

Bytes 1 1 3 3 1
�~�~�~�~�~�

Bit 0 1 2 3 4
T T T T T
X X X X X
W W D D D TXDTYP TXDLEN TXDUPL TXDCON
T L P L L

- I _ I I I I I

Bytes l--L.. 1 1 2
r �,�~�~�(� ,r-"'-

Bit 0 1 2 3 4 5 6 7

I T T T
X X X
D D �~� TXDLNM TXDPTR TXDEXP TXDSCM
S A , y L M
M N D

Figure B5. Type 3 Work Bucket

Bit 4 TXDLAS. Last operand indicator.

Bits 5-7 (Blank).

TXDTYP - Type, translated. See Table B5.

Table B5. DC/DS Type Indicators for Type 3
Work Buckets

Hexadecimal Meaning
Number

00 Character

01 Hexadeci me I

02 Binary

03 Packed

04 Zoned

05 Double precision flooting point

06 Single precision flooting point

07 Full-word fixed point

08 Half-word fixed point

09 MON}
OA Y CON

OB V-CON Address Constants

OC S-CON

Appendix B.

TXDLEN - Total length.

TXDUPL - Duplication factor.

TXDCON - Number of constants.

TXDPTR - Pointer to first byte of operand
in text (relative to beginning of
operand field).

TXDEXP - Exponent.

TXDSCM Scale modifier.

TXDSYM - Symbol work buckets flag.

TXDALN - Alignment

TXDLMD - Length modifier type.

o - Byte
1 - Bit

TXDLNM - Length modifier value.

Special Work Bucket. A special work bucket
is used for TITLE, PUNCH, REPRO, and MNOTE
edited text records

---.-.j - Variable Field

---- Variable Field (Cont'd) ---........

TXOPL

The eight-byte fixed field is the same as
that described under "Edited Text Record
Fixed Field Format." The variable field is
the same as that described under "Edited
Text Record Variable Field Format." How­
ever, in place of an appended fixed field
is a special work bucket, as follows:

Byte Count - The byte count of the edited
operand for punching or printing.

Edited Operand - The punch or print image
in external code constructed from normal
edited text in Phase F7. However, if
PUNCH or REPRO is output in Phase F7,
the byte count of this field is zero.

LTORG Statement Work Bucket.
Bytes 4 4 4 4 4 4 4 4

L8 L4 L2 L1 N8 N4 N2 Nl

Dictionary, Table, and Record Formats 95

L8 - Total length of 8-byte chain.

L4 - Total length of 4-byte chain.

L2 - Total length of 2-byte chain.

Ll Total length of I-byte chain.

N8 Number of entries in 8-byte chain.

N4 Number of entries in 4-byte chain.

N2 Number of entries in 2-byte chain.

Nl Number of entries in I-byte chain.

Tables

Symbol Table

The symbol table is a collection of symbols
and literals with their associated attri­
butes. It is built during Phase F7.

The symbol table remains in core storage
as long as the space allocated will hold it.
It is used by Phase F7, Phase FI, and
Phase F8.

There are two types of entries· in the
symbol table.

1. Name entries.
2. Literal entries.

Name Entries. EQU, CCW, DC, DS, machine
instructions, and LTORG, and external name
entries EXTRN, START, CSECT, and DSECT.

Bytes

Adjective code -

96

Bit 1 Not used.

Bit 2 1 - Pointer present.

Bit 3 1 - XD complete (external
definition)

Bit 4 1 - LD complete (label
definition)

Bit 5 1 - Defined in DSECT or COM.

Bits 6-7 External symbol dictionary
type

00 - CSECT
01 - EXT·RN
10 - DSECT
11 - NAME

Value - present only in name entries.

Length -' present only in name entries.

Chain pointer - present only when a symbol
with the same hash has been previously
entered in the table. This pointer is
the address of the previous entry.

Literal Entries.

Bytes

Bytes

Bytes

Dup.
factor

Work
bucket
count

Variable

6

2

Displace­
ment

.--__ -"A. ___ "'"'

External Symbol Dictionary

Length
modifier
value

External symbol dictionary items are gen­
erated by START, CSECT, private code, COM,
DSECT, external dummy sections, ENTRY,
EXTRN, and V-type DC instructions. Formats
are described below.

Control Sections (CSECT) and External
References (EXTRN).

Bytes 3

External Symbol
Dictionary 10

Entry Definitions.

Bytes 3 2

3 8

Name, padded
translated

Label
Definition 10

8

Flag - Set to 1 to indicate .completion of
the item.

Label definition ID - External symbol
dictionary ID of the containing control
section.

External Dummy References (ENTRY).

ESDNO - Used to refer to the DSECT if this
item was generated by a Q-type address
reference to a DSECT. It is zero if the
item was generated by a DXD instruction.

Alignment - One less than the number of
bytes in the unit of alignment,. e.g.,
7 for double word alignment.

Literal Base Table Entries

ESD/ID - The external symbol dictionary ID
number of the control section where the
literal pool is located.

Location - This is the relative address ob­
tained from the statement work bucket
attached to the associated LTORG
statement.

Cross Reference Dictionary Entries

Bytes 8 2 2 3

FLAGA -

F016 - Base symbol (type 1)

Fl16 - Reference to symbol (type 2)

F216 - Multiply defined symbol (type 3)

FLAGB -

° - Absolute value

Not ° - External symbol dictionary ID

PHASE FI

Literal Adjustment Table

Bytes 1 3

I ~~ I A

ESD
ID

3

B
ESD
ID

3

c ESD
ID

3

ESD/ID - External symbol dictionary identi­
fication of the 3 bytes that immediately
follow this byte.

A - The adjusted assembler address of the
beginning of the 8-byte string of
literals whose pool is described by
this table.

B - Same as A, except as applicable to the
4-byte string.

C - Same as A, except as applicable to the
2-byte string.

D - Same as A, except as applicable to the
l-byte string.

NO~D: There is one such table for each
LTORG statement or for the END assembler
instruction in the program.

