4
3173	в	5700306	APU 07 -	ctca	${ }^{64}$	3,4

\section*{Chart 4. E/ME/A Standard Length Cables

 | 5719799 | 8257568 | 46 | 14 |
| :--- | :--- | :--- | :--- |
| 5719799 | 8257567 | 16 | 5 |
 | 5719799 | 8257567 | 16 | 5 |
| :--- | :--- | :--- | :--- |
| 5466456 | 8257564 | 46 | 14 |
 | 5466456 | 8257564 | 46 | 14 |
| :--- | :--- | :--- | :--- |
| 2281630 | 8257545 | 46 | 14 |
 | | 2362696 | 8257569 | 23 |
| :---: | :---: | :---: | :---: |}

Notes:

1. nstall 01511 and 01512 after 01506 and 01507. Install 02316 and 02517 after
2. $\begin{aligned} & 02207 \text { and } 02308 \text {. } \\ & \text { Install cable group } 3\end{aligned}$
3. See Chart 2 for bus tag locations
4. Required for 3042 Mootel 2 only.
5. See Chart 4 . Use longest lengtr.
6. See Chart 4 . Use shortest length.

Additional External Cable Charts for 3042 AP (Austria

Germany, and South Africa)
Note: For machines installed at all locations except Austria, Germany and South Africa, use INST 174.
nstall plug (part 2671901) in position B15 J53 if installing a 3042 Model 1. Plug is in the 3042 shipping group.

Install the following cables in the positions shown:
Frame 09 External Cable Chart for Processor A

$\begin{aligned} & \text { Cable } \\ & \text { Group } \\ & \hline 3198 \end{aligned}$		Part	From		To		Seq No.	Note
		5271798	A15	157	815	J57	57	1
3835	3835A	5719799	A15	J36	A09	J03	58	2
3836	3836 A	8631148	A15	337	A09	J04	59	
3835	3835 C	8626696	A15	326	A09	j02	60	
3835	38358	8626696	A15	J27	A09	J01	61	2
3196	3196 A	4872897	08	W2	A09	R02	62	3
3194	3194 A	4872897	A10	V18	Ro9	R 21	63	2
3189	3189 A	4872897	A10	v17	A08	w1	64	2

rame 09 External Cable Chart for Processor B

Group	Kev	Part	From		To		Seq No.	
3837	3837A	5719799	815	J36	809	107	65	2
3838	3838A	8631148	B15	J37	во9	J08	66	
3837	3837C	8626696	815	J26	во9	J06	67	
3837	38378	8626696	815	J27	809	J05	68	2
3197	3197A	4872897	APU08	W2	во9	R02	¢9	3
3195	3195A	4872897	B10	v18	во9	R01	70	2
3199	3199 A	4872897	810	v17	во8	w1	7	2

Notes:

1. Install
processors.
2. See E/ME/A Standard Lent Cable

See $E / M E / A$ Standard Length Cables chart on this page. Use shorrest lengith.

| Install Water Hoses for AP, MP, UP, and Model Groups N and S

Note: For 3042 AP, see INST 185.

For AP, MP, UP, and Model Groups N and S , install water hoses according to the following charts and diagrams:

Group No.	$\begin{aligned} & \text { Kev } \\ & \text { No. } \end{aligned}$	Part	From	то
73383	A	2566671	16.4.S	
L233	${ }_{8}$	2566671	16.4.R	
$\checkmark 383$	c	2566671	16.8.S	
3383	-	2566671	16.8.8	3CD.R
3382	A	2566671	16.3.5	
3382	B	2566671	16.3.R	$2 \mathrm{AB} \mathrm{\cdot R}$ ¢ B
2382	c	2566671	16.75	$2 \mathrm{CD.s}$ - ${ }^{\text {a }}$
2382	-	2566671	16.7.R	$2 \mathrm{CD} \cdot \mathrm{R}$
${ }^{3} 381$		2566671	16.2.S	${ }^{14 B \cdot S}$
-381	B	2566671	16.28 ${ }^{\text {R }}$	
\sim	c	2566671	16.6.S	$1 \mathrm{co.s}$ \} C
2381	-	2566671	16.6.8	19P. A)

```
Nowe: To prove
```

For AP and MP, install the water hoses as follows:
Frame 09 Hose Chart for Processor A
$\left.\begin{array}{l|l|l|l|l}\text { Group No. } & \text { Ker No. } & \text { Part } & \text { From } & \text { To } \\ \hline 3384 & \text { A } & 2566671 & 16 A-1 \mathrm{~S} & 09 A \cdot S \\ \hline 3334 & \text { B } & 2566671 & 16 A-1 \mathrm{~A} & \text { O9A-R }\end{array}\right\}$ E

Frame 09 Hose Chart for Processor B

3033

| P271818 |
| :--- | \qquad EC No.

Date $\overbrace{2}^{27250} 2$ $\underset{\substack{27620 \\ 3 \times 10}}{2}$ \mid 388707

10×79 | 200332 |
| :---: |
| 1 mateo | $\stackrel{\substack{20 a 338 \\ 120,0 m e}}{ }$ | 211788 |
| :--- |
| Smomal |

Copyright International Business Machines Corporation 197

installation procedures INST 180

INSTALLATION PROCEDURES

Install Water Hoses for 3042 AP

| Note: For AP, MP, UP, and Model Groups N and S , see INST 180.

For 3042 AP, install water hoses according to the following chars and

Part	from	To
13127207	$\begin{array}{l}16.55 \\ 1312707 \\ 16.5 R\end{array}$	$\left.\begin{array}{l}\text { 15TRA.S } \\ \text { 15TRA.R }\end{array}\right\}$ D

Group No.	$\begin{aligned} & \text { Kev } \\ & \text { No. } \end{aligned}$	Part	From	то
$\begin{aligned} & 3183 \\ & 3183 \end{aligned}$	${ }_{\text {A }}^{\text {A }}$	2566671 2566671	$16.8-\mathrm{s}$ $16 \cdot 8 \cdot R$	$\underbrace{\}}_{\substack{3 C-S \\ 3 C \cdot R}}$ A
3182	A	2566671	16.3.5	
3182	B	2566671	16-3.R	$2 \mathrm{AB} \cdot \mathrm{R}$, B
3182	c	2566671	16.7.s	$2 \mathrm{CD} \cdot \mathrm{s}$, ${ }^{\text {B }}$
3182	D	2566671	16-7.R	$2 \mathrm{CD} \cdot \mathrm{R}$)
3181		2566671	16.2.s	${ }^{\text {abibs }}$
3181	B	2566671	16.2-R	1AB-R
3181	c	2566671	16.6.S	1 CD -s
3181	-	2566671	166.R	$1 \mathrm{CD} \cdot \mathrm{R}$

Note: To prevent
other cables.

For 3042 AP , install the water hoses as follows:
Frame 09 Hose Chart for Processor A
$\left.\begin{array}{l|l|l|l|l}\text { Group No. } & \text { Kev No. } & \text { Part } & \text { From } & \text { To } \\ \hline 3184 & \text { A } & 2566671 & 16 A \cdot 1 \mathrm{IS} & 09 \mathrm{OA} \cdot \mathrm{S} \\ \hline 3184 & \text { B } & 2566671 & 16 \mathrm{~A} \cdot 1 \mathrm{~A} & \text { 09A-R }\end{array}\right\}$ E

Frame 09 Hose Chart for Processor B
$\left.\begin{array}{l|l|l|l|l} \\ \text { Group No. } & \text { Key No. } & \text { Part } & \text { From } & \text { To } \\ \hline 3185 & \text { A } & 2566671 & 168-1 \mathrm{~s} & 098-\mathrm{s} \\ \hline 3185 & \text { B } & 2566671 & 168-1 \mathrm{R} & 098 \cdot \mathrm{R}\end{array}\right\}$

INSTALLATION PROCEDURES

Fill Expansion Tank and Check Pump Rotation

FILL EXPANSION TAN

1. Verify that all PDU CBs are on.
2. Verify that the CDU CBs are on
3. Ask the customer to turn on the $50 / 60-\mathrm{Hz}$ and $415 \cdot \mathrm{~Hz}$ power to the3. Ask
PDU
4. Verify that the customer $50 / 60 \cdot \mathrm{~Hz}$ power is present.
5. Open the pump iniet and discharge gate valves in the CDU. (SeeINST 200.1
6. Open the valves in frames $01,02,03,09$, and 15. Frames 01,02 .
03 . and 09 each have two valves. Frame 15 has one valve.
7. Fill the expansion tank with purified water to 4 inches (101.6 mm)
from the top.
a. When purging the air from the system, keep filling the expansion
tank as necessary.
b. Watch for leaks throughout the complex.
c. Check pump rotation.

Approximately 15 gallons ($56.8 \mathrm{dm}^{3}$) of purified water are required to fill the system

The purified water should be obtained locally through the branch office. Water is purified by distillation or deionization.

CHECK PUMP ROTATION

1. Turn the Local/Remote switch to the Local position.
2. Turn the Pump Available switch to the A or B position.
3. Check the rotation of pump A by turning the Local Pump Select switch from $O \mathrm{ff} /$ Reset to A; then quickly turn the switch back to Off/Reset. The shaft coupling between the pump and the motor is
exposed. and the rotation direction is indicated by an arrow on the pump. If the rotation is wrong, check the $50 / 60 \cdot \mathrm{~Hz}$ phasing at the filters in the PDU ac compartment.
4. Repeat this procedure for pump B by turning Local Pump Select switch to the B position.

adjust water temperature

1. Set the CDU controller to either $75^{\circ} \mathrm{F}\left(24^{\circ} \mathrm{C}\right)$ if the installation is below 3,000 .foot $(914.4-\mathrm{m})$ altitude or $65^{\circ} \mathrm{F}\left(18{ }^{\circ} \mathrm{C}\right)$ if th installation is above 3,000 -foot $(914.4 \cdot \mathrm{~m})$ altitude. Verify that the ystem water temperature gauge (on the CDU CE panef) limit hands are set properly.
2. Set the red hand to $5^{\circ} \mathrm{F}\left(3^{\circ} \mathrm{C}\right)$ above and set the green hand to $5^{\circ} \mathrm{F}\left(3^{\circ} \mathrm{C}\right)$ below the nominal system water temperature. Adjust the hands by turning the two concentric knobs in the center of the system water temperature gauge; the small knob adjusts the red hand. These hands set the system high and low temperature switches.
3. Ensure that the flush control switch is in the NORM. position.

CHECK QUALITY OF WATER

Wer should be marked as follows
Distilled Water U.S.P. (United States Pharmacopeia), which is Water quality: pH at 20 C equals 5.9
Conductivity: micromhos per centimeter at 20 C equals less than 100
Turbidity: less than 10 turbidity units (Sormazin)
Chloride: \quad Cl less than 5 ppm
Sulfate: $\quad \mathrm{SO}_{4}{ }^{-2}$ less than 10 ppm
Copper: $\quad \mathrm{Cu}^{+2}$ tess than 1 ppm
Zinc: $\quad \mathrm{Zn}^{+2}$ less than 5 ppm
Hardness: $\quad \mathrm{CaCO}_{3}$ less than 5 ppm
Water that is marked Distilled Water, Deionized Water, or Distilled and Deionized Water is acceptable if it is in sealed containers. It should be used only if U.S.P. grade water cannot be obtained. Tap water, bottled spring water, or bottled drinking water should not be used.

BACKFLUSH FLOW LOOPS

Step
Colt
If the 3033 is received from the factory, go to INST 200
If the 3033 is being relocated, perform the following procedure:
Backflush each flow loop for 4 hours. The backflush procedure scussed in MM Volume 2, "Obstructed Flow Loop-Backilushing Chapter 7
Vote: For as as

The following parts are required to backflush all loops simultaneously
Part
Quantity
Filter assembiy, 1840738
Filler assembiv, 184013 and
Adapter, 2565739
Cartridee, 8818213
Go to INST 200.

demineralize system water

Step
Cplt
Step
Cplt
The following parts are required for this procedure:
1841597 Holder
1841596 Hose
1841604 Hose
1841599 Cartridge
Demineralize the system water by using the demineralizer equipment that is shipped with the system. The demineralizer also deionizes the water. A period of 24 hours is required for demineralization with the system power on.

1. Remove the cartridge (part 1841599) from the carton and check the date on the wrapping. Do not use a cartridge that is more than one year old. Insert the cartrioge into the demineralizer holder as follows.

Note: Steps a through g are required for the holder style shown. Step d is required for the holder style that unscrews. Step c is required for both holder styles.
a. Release the clamp and remove the clamp assembly.
b. Lift the head assembly off the demineralizer
c. Remove the plastic sealing caps from both ends of the cartridge.
d. Insert the new cartridge with the large opening toward the bottom of the demineralizer holder
e. Lubricate the inside of the clamp assembly, the outside of the rubber gasket, and the O-ring inside the head assembly with the lubricant supplied.
f. Replace the head assembly and ensure that the rubber gasket is between the groove in the head assembly and the groove in the demineralizer
g. Place the clamp assembly in the two grooves and latch the clamp closed.
A. Connect the two hoses (supplied with the demineralizer) as follo
a. Hose (part 1841604) to the heat exchanger cover on the CDU
B b. Hose (part 1841596) to the discharge side of the operating pump (at the check valve and bleed fitting, above the pump).
3. Place the demineralizer inside the CDU frame to the right of the
a. Connect the loose end of the hose from the heat exchanger cover to the outlet connection on the demineralizer.
D. Connect the loose end of the hose from the discharge side of the pump to the inlet connection on the demineralizer
4. Check to ensure that there is water flow. If no flow exists, check the following:
a. The male quick connect (if frozen, rap sharply with a hammer)
b. The hoses for a restriction.
c. The orifice (located under the clamp on the hose) for a clogged condition
5. Leave the demineralizer connected to the system for a continuous period of 24 hours. After two hours of operation, switch the alter no flow through the demineralizer); then switch back to the first pump.
6. Disconnect the demineralizer after 24 hours by disconnecting the inlet hose (connected to the pump discharge side) from the de mineralizer: then disconnect the outlet hose from the demineralizer Leave the hoses connected to the CDU.

caution

The demineralizer must be depressurized (pressure gauge must read 0) before removing the locking collar.

To depressurize the demineralizer, disconnect it from the system as follows:
a. Disconnect the inlet hose from the demineralizer
b. Disconnect the outlet hose from the demineralizer
c. Pressure gauge should read 0 . If not, relieve the pressure by press ing the demineralizer quick-connector
Do not remove the locking collar until the pressure is relieved.
7. Remove the cartridge from the demineralizer by releasing the clamp, removing the clamp assembly, and removing the head assembly Remove the cartridge and discard it. Empty the remaining water out of the demineralizer and reassemble it without inserting a cartridge.

ADD CORROSION INHIBITOR

The "Demineralize System Water" procedure must be completed before adding the corrosion inhibitor. If the corrosion inhibitor is left in the CDU, the filter removes it.

1. Shake the powdered contents of the plastic bottle (part 1835426) vigorously until all clumps appear dispersed
2. With the CDU pump on (water circulating), slowly pour the con tents of the bottle into the expansion tank in three increment over a 15 -minute period.
a. This procedure should be repeated following every demineraliza tion of the system water.
b. Ensure that the cover of the expansion tank is sealed properiy to prevent air from leaking in.

3033

Power Up the Console

1. Turn off the following CBs frome
15
04
05 \qquad 1, 2, 3, and 11 3 through 11
501, 502, 503, 506, 507, and 508 605, 608 , and 60
on the Css .
(INST 310 covers turning on the CBSs.)
605, 608, and 600
2. Ensure that $415-\mathrm{Hz}$ power is on
3. Turn the CDU Local/Remote switch to Remote.
4
4. Check the CDU customer flow rate. (See the chart on INST \square Check
90.1
5. Open all the water valves on the frames to be powered up lif not \square
\qquad reviously opened on INST 190).
6. Insert the operational diskette into diskette drive A or B
7. Turn the Power Select switch to Console.
8. Turn the Operator Console on IMPL switch to \mathbf{A} (or to B , if \square using console station B).
9. Check the diskette drive motors for proper ground.
danger
Line voltage can be present on the metal housing of the diskette NOT TOUCH the motor power plug is wired incorrectly. DO the following procedure.
Note: The correct power plug wiring for the diskette motor is shown on ALD page YDO11.
. Set the CE meter to the 150 V ac scale. With the console power on, check for 0 volts between the machine frame and the motor ground screws of both diskette drives.
b. Press the IPC Reset pushbutton and then the Power On pushbutton. The console power should come on.
. If the diskette motor ground is correct, proceed to the next step.
10. Check operation of the blowers in gates A and B.

Console Microdiagnostic Tests

Details on the console microdiagnostic tests are in MM Volume 1
Station A or B will enter maintenance operator (MO) state and begin running console microdiagnostic tests. The station not in MO sta will display OTHER STATION HAS ASSUMED ALL CONSOL FUNCTIONS message and will be in the maintenance service (MS) state.
caution
Power to the processor complex must be turned off before loading the diagnostic program into the service support station. No power microcode is loaded.
4. Execute the following tests:

1. Set the Power Select switch to Console.
2. Turn off the console power; press the Power Off pushbutton.
3. Set the Unit Emergency switch to Power Off.
4. Attempt a power-on sequence. The console should not power up.
5. Release the mechanical interlock to reset the Unit Emergencyswitch. Reengage the mechanical interlock. (The control panel swings down from the top.)
6. Repeat steps 1.5 to test the Unit Emergency switch on the PDU,
frame 04, and directors.
7. Return to the work flow chart for team A (INST 60)

Install the Batteries
7. Execute the tests listed under step 4
8. Insert the operational diskette into diskette drives A and B .

Execute the following tests:
Eunction

5. Set the Operator Console on IMPL switch to B.
6. Press the IMPL B pushbutton.

Test the Unit Emergency Switch

Install the batteries (part 1582546) in the control panel.

3033	$\begin{gathered} \hline \text { Part } \\ 8271622 \end{gathered}$	EC No. Date	$\begin{aligned} & 276474 \\ & 20 \operatorname{Jan} 78 \end{aligned}$	276707 3May78		388692 10Aug79	208335 1Junso	213545 15Jun81

© Copyright International Business Machines Corporation 1978

INSTALLATION PROCEDURES

caution

When bolting the frames together, ensure that no cables are pinch
ed between the frames
. If the processor has adjustable outriggers, adjust them for $2-3 / 4$
inches $(70 \mathrm{~mm})$ from the botrom of the inches $(70 \mathrm{~mm})$ from the bottom of the frames to the floor. Re-
move covers as required for frame-to. frame connections.
2. Place frame 02 Note: The frames are adjusted for an even line across the top$\begin{array}{lll}x x x^{1} & 0 & (1) \\ x x x^{1} & A\end{array}$ cene the frame 08 (part 4873266) on the frame 02 pins and connect the angle bracker to (part 25793). washers (part 16135), and nut (part 25793).
If you are installing a second processor to frame 09, align frame
A 4. Place frame 03 and connect the top of frame 08 to frame 03 with$\left[\begin{array}{lll}x & x x^{1} & A \\ x^{1} & (2) \\ x x x^{1} & H & (1)\end{array}\right.$
 $\begin{array}{llll}x x x^{1} & A & (2) \\ x x x^{1} & H & (1)\end{array}$ Place frame 03 and connect the top of frame 08 to frame 03 w

$x x x^{1} D(2)$ $x_{x x x^{1}}$ A (4) | $x x$ | A |
| :--- | :--- |
| $x \times x^{1}$ | H |

1312055 Frame Alignment Gauge
Use Only on the Bottom of the Frames)

$x \times x$ is 056 for 3042 Model 1.
690 for 3042 Model
690 for 3042 Mod
300 for 3033 .

Install the $\mathbf{3 0 3 3}$ Processor (Continued)

$\begin{array}{ll}\text { Step } & \text { Tray Pack } \\ \text { Cpit } & \text { (See INST }\end{array}$ Cpit (See INST 50

F 10. Use the leveling pads as necessary to get the lower frame \square clearance. (Seals touching and frames aligned).
G 11. Connect the top of frame 08 to frame 01 using angle brackets with bolts (part 59658), washers (part 161351), and nuts (part 25793).$\begin{array}{llll}x x x^{1} & D & (2) \\ x x x^{1} & A & (4) \\ x x x^{1} & H & (2)\end{array}$
12. Route and connect the blower cables as shown.
13. Check the alignment of frames 01 and 02 and frames 03 and 02 .
check visually along the top housings.

Note: Leveling pads are to be installed if EC 275469 is not installed. (Frames 01, 02, and 03 have permanent casters if EC 275469 is installed.
14. Install and tighten the leveling pads (part 5584215) if the frames are not aligned at the top.
15. Remove the outriggers. The instructions are on INST 240

```
\mp@subsup{}{}{1}\times\timesx is 056 for 3042 Model 1.
    690 or 3042 Mod
```


Install Frame 04

Note: Skip this page if you are installing the second processor of an attached processor complex.

A 1. Push frame 04 to engage the couplers (part 5612674) with the pins in frame 03. Use the outriggers to adjust the height, if necessany lonily if frame has adjustable outriggers).

B 2 Install bolts (part 5711246), washers (part 161351), and nuts (part 25793) to connect frame 04 to frame 03. The upper bolts are tightened fully. The lower bolts are tightened to the frame alignment gauge. (See INST 230)
3. Visually check alignment of the top of the frames. If the frames are not even, install and tighten the leveling pads (part 5584215).

Note: Install the leveling pads if EC 275525 is not installed and if the floor is not level.
4. Remove the outriggers.

remove the outriggers

Two styles of outriggers may be installed on the processor. To remove the first style:

C 1. Remove the four screws from the frame.
D 2. Remove the four screws from one side of the outrigger.
E 3. Slide out the outrigger and assemble it so that the parts will not be misplaced.

F
To remove the other style, remove the two screws and lockwashers from each outrigger and slide out the outrigger

Note: Assemble the outriggers and put them in the shipping group.$300 \mathrm{~L}(4)$
$300 \mathrm{~A}(8)$ 300 A (8)
$300 \mathrm{H}(4)$

33	$\begin{array}{\|c\|} \hline \text { Part } \\ 8271624 \\ \hline \end{array}$	$\begin{aligned} & \text { EC No. } \\ & \text { Date } \\ & \hline \end{aligned}$	$\begin{aligned} & 276474 \\ & 20 J a n 78 \\ & \hline \end{aligned}$	$\begin{aligned} & 276707 \\ & 3 M_{2}^{278} \end{aligned}$	$\begin{aligned} & 388707 \\ & 10 \text { ect9 } \end{aligned}$	214694 9 Apr82

Install the Channel

Note: If you are installing a 3042 Model 2 or a 3033, continue with
this page. Skip this page if you are installing a 3042 Model 1.

\section*{| Step | Tray Pack |
| :--- | :--- |
| Coit | (See INST 50 | Cplt (See INST 50)}

A 1. Remove the cable entry hole covers from frame 07.
2. Remove the connectors with the shipping holder from frame 01 .

B 3. Place the leveling pads (part 5584215) under frame 07. Note: Install the leveling pads only if the floor is not level.
4. Align frames 07 and 01 by adjusting the leveing pads.

