

 Information Display System Physical Planning Information
 and Installation Manual
 IBM 3271 Control Unit
 IBM 3272 Control Unit
 IBM 3272 Control Unit
 IBM 3275 Display Station
 IBM 3277 Display Station
 IBM 3284 Printer
 IBM 3288 Line Printer

Preface

The purpose of this manual is to bring together the infor-
mation that is pertinent to the physical planning and installation of certain units of the IBM 3270 Information Display System. This revision contains the information for planning and installing a 3270 Information Display System composed of these units. The units of the system included in the manual are:

- IBM 3271 Control Unit
- IBM 3272 Control Unit
- IBM 3275 Display Station
- IBM 3277 Display Station
- IBM 3284 Printer
- IBM 3286 Printer
- IBM 3288 Line Printer

This manual is divided into nine sections, arranged in the following order:
Section 1 - General information concerning system installation, configurations, cabling, related manuals that will assist in installation, and unique tools that must be vailable at installation. It is recommended that this section be thoroughly reviewed before installation starts. Section 2 - Physical planning and installation instructions for the 3271 Control Unit (Remote)

Section 3 - Physical planning and installation instructions for the 3272 Control Unit (Local).
Section 4 - Physical planning and installation instructions for the 3275 Display Station (Leased Line and Dial feature).
Section 5 - Physical planning andinstallation instructions for the 3277 Display Station.
Section 6 - Physical planning and installation instructions for all models of the 3284 and 3286 Printers.
Section 7 - Physical planning and installation instructions for the 3288 Line Printer.
Section 8 - Physical planning and installation instructions for the IBM 3872, 3875, and 4872 Modems.
Section 9 - Physical planning for the IBM 2701 and 2703. Jumpering flowcharts for the IBM 2701 are included to assist in installation.

These are independent sections and can be separated for easier reference as individual jobs require. The diagrams are numbered consecutively within a section.

Reference to supporting documentation is by the use of asterisks $\left({ }^{*}\right)$. The manua! is not intended to replace the publications cited, but to provide a condensation of installation. installation.

Fifth Edition (April, 1976)

This edition, SY27-2349-4, is a reprint, and incorporates Technical Newsletters SN31-0148, SN31-0262, and SN3 $1-0231$. Information in this manual is subject to Technical Newsletters.
Text for this manual has been prepared with the IBM SELECTRIC © Composer.
Comments may be addressed to IBM Corporation, Department 63T, Neighborhoo Road, Kingston, N.Y., 12401
© Copyright International Business Machines Corporation 1973, 1974, 1975, 197

Section 13270 Display System . 1-1
3270 Display System Installation Overview
3271 Control Unit, Models 1 and 2, Attached Devices and Features (Remote) - 1-2 3271 Control Unit, Models 11 and 12, Attached Devices and Features (Remote)$1-2$

3275 Display Station, Models 1 and 2, Attached Doces and Features (Remote)
3275 Display .
3270 Display System Cabling Schematic (2 Sheets) $1-7$
3270 Display System Manuals and Companion Manuals
3270 Display System Installation Tools (2 Sheets)
(10
Sith Incator Unit (SIU) Model I Physical Locations ${ }^{1-12}$
SIU T
$1-13$
$1-14$

Section 23271 Control Unit, Models 1, 2,11,12 Physical Planning and Installation ... 21
3271 Control Unit, Models $1,2,11,12$ Physical Planning 2-1
3271 Control Unit Models 1 , and 2 Installation (5 Sheets) $\ldots{ }_{2}$
3271 Control Unit, Models 11 and 12 Installation (5 Sheets)
Section $3 \mathbf{3 2 7 2}$ Control Unit, Models 1 and 2 Physical Planning and Installation 3-1
3272 Control Unit Models 1 and 2 Physical Planning
Section 43275 Display Station, Models 1, 2, 11, 12 Physical Planning and Installation (Leased Line and Dial Feature)

4-1
3275 Display Station Models 1, 2, 11, 12 Physical Planning $4-1$
4.2
3275 Display Station, Models 1 and 2, Leased Line Installation (10 Sheets) $4-2$
3275 Display Station, Models 1 and 2, Dial Feature Installation (11 Sheets) 4-12
Section 53277 Display Station, Models 1 and 2 Physical Planning and Installation 5-1
77 Display Station, Models 1 and 2 Physical Planning 3277 Display Station Installation (7 Sheets) $5-1$
$5-2$
Section 6 3284/3286 Printer, Models 1, 2, and 3, Physical Planning and Installation 6-1
3284/3286 Printers, Models 1, 2, and 3 Physical Planning 6-1
3284/3286 Printers, Models 1 and 2 Installation (11
$3284 / 3286$ Printers, Model 3 Installation (7 Sheets) 6-14
Section $\mathbf{7} 3288$ Line Printer, Model 2, Physical Planning and Installation 7.1
3288 Printer Model 2 Phusical Planning
3288 Printer Model 2 Phusical Planning 7.1
388 Printer, Model 2 , Installation (5 Sheets) 7 7
Section 8 IBM Modems Physical Planning and Installation, 3872 Modem, 3875 Modem 4872 Modem $8-1$
3872 Physical Planning, Installation and Alignment (2 Sheets) $8-1$
$8-3$
4872 Physical Planning, Installation and Alignment (5 Sheets) $8-3$
$8-6$
Section 9 Transmission Control Units, 2701 Physical Planning and Jumpering Flowcharts 701 Physical Planning and Cabling Schematic $9-1$
9.1
701 Jumpering Flowchart - 3270 Display System (5 Sheets) $9-1$
$9-2$
2703 Physical Planning and Cabling Schematic 9-7
Appendix A Plug Types A-1
Appendix B Power Cord Style Specification and Plug Installation B-1
Gossary G-1

11 Display Stations

- 3275 Model 1 or 11 - 480 Character - Standalone (Remote)
- 3275 Model 2 or 12 - 1920 Character - Standalone (Remote)
- 3277 Model 1 - 480 Character - Clustered
- 3277 Model 2-1920 Character - Clustered

4. Dedicated Printer

- 3284 Model 3 - Attaches to 3275 Display Stations, Models 1 and 2 only.

3 Control Units

- 3271 Model 1 or 11 - 480 Char. - Remote
- 3271 Model 2 or 12 - 1920 Char. - Remote
- 3272 Model 1 - 480 Char. - Local
- 3272 Model $2-1920$ Char. - Local

Note: Model 1 or 11 control units may attach to only Model 13277 Display Stations and Printers. Model 2 or 12 control units may attach Model 1 or Model 23277 Display Stations and Printers. A mixture of up to 32 such devices may be installed, one of which must be a Display Station, the model number of which agrees with that of the control unit, with an attached keyboard

4 Printers

- 3284 Model 1
- 3284 Model 2
- 3286 Model 1
- 3288 Model 2
\qquad

3. $3271 \operatorname{Mod} 1,2,11$, or 12 3272 Mod 1 or 2
$13275 \operatorname{Mod} 1,2,11$, or 12

s,
 -

Explanation references

-1 Up to 40 feet of cable. To order this cable, refer to 3270 Up to 40 feet of cable. To order this cable, refer to
Display System Cabling Schematic in this manual.
2 ASCII Transmission Code - Only available in USA or Canada - Replaces EBCDIC Code
3 Included with the basic control unit.
Up to 32 devices may be a
6. Device Adapter - One required for each 4 devices to be Device Ad
(7 One display station with a keyboard special feature must be attached and within visual distance of the control be attached and within visual distance of the control
unit. The display station and control unit Model numbers must agree

Legend:

Special Feature

* Specify Feature - No Cost
\dagger Only Model 1 Display Stations and printers can be attached to a Model 1 Control Unit. Any model device can be attached to a Model 2 Control Unit.
WTC Only available in WTC countries.
- Only available in USA or Canada.
\therefore The Data Analysis - APL special feature functions only with a Model 23271 Control Unit and a Model 23277 Display Station, or a Model 23284 or 3286 Printer.
-00 The Selector Pen Feature is not supported when the Data Analysis - APL Feature is enabled.
ooe日 Only the U.S. EBCDIC character set is used when the Data Analysis - APL Feature is installed.

1 Up to 40 feet of cable. To order this cable, refer to 3270 Display System Cabling Schematic in this manual.
2 ASCII Transmission Code - Only available in USA or Canada - Replaces EBCDIC Code
3 Included with the basic control unit.
4 Up to 32 devices may be attached
5 Up to 2000 feet may be installed.
6 Device Adapter - One required for each 4 devices to be attached.
One display station with a keyboard special feature must be attached and within visual distance of the contro unit. The display station and control unit Model numbers must agree.

Legend:

Special Features
Specify Feature - No Cost
\dagger Only Model 1 Display Stations and printers can be attached to a Model 11 Control Unit. Any model device can be attached to a Model 12 Control Unit
wTc Only available in WTC countries.

- Only available in USA or Canad
-0 The Data Analysis - APL special feature functions oll 2 Dislat and Model 2 Display 3286 Printer
000
The Selector Pen Feature is not supported whe the Data Analysis - APL Feature is enabled.
0000 Only the U.S. EBCDIC character set is used when the Data Analysis - APL Feature is installed.

Explanation of references:

3 cables needed
Included with the basic control unit
Up to 32 devices may be attached
Up to 2000 feet of cable may be installed.
Device Adapter - One required for each 4 devices to be attached
6
and ath nit. The display shin visual distance of the control numbers must be the same.

Legend:

- Special Features
* Specify Feature - No Cost
\dagger Only Model 1 Display Stations and Printers can be Only Model 1 Display Stations and Printers can be
attached to a Model 1 Control Unit. Any model attached to a Model 1 Control Unit. Any model
device can be attached to a Model 2 Control Unit.
WTC Only available in World Trade Corporation Countries.
- The Data Analysis - APL special feature functions only with a Model 23272 Control Unit and a Model 23277 Display Station, or a Model 23284 or 3286 Printer.
- The Selector Pen Feature is not supported when the Data Analysis - APL Feature is enabled.
-0e Only the U.S. EBCDIC character set is used when the Data Analysis - APL Feature is installed.

Explanation of references:
䁌 Up to 40 feet of cable. To order this cable refer to 3270 Display System Cabling Schematic in this manual.
2 A Data Access Arrangement (DAA) is required when using the IBM 600/1200 BPS Line Adapter to connect a 3275, equipped with the Dial Feature, to a switched telephone line.
31 ASCII Transmission Code - Replaces EBCDIC Code Only available in USA and Canada.

Legend

Special Features
Only available in USA and Canada
Specify Feature - No Cost
wTC Only available in WTC countries

11 Up to 40 feet of cable. To order this cable refer to 3270 Display System Cabling Schematic in this manual.
21 ASCII Transmission Code - Replaces EBCDIC Code ASCly available in USA and Canada.

Legend:

Special Features

- Only available in USA and Canada Specify Feature - No Cost WTC Only available in WTC countrie

Group No.	No. of Cables	From	To	$\stackrel{\text { Max }}{\text { Length }(f t)}$	Notes
h or 1	1	3277, 3284, 3286	3271, 3272	2,000	5
h or 1	1	3288	3271-2 and 12, 3272-2	2,000	5
3201	2	3272	Selector Channel	-	1
3202	2	3272	Byte Multiplexer Channel	-	1
3203	2	3272	Block Multiplexer Channel	-	1
3204	2	3272	Control Unit	-	1
3205	2	3272	Channel-to-Channel Adapter	-	1,8
3206	1	3272	Channel	150	,
3207	1	Modem	3271	40	9, 10
3208	1	Modem	3275	40	9,10
3209	1	Nonswitched or Switched Lines/DAA Type CDT	3275	40	9,11
3210	1	dat Type CBS	3275	40	9,12,13
3212	1	Modem	3271,3275	40	14
3213	1	Modem	3275	40	15

1. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units.
2. Sequence and control (EPO).
3. Fixed cable length of 2 feet supplied with selector pen (SF \#6350).
4. Customer supplied, installed, and maintained; maximum length not to exceed 2,000 feet. Cables may be ordered through IBM Branch Office via MES (Miscellaneous Equipment Specification). See page 1-6 for cable specifications and IBM part numbers. If the customer elects to construct his own cable and/or procure entitled "Cable Installation Practice for 3270." For completion of MES order form, see the following example

Machine/Program Type/Serial/Suffix	Feature Code RPQ Reference No. ECA or CEM Number	Description of MES Parts				Qty	Part or B / M Number
		RPQ Region Number		(Indicate Model Changes From/To)			
Cable Group	Length	From		To			
		Unit	No.	Unit	No.		
h	2,000	3277	8	3271	1	1	2577672
1	2,000	3277	9	3271	1	1	1833108

If the installation includes a multiple number of one machine type, include an identifying number in the "No."
6. olumn in addition to the machine type.
7. Fixed cable lensth of $2-1 / 2$ feet supplied with ID card reader (SF \#4600)
8. To channel-to-channel adapter (SF \#1850)
9. See "Cables from Non-IBM Devices" for cable specifications.

1. For nonswitched or switched external modem.
2. For switched lines without autoanswer or nonswitched lines (SF \#5500)
3. For machines with switched networks and autoanswer, order SF \#5501.

號
14. One group 3212 required for each IBM modem attached. See the following chart for modem types:

To Unit	Modem
3271	$3872-1$
	$3874-1$
	$3875-1$
	$4872-1,3$

15. One group 3213 required to attach one IBM $3872-1$, 3874-1, or $3875-1$ Modem

Cables from Non-IBM Devices

Cable Group Number	IBM Preassembled Cable Assembly		Customer Assembled Cables		
		Bulk IBM Part No.	Connector Group		
h	2577672	${ }^{*} 323921$ 1	1833108		
		$* 55252750$ (See below)	1836418		

*Part 323921-Commercial Designation RG62A/U

Conductor	AWG Size	OD Inches (mm)	UL Rating	Insulation Type	Cover
Copperweld	$\# 22$	$0.242(6,1)$	750 V	Flame-Retardant Polyethylene	PVC, Color Black, Shield Copper Sraid

Source: IBM or approved equivalent.
**Part 5252750

Conductor	AWG Size	OD Inches (mm)	UL Rating	Insulation Type	Cover
Copperweld Solid	\#22	$0.260(6,6)$	750 V	Flame-Retardant Polyethylene	PVC (UL Style 493) Color Black, Shield Copper Braid Polyester Tape

Source: IBM or approved equivalent.
***Must be 0.001 inch $(0,03 \mathrm{~mm})$ thick between shield and cover.

3270 Display System - General
Operator's Guide GA27-2742 (-4 or later)
Introduction GA27-2739 (-5 or later)
Component Description GA27-2749 (-5 or later)
Problem Determination Guide GA27-2750 (-3 or later)
Layout Sheet GX27-2951
3270 Display System - Troubleshooting Guides
3271 MLTG - Base SY27-2311
3271 MLTG - SDLC SY27-240
3272 MLTG - Base SY27-2312
3275 MLTG - Leased Line SY27-2313
3275 MLTG - Dial Feature SY27-2329
3275 MLTG - SDLC SY27-2410
3277 MLTG - Base SY27-2314
3284/3286 Models 1 and 2 MLTG - Base SY27-2315
3284/3286 Model 2 MLTG 3270 Data
Analysis - APL Feature SY27-2420
3284 Model 3 MLTG - Base SY27-2316
3286 Model 3 MLTG - Base SY27-2317
3288 Model 2 MLTG - Base \quad SY27-2401
3270 Display System - Parts Catalogs
3271/3272 S126-0004 (-3 or later)
3275/3277 S126-0005 (-3 or later)
3284/3286 S126-0006
3286 Model 3 S126-0002
3288 Model 2 S126-0008

3270 Pre-recorded Tape Cassettes

3271 EBCDIC SY27-2318
3271 ASCII SY27-2319
3275 EBCDIC - Leased Line SY27-2320 3275 ASCII - Leased Line SY27-2321 3275 EBCDIC-Dial Feature SY27-232 3275 ASCII - Dial Feature SY27-2326 3271/3275 Model 11 and 12 SY27-2412

Field Engineering Companion Manual

1200 Teleprocessing Diagnostic
Analyzer Tester - TDAT S226-3029

General Companion Manuals

System 360 Installation Manual -
Physical Planning GC22-6820
System 370 Installation Manual Physical Planning GC22-700
Seneral Information - Binary
Synchronous Communications GA27-3004 Introduction to the IBM 3705
Communications Controller GA27-3051
3872 Modem User's Guide GA27-3058
3875 Modem User's Guide GA33-0001
4872 Modem - Models 2 and 3 GA36-0004
IDR-M ID Reader - Motorized Theory-
Maintenance, Parts Catalog SY26-4188
General Logic Probe (PN 453212)
Dperator's Manual SY27-0113
Online Tests (OLTs) Companion Manuals
3270 Display System Online Tests Local D99-3270A*
3270 Display System Online Tests -
Remote D99-3270B*
3270 Display Station Online Tests
SDLC Remote D99-3270D

[^0]The maintenance tools described in this section contribute to successful maintenance of the 3270 Display System ensuring minimum down time for IBM customers, ensuring minimum down time for IBM customers.
Comprehensive descriptions of the logic test probe and the switch indicator unit are included. These tools must be available (with the exception of the Modem Interface Test Set) for use by the CE on every trouble call for successful maintenance of the 3270 Display System

TOOLS REQUIRED

Tool Kit

The IBM tool kit provides some of the basic tools needed to maintain the 3275 Display Station
The standard volt-ohmmeter (VOM) is adequate for all voltage measurements. (The input impedance of 20,000 ohms per volt of the meter causes an erroneous reading when measuring the 400 V dc power supply. This effect is noted when a check of that power supply is called out. When using the VOM, all dc voltage measurements should be referenced to dc return, rather than to frame ground.

Oscilloscope

In some cases of trouble analysis, it may be necessary to use an oscilloscope. The Tektronix* model 453, or an equivalent, should be used to obtain the most satisfactory results in these cases. However, it is recommended that the logic probe, rather than an oscilloscope, be used as the basic tool.

Logic Probe

The logic probe, PN 453652 or PN 453212 (newer type), is a unique tool provided as a service aid. It is used by the CE to probe signal levels while performing troubleshooting procedures or using FEALDs. This tool should be obtained He 3270 Dispay Systen. Normal tol orderin rocedures should be followed to obtain the probe

Switch/Indicator Unit (SIU)
The Switch/Indicator Unit is a portable maintenance aid used for testing. The 20 switches on the SIU are used to exercise the circuitry; the results are observed by using the 20 LED indicators. When ordering the SIU, also order the correct overlays.

There are two models of the SIU. The Model 1 (PN 2570250) is used with 3271 s , 3272 s , and 3275 s (BSC),解 2 (PN 1830679) is used with 3271 s and 3275 s (SDLC), Models 11 and 12.

Cassette Tape
This cassette tape is prerecorded with the test routines for testing the 3271 and 3275 .

Equivalent

The IBM 1200 TDAT ILBM The IBM 1200 TDAT (IBM Domestic and Canada only) is a It is used in conjunction with an IBM Test Tape (cassette) to install and maintain all $3271 / 3275$ s. The TDAT part number is 453679 .

Cassette Recorder Adapter Unit (CRAU

The IBM CRAU (PN 1744195) is a portable maintenance aid used in conjunction with the prerecorded cassette tape to test the $3271 / 3275$ Models 11 and 12 . The SIU Model 2 and the Norelco recorder are part of this unit providing, only a tape playback function. CRAU operates at the 1200 -bps data rate only.

IDR FE Test Card

The IDR FE Test Card (PN 2143816) is a magnetically encoded, plastic test card that conforms to American Banking Association specifications with respect to size, format, and coding. A 37 -character test message is encoded on the magnetic stripe on the back of the card. A start-of-record (SOR) character precedes the message, and an end-of-card character and a check character follow the message. The SOR character initiates the read opera is used to check the performance of the operator identification card reader. Two test cards are shipped with each card reader.
Modem Interface Test Set, PN 463637 (Nu Data Model 921-S)

The Modem Interface Test Set (order from Mechanicsburg) connects in series with the CCITT/EIA data set cable and the 25 -pin data set connector ($321 / 3275$). This enables the CE to monitor, measure, or control the 24 leads of a data set interface cable. This tool contains seven LED indicators for a quick display of the significant CCITT/EIA ines.
PROBE USAGE (Diagram 1-1)

Logic Probe PN 453652

The logic probe (PN 453652) is a unique tool provided as a service aid. It is used to probe signal levels while performing troubleshooting procedures or using FEALDs. This tool
engineers who service 3270 units. Normal tool-ordering procedures should be followed to obtain the probe.

Description

The logic probe is a self-contained device which consists, externally, of an anodized aluminum tube with a RED and a GREEN indicator incorporated near its probe end. A cable containing two wires with SLT-type push-on terminals leads out of the sealed top end of the device. A and GREEN indicators tell the state of the net being probed. The three signal states that can be distinguished ar (1) a solid up-level (RED) (2) a solid down-level (GREEN), and (3) a pulse or pulses (alternating RED and GREEN), The two wires with the push-on connectors attach to pins on the back of the logic board being probed. The wires carry the operating voltages (+5 V dc and ground) to the probe. An oscilloscope probe tip is screwed onto the threaded stud at the tip of the probe. This provides the input signals to the device.

Usage
To use the logic probe, a probe tip must be attached to the To use the logic probe, a probe tip must be attached to the

453163 , or similar) should be used. The two wires at the top of the probe should be attached to the back of the logic board being probed. The leads are clearly labeled GND and 5 V . Connect the 6 V lead to any D 08 pin on the board leads are connected to the board by pushing the connector at the end of each lead on the designated pin. When the last wire is connected, the RED indicator should light.
Connect the oscilloscope probe tip to the pin designated in the troubleshooting procedures, or as determined in logic. To attach the probe to a pin, grasp the probe at the portion of the body nearest the tip and press straight on the desired pin. Remove the tip by grasping the probe body and pulling so that the tip is withdrawn parallel to the pin.
The following conditions can be observed using the logic probe:

1. RED indication
a. Probe not attached to a pin (a floating condition). b. Plus signal on the net being probed.
2. GREEN indicator - Ground (negative) signal on the net being probed.
3. RED and GREEN indication - A pulsing signal (alternately plus and ground) is present on the net being GREEN indicators or as both indicators on simul
taneously (depending on the frequency of the pulsing signal). Single pulses can also be seen.

Probe Checkout

Note: This checkout procedure applies to the older-style logic probe (PN 453652). GLP checkout is described in General Logic Probe Manual, SY27.0113, which accompanies the GLP.

Power must be applied to the 3270 unit during this procedure.

