File Numb S360-21
Order 1f\?umﬁZr GC24-3414-9 DDS
TOS

Systems Reference Library

DOS and TOS Assembler Language

Release 26

Tenth Edition (July 1972)

This is a reprint of GC24-3414-8 incorporating changes issued
in Technical Newsletters:

GN33-8118, dated October 14, 1971
GN33-8134, dated October 31, 1971

This edition applies to release 26 of Disk Operating
Ssytem and to release 14 of IBM System/360 Tape Operating
System and to all subsequent releases until otherwise
indicated in new editions or Technical Newsletters. Changes
are periodically made to the specifications herein; before
using this publication in connection with the operation of
IBM systems, consult the latest SRL Newsletter, Order No.
GN20-0360, for the editions that are applicable and current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print
chain.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
readers' comments. If the form has been removed, comments
may be addressed to IBM Nordic Laboratory, Publications
Development, Box 962, S-181 09 Lidingo 9, Sweden.

©Copyright International Business Machines Corporation 1968, 1969, 1970, 1971, 1972

This publication is a reference manual
for the programmer using the assembler
language (including macro definitions and
conditional assembly facilities) . This
publication also contains information
peculiar to DOS and TOS for the D and F
assembler.

Part 1 of this publication presents
information common to all parts of the
language. Part 2 contains specific
information concerning the symbolic machine
instruction codes and the assembler program
functions provided for the programmer's
use. Part 3 of this publication describes
the conditional assembler and macro
facilities in the assembler language.

Appendixes A through P follow Part 3.
Appendixes A through F are associated with
Parts 1 and 2 and present such items as a
summary chart for constants, instruction
listings, character set representations,
and other aids to programming. Appendix G
contains macro facility summary charts, and
Appendix H discusses table capacities for
various elements of the language. Appendix
1 is a sample program and assembler listing
description. Appendix J is a features
comparison chart of the 0S assemblers.
Appendix K gives examples of the cards
needed for assembler runs. Appendix L
contains a description of how another
version of the assembler can be included in
the core image library. Appendix M
describes the output produced by the
assembler. Appendix N explains the
diagnostic error messages that can be
issued by the assembler. Appendix O
contains self-relocating program
techniques. Appendix P contains sample
macro definitions.

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

Preface

Prerequisite for a thorough
understanding of this publication is a
| basic knowledge of IBM System/360 machine
instructions. The publications most
closely related to this are:

1. IBM System/360 Principles of
Operation, Order No. GA22-6821.

2. DOS Data Management Concepts, Order
No. GC24-3427, or
IBM System/360 Tape Operating System:
Data Management Concepts, Order No.
GC24-3430.

3. DOS Supervisor and 1/0 Macros, Order
No. GC24-5037, or
IBM System/360 Tape Operating System:
Supervisor and Input/Output Macros,
Order No. GC24-5035.

4. DOS System Control and Service, Order
No. GC24-5036, or
IBM System/360 Tape Operating System:
System Control and System Service
Programs, Order No. GC24-5034.

5. DOS System Generation, Order No.
GC24-~-5033, or
IBM System/360 Tape Operating System:
System Generation and Maintenance,
Order No. GC2u4-5015.

6. DOS and TOS Utility Macros, Order No.
GC24-5042.

Titles and abstracts of other related
publications are listed in the 1BM
System/360 Bibliography, Order
No. GA22-6822,

K "(\\.

_y

PART 1--INTROLCUCTION TO THE ASSEMBLER
IANGUAGE .« ¢ o o o o o o o o o o o o «

SECTION 1: INTRODUCTION . . . o« o« «
Machine Features Required
Compatibility between System/360
Assemblers e e e e o
LOS/TOS Assembler Varlants . .
The DOS/TOS Assemblers and the 0s
Assemblers e e e
The BOS/BPS Assemblers and
LCOS/TOS Assemblers « « . .
The Assembler Language « . .
Machine Operation Codes
Assembler Operation Codes
Macro Instructions
The Assembler Program
The Macro Generation and Cond1t10na1
Assembly Section
The Assembly Section
Programmer Aids- .
Assembler-DOS/TOS Relatlonshlps .

SECTION 2: GENERAL INFORMATION
Assembler Language Coding Conventions
Coding FOXrm . . ¢ ¢ o o o o o « « =
Continuation Lines « « . .
Statement Boundaries
Statement Format . « « « « o .
Summary of Instruction Format
Comments Statements
Identification-Sequence Field
Character Set
Assembler Language Structure . .
Terms and EXpressions . . . « « « « .
TEIMS 2 o o o o o o o o o o o o =
Symbols . <« & ¢ ¢ ¢ 4 4 e e 4 e .
Self-Defining Terms
Location Counter Reference
Literals . . .
Symbol Length Attrlbute Reference
EXPressions . .« « ¢ ¢ ¢ ¢ 4 o o o
Evaluation of Expressions
Absolute and Relocatable
Expressions . . . ¢ ¢ ¢ ¢ + o o .

.
o o 0 4 o

PART 2--BASIC FUNCTIONS OF THE
ASSEMBLER LANGUAGE . . + « « o« o « o =«

SECTION 3: ACLCRESSING--PROGRAM
SECTIONING AND LINKING . « « o ¢ « « &
Addressing
Addresses-—Exp11c1t and Implled .- .
Base Register Instructions
USING--Use Base Address Register .
DROP--Drop Base Register
Programming with the USING
Instruction . . e e e e a4 o e o =
Relative Addre551ng c e e e e e e .
Program Sectioning and linking
Control Sections« « . . .
Control Section Location Assignment

29

31
31
31
31
31
32

33
34
34
34
35

Contents

First Control Section
START--Start Assembly
CSECT--1dentify Control Sectlon
Unnamed Control Section
DSECT--Identify Dummy Section .
COM--Define Blank Common Control
Section

Symbolic linkages . . .
ENTRY--1dentify Entry P01nt Symbo
EXTRN~-Identify External Symkol

Addressing External Control
Section$. . ¢ ¢ ¢ ¢ . . . - .
WXTRN--Identify Weak External
Symbol ¢« . ¢ & ¢ o o . .

SECTION 4: MACHINE INSTRUCTIONS . .
Machine Instruction Statements . . .
Instruction Alignment and Checking
Operand Fields and Subfields . . .
Lengths--Explicit and Implied . .
Machine Instruction Mnemonic Codes .
Machine Instruction Examples . . .
RR Format . « o« o o « o o o « «
RX Format .
RS Format . . « & o « « « =

S1 Format .
SS Format . « <« « ¢ « o o o
Extended Mnemonic Codes

e« o @ @ ® o &

¢ 4 a4 e
.

SECTION S: ASSEMBLER INSTRUCTION
STATEMENTS « ¢ v o o« o o o « o o o o
Symbol Definition Instruction . . .
EQU--Equate Symbol
Data Definition Instructions

DC--Define Constant -
Operand Subfield 1: Dupllcatlon
Factor - « e e e e

Operand Subfleld 2 Type « e e
Operand Subfield 3: Modifiers .
Operand Subfield 4: Constant . .
LS--Define Storage
Special Uses of the Duplication
Factor - -
CCW--Define Channel Command WOrd .
Listing Control Instructions
T1TLE--1dentify Assembly Output
EJECT--Start New Page
SPACE--Space Listing
PRINT--Print Optional Data .
Program Control Instructions .
ICIL--Input Format Control .
ISEQ--Input Sequence Checking . .
PUNCH--Punch a Card
REPRO--Reproduce Following Card .
ORG--Set Location Counter
LTORG--Begin Literal Pool
Special Addressing Consideration
CNOP--Conditional No Operation . .
COPY--Copy Predefined Source Coding
END--End Assembly

e 0 5 0
.

e ¢ o o 4 8

s s & o @

1

« s s 0

46
4e
46
47
47

us
43
ug

58

59
60
60
60
61
61
62
62
63
63
63
6u
64
64
65
65
66
67

PART 3--CONDITIONAL ASSEMBLY AND MACRO
FACILITIES 1IN THE ASSEMBLER LANGUAGE .
Organization of This Part of the

Publication ¢« ¢« ¢ ¢« ¢« & 4 . .

SECTION 6: INTRODUCTION TO THE
CONDITIONAL ASSEMBLY AND MACRO
FACILITIES @ 2 « o o o o o o o o o o« =
The Macro Instruction Statement . . .
The Macro Definition
Source Statement Libraries
Varying the Generated Statements . . .
Variable Symbols . . . « ¢« « ¢ « o .
Types of Variable Symbols
Assigning Values to Variable
Symbols . . . e e e e o s o @
Global SET Symbols e e e e e e o

SECTION 7: HOW TO PREPARE MACRO
DEFINITIONS e« o o e
MACRO--Macro Deflnltlon Header
MEND--Macro Definition Trailer
Macro Instruction Prototype .
Alternate Statement Form .
Model Statements . . . < . . .
Symbolic Parameters ¢ « o«
Concatenating Symbolic Parameters
with Other Characters or Other
Symbolic Parameters . « « « « o«
Comments Statements
COPY Statements . . .+ ¢ ¢ ¢« ¢« ¢« o o«

s 0 s o a2 s

e & o v o

e & 4 ¢ o4 o
s o & 4 o o

SECTION 8: HOW TO WRITE MACRO
INSTRUCTIONS ¢ « o o o o o « o o o o
Macro Instruction Operands .
Statement Form . . . « o« « «
Omitted Operands
Operand Sublists
Inner Macro lnstructions
Levels of Macro Instructions

SECTION 9: HOW TO WRITE CONDITIONAL
ASSEMBLY INSTRUCTIONS . &« o o « o« « &
SET SymbolS .« « « « o o « +
Defining SET Symbols . . .
Using Variable Symbols .« .
Attributes e o o o
Type Attribute (T) I
’

s & o 0

Length (L'), Scaling (S*)
Integer (I') Attributes
Count Attribute (K') « « ¢« o ¢ « « o«
Number Attribute (N') e o o o o o
Assigning Integer Attributes
SYmboOlS ¢ ¢ 4 ¢ o o 4 o o« o o o o @
Sequence SymbOls . . v v ¢ o o ¢ o « &
LCLA ,ILCLB,LCLC--Define SET Symbols . .
SETA--Set Arithmetic
Evaluation of Arithmetic
Using SETA Symbols . . « « « « o «
SETC~--Set Character
Type Attribute
Character Expression . . .
Substring Notation
Using SETC Symbols . . .
SETB--Set Binary o o
Evaluation of Logical Express1ons
'% Using SETB Symbols « « . .

Ve s 0
=]
¢ Qe b s 0

o ¢ o s @
M)
.

.

.

Expressions .

R I Y

e o * 3 0

69
69

71
71
71
72
72
72
72

72
73

74

4
74
75
75
76

717
78
78

83
83
83
83
84
85

85
86
86

86
87
88
88
89
89
90
90
91
91
93
93
94
95

AIF--Conditional Branch
AGC--Unconditional Branch
ACTR--Conditional Assembly Loop Counter
ANOP--Assembly No-Operation
Conditional Assembly Elements

SECTION 10: ADDITIONAL FEATURES .
MEX1T--Macro Definition Exit . . .
MNOTE Statement
Global and Local Variable Symbols -
Defining Local and Global SET Symbols
Using Global and Local SET Symbols .
Subscripted SET Symbols
System Variable Symbols -
£ SYSNDX--Macro Instruction Index .« .
§SYSECT--Current Control Secticn . .
§ SYSLIST--Accessing Positional
Operands in a Macro Instruction .
§SYSPARM - System Parameter for
Conditional Assembly e e e o o o o
Keyword Macro Definitions and
Instructions . « ¢« ¢ ¢ ¢ ¢ 4 4 e . o
Keyword Prototype . « « « o o « &
Keyword Macro Instruction
Mixed-Mode Macro Definitions and
Instructions . . . ¢ ¢ ¢ ¢ ¢ e 4 e o .
Mixed-Mode Prototype < . . .
Mixed-Mode Macro Instruction
Conditional Assembly Compatibility . .

* o 0

P I}

APPENDIX A. EXTENDED BINARY CODEL
DECIMAL INTERCHANGE CODE (EBCLCIC) . .

APPENDIX B. HEXADECIMAL-DECIMAL NUMBER
CONVERSION TABLE ¢« « « o o« o o o o o
APPENDIX C. MACHINE INSTRUCTION FORMAT

APPENDIX
MNEMONIC

D: MACHINE INSTRUCTION
OPERATION CODES . . « « « . .
APPENDIX

E: ASSEMBLER INSTRUCTIONS . .

APPENDIX F: SUMMARY OF CONSTANTS . . .

APPENDIX G: MACRO FACILITY SUMMARY . .
APPENDIX H: DICTIONARY ANL SOURCE
STATEMENT SIZES . ¢« o o = o o o « » =
Part 1. Dictionaries Used In Macro
Generation 4 4 4 4 4 e e o @
Part 2. Macro Mnemonic Table @©
Assembler Only) . . « <« ¢ ¢ ¢ ¢ « o .
Part 3. Source Statement
Complexity--Conditional Assembly
Macro Generation . . <« « ¢« ¢« ¢ ¢ o o =
Part 4. Source Statement
Complexity--Assembler Statements . . .
Part 5. Print Control Statement
Listing Restrictions

APPENDIX I: SAMPLE PROGRAM AND
ASSEMBLER LISTING DESCRIPTION

APPENDIX J: ASSEMBLER
LANGUAGES--FEATURES COMPARISON CHART .

- 95
96
96

. 97

. 97

- 99
. 99
< 99
. 100

101
.101
.103
-104
.104
.105

. 106
-107
.107
.108
.108
. 109
.110

-110
111

<112

-115
-120

.123
- 144
<147
- 149

.153

.153

. 157

. 157
-157
.159

.160

. 170

APPENDIX K: CARD INPUT FOR ASSEMBLY

RUNS . ¢ ¢ ¢ ¢ o o o o o « o o o o o o o174
APPENDIX L: REPLACING THE CURRENT
ASSEMBLER . . ¢ o o o o « o « « « « o o182

APPENDIX M: OBJECT DECK OUTPUT183

APPENDIX N: DIAGNOSTIC ERROR MESSAGES .187
APPENLIX O: SELF-RELOCATING PROGRAM
TECHNIQUES « ¢ o v o « o o o« « 201

APPENDIX P: SAMPLE MACRO DEFINITIONS . .203

INDEX .« «o « ¢ ¢ o o o « « « o o o o« « 2205

Figures

Figure 1. Coding Form
Figure 2. Punched Card Form . . .
Figure 3. Assembler Language
Structure--Machine, Assembler, and
Macro Instructions
Figure 4. Multiple Base Register

Assignment « o o
Figure 5. Details of Address
Specification . . .- . « e e e

Figure 6. Details of Length
Specification in SS Instructions .
Figure 7. Extended Mnemonic Codes
Figure 8. Type Codes for Constants
Figure 9. Bit-Length Specification
(Single Constant) . . « . . « « .

Figure 10. Bit-Length Specification

(Multiple Constants)

Figure 11. Bit-Length Spec1flcatlon

(Multiple Operands) . . « « « «
Figure 12. Floating-Point External
Formats . ¢ o o« o o« o o o o o o &
Figure 13. Channel Command Word .
Figure 14. CNOP Alignment
Figure 15. Extended Binary Coded
Decimal Interchange Code (Part 1
Of 2) v v ¢ @ @ @ v e e e e e o .
Figure 16. List of Machine
Instructions by Operation Code
Part 1 of 5) .+ ¢« ¢ ¢« ¢ ¢ ¢ ¢ « &

. 49
. 50
. 50

<113

.124

Figure 17. Machine Instruction

Summary (Part 1 of 14)130
Figure 18. Macro Facility Elements .149
Figure 19. Expressions.150
Figure 20. Attributes151
Figure 21. Variable Symbols152
Figure 22. Card Input for an

Assembly (Part 1 of 2)174
Figure 23. Device Assignments

(Part 1 of 2) . ¢ o« ¢« ¢ ¢« « =« « « 176
Figure 24. Operating Considerations 177
Figure 25. Card Input for

Assembly, Linkage Editing, and

Execution . .- . .« . « -« . 178
Figure 26. I/O Un1ts Used by the
Tape Assembler e« o <179

Figure 27. 1/0 Units Used by the

Disk Assembler « e« « « - .180
Figure 28. Card Input for

Different Variations of Assembly,)
Linkage Editing and Execution . . .181
Figure 29. Card Input for Selecting
Different Assembler Variants182
Figure 30. Assembler Variants . . .182
Figure 31. Assembler Output LCeck . .183
Figure 32. Format of ESD, TXT, :
RLD, and END Cards . -« . . . « « - .184
Figure 33. Format of the SYM card. .185
Figure 34. Format of the REP card. .186
Figure 35. Assembler Diagnostic

Error Messages (Part 1 of 14) . . .187

A\ g

Part 1-Introduction to the Assembler Language

Computer programs may be expressed in
machine language, i.e., language directly
interpreted by the computer, or in a
symbolic language, which is much more
meaningful to the programmer. The symbolic
language, however, must be translated into
machine language before the computer can
execute the program. This function is
accomplished by an associated processing
program called an assembler or a compiler.

Of the various symbolic programming
languages, assembler languages are closest
to machine language in form and content.

The assembler language discussed in this
manual is a symbolic programming language
for the IBM System/360. It enables the
programmer to use all IBM System/ 360
machine functions, as if he were coding in
IBM System/360 machine language.

A program written in the assembler
language will normally consist of three
types of instructions: machine
instructions, assembler instructions, and
macro instructions. They are all coded in
a language that can be interpreted by the
assembler processor program. Machine
instructions are transformed into machine
language instruction by instruction. This
language can be directly interpreted by the
machine. Their functions are not described
in this manual. Refer to 1IBM System/360
Principles of Operation.

Assembler instructions are used by the
assembler during processing to manipulate
the source program written in the assembler
language. They are described in this
manual.)

IBM-supported macro instructions provide
easy access to the control programs
supplied by the system under which the
installation is running. They are
described in 1BM System/360 Tape Operating
‘System_Supervisor and Input/Output Macros,
and in DOS Supervisor and I1/0 Macros. The
user can also write his own macro
definitions to obtain easy access to
precoded sections of code. Writing macro
definitions is covered in this manual.

Under the Disk and Tape Operating
Systems a few different assembler variants
are available. They are:

TOS: Assembler D, 10K variant
Assembler D, 14K variant

Section 1. Introduction

10K variant
14K variant

DOS: Assembler D,
Assembler D,

Assembler F

The requirements and features of the
variants are described below. Two of the
assemblers, the DOS Assembler D, 14K
variant, and the Assembler F contain
features not supported by the other DOS/TOS
assemblers.

Machine Features Required

A minimum of 16,384, 24,576, or 65,536
bytes of main storage as detailed below:

° 16,384 (16K) bytes of main storage, of
which at least 10,240 contiguous bytes
must be available to the assembler.
This is the core requirement for the
10K variant DOS and T0S D assemblers.

. 24,576 (24K) bytes of main storage, of
which at least 14,336 contiguous bytes
must be available to the assembler.
This is the core requirement for the
14K variant DOS and TOS D assemblers.

] 65,536 (64K) bytes of main storage, of
which at least 45,056 contiguous bytes
must be available to the assembler.
This is the core requirement for the
4K DOS F assembler.

Note: The minimum partition required when
the assembler is executed in the foreground
partitions is 2K larger than the minimum
main storage requirements stated above.
Additional storage, available to any of the
assemblers, is used to expand assembler
tables. For details on how to call a
specific assembler see Appendix K and the
DOS and TOS System Generation publications
(listed in “Preface").

. Standard instruction set.

U One I/0 Channel (either multiplexor orx
selector) .

. One Card Reader (1442N1, 2501, 2520B1,

or 2540) .1
. One Card Punch (1442N1, 1442N2,2520,
or 2540)t*, if punched. output is

desired

. One Printer (1403, 1404--continuous

Section 1: Introduction 11

forms only, or 1443) 1, if a printed
listing is desired.

. One 1052 Printer-Keyboard.

. One 2311, 2314, or 2319 Disk Storage
Drive. This has the DOS resident
system pack.

or

o One 2400-series Magnetic Tape Unit
(either 7-track or 9-track). This has
the TOS resident system.

. Three work files. Under the DOS D
Assembler, 10K Variant: either three
disk storage extents or three magnetic
tape units. The devices used must be
all of the same type; i.e., three
magnetic tape units, three 2311 disk
storage extents, or three 2314 or 2319
disk storage extents. Under the DOS D
Assembler, 14K Variant, and the DOS F
Assembler: any combination of disk
storage extents and/or magnetic tape
units. The disk storage devices used
need not be of the same type as that
of SYSRES. Under the TOS D Assembler,
10K and 14K Variants: three magnetic
tape units. The devices used must be
of the same type as that of SYSRES.

The allowable disk storage devices are
the 2311, 2314, and the 2319 Disk Storage
Drives. The allowable magnetic tape units
are 2400-series Magnetic Tape Units (either
7-track or 9-track: if 7-track, the data
conversion feature is required and the tape
must be set converter on, translator off,
odd parity).

Under the DOS D Assembler, 10K Variant,
only the system source statement library is
supported. Under the DOS D Assembler, 14K
Variant, and the DOS F Assembler, a private
source statement library is supported.
Under the TOS D Assembler, 10K and 14K
Variants, the standard private library is
supported. The device used for the private
library must be of the same type as that of
SYSRES.

For the 10K DOS and the 14K T0S D
assemblers, the assemble-and-execute option
is an alternative to the DECK option; both
are not supported for the same assembly.
For the 14K DOS D assembler and for the F

A s s R > A T > e G o

A 2400-series Magnetic Tape Unit may be
substituted for this device. (@It may be
7-track or 9-track. If 7-track is used
the data conversion feature is required
and the tape must be set converter on,
translator off, odd parity.) The 1052
Printer-Keyboard must be operable if
device assignment is tape.

assembler, both options are supported in
the same assembly. If the ;
assemble-and-execute option is chosen,
SYSLNK is a 2400-series Magnetic Tape Unit
(9-track or 7-track with the data
conversion feature) for the tape resident
system, or a 2311, 2314, or 2319 Disk
Storage extent (which may be on the system
resident device) for the disk resident
systenm.

I1f, for assembly, LINK or CATAL options
are chosen, the I/O requirements for
SYSLNK must be met.

Compatibility between System/360
Assemblers

The assemblers described in this manual can
be used under the Disk or Tape Operating
System running on an IBM System/360 Model
30 or larger or on an IBM System/370
machine, provided that main storage and
input/output requirements are satisfied.

The following describes the
compatibility between:

L the different DOS/TOS assemblers

. the DOS/TOS assemblers and the 0S
assemblers

. the BPS/BOS assemblers and the L0S/TOS
assemblers.

Incompatibilities caused by some other part
of a system than the assembler are not
described. For example, if a program
segmented into an overlay structure under
0S is run under DOS in the same overlay
structure, V-type address constants that
reference external data can be invalid.

The programmer must also realize that
IBM-supplied macros differ from system to
system. A DTFCD macro coded for DOS will
be treated as an undefined operation code,
if assembled under OS.

Treatment of erroneous input, as well as
the assignment, size, and ordering of
literal pools can also differ among the
assemblers.

DOS/TOS Assembler Variants

The TOS variants and the 10K variant of the
DOS Assembler D accept the same input and
produce identical output. A program
accepted by these variants will also be
accepted by the 14K variant of the DOS
Assembler D and Assembler F. Those two
variants have a few extended features.

12 Part 1: Introduction to the Assembler Language

O

o

The DOS Assembler D, 14K variant,
contains the following features not
supported by any of the other DOS/TOS
assemblers:

. The WXTRN instruction

o All System/370 instructions. The
additional instructions are: BAXR,
CLCTL, CIM, HDV, ICM, LCTL, LRDR,
LRER, MC, MVCL, MXD, MXDR, MXR, SCK,
S10F, SRP, STCK, STCM, STCTL, STIDC,
STIDP, and SXR.

. The L-type constant
o §SYSPARM

The DOS Assembler F contains the
following features not supported by the
other DOS/TOS assemblers:

] Two continuation lines allowed for
source statements other than macro
instructions and prototype statements.
Assembler D only allows one per
statement.

o Multiple operands in a DC statement.

. Bit length specification in DC
statements.

L The maximum number of operands in a
macro instruction or prototype
statement is 200 as opposed to 100 for
Assembler D.

. The maximum size of a character
expression is 255 characters as
opposed to 127 for Assembler L.

° The maximum value of a subscript of
€SYSLIST is 200 as opposed to 100 for
Assembler D.

The DOS/TOS Assemblers and the GS
Assemblers

The DOS Assembler F implements the full
System/360 Operating System assembler
language at the F level with the following
exceptions:

o CXD and DXD statements

. Q-type address constants

L The special instructions far
System/370 and System/360 Models 85
and 195.

. The WXTRN instruction

L The L-type constant

Source code written for any DOS/TOS
assembler except the DOS Assembler D, 14K
variant, will be accepted by the 05
Assembler F. The 14K variant supports
§SYSPARM, which is not supported by OS.

The BOS/BPS Assemblers and the DQS/TQOS
Assemblers

The DOS/TOS assemblers accept source
programs written in the IBM System/360
Basic Programming Support Assembler (8K
Tape) Language, the IBM 7090,/7094 Support
Package for IBM System/360 Assembler
Language, and the 1BM System/360 Basic
Operating System (8K Disk) Assembler
Language with the following restrictions:

. The XFR instruction is not allowed in
DOS/TOS.

. If SET symbols are used in macros
generated in the source code, LCLx and
GBLx instructions must be added in
those macro definitions to declare the
SET symbols.

] An MNOTE assembler instruction whose
operand entry consists solely of a
message enclosed in apostrorhes, is
given a severity code of one.

. The logical expression in an AIF
statement must not be explicit zeros

or ones.
Note 1: The DOS/TOS assemblers accept AIFE

and AGOB statements. They are treated as
AIF and AGO statements.

Note 2: Assembler control statements
(AWORK, AOPTN, etc.) should be excluded
from the input to the DOS/TOS assembler.
They are treated as undefined operation
codes.

The Assembler Language

The basis of the assembler language is a
collection of mnemonic symbols which
represent:

1. 1BM System/360 Operating System
machine language operation codes.

2. Operations (auxiliary functions) to be
performed by the assembler program.

The language is augmented by other
symbols, supplied by the programmer, and

Section 1: Intrcduction 13

these symbols are used to represent storage
addresses or data. Symbols are easier to
remember and code than their machine
language equivalents. Use of symbols
greatly reduces programming effort and
error.

MACHINE OPERATION CODES

The assembler language provides mnemonic
machine instruction operation codes for all
machine instructions in the 1IBM System/360
Universal Instruction Set, and extended
mnemonic operation codes for the
conditional branch instruction.

ASSEMBLER OPERATION CODES

The assembler language also contains
mnemonic assembler instruction operation
codes, used to specify auxiliary functions
to be performed by the assembler program.
These are instructions to the assembler
program itself and, with a few exceptions,
do not result in the generation of any
machine language code by the assembler
program. Certain assembler instructions,
i.e., conditional assembly instructions,
affect the order of source statement
assembly and macro generation or the
content of generated instructions.

MACRO INSTRUCTIONS

The assembler language enables the
programmer to define and use macro
instructions. Macro instructions are
represented by an operation code which, in
turn, actually stands for a sequence of
machine and/or assembler instructions that
accomplish the desired function.

Macro instructions used in preparing an
assembler language source program fall into
two categories: system macro instructions,
provided by IBM, which relate the object
program to components of the Basic
Operating System, and macro instructions
created by the programmer specifically for
use in the program at hand, or for
incorporation in a library, available for
future use.

Programmer-created macro instructions
are used to simplify the writing of a
program and/or to ensure that a standard
sequence of instructions is used to
accomplish a desired function.

14 Part 1:

For instance, the logic of a program may
require the same instruction sequence to be
executed again and again. Rather than code
this entire sequence each time it is
needed, the programmer creates a macro
instruction to represent the sequence, and
then each time the sequence is needed, the
programmer simply codes the macro
instruction statement. During assembly,
the sequence of instructions represented by
the macro instruction is inserted in the
object program. Part 3 of this publication
discusses the conditional assembly and
macro facilities.

The Assembler Program

The assembler program, also referred to as
the "assembler", processes source
statements written in the assembler
language. The assembler is separated into
an assembly section and a conditional
assembly and macro generation section.

THE MACRO GENERATION AND CONDITIONAL
ASSEMBLY SECTION

Before source statements can be translated
into actual machine language, macro
instructions and conditional assembly
statements within the source program must
be processed. The source program is read.
Any programmer macro definitions which
appear before the main portion of the
program are stored for use when the macro
is referenced. (System macro definitions
are retrieved from the source statement
library and handled in the same way.)

O

The main portion of the program is then
processed. Whenever macro generation or
conditional assembly is required, the
generated or conditionally assembled text
is inserted in the original source program.
The resultant augmented source program is
ready for input to the assembly section.

THE ASSEMBLY SECTION

Processing a source program involves the
translation of source statements into
machine language, the assignment of storage
locations to instructions and other
elements of the program, and the
performance of the auxiliary assembler
program functions designated by the
programmer. The output of the assembler
program is the object program, a machine
language equivalent of the source program.

Introduction to the Assembler Language

The assembler program furnishes a printed
listing of the source statements and object
program statements and additional
information useful to the programmer in
analyzing his program, such as error
indications. The object program is in the
format required by the linkage editor
component of DOS/TOS.

The amount of main and secondary storage
allocated to the assembler program for use
during processing determines the maximum
number of certain language elements that
may be present in the source program. For
a discussion of these dependencies, see
Appendix H.

Programmer Aids

The assembler program provides auxiliary
functions that assist the programmer in
checking and documenting programs, in
controlling address assignment, in
segmenting a program, in data and symbol
definition, in generating macro
instructions, and in controlling the
assembly program itself. Mnemonic codes,
specifying these functions, are provided in
the language.

Variety in Data Representation. Decimal,
binary, hexadecimal, or character
representation of machine language binary
values may be employed by the programmer in
writing source statements. The programmer
selects the representation best suited to
his purpose.

Base Register Address Calculation. As
discussed in the IBM System/360 Principles
of Operation manual, the operating system
addressing scheme requires the designation
of a base register (containing a base
address value) and a displacement value in
specifying a storage location. The
assembler assumes the clerical burden of
calculating storage addresses in these
terms for the symbolic addresses used by
the programmer. The programmer retains
control of base register usage and the
values entered therein.

Relocatability. The object programs
produced by the assembler are in a format
enabling relocation from the originally
assigned storage area to any other suitable
area.

Sectioning and Linking. The assembler
language and program provide facilities for
partitioning an assembly into one or more
parts called control sections. Control
sections may be added or deleted when
linkage editing the object program.

Because control sections do not have to be
loaded contiguously in storage, a sectioned
program may be locaded and executed even
though a continuous block of storage large
enough to accommodate the entire program
may not be available.

The linking facilities of the assembler
language and program allow symbols to be
defined in one assembly and referred to in
another, thus effecting a link between
separately assembled programs. This
permits reference to data and/or transfer
of control between programs. A discussion
of sectioning and linking is in Section 3
under ®"Program Sectioning and Linking.*®

Program Listings. A listing of the source
program statements and the resulting object
program statements may be produced by the
assembler for each source program it
assembles. The programmer can partly
control the form and content of the
listing.

Error Indications. As a source program is
assembled, it 1s analyzed for actual or
potential errors in the use of the
assembler language. Detected errors are
indicated in the program listing.

Assembler-DOS/TOS Relationships

The assembler program is a component of 1IBM
disk and tape operating systems and
functions under their control. DOS/TOS
provides the assembler with input/output
library, and other services needed in
assembling a source program. In a like
manner, the object program produced by the
assembler will normally operate under
control of DOS/TOS and depend on it for
input/output and other services. 1In
writing the source program, the programmer
must include statements requesting the
desired functions from DOS/TOS. (See the
Supervisor and Input/Output Macros
publications listed in the "Preface®.)

Section 1: Introduction 15

Section 2. General Information

This section presents information about
assembler language coding conventions,
assembler source statement structure,
addressing, and the sectioning and linking
of programs.

Assembler Language Coding Conventions

This subsection discusses the general
coding conventions associated with use of
the assembler language.

CODING FORM

A source program is a sequence of source
statements that are punched into cards. A
standard assembler card is shown in Figure
2. These statements may be written on the
standard coding form, GX28-6509 (Figure 1),
provided by IBM. One line of coding on the
form is punched into one card. The
vertical columns on the form correspond to
card columns.

Space is provided on the form for
program identification and instructions to
keypunch operators. None of this
information is punched into a card.

The body of the form (Figure 1) is
composed of two fields: the statement
field, columns 1-71, and the
identification-sequence field, columns
73-80. The identification-sequence field
is not part of a statement and is discussed
following the subsection “Statement
Format .*

The entries (i.e., coding) composing a
statement occupy columns 1-71 of a

statement line and, if needed, columns
16-71 of successive continuation lines.

CONT INUATION LINES

When it is necessary to continue a
statement on another line the following
rules apply.

1. Enter any nonblank character in the
continuation column (end column plus
one) of the statement line.

2. Continue the statement on the next
line, starting in the continue column.
Columns to the left of the continue
column must be blank.

One continuation line is allowed for the
D assembler and two continuation lines are
allowed for the F assembler, except for
source macro instructions and macro
prototype statements, which may have more
than one continuation line (see Part 3).

STATEMENT BOUNDARIES

Source statements are normally contained in
columns 1-71 of statement lines and columns
16-71 of any continuation lines.

Therefore, columns 1, 71, and 16 are
referred to as the "begin®", "end", and
"continue®™ columns, respectively. This
convention may be altered by use of the
Input Format Control (ICTL) assembler
instruction discussed later in this
publication.

16 Part 1: Introduction to the Assembler Language

IBM System/360 Asserbler Coding Form

PROGRAM

GRaPHIC

Frroorammer J;l INSTRUCTIONS o TARD. NUNSER
1 o [] 10 Oswration 14 16 20 0—7’:‘ 30 35 40 45 50 55 Comrenn 80 &5 74 73 oo 8
% 2 % s
e 2 '\:.
2 & 5 B % 5% 50
i] %
; 3
:
et
3 2%
7 ;
:
Figure 1. Coding Form
f Lo+t 1 1 L
/ NAME TOPERATION | OPERAND AND COMMENTS
| 1]]] | |

NAME | oPeraTiON | OPERAND

COMMENTS

[operation] OPERAND

COMMENTS SEMENE

123458 7 8[9]1011213 1415[16 17 1819 20{21 222324 25{26 27 2829 301 3233 A4

IRRRRR R RN RR R IRRERHERRE|

NAME l I
nnuunoonoouoouuhnnnuuuonoﬁunounuouunnnnuuonunuunanuoooﬂuunnqnuuunnnnuuﬂunoonnnon
3738 38 40]43 42 49 ¢4 455 47 48 49 50[51 5253 54 55{56 57 58 58 60[61 62 63 64 85{86 47 6369 70 NUT2ITI M TS 76 71 78 78 99
IR R RRRRIERRRUERARIBRRN!
22222222(22222202(2222222222(22222(22222(22222{222222222222222(22222122222)22222202]222222122

33333333(3(33333[3(33333/33333/33333/33333/133333]33333]33333|133333(33333)33333(3333333]33333333

IRRRRIIRERRIRRR R IRR R R RHIIER R R RR]

44444414444 414448444444404444

555555[55555/595555/5/585555855

9999 ? 9/9/99998/9/99989(99989(8

~ 12345 89110 1 12 13 14[15{18 17 18 19 20{21 22 23 24 2526 27 2829 30[31 32 33 4.
mu 6309

444444440414444414044444/44444}4 IB]‘SYSTEM/360
55555555/5(55555[5/55555(555555] STANDARD ASSEMBLER CARD
6666666666666 66

5

66 666/66666/65666[66666/66666/66666/6666666666/66666/66666666666/666666666

T I I I I Il n I NI I I I It In I I nInIII NI I 11111797

885888888/388288/8/88888/38838/38888(38888388838(88888/33888/68588(86838/388088(388888/388388888
L L9999589999999999999999999999&&9!99 9

37338 4|12“4445‘41“49 515253 54

1711711111

999999

676869 70 Ti|

999999499

575859 NUBNTINRN

Figure 2. Punched Card Form

STATEMENT FORMAT

There are two types of
statements--instructions and comments.

Instructions may consist of one to four
entries in the statement field. They are,

from left to right: a name entry, an
operation entry, an operand entry, and a
comments entry. These entries must be
separated by one or more blanks, and must
be written in the order stated. Total
statement size is limited to 187
characters. If this limit is exceeded, the

Section 2: General Information 17

assembly listing may be incorrect for that
statement.

The coding form (Figure 1) is ruled to
provide an eight~character name field, a
five-character operation field, and a
56-character operand and/or comments field.

If desired, the programmer may disregard
these boundaries and write the name,
operation, operand, and comment entries in
other positions, subject to the following
rules:

1. The entries must not extend beyond
statement boundaries (either the
conventional boundaries, or as
designated by the programmer via the
ICTL instruction).

2. The entries must be in proper
sequence, as stated above.

3. The entries must be separated by one
or more blanks.

4. If used, a name entry must be written
starting in the begin column.

5. The name and operation entries must be
completed in the first line of the
statement, including at least one
blank following the operation entry.

A description of the name, operation,
operand, and comments entries follows:

Name Entries: The name entry is a symbol
created by the programmer to identify a
statement. It consists of one to eight
alphanumeric characters, the first of which
must be alphabetic. A name entry is
usually optional, but, if present, must be
entered with the first (or only) character
appearing in the begin column. If the
begin column is blank, the assenbler
program assumes no name has been entered.
Blanks must not appear within a name entry,
whether the symbol was introduced dlrectly
by the programmer or indirectly by
conditional assembly or macro generation.

Operation Entries. The operation entry is
the mnemonic operation code specifying the
desired machine operation, macro, or
assembler function. An operation entry is
mandatory and must appear in the first
statement line, starting at least one
position to the right of the begin column.
Valid mnemonic operation codes for machine
and assembler operations are contained in
Appendixes D and E of this publication.
Valid operation codes consist of five
characters or fewer for machine or
assembler operation codes, and eight
characters or fewer for macro instruction
operation codes. No blanks may appear
within the operation entry.

Operand Entries. Operand entries are the
coding that identifies and describes data
to be acted upon by the instruction, by
indicating such things as storage
locations, masks, storage area lengths, or
types of data.