Trailer - Indicates the end of the literal
adjustment table. This format is as
follows:

Bytes
~--------'----------r--------~~------~

7 F 7 F 7 F 7 F

PHASE F8

Relocation Dictionary Entries

Appendix B. Dictionary, Table, and Record Formats 97

Table ID - Each group of 20 RLD entries is
preceded by a I-byte table identifier
of '08'.

Position ESD/ID - Number of the control
section where the address constant is
located.

Relocation ESD/ID - Number of the control
section where the symbol is defined.

Flag -

Bits 0-1 00

Bits 2-3 00 - A-, Y-, and Q-type
address constants.

01 - V-type address constant.
11 - CXD.

Bits 4-5 Length of address constant
minus one (L-l)

98

Bit 6

Bit 7

External symbol dictionary
(ESD) ID sign.

a - plus (+)
1 - minus (-)

a - next entry on the same card
has the same position ID
and the same relocation ID.

1 - next ent~y on the same card
has a different position
ID and/or relocation ID.

NOTE: There is no carry-over from card
to card. That is, the last entry on a
card always has a 1 in bit position 7
even if the first entry on the next card
has identical position ID and relocation
ID fields.

Symbol address - Assembler assigned address
of a symbol used in A-, Y-, or V-type
address constants, or of the second
operand of CCW.

Macro Instruction

GET

PUT

READ

WRITE

Reads logical records from files
organized by the file definition
macro instruction.

Writes logical records into files
organized by the file definition
macro instruction.

Reads the next sequential physical
record from a file organized by
the file definition macro DTFMT
(define the file for magnetic
tape) .

Writes a physical record or a
portion of a physical record onto
a file organized by the file
definition macro DTFMT.

NOTE: DOS with TWFs uses DTFMT and DOS
with DWFs uses DTFSD.

CHECK

NOTE

Waits (if necessary) for the com­
pletion of a READ or WRITE opera­
tion and detects errors and
exceptional conditions.

Obtains the relative position of
the last physical record that was
read or written from a specified
file.

APPENDIX C. CONTROL PROGRAM SERVICES

Macro Instruction

POINTR

POINTW

POINTS

OPEN

CLOSE

FETCH

LOAD

CNTRL

Repositions a file so that the
next read operation involves a
record previously identified by
a NOTE macro instruction.

Repositions a file so that the
next write operation involves
a record previously identified
by a NOTE macro instruction.

Repositions a file to the first
record.

Makes a file available for use.

Makes a file unavailable for use.

Loads and transfers control to
another phase of the assembler.

Loads a phase or program segment
and returns control to the caller.

Performs certain physical, non­
data operations on the device as­
sociated with the specified file,
e.g., rewind file.

Appendix C. Control Program Services 99

APPENDIX D. ASSEMBLER ORGANIZATION

The physical organization of the assembler
differs somewhat from the logical organi­
zationdescribed in this manual. This
appendix summarizes the physical organiza­
tion of the assembler and correlates it
with the logical organization.

The first eight bytes of each core image
phase is the phase identifier. It indicates
the phase, version number, and level number
of the assembler.

Table Dl is an annotated Linkage Editor
map. It was produced by a DOS system with
a 10K supervisor. Note that the term
"phase", as used throughout the manual,

100

means "logical phase". To DOS however,
a phase is a unit of code -- consisting
of one or more Relocatable Library modules
-- which exists in the Core Image Library.
The Linkage Editor map shows the core
-image phases and CSECTS which make up the
assembler, the overlay structure, and the
relationship of logical phases and physical
structure.

Table D2 is a storage allocation map
which shows the relative location of the
CSECTs, dictionaries and tables, and
buffers. It also illustrates the overlay
structure of the assembler.

Table Dl. Annotated Linkage Editor Map
)

JOB LINK 12114/67

ACTION
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST

TAKEN MAP
INCLUDE IJYASM

PHASE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
PHASE
INCLUDE
PHASE
INCLUDE
PHASE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
PHASE
INCLUDE
INCLUDE
PHASE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
PHASE
INCLUDE
INCLUDE
PHASE
INCLUDE
ENTRY

DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT

ASSEMBLY,S,NOAuro
IJYFO,IIJYFORTO,IJYFOMTM,IJYFOSDM,IJYFOGIOI
IJYCM
IJYIN
IJYF2
IJYF 1
IJYFO,(IJYFOTDF)
ASSEM3,IJYCMORG,NOAUTO
IJYF3
ASSEM3E,IJYCMORG,NOAUTO
I JYF 3E
ASSEM7,IJYFOGIO,NOAUTO
I JYR TA
I JYF7I
I JYF7E
IJYF7D
I JYF 7X
I JYF 7N
IJYF7V
I JYF7l
I JYF 7G
I JYF7C
I JYF7S
ASSEMFI,IJYRTA04,NOAUTO
I JYRTB
IJYFIO
ASSEMF8,IJYFIO,NOAUTO
I JYF81
I JYF Be
I JYF 8M
I JYF8A
I JYF8P
I JYF8D
I JYF8V
IJYF8S
I JYF 8L
IJYF 8N
ASSEMFPP,IJYFIO,NOAUTO
IJYFPP
IJYFD
ASSEMABT,IJYFIO,NOAUTO
IJYABT
I JYF IBGN

Appendix D. Assembler Organization 101

Table Dl. Annotated Linkage Editor Map

Logi'Cal PHASE XfR-AD LOCORE HICORE OSK-AD ESD TYPE LABel LOADED REL-FR CSECT Description
Phase

ASSEMBLY 0085EO 002800 009303 lC 7 2 CSECT IJYfORTO 002BOO 002800 Master Root Segment -- contains utility
ENTRY IJYfOSOl 002820 DTF's (DTFSD) and linkage to phase ABT
ENTRY IJYfOS02 0028B8
ENTRY IJYfOS03 002950
ENTRY IJYfOESW 00l8le
ENTRY IJYfOABT 002808