1. Attach probe tip to probe. Use SLT probe tip PN 453163 or similar
2. Connect probe GND lead wire to any D08 pin
3. Connect probe +6 V lead wire to any D03 pin. Probe's red indicator should light as soon as this wire is attached. 4. Touch probe tip to any D03 pin. Probe's red indicator should remain lighted
4. Touch probe tip to any D08 pin. Probe's green indicator should light and remain lighted as long as probe is on D08 pin
5. Remove probe tip from D08 pin. Probe's red indicator should light again.

Probe Repair

The logic probe is not field-repairable. If trouble is experienced during probe checkout, check for the following conditions

1. Power is applied to the 3270 unit
2. Probe leads are on proper source pins.
3. Proper pins are being probed.

If the above conditions are met and the probe fails to operate correctly, obtain a new probe before troubleshooting the display station.

General Logic Probe Kit PN 453212

General Logic Probe Kit (PN 453212) contains a newly designed probe which electrically replaces logic probe PN 453652. A description of the probe and usage may be found in General Logic Probe Manual, Form No. SY27-0113

IMPORTANT: This manual was written to support logic probe PN 453652. Use of the general logic probe, PN 453212, establishes the need to convert RED to UP and GREEN to DOWN levels. Notations are provided on each page to assist in this conversion.

Switch Indicator Unit (SIU) Model 1 Physical Locations

Switch/Indicator Unit (SIU), Model 1
The switch/indicator unit (PN 2570250) is a portable maintenance aid used to test the IBM 3271, 3272, and 3275 Models 1 and 2. The 20 switches on the SIU are used to exercise the display station circuitry; the results are observed by using the 20 indicators.
IMPORTANT: SIU overlays must be ordered since they are not shipped with the SIU. A complete set of overlays may be ordered from B/M 2621480 .

Diagram 1-2. Switch Indicator Unit, Model 1

Introduction

The switch/indicator unit (SIU) (PN 1830679) is a portable The switch/indicator unit (SIU) (PN 1830679) is a portable 3271/3275 Models 11 and 12. Up to 20 switches on the IU are available for exercising circuitry; up hexadecimal LEDs provid T when running tape tests.

Note: SIU overlays are not shipped with the SIU. A complete set of overlays may be ordered from:
B/M 16552193275 (SNA.IF)
B/M 16552203271 (SNA-IF)
B/M 16552213271 (MLPXR)
No overlay is available for ASCII machines. Refer to appropriate 3271 or 3275 Troubleshooting Guide for use of EBCDIC overlay on ASCII machines.

[^1]

Diagram 1-3. SIU-LED Checkout Flowchart

Diagram 1-4. SIU-Switch Checkout Flowchart

REPAIR PROCEDURE A (Switch Repair)
Use logic probe to check levels. See Diagram 1-5, Table 2 for probe points and Diagram 1-6 for physical locations.

1. TOP/BOTTOM switch - probe levels are opposite.
a. TOP position - Pin 1 is GREEN

Pin 2 is RED.
b.
2. PB 1 - probe levels are opposite.
a. Pin 4 - PB 1 not depressed, probe is RED.

PB 1 det depressedsed, probe is GREEN.
b. Pin 5-PB 1 not depressed, probe is GREEN. PB 1 depressed, probe is RED.
3. PB 2 - probe levels depend upon the setting of Switch 2 (pin 6 only).
a. Pin 7-PB 2 not depressed, probe is GREEN.
P. PB 2 depressed, probe is RED.
b. Pin 6 (Switch 2 up) - PB 2 not depressed, probe is RED. PB 2 pressed, probe is GREEN
c. Pin 6 (Switch 2 down) - Probe is always RED.
4. Pin 9 is approximately +1.5 to +2.0 V dc measured with a VOM. The logic probe will be RED and GREEN on emote devices (3271 and 3275).
5. Switches 1 through 17 (as listed in Table 2) should be RED $(+)$ when up and GREEN $(-)$ when down as checked by the logic probe.

REPAIR PROCEDURE B (LED Repair)
Use VOM for diagnosis of failure. See Diagram 1-5, Table 1, for metering points and Diagram 1-6 for physical locations. Check failing LED indicator connector (as listed in Table 1) for the following conditions:

1. If LED is not lighted, 0 to +1 V dc indicates LED is open. Replace indicator.
2. If LED is not lighted, +3 to +4 V dc indicates cable assembly (PN 2570252) is open. Replace cable.

LED Indicator Connector Pins	Function
1	+5V dc (RED)
2	LED 20
3	LED 10
4	LED 19
5	LED 9
6	LED 18
7	LED 8
8	LED 17
9	LED 7
10	LED 16
11	LED 6
12	LED 15
13	LED 5
14	LED 14
15	LED 4
16	LED 13
17	LED 3
18	LED 12
19	LED 2
20	LED 11
21	LED 1
22	Not Used

Table 2

Switch Conn- ector Pins	$\left.\begin{array}{l}\text { Function } \\ \hline 1 \\ 2\end{array}\right\}$
3	TOP/BOTTOM
4	Switch
5	Not Used
5	PB 1
6	PB 1
7	PB 2
8	PB 2
9	Not Used
10	15 to 2.0V dc (VOM)
11	Switch 1
12	Switch 2
13	Switch 3
14	Switch 4
15	Switch 5
16	Switch 6
17	Switch 7
18	Switch 8
19	Switch 9
20	Switch 10
21	Switch 11
22	Switch 12
23	Switch 13
24	Switch 14
25	Switch 15
26	Switch 16
27	Switch 17
28	+5V dc (RED)
29	+5V dc (RED)
30	GND (GREN)
	GND (GREEN)

Diagram 1-5. SIU Connector Pin Listings

Diagram 1-6. SIU Checkout Physical Locations

3271 CONTROL UNIT, MODELS 1, 2, 11, AND 12

PLAN VIEW

SPECIFICATIONS

Dimensions:				
	F	S	H	
Inches (cm)	$\begin{gathered} 26-3 / 8 \\ (67) \end{gathered}$	$\begin{gathered} 15-1 / 4 \\ (39) \end{gathered}$		
Service Clearances:				
	F	R	Rt	L
Inches (cm)	$\begin{gathered} 30 \\ (76) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$
Weight: $\quad 98 \mathrm{lb}(44 \mathrm{k}$				
Models 1 and 2			Models 11 and 12	
Heat Output:				
BTU/hr (kcal/hr)	595		630	

Airflow: Convection only Convection only

Power Requirements:				
kVA	0.18		0.20	
Phases		1	1	
Voltage		Ampacity	Plug Type**	
$50 \mathrm{Hz*}$	60 Hz		Locking	Nonlocking
100	100*	-	-	-
110	115	$\overline{15}$	\bar{B}	A
123.5		-	-	-
200	200*	-	-	-
	208	15	G	F
220	230	$\overline{15}$	\bar{G}	\bar{F}
235		-	-	-

Power Cord Style*** A
$\begin{array}{ll}\text { Power Cord Style } & \text { A4 } \\ \text { Power Cord Length } & 9 \mathrm{ft}(274 \mathrm{~cm})\end{array}$

Notes:
**See Apendix A for receptacle schematic and identification. In World Trade countries other than Canada, only the power cord is supplied with the machine.
**See Appendix B for power cord style specification

Environment Operating

Temperature $\quad 50^{\circ} \cdot 110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$ Rel Humidity 8\%-80\%
Max Wet Bulb $\quad 85^{\circ} \mathrm{F}\left(29^{\circ} \mathrm{C}\right)$

Environment Nonoperating
Temperature $\quad 50^{\circ}-125^{\circ} \mathrm{F}\left(10^{\circ}-52^{\circ} \mathrm{C}\right)$
Rel Humidity 8\%-80\%
Max Wet Bulb $\quad 85^{\circ} \mathrm{F}\left(29^{\circ} \mathrm{C}\right)$

71 CONTROL UNIT INSTALLATION PROCEDURE

(BSC MACHINES ONLY)

rerequisites

The following items are prerequisites to the installation of the IBM 3271 Control Unit Models 1 and 2. None of these tems is to be performed by the installing Custome Engmer, but he shond check to ensure in they he personnel involved the personnel involved

1. The transmission
The transmission control unit (2701, 2703, etc.) that ttaches the 3271 Models 1 and 2 to the host system uast be properly jumpered for the 3271 and for the A data set must
. A data set must be properly installed within 40 feet of the proposed location of the 3271 , with the signal cabl connected to it, and the cable shield grounded
2. Data sets on both ends of the transmission line must be properly strapped (jumpered) for the 3271 and for th features installed. On all data sets (except the IBM 3872 and 3875), the jumper that ties signal ground to fram ground should be used.
3. A proper 3 -wire connector (2 voltage, plus ground power receptacle must be available within 8 feet of the proposed location of the 3271 .
4. A telephone, which can be connected to an outside line should be available within easy reach of the proposed locify of the 3270.
5. Verify that the 3270 OLT's have been properly included in the host system's OLT library.
. Ensure that the latest technical bulletins have been reviewed before starting installation.
6. Ensure that switch indicator unit (SIU), logic probe (either type), and test tape (TDAT, CRAU, or equiva lent) are available on site for installation.

Installation

1. Unpack, according to the Unpacking/Packing Instructions, PN 7371304, shipped with the control unit Inspect the shipment for possible damage incurred in ransit. Report any damage at once. Check machine history documentation with customer to ensure that 3271 features and power match what the customer ha ordered.
2. Check off all items received against those listed on the shipping Bill of Materials. Report any shortage at once 3. Adjust four unit levelers to 0.5 inch (12.7 mm) below control unit (Diagram 2-3).
3. Remove front cover, open logic gate, and check for loose cards (Diagram 2-4).
4. Check, and, if necessary, connect jumpers as indicated in Diagram 2-1 (for control unit operating with EBCDIC code) or Diagram 2-2 (for control unit operating with ASCII code).
5. Plug in data set cable. See cable installation drawing part number 257.0002.
6. Connect SIU; see par. 7.4*. Set ON LINE/OFF LINE .
7. Check that customer-supplied voltage agrees with the voltage decal in the 3271
Renipped and uninstalled" seal and then plug in ac power cable.
8. Set PWR ON/OFF switch to ON.
9. Check that SYNC SEARCH and SYSTEM READY indicators are lit.

Note: The transmission control unit must be online at the CPU site; otherwise, the SYSTEM READY indicator will not light.
a. If the SYSTEM READY indicator does not light, and the transmission control unit is online, disconnect the data set cable from the 3271 and scope pin 8 for a square wave.
b. If the SYNC SEARCH indicator does not light, perform troubleshooting described in Diagram 4-10.*
12. Connect a checked-out 327
13. Perform the following checkout procedures as specified in Diagram 1-1,* sheets $1-5$, beginning with "Rese in Diagram 1-1, sheets 1-5, beg.
14. Put ON LINE/OFF LINE switch in ON LINE position.
15. The following checkout procedures are listed in the order of preference. Perform the first of the following procedures for which the facilities are available. If the ocedure fails, check out the logic probe (par. 7.3.3),
Perform the first three tape tests (see Section 2)* . Perform the IBM 1200 TDAT (IBM Doction IBM, CRAU (World Trade Corporation) or equivalent and the cassette tape supplied.
b. Run the Check (CHK) and Keyboard (KEY) portions of the OLTs from the customer's host CPU.
c. Allow the customer to run his own programs from the host CPU to check out the CU. If a problem is encountered, use the TPTC for troubleshooting. If the tests with TPT
d. Connect the IBM 1200 TDAT to communicate with the TPTC (IBM Domestic and Canada only) according to the instructions in the IBM Maintenance Library Manual, 1200 Teleprocessing Diagnostic Analyzer Tester, S226-3029. Request only the Check (CHK) and Keyboard (KEY) portions of the OLTs from the TPTC.
16. If the checkout procedure (step 15) ran successfully, turn power off and remove the switch/indicator unit. (If TDAT was used, remove it and install the data set cable.) Replace the front cover. Installation is com-
*These references may be found in the IBM 3271 Control Unit Models 1 and 2 Troubleshooting Guide SY27-2311.

${ }_{\text {Addres }}^{\text {Cu }}$	$\frac{\text { Binary Bits }}{4} \frac{1}{6}$				
0	0	0	0	0	
1	0	0	0	0	
2	0	0	0	1	0
3		0	0	1	1
4	0	0	1	0	0
5	0	0	1	0	,
6	0	0	1	1	0
7	0	0	1		1
${ }^{8}$	0	1	0	0	0
9	0	1	0		1
10	0	1	0		0
11	0	1	0	1	1 1
12	0	1	1		-
13	0	1	1	0	01
14		1	1	1	1 o
15	0				1

${ }_{\substack{\text { Addreses }}}^{\text {AU }}$	$\frac{\text { Binare Biss }}{4}$				
16	1		-		0 0
17	1		-		0
18	1		-		1
19	1		-		1
20	1		-		00
${ }^{21}$	1		-		01
22	1		-		10
${ }^{23}$	1		-		11
${ }^{24}$	1				0 0
25 26	'		-		01
26 27	1				11
${ }^{28}$					0 0
29					01
30			,		10

CAUTION

Jumper pins can bend or break, or jumpers can be pulled off pins. Exercise care when inserting or removing jumpered cards or cards next to jumpered cards.
Diagram 2-1. CU Card Jumpering - EBCDIC

Diagram 2-3. CU Locations

3271 CONTROL UNIT INSTALLATION PROCEDURES

 (SDLC MACHINES ONLY)
Prerequisites

The following items are prerequisites to the installation of the IBM 3271 Control Unit Models 11 and 12. None of these items is to be performed by the installing Customer Engineer, but he should check to ensure that they have been accomplished and may have to provide information to the personnel involved.

1. The transmission control unit (3704 or 3705) that attaches the 3271 Models 11 and 12 to the host system must be properly jumpered for the 3271 and for the features installed.
2. A data set must be properly installed within 40 feet of the proposed location of the 3271, with the signal cable connected to $i t$, and the cable shield grounded.
3. Data sets on both ends of the transmission line must be properly strapped (jumpered) for the 3271 and for the features installed. On all data sets (except the IBM 3872 and 3875), the jumper that ties signal ground to frame ground should be used.
4. A proper 3 -wire connector (2 voltage, plus ground) power real be 3271
proposed location of the 3271.
5. A telephone, which can be connected to an outside line, should be available within easy reach of the proposed 6. Verify that the 327
6. Verify that the 3270 OLTs have been properly included Ensure host system's OLT library
reviewed befo latest technical bulletins have been 8. Ensure that switch
(either type), and test tape (TDAT (SIU), logic probe on site for installation.

Installation

1. Unpack, according to the Unpacking/Packing Instructions, PN 7371304, shiped with the control Instructions, PN 7371304 , shipped with the control unit. Inspect the shipment for possible damage incurred
in transit. Report any damage at once. Check machinein transit. Report any damage at once. Check machine-
history documentation with customer to ensure that history documentation with customer to ensure that
3271 features and power match what the customer has ordered.
2. Check off all items received against those listed on the shipping Bill of Materials. Report any shortage at once.
3. Adjust four unit levelers to 0.5 inch (12.7 mm) below control unit.
4. Remove front cover, open logic gate, and check for loose cards.
5. Plug in data set cable. See cable installation drawing, PN 2570002.
6. Connect SIU. Set ON LINE/OFF LINE switch on SIU to OFF LINE.
7. Check that customer-supplied voltage agrees with the voltage decal in the 3271
8. Remove "shipped and uninstalled" seal and then plug in ac power cable.
9. Set PWR ON/OFF switch to ON
10. Follow flowchart, Sheet 2

Diagram 2-5. 3271 Installation Checkout Flowchart

Example - Shows how to set any of the valid CU addresses (254 total).

- Non-valid addresses are All zeros All ones

00000000

11111111

Diagram 2-7. CU Locations

3272 CONTROL UNIT MODELS 1 AND 2

Plan View (Template GX22.7018)

Inches	Centimeters
1/2	5
${ }^{2}$	5
${ }_{8}^{7}$	-
(10,	(25
26-3/8	67
	74

Temperature $\quad 50^{\circ}-110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$ Rel Humidity 8\%-80\% Max Wet Bulb $\quad 85^{\circ} \mathrm{F}\left(29^{\circ} \mathrm{C}\right)$

Environment Nonoperating:
Temperature $\quad 50^{\circ} \cdot 125^{\circ} \mathrm{F}\left(10^{\circ} \cdot 52^{\circ} \mathrm{C}\right)$ Rel Humidity $8 \%-80 \%$ $\begin{array}{ll}\text { Max Wet Bulb } & 85^{\circ} \mathrm{F}\left(29^{\circ} \mathrm{C}\right)\end{array}$

Environment Operating:

3272 CONTROL UNIT INSTALLATION PROCEDURES

Prerequisites

1. Ensure that latest technical bulletins have been reviewed before starting installation.
2. Ensure that Switch Indicator Unit (SIU) and Logic Probe are available on installation site.
3. Verify that 3270 OLTs have been properly included for the System OLT library.
4. Check Address Priority Mode.
5. Check CPU Channel UCW. Plug card for proper jumpering.

Procedure

1. Check Machine History documentation with the cus tomer so that the 3272 features and power match what the customer has ordered.
2. Carefully move CU to assigned floor location and remove packing material.
3. Lik and remove front cover. Check for loose cards.
4. Set ON LINE/OFF LINE switch to OFF LINE and REMOTE/LOCAL switch to LOCAL (Diagram 3-1).
5. Open logic gate.
6. Connect the address, priority, and operational mode jumpers required for system attachment. Refer to Diagram 3-2 for plugging reference and Diagram 7-106 for address assignment reference.
7. Check that transformer connections are correct for line voltage that is to be used. Refer to ALD YF730, 731 (USA 60 Hz); (Diag. 3-5).

caution

3272 CUs may appear to operate correctly for a time with transformer connections not matching line voltage.
8. Connect ac power cable and EPO cable. If EPO cable is not connected, the EPO plug in the 3272 must be jumpered before power can be brought up.
9. Set LOCAL MODE ON switch to ON. If unit does not power up, refer to Diagram 5-100.*
0. Perform switch/indicator unit checkout (paragraph 7.7.3).*
11. Connect one device cable and perform system reset as shown at right.
12. Perform basic erase-write operation (Diagram 2-100).*
13. Check plugging of address jumpers by performing an initial selection to the lowest and highest address available. Use only Sheet 1 of Diagram 3-100* for this check. Observe the BUS OUT indicators to assure that the correct device address appears.
14. Connect the bus and tag cables at the $1 / 0$ panel (Diagram 3-3)
5. Connect all device cables and run CHK and KEYOLTs. OLT writeups can be found in the 3270 Display System On Line Tests (LOCAL) Form No. D99-3270A.
16. If CHK and KEY OLTs run error-free, the 3272 installation is complete. Fill out all appropriate forms and notify the Branch Office.

Legend:
These references may be found in the IBM 3272 Control Unit Models 1 and 2 Troubleshooting Guide, SY27-2312.

United States	French	German	Italian	Spanish
POWER	SOUS	NETZ	ACCESO	ENERGIA
ON	TENSION	EIN		CONECTDA
LOCAL	CONTROLE	LOKAL-	LOCALE	MODALIDAD
MODE	AUTONOME	BETRIEB		LOCAL
ON	SOUS	EIN	ACCESO	ON
OFF	HORS	AUS	SPENTO	OFF

Indicators/Switches Located on Gate A	ALD Location	Source Pin (Board Al)
I/O INTF DISABLED indicator	LC206	$\begin{aligned} & \text { T2D13 Wire No. 1) } \\ & \text { T2D03 (Wire No. 2) } \\ & \hline \end{aligned}$
ON LINE/OFF LINE switch ON LINE position ON LINE/OFF LINE switch OFF LINE'position ON LINE/OFF LINE switch common position		Probe Pin (Board Al)
	LC401	V2S04 Wire No. 3)
	LC401	V2U04 (Wire No. 4)
	LC401	V2U08 (Wire No. 5)

Diagram 3-1. Component Locations

16 or Fewer Devices per CU

CU No.	8-Bit Local Adr Byte	
	CU	Device
	012	4567
0	000	x $\times \times \times$
1	000	x $\times \times \times$
2	001	x \times x \times
3	001	x \times x \times
4	010	x \times x \times
5	010	x \times x
6	011	x \times x
7	011	x \times x
8	100	x \times x
9	100	x \times x \times
10	101	x \times x \times
11	101	x $\times \times \times$
12	110	x \times x
13	110	x \times x
14	11.10	x \times x \times
15	111	x \times x

17 or More Devices per CU

CU No.	8-Bit Local Adr Byte	
	CU	Device
	012	34567
*0	000	$\mathrm{x} \times \times \times \mathrm{x}$
2	001	x \times x ${ }^{\text {x }}$
4	010	x \times x ${ }^{\text {x }}$
6	011	x \times x \times
8	100	x \times x \times
10	101	x \times x \times
12	110	x \times x \times
14	111	$\mathrm{x} \times \mathrm{x} \times \mathrm{x}$

*Even CU No's show no low-order
bit as it is always 0 . This allows Adr Bit 3 to be used as the high order bit position for the device address as shown in Diagram 7-106.

Diagram 3-5. Power Supply Component Locations (Side View)

3275 DISPLAY STATION MODELS 1, 2, 11, AND 12

PLAN VIEW

SPECIFICATIONS

Dimensions:				
	F	S	H	
Inches (cm)	$\begin{gathered} 16 \\ (41) \end{gathered}$	$\begin{aligned} & 21^{*} \\ & \left(53^{*}\right) \end{aligned}$	$\begin{gathered} 19 \\ (48) \end{gathered}$	
Service C/earances:				
	F	R	Rt	L
Inches (cm)	$\begin{gathered} 30^{* *} \\ \left(76^{* *}\right) \end{gathered}$	$\begin{aligned} & 1 \\ & \text { (3) } \end{aligned}$	$\begin{gathered} 11 \\ (28) \end{gathered}$	$\begin{gathered} 11 \\ (28) \end{gathered}$
Weight:	$95 \mathrm{lb}^{* * *}\left(43 \mathrm{~kg}{ }^{* * *}\right.$)			
	Models 1 and 2		Models 11 and 12	
Heat Output:				
(kcal/hr)	700		$\begin{array}{r} 800 \\ (202) \end{array}$	

Airflow: Convection only Convection only

Power Cord Stylettt A4
Power Cord Length $\quad 7-1 / 2 \mathrm{ft}(229 \mathrm{~cm})$
Environment Operating:
Temperature $\quad 50^{\circ}-110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$ Rel Humidity 8\%-80\% Max Wet Bulb $\quad 85^{\circ} \mathrm{F}\left(29^{\circ} \mathrm{C}\right)$

Environment Nonoperating:
Temperature $\quad 50^{\circ}-125^{\circ} \mathrm{F}\left(10^{\circ}-52^{\circ} \mathrm{C}\right.$ Rel Humidity $\quad 8 \%-80 \%$

Notes:
The 3275 is installed on a customer-supplied desk or table. Recommended keyboard height (measured at home-row keys) is $28-1 / 2^{\prime \prime}(72 \mathrm{~cm})$ from the floor. Lighting level should not exceed 75 foot-candles (810 lumens $/ \mathrm{m}^{2}$)
*See also plan view.
Keyboard feature adds $8-1 / 2^{\prime \prime}(22 \mathrm{~cm})$ to front of display and can be moved up to $24^{\prime \prime}(61 \mathrm{~cm})$ away from lower front of display
***Keyboard feature adds about $10 \mathrm{lb}(5 \mathrm{~kg})$
tWorld Trade voltage.
$\dagger \dagger$ See Appendix A for receptacle schematic and identification. In World Trade countries other than Canada, cation. In World Trade countries other than Can
only the power cord is supplied with the machine. $\dagger \dagger t$ See Appendix B for power cord style specifications.

