
Pile Bo. 5360-26
Order 10. GC33-ItOOO-3 OS

Systems Reference Library

OS ALGOL Programmer's Guide

Program Numbers: 3SOS-AL-531 (ALGOL Compiler)
3SOS-LM-532 (ALGOL Library)

OS Release 21

This publication describes how to compile, link-edit,
and execute a program written in the IBM Operating
System Algorithmic Language (ALGOL). It includes an
introduction to the operating system and a description
of the information listings that can be produced, tha
job control language, and the subroutine library. The
publication also contains information about, and a de­
scription of, the OS ALGOL F Independent Component
Release. '
The intended audience for this publication includes
application programmers, system programmers, and IBM
system engineers.

Page of GC33-4000:-3
Replaced Sep. 29, 1972
by TNL GN12-5900

Fourth Edition (January 1972)

This is a major revision of, and obsoletes, GC33 - 4000 - 2 and Technical Newsletter
GN33 - 8091. Changes to the text and to illustrations are indicated by a vertical line
to the left of the change.

'This edition applies to release 21 of the IBM 0] erating System and to all subsequent
modifications until otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the specifications herein. Before using this publication
in connection with the operation of IBM systems, consult the latest SRL Newsletter,
Order No. GN20 - 0360, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's comments. If the form

I has been removed, comments may be addressed to IBM Program Product Center,
43 Schwabstrasse, 7000 Stuttgart, Germany. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1967, 1968, 1969, 1970, 1972

2

This publication is intended for use by
Application programmers, system Programmers
and IBM systems Engineers. A knowledge of
ALGOL is assumed, and the reader is
expected to be familiar with the
prerequisite publication

OS-A1§Q1-1~ng~g~, Order No. GC28-6615.

In section 2, the description
'IBM-Supplied Cataloged Procedures'
provides sufficient information to process
and execute an ALGOL program that can use
the IBM-supplied cataloged procedures
without modification.

The rest of Section 2, together with
information in Section 1 and the
Appendixes, will be required for programs
that cannot use the IBM-supplied cataloged
procedures without modification.

The description of information listings
in section 3 and the list of diagnostic
messages given in 'Appendix F' will be
helpful in interpreting system output,
especially for debugging.

An extensive index has been provided to
assist the reader in using the manual for
reference purposes.

This publication contains most of the
information required by the Applications
Programmer. The following publications are
referred to within the text for information
beyond the scope of this publication.

Preface

~_!~~~~Ql~-1anqy~~, Order No.
GC28-6514

OS Loader and Linkage EgitQ~, Order
No. GC28-6538

OS utilitie§, Order No. GC28-6586

Q~FO~TB!]_!!_l!Q~~~, Order No.
GC28-6596

Q~_Me~~gg~g~g_fggg~, Order No.
GC28-6631

OS Supervisor Services and Macro
In~tr.!!£ti.Q.!!.§, Order No. GC28-6646

QS Data_~~~~~!_~~£~_!B~!~£!i~,
Order No. GC26-3794

Q~~ysgen, Order No. GC28-6554

3

SECTION 1: INTRODUCTION
Source Program • .
Operating system • • • • • •

Job Control
Control Program

Jo b scheduling • • • • •
Supervisor • • • • • •
Data Management

processing Programs
ALGOL Compiler • •
Linkage Editor ••

Load Module Execution ••••
Loader • • • • • •

Machine Configuration

SECTION 2: SOURCE PROGRAM HANDLING •
IBM-Supplied Cataloged Procedures

Compilation ••• • • • • • • . •
Compilation and Linkage Editing
Compilation, Linkage Editing and
Execution • • • • • • • • • • •
Compilation and Loading ••• • •
Over-riding Cataloged Procedures •

Over-riding EXEC Statements
Over-riding tt Statements
Adding DD Statements ••

User-Written Procedures
Compilation • • • •

Invoking Statement • • • • •
Data Sets Used • •

Linkage Editing
Invoking Statement •
Data Sets Used • •

Load Module Execution

9
9
9
9

10
10
10
10
12
12
13
13
14
14

16
16
16
16

18
18
19
19
19

• • 20
20

• • 20
20

• 20
• • 2 1
• • 2 1
• • 22

• 22
• 22 Invoking Statement •••

Data Sets Used • • •
Loading •••• • •

Invoking statement •

• • • • 23

Data Sets Used • •

SECTION 3: INFORMATION LISTINGS
Control Program Listings
compiiation Listings •

Source Program • • •
Identifier Table • •
Diagnostic Messages
Storage Requirements • • •

Linkage Editing Listings
Diagnostic Messages
Module Map • • • • • •
Cross-Reference Table

Execution Time Listings
Diagnostic Messages
Data storage Areas • •
ALGOL PLogram Trace

Loader and Execution Listings

25
• 25

• • 25

• 28
• • 28
• • 28

• 28
• 28

30
• 30

• • 30
• • 3 1
• • 31

31
• • 31

3 1
• • 31
• • 32
• • 32

SECTION 4: PROGRAMMING CONSIDERATIONS • 3€
CaFacity Limitations. • • • • • •• 36
Invoking a Program within a Job Step •• 37
precompiled Procedures • • • 38

ALGOL Language Procedures • • •• 39

Page of GC33-4000-3
Replaced Sep. 29, 1972
by TNL GN12-5900

Contents

Assembler Language Procedures
Entry and Start
Definitions
Register Use • • • •
Parameter Handling •
Termination ••••

APPENDIX A: ALGOL lIBRARY ROUTINES.
Fixed Storage Area • • • •• • •
Mathematical Routines • • • •
Input/Output Routines
Error Routine •••••

APPENDIX B: IEM-SUPPLIED CATALOGED
PROCEDURES • • • • • • • ••• •

APPENDIX C: CARD CODES •

APPENDIX D: OBJECT MODUlE

39
• • 39

• 39
40
4C
42

46
• • 46

46
46
46

48

51

52

APPENDIX E: USING JOB CONTRCI LANGUAGE. 54
Control Statement Format • • • • •• 54
Conventions for Format Description • • • 55
Control Statement Coding • • 55

JOB Statement ••••••••••
EXEC Statement • • • • • • • • • •

ALGOL Compiler Options •
Linkage Editor options.
Program Execution Options
Loader Options • .. .•

Be Statement • • • • •
PROe Statement • •
Command Statement
Delimiter Statement
Null Statement ••••
COEment Statement

Using a Private Library
Job Control Language Examples

S€
• • 58

59
60
6C
61
62

• • 68
68

• • 68
68
68
68
69

APRENDIX F: DIAGNOSTIC MESSAGES 75
Compiler Messages ••••• • • • • • • 75
Linkage Editor and Loader Messages • 89
Execution Time Messages •• • • • • 89

APPENDIX G: INDEPENDENT COMPONENT
RELEASE (ICR) •...••.•. • 96. 1
Description of OS ALGOL F ICR . 96.1
Information About the OS ALGOL F ICR . 96.1
Installation of OS ALGOL F ICR . . 96.2

Define and Catalog SYS1.ALGLIB . 96.2
Add a Procedure CRSRC to
SYS 1. PROCLIB 96.2
Add a Member OPTIONS to
SYS1.PROCLIB • . • . . • • • . 96~3
Sample of Starting Reader to
Process DTR • . . . • . •. .• 96.3

Description of Optional Material of
OS ALGOL F ICR • . . • • . 96.3

INDEX • • 97

5

Figures

Figure 1. Basic Flowchart for
Handling an ALGOL Program 12
Figure 2. Loader step Return Codes • 14
Figure 3. Sample Deck for Using
ALGOFC Cataloged Procedure with a
Single Source Program •••••••• 17
Figure 4. Sample Deck for Using
ALGOFCL Cataloged Procedure with
two Source Progra ms. • • • • • • • • 17
Figure 5. Flowchart Showing tata
Sets Used by the Compiler • • • • • 20
Figure 6. Data sets Used by the
ALGOL Compiler •••••••••• 21
Figure 7. Effect on Compiler Data
Sets if more than 44K Bytes of
Main storage is Available •••••• 22
Figure 8. Flowchart Showing tata
Sets Used by the Linkage Editor •• 22
Figure 9. Data Sets Used by the
Linkage Editor •••••••••• 22
Figure 10. Flowchart Showing Data
Sets Used at Load Module Execution. 24
Figure 11. Data Sets Used at
Execution Time •••••••••• 25
Figure 12. Chart Showing Data Sets
Used by the Loader and by a Loaded
Program or Load Module in a
Load-and-Execute Step • • • • • • • 26
Figure 13. Data Sets Used by the
Loader and by the Loaded Program
or Load Module • • • • • • • • • • • 27
Figure 14. Example of Source
Program Listing ••••••••• • 33
Figure 15. Example of Identifier
Table Listing •••••••••••• 34
Figure 16. Exa_ple of Storage
Requirements Listing. •••• • 34
Figure 17.' Example of
Cross-Reference Table Listing. • 34

6

Figure 18. Example of Error
Message and Data Storage Area
Listing. • • • • • • • • • • • • 35
Figure 19. Example of program
Trace Listing. • • • • • • • • • 35
Figure 20. table of Parameter
Characteristics for an Assembler
Language Precompiled frocedure. •• 43
Figure. 21. An Assembler Language
Procedure ••.••• • 44
Figure 22. An Invoking ALGOL
Program. • • • • • • • • 45
Figure 23. table of ALGOL Library
Modules. • • • • • • • • • • • • 47
Figure 24. Source Program Card
Codes • • • • • • • 51
Figure 25. ine Object Module Card
Deck. • • • • • • • • • • 53
Figure 26. Format of Control
Statements •••••••• • 55
Figure 27. Data Set Cataloging
Using Qualified Names • • • • • 55
Figure 28. JOB Statement Parameters 57
Figure 29. EXEC Statement
Parameters •••••••••••• 59
Figure 30. DD Statement Parameters 63
Figure 31. I/O Flow for Example 1 • 69
Figure 32. Job Control Statements
for Example 1 • • • • • • 7 1
Figure 33. Basic I/O Flow for
Example 2. • • • • • • • • • •• 71
Figure 34. Job Control Statements
for Example 2 ••••• • • • • • • 72
Figure 35. I/O Flow for Example 3 • 72
Figure 36. Job Control Statements
for Example 3 ••••••••••• 73
Figure 37. Job Control Statements
and Source Module for Example 4 74
Figure 38. Job Control Statements
and Source Module for Example 5 •• 74

Maintenance
--The-table of linkage editors has been

updated for completeness.

Maintenance
--Theexplanation of message IEXO 1 II has

been rewritten for clarity.

Maintenance
--The-nimes of reference publications

have been changed to reflect their
current titles.

7

The primary constituent of a System/360
data processing operation is a jg~. This
basically, is the work the user requires
the computer to do. To carry out a job, a
computer needs two types of information -­
a program and data.

•

•

A program is a sequence of
instructions which specify the actions
to be performed by the computer.
These instructions are written in a
symbolic language and are translated
into machine language by a processing
program contained in the g£~~g!iDg
§yste! before they are performed.

Data is the information to te
processed by the program. 1he source
program is regarded as data while it
is being processed by operating system
programs to make it suitable for
execution.

Discussions of the source program and
the operating system appear belo~, followed
by the machine configuration necessary to
compile and execute an ALGOL job.

Sour-ce Program

For jobs discussed in this publication, the
source program will be written primarily in
system/360 Operating System ALGOL
(Algorithmic Language). This is defined in
~~A1g~1_1g~guage. In addition the
programmer must observe the restrictions,
caused by internal capacity limitations,
listed in Section 4.

An ALGOL source program may be written
in free form on any aO-column coding sheet.
The program text is contained in columns 1
to 72. Columns 73 to ao can be used by the
programmer for program identification. To
avoid confusion with job control statements
(see 'Operating System'), the character
sequences II and 1* must not be used in
columns 1 and 2. It is possible to avoid
these combinations since these sequences
are syntactically incorrect outside strings
and when they occur within string quotes
(••). Two character sets are available
for punching the source program into a card
deck (see 'Appendix C·).

For operations that require more precise
control over the computer than can be
provided by ALGOL, subprograms written in
Assembler language can be included in the

Section 1: Introduction

ALGOL program (see Section 4). Assembler
language subprograms can also be used as a
link to other languages, such as PL/1,
COBOL and FORTRAN. The Assembler language

I is defined in Q~A2§~m~!~~-1gng!~g~.

Operating System

The System/360 Operating system is a set of
IBM-supplied control and processing
programs (supplemented if necessary by
user-written programs) that assist the
programmer to use the computer efficiently.
The operating system selected for a
particular installation is generated during
the initial setting-up of the co.puter, by
a process known as system generation.

JOB CONTROL

Operating system instructions (known as job
control statements) must te added to the
source program to control its handling
within the operating system and to specify
the data management facilities required.

These statements do not need to be
specified until the program is ready to be
executed. This means that the program can
be prepared independently of installation
considerations.

Eight types of statements are available,
which, in conjunction with associated
parameters, can supply all information
required by the operating system for job
control. To save programming effort,
commonly used sequences of control
statements can be stored by the system for
subsequent recall by identifying names.
These sequences are known as £g!!!£g~Q
E~g.f.~dures.

JOB is the first statement of each job.
It indicates that a new job is beginning
and, consequently, that the previous jcb
has ended. A job can be divided into a
number of jgh-ste£§, which can be
inter-related to improve processing
efficiency. For example, the execution of
one job step can be made dependent on the
result of a previous one. This is an
important feature of the operating system,
and users are recommended to exploit it as
fully as possible.

Intrcduction 9

EXEC (Execution) is the first statement
in each job step. It specifies the program
or cataloged procedure to be executed, and
must be included even if the job consists
of only one job step.

DD (Data Definition) is the statement
used to describe a data set and to specify
associated data control block information.
It also specifies input/output (I/O) device
assignment. One or more DD statements are
usually required for each jot step.

In addition to the above JCL statements,
the £Q~~~~g statement is used to place
operator commands into the input stream,
the null statement indicates the end of the
last-job in the input st~eam, and the
g~limi!~£ statement separates data from
subsequent control statements when
sequential scheduling is used. The command
statement, when used, must immediately
precede a JOE, EXEC or null statement.

The job control statements required for
an ALGOL source program are described in
section 2. For a complete discussion of
job control language, see OS_~~1_~~!~~~~£~.

CONTROL PROGRAM

The control program is the primary program
within the operating system. It is divided
into a number of functions. Those
affecting the applications programmer are
described in the following text.

A job scheduler is included as part of the
control program to control the flow of jobs
and allocate the I/O devices required. Two
forms of job scheduling are available.

With §~gy~nti~l scheduli~g the jobs are
carried out in the order they are presented
in the input stream to the computer.

With ~~i~~i!~ schedulin~ a summary of
the input job stream is stored on a direct
access device and jobs are carried out in
order of priority (as specified in the JOB
control statement). Any hold-up in the
execution of a program, due , for example,
to a delay in mounting a volume, will cause
the job scheduler to select the next job
available (in order of priority) and then
return to the higher priority jot when it
is ready.

10

The supervisor is a set of subroutines,
included in the control program, for
transferring control of the central
processing unit of the computer from one
program to another and co-ordinating I/O
operations. Initialization and termination
of all programs described in this
publication are achieved using the standard
method given in Q~_~~B~~~i§Q~_~~I~i£~§_and
~~£~o Ill§!~£!iQll§.

(This sub-section is a summary of data
management facilities. Full details are
given in as Data Management Services.

Data sets: Data is usually stored on I/O
devIces-ind is only brought into main
storage for processing. It is organized
into data sets. These are collections of
records that are logically related (for
example, a set of test readings).

System/360 Operating System allows a
data set to be identified and accessed by
symbolic name only, without any reference
to its location on the storage device. To
do this, the operating system builds a
catalog of data set locations against
names. This catalog resides on one or more
direct access volumes. A volume is one
complete physical unit of storage such as a
tape reel or a disk pack. It may contain a
number of data sets, or alternatively one
data set may stretch over a number of
volumes. Data sets are created using DD
statements.

]~!2_~Q~1~Ql_~lQ£!§: The operating system
must be provided with information
describing the characteristics of a data
set before the data set can be processed.
This information is assembled in the data
control block (DCB) associated with each
data set. Data control blocks are
automatically created for each data set
that is to be processed by the program, and
are completed from two sources:

1. Any information provided in the
program is included first.

2. Information provided by the DD
statement is then included, but cannot
over-ride any information stated in
the program.

In the case of an existing data set,
further information is taken from the
data-set label. Again, this cannot
over-ride previously inserted information.
Any DCB information provided by the

programmer is checked by an appropriate
routine to ensure its validity and to
assign default values.

Data Set Labels: Data set labels, if
reguested~y-the programmer in the DD
statement, are created by the operating
system to store information relevant to the
data set, such as name and retention
period. Tapes must have been previously
initialized. The labels can sUPFlement
information in the data control tlock and
serve as identifiers during accessing.
They are positioned at the beginning and
end of the data set.

Records and Blocks: Records are the
smallest-Items-of-data which can be read or
written separately. Their length can be
specified as fixed, variable or undefined.
The unit of length is known as a ~y!~,
which is normally equivalent to one
character. For mechanical reasons it is
necessary te have a fixed-length gap
between each record. This means that the
smaller the average length of the records,
the smaller the amount of information that
can be stored in a given area of storage.
To conserve space a number of records can
be grouped together to form a bleck, which
is treated as a single record for I/O
operations. The complete block is read
into main storage and then unblocked for
the required record to be processed.
Record format and block size are defined in
the data control block. For fixed-length
records block size must be a multiple of
record length. This multiplication factor
is known as the ~12£~iyg_f~£!2~.

A control character can be specified for
inclusion in each record of a data set.
This selects carriage control when the data
set is printed, or stacker when the data
set is punched.

]~ta_~~1_Q~g~niza!!~~: According to how
they are going to be used, records can be
organized within the data set in a number
of ways, as described below. Only
sequential organization can be used with
ALGOL.

~~gY~ll!!~1 organization is a
characteristic of I/O devices such as tape
units. To access a particular record the
data set must be read sequentially until
the record is found. This is satisfactory
for many applications where a large
proportion of the records will be required
on each run but could be time-consuming
where data is being accessed randemly.

~o avoid reading each record in turn the
ing~~ed seguential method is often
employed, in which the location of the
required record is found from an index at
the beginning of its data set. On a disk
pack the specification of a record location
is broken down into two levels - cylinder
and track. Each level has its own index.
Wi th large data sets up to three' levels of
master index can also be used. Overflow
areas are provided for the primary storage
area so that insertions can be made.

Alternatively, a data set can be
E~~!!1!2n~g into blocks of identical format
called members. A directcry is built up at
the beginning of the data set so that each
member can be accessed independently by
specifying its name as a suffix to the data
set name. This form of data set is
described as a library.

Q!~~£! organization allows records to be
stored and retrieved using an absolute or
relative address (cylinder, head, track).
For example, an algorithm could be used tc
determine the address from data in the
record.

!£f~.§.§_1~Y9JJ~gg: When using assembler
language, two access languages are
available to store and retrieve records.
The gl!~l!~Q access language provides a full
range of buffering and blocking facilities
to improve processing efficiency. It can
only be used with sequential and indexed
seguential data sets.