C 5. Connect frame 01 to frame 07 with bolts (part 5711246) washers (part 161351) and nuts (part 25793).
6. Place frame 05 on frame 07 by pushing the couplers into the pins.$\begin{array}{lll}x x x^{2} & L & (4) \\ x x x^{2} & A & (8) \\ x x & H\end{array}$ $\begin{array}{lll}x x x^{2} & A & (8) \\ x x x^{2} & H & (4)\end{array}$
\square
7. Place the leveling pads (part 5584215) under frame 05 , if neces. sary. Align frames 05 and 07 by adjusting the leveling pads if the loor is not level or if the frames are not aligned.
Note: To install the bottom frame member boit (part 5711246) in the following step, loosen the frame 07 counterweight mounting bolts and shift the counterweights toward the center of the fram
D 8. If frames 05 and 07 were shipped disconnected, install the \square ground strap between frame 05 and 07 .
E 9. If frames 05 and 07 were shipped disconnected, connect frame \square 05 to frame 07 with bolts (part 5711246), washers (part 161351), 05 to from (part 25793). Use the frame alignment gauge to adiust and
the clearance between the bottom of frames 05 and 07 . GGauge usage is described on INST 80.1
10. Shift the counterweights back into place and tighten the counter. whight mounting bolts.
| F 11. Connect the shields on frame 01 to the bottom of frames 05 and 07 with screws (part 1621950).
G 12. Install frame 06 (feature) 1 in the same manner as frame 05 using bolts (part 5711246), washers (part 161351), and nuts (part 25793).

H 13. Install the ground straps (parts 1581868 and 4867373) with \square screws (part 5257231). Screws are in the frame
$\overline{{ }^{1} \text { Frame } 06}$ not available on the 3033 Processor Model Group S or
3042 Model 2.
$2 \times \times \times$ ios 69 or

$x x x^{2}$	L	(4)
$x x x^{2}$	A	(8)
$x x x^{2}$	4	(4)

 $\left[\begin{array}{llll}x x x^{2} & A & (8) \\ x x x^{2} & H & (4)\end{array}\right.$

 $\left|\begin{array}{l}\text { 278891 } \\ 17 \text { Nov78 }\end{array}\right|$ \begin{tabular}{l|l|l}
279895

$26 J a n 79$

$|$

\hline 388707

$106 c 9$

$|$ 1

208

1 M

\hline

208332

1 Mar80 \& 20

1 \&

\hline

 $|$

213545

15 Jun 81

\hline

\hline 213562

4 Sep81

\hline
\end{tabular}

Notes

1. If special handling was required for frame 09 , the Q-tailgates will be shipped in the spacer frames. This will require the tri-lead cables from frame 09 to be connected to the Q-tailgates.
2. If frame 09 is to be installed between two preset processors, attach attached to one processor.
CAUTION
Steps 4.8 require two CEs.
Install the spacer frame as follows:
. Remove the covers from the spacer frames.
A 2. Position leveling pads in the holes under the spacer frames. The leveling pads will support the spacer frames while the outriggers are removed.

B 3. Remove the outriggers from the spacer frames.
4. Lift the spacer frames from the leveling pads and place the frames$\square \stackrel{\circ}{\circ}$ 융

D 7. Remove the two hinge pins in the Q-tailgate mounted in frame 09 ,\square
8. If attaching both spacer frames, attach the other spacer frame to frame 09.

033 \begin{tabular}{|c|l|l|}
\hline $\begin{array}{c}\text { Part } \\
\text { 8271678 }\end{array}$ \& $\begin{array}{l}\text { EC No. } \\
\text { Date }\end{array}$ \& $\begin{array}{l}388692 \\
10 A u g 79\end{array}$

\hline

388707 \& 213545

10 \&

\hline
\end{tabular} ${ }^{213545}$

© Copyright International Business Machines Corporation 1979

C. 870 (3), Bolt
161351 (3), Wash

A $\underset{\substack{\text { Leveling } \\ \text { Holes }}}{ }$
. Unbolt the spacer frames from each other
C 6. Using leveling pads to support and to adjust the height of the spacer frames, attach the spacer frame with the hardware as shown. The spacer frames are identical, and they can be installed on either end of frame 09. and move the tailgate into the spacer frame. Reinstall the hinge pins.

Install Frame 09 to Frame 08 for AP or MP

$$
\text { Notes: Pins (part 5612672) are supplied in the } 3038 \text { shipping group }
$$

```
1. Install locating pins (part 5612672) in frame 08
``` Note: When installing frame 09 for an AP complex, position frame 09 so that the A -side of frame 09 is toward the 3033.
A 2. Position frame 09. Engage the couplers of the spacer frame to the \(\square\) pins on frame 08. Adjust the outriggers on frame 09 as required to pins on frame 08. Adjust the outriggers on frame 09 as required to
engage the pins in the top of frame 08 .

B 3. Attach the top of the spacer frame to frame 08 using bracket (part 3. Attach the top of the spacer frame
4417848) and screws (part 38886).

C 4. Attach the bottom of frame 09 to frame 08 using screws (part 438622). The bottom of frame 08 may be adjusted up or down if necessary.

D 5. Adjust the outriggers so that the top couplers engage the pins and the bottom seais are compressed. The gaps at the top and bottom should be equal, and the tops of the frames should be equal also.

E 6. Install the leveling pads
F 7. Remove the outriggers.
G 8. Pivot the Q -tailgate into frame 08 Remove the two lower mounting screws that mount the bottom
bracket of the 03J tailgate. Slide the 03J tailgate to the inner side of frame 08
Note: Be careful not to damage lead.
Remove screw (part 2173787) and pivot the Q.tailgate into fram 8. Replace the screw in the Q -tailgate Reinstall the 03 J tailgate.
9. Connect the clock panel tri-lead to 01A-B3H2D05

This procedure is used when converting a 3033 Processor to a Model A or a Model \(M\) in the field, with two processors previously set in place (89.75 inches [2279.65 mm] apart).

A 1. Remove the hardware from the spacer frame as shown. Retain all \(\square\) parts removed.
B 2. Remove the frame member from the spacer frame as shown. Retain all parts removed.
3. Remove the frame 02 cover (next to frame 08)

C 4. Remove the cover hardware from frame 02 Continued on INST 257.

© Coprright International Business Machines Corporation 1981

St
\(\mathrm{C}_{\text {P }}\)
\(\square\)
5. Insert the spacer frame between frame 09 and frame 08. Connect \(\square\) frame 09 to the spacer frame with bolts (part 870) and washers (part 161351
E 6. Install pin (part 5612672) in frame 08. Pins are supplied in the \(3038 \square\) shipping group.
7. Install the previously removed couplers in the spacer frame and engage the pins on frame 08. Adjust the outriggers on frame 09 so that the pins on the top of frame 08 engage.
F 8. Attach the top of the spacer frame to frame 08 using bracket (part 4417848) and screws (part 38686).

G 9. Attach the bottom of frame 09 to frame 08 using the previousty removed bracket and screws (part 438622). The bottom of frame 08 may be adjusted up or down if necessary.
10. Adjust the outriggers so that the top couplers engage the pins and \(\square\) the bottom seals are compressed. The gaps at the top and bottom should be equal, and the tops of the frames should be equal also.
H 11. Install the leveling pads and remove the outriggers from frame 09. Reinstall the parts removed in steps 1 and 2

J 13 Pivot the Q -tailgate into frame 08 Remove the wo morn mor mor Remove the 0 J tailgate. Slide the 03 J taigate to the the bottom frame 08.
Note: Be careful not to damage the 03 J cables and frame 09 tr leads. Remove screw (part 2173787) and pivot the Q -tailgate into frame 08. Replace the screw in the O -tailgate.

Reinstall the 03J tailgate.

\section*{Install Frames 14 and 33}

\section*{caution \\ Steps 1 through 6 require two CEs. One CE should support frame 14 \\ to keep it steady.}

REPOSITION OUTRIGGERS

A 1. Remove the screw holding the outrigger to the bottom of frame 14 . 2. Loosen the other screw just enough to allow swinging in the
outriggers as shown. Swing the outrigger into the center just enough to clear the hole for the leveling pad.
C 3. Install the leveling pad (part 5584215).
D 4. Swing the outrigger to the approximate center of the frame. Tighten the screw so that the outrigger does not swing back and forth freely
5. Repeat steps 1 through 4 for the other outrigger

E 6. Remove the casters from this end of the outriggers only.
CONNECT FRAME 33 to frame 14
F 1. Move frame 33 to engage the pins to the couplers in frame 14. Move frame 33 to engage the pins to the couplers in frame 14 .
Use the leveling pads to adjust the height of frame 14 , if necessary. G 2. Install four screws (part 36112) and four washers (part 3550) to fully. 3. Tighten the lower screw which is closest to the corner shield so
that the screw hole at the bottom of the corner shield aligns with the threaded hole in frame 33 , and install the corner shield screw (part 1621950).
J 4. Tighten the lower screw on the other side of frame 14 to the frame alignment gauge (part 1312055)
K 5. Connect 14J1 of cable assembly (part 4452712) to connector P20 in frame 33.
Remove the leveling pads from frame 14 .

3033 \begin{tabular}{|c|c|c|c|}
\hline \(\begin{array}{c}\text { Part } \\
\text { 8271681 }\end{array}\) & \(\begin{array}{c}\text { EC No. } \\
\text { Date }\end{array}\) & \(\begin{array}{l}388692 \\
\text { 10Aug79 }\end{array}\) \\
\hline
\end{tabular} 388707
10 ec79

\section*{Install Frames 14 and 33 (Continued)}

CONNECT FRAMES 33 AND 14 to frame 04

A 1. Move frames 14 and 33 to engage the couplers on frame 14 with
B 2. Install screws (part 59658), and washers (part 161351). Connect Tnstall screws (part 59658), and washers (part \(\mathbf{0 1 3 5 1}\)). Connect
the ground strap (part 4452795) to frame 04. Use the large hole in the strap
C 3. Install screws (part 5610419), washers (part 161351), and nuts
D. 4. Tightent the
two screws (part 59658) and the top screw (part 5610419) fully. Tighten the lower screw (part 5610419) to the frame alignment gauge (part 1312055).

\section*{REMOVE OUTRIGGERS}
E. 1. Install leveling pads (part 5584215) in frame 14 in the two holes closest to frame 33 .
F 2. Remove the remaining screw from the outrigger closest to frame
04. Slide the outrigger out from under frame 14 .

G 3. Install a leveling pad (part 5584215) under frame 14
4. Repeat steps 2 and 3 for the other outrigger.

\section*{Install the Trace Probe and Scope Assembly}

A 1. Route cable (part 5606741) from frame 01 through frame 08 and terminate in frame 03 . See the following chart.
2. Attach cable to frame 03 with screws (part 2566617) and washers (part 2566646) in the position shown.

| B
3. Cable (part 5606732) is plugged into tailgate 032.01
Step

\begin{tabular}{|c|c|}
\hline U & \(\checkmark\) \\
\hline & \\
\hline
\end{tabular}

3033
```

Notes:
2. If an AP is being installed, go to NST 271.

```

A 1. Route and connect the blower cables at the bottom of the frames. \(\begin{array}{r}\text { Step } \\ \text { Cplt } \\ \square\end{array}\)
B 2. Plug the convenience outlet cord into the frame 03 outiet.
connect cables to tailgates
C 1. Connect the tailgate connectors. Start at the top of the frame and work down to the bottom. Use the handle and the hex-head driver in the tray pack.

Notes:
1. Seat the connector by hand. Do not use the screw to pull the
connector into position
2. This procedure is for assistance only; the cables to be installed apend on the options installed. All the cables are marked.

Cables from Frame 01 to:
\(03 Y 2\)
09
09
09 through 13
16 through 20
23 trinugh 39
43 through 48
61
Cables from Frame 02 to:
\begin{tabular}{|c|c|}
\hline \(01 \times 2\) & 0372 \\
\hline 01 through 04 & 01 through 08 \\
\hline 09 and 10 & 14 and 15 \\
\hline 13 & 21 and 22 \\
\hline 18 through 22 & 40 through 42 \\
\hline 26 and 27 & 49 through 60 \\
\hline 29 and 30 & \\
\hline 32 through 35 & \\
\hline
\end{tabular}

43 through 48
2. Route the following cables through the connector organizer relieve the strain on the tri-lead cables: from Frame 02 to
\({ }_{0} 1 \times 2\)
38 through 44
53 through 55

Coprright International Business Machines Corporation 197o
install frame 08 cables

D 1. Install the following cables into tailgate \(W\). Install the lower cables I. Instal
first.

E. 2. Install the cables into tailgate 03J.
\(\square\)

| Interframe Connections on Frame 08 for MP or AP
\[
\begin{aligned}
& \text { Notes: } \\
& \text { 1. If a up is being installed, go to INST } 270 \text {. } \\
& \text { 2. If a } 3042 \text { is being installed, go to INST } 275 \text {. }
\end{aligned}
\]

A 1. Route and connect the blower cables at the bottom of the frames.
B 2. Plug the convenience outlet cord into the frame 03 outlet.

\section*{CONNECT CABLES TO TAILGATES}

C 1. Connect the tailgate connectors. Start at the top of the frame and
work down to the bottom. Use the handle and the hex-head driver in the tray pack.
Notes:
Set the connector by hand. Do not use the screw to pull the connector into position.
. This procedure is for assistance only; the cables to be installed depend on the options installed. All the cables are marked.
3. See INST 277 for suggested routing of cables.
\begin{tabular}{|c|c|c|}
\hline Cables from & Cables from & Cables from \\
\hline Frame 01 to: & Frame 02 to: & Frame 09 to: \\
\hline o3Y2 & \(01 \times 2\) & \(03 \% 2\) \\
\hline 10 through 12 & 09 and 10 & 09 and 13 \\
\hline 16 through 20 & 13 & 23 and 24. \\
\hline 25 & 18 through 21 & 26 through 37 \\
\hline 38 and 39 & 29 and 30 & \\
\hline 43 through 48 & 32 through 35 & \(01 \times 2\) \\
\hline 61 through 63 & 43 through 48 & 01 through 04 \\
\hline & & 11 and 12 \\
\hline 0802 & & 23 through 25 \\
\hline 09 and 13 & & 28 and 31 \\
\hline 21 and 24 & \(03 Y 2\) & 36 and 37 \\
\hline 26 through 37 & 01 through 08 & 41 \\
\hline & 14 and 15 & \\
\hline & 21 and 22 & \\
\hline & 40 through 42 & 01 and 02 \\
\hline & 49 through 60 & \\
\hline & 0802 & \\
\hline & 01 through 04 & \\
\hline & 22 and 23 & \\
\hline & 25 and 41 & \\
\hline
\end{tabular}
2. Route the following cables through the connector organizer torelieve the strain on the tri-lead cables
Cables from Frame 02 to
\(01 \times 2\) 38 through 40
53
through 55
nstall frame 08 CAbles
\(\square\)
1. Install the following cables into tailgate W . Install the lower cables
\begin{tabular}{ll}
\(01 W .11\) & \(02 W .12\) \\
\(02 W .06\) & \(03 W .01\) \\
\(02 W .05\) & \(01 W .02\)
\end{tabular}

E 2. Install the cables into tailgate 03J.

\section*{Interframe Connections on Frame 08 for AP}
Notes:
1. If a UP is being installed, go to INST 270.
2. If an MP is being installed, go to INST 271.
1. Route and connect the blower cables at the bottom of the frames. \(\square\)

B 2. Plug the convenience outlet cord into the frame 03 outitet
CONNECT CABLES TO TAILGATE
C 1. Connect the tailgate connectors. Start at the top of the frame and work down to the bottom. Use the handle and the hex-head driver in the tray pack.

Notes:
1. Set the connector by hand. Do not use the screw to pull the connector into position.
2. This procedure is for assistance only; the cables to be installed depend on the options installed. All the cables are marked. See INST 277 for suggested routing of cables.
\begin{tabular}{|c|c|c|}
\hline Cables from & Cables from & Cables from \\
\hline Frame 01 to: & Frame 02 to: & Frame 09 to: \\
\hline O3Y2 & \(01 \times 2\) & 03Y2 \\
\hline 10 through 12 & 09 and 10 & 09 and 13 \\
\hline 16 & 13 & 23 and 24 \\
\hline 18 through 20 & 18 through 21 & 26 through 37 \\
\hline 25 & 29 and 30 & \\
\hline 38 and 39 & 32 through 35 & \(01 \times 2\) \\
\hline 43 through 48 & 43 through 48 & 01 through 04 \\
\hline & & 11 and 12 \\
\hline & & 23 through 25 \\
\hline 0892 & & 28 and 31 \\
\hline 09 and 13 & 03Y2 & 36 and 37 \\
\hline \multirow[t]{8}{*}{21 and 24 26 through 37} & 01 through 08 & 41 \\
\hline & 14 and 15 & \\
\hline & 21 and 22 & 09P \\
\hline & 40 trrough 42
50 & 01 and 02 \\
\hline & 50 inrougn 60 & \\
\hline & 0802 01 through 04 & \\
\hline & 22 and 23 & \\
\hline & & \\
\hline
\end{tabular}
. Route the following cables through
relieve the strain on the tri-lead cables
Cables from Frame 02 to:
38 hrough 40
53 through 55
\(\square\) 211786
\(5 \operatorname{sen} 81\)

\section*{install frame or cables}

\section*{Route and Install Interframe Cables}

Note: The figures show the suggested routing of the interframe cables, not the actual connector positions on the tailgates.
Connect the interframe cables in the following sequence:
A 1. Connect the cables from frame 02 to tailgate \(01 \times 2\).
B 2. Connect the cables from frame 01 to tailgate 03 Y 2
C 3. Connect the cables from frame 02 to tailgate 03 Y 2 .
D 4. Position tailgate 0802 into frame 08.
E 5. Connect the cables from frame 09 to tailgate \(01 \times 2\). Use the strain relief clamps on tailgate 08 Q 2.
F 6. Connect the cables from frame 09 to tailgate 03 Y 2 . Use the strain relief clamps on tailgate 0802
7. Connect the cables from frame 01 to tailgate 080

H 8. Connect the cables from frame 02 to tailgate 0802.
J 9. Connect the cables from frame 09 to tailgate 0802. Use thestrain relief clamps on tailgate 0802.

3033

\section*{Install UEPO and Power Adapter Cables}

INSTALL UEPO CABLE IN FRAME 04

A 1. Remove the screws and washers that hold TB3 in place in frame 04 and turn \(T B 3180^{\circ}\) so that it extends into frame 14.
Reinstall TB3 on frame 04 using the same screws.
2. Remove the UEPO cable (part 4452712) from the frame 14 Remove the UEPO cable (part 44527) from the frame the
frame member and connect the wires to TB3 as shown in the following chart:

C 3. Secure the cable to TB3 using the cable clamp
install power adapter cable from frame 04 TO FRAME 33
D 1. Locate the power adapter cable (part 4452697) in trame 04 and E. 2 . .
E. 2. Connect the cable to \(P 8\) in frame 33 .

\section*{Install Channel Cables}

Note: If you are installing a 3042 Model 2 or a 3033, continue with this page. Skip this page if you are installing a 3042 Model 1
1. Connect the following cables from frames 01 and 07 to frame 05 :

\section*{To frame}

050-A1 through 050-A5 05Q-B1 through 050-B5
\(050 . \mathrm{C1}\) through \(050 . \mathrm{C5}\) 050. C1 through 050. \(\mathrm{C5}\) (only with director 2)
2. Connect the following frame 05 cables to frame 07 (cables are in frame 05):
```

[B Part To Frame
583801 07 CN73 (60 Hz)
5583899 - 07 CN73 (50 Hz)

```

C The following cables are in the base of frame 07
Tri-lead cables from frame 07 to 050-D3 through 050-D5

\section*{D Part \\ 4873977 4873985
5583893 To Frame
05 CN57
05 CN53
05 CN54}
3. Dress the cables between the frames and tie the cables in place with the cable ties provided. Dress the cables so that they will not interfere with regulator removals.