3275 DISPLAY STATION (LEASED LINE) INSTALLA

 TION PROCEDURES (BSC MACHINES ONLY)This section contains the information necessary to install and check out the 3275 Display Station.

Prerequisites

The following items are prerequisites for installing the IBM 3275 Display Station Models 1 and 2. None of these item is to be done by the installing $C E$, but he must check that hey have been accomplished and he may have to provid That
3275 Mods 1 and 2 to (2701, etc) attaching the properly jumpered for the 3275 and for the feature installed The CE at the TCU should refer to the TCU Installation Manual for jumpering information. (The CE astallation Manual for jumpering information. The CE CPU CE.)
2. A data set must be properly installed near the proposed location of the 3275 (40 ft max cable length should be ordered). If the IBM Line Adapter feature is installed in the 3275, the data set is a part of the 3275 .
3. Data sets on both ends of the transmission line must be properly strapped (jumpered) for the 3275 and the features installed. Contact Branch Office Specialist for data set information. On all MODEMS (except the IBM 3872 and 3875), the jumper that ties signal ground to frame ground should be used. Use the External MODEM cable (PN 2564941).
A proper three-wire connector (two voltage wires plus a ground) must exist
5. A telephone, connected to an outside line, should be vailable within easy reach of the proposed location of the 3275 .
6. Insure that the 3270 On Line Tests (OLTs) have been inserted into the OLT library at the host CPU site and configured for this 3275 Display Station. (Check fatures list after receiving 3275 and relay information from host CPU site CE.)
7. Insure that the following CE tools are on site for this installation: IBM 1200 TDAT PN 453679 (IBM Domestic and Canada), or IBM CRAU (World Trad only), or an equivalent tape tester; Switch Indicator Unit SIU) PN 2570250; and a Logic Probe PN 453652 hese tools must be available for installation checkout.
Installation Instructions
When authorization to install the 3275 is received from th When authorization to install the 3275 is received from the Branch in the, uequence listed

Unpacking

. Unpack according to instructions shipped with the unit Inspect shipment for possible damage incurred in transit

Report any damage at once. Keyboard is packaged in op of shipping carton.

DANGER

The 3275 Display Station weighs about 95 pounds without keyboard. Two men are required to remove th nit from the shipping carton. Two people should b vailable to move this unit. If the display station must be moved by one person, separate the upper chassis from the lower chassis and move them individually. The 327 cannot be separated until it is out of the carton. Se separate the two chassis.
2. Check off all received items against those listed on the shipping Bill of Materials. Report all shortages at once

CAUTION

xercise extreme care when inserting or removing umpered cards or cards located next to jumpered cards. Jumper pins may bend or break, or jumpers may be pulled off the pins on the card.

Card Jumpering

1. Remove the left side cover (Diagram 4-1), using instructions for removal located on Diagram 5-31.*
2. Jumper correct control unit (CU) address on card B-L2 Use Diagram 4-4 (EBCDIC) or Diagram 4.5 (ASCII) fo physical jumpering. See Diagram 6-25* for coding of CU and device addressing.
3. Check for correct jumpering of the following cards on Diagram 4-4 (EBCDIC) or Diagram 4-5 (ASCII).
B-M2
$\mathrm{B}-\mathrm{K} 2$
$\mathrm{~B}-\mathrm{H} 2$
4. If the IBM Line Adapter feature is installed, B-N2 mus be checked for correct jumpers and alignment. Se Diagram 4-3 or 1200 BPS Line Adapter Referenc manual.
Jumpering options:
a. For 2 -wire operation
(1) Jumper BN2D05 to B-N4G09
b. For 4 -wire operation
(1) Remove above jumpers.
(2) Jumper B-N2B03 to B-N2D05.
5. On completion of jumpering checks:
a. Check for loose cards and cables.
b. Insert security key in security keylock if thi feature is installed (see il on Diagram 4-1)

Cable Insertion
. Remove front cover (Diagram 4-1), using instructions on Diagram 5-31. Check that the OFF-PUSH button is pushed in (see [2on Diagram 4-1).
2. Connect the following cables, if applicable. Note tha cable sockets are identified by function. Socket names re embossed on the chassis, beneath each socket.
. Keyboard cable (see 3 on Diagram 4-1).
b. Card Reader cable (see 4 on Diagram 4

Cint 1/O cable (on Diagram 41).
Adjust/O cable reain for the above cables. Conect shield ground leads from sockets (see 6 on Diagram 4-1).

Power Requirements Check

1. Check that the source voltage provided by the custome agress with display station wiring, using the following information (see 8 on Diagram 4-1, Sheet 2):
. Domestic USA models use 115 V ac $(\pm 10 \%), 60-\mathrm{Hz}$ equired for Domestic (USA) display stations.
b. World Trade models use $100,110,123.5,220$, or 235 V ac $(\pm 10 \%), 50 \mathrm{~Hz}$ single-phase; or 100 V ac $(\pm 10 \%), 60 \cdot \mathrm{~Hz}$ single-phase line voltage. For $50 \cdot \mathrm{~Hz}$ models only, check that the ferro connectors on models only, check that the ferro connectors on
terminal block TB-1 agree with the line voltage provided. If it is necessary to change taps on the ferro, update the voltage decal.

Ferro
2. Remove seal from power cord plug. Plug female end o cable into 3275 prime power box receptacle (see \mathbf{Z} on Diagram 4-1).

Power-On Basic Checkout

1. Turn power on. Connect and check out Switch Indicator Unit (SIU) as described in Diagram 8-14.* Perform Display Logic Checkout Procedure 1 (Diagram 1-2)." Check out Logic Probe before using. Perform initial selection with ADR OVRD in NORMAL position (Diagram 1-3).* Turn pówer off and remove SIU.
2. Plug Data Set cable or Line Adapter Feature cable into the socket labeled IIO (see $\mathbf{9}$ on Diagram 4-1). Always Connect shield ground to common ground, which is the
 wing screw beneath the cable sockets. Replace fron cover.

Checkout Procedure (Flowchart on Sheet 2)

1. Put ON LINE/OFF LINE switch to ON LINE position
2. The following checkout procedures are listed in the order of preference. Perform the first of the following procedures for which the facilities are available. If the procedure fails, check out the Logic Probe and perform the troubleshooting procedures in the front of this manual
a. Perform the first three tape tests (Diagram 2-1),* using the IBM 1200 TDAT (IBM Domestic and Canada), IBM CRAU (World Trade Corporation), o
 ntaind in the IBM Maintera 1200 TDAT 1200 Terroces Diannostic Anlyzer Form No. S226-3029.
Form No. S226-3029.
R the OLT's frock (CHK) and Keyboard (KEY) portions the OLT's from the customer's host CPU.
c. Allow the customer to run his own programs from the host CPU to check out the CU. If a problem is encountered, use the TPTC for troubleshooting. If program
d. Connect the IBM 1200 TDAT to communicate with the TPTC (IBM Domestic and Canada only) according to the instructions in the IBM Maintenance Library Manual, 1200 Teleprocessing Diagnostic Analyzer Tester, Form No. S226-3029. Request only the Check (CHK) and Keyboard (KEY) portions of the OLT's from the TPTC
3. If the checkout procedure ran successfully, turn power off and remove switch/indicator unit. (If TDAT was be.) Replac frot covar. Insallation is complete.

*IBM 3275 Display Staion Troubleshooting
Guide (Leased Line), SY27-2313

Photographs and drawings are provided in this section to
aid in locating field-replaceable units, adjustable compon-
installation.

NOTE: This view shows the area to the right and behind the keylock, shown in Diagram 4-1, sheet 1

Diagram 4-1. Locations (Sheet 2 of 3)

Diagram 4-1. Locations (Sheet 3 of 3)

Diagram 4-2. A-Gate Card Layout by Function (Card Side)
Hinge

ASCII Feature Cards
H2-ASCII Fixed Inputs Status Reg Xmit Ctr
J2-ASCII T Clock and Timeout
K2-ASCII Decoder and LRC Reg and LRC SERDES
L2-SERDES and ASCII/EBCDIC Code Converters

4800-bps Transmission Speed Card
F2-High-Baud Feature (Double card)

Line Adapter Feature Cards

N2-IBM Line Adapter - Transmi N4-IBM Line Adapter - Receive
Diagram 4-3. B-Gate Card Layout by Function (Card Side)

Crossover Cable 3 (To A-Board Y3)

I/O and Indicators
Z4

6
Crossover Cable 1 (To A-Board Y1) (To A-Board

To A-Board Y2)
A-Board
$\stackrel{\text { egend: }}{*}$
with Jumpers. See Diagram 4-4 (EBCDIC) or $4-5$ (ASCII).
† Locations N 2 and N 4 are empty when Line Adapter feature is not installed.

Transmit Level Adjustment

Direct attachment to a leased line normally requires a $0 . \mathrm{dbm}$ transmit level. If attachment is by a $1000-\mathrm{B}$ coupler (eased line), a CDT Data Access Arrangement (manualwitched network), or equivalent, adjust the transmit level the value marked on the comm
. Turn the 3275 power off.
. For direct leased line, 1000-B or CDT applications, disconnect the communications line plug (283-B) and insert it in the TRANS/REC jack in the dB meter cover.

Note: Terminate the line with the 600 -ohm terminatin plug.
3. Place the $2 W-4 W$ TRANS/REC switch in the TRANS position.
4. If the connection is made by plugging the 283 -B plug to the dB meter cover jump the LINE terminals on the cover to the LINE terminals on the meter
5. Place the BRIDGING, 600, 324 switch in the 600 position.
6. Turn the meter POWER switch on, and turn 3275 power on..
7. Unclamp the transmitter by grounding 01BA1N2 B10 (wrap unclamp) and 01BA1N2 J07 (request to send), which causes the modem to transmit a steady mark frequency (carrier on).
8. While reading the dBm scale on the meter, adjust R3 on 01BA1N2 (top resistor) to the correct transmit level.
9. Return all connections to normal and reconnect to the line.

Diagram 4-4. Logic Card Jumpering - EBCDIC (Sheet 2 of 2)

New Jumpering for 9045 Card. PN 8523662

Diagram 4-5. Logic Card Jumpering - ASCII (Sheet 2 of 2)

Prerequisites

The following items are prerequisites for installing the IBM 3275 Display Station with Dial feature. None of these items is to be done by the installing $C E$, but he must check that they have been accomplished and he may have to provide information to the personnel involved.

1. The 'transmission control unit (2701, etc) attaching the 3275 to the host system must be properly jumpered for the 3275° and for the features installed. The CE at the TCU should refer to the TCU Installation Manual for jumpering information. (The CE at the Remote site must furnish feature data to the host CPU CE.)
2. A data set must be properly installed near the proposed location of the 3275 (40 ft max cable length should be ordered). If the IBM Line Adapter feature is installed in the 3275, the following manual is required for installation - 1200 BPS Line Adapter Reference Manual.
3. Data sets on both ends of the transmission line must be features installed Contact DP Division for dat the information. On all MODEMS (except the IBM 3872 and 3875), the jumper that ties signal ground to frame ground should be used. Use the External MODEM cable (PN 2564941).
4. A proper three-wire connector (two voltage wires plus a ground) must exist within 8 feet of the proposed location of the 3275.
5. A telephone must be available as part of the Dial feature installation. A Data Access Arrangement and a telephone must also be made available if the IBM 600/1200 Line Adapter feature is installed on the 3275. (DAA cable for Line Adapter feature without Auto Answer is PN 2564877. DAA cable for Line Adapter feature with Auto Answer is PN 2564878.)
6. Insure that the 3270 On Line Tests (OLTs) have been inserted into the OLT library at the host CPU site and configured for this 3275 Display Station with Dial relay information from host CPU site CE)
7. Insure that the following CE tools are on site for this Insure that the following CE tools are on site for this
installation: IBM 1200 TDAT PN 453679 (IBM Domestic and Canada), or IBMCRAU (World Trade only), or an equivalent tape tester; Switch Indicator Unit (SIU) an equivalent tape tester; Switch Indicator Unit (SIU) must be available for installation checkout.

Installation Instructions

When authorization to install the 3275 is received from the Branch Office, the following instructions must be pe formed in the sequence listed.

Unpacking

1. Unpack according to instructions shipped with the unit. Inspect shipment for possible damage incurred in transit. Report any damage at once

DANGER

The 3275 Display Station weighs about 95 pounds without keyboard. Two people should be available to move this unit. If the display station must be moved by one person, separate the upper chassis from the lowe chassis and move them individually. See steps 1-7 paragraph 5.3.2.6 (Diagram 5-32)* to separate the two

Check off all received items against those listed on the shipping Bill of Materials. Report all shortages at once.

Card Jumpering

1. Remove the left side cover (Diagram 4-6) using instruc tions for removal located on Diagram 5-31**
2. Plug the Device Identification (DVC ID) card (B-J2) only if the customer requests that the DVC ID be other than the IBM assigned code. Use Table 2 (Diagram 4-9) for selection of the non-IBM assigned DVC ID codes and or physical jumpering.
3. Check for correct jumpering of the following cards on Diagram 4-10 (EBCDIC) or Diagram 4-11 (ASCII):
B-E2
B-F2
-N2 Only if the IBM Line Adapter feature is installed.
B-M5 World Trade only (Diagram 6-25)*
On completion of jumpering checks:
a. Check for loose cards and cables.
b. Insert security key in security keylock if this feature is installed (Diagram 4-6).
IBM 3275 Display Station Troubleshooting Guide (Dia) Feature), SY27-2329

Cable Insertion
Remove front cover (Diagram 4-6) using instructions on Diagram 5-31.* Check that the OFF-PUSH button pushed in
2. Connect the following cables if applicable. Note that cable sockets are identified by function. Socket names re embossed on the chassis, beneath each socket.
. Keyboard cable
b. Card Reader cable

Printer cable
3. Reposition I/O cable retainer to insure a tight connecto fit for the above cables. Connect shield ground leads from above cables under the wing screw beneath th able sockets.
4. Remove keyboard top cover and ensure that cable is seated in K-B1 connector.

Power Requirements Check

1. Check that the source voltage provided by the custome agrees with display station wiring using the following information:
a. Domestic USA models use 115 V ac ($\pm 10 \%$), $60-\mathrm{Hz}$, ingle-phase, line voltage. No internal adjustments a rquid Tor Domic (USA) display staions.
b. World Trade models use 100, 110, 123.5, 220, o ($\pm 10 \%$), 60 Hz singe phase line volta $\mathrm{For} 50-\mathrm{Hz}$ odels only, check that the ferrog. For 50 - Hz terminal block TB-1 agree with the line voltag provided. If it is necessary to change taps on the ferro, update the voltage decal.

2. Remove seal from power cord plug. Plug female end of cable into 3275 prime power box receptacle. Plug male end of cable to the cusomter's power source.
Power-On Basic Checkou
3. Turn power on. Connect and check out Switch Indicato Unit (SIU) as described in Diagram 8-14.* Perform Display Logic Checkout Procedure 1 (Diagram 1-2).
Turn power off and remove SIU
4. Plug Data Set cable or Data Access Arrangement cabl into the socket labeled I/O. Reposition I/O Cable Retainer to insure a tight connector fit. Connect shield ground to common ground, which is the wing screw beneath the cable sockets. Replace front cover.

Check with Tape and 1200 Teleprocessing Diagnostic Analyzer Tester (TDAT) Unit

1. Perform the tape tests (Diagram 2-1)* using the IBM 200 TDAT (IBM Domestic), IBM CRAU (World Trade Corporation) or equivalent, and the cassette tap infla. All tape cest must installation can be continued.
the IBM 1200 TDAT is IBM Maintenance Library 1200 Tele processing Diagnostic Analyzer Tester \$226-3029.

Check with CPU or TPTC (IBM Domestic and Canada only)

1. Request only the Check (CHK) and KEYBOARD (KEY) portions of the OLTs from either the host CPU or TPTC BM Domestic and Canada only) (Diagram 6-110* and Diagram 6-111).* When these' two sections run error free, installation is complete.

IBM 3275 Display Station Troubleshooting Guide (Dia Feature), SY27-2329

Component Locations

Photographs and drawings are provided in this section to

Diagram 4-7. Locations

Diagram 4-8. Locations

IBM Assigned ID Code

The IBM ID code consists of four bytes of information Byte 1 (CODE ID) is fixed. Bytes 2,3 , and 4 (DVC ID) ar assigned and wired by IBM during manufacture

$$
\begin{array}{ll}
\begin{array}{l}
\text { Byte } 1-\text { Fixed } \\
\text { Byte 2-Assigned } \\
\text { Byte 3-Assigned } \\
\text { Byte } 4-\text { Assigned }
\end{array} \\
\hline
\end{array} \quad \begin{aligned}
& \text { (CODE ID) } \\
& \text { (DVC ID) }
\end{aligned}
$$

The computation to determine the DVC ID bytes of the ID code is as follows:

Step 1 - The serial number of the $3275=\mathrm{XXXXX}$.
Step 2 - Divide: $\underline{X X X X X}=$ YYYY. [Use the

$$
\frac{x \times x x}{50}
$$

remainder [C.]

Step 3 - Divide: $\frac{Y Y Y Y}{50}=Z Z$. [Use the remainder \mathbf{B}.]
Step 4 - Use the quotient from Step 3 (ZZ) for \mathbf{A}
Determine the EBCDIC code bits from Table 1 using the values:

A = Byte 2
$=$ Byte 3
Plug card B-J2 according to Diagram 4-10 (EBCDIC) or Diagram 4-11 (ASCII).

Diagram 4-9. ID Code Generation

Example:

Step 1 - The serial number of the $3275=83581$.
Step 2 - Divide: $\frac{83581}{50}=1671$ [Remainder $\left.=31=\mathbf{C}\right]$
Step 3 - Divide: $\frac{1671}{50}$
Step 4 - Quotient from Step $3=33=\boldsymbol{A}$
Card B-J2 is jumpered using the values derived from the computation and Table 1 as follows: (See Diagram 4-10 or $4-11$ for actual jumpering.)

Symbol	Byte	Computation	Graphic	Bits
\mathbf{A}	2	33	$\$$	01011011
\mathbf{B}	3	21	v	10100101
\mathbf{C}	4	31	$\&$	01010000

Non-IBMAssigned ID Code

The DVC ID portion of the ID code may be changed at the customer's request.
Table 2 has been provided for selection of a non-IBM assigned code. It is recommended that the customer select a three-digit code from this table to be wired on the B-J2 card (Diag 4-10 or 4-11) by the customer engineer.

Table 1. IBM Assigned DVC ID Code

Values of A B or C	$\begin{aligned} & \text { EBCDIC Code } \\ & 01234567 \end{aligned}$	EBCDIC Graphic
0	10000001	a
1	10000010	b
2	10000011	c
3	10000100	d
4	10000101	e
5	10000110	f
6	10000111	g
7	10001000	h
8	10001001	i
9	10010001	j
10	10010010	k
11	10010011	1
12	10010100	m
13	10010101	n
14	10010110	-
15	10010111	p
16	10011000	q
17	10011001	r
18	10100010	s
19	10100011	t
20	10100100	u
21	10100101	v
22	10100110	w
23	10100111	x
24	10101000	y
25	10101001	z
26	01001011	-
27	01001100	<
28	01001101	1
29	01001110	+
30	01001111	1
31	01010000	
32	01011010	$!$
33	01011011	\$
34	01011100	*
35	01011101	1
36	01011110	;
37	01011111	\neg
38	01100000	-
39	01100001	1
40	01101011	,
41	01101100	\%
42	01101101	-
43	01101110	>
44	01101111	?
45	01111011	\#
46	01111100	@
47	01111101	,
48	01111110	$=$
49	01111111	"

Table 2. Non-IBM Assigned DVC ID Code

EBCDIC	EBCDIC Code
Graphic	01234567
A	11000001
B	11000010
C	11000011
D	11000100
E	11000101
F	11000110
G	11000111
H	11001000
I	11001001
J	11010001
K	11010010
L	11010011
M	11010100
N	11010101
O	11010110
P	11010111
Q	11011000
R	11011001
S	11100010
T	1110011
U	11100100
V	11100101
W	11100110
X	11100111
Y	11101000
Z	11101001
0	11110000
1	11110001
2	11110010
3	1110011
4	11110100
5	11110101
6	11110110
7	11110111
Z	1111000
9	11111001

CAUTION
Jumper pins can bend or break, or jumpers can be pulled off pins. Exercise care when inserting or removing jumpered cards or cards next to jumpered

Table 3. DVC ID Jumpering

Card	B-J2	DVC ID Bits *						
$\left.\begin{array}{\|c\|c\|c\|c\|c\|c\|}\hline \text { Bit } & 0 & 1 & 2 & 3 & 4 \\ 5 & 6 & 7 \\ \hline \begin{array}{c}\text { Byte } \\ 2\end{array} & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$	7	8						
Byte 3	9	10	11	12	13	14	15	16
Byte 4	17	18	19	20	21	22	23	24

*Jumper to turn on. cards.

Diagram 4-10. Logic Card Jumpering - EBCDIC
and $\mathbf{C}=31=\&($ Diag $6-22$, Table 1)

Note: ID is jumpered in EBCDIC.

CAUTION:

Jumper pins can bend or break, or jumpers can be pulled off pins. Exercise care when inserting or removing jumpered cards or cards next to jumpered cards.

Table 4. DVC ID Jumpering
Card B-J2

Bit \rightarrow	0	1	2	3	4	5	6	7
Byte 2	1	2	3	4	5	6	7	8
Byte 3	9	10	11	12	13	14	15	16
Byte 4	17	18	19	20	21	22	23	24

*Jumper to turn on.