Depending on the need of the
instruction, one or more operands may be
written. Operands are required for all
machine instructions.

Operands must be separated by commas.
Blanks must not intervene between operands
and the commas that separate them.

The operands may not contain embedded
blanks except as follows: If character
representation is used to specify a
constant, a literal, or immediate data in
an cperand, the character string may
contain blanks, e.g., C'AB D'.

Comments Entries. Comments are descriptive
items of information about the program that
are to be inserted in the program listing.
All 256 valid characters, including blanks,
may be used in writing a comment. The
entry cannot extend beyond the end column
(normally column 71) , and a blank must
separate it from the operand.

In instructions where an operand entry
is optional but not present and a comments
entry is desired, the absence of the
operand entry must be indicated by a comma
preceded and followed by one or more
blanks, as follows:

r v L) 1
{Name |Operation|Operand |
; 4 1 1
| | START |, COMMENT i
| | o | |
| | - | [
I 1 - | {
|] END |» COMMENT !
L 4 " 4

Instruction Example. The following
illustrates the use of name, operation,
operand, and comments entries. A compare
instruction has been named by the symbol
COMP; the operation entry (CR) is the
mnemonic operation code for a
register-to-register compare operation, and
the two operands (5, 6) designate the two
general registers whose contents are to be
compared. The comments entry reminds the
programmer that he is comparing "new sum"
to "old" with this instruction.

Name Operation|Operand

fcoMP |CR 5,6 NEW SUM TO OLD
L N

s s, it s

18 Part 1: Introduction to the Assembler Language

N
S

Q

SUMMARY OF INSTRUCTION FORMAT

The entries in an instruction must always
be separated by at least one blank and must
be in the following order: name,
operation, operand (s), comment.

Every statement requires an operation
entry. Name and comment entries are
optional. Operand entries are required for
all machine instructions and most assembler
instructions.

The name and operation entries must be
completed in the first statement line,
including at least one blank following the
operation entry.

The name and operation entries must not
contain blanks. Operand entries must not
have blanks preceding or following the
commas that separate them.

A name entry must always start in the
"begin® column.

If the column after the end column is
blank, the next line must start a new
statement. If the column after the end
column is not blank, the following line
will be treated as a continuation line.

All entries must be contained within the

designated begin, end, and continue column
boundaries.

COMMENTS STATEMENTS

Comments statements are used to include a
programmer's notes on an assembly listing.
(These notes can be helpful during
debugging and maintenance of a program.)
Comments statements are only printed in the
assembly listing. Other than between a
macro definition header and a macro
prototype statement, comments statements
may appear anywhere in the program.
Extensive notes, or comments, may be
written by using a series of comments
statements.

There are two types of comments
statements. One type, written with an
asterisk (*¥) in the begin column, is used
for comments on the source program. The
other type, written with a period in the
begin column and followed by an asterisk,
is used for comments on a macro definition.
This type is further described in Section

An example of the comments statement is:

Page of GC24-3414-9
Revised Nov, 31, 1972
By TNL: GN33-8157

L] L]
Name |Operation|Operand
;| L

*THIS COMMENT IS CONTINUED ON
ANOTHER LINE.

-._._q,._,
T
s o s S e e

IDENTIFICATION-SEQUENCE FIELD

The identification-sequence field of the
coding form (columns 73-80) is used to
enter program identification and/or
statement sequence characters. The entry
is optional. 1If the field, or a portion of
it, is used for program identification, the
identification is punched in the statement
cards, and reproduced in the printed
listing of the source program.

To aid in keeping source statements in
order, the programmer may code an ascending
sequence of characters in this field or a
portion of it. These characters are
punched into their respective cards, and,
during assembly, the programmer may request
the assembler to verify this sequence by
use of the Input Sequence Checking (ISEQ)
assembler instruction. This instruction is
discussed in Section 5 under “Program
Control Instructions."

CHARACTER SET

Source statements are written using the
following characters:

Letters A through %, and $, %, 2
Diqits 0 through 9

Special

Characters + - ,=.% () '/ & blank

These characters are represented by the
card punch combinations and internal bit
configurations listed in Appendix A. 1In
addition, any of the 256 punch combinations
may be designated anywhere that characters
may appear between paired apostrophes, in
comments, and in macro instruction
operands.

Assembler Language Structure
The basic structure of the language can be
stated as follows.

A source statement is composed of:

Section 2: General Information 19

. A name entry (usually optional).
. An operation entry (mandatory).
. An operand entry (usually
required) .
° A comments entry (optional).

A name entry is:

° A symbol.
An operation entry is:

) A mnemonic operation code representing
a machine, assembler, or macro
instruction.

An operand entry is:

. One or more operands composed of one
or more expressions. An expression is
composed of a term or an arithmetic
combination of terms. In general, an
operand entry should contain 50 or
fewer terms (see Appendix H).

Operands of machine instructions
generally represent such things as storage
locations, general registers, immediate
data, or constant values. Operands of
assembler instructions provide the
information needed by the assembler program
to perform the designated operation.

Figure 3 depicts this structure. Terms
shown in Figure 3 are classed as absolute
or relocatable. Terms are absolute or

relocatable due to the effect of program
relocation upon them. (Program relocation
is the loading of the object program into
storage locations other than those
originally assigned by the assembler
program.) A term is absolute if its value
does not change upon relocation. A term is
relocatable if its value changes upon
relocation.

The following subsection, "Terms and
Expressions®, discusses these items as
outlined in Figure 3.

Terms and Expressions
TERMS

Every term represents a value. This value
may be assigned by the assembler program
(symbols, symbol length attribute, location
counter reference) or may be inherent in
the term itself (self-defining term,
literal).

An arithmetic combination of terms is
reduced to a single value by the assembler
program.

(\E’/ ‘/

The following material discusses each §k
type of term and the rules for its use.

20 Part 1: Introduction to the Assembler Language

@

@

?_

Name Entry Operation Entry Operand Entry
One or more
Is @ Symbol Isa Mn‘amonic Operands that
which is an Operation Code are composed
of an
1 , \ | [1
Machine Assembler Macro E Exp(Ex Exp(Exp ., E
Instruction o'l Instruction or Instruction *P o P(Exp) o %P (Exp, Exp)
Exp = Expression
Ordinary
1 Symbol (RT)
[or]
or -
Arithmetic
Variable Term Combination
—{ Symbol of Terms
or]
2 which may be
any one of
L :;::Jb:)’l\ce the following
I 1 n T - 1,
Location . Symbol Length
A Symbol A S_el_f - Counter Refer~ A Literal Attribute Refer- Orher.Symbol
e.g.,BETA defining ence i.e..* e.g.,=F'1259" ence e Attribute
AT or RT) Term (AT) e (RT) B ger References(AT)
¢ ° (RT) L'Symbol (AT)
which may be
any one of
the following
l AT=Absolute Term
l T T RT=Relocatable Term
Decimal Hexadecimal Binary Character
e.g., 15 e.g., X'C4' e.g.,B'101" e.g.,C'ABY'

! May be generated by combination of variable symbols and assembler language characters, (Conditional assembly only)

2 Conditional assembly only.

Figure 3.

Assembler ILanguage Structure--Machine, Assembler, and Macro Instructions

Section 2: General Information

21

Symbols

A symbol is a character or combination of
characters used to represent locations or
arbitrary values. Symbols, through their
use in name fields and in operands, provide
the programmer with an efficient way to
name and reference a program element.

There are three types of symbols:

1. Ordinary symbols.
2. Variable symbols.
3. Sequence symbols.

Ordinary symbols consist of one to eight
letters and/or numbers, the first of which
must be a letter. Such symbols are used to
identify machine locations or arbitrary
values. In the following sections, the
occurrence of symbol refers to this type of
term. Absolute symbols are ordinary
symbols whose values do not change upon
program relocation. Relocatable symbols
are ordinary symbols whose values change
upon relocation.

The following are valid ordinary
symbols:
READER
A23456
XU4F2
LOOP2
N
S4
aB4
$A1 ’
#56

It is advisable to avoid using symbols
beginning with 1J; they may conflict with
10CS symbols (which begin with 1J).

It is also advisable to avoid using
symbols which are identical to a file name
(name field) in a DTF statement with a
single character suffix. For example, for
the file name RECIN, IOCS generates the
symbols: RECIN1, RECIN2, RECIN3, etc.

The following ordinary symbols are
invalid, for the reasons noted:

256B First character is not
alphabetic.

RECORDAREA2 More than eight characters.

BCD#*34 Contains a special
character--an asterisk.

IN AREA Contains a blank.

Variable symbols must begin with an
ampersand (&) followed by one to seven
letters and/or numbers, the first of which

must be a letter, Variable symbols are
used within the source program or macro
definition to allow different values to be
assigned to one symbol. A complete
discussion of variable symbols appears in
Part 3.

Sequence symbols consist of a period (.)
followed by one to seven letters and/or
numbers, the first of which must be a
letter. Sequence symbols are used to
indicate the position of statements within
the source program or macro definition.
Through their use the programmer can vary
the sequence in which statements are
processed by the assembler program.
the complete discussion in Part 3.)

(See

Note: Sequence symbols and variable
symbols are used only for the macro
language and for conditional assembly.
Programmers who do not use these features
need not be concerned with these symbols.

DEFINING SYMBOLS: The assembler assigns a
value to each symbol appearing as a name
entry in a source statement. The values
assigned to symbols naming storage areas,
instructions, constants, and control
sections are the addresses of the leftmost
bytes of the storage fields cocntaining the
named items. Since the addresses of these
items may change upon program relocation,
the symbols naming them are considered
relocatable terms. >

A symbol used as a name entry in the
Equate Symbol (EQU) assembler instruction
is assigned a value designated in the
operand entry of the instruction. Since
the operand entry may represent a
relocatable value, or an absolute (i.e.,
nonchanging) value, the symbol is
considered a relocatable term or an
absolute term, depending on the value to
which it is equated.

The value of a symbol may not be
negative and may not exceed 22¢-1.

A symbol is said to be defined when it
appears as the name of a source stat€ment.
(A special case of symbol definition is
discussed in Section 3, under “Program
Sectioning and Linking".)

Symbol definition also involves the
assignment of a length attribute to the
symbol. (The assembler maintains an
internal table--the symbol table--in which
the values and attributes of symbols are
kert. When the assembler encounters a
symbol in an operand, it refers to the
table for the values associated with the
symbol.) The length attribute of a symbol
is the length, in bytes, of the storage
field whose address is represented by the
symbol. For example, a symbol naming an

22 Part 1: Introduction to the Assembler Language

O

N

A

instruction that occupies four bytes of
storage has a length attribute of 4. Note
that there are exceptions to this rule; for
example, in the case where symbol has been
defined by an equate to location counter
value (EQU *) or to a self-defining term,
the length attribute of the symbol is 1.
These and other exceptions are noted under
the instructions involved. The length
attribute is never affected by a
duplication factor.

PREVIOUSLY DEFINED SYMBOLS: The assembler
language requires that symbols appearing in
the operand entry of some instructions be
previously defined. This simply means that
the symbols, before their use in an
operand, must have appeared as the name
entry of a prior statement. For example:

L

L]

L]
A,B
SYM1
L J

[]

SYM1
SYM2

MvC
EQU

would be a valid sequence of coding. The
same two instructions in reverse order
would be invalid.

GENERAL RESTRICTIONS ON SYMBOLS: A symbol
may be defined only once in an assembly.
While the same symbol may appear as the
name of two or more statements before macro
generation and conditional assembly, only
one such statement should be generated. 1In
addition, a symbol may be used in the name
field more than once as a control section
name (i.e., defined in the START, CSECT, or
DSECT assembler statements described in
Section 3) because the coding of a control
section may be suspended and then resumed
at any subsequent point. The CSECT or
DSECT statement that resumes the section
must be named by the same symbol that
initially named the section; thus, the
symbol that names the section must be
repeated. Such usage is not considered to
be duplication of a symbol definition.

Self-Defining Terms

A self-defining term is one whose value is
inherent in the term. It is not assigned a
value by the assembler program. For
example, the decimal self-defining
term--15--represents a value of fifteen.

There are four types of self-defining
terms: decimal, hexadecimal, binary, and
character. Use of these terms is spoken of
as decimal, hexadecimal, binary, or
character representation of the machine

language binary value or bit configuration
they represent.

Self-defining terms are classed as
absolute terms because the values they
represent do not change upon program
relocation.

USING SELF-DEFINING TERMS: Self-defining
terms are the means of specifying machine
values or bit configurations without
equating the values to symbols and using
the symbols. Self-defining terms may be
used to specify such program elements as
immediate data, masks, registers,
addresses, and address increments.

The use of a self-defining term is quite
distinct from the use of data constants or
literals. When a self-defining term is
used in a machine instruction statement,
its value is assembled into the
instruction. When a data constant or
literal is specified in the operand of an
instruction, its address is assembled into
the instruction.

Decimal Self-Defining Term. A decimal term
is simply an unsigned decimal number
written as a sequence of decimal digits.
High-order zeros may be used (e.g., 007).
Limitations on the value of the term depend
on its use. For example, a decimal term
that designates a general register must
have a value between 0 and 15 inclusively;
one that represents an address must not
exceed the size of storage. In any case, a
decimal term may not consist of more than
eight digits or exceed 16,777,215 (224-1).
A decimal term is assembled as its binary

equivalent. Some examples of decimal
self-defining terms are: 8, 147, 4092,
00021.

Hexadecimal Self-Defining Term. A

hexadecimal self-defining term is a
sequence of one to six hexadecimal digits.
The digits must be enclosed in single
apostrophes and preceded by the letter X:
X'C49°.

Each hexadecimal digit is assembled as
its four-bit binary equivalent. Thus; a
hexadecimal term used to represent an
eight-bit mask would consist of two
hexadecimal digits. The maximum value of a
hexadecimal term is X*'FFFFFF'.

The hexadecimal digits and their bit
patterns are as follows:

0- 0000 4- 0100 8- 1000 C- 1100
1- 0001 S- 0101 9- 1001 D- 1101
2- 0010 6- 0110 A- 1010 E- 1110
3- 0011 7- 011t B- 1011 F- 1111

Section 2: General Information 23

A table for converting from hexadecimal
representation to decimal representation is
provided in Appendix B.

Binary Self-Defininq Term. A binary
self-defining term is written as an
unsigned sequence of 1's and 0's enclosed
in apostrophes and preceded by the letter
B, as follows: B'10001101'. This term
would appear in storage as shown, occupying
one byte. A binary term may have up to 24
bits represented. Padding with binary
zeros is on the left.

Binary representation is used primarily
in designating bit patterns of masks or in
logical operations.

The following example illustrates a
binary term used as a mask in a Test Under
Mask (TM) instruction. The contents of
GAMMA are to be tested, bit by bit, against
the pattern of bits represented by the
binary term.

r T kD
|Name |Operation|Operand
t } IR

b e e s ol

r T T
|ALPHA |TM |GAMMA, B*10101101°
L L L

Character Self-Defining Term. A character
self-defining term consists of one to three
characters enclosed by apostrophes. It
must be preceded by the letter C. Aall
letters, decimal digits, and special
characters may be used in a character term.
In addition, any of the remainder of the
256 punch combinations may be designated in
a character self-defining term. Examples
of character self-defining terms are as
follows:

c' ct !
C'ABC' cr13"

(blank)

Because of the use of apostrophes in the
assembler language and ampersands in the
macro language as syntactic characters, the
following rule must be observed when using
these characters in a character term.

For each apostrophe or ampersand desired
in a character term, two apostrophes or
ampersands must be written. For example,
the character value A'# would be written as
C'A*''#', while an apostrophe followed by a
blank and another apostrophe would be
written as C*''* "',

Each character in the character sequence
is assembled as its eight-bit code
equivalent (see Appendix A). The two
apostrophes or ampersands that must be used
to represent a single apostrophe or
ampersand within the character sequence are
assembled as a single apostrophe or
ampersand.

Location Counter Reference

A location counter is used to assign
storage addresses to program statements.

It is the assembler program's equivalent of
the instruction counter in the computer.

As each machine instruction or data area is
assembled, the location counter is first
adjusted to the proper boundary for the
item, if adjustment is necessary, and then
incremented by the length of the assembled
item. Thus, it always points to the next
available location. If the statement is
named by a symbol, the value assigned to
the symbol is the value of the location
counter after boundary adjustment, but
before addition of the length.

The assembler maintains a location
counter for each control section of the
program and manipulates each location
counter as previously described. Source
statements for each section are assigned
addresses from the location counter for
that section. The location counter for
each successively declared control section
assigns locations in consecutively higher
areas of storage. 1I1f a program has
multiple control sections, all statements
identified as belonging to the first
control section will be assigned from the
location counter for section 1, the
statements for the second control section
will be assigned from the location counter
for section 2, etc. This procedure is
followed whether the statements from
different control sections are interspersed
or written in control section sequence.

The location counter setting can be
controlled by using the START and ORG
assembler instructions, which are described
in Sections 3 and 5, respectively. The
counter affected by either of these
assembler instructions is the counter for
the control section in which they appear.
The maximum value for the location counter
is 224-1,

The programmer may refer to the current
value of the location counter at any place
in a program, by using an asterisk in an
operand. The asterisk represents the
location of the first byte of currently
available storage (i.e., after any required
boundary adjustment). Using an asterisk in
a machine instruction statement is the same
as placing a symbol in the name field of
the statement and then using that symbol as
an operand of the statement. Because a
location counter is maintained for each
control section, a location counter
reference designates the location counter
for the section in which the reference
appears.

24 Ppart 1: Introduction to the Assembler Language

O

f-{\
§ W

A reference to the location counter may
be made in a literal address constant
(i.e., the asterisk may be used in an
address constant specified in literal
form) . The address of the instruction
containing the literal is used for the
value of the location counter . A location
counter reference may not be used in a
statement which requires the use of a
predefined symbol, with the exception of
the EQU and ORG assembler instructionms.

Literals

A literal term is one of three basic ways
to introduce data into a program. It is
simply a constant preceded by an equal sign
e -

A literal represents data rather than a
reference to data. The appearance of a
literal in a source statement directs the
assembler program to assemble the data
specified by the literal, store this data
in a "literal pool®", and place the value
(address) of rhe storage field containing
the data in the operand field of the
assembled statement.

Literals provide a means of entering
constants (such as numbers for calculation,
addresses, indexing factors, or words or
phrases for printing out a message) into a
program by specifying the constant in the
operand of the instruction in which it is
used. This is in contrast to using the DC
assembler instruction to enter the data
into the program, and then using the name
of the DC instruction in the operand. Only
one reference to a literal is allowed in a
machine instruction statement.

A literal term may not be combined with
any other terms.

A literal may not be used as the
receiving field of an instruction that
modifies storage.

A literal may not be specified in an
address constant (see "DC--Define Constant®
in Section 5). A literal may not be
specified in a shift instruction or an 1,/C
instruction (HIO, HLV, SIO, SIOF, STIDC,
TIO) .

A literal may not have an explicit base
or an explicit index when specified in an
instruction.

The instruction coded below shows one
use of a literal.

Name Operation |Operand

[GAMMA |L
i

i

110,=F*274°
4

The statement GAMMA is a load
instruction using a literal as the second
operand. When assembled, the second
operand of the instruction will be the
address at which the binary value
represented by F*274% is stored.

&ote: If the type subfield of the operand

is C, X, or B and the equal sign (=) is
omitted, you have not written a literal but
a self-defining term which the assembler may
assemble without error (see "Using Self-
Defining Terms"}. P 28)a

In general, literals may be used
wherever a storage address is permitted as
an operand. They may not, however, be used
in any assembler instruction. Literals are
considered relocatable, because the address
of the literal, rather than the literal
itself, will be assembled in the statement
that employs a literal. The assembler
generates the literals, collects them, and
places them in a specific area of storage,
as explained in the subsection "The Literal
Pool." A literal is not to be confused
with the immediate data in an SI
instruction. Immediate data is assembled
into the instruction.

Literal Format. The assembler requires a
description of the type of literal being
specified as well as the literal itself.
This descriptive information assists the
assembler in assembling the literal
correctly. The descriptive portion of the
literal must indicate the format in which
the constant is to be assembled. 1t may
also specify the length the constant is to
occupy.

The method of describing and specifying
a ceonstant as a literal is nearly identical
to the method of specifying it in the
operand of a DC assembler instruction. The
major difference is that the literal must
start with an equal sign (=), which
indicates to the assembler that a literal
follows. See the discussion of the DC
assembler instruction operand format
(Section 5) for the means of specifying a
literal. The type of literal designated in
an instruction is not checked for
correspondence with the operation code of
the instruction.

Some examples of literals are:

=A (BETA) - address constant literal.

=F*1234" - a fixed-point number with a
length of four bytes.

=C*ABC* - a character literal.

Section 2: General Information 25

The Literal Pool. The literals processed
by the assembler are collected and placed
in a special area called the literal pool,
and the location of the literal, rather
than the literal itself, is assembled in
the statement employing a literal. The
positioning of the literal pool may be
controlled by the programmer, if he so
desires. Unless otherwise specified, the
literal pool is placed at the end of the
first control section.

The programmer may also specify that
multiple literal pools be created.
However, the sequence in which literals are
ordered within the pool is controlled by
the assembler. Further information on
positioning the literal pool (s) is in
Section 5 under "LTORG--Begin Literal
Pool."

Duplicate Literals. If duplicate literals
occur within one literal pool, only one
literal is stored. Literals are considered
duplicates only if their specifications are
identical. A literal will be stored, even
if it appears to duplicate another 1literal,
if it is an A-type address constant
containing any reference to the location
counter .

The following examples illustrate the
foregoing rules:

X'FO*)

Both are stored.
c'o*
XL3*'0°

Both are stored.
HL3'0°
A (*+U4)

Both are stored.
B (*+4)
X'FFFF'

Identical; the first is stored.
X'FFFF*

Symbol Length Attribute Reference

The length attributé of a symbol may be
used as a term by coding L' followed by the
symbol, as in:

L*BETA

The length attribute of BETA will be
substituted for the term. The following
example illustrates the use of L' symbel in
moving a character constant into either the
high-order or low-order end of a storage
field.

For ease in following the example, the
length attributes of A1 and B2 are
mentioned.

r T L)

!Name lOperationlOperand

v T L)

|21 |BS |CL8’ ,

|B2 |DC |CL2'AB

|HIORD |MVC |A1(L*B2) ,B2

|LOORD |MVC |A1+¢L°A1-L*B2 (L*B2) ,B2

t 4 4 . 3

A1 names a storage field eight bytes in
length and is assigned a length attribute
of eight. B2 names a character constant
two bytes in length and is assigned a
length attribute of two. The statement
named HIORD moves the contents of B2 into
the leftmost two bytes of A1. The term
L'B2 in parentheses provides the length
specification required by the instruction.
When the instruction is assembled, the
length is placed in the proper field of the
machine instruction.

The statement named LOORD moves the
contents of B2 into the rightmost two bytes
of A1. The combination of terms
A1+L'A1-L*B2 results in the addition of the
length of A1 to the beginning address of
A1, and the subtraction of the length of B2
from this value. The result is the address
of the seventh byte in field A1. The
constant represented by B2 is moved into A1
starting at this address. L°'B2 in
parentheses provides length specification
as in HIORL.

Note: The length attribute of * is equal
to the length of the instruction in which
it appears, except in an EQU to *
instruction where the length attribute is
1.

EXPRESSIONS

Expressions, which are used in coding
operand entries for assembler language
statements, are composed of either a single
term or an arithmetic combination of terms
(see Figure 3) . Arithmetically combined
terms, enclosed in parentheses, may be use
in combination with terms outside the
parentheses. For example:

14+BETA- (GAMMA-LAMBDA)

When terms in parentheses occur in
combination with other terms, like
(GAMMA-LAMBDA) in the example, the
parenthesized terms are reduced first to a
single value. This value may be absolute
or relocatable, depending on the
combination of terms. This value then is

26 Part 1: Introduction to the Assembler Language

O

O

Q

used in reducing the rest of the
combination to another single value.

Parenthesized terms may be included
within another set of terms in parentheses.
For example:

A+B~ (C+D~ (E+F) +10)

This expression has two levels of
parentheses. A level of parentheses is a
left parenthesis and its matching right
parenthesis. One level of parentheses
surrounds E+F. The next higher level of
parentheses surrounds C+D- (E+F) +10. The
innermost set of terms in parentheses (the
lowest level) is evaluated first.

The following are examples of valid
expressions:

* BETA*10
AREA1+X*2D* B'101"*

*432 C*ABC?

N-25 29

FIELD+332 L*FIELD
FIELD LAMBDA+GAMMA
(EXIT-ENTRY+1) +GO TEN/TWO
=F'1234*

ALPHA-BETA/ (104ARFA*L*FIELD) - 100
A* (A* (A* (A+1) +3% (B-3)))

The rules for coding expressions are:

1. An expression may not start with an
arithmetic operator, that is, + - / *,
Therefore, the expression -A+BETA is
invalid. However, the expression
0-A+BETA is valid.

2. An expression may not contain two
terms or two operators in succession.

3. An expression may not consist of more
than 16 terms.

4. An expression may not have more than
five levels of parentheses.

5. A multiterm expression may not contain
a literal.

Evaluation of Expressions

A single term expression, e.g., 29, BETA,
*, L'SYMBOL, takes on the value of the term
involved.

A multiterm expression, e.g., BETA+10,
ENTRY-EXIT, 25*%10+A/B, is reduced to a
single value, as follows:

1. Each term is given its value.

complement form.

2. Arithmetic operations are performed
left to right. Multiplication and
division are done before addition and
subtraction, e.g., A+B*C is evaluated
as A+ (B*C) , not (A+B) *C. The computed
result is the value of the expression.

3. Every expression is computed to 32
bits, and then truncated to the
rightmost 24 bits.

4. Division always yields an integer
result; any fractional portion of the
result is dropped. E.g., 1/2%10
yields a zero result, whereas 10%*1/2
yields S.

S. Division by zero is valid and yields a
zero result.

Parenthesized expressions used in an
expression are processed before the rest of
the terms in the expression, e.g., in the
exrression A+BETA#* (CON-10), the term CON-10
is evaluated first and the resulting value
is used in computing the final value of the
expression.

Negative values are carried in two's
Final values of
expressions are the rightmost 24 bits of
the results. 1Intermediate results have a
range of -231 through 23%-1. However, the
value of an expression before truncation
must be in the range -22% through 224-1 or
the results will be meaningless. B
negative result is considered to be a
3-byte positive value.

Note: 1In A-type address constants, the
full 32 bit final result is truncated on
the left to fit the specified or implied
length of the constant.

Absolute and Relocatable Fxpressions

An expression is called absolute if its
value is unaffected by program relocation.

An expression is called relocatable if
its value changes upon program relocation.

The two types of expressions, absolute
and relocatable, take on these
characteristics from the term or terms
composing them. The following material
discusses this relationship.

Absolute Expression. An absolute
expression may be an absolute term or any
arithmetic combination of absolute terms.
An absolute term may be an absolute symbol,
any of the self-defining terms, or the
length attribute reference. As indicated
in Figure 3, all arithmetic operations are
permitted between absolute terms.

Section 2: General Information 27

An absolute expression may contain
relocatable terms (RT)--alone or in
combination with absolute terms (AT)--under
the following conditions:

1. There must be an even number of
relocatable terms in the expression.

2., The relocatable terms must be paired.
Each pair of terms must have the same
relocatability attribute, i.e., they
appear in the same control section in
this assembly (see "Program Sectioning
and Linking", Section 3). Each pair
must consist of terms with opposite
signs. The paired terms do not have
to be contiguous, e.g., RT+AT-RT.

3. No relocatable expression may enter
into a multiply or divide operation.
Thus, RT-RT*10 is invalid. However,
(RT-RT) #10 is valid.

The pairing of relocatable terms (with
opposite signs and the same relocatability
attribute) cancels the effect of
relocation. Therefore the value
represented by the paired terms remains
constant, regardless of program relocation.
For example, in the absolute expression
A-Y+X, A is an absolute term, and X and Y
are relocatable terms with the same
relocatability attribute. 1If A equals 50,
Y equals 25, and X equals 10, the value of
the expression would be 35. If X and Y are
relocated by a factor of 100 their values
would then be 125 and 110. However, the
expression would still evaluate as 35
(50~-125+110=35) .

An absolute expression reduces to a
single absolute value.

The following examples illustrate
absolute expressions. A is an absolute
term; X and Y are relocatable terms, with
the same relocatability attribute.

A-Y¢X

A

A*A

X-Y+A

*-Y (a reference to the location counter
must be paired with another
relocatable term from the same control
section, i.e., with the same
relocatability attribute)

Relocatable Expressions. A relocatable
expression is one whose value would change
by n if the program in which it appears is

relocated n bytes away from its originally
assigned area of storage.

A relocatable expression may be a
relocatable term. A relocatable expression
may contain relocatable terms--alone or in
combination with absolute terms--under the
following conditions:

1. There must be an odd number of
relocatable terms.

2. All the relocatable terms but one must
be paired. Pairing is described in
"Absolute Expression.®

3. The unpaired term must not be directly
preceded by a minus sign.

4. No relocatable term may enter into a
multiply or divide operation.

A relocatable expression reduces to a
single relocatable value. This value is
the value of the odd relocatable term,
adjusted by the values represented by the
absolute terms and/or paired relocatable
terms associated with it.

For example, in the expression W-X+W-10,
W and X are relocatable terms with the same
relocatability attribute. If initially W
equals 10 and X equals 5, the value of the
expression is 5. However, upon relocation
this value will change. 1f a relocation
factor of 100 is applied, the value of the
expression is 105. Note that the value of
the paired terms, W-X, remains constant at
5 regardless of relocation. Thus, the new
value of the expression, 105, is the result
of the value of the odd term (W) adjusted
by the values of W-X and 10.

The following examples illustrate
relocatable expressions. A is an absolute
term, W and X are relocatable terms with
the same relocatability attribute, Y is a
relocatable term with a different
relocatability attribute.

Y-32#A W-X+* =F*1234" (literal)
W-X+Y A*A+W-W+Y
* (reference to W-X+W

location counter) Y

28 Part 1: Introduction to the Assembler Language

O

Part 2-Basic Functions of thé Assembler Language

29

Section 3. Addressing—Program Sectioning and Linking

Addressing

The IBM System/360 Operating System
addressing technique requires the use of a
base register, which contains the base
address, and a displacement, which is added
to the contents of the base register. The
programmer may specify a symbolic address
and request the assembler to determine its
storage address in terms of a base register
and a displacement. The programmer may
rely on the assembler to perform this
service for him by indicating which general
registers are available for assignment and
what values the assembler may assume each
contains. The programmer may use as many
or as few registers for this purpose as he
desires. The only requirements are that,
at the point of reference, a register
containing an address from the same control
section is available, and that this address
is less than or equal to the address of the
item to which the reference is being made.
The difference between the two addresses
may not exceed 4095 bytes.

ADDRESSES--EXPLICIT AND IMPLIED

An address is composed of a displacement
plus the contents of a base register. (In
the case of RX instructions, the contents
of an index register are also used to
derive the address.)

The programmer writes an explicit
address by specifying the displacement and
the base register number. In designating
explicit addresses a base register may not
be combined with a relocatable symbol.

He writes an implied address by
specifying an absolute or relocatable
address. The assembler has the facility to
select a base register and compute a
displacement, thereby generating an
explicit address from an implied address,
provided that it has been informed (1) what
base registers are available to it and (2)
what each contains. The programmer conveys
this information to the assembler through
the USING and DROP assembler instructions.

BASE REGISTER INSTRUCTIONS

The USING and DROP assembler instructions
enable programmers to use expressions
representing implied addresses as operands
of machine instruction statements, leaving
the assignment of base registers and the
calculation of displacements to the
assembler.

In order to use symbols in the operand
field of machine instruction statements,
the programmer must (1) indicate to the
assembler, by means of a USING statement,
that one or more general registers are
available for use as base registers, (2)
specify, by means of the USING statement,
what value each base register contajins, and
(3) load each base register with the value
he has specified for it.

Having the assembler determine base
registers and displacements relieves the
programmer of separating each address into
a displacement value and a base address
value. This feature of the assembler will
eliminate a likely source of programming
errors, thus reducing the time required to
check out programs. To take advantage of
this feature, the programmer uses the USING
and DROP instructions described in this
subsection. The principal discussion of
this feature follows the description of
both instructions.

USING--Use Base Address Register

The USING instruction indicates that one or
more general registers are available for
use as base registers. This instruction
also states the base address values that
the assembler may assume will be in the
registers at object time. Note that a
USING instruction does not load the
registers specified. It is the
programmer ‘s responsibility to see that the
specified base address values are placed
into the registers. Suggested loading
methods are described in the subsection
"Programming with the USING Instruction.®
The typical form of the USING instruction
statement is:

Section 3: Addressing--Program Sectioning and Linking 31

r ; T
| Name |Operation|Operand
L Fy L

b
|From 2-17 expressions
|of the form v,rt,
|r2,r3,...,r16

i

L3 T
| Sequence |USING
| symbol or|
|not used |
L 4L

O e e X

Operand v must be an absolute or
relocatable expression with a value ranging
from -23%4 to +224-1, No literals are
permitted. Operand v specifies a value
that the assembler can use as a base
address. The other operands must be
absolute expressions. The operand ri
specifies the general register that can be
assumed to contain the base\ address
represented by operand v. Operands r2, r3,
r4,... specify registers that can be
assumed to contain v+4096, v+8192,
v+12288,..., respectively. The values of
the operands r1, r2, r3,..., r16 must be
between 0 and 15. For example, the

statement:

r T . T R}
|Name |Operation|Operand |
b t t - 1
l | USING |*,12,13 |
L L i - J

tells the assembler it may assume that the
current value of the location counter will
be in general register 12 at object time,
and that the current value of the location
counter, incremented by 4096, will be in
general register 13 at object time.

If the programmer changes the value in a
base register currently being used, and
wishes the assembler to compute
displacement from this value, the assembler
must be told the new value by means of
another” USING statement. In the following
sequence the assembler first assumes that
the value of ALPHA is in register 9. The
second statement then causes the assembler
to assume that ALPHA+ 1000 is the value in
register 9.

2. Register 0 must be specified as
operand ri.

The assembler assumes that register 0
contains zero. Therefore, regardless of
the value of operand v, it calculates
displacements as if operand v were absolute
or relocatable zero. The assembler also
assumes that subksequent registers specified
in the same USING statement contain 4096,
8192, etc.

Note: 1f register 0 is used as a base
register, the program is not relocatable,
desrite the fact that operand v may be
relocatable. The program can be made
relocatable by:

1. Replacing register 0 in the USING
statement.

2. Loading the new register with a
relocatable valvue.

3. Reassembling the program.

DROP--Drop Base Register

The DROP instruction specifies a previously
available register that may no longer be
used as a base register. The typical form
of the PROP instruction statement is as
follows:

r h) L)
| Name |Operation |Operand
[l 4 4

T) T
| Sequence |LCROP |Up to 16 absolute

————.—d\-——-’

|symbol or| |expressions of the
|not used | | form x1,x2,

|] |r3se..,x16

| 1. 4 1

The expressions indicate general
registers previously specified in a USING
statement that are now unavailable for base
addressing. The following statement, for
example, prevents the assembler from using
registers 7 and 11:

r T . T 1
| Name |Operation|Operand |
t frmmm e 1
| |USING | ALPHA, 9 |
! | I |
I | I |
| | USING |ALPHA+1000,9 |
[i L 1

If the programmer has to refer to the
first 4096 bytes of storage, he can use
general register 0 as a base register
subject to the following conditions:

1. The value of operand v must be either
an absolute or relocatakle zexo or
simply relocatable.

r L) T
| Name | Operation|Cperand
-4 $

e

T
I | CROP
4

L

T
(7,11
4 —d

It is not necessary to use a LROP
statement when the base address in a
register is changed by a USING statement;
nor are LCROP statements needed at the end
of the source program.

A register made unavailable by a LROP
instruction can be made available again by
a subsequent USING instruction.

32 Part 2: Basic Functions of the Assembler Language

O

PROGRAMMING WITH THE USING INSTRUCTION

The USING (and DROP) instructions may be
used anywhere in a program, as often as
needed, to indicate the general registers
that are available for use as base
registers and the base address values the
assembler may assume each .contains at

execu 'ion time. Whenever an address is
specified in a maciine instruction
statement, the .ssembler determines whether
there is an available register containing a
suitable base address. The USING
instruction establishes addressability at
assembly time, assuming that the registers
assigned as base registers have been loaded
with correct base addresses. Any reference
to relocatable or absolute terms, which are
to be assembled into the base displacement
form, such as names in the operand of a
machine instruction or S-type address
constant, must come after the pertinent
USING instruction that makes the terms
addressable. References to terms
relocatable or otherwise in the operand of
an A-type or Y-type address constant do not
have to be preceded by a USING statement.

A register is considered available for a
relocatable address if it was assigned a
relocatable value that is in the same
control section as the address. A register
assigned an absolute value is available for
addressing absolute locations only. In
either case the base address is considered
suitable only if it is less than or equal
to the address of the item to which the
reference is made. The difference between
the two addresses may not exceed 4095
bytes. In calculating the base register to
be used, the assembler always uses the
available register giving the smallest
displacement. I1If there are two registers
with the same value, the highest numbered
register is used.

r . T -1
|Name Operation|Operand |
[l 4 -]
r A 1
| BEGIN |BALR 12,0 |
i USING {#,2]
|ALPHA |e |
o] |
[]
| BETA . 1 |
| | END |BEGIN |
L 4 1)

In the preceding sequence, the BALR
instruction loads register 2 with the
address of the first storage location
dimmediately following. In this case, it is
the address of the instruction named ALPHA.
The USING instruction indicates to the
assembler that register 2 contains this
location. When employing this method, the
USING instruction must immediately follow
the BALR instruction. No other USING or
load instructions are required if the
location named BETA is within 4095 bytes of
ALPHA.

In Figure 4 the BALR and LM instructions
load registers 2-5. The USING instruction
indicates to the assembler that these
registers are available as base registers
for addressing a maximum of 16,384
consecutive bytes of storage, beginning
with the location named HERE. The number
of addressable bytes may be increased or
decreased by altering the number of
registers designated by the USING and LM
instructions and the number of address
constants specified in the DC instruction.