\section*{nstall frame 06 cables (Not available for 3033 Pro cessor Model Group S)}
1. Connect the following cables if frame 06 is installed (cables are in the base of frame 06):
\begin{tabular}{cl}
Part & To frame \\
4873952 & 07 CN76 \\
483999 & \(05 \mathrm{CN52}\) \\
4873891 & \(05 \mathrm{CN56}\) \\
483956 & \(00 \mathrm{CN75}(60 \mathrm{~Hz})\) \\
5583898 & \(07 \mathrm{CN75}(50 \mathrm{~Hz})\)
\end{tabular}
 the cable ties provided. Dress the cables so that the regulators can be removed.
Route the tri-lead cables from frame 05 through the cable trough in frame 07. Terminate the cables in 060-B1 through 06Q-B5

Terminate the tri-lead cables from frame 01 to 06 Q tailgate
Part
5583804
To frame

\begin{tabular}{|c|c|c|}
\hline Date & 276474 20Jan78 & 276707 3May 78 \\
\hline
\end{tabular}
\({ }^{208335}\)
211786 \begin{tabular}{l}
213545 \\
\(15 J^{2} 81\) \\
\hline
\end{tabular}

\footnotetext{
○ Copyright International Business Machines Corporation 1978
}

\section*{install ctca cables}
\(\begin{aligned} & \text { Step } \\ & \text { Cpit }\end{aligned}\)
A 1. Connect the following cables if CTCA1 and/or CTCA2 feature is \(\square\)
installed:

B 2. Connect the tri-lead cables (six pack) if CTCA1 and/or CTCA2 feature is installed:

3033 \begin{tabular}{|c|c|c|c|c|}
\hline \(\begin{array}{c}\text { Part } \\
\text { 8271684 }\end{array}\) & \(\begin{array}{c}\text { EC No. } \\
\text { Date }\end{array}\) & \(\begin{array}{c}278357 \\
\text { i9Jul78 }\end{array}\) & \(\begin{array}{l}\text { 278891 } \\
17 \text { Nov78 }\end{array}\) & \(\begin{array}{c}279995 \\
\text { 28JJn79 }\end{array}\) \\
\hline
\end{tabular} ©copyright International Business Machines Corporation 1978
\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{|c}
\text { Tailgate } \\
\text { opr }
\end{array}
\] & function & Feature \\
\hline \[
\begin{aligned}
& \hline 32 \\
& \text { A2 }
\end{aligned}
\] & \(Y\).tag in & CTCAI ctcal \\
\hline \begin{tabular}{l}
83 \\
\hline 83 \\
\hline 8
\end{tabular} & \(Y\) Y-bus in & ctcal \\
\hline \({ }^{\text {A }}\) & Y bus out & ctcal \\
\hline \[
\begin{aligned}
& B 4 \\
& \text { A4 }
\end{aligned}
\] & \begin{tabular}{l}
\(x\)-tag in \\
\(X\)-tag out
\end{tabular} & CTCAI CTCA \\
\hline -85 & & CTCA1 \\
\hline \({ }^{86}\) & \(r\) ragin & ctcaz \\
\hline A6 & r-tag out & ctcaz \\
\hline \({ }^{87}\) & \(r\)-bus in & CTCA2 \\
\hline A7 & Y-bus out & ctcaz \\
\hline \({ }^{88}\) & \(\times\).tag in & ctcaz \\
\hline A8 & x -tag out & ctcaz \\
\hline \({ }^{\text {日9 }}\) & \(x\)-bus in & CTCA2 \\
\hline A9 & \(x\)-bus out & ctcA2 \\
\hline
\end{tabular}

Install Cables from Frame 04 Having B/M \(\mathbf{4 4 0 0 9 0 0}\) to Frame 03 Note: This page applies to frame 04 having B/M 4400900. See INST 291 for Model Groups N and S and for machines having \(\mathrm{B} / \mathrm{M} 8261501\) or \(\mathrm{B} / \mathrm{M}\)
A 1. Connect the regulators and the power supolies to the frame 03 bus \(\square\) bars. Note that the bus bars are divided into five sections. The section and bus bar are marked on each cable. The figure will assist in locating the correct position. If two arrows appear next to a cable in the figure, two wires are connected to the same bus bar. Connect the cables by using the cable chart and step 2 .
Note: The label on the cables shows the bus bar only, not the section on the bus bar.
The mounting screws are in the dc bus on frame 03
B 2. Clamp cables (parts 4873706 and 4873707) to frame 04 as shown
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{From
\[
\text { Frame } 04
\]} & \multicolumn{2}{|l|}{To Frame 03 Bus Bars} & \[
{ }^{1 \text { nssalaled }}
\] & \[
\begin{aligned}
& \text { Checked }
\end{aligned}
\] \\
\hline PS2 & E1 & J2 & & & \\
\hline PS2 & E1 & 」3 & & & \\
\hline PS2 & E2 & F2 & & & \\
\hline PS2 & E2 & F3 & & & \\
\hline PSA & E1 & 63 & & & \\
\hline PSA & E1 & G3 & & & \\
\hline PSA & E2 & A2 & & & \\
\hline PS4 & E2 & \({ }^{\text {A }}\) & & & \\
\hline PS7 & E1 & \({ }^{\text {J }}\) & Feature & & \\
\hline PS7 & E1 & \({ }^{1}\) & Fature & & \\
\hline PS7 & E2 & F3 & Feature & & \\
\hline PS7 & E2 & F4 & Feature & & \\
\hline Regir & Common & J5 & Feature & & \\
\hline Regir & & K5 & Feature & & \\
\hline PSA & E & 02 & & & \\
\hline PSA & E4 & D3 & & & \\
\hline Regl & Common & נ1 & & & \\
\hline Regl & & K1 & & & \\
\hline Regl & Common & A3 & & & \\
\hline Regl & & в3 & & & \\
\hline
\end{tabular}

C 3. Route the three bottom blower cables (part 4400845) from frame 04 into frame 03 and plug the cables into the mating cables (part 4400983)

D 4. Plug the convenience outlet cable (part \(4400994,50 \mathrm{~Hz}\) or part \(4400995,60 \mathrm{~Hz}\)) from frame 03 into the outlet box on frame 04 4400995,60
(J27 or J28).
5. Connect the power sense cables from frame 03 to the tailgate \(\square\) connector on frame 04 (J12 through J26)

Frame 03
DC Bus

3033
\begin{tabular}{|c|c|c|c|c|c|}
\hline Part & EC No. & 276474 & 276707 & 278357 & 279991 \\
\hline
\end{tabular}

Copyright International Business Machines Corporation 1978

Install Cables from Frame 04 Having B/M 8261501, B/M 8261502, or B/M 5867725 to Frame 03
Note: This page applies to frame 04 having B/M 8261501, B/M 8261502, or B/M 5867725 (Model Group S). This page also applies to frame 04 on a Model Group N. See INST 290 for machines having B/M 4400900

A 1. Connect the regulators and the power supplies to the frame 03 bus bars. Note that the bus bars are divided into five sections. The section and bus bar are marked on each cable. The figure will assist
in locating the correct position. If two arrows appear next to a cable in locating the correct position. If two arrows appear next to a cable the cables by using the cable chart and sted 2.
Note: The label on the cables shows the bus bar only, not the section on the bus bar.
The mounting screws are in the dc bus on frame 03
B 2. Connect cable (part 1312659) to connector 220 Connect cable (1312663) to connector J21 (feature). Clamp the cables from PS1, PS5, and PS8 to frame 03 as shown.
Cable Chart
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline \begin{tabular}{l}
From \\
Frame 04
\end{tabular} \\
\hline PS1 E1 \\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { To Frame 03 } \\
& \text { Bus Bars }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Installed } \\
B y
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Checked } \\
B y
\end{gathered}
\]} \\
\hline & G3 & & & \\
\hline PSIE1 & G3 & & & \\
\hline PS1 E2 & A2 & & & \\
\hline PS1 E2 & \({ }^{\text {A }}\) & & & \\
\hline PSIT8A & D3 & & & \\
\hline PS1 TB4 & D3 & & & \\
\hline PSSE1 & J2 & & & \\
\hline PS5E1 & \({ }^{3}\) & & & \\
\hline PS5 E2 & F2 & & & \\
\hline PSS E2 & F3 & & & \\
\hline PS8E1 & \({ }^{3}\) & Feature & & \\
\hline PS8 E1 & J4 & Feature & & \\
\hline PS8E2 & F3 & Feature & & \\
\hline PS8 E2 & F4 & Feature & & \\
\hline
\end{tabular}
C. 3. Route the three bottom blower cables (part 4400845) from frame 04 into frame 03 and plug the cables into the mating cables (part 4400983).

D 4. Plug the convenience outlet cable (part \(4400994,50 \mathrm{~Hz}\) or part \(4400995,60 \mathrm{~Hz}\) from frame 03 into the outlet box on frame 04 4400995,60
(J27 or J28).
E. 5. Connect the power sense cables from frame 03 to the tailgate connector on frame 04 (G12 through G27).
Note: PS3 and PS6 are not available on 3033 Processor Model GroupS.

\section*{Interface Cable Chart}

\section*{Note: The procedures on this page are used to install external cables}

\section*{Step}
\({ }^{\text {cpit }}\)
Skip this procedure if \(1 / 0\) equipment is not available and return to \(\square\)
INST 70 for team B.
\begin{tabular}{|c|c|c|c|}
\hline O5t.A1 & Teg chennel 3 & 057-81 & Bus channel 3 \\
\hline 05T.A2 & Tog channel 4 & 057-82 & Bus chionnel 4 \\
\hline 05T-A3 & Tog channel 5 & 05t-83 & Bus channel 5 \\
\hline 05TC1 & Tag channel 0 & 05T.D1 & Bus channel 0 \\
\hline 05T.C2 & Tag channel 1 & 05T-D2 & Bus channel 1 \\
\hline 05TC3 & Tag channel 2 & 05T-D3 & Bus channel 2 \\
\hline 05TEE2 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Channel interface, group 1 \\
Two-byte interface, group 1
\end{tabular}}} \\
\hline 05T-E3 & & & \\
\hline 05T.F1 & Tag channel 9 & 057-61 & Bus chann \\
\hline 05T.F2 & Tag channel 10 & 055.62 & Bus channet 10 \\
\hline 05T.F3 & Tag channel 11 & 055.63 & Bus channel 11 \\
\hline 05T-H1 & Tag channel 6 & 05 T -J1 & Bus channel 6 \\
\hline 05T-H2 & Tag chamnel 7 & \(055 \cdot 12\) & Bus channel 7 \\
\hline 05T-H3 & Tag channel 8 & 057.J3 & Bus channel 8 \\
\hline 05T-k2 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Channel interface, group 2 iwo-byte interface, group 2}} \\
\hline 05 T -k3 & & & \\
\hline
\end{tabular}
interface cables for frame 06
Positions C1 and D1 are for the first byte-multiplexer channel feature.
- Positions A3 and B3 are for the four block-multiplexer channel optional feature.

O6T-A2 Tag channel 14 or 15 O6T-B2 Bus channel 14 or 15 \begin{tabular}{lll}
O6T.A3 Tag channel 15 & \(06 T\) TB3 Bus channel 15 \\
\hline
\end{tabular}

 \(\begin{array}{ll}\text { O6T.E2 } & \text { Channel interface, group } 3 \\ \text { O6T-E3 } & \text { Twobte }\end{array}\)

Note: Channel 12 is either a byte-multiplexer channel or a block multiplexer channel. Channels 13 through 15 are all block multiplexer channels.
- Return to INST \(\mathbf{7 0}\) for team B.
\(\square\)

\footnotetext{
O Coprright International Business Machines Corporation 1978
}

CAUTION
Because electrostatic discharge can damage logic and storage card
modules, touch frame ground before handling the cards.
1. Inspect all tri-lead connections to the MST board to ensure that the tri-leads are properly seated. Use a high intensity lamp to per form the inspection. Record the location of all tri-leads that requir reseating.
A a. Ensure that all tri-lead housings are aligned. Reseat any loose tri-leads.
B b. Ensuire that the tuning forks are properly seated in the housings and that the angle of the slope of the encapsulation is the same for all tri-leads. If any tri-lead does not meet these conditions, remove the tri-lead and housing. Remove the tri-lead from the housing and inspect for tuning fork damage. If the tuning fork is de tuning fork into a new housing and replug the tri-lead

Example of Unseated Tri-Lead
2. Be sure the tri-leads at the following positions are securely connected. \(\square\) \(01 \mathrm{~A}-\mathrm{B1} 1\) 02A.A2 03A.C4 05A.A2
\begin{tabular}{rrrr}
C4 & A4 & & A3 \\
C5 & B4 & & B1 \\
C5 & B5 & & B2 \\
D3 & B3 \\
D4 & C5 & & B3 \\
& D3 & & \\
& D5 & & \\
& & &
\end{tabular}

A3
B1
B2
B3
83
. Check all boards for loose cards.
\(\square\)
4. Go to INST 70.
1. Ensure that the following CBS are off (from INST 210)
\[
\begin{array}{ll}
\text { Frame } & \text { CBs } \\
15 & 1,2,3, \text { and } 11 \\
04 & \text { 3 hhrough 11 } \\
05 & \text { 501, 502. 503, 506, 507, and } 508 \\
06 & \text { 605, 606, and 607 }
\end{array}
\]
2. IMPL the operational diskettes. Select the PC frame on the operator \(\square\) station.
3. Power up the CDU. For example, key A281 and key X. The CDU pump should turn on, and a power faut message should be dis played.
Note: If the processor complex power-on sequence stops with ad dress E44 bit 4 displayed on the console, the \(415 \cdot \mathrm{~Hz}\) phasing is wrong. If it stops with E 45 bit 0 displayed, the \(50 / 60 \cdot \mathrm{~Hz}\) phasing is whed by the custorer. changed by the customer.
4. List the power \(\log (L 1\) option). Ensure that the power log indicates that CBs 1 and 3 are tripped in the PDU.
5. Turn on the CBs in the PDU
6. Power up the processor and the directors in the same manner, ensuring that the microcode can indicate each of the tripped circuit breakers.
7. Verify that all the blowers in each machine are running when each machine is powered up. Blowers are on:
a. Frames 01.03 , above and below the MST boards.
b. Frame 04, two above the TRs: one under the logic gate and one under PS7 (6 and 8 M bytes).
c. Frames 05 and 06 , above the TRs on each end of the frames and below each gate.
d. Frame 07 , under the gate.
e. Frame 15, in ac compartment.
f. Frame 09 AP or MP if installed.
8. Go to INST 355 for team \(\mathbf{B}\) and INST 312 for team \(\mathbf{A}\).

3033

\section*{Final MG Adjustment}

\section*{WITHOUT PROPORTIONAL SUPPLY}

Note: The customer is responsible for the final adjustment of the mg.
1. Measure the ac voltage at the MG output voltage terminals with the MG set for remote sensing.
2. Turn off the system power.
3. Set the MG for local sensing. Use the MG local ac voltage control to increase the MG ac voltage output until it is \(9.10 \%\) above the ac voltage measured in step 1
4. Reduce the MG overvoltage trip adjustment until the MG ac output voltage drops (overvoltage trip).
5. Decrease the local ac voltage slightly and reset the MG from the overvoltage condition. Adjust the MG ac output to the voltage measured in step 1 . This condition allows for a line voltage drop if the MG is used later in a local sense operation.
6. Set the MG for remote sensing. Turn on the system power and readjust the MG remote output control for \(+50 \pm 1 \mathrm{~V}\) at PDU 50 V dc test points.
7. Lock the MG remote output adjustment potentiometer and leave \(\square\) the MG set for remote sensing.

WITH PROPORTIONAL SUPPLY

\section*{danger}

The voltage level at the test point is potentially hazardous. Avoid
contacting the metal portion of the PDU 50 V dc test point.
Note: The customer is responsible for the adjustments of the MG.
1. Measure the ac voltage at the MG output voltage terminals with the \(\square\) MG set for local sensing.
2. Turn off the system power.
3. Use the MG local ac voltage control to increase the MG ac voltage output until it is 9 to \(10 \%\) above the ac voltage measured in step \(i\).
4. Reduce the MG overvoltage trip adjustment until the MG ac output voltage drops lovervoltage trip)
5. Decrease the local ac voltage slightly and reset the MG from the overvoltage condition. Adjust the MG ac output to the voltage measured in step 1. This condition allows for the line voltage drop when the MG is used in a local sense operation.)
6. Turn on the system power and readjust the MG local output control for \(+50 \mathrm{~V} \pm 1 \mathrm{~V}\) at the PDU 50 V dc test point.
7. Lock the MG output adjustment potentiometer and leave the MG set for local sensing.

\section*{Voitage Adjustments for Processor Frames}

If any voltage is adjusted, the OV/UV and the OC LEDs must be adjusted.

CAUTION
Do not adjust any potentiometers that are factory sealed

The OV/UV and OC LED adjustments are identical:
. If the LED is off, turn the potentiometer clockwise slowly until the LED just turns on.
2. If the LED is on, turn the potentiometer counterclockwise until the

LED turns off and then turn the potentiometer clockwise slowly until the LED just turns on.

For additional information about the power supplies, see Diagram 7-101 in MM Volume 2.

Se the voltage monitor test points, if present on frames 01, 02, 03, and 09 , to check the following power supplies and regulators.
Note: Before setting any voltages, check the accuracy of the digital voltmeter (DVM).
3. Adjust the output voltages of the board-mounted dual regulators listed in the following chart to the voltages specified
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Frame 01} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Frame 02}} & \multirow[b]{2}{*}{Frame 03} & \multicolumn{2}{|l|}{3042} \\
\hline & & & & frame 03 & Frame 09 \\
\hline \({ }^{81} \mathrm{C}^{1} \mathrm{D} 22\) & A2* & \({ }^{81} \mathrm{Cl} \mathrm{Cl}^{1}\) & \({ }^{\text {B }} \mathrm{Cl}\) & \(\mathrm{Cl}_{1}\) & \(\mathrm{A}^{\text {2 }}\) B2 \\
\hline \(8^{\text {C3 }}\) C3 & A3 \({ }^{\text {a }}\) & \(82 \mathrm{C2} 05\) & C2 & C2 & A3 \(\mathbf{B}\) \\
\hline \({ }^{85} \mathrm{Ca}^{\text {P }}\) - 5 & \({ }^{\text {A4 }}\) & \({ }^{83} \mathrm{C}\) & \({ }^{\text {c3 }}\) & \({ }^{\text {c4 }}\) & A4 \({ }^{\text {8 }}\) \\
\hline & & 84 C4 & c4 & cs & A5 \(\mathrm{B}^{5}\) \\
\hline
\end{tabular}

easure the voltrogs as close as possible to the remote sense connec. tions on the board at L2J10 and L2G06

Notes.
. For Ap frame 03, see INST 325.
. For Model Group N, see INST 322.

\section*{frame 04 VOLTAGE ADJUSTMENTS}

Check the machine history for installed \(\mathrm{B} / \mathrm{Ms}\) or part number of power supply 5 before making frame 04 voltage adjustments. Refer to the ollowing chart for the frame 04 voltage adjustment page:

rame 04 Voltage Adjustments for Machines Having B/M 4400900 For machines having \(\mathrm{B} / \mathrm{M} 4400900\), follow the adjustment order given Step in the following text.

Order of Adjustment
Adjust the power supplies in the order given
1. Monitor 02A-D3E2J10 and ground (E2G11). Adjust PS1 to +1.25 \(\mathrm{v} \pm 0.005 \mathrm{v}\).
2. Monitor O2A-D3E2G06 and ground (E2G11). Adjust PS1 to - 3 V
\(\pm 0.01 \mathrm{~V}\).
3. Monitor O1A.D4E2D04 and ground (E2B10). Adjust PS3 to
\(+1.25 \mathrm{~V} \pm 0.205 \mathrm{~V}\) \(+1.25 \mathrm{~V} \pm 0.005 \mathrm{~V}\).
4. Monitor 01A-D4N2SO6 and ground IN2S11). Adjust PS3 to -3 V \(\pm 0.01 \mathrm{~V}\).
5. Monitor 02A.D2J2M02 and ground (J2M10). Adjust PS5 to
\(+3.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\). \(+3.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
6. Monitor 01A.D4J2M02 and ground (J2M10). Adjust PS6 to \(+3.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
7. Monitor 03A-B2L4D03 and ground (L4D08). Adjust PS4 to \(+1.25 \mathrm{~V} \pm 0.005 \mathrm{~V}\).
8. Monitor 03A-B2L4B06 and ground (L4D08). Adjust PS4 to -3 V
\(\pm 0.01 \mathrm{~V}\). \(\pm 0.01 \mathrm{~V}\).
9. Note the +1.25 V on boards \(03 \mathrm{~A} \cdot \mathrm{~A} 1, \mathrm{~A} 2, \mathrm{~A} 4\), and A 5 and 03A-B1 B2, B4, and 85 on L4D03 and ground (L4DO8). On board 03A-A3 monitor L2J10 and ground (L2G11). Adjust PS4 so that all volt ages on monitored boards read within \(\pm 1.5 \% \quad(0.019 \mathrm{~V})\) of \(+1.25 \mathrm{~V}\)
10. Note the -3 V on boards \(03 \mathrm{~A} \cdot \mathrm{A1}, \mathrm{~A} 2, \mathrm{~A} 4\), and \(A 5\) and \(03 \mathrm{~A}-\mathrm{B1}\), B2, B4, and B5 on L4B06 and ground (L4D08). On board 03A-A3, monitor L2G06 and ground (L2G11). Adjust PS4 so that all volt ages on monitored boards read within \(\pm 1 \%(0.02 \mathrm{~V})\) of \(\cdot 3 \mathrm{~V}\).
11. Monitor 03A-B2L4D04 and ground (L4DO8). Adjust regulator 1 to \(+8.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
12. Monitor 03A-B2L4B11 and ground (L4D08). Adjust PS2 to +2 V
\(\pm 0.01 \mathrm{~V}\). \(\pm 0.01 \mathrm{~V}\).
13. Monitor 03A-A3E2M02 and ground (M2B10). Adjust regulator 5 to \(+3.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).

Additional Adjustments for 6 M -Byte and 8 M -Byte Storage Configura tions
For 6 M -byte and 8 M -byte configurations, perform the following adjustments in addition to those required for 4M-byte configurations (preced. g steps 1 through 13):
Monitor 03A-B4L4B11 and ground (L4D08). Adjust PS7 to +2 V\(\pm 0.01 \mathrm{~V}\).
2. Monitor 03A-B4L4D04 and ground (L4D08). Adjust regulator 3 to \(+8.5 \mathrm{~V}+0.01 \mathrm{~V}\)

\footnotetext{
Figure A. Physical Layout of Frame 04 Power Supplies on Machines
} Having B/M 4400900
3033 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Pant \\
8271632 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
© Copyright International Business Machines Corporation 1978
}

\section*{Frame 04 Voltage Adjustments for Machines Having B/M 8261501}

Step
Cplt
If any voltage is adjusted, the OV/UV and the OC LEDs must be adjusted.

CAUTION
Do not adjust any potentiom.eters that are factory sealed.
The OV/UV and OC LED adjustments are identical:
1. If the LED is off, turn the potentiometer clockwise slowly until the LED just turns on.
2. If the LED is on, turn the potentiometer counterclockwise until the LED turns off and then turn the potentiometer clockwise slowly until the LED just turns on
3. In addition for power supplies 4 and 9 , turn potentiomenter 1 a fullturn counterclockwise.

Order of Adjustment
For machines having \(\mathrm{B} / \mathrm{M} 8261501\), adjust the power supplies in the order given:
1. Monitor O2A-D3E2J10 and ground (E2G11). Adjust PS2 to \(+1.25 \mathrm{~V} \pm 0.005 \mathrm{~V}\).
2. Monitor O2A-D3E2G06 and ground (E2G11). Adjust PS2 to - 3 V \(\pm 0.01 \mathrm{~V}\).
3. Monitor 01A-D4E2D04 and ground (E2B10). Adjust PS3 to \(+1.25 \mathrm{~V} \pm 0.005 \mathrm{~V}\).
4. Monitor O1A-D4N2SO6 and ground (N2S11). Adjust PS3 to - 3 V \(\pm 0.01 \mathrm{~V}\).
5. Monitor 02A-D2J2M02 and ground (J2M10). Adjust PS7 to \(+3.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
6. Monitor 01A-D4J2M02 and ground (J2M10). Adjust PS6 to \(+3.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\)
7. Monitor 03A.B2L4D03 and ground (L4D08). Adjust PS1 to \(+1.25 \mathrm{~V} \pm 0.005 \mathrm{~V}\).
8. Monitor 03A-B2L4B06 and ground (L4D08). Adjust PS1 to -3 V \(\pm 0.01 \mathrm{~V}\).
9. Note the +1.25 V on boards 03A-A1, A2, A4, and A5 and 03A-B1, B2, B4, and B5 on L4D03 and ground (L4D08). On board 03A-A3, monitor L2J10 and ground (L2G11). Adjust PS1 so that all voltages on monitored boards read within \(\pm 1.5 \%(0.019 \mathrm{~V})\) of +1.25 V .
10. Note the \(-3 V\) on boards 03A-A1, A2, A4, and A5 and 03A-B1, B2, B4, and B5 on L4B06 and ground (L4D08). On board 03A-A3, B2, B4, and B5 on mond ground (L2G 11). Adjust PS1 so that all voltages on monitored boards read within \(\pm 1 \%(0.02 \mathrm{~V})\) of -3 V
11. Monitor 03A-B2L4D04 and ground (L4D08). Adjust PS4 to \(+8.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
12. Monitor 03A-B2L4B11 and ground (L4D08). Adjust PS5 to +2 V \(\pm 0.01 \mathrm{~V}\)
13. Monitor 03A-A3E2M02 and ground (M2B10). Adjust PS10 to \(+3.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\) :

Additional Adjustment for 6M-Byte Storage Configurations
For 6 M -byte configurations, perform the following adjustment in addition to those required for 4 M -byte configurations (preceding steps 1 through 13):
Monitor 03A-B4L4B11 and ground (L4D08). Adjust PS8 to +2 V \(\pm 0.01 \mathrm{~V}\)

Additional Adjustment for 8M-Byte Storage Configurations
For 8 M -byte configurations, perform the following adjustment in addition to those required for 4 M - and 6 M -byte configurations:

Monitor 03A-B4L4D04 and ground (L4D08). Adjust PS9 to +8.5 V \(\pm 0.01 \mathrm{~V}\).

igure A. Physical Layout of Frame 04 Power Supplies for Machines Having B/M 8261501

\section*{Frame 04 Voltage Adjustments for Machines Having B/M \(\mathbf{8 2 6 1 5 0 2}\)}

Note: This page also applies to frame 04 on a Model Group N .
If any voltage is adjusted, the OV/UV and the OC LEDs must b adjusted.

