File No. S360-26
Order ¥o. GC33-4000-3

,a

Systems Reference Library

0S ALGOL Programmer’'s Guide

Program Numbers: 360S-AL-531 (ALGOL Compiler)
360S-LM-532 (ALGOL Library)

0S Release 21

This publication describes how to compile, link-edit,
and execute a program written in the IBM Operating
System Algorithmic Language (ALGOL). It includes an
introduction to the operating system and a description
of the information listings that can be produced, the
job control language, and the subroutine library. The
publication also contains information about, and a de-
scription of, the 0S ALGOL F Independent Component
Release.

The intended audience for this publication includes
application programmers, system programmers, and IBM
system engineers.

11111

Page of GC33-4000-3
Replaced Sep. 29, 1972
by TNL GN12-5900

Fourth Edition (January 1972)

This is a major revision of, and obsoletes, GC33 - 4000 - 2 and Technical Newsletter
GN33-8091. Changes to the text and to illustrations are indicated by a vertical line
to the left of the change.

This edition applies to release 21 of the IBM O]erating System and to all subsequent
modifications until otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the specifications herein. Before using this publication
in connection with the operation of IBM systems, consult the latest SRL Newsletter,
Order No. GN20 - 0360, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader’s comments. If the form
has been removed, comments may be addressed to IBM Program Product Center,
43 Schwabstrasse, 7000 Stuttgart, Germany. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1967, 1968, 1969, 1970, 1972

This publication is intended for use by
Application Programmers, System Programmers
and IBM Systems Engineers. A knowledge of
ALGOL is assumed, and the reader is
expected to be familiar with the
prerequisite publication

0S_ALGOL lanquage, Order No. GC28-6615.

In Section 2, the description
*IBM-Supplied Cataloged Procedures’
provides sufficient information to process
and execute an ALGOL program that can use
the IBM-supplied cataloged procedures
without modification.

The rest of Section 2, together with
information in Section | and the
Appendixes, will be required for progranms
that cannot use the IBM-supplied cataloged
procedures without modification.

The description of information listings
in Section 3 and the list of diagnostic
messages given in 'Appendix F' will be
helpful in interpreting system output,
especially for debugging.

An extensive index has been provided to
assist the reader in using the manual for
reference purposes.

This publication contains most of the
information required by the Applications
Programmer. The following pulklications are
referred to within the text for information
beyond the scope of this publication.

Preface

0S_Assembler_language, Crder No.
GC28-6514

0S_Loader_and_Linkaqge Editor, Order
No. GC28-6538

0S_JCL_Reference, Order No. GC28-6704

0S_Qperator!'s_pProcedures, Order No.
GC28-6692

0S_Operator's Reference, Order No.
GC28-6691

0S ptilities, order No. GC28-6586

OS_FORTRAN IV library, Order No.
GC28-6596

0S_Messages_and_Codes, Order No.
GC28-6631

0S_Supervisor Services and Macro
Instructions, Order No. GC28-66u46

O0S_Data Management Macro Inmstructions,
Order No. GC26-3794

0S_Sysgen, Oorder No. GC28-6554

0S_Data_Management for System
Programmers, Order No. GC28-6550.

SECTION 1: INTRODUCTION
Source PrOgTal « « « o+ o o o o o @
Operating System . . .
Job Control ¢« ¢« ¢ .« « .
Control Program . .
Job Scheduling .
SUpPervisor
Data Management . . .
Processing Programs . .
ALGOL Compiler . . « « « &
Llinkage Editor
Load Module Execution
Loadeér « ¢ « ¢ ¢ o o o o o o o
Machine Configuration

SECTION 2: SOURCE PROGRAM HANDLING
IBM-Supplied Cataloged Procedures
Compilation « o .
Compilation and Llnkage Ed1t1ng
Compilation, Linkage Editing and
Execution < . .
Compilation and Loading
Over-riding Cataloged Procedures
Over-riding EXEC Statements .
Over-riding LT Statements . .
Adding DD Statements
User-Written Procedures . .
Compilation . . . « o .
Invoking Statement o o
Data Sets Used
Linkage Editing
Invoking Statement . . .
Data Sets Used . . « « ¢« . . .
Load Module Execution
Invoking Statement
Data Sets Used . . . ¢« « « .+ .
Loading . ¢ ¢ ¢ ¢ o ¢ o o o o o
Invoking Statement
Data Sets Used « « « « « « « .

.
.
.

" e s 0
.
.

SECTION 3: INFORMATION LISTINGS .
Control Program Listings
Compilation Listings
Source Program .,
Identifier Table . .
Diagnostic Messages
Storage Requirements
Linkage Editing Listing
Diagnostic Messages
Module Map e e o e e
Cross—Reference Iable e e o o
Execution Time L1=t1ngs e e e o
Diagnostic Messages
Data Storage Areas . . . « o o o«
ALGOL Program Trace . « « « « &
Loader and Execution Listings . .

ne o «

SECTION 4:
Capacity Limitations o« o
Invoking a Program within a Job Ste
Precompiled Procedures «
ALGOL Language Procedures . . .

PROGRAMMING CONSIDERATIONS

P

¢ s & @

Page of GC33-4000-3
Replaced Sep. 29, 1972
by TNL GN12-5900

Contents

Assembler Language Procedures .
Entry and Start
Definitions .« ¢ ¢ &« ¢ « o o &
Register Use
Parameter Handling
Termination

APPENDIX A: ALGOL IIBRARY ROUTINES
Fixed Storage Area . « « « o« « o+ o
Mathematical Routines
Input/Output Routines . . .
Error Routine . . . « &« ¢ ¢ o o &

APPENDIX B: IEBM-SUPPLIED CATALOGED
PROCEDURES ¢« ¢ o ¢ ¢ o o o o o o o

APPENDIX C: CARD CODES

APPENDIX D: OBJECT MCDUIE
APPENDIX E:
Control Statement Format
Conventions for Format Description
Control Statement Coding
JOB Statement
EXEC Statement
ALGOL Compiler Optlons .
Linkage Editor Options .
Program Execution Options .
Loader Options . i -« « o « o @
LT Statement . « « ¢« « o ¢ o« « @
PROC Statement <« .« =
Coamand Statement . .
Delimiter Statement .
Null Statement
Corment Statement . .
Using a Private Library . « o
Job Contrecl Language Exanples « .

APPENLIX F: DIAGNOSTIC MESSAGES .
Compiler Messages . « « o« o o o« «
Linkage Editor and Loader Messages
Execution Time Messages . . .+ « .

APPENDIX G: INDEPENDENT COMPONENT
RELEASE (ICR) o« . .
Description of 0S8 ALGOL F ICR . .

Information About the 0S ALGOL F ICR

Installation of OS ALGOL F ICR . .
Define and Catalog SYS1.ALGLIB .
Add a Procedure CRSRC to
SYST1.PROCLIB .. & « &« &« « o« & o =
Add a Member OPTIONS to
SYS1.PROCLIB . .« « &« « « =« . .
Sample of Starting Reader to
Process DTR

Description of Optional Materlal of

OS ALGOL F ICR ¢ v @« ¢ o o o

INDEX . « ¢ ¢ 4 o o« o « o o o o

USING JOB CONTBCI LANGUAGE

¢ & e
&
o

.
&
o

96.1
96.1
96.1
96.2
96.2
96.2
96.3
96.3
96.3

97

[4)]

Figures

Figure 1. Basic Flowchart for
Handling an ALGOL PrograkmR . . .

Figure 2. loader Step Return Codes

Figure 3. Sample Deck for Using
ALGOFC Cataloged Procedure with a
Single Scurce Program. . « « . .
Figure 4. Sample Deck for Using
ALGOFCL Cataloged Procedure with
tvwo Source Pragrams. . . .
Figure 5. Flowchart shOW1ng Data
Sets Used by the Compiler . . .
Figure 6. Data Sets Used by the
ALGOL Conmpiler . . e o o e
Figure 7. Effect on Compller Data
Sets if more than 44K Bytes of
Main Storage is Availakble. . . .
Fiqure 8. Flowchart Showing TCata
Sets Used by the Linkage Editor
Fiqure 9. Lata Sets Used by the
Linkage Editor e s e o & & a
Figure 10. Flowchart Showing Data

Sets Used at Load Module Execution.

Figure 11. Data Sets Used at
Execution Time . o . .« .
Figure 12.

Program or Load Module in a
Load-and-Execute Step . . .
Figure 13. Data Sets Used by the
Loader and by the Loaded Program
or Load Module« . . .
Figure 14. Example of Source
Program Listing . . . « o e e
Fiqure 15. Example of Identlfler
Table Listing. . . . « o o e
Figure 16. Examrple of Storage
Requirements Listing.
Figure 17. Example of
Cross-Reference Table Listing. .

Chart shov1ng Bata Sets
Used by the Loader and by a Loaded

12
14

17

20
21

22
22
22
24
25

26

217
33
34
34
34

Figure 18. Example of Error
Message and Data Storage Area
Listing. . . « « . < « < . ¢ < .
Figure 19. Example of Progranm
Trace Listing. . « ¢« ¢ ¢ o « o «
Figure 20. Table of Parameter
Characteristics for an Assemkler
language Precompiled Frocedure.
Figure. 21. An Assembler lLanguage
Procedure . « « ¢ « o o o o o o
Figure 22. An Invoking ALGOL
Prografe o« o« o« o o o o o o o o o
Fiqure 23. Takle of ALGCL Likrary
Modulese « ¢ o ¢ ¢ o o o « o o o
Figure 24. Source Program Card
Codes .« « . o

Figure 25.
DeCKke ¢« o« ¢ o o o o o o o o o o
Figure 26. Format of Control
Statements e e o o o o o o o o
Figure 27. Data Set Cataloging
Using Qualified Names
Figure 28.
Figure 29. EXEC Statement
Parameters e« e e e o o o o =
Fiqure 30.
Figure 31, I/0 Flow for Example 1
Figure 32. Job Control Statements
for Example 1
Figure 33. Basic I/0 Flou for
Example 2.- . .
Figure 34. Job Control Statements
for Example 2 . . . « o e
Figure 35. I/0 Flow for Example 3
Figure 36. Job Control Statements
for Example 3 ¢ . o .
Figure 37. Job Control statements
and Source Module for Example 4§
Figure 38. Job Control Statemrents
and Source Module for Example §

1he Object Module Card

JOB Statement Farameters

DD Statement Parameters

38
35

43

4y

45
47

wm e (3} wm
=) tn o w

59
69
71
71

172
72

73
74

74

LINKAGE_EDITOR_TABLE

Maintenance
The table of linkage editors has been
updated for completeness.

MESSAGE_IEXO011I

Maintenance
The explanation of message IEX01II has
been rewritten for clarity.

SUMMARY OF _AMENDMENTS

D e e T e e e

0S_Release_ 21

IITLE _CHANGES

The names of reference publications
have been changed to reflect their
current titles.

The primary constituent of a System/360
data processing operation is a job. This
basically, is the work the user requires
the computer to do. To carry out a job, a
computer needs two types of information --
a program and data.

. A program is a sequence of
instructions which specify the actions
to be performed by the computer.

These instructions are written in a
symbolic language and are translated
into machine language by a processing
program contained in the operating
syster before they are performed.

. Data is the information to ke
processed by the program. The source
program is regarded as data while it
is being processed by operating system
programs to make it suitable for
execution,

Discussions of the source program and
the operating system appear below, followed
by the machine configuration necessary to
compile and execute an ALGOL job.

Source Program

For jobs discussed in this publication, the
source program will be written primarily in
System/360 Operating System ALGOL
(Algorithmic Language). This is defined in
0S_ALGOL_lanrguage. In addition the
programmer must observe the restrictions,
caused by internal capacity limitations,
listed in Section 4.

An ALGOL source fprogram may be written
in free form on any 80-column coding sheet.
The program text is contained in columns 1
to 72. Columns 73 to 80 can be used by the
programmer for program identification. To
avoid confusion with job contrcl statements
(see 'Operating System'), the character
sequences // and /* must not be used in
columns 1 and 2. It is possible to avoid
these combinations since these sequences
are syntactically incorrect outside strings
and when they occur within string quotes
(* *). Two character sets are available
for punching the source program into a card
deck (see 'Appendix C').

For operations that require more precise
control over the computer than can be
provided by ALGOL, subprograms written in
Assembler language can be included in the

Section 1: Introduction

ALGOL program (see Section #). Assembler
language subprograms can also be used as a
link to other languages, such as PL/1,
COBOL and FORTRAN. The Assembler language
is defined in QOS_Assembler_ language.

Operating System

The System/360 Operating System is a set of
IBM-supplied control and processing
programs (supplemented if necessary by
user-written programs) that assist the
programmer to use the computer efficiently.
The operating system selected for a
particular installation is generated during
the initial setting-up of the computer, by
a process known as system generation.

JOE CONTROL

Operating system instructions (known as job
control statements) must te added to the
source program to control its handling
within the operating system and to specify
the data management facilities required.

These statements do not need to be
specified until the program is ready to be
executed. This means that the program can
be prepared independently of installation
considerations.

Eight types of statements are available,
which, in conjunction with associated
parameters, can supply all information
required by the operating system for job
control. To save programeming effort,
commonly used sequences of control
statements can be stored by the system for
subsequent recall by identifying names.
These sequences are known as catalcged

JOB is the first statement of each job.
It indicates that a new job is beginning
and, consequently, that the previous jcb
has ended. A job can be divided into a
nunber of job_steps, which can be
inter-related to improve processing
efficiency. For example, the execution of
one job step can be made dependent on the
result of a previous one. This is an
important feature of the operating systen,
and users are recommended to exploit it as
fully as possible.

Intrcducticon 9

EXEC (Execution) is the first statement
in each job step. It specifies the program
or cataloged procedure to be executed, and
must be included even if the job consists
of only one job step.

DD (Data Definition) is the statement
used to describe a data set and to specify
associated data control block information.
It also specifies input/output (I/0) device
assignment. One or more DD statements are
usually required for each joL step.

In addition to the above JCL statements,
the command statement is used to place
operator commands into the input strean,
the null statement indicates the end of the
last job in the input stream, and the
delimiter statement separates data from
subsequent control statements when
sequential scheduling is used. The command
statement, when used, must immediately
precede a JOB, EXEC or null statement.

The job control statements required for
an ALGOL source program are described in
Section 2. For a complete discussion of
job control language, see 0S_JCL Reference.

CONTROL PROGRAM

The control program is the primary progranm
within the operating system. It is divided
into a number of functions. Those
affecting the applications programmer are
described in the following text.

Job_Scheduling

A job scheduler is included as part of the
control program to control the flow of jobs
and allocate the I/0 devices required. Two
forms of job scheduling are available.

With sequential scheduling the jobs are
carried out in the order they are presented
in the input stream to the computer.

With priority scheduling a summary of
the input Jjob stream is stored on a direct
access device and jobs are carried out in
order of priority (as specified in the JOB
control statement). Any hold-up in the
execution of a program, due , for example,
to a delay in mounting a volume, will cause
the job scheduler to select the next job
available (in order of priority) and then
return to the higher priority jot when it
is ready.

10

The supervisor is a set of subroutines,
included in the control program, for
transferring control of the central
processing unit of the computer frcm cne
program to another and co-ordinating I/0
operations. Initialization and termination
of all programs described in this
publication are achieved using the standard
method given in 0S_Supervisor_ Services_and
Macro_Instructions.

Data_Management

(This sub-section is a summary of data
management facilities. Full details are
given in OS Data Management Services.

ta_Se Data is usually stored on I/0
devices and is only brought into main
storage for processing. It is organized
into data sets. These are collections of
records that are logically related (for
example, a set of test readings).

System/360 Operating System allows a
data set to be identified and accessed by
symbolic name only, without any reference
to its location on the storage device. To
do this, the operating system builds a
catalog of data set locations against
names. This catalog resides on one or more
direct access volumes. A yolume is one
complete physical unit of storage such as a
tape reel or a disk pack. It may contain a
number of data sets, or alternatively ocne
data set may stretch over a number of
volumes., Data sets are created using DD
statements.

Data_Control Blocks: The operating system
must be provided with information
describing the characteristics of a data
set before the data set can be processed.
This information is assemlkled in the data
control block (DCB) associated with each
data set. Data control blocks are
automatically created for each data set
that is to be processed by the program, and
are completed from two sources:

1. Any information provided in the
program is included first.

2. Information provided by the LT
statement is then included, but cannot
over-ride any information stated in
the program.

In the case of an existing data set,
further information is taken from the
data-set label. Again, this cannot
over-ride previously inserted information.
Any DCB information provided by the

programmer is checked by an appropriate
routine to ensure its validity and to
assign default values.

Data_Set_Labels: Data set labels, if
requested by the programmer in the DD
statement, are created by the operating
system to store information relevant to the
data set, such as name and retention
period. Tapes must have been previously
initialized. The labels can supglement
information in the data control tlock and
serve as identifiers during accessing.
They are positioned at the beginning and
end of the data set.

Records_and_Blocks: Records are the
smallest items of data which can ke read or
written separately. Their length can be
specified as fixed, variable or undefined.
The unit of length is known as a Lyte,
which is normally equivalent to one
character. For mechanical reasons it is
necessary tc have a fixed-length gap
between each record. This means that the
smaller the average length of the records,
the smaller the amount of information that
can be stored in a given area of storage.
To conserve space a numker of records can
ke grouped together to form a blcck, which
is treated as a single record for I/0
operations. The complete block is read
into main storage and then unblocked for
the required record toc be processed.
Record format and block size are defined in
the data control block. For fixed-length
records block size must be a multiple of
record length. This multiplication factor
is known as the blocking factor.

A control character can be specified for
inclusion in each record of a data set.
This selects carriage control when the data
set is printed, or stacker when the data
set is punched.

Data_Set_Organization: According to how
they are going to be used, records can be
organized within the data set in a number
of ways, as described below. Only
sequential organization can be used with
ALGOL.

Sequential organization is a
characteristic of I/0 devices such as tape
units. To access a particular record the
data set must be read sequentially until
the record is found. This is satisfactory
for many applications where a large
proportion of the records will be reguired
on each run but could be time-consuming
where data is being accessed randcmly.

To avoid reading each record in turn the
indexed sequential method is often
employed, in which the location of the
required record is found from an index at
the beginning of its data set. On a disk
pack the specification of a record location
is broken down into two levels - cylinder
and track. Each level has its own index.
With large data sets up to three levels of
master index can also be used. Overflcw
areas are provided for the primary storage
area so that insertions can Lke made.

Alternatively, a data set can be
called members. A directcry is built up at
the beginning of the data set so that each
member can be accessed independently Ly
specifying its name as a suffix to the data
set name. This form of data set is
described as a library.

Direct organization allows records to be
stored and retrieved using an absolute or
relative address (cylinder, head, track).
For example, an algorithm could be used tc
determine the address from data in the
record.

Access _lanquage: When using assembler
language, two access languages are
available to store and retrieve records.
The gueued access language provides a full
range of buffering and blocking facilities
to improve processing efficiency. It can
only be used with sequential and indexed
sequential data sets.

The basic access language gives the
programmer more direct control over the I/0
device but does not provide buffering and
blocking facilities. These must be

PS8 =3B -2

Services and Macro_Instructions).

Access_Methods: The data set organization
and access language used are comkined to
fully describe the method of handling a
data set, for example, Cueued Sequential
Access Method, Basic Partitioned RAccess
Method, etc. The access method is
specified in the data control block.

Input/Output Devices: Data can ke stored
on a number of input/output devices
depending, among other things, on the
method of data set organization required.
The devices most commonly used in
scientific and engineering installaticns
are:

Introducticn 11

Card readers
and punches
Printers (out-
put only)

Paper targpe
devices

Magnetic tare
devices

Disk storage
devices

Data cell stor-
age devices

Drum storage
devices

All data handled by
these devices is
sequentially organized.

These are

direct access devices
and can be used for
sequential, indexed
sequential or parti-
tioned organization.

A console typewriter is used for direct
two-way communication between the operator
and the operating systen.

are used to provide overlapping of reading,
writing and processing operations. The
transfer of data between main storage and
I/0 devices is controlled through units

known as channels.

PROCESSING PROGRAMS

In addition to the control program, a
number of processing programs are included
in the operating system, depending on the

requirements of the installation.

To carry

out a job that contains a source program
written in ALGOL the following processing
programs are required:

1. ALGOL compiler

2. Linkage editor or loader

The ALGOL compiler processes the source
program to translate it into machine

language.

The translated source progran

(known as the object module) is then

processed by the linkage editor or,

alternatively, by the loader.

The linkage

editor and the loader have a common

function:

they combine various routines,

drawvn from the ALGOL library (see 'Appendix

A'), with the object module.

When the

linkage editor is used, the resulting

stored on an auxiliary storage device;
subsequently, the load module may be read

into main storage and executed.

When the

lcader is used, the resulting program is
executed directly without being transferred

to auxiliary storage.

The basic sequence

of operations involved in compiling,
linkage editing and executing or in
compiling and loading an ALGOL program, is
pictured in Figure 1.

12

ALGOL Compiler

This processing program is available for
the F level of main storage size, and
requires a minimum of 44K bytes. If extra
storage capacity is provided it is used tc
increase compiler capacity (see Figure 6).

Initialization_and Termination: The
standard method is used for initialization
and termination of the compiler (see
‘Supervisor'). At the end of the
compilation one of the following return
codes is generated:

0 normal conclusion. Cbject module has
been generated unless both the NODECK
and NCLOAD operations (see 'Appendix
E') are specified in the invoking
statement. No diagnostic messages
have been listed.

4 object module has been generated .
unless both the NODECK and NCLOAD
options are specified, Only warning
diagnosic messages (severity code W)
have been listed.

12 process has tkeen completed but a
complete object module could not be
generated due to a serious error.
Diagnostic messages (severity codes S
and possibly W) have been listed.

16 process has been terminated abnormally
due to a terminating error. A
conmplete object module could therefore
not be generated. Diagnostic messages
(severity codes T and possikly W and
S) have been listed. The severity
codes are described in 'Appendix F'.

gutput: A successful compilation of an
ALGOL source program produces the following
output:

1. An object module (described in
'Appendix D') which can be

a. included in a data set for use as
input to the linkage editor
(optional) or the loader
(optional)

b; included in another data set to
give some other form of output,
such as a card deck (optional)

2. Information listings (described in
Section 3)

Source
Program

A

ALGOL
Compiler

Object
Module

(When Linkage Mhen Loader
Editor is used) is used)

v v

4 meaning a load module has been
produced but a severity 1 error, which
may cause an error at execution time
has been detected and listed.

8 meaning a load module has been
produced but a severity 2 errcr, which
may cause an abnormal termination at
execution time, has Lkeen detected and

listed.

12 meaning a load module has been
produced but a severity 3 errcr, which
will cause an abnormal termination at
execution time, has keen detected and
listed.

16 meaning process has Leen terminated
abnormally. A severity 4 error has
been listed.

Qutput: The following output can be

Linkage ALGOL Loader
Editor Library
3 Y
Load Loaded
Module Program
Execution

v

Load Module
Execution

Figure 1. Basic Flowchart for Handling an

ALGOL Progranm

Linkage Editor

The linkage editor is a standard processing
program used for all languages accepted by
the System/360. For ALGOL, it is used to
include routines from the ALGOL library.
It also has a wide range of optiocnal
functions, and is available for two levels
of main storage size - E level (where it
requires 15K or 18K bytes) and F level
(where it requires 44K or 88K bytes). A
full description is contained in CS_Loader
and_Linkage Editor.

Initialization and Termipation: The
standard method is used for initialization
and termination of the linkage editor (see
tsupervisor'). At the end of linkage
editing one of the following return codes
is generated:

0 meaning normal conclusion. A load
module has been produced.

prcduced by the linkage editor:

. A load module data set, stored on the
output library SYSLMOD.

. Information listings
Section 3).

(described in

LOAD MODULE EXECUTICN

The load module produced ry the linkage
editor is loaded into main storage by the
supervisor. When the loading operating is
complete, the supervisor passes control to
the load module, which is then executed.

Initialization and Termination: The
standard method is used for initialization
and termination of the load module (see
tSupervisor'). At the end of the
execution, one of the following return
codes is generated:

0 meaning normal execution has teen
performed.

4 meaning execution has been abnormally
terminated due to an error. A
diagnostic message has been listed.

_____ The following output is produced
by a successful execution of a load module:

. Results, etc., as specified by the
programmer.

. Information listings (described in
Section 3).

Introduction 13

Error Diagnostic

(SYSPRINT or SYSLOUT data set) for the loader will show the
severity of errors ecountered ty the loader.

T T Ll T]
| Return | Lcader | Loaded Program | |
| Code | Return Code | Return Code | Conclusion or Meaning |
k + + t 4
l i | | |
| | O | 0 | Program lcaded successfully, execution suc- {
| i | | cessful |
l b t + 1
I O | 4 | 0 { The loader found an error that may cause an |
{ + + 4 error during execution but no error occurred |
i | 8 LET | 0 | during execution of the loaded program i
k + + —+t 4
| | O | 4 | Program loaded successfully, bkut an error cc- |
i | | | curred during execution of the loaded progranm.|
| k + + 4
| 4 | 4 i 4 | The loader found an error that may cause an |
| s + 4 error during execution and an error did occurr|
| { 8 LET | 4 | during execution of the loaded program. |
L 4 i 1 4
L 8] L) L] L]
| 8 | 8 | | The loader found an error that could make exe-|
| | | | cution impossible - the loaded program was {
| | | | not executed. |
k + i + 4
| 12 | 12 | | Loader could not load program successfully, |
| | | | execution impossiktble. |
[[} L 4 4
L] T L ¥ 1
| 16 | 16 | | Loader could not load program, [
| | | | execution impossiktle. i
} L N A _1l
| |
| {
L 4

Figure 2. Loader Step Return Codes

Loader

The loader is a standard processing progran
of the IBM System/360 Operating System.

Its function is to load an object module,
to link various required submodules from a
submodule library, and to execute the
resulting program. Processing of the
object module by the loader and execution
of the program are performed in a single
step. By eliminating the intermediate
output and retrieval of load modules
involved when linkage editing and execution
are performed in separate steps, the loader
can ke used to achieve a significant
reduction in throughput time. The loader
can also be used to load and execute a
linkage editor produced load module. A
full description of the loader is provided
in QS_loader and lLinkage Editor.

Initialization_and_Termination: The
standard method is used for initialization
and termination of a processed otject or
load module (see !'Supervisor'). At the end
of locading, a return code is generated
which reflects the results of prccessing by
the loader, or the results of execution of
the loaded program. The possible return
codes are shown in Figure 2.

14

Qoutput: The following output is produced
by a successful loader step:

. Information listings (described in
Section 3).

. Results, etc., as specified by the
programmer.

Machine Configuration

To successfully carry out a job containing
a source program writtenm in ALGOL, a
certain minimum machine configuration must
be available. This is:

* An IBM System/360 Model 30, 40, 50,
65, 75, 85 or 91 with the scientific
instruction set or an IBM System/370
Model 135 (or higher) with the
scientific instruction set. Main
storage size depends on the program
being executed.

o For compilation, at least 64K bytes.

e For linkage editing, at least 32K
bytes.

For load module execution, variable,
depending on the size and arrangement
of the source progranm.

For loading, 17K bytes plus the loaded
program size (for MFT systems) or 18K
bytes plus the loaded program size
(for MVT systems).

I/0 device, provided that the total
size of the data sets which exist at
any one time does not exceed the
capacity of the device. A card reader
and printer will also be needed, but
these do not have to be part of the
System/360 configuration.

A console typewriter may be required

These figures include the space used by
the control program of the operating for diagnostic messages if there is anm
systen. error on the data set used for output
listings, and also to allow direct
two-way communication between the

. In a minimum configuration, all data

sets may use a single direct-access

operator and the operating system.

Introduction 15

Section 2: Source Program Handling

This section explains the job control
statements which must be provided with each
source program. These statements can
either be written for each job, or a
standard job control procedure can be
written and cataloged in the operating
system for use with a range of joks.

Using such a cataloged procedure
minimizes the number of job contrcl
statements that must be supplied ty the
programmer with each job. Therefore IBM
provides:

U Four basic cataloged procedures for
use with ALGOL.

. The means to temporarily over-ride
these procedures if the user requires
different or additional system support
to that provided.

] The means for the user to modify
permanently the IBM-supplied cataloged
procedures or to write his own
procedures and catalog them for
permanent reference.

In the statement formats used in this
section upper-case words must ke coded
exactly as they appear: lower case words
are used to indicate where the programmer
must supply information according to his
own regquirements.

IBM-Supplied Cataloged Procedures

The four cataloged procedures for ALGOL
which are surplied by IBM are:

ALGOFC compilation only

ALGOFCL compilation and linkage
editing

ALGOFCLG compilation, linkage
editing and execution

ALGOFCG compilation and lcading

To invoke these cataloged procedures,
the programmer must supply the following
job control statements:

. A JOB statement to indicate the start
of the job.

2. An EXEC statement indicating the name
of the cataloged procedure to be used.

16

3. DD statements indicating the location
of the source program and, for
execution, the data sets used or
created by the load module,.

The following text indicates the minimum
contents of these statements. For
requirements beyond this, reference shculd
be made to 'Appendix E'.

COMPILATION

The cataloged procedure to compile a scurce
program is ALGOFC. The job control
statements used in this cataloged procedure
are shown in 'Appendix B'. The following
statements can be used to invoke the ALGOFC
cataloged procedure:

//jobname JOB

V4 EXEC ALGOFC

//SYSIN DD {* or parameters defining an
input set containing the
source progran}

where 'jobname' is the name of the job. If
DD * is used then the source program must
follow immediately afterwards in the input
stream. For sequential scheduling, the
source program must then be followed by a
delimiter statement (/%).

If more than one source program is to be
compiled in the same job, all jok control
statements except the JOB statement must be
repeated for each source progranm.

A sample deck of job control statements

to compile an ALGOL source program is shown
in Figure 3.

COMPITATION AND LINKAGE EDITING

The cataloged procedure to compile an ALGCL
source program and linkage edit the
resulting object module is ALGOFCL. The
job control statements used in this
cataloged procedure are shown in 'Appendix
B'. The following statements can ke used
to invoke the ALGOFCL cataloged procedure:

//jcbname JOB

/7 EXEC ALGOFCL

//SYSIN DD {* or parameters defining an
input data set containing
the source program}

(/-
A

4
{ Source program (MATINV)

ﬁ/svsm DD *

ﬂ/ EXEC ALGOFC

)

///MATINV JOB 537, JOHNSMITH, MSGLEVEL=1

Figure 3.

where 'jobname!' is the name assigned to the
job. If DD * is used, then the source
program must follow immediately afterwards
in the input stream. For sequential
scheduling, the source program must then te
followed by a delimiter statement (/%).

If more than one source program is to be
processed in the same job, then all job
control statements except the JOE statement
rust be repeated for each source program.

If it is required to keep a load module
for use in a later job (as in the case when
the load module is a preconpiled
procedure), then the SYSLMOD DD statement
in the cataloged procedure must be
over-ridden to specify a permanent data
set., This has to be done for each load

Sample Deck for Using ALGCFC Cataloged Procedure with a Single Source Prograe.
This job compiles the MATINV source program used in Example

1 of 'Appendix E'.

podule that is kept. The over-riding
statement is placed at the end of the job
ster to which it applies, and has the form:

//LKED.SYSLMOD DD DSNAME=dsname (member),
/7 DISP= (MOD,KEEP)

where 'LSNAME' is the name of a partitioned
data set and 'member' is the memker name
assigned to the load module on the
partitioned data set.

