IBM 3174/3274 Control Unit to Device Product Attachment Information

This document is provided for use in conjunction with other relevant IBM publications, and IBM makes no warranty, express or implied, relative to its completeness or accuracy. The information in this document is current as of the date of its publication, but is subject to change by IBM at any time without notice. This document is not intended to be a manufacturing or engineering specification; the user is assumed to understand the interrelationship among any affected systems, machines, programs and media.

IBM may have patents or pending patent apilications covering subject matter described in this document, including appearance design patents or applications. The furnishing of this document does not constitute or imply a grant of any license under any patents, patent applications, trademarks, copyrights or other rights of IBM or of any third party, or any right to refer to IBM in any advertising or other promotional or marketing activities. IBM assumes no responsibility for any infringement of patents or other rights that may result from use of this document or from the manufacture, use, lease or sale of apparatus described herein.

Licenses under IBM's utility patents are available on reasonable and nondiscriminatory terms and conditions. IBM does not grant licenses under its appearance design patents. Inquiries relative to licensing should be directed in writing to the IBM Director of Commercial Relations, International Business Machines Corporation, Armonk, New York, 10504 .

IBM 3274 Control Unit Description and Programmer's Guide GA23-0051.

IBM 3174 Subsystem Control Unit Functional Description IBM 3270 Information Display Systen Character Set Reference GA27-2837

IBM 3270 Information Display System Data Stream Progranmer's Reference GA23-0059

IBM 3274 Supplement for the 3180 Mod 1 GA23-0196
IBM 3270 Installation Manual and Physical Planning Guide (IMPP) GA27-2787

IBM 3174 Subsystem Control Unit Site Planning GA23-0213.
Systems Network Architecture Format and Protocol Reference Manual: Architectural Logic SC30-3112
1.0 COAX ARCHITECTURE
$\begin{array}{ll}1.1 & G E N E R A L ~ D E S C R I P T I O N \\ 1.2 & H O R D F O R M A T S\end{array}$

1.3 ADDRESS BIT ASSIGNMENTS
1.3.1 ADDRESS BITS $(2,3,4,5)^{\circ}$ FDR A COMMAND TO A $\dot{O} \dot{D} E \dot{V} I \dot{C} E$
1.3.2 ADDRESS BITS $(2,3,4,5)$ OF STATUS WORD FROM DEVICE
1.4 COMMANDS
1.4.1 Device Básé Address Commands

1.4 .2 .2
1.4 .2 .3
$1.3 E S P O N S E$ TO POLL (SSTATUS WORDS)
1.4 .3 OTHER READ COMMANDS (to Device Basej)

2.4 Extended Translate Tables 54
2.4.1 US, KATAKANA, and CANADIAN FRENCH 2.4.2 TABLE V COUNTRIES 54
57
2.4.3 More Extended Translate Tables 59
3.0 COAX TRANSMISSION FROTOCOL 623.1.1 GENERAL62
3.1.2 Line quiesce Pattern 62
3.1.3 Uniaue Control Code Violation
3.1.4 TRANSMISSION TERMINATION SEQUENCE 65
3.2 TRANSMIT CHECK 66
4.03299 TERMINAL MULTIPLEXER 67
4.1 Outgoing Transmission 67
4.2 Timeout Timer 68
4.2.1 3274 Control Unit 68
4.2.2 3174 Control Unit 68
4.3 Data Stream Architecture
4.4 Incoming Transmission 68
5.0 CODE POINTS 69
5.1 DEVICE BUFFER CODES 69
69 $\frac{1}{5}$ 69 70
5.1.1.1 NDS DEVICE BUFFER $\dot{C} O \dot{D} I \dot{N} G$ FOR ${ }^{\circ}$ TABLE V EUFFER CODING FOR KATAKANA
$\begin{array}{llll}5.1 .1 .3 & \text { NDS DEVICE BUFFER CODING FOR APL } \\ 5.1 .1 .4 ~ N D S ~ B U F F E R ~ C O D I N G ~ F O R ~ T N / E N G L I S H ~\end{array}$ 72 73
5.1.2 ATTRISUTE CODES
5.1.2 ATTRISUTE CODES
5.1.3 EXTENSION ATTRIEUTE CODES 74 74

5.1.4 EXTENDED FIELD ATTRIBUTES

5.1.4 EXTENDED FIELD ATTRIBUTES
5.1. 5 CHARACTER ATTRIEUTES74
5.2 MAGNETIC STRIPE CARD CODES5.2.1 MAGNETIC STRIPE CARD CODE-1
$5 \cdot 2$ M MAGNETIC STRIPE
Keyboard Scan Codes7576
.3.1 $75 / 87 \mathrm{Key}$ Keyboard Layout77
5.3.1.1 75 KEY KEYBOARD 78
5.3.1.2 87 KEY KEYBOARD 79
5.3.2 $122 / 124$ Key Keyboard Layout 80
$\begin{array}{llll}5.3 .2 .1 & 122 & K E Y \text { TYPEWRITER KEYBUARD } \\ \text { 5.3.2.2 } & 124 & K E Y \text { TYPEWRITER KEYBOARD }\end{array}$
5.3 Key Keyboard Layout$\begin{array}{ll}2 & 124 \\ 102 / 103 / 104 & K\end{array}$81
5.3.3.1 102 KEY ENHANCED KEYBOARD (U.S.) 82 83
83
$\begin{array}{lllll}5.3 .3 .2 & 103 & \text { KEY ENHANCED KEYBOARD (EMEA) } \\ 5.3 .3 .3 & 104 & \text { KEY ENHANCED KEYBOARD (KATAKANA) }\end{array}$
6.0 ABBREVIATIONS 84

1,0 COAX ARCHITECTURE

1.1 GENERAL DESCEIPTION

Data is transmitted from a control unit to a device or device to control unit via a single coax line per device. The coax type is RGG2AU with a maximum length of 1.5 kilometers, or approved equivalent as specified in the Installation Manual and Physical Planning Guide (IMPP), GA27 2787-x, and hereinafter refered to as just icoax.

Data is transmitted as serial bits using a binary dipulse technique. (See para. 3.0 for coax transmission protocol.) Data to be transmitted over the coax has a bit rate of 2.3587 MHz , in the following format:

Twelve (12) bits are assembled to form one (1) twelve (12) bit word for transmission in either direction over the coax. The first bit of the twelve (12) bit word is used to delimit successive words from the control unit, and is always a mone (1) ${ }^{n}$ bit and will be referred to as the msync bit". The last bit of each twelve (12) bit word is the parity bit that will maintain even parity when. acded to the preceeding eleven (11) bits.

Word groups of twelve (12) bits each may be contiguous. In this case, the sync bit of the next word must directly follow the parity bit of the preceding word with no intervening pad bits. A word from the control unit to the device (display or printer) may be either a command or data word. Each Write type command will cause a iransmission Turnaround ${ }^{\text {G Auto Rasponse (TT/AR) following the last wiord of each group }}$ of contiguous words sent from the control unit, and the device responds with clean status (bits 1 and 12) if the word (s) was (were) received without a Transmit Check.

The contiguous words sent from the control unit may include both data and command words, with the restriction that if a read type command (including foll) is included it must be the last word in the contiguour group.

A word from a device in response to a Read type command may be either data or a status word. The device must begin response (data, status or TT/AR) within 5.5 microseconds after receiving the ending sequence from the control unit (both read and write type commands.) The 5. 5 usec. is measured from the end of the last bit time of the recaived ending sequence to the beginning of the first bit time of the transmitted starting sequence.

The 12 bit command word from the control unit to device contains address bits and a command code. The address portion of the command word is three bits in length (Bits 2,3,4) when addressed to the device base unit and four bits in length (Bits 2,3,4,5) when addressed to a feature of the base unit. This provides five bits for command codes (Bits $5,6,7,8$ and 9) to the base unit and four bits (Bit's 6,7,8, and 9) for command code to a feature. Reserved bits in all cominands and responses must be zero.

1． 2 WORD FORMATS

1．2．1 COMMAND WORD TO BASE UNIT．

1					
SYNC	234	56789	10	11	12
BIT	ADOR	XXXXX	CMND	$*$	CMND．Parity

＊ 3174 ：Bit 10 is a parity bit（odd）for the preceding eight bits． 3274 ：Bit io is o for commands to ven numbered coax ports，and is 1 for commands to odd numbered coax ports．

1．2．2 COFMAND WORD TO FEATURE．

1	2345	6789	10	11	12
SYNC	$X X X X$	$X X X X$	X	1	1
BIT	ADDR．	CMND．	$*$	CMND．Parity	

＊Bit 10 is a parity bit（odd）for the preceding eight bits．

1．2．3 DATA WOFD TO BASE UNIT OR FEATURE

1	2345	6789	10	11	1
SYNC	XXXX	XXYY	x	0	
BIT	DATA	HORD	＊		

＊\quad Bit 10 is a parity bit（odd）for the preceding eight bits．
Data Words of less than 8 significant bits will be right justified （by the control unit）and the high order bits set to zero．

1．2．4 STATUS WORD TO CONTROLLER

A status word is always sent（in response to a POLL command）from a device that has power on and has completed it．POR sequence． （Prior to receiving POR Response from a device，the control unit holds the device deactirated．＇The control unit will poll but ignore any response except POR Response．）A response of all zeros except for bits 1 and 12 indicates that there are no error condi－ tions to be reporited and no operator activity requiring service． This response will te refered to as mall zero＂or melean＂re－ sponse．If bit 11 is set，bits 2－10 are undefined．

```
1.2.5 DATA WORD TO CONTROLLER
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 2345 & 6789 & 10 & 11 & 12 \\
\hline SYNC & XXX & ¢ \({ }^{\text {cx }}\) & P & 0 & \\
\hline BI & & & & & Parity \\
\hline
\end{tabular}
    *Bit 10 = Parity bit (odd) for the eight bit (2 thry 9) data word
    for Read Data and Read Mult. commanes to the Base address, and any
    Read command (with bit 8 set to 1) sent to a feature.
    Data Words of less than 8 significant bitswill be right justified
    (by the device) and the high order bits set to zero.
1.3 ADDRESS BIT ASSIGNMENTS
1,3,1 ADDRESS BITS (2,3,4,5) FOR A COMMAND TO A DEVICE
2345
OOOX 0,1 BASE OR XEYBDARD
0010 2 SELECTOR PEN.
0011 3 Reserved
0100 4 MAG SLOT READER OR WAND
0101 5 PC ADAPTER*
O110 6 3180 ADVANCED FUNCTION
O111 7 EXTENDED CHARACTER SET (ECS)
1000 8 Reserved
1001 g Reserved
1010 A Raservad
1011 B CONVERGENCE fEATURE
1100
1101
11110
    Reserved
C Reserved
1:11 F R Reservad
*Not supported by 3174 or 3276 control units.
1,3,2 ADDRESS BITS (2,3,4,5) OF STATUS WORD FROM DEVICE
0 0 0 0 ~ B A S E ~ U N I T
All other features have the same address bits in a status word responsa as shown for command words to a device.
```

1,4 COMAMANDS
1.4.1 DEVICE BASE ADDRESS COMMANDS
1.4.1.1 READ COMMANDS (XXXX1)
Bits 56789
XXXX11: Response Parity Chected56789
00001 00011
00101 01001

01011 READ MULTIPLE

10111 Reserved

01111 Reserved

OO111 READ EXTENDED TERMINAL ID

$\begin{array}{lllll}1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$

11111

POLL
READ
READ
READ
READ
POLL
RESE
$R E A D$
$R E S E$
$R E A D$
$R E S E$
$R E S E$
$R E A D$
$R E S E$
n
n

Note: In response to the Reserved read commands the device will return an all zero data word with badparity (bits 2 thru 10 ali zerol irregardless of bit 8 in the read command.

1.4.2 READ COMPAND FUNCTIONS (TO BASE)

1.4.2.1 00001-POLL AND 10001-POLL/ACK

The poll command (Hex l) does not use the address portion of the command word for address. Bits in address portion are assigned as follows:

Bits 2 and 3 are encoded as follows:

For Display:
$11=$ Enable keyboard clicker
01 = Disable keyboard clicker
$10=$ Sound alarm
$00=$ None of the aboye

For Printer:
11= Enable Operation*
01= Disable Operation*
$10=$ Sound alarm**
$00=$ None of the above

* A "Special poll" to the printer to control the half-duplex operation of the line Adapter. "Disable Operation" will cause the printer to stop accessing his buffer as soon as fossible (10 msec max), then return "Op. Completen or other available status, and wait for subsequent control unit commands. The Printer will No-Op' the disable poll if the printer is already disabled. "Enable Operation" will revert the printer to internal operation. The printer will continue the operation in process prior to the "disable." Enable Cperation must be sent upon completion of Control unit command sequences to allownew status to be presented to the control unit. The maximum disable time will not normally exceed 60 seconds. The printer must not load (or add) any poll status (except POR response) after becoming disabled. The device must be capable of accepting successive enable or disable polls. The control unit must not send 'enable' (or Start op Command) while waiting for response to a previous disable'. If 'disable' state occurs prior to completion (or termination) of an order, the control unit is not allowed to alter the control unit output area or load a new order, except 'Abort'. If Abort order is loaded, Start Dp, not Enable, must be sent

Note: The Printer is also enabled by 'Start $O D^{\prime}$ ' and 'Reset' commands (1.4.4) and disabled within 100 usecs of setting status bit 6 ,or 9 (Poll Response) or POR response (1.4.2.2).

Note also: Prior to disabling, the printer will set the printer Address Countar to '0000'.

Note Furthermore: If (when) the control unit disables while a Start Op' Cmd. is in process,

1. The control unit is not allowed to alter the. PCIA or the portion of the printer buffer that the current Start Op Cnd references (specified by MSA and ML), and
2. The Printer is allowed to continue accessing (reading and writing) the portion of the buffer that the current Start Op Cmd references provided he is able to do so without affecting the control unitis buffer operations. The printer is allowed read access to the PCIA, but not write access as the control unit may be reading the PCiA during the Disable. The Printer will continue to adhere to the restriction (prohibition) concerning the loading of poll status while disabled.

To allow for control unit error recovery, the printer must appear enabled to the control unit immediately (within 20 usec) upon receiving the 'Enable' Special Poll. Exception: The Printer must no-op the 'Enable' function if the poll Response register is non-zero. If the printer is already enabled, and the poll response reg is zero, the Enable function must be ignored by the printer.

* The Sound Alarm Poll will not alter the Enable/Disable state.

Bit $4=$ Reserved

The response word to a poll is a one word status response. The poll 2 esponse is returned for any combination of bits 2,3 , and 4 in the poll Command. Since the poll is not addressed to the base unit or any fear ture, a priority for response is established by having the base unit respond with its status. If a non-zero status word is sent to the control unit, the device will anticipate receiving a poll/Ack to acknowledge the acceptance of the first status word and cause the devica to respond with nelean" status and reset the previously returned status bits. Upon receipt of the clean status response the control unit may issue another Poll, without the Ack bit, and the device will respond with the second status word. If the second poll does not have the ACK bit on, the device will respond with the first status word again even though higher priority status may have become available. Repetitive polling and poll acking of the devica may continue until an all aero status response to a poll is received at the control unit or the control unit reaches an error threshold. To prevent possible overruns at tha control unit, a device should not return scan codes or other non-zero poll responses at an average rate greater than ten per second. Reset and Read Terminal ID Commands sent to a device after it has returned non-zero status but before the status was Ack'd will cause certain status bits to be reset. Refer to Reset and Read Terminal ID Cmos.

Note: 'Op complete' status and 'Feature Error' status can also be retreived by the, Read Status' command. Op Complete, status or feature Error status will be reset by the Read Terminal ID' command, as well as the Poll, Poll/Ack sequence described above.
Note Also: The Control unit must issue the Poll/Ack Cind. with bits 2,3 and 4 set to zero.

The Poll command is received and decoded in the base logic. The priority of poll response in the 3278 and 3279 displays is:

O Feature Error (Bit 11)
1 por complete Special status code.
2 Base Status (Bits 6,8,9)*
3 Keyboard (including xeyboard overrun) Scan code
4 Any other Feature Status

* Multiple bits of base status may be returnedina coll response.

Dther devices, including those that emulate $3278 / 3279$ Displays, are permitted to establish alternate poll response priorities. If a Base Status Bit is returned and not Ack'd, the same bit will be returned in the next poli response. Other base status bits will not be peturned until the control unit Ack's the original returned status.

Exception: The Display will add bit 9 to previously returned base status bits if an Op complete condition occurs and a poll is received prior to receipt of a Poll/Ack.

Exception: The Printer is allowed to add Base Status bits to preyiously returned Base Status.
If there is no base or feature status to send, an all zero poll response is sent from the base unit indicating that service is not required at the device.

Note:
While the Base Display is 'Busy', the displaywill suppress all status. See clear Command. Upon completion of the Busyoperation, bit g wili be set in Base Status.

1.4.2.2 RESPONSE TO POLL (STATUS WORDS)

BASE Status
The status response word from the base unit is:

Bits 6 ? For ${ }^{\text {Displays }}$ Status transistion has occurred. Refar to Read Status command.

For Printers: Status Available.
This bit is set by the printer when new status is loaded op when status bit 4 is cleared in the printer status register. Before setting this bit the printer will set the Address Counter to 10000 . After setting this bit the printer will go 'disabled.' The Control unit is responsible for reading 'status' (address '0000') prior to sending 'enable.' This bit is also set (and the above sequence oceurs) periodically to test the communication link.
Bit $7=$ Reserved
Bit $8=1$ Parity error has been detected in storage.
When Ack'd, display will not respond with another Devica Check until after the next Write Data, Clear, or Reset command; printer until after the next Command from Control unit.

For printers: Bit 8 set signifies that a parity error occurred during a search or clear command. Bit 9 will also ba set.

Bit $9=$ Operation Complete.
A. A search has been completed.
B. A clear command has been completed.
C. An Insert Byte command has been completed. (Display Only)
D. A 'Disable' poll has been completed. (Printer Only)

Bit $10=1$ Redefines bits 2 thru 9 as being a keyboard code or additional base status. Keyboard Scan Codes will be entered with Bit ${ }^{2}$ the make/break bit, and Bit 3 the high order bit of the Non make/break keys will enter scan codes with bit $2=0$.

Special status codes are:
23456789
$x 0000000$
$\times 0000001$
00000010

$\times 0000100$
$\times 1111111$
10000010
Reserved
Bit $11=$ Feature Error Bit.
This bit will be returned when a feature error is set. This bit will be reset by Poll/ACX or Read Terminal ID. When bit $11=1$, bits 2-10 may contain meaningless data that should ignored by the control unit. Refer to commands Applicabe. to Features for additional description of the feature Error Bit.