CAUTION
Do not adjust any potentiometers that are factory sealed.
The OV/UV and OC LED adjustments are identical:
1. If the LED is off, turn the potentiometer clockwise slowiy until the LED just turns on.
2. If the LED is on, turn the potentiometer counterclockwise until the LED turns off and then turn the potentiometer clockwise slowly until the LED just turns on

\section*{Order of Adjustment}

For machines having \(\mathrm{B} / \mathrm{M} 8261502\), adjust the power supplies in the order given.
1. Monitor 02A-D3E2J10 and ground (E2G11). Adjust PS2 to \(+1.25 \mathrm{~V} \pm 0.005 \mathrm{~V}\)
2. Monitor O2A-D3E2G06 and ground (E2G11). Adjust PS2 to -3 V \(\pm 0.01 \mathrm{~V}\).
3. Monitor 01A-D4E2D04 and ground (E2B10). Adjust PS3 to \(125 \mathrm{~V}+0.005 \mathrm{~V}\)
4. Monitor 01A-D4N2S06 and ground (N2S11). Adjust PS3 to -3 V \(\pm 0.01 \mathrm{~V}\).
5. Monitor O2A-D2J2M02 and ground (J2M10). Adjust PS7 to +3.5 V \(\pm 0.01 \mathrm{~V}\).
6. Monitor 01A-D4J2M02 and ground (J2M101. Adjust PS6 to +3.5 V
\(\pm 0.01 \mathrm{~V}\).

Note: For Model Group N, go to INST 323 to complete adjustments.

11. Mor 23 . 4811 and ground (L4D08) Adiust PS5 to \(+3.3 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
12. Monitor 03A.A3E2MO2 and ground (M2B10). Adjust PS10 to \(+3.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).

Additional Adiustments for 12M. and 16M-Byte Configurations
For 12 M - and 16 M -byte configurations, perform the following adjustments in addition to those required for 4 M -and 8 M -byte configurations (see preceding steps 1 through 13):
1. Monitor 03A-84L4B11 and ground (L4D08). Adjust PS8 to +3.3 V \(\pm 0.01 \mathrm{~V}\)
2. Monitor 03A-B4L4D04 and ground (L4D08). Adjust PS9 to +8.5 V \(\pm 0.01 \mathrm{~V}\). B2, B4, and B5 on L4D03 and ground (L4DO8). On board O3A-A3,
monitor L2J10 and ground (L2G11). Adjust PS1 so that all voltages on
+1.25 V . monitored boards read within \(\pm 1.5 \%(0.019 \mathrm{~V})\) of \(+1.25 \mathrm{~V}\)
10. Monitor 03A-B2L4D04 and ground (L4D08). Adjust PS4 to \(8.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).

7. Monitor 03A-B2L4D03 and ground (L4D08). Adjust PS1 to \(25 \mathrm{~V} \pm 0.005 \mathrm{~V}\).
8. Monitor 03A-B2 L4B06 and ground (L4D08). Adjust PS1 to -3 V \(\pm 0.01 \mathrm{~V}\).
9. Note the +1.25 V on boards \(03 \mathrm{~A}-\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 4\), and A 5 and \(03 \mathrm{~A}-\mathrm{B1}\),

\section*{Frame 04 Voltage Adjustments for Machines Heving B/M 8261502

\section*{(Continued)}

\section*{(Continued)}

Model Group N with 4M and 8M Bytes Step
7. Monitor 03A-B4L4D03 and ground (L4D08). Adjust PS1 to \(+1.25 \mathrm{~V} \pm 0.005 \mathrm{~V}\).
8. Monitor 03A-B4L4B06 and ground (L4D08). Adjust PS1 to \(-3 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
9. Note the +1.25 V on boards \(03 \mathrm{~A} \cdot \mathrm{~A} 1, \mathrm{A4}\), and \(03 \mathrm{~A} \cdot \mathrm{B1}, \mathrm{B4}\), and on L4D03 and ground (L4D08). On board 03A-A3, monito on L4D03 and ground (L4D08). On board 03A-A3, monitor
L2 2110 and ground (L2G11). Adjust PS1 so that all voltages on monitored boards read within \(\pm 1.5 \%(0.019 \mathrm{~V})\) of +1.25 V
10. Monitor 03A-B4L4D04 and ground (L4D08). Adjust PS4 to \(+8.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\)
11. Monitor 03A-B4L4B11 and ground (L4D08). Adjust PS5 to\(+3.3 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
12. Monitor 03A-A3E2M02 and ground (M2B10). Adjust PS 10 to \(+3.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).

Model Group N with 12 M and 16 M Bytes Step
7. Monitor 03A-82L4D03 and ground (L4D08). Adjust PS1 to \(+1.25 \mathrm{~V} \pm 0.005 \mathrm{~V}\).
8. Monitor 03A-B2L4B06 and ground (L4D08). Adjust PS1 to \(-3 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
9. Note the +1.25 V on boards 03A.A1, A2, A4, and A5 and 03A-B1, B2, B4, and B5 on L4D03 and ground (L4D08). On board 03A-A3, monitor L2J10 and ground (L2G11). Adjust PS so that all voltages on the monitored boards read within \(+1.5 \%\) \(10.019 \mathrm{~V})\) of +1.25 V .
10. Monitor 03A-B2L4D04 and ground (L4D08). Adjust PS4 to \(+8.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
1. Monitor 03A-B2L4B11 and ground (L4D08). Adjust PS5 to \(+3.3 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
12. Monitor 03A-A3E2M02 and ground (M2B10). Adjust PS10 to \(+3.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
13. Monitor 03A-B4L4B11 and ground (L4D08). Adjust PS8 to \(\quad \square\) \(+3.3 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
4. Monitor 03A-B4L4004 ad 114081 Adst \(8.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\)

Figure A. Physical Layout of Frame 04 Power Supplies for Machines Having
B/M 8261502

\section*{frame 04 Voltage Adjustments for Machines Having B/M 5867725} (Model Group S)

If any voltage is adjusted, the OV/UV and the OC LEDs must be adiusted.

\section*{caution}

Do not adjust any potentiometers that are factory sealed
The OV/UV and OC LED adjustments are identical:
1. If the LED is off, turn the potentiometer clockwise slowly until the LED just turns on.
2. If the LED is on, turn the potentiometer counterclockwise until the LED turns off, and then turn the potentiometer clockwise slowly until the LED just turns on.

Order of Adjustment
For machines having \(B / M 5867725\), adjust the power supplies in the order given.
1. Monitor O2A.D3E2J10 and ground (E2G11). Adjust PS2 to \(+1.25 \mathrm{~V} \pm 0.005 \mathrm{~V}\)
2. Monitor 02A-D3E2G06 and ground (E2G11). Adjust PS2 to -3 V +0.01 V .
3. Monitor 02A-D2J2M02 and ground (J2M10). Adjust PS7 to +3.5 V \(\pm 0.01 \mathrm{~V}\).

3033

Step
Cplt
4. Monitor 03A-B4L4D03 and ground (L4D08). Adjust PS1 to \(+1.25 \mathrm{~V} \pm 0.005 \mathrm{~V}\).
5. Monitor 03A-B4L4B06 and ground (L4D08). Adjust PS1 to \(-3 v+0.01 v\)
6. Note the +1.25 V on boards 03A-A1, A4, B1, and B4 on L4D03 and ground (L4D08). On board 03A-A3, monitor 1210 and and ground (L4D08). On board 03A-A3, monitor L2J10 and boards read within \(\pm 1.5 \%(0.019 \mathrm{~V})\) of +1.25 V
7. Monitor 03A-B4L4D04 and ground (L4D08). Adjust PS4 to \(+8.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
8. Monitor 03A-B4L4B11 and ground (L4D08). Adjust PS5 to \(+3.3 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
9. Monitor 03A-A3E2M02 and ground (M2B10). Adjust PS10 to \(+3.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).

Additional Adjustments for Model Group S for 12M. and 16M-Byte Configurations
10. Monitor 03A.B2L4D03 and ground (L4D08). Adjust PS1 to \(+1.25 \mathrm{~V} \pm 0.005 \mathrm{~V}\).
11. Monitor 03A-B2L4B06 and ground (L4D08). Adjust PS1 to \(-3 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
\(\qquad\)
\(\square\)
2. Note the +1.25 V on boards \(03 \mathrm{~A}-\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 4\), and A 5 and 03A-B1, \(B 2, B 4\), and \(B 5\) on \(\mathrm{L4D03}\) and ground (L4D08). On board 03A-A3, monitor L2J10 and ground +1.25 V .
13. Monitor 03A-B2L4D04 and ground (L4D08). Adjust PS4 to \(+8.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
14. Monitor 03A-B2L4811 and ground (L4D08). Adjust PS5 to \(+3.3 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
15. Monitor 03A-A3E2M02 and ground (M2B10). Adjust PS10 to \(+3.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
16. Monitor 03A.B4L4B11 and ground (L4D08). Adjust PS8 to \(+3.3 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
17. Monitor 03A-84L4D04 and ground (L4D08). Adjust PS9 to \(+8.5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).

Figure A. Physical Layout of Frame 04 Power Supplies for Machines Having B/M 5867725

\section*{frame 03 VOLTAGE ADJUSTMENTS FOR AP}

\section*{If any voltage is adjusted, the OV/UV and the OC LEDs must be
adjusted. djusted.}

\section*{caution}

Do not adjust any potentiometers that are factory sealed
The OV/UV and OC LED adjustments are identical
1. If the LED is off, turn the potentiometer clockwise slowly until the LED just turns on.
2. If the LED is on, turn the potentiometer counterclockwise until the LED turns off and then turn the potentiomenter clockwise slowly until the LED just turns on.

\section*{Order of Adiustment}

Adjust the power supplies in the order given
. Monitor O2A-D3E2J10 and ground (E2G11). Adjust PS4 to \(+1.25 \mathrm{~V} \pm 0.005 \mathrm{~V}\).
2. Montior O2A-D3E2G06 and ground (E2G11). Adjust PS4 to -3V
 \(+1.25 \mathrm{~V} \pm 0.005 \mathrm{~V}\).
4. Monitor \(01 \mathrm{~A} \cdot \mathrm{D} 4 \mathrm{~N} 2506\) and ground (N2S11). Adjust PS3 to -3 V \(\pm 0.01 \mathrm{~V}\).
5. Monitor 02A-D2J2M02 and ground (J2M10). Adjust PS2 to +3.5 V \(\pm 0.01 \mathrm{~V}\).
6. Monitor 01A-D4J2M02 and ground (J2M10). Adjust PS1 to +3.5 V \(\pm 0.01 \mathrm{~V}\).

\section*{Step
Cplt}

Frame 03, Pin Side

\section*{Voltage Adjustments for Frame 33 \\ Adjust the frame 33 power supplies as follows:}

Monitor 33A-A436-14 and ground (A436-01). Adjust RG1 to \(+1.3 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
2. Monitor 33A-A405-05 and reference pin (A405-14) Adjur PS 3. Monitor \(\mathbf{- 5 3 \mathrm { L }} \mathrm{V} \mathrm{V}\). 18 and reference pin (A305-14). Adjust PS2 to 3. Monitor \(3.3 \mathrm{~A} \cdot \mathrm{~V}\).
\(+5 \mathrm{~V} \pm 0.01 \mathrm{~V}\).
4. Monitor 33A-A427-18 and reference pin (A427.14). Adjust PS3 to \(+5 \mathrm{~V} \pm 0.01 \mathrm{v}\)
5. Monitor 33A-A 105-05 and reference pin (A105-14). Adjust PS4 to 6. Monitor -33 A - A 2
6. \(+5 \mathrm{~V}+\) 0.01 V . 205 -18 and reference pin (A205-14). Adjust PS5 to

If any voltage is adjusted, the OV/OC LEDs must be adiusted. Adjust the OV and OC as follows:
1. If the OV LED is off, turn the OV potentiometer clockwise until the

OV LED barely turns on. 2. If the OC LED is off, tu OC LED barely turns on.
3. If the OV LED is on, turn the OV potentiometer counterclockwis until the OV LED turns off, and then turn the potentiometer clock wise until the OV LED barely turns on
4. If the OCLED is on, turn the OC potentiometer counterclockwis , iff and then the potentiometer clock wise until the OC LED barely turns on.

\section*{Voltage Adjustrinents for Processor Channel Frames}

If any voltage is adjusted, the OV/UV and the OC LEDs must be adjusted as follows:

\section*{AUTION}

Do not adjust any potentiometers that are factory sealed.
The OV/UV and OC LED adjustments are identical:
1. If the LED is off, turn the potentiometer clockwise slowly until the LED just turns on.
2. If the LED is on, turn the potentiometer counterclockwise until the LED turns off and then turn the potentiometer clockwise slowly until the LED just turns on.
3. Adjust the channel power supplies according to the charts on this page.
4. Go to INST 210 .

Channel Director 1
\begin{tabular}{|c|c|c|c|c|}
\hline Regulator Power Supply & Voltage
(v) & \[
\begin{gathered}
\text { Tolerance } \\
\text { When } \\
\text { Adjusting } \\
\text { (mV) }
\end{gathered}
\] & Tolerance When Chocking (mV) & Test Point \\
\hline PS504 & \(+6.0\) & \(\pm 10\) & \(\pm 100\) & Monitor panel \\
\hline Ps501 & \[
\begin{aligned}
& +1.25 \\
& -3.0^{1}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1 \\
& \pm 10
\end{aligned}
\] & \[
\begin{aligned}
& \pm 10 \\
& \pm .20
\end{aligned}
\] & Monitor panel Monitor panel \\
\hline PS502 & \[
\begin{aligned}
& +1.25 \\
& { }_{-3.0^{1}}
\end{aligned}
\] & \[
\pm 1
\] & \[
\begin{aligned}
& \pm 10 \\
& \pm 20
\end{aligned}
\] & Monitor panel Monitor panel \\
\hline PS502 and PS503 & +3.5 \({ }^{2}\) & \(\pm 10\) & \(\pm 2\) & Monitor panel \\
\hline PS503 & +2.25 & \(\pm 10\) & \(\pm 20\) & Monitor panel \\
\hline
\end{tabular}

\footnotetext{
'The negative voltage on PS501 and PS502 will read as a positive
voltage on the meter.
\({ }^{2}\) Adjust PS502 to +1.25 V before adiusting PS503.
}

Channel Director 2 (Feature for 3033 Processor Model Groups \(\mathbf{N}\) and S and 3042 Model 2)
\begin{tabular}{|c|c|c|c|c|}
\hline Regulator (Power Supply) & \[
\begin{aligned}
& \text { Voltage } \\
& \text { (V) }
\end{aligned}
\] & Tolerance When Adjusting (mV) & \[
\begin{aligned}
& \text { Tolerance } \\
& \text { When } \\
& \text { Checking } \\
& (\mathrm{mV})
\end{aligned}
\] & Test Point \\
\hline \(\mathrm{l}^{\text {PS505 }}\) & \[
\begin{aligned}
& +1.25 \\
& { }^{+3.01}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1 \\
& \pm 10
\end{aligned}
\] & \[
\begin{aligned}
& \pm 10 \\
& \pm 20
\end{aligned}
\] & Monitor pane Monitor pane \\
\hline \(\mathrm{I}^{\text {P5506 }}\) & \[
\begin{aligned}
& +1.25 \\
& -3.0^{1}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1 \\
& \pm 10
\end{aligned}
\] & \[
\begin{aligned}
& \pm 10 \\
& \pm 20
\end{aligned}
\] & Monitor pane Monitor pane \\
\hline PS506 and PS507 & +3.5 \({ }^{2}\) & \(\pm 10\) & \(\pm 20\) & Monitor panel \\
\hline P5508 & +6.0 & \(\pm 10\) & \(\pm 100\) & Monitor panel \\
\hline PS507 & +2.25 & \(\pm 10\) & \(\pm 20\) & Monitor panel \\
\hline
\end{tabular}
\({ }^{1}\) The negative voltage on PS505 and PS506 will read as a positive voltage on the meter.
\({ }^{2}\) Adjust PS506 to +1.25 V before adjusting PS507.

Channel Director 3 (Feature for 3033 Processor; not available for 3033 Processor Model Group S and 3042 Mode! 2)
\begin{tabular}{|c|c|c|c|c|}
\hline Regulator
(Power Supply) & \[
\begin{aligned}
& \text { Voltage } \\
& (v)
\end{aligned}
\] & \[
\begin{gathered}
\text { Tolerance } \\
\text { When } \\
\text { Adjusting } \\
\text { (mV) }
\end{gathered}
\] & Tolerance Checking (mV) & Test Point \\
\hline PS605 & \[
\begin{aligned}
& +1.25 \\
& -3.0^{1}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1 \\
& \pm 10
\end{aligned}
\] & \[
\begin{aligned}
& \pm 10 \\
& \pm 20
\end{aligned}
\] & Monitor pane Monitor pane \\
\hline PS606 & \[
\begin{aligned}
& +1.25 \\
& -3.0^{1}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1 \\
& \pm 10
\end{aligned}
\] & \[
\begin{aligned}
& \pm 10 \\
& \pm 20
\end{aligned}
\] & Monitor panel Monitor panel \\
\hline PS606 and PS607 & +3.5 \({ }^{2}\) & \(\pm 10\) & \(\pm 20\) & Monitor panel \\
\hline PS608 & +6.0 & \(\pm 10\) & \(\pm 100\) & Monitor panel \\
\hline PS607 & +2.25 & \(\pm 10\) & \(\pm 20\) & Monitor P \\
\hline
\end{tabular}
\({ }^{1}\) The negative voltage on PS605 and PS606 will read as a positive voltage on the meter.
\({ }^{2}\) Adjust PS606 to +1.25 V before adjusting PS607

\section*{Test Power-On Sequence}
1. When all power is up on the processor complex, press the Power Off pushbutton on the console. The Power On pushbutton should change from white to red and extinguish at the end of the power-off sequence.

Ensure that the system (including the console) power sequences down correctly. The processor and console blowers continue to run for approximately 30 seconds after all processor power has sequenced down

If a director is in local mode and powered down, the backlight will remain red until all devices on the system have powered up.
2. Set the Power Select switch on the console to System and press the Power On pushbutton.

Check that the Power On pushbutton is backlighted white when power is sequenced on to all the frames.

A 1. Install the EMC cover (part 4872957) in tailgate \(W\) on frame 08 Assemble the cover tightly with all screws provided. A loose cover will lower the machine's zap level.
2. Install the EMC covers as described on INST 342 and return to this procedure
3. Install the external cover on frame 08. (See INST 350 and INST 355.) If the cover does not latch, raise or lower frame 08 bottom as required. This is done by loosening the L -brackets that connec frame 08 to frames 02 and 03
4. Install any covers that were removed and clean the area. If the processor complex was shipped without covers, install them. (See INST 350 and INST 355.
5. Mark and keep the outriggers, casters, and other hardware used for shipping.
External Covers on Frame 08
\begin{tabular}{l|c|c|c|c|c|c}
\multicolumn{8}{c}{ Painted Assemblies (Includes Hardware) } \\
\hline White & Rose & Blue & Yellow & Gray & Brown & Green \\
\hline 5609618 & 5609656 & 560968 & 5609712 & 5612534 & 5612580 & 5612616
\end{tabular}

2566607 (16), Screw \(\longrightarrow\)
1. Dispose of all wooden braces and wooden protectors locally.
2. Keep all shipping casters, tri-lead connector brackets, tray packs, and outriggers for relocation/removal.
3. The fiberboard logic carts are for shipping purposes only and are not authorized for permanent use in a customer account. They are to be replaced with metal logic carts (part 453147 and part 453149). The fiberboard carts are to be disposed of locally.
4. Return to INST 70.

\section*{Install the EMC Covers (From INST 340)}

Note: Assemble EMC covers tightly with all screws provided. Loose screws will lower the machine's zap level.

A 1. Use the following parts to attach the EMC covers over the cab Use the following parts to
entry holes in frames 01.04 :
\[
\begin{array}{cl}
\text { Frame } & \text { Part } \\
01 & 681646 \text { cover } \\
& \begin{array}{l}
2566617(8), \text { screw } \\
\\
\\
2575295 \\
\text { (8), screw }
\end{array}
\end{array}
\]

026816647 cover 2566617 (9), screw
2575295 (9), screw
\(03 \quad 6816648\) cover 2566617 (4). screw
2575295 (4) screan 2575295 (4), screw
\(04 \quad 6816649\) cover 2566617 (4). screw
2575295 (4), screw

094417849 (2), plate 4217849 ((1), , plate
256604 , screw
2. Use the following parts to attach the EMC covers in frame 15:

Frame Part
15 B \(\begin{aligned} & 6816651 \text { cover } \\ & 2566610 \text { (28), screw }\end{aligned}\)
017 N (28)
C \({ }_{2566607}^{681665 \text { cover }}\)
3. Use the following parts to attach the console EMC cover over the cable entry compartment in frame 11.

Frame Part
15 D 4872896 cover
2574822 (10), screw
2566607 (4), screw
4. Return to INST 340.

Typical mounting for frames 01.04 and 09

\section*{Install the Kickplates on the Processor Complex (From INST 340)}

\section*{Align the Covers and Inspect the EMC Hardware}

\section*{check alignment of the covers}
1. All the hinges should be installed and tightened using the locating

All the hand the two mounting screws. Cplt screw and the two mounting screws.
2. All the lateh plates should be installed and tightened.
3. Covers should be installed and visually checked for alignment and gap.
4. Latches should engage and hold.

\section*{align the covers vertically}

A The vertical gap between the covers should be equal from top to bottom, and the gaps between all the covers should be consistent. This \((=1.5 \mathrm{~mm})\) is permissible.

Align the covers vertically by adjusting the leveling pads. Use this method before adjusting the hinges. This method adjusts the frame to the covers and compensates for frame deflection (sag) or twisting because of floors that are not even

\section*{ALIGN the covers horizontally}

B Horizontal alignment of the covers need not be maintained to a perfect ground level. The top surface of the covers on a frame group should be ligned within \(\pm 0.06\) inch \((\pm 1.5 \mathrm{~mm})\). This dimension should be noncumulative across a series of covers.

The slots in the hinges permit the covers to be shifted \(\pm 0.16\) inch \(\pm 4.1 \mathrm{~mm}\)), which permits some rotation of a cover if a corner of a cover is too high or too low. This is accomplished by removing the center locating screw in the hinge and adjusting the hinge through its
slots.

ADJUST THE COVER GAPS
C Hinge-end adjustment: Loosen the top hinge mounting screws and rotate the hinge pivot hole. Retighten the screws.
Strike-end adjustment: Loosen the top strike mounting screws and slide the strike Retighten the screws.