Note: Care must be taken when assigning
base registers to avoid using, except under
special circumstances:

1. General registers 0, 1, 13, 14 and 15,
as they are used by the system.

2. Any register used explicitly or
implicitly by a machine instruction.

— e o e S—— s — — — s ol asm

———d

r T v
| Name | Operation|Operand
tBEGINT " tBaLR——- tz70-
|usine |uEre,2.3,4.5
| HERE | LM 13,5, BASEADDR
| |B | FIRST
| BASEADDR | DC | A (HERE+4096 , HERE+8192, HERE+12288)
FIRST	
	e
LAST	o
	END
L -L L
Figure 4. Multiple Base Register Assignment

Section 3: Addressing--Program Sectioning and Linking 33

RELATIVE ADDRESSI NG

Relative addressing is the technique of
addressing instructions and data areas by
designating their location in relation to
the location counter or to some symbolic
location. This type of addressing is
always. in bytes, never in bits, words, or
instructions. Thus, the expression *+4
specifies an address that is four bytes
greater than the current value of the
location counter. In the sequence of
instructions shown in the following
example, the location of the CR machine
instruction can be expressed in two ways,
ALPHA+2 or BETA-4, because all of the
mnemonics in the example are for 2-byte
instructions in the RR format.

r T T 1
| Name |Operation|Operand |
t t t {
ALPHA	LR 13,4	
	CR 4,6	
	BCR	1,14
BETA	AR 12,3	
L L Y I 4

Program Sectioning and Linking

It is often convenient, or necessary, to
write a large program in sections. The
sections may be assembled separately, then
combined subsequently into one program.
The assembler provides facilities for
creating multisectioned programs and
symbolically linking separately assembled
programs or program sections.

Sectioning a program is optional, and
many programs can best be written without
sectioning them. The programmer writing an
unsectioned progranm need not concern
himself with the subsequent discussion of
program sections, which are called control
sections. He need not employ the CSECT
instruction, which is used to identify the
control sections of a multisection program.
Similarly, he need not concern himself with
the discussion of symbolic linkages if his
program neither requires a linkage to nor
receives a linkage from another program.

He may, however, wish to identify the
program and/or specify a tentative starting
location for it, both of which may be done
by using the START instruction. He may
also want to employ the dummy section
feature obtained by using the DSECT
instruction.

Note: Program sectioning and linking is
closely related to the specification of

base registers for each control section.
Sectioning and linking examples are

provided under the heading "Addressing
External Control Sections."

CONTROL SECTIONS

The concept of program sectioning is a
consideration at coding time, assembly
time, and load time. To the programmer, a
program is a logical unit. He may want to
divide it into sections called control
sections; if so, he writes it in such a way
that control passes properly from one
section to another regardless of the
relative physical position of the sections
in storage. A control section is a block
of coding that can be relocated,
independently of other coding, at load time
without altering or impairing the operating
logic of the program. It is normally
identified by the CSECT instruction.
However, if it is desired to specify a
tentative starting location, the START
instruction may be used to identify the
first control section.

To the assembler, there is no such thing
as a program; instead, there is a source
module, which consists of one or more
control sections. (However, the terms
source module and program are often used
interchangeably.) BAn unsectioned program
is treated as a single control section. To
the linkage editor, there are no programs,
only control sections that must ke
fashioned into one or more phases.

The output from the assembler is called
an object module. It contains data
required for linkage editor processing.
The external symbol dictionary, which is
part of the object module, contains
information the linkage editor needs in
order to complete cross-referencing between
control sections, as it combines them into
a program. The linkage editor can take
control sections from various assemblies
and combine them properly with the help of
the corresponding external symbol
dictionaries. Successful combination of
separately assembled control sections
depends on the techniques used to preovide
symbolic linkages between the control
sections.

Whether the programmer writes an
unsectioned program, a multisection
program, or part of a multisection program,
he still knows what eventually will be
entered into storage, because he has
described storage symbolically. He may not
know where each section appears in storage,
but he does know what storage contains.
There is no constant relationship between
control sections. Thus, knowing the
location of one control section does not

34 Part 2: Basic Functions of the Assembler Language

¢ p
! . “

AN

o

O

make another control section addressable by
relative addressing techniques.

There is a limit to the number of
external symbol dictionary entries. The
total number of control sections (named,
unnamed, and common control sections),
dummy sections, unique symbols in EXTRN and
WXTRN statements, and V-type address
constants may not exceed 255. (The V-type
address constant is described in Section S
under *"DC -- Define Constant®; the other
external symbols are described in this
section.) If the same symbol appears both
in V-type address constant and in the name
field of a START, CSECT, or DSECT
statement, it is counted as two symbols.

Control Section location Assignment

Control section contents can be intermixed
because the assembler provides a location
counter for each control section. Control
sections are assigned starting locations
consecutively, in the same order as the
control sections first occur in the
program. Each control section subsequent
to the first begins at the next available
doubleword boundary.

FIRST CONTROL SECTION

The first control section of a program has
the following special properties.

1. The initial vd@lue of its location
counter may be specified as an
absolute value.

2. It normally contains the literals
requested in the source module,
although their positioning can be
altered. This is further explained
under the discussion of the LTORG
assembler instruction.

START--Start Assembly

The START instruction may be used to give a
name to the first (or only) control section
of a source module. It may also be used to
specify the initial value of the location
counter for the first control section of
the module. The typical form of the START
instruction statement is as follows:

f 1
|Name Operation|Operand |
[l d
{ 1
| Any symbol START A self-defining |
{or not used | term or not }

|

J

l |
L

|used
t 'S

If a symbol names the START instruction,
the symbol is established as the name of
the control section. If not, the control
section is considered to be unnamed. All
subsequent statements are assembled as part
of that control section. This continues
until an instruction identifying a
different control section is encountered.

A CSECT instruction named by the same
symbol that names a START instruction is
considered to identify the continuation of
the control section first identified by the
START. Similarly, an unnamed CSECT that
occurs in a program initiated by an unnamed
START is considered to identify the
continuation of the unnamed control
section.

The symbol in the name field is a valid
relocatable symbol whose value represents
the address of the first byte of the
control section. 1t has a length attribute
of one.

The assembler uses the self-defining
term specified by the operand as the
initial value of the location counter of
the program. This value should be
divisible by eight. For example, either of
the following statements:

{ L] L 1
|Name |Operation|Operand |
[1 4 4 []
1)) L I 1
|PROG2 | START 12040 |
|PROG2 | START |X*7F8"* |
[4 L - |

could be used to assign the name PROG2 to
the first control section and to set the
initial value of the location counter to
2040. 1If the operand is omitted, the
assembler sets the initial value to zero.
The location counter is set at the next
doubleword boundary when the value of the
START operand is not divisible by 8.

Note: The START instruction may not be
preceded by any type of assembler language
statement that may either affect or depend
upon the setting of the location counter.

CSECT--Identify Control Section

The CSECT instruction identifies the
beginning or the continuation of a control
section. The typical form of the CSECT
instruction statement is as follows:

Section 3: Addressing--Program Sectioning and Linking 35

r v 1
|Name Operation|Operand |
L 0 L

t + {
|Any symbol |CSECT |Not used; should |
|or not used | |not be present |
L 4L A]

If a symbol names the CSECT instruction,
the symbol is established as the name of
the control section; otherwise the section
is considered to be unnamed. All
statements following the CSECT are
assembled as part of that control section
until a statement identifying a different
control section is encountered (@(i.e.,
another CSECT or DSECT instruction).

The symbol in the name field is a valid
relocatable symbol whose value represents
the address of the first byte of the
control section. It has a length attribute
of one.

Several CSECT statements with the same
name may appear within a source module.
The first is considered to identify the
beginning of the control section; the rest
identify the resumption of the section.
Thus, statements from different control
sections may be interspersed. They are
properly assembled (assigned contiguous
storage locations) as long as the
statements from the various control
sections are identified by the appropriate
CSECT instructions.

Under the Tape Operating System (TOS) a

completely empty control section (CSECT) is
flagged in error.

Unnamed Control Section

If neither a named CSECT instruction nor
START instruction appears at the beginning
of the program, the assembler determines
that it is to assemble an unnamed control
section as the first (or only) control
section. There may be only one unnamed
control section in a program. If one is
initiated and is then followed by a named
control section, any subsequent unnamed
CSECT statements are considered to resume
the unnamed control section. If it is
desired to write a small program that is
unsectioned, the program does not need to
contain a CSECT instruction.

DSECT~-Identify Dummy Section

A dummy section represents a control
section that is assembled but is not part
of the object program. A dummy section is

a convenient means of describing the layout
of an area of storage without actually
reserving the storage. (It is assumed that
the storage is reserved either by some
other part of this assembly or else by
another assembly.) The DSECT instruction
identifies the beginning or resumption of a
dummy section. More than one dummy section
may be defined per assembly, but each must
be named. The typical form of the DSECT
instruction statement is as follows:

Name

- ———

L) T
|Operation|Operand
4 4

+
|Not used; should
|not be present

|
K §

K|
|An ordinary |DSECT
|symbol or a
|variable
| symbol
L

-———_-lh-—-J

o

The symbol in the name field is a valid
relocatable symbol whose value represents
the first byte of the section. It has a
length attribute of one.

Program statements belonging to dummy
sections may be interspersed throughout the
program or may be written as a unit. 1In
either case, the appropriate DSECT
instruction should precede each set of
statements. When multiple DSECT
instructions with the same name are
encountered, the first is considered to
initiate the dummy section and the rest to
continue it.

Symbols that name statements in a dummy
section may be used in USING instructions.
Therefore, they may be used in program
elements (e.g., machine instructions and
data definitions) that specify storage
addresses. An example illustrating the use
of a dummy section appears subsequently
under "Addressing Dummy Sections"™ in this
section.

Note: A symbol that names a statement in a
dummy section may be used in an A-type
address constant only if it is paired with
another symbol (with the opposite sign)
from the same dummy section.

Dummy Section Location Assignment. A
location counter is used to determine the
relative locations of named program
elements in a dummy section. The location
counter is always set to zero at the
beginning of the dummy section, and the
location values assigned to symbols that
name statements in the dummy section are
relative to the initial statement in the
section.

Addressing Dummy Sections. The programmer
may wish to describe the format of an area
whose storage location will not be
determined until the program is executed.

36 Part 2: Basic Functions of the Assembler Language

O

He can describe the format of the area in a
dunmy section, and he can use symbols
defined in the dummy section as the
operands of machine instructions. To
effect references to the storage area, he
does the following:

1. Provides a.USING statement specifying
both a general register that the
assembler can assign to the machine
instructions s a base register and a
value from the dummy section that the
assembler may assume the register
contains.

2- Ensures that the same register is
loaded with the actual address of the
storage area.

The values assigned to symbols defined
in a dummy section are relative to the
initial statement of the section.

Thus, all machine instructions which
refer to names defined in the dummy section
will, at execution time, refer to storage
locations relative to the address loaded
into the register.

An example is shown in the following
coding. Assume that two independent
modules (assembly 1 and assembly 2) have
been loaded and are to be executed as a
single overall program. Assembly 1 is an
input routine that places a unit record in
a specified area of storage, and places the
address of that area in register 3. The
input area is aligned on a fullword

boundary. Then assembly 1 branches to
assembly 2. Assembly 2 processes the
record, which has the following format:

Columns Content

1 INCODE

2 blank

3 and 4 INPUTA

5 through 8 INPUTB

The coding shown in the example is from
assembly 2.

The input area is described in assembly
2 by the DSECT control section named
INAREA. Portions of the input area (i.e.,
record) that the programmer wishes to work
with are named in the DSECT control section
as shown. The assembler instruction USING
INAREA,3 designates general register 3 as
the base register to be used in addressing
the DSECT control section, and that general
register 3 is assumed to contain the
address of INAREA.

Assembly 1, during execution, loads the
actual beginning address of the input area
in general register 3. Because the symbols
used in the DSECT section are defined
relative to the initial statement in the

section, the address values they represent,
will, at the time of program execution, be
the actual storage locations of the input
area.

I L T L)
| Name |Operation|Operand |
b 1 1 ~
| ASMBLY2 |CSECT | |
| BEGIN BALR 2,0
| USING *,2
| [
|
|
|
|
|
|
| ATYPE
|
| |
WORK
WO
ot
[J
INAREN-| DSECT
| CNOP 0,4
I DS CIL1
|DS cL1
INPUTA |DS H |
INPUTB |DS F |
| | e |
| | END | |
L R L 1

The programmer must ensure that a
section of code in his program is actually
described by the dummy section which.
references it i.e., that data is properly
aligned in both places. The DSECT named
INAREA in the previous example adequately
describes, the section of code introduced
into assembly 1, as it was aligned on a
fullword boundary. Further, WORKA and
WORKB will be aligned and contiguous to
each other in the same way as INPUTA and
INPUTB are.

COM--Define Blank Common Control Section

The COM assembler instruction identifies
and reserves a common area of storage that
may be referred to by independent modules
that have been linked and loaded for
execution as one overall program.

Only one blank common control section
may be designated in a source module.
However, more than one COM statement may
appear within a module. The first
identifies the beginning of the blank
common control section; the rest identify
the resumption of the section.

Section 3: Addressing--Program Sectioning and Linking 37

When several modules are loaded, each
designating a common control section, the
amount of storage reserved is equal to the
longest common control section. The form
is:

r T T T "
| Name jOperation| Operand
i 4

T L)
Sequence |COM |Not used; should
symbol or| |not be present

not used | |
L L

O e e e |

The common area may be broken up into
subfields through use of the DS and DC
assembler instructions. Names of subfields
are defined relative to the beginning of
the common section, as in the DSECT control
section.

It is necessary to establish
addressability relative to a named
statement within COM since the COM
statement itself cannot have a name. In
the following example, addressability to
the common area of storage is established
relative to the named statement XYZ.

r TTT L]
|Name Operation|Operand |
t |
N | |
° |
L | 8,=A XYZ)
[‘ USING {X¥z,8
MVC | PDQ (16) ,=UC*ABCD"
. |
° |
COM |
XYZ DS | 16F
PDQ DS { 16C |
| o |
| » |
4 1 i

No instructions or constants appearing
in a common control section are assembled.
Data can only be placed in a common control
section through execution of the program.

If the assignment of common storage is
done in the same manner by each independent
assembly, reference to a location in the
common area by any assembly results in the
same location being referenced. When the
blank common control section is assembled
the initial value of the location counter
is set to zero.

SYMBOLIC LINKAGES

Symbols may be defined in one module and
referred to in another, thus effecting
symbolic linkages between independently

assembled program sections. The linkages
can be effected only if the assembler is
able to provide information about the
linkage symbols to the linkage editor,
which resolves these linkage references.
The assembler places the necessary
information in the external symbol
dictionary on the basis of the linkage
symbols identified by, e.g., the ENTRY and
EXTRN instructions. Note that these
symbolic linkages are described as linkages
between independent modules; more
specifically, they are linkages between
independently assembled control sections.

In the module where the linkage symbol
is defined (i.e., used as a name), it must
also be identified to the linkage editor
and assembler by means of the ENTRY
assembler instruction (unless the symbol is
the name of a CSECT or START statement).
It is identified as a symbol that names an
entry point, which means that another
module may use that symbol in order to
effect a branch operation or a data
reference. The assembler places this
information in the external symbol
dictionary.

Similarly, the module that uses a symbol
defined in some other module must identify
it by the EXTRN or WXTRN assembler
instruction. Since the definition of the
symbol appears in another module, the |
assembler arbitrarily assigns a length
attribute of 1 and a value of 0. The
assembler places this information in the
external symbol dictionary.

Another way to obtain symbolic linkages
is by using the V-type address constant.
The subsection "Data Definition
Instructions™ in Section 5 contains the
details pertlnent tO writing a V-type
address constant. It is sufficient here to .
note that this constant may be considered
an indirect linkage point. 1t is created
from an externally defined symbol, but that
symbol does not have to be identified by an
EXTRN or WXTRN statement. The V-type
address constant is intended to be used
for external branch references (i.e., for
effecting branches to other programs) .
Therefore, it should not be used for
external data references (i.e., for
referring to data in other modules).

ENTRY--Identify Entry Point Symbol

The ENTRY instruction identifies linkage
symbols that are defined in the module
where the ENTRY instruction appears.
synbols can be referred to in other
modules.

These

38 Part 2: Basic Functions of the Assembler Language

¢
(!

'

|commas, that also
|appear as state-
|ment names

5

A source module may contain a maximum of
100 ENTRY symbols. ENTRY~symbols which are
not defined (not appearing as statement
names) , although invaligqg, w111 also count
towards this maximum.

An ENTRY statement operand may not
contain a symbol defined in a dummy section
or in a blank common control section. An
ENTRY statement containing a symbol defined
in an unnamed control section can be
processed by the assembler, but the DOS/TOS
Linkage Editor will not process the
resulting deck. The following example
identifies the statements named SINE and
COSINE as entry points to the program.

r L} R LS 1
|Name |Operation|Operand |
b 1 t -4
| | ENTRY | SINE,COSINE |
1 4 L - ——— J
Note: Labels of START and CSECT statements

are automatically treated as entry points
to a module. Thus they need not be
identified by ENTRY statements.

EXTRN--Identify External Symbol

The EXTRN instruction identifies linkage
symbols used by one source module but
identified in another module. Each
external symbol must be identified. This
includes symbols that refer to control
section names. The format of the EXTRN
statement is:

L} T
- |Name |Operation|Operand
L 4

One or more relocata-|
ble symbols, separ- |
{ated by commas. |
L]

3 Rl
| Sequence |EXTRN
| symbol or|
|not used |
L . 4

The symbols in the operand field may not
appear as names of statements in the
module. The following example identifies
three external symbols that have been used
as operands in the module but are
identified in some other module.

An example that employs the EXTRN
instruction appears subsequently under
“Addressing External Control Sections.*®

Li L] r B
Name |Operation|Operand | | Name Operation|Operand
SR 4 [
A k| r
Sequence |ENTRY |One or more reloca- | | EXTRN RATERBL, PAYCALC
symbol or | table symbols, i i EXTRN WITHCALC
not used | separated by | L 4 4 1
|
|
|
]

Note_1: A V-type address constant does not
‘havé to be identified by an EXTRN
statement.

Note 2:

Only one external symbol may be
used in an expression. ,

Addressing External Control Sections

A cormon way for a program to link to an
external control section is to:

1. Create a V-type address constant with
the name of the external symbol.

2. Load the constant into a general
register and branch to the control
section via the register.

r T T l
|Name |Operation |Operand {
L 4 i (]
r L |
|MAINPROG | CSECT |
| BEGIN | BALR 2,0 |
| | USING :*,2 }
| |

| |e |
| (L 3,VCON |
i | BALR 1.3 |
| |e |
| ° |
fvcon |pC V (SINE) |
| | END |BEGIN |
L L 4]

The combined number of control sections
and dummy sections plus the number of
unigque symbols in EXTRN or WXTRN statements
and V-type address constants may not exceed
255. (EXTRN and WXTRN statements are
discussed in this section; V-type constants
in Section 5 under *"DC--Define Constant.®)
If the same symbol appears in a V-type
address constant and in the name entry of a
CSECT or DSECT statement, it is counted as
two symbols.

For example, to link to the control
section named SINE, the preceding coding
night be used.

An+external symbol naming data may be
referred to as follows:

Section 3: Addressing--Program Sectioning and Linking 39

1. Identify the external symbol with the
EXTRN instruction, and create an
address constant from the symbol.

2. Load the constant into a general
register, and use the register for
base addressing.

For example, to use an area named
RATETBL, which is in another control
section, the following coding might be
used:

WXTRN--Identify Weak External Symbol

(DOS Assembler 14K T only)

The WXTIRN statement has the same format and
almost the same use as the EXTRN statement.
The c¢cnly difference is that WXTRN
suppresses the AUTOLINK function of the
linkage editor for the symbols identified
by it. 1Its format is:

r T
|Name |Operation |Operand
4

r T T 1

| Name |Operation|Operand |

t + ¢ -

|MAINPROG | CSECT i |

|BEGIN |BALR 12,0 |

| | USING |*,2 |

ok |
®

| | EXTRN | RATETBL |

| [I !

| |e |

| |L | 4 ,RATEADDR

| | USING | RATETBL, U4

| |2 | 3 ,RATETBL |

I |e [|

I [e [|

|RATEADDR |DC |A (RATETBL)

| | END | BEGIN

L 4 5 J

- T
| Sequence |WXTRN
| symbol or|
|not used |
| I 1

|Cne or more relocat-
|able symbols, separ-
|ated by commas.

4

P S

The AUTOLINK (automatic library look-up)
function searches the relocatable library
for any unresolved external references. 1f
it finds the external reference, it
includes the module where the reference
appears in the phase produced by the
linkage editor. Any address constant
containing an unresolved weak external
symbol will appear (at program execution
time) as though the value of the symbol was
resolved to zero.

// Fcr more detailed information on
AUTOLINK refer to DOS System Control and
Service.

Note: AUTOLINK will be suppressed for a
symnbol defined both in a V-type address
constant and in a WXTRN statement.

40 Prart 2: Basic Functions of the Assembler Language

O

@;}D

(D

This section discusses the coding of the
machine instructions represented in the
assembler language. The reader is reminded
that the functions of each machine
instruction are discussed in the
"Principles of Operation" manual (see
"Preface").

Machine Instruction Statements

Machine instructions may be represented
symbolically as assembler language
statements. The symbolic format of each
varies according to the actual machine
instruction format, of which there are
five: RR, RX, RS, S1, and SS. Within each
basic format, further variations are
possible.

The symbolic format of a machine
instruction is similar to, but does not
duplicate, its actual format. Appendix C
illustrates machine format for the five
classes of instructions. A mnemonic
operation code is written in the operation
field, and one or more operands are written
in the operand field. Comments may be
appended to a machine instruction statement
as previously explained in Section 1.

Any machine instruction statement may be
named by a symbol, which other assembler
statements can use as an operand. The
value attribute of the symbol is the
address of the leftmost byte assigned to
the assembled instruction. The length
attribute of the symbol depends on the
basic instruction format, as follows:

Basic Format = Length Attribute

RR 2
RX 4
RS 4
S1 4
SS 6

INSTRUCTION ALIGNMENT AND CHECKING

All machine instructions are aligned
automatically by the assembler on halfword
boundaries. 1f any statement that causes
information to be assembled requires
alignment, the bytes skipped are filled
with hexadecimal zeros. All expressions
that specify storage addresses are checked
to insure that they refer to appropriate

Section 4. Machine Instructions

boundaries for the instructions in which
they are used. Register numbers are also
checked to make sure that they specify the
proper registers, as follows:

1. Floating-point instructions must
specify floating-point registers 0, 2,
4, or 6.

2. Double-shift, fullword multiply, and
divide instructions must specify- an
even-numbered general register in the
first operand.

3. Extended precision floating-point

instructions must specify floating
point register 0 or 4.

OPERAND FIELDS AND SUBFIELDS

Some symbolic operands are written as a
single field and other operands are written
as a field followed by one or two —
subfields. For example, addresses consist
of the contents of a base register and a
displacement. BAn operand that specifies a
base and displacement is written as a
displacement field followed by a base
register subfield, as follows: 40(5). 1In
the RX format, both an index register
subfield and a base register subfield are
written as follows: 40(3,5) . 1In the SS
format, both a length subfield and a base
register subfield are written as follows:
40 (21,5) .

Appendix C shows two types of addressing
formats for RX, RS, SI, and SS
instructions. 1In each case, the first type
shows the method of specifying an address
explicitly, as a base register and
displacement. The second type indicates
how to specify an implied address as an
expression.

For example, a load multiple instruction
(RS format) may have either of the
following symbolic operands:

R1,R3,D2 (B2) --explicit address
R1,R3,S2--implied address

Whereas D2 and B2 must be represented by
absolute expressions, S2 may be represented
either by a relocatable or an absolute
expression.

In order to use implied addresses, the
following rules must be observed:

Section 4: Machine Instructions #1

1. The base register assembler
instructions (USING and DROP) must be
used.

2. An explicit base register designation
must not accompany the implied
address.

For example, assume that FIELD is a
relocatable symbol, which has been assigned
a value of 7400. Assume also that the
assembler has been notified (by a USING
instruction) that general register 12
currently contains a relocatable value of
4096 and is available as a base register.
The following example shows a machine
instruction statement as it would be
written in assembler language and as it
would be assembled. Note that the value of
D2 is the difference between 7400 and 4096
and that X2 is assembled as zero, since it
was omitted. The assembled instruction is
presented in hexadecimal:

Assembler statement:
ST 4,F1ELD
Assembled instruction:

Op.Code R1 X2 B2 D2
50 4 0 C CE8

An address may be specified explicitly
as a base register and displacement {and
index register for RX instructions) by the
formats shown in the first column of Figure
5. The address may be specified as an
implied address by the formats shown in the
second column. Observe that the two
storage addresses required by the SS
instructions are presented separately; an
implied address may be used for one while
an explicit address is used for the other.

r T T k]
jType [Explicit Address|Implied Address i
b t 1 {
|RX |D2 (x2,B2) 152 (x2) |
| [D2 (,B2) | s2 |
IRS {D2 (B2) | S2 |
|s1 {D1(B1) 1s1]
|ss |ID1(%1,B1) [S1@) i
| [D1(L,BY) 51 @ |
I |D2 (L2,B2) 152 @2) !
[L L J
'Figure 5. Details of Address Specification

A comma must be written to separate
operands. Parentheses must be written to
enclose a subfield or subfields, and a
comma must be written to separate two
subfields within parentheses. When
parentheses are used to enclose one
subfield, and the subfield is omitted, the
parentheses must be omitted. In the case

of two subfields that are separated by a
comma and enclosed by parentheses, the
following rules apply:

1. If both subfields are omitted, the
separating comma and the parentheses
must also be omitted.

L 2,48 (4,5)

L 2,FIELD (implied address)

2. If the first subfield in the sequence
is omitted, the comma that separates
it from the second subfield is
written. The parentheses must also be
written.

MVvC 32(16,5) ,FIELD2
MvC 32¢(,5) ,F1ELD2 (implied length)

3. 1I1f the second subfield in the sequence
is omitted, the comma that separates
it from the first subfield must be
omitted. The parentheses must be
written.

MvCc 32(16,5) ,FIELD2
MVC FIELD1(16) ,FIELD2
(implied address)

Fields and subfields in a symbolic
operand may be represented either by
absolute or by relocatable expressions,
depending on what the field requires. (An
expression has been defined as consisting
of one term or a series of arithmetically
combined terms.) Refer to Appendix C for a
detailed description of field requirements.

Note: Blanks may not appear in an operand
unless provided by a character
self-defining term or a character literal.
Thus, blanks may not intervene between
fields and the comma separators, between
parentheses and fields, etc.

LENGTHS--EXPLICIT AND IMPLIED

The length field in SS instructions can
be explicit or implied. To imply a lengtn,
the programmer omits a length field from
the operand. The omission indicates that
the length field is either of the
following:

1. The length attribute of the expression
specifying the displacement, if an
explicit base and displacement have
been written.

2. The length attribute of the expression
specifying the effective address, if
the base and displacement have been
implied.

42 Part 2: Basic Functions of the Assembler Language

F‘
&

.

In either case, .the length attribute for
an expression is the length of the leftmost
term in the expression. The length
attribute of asterisk (¥) is equal to the
length of the instruction in which it
appears, except that in an EQU to #*
statement, the length attribute is 1.

By contrast, an explicit length is
written by the programmer in the operand as
an absolute expression. The explicit
length overrides any implied length.

Whether the length is explicit or
implied, it is always an effective length.
The value inserted into the length field of
the assembled instruction is one less than
the effective length in the machine
instruction statement.

Note: If a length field of zero is
desired, the length may be stated as zero
or one.

To summarize, the length required in an
SS instruction may be specified explicitly
by the formats shown in the first column of
Figure 6 or may be implied by the formats
shown in the second column. Observe that
the two lengths required in one of the SS
instruction formats are presented
separately. An implied length may be used
for one while an explicit length is used
for the other.

r T 1
|Explicit Length | Implied Length |
L [4
1) T 1
[D1(L1,B1) | D1(,BY |
[S1(L1) | s1 |
|D1(L,Bh | D1(,BY) |
151 (1) | s1 |
D2 (L.2,B2) | D2(,B2) I
152 (L2) | s2 |
L i i
Figure 6. Details of Length Specification

in SS Instructions

Machine Instmctioﬁ Mnemonic Codes

The mnemonic operation codes (shown in
Appendix D) are designed to be easily
remembered codes that indicate the
functions of the instructions. The normal
format of the code is shown below; the
items in brackets are not necessarily
present in all codes:
Verb {Modifier] ([Data Type] [Machine Format]
The verb, which is usually one or two
characters, specifies the function. For
example, A represents Add, and MV

represents Move. The function may be
further defined by a modifier. For
example, the modifier L indicates a logical
function, as in AL for Add Logical and MV
is modified by C (MVC) to indicate Move
Characters.

Mnemonic codes for functions involving
data usually indicate the data types, by
letters that correspond to those for the
data types in the DC assembler instruction
(see Section 5). Furthermore, letters U,
W, and X have been added to indicate short
unnormalized, long unnormalized, and
extended floating point operations,
respectively. For example, AE indicates
Add Normalized Short, whereas AU indicates
Add Unnormalized Short. where applicable,
fullword fixed-point data is implied if the
data type is omitted.

The letters R and 1 are added to the
codes to indicate, respectively, RR and SI
machine instruction formats. Thus, AER
indicates Add Normalized Short in the RR
format. Functions involving character and
decimal data types imply the SS format.

MACHINE INSTRUCTION EXAMPLES

The examples that follow are grouped
according to machine instruction format.
They illustrate the various Symbolic
operand formats. All symbols employed in
the examples must be assumed to be defined
elsewhere in the same assembly. All
symbols that specify register numbers and
lengths must be assumed to be equated
elsewhere to absolute values.

Implied addressing, control section
addressing, and the function of the USING
assembler instruction are not considered
here. For discussion of these
considerations and for examples of coding
sequences that illustrate them, refer to
"Program Sectioning and Linking", and "Base
Register Instructions®™ in Section 3.

RR_Format

[} 1

| Name]Operation Operand

L 4

[ALPHA1 [IR 11,2

|ALPHA2 |LR REG1,REG2

|BETA |SPM 15

|GaMMA1 | SVC 250

|GAMMA2 |SVC TEN

L i]

Section 4: Machine Instructions 43

The operands of ALPHA1, BETA, and GAMMA1
are decimal self-defining values, which are
categorized as absolute expressions. The
orerands of ALPHA2 and GAMMA2 are symbols
that are equated elsewhere to absolute
values.

RX Format

r T T 1
|Name |Operation|Operand |
I |]
ALPHA1	L {1,39 4, 10)	
ALPHA2	L	REG 1,39 (4,TEN)
BETAT	L	2,Z2ETA (4)
BETA2	L	REG2 , ZETA (REGY)
GAMMA1	L	2,ZETA
GAMMAZ	L	REG2 ,ZETA]
GAMMA3	L	2,=F"1000°"
LAMBDA1	L 13,20 (,5)	
L 4 i -]

Both ALPHA instructions specify explicit
addresses; REG1 and TEN are absolute
symbols. Both BETA instructions specify
implied addresses, and both use index
registers. Indexing is omitted from the
GAMMA instructions. GAMMA1 and GAMMA2
specify implied addresses. The second
orerand of GAMMA3 is a literal. LAMBDA1
specifies no indexing.

RS Format

r LE . v
|Name |Operation|Operand
i 4 i

11,2,20 (14)

| REG 1,REG 2, 20 (REGD)
| REG 1,REG2, ZETA
|REG2,15

L T

|ALPHA1 |BXH
|ALPHA2 |BXH
|ALPHA3 |BXH
|ALPHA4 |SLL
|ALPHAS |SLL
t L

b ey iy s s o b e and

Whereas ALPHA1 and ALPHA2 specify
explicit addresses, ALPHA3 specifies an
implied address. ALPHA4 is a shift
instruction shifting the contents of REG2
left 15 bit positions. ALPHAS is a shift
instruction shifting the contents of REG2
left by the value contained in general
register 15,

|

’ 1 —-=—--- {
|ALPHA1 |AP {40 (9,8) ,30(6,7) |
| ALPHA2 | AP |“0(NINE,REG8),30(L6,7)]
ALPHA3	AP	FIELD2 ,FIELD1
ALPHAY lAP	F1IELD2 (9) ,FIELD1 (6)	
BETA	AP	FIELD2 (9) ,FIELD1
GAMMA1	MVC 140 (9,8) ,30 (7) 1	
GaMmMa2 [MVC	40 (NINE, REG8) ,DEC (7)	
GAMMA3	MVC	FIELD2 ,FIELD1
GAMMAY	MVC	FIEID2 (9) ,FIELD1
L 4 4 ——d

S1I Fcrmat

r T B 1
|Name |Operation|Cperand |
' —4--- 1 -1
|ALPHA1 |CLI |40 (9) ,x'60" |
|ALPHA2 |CLI |40 (REGY) ,TEN |
{EETA; {ggl |ZETA,g§N. |
BETA I ZETA,C'A
|GAMMA1 |SIO }u0(9) ;
[GAMMA2 |SIC 10 (9) I
|GAMMA3 |SIO |40 (0) |
|GAMMAY | SIO | ZETA |
L A 1 5}

The ALPHA instructions and GAMMA1-GaMMA3
specify explicit addresses, whereas the
BETA instructions and GAMMAY4 specify
implied addresses. GAMMA2 specifies a
displacement of zero. GAMMA3 does not
specify a base register.

SS Format

]
[}
!
-

r T T
|Name |Operation|Cperand
R 4

ALPHA1, ALPHA2, GANMMA1, and GAMMA2
specify explicit lengths and addresses.
ALPHA3 and GAMMA3 specify both implied
length and implied addresses. ALPHA4 and
GAMMAY4 specify explicit length and implied
addresses. BETA specifies an explicit
length for FIELD2 and an implied length for
FIELD1; both addresses are implied.

Extended Mnemonic Codes

For the convenience of the programmer, the
assembler provides extended mnemonic codes,
which allow conditional branches to be
specified mnemonically as well as through
the use of the BC machine instruction.
These extended mnemonic codes specify both
the machine.branch instruction and the
condition on which the branch is to occur.
The codes are not part of the universal set
of machine instructions, but are translated
by the assembler into the corresponding
operation and condition combinations.

44 Ppart 2: Basic Functions of the Assembler Language

-

Q

Extended Code Meaning

Used After Compare Instructions

| BH D2 (X2,B2) Branch on High

| BL D2 (X2,B2) Branch on Low

| BE D2 (X2,B2) Branch on Equal

| BNH D2 (X2,B2) Branch on Not High
| BNL D2 (X2,B2) Branch on Not Low

| BNE D2 (X2,B2) Branch on Not Equal

|
| Used After Arithmetic Instructions
!

| BO D2 (X2,B2) Branch on Overflow
| BP D2 (X2,B2) Branch on Plus
BM D2 (X2,B2) Branch on Minus
BZ D2 (X2,B2) Branch on Zerxo
BNP D2(X2,B2) Branch on Not Plus
BNM D2 (X2,B2) Branch on Not Minus
BNZ D2 (X2,B2) Branch on Not Zero

B D2(X2,B2) ranch Unconditional BC 15,D2 (X2,B2)

BR R2 Branch Unconditional (RR format) BCR 15,R2

NOP D2 (X2,B2) No Operation BC 0,D2(X2,B2)

NOPR R2 No Operation (RR format) BCR 0,R2 |

Used After Test Under Mask Instructions

Machine Instruction

BC 2,02 (X2,B2)
BC 4,D2 (X2,B2)
BC 8,D2 (X2,B2)
BC 13,D2 (X2,B2)
BC 11,D2 (X2,B2)
BC 7,D2 (X2,B2)

BC 1,D2 (X2,B2)
BC 2,D2 (X2,B2)
BC 4,D2 (X2,B2)
BC 8,D2 (X2,B2)
BC 13,D2(X2,B2)
BC 11,D2(X2,B2)
BC 7,D2 (X2,B2) |

|
| BO D2 (X2,B2) Branch if Ones BC 1,D2 (X2,B2) |
BM D2 (X2,B2) Branch if Mixed BC 4,D2 (X2,B2) |
BZ D2 (X2,B2) Branch if Zeros BC 8,D2 (X2,B2) |
| BNO D2 (X2,B2) Branch if Not Onmes BC 14,D2 (X2,RB2) |
L _— I |
Figure 7. Extended Mnemonic Codes

The allowable extended mnemonic codes
and their operand formats are shown in
Figure 7, together with their machine
instruction equivalents. Unless otherwise
noted, all extended mnemonics shown are for
instructions in the RX format. Note that
the only difference between the operand
fields of the extended mnemonics and those
of their machine instruction equivalents is
the absence of the R1 field and the comma
that separates it from the rest of the
operand field. The extended mnemonic list,
like the machine instruction list, shows
explicit address formats only. Each
address can also be specified as an implied
address.

In the following examples, which
illustrate the use of extended mnemonics,
it is to be assumed that the symbol GO is
defined elsewhere in the program.

{Name Operation|Operand

L

¥

| |B |40(3,6)

| B 40 (,6)

| BL GO (3)

| | BL |GO

| | BR |4

| [woP |60 (3) I
t AL 1

The first two instructions specify an
unconditional branch to an explicit
address. The address in the first case is
the sum of the contents of base register 6,
the contents of index register 3, and the
displacement 40; the address in the second
instruction is not indexed. The third
instruction specifies a branch on low to
the address implied by GO as indexed by the
contents of index register 3; the fourth
instruction does not specify an index
register. The next instruction is an
unconditional branch to the address
contained in register 4. The last
instruction is a "no operation®. It will
not branch under any condition because the
mask field is zero.

Section 4: Machine Instructions 45

Section 5. Assembler Instruction Statements

Just as machine instructions are used to
request the computer to perform a sequence
of operations during program execution
time, so assembler instructions are
requests to the assembler to perform
certain operations during the assembly.
Assembler instruction statements, in
contrast to machine instruction statements,
do not always cause machine instructions to
be included in the assembled program.

Some, such as DS and DC, generate no
instructions but do cause storage areas tc
be set aside for constants and other data.
Others, such as EQU and SPACE, are
effective only at assembly time; they
generate nothing in the assembled program
and have no effect on the location counter.

The following is a list of all the
assembler instructions.

Symbol Definition Instruction
EQU Equate Symbol

Data Definition Instructions

DC Define Constant

LS LCefine Storage

CCW Define Channel Command Word

Program Sectioning and Linking Instructions?