Figure 36 shows the jolk contrcl
statements needed to compile and linkage
edit a precompiled procedure.

A sample deck of jok control statements
tc compile and linkage edit two source
programs is shown in Figure 4.

{//LKED. SYSLMOD DD DSNAME=WTHRPR(FORCST) , DISP=(MOD, KEEP)

///SYSIN DD DSNAME=FORCST,DISP=OLD

ﬁ/snspz EXEC ALGOFCL

///LKED. SYSLMOD DD DSNAME=WTHRPR(FILECR), DISP=(MOD, K EEP)

///SYSIN DD DSNAME=FILECR,DISP=0OLD

///STEP] EXEC ALGOFCL

//WEATHER JOB

Figure 4.

Sample Deck for Using ALGCFCL Cataloged Procedure with two Source Programs.

These two job steps compile and linkage edit the two source programs used in

Example 3 of 'Appendix E?Y,
on intermediate I/0 devices.

Both source programs have been previously stcred

Source Program Handling 17

COMPILATION, IINKAGE EDITING AND EXFCUTION

The cataloged procedure used to ccmpile an
ALGOL source program, linkage edit the
resulting object module, and execute the
load module produced by the linkage editor
is ALGOFCLG.

The statements used in this cataloged
procedure are shown in 'Appendix B'. The
following statements can be used to invoke
the ALGOFCLG catalcged procedure:

//jobname JOE

//JOBLIB DD DSNAME=dsname1,DISP=0LD
7/ EXEC ALGOFCLG
//SYSIN DD {* or parameters defining an

input data set containing
the source progranm}
//G0.ALGLDD02 DD DSNAME=dsname2

//GO0.ALGLDD 15 DD DSNAME=dsnamel5

where 'jobname' is the name assigned to the
job. ‘'dsnamel® is the name of a data set
that contains a precompiled procedure (sce
Section 4) which is called by the load
module being executed. The DD statement
containing dsnamel need not be used if no
precompiled procedure is used.

For a description of the correct use of
the JOBLIB DD statement when more than one
precompiled procedure is used in a job, or
when a precompiled procedure resides on
more than one data set, see 'Data Set
Concatenation' in 'Appendix E',

'dsname2'...'dsname 15" are the names of
input data sets required by the load module
at execution time and output data sets to
be created at execution time. In addition,
two data sets for printed output (ddnames
SYSPRINT and ALGDDO!) are supplied by the
cataloged procedure, and a data set for
input only can be specified by using the
following statement after the invoking
sequence just given.
//GO.SYSIN DD {* or parameters defining an
input data set}

If DD * is used then the data must follow
immediately afterwards in the input strean.
For sequential scheduling, the data must be
followed by a delimiter statement (/*).

If more than one source program is to be
processed and executed in the same job,
then all job control statements except the
JCB statement and the JOBLIB LD statement
must be repeated for each source program.

A sample deck of job control statements
required to compile, linkage edit and

18

execute three source programs is shown in
Figure 33.

COMPILATION AND LOADING

The cataloged procedure to compile a source
program and to load and execute the
compiled program (by use of the loader) is
ALGOFCG. The job control statements used
in this procedure are shown in 'Appendix
BY.

The following jobk control statements may
be used to invoke the ALGCFCG cataloged
procedure:

//jobname JOE
7/ EXEC
//ALGOL.SYSIN

ALGOFCG

DD {* or parameters defining
an input data set
containing the
source program}

//GO.ALGLDD02 ©ED DSNAME=dsname2

//G0.ALGLDD15 DD DSNAME=dsname 15

where 'jobname' is the name assigned to the
job. t'dsname2'... 'dsnamelS' are the
names of data sets required by and/or to be
created by the loaded module. Three data
sets for printed output (ddnames SYSLOUT,
SYSPRINT and ALGLDDO1) are supplied by the
cataloged procedure. An additional data
set for input only can be specified by
using the following statement after the
invoking sequence just given.

//GO.SYSIN DD {* or parameters defining an
input data set}

If LD * is used, then the data must
fcllow immediately afterwards in the input
stream. For sequential scheduling, the
data must be followed by a delimiter
statement (/*). If more than one source
program is to be processed and executed in
the same job, then all jok contrcl
statements except the JOB statement must Le
repeated for each source progran,

At system generation time, the user is
advised to specify SYSLOUT as an
alternative ddname to SYSPRINT for the
printer data set used by the loader (see 0S
Sysgen) . The loader cannot be used to load
an ALGOL object module if the SYSPRINT data
set is routed to a direct access device and
no alternative name has been specified for
the printer data set used by the loader.

A sample job containing the ccntrecl
statements needed to compile and load an
ALGOL source program, by use cf the ALGOFCG
cataloged procedure, is shown in Figure 37.

OVER-RIDING CATALQGED PROCEDURES

The programmer can change any of the
statements in a cataloged procedure, except
the name of the program in a EXEC
statement.

These over-riding conditions are
temporary, and will be in effect only until
the next job step is started. The
following text describes methcds of
temporarily modifying existing parameters
and adding new parameters to the EXEC and
LD statements used in the cataloged
procedures, The full list of parameters
available to the ALGOL programmer for these
statements, and detailed explanations of
the parameters, is given in 'Appendix E'.
The EXEC and DD statements used in the
IBM-supplied cataloged procedures are shown
in 'Appendix B',

Cver-riding EXEC Statements

In the EXEC statement, the programmer can
change or add any of the keyword parameters
by using the following format:

keyword.procsteg=cption
where

tkeyword! denotes any one cf the
parameters COND, PARM, ACCT, TIME, REGION
or DPRTY that is to be changed or added
to the procedure job step. TIME, REGION
and DPRTY are valid only for priority
scheduling. '

‘procstep' is the procedure jok step in
which the change or addition is to occur:
either ALGOL, LKEL or GO.

toption' is the new option required.

For example, if the EXEC statement used
to invoke the ALGOFCLG cataloged procedure
Was written as:

//stepname EXEC ALGOFCLG,PARM.ALGOL=DECK,
/7 PARNM.LKED=XREF,
// COND.GO=(3,LT,stepname.ALGOL)

then the following changes would ke made to
the ALGOFCLG catalocged procedure:

. In the PARM parameter of the job step
ALGCL, the option LECK would ke used
instead of the default option NCDECK
(assuming that the standard default
NODECK was not changed at systen
generation). Over-riding this option
will not affect the other default
options assumed for this parameter.

2., In the job step LKED, the option XREF
is specified for the PARM parameter.
Since the options specified in the
cataloged procedure were XREF, LIST
and LET, this statement has the effect
of deleting the options LIST and LET
since they vere not default options.

3. In the job step GG, the CONI parameter
code is changed from 5, as it appears
in the cataloged preccedure, to 3. 1In
this example, the code 3 causes the
job step GO to be bypassed if a
warning message is generated during
the job step ALGCI. Note that
although the other ortions (LT and
ALGOL) are not to be altered, the
entire parameter being modified must
be respecified.

If 'procstep! is not specified when
over-riding a multi-step cataloged
prccedure, the operating system makes the
following assumptions:

L] COND, ACCT, REGICN and DERTY
parameters apply to all procedure jot
steps.

° A PARM parameter aprplies to the first
procedure job step and any options
already specified in the PARM
parameters for the remaining procedure
job steps are cancelled.

. A TIME parameter specifies the
computing time for the entire jcbk and
any options already specified in the
TIME parameters for individual
procedure job steps are cancelled.

Over-riding LL_Statements

An additional DD statement is used in the
invoking sequence for each DD statement in
the cataloged procedure that is to be
over-ridden. The follewing format is used:

//procstep.ddname LD parameter list
where

tprocstep! is the procedure job step
containing the DD statement to ke
over-ridden: either ALGOL, LKED or GO. 1If
'‘procstep' is omitted, then the first
procedure job step is assumed. 'ddname' is
the name of the DD statement to te
over-ridden.)

is the list c¢f parameters
In both

tparameter list!?
that are being added or changed.
cases the whole parameter must be
specified. Unchanged parameters in the
original statement need not be specified.
For example, the statement

Source Program Handling 19

//ALGOL.SYSLIN DD SPACE= (400, (80, 10))

will change the SPACE parameter of the
SYSLIN DD statement in the ALGOL job step
so that space will be allocated for §0
physical records instead of 40.

DD statements that are used to over-ride
other DD statements in the cataloged
procedures must be placed immediately after
the EXEC statement invoking the cataloged
procedure, and must be in the same order as
their corresponding LD statements in the
cataloged procedures.

Adding_DD_Statements

Complete, new DD statements that are to be
added to the cataloged procedure use the
same format as over-riding DD statements,
The 'ddname' specified must not exist in
the job ster specified by 'procstep?!,
These new LD statements must follcow
immediately after the over-riding DD
statements which apply to the sanme
procedure jcb sterg.

User-Written Procedures

To supplement IBM-supplied cataloged
procedures, the user can add his oun
procedures to the procedure libkrary.
However, it is not necessary to include the
procedures in SYS1.PROCLIB until they have
keen tested. It is advisable to test the
procedures as in-stream procedures
(procedures included in the input deck),
before they are cataloged. By using this
facility the need for a job step to catalog
the procedure in test runs is eliminated.
For further information on in-stream
procedures refer to 0S_JCL_Reference.
Cataloging procedures is accomplished using
the IEBUPDTE utility program, described in
0S_Utilities.

The statements required in a procedure
are:

) EXEC statements to invoke the
programs.

. DD statements tc define the data sets
used by the progranms.

Information required to write procedures

is contained in the following text and in
Appendix E.

20

COMPILATION

Invoking Statement

The ALGOL compiler consists of ten load
modules contained in the link library,
SYS1.LINKLIBR, of the operating system. The
coppiler is activated by invoking its first
load module, named ALGOL, which then
internally invokes the other load modules
of the compiler.

The usual method of invoking the
compiler is by means of an EXEC statement
of the form

//stepname EXEC PGM=ALGOL

where 'stepname' is the name assigned to
the job step (optional).

Other EXEC statement parameters may ke
included if required (see 'Appendix E'),

(2 method of dynamically invoking the
compiler within a job step, by means of the
CALL, LINK, XCTL or ATTACH macro
instructions, is described in Section 4.)

SYSIN

Source

Intermediate Work Program

SYSUTI

SYSPRINT &
SYSABEND

Information
Listings

—

SYSUT2 COMPILER

SYSUT3

Object
Module
(optional)

SYSPUNCH

(optional)

SYSLIN

Flowchart Showing Data Sets Used
by the Compiler

Fiqgure 5.

Data_Sets_Used

The data sets used in the compilation
process are illustrated in Figure §, and
described in Figure 6. These data sets
must be specified by the programmer with
suitable LD statements.

Blocksize DCB information may be
specified by the user for SYSIN, SYSLIN,
SYSPRINT and SYSPUNCH. The maximunm

blocking factor depends on the main storage
. size available (see Figure 7). Record
length is fixed at 80 bytes for SYSIN,
SYSLIN and SYSPUNCH, and 91 bytes for
SYSPRINT.

The space required for the compiler data
sets depends on the size and structure of
the source program; however, it can be
assumed that only in rare cases will the
object module exceed four times the source
program, and usually much less will be
required.

Cevices
required

T Rl
Purpcse |Standard |

LI
|
| [ddname |
I' 4 L

Ll T
| For ALGOL source |SYSIN |Card reader?
|program | |
|
|For object module
|to be used by
|linkage editor
|
|For compilation
{listings

SYSLIN |Direct access
jor magnetic

| tape

i
SYSPRINT|Printer

|
SYSPUNCH |Card punchl
{

|For object module
| (copied from

|SYSLIN) |

|

|For intermediate SYSUT! |Direct access
|compiler working lor magnetic

| | tape

|

|For intermediate SYSUT2 |Direct access

|compiler working
|
i

|For intermediate SYSUT 3 |Direct access
|compiler working

|
l
|1Some form of intermediate storage, such
| as magnetic tape, may be used to reduce

| I/C delay for the central processing

| unit.
—_

|lor magnetic
|tage

— o T ey S T — T — — T 0 — T — S — o
be o o e - o e e S - —— T —— —— —— —— —— — —— —— — v — ——— = pe= aln o——— o

Figure 6. Data Sets Used by the ALGOL

Compiler

The primary quantity specified in the
SPACE parameter of the DD statements fcr
SYSUT1, SYSUT2 and SYSUT3 must be large
enough to contain the entire data set. The
use of a secondary quantity for any of
these data sets will increase the need fcr
main storage by 40 percent. The following
estimates can be used to allocate space on
a 2311 direct access device:

SYSUT!1 - 1 track per 100 source cards
SYSUT2 - 1 track per 100 source cards
SYSUT3 - | track per 20C source cards.

Processing of all data sets by the
compiler is independent of the I/0 device
used except for the intermediate work data
sets. These require magnetic targe or
direct access devices.

LINKAGE EDITING

Invoking Statement

The linkage editor is usually invoked with
an EXEC statement of the form:

//stepname EXEC PGM=IEWL

where 'stepname'! is the name assigned toc
the job step (optional).

Other EXEC statement parameters may ke
included if required (see 'Appendix EY).
IEWL specifies the highest-level linkage
editor in the installation operating
systen.

(A method of dynamically invoking the
linkage editor within a job step, ty means
of the CALL, LINK, XCTL or ATTACH
instructions, is described in Section 4.)

Source Program Handling 21

1] L Al
| Main storage sizes | Maximum blocking factor |
| (in bytes) at which | [
| changes occar | SYSIN SYSPRINT SYSLIN SYSPUNCH |
L R w |
] B T L}
45056 (44K)	5 5 5 1
51200 (50K)	S 5 5 5
59392 (58K)	€ 5 5 5
67584 (66K)	5 5 5 5 i
77824 (76K)	€ 5 S]
90112 (88K)	20 20 40 20
{ 104448 (102K)	20 20 40 20 I
120832 (118K)	20 20 40 20
139264 (136K)	20 20 40 20
159744 (156K)	20 20 40 20 l
184320 (180K)	40 40 40 40
212992 (208K) i 40 40 40 40	
L i d
Figure 7. Effect on Compiler Data Sets if more than 44K Bytes of Main Storage is

Available.

The capacity of internal tables in the compiler is increased at each of the
main storage sizes listed in this table, allowing, for example, a larger

number of identifiers to be included in the source program.

Therefore to get

optimum performance, the user is recommended to use this list when specifying
main storage size availatle to the ccmpiler.

Data_Sets_Used

The data sets used by the linkage editor
(see Figures 8 and 9) must be defined by
the programmer with suitable LD statements.

SYSLIN
Object
Module
SYSLIB
ALGOL
Library SYSPRINT &
_SYSABEND
Information
LINKAGE Listings
EDITOR
SYSUTI
Intermedi-
ate Work
Load
Module
SYSLMOD

Flowchart Showing Data Sets Used
by the Linkage Editor

Fiqure 8.

Blocksize DCB information may te
specified by the user for SYSLIN and
SYSPRINT if the F level linkage editor is
keing used. Maximum blocking factor is 5
when 44K bytes of main storage size is

22

available, and 40 when 88K bytes is
available. Record length is fixed at 80
bytes for SYSIN and 121 bytes for SYSPRINT.

LOAD MOTULE EXECUTICN

Invoking_Statement

The usual method of invoking the 1lcad
module generated by the linkage editor is
with EXEC statement of the form:

//stepname EXEC PGM=member name

where 'stepname' is the name assigned to
the job step (optional).

'member name' indicates the name of the
partitioned data set member which contains
the load module. This name is specified by
the programmer in the SYSLMOD DD statement
for the linkage editor. Cther EXEC
statement parameters may ke included if
required (see 'Appendix E').

(2 method of dynamically invoking the
load module within a job step, by means of
the CALL, LINK, XCTLI or ATTACH
macro-instructions is described in Section
4.)

r L] T

|Purpose |Standard |Devices

i {ddname |used

i +

|For object | SYSLIN |Direct access
|module input jor magnetic

| itape

|

|For load module |SYSLMOD |Direct access

|

|

|

|
Joutput, stored |
|as a menker of |
la partitioned |
|data set }
i |
|For ALGCL |
jlibrary, |
|SYS1.ALGLIB. A |
|partitioned datal
|set containing |
jroutines in load}
|module form |
| |
|For linkage | SYSPRINT|Printer?
|editing listings| i
| |
|For intermediate|SYSUTI
{linkage editcr | lor magnetic
|working | | tape

| |

It Some form of intermediate storage, such]
| as magnetic tape, may be used to reduce|
|
|
L

{
|
|
(
(
|
SYSLIB |Direct access
|
|
|
|
|
|

|Direct access

S - - —— — — — — — —— —— ——— — — — — — — — — — b @ - o]

I/0 delay for the central processing |
unit. |
d

Figure 9. Data Sets Used Ly the Linkage
Editor

Data_Sets_Used

Up to 16 data sets for use at execution
time may be specified by the programmer in
the ALGOL source program by using the
appropriate data set number. The numbers
used and the corresgcnding names of their
DD statements are listed below.

Data set number
used in ALGOL
SOURCE_PROGRAM

Corresponding
DLNAMES

SYSIN

ALGLDLO 1
ALGLLDO2
ALGLTLO3
ALGLDLDOU4
ALGLDLOS
ALGLDLO6
ALGLLTCO7
ALGLDLOS8
ALGLDLCS
10 ALGLDDI10
1 ALGLDL 11
12 ALGLDC 12
13 ALGLDE 13
14 AIGLDD 14
15 ALGLLLC 1§

LCoNOANNEWNh =0

Any reference to a data set number by an
I/0 procedure within an AIGOL source
program is translated into a reference to a
data control block using the corresponding
ddname. It is the responsibility cf the
prcgrammer to supply the LD statements
which correspond to the data set numbers
used in the ALGOL source program,

The execution time data sets are
illustrated in Figure 10 and described in
Figure 11. PFor ALGLDO2 to ALGLDD1S, case 1
in the column showing device used, aprlies
if the source program contains any of the
following:

o A backward respositioning
specification bty the procedures
SYSACTIU or SYSACT 13 for this data set.

. Both input and output procedure
statements for this dat set.

o Procedure statements which prevent the
compiler from recognizing whether
either of these applies; for example,
if the data set number or SYSACT
function number is not an integer
constant or if a precompiled procedure
is used.

If the source program has already teen
compiled and linkage edited in a previcus
job, then the data set on which it has keen
stored (in load module form) must ke
concatenated to SYSI.LINKLIB. Data sets
containing precompiled procedures called by
the source program (see Section 4) must
alsc by concatenated to SYS1.LINKLIB.

If the programmer specifies a TRACE,
TRBEG or TREND option in the EXEC statement
of the execution jok step, the semicclon
count (see Section 3) is stored
intermediately on a data set with the
ddname SYSUT1. The programmer must sugply
a corresponding DD statement if he uses
this option. The semicolen count is
converted to external form and transferred
to the SYSPRINT data set as soon as the
execution ends either by reaching the
logical end of the source program or due tc
an error.

The space required for the semicolon
count is:

Source Frogram Handling 23

For the main heading 6 bytes

For each semicolon 2 bytes

For each call of a

precompiled procedure 12 bytes
For each physical

record on SYSUT1 4 - € bytes

System/360 ALGOL permits data to be
temporarily stored on and retrieved from
external devices without conversion, using
the ALGOL I/0 procedures PUT and GET. If
the programmer uses this facility in his
source program, then he must supply a DD
statement with the ddname SYSUTZ. The
device specified by this statement for
storing such intermediate data should be a
direct access device to guarantee
reasonable performance, though programming
is performed independently between magnetic
tape and direct access devices. All data
passed by a single PUT is stored as one
record. This record will be as long as the
data passed, plus 8 bytes. The maximum
record length accepted is 2048 bytes.

The DCB information which may ke
specified by the user for execution time

data sets is blocksize, record format and
record length, except for the trace and
PUT/GET data sets (ddnames SYSUT1 and
SYSUT2) for which only Lklocksize may be
specified (up to a maximum of 2048 bytes).

Where SYSACT8 is used in the ALGOL
program and record format is specified in
the LD statement, RECFM=FA or RECFM=FBA
must be specified. 1If either one of these
formats is specified, SYSACTS8 must be used
in the ALGOL progranm.

For information not provided, default
values will be inserted by a routine in the
ALGCL library. In particular, klocksize is
assumed as 2048 bytes for SYSUT!1 and SYSUT2
if none is specified.

The record length for the SYSPRINT data
set is fixed at 91 bytes.

Load Module for Source
SYS1. Program, Precompiled

LINKLIB

Intermediate Work

SYSUT 1

SYSUT 2 LOAD

e ————
MODULE

Data Input

SYSIN &
ALGLDD02-15

Figure .

Procedures, and Error
Routine

Data Output

ALGLDDO1,
SYSPRINT &
SYSABEND

Information
Listings

Any of
ALGLDDO02-15
not used for
input

Flowchart Showing Data Sets Used at Load Module Execution.

The data input and output requirements are variable.

24

where 'stepname' is the name assigned to
the job step (optional). LCADER specifies
the loader program in the installation's

L
Standard |Device

Furpose ddname |Used
4

oy —— o

L] 1

| |

| |

} { 4 operating systen.
|For data input tc |SYSIN |Any input |
{load module | |device |
| | | | If the input to the loader is a load
|For execution time |SYSPRINT|Printer? { module generated from an ALGOL scurce
|listings | | | program, the EXEC statement must include
| | | | the following parameter
|For data output | ALGLDDO 1|Printer? |
| | | |
|For data input |ALGLDDO02}| 1.Cirect] PARM='EP=TIHIFSAIN'
|lor output | .« | access or |
| | . | magnetic |
| | . | tape | IHIFSAIN is the entry point name of a load
| |ALGLDD15|2.Any | module generated from an AIGCL source
| | | | program. Other loader options may be
|For intermediate |SYSUT1 |Direct ac~ | specified in the PARM field. (See
|storage of semi- | |cess or mag-| '*Appendix F' in this publication and QS
Jcolon counter when | Inetic tape | Loader and_linkage_ Editor.)
|TRACE is specified | | |
| | | |
|For temporary | SYSUT2 |Direct ac- | A method of dynamically invoking the
|storage when PUT | |cess or mag-| loader within a job step, by means of the
|is specified | jnetic tape | CALL, LINK, XCTL and ATITACH instructicns,
i | | | is described in Section 4.
| |
{1 Ssome form of intermediate storage, |
| such as magnetic tape, may te used to |
| reduce I/0 delay for the central |
| processing unit. |
L ‘ 4 Data_Sets_ Used

Figure 11. Data Sets Used at Execution
Time The data sets used by the loader and ty the
loaded program or load module (see Figures
12 ard 13) must be defined by the
programmer with suitatle LD statements.

LOADING

For the following data sets, record
An object module may be loaded and executed lengths are fixed as indicated:
in a single job step by use of the loader.
The loader can also be used to lcad and

execute a linkage editor processed load Lata _Set Record_Length
module.
SYSLIN 80 bytes

- SYSLOUT 121 bytes
Invoking Statement : SYSPRINT 91 bytes
The loader may be invoked by an EXEC Cther information on the data sets used
statement of the following form: by the loaded program or load module will

be found in the preceding section titled

//stepname EXEC PGM=LOADER 'Load Module Execution'.

Source Program Handling 25

SYSUT2

Data Input

SYSIN
ALGLDD02

ALGLDD15

Figure 12.

SYsuT1

SYSLIN

Object
and/or Load

SYSLIB Modules

ALGOL
Library

LOADER

- — —

v

Loaded
Program/
Load Module

SYSLOUT

Loader
Information

Listings

T3

Data Output

ALGLDDO1 &
SYSPRINT

Information

Any of ALGLDDO02-
> 15 not used for input

Chart Showing Data Sets Used by the Loader and by a Loaded EFrogram or Load

Module in a Load-and-Execute Step

b o o o e e e e e s e e s e - ——— —— — s S —— — - —— ok - -]

L} L] L)

| Purpose | Standard | Devices used

| | ddname |

(. 4 1

L] L] L}

| Loader | |

| | | . .

| For object module and/or | SYSLIN | Direct access or magnetic targe
| load module input | |

| i |

| For ALGOL Library, SYS1. | SYSLIB | Direct access

| ALGLIB. A partitioned | |

| data set containing routinesj| |

| in load mocdule form | |

| | |

| For loader information | SY¥YsLouT? | Printert?

| listings | |

| | |

| loaded Program/Load Module | |

| | |

| For data input | SYSIN | Any input device

| | |

| For execution time listings | SYSPRINT | Printer?

1 | {

| For data output | ALGLDDO1 | Printert

| | |

| For data input or output | ALGLDDO2 i 1. Direct access or magnetic
| | . | tape (see text)

I 1 i |

| | o l .

| | ALGLDDI15 | 2. Any input/output device

| | l

| For intermediate storage | SYSUT! | Direct access or magnetic tare
i of semicclon counter when] |

| TRACE is specified | |

| | |

| For temporary storage of | SYISUT2 | Direct access or magnetic tage
| data by load module | |

| (using PUT statement) | {

} i A1

|

| * Some form of intermediate storage, such as magnetic tape, may be used to reduce
| I/C delay for the central proccesing unit.

i

| 2 SYSLOUT must be specified at system generation as an alternative ddname to

| SYSPRINT for the printer used by the loader.

L

Figure 13. Data Sets Used by the Loader and by the Loaded Program or lLoad Module

Source Program Handling 27

Section 3: Information Listings

To assist the programmer to find the cause
of any faults in the processing cr
execution of his program, various forms of
information listings are produced for the
compilation, linkage editing and execution
operations. Some of these listings are
optional. Examples are illustrated in
Figures 14 to 19.

Control Program Listings

All three operations may produce listings
generated by the control program. These
are described in 0S_Messages_and_Codes.

The ABEND macro instruction for specifying
the main stcrage dump is described in 0S
Supervisor_Services and Macro_Instructions.

Compilation Listings

A successful compilation of an AIGCL source
program produces the following information
listings:

o Job control statement information
according to which MSGLEVEL option was
specified in the JOB statement.

° The source program supplemented by a
count of the semicolons occurring in
the program (cptional).

o A table giving details of all
indentifiers used in the progranm
(optional).

L Any warning diagnostic messages.

. Information on main storage
requirements at execution tinme.

If a serious diagnostic message is
produced (meaning that object module
generation has ended), then the scurce
program and identifier table listings will
be printed in full if they have Leen
requested, but the information on main
storage requirements will not bhe printed.
If a terminating diagnostic message is
produced, then the source program and
identifier table listings can be printed
only as far as they have been produced.

28

SOURCE PROGRAM

If the SOURCE orption has bheen specified,
the source program is transferred by the
compiler to an output data set in order to
be listed by a printer. This source
program is supplemented by a semicolon

‘count, which is referred to in the

diagnostic messages to help localize
errors.

The compiler generates this semicolon
count when scanning the source program by
counting all semicolons occurring in the
source program outside strings, except
those following the delimiter 'COMMENT®'.
The value of this semicolon count at the
beginning of each record of the source
program is printed at the left of that
record. It is assigned by the compiler in
order to have a clear, problem-oriented
reference. Any reference to a particular
semicolon number refers to the segment of
source program following the specified
semicolon; for example, the semicclon
number 5 refers to the program segment
between the fifth and sixth semicolons.

IDENTITIFIER TABLE

If the SOURCE option has keen specified, a
list of all identifiers declared or
specified within the source program is
transferred by the compiler to the output
data set for printing after the source
program listing. This identifier table
gives information akout the characteristics
and internal representation of all
identifiers. The identifiers are groutged
together within the identifier tatle
according to their scopes.

A1l blocks and procedure declarations
within the source program are numbered
according to the order of occurrence of
their opening delimiters 'BEGIN' or
'PRCCEDURE', Therefore, if the kody of a
procedure declaration is a block, then
usually this tklock has the same number as
the procedure declaration itself. These
numbers are called program_block numbers
(even if they belong to a procedure
declaration and not to a klock).

Each line in the taktle contains entries
for up to three identifiers. A line begins
with the number of the program klock in
which the identifiers were declared or

specified, the value of the semicolon count
at the commencement of the program klock,
and the number of the immediately
surrounding program block. Each identifier
entry contains:

1. The external name of the identifier as
it appears in the source progranm.
Space for six characters is provided
and, if necessary, the identifier is
truncated.

2. The type key, as described below.

3. The number of dimensions (for array
identifiers), components (for switch
identifiers) cr parameters (for
procedure identifiers). This position
is blank for all other types of
identifiers.

4., The disrlacement for the quantity
denoted by the identifier, as
explained below.

The type_key consists of five characters
denoting the type characteristics of the
identifier. These characters are as
follows (b rerresents blank):

when real

when integer

when Boolean

when anything else

In first position:

when laktel
when switch
when string (text)
when anything else

In second position:

oawnH o -

In third position: when array
when procedure

when anything else

o

In fourth position: N when formal param-

eter called by name

V when for mal
parameter
called by value

b when declared
identifier
(not formal
parameter)

In fifth position: C when precompiled
(code) procedure
b when anything else
Examples of these are:
For a real variable Rbkkb
For a Boolean array BbAtb

For a formal param-
eter specified inte-

ger procedure

called by name IEPNL
For a precompiled
Frocedure bbEbC

and has the following meaning:

. For all identifiers denoting simple
variatles, arrays and formal
parameters, it is the relative
position of their values in the data
storage area, as described Lelow.

] For all identifiers denoting labels,
procedures and switches (if not
specified as formal parameters), it is
the relative position of the
corresponding entry in the latel
address takle, as descriked below.
This position is known as the latel
number (LN).

The space allocated to each identifier
is as fcllows:

For formal parameters: 8 bytes
For Boolean identifiers: 1 byte
For integer identifiers: 4 bytes

For real identifiers: U4 bytes when
SHORT is specified; 8 bytes when LCNG is
specified.

For arrays: see 'Storage Mapring
Function' below.

At execution time, for each program
block, a data_storage_area (DSA) is created
dynamically at each entry of the program
block and is released when leaving it. The
lengths of the data storage area and the
relative positions of all data contained in
them are determined by the compiler. These
relative positions, together with the
program block numbers, uniquely identify
the guantities of an ALGOL program. Twuo
forms are used according to whether the
SHCRT or LONG option was specified in the
invoking statement.

The data storage area of a program tklock
contains locations for:

1. The values of simple variakbles

2. The storage mapping functions of
arrays (see Lelow)

3. In the case of formal parameters, the
type characteristics and addresses of
the actual parameters

4, Intermediate results, addresses, etc.

Information Listings 29

A label address_table is created by the
compiler and transferred to the otject
mnodule. In general it is used at execution
time to load a branch register before any
branch is performed. It contains addresses
corresponding to:

1. Library modules required

2. Labels

3. Procedure declarationmns

4. Switch declarations

5. Internal branches ('IF', 'FOR', etc.)
The storage marring function describes

the storage layout of an array. The

storage that the storage mapping function
requires in the DSA can be calculated from

s = 4(d + 5) + X,
where

s = number cf bytes in storage mapping

function
d = number of dimensions in array
X =4 if LONG is specified and is an

even number, 0 otherwise

DIAGNOSTIC MESSAGES

During the ccmpilation as many programming
errors as possible are detected and
appropriate diagnostic messages are
produced to help the programmer to identify
them. Diagnostic messages are caused by:

1. Programming errors. These are
detecjed and reported by the compiler
as far as they do not depend on the
dynamic flow of the program.
Programming errors depending on the
dynamic flow cf the program are
detected and reported by the load
module.