3033 \begin{tabular}{|c|c|c|c|}
\hline \(\begin{array}{c}\text { Part } \\
8271638\end{array}\) & \(\begin{array}{c}\text { EC No. } \\
\text { Date }\end{array}\) & \(\begin{array}{c}276474 \\
\text { 20,an78 }\end{array}\) & \(\begin{array}{l}278707 \\
\text { 3May78 }\end{array}\) \\
\hline
\end{tabular} Copyright International Business Machines Corporation 1978

\section*{CHECK THE COVER LATCHES}

When the covers are adjusted correctly, the top and bottom latch bolts hould slide up the strike and engage their slots and strikes without the use of the center coin actuator. Ensure fuil closure and latching. See "Adjust the Cover Latches" on this page

\section*{adust the cover latches}
1. Loosen the locking nut on the bolt rod.
2. Turn the bolt rod to advance or retract the latch bolt.
3. Check the adjustment. (See "Check the Cover Latches" on this page.)

绪 hits the frame mounted strike without sliding up the strike, retract the bolt farther. advance the bolt.
. Recheck and tighten the locking nut.
5. If full adjustment is not possible, use the coin actuator to close the covers. Apply pressure to the top and botom of the covers by using your hand and knee, while turning the coin actuator.

\section*{INSPECT THE EMC HARDWARE}
1. The door seals are made of conductive rubber, and the paint on the frames is conductive. Ensure that the door seals touch the frames properly. See adjustments on this page.
2. Ensure that the seals between the frames touch each other
3. Braided straps are installed on frames 05 and 07 (and frame 06 , if present). Ensure that the straps are installed
4. Ground straps or ground clamps are installed on the console inter frame cables. Ensure that the straps or clamps are installed
5. The interface connectors are plated with aluminum. Ensure that the aluminum plating contacts the metal tailgate.
6. Ensure that all tailgate covers are installed.
7. Ensure that the bus bars, terminal strips, and tri-lead cabies on the power supolies are connected.
8. The paint on the perforated metal screens on the top of the frames is conductive. Ensure that the mounting screws are tight.
9. Ensure that the braided pigtails to all the shielded interface cables are attached tightly to the metal tailgate.
10. Ensure that the seal on the IPO panel touches the covers.

Install the Blower Assemblies

\section*{CAUTION \\ Check that the thermal switches, located on the screen of blower (part \\ \(1574861,50 \mathrm{~Hz}\) or part \(1574864,60 \mathrm{~Hz}\)) for frame 03 , are marked
\(130^{\circ} \mathrm{F}\). Blowers for the \\ \(130^{\circ} \mathrm{F}\).
\({ }^{115^{\circ}} \mathrm{F}\).}
1. Install the blowers (part \(1574861,50 \mathrm{~Hz}\) or part 1574864, 60 Hz) in positions marked (A).
2. Install the blower (part 1574925, 50 Hz or part 1574924, 60 Hz)

Install the blower (part 1
in the position marked
3. See INST 370 to install the covers.
\(\square\)
Install the Top Housings
If the complex was received without the top housings installed, connect \(\square\) them with the parts shown in the accompanying chart. Connect the | blower cables. (See INST 231, step 12.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Housings, Grids, and Supports for 3033 and 3042 Model 2} & \multicolumn{3}{|c|}{3042 Model 1} & \multicolumn{3}{|l|}{Extended Channels Feature} \\
\hline Loc & Part & Tatr & Description & Location & Part & aty & Location & Part & Otv & Location \\
\hline (1) & 4872942 & 3 & Grid & Fra & - & & - & - & - & - \\
\hline (2) & 4872943 & 1 & Grid & Frame 08 & 4872943 & 3 & Frame 03, 08 & - & - & - \\
\hline (3) & 1835319 & 2 & Grid & Frame 05 & - & & - & 83531 & 2 & Frame 06 \\
\hline (4) & 1835318 & 1 & Grid & Frame 05 & - & & - & 183531 & 1 & Frame \\
\hline (5) & 4872944 & 2 & Grid & Frame 07 & - & & - & 4872949 & 1 & Frame \\
\hline (6) & 4872959 & 1 & Top housing & Frame 04 & - & & - & - & - & - \\
\hline (7) & 48872936 & 2 & Housing support & Frame 02-04 & 4872936 & 1 & Frame 02 & - & - & - \\
\hline (8) & 4872947 & 1 & Top housing asm & Frame 03 & 4432065 & 1 & Frame 03 & - & - & - \\
\hline (9) & 4872937 & 1 & Housing support & Frame 03 & 443042 & 1 & Frame 03 & - & - & - \\
\hline (10) & 4872948 & 1 & Top housing & Frame 08 & 4872948 & 1 & Frame 08 & - & - & - \\
\hline (11) & 4872940 & 1 & Housing support & Frame 08 & 4872940 & 1 & Frame 08 & - & - & - \\
\hline (12) & 4872946 & 1 & Top housing smm & Frame 02 & 4872946 & 1 & Frame 02 & - & - & - \\
\hline (13) & 4872945 & 1 & Top housing asm & Frame 01 & 4432066 & 1 & Frame 01 & - & - & - \\
\hline (14) & 4872938 & 1 & Housing support & Frame 01 & 4432064 & 1 & Frame 01 & - & - & - \\
\hline (15) & 4872934 & 1 & Top housing & Frame 05 & - & & - & 4872934 & 1 & Frame 06 \\
\hline (16) & 4872939 & 1 & Housing support & Frame 05 & - & & - & 4872939 & 1 & Frame 06 \\
\hline (1) & 4872933 & 1 & Top housing & Frame 07 & - & & - & 4873279 & 1 & Frame 07 \\
\hline (18) & 4872941 & 1 & Housing suppor & Frame 07 & - & & - & - & - & \\
\hline
\end{tabular}

| Install the Covers on the Processor Complex and the Multiprocessor Complex

Step
Cplt
. Install the covers using the charts.
Note: The covers should be aligned across the top and with an ever Nap between each cover. (See INST 355.

Use the leveling pads to adjust the height; adjust the hinges for an
even gap between the covers.
2. Return to INST 350
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Det } \\
& \text { Loc }
\end{aligned}
\]} & \multicolumn{7}{|c|}{Painted Assemblies (Includes Hardware)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Basic } \\
& \text { Mach } \\
& \text { Maty }
\end{aligned}
\]} & \multirow[t]{2}{*}{Extended Channels Feature Oty} \\
\hline & White & Rose & Blue & Yeilow & Grav & Brown & Green & & \\
\hline (A) & 5609614 & 5609652 & 5609680 & 5609708 & 5612530 & 5612576 & 5612612 & 2 & - \\
\hline (8) & 5609616 & 5609654 & 5609682 & 5609710 & 5612532 & 5612578 & 5612614 & 3 & - \\
\hline (c) & 5609618 & 5609656 & 5609684 & 5609712 & 5612534 & 5612580 & 5612616 & 1 & - \\
\hline (D) & 5609620 & 5609658 & 5609686 & 5609714 & 5612536 & 5612582 & 5612618 & 3 & - \\
\hline (E) & 5609622 & 5609660 & 5609688 & 5609716 & 5612538 & 5612584 & 5612620 & 1 & - \\
\hline © & 5609624 & 5609662 & 5609690 & 5609718 & 5612540 & 5612586 & 5612622 & 2 & - \\
\hline (6) & 5609626 & 5609664 & 5609692 & 5609720 & 5612542 & 5612588 & 5612624 & 1 & - \\
\hline \(\stackrel{(}{+}\) & 5609628 & 5609666 & 5609694 & 5609722 & 5612544 & 5612590 & 5612626 & 2 & 1 \\
\hline (1) & 5609830 & 5609668 & 5609696 & 5609724 & 5612546 & 5612592 & 5612628 & 1 & - \\
\hline (®) & 5609632 & 5609870 & 5609698 & 5609726 & 5612548 & 5612594 & 5612630 & 1 & 2 \\
\hline (1) & 5609634 & 5609672 & 5609700 & 5609728 & 5612550 & 5612596 & 5612632 & 1 & - \\
\hline (1) & 5609636 & 5609674 & 5609702 & 5609730 & 5612552 & 5612598 & 5612634 & 0 & 1 \\
\hline (1) & 5609638 & 5609676 & 5609704 & 5609732 & 5612554 & 5612600 & 5612636 & 1 & - \\
\hline (P) & 5609639 & 5609677 & 5609705 & 5609733 & 5612565 & 5612570 & 5612647 & 1 & - \\
\hline (a) & 5609641 & 5609678 & 5609706 & 5609734 & 5612560 & 5612571 & 5612648 & 1 & - \\
\hline (8) & 5609644 & 5609644 & 5609644 & 5609644 & 5609644 & 5609644 & 5609644 & 1 & - \\
\hline (5) & 5699646 & 5609646 & 5609646 & 5609646 & 5609646 & 5609646 & 5609646 & 1 & - \\
\hline (T) & 5612668 & 5612668 & 5612668 & 5612668 & 5612668 & 5612668 & 5612668 & 1 & - \\
\hline (1) & 5609650 & 5609650 & 5609650 & 5609650 & 5609650 & 5609650 & 5609650 & 1 & - \\
\hline
\end{tabular}

CDU and PDU Cover Location Chart
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{7}{|c|}{Painted Assemblies} & Basic \\
\hline Loc & White & Rose & Blue & Vellow & Grav & Brown & Green & aty \\
\hline (A) & 5609626 & 5609664 & 5609692 & 5609720 & 5612542 & 5612588 & 5612624 & 1 \\
\hline (B) & 5609628 & 5609666 & 5609694 & 5609722 & 5612544 & 5612590 & 5612626 & 2 \\
\hline (c) & 5609634 & 5609672 & 5609700 & 5609728 & 5612550 & 5612596 & 5612632 & 1 \\
\hline (\({ }^{\text {a }}\) & 5609736 & 5609738 & 5609740 & 5609742 & 5612556 & 5612602 & 5612638 & \\
\hline (\({ }^{\text {(}}\) & 5609632 & 5609670 & 5609698 & 5609726 & 5612548 & 5612594 & 5612630 & 1 \\
\hline (\({ }^{\text {¢ }}\) & 5609650 & 5609650 & 5609650 & 5609650 & 5609650 & 5609650 & 5609650 & 1 \\
\hline (6) & 5609648 & 5609648 & 5609648 & 5609648 & 5609648 & 5609648 & 5609648 & \\
\hline
\end{tabular}

3033 \(\square\)
© Copvright International Businese Mechines Corporation 1979

\section*{Install the Covers on the Attached Processor Complex}
I. Install the covers using the charts.

Note: The covers should be aligned across the top and with an even
gap between each cover. ISee INST 355 .
Use the leveling pads to adjust the height: adjust the hinges for an
even gap between the covers.
2. Return to INST 350 .

Processor Cover Location Chart
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{7}{|c|}{Painted Assemblies (Includes Hardware)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Basich } \\
& \text { Mach } \\
& \text { ary }
\end{aligned}
\]} \\
\hline Loc & White & Rose & Blue & Vellow & Gray & Brown & Green & \\
\hline (®) & 5609614 & 5609652 & 5609680 & 5609708 & 5612530 & 5612576 & 5612612 & 2 \\
\hline (8) & 5609616 & 5609654 & 5609682 & 5609710 & 5612532 & 5612578 & 5612614 & 1 \\
\hline C & 5699620 & 5609658 & 5609686 & 5609714 & 5612536 & 5612582 & 5612618 & 1 \\
\hline (0) & 5609622 & 5609660 & 5609688 & 5609716 & 5612538 & 5612584 & 5612620 & 2 \\
\hline (E) & 5609624 & 5609662 & 560969 & 5609718 & 5612540 & 5612586 & 5612622 & 1 \\
\hline (E) & 5609626 & 5609664 & 5609692 & 5609720 & 5612542 & 5612588 & 5612624 & 1 \\
\hline (6) & 5609641 & 5609678 & 5609706 & 5609734 & 5612566 & 5612 & 5612648 & 1 \\
\hline (4) & 8324813 & 8324814 & 8324815 & 8324816 & 8324817 & 8324818 & 8324819 & 1 \\
\hline (1) & 5609644 & 5609644 & 5609644 & 5609644 & 5609644 & 5609644 & 5609644 & 2 \\
\hline ® & 5609646 & 5609646 & 5609646 & 5609646 & 5609646 & 5609646 & 5609646 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{Det} \\
\mathrm{Lox}
\end{gathered}
\]} & \multicolumn{7}{|c|}{Painted Assernblies} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \text { Basic } \\
& \begin{array}{l}
\text { Mach }
\end{array} \\
& \text { ash }
\end{aligned}\right.
\]} \\
\hline & White & Rose & Blue & Yellow & Gray & Brown & Green & \\
\hline (A) & 5609626 & 5609664 & 5609692 & 5609720 & 5612542 & 5612588 & 5612624 & \\
\hline (8) & 5609628 & 5609666 & 5609694 & 5609722 & 5612544 & 5612590 & 5612626 & \\
\hline (c) & 5609634 & 5609672 & 5609700 & 5609728 & 5612550 & 5612596 & 5612632 & \\
\hline (& 5609736 & 5609738 & 5609740 & 5609742 & 5612556 & 5612602 & 5612638 & 1 \\
\hline (\({ }^{\text {c }}\) & 5609632 & 5609670 & 5609698 & 5609726 & 5612548 & 5612994 & 5612630 & 1 \\
\hline (\(¢\) & 5609650 & 650 & 5609650 & 5609650 & 5609650 & 5609650 & 5609650 & \\
\hline (6) & 5609648 & 5609648 & 5609648 & 5609648 & 5609648 & 5609648 & 56096 & 1 \\
\hline
\end{tabular}

Note: See the 3033 CPU Microdiagnostic User's Guide (part 5608767. or part 4466131 for the extended addressing feature) if problems are encountered in the following steps.
1. IMPL the first 3033 Processor microdiagnostic diskette. The PRO. CESSOR MICRODIAGNOSTIC SUPERVISOR frame appears on the display.
2. Set PORTS THIS SIDE on the \(\mathrm{C1}\) frame to \(0,2,3\), and 4 .
3. Set CURRENT ARRAY on the C 2 frame according to the followingchart.
Note: The remote array will appear blanked if the remote processor is powered down or not installed. The following examples are for a 24M-byte UP or AP complex or for an MP complex with 16M bytes of storage on each side. If less storage is installed, the maximum storage size will appear.
\begin{tabular}{|c|c|c|c|c|}
\hline UP, Model & \multicolumn{2}{|r|}{MP} & \multicolumn{2}{|c|}{\({ }^{\text {AP }}\)} \\
\hline Groups N and S & 3033 & 3033 & 3042 & 3033 \\
\hline L00-P00 & L00=PR0 & L00=PR0 & L00 P 1 & L00 \(=\) P00 \\
\hline L02-P02 & L02=PL2 & L02=PL2. & L02-P1 & L02=P02 \\
\hline L04 \(=\) P04 & L04 \({ }^{\text {PPR4 }}\) & L04=PR4 & L04-P1 & L04-P04 \\
\hline L06-P06 & L06-PL6 & L06-PL6 & L06-P1 & L06=P06 \\
\hline L08 \(\mathrm{PPO}^{\text {P }}\) & L08=PR8 & L08=PR8 & L08=P1 & L08=P08 \\
\hline LOA \(=\) P0A & LOA \(=\) PLA & LOA=PLA & LOA \(=\) P1 & LOA \(=\) POA \\
\hline LOC=POC & LOC=PRC & LOC=PRC & LOC=P1 & LOC=POC \\
\hline LOE \(=\) POE & LOE=PLE & LOE=PLE & LOE=P1 & LOE=P0E \\
\hline \multicolumn{5}{|l|}{With extended addressing feature:} \\
\hline L10-P10 & L10=PLO & L10=PLO & L10=P1 & L10=P10 \\
\hline L12-P12 & L12=PR2 & L12=PR2 & L12-P1 & L12-P12 \\
\hline L14 P1 \(14^{\text {d }}\) & L14=PL4 & L14-PL4 & L14-P1 & L14-P14 \\
\hline L16-P16 & L16-PR6 & L16-PR6 & L16-P! & L16-P16 \\
\hline L18=P1 & L18=PL8 & L18=PL8 & L18=P1 & L18=P1 \\
\hline LIA \(\mathrm{PP}^{\text {P }}\) & LIA \(=\) PRA & LIA \(=\) PRA & L1A \(=\) P1 & L1A \(=\) PI \\
\hline LIC=P1 & LIC=PLC & LIC=PLC & L1c \(=\) P1 & L1C=P1 \\
\hline LIE=PI & LIE=PRE & LIE=PRE & LIEPP1 & L1E=P1 \\
\hline
\end{tabular}
4. Select the MICRODIAGNOSTIC frame.
5. To run the test, key M5, RX (RXV for extended addressing feature) and press ENTER. (Refer to the 3033 CPU Microdiagnostic User's Guide for automatic bias/slue options.)
6. When the test is complete, load diskette 2 and repeat steps 4 and 5 .
7. When the test is complete, load diskette 3 and repeat steps 4 and 5 .
8. Repeat steps 4 through 7 with +120 mV and -90 mV bias.
9. When the test is complete, perform an IMPL of either diskette TMAP1 for the 3033 Models \(U\) and \(N\) or diskette TMAPS for the 3033 Model S . Microdiagnostic test P3F8 and the trace function diagnostic test are run
10. When the trace function is complete, go to the next section.

\section*{RUN THE SYSTEM IMPL TEST}
1. Insert the system diskette into each diskette drive,
2. Set the Operator Console on IMPL switch to A.
3. Set the Power Select switch to System.
4. Press the Power On pushbutton and check that the switch is backlighted white
Note: An IMPL is performed automatically on both console stations.
5. Ensure that console station \(A\) is displaying the PR frame and that console station B is displaying the CD frame.
run the channel microdiagnostic test

Note: Do not perform an IMPL on one console station until the IMPL completed on the other station
1. Perform an IMPL with the channel microdiagnostic diskettes and run all the internal channel microdiagnostic tests.
2. Select and run director to processor interconnection microdiagnostic lests PC00 through PC80 (third processor diskette).
3. If the CTCA feature is installed, run channel-to-channel adapter microdiagnostic tests. (See INST 381.)

\section*{un the hardcore tests}
1. Configure the UCWs using the CD frame. Refer to MM Volume 1.
2. Select the \(O P\) frame.
3. Set the load unit address and IPL the hardcore program into processor storage
4. Verify that the hardcore program runs error free

Note: Errors are indicated when the processor enters the wait sate. Reference must be made to the program listing and th manually Other tests will enter a scophting loop to be prepared interruption is executed.
5. When hardcore testing is completed, the NDM must be loaded successfully. The SRT, DM I/O, SDT, and CMT configurations are prepared automatically within the monitor
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3033 & Part
8271639 & EC No. Date & 276474 20Jan78 & 276707 3May78 & 278891 17Nov78 & 388707 1Dec79 & 208332 & 208335 & \[
\begin{aligned}
& 211736 \\
& \text { SJens1 }
\end{aligned}
\] & 213545 15Jun81 & 213791 28Aug81 & 213562
4 Sep 81 & \[
\begin{aligned}
& 214694 \\
& \text { 9Aor82 }
\end{aligned}
\] \\
\hline
\end{tabular}
test the channel-to-channel adapter feature (ctcai

AND CTCA2) Stp
Use the following procedure to run the CTCA tests on CTCA1:
1. Refer to LADS page AA930 and plug the device unit address.
2. Refer to LADS page AA921 and plug the CTCA for not data in mode.
3. Connect the wrap cables (part 4867253) as shown in MM Volume 1. Diagram 2-409.
4. Load microdiagnostic diskette DIRUD
5. Refer to microdiagnostic listing to find operating procedure fortest ANP and run tests ANP through ANW.
6. When the tests run successfully, remove the wrap cables and con-nect the channels for normal system configuration
7. Refer to LADS page AA921 and plug CTCA.

Note: For a 3033 CTCA connection to an IBM 2860 Selecto Channel (with or without the 3803 Model 2 attachment feature) plug mode selection for NO DATA.IN MODE

Use the following procedure to run the CTCA tests on CTCA2:
1. Refer to LADS page AA930 and plug the device unit address.
2. Refer to LADS page AA921 and plug the CTCA for not data mode.
3. Connect the wrap cables (part 4867253) as shown in MM Volume 1 . Diagram 2-409.
4. Load microdiagnostic diskette DIRUD
5. Refer to microdiagnostic listing to find operating procedure for test ANP and run tests ANP through ANW.
6. When the tests run successfully, remove the wrap cables and con. When the tests run successfully, remove the wrap
nect the channels for normal system configuration.
7. Refer to LADS page AA921 and plug CTCA.

Note: For a 3033 CTCA connection to an IBM 2860 Selector Channel (with or without the 3803 Model 2 attachment feature). plug mode selection for NO DATA-IN MODE.

\section*{Connect the Data Communications (TP) Cable and Check ut the TP Facilities}

\section*{TP HARDWARE DEFINITION}

The type of data communications hardware (modems, cables, etc.) required depends on the country in which the 3036 is being installed.
four basic TP hardware packages are used in
1. United States and Canada
. Japa
4. Other world trade countries

Note: The J14 connector, referred to in following text, is in the EMC enclosure of frame 11 .

\section*{United States and Canad}

An IBM modem (38LS), included under the covers of the 3036 (location 10A-A1 (1), utilizes a two-wire transmit-receive interface to he type of CDT used for data access arrangement. (CDT is a universal y common carriers to designate a form of data
two wire cable is provided to connect J14 to the data access arrange ment.

\section*{instalation Steps}
. Ensure that the modem wrap test runs error free.
2. Install the cable (part 1311356) from J14 to the telephone data coupler.
3. Check the card plugging.
a. Ensure that the modem control card (10A-A1T2) is plugged. See LADs page PA003.
. Check the transmit level.
a. Ensure that the switches on the modem card (10A-A1U2) are set up. See LADs page PA004.
Note. The transmit-level switches on the modem card should be set to the value that the common carrier has marked on the cover the data coupler. See LADs page PAOO5.

\section*{Check Out Procedur}

See "Common TP Check Out Procedure" in INST 389.

Japan
The modem used in Japan utilizes only the switched-network backup portion of the leased-line modem for attachment to the switched network. Connection to the telephone line is by means of the Japanesesupplied network control unit (NTT-NCU, type MM2) which includ

Installation Steps
1. Ensure that the modem wrap tests run error free
2. Install cable (part 1311357) from J14 to the telephone set.
3. Check the card plugging.
a. Ensure that the switches on the modem card (10A-A1U2) are set
a.
are set up. See LADs page PA0 modem control card (10A-A1T2)
4. Check the transmit level

Set up the transmit-level switches as necessary to meet local requirements. See LADs page PA0O5.

Check Out Procedure
See "Common TP Check Out Procedure" in INST 389

Italy
The modem used in Italy is intended for use in Italy only, but it may ultimately be used in other countries. The World Trade public switched-network adapter (line plate) connects
the iBM-integrated modem to the two-wire telephone line of the public
switched network; the adapter controls the switching of the teleohone switched network; the adapter controls the switching of the telephone modem are under the covers of the 3036 .