While set, the features are blocked. ACK will only reset the Feature Error Bit cother base status pending will net be reset). Bit il is not set by printers.
Bit $12=\begin{aligned} \text { Parity } & \text { (11) bits. maintains even parity of the preceeding eleven }\end{aligned}$

1.4.2.3 FEATURE POLL RESPONSE

Individual Status Bits will be returned until Ack'd by a subsequent
foll. Following receipt of the Ack, the feature will not return tha same status bit until positive action (Read, Reset, clear, etc.) has been taken to service the status. (Printers will not generate any Feature poll Response)
1.4.2.3.1 SELECTOR PEN Status

1	2345	6789	10	11	12
1	0010	$\times 000$	0	0	P

Bit $\quad=$ Request Read
Bit $7=$ Reserved
Bit $=$ Reserved
Bit $9=$ Reserved
1.4.2.3.2 MAGNETIC SLOT READER Status

1	2345	6789	10	11	12
1	0100	9000	0	0	p

Bit $6=$ Request Read
Bit $=$ Reserved
Bit 8 Qeserved
Bit $9=$ Reserved
1.4.2.3.3 3180 Adv. Funct. Adapter Status

1	2345	6789	10	11	12
1	0110	$000 x$	0	0	p

Bit $\quad=$ Reserved
Bit $=$ Reserved
Bit
Bit
Reserved
Operation Complete

1.4.2.3.4 EXTENDED CHARACTER SET (ECS) Status (Display only)

$\begin{array}{llllll}1 & 2345 & 6789 & 10 & 11 & 12 \\ 1 & 0111 & 00 \times x & 0 & 0 & p\end{array}$

Bit $8=$ Device Check (EAB parity error)
Note: Printers will report parity error of EAB by bit 8 in 'base' Poll Response or bit 1 of the PCIA status byte
1.4.2.3.5 CONVERGENCE FEATURE

This feature does not request Poll service or generate a Poll Response.

1,4,3 QTHER READ COMMANDS (TO DEVICE BASE)
Each of these commands will cause the device to return one or more Data Hords. The ending sequence will follod the lith (P) bit of the last Response word.

1.4.3.1 00011 READ DATA

The read data command will cause the addressed device to respond with one data word from storage at the current I/O address counta value. The address counter steps up (increments) once at tha completion of the command.

1.4.3.2 01011 READ MULTIPLE

This command will cause the device to respond with one or more data words from storage beginning. at the current I/0 address counter value. The read will terminate (with ending sequence) when tha two low order bits of the I/0 address counter step to oo. A maximum of four bytes will be returned.

This command will be no-op'd by the printer.
Note: This command will not be issued by the 3276 Control Unit.
Note also: The operation of this comand may be affected by a preceeding 'Load Secondary control Register' Command.

1.4.3.3 10101 READ I/D ADDRESS COUNTER LOW

This command will cause the device to respond with one data word. Bits 2 thru 9 of the data word contain the present value of the 8 low order bits of the address counter.
1.4.3.4 00101 READ I/O ADDRESS COUNTER HIGH

This command will cause the device to respond with one data word Bits 2 thru 9 of the data word contain the present value of tha high order bits of the address counter (right justified).
1.4.3.5 01001 READ TERMINAL I.D.

This command causes the device to respond with one data word.
Note: This command will reset Op Complete and Feature Error status (bits 9 and 11 in poll Response.)

The format of the response data word is as follows:
DISPLAY
Sync
Bit

```
```

Display (bit 9=0, bits 6,7,8 F 0)

```
```

```
```

Display (bit 9=0, bits 6,7,8 F 0)

```
```

```
```

 Bits
    ```
```

 Bits
 0000 Reserved
 0000 Reserved
 0001 APL, with numeric lock
 0001 APL, with numeric lock
 0011 Reserved
 0011 Reserved
 0100
 0100
 0101
 0101
 0110
 0110
 0111
 0111
 l000 Data entry 2, numeric lock
 1 0 1 0 ~ T y p e w r i t e r . ,
 1 0 1 0 ~ T y p e w r i t e r . ,
 1011 Reserved
 1011 Reserved
 M1100 % Data entry 2, w/o numeric lock
M1100 % Data entry 2, w/o numeric lock
1111 No keyboard
1111 No keyboard
APL
APL
Text
Text
Reserved
Reserved
Additional Terminal ID definition for Displays attached to a
Additional Terminal ID definition for Displays attached to a
3274 Control Unit using configuration support C or D, or to a
3274 Control Unit using configuration support C or D, or to a
3174 Control Unit:
3174 Control Unit:
Newer keyboard ID table
Newer keyboard ID table
Bits
Bits
2345
2345
0000 Reserved
0000 Reserved
0001 Apl, numeric lock
0001 Apl, numeric lock
0010
0010
OO11
OO11
0100
0100
0101
0101
0110
0110
0111
0111
l000 D Data entry 2, numeric lock
l000 D Data entry 2, numeric lock
l000 Nata entry 2, numeric lock
l000 Nata entry 2, numeric lock
1010
1010
1011
1011
1100
1100
1101
1101
111110
111110
I
I
lext,
lext,
typewriter, PSHICO, or Overlay, PSHICO
typewriter, PSHICO, or Overlay, PSHICO
1111 No keyboard

```
1111 No keyboard
```

```
    000
```

 000
 0101
 0101
 APL
 APL
 Text
 Text
 APL, PSHICO
 APL, PSHICO
 Data entry 2, numeric lock
 Data entry 2, numeric lock
 Reserved
 Reserved
 Data entry 2
 Data entry 2
 Data entry
 Data entry
 Typewriter
 Typewriter
 No keyboard
 No keyboard
 Note: Num lock for PSHICO keyboards handled by control unit customizatio

```

Model:
Bits 6,7,8
\begin{tabular}{|c|c|c|c|c|}
\hline 000- & Reserved & & Chars. & Model No. \\
\hline 001- & NDS Screen & size & 960 & 1 \\
\hline 010- &  & & 1920 & 2 \\
\hline 011- & \(\boldsymbol{n} \quad \pi\) & - & 2560 & 3 \\
\hline 111- & n & \(\cdots\) & 3440 & 4 \\
\hline \(101-\) & \(\cdots \quad \cdots\) & n & Reserved & \\
\hline \(110-\) &  & \(\cdots\) & 3564 & 5 \\
\hline 100- & Reserved & & & \\
\hline
\end{tabular}

For devices that do not support Feature Address 6:
H/O Convergence
W Convergence
Git5 6,7,8 =
\begin{tabular}{llll}
010 & 011 & 111 & 110 \\
80 & 80 & 80 & 132 \\
24 & 32 & 43 & 27 \\
14.6 & 14.6 & 14.6 & 11.4 \\
15 & 15 & 15 & 15 \\
96 & 16 & 12 & 12
\end{tabular}
\begin{tabular}{lll}
010 & 011 \\
80 & 80 \\
24 & 32 \\
13.5 & 13.5 \\
18 & 18 \\
9 & 18 \\
12 & 12
\end{tabular}.

Note: Displays with EAB feature installed will support both Field and Character highlighting. Also, Displays with either Convergence feature or Colour (bit \(9=1\) in EAB Terminal ID) will support Field and Character Colour.

\section*{Printer}
(bits 2 thru \(8=0\), bit \(9=1\) )
Detailed Terminal ID of a printer will be obtained by readir the PCIA. Refer to Printer Control, Chapter 2.0.

\subsection*{1.4.3.6 00111 READ EXTENDED TERMINAL ID}

The 3274 control unit, configuration 5 upport \(D\) or higher, and the 3174 Control Unit, will issue this command to all ndumb"devices, i.e. those that respond to Read Terminal ID with other than -0000 0001 '. Devices that support this command will return 4 bytes, as defined below, obeying the same rules as Read Multiple. READ EXTENDED TERMINAL ID command does not resft Op complete and Feature Error status, though READ TERMINAL ID command does reset them.
The control unit promises to:
1. set the device address counter to 'XXX---XXOO' prior to issuing this command.
2. not issue this command to devices that respond 10000000 1' to Read Terminal ID.
3. not get upset if the device responds TT/AR to this command, unless the device responded \(10000 \times \times \times 000\), to Read Terminal ID.
4 . not issue this command while the device is in 'Read Big' mode. See 'Load Secondary Control Register' Command.

The device:
\(\frac{1}{1}\) must support this command with a 4 byte response if it responded '10000xyxooop' to Read Terminal ID.
2. is allowed to answer this command with TT/AR if it has provided keyboard ID in bits 2-5 ©f Read Terminal ID response.
3. is allowed to advance its address counter while generating tha 4 byte response.
4. is allowed to return 32 bytes if 'Read Big' is set.

The four byte response is defined as follows:
Byte one: Keyboard Information
Bit \(0=0: 3278\) mode. Scancodes returned to the control unit are exact equivalents of the 3278 keyboard scancodes (see table 5.3.1.) Keyboard ID is in bits 2-5 of Read Terminal ID response. (Remainder of Byte one is undefined, need not be zeros.)

Bit \(0=1:\) Nativemode. Scancodes returned to the control unit are those defined for the 'Modifiable Keyboard'. as:

Bit 1=1: Numeric Lock
Bit 2=1: 'RYO' (Roll Your Own) in effect. Keyboard key functions have been relocated (redefined) via the 'Xeyboard Definition Utility' (see User's Guide GA23-0187.)

Bits 3-7: Modifiable Keyboard ID
Bits 3-7: Bit2=0 (no Ryo)
Byte 4, bit \(7=0\) bit \(7=1\) :
0 or 1:
\(\begin{array}{llll}00000 & \text { Reserved } & \text { Reserved } & \text { Reserved } \\ 00001 & \text { Typewriter } & \text { Typewriter } & \text { Roll A } \\ 00010 & \text { Data entry } & \text { Reserved } & \text { Roli } \\ 00011 & \text { Reserved } & \text { Reserved } & \text { Roll } \\ 00100 & \text { Resed } & \text { Roli D } \\ 00101 & \text { Reserved } & \text { Reserved } & \text { Reserved } \\ \text { thru } & & & \end{array}\)

Bytes two and three: Device Type
Devices will return their four digit type number (packed decima
Device Byte two Byte three
\begin{tabular}{lll}
3179 & 00000000 & 00000000 \\
3180 & 0011 & 0001 \\
3191 & 10000000
\end{tabular}

Byte four: Additional ID:
Bit 0=0: IBM Device
Bit \(0=1\) : non-IBM Device
Bits 1-6: Reserved (Must be zero.)
Bit 7: Keyboard Type
```

=0 Typewriter Keyboard (122/124)
=1 IEM Enhanced Keyboard (102/103/104)

```

\subsection*{1.4.3.7 01101 READ STATUS}

This command will cause the Device to respond with one data word as follows: Bit
\(2=0\) - Mono Case switch turned off
\(2=1\)
3 Reserved
\(4=1\) Not Busy* (Refer to Clear Command)
\(5=0\) - Security key turned off
\(5=1\) on
6 Reserved
\(7=1\) Feature Error Bit \(\# * *\)
8=1 Op Complete**
\(9=0\) - Security key turned on
\(9=1\) (display on
of (display blanked)
539 \(=0,0\) - Security key not installed. 5\&9=1,1 - Invalid code.
*Other bits are valid only when bit \(4=1\).
For Printers: Bit \(4=0\) when Busy or Enabled.
**Set when Op. Complete set in base status. Reset when ACX
received to 0 Complete poll status (Poll/ack sequence) or Read
Terminal ID Command received. For printers : Op complete
Poll Status, set as a result of a disable poll command, may or
may not be returned as Read Status Op Complete.
*** Set when Feature Error Bit is set in base status. Reset when ACX received to Feature Error poll status (Poll/ACX sequence) or Read Terminal ID command received.

Transitions of bits 2,3, or 5 and 9 will cause the display to return bit 6 in Poll Response.
To Printer: Only bits 4 and 8 are implemented.

\subsection*{1.4.4.1 WRITE COMMANDS (XXXXO)}

\section*{56789}
\begin{tabular}{|c|c|}
\hline 00000 & Reserved \\
\hline 00010 & RESET \\
\hline 00110 & CLEAR \\
\hline 01100 & WRITE DATA \\
\hline 01010 & LOAD CONTROL REGISTER \\
\hline 00100 & LOAD ADDRESS COUNTER HIGH \\
\hline 10100 & LOAD ADDRESS COUNTER LOW \\
\hline 01000 & START OPERATION \\
\hline 11010 & LDAD SECONDARY. CONTROL REGISTER \\
\hline 11100 & Reserved \\
\hline 01110 & INSERT BYTE \\
\hline 11000 & Reserved \\
\hline 10000 & SEARCH FORWARD \\
\hline 10010 & SEARCH BACXHARD \\
\hline 10110 & LOAD MASK \\
\hline 111:0 & Reserved \\
\hline
\end{tabular}

Note: The Reserved write commands will reset the previous command (unless busy.) If no other command or data word directly follows the reserved command, TT/AR takes place.

Note: Many of the Write Commands are defined as being followed by one (or more) bytes of data. The device will executa the command following receipt of the data byte. If a second command is received instead of the data byte for the first command, the first command is lost and the second command sequence started. This operation applies to base and feature commands. Write type commands will remain active until reset by the next command (including Poll) except while nbusy.n Refer to Clear command. Data sent while no command stored will be lost. TT/AR.will occur, except in response to data sent to a busy display.

Note also: The Control unit owns the Resen Buffer and the Extended Attribute buffer. Any device that updates these buffers through independent action or depends on any sequenca of the control unit updating the pegen buffer or Extended Attribute buffer may get unpredictable results. Independent Action is defined as the altering of data in the ceviaa buffer by a device action that has not been initiated =y commands or data sent to the device by the control unit.

\subsection*{1.4.4.2 00010 RESET}

> A \(3 \times 74\) will send a byte of data following gESET. A 3276 will send RESET alone.

For Displays:
The RESET command (whether followed by data or not) will cause a partial POR sequence in the display. Base and feature storage will not be cleared. The Mask Register will, not be altered. The I/O Address Counter will be set to Hex '50' (Hex '40' in Mod 1.), which corresponds to the first character location on the screen. The device will execute tha TT/AR sequence. POR Response will be returned to a subsequent poll.

For Printers:
In a printer the RESET command will terminate any operation in process and cause the printer to respond to a poll with the \(P O R\) comilete status code. The printer will then be able to accept and execute any valid command (i.e. the printer will be disabled.) The message buffer will not be clearec, and the control unit cutput area will be cleared. The Address
\[
\text { page } 14
\]

Counter will be set to '0000', and the Mask and Control Register will be reset. The following portion of the Printer Output Area will be initialized:

Byte 0: All bits except 4 \& 7 must be zero.
Byte 1: All bits valid.
Bytes 2 thru 9: All zero.
Bytes A thru F: Terminal ID bytes initialized.
To allow for control unit error recovery, the printer must appear enabled to the control unit immediately (within 20 usec upon receiving the Reset Command.

Note: Following Control unit initialization of the printer (Read Term. ID, Load Address Counter, Read Data, etc.), tha Control unit must send 'Enable' Poll before sending a Start Op command to allow the printer to complete its initialization. Also, the Control unit will write a 4 character test message, as shown in the table below, beginning at address X'004A', prior to sending the first enable poll. This sequence is required after all por responses.
```

Printer Test Messase:

```

Control Unit:
\begin{tabular}{|c|c|c|c|}
\hline \[
x \cdot 4 A: P A
\] & \[
x \cdot 4 E 1
\] & \[
x^{\prime} 4 c,
\] & \(\chi^{\prime} 4 D^{\prime}\) \\
\hline \(X^{\prime \prime} A A\) & 32 & 78 & AA' \\
\hline \(X^{\prime} \cdot A A\) & 32 & 74 & AA' \\
\hline \(X^{\prime} \cdot A A\) & 32 & 74 & AA' \\
\hline \(\chi^{\prime} A A\) & 32 & 74 & CC' \\
\hline port* & \(\chi^{\prime}, 31\) & 74 & AA' \\
\hline port* & х'31 & 74 & CC' \\
\hline
\end{tabular}

Note also: POR Complete will not be returned if the reset (either Command, power On, or operator initiated) ifailed'. that is, if the printer has Equipment Check set in Status.

The device must be capable of accepting tio or more succes sive Reset commancs (without intervening foll-commands.) and respond with a single fOR Response to a subsequent poll. prior to returning POR Response the derice is allowed to terminate communication with the control unit.

1:4.4.3 10110 LOAD MASK

This command will cause the device to load the following data byte into the nMaskn register. The mask will be used in conjunction with subsequent Search and Clear commands. bits in the mask will specify the bits in the buffer to ba compared with the pattern byte. A mask of all non bits will pronibit a pattern test from being satisfied and cause the clear command to terminate at address 0 * and a search forward command to terminate at address o (or the first address encountered with bad parity.)
* For printers: Lo order Address Counter bits equivalent to installed buffer will be zero.

For Displays.
The Mask byte must be reloaded following an Insert Byte command. For 3178 display, the control unit must set the Mask register to \(x^{\prime} F F\), prior to issuing an Insert command.

For Printers.
The Mask byte must be reloaded following a Start Print Order.

The CLEAR command clears all or part of the printer storage or regen. buffer in the addressed device to nulls. A byte of data, called the pattern byte, is transmitted following the clear command. The device uses the pattern, in conjunction with the previously loaded mask, to terminate the clear function. The address counter is used to indicate the point at which the clear function starts. All locations including the starting address up to but not including the location containing the byte that satisfies the pattern and mask are tested and cleared. Upon completion the address counter will be pointing to the satisfying location. The command will terminate at address 0 (without clearing address zero) if no match occurs (For printers: Lo order Address Counter bits equivalent to installed buffer will be zero. ) Corresponding locations of the extension attribute buffer will also be cleared to nulls (under control of the extension attribute buffer mask) when that feature is present.

This command may also be used to clear the storaga area containing the indicator character codes or printer register space. Exception: The 3178 display does not support this command within the operator indicator area--address x, 0000 , to X'04F.' The clear operation will not terminatepramaturaly if a butfer parity error is detected. Device check will be set (if not inhibited due to a frevious parity error) if a parity error is detected. Voon completion of the command the Operation Complete bit (bit 9) will be set in the poll response status word. Prior to setsing op. Complete the devica will be nbusyn. Poll response while busy will be the Auta Response ( \({ }^{\text {cliean responsen). Commands other than Poll and }}\) Reset sent to a device while the base is busy will be no-op'd. TTAAR will oceur, except following data, chained or unchained, sent after a write type command to a display. Whila Busy, Reset command may be honored or no-odid at the descretion of the device. While "busy" the Display will inhibit display of the cursor. Display of the cursor will be inhibited until the next Set Address Counter. Low Command is received. While the cursor display is thus inhibited, commands to the features may be blocked by base hardware. nBusyn also applies to search and Insert commands.