START Start Assembly

CSECT Identify Control Section
DSECT Identify Dummy Section

ENTRY Identify Entry-Point Symbol
EXTRN Identify External Symbol
WXTRN Identify Weak External Symbol
COM Identify Blank Common Control

Section

Base Register Instructions?
US1ING Use Base Address Register
CROP Drop Base Address Register

Listing Control Instructions

TITLE Identify Assembly Output
EJECT Start New Page

SPACE Space Listing

PRINT Print Optional Data

Program Control Instructions
ICTL Input Format Control
ISEQ Input Sequence Checking
ORG Set Location Counter

LTORG Begin Literal Pool
CNOP Conditional No Operation
COPY Copy Predefined Source Coding

END End Assembly
PUNCH Punch a Card
REPRO Reprocduce Following Caxrd

Discussed in Section 3.

Symbol Definition Instruction

FQU--EQUATE SYMBOL

The EQU instruction is used to define a
symbol by assigning to it the length,
value, and relocatability attrikutes of an
exrression in the operand field. The
typical form of the EQU instruction
statement is as follows:

r T s |
| Name Operation|Cperand |
L 4 4
s k] 1
A variable	EQU	An expression
symbol or		
an ordinary		
symbol		
L 4 4 -3

The expression in the operand field may
be absolute or relocatable. BAny symkols
appearing in the expression must be
previously defined.

The symbol in the name field is given
the same attributes as the expression in
the operand field. The length attribute of
the symbol is that of the leftmcst (or
only) term of the expression. When that
term is * or a self-defining term, the
length attribute is 1. The value attrikute
of the symbol is the value of the
exgression.

The EQU instruction is the means of
equating symkols to register numbers,
immediate data, and other arbitrary values.
The following examples illustrate how this
might be done:

r T T et |
| Name |Operation|Cperand |
L 4 4 ;)
L 3 Rl L] 1
|REG2 | EQU {2 (general register) |
|TEST |EQU |X*3F* (immedjiate data) |
L L A J

‘To reduce programming time, the
Frogrammer can equate symbols to frequently
used expressions and then use the symbcls
as cperands in rlace of the expressions.
Thus, in the statement FIELD is

z)
g
K

Operation|Cperand

ALFHA-BETA+GAMMA

A -

oo snmes e e

|
FIELLC |EQU
4 .

46 Part 2: Basic Functions of the Assembler Language

Q

defined as ALPHA-BETA+GAMMA and may be used
in place of it. Note, however, that ALPHA,
BETA, and GAMMA must all be previously
defined. 1f the final result of the
expression is negative, the low order 24
bits of the 2's complement is used.

Data Definition Instructions

There are three data definition instruction
statements: Define Constant (DC), Define
Storage (DS), and Define Channel Command
Word (CCW).

These statements are used to enter data
constants into storage, to define and
reserve areas of storage, and to specify
the contents of channel command words. The
statements may be named by symbols so that
other program statements can refer to the
fields generated from them. The discussion
of the DC instruction is far more extensive
than that of the DS instruction, because
the DS instruction is written in the same
format as the DC instruction and may
specify some or all of the information that
the DC instruction provides. Only the
function and treatment of the statements
vary. For this reason, the DC instruction
is presented first and discussed in more
detail than the DS instruction.

DC--DEFINE CONSTANT

The DC instruction is used to provide
constant data in storage. It may specify
one constant or a series of constants,
thereby relieving the programmer of the
necessity to write a separate data
definition statement for each constant
desired. Furthermore, a variety of
constants may be specified: fixed-point,
floating-point, decimal, hexadecimal,
character, and storage addresses. (Data
constants are generally called constants
unless they are created from storage
addresses, in which case they are called
address constants.) The typical form of
the DC instruction statement is as follows:

r T T
|Name |Operation|Operand
|8 N L

v T
|Any symbol |DC
|or not used

¥
|One operand (D as-
| sembler) or one or
|more operands (F
|assembler) in the
|format described
|below, each separ-
|ated by a comma.

L

o s . vt et
o e e e s . e
e el P S

Each operand consists of four subfields;
the first three describe the constant, and
the fourth subfield provides the constant
or constants. The first and third
subfields may be omitted, but the second
and fourth must be specified. Note that
more than one constant may be specified in
the fourth subfield for most types of
constants. Each constant so specified must
be of the same type; the descriptive
subfields that precede the constants apply
to all of them. No blanks may occur within
any of the subfields (unless provided as
characters in a character constant or a
character self-defining term), nor may they
occur between the subfields of an operand.
Similarly, blanks may not occur between
operands and the commas that separate them
when multiple operands are being specified.

The subfields of the DC operand are
written in the following sequence:

r L]
| Subfield |
| 1 2 3 4 |
b -
r T T T T

|Dupli- |Type|Modifiers|Constant (s) |
{cation | { | |
|Factor | | | |
L AL 4 i i |

The symbol that names the DC instruction
is the name of the constant (or first
constant if the instruction specifies more
than one) . Relative addressing (e.g.,
SYMBOL+2) may be used to address the
various constants if more than one has been
specified, because the number of bytes
allocated to each constant can be
determined.

The value attribute of the symbol naming
the DC instruction is the address of the
leftmost byte (after any necessary
alignment) of the first, or only, constant.
The length attribute depends on two things:
the type of constant being defined and the
presence of a length specification.

Implied lengths are assumed for the various
constant types in the absence of a length
specification. If more than one constant
is defined, the length attribute is the
length in bytes (specified or implied) of
the first constant.

Boundary alignment. also varies according
to the type of constant being specified and
the presence of a length specification.
Some constant types are only aligned to a
byte boundary, but the DS instruction can
be used to force any type of word boundary
alignment for them. This is explained
under "DS--Define Storage.” Other
constants are aligned at various word
boundaries (half, full, or double) in the
absence of a length specification. If

Section 5: Assembler Instruction Statements U7

length is specified, no boundary alignment
occurs for such constants.

Bytes that must be skipped in order to
align the field at the proper boundary are
not considered to be part of the constant.
In other words, the location counter is
incremented to reflect the proper boundary
(if any incrementing is necessary) before
the address value is established. Thus,
the symbol naming the constant will not
receive a value attribute that is the
location of a skipped byte.

Any bytes skipped in aligning statements
that do not cause information to be
assembled are not zeroed. Thus bytes
skipped to align a DC statement are zeroed,
and bytes skipped to align a DS statement
are not zeroed.

Appendix F summarizes, in chart form,
the information concerning constants that
is presented in this section.

LITERAL DEFINITIONS: The reader is
reminded that the discussion of literals as
machine instruction operands (in Section 2)
referred him to the description of the DC
operand for the method of writing a literal
operand. All subsequent operand
specifications are applicable to writing
literals, the only differences being:

1. The literal is preceded by an = sign.

2. Unsigned decimal values must be used
to express the duplication factor and
length modifier wvalues.

3. The duplication factor may not be
zero.

4. S-type address constants may not be
specified.

5. Signed or umnsigned decimal values must
be used for exponent and scale
modifier values.

Examples of literals appear throughout
the balance of the DC instruction
discussion.

Operand Subfield 1: Duplication Factox

The duplication factor may be omitted. 1I1f
specified, it causes the constant (s) to be
generated the number of times indicated by
the factor. The factor may be specified
either by an unsigned decimal self-defining
term or by a positive absolute expression
that is enclosed by parentheses. The
duplication factor is applied after the
constant is assembled. All symbols in the
expression must be previously defined.

Note that a duplication factor of zero
is permitted except in a literal and
achieves the same result as it would in a
DS instruction. A DC instruction with a
zero duplication factor will not produce
control dictionary entries. See "Forcing
Alignment" under "DS--Define Storage."

Note: If duplication is specified for an
address constant containing a location
counter reference, the value of the
location counter used in each duplication
is incremented by the length of the
operand.

Operand Subfield 2: Type

The type subfield defines the type of
constant being specified. From the type
specification, the assembler determines how
it is to interpret the constant and
translate it into the appropriate machine
format. The type is specified by a single
letter code as shown in Figure 8.

Further information about these
constants is provided in the discussion of
the constants themselves under "Operand
Subfield 4: Constant.*”

Operand Subfield 3: Modifiers

Modifiers describe the length in bytes
desired for a constant (in contrast to an
implied length) , and the scaling and
exponent for the constant. If multiple
modifiers are written, they must appear in
this sequence: 1length, scale, exponent.
Each is written and used as described in
the following text.

LENGTH MODIFIER: This is written as Ln,
where n is either an unsigned decimal
self-defining term or a positive absolute
expression enclosed by parentheses. BAny
symbols in the expression must be
previously defined. The value of n
represents the number of bytes of storage
that are assembled for the constant. The
maximua value permitted for the length
modifiers supplied for the various types of
constants is summarized in Appendix F.

This table also indicates the implied
length for each type of constant; the
implied length is used unless a length
modifier is present. A length modifier may
be specified for any type of constant.
However, no boundary alignment will be
provided when a length modifier is given.

48 Part 2: Basic Functions of the Assembler Language

- 1

|Code Type of Constant Machine Format |
|

gC Character 8-bit code for each character |
|X Hexadecimal 4-bit code for each hexadecimal digit {
|B Binary Binary format |
|F Fixed-point Signed, fixed-point binary format; normally a fullword |
|H Fixed-point Signed, fixed-point binary format; normally a halfword |
|E Floating-point Short floating-point format; normally a fullword |
|D Floating-point Long floating-point format; normally a doubleword |
|L Floating-point Extended floating-point format; normally two doukle words |
| (DOS Assembler D 14K variant only) |
|P Decimal Packed decimal format |
|12 Decimal Zoned decimal format |
|1A Address Value of address; normally a fullword |
Y Address Value of address; normally a halfword |
|S Address Base register and displacement value; a halfword |
|v Address Space reserved for external symbol addresses; each address]|
| normally a fullword |
t ——i
Figure 8. Type Codes for Constants
Bit-Length Specification (F assemblexr In storage:
only): The length of a constant, in bits,
is specified by L.n, where n is specified byte byte byte
as stated above and represents the number | | |
of bits in storage into which the constant |~Efgding| |
is to be assembled. The value of n may 100010010100011000 |
exceed eight and is interpreted to mean an _—
integral number of bytes plus so many bits. 579 fill
For example, L.20 is interpreted as a
length of two kytes plus four bits. Figure 9. Bit-Length Specification (Single

Assembly of the first or only constant
with bit-length specification starts on a
byte boundary. The constant is placed in
the high- or low-oxder end of the field
depending on the type of constant being
specified. The constant is padded ox
truncated to f£it the field. 1If the
assembled length does not leave the
location counter set at a byte boundary,
and another bit length constant does not
immediately follow in the same statement,
the remainder of the last byte used is
filled with zeros. This leaves the
location counter set at the next byte
boundary. Figure 9 shows a fixed-point
constant with a specified bit-length of 13,
as coded, and as it would appear in
storage. Note that the constant has been
padded on the left to bring it to its
designated 13-bit length.

As coded:

[} T T
|Name {Operation|Operand
[§ 4 i

¢
|[FL.13'579°

Lo ——

PRI SR

3 T
|BLCON |DC
L L

Constant)

The implied length of BLCON is two
bytes. A reference to BLCCN would cause
the entire two bytes to be referenced.

When bit-length specification is used in
association with multiple constants (see
"Operand Subfield U4: Constant®" following),
each succeeding constant in the list is
assembled starting at the next available
bit. Figure 10 illustrates this.

As coded:

r) h)
|Name |Operation{Cperand
4

BLMCON |DC

e e

|F1.10°161,21,57¢
4

Secticn 5: Assembler Instruction Statements 49

In storage:
byte byte
|

[|
I | padding]

byte byte byte

[
padding |
| | p——— : |
100101000101000001]01010000{ 11100100

161 21 57 fill

Bit-Length Specification
(Multiple Constants)

Figure 10.

The symbol used as a name entry in a DC
assembler instruction takes on the length
attribute of the first constant in the
list; therefore the implied length of
BLMCON in Figure 10 is two bytes.

If duplication is specified, filling
occurs once at the end of the field
occupied by the duplicated constant(s).

When bit-length specification is used in
association with multiple operands,
assembly of the constant(s) in each
succeeding operand starts at the next
available bit. Figure 11 illustrates this.

As coded:
r T T 1
| |Oper-|Operand |
| Name |ation |
b + {
| BLMOCON|DC FL.7°'9',CL.10'AB',XL. 14°'C4"*|
t L J
In storage:
byte byte byte byte byte
| | | ! !
|padding | | padding | |
| [— | [|
100010011]10000011{10000001}10001000, |
9 | a l cu C?ill
b——-'-hﬁ'———_d
A plus
first two
bits of B
Figure 11. Bit-Length Specification

{(Multiple Operands)

In Figure 11, three different types of
constants have been specified, one to an
operand. Note that. the character constant
'AB' which normally would occupy 16 bits is
truncated on the right to fit the 10-bit
field designated. Note that filling occurs
only at the end of the field occupied by
all the constants.

SCALE MODIFIER: This modifier is written
as Sn, where n is either a decimal value or
an absolute expression enclosed by
parentheses. Any symbol in the expression
must be previously defined. The decimal
value or the parenthesized expression may
be preceded by a sign; if none is present,
a plus sign is assumed. The maximum values
for scale modifiers are summarized in
Appendix F.

A scale modifier may be used with
fixed-point (F, H) and floating-point (E,
D, and I) constants only. It is used to
specify the amount of internal scaling that
is desired, as follows.

Scale Modifier for Fixed-Point Constants.
The scale modifier specifies the power of
two by which the constant must be
multiplied after it has been converted to
its binary representation. Just as
multiplication of a decimal number by a
power of 10 causes the decimal point to
move, multiplication of a binary number by
a power of two causes the binary point to
move. This multiplication has the effect
of moving the binary point away from its
assumed position in the binary field; the
assumed position being to the right of the
rightmost position.

Thus, the scale modifier indicates
eithexr of the following: (1) the number of
binary positions to be occupied by the
fractional portion of the binary number, or
(2) the number of binary positions to be
deleted from the integral portion of the
binary number. A positive scale of x
shifts the integral portion of the number x
binary positions to the left, thereby
reserving the rightmost x binary positions
for the fractional portion. A negative
scale shifts the integral portion of the
number right, thereby deleting rightmost
integral positions. IXIf a scale modifier
does not accompany a_fixed-point constant
containing a fractional part, the
fractional part is lost.

In all cases where positions are lost
because of scaling (or the lack of
scaling) , rounding occurs in the leftmost
bit of the lost portion. The rounding is
reflected in the rightmost position saved.

Scale Modifier for Floating-Point
Constants. Only a positive scale modifier
may be used with a floating-point constant.
It indicates the number of hexadecimal
positions that the fraction is to be
shifted to the right. Note that this shift
amount is in terms of hexadecimal
positions, each of which is four binary
positions. (A positive scaling actually
indicates that the point is to be moved to
the left. However, a floating-point
constant is always converted to a

50 ©Part 2: Basic Functions of the Assembler Language

O

)
J

¢

fraction,which is hexadecimally normalized.
The point is assumed to be at the left of
the leftmost position in the field. Since
the point cannot be moved left, the
fraction is shifted right.)

Thus, scaling that is specified for a
floating-point constant provides an
assembled fraction that is unnormalized,
i.e., contains hexadecimal zeros in the
leftmost positions of the fraction. When
the fraction is shifted, the exponent is
adjusted accordingly to retain the correct
magnitude. When hexadecimal positions are
lost, rounding occurs in the leftmost
hexadecimal position of the lost portion.
The rounding is reflected in the rightmost
hexadecimal position saved.

EXPONENT MODIFIER: This modifier is
written as En, where n is either a decimal
self-defining term or an absolute
expression enclosed by parentheses.
symbols in the expression must be
previously defined. The decimal value or
the parenthesized expression may be
preceded by a sign; if none is present, a
Plus sign is assumed. The maximam values
for exponent modifiers are summarized in
Appendix F,.

Any

An exponent modifier may be used with
fixed-point (F, H) and floating-point (g,
D, and L) constants only. The modifier
denotes the power of 10 by which the
constant is t0 be multiplied before its
conversion to the proper internal format.

This modifier is not to be confused with
the exponent of the constant itself, which
is specified as part of the constant and is
explained under ®"Operand Subfield 4:
Constant.® Both are denoted in the same
fashion, as En. The exponent mcdifier
affects each constant in the operand,
whereas the exponent written as part of the
constant only pertains to that constant.
Thus, a constant may be specified with an
exponent of +2, and an exponent modifier of
+5 may precede the constant. 1In effect,
the constant has an exponent of +7.

Note that there is a maximum value, both
positive and negative, listed in Appendix F
for exponents. This applies to the
exponent modifier and to the sum of the
exponent modifier and the exponent
specified as part of the constant.

Operand Subfield 4: Constant

This subfield supplies the constant (or
constants) described by the subfields that
precede it. A data constant (all tyges
except A, Y, S, and V) is enclosed by

apostrophes. An address constant (types A,
Y, S, and V) is enclosed by parentheses.

To specify two or more constants in the
subfield, the constants must be separated
by commas and the entire sequence of
constants must be enclosed by the
appropriate delimiters (i.e., apostrophes
or parentheses) . Thus, the format for
specifying the constant (s) is one of the
following:

.
| Single
|Constant

Multiple
Constants?

constant' |

' *constant,...,constant’
(constant) |
1

{(constant,...,constant)

1Not permitted for character,
hexadecimal, and binary constants.

e s
he s e e o et e v ity s, e 2l

All constant types except character (C),
hexadecimal (X), binary (B), packed decimal
(P) , and zoned decimal (Z), are aligned on
the proper boundary, as shown in Appendix
F, unless a length modifier is specified.
In the presence of a length modifier, no
boundary alignment is performed. 1f the
operand specifies more than one constant,
any necessary alignment applies to the
first constant only. Thus, for an operand
that provides five fullword constants, the
first would be aligned on a fullword
boundary, and the rest would automatically
fall on fullword boundaries.

The total storage requirement of the
orerand is the product of the length times
the number of constants in the orerand
times the duplication factor (if present)
plus any bytes skirped for boundary
alignment.

If an address constant contains a
location counter reference, the location
counter value that is used is the storage
address of the first byte the constant will
occupy. Thus, if several address constants
in the same instruction refer to the
location counter , the value of the
location counter varies from constant to
constant. Similarly, if a single constant
is specified (and it is a location counter
reference) with a duplication factor, the
constant is duplicated with a varying
location counter value.

E and H constants are converted as if
they were D and F, respectively, and then
shortened.

The subsequent text describes each of
the constant types and provides examples.

Section 5: Assembler Instruction Statements 51

Character Constant--C. Any of the valid
256 punch combinations may be designated in
a character constant. Only one character
constant may be specified per operand.

Special consideration must be given to
representing apostrophes and ampersands as
characters. Each apostrophe or ampersand
desired as a character in the constant must
be represented by a pair of apostrophes or
ampersands. Only one apostrophe or
ampersand appears in storage.

The maximum length of a character
constant is 256 bytes. No boundary
alignment is performed. Each character is
translated into one byte. Double
apostrophes or doukle ampersands count as
one character. 1If no length modifier is
given, the size in bytes of the character
constant is equal to the number of
characters in the constant. If a length
modifier is provided, the result varies as
follows:

1. If the number of characters in the
constant exceeds the specified length,
as many rightmost Lkytes as necessary
are drorged.

2. If the number of characters is less
than the specified length; the excess
rightmost bytes are filled with
blanks.

In the following example, the length
attribute of FIELL is 12:

r w L)
|Name |Operation|Operand
L 4 4

——

'
|C*TOTAL IS 110°
4

b e ey e

v T
|[FIELD |DC
L 4

However, in this next example, the
length attribute is 15, and three blanks
appear in storage to the right of the zero:

r £ w
|Name |Operation|Operand
t 4 4

+
|CL15*TOTAL IS 110°

4

e e b s o

v T
|FIELD |DC
i ; 4

In the next example, the length
attribute of FIELLC is 12, although 13
characters appear in the operand. The two
ampersands count as only one byte.

r L T
|Name |Operation|Operand
L 4 4

r T T
|FIELD |DC |C*'TOTAL IS £§10°
L 1 L

Note that in the next example, a length
of four has been specified, kut there are
five characters in the constant.

r

L} L}
| Name |Operation|Operand
L 4 4

| 3CL4 *ABCDE*
A4)

b s ol e

LB t
|FIELD |DC
[i

The generated constant would ke:
ABCDABCDABCD
On the other hand, if the length had
been specified as six instead of four, the
generated constant would have been:
ABCDE ABCDE AECDE

Note that the same constant could be
specified as a literal.

T ¥
Name |Operation|Operand
4 4

T
|AREA (12) ,=3CL4*ABCDE"

4

= e ey e oy
R e el

+
|MVC
L

Hexadecimal Constant--X. A hexadecimal
constant consists of one or more of the
hexadecimal digits, which are 0-9 and A-F.
Only one hexadecimal constant may ke
specified per operand. The maximum length
of a hexadecimal constant is 256 bytes (512
hexadecimal digits). No word boundary
alignment is performed.

Constants that contain an even number of
hexadecimal digits are translated as one
byte per pair of digits. 1If an odd number
of digits is specified, the leftmost Lyte
has the leftmost four bits filled with a
hexadecimal zero, while the rightmost four
bits contain the odd (first) digit.

If no length modifier is given, the
implied length of the constant is half the
number of hexadecimal digits in the
constant (assuming that a hexadecimal zero
is added to an odd number of digits). If a
length modifier is given, the constant is
handled as follows:

1. If the number of hexadecimal digit
pairs exceeds the specified length,
the necessary leftmost bits (and/or
bytes) are dropped.

2. If the number of hexadecimal digit
pairs is less than the specified
length, the necessary bits (and/or
bytes) are added to the left and
filled with hexadecimal zeros.

An eight-digit hexadecimal constant
provides a convenient way to set the bit
pattern of a full binary word. The
constant is the following example would set
the first and third bytes of a word to 1°s.

52 Part 2: Basic Functions of the Assembler Language

U

@

.

r LY T 1
| Name |Operation|Operand |
b t + {
i {DS {OF !
| TEST {DC |X*FFOOFFO00" |
L 4 i J

The DS instruction sets the location
counter to a fullword boundary.

The next example uses a hexadecimal
constant as a literal and inserts 1s into
bits 24 through 31 of register 5.

L) T
Name |Operation|Operand

ic 5,=X'FF' INSERT CHAR. |
s

o et A, oy

In the following example, the digit A
would be dropped, because five hexadecimal
digits are specified for a length of two
bytes:

r T L]
| Name |Operation|{Operand
L 4 iy

b e s e i

v T v
| ALPHACON| DC | 3XL2'A6FUE"
t 4 L

The resulting constant would be 6FUE,
which would occupy the specified two bytes.
It would then be duplicated three times, as
requested by the duplication factor. 1If it
had merely been specified as X'A6FU4E', the
resulting constant would have had a
hexadecimal zero in the leftmost position:

OA6FUE

Binary Constant--B. A kinary constant is
written using 1's and 0's enclosed in
apostrophes. Only one binary constant may
be specified per operand. Duplication and
length may be specified. The maximum
length of a binary constant is 256 bytes.

The implied length of a binary constant
is the number of bytes occupied by the
constant including any padding necessary.
Padding or truncation takes place on the
left. The padding bit used is a 0.

The following example shows the coding
used to designate a binary constant. BCON
would have a length attribute of one.

r L) T
{Name |Operation|Operand
[1 kR

+
|B*11011101*
[BL1*100100011°*
|BL1*101°

L

T T
|BCON |DC
|BTRUNC |DC
(BPAD [DC
L L

e L p——

BTRUNC would assemble with the leftmost
bit truncated, as follows:

00100011

BPAD would assemble with five zeros as
padding, as follows:

00000101

Fixed-Point Constants--F and H. A
fixed-point constant is written as a
decimal number, which may be followed by a
decimal exponent if desired. The number
may be an integer, a fraction, or a mixed
number (i.e., one with integral and
fractional portions) . The format of the
constant is as follows:

1. The number is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the number, or it may be
omitted, in which case the number is
assumed to be an integer. A positive
sign is assumed if an unsigned numker
is specified. Unless a scale modifier
accompanies a mixed number or
fraction, the fractional portion is
lost, as explained under "Subfield 3:
Modifiers.®

2. The exponent is optiocnal. 1I1f
specified, it is written immediately
after the number as En, where n is an
optionally signed decimal value
specifying the exponent of the factor
10. The exponent may be in the range
-85 to +75. If an unsigned exponent
is specified, a plus sign is assumed.
The exponent causes the value of the
constant to be adjusted by the power
of 10 that it specifies. The exponent
may exceed the permissible range for
exponents provided that the sum of the
exponent and the exponent modifier do
not exceed that range.

The number is converted to a kinary
number. The binary number is then rounded
and assembled into the proper field,
according to the specified or imrlied
length. If the value of the number exceeds
the length specified or implied, the sign
is lost, the necessary leftmost bits are
truncated to the length of the field and
the value is then assembled into the whole
field. Any duplication factor that is
Fresent is applied after the constant is
assembled. A negative number is carried in
2's complement form. The resulting numker
will not differ from the exact value by
more than one in the last place.

An implied length of four bytes is
assumed for a fullwoxrd (F) and two bytes

Section 5: Assembler Instruction Statements 53

for a halfword (H), and the constant is
aligned to the proper fullword or halfword
boundary, if a length is not specified.
However, any length up to and including
eight bytes may be specified for either
type of constant by a length modifier, in
which case no koundary alignment occurs.

Maximum and minimum values, exclusive of
scaling, for fixed-point constants are:

Length Max Min
8 263-1 -263
4 2311 -231
2 215-1 -21S
1 27-1 ~-27
4 23-1 ~-23
.2 2%-1 -21

-1 0 -1

A field of three fullwords is generated
from the statement shown below. The
location attribute of CONWRD is the address
of the leftmost byte of the first werd, and
the length attribute is four, the implied
length for a fullword fixed-point constant.
The expression CONWRLC+4 could be used to
address the second constant (second word)
in the field.

r T . €
|Name |Operation|Operand
)

CONWRD |DC

e e b e

[3F* 658474
4

The next statement causes the generation
of a two-byte field containing a negative
constant. Notice that scaling has been
specified in order to reserve six bits for
the fractional portion of the constant.

r T . L k|
| Name |Operation|Operand |
b + t {
{|HALFCON |DC |HS6'-25.46" 1
[i 4 ~d
The next constant (3.50) is multirlied
by 10 to the -2 before being converted to
its binary format. The scale modifier
reserves twelve bits for the fractional
portion.
r T T -
| Name |Operation|Operand |
F 1 $ 1
| FULLCON | DC |HS12*3.50E-2" |
L 4 L J

The same constant could be specified as
a literal:

T T
Name |Operation|Operand
iR

e n
P Y

+
|AH 7,=HS12'3.50E-2"*
i

The final example specifies three
constants. Notice that the scale modifier
requests four bits for the fractional
portion of each constant. The fcur bits
are provided whether or not the fraction
exists.

r T T
| Name |Operation |0 perand
L 4 4

e o o o

L 3 b 1
| THREECON | DC |FS4'10,25.3,100°"
L L i)

Floating-Point Constants--E, D, and L. A
flcating-point constant is written as a
decimal number, which may be followed Ly a
decimal exponent, if desired. The numker
may be an integer, a fraction, or a mixed
number (i.e., one with integral and
fractional portions). The format of the
constant is as follows:

1. The number is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the number, or it may be
omitted, in which case, the number is
assumed to be an integer. 2 positive
sign is assumed if an unsigned number
is specified.

2. The exponent is optional. If
specified, it is written immediately
after the number as FEn, where n is an
optionally signed decimal value
specifying the exponent of the factor
10. The exponent may be in the range
-85 to +78. The exponent may exceed
the permissible range for exponents,
provided that the sum of the exponent
and the exponent modifier does not
exceed that range. If an unsigned
exponent is specified, a plus sign is
assumed.

Machine format for a flioating-point
number is in two parts: the portion
containing the exponent, which is sometimes
called the characteristic, followed by the
portion containing the fraction, which is
sometimes called the mantissa. Figure 12
shows the external format of the three
types of floating-point constants.

As shown in the figure, the format of
the type L constant is similar to that of
two contiguous type L constants, except
that it is assembled with the sign of the
second double word equal to that of the
first, and the characteristic of the second
equal to that of the first minus 14, mcdule
128. The type L constant has been
implemented to provide the programmer with
extended precision floating-point
constants.

Since the machine format of a floating-
point constant only consists of a fraction

54 Ppart 2: Basic Functions of the Assembler Language

O

QO

SYORT FLOATING POLNT NUMBER (E)

| T - T - - 2)
! {7 BIT | [
| S | CHARAC- | |
1 | TERISTIC | |
L i Lo ___ 4
0 7 8 31
LONG FLOATING POINT NUMBER (D)
r T T-—===T""= - 3
| | 7 BIT | |
| S | CHARAC- | 56-B1T FRACTION [
|] TER1STIC | |
L L Lo~ 4
0 7 8 63
EXTENCED FLOATING POINT NUMBER (L)
r T T - 1
	7 BIT	HIGH ORDER HALF OF
S	CHARAC-	112 BIT FRACTION
	TERISTIC	
L 1 ~L 4		
0 7 8 63		
r T - == 1		
	LOW ORDER HALF QF	
	112 BIT FRACTION]	
L Y R —— 3
0 7 8 63

Figure 12. Floating-Point External Formats

and an exponent, the number specified as a
floating-point constant must be converted
to a fraction before it can be translated
into the proper format. For example, the
constant 27.35E2 represents the number
27.35 times 10 to the 2nd. Represented as
a fraction, it would be .2735 times 10 to
the 4th, the exponent having been modified
to reflect the shifting of the decimal
point. The exponent may also be affected
by the presence of an exponent modifier, as
explained under "Operand Subfield 3:
Modifiers."

The exponent is then translated into its
binary equivalent, and the fraction is
converted to a binary number. Scaling is
performed if specified; if not, the
fraction is normalized (leading hexadecimal
zeros are removed). Rounding of the
fraction is then performed according to the
specified or implied length, and the number
is assembled into the proper field. Within
the portion of the floating-point field
allocated to the fraction, the hexadecimal
point is assumed to be to the left of the
leftmost hexadecimal digit, and the
fraction occupies the leftmost portion of
the field. Negative fractions are carried
in true representation, not in the 2's
complement form. The resulting number will
not differ from the exact value by more
than one in the last place. An implied
length of four bytes is assumed for a short

(E) constant and eight bytes for a long (D)
constant. An implied length of 16 bytes is
assumed for an extended (L) constant. The
constant is aligned at the proper word (E)
or double word (D and L) boundary if a
length is not specified. However, any
length up to and including eight bytes (E
and D) or 16 bytes (L) can be specified by
a length modifier. In this case, no
boundary alignment occurs.

Any of the following statements could be
used to specify 46.415 as a positive,
fuliword, floating-point constant; the last
is a machine instruction statement with a
literal operand. Note that the last two
constants contain an exponent modifier.

r T T -
|Name |Operation|Operand |
% 1 1 4
| |oC |E'46.415" i
| |DC |E*46415E-3" |
| |DC |E*+464 .1SE-1" {
	DC	E*+.46415E+2"*
	pC	EE2' .46415"
	AE 16 ,=EE2".46415"	
L L A 3

The following would each be generated as
doubleword floating-point constants.

Section 5: Assembler Instruction Statements 55

=== T - -
|Name |Operation|Operand
+ 4

‘.-_
| FLOAT
L

be oo b e ol

T T
| DC |DE+4°*+46,-3,729,+473"
L L -

Decimal Constants--P_and Z. A decimal
constant is written as a signed or unsigned
decimal value. 1If the sign is omitted, a
plus sign is assumed. The decimal point
may be written wherever desired or may be
omitted. Scaling and exponent modifiers
may not be specified for decimal constants.
The maximum length of a decimal constant is
16 bytes. No word boundary alignment is
performed.

The placement of a decimal point in the
definition does not affect the assembly of
the constant in any way, because, unlike
fixed-point and floating-point constants, a
decimal constant is not converted to its
binary equivalent. The fact that a decimal
constant is an integer, a fraction, or a
mixed number is not pertinent to its
generation. Furthermore, the decimal point
is not assembled into the constant. The
programmer may determine proper decimal
point alignment either by defining his data
so that the point is aligned or by
selecting machine instructions that will
operate on the data properly (i.e., shift
it for purposes of alignment).

1f zoned decimal format is specified
(z) , each decimal digit is translated into
one byte. The translation is done
according to the character set shown in
Appendix A. The rightmost byte contains
the sign as well as the rightmost digit.
For packed decimal format (P), each pair of
decimal digits is translated into one byte.,
The rightmost digit and the sign are
translated into the rightmost byte. The
bit configuration for the digits is
identical to the configurations for the
hexadecimal digits 0-9 as shown in Section
3 under "Hexadecimal Self-Defining Value."
For both packed and zoned decimals, a plus
sign is translated into the hexadecimal
digit C, and a minus sign into the digit D.

If an even number of packed decimal
digits is specified, one digit will be left
unpaired, because the rightmost digit is
paired with the sign. Therefore, in the
leftmost byte, the leftmost four bits will
be set to zeros and the rightmost four bits
will contain the odd (first) digit.

1f no length modifier is given, the
implied length for either constant is the
number of bytes the constant occupies
(taking into account the format, sign, and
possible addition of zero bits for packed
decimals). If a length modifier is given,
the constant is handled as follows:

1. If the constant requires fewer bytes
than the length specifies, the
necessary number of bytes is added to
the left. For zoned decimal format,
the decimal digit zero is placed in
each added byte. For packed decimals,
the bits of each added byte are set to
zero.

2. If the constant requires more bytes
than the length specifies, the
necessary number of leftmost digits or
pairs of digits is dropped, depending
on which format is specified.

Examples of decimal constant definitions
follow.

 puiaitateting: Autetebnbtndt Retateintetetetete et hett e 1
|Name Operation|Operand]
t 1 ---1
| |DC |[P'+1.25°]
	DC	z2*-543"
	DC 1279.68"	
	pC	PL3'79.68"
[A L J

The following statement specifies three
packed decimal constants. The length
modifier applies to each packed decimal
constant.

I |

T T L)
|Operation|Operand]
4 4

|Name
I

r T
| DECIMALS | DC
A

L

+
|PL8°+25.8,-3874,+2.3" |
4

The last example illustrates the use of
a packed decimal literal.

L T
Operation|Operand
i

I S

||
| UNPK | OUTAREA ,=PL2* +25°
A 1 -

ADDRESS CONSTANTS: An address constant is
a storage address that is translated into a
constant. Address constants can be used
for initializing base registers to
facilitate the addressing of storage.
Furthermore, they provide the means of
communicating between control sections of a
multisection program. However, storage
addressing and control section
communication are also dependent on the use
of the USING assembler instruction and the
loading of registers. Coding examples that
illustrate these considerations are
provided in Section 3 under “Programming
with the Using Instruction.®

An address constant, unlike other types
of constants, is enclosed in parentheses.
1f two or more address constants are
specified in a statement, they are
separated by commas, and the entire

56 Part 2: Basic Functions of the Assembler Language

O

&

There
A, Y'

sequence is enclosed by parentheses.
are four types of address constants:
S, and V.

Complex Relocatable Expressions. A complex
relocatable expression can only be used in
an A-type or Y-type address constant.
These expressions contain two or more
unpaired relocatable terms and/or a
negative relocatable term in addition to
any absolute or paired relocatable terms
that may be present. In contrast to
relocatable expressions, complex
relocatable expressions may represent
negative values. A complex relocatable
expression might consist of external
symbols (which cannot be paired) and
designate an address in an independent
assembly that is to be linked and loaded
with the assembly containing the address
constant.

The value of the expression is
determined when the referenced control
sections are locaded. Complex relocatable
expressions can be used to determine the
distance between two control sections after
they are loaded into main storage.

A-Type Address Constant. This constant is
specified as an absolute, relocatable, or
complex relocatable expression. (Remember
that an expression may be single term or
multiterm.) The value of the expression is
calculated to 32 bits as explained in
Section 2, with one exception: the maximum
value of the expression may be 231%*-1. The
value is then truncated on the left, if
necessary, to the specified or implied
length of the field and assemkled into the
rightmost bits of the field. The implied
length of an A-type constant is four bytes
and alignment is to a fullword boundary
unless a length is specified, in which case
no alignment will occur. The length that
may be specified depends on the type of
expression used for the constant; a length
of 1-4 bytes (.1 (1 bit) to 4 bytes for DOS
F) may be used for an absolute expressions,
while a length of 3 or 4 bytes may be used
for a relocatable or complex relocatable
expression.

In the following examples, the field
generated from the statement named ACON
contains four constants, each of which
occupies four bytes. Note that there is a
location counter reference in one. The
value of the location counter will be the
address of the first byte allocated to the
fourth constant. The second statement
shows the same set of constants specified
as literals (i.e., address constant
literals).

Section 5:

T T T

| |Oper-|

| Name | ation |Operand
1 L

1

|A (108,LOP, END-STRT, *+4096)
|4,7,=A (108, LOP ,END-STRT , *+4096)
h 8 +EN ,

4
ACON|LC

1
|
|

J

1
i

|LM |
L 1

Note: When the location counter reference
occurs in a literal, as in the LM
instruction above, the value of the
location counter is the address of the
first byte of the instruction.

Y-type Address Constant. A Y-type address
constant has much in common with the A-type
constant. It, too, is specified as an
absolute, relocatable, or complex
relocatable expression. The value of the
expression is also calculated to 32 bits as
explained in Section 2. However, the
maximum value of the expression may be only
215-1, The value is then truncated, if
necessary, to the specified or implied
length of the field and assembled into the
rightmost bits of the field. The implied
length of a Y-type constant is two bytes
and alignment is to a halfword boundary
unless a length is specified, in which case
no alignment occurs. The maximum length of
a Y-type address constant is two bytes. 1If
length specification is used, a length of
two bytes may be designated for a
relocatable or complex expression and 1 or
2 bytes (.1 (1 bit) to 2 bytes for DOS F)
for an absolute exrpression.

Caution: Specification of relocatable
Y-type address constants should be avoided
in programs destined to be executed on
machines having more than 32,767 bytes of
stcrage capacity.

S-Type Address Constant. The S-type
address constant is used to store an
address in kase displacement form.

The constant may be specified in two
ways:

1. As an absolute or relocatakle
expression, e.g., S (BETA).

2. As two absolute expressions, the first
of which represents the displacement
value and the second, the base
register, e.g., S (400 (13)).