CSECT IJYfOSOM 002C08 002800 Disk work file I/o logic module (SDMODW)

FO
CSECT IJYfOMTM 0029E8 002800 Tape work file I/O logic module (MTMOD)

eSECT IJYfOGIO 002f88 002800 Macro Generator I/o interface routines
ENTRY IJYfOCHK 002fEO
ENTRY IJYfONTE 003092
ENTRY IJYfOPTR. 003040
ENTRY IJYFOPTW 003004
ENTRY IJYFOREO 002FB4
ENTRY IJYFOWRT 00lF88

eSECT IJYFOTOF 009320 008A48 Alternate tape work file DTF's (DTFMT)

FCOM{ eSEeT IJYCMeOM 003008 003008 Macro Generator Common -- contains
ENTRY IJyeMORG 003130 common constants and communications

work area

{
eSEeT IJYINIPT 003e18 003C18 SYSIPT DTF (DTFCP)

ENTRY IJYINBfl 003C94

FIN eSECT IJJCP02 003038 003C18 SYSIPT I/O logic module (CPMOD)
ENTRY IJJep03 003038

eSECT IJYINLIB 003E38 003e18 SYSSLB I/O logic (DTFSL)

{
CSECT IJYF2EOT 004178 004178 Input and mocro editing

ENTRY IJYF2GLO 007908
F2 ENTRY IJYF2EOe 006148

ENTRY IJYf20Cl 007200
ENTRY IJYF2EOF 0071E6
ENTRY IJYF2GSC 00757E

F 1 (eSECT I JYF lINT 008508 008508 Initialization
ENTRY IJYF IBGN 0085EO

F3 (ASSEM3 003138 003130 004F9F 10 5 2 eSECT IJYF30CJv 003130 003130 Macro generation and conditional assembly

F3E (ASSEM3E 003138 003130 00349F 10 8 CSECT IJYF3EOO 003130 003130 Macro Generator abort phase

ASSEM7 004552 002F88 008C4F 10 8 2 eSECT IJYRTA 002f88 002F88 ACT equates and translate table

eSEeT IJJCPOV 003090 002F88 SYSLNK, SYSLST, and SYSPCH logic
ENTRY IJYRTAOI 003ZAO module (CPMOD); SYSPCH and SYSLNK

RTA ENTRY IJYRTA02 003388 DTF's (DTFCP);utility file I/o routines;

* ENTRY IJJCPOVI 003090 Assembler Control Table (ACT)
ENTRY IJJepOO 003090
ENTRY IJJCPOON 003090
ENTRY IJYRTA03 003420
ENTRY IJYRTA04 004078

CSECT IJYF71 004078 004078 I/O subroutines

eSECT IJYF7E 004C80 004C80 External Symbol Dictionary (ESD)
ENTRY IJYF7E02 004CAC processor
ENTRY I JYF 7E04 004076
ENTRY IJYF1E05 004E48
ENTRY IJYF7E07 004F3A
ENTRY IJYF7E08 004FCE
ENTRY IJYF7E06 004FOE
ENTRY IJYF7E09 005010
ENTRY IJYF1ElO 0050FA
ENTRY IJYF7Ell 005158
ENTRY IJYF7ElZ 005lE8

F7 ENTRY IJYF7E03 004004
ENTRY IJYf7EOI 004C80
ENTRY IJYF7El3 005Z38

eSECT IJYF70 005628 005628 DC/DS evaluation routine

eSECT IJYF7X 006498 006498 GET statement

CSECT IJYF7N 006EE8 006EE8 AUTO TEST processor

CSEeT IJYF7S 008910 008910 Symbol Table Processor
ENTRY IJYF7SNO 008C50
ENTRY IJYF1S0l 008910
ENTRY IJYF1S0Z 008916
ENTRY I JYF 7S03 008AEC

102

Table Dl. Annotated Linkage Editor Map

Logical
Phase PHASE XFR-AD LOCORE HICORE OSK-AO ESD TYPE LABEL LOADED REl-fR CSECT Description

• CSECT IJYF1V 0011B8 0071B8 Expression evaluation routine
I

t CSECT IJTf7L 001,0.68 007A68 En:or logging ioutins
F7

CSECT IJYF7G 007B38 007B38 Literal DC generator

CSECT IJYF7C 007C30 007C30 Mainline control routine

{ ASSEMFI
0041A8 004078 006AOF IE 5 2 CSECT IJYRTB 004078 004078 RTB -- contains SYSLST DTF (DTFCP)

ENTRY IJYRTBOI 004100 and output routine
FI ENTRY IJYRTB02 00435C

CSECT IJYFIO 0041AO 0047AO ESD writing routine

ASSEMF8 004B94 0047AO 009393 IE 9 1 CSECT IJYF8I 0047AO 0047AO Initialization and I/O routines

CSECT IJYF8C 004078 004078 Mainline control routine
ENTRY I JYF 8COl 004FA4

CSECT IJYF8M 005140 005140 Machine operation processor
ENTRY IJYF8MOI 005748
ENTRY IJYF8M02 005926

CSECT IJYF8A 0050E8 0050E8 Assembler operation processor
f:NTRY IJYF8AOl 006658

CSECT IJYF8P 00l?978 006978 Listing and object deck output
ENTRY IJYF8P03 007150 routine
ENTRY IJYF8P02 006FBE

F8 ENTRY IJYF8P04 0073AF
ENTRY IJYF8POI 006C12

CSECT IJYF80 007158 007158 DC evaluation routine
ENTRY IJYF8001 00814E
ENTRY IJYF8002 0082BC

CSECT IJYF8S 008COO 008COO Symbol Table subroutine

CSECT IJYF8V 008458 008458 Expression evaluation subroutine

CSECT IJYF8L 008090 008090 Log error subroutine

CSECT IJYF8N 008E60 008E60 F looting/fixed-point conversion routine

CSECT IJYF8P05 0075C8 006978 Output routine constants

{ ASSEMFPP 0047A8 0047AO 009AIF IF 5 I CSECT IJYFPP 0041AO 0047AO Cross-Reference and RLD pfocessor

FPP CSECT IJYFO 008270 008270 Error record processor
ENTRY IJYFOENO 009A20

{ ASSEMAST 0041A8 0047AO 0040C6 20 1 2 CSECT IJYABORT 0047AO 0047AO Assembly abort routine and Syslog DTF
(DTFCN)

ABORT CSECT IJIM0012 004C20 0047AO DTFCN logic portion

CSECT IJJCPOIN 004C40 0041AO SYSLST I/O logic module (CPMOD)

Appendix D. Assembler Organization 103

Table D2.