\section*{Installation Steps}
1. Ensure that the modem wrap test runs error free. The wrap test for this configuration checks out the modem card with or without the ine plate and telephone set attached
Note: The wrap test will fail if the line plate is connected to 11 and the telephone set when the telephone is off the hook. The test must be run with the telephone on the hook.
2. Install the modem cable.
a. Connect the line plate cable (part 1311370) to the line plate and J 4 connector. The line plate is mounted in the EMC enclosure. . Install cable (part 1311377) from the line plate to the telephon set
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Line Name and Card Pin} & \multicolumn{2}{|l|}{Cable Connections (part 1311370)} \\
\hline Line Name & \begin{tabular}{l}
38LS Pin \\
10A-A1U2
\end{tabular} & P14 Pin & Line Plate Connector Pin (See Note) \\
\hline Datatip & 005/008 & 9 & A08 \\
\hline Data Ring & 008 & 10 & 808 \\
\hline Transter Relay & 603 & 4 & 805 \\
\hline Current Detect 1 & 610 & 5 & 801 \\
\hline Current Detect 2 & 613 & 22 & A02 \\
\hline +8.5 Vols & 611 & 21 & 803 \\
\hline -3.5 Volt & 109 & 6 & 807 \\
\hline Data Indicate & N/A & 11 & A04 \\
\hline
\end{tabular}

Figure A. Connections, 38 LS to Line Plate (For Reference Only)

Figure B. Line Box (Part 1734232)

\section*{elephone Connections}

TB1.6 and TB1.7 - Telephone set
TB1.8 and TB1.9 - Telephone lin
fter making preceding telephone connections, perform the following
1. Check the card plugging.
. Ensure that the switches on the 38LS modem are set up. Sea 3036 LADs page PA004
b. Check the plugs on the modem control card (10A-A1T2). See LADs page PAOO3.
a. Check that the transmit-level switches meet local requirements. See LADs page PA005.
Note: When the transmit level on this configuration is being set, line-plate insertion loss of 1.5 DBM must be compensated for
3. Check the line-plate plugs. The label on the line-plate cover provides the correct setting.

Connect the Data Communication (TP) Cable and Check Out the TP Facilities (Continued)

\section*{Italy (Continued)}
4. The telephone line dc level is adjusted between 20 mA and 70 mA Balance the line between talk status and data status as follows:
a. Using a voltmeter on the 50 V dc scale, monitor between TB1-8
and 9 . and
b. Set the data station to talk status and remove the handset from the dataphone.
c. Record the monitored voltage level.
d. Select a strap from those listed in Figure A.
e. Set the data station to data status.
f. If the monitored voltage level is different from step 3 , use the strap positions between the parentheses to achieve the best possible voltage balance.
g. Replace the handset on the telephone and set the data station to talk status.
Select status by executing the appropriate sequence
Talk Status:
1. From the UT frame, select port 0
2. Enter and execute put command 5 C with data equal to 01 . This resets 'data terminal ready' and places the line plate in talk status (R1 not picked).
Data Status:
(TP Active-Key Reset pushbutton backlight on)
1. From the UT frame, select port 0 .
2. Enter and execute put command 5 C with data equal to 08 . This sets 'data terminal ready'.
3. Remove the handset from the telephone. Relay R1 on the line plate is energized and the DATA SET READY LED on the display bezel turns on. The DATA SET READY LED indicates that 'data status' is active.

Note: The strap positions given between parrentheses can be used in data
status to refine the strap selection. Use only the indicated strap positions.
Figure A. Line-Plate Strapping Table

Checkout Procedure (Italy)
Step
Cplt
. Ensure that the telephone operates normally for voice communica tions.
2. Activate the Activate TP switch on the console operator panel.
3. At console station \(B\), select the \(U T\) frame
4. Select port 0 ; insert and execute a put command 5 C with data equal to 09 . This activates 'data terminal ready' to the modem card.
5. With 'data terminal ready' active, remove the handset from th telephone. The DATA SET READY LED should be lighted on the display, and the telephone handset should not be connected to the line. (The telephone handset should be dead.
6. On the UT frame, change the put data to 01 and again execute the put command. (Resets 'data terminal ready'.)

The DATA SET READY LED should go off, and the telephone should operate normally.
8. Reset the TP Active--Key Reset pushbutton on the console operator panel.
9. Continue with "Common TP Checkout Procedure" in this Installa tion Procedure.

\section*{World Trade Countries Using External Modems}

The configuration used in some World Trade countries utilizes an external modem interface card (10A-A1U2) that interfaces to the external modem(s) required for specific countries using a 25 -pin cable.

\section*{Installation Steps}
1. Ensure that the modem wrap test runs error free

Note: In this configuration, the modem wrap test checks out the Note: in this configuration, the modem wrap test checks our the
TP hardware up to the line drivers and receivers on the EIA/CCITT interface card (10A.A1U2). The wrap test does not check out th external modem.
2. Install the modem cable (part 1311366) from J14 to the externa modem. Two types of cable are used with this configuration. A special cable is provided to meet requirements within the United Kingdom. (See "United Kingdom Only" in following text.)
3. Plug the cards:
a. Check the plugging for the modem control card (10A.A1T2) on LADS page PAOO4.
b. Check the plugging for the EIA/CCITT interface card (10A A1U2) on LADS page PAOO4.

\section*{Checkout Procedure}

See "Common TP Checkout Procedure" in following text.

\section*{Common TP Checkout Procedure}

Before an attempt is made to establish a data link, the diskette used must be initialized on the TP frame. Follow the instructions in Volume tof the maintenance manual under "TP Link Frame" to initialize the ID record and the customer security level.
1. Ensure that the Activate TP switch on the console operator panel is in the off position.
2. Select the TP frame on console station \(B\)
3. From the dial telephone, dial another telephone accessible to you Answer the other telephone and leave it off the hook.
4. Activate the Activate \(T P\) switch on the operator panel
5. On the TP frame, select C 1 , which activates 'request to send' and 'data terminal ready' to the modem
Note: Locations (for example, Italy) utilizing the hardware con figuration consisting of the integrated World Trade 38LS and line plate should ignore step 6
6. Place the data-access arrangement in data mode.
7. Check that the carrier tone can be heard on the dialed telephone.
8. Reselect \(\mathrm{C1}\) on the TP frame. (This drops 'request to send' and data terminal ready'.) Ensure that the carrier tone is no longer present on the dialed telephone
9. Reset 'TP active' and hang up both telephones. Place the dataaccess arrangement in talk mode if applicable.
10. Call your remote software and hardware support location and establish a data link.
United Kingdom Only
On the modem used in the United Kingdom, the cable (part 1311368) that connects J14 to the external modem is designed with an electrical safety barrier built into the cable assembly. The 3036 is received with end of this cable (part 1311368) to the external modem
1. Check the card plugging:
a. Check the plugging for the modem control card (10A-A1T2) on LADS page PA003
Check the plugging for EIA/CCITT interface card (10A A1U2) on LADS page PAOOO.
2. See "Common TP Checkout Procedure" in preceding text.

\section*{Processor Functional Diagnostic Tests}

Run all functional diagnostic tests at normal voltage. Refer to INST 395 and run vibration test. Return here and run functional diagnostic tests with bias. Set the margin controls to +120 mV and -90 mV on the VM frame.
Note: See the NDM User's Guice for more information. The functional diagnostic tests are on microfiche.

Run the following tests

If the extended addressing feature is installed, run stand-alone test B3E1 \(\checkmark\) (refer to the microfiche listing).

STORAGE FUNCTIONAL DIAGNOSTIC TESTS

\section*{Notes:}
1. Ensure that all storage is online
2. When making bias runs, bypass long-running routines by tuming on SS19 for test 3A6, 3AA or 3AB; SS10 for test 3CC or SS8 for test 3CF.

If Model U24 or A24 is installed, bias frame 33 simultaneously with the other
frames in the processor complex as described in the charts under "Bias Frame
"frames in the processor complex as described in the charts under "Bias Frame

\section*{BIAS FRAME 33}

Bias frame 33 by manually adjusting the power supplies as shown in Chart 1 and by monitoring the voltage as shown in Chart 2. See INST 326 for locations.
Chart 1
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l}
Frame 33 \\
Regulator \\
Or PS
\end{tabular} & \begin{tabular}{l}
Nominal \\
Statraing \\
Voltage
\end{tabular} & \(+3 \%\) Bias & \(-3 \%\) Bias & \begin{tabular}{l}
Restore \\
Nominal \\
Voltage
\end{tabular} \\
\hline \begin{tabular}{l}
PS2 \\
PS3 \\
PS5
\end{tabular} & \(+5.000 \pm 0.010 \mathrm{~V} \mathrm{dc}\) & +5.150 & +4.850 & +5.000 \\
\hline RG1 & \(+1.300 \pm 0.010 \mathrm{Vdc}\) & +1.339 & +1.261 & +1.300 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Regulator or PS & \[
\begin{aligned}
& \text { Voltage } \\
& \pm 0.01 \mathrm{~V}
\end{aligned}
\] & Voltage
Pin & Reference
Pin \\
\hline RG1 & +1.3 & 33A-A436-14 & 33A-A436-01 \\
\hline PS2 & +5 & 33A-A305-18 & 33A-A305.14 \\
\hline PS3 & +5 & 33A-A427.18 & 33A-A427.14 \\
\hline PS5 & +5 & 33A-A205-1 & 33A-A205-1 \\
\hline
\end{tabular}

PROCESSOR SPECIAL FUNCTIONAL DIAGNOSTIC TESTS

\section*{Step}

Run the following test
Note: Ensure that the directors are in process mode.
\begin{tabular}{|c|c|c|c|c|}
\hline Test & Description & Normal & 120 m & mv \\
\hline \(8357^{1}\) & DAT random & \(\checkmark\) & \(\checkmark\) & \(\sim\) \\
\hline 83E8 \({ }^{1}\) & DAT random comparer (with extended addressing feature) & \(\checkmark\) & \(\checkmark\) & \(\angle\) \\
\hline 83F2 & Console processor functional diagnostic & & & \\
\hline F4E1 & Direct control-wrap system to system (requires test cable, part 2227492) Connect the cable in frame 08 tailgate. W5 to W6 & & & \\
\hline
\end{tabular}
\({ }^{1}\) If Model U24 or A24 is installed, bias frame 33 simultaneously with the other frames in the processor complex as described in the charts under "Bias frame 33."

\section*{PROCESSOR MAINTENANCE MODE DIAGNOSTIC TESTS}

Under control of the PT and C2 frames, run NDM functional diag nostic tests B101 through B3E7 (B101 through B3E8 with extended addressing feature) once for each function combination shown in the following chart:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Run & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Ecc & E & E & E & E & E & E \\
\hline INT TIMER & 0 & E & 0 & 0 & D & E \\
\hline 1/E OVLAP & 0 & E & 0 & 0 & E & D \\
\hline BUFFER & 0 & E & 0 & E & D & 0 \\
\hline retry & 0 & E & E & - & 0 & D \\
\hline dLat/stok & D & E & D & E & E & 0 \\
\hline interleave MODE & 1 & s & 1 & 1 & 1 & \\
\hline Legend: & & & \multicolumn{4}{|l|}{Run these tests as required.} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{E Enabled}} \\
\hline & & \multicolumn{5}{|c|}{o Disabited} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{I
S
8-way,
Serial}} \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3033 & \[
\begin{aligned}
& \text { Part } \\
& \mathbf{8 2 7 1 6 4 0}
\end{aligned}
\] & EC No.
Date & \[
\begin{aligned}
& 276474 \\
& 20 \mathrm{Jan} 78
\end{aligned}
\] & \[
\begin{aligned}
& 276707 \\
& 3 \text { May } 78 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 278357 \\
& 19 \mathrm{Jul78}
\end{aligned}
\] & \[
\begin{aligned}
& 278891 \\
& \text { 17Nov78 }
\end{aligned}
\] & 279895 26Jan79 & \begin{tabular}{l}
388692 \\
10Aug79
\end{tabular} & \[
388707
\]
1Dec79 & \[
208332
\]
IMar80 & \[
\begin{aligned}
& 208335 \\
& \text { 1Jun80 }
\end{aligned}
\] & \[
211786
\]
5Jan81 & \begin{tabular}{l}
213791 \\
28Aug81
\end{tabular} & \[
213562
\]
4Sep81 & \[
\begin{aligned}
& 214694 \\
& 9 \text { Apr82 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Perform the Card Vibration Test}

\section*{general instructions}
1. The vibration test should be performed after running all diagnostic tests error free and before running the diagnostic tests with bias.
2. The minimum vibration time should be 1 minute for each board
3. All logic and power adapter cards should be vibrated
4. If an error is encountered during the vibration test, reseat the sus pected card and revibrate all cards in the failing board.
5. If the suspected card is still vibration sensitive, replace the card and revibrate all cards in the board
6. If possible, an \(1 / O\) device should be attached to each channel. If no I/O device is available, do not vibrate the cards in the following director boards: 50W-A2, A3, B1, B2, and B3.
7. Run the selected functional diegnostic tests in hard-stop mode during the vibration tests.
8. The tool used for vibrating the cards in the 3033 complex is the felt-tipped vibration tool (part 8679242). The vibration tool is provided with the console shipping group.
9. To vibrate the cards, strike the center section of the card holder at least three times with a short crisp blow; use wrist action only. To vibrate the end cards (board positions B and U), use the handle of the vibration tool.
10. Adhere to the power-caution labels when reseating or replacing the cards.

\section*{Perform the following procedure}

CAUTION
Because electrostatic discharges can damage logic and storage card modules, touch frame ground before handling the cards.

Note: After vibrating each board, ensure that all cards are properly seated.
1. Power system: With full system power up, vibrate the power adapter cards in frames 04, 07, and 15 and in console board 11C-A1.
2. Logic cards: Configure the console to the A -side and run diagnostic test B3E7 with sense switch 8 (continuous run) on; vibrate all cards in the following locations:
a. Console boards 10A-A1, 10A.B1, and 10B-A
b. All cards in frames 01,02 , and 03

Note: Observe general instruction 6 when vibrating the director cards.

1 c. All cards in frames 05 and 06 as installed
3. Console B -side: Reconfigure the console to the B -side, restart diag nostic test B3E7, and vibrate all cards in console board 10A-B1.
4. Trace board: Run diagnostic test B3F8 and vibrate all cards in the trace board (03A-A1).
5. 3033 AP and MP: Use the same procedure as for 3033 UP, but in clude all logic and power adapter cards in frame 09

Return to INST 390 and run functional diagnostic tests with bias.

\section*{Gate EMC Test Plate Zap Procedure}
| Go to INST 401 for the frame 33 zapping procedure.

\section*{DANGER}

Because the simulator can develop 2.5 kV , avoid touching the vanes or probe tip while the simulator is operating.
Do not leave the simuiator unattended while power is on. Turn of
the power before moving the simulator to the next test position
Do not apply simulator voltage to the equipment circuitry.

\section*{procedure}

Follow the zapping procedure as described in the Gate-EMC Test Plate: Theory of Operation and Parts Catalog. S226-3946. To establist a run level, the system must operate error free for 3 minutes while a run level, the system must operate error free for 3 minutes while
running the B3E7 diagnostic program. Record the run/fail level and error condition on the 3033/3042 Gate-EMC Test Plate Data Sheet, S229.3275.
definition
The minimum run level is the lowest simulator voltage level at which he system should operate error free for 3 minutes, while it is running a specific system diagnostic program.

\section*{ERROR DEFINITION}

Power. Any detected fault or noise is considered to be an error. Monitor the POWER CONTROL frame so that these errors are not verlooked.
Logic: Any error encountered while running test B3E7 without retry.

\section*{references}
- Training Course \(=57427\), SR23.4588

EMC Simulator (Type i) for Figure of Merit Determination
- EMC Simulator (Tyoe 11 Operation Manual, SY27.0109
- Gate-EMC Test Plate: Theory of Operation and Parts Catalog. S226-3946
Run test B3 57 for 3 minutes at each test point. Each test point is identified by an unpainted circle or a cross-hatched circle on the EMC test plate.
In addition to recording zap test data on the 3033/3042 Gate-EMC Test Plate Data Sheet, S229.3275, record the voltage levels and the type of failure on the following chart, as part of the installation record

\section*{danger \\ Because the simulator can develop 2.5 kV , avoid touching the vanes or probe tip while the simulator is operating. \\ Do not leave the simulator unattended while power is on. Turn off the power before moving the simulator to the next test position. \\ Do not apply simulator voltage to the equipment circuitry.}

\section*{ZAP TEST PROCEDURE}

Open or remove the covers as necessary to expose the vertical frame members for zapping test points 1,2 , and 3 .
2. Set up the EMC simulator (type 1) with probe extender (part \(5997540)\). Attach the extender to the vanes so that the probe point is 18 inches (458 mm) above the floor
3. Zap each designated frame member while running diagnostic test B3E7, with the processor complex and directors in hard-stop mode, and with sense switch 8 set on.
To do this, insert the probe point through the paint, perpendicular to the member surface. Run the simulator for 3 minutes at the to the member surface. Run the simulator for 3 minutes at the
voltage level specified on the EMC data sheet. The processor complex should run error free at that level.
\begin{tabular}{|l|l|}
\hline Point & Tested Level \\
\hline 1 & \\
\hline 2 & \\
\hline 3 & \\
\hline
\end{tabular}

3033

\section*{Testing for MP}

Note: If one processor has the extended addrassing feature and the other does not, the extended addressing feature must be disabled (see INST 412).
POWER UP FRAME 09
1. Ensure that all previously removed safety covers are reinstalled.
2. Ensure that all water valves in the complex are turned on.
3. Fill the CDU expansion tank with distilled water to within 4 inches \((101.6 \mathrm{~mm})\) from the top.
4. Check all water connections for leaks.
5. Have the customer turn on the \(415 \cdot \mathrm{~Hz}\) and \(60 \cdot \mathrm{~Hz}\) power supplies.
6. Turn on the customer water supply.
7. Turn the console Power Select switch to the Console position.
8. Press the Power On pushbutton.
9. Turn the CDU Local/Remote switch to the Local position.
10. Turn the Local Pump Select switch to the \(A\) or \(B\) position. The selected pump should run.
11. Check the water level. Fill the expansion tank with distilled water to 4 inches \((101.6 \mathrm{~mm})\) from the top.
12. Check for water leaks at all connections.
Note: If the corrosion inhibitor was installed on feature 5050 MES, skip to step 14. If not, continue at step 13
13. Demineralize the system water and add the corrosion inhibitor (see INST 200).
14. Return the Local Pump Select switch to the Off/Reset position.
15. Return the CDU Local/Remote switch to the Remote position

\section*{test the power.on sequence}
1. Insert processor microdiagnostic diskette DIAG 1.
2. Select the PC frame.
3. Power up the complex, including frame 09. Select DIAG POWER ON on the PC-POWER CONTROL frame at the operator station.
4. Check motor-generator output (see INST 132).
5. Power down the complex.
6. Install EPO cable key 3398 (see INST 172).
7. Set the console Unit Emergency switch to Power Off.
8. Attempt a power-on sequence on both processors. Neither processor should power up.
9. Release the mechanical interlock to reset the Unit Emergency switch.

Step
Cplt

10. Repeat steps 7 through 9 to test the Unit Emergency switch on the other complex.
11. Power up the complex.
12. Check that the Power On pushbutton is backlighted white when power is sequenced on to all the frames.

\section*{adjust the voltage}

Adjust the board-mounted regulators on frame 09 (see INST 320).

\section*{adjust the timing}

Note: If the local or remote oscillators cannot be set, run PDOO.
1. Plug the feature cards and set the timings using LADS section 6.12.
2. Run diagnostic test PDOO on processor microdiagnostic diskette P3 in UP mode.
run the diagnostic tests in uniprocessor mode
1. Perform an IMPL with the customer diskette. If the other processor is not installed or powered down, key in X in response to the prompting message which appears on the NS console.
2. Select the C2 frame on the NS console.
3. Configure the system according to the following chart
\[
\begin{array}{ll}
\text { Function } & \text { Indication } \\
\text { SYSTEM MODE SELECT } & \text { UP MODE } \\
\text { LOCAL PAOC-MCU } & \text { ENABLED } \\
\text { OSCLLLATOR CONTROL } & \text { LOAL MODE }
\end{array}
\] CNsL COMMUNICATION DISABLED

Storage on the local processor should be configured as follows.
Note: The remote array will appear blanked if the remote processor is powered down or not installed. The following example is for a 16 M -byte processor. If fewer than 16 M bytes are installed, the maximum storage size will appear
\(\square\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Local Array}} \\
\hline & \\
\hline Current Build & \[
\text { Processor } 0 \text { (or } 1)
\] \\
\hline L00 PLO & L00=PRO \\
\hline L02 P ¢ 2 & L02-PR2 \\
\hline L04 \(=\) PL4 & L04-PR4 \\
\hline L06-PL6 & L06=PR6 \\
\hline L08-PL8 & L08=PR8 \\
\hline LOA PPLA & LOA =PRA \\
\hline LOC=PLC & LOC=PRC \\
\hline LOE \(=\) PLE & LOE \(=\) Pre \\
\hline \multicolumn{2}{|l|}{With extended addressing feature:} \\
\hline L10=P1 & L10=P1 \\
\hline L12 2 P1 & L12=P1 \\
\hline L14 \(\mathrm{Pl}^{\text {I }}\) & L14=PI \\
\hline L16=PI & L16=P1 \\
\hline L18=P1 & L18=Pi \\
\hline LIA \(=\) P1 & L1A \(=\) P1 \\
\hline & LIC=P1 \\
\hline LIE=P1 & L1E Prı \\
\hline
\end{tabular}

If storage must be configured, key in M1, configure to the above chart, and press the \(A\) key in response to A-ACTIVATE. System mode should appear as valid.
1. Run the channel microdiagnostic test on all channels attached to the local processor (see INST 380)
2. Run all microdiagnostic tests (see INST 380)
3. Run the IMPL test (see INST 380)
4. Run the hardcore tests using NDM (see INST 380)
5. Run the functional tests (see INST 390) and the card vibration test (see INST 395).
| If you are installing a half-duplex MP, skip to "Run the Diagnostic Tests with Bias." If not, continue
6. Repeat steps 1 through 4 using the other processor as the local processor.

Step
Cplt

RUN THE DIAGNOSTIC TESTS FOR MP (CROSSCONFIGURED)
Configure the MP complex to UP mode (cross configured) as follows:
1. Select the C2 frame on the NS console of both processors.
2. Select OSCILLATOR CONTROL 02 (local side system oscillator) on one processor.