The basic access language gives the
programmer more direct control over the I/O
device but does not provide buffering and
blocking facilities. These must be
constructed by the user (see Q~_~~E~xi§~~
~~~xi£~§~nd_~~££2_Jy§trY£!i2D§)· 

Access ~ethods: The data set organization 
and-access-language used are combined to 
fully describe the method of handling a 
data set, for example, Queued Sequential 
Access ~ethod, Basic Partitioned Access 
Method, etc. The access method is 
specified in the data control block. 

JYE~!LQ~!El!!_~~Yi£g§: Data can be stored 
on a number of input/output devices 
depending, among other things, on the 
method of data set organization required. 
The devices most commonly used in 
scientific and engineering installaticns 
are: 

Introducticn 11 



Card readers 
and punches 

Printers (out­
put only) 

Paper tape 
devices 

Magnetic tape 
devices 

Disk storage } 
devices 

Data cell stor­
age devices 

Drum storage 
devices 

All data handled by 
these devices is 
sequentially organized. 

These are 
direct access devices 
and can be used for 
sequential, indexed 
sequential or parti­
tioned organization. 

A console typewriter is used for direct 
two-way communication between the operator 
and the operating system. 

Areas of main storage known as ~y!!~~§ 
are used to provide overlapping of reading, 
writing and processing operations. The 
transfer of data between main storage and 
I/O devices is controlled through units 
known as £hg~~els. 

PROCESSING PROGRAMS 

In addition to the control program, a 
number of processing programs are included 
in the operating system, depending on the 
requirements of the installation. To carry 
out a job that contains a source program 
written in ALGOL the following processing 
programs are required: 

1. ALGOL compiler 

2. Linkage editor or loader 

The ALGOL compiler processes the source 
program to translate it into machine 
language. The translated source program 
(known as the ~~j~£!_!odYlg) is then 
processed by the linkage editor or, 
alternatively, by the loader. The linkage 
editor and the loader have a common 
function: they combine various routines, 
drawn from the ALGOL library (see 'Appendix 
A'), with the object module. When the 
linkage editor is used, the resulting 
program (known as the lo~g_!2gYl§) is 
stored on an auxiliary storage device; 
subsequently, the load module may be read 
into main storage and executed. When the 
loader is used, the resulting program is 
executed directly without being transferred 
to auxiliary storage. The basic sequence 
of operations involved in compiling, 
linkage editing and executing or in 
compiling and loading an ALGOL program, is 
pictured in Figure 1. 

12 

This processing program is available for 
the F level of main storage size, and 
requires a minimum of 44K bytes. If extra 
storage capacity is provided it is used tc 
increase compiler capacity (see Figure 6). 

Initialization and Termination: The 
standard method-rs-us;a-for-Initialization 
and termination of the compiler (see 
'Supervisor'). At the end of the 
compilation one of the following return 
codes is generated: 

o 

4 

normal conclusion. Cbject module has 
been generated unless both the NODECK 
and NOLOAD operations (see 'Appendix 
E') are specified in the invoking 
statement. No diagnostic messages 
have been listed. 

object module has been generated 
unless both the NODECK and ROlOAD 
options are specified. Only warning 
diagnosic messages (severity code W) 
have been listed. 

12 process has been completed but a 
complete object module could not be 
generated due to a serious error. 
Diagnostic messages (severity codes S 
and possibly W) have been listed. 

16 process has been terminated abnormally 
due to a terminating error. A 
complete object module could therefore 
not be generated. Diagnostic messages 
(severity codes T and possibly Wand 
S) have been listed. The severity 
codes are described in 'Appendix F'. 

QytEYt: A successful compilation of an 
ALGOL source program produces the following 
output: 

1. An object module (described in 
'Appendix D') which can be 

a. included in a data set for use as 
input to the linkage editor 
(optional) or the loader 
(optional) 

b. included in another data set to 
give some other form of output, 
such as a card deck (optional) 

2. Information listings (described in 
Section 3) 



(VYhen Li nkage 
Ed itor is used) 

Linkage 
Editor 

Load Module 
Execution 

ALGOL 
Compiler 

(VYhen Loader 
is used) 

Loader 

Loaded 
Program 
Execution 

Figure 1. Basic Flowchart for Handling an 
ALGOL Program 

1.i.n!gg~~gitQ~ 

The linkage editor is a standard processing 
program used for all languages accepted by 
the System/360. For ALGOL, it is used to 
include routines from the ALGOL library. 
It also has a wide range of optional 
functions, and is available for two levels 
of main storage size - F level (where it 
requires 15K or 18K bytes) and F level 
(where it requires 44K or 88K bytes). A 
full description is contained in ~~_lQad~~ 
g.n9_1inkag~_~gilg~. 

Initialization and Termination: The 
standard-method is-uBed for-Initialization 
and termination of the linkage editor (see 
'Supervisor'). At the end of linkage 
editing one of the following return codes 
is generated: 

o meaning normal conclusion. A load 
module has been produced. 

4 meaning a load module has been 
produced but a severity 1 error, which 
may cause an error at execution time 
has been detected and listed. 

8 meaning a load module has been 
produced but a severity 2 errcr, which 
may cause an abnormal termination ~t 
execution time, has teen detected and 
listed. 

12 meaning a load module has been 
produced but a severity 3 errcr, which 
will cause an abnormal termination at 
execution time, has teen detected and 
listed. 

16 meaning process has been terminated 
abnormally. A severity 4 error has 
been listed. 

QYlEY!: The following output can be 
prcduced by the linkage editor: 

• A load module data set, stored on the 
output library SYSLMOD. 

• Information listings (described in 
Section 3). 

LOAD MODULE FXECUTICN 

The load module produced by the linkage 
editor is loaded into main storage by the 
supervisor. When the loading operating is 
complete, the supervisor passes control to 
the load module, which is then executed. 

Initialization and Termination: The 
standard method-IS-usea-for-Initialization 
and termination of the load module (see 
'SuFervisor'). At the end of the 
execution, one of the following return 
codes is generated: 

o meaning normal execution has been 
performed. 

4 meaning execution has been abnormally 
terminated due to an error. A 
diagnostic message has been listed. 

QY!EY!: The following output is produced 
by a successful execution of a load module: 

• Results, etc., as specified by the 
programmer. 

• Information listings (described in 
section 3). 

Introduction 13 



r_------__ --------------.-- ------~Ir-------------------------------------------------~i 
Return 
Code 

Loader I Loaded Program I I 
Return Code I Return Code I Conclusion or Meaning I 

+--- --~I~-------------------------------------~ 
I I I 

o I 0 I Program loaded successfully, Execution suc- I 
I I cessful I 

~----------+I------- I i 
o I 4 I 0 I The loader found an error that may cause an I 

r-----------__t__ ~ error during execution but no error occurred I 
I 8 LET I 0 I during execution of the loaded program I 
I I I i 
, 0 I 4 , Program loaded successfully, but an error cc- I 
I I I curred during execution of the loaded program., 

1 " i 4 , 4 I 4 I The loader found an error that may cause an I 
r-- +------------~ error during execution and an error did occurrl 
I 8 LET I 4 1 during execution of the loaded program. 1 
I 1 I i 

8 1 8 1 I The loader found an error that could make exe-I 
I 1 I cution impossible - the loaded program was I 
I I I not executed. I 

1------111-----· + 1 I 
12 I 12 1 , Loader could not load program successfully, I 

, I I execution impossible. 1 
..------+1--- --+--------------4 I 

16 1 16 1 1 Loader could not load program, I 
1 1 1 execution impossible. I 
, '.L-- I 

Error Diagnostic (SYSPRINT or SYSLOUT data set) for the loader will show the 
severity of errors ecountered ty the loader. 

I , 
. ______ .J 

Figure 2. loader step Return Codes 

1Qgg~£ QY!EY!: The following output is produced 
by a successful loader step: 

The loader is a standard processing program 
of the IBM System/360 Operating System. 
Its function is to load an object module, 
to link various required submodules from a 
submodule library, and to execute the 
resulting program. Processing of the 
object module by the loader and execution 
of the program are performed in a single 
step. By eliminating the intermediate 
output and retrieval of load modules 
involved when linkage editing and execution 
are performed in separate steps, the loader 
can be used to achieve a significant 
reduction in throughput time. The loader 
can also be used to load and execute a 
linkage editor produced load module. A 
full description of the loader is provided 
in Q~_1Qgg~£_and linkaqe_~g!!Q£. 

Initialization and Termination: The 
standard-method-Is-used-for-Initialization 
and termination of a processed otject or 
load module (see 'Supervisor'). At the end 
of loading, a return code is generated 
which reflects the results of precessing by 
the loader, or the results of execution of 
the loaded program. The possible return 
codes are shown in Figure 2. 

14 

• Information listings (described in 
Section 3). 

• Results, etc., as specified by the 
programmer. 

Machine Configuration 

To successfully carry out a job containing 
a source program written in ALGOL, a 
certain minimum machine configuration must 
be available. This is: 

• An IBM system/360 Model 30, 40, 50, 
65, 75, 85 or 91 with the scientific 
instruction set or an IBM System/370 
Model 135 (or higher) with the 
scientific instruction set. Main 
storage size depends on the program 
being executed. 

• For compilation, at least 64K bytes. 

• For linkage editing, at least 32K 
bytes. 



• 

• 

For load module execution, variable, 
depending on the size and a~~angement 
of the source p~ogram. 

For loading, 17K bytes plus the loaded 
program size (for MFT systems) or 18K 
bytes plus the loaded p~ogram size 
(for MVT systems). 

These figures include the space used by 
the control program of the operating 
system. 

• In a minimum configuration, all data 
sets may use a single direct-access 

• 

I/O device, provided that the total 
size of the data sets which exist at 
anyone time does not exceed the 
capacity of the device. A card reader 
and printer will also be needed, but 
these do not have to be part of the 
System/360 configuration. 

A console typewriter may be requi~ed 
for diagnostic messages if there is an 
error on the data set used for output 
listings, and also to allow direct 
two-way communication between the 
operator and the operating system. 

Introduction 15 



Section 2: Source Program Handling 

This section explains the job control 
statements which must be provided with each 
source program. These statements can 
either be written for each job, or a 
standard job control procedure can be 
written and cataloged in the operating 
system for use with a range of jobs. 

using such a cataloged procedure 
minimizes the number of job control 
statements that must be supplied by the 
programmer with each job. Therefore IBM 
provides: 

• 

• 

• 

Four basic cataloged procedures for 
use with ALGOL. 

The means to temporarily over-ride 
these procedures if the user reguires 
different or additional system support 
to that provided. 

The means for the user to modify 
permanently the IBM~supplied cataloged 
procedures or to write his own 
procedures and catalog them for 
permanent reference. 

In the statement formats used in this 
section upper-case words must be coded 
exactly as they appear: lower case words 
are used to indicate where the programmer 
must supply information according to his 
own requirements. 

IBM-Supplied Cataloged Procedures 

The four cataloged procedures for ALGOL 
which are supplied by IBM are: 

ALGOFC 

ALGOFCL 

compilation only 

compilation and linkage 
editing 

ALGOFCLG compilation, linkage 
editing and execution 

ALGOFCG compilation and loading 

To invoke these cataloged procedures, 
the programmer must supply the following 
job control statements: 

1. 

2. 

16 

A JOB statement to indicate the start 
of the job. 

An EXEC statement indicating the name 
of the cataloged procedure to be used. 

3. DD statements indicating the location 
of the source program and, for 
execution, the data sets used or 
created by the load module. 

The following text indicates the minimum 
contents of these statements. For 
requirements beyond this, reference shculd 
be made to 'Appendix E'. 

COMPILA7ION 

The cataloged procedure to compile a scurce 
program is ALGOFC. The job control 
statements used in this cataloged procedure 
are shown in 'Appendix B'. The following 
statements can be used to invoke the ALGOFC 
cataloged procedure: 

/Ijobname 
II 
/ISYSIN 

JOB 
FXEC ALGOFC 
DD {* or parameters defining an 

input set containing the 
source program} 

where 'jobname' is the name of the job. If 
DD * is used then the source program must 
follow immediately afterwards in the input 
stream. For sequential scheduling, the 
source program must then be followed by a 
delimiter statement (/*). 

If more than one source program is to be 
compiled in the same job, all job control 
statements except the JOB statement must be 
repeated for each source program. 

A sample deck of job control statements 
to compile an ALGOL source program is shown 
in Figure 3. 

COMPILATION AND LINKAGE EDITING 

The cataloged procedure to compile an ALGOL 
source program and linkage edit the 
resulting object module is ALGOFCL. The 
job control statements used in this 
cataloged procedure are shown in 'Appendix 
B'. ihe following statements can be used 
to invoke the ALGOFCL cataloged procedure: 

Iljobname 
II 
IISYSIN 

JOE 
EXEC ALGOFCL 
DD {* or parameters defining an 

input data set containing 
the source program} 



/ 

(source program (MATI NV) 

(IISYSIN DD * 

{II EXEC ALGOFC 

IIMATINV JOB 537, JOHNSMITH, MSGLEVEL=l -
-

-
Figure 3. Sample Deck for using A1GCFC Cataloged Procedure with a Single Source Program. 

This job compiles the MATINV source program used in Example 1 of 'Appendix I'. 

where 'jobname' is the name assigned to the 
job. If DD * is used, then the source 
program must follow immediately afterwards 
in the input stream. For sequential 
scheduling, the source program must then be 
followed by a delimiter statement (/*). 

If more than one source program is to be 
processed in the same job, then all job 
control statements except the JOE statement 
must be repeated for each source program. 

If it is required to keep a load module 
for use in a later job (as in the case when 
the load module is a precompiled 
procedure), then the SYSLMOD DD statement 
in the cataloged procedure must be 
over-ridden to specify a permanent data 
set. This has to be done for each load 

module that is kept. The over-riding 
statement is placed at the end of the job 
step to which it applies, and has the form: 

111KED.SYS1MOD DD DSNA!E=dsname(member), 
II DISP=(MOD,KEEP) 

where 'tSNAME' is the name of a partitioned 
data set and 'member' is the me.ber name 
assigned to the load module on the 
partitioned data set. 

Figure 36 shows the job control 
statements needed to compile and linkage 
edit a precompiled procedure. 

A sample deck of job control statements 
to compile and linkage edit two source 
programs is shown in Figure 4. 

(IILKED.SYSLMOD DD DSNAME=WTHRPR(FORCST), DISP=(MOD, KEEP) 

(IISYSIN DD DSNAME=FORCST ,DISP= OLD 
r--

LIISTEP2 EXEC ALGOFCL 
f---

(IILKED. SYSLMOD DD DSNAME=WTHRPR(FI LECR) , DISP=(MOD, KEEP) 
~ 

(IISYSIN DD DSNAME=FILECR,DISP=OLD 

(1ISTEPl EXEC ALGOFCL 
I---

I;WEATHER JOB 
r--

~ 

Figure 4. Sample Deck for Using A1GCFCL Cataloged Procedure with two Source Programs. 
These two job steps compile and linkage edit the two source programs used in 
Example 3 of 'Appendix E'. Both source programs have been previously stored 
on intermediate 1/0 devices. 

Source Program Handling 17 



COMPILATION, LINKAGE EDITING AND EXECUTION 

The cataloged procedure used to compile an 
ALGOL source program, linkage edit the 
resulting object module, and execute the 
load module Froduced by the linkage editor 
is ALGOFCLG. 

The statements used in this cataloged 
procedure are shown in 'Appendix B'. The 
following statements can be used to invoke 
the ALGOFCLG cataloged procedure: 

//jobname 
//JOBLIB 

JOB 
DD DSNAME=dsnamel,DISP=OLD 
EXEC ALGOFCLG // 

//SYSIN DD {* or parameters defining an 
input data set containing 
the source program] 

//GO.ALGLDD02 DD DSNAME=dsname2 

//GO.ALGLDDI5 DD DSNAME=dsname15 

where 'jobname' is the name assigned to the 
job. 'dsnamel' is the name of a data set 
that contains a precompiled procedure (see 
section 4) which is called by the load 
module being executed. The DD statement 
containing dsnamel need not be used if no 
precompiled procedure is used. 

For a description of the correct use of 
the JOBLIB DD statement when more than one 
precompiled procedure is used in a job, or 
when a precompiled procedure resides on 
more than one data set, see 'Data set 
Concatenation' in 'Appendix E'. 

·dsname2· ••• ·dsname15· are the names of 
input data sets required by the load module 
at execution time and output data sets to 
be created at execution time. In addition, 
two data ~ets for printed output (ddnames 
SYSPRINT and ALGDDOI) are supplied by the 
cataloged procedure, and a d~ta set for 
input only can be specified by using the 
following statement after the invoking 
sequence just given. 

IIGO.SYSIN DD {* or parameters defining an 
input data set} 

If DD * is used then the data must follow 
immediately afterwards in the input stream. 
For sequential scheduling, the data must be 
followed by a delimiter statement (/*). 

If more than one source program is to be 
processed and executed in the same job, 
then all job control statements except the 
JOB statement and the JOBLIB tD statement 
must be repeated for each source program. 

A sample deck of job control statements 
required to compile, linkage edit and 

18 

execute three source programs is shown in 
Figure 33. 

COMPILATION AND LOADING 

The cataloged procedure to compile a source 
program and to load and execute the 
compiled program (by use of the loader) is 
ALGOFCG. The job control statements used 
in this procedure are shown in 'Appendix 
E'. 

The following job control statements may 
be used to invoke the ALGCFCG cataloged 
procedure: 

//jobname JOE 
1/ EXEC 
//ALGOL.SYSIN 

//GO.ALGLDD02 

ALGOFCG 
DD {* or parameters defining 

an input data set 
containing the 
source program} 

DD DSNAME=dsname2 

//GO.ALGLDD15 DD DSNAME=dsname15 

where 'jobname' is the name assigned to the 
job. 'dsname2' ••• 'dsname15' are the 
names of data sets required by and/or to be 
created by the loaded module. Three data 
sets for printed output (ddnames SYSLOUT, 
SYSPRINT and ALGLDD01) are supplied by the 
cataloged procedure. An additional data 
set for input only can be specified by 
using the following statement after the 
invoking sequence just given. 

I/GO.SYSIN DD {* or parameters defining an 
input data set} 

If DD * is ~sed, then the data must 
fellow immediately afterwards in the input 
stream. For sequential scheduling, the 
data must be followed by a delimiter 
statement (/*). If more than one source 
program is to be processed and executed in 
the same job, then all jot contrel 
statements except the JOB statement must be 
repeated for each source program. 

At system generation time, the user is 
advised to specify SYSLOUT as an 
alternative ddname to SYSPRINT for the 
printer data set used by the loader (see QE 
E~§g~~). The loader cannot be used to load 
an ALGOL object module if the SYSPBINT data 
set is routed to a direct access device and 
no alternative name has been specified for 
the printer data set used by the loader. 

A sample job containing the centrel 
statements needed to compile and load an 
ALGOL source program, by use of the ALGOFCG 
cataloged procedure, is shown in Figure 37. 



OVER-RIDING CATALOGED PROCEDURES 

The programmer can change any of the 
statements in a cataloged procedure, except 
the name of the program in a EXEC 
statement. 

These over-riding conditions are 
temporary, and will be in effect only until 
the next job step is started. The 
following text describes methods of 
temporarily modifying existing parameters 
and adding new parameters to the EXEC and 
DD statements used in the cataloged 
procedures. The full list of parameters 
available to the ALGOL programmer for these 
statements, and detailed explanations of 
the parameters, is given in 'Appendix E'. 
The EXEC and DD statements used in the 
IBM-supplied cataloged procedures are shown 
in 'Appendix B'. 

In the EXEC statement, the programmer can 
change or add any of the keyword parameters 
by using the following format: 

keyword.procstep=option 

where 

'keyword' denotes anyone of the 
parameters COND, PARM, ACCT, TIME, REGION 
or DPRTY that is to be changed or added 
to the procedure job step. TIME, REGION 
and DPRTY are valid only for priority 
scheduling. 

'procstep' is the procedure jot step in 
which the change or addition is to occur: 
either ALGOL, LKED or GO. 

'option' is the new option reguired. 

For example, if the EXEC statement used 
to invoke the ALGOFCLG cataloged procedure 
was written as: 

Iistepname EXEC ALGOFCLG,PARM.ALGOL=DECK, 
II PARM.LKED=XREF, 
II COND.GO=(3,LT,stepname.ALGOL) 

then the following changes would te made to 
the ALGOFCLG cataloged procedure: 

1. In the FARM parameter of the job step 
ALGOL, the option tECK would be used 
instead of the default option NCDECK 
(assuming that the standard default 

NODECK was not changed at system 
generation). Over-riding this option 
will not affect the other default 
options assumed for this parameter. 

2. In the job step LKED, the option XREF 
is specified for the PARM parameter. 
Since the options specified in the 
cataloged procedure were XREF, LIST 
and LET, this statement has the effect 
of deleting the options LIST and LET 
since they were not default options. 

3. In the job step GO, the CONt parameter 
code is changed from 5, as it appears 
in the cataloged procedure, to 3. In 
this example, the code 3 causes the 
job step GO to be bypassed if a 
warning message is generated during 
the job step ALGOl. Note that 
although the other options (L~ and 
ALGOL) are not to be altered, the 
entire parameter being modified must 
be respecified. 

If 'procstep' is not specified when 
over-riding a multi-step cataloged 
procedure, the operating system makes the 
following assumptions: 

• 

• 

• 

COND, ACCT, REGICN and DEBTY 
parameters apply to all procedure job 
steps. 

A PARM parameter applies to the first 
procedure job step and any options 
already specified in the PARM 
parameters for the remaining procedure 
job steps are cancelled. 

A IIME parameter specifies the 
computing time for the entire job and 
any options already specified in the 
TIME parameters for individual 
procedure job steps are cancelled. 

An additional DD statement is used in the 
invoking sequence for each DD statement in 
the cataloged procedure that is to be 
over-ridden. The following format is used: 

Ilprocstep.ddname tD parameter list 

where 

'procstep' is the procedure job step 
containing the DD statement to be 
over-ridden: either ALGOL, LKED or GO. If 
'procstep' is omitted, then the first 
procedure job step is assumed. 'ddname' is 
the name of the DD statement to be 
over-ridden. 

'parameter list' is the list of parameters 
that are being added or changed. In both 
cases the whole parameter must be 
specified. Unchanged parameters in the 
original statement Deed not be specified. 
For example, the statement 

Source Program Handling 19 



//ALGOL.SYSLIN DD SPACE= (400, (80, 10» 

will change the SPACE paramete~ of the 
SYSLIN DD statement in the ALGOL job step 
so that space will be allocated for 80 
physical records instead of 40. 

DD statements that are used to over-ride 
other DD statements in the cataloged 
procedures must be placed immediately after 
the EXEC statement invoking the cataloged 
procedure, and must be in the same order as 
their corresponding DD statements in the 
cataloged procedures. 

Complete, new DD statements that are to be 
added to the cataloged procedure use the 
same format as over-riding DD statements. 
The 'ddname' specified must not exist in 
the job step specified by 'procstep'. 
These new DD statements must follow 
immediately after the over-riding DD 
statements which apply to the same 
procedure job step. 

User-Written Procedures 

To supplement IBM-supplied cataloged 
procedures, the user can add his own 
procedures to the procedure library. 
However, it is not necessary to include the 
procedures in SYS1.PROCLIB until they have 
been tested. It is advisable to test the 
procedures as in-stream procedures 
(procedures included in the input deck), 
before they are cataloged. By using this 
facility the need for a job step to catalog 
the procedure in test runs is eliminated. 
For further information on in-stream 
procedures refer to ~~~£1-R~!~~§nf~. 
Cataloging procedures is accomplished using 
the IEBUPDTE utility program, described in 
Q2_Q.ti I i!J~~ . 

The statements required in a procedure 
are: 

• 

• 

EXEC statements to invoke the 
programs. 

DD statements to define the data sets 
used by the programs. 

Information required to write procedures 
is contained in the following text and in 
Appendix E. 

20 

COMPILATION 

The ALGOL compiler consists of ten load 
modules contained in the link library, 
SYSI.LINKLIE, of the operating system. The 
compiler is activated by invoking its first 
load module, named ALGOL, which then 
internally invokes the other load modules 
of the compiler. 

The usual method of invoking the 
compiler is by means of an EXEC statement 
of the form 

//stepname EXEC PGM=AIGOI 

where 'stepname' is the name assigned to 
the job step (optional). 

Other EXEC statement parameters may be 
included if required (see 'Appendix E') • 

(A method of dynamically invoking the 
compiler within a job step, by means of the 
CALL, LINK, XCTL or ATTACH macro 
instructions, is described in Section 4.) 

SYSUTl 

SYSUT2 

SYSUT3 ,-__ ......... , 

SYSLIN 

SYSPRINT & 
SYSABEND 

Figure 5. Flowchart Showing Data Sets Used 
by the Compiler 

The data sets used in the compilation 
process are illustrated in Figure 5, and 
described in Figure 6. These data sets 
must be specified by the programmer with 
suitable DD statements. 

Blocksize DCE information may be 
specified by the user for SYSIN, SYSII6, 
SYSPRINT and SYSPUNCH. The maximum 



blocking factor depends on the main storage 
size available (see Figore 7). Record 
length is fixed at 80 bytes for SYSIN, 
SYSLIN and SYSPUNCH, and 91 bytes for 
SYSPBINT. 

The space required for the compiler data 
sets depends on the size and structure of 
the source program; however, it can be 
assumed that only in rare cases ~i11 the 
object module exceed four times the source 
program, and usually much less will be 
required. 
r ~-------T-------------' 
I Purpose IStandardl Devices I 
I 
r 

Iddname I required I 
----------~I~------+ ~ 

IFor ALGOL source 
Iprogram 
I 
IFor object module 
Ito be used by 
linkage editor 

For compilation 
listings 

SYSIN ICard reader 1 
I 
I 

SYSLIN IDirect access 
lor magnetic 
Itape 
I 

SYSPRINTIPrinter 
I 
I 

For object module SYSPUNCHICard punch 1 

(copied from I 
5Y5LIN) I 

For intermediate 
compiler working 

For intermediate 
compiler working 

I 
SY5UTI IDirect access 

lor magnetic 
Itape 
I 

SY5UT2 IDirect access 
lor magnetic 
Itape 
I 

For intermediate 
compiler working 

SY5UT 3 IDirect accessl 
I I 

150me form of intermediate storage, such 
as magnetic tape, may be used to reduce 
I/C delay for the central processing 
unit. 

I 
I 
I 
I 
I 

______J 

Figure 6. Data 5ets Used by the ALGOL 
Compiler 

ihe primary quantity specified in the 
SPACE parameter of the DD statements fcr 
5YSUT1, 5YSUT2 and 5Y5UT3 must be large 
enough to contain the entire data set. The 
use of a secondary quantity for any of 
these data sets will increase the need fer 
main storage by 40 percent. The following 
estimates can be used to allocate space on 
a 2311 direct access device: 

SYSUTl - 1 track per 100 source cards 
5YSUT2 - 1 track per 100 source cards 
SY5UT3 - 1 track per 200 source cards. 

Processing of all data sets by the 
compiler is independent of the I/O device 
used except for the intermediate work data 
sets. These require magnetic tape or 
direct access devices. 

LINKAGE EDITING 

ihe linkage editor is usually invoked with 
an EXEC statement of the form: 

//stepname EXEC PGM=IEWL 

where 'stepname' is the name assigned to 
the job step (optional). 

Other EXEC statement parameters may be 
included if required (see 'Appendix E'). 
IEwt specifies the highest-level linkage 
editor in the installation operating 
system. 

(A method of dynamically invoking the 
linkage editor within a job step, by means 
of the CALL, LINK, XCTL or ATTACH 
instructions, is described in section 4.) 

Source Program Handling 21 



w- i , 
I Main storage sizes I Maximum blocking factor I 
I (in bytes) at which I I 
I changes occur I SYSIN SYSPRINT SYSLIlf SYSPUNCH I 

• -+- , 
45056 (44K) 5 5 5 
51200 (50K) 5 5 5 5 
59392 (58K) 5 5 5 5 
67584 (66K) 5 5 5 5 
77824 (76K) 5 5 5 5 
90112 (88K) 20 20 40 20 

104448 (102K) 20 20 40 20 
120832 ( 118K) 20 20 40 20 
139264 ( l36K) 20 20 40 20 
159744 ( 156K) 20 20 40 20 
184320 (180K) 40 40 40 40 
212992 (208K) 40 40 40 40 L---________________________ -i 

Figure 7. Effect on Compiler Data Sets if more than 44K Bytes of Main storage is 
Available. 
The capacity of internal tables in the compiler is increased at each of the 
main storage sizes listed in this table, allowing, for example, a larger 
number of identifiers to be included in the source program. Therefore to get 
oFtimum Ferformance, the user is recommended to use this list when specifying 
main storage size availacle to the compiler. 

The data sets used by the linkage editor 
(see Figures 8 and 9) must be defined by 
the programmer with suitable tD statements. 

SYSLIB 

SYSLIN 

LINKAGE 

EDITOR 

SYSLMOD 

SYSPRINT & 
SYSABEND 

Information 
I------..j Listings 

Figure 8. Flowchart Showing Data Sets Used 
by the linkage Editor 

Blocksize DCB information may ce 
specified by the user for SYSIIN and 
SYSPRINT if the F level linkage editor is 
ceing used. Maximum blocking factor is 5 
when 44K bytes of main storage size is 

22 

available, and 40 when 88R bytes is 
available. Record length is fixed at 80 
bytes for SYSIN and 121 bytes for SYSPRINi. 

lOAD MODULE EXECUTION 

The usual method of invoking the lead 
module generated by the linkage editor is 
with EXEC statement of the form: 

//stepname EXEC PGM=member name 

where 'stepname' is the name assigned to 
the job step (optional). 

'member name' indicates the name of the 
partitioned data set member which contains 
the load module. This name is specified cy 
the programmer in the SYSLMOD DD statement 
for the linkage editor. ether EXEC 
statement parameters may be included if 
required (see 'Appendix E'). 

(A method of dynamically invoking the 
load module within a job step, by means of 
the CALL, lINK, XCTI or ATTACH 
macro-instructions is described in section 
4. ) 



Iii , 

IPurpose IStandardlDevices I 
I I ddname I used I 
...-. ------.-+ --+--------t 
IFor object 5YSL1N Direct access 
Imodule input or magnetic 
I tape 
I 
IFor load module 
loutput, stored 
las a member of 

SYSLMOD Direct access 

a partitioned 
data set 

For ALGOL SYSLIE 
library, 
SYS1.ALGLIE. A 
partitioned data 
set containing 
routines in load 
module form 

Direct access 

For linkage SYSPRINT Printer 1 

editing listings 

For intermediate SYSUTI 
linkage editor 
working 

Direct access 
or magnetic 
tape 

1 Some form of intermediate storage, such 
as magnetic tape, may be used to reducel 
I/O delay for the central processing I 
unit. I 

~ J 

Figure 9. Data Sets Used by the Linkage 
Editor 

]~ttg_~~!§_'y§~g 

Up to 16 data sets for use at execution 
time may be specified by the programmer in 
the ALGOL source program by using the 
appropriate data set number. The numbers 
used and the corresponding names of their 
DD statements are listed below. 

Data set number 
used in ALGOL 
~.Q.Y]~lL~].Q G R~J1 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Corresponding 
]]!!!l1!~ 

SYSIN 
ALGLDDO 1 
ALGLDD02 
ALGLtt03 
ALGLDD04 
ALGLDDOE 
ALGLDD06 
ALGLDD07 
ALGLDD08 
ALGLDtC9 
ALGLDD10 
ALGLtD 11 
AlGLDt12 
ALGLDD13 
AlGLDD14 
ALGLDt15 

Any reference to a data set number by an 
I/O procedure within an ALGOL source 
program is translated into a reference to a 
data control block using the corresponding 
ddname. It is the responsibility of the 
programmer to supply the ID statements 
which correspond to the data set numbers 
used in the ALGOL source program. 

The execution time data sets are 
illustrated in Figure 10 and described in 
Figure 11. For ALGLD02 to ALGLDD15, case 1 
in the column showing device used, applies 
if the source program contains any of the 
following: 

• A backward respositioning 
specification by the procedures 
SYSAC~4 or SYSACT13 for this data set. 

• 

• 

Both input and output procedure 
statements for this dat set. 

Procedure statements which prevent the 
compiler from recognizing whether 
either of these applies; for example, 
if the data set number or SYSACT 
function number is not an integer 
constant or if a precompiled procedure 
is used. 

If the source program has already been 
compiled and linkage edited in a previcus 
job, then the data set on which it has been 
stored (in load module form) must be 
concatenated to SYS1.LINKLIB. Data sets 
containing precompiled procedures called by 
the source program (see Section 4) must 
also by concatenated to SYS1.LINKIIE. 

If the programmer specifies a TRACE, 
TRBEG or TREND option in the EXEC statement 
of the execution job step, the semicolon 
count (see section 3) is stored 
intermediately on a data set with the 
ddname SYSUT1. The programmer must sUPFly 
a corresponding DD statement if he uses 
this option. The semicolon count is 
converted to external form and transferred 
to the SYSPRINT data set as soon as the 
execution ends either by reaching the 
logical end of the source program or due tc 
an error. 

The space required for the semicolon 
count is: 

Source Program Handling 23 



For the main heading 6 bytes 

For each semicolon 2 bytes 

For each call of a 
precompiled procedure 12 bytes 

For each physical 
record on SYSUT 1 4 - € bytes 

System/360 ALGOL permits data to be 
temporarily stored on and retrieved from 
external devices without conversion, using 
the ALGOL I/O procedures PUT and GET. If 
the programmer uses this facility in his 
source program, then he must supply a DD 
statement with the ddname SYSUT2. The 
device specified by this statement for 
storing such intermediate data should be a 
direct access device to guarantee 
reasonable performance, though programming 
is performed independently between magnetic 
tape and direct access devices. All data 
passed by a single PUT is stored as one 
record. This record will be as long as the 
data passed, plus 8 bytes. The maximum 
record length accepted is 2048 bytes. 

The DCB information which may be 
specified by the user for execution time 

data sets is blocksize, record format and 
record length, except for the trace and 
PU7jGE7 data sets (ddnames SYSUTl and 
SYSUT2) for which only blocksize may be 
specified (up to a maximum of 2048 bytes). 

Where SYSACT8 is used in the ALGOL 
program and record format is specified in 
the CD statement, BECFM=FA or BECF~=FBA 
must be specified. If either one of these 
formats is specified, SYSACT8 must be used 
in the ALGOL program. 

For information not provided, default 
values will be inserted by a routine in the 
ALGOL library. In particular, blocksize is 
assumed as 2048 bytes for SYSUTl and SYSUT2 
if none is specified. 

The record length for the SYSPBINT data 
set is fixed at 91 bytes. 

Load Module for Source 
Program, Precompi led 
Procedures, and Error 
Routine 

Intermediate Work 

SYSUT 1 

SYSUT 2 

Data Input 

SYSIN & 
ALGLDD02-15 

LOAD 
MODULE 
EXECUTION 

Data Output 

Information 
Listings 

ALGLDD01, 
SYSPRINT & 
SYSABEND 

Any of 
ALGLDD02-15 
not used for 
input 

Figure 10. Flowchart Showing Data Sets Used at Load Module Execution. 
The data input and output requirements are variable. 

24 



i 

I 
I Purpose 
1--------

For data input to 
load module 

For execution time 
listings 

For data output 

For data input 
or output 

For intermediate 
storage of semi­
colon counter when 
TRACE is specified 

For temporary 
storage when PUT 

lis specified 
I 

i i , 

IStandardlDevice I 
Iddname IUsed I 

-+----+---------1 
SYSIN IAnj input 

Idevice 
I 

SYSPRINTIPrinte~l 

I 
I 

ALGLDD011Printer i 

I 
ALGLDD02 1.tirect 

access or 
magnetic 
tape 

ALGLDD1!5 2.Any 

SYSUT 1 

SYSUT2 

Di~ect ac­
cess o~ mag­
netic tape 

Di~ect ac­
Icess or mag-I 
Inetic tape I 
I I 

I 
11 
I 
I 
I 

Some form of intermediate storage, 
such as magnetic tape, may be used to 
reduce I/O delay for the central 
processing unit. 

I 
I 
I 
I 
I 

I ----.I 

Figure 11. Data sets Used at Execution 
Time 

LOADING 

An object module may be loaded and executed 
in a single job step by use of the loader. 
The loader can also be used to load and 
execute a linkage editor processed load 
module. 

The loader may be invoked by an EXEC 
statement of the following form: 

//stepname EXEC PGM=LOADER 

where 'stepname' is the name assigned to 
the job step (optional). LCADER specifies 
the loader prog~am in the installation's 
operating system. 

If the input to the loader is a load 
module generated from an ALGOL scurce 
program, the EXEC statement must include 
the following parameter 

PARM='EP=IHIFSAIN' 

IHIFSAIN is the entry point name of a load 
module generated from an ALGOL source 
program. Other loader options may be 
specified in the PARM field. (See 

I 'Appendix E' in this publication and ~E 
1~g£~~~g-1i~~gg~_~gi!2~·) 

A method of dynamically invoking the 
loader within a job step, by means of the 
CALL, LINK, XCTL and ATTACH instructions, 
is described in Section 4. 

The data sets used by the loader and by the 
loaded program or load module (see Figures 
12 and 13) must be defined by the 
programmer with suitable ED statements. 

For the following data sets, record 
lengths are fixed as indicated: 

SYSLIN 
SYSLOUT 
SYSPRINT 

80 bytes 
121 bytes 
91 bytes 

other information on the data sets used 
by the loaded program or load module will 
be found in the preceding section titled 
'Load Module Execution'. 

Source Progra. Handling 25 



SYSUT2 

Data Input 

SYSIN 
ALGLDD02 

ALGLDD15 

SYSLIB 

SYSUTl 

SYSLIN 

Data Output 

Information 
Listings 

ALGLDD01 & 
SYSPRINT 

Any of ALGLDD02-
15 not used for input 

Figure 12. Chart Showing Data Sets Used by the Loader and by a Loaded Program or Load 
Module in a Load-and-Execute Step 

26 



I T---------.-------r-------------------------.-------------------, 
I Purpose Standard Devices used I 
I I ddnaae I 
r-------------------------------1--- -------i 
1Qgg~£ 

For object module and/or 
load module input 

For ALGOL Library, SYS1. 
ALGLIB. A partitioned 
data set containing routines 
in load module form 

For loader information 
listings 

For data input 

For execution time listings 

For data output 

For data input or output 

For intermediate storage 
of semicclon counter when 
TBACE is specified 

For temporary storage of 
data by load module 
(using PUT statement) 

SYSLIN 

SYSLIB 

SYSLOUT 2 

SYSIN 

SYSPBINT 

ALGLDDOl 

ALGLDD02 
• 
• 
• 

ALGLDD15 

SYSUT 1 

SYSUT2 

Direct access or magnetic tape 

Direct access 

Printer 1 

Any input device 

Printer 1 

Printer 1 

1. 

2. 

Direct access or magnetic 
tape (see text.) 

Any input/output device 

D~rect access or magnetic tape 

Direct access or magnetic tape 

, ~ ~ 

I I 
I 1 Some form of intermediate storage, such as magnetic tape, may be used to reduce I 
I I/O delay for the central procces~ng unit. I 
I I 
I 2 SYSLOUT must be specified at system generation as an alternative ddname to I 
I SYSPBINT for the printer used by the loader. I 
I .J 

Figure 13. Data Sets Used by the Loader and by the Loaded Program or Load ~odule 

Source Program Handling 27 



Section 3: Information Listings 

To assist the programmer to find the cause 
of any faults in the processing cr 
execution of his program, various forms of 
information listings are produced for the 
compilation, linkage editing and execution 
operations. Some of these listings are 
optional. Examples are illustrated in 
Figures 14 to 19. 

Control Program Listings 

All three operations may produce listings 
generated by the control program. These 
are described in g~_~~§§gg~§_gng_~Qg~§. 
The ABEND macro instruction for specifying 
the main storage dump is described in Q~ 
~~~~~i§£~~~~~i~gnd Ma£!£_!~§!~~£!!Qn§. 

Compilation Listings

A successful compilation of an AlGeL source
program produces the following information
listings:

•

•

•

Job control statement information
according to which MSGLEVEL option was
specified in the JOB statement.

The source program supplemented by a
count of the semicolons occurring in
the ~rogram (cptional).

A table giving details of all
indentifiers used in the program
(optional) •

• Any warning diagnostic messages.

• Information on main storage
requirements at execution time.

If a serious diagnostic message is
produced (meaning that object module
generation has ended), then the source
program and identifier table listings will
be printed in full if they have teen
requested, but the information on main
storage requirements will not be printed.
If a terminating diagnostic message is
produced, then the source program and
identifier table listings can be printed
only as far as they have been produced.

28

SOURCE PROGRAM

If the SOURCE option has been specified,
the source program is transferred by the
compiler to an output data set in order to
be listed by a printer. This source
program is supplemented by a semicolon
~ount, which is referred to in the
diagnostic messages to help localize
errors.

The compiler generates this §~~i£Q!Qn
£QY~! when scanning the source program by
counting all semicolons occurring in the
source program outside strings, except
those following the delimiter 'COMMEN~'.
The value of this semicolon count at the
beginning of each record of the source
program is printed at the left of that
record. It is assigned by the compiler in
order to have a clear, problem-oriented
reference. Any reference to a particular
semicolon number refers to the segment of
source program following the specified
semicolon; for example, the semicolon
number 5 refers to the program segment
between the fifth and sixth semicolons.

IDEN'IIFIER TABLE

If the SOURCE option has been specified, a
list of all identifiers declared or
specified within the source program is
transferred by the compiler to the output
data set for printing after the source
program listing. This identifier table
gives information about the characteristics
and internal representation of all
identifiers. The identifiers are grouFed
together within the identifier table
according to their scopes.

All blocks and procedure declarations
within the source program are numbered
according to the order of occurrence of
their opening delimiters 'BEGIN' or
'PRCCEDURE'. Therefore, if the body of a
procedure declaration is a block, then
usually this block has the same number as
the procedure declaration itself. These
numbers are called ~~£~g!_hlo£~ numbers
(even if they belong to a procedure
declaration and not to a block).

Each line in the table contains entries
for up to three identifiers. A line begins
with the number of the program block in
which the identifiers were declared or

specified, the value of the semicolon count
at the commencement of the program tlock,
and the number of the immediately
surrounding program block. Each identifier
entry contains:

t. The external name of the identifier as
it appears in the source program.
Space for six characters is provided
and, if necessary, the identifier is
truncated.

2. The type key, as described below.

3. The number of dimensions (for array
identifiers), components (for switch
identifiers) cr parameters (for
procedure identifiers). This position
is blank for all other types of
identifiers.

4. The displacement for the quantity
denoted by the identifier, as
explained below.

The !~~~~ consists of five characters
denoting the type characteristics of the
identifier. These characters are as
follows (b represents blank) :

In first position:

In second position:

In third position:

In fourth position:

In fifth position:

Exa8ples of these are:

For a real variable

For a Boolean array

R when real
I when integer
B when Boolean
b when anything else

L when label
S when switch
T when string (text)
b when anything else

A when array
P when procedure
b when anything else

N when formal param­
eter called by name

V when for mal
parameter
called by value

b when declared
identifier
(not formal
parameter)

C when precompiled
(code) procedure

b when anything else

Rbtbb

BbAbb

For a formal param­
eter specified inte-

ger procedure
called by name

For a preco~piled
procedure

ItPNb

bbEbC

The £i§E1~~~~! is in hexadecimal form
and has the following meaning:

• For all identifiers denoting simple
variables, arrays and formal
parameters, it is the relative
position of their values in the data
storage area, as described telow.

• For all identifiers denoting labels,
procedures and switches (if not
specified as formal parameters), it is
the relative position of the
corresponding entry in the label
address table, as described below.
This position is known as the label
number (LN).

The space allocated to each identifier
is as fcllows:

For formal parameters: 8 bytes

For Boolean identifiers: byte

For integer identifiers: 4 bytes

For real identifiers: 4 bytes when
SHORT is specified; 8 bytes when LCNG is
specified.

For arrays: see 'Storage Mapping
Function' below.

At execution time, for each program
block, a £at~_sto~~~_2~~2 (DSA) is created
dynamically at each entry of the program
block and is released when leaving it. The
lengths of the data storage area and the
relative positions of all data contained in
them are determined by the compiler. These
relative positions, together with the
program block numbers, uniquely identify
the quantities of an ALGOL program. Two
forms are used according to whether the
SHCRT or LONG option was specified in the
invoking statement.

The data storage area of a program tlock
contains locations for:

1. The values of simple variables

2. The storage mapping functions of
arrays (see below)

3. In the case of formal parameters, the
type characteristics and addresses of
the actual parameters

4. Intermediate results, addresses, etc.

Information Listings 29

A label_~gg£~22_1~~!~ is created by the
compiler and transferred to the object
module. In general it is used at execution
time to load a branch register before any
branch is performed. It contains addresses
corresponding to:

1. Library modules required

2. Labels

3. Procedure declarations

4. switch declarations

5. Internal branches (' IF', 'FOR', etc.)

The §!£~~ mappi~~~ctio~ describes
the storage layout of an array. The
storage that the storage mapping funct~on
requires in the DSA can be calculated from

s = 4(d + 5) + X,

where

s = number of bytes in storage mapping
function

d number of dimensions in array

X 4 if LONG is specified and is an
even number, 0 otherwise

DIAGNOSTIC MESSAGES

During the compilation as many programming
errors as possible are detected and
appropriate diagnostic messages are
produced to help the programmer to identify
them. Diagnostic messages are caused by:

1. Programming errors. These are
detec~ed and reported by the compiler
as far as they do not depend on the
dynamic flow of the program.
Programming errors depending on the
dynamic flow of the program are
detected and reported by thE load
module.