Diagram 4-11. Logic Card Jumpering - ASCII

Introduction

Maintenance of the IBM 3275 Display Station that is equipped with the Dial Feature includes repair and adjustment of the line adapter (undercover modem).
The objective of the line adapter maintenance is to return the failing unit to customer service as quickly as possible. This appendix guides the Customer Engineer malfunctioning component

Dial Featur

This special feature attaches a 3275 Display Station to a computer system via a common carrier switched telephone network and the IBM 600/1200 bps line adapter or equivalent data set. Permanently attached leased network lines are not required for Dial Feature attachment. Clocking is obtained from the 3275 which must be equipped with the $600 / 1200$ bps transmission speed capability (provided as part of the Dial Feature). EBCDIC or ASCII transmission codes may be used. The BSC point-to-point contention line discipline is employed. The Dial Feature provides a DISCONNECT toggle switch to terminate a call. The 3275 equipped with the Dial Feature may be attached to the telephone network through an external data set or via a data set (called the IBM 600/1200 bps line adapter) mounted within the 3275.

IBM 600/1200 BPS Line Adapter Feature
The IBM 600/1200 bps Line Adapter Feature operates at 600 or 1200 bps .
With dial capability present, the line adapters are attached to the telephone lines by data access arrangements which require coup company.

The IBM 600/1200 bps Line Adapter may be obtained with automatic answering capability.

BM 600/1200 BPS Line Adapter with Auto Answer Feature
The IBM 600/1200 bps Line Adapter with Auto-Answer feature is applicable to the 3275 using the Dial Feature The Auto-Answer portion of the line adapter enables the解 been answered, and data or control information is not
received or transmitted by the 3275 within 20 seconds, th 3275 will automatically disconnect (hang up). This timeout prevents the 3275 from tieing up the line upon receiving an erroneous phone call.

Note: It is advisable that the CE have a DB meter to make the Transmit Level Adjustment.

Installation and Testing

ransmit Level Adjustment

f attachment is by a CDT Data Access Arrangement (switched network) or a CBS Automatic Data Coupler (o equivalents), adjust the transmit level to the value marked on the common-carrier equipment. To set the appropriate transmit level:
. Turn the 3275 power off.
2. For CDT applications, disconnect the communications line plug (283-B) and insert it in the TRANS/REC jac in the dB meter cover

Note: Terminate the line with the 600 ohm terminating plug.

For CBS coupler applications, disconnect the coupler cable from the 3275 and connect the transmit pair (B02 and D05 on the B-N2 card) to the LINE terminals on the dB meter.
3. Place the $2 W-4 W$ TRANS/REC switch in the TRAN position.
If the connection is made by plugging the 283-B plug to the dB meter cover, jump the LINE terminals on the to the LINE terminals on the meter
5. Place the BRIDGING, 600, 324 switch in the 600 position if the terminating resistor is connected. If it is not, use the 324 position
6. Turn the meter POWER switch on, and turn 3275 power
7. Unclamp the transmitter by grounding 01BA1N2 B10 (wrap unclamp) and 01BA1N2 J07 (request to send), which causes the modem to transmit a steady mark frequency (carrier on)
. Whie reading the dBm scale on the meter, adjust R3 auto answer) or R6 (line adapte with auto answer) to the correct transmit level.

Note: See diagram below for location of R6 or R3 on N2 card.
9. Return all connections to normal and reconnect to the line.

With Auto Answer

TDAT to 3275 Tape Test Substitution Method Insert 01BA1M5 card, and remove 01BA1N2 card. Connect EIA interface cable from 3275 to TDAT; run tap (SY27-2325 EBCDIC or SY27-2326 ASCII) for normal esting.
Acoustic Coupler Test (Diagram C-2)*
Remove 01BA1M5 card and insert 01BA1N2 in its place; ensure that the DAA cable is connected between DAA and nsure that the DAA cable is connected between DAA and is connected, set up TDAT as follows:
a. Tape I/O to transmit.
b. Other switches not applicable.

Using any telephone available, other than the DAA elephone, dial DAA. Place headset on coupler, and plac coupler switch in ON position and start tape.

Connection of IBM Cables to Communication Equipmen The customer is responsible for making the connection o BM external cables, at the signal interchange point, to his or a vendor's communication equipment
IBM will make such connections if all of the following The custom
er has requested IBM to make the con nections.
2. No safety hazard exists
3. The design of the connector is of a quick disconnect type only, which implies interchangeability (EIA con nector or 404B only).
No special training or tools are required.
5. Full and free access is provided by the customer

The task of connection should be an insignificant workload, secondary to the maintenance and/or installation effort, and should increase availability of the IBM equipment.
+12 V DC Check (Line Adapter)
This voltage is derived from the +34 V dc supply. If +34 V dc is missing, the +12 V dc will also be missing. Proceed as follows:

1. Check for +34 V dc at the PC board. Use Trouble shooting Procedure $4-390$ if +34 V dc is not present.
2. Check for +12 V dc $\pm 10 \%$ on logic pin B-N2 B 04 Reference the negative $(-)$ lead to any D08 pin. Observe correct polarity of list leads.
3. Replace +12 V regulator card (located at rear of highvoltage power supply) if +12 V dc is incorrect and +34 V d is

Table 1. Cable Connections
Information on where to attach the 8 terminals is as follows (cable group 32-10):

Wire Number	Color	TB Position	01BA1N2	J4 EIA Conn
1	Red	SH	S12	04
2	Grey	SG		
3	Yellow	DA	S13	06
4	Brown	CCT	M12	20
5	Violet.	OH	D02	05
6	Blue	RI	M10	22
7	Black	DT	D05	03
8	White	DR	BO2	02

*IBM 3275 Display Station Troubleshooting Guide (Dial Feature), SY27-2329

Diagram 4-14. 3275 Dial Feature CPU Attachments

This section contains the information necessary to install and check out the 3275 Display Station. As each item is completed, place a check mark in the corresponding box. Installation time of the 3275 is 6.7 hours. Due to the Maintenance approach used for SDLC, this sheet only provides an introduction to installation. Refer to the 3275 Display Station, Models 11 and 12, Leased Line, Troubleshooting Guide (SY27-2410) for complete installation procedures

PREREQUISITES

The following items are prerequisites for installing the IBM 3275 Display Station. None of these items is to be done by the installing $C E$, but he must check that they have been accomplished and he may have to provide information to the personnel involved.

1. The transmission control unit (3705, etc.) attaching the 3275 to the host system must be properly jumpered for TCU should refer to the TCU Installation Manual for jumpering information. (The CE at the Remote site must furnish feature data to the host CPU CE.)
2. A data set must be properly installed near the proposed location of the 3275 (40 ft max cable length should be ordered). If the IBM Integrated Modem feature is installed in the 3275 , the data set is a part of the 3275
3. Data sets on both ends of the transmission line must be properly strapped (jumpered) for the 3275 and the features installed. Contact Branch Office Specialist for data set information. On all Modems (except the IBM 3872 and 3875), the jumper that ties signal ground to frame ground should be used. Use the External Modem cable (PN 2564941).
4. A proper three-wire connector (two voltage wires plus a ground) must exist within 8 feet of the proposed location of the 3275
5. A telephone, connected to an outside line, should be available within easy reach of the proposed location of . 1 sure tha
6. Insure that the 3270 On Line Tests (OLTs) have been inserted into the OLT library at the host CPU site and
configured for this 3275 Display Station. (Check configured for this 3275 Display Station. (Check
features list after receiving 3275 and relay information to host CPU site CE.)
7. Insure that the following CE tools are on site for this installation: IBM 1200 TDAT PN 453679 (IBM Domestic and Canada) or IBM CRAU (PN 1744195), Switch Indicator Unit (SIU) Model 2 PN 1830679 and a Logic Probe PN 453652. These tools must be available for installation checkout.

installation instructions

hen authorization to install the 3275 is received from the formed in the sequence listed.

Unpacking

1. Unpack according to instructions shipped with the unit. nspect shipment for possible damage incurred in transit. Report any damage at once. Keyboard is packaged in top of shipping carton.

DANGER

The 3275 Display Station weighs about 95 pounds without keyboard. Two men are required to remove the unit from the shipping carton. Two people should be available to move this unit. If the display station must be moved by one person, separate the upper chassis from the lower chassis and move them individually. The 3275 cannot be separated until it is out of the carton. See steps 1-7 of *paragraph 5.3.2.7 to separate the two chassis.
2. Check off all received items against those listed on the shipping Bill of Materials. Report all shortages at once The Feature Identification Table (below) is provided a an additional check.

Feature Identification Table

Feature	Identifier
Light Pen	Light pen or card A-M2
Card Reader	Reader or card A-N2
Audible Alarm	See *Diagram 7-1.
Printer	3284 or card A-L2
ASCII Code	Jumper or card B-G2
	ROS Modules card B-M2
NRZI Transmission	B-K2 card jumper installed
IBM Integrated	Outrigger B-gate
Modem	

Refer to 3275 Display Station, Models 11 and 12, Leased Line,
Troubleshooting Guide; SY27.240. Troubleshooting Guide; SY27-2410.

ard Jumperin

1. Remove the left side cover (*Diagram 7-1), using instructions in *paragraph 5.3.1

Note: Do not perform items 2 and 3 until after running tape tests.
2. Set address switches for correct CU address on car B-K2. Use *Diagram 6-20 for sample CU address setting 3. Check for correct jumpering of the following cards on Diagram 6-20:
B-G2 for ASCII feature
IBM NRZI transmissio
If the IBM Integrated Modem feature is installed, B-A2位
Wiring Options (Remove outriger to check
modify.)

Be very careful when the outrigger is unattached because the yellow cable will not allow complete removal from ate. It will be necessary to remove the outrigger, to wire wrap the following options. Refer to Diagram 4.15 and remove the four nuts, PN 257189 A. Wire as required below and then install outrigger.

Jumpering options:
For 2-wire operation:

1) Jumper B-N2D05 to B-N4G09
(2) Jumper B-N2B02 to B-N4J11

For 4-wire operation:

1) Remove jumpers B-N2D05 to B-N4G09 and B-N2B02 to B-N4J11 (if installed)
(2) Jumper B-N2BO3 to B-N2DO5
b. Alignment.

Perform transmit level adjustments (*par. 5.2.4).
5. On completion of jumpering checks:
a. Check for loose cards and cables.
b. Insert security key in security keylock if this featur is installed. (See 1 on *Diagram 7-1, Sh 1)

Cable Insertion

1. Remove front cover (*Diagram 7-1), using instructions in paragraph 5.3.1. Check that the OFF-PUSH button is pushed in 2 on *Diagram 7-1, Sheet 1
2. Connect the following cables, if applicable. Note that cable sockets are identified by function. Socket names are embossed on the chassis, beneath each socket.
a. Keyboard cable 3 on *Diagram 7-1, Sheet 1.
b. Card Reader cable 4. on *Diagram 7-1, Shee
c. Printer cable 5 on *Diagram 7-1, Sheet 1.
3. Adjust $1 / \mathrm{O}$ cable retaine to ensure a tight connector fit for the above cables. Co wect shied ground leads from sockets (6 * *Diagram 7-1, Sheet 1), the cable sockets (6 on *Diagram 7-1, Sheet 1).

Power Requirements Check

1. Check that the source voltage provided by the customer agrees with display station wiring, using the following formation ($\mathbf{8}$ on *Diagram 7-1, Sheet 2):
Domestic USA models use 115 V ac ($\pm 10 \%$), $60-\mathrm{Hz}$ ingle-phase, line voltage. No internal adjustments ar equired for Domestic (USA) display stations.
b. World Trade models use $100,110,123.5,220$, or 235 V ac ($\pm 10 \%$), $50-\mathrm{Hz}$ single-phase; or 100 V ac $(\pm 0 \%), 60 \cdot \mathrm{~Hz}$ single-phase line voltage. For $50-\mathrm{Hz}$ terminal block TB-1 agree with the line voltage provided. If it is necessary to change taps on the ferro, update the voltage decal.
2. Remove seal from power cord plug. Plug female end of cable into 3275 prime power box receptacle (7 o Diagram 7-1, Sheet 1). Plug male end of cable to th customer's power source

Checkout Procedure (Flowchart, Diagram 4-16

1. Plug data set cable or Line Adapter Feature cable into the socket labeled I/O. (See 9 on *Diagram 7-1), Always adjust I/O cable retainer to ensure a tigh connector fit. Connect shield ground to common ground, which is the wing screw beneath the cabl sockets.
2. If possible, try to utilize the customer data set cable fo tape tests. Refer to Diagram 4-16 for checkout.
. If the checkout procedure ran successfully, turn powe ond remove SIU. (if CRAU or TDAT was used, remove it and install the data set cable.) Replace the front cover. Installation is complete.

Refer to 3275 Display Station, Models 11 and 12, Leased Line Troubleshooting Guide: SY27-2410,

Diagram 4-15. Outrigger Assembly

Ferro

Diagram 4-17. B-Gate Card Layout by Function (Card Side)
3275 Display Station, Models 11 and 12, Installation (Sheet 4 of 6)

1 Two addresses are illegal Hex " 00 " and " $F F$ "; any other addresses are legal. No jumper required unless NRZI.
3 No jumper required unless ASCII.

3277 DISPLAY STATION MODEL 1
Plan View (Template GX22-7018)

Specification

Dimensions:

	F	S	H
	Inches	$14-1 / 2$	16^{*}
(cm)	(37)	$\left(41^{*}\right)$	$16-7 / 8$

Service Clearances:				
	F			
Inches	$30^{* *}$	R	Rt	L
(cm)	$\left(76^{* *}\right)$	2	10	10
	(5)	(25)	(25)	

Weight: $\quad 60 \mathrm{lb}^{* * *}\left(28 \mathrm{~kg}{ }^{* * *}\right)$
Heat Output: $\quad 525 \mathrm{BTU} / \mathrm{hr}(140 \mathrm{kca} / \mathrm{hr})$
Airflow: Convection only

Notes

the 3277 is installed on a customer-supplied desk or table Recommended keyboard height (measured at home-row keys) is $28-1 / 2^{\prime \prime}(72 \mathrm{~cm}$) from the floor. Lighting level hould not exceed 75 footcandles (810 lumens $/ \mathrm{m}^{2}$).

See also plan view.
**Keyboard feature adds $8-1 / 2^{\prime \prime}(22 \mathrm{~cm})$ to front of display and can be moved up to $30^{\prime \prime}(76 \mathrm{~cm})$ away from ower front of display.
*Keyboard feature adds about $10 \mathrm{lb}(5 \mathrm{~kg})$.

3277 DISPLAY STATION MODEL 2

Specifications
Dimensions:

	F	S	H	
Inches (cm)	$\begin{gathered} 16 \\ (41) \end{gathered}$	$\begin{aligned} & 21^{*} \\ & \left(53^{*}\right) \end{aligned}$	$\begin{array}{r} 19 \\ (48) \end{array}$	
Service Clearances:				
	F	R	Rt	L
Inches (cm)	$\begin{aligned} & 30^{* *} \\ & \left(76^{* *}\right) \end{aligned}$	$\begin{gathered} 1 \\ \text { (3) } \end{gathered}$	$\begin{gathered} 11 \\ (28) \end{gathered}$	$\begin{gathered} 11 \\ \text { (28) } \end{gathered}$

Weight: $85 \mathrm{lb}^{* * *}\left(39 \mathrm{~kg}^{* * *}\right)$
Heat Output: $\quad 525$ BTU/hr ($140 \mathrm{kca} / \mathrm{hr}$)
Airflow: Convection only

Power Requirements:	
kVA 0.17	
Phases	
Locking:	
Plug	H or P\&S, 4723
Connector	H or P\&S, 4730
Receptacle	H or P\&S, 4700 or 4710
Nonlocking:	
Plug	H or P\&S, 5266
Connector	H or P\&S, 5269
Receptacle	H or P'\&S, 5261 or 5262
Power Cord Length	7-1/2 feet (229 cm)
Branch	Branch Max
Circuit	Circuit Cont
Ampacity	Voltage Load (A)
15	115

Environment Operating: $115 \quad 1.5$

Temperature $\quad 50^{\circ}-110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$
 Max Wet Bulb 8\%-80\%

Environment Nonoperating:
Temperature $\quad 50^{\circ}-125^{\circ} \mathrm{F}\left(10^{\circ}-52^{\circ} \mathrm{C}\right)$ Rel Humidity $\quad 8 \%-80 \%$

Notes:

The 3277 is installed on a customer-supplied desk or table Recommended keyboard height (measured at home-row Recommended keyboard height (measured at home-row should not exceed 75 footcandles (810 lumens $/ \mathrm{m}^{2}$)
*See also plan view.
**Keyboard feature adds $8-1 / 2$ " $(22 \mathrm{~cm})$ to the front of display and can be moved up to $30^{\prime \prime}(76 \mathrm{~cm})$ away from lower front of display.
***Keyboard feature adds approximately $10 \mathrm{lb}(5 \mathrm{~kg})$.

3277 DISPLAY STATION INSTALLATION PROCEDURES

General
Carefully inspect the display station for any obvious damage as soon as it arrives on site. Check that all item listed in the bills of material are received. It is extremely important that power-source line voltage is correct and that primary power connections in the display station are correct before power is applied to the unit. A grounded power circuit is required. Do not turn power on until the following checks are performed. The keyboard is packaged in top of shipping carton.

Installation

Check with the customer, and place display station in the location designated by him. If it is necessary to move display station, observe good safety procedures.

DANGER
The 3277 Model 2 Display Station weighs about 90 pounds. Two men are required to remove the unit from the shipping carton. Two men should be used to move this unt. N ane display station must be moved by one and meve them individually. The 3277 Model 2 cannot be separated until it is out of the carton. Using Diagram 5-4, 5-5, and 5-6, remove the upper chassis by following
, procedure listed below.
connect LV cable con
chassis (See \mathbf{Z} on Diagrametor (J 2) between the two If a card reader is iagram 5-4).
prime power box (See 8 on Diagram 5-6).
3. If a selector-pen is attached, remove cable from clip at lower right rear of frame (See $\mathbf{9}$ on Diagram 5-5)
4. Release the two clamps at sides of chassis that hold upper chassis to base chassis (See 10 on Diagram 5-5 and ITI on Diagram 5-6).
5. Release spring catches on rear guides, and slide upper chassis slightly to front to disengage the two rear guides (See 12 on Diagram 5-6).
6. Lift upper chassis off base chassis, and place upper chassis on a flat surface

Line Voltage Check
Domestic (USA) models use 115 V ac ($\pm 10 \%$), $60-\mathrm{Hz}$, single-phase line voltage. No internal adjustments are required for domestic display stations.
World Trade models use $100,110,123.5,220,235 \mathrm{~V}$ ac $50-\mathrm{Hz}$, single-phase, or $100 \mathrm{Vac}, 60-\mathrm{Hz}$ single-phase line block, TB1, agree with the line voltage provided.

Feature Installation
Connect all features supplied with the display station.
Proceed to paragraph if no features are to be attached
Note: Ensure that power is off for all feature installations.
Keyboard Installation

1. Remove front cover
2. Plug keyboard cable connector into keyboard jack. - - - -

Secure cable by attaching Model 1 nylon cable clamp or by hooking Model 2 I/O cable retainer. (Model 2 cable retainer may have to be repositioned to maintain a snug connector fit.)
4. Connect cable ground strap to the chassis.

Selector Light-Pen Installation

1. Place pen holder next to display station.
2. Insert pen in pen holder.

Note: Packaged Light Pen may have its tip switch on. This will stop other normal machine operations. Check that the tip switch is off.

Operator Identification Card Reader Installation

1. Remove front cover.
2. Plug reader cable connector into reader jack. - - ——
3. Secure cable by attaching nylon cable clamp (Model 1)
or by hooking the cable retainer (Model 2).
4. Connect cable ground strap to chassis.

Installation Locations

_ $\left\{\begin{array}{l}\text { For Model } 1 \text { see } 11 \text { on Diagram 5-1 } \\ \text { F }\end{array}\right.$ For Model 1 see 1 on Diagram 5-1.
For Model 2 see 2 on Diagram 5-4. f For Model 1 see $\mathbf{3}$ on Diagram 5-1 For Model 2 see 4 on Diagram 5-4. For Model 1 see 5 on Diagram 5-1. For Model 2 see 6 on Diagram 5-4.

Prepower-On Checks

1. Remove front cover if it was not previously removed to install feature(s).
. Plug line cord into display station chassis jack. Secure cord by attaching cord clamp (Model 2 only).
. Open side covers.
2. Reseat all logic cards and cable connections to board.

Power-On Checks

1. Plug line cord into power source.
2. Perform the display station operational test described below. Perform the steps in sequence for most
a. Turn power on by pulling out the OFF/PUSH switch. Within 15 seconds, cursor should appear on screen at character location $\mathbf{0}$. No indicators should be lighted.
b. Press \rightarrow (Right) key, and hold it down. Cursor should move through each character location in the row. After reaching last character location, cursor should appear in first character location in second row.
c. Exercise \uparrow (UP), \downarrow (Down), \leftarrow (New Line), and \leftarrow Left) cursor move keys. Observe that each key performs its operation correctly
d. Press several alphameric keys in succession. The corresponding characters should display, and cursor should move one space as each new character appears.
e. Key in a complete row of characters. When last character of row enters, cursor should appear in first character position of next row.
f. Press an alphameric key. Character should appear in cursor location and cirsor should advance one space.
g. Exercise both upper and lower shift of all keys. If the Data Analysis - APL Feature is installed, exercise upper and lower with APL turned off; then upper, lower, and alternate shift, with APL turned on. Observe display screen as each key is pressed, checking for proper operation.
h. Exercise Typamatic function of each Typamatic key.
i. Move cursor into last row, and key in several alphameric characters.
j. Backspace cursor near middle of group of characters just entered.
k. Press INS MODE key. INSERT MODE indicator should light.
I. Press Space bar enough times to cause characters at right of cursor to move to end of row and wrap around to first row.
m. Press RESET key. INSERT MODE indicator should go out.
n. Delete several characters using DEL key. Char acter in cursor position should disappear, and characters in same row at right of cursor should move left one character position each time DEL is pressed.
o. Move cursor to middle of a row of characters.
p. Press ERASE EOF key. Characters from cursor position through last position on screen should erase, and cursor should not move.
q. Press ERASE INPUT key. All characters should erase, and cursor should move to location 0 .
r. Enter several alphameric characters as in step f
s. If display station has the security keylock feature, turn key off. Characters should dis appear from screen, INPUT INHIBITED should
light, and cursor should remain displayed.
t. Turn security key on. Original data should reappear on screen, and INPUT INHIBITED should go out.
u. Press CLEAR key. All characters should dis appear from screen, and cursor should reappea in character location 0 , INPUT INHIBITED should light, press RESET key to turn INPUT INHIBITED off.
v. Press Backspace key three times.
w. Press any character key. Audible alarm should
sound when key is pressed if installed.
x. If an operator identification card reader is attached, proceed to step aa. Turn power off,
and reconnect control unit signal cable if a card reader is not attached.
y. Press CLEAR key, RESET key, then enter several alphameric characters as in step f.
z. Return cursor to location 0 using \leftarrow (Left) key
aa. Read in card reader test card (PN 2143816).
bb. Observe that INPUT INHIBITED indicator comes on, cursor moves 40 spaces, and keyed-in data disappears from screen as card passes through reader.
cc. If cursor does not move 40 spaces, read-in operation was unsuccessful.
dd.
3. Refer to IBM 3277 Display Station Models 1 and 2 Troubleshooting Guide, SY27-2314, Section (Symptom Index) if a malfunction occurs during
power-on check procedure
Refer to paragraph 5.2 of Section 5 in the IBM 3277
Display Station Models 1 and 2 Troube Guide, SY27-2314, if any adjustments are required during power-on check.
4. Connect control unit signal cable.
5. Replace all covers previously removed except front cover.