3 Ensure that the following are enabled:
MCU MCU COMM PATH
REMOTE PROC.MCU
LOCAL PROC MCU
CNSL COMMUNICATION
4. Key M1, and then configure storage as follows:

Note: The following example is for two 16 M -byte processors. If les storage is installed configure to the maximum storage size
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Local Array \\
Processor 1 (or 0)
\end{tabular} & \begin{tabular}{l}
Remote Array \\
Processor 0 (or 1)
\end{tabular} \\
\hline Current Build & Current Build \\
\hline Lo=PRO & LO=PL \\
\hline L2=PL2 & L2=PR2 \\
\hline L4=PR4 & L4=PL4 \\
\hline L6=PL6 & L6=PR6 \\
\hline L8=PR8 & L8=PLB \\
\hline LA=PLA & LA=PRA \\
\hline LC=PRC & LC=PLC \\
\hline LE=PLE & LE=PRE \\
\hline \multicolumn{2}{|l|}{With extended addressing feature:} \\
\hline L10=P1 & L10=P1 \\
\hline L12=P1 & L12=PI \\
\hline L14-PI & L14-P1 \\
\hline L16-PI & L16-PI \\
\hline L18=P1 & L18=P1 \\
\hline LIA \(=\) PI & \(\underline{L I A}=P \mathrm{P}\) \\
\hline LIC=PI & L1C=P1 \\
\hline LIE=PI & LIE=P1 \\
\hline
\end{tabular}
1. After entering the above, press the \(X\) key to enter the configuration The system mode select should appear VALID, and UP MODE CROSS.CONFIGURED
2. Run all microdiagnostic tests (see INST 380)
3. Run the IMPL test (see INST 380)
4. Run the hardcore tests using NDM (see INST 380)
5. Run the functional tests (see INST 390).
run the diagnostic tests in multiprocessor mode
1. Confizure the processor complex to MP mode as follows:
a. Select the C2 frame on the NS console of both processors.
b. Key in S2 (MP MODE) on one console.
c. Configure storage as follows (the example is for a 16 M -byte storage size):
\begin{tabular}{|c|c|}
\hline Local Array & Remote Array \\
\hline Processor 1 (orol & Processor 0 (or 11 \\
\hline Current Build & Current Build \\
\hline L00=PR0 & L00=PRO \\
\hline L02 2 PL2 & L02 PL L 2 \\
\hline L04 \(\mathrm{PRR4}^{\text {a }}\) & L04 \(=\) PR 4 \\
\hline L06=PL6 & L06-PL6 \\
\hline L08=PR8 & L08=PR8 \\
\hline LOA PPLA & L0A PPLA \\
\hline LOC=PRC & LOC=PRC \\
\hline LOE=PLE & LOE = PLE \\
\hline \multicolumn{2}{|l|}{With extended addressing feature:} \\
\hline L10-PLO & L10=PLO \\
\hline L12-PR2 & L12-PR2 \\
\hline L14-PL4 & L14-PL4 \\
\hline L16=PR6 & L16=PR6 \\
\hline L18-PL8 & L18=PL8 \\
\hline L1A \(=\) PRA & LIA \(=\) PRA \\
\hline LIC=PLC & LICPPLC \\
\hline L1E=PRE & LIE=PRE \\
\hline
\end{tabular}

\section*{Testing for MP (Continued)}
2. Press the \(A\) key to activate the configuration.
3. Run the following MP functional diagnostic tests on processor 0 with processor 1 quiesced. (To quiesce, perform a system reset from the PT frame.)
Load MP functional diagnostic tests B3E9 through B3F0 and set DM sense switch 24 on.
MP Functional Dignnostic Tests
\begin{tabular}{c}
B3E9 \\
BZEA \\
\hline
\end{tabular}
B3EA
B3EB
B3EC
\(83 E D\)
\(83 F 0\)

\section*{run the diagnostic tests with bias}
1. Set the marginal controis on the VM frame to +120 mV and -90 mV . (Refer to the NDM User's Guide for automatic bias/slue options.)
2. Run tine previous MP functional diagnostic tests on both processors with bias, processor 1 quiesced, and then run the tests on processor 1 with processor 0 quiesced.
review
Review all the work flow charts to ensure that all required steps were completed.

\section*{Disable the Extended 'Addressing Feature}

\section*{3033 PROCESSOR AND 3042 ATTACHED PROCESSOR}

Note: Perform the following steps on the side of an AP/MP processo complex that has the extencted addresing for APl
complex that has the extended addressing feature instiled.
1. Unplug the extended addressing feature from rail 427 using LADS page A6012 as a guide.
2. Relocate the tri-lead cable ends according to the following chart: From

To
02A-82P3B10 02A.B3R4B12
02A-B3R4B12 02A-B1D2D10 02A-C104B11 02A-C1M5D12
3. Add the following tri-leads:
\begin{tabular}{llll}
Part & From & To & Net \\
817007 & 01A-C335D09 & 01A.C3C4B07 & FE303BK1 \\
817003 & 03A-A3H3D06 & 03A-A315B05 & FE253BH6 (Does \\
& & & not apply to 3042)
\end{tabular}

AdDItional steps for the 3042 attached processor ONLY
1. Plug the following configuration:
\[
\begin{array}{ll}
\text { Card } & \text { Plug } \\
\text { 01A.C3P2 } & \text { X23 to Y23 } \\
& 123 \text { to } 223 \\
\text { 01A.C2K2 } & 350 \text { to } 351
\end{array}
\]
2. Disable the \(\mathbf{2 4 M}\)-byte feature indicators as follows:

Card Plug
01A-B3S2 109 to 209

\section*{Enable the Extended Addressing Feature}

3033 PROCESSOR AND 3042 ATTACHED PROCESSOR
2. Relocate the tri-lead cable ends according to the following chart

\section*{From}
\(\qquad\) To
02A.B3R4B12
\(02 \mathrm{~A}-\mathrm{B} 3 \mathrm{R} 4 \mathrm{~B} 12\) 02A-B2P3B10
02A.C1M5D \(12 \quad 02 \mathrm{~A} . \mathrm{C1O4B1}\)

\section*{3. Delete the following tri-lead}
from
To
Net
01A.C315009 01A.C3C4B07 FE303BK1
03A-A3H3D06 03A-A3J5B05 FE253BH6 (Does not apply to 3042)
additional steps for the 3042 attached processor ONLY
1. Plug the 3042 as required for your processor complex configuration using LADS page A6014 as a guide.

\section*{Testing for AP}

Note: If one processor has the extended addressing feature and the Note.
other does not, the extended addressing feature must be disabled (see INST 412).

POWER UP FRAME 09
1. Ensure that all previously removed safety covers are reinstalled
2. Ensure that all water valves in the complex are turned on.
3. Fill the CDU expansion tank with distilied water to within 4 inches \((101.6 \mathrm{~mm})\) from the top.
4. Check all water connections for leaks.
5. Have the customer turn on the \(415-\mathrm{Hz}\) and \(60-\mathrm{Hz}\) power supplies.
6. Turn on the customer water supply.
7. Turn the console Power Select switch to the Console position
8. Press the Power On pushbutton.
9. Turn the CDU Local/Remote switch to the Local position.
10. Turn the Local Pump Select switch to the \(\mathbf{A}\) or \(\mathbf{B}\) position. The selected pump should run.
11. Check the water level. Fill the expansion tank with distilled water to 4 inches (1016 mm) from the top
12. Check for water leaks at all connections. ip to step 14. If not continue at step 13.
13. Demineralize the system water and add the corrosion inhibitor (see INST 200)
14. Return the Local Pump Select switch to the Off/Reset position. 15. Return the CDU Local/Remote switch to the Remote position.
test the power-on sequence
1. Insert processor microdiagnostic diskette DIAG 1.
2. Select the PC frame.
3. Power up the complex, including frame 09. Select DIAG POWER ON on the PC-POWER CONTROL frame at the operator station.
4. Check motor-generator output (see INST 132)
5. Power down the complex.
6. Install EPO cable key 3398 (see INST 172)
7. Set the console Unit Emergency switch to Power Off.
8. Attempt a power-on sequence on both processors. Neither processor should power up.
9. Release the mechanical interlock to reset the Unit Emergency switch
10. Repeat steps 7 through 9 to test the Unit Emergency switch on the other complex.
11. Power up the complex.
12. Check that the Power On pushbutton is backlighted white when power is sequenced on to all the frames.

\section*{adjust the voltage}

Adjust the board-mounted regulators on frame 09 (see INST 320)

\section*{adjust the timing}

Note: If the local or remote oscillators cannot be sat, run PDOO.
1. Plug the feature cards and set the timings using LADS section 8.12
2. Run diagnostic test PDOO on processor microdiagnostic diskette P3 in UP mode.
run the diagnostic tests in uniprocessor mode
1. Perform an IMPL with the customer diskette. If the other processor is not installed or powered down, key in X in response to the prompting message which appears on the NS console.
2. Select the C2 frame on the NS console.
3. Configure the system according to the following chart:
\[
\begin{array}{ll}
\text { FUnction } & \text { Indication } \\
\text { SYSTEM MODE SELECT } & \text { UP MODE } \\
\text { LOCAL PROC.MCU } & \text { ENABLED } \\
\text { OSCILATR CONTROL } & \text { LOCAL MODE } \\
\text { CNSL COMMUNCATION } & \text { DISABLLED } \\
\text { MCUMMC COMM PATH } & \text { DISABLED }
\end{array}
\]

Storage on the local processor should be configured as follows.
Note: The remote array will appear blanked if the remote processor is powered down or not installed. The following example is for a 24 M -byte processor. If fewer than 24 M bytes are installed, the maxi mum storage size will appear.
\begin{tabular}{|c|c|}
\hline 3033 & 3042 \\
\hline Local Array & Remote Array \\
\hline Processor 1 (or O) & Processor 0 (or 11 \\
\hline Current Build & Current Build \\
\hline L00=P00 & L00 3 P1 \\
\hline L02-P02 & L02 \(=\mathrm{PI}\) \\
\hline L04 \(\mathrm{PPO}^{\text {2 }}\) & L04 \(=\) P1 \\
\hline L06-P06 & \(\mathrm{L}^{106}\) =P1 \\
\hline L08=P08 & L08*P1 \\
\hline LOA \(=\) POA & LOA \(=\) PI \\
\hline LOC=POC & LOC=P1 \\
\hline LOE \(=\) PoE & LOE \(=\) P1 \\
\hline \multicolumn{2}{|l|}{With extended addressing feature:} \\
\hline L10-P10 & L10=P1 \\
\hline L12-P12 & L12-PI \\
\hline L14-P14 & L14-PI \\
\hline L16-P16 & L16-P! \\
\hline L18-PI & L18=P1 \\
\hline LIA-PI & LIA \(=\) P1 \\
\hline LICPl & LIC=PI \\
\hline LIE=PI & LTE \(=\) P1 \\
\hline
\end{tabular}

\section*{Testing for AP (Continued)}

Note: If a 3042 Model 2 is being tested, cross-configure 2 M bytes of
the customer's unused storage in UP mode and perform steps 1 through 5 .

If storage must be configured, key in M 1 , configure to the abov chart. and press the \(A\) key in response to A-ACTIVATE. System mode should appear as valid.
1. Run the channel microdiagnostic test on all channels attached to the local processor (see INST 380)
2. Run all microdiagnostic tests (see INST 380)
3. Run the IMPL test (see INST 380).
4. Run the hardccre tests using NDM (see INST 380
5. Run the functional tests, including the MP functional diagnosti test B3E9 (see INST 390), and the card vibration test (see INST 395).

If you are installing a half.duplex AP, skip to "Run the Diagnostic Tests with Bias." If not, continue.
6. Repeat steps 1 through 4 using the other processor as the local processor.

\section*{run the diagnostic tests in multiprocessor mode}

Configure the AP complex to MP mode as follows:
1. Select the C 2 frame on the NS console of both processors
2. Select OSCILLATOR CONTROL 02 (local side system oscillator) on one processor.
Skip to step 6 if installing a 3042 Model 2 . If not, continue.
3. Select the C 2 frame and key in C 2 to reverse the channels; then, perform a system reset.

Step
Cplt
Note: The following example is
storage is installed, configure to the maximum stora processor. If less
\begin{tabular}{|c|c|}
\hline 3042 & 3033 \\
\hline Local Atray & Remote Arrav \\
\hline Processor 1 (or O) & Processor 0 (or 1) \\
\hline Current Build & Current Buid \\
\hline L00 PP00 & L00 P P00 \\
\hline L02 \(\mathrm{PPO}^{\text {2 }}\) & L02 P P02 \\
\hline L04-P04 & L04-P04 \\
\hline L06-P06 & L06-P06 \\
\hline L08-P08 & L08-P08 \\
\hline LOA \(=\) POA & LOA \(=\) POA \\
\hline LOC=POC & LOC=POC \\
\hline LOE \(=\) POE & LOE=POE \\
\hline \multicolumn{2}{|l|}{With extended addressing feature:} \\
\hline L10-P10 & L10-P10 \\
\hline L12-P12 & L12-P12 \\
\hline L14-P14 & L14-P14 \\
\hline L16-P16 & L16-P16 \\
\hline L18=P1 & L18=P1 \\
\hline LIA \(\mathrm{PP}_{\text {P }}\) & LIA FPI \\
\hline LIC=P1 & LIC=PI \\
\hline L1E =P1 & LIE \(=\) P1 \\
\hline
\end{tabular}
7. After entering the above, press the \(X\) or \(A\) key to enter the con figuration.
The system mode select should appear VALID and MP MODE
8. Run the channel microdiagnostic test on all channels attached to 8. Run the channel microdiagnostic test on all channels attached to
the local processor (see INST 380) if installing a 3042 Model 2 . If not, skip to step 9 .
9. Run all microdiagnostic tests (see INST 380)
0. Run the IMPL test (see INST 380)
11. Run the hardcore tests using NDM (see INST 380)
12. Run the functional tests (see INST 390)

\section*{Step
Cplt}13. Run the following MP functional diagnostic tests on the attached processor with the 3033 Processor quiesced. (To quiesce, perform processor reset from the PT frame.)

Load MP functional diagnostic tests B3E9 through B3F0 and set DM sense switch 24 on.
MP Functional Diagnostic Tests
\begin{tabular}{c}
B3E9 \\
B3EA \\
\hline
\end{tabular}
B3EA
B3EB
B3EC
B3ED
B3FO

\section*{RUN THE DIAGNOStIC TESTS WITH bIAS}
1. Set the marginal controls on the VM frame to +120 mV and -90 mV . (Refer to the NDM User's Guide for automatic bias/slue options.)
2. Run the previous MP functional diagnostic tests on both processors with bias.

\section*{REVIEW}

Review all the work flow charts to ensure that all required steps were completed
 switch 24 on.
 Be9
BEA
BEB
BEC
BED
B3FO
4. Ensure that the following are enabled: MCU-MCU COMM PATH
REMOTE PROC.MCU LOCAL PROC.MCU CNSL COMMUNICATION
5. Select the MP frame and ensure RCS CONN TO LPU, to indicate that the channels are reversed

\section*{Preparation for Reshipment}

Use the following procedure to reship the 3033 Processor Modeis \(\mathrm{U}_{\mathbf{i}} \mathrm{M}_{\text {; }}\) and A ; the 3033 Processor Model Groups N and S , the 3036 Console the 3037 Power and Coolant Distribution Unit; the 3038 Multipro cessor Communication Unit; and the 3042 Attached Processor.

Note: Allow \(\mathbf{2 4}\) hours for system water demineralization.

If frames 01, 02, 03, 04, 09, 11, and 12 are not supported or bolted together or on outriggers, they may tip over if side pressure is used

CAUTION
Use pressurized gas to drain the coolant because the machines could be exposed to freezing temperatures during storage or transit.
Fasten all the gables so that they do not extend beyond the outer edge of the frames. When storing and fastening the cables, for example, power cables and coaxial cables, fasten them so that they will not be damaged by other parts of the machine during shipment.

Ship all manuals for the complex in the cable cartons provided in the packing group.

During disassembly, put all nuts, bolts, and washers in their associated slots in the tray pack.

\section*{items required}

Compressed nitrogen cylinder assembly (part 5476490
Shipping group that was received with the complex
Casters
Tray packs
Tri-lead connector shipping brackets
Packing group \(B / M\) (see the chart)
Three-step stepladder
Pail
Corrosion inhibitor (part 1835426
Filter assembly (part 1840738)
Adapter (part 2565739)
Cartridge (part 8818213)
COOLANT BACKFLUSHING
Before the complex is powered down, perform the following steps:
1. Add corrosion inhibitor (part 1835426). See INST 200 for the procedure.
2. Backflush all flow loops for 30 minutes. For the backflush procedure. see MM Volume 2, "Obstructed Flow Loop-Backflushing," Chapter 7 ECN
Date
No.
276474
\(2013 n 78\)
\(74{ }^{27}\)
27670

\section*{27899}

Note: For a significant time savings, backflush all eight flow loops simultaneously.
The following parts are required to backflush all flow loops simul caneously:

demineralize system water

1. Demineralize the system water. See INST 200 for the procedure.
2. Seal the used cartridge in a plastic bag (purchased locally) and discard.

\section*{CABLE CONNECTORS}

When the external cables are disconnected during physical disassembly protect the cable connectors by wrapping them in cushioning material then tape the cushioning material around the connectors and fasten the tape to the cables.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Packing Group B/M Chart} \\
\hline Frame & \[
\begin{gathered}
\text { Padded Van } \\
B / M
\end{gathered}
\] & \[
\begin{aligned}
& \text { Airfreight } \\
& B / M
\end{aligned}
\] \\
\hline \begin{tabular}{l}
3033 Processor \\
01, 02, 03, 04, 05, 07, and 08
\end{tabular} & 7331309 & 7331310 \\
\hline 3033 Processor Model Groups \(N\) and \(S\)
\(01,02,03,04,05,07.08\) & 7331309 & 7331310 \\
\hline 3036 Console
10 and 12 (atrached) & 7331319 & 7331320 \\
\hline 3036 Console & & \\
\hline 10 & 7331313 & 7331314 \\
\hline 11 & 7331315 & 7331316 \\
\hline 12 & 7331317 & 7331318 \\
\hline 3037 Power and Coolant Distribution Unit 15 and 16 & 7331321 & 7331322 \\
\hline 3033 Processor & 7331311 & 7331312 \\
\hline 3038 Multiprocessor Communication Unit 09 (feature) & 7331398 & 7331399 \\
\hline \[
\begin{aligned}
& 3042 \text { Attached Processor } \\
& 01,02,03,08
\end{aligned}
\] & 7331309 & 7331310 \\
\hline 3033 Processor Models U24 and A24
14 and 33 & 7331429 & None \\
\hline
\end{tabular}

OUtRIGGERS
Examine the outriggers for frames \(01,02,03\), and 04 . If the outriggers are part 5609853 (see the figure, on this page), measure as follows: Measure the thickness of the bar in the channel of an outrigger. If the bar is 0.25 inch \((6.35 \mathrm{~mm})\) thick, it is correct. If the bar is 0.120 inch \((3.04 \mathrm{~mm})\)) thick, order \(\mathrm{B} / \mathrm{M} 5657796\) which supplies four outriggers and mounting hardware for one frame.

Two types of outriggers may be installed on frames 01-04: Two outriggers (part 4872905) are installed on the bottom of each frame, or four outriggers (part 5609853) are installed on the bottom of each frame. Install the outriggers with the parts shown in the figures.

Four Outriggers (Part 5609853)
tURN OFF THE SYSTEM POWER AND THE CUSTOMER WATER SUPPLY

\section*{Step
Colt \\ Cplt}
1. Turn off the system powe
2. Ask the customer to turn off the \(415 \cdot \mathrm{~Hz}\) and \(50 / 60 \cdot \mathrm{~Hz}\) power at the wall circuit breakers and to disconnect the power cables at frame 15.
3. Ask the customer to turn off the water supply to frame 16 and todisconnect the water hoses.
drain the water from the processor complex
Frame 16 holds approximately 7 gallons (\(26.5 \mathrm{dm}^{3}\)) of water, and each flow loop in frame 15 and the processor holds approximately 1 gallon (\(3.8 \mathrm{dm}^{3}\)) of water.
To drain the water from any portion of the processor complex
1. Isolate that portion from the rest of the processor complex (close the valves).
2. Vent a high point in that portion to the atmosphere.
3. Connect a drain hose to that portion and collect the drained water.
4. Use pressurized nitrogen (40 to 60 psi [2.8 to \(4.2 \mathrm{kgf} / \mathrm{cm}^{2}\)]) at the vents to remove any remaining water. Use pressure source (part 5476490).

\section*{Drain the Water from Frame 15}

A \({ }^{1}\). Connect a drain hose to the quick-connect socket on the valve block at the top center of frame 15. This hose serves as an air block at the top center
vent.
2. Connect a drain hose and collect the water at the quick-connect socket in the cable compartment on frame 15 .
3. Connect the pressure source, as needed, to remove any remaining water.

Drain the System Water from Frame 16

Frame 16 holds approximately 7 gallons \(\left(26.5 \mathrm{dm}^{3}\right)\) of water. To drain the water:

C 1. Disconnect all the external hoses from the supply and return manifolds on frame 16. Collect and discard the water
2. Open all the valves.

D 3. Connect the vent hose to the top of the heat exchanger
. Connect a drain hose to the bottom male quick-connect socket on the supply manifold. Collect and discard the water.
E 5. Connect a drain hose to the socket on each check valve (above the pumps). Collect and discard the wate
6. Connect a drain hose to the socket on each pump. Collect and discard the water
F7. Attach the pressure source to the vent-tube opening and repeat steps 4.6 until all the water is drained.

\section*{Drain the Customer Water from Frame 16}
1. Connect a drain hose to the customer supply and return lines on frame 16
2. Connect the pressure source to the top bleed quick-connect socket
2. Connect the pressure source to the top bleed quick-connect socket on the end of the heat exchanger.
3. Use pressure, as needed, and collect the water. Draining is now complete for frame 16.

\section*{Drain the Water from Framas 01.03}

Disconnect the supply and return hoses below each frame:
a. To drain regulator columns \(A\) and \(B\) (labeled \(A B\) on the figure) and the top two heat exchangers, disconnect the supply and return hoses labeled AB.
b. To drain regulator columns C and D (labeled CD on the figure) and the bottom two heat exchangers, disconnect the supply and return hoses labeled CD.
2. Vent the high point of the flow loop to the atmosphere by con necting an air-bleed hose to the drain vent (labeled \(A B\) or \(C D\) on the necting an air-bleed hose to
figure) at the top of each frame.
3. With the valve open, drain the frames by attaching drain hoses to \(\square\) the supply and return connections on each frame llabeled AB or \(C D\) on the figure; the one that is vented).
4. Allow the water to drain from each side of each frame.
5. Remove the hose from the vent and connect the pressure source in its place. Use pressure, as needed, to remove any remaining water, then remove the pressure source. Draining is now complete or frámes 01.03
e)

Step
Cplt
\(\qquad\) \(\square\)
\(\qquad\)
\(\square\) \(\square\)

\section*{Drain the Water from Frame 09}
1. Disconnect the supply and return hoses betow from frame 09:
a. To drain regulator column A (labeled 09A on the figure) and the top two heat exchangers, disconnect the supply and return hoses labeled 09A.
b. To drain regulator column B (labeled 09B on the figure) and the oottom two heat exchangers, disconnect the supply and retur hoses Iabeled 09B.
2. Vent the high point of the flow loop to the atmosphere by con necting an air-bleed hose to the drain vent llabeled 09A or 09B on each frame.
3. With the valve open, drain the frames by attaching drain hoses to the supply and return connections on each frame liabeled 09A or 098 on the figure the one that is vented).
4. Allow the water to drain from each side of each frame.
5. Remove the hose from the vent and connect the pressure source in its place. Use pressure, as needed, to remove any remaining water; then remove the pressure source. Draining is now complet for frame 09
Step
Cplt
\(\square\)
\(\square\)

RELOCATION/REMOVAL PROCEDURES COOLANT DISTRIBUTION UNIT

\section*{Disconnect Frames 15 and 16}
1. Disconnect all the external cables.
2. Roll the power cable and tape it inside the opening for the supplyand return hoses.
3. Lower frames 15 and 16 onto the casters and remove the leveling
pads. pads.
4. Physically disconnect frame 15 from frame 16 as shown in the
figure. figure. Step
Cpit

\section*{RELOCATION/REMOVAL PROCEDURES}

\section*{Disconnect Frame 04 Heving B/M 4400900} Group S).