2. Violations of capacity limitations.
Such violations are detected and
reported by the compiler, where
possible. Those which cannot ce
detected at compile time are detected
and reported by the load module at
execution time.

3. I/O errors caused by malfunction of
channels or external devices are
reported when they occur.

4. Control card errors not detected by
the job scheduler.

30

5. Program interrupts.

The diagnostic messages are transferred
to the output data set to be listed by a
printer. 'Appendix F' contains a list of
the messages that may be produced by the
ALGOL compiler.

STORAGE REQUIREMENTS

Following the diagnostic messages, the
compiler transfers information about the
execution time storage requirements to the
output data set if the compilaticn finished
successfully. This information gives no
exact storage estimate of the object module
execution because the storage allocation
for data is performed dynamically at'
execution time and depends on the flow of
control through the object module and on
the amount of data at execution time.

For example, the data storage area
belonging to a program block is allocated
only as long as that program block is
active. In the case of recursive
procedures more than one generation of the
corresponding data storage area may be
required. The storage needed for the array
is not contained in a data storage area and
depends on the execution time values of the
bounds of the array.

Nevertheless, a programmer knowing the
structure of his program may gain rough
storage estimates from the following
information given by the compiler.

1. Main storage required by the object
module, including tables and constant
pool.

2. A list of the main storage
requirements of all data storage
areas. This list consists of one
entry for each program block,
containing the program block number,
and the number of bytes required for
the corresponding data storage area.

Linkage Editing Listings

A successful linkage editing can produce
the following information listings:

•

•

Job control statement information
according to which MSGLEVEL option was
specified in the JOE statement.

Disposition data, listing the options
specified and the status of the load
module in the output library.

•

•

Diagnostic messages (severity code 1).

A cross reference table of the load
module, or alternatively, a module map
(both optional).

If a diagnostic message of severity code
2 or 3 is produced, other information
listings might not be produced. If a
diagnostic message of severity code 4 is
produced, other information listings will
not be produced.

DIAGNOSTIC MESSAGES

A description of the diagnostic messages
that may be prcduced by the linkage editor
is contained in 'Appendix Ft.

MODULE MAP

If MAP is specified in the invoking
statement for the linkage editor, then a
module map is transferred to the output
data set to be listed by a printer. The
module map shows all control sections (the
smallest separately relocatatle units of a
program) in the load module and all entry
names (to routines in the ALGOL library) in
each control section. The control sections
are arranged in ascending order according
to their origins (which are temporary
addresses assigned by the linkage editor
prior to loading for execution). The entry
names are listed below the control section
in which they are defined. The origins and
lengths (in bytes) of the control sections
and the location of the entry names are
listed in hexadecimal form. Unnamed
control sections are identified by $ in the
list.

At the end of the module map is the
entry address of the instructions with
which processing of the module begins. It
is followed by the total length of the
module, in bytes. Both values are in
hexadecimal form.

CROSS-REFERENCE TABLE

If XREF is specified in the invoking
statement for the linkage editor, the cross
reference table is transferred to the
output data set to be listed by a printer.

The cross reference table consists OL a
module map and a list of cross references
for each control section. In the list of

cross references, each address constant
that refers to a symbol defined in another
control section is listed with its assigned
location (in hexadecimal form), the symbol
referred to, and the name of the contrel
section in which the symbol is defined.

If a symbol is unresolved after
processing by the linkage editor, it is
identified by $UNRESOLVED in the list.
However, if an unresolved symbol is marked
by the never call function, it is
identified by SNEVER-CALL.

~he entry address and total length are
listed after the list of cross references.

Execution Time Listings

A successful execution of the load module
produces the following information
listings:

• Job control statement information
according to which MSGLEVEl option was
specified in the JOB statement.

• ~he ALGOL program trace, which is a
list of the semicolon numbers assigned
by the compiler (optional).

If an error is detected during execution
of the load module, additional information
listings are printed before the trace:

• A diagnostic message

• ~he contents of the data storage areas
(optional)

DIAGNOSTIC MESSAGES

Any error detected at execution time causes
abnormal termination. A diagnostic message
is produced which is transferred to an
output data set to be listed by a printer.
~he diagnostic messages which may be
produced during load module execution are
listed in 'Appendix F'.

tAT! STORAGE AREAS

If tUMP is specified in the invoking
statement for the execution operation, the
data storage areas (DSA) in main storage
are transferred to the output data set to
be listed by a printer. ~hey are listed in
the reverse order to which they were
created.

Information Listings 31

A DSA is created for each call of a
program block (see 'Compilation Listings')
and exists in main storage as long as the
call is effective. The DSA contains:

1. All execution-time values of variables
declared or specified in the program
block except for arrays. The array
values are stored separately but are
included in the listing because they
are referenced by the storage mapping
function which is contained within the
DSA.

2. Intermediate results (known as the
object-time stack) •

The information listed for each DSA
consists of:

• Name of load module

• Program block number

• Description of program block; either
BLOCK, PROCEDURE or TYPE PROCEDURE

• The values in the DSA, in batches
according to their category, that is,
formal parameters, declared
identifiers and object-time stack,
arrays called by value, and declared
arrays.

The values are those which exist at the
time the error was detected (in hexadecimal
form). The displacement in the tSA of the
first value in each line is printed at the
beginning of each line. This i~ a six­
digit hexadecimal number.

For formal parameters, each entry has 16
digits, and in the case of parameters
called by name the entry contains an
address constant pointing indirectly to the
value.

For declared indentifiers and the
object-time stack, the identifier entries
are listed first and they can be located
using the identifier table if it was listed
by the compiler. The object-time stack
contains various intermediate results and
addresses which are not directly related to
the identifiers in the source program.

For arrays, the length depends on the
storage mapping function. The displacement
of the storage mapping function in the DSA
is given for each array.

In the listings, real values have a
length of 8 hexadecimal digits when SHORT
is specified and 16 digits when ICNG is
specified. They are in standard floating~
point representation. Integer values have
a length of 8 hexadecimal digits and are in
standard fixed-point representation.

32

Eoolean values have a length of 2
hexadecimal digits which appear as 00 for
'FALSE' and 01 for 'TRUE'.

An editing routine inserts blanks
between each set of 8 digits to improve
readability.

ALGOL PROGRAM TRACE

A program trace, listing the semicolon
numbers assigned by the compiler (see
'Compilation Listings') in the order the
corresponding semicolons were encountered
during execution, is transferred to an
output data set to be listed by a printer
if TRACE, TREEG or TREND is specified in
the invoking statement for the executicn.
The completeness of the trace depends on
the option or options specified (see
'Appendix E'). Only the semicolons
actually passed through at execution time
are included in the trace.

If a precompiled procedure is used in
the program and TRACE is specified, then
the semicolon numbers for the prccedure are
included in the correct position within the
program. The appropriate load-module name
(first four characters only) is inserted at
the beginning of the listings and each time
a change occurs in the first four
characters of the module name.

Loader and Execution Listings

The information listings printed by a
successful loader step may include the
following two categories of information:

1. Information specific to the processing
of the loaded program by the loader.
Depending on the options specified for
the job scheduler and the loader, and
on the outcome of loader processing,
the information may include:

• A list of the job contrel
statements used to invoke the
loader (provided MSGLEVEL=1 is
specified) •

• A list of the options specified for
and implemented by the loader.

• A storage map of the loaded
program, showing the name and
absolute address of every control
section and entry point defined in
the program. The storage map is
printed if the MAF option is
specified.

• Diagnostic message, if one or more
errors in the loaded program are
detected. The error messages
generated by the loader are similar
to those generated by the linkage
editor. A description of the
message format is provided in
'Appendix F'.

2. Information relative to the execution
of the loaded program. Depending on
the execution options specified and on
the successful execution of the loaded
program, the information printed may
include:

• A diagnostic message in the event a
program error (causing the loaded

SOURCE PROGRAM

SC SOURCE STATEMENT

program to be abnormally
terminated) is detected. Execution
time diagnostic messages are listed
in 'Appendix F'.

• Listings of the contents of all
existing data storage areas in main
storage at the time of an executicn
time error, provided the tUMF
option is specified. The data
storage area is described above
under 'Execution Time Listings'.

• program trace information, as
described under '!xecution Time
Listings', provided one of the
options TRACE, TREEG or TRENt is
specified for the loaded program.

00000
00004
00006
00008
00012
00016
00017
00019
00020
00021
00022
00023
00025
00026
00027
00028

'BEGIN' 'INTEGER' I; 'REAL' A; 'BOOLEAN' B; 'INTEGER' 'ARRAY' IA(/1:5/);
'ARRAY' AR(/0:3,2:8/); 'BOOLEAN' 'ARRAY' BA(/0:1,1:3,3:7/)J
'INTEGER' 'PROCEDURE' IP; IP:= I+5;
'REAL' 'PROCEDURE' RP(A); 'VALUE' A; 'INTEGER' A; RP:=A*Ai
'PROCEDURE' P(A,B,C); 'BOOLEAN' A; 'REAL' B; 'INTEGER' C;
A:=B<C
I:=l; A:=2.6;
AR (11,1/) :=IP;
AR(/1,2/):=RP(AR(/1,1/»;
P(BA(/0,1,3/),A,I);
P(B,AR(/1,2/),IP);
SYSACT(1,8,SO); OUTREAL(l,AR(/l.l/»;
OUTBOOLEAN(1,BA(/0,1,3/»;
OUTBOOLEAN(l,B)
A:=A/O;
'END'

Figure 14. Example of Source Program Listing

Information Listings 33

IDENTIFIER TABLE

PBN SC PBN NAME TYPE DM DSP NAME TYPE DM DSP
SURR PR LN PR LN

001 00000 000 A R 01C AR RA 02 03C
BA BA 03 058 I I 018
IP I P 00 070 P P 03 078

002 00006 001 IP I P 00 070

003 00008 001 A I V 020 RP R P 01 074

004 00012 001 A B N 018 B R N 020

Figure 15. Example of Identifier Table Listing.
This corresponds to the program in Figure 14.

STORAGE REQUIREMENTS (DECIMAL)

OBJECT MODULE SIZE 1840 BYTES.

DATA STORAGE AREA SIZES

PBN BYTES PBN BYTES PBN BYTES PBN BYTES

001 136 002 32 003 40 004

Figure 16. Example of Storage Requirements Listing_
This corresponds to the program in Figare 14.

CONTROL SECTION

NAME ORIGIN LENGTH

00 730

IIIISYSCT* 730 SEC
IHISOREA* 020 328

LOCATION REFERS TO SYMBOL

6IC
658
660
008

IF48
IF5C
IF8I

ENTRY ADDRESS
TOTAL LENGTH

IUISYSCT
IHISOREL
IHIOBOOL
IUIIORCL

IHIFSARB
IHIIORCP
IUIFSARA

IF24
3008

CROSS REFERENCE TABLE ----

ENTRY

NAME

IHIOSTAB

IHISORAR

IHIIOROQ
IHIIORCP
IHIIOREV

IN CONTROL SECTION

IHISYSCT
IHISOREA
IHIOBOOL
IHIIORTN

IHIFSARB
IHIIORTN
IHIFSARA

LOCATION

608

D20

2580
2C72
20CE

NAME

IHIENTIF

IHISOREL

IHIIOROP
IHIIORGP
IHIIOREO

LOCATION

724

D30

25AC
2038
2E40

Figure 17. Example of Cross-Reference Table Listing.

60

NAME

IHIIORNX
IHIIORCN
IHIIORCI

NAME

B
IA
RP

C

TYPE

B
I A
R P

I N

DM DSP
PR LN

020
01 024
01 074

028

PBN BYTES

LOCATION

28C4
203C
2F44

NAME

IHIIORCL
IHIIOREN
IHIIORER

LOCATION

2BOC
2076
2FCC

This is part of the table produced from the program in Figure 14. A Module
Map Listing would contain only the list of Control Sections and Entry Names,
plus the Entry Address and Total Length Information. Control Sections marked
with an asterisk were included from a library during automatic library call.

34

IHI031I SC=00027 PSW= FF05000F 48005E22 DIVISION BY ZERO, FLOATING POINT

MODULE = GO PROGRAM BLOCK NUMBER = 001 (BLOCK)

DECLARED IDENTIFIERS AND OBJECT TIME STACK
000018 00000001 4129999A 0001FF2C 01000000 0OOlE49C 0001F4AO 0001E4B4 00000014
000038 00000004 02000024 0001E428 0001E430 0001E4AO 00000070 0000001C 00000004
000058 0300003C 0001E408 0001E410 0001E42E 0000001E OOOOOOOF 00000005 00000001
000078 0001E44C 0000581C 0001F560 400058C

SMF DISPLACEl4ENT IN DSA = 000058 DECLARED ARRAY
000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

SMF DISPLACilllENT IN DSA = 00003C DECLARED ARRAY
000000 00000000 00000000 00000000 00000000 00000000 00000000 41600000 42240000
000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000060 00000000 00000000 00000000 00000000

SHF DISPLACEHENT IN DSA = 000024 DECLARED ARRAY
000000 00000000 00000000 00000000 00000000 00000000

Figure 18. Example of Error Message and Data storage Area Listing.
This is the listing produced from the program in Figure 14 when the division
by zero was encountered.

ALGOL PROGRAM TRACE

MODULE SEMICOLON NUMBERS

GO 00001 00002 00003 00004 00005 00006 00008 00012 00017 00018 00019 00007 00020
00009 00010 00011 00021 00013 00014 00015 00016 00022 00013 00014 00015 00016
00007 00023 00024 00025 00026 00027

END OF ALGOL PROGRAM EXECUTION

Figure 19. Example of Program Trace Listing.
This was produced from the program in Figmre 14.

Information Listings 35

Section 4: Programming Considerations

Capacity Limitations

In addition to those given in Q~_A1QQ1_1~ngy~g~, the following restrictions must be
observed when writing an ALGOL source program:

36

Number of tlocks and procedure
declara tions (NPB) 5255

Number of for statements 5255

Number of indentifi€rs declared or
sFecified in one block or procedure
(F is at most twice the number of 5179-F for type procedures
for statements occurring in that 51S0-F otherwise
block.)

Length of letter string serving
parameter delimiter

Length of label ind€ntifier

Length of source program

Number of semicolons in the whole
program

Number of nested tlocks, com­
Found statements, fcr state­
ments and procedure declarations

Number of labels declared or ad­
ditionally generated by the
compiler

The compiler generates the
following additional labels:

51024 letters when the main
stcrage available is <50K
52000 letters otherwise

51024 characters when the
main storage available
is <50K
52000 letters otherwise

5255K

565535

5999

51024

For each switch declaration 2

For each procedure declaration 2

For each procedure activation
(including function designators)

Fer each 'THEN' and 'ELSE'

For each for statement

Length of constant pool

at most L+3 where L is
the number of for list
elements

5 (256-NPB) x 4096 bytes

The ~equirements of components
within the pool a~e:

Intege~ constant

Real constant (SHORT)

Real constant (LONG)

string (in bytes)

The constant peol is divided into blocks
of 4096 bytes each. The first block
contains the integer constants 0 to 15 (64
bytes). All strings together a~€
restricted to fill not more than the rest
of this block (4096 - 64 - 2S bytes, where
S = number of strings).

No constant occurring more than once in
the source program is stored twice in the
same block; however, it may possibly be
stored more than once in different blocks.
Up to seven bytes may be left unused.

length of data storage area
for each block or p~ocedure
declaration

Number of blank spaces
serving as delimite~s on
I/O data sets

Number of reco~ds in a
data set

Number of records per
section

Number of ent~ies in the
Note Table (see below)

Identification number (N)
used by PUT or GET

~4096 bytes

~2f5

~32760

~255

O~N~65535

(The Note Table stores information to
retrieve reco~ds which may be regui~ed
again later. An entry for a record is made
each time the ALGOL I/O procedu~es PUT and
SYSACT13 are executed, and each time an
input operation, with backward
repositioning, follows an output operation
on the same data set.)

Invoking a Program Within a Job Step

Anyone of the four macro-instructions,
CALL, LINK, XCTL, C~ ATTACH, may be used to
dynamically invoke the compiler, linkage
editor, loader or a load module within a
job step. This is an alternative to the
more usual method of invoking a p~ogram by
starting a job step with an EXEC statement.

4 bytes

4 bytes

8 bytes

2+number of symbols of
open string between the
cutermost st~ing quotes

Full details of the four mac~o instructions

I are given in Q~~~~j§g!-~~~~j£~~g~g
]g~!~_!A§t~u£!!~§.

To invoke a prog~am with the CALL mac~c
instruction, the prog~am must first be
loaded into main storage, using the lOAD
mac~o instruction. This returns, in
gene~al registe~ 15, the entry add~ess
which is used by the CALL macro
instruction. ihe instructions used could
be:

tOAt l!P=member name

IR 15,0

CAtl (15), (option address), VL

To invoke a program with one of the
tINK, ICTt or ATTACH macro instructions
would require:

LINK EP=member name,

PARAM=(option address), Vl=1
or
XCTt EP=member name
or
ATTACH EP=membe~ name,

PARAM=(option address), Vl=l

'member name' specifies the name of the
member of a partitioned data set which
contains the prog~am requi~ed.

For the co.pile~, member name=AtGCl

For the linkage editor, member name=IEWl

Fo~ the loader, member name=ICAtEE

For the load module, member name is
specified by the programmer in the
SYSLMOD DD statement for the linkage
editor.

'option address' specifies the address
of a list containing the options requi~ed
by the user. Where the p~ogram invoked is
the loader (member name=LOADER) and the
input to the loader consists solely of one
or more linkage-editor-produced load

Programming Considerations 37

modules, the option list must include the
parameter EP=IHIFSAIN. The list must begin
on a half-word boundary. The first two
bytes contain a number giving the number of
bytes in the remainder of the list. (If no
options are specified this number must be
zero). The list itself contains any of the
options available to the PARM parameter in
an EXEC statement (see 'Appendix E').

When using CALL, LINK or ATTACH to
invoke the compiler, other ddnames may be
used in place of the standard ddnames given
in Section 2 for the data sets and an
alternative page number (instead of the
normal 001) may be specified for the start
of output listings.

If alternative ddnames are used, then in
the statement invoking the compiler 'option
address' must be followed by 'ddname
address' giving the address of a list
containing the alternative ddnames. If
alternative page numbers are used, 'page
address' giving the address of a location
containing the alternative page number must
be placed after 'ddname address'; though if
alternative ddnames are not required,
'ddname address' may be replaced ty a
comma.

The ddname list must begin on a
half-word boundary. The first two bytes
contain a number giving the number of bytes
in the remainder of the list. The list
itself contains up to ten 8-byte fields,
separated by commas, for specifying
alternative ddnames for the data sets. As
only seven data sets are used by the
compiler, three of the fields are left
blank. The alternative ddnames must be
listed in the following order:

output of object module SYSLIN
for linkage editor or
loader

--Three blank fields--

Source program input SYSIN

Information listings SYSPRINT

cutput of object module SYSPUNCE
for card deck

Intermediate work SYSUTI

Intermediate work SYSUT2

Intermediate work SYSUT3

The field for a data set which does not
use an alternative ddname must be left
blank if there is an alternative ddname
following. Otherwise the field is omitted.

38

The location containing the page number
must begin on a half word boundary. The
first two bytes contain a number giving the
number of bytes in the remainder of the
location (namely, four). These four bytes
contain the number for the first page of
the output listings, and on return to the
invoking program they will contain the
number of the last page.

An example of an invoking statement and
the associated lists, for the compiler, is:

COMPILE LINK EP=ALGOL,PARAM=
(OPTIONS,DDNAMES,PAGE),
VL=l

OPiIONS DC

DDNAMES DC

FAGE DC
b

H'25',C'PRCCEDURE,DECK,
SIZE=90112'

E'35',C'OUTPUTbb,3CL8'b',
C'INPUTbbb',3C18'b',
C'CARDDECK'

H'04',F'62'
BLANK

In this case, the PROCEDURE and DECK
options are specified and a8K bytes of main
storage are made available. Alternative
ddnames are specified for SYSLIN, SYSIN and
SYSPUNCH, and 62 is specified as the first
page number for the output listings.

Precompiled Procedures

An ALGOL program may invoke one or more
subprograms written in the ALGCL language
or in the Assembler language and stored on
a partitioned data set in load module form.
Subprograms of this type are known as
precompiled procedures.

A precompiled procdure to be invoked by
an ALGOL program must be nominally declared
in the calling program. The declaraticn
consists of a normal procedure heading,
followed by the delimiter 'CODE'
representing the procedure body. The name
of the precompiled procedure declared in
the calling program must be the lo~d module
name of the precompiled procedure.

A precompiled procedure is loaded into
main storage when control passes to the
program block in which the precompiled
procedure is declared, and is deleted when
control leaves that block. Where possible,
a precompiled procedure should be nominally
declared in the outermost block of the
calling ALGOL program. The declaration of
a precompiled procedure in another
precompiled procedure which is frequently
invoked, should be avoided. This saves
execution time by reducing the number of
loadings of the precompiled procedure.

The precision of real values must be the
same, SHORT or LONG, in the callng ALGOL
program and the precompiled procedure. If
the installation allows multiprogramming,
the REUS option ('Appendix E') may not be
specified for the precompiled procedure
load module, in the statement invoking the
linkage editor.

ALGOL LANGUAGE PROCEDURES

A precompiled procedure written in the
ALGOL language must satisfy the rules, as
stated in OS_AL~Q1_1g~g~gg~, governing any
normal procedure declaration. That is to
say, the source module should comprise a
procedure heading and a procedure body.
The source module should ~ot be enclosed by
the delimiters 'BEGIN' and 'END'.

An ALGOL procedure to be invoked in a
later program must be compiled, linkage
edited and stored on a partitioned data
set. In the invoking statement, the source
module must be identified as a precompiled
procedure by specifying the opticn
PROCEDURE.

An example of the job control statements
needed to compile and linkage edit a
precompiled procedure is provided in Figure
36. Figure 37 illustrates the job control
statements needed to compile, linkage edit
and execute an ALGOL program in which a
precompiled procedure is called.

ASSEMBLER LANGUAGE PROCEDURES

A sample Assembler language procedure, and
an ALGOL program in which the procedure is
nominally declared and called, are shown in
Figure 21. Figure 37 contains an example
of the job control statements needed to
compile, linkage edit and execute an ALGeL
program in which a precompiled procedure is
called.

In writing an Assembler language
procedure, certain rules must be observed.
These rules are outlined below under the
headings Entry and start, Definitions,
Register Use, Parameter Handling, and
Termination.

In the instructions given below the
programmer may specify any valid names in
the name fields, provided the appropriate
name is used in all references.

The entry point of the module must be
defined as follows (the names shown are
examples only) :

ENTRY DC A(PBTAB,O,PARMDEF)

where 'ENTRY' is the location specified in
the END statements; 'PBTAB' references a
Program Block Table (see 'Definitions',
item 1); 0 represents a dummy label; and
PARMDEF references a list of two-byte
parameter definition constants or
characteristics (Figure 20), as follows:

PARMDEF DC XL2'characteristic l'
nc XL2'characteristic 2'

DC XL2'characteristic n'
(First instruction executed)

The list must include a characteristic
for each formal parameter and must be
followed by the first instruction to be
executed in the module. If the procedure
has no parameters, PARMDEF must reference
the initial instruction.

The following data must be defined in the
Assembler language procedure.

1. A 16-byte table, called the Program
Block Table, must be defined:

2.

PBTAB DS
DC
DS
DC
DC

DC

F
CL4' (proc. name)'
F
H' (DSA length)'
X'04'['08' if type-

procedure]
X'Op' p=no. of formal

parameters

'proc. name' represents the first four
characters of the module name. 'DSA
length' represents the length of the
procedure's data storage area. The
length is 24 (+8 if the procedure is
type-qualified), +8 x number of formal
parameters. The Program Block Table
must be addressed by an address
constant at the procedure entry point
(see 'Entry and start') and should
preferably be defined at the base
address of the procedure (see
'Register Use', item 4).

Certain registers used in
communicating with Fixed Storage Area

Programming Considerations 39

routines must be symbolically named
(see 'Register Use', item 1).

3. The following symbolic displacement
values must be defined for those Fixed
storage Area routines which are
invoked in the procedure:

CAP1
CAP2
PROLOGFP
RETPROG
EPILOGP
CSWE 1
VALUCALL

EQU
EQU
EQU
EQU
EQU
EQU
EQU

X'OD4'
X'OD8'
X'ODC'
X'OE4'
X'OE8'
X'OF4'
X'118'

See 'Parameter Handling' and
'Termination'.

4. A list of parameter definition
constants, identifying the character
of the formal parameters, if any, must
be defined. See 'Entry and start' and
Figure 20.

5. An address constant containing the
address of the Program Block Table
(item 1 above) and a parameter
definition list, must be defined at
the load module entry point.

The standard IEM linkage conventions are
not implemented in any code generated by
the compiler involving a transfer of
control between an ALGOL load module and a
submodule. For this reason, provision must
be made in a submodule to insure that
externally used registers to be used
internally are, at entry, saved in a local
save area (and reloaded before exit), and
that, where necessary, internally used
registers are saved in advance of every
parameter call.

All general-purpose and floating-point
registers may be freely used in an
Assembler language procedure, subject to
the restrictions itemized below.

1. In the code sequences for calling
actual parameters (see 'Parameter
Handling'), registers 8, 10, 11, 13,

40

14 and 15 are symbolically referenced.
Every register so referenced in a
calling sequence within the
precompiled procedure must be defined
as follows:

ADR
CDSA
PBT
FSA

EQU 8
EQU 10
EQU 11
EQU 13

STH
BRR

EQU 14
EQU 15

2. During every call for an actual
parameter and before final exit from
the precompiled procedure, registers
CDSA (10), PET (11) and FSA (13) must
contain their values at entry to the
procedure. At entry, CDS A addresses
the Assembler language procedure's
data storage area; PBT addresses the
Program Block Table (see
'Definitions', item 1); and FSA
addresses the Fixed storage Area. If
any of these registers are used
internally, other than in actual
parameter calls, their contents must
be saved in a local save area at entry
to the procedure, and must be reloaded
before all parameter calls and before
final exit.

3. Before every call for an actual
parameter, the contents of all
internally used registers required
after the parameter call should be
saved in a local save area and
reloaded on return.

4. All registers except register 10, 11
and 13 are subject to varying use
during a parameter call. The
programmer is advised to use register
11 as base register and to specify the
Program Elock Table ('Definitions',
item 1) in the USING statement, as
illustrated in Figure 21. This
insures that the base register is
always correctly loaded before return
to the procedure.

A call for an actual parameter must be
implemented by means of an appropriate
calling sequence, which depends on the
character of the parameter and on whether
it is called by name or by value.

In the instructions given below, the
notation 'displ' represents the
displacement of a field reserved for the
formal parameter in the precompiled
procedure's data storage area. The
displacement of the storage field of the
nth formal parameter is 24 + 8(n-l), except
in the case of a type procedure, where it
is 32 + 8(n-1).

!~E2~nt Note: Before every call for an
actual parameter, all locally used
registers should be saved and registers
CDSA, PBT and FSA should contain their
original values at entry to the precompiled
procedure (see 'Register Use'). On return

from a parameter call, locally used
registers should be reloaded.

call by Nalle

1. Formal parameter specified 'ARRAY',
'STRING' or type 'REAL', 'INTEGER' or
'BOOLEAN':

2.

3.

BAl
DC
DS
L

BRR, CAP 1 (FSA)
H'S'
H
ADR, dis pI (CDSA)

On return, register ADR addresses the
actual parameter value or string or
the actual array's storage mapping
function. The storage mapp~ng
function describes the storage layout
of the array. Bytes S to 11 contain
the address of the first element in
the array. The array elements are
arranged in ascending order, a given
subscript being regarded as a unit of
the subscript position immediately to
the left. For example, if an array is
declared A(/1:2,1:2), the elements are
arranged as follows:

A (/1,1/), A (/1,2/), A(/2, 1/), A (/2,2/)

Formal parameter specified 'lABEL':

BAL BRR,CAP 1 (FSA)
DC H'S'
DS H
L ADR, displ (CDSA)
B RETPROG(FSA)

Formal parameter specified 'SiITCH':

BAL BRR ,CAP 1 (FSA)
DC H'S'
DS H
L ADR,displ(CDSA)
LA BRR, i[i=component numter]
BAL STH, CSWE 1 (FSA)
B RETPROG (FSA)

The sequence causes an unconditional branch
to the labelled statement in the calling
ALGOL program.

4. Formal parameter specified 'PROCEDURE'
or '<type>' 'PROCEDURE' with j formal
parameters:

BAL
DC
DS
L
BAL
DC
DC
DC
DC
DC
DS

BRR, CAP 1 (FS A)
H'S'
H
ADR, dis pI (CDSA)
BRR,PROlOGFP(FSA)
A (CODESEQ 1)
XL2'characteristic l'
H'j'
A (CODESEQ2)
XL2'characteristic 2'
H

DC
DC
DS

A (CODESEQj)
XL2'characteristic j'
H

'Characteristic I' represents the
two-byte constant (Figure 20) which
identifies the character of the first
actual parameter.

'CODESEQ1' represents the symbolic
address of an actual parameter cede
sequence corresponding to the first
parameter, as follows:

CODESEQl LA ADB,paramaddrl
E CAP2 (FSA)

where 'paramaddr1' represents the
address of the actual parameter. (If
the parameter is a string, the first
two bytes of the actual parameter
should contain the string length +2.)
A similar code sequence must be
included in the procedure for each of
the j parameters of the procedure, and
each code sequence must be addressed
by an address constant, as shown
above.

Execution of the calling sequence
causes an actual procedure to be
called.

Call by Value

Formal parameter specified 'ABBAY' or type
'REAL, 'INTEGER' or 'BOOLEAN':

EAL BRR, CAP 1 (FSA)
DC H'S'
DS B
L ADR,displ(CDSA)
BAL BRB,VALUCALL(FSA)
DC H'displ'
DC CL2'characteristic'

'displ' represents the displacement of the
formal parameter's storage field in the
data storage area; 'characteristic'
represents the two-byte characteristic
(Figure 20) of the formal parameter.

In the case of a type specification, the
calling sequence causes the value of the
actual parameter to te moved into the
a-byte field of the formal parameter. In
the case of an array, the address of the
array's storage mapping function is stored
in the first four tytes of the formal
parameter's storage field. Bytes S to 11
of the storage mapping function contain the
address of the first element of the array.

Programming Considerations 41

At the close of a precompiled procedure,
the following must be observed.

1. Registers CDSA, PBT and FSA must,
where necessary, be reloaded with
their original contents at entry to
the precompiled procedure.

2. If the precompiled procedure is
type-qualified, the value of the

42

3.

procedure must be stored at
displacement 24 in the data storage
area. The latter is addressed by
CDSA.

The terminal instruction must be

E EPILOGP (FSA)

This returns control to the calling
ALGOL program.

Type of
Parameter

STRING
REAL
REAL
INTEGER

INTEGER

BOOLEAN

BOOLEAN

ARRAY or REAL }

ARRAY

INTEGER ARRAY

INTEGER ARRAY

BOOLEAN ARRAY

BOOLEAN ARRAY

LABEL
LABEL
SWITCH
PROCEDURE

REAL PROCEDURE

REAL PROCEDURE
INTEGER
PROCEDURE

INTEGER
PROCEDURE

BOOLEAN
PRCCEDURE

BOOLEAN
PRCCEDURE

I ..-
I
I
I

Characteristic Halfword
(in hexadeicmal form)

When called When called
by name by value

CB10
C212

C222
C211

C221

C2l3

C223

CA16

CA26

CA15

CA25

CA17

CA27

CA18
CA28

CAlC
CADO

CAD2

C2E2
CADl

C2E 1

CAt3

C2E3

------------------------,
I

Result after call of actual I
parameter I

I
I

,---of
ADR contains address of string I
AdR contains address of real value
DISP in CDSA contains real value
ADR contains address of integer
value
DISPL in CDSA contains integer
value
ADR contains address of Boolean
value
DISPL in CDS A contains Boolean
value
ADR contains address of storage
mapping function (see below)
DISPL in CDS A contains address of
storage mapping function
ADR contains address of storage
mapping function
DISPI in CDSA contains address of
storage mapping function
ADR contains address of storage
mapping function
DISPI in CDSA contains address of
storage mapping function
ADR contains address of label
ADR contains address of label
ADR contains address of switch
If the actual procedure is
parameter-less then procedure is
called, otherwise ADR contains
address of procedure
If the actual procedure is
parameter-less then procedure is
called, and ADR contains address
of real value, otherwise AtR
contains address of procedure
DISPI in CDSA contains real value
If the actual procedure is
parameter-less then p~ocedure is
called, and ADR contains address
of integer value, otherwise ADB
contains address of procedure
DISPl in CDSA contains integer
value

If the actual procedure is
parameter-less then
procedure is called, and ADR
contains address of Boolean value,
otherwise ADR contains address of I
procedure I
DISPL in CDSA contains Bcolean I
value I

~ __________ , ______ -4 __________ • _______________________________ J

Figure 20. Table of Parameter Characteristics for an Assembler Language Precompiled
Procedure.
The storage mapping function describes the storage layout of an array. Byte
o contains a value denoting the number of subscripts in the array. Eytes 8
to 11 contain the address of the first element in the array. Bytes 16 tc 19
contain a value denoting the size of the array.

programming Considerations 43

START

'*
ADR EQU 8
CDS A EQU 10 MANDATORY
PBT EQU 11 REGISTER
FSA EQU 13 DEFINITIONS
BRR EQU 15

'*
REGVl EQU CDSA LOCAL
REGADVI EQU FSA REGISTER
REGV2 EQU 12 DEFINITIONS (OPTIONAL)
".