2. Violations of capacity limitations.
Such viclations are detected and
reported by the compiler, where
possible. Those which cannct te
detected at compile time are detected
and reported ty the load module at
execution time.

3. I/0 errors caused by malfunction of
channels or external devices are
reported when they occur.

4. Control card errors not detected by
the job scheduler.

30

5. Program interrupts.

The diagnostic messages are transferred
to the output data set to be listed by a
printer. ‘*Appendix F' contains a list of
the messages that may be produced ky the
ALGOL compiler.

STCRAGE REQUIREMENTS

Following the diagnostic messages, the
compiler transfers information akout the
execution time storage requirements to the
output data set if the compilaticn finished
successfully. This information gives no
exact storage estimate of the object module
execution because the storage allocaticn
for data is performed dynamically at
execution time and depends on the flow of
control through the object module and on
the amount of data at execution time.

For example, the data storage area
belonging to a program block is allocated
only as long as that program block is
active. In the case of recursive
procedures more than one generation of the
corresponding data storage area may te
required. The storage needed for the array
is not contained in a data storage area and
depends on the execution time values of the
bounds of the array.

Nevertheless, a programmer knowing the
structure of his program may gain rough
storage estimates from the following
infcrmation given by the compiler.

1. Main storage required by the object
module, including takles and constant
pool.

2. A list of the main storage
requirements of all data storage
areas. This list consists of one
entry for each program block,
containing the program block number,
and the number of bytes required for
the corresponding data storage area.

Linkage Editing Listings

A successful linkage editing can produce
the following information listings:

. Job control statement information
according to which MSGLEVEL ofpticn was
specified in the JOEB statement.

. Disposition data, listing the optiomns
specified and the status of the lcad
module in the output library.

. Diagnostic messages (severity code 1).

. A cross reference table of the load
module, or alternatively, a module map
(both optional).

If a diagnostic message of severity code
2 or 3 is produced, other information
listings might not be produced. 1If a
diagnostic message of severity code 4 is
produced, other information listings will
not be produced.

DIAGNOSTIC MESSAGES

A description of the diagnostic messages
that may be prcduced by the linkage editor
is contained in 'Appendix F'.

MODULE MAP

If MAP is specified in the invoking
statement for the linkage editor, then a
module map is transferred to the output
data set to be listed by a printer. The
module map shows all control sections (the
smallest separately relocatakle units of a
program) in the load module and all entry
names (to routines in the ALGOL likrary) in
each control section. The controcl sections
are arranged in ascending order according
to their origins (which are temporary
addresses assigned by the linkage editor
prior to loading for execution). The entry
names are listed below the control section
in which they are defined. The corigins and
lengths (in bytes) of the control sections
and the location of the entry names are
listed in hexadecimal form. Unnamed
control sections are identified by $ in the
list.

At the end c¢f the module map is the
entry address of the instructions with
which processing of the module bkegins. It
is followed by the total length of the
module, in bytes. Both values are in
hexadecimal form.

CROSS—-REFERENCE TABLE

If XREF is specified in the invoking
statement for the linkage editor, the cross
reference table is transferred to the
output data set tc be listed by a printer.

~The cross reference table consists of a
module map and a list of cross references
for each control section. In the list of

cross references, each address constant
that refers to a symbol defined in another
control section is listed with its assigned
location (in hexadecimal form), the symbol
referred to, and the name of the contrcl
section in which the symbol is defined.

If a symbol is unresolved after
processing by the linkage editor, it is
identified by $UNRESCLVED in the list.
However, if an unresolved symbol is marked
by the never call function, it is
identified by $NEVER-CALL.

The entry address and total length are
listed after the list of cross references.

Execution Time Listings

A successful execution of the load module
produces the following information
listings:

o Job control statement information
according to which MSGLEVEL ogption was
specified in the JOB statement.

. The ALGOL program trace, which is a
list of the semicolon numbers assigned
by the compiler (optional).

If an error is detected during execution
of the load module, additional information
listings are printed before the trace:

. A diagnostic message

e The contents of the data storage areas
(optional)

DIAGNCSTIC MESSAGES

Any error detected at execution time causes
abnormal termination. A diagnostic message
is produced which is transferred to an
output data set to be listed by a printer.
The diagnostic messages which may ke
produced during load module execution are
listed in *Appendix F'.

CATA STORAGE AREAS

If CUMP is specified in the invoking
statement for the execution operation, the
data storage areas (DSA) in main storage
are transferred to the output data set to
be listed by a printer. They are listed in
the reverse order to which they were
created.

Information Listings 31

A DSA is created for each call of a
program block (see 'Compilation Listings?')
and exists in main storage as long as the
call is effective. The DSA contains:

1. All execution-time values of variables
declared or srecified in the progranm
block except for arrays. The array
values are stored separately but are
included in the listing because they
are referenced by the storage mapping
function which is contained within the
DSA.

2. Intermediate results (known as the
object-time stack).

The information listed for each DSA
cansists of:

. Name of load module
. Proéram block number

. Description of program block; either
BLOCK, PRCCEDURE or TYPE PROCEDURE

. The values in the DSA, in batches
according to their category, that is,
formal parameters, declared
identifiers and object-time stack,
arrays called by value, and declared
arrays.

The values are those which exist at the
time the errcr was detected (in hexadecimal
form). The displacement in the LSA of the
first value in each line is printed at the
beginning of each line. This is a six—-
digit hexadecimal number.

For formal parameters, each entry has 16
digits, and in the case of parameters
called by name the entry contains an
address constant pointing indirectly to the
value.

For declared indentifiers and the
object-time stack, the identifier entries
are listed first and they can be located
using the identifier tabkle if it was listed
by the compiler. The object-time stack
contains various intermediate results and
addresses which are not directly related to
the identifiers in the source program.

For arrays, the length depends on the
storage mapping function. The displacement
of the storage mapping function in the DSA
is given for each array.

In the listings, real values have a
length of 8 hexadecimal digits when SHORT
is specified and 16 digits when ICNG is
specified. They are in standard floating-
point representaticn. Integer values have
a length of 8 hexadecimal digits and are in
standard fixed-point representation.

32

Bcolean values have a length of 2
hexadecimal digits which appear as 00 for
'FALSE' and 01 for 'TRUE'.

An editing routine inserts blanks
between each set of 8 digits to improve
readability.

ALGOL PROGRAM TRACE

A prcgram trace, listing the semicolon
numbers assigned by the compiler (see
'Compilation Listings') in the order the
corresponding semicolons were encountered
during execution, is transferred to an
output data set to ke listed by a printer
if TRACE, TRBEG or TREND is specified in
the invoking statement for the executicn.
The completeness of the trace depends on
the option or options specified (see
'Arpendix E') . Only the semicolons
actually passed through at execution time
are included in the trace.

If a precompiled procedure is used in
the program and TRACE is specified, then
the semicolon numkers for the prccedure are
included in the correct position within the
program. The appropriate load-module name
(first four characters only) is inserted at
the beginning of the listings and each time
a change occurs in the first four
characters of the module name.

Loader and Execution Listings

The information listings printed by a
successful loader step may include the
following two categories of information:

1. Information specific to the processing
of the loaded program by the loader.
Depending on the options specified for
the job scheduler and the loader, and
on the outcome of loader processing,
the information may include:

e A list of the job contrecl
statements used to invoke the
loader (provided MSGLEVEL=1 is
specified).

e A list of the options specified for
and implemented ky the loader.

e 1A storage map of the loaded
program, showing the name and
absolute address of every control
section and entry point defined in
the program. The storage map is
printed if the MAEF option is
specified.

e Diagnostic message, if one or more
errors in the loaded program are
detected. The error messages
generated by the loader are similar
to those generated by the linkage
editor., A description of the
message format is provided in
'Aprendix F°'.

2. Information relative to the execution
of the loaded program. Depending on
the execution cptions specified and on
the successful execution of the loaded
program, the information printed may
include:

e A diagnostic message in the event a
program errcr (causing the loaded

SOURCE PROGRAM

sC SOURCE STATEMENT

program to be abnormally
terminated) is detected. Executicn
time diagnostic messages are listed
in 'Appendix F°'.,

Listings of the contents of all
existing data storage areas in main
storage at the time of an executicn
time error, provided the LUME
option is specified. The data
storage area is described above
under 'Execution Time Listings'.

Program trace information, as
described under ‘'Execution Tinme
Listings', provided omne of the
options TRACE, TRBEG or TRENL is
specified for the loaded program.

00000 'BEGIN' 'INTEGER' I; 'REAL' A; 'BOOLEAN' B;'INTEGER' 'ARRAY' IA(/1:5/);
00004 'ARRAY' AR(/0:3,2:8/); 'BOOLEAN' 'ARRAY' BA(/0:1,1:3,3:7/);

00006 'INTEGER' 'PROCEDURE' IP; IP:= I+5;

00008 'REAL' 'PROCEDURE' RP(A); 'VALUE' A; 'INTEGER' A; RP:=AxA;

00012 'PROCEDURE' P(A,B,C); 'BOOLEAN' A; 'REAL'

00016 A:=B<C
00017 I:=1; A:=2,6;

00019 AR(/1,1/):=1P;

00020 AR(/1,2/):=RP{(AR(/1,1/));
00021 P(BA(/0,1,3/),A,I);

00022 P(B,AR(/1,2/),IP);

00023 SYSACT(1,8,50); OUTREAL(1l,AR(/1,1/));
00025 OUTBOOLEAN(1,BA(/0,1,3/));
00026 OUTBOOLEAN(1l,B) ;

00027 :=A/0;

00028 'END'

Figure 14. Example of Source Program Listing

' INTEGER' Cj;

Information Listings 33

IDENTIFIER TABLE

PBN SC PBN NAME TYPE DM DSP NAME TYPE DM DSP NAME TYPE DM DSP
SURR PR LN PR LN) PR LN
001 00000 000 A R o1c AR RA 02 03C B B 020
BA BA 03 058 1 1 018 1A IA 0l 024
1P IP 00 070 P 03 078 RP RP 01 074
002 00006 001 1P IP 00 070
003 00008 001 A I Vv 020 RP RP 01 074
004 00012 001 A B N 018 B R N 020 c I N 028

Figure 15. Example of Identifier Table Listing.
This corresponds to the program in Figure 14,
STORAGE REQUIREMENTS (DECIMAL)
OBJECT MODULE SIZE 1840 BYTES.
DATA STORAGE AREA SIZES
PBN BYTES PBN BYTES PBN BYTES PBN BYTES PBN BYTES

oolL 136 002 32 003 40 004 60

Figure 16. Example of Storage Requirements Listing.
This corresponds to the program in Figure 14.

=-==— CROSS REFERENCE TABLE ===~

CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
00 730
IHIDSTAB 6D8 IHIENTIF 724
IHISYSCT# 730 5EC
IHISOREAs D20 328
IHISORAR D20 IHISOREL D30

IHIIORTN# 2580 B58

IHIIOROQ 2580 IHIIOROP 25AC IHITIORNX 28C4 IHIIORCL 2BOC
IHIIORCP 2C72 IHIIORGP 2D38 IHIIORCN 2D3C IHIIOREN 2D76
IHIIOREV 2DCE IHIIORED 2E40 IHIIORCI 2F 44 IHIIORER 2FCC

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

61C IHISYSCT IHISYSCT
658 IHISOREL IHISOREA
660 IHIOBOOL IHIOBOOL
D08 IHIIORCL IHTIORTN

/”“\,/"\,,f“\‘//f~\\~//—_//~\\//’"_/’*_//“_//’"__,//”§_//’“_,f’”"“\

«_‘,/"\s_—4"__,//_,/—’~\»“//’\‘\\,//P_//F\\‘——/ﬁ\M——/,—\\——*/’—\\\.///—\\xb_/’“\\‘__/_\\‘~

1F48 IHIFSARB IHIFSARB
1F5C IHIIORCP IHIIORTN
1F8l IHIFSARA IHIFSARA
ENTRY ADDRESS IF24
TOTAL LELNGTH 30D8

Figure 17, Example of Cross-Reference Table Listing.
This is part of the table produced from the program in Figure Il4. A Module
Map Listing would contain only the list of Control Sections and Entry Names,
plus the Entry Address and Total Length Information. Control Sections marked
with an asterisk were included from a library during automatic library call.

34

IHIO31lI

MODULE =

000018
000038
000058
000078

000000

000000
000020
000040
000060

000000

Figure

SC=00027

PSW= FF05000F 48005E22

GO PROGRAM BLOCK NUMBER = 001

(BLOCK)

DECLARED IDENTIFIERS AND OBJECT TIME STACK

00000001
00000004
0300003C
0001E44C

4129999A
02000024
0001E408
0000581C

SMF DISPLACEMENT IN
00000000 00000000

SMF DISPLACEMENT IN
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

SMF DISPLACEMENT IN
00000000 00000000

0001FF2C 01000000

0001E428 0001E430
0001E410 O0O0OlE42E
0001F560 400058C
DSA = 000058
00000000 00000000
DSA = 00003C
00000000 00000000

00000000 00000000
00000000 00000000

00000000 00000000
DSA = 000024
00000000 00000000

0001E49C
0001E4A0
0000001E

DECLARED
00000000

DECLARED
00000000
00000000
00000000

DECLARED
00000000

0001F4A0
00000070
0000000F

ARRAY
00000000

ARRAY
00000000
00000000
00000000

ARRAY

DIVISION BY ZERO, FLOATING POINT

0001E4B4
0000001C
00000005

00000000

41600000
00000000
00000000

18. Example of Error Message and Data Storage Area Listing.

00000014
00000004
00000001

00000000

42240000
00000000
00000000

This is the listing produced from the program in Figure 14 when the division
by zero was encountered.

ALGOL PROGRAM TRACE

MODULE

GO

SEMICOLON NUMBERS

00001 00002 00003 00004 00005 00006 00008 00012 00017 00018 00019 00007 00020
00009 00010 00011 00021 00013 00014 00015 00016 00022 00013 00014 00015 00016

00007 00023 00024

00025 00026 00027

END OF ALGOL PROGRAM EXECUTION

Figure 19. Example of Program Trace Listing.

This was produced from the program in Figare I14.

Information Listings

35

Section 4: Programming Considerations

Capacity Limitations

| In addition to those given in QS_ALGCL_Language, the following restrictions must be
observed when writing an ALGOL source program:

Number of fklocks and procedure
declarations (NPB) <285

Number of for statements <255

Number of indentifiers declared or

specified in one block or procedure

(F is at most twice the number of <179-F for type procedures
for statements occurring in that <180-F otherwise

block.)

Length of letter string serving

rarameter delimiter <1024 letters when the main
stcrage available is <50K
<2000 letters otherwise

Length of label indentifier <1024 characters when the
main storage availaktle
is <50K
<2000 letters otherwise

Length of source program $255K

Number of semicolons in the whole
progranm £65535

Number of nested tklocks, com-
round statements, fcr state-
ments and procedure declarations <999

Number of labels declared or ad-
ditionally generated by the
compiler <1024

The compiler generates the
following additional labels:

For each switch declaration 2

Ny

For each procedure declaration

For each procedure activation 1
(including function designators)

Fcr each 'THEN' and 'ELSE?! 1

For each for statement at most L+3 where L is
the number of for list
elements

Length of constant pool < (256-NPB) x 4096 bytes

36

The requirements of components
within the pool are:

Integer constant
Real constant (SHORT)
Real constant (LONG)

String (in bytes)

4 bytes
4 bytes
8 bytes
2+number of symbols of

open string between the
cutermost string quotes

is divided into blocks
The first block

The constant pcol
of 4096 bytes each.
contains the integer constants 0 to 15
bytes). BAll strings together are
restricted to £ill not more than the rest
of this block (4096 - 64 - 2S bytes, where
S = pumber of strings).

(64

No constant occurring more than once in
the source program is stored twice in the
same block; however, it may possikly be
stored more than once in different blocks.
Up to seven bytes may be left unused.

Length of data storage area
for each block or procedure
declaration <409€ bytes
Number of blank spaces

serving as delimiters on

I/0 data sets <2EE
Number of records in a

data set £32760
Number of records per

section <28%
Number of entries in the

Note Table (see below) <127
Identification number (N)

used by FUT or GET 0<N<65535

(The Note Table stores information to
retrieve records which may be required
again later. An entry for a record is made
each time the ALGOL I/0 procedures PUT and
SYSACT 13 are executed, and each time an
input operation, with backward
repositioning, follows an output operation
on the same data set.)

Invoking a Program Within a Job Step

Any one of the four macro-instructions,
CALL, LINK, XCTL, cr ATTACH, may te used to
dynamically invoke the compiler, linkage
editor, loader or a lcad module within a
job step. This is an alternative to the
more usual method of invoking a program by
starting a job step with an EXEC statement.

Full details of the four macro instructions
are given in 0S_Supervisor_ Services_and
Macro_Instructions.

To invoke a program with the CALL macrc
instruction, the program must first be
loaded into main storage, using the LOAL
macro instruction. This returns, in
general register 15, the entry address
which is used by the CALL macro

instruction. The instructions used could
be:

LOAL EP=member name

LR 15,0

CALL (15), (option address), V1

To invoke a program with one c¢f the
LINK, XCTL or ATTACH macro imstructions
would require:

LINK EP=member name,
PARAM= (option address), VI=1
or
XCTL EP=menber name
or

ATTACH EP=member name,
PARAM= (option address), VI=1

'‘member name' specifies the name of the
member of a partitioned data set which
contains the program required.

For the compiler, member name=ALGCL
For the linkage editor, member name=IEWL
For the loader, member name=LCALEER

For the load module, member name is
specified ty the programmer in the
SYSLMOL DD statement for the linkage
editor.

toption address' specifies the address
of a list containing the options required
by the user. Where the program invoked is
the loader (memkter name=LOADER) and the
input to the loader consists solely of one
or more linkage-editor-produced load

Programming Considerations 37

modules, the option list must include the
parameter EP=IHIFSAIN. The list must begin
on a half-word boundary. The first two
bytes contain a number giving the number of
bytes in the remainder of the list. (If no
options are specified this number must be
zero). The list itself contains any of the
options available to the PARM parameter in
an EXEC statement (see 'Appendix E').

When using CALL, LINK or ATTACH to
invoke the compiler, other ddrames may be
used in place of the standard ddnames given
in Section 2 for the data sets and an
alternative page number (instead of the
normal 001) may be specified for the start
of output listings.

If alternative ddnames are used, then in
the statement invoking the compiler 'option
address!' must be followed by 'ddname
address' giving the address of a list
containing the alternative ddnames. If
alternative page numbers are used, ‘page
address' giving the address of a location
containing the alternative page number must
be placed after 'ddname address'; though if
alternative ddnames are not required,
'ddname address' may be replaced ty a
COREma.

The ddname list must begin on a
half-word boundary. The first two bytes
contain a number giving the number of bytes
in the remainder of the list. The list
itself contains up to ten 8-byte fields,
separated by commas, for specifying
alternative ddnames for the data sets. 1&s
only seven data sets are used by the
compiler, three of the fields are left
blank. The alternative ddnames must be
listed in the following order:

Purpose of Data_sSet Standard_ddname

Output of object module SYSLIN
for linkage editor or
loader

--Three blank fields--

Source program input SYSIN
Information listings SYSPRINT
Cutput of object module SYSPUNCH
for card deck

Intermediate work SYSUTI
Intermediate work SYSUT2
Intermediate work SYSUT3

The field for a data set which does not
use an alternative ddname must ke left
blank if there is an alternative ddname
following. Otherwise the field is omitted.

38

The location containing the page nusber
must begin on a half word boundary. The
first two bytes contain a number giving the
number of bytes in the remainder of the
location (namely, four). These four bytes
contain the number for the first page of
the output listings, and on returm to the
invoking program they will contain the
numker of the last page.

An example of an invoking statement and
the associated lists, for the compiler, is:

COMPILE LINK EP=ALGCL,PARAM=
(OPTIONS,TDNAMES,PAGE),

vi=1

OPTIONS DC H*25! ,C'PRCCEDURE, DECK,
SIZE=90112?

CDNAMES DC H*35',C'0UTPUTbDb,3CL8'D?",
C'INPUTbbbL',3CL8'b',
CY*CARDDECK?

PAGE DC HY* Q4" ,Fr62"

b = BLANK

In this case, the PROCEDURE and DECK
options are specified and 88K bytes cf main
stcrage are made available. Alternative
ddnames are specified for SYSLIN, SYSIN and
SYSPUNCH, and 62 is specified as the first
page number for the output listings.

Precompiled Procedures

An ALGOL program may invoke one or more
subrrograms written in the ALGCI language
or in the Assembler language and stored on
a partitioned data set in load module form.
Subprograms of this type are known as
precompiled procedures.

A precompiled procdure to be invoked by
an ALGOL program must be nominally declared
in the calling program. The declaraticn
consists of a normal procedure heading,
followed by the delimiter 'CODE!?
representing the procedure body. The name
of the precompiled procedure declared in
the calling program must be the load module
name of the precompiled procedure.

A precompiled procedure is loaded into
main storage when control passes to the
program block in which the precompiled
procedure is declared, and is deleted when
contrcl leaves that block. Where possible,
a precompiled procedure should ke nominally
declared in the outermost block of the
calling ALGOL program. The declaraticn of
a precompiled procedure in another
precompiled procedure which is frequently
invcked, should be avoided. This saves
execution time by reducing the number cf
loadings of the precompiled procedure.

The precision of real values must be the
same, SHORT or LONG, in the callng ALGOL
program and the precompiled procedure. If
the installation allows multiprogramming,
the REUS option ('Arpendix E') may not be
specified for the precompiled procedure
load module, in the statement invoking the
linkage editor.

ALGOL ILANGUAGE PROCEDURES

A precompiled procedure written in the
ALGOL language must satisfy the rules, as
stated in 0S_ALGOL lLanquage, governing any
normal procedure declaration. That is to
say, the source mcdule should comprise a
procedure heading and a procedure body.

The source module should not be enclosed by
the delimiters 'BEGIN' and 'END'.

An ALGOL procedure to be invoked in a
later program must be compiled, linkage
edited and stored on a partitioned data
set. In the invoking statement, the source
module must be identified as a precompiled
procedure by specifying the opticn
PROCEDURE.

An example of the job control statements
needed to compile and linkage edit a
precompiled procedure is provided in Figure
36. Figure 37 illustrates the jcb control
statements needed to compile, linkage edit
and execute an ALGOL program in which a
precompiled procedure is called.

ASSEMBLE ANGUAGE PROCEDURES

A sample Assembler language procedure, and
an ALGOL program in which the procedure is
nominally declared and called, are shown in
Figure 21. Figure 37 contains an example
of the job control statements needed to
compile, linkage edit and execute an ALGCL
program in which a precompiled procedure is
called.

In writing an Assembler language
procedure, certain rules must be ockserved.
These rules are outlined below under the
headings Entry and Start, Cefinitions,
Register Use, Parameter Handling, and
Termination.

In the instructions given telow the
programmer may specify any valid names in
the name fields, provided the appropriate
name is used in all references.

Entry and Start

The entry point of the module must be
defined as follows (the names shown are
examples only):

ENTRY DC A(PBTAB,0,PARMDEF)
where 'ENTRY' is the location specified in
the END statements; 'PBTAB' references a
Program Block Table (see ‘'Definitionst,
item 1); 0 represents a dummy latel; and
PARMDEF references a list of two-byte
parameter definition constants or
characteristics (Figure 20), as follows:

FARMDEF DC Xl2'characteristic 1!
CC XL2'characteristic 2!

TC XL2'characteristic n!
(First instruction executed)

The list must include a characteristic
for each formal parameter and must be
followed by the first instruction to be
executed in the module. If the procedure
has no parameters, PARMDEF must reference
the initial instruction.

The following data must be defined in the
Assembler language procedure.

1. A 16-byte takle, called the Program
Block Table, must be defined:

PBTAE L[S F

DC CL4' (proc. name)'

DS F

DC H'(DSA length)*

DC X'04*['08* if tyre-
procedure]

LC X'0p' p=no. of formal
parameters

'*proc. name! represents the first four
characters of the module name. 'DSA
length' rerresents the length of the
procedure's data storage area. The
length is 24 (+8 if the procedure is
type-qualified), +8 x number cf fcrmal
parameters. The Program Block Takle
must be addressed by an address
constant at the procedure entry point
(see 'Entry and Start') and should
preferably be defined at the base
address of the procedure (see
*Register Use', item 4).

2. Certain registers used in
communicating with Fixed Stcrage Area

Programming Considerations 39

routines must be symbolically named
(see 'Register Use', item 1).

3. The following symbolic displacement
values must be defined for those Fixed
Storage Area routines which are
invoked in the procedure:

CAP1 EQU X'0Du!
CAP2 EQU X'0D8!
PROLOGFP EQU X'0ODC!
RETPROG EQU X'OE4!
EPILOGP EQU X'0QE8!
CSWE 1 EQU X'OFu4!
VALUCALL EQU X'118"

See 'Parameter Handling' and
*Termination?'.

4. A list of parameter definition
constants, identifying the character
of the formal parameters, if any, must
be defined. See 'Entry and Start' and
Figure 20.

5. An address constant containing the
address of the Program Block Table
(item 1 akove) and a parameter
definition list, must be defined at
the load module entry point.

The standard IEBM linkage conventions are
not implemented in any code generated by
the compiler involving a transfer of
control between an ALGOL load module and a
submodule. For this reason, provision must
be made in a submodule to insure that
externally used registers to be used
internally are, at entry, saved in a local
save area (and reloaded before exit), and
that, where necessary, internally used
registers are saved in advance of every
parameter call.

All general-purpose and floating-point
registers may be freely used in an
Assembler language procedure, subject to
the restrictions itemized below.

1. In the code sequences for calling
actual parameters (see 'Parameter
Handling'), registers 8, 10, 11, 13,
14 and 15 are symbolically referenced.
Every register so referenced in a
calling sequence within the
precompiled procedure must te defined
as follows:

ADR EQU 8
CDSA EQU 10
PBT EQU 11
FSA EQU 13

40

STH EQU 14
BRR EQU 15

2. During every call for an actual
parameter and before final exit fronm
the precompiled procedure, registers
CDSA (10), PBT (11) and FSA (13) must
contain their values at entry to the
procedure. At entry, CDSA addresses
the Assembler language procedure's
data storage area; PBT addresses the
Program Block Table (see
‘Definitions*, item 1); and FSA
addresses the Fixed Storage Area. 1If
any of these registers are used
internally, other tham in actual
parameter calls, their contents must
be saved in a local save area at entry
to the procedure, and must be reloaded
before all parameter calls and before
final exit.

3. Before every call for an actual
parameter, the contents of all
internally used registers required
after the parameter call should ke
saved in a local save area and
reloaded on return.

4, All registers except register 10, 11
and 13 are subject to varying use
during a parameter call. The
programmer is advised to use register
11 as base register and to specify the
Program Block Table ('Definitions?t,
item 1) in the USING statement, as
illustrated in Fiqgure 21. This
insures that the base register is
always correctly loaded before return
to the procedure.

Parameter Handling

A call for an actual parameter must ke
implemented by means of an appropriate
calling sequence, which depends on the
character of the parameter and on whether
it is called by name or by value.

In the instructions given below, the
notation 'displ!' represents the
displacement of a field reserved for the
formal parameter in the precompiled
procedure's data storage area. The
displacement of the storage field of the
nth formal parameter is 24 + 8 (n-1), excert
in the case of a type procedure, where it
is 32 + 8(n-1).

Important Note: Before every call for an
actual parameter, all locally used
registers should be saved and registers
CDSA, PBT and FSA should contain their
original values at entry to the precomriled
proccedure (see 'Register Uset'). On return

from a parameter call, locally used
registers should be reloaded.

Call by Name

1. Formal parameter specified 'ARRAY?',
YSTRING' or type *REAL', 'INTEGER' or
*BOOLEAN':

BAL BRR,CAP1(FSA)
DC H'8¢

DS H

L ADR,disgl (CDS3)

On return, register ALR addresses the
actual parameter value or string or
the actual array's storage mapping
function. The storage mapping
function describes the storage layout
of the array. Bytes 8 to 11 contain
the address of the first element in
the array. The array elements are
arranged in ascending order, a given
subscript being regarded as a unit of
the subscript position immediately to
the left. For example, if an array is
declared A(/1:2,1:2), the elements are
arranged as follows:

AU/, B(/V,27), AU/2,1/), B L/2,2/)
2. Formal parameter specified 'IABEL':

BAL BRR,CAPI (FSA)

DC H'8¢

DS H

L ADR,displ (CDSA)
B RETPROG (FSA)

3. Formal parameter specified 'SWITCH':

BAL BRR,CAP1(FSA)

DC H'8!

DS H

L ADR,displ (CDSA)

LA BRR, i[i=component numker]
BAL STH, CSWE! (FSR)

B RETPROG (FSA)

The sequence causes an unconditional branch
to the labelled statement in the calling
ALGOL progranm.

4. Formal parameter specified 'YPROCEDURE!'
or '<type>' 'PROCEDURE' with j formal
parameters:

BAL BRR,CAP1(FSA)

DC H'8"

DS H

L ADR,disgl (CDSA)

BAL BRR,PROLCGFP (FSA)

DC A (CODESEQI)

DC XL2'characteristic 1¢
DC H'j*

DC A (CODESEQ2)

DC XL2'characteristic 2¢
DS H

nC A (COLDESEQ])
TC XL2'characteristic j*
DS H

*Characteristic 1' represents the
two-byte constant (Figure 20) which
identifies the character of the first
actual parameter.

'CODESEQ1' represents the symbolic
address of an actual parameter ccde
sequence corresponding to the first
parameter, as follows:

CODESEQ1 LA ADR,paramaddr 1
B CAP2 (FSA)

where 'paramaddr1' represents the
address of the actual parameter. (If
the parameter is a string, the first
two bytes of the actual parameter
should contain the string length +2.)
A similar code sequence must be
included in the procedure for each of
the j parameters of the procedure, and
each code sequence must be addressed
by an address constant, as shown
above.

Execution of the calling seqguence
causes an actual procedure to be
called.

Call by Value

Formal parameter specified *ARRAY' or tyge

'REAL, 'INTEGER' or 'BOOLEAN':
BAL BRR,CAP 1(FSA)
DC H'8?
IS H
L ADR,displ (CCSR)

BAL BRR,VALUCALL (FSA)
DC Ht'displ®
DC CL2'characteristic?

*displ?' represents the displacement of the
formal parameter's storage field in the
data storage area; 'characteristic!?
rerresents the two-byte characteristic
(Figure 20) of the formal parameter.

In the case of a type specification, the
calling sequence causes the value of the
actual parameter to ke moved into the
8-byte field of the formal parameter. In
the case of an array, the address of the
array's storage mapping function is stored
in the first four tkytes of the formal
parameter's storage field. Bytes 8 to 11
of the storage mapping function contain the
address of the first element of the array.