DURING
FI

IJFORTO
IJYFOSDM
IJYFOMTM

IJYFOGIO

IJYCMCOM
IJYCMORG

IJYINIPT
IJJCPD2
IJYINLIB

IJYF2EDT

IJYFllNT

IJYFODTF

BUFFER 1

BUFFER 2

Storage Allocation Map

DURING
F2

IJYFORTO
IJYFOSDM
IJYfOMTM

IJYFOGIO

IJYCMCOM

IJYINIPT
IJJCPD2
IJYINLIB

IJYF2EDT

GLOBAL
AND lOCAL
DICTIONARY
WORK SPACE

BUFFER 1

BUFFER 2

DURING
F3

IJYFORTO
IJYFOSDM
IJYFOMTM

IJYFOGIO

IJYCMCOM·
(partial)

IJYF3000
OR

IJYF3EOO

GLOBAL
AND

lOCAL
DICTIONARY

WORK
SPACE

---£,.o-t...-z.-.

BUFFER 3

BUFFER 4

BUFFER 1

BUFFER 2

IJYlS T

DURING
F7

IJYFORTO
IJYFOSDM
IJYFOMTM

IJYRTA
IJJCPDV

F7

BUFFER 1

BUFFER 2

BUFFER 3

BUFFER 4

ERROR BUFFER
lBT

ESD SEG.RES.TBl

SYMBOL
TABLE
8.7 K
MIN.

--....
..... ..-..-

PPEND"--____ .l...-___ ----I
PPEND '-------' PPEND "--___ --J

NOTES:

3625 Bytes -- Max. Buffer Size

64K Bytes -- Max. Dictionary or-.:! Table Sizes

PPEND -- Upper limit of core available to Assembler

104

DURING
FI

IJYFORTO
IJYFOSDM
IJYFOMTM

IJYRTA
IJJCPDV

IJYRTB

ADJUSTMENT
TABLE

IJYFIO

LBT
ESDSEG.RES.TBL

SYMBOL
TABLE

"~.~

PPE ND i--___ --J

DURING
Fa

IJYFORTO
IJYFOSDM
UYFOMTM

IJYRTA
IJJCPDV

IJYRTB

Fa

BUFFER 1

BUFFER 2

SYMBOL
TABLE

DURING
FPP

IJYFORTO
IJYF OS DM
UYFOMTM

IJYRTA
IJJCPDV

IJYRTB

IJYFPP

IJYFD

XREF
SORT

BUFFER

V1-.~

n

DURING
ABORT

IJYFORTO
IJYFOSDM
IJYFOMTM

IJYABORT
UZMOO12
IJJCPDIN

APPENDIX E.

HASH TABLE

A hash table is used by the assembler for
inserting or locating variable or fixed­
length record entries in dictionaries and
symbol tables. A hash table consists of
fixed-length address entries (called point­
ers) which point to locations in the dic­
tionaries/tables. The range of the hash
table is the number of such pointers that
can be placed in the space reserved for the
table. When it is desired to make an entry
in the dictionary/table, e.g., enter a
global symbol declarat'ion, or to locate an
entry in the dictionary/table, e.g., to ob­
tain the relative address of a symbol, the
associated symbol or other datum must first
be randomized to prod~ce an index number.
This is called hashing. (Operation codes
are included in the generation of index
numbers for the macro dictionaries.) The
randomizing algorithm is such that the re­
sulting index number will be a whole number
between zero and the hash table range,
minus one. This index is then used
to index into the hash table and inspect
the associated pointer (address entry) in
the hash table. This entry will be zero
until a record entry, randomizing to this
index number, has been entered in the
dictionary/table. Records are entered in
the dictionary/table sequentially, and a
dictionary/table pointer, containing the
next available address, is used for in­
serting new records. Several different
data (called synonyms) may randomize to the
same index number. Because this index num­
ber points to an associated entry in the
hash table where only one address can be
stored, chaining must be used to enter or
locate the synonym records.

CHAINING

Chaining is a technique whereby an entry
to one record points to the next record,
and so on. Forward chaining and backward
chaining are the two types of chaining
used by the assembler.

In forward chaining, a hash table pointer
entry points to the first entry of a chain.
The first field of each entry contains a
chaining address pointing to the next entry
in the chain. The last entry in each chain
has all zeros in the chaining address field.

In backward chaining, a hash table point­
er entry points to the last entry of a
chain. The first field of each entry con­
tains a chaining address pointing to the

DICTIONARY AND TABLE CONSTRUCTION TECHNIQUES

preceding entry in the chain. The first
entry in each chain has all zeros in the
chaining address field, or, in certain
applications, the pointer field is
eliminated in the first entry.

Forward Chaining Techniques

The symbol, literal, or other datum whose
record is to be entered is hashed to obtain
an index number. This number is used to
point to the associated address entry in
the hash table. The hash table entry will
be zero if no other item has yet hashed to
the same index number, i.e., this is the
first record entry for this index number.
If th1s is not the first entry to this
index number, the hash table will contain
the address of the first record entered in
this chain. The record at that address
will be checked for duplication. If there
is no duplication, the content of the chain
pointer field is checked in the record. This
pointer will be either a chaining address
pointing to the location of the next record
in the chain, or zero. Zero indicates that
this is the last (or only) record in the
chain. If the pointer field contains a
chaining address, the next record is check­
ed for duplication. Again, if there is no
duplication, it is checked for a zero chain
pointer (zero = last record in the chain).
The scan is continued in this manner until
a duplication is found, when the procedure
is terminated without making a new entry,
or until a zero pointer is reached, in
which case the new record is entered in
the dictionary/table. In the latter case,
the zero pointer is replaced with the
address of the dictionary/table pointer,
i.e., the address of the next available
dictionary/table location, the new record
is entered at this location with a zero
pointer, and the dictionary/table pointer
is updated with the length of the current
entry.