CAP 1 EQU X' OD4' MANDATORY
VALUCALL EQU X'118' FIXED
EPILOGP EQU X'OE8' STORAGE AREA
RETPROG EQU X'OE4' DEFINITIONS
*

USING PBTAB,PBT
PBTAB DS

DC
DS
DC
DC

'*
ENTRY DC
'*
ALSAVE DS
USSAVE DS
ONE DC
PARMDEF DS

'*

LEXIT

DC
DC
DC

ST
ST
BAL
DC
DS
L
LR
L
STM
L
L
BAL
DC
DS
L
BAL

DC
DC
MVe
LM

CR
BH
AH
ST

L
L
B

EQU
L
L
BAL
DC
DS
L
B

F
CL4'COMP'
F
H' 48'
X'04C3'

A (PBTAB,C,PARMDEF)

2F
l5F
H'l'
OH
XL2'C2ll'
XL2'C22l'
XL2'CA18'

CDSA,ALSAVE
FSA,ALSAVE+4
BRR,CAPl(FSA)
H'8'
H
ADR,24 (CDSA)
REGADVl,ADR
REGVl , 0 (ADR)
12,10,USSAVE
CDSA,ALSAVE
FSA,ALSAVE+4
BRR,CAPI (FSA)
H'8'
H
ADR, 32 (CDSA)
BRR,VALUCALL(FSA)

H'32'
XL2'C22l'
US SAVE (4) ,32 (CDSA)
l2,lC,USSAVE

REGVl, REGV2
LEXIT
REGVl,ONE
REGVl,O (REGADVl)

CDSA,ALSAVE
FSA, ALSAVE+ 4
EPILOGP(FSA)

CDSA,ALSAVE
FSA,ALSAVE+4
BRR,CAPI (FSA)
HIS'
H
ADR,4C(CDSA)
RETPROG (FSA)

PROGRAM
BLOCK

TABLE

SAVE AREA FOR CDSA AND FSA
AND FOR LOCAL REGISTERS

CONSTANT

CHARACTERISTIC OF VI
V2
L

SAVE CDSA
AND FSA

CALL
VI

BY
NAME

LOAD VI
SAVE LOCAL REGISTERS
RELCAD CDSA

AND FSA
CALL

V2
BY

VALUE
V2 IS CONVERTED TO INTEGER AND

STORED IN DSA

MOVE V2 TO SAVE AREA
RELOAD LOCAL REGISTERS
REGV2 CONTAINS V2
COMP ARE VI TO V2
VI >V2
Vl-,>V2: ADD 1 TO VI
STORE VI

RELOAD CDSA
AND FSA

RETURN TO CALLING PROGRAM

RELOAD CDSA
AND FSA

CALL
L

BY
NAME

RETURN TO CALLING PROGRAM

FND ENTRY

Figure 21. An Assembler Language Procedure.
The procedure is declared under the name CaMP (in the ALGOL program shown
above) with the formal parameters V1, V2 and L. VI and V2 are integers,
while L is a label. CaMP is called by the ALGOL program and compares VI to
V2. If Vl~V2, the constant 1 is added to VI, and control is returned to the
next instruction in the calling program. If Vl>V2, control is returned to
the calling program at the address specified for label L.

'BEGIN'
'INTEGER' I;
'PROCEDURE' COMP(Vl,V2,L); 'VALUE' V2; 'INTEGER' Vl,V2; 'LABEL' L;
'CODE'
'COMMENT' THIS NOMINALLY DECLARES THE ASSEMBLER PROCEDURE COMP;
ININTEGER (0,1);

CONT: COMP(1,200.5,OUT);
'GOTO' CONTI

OUT:
'END'

Figure 22. An Invoking ALGOL Program.
The ALGOL program sho~n above reads a number from Data set Number 0, assigns
the number to the variable I, and invokes the Assembler language procedure
COMP. The call to CaMP includes three actual parameters: the variable I,
the constant 200.5, and the label OUT. COMP compares I 201 (200.5 converted
to integer). If I ~ 201, CaMP adds 1 to I and returns ~ontrol to the next
statement in the ALGCL program. COMP is then called again. The call is
repeated until I > 201, at which time COMP passes control to the statement
labelled OUT.

Programming Considerations 45

Appendix A: ALGOL Library Routines

When processing the source program, the
compiler detects and specifies any routines
that need to be combined with the generated
object module before it can be executed.
These routines are contained in the
System/360 Operating System ALGOl library -
a partitioned data set with the external
name SYS1.ALGLIB. The routines are in load
module form and the linkage editor combines
them with the object module to produce an
executable load module. There are three
types of routines - fixed storage area
routines, mathematical routines and
input/output routines. Additionally, an
error routine, stored on the operating
system link library, SYS1.LINKLIE, is
called at execution time if an error
occurs.

Initialization and termination of the
library routines is performed using the
standard method (see 'Supervisor' in
Section 1).

Fixed Storage Area

General routines required to some degree by
all object modules are combined into a
single load module known as the fixed
storage area (IHIFSA). These routines are
used to initialize and terminate execution
of the ALGOL program, to handle the DSA
when entering or leaving a program block or
procedure, to produce the program trace, to
load precompiled procedures, to get main
storage for arrays, to convert values from
real to integer and integer to real, to
call actual parameters, to handle branches
in the program, to handle program
interrupts, etc.

Mathematical Routines

Standard mathematical functions contained
in ALGOL have corresponding mathematical

46

routines in the library, except for AES,
SIGN and LENGTH which are handled by the
compiler, and ENTlER which is contained in
the fixed storage area. Routines exist in
each case for both long and short precision
of real numbers.

These mathematical routines are taken
from the system/360 Operating System
FORTRAN IV library and modified to conform
to the ALGOL language requirements without
affecting the mathematical methods used.
Full details of these routines are
contained in Q~_~QR£R!N_1Y_11~~~~I.

Input/Output Routines

Data transfer between the load module and
external data sets is performed by
input/output routines. These routines
correspond to the ALGOL I/O procedures and
are mostly contained on separate load
modules (see Figure 23). In addition,
there is a single load module, IHIIOR,
which contains a number of commonly used
subroutines.

Error Routine

If an error is detected during execution of
the load module, an error routine (in
SYS1.LINKLIE) is invoked. Its main purpose
is to construct the error message and
produce the data storage area listing
before passing to the termination routine
in the FSA. If a second error occurs while
the first is being handled (due, for
example, to an I/O error or because the
object module has overwritten part of the
ALGOL library or c9ntrol program), then
termination takes place immediately and
incomplete information listings may be
produced.

..- -----.- '---.r------,
I Module Name I
I ., When Used
I ALGOL FORTRAN IV I
I +-

IHIERR I When an error is detected at execution time
IHIFDD IHCFDXPD I For an exponentiation (** or 'POWER') using

IHIFDI IHCFDXPI

IHIFII IHCFIXPI

IHIFRI IHCFRXPI

IHIFRR IHCFRXPR

IHIFSA

IHIGPR
IHIlAR
IHIIBA
IHIIBO
IHIIDE
IHIIOR
IHIISY
IHILAT IHCLATAN

lHILEX IHClEXP
IHILLO IHCLLOG
lHIlOR
IHILSC IHCLSCN

IHILSQ IHCLSQRT

IHIOAR
IHIOBA
IHIOBO
IHIOIN
IHIOST
IHIOSY
IHIOTA
IHIPTT

IHISAT IHCSATAN

IHISEX IHCSEXP
IHISLO IHCSLOG
IHISOR
IHISSC IHCSSCN

IHISSQ IHCSSQRT

IHISYS

I long precision base and long precision exponent
I For an exponentiation (** or 'POWER') using
I long precision base and integer exponent
I For an exponentiation (** or 'POWER') using
I integer base and integer exponent
I For an exponentiation (** or 'POWER') using
I integer base and integer exponent
I For an exponentiation (** or POWER) using
l short precision base and short precision

exponent
For every object (except those for
precompiled procedures)
For either GET or PU!
For INARBAY or INTARRAY
For INBARRAY
For INBCCLEAN
For either INREAL or ININTEGER
For every object module
For INSYMBOL
For a long precision arctangent
operation (ARCTAN)
For a long precision exponential operation (EXP)
For a long precision logarithmic operation (LN)
For a long precision OUT REAL operation
For a long precision sine or cosine operation
(SIN or COS)
For a long precision square root operation
(SQRT)
F'OR OUTARRAY
For CUTBARRAY
For OUTBOOLEAN
For CUTINTEGER
For OUTSTRING
For CUTSYMBCL
For OUT ARRAY
For a long precision INREAL or OUTREAL
operation
For a short precision arctangent
operation (ARCTAN)
For a short precision exponential operation (EXP)
For a short precision logarithmic operation (IN)
For a short precision OUTRElL operation
For a short precision sine or cosine operation
(SIN or COS)
For a short precision square root operation
(SQRT)
For SYSACT

storage I
Estimate I
(bytes) I ,

4270

200

140

170

140

200

5030
2420

120
70

530
1560
2910

270

320
450
31G
730

370

140
120
70

400
410
300
290
120

270

200
280
210
810

260

170
1520 L-_______ ~ ______________ L_ ___ ~ ________ __

Figure 23. Table of ALGOL Library Modules.
All are contained in SYS1.ALGLIB except IHIERR which is in SYS1.lINKLIB.
For mathematical routines, the corresponding name in the FORTRAN IV library
is also given.

Appendix A: ALGOL library Routines 47

Appendix B: IBM-Supplied Cataloged Procedures

The four cataloged procedures for ALGOL
that were introduced in Section 2 are
contained in the procedure library,
SYSt.PROCLIB, of the operating system.
They consist of the job control statements
listed below.

In order to provide support for the
dedicated work file facility, temporary
dsnames are specified in all four
procedures for the temporary data sets
SYSUT1, SYSUT2, and SYSUT3.

The procedures may be used with any of
the operating system job schedulers. When
parameters required by a particular
scheduler are encountered by another
scheduler not requiring those parameters,
either they are ignored or alternative
parameters are substituted automatically.
For example, if these procedures are used
with a sequential scheduler the following
parameters, which are required for the
multiprogramming option with variable
number of tasks (MVT), are treated as
follows:

REGION=xxxxK is ignored
SYSOUT=B is interpreted as UNIT=SYSCP
DISP=SHR is interpreted as DISP=(CLD,KEEP)

Before use, these procedures should be
studied with a view to modifying them for
greater efficiency within the particular
environment of the installation.

In installations using the MVT option of
the operating system, the REGION
specifications for the compilation and
linkage editing steps must be altered where
necessary to suit the availatle storage.
The REGION specification for the
compilation step must be at least 4K bytes
greater than the storage specified in the
compiler SIZE option. When a blocked SYSIN
data set is used, the REGION specification
may have to be altered (see Figure 7). In
the three procedures in which the linkage
editor is invoked, a REGION of 96K has been

48

specified for the linkage editing step. If
necessary, this REGION specification may be
reduced to conserve storage. The minimum
REGION specifications for the various
design levels of the Linkage Editor are:

E15
E18
F44
F88
F128

24K
26K
54K
96K

136K

Installations using the ~VT option must
also insert a REGION specification for the
execution step in procedure AlGCFClG,
unless the default interpretation is
acceptable. The default interpretation is
the size required by the system task
initiator (i.e., 50K).

Installations not using the MVT option
of the operating system should remove the
superfluous parameters.

In addition, the following general
recommendations should be considered:

When the MVT option is used, a SPACE
parameter may be required for SYSFRINT
if the device is other than a printer.

The PARM fields for compilation and
linkage editing steps should follow
installation conventions

The SPACE and UNIT parameters for
temporary data sets should be modified
according to installation configuration
and conventions

Blocking factors should be specified for
output data sets

For further information on writing
installation cataloged procedures, see the
publication Q~_~~!~_~~D~~~~~D!_!£!_~~§!~!
!:!:Q.9il.!!!~!'§·

IIAlGOl EXEC PGM=AlGOl.REGION=48K
IISYSPRINT 00 SYSOUT=A
IISYSPUNCH 00 SYSDUT=8
IISYSllN 00 OSN=&lOADSET,UNIT=SYSSQ,SEP=SYSPUNCH,SPACE=(1600,{10,4I),
II OISP={MOD,PASS)
115YSUli 00 OSN=&SYSUT1,UNIT=SYSSQ,SEP=SYSPRINT,SPACE=(1024,tSO,10»
IISYSU12 DO OSN=£SYSUT2,UNIT=SYSSQ,SEP=SYSUTl,SPACE=(1024,(SO,lO»
IISVSUT3 00 OSN=&SYSUT3,UNIT=SYSO~,SPACE=(1024,{40,lOl)

IIALGOl EXEC PGM=AlGOl,REGION=48K
IISYSPRINT 00 SYSOUT=A
IISVSPUNCH 00 SYSOUT=B
IISYSLIN 00 OSN=&lOAOSET,UNIT=SYSSQ.SEP=SVSPUNCH,SPACE=(3600,(10,4)),
II OISP=(MOO,PASS)
IISYSUTI 00 OSN=&SYSUT1 ,UNIT=SYSSQ, SEP=SY'SPRINT, SPACE=(1024, (50,10))
IISVSU12 00 OSN=&SYSUT2,UNIT=SVSSQ,SEP=SYSUTl,SPACE=(1024,fSO,lO»)
IISVSUT3 00 OSN=&SVSUT3,UNIT=SYSOA,SPACE=(1024,(40,lO»
IILKEO EXEC PGM=IEWl,PARM='XREF,LIST,lET',CONO=(S,lT,AlGOl),REGION=96K
IISVSPRtNT 00 SVSOUT=A
IISYSLIN DO OSN=&lOAOSET,OISP=(OlD,OElETE)
II 00 OONAME=SYSIN
IISYSll8 DO DSN=SYS1.AlGLIB,OISP=SHR
IISYSLMOO 00 oSN=£GOSET(GOt,UNIT=SYSO~,OISP=(MOO,PASS),
II SPACE=tl024,tSO,20,1)}
IISYSUTl 00 OSN=&SYSUT1,UNIT=SYSOA~SEP={SYSlIB,SYSlMOD),
II SPACE=(1024,(SO,20l)

IIAlGOl EXEC PGM=ALGOl,REGION:48K
/ISYSPRINT 00 SYSOUT=A
IISYSPUNCH 00 SYSOUT=B
IISYSlIN DO OSN=&lOAOSET,UNIT=SYSSQ,SEP=SYSPUNCH,SPACE=(3600, (10,4 }),
II OISP=tMOO,PASS)
IISYSUTI 00 OSN=&SVSUTl,UNIT=5YSSQ,SfP=SYSPRINT,SPACE=(1024.(SO,lO»
IISVSUT2 DO DSN=&SYSUT2,UNIT=SVSSQ,SEP=SYSUT1,SPACE=(1024,tSO,10»)
IISVSUT3 00 OSN=&SYSUT3,UNIT=SYSOA,SPACE={1024,(40,10»)
IllKEO EXEC PGM=IEWl,PARM='XREf,lIST,lET',CONO=(S,lT,AlGOl),REGION=q6K
IISYSPRINT 00 SYSOUT=A
II SYSL INDO OS N= &lOAOSFT, or sP= (OLD, DELETE)
II DO ODNAME=SYSIN
IISYSlIB 00 OSN=SVSl.AlGLIB,DISP=SHR
IISVSlMOD 00 OSN=&GOSET{GO},UNIT=SYSD~,DISP={MOO,PASS),
II SPACE=t1024,tSo,20,1»
115Y5UTI 00 OSN=&SVSUTl,UNIT=$VSOA,SEP=(SYSlIB,SYSLMOO),
II SPACE=(1024,{SO,20))
IIGO EXEC PGM=*.lKED.SvStMOO,CONO=((5,lT,AlGOl),(S,lT,lKEOt)
IIAlGLOOOl 00 SYSOUT=A
IISYSPRINT 00 SYSOUT=A
IISYSUTt 00 OSN=&SYSUTl,UNIT=SYSSQ,SPACE=(lO?4,t20,lO)

OOO?OOOO
00040000
00060000

*00080000
00100000
00120000
00140000
00160000

00020000
00040000
00060000

*00080000
00100000
00120000
00140000
00160000
00180000
0020,0000
00220000
00240000
00260000

*00280000
00300000

*00320000
00340000

00020000
00040000
00060000

*00080000
00100000
00120000
00140000
00160000
00180000
00200000
00220000
00240000
00260000

*00280000
00300000

*00320000
00340000
00160000
00380000
00400000
00420000

Appendix B: IBM-Supplied Cataloged Procedures 49

IIAlGOl EXEC PEM=AlGCl,REGION=48K
IISYSPRINT DO SYSCUT=A
IISYSPUNCH DO SYSOll=B
IISYSlIN 00 DSN=&lOAOSET,UNIT=SYSSQ,SEP=SYSPUNCH,SPACE=(36CO,(10,4I),
II DISP=(MCO,PASS)
IISYSUTI DO DSN=&SYSLTl,UNIT=SYSSQ,SEP=SYSPRINT,SPACE=(1024,(SO,10»
IISYSUT2 DD OSN=&SYSUT2,UNIT=SYSSQ,SEP=SYSUTl,SPACE=(1024,(SO,10»
IISYSUT3 DO DS~=&SYSUT3.UNIT=SYSDA,SPACE=(1024,(40,10)l
IIGO EXEC PG"=lDADER.PARM=(~AP,lET,PRINT1,COND=(5.lT,AlGOl)
IISYSlIN DO DSN=&lOAOSET,OISP={OlD,DElETE)
IISYSLIB DC CS~=SYSl.ALGlIB,DISP=SHR
IISYSlOlT DO SVSQlT=A
IISYSPRINT DO SYSGUT=A
IIAlGLDCOl DC SYSOUT=A
IISYSUTI 00 OS~=&SYSUTl.UNIT=SYSSQ,SPACE=(1024,(20,lC»)

50

00020000
00040000
00060000

*00080000
00100000
00120000
00140000
00160000
00180000
00200000
00220000
00240000
0026000Q
00280000
00300000

The card deck of the source program is
punched line for line from the text written
on the coding sheets. The card code used
can be either a 53 character set in
Extended Binary Coded Decimal Interchange
Code (EBCDIC), or a 46 character set in
Binary Coded Decimal (BCD). The latter
character set has been established as
standard for ALGOL by the International
Standard Organization (ISO) and teutsche
Industrie Normen (DIN). Figure 24 shows
these two codes.

Appendix C: Card Codes

r-- -r--- ,
I I Card Codes I
I Characters r-- --f
1 I EBCDIC ISO/DIN I
I-- I of

A to Z 12-1 to 0-9 12-1 to 0-9

0 to 9 o to 9 o to 9

+ 12-8-6 12

11 11

* 11-8-4 11-8-4

/ 0-1 0-1

8-6 8-3

0-8-3 0-8-3

12-8-3 12-8-3

8-5 8-4
I

12-8-5 0-8-4 1
1

11-8-5 12-8-4 1
1

blank no punch no punch I
I of
1

< 112-8-4
I

> 10-8-6
1
1 12-8-7
1

& 112
1 , 111-8-7
I
18-2
I
111-8-6

Figure 24. Source Program Card Codes

Appendix C: Card Codes 51

Appendix D: Object Module

The object module is in a form acceptable
as input to the linkage editor, that is,
its records are card images having the
format of ESD, RLD, TXT and END cards (see
Figure 25). It is stored either on a data
set (ddname SYSLIN) in the linkage editor
library, or on an output data set (ddname
SYSPUNCH), or on both. The parameters LOAD
and DECK, used to specify these storage
options are described in 'Appendix E'.

The object module consists of:

1. An initial ESD card defining the
control section. For a precompiled
procedure, the procedure name (up to 6
characters) is assigned to the control
section and entered into this record.

2. The Constant Pool containing all
constants and strings in the module.

52

3. The generated instructions.

4. The Label Address Table (see Section
3) for addressing branch instructions
in the module.

5. The Program Block Table containing an
entry for every program block. This
table indicates the active generation
of data storage areas (see Section 3)
and length of each data storage area.

6. The Data Set Table containing
information on the current status of
all data sets used. This table is not
produced for precompiled procedures.

7. Program start information.

8. An END card.

~/----------------~/
(Program start information L _ (ESD, RLD and TXT cords)

/ /

TXT cords)
(

Data set table (RLD and t----/

~L' ______________ ~/

(

Program block table (RLD ...-__ V
and TXT cords)

~/--------------~/
(Lobel address table (ESD, ...-__ V I RLD and TXT cords)

~/~--------------~/
(,Generated instruction ...-__ / I (R LD and TXT cords)

~/--------------~/t----.~
(

Constant pool lI'
(TXT cords)

Definition of control
section (ESD cord)

Figure 25. The Object Module Card Deck.
The ESt (External Symbol Dictionary) cards contain the external sy.bols that
are defined or referred to in the module. The RID (Relocation Dictionary)
cards contain addresses used in the module. The TXT (Text) cards contain the
constants and instructions used in the module. The END card indicates the
end of the module.

Appendix D: Object Module 53

Appendix E: Using Job Control Language

This appendix describes the method of
writing job control statements, and
explains the options most frequently used
by the ALGOL programmer. A full
description of Job Control Language is
given in Q~~f1-~efe~~~.

ALGOL operates under the following options
of the operating system:

1. Multiprogramming with a fixed number
of tasks (MFT), using a priority
scheduler,

2. Multiprogramming with a variable
number of tasks (MVT), using a
priority scheduler.

Communication between the user and the
operating system (via the job scheduler) is
effected through eight job control
statements:

1. Job statement (JOB)

2. Execute Statement (EXEC)

3. Data Definition (DD)

4. PBOC statement

5. Command Statement

6. Delimiter Statement (/*)

7. Null Statement (II)

8. Comment statement (11*)

Parameters coded in these statements aid
the job scheduler in regulating the
execution of jobs and job steps, retrieving
and disposing of data, allocating
inputloutPut resources, and communicating
with the operator.

The control statements and their
parameters are explained individually
elsewhere in this aFpendix.

54

Control Statement Format

Control statements are distinguished from
other statements by identifying characters
(II, 1* and 11*), which must appear in
columns 1 and 2 or 1, 2 and 3 of the
standard 80-column card. Control
statements contain four fields, namely the
name, operation, operand, and comments
fields. In some statements one or more of
these fields may be vacant.

7he name, operation and operand fields
in a control statement may not extend
beyond column 71. Column 72 must be left
blank unless the statement is to be
continued on another card. A statement,
other than a command or comment statement,
may be continued on an additional card by
interrupting the statement at the end of an
operand, following the operand with a
comma, and (optionally) placing any
nonblank character in column 72. The
continuation card commences with the
initial characters II in columns 1 and 2,
followed by text starting in any celumn
frem 4 through 16.

Comment must be separated from the last
operand by one or more blanks. If the
comment is to be continued on another card,
it may be interrupted at any convenient
point and a non-blank character is put in
column 72. The continuation card commences
with the initial characters II and the
comment restarts on any column from 4 to 71
inclusive.

The valid formats of each control
statement are shown in Figure 26. 'Name'
denotes an identifying name assigned by the
programmer to the control statement. A
name may contain from one to eight
alphameric characters~ the first of which
must be alphabetic. The name is placed
immediately after the initial II
characters. If the name is omitted, then
at least one blank must separate the II
characters from the control statement
operation. 'operand' denotes one or more
parameters, separated by commas.

control
statement Valid Format

I
I

,----'-t

JOB

EXEC

DD

PBOC

Command

Delimiter

Null

Comment

Iiname JOB operand
comments 1

Iiname l EXEC operand
comments 1

Iiname l DD operand
comments 1

Iiname l PBOC operand
comments 1

Iloperation (command)
operand comments 1

1* comments 1

II

11* comments

loptional
-t
I ____ .J

Figure 26. Format of Control statements

Conventions for Format Description

The conventions used in this manual for
describing control statements are as
follows:

Upper case letters and punctuation marks
(except those listed below) represent
information to be coded exactly as shown.

Lower case letters are general terms
requiring substitution of specific
information by the programmer.

These punctuation marks have a special
meaning:

(hyphen) links lower case words to
form a single term for substitution

(underscore) indicates the option that
will be assumed if none is specified

{ (braces) mean only one of the options
contained must be selected

[] (brackets) mean information contained
may be omitted

(ellipsis) means that preceding item
can be repeated successively a number
of times.

Control Statement Coding

In the following description, certain terms
are used to indicate external names which
are to be specified by the programmer.
These terms and their meanings are:

jobname

progname

stepname

ddname

procname

procstep

dsname

name of job

name of program

name of job step

name of DD statement
(the standard ddnames
which may be specified
are described in
section 2)

name of cataloged pro~
cedure

name of the job step
within a cataloged
procedure

name of data set

It is often convenient to use two or
more qualification levels to specify a data
set name. The highest level reference is
stated first. Thus in Figure 27, data set
D.M.H. is found by searching the index of
each volume in turn, starting with the
system residence volume (the primary vclume
in the operating system), to find the
location of data set D. This, when
searched, will contain the location of data
set D.M. which in turn will contain the
location of data set D.M.H.

volume index

data set D _! ___________ ~ __ ~_

Figure 27. Data set Cataloging Using
Qualified Names

A maximum of 44 cha~acters can be used
for a qualified name. Thus, since a simple
name can consist of between one and eight
characters, and each name must be separated
by the character period {.}, a maximum of
22 qualification levels is possible.

Data set names can also be qualified by
a suffix, that is, 'dsname (element) " to
indicate the relative generation number.
For example, iEATHER (0) is the current
generation of the data set named WEATHER.
The preceding generation would be WEATHER
(-1). A new generation during creation is
known as WEATHER (+1), at the end of the

Appendix E: Using Job Control Language 55

job it becomes WEATHER (0). A suffix is
also used to indicate the name of a member
of a partitioned data set, or the area of
an indexed sequential data set.

There are four types of job control
parameters for inclusion in the operand
fields: positional parameters, keyword
parameters, positional subparameters and
keyword subparameters.

RQ§i1iQ~g!_E~~~~~1~~§ must be stated
first, and where more than one can be
included they must be listed in the order
given in the following descriptions. A
comma must be substituted in place of any
positional parameter omitted, if it is to
be followed by another positional
parameter, for example,

//name operation pos1"pos3 ••••••

KgZIQ£g~arameters can be listed in any
order. They contain a keyword followed by
an equal sign (=) and some specific
information. All keyword parameters are
optional since a default option will exist
for any which must be specified.

One or more subparameters can be
substituted for a positional parameter and
also for the information to the right of
the equal sign in the keyword parameter.

Rosi t.iQ~gl_2!!!LE~!:~!l~..tg~~ ha ve the same
configuration and restrictions as
positional parameters.

K~Y!Q~g_§y~~~~§!~!g£§ have the same
configuration and restrictions as keyword
parameters.

When two or more subparameters are used,
they must be separated by commas and the
list enclosed in parentheses, for example,

// name operation
//

pos1,pos2,keyl=value,
key2= (sub I ,sub2)

Since some special characters, such as
the comma, parenthesis, blank and equal
sign, have a special significance when used
in control statements, no special
characters can usually be ~sed in job
control information provided by the user.
There are, however, some exceptions to this
rule. The special characters m, $, and #
can be represented normally. All other
special characters, except the apostrophe,
can be represented normally in the
programmer's name in the JOB statement, the
acounting information in the JOB and EXEC
statements, and the PARM parameter options
in the EXEC statement, provided that the
information is enclosed in apostrophes
(replacing the parentheses for a list of
more than one subparameter). An apostrophe

56

within this information is represented by
two consecutive apostrophes.

JOE STATEMENT

The name field of the JOB statement must
contain the external name for the job
(jcbname) •

The operation field must contain the
characters JOB.

ihe parameters available for the operand
field are listed in Figure 28, where:

accounting information
identifies the installation account
number to which the computer time for
this job is to be charged. If the
installation has an appropriate
accounting routine, the account number
can be followed by other subparameters,
which are fixed by the user fer his own
installation. If the account number is
omitted then its absence must be
indicated with a comma.

programmer's name
identifies the person responsible fer
the job. It must not exceed 20
characters.

TYFRUN=HOLD
indicates that the job is not to be
processed until a RELEASE command is
issued by the operator.

PRTY=job priority
indicates the relative priority of the
job. A number from 0 to 13 is
sFecified, with 13 being the highest
priority.

COND= «code, operator), ••• }
allows conditions for the termination of
the job to be specified. Up to eight
(code, operator) specifications may be
included in a COND parameter. Any
number between 0 and 4095 is substituted
for 'code' and one of the following six
relationships is substituted for
'operator'.

°Eerator l1~g!!ing

GT greater than
GE greater than or equal to
EQ equal to
NE not equal to
LE less than or equal to
IT less than

r---------------~i~------------ ,
IPositional I [accounting-information] I
Iparameters I(programmer's -name] I
r- I ----i

Keyword
parameters

(all optional)

CLASS=jobclass

TYFRUN=HOLD

PRTY=job-priority

I
I
I
I
I
I
I

COND=«code,operator), •••) I

MSGLEVEL= {(:,n)}
MSGCLASS=classname

REGION=nnnnnK

TIME=(minutes, seconds)

Figure 28. JOE statement Parameters

At the completion of each job step,
unless a system error occurs, the
operating system will generate a return
code between 0 and 4095 (see section 1) to
indicate if the program was executed
successfully or not. If any of the code
numbers stated in the COND parameter is
related to the return code in the way
specified by the associated operator then
the job is terminated. For example, if

COND= ((50 ,GE) , (60,LT»

then the job will continue as long as the
return codes range from 51 through eo.

MSGLEVEL= {m }
(m, n)

specifies the information the job
scheduler is to write as output from a
job. 'm' denotes an integer (0, 1, or 2)
indicating the job control statements to
be printed, as follows:

m=O: only the JOB statement is to be
printed

m=l: all job control statements,
including cataloged procedure
statements (with actual parameters
sUbstituted for symbolic
parameters), are to be printed

m=2: all input job control statements,
but no cataloged procedure
statements are to be printed

n=O:

In' denotes an integer constant (0
or 1) indicating whether
allocation and/or termination
messages are to be printed, as
follows:

no allocation and/or termination
messages are to be written unless
the job terminates abnormally

n=l: all allocation and/or termination
messages are to te written

If MSGLEVBL=O or MSGLEVBL=l is
specified, the system assumes
MSGLEVEL=(O,l) or ~SGLEVEL=(l,l)
respectively. If the MSGLBVEL parameter
is omitted, the default value defined in
the reader interpreter procedure is
assumed.

MSGCLASS=classname
allows job scheduler messages to be
written in a system output class other
than the one normally used by the
installation. The user can fix up tc 36
different classes (A to Z and 0 to 9),
depending on device type, priority,
destination, etc., for these messages.
This parameter is not necessary if the
normal class (A) is required.

REGION=nnnnK
indicates the main storage size that is
to be allocated to the job (including
system components) instead of the
default value established in the input
reader procedure. nnnn is replaced by a
value between 0 and 16384; thus 32 would
represent 32 x 1024 = 32768 bytes. This
parameter can be used only with priority
scheduling.

CLASS=jobclass
indicates the relative class of a job in
systems with KFT. 'jotclass' is
replaced by an alphabetic character, A
through o.