Programming Considerations 41

Termination

At the close of a precompiled prccedure,
the following must be observed.

1.

42

Registers CDSA, PBT and FSA must,
where necessary, be relocaded with
their original contents at entry to
the precompiled procedure.

If the precompiled procedure is
type-qualified, the value of the

procedure must be stored at
displacement 24 in the data storage
area. The latter is addressed by
CDsSA.

The terminal instruction must be
B EPILOGP (FSA)

This returns control to the calling
ALGOL program.

1) L]
| | Characteristic Halfword | |
| Type of | (in hexadeicmal form) | Result after call of actual |
| Parameter ¢ T { parameter i
| { When called | When called | |
| | by name | by value | |
t + + 1 2|
| STRING | CB1O | | ADR contains address of string |
{ REAL | C212 | | AdR contains address of real value|
| REAL | | Cc222 | DISP in CDSA contains real value

| INTEGER | Cc211 | | ADR contains address of integer

{ | | | value

| INTEGER | | c221 | DISPL in CDSA contains integer

| | | | value

| BOOLEAN { C213 | | ADR contains address of Boolean

| | | | value

| BOOLEAN l | Ccz223 | DISPL in CDSA contains Boolean

| { | { value

| ARRAY or REAL | CAt6 | { ADR contains address of storage

| | | | mapping function (see below)

| ARBRAY \ | CA26 | DISPL in CDSA contains address of

| | | | storage mapping function

| INTEGER ARRAY | CA1S | | ADR contains address of storage

l | | | mapping function

| INTEGER ARRAY | | CA25 | DISPL in CDSA contains address of

| i | | storage mapping function

| BOOLEAN ARRAY | cCa1t7 | | ADR contains address of storage

| | | | mapping function

| BOOLEAN ARRAY { | Cca21 { DISPL in CLSRA contains address of

| | | | storage mapping function

| LABEL | Ca18 | { ADR contains address of label

| LABEL | | CA28 | ADR contains address of lakel

| SWITCH { Ca1lC | | ADR contains address of switch

| PROCEDURE | CADO | { If the actual procedure is

| | | i parameter-less then procedure is

| | | | called, otherwise ADR contains

| | | | address of procedure

| REAL PROCEDURE | CAD2 | | If the actual procedure is

| { | | parameter-less then procedure is

| l | { called, and ADR contains address

| | | { of real value, otherwise ALR

| l | | contains address of procedure

| REAL PROCEDURE { | C2E2 | DISPL in CLSA contains real value

| INTEGER | CaDIi | { If the actual procedure is

| PROCEDURE | | | parameter-less then procedure is

| | {] called, and ADR contains address

| | (| of integer value, otherwise ALK

| | | | contains address of procedure

| INTEGER | | C2E1 | DISPL in CDSA contains integer

| PROCEDURE { | | value

| | | |

| BOCLEAN | CArL3 | | If the actual procedure is

| PRCCEDURE | | | parameter-less then

| | | | procedure is called, and ADR

| | | | contains address of Boolean value,
| | | | otherwise ADR contains address of

| | | | procedure

{ BOOLEAN | | C2E3 | DISPL in CDSA contains Bcolean

| PRCCEDURE | | | value

L i i 4

b e oo e e e e . T S — — — —— A v S —— . o S S - . G S - fm D amn S G . m— - — —

Figure 20. Table of Parameter Characteristics for an Assembler Language Precompiled
Procedure.
The storage mapping function describes the storage layout of an array. Byte
0 contains a value denoting the number of subscripts in the array. Eytes 8
toc 11 contain the address of the first element in the array. Bytes 16 tc 19
contain a value denoting the size of the array.

Programming Considerations 43

*
ADR
CDSA
PBT
FSA
BRR

*

REGV1
REGADV1
REGV2

*

CAP1
VALUCALL
EPILOGP
RETPROG
*

PBTAB

ENTRY

ALSAVE
USSAVE
ONE
PARMDEF

LEXIT

START

EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

EQU
EQU
EQU
EQU

USING
DS
DC
DS
DC
DC

DC

DS
Ds
DC
DS
DC
DC
DC

ST
ST
BAL
DC
DS
L
LR
L
STM
L

BAL
DC
DS

BAL

EQU
L

L
BAL
DC
DS
L
B

FND

Figure 21.

44

8
10 MANDATORY
11 REGISTER
13 DEFINITIONS
15
CDSA LOCAL
FSA REGISTER
12 DEFINITIONS (OPTIONAL)
X'0D4"' MANDATORY
X'118"' FIXED
X'0E8' STORAGE AREA
X'0E4"' DEFINITIONS
PBTAB,PBT
F
CL4'CoMP' PROGRAM
F BLOCK
H'48' TABLE
X'04c3!'
A (PBTAB, C,PARMDEF)
2F SAVE AREA FOR CDSA AND FSA
15F AND FOR LOCAL REGISTERS
H'1' CONSTANT
0H
XL2'C211!' CHARACTERISTIC OF V1
XL2'c221" V2
XL2'CAl8" L
CDSA,ALSAVE SAVE CDSA
FSA,ALSAVE+4 AND FSA
BRR,CAP1 (FSA) CALL
H'8! V1
H BY
ADR, 24 (CDSA) NAME
REGADVL,ADR
REGV1, 0 (ADR) LOAD V1
12,10,USSAVE SAVE LOCAL REGISTERS
CDSA,ALSAVE RELCAD CDSA
FSA,ALSAVE+4 AND FSA
BRR,CAP1 (FSA) CALL
H'S' V2
H BY
ADR, 32 (CDSA) VALUE
BRR, VALUCALL (FSA) V2 IS CONVERTED TO INTEGER AND
STORED IN DSa
H'32'
XL2'Cc221!
USSAVE (4) , 32 (CDSA) MOVE V2 TO SAVE AREA
12,1C,USSAVE RELOAD LOCAL REGISTERS
REGV2 CONTAINS V2
REGV1,REGV2 COMPARE V1 TO V2
LEXIT V1l>v2
REGV1,ONE V1—>V2: ADD 1 TO V1
REGV1, 0 (REGADV1) STORE V1
CDSA,ALSAVE RELOAD CDSA
FSA,ALSAVE+4 AND FSA
EPILOGP (FSA) RETURN TO CALLING PROGRAM
*
CDSA,ALSAVE RELOAD CDSA
FSA,ALSAVE+4 AND FSA
BRR,CAP1 (FSA) CALL
H'S!' L
H BY
ADR, 4C (CDSA) NAME
RETPROG (FSA) RETURN TO CALLING PROGRAM
ENTRY

An Assembler Language Procedure.

The procedure is declared under the name COMP (in the ALGOL program shown
above) with the formal parameters V1, V2 and L. V! and V2 are integers,
while L is a label. COMP is called by the ALGOL program and compares V1 to
V2. If V1<v2, the constant 1| is added to Vi, and control is returned to the
next instruction in the calling program. If VI>V2, control is returned to
the calling program at the address specified for label L.

'BEGIN'
'INTEGER' I;
'PROCEDURE' COMP (V1,V2,L); 'VALUE' V2; 'INTEGER' V1,V2; 'LABEL' L;

'"CODE'
'COMMENT' THIS NOMINALLY DECLARES THE ASSEMBLER PROCEDURE COMP;
ININTEGER (0,I);
CONT: COMP (1,200.5,0UT);
'GOTO' CONT;
OouT:
'END'

Figure 22. An Invoking ALGOL Program.
The ALGOL program shown above reads a number from Data Set Number 0, assigns
the number to the variable I, and invokes the Assemkler lanquage procedure
COMP. The call to COMP includes three actual parameters: the variable I,
the constant 200.5, and the label OUT. COMP compares I 201 (200.5 converted
to integer). If I £ Z01, COMP adds t to I and returns control to the next
statement in the ALGCL program. COMP is then called again. The call is
repeated until I > 201, at which time COMP passes control to the statement
labelled OUT.

Programming Considerations 4§

Appendix A: ALGOL Library Routines

When processing the source program, the
compiler detects and specifies any routines
that need to be combined with the generated
object module before it can be executed.
These routines are contained in the
System/360 Operating System ALGOI library -
a partitioned data set with the external
name SYS1.ALGLIB. The routines are in load
module form and the linkage editor combines
them with the object module to produce an
executable load module. There are three
types of routines - fixed stcrage area
routines, mathematical routines and
input/output routines. Additionally, an
error routine, stored on the operating
system link library, SYS1.LINKLIE, is
called at execution time if an error
occurs.

Initialization and termination of the
library routines is performed using the
standard method (see ‘'Supervisor' in
Section 1).

Fixed Storage Area

General routines required to some degree by
all object mcdules are combkined into a
single load module known as the fixed
storage area (IHIFSA). These routines are
used to initialize and terminate execution
of the ALGOL program, to handle the DSA
when entering or leaving a program block or
procedure, to produce the program trace, to
load precompiled procedures, to get main
storage for arrays, to convert values from
real to integer and integer to real, to
call actual parameters, to handle tranches
in the program, toc handle progranm
interrupts, etc.

Mathematical Routines

Standard mathematical functions contained
in ALGOL have correspeonding mathematical

46

routines in the library, except for AES,
SIGN and LENGTH which are handled by the
compiler, and ENTIER which is contained in
the fixed storage area. Routines exist in
each case for both long and short precision
of real numbers.

These mathematical routines are taken
from the System/360 Operating Systenm
FORTRAN IV library and modified to conform
to the ALGOIL language requirements without
affecting the mathematical methods used.
Full details of these routines are
contained in OS_FORTRAN_IV_Library.

Input/Output Routines

Data transfer between the load module and
external data sets is performed by
input/output routines. These routines
correspend to the ALGOL I/0 procedures and
are mostly contained on separate load
modules (see Figure 23). In addition,
there is a single load module, IHIIOR,
which contains a number of commonly used
subroutines.

Error Routine

If an error is detected during executicn of
the load module, an error routine (in
SYS1.LINKLIB) is invoked. 1Its main purrose
is to construct the error message and
produce the data storage area listing
before passing to the termination routine
in the FSA. If a second error occurs while
the first is being handled (due, for
example, to an I/0 error or because the
object module has overwritten part of the
ALGOL library or control program), then
termination takes place immediately and
incomplete information listings may be
produced.

r Ll 1 1
{ Module Name | | Storage |
¢ - { When Used | Estimate |
| ALGOL | FORTRAN IV | | (bytes) |
t 4 t + 4
| IHIERR | | When an error is detected at execution time | 4270 |
| IHIFDD | IHCFLXPL | For an exponentiation (** or 'POWER') using | |
] | | long precision base and long precision exponent | 200 |
| IHIFDI | IHCFDXPI | For an exponentiation (** or 'POWER') using | |
| | | long precision base and integer exponent | 140 |
{ IHIFII | IHCFIXPI | For an exponentiation (** or 'POWER') using | i
		integer base and integer exponent	170
IHIFRI	IHCFRXPI	For an exponentiation (** or 'POWER') using	
1	integer base and integer exponent	1o	
IHIFRR	IHCFRXPR	For an exponentiation (** or POWER) using i	
		short precision base and short precision	
		exponent	200
IHIFSA		For every object (except those for {	
		precompiled procedures)	5030
IHIGER		For either GET or PUI	2420
IHIIAR		For INARRAY or INTARRAY	120
IHIIBA		For INBARRAY i 70	
IHIIBO	{ For INBCCLEAN	530	
IHIIDE		For either INREAL or ININTEGER	1560
IHIIOR		For every object module	2910
IHIISY		For INSYMBOL	270 i
IBILAT	IHCLATAN	For a long precision arctangent]
{		operation (ARCTAN) i 320	
IHILEX	IHCLEXP	For a long precision exponential operation (EXP)	4s {
THILLO	IHCLLOG	For a long precision logarithmic operation (LN) i 310	
IHILOR		For a long precision CUTRFAL operation] 730	
IHILSC	IHCLSCN	For a long precision sine or cosine operation	
		(SIN or COS) i 370	
IHILSQ	IHCLSQRT	For a long precision square root operation	
		(SQRT)	140
{ IHIOAR	{ FOR OUTARRAY 1 120		
IHIOBA		For CUTBARRAY 1 70	
IHIOBO		For OUTBOOLEAN	400
IHIOIN		For CUTINTEGER	410
THIOST		For OUTSTRING	300
IHIOSY		For CUTSYMBCL	290
IHIOTA		For OGUTARRAY	120
IHIPTT		For a long precision INREAL or OUTREAL	
		operation	270
IHISAT	IHCSATAN	For a short precision arctangent	
1		operation (ARCTAN)	200
IHISEX	IHCSEXP	For a short precision exponential operation (EXP)	280
IHISLO	IHCSLOG	For a short precision logarithmic operation (LN)	210
IHISOR		For a short precision OUTREAL operation	810
IHISSC	IHCSSCN	For a short precision sine or cosine operation {	
,		(SIN or COS)	260
IHISSQ	IHCSSQRT	For a short precision square roct operation	
i	(SQRT)	170	
IHISYS		For SYSACT	1520
[L A A J
Figure 23, Table of ALGOL Library Modules.

All are contained in SYS1.ALGLIB except IHIERR which is in SYS1.LINKLIB.
For mathematical routines, the corresponding name in the FORTRAN IV library

is also given.

Appendix A: ALGOL library Routines

47

Appendix B: IBM-Supplied Cataloged Procedures

The four cataloged procedures for ALGOL
that were introduced in Section 2 arxe
contained in the procedure library,
SYS1.PROCLIB, of the operating system.
They consist of the job control statements
listed below.

In order to provide support for the
dedicated work file facility, temporary
dsnames are specified in all four
procedures for the temporary data sets
SYSUT1, SYSUT2, and SYSUT3.

The procedures may be used with any of
the operating system job schedulers. When
parameters required by a particular
scheduler are encountered by another
scheduler not requiring those parameters,
either they are ignored or alternative
parameters are substituted automatically.
For example, if these procedures are used
with a sequential scheduler the following
parameters, which are required for the
multiprogramming option with variable
number of tasks (MVT), are treated as
follows:

REGION=xxxxK is ignored
SYSOUT=B is interpreted as UNIT=SYSCP
DISP=SHR is interpreted as DISP=(CLD,KEEP)

Before use, these procedures should be
studied with a view to modifying them for
greater efficiency within the particular
environment of the installation.

In installations using the MVT option of
the operating system, the REGION
specifications for the compilation and
linkage editing steps must be altered where
necessary to suit the availakle storage.
The REGION specification for the
compilation step must be at least 4K bytes
greater than the storage specified imn the
compiler SIZE option. When a tlocked SYSIN
data set is used, the REGION specification
may have to be altered (see Figure 7). 1In
the three procedures in which the linkage
editor is invoked, a REGION of 96K has been

48

specified for the linkage editing step. 1If
necessary, this REGION specification may be
reduced to conserve storage. The minimunm
REGION specifications for the variocus
design levels of the linkage Editor are:

linkage Editor REGICN_Specification

E15 24K
E18 26K
Fuu SUK
F88 96K
F128 136K

Installations using the MVT option must
also insert a RFGION specification for the
execution step in procedure ALGCEFCLG,
unless the default interpretation is
acceptable. The default interpretation is
the size required Lty the system task
initiator (i.e., 50K).

Installations not using the MVT option
of the operating system should remcve the
superfluous parameters.

In addition, the following general
recommendations should be considered:

When the MVT option is used, a SPACE
rarameter may be required for SYSERINT
if the device is other than a printer.

The PARM fields for compilation and
linkage editing steps should follow
installation conventions

The SPACE and UNIT parameters for
temporary data sets should be modified
according to installation configuraticn
and conventions

Blocking factors should be specified for
output data sets

For further information on writing
installation cataloged procedures, see the
publication QS_pPata_Management_ for System
Programpers.

Compilation, ALGOFC

//7ALGOL EXEC PGM=ALGOL,REGION=48K 00020000
//SYSPRINY DD SYSOUT=A 00040000
//SYSPUNCH DO SYSOUT=8 00060000
//7SYSLIN DD DSN=&LOADSET,UNIT=SYSSQ,SEP=SYSPUNCH, SPACE={360C,{10,4)%, *00080000
/7 DISP={M0OD,PASS) 00100000
//7SYSUT1 DD DSN=£SYSUT1,UNIT=5SYSSQ,SEP=SYSPRINT,SPACE={1024,150,10)) 00120000
7/75YSUT2 DD DSN=&SYSUT2,UNIT=5YSSQ,SEP=SYSUT1,SPACE=11024,150,10)) 00140000
//7SYSUT3 DD DSN=ESYSUT3,UNIT=SYSDA,SPACE=11024,140,10)) 00160000

Compilation and Linkage ALGOFCL

J//7ALGOL EXEC PGM=ALGOL,REGION=48K 00020000
//SYSPRINT 0D SYSOUT=A 00040000
//7SYSPUNCH 0D SYSOUT=8 00060000
J7/SYSLIN DD DSN=&ELOADSET,UNIT=SYSSQ,SEP=SYSPUNCH, SPACE=(3600,110,4)), *00080000
/7 DISP={MOD,PASS) 00100000
//73YSUT1 DD DSN=&SYSUT1,UNIT=SYSS5Q,SEP=SYSPRINT,SPACE={1024,(50,101}) 00120000
7/7SYSUT2 DD DSN=8SYSUT2,UNIT=5YSSQ,SEP=SYSUT1,SPACE={1024,1{50,10)) 00140000
775YS5UT3 DD DSN=&SYSUT3,UNIT=SYSDA,SPACE=(1024,140,10)) 00160000
//7LKED EXEC PGM=1€WL,PARM=*XREF,LIST,LET*,COND={5,LT4ALGOL),REGION=96K 00180000
7/7SYSPRINT DD SYSQUT=A 00200000
//7SYSLIN DD DSN=&LCADSET,DISP={0OLD,DELETE) 00220000
/7 DD CDNAME=SYSIN 00240000
//SYSLIB DD DSN=SYS1.ALGLIB,DISP=SHR 00260000
//SYSLMOD DD DSN=&GOSET{GO),UNIT=SYSDA,DBISP=(MOD,PASS), *00280000
/7 SPACE={1024,1504 20, 1)) 00300000
/7SYSUTY DD DSN=ESYSUT1,UNIT=SYSDA,SEP=(S5YSLIB,SYSLMOD), *0C320000
7/ SPACE=11024,150,20)) 00340000

Compilation, ILinkage Editing and Execution, ALGOFCLG

//ALGOL EXEC PGM=ALGCOL,REGION=48K 00020000
J/SYSPRINT 0D SYSOUT=A 00040000
//7SYSPUNCH DD SYSOUT=8 00060000
J/SYSLIN DD DSN=ELOADSET,UNIT=SYSSQ,SEP=SYSPUNCH, SPACE={3600,(10,4}), *00080000
7/ DISP={MOD,PASS) 00100000
7/7SYSUT1 DD DSN=&SYSUT1,UNIT=SYS559, SEP=SYSPRINT,SPACE={1024,{50,10)) 00120000
7/SYSUT2 DD DSN=&SYSUT2,UNIT=5Y55Q,SEP=SYSUT1,SPACE=(1024,(50,10)) 00140000
7/SYSUT3 DD DSN=&SYSUT3,UNIT=SYSDA,SPACE=(1024,140,10)) 00160000
J/LKED EXEC PGM=IEWL,PARM="XREF,LIST,LET*,COND={5,LT,ALGOL),REGION=96K 00180000
7/SYSPRINT DD SYSOUT=A 00200000
//SYSLIN DD OSN=&LOADSET,DISP={(0OLD,DELETE) 00220000
7/ DD DONAME=SYSIN 00240000
7/7SYSLIB DD DSN=SYS1.ALGLIB,DISP=SHR 00260000
4/7SYSLMOD DD DSN=EGOSET{GO),UNIT=5SYSDA,DISP=(MOD,PASS), *00280000
r7 SPACE=(1024,150420,13) 00300000
775YSUTY DD DSN=&SYSUT1,UNIT=SYSDA,SEP={SYSLIB, SYSLMOD), *00320000
1/ SPACE=(1024,150,20)) 00340000
7760 EXEC PGM=*,LKED.SYSLMOD,COND=0{5,1T,ALGOL) ,{5,LT,LKED)}) 00360000 -
77ALGLDDD1 DD SYSOUT=A 00380000
J/SYSPRINT DD SYSGUT=A 00400000
//SYSUTYL DD DSN=&SYSUT1,UNIT=SYS5SQ,SPACE=(10724,(20,10)) 00420000

Appendix B: IBM-Supplied Cataloged Procedures

49

Compilation_and_Loading, ALGOFCG

//ALGOL EXEC PCM=ALGOLREGION=48K

//SYSPRINT DL SYSCUT=A

//SYSPUNCH DD SYSOUT=B

//SYSLIN DL CSN=ELOADSEToUNIT=SYSSQ,SEP=SYSPUNCH, SPACE=(36CC,(1054))
// CISP={NCD,PASS)

//SYSUT]1 DD DSN=ESYSUT1UNIT=SYSSQSEP=SYSPRINT,,SPACE=(1024,1(5051C))
//SYSUT2 DD DSN=8SYSUT2,UNIT=SYSSQ,SEP=SYSUT1,SPACE=(1024,(5C,10))
//SYSUT3 DD DSN=ESYSUT3,UNIT=SYSCA,SPACE={1024,1{4C,1C))

//G0 EXEC PGM=LCADER»PARM=(MAP,LET,PRINT)COND=(S5,LTALCCL)

//SYSLIN DD DSN=ELOADSET+OISP={0LD+DELETE)

//SYSLIB CC CSN=SYS1.ALGLIB,DISP=SHR

//SYSLOUT DD SYSQUT=A

//SYSPRINT DD SYSOUT=A

//ALGLLCLCO1 DC SYSOUT=A

//SYSUT1 DD DSN=&SYSUT1,UNIT=SYSSQ,SPACE=(1024,120,1C))

0002C000C
goo4cCCCo
00060000
*00080000C
¢o1c¢CCCC
coLr2c¢Cco
00140000
0016C0OCC
¢018€¢C0C
00200000
goz22c¢Cco
¢0240C00
00260000
00280000
€030CCc0

Appendix C: Card Codes

The card deck of the source program is

g v h
punched line for line from the text written | i Card Codes |
on the coding sheets. The card code used | Characters 4
can be either a 53 character set in { | EBCDIC | IS0/DIN |
Extended Binary Coded Decimal Interchange b + + 94
Code (EBCDIC), or a U6 character set in | | | i
Binary Coded Decimal (BCD). The latter { A to 2 112-1 to 0-9 } 12-1 to 0-9 |
character set has been established as] { { |
standard for ALGOL by the International | 0 to 9 10 to | 0 to 9 i
Standard Organization (ISO) and Ceutsche | | | |
Industrie Normen (DIN). Fiqure Z4 shows |+ | 12-8-6 | 12 i
these two codes. | | | f

| - {1 1 11 |

| | | |
| * | 11-8-4 | 11-8-4 {
| | | |

L 7 10-1 | 0-1 {

| | | |

| = 18-6 | 8-3 |
| | | {

I . {0-8-3 | 0-8-3 {

| | | |

! . }112-8-3 | 12-8-3 {

| | | |

I 18-5 | 8-t |

| | | |

P« | 12-8-5 | 0-8-4 |

| | | |

i) }11-8-5 | 12-8-4 {

| | | |

| blank {no punch | noc punch |

t + + 4

| { | |

I < | 12= | |

| | } |

I > {0-8-6 | |

| I | |

(| 112-8-7 | |

| | | |

| & 112 | {
| | | |
| = {11-8-7 | |

{ | | |

{ 3 {8-2 | |

| | i |

(I {11-8-6 | |

I i 4 ']

Figure 24. Source Program Card Codes

Appendix C: Card Codes £1

Appendix D: Object Module

The object module is in a form acceptable
as input to the linkage editor, that is,
its records are card images having the
format of ESD, RLL, TXT and END cards (see
Figure 25). It is stored either on a data
set (ddname SYSLIN) in the linkage editor
library, or on an ocutput data set (ddname
SYSPUNCH), or on both. The parameters LOAD
and DECK, used to specify these storage
options are described in 'Appendix E'.

The object module consists of:

1. An initial ESD card defining the
control section. For a precompiled
procedure, the procedure name (up to 6
characters) is assigned to the control
section and entered into this record.

2. The Constant Pool containing all
constants and strings in the module.

The generated instructions.

The Label Address Talkle (see Section
3) for addressing branch instructions
in the module.

The Program Block Table containing an
entry for every program block. This
table indicates the active generation
of data storage areas (see Section 3)
and length of each data storage area.

The Data Set Table containing
information on the current status of
all data sets used. This table is not
produced for precompiled prccedures.
Program start information.

An END card.

ﬁND card

a l

Program start information

(ESD, RLD and TXT cards)
yd
Data set table (RLD and
TXT cards)

[

(Progrcm block table (RLD

and TXT cards)

yd
(chel address table (ESD,

RLD and TXT cards)

y4

(Generafed instruction /

(RLD and TXT cards)

y4
Constant pool
(TXT cards)

Definition of control
section (ESD card)

Figure 25. The Object Module Card Deck.
The ESL (External Symbol Dictionary) cards contain the external syambels that
are defined or referred to in the module. The RLD (Relocation Dictionary)
cards contain addresses used in the module. The TXT (Text) cards contain the

constants and instructions used in the module. The END card indicates the
end of the module.

Appendix D: Object Module 63

Appendix E: Using Job Control Language

This appendix describes the method of
writing job control statements, and
explains the options most frequently used
by the ALGOL programmer. A full
description of Job Control Language is

| given in 0S_JCL Reference.

ALGOL operates under the following options
of the operating system:

1. Multiprogramming with a fixed number
of tasks (MFT), using a priority
scheduler,

2. Multiprogramming with a variable
number of tasks (MVT), using a
priority scheduler.

Communicaticn between the user and the
operating system (via the job scheduler) is
effected through eight job control
statements:

1. Job Statement (JOB)

2. Execute Statement (EXEC)

3. Data Definition (DD)

4, PROC Statement

5. Command Statement

6. Delimiter Statement (/%)

7. ©Null Statement (//)

8. Comment Statement (//%)

Parameters coded in these statements aid
the job scheduler in regulating the
execution of jobs and job steps, retrieving
and disposing of data, allocating
input/output resources, and communicating
with the operator.

The control statements and their

parameters are explained individually
elsewhere in this appendix.

54

Control Statement Format

Control statements are distinguished from
othet statements by identifying characters
(//« 7/* and //*%), which must appear in
columns 1 and 2 or 1, 2 and 3 of the
standard 80-column card. Control
statements contain four fields, namely the
name, operation, operand, and comments
fields. In some statements one or more of
these fields may be vacant.

The name, operation and operand fields
in a control statement may not extend
teyond column 71. Column 72 must ke left
blank unless the statement is to be
continued on another card. A statement,
other than a command or comment statement,
may be continued on an additional card by
interrupting the statement at the end of an
operand, following the operand with a
comma, and (optionally) placing any
nonblank character in column 72. The
continuation card commences with the
ipitial characters // in columns 1 and 2,
followed by text starting in any cclumn
from 4 through 16.

Comment must be separated from the last
operand by one or more blanks. If the
comment is to be continued on another card,
it may be interrupted at any convenient
point and a non-blank character is put in
column 72. The continuation card commences
with the initial characters // and the
comment restarts on any column from 4 to 71
inclusive.

The valid formats of each control
statement are shown in Figure 26. 'Name!
denotes an identifying name assigned by the
programmer to the control statement. 2
name may contain from one to eight
alphameric characters, the first of which
must be alphabetic. The name is placed
immediately after the initial //
characters. If the name is omitted, then
at least one blank must separate the //
characters from the control statement
cperation. ‘'operand' denotes one or more
parameters, separated by commas.

) T -
| Control | {
| Statement | Valid Format {
t + 4
JOB	//name JOB operand
	conmentst!
{	
EXEC	//namel EXEC operand
	comnments?!
{ DD	//namel! DD operand
	comments? {
PROC	//namel® PROC operand
	comments?
Command	//operation (command) {
	operand comments?t
i	
Delimiter	/% commentst
	l
Null \ //	
Comment	//%* comments
- + 1
| | toptional 1
i [4
Figure 26. Format of Control Statements

Conventions for Format Description

The conventions used in this manual for
describing control statements are as
followus:

Urpper case letters and punctuation marks
(except those listed below) represent
information to be coded exactly as shown.

Lower case letters are general terms
requiring substitution of specific
information by the programmer.

These punctuaticn marks have a special
meaning:

- (hyphen) links lower case words to
form a single term for substitution

- (underscore) indicates the option that
will be assumed if none is specified

{ } (braces) mean only one of the optiomns
contained must be selected

[] (brackets) mean information contained
may be omitted

... (ellipsis) means that preceding item
can be repeated successively a number
of times.

Control Statement Coding

In the following description, certain terms
are used to indicate external names which
are to be specified by the programmer.
These terms and their meanings are:

Ierm Meaning

jobname name of job

progname name of program

stefpnanme name of job step

ddname name of DD statement
(the standard ddnames
which may be specified
are described in
Section 2)

procnane name of cataloged pro-~
cedure

procstep name of the job ster
within a cataloged
procedure

dsnanme name of data set

It is often convenient to use two or
more qualification levels to specify a data
set name. The highest level reference is
stated first. Thus in Figure 27, data set
D.M.H. is found by searching the index of
each volume in turn, starting with the
system residence volume (the primary vclume
in the operating system), to find the
location of data set D. This, when
searched, will contain the location of data
set D.M. which in turn will contain the
location of data set D.M.H.

vcolume index A D Z

data set D)} v} Z

data set D.M. A H Z
Figure 27. Data Set Cataloging Using

Qualified Names

A maximum of U4 characters can be used
for a qualified name. Thus, since a simgle
name can consist of between one and eight
characters, and each name must be separated
by the character period (.), a maximum of
22 gualification levels is possitle.

Pata set names can alsc be qualified by
a suffix, that is, 'dsname (element)', to
indicate the relative generation number.
For example, WEATHER (0) is the current
generation of the data set named WERTHER.
The preceding generation would be WEATHER
(1) . A new generation during creation is
known as WEATHER (+1), at the end of the

Appendix E: Using Job Control Language &S5

job it becomes WEATHER (0). A suffix is
also used to indicate the name of a member
of a partitioned data set, or the area of
an indexed sequential data set.

There are four types of job control
parameters for inclusion in the cperand
fields: positional parameters, keyword
parameters, positional subparameters and
keyword subparameters.

Positional parameters must be stated
first, and where more than one can ke
included they must be listed in the order
given in the following descriptions. A
conma must be substituted in place of any
positional parameter omitted, if it is to
ke followed by ancther positional
parameter, for example,

//nhame operation post,,pos3......

Keyword_parameters can be listed in any
order. They contain a keyword followed by
an equal sign (=) and some specific
information. All keyword parameters are
optional since a default option will exist
for any which must be specified.

One or more subparameters can ke
substituted for a positional parameter and
also for the information to the right of
the equal sign in the keyword parameter.

Positional subrarameters have the same

configuration and restrictions as
positional parameters.

Keyword subrarameters have the same
configuration and restrictions as keyword
parameters.