Hexadecimal Address Label

1. On front cover, locate a point 3 inches up from bottom edge and $1 / 2$ inch in from left edge.
2. Attach label to cover, parallel to bottom edge, with lower-left corner of label on the point located in step 1 . 3. Replace front cover.

Photographs and drawings are provided in this section to aid in locating field-replaceable units, adjustable components, and voltage measurement points.

Diagram 5-1. Model 1 Locations, Front View

Diagram 5-2. Model 1 Locations, Left-Side View

Diagram 5-2.1. Location of +5 V and +34 V Fuses (Model 1)

Diagram 5-4. Model 2 Locations, Front View

Diagram 5-5. Model 2 Locations, Right-Side View

Diagram 5-6. Model 2 Locations, Left-Side View

NOTE: This view shows the area to the right and behind the keylock, shown in Diagram 5-5.

3284 PRINTER MODELS 1, 2, AND 3

3286 PRINTER MODELS 1, 2, AND

Plan View (Template GX22-7018)

Inches	Cenimeters	Inches	Cenimeters
1/2	,	${ }_{15}^{8}$	${ }_{39}^{20}$
$\stackrel{2}{2-3 / 4}$	${ }_{5}^{5}$	- 1	${ }_{43}^{39}$
-	8	coiche	${ }_{6}^{67}$
5		${ }_{\substack{27-3 / 4 \\ 30}}^{2}$	
$\stackrel{9}{7}$	18	35	${ }_{89}^{78}$

Specifications

Dimensions:

	F	S	H	
Inches (cm)	$\begin{gathered} 26-3 / 8 \\ (67) \end{gathered}$	$\begin{gathered} 15-1 / 4 \\ (39) \end{gathered}$	$\begin{gathered} 37-3 / 4 \\ (96) \end{gathered}$	
Service Clearances:				
	F	R	Rt	L
Inches (cm)	$\begin{gathered} 30 \\ (76) \end{gathered}$	$\begin{aligned} & 30^{*} \\ & \left(76^{*}\right) \end{aligned}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$
Weight:	$135 \mathrm{lb}(62 \mathrm{~kg})$			

Heat Output: $\quad 770 \mathrm{BTU} / \mathrm{hr}(200 \mathrm{kca} / \mathrm{hr})$
Airflow: Convection only
Power Requirements:
$\begin{array}{ll}\text { kVA } & 0.26 \\ \text { Phases } & 1\end{array}$
Locking:
Plug
Connector
$\begin{array}{ll}\text { Connector } & \text { H or P\&S, 4723 } \\ \text { Receptacle } & \text { Hor P\&S 4730 }\end{array}$
$\begin{array}{ll}\text { Receptacle } & \text { H or P\&S, 4730 } \\ \text { H or P\&S, 4700 }\end{array}$
or P\&S, 4700 or 4710
Connect
Connector
Receptacle
Hor P\&S, 526
Hor P\&S, 5269 or P\&S, 5261 or 5262

Branch	Branch	Max
Circuit	Circuit	Cont
Ampacity	Voltage	Load (A)
15	115	22

Environment Operating
Temperature $\quad 50^{\circ}-110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$
Rel Humidity $8 \%-80 \%$
Max Wet Bulb $\quad 85^{\circ} \mathrm{F}\left(29^{\circ} \mathrm{C}\right.$

Environment Nonoperating:
Temperature $\quad 50^{\circ}-125^{\circ} \mathrm{F}\left(10^{\circ}-52^{\circ} \mathrm{C}\right.$
Rel Humidity $\quad 8 \%-80 \%$
Max Wet Bulb $\quad 85^{\circ} \mathrm{F}\left(29^{\circ} \mathrm{C}\right)$
Notes.
A 6 -inch $(15-\mathrm{cm})$ clearance is recommended to form stand (SF \#4450), if used.

TION PROCEDURES

Preliminary Procedures

1. Ensure that all shipping material, including the four (4) shipping bolts, is removed as per shipping instructions.
2. Reseat all logic cards and cable connectors to the logic board, and check for proper placement of jumper on G2 and H2 cards (see Sheets 2 and 3).
3. Install the ribbon cassette as per threading diagram mounted on the inside right corner of internal safety cover.
4. Check that the four printer-to-base cables are tightly connected.
5. Remove the top printer cover.
6. Manually move the print-head back and forth while listening for the sound of the transducers rubbing on the emitter wheel. If a rubbing noise is heard, refer to the transducer adjustment procedure (Section 6, par. 6.5.2).

Check that the CE motor switch, located in right rear of printer, is turned on
paper forms through paper guide sufficiently to actuate the forms interlock switch
9. Check that the source voltage provided by the cus. tomer agrees with printer wiring.
a. Domestic (USA) models: 115 V ac $(\pm 10 \%), 60-\mathrm{Hz}$, single-phase line voltage is used. No internal adjustments are required for domestic (USA) printers.
b. World Trade models: 100, 110, 123.5, 200, 220, 235 V ac $(\pm 10 \%$), $50-\mathrm{Hz}$, single-phase; or 100 V ac $(\pm 10 \%), 60-\mathrm{Hz}$, single-phase line voltage is used. For $50-\mathrm{Hz}$ models only, check that the connections on ferro terminal block TB1 agree with the line voltage provided. If it is necessary to change taps on the ferro, update the voltage decal.
10. Plug in the ac power cord to convenience outlet.
11. Turn on the main power switch, located at left-front of printer, and check that the printer performs a power-n-reset (POR) operation. Refer to Section 4 (4.2.1).*

Print Right Transducer Check

1. Following the POR operation, check that the point of the transducer labeled "print right" is positioned exactly opposite the center scribe line on the transducer emitter wheel. If it is correctly positioned, perform the steps in next paragraph. If it is not positioned correctly, refer to Section $6(6.5 .3)^{*}$ for the proper adjustment procedure.
2. Jumper slowdown switch to ground (point A1G2-B06 to A1G2D08)

Forward Transducer Check
The forward transducer is checked by scoping point A1B2-J12

1. Turn the main power switch on and off to effect a POR operation. Repeat this step in order to observe pulse width.
2. The correct pulse width for the 3284 Printer is $2.0 \mathrm{~ms} \pm$ 80 usec.
3. The correct pulse width for the 3286 Printer is $1.2 \mathrm{~ms} \pm$ 50 usec.
Note: The proper pulse width diagram relating to steps 2 and 3 above is on Diagram 6-1.

Reverse Transducer Check

The reverse transducer is checked by scoping point A1B2-D12.

1. Turn the main power switch on and off to effect a POR operation. Repeat this step in order to observe pulse width.
2. The correct pulse width for the 3284 Printer is $2.0 \mathrm{~ms} \pm$ 80 usec.
3. The correct pulse width for the 3286 Printer is $1.2 \mathrm{~ms} \pm$ 50 usec.

Notes:
(1) The proper pulse width diagram relating to steps 2 and 3 above is on Diagram 6-1
(2) If either pulse widths obtained is wrong, the printer will operate at the wrong speed as determined by the correct pulse.
(3) After the transducer check procedure is completed, be sure to remove the slowdown switch jumper. If the jumper is not removed, the printer will never perform a highspeed carriage return.

Offline Check Procedure

After it has been determined that the POR sequence is operating correctly (Section 4, par. 4.2.1),* an offline check procedure must be performed.

1. Set the CE switch to the PRINT PATTERN position
2. Set MODE switch to the MODE 1 position.
3. Activate the START PRINT switch.
4. Observe that alphameric test printout is similar to that in Diags. 6-7 and 6-8. Printout will consist of 480 or 1920 characters depending upon printer model.
5. Set MODE switch to the MODE 2 positio
6. Activate the START PRINT switch
. Dial 1 in wil
7. If the test printouts observed are corr
8. If the test printouts observed are correct, proceed to the Online Check procedure below

Offline Check Procedure (Data Analysis - APL - Feature) After it has been determined that the POR sequence is operating correctly (Section 4, par. 4.2.1), an offline check procedure must be performed

1. Set the CE switch to the PRINT PATTERN position. 2. Set MODE switch to the MODE 1 position.
2. Set the External Print Test Switch to the ON position.
3. Activate the START PRINT switch.
4. Observe that alphameric test printout is similar to that shown in Diagram 6-10.2.
5. Set External Print Test Switch to the OFF position; then repeat steps 4 and 5. (See Diag. 6-10.1.)
6. Set MODE switch to the MODE 2 position.
7. Activate the START PRINT switch.
8. Observe that All H test printout is similar to that shown in Diagram 6-10.
9. If the test printouts observed are correct, proceed to the Online Check procedure below,

Online Check Procedure

1. Reinstall the printer top cover
2. Install Glare Shield as indicated in diagram
3. Install Paper Forms Guide as indicated in diagram.
4. Connect a coax cable from the interface panel (refer to Diag. 6-5 for location) on the printer to the proper ddress connector on the interface panel of the 3271 or 3272 Control Unit,
5. To find out what online programs (diagnostics) to run and how to use them, refer to the 3271 or 3272 Troubleshooting Guide.
6. Do not interchange top covers between printers.
7. Ensure that cover interlock switch is operating correctly. Refer to pages 6.51^{*} and $5 \cdot 31^{*}$ for adjustment proce dures.

These references may be found in the IBM 3284/3286 Printer Models 1 and 2 Troubleshooting Guide SY27-2315

Time／Division： 0.2 Millisecond
Volts／Division： 2 Volt
Mode Channel： 1
Sync：Internal Coupling DC，Slope Plus
Source：Internal Channel 1 Only

ーーー 3286

3284

Time／Division：0．5 Millisecond
Volts／Division： 2 Volts
Mode Channel： 1
Sync：Internal Coupling DC，Slope Plus Source：Internal Channel 1 Only
Diagram 6－1．POR Pulse Waveshapes

Correct Orientation of Program Pin Jumper on Counter and

 Compare Card（H2）The counter and compare card mounted in logic gate location H 2 requires a programmable pin－jumper．The manner in which the pin－jumper is mounted on the card， （shown in the diagrams below）is dependent upon the printer model in use．
Note：Whenever card H2 is replaced，the pin－jumper connection must be checked to ensure that it is properly mounted for the printer model in use．
caution
Jumper pins can bend or break，or jumpers can be pulled off pins．Exercise care when inserting or removin pins．Exercise care when inserting or

For IBM 3284／86 Printers，Models 2

For IBM 3284／86 Printers，Models 1

 Control Card (G2)
The motor control card (G2) contains most of the logic for the control of the dc stepper motor which drives the screw to run the print-head carrier in forward and reverse directions. Since the motor control card is used in both the 3284 and 3286 printers, there is a programmable pin 3284 and 3286 printers, there is a programmable pin jumper on the card which determines whether the card will
function as a 3284 stepper motor control or a 3286 stepper function as a 3284 stepper motor control or a 3286 stepper
motor control. The proper programming is shown below.

CAUTION
Jumper pins can bend or break, or jumpers can be pulled off pins. Exercise care when inserting or removing jumpered cards or cards next to jumpered cards.

For IBM 3284 Printer, Models 1 and 2
The outer pins must be jumpered together:

For IBM 3286 Printer, Models 1 and 2
The center pin must be jumpered to the pin (1) farthest from the plug side of the card:

Diagram 6-2. Printer, Top Front View

Diagram 6-3. Printer, Left Side View

Diagram 6-4. Printer, Rear View

Diagram 6-6. Power Supply

 x

$$
\begin{array}{llllll}
s u W Y & \% & 2466 & 0 \\
S U W & \% & 2466 & 0
\end{array}
$$

Diagram 6-7. IBM 3284/86 Printers, Model 1, Aiphameric Pattern Printout

 XXCXEFXXIVX XXUXJKXMXXFQXX

 BDFFH:く

KMOQ! SUWY \% $\% \quad 266$: B D F B D

 ABCDEFGFT:

 \times
$\left.\begin{array}{llllllllll}S & U & W & Y & \% & 2 & 4 & 6 & 6 & : \\ \hline\end{array}\right]$

Diagram 6-8. IBM 3284/86 Printers, Model 2, Alphameric Pattern Printou

保 HHHHHHHHHHHHHHHHH

Diagram 6-9. IBM 3284/86 Printers, Model 1, "All H" Pattern Printout

 HH
 HhM 1 거․

Note: The External Print Test Switch (Data Analysis - APL Feature)
must be off, or no characters will be printed.
Diagram 6-10. IBM 3284/86 Printers, Model 2, "All H" Pattern Printout

\begin{abstract}

 ablerghin

 XXCXEFXXIX XXHX KXMXXF abcdefghit $\leq L \rightarrow \square j k$ hmoptrex＊o；
 X

stlu why nv	$\square \Delta \omega \times \geqslant$
stalu why nv．	เص凶 x －
stulu why nva．	ใ \triangle（1）
stulu wiy nv．s．	ใヵめ x －
stu wiyy nvi	$\stackrel{1}{*} \omega$

Diagram 6－10．1．IBM 3284／3286 Printers，Model 2，Data Analysis－APL Feature Printout bith External Print Test Switch OFF
 ABCDEFGHIA

 L．＂L
 ABGEEGHÍ

 ．

S⿴囗	$\underline{W} \pm \underline{y}$	$2 \triangle 4$		$n \cdots$
s日u	W¢¢ ${ }^{\text {chr }}$	$2{ }^{2}$		\cdots
S⿴囗		$2{ }^{2}$		$\mathrm{n}^{\prime \prime \prime}$
Stu	W上Y ${ }^{\text {Wrar }}$	$2{ }^{2}$		$n \cdots$
S⿴囗		$2{ }^{4}$		$\mathrm{n} \cdots$
		$2 \triangle^{4}$		

3284 PRINTER MODEL 3 INSTALLATION PROCEDURES

Preliminary Procedures

1. Ensure that all shipping material, including the four (4) shipping bolts, is removed as per shipping instructions.
2. Reseat all logic cards and cable connectors to the logic board.
3. Install the ribbon cassette as per threading diagram mounted on the inside right corner of internal safety cover.
4. Check that the four printer-to-base cables are tightly connected.
5. Remove the top printer cover.
6. Manually move the print-head back and forth while stening for the sound of the transducers rubbing on e trasducer adiustment procedure (Section 6, par 5.21*
6.5.2).
7. Check that the CE motor switch, located in right rear of printer, is turned on.
8. Thread paper forms through paper guide sufficiently to actuate the forms interlock switch.
. Check that the source voltage provided by the customagrees with printer wiring.
. Domestic (USA) models: 115 V ac $(\pm 10 \%), 60-\mathrm{Hz}$, single-phase line voltage is used. No internal adjustments are required for domestic (USA) printers.
b. World Trade models: $100,110,123.5,200,220$, 235 V ac $(\pm 10 \%), 50 \cdot \mathrm{~Hz}$, single-phase; or 100 V ac $\pm 10 \%), 60-\mathrm{Hz}$, single-phase line voltage is used. For $50 \cdot \mathrm{~Hz}$ models only, check that the connections on ferro terminal block, TB1, agree with the line on the ferro, update the voltage decal
9. Plug the interface cable (curled up in the base of the printer) into the space provided in the lower left corner of the 3275 unit. This cable must be plugged in and power must be turned on in the 3275 unit before the 3284-3 Printer can be activated
10. Plug in the ac power cord to convenience outlet
11. Turn on the main power switch, located at left-front of printer, and check that the printer performs a power-on-reset (POR) operation. Refer to Section 4 (4.2.1).*

Print Right Transducer Check

1. Following the POR operation, check that the point of the transducer labeled "print right" is positioned exactly opposite the center scribe line on the transducer emitter wheel. If it is correctly positioned, perform the steps in next paragraph. If it is not positioned correctly, refer to Section $6(6.5 .3)^{*}$ for the proper adjustment procedure.
2. Jumper slowdown switch to ground (point A1E2-B06 to A1E2D08).

Forward Transducer Chec

The forward transducer is checked by scoping point A1B2-J12.

1. Turn the main power switch on and off to effect a POR width
2. The correct pulse width for the 3284 Printer is $2.0 \mathrm{~ms}=$ 80 usec.

Note: The proper pulse width diagram relating to step 2 above is on Diag. 6-11.

Reverse Transducer Check

The reverse transducer is checked by scoping poin A1B2-D12.

1. Turn the main power switch on and off to effect a POR operation. Repeat this step in order to observe pulse width.
The correct pulse width for the 3284 Printer is 2.0 ms 80 usec.

Notes:
(1) The proper pulse width diagram relating to step 2 above is on Diag. 6-11.
(2) If the pulse width obtained is wrong, the printer will operate at the wrong speed as determined by the incorrect pulse.
(3) After the transducer check procedure is completed, be sure to remove the slowdown switch jumper. If the jumper is not removed, the printer will never perform a high-speed carriage return.

Offline Check Procedure

After it has been determined that the POR sequence is operating correctly (Section 4, par. 4.2.1),* an offline heck procedure must be performed.

1. Set the CE switch to the PRINT PATTERN position
2. Set MODE switch to the MODE 1 po
3. Activate the START PRINT switch.
. Observe in Diag 6-17. Printout will is similar to that hown in Diag. 6.1. Pintout will consist of 480 or 5. Set MODE switch to the MODE 2 position.
4. Activate the START PRINT switch.
5. Observe that All H test printout is similar to that shown in Diag. 6-18. Printout will consist of 480 or 1920 characters depending upon the printer model.
6. If the test printouts observed are correct, proceed to the Online Check procedure below.

ine Check Procedure

1. Reinstall the printer top cover
2. Install Glare Shield as indicated in diagram,
3. Install Paper Forms Guide as indicated in diagram.
4. To find out what online programs (diagnostics) to run and how to use them, refer to the 3275 Troubleshooting Guide.
5. Do not interchange top covers between printers.
6. Ensure that cover interlock switch is operating correctly. (Refer to pages 5-29 and 6-51 for adjustment.)*
*3284 Printer Model 3 Troubleshooting Guide, Form No. SY27-2316

Time/Division : 0.5 Millisecond
Volts/Division: 2 Volts
Mode Channel : 1
Sync : Internal Coupling DC, Slope Plus
Source : Internal Channel 1 Only
Diagram 6-11. POR Pulse Waveshape

The motor control card (E2) contains most of the logic for the control of the dc stepper motor which drives the screw to run the print-head carrier in forward and reverse 3284 and the 3286 pints, there is a prefrmate pin 3284 and the 3286 phich, the is a progra in function as a 3284 stepper-motor control or a 3286 stepper-motor control. The proper programming is shown below.

For a 3284-3 Printer
The pins must be jumpered as shown below:

Diagram 6-12. Program Pin Jumper Connections - Motor Control Card (E2)

Diagram 6-13. Printer, Top Front View

Diagram 6-14. Printer, Left Side View

Diagram 6-15. Printer, Rear View

Diagram 6-16. Power and Signal Cable Distribution

(Power Supply)

CE Test Switch Printouts

Note. First character position may vary depending
upon last character printed in previous printout.

 ABCDEFGHIt, 〈i+1\&JKLMNOFQR! $\ddagger ⿻$); ABCDEEGHIT
 ABCDEFGHT
 \times

Diagram 6-17. 3284 Model 3, Alphameric Pattern Test Printout

 H1
 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH1HHHHHHWHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

Diagram 6-18. 3284 Model 3, All H Pattern Test Printout

3288 LINE PRINTER MODEL 2 PLAN VIEW

SPECIFICATIONS

Dimensions:			
	F	S	H
Inches	27	$21-1 / 4$	$41-5 / 8$
$(\mathrm{~cm})$	69	55	106

Service Clearances:

	F	R	Rt	L
Inches	30	24	6	6
$(\mathrm{~cm})$	76	61	15	15
Weight:	$280 \mathrm{lb}(127 \mathrm{~kg})$			

Heat Output: $\quad 1926$ BTU/hr ($485 \mathrm{kcal} / \mathrm{hr}$)
Airflow: $\quad 39 \mathrm{cfm}\left(2 \mathrm{~m}^{3} / \mathrm{min}\right)$

Inches	Centimeters
1/16	0,1588
$1 / 4$	0,6350
${ }_{2}^{1-1 / 4}$	
3	
${ }_{7-1 / 2}$	15 19
8-1/4	21
${ }^{8-1 / 2}$	22
-	27 32
18-1/2	47
${ }_{21-1 / 4}^{21 / 4}$	$\begin{array}{r}53 \\ 54 \\ \hline\end{array}$
${ }_{24}^{21 / 1 / 4}$	61
${ }^{27}$	${ }^{69}$
33-1/2	85
41-5/8	10

Power Requirements:
kVA 0.60
Phase 1
Plug H or P\&S, 5266
H or P\&S, 5269
Receptacle H or P\&S, 5261 or 5262
Locking:
Plug H or P\&S, 4723
Connector H or P\&S, 4730
Receptacle H or P\&S, 4700 or 4710
Power Cord Style
Power Cord Length $\quad 9$ feet (274 cm)

Environment Operating:

$\begin{array}{ll}\text { Temperature } & 50^{\circ} \text { to } 105^{\circ} \mathrm{F}\left(10.0^{\circ} \text { to } 40.6^{\circ} \mathrm{C}\right) \\ \text { Rel Humidity } & 8 \% \text { to } 86 \%\end{array}$ Rel Humidity 8% to 80% Max Wet Bulb $\quad 80^{\circ} \mathrm{F}\left(26.7^{\circ} \mathrm{C}\right)$

Environment Nonoperating:

Temperature $\quad 50^{\circ}$ to $125^{\circ} \mathrm{F}\left(10.0^{\circ}\right.$ to $\left.51.7^{\circ} \mathrm{C}\right)$ Rel Humidity $\quad 8 \%$ to 80% Max Wet Bulb $\quad 80^{\circ} \mathrm{F}\left(26.7^{\circ} \mathrm{C}\right)$

3288 LINE PRINTER MODEL 2. INSTALLATION PROCEDURE

Preliminary Procedures

1. Ensure that all shipping material is removed as per shipping instructions.
2. Remove upper cover assemblies as follows: (Diagram 7-1)
a. Pull out two knobs $\mathbf{1}$ and open cover $\mathbf{2}$.
b. Remove latch holding screws $\mathbf{3}$. Pull latche Remove latch holding screws
4 and lift top section from unit
c. Lift out back section 5
d. Remove four screws 6
e. Lift front section 7
3. Lower the stop nuts on the print stop screw (Diagram 7-2). (These nuts hold the print unit steady during Pull forw
4. Pull forward on the print unit release lever and open the print unit (Diagram 7-1). The print unit will drop down.
5. Adjust the upper stop nut upward until it touches the bottom of the print unit, then continue to turn th stop nut $3 / 4 \pm 1 / 4$ turn (Diagram 7-2). Tighten the lower stop nut against the upper stop nut.
6. Open front cover by pulling out at the bottom edge of the cover and lifting upward. Check for damage and loose parts. Check seating of all cards and cable connectors.