ROLL =({I~§}' {~~S}
indicates the rollout/rollin attributes
associat~d with a job in MVT systems.
The first subparameter specifies if the
job steps in this job can be rolled out
to provide main storage space for jeb
steps in other jobs. ~he second
parameter specifies if the job steps in
other jobs may be rolled out to provide
main storage space for job steps in this
job. The ROLL parameter can be
specified in EXEC statements to contrel
rollout/rollin for individual job steps.

Appendix B: Using Job Control Language 57

TIME=(minutes,seconds)

limits the computing time used by a job
by assigning a maximum time for its
completion. If the job is not completed
in this time, it is terminated.

The time is coded in minutes and
seconds. The number of minutes cannot
exceed 1439 (23 hours, 59 minutes); the
number of seconds cannot exceed 59. (If
the job execution time is expected to
exceed 1439 minutes, TIME=1440 can be
coded to eliminate job timing.)

If the TIME parameter is omitted, the
default job time limit (as established
in the cataloged procedure for the
reader/interpreter) is assumed.

EXEC STATEMENT

The name field contains the external name
of the job step (stepname). It may be
omitted if no reference is to be made to
the EXEC statement in another statement.

The operation field must contain the
characters EXEC.

The parameters available for the operand
field are listed in Figure 29, where:

PGM=progname
indicates that the job step executes the
program named 'progname'. The program
must reside on a partitioned data set.

PGM=*.stepname.ddname
indicates that the job step executes the
program named by the DSNAME parameter of
a DD statement named 'ddname' that was
included ·in a previous job step named
'stepname' in the same job. If
'stepname' refers to a jot step invoking
a cataloged procedure then a job step
within the procedure can te specified by
putting its name after 'stepname'; that
is, 'stepname.procstep'. The program
must reside on a partitioned data set.

PROC=procname
indicates that the job step executes the
cataloged procedure named 'procname'.

procname
has the same effect as PROC=procname

TIME=(minutes,seconds)

58

limits the computing time for the job
step. If 'seconds' only is specified
then a comma must be substituted for
'minutes'. If 'minutes' only is
specified then the parentheses can be
deleted.

COND=«code,operator,stepname), ••• [, {~!~~}] , ...)
allows conditions to be specified for
bypassing and/or for executing a job
step.

A condition specification of the form
(code, operator, stepname) specifies
that the job step is to be bypassed if a
comparison, using the relation denoted
by 'operator', between the number
denoted by 'code' and the return code
issued by the preceding job step denoted
by 'stepname', is satisfied (true). The
terms 'code' and 'operator' are governed
by the same stipulations as those
specified for these terms in the JOB
statement. If 'stepname' is not
specified, the condition code test is
applied to all preceding job steps. If
a test is to be applied to a step in a
cataloged procedure, then the name of
the job step which invoked the
procedure, followed by the procedure
step name, must be specified, as
follows: 'ste pname. procstep' •

The EVEN and ONLY subparameters are
mutually exclusive. One or the other
may be specified, either alone or in
combination with up to seven return code
tests. EVEN specifies that the step is
to be executed in any event
(irrespective of an abnormal termination
by a preceding job step), unless one or
more of the return code tests specified
in this step are satisfied. ONLY
specifies that the step is to be
executed only if a preceding job step is
terminated abnormally, and provided none
of the return code tests specified in
this step is satisfied.

PARM=subparameter list
indicates the special options which the
programmer has chosen to apply to the
job step. Each option, or subparameter,
in the subparameter list is represented
by a keyword (in a few cases, the
subparameter may have the form
keyword=number). The subparameters,
separated by commas, may be listed in
any order. If two or more subparameters
are listed, then the list must be
enclosed in apostrophes. Parentheses
may be used instead of apostrophes if
the subparameter list contains no
special characters other than the comma.
The subparameter list, including
apostrophes, may be a maximum of 100
characters in length.

The options which may be exercised for the
job steps compilation, linkage editing,
program execution and program loading (by
use of the loader) are listed below. In

positional parameters

{

PGM=prOgram }
PGM=*.stepname.ddname
PBOC=name
procnalle

• I
I
I
I

~--------------------------~----------------.----------.-----------------------------~

Keyword

{
TIME }

=(minutes, seconds)
TIME.procstep parameters (all optional)

{
COND }

=«code,operator,stepname) , •••)
COND.procstep .

[{
EVE N}] , ••••)

, ONLY

{
PAR!'! }

=subparameter-list
PARM.procstep

{
ACCT }=accounting-information
ACCT.procstep

{
REGION }

=nnnnnKl
REGION.procstep

{l~E} {YES} ROll= (,
NO NO

{
DPRTY }

DPRTY.procstep {(:,n)}
(, n)

Figure 29. EXEC Statement Parameters

most cases, each option represents a choice
between two alternatives, one of which,
called the default option, is assumed to
apply unless the other is specified, either
at this stage or at system generation. In
the lists which follow, the keyword
associated with the default option is
underscored.

All of the alternative options but PROGRAM
and TEST can be changed to the default
option at system generation. Abbreviated
forms are provided for most of the option
keywords. The abbreviations, indicated
below, may be used in place of the full
keywords.

PROGRAM or PROCEDURE: The source program is either an AlGOl. program in
the sense of the ALGOL syntax (PROGRAM)
or an ALGOL procedure to be compiled
separately and used with other programs
or procedures (PROCEDURE). Atbreviated
forms PG or PC.

E~g~l or LONG: The internal
representation of real values is in full
words (SHORT) or double words (lONG).
Abbreviated forms SP or IP.

!g~EC! or DECK: An object module,
stored on the data set specified in the
SYSPUNCH DD statement, either is not to
be generated (NODECK); or is to be
generated (DECK). Abbreviated forms Nt
or D.

Appendix E: Using Job Control Language 59

LOAD or NOLOAD: The compiler is to
eIther generate an object module for use
as input to the linkage editor, using
the data set specified in the SYSLII DD
statement (LOAD); or is not to generate
this object module (NOLOAD).
Abbreviated forms L or NL.

~g~~~1 or NOSOURCE. The source program
and identifier table listings are either
to be printed (SOURCE); or not to be
printed (NOSOURCE). Abbreviated forms S
or NS.

EBCDIC or ISO: The card code used to
write-and keypunch the-source program is
either a 53 character set in EBCDIC
(EBCDIC): or the 46 character set in

BCD which has been estatlished as
standard for ALGOL by ISO and DIN (ISO).
Abbreviated forms FB or I.

TEST or NOTEST: The generated object
module is or is not to include coding
useful in execution time error detection
and diagnosis. The coding consists of
instructions to produce the semicolon
count, instructions to check the values
of subscript expressions against array
bounds, and instructions to check the
dimensions of formal arrays against the
dimensions of actual arrays.
Abbreviated forms T or NT.

SIZE=45056 or SIZE=number: The main
storage-sIze that is available to the
compiler is either 45,056 bytes or the
size in bytes denoted by number.
'Number' must not be less than 45056 and
must not exceed 999999.

For the linkage editing job step the
options are of two types: those which
specify the output listings required, and
those specifying attributes for the load
module.

The options to control output listings
are:

60

LIST: All job control statements
processed by the linkage editor are to
be listed on the diagnostic output data
set.

MAP or XREF: A map of the load module
is to be produced (MAP) or a
cross-reference table of the load module
is to be produced (XREF) comprising a
load module map and a list of all
address constants that refer to other
control sections.

The options specifying load module
attributes which can be used with ALGOL
programs are:

REUS: A load module is to be produced
that is serially reusable, that is, it
can be used by more than one task, but
only one task at a time.

DC: A load module is to be produced
that is downward compatible, that is, if
the load module is produced by an F
level linkage editor then it can be
reprocessed by an E level linkage
editor.

LET or XCAL: The load module is to be
marked as executable even when a
severity 2 error is detected (LET); or
the load module is to be marked as
executable even though valid exclusive
references between the segments have
been made (XCAL). A severity 2 error
could make execution impossible and
would normally lead to the load module
being marked as not executable. It
includes the situation over-ridden by
XCAL.

NCAL: The linkage editing automatic
library call mechanism is not to call
library members to resolve external
references within the object module.
The load module is marked as executable
even though unresolved external
references have been recognized.

All the linkage editor subparameters are
optional.

For the execution job step of an ALGOL
program the options are:

TRACE: The semicolon count produced
during the compilation process is te be
printed as a list. This gives
information on the dynamic flew of the
program and is known as a program trace.

TRBEG=number: A limited program trace
is to b~ produced beginning at the
semicolon specified by 'number' and
ending at the physical end of the
program.

TREND=number: A limited program trace
is to be produced beginning at the
physical beginning of the program and
ending at the semicolon specified by
'number'.

The last two options may be specified
together to define the beginning and end
of the trace. When either is specified,
TRACE may be omitted, but in that case
precompiled procedures would not be
included. If TRACE is specified with
TRBEG or TREND, then only a limited
program tLace is pLoduced, but it will
include precompiled procedures executed
in that part of the pLogram.
No progLam trace is possible if NOTEST
has been specified fOL the compilation
process.

DUMP: A paLtial main stoLage dump is to
be pLoduced if an errOL occurs. The
dump shows the contents of the data
stoLage areas and arLays.

All of the execution time sub parameters
aLe optional.

For the loader step, options may be
specified both for the loa deL and for the
loaded program or load module. The options
are specified together in the PARM field,
as follows:

PARM='loader options/PLogLam options'

where 'loader options' denotes the
option keywords (separated by commas)
specified for the loadeL, and 'program
options' denotes the option keywoLds
specified for the loadedprogLam or load
module. The two keywoLd lists must be
sepaLated by (I). If theLe aLe no
loader options, the program options must
begin with a slash. The entire PARM
field may be omitted if no options are
to be specified for the loader or the
loaded program (or load module).

The program options (TRACE, TREEG, TREND
and DUMP) are described above.

The loader options aLe:

MAP or !2~Ag~ A map of the loaded
program, listing external names and
their absolute storage addLesses, is or
is not to be produced on the SYSLCUT
data set. If the input deck does not
include a SYSLOUT DD statement, the
option is ignored.

RES or NORES: An automatic search of
the link pack area queue is or is not to
be made. The search is always made
after processing the primary input
(SYSLIN) and before seaLching the SYSLIB
data set.

~AL1 or NOCALL: An automatic search of
the 5YSLIB data set is or is not to be
made. If the input deck does not
include a SYSLIE tD statement, the
option is ignored.

LET or NOLET: The loader is OL is not
to try to-execute the object progLam in
the event that a severity 2 eLror
condition is found. A severity 2 eLrer
condition is one that could make
execution of the loaded program
impossible.

SIZE=number or ~!1!=10Q!: The size of
dynamic main storage that can be used by
the loader is either the size in bytes
denoted by 'number' OL lOOK bytes.
Normally, this value will be 17K plus
the size of the program to be loaded
(for MFT systems) OL 18K plus the loaded
program size (for MVT systems).

EP=name: The name denoted by 'name' is
the external name to be assigned as the
entry point of the loaded program. If
all input to the loader consists of load
modules, the paLameter EP=IHIFSAIN must
be specified. IHIFSAIN is the entLY
point of an ALGOL progLam.

RRI!l OL NOPRINT: Diagnostic messages
are or are not to be produced on the
SYSPRINT data set.

ACCT=accounting infoLmation
allows accounting infoLmation associated
with the job step to be passed to the
installation's accounting routines,
using subpaLameteLs which are fixed by
the user for his own installation.

REGION=nnnnnK
indicates the main stoLage size for the
job step if it has not already been
specified in the JOB statement.

ROll=({;~S}, {~~S})
declares the job step's ability or
inability to be tempoLarily rolled out
of main storage, as well as the job
step's ability OL inability to cause the
temporary rollout of another job step.
If the first subparameter is YES, the
pLesent job step may be temporarily
transferred to auxiliaLY storage, in the
event another job step, qualified to
cause Lollout, requiLes additional main
storage space beyond its original
region. If the first subparameteL is
NO, then the present job step cannot be
Lolled out.

If the second subpaLameter is YES, the
present job step is qualified to cause
the Lollout of another job step, in the
event the present job step Lequires

Appendix E: Using Job Control Language 61

additional space beyond its original
region. If the second subparameter is
NO, then the present job step cannot
cause rollout.

When the present job step invokes a
cataloged procedure, ROLL attributes may
be specified for an individual step in
the procedure, as in the following
example: ROLL.procstep=(YES,YES), where
'procstep' denotes the name of the
particular step. If no step name is
given, then the attributes specified
apply to all steps in the cataloged
procedure.

The ROLL parameter may be used only in
MVT systems.

DPRTY={ (:,n)}
(,n)

assigns a dispatching priority to the
job step. This parameter can be used
only with priority scheduling. 'm' and
'n' denote integers in the range 0-15.
'm' is converted by the system into an
internal priority and 'n' added to this
priority to obtain the dispatching
priority. Where possible, 'm' should be
14 or less, as the priority 15 is
assigned to certain system takes. If
the DPRTY parameter is omitted, the job
step is assigned the priority specified
for the job.

The name field contains an identifying name
(ddname) for the tt statement.

The operation field must contain the
characters DD.

The parameters available for the operand
field are listed in Figure 30, where:

* indicates, when used as a positional
parameter, that the required data
follows immediately after this DD
statement. The asterisk must be the
only non-blank character in the operand
field. For sequential scheduling it can
be used only once in each job step, and
the data must be followed by a delimiter
statement.

DUMMY

62

indicates that th~ user's problem
program is to be executed without any
I/O operations on the data set. This
can be used for debugging, and also for
bypassing data set references in a
regularly used program, for example, the

first run of an updating program when
there is no old master to be processed.

DS NAME= { ~::::: (number) }
dsname(membername)

'dsname' denotes the name of an existing
data set or the name defined for a data
set to be created in the present job
step. In the latter case, if the data
set is to be kept (see the DISP
parameter below), the name thus defined
is the name by which the data set must
be identified in other jobs. Within the
present job, the data set may be
identified in later steps either by the
defined name or by reference to the DD
statement in this job step (see the item
after next).

If the data set being defined is an
indexed sequential data set (in which
case a group of DD statements are
required), the data set name must be
followed by one of the terms INtEX,
PRIME or OVFLOW. whichever
applies, in parentheses. 'dsname
(number)' denotes the name and
generation number of a generation data
group. 'dsname{membername)' denotes the
name of a partitioned data set.

DSNAME= {&dSname }
&&dsname

specifies the name of a temporary data
set that is to be deleted at the end of
the present job. The data set may be
identified, within this job, either by
the name '&dsname' or '&&dsname',
whichever applies, or by reference to
the DD statement in which the data set
is first identified (see next item).

A temporary data set name preceded by a
single ampersand (i.e., '&dsname')
occurring inside a cataloged procedure
is treated as a symbolic parameter if a
value is assigned to it in an EXEC
statement which invokes the procedure or
in a PROC statement in the procedure.
Where the DD statement refers to a
member of a temporary partitioned data
set, the temporary data set name should
be followed by the member name, i.e.,
&&dsname(membername). Similarly, in a
group of tD statements defining an
indexed sequential data set, the
temporary data set name should be
followed by one of the terms INDEX,
PRIME or OVFLOW, whichever applies, in
parentheses.

DSNAME={ &ddname}
&&ddname

indicates that a pre-allocated data set
is to be used. This parameter can be
used only in systems with MVT. 'ddname'
denotes the name of a tD statement in

the initiator cataloged procedure which
defines the pre-allocated data set to be
used. All parameters used to define a
new data set must also be coded; if the
pre-allocated data set cannot be
assigned, the parameters are used to
create a temporary data set. (For
detailed information on pre-allocated
data sets, refer to the publication Q§
Q2!S-~~~2g~!ent for system prog!2~~g!§.)

DSNA~E=*.stepname.ddname
indicates that the data set is the one
specified in a preceding DD statement
named 'ddna.e' occurring in the job step
named 'stepname'. If the data set was
specified in the current job step then
'stepname' must be omitted. If
'stepname' refers to a jot step invoking
a cataloged procedure, a job step within
the procedure can be specified by
putting its name after 'stepname'; that
is, '*stepname.procstep.ddname'.

Note. If the DSNAME parameter is omitted,
the-operating system will assign a unique
name to any data set created by the job
step.

DCB={*.stepname.ddname}
dsna.me
subparameter-list

indicates that the data control block

for the data set specified in the tt
statement named 'ddname' in the job steF
named 'stepname', or alternatively the
cataloged data set named 'dsname', is tc
be repeated for the cu~rent tt
statement. 'Stepname' must be omitted
if it refers to the cu~rent job step, or
may be qualified in the same way as the
DSNAME pa~amete~ if it refers to a job
step in a cataloged procedure. If
additional information is substituted
for 'subparameter list' then this
over-rides the co~responding
subparameters in the repeated
information. Alternatively,
'subparameterlist' can be used alone to
sFecify data cont~ol block information.

~he subpa~amete~ list for the data sets
used when processing and executing an ALGCL
p~og~am contains the following keyword
subparameters:

ELKSIZE=number, is used to specify
blocksize. 'Number' is blocksize in
bytes, and for fixed len9th records must
be a multiple of record length.

RECFM=F [E) [A], is used to specify
record format. F=fixed length,
E=blocked, A=control character
incorporated to control printed output
format.

r-------~--------------------------_,--------.---,
I positional parameters {*} I
I (all optional) DUMMY I
r----------------------------~~----------·--------------------------·------------i

Keyword parameters
(all optional, though
DSNAME can be omitted
only when the asterisk
positional parameter is used

Figure 30. DD Statement Parameters

DSNAME=
{

dsname }
&dsname
&ddname
*.stepname.ddname

DCB= {*. stepname. dd name}
dsname
subparameter-list

{
AFF=ddname }
SEP=subparameter-list

UNIT=subparameter-list

{

SPACE=subParameter-list 1
SPLIT=subparameter-list
SUEALLOC=suhparameter-list

VOLUME=subparameter-list

LAEEL=subparameter-list

{
DISP=sUbParameter-list }
SYSOUT=subFarameter-list

Appendix E: Using Job Control Language 63

LRECL=value, is used to specify record
length. 'Value' is actual length in
bytes.

All other valid DCB options are fixed.

AFF=ddname
indicates that the data set has affinity
with the data set specified by the DD
statement named 'ddname' and is to use
the same channel.

SEP=list-of-ddnames
indicates that the data set is to use a
separate channel to the ones used by the
data sets specified by the DD statements
named in the 'list-of-ddnames'.

UNIT=subparameter list
specifies the class and quantity of I/C
devices to be allocated for use by a
data set. The subparameter list has two
forms, either one of which may be used
in an individual statement. 7he two
forms are:

.-,' I
I I I I
I I Positional I {' l} I
I Isubpara- Iclassname ,number [,DEFER]I
I I meters I , P I
I II I I
I IKeyword I I
I Isubparameter 1 (SEP=list-of-ddnames] 1
"'-, I -t
1 I I J
121Keyword I I
I IsubparameterlAFF=ddname 1
~ I .J

64

'classname' indicates the device class.
These names are divided into two
categories.

• Those automatically incorporated in
the operating system when it is
generated. These are of two types -
specific unit names, such as 2400 (for
a magnetic tape drive) and 1403 (for a
printer); and general classnames, that
is,

SYSCP for any card punch

SYSSQ for any magnetic tape or
direct-access device

SYSDA for any direct-access device.

• Additional names fixed by the user for
his installation when the operating
system is generated.

'number' indicates the number of devices
to be allocated. If the data set is
cataloged but the number of devices used
is unknown, then 'P' substituted for

'number' will ensure that the correct
number is assigned.

DEFER indicates that the volume need not
be mounted on the I/O device until the
data set is called in the program. This
subparameter must not be used with an
indexed seguential data set or a new
output data set on a direct-access
device.

SEP=list-of-ddnames indicates for
direct-access devices that, if possible,
the data set is not to use the same
access arm as the data sets specified by
the DD statements, given in the
'list-of-ddnames.'

AFF=ddname indicates that the data set
is to use the same I/O devices as the
data set specified in the DD statement
named 'ddname' in the same job step •

SPACE=subparameter list
indicates the space required when a
direct-access device is specified in the
UNIT parameter. Space may be requested
(a) in terms of a given number of
tracks, cylinders or blocks, with no
particular track address being
specified, or (b) in terms of a given
number of tracks, starting at a
particular track address.

(a) Where the space reguest is made in
terms of a given number of tracks,
cylinders or blocks, with no address
specified, the subparameter list depends
in part on the organization of the data
set.

For a sequential data set, the general
form of the subparameter list is

(liRK },rqutY,[inCrement1,drctry)[•••])
CYL
Blksz

The first subparameter indicates the
unit in which the space requested is
expressed, namely tracks, cylinders or
blocks. The unit of a block is
indicated by the blocksize in bytes.
'guty' denotes the number of tracks,
cylinders or blocks requested •
'Increment' denotes the incremental
number of tracks, cylinders or blocks
which are to be added to the space
allocation whenever the data set
exhausts its last allocation. The last
term, [•••], represents a list of
further optional parameters, explained
at the end of this item.

For a partitioned data set, the general
form of the subparameter list is

<{TRK } , (quty,[increment] ,drctry) [•••])
CIL
Blksz

The first three subparameters are
identical with those described in the
preceding paragraph. 'Drctry' denotes
the number of 256-byte blocks to be
allocated to the data set directory.
The last term, [•••], represents a list
of further optional parameters,
explained at the end of this item.

For an indexed sequential data set, the
general form of the subparameter list is

({TRK !,(qUantitY"indeX)[•••])
CYL
Blksz

The first three subparameters are
identical with those described in a
preceding paragraph. 'Index' denotes
the number of cylinders requi~ed for the
data set index.

The term [•••] contained in each of the
preceding three symbolic parameter lists
represents the following list of additional
optional subparameters:

[, RLSE] [, CONTIGJ (, ROUND]
,EXIG
, ALX
,

RLSE indicates that any unused space
remaining after the data set has been
created, is to be released.

CONTIG specifies that space is to be
allocated in contiguous tracks or
cylinders. MXIG specifies that the
largest single block of auxiliary
storage available is to be allocated to
the data set. ALX requests that up to
five areas of contiguous storage, each
at least as large as the area requested,
be allocated. Where this request cannot
be fully satisfied, the system allocates
as many blocks as are available.

ROUND specifies that, when the space
request is expressed in blocks, the
space request be rounded to an integral
number of cylinders.

(b) Where the space request is made in
terms of a given number of tracks
starting at a specific track address,
the general form of the subparameter

list is
(ABSTR, quantity, address[,directory J)
'Quantity' denotes the number of tracks
required. 'Address.' denotes a number
representing the relative address of the
first track where the space allocation
is to begin. The tracks are numbered
consecutively, starting with 0 for the
first track on the volume. The first
track cannot be allocated. 'Directory',
a subparameter required when a data set
is partitioned, denotes the number cf
256-byte blocks required for the data
set directory.

SPLIT=subparameter list
provides a means of requesting space on
a direct-access device in such a way as
to divide (or split) each cylinder
between two or more associated data
sets. ~his can be used to minimize
access arm movements when two or more
data sets with corresponding records are
processed simultaneously.

The splitting of cylinders requires a
sequence of DD statements, the first of
which specifies the space per cylinder
required for the first data set, as well
as the total space required for all
associated data sets. Each succeeding
ED statement specifies the space request
for one of the other associated data
sets. The space request may be
expressed in cylinders and tracks or in
terms of blocks.

Where the space request is expressed in
cylinders and tracks, the subparameter
list of the SPLIT parameter in the
leading DD statement has the following
general form:

{
quanti ty }

(n, CYL, (quanti ty[, increment]))

where 'n' denotes the number of tracks
per cylinder required by the first data
set, and 'quantity' denotes the total
number of cylinders to be allocated for
all associated data sets. Each
succeeding DD statement in the group
must contain the parameter SPLIT=n,
where 'n' denotes the number of tracks
per cylinder to be allotted to the
associated data set. 'Increment'
denotes an additional amount of space
tobe allocated anyone data set each
time it exhausts its original space.

When the space request is expressed in
blocks, the subparameter list in the
leading DD statement has the following
general form:

{
quanti ty }

(J, blksize, (quanti ty[, increment]))

Appendix E: Using Job Control Language 65

where '%' denotes the percentage of
tracks per cylinder to be allocated to
the first data set, 'blksize' denotes
the average block length in bytes; and
'quantity' denotes the total number of
blocks required. Each succeeding DD
statement in the group must contain the
parameter SPLIT=~, where '%' denotes the
percentage of tracks per cylinder to be
allotted to the associated data set.

SUBALLOC=subparameter list
provides a method of placing a number of
data sets consecutively on a direct­
access volume. The method consists in
suballocating a portion of the space
allocated to a data set in a preceding
DD statement, to another data set.
Suballocations are made from the front
of the space allocated to the original
data set. The original data set may be
used only for suballocations. The
general form of the suhparameter list
is:

({TRK }' (g!!.~!!ii1ig2) [,ddname])
CYL ,stepname.ddname
Blksz

where (gy~~titi~) denotes

(quantity[,increment][,directcry])

The first subparameter indicates the
unit in which the suballocation request
is expressed, namely tracks, cylinders
or blocks, a block being indicated by
the average block length in bytes.
'Quantity' denotes the number of tracks,
cylinders or blocks to be suballocated.
'Increment' denotes the additional space
to be allocated to the data set when its
original allocation is exhausted.
Increments are made from available space
on the vclume. 'Directory' denotes the
number of 256-byte blocks required for
the directory of a partitioned data set.
'stepname' and 'ddname' denote the names
of the job step and DD statement where
the original data set is defined. If
the original DD statement is contained
in the same job step, 'stepname' may be
omitted.

DISP=subparameter list

66

indicates the status of the data set and
its disposition at the end of a job
step. The subparameter list may contain
from one to three positional
subparameters, as follows:

[!!~] OLD
MOD
SHR [

,I:ELETE]
,KEEP
,PASS
, CATLG
,UNCATLG

[

, UNCATLG]
,CA1LG
,DELETE
,KEEP

The first subparameter in the list
indicates the status of the data set,
the second indicates the data set's
disposition after a normal termination
of the job step, and the third parameter
indicates the disposition of the data
set at the end of the job step, in the
event the job step abnormally
terminates.

NEW specifies that the data set is to be
generated in this job step, and would be
deleted at the end of the job step
unless KEEP, PASS or CATLG is specified.

OLD specifies that the data set already
exists, and would be kept at the end of
the job step unless PASS or DELETE is
specified.

MOD specifies that the data set already
exists and is to be modified in this job
step. If the data set cannot be found
by the operating system then this
parameter is equivalent to NEW.

SHR specifies that, in a
multiprogramming environment, an
existing data set may be used
simultaneously by more than one job.

DELETE specifies that the space used by
the data set (including that in the data
set catalog, etc.) is to be released at
the end of the job step.

KEEP specifies that the data set is to
be kept at the end of the job step.

PASS specifies that the data set is to
be referred to in a later step of this
job, at which time its final
disposition, or a further pass, will be
specified.

CATLG specifies that the data set is tc
be cataloged at the end of the job step.
Thus KEEP is implied. The catalog
structure must already exist.

UNCATLG specifies that the data set is
to be deleted from the catalog at the
end of the job step. KEEP is implied.

SYSOUT=subparameter list
specifies the printing or punching
operation to be used for the data set.
The 'subparameter list' is:

classname
(classname[, progname][,number])

'classname' specifies the system output
class to be used. Up to 36 different
classes (A to Z, 0 to 9) may te fixed by
the user for his installation, according
to device type, priority, destination,
etc. The standard classname is A.

Classes 0-9 should only be used when the
other classes are insufficient.

'progname' can be used to specify the
name of a user-written output routine.

'number' can be used to specify an
installation form number to be assigned
to the output.

For sequential scheduling, the
'subparameter list' consists of only the
standard class-names A and B. SYSCUT=E
is interpreted as UNIT=SYSCP.

CUTLIM=number
specifies the maximum number of logical
records that a data set being routed
through the output stream may contain.
It is used only in statements where the
SYSOUT parameter is coded in the same
operand.

'number' indicates the maximum number of
records for the data set. That number
can be in the range 1 - 16,777,215. If
OUTLIM=O or no OUTLIM is coded, no
output limiting is done.

OUTLIM is used in MFT and MVT systems
that use the System Management
Facilities Option. This facility can be
used to give management a certain amount
of control over the jobs run on their
system. For more detailed information
refer to the description of the OUTLIM
parameter in Q~_~~1~~i~f~~£~.

VOLUME=subparameter list
indicates the volume or volumes assigned
to the data set. If the data set is
cataloged this parameter is not
necessary. The 'subparameter list' is:

Positional
subparameters ([PRIVATE] L RETAI~ ['number] [,value])

Keyword
subparameters

dsname

*.ddname
REF = *. stepname. ddname

(SER" l"'~f ... edal-=mbe"

*. stepname. procstep. ddname I
PRIVATE specifies that the vclume is tc
be dismounted after the job step and
that other data sets will not be
assigned to the volume unless a specific
request is made.

RETAIN specifies that, if possible, the
volume is to remain mounted until
referred to in a later DD statement, or
until the end of the job, whichever is
first.

'number' is any number between 2 and
9999, and is used if an input or output
operation on a cataloged data set
residing on more than one volume dces
not start on the first volume of the
data set. The number specifies the
volume on which input or output is to
start (for example, 3 indicates the
third volume of the data set).

'value' specifies the number of volumes
reguired by an output data set. It is
not required if SER or REF is used.

SER=list-of-serial-numters, specifies
the serial numbers allocated ty the user
to the volumes required by the data set.
These serial numbers can consist of
between one and six characters.

REF={dSname }
*.ddname
*.stepname.ddname
*.stepname.procstep.ddname

specifies that this data set is to use
the same volume or volumes as the data
set specified by one of the alternative
subparameter forms. If the latter data
set resides on more than one tape
volume, then only the last volume (as
specified in the SER subparameter) can
be used.

LABEL=subparameter list
indicates the type of label or labels
associated with the data set. If the
data set is cataloged this parameter is

Appendix E: Using Job Control Language 67

not necessary. The general form of the
subparameter list is:

{

([n JINLil[, PASSWORD] [, EXPDT=YYddd]) }
,~1 ,RETPD=dddd
,NSL
,SUL
,BLP

EXPD -yy d
RETPD=dddd

'n' is any number between 2 and 9999,
and specifies the position of the data
set on the volume (for example, 3 would
indicate the third data set on the
volume) •

NL, SL, NSL, and SUL specify the type of
label or labels to be used, that is, no
labels, standard labels, non-standard
labels, and standard and user labels,
respectively. The routines to produce
non-standard labels must be written and
incorporated into the operating system
by the user. ELP indicates that label
processing is to be bypassed.

PASSWORD specifies that the data set is
to be accessible only through the use of
a password. To retrieve the data set,
the operator must respond to a message
by issuing the correct password.

EXPDT=yyddd specifies that the data set
cannot be updated without operator
intervention, until the data given by yy
(year) and ddd (day).

RETPD=dddd specifies that the data set
is to be retained for the number of days
given by dddd.

PRoe STATE!!ENT

The PROC statement is used to assign
default values to symbolic parameters
defined in a cataloged procedure. When the
PROC statement is used, it appears as the
first control statement in the procedure.
The general form of the PRoe statement is:

//procname PROC symparam=default value

where 'symparam' denotes a symbolic
parameter in the cataloged procedure.

COMMAND STATEMENT

The command statement enables commands to
be issued to the system via the input
stream. The availab1e commands and the

68

appropriate operands specifiable in the
co.mand statement are explained in Q~
QE~£ator~efe~D£~.

DELIMITER STATEMENT

The delimiter statement, containing the
characters /* in columns 1 and 2 of the
80-column punched card, marks the end of a
data set in the input stream. In systems
with MFT or MVT the end of a data set in
the input stream defined by a DD *
statement need not be marked by a delimiter
statement.

NULL STATE!!ENT

The null statement consists solely of the
characters // in columns 1 and 2. It is
used to mark the end of a job in the input
stream so as to insure that the card reader
is effectively closed.

eOM!!ENT STATEMENT

The comment statement, containing the
characters //* in columns 1, 2, and 3,
followed by comment in any columns from 4
through 80, is used for inserting comment
before or after any control statement.

Using a Private Library

A load module to be executed with the aid
of the job control facilities of the
operating system may be contained in the
system library (SYS1.LINKLIB) or in a
user's private library. Except when
otherwise indicated by control statements
in the input stream, or when a load module
has been created in the same job, the
operating system assumes that any load
module identified in an EXEC statement is
contained in the system library. If a load
module is contained in the system library,
it may be ~xecuted by specifying its name
in the EXEC statement and without explicity
defining the SYS1.LINKLIB data set.