When two or more subparameters are used,
they must be separated by commas and the
list enclosed in parentheses, for example,

// name operation post,pos2,keyi=value,

Y4 key2=(subl,sub2)
Since some special characters, such as
the comma, parenthesis, blank and equal

sign, have a special significance when used
in control statements, no special
characters can usually be nsed in job
control information provided bty the user.
There are, however, some exceptions to this
rule. The special characters @, $, and #
can be represented normally. 2All other
special characters, except the apostrophe,
can be represented normally in the
programmer's name in the JOB statement, the
acounting information in the JOB and EXEC
statements, and the PARM parameter options
in the EXEC statement, provided that the
information is enclosed in apostrophes
(replacing the parentheses for a list of
more than one subparameter). An apostrophe

56

within this information is represented by
two consecutive apostrophes.

JOE STATEMENT

The name field of the JOB statement must
contain the external name for the job
(jcbname) .

The operation field must contain the
characters JOB.

The parameters available for the operand
field are listed in Fiqure 28, where:

accounting information
identifies the installation account
number to which the computer time for
this job is to bke charged. If the
installation has an appropriate
accounting routine, the account number
can be followed by other subparameters,
which are fixed by the user fcr his own
installation. If the account number is
omitted then its aksence must be
indicated with a comnma.

programmer's name
identifies the person respomnsible fcr
the job. It must not exceed 20
characters.

TYEFRUN=HOLD
indicates that the job is not to be
processed until a RELEASE command is
l issued by the operator.

BRTY=job priority
indicates the relative priority of the

job. A number from 0 to 13 is :
specified, with 13 being the highest

I priority.

CONL=((code, operator),...)
allows conditions for the termination of
the job to be specified. Up to eight
(code, operator) specifications may be
included in a COND parameter. Any
number between 0 and 4095 is substituted
for 'code' and one of the following six
relationships is substituted for
‘operator'.

Operator Meaning
GT greater than
GE greater than or equal to
EQ equal to
NE not equal to
LE less than or equal to
LT less than

'n' denotes an integer constant (0

r

|Positional [accounting—-information] or 1) indicating whether
|parameters [programmer's -name]) allocation and/or termination
t messages are to be printed, as
| follous:

|Reyvword CLASS=jobclass

|parameters

n=0: no allocation and/or termination
messages are to be written unless
the job terminates abnormally

| TYPRUN=HOLD
| (@ll optional)
PRTY=job-priority

COND=((code,operator),...)
n=1: all allocation and/or termination
messages are to ke written

m
MSGLEVEL= [(-,n)]
If MSGLEVEL=0 or MSGLEVEL=1 is
specified, the system assumes
MSGLEVEL=(0,1) or MSGLEVEL=(1,1)
respectively. 1If the MSGLEVEL rarameter
I is omitted, the default value defined in

MSGCLASS=classnane
REGION=nnnnnk

the reader interpreter procedure is
ROLL =({1§§}, YES}) assumed.
NO {ys
MSGCLASS=classname
allows job scheduler messages to be
written in a system output class other
than the one normally used by the
Figure 28. JOB Statement Parameters installation. The user can fix up tc 36
different classes (A to Z and 0 to 9),
depending on device type, priority,

b o e e . —— ————— — ———— — - ——— — k. - —]

\J
{
l
t
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
1
|
|
|
1
|
L

oo a o — — — ——— —— — —— —

TIME= (minutes, seconds)

At the completion of each job step, destination, etc., for these messages.
unless a system errcr occurs, the This parameter is not necessary if the
operating system will generate a return normal class (A) is required.
code between 0 and 4095 (see Section 1) to
indicate if the program was executed REGION=nnnnK
successfully or nct. If any of the code indicates the main storage size that is
numbers stated in the COND parameter is to be allocated to the job (including
related to the return code in the way system components) instead of the
specified by the associated operator then " default value established in the input
the job is terminated. For examgle, if reader procedure. nnnn is replaced by a

value between 0 and 16384; thus 32 would

COND= ((50,GE), (60,LT)) represent 32 x 1024 = 32768 bytes. This

parameter can be used only with priority
then the job will continue as long as the scheduling.

return codes range from 51 through €0.
CLASS=jobclass

MSGLEVEL={ m indicates the relative class of a job in
(m, n) systems with MFT. 'jokclass' is
specifies the information the job replaced by an alphabetic character, 2
scheduler is to write as cutput from a through O.

job. 'm' denotes an integer (0,1, or 2)
indicating the jcb control statements to

be printed, as follows: ROLL =({1§§}, {YES})
NO NO
m=0: only the JOB statement is to be indicates the rollout/rollin attributes
printed associated with a job in MVT systems.
The first subparameter specifies if the
m=1: all job control statements, job steps in this job can be rolled out
including cataloged procedure to provide main storage space for jcb
statements (with actual parameters steps in other jobs. The second
substituted for symbolic parameter specifies if the job steps in
parameters), are to be grinted other jobs may be rolled out to provide
: main storage space for job steps in this
m=2: all input job control statements, job. The ROLL parameter can be
but nc cataloged procedure specified in EXEC statements to contrcl
statements are to be printed rollout/rollin for individual job steps.

Arpendix E: Using Job Control lLanguage 57

TIME= (minutes,seccnds)

limits the computing time used by a job
by assigning a maximum time for its
completion. If the job is not completed
in this time, it is terminated.

The time is coded in minutes and
seconds. The number of minutes cannot
exceed 1439 (23 hours, 59 minutes); the
number of seconds cannot exceed 59. (If
the job execution time is expected to
exceed 1439 minutes, TIME=1440 can be
coded to eliminate job timing.)

If the TIME parameter is omitted, the
default job time limit (as established
in the cataloged procedure for the
reader/interpreter) is assumed.

EXEC STATEMENT

The name field contains the external name
of the job step (stepname). It may be
omitted if no reference is to be made to
the EXEC statement in another statement.

The operation field must contain the
characters EXEC.

The parameters available for the operand
field are listed in Figure 29, where:

PGM=prognanme
indicates that the job step executes the
program named 'progname'!, The program
must reside on a partitioned data set.

PGM=*.stepname.ddname

indicates that the job step executes the
program named by the DSNAME parameter of
a DD statement named *'ddname' that was
included ‘in a previous job step named
'stepname' in the same job. If
'stepname' refers to a jok step invoking
a cataloged procedure then a job step
within the procedure can ke specified by
putting its name after 'stepname?'; that
is, 'stepname.procstep'. The progran
nust reside on a partitioned data set.

PROC=procname
indicates that the job step executes the
cataloged procedure named 'procname?.

procname
has the same effect as PROC=procnanme

TIME= (rinutes,seccnds)
limits the computing time for the job
step. If 'seconds' only is specified
then a comma must be substituted for
'minutes'. If 'minutes' only is
specified then the parentheses can be
deleted.

58

COND= ((code,operator,stepname),...
cee + [EVEN
ONLY

sees)

allows conditions to ke specified for
bypassing and/or for executing a job
step.

A condition specification of the form
(code, operator, stepname) specifies
that the job step is to be bypassed if a
comparison, using the relation denoted
by toperator', between the number
denoted by 'code' and the return cogde
issued by the preceding job step denoted
by *stepnamet!, is satisfied (true). The
terms 'code' and ‘operator! are governed
by the same stipulations as those
specified for these terms in the JOB
statement. If 'stepname' is not
specified, the condition code test is
arplied to all preceding job steps. If
a test is to be applied to a step in a
cataloged procedure, then the name of
the job step which invoked the
procedure, followed by the procedure
step name, must be specified, as
follows: ‘'stepname.procstep!'.

The EVEN and ONLY subparameters are
mutually exclusive. One or the other
may be specified, either alone or in
combination with up to seven return code
tests. EVEN specifies that the step is
to be executed in any event
(irrespective of an abnormal termination
by a preceding job step), unless one or
more of the return code tests specified
in this step are satisfied. ONLY
specifies that the step is to be
executed only if a preceding job step is
terminated abnormally, and provided none
of the return code tests specified in
this step is satisfied.

PARM=subparameter list
indicates the special options which the
programmer has chosen to apply to the
job step. Each option, or subparameter,
in the subparameter list is represented
by a keyword (in a few cases, the
subparameter may have the form
keyword=number). The subparameters,
separated by commas, may be listed in
any order. If two or more subparameters
are listed, then the list must be
enclosed in apostrophes. Parentheses
may be used instead of apostrophes if
the subparameter list contains no
special characters other than the conmma.
The subparameter list, including
apostrophes, may be a maximum of 100
characters in length.

The options which may be exercised for the
job steps compilation, linkage editing,
program execution and program loading (by
use of the loader) are listed below. 1In

Positional parameters

PGM=program
PGM=%*.stepname.ddname
PRCC=name

procname

Keyword

parameters (all optional)

{paam

{ACCT

{DPBTY

(o o G o —— ——— —— ——— —— —— — — — — ————— —— —————— —— — p— — — — ——— — o—— oy
o oo e S e e — . T s T . — —— ——— " — T — — p— T —— " — — e —— e —— o

{TIHE
TIME.procstep

{conn
COND.procstep

PARM.procstep
ACCT.procstep

{REGION

REGION.procstep
YES) (YES

.)
NO Xo

n
} = {(n'n*
DPRTY.procstep (, 1)

RCLL= ({

}=(minutes, seconds)

}=((code,operator,stepname),...)

Lfowal}

}=subparaneter-list
}=accounting—infornation

} =nnnnnk1

b e e e . e . e e e T e S T . e —— —— —— — o — g —— — o o o ——

Figure 29. EXEC Statement Parameters

most cases, each option represents a choice
between two alternatives, one of which,
called the default option, is assumed to
apply unless the other is specified, either
at this stage or at system generation. In
the lists which fcllow, the keyword
associated with the default option is
underscored.

ALGOL Compiler Options

A1l of the alternative options but PRCGRAM
and TEST can be changed to the default
option at system generation. Abbreviated
forms are provided for most of the option
keywords. The abbreviations, indicated
below, may be used in place of the full
keywords. '

PROGRAM or PROCEDURE: The source
program is either an AIGOL prcgram in
the sense of the ALGOL syntax (PROGRANM)
or an ALGOL procedure to be compiled
separately and used with other prcgrams
or procedures (PRCCEDURE). Akbreviated
forms PG or PC.

_____ The internal
representation of real values is in full
words (SHORT) or double words (LONG).
Akbreviated forms SP or LE.

_____ An object module,
stored on the data set specified in the
SYISPUNCH DD statement, either is not to
be generated (NOLECK); or is to be
generated (DECK). Abbreviated forms NT
or D.

Appendix E: Using Job Control Language 59

'SIZE=45056 or SIZE=number:

LCAD or NOLOAD: The compiler is to
either generate an object module for use
as input to the linkage editor, using
the data set specified in the SYSLIN DD
statement (LOAL); or is not tc generate
this object module (NOLOAD).

Abbreviated forms L or NL.

______ The source program
and identifier table listings are either
to be printed (SOURCE); or not to be
printed (NOSOURCE). Abbreviated forms S
or NS.

EBCDIC or ISO: The card_code used to
write and keypunch the source program is
either a 53 character set in EBCDIC
(EBCDIC): or the 46 character set in
BCD which has been estatlished as
standard for ALGOL by ISO and DIN (ISO).
Abbreviated forms EB or 1I.

TEST or NOTEST: The generated object
module is or is not to include coding
useful in execution time error detection
and diagnosis. The coding consists of
instructions to produce the semicolon
count, instructions to check the values
of subscript expressions against array
bounds, and instructions to check the
dimensions of formal arrays against the
dimensions of actual arrays.
Abbreviated fores T or NT.

_________ The main
storage size that is available to the
compiler is either 45,056 bytes or the
size in bytes denoted by number.
*Number' must not be less than 45056 and
must not exceed 999999.

Linkage Editor_Options

For the linkage editing job step the

options are of two types:

those which

specify the output listings required, and
those specifying attributes for the load
module.

The options to control output listings

are:

60

LIST: All job control statements
processed by the linkage editor are to
be listed on the diagnostic output data
set.

MAP or XREF: A map of the load module
is to be produced (MAP) or a
cross-reference table of the load module
is to be prcduced (XREF) comprising a
load module map and a list of all
address constants that refer to other
control sections.

The options specifying load module
attributes which can be used with ALGOL
programs are:

REUS: A load module is to be produced
that is serially reusable, that is, it
can be used by more than omne task, but
only one task at a time.

DC: A load module is to be produced
that is downward compatible, that is, if
the load module is produced by an F
level linkage editor then it can be
reprocessed by an E level linkage
editor.

LET or XCAL: The load module is to be
marked as executable even when a
severity 2 error is detected (LET); or
the load module is to ke marked as
executable even though valid exclusive
references between the segments have
been made (XCAL). A severity 2 error
could make execution impossible and
would normally lead to the load module
being marked as not executable. It
includes the situation over-ridden by
XCAL.

NCAL: The linkage editing automatic
library call mechanism is not to call
library members to resolve external
references within the object module.
The load module is marked as executable
even though unresolved external
references have been recognized.

All the linkage editor subparameters are
optional.

Program_Execution_Options

For the execution jobh step of anm ALGOL
program the options are:

TRACE: The semicolon count produced
during the compilation process is tc¢ be
Frinted as a list. This gives
information on the dynamic flow of the
rrogram and is known as a program trace.

TRBEG=number: A limited program trace
is to be produced beginning at the
semicolon specified by 'number' and
ending at the physical end of the
program.

TREND=number: A limited program trace
is to be produced beginning at the
physical beginning of the program and
ending at the semicolon specified by
‘number?'.

The last twc options may be specified
together to define the beginning and end
of the trace. When either is specified,
TRACE may be omitted, but in that case
precompiled procedures would not be
included. If TRACE is specified with
TRBEG or TREND, then only a limited
program trace is produced, but it will
include precompiled procedures executed
in that part of the progranm.

No program trace is possible if NOTEST
has been specified for the compilation
process.

DUMP: A partial main storage dump is to
be produced if an error occurs. The
dump shows the contents of the data
storage areas and arrays.

All of the execution time subparameters
are optional.

Loader_ Options

For the loader .step, options may be
specified both for the loader and for the
loaded program or load module. The options
are specified together in the PARM field,
as follows:

PARM='loader options/program options?

where 'loader options' denotes the
option keywords (separated by commas)
specified for the loader, and 'program
options!' denotes the option keywords
specified for the loaded program or load
module. The two keyword lists must be
separated by (/). If there are no
loader options, the program options must
begin with a slash. The entire PARM
field may be omitted if no options are
to be specified for the loader or the
loaded program (or load module).

The program options (TRACE, TREEG, TREND
and DUMP) are described above.

The loader options are:

MAP or NOMAP: A map of the loaded
program, listing external names and
their absolute storage addresses, is or
is not to be produced on the SYSLCUT
data set. If the input deck does not
include a SYSLOUT DD statement, the
option is ignored.

RES or NORES: An automatic search of
the link pack area gqueue is or is not to
be made. The search is always made
after processing the primary input
(SYSLIN) and before searching the SYSLIB
data set.

CALL or NOCALL: An automatic search of
the SYSLIB data set is or is not to be
made. If the input deck does not
inpclude a SYSLIE LD statement, the
option is ignored.

LET or NOLETI: The loader is or is not
to try to execute the object program in
the event that a severity 2 error
condition is found. A severity 2 errcr
condition is one that could make
execution of the loaded program

impossible.

SIZE=number or SIZE=100K: The size cf
dynamic main storage that can be used by
the loader is either the size in bytes
denoted by 'numker' or 100K bytes.
Normally, this value will be 17K plus
the size of the program to be loaded
(for MFT systems) or 18K plus the loaded

program size (for MVT systems).

EP=name: The name denoted by 'name' is
the external name to be assigned as the
entry point of the loaded program. If
all input to the loader consists of load
modules, the parameter EP=IHIFSAIN must
be specified. IHIFSAIN is the entry
point of an ALGCL program.

PRINT or NOPRINT: Diagnostic messages
are or are not to be produced on the
SYSPRINT data set.

ACCT=accounting information

allows accounting information asscciated
with the job step to be passed to the
installation's accounting routines,
using subparameters which are fixed by
the user for his own installation.

REGION=nnnnnK

indicates the main storage size for the
job step if it has not already been
specified in the JOB statement.

ROLL=({1§§}, {YES})

NO NO
declares the job step's ability or
ipability to be temporarily rolled out
of main storage, as well as the job
step's ability or inability to cause the
temporary rollout of another job step.
If the first subparameter is YES, the
rresent job step may be temporarily
transferred to auxiliary storage, in the
event another jobk step, qualified tc
cause rollout, requires additional main
storage space bkeyond its original
region. If the first subparameter is
NO, then the present job step cannct be
rolled out.

If the second subparameter is YES, the
present job step is qualified to cause
the rollout of another job step, in the
event the present job step requires

Appendix E: Using Job Control Language 61

additional space beyond its original
region. If the second sukbparameter is
NO, then the present job step cannot
cause rollout.

When the present job step invokes a
cataloged procedure, ROLL attributes may
be specified for an individual step in
the procedure, as in the following
example: ROLL.procstep=(YES,YES), where
'procsterp! denotes the name of the
particular step. If no step name is
given, then the attributes specified
apply to all steps in the cataloged
procedure.

The ROLL parameter may be used only in
MVT systems.

mn
DMT!:‘(,n)

(en)
assigns a dispatching priority to the
job step. This parameter can ke used
only with priority scheduling. 'm' and
*n' denote integers in the range 0-15.
'*m' is converted by the system into an
internal priority and *'n' added to this
priority to obtain the dispatching
priority. Where possible, 'm' should te
14 or less, as the priority 15 is
assigned to certain system takes. If
the DPRTY parameter is omitted, the job
step is assigned the priority specified
for the job.

DD_STIATEMENT

The name field contains an identifying name
(ddname) for the LL statement.

The operaticn field must contain the

characters DD.

The parameters available for the operand

field are listed in Figure 30, where:

*

indicates, when used as a positional
parameter, that the required data
follows immediately after this DD
statement. The asterisk must ke the
only non-blank character in the operand
field. For sequential scheduling it can
be used only once in each job step, and
the data must be followed by a delimiter
statement.

DuMMY

62

indicates that the user's protlenm
program is to be executed without any
I/0 operations on the data set. This
can be used for debugging, and also for
bypassing data set references in a
reqgularly used program, for example, the

DSNAME=

first run of an updating program when
there is no o0ld master to be processed.

dsname {number)

dsname (nembernamne)

tdsname' denotes the name of an existing
data set or the name defined for a data
set to be created in the present job
step. In the latter case, if the data
set is to be kept (see the DISP
raraneter below), the name thus defined
is the name by which the data set must
be identified in other jobs. Within the
present job, the data set may be
identified in later steps either by the
defined name or ky reference to the DD
statement in this job step (see the iten
after next).

dsname }

If the data set being defined is an
indexed sequential data set (in which
case a group of DD statements are
requaired), the data set name must be
followed by one of the terms INLCEX,
PRIME or OVFLOW, whichever

applies, in parentheses. ‘'dsname
(number)* denotes the name and
generation number of a generation data
group. ‘'dsname (nembername)' denotes the
name of a partitioned data set.

DSNAME= {sdsname }

&&dsname
specifies the name of a temporary data
set that is to be deleted at the end of
the present job, The data set may be
identified, within this job, either by
the name '&¢dsname' or '&&dsname?,
whichever applies, or ty reference to
the DD statement in which the data set
is first identified (see next item).

A temporary data set name preceded by a
single ampersand (i.e., '&dsname')
occurring inside a cataloged rrocedure
is treated as a symbolic parameter if a
value is assigned to it in an EXEC
statement which invokes the procedure or
in a PROC statement in the procedure.
Where the DD statement refers to a
member of a temporary partiticned data
set, the temporary data set name should
be followed by the member name, i.e.,
§&dsname (membername). Similarly, in a
group of Il statements defining an
indexed sequential data set, the
temporary data set name should be
followed by one of the terms INDEX,
PRIME or OVFLOW, whichever applies, in
rarentheses.

DSNAME={ dename}

&&ddname
indicates that a pre-allocated data set
is to be used. This parameter can be
used only in systems with MVT. 'ddname!
denotes the name of a LD statement in

the initiator cataloged procedure which
defines the pre-allocated data set to be

used. All parameters used to define a

new data set must also be coded; if the

pre-allocated data set cannot be
assigned, the parameters are used to
create a temporary data set. (For
detailed information on pre-allocated
data sets, refer to the publication QS

Data Management for System_ Programmers.)

DSNAME=*_,stepname.ddname
indicates that the data set is the one
specified in a preceding DD statement

named 'ddname' occurring in the job step

named 'stername'. If the data set was
specified in the current job step then
'stepname' must be omitted. If

‘stepname' refers to a jor step invoking
a cataloged procedure, a job step within

the procedure can be specified by

putting its name after 'stepname'!; that

is, '#*stepname.procstep.ddname'.

Rote.
the operating system will assign a unique
name to any data set created by the job
step.

DCB={| *.stepname.ddname
dsname
subparameter-list
indicates that the data control block

If the DSNAME parameter is omitted,

for the data set specified in the TL
statement named 'ddname' in the job step
named 'stepname', or alternatively the
cataloged data set named ‘'dsname', is tc
be repeated for the current LT
statement. 'Stepname! must be omitted
if it refers to the current job step, or
may be qualified in the same way as the
DSNAME parameter if it refers to a job
step in a cataloged procedure. If
additional information is substituted
for ‘subparameter list' then this
over-rides the corresponding
subparameters in the repeated
information. Alternatively,
‘subparameter list' can be used alone to
specify data control block information.

The subparameter list for the data sets

used when processing and executing an ALGCL
program contains the following keyword
subparameters:

ELKSIZE=number, is used to specify
blocksize. ‘'Number' is blocksize in
bytes, and for fixed length records must
be a multiple of record length.

RECFM=F [B] [A], is used to sgpecify
record format. F=fixed length,
B=blocked, A=control character
incorporated to control printed output
format.

Positional parameters
(all ortional)

{*
DUMMY

}

Keyvword parameters

(o A o o G e an e m—— —— — A — - — ————— o — —— - ——
e T e T . " . S T — T — T — T — T —— — . — — —— —— o ——]

(all optional, though DSNAME=
DSNAME can be omitted
only when the asterisk
positional parameter is used
DCB= {

AFF=ddname }
SEP=subparameter-list

UNIT=subparameter-list

SPLIT=subparameter-list
SUBALLOC=subparameter-1list

{SPBCE=subparameter—1ist }
VOLUME=subparameter-list
LABEL=subparameter-list

{DISP=subparameter-1ist }
SYSOUT=subrarameter-list

dsname

*.stepname.ddnanme
subparameter-list

dsname

&dsname

&ddname
*,stepname.ddname

e o e v e e e S A S e S S G man S . A S e S e S b — ——)

Figure 30. DD Statement Parameters

Appendix E: Using Job Control langquage 63

LRECL=value, is used to specify record
length. 'Value! is actual length in
bytes.

All other valid DCB options are fixed.

AFF=ddname
indicates that the data set has affinity
with the data set specified by the DD
statement named 'ddname' and is to use
the same channel.

SEP=list-of~ddnames
indicates that the data set is to use a
separate channel to the ones used by the
data sets specified by the DD statements
named in the 'list-of-ddnames"'.

UNIT=subparameter 1list
specifies the class and quantity of 1/0
devices to be allocated for use by a
data set. The subparameter list has two
forms, either one of which may ke used
in an individual statement. 7The two
forms are:

|
|Positional
| subpara-
|meters

11
| Keyword
|subparameter
|
¥

|

2|Keyvword
|subparameter|AFF=ddname
L L

P |
classname{,number}[,DEFER]
P
,

{ SEP=1list-of-ddnames]

o o e - - ——— o —
e b - — . - — e]
RS S "

‘classname' indicates the device class.
These names are divided into two
categories.

e Those automatically incorporated in
the operating system when it is
generated. These are of twoc types -
specific unit names, such as 2400 (for
a magnetic tape drive) and 1403 (for a
printer); and general classnames, that
is,

SYSCP for any card punch

SYSSQ for any magnetic tape or
direct-access device

SYSDA for any direct-access device.

e Additional names fixed by the user for
his installation when the operating
system is generated.

'number' indicates the number of devices
to be allocated. If the data set is
cataloged but the number of devices used
is unknown, then *P' substituted for

64

*pumber' will ensure that the ccrrect
number is assigned.

DEFER indicates that the volume need not
be mounted on the I/0 device until the
data set is called in the program. This
subparameter must not ke used with an
indexed sequential data set or a new
cutput data set on a direct-access
device.

SEP=list-of-ddnames indicates for
direct-access devices that, if fpossible,
the data set is not to use the same
access arm as the data sets specified by
the DD statements, given in the
*list-of-ddnames."!

AFF=ddname indicates that the data set
is to use the same I/0 devices as the
data set specified in the DD statement
named 'ddname' in the same jol sterp.

SPACE=subparameter list
indicates the space required when a
direct-access device is specified in the
UNIT parameter. Space may be requested
(a) in terms of a given number of
tracks, cylinders or blocks, with no
particular track address being
specified, or (b) in terms of a given
number of tracks, starting at a
particular track address.

(a) Where the space reguest is made in
terms of a given number of tracks,
cylinders or blocks, with no address
specified, the sukparameter list depends
in part on the organization of the data
set.

For a sequential data set, the general
form of the subparameter list is

([IRK ¢ (quty,[increment],drctry){...])

CYL

Blksz
The first subparameter indicates the
unit in which the space requested is
expressed, namely tracks, cylinders or
blocks. The unit of a block is
indicated by the blocksize in bytes.
'quty' denotes the numker of tracks,
cylinders or blocks requested.
*Increment' denotes the incremental
nunber of tracks, cylinders or tlocks
which are to be added to the space
allocation whenever the data set
exhausts its last allocation. The last
term, [(...], represents a list of
further optional parameters, explained
at the enrd of this item.

For a partitioned data set, the general
form of the subparameter 1list is

({TRK . (quty,[increment],drctry)[...])
CYL

Blksz

The first three subparameters are
identical with those described in the
preceding raragraph. 'Drctry' denotes
the number of 256-byte blocks to ke
allocated to the data set directory.
The last term, [...], represents a list
of further optional parameters,
explained at the end of this item.

For an indexed sequential data set, the
general form of the subparameter list is

([TRK + (Qquantity,,index){...1})
CYL]

Blksz

The first three subparameters are
identical with those described in a
preceding raragraph. 'Index' denotes
the number of cylinders required for the
data set index.

The term [...] contained in each of the

list is
(ABSTR, quantity, address[,directory))

*Quantity' denoctes the number of tracks
required. ‘'Address! denotes a number
representing the relative address of the
first track where the space allocation
is to begin. The tracks are numbered
consecutively, starting with 0 for the
first track on the volume. The first
track cannot be allocated. ‘'Directcryt,
a subparameter required when a data set
is partitioned, denotes the number cf
256-byte blocks reguired for the data
set directory.

SPLIT=subparameter list

provides a means of requesting space on
a direct-access device in such a way as
to divide (or split) each cylinder
betvween two or more associated data
sets. This can be used to mininmize
access arm movements when two or mcre
data sets with corresponding records are
processed simultaneously.

The splitting of cylinders requires a
sequence of TD statements, the first of
which specifies the space per cylinder
required for the first data set, as well
as the total space required for all
associated data sets. Each succeeding

preceding three symbolic parameter lists
represents the following list of additional
optional subparameters:

ID statement specifies the space request
for one of the other associated data

LRLSE] ,CONTIG|[,ROUND]
 MXIG
L ALX

’

RLSE indicates that any unused space
remaining after the data set has been
created, is to be released.

CONTIG specifies that space is to be
allocated in contiguous tracks or
cylinders. MXIG specifies that the
largest single block of auxiliary
storage available is to be allocated to
the data set. ALX requests that up to
five areas of ccntiguous storage, each
at least as large as the area requested,
be allocated. Where this request cannot
be fully satisfied, the system allocates
as many blocks as are available.

ROUND specifies that, when the space
request is expressed in blocks, the
space request be rounded to an integral
number of cylinders.

{(b) Where the space request is made in
terms of a given number of tracks
starting at a specific track address,
the general form of the sukparameter

sets. The space request may ke
expressed in cylinders and tracks or in
terms of blocks.

Where the space request is expressed in
cylinders and tracks, the subparameter
list of the SPLIT parameter in the
leading DD statement has the following
general form:

quantity
(n,C!L,hquantity[,increment]ﬁ)

where 'n' denotes the number c¢f tracks
per cylinder required by the first data
set, and 'quantity' denotes the total
number of cylinders to be allocated for
all associated data sets. Each
succeeding DD statement in the group
must contain the parameter SPLIT=n,
where 'n' denotes the number of tracks
per cylinder to be allotted to the
associated data set. ‘Increment!'
denotes an additional amount cf space
tcbe allocated any one data set each
time it exhausts its original sctace.

When the space reguest is expressed in
blocks, the subparameter list in the
leading DD statement has the followirng
general form:

quantity
(X,blksize,(quantity[,increment]ﬁ)

Appendix E: Using Job Control Language 65

where '%' denotes the percentage of
tracks per cylinder to be allocated to
the first data set, 'blksize' denotes
the average block length in bytes; and
tquantity' denotes the total number of
blocks required. Each succeeding DD
statement in the group must contain the
parameter SPLIT=%, where '%' denotes the
percentage of tracks per cylinder to be
allotted to the associated data set.

SUBALLOC=subparameter list

provides a method of placing a number of
data sets consecutively on a direct-
access volume. The method consists in
suballocating a portion of the space
allocated to a data set in a preceding
DD statement, to another data set.
Suballocations are made from the front
of the space allocated to the original
data set. The original data set may ke
used only for suballocations. The
general form of the subparameter list
is:

([TRK
CYL

Blksz

. (quantities) |,ddnane
,Stepname.ddname

(quantity{,increment][,directcry])

The first subparameter indicates the
unit in which the suballocation request
is expressed, namely tracks, cylinders
or blocks, a block being indicated by
the average block length in Lkytes.
'*Quantity? denotes the number of tracks,
cylinders or blocks to be suballocated.
'Increment?! denotes the additional space
to be allocated to the data set when its
original allocation is exhausted.
Increments are made from availakle space
on the vclume. ‘'Directory' denotes the
number of 256-byte blocks required for
the directory of a partitioned data set.
'Stepname' and 'ddname' denote the names
of the job ster and DD statement where
the original data set is defined. If
the original DD statement is contained
in the same job step, 'stepname' may be
omitted.

DISP=subparameter list

66

indicates the status of the data set and
its disposition at the end of a job
step. The subparameter list wmay contain
from one to three positional
subparameters, as follows:

(NEW +LCELETE »UNCATLG)
OLD +KEEP »CATILG
MOD +PASS +DELETE
SHR »CATLG +KEEP
+UNCATLG

The first subparameter in the list
indicates the status of the data set,
the second indicates the data set's
disposition after a normal termination
of the job step, and the third parameter
indicates the disposition of the data
set at the end of the job stepr, in the
event the job step abnormally
terminates.

NEW specifies that the data set is to be
generated in this job step, and would be
deleted at the end of the job step

unless KEEP, PASS or CATLG is specified.

OLD specifies that the data set already
exists, and would be kept at the end of
the job step unless PASS or DELETE is
specified.

MOD specifies that the data set already
exists and is to ke modified in this Jjcb
step. If the data set cannot be found
by the operating system then this
parameter is equivalent to NEW.