To prevent control unit timeout, the "busy" state of the device must not exceed 32 msec . ( 28 msec . when connected to scme 327 s control units.) printers with 4 K base and 4 K EんB will meet the 32 msec busy limitation only if no Load Mask (EAB) Command preceeded (since the last POR Response) the Clear Command. If a Load Mask (EAB) Command preceeded the Clear, 'busy' state may approach 64 msec.
To allow for control unit error recovery, the device must appear "busy" to the control unit immediately (within 20 usec) upon receiving the clear pattern Byte, unless the operation is completed and op complete is posted in the poll status.
1.4.4.5 01100 WRITE DATA

The WRITE DATA command will cause the derice to aceept all following data words for storage, until another command is received. The data will be loaded at the location indicated by the address counter. The address counter will step up once for each data word received and stored. Codes for specific characters and attributes are defined in Device buffer Code chapter. The control unit prevents address overflow while writing the device buffer.

\section*{1.4 .4 .601010 \\ LOAD CONTROL REGISTER}

This command will cause the cevice to load the following Dat Word into the Device Control Register cdouble line transfer. The Control Register will be set to all zeros by por and the Reset command, but otherwise not altered by the device. Ths Control Register bits are defined as follows:

Bits 234
\(\left.\begin{array}{lllll}000=80 & \text { Characters/line } & & \\ 001=40 & n & n & (\bmod & 1 \\ 100 & \text { only }) \\ 100 & n & n & (\bmod & 5 \\ 10 n 1 y\end{array}\right)\)

5=1 Inhibit Feature Step of I/O Address Counter
When this bit is set the device will prevent the address counter from stepping during read and write commands to tha features. This allows the control unit to read and write tha extension attribute buffer at the cursor location without affecting the address counter and the cursor position on the screen. Printers that support the extension Attribute buffer
(EAE) will implement this command and support bit 5 only.
6=1 Inhibit Display
When this bit is set the display screen, except for the cursor and indicator row, will be blanked.

7=1 Inhibit Cursor Display
When this bit is set, the cursor will not be displayed.
\(8=1\) Reverse Image Cursor
This bit will cause the cursor to be displayed as a reversed image of the associated character box.
\(9=1\) Blink Cursor
This bit will cause the cursor to blink.
( \(8 \& 9=0=\) Normal Cursor)
The printer will only implement bit 5 of this command.
1.4.4.7 10100 LOAD ADDRESS COUNTER LOW

This command, followed by one data word, will load the 8 bits of the data word into the 8 low order bits of the address counter. This command will enable cursor display (at the screen löation associated with the value in the address counter) if the cursor had previously been blanked due. to a nbusyn condition.
1.4.4.8 00100 LOAD ADDRESS COUNTER HIGH

This command, when followed by one data word, will load the data word into the high order bits of the address counter.

This command will cause the device to load the following Data Word into the Secondary Control Register (double line transfer.) The Secondary control Register will be set to allzeros by POR and the Reset command, but otherwise not altered by the device. The Secondary Control Register bits are defined as follows:

Bits 2 thru 8 = Reserved
Bit \(9=0\) Terminate Read Multiple when the
two low order bits of the
I/O address counter step to 00.
Bit \(9=1\) Read Big Mode:
Terminate Read Multiple when the five low order bits of the I/O address counter step to 00000.
This.command will be treared as 'Reserved by printers and rold iron displays. The 3274 and 3276 control units promise not to send this command.
1.4.4.10 01000 START OPERATION

When this command is sent to a printer, the printer will go enabled. Uoon completion (or termination) of the operation (as specified in the 8 bit order reg) the printer will return Status Available in poll Response. Order Complete Status will be set. To prevent control unit timeout, the device must complete the operation, except for Print order, within 500 milleseconds (excluding the duration of any intervening disable time) While the printer is enabled he must treat as invalid any conmand other than poll and Reset. The printer will switch to the "disabled" state when Status Available is set.

To allow for control unit error recovery, the printer must appear enabled to the control unit immediately (within 20 usec) upon receiving the Start Dp Command. Upon receiving the Start Op Command, the printer must test the poll Response Register (bits 6,8,9,\&10) for zero. If zero, the order will be executed; if non-zero, the printer must ignore the start Operation command and remain disabled. TT/AR will occur.
This command will be no-op'd (treated as Reserved) by, the Display.

01110

\section*{INSERT BYTE}

This command will cause the display to accept the following data word and place it in the buffer storage at the location indicated by the current value of the address counter. The original contents of the storage location is shifted one location ahead. This secuence is continued for each successiva location until a null character or attribute is found, or the I/O address counter steps to zero (in which case the character that formerly resided in the last addressable location of storage will be lost.) (For 3178 Display, this commard will terminate at address X:7DOM if no null or attribute is found.) The extension attribute buffer is also shifted with the contents of the EAB mask register being inserted at the initial current address. Only one data word may follow this commandi, During the time that shifting takes place the display will be busy. Refer to clear command. Op Complete is set when this command is completed. At this time the acdress counter is pointing to the last character moved unless tha command terminated at an attribute, in which case the adcress
counter will be pointing to the attribute and the character which was located ahead of the attribute will be permanently lost. The insert operation will not terminate prematurely if a buffer parity efror is detected. Upon completion of this command the Mask register (and pattern register) mus be reloaded by the control unit prior to the next search op clear command.

This command will be no-op'd by the printer.
The control unit must set the address counter to within tha displayable buffer prior to issueing Clear, Search, or Insert commands.

\subsection*{1.4.4.12 10000 SEARCH FORWARD}

This command, when followed by a "pattern" data byte, will cause the device to search each buffer storage location starting at the current value of the address counter untila byte that satisfies the mask and pattern is found. The address counter will contain the value of the address in storase of the first satisfying byte found. If no satisfying bytes are found the search command will terminate at address O (For 3178 Display, this command will terminate at address Xi700' if no satisfying bytes are found.) (For printers: lo order Address Counter bits equivalent to installed buffer mill be zero.) To allow for control unit error recovery, the device must appear nbusy" to the control unit immediately (within 20 use ) upon receiving the Pattern gyte, unless the operation is completed and OP complete is posted in the ooll status.
1.4.4.13 10010 SEARCH EACXWARD

This command operates in a similar manner as the above SEARCX. command. If no satisfying bytes are found the search will terminate one location past address zero lall address bits implemented set to 1.) (For 3170 Display, this comand will terminate at address X'OムF' if no satisfying bytes are found.)

To allow for control unit error recovery, the device must. appear "busy" to the control unit immediately (within 20 usec) upon receiving the Pattern Byte, unless the operation is completed and \(O P\) complete is posted in the poll status.

Note: The two search commands will indicate completion of the operation by setting bit 9 in the status response word to a poll command. While the search is in progress the disolay will be busy. Refer to Clear command. A buffer parity error detected during a search memory cycle will cause the search to terminate. The address counter will be pointing to the locotion containing the byte with bad parity. op. Completa (bit 9). will be set, and Device Check (bit 8) will be set if not inhibited due to a previous Device Chk.

Note also: When, in the course of a search (or clear) command, the address counter value exceeds the implemented buffer, tha byte retrieved from the 'buffer' may be all ones (with sood parity). If this byte satisfies the search (such as nsearch for any attributen or "search for any attribute with MDT setn) the search will terminate. Otherwise, the search will continue. For a display, address zero is reached (for forward search) immediately after address 8191 regardless of the actual buffer size.

\section*{\(1,4,5\) COMMANDS APPIICABLE TO FEATURES}

Note: Most printers will accept commands addressed to tha Base address only. Printers with the Apl feature will accept certain commands to the Ext. Attr. buffer.

For Displays:
The feature error latch is set for the following conditions:
1. A feature does not acknowledge a 'Write' type command or data.
2. A feature does not respond to a 'Read' type command. 3. A feature requesting poll service does not respond to this Poll.

For case 1., the display will set bit ll - 'Feature Error', but respond with TT/AR.

For case 2., the Base will respond with an 'all zeros' data word with bad parity (bit \(10=0\) ). (The 'all zeros' data word will actually contain the 9 bit byte from the feature bus and may be non-zero if the feature bus is inoperative due to one or more of the features malfunctioning.l The feature error bit will be set.

For case 3., Bit 11 is returned in poll response.
1.4.5.1 A/N KEYBOARD FEATURE

The keyboard will only respond to a POLL.
1.4.5.2 SELECTOR PEN FEATURE

COO1 FOLL (See status response)
0011 READ ROW COUNT
Following a Detect the selector pen will respond to this command with a row count (in bit positions 4 to 9) indicating the displayed row in which a detect occurred.

1111 READ SELECTOR PEN FIELD COUNT
Following a Detect the response to this command is a count in bit positions 6 thru 9 that indicates the Selector pen field count at the time a detect occurred. (The field counter is reset to zero before the start of each row.l A Selector pen fieldis a detectable attribute followed by a designator character.

Note: If either of the above two commands is issued after the Reset command but before a detect, a featura Timeout will occur.

01X1 READ FEATURE ID
Responds with feature address in bits 2 thru 5 if feature is present.

0010 RESET
The RESET command will reset all latches and registers in the addressed device feature and must be sent to reenable the selector pen for another detect.

\subsection*{1.4.5.3 MAGNETIC READER FEATURE}
0001 POLL (See status response)
0011 READ DATAThe READ DATA command is issued to the MAGNETIC READERwhen the poll response word indicates that the READERhas data to send to the control unit. The first dataword is sent in response to the first read command andthe (Read-Response) sequence continues until terminatedby the control unit. The Mag Reader buffer addresscounter will increment for each byte of dataread fromthe buffer. The Mag Reader will determine when the lastsignificant byte of data (EOM) has been read. EOM will
    be returned on all subsequent Read Data and/or Read
    Multiple commands untila Reset or Clear command is ra-
    ceived.
    If a Read Data (or Read Multiple) command is issued afa
    ter a clear or reset command but before a card is read.
    a Feature Bus Timeout will occur.
1011 READ MULTIPLEThe feature will respond with four successive bytes ofdata. Same restrictions as for Read Data apply.
\(01 \times 1\) READ FEATURE ID
Responds with feature address in bits 2 thru 5 if fea- ture is present.
OOIO RESET (RETRY)
The RESET command is sent following a control unit de- tected error during the previous Mag Read command. The feature is re-enabled to the operator, hardware is re- set, yellow and green lights extinguished, and the red light turned on.
0110 CLEARThis command is normally sent to re-enable the featurato the operator. Hardware is reset, the yellow and redlights extinguished, and the green light turned on.

\section*{Feature Buffer}

The buffer used for the 3180 feature has the following attributes:
- 256 bytes for DCA Read/Write operations.
- Buffer adciressed by using the base address counter.
- Buffer access (3180 in normal mode)

Ownership of the buffer is dedicated to the \(3 \times 74\) at all times except when the feature is busy. The feature is made busy by the \(3 \times 74\) issuing, and 3180 receiving, a Sta:t 0 o command to the featura. While the feature is busy, ownership of the buffer is dedicated to 3180. When 3180 becomes not busy (i.e., completes an operacion that was started by the \(3 \times 74\) ), 3180 signalis Op Complete to the \(3 \times 74\), becomes not busy, and buffer ownership reverts to the \(3 \times 74\).

\section*{Coax Comnands}

The following is a list of the commands that are directed to feature address 6 . The code noints are listed in hexadecimal as they appear in bits 2-9 of the coax word. The commands listed below with code points \(X^{\prime}\) bX' have the same definition as the \(x^{\prime} 0 x\). code points for the base address commands.

Coax Commands
Code Point
- Read Data x'63'
- Read ID (DCA does not
x.65,
check coax bit 10 parity)
- Read ID (DCA checks coax bit x'67' 10 for odd parity on bits 2-9)
- Start OD
x. \(68:\)
- Read Multiple
- Write Data
- Read Status

Status Register
In order for the control unit to perform error recovery on coax errors to feature 6, the feature provides the following status in response to a Read Status command:


Note: The bits indicated above appear on the coax as bits 2-9.

\section*{Poll Response}

When Feature 6 desires to signal Op Complete (to indicate to the \(3 \times 74\) that a busy condition has completed), it will send the following poll response:


Note: The bits indicated above appear on the coax as bits 2-9. 3180 Feature 6 Buffer layout
\(\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { RESV } & \text { OFER } & \text { OPMOD' } \\
\text { STATUS }\end{array}\right]\) CMDL \begin{tabular}{c} 
CMD \\
\hline \(0-1\)
\end{tabular}

Where the above identified fields have the following meanings:
- RESV - Reserved - must be zero (both reads and writes.)
- OPER - Indicates the operation that has been "Start Op'ed" by the \(3 \times 74\).
- Operation types are:

EXEC (X'01') The \(3 \times 74\) has written data into locations \(4-n\) of the buffer for 3130 to execute. All write commands have two modes of execution: Immediate and deferred.

If an immediate EXEC is issued by the \(3 \times 74,3180\) validates the request and, if valid, performs the operation and issues Op Complete. If a deferred EXEC is issued by the \(3 \times 74\), 3180 validates and calculates the ralues but takes no action untilan UPDATE or an ABORT operation occurs. When a den ferred EXEC is issued, the operation issued ente the operation pending state (e.g.. pending SwNDO.,

An ABORT operation resets all pending states.
An immediate EXEC performs the CMD function and resets that particular pending state.
UPDATE ( \(X^{\prime} 02^{\prime \prime}\) ) The \(3 \times 74\) has instructed 3180 that it has received a valid message and the deferred data should ba used. An UPDATE without a prior EXEC is treated as a NOP.
Multiple deferred operations may be issued prior to an UPDATE. Where multiple deferred operations that affect the same parameter are issued, the most recent value is used when the update is issued.

The data in bytes 4 through \(n\) is ignored.
ABORT (X'O3') The \(3 \times 74\) has received a bad transmission. should reset its nUPDATE Pendingn states.
The data in bytes 4 through \(n\) is ignored.
- OPMOD - This field may be used to modify the outbound data operation.
- The high order bit \(\times 0^{\prime}\) indicates this is a 3x74-to 3180 operation.
- Set to \(x^{\prime} 80\) by the \(3 \times 74\) when it updates the buffer and prior to issuing a start op.
- All other values are reserved (x's1'-x'ff').
- Uoon receiving a, Start 0p, 3180 checks the value of this field for xisor. If the value is not xisol, 3180 responds with Program Check.

－CMDL－Set by：
－ \(3 \times 74\) to the length of the structured field． length \(=C M D L+C M D+D A T A\)
－ 3180 when Op Complete status＝BAD，as a pointer to the byte in error．（CMDL（byte 4）＝1）
－ 3180 to the length of the structured field when the command is a Read command length＝CMDL＋CMD＋DATA．

Note that for all fields the pointer will point to the first byte of the field in error．
－Examples：
－A \(3 \times 74\) operation that consists only of CMDL CMD
\｛bytes 4，5，and 6 are valid）． \(3 \times 74\) sets CMDL \(=3\).
－ 3180 detects a length（CMDL）error． 3180 sets \(C M D L=1\) ． status＝BAD．
－ 3180 detects an unsupported CMD value． 3180 sets \(C M D L=3\) ，status \(=B A D\).
－CMD The operation the \(3 \times 74\) wants 3180 to Start Op． 3180 does not change this field．

READS：

HRITES：

3180 updates length，loads data in buffer，and answers Op Complete．The low－order bit of a READ command is always set to 1 ．The deferred bit（high－order bit）is ignored．

3180 operates on the data the \(3 \times 74\) has inserted in the buffer．When 3180 has completed the operation， 3180 in－ serts the appropriate encing status in STATUS and signals Op Complete．

All write commands have the low－order bit set to 0 ．
All write commands have two modes of operation．These two modes are：immediate and deferred．Immediate operations are validated by the device，the requested operation is per－ formed（if valid）and an Op Comolete response is returned to the \(3 \times 74\) ．Immediate operations are specified by the high－order bit of CMD set to 0 ．

Deferred operations are validated by the device，the re－ quested operation（and associated values，if any）is put into UPDATE pending state，and an Op Complete is returned to the \(3 \Varangle 74\) ．An UPDATE operation causes the device to act on all pending states（and their associated values，if any）．A deferred operation is specified by the high order bit of CMD（X＇80＇）set to 1.


The following commands are all write commands. All have immediate and and deferred yersions. The immediate code points are shown first (high-order bit \(=0\) ). The deferred code points are shown second
(high-order bit \(=1\) ).
\begin{tabular}{|c|c|c|}
\hline CMD & \[
\begin{aligned}
& \text { CODE } \\
& \text { POINT }
\end{aligned}
\] & OPERATION \\
\hline CPAR & \[
\begin{aligned}
& x^{\prime} 02 \\
& x^{\prime} \\
& 8
\end{aligned} 2^{\prime}
\] & \begin{tabular}{l}
The \(3 \times 74\) has loaded bytes. 3-n of a Create Partition structured field into the buffer. \\
lByte 3 of structured field is loaded in byte 7 of the buffer.) \\
The control unit always supplies, as a minimum, bytes 3-9 of the structured field. If the parameter is omitted by the host, the default values shown in GA23-0196 are provided by the control unit. \\
Bytes 9 through n are validated/defaulted by the device. 3180 will reset its window parameters to base state. Cursor locator state is not affected. \\
The derice will reset any Update Pending states and will isnore the Head Control Register for screen format while in partition state.
\end{tabular} \\
\hline SWNDO & \[
\begin{aligned}
& x: 04{ }^{\prime} \\
& x: 84^{\prime}
\end{aligned}
\] & \begin{tabular}{l}
The \(3 \times 74\) has loaded bytes \(3-n\) of a Set Window Origin structured field into the buffer. (Byte 3 of structured field is loaded in byte 7 of the buffer.) This command is issued by the \(3 \times 74\) when keystroking operations require the window to be moved or when a Set Window Origin \\
structured field is received from the host.
\end{tabular} \\
\hline RESETP & \[
\begin{aligned}
& x \\
& x \\
& x \\
& \hline
\end{aligned} 6^{\prime}
\] & \begin{tabular}{l}
The \(3 \times 74\) has encountered a condition where it requires the 3180 to reset its partition and window parameters to base (POR) state. Honor the Head Control Register for screen format on the basis of the model identified. \\
The device will reset any Update Pending states. \\
Cursor locator state is not affected.
\end{tabular} \\
\hline
\end{tabular}


\subsection*{1.4.5.5 EXTENDED CHARACTER SET (ECS)}

Consists of Extension Attribute Buffer - EAB, APL, and Programmable Symbol Set - PSS)

Note: Read and. Write commands to this feature will be affected by the setting of bit 5 in the Base Control Reg. Refer to Load Control Register Command.

0011 READ DATA (EAB) (Display and Printer)
This command operates the same as the base Read Data command.
1011 READ MULTIPLE (EAB) (Display only)
This command operates the same as the base Read Multiple command.

CLEAR (EAB)
Not applicable. Refer to Base Address Clear Cmd.
1100 WRITE UNDER MASK (EAD) (Display and Printer)
The "On bits in each data byte from the control unit corresponding to the iactive' (nin) bits in the mask register ara written into the EAB at the address specified by the Base I/O Address Counter. nin bits in the data byte from the control unit are written into the EAB regardiess of the Mask bits. "1" Bits in the EAB corresponding to zero bits of the mask are not modified.