The procedure used to locate records in
the dictionaries/tables is the same as
entering, except that when the compared
records are equal, the pertinent informa­
tion is extracted, or the value informa­
tion is inserted, as the case may be. See
Figure EI.

Backward Chaining Techniques

The record to be entered is hashed to an
index number. This index number is used

Appendix E. Dictionary and Table Construction Techniques 105

hashed
SYMBOL = "IDENTIFY" ~ INDEX NUMBER = 5 ----,

DICTIONARY POINTER

~
HASH TABLE

AAA

AAA~

~DEF

Figure El. Hash Table and Forward Chaining

to point to an associated address in the
hash table. The hash table entry will be
zero if no other record has yet hashed to
this index number. If this is not the
first entry, the hash table will contain
the address of the last record entered,
i.e., the most current entry. The record
at this address will be checked for dupli­
cation. If there is no duplication, the
content of the record's chain pointer field
is checked. This chain pointer field con­
tains the address of the previous entry in
the chain, or zero, if it is the first (or
only) entry in the chain.

The chain is scanned starting with the
last entry and continuing through the
first entry, or until a duplicate record
is encountered. In the latter case, the

106

ABC I First Record

BCD I Second Record

ABC~

000 I Third Record

BCD~

scan is terminated and the record is not
entered. If there is no duplication, the
address of the last record in the chain is
placed in the chaining address field of
the record entered. The address of the
dictionary/table pointer, i.e., the address
of the next available location in the
dictionary/table area, replaces the pointer
in the hash table, and the record is in­
serted at this address in the dictionary/
table.

The dictionary/table pointer is updated
by the length of the record just stored to
indicate the new available storage address.

The procedure to locate records in the
dictionaries/tables is the same as enter­
ing, except that when the compared records
are equal, the pertinent information is

extracted, or the value information is
inserted, as the case may be. See Figure
E2.

Chaining Usage

In Phase F2, forward chaining is used in
building the global dictionary. However,
in addition to the many forward chains
created, all macro name entries in the
global dictionary are linked together
by backward chaining. Therefore, each
macro entry has two pointer fields. The
first field points forward to the next
record in the chain, which originated

hashed
SYMBOL = "IDENTIFY" ~ INDEX NUMBER = 5---,

HASH TABLE

BCD

AAA~

~DEF'

Figure E2. Hash Table and Backward Chaining

from the same hash table pointer, and the
last field points backward to the preceding
macro entry in the macro chain. The first
macro entry in the macro chain has a zero
macro chain pointer.

Backward chaining is also used in Phase
F2 to built local dictionaries.

In Phases F7 and FB, the symbol table
area is shared by symbols and literals
in a random fashion. Symbol.entries are
reached through pointers located in the
symbol hash tab.le and are chained backwards.
The first symbol entry has no pointer
field. Literal entries are reached th:!:''='1.!';rh
the literal hash table and are chained
forward.

First Record I 000

Second Record I AM

ABC~

Thi rei Record I ABC

BCD~

Appendix E. Dictionary and Table Construction Techniques 107

APPENDIX F. INTERNAL ASSEMBLER CODE TABLE

All characters in source statements are
translated to an internal hexadecimal
coding. Translation is done to facilitate
comparisons and some arithmetic operations
and to obtain a degree of character set
independence.

The internal language is translated
back to external code before output. Bit
configurations not representing DOS/360
Assembler Language characters, e.g., valid
overpunch characters in fields PUNCHed or
REPROed, are not affected by the trans la-

Standard Machine Internal Standard Machine Internal

Graphic Hexadecimal Graphic Hexadec i ma I

Symbol Code Symbol Code

0 00 Q lA

1 01 R 18

2 02 S lC

3 03 T lD

4 04 U IE

5 05 V iF

6 06 W 20

7 07 X 21

8 08 y 22

9 09 Z 23

A OA $ 24

8 08 11 25

C OC @ 26

D OD + 27

E OE - 28

F OF * 29

G 10 / 2A

H 11 I
28

I 12 = 2C

J 13 & 2D

K 14 2E

L 15 (2F

M 16) 30

N 17 , 31

0 18 blank 32

p 19

108

tion. (They are translated into themselves.)
See Table, below.

Application of the translate table also
allows the user to assemble programs written
in other than DOS/360 Assembler Language
by providing a different translate table
for the conversion.

The collating sequence of the internal
language differs from the standard collating
sequence. In the standard collating sequence,
numeric values are higher than alphabetic
or special characters.

These switches are set in the code of the
macro generator and assembler phases.
Thev do not appear in any dictionaries,
tabies, or records. -

PHASE F3 SWITCHES

MISWIT

Bit No. Hex. Sw.

o
1

2

3
4

5

6

7

SWITCH

X'80'
X'40'

X'20'

X'lO'
X'08'

X'04'

X'02'

X'Ol'

Bit No. Hex. Sw.

Not used
o - Do another pass on

macro instruction
operands

1 - 2nd pass completed
on macro instruction
operands

1 - Macro instruction
being processed

1 - Entry is a sublist
o - Entry is to be made

from prototype
1 Entry to be made

from macro instrucion
1 - Nest aborted; no

room to store
1 - Macro aborted during

build of parameter
table

1 - Max. record exceeded
(used by WRITE rou­
tine)

2 X'20' 0 - NOTE in IOMAC Routine
1 - No need to NOTE in

IOMAC routine
4 X'08' 0 - Use PNTR in IOMAC

routine
1 - Do logical POINTW in

IOMAC routine
7 X'Ol' 1 - End of Expr. 1 or

NESTSW

Bit No. Hex. Sw.