The address value represented by the
expression in (1) will be broken down Ly
the assembler into the proper base register
and displacement value. An S-type constant
is assembled as a halfword and aligned on a
halfword boundary. The leftmost four bits
of the assembled constant represents the
base register designation; the remaining 12
bits, the displacement value.

Assembler Instruction Statements 57

If length specification is used, only
two bytes may be specified. S-type address
constants may not be specified as literals.

V-Type Address Constant. This constant is
used to reserve storage for the address of
an external symbol that is used for
effecting branches to other programs. To
maintain compatibility with the 0S8
assemblers, the constant should not be used
for external data reference. The constant
is specified as one relocatable symbol,
which need not be identified by an EXTRN
statement. Whatever symbol is used is
assumed to be an external symbol by virtue
of the fact that it is supplied in a V-type
address constant. To suppress the AUTOLINK
function of the linkage editor for a
constant identified in a V-type address
constant, the programmer can identify it in
a WXTRN statement (DOS Assembler 14K D
only) .

Note that specifying a symbol as the
operand of a V-type constant does not
constitute a definition of the symbol for
this assembly. The implied length of a
V-type address constant is four bytes, and
boundary alignment is to a fullword. A
length modifier may be used to specify a
length of either three or four bytes, in
which case no such boundary alignment
occurs. In the following example, 12 bytes
will be reserved, because there are three
symbols. The value of each assembled
constant will be zero until the program is
loaded.

r T . v -
|Name |0peratlon10perand]
|8

L} T
|VCONST |DC |V (SORT ,MERGE,CALC)
t : i —

[
4

DS--DEFINE STORAGE

The LS instruction is used to reserve areas
of storage and to assign names to those
areas. The use of this instruction is the
preferred way of symbolically defining
storage for work areas, input/output areas,

etc. The typical form of the DS statement
is:

r T T - -1
|Name {Operation|Operand |
F $ fmm e e 1
| Any |DS |One operand (O assem- |
| symbol | |bler) or one or more |
{or not | |operands (F assembler) |
used		in the format de-
		scribed below, each
		separated by a comma.
L i L J

._ The format of the DS operand is
identical to that of the LC operand;

exactly the same subfields are employed and
are written in exactly the same sequence as
they are in the DC operand. Although the
formats are identical, there are two
differences in the specification of
subfields. They are:

1. <The specification of data (subfield 4)
is optional in a DS operand, kut it is
mandatory in a OC operand. 1If a
constant is specified, it must be
valid.

2. The maximum length that may be
specified for character (C) and
hexadecimal (X) field types is 65,535
bytes rather than 256 bytes.

If a DS operand specifies a constant in
subfield 4, and no length is specified in

" subfield 3, the assembler determines the

length of the data and reserves the
appropriate amount of storage. It_does not
assemble the constant. The ability to
specify data and have the assembler
calculate the storage area that would be
required for such data is a convenience to
the programmer. 1f he knows the general
format of the data that will be placed in
the storage area during program execution,
all he needs to do is show it as the fourth
subfield in a DS operand. The assembler
then determines the correct amount of
storage to be reserved, thus relieving the
rrogrammer of length consideratioms.

If the DS instruction is named by a
symbol, its value attribute is the location
of the leftmost byte of the reserved area.
The length attribute of the symbol is
determined in the same manner as for a CC.
Any positioning required for aligning the
storage area to the proper type of boundary
is done before the address value is
determined. Bytes skipped for alignment
are not set to zero.

Each field type (e.g., hexadecimal,
character, floating-point) is associated
with certain characteristics (these are
summarized in Appendix F) . The associated
characteristics will determine which
field-type code the programmer selects for
the DS operand and what other information
he adds, notably a length specification crx
a durlication factor. For example, the E
floating-point field and the F fixed-point
field both have an implied length of four
bytes. The leftmost byte is aligned to a
fullword boundary. Thus, either code could
be specified if it were desired to reserve
four bytes of storage aligned to a fullword
boundary. To obtain a length of eight
bytes, one could specify either the E or F
field type with a length modifier of eight.
However, a duplication factor would have to
be used to reserve a larger area, because
the maximum length specification for either

58 Part 2: Basic Functions of the Assembler Language

% .” "

AN

s

O

type is eight bytes. Note also that
specifying length would cancel any special
boundary alignment.

In contrast, packed and zoned decimal (P
and Z) , character (C), hexadecimal (X), and
binary (B) fields have an implied length of
one byte. Any of these codes, if used,
would have to be accompanied by a length
modifier, unless just one byte is to be
reserved. Although no alignment occurs,
the use of C and X field types permits
greater latitude in length specifications,
the maximum for either type being 65,535
bytes. (Note that this differs from the
maximum for these types in a DC
instruction.) Unless a field of one byte
is desired, either the length must be
specified for the C, X, P, %, or B field
types, or else the data must be specified
(as the fourth subfield), so that the
assembler can calculate the length.

To define four 10-byte fields and one
100-byte field, the respective DS
statements might be as follows:

; T
Name Operation|Operand
N
v
FIELD |{DS | 4CL.10 |
AREA |DS |CL100 |
L L F]

Although FIELD might have been specified
as one 40-byte field, the preceding
definition has the advantage of providing
FIELD with a length attribute of 10. This
would be pertinent when using FIELD as a SS
machine instruction operand.

Additional examples of DS statements are
shown below:

3 LE

|Name Operation| Operand

L N

3 13

|ONE DS | CL80 (one 80-byte

| | | field, length
attribute of 80)

TWO DS 80C (80 one-byte
fields, length
attribute of one)

THREE DS 6F (six fullwords,
length attribute of
four)

FOUR DS D (one doubleword,
length attribute of
eight)

FIVE DS 4H (four halfwords,
| | length attribute of
| | two)

L i L 3

Note: A DS statement causes the storage

area to be reserved but not set to zeros.
No assumption should be made as to the
contents of the reserved area.

Special Uses of the Duplication Factor

FORCING ALIGNMENT: The location counter
can be forced to a doubleword, fullword, or
halfword boundary by using the appropriate
field type (e.g., D, F, or H) with a
duplication factor of zero. This method
may be used to obtain boundary alignment
that otherwise would not be provided. For
example, the following statements would set
the location counter to the next doubleword
boundary and then reserve storage space for
a 128-byte field (whose leftmost byte would
be on a doubleword boundary).

r T . T 1
Name Operation|Operand

p
% 1 t {
| |DS |0D [
|AREA |DsS |cL128 !
L A L 3

DEFINING FIELDS OF AN AREA: A DS
instruction with a duplication factor of
zero can be used to assign a name, to an
area of storage without actually reserving
the area. Additional DS and/or CC
instructions may then be used to reserve
the area and assign names to fields within
the area (and generate constants if DC is
used) .

For example, assume that 80-character
records are to be read into an area for
processing. and that each record has the
following format:

Positions 5-10
Positions 11-30
Positions 31-36
Positions 47-S4
Positions 55-62

Payroll Number
Employee Name
Date

Gross Wages
wWithholding Tax

The following example illustrates how LS
instructions might be used to assign a name
to the record area, then define the fields
of the area and allocate the storage for
them. Note that the first statement names
the entire area by defining the symbol
RDAREA; the statement gives RCAREA a length
attribute of 80 bytes, but does not reserve
any storage. Similarly, the fifth
statement names a 6-byte area by defining
the symbol DATE; the three subsequent
statements actually define the fields of
DATE and allocate storage for them. The
second, ninth, and last statements are used
for spacing purposes and, therefore, are
not named.

Section 5: Assembler Instruction Statements 59

T =T 1
1Name lOperationiOperand | Name Operation)]Operand
——— d

T T 1
|RDAREA |DS] 0CL80 [] |CCW |2, READAREA,X' 48,80 |
| |DS |CLu | L 1 1 i
|PAYNO |DS |CL6 |
|[NAME |DS |cr20 |
| DATE |DS | 0CL6 | Note that the form of the third operand
| DAY |IDS |cL2 | sets bits 37-39 to zero, as required. The
|MONTH |DS C1L2 | bit pattern of this operand is as follows:
|YEAR |DS CL2 |
| |DS |CL10 |
|GROSS |DS |CL8 | 32-35 36-39
|FEDTAX |[DS |CcL8 | 0100 1000
|DS] |CL18 |
—— - L]

CCW--DEFINE CHANNEL COMMAND WORD

The CCW instruction provides a convenient
way to define and generate an eight-byte
channel command word aligned at a
doubleword boundary. The internal machine
format of a channel command word is shown
in Figure 12. CCW will cause any bytes
skipped to be zeroed. The typical form of
the CCW instruction statement is:

r T T 1
| Name | Operation| Operand |
t ¢ -= 1
Any	CCw	Four operands,
symbol orj	separated by commas,	
not used		specifying the
		contents of the
		channel command word
		in the format
		described in the
{	following text.	
L L b ——— ¥ |

All four operands must appear. They are

written, from left to right, as follows:

1. An absolute expression that specifies
the command code. This expression's
value is right-justified in byte 1.

2. An expression specifying the data
address. The value of this expression
is in bytes 2-4.

3. BAn absolute expression that specifies
the flags for bits 32-36 and zeros for
bits 37-39. The value of this
expression is right-justified in byte
5. (Byte 6 is set to zero.)

4. BAn absolute expression that specifies
the count. The value of this
expression is right-justified in bytes
7-8.

The following is an example of a CCW
statement:

1f there is a symbol in the name entry
of the CCW instruction, it is assigned the
address value of the leftmost byte of the
channel command word. The length attribute
of the symbol is eight.

L) ‘ T T |
|Byte |Bits |Usage |
pmmmmmt 1 {
1	0-7	Command code
2-4	8-31	Data address
5	32-36	Flags
137-39	Must be zero	
	40-47	Set to zero
7-8	[48-63	Count
L i 4 J

Figqure 13. Channel Command Word

Listing Control Instructions

The listing control instructions are used
to identify an assembly listing and
assembly output cards, to provide blank
lines in an assembly listing, and to
designate how much detail is to be included
in an assembly listing. 1In no case are
instructions or constants generated in the
object program. Listing control statements
except PRINT are not printed, unless the
statement is continued. Then the first
card of the statement will be printed.

TITLE--IDENTIFY ASSEMBLY OUTPUT

The TITLE instruction enables the
programmer to identify the assembly listing
and assembly output cards. The typical
form of the TITLE instruction statement is
as follows:

60 Part 2: Basic Functions of the Assembler Language

------------ E O UE DU 1 I T T - it
[Name |Operation|Operand } | Name |Cperation|Cperand |
----- e - i pmmemei 1 —m oo
|2 special | TITLE |One to 100 | | PGM1 | TITLE { *FIRST HEALING' |
| symbol, a i jcharacters, | Lo =4 4 4
| sequence | lenclosed in |

| symbol, a | | single { then, PGM1 is punched into all the outgut
|variable | |apostrophes { cards (columns 73-76) and this heading

| symbol, ox | | | appears at the top of each page: FIRST
|not used | | | HEADING.

S L . 1

The nare entry may contain a special
symbol which is one to four alphabetic or
numeric characters in any combination. The
contents of the name entry are then punched
into columns 73-76 of all the output cards
for the program except those produced by
the PUNCH and REPRO assembler instructions.
Only the first TITLE statement in a program
may have a special symbol or variable
symbol in the name entry. The nare field
of all subsequent TITLE statements must be
blank or contain a sequence symkol.

The operand field may contain up to 100
characters enclosed in apostrophes. Any
ampersands or apostrophes enclosed within
the surrounding apostrophes must be
represented by two ampersands or
arostrophes.

The double ampersands and apostrophes
punched into a TITLE card appear as single
anpersands and apostrophes in a TIILE
statement of an assembler listing. A
single apostrophe ketween the enclosing
apostrophes simply terminates the operand
field. A single ampersand initiates an
attempt to identify a variable symbol. 1If
the variable symbol is not identifiable the
statement is flagged as an error.

However, it is the number of printed
characters that are counted in the total
number of operand characters. The contents
cf the name and operand field are printed
at the top of each page of the assenmbly
listing.

A program may contain more than one
TITLE statement. Each TITLE statement
provides the heading for pages in the
assembly listing that follow it, until
another TITLE statement is encountered.
Each TITLE statement encountered after the
first one causes the listing to be advanced
to a new page (before the heading is
printed).

For example, if the following statement
is the first TITLE statement to appear in a
Frogram:

1f the following statement occurs later
in the same program:

T)
Name {Operation|Cperand
() 1

|"A NEW HEADING'

= e g o
-
[P S

4
|TITLE
L

-

then, PGM1 is still punched into the output
cards, but each following page begins with
the heading: A NEW HEALING.

Note: The sequence number of the cards in
the output deck is contained in columns
77-80, except those produced by the PUNCH
and REPRO assembler instructions.

EJECT--START NEW FAGE

The EJECT instruction causes the next line
of the listing to appear at the top of a
new page. This instruction provides a
convenient way to separate routines in the
program listing. The typical form of the
EJECT instruction statement is as follows:

r L}
Name Operation	Cperand	
Sequence	EJECIT	Not used; should
symbol or		be blank
not used		i
t AL 4 4

1f the next line of the listing would
appear at the top of a new page without the
EJECT instruction, the EJECT instruction
has no immediate effect. If one or more
EJECT statements appear after the first
EJECT, one or more pages are skipped. 2
TITLE instruction followed immediately by
an EJECT instruction will result in a page
with a title line and a statement heading
line. 1Text following the EJECT instruction
will begin at the top of the next rage.

SPACE--SPACE LISTING

The SPACE instruction is used to insert one
or more blank lines in the listing. The

Section 5: Assembler Instruction Statements 61

typical form of the SPACE instruction
statement is as follows:

When OFF is specified, GEN and CATA have
no effect. When NOGEN is specified, DATA
has no effect for generated constants.

{Name Operation|Operand }
2 - | If no PRINT statement is encountered,
|Sequence |SPACE A decimal value | the following default option is assumed:
| symbol or or not used |
|not used | |
[L 4 (]

A decimal value is used to specify the
number of blank lines to be inserted in the
assenmbly listing. A blank operand causes
one blank line to be inserted. I1f this
value exceeds the number of lines remaining
on the listing page, the statement will
have the same effect as an EJECT statement.

PRINT--PRINT OPTIONAL DATA

The PRINT instruction controls the content
of the assembly listing. The typical form
of the PRINT instruction is:

Name Operation{Operand

PRINT

e s L

= o—

| ON, NODATA ,GEN
i 1

For example, if the statement:

T
Name Operation|Operand
4

o e s e =y
o e ol e @l

DC [XL256° 00"
i

appears in a program, 256 bytes of zeros
are assembled. 1If the statement:

|Name Operation|Operand

r Ll . L)
|Name | Operation|Operand
L L J

DATA |

4]

| PRINT
L

r T =

| Sequence |PRINT]One to three
| symbol orj | operands
|not used | |

L L L

One to three of the following operands
are used:

ON A listing is printed.

OFF o No listing is printed.

GEN All statements generated by macro
instructions are printed.

NOGEN o Statements generated by macro

instructions are not printed,
except MNOTE messages which print
regardless of NOGEN. However,
the outer macro instruction
itself will appear in the

listing.
DATA Constants are printed out in full
in the listing.
or
NODATA Only the leftmost eight bytes (16

hexadecimal digits) are printed.

A program may contain any number of
PRINT statements. The conditions set by a
PRINT statement are in effect until another
PRINT statement is encountered.

I1f an operand is omitted, it is assumed
to be unchanged and continues according to
its last specification.

is the last PRINT statement to appear
before the DC statement, all 256 bytes of
zeros are printed in the assembly listing.
However, if there are no previous PRINT
statements, or:

-

Name

T
|Operation|Operand
4

NODATA

e e il e

o o g

L)
|PRINT
A

A

is the last PRINT statement to appear
before the DC statement, only eight bytes
of zeros are printed in the assembly
listing.

Program Control Instructions

The program control instructions are used
to specify the end of an assembly, to set
the location counter to a value or halfword
boundary, to insert previously written
coding in the program, to specify the
placement of literals in storage, to check
the sequence of input cards, to indicate
statement format, and to punch a card.
Except for the CNOP and COPY instructions,
none of these assembler instructions
generate instructions or constants in the
object program. :

62 Part 2: Basic Functions of the Assembler Language

O

U

I1CTL--INPUT FORMAT CONTROL

The ICTL instruction allows the programmer
to alter the format of the statements in
his source module. 1t can only be used to
control statements that are read from the
system input file (SYSIPT). It cannot be
used to control the format of the ingut
from the source statement library.
Statements that are brought in from that
library (through macro instructions or COPY
instructions) are always assumed to be in
the standard format.

The ICTL statement must precede all
other statements, and may only be used

once. Its format is:

[T T=—" —eTe 1
|Name | Operation|Operand |
pommmmm S e 1
Not used,	ICTL	1-3 decimal
must not		values of the
be present		form b,e,c
{ S, L S 1

Orerand b specifies the begin cclumn of
the source statement. It must always be
specified, and must be from 1-40,
inclusive. Operand e specifies the end
column of the sourc¢e statement. The end
cclumn, when specified, must be from 41-80,
inclusive; when not specified, it is
assumed to be 71. The column after the end
column is used to indicate whether the next
card is a continuation card. Operand c
specifies the continue column of the source
statement. The continue column, when
specified, must be from 2-40 and must be
greater than k. If the continue column is
not specified, or if column 80 is specified
as the end column, the assemkler assumes
that there are no continuation cards, and
all statements must be contained on a
single carxd. The operand forms b,,c and b,
are invalid.

I1f no ICTIL statement is used in the
source program, the assembler assumes that
1, 71, and 16 are the begin, end, and
continue columns, respectively.

The next example designates the begin
colurn as cclumn 25. Since the end column
is not specified, it is assumed to be
column 71. No continuation cards are
recognized because the continue column is
not specified.

T T -
|Operation|Operand
4

+ _
| ICTL |25
1 e

r
|Name

Lo s b e b

ISEQ--INPUT SEQUENCE CHECKING

The ISEQ instruction is used to check the
sequence of input cards. The typical form
of the 1SEQ instruction statement is as
fcllows:

¢

| Name Operation|Cperand |
F ==
|Not used, ISEQ Two deciral |
|must not values of the |
|be present form 1, r, ox |
{ | |not used |
[4 4 J

The operands 1 and r, respectively,
specify the leftmost and rightmost columns
of the field in the input cards to be
checked. Orerand r must be equal.-to or
greater than operand 1. Columns to be
checked must not be between the "begin®™ and
"end" columns.

Sequence checking begins with the first
card following the 1ISEC statement.
Comparison of adjacent cards makes use of
the eight-bit internal collating sequence.
Each card checked must be higher than the
preceding one.

An ISEQ statement with a blank operand
terminates the operation. Checking may be
resumed with another ISE¢ statement.

Sequence checking is only performed on
statements contained in the source program.
Statements inserted by the COPY assemkler
instruction or generated ky a macrc
instruction are not checked for sequence.

PUNCH--PUNCH A CARD

The PUNCH assembler instruction causes the
data in the operand to be punched intc a
card. One PUNCH statement produces one
punched card. As many FUNCH statements may
be used as are necessary. The typical form
is:

r T T
| Name |Operation|Cperand
[4 1

1

|1 to 80 characters
{enclosed in
|apostrophes
i

v R
| Sequence |PUNCH
|symbol or|

{not used |
t .

b s e s s e and

Using character representation, the
crerand is written as a string of up to 80
characters enclosed in apostrophes. 2ll
characters, including blank, are valid.
The position immediately to the right of
the left apostrophe is regarded as column

Section 5: Assembler Instruction Statements 63

one of the card to ke punched. The
assermbly rrogram does not process the data
in the operand of a PUNCH statement other
than causing it to be punched in a card.
Fcr each apostrophe or ampersand desired in
the cperand, two arostrophes or ampersands
must be written. The two apostrophes or
anpersands are reduced to a single
apostrophe or ampersand. However, they
ccunt as cnly cne character in the operand.

PUNCH statements may occur anywhere
within a program, except Lefore racrc
definitions. They may occur within a macro
definition but not ketween a MEND statement
and the beginning of the next macro. 1If a
PUNCH statement occurs kefore the first
control section, the resultant card will
precede all cther cards in the object
program card deck; otherwise the card will
be punched in place. No sequence number or
identification is punched in the card.

REPRO--REPRODUCE FOLLOWING CARD

The REPRO assembler instruction causes data
on the following statement line to be
punched intc a card. The data is not
prccessed; it is punched in a card and no
substitution is performed for variable
symbcls. No sequence number or
identification is punched in the card. One
REPRO instruction produces one punched
card. The REPRO instruction may not appear
before a macro definition.

REPRO statements that occur before all
statements composing the first or cnly
centrol secticn will punch cards which
precede all cards of the object deck. The
form is:

r T
|Name |Operation|Operand
L

r

| Sequence |REPRO
| symbol orj

|not used |
L 4 | S,

| Not used, should
|not be present

R e

The line to be reproduced may contain
any combination of up to 80 characters.
Characters may be entered starting in
column 1 and continue through column 80 of
the line. Column 1 of the line corresponds
to column 1 of the card to ke punched.

ORG--SET LOCATION COUNTER

The ORG instruction is used to alter the
setting of the location counter for the
current control section. The typical form
of the ORG instruction statement is:

T T
Name |Operation|Cperand
4 <4

e ———

- —— -—-1
]
1

T T
| Sequence |ORG |A relocatable ex-
|symbol or| |pression or noct used
|not used | ; |
L AL uy

———]

Any symbols in the expression must have
been previously defined. The ungaired
relocatable symbol must be defined in the
same control section in which the ORG
statement arpears.

The location counter is set to the value
of the expression in the operand. If the
orerand is omitted, the location counter is
set to a locaticn that is one byte higher
than the maximum location assigned for the
centrol section up to this point.

An ORG statement must not be used to
specify a location below the beginning of
the control section in which it appears.
The effect would be to give the locaticn
ccunter a large value. For example, the

statement:

f L) . R S 1
|Name |Operation|Cperand |
b 1 oo e -1
| |ORG |*~500 |
L 4 4 -

is invalid if it appears less than 500
bytes from the keginning of, the current
centrel section.

If it is desired to reset the location
counter to the next available location in
the current control section, the following
statement would be used:

1
Name |Operation|Cperand
4

1 e
|ORG | |
4 A J

oo e e o sy

1f previous CRG statements have reduced
the location counter for the purrose of
redefining a portion of the current control
section, an ORG statement with an cmitted
orerand can then be used to terminate the
effects of such statements and restore the
location counter to its highest setting.

LTORG--BEGIN LITERAL FCCL

The II0RG instruction causes all literals
since the previous LTORG or beginning of
the program to be assembled at appropriate
boundaries starting at the first dcubleword
boundary following the LTCRG statement. If
no literals follow the LTORG statement,

64 Part 2: Basic Functions of the Assembler Language

U
, E };/

Q

alignment of the next instruction will
occur. Bytes skipped are not zerced. The
typical form of the LTORG instruction
statement is:

Name Oreration|Operand

|Any | LTORG |Not used, should

| symbol | | not be present

|ox not | | |
[used | | 1
S S § N — -]

The symbol represents the address of the
first byte of the literal pool. 1t has a
length attribute of one.

The literal pool is organized into four
segments within which the literals are
stcred in order of aprearance, dependent on
the divisibility properties of their object
lengths (dup factor times total explicit or
implied length). The first segment
contains all literals whose object length
is a multiple of eight. Those remaining
literals with lengths divisible by four are
stored in the second segment. The third
segment holds the remaining even length
literals. Any literals left over have odd
lengths and are stored in the fourth
segment.

Since each literal pool begins at a
doubleword boundary, this guarantees that
all segment one literals are doubleword,
segment two fullword, and segment three
halfword aligned, with no space wasted
except, possibly, at the pool origin.

Literals from the following statement
are in the peccl, in the segments indicated
by the circled numbers,

Mvc A (6),=38'1* @
AD 2,=D'1"

v 3,5,=38'1* (@
IC 2,=XL1'1'
AL 2,=D'2° @

@
0

Special Addressing Consideration

Any literals used after the the last LTORG
statement in a program are placed at the
end of the first control section. If there
are no LTORG statements in a programx, all
literals used in the program are placed at
the end of the first control section. 1In
these circumstances the programmer must
ensure that the first control section is
always addressable. This means that the
base address register for the first contrcl
section should not be changed through usage

= e

in subsequent control sections. 1If the
programmer does not wish to reserve a
register for this purpose, he may place a
LTORG statement at the end of each control
section, thereby ensuring that 211 literals
aprearing in that section are addressakle.

CNOP--CONDITICNAL NC CPERATION

The CNOP instruction allows the programmer
to align an instruction at a specific word
boundary. 1f any bytes must be skipped in
order to align the instruction properly,
the assembler insures an unbroken
instruction flow by generating no-operation
instructions. This facility is useful in
creating calling sequences consisting of a
linkage to a subroutine followed by
rarameters such as channel command words
(CCw) .

The CNCP instruction insures the
alignment of the location counter setting
to a halfword, word, or doubleword
boundary. If the location counter is
already properly aligned, the CNCP
instruction has no effect. 1If the
specified alignment requires the location
counter to ke incremented, one tc three
no-oreration instructions are generated,
each of which uses two bytes.

The typical form of the CNOP instruction
statement is as follows:

Name Operation|Cperand

Two absolute
expressions of
the form b,w

| Sequence |CNOP
|symbol or
|not used |
t XL

-1

|
-
|

1

!

4

Any symbols used in the expressions in
the crerand field must have been previously
defined.

Operand b specifies at which byte in a
word or doubleword the location counter is
to be set; t can ke 0, 2, 4, or 6. Operand
w specifies whether byte b is in a word
(w=l) or doubleword (w=8). The following
pairs of b and w are valiad:

b,w Specifies

0,4 Beginning of a word

2,4 Middle of a word

0,8 Beginning of a doubleword

2,8 Second halfword of a doukleword

4,8 Middle (third halfword) of a
doubleword

6,8 Fourth halfword of a doubleword

Section 5: Assembler Instruction Statements 65

r - - 1
| Doubleword |
T o 1
Word | Word |
-T= - t T i
Halfword | Halfword | Halfword | Halfword |
| | | | | | | |
Byte | Byte | Byte |Byte | Byte | Byte | Byte |Byte |
.l' 4 4 § I L L i 4 ‘I
|
0,4 2,4 0,4 2,4 |
10,8 2,8 4,8 6,8 |
L - - — 4
Figure 14. CNOP Alignment
Figure 14 shows the position in a double COPY--COPY PREDEFINEL SOURCE CODING
word that each of these pairs specifies.
Note that both 0,4 and 2,4 specify two
locations in a doukleword. The COPY instruction obtains source
language coding from a system likrary and
Assume that the location counter is includes it in the program currently being
currently aligned at a doubleword boundary. assenbled. Under the DCS L Assembler, 10K

Then the CNOP instruction in this sequence:

Variant, the coding to be included is
obtained from the system source statement
library. Under the DOS D Assembler, 14K

r T - L 1
|Name |Operation|Operand | Variant, and the LCS F Assembler, the
} R atat St 4 coding to be included is obtained from the
| |CNOP 10,8 | private source statement library, if one is
| | BALR 12,14 | assigned, or from the system source
L i L - 4 library, in that order of precedence.
Under the T0S D Assembler, 10K and 14K
has no effect. However, this sequence: Variants, the coding to be included is
cbtained from the standard private likrary.
[o——~——epem———————— T———=-- 1 The form of the COPY instruction statement
|Name |Operation]Operand | is as follows:
R e fommmmm s 1
l |cNoP 16,8 I ¢ T yo—mmmmmmemm—m e 1
| | BALR 12,14 | |Name | Operation|Crerand |
¢ mmmrmmmm - ot -4 1- e
|Not used, | COPY |Cne symbcl |
causes three branch-on-conditions |must not | | |
(no-operations) to be generated, thus |be present | } |
aligning the BALR instruction at the last L A 4- - - J
halfword in a doubleword as follows:
The operand is a symbol that identifies
o —mm— e —— e — e m e 1 the section of coding to be copied. The
Name Operation|Operand | symbol must not be the same as the mnemonic
bt e B — 4 operation code of a macro definition in the
BCR 10,0 | source statement library.
BCR 10,0 |
| BCR 10,0 | The assembler inserts the requested
|BALR 12,14 | coding immediately after the COFY statement
4 e 4 is encountered. The requested coding may

After the BAIR instruction is generated,
the location counter is at a douklewcrd
koundary, thereby insuring an unbroken
instruction flow.

Note: 1If the location counter is on an
odd-numbered byte-boundary when a CNOP
instruction is encountered, normal
alignment occurs before the CNOP is
processed.

not contain another CCPY statement.

I1f identical COFY statements are
encountered, the coding they request is
brcught into the program each time.

Coryed text is always in the normal
format and is not governed by ICIL usage.
See "Copy Statements" in Section 7 for
further information. The procedure for
placing source language coding in the
system library is described in the System

66 Part 2: Basic Functions of the Assembler Language

@

Control and System Service Programs
publication listed in the "Preface.®"

END--END ASSEMBLY

The END instruction terminates the assembly
cf a program. It may also designate a
point in the program or in a separately
assenbled program to which control may be
transferred after the program is loaded.
The END instruction must always be the last
statement in the source program.

The tyrical form of the ENLC instruction
statement is as follows:

T
Operation|Operand
L

it 5
END |A relocatable
|expression or

|not present
L b

q

T
|Name
[

1)

|A sequence
| symbol or
|not present
t

—— s o —
e e e e bt e sl

The operand specifies the point to which
contrcl may be transferred when loading is

complete. For example:

r R T - D |
| Name |Operation|Cperand |
t 4 4 .._-.l
13 T

NAME	CSECT	
AREA	ESs	50F
BEGIN	BALR 12,0	
	USING 1*,2	
[
	®	
	END	BEGIN
L 4 A J
Ncte: If macro instructions from the

Source Statement Library are included in an
assemkly, errors detected during macro
editing will be flagged after the ENL
statement. The error messages do not
follow the macro instructions, because the
source statements are not availakle to the
assembler during macro editing. Exrors
detected while editing Frogrammer Macros
will be flagged inline.

Section 5: Assemkler Instruction Statements 67

Part 3-Conditional Assembly and Macro Facilities in the
Assembler Language

Organization of this Part of the Publication

Section 6 gives an introduction to the conditional assembly and macro
facilities in the assembler language.

Sections 7 and 8 describe the basic rules for preparing macro
definitions and for writing macro instructions.

Section 9 describes the rules for writing conditional assembly
instructions.

Section 10 describes additional features including rules for de-
fining global SET symbols, preparing keyword and mixed-mode macro
definitions, and writing keyword and mixed-mode macro instructions.

Appendix G contains a reference summary of the complete macro
facilities.

Examples of the use of the features of the language appear through-
out the remainder of the publication. These examples illustrate the
use of particular features. However, they are not meant to show the
full versatility of these features.

69

™
L4

O

Section 6. Introduction to the Conditional Assembly and

The DOS/TOS conditional assembly and macro
facilities are part of the DOS/TOS
assembler language.

Conditional assembly allows one to
specify assembler language statements which
may or may not be assembled, depending upon
conditions evaluated at assembly time.
Conditional assembly statements are used to
define, set, change, and test values during
the course of the assembly itself.

The conditional assembly instructions
may be used to vary the sequence of
statements generated for each occurrence of
a macro instruction. Conditional assembly
instructions may also be used outside macro
definitions, i.e., among the assembler
language statements in the program.

The macro facilities provide the
programmer with a convenient way of
generating desired sequences of machine or
certain assembler instructions many times
in one or more programs. This is
accomplished by writing a macro definition.

This macro definition is written only
once, and a single statement, a macro
instruction statement, is written each time
a programmer wants to generate the desired
sequence of statements.

The macro facilities simplify the coding
of programs, reduce the chance of
programming errors, and ensure that
standard sequences of statements are used
to accomplish desired functions.

The Macro Instruction Statement

A macro instruction statement (also called
a macro instruction) is a source program
statement used to provide information for
generating machine and assembler
instructions from a macro definition. The
generated instructions are source
statements which are then processed by the
assembler program.

Three types of macro instructions may be
written. Each type has a different form of
operand. They are:

1. Positional (Sections 7 and 8).

2. Keyword (Section 10).

Macro Facilities

3. Mixed-mode (Section 10).

Positional macro instruction operands
are written in a fixed order.

Keyword macro instruction operands can
be written in any order.

Mixed-mode macro instruction operands
are a combination of both positional and
keyword operands. That is, certain operand
entries (positional) must be written in a
fixed order; other operand entries
(keywoxrd) can be specified in any order.

The Macro Definition

Before a macro instruction can be
assembled, a macro definition must be
available to the assembler.

A macro definition is a set of
statements that provide the assembler with:

1. The name entry, mnemonic operation
code, and the form of the macro
instruction operand, and

2. The sequence of statements the
assembler uses when the macro
instruction appears in the source
program.

Every macro definition consists of a
macro definition header statement, a macro
instruction prototype statement, a sequence
of model statements, COPY statements,
MEXIT, MNOTE, or conditional assembly
instructions, and a macro definition
trailer statement.

The macro definition header and trailer
statements denote the beginning and end,
respectively, of a macro definition.

The macro instruction prototype
statement specifies the name entry,
mnemonic operation code, and the type of
the macro instruction operand.

The model statements contained in a
macro definition may be used by the
assembler to generate machine instructions
and certain assembler instructions that
replace each occurrence of the macro
instruction.

The COPY statements may be used to copy
model statements, MEXIT instructions, MNOTE

Section 6: Introduction to the Macro Facilities 71

instructions, and conditional assembly
instructions from a source statement
library into a macro definition.

The MEXIT instruction can be used to
terminate processing of a macro definition.

The MNOTE instruction can be used to
generate a message.

The conditional assembly instructions
may be used to vary the sequence of
statements generated for each occurrence of
a macro instruction. Conditional assembly
instructions may also be used outside macro
definitions, i.e., among the assembler
language statements in the program.

If a macro definition is inline with an
. assembly, it is called a programmer macro.

Source Statement Libraries

The same macro definition may be made
available to more than one source program
by placing the macro definition in the
system source statement library. The macro
definition then becomes a system macro.
This system library is a collection of
macro definitions that can be used by all
the assembler language programs in an
installation. Once a macro definition has
been placed on the system source statement
library it may be used by writing a
corresponding macro instruction in a source
program. Macro definitions must be in the
system source statement library under the
same name as the prototype. The procedure
for placing macro definitions in the system
source statement library is described in
the System Control and System Service
Programs publication listed in the
"pPreface."

System macro definitions provided by 1BM
are described in the Supervisor and
Input/Output Macros publication, also
~ listed in the "Preface."

A macro definition may be made available
to a specific assembly by placing the macro
definition in a private source statement
library. I1f the private source statement
library is assigned at the time of
assembly, the macro definitions in the
private source statement library may be
used by writing a corresponding macro
instruction in a source program. The macro
definitions in the private source statement
library must be under the same name as the
prototype. The procedure for placing macro
definitions in the private source statement
library is described in the System Control
and System Service Programs publication
listed in the "Preface."

Editing errors in user-supplied macro
definitions are found at the time the macro
is read from the source statement library,
i.e., after the END card. To determine
where these errors are, it is necessary to
punch all such macros, including inner
macxros, and insert them then in the source
program as programmer macros. To aid in
debugging it is advisable to run all macros
as programmer macros before incorporating
them in a source statement library.

Varying the Generated Statements

Each time a macro instruction appears in
the source program, it is replaced by the
same sequence of assembler language
statements. Conditional assembly
instructions, however, may be used to vary
the number and format of the generated
statements.

VARIABLE SYMBOLS

A variable symbol is a type of symbol that
is assigned various values by either the
programmer or the assembler. Thus,
variable symbols allow different values to
be assigned to one symbol. When the
assembler uses a macro definition to
determine what statements are to replace a
macro instruction, variable symbols in the
model statements are replaced with the
current values assigned to them.

A variable symbol is written as an
ampersand followed by from one to seven
letters and/or digits, the first of which
must be a letter.

Types of Variable Symbols

There are three types of variable symbols:
symbolic parameters, system variable
symbols, and SET symbols. The SET symbols
are further broken down into SETA symbols,
SETB symbols, and SETC symbols. The three
types of variable symbols differ in how
they are assigned values.

Assigning Values to Variable Symbols

Symbolic parameters are assigned values by
the programmer each time he writes a macro
instruction.

72 Part 3: Conditional Assembly and Macro Facilities

O

System variable symbols, except
&SYSPARM, are assianed values by the
assenmbler each time it processes a macro
instruction.

SET symbols are assigned values by the
programmer by means of conditional assembly
instructions.

Global SET Symbols

The values assigned to SET symbols in one
macro definition may be used in other macro

definitions. All SET symbols used for this
purpose must be defined as global SET
symbols. All other SET symbols must be
defined by the programmer as local SET
symbols. Local SET symbols and the other
variable symbols (that is, symbolic
parameters and system variable symbols) are
local variable symbols. Global SET symbols
are global variable symbols.

Section 6: Introduction to the Macro Facilities 73

Section 7. How to Prepare Macro Definitions

A macro definition consists of:
1. A macro definition header statement.

2. A macro instruction prototype
statement.

3. Zero or mcre mcdel statements, COPY
statements, MEXIT, MNOTE, or
conditicnal assembly instructions.

4. A macro definition trailer statement.

Except for MEXIT, MNOTE, and ccnditiocnal
asserbly instructions, this section of the
publication descrikes the statements that
may be used tc prerare macro definitions.
Conditional assemkly instructions are
described in Section 9. MEXIT and MNOTE
instructions are descriked in Secticn 10.

Macro definitions in a source program
rust appear before all PUNCH and REPRO
statements which appear in the main
program. Specifically, only the listing
control instructions (EJECT, PRINT, SPACE,
and TITLE), ICTL and ISEQ instructicns, and
comments statements may occur kefore the
macrc definitions. All but the ICTL
instruction may appear ketween macro
definitions if there is more than one
definition in the source program.

Note: A macro definition cannot appear
within a macrc definition.