1010 WRITE ALTERNATE (EAB) (Display and Printer)
Data bytes following this command are written to the Base refresh buffer and the EAS alternately, starting with the base refresh buffer. The Base I/O address counter is stepped after the byte is written into the EAB. The write to the EAB is lunder Mask' and operates the same as the Write Under mask command. Any number of bytes of data may follow this command with no error detected if an odd number of bytes is written.
Note: Write Under Mask and Write Alternate Commands have the following restrictions when writing large blocks of data, in burst mode, to the printers.
1. If updates pass more than 512 bytes, they must be to contiguous storage locations. There is no limit to the size of these updates.
2. If an error results in retrarimission of a buffer usdate, 600 usec must elapse between termination of the original attempt and a subsequent retry.
3. If the buffer updates are between 257 and 512 bytes in length with multiple address counter settings imbedded in the data. 600 usec must elapse between such buffer updates.
4. Buffer updates between 1 and 256 bytes have no restrictions placed upon them.

Note also:
The EAB Color Bits \(4,5,6\) at address 79 (column 80 in tha indicator row) are defined as Color Switch Override Bits.

When any of these bits is set to l, the display is forced to the state where the Base Color Suppression switch is on (mono position), and the switch is disabled.

When all these bits are set to 0's, the switch is enabled.

0110 LOAD MASK (Display and Printer)

The first data byte following this command will be stored in a register and used to designate the bits that will be cleared in the Extension Attribute Buffer when the base in executing a clear command. "1" bits in the mask will cled the corresponding bit in the EAB byte as the base hardwar. clears the matching byte in the refresh buffer. This register must be restored by the control unit following an insert cmd to the base.

The Mask register is also utilized by the feature hardware when executing the 'Write Under Mask' and 'Write Alternate' Commands. See abore.

PS's 2-7 are selected by bits 7,8, 9 of Mask register set to \(b^{\prime} 010^{\prime-b^{\prime}} 111^{\prime}\). Selection of 'base' (b'000') or APL (b'001') or a non-implemented PS will yield the following:

PS Command:
Device Response:
Write
TT/AR
TT/AR, followed by Op. Complete
If a second data byte follows this command it will be loaded into the Suppress Skip Register. Bits in this register are defined as follows:
Data Bit
Function
\begin{tabular}{|c|c|c|c|c|}
\hline 2 & Suppress & Skip & Entire & scree \\
\hline 3 & n & \({ }_{n}\) & PS Font & \[
\div 7
\] \\
\hline 4 & n & n & \(n{ }^{\circ}\) & 6 \\
\hline 5 & \(\pi\) & \(n\) & \(n \quad n\) & 5 \\
\hline 6 & n & " & \(n=n\) & 4 \\
\hline 7 & \(\square\) & \(\cdots\) & \(\cdots\) & 3 \\
\hline 8 & \(n\) & n & \(\cdots{ }^{n}\) & 2 \\
\hline 9 & n & " & (APL) & \\
\hline
\end{tabular}

The raster skip following a character row will be suppressed whenever one or more of the symbols in that row is displayed from a PS font designated as Suppress Skip.

Note: Bit \(2=1\) is not supported by the 3174 , 3274 or Architectura.
```

O:x1 READ FEATURE ID (Display only)

```
\begin{tabular}{ll} 
Data git & Meaning \\
2 thru 5 & Feature present (0111 returned) \\
\(6=1\) & APL installed \\
\(7,8=00\) & 0 PS Fonts Installed \\
\(7,8=01\) & 2 PS Fonts Installed \\
\(7,8=10\) & PS Fonts Installed \\
\(7,8=11\) & 6 PS Fonts Installed \\
\(9=0\) & Monochrome \\
\(9=1\) & Colour
\end{tabular}

This command will reset \(O p\) Complete status in the feature.

OO10 RESET (Display only)
The RESET command will reset the addressed device feature.

When the Display supports FSS, the following commands (to ECS featura) will be honored:

1101 READ STATUS
This command is sent by the control unit to determine if tha feature is "busy" (see Clear PS command) or to read the ROS ID.

The one byte response is defined as:
\(\begin{array}{rlrl}\text { Bit } 4 & =0 & & \text { Busy - Other bits are invalid } \\ & =1 & \text { Not Busy }\end{array}\)
Bit \(8=1 \quad\) Op Complete
Bits 2.356 ROS Identifier:
0000 APL/Text
00011 Reserved
\(1110 /\)
1111 Oper. Inds. only

1000 WRITE DATA (PS)
The Programmable Font Buffer contains 9 data bits for each location of storage. The high order bit of the 9 bit byta will display in column zero of the character box. Two consecutive data words from the control unit are combined to load one location in the buffer. Th. second (odd) word is the eight low order bits to be loaded in the location as indicated by the I.O. Address counter. The first even) word contains the high order bit to be stored in the same location and is positioned in the low order bit position of the first word from the control unit. A data stream of even and odd words may be of any length and will load data into consecutive locations of the buffer, a store cycle and stepoing of the base address counter occuring once for each even-odd pair of data words.

Note: The \(I / 0\) address counter is used to address the Programmable font buffer when writing (or clearing). The control unit must load the I/0 address counter with the proper starting address before writing the 32 bytes (16 slices) of each symbol. The address for the first (top) slice of each symbol will be the 8 bits of the refresh buffer code for that symbol shifted left 4 bit positions (multiplied by sixteen.) Higher order address bits will be ignored.
* 24 bytes (12 slices) will be written to devices that specify 12 PELS/Character vertically in Read Terminal ID rasponse.

1110 OR DATA (PS)
Similar to WRITE DATA with the exception that the followina bytes of data are or'd into the Programmable Font Buffer.

1111 READ DATA (PS)
The low order three bits of the mask register select the PS font to be read. One byte of data will be returned for each 'Kead PS' command. The PS 'slice' will be read in the same order that it is written - leftmost bit in the first byte, remaining. 8 bits in the next byte. The I/O address counter will be incremented following the read of the low order 8 bits, and the device will assign correct (odd) data parity to each byte returned to the control unit.

0100 CLEAR (PS)
This command is used to clear a symbol font buffer. The clear operation starts at the address specified by the address counter and terminates at the end of the 192 symbol prograf mable font RAM. Op. Complete status will be set in the fea ture at the end of the operation. It is recommended that the control unit set bit 7 in the Control Resister prior to issuing this command, and that the control unit refrain from sending any commands (except poll, and Read Status to this feature) to the display while the clear is in process because this command utilizes the Base Address Counter and any commands that alter the contents of the Address counter will have a deleterous effect upon the PS Clear.

Note: The control unit is responsible for inhibiting display while issuing any write command to a PS font. Refer to Load Control Register command.

\section*{1．4．5．6 CONVERGENCE FEATURE COMMANDS}

OIXI READ TERMINAL I．D．
Responds with feature address in bits 2 thru 5.
1101 READ STATUS
Bits 2，3，4，5＝1011（feature addres5）
Bit \(6=1\) Enabled
Bit \(7=1\) Colour Default Switch active（monochrome）
0010 Reset This command will reset the feature status latches and I／O address registers．

0100 Write I／0 Address Reg．High The byte of data sent following this command will be inter－ preted às shown：（Only one byte of data will be acceoted．）


0110 Write \(I / 0\) Address Reg．Low The byte of data sent following this command will be interpreted as shown：（Only one byte of data will be accepted．）


1100 Write Data
This conmand will cause the succeeding bytes of data to be loaded into either the refresh buffer or the backup stora depending on the setting of the select bit in the convergenca I／0 addr counter（see above．）

Data words sent to the Backup Store contain only 3 signif＝ icant bits，plus parity（a nibble）：

23456789 p
\(\begin{array}{llll}0000 & \text { OXXX } & \text { Data word to Backup Store } \\ X X X X X X X & \text { Refresh Buffer }\end{array}\)
A maximum of 64 bytes（ 128 nibbles）may be sent without overwriting the selected storage．

0011 Read Data
This command will return one byte（nibble）of data from the selected storage．

1011 Read Multiple
This command will return a mà imum of four bytes（nibbles） of data from the selected storage，under control of the two least significant bits of the Convergence I／O Address Counter．

\subsection*{2.1 GENERAL}

This section defines the additional control provided for printers by means of preassigned register space in the printer buffer in conjunction with a subset of the above described coax commands for reading and writing this buffer.

\subsection*{2.2 COMMANDS}

The commands recognized by the printer are:

\section*{READ}

00001
10001
00011
00101
10101
01001
01101
0011

Poll
POII/ACK

Read data
Read Adr. Cntr. \(\mathrm{H}_{\mathrm{n}}^{\mathrm{Hi}}\)
Read Terminal ID
Read Status
Read Data (EAB)(Adr 0111)

WRITE
\(\begin{array}{lllll}0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 10 & 0 & 0 \\ 10 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\)

Reset
Write data

Write Under Mask (EAB) (Adr 0111)

Start Operation
Clear
Load Mask
Search Forward
Search Backward
Load Mask
Write Alternate
alternate n

Note: Printers that support the EAB will implement the above commands described as (EAB).

The operation of these commands is described in preceeding sections of this document.

Other commands, including all other commands to other than the base address, are invalid. Invalid read type commands will return an all zeros data word (with bad parity: Bit lo), and inyalid write type commands will (may) reset the previous command. If no other command or data word directly follows the invalid write command, TT/AR takes flace following receipt of the ending sequence. Invalid commands include printer no-op commands. Commands other than poll, Reset and Start Operation (Abort Order) will be treated as invalid while the printer is Enabled or Busy.

\subsection*{3.3 PRINTER CONTROL INFORMATION AREA (PCIA)}

The first 80 bytes of the printer RAM are used as register space to store control information. The first sixteen bytes are used for printer output to the control unit. The next 64 bytes are used for control unit orders and instructions to the printer. Protocol prohibits the control unit and the frinter from altering each others' Output Area (except at POR time.) The assignment is:


\subsection*{2.3.1.1 STATUS}

The Status Bits are defined as follows:
\begin{tabular}{ll} 
Bit & Extended Status Available \\
Bit & 1 \\
Bit 2 & Datacheck \\
Bit & Ordercomplete \\
Bit & Equicment Check \\
Bit & Intervention Required \\
Bit & Sense Data Available \\
Bit 7 & InoutCode Available
\end{tabular}
- Extended status Availále

Bit \(0 \quad\) Set when new status data is loaded into the extended status byte and reset when the printer is enabled.*
- Datacheck
- Order Complete Bit 2

Set, with Order Complete, when the printer detects a data check in the message buffer (not the PCIA) while printing (or loading PS.) Reset when enabled. In lui mode, printer is aliowed to set this bit while executing non-print data, and printing nead not complete (but bit 2 must be set anyhow.)

Set when the order, as specified in the two byta Order Register, has been completed or terminated. Reset when the printer is enabled.*
- Equipment Check Bit 3

Set when a printer detects a 'Permanent Error' cop dition. Cleared by a successful POR. A permane error results when the printer detects a parity er ror or invalid paraneter in the control unit output area (Printer Register Soace). If invalid parameter, Status Bit 5 will also be set, and Sense coda '04' - Order Reject' will be loaded.
- Intervention Required

Bit 4
Set, after a device determined delay, when an operator recoverable (without POR response) condition occurs. Reset when the above condition is removed. Note: The control unit is not allowed to alter the printer print buffer or the Control Unit output Area after receiving IR,OC status, until receiving IR Cleared status.
- Sense Data Ayailable

Bit 5 Set when new sense data is loaded into the sensa byte and reset when the printer is enabled.*
- Input Code Available Bit \(6 \quad\) Set when new input coce is loaded into the input
- Switch Transition
Bitch iransitio

Set when any valid transition of the applicabla suitehes on the printer operator panel occurs and reset when the printer is enabled.* New status of the operator panel switches is stored in the switch status byte.

\author{
* (Provided Poll Response is all zero. Refer to Start Op command.)
}

The Status Available Bit (in Poll Response) is set when any of tha above status bits are set or when Intervention Required is reset. Transition of two or more status bits may occur-for one Status Available Poll Response.

Defined combinations of status bits are:

Status
Bits
- 2 Print, SSA or Abort Order with Print Order suceessfull completed.

Data Check while printing. Print completes.
Printer Register Space Check following Start Cp Commar
IR condition while idle.
EC condition while idle.
Print Order terminated due to IR condition.
Print Order terminated due to Sense condition.
Print Order terminated by an Abort Order.
Print Order terminated due to Equipment Check.
Print Order terminated due to invalid parameter in Control unit Output Area.

Multiple failures or other undefined error conditions may result
The print operation in process will be terminated whenever Equipmant Check, Intervention Required, or Sense. Data Available are set.

\subsection*{2.3.1.2 SHITCH STATUS}

This byte contains the current status of certain operator panel switch positions. Whenever positions of MONO/DUAL Case, SINGLE/DOUBLE INDEX and 8/6 LPI switches are altered by an operator the Status Bit 7 (Smitch transition) is set and new switch status is loaded into this byte.

Bit 0 thru \(2=\) Reserved
\(\begin{aligned} \text { bit } 3 & =0 \quad \text { Colour default switch on - Base Colour (fid Attr) } \\ & =1 \quad \text { off }\end{aligned}\)
\(\begin{aligned} \text { bit } 4 & =1 \quad \text { Colour cartridge resident (or no cartridge) } \\ & =0 \quad \text { Monochrome }\end{aligned}\)
\(\begin{aligned} \text { Bit } 5 & =1=M O N O / D U A L \text { SW in DUAL position } \\ & =0=M O N O / D U A L \text { SW in MONO position }\end{aligned}\)
Bit \(6=1=\) SINGLE/DOUBLE SH in DOUBLE position \(=0=\) SINGLE/DOUBLE SH in SINGLE position
\(\begin{aligned} & \text { Bit } 7=1 \\ &=0=8 / 6 \\ &=0 / 6 \text { SW in } 8 \text { LPI position } \\ & \text { SWI position }\end{aligned}\)
2.3.1.3 INPUT CODE

This byte will be loaded by the printer when a switch that initiates host and/or control unit intervention is actuated or timeout/no pa's installed condition oceurs. The following four inout codes are defined for the printer:
\(x^{\prime} 50^{\prime}=A t t e n t i o n\)
\(\hat{y} \cdot 5 F:=P A \quad 1\)
\(\hat{x} \cdot 5 E:=P A 2\)
\(\hat{x} \cdot 5 \mathrm{D},=\) NO
\(X^{\prime} 5 D^{\prime}=\) No PA Keys Arailable/Actuated
Attn does not terminate the order in process or alter printer slu (Secondary Losical Unit) send/receive state. Attn is allowable only in Printer SLU Receive state.

PA1, PA2, and No PA allowable only in printer SLU send state. Printer SLU will assume receive state upon disabling änd returning the Input Code. No PA code may be sent after timeout in send state.

\subsection*{2.3.1.4 MORE INPUT CODE.}

X'69' Query Reoly.
This code indicates that the printer has received a Read Partition Query SF, and the control unit is directed to transmit a canned reoly. The reply generatod by the control unit will be identical to the LU3 version, and will be limited to Character Set, Hilite, Colour, and Usable Area.
X' \(^{\prime \prime}\) Query Reply, extended
Same as above, except that additional response parameters Same as above, except that additional response parameters into, the message buffer. The data will start at address X'50' with the length specified in address 0004,0005. maximum of 256 bytes is allowed.

X'63' Inbound Data Available
This Input Code is provided for devices that. support:
case 1: Read Partition Query Structured Field with their ow response, or:
case 2: FHH1 inbound requests.
The entire Reply, commencing with the appropriate fM header, will start at address x'50' with the length specified in address 0004,0005. A maximum of 512 bytes is allowed.

Note: A '69', '6A', or '6日' input code must only occur with order Complete and no error status bits (bits 2 and 6 only set in status register).
The printer will return Sense x'02' if:
1. The Read Partition Query Structured Field is not the last (or only) SF in the chain, or

When LIC is not indicated on an otherwise acceptable Read Partia tion Query Structured Field Start Op, the printer must 'hold tha Sense or Input Code reply until the next Start op, and:
1. Return the appropriate Input Code if this lor a subsequent) Start Op indicates LIC and the Read partition Query SF is still the last SF (null RU case).
2. Return Sense '02' if additional data is received (with or without LIC).
3. Purge the Reply if FIC is received prior to LIC.

\subsection*{2.3.1.5 DSEノDSC INPUT CODE}
\[
\begin{aligned}
& \text { x'6C' LU3 Query Reply, more to follow, or: } \\
& \text { x'6D' LU3 Query Reply, last piece. } \\
& \text { Refer to LU3 Query Order for description. }
\end{aligned}
\]

\subsection*{2.3.1.6 STILL MORE INPUT CODE}

X'6E' Inbound Structured Fields Available (DSC mode only)
Used in DSC mode to indicate inbound structured fields ara available from the printer - e.g., IPDS ACK Reply.

Only one input code \(x^{\prime}\) GE' may be presented by the printer per nload Structured Fieldn order. That is - consecutive x'be' input codes are not allowed without an intervening mload Structured Fieldn order.

If more than one input code \(x^{\prime} 6 E\) is received from the printer without an intervening "Load Structured field"order, all but the first are ignored.

Note that this input code is not used for Query Reply which continue to use input code \(x^{\prime} 6 C^{\prime}\) and \(x^{\prime} 6 D^{\prime}\).
The data will start at address 0050 (MSA) with its length specified in address \(0004-0005\) (ML). A maximum length of 512 bytes is allowed. The inbound structured fields may be solicited, for example via an IPDS "Sense Type and Model" (STM) structured field, or unsolicited to report printer detected exception conditions in a structured tield format.
Note: In, LU-1 mode, Input Code x'6B' (Inbound Data Available or \(X^{\prime} 6 F^{\prime}\) (Inbound Data Available Without FM Header) is used to indicate inbound structured fields are available.
\(x^{\prime} 6 F\) I Inbound Data Arailable Without FM. Header (LU-1 mode only)
Used in LU-1 mode to indicate inbound data is available from the printer (e.s., structured fields) that does not contain an FM Header.

The data will start at address 0050 (MSA) with its length specified in address 0004-0005 (ML). A maximum length of 5i2 bytes is allowec.

The control unit will indicate "FM Header not present" in the Request Header (RH) that is sent to the host system.

\subsection*{2.3.1.7 SENSE DATA}

This byte will be loaded by the printer when the printer has sense data to be sent to a host via a control unit. When this byte is arailable, status bits 5 and 2 will also be set.

X'01' Cancel
This code indicates that the cancel key is depressed by an operator in order to cancel printing. The printer will immediately terminate printing in process. The cancel key is only active between first Segment of First in chain and Last Segment of last in Chain. If a Print Order is in process the printer will return 'cancel' and order complete'. If a print order is not in process, the printer will wait for the next Print Order and: If FSFIC, ignore the Cancel; If not FSFIC, abort the print and return Cancel, Order Complete. The control unit is responsible for purging the remainder of the chain after receiving Cancel. The next SCS Start Print sent to the printer will be FSFIC.
X'02' Invalid Parameter
This code indicates that an invalid control parameter has been found in the SCS data stream by the printer.