If a load module is contained in a
private library, it may be executed only if
the data set comprising the library ~s
explicitly identified, by means of a
suitable DD statement. Identifying a
private libary is equivalent to combining
(or concatenating) the private library with

the system library, since the operating
system searches the system library if it
cannot find a load module in the private
library.

A private library may be concatenated to
the system library by means of the JCELIB
DD statement and/or a STEPLIB DD statement
in one or more job steps.

The JOBLIB DD statement may appear once
in each job and must immediately follow the
JOB statement. The statement

//JOBLIB DD DSNAME=dsname,DISP=OlD

specifies that the operating system is to
search for each load module named in the
succeeding EXEC statements, first in the
private library denoted by 'dsname' and
then in the system library. This method of
search applies to every step in the job,
unless otherwise specified by a STEPLIB DD
statement in the particular jot step. One
or more other private libraries may be
specified by a list of additional DD
statements, in which the name field is
vacant, immediately following the JOBLIB
statement. .

A STEPLIB DD statement may be used once
in each job step and may appear in any
position following the EXEC statement. The
statement

//STEPLIB DD DSNAME=dsname,DISP=ClD

specifies that the operating system is to
search for the load module named in the
preceding EXEC statement, first in the
private library denoted by 'dsname' and
then, if necessary, in the system library.
This method of search applies only to the
job step in which the STEPLIE DD statement
appears. If a JOBLIB DD statement is
contained in the job, its effect is
suspended during the step in which the
STEPlIB DD statement appears. The
statement

//STEPLIB DD DUMMY

nullifies the JOBLIB DD statement for the
particular step, and limits the load module
search to the system library.

Job Control Language Examples

Five different types of jobs are described
here to illustrate the use of jot control
language. Some of the subparameters used,
such as I/O device classnames and volume
serial numbers, may change for different
installations.

Statement of problem (see Figure 31): A
set of 80 matrices are contained in data
set SCIENCE.MATB.MATBICES. Each matrix is
an array containing real variables. The
size of the matrices vary from 2x2 to
25x25; the average size is 10xl0. The
matrices are to be inverted using a program
MATINV contained in a partitioned data set
MAiPBOGS. Each inverted matrix is to be
written as a single record on the data set
SCIENCE.MATB.INVMATBS. The first variable
in each record is to denote the size of the
matrix. Each matrix is to be printed.

MATI NY
Printed
output

Figure 31. I/O Flow for Example 1

Explanation of coding: The job control
statements used in Figure 32 specify that:

1. The job is

•
•
•

to be charged to the
installation's account number 537
the responsibility of John Smith
to have all control statements
(plus control statement diagnostic
messages if an error occurs)
printed on the normal system
output device.

2. The partitioned data set MATPBOGS is
concatenated with the operating system
library, SYS1.LINKLIB.

3. The program to be executed is MATINV.

4. The input data set is
SCIENCE.MATB.MATRICES

AFpendix E: Using Job Control language 69

5. The printed output is to use the
standard output format class for the
installation.

6. The output data set is

• to be cataloged
• to use the device dass DACLASS
• to use volume 1089W
• to use a separate channel to the

input data set
• to have space reserved for 80

records, each 1500 bytes long.
This space is to be incremented in
9-record units each time more is
required and any unused space is
to be released. The space is
contiguous and aligned on cylinder
boundaries.

• to have fixed-length blocked
records, 300 bytes long, and a
maximum block size of 1500 bytes.

]~gmEl~_1~ __ ~Q~£iling~_1inkagg_~gi!ing_~ng
~~~£Y1in~lh£~~_~QB££~~£Qg£~!§ 

Statement of problem (see Figure 33): Raw 
data from a rocket test firing is contained 
in a data set RAWDATA. The forecasted 
results for this firing are contained in a 
data set PROJDATA. A program PRCGRD is to 
be used to produce refined data from these 
two data sets. 

The refined data is to be stored in a 
temporary data set and used by a program 
ANALYZ, containing a series of equations, 
to develop values from which graphs and 
reports can be generated. Parameters 
needed by ANALYZ are contained on a 
cataloged data set PARAMS. 

The values are to be stored on a 
temporary data set and used by a program 
REPORT to print graphs and reports. The 
programs PROGRD, ANALYZ and REPORT are 
written in ALGOL. They are still in source 
program form, and therefore must be 
compiled and linkage edited before 
execution. 

Explanation of coding: The job control 
statements used in Figure 34 specify that: 

1. The job is 

• 
• 

the responsibility of John Smith 
to have all control statements 
(plus control statement diagnostic 
messages if an error occurs) 
printed on the normal system 
output device for information 
listings. 

2. The first job step invokes the 
ALGOFCLG cataloged procedure (see 

70 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

'Appendix B') to process and execute 
the ALGOL source program (PROGRD) 
entered in the input stream. 

The other input data sets are RAWDATA 
and PBOJDATA. BAWDATA is ~lso entered 
in the input stream. 

The temporary output data set is 

• to be called BEFDATA and to be 
passed for use in a later job step 

• to use the device class TAPECLS 
• to be written on volume 2107, 

which is to remain mounted for use 
later 

• to have fixed-length records, 80 
bytes long, and a maximum block 
size of 400 bytes 

ihe second job step invokes the 
ALGOFCLG cataloged procedure to 
process and execute the ALGCL source 
program (ANALYZ) entered in the input 
stream 

The SYSLMOD DD statement in the LKED 
step of the cataloged procedure is 
overridden to specify that the load 
module produced by the linkage editor 
is to be a new member, ANALYZ, of 
temporary partitioned data set GCSET 

The other input data sets are BEFDAT! 
and PARAMS. Eoth will be kept at the 
end of the job step 

The temporary output data set is 

• to be called VALUES and is to be 
passed for use in a later job 
step. 

• to use the device class TAPECLS. 
• to be written on volume 2108. 
• to have fixed length records, 68 

bytes long, and a maximum block 
size of 204 bytes. 

The third job step invokes the 
ALGOFCLG cataloged procedure to 
process and execute the ALGOL source 
program (report) entered in the input 
stream. The output data will be 
listed on the printer specified in the 
cataloged procedure. 

10. The SYSLMOD DD statement in the LKErr 
step of the cataloged procedure is 
overridden to specify that the load 
module produced by the linkage editor 
is to be a new member, REPOR~. of the 
temporary paritioned data set GCSET 

11. The other input data set is VALUES 
which will be kept at the end of the 
job step 



IIINVERT JOB 531.JOHNSMITH,MSGlEVEl=1 
IIJOBLIB 00 OSNAME=MATPROGS,OISP=OlO 
111 NVERT EXEC PGM=MATINV 
IISYSIN 00 OSNAME=SCIENCE.MAlH.MATRICES,OISP=OlO 
IISYSPRINT DO SYSOUT=A 
IIALGlDC05 00 OSNAME=SCIENCE.MATH.(NVMATRS,OISP=(NEW,CATlG),SEP=SYSIN, * 
II SPACE=(1500,tSO,CJ).RlSE,CONfIG,ROUNO).VOlUHE=SER=1089W, * 
II OC8=tRECfM=fB,8LKSIZE=1500,lRECl=300),UNIT=OAClASS 

Figure 32. Job Control statements for Example 1 

STEP 1 STEP 2 STEP 3 

Figure 33. Basic I/O Flow for Example 2. 
The data sets for information listings, ALGOL library routines, intermediate 
work and the execution time error routine are not shown above. 

Appendix E: Using Job Control Language 71 



IITESTFIRf JOB ,JOHNSMITH,MSGtEVEL=l 
IISTEPl EXEC ALGOfClG 
IIAlGOL.SYSIN DO * 

SOURCE PROGRAM (PROGRO) 
1* 
IIGO.ALGLOOll 00 OSNAME=PROJOATA,DISP:OLO 
IIGO.AlGLODl2 DO DSNAME=&REFDATA,OCB=(RECfM=F,BlKSIlE=400,LRECl=80J. * 
II OISP=(NEW,PASS),UNIT=TAPEClS.VOlUHE=(RETAIN,SER=2107) 
IIGO.SYSIN DO * 

INPUT DATA (RAWOATA) 
1* 
IISTEP2 EXEC AlGOFCLG 
IIAlGOl.SYSIN 00 * 

SOURCE PROGRAM (ANAlYZ) 
1* 
IllKEO.SVSlMOD 00 DSNAME=&GCSETCANAlYZ) 
IIGO.AlGlDCO~ 00 OSNAME=*.STEPl.AlGl0012,DISP=OlO 
IIGO.AlGlOD07 00 OSNAME=PARAMS,OISP=OlO 
IIGO.AlGlCC03 DO OSNAME=&VAlUES,DC8={RECFM=F,BlKSIIE=204,lRECl=68), * 
II OISP=(NEW,PASS),UNIT=TAPEClS,VOlUME=SER=2108 
IISTEP~ EXEC AlGOfClG 
IIAlGOl.SYSIN DO * 

SOURCE PROGRAM (REPORT) 
1* 
IllKEO.SYSlMOO 00 DSNAME=&GOSET(REPORT) 
IIGO.AlGlCD14 00 DSNAME=*.STEP2.AlGlD003,OISP=OlO 

Figure 34. Job Control statements for Example 2 

statement of problem (see Figure 35): Data 
on current weather conditions is to be read 
from cards and used by the program FILECR 
to create a new generation of a data set 
WEATHEB, and also to print a report. 

Then the new generation and the three 
immediately preceding generations of the 
WEATHER data set are to be used by the 
program FOReST to produce a printed weather 
forecast. The programs fILECB and FCBCST 
are contained in a partitioned data set 
iTHRPB. 

Weather 
data 

Figure 35. I/O Flow for Example 3 

72 



Explanation of coding: The job control 
statements used in Figure 36 specify that: 

1. The job is to have control statement 
messages plus the relevant control 
statement printed on the normal system 
output device only if an error occurs 

2. 

3. 

4. 

5. 

6. 

7. 

The partitioned data set WTHRPR is 
concatenated to the operating system 
library, SYS1.LINKLIB 

The first job step executes the 
program FILECR 

The output data set is 

• a new generation of the data set 
WEATHER. 

• to use the device class HYPERT. 
• to be written on volume 0012 which 

need not be mounted until the data 
set is opened, and is then to 
remain mounted for later use. 

• to be cataloged and have standard 
labels. 

• to be retained for 30 days. 
• to have fixed length records, 80 

bytes long, and a maximum block 
size of 400 bytes. 

The printed eutput is 

• te use the device class PRINTER. 
• to use a separate channel to the 

output data. 

The input data is included in the 
input stream. 

The second job step executes the 
program FORCST. 

IIWEATHRP JOB MSGlEVEl=O 
"JOSLIB 00 OSNAHE=WTHRPR,OISP=(OlO.PASS) 
IICREATE EXEC PGM=fIlECR 

8. The input data sets are the last four 
generations of WEATHER, all of which 
are to be kept at the end of the job 
step. 

9. The output data set is 
• to use the device class PRINTER. 
• to use a separate channel to the 

last two generations of WEATHER. 

Example 4: ComEili~g_g~g_1i~kgg§_~£iti~g 
an ALGOL Precompile£_fIQ£~gYI§ 

statement of problem: The ALGOL language 
precedure ADD is to be compiled, linkage 
edited and stored in load module form as a 
member on the partitioned data set PREPBCe, 
for use in subsequent programs. An 
illustration of a program in which ADt is 
invoked is provided in Example 5. 

Explanation of coding: The job contrel 
statements used in Figure 37 specify that: 

1. The job is to have all control 
statements (plus control statement 
diagnostic messages if an error 
occurs) printed on the normal system 
output device. 

2. The job step is to invoke the ALGCFCL 
cataloged procedure to compile and 
linkage-edit the source module, which 
is identified as an ALGOL precompiled 
procedure. 

3. A new partitioned data set named 
PREPROC is to be allocated and 
cataloged; the procedure ADD is to be 
stored on the data set as a member; 
and a primary allocation of 30 tracks 
(plus a secondary allocation of 10 
tracks, if needed) and a directory of 

II ALGlDD02 00 OSNAME=WEATHER( + 1), OCB=( RECfM=F,8lKSI ZE=400,lRECl=80) t * 
II VOlUME=(RETAIN.SER=0012),LA8EL=(.SL,RETPO=0030). * 
II UNIT=(HYPERT.,OEfER),OISP={NEW,CATlG) 
IIALGlODOl DO UNIT=PRINTER,SEP=AlGL0002 
IISYSPRtNT 00 UNIT=PRINTER,SEP=AlGl0002 
IISYS·IN DO * 

WEATHER OAT A 

'* IIFORECAST EXEC PGM=fORCST 
IIAlGlOD04 00 OSNAME=WEATHERf+l),OISP=OlO 
II AlGl 0001 00 OSNAME=WEATHER( 0) ,SEP=AlGL0004. 01 SP=OlO 
" AlGl0008 00 OSNAME=WEATHER (-It. 01 SP=OlO 
IIALGlDC09 no OSNAME=WEATHER(-2).OISP=OlO 
II AlGLOCOl DO UNIT=PRINTER. SEP=( AlGlD004.AlGl00011 
IISYSPRINT 00 UNIT=PRINTER.SEP={AlGlD004.AlGlD0071 

Figure 36. Job Control statements for Example 3 

Appendix B: Using Job Control Language 73 



ten 256-byte records is to be assigned 
to the data set. 

Ex~~1~~~ __ ~~ilingL-1inkaE~_EQ!1!Qg_gng 
~~~~y!inE_g~_!LG01-~~~~~~-!hi£h_!gXQ~g2_g 
g~~£Qm£!!~g_~~~~gg~~

statement of problem: An ALGOL program in
which the precompiled procedure ADD
(Example 4) is invoked, is to be compiled,
linkage edited and executed.

The job control statements in Figure 38
specify:

!lcaOEPC JOB MSGlEVEL=!
IISTEP EXEC AlGOfCL,PARM.ALGOl=PROCEOURE
IIALGOl.SYSIN 00 *

1*

• PROCEDURE' AOOlA.B,C);
'REAL' A"A,C;

(:=A+8;

1. The job is to have "all control
statements (plus control statement
diagnostic messages if an error
occurs) printed on the normal system
output device.

2. The partitioned data set PREPROe,
containing the precompiled procedure
ADD, is to be concatenated to the
operating system library, SYS1.LINKLIB

3. The job step is to invoke the ALGCFCLG
cataloged procedure to compile,
linkage edit and execute the ALGOL
source program.

I ILK ED. SVSlMOO 00 OSNAM E=PREPROC (ADO)" 0 I SP-=(NEW ,CA11..G) ,UNI T=SYSDA, *
II SPACE=(TRK,(30,lO,lO)),VOlUME=SER=222222

Figure 37. Job Control statements and Source Module for Example 4

IIMAINPG JOB MSGlEVEl=l
I I JOSl 18 CO OSNAME=PREPROC,OISP=OlD
IISTP! EXEC ALGOFCG
!IAlGOl.SVSIN no *

'BEG I N'
• REAL' E" f, G;
'PROCEDURE' AODtA,B,C);
'REAL' A,8,C;

'CODE';
E:=5.6;
F:=-1.8;
AOO(E,f,G);
OUTREAl(I,G)

'END'
1*

Figure 38. Job Control statements and Source Module for Example 5

74

Appendix F: Diagnostic Messages

This section describes the messages and the appropriate responses to messages by tbe compiler, the
linkage editor, and the ALGOL object program at execution time.

Compiler Messages

The following table describes the format and gives other pertinent information about ALGOL compiler
messages.

r-------------------------------~---,
Component Name

Program Producing Message

Audience an4 Where Produced

Message Format

Associated Publications
'--

lEX

ALGOL compiler.

I ..
I

-----------------i
For programmer: SYSPRINT data set.

For operator: console.

IEXnnnI s nnnnn text

nnn

s

nnnnn

text

Message serial number.

Severity code:

W Warning; the compiler internally modifies the program being
compiled and continues processing; the modification mayor
may not correct the program, but it allows compilation to
continue.

S Serious; the compiler attempts to modify the program
internally, including skipping or changing parts of it;
generation of the object module is stopped, but syntax
checking continues.

T Compilation is terminated.

Semicolon number, right-adjusted and in decimal; if the error
cannot be related directly to a point in the program, nnnnn is
blank.

Message text.

I
I
I

--t

---i
Q~_!~QQ1_~g»gygg~, GC28-€615 I

--'-- ..

IEX0011 W nnnnn INVALID CHARACTER DELETED IEX0021 W nnnnn ILLEGAL PERIOD. PERIOD DELETED.

~~El~~g!iQ~: A character not recognized
by the compiler has been deleted from the
program.

gfQgf~~~~]espon~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

~~~lall~iion: The character period has 
been used wrongly and deleted from the 
program. It can be used only as a decimal 
point, or as part of a colon or semicolon. 

~fQgfg~~~I_R~§EQ»§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

Appendix F: Diagnostic Messages 75 



IEX003I W nnnnn INVALID COLON AFTER (six 
characters). COLON DELETED. 

EZ~JgDg!ion: The character colon has been 
used wrongly and has been deleted from the 
program. It can be used only after a 
label, between subscript bounds, within a 
parameter delimiter or as part of an 
assign symbol. 

R!2g!g~~~~Respon~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the fcllowing before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(1,1) was 

specified in the JOB statement. 

IEX004I T nnnnn LETTER STRING TOO LONG 

]Z~JgDg!i2D: A letter string used to 
supply explanatory information exceeds 
capacity limitations. 

R!2g!~~~~~Eespon~: Probable user error. 
Shorten the letter string and recompile. 
If the problem recurs, do the following 
before calling IEM: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(I,I) was 

specified in the JOB statement. 

IEX005I S nnnnn IDENTIFIER BEGINS WITH INVALID 
CHARACTER. IDENTIFIER DELETED. 

]Z~Jg~!i2D: An identifier has been 
deleted because it does not begin with an 
alphabetic character. 

~!2g!~~~~!_~~§~2D§g: Probable user error. 
Make sure the source code is co~rect and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for prcgramming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(I,I) was 

specified in the JOB statement. 

IEX006I T nnnnn LAEEL CONTAINS TOO MANY CHARACTERS 

]Z~J~~!i2D: A label identifier has been 
used whose length exceeds capacity 
limitations. 

R!Qg!~~~!_~~§EQD§g: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available • 
• Make sure that MSGLEVEL=(I,I) was 

specified in the JOB statement. 

IEX007I W nnnnn LABEL BEGINNING WITH (up to six 
characters) CONTAINS INVALID CHARACTER. 
COLON DELETED. 

76 

]ZE!~D~!iQD: A label has been deleted 
because it contains a character of other 
than alphameric type. 

Pr2g!g~~!_B~2~2D§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the prcblem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(1,1) was 

specified in the JOE statement. 

IEX008I W nnnnn LABEL BEGINS WITH INVALI£ 
CHARACTER. COLON DELETED. 

~la~tioD: A label has been deleted 
because it does not begin with an 
alphabetic character. 

Pr£g!~!_~~2~2D2~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that ~SGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX010I S nnnnn SPECIFICATION FART OF PROCEDURE 
(identifier) INCOMPLETE. 

EZ~J~D~!i2D: Not all of the formal 
parameters used in a procedure have been 
specified. 

Pr£gil~!!~~~~~2D~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(1,1) was 

specified in the JOB statement. 

IEX011I S nnnnn PROGRAM STARTS WITH ILLEGAL 
DELIM ITER. 

Expl~D~ti2D: If the compiler cpticn 
FROGRAM(PG) has been specified, the source 
text must start with 'BEGIN'. If the 
option PROCEDURE(PC) has been specified 
the source text must start with one of the 
following: 

1. 'PROCEDURE' 
2. 'REAL"PROCEDURE' 
3. 'INTEGER"PROCEDURE' 
4. 'BCOLEAN"PROCEDURE' 

R!2g!~~!!!~!_~~2EQD2~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the preblem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) vas 

specified in the JOE statement. 



IEXOt21 W nnnnn TWO APOSTROPHES AFTER (six 
characters). FIRST APOSTROPHE DELETED. 

1~£!~~tiQ~: In this context, two 
apostrophes cannot be used together so one 
has been deleted. 

f~gg~~!~!_B~spon~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0131 W nnnnn APOSTROPHE ASSUMED AFTER DELIMITER 
BEGINNING WITH (up to six characters). 

I~£la~~!i~: All delimiters involving 
words must begin and end with aFostrophes. 
One has been left out of the program and 
has been inserted by the compiler. 

R~Qg~~m~~~~§ponse: Probatle user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the fcllowing before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEXOt41 S nnnnn DELIMITER BEGINNING WITH (up to 
six characters) INVALID. FIRST APOSTROPHE 
DELETED. 

I~£!~~~!ion: An invalid sequence of 
characters has been used after an 
apostrophe which apparently started a 
delimiter. The apostrophe is therefore 
deleted to remove the delimiter status 
from the characters but still include them 
in the program. 

R~Q9~~~Respon~: Probatle user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0151 W nnnnn MISSING SEMICOLON AFTER 'CODE'. 
SEMICOLON INSERTED. 

I~£la~!ion: Self-explanatory. 

f~~~~~!-B~§~n§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(I,I) was 

specified in the JOB statement. 

IEX0161 S nnnnn IDENTIFIER BEGINNING WITH (up to 
six characters) CONTAINS INVALID 
CHARACTER. IDENTIFIER DELETED. 

ExplAD~ti~: A character other than an 
alphameric type has been used in an 
identifier and so the identifier has been 
deleted. 

Prog!~~~!-B~~n§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the prcblem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Mak~ sure that MSGLEVEl=(l,l) was 

specified in the JOB statement. 

IEX0171 S nnnnn MORE THAN 65535 SEMICCIONS. 
SEMICOLON COUNTER RESET TO ZERO. 

jxplanatign: Number of semicclons used 
exceeds capacity limitations. Duplicate 
numbers are allocated. 

~!gg!~~~~!_B~§£Q~§~: Protable user error. 
Make precompiled procedures of suitable 
parts of source program. Make sure the 
source code is correct and recompile. If 
the problem recurs, do the following 
before calling IBM: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEXOtSI W nnnnn DELIMITER 'COMMENT' IN ILLEGAL 
POSITION 

!!£!~n~!!Q~: 'COP-MENT' has not been 
placed after a 'BEGIN' or a semicclon. 
Compilation continues normally. 

Progr~!-B~§£gn§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0201 T nnnnn BLOCRS, CCMPOUND STATE!ENTS, FOR 
STATEMENTS, AND PROCEDURE DECLARATIONS 
NESTED TO TOO MANI LEVELS. 

I~£!~~~tign: Structure of program causes 
it to exceed capacity limitaticns. 

Prog!A!~!_B~§£gn§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

Appendix F: Diagncstic Messages 77 



IEX0211 S nnnnn DECLARATOR (declarator) IN ILLEGAL 
POSITION. 

g!~l~D~!i~: A declarator must come 
between either 'BEGIN' and the first 
statement of a block, or 'PROCEDURE' and 
the procedure body. 

Rf:2gf:~!t~L!t~sponse: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0221 T nnnnn MORE THAN 255 PROGRAM BLOCKS. 

g!~l~D~!i~: Number of program blocks 
used exceeds capacity limitations. 

£f:~gf:~~~f:_E~§~~D§~: Probable user error. 
Make precompiled procedures of suitable 
parts of source program. Make sure the 
source code is correct and recompile. If 
the problem recurs, do the following 
before calling IBM: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0231 S nnnnn STRING POOL OVERFLOW. 

~!~l~Dg!i~B: Total length of strings used 
exceeds capacity limitations. 

Rf:~gf:gmmer Response: Probable user error. 
Make precompiled procedures of suitable 
parts of source program. Make sure the 
source code is correct and recompile. If 
the problem recurs, do the following 
before calling IEM: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0241 S nnnnn DELIMITER 'CODE' IN ILLEGAL 
POS IT ION. ' CODE' DELETED. 

g!~l~Dg!i~B: 'CODE' has not been placed 
immediately after a procedure heading so 
it has been deleted. 

ff:2~g!t!tgL~~§~2D§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(I,l) was 

specified in the JOB statement. 

IEX0251 S nnnnn SPECIFIER 'STRING' OR 'lABEL' IN 
ILLEGAL POSITION. SPECIFICATION DELETED. 

78 

~lanation: 'STRING' and 'LABEL' have 
been used outside procedure heading, so 
they have been deleted. 

Rf:Qgf:~!!t~f:_E~§£2n§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the probleM 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that ~SGLEVEl=(l,l) was 

specified in the JOB statement. 

IEX0261 S nnnnn PARAMETER (identifier) MULTIPLY 
SPECIFIED. FIRST SPECIFICATICN USED. 

g!~1~n~!i2n: Self-explanatory. 

PrQgf:~!!~f:_E~§E2n§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the prcblem 
recurs, do the following before calling 
IEM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEl=(l,l) was 

specified in the JOE statement. 

IEX0271 W nnnnn PARAMETER (identifier) MISSING 
FROM FORMAL PARAMETER lIST. SPECIFICATION 
IGNORED. 

EXplgDgti~D: A parameter has been 
specified in a procedure heading which 
does not exist in the formal parameter 
list, so it has been ignored. 

Rf:Qgf:~!!~f:_E~§E2n§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the prcblem 
recurs t do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that ~SGLEVEl=(l,l) was 

specified in the JOB statement. 

IEX0281 S nnnnn DELIMITER 'VALUE' IN ILLEGAL 
POSITION. VALUE PART DELETED. 

g!~1~D~!i2n: 'VALUE' has been placed 
outside a procedure heading so the value 
part has been deleted. 

R~~gf:~!!~~_E~§E2n§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the prcblem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0291 W nnnnn SPECIFICATION PART PRECEDES VALUE 
PART. 

]~El~Dg!i~: The specification part in a 
procedure heading has been incorrectly 
placed before the value part. 

Pr~g~§!!~~_E~§~2n§g: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the preble. 
recurs, do the following before calling 
IBM for programming support: 



• Have source and associated listings 
available. 

• Make sure that MSGLEVEL=(l,l) was 
specified in the JOB statement. 

IEX0301 W nnnnn PARAMETER (identifier) REPEATED IN 
VALUE PART. 

~A£!~natiQn: A parameter has been 
included in the value part of a procedure 
heading more than once. 

]!gE!g~~~!-Bespo~~: Probat1e user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLBVBL=(l,l) was 

specified in the JOB statement. 

IEX03l1 W nnnnn LBFT PARENTHESIS NOT FOlLOWED BY / 
AFTBR ARRAY IDENTIFIER (identifier). 
SUBSCRIPT BRACKET ASSUMED. 

~A£!~n~~iQn: The subscript bounds after 
an array identifier have been preceded by 
a left parenthesis instead of a subscript 
bracket. 

]!9E!ammer Response: Probat1e user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0321 S nnnnn MISSING RIGHT PARENTHESIS IN BOUND 
PAIR LIST OF ARRAY (identifier). 
DECLARATION DELETED. 

~A£lg~!i9~: The right parenthesis has 
been omitted in the list of subscript 
bounds for an array identifier, so the 
declaration is deleted. 

R!~!g~~~!_~~§EQ~§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0331 T nnnnn MORE THAN 16 DIMENSIONS OR 
COMPONENTS IN DECLARATION OF (identifier). 

!~£lan~tiQn: The number of dimensions or 
components used with an array or switch 
identifier exceeds the maximum allowed. 

]!9E!g~mer Response: Probat1e user error. 
Rearrange the structure of the source 
program to avoid the capacity limitation. 
Make sure the source code is correct and 
recompile. If the problem recurs, do the 
following before calling IBM: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l, 1) was 

specified in the JOB statement. 

IEX0341 S nnnnn ARRAY SEGMENT (identifier) NOT 
FOLLOWED BY SEMICCLON OR COMMA. 
CHARACTERS TO NEXT SEMICOLON DELETED. 

Exp1anatio~: An array segment must be 
followed by a semicolon if it is the cnly 
or last segment of an array declaration; 
or a comma if it is followed by another 
segment. 

Prgg!S~~~!_B~§EQB§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the prcblem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0351 W nnnnn ILLEGAL PERIOD IN ARRAY OB SWITCH 
LIST. PERIOD DELETED. 

~AE1~B~!iQB: A period has been used 
wrongly in an array or switch list and 
deleted from the program. A period can be 
used only as a decimal point, or as part 
of a colon or semicolon. 

]!9g!~~~~!_B~EQB§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0361 T nnnnn MORE THAN 15 PARAMETERS IN 
DECLARATION OF (identifier). 

~E1gBA~i~: The number of formal 
parameters specified for a procedure 
exceeds the maximum allowed. 

E!gg!~~~~!_E~§£Qn§~: Probable user error. 
Rearrange the structure of the source 
program to avoid the capacity limitation. 
Make sure the source code is correct and 
recompile. If the problem recurs, do the 
following before calling IBM: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0371 S nnnnn SEMICOLON MISSING AFTER FOBMAL 
PARAMETER LIST OF (identifier). 
CHARACTERS TO NEXT SEMICOLON DELETED. 

Exp1~gtion: The formal parameter list of 
a procedure must be followed by a 
semicolon. 

E!9g!g~~~!-E~§£Qn~: Probable user error. 
Make sure the source code is ccrrect and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

Appendix F: Diagnostic Messages 79 



available. 
• Make sure that MSGLEVEL=(I,I) was 

specified in the JOB statement. 

IEX0381 T nnnnn TOO MANY IDENTIFIERS DECLARED IN A 
BLOCK. 

!~langtion: Number of identifiers 
declared in a block exceeds capacity 
limitations. 

g~~~s~~~~_B~§~~D§~: Probable user error. 
Rearrange the structure of the source 
program to avoid the capacity limitation. 
Make sure the source code is correct and 
recompile. If the problem recurs, do the 
following before calling IB~: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(I,I) was 

specified in the JOB statement. 

IEX0391 S nnnnn nnn ~ISSING 'END' BRACKETS. OPEN 
BLOCKS, COMPOUND STATEMENTS, FOR 
STATEMENTS, AND PROCEDURE DECLARATIONS 
CLOSED. 

!~E!gngti2B: Syntax of ALGOL requires 
that a program contains the same number of 
'BEGIN's and 'END's. The number of 'END's 
specified by nnn have been omitted in this 
case so any open block and statements are 
closed. 

g~2g~gm~~~_H~§£Qn§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL= ( I , I) was 

specified in the JOB statement.case so 
any open blocks and statements are 
closed. 

IEX0411 T nnnnn MORE THAN 255 FOR STATEMENTS. 

!!~!gng!ion: Number of for statements 
used in a program exceeds capacity 
limitations. 

g~g~g~~~~H~§E2n§~: Probable user error. 
Make precompiled procedures of suitable 
parts of source Frogram. Make sure the 
source code is correct and recompile if 
necessary. If the problem recurs, do the 
following before calling IBM for 
programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(I,l) was 

specified in the JOB statement. 

IEX0421 W nnnnn 'BEGIN' PRECEDES PRECOMPILED 
PROCEDURE. 'BEGIN' DELETED. 

80 

!~E!~ngti2B: A precompiled procedure has 
been specified so a 'BEGIN' is not 
required. 

f~2g~g~~~~_H~§E2n§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 

IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(I,I) was 

specified in the JOB statement. 

IEX0431 S nnnnn EQUAL NUMBER OF 'EEGIN' ANt 'ENt' 
BRACKETS FOUND. REMAINING PART OF PROGRAM 
IGNORED. 

Explanation: The compiler assumes it has 
reached the end of the program when the 
number of 'END' brackets equals the numher 
of 'BEGIN' brackets. 

PrQg~s!~~_B~§~~D§~: Prohable user error. 
Make sure the source code is correct and 
recompile if necessary. If the preblem 
recurs, do the following hefore calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(I, I) was 

specified in the JOE statement. 

IEX0441 T nnnnn NO SOURCE PROGRAM POUNE. 

EX£!g~s!i~n: For example, there has been 
an incorrect card code specification. 

g~~g~~!!~~_H~§E2n§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOE statement. 

IEX0451 S IDENTIFIER (identifier) MULTIPLY 
DECLARED. LAST DECLARATION USEE. 

Expl~sti~: An identifier has been 
declared more than once in a program block 
heading. The last declaration is taken to 
be the one required. 

PrQg~~!!~~_H~§E2n§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the Froblem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(I,l) was 

specified in the JOE statement. 

IEX0471 S ILLEGAL CALL BY VALUE CF IDENTIFIER 
(identifier) • 

Explanstion: A procedure, switch or 
string has been wrongly called by value. 

E~2g~~!!~~_R~§E2n§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that ~SGIEVEI=(l,l} was 

specified in the JOB statement. 



IEX080I S nnnnn OPERAND BEGINNING WITH (up to six 
characters) IS SYNTACTICALLY INCORRECT. 

¥1£!gng1i2n: Invalid characters have been 
used in the operand. If the six 
characters are all periods, this may 
indicate the internal representation of a 
string or logical value. 

~~2g~~mm~~_j~§£2D§~: Probatle user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL= (1, I) was 

specified in the JOB statement. 

IEX0811 S nnnnn IDENTIFIER (identifier) NOT 
DECLARED. 

¥1£!~Dg1iQD: An identifier has been used 
which is not declared in a tlock or 
procedure heading. 

~I2gI~~~~I-jespon~: Probatle user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX082I S nnnnn REAL CONSTANT BEGINNING WITH (up 
to twelve characters) OUT OF RANGE. 

]1£!g~1i2n: A real constant has been 
assigned a value which is outside capacity 
limitations. 

ffQSIammer Response: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0831 W nnnnn INTEGER BEGINNING WITH (up to 
twelve characters) OUT OF RANGE. INTEGER 
CONSTANT CONVERTED TO REAL. 

]1£!~n~1i2n: An integer constant has been 
assigned a value which is outside storage 
capacity limitations, so it has been 
converted to a real constant. 

EI2g£ammer Response: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX0841 W nnnnn PRECISICN CF REAl CONSTANT 
BEGINNING WITH (up to twelve characters) 
EXCEEDS INTERNALLY HANDLED PRECISICN. 
CONSTANT TRUNCATED. 

EXpl~~1iQD: A real constant has exceeded 
capacity limitations regarding precision 
and has been truncated. 

~~g~~~I-~~~£2n~~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(1,1) was 

specified in the JOB statement. 

IEX0851 S nnnnn ILLEGAL USE OF LABEL (label). 

~1£!~D~!iQn: A label defined in a for 
statement has been used in a geto 
statement outside the for statement, or 
the label occurs in a syntactically 
illegal position. 

EI29fg!!~f_~~§£Qn§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(1,1) was 

specified in the JOE statement. 

IEX086I S nnnnn TCO MANY CONSTANTS. 

ExplanatiQD: Number of constants used 
exceeds capacity limitations. 

PrQg~gI!~~_~~§£2n§~: Probable user error. 
Make precompiled procedures of suitable 
parts of source program. Make sure the 
source code is correct and recompile. If 
the problem recurs, do the following 
before calling IB~: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX087I W nnnnn FULL OPTIMI~ATION NOT PCSSIELE tU! 
TO INTERNAL OVERFLOW. 

Explanation: Main storage capacity 
available prevents for statement 
optimization by the compiler after the 
overflow occurs. 

Programmer_~§£Qn§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the preblem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

Appendix F: Diagnostic Messages 81 



IEX0881 W nnnnn IDENTIFIER (identifier) IN BOUND 
EXPRESSION DECLARED IN SAME PROGRAM BLOCK 
AS ARRAY. DECLARATION IN SURROUNDING 
BLOCK SEARCHED FOR. 

~~E!gng1!Qn: A bound expression can 
depend only on variables and procedures 
which are non-local to the tlock for which 
the array declaration is valid, ~ecause 
local variables do not have values before 
entering the statements of the tlock. 

g£Qg£~~~~~§EQn§~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(I,I) was 

specified in the JOB statement. 

IEX0891 W nnnnn 'GOTO' (identifier) INVAlID 
OUTSIDE FOR STATEMENT CONTAINING THIS 
LABEL. 