SHR specifies that, in a
multiprogramming environment, an
existing data set may ke used
simultanecusly by more than one job.

DELETE specifies that the space used Ly
the data set (including that in the data
set catalog, etc.) is to be released at
the end of the job step.

KEEP specifies that the data set is to
be kept at the end of the job step.

PASS specifies that the data set is teo
be referred to in a later step of this
job, at which time its final
disposition, or a further pass, will be
specified.

CATLG specifies that the data set is tc
be cataloged at the end of the job step.
Thus KEEP is implied. The catalog
structure must already exist.

UNCATLG specifies that the data set is
to be deleted from the catalog at the
end of the job stepr. KEEP is implied.

SYSOUT=subparameter list

specifies the printing or punching
operation to be used for the data set.
The 'subparameter list' is:

classname
(classname{ ,progname J[,number J})

*classname' specifies the system output
class to be used. Up to 36 different
classes (A to Z, 0 to 9) may ke fixed by
the user for his installation, according
to device type, priority, destination,
etc. The standard classname is A.

Classes 0-9 should only be used when the
other classes are insufficient.

*progname' can be used to specify the
name of a user-written output routine.

‘number' can be used to specify an
installation form number to be assigned
to the output.

For sequential scheduling, the
fsubparameter list' consists cf only the
standard class-names A and B. SYSCUT=E
is interpreted as UNIT=SYSCP.

CUTLIM=number

specifies the maximum number of logical
records that a data set being routed
through the output stream may contain.
It is used only in statements where the
SYSOUT parameter is coded in the same
operand.

'number' indicates the maximum number of
records fcr the data set. That number
can be in the range 1 - 16,777,218. 1If
OUTLIM=0 or no OUTLIM is coded, no
output limiting is done.

OUTLIM is used in MFT and MVT systems
that use the System Management
Facilities Option. This facility can be
used to give management a certain amount
of control over the jobs run on their
system. For more detailed information
refer to the description of the OUTLIM
parameter in 0S_JCL_Reference.

VOLUME=subparameter list

indicates the volume or volumes assigned
to the data set. If the data set is
cataloged this parameter is not
necessary. The 'subparameter listt' is:

Positional

subparameters ([PRIVATE] [, RETAIN] [number] [,value])
Keyword
subparameters SER = list-of-serial-numbers

dsname

*, ddname

REF = |*, stepname, ddname
*, stepname, procstep. ddname

PRIVATE specifies that the vclume is tc
be dismounted after the job step and
that other data sets will not be
assigned to the volume unless a specific
request is made.

RETAIN specifies that, if possible, the
volume is to remain mounted until
referred to in a later DD statement, or
until the end of the job, whichever is
first.

*number' is any number between 2 and
9999, and is used if an input or output
operation on a cataloged data set
residing on more than one volume dces
not start on the first volume of the
data set. The number specifies the
vclume on which input or output is to
start (for example, 3 indicates the
third volume of the data set).

*value' specifies the number cf volumes
required by an output data set. It is
not required if SER or REF is used.

SER=1list-of-serial-numkers, specifies
the serial numbers allocated ky the user
to the volumes required by the data set.
These serial numbers can consist of
between one and six characters.

REF=({dsnanme
*,ddname
*.stepname.ddname
*,stepname.procstep.ddnane

specifies that this data set is to use
the same vclume or volumes as the data
set specified by one of the alternative
subparameter forms. If the latter data
set resides on more than one tare
vclume, then only the last volume (as
specified in the SER subparameter) can
be used.

LABEL=subparameter list

indicates the type of label or labels
associated with the data set. If the
data set is cataloged this parameter is

Appendix E: Using Job Control Language 67

not necessary. The general form of the
subparameter list is:

.SL ,RETPD=dddd
 NSL
,SUL
,BLP

EXPDT=yyddd

RETPD=dddd

([n][, NL [,PASSWORD]{,EXPDT=yyddd])

*n' is any number between 2 and 9999,
and specifies the position of the data
set on the volume (for example, 3 would
indicate the third data set on the
volume) .

NL, SL, NSL, and SUL specify the type of
label or labels to be used, that is, no
labels, standard labels, non-standard
labels, and standard and user latkels,
respectively. <The routines to produce
non-standard labels must ke written and
incorporated into the operating system
by the user. BLP indicates that label
processing is toc be bypassed.

PASSWORD specifies that the data set is
to be accessible only through the use of
a password. To retrieve the data set,
the operator must respond to a message
by issuing the correct password.

EXPDT=yyddd specifies that the data set
cannot be updated without operator
intervention, until the data given by yy
(year) and ddd (day) .

RETPD=dddd specifies that the data set
is to be retained for the numker of days
given by dddd.

PROC STATEMENT

The PROC statement is used to assign
default values to symbolic parameters
defined in a cataloged procedure. When the
PROC statement is used, it appears as the
first control statement in the procedure,
The general form of the PROC statement is:

//procname PROC symparam=default value

where 'symparaer' denotes a symkolic
parameter in the cataloged procedure.

COMMAND STATEMENT

The command statement enables commands to
be issued to the system via the input
stream. The available commands and the

68

appropriate operands specifiable in the
command statement are explained im 0S
Cperator's Reference.

DELIMITER STATEMENT

The delimiter statement, containing the
characters /% in columns 1 and 2 of the
80-column punched card, marks the end of a
data set in the input stream. In systems
with MPT or MVT the end of a data set in
the input stream defined by a LD *
statement need not ke marked by a delimiter
statement.

NULL STATEMENT

The null statement consists solely of the
characters // in columns 1 and 2. It is
used to mark the end of a job in the input
stream so as to insure that the card reader
is effectively closed.

COMMENT STATEMENT

The comment statement, containing the
characters //* in columns 1, 2, and 3,
followed by comment in any columns from 4
through 80, is used for inserting comment
before or after any control statement.

Using a Private Library

A load module to be executed with the aid
of the job control facilities of the
operating system may be contained in the
system library (SYS!.LINKLIB) or im a
user's private library. Except when
otherwise indicated ty control statements
in the input stream, or when a load modale
has been created in the same jok, the
operating system assumes that any load
module identified in an EXEC statement is
contained in the system library. If a load
module is contained in the systesm library,
it way be executed by specifying its name
in the EXEC statement and without explicity
defining the SYS1.LINKLIB data set.

If a load module is contained in a
private library, it may be executed only if
the data set comprising the library is
explicitly identified, by means of a
suitable DD statement. Identifying a
private libary is equivalent to combining
(or concatenating) the private library with

the system library, since the operating
system searches the system library if it
cannot find a load module in the private
library.

A private library may be concatenated to
the system library by means of the JCBLIB
DD statement and/or a STEPLIB DD statement
in one or more job steps.

The JOBLIB DD statement may appear once
in each job and must immediately follow the
JOB statement. The statement

//JOBLIB DD DSNAME=dsname,DISP=0LD

specifies that the operating system is to
search for each load module named in the
succeeding EXEC statements, first in the
private library denoted by 'dsname' and
then in the system library. This method of
search applies to every step in the job,
unless cotherwise specified by a STEPLIB LD
statement in the particular joLk step. One
or more other private libraries may be
specified by a list of additional DD
statements, in which the name field is
vacant, immediately following the JOBLIB
statement.

A STEPLIB LT statement may be used once
in each job step and may appear in any
position following the EXEC statement. The
statement

//STEPLIB LL DSNAME=dsname,DISP=CLD

specifies that the operating system is to
search for the load module named in the
preceding EXEC statement, first in the
private library denoted by 'dsname' and
then, if necessary, in the system library.
This method of search applies only to the
job step in which the STEPLIE DD statement
appears. If a JOBLIB DD statement is
contained in the job, its effect is
suspended during the step in which the
STEPLIB DD statement appears. The
statement

//STEPLIB DD DUMMY

nullifies the JOBLIB DD statement for the
particular step, and limits the load module
search to the system library.

Job Control Language Examples

Five different types of jobs are described
here to illustrate the use of jor control
language. Some of the subparameters used,
such as I/0 device classnames and volume
serial numbers, may change for different
installations.

Example 1:; Executing a_Single_load Module

Statement of problem (see FPigure 31): 1A
set of 80 matrices are contained in data
set SCIENCE.MATH.MATRICES. Each matrix is
an array containing real variables. The
size of the matrices vary from 2x2 to
25x25; the average size is 10x10. The
matrices are to be inverted using a program
MATINV contained in a partitioned data set
MATEROGS. Each inverted matrix is to ke
written as a single record on the data set
SCIENCE.MATH.INVMATRS. The first variable
in each record is to denote the size of the
matrix. Each matrix is to be printed.

SCIENCE.
MATH.
MATRICES

Printed
output

—

MATINV —>

SCIENCE.
MATH.

INVMATRS

Figure 31. 1I/0 Flow for Example 1

Exrlanation of coding: The job control
statements used in Figure 32 specify that:

1. The job is

. to be charged to the
installation's account number 537

. the responsibility of John Smith

. to have all control statements
(plus control statement diagnostic
messages if an error occurs)
printed on the normal systemn
output device.

2. The partitioned data set MATPROGS is
concatenated with the operating systenm
library, SYS1.LINKLIB.

3. The program to ke executed is MATINV,

4., The input data set is
SCIENCE.MATH.MATRICES

Arpendix E: Using Job Control language 69

5. The printed cutput is to use the
standard output format class for the
installation.

6. The ocutput data set is

to be cataloged

to use the device dass DACLASS

to use vclume 1089W

to use a separate channel to the
input data set

to have space reserved for 80
records, each 1500 kytes long.
This space is to be incremented in
9-record units each time more is
required and any unused space is
to be released. The space is
contiquous and aligned on cylinder
boundaries.

. to have fixed-length blocked
records, 300 bytes long, and a
maximum block size of 1500 bytes.

o o 0 0

Example 2: Compiling, Iinkage_ Editing_and
Executing Three_Source_Programs

Statement of problem (see Figure 33): Raw
data from a rocket test firing is contained
in a data set RAWDATA. The forecasted
results for this firing are contained in a
data set PROJDATA. A program PRCGRD is to
be used to produce refined data from these
two data sets.

The refined data is to be stored in a
temporary data set and used ky a program
ANALYZ, containing a series of equations,
to develop values from which graphs and
reports can be generated. Parameters
needed by ANALYZ are contained on a
cataloged data set PARAMS.

The values are to be stored on a
temporary data set and used by a program
REPORT to print graphs and reports. The
programs PROGRD, ANALYZ and REPORT are
written in ALGOL. They are still in source
program form, and therefore must te
compiled and linkage edited before
execution.

Explanation of coding: The job control
statements used in Figure 34 specify that:

1. The job is

] the responsibility of John Smith

. to have all control statements
(plus control statement diagnostic
messages if an error occurs)
printed on the normal system
cutput device for information
listings.

2. The first job step invokes the
ALGOFCLG cataloged procedure (see

70

11.

'"Appendix B') to process and execute
the ALGOL source program (PROGRD)
entered in the input stream.

The other input data sets are RAWLATA
and PROJDATA. RAWDATA is also entered
in the input strean.

The temporary output data set is

. to be called REFLATA and to be
passed for use in a later job step

. to use the device class TAPECLS

. to be written on volume 2107,
which is to remain mounted for use
later

. to have fixed-length records, 80
bytes long, and a maximum block
size of 400 bytes

The second job step invokes the
ALGOFCLG cataloged procedure to
process and execute the ALGCL source
program (ANALYZ) entered in the ingut
strean

The SYSLMOD ID statement in the LKED
step of the cataloged procedure is
overridden to specify that the load
module produced by the linkage editor
is to be a new member, ANALYZ, of
temporary partitioned data set GCSET

The other input data sets are REFLATA
and PARAMS. ©Both will be kept at the
end of the job step

The temporary ocutput data set is

] to be called VALUES and is to ke
passed for use in a later job
step.

. to use the device class TAPECLS.

to be writtenm on volume 2108.

. to have fixed length records, 68
bytes long, and a maximum block
size of 204 Lbytes.

The third job step invokes the
ALGOFCLG cataloged procedure to
process and execute the ALGOL source
program (report) entered in the input
stream. The output data will be
listed on the printer specified in the
cataloged procedure.

The SYSLMOD DD statement in the LKELD
step of the cataloged procedure is
overridden to specify that the locad
module produced by the linkage editor
is to be a new member, REPORT, of the
temporary paritioned data set GCSET

The other input data set is VALUES
which will be kept at the end of the
job step

//7INVERT JOB 537,JO0HNSMITH,MSGLEVEL=1

7/7JOBLIB DD DSNAME=MATPROGS,DISP=0LD
/7INVERT EXEC PGM=MATINV

//SYSIN DD DSNAME=SCIENCE.MATH.MATRICES,DISP=0LD

/7SYSPRINT DD SYSOUT=A

//ALGLDLOS DD DSNAME=SCIENCE.MATH.INVMATRS,DISP={NEW,CATLG),SEP=SYSIN, *
SPACE=(1500,{80,9) ,RLSE,CONTIG ROUND) , VOLUME=SER=1089%, *
DCB={RECFM=FB,BLKSIZE=1500,LRECL=300) ,UNIT=DACLASS

/77
/77

Figure 32.

PROJ -
DATA

Figure 33.

Job Control Statements for Example 1

STEP 1

PROGRD
source program

]

Compiler

Object

module

Linkage
Editor

Temporary

partitioned
data set

PROGRD

execution

RAWDATA

Refined
data

STEP 2

ANALYZ
source program

i

Compiler

Object
module

Linkage
Editor

Temporary

partitioned
data set

ANALYZ

| execution

PARAMS

Basic I/0 Flow for Example 2.
The data sets for information listings, ALGOL library routines, intermediate

work and the execution time error routine are not shown above.

Values

Appendix E:

STEP 3
REPORT

source program

Compiler

Object
module

REPORT

execution

Graphs and

Reports

Using Job Control Language

71

//TESTFIRE JOB ,JOHNSMITH,MSGLEVEL=1
//STEPY EXEC ALGOFCLG
//ALGOLLSYSIN DD x%
SOURCE PROGRAM [PROGRD)
/%
//G0L.ALGLDD1]1 DD DSNAME=PRDJDATA,DISP=0LD
//GO.ALGLDD12 DD DSNAME=EREFDATA,DCB={RECFM=F,BLKSIZE=400,LRECL=80), *
/7 DISP={NEW,PASS) ,UNIT=TAPECLS, VOLUME=(RETAIN,SER=2107)
//7GO.SYSIN LD *
INPUT DATA {RAWDATA)
/ *
7/7STEP2 EXEC ALGOFCLG
//ALGOLLSYSIN DD x
SOURCE PROGRAM {ANALYZ)
/%
//LKED.SYSLMOD DD DSNAME=EGUSET{ANALYZ)
//GO.ALGLOCOE DD DSNAME=*.STEPl.ALGLDD12,DISP=0LD
//G0-ALGLDDOY DD DSNAME=PARAMS,DISP=0LD
/7GO.ALGLLCO3 DD DSNAME=EVALUES,DCB={RECFM=F,BLKSIZE=204,LRECL=68), *
/7 DISP={NEW,PASS) yUNTT=TAPECLS, VOLUME=SER=2108
//STEP3 EXEC ALGOFCLG
//7ALGCL.SYSIN D *
SOURCE PROGRAM {REPORT)
[/ *
//LKED.SYSLMOD DD DSNAME=EGCSET(REPORT)
//GO.ALGLED14 DD DSNAME=*.STEP2.ALGLDDO3,DISP=0LD

Figure 34. Job Control Statements for Example 2

Example_3: Executing Two_lLoad_ Mcdules

Weather
data
Statement of problem (see Figure 35): Data
on current weather conditions is to be read l
from cards and used by the program FILECR

to create a new generation of a data set
WEATHER, and also to print a report.

FILECR
Then the new generation and the three
immediately preceding generations of the l
WEATHER data set are to be used Ly the
program FORCST to produce a printed weather
forecast. The programs FILECR and FCRCST
are contained in a partitioned data set
WTHRPR.
WEATHER a FORCST
=1 T

Weather
forecast

Figure 35. I/0 Flow for Example 3

72

Explanation of coding: The job control
statements used in Figure 36 specify that:

1. The job is to have control statement
messages plus the relevant control
statement printed on the normal systen
output device only if an error occurs

2. The partitioned data set WTHRPR is
concatenated to the operating systenm
library, SYSI.LINKLIB

3. The first job step executes the
program FILECR

4. The output data set is

. a new generation of the data set
WEATHER.

. to use the device class HYPERT.

L] to be written on volume 0012 which
need not be mounted until the data
set is opened, and is then to
remain mounted for later use.

. to be cataloged and have standard
labels.

. to be retained for 30 days.

. to have fixed length records, 80
bytes long, and a maximum block
size of 400 bytes.

5. The printed cutput is

. tc use the device class PRINTER.
. to use a separate channel to the
output data.

6. The input data is included in the
input strean.

7. The second job step executes the
program FORCST.

//HEATHRP JOB MSGLEVEL=0
77308118 DD DSNAME=WTHRPR,DISP={0LD,PASS)
//CREATE EXEC PGM=FILECR

8. 1The input data sets are the last four
generations of WEATHER, all of which
are to be kept at the end of the job
step.

9. The output data set is
) to use the device class PRINTER.
. to use a separate channel to the
last two generations of WEATHER.

Example 4: Compiling and Linkage_ Editing
an_ALGOL Precompiled Procedure

Statement of problem: The ALGOL language
procedure ADD is to be compiled, linkage
edited and stored in load module form as a
member on the partitioned data set PREERCC,
for use in subseguent programs. An
illustration of a program in which ADD is
invoked is provided in Example 5.

Explanation of coding: The job contrcl
statements used in Figure 37 specify that:

1. The job is to have all control
statements (plus control statement
diagnostic messages if an error
occurs) printed on the normal systeam
cutput device.

2. The job step is to invoke the ALGCFCL
cataloged procedure to compile and
linkage-edit the source module, which
is identified as an ALGOL precompiled
procedure.

3. A new partitioned data set named
PREPROC is to be allocated and
cataloged; the procedure ALT is to be
stored on the data set as a member;
and a primary allocation of 30 tracks
(plus a secondary allocation of 10
tracks, if needed) and a directory of

J/ALGLDDO2 DD DSNAME=WEATHER{+1),0CB={RECFM=F,BLKSIZE=400,LRECL=80), *
77 VOLUME={RETAIN,SER=0012)+LABEL=(,SL,RETPD=0030), *
17/ UNIT={HYPERT, ,DEFER) ,DISP={NEW,CATLG)

/7ALGLODO1 DD UNIT=PRINTER,SEP=ALGLDDO2
//7SYSPRINT DD UNIT=PRINTER,SEP=ALGLDDO2
//SYSIN DD *

WEATHER DATA
/%
//FORECAST EXEC PGM=FORCST
/7ALGLODO4 DD DSNAME=WEATHER{#1)},DISP=0LD

//7ALGLDODOT DD DSNAME=WEATHER{0),SEP=ALGLDDO4,DISP=0LD

7/ALGLDDOS8 DD DSNAME=WEATHER(-1),DISP=0LD
//7ALGLDDOS DD DSNAME=WEATHER{-2},DISP=0LD

//ALGLDCOY DD UNIT=PRINTER,SEP={ALGLDDO4,ALGLDDOT)
/7SYSPRINT DD UNIT=PRINTER,SEP={ALGLDDO4,ALGLDDOT)

Figure 36.

Job Control Statements for Example 3

Arpendix E: Using Job Control language 73

ten 256-byte records is to be assigned
to the data set.

Example 5: _Compiling, Linkage Editing and
Executing _an ALGQL Program_which_ Invokes_a
Precompiled_ Procedure

Statement of problem: An ALGOL program in
which the precompiled procedure ALD
(Example 4) is invoked, is to be compiled,
linkage edited and executed.

The job control statements in Figure 38
specify:

//COCEPC JOB MSGLEVEL=1
//STEP EXEC ALGOFCL,PARM.ALGOL=PROCEDURE
//ALGOLL.SYSIN DD *
TPROCEDURE® ADDI(A,B,C)3
*REALY A,BR,C3
:=A+83
/*

1. The job is to have 'all control
statements (plus control statement
diagnostic messages if an error
occurs) printed on the normal system
output device.

2. The partitioned data set PREPROC,
containing the precompiled fprocedure
ADD, is to be concatenated to the
operating system library, SYS1.LINKLIB

3. The job step is to invoke the ALGCFCLG
cataloged procedure to compile,
linkage edit and execute the ALGOL
source program.

//LKED.SYSLMOD DD DSNAME=PREPROC(ACD),DISP={NEW,CATLG),UNIT=SYSDA, *
/7 SPACE={TRK,130,10,10)), VOLUME=SER=222222
¥

Figure 37.

//MAINPG JOB MSGLEVEL=1
//J0BLIB CD DSNAME=PREPRCC,CISP=0LD
/7/5TP1 EXEC ALGOFCG
/7ALGOL.SYSIN PD *
*BEGIN®
'REAL' E,F,G;
*PROCEDURE® ADDIA,B,C)s
YREAL' A,8,C3
CODE?;
:=5n6;
:=—798;
ADDIE,F,G);
OCUTREAL{1,6)
TEND?
/%

Figure 38.

74

Job Control Statements and Source

Job Control Statements and Source Module for Example 4

Module for Example 5

Appendix F: Diagnostic Messages

This section describes the messages and the appropriate responses to messages ky the compiler, the
linkage editor, and the ALGOL object program at execution time.

Compiler Messages

The following table describes the format and gives other pertinent information about

ALGOL compiler

messages.

r ¥ L]
| Component Name | IEX |
3 + 4
| Program Producing Message | ALGOL compiler. |
1 (] y}
T 1 L
| Audience and Where Produced | For programmer: SYSPRINT data set. |
l l |
| | For operator: console.

— + 4
| Message Format { IEXnnnI s nnnnn text |
| | |
| | nnn i
1 | Message serial number. i
	s
	Severity code:
i	W Warning; the compiler internally modifies the program being {
	compiled and continues processing; the modification may or {
	may not correct the program, but it allows ccmpilation to
	continue.
1	S Serious; the compiler attempts to modify the prcgrasm
	internally, including skipping or changing parts of it;

| | generation of the object module is stopped, tut syntax |
| | checking continues.

	T Compilation is terminated.
	nnnnn
	Semicolon number, right-adjusted and im decimal; if the error
	cannot be related directly toc a point in the program, nnnnn is
	blank.
	text i
	Message text. i
— $———- 1	
Associated Publications	0S_ALGOL Language, GC28-€615 [
L ' 4
IEX001I W nnnnn INVALID CHARACTER DELETEL IEX002I W nnnnn ILLEGAL PERIOD. PERIOD DELETED.

Explapation: A character nct recognized
by the compiler has been deleted from the

program.

Programmer Response: Probalkle user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the fcllowing before calling

IBM for programming sapport:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

_______ The character period has
been used wrongly and deleted from the
program. It can be used only as a decimal
point, or as part of a colon or semicolon.

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problenm

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

Appendix F: Diagnostic Messages 75

IEX003I

IEX004X

IEX0051

IEX006I

IEX0071

76

W nnnnn INVALID COLON AFTER (six
characters) . COLON DELETED.

nati The character colon has been
used wrongly and has been deleted from the
program. It can be used only after a
label, between subscript bounds, within a
parameter delimiter or as part of an
assign symbol.

Programmer_ Response: Probakle user error.

Make sure the source code is correct and

recompile if necessary. If the problenm

recurs, do the fcllowing before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

T nnnnn LETTER STRING TOO LONG

EX A letter string used to
supply explanatory information exceeds
capacity limitations.

Programmer Response: Probalkle user error.

Shorten the letter string and recompile.

If the problem recurs, do the following

before calling IENM:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(l,1) was
specified in the JOB statement.

S nnnnn IDENTIFIER BEGINS WITH INVALID
CHARACTER. IDENTIFIER DELETED.
Explanation: An identifier has been
deleted because it does not begin with an
alphabetic character.

Pro Probable user error.

Make sure the source code is correct and

recompile if necessary. If the prolklem

recurs, do the following before calling

IBM for prcgramming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1l,1) was
specified in the JOB statement.

T nnnnn LABEL CONTAINS TOO MANY CHARACTERS

Ex A label identifier has been
used whose length exceeds capacity
limitations.

Programmer_ Response: Probalkle user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

¥ nnnnn LABEL BEGINNING WITH (up to six
characters) CONTAINS INVALID CHARACTER.
COLON DELETED.

Explanation: A label has been deleted
because it contains a character of other
than alphameric tyre.

IEXCO08I

IEX010I

IEXO11T

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the prcblenm

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

¢ Make sure that MSGLEVEIL=(1,1) was
specified in the JCB statement.

W nnnnn LABEL BEGINS WITH INVALIL
CHARACTER. COLON DELETED.

Explapation: A label has been deleted
because it does not begin with an
alphabetic character,

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problen

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEI=(1,1) was
specified in the JOB statement.

S nnnnn SPECIFICATICN PAKT OF FRCCELURE
(identifier) INCOMPLETE.

________ Not all of the formal
parameters used in a procedure have been
specified.

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problen

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL= (1,1) was
specified in the JCB statement.

S nnnnn PROGRAM STARTS WITH ILLEGAL
DELINITER.

______ If the
PROGRAM (PG) has been
text must start with
option PROCEDURE (PC)
the source text must
following:

1. 'PROCEDURE!

compiler cpticn
specified, the source
'BEGIN'. If the

has been specified
start with one of the

2. 'REAL''PRCCEDURE"
3. 'INTEGER''PROCEDURE!'
4. 'BCOLEAN'*FROCEDURE'

Programmer Response: Frobable user error.

Make sure the source code is correct and

recompile if necessary. If the prcblenm

recurs, do the following before calling

IBM for programming support:

® Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JCBR statement.

IEX0121

IEX0131

IEX0 141

IEX0151

¥ nnnnn TWO APOSTROPHES AFTER (six
characters). FIRST APOSTROPHE LCELETED.

______ In this context, two
apostrophes cannot be used together so one
has been deleted.

Programmer_ Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programsing support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

W nnnnn APOSTROPHE ASSUMED AFTER DELIMITER
BEGINNING WITH (up to six characters).
Explanation: All delimiters involving
Wwords must begin and end with afpostrophes.
One has been left out of the program and
has been inserted by the compiler.

Programmer Response: Probakle user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the fcllowing before calling

IBM for prograsmming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn DELIMITER BEGINNING WITH (up to
six characters) INVALID. FIRST APOSTROPHE
DELETED.

_______ An invalid sequence of
characters has been used after an
apostrophe which apparently started a
delimiter. The apostrophe is therefore
deleted to remove the delimiter status
from the characters but still include then
in the prograa.

Programmer Response: Probakle user error.

Make sure the source code is correct and

recompile if necessary. If the problen

recurs, do the fcllowing before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

W nnnnn MISSING SEMICOLON AFTER
SEMICOLON INSERTED.

'CODE"*.

Explanation: Self-explanatory.

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

IEX016I

IEX0171

IEX018I

IEX0201

S nnnnn IDENTIFIER BEGINNING WITH
six characters) CONTAINS INVALID
CHARACTER. IDENTIFIER CELETEEL.

(up to

Explanation: A character other than an
alphameric type has been used in an
identifier and so the identifier has keen
deleted.

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the prcblem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nannnn MORE THAN 65535 SEMICCLCNS.
SEMICOLON COUNTER RESET TO ZERO.

Numker of semicclons used
Tuplicate

Explanation:
exceeds capacity limitationms.
nunbers are allocated.

Programmer Response: Protable user error.

Make precompiled procedures of suitable

parts of source program. Make sure the

source code is correct and recospile.

the problem recurs, do the following

before calling IBM:

e Have source and associated listings
available.

e Make sure that HMSGLEVEL=(1,1) was
specified in the JOB statement.

If

W nnnnn DELIMITER *COMMENT' IN ILLEGAL
POSITION
Explapation: Y'COFMENT' has not been

placed after a 'BEGIN' or a semicclon.
Compilation continues normally.

Programper Response: Procbable user error.

Make sure the source code is correct and
recompile if necessary. If the problenm
recurs, do the following before calling
IBu for programming support:
Have source and associated listings
available.
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

T nnnnn BLOCKS, CCMPOUND STATEEENIS, FOR
STATEMENTS, AND PROCEDURE DECLARATIONS
NESTED TO TOO MANY LEVELS.

Explapation: Structure of program causes
it to exceed capacity limitaticns

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

Appendix F: Diagnestic Messages 77

IEX021I S nonnn DECLARATOR (declarator) IN ILLEGAL

IEX0221

TIEX023I

IEX0241

IEX0251

78

POSITION.

________ A declarator must come
between e1ther *BEGIN' and the first
statement of a block, or 'PROCELCURE' and
the procedure body.

Programmer_ Response: Probatle user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(t,1) was
specified in the JOB statement.

T nnnnn MORE THAN 255 PROGRAM BLOCKS.

Explanpation:
used exceeds

Number of program klocks
capacity limitations.

_____________ Probable user error.

Make precompiled procedures of suitable

parts of source program. Make sure the

source code is correct and recompile.

the problem recurs, do the follcwing

before calling IBM:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement,

If

S nnnnnp STRING PCOL OVERFLOW.

Explapation: Total length of strings used
exceeds capacity limitations.

Programmer Response: Probakle user error.

Make precompiled procedures of suitable

parts of source program. Make sure the

source code is correct and recoampile.

the problem recurs, do the following

before calling IEM:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

If

S nnnnn DELIMITER
POSITION. ‘*CODE!

'CODE' IN ILLEGAL
CELETED.

________ YCODE' has not been placed
1nmedlately after a procedure heading so
it has been deleted.

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn SPECIFIER
ILLEGAL POSITION.

STRING OR 'LABEL' IN
SPECIFICATION DELETED.

Explanation: 'STRING' and 'LABEL' have
been used outside procedure heading, so
they have been deleted.

IEX026I

IEX0271

IEX0281

IEX029I

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problewn

recurs, do the following Lefcre calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEI=(1,1) was
specified in the JOB stateament.

S nnnnn PARAMETER (identifier) MULTIFLY
SPECIFIED. FIRST SPECIFICATICN USEL.

Explanation

Self-explanatory.

Programmer_ Response: Frobable user error.

Make sure the source code is correct and

recompile if necessary. If the prcbles

recurs, do the following before calling

IEM for programming suppert:

e Have source and associated listings
available.

e Make sure that MSGLEVEI=(1,1) was
specified in the JCB statement.

W nonnn PARAMETER (identifier) MISSING
FROM FORMAL PARAMETER LIST. SFEECIFICATION
IGNORED.

______ A parameter has been
spec1f1ed 1n a procedure heading which
does not exist in the formal parameter
list, so it has been ignored.

Programmer_ Response: FProbable user error.
Make sure the source code is correct and
recompile if necessary. If the prcblem
recurs, do the following before calling
IBH for programming support:
Have source and associated listings
available.
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn DELIMITER
POSITION.

*VALUE' IN ILLEGAL
VALUE FART DELETED.

Ex 'VALUE' has been placed
outside a procedure heading so the value
part has been deleted.

Programmer Response: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the prcblem
recurs, do the following before calling
IBH for programming support:
Have source and associated listings
available.
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

W nnnnn SPECIFICATICN PART PRECELES VALUE
PART.