Diagram 7-1. Removal of Top Cover Assemblies

Diagram 7-2. 3288 Print Unit Stop Screw and Stop Nuts
7. Install the type belt as follows (Diagram 7-3)

Pull the type belt release lever 1 toward the froll thpe bit
b. Install the type belt 2 evenly around the top of the pulleys 3. Make sure that the type top o the pulleys 3 . Make sure that the type belt is positioned platen 6.
Using the hole
Using the hole 4 in the pulley 3 , turn the pulley counterclockwise until the belt moves down to positioning rollers 7 located under the

Verify that the print belt does not come in contact with the transducer 5 , as the belt is turned. The transducer will be damaged if the timing marks on the print belt are drawn over the head of the transducer. If transducer adjustment is necessary, refer to the 3288 Troubleshooting Guide.
8. Install the ribbon as follows (Diagram 7-4):

Open the ribbon-drive-release lever 9. . Raise both ribbon guides 1 , 4
b. Lay the cassette 7 down on the printer so that the left end is about 1 inch (25.4 mm) from the ribbon drive rollers 8 . The right end of the cassette will cover the ribbon cassette release
button 6. Pull about 6 inches (15.24 cm) of ibbon out of the left end of the cassette, place the ibbon between the ribbon drive rollers, press fithe cassette, and slide the cassette to the eft until it latches.
c. From the left end of the cassette, feed ribbon through the drive rollers and around the left ribbon guide 1.
d. Pull about 12 inches (30.5 cm) of ribbon out of the right end of the cassette. Start feeding ribbon from the left ribbon guide 1 around the right ribbon guide 4
e. Take up any ribbon slack by turning the print belt pulley 3 . When the ribbon is taut, there should be a one-half-turn twist 5 between the cassette and the right ribbon guide.
f. Lower the ribbon guides
g. Turn the pulley again to feed ribbon down between the type belt and the ribbon shield $=2$. Continue turning the pulley Cose feeds correctly.
h. Close the print unit by raising the front edge of the print unit, or by pushing the print unit release lever toward the rear of the unit

Diagram 7-3. 3288 Type Belt Installation

Diagram 7-4. 3288 Ribbon Installation
9. Thread paper forms through unit as follows
a. Pull the print unit release lever forward to unlatch the print unit and open the forms path (Diagram 7-5).
b. Open the forms tractor covers 2 on both side of the paper path.
c. From the rear of the printer, slide the rear forms guides 10 apart and feed about 2 feet of forms forms pass under the end-of-forms switch 11 located on the right side of the forms chute or th printer will not print.
d. Pull the forms up through the printer to the top of the tractor pins. If necessary, adjust the forms by squeezing the tractor release levers (Diagram 7-5) and sliding the tractors left or right.
e. Align holes in sides of paper to fit the pins on the forms tractors.
f. Engage paper on tractor pins and close tractor covers 2
g. The forms may now be positioned left or right lif needed) by squeezing both tractor release levers 3 at the same time and moving them left or right to the desired position as indicated on the forms alignment scale 4 . Release the levers to lock the tractors and forms in place
h. Close the print unit by pushing the print unit release lever 1 toward the rear of the printer. Turn the forms advance knobs 5 or 6 to
make sure the forms feed properly. Open the upper paper clamp -74 and feed forms through the paper clamp 7 and feed forms through th leading edge of the upper paper clamp. Set the forms thickness control 8 to match the forms used).
k. From the rear of the printer (Diagram 7-6), slide the rear forms guides 10 in to just touch the edges of the forms.
10. Replace the upper cover assemblies by reversing the ocedure in step 2 (Diagram 7-1). Install the bustle 2 by resting it on the supporting shoulder screws
11. Check that 115 V ac is available at the customer's outlet.
12. Check that the power ON/OFF switch is OFF
13. Insert the 3288 power plug in the customer's outlet.

Offline Check Procedure

1. Turn power on and raise the top cover
2. Set the CE switch (13 , Diagram 7-5) to the PRINT PAT position. Verify that the print belt is running, the Ready indicator is lit (Diagram 7-1), and the Ops Chk indicator is flashing. If the Ready indicator is off, check that:
a. The cover (2, Diagram 7-1) is closed.
b. Paper is installed correctly and is not jammed.
c. Print unit is closed.

If Ready remains off, refer to the 3288 Troubleshooting Guide.
3. Set the MODE switch to the MODE 1 position
4. Set the VFC switches (12 , Diagram 7-5) to the . Set the VFC switches (12 ,
5. Press the Carriage Restore switch and check that the paper has advanced correctly.
6. Activate the Start Test switch.
7. Verify that the alphameric test printout is identical to that shown in Diagram 7-7.
8. Set the MODE switch to the MODE 2 position, and press Start Test.
9. Verify that the "All H" test printout is identical to that shown in Diagram 7-8.
10. If the test printouts observed are correct, proceed to the "Online Check Procedure" below. If they are incorrect, refer to the 3288 Troubleshooting Guide.

Online Check Procedure

1. Open the rear base cover by pulling out at the bottom edge of the cover and lifting upward.
2. Feed the coax signal cable from the floor hole through the cutout in the base of the unit and plug the cable into the connector located on the interface panel behind the logic gate.
3. Connect the other end of the coax cable to the prope address connector on the interface panel of the 3271 o 272 control uni
4. Place the CE switch in the ON LN position. The Ready indicator should light and Ops Chk should be off. If Ops "Offline Check Procedure". If Ops Chk remains on, refer to the 3288 Troubleshooting Guide
To find out what online progid and how to use them, refer to the 3271 or 3272 Troubleshooting Guide.

Note: When programs have been completed, the Sys Av indicator should remain on.

Diagram 7-5. 3288 Print Controls

 XXCXEFXXIRX<XXIXJKXMXXPQXX\$XI; XX/SXUXXXYXX,X_>XOXX3X56XX9:X@XX" XXCXEFX XXCXEFX

 XXCXEFXXIRX XXX|XJKXMXXPQXX\$X); XX/SXUXXXYXX,X_PXOXX3X56XX9:XAXX" XXCXEFX XXCXEFX

 XXCXEFXXI EX<XXIXJKXMXXPQXX\$X1;XX/SXUXXXYXX,X_>XOXX3X56XX9:X®XX" XXCXEFX XXCXEFX

 BOFHRく

K M O Q ! : S U W Y : \% 2468 : 2 $A B C D E F G ~ A B C D E F G$
$B D F B D F$

 BXCXEFXXIQX<x

K M O 日 : * S U W Y : \%
$B D F B D F$ XXCXEFKI
 (Note)

S	U	W	Y	$\%$		2	4	6	8	$:$
S	U	W	Y	0	2	4	6	8	$:$	a
S	U	W	Y	$\%$	2	4	6	8	$:$	a
S	U	W	Y	$\%$	2	4	6	8	$:$	a
S	W	Y	$\%$	2	4	6	8	$:$	a	
S	U	W	Y	$\%$	2	4	6	8	$:$	a

Note: The additional line with an " X " indicates that the X Error Print feature is installed on the 3288 .
When the X Error Print feature is not installed, the X does not appear, and the remaining lines in the
printout are moved up one line position.
Diagram 7-7. 3288 Printer Model 2 Alphameric Pattern Printout

国边

 МНН偣
堷

信为

国

Diagram 7－8． 3288 Printer Model 2 ＂All H＂Pattern Printout

$\xrightarrow{\text { Top View }}$

front vien

Dimensions:			
	Front	Side	Height
Inches	17	22	6
Centimeters	43,2	55,9	15,3

Service Clearances (mounted flat or in racks):

				Above (mounted in
	Right	Left	Rear	standard racks)
Inches	12	12	8	8
Centimeters	30,5	30,5	20,4	20,4

Weight: $\quad 50 \mathrm{lbs} ;(22,68 \mathrm{~kg})$
Heat Output: 185 Btu/hr ($46.6 \mathrm{kcal} / \mathrm{hr}$)
Air Flow: Natural convection only. A clearance of at east 2 inches ($5,08 \mathrm{~cm}$) is required at the sides and at the rear, for cooling.

Environment:			
	Temperature (dry bulb)	Temperature (wet bulb)	Humidity
Power On	$\begin{aligned} & 50^{\circ}-110^{\circ} \mathrm{F} \\ & \left(10^{\circ}-43.3^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 85^{\circ} \mathrm{F}\left(29.4^{\circ} \mathrm{C}\right) \\ & \text { max. } \end{aligned}$	8\%-80\%
Power Off	$\begin{aligned} & 50^{\circ}-125^{\circ} \mathrm{F} \\ & \left(10^{\circ}-51.6^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 85^{\circ} \mathrm{F}\left(29.4^{\circ} \mathrm{C}\right) \\ & \max . \end{aligned}$	8\%-80\%
Shipment	$\begin{aligned} & -40^{\circ} 140^{\circ} \mathrm{F} \\ & \left(-40^{\circ}-60^{\circ} \mathrm{C}\right) \end{aligned}$		5\%-100\% *

Power Requirements:		
	60 Hz	50 Hz
Voits	$100,115,200$,	$100,110,123.5$,
	208, or 230	200,220, or 235
kVA	0.06	0.06
Phase	1	1
Branch Circuit (amperes)	15	15

Nominal current (amperes): 0.67 at 115 V
Power cord length: 8 ft . $(2,432 \mathrm{~m})$ (Power cord only in World Trade countries, "skinned and tinned")

Power Cord (World Trade):
3 AWG No. 18 conductors, 0.04 inches $(0.1 \mathrm{~cm})$ in diameter
0.374 inches $(1.0 \mathrm{~cm})$ outside diameter of the cable

Power Cord Plug (USA only)

	Nonlocking	Locking
	115 208/230	115 208/230
Volts	52665666	47204771
Plug		
Connector (in-line)	52695669	47304780
(single) Receptacle (duplex)	56615661	47104760
	52625662	47004750

Note: All connectors are Hubbell or Pass \& Seymour (or equivalent) except 5666 , which is Hubbell (or equivalent)

Cables and Plugs:

Cables from DTE are provided by the DTE supplier. Each modem or ACO has a standard 25 -pin receptacle described by EIA RS-232-C, to accept these cables,
Cables to line access are provided with the 3872 Modem.
deqculed or equivalent manual access arrangement) in USA-termin arrang for pecptace 549A 404 B surent (user mus 493A flush-mounted with the channel supplier)
Dedicated channel is World Trade countries-termin spade lugs.
CBS Data Coupler (or equivalent automatic access arrange ment) in USA (with ACO or AA)-terminates in spade lugs at DAA. Connects to 3872 by the standard 25 -pin connector and receptacle described in EIA RS-232-C.
xclusions:
. The 3872 does not have a convenience outlet.
2. Marginal checking is not provided and should not be mpted
. Rack mounting is the customer's responsibility. Mount ing hardware is not provided with the 3872

Communications Channel Specifications

With dedicated voice-grade channel service, the 3872 Modem requires a communications channel of FCC Tarif 260 -type 3002 channel with C1 conditioning. In addition the characteristics of the required channel include those
specified in the Bell System administrative guidelines, as described in Bell System Data Communications Technical described in Bell System Data Communications Technical Voice Grade Private Line Data Channels (March 1969). Duplex or half-duplex operation and two-wire or four-wire connection must be stipulated; a DAA (data access arrange ment) must be obtained from the channel supplier.

The 3872 is also designed to operate on public switched network channels in the USA and Canada. The character istics of a switched network channel in the USA are described in Bell System Data Communications Technical Reference PUB41005, Data Communications Using The Switched Telecommunications Network (May 1971). Refer to the notice "To The Reader", at the front of this manual, for the address from which these publications may be obtained.

Duplex switched network data channels are available in some parts of the USA and Canada. Consult the communications channel supplier about the availability of this type of channe

With switched network facilities, the DAA (data access arrangement) procured from the common carrier should be telephone set and will ll loop. The DAA wirked with the pronit level. The type II loop is described in the Bell publication PUB41005, referred to above

MODEM CHARACTERISTICS SIGNIFICANT TO THE COMMUNICATIONS CHANNEL SUPPLIER
Input or output impedance-600 ohms
Modulation technique-four-phase differential phase shift keying (DPSK).
Receiver sensitivity threshold - On at $-4 \mathrm{dBm}(+1 \mathrm{dBm})$

$$
\text { Off at }-43 \mathrm{dBm}
$$

Transmit Level-for data, 0 OdBm , variable by strapping in 1 dB steps to -15 dBm ; for answer tone, OdBm, variable by strapping in 1dB steps to -10 dBm .
Note: Transmit level in the USA and Canada for common-carrier dedicated lines is 0 dBm . In other cases, transmit level is specified by the communication facilities supplier. In the USA, switched network transmit level is individually marked on the DAA.

Dialing signals (ACO)-pulse mode; consult the common carrier about applicability.

STRAPPING OPTIONS

Refer to "Modem Characteristics Significant to the Com munications Facilities Supplier" and to "Using Machine

Options" under "Interface", preceding, for strapping options not described here.

Automatic Call Delay - strapping provides options of 20,40 or 60 seconds for an automatically originated call to be answered.
Blind Dial - this strap replaces recognition of dial tone with a delay. Dialing proceeds when the delay times out.
EON/SEP - this strap adds these two dial characters. The
use of EON and SEP is recommended for reliable operation.
Two-wire/Four-wire - adapts the modem to the selected communications channel service. Switched network is wire duplex. Point-to-point dedicated configurations have three options; two-wire half-duplex, four-wire half-duplex, and four-wire duplex. Each succeeding facilities option has a shorter turnaround and a higher throughput.

Physical Installation
The 3875 may be free standing on four rubber feet fitted to its base. The location must give the operator complete access to the control panel. On no account must the cooling be affected by restriction of the air flow into or out of the 3875.

For servicing purposes, access must be provided for cover removal, and to permit the 3875 to be turned on its side. Service clearances are given below.

CAUTION

Under no circumstances must the 3875's be stacked (one on top of the other). However, when 3875 's are placed on shelves the customer must provide space for air circulation and the possibility of moving the unit to meet service clearances. Cables must remain connected

Dimensions			
	Width	Depth	Height
Inches	17	22	6
Centimeters	43	55	15

Service Clearances

Given in Figure 18.
Weight (Maximum with All Features)
$\mathrm{lb} \quad 62$

Heat Dissipation
BTU/hour
1000
K cal/hour 252

External Power Supplies
oltage
$60 \mathrm{~Hz} 100 \mathrm{~V}, 115 \mathrm{~V}, 200 \mathrm{~V}, 208 \mathrm{~V}, 230 \mathrm{~V}$
$50 \mathrm{~Hz} 100 \mathrm{~V}, 110 \mathrm{~V}, 123.5 \mathrm{~V}, 200 \mathrm{~V}, 220 \mathrm{~V}$, and 235 V
Voltage tolerance $\quad \pm 10 \%$
Phase
requency tolerance
Power consumption
$\pm 0.5 \mathrm{~Hz}$
250 VA at the rated voltages
Environmental Requirements
Temperature
Relative humidity
Barometric pressure
50° to $100^{\circ} \mathrm{F}\left(10^{\circ}\right.$ to $\left.44^{\circ} \mathrm{C}\right)$ 8 to 80%
29.9 to 23.1 in. (759,5 to $586,7 \mathrm{~mm}$) of mercury; this is equivalent of from sea level to $7000 \mathrm{ft}(2134 \mathrm{~m})$.

Data Terminal Equipment Connector
On the basic 3875 a 25 -pin female connector (Part 5302663; Diag. 8-2) provides for the connection to the DTE; the data terminal interface cable and its male connector must be provided by the DTE. This cable and its associated driving and terminating circuits must meet CCITT Recommendation V24 and EIA Standard RS 232 C . When the fan out feature is installed, two additional connectors are provided (see Diag. 8- $⿳$)
Mainline Power Cord and Telephone Line Cable
Details of the mainline power cord and the telephone line cables provided with the modem are given in Diag. 8-4.
Leased Line: An FCC* tariff 260 Type 3002 channel with C -2 conditioning or a line with specifications meeting the C-2 conditioning or a line with specifications meeting the
CCITT Recommendation M102 must be provided for leased line operation. These characteristics are to be obtained between any transmitter and its corresponding receiver of a point-to-point or a centralized multipoint network.

Particular conditions (for example, phase jitter or non-linear distortion) that are not specified by the above references are not usually found at high enough levels on

```
Federal Communications Commission
*Federal Communications Commission
```

The positions of the sockets and cables used to connect the 3875 to the DTE and telephone lines are shown in Diag 8-1.

Arrangement Type CDT

Diagram 8-1. Back Panel of 3875 [09086]

Pin Locations

Pin Assignments

Pin No.	Signal Name
Basic Modem	
1	Protective Ground
2	Transmitted Data
3	Received Data
4	Request to Send
5	Ready for Sending (Clear to Send)
6	Data Set Ready
7	Signal Ground
8	Received Line Signal Detector
15	Transmitter Signal Element Timing
17	Receiver Signal Element Timing
18	Test
23	Data Signaling Rate Selector
	With Switched Network Feature
11	Selet SSandby
20	Data Terminal Ready
22	Calling Indicator (Ring Indicator)

Diagram 8-2. Data Terminal Equipment Interface [09087]
such lines to affect the operation of modems at medium speed.

Switched Network: For switched network operation, the customer must obtain from the Common Carrier a Data Coupler Type CBS or a Data Access Arrangement Type CDT. The customer should tell the Common Carrier that this line will be used for transmission at 3600 bps. At this speed, the US Common Carriers will provide special facility to facility to the telephone office (local loop).

Telephone Handset

The telephone handset is not provided with the 3875. Any PTT. or Common Carrier-approved unit is suitable, provided it is of a type in current use with the following characteristics:

- Carbon microphone
- Conventional receiver (permanent magnet)
- Three-wire connection (microphone, receiver and common).
Additional telephone jack plugs may be obtained from IBM.

STRAPPING OPTIONS

To assist in selecting the correct type of modem operation, the various strapping options are given.

nctio	Adjustment Range	Purpose	Remarks
Transmission Level	0 dBm to $\mathbf{- 3 0 ~ d B m}$ in 1 dB steps	Obtains correct transmission level	Maximum permissable output is specified by PTT. Adjustment is made at installation
Resynchronization controlled by modem (RE-SYNC position) or by DTE (NO RE-SYNC position)		To select appropriate resynchronization circuits	RE-SYNC must be used when DTE is incapable of initiating resynchronization by 'request to send' NO RE-SYNC can be used when DTE is capable of initiating resynchronization by 'request to send'
Resynchronization Timeout	360 ms or 1.5s	Provides a timeout in a point-to-point configuration, in which the 'synchro pattern' must be received from the modem at the other end	Timeout is only applicable with RE-SYNC strap 1.5 stimeot is usually used for transmission via satellite
Drop of 'ready for sending'		Informs DTE that resynchronization is taking place in the modems	Only applicable with RE-SYNC strap 'Ready for sending' is off until resynchronization is re-established
'Request to send' on permanently		Avoids turnaround times in point-to-point configurations with terminals that activate 'request to send' only when transmitting	Can be used with the fan out feature
Multipoint Control (strap set to CONTROL)		Bypasses the receive equalizer, if installed, and activates appropriate resynchronization circuits if RE-SYNC strap is used	
Multipoint Tributary (strap set to TRIBUTARY)		Activates the transmit equalizer and the appropriate resynchronization circuits if RE-SYNC strap is used	
Answer Back Inhibit on Multipoint		Inhibits return buzz when call switch is operated on calling modem	Must be used on all tributary modems except one to prevent mixing of several responses May be used at control station to prevent outbound lines from being disturbed
Signal Ground to Frame Ground		Grounding assurance	

Diagram 8-3. Strapping Options [09084]

Mainline Power Cord
Countries Using 50 Hz

Switched Network Cable (USA only)

Note: Cable shield is connected to pin number 1 of the 25 pin plug.

Diagram 8-4
3875 Physical Planning, Installation, and Alignment (Sheet 3 of 3)

The customer is responsible for making the connection of IBM external cables, at the signal interchange point, to a customer's or a vendor's communication equipment.

4872 MODEM MODEL 1 INSTALLATION PROCE-

 DURES
Selecting Modem Location

Selecting a modem location usually hinges on the customer's preferences. A location near the digital equipment is advantageous because it simplifies the digital interface and allows the digital equipment operator to monitor the digital equipment cable length by EIA standards) from the digital equipment could be selected with the idea of combining or grouping similar functions, such as message control, communications, and teleprocessing. Connest the modem to a 115 vac outlet capable of delivering 70 watts in modem to a all vac outlet capable of delivering ho watts in the room, such as those near heating vents or in full sun. Avoid areas near heavy-duty electrical equipment producing power transients and static transients, as in arc welding equipment.

Rack Installation

The 4872 Modem may be rack-mounted by use of an optional rack mount adapter. The adapter is a standard 19 -inch panel with a frame to hold the modem. Customerprovided slides are bolted to the rack mount adapter to provide easy pull-out access to the modem.

Installation, Checkout, and Maintenance Procedures
The installation procedure is to be performed at the initial modem installation, which is followed by the modem (Analog Loop) self-test procedure and the system equalization and alignment check.
A new modem location that provides a different 115 vac power source or digital equipment interface connection requires performance of Steps 4 and 7 of the installation procedure

A different telephone line connection requires performance of the system equalization and alignment check.

Corrective maintenance can be guided by the malfunction analysis flowchart (Figure 2-5).* This flowchart indicates test points to be observed with an oscilloscope. indicates test points to be observed with an oscilloscope.
Waveform photographs are illustrated in Chapter 6^{*} and are to be compared with the observed waveform. Where to be compared with the observed waveform. Where
waveform anomalies are observed, corrective action is suggested in the flowchart.