~~~lg~g!i~~: A switch may have teen 
misused, since a label has been found in a
switch declaration outside a for statement
containing a definition of the same label.

g~Qg£g~~~_~§~~~§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(I,I) was

specified in the JOB statement.

lEX 1601 S nnnnn SEQUENCE (operator) (opera tor) NOT
ALLOWED.

~~~lg~g!i~: In this context, this 
sequence is not allowed. 

g£Qg£~~~~_~espo~: Probatle user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the fcllowing before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(1,1) was 

specified in the JOB statement. 

IEXl611 S nnnnn SEQUENCE (operator) OPERAND 
(operator) NOT ALLOWED. 

82 

~~lg~~ti~: In this context, this 
sequence is not allowed. 

g~Qg£~~~~~~~~: probatle user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the fcllowing before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make sure that MSGLEVEL=(t,t) was 

specified in the JOB statement. 

IEX1621 S nnnnn OPERAND MISSING EETWEEN (operator) 
AND (operator). 

~~~~~g!!Qn: In this context, there must 
be an operand between twc operators.

PrQg£~~~~£_B~§EQn~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the preblem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(I,l) was

specified in the JOE statement.

IEX1631 S nnnnn OPERAND FCLLOWING ~perator) MUST
BE OF ARITHMETICAL TYPE.

]!E!gng1!Qn: An arithmetical eperand must
follow an arithmetical operator.

Pr~~~~~~~_B~§~~§~: Pro cable user errer.
Make sure the source code is correct and
recompile if necessary. If the preblem
recurs, do the following before calling
IEM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(I,l) was

specified in the JOE statement.

IEXI641 S nnnnn NO OPERAND ALLOWED BETWEEN
(operator) AND (operator).

ExEl~~~!!2~: In this context, no operand
is allowed between the two operators.

E£Qg~~!~~£_R~§EQD§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(1,1) was

specified in the JOB statement.

IEX1651 S nnnnn EXPRESSIONS BEFCBE AND AFTIB
'ELSE' NOT COMPATIBLE.

Expl~tion: For example, if an
arithmetical expression is specified
before 'ELSE', then an arithmetical
expression must be specified after.

Pr2g£g~~~£_B~§E2n§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the preblem
recurs, do the following before calling
IEM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOE statement.

IEX1661 S nnnnn DECLARATOR IN ILLEGAL POSITION.

ExElg~g!!Qn: A declaration has occurred
outside the block heading, or, for
instance, a label precedes the
declaration.

EIQg~gm~~r Response: Probable user error.
Make sure the source code is co~rect and
recompile if necessa~y. If the p~oblem
~ecurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the ~OB statement.

IEX1681 S nnnnn OPERAND PRECEDING (operator)
CANNOT POSSESS VALUE.

~~pla~g1iQn: Only quantities that can
possess a value can be used in expression.
For example, not standard I/O o~ non-type
procedure identifier.

R~g~~D~~~espo~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the ~OB statement.

IEX1691 S nnnnn LABEL FOLLOWING (operator)
ILLEGAL.

]~plg~g1i~~: In this context, a label is
not allowed due, for example, to a
semicolon being missing.

E~Qg~gDD~~_~~§EQ~§~: Probable user error.
Make sure the source code is cor~ect and
recompile if necessary. If the p~oblem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the ~OB statement.

IEX172I S nnnnn DIFFERENT TYPES IN LEFT PART LIST.

~~p!gng1iQ~: The identifiers in a left
part list must be of similar type.

EIQg~gmm~I_]espon~: Probable user error.
Make sure the source code is co~rect and
recompile if necessary. If the p~oblem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the ~OB statement.

IEX1731 T nnnnn COMPILATION UNSUCCESSFUL DUE TO
COMPILER OR MACHINE ERROR.

]~E!gng1iQ~: Self-explanatory.

RIggIgmD~~]~~~: Recompile. If the
problem recurs, do the following before
calling IBM:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEX174I S nnnnn PARAMETERS NOT AlLOWED FOR TYFf
PROCEDURE CALLED BY VALUE.

~~El!~!!gn: A type procedure called by
value .ust have an empty para.eter part.

~29~g!!~!_B~§EQn§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the prcblem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the ~OB state.ent.

IEX175I S nnnnn OPERAND FCLLOiING (operator) MUST
BE LABEL OR SWITCH.

!~El~n~!!gn: For example, 'GCTO' must be
followed by a designational expression.

E~g~~mm~I_~~§pgn§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the prcblem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEl=(l,l) was

specified in the JOB statement.

IEX176I S nnnnn OPERAND MISSING EEFORE (operator).

Explg~atio~: In this context, the
operator must be preceded by an operand.

PrggIg~~~_~~§pg~§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEX177I S nnnnn OPERAND NCT AILCWE~ BEFORE
(operator).

]~pl~D~!ign: In this context, no operand
is allowed before the operator.

ProgIg~~~~Re§pgn§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEX178I S nnnnn ILLEGAL OFERAND IN EXPRESSION
BEFORE OR AFTER 'ELSE'.

]~Elanatio~: For example, only
a~ithmetical operands may be used in an
arithmetical expression.

Appendix F: Diagncstic Messages 83

R~QStg~~~~_B~§EQn§~: Probable user error.
~ake sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IB~ for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(I,I) was

specified in the JOB statement.

IEXI791 S nnnnn NU~BER OF SUBSCRIPT EXPRESSIONS
DIFFERS FROM DI~ENSION IN ARRAY
DECLARATION FOR VARIABLE.

~xelang1ion: A subscript list must
contain the same number of subscript
expressions as the dimension in the
corresponding array declaration.

R~Qg~g!mer Response: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

lEX 1801 S nnnnn INVALID SWITCH DESIGNATCR.

~AElan~!i~n: More than one subscript
expression in switch designator.

R~QSf~!~~espo~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• ~ake sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEXl811 S nnnnn SWITCH DESIGNATOR IN ILLEGAL
POSITION.

~xelang1iQn: A switch designator must
follow only 'THEN', 'ELSE', 'GOTO', := or
, .

g~Qg~g!~~B~§EQn~~: Probable user error.
~ake sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming ~upport:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEXI821 S nnnnn OPERAND FOLLOWING (operator) MUST
BE BOOLEAN.

84

~~Elang1iQn: A non-Boolean operand has
been specified where a Boolean one was
required.

Prog~~~~~B~~EQn~~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that ~SGLEVEL=(l,l) was

specified in the JOB statement.

IEX183I S nnnnn OPERAND PRECEDING (operator) ~UST
BE A PROCEDURE IDENTIFIER.

]~R1~nation: A non-procedure identifier
has been specified where a procedure one
was required.

prQB~~~_B~~E£n~~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IB~ for programming support:
• Have source and associated listings

available.
• Make sure that ~SGLEVEl='l,l) was

specified in the JOB statement.

IEXI841 S nnnnn OPERAND PRECEDING (operatcr) MUST
BE AN ARRAY OR SWITCH IDENTIFIER.

EXR1!D!!i2n: A non-array or nonswitch
identifier has been specified where an
array or switch one was required.

R.!~~!!~LBesEQn§~: Probable use.r error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGIEVEl=(l,l) was

specified in the JOB statement.

IEXI8S1 S nnnnn REAL OPERAND PRECEDING (operator)
NOT ALLOWED FOR INTEGER DIVISICN.

~AE!!n!!i2n: A real operand has been
specified for an integer division.

prog~~~~Re~££D§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEl=(l,l) was

specified in the JOB statement.

IEXI86I T nnnnn SYNTACTICAL STRUCTURE TCO
COMPLICATED. INTERNAL OVERFLOW.

1~R1!n!!!Qn: The syntactical structure of
the program has caused an internal
overflow in the compiler. A larger main
storage size is required.

R!QB~g!!~~_B~§EQn§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEXI871 S nnnnn INCORRECT NUMBER OF ACTUAL
PARAMETERS.

E~E!gngtiQn: The number of actual
parameters does not correspond to the
number of formal Farameters in a
procedure.

E~Qg£~~~!_]~§EQD§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(I,I) was

specified in the JOB statement.

IEXI881 S nnnnn INVALID ACTUAL PARAMETER FOR
STANDARD PROCEDURE. DSN= (number).

E~£lgngti£D: An actual parameter has been
specified incorrectly in a standard
procedure. Either semicolon number or
data set number is given. In the case
where the data set number is given instead
of the semicolon number, the error is due
to SYSACT8 having been specified for the
data set when SYSACT4, SYSACT13 or an
input operation has been specified also.
Such a combination is invalid.

f!Qg!g~~~!_Respon~: Probat1e user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEXI891 S nnnnn DATA SET NUMBER OR FUNCiION OF
SYSACT OUT OF ALLOWED RANGE.

E~E1aD~!i£D: Data set numbers are 0 - 15.
SYSACT functions are - 15.

PrQg!gmmg!_~g2EQn2~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(I,I) was

specified in the JOB statement.

IEXI901 S nnnnn ASSIGNMENT NOT POSSIBLE.

E~E!gngtion: Only variable allowed in for
clause. Only variable or type procedure
identifier allowed in left part list.

R!Qg£gmm~r_~~2EQn§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling

IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(I,I) was

specified in the JOB statement.

IEX191I S nnnnn NO OPERAND AIICWED BETWEEN) AND
(operator) •

ExElgDg!iQn: When a right parenthesis is
used it must be followed by an aFostreFhe,
a semicolon, an arithmetical operator, a
comma, or another right parenthesis.

PrQg~~~!_~~§EQD§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the Freblem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

lEX 1921 S nnnnn INVALID RIGHT PART IN ASSIGNMENT
STATEMENT.

Exp1an~ioD: The right Fart must be
either an arithmetic or a Eoolean
expression.

Prog!~~~_S~§EQD§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEXI93I S nnnnn INCOMPATIBLE TYPES IN ASSIGNMENT
STATEMENT.

!~ElgDg!i2D: Value assigned to right part
does not correspond to type of left part
list in assignment statement.

ErQg!g~~~~_~~§EQn§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEI=(l,l) was

specified in the JOB statement.

IEX1941 S nnnnn (operator) NOT ALLOWED.

Exp1an~ti2D: In this context, the
operator is not allowed.

E~Qg~~!~~_~~§EQn§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

Appendix F: Diagnostic Messages 85

IEXI951 S nnnnn SEQUENCE OPERAND (operator) NOT
ALLOWED.

~x£ls~!i~~: In this context, this
sequence is not allowed.

R~~E~s~~~~_~~§E~~§~: Probable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEX1961 S nnnnn ARRAY IDENTIFIER PRECEDING
(operator) NOT ALLOWED.

~~~la~s1iQ~: In this context, an array 
identifier is not allowed. 

R~Qg~smm~~_S~2£Qn2~: Probable user error. 
Make sure the source code is correct and 
recompile if necessary. If the problem 
recurs, do the following before calling 
IBM for programming support: 
• Have source and associated listings 

available. 
• Make Sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX200I W nnnnn OPTION PARAMETER (parameter) 
INVALID. PARAMETER IGNORED. 

~~E1s~s1i~~: An invalid option has been 
specified in the PARM parameter and 
ignored by the compiler. 

R~~g~~~~~~_~~§£~~§~: Probable user error. 
Make SUre all compiler options specified 
are correct and recompile if necessary. 
If the problem recurs, do the following 
before calling IBM: 
• Have source and associated listings 

available. 
• Make Sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX201I T nnnnn DD CARD FOR (ddname) INCCRRECT CR 
MISSING. 

86 

~~£la~ti2~: During an ALGOL compilation, 
the DD statement for the data set named 
ddname was incorrect or missing. ddname 
can be SYSIN, SYSPRINT, or SYSU~l, 2, or 
3. 

This message appears on the console if 
ddname is SYSPRINT. 

RIQ~~m~I~Response: Probable user error. 
Make sure the DD statement is correct or 
supply the missing one. Recompile. If 
the problem recurs, do the following 
before calling IBM: 
• Have source-and associated 'listings 

available. 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 

IEX2021 W nnnnn DD CARD FOR SYSLIN INCORRECT CR 
MISSING. OPTION NCLCAD ASSUMEC. 

]~El~~~!i2~: The SYSLIN data set has been 
specified incorrectly Or not at all when 
the LOAD option is specified, so an object 
module is not generated. 

~~~~~~_s~§~~§~: Probable user error. 
Make sure the CD statement is correct or
supply the missing one. Recompile if
necessary. If the problem recurs, do the
following before calling IEM for
programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEX2031 W nnnnn DD CARD FCR SYSPUNCH INCORRECT OR
MISSING. OPTION NODECK ASSUMED.

~K£1~n21i2n: The SYSPUNCH data set has
been specified incorrectly or not at all
when the DECK option is specified, so an
object deck is not punched.

program~~_~~§£~n§~: PrObable user error.
Make sure the CD statement is correct Or
supply the missing one. Recompile if
necessary. If the problem recurs, do the
following before calling IEM for
programming su~port:
• Have source and associated listi~gs

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEX204I T nnnnn BLOCK SIZE SPECIFIED FOR SYSIN
INCORRECT.

Explanation: The blocksize specified for
SYSIN does not correspond to the actual
blocksize.

~2gI2!!~I_~~§E2n§~: Probable user errOr.
Make SUre the CD statement is correct and
recompile. If the problem recurs, do the
following before calling IBM for
programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEX205I W nnnnn BLOCKSIZE SPECIFIED FOR (ddname)
INCORRECT. UNBLOCKED CUTPUT ASSUMED.

~~£12n2!i2n: One of the output data sets
has had an incorrect blocksize specified
so unblocked output is generated.

Pr29I2!m~I_~~§EQn~: Probable user error.
Make SUre the CD statement is correct or
supply the missing one. Recompile if
necessary. If the problem recurs, do the
following before calling IBM for
programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEl=(l,l} was

specified in the JOB statement.

IEX2061 W nnnnn TOO MANY OPTION PARAMETER ERRORS.
SUBSEQUENT PARAMETERS IGNORED.

~z£!~n~1i2n: Too many incorrect
parameters have been specified in the PARM
parameter so the rest are ignored.

g~2g~gmm~~_~~2£Qn2§: Probable user error.
Make sure all compiler options specified
are correct and recompile if necessary.
If the problem recurs, do the following
before calling IBM:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEX2071 W nnnnn POSSIBLE ERROR IN DD NAMES
PARAMETER.

~Z£lang1i2n: An incorrect ddname may have
been specified in the DD statement.

g~Qg£~~~~_~~§~§~: Probable user error.
Make sure the DD statement is correct or
supply the missing one. Recompile if
necessary. If the problem recurs, do the
following before calling IBM for
programming support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEX2081 W nnnnn SIZE PARAMETER INVALID. SIZE
45056 assumed.

~~£lgng!!Qn: The main storage size
specified as being available to the
compiler is less than the minimum
required, so the minimum value is assumed.

R~Qg~~~m~~espong~: Probable user error.
Make sure all compiler options specified
are correct and recompile if necessary.
If the problem recurs, do the following
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEX2091 T nnnnn COMPILATION UNSUCCESSFUL DUE TO
PROGRAM INTERRUPT. PSW (hexadecimal
digits).

~~£lang!!Qn: A program interrupt has
occurred causing termination of the job
step. The program status word when the
error occurred is given.

R~Qg£gm~~_~espon§~: Recompile. If the
problem recurs, do the following before
calling IBM:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEX2101 T nnnnn UNRECOVERABLE I/O ERROR ON DATA
SET (ddname).

~~£lgng1!Qn: During an ALGOL compilation,
an uncorrectable input/output error
occurred in using the data set named
ddname.

This message appears on the console if
ddname is SYSPRINT.

Programmer Res£Qn§§: Make sure that the
DD statement is correct and recompile. If
the problem recurs, do the following
before calling IB~ for programming
support:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEX2111 T nnnnn PROGRAM INTERRUFT IN EBBOR MESSAGE
EDITING ROUTINE. PSW (hexadecimal
digi ts) •

~~£lgn~!iQn: A program interrupt has
occurred in the error message editing
routine, ending the job.

.R'!.Q.9ll.!!!llr Re§.P.Qn§§: Recompile. If the
problem recurs, do the following before
calling IBM:
• Have source and associated listings

available.
• Make sure that MSGLEVEl=(l,l) was

specified in the JOB statement.

IEX2121 T nnnnn TOO MANY ERRORS.

~~£!~ng!iQn: The total length of the
error message patterns produced exceeds
capacity limitations.

E~Qg!g~~2~_~~§£QnE§: Frobable user error.
Make sure the source code is correct and
recompile if necessary. If the problem
recurs, do the following before calling
IBM for programming support:
• Have source and associated listings

available.
• Make sure that ~SGLEVEL=(lrl) was

specified in the JOB statement.

IEX2131 T nnnnn INTERNAL CVERFLOW OF IDENTIFIER
TABLE.

EXE!sns!!Qn: The number of identifiers
declared exceeds capacity limitaticns.

Prog~~.P.Qng§: Probable user error.
Rearrange the structure of the source
program to avoid the capacity limitation.
Make sure the source code is correct and
recompile. If the problem recurs, do the
following before calling IBM:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.

IEX2141 S nnnnn DATA STORAGE AREA EXCEEtEt.
PROGRAM BLOCK NO. (number) •

~~£l~ns!iQn: The data storage area
required by the program block specified
exceeds 4096 bytes.

R~Qq!s~~§!_~~§£QnE2: Probable user error.
Rearrange the structure of the source
program to avoid the capacity limitation.
Make sure the source code is correct and
recompile. If the problem recurs, do the
following before calling IEM:

Appendix F: Diagnostic Eessages 87

• Have source and associated listings
available.

• !ake sure that !SGLEVEL=(I,I) was
specified in the JOB statement.

IEX2151 T nnnnn SOURCE PROGRAM TOO LONG.

88

~~£!~ngtiQn: The source program exceeds
capacity limitations.

E~2g~~~m~~Re~~: Probatle user error.
Make precompiled procedures of suitable
parts of source program. !ake sure the
source code is correct and recompile. If
the problem recurs, do the following
before calling IE!:
• Have source and associated listings

available.
• Make sure that MSGLEVEL=(I,l) was

specified in the JOB statement.

IEX2161 S nnnnn TOO MANY LABELS. LABEL NUMBER
RESET.

~]1AE~ti~: The total number of labels
used exceeds capacity limitations, so
duplicated numbers are allocated.

g~~~~!!~~_B§§Rgn§§: Probable user error.
Make precompiled procedures of suitable
parts of source program. Make sure the
source code is correct and reccmpile. If
the problem recurs, do the following
before calling IBM:
• Have source and associated listings

available.
• Make sure that ~SGLEVEL=(l, 1) was

specified in the JOB statement.

Linkage Editor and Loader Messages

The diagnostic messages produced ty the
linkage editor and by the loader are listed
in the publication ~S Loader_g~~_11~~gg~
~gi!g!:·

The diagnostic message consists of one
or more printed lines and contains:

• A message key, consisting of the
letters lEW, a three digit decimal
number identifying the message,
and a final digit, 1, 2, 3 or 4,
indicating the severity code (see
below). Linkage editor message
keys read IEWO---; loader message
keys read IEW1---.

• The message text descriting the
error. Fer severity code 1 the
message is preceded by 'WARNING'.
For all other severity codes the
message is preceded ty 'ERROR'.

The severity codes have the following
meaning:

indicates a condition that may
couse an error during execution of

Execution Time Messages

2

3

the load module. A module map or
cross-reference table is produced
if it was required by the
programmer. ~he output load
module is marked as executable.

Indicates an error that could make
execution of the load module
impossible. Processing continues.
When possible, a module map or
cross-reference table is produced
if it was required. The load
module is marked as not executable
unless the lE~ option has been
specified.

indicates an error that will make
execution of the load medule
impossible. Processing continues.
If possible a module map or
cross-reference table is produced
if it was required. The load
module is marked as not
executable.

indicates an error condition frem
which no recovery is possible.
Processing terminates. The enly
output is diagnostic messages.

The following table describes the format and gives other pertinent information about the ALGOL object
program messages

r i --------------------------,
I Component Name I IHI I
~---------------+------------- ------------------i
I Program producing Message I Object ~rogram originally coded in A1GCl language. I
I-- I ---------f
I Audience and Where Produced I For programmer: SYSPRINT data set.
I I
I I For operator: conscle.

I
I
I

~-------------+------------------- -----------------i
Message Format I IhlnnnI SC nnnnn text

I
I nnn
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1------------------+

Message serial number.
nnnnn

Semicolon number, right-adjusted, and in decimal.
text

Message text. Where aFpropriate, begin with:

DSN=nn or DSN=ddname
Indicates the number (nn) or name (ddname) of the data set
involved in the error.

PSW=nnnn nnnn

**

Contents of the program status word (PSW) held by the
system when the error occurred.

Indicates that the program does not correspond to the
parameters specified in the job control statements.

I Associated Publications I Q~_!1gQ1_1~~gy~g~, GC28-€615
.----f

I '---___________________ ..1.- ___________ ---;--.J

Appendix F: Diagnostic Messages 89

IHIOOOI SC=nnnnn DATA SET NUMBER OUT OF RANGE

Ex£1~n~1i2n: A data set number must be in
the range 0 to 15.

Rf2g£smmgf_Rg2£2ngg: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data, and
associated listings available.

• Make sure tha t MSGLEVEL= (1, 1) was
specified in the JOB statement.

IHI001I SC=nnnnn DSN=nn. REAL NUMBER TO BE
CONVERTED OUT OF INTEGER RANGE

~~£lsns1i2n: A real number has been
included which exceeds capacity
limitations when converted to integer.
This message applies for input/output
operations.

Rf£gf~~~~~espons~: probable user error.
Make sure the source code is correct
before calling IEM for programming
support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that MSGLEVEL=(l,l) was
specified in the JOB statement.

IH10021 SC=nnnnn DSN=nn. INCOMPATIBLE ACTIONS ON
DATA SET

E~£!~n~1iQll: The I/O procedure requested
is not defined for this data set. For
example, procedure SYSACT8 specifying data
set number 0 is not allowed.

Rf£gf~~~~~Respo~: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data, and
associated listings available.

• Make sure that MSGLEVEL={l,l) was
specified in the JOB statement.

IHI0031 SC=nnnnn DSN=nn. INPUT BEYOND lAST OUTPUT

90

!~£!~n~1ion: Before reading data which
has just been written on the same data
set, backward repositioning must be
specified.

Probable user error. Make sure the source
code-is-correct. Modify the source to
avoid the capacity limition and rerun the
job again. If the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that the DUMP option was
specified.

• Have source, including source for
precompiled procedures, input data and
associated listings available.

• Make sure that ~SGLEVEl=(1,1) was
specified in the JOB statement.

IHI004I SC=nnnnn TOO MANY REPOSITIONINGS IN DATA
SETS. INTERNAL OVERFLOW

~~lana!i£~: Too many repositionings have
caused an internal overflo~ of the Note
Table.

R!:2gfs!!!!~!:_!!~'§~£~§~: P·robable user error.
Make sure the source code is correct.
Modify the source to avoid the capacity
limitation and run the job again. If the
problem recurs, do the following before
calling IEM for programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data, and
associated listings available.

• Make sure that ~SGLEVEl=(1,1) was
specified in the JOB statemebt

IHI0051 SC=nnnnn DSN=nn. INFUT BEQUEST EEYONr EN£
OF DATA SET

Expl~i£~: Input has been requested to
start beyond the end of the data set. If
the problem recurs, do the following
before calling IB~ for programming
support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that MSGLEVEL=(l,l) was
specified in the JCE statement.

IHI0061 SC=nnnnn DSN=nn. EXPONENT PART OF INPUT
NUMBER CONSISTS OF MORE THAN TWO
SIGNIFICANT £IGITS

!~£1~~~1i2~: The length of the exponent
part of an input number exceeds capacity
limitations.

Pr£g!:~!!!!~!:_!!~§p2n~: Probable user error.
Make sure the source code is correct.
Modify the input data to avoid the
capacity limitation and execute the jeb
step again. If the problem recurs, do the
following before calling IEM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that MSGLEVEl=(1,1) was
specified in the JOB statement.

IHI0071 SC=nnnnn DS=nn. **NC CONTROL CHARACTER
SPECIFIED IN RECORD FORMAT OF tATA SET.
SPLI~TING INTO SECTIONS IMPOSSIBLE

Expl~!io~: A control character is
required to define printing format.

g~9g~~~~~~_~~§~9~§~: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data, and
associated listings available.

• Make sure that MSGLEVEL=(I,I) was
specified in the JOB statement.

IHI008I SC=nnnnn DSN=nn. SOURCE IN PROCEDURE
OUTSYMBOL DOES NOT MATCH STRING

~z~lg~~!i9~: The symbol specified by the
third parameter of the OUTSYMBOL procedure
does not correspond to any symbol in the
string specified by the second parameter.

prgg~~~~~~_~~§~9~§~: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data, and
associated listings available.

• Make sure that MSGLEVEL=(I,I) was
specified in the JOB statement.

IHI009I SC=nnnnn DSN=nn. UNDEFINED FUNCTION
NUMBER IN SYSACT PROCEDURE

~z~la~g!!9B: A function number has not
been defined for a SYSACT procedure. The
function number range is 1 to 15.

]~Qgrammer Response: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
program_ing support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that MSGLEVEL=(I,I) was
specified in the JOB statement.

IHIOIOI SC=nnnnn DSN=nn. DATA SET CLOSED

!z£lana!!gn: The data set is closed but a
SYSACT procedure has been specified which
requires it to be open.

g~g~g~~~~~~§~9~§~: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that MSGLEVEL=(I,I) was
specified in the JOB statement.

IHIOl11 SC=nnnnn DSN=nn. DATA SET OPEN

]~E1gBg!!9B: The data set is open but a
SYSACT procedure has been specified which
requires it to be closed.

g~Qg~g!!~~_~~§EQn§~: Probable user error.
Make sure the source code is ccrrect and
run the job again. If the problem recurs,
do the following before calling IBM fcr
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source fcr

precompiled procedures, input data and
associated listings available.

• Make sure that MSGLEVEL=(I,I) was
specified in the JOB statement.

IHI012I SC=nnnnn DSN=nn. QUANTITY IN SYSACT
PROCEDURE MUST BE VARIABLE

!~Elgng!iQn: The third parameter of the
SYSACT procedure must be a variable.

]~9g~g!!~~_~~§~Qn§~: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IB! for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that MSGIEVEl=(I,I) was
specified in the JOB statement.

IHI013I SC=nnnnn DSN=nn. QUANTITY IN SYSACT
PROCEDURE OUT OF RANGE

ExE1g~!i2n: The variable specified in
the third parameter of the SYSACT
procedure exceeds capacity limitations.

g~Qg!g!!~~_~~§EQn§~: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that MSGIEVEl=(l,l) was
specified in the JOB statement.

IHI014I SC=nnnnn DSN=nn. BACKWARD REPOSITIONING
NOT DEFINED

Explg~ti~: Backward repositioning is
defined using SYSACT 13.

Progra.!!.!!!.!i!LRe§EQBg: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IEM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and

Appendix F: Diagnostic Messages 91

associated listings available.
• Make sure that MSGLEVEL=(I,I) was

specified in the JOB statement.

IHIOl5I SC=nnnnn UPPER BOUND LESS THAN LOWER BOUND
IN ARRAY DECLARATION

~~~!~n~1!~: The upper subscript hound 
specified in an array declaration must not 
be less than the lower subscript bound. 

E~Qg~~m~~Eespon~: Probable user error. 
Make sure the source code is correct and 
run the job again. If the problem recurs, 
do the following before calling IBM for 
programming support: 
• Make sure that the DUMP option was 

specified. 
• Have source, including source for 

precompiled procedures, input data and 
associated listings available. 

• Make sure that MSGLEVEL=(l,l) was 
specified in the JOB statement. 

IHIOl6I SC=nnnnnVALUE OF SUBSCRIPT EXPRESSION NOT 
WITHIN DECLARED EOUNtS 

~~~la~l!Qn: This error is detected only 
when the subscripted variable address
falls outside the area reserved by the
compiler for the array identifier.

g~g~gm~~_Eg2EQn2g: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that MSGLEVEL=(l,l) was
specified in the JOB statement.

IHIOl7I SC=nnnnn ENDLESS LOOP IN FOR STATEMENT

~Apl~n~liQn: The expressions used in the
for statement result in an endless loop.

g~Qg£~mm.§~_Eg2EQ!!2g: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming suppcrt:
• Make sure that the DUMP option was

specified.
• Have source, inclUding source for

precompiled procedures, input data and
associated listings available.

• Make sure that MSGLEVEL= (1, 1) was
specified in the JOB statement.