Explanation: The specificatiocn part in a
procedure heading has been incorrectly
placed before the value part.

Prograpmeer Response: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the prcblem
recurs, do the following before calling
IBM for programming support:

IEX0301

IEX031I

IEX0321

IEX0331

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

W nnnnn PARAMETER (identifier) REPEATED IN
VALUE PART.

Explapation: A parameter has been
included in the value part of a procedure
heading more than once.

Prograpmmer Response: Probakle user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
availatle.

e Make sure that MSGLEVEL=(1,1) wvas
specified in the JOB statement.

W nnnnn LEFT PARENTHESIS NOT FOILCWED BY /
AFTER ARRAY IDENTIFIER (identifier).
SUBSCRIPT BRACKET ASSUMED.

Explapation: The subscript bounds after
an array identifier have been preceded by
a left parenthesis instead of a subscript
bracket.

Programmer Response: Probakle user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for prograsming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn MISSING RIGHT PARENTHESIS IN BOUND
PAIR LIST OF ARRAY (identifier).
DECLARATION DELETED.

Explapation: The right parenthesis has
been omitted in the list of subscript
bounds for amn array identifier, so the
declaration is deleted.

Progqrammer_ Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

T nnnnn MORE THAN 16 DIMENSIONS OR
COMPONENTS IN DECLARATION OF (identifier).

Ex The number of dimensions or
components nsed with an array or switch
identifier exceeds the maximum allowed.

Programmer Response: Probakle user error.
Rearrange the structure of the source
program to avoid the capacity limitation.
Make sure the source code is correct and
recompile. If the problem recurs, do the
following before calling IBM:

e Have source and associated listings

IEX034X

IEX0351

IEX036I

IEX0371

available.
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn ARRAY SEGMENT (identifier) NOT
FOLLOWED BY SEMICCLON OR CCHMA.
CHARACTERS TO NEXT SEMICCLON DELETED.

Explanation: An array segment must be
follovwed by a semicolon if it is the cnly
or last segment of an array declaration;
or a corma if it is followed by anocther
segment.

Programmer Response: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the prcblem
recurs, do the follouing before calling
IBH for programming support:
Have source and associated listings
available.
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

¥ nnnnn ILLEGAL PERICD IN ARBAY CR SWITCH

LIST. PERIOCLC DELETED.

_______ A period has been used
wrongly in an array or switch list and
deleted from the program. A pericd can be
used only as a decimal point, or as part
of a colon or semicolon.

Programmer_ Response: Frobable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

T annnn MORE THAN 15 PARAMETERS IN
DECLARATION OF (identifier).

Explapation: The number of formal
parameters specified for a procedure
exceeds the maximum allowed.

Programmer_ Response: Probable user error.
Rearrange the structure of the scurce
program to avoid the capacity limitation.
Make sure the source code is correct and
recompile. If the problem recurs, do the
followlng before calling IEM:
Have source and associated listings
available.
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn SEMICCLON MISSING AFTER FORMAL
PARAMETER LIST OF (identifier).
CHARACTERS TO NEXT SEMICCLCN LELETED.

Explanation: The formal parameter list of
a procedure must be followed by a
semicolon.

Programmer_ Response: Probable user error.
Make sure the source code is ccrrect and
recompile if necessary. If the problenm
recurs, do the following before calling
IBM for programming support:

e Have source and associated listings

Appendix F: Diagnostic Messages 79

IEX0381

IEX0391

IEX0411

IEX0421

80

available.
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

T nnnnn TOO MANY IDENTIFIERS DECLARED IN A
BLOCK.

Explanation: Number of identifiers
declared in a block exceeds capacity
limitations.
Programmer_ Response: Probable user error.
Rearrange the structure of the source
program to avoid the capacity limitation.
Make sure the source code is correct and
recompile. If the problem recurs, do the
following before calling IBN:
e Have source and associated listings
available.
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.
S nnnnn nnn MISSING 'END' BRACKETS. OPEN
BLOCKS, COMPOUND STATEMENTS, FOR
STATEMENTS, AND PROCEDURE DECLARATIONS
CLOSED.

Explanation: Syntax of ALGOL requires
that a program ccntains the same number of
'BEGIN's and 'END's. The number of 'END's
specified by nnn have been omitted in this
case so any open block and statements are
closed.

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.case so
any open blocks and statements are
closed.

T nonnn MORE THAN 255 FOR STATEMENTS.

Explanation: Number of for statements
used in a program exceeds capacity
limitations.

_______ Probable user error.

Make precompiled procedures of suitable

parts of source rprogram. Make sure the

source code is correct and recompile if

necessary. If the problem recurs, do the

following before calling IBM for

programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

W nnnnn 'BEGIN' PRECEDES PRECOMPILED
PROCEDURE. 'BEGIN' DELETED.

Explanation: A precompiled procedure has
been specified so a 'BEGIN' is not
required.

________________ Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problenm
recurs, do the following before calling

IEXQ43I

IEXO044T

IEXQ45I

IEX047

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JCB statement.

S nnnnn EQUAL NUMBER CF 'BEGIN' ANL 'ENL'
BRACKETS FOUND. REMAINING PART OF PRCGRAM
IGNORED.

Explanation: The compiler assumes it has
reached the end of the program when the
number of 'END' brackets equals the numker
of 'YBEGIN' trackets.

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the prchlem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JCB statement.

T nnnnn NC SCURCE PROGRAM FOUNL.
Explapation: For example, there has been
an incorrect card code specification.

Programmer_ Response: FPFrobable user error.

Make sure the source code is correct and

recompile if necessary. If the prcblem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S IDENTIFIER (identifier) MULTIPLY
DECLARED. LAST DECLARATION USEL.

Explanation: An identifier has been
declared more than once in a program tklock
heading. The last declaration is taken to
be the one required.

Programmer_Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the prcblenm

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JCB statement.

S ILLEGAL CALL BY VALUE CF IDENTIFIER
¢(identifier).

Explanation: A procedure, switch or
string has been wrongly called by value.

Programmer_Response: Frobable user error.

Make sure the source code is correct and

recompile if necessary. If the problen

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available. :

e Make sure that MSGLEVEI=(1,1) was
specified in the JOB statement.

IEX080I

IEX081I

IEX0821

IEX0831

S nnnnn OPERAND BEGINNING WITH (up to six
characters) IS SYNTACTICALLY INCORRECT.

________ Invalid characters have been
used in the operand. If the six
characters are all periods, this may
indicate the internal representation of a
string or lcgical value.

Programmer_ Response: Probakle user error.

Make sure the source code is correct and

recompile if necessary. If the proklem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn IDENTIFIER (identifier) NOT
DECLARED.

Explanation: An identifier has been used
which is not declared in a tlock or
procedure heading.

Programmer_ Response: Probaltle user error.

Make sure the source code is correct and

recompile if necessary. If the problenm

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn REAL CONSTANT BEGINNING WITH (up
to twelve characters) OUT OF RANGE.

_______ A real constant has been
assigned a value which is outside capacity
limitations.

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

¥ nnnnn INTEGER BEGINNING WITH (up to
twelve characters) OUT OF RANGE. INTEGER
CONSTANT CONVERTED TO REAL.

________ An integer comnstant has been
assigned a value which is outside storage
capacity limitations, so it has been
converted to a real constant.

Programmer Response: Proballe user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

IEX084I

IEX085I

IEX0861

IEX0871

W nnnnn PRECISICN CF REAL CONSTANT
BEGINNING WITH (up to twelve characters)
EXCEEDS INTERNALLY HANDLED PRECISICN.
CONSTANT TRUNCATED.

______ A real constant has exceeded
capacity limitations regarding precision
and has been truncated.

Programmer Response: Probable user error.

Make sure the source code is cocrrect and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) wuas
specified in the JOB statement.

S nnnnn ILLEGAL USE OF LABEL (label).

EX R label defined in a for
statement has been used in a gcto
statement outside the for statement, cr
the label occurs in a syntactically

illegal position.

Programmer_Response: FProbable user error.

Make sure the source code is ccrrect and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.)

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn TCO MANY CONSTANTS.

Explanation: Number of constants used
exceeds capacity limitations.

Programmer_ Response: Probable user error.

Make precompiled procedures of suitakle

parts of source program. Make sure the

source code is correct and recompile.

the problem recurs, do the following

before calling IBE:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) wvas
specified in the JOB statement.

if

W nnpnn FULL OPTIMIZATICN NOT ECSSIELE LUE
TO INTERNAL OVERFIOW.

Explapation: Main storage capacity
available prevents for statement
optimization by the compiler after the
overflow occurs.

Programmexr_ Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the prcblem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

Appendix F: Diagnostic Messages 81

IEX088I W nnnnn IDENTIFIER (identifier) IN BOUND

IEX0891

IEX 160

IEX1611

82

EXPRESSION DECLARED IN SAME PROGRAM BLOCK
AS ARRAY. DECLARATION IN SURROUNDING
BLOCK SEARCHED FOR.

Explanation A bound expression can
depend only on variables and procedures
which are non-local to the tlock for which
the array declaration is valid, lecause
local variables dc not have values before
entering the statements of the Llock.

rammer Response Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the followlng before calling
IBu for programming support:
Have source and associated listings
available.
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

W nnnnn 'GOTO' (identifier) INVAIID
OUTSIDE FOR STATEMENT CONTAINING THIS
LABEL.

Explanation: A switch may have teen

misused, since a label has been found in a
switch declaration outside a for statement
containing a definition of the same label.

Programmer Response: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the proklem
recurs, do the following before calling
IBH for programming support:
Have source and associated listings
available.
e Make sure that MSGLEVEL=(l,1) was
specified in the JOB statement.

S nnnnn SEQUENCE (operator)
ALLOWED.

(operator) NOT

________ In this context, this

sequence is not allowed.

Programmer Response: Probakle user error.

Make sure the source code is correct and

recompile if necessary. If the problen

recurs, do the fcllowing before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn SEQUENCE (operator) OPERAND
(operator) NOT ALLOWED.

“““““ In this context, this
sequence is not allowed.

Programmer_ Response: Probatle user error.

Make sure the source code is correct and

recompile if necessary. If the problen

recurs, do the fcllowing before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

IEX162I

IEX 1631

IEX 1641

IEX 1651

IEX 1661

Explanation:

S nnnnn OPERAND MISSING BETWEEN (operator)
AND (operator).

_______ In this context, there must
be an operand between twc operators.

Programmer_ Response: FProbable user error.

Make sure the source code is correct and

recompile if necessary. If the prcblem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JCOB statement.

S nnnnn OPERAND FCLLCWING (operator) MUST
BE OF ARITHMETICAL TYPE.

An arithmetical cperand must
follow an arithmetical ogeratocr.

Programmer Response: Protable user errcr.

Make sure the source code is correct and

recompile if necessary. If the prcblem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn NO OPERANL ALLOWED BETWEEN
(operator) AND (operator).

_______ In this context, no operand
is allowed betueen the two operators.

Programmer_Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn EXPRESSIONS BEFCEE ANL AFTER
*ELSE' NOT COMPATIBLE.

Explanation: For example, if an

arithmetical expression is specified
before 'ELSE', then an arithmetical
expression must be specified after.

Programmer Response: Frobable user error.

Make sure the source code is correct and

recompile if necessary. If the prchblem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEILI=(1,1) was
specified in the JOB statement.

S nnnonn DECLARATOR IN ILLEGAL BECSITICN.

Explanation: A declaration has occurred
outside the block heading, or, for
instance, a label precedes the
declaration.

IEX 168I

IEX 1691

IEX 172

IEX1731

Programmer Response: Probakle user error.

Make sure the source code is correct and

recompile if necessary. 1If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that KMSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn OPERAND PRECEDING (operator)
CANNOT POSSESS VALUE.

Explanation: Only quantities that can
possess a value can be used in expression.
For example, not standard I/0 or non-type
procedure identifier.

Programper Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problen

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn LABEL FOLLOWING (operator)
ILLEGAL.

________ In this context, a label is
not alloweﬂ due, for example, to a
semicolon being missing.

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. 1If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn DIFFERENT TYPES IN LEFT PART LIST.

Explanation: The identifiers in a left
part list must be of similar tyfpe.

Programmer_ Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the proklenm

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

T nnnnn COMPILATION UNSUCCESSFUL DUE TO
COMPILER OR MACHINE ERROR.

______ Self-explanatory.

Programmer Response: Recompile. 1If the

proklem recurs, do the following before

calling IBM:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

IEX1741

IEX 1751

IEX1761

IEX177T

IEX1781

S nnnnn PARAMETERS NOT AILCWED FOR TYFE
PROCEDURE CALLED BY VALUE.

_________ A type procedure called by
value must have an empty parameter part.

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the prcblesm

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn OPERAND FCLLOWING (operator) MUST
BE LABEL OR SWITCH.

Explapation: Por example, 'GCTC' must be
followed ty a designational exfpressiocn.

Programmer_ Response: EFrobable user error.

Make sure the source code is correct and

recompile if necessary. If the prcblenm

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEI=(1,1) was
specified in the JOB statement.

S nnnnn OPERAND MISSING EEFORE (operator).

Explanation: 1In this context, the
operator must be preceded by an operand.

Programmer Response: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBH for programming support:
Have source and associated listings
available.
e Make sure that MSGLEVEL=(1,1) vas
specified in the JOB statement.

S nnnnn OPERAND NCT AILLCWEL EBEFORE
(operator).

_________ In this context, no operand
is allowed before the orperator.

Programmer Response: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problenm
recurs, do the following before calling
IBH for programming support:
Have source and associated listings
available.
e Make sure that MSGLEVEL=(1, 1) was
specified in the JOB statement.

S nnnnn ILLEGAL OFERAND IN EXPRESSION
BEFORE OR AFTER ‘'ELSE'.

Explapation: For example, only

arithmetical operands may ke used in an
arithmetical expression.

Appendix F: Diagncstic Messages 83

IEX1791

IEX 1801

IEX181I

IEX 1821

84

Programmer_ Response: Probaktle user error.

Make sure the source code is correct and

recompile if necessary. If the problenm

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn NUMBER OF SUBSCRIPT EXPRESSIONS
DIFFERS FROM DIMENSION IN ARRAY
DECLARATION FCR VARIABLE.

Explanation: A subscript list must
contain the same number of subscript
expressions as the dimension in the
corresponding array declaration.

________ Probakle user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn INVALID SWITCH DESIGNATCR.

Explapation: More than one subscript

expression in switch designator.

Programmer Response: Prokakle user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the fcllowing before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn SWITCH DESIGNATOR IN ILLEGAL
POSITION.

Explanation: A switch designator must
follow only 'THEN', *ELSE', 'GOTC', := or

rel

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn OPERAND FOLLOWING
BE BOOLEAN.

(operator) MUST

Explanation: A non-Boolean operand has
been specified where a Boolean cne was
required.

IEX 1831

IEX 1841

IEX 1851

IEX 1861

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.,

S nnnnn OPERAND PRECEDING (operator) MUST
BE A PROCEDURE IDENTIFIER.

Explanation: A non-procedure identifier
has been specified where a procedure one
vas required.

Programmer Response: Probable user error.

Make sure the socurce code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn OPERAND PRECEDING (operatcr) MUST
BE AN ARRAY OR SWITCH IDENTIFIER.
Explapation: A non-array or nonswitch
identifier has been specified where an
array or switch one was required.

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problen

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn REAL OPERAND PRECEDING (operator)
NOT ALLOWED FOR INTEGER LIVISICN.

Explanation: A real operand has teen
specified for an integer division.

Programmer Response: Prokable user error.

Make sure the source code is correct and

recompile if necessary. If the problen

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

T nnnnn SYNTACTICAL STRUCTURE TCO
COMPLICATED. INTERNAL OVERFICW.

_____ The syntactical structure of
the program has caused an internal
overflow in the compiler. A larger main
storage size is required.

Programmer Response: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:

e Have source and associated listings

IEX 1871

TEX1881

IEX 1891

IEX190I

available.
o Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nonnn INCORRECT RUMBER OF ACTUAL
PARAMETERS.

EXx The number of actual
parameters does not correspond to the
number of formal rarameters in a
procedure.

Programmer_Respomnse: Probalkle user error.

Make sure the source code is correct and

recompile if necessary. If the proklem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnan INVALID ACTUAL PARAMETER FOR
STANDARD PROCEDURE. DSN= (number).

Explapation: An actual parameter has been
specified incorrectly in a standard
procedure. Either semicolon number or
data set number is given. In the case
where the data set number is given instead
of the semicolon number, the error is due
to SYSACT8 having been specified for the
data set when SYSACT4, SYSACTI3 or an
input operation has been specified also.
Such a combination is invalid.

PFrogrammer_ Response: Prolakle user error.

Make sure the source code is correct and

recompile if necessary. If the problenm

recurs, do the following before calling

IBM for prograsmming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn DATA SET NUMBER OR FUNCTIION OF
SYSACT OUT OF ALLOWED RANGE.

Data set numbers are 0 - 15.
15.

SYSACT functions are 1 -

Programmer_ Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nonnn ASSIGNMENT NOT POSSIBLE.

Explanation: Only variable allcwed in for
clause. Only variable or type procedure
identifier allowed in left part list.

Programmer Response: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling

IEX191I

IEX 1921

IEX 1931

IEX 1941

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn NO OPERAND ALILCWED BETWEEN) ANT
(operator) .

_______ When a right parenthesis is
used it must ke followed by an apostrcrhe,
a semicolon, an arithmetical operator, a
corma, or another right parenthesis.

Res Probable user error.
Make sure the source code is correct and
recompile if necessary. If the prcblem
recurs, do the following before calling
IBM for programming support:
e Have source and associated listings
available.
e Make sure that MSGLEVEL=(1,1) was
specified in the JCB statement.

Programmer Response:

S nnnnn INVALID RIGHT PART IN ASSIGNMENT

STATEMENT.

Explanation: The right part must be
either an arithmetic or a Boolean
expression.

Programmer_Response: Prcbable user error.

Make sure the source code is correct and

recompile if necessary. If the problenm

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn INCOMPATIBLE TYPES IN ASSIGNMENT
STATEMENT.

_______ Value assigned to right part
does not correspond to type of left part
list in assignment statement.

_______ Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:

e Have source and associated listings
available. .

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn (operator) NOT ALLOWED.

Explapation: 1In this context, the
operator is not allowed.

Programmer Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the probles

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

Appendix F: Diagnostic Messages 85

IEX 1951

IEX1961I

IEX200I

IEX2011

86

S nnnnn SEQUENCE OPERAND (operator) NOT

ALLGWED.

_______ In this context, this

sequence is not allowed.

Progranmer_Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the following before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn ARRAY IDENTIFIER PRECEDING
(operator) NOT ALLOWED.

Ex In this context,
identifier is not allovwed.

an array

Programmer_ Response: Probable user error.

Make sure the source code is correct and

recompile if necessary. If the problem

recurs, do the fcllowing before calling

IBM for programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

W nnnnn OPTICN PARAMETER
INVALID.

(parameter)
PARAMETER IGNORED.

Explanation: An invalid option has been
specified in the PARM parameter and
ignored by the ccmpiler.

Programmer_ Response: Probable user error.

Make sure all compiler options specified

are correct and recompile if necessary.

If the problem recurs, do the following

before calling IBM:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

T nnnnn DD CARD FOR (ddname) INCCRRECT CR
MISSING.

Ex During an ALGOL compilation,
the DD statement for the data set named
ddname was incorrect or missing. ddname
can be SYSIN, SYSPRINT, or SYSUTtl, 2, or
3.

This message appears on the console if
ddname is SYSPRINT.

Programmer Response: Probakble user error.

Make sure the DD statement is correct or

supply the missing one. Recompile. If

the problem recurs, do the following

before calling IBM: .

e Have source and associated listings
available. '

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

IEX202I W nnnnn DD CARD FOR SYSLIN INCORRECT CR

IEX2031

IEX2041

IEX2051

MISSING. OBTION NCLCAD ASSUMEEL.
Explanation: The SYSLIN data set bas been
specified incorrectly or not at all when
the LOAD option is specified, sc an object
module is not generated.

Programmer_ Response: Prclkable user error.

Make sure the LD statement is correct cr

supply the missing one. Recompile if

necessary. If the problem recurs, dc the

fcllowing before calling IEM for

programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(l,1) was
specified in the JOB statement.

W nnnnn DD CARD FCR SYSPUNCH INCCREECT OR
MISSING, OPTION NODECK ASSUMED.

__________ The SYSEUNCH data set has
been specified incorrectly or not at all
when the DECK option is specified, so an
object deck is not punched.

Programmer Response: Prcbable user error.

Make sure the LD statement is correct cr

supply the missing one. Recompile if

necessary. If the problem recurs, do the

following before calling IEM for

programming sugport:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

T nnnnn BLOCKSIZE SPECIFIED FOR SYSIN
INCORRECT.

Explanation: The blocksize specified for
SYSIN does not correspond to the actual
blocksize.

Programmer_Response: Probable user error.

Make sure the LD statement is correct and

recompile. If the problem recurs, do the

following before calling IBM for

programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

¥ nnnnn BLOCKSIZE SPECIFIED FOR (ddname)
INCORRECT. UNBLOCKED CUTPUT ASSUMED.

_______ One of the output data sets
has had an incorrect blocksize specified
so unblocked output is generated.

Programmer_ Response: FProbable user error.

Make sure the DD statement is correct or

supply the missing one. Recompile if

necessary. If the problem recurs, do the

fcllowing before calling IBM for

programming support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

IEX2061

IEX2071

IEX208I

IEX209I

IEX210X

W nnnan TOO MANY OPTION PARAMETER ERRORS.
SUBSEQUENT PARAMETERS IGNORED.

Explanation: Too many incorrect
parameters have been specified in the PARM
parameter so the rest are ignored.

Programmer Response: Probable user error.

Make sure all compiler options specified

are correct and recompile if necessary.

If the problem recurs, do the following

before calling IBM:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

W nnnnn POSSIBLE ERROR IN DD NAMES
PARAMETER.

Explanation: An incorrect ddname may have
been specified in the DD statement.

Probable user error.

Make sure the DD statement is correct or

supply the missing one. Recompile if

necessary. If the problem recurs, do the

following before calling IBM for

programming support:

s Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

W nnnnn SIZE PARAMETER INVALID.
45056 assumed.

SIZE

Explanation: The main storage size
specified as being available to the
compiler is less than the minimum
required, so the minimum value is assumed.

Programmer Response: Probalkle user error.

Make sure all compiler options specified

are correct and recompile if necessary.

If the probler recurs, do the following

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

T nnnnn COMPILATION UNSUCCESSFUL DUE TO
PROGRAM INTERRUPT. PSW (hexadecimal
digits).

Explapation: A program interrupt has
occurred causing termination of the job
step. The program status word when the
error occurred is given.

Programmer Response: Recompile. 1If the

problem recurs, do the following before

calling IBM:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1l) was
specified in the JOB statement.

T nnnnn UNRECOVERABLE I/0O ERRCR CN DATA
SET (ddname).

Explapation: During an ALGOL compilation,
an uncorrectable input/output error
occurred in using the data set named
ddname.

IEX2111

IEX2121

IEX2131

IEX2141

This message appears on the console if
ddname is SYSPRINT.

Programmer Response: Make sure that the

DD statement is correct and recompile.

the problem recurs, do the following

before calling IBF¥ for programming

support:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JCB statement.

1f

T nnnnn PROGRAM INTERRBRUET IN ERRCR MESSAGE
EDITING ROUTINE. PSW (hexadecimal
digits) .

_______ A program interrupt has
occurred in the error message editing
routine, ending the job.

Programmer_ Response: Recompile. If the

problem recurs, do the following before

calling IBM:

e Have source and associated listings
available.

e Make sure that MSGLEVEI=(1,1) was
specified in the JOB statement.

T nnnnn TOO MANY ERRORS.

Explanation: The total length of the
error message patterns produced eXceeds
capacity limitations.
Programmer_ Response: Frobable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
e Have source and associated listings
available.
e Make sure that MKSGLEVEL=(1,1) was
specified in the JOB statement.

T nnnonn INTERNAL CVERFLCW CF ILENTIFIER
TABLE.
Explanation: The number of identifiers
declared exceeds capacity limitaticns.

Programmer Response: Prcbhable user error.

Rearrange the structure of the source

program to avoid the capacity limitaticn.

Make sure the source code is correct and

recompile. 1If the problem recurs, do the

following before calling IBM:

e Have source and associated listings
available.

¢ Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

S nnnnn DATA STORAGE AREA EXCEETLEL.
PROGRAM BLOCK NO. (numker).

________ The data storage area
required by the program tlock specified
exceeds 4096 bytes.

Programmexr_Response: Probable user error.
Rearrange the structure of the source
program to avoid the capacity limitaticn.
Make sure the source code is correct and
recompile, 1f the problem recurs, do the
following before calling IEHN:

Appendix F: Diagnostic Messages 87

IEX2151

88

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(l,1) was
specified in the JOB statement.

T nnnnn SOURCE PROGRAM TOO LONG.

Explanation: The source program exceeds
capacity limitations.

Programmper_ Response: Prolbakle user error.

Make precompiled procedures of suitable

parts of source program. Make sure the

source code is correct and recompile. If

the problem recurs, do the following

before calling IEM:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1l,1) was
specified in the JOB statement.

IEX2161I S nnnnn TOO MANY LABELS. LABEL NUMBER

RESET.

Explanation: The total number of labels
used exceeds capacity limitations, so
duplicated numkers are allocated.

Programmer Response: Prokable user error.

Make precompiled procedures of suitable

parts of source program. Make sure the

source code is correct and reccmpile. If

the problem recurs, do the following

before calling 1BM:

e Have source and associated listings
available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

Linkage Editor and Loader Messages

The diagnostic messages produced ty the
linkage editor and by the loader are listed
in the publication 0S_Loader_ and_Lipkage
Editor.

The diagnostic message consists of one
or more printed lines and contains:

. A message key, consisting of the
letters IEW, a three digit decimal
number identifying the message,
and a final digit, 1, 2, 3 or 4,
indicating the severity code (see
below). Linkage editor message
keys read IEWO0---; loader message
keys read IEW1---.

. The message text descriking the
error, Fcr severity code 1 the
message is preceded by 'WARNING'.
For all other severity codes the
message is preceded ty 'ERROR'.

The severity cocdes have the following
meaning:

1 indicates a condition that may
couse an error during execution of

Execution Time Messages

the locad mecdule. A module map or
cross-reference table is produced
if it was required by the
programmer. The output load
nodule is marked as executatle.

Indicates an error that cculd make
execution of the load module
impossible. Processing continues.
When possible, a module map or
cross-reference tatle is produced
if it was required. The load
module is marked as not executable
unless the LET option has been
specified.

indicates an error that will make
execution of the load mcdule
impossible. Processing continues.
If possible a module map or
cross-reference table is produced
if it was required. The load
module is marked as not
executakle.

indicates an error condition frcm
which no recovery is possible.
Processing terminates. The cnly
output is diagnostic messages.

The following table describes the format and gives other pertinent information about the ALGOL object

program messages

Component Name IHI

Program Producing Message

Object program originally coded in ALGCL language.

Audience and Where Produced

For programmer: SYSPRINT data set.

For operator: conscle.

Message Format IHInnnI SC nnnnn text
nonn
nnnnn

text

PS¥=nnnn nnnn

&k

Message serial number.
Semicolon number, right-adjusted, and in decimal.
Message text. Where appropriate, hegih with:
DSN¥=nn or DSN=ddname
Indicates the number (nn) or name (ddname) of the data set

involved in the error.

Contents of the program status word (PSW) held by the
system when the error occurred.

Indicates that the program does not correspond to the
parameters specified in the jok control statements.

Associated Fublications

[e - i S —_—— o —— — —— - ——— = > —
oo o s e — e — s . — s s s e e

0S_ALGOL_Langquage, GC28-€615

L —e it e o e o o S o . — o wd — =y e —

Appendix F: Diagnostic Messages 89

IHIO0O00I

IHIO001X

IHI002I

IHIOO03I

90

SC=nnnnn DATA SET NUMBER OUT OF RANGE

A data set number must be in
15.

the range 0 to

Programmer_ Response: Probable user error.
Make sure the source code is correct and
run the jobk again. If the problem recurs,
do the following before calling IBM for
programming support:

e Make sure that the DUMP optior was
specified.

e Have source, including source for
precompiled procedures, input data, and
associated listings availatle.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn DSN=nn. REAL NUMBER TO BE
CONVERTED OUT OF INTEGER RANGE

________ A real number has been
included which exceeds capacity
limitations when converted to integer.
This message applies for input/output
operations.

Programmer_ Response: Probakle user error.
Make sure the source code is correct
before calling IEM for programming
support:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn DSN=nn. INCOMPATIBLE ACTIONS ON

DATA SET

________ The I/0 procedure requested
is not defined for this data set. For
example, procedure SYSACT8 specifying data
set number 0 is not allowed.

Programmer Response: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming sugport:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data, and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn DSN=nn. INPUT BEYOND IAST CUTFUT
_______ Before reading data which
has just been written on the same data
set, backward repositioning must be
specified.

Probable user_error. Make sure the source
code is correct. Modify the source to
avoid the capacity limition and rerun the
job again. If the proklem recurs, do the
following before calling IBM for
programming support:

IHIO04I

IHIO005TI

IHI006I

IHIO07I

e Make sure that the DUME option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that FMSGLEVEI=(1,1) was
specified in the JOB statement.

SC=nnnnn TOO MANY REPOSITIONINGS IN DATA

SETS. INTERNAL CVERFICW
Explanation: Too many repcsitionings have

caused an internal overflow of the Note
Table.

Programmer_Response: Probable user error.
Make sure the source code is ccrrect.
Modify the source to avoid the capacity
limitation and run the jcb again. If the
problem recurs, do the following before
calling IBM for programming suppert:

e Make sure .that the DUME option was
specified.

e Have source, including source fer
precompiled procedures, input data, and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement

SC=nnnnn DSN=nn.
OF DATA SET

INFUT EECUEST EEYONL ENT

Explanation:
start beyond the end of the data set.
the protlem recurs, do the following
before calling IBF for programming
support:

e Make sure that the DUMF option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JCB statement.

Input has bkeen requested to
If

SC=nnnnn DSN=nn. EXPONENT PART OF INPUT
NUMBER CONSISTS OF MORE THAN TWO
SIGNIFICANT LIGITS

Explanation: The length of the exponent
part of an input number exceeds capacity
limitations.

Programmer_ Response: Probable user errcr.

Make sure the source code is correct.

Modify the input data to avoid the

capacity limitation and execute the jct

step again. If the problem recurs, dc the

following before calling IEM for

programmring support:

e Make sure that the DUMF option was
specified.

¢ Have source, including source for
precompiled procedures, input data arnpd
associated listings available.

¢ Make sure that MSGLEVEILI=(1,1) was
specified in the JOB statement.

SC=nnnnn DS=nn. *%NC CCNTROL CHARACTER
SPECIFIED IN RECORD FCRMAT OF LATR SET.
SPLITTING INTO SECTIONS IMPOSSIBLE

Explapation: A control character is
required to define printing format.

IHIO008I

IHIO0O09I

IHIO 10X

Programmer_Response: Probable user error.
Make sure the source code is correct and
run the job again, If the problem recurs,
do the following before calling IBM for
programming support:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data, and
associated listings available.

e Make sure that MSGLEVEL= (1,1} was
specified in the JOB statement. .