MACRO-Macro Definition Header

The macro definition header statement
denotes the keginning of a macro
definition. 1t must be the first statement
in every macro definition. The form of
this statement is:

r It S

|Name Operation|Operand

L

I e 1

|Not used, | MACRO |Not used, must |

|must not | |not be present]
I
§

|be present | |
L L

MEND-Macro Definition Trailer

The macro-definition trailer statement
denotes the end of a macro definition. 1t

must be the last statement in every macro

definition. The form of this statement is:
r T . T =T M
|Name |Operation|Cperand |
b 1 e {
Sequence	MEND	Not used, must
symbol or		not ke present
not used		
L 1 4 -—d

This statement also tells the assemkler
to terminate processing of a macro
definition. Frocessing can be terminated
at some other point in a racrc definition
thrcugh the MEXIT instruction.

Macro Instruction Prototype

The macro instruction prototype statement
(also called the prototype statement)
specifies the name entry, mnemonic
crperation code, and the form of all macro
instructions that refer to the macro
definition. 1t must be the second
statement of every macro definition. The
typical form of this statement is:

r T T
| Name |Operation|Cperand
L. 4 1

T T T
|A symbolic|A symbol |Zero to 100 (200

R e

|carameter | |for F assembler)

jor not | |symbolic rarameters,
|used | | separated by commas
| D, 1 1

The symbolic parameters aze used in the
macro definition to represent the name
entry and operands of the corresponding
racro instruction. A description of
symbolic parameters appears follcwing
"Mcdel Statements.”

The name entry of the prototype
statement may be unused or it may contain a
symbolic parameter.

The symbol in the operation entry is the
mnemonic operation code that must appear in
all macro instructions that refer to this
macro definition. The mnemonic operation
code must not be the same as the mnemonic
operation code of another macro definition
in the source program or of a machine
instruction or assemkler instruction.

The operand may contain zero to 100 (200
for F assembler) symbolic parameters
serarated by commas.

74 Ppart 3: Conditional Assemkly and Macrc Facilities

O

O

O

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

The following is a prototype statement. r 1 T -1

| | Oper-| |

r T T 1 |Name | ation|Operand Comments | |
| Name |OperationjOperand } 4 + +--
b + } |NAME1[|OP1 | OPERAND 1, OPERANDZ , OPERAN| X|
| ENAME |MOVE | §TO, §FROM | | |D3 THE NORMAL FORM 1 1
' L . v + -
|NAME2|OP2 |OPERAND1, THIS IS THE AL| X|

| | | OPERAND2,OPERAND3 TERNA | X|

i [| TE STATEMENT | x|

l 1 | FORM |1

—— + -

Alternate Statement Form | NAME3 | OP3 | OPERAND1, THIS IS A COMB| X|
| | { OPERAND2, OPERAND3, OPERAN| X|

| | | D4, OPERANDS INATION OF | X|

The prototype statement may be written in a | { |BOTH STATEMENT FORMATS | |
L N L L .)

form different from that used for machine
or assembler instructions. The normal form
is described in Part 1 of this publication.
The alternate form described here allows
the programmer to write an operand on each
line, and allows the interspersing of
operands and comments in the statement.

In the alternate form, as in the normal
form, the name and operation entries must
appear on the first line of the statement,:
and at least one blank must follow the
operation entry on that line. Both types
of statement forms may be used in the same
prototype statement.

0 The rules for using the alternate
statement form are:

1. 1If an operand is followed by a comma
and a blank, and the column after the
end column contains a nonblank
character, the operand entry may be
continued on the next line starting in
the continue column. More than one
operand may appear on the same line.

2. Comments may appear after the blank
that indicated the end of an operand,
up to and including the end column.

3. 1If the next line starts after the
continue column, the information
entered on that line is considered to
be comments, and the operand field is
considered terminated. Any subsequent
continuation lines are considered to
contain only comments.

Note: A prototype statement may be written
on as many continuation lines as is
necessary to contain 100 (200 for F
assembler) operands and associated
comments.

The following examples illustrate: (1)
the normal statement form, (2) the
alternate statement form, and (3) the
combination of both statement forms.

Model Statements

Model statements are the macro definition
statements from which the desired sequences
of machine instructions and certain
assembler instructions are generated. Zero
or more model statements may follow the
prototype statement. A model statement
consists of one to four entries. They are,
from left to right, the name, operation,
operand, and comments entries.

The name entry may be unused, or it may
contain an ordinary symbol, a sequence
symbol or a variable symbol, depending on
the particular statement. (Neither #* nor
.* may be substituted in the begin column
of a model statement.)

The operation entry may contain any
machine, assembler, or macro instruction
code, except COPY, END, ICTL, ISEQ, and
PRINT; or it may contain a variable symbol.

Variable symbols may not be used to
generate the following mnemonic operation
codes: COPY, END, ICTL, CSECT, DSECT,
PRINT, REPRO, START, MACRO, MEND, MEXIT,
LCLA, LCLB, LCLC, GBLA, GBLB, GBLC, SETA,
SETB, SETC, AIF, AIFB, AGO, AGOB, ANOP,
ACTR, or macro instructions.

Variable symbols may not be used in the
name entry of the following instructions:
ACTR, COPY, END, ICTL, or ISEQ.

Variable symbols may not be used in the
operand entry of the following
instructions: COPY, ICTL, or ISEQ.

Variable symbols may be used outside of
macro definitions to generate mnemonic
operation codes with the preceding
restrictions.

Although COPY statements may not be used
as model statements, they may be part of a

. Section 7: How to Prepare Macro Definitions 75

macro definition. The use of COPY
statements is described under "COPY
Statements."

The operand entry may contain ordinary
symbols or variable symbols. After
substitution, the operand must not be
greater than 127 (255 for F assembler)
characters. Model statement fields must
follow the rules for paired apostrophes,
ampersands, and blanks, as macro
instruction operands. (See "Macro
Instruction Operands" in Section 8.)
Sequence symbols must appear in the operand
entry of AGO and AIF instructions.

The comments entry may contain any
combination of characters. Substitution by
the use of variable symbols is not allowed.

If a REPRO statement is used as a model
statement, it must be explicitly written in
the operation entry. It may not be
generated as a result of replacing a
variable symbol by its value. Also, the
line following it may not contain variable
symbols. Substituted statements may not
have blanks in any fields except between
paired apostrophes. They may not have
leading blanks in the name or operand
fields.

Symbolic Parameters

A symbolic parameter is a type of variable
symbol consisting of an ampersand followed
by one to seven letters and/or numbers, the
first of which must be a letter. Symbolic
parameters appear in prototype and model
statements. They are assigned values by
the programmer when he writes a macro
instruction. The programmer may vary
statements that are generated for each
occurrence of a macro instruction by
varying the values assigned to symbolic
parameters.

The programmer should not use §SYS as
the first four characters of a symbolic
parameter.

The following are valid symbolic
parameters:

S§READER §LOOP2
€A23456 &N
EXUF2 §S4

The following are invalid symbolic
parameters:

CARDAREA (first character is not an
ampersand)
§256B (first character after

ampersand is not a letter)

§AREA2456 {more than seven characters
after the ampersand)

€BCD (34) (contains a special
character other than initial
ampersand)

§IN AREA (contains a special

character, i.e., blank,
other than initial
ampersand)

The following is an example of a macro
definition. Note that the symbolic
parameters in the model statements appear
in the prototype statement.

r K] L)]
|Name |Operation|Operand |
b1 + {
Header | |MACRO |
Prototype| §NAME|MOVE | §TO, §FROM |
Model | ENAME| ST |2,SAVE |
Model | |L |2, §FROM |
Model | | ST |2, €TO |
Model | |L {2,SAVE |
Trailer | | MEND | |
[A [] 1

Symbolic parameters in model statements
are replaced by the characters of the macro
instruction operand that correspond to the
symbolic parameters.

In the following example the characters
HERE, FIELDA, and FIELDB of the MOVE macro
instruction correspond to the symbolic
parameters ENAME, &TC, and &FROM,
respectively, of the MOVE prototype
statement.

r ,
| Name Operation|Operand
L

MOVE

e o

g
| HERE | FIELDA,FIELDB
t L

Any occurrence of the symbolic
parameters §NAME, &TO, and &FROM in a model
statement will be replaced by the
characters HERE, FIELDA, and FIELDB,
respectively. If the preceding macro
instruction was used in a source program,
the following assembler language statements
would be generated:

r T T 1
!Name lOperatlon!Operand !
F T T 1
|HERE |ST |2,SAVE i
| | L |2,FIELDB I
| |sT |2,FIELDA |
] |L |2,SAVE |
t L L]

The following example illustrates
another use of the MOVE macro instruction
using operands different than those that
appear in the preceding example.

76 Part 3: Conditional Assembly and Macro Facilities

A

%

O

1 T 1

Name |Operation|Operand |

i]

T 1

Macro LABEL|MOVE 1IN, 0UT]
KR 4 /]

L L] i)

Generated |LABEL|ST | 2, SAVE |
Generated| |L |2,00T l
Generated| |sT |2,IN |
Generated| |L | 2,SAVE |
[L L J

I1f a symbolic parameter appears in the
comments field of a model statement, it is
not replaced by the corresponding
characters of the macro instruction.

Concatenating Symbolic Parameters with
Other Characters or Other Symbolic
Parameters

Concatenation is the process of linking or
joining together in a sequence, with a
specified order. To concatenate is to join
together in a specified order.

If a symbolic parameter in a model
statement is immediately preceded or
followed by other characters or another
symbolic parameter, the characters that
correspond to the symbolic parameter are
combined, in the order given, in the
generated statement, with the other
characters or the characters that
correspond to the other symbolic parameter.
This process is called concatenation.

The macro definition, macro instruction,
and generated statements in the following
example illustrate these rules.

r T T 1

[Name |Operation]Operand |

[4 4 J

L3 LB 1) 1

Header | |MACRO | |

Prototype | §NAME | MOVE | §TY, &P, §TO, §FROM|

Model §NAME | STETY | 2, SAVEAREA |
Model |LETY | 2, §PEFROM

Model | STETY |2,8P§TO |

Model |LETY | 2, SAVEAREA |

Trailer |MEND | |

1 [J

T T 1

Macro HERE |MOVE |D,FIELD,A,B |

N L H

1 T 1

Generated |HERE [STD | 2, SAVEAREA]

Generated| |LD |2,FIELDB |

Generated| | STD |2,F1ELDA |

Generated] |LD | 2, SAVEAREA |

t L N J

The symbolic parameter &TY is used in
each of the four model statements to vary
the mnemonic operation code of each of the
generated statements. The character D in
the macro instruction corresponds to
symbolic parameter £§TY. Since &TY is

Page of GC24-3414-9
Revised Nov, 31, 1972
By TNL: GN33-8157

preceded by other characters (i.e., ST and
L) in the model statements, the character
that corresponds to &TY (i.e., D) is
concatenated with the other characters to
form the operation fielids of the generated
statements.

The symbolic parameters &P, &TO, and
EFROM are used in two of the model
statements to vary part of the operand
fields of the corresponding generated
statements. The characters FIELD, A, and B
correspond to the symbolic parameters &P,
§TO, and EFROM, respectively. Since €P is
followed by &§FROM in the second model
statement, the characters that correspond
to them (i.e., FIELD and B) are
concatenated to form part of the operand
field of the second generated statement.
Similarly, FIELD and A are concatenated to
form part of the operand field of the third
generated statement.

1f the programmer wishes to concatenate
a symbolic parameter with a letter, digit,
left parenthesis, or period following the
symbolic parameter he must immediately
follow the symbolic parameter with a
period. A period is optional if the
symbolic parameter is to be concatenated
with another symbolic parameter, or a
special character other than a left
parenthesis or another period that follows
it.

If a symbolic parameter is immediately
followed by a period, then the symbolic
parameter and the period are replaced by
the characters that correspond to the
symbolic parameter. A period that
immediately follows a symbolic parameter
does not appear in the generated statement.

The following macro definition, macro
instruction, and generated statements
illustrate these rules.

1 1 1
Name |Operation|Operand
4 4
v
Header | MACRO
Prototype | §NAME|MOVE |&P,€S,6R1,ER2
Model | ENAME{ ST | 6R1,€S. (§R2) |
Model {L |€R1,EP.B
Model |ST |8R1,EP.A
Model L [8R1,6S. (§R2)
Trailer | | MEND |
b=t + 1
Macro | HERE |MOVE {FIELD,SAVE,2,4 |
L } 4]
v 13 1 1
Generated |HERE |ST |2, SAVE (4)
Generated| (L |2,FIELDB
Generated| |ST |2,F1ELDA
Generated| |L |2, SAVE (4) |
L i] L [

The symbolic parameter &P is used in the
second and third model statements to vary

Section 7: How to Prepare Macro Definitions 77

part of the operand field of each of the
corresponding generated statements. The
characters FIELD of the macro instruction
correspond to §P. Since &P is to be
concatenated with a letter (i.e., B and 3)
in each of the statements, a period

immediately follows &P in each of the model-

statements. The period does not appear in
the generated statements.

Similarly, symbolic¢ parameter &S is used
in the first and fourth model statements to
vary the operand fields of the
corresponding generated statements.
followed by a period in each of the model
statements, because it is to be
concatenated with a left parenthesis.
period does not appear in the generated
statements.

The

Comments Statements

A model statement may be a comments
statement. A comments statement consists
of an asterisk in the begin column,
followed by comments. The comments
statement is used by the assembler to
generate an assembler language comments
statement, just as other model statements
are used by the assembler to generate
assembler language statements.

The programmer may also write comments
statements in a macro definition which are
not to be generated. These statements must
have a period in the begin column,
immediately followed by an asterisk and the
comments.

Comments statements are the only model
statements which may be interspersed with
the definitions of local and global SET

symbels.

The first statement in the following
example will be used by the assembler to
generate a comments statement; the second
statement will not.

Name

T
Operation|Operand
L

{* THIS STATEMENT WILL BE GENERATED |
| .* THIS ONE WILL NOT BE GENERATED]
L .

£S is

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

The use of variable symbols for
substitution in comments statements is not
allowed. The * or .* of a comment
statement, therefore, cannot be created by
substitution for a variable symbol.

COPY Statements

A COPY statement is not a model statement.
COPY statements may be used to copy model
statements and MEXIT, MNOTE, and
conditional assembly instructions into a
macro definition from a system library,
just as they may be used outside macro
definitions to copy source statements into
an assembler language program. Under the
DOS D Assembler, 10K Variant, the coding to
be included is obtained from the system
source statement library. Under the DOS D
Assembler, 14K Variant, and the DOS F
Assembler, the coding to be included is
obtained from the private source statement
library, if one is assigned, or from the
system source library, in that order of
precedence. Under the TOS D Assembler, 10K
and 14K Variants, the coding to be included
is obtained from the standard private
library.

The form of this statement is:

AN
W

r L]
| Name Operation] Operand
t L

+
|A symbol

l
!

v
|Not used, COPY
|must not

|be present
L

o i, et . s i
Y L

. The symbol in the operand entry
identifies the section of coding to be
copied. The symbol must not be the same as
the operation mnemcnic of a macro
definition in a source statement llbrary.
Any statement that may be used in a macro
definition may be part of the copied
coding, except MACRO, MEND, COPY, and
prototype statements.

Statements copyed into the program must
obey the restrictions on ordering of
statements. For example, COPY must be
between global and local declarations in
the macro definition or in the main program
if the copyed text contains global and
local declarations.

78 Part 3: Conditional Assembly and Macro. Facilities

Section 8. How to Write Macro Instructions

The typical form of a macro instruction is:

T
Name |Operation|Operand
1

-y —-y

}
|[A symbol, [Mnemonic |Zero to 100 (200

| sequence fJoperation|[for F assembler)

| symbol, or|code |operands, separated
jnot used | |by commas

L i 1

The name entry of the macro instruction
may contain a symbol. The symbol will not
be defined in the generation process unless
a symbolic parameter appears in the name
entry of the prototype and the same
parameter appears in the name entry of a
generated model statement.

The operation entry contains the
mnemonic operation code of the macro
instruction. The mnemonic operation code
must be the same as the mnemonic operation
code of a macro definition in the source
program or in a source statement library.

The macro definition with the same
mnemonic operation code is used by the
assembler to process the macro instruction.
Under the DOS D Assembler, 10K Variant, the
macro definition is obtained from an inline
programmer macro definition or from the
system source statement library, in that
order of precedence. Under the DOS D
Assembler, 14K Variant, and the DOS F
Assembler, the macro definition is obtained
from an inline programmer macro definition,
a private source statement library, if one
is assigned, or the system source statement
library, in that order of precedence.

Under the TOS D Assembler, 10K and 14K
Variants, the macro definition is obtained
from an inline programmer macro definition
or from the standard private library, in
that order of precedence.

The placement and order of the operands
in the macro instruction may be determined
by the placement and order of the symbolic
parameters in the operand entry of the
prototype statement.

Macro Instruction Operands

Any combination of up to 127 (255 for
assembler F) characters may be used as a
macro instruction operand provided that the
following rules concerning apostrophes,
parentheses, equal signs, ampersands,
commas, and blanks are observed.

Paired Apostrophes. An operand may contain
one or more sequences of characters, each
of which is enclosed within single
apostrophes. (The sequence of characters
itself may contain an even number of
apostrophes.) The single apostrophes,
which enclose the sequence of characters,
are called paired apostrophes.

The first sequence of characters starts
with the first apostrophe in the operand.
Subsequent character sequences start with
the first apostrophe after the apostrophe
that ends the previous sequence of
characters.

In the following example; there are two
sequences of characters enclosed within
single apostrophes. Therefore, there are
two sets of paired apostrophes: the first
and fourth apostrophes, and the fifth and
sixth apostrophes.

'A' lBlC'D!

An apostrophe (not within paired
apostrophes) , immediately followed by a
letter, and immediately preceded by the
letter L (when L is preceded by any special
character other than an ampersand) , is not
considered in determining paired
apostrophes. For instance, the apostrophe
in the following example is not considered.

L'SYMBOL
*AL*SYMBOL' is an invalid operand.
Paired Parentheses. There must be an equal
number of left and right parentheses. The

nth left parenthesis must appear to the
left of the nth right parenthesis.

Paired parentheses are a left
parenthesis and a following right
parenthesis without any other parentheses
intervening. If there is more than one
pair, each additional pair is determined by
removing any pairs already recognized and
reapplying the above rule for paired
parentheses. For instance, in the
following example the first and fourth, the
second and third, and the fifth and sixth
parentheses are each paired parentheses.

(A (B) C) D (E)

A parenthesis that appears between
paired apostrophes is not considered in
determining paired parentheses. For
instance, in the following example the
middle parenthesis is not considered.

Section 8: How to Write Macro Instructions 79

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

")

Equal Signs. An equal sign can only occur
as the first character in an operand or
between paired apostrophes or paired

parentheses. The following examples
illustrate these rules.

=F*'32°

'C=p"*

E (F=G)

Ampersands. Except as noted under "Inner
Macro Instructions", each sequence of
consecutive ampersands must be an even
number of ampersands. The following
example illustrates this rule.

612368688

Commas. A comma indicates the end of an
operand, unless it is placed between paired
apostrophes or paired parentheses. The
following example illustrates this rule.

@a,Bct,!

Blanks. Except as noted under ®"Statement
Form®, a blank indicates the end of the
operand entry, unless it is placed between
paired apostrophes. The following example
illustrates this rule.

‘A BC*

The following are valid macro
instruction operands:

SYMBOL A+2

123 (TO (8) , FROM)
X"'189A" 0(2,3)

* =F'4096"

L'NAME AB§£9

"TEN = 10° ' PARENTHESIS IS)°

‘COMMA 1S ,* ‘'APOSTROPHE 1S''‘'

The following are invalid macro
instruction operands:

W'NAME (0dd number of apostrophes)

5A) B (number of left parentheses
does not equal number of
right parentheses)

(15 B) (blank not placed between

paired apostrophes)
(blank not placed between
paired apostrophes)

'ONE* IS '1°

Statement Form

Macro instructions may be written using the
same alternate form that can be used to
write prototype statements. This alternate
form is described in Section 7 under the
subsection "Macro Instruction Prototype".

If this form is used, a blank does not
always indicate the end of the operand
entry. Furthermore, unlike the prototype
statement, the macro instruction may have
omitted operands; therefore consecutive
commas may appear in the operand list, or a
comma may appear at the end of the list.

Omitted Operands

If an operand that appears in the prototype
statement is omitted from the macro
instruction, then the comma that would have
separated it from the next operand must be
present. 1If the last operand (s) is omitted
from a macro instruction, then the comma (s)
separating the last operand (s) from the
next previous operand may be omitted.

The following example shows a macro
instruction preceded by its corresponding
prototype statement. The macro instruction
operands that correspond to the third and
sixth operands of the prototype statement
are omitted in this example.

T T
Name | Operation|Operand
1 I

T T

| EXAMPLE | &A, &B, &§C, €D, §E, &F
|EXAMPLE [17,*+4,,AREA,FIELD (6)
L XL

= e e e o)
bee s e e o

If the symbolic parameter that
corresponds to an omitted operand is used
in a model statement, a null character
value (not a blank) replaces the symbolic
parameter in the generated statement, i.e.,
in effect the symbolic parameter is
removed.

For example, the first statement below
is a model statement that contains the
symbolic parameter &C. If the operand that
corresponds to §C was omitted from the
macro instruction, the second statement
below would be generated from the model
statement.

r T 1
| Name | Operation|Operand |
L 1 3
1 3 T 1
| |MVC | THERE€C.25,THIS |
! !

| MVC | THERE2S, THIS
1 [}

80 Part 3: Conditional Assembly and Macro Facilities

O

Page of GC24-3414-9
Added Nov. 31, 1972
By TNL: GN33-8157

Operand Sublists

An operand of a macro instruction may be a
sublist.

Sublists provide the programmer with a
convenient way to refer to: () a
collection of macro instruction operands as
a single operand, or (2) a single operand
in a collection of operands.

Section 8: How to Write Macro Instructions 80.1

AN
~

-

A sublist consists of one or more
crerands (subcperands) separated by commas
and enclosed in paired parentheses. The
entire sublist, including the parentheses,
is ccnsidered to be one macro instruction
crgerand.

A suborerand is always treated as a
character string. It is not possible to
pass a subogerand containing a sublist to
an inner macrco instruction (a macro
instruction used as a model statement in a
racrc definiticn). The inner macro would
regard the operand as a character string
during generation.

Oritted sukcperands are handled in the
same way as cmitted operands. If ()
appears as an operand, however, it is
treated as a character string, not as a
sublist with all sukoperands omitted.

If a macro instruction is written in the
alternate statement format, each sublist
operand may ke written on a separate line;
the racro instruction may be written on as
many lines as there are operands, including
sublist orerands.

The limit of 127 characters (255 for
assembler F) applies to an entire sublist
including suboperands, parentheses, and
conmas within these parentheses.

I1f &P1 is a symbolic parameter in a
prototype statement, and the correspcnding
operand of a macro instruction is a
sublist, then §&P1(n) may be used in a model
statement to refer to the nth operand of
the sublist, where n may be any arithmetic
expression allowed in a SETA instruction.
The SETA instructicn is described in
Section 9. 1I1If &P1 is a symbolic parameter,
and the corresponding operand of a mracro
instructicn is a sublist, then &§F1 refers
to the entire subklist (including
rarentheses) .

1f the sublist notation is used, but the
operand is not a sublist, then §&§P1 (1)
refers to the cperand and &P1(2) through
&P1(100) (&P1(200) for assembler F) refer
to null character value. 1f an operand has
the form (), it is treated as a character
string and not as a sublist.

For example, consider the following
macro definition, macro instructicn, and
generated statements.

[(m——== L S L SRSt 1
|Name |Operation|Operand |
p----—4 oo 1
Header | |MACRO]
Prototype | |ACDNUM | §NUM, §REG, SAREA |
Model | L | 6REG, ENUM (1) |
Model | |A | EREG, ENUM (2) |
Model i A | EREG, ENUM (3) |
Model | |ST | §REG, EAREA |
Trailer | |MEND | |
R oo meaeee {
Macro | |ACDNUM |&,B,C),6,SUM |
Generated| |L 16 ,A {
Generated| |A 16,B |
Generated| |A 16.,C |
Generated| |ST |6,SUM |
R S, S 1

The crerand of the macro instruction
that corresponds to symkbolic parametexr ENUM
is a sublist. One of the operands in the
sublist is referred to in the operand entry
cf three of the model statements. For
example, &NUM (1) refers to the first
crerand in the sublist corresponding to
symbolic parameter ENUM. The first operand
of the sublist is A. Therefore, B replaces
ENUM (1) to form part of the generated
statement.

Note: When referring to an orerand in a
sublist, the left parenthesis of the
sublist notation must immediately follow
the last character of the symbolic
rarameter, e.g., ENUN(1). B period should
nct be rlaced between the left parenthesis
and the last character of the symbclic
rarameter.

A period may be used between these two
characters only when the prograrrer wants
tc ccncatenate the left parenthesis with
the characters that the symbclic parameter
rerresents. The following example shows
what would be generated if a period
arreared between the left parenthesis and
the last character of the symbolic
parameter in the first model statenrent cf
the above example.

T T by |

r 1
|Name |Operation|Operand]
s

p-----1- ¥ e —
Prototype| |ADCNUM | §NUM, EREG, 6AREA |
Model) L | EREG, ENUM. (1) |

e oo oeeee
Macro | |ACDNUM 1®%,8,C) ,6,SUM |
Generated| |L 16, @&,B,C) (1) |

L A i ']

The symbolic parameter ENUM is used in
the crerand entry of the model statement.
The characters (A,B,C) of the macrc
instruction correspond to &§NUM. Since §NUM
is irmediately followed by a period, &NUM
and the period are replaced by (2,E,C).

The period does not appear in the generated
statement. The resulting generated

Section 8: How to Write Macro Instructiocns 81

statement is an invalid assenkler language
statement.

Inner Macro Instructions

A macro instruction may be used as a model
statement in a macro definition. Macro
instructions used as model statements are
called inner macro instructions.

A macro instruction that is not used as
a model statement is referred to as an
cuter macro instruction.

Any symbolic parameters used in an inner
macro instruction are replaced by the
cecrresponding operands of the outer macro
instructicn.

The macro definition corresponding to an
inner macro instruction is used to generate
the statements that replace the inner macro
instruction.

The ADDNUM macro instruction of the
previous example is used as an inner macrc
instruction in the following example.

The inner macro instruction contains two
symbolic parameters, &S and §T. The
characters (X,Y¥,%) and J of the macro
instruction correspond to &S and §T,
respectively. Therefore, these characters
replace the symbolic parameters in the
orerand entry of the inner macro
instruction.

The assembler then uses the macro
definition that corresponds to the inner
racro instruction to generate statements to
replace the inner macro instruction. The
fourth through seventh generated statements
have been generated for the inner macro
instruction.

r T T
|Name {Operation|Operand
1 4 4

}

|
1 oo m e oo 4
Header | {MACRO | |
Prototype | {comp | €R1,ER2,6S,6T, €60 |
Model | | SR | 6R1, ER2 |
Model | IC | &R1, T |
Model | |BENE | €0 |
I 1 -~ |
Inner I |ADCNUM | 65,12, 6T| |
I F-mmmmmed |
Model |§U |A | €R1, &T]
Trailer | {MEND { |
| |MACRO] |
| |ADDNUM | §NUM, §REG ,EAREA |
| L | EREG, ENUM (1) !
| |A | EREG , §NUM (2) |
i A | EREG, ENUM (3) |
| ST | EREG , éAREA |
| MEND | |
L i S ——— -__,'
T T T

Outer IK jcomp 110,11, (X,Y,2) ,J,K|
-1+ Fommmmmm e 1
Generated| SR 110,11 |
Cenerated| C 10,3 |
Generated| |BENE 1K |
I e R 1 |
Generated| {L 112,X j |
Generated| 1A {12,y | |
Generated| |A 112,2 | |
Generated| | ST 112,3 | }
T fr—mo ! |
Generated |K 1A {10,d |
L AL 1 - - 4

Note: An ampersand that is part of a

symkclic parameter is not considered in
determining whether a macro instruction
operand contains an even number cf
ccnsecutive ampersands.

Levels of Macro Instructions

A macro definition that corresponds to an
outer macro instruction may ccntain any
nurber of inner macro instructions. The
outer macro instruction is called a first
level macro instruction. Each of the inner
macro instructions is called as second
level macro instruction.

The macro definition that corresponds to
a second level macro instruction may
ccntain any number of inner macro
instructions. These macro instructions are
called third level macro instructions, etc.

The numker of levels of macrc
instructions that may be used depends upon
the complexity of the macro definition and
the amount of storage available. This is
described in detail in 2ppendix BH.

82 Part 3: Conditional Assemkly and Macrc Facilities

(D

Section 9. How to Write Conditional Assembly Instructions

The conditional assembly instructions allow
the programmer to: (1) define and assign
values to SET symbols that can be used to
vary parts of generated statements, and (2)
vary the sequence of generated statements.
Thus, the programmer can use these
instructions to generate many different
sequences of statements from the same macro
definition.

There are 13 conditional assembly
instructions, 10 of which are described in
this section. The other three conditional
assembly instructions--GBLA, GBLB, and
GBLC--are described in Section 10. The
instructions described in this section are:

LCLA SETA AIF ANOP
LCLB SETB AGO
LCLC SETC ACTR

The primary use of the conditional
assembly instructions is in macro
definitions. However, all of them may be
used in an assembler language source
program.

Where the use of an instruction outside
macro definitions differs from its use
within macro definitions, the difference is
described in the subsequent text.

The LCLA, ICLB, and ICLC instructions
are used to define and assign initial
values to local SET symbols.

The SETA, SETB, and SETC instructions
may be used to assign arithmetic, binary,
and character values, respectively, to SET
symbols. The SETB instruction is described
after the SETA and SETC instructioms,
because the operand of the SETB instruction
is a combination of the operands of the
SETA and SETC instructions.

The AIF, AGO, and ANOP instructions may
be used in conjunction with sequence
symbols to vary the sequence in which
statements are assembled. The programmer
can test attributes assigned by the
assenbler to symbols or macro instruction
operands to determine which statements are
to be processed. The ACTR instruction may
be used to limit the number of AIF and AGO
branches executed in any assembly.

Examples illustrating the use of
conditional assembly instructions are
included throughout this section. A chart
summarizing the elements that can be used
in each instruction appears at the end of
this section.

SET Symbols

SET symbols are one type of variable
symbol. The symbolic parameters discussed
in Section 7 are another type of variable
symbol. SET symbols differ from symbolic
parameters in three ways: (1) where they
can be used in an assembler language source
program, (2) how they are assigned values,
and (3) how the values assigned to them can
be changed.

Symbolic parameters can only be used in
macro definitions, whereas SET symbols can
be used inside and outside macro
definitions.

SET symbols are assigned values by SETA,
SETB, and SETC conditional assembly
instructions and by local or global
declarations.

Each symbolic parameter is assigned a
single value for one use of a macro
definition, whereas the values assigned to
each SETA, SETB, and SETC symbol are not so
restricted.

DEFINING SET SYMBOLS

SET symbols must be defined by the
programmer before they are used. When a
SET symbol is defined it is assigned an
initial value. SET symbols may be assigned
new values by means of the SETA, SETB, and
SETIC instructions. A SET symbol is defined
when it appears as an operand of an ILCLA,
ILCLB, or LCLC instruction.

USING VARIABLE SYMBOLS

The SETA, SETB, and SETC instructions may
be used to change the values assigned to
SETA, SETB, and SETC symbols, respectively.
When a SET symbol appears in the name or
operand entry of a statement, the current
value of the SET symbol (i.e., the last
value assigned to it) replaces the SET
symbol in the statement. when a SETC
symbol appears in the operation entry of a
statement, the current value of the SETC
symbol replaces the SET symbol in the
statement.

Section 9: How to Write Conditional Assembly Instructions 83

For example, if &A is a symbolic
parameter, and the corresponding characters
of the macro instruction are the symbol
HERE, then HERE replaces each occurrence of
§A in the macro definition. However, if €A
is a SET symbol, the value assigned to &A
can be changed, and a different value can
replace various occurrences of A in the
macro definition.

The same variable symbol may not be used
as a symbolic parameter and as a SET symbol
in the same macro definition.

The following illustrates this rule.

r T L]
|Name | Operation|Operand
i 4

§T0O, EFROM

R Y

T v
| ENAME |MOVE
[L

1f the statement above is a prototype
statement, then &§NAME, §TO, and §FROM may
not be used as SET symbols in the macro
definition.

The same variable symbol may not be used
as two different types of SET symbols in
the same macro definition. Similarly, the
same variable symbol may not be used as two
different types of SET symbols outside
macro definitions.

For example, if §A is a SETA symbol in a
macro definition, it cannot be used as a
SETC symbol in that definition, Similarly,
if €A is a SETA symbol outside macro
definitions, it cannot be used as a SETC
symbol outside macro definitions.

The same variable symbol if declared
local may be used in two or more macro
definitions and outside macro definitions.
1f such is the case, the variable symbol
will be considered a different variable
symbol each time it is used.

For example, if &A is a variable symbol
(either SET symbol or symbolic parameter)
in one macro definition, it can be used as
a variable symbol (either SET symbol or
symbolic parameter) in another definition.
Similarly, if €A is a variable symbol (SET
symbol or symbolic parameter) in a macro
definition, it can be used as a SET symbol
outside macro definitions.

All variable symbols may be concatenated
with other characters in the same way as
symbolic parameters. The rules for
concatenation are in Section 7 under the
subsection "Model Statements."

Variable symbols in macro instructions
are replaced by the values assigned to
them, immediately prior to the start of
processing the definition. If a SET symbol

is used in the operand entry of a macro
instruction, and the value assigned to the
SET symbol is in the form of sublist
notation, the operand is not considered a
sublist.

Attributes

The assembler assigns attributes to macro
instruction operands and to symbols in the
program. These attributes may be referred
to only in conditional assembly
instructions.

There are six kinds of attributes.
are: type, length, scaling, integer,
count, and number.

They

1f an outer macro instruction operand is
a symbol before substitution, then the
attributes of the operand are the same as
the corresponding attributes of the symbol.
The symbol must appear in the name entry of
an assembler language statement or be an
external symbol. The statement must be
outside macro definitions and must not
contain any variable symbols.

I1f an inner macro instruction operand is
a symbolic parameter, then attributes of
the operand are the same as the attributes
of the corresponding outer macro
instruction operand.

Each attribute has a notation associated

with it. The notations are:
Attribute Notation
Type T*
Length L*
Scaling S*
Integer 1
Count K*
Number N*

1f a macro instruction operand is a
sublist, the programmer may refer to the
attributes of either the sublist or each
operand in the sublist. The type, length,
scaling, and integer attributes of a
sublist are the same as the corresponding
attributes of the first operand in the
sublist.

All the attributes of macro instruction
operands may be referred to im conditional
assembly instructions within macro
definitions. However, only the type,
length, scaling, and integer attributes of
symbols may be referred to in conditional
assembly instructions outside macro
definitions. Symbols appearing in the name
entry of generated statements are not
assigned attributes.

84 Part 3: Conditional Assembly and Macro Facilities

O

O

e

The programmer may refer to an attribute
in the following ways:

1. In a statement that is outside macro
definitions, he may write the notation
for the attribute immediately followed
by a symbol. (E.g., T'NAME refers to
the type attribute of the symbol
NAME.)

2. In a statement that is in a macro
definition, he may write the notation
for the attribute immediately followed
by a symbolic parameter. (E.g., L'
ENAME refers to the length attribute
of the characters in the macro
instruction that correspond to
symbolic parameter §NAME; L'ENAME (2)
refers to the length attribute of the
second operand in the sublist that
corresponds to symbolic parameter
ENAME.)

TYPE ATTRIBUTE (T')

The type attribute of a macro instruction
operand or a symbol is a letter.

The programmer may refer to a type
attribute in the operand of a SETC
instruction, or in character relations in
the operands of SETB or AIF instruction, or
in other instructions where use of the
character is wvalid.

The following letters are used for
symbols that name DC and DS statements and
for outer macro instruction operands that
are symbols that name DC or DS statements.

A-type address constant, implied
length, aligned.

Binary constant.

Character constant. :
Long floating-point constant
implied length, aligned.

Short floating-point constant,
implied length, aligned.
Fullword fixed-point constant,
implied length, aligned.
Fixed-point constant, explicit
length.

Halfword fixed~point constant,
implied length, aligned.
Floating-point constant, explicit
length.

Extended floating-point constant,
implied length, aligned.

Packed decimal constant.

A-, S-, V-, or ¥Y-type address
constant, explicit length.
S-type address constant, implied
length, aligned.

V-type address constant, implied
length, aligned.

t WY B X m o =\ m oo »

<

X Hexadecimal constant.

Y Y-type address constant, implied
length, aligned.

Z Zoned decimal constant.

The following letters are used for
symbols (and outer macro instruction
operands that are symbols) that name
statements other than DC or DS statements,
or that appear in the operand field of an
EXTRN or WXTRN statement.

Machine instruction
Control section name
Macro instruction
EXTRN symbol

CCW instruction
WXTRN symbol

HwERREaH

The following letters are used for inner
and outer macro instruction operands only.

N Self-defining term
(0] Omitted operand

The letter U (Undefined) is used for
inner and outer macro-instruction operands
that cannot be assigned any of the above
letters. The type attribute of all
literals appearing as macro instruction
operands is U. This also is true for inner
macro instruction operands that are
ordinary symbols or variable symbols.
Because the attributes are not available at
the necessary time, this letter is also
assigned to symbols that name EQU and LTORG
statements, to any symbols occurring more
than once in the name entry of source
statements, and to all symbols naming DC
and DS statements with expressions or
variable symbols as modifiers. The type
attribute also is undefined when the
modifier expression consists solely of
self-defining terms.

The attributes of A, B, C, and D in the
following examples are undefined:

DC 3FL (A-B) '15°'
DC (A-B)F'15"
DC &X'1’

DC FL(3-2)*1*

UOwp

LENGTH (L') , SCALING (S*), AND INTEGER (I')
ATTRIBUTES

The length, scaling, and integer attributes
of macro instruction operands and symbols
are numeric values.

The length attribute of a symbol (or of
a macro instruction operand that is a
symbol) is as described in Part 1 of this
publication. Reference to the length
attribute of a variable symbol is illegal

Section 9: How to Write Conditional Assembly Instructions 85

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

except for symbolic parameters in SETA,
SETB, and AIF statements. If the basic L'
attribute is desired, it can be obtained as
follows:

EA SETC '2°'
&B SETC °'L***
MVC §&A. (§BEA) ,X
After generation, this would result in
MVC 2 (L'Z),.X

Reference must not be made to the length
attributes of symbols or macro instruction
operands whose type attributes are the
letters M, N, O, T, $, or U.