IHIOl8I SC=nnnnn MAIN STORAGE REQUESTED NOT
AVAILABLE

92

~~~1~!!~1ion: The storage space required 
by an array exceeds capacity available. 

g~Qg~~!!g~Eg§£Q~: Make sure the source 
code is correct. Either specify a larger 
partition or region or modify the source 
to avoid the capacity limitation and run 
the job again. If the problem recurs, do 

the following before calling IEM for 
programming sUFPort: 
• Make sure that the DUME option was 

specified. 
• Have source, including source for 

precompiled procedures, input data and 
associated listings available. 

• Make sure that MSGLEVEL=(l,l) was 
specified in the JOB statement. 

IHI019I SC=nnnnn UNEQUAL NUMBER OP DIMENSICNS FnR 
ACTUAL AND PORMAL PARAMETER 

~~El~!!~liQ!!: An array identifier being 
used as a parameter in a procedure has had 
a different number of dimensions assigned 
in the formal and actual positions. 

R~Qg~S!~~_Rg~EQB~g: Probable user error. 
Make sure the source code is correct and 
run the job again. If the problem recurs, 
do the following before calling IBM for 
programming support: 
• Make sure that the DUME option was 

specified. 
• Have source, including source for 

precompiled procedures, input data and 
associated listings available. 

• Make sure that MSGLEVEL=(I,l) was 
specified in the JOB statement. 
PARAMETER OF DIFFERENT TYPE CR KINt 

IHI020I SC=nnnnn ACTUAL AND CORRESPONDING FORMAL 
PARAMETER OF DIFFERENT TYPE OR KIND. 

~£1ADgti~: An actual parameter has been 
assigned which does not have the type or 
kind declared for the corresponding formal 
parameter. 

~gg~~~~~Eg§EQD~g: Probable user error. 
Make sure the source code is correct and 
run the job again. If the prcblem recurs, 
do the following before calling IEM for 
programming support: 
• Make sure that the DUME option was 

specified. 
• Have source, including source for 

precompiled procedures, input data and 
associated listings available. 

• Make sure that MSGLEVEI=(I,l) was 
specified in the JOB statement. 

IHI021I SC=nnnnn UNEQUAL NUMBER CP PARAMETERS IN 
PROCEDURE DECLARATION AND PROCEDURE 
STATEMENT/FUNCTION DESIGNATOR 

EXE1~!!~liQ!!: Either not all, or more 
than, the formal parameters used in a 
procedure have been assigned in a 
procedure call. 

g~Qg~~!!g~_~g~EQ!!§g: Probable user error. 
Make sure the source code is correct and 
run the job again. If the problem recurs, 
do the following before calling IEM for 
programming support: 
• Make sure that the DUMP option was 

specified. 
• Have source, including source for 

precompiled procedures, input data and 
associated listings available. 

• Make sure that P.SGLEVEL=(l,l) was 
specified in the JOB statement. 



IHI022I SC=nnnnn ASSIGNMBNT TO A FORMAL PARAMETER 
NOT POSSIBLE 

~~E!~n~!iQn: A value cannot be assigned 
to an expression used in a standard input 
procedure, assignment statement, or for 
clause. 

R~2~a •• er Response: Probable user error. 
Make sure the source code is correct and 
run the job again. If the problem recurs, 
do the following before calling IBM for 
programming support: 
• Make sure that the DUMP option was 

specified. 
• Have source, inclUding source for 

precompiled procedures, input data and 
associated listings available. 

• Make sure that MSGLBVBL=(l,l) was 
specified in the JOB statement. 

IHI023I SC=nnnnn ARGUMENT OF SQRT LESS THAN ZERO 

]~Elangti2n: The ALGOL library SQRT 
routine cannot handle arguments with a 
value less than zero. 

R~Q~~~~~!_B~§~QD§~: Probable user error. 
Make sure the source code is correct and 
run the job again. If the problem recurs, 
do the following before calling IBM for 
programming support: 
• Make sure that the DUMP option was 

specified. 
• Make sure that MSGLEVEL=(I,l) was 

specified in the JOB statement. 
• Have source, including source for 

precompiled procedures, input data and 
associated listings available. 

IHI024I SC=nnnnn ARGUMENT OF EXP GREATER THAN 
174,673 

~~Elang!i2n: The argument of EXP exceeds 
capacity limitations. 

g~~gmmg~_BgeE2n2~: Probable user error. 
Make sure the source code is correct and 
run the job again. If the problem recurs, 
do the following before calling IB~ for 
programming support: 
• Make sure that the DUMP option was 

specified. 
• Have source, including source for 

precompiled procedures, in~ut data and 
associated listings available. 

• Make sure that MSGLEVEL=(l,l) was 
specified in the JOB statement. 

IHI025I SC=nnnnn ARGUMENT OF LN NOT GREATER THAN 
ZERO 

~~~lgDg!iQD: A number not greater than 
zero cannot have a natural logarithm.

R~Qg~gm~f-~~QD~: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that P.SGLBVEL=(l,l) was
specified in the JOB statement.

IHI026I SC=nnnnn ABS VALUE OF ARGUMENT OF SIN OR
COS NOT LBSS THAN PI*2**18

ExplanatioD: The argument exceeds
capacity limitations for a short precision
real value.

g!Qg!gmm~!_i~§EQn§~: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IEM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that MSGLBVEL=(l,l) was
specified in the JOB statement.

IHI027I SC=nnnnn ABS VALUE OF ARGUMENT OF SIN OB
COS NOT LESS TEAN PI*2**50

Expl~D~!iQD: The argument exceeds
capacity limitations for a long precision
real value.

PrQg~gmm~!_B~§EQD~~: Probable user error.
Make sure the source code is correct and
run the job again. If tbe problem recurs,
do the following before calling IEM for
programming support:
• Make sure that the DUMP option vas

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that ~SGLEVBL=(l,l) vas
specified in tbe JOB statement.

IHI028I SC=nnnnn PSW=xxxxxxxx xxxxxxxx. FIXEr
POINT OVERFLOW INTERRUPT

Expl~DgtiQD: An interrupt has occurred
due to an overflow of a fixed point
number.

programmer R~§~QD§~: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IEM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that P.SGLEVEL=(l,l} was
specified in the JOB statement.

IHI0291 SC=nnnnn PSW=xxxxxxxx xxxxxxxx. FLOA!ING
POINT EXPONENT OVERFLOW INTEERUPT

~~J2!~Dg!!2n: An interrupt has occurred
due to an overflow of a floating Foint
exponent.

Appendix F: Diagnostic Messages 93

g~Qg£~~~~_~~2£Q~2~: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that MSGLEVEL=(t,t) was
specified in the JOB statement.

IHI0301 SC=nnnnn PSW=xxxxxxxx xxxxxxxx. DIVISION
BY ZERO. FIXED POINT

~~£!sgstiQn: An attempt has been made to
divide a fixed point number by zero.

g~g£sm~er Response: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
prograaming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data and
associated listings available.

• Make sure that MSGLEVEL=(l,l) was
specified in the JOB statement.

IHI03tI SC=nnnnn PSW=xxxxxxxx xxxxxxxx. DIVISICN
BY ZERO. FLOATING POINT

~~R!s~!iQll: An attempt has been made to
divide a floating point number by zero.

~~Qg~s~~~~§EQ~: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data, and
associated listings available.

• Make sure that MSGLEVEL=(t,l) was
specified in the JOB statement.

IHI032I SC=nnnnn DSN=nn. UNRECOVERABLE I/O ERRCR

94

~~lags!iQg: During execution of an
object program originally written in the
ALGOL language, an uncorrectable
input/output error occurred in using the
data set indicated by DSN=nn.

This message appears on the console if the
data set is SYSPRINT.

~£Qg£sm~_~espo~: Make sure that the
DD statement and source are correct and
run the job again. If the problem recurs,
do the following before calling IBM for
programming support:
• Make sure that MSGLEVEL=(l,l) was

specified in the JOB statement.
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data, and
associated listings available.

IHI0331 SC=nnnnn PSW=xxxxxxxx xxxxxxxx. PROGRAM
INTERRUPT

Expl~~~tio~: A program interrupt has
occurred.

~~Qg~s!m~~_~~£Qn§~: Make sure the source
code is correct and run the job again. If
the problem recurs, do the following
before calling IB~ for programming
support:
• Make sure that the DUMP option was

specified.
• Have source, including source for

precompiled procedures, input data, and
associated listings available.

• Make sure that MSGLEVEL=(l,l) was
specified in the JOB statement.

IHI0341 SC=nnnnn VALUE OF SWITCH DESIGNATOR NCT
DEFINED IN DECLARATION CF SWITCH

~xE!sns!iQn: The designational
expressions in the switch list of a switch
declaration must define the values of all
the corresponding switch designators.

Prog~~~~~~Q~~~: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IBM fer
prograaming support:
• Make sure that the DUMP optien was

specified.
• Have source, including source for

precompiled procedures, input and
associated listings available.

• Make sure that MSGLEVEL=(t,1) was
specified in the JOB statement.

IHI0351 SC=nnnnn EASE NOT GREATER THAN ZERC

Expl~~tio~: Exponentiation is not
defined in this case, because the base is
zero or negative.

~£Qg£~~~~_B~2£Qg§~: Probable user error.
Make sure the source code is correct and
run the job again. If the problem recurs,
do the following before calling IB! for
programming support:
• Make sure that the DUMP option vas

specified.
• Have source, including source for

precompiled procedures, input data, and
associated listings available.

• Make sure that MSGLEVEL=(l,t) was
specified in the JOB statement.

IHI0361 SC=nnnnn TCO MANY NESTED BLOCKS ANt CALLS
OF PROCEDURES, SWITCHES, AND PARAMETERS.
INTERNAL OVERFLOW

]xplan~!i~: Structure of program causes
it to exceed the internal capacity
limitations.

Progra~!~!-B~~Q~~~: Probable user error.
Make sure the source code is cerrect.
Modify the source to avoid the capacity
limitiation and run the job again. If the
problem recurs, do the following calling
IBM for programmi~q support:

• Make sure that the DUMP option was
specified.

.• Have source, including source for
precompiled procedures, input, and
associated listings available.

• fta·ke sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

IHI0371 SC=nnnnn DSN=nn. **BLOCKSIZE NOT A
MULTIPLE OF LOGICAL RECORD LENGTH

~~~lgng!i~~: Blocksize must be an exact 
multiple of logical record length. 

E~2~!~!~£_~~~~~§~: Make sure that the 
DD statement and source are correct and 
run the job again. If the problem recurs, 
do the following before calling IBM for 
probramming support: 
• Make sure that MSGLEVEL=(l,l) was 

specified in the JOB statement. 
• Make sure that the DUMP option was 

specified. 
• Have source, including source for 

precompiled procedures, input data, and 
associated listings available. 

IHI0381 SC=nnnnn DSN=nn TOO LONG RECORD 

~~£!!n!!iQn: Record is longer than 
specified. 

~~Qg~g~~~~_i~2£QD2~: Make sure that the 
DD statement and source are correct and 
run the job again. If the problem recurs, 
do the following before calling IBM for 
programming support: 
• Make sure that MSGLEVEL (1,1) was 

specified in the JOB statement. 
• Make sure that the DUMP option was 

specified. 
• Have source, including source for 

precompiled procedures, input data, and 
associated listings available. 

IHI0391 SC=nnnnn GET/PUT IDENTIFICATION OUT OF 
RANGE 

1~£1!D!!i2D: The identification number 
specified for a GET/PUT operation is out 
of range. 

E~Qgrammer Response: Probable user error. 
Make sure the source code is correct and 
run the job again. If the problem recurs, 
do the following before calling IBM for 
programming support: 
• ftake sure that the DUMP option was 

apecified. 
• Hav~ source, including source for 

precompiled procedures, input data, and 
associated listings available. 

• Make sure that MSGLEVEL=(l,l) was 
specified in the JOB statement. 

IHI0401 SC=nnnnn REAL NUMBER TC EE CCNVERTED CUT 
OF INTEGER RANGE 

Expl~tio~: A real number has been 
included which exceeds capacity 
limitations when converted to integer. 
This message applies to internal 
operations. 

E!2g!~!~~~_i~§E2n§~: Make sure the source 
code is correct and run the jeb again. If 
the problem recurs, do the following 
before calling IBM for prograBming 
support: 
• Make sure that MSGLEVEI= (1,1) was 

specified in the JOB sstatement. 
• Have source including source for 

precompiled procedures input data, and 
associated listings available. 

• Make sure that the DUMF option was 
specified. 

IHI0411 SC=nnnnn DSN=nn. DD CARD INCCRBEC~ OR 
MISSING 

!~El~D~!!2D: During execution of an 
object program originally written in the 
ALGOL language, the DD statement fer the 
data set indicated by DSN=nn was incorrect 
or missing. 

This message appears on the console if the 
data set is SYSPRINT. 

~~g!2~_~§£2n§~: Correct the SYSPBINT 
DD statement, or supply the missing one. 
Then execute the job step again. 

lIQg~~~~£_i~§E2D~~: Make sure that the 
DD statement is correct or supply the 
missing one. Execute the job step again. 
If the problem recurs, de the following 
before calling IBl for programming 
support: 
• Make sure that ~SGIEVEI=(l,l) was 

specified in the JOB statement. 
• Have source, including source for 

precompiled procedures input data, and 
associated listings available. 

IHI0421 SC=nnnnn INVALID CPTICN FABAMETER 

!z£1~n~!!2D: An invalid option parameter 
has been specified in the PARM parameter. 

prog£!~~L!!~§£2n~~: Make sure all 
options specified are correct and execute 
the job step again. If the preble. 
recurs, do the following before calling 
IBM for programming support: 
• Make sure that MSGLEVEL=(l, 1) was 

specified in the JCB statement. 
• Have the source and associated listings 

available. 

IHI0431 SC=nnnnn ILLEGAL CALL CF GET/FUT CB LIST 
PROCEDURE 

EXpla~!!i2n: Recursive calls ef GET/FUT 
or list procedures are not allewed. 

prog!~~~£_!!~§E2D2~: Probable user error. 
Make sure the source code is cerrect and 
run the job again. If the problem recurs, 
do the following before calling IBM fer 
programming support: 

• Make sure that the DUMP option was 
specified. 

• Have source, including source for 
precompiled procedures, input data, and 
associated listings available. 

• Make sure that MSGLEVEL=(l,l) was 
specified in the JOB statement. 

Appendix F: Diagnestic Messages 9~ 



Page of GC33-4000-3 
Added Sep. 29, 1972 
by 1NL GN12-S900 

96.1 

The Independent Component Release (ICR) is distributed on a non-labeled, 9-track, 
800 bpi, reel of ma~netic tape (BLKSIZE=3440). 

The Distribution Tape Reel (DTR) contains the job DTRALGOL, which consists of 8 
steps, STEP1 to STEP8, as described below. 

• STEP1 link-edits ALGOL library modules into SYS1.ALGLIB. 

• STEP2 link-edits ALGOL compiler modules into SYS1.LINKLIB. 

• STEP3 link-edits ALGOL message-editing modules into SYS1.LINKLIB. 

• STEP4 places into a PDS the macro DTRALGOL, which is used in STEP6 to specify 
the ALGOL compiler options. 

• STEPS adds to SYS1.PROCLIB a member, OPTIONS, which contains data on default 
options. 

• STEP6 assembles OPTIONS from STEPS, using the macro DTRALGOL from STEP4, and 
receives a CSECT of IEXOO (IEX00001) with the compiler options specified. 

• STEP? link-edits IEXOO into SYS1.LINKLIB. 

• STEP8 adds the ALGOL cataloged procedures (ALGOFC, ALGOFCG, ALGOFCL, ALGOFCLG) 
to SYS1.PROCLIB or the user's procedure library. 

The DTR ends with a library trailer label, 80 bytes long, with control information 
about the DTR. 

The Independent Component Release (ICR) contains components 360S-AL-531 and 360S­
LM-S32 on the level of OS release 21.0. They are distributed on magnetic tape 
(DTR) • 

The ICR can be installed under any IBM OS release. Any earlier version of 
OS ALGOL F that the user may have installed will be replaced. 

By installation of this ICR, the system data sets SYS1.LINKLIB and SYS1.PROCLIB 
are referenced and modified, i.e., they must accommodate new ALGOL modules. 
Therefore, these data sets must have the reguired free space available. (Refer 
to the ~~Q~~g~_i§1!m~1g§_~~n~~1, Form GC28-6S51.) SYS1.MACLIB is referenced only. 

It is advisable that each installation list the DTR to determine whether any JCL 
cards reguire modification. If so, the contents of the DTR should be punched out. 
Then the modification can be made, and DTRALGOL can be executed as a batch job. 



Page of GC33-4000-3 
Added Sep. 29,1972 
by TNL GNI2-S900 

Before starting the reader to process the DTR that contains the independent 
component release, the user must: 

(a~ 

(b) 

(c) 

define and catalog SYS1.ALGLIB -- if it does not already exist; (refer to the 
section Q~!1n~_gn9_~~!~lQg_§1§1~!1~1I]) ; 
add a procedure CRSRe to SYS1.PROCLIB (refer to the section !~~_~_g£2S~~~~~ 
~~§~~_12_§!§1~g~Qf11~); and 
verify that SYS1.PROCLIB does not contain a member named OPTIONS. 

If the user wishes to change the default compiler options, he must 

(d) add a member, OPTIONS, to SYS1.PROCLIB (refer to the section !~~_~_~~mQ~£ 
Qgl1QN§_!Q_§!§J~gRQ£1I~) · 

After steps (a) to (c), or (d), the user issues a Start Reader command to process 
the DTR (refer to the section §~~£1~_2!_§12£!ing_~~~g~£_12_g!2£~~§_Q1~) • 

DEFINE AND CATALOG SYS1.ALGLIB 

The following is a sample set of JCL statements for the definition and cataloging 
of SYS1.ALGLIB: 

IICATAL JOB 
IISTEP EXEC 
I ISYSPRIN T DD 
/ICATLOG DD 
IIALGLIB DD 
1/ 
II 
II 
II 

PGM=IEHPROGM 
SYSOUT=A 
DISP=OLD,UNIT=3330,VOL=SER=serial1 
DSNAME=SYS1.ALGLIB,DISP=(,KEEF) , 
VOLUME= (,RETAIN,SER=seria12), 
UNIT=2311, 
LAEEL=EXPDT=99350, 
SPACE=(TRK, (14,5,14)}, 
DCE=(RECFM=U,BLKSIZE=3625) II 

IISYSIN 
CATLG 

DD * 
DSNAME=SYS1.ALGLIB,CVOL=3330=seria11,VOL=2311=seria12 

1* 

For more details, refer to the System Generation manual (GC28-6554), section 
lni!J~lJ~Jllg_N~~_EY§!~~_Q~!~_~~!§. 

ADD! PROCEDURE CRSRC TO SYS1.PROCLIB 

The job DTRALGOL uses CRSRC to place the ALGOL cataloged procedures into the user's 
procedure library. This is normally SYS1.PR0CLIB but the user may choose to specify 
and, perhaps, modify another data set so that he can examine the cataloged 
procedures before including them in the system. 

/ICRSRCPRC JOB 
I/STEP EXEC PGM=IEBUPDTE,PARM=MOD 
IISYSPRINT DD SYSOUT=A 
IISYSUT1 DD DSNAME=SYS1.PROCLIB,DISP=SHR 
/ISYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=SHR 
IISYSIN DD DATA 
.1 ADD LIST=ALL,NAME=CRSRC,LEVEL=01,SOURCE=O 
.1 NUMBER NEW1=10,INCR=10 
IICRSRC EXEC PGM=IEBUPDTE,PARM=NEW 
/ISYSPRINT DD SYSOUT=! 
//SYSUT2 DD DDNAME=PROCLIB 
/IPROCLIB DD [user's procedure library] 
/ /SYSI N DD DU MMY 
.1 ENDUP 
/* 

Appendix G: Independent Component Release 96.2 



Page of GC33-4000-3 
Added Sep. 29,1972 
by lNL GN12-S900 

ArD A MEMBER OPTIONS TO SYS1.PROCLIB 

The default options are identical to those specified for the ALGOL macro in the 
System Generation manual (GC28-6554). The user may change the default options 
by adding a member named OPTIONS to SYS1.PROCLIB. 

/ /OPTI ONS JOB 
//STEP EXEC PGM=IEBUPDTE,PARM=NEW 
//SYSPRINT DD SYSOUT=A 
//SYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=SHR 
//SYSIN DD DATA 
./ ADD LIST=ALL.NAME=OPTIONS 
./ NUMBER NEW1=10,INCR=10 
PRINT ON,NODATA 
DTRALGOL [user-specified options] 
END 

./ ENDUP 
/* 

SAMPLE OF STARTING BEADER TO PROCESS DTR 

If, for instance, the DTR is mounted on unit 182, the Start R~ader command is: 

S RDB,182,DCB=(LRECL=80,BLKSIZE=3440,RECFM=FB),LABEL=(,NL},REGION=200K 

The region parameter may be different for each installation. 

DESCRIPTION OF OPTIONAL MATERIAL OF OS ALGOL-F INDEPENDENT COMPONENT RELEASE 

96.3 

The optional material of the Independent Component Release (ICR) is distributed 
on a non-labeled, 9-track, 800 bpi, reel of magnetic tape (ELKSIZE=800,LRECL=80). 

The Distribution Tape Reel (DTB) contains the source modules of the OS ALGOL F 
compiler (component 360S-AL-531) and the OS ALGOL F Library (component 360S-LM-
532) as an unloaded version from the partitioned data set named AE01.KARAF20S. 

The DTR ends with an 80-byte library trailer label that contains control information 
about the DTR. 

The contents of the DTR can be loaded by means of the following set of Jct 
statements: 

/ /JOB 1 JOB 
/ /STEF1 EXEC PGM=IEHMOVE 
//SYSPRINT DD SYSOUT=A 
//SYSUT1 DD UNIT=2314,VOL=SER=xxxxxx,DISP=OLD 
//FROM DD UNIT=2400,DISP=OLD,LABEL=(,NL), 
// VOL=(PRIVATE,RETAIN,SER=ALGOLF), 
// DCB=(BLKSIZE=800,LRECL=80,RECFM=FB) 
//TO DD UNIT=2314,VOL=SER=~xxxxx,DISP=OLD 
//SYSIN DD * 

COpy PDS=AE01.KARAF20S,RENAME=yyyyyy, 
FROM=2400=~LGOLF,1) , 
FROMDD=FRCM, 
TO =2 314=xxxxxx 

column 
72 

C 
C 
C 

The string xxxxxx stands for the serial number of the volume on which the optional 
material is to reside. The string lY1YYY must be replaced by the name to be assigned 
to this data set. 



Index 

Index to systems reference library manuals are consolidated in the 
publication Q~_~g§!g!_!~gg~_!2_~g!g~gn£g_~gnyg!2' Order No. GC28-6644. 
For additional information atout any of the subjects listed below, 
refer to other publications listed for the same subject in the Master 
Index. 

Access language 11 
Access method 11 
ACCT 19,61 
A1F 64 
ALGLDDOl - ALGL£D15 23 
ALGOFC 16,49 
AlGOFCG 16,50 
ALGOFCL 16-17,49 
ALGOFCIG 16,18,49 
ALGOL compiler 

description 12 
listings 28 

ALGOL library 46-47 
Array handling: see storage 

mapping function 
Assembler language 9,39-45 
ATTACH 37-38 

Basic access language 11 
BLKSIZE 63 
Block 11 
Blocking factor 11 
Blocksize 

for compiler data sets 21 
for linkage editor data sets 22 
for execution data sets 24 

Buffer 12 
Byte 11 

CALL 37-38 
Capacity limitations 36-37 
Card codes 51 
Cataloged procedure 

definition 9 
IBM-supplied 16-18,48-50 
over-riding 19-20 
user-written 20-21 

CATIG 66 
Channel 12 
Character set 51 
CLASS 57 
Classname 64 
COMMAND statement 68 
Comment statement 68 
COND 19,56,59 
Constant pool 36-37,52 
CONTIG 65 
Control character 11 

Control program 
functions 10-12 
listings 28 

Control section 31,52 
Cross-reference table 31,34 

Data control block 
definition 10,63 
for compilation data sets 20-21 
for linkage editing data sets 22 
for execution data sets 23-24 

Data definition: see ED statement 
Data management 10-12 
Data set 

definition 10 
for compilation 20-21 
for linkage editing 22 
for load module execution 23-25 
for loader execution 25-27 
label 11 
name 62-63 
number 89 
organization 11 
table 52 

Data storage area 29,30,31-32,33,35 
DC 60 
DCE: see data control block 
DD statement 10,16,19-20,62 
ddname 55,62 
DECK 59 
DEFER 64 
DELETE 66 
Delimiter statement 10,16,68 
Diagnostic message 

for compilation 28,30,75-88 
for linkage editing and loading 31,89 
for execution 33,89-95 

Direct access 11 
DISP 66-67 
Disposition data 30 
DPRTY 62 
DSN: see data set number 
DSNAME 62-63 
DUMMY 62 
DUMP 31,61 

EBCDIC 60 
EP 37,38,61 
Error routine 46 
EXEC statement 10,16,19,58-59 
Execution listing 32-35 

Index 97 



Fixed storage area 46 

GET 24 

Identifier table 28-30,32,34 
Indexed sequential access 11 
Initialization: see supervisor 
Input/output device 11-12 
Input/output routines 46 
In-stream procedure 20 
ISO 51,60 

Job 9 
Job control information 

accounting details 56,61 
computing time 58 
data definition: see DD statement 
priority 56 
program executed 58 
programmer's name 56 
record details 63-64 
special options 59-61 
status of data set 66 
terminating conditions 56,58 

Job control statement 
description 9,16,54-55 
coding 55-56 
examples 69-74 

JCBLIB 18,69 
Jobname 56 
Job scheduler 10,57 
JOB statement 9,16,56-58 
Job step 9 

KEEP 66 
Keyword parameter 56 
Keyword subparameter 56 

LABEL 67-68 
Label address table 30,52 
LET 60,61 
Library: see partitioned data set 
LINK 37-38 
Linkage editing listings 30-31 
Linkage editor 13 
Linkage editor options 60 
LIST 60 
LOAD 60 
load module 

definition 12 
execution 13,22-25 

Loader 14 
loader listings 32-35 
Loader options 61-62 
loader return codes 14 
Loading 25-27 
lCNG 59 
LRECL 64 

Machine configuration 14-15 
Main storage requirements 14-15 
MAP 32,60,61 

98 

Mathematical routines 46 
MOD 66 
Module map 32 
MSGCLASS 57 
MSGLEVEL 57 

NCAL 60 
NEW 66 
NOCALL 61 
NODECK 59 
NOLET 61 
NOLCAD 60 
NOMAP 61 
NOPBINT 61 
NOBES 61 
NOSCUBCE 60 
Note table 37 
NOT EST 60 
NULL statement 68 

Object module 
definition 12 
storage requirements 30,31,34 
structure 52-53 

Object-time stack 32 
OLD 66 
Operating system 9 
QUilIM 67 
Output 

compila tion 12 
linkage editing 13 
load module execution 13 
loader execution 14 

Page numbers for output listing 38 
Parameters 

for JOB 57 
for EXEC 59 
for DD 63 

PABM 58,61 
Partitioned data set 11 
PASS 66 
PGM 58 
Positional parameter 56 
positional subparameter 56 
Precompiled procedure 

description 38-39 
inclusion in trace 32 
specifying data set for 17,18 
to use at execution time 23 

PRIN'!" 61 
Priority scheduling 10 
PRIVATE 67 
Private library 68 
PROC parameter in EXEC statement 58 
PBOC statement 68 
PROCEDUBE option 39,59 
processing program 12-13 
procname 68 
procstep 19 
PBOGRAM option 59 
Program block 28-29,30,32 
Program block table 52 
Program execution options 60-61 
progname 55 



I 
~' 
~. 

II f .•. :. 
~ 

o 

o 

• 

o 

Program trace 32,35,60 
PHTY 56 
PUT 24-25 

Queued access language 11 

RECFM 63 
Record 

definition 11 
specification 63 

Record length 21,24,25 
REF 67 
REGION 57,61 
RES 61 
RETAIN 67 
Return codes 

compilation 12 
linkage editing 13 
load module execution 13 
loader execution 14 

REUS 60 
RLSE 65 
ROLL 57,61 
ROUND 65 

SC: see semicolon count 
Semicolon count 23,28-29,60 
SEP 64 
SER 67 
Sequential access 11 
Sequential scheduling 10 
Severity codes 

for compiler 75 
for linkage editor and loader 89 

SHORT 59 
SHR 66 
SIZE 60,61 
SOURCE option 28,60 
Source program 9,16-27,28,33 
SPACE 64-65 
SPLIT 65 
STEPLIB 69 
stepname 58 

storage estimates 
for library routines 47 

storage mapping function 30 
SUBALLOC 66 
Supervisor 10 
SYSCP 64 
SY SDA 64 
SYSIN 20-21,22,25 
SYSLIB 27 
SYSLIN 20-21,22,23,25,27,52 
SYSLMOD 22 
SYSLOUT 25 
SYSOUT 67 
SYSPRINT 18,20-21,22,23,25,27 
SYSPUNCH 20-21,22,52 
SYSSQ 64 
SYSUT1 21,23,24,25,27 
SYSUT2 21,24,25,27 
SYSUT3 21 
SYS1.ALGLIE 23,47 
SYS1.LINKLIB 20,23 
SYS1.PROCLIB 20,48 

Termination 
of compilation 12 
of linkage editing 13 
of load module execution 13 
of loader execution 14 

TEST 60 
TIME 19,58 
TRACE 23,25,32,33,35,60 
TREEG 23,32,33,60 
TREND 23,32,33,60 
TYPHUN 56 

UNCAT1G 67 
UNIT 64 

Volume 10 
VOLUME parameter 

XCAL 60 
XCTL 37-38 
XREF 32,60 

67 

Index 99 



Reader's Comment Form 

OS ALGOL Programmer's Guide GC33-4000-3 

Your comments about this publication will help us produce better publications 
for your use. If you wish to comment, please use the space provided below, 
giving specific page and paragraph references. 

Please do not use this form to ask technical questions about the system or 
equipment or to make requests for copies of publications. Instead, make such 
inquiries or requests to your IBM representative or to the IBM Branch Office 
serving your locality. 

Reply requested 

Yes 0 
No 0 

Name __________________________________________ ___ 

Job Title __________________________________ ___ 

Address ________________________________________ __ 

____________________________ Zip ________________ __ 

No postage necessary if mailed in the U.S.A. 



GC33-4000-3 

YOUR COMMENTS, PLEASE . 

This SRL manual is part of a library that serves as a reference 
source for system analysts, programmers and operators of IBM systems. 
Your answers to the questions on the back of this form, together 
with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons 
responsible for writing and publishing this material. All comments 
and suggestions become the property of IBM. 

Note: Please direct any requests for copies of publications, or 
for assistanqe in using your IBM system, to your IBM representative 
or to the IBM branch office serving your locality. 

Fold 
Fold 

n' 
c 
-I 
» 
r o 
Z 
C) 

-I :r: 
C/) 

c: 
Z 
m 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : 

BUSINESS R EPL Y MAIL 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Attention: Department 813 L 

POSTAGE WILL BE PAID BY ... 

I BM Corporation 

112 East Post Road 

White Plains, N. Y. 10601 

FIRST CLASS 

PERMIT NO. 1359 

WHITE PLAINS. N. Y. 

....................................................................................................................... ,. 

Fold 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
[U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

Fold 

C) 
() 
w 
W 
I 

~ 
8 
I 
W 



IBM Technical Newsletter This Newsletter No. GN12 - 5900 

tBM World Trade Corporation Date September 1, 1972 

Base Publication No. GC33 - 4000 - 3 

File No. S360 - 26 

Previous Newsletters None 

OS ALGOL Programmer's Guide 

© IBM Corp. 1967, 1968, 1969, 1970, 1972 

This Technical Newsletter, a part of as Release 21, ALGOL Compiler (360S-AL-531) and ALGOL Library 
(360S-LM-532), provides replacement and supplemental pages for the subject publication. These pages remain 
in effect until specifically altered. 

Pages to be inserted and/or removed are listed below. 

Replace: 

Remove: 

Add: 

Cover, 2 
5,6 

95 

95,96.1 
96.2,96.3 

A change to the existing text is indicated by a vertical1ine to the left of the change. 

Summary of Amendments 

The replacement pages contain minor changes. Supplemental pages provide information about the as ALGOL F 
Independent Component Release (ICR). 

Note: Please file this cover letter at the back of the publication to provide a record of changes. 

IBM World Trade Corporation, 821 United Nations Plaza, New York, New York 10017 

Printed in U.S.A. 



GC33-4000-3 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10804 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

() 
n 
w 
w 
J 

*" o 
o o 
J 

W 