Corrective action includes card replacement and modem alignment (Chapter 3).*

The modem (Analog Loop) self-test and the system equalization and alignment check procedures are used in corrective action followup.
Additional troubleshooting aids (provided in Chapter $8)^{*}$ are the transmitter detailed block diagram (Figure 2-10)* and receiver detailed block diagram (Figure 2-11).* ALD page numbers are referenced in Figures 2-10* and ${ }_{2}^{2-11^{*}}$ and in the malfunction analysis flowchart, Figure 2-5.*

Installation Procedure

Note: After unpacking, remove the bottom cover (refer to Chapter 5)* and ensure that each SLT card and cable paddle card is securely seated.

1. Make certain that the POWER switch is in the OFF position and that the power outlet to which the modem is to be connected is a $15 \mathrm{vac}, 60 \mathrm{~Hz}$ source. The modem typically consumes 70 watts.
2. Connect the interface cable from the terminal equipment to a flush-mounted receptacle on the rear of the modem.
3. Connect the 14 -foot cable with the four-pronged connector on the rear of the modem to the telephone line receptacle.
4. Make certain that the digital equipment and modem have a common power ground. A third wire in the 115 vac line is a common power ground.
5. Connect the 6 -foot power cable on the rear of the modem to the power outlet.
6. Remove the top cover to expose the control/meter panel and set the MODE switch to OPR, the TRANSMIT switch to DATA, and the METER switch to SGL QUAL.
7. One ground strap on the power supply connects signal ground to chassis ground. Some modem installations may perform best (less data errors) with the ground strap disconnected. This "optional" strap is illustrated in Chapter 4 (Figures 2-9 and 2-10).*
One way to observe an input quality difference, if it exists, is to have a pattern sent from the digital equipment to the modem. With the modem POWER switch to ON and the top cover removed (refer to Chapter 5^{*} for removal procedures), observe the input signal at pin location N 1 B03. The input signal should have its positive and negative excursions equal distance from zero refenect the the distance is not equal (asymmetrical),
ground strap and observe the input signal. Position the ground strap according to the best signal reference.

Modem (Analog Loop) Self-Test Procedur

The modem self-test procedure provides a positive indication of modem failure. It does not, however, prove conclusively that the modem is operating properly, because it does not check the digital and analog interfaces, the susceptibility to noise, or the line equalizers. It also does not fully exercise the design limits of the timing recovery circuits, because the basic transmitter and receiver timing is derived from a common oscillator. This procedure does, however, indicate most failures and is useful as a quick check that repair has been accomplished satisfactorily.
*See 4872 Modem - Model 1 Theory - Maintenance Manual.

Refer to Figure 2-1* for the control panel illustration and to Diag. 8-6 for the self-test configuration. Proceed as follows:

Note: The top cover must be removed to gain access to the control panel. (Removal instructions are in Chapter 5.)*
. Set the POWER switch to ON.
2. Set the MODE switch to ANLG LOOP.
3. Set the METER switch to SGL QUAL.
4. Set the TRANSMIT switch to TONE.
5. Observe that the DATA CHECK light flashes.
6. Set the TRANSMIT switch to PATT. Observe that the DATA CHECK light does not flash and that the mete indicates zero. If these conditions are not met, proceed with the diagnostic procedures, Section 2.4.*
7. Position the METER switch to LEVEL and observe midscale (100 ± 5) reading
. Position the METER switch to SGL QUAL and observe hat the DATA CHECK light is extinguished and that he meter indicates less than 5 . If the meter does not work, replace the meter amplifier cord G3.
9. If the preceding requirements (Steps 5, 7, and 8) are not met, align the modem as described in Chapter 3.* alignment fails to correct the malfunction, proceed with the malfunction analysis in Section 2.4.*

System Equalization and Alignment Check

Note 1: Performance of the procedure in Section 2.2^{*} is prerequisite to the equalization procedure.

Note 2: Local and distant modems may be equalized sequentially or simultaneously.

Equalization Procedure (Refer to Diag. 8-7.)

1. Position the MODE switch to OPR.
2. Request the distant modem operator to transmit a test pattern by selecting the PATT position of the TRANS MIT switch. The distant modem MODE switch must be positioned to OPR or ANLG LOOP. All other distant modem controls have no effect on local modem equalization and alignment.
3. Place the METER switch to LEVEL and adjust the LEVEL control until the meter indicates 100

arrier Phase Equalizations

4. Place the METER switch to EQL, and set the LOW FREO and HIGH FREO switches to the OFF position 5. Adjust the CARRIER PHASE control very slowly (the meter is highly damped) to obtain the lowest value on the meter and note the reading
5. Adjust the LEVEL control to reduce the meter reading to its lowest value.
6. Place the HIGH FREO switch to each of the other positions, and repeat Steps 5 and 6 for each position 8. Place the HIGH FREQ switch to the position in which the lowest value was obtained and readjust the CARRIER PHASE control for the lowest meter read ing.
7. Set the LOW FREO switch to each of the other positions, and repeat Steps 5 and 6 for each position. 10. Place the LOW FREO switch to the position in which the lowest value was obtained and readjust the CARRIER PHASE control for lowest value meter reading.
8. Adjust the LEVEL control for a minimum value meter reading. A meter indication of less than 50 is typical but each installed modem has an individual norm and during instalation and referred to during maintenance ra meat To meable of operar degradation.
DATA CHECK indicator and increase the mberve the tion with the RCVR LEVEL control until the indicator tion with the RCVR LEVEL control until the indicator
blinks more frequently than once a minute. Record the meter indication. Reposition the LEVEL control for a minimum meter indication. Repeat the failure level check with the RCVRCARRIER control.
Pilot Phase Adjustments
9. Place the METER switch to the SGL QUAL position 13. Rotate the PILOT PHASE control back and forth slowly to locate the lowest value on the meter. The lowest value may be noted in the midrange and at the end of the control rotation. Select the midrange lowest value.
10. Set the PILOT PHASE control halfway between the positions where the meter indicator just rises from the lowest value.
11. Adjust the LEVEL control once again to obtain the lowest value.

Telephone Line Alignment Checks

16. Position the MODE switch to OPR and the TRANSMIT switch to PATT for both modems. Both local and distant operators observe the DATA CHECK lamp for about 6 minutes. If it iluminates more than once per maladjustment is indicated Correct before proceeding The modem alignment procedure is in Chapter 3* and e diagnostic flowchart is in Section 2.4* if needed for modem adjustment.

* See 4872 Modem - Model 1

Theory - Maintenance Manual

Diagram 8-5. Operational Configuration

Diagram 8-6. Modem Self-Test Configuration

Diagram 8-7. Equalization Configuration

4872 MODEM, MODELS 2 AND 3, INSTALLATION PROCEDURES

This section defines the parameters for use in planning the installation of the IBM 4872 Modem.

Location

The modem is available in either a desk-top or a rackmounted model. The rack-mounted model fits standard 19-inch RETMA racks and permits use of any one of several manufacturer's slides (including tilt-type slides).

Environment

Temperature Range: $50^{\circ} \mathrm{F}$ to $110^{\circ} \mathrm{F}$
$\left(10^{\circ} \mathrm{C}\right.$ to $43.5^{\circ} \mathrm{C}$)
Humidity Range:
Altitude:
Sea level to 7000 fee
Sea level to 7000 fee
10 to 2134 meters)

Cabling/Connectors

Both power and signal cable connections are made on the rear of the modem. A standard 6 -foot, three-wire molded power cord is provided. Interface cables (customer propower cord is provided. Interface cIabes (customer pro-
vided) must be in accordance with EIA-RS-232-B and must have a connector to attach to a flush-mount receptacle (Cannon Electric Co. DB 19604-433-0, IBM P/N 385951). Attachment to the telephone channel is through a 14 -foot cable with an attached four-prong connector (IBM P/N 341200). This will connect with a Western Electric 404B surface-mount or a Western Electric 483A flush-mount receptacle. For modems with the Fanout feature, see Chapter 5, "Cable Adapter.
Should it be necessary to remove the IBM connector (P/N 341200) in order to make connection on a terminal board, the wires should be mated as follows (note that there are two alternate color code configurations in the IBM cable):

Transmit Pair
(wide pins
on connector
Receive Pair on connector)

IBM White-Black or	Telephone Co.
White-Green	Red-Green
Red-Blue or Red-Black	Black-Yellow

Electrical Power Requirements	
Voltage:	115 vac
Tolerance:	10%
Frequencies:	$60 \pm 0.5 \mathrm{~Hz}$
Power Consumption:	70 watts

Overload protection is provided inside the modem enclosure.

The modem and the computer it is serving must have a common ground.

Telephone Line Requirements

Common Carrier Leased Private Telephone Line-Type 3002, C2 conditioned.

Privately Owned Communications Facilities-The facility must be equivalent to a Type 3002, C2 conditioned line.

Attenuation: Frequency Response:	$16 \mathrm{db} \pm 1 \mathrm{db}$ at 1000 Hz		
	300 to $3000 \mathrm{~Hz},-2$ to $+6 \mathrm{db} ;$ 500 to $2800 \mathrm{~Hz},-1$ to +3 db (attenuation relative to 1000		
	Hz response)	\quad	Frequency
:---			
Translation:	$\quad \pm 5 \mathrm{~Hz}$.		

MODEM TEST

There are two test configurations that are useful for fas checks of the modems and the telephone lines; the Analog Loop test and the Digital Loop test.

Analog Loop Test

The Analog Loop test provides a positive indication o modem failure and may be used to verify operation of an individual unit. The test does not, however, prove conclusively that the modem is operating properly, because it does not check digtal or analog interfaces, equalizers, or say be used for Model 2 and Model 3 . Set the POWER switch to ON
. Set the MODE switch to ANLG
Set the MODE switch to ANLG LOOP
4. Set the TRANSMIT switch to TONE.
5. Observe that the DATA CHECK indicator flashes.
5. Observe that the DATA CHECK indic
6. Set the TRANSMIT switch to PATT.
7. Observe that the DATA CHECK indicator does not flash and that the meter indicates approximately 10 or less.
8. Set the METER switch to LEVEL.
. Observe a midscale, approximately 100 , reading on the meter.

If any or all of the conditions in Steps 5, 7, and 9 are not met, maintenance is required.

Note: Do not switch any remote modem to ANLG LOOP without first disconnecting the modem from the telephone line to avoid interrupting the remaining multipoint system.

Digital Loop Test

Digital Loop test should be performed following Analog Loop test. Digital Loop test is used primarily to verify the ability to communicate via telephone lines. This test also annot be checked in Analog Loop. The test should b performed using the master and each remote modem in turn, following this procedure:

1. Position the switchare:
a. Set the POWER switch to master modem as follows:
. Set the POWER switch to ON.
c. Set the TRANSMIT switch to DATA
d. Set the METER switch to SGL QUAL.
2. Position the switches on the selected remote modem as follows:
Set the POWER switch to ON
b. Set the MODE switch to OPR
c. Set the TRANSMIT switch to PULSE.
d. Set the METER switch to EOL.
3. Observe that the DATA CHECK indicators on both Set the TRANSMIT switch on the remote modem to PATT.
4. Observe that the DATA CHECK indicators are extinguished on both units.
Note: If the conditions in Steps 3 and 5 are not met, perform the alignment procedure in Chapter 7 and repeat Digital Loop test. If the alignment procedure does not correct the defective condition, maintenance is required.
5. If the conditions in Steps 3 and 5 are met, the Digital Loop test should be run in reverse with the same two modems.
6. Position the switches on the master modem as follows: a. Set the MODE switch to OPR.
b. Set the TRANSMIT switch to PULSE.
c. Set the METER switch to SGL QUAL.
7. Position the switches on the remote modem as follows:
a. Set the MODE switch to DGTL LOOP.
b. Set the TRANSMIT switch to DATA.
c. Set the METER switch to SGL OUAL.

Observe that the DATA CHECK indicators on both units flash.
master modem TRANSMIT switch to PATT.
11. Observe that the DATA CHECK indicators are extinguished on both units.
12. If Steps 9 and 11 indicate a problem, maintenance is required.
13. Following successful tests in both directions between the master and a remote modem, repeat the entire rocedure with the master and each remote modem in the network in turn, until all have been checked.

For a summary of all positions of the MODE and TRANSMIT switches, see Table 1.

Model 2 Reset Button

This control is used in conjunction with self-test and remote-to-master transmission tests. During the reception of a test pattern, if the DATA CHECK indicator is on, the RESET button should be depressed. If the modem is in test and is receiving the test pattern properly, the DATA CHECK light should be extinguished, except during the occurrence of errors.

Model 3 Equalization and Alignment Controls

The upper section of the Control/Meter panel contains the controls for adjusting the transmitter to permit operation from the remote transmitter to the master receiver. These controls include the COMPROMISE EQL switches, the CARRIER PHASE control, and the CARRIER LEVEL ontrol.
The lower section of the panel contains the controls for adjusting the receiver to permit operation from the master self-testing and system testing are also included on the lower panel.

Transmitter Controls
LEVEL Control-This control adjusts the amplitude of the transmitted carrier.

CARRIER PHASE Control-This control adjusts the phase of the transmitted carrier.

COMPROMISE EOL Switches-There are two six-positio rotary switches provided for fixed-compromise equaliza-
tion. These switches incrementally correct telephone ch. frequency equalization and the other provides lowfrequency equalization. The range of the switches is from zero (OFF) to FULL delay distortion correction for elephone channel C2 lines (ranging from worst-case C2 to ideal).

Receiver Controls
LEVEL Control-This control adjusts the amplitude of the received signal prior to its detection.

CARRIER PHASE Control-This control adjusts the phase of the received carrier.

COMPROMISE EQL Switches-Same as transmitter con trols.
PILOT PHASE Control-This control adjusts the phase of the recovered pilot for proper timing recovery. When a ore controls have been properly adjusted and an error this control is the position midway between the two point that cause an upward meter deflection. With the modem in TEST and receiving the test pattern, if the received data is not error free at the conclusion of this final adjustment, the DATA CHECK indicator will illuminate.

Equalization and Alignment Procedure
The multipoint Model 2 and 3 modems can be adjusted and operated using the procedures outlined in this chapter.

mODE Switch	TRANSMIT Switch	data Check lamp Status		
		No Errors Received	Errors Received	Loss of Carrier*
OPR	data	Extinguished	Extinguished	Continuous Illumination (probable open telephone line)
ANLG LOOP	data TONE PULSE PATT	$\underset{\substack{\mathrm{X} \\ \mathbf{X} \\ \text { Extinguished }}}{\mathbf{X}}$	$\begin{gathered} \quad \begin{array}{c} \mathrm{X} \\ \mathrm{X} \\ \mathrm{X} \\ \text { Blinks } \end{array} \end{gathered}$	Continuous Illumination (loss of carrier within modem)
DGtl Loop	DATA** TONE** PULSE** PATT** PatT**	X X X Extinguished	$\begin{gathered} \hline \mathrm{X} \\ \mathrm{X} \\ \mathrm{X} \\ \text { Blinks } \end{gathered}$	Continuous Illumination (probable open telephone line)

NOTE: DATA CHECK lamp operation depends on the settings of the MODE and TRANSMIT switches. An "X" indicates that the DATA CHECK lamp
or PULSE switch positions.
*For Model 2 only, DATA CHECK indicator will illuminate during periods when no remote modems are transmitting. This is **Distant TRANSMIT switch position; local TRANSMIT switch is ineffective during digital loop test.

Reequalization and alignment, in case of telephone lin changes, can be performed by the customer's operator. This procedure can be accomplished quickly and does no Thire any special skills or prior knowledge,
15 v , Hz is and contact with the remote modem is required and an be contact with the remote modem in The following itemized procedure is
diust the modem for proper operation then employed to line. The purpose of these adjustments is to equalize "match" the modem to the line so that digital data may be passed with as few errors as possible. The key to this procedure is the built-in meter on the Control/Meter panel. All controls noted are shown in Figures 5 and 6,* and cross-reference to these figures will help clarify the pro cedure
The initial procedure is to check all of the modems in the system (master and remote units). This is accomplished by performing the following steps:

1. Check for proper operation of master and remote St
a. Set MODE switch to ANLG LOOP (Analog Loop) b. Set TRANSMIT switch to PATT (Pattern),
d. The DATA CHECK light should be extinaily and the meter should read less than 20 for proper operation. (Depress the RESET button on the operation. (Depress the RESET button on the
master if this result is not obtained.) If these conditions are not met, maintenance is required.

The next step permits equalization and alignment of all he remote (Model 3) receivers on the multipoint line. Th perator at each remote location is contacted by the operator at the master location, who controls the adjustment procedure. The remote operators are told to perform the following procedure
2. Equalize and align the remote modem receivers on the telephone line:
a. The operator at the master modem sets the TRANS MIT switch to PATT and the MODE switch to OPR

Note: In the following procedures, the LEVEL and CARRIER PHASE knobs should be rotated slowly for best alignment.
b. On the remote modem, place the MODE switch to OPR, the METER switch to LEVEL, and the LEVEL control until a reading of 100 is obtained on the meter.

Legend:
872 Modem, Models 2 and 3 - SRL

Place the METER switch to EQL (Equalize) and the receiver COMPROMISE EOL switches (both LOW FREQ and HIGH FREQ) to OFF. Adjust the receiver CARRIER PHASE and LEVEL knobs until the lowest meter reading is obtained
d. The best receiver equalizer settings are determined as follows: Set the HIGH FREO switch to 2 and again adjust the receiver CARRIER PHASE and LEVEL controls for the lowest meter reading. Repeat this procedure for all of the HIGH FREC positions (OFF, .2, . $4, .6, .8$, FULL) and find the position that gives the lowest meter reading. Set the HIGH FREO switch to that position and again adjust the receiver CARRIER PHASE and LEVEL controls for the lowest meter reading.
Repeat this procedure with the receiver LOW FREQ switch and select the position that gives the lowest meter reading. After selecting the best LOW FREQ setting, return to the HIGH FREO switch and repeat the FREQ position
With the HIGH FREQ and LOW FREQ switches in their selected positions, readjust the receive CARRIER PHASE and LEVEL knobs for the lowest meter reading.
f. Set the METER switch to SGL QUAL (Signal Quanity). Adjust the PILOT PHASE control for the a coarse adjustment.
The meter will read its lowest setting over severa degrees of PILOT PHASE adjustment. Set the knob to the approximate middle of this adjustment range
g. With the METER switch still in the SGL QUAL position, readjust the receiver LEVEL control to obtain the lowest meter reading.
h. After these adjustments are complete, a quick check for satisfactory remote modem operation can be made by observing that:

1) A meter indication of less than 50 is typical, bu each installed modem has an individual norm established during installation and referred to diuring mintenge for a measure of to during mainena To establish and
observe the DATA check the failure level, observe the DATA CHECK indicator and LEVEL control until the indicator blinks more frequently than once a minute. Record the meter indication. Reposition the LEVEL con trol for a minimum meter indication. Repea the failure level check with the receiver CARRIER control.
(2) The DATA CHECK indicator does not light more than approximately once a minute.

Upon completion of remote receiver alignment, the remote operators advise the master operator that they are ready for the next step.
The next step permits equalization and alignment of the remote (Model 3) transmitters on the multipoint line. maintained between the master operator and the remote maintained between the master operator and the remote
operator. The operator at the master station may talk unilaterally to the remote stations without affecting digital data transmission from the remote modems to the master modem. During this procedure, the operators at the remote stations may not talk to the master operator, because this will disrupt the transmission of data from the remote modem to the master modem and prevent proper alignment.
3. All adjustments are made at the remote modem, but the meter is monitored on the master modem. Thus, the operator at the master station must continually advise the operator at the remote station concerning what controls to adjust, which way to adjust them, and when to stop the adjustments. The following procedure simplifies this operation:
a. The operator at the master station calls all of the remote stations and tells them to set the TRANS.
MIT switch to DATA and the MODE switch to OPR. He advises them that he will call each one sequentially to align the multipoint link in the direction from the remote modem transmitters to the master modem receiver.
b. The master station operator calls the first remote station operator and advises him to set the TRANS. MIT switch to PATT.
c. The master operator places his own METER switch to LEVEL.
d. The master operator advises the remote operator to rotate his transmitter LEVEL control slowly untila reading of 100 is obtained on the meter at th e. The master op
e. The master operator then switches his METER switch to EQL. He advises the remote operator to switches (both LOW FREQ and HIGH FREQ) to switches (both LOW FREO and HIGH FREQ) to
OFF. He then advises the remote operator to adjust the transmitter CARRIER PHASE knob slowly until the lowest reading obtainable is observed on the meter on the master modem.
f. The best remote modem transmitter equalizer settings are selected as follows: Using the meter at the master modem, have the remote operator set the HIGH FREO switch to .2 and again adjust the transmitter CARRIER PHASE for the lowest meter reading on the master modem.
Repeat this procedure for all of the HIGH FREO positions (OFF, .2, .4, .6, .8, FULL) and find the position that gives the lowest meter reading. Advise the remote operator to set the HIGH FREQ switch CARPIER PHASE for than adust the transmit The raster operator advises the remote oper to repeat this procedure with the transmitter LOW to repeat
FREO switch. FREO switch.
After selecting the best LOW FREQ setting, the
master operator advises the remote repeat the process again on the HIGH FREO switch, because additional improvement can usually be obtained by a final readjustment.
g. The master operator advises the remote operator to set the transmitter HIGH FREO and LOW FREO
switches to the selected positions. The remote operator should then readjust the transmitter CARRIER PHASE Knob to ob readien phase modem.
. METER switch to SGL, the operator sets th advises the remote operator to adjust his transmitte LEVEL control slowly to obtain the lowest meter reading on the master modem.
i. After all these adjustments are complete, a quick check for satisfactory operation with the first
remote station can be made by observing the following:
(1) A meter indication of less than 50 is typical, but each installed modem has an individual norm and failure level. The failure level should be established during installation and referred to during maintenance for a measure of operational degradation.
To establish and check the failure level, observe the DATA CHECK indicator and increase the meter indication with the trans mitter LEVEL control until the indicator blink

more frequently than once a minute. Record the meter indication. Reposition the LEVEL control for a minimum meter indication. Repeat CARRIER
Th DATA
2) The DATA CHECK indicator does not light more than approximately once a minute. If the the alignment or the telephone line is indicated
j. The first remote station is now properly adjusted The master station operator advises this remote operator to switch his, TRANSMIT switch to DATA.
k. Each remaining remote station is contacted and aligned, one at a time, using the procedure des cribed for the first station.