X'03' \(^{\prime}\) Invalid Structured Field
Set only during SCS FMH Print if the printer detects an in-
valid SF within a valid FMH.
X'04' Order Reject
Set when printer detects an invalid order or parameter in the Control unit Outaut Area. Status bits 2 , 3 and 5 will be set. Printers are allowed to return sense ou' (sans equipment check) in non-SCS mode if invelid parameters are detected in the Load PS header.

X'05' Illegal PS Selection
Set, in SCS mode, when byte 6 or 12 of the Load pS Header specifies a nonexistant PS RAM or plane.
\(x^{\prime} 06^{\prime}\) Illegal Alias Selected
Set, in SCS mode, when an SA ( \(X^{\prime} \mathbf{2 8 ' )}^{\prime}\) control code references a PS LCID which does not exist.
\(x^{\prime} 07\) ' Invalid FMH
Set, in SCS-FMH mode, if the printer is unable to properly process the fit Header, (Invalid SF types within a valid FMH are rejected with X'03'. )
x'08' Invalid Structured Field (DSC mode only)
Used in DSC mode if the printer detects an invalid structured field (other than IPDS structured fields) that was passed to the printer via the "Load Structured Field"order (x'07').

\subsection*{2.3.1.8 EXTENDED STATUS}

PCIA Address 0006, contains "Extended Status" if Status (Addr 0000) bit \(0=1\). Otherwise, it is reserved.

Extended Status:
Bit 0-6 "reserved*
Bit \(7=0\) "Order Complete Not-Deferred"
\(=1\) "Order Complete Deferred"
In DSC mode, when a Load SF Order (X'07') is sent to a printer, Extended Status bit \(7=1\) (Order Complete Deferred) is used with Status bit \(2=1\) (Order Complete) to indicate a deferred order complete condition.

This status can be used by a Printer to stop any further transfer of data from the Control Unit to the Printer until conditions within the Printer will allow it to resume.

Note: The following status cannot be included with order Complete Deferredn. If they are included, they will be ignored.
O Data Check (bit l)
O Intervention Required (bit 4 )
O Sense Data Available (bit 5 )
o Input Code Available (bit 6)

Following presentation of deferred order complete status, the Printer can allow data transfer tc resume by returning status bit \(2=1\) (Order Complete) with Extended Status bit \(7=0\) (Order Complete not-deferred).

If data transfer can continue without interruption following a Load SF Order, then "Order Complete not-deferred" (Status bit \(2=1\) and Extended Status bit \(7=0\) ) is returned by the Printer in response to the Load SF Order.

Note: "Order Complete not deferred" can also be presented by returning status bit \(0=0\) (No Extended Status) and Status bit \(2=1\) (Order Complete).

\subsection*{2.3.1.9 PRINTER ID}

These bytes, loaded by the printer, contain the unique derice parameters that are sisnificant to the control unit and/or the application program. Definition of these bytes is as follows:
' OOOB'


Printer 'Type' definition:
bits 0-3
Type MPP MPL space horz. \((x 10-3)\) in. PEL space horz. ( \(x 10^{-3}\) )in.
PEL space vert.
PEL
( PELs/cell horz

0001
Matrix
132
102
10
15
10
8

0100
Matrix
132
127
10
15.625
10
8

0101
Matrix
132
127
6.25
6.25
12
18

0111
Non-matrix 132
127
00
120
00
00
00

Note: Printer type 0000, with EAB - same definition as 0001, above.
Printer type XXXX, without EAB - Don't Care Condition.
Note also: Printers of Type 0010 and above will implement an additional byte of ID as follows:
byte 000A: (other bits reserved, must be zero)
bits 0,1,2
\begin{tabular}{ll}
\(=000\) & No EAB highlighting supported. \\
\(=x \times 1\) & bioli highlight (blink) supported. \\
\(=x i x\) & bilo highlight (reverse) supported. \\
\(=1 \times x\) & bill highlight (underline) supported.
\end{tabular}
bit \(3=1\) Translate Table Req'd.* bit \(4=1 \quad\) DCA-L2 Supported bit \(5=1 \quad\) FMH Subset 4 supported bit \(6=1 \quad\) Local' Save/Restore \(S F\) and Query List SF supporte: bit \(\quad 7=1 \quad\) LU3 Query supported.
*The control unit will only test this bit if it (the control unit) is configured for EDS.

Printer type 0000, with or wihtout EAB, and printer type 0001 , without EAB, do not support DSE/DSC highlighting.
\(10000^{\circ}\)
Bit \(\begin{aligned} 0 & =1 \\ =0 & =\text { Notention Attribute Buffer installed } \\ & =\text { installed }\end{aligned}\)
Bit \(1=1=A P L / 3289\) Text Print feature installed \(=0=\) Not installed

Note: Bits \(0,1=1,1\) indicate full APL capability via the


Bit \(2=1=P S\) feature installed
\(=0=\) Not installed
\(\begin{aligned} \text { Bit } 3 & =1 \\ =0 & =\text { NOS EBCDIC feature installed } \\ & =\text { Notalled }\end{aligned}\)
Bit 4,5 and 6 Display Screen Size
\(001=960\) \(010=1920\) \(011=2560\) \(111=3440\) \(110=3564\) \(000=\) Reserved \(100=\) Reserved 101 = Reserved

Bit \(7=1=\) Printer (Unit ID) \(=0=0\) ther (Unit ID)

\section*{'000D' Buffer Size ('base' buffer)}
\[
\begin{aligned}
& x^{\prime} 08^{\prime}=2 k \text { Buffer } \\
& x^{\prime} 10=4 K \text { Buffer }
\end{aligned}
\]

This byte will be set to the equivalent value of the high order byte when the size of the printer buffer installed (plus i) is counted in 2 byte binary format. The EAB, when installed, will be of equal size as the 'base' buffer.

\section*{-OOOE' Extended ID}
\[
\begin{array}{ll}
\text { bit } 0= & \text { Reserved } \\
\text { bit } 1= & \text { Reserved } \\
\text { bit } 2=1 & \text { colour supported }
\end{array}
\]
\[
\text { If bit } 0 \text { of byte, } O C^{\prime} \text { is also set (EAB installed), }
\] then Extended Colour is supported.
bit \(3=1\) LU1 FMH Supported
bit \(4=0 \quad\) Load Structured Field order is not supported \(=1\) Load structured field order is supported

Bits 5,6,\&7: Reserved
'000F'
PS Characteristics
bits 0-1 single/triple configuration 00 Reserved
\(\begin{array}{llll}01 & 2 & P S & \text { installed } \\ 10 & 4 & \text { PS installed } & (2,3) . \\ 11 & 6 & \text { PS installed } & (2,3,5) . \\ 11 & 3,4,5,6,7) .\end{array}\)
bits 2-7 triple plane addresses by bit:
lxxxxx triple installed on PS number 2
xixxxx triple installed on PS number
\(x \times 1 \times x x\) triple installed on PS number 4
\(x \times x i x x\) triple installed on PS number \(5-\)
\(x \times x \times 1 x\) triple installed on PS number 6
\(x \times x \times x i\) triple installed on PS number 7

\subsection*{2.3.2 CONTPOL UNIT OUTPUT AREA}

\subsection*{2.3.2.1 MODE ('0010', '0011')}

The mode bytes define in which data stream mode the NDS Subsystem is operating. The mode remains in effect until overlayed with a new mode. The modes are defined as follows:

LU 2/3 Mode
The 3270 Data Stream is supported under SNA.
3270 Mode
This mode allows usage of the 3270 Data Stream over BSC and 3272 local channel attachment.

\section*{LU1 Mode}

This mode allows usage of SCS, DCA-L2, IPDS, or structured field data streams.

Mode Eyte 0 ('0010'):
Bits \(0-4\) Reserved
Bit \(5=0\) For Print Order SCS mode: SA control code ('28')
Bit \(5=1\) For Printorder SCSmode: printer to execute all the
control codes it understands.
Bit \(\quad\) G \(=0\) Reserved
Bit \(7=0\) Enable Ease Colour switch
\(7=1\) Disable Base Colour (switch override)
Note: The control unit will set git \(5=1\) for Print SCS-FMH.
Mode Byte 1 ('0011'):
Bits 0 thru \(2=\) Reserved
- Bits 3 and 4:

00=Host Direct Print
\(01=\) Host Initiated Local Copy (including BSC Copy command)
\(10=0 p e r a t o r\) Initiated Local Copy
Note: Either 00 or 01 may be used for BSC Copy Cmd.
Bits 5 thru 7 :
\[
\begin{aligned}
& 000=\text { No Mode (Refer to Section 2.3.3 for use of this code). } \\
& 001=3270 \text { Mode (Control unit Output Area from } x^{\prime} 0010^{\prime} \\
& 101=\text { LU3 Mode (o (Control unit output Area from x'0010' } \\
& 110=S C S \text { Mode (Control unit Output Area from x'0010' } \\
& \text { to x'0022' used) } \\
& \text { For LUI/FMH, Dutput Area '0030'-.003F' } \\
& \text { alsoused if ID. OOOC' bit } 2 \text { and } \\
& \text {-OOOE bit } 3 \text { set. }
\end{aligned}
\]
* The data stream for these two modes appears the same to the printe

The validity of the control unit output area and supported functions vary among modes. The dependencies are summerized below:
\(\frac{\text { Cancel Key }}{\text { Active only }}\) in LUl Mode (see last note under 'print parameter., )
Prooram Attention Kevs (PA 1 \& 2)


\subsection*{2.3.2.2 MSA AND ML}

The Message Starting Address Bytes specify the buffer address where the message buffer starts from and the message length bytes specify the size of the message buffer to be operated on by the printer. In LUl Mode print data willwrap from the end of the implemented buffer to address \(x^{\prime} 0050^{\prime}\).
I'f ML = zero for Print Order, the printer will suppress any printing and return order complete.

Two bytes are used as the order bytes to specify what operation will be performed by the printer. The f:rst byte contains an ordel and its parameters are specified in the second byte if applicable. Order complete status will be set ufon completion of the operation. The order will remain loaded until overwritten by the next order. The Order will be examined and executed following a Start op Command, providing there is no pending poll Response status. Refer to Start Op Command.

The printer must test the mode byte prior to executing the order. The following mode changes have unique significance:
any \(-->\) No Mode
PA \& Cancel keys deactivated, printer SLU enters or remains in receive state. SCS parameters loaded by SHF, SVF, or SLD will be saved, pending PA input reset. Unique conditions associated with the previous mode will be reset.

LU1 --> LU3,3270: Previous SCS paraneters saved, PA saved.
any \(-\rightarrow\) LU1:
Previous SCS parameters, if any, restored.
Byte 0:
```

$x^{\prime} 01^{\prime \prime}=A b o r t$
$x^{\prime} 02^{\prime}=$ system Status Available
$x^{\prime} 03^{\prime}=$ Print
$x^{\prime} 04^{\prime}=$ Load PS
$x^{\prime} 05^{\prime}=$ Load Translate Table(s)
$x^{\prime} 06^{\prime}=$ LU3 Query
$x^{\prime} 07^{\prime}=$ Load Structured Field

```

\subsection*{2.3.2.3.1 Abort ('01')}

This order causes the printer to terminate the print (or other) order in process. No parameters are available for this order Following receipt of this order the device must respond with one and only one, Order complete. The frinter will ignore an abort order (and remain enabled) if no print (or other) operation is in process. The control unit may only send this order following a 'Start print' (or other) Start Operation and prior to receiving Order complete. The control unit may not change the Mode when sending this order.

The control unit is responsible for resetting the aliases for all PS's affected by the Abort. The printer is responsible for executing deferred clears (if any) fromprevious load PS orders.
2.3.2.3.2 System Status Available ('02')
''00' May \(^{\prime}\), Me used by control unit to indicate Mode change.
Note: Used with Mode = No Mode (Byte 11, Bits 5-7 = 1000 ') to indicate that conditions associated with the previous mode should be reset. For example, if the data stream mode is IPDS, it is reset to the default data stream mode.
X'02' Indicates that the printer \(S L U\) enters the send state.
X'03' Indicates that the printer sLU enters the receive state.
Note: Outstanding PA indication will be cleared whenever the printer SLU returns to receive state.

Note also: '02' and '03' will only be sent in LUl mode.

\section*{2．3．2．3．3 print（．03＇）}

Printing of the message buffer saecified by the MSA and ML will be performed by the printer．Refer to 5．1．1 for code points．

3270 like print function will take place in any modes other than the LUl \＆No Modes．Refer to 3274 Description and Programmer＇s Guide，GA23－0061．If the message starting address does not con－ tain an attribute character，a backward search for an attribute must be performed，commencing from end of the current message buffer．

In the LUl Mode the message buffer contains both control charac－ ters（with or without their parameters）and graphic characters． The printer will access I／O codes from the beginning of the mes－ sage buffer to the end of the message．buffer sequencially．A character will－be printed if it is a graphic character and the control function will be performed if the control character is supported．

If No mode is specified，printer will suppress any printing．Oro der complete will be returned．

The following parameters are defined for the print order：
 value assumed．

Bit \(1=1 \quad\) First Segment of First in Chain
Bit \(2=1\) Last Segment of Last in Chain
\(\begin{aligned} \text { Bit } 3 & =1 \\ & =0= \\ \text { Reserred } & \text { SCSEDIC Data Code }\end{aligned}\)
Bit \(4=1=\) Print with Extensicn Attribute Buffer－ \(=0=\) Print without Extension Attribute Buffer

Bit \(5 \& 6\) Dual／Monocase
\(00=\) Machine Default as configured \(01=\) Monocase \(10=\) Dualcase

Bit \(7 *=1=\) Ignore \(N L, E M\) and \(C R\) and print space for then \(=0=\) Honor \(N L, E M\) and \(C R\)（ 3270 non line length foraat）
＊NOTE：MPP does not effect honcr of NL，EM and CR．Honor is only defined by Bit 7．FF is honored regardless of Bit 7 setting， but only when it is encountered at the left margin print po－ sition．Refer to 3274 DEscription and Programer＇s Guide， ＇VFC Operations＇paragraph．biten FF is not honored，a space is printed．

Note Also：Bits \(4,5 \& 6\) valid in non－lul modes only． （Control unit will set bits 5，6 to＇l，o＇（dualcase） for lUl）．

Note further：Bits \(1 \& 2\) are used to control the operation of the Cancel Key．Cancel is allowed，in LUl mode，from Start Print of First segment of First in Chain until Order complete on Last segment of Last in Chain．

Note in addition: When bit 4 of the Print Order Parameter is set to '1' (Print with extension attribute buffer), bits 1, 2, and 3 are redefined as follows:

Bit \(1=\) Reserved
\(\begin{aligned} \text { Bit } 2 & =0 \quad \text { Use } E A B \text { value (bits } 7,8,9) \text { to select character set. } \\ & =1 \text { Use } E A B \text { value and } E A C T \text { to select character set. }\end{aligned}\)
Bit \(3=0\) Base buffer codes '01' to '07' may be interpreted as control codes regardiess of EAB value.

Bit \(3=1\) Base buffer codes 101 to '07' to be interpreted as control codes only when EAB equals X̌xXXOO1 (APL).

Code 'OO' - Null - is valid regardless of any character or field attributes:

The control unit will not issue a Start Print with bit \(4=1\) if the device does not have an EAB (ID byte 0, bit 0 ).

Print Parameter, FMH Data Stream
Bit 7 , previously set to '0' in LUl mode, will be used to indicate FMH data stream.

Print Order, LUl mode, FMH, will be loaded only if the printer has indicated support ria ID byte 'OE', bit 3 . LUl mode rules apply, except as noted herein. ASCII is not allowed.

If \(F I C\), the \(F M H\) is located at MSA. If not \(F I C\), the printer will continue processing the data stream. One and only one FMH is allowed per chain, and the first FMH Print Order after a mode change or previous EOC will specify FIC. The control unit promises to perpetuate the the FIC bit 7 setting (either io or i' 1 for all print orders in that chain.

If lic indicated, the printer will return order complete, sense '07' if the data in this chain is insufficient to constitute a valid FMH.

A mode change, \(F I C\) Start \(O p\), or Abort without a previous EOC Start Op is valid. The printer will terminate any parameter, header, or data processing without generating error status.

If the type 0001 or 0100 printer encounters a Load PS header with bits \(4-7\) cf byte 3 containing a \(x^{\prime \prime} 6^{\prime}\) while executing an bul mode Print order with \(F M H\) specified, the PS data is to be decompressed as follows:
(where bu indicates bunch, not bushel.)
Each bunch represents two vertical slices, starting at the upper
left of the character cell. Each bunch expands to 4 digits of 4 bits each as directed by the variable length flag:

Flag
\(\begin{aligned} & 0 \text { Compare each digit to all zero } \\ & 10 \text { Compare each digit to and previous digit, first two to zero }\end{aligned}\) 110 Compare each digit to fth previous digit, first four to zero 1110 Entire cell is zero
1111 End flag. Set Sense '02' and quit if remainder of byte is not padded with 1 's.

If the first bit of a bunch is ' \(0^{\prime}\), every digit in that bunch is to be derived by copying its comparison digit and the bunch terminates following the first bit. If the first bit of a bunch is a '1, the four digits follow.

If the first bit of a digit is a '0', the digit is to be derived by copying its comparison and the digit is terminated following the first bit. If the first bit of a digit is a il, the four bit value of the digit follows.

Examples:
Compressed Data
Character
(Hex representation omitted as data doesn't understand byte boundriess
\begin{tabular}{lll}
\(b: 11101\) & & blank \\
b:000000. & blank \\
b:11000000' & blank \\
011100000001100001000000, & fat E
\end{tabular}

\subsection*{2.3.2.3.4 Load PS ('04')}

PS Structured Fields (modified) will be passed to the printer i
segments not exceeding 256 bytes and loaded in the data buffer Each segment loaded will be stored by the printer upon receiving Start operation. Synchronization will be acheived by the printer posting status available--order complete. This process will be repeated until all Load PS structured fields are transferred to the printer. Load PS Headers may oceur at other than the MSA. The host data stream may contain many Load PS structured fields to multiple PSs or planes in a "scatter load" application, and these structured fields will be concatenated in the buffer for one Start Op. with multiple headers.