Scaling and integer attributes are
provided for symbols that name fixed-point,
floating-point, and decimal DC or DS
statements.

Fixed and Floating Point. The scaling
attribute of a fixed point or floating
point number is the value given by the
scale modifier. The integer attribute is a
function of the scale and length attributes
of the number.

Decimal. The scaling attribute of a
decimal number is the number of decimal
digits to the right of the decimal point.
The integer attribute of a decimal number
is the number of decimal digits to the left
of the decimal point.

Scaling and integer attributes are
available for symbols and macro instruction
operands only if their type attributes are
H, F, and G (fixed point); D, E, K, and L
(floating point) ; or P and 2 (decimal).

The programmer may refer to the length,
scaling, and integer attributes in the
operand field of a SETA instruction, or in
arithmetic relations in the operand fields
of SETB or AIF instructions.

COUNT ATTRIBUTE (K')

The programmer may refer to the count
attribute of macro instruction operands
only.

The count attribute is a value equal to
the number of characters in the macro
instruction operand after substituting for
variable symbols, excluding commas. If the
operand is a sublist, the count attribute
includes the beginning and ending
parentheses and the commas within the
sublist. The count attribute of an omitted
operand is zero.

If a macro instruction operand contains
variable symbols, the characters that

replace the variable symbols, rather than

the variable symbols, are used to determine »

the count attribute. (M:;w
The programmer may refer to the count

attribute in the operand field of a SETA

instruction, or in arithmetic relations in

the operand fields of SETB and AIF

instructions that are part of a macro

definition.

NUMBER ATTRIBUTE (N*)

The programmer may refer to the number
attribute of macro instruction operands
only.

The number attribute is a value equal to
the number of operands in an operand
sublist. The number of operands in an
operand sublist is equal to one plus the
number of commas that indicate the end of
an operand in the sublist.

The following examples illustrate this
rule.

(A,B,C,D,E) 5 operands

a,,C,D,E) 5 operands

(A,B,C,D) 4 operands

(+B,C,D,E) 5 operands

(A,B,C,D,) 5 operands .

(AIBICIDI r) 6 operands (™
AN 4

If the macro instruction operand is not
a sublist, the number attribute is one. If
the macro instruction operand is omitted,
the number attribute is zero.

The programmer may refer to the number
attribute in the operand field of a SETA
instruction, or in arithmetic relations in
the operand fields of SETB and AIF
instructions that are part of a macro
definition.

ASSIGNING INTEGER ATTRIBUTES TO SYMBOLS

The integer attribute is computed from the
length and scaling attributes.

Fixed Point. The integer attribute of a
fixed-point number is equal to eight times
the length attribute of the number minus
the scaling attribute minus one; i.e.,
I°=8%L'-S'-1.

Each of the following statements defines
a fixed-point field. The length attribute
of HALFCON is 2, the scaling attribute is
6, and the integer attribute is 9. The
length attribute of ONECON is 4, the AN
scaling attribute is 8, and the integer é%;)
attribute is 23. Ly

86 Part 3: Conditional Assembly and Macro Facilities

¥ Rj !
| Name |Operation|Operand
{ 4

HS6'-25.93"
Fs8'100.3E-2"

] 1
| HALFCON | DC
|ONECON |DC
[R L

b e e iy i

L

Floating Point: The integer attribute of a
type D or E floating-point number is equal
to two times the difference between the
length attribute of the number and one,
minus the scaling attribute; i.e.,
I1'=2%(L'-1)-S".

Because of its low order characteristic,
the integer attribute of a type L constant
with a length greater than 8 bytes is two
less than the value indicated in the
formula above. The integer attribute of a
type L constant with a length of 8 bytes or
less is the same as the value indicated in
the formula above.

Each of the following statements defines
a floating-point value. The length
attribute of SHORT is 4, the scaling
attribute is 2, and the integer attribute
is 4. The length attribute of LONG is 8,
the scaling attribute is 5, and the integer
attribute is 9.

I w L}
| Name |Operation|Operand
L L 1

e . e, et s

L} 1 1)

| SHORT |DC |ES2*46.415"

| LONG |DC |DS5*-3.729"

L L !

Decimal: The integer attribute of a packed

decimal number is equal to two times the
length attribute of the number minus the
scaling attribute minus one; i.e.,
I1'=2%L'-S*~1. The integer attribute of a
zoned decimal number is equal to the
difference between the length attribute and
the scaling attribute; i.e., I'=L'-S‘.

Each of the following statements defines
a decimal field. The length attribute of
FIRST is 2, the scaling attribute is 2, and
the integer attribute is 1. The length
attribute of SECOND is 3, the scaling
attribute is 0, and the integer attribute
is 3. The length attribute of THIRD is 4,
the scaling attribute is 2, and the integer
attribute is 2. The length attribute of
FOURTH is 3, the scaling attribute is 2,
and the integer attribute is 3.

3 LIRS L}
| Name |Operation|Operand
{ 4 L

1

!
13 T LB 1
[FIRST |DC [P*+1.25¢ i
| SECOND |DC [Z°-543¢ I
{THIRD |DC 12°79.68* I
(FOURTH |DC |P*79.68" |
L L L J

Sequence Symbols

The name entry of a statement may contain a
sequence symbol. Sequence symbols provide

the programmer with the ability to vary the
sequence in which statements are processed

by the assembler.

A sequence symbol is used in the operand
entry of an AIF or AGO statement to refer
to the statement named by the sequence
symbol.

A sequence symbol may be used in the
name entry of any statement that does not
contain a symbol or SET symbol, except a
prototype statement, or a MACRO, LCLA,
LcLB, LCLC, GBLA, GBLB, GBLC, ACTR, ICTL,
ISEQ, or COPY instruction.

A sequence symbol consists of a period
followed by one through seven letters
and/or digits, the first of which must be a
letter.

The following are valid sequence
symbols:

-READER .A23456
.LOOP2 <XU¥F2
.N -S4

The following are invalid sequence
symbols:

CARDAREA (first character is not a
period)

.246B (first character after
period is not a letter)

.AREA2U456 (more than seven characters
after periogd)

.BCD%84 (contains a special
character other than initial
period)

.IN AREA (contains a special

character, i.e., blank,
other than initial period)

If a sequence symbol appears in the name
entry of a macro instruction, and the
corresponding prototype statement contains
a symbolic parameter in the name entry, the
sequence symbol does not replace the
symbolic parameter wherever it is used in
the macro definition.

The following example illustrates this
rule.

Section 9: How to Write Conditional Assembly Instructions 87

rage ot GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

r Ll L] 1
|Name |Operation|Operand |
t 3 1
v T
{ MACRO
1| ENAME |MOVE | §TO, §FROM
2| ENAME |ST | 2, SAVEAREA |
L 2, §FROM
ST 2,§TO
L 2,SAVEAREA
MEND
3|.syM MOVE F1ELDA,FIELDB
4 ST | 2, SAVEAREA
| L |2,FIELDB |
| ST {2,FIELDA |
| L {2,SAVEAREA |
Lt L L J

The symbolic parameter €ENAME is used in
the name entry of the prototype statement
(statement 1) and the first model statement
(statement 2) . In the macro instruction
(statement 3) a sequence symbol (.SYM)
corresponds to the symbolic parameter
ENAME. §&NAME is not replaced by .SYM, and,
therefore, the generated statement
(statement 4) does not contain a name
entry.

LCLA, LCLB, LCLC--Define SET Symbols

The typical form of these instruction is:

r T i
{ Name |Operation|Operand
1 L

L) T
|[Not used, |LCLA,
|must not |LCLB, or

One or more variable
symbols, that are

| be | LCLC to be used as SET
|present | symbols, separated

| |by commas |
[l 4 L]

The LCLA, LCLB, and LCLC instructions
are used to define and assign initial
values to SETA, SETB, and SETC symbols,
respectively. The SETA, SETB, and SETC
symbols are assigned the initial values of
0, 0, and null character value,
respectively.

The programmer should not define any SET
symbol whose first four characters are
§SYS.

All ILCLA, LCLB, or LCLC instructions in
a macro definition must appear immediately
after the prototype statement and all GBLA,
GBLB or GBLC instructions. All LCLA, LCLB,
or LCLC instructions outside macro
definitions must appear after all macro
definitions in the source program, after
all GBLA, GBLB, and GBLC instructions
outside macro definitions, before all

conditional assembly instructions, and
punch and REPRO statements outside macro
definitions, and before the first control
section of the program.

G

SETA-Set Arithmetic

The SETA instruction may be used to assign
an arithmetic value to a SETA symbol. The
form of this instruction is:

T L3
| Name | Operation|Operand
I]

v 1
|A SETA |SETA
| symbol |
3 1

|A SETA arithmetic
|expression
L

The expression in the operand entry is
evaluated as a signed 32-bit arithmetic
value which is assigned to the SETA symbol
in the name entry. The minimum and maximum
allowable values of the expression are -231
and +231-1, respectively.

The expression may consist of one term
or an arithmetic combination of terms. The
terms that may be used alone or in
combination with each other are
self-defining terms, variable symbols, and
the length, scaling, integer, count, and
number attributes. Self-defining terms are
described in Part 1 of this publication.

Note: A SETC variable symbol may appear in
a SETA expression only if the value of the
SETC variable is one to eight decimal
digits. The decimal digits will be
converted to a positive arithmetic value.

The arithmetic operators that may be
used to combine the terms of an expression
are + (addition), - (subtraction) ., #*
(multiplication), and / (division).

An expression may not contain two terms
or two operators in succession, nor may it
begin with an operator.

The following are valid operand fields
of SETA instructions:

EAREA+X'2D"* I*EN/25
§BETA* 10 SEXIT-S'§ENTRY+1
L*&HERE+32 29

The following are invalid operand fields
of SETA instructions:

EAREAX'C' (two terms in succession)
EFIELD+- (two operators in succession)
-EDELTA*2 (begins with an operator)
*+32 (begins with an operator;
two operators in succession)
NAME/15 (NAME is not a valid term)

88 Part 3: Conditional Assembly and Macro Facilities

.,

EVALUATION OF ARITHMETIC EXPRESSIONS

The prccedure used to evaluate the
arithmetic expression in the operand of a
SETA instruction is the same as that used
to evaluate arithmetic expressions in
assermbler language statements. The only
difference between the two types of
arithmetic expressions is the terms that
are allowed in each expression.

The following evaluation procedure is
used:

1. Each term is given its numerical
value.

2. The arithmetic operations are
perforred moving from left to right.
However, multiplication and/or
division are performed before addition
and subtraction.

3. The computed result is the value
assigned to the SETA symbol in the
name entry.

The arithmetic expression in the operand
entry of a SETA instruction may contain one
or more sequences of arithmetically
ccrbined terms that are enclosed in
parentheses. A sequence of parenthesized
terms may appear within another
rarenthesized sequence.

The following are examples of SETA
instruction operands that contain
parenthesized sequences of terms.

(L' SHERE+32) #29
§AREA+X' 2L' / (§EXIT-S' §ENTRY+ 1)
S§BETA*10% (I' §/25/ (§EXIT-S' SENTRY+ 1))

The rarenthesized portion or portions of
an arithmetic expression are evaluated
before the rest of the terms in the
expression are evaluated. If a sequence of
parenthesized terms appears within another
rarenthesized sequence, the innermost
sequence is evaluated first.

The SETA arithmetic expression can only
have five levels of parentheses. The
parentheses required in subscrigting,
substring, and sublist notation count when
determining these levels. A counter is
maintained for each SETA statement and
increased by one for each occurxrence of a
variable symbol as well as the operation
entry. The maximum value this counter may
attain is 35. (See Appendix H).

Using SETA Svmkols

The arithmetic value assigned tc a SETA
syrbcl is sukstituted for the SEIA syrmbcl
when it is used in an arithmetic relation.
1f the SETA symkol is not used in an
arithretic expression, the arithmetic value
is completely converted to an unsigned
integer, with leading zeros removed. If
the value is zero, it is converted to a
single zero.

The following example illustrates this
rule:

) T L
|Name |[Operation{Operand
4 4

1] T
|MACRO | 1
§NAME |MOVE | 6IC, EFROM i
LCLA |62, §B, 6C, €D |
1]6A SETA |10 |
2|&E SETA |12 |
3]&C SETA | 8- §B |
4|sC SFTA | 6A+ &C |
ENAME |ST |2, SAVEAREA |
5 L |2,EFRCNEC |
6] ST |2,€TCED I
| L |2, SAVERREA |
[[MEND | |
b 1 1 ----
HERE |MOVE |FIELDA ,FIELDB |
+ 1 -- --—
HERE |ST |2,SAVEAREA {
|L |2,FIELDB2 |
| ST |2,FIELDAS |
(L |2, SAVEAREA |
L e e e e e o e e e e e e o e 4

Statements 1 and 2 assign tc the SEIA
syrbcls §A and E&B the arithmetic value #10
and +12, respectively. Therefore,
statement 3 assigns the SETA symbol &C the
arithmetic value -2. When &C is used in
statement 5, the arithmetic value -2 is
ccnverted to the unsigned integer 2. When
€C is used in statement 4, however, the
arithmetic value -2 is used. Therefore, &L
is assigned the arithmetic value +8. When
¢C is used in statement 6, the arithmetic
value +8 is converted to the unsigned
integer 8.

The following example shows how the
value assigned to a SETA symbcl wray be
changed in a macro definition.

Section 9: How tc Write Conditional Assembly Instructions 89

=== T-——--—Tee L - 1 r T T ===
|Nare |Operation|Cperand | |Name |Cperation|Cperand |
frmmm e fommm e 1t 1 1 -1
| | MACRO i | | | MACRC | |
| ENAME | MOVE | §TO, §FROM | 1] | ADDX | ENUMBER, §REG |
| LCIA | &a | | |LCLa | §LAST]
1) 6a | SETA |5 | 2|&6LAST |SETA | N* §NUMEER |
| ENAME |ST | 2,SAVEAREA | | IL | EREG, §NUMEER (1) |
2] |L | 2,6FROMEA | 3] A | §REG, ENUMBER (§LAST)
3|éa | SETA |8]] | ST | SREG, ENUMEER (1) |
4| | ST 12,€&T0O&A | | | MEND | |
| |L | 2, SAVEAREA | b-- 4 - -
| | MEND L j u! ACLX J(A,B,C,D,E),3 }
——————— N - — - e B T A A T - — - —— t T -—— .
|HERE |MOVE | FIELDA,F1ELDB | | L 13,2 |
f===mm- pommmmm——— Dttt | | 1A |3,E |
|HERE | ST {2 ,SAVEAREA | [| ST 13,2]
| |L |2,FIELDES | L FE—. 4 -— 4
] |sT |2 ,FIELDAS |
| |L | 2 ,SAVEAREA | ENUMBER is the first symbolic rarameter
L oo D e 4 in the operand entry of the protctyge

Statement 1 assigns the arithretic value
+5 to SETA symbol &A. In statement 2, 6A
is converted to the unsigned integer 5.
Statement 3 assigns the arithmetic value +8
to &A. In statement 4, therefore, &A is
converted to the unsigned integer 8,
instead of 5.

A SETA symbcl may be used with a
symbolic parameter to refer to an cperand
in an crerand sublist. If a SETA symbol is
used for this purpose it must have keen
assigned a value in the range 1 to 100.

Any expression that may be used in the
crerand cf a SETA instruction may be used
to refer to an operand in an operand
sublist.

Sublists are described in Section 8
undexr "Operand Sublists.”

The following macro definition may be
used to add the last operand in an cgerand
sublist to the first operand in an operand
sublist and store the result at the first
orerand. A sample macro instruction and
generated statements follow the macro
definition.

statement (statement 1) . The corresponding
characters, (A,B,C,D,E), of the macro
instruction (statement 4) are a suklist.
Statement 2 assigns to ELAST the arithmetic
value +5, which is equal to the number of
cperands in the sublist. Therefore, in
statement 3, ENUMBER (ELAST) is replaced Ly
the fifth orerand of the sublist.

SETC- Set Character

The SEIC instruction is used to assign a

character value to a SETC symbol. The form
cf this instruction is:

r T - T I |
|Name |Operation|Cperand |
L % F o e o e e e e o e e {

t
|A SEIC |SEIC
| symbol
I

L

l
|the form described |
|telow |
4 -

b e —

= [-———

The operand may consist of the type
attribute, a character expression, a
substring notation, or a concatenation of
substring notations and character
expressions. A SETA symbol may agprear in
the cperand of a SETC statement. The
result is the character representation of
the decimal value, unsigned, with leading
zercs removed. If the value is zero, one
deciral zero is used.

TYPE ATTRIBUTE

The character value assigned to a SEIC
symbol may ke a type attribute. 1If the
tyre attrikute is used, it must arrear
alcne in the operand field.

90 Part 3: Conditional Assembly and Macro Facilities

The following
————————— example assigns to the SETIC symbcl ETYPE

/ffs

<7

the letter that is the type attribute of
the macro instruction operand that
corresponds to the symbolic parameter &ABC.

1 h
Name Operation|Operand
4

+
| ETYPE | SETC | T* 6ABC
L L L

e e

CHARACTER EXPRESSION

A character expression consists of any
combination of characters enclosed in
apostrophes. The maximum length of a
character expression is 127 characters.

The character value enclosed in
apostrophes in the operand field is
assigned to the SETC symbol in the name
entry. The maximum length character value
that can be assigned to a SETC symbol is
eight characters. 1If a value greater than
8 is specified, the leftmost 8 characters
will be used.

EVALUATION OF CHARACTER EXPRESSIONS: The
following statement assigns the character
value AB%U4 to the SETC symbol EALPHA:

Name Operation‘Operand

| *ABXY " [

| éALPHA |SETC
t £ L]

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

3

| Name Operation|{Operand

e e sndets eres

§LENGTH| SETC *L**SYMBOL"

Variable symbols may be concatenated
with other characters in the operand field
of a SETC instruction according to the
general rules for concatenating variable
symbols with other characters (see Section
.

If SALPHA has been assigned the
character value ABX4, either of the
following statements may be used to assign
the character value ABRU4RST to the variable
symbol §GAMMA.

r k]]
| Name | Operation [Operand
[l 1 L

bt e et e

v { L]
| EGAMMA | SETC | * 6ALPHA.RST"
[L L

T L] ¥
| Name |Operation|Operand
1 (] i

et v e woeene

r T 1
| EDELTA |SETC | *€ALPHA". 'RST"*
Lt L L

Two ampersands must be used to represent
an ampersand that is not part of a variable
symbol. Both ampersands become part of the
character value assigned to the SETC
symbol. They are not replaced by a single

ampersand.

The following statement assigns the
character value HALF§& to the SETC symbol
EAND.

More than one character expression may
be concatenated into a single character
expression by placing a period between the
terminating apostrophe of one character
expression and the opening apostrophe of
the next character expression. For
example, either of the following statements

| may be used to assign the character value
ABCDEF to the SETC symbol &BETA.

iName OperationiOperand i
EEAND !SETC i'HALFES' i
In this example,

[Name Operationicperand i
isA SETC E‘GSBETA'(Z,S) i

r T L]
| Name {OperationjOperand
1 i 4

{
' ABCDEF'

r k)

| éBETA | SETC I

| "ABC" . *DEF"
L

| EBETA |SETC
i 1

e T

Two apostrophes must be used to
represent a apostrophe that is part of a
character expression.

The following statement assigns the
character value L'SYMBOL to the SETC symbol
S§LENGTH.

'§§BETA® (2,5) produces EBETA which is
considered a character string, not a
variable symbol.

SUBSTRING NOTATION

The character value assigned to a SETC
symbol may be a substring character value.
Substring character values permit the

Section 9: How to Write Conditional Assembly Instructions 91

programmer to assign part of a character
value to a SETC symbol.

If the programmer wants to assign part
of a character value to a SETC symbol, he
must indicate to the assembler in the
operand of a SETC instruction: (1) the
character value itself, and (2) the part of
the character value he wants to assign to
the SETC symbol. The concatenation of (1)
and (2) in the operand of a SETC
instruction is called a substring notation.
The character value that is assigned to the
SETC symbol in the name entry is called a
substring character value.

Substring notation consists of a
character expression, immediately followed
by two arithmetic expressions that are
separated from each other by a comma and
are enclosed in parentheses. These
parentheses count when determining the
number of levels of parentheses. The two
arithmetic expressions may be any
expression that is allowed in the operand
of a SETA instruction. They may not be
zZero.

The first expression indicates the first
character (in the character expression)
that is to be assigned to the SETC symbol
in the name entry. The second expression
indicates the number of consecutive
characters in the character expression
(starting with the character indicated by
the first expression) that are to be
assigned to the SETC symbol. If a
substring specifies more characters than
are in the character string, only the
number of available characters will be
supplied. If the first expression
specifies a larger number than the number
of characters in the character expression,
a null string will be the result.

The maximum size character expression
the substring character value can be chosen
from is 127 characters.

The following are valid substring
notations:

§ALPHA' (2,5)

'AB%4° (EAREA+2, 1)
*EALPHA'.'RST' (6,&A)
'ABCEGAMMA' (§A, SAREA+2)

The following are invalid substring
notations:

*§BETA' (U4,6)
(blanks between character value and
arithmetic expressions)
*L" ' SYMBOL® (142-§XYZ)
(only one arithmetic expression)
"ABXUEALPHA' (8 §FIELD#2)
(arithmetic expressions not separated by

a comma)

'BETA'4,6
(arithmetic expressions not enclosed in
parentheses)

'§ALPHA' (2,4) (1,1)
(double substring notation is not
permitted)

CONCATENATING SUBSTRING NOTATIONS AND
CHARACTER EXPRESSIONS: Substring notations
may be concatenated with character
expressions in the operand of a SETC
instruction. 1f a substring notation
follows a character expression, the two may
be concatenated by placing a period between
the terminating apostrophe of the character
expression and the opening apostrophe of
the substring notation.

For example, if EALPHA has been assigned
the character value AB%X4, and €BETA has
been assigned the character value ABCDEF,
then the following statement assigns EGAMMA
the character value ABX¥4BCD.

r T
| Name Operation|Operand
L i)

~
PR S

8
| §GAMMA | SETC | ' 6ALPHA® . * §BETA" (2, 3)
L i

-

If a substring notation precedes a
character expression or another substring
notation, the two may be concatenated by
writing the opening apostrophe of the
second item immediately after the closing
parenthesis of the substring notation.

The programmer may optionally place a
period between the closing parenthesis of a
substring notation and the opening
apostrophe of the next item in the operand.

If €ALPHA has been assigned the
character value ABX4, and &EABC has been
assigned the character value 5RS, either of
the following statements may be used to
assign §WORD the character value ABXU5RS.

F T L]
| Name |Operation|Operand
L [i

L v

| EWORD | SETC | *6ALPHA" (1,4) * €ABC'

| EWORD | SETC | *6ALPHA® (1,4) " €ABC' (1,3)
L L 4

-
b ot e ol . ek

If a SETC symbol is used in the operand
of a SETA instruction, the character value
assigned to the SETC symbol must be one to
eight decimal digits.

1f a SETA symbol is used in the operand
of a SETC statement, the arithmetic value
is converted to an unsigned integer with
leading zeros removed. If the value is
zero, it is converted to a single zero.

92 Part 3: Conditional Assembly and Macro Facilities

O

Using SETC Symbols

The character value assigned to a SETC
symbol is substituted for the SETC symbol
when it is used in the name, operation, or
operand of a statement.

For example, consider the following
macro definition, macro instruction, and
generated statements.

r T TTTT 1
| Name |Operation|Operand |
L 1 4]
r T i
| | MACRO i
| ENAME | MOVE | §TO, §FROM |
| |LCLC | §PREFIX |

1| EPREFIX | SETC | *FIELD® l
| ENAME | ST | 2, SAVEAREA |

2] L |2, §PREFIXEFROM |

3] | ST 12,8PREFIXETO |
| L | 2, SAVEAREA |
l | MEND I |
L i 1 - .|
r t 1 1
| HERE | MOVE |A,B |
b t t 1
|HERE |ST | 2,SAVEAREA |
| |L |2,FIELDB [
| |sT |2,FIELDA |
| 1L | 2, SAVEAREA |
t L 1]

Statement 1 assigns the character value
FIELD to the SETC symbol &§PREFIX. 1In
statements 2 and 3, &PREFIX is replaced by
FIELD.

The following example shows how the
value assigned to a SETC symbol may be
changed in a macro definition.

v T T 1

| Name |Operation|Operand |
t t {

|MACRO |

ENAME |MOVE | §TO, §FROM |
|LCLC | EPREFIX |

1| §PREFIX | SETC | *FIELD"' |
ENAME |ST | 2,SAVEAREA [

2 L | 2, §PREFIXEFROM |
3| éPREFIX| SETC | *AREA" |
4 |ST |2,8PREFIXETO |
| |L | 2, SAVEAREA |
| {MEND | |
1 iR L 4

r T T 1
|HERE |MOVE |A,B |
b + t {
|HERE |ST | 2,SAVEAREA |
| |L |{2,FIELDB]
| | ST | 2,AREAA |
| |L |2, SAVEAREA 1
t L L 3

Statement 1 assigns the character value
FIELD to the SETC symbol &PREFIX.
Therefore, &PREFIX is replaced by FIELD in
statement 2. Statement 3 assigns the

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

character value AREA to §PREFIX.
Therefore, §PREFIX is replaced by AREA,
instead of FIELD, in statement 4.

The following example illustrates the
use of a substring notation as the operand
field of a SETC instruction.

)) T 1

Name | Operation|Operand |
+ + '

| MACRO { |

| ENAME |MOVE | €TO, EFROM |
| |LCLC | §PREFIX |
1| §PREFIX|SETC | *&TO" (1,5) |
ENAME | ST | 2, SAVEAREA |
2| L | 2, EPREFIX§FROM i
| |sT |2,8TO |
| L | 2, SAVEAREA |
| | MEND | [
L 1 4]
r T 1 1
| HERE | MOVE | FIELDA,B |
L L 4 []
3 T T |
HERE	ST	2, SAVEAREA
	L	2,FIELDB
	ST	2,FIELDA
	L	2,SAVEAREA
L 1 4 J

Statement 1 assigns the substring
character value FIELD (the first five
characters corresponding to symbolic
parameter §TO) to the SETC symbol §PREFIX.
Therefore, FIELD replaces &PREFIX in
statement 2.

SETB-Set Binary

The SETB instruction may be used to assign
the binary value 0 or 1 to a SETB symbol.
The form of this instruction is:

r k) 1
| Name Operation|Operand {
i j |
3 1
|A SETB |SETB AOora1,(0) or (1) |
| symbol or a logical ex- |
| pression enclosed in |

|

) |

| |parentheses
t]

The operand may contain a 0 or a 1 or a
logical expression enclosed in parentheses
(No explicit binary zeros or ones are
allowed in parentheses other than in the
form (0) or (1).) A logical expression is
evaluated to determine if it is true or
false; the SETB symbol in the name entry is
then assigned the binary value 1 or 0
corresponding to true or false,
respectively.

Note: The parentheses enclosing a logical
expression do not count towards the
parenthesis level limit.

Section 9: How to Write Conditional Assembly Instructions 93

A logical expression consists of one
term or a logical combination of terms.
The terms that may be used alone or in
combination with each other are arithmetic
relations, character relations, and SETB
symbols. The logical operators used to
combine the terms of an expression are AND,
OR, and NOT.

A logical expression may not contain two
terms in succession. A logical expression
may contain two operators in succession
only if the first operator is either AND or
OR and the second operator is NOT. A
logical expression may begin with the
operator NOT. It may not begin with the
operators AND or OR.

An arithmetic relation consists of two
arithmetic expressions connected by a
relational operator. A character relation
consists of two character strings connected
by a relational operator. The relational
operators are EQ (equal), NE (not equal),
LT (less than), GT (greater than), LE (less
than or equal), and GE (greater than or
equal) .

Any expression that may be used in the
operand of a SETA instruction, may be used
as an arithmetic expression in the operand
of a SETB instruction. Anything that may
be used in the operand of a SETC
instruction, may be used as a character
string in the operand of a SETB
instruction. This includes substring and
type attribute notations. The maximum size
of the character values that can be
compared is 127 characters. If the two
character values are of unequal length,
then the shorter one will always compare
less than the longer one, regardless of the
characters present.

The relational and logical operators
must be immediately preceded and followed
by at least one blank or other special
character. Each relation may or may not be
enclosed in parentheses. 1f a relation is
not enclosed in parentheses, it must be
separated from the logical operators by at
least one blank or other special character.

The following are valid operand fields
of SETB instructions:

1

(SAREA+2 GT 29)

(*ABX4* EQ '&ALPHA')

(T'&ABC NE TEXYZ)

(T*€P12 EQ ‘'F*)

(EAREA+2 GT 29 OR &B)

(NOT &B AND SAREA+X'2D' GT 29)
(*6C*EQ'MB")

The following are invalid operand fields
of SETB instructions:

&§B (not enclosed in parentheses)
(T'6P12 EQ "F' §&B)
(two terms in succession)
("AB%4' EQ 'ALPHA' NOT &B)
(the NOT operator must be preceded by
AND or OR)
(AND T'€P12 EQ ‘F'Y)
(expression begins with AND)

G

Evaluation of Logical Expressions

The following procedure is used to evaluate
a logical expression in the coperand field
of a SETB instruction:

1. Each term (i.e., arithmetic relation,
character relation, or SETB symbol) is
evaluated and given its logical value
(true or false).

2. The logical operations are performed
moving from left to right. However,
NOTs are performed before ANDs, and
ANDs are performed before ORs.

3. The computed result is the value
assigned to the SETB symbol in the
name field.

AN
\k_;y

The logical expression in the operand of
a SETB instruction may contain one or more
sequences of logically combined terms that
are enclosed in parentheses. A sequence of
parenthesized terms may appear within
another parenthesized sequence.

The following are examples of SETB
instruction operands that contain
parenthesized sequences of terms.

(NOT (§B AND SAREA+X'2D' GT 29))
(¢B AND (T'EP12 EQ'F'OR §&B)

The parenthesized portion or portions of
a logical expression are evaluated before
the rest of the terms in the expression are
evaluated. If a sequence of parenthesized
terms appears within another parenthesized
sequence, the innermost sequence is
evaluated first.

Logical expressions may have only five
levels of parentheses. Subscripting,
substring notation, and logical expression
nesting count when determining the level of
parentheses. The parentheses surrounding
the SETB operand do not count. A counter
is maintained for each statement and is
increased by one for each occurrence of a
variable symbol and an operation entry.

The maximum value this counter may attain
is 35. See Appendix H.

®

94 ©Part 3: Conditional Assembly and Macro Facilities

Using SETE_Symkols

The logical value assigned to a SETB symbol
is used for the SEIP symbol appearing in
the cperand of an AIF instruction or
another SETB instruction.

If a SEIB symbol is used in the operand
of a SETA instruction, or in arithmetic
relations in the operands of AIF and SETE
instructions, the binary values 1 (true)
and 0 (false) are converted to the
arithmetic values +1 and +0, respectively.

If a SETB symbol is used in the operand
of a SEIC instruction, in character
relations in the operands of AIF and SETB
instructions, or in any other statement,
the binary values 1 (true) and 0 (false),
are converted to the character values 1 and
0, respectively.

The following example illustrates these
rules. 1t is assumed that L'6TO EC 4 is
true, and S'€E€TO EQ 0 is false.

r T T L)
|Name |Operation|Operand |
t ¢ e {

| | MACRO |
| ENAME | MOVE | €TO, §FROM |

l |LC1A éA1 |

| {LCLB EB1,EB2]

| ILCLC |&C1 |

1}6B1 | SETB | @*&6TO EQ H) |
2|&B2 |SETB | (S'6TO EQ 0) |
3]16A1 |SETA EB1 |
41&C1 [SETC ‘gp2" |
§NAME |ST 2,SAVEAREA |
L 2, FROMEA1 |

|sT 2, 8T0&C1 |

|L | 2, SAVEARER |

| | MEND ! !
t e et R
|HERE |MOVE | FIELDA,F1ELDB |
—————— e P vy -~ 1
|HERE |ST | 2, SAVEAREA }
L	2,FIELDB1	
	ST	2,F1ELDAO
	L	2,SAVEAREA
t 4 - de - - —d

Because the operand of statement 1 is
true, &6B1 is assigned the binary value 1.
Therefore, the arithmetic value +1 is
substituted for €E1 in statement 3.
Because the operand of statement 2 is
false, &B2 is assigned the binary value 0.
Therefore, the character value 0 is
substituted for €&B2 in statement 4.

AIF-Conditional Branch

The AIF instruction is used to alter
ccnditionally the sequence in which source
program statements are processed by the
assembler. The typical form of this
instruction is:

¢ T . T |
| Name |Operation|Cperand |
L 4 | -]
r Bl 1 1
| Sequence | AIF |{A logical exgression |
|symbol | |enclosed in paren- |
Jor not | |theses, immediately |
|used | | followed by a |
i | | sequence symbocl |
L 4 A 4

Any logical expression that may be used
in the operand of a SETE instruction may ke
used in the operand of an AIF instruction.
However, the forms

AIF (0) , sequence symbcl and
AIF (1), sequence symbol

are invalid. The sequence symbcl in the
cperand must immediately follow the closing
rarenthesis of the logical expression. AIF
operand entries must not contain explicit
Zercs or onmes.

Note: The parentheses enclosing the
logical expression do not count toward the
level limit.

The logical expression in the operand is
evaluated to determine if it is true or
false. If the expression is true, the
statement named by the sequence symbol in
the operand is the next statement processed
by the assembler; however, sequence
checking is not affected. 1If the
expression is false, the next sequential
statement is processed by the assemkler.

The statement named by the sequence
symkbol may precede or follow the AIF
instruction.

If an AIF instruction is in a macro
definition, then the sequence symbol in the
operand must appear in the name entry of a
statement in the definition. If an AIF
instruction appears outside macro
definitions, then the sequence symbol in
the operand must appear in the name entry
of a statement outside macro definitions.

The following are valid operands of AIF
instructions:

(EARFA+X*2D*' GT 29) .READER
(T*€P12 EQ 'F') .THERE

The following are invalid operands of
AIF instructions:

Section 9: How to Write Conditional Assembly Instructions 95

(I*$ABC NE T'6XYZ) (no sequence symbol)
.XUF2 (no logical expression)

(I*E6ABC NE T'€XYZ) .XU4F2 (blanks between
logical expression and sequence symbol)

The following macro definition may be
used to generate the statements needed to
move a fullword fixed-point number from one
storage area to another. The staterents
will be generated only if the type
attribute of koth storage areas is the
letter F.

r-= T - 1
Name |Operation|Operand |

t — {

| MACRO | |

| &N | MOVE | €T, &F |
1 |AIF | (T*6€T NE T'&F) .END |
2| |AIF | (T*€T NE 'F').END |
3|&N |sT | 2,SAVEARER |
|L [2,6F |

] | ST |2,8T |

| L | 2, SAVEAREA |
4|.END |MEND | |
| 8 4 A e e e e e e e o e e e o e e < e s e J

The logical expression in the operand cf
statement 1 has the value true if the type
attributes of the two macro instruction
orerands are not equal. If the type
attributes are equal, the expression has
the logical value false.

Therefore, if the type attributes are
not equal, statement 4 (the statement named
by the sequence symbol .END) is the next
statement processed by the assembler. If
the tyre attributes are equal, statement 2
(the next sequential statement) is
processed.

The lcgical expression in the operand of
statement 2 has the value true if the type
attribute of the first macro instruction
operand is not the letter F. 1f the type
attribute is the letter F, the expression
has the logical value false.

Therefore, if the type attrikute is nct
the letter F, statement 4 (the statement
named by the sequence symbol .END) is the
next statement processed by the assembler.
I1f the tyre attribute is the letter F,
statement 3 (the next sequential statement)
is processed.

AGO-Unconditional Branch

The AGO instructicn is used to
unconditionally alter the sequence in which
source program statements are processed by
the assembler. The typical form of this
ingtruetion ic:

S — L —T 1
{Name |Operation|Cperand |
I 1 1 -1
| Sequence |AGO |A segquence synbol |
|symbol or| | |
[not used | | |
L d ——— - - |

The statement named by the sequence
symbcl in the operand is the next statement
processed Ly the assembler.

The statement named by the sequence
symbol may precede or follow the AGO
instruction.

1f an AGC instruction is part of a macro
definition, then the sequence symbol in the
operand must appear in the name entry of a
statement that is in that definition. 1f
an AGO instruction appears outside macro
definitions, then the sequence symkol in
the operand must appear in the name entry
of a statement outside macro definitions.

The following example illustrates the
use of the AGO instruction.

r T T == —
|Name |Operation|{Operand |
% 1 1 !
| |MACRO |
| SNAME |MOVE | €T, &F]
11 |AIF | (T* €T EC *F') .FIRST |
2 |AGo | .END |
3|.FIRST|AIF | (I"6€T NE T'é&F) .END |
| ENAME | ST |2,SAVEAREA |
] L {2,6F |
| |81 12, 8T |
| |L |2 ,SAVEAREA |
4].ENC |MEND | |
i A A ——— ¥

Statement 1 is used to determine if the
type attribute of the first macrc
instruction operand is the letter F. 1f
the type attribute is the letter F,
statement 3 is the next statement processed
by the assembler. If the type attribute is
nct the letter F, statement 2 is the next
statement processed by the assemkler.

Statement 2 is used to indicate to the
asserbler that the next statement to ke
processed is statement 4 (the statement
named by sequence symbol .ENL).

ACTR-Conditional Assembly Loop Counter

The ACIR instruction is used to limit the
number of AGO and AIF branches executed
within a macro definition or within the

P AN mANIAs A vmam o e
WMATAE DUAL CO pLUYLallle

AT

96 Part 3: Conditional Assembly and Macro Facilities

A serarate ACIR statement may be used in
each macro definition and in the main
crogram. These ccunters are independent.

The form cf this instruction is:

Attt L Sttt Sttt 1
|Name | Operation|Operand |
........... e
|Not used, | ACTR |Any valid SE1A |
|rust not | |expression i
| ke present | | |
[L R, 4

This statement must immediately follow
any glcbal or local declarations, if any.
This statement causes a counter to be set
tc the value in its operand. Each time an
AGO cr AIF branch is executed, the counter
is decremented by one. If the count is
zero before decrementing, the assembler
takes cne of two actions:

1. 1f a macrc definition is being
processed, the processing of it and
any macros akove it in a nest is
ternminated, and the next statement. in
the main portion of the prograr is
processed.