Expr. 2 of substring
has been reached

6 X'02' 1 - Set when a new block
has been read when
processing a macro
instruction.

7 X'Dl'

SUBSW

Bit No. Hex. Sw.

6 X'02'

7 X'Ol'

MODESW

Bit No. Hex. Sw.

o

1

2

3

4

5
6
7

X'80'

X'40'

X'20'

X'lO'

X' 08'

X'04 '

X'Ol'

APPENDIX G. SWITCHES

1 - Macro instruction
mode - set when a
macro instruction is
encountered so that
nesting may be
recognized.

1 - Set when MODESW has
been saved. Char.
or arith. mode must
be saved when a sub­
scripted left paren­
theses is encountered
so that this mode may
be restored after the
subscript dimension
is computed.
This must always be
initialized to the
value of 1, used when
original MODESW is
restored.

1 - SYSLST to provide
alternate to symbolic
parameters

1 - 2 expressions in
SYSLST

1 - Concatenation has
occurred in string
area

1 - Error switch in
substring routine -
signal to use
null string
later on

1 - First time switch -
set after first
char. string
has been placed
in string area

1 - Substring mode
Not available for use
o - arithmetic expr.

mode
1 - character

expression
mode

Appendix G. Switches 109

PHASE F7, FI, Fa AND FPP SWITCHES

Nome Comment Nome Comment --
CTlOC Current location Counter CTPGlNCT Page Line Count
CTSEQN Current Statement Sequence Number CTMRSRTN MRS Return
CTlEN Current Statement length CTZERO Two Full Words of Zeroes
CTiTlE First Title Nome, Opnd.len, Opnd.Ptr. CTWORK 256 Byte Work Area
STVAlU Value For STPUT Entries CTONWP Next Write Pointer On OVF 1
CPRIME Prime Divisor For Symbol Table CTRXF First XRF Block PTR On OVFl
CSTVAl Value From START card CTRlBT First lBT Block PTR On OVF 1
CTXlEN Text Block length CTRERR First Error Block (PH8)
CNOESD Number of ESDs CTCXRF XRF Block Count
CENTCT Number of Entries CTClBT LBT Block Count
CLASID Lost ID CTCRLB RLD Block Count
CTNDID Next DSECT ID CTCERR Error Block Count (PH8)
CESDNO Current ESD Number CTCLAT LAT Block Count On OVF2
CSGCTR ESD Resident Segment Counter CTLALN LAT Length Indicator
CPCNO Private Code ESD Number CTUTA Current Literal Pool String Lengths
CCMNO Common ESD Number CTlITB Current Literal Pool String Counts
STLONG Length Attribute For STPUT Entries CTXSAV
ESSGSZ ESD Segment Size CTFSTN ESD No. of First CSECT
CESDID Current ESD ID CTDATE Dote For Listing
CTPCSW Private Code Switch CTLINECT Print-Line Count
CTCMSW Common Switch CADJTB Adjustment Table Bose
CFSTID First CSECT ID RR2SWH RR2 Instruction Type Switch
CTYPE Current CSECT Type
CTUT2 LTORGOr END Cord Switch ERSWH ERROR Switch

ESDID Assigned ESD ID SPACSW SPACE Switch

ADJCOD Adjective Code EJCTSW EJECT Switch
CTAUN Alignment Code O-B, 1-H,3-F;7-D REPSW REPRO Switch
CTiTSW Iteration Switch CCRDCT Cord Count
CTPDS1 Defined Symbols Req. For IEUF7V CTLATL Literal Adj. Tab Lost Byte + 1
CTCLSI First Pass Indicator ENDSWH END Switch
CTLIT! Literal Pool Complete During Subst. FBOPRN Operand Pointer
CTERRI Error Record Indicator CTLATB
CTPH7C Phose F7 Complete Indicator F8CADJ Current Adjustment
CTSYMF Symbol Table Full Indicator AlIGN4 For AI igning
CTPCHI Punch Option Indicator FSALLB Full Word Of Bits
CTCGOI CGO Option Indicator F83BYT 3 Bytes Of Bits, Low Order
CTiTU First Title Processed Indicator F82BYT 2 Bytes Of Bits, Low Order
CTlSTI List Option Indicator F81BYT 1 Byte Of Bits, Low Order
CTGENI List Gen.Option Indicator FSPON Print Option ON-OFF Switch
CTERlI List Error Option Indicator FSPGEN Print Option GEN-NOGEN Switch
CTXRFI X-Ref. Option Indicator FSPDAT Print Option DATA-NODATA Switch
CTTSTI TESTRAN Option Indicator F8ZERO One Full Word Of Zero
CTSDVI Self Defining Value Indicator F81NST 16 Byte Instruction Bldg. Area
CTLCRI Location Counter Reference Indicator F8ZRO One Full Word Of Zero
CTMODE fv\ode Indicator PYRSW
CBDNO Blank DSECT ESD No F8YDC
CBDSW Blank DSECT 10 No CTESRN ESD Seg.Count

110

The terms in this glossary are defined
relative to their use in this publication
only. These definitions may differ from
those in other publications.

Assemble: To prepare an object language
program from a symbolic language pro­
gram by substituting machine operation
codes for symbolic operation codes and
absolute or relocatable addresses for
symbolic addresses.

Assembler Operation Code: A hexadecimal
one-byte code assigned to all assembler
instructions by programming systems
for internal use.

Attributes: Characteristics of certain
elements in statements processed by the
assembler. There are six attributes:
type, length, scaling, integer, count,
and number. The macro generator proces­
ses all of them; the assembler portion,
only the length attribute.

Concatenation: The process of linking to­
gether, or chaining, or joining.

Conditional Assembly: The selective as­
sembly of those source language state­
ments that satisfy predetermined con­
ditions, e.g., tests of values that may
be defined, set, or changed during ~he
course of the assembly procedure. The
conditional assembly precedes the
regular assembly procedure. Conditional
assembly allows a programmer to specify
assembler language statements which may
or may not be assembled depending on
conditions evaluated at assembly time.