Load PS Header (and data)
\begin{tabular}{|c|c|c|c|c|}
\hline BYTE & BIT & CONTENT & MEANING & KEY \\
\hline 0 &  &  & \begin{tabular}{l}
Basic or extended form \\
- Extended form (10 byte hdr) \\
Clear PS RAM/Plane \\
- Do Not clear PS RAM \\
- Clear The PS RAM Specified \\
Skip Suppress \\
- Suppression off \\
-Suppression on \\
PS Data Format Type \\
Printer unique type: \\
- Column loading (from left to right, hi order bit at top) \\
- Reserved or not supported
\end{tabular} &  \\
\hline 1 & & \[
\begin{aligned}
& L C I D \\
& (A L I A S)
\end{aligned}
\] & \begin{tabular}{l}
Local Coded Graphic Char. Set ID \\
- X'40' thru x'EF' \\
- X'FF' indicates RAM associated with this LCID is free \\
- Others are reserved \\
(X'FD' - X'FE' for ROS sets)
\end{tabular} & \(C\) \\
\hline 2 & & CHAR & Beginning EBCDIC Code Point X'4.' thru X'FE' (inclusive) are valid. & C \\
\hline 3 & & RAM & \[
\begin{aligned}
& \text { PS, set RAM, number } \\
& (x, 02, X, O 7,
\end{aligned}
\] & \(C / P\) \\
\hline
\end{tabular}

KEY:
C - The control unit is responsible for checking the validity of: these bits/bytes.
\(P\) - These bits/bytes have significance to the printer.
C/P - Both of the above.
\begin{tabular}{|c|c|c|c|c|}
\hline BYTE & BIT & CONTENT & MEANING & KEY \\
\hline 4 & & \[
x-1 \text { ength }
\] & Length of parameters for extended form. This includes the length parameter itself. & C \\
\hline \multirow[t]{4}{*}{5} & 0 & APA & \(=0\) All Points arailable
\(=1\) Not all points arailable & P \\
\hline & 1 & CB & ```
=0 LCID compare
=1 No LCID compare
``` & c \\
\hline & & OB & \[
\begin{aligned}
& =0 \text { PS set is KBD Selectable } \\
& =1 \text { PS set is not KBD selectable }
\end{aligned}
\] & c \\
\hline & 3-7 & RES & RESERVED (must be zeros) & \\
\hline 6 & & X & Number of x-units (10) in call & c \\
\hline 7 & & \(Y\) & Number of Y-units (8) in cell & c \\
\hline 8 & & x.00' & orie byte codes & C \\
\hline \multirow[t]{2}{*}{9} & 0-4 & Reserved & Must be zero & \\
\hline & 5-7 & \[
\begin{aligned}
& \text { CO10r } \\
& \text { B. } 0001 \\
& \text { B. } 0011 \\
& \text { B. } 010 \\
& \text { B } 100 \\
& \text { Other }
\end{aligned}
\] & \begin{tabular}{l}
Color planes \\
- Single or all planes \\
- Blue \\
- Red \\
- Green \\
- Reserved
\end{tabular} & \(C / P\) \\
\hline
\end{tabular}

This is the end of header.
\begin{tabular}{|c|c|c|l|l|}
\hline BYTE & BIT & CCNTENT & MEANING & KEY \\
\hline \begin{tabular}{c}
n X \\
C+10s
\end{tabular} & & Data & \begin{tabular}{l}
Character (internal code) \\
followed by lo vertical slices
\end{tabular} & C/P \\
\hline last & & PFF & End of structured field & C/P \\
\hline
\end{tabular}

All LPSs are to be executed and the last LPS to a PS RAM defines the state of that RAM relative to APA, LCID, etc. The last LPS to a triple plane will define APA, ete. for all planes of that PS set.

Descriotion of Printer sionificant bytes:
Byte 0
Bit 0 - specifies extended header.
When bit 1 of byte 0 is set to a 1 , any portion of the PS RAM not updated will be cleared prior to executing a print order. If the bit is set to o, the selected PS RAM is not cleared. Thus characters can be added to an existing character set. For a triple plane set, only the plane(s) indicated is cleared.
Bit 2 (SKIP SUPPRESS) controls the vertical Dositioning of a line of characters. The next line will be positioned vertically adjacent to the current line, if the current line contains one or more characters from a PS set having SKIP SUPPRESS on.
Byte 2
Successive "characters" (11 byte groups) will be in ascending EBCDIC order.
Byte z

The RAM number indicates the physical RAM to be loaded. Each RAM number is pelated to an attribute selection key defined for PS. These relations are RAM number oz thru 07 equate to attribute selection key Pa
A thru PS respectively. Byte 5
The APA bit, when set to al implies that fewer than all points may be displayed or printed to allow a performance gain for specific derices. For example, 3287 NOT APA will attempt toprint all characters in one head sweep across the print line, (used with 4 of \(7 \times 8\) ps font).

\section*{Byte 9}

For a triple plane PS, if 'PLANES' is omitted, or specifiedwith a value b'000', then for each code point, the character is loaded into each plane of the PS.
For a triple plane PS, if 'plANES' is specifiedwith a value b'001', b'010', or biloo, then the PS data is loaded into the specified PS plane; other values are reserved. The control unit will send only b 000 ; if the printer ID specifies no triple plane for the RAM designated in byte 3.
The PS buffers will be cleared by the printer before responding por.
The control unit will process DSE/DSC Load PS headers for exception responses. The control unit will maintain a current ps buffer/Alias table for each derice configured.

Significant fields in the PCIA are:
- mode = host direct load DSC, 3270
- Messase Length = rariable
- Message Start Address, = variable
- Order \(=\) LoadPS (x,04')
\(\begin{aligned} & \text { Bit } 1=1 \\ &= \text { Beginning of first SF (Load PS Hdr at MSA) } \\ & \text { or startion of of previous Load PS order, }\end{aligned}\)
Bit \(\begin{aligned} & =1 \\ & =0\end{aligned} \quad\) Character specified in \(\begin{array}{r}\text { EBCDIC } \\ \text { Internal }\end{array}\)
Eit \(\begin{aligned} & =1 \\ & =0\end{aligned} \quad\) Character code in header only \(\begin{aligned} \text { preceds each bunch of slices }\end{aligned}\)

(Bits \(3,4,5=0,0,0\) for DSC and DSE)
Other bits are reserved (must be zero)
Note: A load PS order with bit \(1=1\) or any other order will cause the printer to terminate a prior load PS order without forcing error status to be set.

Each load PS order must complete within 2 sec. To maintain subsystem performance, load ps orders containing \(3 k\) bytes of data should complete (as far as the control unit is concerned) within one second.
The 'Load PS Header' will preceed the slice data. The control unit promises not to split up either the header or the character/slices groups when the structured field continues from one buffer load/start op. to, the next. The end of the structured field data will be flagged by ' \(F F\), in the \(n+1\) character position.
If a parity error occurs while reading in the header or data, data check status will be set and the load PS order terminated. Deferred clears for previcusly affected Rams are not to be lost.
\[
\text { pasa } 49
\]

The printers are allowed to terminate with Order Complete/Order Reject, sans Equipment Check, if (when) they detect invalid parameters within the Load PS header, or invalid character addresses or incomplete slice fields within the data. Also, printers are allowed to return sense \(0 \mathrm{C}^{\text {; }}\) in non-scs mode if invalid parameters are detected in the Load PS header.

Host direct (and BSC Copy) print modes:
- 3270 E data stream (internal code):

The interface is similar to the APL support:
- mode = DSE or DSC
- message length
- message start address
- order \(=\) print (x'03:)

> parameters:
> bit \(2=0\) Don't use EACT
> bit \(3=1\) AD-2 implementation. of control codes stored as APL characters to support up to 191 os character definition.
> \(=0 \quad A D-1\) implementation of control codes stored as base characters.
> bit \(4=1\) Print with \(E A B\). Character attribute
> bit \(7 \quad\) references character sets 1 to 7 or color

Local copy operations (per option A \(10 \times 8\) format): (either host or operator initiated)

The control unit will determine whether pS buffers from the display are loaded in the printer, and based con where they are loaded construct the EACT table in the EAB buffer at location \(x^{\prime} 10^{\prime \prime}\) to \(x^{\prime} 1^{\prime \prime}\). . In other respects the PCIA area will not be changed fro- the AD-1 addendum except for the inclusion of the order parameter indicating whether the printer control codes are stored in the base character set or the Apl character set (EAB= 001). Alluseable PS symbol sets must be pre-stored in the printer in \(10 \times 8\) format.
```

-mode = local copy DSE or DSC
-messase length
-message start address
-order = print (x'03')
parameters:
l
bits 5-7 process as currently defined.

```

Note: If a tri-plane is referenced on a color printer, the color artributes of each pel must be determined on the planes referenced by the color attribute. If color is not featured then all pels in the planes selected will print in monochrome.
```

2.3.2.3.5 Load Translate Table(s) ('05')

```

The configuration Support \(C\) control unit will load this order instead of the initial enable after a POR response if (and only if) the printer has specified "Translate Table Requ" in Printer ID byte 1000 A . Commencing at address X'0050\%, the control unit will
 load the 191 EBCDIC code points corresponding to internal codes x'ol, thru x'bF. The printer will save whicherer table it likes and return order Complete. The translate table loaded will reflect the language for which the control unit is currently customized.

The control unit will set:
\[
\begin{aligned}
\text { Print parameter } & =x^{\prime} 00^{\prime} \\
M o d e & =\text { No } \\
M S A & =X^{\prime} 0050^{\prime} \\
M L & =X^{\prime} 017 E^{\prime}
\end{aligned}
\]

The Load Translate Table order must complete within l second.
2.3.2.3.6 Lu3 query (.06')

The Config. Support \(D\) control unit will load this order when it receives a Query/Query List Structured field from the Host while operating in LU3 mode. This order willonly be loaded if the
 will have loaded a Query/Query list Structured Field at the end of the data buffer and MSA will point to the first byte. ML will be set to indicate the maximum number of bytes the control unit wants returned at a time and will be equal to or greater than 256.

Mode \(=\) DSE or DSC
Message Length: for reply. May change for continuation. Parameter bits:
```