1. After all stations are properly aligned, a check is made that all modem TRANSMIT switches are on DATA, all MODE switches are on OPR, and al METER switches are on SGL OUAL

The system is now ready for operation.

Section 9. Transmission Control Units

2701 DATA ADAPTER UNIT MODEL 1

Plan View (Template GX22-6857)

Specifications
Dimensions:

	F	S	H	
	Inches	40	$25-1 / 2$	40
(cm)	(102)	(65)	(102)	
Service	Clearances:			
	F	R	Rt	L
Inches	42	42	30	6
(cm)	(107)	(107)	(76)	(15)
Weight:	$600 \mathrm{lb}(280 \mathrm{~kg})$			

Heat Output: $\quad 3,000 \mathrm{BTV} / \mathrm{hr}(760 \mathrm{kcal} / \mathrm{hr})$
Airflow: $\quad 120 \mathrm{cfm}\left(4 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:	
KVA	1.0
Phases	1
Plug	R\&S, FS3720
Connector	R\&S, FS3913
Receptacle	R\&S, FS3743
Environment Operating:	
\quadTemperature $50^{\circ}-90^{\circ} \mathrm{F}\left(10^{\circ}-32^{\circ} \mathrm{C}\right)$ Rel Humidity $8 \%-80 \%$ Max Wet Bulb $78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$	

2701 DATA ADAPTER UNIT CABLING SCHEMATIC

Notes:

1. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units to a channel.
2. Sequence and control (EPO).
3. Order group 358 for SF \#5500 (maximum of four)
4. Customer-owned communications lines (SF \#4636 and \#4637).
5. Use for Telegraph Type I (SF \#4633, \#7860, \#7861 and \#7862).
6. Use for SF \#4656 and \#4657. Use for SF \#4640 \#4645, \#4646, \#4648, and \#7885 if neither SF \#1302, \#4636, nor \#4637 is used.
7. To channel-to-channel adapter (SF \#1850)
8. Use when both data set and ADU are required (SF \#4640, \#4645, or \#7885 with SF \#1302), one for each ine
9. Required for first and third extensions only of SF \#5505 (maximum of four)
10. For Synchronous Data Adapter (SF \#1303 and \#1314).
. For Synchronous Data Adapter (SF \#3461, \#3463 \#7695, and \#7697).
11. See Appendix E for cable specifications.
12. Group 358 is two assemblies with a total of three cables to common-carrier facility.
13. For connection to one RS-232, RS-232A, or RS-232B interface data set with SF \#3462, \#3464, \#7696 (including attachment from the IBM 4872 Modem), \#7698, or \#7699.
Group 363 is ane assembly with two cables to common-carrier facility.

2703 TRANSMISSION CONTROL MODEL 1

Plan View (Template GX22-6857)

Specifications

Dimensions:			
	F		S
	H		
Inches	$32-1 / 4$	$67-3 / 4$	$70-3 / 4$
$(\mathrm{~cm})$	(82)	(172)	(180)

Service Clearances:				
	F	R	Rt	L
Inches	30	36	66	66
$(\mathrm{~cm})$	(76)	(91)	(168)	(168)

Weight: $\quad 2,200 \mathrm{lb}(1,000 \mathrm{~kg})$
Heat Output: $\quad 11,750 \mathrm{BTU} / \mathrm{hr}(3.000 \mathrm{kcal} / \mathrm{hr}$)
Airflow: $\quad 2,000 \mathrm{cfm}\left(57 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:	
kVA	4.3
Phases	3
Plug	R\&S, FS3760
Connector	R\&S, FS3934
Receptacle	R\&S, FS3754

Notes: $\mathrm{cm} \times 152 \mathrm{~cm} \times 178 \mathrm{~cm}$) for shipping. See sales representative for specifying dimensions on the order.

2703 TRANSMISSION CONTROL CABLING SCHEMATIC

Notes:

1. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units.
2. Sequence and control (EPO).
3. Use with data line set (SF \#3205 and \#3206). Use one for each group of four data sets.
4. See Appendix E for cable specifications.
5. For SF \#8047 and \#8057 (one group provides for on each of SF \#8047 and \#8048, or one each of S \#8057 and \#8058).
6. For SF \#1340 and \#1341. Use one for each group of data sets.
7. For SF \#7710, including attachment from the IBM 4872 Modem. Use one for each group of data sets.
8. For SF \#7897 (one group provides for one each of S \#7897 and \#7898). Each group contains 16 lines.
9. For \#4686, \#4687, and \#4688. Each group contains 8 lines.
To.

The letter code designation (A, B, F, or G) for plug types for 3270 machines is included on individual machine specification pages in GA27-2787. Matching receptacles are dentified in the following chart:

Plug Type*	A	B	F	G
NEMA Receptacle Reference No.	5-15R	LS-15R	6-15R	L6-15R
Single	$\begin{aligned} & (\mathrm{H}, \mathrm{PR} \mathrm{~S}) \\ & 5261 \end{aligned}$	$\left\lvert\, \begin{aligned} & (\mathrm{H}, \mathrm{P} \mathrm{\& S}) \\ & 4710 \end{aligned}\right.$	$(\mathrm{H}, \mathrm{P} S \mathrm{~S})$ $\mid 5661$	${ }_{4560}^{(\mathrm{H})}$
Receptacle Mfg. Duplex No.**	$\begin{aligned} & \text { (H, PRS) } \\ & 5262 \end{aligned}$	$\begin{aligned} & (\mathrm{H}, \mathrm{P} \& \mathrm{~S}) \\ & 4700 \end{aligned}$	\|5662	$\left.\right\|_{4550} ^{(\mathrm{H})}$
In-line	$\begin{aligned} & (\mathrm{H}, \mathrm{PRS}) \\ & 5269 \end{aligned}$	$\left\lvert\, \begin{aligned} & (\mathrm{H}, \mathrm{P} \mathrm{\& S}) \\ & 4730 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { (H, P\&S) } \\ & 5669 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & (\mathrm{H}) \\ & 4580 \end{aligned}\right.$
$\begin{aligned} & \text { Schematic - Face } \\ & \text { of Receptacle } \\ & \text { (G = Ground) } \end{aligned}$	$\left(0^{6}\right)$	3	a	(80)
Rating: Amperes/Volts	15/125	15/125	15/250	15/250

*In the U.S. and Canada, these plug types (or equivalent) are supplied with the machines; the customer provides matching receptacle. In World Trade countries other than Canada, only the power cord is supplied; the customer provides pluss to
match local receptacles.
Pabentheses: Hubbell (H), Pass and Seymour (P\&S). Receptacles B and G are locking type

Branch Circuits and Grounding
The power cords have a green or green and yellow equipment ground wire. For safety, each branch circuit hould have an insulated wire conductor (green or gree dit ound wires should be tied to a commern distribution panel and a single ground wire should be from the distribution panel to service ground o un from the distribution panel to service ground or suitable building ground. The conduit must not be used as
the only means of grounding. The system neutral must be the only means of grounding. The system neutral must be the building ground station. The IBM Installation Planning Representative should be consulted for further details.

CABLE SPECIFICATIONS

$\begin{array}{\|l\|l} \text { Power } \\ \text { Cord } \\ \text { Style } \end{array}$	Cable Nominal OD inches (mm)	Number of Shields	Conductors		
			Quantity	$\begin{array}{\|l\|} \hline \text { Nominara ODD } \\ \text { inches }(\mathrm{mm}) \end{array}$	$\begin{aligned} & A W G \\ & \text { No. } \end{aligned}$
A4	0.350 (9.0)	1	3	0.040 (1.0)	18
A9	0.350 (9.0)	0	3	0.040 (1.0)	18

This diameter refers to solid, bare wire
how to install a power plug on shielded CABLE
To make power cable shjelding effective, the shield or shields must be properly terminated at the plug end of the cable. Because different plugs are used in different countries, slight changes to the following instructions may be needed.

Names of Bulk Cable Components

Preparing Bulk Cable End for the Plug

Dimensions given are for reference only. The installer is to use his own discretion to assure proper assembly of the cable and plug.
Step 1: Remove outer jacket for $1-1 / 2$ inches (38 mm) Step 1: Remove outer jacket for $1-1 / 2$ inches $(38 \mathrm{~mm})$ from end for $15 A-30 \mathrm{~A}$ cables or $2-3 / 4$ inches (70 mm) from step 4.

Step 2: (For two-shield cables only.) Remove the outer hield as far back as the outer jacket The Mylar* seprato is exposed. Wrap one full turn of electrical tape over the separator and another full turn of tape over the cut end of

Trademark of E. I. duPont de Nemours \& Co., Inc.
he outer shield; overlap onto the outer jacket. This tape used to assure complete electrical isolation between th inner and the outer shields. (Se

(Tape A

Step 3: (For two-shield cables only.) Remove Mylar separator for 1 inch (25 mm) from end for 15A-30A cable separator for $2-1 / 4$ inches (57 mm) from end for 45A-60A cables. Do not cut the inner shield.

Step 4: Do not cut the inner (or only) shield. Unbraid and carefully comb out the shield for 1 inch (25 mm) from end carefully comb out the shield for 1 inch (25 mm) from end $45 \mathrm{~A}-60 \mathrm{~A}$ cables. The core is exposed. (See B

Step 5: Remove cable core for a minimum of $3 / 4$ inch (19 mm) from the end; the conductors are exposed. (See (C).)

Step 6: Carefully lay the shield back over the cable outer jacket; wrap tape around the shield for temporary protec tion. Note that on two-shield cables, the outer shield must tion. Note that on two-shield cables, the outer shield must
be insulated from the plug cap, equipment ground (earth) be insulated from the plug cap, equipment ground (earth)
wire, conduit, and so on; the outer shield is grounded at the wire, conduit, and so on; the outer shield is grounded at the
machine end only. The inner (or only) shield should be grounded through the shell of the plug to the branch circuit conduit. Three-hundred-sixty-degree grounding of the shield to the plug shell is desirable; that is, making contact between the shield and the shell at all points around the edge, not just at one point.

Installing the Plug

mose steps show the attachment of one type of plug modifications will be needed to allow for the different physical designs of plugs used in various countries.
Install the clamp, brass washer, and bushing over the prepared cable end as shown at D. Take the protective tape off the shield and slide the bushing over against the shield. Carefully lay the shield back over (E) of the bushing; be sure to spread the strands of the shield evenly over the bushing surface.

Slide the brass washer over the shield and up against the mating surface of the bushing at \mathbf{F}. Wrap tape around the shield for one full turn and trim off the remaining shield strands. Install the clamp and be sure that the mating surface is tightly against the brass washer.
Install the proper terminals and put the rest of the plug assembly together.

Branch Circuits and Grounding
The power cords have a green or green and yellow equipment ground wire. For safety, each branch circuit should have an insulated wire conductor (green or green and yellow) for grounding the equipment. All branch circuit ground wires should be tied to a common ground at the distribution panel, and a single ground wire should be run from the distribution pance to service ground or suitable building ground. The conduit must not be used as the only means of grounding. The system neutral must be electrically isolated from the ground conductor except at the building ground station. The IBM Installation Planning Representative should be consulted for further details.

ACK O, ACK 1 (affirmative acknowledgment): These replies (DLE sequences), indicate that the previous trans mission block was accepted by the receiver and that it is ready to accept the next block of the transmission. Use of ACK 0 and ACK 1 alternately provides sequential checkin control for a series of replies. ACK 0 is also an affirmative (ready to receive) reply to a station selection (multipoint) or to an initialization sequence (line bid) in point-to-poin operation.
Attenuate: To lessen the amount, force, or value of.
Batch Processing: A system of accumulating and grouping random number of input items to be processed at one time. BSC (binary synchronous communications): A uniform procedure, using a standardized set of control characters and control character sequences, for synchronous tran mission of binary-coded data between stations in a dat communications system.
BSC intermix: Capability of different types of BSC stations on the same multipoint line, or using the same switched lin termination (phone number) at the central computer to communicate with a control or central station using BS procedures.

Carrier: An oscillation or wave suitable for modulation by the intelligence to be transmitted over the communication system.
which sed Multipoint: A system in leased line operation in common line to a conty modem.

Central station: Term applied to a central computer in a data communications system, because of the function performs as the main processor of information communica ted over the system.
Communications Channel: A single or dual transmission path, characterized by a particular frequency bandwid (voice bandwidth in this manual)
Control: Refers to the controlling unit in a centralized multipoint configuration; the term may be applied to modem or to station. (Sometimes other publications use "master" or "central".)
Control station: The station (usually a CPU) in a multipoin data communications system that controls network traffic by means of poling and selection. On a centralized nly with the control station when polled or selected by the control station.

Conversation Mode: Communication between a terminal and a computer, in which each entry from the terminal elicits a response from the computer, and vice versa.
Data Communications: The transmission and reception of information by data processing equipment, or communi cations terminal equipment.

Data System: An organized collection of methods and
 he data, and provides output data
Dedicated Line: A communications channel which is permanently connected between two or more data stations. Also called "leased" or "private".)
Delay (group): The time of propagation between two acations of a certain point of the envelope of a wav (varies with the frequency).
Demodulation: The process of retrieving intelligence from a modulated carrier wave.
Deserialize: To change from serial-by-bit to parallel-by-bit Digital Echo Modulation: A process (using digital circuits) by which the frequency spectrum of a chain of pulses (representing binary data) is shifted and co within the bandwidth of the telephone line.
Distortion: The unwanted change in waveform that may occur between two points in a transmission system.
DLE (data link escape): A control character used exclusively to provide supplementary line-control signals (contro character sequences or DLE sequences). These are two character sequences where the first character is DLE. The second character varies according to the function desired and the code used.
Duplex channel: A communications facility capable of transmitting in both directions simultaneously.
Duplex: Applied to the system in which signals may be transmitted and received simultaneously over a.telephone line. (In other publications, sometimes referred to as "full-duplex".)
Duplex Facilities: A dual voiceband channel with complete separation of transmit and receive at any station in a system. Any system which uses the same portion or portions of the voiceband spectrum for simultaneous transmission of signals in both directions requires duplex facilities. To reduce turnaround time, carrier can be transmitted continuously from both stations of a point-topoint system or from the control station for a centralized multipoint system. Four-wire duplex facilities avoid false
startups caused by interference between multipoint tribu tary stations.
Duplex Operation: A simultaneous two-way transmission Echo: A wave that is returned to the point of origin, because of reflection or some other cause
Echo Suppressor: A line device used to prevent energy being reflected back to the transmitter
ENO (enquiry): Used as a request for a response to obtain identification and/or an indication of station status. Transmitted as part of an initialization sequence (line bid) in point-to-point operation, and as the final character of a selection or polling sequence in multipoint operation.
EOT (end of transmission): Indicates the end of a transmission, which may include one or more messages, and resets all stations on the line to control mode (unless it erroneously occurs within a transmission block). EOT is also transmitted as a negative response to a polling sequence.
Equalizer: Any combination of active and/or passive elements inserted in a transmission line or amplifier circuit to improve its frequency response or phase characteristics. ETB (end of transmission block): Terminates a group of characters (transmission block) started with SOH or STX and indicates that the message. continues with a following block. A message may contain one or more transmission blocks ending with ETB. The block ch immediately following ETB. E the receiving station's status.
ETX (end of text): Indicates the end of a message. If multiple transmission blocks are contained in a message ETX terminates the last block of the message. (ETB is used to terminate preceding blocks.) The block check character is sent immediately following ETX. ETX
Half-Duplex: Applied to the system in which only one signal may be transmitted or received at a time over a telephone line.
Half-duplex channel: A communications facility capable of transmitting in both directions, but not at the same time.
Half-Duplex Facilities: A single voiceband channel for bidirectional, non-simultaneous transmission between any two stations in a system. Systems that do not require use of the same portion or portions of the voiceband spectrum for simultaneous transmission of signals in both directions can解-duplex facilities; carrier can be trans mitted in only one direction at a time

Note: When the common carrier supplies four-wire duplex facilities for half-duplex mode of operation in a point-topoint system, carrier may be maintained from both stations.

Half-Duplex Operation: A two-way transmission of signals, but in only one direction at a time.

Interface: A point of demarkation that divides the responsibilities of any two connected pieces of equipment.
ITB (intermediate text block): This character (actually IUS or US depending on code) is used to terminate an intermediate block of characters. The block check character is sent immediately following HB , but no line turnaround occurs. The response following ETB or ETX also applies to all of the ITB checks immediately preceding the block terminated by ETB or ETX

Leased, or Private, Line: See "dedicated line"
Local: Arbitrarily refers to the modem in a point-to-point configuration from which the system is viewed at a particular instant in time.

Mark: The quiescent or, binary 1 data bit condition.
Modem: A contraction of "modulator-demodulator". This term may be used when the modulator and demodulator are associated in the same signal conversion equipment.
Modulation: A process by which certain characteristics of a wave are modified in accordance with a characteristic of another wave or signal.

NAK (negative acknowledgment): Indicates that the previous. transmission block was in error and the receiver is ready to accept a retransmission of the erroneous block. NAK is also the "not-ready" reply to a station selection (multipoint) or to an initialization sequence (line bid) in point-to-point operation
Noise: Any unwanted disturbance within a useful frequency band, such as undesired electric waves in a transmission channel or device
Off-Hook: On-Hook: Activated/deactivated, in reference to a telephone set; it may also be used in reference to a device attached to a switched network line

Parallel Data: Multiple signal elements, usually a character or byte, transferred simultaneously.

Point-to-Point: A system in leased line operation in which two modems are permanently interconnected; at any point in time, one modem is referred to as local and the other is referred to as remote.
Propagation Time (delay): The time necessary for a signal to travel from one point of a circuit to another.

Remote: Arbitrarily refers to the modem in a point-topoint configuration that is connected via the telephone line to the modem termed local.
Remote station: (Multipoint) synonymous with tributary station. (Point-to-point switched network) a station that can be called by the central station, or can call the central station if it has a message to send.
RVI (reverse interrupt): A control character sequence (DLE sequence) sent by a receiving station instead of ACK 1 or ACK 0 to request premature termination of the transmission in progress.

Serial Transmission: Transmission, at successive intervals, of ignal elements (not transmitted simultaneously).
Serialize: To change from parallel-by-bit to serial-by-bit.
Service: The common-carrier function of providing and maintaining a system of facilities to meet customer com munications requirements.
Space: The binary 0 data bit condition.
SOH (start of heading): Precedes a block of heading characters.
Station: An input or output point in a communication system.
Strap, Strapping: Selectable wiring to provide optional variations in the performance of equipment.
STX (start of text): Precedes a block of text characters.
Switched Line (switched network): A communications channel made up of a number of shorter communication channel made up of a number of shorter communication ircuits connected through switching facilities provided by a common carrier.

SYN (synchronous idle): Character used as a time fill in the absence of any data or control character to maintain ynchronization. The sequence of two contiguous SYN's is used to establish synchronization (character phase) following each line turnaround.
Synchronization: Bringing the receiver timing pulses into phase with the received modulate signal in order to correctly demodulate the received data.

Teleprocessing: A form of information handling in which data processing system uses communications facilities.

Transmit Level: A power level of energy introduced onto the communications channel by the transmitter.

Tributary Station: On a centralized multipoint communi
 to, and receives from, the control station.

TTD (temporary text delay): A control character sequence (STX...ENQ) sent by a transmitting station to either indicate a delay in transmission or to initiate an abort of the transmission in progress.
Turnaround: The time required to reverse the direction of transmission from send to receive, or vice versa. Time is required for line propagations and line effects, reversal of echo suppressors (where used), modem timing, and DTE reaction.

Two-wire or Four-wire: These terms refer to the physical connection to the communications channel. They do not determine half-duplex and duplex communications facilities.

WACK (wait before transmit positive acknowledgment): This DLE sequence is sent by a receiving station to indicate that it is temporarily not ready to receive.

```
3270 Information Display System Physical Planning d Installation Manual
Order No. SY27-2349-4
```

READER'S
COMMEN

Your views about this publication may help improve its usefulness; this form will be sent to the author's department for appropriate action. Using this form to request system assistance or additional publications will delay response, however. For more direct handling of such request, please contact your
IBM representative or the IBM Branch Office serving your locality.
Possible topics for comment are:
Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation?
Number of latest Technical Newsletter (if any) concerning this publication:
Please indicate if you wish a reply.
$\square \mathrm{Yes}$
\square No
If yes: Name \qquad
Address
Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments.)

3270 Informätion Display System Physical Plannin and Installation Manual

Order No. SY27-2349-4
Your views about this publication may help improve its usefulness; this form

form to request system assistance or additional publications will delay response,
however. For more direct handling of such request, please contact your
IBM representative or the IBM Branch Office serving your locality.
Possible topics for comment are:
Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation?
Number of latest Technical Newsletter (if any) concerning this publication: \qquad
wish a reply.
If yes: Name \qquad
Address
Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments.)

- Your comments, please . . .

Your comments, together with your answer to the questions on the back of this form

- will help us produce better publications for your use. Your comments will be carefully reviewed by the persons responsible for writing and publishing this material. All comments and suggestions become the property of IBM.

Fold
Fold

Business Reply Mai
No postage stamp necessary if mailed in the U.S.A

Postage will be paid by

International Business Machines Corporation
Department 52L
Neighborhood Road 12401
Kingston, New York 12401

SY27-2349-4

Your comments, please . . .
Your comments, together with your answer to the questions on the back of this form, will help us produce better publications for your use. Your comments will be carefully reviewed by the persons responsible for writing and publishing this material. All comments and suggestions become the property of IBM

Fold
Fold

Permit 40 Armonk New York

Business Reply Mai
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:
International Business Machines Corporation
Department 52L
Neighborhood Road
Kingston, New York 12401

Fold

[8M

International Business Machines Corporation

Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)
mernational Business Machines Corporation
Data Processing Division
133 Westchester Avenue, White Plains, New York 10604
IBM World Trade Corporation
21 United Nations Plaza, Now York, Now Yok 10017
International)

This Newsletter No. SN31-2806
Date June 15, 1978
Base Publication No. SY27-2349-
File No. None
Previous Newsletters None

270 Information Display System
 Physical Planning Informay System
 Installation Manual
 IBM Corp. 1973, 1974, 1975, 1976

his Technical Newsletter provides revised covers which limit the scope of the base publication o the early units of the 3270 Information Display System (3271, 3272, 3275, 3277, 3284, 3286 , and 3288). The pages to be inserted and/or removed are:

Cover, ii

Reader's Comment Form (front and back) (removed and not replaced) Reader's Comment
Blank, Back Cover

Note: Please file this cover letter at the back of the manual to provide a record of the change hat have been made.

[^0]: Order through Program Information Department (PID). Order through Program Information Department (PID). Order one copy for each host site and one copy for each

[^1]: Diagram 1-2A. Switch/Indicator Unit (Model 2)