Control Program: A collective term for the
operation and resource controlling rou­
tines of the operating system.

Control Section: The smallest separately
relocatable program unit, always loaded
into a contiguous main storage area. A
control section is an entity. Its name,
if there is one, is defined by a CSECT
or START statement.

Core Image Module: An executable logical
unit of coding. It is the output of the
linkage editor in a format suitable for
loading into main storage.

Data Set: A named collection of data.

Device Independence: The ability to request
input/output operations without regard

APPENDIX H. GLOSSARY

to the characteristics of the input/
output devices.

Direct Access: Retrieval or storage of data
by a reference to its location on a vol­
ume, rather than relative to the prev­
iously retrieved or stored data.

DTF (Define The File) Table: A region in
storage used for communication between
the source program, the control program,
and the access routines. A control
block containing information for access
routines pertinent to data storage and
retrieval.

Edited Text: Source text with appended worK
and code fields which map and describe its
attributes.

External Symbol Dictionary: Part of an
object or load module that identifies
external names (control sections, ENTRY
statements, common areas, and private
codes) and external references (EXTRN
statements and v-type address constants)
occurring in the module.

External Symbol Dictionary Identifier (ESD­
ID): A one-byte number identifying a
control section or other external symbol
dictionary entry.

Global Dictionary: A core storage resident
table containing machine and assembler
operation codes, macro mnemonics, and
global variable symbols.

Global Variable Symbols: Global SET sym­
bols (the only type of global variables)
that communicate values between state­
ments in one or more macro definitions
and statements outside macro definitions.

Hashing: Generating an address between two
limits by randomization.

Hash Table: A table, accessed through
generated numbers (i.e., randomization),
pointing to entries in a dictionary or
table.

Inner Macro Instruction: A macro instruc­
tion used as a model statement in a
macro definition.

Linkage Editor: A program that produces a
load module from object and/or load
modules. The output load module is in
a format suitable for loading and
execution under the control of the
control program of the operating system.

Appendix H. Glossary III

Literal: A representation of a constant
which is entered into a program by
specifying the constant in the operand
of the instruction in which it is used.
The assembler stores the value specified
by the literal in a literal pool, and
places the address of the storage field
containing the value in the operand
field of the assembled source statement.

Literal Pool: A portion of the object pro­
gram containing literals processed by
the assembler.

Local Dictionary: A table containing
sequence symbols, ordinary symbols,
local SET symbols, and macro instruction
parameters.

Local Variable Symbols: Symbols that com­
municate values between statements in
the same macro definition, or between
statements outside macro definitions.
The following are local variable symbols:

1. Symbolic parameters
2. Local SET symbols
3. System variable symbols

Logical Record: A record from the stand­
point of its content, function, and use
rather than its physical attributes;
i.e., one that is defined in terms of
the information it contains (contrasted
with Physical Record).

Macro Definition: A set of statements that
provides the assembler with the mnemonic
operation code and the format of the
macro instruction, and the sequence of
statements the assembler generates when
the macro instruction appears in the
source program.

Macro Instruction: A source program state­
ment for which the assembler generates

112

a sequence of assembler language state­
ments. Three types of macro instruc­
tions may be written:

1. Positional - operands in fixed order.
2. Keyword - operands in variable order.
3. Mixed-mode - combination of above.

Macro Instruction Prototype: The second
statement of every macro definition; it
specifies the mnemonic operation code and
the ~ormat of all macro instructions that
refer to the macro definition.

Main Storage: All addressable storage from
which instructions can be executed or
from which data can be loaded directly
into registers.

Model Statements: The macro definition
statements from which the desired se­
quences of assembler language statements
are generated.

Module: A logical unit of coding that per­
forms a function or several related
functions.

A source module is a set of source
language statements prepared for input
to a language translator.

An object module is the output of a
language translator (e.g., assembler).
It is a machine language program in re­
locatable format. A load module is the
output of the linkage editor. It is in
relocatable and executable format.

A module is composed of one or more
sections (see Control Section).

Object Program: A machine language pro­
gram which is the output after trans­
lation from the source program.

Open Code: All source statements except
those generated from macro definitions.
Open code is read from SYSIPT.

Ordinary Symbol: One alphabetic character
followed by zero through seven alpha­
meric characters.

Outer Macro Instruction: A macro instruc­
tion that is not used as a model state­
ment in a macro definition.

Overlay: A section of a program loaded into
main storage, replacing all or part of
a previously loaded section.

Physical Record: A record from the stand­
point of the manner or form in which it
is stored, retrieved, and moved; i.e.,
one that is defined in terms of physical
qualities or is meaningful with respect
to access (Contrasted with Logical
Record) •

Pointer: An address used to point to a
table, dictionary, or data set entry.

position Identifier: A two-byte value
specifying the sign and external symbol
dictionary identifier (ESD-ID) of the
control section in which a relocatable
constant occurs.

Prototype Statement: See Macro Instruc­
tion Prototype.

Record: A general term for any unit of
data that is distinct from all others
when considered in a particular context.

Relocation Dictionary (RLD): Part of an
object or load module produced by the
assembler that identifies address con­
stants in the module.

Relocation Identifier: A two-byte value
specifying the sign and external symbol
dictionary identifier (ESD-ID) of an
item referenced by a relocatable constant.

Source Program: A series of statements in a
source language that is input to the
translation process.

Subsetted Global Dictionary: The global
dictionary -- passed to Phase F3 -­
which contains only global variable
symbols. The machine and assembler
operation codes and the macro names are
no longer needed and have been removed.

Subsetted Local Dictionary: A local
dictionary -- passed to Phase F3 after
it has been sorted on the little "a"
pointer and the symbols, big "A" pointer,
and little "a" pointer have been re­
moved.

Synonyms: Two or more symbols that result
ln the same address when they are hashed
by a hashing routine.