Bit 1 = 1 Beginning of Query/Query List.
(Query/Query List SF located at MSA.)
Bit 1 = 0 Continuation of Query/Query List.
(Leftover Reply data at MSA.)

```

The printer will load Query Reply Structured Field (s) beginning at MSA. Order Complete, Input Code Available will be set in Status. PCIA bytes 0004,0005 will contain the length of the Reply. Byte 0002 (Input Code) will contain:

> x'6C: LU3 Query Reply, more to follow, or:
> x'6D: LU3 Query Reply, last piece.

The control unit promises to issue x'0. Startoos (with paranete bit \(1=0\)) until he receives the \(x^{\prime}\) od' Input code.

The control unit will append Implicit partition Query Reply Structured.Field' and any other Query Reply Structured fields for which it assumes responsibility due to subsystem efficiency.

The control unit may test the Query Reply Structured fields returned by the printer against the current configuration support and change to 'null reply' any that exceed said configuration support.

Prior to returning status Available, the printer is allowed to access the designated Query Reply area even tho 'disabled' by the control unit.

\subsection*{2.3.2.3.7 Lcad Structured Field ('07)}
(DSC mode only)
In \(D S C\) mode, used to indicate that structured fields are available. The data will start at the address specified in address 0012-0013 (MSA) with its length specified in address 0014-0015 (ML).

Parameter: \(x^{\prime} 00^{\prime}\) No parameters are defined for the Load \(S F\) order.

Note: Load PS and Read Partition Query (or Query List) continue to use Orders \(x^{\prime} 04^{\prime}\) and \(x^{\prime} 06^{\prime}\), respectively. All other structured fields will be passed to the printer using order メ'07'。
Timing: The Load Structured Field order must complete with one second. To aroid exceeding this ralue due to extende printer processing, order complete-Deferred should be sent prior to expiration of the time out period. completion of
structured field processing and/or a print operation can then be indicated asynchronously by sending Order complete-Not Deferred.
2.3.2.4 MAXIMUM PRESENTATION POSITION (MPF)

The MPP specifies the maximum print position per line. If zero, frint full width as determined by hardware. The MPP byte is loaded by the control unit in all modes except lul Mode.

\subsection*{2.3.2.5 EXTENDED ORDER PARAMETER}

Bits 0\&l= Reserved
bit \(2=1\) Besin Bracket Flag. Valid only in LUl mode and only if device has indicated support of FMH Subset 4 (bit 5 of ID byte 000 A').

Note: The control unit will set bit 2 (to 1) when the outbound RH carries Begin Bracket ard first-in-chain (LUl session only).

Bits 3 thru 7: Reserved

\subsection*{2.3.2.6 EXTENSION ATTRIBUTE CORRELATION TASLE (EACT).}

The EACT, used only in lu2/3 or 3270 mode when bit 2 of orint parameter is set to l, tells the printer how to correlate pS buffers with the PS address in the EAB buffer. It is updated by the control Unit for all local copy prints. The EACT is located in the EAB buffer from hex location 10 to 17.

Note: If control codes are indicated from the APL character attribute the printer will honor control codes when EAB=b'xxxxx001' regardies of the correlation value for APL graphics. The control unit will not load correlation values other than bioooooxazo or correlate to a non-installed PS set.

\subsection*{2.3.2.7 ALIAS TABLE (ADDRESS 0030-003F)}

The Alias Table consists of 8 half words, assigned to Base, APL, and PS's 2-7 in asscending order. The even byte contains the Alias (byte 4 of the Load PS hdr.) and the odd byte contains parameter bits (Syte 8 of the Load PS hdr.) This table is used by the printer to equate the alias in an SA order to a physical PS ram. It is created by the control unit prior to the first SCS Start Op of each session. The alias of the Base character set will always be x, OO', and the alias of the APL set (if installed) will be

The printer is required to form an minternal" table from the Alias Table at each FIC SCS print Order Start Op. whether FMH or not. The printer must update the Alias Table (from his minternalota-
ble) following completion (or termination) of each FMH Start Op, prior to returning order complete. The printer is allowed to update the alias table following completion of a non-FMH SCS Start Op. The alias of a PS will be updated to its new value when then entire Ld PS header is processed error free. Simultaneously, any other pS, set with an identical alias would have its alias nesetn (set to 'FF'.)

Both the control unit and the printer are required to set the Alias to \(x\) 'fF' for unassigned or non-installed PS rams when they write (update) the alias table.

Note: The printer is not required to correct mistakes in the parameter bits sent from the host.

\subsection*{2.4 EXTENDED TRANSLATE TABLES}

The following tables，one for each World Trade Language，will be used by printers that support both internal code ps and LUl （ESCDIC）PS，as a PS set loaded in one mode may be referenced while printing in the other mode．

2．4．1 US，KATAKANA，AND CANADIAN FRENCH
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { U.S. } \\
& \text { INTERNAL } \\
& \text { CODE }
\end{aligned}
\] & & \[
\begin{gathered}
\text { EBCDIC } \\
\text { CODE }
\end{gathered}
\] & & \begin{tabular}{l}
KATAKANA \\
INTERNAL CODE
\end{tabular} & CANADIAN INTERNAL CODE & FRENCH \\
\hline \(\dot{x} 10\) ， & & 40 & －－ & \(x^{\prime} 10^{\prime}\) & \(x^{\prime} 10^{\prime}\) & \\
\hline X＇OA． & & 41 & －－ & X＇6F， & X＇OA＇ & \\
\hline \(\chi^{\prime} 0 B^{\prime}\) & －－ & 42 & －－ & \(\times^{\prime} 70^{\prime}\) & \(\chi^{\prime} 55^{\prime}\) & \\
\hline \(\chi^{\prime} 1 c^{\prime}\) & －－ & 43 & －－ & \(\chi^{\prime} 71{ }^{\prime}\) & \(\chi^{\prime} 1 C^{\prime}\) & \\
\hline \(\chi^{\prime} 1 D^{\prime}\) & －－ & 44 & －－ & \(\chi^{\prime} 72^{\prime}\) & \(\chi^{\prime} 1 \mathrm{D}^{\prime}\) & \\
\hline X＇15． & －－ & 45 & －－ & メ＇73＇ & X＇1E： & \\
\hline \(\chi^{\prime} 1 F^{\prime}\) & －－ & 46 & －－ & \(\chi^{\prime} 74^{\prime}\) & \(\chi^{\prime} 1 F^{\prime}\) & \\
\hline 人＇2A． & －－ & 47 & －－ & X＇75＇ & \(\chi^{\prime} 2 A^{\prime}\) & \\
\hline X＇23． & －－ & 48 & －－ & \(\chi^{\prime} 76^{\prime}\) & x＇9D＇ & \\
\hline 人， 37 ＇ & －－ & 49 & －－ & \(\chi^{\prime} 77{ }^{\prime}\) & X＇37＇ & \\
\hline \(\chi^{\prime} 1 B^{\prime}\) & －－ & 4 A & －－ & \(x^{\prime} 1 c^{\prime}\) & \(\chi^{\prime} 40^{\prime}\) & \\
\hline х， 32 ， & － & 4 B & －－ & \(x^{\prime} 32\), & x，32＇ & \\
\hline \(\chi^{\prime} 09 \cdot\) & － & 4 C & －－ & \(\times^{\prime} 009\) ， & \(\chi^{\prime} 091\) & \\
\hline \(\chi^{\prime} 00^{\prime}\) & － & 4 D & －－ & \(\mathrm{X}^{\prime}\) OD＇， & \(x^{\prime}, 0 D^{\prime}\) & \\
\hline 人＇35： & － & \(4 E\) & －－ & \(x^{\prime} 35{ }^{\prime}\) & \(\chi^{\prime} 35^{\prime}\) & \\
\hline x＇16＇ & －－ & \(4 F\) & －－ & \(x^{\prime} 16^{\prime}\) & \(x^{\prime} 19\)＇ & \\
\hline х＇30， & －－ & 50 & －－ & \(\chi^{\prime} 30^{\prime}\) & \(x^{\prime} \cdot 30^{\prime}\) & \\
\hline \(\chi^{\prime} 38{ }^{\prime}\) & －－ & 51 & －－ & x， 78 ； & \(x \cdot 33^{\prime}\) & \\
\hline ¢＇39， & －－ & 52 & －－ & x＇79， & X＇56＇ & \\
\hline X＇3A＇ & －－ & 53 & －－ & X＇7A＇ & X＇51， & \\
\hline \(x^{\prime} 3 c^{\prime}\) & －－ & 54 & －－ & 天＇7B＇ & x， 38 ， & \\
\hline X＇3E： & －－ & 55 & －－ & x＇7c： & \(\chi^{\prime} 18{ }^{\prime}\) & \\
\hline メ＇3F＇ & －－ & 56 & －－ & － 70 ， & \(\chi^{\prime} 57\)＇ & \\
\hline \(\chi^{\prime} 40\)＇ & －－ & 57 & －－ & \(\chi^{\prime}\) ，OA， & \(\chi^{\prime} 52 \prime\) & \\
\hline X＇41＇ & －－ & 58 & －－ & \(\chi^{\prime} 7 \mathrm{FE}\) ， & X＇OE， & \\
\hline X＇42， & －－ & 59 & －－ & X，OB： & X＇42， & \\
\hline x＇19， & －－ & 5 A & －－ & \(\chi^{\prime}, 19{ }^{\prime}\) & X＇3E， & \\
\hline \(\chi^{\prime} 1 A^{\prime}\) & －－ & 5 B & －－ & \(\chi^{\prime} 10^{\prime}\) & X＇1A＇， & \\
\hline \(\chi^{\prime} \mathrm{BE}\) ， & － & 5 C & － & \(X^{\prime}, \mathrm{BF}\)＇ & \(\chi^{\prime} \mathrm{BF}^{\prime}\) & \\
\hline \(\chi^{\prime} 00 \cdot\) & －－ & 5 D & － & \(\chi^{\prime} 00 \cdot\) & \(\chi^{\prime}, 0 C^{\prime}\) & \\
\hline \(\chi^{\prime} \mathrm{BE}\)＇ & －－ & 5 E & －－ & \(\chi^{\prime} \mathrm{BE}^{\prime}\) ， & 人x＇\({ }^{\prime} \mathrm{S}^{\prime}\) ， & \\
\hline x＇36． & －－ & 5 F & －－ & х，36： & X＇3A＇ & \\
\hline \(\chi^{\prime} 31\)＇ & －－ & 60 & －－ & x＇31； & \(\chi^{\prime}{ }^{\prime} 1^{\prime}\) & \\
\hline \(x^{\prime} 14{ }^{\prime}\) & －－ & 61 & －－ & \(\chi^{\prime} 14{ }^{\prime}\) & \(x^{\prime} \cdot 14{ }^{\prime}\) & \\
\hline х， 43 ＇ & －－ & 62 & －－ & X＇0E； & X＇75， & \\
\hline х＇44＇ & －－ & 63 & －－ & \(x^{\prime}\) OF＇， & X＇17＇ & \\
\hline －＇45＇ & －－ & 64 & －－ & \(\mathrm{x}^{\prime}, 15{ }^{\prime}\) & x． 60 ： & \\
\hline X＇46： & －－ & 65 & －－ & \(\chi^{\prime}, 17{ }^{\prime}\) & X＇46； & \\
\hline X＇47＇ & －－ & 66 & －－ & X＇1日： & X＇47， & \\
\hline x＇48＇ & －－ & 67 & －－ & X＇1E： & X＇48； & \\
\hline \(\chi^{\prime} 49^{\prime}\) & －－ & 68 & －－ & \(\chi^{\prime} 1 \mathrm{IF}^{\prime}\) & \(\chi^{\prime} \mathrm{BD}^{\prime}\) & \\
\hline \(\chi^{\prime} 05{ }^{\prime}\) & －－ & 69 & －－ & \(\chi^{\prime}, 2 A \prime\) & X＇05＇， & \\
\hline x：17＇ & －－ & 6 A & －－ & \(\chi^{\prime}\) ，2B＇ & X＇44， & \\
\hline x，33＇ & －－ & 68 & －－ & メ＇33＇， & 「＇33＇， & \\
\hline X＇2E＊ & － & 6 C & －－ & \(\chi^{\prime}\)＇2E＇， & X＇2E＇， & \\
\hline X＇2F． & － & 6 D & －－ & \(\chi^{\prime} 2 \mathrm{~F}\) ， & X＇2F， & \\
\hline \(\chi^{\prime} 08{ }^{\prime}\) & －－ & \(6 E\) & －－ & \(\chi^{\prime}, 08{ }^{\prime}\) & 人＇08＇ & \\
\hline \(\chi^{\prime} 18{ }^{\prime}\) & －－ & 6 F & －－ & \(x^{\prime}, 18{ }^{\prime}\) & \(\chi^{\prime}, 18{ }^{\prime}\) & \\
\hline \(x \cdot 4 \mathrm{~B}\) ， & － & 70 & －－ & \(\chi^{\prime}, 38{ }^{\prime}\) & x＇48； & \\
\hline \(\mathrm{x}^{\prime} 4 \mathrm{C}^{\prime}\) ． & －－ & 71 & －－ & \(\chi^{\prime}, 39^{\prime}\) & x＇78； & \\
\hline \(\chi^{\prime} \cdot 4 \mathrm{D}\) ， & －－ & 72 & － & X＇3A： & x＇76： & \\
\hline X＇4E， & －－ & 73 & －－ & x＇3B． & x＇71： & \\
\hline X＇4F， & － & 74 & －－ & \(\chi^{\prime}\) ， 3 C ： & x＇61； & \\
\hline \(\chi^{\prime}, 50\), & － & 75 & －－ & x＇3D＇， & x＇50＇， & \\
\hline x＇51＇ & － & 76 & －－－ & X＇3E＇， & र＇，\({ }^{\prime} 7^{\prime}\) & \\
\hline x＇52＇， & －－ & 77 & －－ & 或，3F， & x＇72， & \\
\hline \(\chi^{\prime} .53\) ， & －－ & 73 & \(\cdots\) & 鸟，7F＇ & x＇s \({ }^{\text {x，}}\) & \\
\hline － \(3{ }^{\prime}\) & －－ & 79 & －－ & x＇80＇ & 天＇3D＇ & \\
\hline
\end{tabular}

\(\begin{array}{lll}1 & 1\end{array} 1\)

\subsection*{2.4.2 TABLE \(V\) COUNTRIES}

\section*{2．4．3 MORE EXTENDED TRANELATE TABLES}

US（ref），CANADIAN BILINGUAL，FRENCH AZERTY 105 Character， portuguese alternate，shiss french（swiss german），internal codes
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { UTS } \\
& \text { INTRNL } \\
& \text { CODE }
\end{aligned}
\] & \[
\begin{gathered}
\text { EBCDIC } \\
\text { CODE }
\end{gathered}
\] & & NADIAN BILING INTRNL CODE & \begin{tabular}{l}
FRENCH \\
INTRNL CODE
\end{tabular} & \[
\begin{aligned}
& \text { PORTUGESE } \\
& \text { INTRNL } \\
& \text { CODE }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SWISS } \\
& \text { FRENCH } \\
& \text { INTRNL } \\
& \text { CODE }
\end{aligned}
\] \\
\hline \(x^{\prime} 10^{\circ}\) & 40 & & \(x^{\prime} 10^{\prime}\) & \(x^{\prime} 10^{\prime}\) & \(x^{\prime 1} 10^{\prime}\) & X＇10＇ \\
\hline X＇OA． & 41 & & X，OA． & X＇OA． & X＇1B， & x，10． \\
\hline X＇OB＇ & 42 & & X＇55， & X＇55， & X＇16＇ & x＇55＇ \\
\hline X＇1C． & 43 & & \(x^{\prime} 1 c^{\prime}\) & －50＇ & x＇1c： & \(\chi^{\prime} 50\)＇ \\
\hline X＇10， & 44 & & X＇40， & x＇10＇ & X＇10； & X＇48＇ \\
\hline X＇1E， & 45 & & X＇1E＇ & X＇1E＇ & X＇1E＇ & \(\chi^{\prime} 1 E^{\prime}\) \\
\hline X＇1F＇ & 46 & & X＇1F， & X＇1F＇ & X＇1F： & \(x \cdot 1 F\) \\
\hline X＇2A＇ & 47 & & \(x \cdot 2 A\) ， & X＇2A： & ¢＇2A： & \\
\hline \(\chi^{\prime} 28\)＇ & 48 & & x＇90； & \(\chi^{\prime} 16^{\prime}\) & X＇2B＇， & \(\chi^{\prime} 4 \mathrm{~F}\)＇ \\
\hline 風37＇ & 49 & & \(\chi^{\prime}=7\) ， & \(\chi^{\prime} 37{ }^{\prime}\) & \(\chi^{\prime} 37 \prime\) & X＇37， \\
\hline \(\chi^{\prime} 18\) B＇ & 4 A & & \(x^{\prime}, 18{ }^{\prime}\) ． & \(\chi^{\prime} \mathbf{x}^{\prime} 8^{\prime}\) & x＇0A＇， & \(\chi^{\prime} 0{ }^{\prime \prime}\) \\
\hline X＇32． & 4 B & & x＇32： & \(\times^{\prime} 32 \prime\) & х＇32＇， & X＇32： \\
\hline \(\chi^{\prime} 09\). & 4 C & & х＇09＇， & \(\chi^{\prime} 09 \cdot\) & \(\chi^{\prime} 09{ }^{\prime}\) & \(\chi^{\prime} 09\), \\
\hline X＇OD＇， & 4 D & & X＇OD＇ & X＇OD＇， & \(\chi^{\prime} 00 \cdot\) & \(\chi^{\prime}, 00 \cdot\) \\
\hline X＇35， & \(4 E\) & & x＇35＇ & \(\chi^{\prime} 35{ }^{\prime}\) & \(\chi^{\prime} 35{ }^{\prime}\) & \(\chi^{\prime} 35^{\prime}\) \\
\hline X＇16＇ & 4 F & & x＇16＇ & \(\chi^{\prime} 19{ }^{\prime}\) & －－x＇19＇ & \(\chi^{\prime} 19\) ， \\
\hline x．30． & 50 & －－ & x＇30＇ & x＇30： & \(\chi^{\prime} 30^{\prime}\) & \(\chi^{\prime} 30^{\prime}\) \\
\hline X＇38． & 51 & & X＇5B＇ & \(\chi^{\prime} 13^{\prime}\) & \(\chi^{\prime} 38{ }^{\prime}\) & \(X^{\prime} 4 A^{\prime}\) \\
\hline \(\chi^{\prime} 39\)＇ & 52 & & X＇56＇ & X＇56＇ & \(\times^{\prime} 39^{\prime}\) & \(\chi^{\prime}\) 56 \({ }^{\prime}\) \\
\hline X＇3A＇， & 53 & & X＇51＇ & X＇51＇， & \(x^{\prime} 36^{\prime}\) & X＇51＇， \\
\hline \(\chi^{\prime} 3 c^{\prime}\) & 54 & & X＇41： & \(\chi^{\prime} 3 \mathrm{~B}\) ， & \(\chi^{\prime} 3 \mathrm{C}^{\prime}\) & \(\chi^{\prime} 49\)＇ \\
\hline X＇3E＇， & 55 & & x＇69＇， & X＇3E＇ & X＇0E＇， & \(\chi^{\prime} 3 \mathrm{C}^{\prime}\) \\
\hline X＇3F＇， & 56 & & X＇57＇， & Х＇57＇ & X＇3F， & \(\chi^{\prime}{ }^{\prime} 57 \prime\) \\
\hline \[
x: 40:
\] & 57 & －－ & －＇52＇ & －＇52＇ & 人＇40＇， & X＇52＇， \\
\hline \[
x^{\prime} \cdot 41 \text { : }
\] & 58 & －－ & X＇40＇ & \(x \cdot 41\) & x＇41＇ & \(\chi^{\prime}{ }^{\prime} \mathrm{BB}^{\prime}\) \\
\hline X＇42＇ & 59 & & メ＇42＇ & \(x \cdot 42\) & X＇42＇， & \(\chi^{\prime}, 2 \mathrm{~B}\) ， \\
\hline X＇19， & 5 A & & x＇19＇ & \(x \cdot 25\) & X＇OB， & 天＇OB＇ \\
\hline X＇1A． & 53 & & X＇1A＇ & X＇1A＇ & X＇1A＇ & \(X^{\prime} 1 A^{\prime}\) \\
\hline X＇BF： & 5 C & & \(\chi^{\prime} \mathrm{BF}^{\prime}\) & X＇EF＇ & \(\chi^{\prime} \mathrm{BF}\)＇ & \(X^{\prime} \mathrm{BF}{ }^{\prime}\) \\
\hline X＇0C＇， & 5 D & & \(\chi^{\prime}, 00 \cdot\) & х＇00： & X＇0c， & \(\chi^{\prime} 0 C^{\prime}\) \\
\hline X＇BE＇， & 5 E & & \(\chi^{\prime}{ }^{\prime} \mathrm{BE}\) ， & X＇EE＇ & X＇BE＇， & X＇BE， \\
\hline & 5 F & & \(\chi^{\prime}, 36{ }^{\prime}\) & X＇3A＇ & X＇3A； & X＇3A！ \\
\hline x＇31＇ & 60 & & x＇31＇， & \(x \cdot 31\) & X＇31； & x＇31 \\
\hline \(\chi^{\prime} 14^{\prime}\) & 61 & & \(\chi^{\prime}, 14{ }^{\prime}\) & \(\chi^{\prime} 14^{\prime}\) & x＇14； & X＇，14， \\
\hline 人＇43＇， & 62 & －－ & \(\chi^{\prime}, 75\) ， & 咸，43＇， & X＇43＇， & \\
\hline 人＇44； & 63 & －－ & x， 7 C ， & X＇44＇， & \(\chi^{\prime}\)＇44＇\(^{\prime}\) & \(\chi^{\prime}, 70^{\prime}\) \\
\hline X＇45＇， & 64 & －－ & \(\chi^{\prime} 50 \cdot\) & x＇45？ & X＇OF＇ & X＇45＇， \\
\hline X＇46＇， & 65 & －－ & \(\chi^{\prime} 46\)＇， & \(\chi^{\prime} 46^{\prime}\) & 人x， \(17{ }^{\prime}\) & 人＇46＇， \\
\hline 人＇47＇， & 66 & －－ & \(\chi^{\prime} 47\)＇ & \(\chi^{\prime} 05\)＇ & X＇47＇， & \(\chi^{\prime} 47\) ， \\
\hline X＇48＇ & 67 & －－ & 人＇48＇ & \(\chi^{\prime} 20^{\prime}\) & X＇48＇， & \(\chi^{\prime} 38{ }^{\prime}\) \\
\hline х＇49＇， & 66 & －－ & \(\chi^{\prime} \mathrm{BD}^{\prime}\) & X＇OE＇ & X＇49＇ & \(x^{\prime} 39\)＇ \\
\hline X＇05， & 69 & －－ & \(x^{\prime}, 4 A^{\prime}\) & X＇OF＇， & \(\mathrm{x}^{\prime} 4 A^{\prime}\) & \(\chi^{\prime}, 5 \mathrm{~B}\)＇， \\
\hline x＇17＇， & 6 A & －－ & X＇， \(17{ }^{\prime}\) & & x＇46＇ & \(\chi^{\prime}{ }^{\prime} 17{ }^{\prime}\) \\
\hline x＇33： & 6 B & －－ & x＇33： & 友，33＇， & x＇33＇， & x＇33： \\
\hline X＇2E＇， & 6 C & & \(\chi^{\prime}{ }^{\prime}\) 2E＇ & X＇2E＇ & X＇2E， & \(\chi^{\prime}\)＇2E＇ \\
\hline X＇2F＇ & 6 D & －－ & \(\chi^{\prime}, 2 \mathrm{~F}{ }^{\prime}\) & X＇2F： & x＇2F： & X＇2F＇， \\
\hline \(\chi^{\prime} 08\) ， & \(6 E\) & －－ & \(\chi^{\prime} 08{ }^{\prime}\) & 或， 08 ＇ & 天＇08＇， & \(\chi^{\prime} 080\) \\
\hline & \(6 F\) & －－ & X＇， 18 ， & X＇18： & x＇18， & \(\chi^{\prime} \mathrm{x}^{18} 8^{\prime}\) \\
\hline X＇4B＇， & 70 & & \(\chi^{\prime}, 4 B^{\prime}\) & \(\chi^{\prime} 4^{\prime} \mathrm{E}^{\prime}\) & x＇48； & X＇42＇， \\
\hline \(\chi^{\prime} 4 c^{\prime}\) & 71 & & \(x^{\prime}, 78{ }^{\prime}\) & X＇4C： & X＇4C＇， & X＇43＇ \\
\hline \(\chi^{\prime}, 4 \mathrm{D}\), & 72 & & \(\chi^{\prime} 776^{\prime}\) & X＇17＇ & X＇4D＇， & X＇3F： \\
\hline X＇4E： & 73 & －－ & \(\chi^{\prime} .71\) ， & X＇4E＇ & X＇4E， & X＇4E： \\
\hline X＇4F： & 74 & & \(\chi^{\prime} .61\) ， & \(\chi^{\prime}, 15\) ， & X＇4F＇ & \(\chi^{\prime} \mathbf{x}^{\prime} 0^{\prime}\) \\
\hline X＇50＇， & 75 & －－ & \(x^{\prime}, 50\) ， & \(x^{\prime}, 2 \mathrm{C}\) ， & X＇50＇ & x＇41： \\
\hline X＇51＇， & 76 & & \(\chi^{\prime} 77{ }^{\prime}\) & 戌．36＇ & X＇51： & X＇44； \\
\hline x＇52＇， & 77 & －－ & x＇72， & \(\chi^{\prime} 40^{\prime}\) & \(\chi^{\prime} \cdot 52\) ， & X＇6A． \\
\hline \(\chi^{\prime} 53{ }^{\prime}\) & 78 & & X＇53： & 人＇78＇， & x＇53＇ & X＇76＇ \\
\hline x＇30＇， & 79 & & x＇3D＇， & x＇39： & X＇3D： & x＇30： \\
\hline x＇34＇， & 7 A & & \(\mathrm{x}^{\prime} 34^{\prime}\) & \(x^{\prime}, 34{ }^{\prime}\) & X＇34； & \(\chi^{\prime}{ }^{\prime} 34{ }^{\prime}\) \\
\hline x＇2C： & 78 & & \(\mathrm{x}^{\prime}, 2 \mathrm{~L}\) ， & \(\chi^{\prime}, 10 \cdot\) & x＇65； & X＇2C＇， \\
\hline \(x^{\prime}, 2 \mathrm{D}\), & 7 C & & \(x \cdot 2 \mathrm{D}\) ， & x＇48， & х＇66＇ & x＇2D： \\
\hline \(\chi^{\prime}, 12\) ， & 7 D & & x＇12， & x＇12： & x＇12， & x＇12， \\
\hline x．11， & \(7 E\) & & x＇11． & \(x^{\prime} 11{ }^{\prime}\) & \(x^{\prime} 11\)＇ & x＇11． \\
\hline
\end{tabular}

\(><\times<\times \times 1 \times \times\)

m勺Q

 \(=\)

\(=\)

\section*{3.1 .1 GENEPAL}

The control Unit to Device Interface is a single wire coaxial cable (coax) interface using type RGGZAU coaxial cable with serial by bit data transferred in either direction but in only one direction at at time. The control unit operates as a master, and the attached deyice operates as a slave. Each device attached directly to the control unit receives and sends data addressed only to that device.

Bits on the coax appear as positive and negative going pulses. Binary data is phase encoded such that a 212 nanosecond (ns) uplevel followed by a 212 ns down-level, represents a binary 0 . Similarly, a 212 ns down-level, followed by a 212 ns up-level, represents a binary 1. A predistortion pulse is generated for every transition from an.up-level to a down-level or vice versa. (See wareforms in 3.0 (A). and 3.0 (B).)

The wayeforms shown in 3.0 (A) and 3.0 (\(B\)) are the signals measured across the coax at the transmitting unit (either control unit or derice).

The waveforms shown in 3.0 (C) and 3.0.(D) show the signal across the coax at the receiving end of l. 5 km of coax.

The dipulse technique is used to provide a voltage transition of the coax at mid-bit time. Prior to ralid data being transmitted, the coax must be conditioned to ensure that bit and byte synchronization may be achieved. This requires the transmission of a line quiesce and code violation pattern.

\subsection*{3.1.2 LINE QUIESCE PATTERN}

It is necessary to establish an equilibrium switching condition on the line after the null condition of line turn around before valid data can be properly detected at the receiver. Each data sequence from either control unit or device will therefore be preceded by a quiesce pattern of at least 5 minbits of biphase encoded data. (Early models of the 3174 control unit have been found to transmit the first line quiesce bit with the initial transistion having a pulse width of 350 nsec instead of 212 nsec. This anomoly occurs at the four NDCA ports only; the TMA outputs are as herein defined.)

\[
\begin{aligned}
& \begin{array}{l}
+1.3 \mathrm{~V} M \mathrm{X} \\
+0.8 \mathrm{~V} M \mathrm{~N}
\end{array} \\
& +0.9 \mathrm{VMX} \\
& +0.25 V \text { MIN } \\
& 0 \mathrm{~V} \\
& \begin{array}{l}
-0.25 \mathrm{VN} \\
-0.9 \mathrm{~V} \operatorname{NX}
\end{array} \\
& \text { - } 0.8 \mathrm{~V} \text { MIN }
\end{aligned}
\]

Fiョuニe 3.0 （A）

Ficure 3.0 （ B ）
AIL RISE AND FALL TIMES 30 nS MAX．
pase 63 RISE AND FALL TIMES ERE EXAGGERATED FOR CLARITY．

\[
\text { Ficure } 3.0 \text { (c) }
\]

Figure 3.0 (D)
\[
=09064
\]

\subsection*{3.1.3 UNIQUE CONTROL CODE VIOLATION}

A code violation will follow the line quiesce pattern to differ entiate between the quiesce pattern and the start of the vali data following the code violation. This is necessary because, due to varying line lengths, it is not possible to predict where the received data will become valid. However the code violation will be received properly and provides a clean reference mark for start of transmission.
A unique balanced code violation sequence containing leading and trailing buffer bits to eliminate history dependence on adjacent data would appear as follows:

The trailing buffer bit is actually the sync bit of the following data byte. This code violation is unique in that it containspulse widths (l l/2 bit pulse widths) not present in normal biphase data (\(1 / 2\) or 1 bit pulse widths) shown here for comparison.

Note that each bit has mid bit transition.
Thus, once decoded, this cede riolation proyides, in addition to a reference mark for start of transmission, a definition of bit boundaries.

\subsection*{3.1.4 TRANSMISSION TERMINATION SEQUENCE}

In order that the receiver demodulation logic is reset at the end of a transmission, so that a subsequent transmission may be properly demodulated, a special termination sequence is used:

Last Data Byte

\section*{Ending Sequence}

The last byte of data transmitted shall have twelve bits followed by a three-bit Ending Sequence. The preceding l2-bit word is as preyiously defined (starting with sync and ending with a parity bit). The first bit of the Ending Sequence shallbe a zero followed by two bit timos without a mid-bit transition. (These are refered to as mini code violations. J The first mini code violation is always used to reset the receiver logic. The second merely guarentees that the line does not discharge and generate a spurious clock pulse while the logic is detecting the first mev. The zero in the first bit position allows for discriminating a transmit check condition, generated as a result of illesally padded zero bits between bytes, from a normal ending sequence.

\subsection*{3.2 TRANSMIT CHECX}

A Transmit check is defined as follows:
1. A 0 in the sync bit location not followed by the mini code violation.
2. The loss of mid bit transition detected at other than normal ending sequence time.
3. A transmission parity error (bit 12 not being even.)

When a transmit check is sensed in the device, the derice will cease accepting data and all commands and suppress the TT/AR. The stored command, if any, will not be reset. Normal operations will resume upon receipt of the next Line Guiesce/code violation.

The control unit will also test the same three conditions and provide for error recovery. Control units that only implement 1 byte Read commands need not perform the complete ending sequence tast (Item 1 above.)

The IBM 3299 Terminal Multiplexer, model 1,2 , or 3 , is a standalone fanout box that contains circuitry to interface a single coaxial cable from the \(3 \times 74\) Control Unit with eight device cables. The 3299 Terminal Multiplexer (1,2,3) attaches to the 3274 via a modified terminal multiplexer adapter, that is, the 8-port IEM 3274 Type A Terminal Adapter (D/R card) is replaced by a 3299 i-port Terminal Multiplexer Adapter (3299 D/R card) which multiplexes the data streams of eisht devices onto a single coaxial cable. (The 3299 Terminal Multiplexer Adapter will not replace the IBM Terminal Adapter Type B in the 3274.) The \(3299(1,2,3)\) attaches to the 3174 through one of the four dual purpose coax ports of the New Device Cluster Adapter (NDCA). The 3174 Terminal Multiplexer Adapters (TMAs) are equivalent to 3299 mod 25.

\subsection*{4.1 OUTGOING TRANSMISSION}

When the \(3299(1,2,3)\) is attached to a \(3 \times 74\), the control Unit inserts an 8-bit address byte between the start sequence and the (first) coax word (Command or Data) for each outbound transmission to the 3299 . This address byte is used by the 3299 to select one of its eight coaxial cable ports. The 3299 strips this address byte from the bit stream prior to retransmitting the remainder to the addressed device.

Figure 1. 8-bit Address Byte
*When Bit 6 is set (to one), the 32992,3 will wrap the following coax word back to the (3174) control unit (and send the coax word on to the device.) The 3274 control unit will not set bit 6 , and when the 3174 sets bit 6 in a transmission to a 3299 mod 1 , the 3299 will sense a xmit check (due to his not including bits, \(4,5,6\) in his parity check), refuse to answer or pass the transmission to the addressed derice, and the 3174 will 'timeout."

This 8-bit address byte is inserted between the start sequence and the first data byte as shown in Figure 2. The gusy (Sync) bit is set to 1. The two spare bits are each set to o. The parity bit is set to maintain even byte parity (including the busy bit.).

Figure 2. Address Byte Insertion
*Start Sequence \(=\) fire \(1-b i t s\) (quiesce pattern) followed by a 1-bit and a o-bit (code violation). The duration of each code violation bit is equal to one-and-one-half bit times. Total Start Sequence equals eight bit times.
4.2 .13274 CONTROL UNIT

The duration of the Coax Response Timeout Timer located on the DCA card has been changed from 56 microseconds to 98 microseconds to allow for the additional propagation delay caused by the internal 3299 circuitry (approx. 7.5 usec outbound, 3.5 usec inbound), and the additional coaxial cable lengths permitted (1.5 km , or 15 usec round trip, worst case.) The modified DCA card (PN 4752335) will be factory- and field-installed as a Field Feature Bill of Mate rial (FFEM) RPQ on models 1, 21, and 31. The card will be factory-installed on models 41 and 61 as part of the base 3274.

The timeout period starts when the 3274 sends the first bit of the line quiese pattern. The last bit of the mer of the response must reach the DCA before the timeout elapses. If the 3274 contains the original DCA card (PN 6016034) with the 56 usec timeout and the device is 1.5 km of worst case coax away from the control unit, and the control unit sends a Read Multiple Cmd., the derice must begin its 4 byte response within 5.5 usec after receiving the last bit of the mer from the control unit to insure that the 3274 does not itimeout.

\section*{4.2 .23174 CONTROL UNIT}

The duration of the 3174 timeout is 50 usec. The timeout period starts when the NDCA sends the last bit of the mcy following either data or command, and ends when the NDCA receives the Busy Bit of the reply. In the worst case scenario, l. \(5 \times \mathrm{m}\) of coax (15 usec round trip), 3299 delay (11 usec r.t.), and another 1.5 km (15 usec r.t.), plus the time for the Start Sequence to flow (3.5 usec), yields an equivalent time, 5.5 usec, at the device.
4.3 DATA STREAM ARCYITECTURE

All data is passed through using the normal 3274 architecture. A l-bit immediately following a bit 12 (parity-bit) indicates the start of a coax word (data or command); a O-bit indicates an Ending Sequence:
4.4 INCOMING TRANSMISSION

The 3299 Terminal Multiplexer retransmits the response received on the addressed port to the \(3 \times 74\) without altering the bit stream.

\subsection*{5.0 CODE POINTS}

The following code points will be transmitted over the coax:
5.1 DEVICE BUFFER CODES

\subsection*{5.1.1 CHARACTER CODES}

The following character codes are sent to display regeneration buffers and to printer mprintn buffers. In addition to minternal coden (see following tables), EBCDIC or LUl will be sent to printers (see 3270 Character Set Reference Manual).

IOTES: (1) Characters in locations 00 thru 07 display as blank.
(2) Codes Hex \(9 E\) and \(9 F\) are the FM and DUP characters.
(3) Lower case characters in columns \(4 \& 5\) and 8 \&
fold to upper case characters, columns 6 \& 7 anc \(A\) \& \(B\), when the Display is in the lionocase lioce.
(4) Printers are required to support only those graphics that are defined as valid, in GA27-2837, for that particular language.

\subsection*{5.1.1.2 DEVICE EUFFER CODING FOR KATAKAMA}
(and JAPAN ENGLISH)

HOTES: (1) Characters in locations On thru 07 display as blank.
(2) Codes fex \(9 E\) and \(9 F\) are the \(F!\) and \(\mathcal{L}=\) characters.
(3) 7 F is used for " on Katakana devices coly.

\subsection*{5.1.1.3 DEVICE BUFFE? CODING FOR APL}

Hote 1. Controllers will only transmit valid (filled in) code points. Devices may display/print whatever they please for 'blank' code points between 'O8' and'BF'.
2. Cevices that support a subset of APL will display/orint hypens for non-supported valid code points.
```