SC=nnnnn DSN=nn. SOURCE IN PROCEDURE
OUTSYMBOL DOES NOT MATCH STRING

Ex The symbol specified by the
third parameter of the QUTSYMBOL procedure
does not correspond to any symbol in the
string specified by the seccnd parameter.

______________ Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data, and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn DSN=nn. UNDEFINED FUNCTION
NUMBER IN SYSACT PBOCEDURE

A function number has not
The

been defined for a SYSACT procedure.
function number range is 1 to 1&.

Programmer Response: Probalkle user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following btefore calling IBM for
programming support:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings availakle.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn DSN=nn., DATA SET CLOSED

Ex The data set is closed but a
SYSACT procedure has been specified which
requires it to be open.

Programmer Response: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

IHIOt1X

IHIO012I

IHIO013X

IHIO U1

SC=nnnnn DSN=nn. DATA SET OPEN

______ The data set is coren but a
SYSACT procedure has been specified which
requires it to be closed.

Programmer_ Response: Frobable user error.

Make sure the source code is ccrrect and

run the job again. If the protlem recurs,

do the folloving kefore calling IBM fcr

prograsming support:

¢ Make sure that the DUME opticn was
specified.

¢ Have source, including socurce fcr
precompiled procedures, input data
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JCB statement.

and

SC=nnnnn DSN=nn. OQUANTITY IN SYSACT
PROCEDURE MUST BE VARIABLE

EX The third parameter cf the
SYSACT procedure must be a variable.

Programmer_ Response: Frokable user error.
Make sure the source code is correct and
run the job again. If the proktlem recurs,
do the following kefore calling IBK for
programming support:

e Make sure that the DUMP opticn was
specified.

e Have source, including seource for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn DSN=nn. QUANTITY IN SYSACT
PROCEDURE OUT OF RANGE

Explanation: The variable specified in
the third parameter of the SYSACT
procedure exceeds capacity limitations.

Prograpmer_Response: FProbable user error.
Make sure the source code is ccrrect and
run the job again. If the proklem recurs,
do the following before calling IBM fcr
programrming support:

e Make sure that the DUMP option was
specified.

e Have source, including socurce for
precompiled procedures, input data and
associated listings available.

e Make sure that HKSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnun DSN=nn. BACKWARD REPOSITIONING

NOT DEFINED

Explanation: Backward repositioning is
defined using SYSACT 13.

Programmer Response: Probable user error.

Make sure the source code is correct and

run the job again. If the probles recurs,

do the following before calling IEN for

programming support:

e Make sure that the DUME option was
specified.

e Have source, including source for
precompiled procedures, input data and

Appendix F: Diagnostic Messages 91

IHIO 151

IHIOI6I

IHIOI7I

IHIOI8I

92

associated listings available.
e Make sure that MSGLEVEL=(l,1) was
specified in the JOB statement.

SC=nnnnn UPPER BOUND LESS THAN LOWER BOUND
IN ARRAY DECLARATION

Explanation: The upper subscript bound
specified in an array declaration must not
be less than the lower subscript bound.

Erogrammer Response: Proballe user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn VALUE OF SUBSCRIPT EXPRESSION NOCT
WITHIN DECLARED BOUNES

Explanation: This error is detected only
when the subscripted variable address
falls outside the area reserved by the
compiler for the array identifier.

Programmer_ Response: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn ENDLESS LOOP IN FOR STATEMENT

Explanation: The expressions used in the
for statement result in an endless loop.

Programmer Response: Probable user error.
Bake sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming suppcrt:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled precedures, input data and
associated listings availatle.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn MAIN STORAGE REQUESTED NOT
AVAILABLE

_______ The storage space required
by an array exceeds capacity available.

Programmer Response: Make sure the source
code is correct. Either specify a larger
partition or region or modify the source
to avoid the capacity limitation and run
the job again. If the problem recurs, do

IHIO1SI

IHI020I

IHIO021I

the following before calling IEM for

programming support:

e Make sure that the
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JCB statement.

DUME option was

SC=nnnnn UNEQUAL NUMBER CF DIMENSICNS FOR
ACTUAL AND FORMAL PARAMETER

_______ An array identifier teing
used as a parameter in a procedure has had
a different number of dimensions assigned
in the formal and actual positicns.

Programmer Response: Probable user errer.
Make sure the source code is ccrrect and
run the job again. If the problem recurs,
do the following Lkefore calling IBM for
prograaming support:

o Make sure that the DUME opticn was
specified.

e Have source, including source fer
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.
PARAMETER OF DIFFERENT TYPE CR KINL

SC=nnnnn ACTUAL AND CCRRESPONDING FORMAL
PARAMETER OF DIFFERENT TYPE OR KIND.

Explanation: An actual parameter has been
assigned which does not have the type or
kind declared for the corresponding formal
parameter.

Programmer Response: Probable user error.
Make sure the source code is correct and
run the job again. If the prcblem recurs,
do the following before calling IEM for
programming support:

e Make sure that the DUME option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEI=(1,1) was
specified in the JOB statement.

SC=nnnnn UNEQUAL NUMBER CF PARAMETERS IN
PROCEDURE DECLARATION AND PROCEDURE
STATEMENT/FUNCTION DESIGNATOR

________ Either not all, er more
than, the formal parameters used in a
procedure have been assigned in a
procedure call.

Programmer Response: Probable user error.
Make sure the source code is ccrrect and
run the job again. If the proktlem recurs,
do the following tefore calling IEM for
programming support:

e Make sure that the DUMF option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVELI=(1,1) was
specified in the JOB statement.

IHI022X

IHI023T

IHIO0241

IHI025I

SC=nnnnn ASSIGNMENT TO A FORMAL PARAMETER
NOT POSSIBLE

________ A value cannot be assigned
to an expression used in a standard input
procedure, assignment statement, or for
clause.

Programmer_ Response: Probakle user error.
Make sure the source code is correct and
run the job again. If the proklem recurs,
do the following before calling IBM for
programsing support:

e Make sure that the DUMP
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

option was

SC=nnnnn ARGUMENT OF SQRT LESS THAN ZEROQ

Explanation: The ALGOL library SQRT
routine cannot handle arguments with a
value less than zero.

Prograpmer Response: Probable user error.

Make sure the source code is correct and

run the job again. If the problem recurs,

do the following before calling IBM for

programming support:

e Make sure that the DUMP option was
specified.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

SC=nnnnn ARGUMENT OF EXP GREATER THAN
174,673
Explapation: The argument of EXP exceeds
capacity limitations.

______ Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:
e Make sure that the DUMP option was
specified.
¢ Have source, including source for
precompiled proccedures, input data and
associated listings availatle.
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn ARGUMENT OF LN NOT GREATER THAN
ZERO

________ A number not greater than
zero cannot have a natural logarithm.

Programmer Response: Probakle user error.

Make sure the source code is correct and

run the job again. If the proklem recurs,

do the following before calling IBM for

programming support:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings availakle.

IHIO026I

IRI027I

IHIO28I

IHIO029I

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn ABS VALUE CF ARGUMENT OF SIN CR
COS NOT LESS THAN PI*2%*18

Explanation: The argument exceeds
capacity limitations for a short precision
real value.

Programmer_ Response: Frobable user error.
Make sure the source code is ccrrect and
run the job again. If the prolklem recurs,
do the following before calling IEM for
programming support:

e Make sure that the DUMF option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn ABS VALUE OF ARGUMENT OF SIN CR
COS NOT LESS THAN PI*2%*E(Q

Explapation: The argument exceeds
capacity limitations for a long precision
real value.

Programpmer_ Response: Frobable user error.
Make sure the source code is correct and
run the jobk again. If the prchlem recurs,
do the following before calling IEM for
programming support:

e Make sure that the DUME option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn PSW=XXXXXXXX XXXXXXXX. FIXET

POINT OVERFLOW INTERRUPT

______ An interrupt has occurred
due to an overflow of a fixed point
number.

Programmer Respomnse: Probable user error.
Make sure the source code is correct and
run the job again. If the prokblem recurs,
do the following kefore calling IEM fcr
programming support:

e Make sure that the DUMP cpticn was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

SC=nnnnn PSW=XXXXXXXX XXXXXxXx. FLOATING

POINT EXPONENT OVERFLCW INTEERUET
__________ An interrupt has occurred

due to an overflow of a flcating roint
exponent.

Appendix P: Diagnostic Messages 93

IHIO030IX

IHIO3I1I

IHIO0321

94

Programmer_ Response: Probakle user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn PSW=XXXXXXXX XXXXXXXxX. DIVISION

BY ZERO. FIXED POINT
Explanation: An attempt has been made to
divide a fixed point number by zero.

Programmer Response: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn PSW=XXXXXXXX XXXXXXXX. DIVISICN

BY ZERO. FLOATING POINT
Explanation: An attempt has been made to
divide a floating point number by Zzero.

_______ Probatle user error.
Make sure the source code is correct and
run the job again. If the proklem recurs,
do the following before calling IBM for
programming support:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data, and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn DSN=nn. UNRECOVERABLE I/C ERRCR
_____ During execution of an
object program originally written in the

ALGOL language, an uncorrectable
input/output error occurred in using the
data set indicated by DSN=nn.

This message appears on the console if the
data set is SYSPRINT.

Programmer Response: Make sure that the

DD statement and source are correct and

run the job again. ' If the problem recurs,

do the following before calling IBM for

programming support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data, and
associated listings available.

IHIO0331

IHIO34X

IHIO0351

IHIO36I

SC=nnnnn PSW=XXXXXXXX XXXXXXXX. PROGRANM
INTERRUPT

Explanation: A program interrupt has
occurred.

Programmer Response: Make sure the source
code is correct and run the job again. If
the problem recurs, do the following
before calling IB¥ for programming
support:

e Make sure that the DUMF option was
specified.

e Have source, including source for
precompiled procedures, input data, and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn VALUE OF SWITCH DESIGNATOR NCT
DEFINED IN DECLARATION CF SWITCH

Explanation: The designational
expressions in the switch list of a switch
declaration must define the values of all
the corresponding switch designators.

Programmer Response: Prcbable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM fcr
prograaming support:

e Make sure that the DUMP opticn was
specified.

e Have source, including source for
precompiled procedures, input and
associated listings availatle.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn BASE NOT GREATER THAN ZERC

Explanation: Exponentiation is not
defined in this case, because the base is
zero or negative.

Programmer Response: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following kefore calling IBM for
programming support:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data, and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn TICO MANY NESTED BLOCKS ANL CALLS
OF PROCEDURES, SWITCHES, AND PARAMETERS.
INTERNAL OVERFLOW

Explanation: Structure of program causes
it to exceed the internal capacity
limitations.
Programmer Response: Prchbable user error.
Make sure the source code is ccorrect.
Modify the source to avoid the capacity
limitiation and run the job again. If the
problem recurs, do the following calling
IBM for programming suppcrt:

IHI037I

IHIO38I

IHIO0391

THIOLO0I

.o Have source,

e Make sure that the DUMP option was
specified.

including source for
precompiled procedures, input, and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn DSN=nn, **BLOCKSIZE NOT A
MULTIPLE OF LOGICAL RECORD LENGTH

________ Blocksize must be an exact
multiple of logical record length.

Programmer_ Response: Make sure that the

DD statement and source are correct and

run the job again. 1If the problem recurs,

do the following before calling IBM for

probramming support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data, and
associated listings available.

SC=nnnnn DSN=nn TOO LONG RECORD

Explanation: Record is longer than

specified.

Programmer Response: Make sure that the

DD statement and source are correct and

run the job again. If the problem recurs,

do the following before calling IBM for

programming support:

e Make sure that MSGLEVEL (1,1) was
specified in the JOB statement.

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data, and
associated listings available.

SC=nnnnn GET/PUT IDENTIFICATION OUT OF
RANGE

Ex The identification number
specified for a GET/PUT operation is out
of range.

Programmer Response: Probakle user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:

e Make sure that the DUMP option was
apecified.

e Have source, including source for
precompiled procedures, input data, and
associated listings available.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

SC=nnnnn REAL NUMBER TC EE CCNVERTEL CUT
OF INTEGER RANGE

Explanation: A real numker has been
included which exceeds capacity
limitations when converted to integer.
This message applies to internal !
operations.

IBIO41I

IHIO0421

IHIOU3I

Make sure the source
I1f

Programmexr Response:
code is correct and run the jcb again.
the problem recurs, do the following
before calling IBM for programming
support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB sstatement.

e Have source including source for
precompiled procedures input data, and
associated listings availatle.

e Make sure that the DUME option was
specified.

SC=nnnnn DSN=nn. LD CARD INCCRRECT OR

MISSING

Ex During execution of an
object program originally written in the
ALGOL language, the DD statement fcr the
data set indicated by DSN=nn was incorrect
or missing.

This message appears on the console if the
data set is SYSPRINT.

Operator Response: Correct the SYSPRINT
DD statement, or supply the missing one.
Then execute the job step again.

Programmer_ Response: Make sure that the

DD statement is correct or supply the

missing one. Execute the job step again.

If the proklem recurs, dc the fcllowing

before calling IEBF for programming

support:

e Make sure that FSGLEVEL=(1,1) was
specified in the JOB statement.

e Have source, including source for
precompiled procedures input data, and
associated listings availatle.

SC=nnnnn INVALID CPTICN EARAMETER

__________ An invalid option parameter
has been specified in the PARM parameter.

Programmer Response: Make sure all

options specified are correct and execute

the job step again. If the prcbles

recurs, do the following before calling

IBM for programming support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JCB statement.

e Have the source and associated listings
available. :

SC=nnnnn ILLEGAL CALL CF GET/FUT CE LIST
PROCEDURE

Explapation: Recursive calls cf GET/BUT
or list procedures are not allcwed.

Programmer_ Response: Prchbable user error.
Make sure the source code is ccrrect and
run the job again. If the protlem recurs,
do the following kefore calling IBM fcr
programming support:

e Make sure that the DUMP option was
specified.

e Have source, including source for
precompiled procedures, input data, and
associated listings availatle.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

Appendix F: Diagncstic Messages 9¢

Page of GC33-4000-3
Added Sep. 29, 1972
by TNL GN12-5900

APPENDIX G: INDEPENDENT COMPONENT RELEASE_ (ICR)

DESCRIPTION OF 0OS_ALGOL F _INDEPENDENT COMPONENT RELEASE

The Independent Component Release (ICR) is distributed on a non-labeled, 9-track,
800 bpi, reel of magnetic tape (BLKSIZE=3440).

The Distribution Tape Reel (DTR) contains the job DTRALGOL, which consists of 8
steps, STEP1 to STEP8, as described below.

. STEP1 link-edits ALGOL library modules into SYS1.ALGLIB.

. STEP2 link-edits ALGOL compiler modules into SYS1.LINKLIB.

. STEP3 link-edits ALGOL message-editing modules into SYS1.LINKLIB.

e STEP4 places into a PDS the macro DTRALGOL, which is used in STEP6 to specify
the ALGOL compiler options.

. STEP5 adds to SYS1.PROCLIB a member, OPTIONS, which contains data on default
options.

° STEP6 assembles OPTIONS from STEPS5, using the macro DTRALGOL from STEPY4, and
receives a CSECT of IEX00 (IEX00001) with the compiler options specified.

(] STEP7 link-edits IEX00 into SYS1.LINKLIB.
. STEP8 adds the ALGOL cataloged procedures (ALGOFC, ALGOFCG, ALGOFCL, ALGOFCLG)
to SYS1.PROCLIB or the user's procedure library.

The DTR ends with a library trailer label, 80 bytes long, with control information
about the DTR.

INFORMATION ABOUT THE _OS_ALGOL_ F_INDEPENDENT COMPONENT RELEASE

96.1

The Independent Component Release (ICR) contains components 360S-AL-531 and 3605S-
LM-532 on the level of 0S release 21.0. They are distributed on magnetic tape
(DTR) .

The ICR can be installed under any IBM OS release, Any earlier version of
O0S ALGOL F that the user may have installed will be replaced.

By installation of this ICR, the system data sets SYS1.LINKLIB and SYS1.PROCLIB
are referenced and modified, i.e., they must accommodate new ALGOL modules.
Therefore, these data sets must have the required free space available. (Refer
to the Storage Estimates Manual, Form GC28-6551,) SYS1.MACLIB is referenced only.

It is advisable that each installation list the DTR to determine whether any JCL
cards require modification. If so, the contents of the DTR should be punched out.
Then the modification can be made, and DTRALGOL can be executed as a batch job.

Page of GC33-4000-3
Added Sep. 29, 1972
by TNL GN12-5900

INSTALLATION OF OS_ALGOL_F_INLEPENDENT COMPONENT RELEASE

Before starting the reader to process the DTR that contains the independent
component release, the user must:

(a) define and catalog SYS1.ALGLIB -- if it does not already exist; (refer to the
" section Define and Catalog S¥S1.ALGLIB);
(b) add a procedure CRSRC to SYS1.PROCLIB (refer to the section Add_a_Procedure
CRSRC_to_SYS1.PROCLIB); and
(c) verify that SYS1.PROCLIB does not contain a member named OPTIONS.

If the user wishes to change the default compiler options, he must

(d) add a member, OPTIONS, to SYS1.PROCLIB (refer to the section Add_a_Member
OPTIONS _to SYS1.PROCLIB) .

After steps (a) to (c), or (d), the user issues a Start Reader command to frocess
the DTR (refer to the section Sample of Starting Reader_to Process_DIR).

DEFINE AND CATALOG SYS1.ALGLIB

The following is a sample set of JCL statements for the definition and cataloging
of SYS1.ALGLIB:

//CATAL JOB ...
//STEP EXEC PGM=IFHPROGM
//SYSPRINT DD SYSOUT=A

//CATLOG DD DISP=OLD,UNIT=3330,VOL=SER=seriall
//ALGLIB DD DSNAME=SYS1.ALGLIB,DISP=(,KEEE),
// VOLUME= (, RETAIN,SER=serial2),
/7 UNIT=2311,
// LABEL=EXPDT=99350,
// SPACE= (TRK, (14,5,14)),
// DCB= (RECFM=U, BLKSIZE=3625)
//SYSIN DD *
CATLG DSNAME=SYS1.ALGLIB,CVOL=3330=seriall,VOL=2311=serial2
/*

For more dJetails, refer to the System Generation manual (GC28-6554), section
Initializing New System Data Sets.

ADD A PROCEDURE CRSRC TO SYS1.PROCLIB
The job DTRALGOL uses CRSRC to place the ALGOL cataloged procedures into the user's
procedure library. This is normally SYS1.PROCLIB but the user may choose to specify
and, perhaps, modify another data set so that he can examine the cataloged

procedures before including them in the systen.

//CRSRCPRC JOB ...

//STEP EXEC PGM=IEBUPDTE,PARM=MOD
//SISPRINT DD SYSOUT=2

//SYISUT1 DD DSNAME=SYS1.PROCLIB,DISP=SHR
//S1ISUT2 DD DSNAME=SYS1.PROCLIB,DISP=SHR
//SYSIN DD DATA

./ ADD LIST=ALL,NAME=CRSRC,LEVEL=01, SOURCE=0
./ NUMBER NEW1=10,INCR=10

//CRSRC EXEC PGM=IEBUPDTE, PARM=NEW
//SYSPRINT DD SYSOUT=A

//SYSUT2 DD DDNAME=PROCLIB

//PROCLIB DD [user's procedure library)
//SYSIN DD DUMMY

./ ENDUP :

/%

Appendix G: Independent Component Release 96.2

Page of GC33-4000-3
Added Sep. 29,1972
by TNL GN12-5900

ACD A MEMBER OPTIONS TO SYS1.PROCLIB
The default options are identical to those specified for the ALGOL macrc in the
System Generation manual (GC28-6554). The user may change the default options
by adding a member named OPTIONS to SYS1.FRCCLIB.

//OPTIONS JOB ...

//STEP EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A

//SYSUT2 DD DSNAME=5YS1.PROCLIB,DISP=SHR
//SYISIN LD DATA

./ ADD LIST=ALL.NAME=OPTIONS

./ NUMBER NEW1=10,INCR=10

PRINT ON,NODATA

DTRALGCL [user-specified options]
END

./ ENDUE

/%

SAMPLE OF STARTING READER TO PROCESS DTR
If, for instance, the DTR is mounted on unit 182, the Start Reader command is:

S RDR,182,DCB= (LRECL=80,BLKSIZE=3440, RECFM=FB) ,LABEL=(,NL} ,REGION=200K

The region parameter may be different for each installation.

DESCRIPTION CF OFTIONAL MATERIAL OF OS ALGOL -F INDEFPENDENT COMPONENT RELEASE
The ortional material of the Independent Component Release (ICR) is distributed
on a non-labeled, 9-track, 800 bri, reel of magnetic tape (BLKSIZF=800,LRECL=80).
The Distribution Tape Reel (DTR) contains the source modules of the 0S ALGOL F
compiler (component 360S-AL-531) and the CS ALGOL F Library (component 360S-LM-
532) as an unloaded version from the partitioned data set named AEO1.KARAF20S.

The DTR ends with an 80-byte library trailer label that contains control information
about the DTR.

The contents cf the DTR can be loaded by means of the following set of JCL

statements:
column
72
//J0B1 JOB ...
//STEE1 EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A
//SYSUTI DD UNIT=2314,VOL=SER=xxxxXXx, DISP=0LD
//FROM DD UNIT=2400,DISP=0LD,LABEL=(,NL),
// VOL= (PRIVATE, RETAIN,SER=ALGOLF),
// DCB=(BLKSIZE=800,LRECL=80,RECFN=FB)
//TO DD UNIT=2314,VOL=SER=XxXXxxX,DISP=0LD
//SYSIN DD *
COPY PDS=AEO1.KARAF20S,RENAME=yYYYY7. c
FROM=2400=(ALGOLF,1), C
FROMDD=FROHN, C

TO=2314=xxXXxX
The string xxxxxx stands for the serial number of the volume on which the optional

material is to reside. The string yyyyyy must be replaced by the name tc ke assigned
to this data set.

96.3

Index

Index to systems reference library manuals are consolidated in the
publication O0S Master Index to_Reference Manuals, Order No. GC28-66u4,
For additional information akout any of the subjects listed below,
refer to other publications listed for the same subject in the Master
Index.

Access langquage 11 Control program

Access method 11 functions 10-12

ACCT 19,61 listings 28

AFF 64 Control section 31,52
ALGLDDO1 - ALGLLDI1S 23 Cross-reference table 31,34

ALGOFC 16,49
ALGOFCG 16,50

ALGOFCL 16-17,49 Data control block

ALGOFC1LG 16,18,49 definition 10,63

ALGOL compiler for compilation data sets 20-21
description 12 for linkage editing data sets 22
listings 28 for execution data sets 23-24

ALGOL library 46-47 Data definition: see LD statement

Array handling: see storage Data management 10-12

mapping function Data set

Assembler language 9,39-45 definition 10

ATTACH 37-38 for compilation 20-21

for linkage editing 22
for load module execution 23-25
for loader execution 25-27

Basic access language 11 label 11
BLKSIZE 63 name 62-63
Block 11 nusber 89
Blocking factor 11 organization 11
Blocksize table 52
for compiler data sets 21 Data storage area 29,30,31-32,33,35
for linkage editor data sets 22 DC 60
for execution data sets 24 DCE: see data control block
Buffer 12 DD statement 10,16,19-20,62
Byte 11 ddname 55,62
DECK 59
DEFER 64
DELETE 66
CALL 37-38 Delimiter statement 10,16,68
Capacity limitations 36-37 Diagnostic message
Card codes 51 for compilation 28,30,75-88
Cataloged procedure . for linkage editing and loading 31,89
definition 9 for execution 33,89-95
IBM-supplied 16-18,48-50 Direct access 11
over-riding 19-20 DISP 66-67
user-written 20-21 Disposition data 30
CATLG 66 DPRTY 62
Channel 12 DSN: see data set number
Character set 51 DSNAME 62-63
CLASS 57 DUMMY 62
Classname 64 DUME 31,61

COMMAND statement 68
Comment statement 68

COND 19,56,59 EBCDIC 60
Constant pool 36-37,52 EP 37,38,61

CONTIG 65 Error routine 46

Control character 11 EXEC statement 10,16,19,58-59

Execution listing 32-35

Index 97

Fixed storage area 46

GET 24

Identifier table 28-30,32,34
Indexed sequential access 11
Initialization: see supervisor
Input/output device 11-12
Input/output rcoutines 46
In-stream procedure 20

Iso0 51,60

Job 9

Job control information
accounting details 56,61
computing time 58

data definition: see DD statement

priority 56
program executed 58
programmer's name 56
record details 63-64
special options 59-61
status of data set 66
terminating conditions 56,58

Job control statement
description 9,16,54-55
coding 55-56
examples 69-74

JCBLIB 18,69

Jobname 56

Job scheduler 10,57

JOB statement 9,16,56-58

Job step 9

KEEP 66
Keyword parameter 56
Keyword subparameter 56

LABEL 67-68
Label address table 30,52
LET 60,61
Library: see partitioned data set
LINK 37-38
Linkage editing listings 30-31
Linkage editor 13
Linkage editor options 60
LIST 60
LOAD 60
Load module
definition 12
execution 13,22-25
Loader 14
Loader listings 32-35
Loader options 61-62
Loader return codes 14
Loading 25-27
LCNG 59
LRECL 64

Machine configuration 14-15
Main storage requirements 14-15
MAP 32,60,61

98

Mathematical routines 46
MOD 66

Module map 32

MSGCLASS 57

MSGLEVEL 57

NCAL 60
NEW 66
NOCALL 61
NODECK 59
NOLET 61
NCLCAD 60
NOMAP 61
NOEBRINT 61
NORES 61

NCSCURCE 60

Note table 37
NOTEST &0

NULL statement g8

Cbject module
definition 12
storage requirements 30,31,34
structure 52-53
Cbject-time stack 32
0LD 66
Operating system 9
QUTILIM 67
Output
compilation 12
linkage editing 13
load module execution 13
loader execution 14

Page numbers for cutput listing
Parameters
for JOB 57
for EXEC 59
for DD 63
PARM 58,61
Partitioned data set 11
PASS 66
PGM 58
Positional parameter 56
Positional subparameter 56
Precompiled procedure
description 38-39
inclusion in trace 32
specifying data set for 17,18
to use at execution time 23
PRINT 61
Priority scheduling 10
PRIVATE 67
Private library 68
PROC parameter in EXEC statement
PROC statement 68
PROCEDURE option 39,59
Processing program 12-13
procname 68
procstep 19
PROGRAM option 59
Program block 28-29,30,32
Program block table 52
Program execution options 60-61
progname 55

38

58

Program trace 32,35,60
PRTY 56
PUT 24-25

Queued access language 11

RECFM 63

Record
definition 11
specification 63

Record length 21,24,25

REF 67

REGION 57,61

RES 61

RETAIN 67

Return codes
compilation 12
linkage editing 13
load module execution 13
loader execution 14

REUS 60
RLSE 65
ROLL 57,61
ROUND 65

SC: see semicolon count
Semicolon count 23,28-29,60
SEP 64
SER 67
Sequential access 11
Sequential scheduling 10
Severity codes

for compiler 75

for linkage editor and loader 89
SHORT 59
SHR 66
SIZE 60,61
SOURCE option 28,60
Source program 9,16-27,28,33
SPACE 64-65
SPLIT 65
STEPLIB 69
stepname 58

Storage estimates

for library routines 47
Storage mapping function 30
SUBALLOC 66
Supervisor 10

SYSCP 64

SYSCA 64

SYSIN 20-21,22,25
SYSLIB 27

SYSLIN 20-21,22,23,25,27,52
SYSLMOD 22 '

SYSLOUT 25

SYSOUT 67

SYSPRINT 18,20-21,22,23,25,27
SYSPUNCH 20-21,22,52

SYSSQ 64

SYSUT1 21,23,24,25,27
SYSUT2 21,24,25,27

SYSUT3 21

SYS1.ALGLIE 23,47
SYS1.LINKLIB 20,23
SYS1.PROCLIE 20,48

Termination
¢f compilation 12
of linkage editing 13
of load module execution 13
of loader execution 14
TEST 60
TIME 19,58
TRACE 23,25,32,33,35,60
TRREG 23,32,33,60
TREND 23,32,33,60
TYPRUN 56

UNCATLG 67
UNIT 64

Volume 10
VOLUME parameter 67

XCAL 60
XCTIL 37-38
XREF 32,60

Index

99

Reader's Comment Form

0S ALGOL Programmer's Guide GC33-4000-3

Your comments about this publication will help us produce better publications
for your use. If you wish to comment, please use the space provided below,
giving specific page and paragraph references.

Please do not use this form to ask technical questions about the system or
equipment or to make requests for copies of publications. Instead, make such
inquiries or requests to your IBM representative or to the IBM Branch Office
serving your locality.

Reply requested Name
Yes [] Job Title
No D Address

Zip

No postage necessary if mailed in the U.S.A.

“ssessene

GC33-4000-3

~ase

YOUR COMMENTS, PLEASE . ..

.

This SRL manual is part of a library that serves as a reference
source for system analysts, programmers and operators of IBM systems.
Your answers to the questions on the back of this form, together
with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons
responsible for writing and publishing this material. All comments
and suggestions become the property of IBM. :

Note: Please direct any requests for copies of publications, or
for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

AN SIHL ONOIV LND -~

.o

Fold

6 006000000000 080000010000000000000000C00vosossesscssssscssroccssssscccccsccse sscscas

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N. Y.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WiLL BE PAID BY . ..

IBM Corporation
112 East Post Road
White Plains, N. Y. 10601

€0 600006000 000008000060000e80seectiotscetetecoscsosscssontsonssontsoncscsesc;

Attention: Department 813 L

see

© 8600600000000 000000800060000080etortecsessetossesoetsostsnessseostetcsosssosorssctssrtcesecssssecsioncossansotocsoscsoscctsorosccoccocs

aee

Fold Fold

BV

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

R R R R R I R A R

cscesaca

IPIND 8y I 18033 TODTV SO

'V 'S "N ur pajutig

€-000%-£€09

-

IBM Technical NBWSlEttEI‘ This Newsletter No. GN12-5900

IBM World Trade Corporation Date September 1, 1972

Base Publication No. GC33-4000-3
File No. S360-26

Previous Newsletters None

OS ALGOL Programmer’s Guide
© IBM Corp. 1967, 1968, 1969, 1970, 1972

This Technical Newsietter, a part of OS Release 21, ALGOL Compiler (360S-AL-531) and ALGOL Library
(360S-1LM-532), provides replacement and supplemental pages for the subject publication. These pages remain
in effect until specifically altered.

Pages to be inserted and/or removed are listed below.

Replace: Cover, 2
5,6

Remove: 95

Add: 95, 96.1
96.2, 96.3

A change to the existing text is indicated by a vertical line to the left of the change.

Summary of Amendments

The replacement pages contain minor changes. Supplemental pages provide information about the OS ALGOL F
Independent Component Release (ICR).

Note: Please file this cover letter at the back of the publication to provide a record of changes.

1BM World Trade Corporation, 821 United Nations Plaza, New York, New York 10017

Printed in U.S.A.

GC33-4000-3

JBIM

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International}

apInd sMmauer3ol] TOYIV SO

'V 'S ' ur pajurid

€-000%-€€0D