A

This page applies to frome 04 having B/M 4400900. See REMOV 51 for frame 04 having B/M 8261501, B/M 8261502, or B/M 5867725 (Mode)
1. Disconnect the external cables. Store the cables in the floor opening.
2. Disconnect the power jumper cables from the frame 03 bus bars as shown in the figure. Replace the screws and washers in the same bus rame
B 3. Remove the cables from the \(\mathbf{~} 12\)-to- J 26 -adapter connector blocks on the frame 04 interface tailgate. Protect the connectors and stor them in frame 03.

C 4. Disconnect the blower cables between frames 03 and 04 . Coil and store the cables inside their respective frames.

D 5. Disconnect the convenience outlet cable in the bottom of frame 04 . Coil and store the cable inside frame 03 .
6. Install the outriggers on frames 03 and 04 . Remove the leveling pads (if installed), and lower the frames onto the casters.

E 7. Physically disconnect frame 04 from frame 03 as shown in the Physically
figure.
\(\qquad\)\(\square\)

\section*{Disconnect Frame 04 Heving B/M 8261501, B/M 8261502, or B/M 5867725 (Model Group S)}

This page applies to frame 04 having \(\mathrm{B} / \mathrm{M}\) 8261501, \(\overline{\mathrm{B}} / \mathrm{M} 8261502\), or \(\mathrm{B} / \mathrm{M}\) 5867725 (Model Group S).
1. Disconnect the external cables. Store the cables in the floor opening.

A 2 Disconnect the power iumper cables from the frame 03 bus bars as shown in the figure. Replace the screws and washers in the same bus bar from which they were removed. Remove the connectors from J20 and J21. Coil and store the cables in frame 04.
B 3. Remove the cables from the G12-to-G27-adapter connector blok n the frame 04 is on the frame 04 interface tailgate. Protect the connectors and store
4. Disconnect the blower cables between frames 03 and 04 . Coil and store the cables inside their respective frames.
D 5. Disconnect the convenience outlet cable in the bottom of frame 04 . Coil and store the cable inside frame 03.
6. Install the outriggers on frames 03 and 04 . Remove the leveling pads (if installed), and lower the frames onto the casters.
E 7. Physically disconnect frame 04 from frame 03 as shown in the figure.

\section*{Disconnect Frames 02, 03, and 08}
\(\begin{aligned} & \text { Step } \\ & \text { Cplt }\end{aligned}\)
1. Disconnect the external cables from frames 02 and 03 . Store the \(\square\) cables under the floor.
2. Disconnect the external cables at tailgate W on frame 08 .
3. Get the tri-lead connector shipping brackets (part 7331308) from the shipping group that was received with the processor. Attach the tri-lead shipping brackets to frames 01 and 02 with tape.
1 Note: The brackets may be permanently mounted.
4. Disconnect the tri-lead connectors from frames 01.03. Connect the tri-lead connectors to the shipping brackets on each frame. Do not tangle the wires.
5. Disconnect the convenience outlet cable in the bottom of frame 03. Coil and store the cable in frame 02

A 6. Disconnect the console processor probe and scope assembly from frame 03 . See the chart.

B 7. Disconnect the cable assembly from the top of frame 03 and tape \(\square\) the cable assembly to gate \(A\) (pin side, upper left corner) of frame 01. Tighten the screws.
8. Disconnect the bottom blower cables from the blowers in frames01 and 02 . Coil and store the cables in frame 03 .
9. Disconnect the upper blower cables from the blowers in frames 01.03. Coil and store the cables in their respective frames.
10. Install the outriggers on frames 01 and 02 . Remove the leveling \(\square\) pads (if installed), and lower the frames onto the casters.

C 11. Physically disconnect frame 03 from frame 08 as shown in the \(\square\) figure.
12. Roll frame 03 away and disconnect the top and bottom of frame 08 from frames 01 and 02

A

1. Disconnect the external cables.
2. Disconnect the tri-lead connectors from the frame 07 tailgate. Protect and store the connectors in frame 01.
3. Disconnect the tri-lead connectors from the frame 05 (and frame 06 if installed) tailgates. Protect and store the connectors in frame 01

\section*{Disconnect Frames 05-07}
1. Disconnect the external cables to frames 05 and 07 .
2. Disconnect the cables at CN73 and CN74 in frame 07. Coil and store the cables in frame 05.
3. Disconnect the cables from frames 01,05 , and 07 , if frame 06 is installed. Coil and store the cables in their respective frames.
4. Disconnect the cables to tailgate \(Q\) on frame 05 from frame 07 and disconnect the cables from CN53 and CN54. Coil and store the cables in frame 07
5. If CTCA feature is installed
a. Identify disconnected tri-leads for termination location.
b. Disconnect cables according to Charts 1 and 2 .
c. Coil and store the cables in the designated frames.

A 6. Disconnect the ground straps from the frame 07 side only. Reinstall the screws into frame 07 after removing the ground straps.

Note: To remove the bottom frame member bolt (part 5711246 in the following step, loosen the frame 07 counterweight mounting bolts and shift the counterweights toward the center of the frame.
7. Physically disconnect frame 07 from frame 05 and frame 07 from frame 01 as shown in the figure. Remove the leveling pads (if installed), and lower the frames onto the casters.
8. Shift the counterweights back into place and tighten the counterweight mounting bolts.

\section*{Disconnect Frame 06 (Feature) \({ }^{1}\)}
1. Disconnect the external cables.

B 2. Physically disconnect frame 06
\(\overline{{ }^{1} \text { Frame } 06}\) is not available on the 3033 Processor Model Group S.
\(\qquad\)

\section*{5711246 (4), Bolt
161251 (8), Wosher [B] \(\begin{aligned} & 5711246(4) \text { (4). Bolt } \\ & 16251 \text { (8), Washe }\end{aligned}\) 25793 (4). Nut}
\(\qquad\)

\section*{RELOCATION/REMOVAL PROCEDURES}

2. Remove the screws and washers that hold TB3 in place and turn
TB3 \(180^{\circ}\) so that it extends into frame 04. Reinstall \(T B 3\) using the same screws.

\section*{Disconnect Frames 14 and 33}

Install Outriggers

A \({ }_{2}^{1 .}\) Remove the caster from one end of the outrigger
A. Remove the caster from one end of the
B. Slide the outrigger under frame 14 as shown and bolt the outrigger to frame 14
4. Repeat steps 1 through 3 for the other outrigger.

Note: The outriggers should touch in the center to avoid touching the casters in frame 33 . Ensure that the screw holding the outrigger is tight so that the outrigger does not rock back and forth.
C 5. Remove the remaining leveling pads from frame 14.
Disconnect Frames
1. Physically disconnect frames 14 and 33 from frame 04 as shown in the figure. in the figure.

Disconnect Frames 14 and 33 (Continued)
Disconnect Frame 33 from Frame 14

A 1. Disconnect connector 14 J 1 from connector P 20 and secure the
cable in frame 14.
B 2. Install two leveling pads under frame 14
C 3 . Physically disconnect frame 33 from frame 14 as shown in the
teps 1 through 3 require two CEs. One CE should support frame 14 to keep it steady.
Reposition Outriggers
D 1. Reinstall the casters on the outriggers.
E 2. Remove the leveling pad.
F 3. Swing the outrigger into position and bolt it to frame 14.
4. Repeat steps 2 and 3 for the other outrigger.

\[
\text { 1. Disconnect the external cables. Store the cables under the floor. } \square
\]

A 2. Disconnect the connectors from tailgate T . Place the cables on thetop of frame 10 .
B 3. Disconnect the cable on the hinge end of gate \(\mathbf{C}\) (wire number 1 on \(\qquad\) bus 1, and wire number 2 on bus 2). Coil and tape the cable in frame 10.
C. 4. Disconnect the cables from the keyboard, the display, and the diskette drive. Coil and tape the cables in frame 10. The parts diskette drive. Coil and tape the cables in frame 10. The parts that must be removed are shown in the figure.

OCopyright International Business Mechines Corporation 1978

\section*{Disconnect Frame 11 (Continued)}
6. Slide the frames over a hole in the floor and remove the leveling \(\square\) pads from frames 10 and 12. Install the casters.
E 7. Physically disconnect frame 10 from frame 11 as shown in the figure.

Disconnect Frame 12
If frame 12 has to be disconnected from frame 10 because the frames are too long to get them to the shipping dock:
1. Disconnect the display and the keyboard cables. Coil and tapethe cables in frame 10 .
F 2. Physically disconnect frame 12 from frame 10 as strown in the
G 3. Install the frame 12 outrigger that was received with the processor \(\square\) complex
4. Install the end covers on frame 10; bag the other hardware and tapethe bag to gate \(A\) in frame 10.

\section*{Packing Instructions}

\section*{PACK THE PROCESSOR FRAMES}

\section*{Pack Frames 01-04 for Shipment in a Padded Van}

A 1. Secure the coolant hoses to the frames using ties (part 7331381) Attach the end caps (part 7397213) with bolts (part 59668) washers (part 7331451), and nuts (part 24107). An end cap will not be attached on the covered end of frames 02 and 04 .
2. Place the ends of each cable that are not attached to the connector bracket in padded bags (part 733107) and tape the bags. Coil each cable and secure it to the end frame using ties (part 7331381).
B 3. Tape each cover spacer block (part 7397216) against the inside of the cover in two places to protect the black filler stock from bein crushed when the belts are tightened in the moving van. Do not place tape on the outside of the cover

C 4. Place cover shims (part 7331331) between the upper hinge plates and the cover seal lips on all covers. Tape the cover shims in place.
5. Place a polyethylene bag (part 7330579) over the frame.
6. Place a corrugated sheet (part 7372412) over the end cap and tape it in place. Tape the IBM CE Unpacking Instructions (part 7331307) to the corrugated sheet on frame 02.
7. Tape two sheets of corrugated covering (part 7372748) on each side of the frame
D. 8. Place two pieces of angle board (part 7397207) on each corner of the frame and tape the boards to the frame. Do not place an angle board on the end caps.
E 9. Tape the side covers as shown. The tape should go completely around the frame in two places.
10. Tape a copy of the Customer Unpacking Instructions (part 7331306) to the outside of the corrugated sheet on frame 02 .

F
11. If the outriggers are black, place a bag (part 7331007) between each outrigger and the cover as shown

Frames 02 and 0

Frames 01 and 03

Pack Frames 01.04 for Shipment by Aifrreight
1. Remove the end covers from frames 02 and 04 . Tape corrugated \(\square\) sheets around the covers and place the covers in a wire-bound crate.
2. Do steps 2.9 under the packing instructions for shipping frames \(\square\) 01.04 in a padded van
| 3. Fasten the frames to the airfreight skids (part 7331368) by attaching \(\square\) the bracket (part 7397214) with bolts (part 455043), washers (part 453), and nuts (part 24107). Connect the bracket to the airfreight skid with lag screws (part 7360103).

© Cooyricht Inerrational Busines Mechines Corporation 1978

Step
Cplt
Clat
A 1. Place a block (part 7397219) above the gates and a block (part 7397219) below the gates and secure the blocks with Avis \({ }^{1}\) strap (part 8334135) as shown.
B 2. Support the hinge on both inner gates by removing the center bolts from the hinges. Place the bolts in a cloth bag and secure the bag to a gate latch using a tie (part 7331381). Place wood blocks (part 7397218) on the frame members as shown in the figure. Secure each block with the hex-head bolt and flatwasher provided.
3. Tape the gates together, close the gates, and tape the latches.
4. Place the cover spacer blocks (part 7397216) as shown for frames 02 and 04.

C 5. Place cover shims (part 7331331) between the upper hinge plates and the cover seal lips on all covers. Tape the shims in place.
6. Attach an end cap (part 7397211) with ties (part 7331381), on the other end of the frame.
7. Place a polyethylene bag (part 7330579) over the frame.
8. Tape corrugated covering (part 7372748) on each side of the frame.
9. Place one sheet of corrugated covering (part 7372412) on end caps and tape in place.
10. Place four angle boards (part 7397207) on each corner of theframe and tape the boards to the frame.
11. Tape (part 7330562) around the frame at three levels.\(\square\)

Frame 05 (Top View)

Pack Frame 05 for Shipment by Airfreight
Step
Colt

1 1. Do steps 1.11 under the packing instructions for shipping frame \(05 \square\) in a padded van
2. Fasten the frame to the airfreight skid (part 7330748) by using hold down method 4.0 as described in the air packing instructions (part 7371311)

Pack Frame 06 (Feature)

The patking instuctions for shipment of frame 06 in a padded van or \(\square\) by airfreight are the same as described for frame 05 , except that frame 66 has only one double gate.

\section*{Pack Frame 07 for Shipment in a Padded Van}

Step
Cplt

\section*{Cplt}

A 1. Place the ends of each cable in padded bags (part 7331007) and tape (part 7371632) the padded bags. Coil each cable and secure it to the frame with ties (part 7331381).
2. Place a wood gate support (part 7397212) under the gate and tape as shown in the figure. Shim, if necessary, with wood shim (part 7371870).

B 3. Secure the gate latch to the frame bracket using ties (part 7331381).
C 4. Place the cover spacer blocks (part 7397216) as shown
D 5. Place cover shims (part 7331331) between the upper hinge plates and the cover seal lips on all covers. Tape the shims in place.
6. Attach an end cap (part 7397211) with ties (part 7331381), on the other end of the frame.
! 7. Place a polyethylene bag (part 7371754) over the frame
8. Tape corrugated sheets (part 7372748) on each side of the frameand tape corrugated sheets (part 7372412) on each end of the frame.
9. Place four angle boards (part 7397207) on each corner of the frame and tape the boards to the frame
| 10. Tape (part 7330562) around the frame at three levels.

\section*{Pack Frame 07 for Shipment by Airfreigh}
1. Do steps 1.8 of the packing instructions for shipping frame 07 in a padded van.
2. Secure the frame to the airfreight skid (part 7397223) by using hold-down method 4.0 as described in the air packing instructions (part 7371311).

\section*{Pak Frame}

Wrap the top and bottorn of frame 08 with cushioning material, tape the frame, and place the frame in the container (part 7371780).

Pack Frames 10 and 12 (Attached) for Shipment in a Padded Van

1. TTradermark of Sealed Air Corporation

A 1. Place an end cap (part 7397210) as shown in the figure and use ties \(\square\) (part 7331381) to secure the end cap to the frame.
B 2. Place corrugated protector (part 7331450) over the table top and tape (part 7371632) the corrugated protector to the table top
3. Tape the gate \(C\) latch.

C 4. Insert one piece of Avis strap (part 8334135) under the keyboard. Place cushioning material (part 7330060) over the keyboard and secure the strap over the cushioning material by using Avis buckle (part 8334136).

D 5. Place one piece of Avis strap (part 8334135) over the top of the display and under the base of the frame. Secure the Avis strap with Avis buckle (part 8334136).
6. Place a corrugated pad (part 7354577), with the slotted edge up, into the diskette drive slot. Close the diskette drive and tape (part 7371632) the diskette drive to the two top stop brackets.
7. Wedge one folded sheet of Air Cap (part 7397289) between the diskette drive handle and the diskette drive.
EE 8. Place an angle board (part 7397207) on the unprotected edge of the \(\square\) table and both exposed corners of the frame. Tape (part 7371632) angle board.
9. Place a polyethylene bag (part 7331247) over the packed frame Tape around the frame at two levels.

\section*{Pack Frame 11 for Shipment by Airfreight}
1. Do steps 1.9 under the packing instructions for shipping frame 11 in a padded van.
2. Fasten the frame on the airfreight skid (part 7330748) by using hold-down method 4.0 as described in the air packing instructions (part 7371311).

278891 208335 213545
15 Jun 8

\footnotetext{
OCopyright International Business Machines Corporation 1978
}

Pack Frame 10 (Stand Alone) for Shipment in a Padded Van
Step
Cplt

Step
Cplt
1. Pack frame 10 as though it were attached to frame 12.
2. Place a polyethylene bag (part 7372976) over the packed frame. \(\square\)

Pack Frame 10 (Stand Alone) for Shipment by Airfraigh
1. Pack frame 10 as though it were attached to frame 12.
2. Fasten the frame to the airfreight skid (part 7330748) by using hold-down method 4.0 as described in the air packing instruction (part 7371311)

Pack Frame 12 (Stand Alone) for Shipment in a Padded Van

1. Ensure that the outrigger is installed on frame 12 .
2. Pack frame 12 as though it were attached to frame 10 .
3. Place a polvethylene bag (part 7372428) over the packed frame.

Pack Frame 12 (Stand Alone) for Shipment by Airfreight
1. Pack frame 12 as though it were attached to frame 10 .
2. Fasten the frame on the airfreight skid (part 8626452) by using
 hold-down meth

\section*{RELOCATION/REMOVAL PROCEDURES}

\section*{PACK THE PDU AND CDU FRAMES}

Pack Frame 15 for Shipment in a Padded Van
\begin{tabular}{ll}
1. Ensure that all water is drained from frame 15. & \begin{tabular}{l}
Step \\
Cplt
\end{tabular} \\
2. Tape (part 7371632) the panel latch. & \(\square\) \\
\hline
\end{tabular}
3. Place the cover spacer blocks (part 7397216) as shown for frames 02 and 04 .
4. Attach an end cap (part 7397211) with tape, on the other end of the frame
5. Place the cover shims (part 7331331) between the upper hinge plates and the cover seal lips on all covers.
6. Place a polyethylene bag (part 7372193) over the packed frame 7. Tape a corrugated sheet (part 7372412) on each end of the frame and tape a corrugated sheet (part 7372748) on each side of the frame.
| 8. Place four angle boards (part 7397210) on each corner of the frame and tape the boards to the frame. Place a corrugated sheet (part 7372412) over the end cap.

\section*{Pack Frame 15 for Shipment by Airfreight}
| 1. Do steps 1.7 under the packing instructions for shipping frame 15 in a padded van.
2. Fasten the frame to the airfreight skid (part 7330748) by using hold-down method 4.0 as described in the air packing instructions part 7371311).

\section*{Ack Frame 16 for Shipment in a Padded Van}
\begin{tabular}{lr}
1. Drain all the water from frame 16. & \begin{tabular}{l}
Step \\
Cplt
\end{tabular} \\
\(\square\)
\end{tabular}
. Fasten the water pump mounts to the base of the frame with screws \(\square\) (part 322061) and wood supports (part 7397063) in the four places as shown in the figure.
3. Coil and store all the hoses inside the lower half of the frame. If required, fasten the hoses inside the frame with cushioning materia and tape.

\section*{CAUTION}

Tightly coil the insulated hoses to prevent protrusion of the coils beyond the perimeter of the frame.
If the hoses have to be fastened inside the frame, do not tape them directly to the hose insulation. Separate them with cushioning material.
4. Tape the pump select panel latch.
5. Place the cover spacer blocks (part 7397216) as shown for frames02 and 04 .
6. Attach an end cap (part 7397211) on the other end of the frame and secure the end cap with ties (part 7331381). Place a corrugated sheet (part 7372412) over the end cap and sides of the frame.
7. Place a polyethylene bag (part 7371754) over the packed frame.
\(\qquad\)
18. Tape a corrugated sheet (part 7372412) on each side of the frame.
19. Place four angle boards (part 7397210) on each corner of the frameand tane the boards to the frame.

Pack Frame 16 for Shipment by Airfreight
1. Do steps \(1-8\) under the packing instructions for shipping frame 16in a padded van.
2. Fasten the frame to the airfreight skid (part 7397223) by using hold-down method 4.0 as described in the air packing instructions (part 7371311)

\section*{pack the cables}

Coil the cables inside the cable boxes (part 7330620)

\section*{Pack the MCU Frame}

PACK FRAME 09 FOR SHIPMENT IN A PADDED VAN

\section*{Spacer Frames}

A 1. If frame 09 is to be shipped with the \(Q\)-tailgate attached, remove the \(Q\)-tailgates from the spacer frames and install them into frame 09. Secure them with the bolts removed.
B. 2. If frame 09 is to be shipped without the \(Q\)-tailgate attached, swing the \(Q\)-tailgate into its shipping position. Remove the tri-lead cables and place them in the organizers in frame 09
3. Remove the spacer frame covers.

C 4. Remove the three bolts that hold the spacer frames to frame 09. Remove the spacer frames from frame 09.
5. Boit the spacer frames together using the bolts just removed
6. Install the outriggers on the spacer frames.
7. Reinstall the spacer frame covers.
8. If the Q-tailgate is to be shipped in the spacer frames, ensure that the Q -tailgate is locked in the retracted position.

D 9. Place cover shims (part 7331331) between the upper hinge plates and the cover seal lips on all covers. Tape the shims in place.

E 10. Bolt end caps (part 7331388) to each end of the spacer frames.
11. Place a polyethylene bag (part 7330589) over the frame.
12. Tape corrugated pads (part 7372412) over each end of the frame and tape corrugated pads (part 7372748) on the sides of the frame.
13. Tape (part 7330562) around the frame at three levels.

\(\square\)
3033 \({ }^{213545}\)
© © Copyright International Business Machines Corporation 1979

\section*{RELOCATION/REMOVAL PROCEDURES}

Pack the MCU Frame (Continued)

\section*{Frame 09 without \(\mathbf{O}\)-tailgate Attached}
1. Ensure that all loose connectors have been inserted in the organizers and secured.

A 2. Place cover shims (part 7331331) between the upper hinge plate andthe cover seal lips on all covers.
1
3. Place a polyethylene bag (part 7330589) over the frame.
4. Bolt end caps (part 7331389) to each end of the frame
5. Tape corrugated pads (part 7372412) over each end of the frame and tape corrugated pads (part 7372748) over each side of the frame.
6. Tape (part 7330562) around the frame at three levels.

\section*{Frame 09 with \(\mathbf{Q}\)-tailgate Attached \(\mathbf{C}\)}
1. Ensure that Q -tailgate is locked in position.
D. 2. Bolt end caps (part 7331390) to each end of the frame through theattachment holes.
3. Place cover shims (part 7331331) between the upper hinge plates and the cover seal lips on all covers. Tape the shims in place.
4. Place a polyethylene bag (part 7330579) over the frame
5. Tape corrugated pads (part 7372412) over each end of the frame and tape corrugated pads (part 7372748) over each side of the frame.
6. Tape (part 7330562) around the frame at three levels.

```


[^0]:    A change to the text or to an illustration is indicated by a vertical line to the left
    of

[^1]:    © Copyright International Business Machines Corporation 1978

[^2]:    © Copyright international Business Machines Corporation 1978

[^3]:    1 Quick-connect sockets are on supply hoses at 3037 CDU end. Quick-connect plugs are on return hoses at 3037 CDU end. Quick-connect pluss are on supoly hoses at end away from.
    3037 CDU .
    Quick-connect
    3037 cou.
    ${ }^{3}$ For processors int adapter (IDA) cable (provided with the processor) enters cable adapter (IDA) cable (provided with the processor) enters cable
    entry in frame 11. Data Access Arrangement (DAA) must be enith in trame tio Data Access Arrangeme 50 feet of cable entry in frame 11
    5 Required for Mocel Group N.
    5 Not aviitable on Model Group s .
    6 Required for Model Group S .
    ${ }_{7}$ Required for Model Group S.

    Legend:
    Colant hoses. (Only supply hoses are shown
    assume one return hose for each supply hoses.) ——cables