(3289 Frinter with "Text Print Feature" only)

```


Note: The \(T N\) characters in columns 4,5 , and 9 will print in both mono and dualcase modes. Therefore, the corresponding code points in columns 6, 7 , and \(B\) are Reserved.'

\subsection*{5.1.2 ATTRIBUTE CODES}

An attribute is used to specify the characteristics of the "field (characters) that follow in the buffer. Each attribute occupies a location in the resen (print) buffer and displays (prints) as a blank.

DATA HORD BITS:

Bit \(4=0 \quad\) Unprotected
\(=1 \quad\) Protected
Bit 5=0 Alphameric
\(=1\) Numeric
Bits \(4 \dot{\&} 5=11\) Auto skip
\(\begin{array}{rlrl}\text { Bits } 6 \& 7 & =00 & & \text { Normal display, nondetectable } \\ & =01 & & \text { n } \\ & =10 & \text { Bright } & \sim \\ & =11 & N o n & \\ & \text { Notectable }\end{array}\)
Bit 8 Reserved. Will not always be zero.
Bit 9 Modified Data Tag (MDT).

\subsection*{5.1.3 EXTENSION ATTRIBUTE CODES}

These code points are transmitted to and from the Extension Attribute Buffer (EAB). See para 1.4.5.5. This feature provides an additional byte of storage for each location in the main buffer. The EAB byte corresponding to a field attribute in the main buffer is interpreted as an Extended field Attribute; bytes corresponding to characters are character attributes.
5.1.4 EXTENDED FIELD ATTRIBUTES

DATA WORD BITS:
\(\begin{array}{lllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ x & x & x & x & x & x & x & x & p\end{array}\)
Bits \(2,3=00 \quad\) Normal Mode
 \(\begin{array}{lll}=10 & R e v e r s e ~ V i d e o ~ C h a r a c t e r ~ b y ~ t y e e ~ & 001 \\ =11 & \text { Underline Character }\end{array}\)

Bits \(4,5,6 \quad\) Character Colour
\[
\begin{aligned}
& =000 \text { Default to Base Colour } \\
& =001 \quad \text { Blue } \\
& =010 \text { Red } \\
& \text { =011 Pink/black } \\
& =100 \text { Green } \\
& =101 \quad \text { Turauoise/black } \\
& \text { =110 Yellow/black } \\
& \text { =ill white/black (unless tri-plane PS) }
\end{aligned}
\]

Bits 7,8,9
\begin{tabular}{|c|c|c|}
\hline \(=000\) & Base ROS & (184 character) \\
\hline \(=001\) & APL ROS & (128 character) \\
\hline \(=010\) & PS 2 (191 & character) \\
\hline \(=011\) & PS 3 & n \\
\hline \(=100\) & PS 4 & \(\square\) \\
\hline \(=101\) & PS 5 & \(\square\) \\
\hline \(=110\) & PS 6 & " \\
\hline \(=111\) & PS 7 & * \\
\hline
\end{tabular}

\subsection*{5.1.5 CHAPACTER ATTPIBUTES}
\[

\]

Bits 2,3=00 Revert to the EFA
=01 Blink Character = 10 Reverse video Character (Interpreted as normal = 11 Underline Character

Bits 4,5,6 Character Colour
\begin{tabular}{lll}
\(=000\) & & Revert to the EFA \\
\(=001\) & Blue & \\
\(=010\) & Red & \\
\(=011\) & Pink/black (Display/Printer) \\
\(=100\) & Green \\
\(=101\) & Turquoise/black \\
x110 & Yellow/black \\
\(=111\) & White/Black (unless triplane PS)
\end{tabular}

Bits 7,8,9 Character Generator Selection:

\subsection*{5.2 MAGNETIC STRIPE CARD CODES}

The following Magnetic Stripe Card Codes will be honored by the
Mag. Stripe Reader feature and stored by the feature for transmission
to the control unit.

Mag Stripe characters are transmitted as follows:
4 Bit Card code Direction of reading card
P-3210p3210 Direction of reading card

Coax Data Word \(\overline{2345} 6789 \mathrm{p}\)
For the character set used with Magnetic Readers, see the 3274 Description and Programmer's Guide, GA 23-0061, or the 3270 character Set Reference manual, GA27-2837. 5.2.1 MAGNETIC STRIPE CARD CODE-I

10 CHARACTER (NUMERIC ONLY)

\subsection*{5.3 KEYBOARD SCAN COLES}

The following tables list the scan codes that are sent to the control unit by all displays with alphanumeric keytoards (includ ing Katakana). Refer to the CSRM for details concerning whiche devices supfort which keyboards for which countries.

\subsection*{5.3.1 75/87 KEY KEYBOARD LAYOUT}

The following charts show the key number assignments for the 75 and 87 key alphanumeric keyboards. The 76 and 88 key typewriter keyboards are identical exceot for one additional key, number \(51 A\), located on the third row between keys 51 and 52 . The keys that generate both make and break codes are shown with an ' \(x\) in scan code bit 2, the makesbreak bit. This bit is a zero on make, one on break, on the coax.

\section*{\(5.3 .2122 / 124\) KEY KEYBOARD LAYOUT}

Keys shown with a '(B)' symbol are make/break keys. 'Break' is signified by a scan code x'fo' followed (in response to a subse quent poll) by the key's assigned scan code.

\subsection*{5.3.2.2 124 KEY TYFEARITER KEYSOARD}

\subsection*{5.3.3 102/103/104 KEY KEYBOARD LAYOUT}

Keys shown with a '(B)' symbol are make/break keys. 'Break' is signifiec by a scan code x'Fo followed (in response to a subse quent poll) by the key's assigned scan code.

5.3.3.1 102 KEY ENHANCED KEYEOARD (U.S.)
(

\subsection*{5.3.3.2 103 KEY ENHANCED KEYBOAED (EMEA)}

\section*{(}

\subsection*{5.3.3.3 104 KEY ENHANCED KEYBOARD (KATAKANA)}

6.0 ABBREVIATIONS
\begin{tabular}{|c|c|}
\hline \(A C K\)
\(A d r\) & Acknowledge Address \\
\hline AE & Alphanumeric EBCDIC \\
\hline APA & All Points Available \\
\hline \(A P L\) & A Programming Language \\
\hline ASCII & American National Standard Code for Information Interchange \\
\hline Bu & Bunch. \\
\hline Cmd & Command \\
\hline CPAR & Create Partition \\
\hline CR & Carriage Return \\
\hline CSRM & Character Set Reference Manual (GA27-2837) \\
\hline D/R & Driver / Receiver: \\
\hline DCA & \begin{tabular}{l}
Device Cluster Adapter (3274). \\
Also known as Terminal Adapter'.
\end{tabular} \\
\hline DCA-L2 & Document Content Architecture - Level 2 \\
\hline DSC & Data Stream Compatible \\
\hline DSE & Data Stream Emulation \\
\hline EAB & Extention Attribute Buffer \\
\hline EACT & Extention Attribute Correlation Table \\
\hline EBCDIC & Extended Binary-Coded Decimal Interchanse Code \\
\hline ECS & Extended Character Set \\
\hline EDS & Extended Data Stream \\
\hline EFA & Extended Field Attribute \\
\hline EM & End-of-messase \\
\hline EMEA & Europe, Middle East; Africa \\
\hline EOC & End of Chain \\
\hline EOM & End Of Message \\
\hline FAP & Format and Protocol \\
\hline FF & Form Feed \\
\hline FIC & First in Chain \\
\hline FMH & Function Management Header \\
\hline FSFIC & First Segment, First in Chain \\
\hline HCr & Header \\
\hline \({ }_{k}{ }^{\text {I P }}\) & Intelligent Printer Data Stream \\
\hline Kbd & Keyboard \\
\hline LCID & Local Character Set Identifier \\
\hline LIC & Last in Chain \\
\hline LPI & Lines per Inch \\
\hline LU & Logical Unit \\
\hline m & meter (s) \\
\hline mey & mini-code partof thetion Transmission Termination sequence'. \\
\hline MDT & Modified Data Tag \\
\hline \(M L\) & Message length \\
\hline MSA & Message Starting Address \\
\hline NDS & New Display System \\
\hline NDCA & New Device Cluster Adapter (3174). \\
\hline & Also known as 'Terminal Adapter'. \\
\hline NL & New Line \\
\hline OIA & Operator Indicator Area \\
\hline PA & Program Access \\
\hline PAI & Product Attachment Information \\
\hline PCIA & Printer Control Information Area \\
\hline PDQ & Pretty Damn Quick \\
\hline PEL & Picture clement \\
\hline POR & Power on Reset \\
\hline PS & Programmatie Symbols \\
\hline PSS & Programmatle Symbol Set \\
\hline PSHICO & PS, HIghlighting, and colour \\
\hline RAM & Random Access memory \\
\hline RH & Request Header \\
\hline ROS & Read Only Storase \\
\hline RU & Response Unit \\
\hline
\end{tabular}
round trip.
SNA Character String
Systems Network Architecture
System Status Available
Switch
Set Window Origin
Terminal Multiplexer Adapter.
Transmission Turnaround/Auto Response

\section*{End of Document}```