System Macro Instructions: Macro instruc­
tions that correspond to macro defini­
tions prepared by IBM.

Test Translator (AUTOTEST): A facility
that allows various debugging procedures
co be specified in assembler language
programs.

Utility Data Set: A data set reserved for
intermediate results.

Variable Symbol: A type of symbol that is
assigned different values by either the
programmer or the assembler, thus allow­
ing different values to be assigned to
one symbol. There are three types of
variable symbols~ symbolic parameters,
system variable symbols, and SET symbols.
Variable symbols consist of an ampersand
followed by an ordinary 1-7 character
symbol.

Work Bucket: Fields attached to certain
types of records for holding internal
information during processing.

Appendix H. Glossary 113

INDEX

"a" pointer 14, 82
"A" pointer 14, 82
Abort Phase (ABT) 41
Assembler

control table 7
data sets 1
internal code 108
options 81
physical organization 7, 100
program and I/O flow 3
purpose 1
system and I/O requirements 1

Assembler Operation Processor 34
Assembly Phases Record Formats 91
Autotest Routine 24

Chaining 105
Code, Internal Assembler 108
Conditional Assembly 18, III
Control Program Services 99
Cross Reference Dictionary 22, 28, 39

97

DC/DS Evaluation Routine (F7) 24
DC Evaluation Routine (F8) 37
Dictionary Construction 105
Dictionaries 8, 82, 105

Edited Text Records 10, 13, 85, 91, III
Error Logging Routine 26
Error Records 11, 13, 86, 91
ESD Processor 24
Expression Evaluation Routine (F7) 25
Expression Evaluation Routine (F8) 38
External Symbol Dictionary 22, 24, 28,

30, 96

FCOM 6, 101
FD 40
FI 7, 30, 101
FIN 6, 101
Final Assembly 32
Floating & Fixed Point Conversion Routine

38
FPP 7, 39, 101
FO 6, 101
Fl 6, 12, 101
F2 6, 13, 101
F3 6, 17, 101
F3E 6, 17, 101
F7 6, 22, 101
F7C 23, 101
F7D 24, 101
F7E 24, 101
F7G 26, 101
F7L 26, 101
F7N 24, 101
F7S 24, 101

114

F7V 25, 101
F7X 23, 101
F8 7, 32, 101
F8A 34, 101
F8C 33, 101
F8D 37, 101
F81 32, 101
F8L 38, 101
F8M 34
F8N 38, 101
F8P 37, 101
F8S 38, 101
F8V 38, 101

23 GET Statement (F7)
Global Dictionary 11, 17, 82, Ill, 113

Hash Table 105

Initial Assembly 22
Initialization 12
Initialization & I/O Routine (F7) 27
Initialization & I/O Routine (F8) 32
Inner Macro Instructions 18, 90, III
Interlude 30
Intermediate Text Records 10, 82
Introduction 1
I/O Flow 3

Phase F2 13
Phase F3 17
Phase F7 22
Phase FI 30
Phase F8 32
FPP 39

Linkage Conventions 7, 8
Linkage Edit M~p 101
Literal Adjustment Table 31, 33, 97
Literal Base Table 28, 30, 97
Literal DC Generator 26
Local Dictionary 13, 17, 82, 112, 113
Log Error Subroutine 38
Logical Record 112

Machine Operation Processor
Macro Editing 13
Macro Generation 2, 17
Macro Generator

abort phase 17
dictionaries 13, 17, 82
evaluation routine formats
record formats 13, 17, 85
subroutines 14, 18

Macro Instruction/Prototype
Mainline Control Routine (F7)
Mainline Control Routine (F8)

Open Code 13, 112

34

90

13, 87, 112
23
33

Options 81
Output Routine 37

Parameter Table, Macro Dictionary
Phase Identifiers 100
Physical Organization 7, 100
Physical Record 112
Post Processor 39
Program Flow 3
Program Levels 7
Programmer Macro Editing 13

Register Assignments 7, 8

Relocation Dictionary 33, 97
RTA 6, 101

84

Source Records 10, 86
Statement Scan 13
Storage Map 104
Subsetted Dictionary 13, 17, 82, 113
Switches 109
Symbol Table 10, 22, 24, 32, 96
Symbol Table Subroutine (F7) 24
Symbol Table Subroutine (F8) 38
System and I/O Requirements 1
System Macro Editing 14

Tables 8, 82, 105
Table Construction 105
Text Stream Scan 13
Theory of Operation 2

Work buckets 93, 113

Index 115

READER'S COMMENT FORM

IBM System/360 Disk Operating System
Assembler [F]

Form Y26-37l6-0

• Your comments, accompanied by answers to the following questions, help us produce better

publications for your use. If your answer to a question is "No" or requires qualification,

please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes No

• Does this publication meet your needs? D D
• Did you find the material:

Easy to read and understand? D D
Organized for convenient use? D D
Complete? D D
Well illustrated? D D
Written for your technical level? D D

• \Vhat is your occupation? _________________________ _

• How do you use this publication?
As an introduction to the subject? D As an instructor in a class? D
For advanced knowledge of the subject? D As a student in a class? D
For information about operating procedures? D As a reference manual? D

Other __ _

• Please give specific page and line references with your comments when appropriate.

COMMENTS

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Y26 ;716-0

YOUR COMMENTS, PLEASE •••

This SRL bulletin is one of a series which serves as reference sources for systems analysts,

programmers and operators of IBM systems. Your answers to the questions on the back of
this form together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and pub­
lishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving

your locality.

fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

AHention: Programming Publications, Dept. 232

fold

POSTAGE WILL BE PAID BY ...

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I06ot
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

FIRST CLASS

PERMIT NO. 2078

SAN JOSE, CALIF.

fold

fold

t. ,.
I
W
'I
01
I o

Y26-3716-0

Inte·rnational Business Machines Corporation
Data Processing Division .
112 East Post Road, White Plains, N.Y.I060t
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[In terna tional]

~
<;\'
w
~
0'1
I o