2. 1f the main portion of the program is
being processed, conditional assembly
is terminated, and the portion of the
program generated so far is assembled.

If an ACTR statement is not given, the
assumed value of the counter is 150 for the
L assembler and 4096 for the F asserkler.

ANOP-Assembly No-Operation

The ANOP instruction facilitates
ccnditional and unconditional branching to
statements named ky symkols or variakle
symbols.

The typical form of this instruction is:

- —_—— -

r T . T X
|Name |Operaticn|Operand |
oo prmmammmee t- - 1
| Sequence | ANCP |Not used, must not |
| symbol | |be present |
| 1 B . 1

If the programmer wants to use an AIF or
AGO instructicn to kranch to another
statement, he must place a sequence symbol
in the name entry of the statement to which
he wants to branch. However, if the
programmer has already entered a symbol cr
variable symbol in the name entry cf that
statement, he cannot place a sequence
symbol in the name entry. Instead, the
programmer must place an ANOP instruction

before the statement and then branch to the
ANOP instruction. This has the same effect
as branching to the statement irrediately
after the ANCF instruction.

The following example illustrates the
useé of the ANOP instructicn.

- = R |

T
Name |Cperation|Cperand
4

T
| |
t -—- s {
| MACRO I I
| ENAME |MOVE |61, &F |
| ICIC | STYPE I
11 AIF | (T'€T EC 'F') .FIYPE |
2|§TYPE |SEIC |"E* |
3|.FIYPF | ANOP | |
4|6NAME |STETYPE |2,SAVEAREA !
| LETIYPE |2,6F |
| STETYPE |2,ST I
] |ILETYPE |2,SAVEAREA I
| [MEND I |
L A A e ——— ———— J

Statement 1 is used to determine if the
tyre attribute of the first macro
instruction operand is the letter F. 1If
the tyre attribute is not the letter F,
statement 2 is the next statement processed
by the assemkler. If the type attribute is
the letter F, statement 4 should ke
rrccessed next. However, since there is a
variable symbol ({&ENANME) in the name field
cf statement 4, the required sequence
syrbcl. (.FIYFE) cannot be placed in the
name field. Therefore, an ANOP instruction
(statement 3) must be placed before
statement 4.

Then, if the type attribute of the first
operand is the letter F, the next statement
prccessed by the assembler is the statement
nared by sequence symbol .FTYFE. The value
of ETYPE retains its initial null character
value because the SEIC instruction is not
processed. Since .FTYPE names an ANOP
instruction, the next statement processed
by the assembler is statement 4, the
statement following the ANOP instruction.

Conditional Assembly Elements

The following chart summarizes the elements
that can be used in each conditional
assembly instruction. EFach row in this
chart indicates which elerents can be used
in a single conditional assembly
instruction. Each column is used to
indicate the conditional assembly
instructions in which a particular element
can be used.

The intersection of a column and a row
indicates whether an element can be used in
an instruction, and if so, in what fields

Section 9: How tc Write Conditional Assembly Instructions 97

of the instruction the element can be used. indicates that symbolic parameters can ke

For example, the intersection of the first used in the operand field of SETA
row and the first column of the chart instructions. @:jm
=== . .= 1
| Variable Symbols |
{-—-- T Sg;_-- " | Attributes ' ?
Symbols
p-——- i o T JT‘ T T T T T % {
| S.p. | SETA | SETB | SEIC | T* | L* | S* | I* | X* | N'| sS.S.]
D N N N D P P P P
i SETA : 0 : N,O } o = c2 i = o} { (o) : (0] { (o} { o} } ;
t + ¢ ¢ t R G S e S 4
| | I I | | I I | |] | |
| SETB | 0 | O | N | O | OY]| 02| 02| 02| C2 | C2 |]
I | | | ! I | | | | | | |
U A T A T AN T A A A T
| SETIC | O | O | o | NO | O | | | | I I
| | | I | | I |] ! | |
[U B U IV DV IV
AIF | © | O ! O | © | 0 | 02 | 02 | 02 c2 | C2 | N,C |
! H T | N i]
| |] | | R T I
ot N O TN N 0 O O OO O
L 4 L _,__.+ L 4 4 4 i ! J Jl |
l" ‘i’ 1" l ‘i’ 1 T T T) T) 'i
| ANOP | I I | N]
e G e 1
| ACTR o | © | © 03 0 c 0) c |
t L L 1
[Only in character relations |
|2 Only in arithmetic relations |
|2 Only if one to eight decimal digits |
| |
|Abbreviaticns |
| |
| N is Name L' is Length Attribute K* is Count Attribute |
| O is Operand S' is Scaling Attribute N° is Number Attribute |
| S.P. is Symbolic 1' is Integer Attribute S.S. is Sequence Symbol |
{ Parameter J

98 Part 3: Conditional Assembly and Macro Facilities

O

The additional features of the assembler
language allow the programmer to:

Terminate processing of a macro
definition.

Generate error messages.

Define global SET symbols.

Define subscripted SET symbols.

Use system variable symbols.

Prepare keyword and mixed-mode macro

definitions and write keyword and
mixed-mode macro instructions.

MEXIT-Macro Definition Exit

The MEXIT instruction is used to indicate
to the assembler that it should terminate

proce
typic

ssing of a macro definition. The
al form of this instruction is:

Name

L) LB
| Operation|Operand
L L

Sequ

not

T T
ence |MEXIT | Not used,

symbol or| |must not be

used | | present
L 1

The MEXIT instruction may only be used
in a macro definition.

1f

the assembler processes an MEXIT

instruction that is in a macro definition

corre

sponding to an outer macro

instruction, the next statement processed
by the assembler is the next statement
outside macro definitions.

If

the assembler processes an MEXIT

instruction that is in a macro definition
corresponding to a second or third level

macro

instruction, the next statement

processed by the assembler is the next
statement after the second or third level

macro instruction in the macro definition,

respectively.

MEXIT should not be confused with MEND.

MEND indicates the end of a macro
definition. MEND must be the last
statement of every macro definition,
including those that contain one or more

MEXIT

instructions.

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

Section 10. Additional Features

The following example illustrates the
use of the MEXIT instruction.

r T T R]
| Name |Operation|Operand |
; ¢ 1 {
| [MACRO | |
| ENAME |MOVE | €T, &EF

1] AIF | (T* &T EQ 'F') .OK

2| MEXIT |

3|.0K ANOP |
| ENAME | ST | 2, SAVEAREA
| L 12,&F |
| ST |2,8T
| L | 2, SAVEAREA
| | MEND | |
L L [J

Statement 1 is used to determine if the
type attribute of the first macro
instruction operand is the letter F. If
the type attribute is the letter F, the
assembler processes the remainder of the
macro definition starting with statement 3.
If the type attribute is not the letter F,
the next statement processed by the
assembler is statement 2. Statement 2
indicates to the assembler that it is to
terminate processing of the macro
definition.

MNOTE Statement

The MNOTE instruction may be used to
generate a message and to indicate what
error severity code, if any, is to be
associated with the message. The severity
code is for the programmer's information
only and is not used by the DOS assembler
or control program. The typical form of
this instruction is:

r T . T 1
| Name | Operation|Operand |
] 4 4 4
v 1] 1
Sequence	MNOTE	See examples below.
symbol or		
not used		
L XL 4]

The operand entry of the MNOTE assembler
instruction may be written in one of the
following forms:

1. severity code, 'message'

2. ,'message’

Section 10: Additional Features 99

3. '"message'

For 2 and 3 above, the severity code is
assumed to be one.

The MNOTE instruction may only be used
in a macro definition. Variable symbols
may be used to generate the MNOTE mnemonic
operation code, the severity code
indicator, and the message.

The resulting severity code indicator
may be a decimal integer 0 to 255, blank,
or an asterisk. The integers indicate the
severity of the error. (0 is the least
severe; 255 is the most severe). If the
severity code indicator is blank or
omitted, 1 is assumed. If the severity
code is an asterisk, the MNOTE is not
considered an error message. Messages can
be generated with substitution using
variable symbols.

The MNOTE statement appears in the
listing with a statement number at the
point where it was generated. It appears
even if PRINT NOGEN is specified. If the
severity code indicator was an integer or
blank, this statement number is placed in
list of statement numbers of MNOTE and
other error statements near the end of the
assembly listing. If the severity code is
an asterisk, the statement number is not
placed in this list.

Since the message portion of the MNOTE
operand is enclosed in apostrophes, two
apostrophes must be used to represent a
single apostrophe. Any variable symbols
used in the message operand are replaced b
values assigned to them. Two ampersands
must be used to represent a single
ampersand that is not part of a variable
symbol.

The following example illustrates the
use of the MNOTE instruction.

a
a

Y

—y

L] i
Name |Operation]Operand
f + +
| | MACRO |
| ENAME |MOVE |§T,&F
1] |AIF (T'6€T NE T'&F) .M1
2| |AIF (T'6T NE 'F') .M2 |
3| ENAME |ST | 2, SAVEAREA |
| |L |2,&F i
| ST 2,8T |
| L 2,SAVEAREA |
4] MNOTE *,'"MOVE GENERATED' |
| MEXIT | |
S51.M1 MNOTE |8,'TYPE NOT SAME' |
| MEXIT |]
6].M2 MNOTE 8,'TYPE NOT F' |
| MEND |
L XL 1]

Statement 1 is used to determine if the
type attributes of both macro instruction
operands are the same. If they are,
statement 2 is the next statement processed
by the assembler. 1f they are not,
statement 5 is the next statement processed
by the assembler. Statement 5 causes an
error message--8,TYPE NOT SAME--to be
printed in the source program listing.

Statement 2 is used to determine if the
type attribute of the first macro
instruction operand is the letter F. If
the type attribute is the letter F,
statement 3 is the next statement processed
by the assembler. If the attribute is not
the letter F, statement 6 is the next
statement processed by the assembler.
Statement 6 causes an error message--8,TYPE
NOT F--to be printed in the source program
listing. Statement 4 is an MNOTE which is
not treated as an error message.

Global and Local Variable Symbols

The following are local variable symbols:
1. Symbolic parameters.

2. Local SET symbols.

3. System variable symbols.

Global SET symbols are the only global
variable symbols.

The GBLA, GBLB, and GBLC instructions
define global SET symbols, just as the
LCLA, LCLB, and LCLC instructions define
the SET symbols described in Section 9.
Hereinafter, SET symbols defined by LCLA,
LCLB, and LCLC instructions will be called
local SET symbols.

Global SET symbols may communicate
values between statements in one or more
macro definitions and statements outside
macro definitions. However, local SET
symbols communicate values between
statements in the same macro definition, or
between statements outside macro
definitions.

If a local SET symbol is defined in two
or more macro definitions, or in a macro
definition and outside macro definitions,
the SET symbol is considered to be a
different SET symbol in each case.
However, a global SET symbol is the same
SET symbol each place it is defined.

A SET symbol must be defined as a global
SET symbol in each macro definition in
which it is to be used as a global SET
symbol. A SET symbol must be defined as a
global SET symbol outside macro
definitions, if it is to be used as a

100 Part 3: Conditional Assembly and Macro Facilities

f ™"
C

global SET symbol outside macro
definitions.

If the same SET symbol is defined as a
global SET symbol in one or more places,
and as a local SET symbol elsewhere, it is
considered the same symbol wherever it is
defined as a global SET symbol, and a
different symbol wherever it is defined as
a local SET symbol.

DEFINING LOCAL AND GLOBAL SET SYMBOLS

Local SET symbols are defined when they
appear in the operand entry of an LCLA,
LCLB, or LCLC instruction. These
instructions are discussed in Section 9
under "Defining SET Symbols."

Global SET symbols are defined when they
appear in the operand entry of a GBLA,
GBLB, or GBLC instruction. The typical
forms of these instructions are:

r T
| Name Operation|Operand
L [l

$
GBLA, |One or more
GBLB, or |variable
GBLC | symbols that are
|to be used as
{global SET
| symbols, sepa-
|rated by commas
L

T

|Not used,
|must not
|be present

!
I
|
I
[R

AR SSpu——
S R R —

The GBLA, GBLB, and GBLC instructions
define global SETA, SETB, and SETC symbols,
respectively, and assign the same initial
values as the corresponding types of local
SET symbols. However, a global SET symbol
is assigned an initial value by only the
first GBLA, GBLB, or GBLC instruction
processed in which the symbol appears.
Subsequent GBLA, GBLB, or GBLC instructions
processed by the assembler do not affect
the value assigned to the SET symbol.

The programmer should not define any
global SET symbols whose first four
characters are §SYS.

I1f a GBLA, GBLB, or GBLC instruction is
part of a macro definition, it must
immediately follow the prototype statement,
or another GBLA, GBLB, or GBLC instruction.
GBLA, GBLB, and GBLC instructions outside
macro definitions must appear after all
macro definitions in the source program,
before all conditional assembly
instructions and PUNCH and REPRO statements
outside macro definitions, and before the
first control section of the program.

Page of GC24-3414-9
Revised Nov, 31, 1972
By TNL: GN33-8157

All GBLA, GBLB, and GBLC instructions in
a macro definition must appear before all
LCLA, LCLB, and LCLC instructions in that
macro definition. All GBLA, GBLB, and GBLC
instructions outside macro definitions must
appear before all LCLA, LCLB, and LCLC
instructions outside macro definitions.
Comments statements are the only statements
which may be interspersed with the
definitions of local and global SET
symbols.

USING GLOBAL AND LOCAL SET SYMBOLS

The following examples illustrate the use
of global and local SET symbols. Each
example consists of two parts. The first
part is an assembler language source
program. The second part shows the
statements that would be generated by the
assembler after it processed the statements
in the source program.

Example 1: This example illustrates how
the same SET symbol can be used to
communicate (1) values between statements
in the same macro definitions, and (2)
different values between statements outside
macro definitions. -

r T . Rl 1
|Name |[Operation|Operand |
F + ¥ {
| | MACRO | |
| §NAME | LOADA | |
1] | LCLA | &A |
2|1 §NAME |LR 115,87 |
3{¢eA | SETA | 6A+1 |
| | MEND [|
| | | |
4y {LCLA | A |
| FIRST |LOADA | |
51 |LR 115,87 |
] | LOADA | |
6] |LR |15,86A |
| | END |FIRST |
8 [4 5
r T [1
| FIRST |LR 115,0 |
[|LR 115,0 |
	LR	15,0
	LR 115,0	
	END	FIRST
L 5 L J

€A is defined as a local SETA symbol in
a macro definition (statement 1) and
outside macro definitions (statement 4).
€A is used twice within macro definition
(statements 2 and 3) and twice outside
macro definitions (statements 5 and 6) .

Since €A is a local SETA symbol in the
macro definition and outside macro
definitions, it is one SETA symbol in the
macro definition, and another SETA symbol

Section 10: Additional Features 101

outside macro definitions. Therefore,
statement 3 (which is in the macro
definition) does not affect the value used
for &A in statements S and 6 (which are
outside macro definitions).

Example 2: This example illustrates how a
SET symbol can be used to communicate
values between statements that are part of
a macro definition and statements outside
macro definitions.

r £) . LB X]
|Name |Operation]|Operand |
| + t 1
| | MACRO | |
| ENAME | LOADA | |
1] {GBLA | €A |
2| ENAME |IR |15,8A |
3jéea | SETA §A+1 |
| | MEND |
| | |
4| | GBLA | €A |
| FIRST |LOADA |
5] |LR 15,8A |
] | LOADA |
6] |LR 15,&A |
| | END FIRST |
L 4] J
r T T 4
FIRST	[LR [15,0	
	LR {15,1	
	LR 15,1	
	LR 115,2	
	END	FIRST
L L 1 Jd

€A is defined as a global SETA symbol in
a macro definition (statement 1) and
outside macro definitions (statement 4).
§A is used twice within the macro
definition (statements 2 and 3) and twice
outside macro definitions (statements 5 and
6) .

Since &A is a global SETA symbol in the
macro definition and outside macro
definitions, it is the same SETA symbol in
both cases. Therefore, statement 3 (which
is in the macro definition) affects the
value used for §A in statements 5 and 6
(which are outside macro definitions).

Example 3: This example illustrates how
the same SET symbol can be used to
communicate: (1) values between statements
in one macro definition, and (2) different
values between statements in a different
macro definition.

§A is defined as a local SETA symbol in
two different macro definitions (statements
1 and 4#). &A is used twice within each
macro definition (statements 2, 3, 5, and
6) .

Since &éA is a local SETA symbol in each
macro definition, it is one SETA symbol in
one macro definition, and another SETA
symbol in the other macro definition.
Therefore, statement 3 (which is in one
macro definition) does not affect the value
used for &A in statement 5 (which is in the
other macro definition). Similarly,
statement 6 does not affect the value used
for &€A in statement 2.

T L]
Name |Operation}Operand
4 4

T

| MACRO
§NAME |LOADA
|LCLA
§NAME |LR

§A | SETA
MEND

™
>

15,62
EA+1

| MACRO
| LOADB
LCLA
LR
SETA
MEND

™
g

15,8A
§A+1

tzj
-
5U
0
=]

| LOADA
| LOADB
| LOADA
| LOADB

| END FIRST
4

4
FIRST |LR
|LR
|LR
|LR
| END
L

MOy,
e & & &

hWoooco

=]

frm et mt et s oy e s e e o e o s et S e B e e St e o e e —m)
m
b
] ok e ok

o e e e s e i e e e e e e e e e
bt e s s s, i kit " — — — — — — — — — — — — — — — — — — i c—— o

102 Part 3: Conditional Assembly and Macro Facilities

O

O

Page of GC24-3414-9
Added Nov. 31, 1972
By TNL: GN33-8157

SET symbol can be used to communicate
= values between statements that are part of
two different macro definitions.

O Example 4: This example illustrates how a

L] T
Name |[Operation|Operand
4 4

IMacrO |
§NAME |LOADA |
|GBLA §A
|LR 15,62
| SETA EA+1

| MEND |

WK -

5 2
&
(-}

|

| MACRO
| LOADB
| GBLA &A
|LR {15,6A
P

aneE
o i, s . i e, . e B e, S S e i Ay e

™
>

|
FIRST |LOADA

| LOADB
I | LOADA
| LOADB

| END FIRST
il

+
FIRST |LR

|LR
| | IR

| LR
C | END
4

L [QT Oy
Hounoon
Ha =« & «

NWN O

H
b o s s s e, s . . . s e, s . i S S — — —. . — — —— o aon, svchutt, crie. ad

o e e e e e e et e e e

Section 10: Additional Features 102.1

&2 is defined as a glokal SETA symbcl in
two different macro definiticns (statements
1 and 4). €A is used twice within each
macro definition (statements 2, 3, 5, and
6) .

Since &R is a glokal SETA symkol in each
macro definition, it is the same SETIA
symbol in each macro definition.

Therefore, statement 3 (which is in cne
macro definition) affects the value used
for &A in statement 5 (which is in the
other macro definition). Similarly,
statement 6 affects the value used fcr §&A
in statement 2.

Example 5: This example illustrates how
the same SET symkol can ke used tc
cormunicate: (1) values between statements
in two different macro definitions, and (2)
different values ketween statements cutside
racrxc definitions.

=== T o—eTo To=— == 1
|Name |Operation}Operand |
b
| | MACRO | 1
| ENAME |LOADA | |
1] |GBLA | 62 |
2| ENAME |LR 115,¢6a |
3|6&a | SETA | 6A+1 |
| | MEND | |
I ! | |
| | MACRO | |
| | LOADB l |
4| |GBLA | 62 |
5] |LR 115,68 |
6]6n | SETA | 6A+1 I
I | MEND | |
| | | |
71 |LC1A | 6A |
|FIRST |LOADA | |
| | LOADB | |
8] |LR 115,8R |
| | LOADA | |
| | LOADB | |
91 |LR | 15,867 |
| |END | FIRST |
e T G LS |
FIRST	IR	15,0
	ILR }115,1	
	LR	15,0
	LR 115,2	
	LR 115,3	
	LR	15,0
	END	FIRST
L 5 R L 4

&R is defined as a glokal SETA symbol in
two different macro definitions (statements
1 and 4) , but it is defined as a lccal SETA
symbol outside macro definitions (statement
7). &R is used twice within each racro
definition and twice outside macro
definitions (statements 2, 3, 5, 6, 8, and
9).

Since &A is a glokal SETA symbcl in each
macrc definition, it is the same SETA
synbcl in each macro definition. However,
since &A is a local SETA symbol outside
macro definitions, it is a different SETA
syrbcl cutside macro definitions.

Therefore, statement 3 (which is in one
wracrc definition) affects the value used
fcr §A in statement 5 (which is in the
cther macro definition), but it does not
affect the value used for &A in statements
8 and 9 (which are outside macro
definitions) . Similarly, statement 6
affects the value used for &A in statement
2, but it does not affect the value used
fcxr 6A in statements 8 and 9.

SUBSCRIPTELC SET SYMBOLS

Both global and local SET symbols may be
defined as subscripted SET symbols. The
local SET symkols defined in Secticn 9 were
all nonsubscripted SET symbols.

Subscripted SET symbols provide the
programmer with a convenient way to use one
SET1 symbol plus a subscript to refer to
many arithmetic, binary, or character
values.

A subscripted SET symbol consists of a
SET symbol immediately followed ky a
sukscript that is enclosed in parentheses.
The subscript may be any arithmetic
expression that is allowed in the operand
of a SETA statement in the range of 1 to
the specified dimension.

Cnly five levels of parentheses are
permitted in a SEIAR or SETE operand.

The following are valid subscripted SET
symkols.

&READER (17)
§A23456 (£SU)
EUF2 (25+EA2)

The following are invalid subscripted
SET symbols.

EXUF2 (no subscript)

(25) (no SET symbol)

E§XUF2 (25) (subscript does not
immediately follow
SET symbol)

Defining Subscripted SET Symbols. I1If the
Frcgrarmer wants to use a subscripted SET
syrbcl, he must write in a GBLA, GBLB,
GBLC, IClLA, ICLB, or LCLC instruction, a
SET symbol immediately followed ky an
unsigned decimal integer enclosed in
rarentheses. The decimal integer, called a

Section 10: Additicnal Features 103

dimension, indicates the numker cf SET
variables associated with the SET synkbol.
Every variable asscciated with a SET symbol
is assigned an initial value that is the
same as the initial value assigned to the
corresponding type of nonsukscripted SET
symbcl.

If a subscripted SET symbol is defined
as global, the same dimension must ke used
with the SET symbcl each time it is defined
as global.

The maximum dimension that can be used
with a SETA, SETE, or SE1C syrkol is 255.

A subscrircted SET symbeol may be used
only if the declaration was subscrirted. A
ncnsubscripted SET symbol may ke used only
if the declaration had no subscript.

The following statements define the
glcbal SET symbols &§SBEOX, &WBOX, and &PSW,
and the local SET symbol &TSW. &SBOX has
50 arithmetic variakles associated with it,
E§WBOX has 20 character variakles, &PSW and
€TSW each have 230 Linary variakles.

| SV Skt Mt e 1
|Name]OperatlonIOperand |
R e P EEE i
	GBLA	6SBOX (50)
	GBLC	§WBOX (20)
	GBLB	§PSW (230)
	LCLB	GTSW(230)
. Y S P, 4		

Using_Subscripted SET Symbols. After the
programmer has associated a number of SET
variables with a SET symbkol, he may assign
values to each of the variakles and use
them in other statements.

If the statements in the previous
example were part of a macro definiticn,
{and &R was defined as a SETA syrkcl in the
same definition), the following statements
could be part of the same macro definiticn.

|Nare lOperatlonIOperand }
______________________________________ {
1] €A | SEIA 15 |
2| 6PSW (6A) | SETIB | (6 LT 2) |
3| €TSW (9) |SETR | (§PSW (§A)) |
4] | B | 2,=F' §SEOX (45) * |
S| |CLI | AREA,C® EWBOX (17) * |
|) S 4

Statement 1 assigns the arithmetic value
5 to the nonsukscrirted SE1A syrkcl EA.
Statements 2 and 3 then assign the binary
value 0 to sukscripted SETB symkcls &PSW (5)
and ETSW (9) , respectively. Statements 4
and 5 generate statements that add the
value assigned to &SBOX (45) to general
register 2, and compare the value assigned

tc EWBOX (17) to the value stored at AREA,
resgectively. :

System Variable Symbols

System variakle symkols are lccal variable
syrbcls that are assigned values
automatically ty the assernbler. There are
fcur system variable symbols: §SYSNCX,
ESYSECT, &SYSIIST, and &SYSPARM. System
variable symbols may be used in the name,
creration and operand entries of statements
in macro definitions, but not in statements
cutside macro definitions with the
exception of &SYSEFARN. They may not ke
defined as symkolic parameters cr SET
synbcls, nor may they be assigned values Lty
SETA, SETB, and SETC instructicns.

E§SYSNLCX--MACRO INSTRUCTION INDEX

The system variable symbol &SYSNLX may ke
ccrbined with other characters to create
unique names for statements generated from
the same model statement.

§SYSNDX is assigned the four-digit
number 0001 for the first macro instruction
processed by the assembler, and it is
incremented by one for each subsequent
inner and outer macro instruction
processed.

1f €SYSNLX is used in a model statement,
SETIC or MNCTE instruction, or a character
relation in a SETB or AIF instruction, the
value substituted for &SYSNLX is the
fcur-digit number of the macro instruction
being processed, including leading zercs.

If §SYSNDX appears in arithmetic
exrressions (e.g., in the operand of a SEIA
instruction) , the value used for &SYSNLX is
an arithmetic value.

Throughout one use of a macro
definition, the value of &§SYSNDX may be
ccnsidered a constant, independent of any
inner macro instruction in that definition.

The example in the next column
illustrates these rules. It is assumed
that the first macro instruction processed,
QUTER1, is the 106th macro instruction
rrocessed ky the assemkler.

Statement 7 is the 106th racrc
instruction processed. Therefore, &§SYSNIX
is assigned the number 0106 for that macro
instruction. The numker 0106 is
substituted for §SYSNLCX when it is used in
statements 4 and 6. Statement 4 is used to

104 Part 3: Conditional Assemkly and Macrc Facilities

assign the character value 0106 to the SEIC
symbol ENLCXNUM. Statement 6 is used to
create the unique name B0106.

- ———

Cperation|Operand

1|A&SYSNDX
|
2|
3

[

| éNAME

i XNUM
4 | ENDXNUM Y SNDX *

| ENAME

asnt

I

5

6 | B&SYSNDX
|

B et s e T T PP —

| = OO &
[}
N

F*1000"

O = & 8 a8 OO =~ & o

- Nnuno &

P WORNDNNND W NN NN
o
[o]

0109
2,=F'1000°

o e e e e e e e e e e e e o
o2}

—— > o s s o

Statement S is the 107th macrc
instruction processed. Therefore, §SYSNDX
is assigned the number 0107 for that macro
instruction. The number 0107 is
substituted for §SYSNLX when it is used in
statements 1 and 3. The number 0106 is
substituted for the glokal SETC symbol
ENCXNUM in statement 2.

Statement 8 is the 108th macro
instruction processed. Therefore,each
occurrence of ESYSNLX is replaced by the
number 0108. For example, statement 6 is
used to create the unique name B0108.

When statement 5 is used to prccess the
108th macro instruction, statement 5
becomes the 109th macro instruction
processed. Therefore, each occurrence of
ESYSNDX is rerlaced by the number 0109.
For example, statement 1 is used to create
the unique name A0109.

§SYSECT--CURRENT CCNTIRCL SECTION

The system variable symbol &SYSECT may ke
used to represent the name of the ccntrcl
section in which a macro instruction
appears. For each inner and outer macro
instruction processed by the assemkler,
§SYSECT is assigned a value that is the
name 0f the contrcl section in which the
macro instructicn appears.

when §SYSECT is used in a macro
definition, the value substituted for
§SYSECT is the name of the last CSECT,
DSECT, or STIART statement that occurs
before the macro instruction. I1If no named
CSEC1T, DSECT, or START statements occur
before a macro instruction, &SYSECT is
assigned a null character value for that
macro instruction.

CSECT or DSECT statements processed in a
macro definition affect the value of
§SYSECT for any subsequent inner macro
instructions in that definition, and for
any other outer and inner macro
instructions.

Throughout the use of a macro
definition, the value of &SYSECT may ke
considered a constant, independent of any
CSECT or DSECT statements or inner macro
instructions in that definition. §&SYSECT
will take on the name of the last CSECT,
DSECI, or START statement regardless of
whether or not that statement is correct.

The next example illustrates these
rules.

Statement 8 is the last CSECT, LSECT, or
START statement processed before statement
9 is processed. Therefore, §SYSECT is
assigned the value MAINERCG for macro
instruction OUTER?1 in statement 9.

MAINPROG is substituted for §SYSECT when it
arrears in statement 6.

Statement 3 is the last CSECT, LSECI, or
STAR1T statement processed before statement
4 is processed. Therefore, ESYSECT is
assigned the value CSCUT1 for macro
instruction INNFR in statement 4. CSOUT1
is substituted for &SYSECT when it appears
in statement 2.

Statement 1 is used to generate a CSECT
statement for statement 4. This is the
last CSECT, DSECT, or START statement that
appears before statement 5. Therefore,
§SYSECT is assigned the value IN2 for macro
instruction INNER in statement 5. 1INA is
substituted for &§SYSECT when it appears in
statement 2.

Section 10: Additional Features 105

r T o T 1
|Name | Operation|Operand |
t e 1
| | MACRC |
| | INNER | EINCSECT |

1] §INCSECT | CSECT |
2] | DC | A (ESYSECT)
l | MEND | |
| I]]
| | MACRO |]
| | OUTER1 |
3|csouT1 | CSECT |
| | DS | 100C |
4 | INNER | INA |
5] | INNER | INB
6| | DC |A (§SYSECT)
| | MEND |]
! | i
| | MACRO |
| | OUTER2 |
7] | CC | A (§SYSECT) |
| | MEND | |
RS S it |
8 |[MAINPROG | CSECT | |
| | DS | 200C |
9] | OUTERT1 | |
10] | OUTER2 |]
--------- e 1
MAINPROG	CSECT	
	DS	200C
CSOUT1	CSECT]	
I	DS	100C
INA	CSECT	
	pC	A (CSOUT 1) !
INB	CSECT	
	DC	A (INA)
	DC	A (MAINPROG)
	DC	A (INB)
b . FI— -4

Statement 1 is used to generate a CSECT
statement for statement 5. 1This is the
last CSECT, DSECT, or START statement that
appears before statement 10. Therefcre,
ESYSECT is assigned the value INB for macro
instruction OUTER2 in statement 10. 1INR is
substituted for §SYSECT when it arpears in
statement 7.

§SYSLIST--ACCESSING POSITIONAL OPERANDS IN
A MACRO INSTRUCTION

The system variable symkol €SYSLIST
provides the programmer with an alternative
to symbolic parameters for referring to
rositional macro instruction operands.

6SYSLIST may be coded, along with all
other variable symbols (including symbolic
parameters), in the model statements of any
racrc definiticn. (In the Tape Operating
System (TOS), &SYSLIST cannot ke used in
macrc definitions having any keyword
symbolic parameters)., When used tc access
a macrc instructicn operand, €SYSLIST is
written with one or two sukscripts:

1. &SYSLIST (m) will access the pcsitional
macro instruction operand
corresponding to the positional
operand subscript m. The programmer,
therefore, does not have to define a
positional parameter in the macro
definition prototype statement.
allows him to access a different
number of positional macro instruction
operands in different calls to the
same macro. The positional operand
subscript m can be a self-defining
term or an absolute expression, kut
its value must be a rositive, whole
number within the range of the numker
of operands permitted in a macro
instruction.

This

Note: A null string will be generated in
rlace of &SYSLIST (m) if:

a. m=0

k. m is greater than the numker of
positional operands in the macro
instruction.

Cc. m accesses a specifically omitted
operand.

The model statement containing
§SYSLIST (m) will be flagged in error
if:

a. m is negative.

b. m is greater than 100 (for the L
Assembler) .

m is greater than 200 (for the F
Assemkler) .

2. §&SYSLIST (m,n) accesses elements cf
positional operand sublists in macro
instructions. The positional operand
subscript m fulfills the same function
as above, and is subjected to the same
restrictions. The positional operand
sublist subscript n refers to the
sublist element of the positional
crerand in a macro instruction
corresponding to m. Again positional
rarameters need not have been
previously defined in the macro
definition prototype statement.

Note: A null string will be generated in
place of €SYSIL1IST(m,n), m > 0 and otherwise
within its allowakle range, if:

a. n=0

b. n is greater than the number of
elements in the positional operand
suklist in the macro instruction.

c. n accesses a specifically omitted
orerand sublist element.

106 Part 3: Ccnditional Assembly and Macro Facilities

O

The type, length, scaling, integer, and
count attributes of ESYSLISTS (m) and
€SYSLIST (m,n) and the number attributes of
§SYSLIST (m) and €SYSLIST may be used in
conditional assembly instructions.
Attributes are discussed in Section 9 under
PMAttributes."

N*ESYSLIST refers to the total number of
positional operands in the macro
instruction statement. When none have been
called, N'ESYSLIST has the value 0. 1I1f,
however, some positional operands in the
macro instruction are specifically cmitted
(by means of commas), N'€SYSLIST will
include the omitted operands in its count
(see MAC2 and MAC3 in the examples below) .
A sublist is considered to be one operand
(see MAC3 below) :

r w 1
{Macro Instructions |IN*6§SYSLIST|
{MAC1 J|r 1
| K1=DS | 0

{ |

|MAC2: |

' "K1=DC l 2

[|

|MAC3: |

! FULL,,F,('1','2','3'),KL=DC1 4 |

N*ESYSLIST (m} refers to the total number
of elements in the macro instruction
operand sublist corresponding to the
positional operand sukscript m. If the mth
operand is omitted, N'6SYSLIST(m is O0; if
the mth operand is not a sublist,
N*&SYSLIST (m) is 1.

In the MAC3 macro instruction above:

N*€SYSLIST (4) is
N® §SYSLIST (5) is
N' §SYSLIST (2) is
N' §SYSLIST (1) is

- OO Ww

§SYSPARM - System Parameter for Conditional
Assembly

(COS Assembler D, 14K variant, only)

The system parameter ESYSPARM allows the
programmer to control conditional assembly
flow and source code generation through the
use of a parameter specified in a job
control statement. Thus, the programmer
can modify the output of an assembly
without changing the source code itself.
This can be convenient if an installation
keeps sections of source code on tape or in
a source statement library (SYSSLB).

The system parameter behaves like a
global SETC symbol except that its value
can be set only through the OPTION job
control statement. It cannot be modified
during assembly. &SYSPARM can be coded
inside as well as outside macro
definitions. §&SYSPARM can be used only if
SPARM=YES was specified in the STDJC macro
when the system was generated.

A value to the system parameter is
assigned with a keyword parameter in the
OPTION job control card:

// OPTION e+ ySYSPARM="string*,...

The system parameter will get the value of
the string within the quotes, which must be
a character string, 0 - 8 bytes long. It
may consist of any combination of EBCDIC
characters. A single quote in the string
must be represented by two on the OPTION
card. 1f no ESYSEARM value is specified,
the value of the system parameter will ke a
null string.

Keyword Macro Definitions and Instructions

Keyword macro definitions provide the
programmer with an alternate way of
preparing macro definitions.

A keyword macro definition enables a
programmer to reduce the number of operands
in each macro instruction that corresponds
to the definition, and to write the
operands in any order.

The macro instructions that correspond
to the macro definitions described in
Section 7 (hereinafter called positional
macro instructions and positional macro
definitions, respectively) require the
operands to be written in the same order as
the corresponding symbolic parameters in
the operand entry of the prototype
statement.

In a keyword macro definition, the
Frogrammer can assign values to any
symbolic parameters that appear in the
operand of the prototype statement. The
value assigned to a symbolic parameter is
substituted for the symbolic parameter, if
the programmer does not write anything in
the operand of the macro instruction to
correspond to the symbolic parameter.

When a keyword macro instruction is
written, the programmer need only write one
operand for each symbolic parameter whose
value he wants to change.

Keyword macro definitions are prepared
the same way as positional macro

Section 10: Additional Features 107

definitions, except that the prototyre
statement is written differently, and
§SYSLIST may not be used in the definition.
The rules for preparing positional macro
definitions are in Section 7.

KEYWORD PROTOTYPE

The typical form of this statement is:

T
|Name Operation|Operand

&N MOVE

——
e s b e 28

ER=2, EA=S, §T=, EF=

KEYWORD MACRO INSTRUCTION

After a programmer has prepared a keyword
macro definition he may use it by writing a
keyword macro instruction.

The typical form of a keyword macro
instruction is:

r T T 1
i Name | Operation|Operand |
ll' IL' % " r T L L)
|A symbolic | A symbol |[One to 100 (200 | | Name | Operation|Operand |
| parameter | |for F assembler) | b 4 + i
or not used]	operands of the		A symkol,	Mnemonic	Zero to 100 operands	
	{form described		sequence	operation	(200 for F Assembler)	
		below, separated		symbol	code	of the form descriked
		by commas.		or not		below, separated ky
L L L ¥ I
i |

Each operand must consist of a symbolic
parameter, immediately followed by an equal
sign and optionally followed by a value.
Nested keywords are not permitted.

A value that is part of an operand must
immediately follow the equal sign.

Anything that may be used as an operand
in a macro instruction except variable
symbols, may be used as a value in a
keyword prototype statement. The rules for
forming valid macro instruction operands
are detailed in Section 8.

The following are valid keyword
prototype operands.

EREADER=

§LOOP2=SYMBOL
ESU==F*'4096"

The following are invalid keyword
prototype operands.

CARDAREA (no symbolic parameter)
ETYPE (no equal sign)
ETWO =123 (equal sign does not

immediately fcllow
symbolic parameter)
(value does not
immediately follow equal
sign)

EAREA= X'189A°"

The following keyword prototype
statement contains a symbolic parameter in
the name entry and four operand entries in
the operand. Tho first two operand entries
contain values. The mnemonic operation
code is MOVE.

|used | commas
L L

]
1

Each operand consists of a keyword
immediately followed by an equal sign and
an optional value. Nested keywords are not
permitted. Anything that may be used as an
operand in a positional macro instruction
may be used as a value in a keywocrd macro
instruction. The rules for forming valid
positional macro instruction operands are
detailed in Section 8.

A keyword consists of one through seven
letters and digits, the first of which must
be a letter.

The keyword rart of each keyword macro
instruction operand must correspond to one
of the symbolic parameters that arrears in
the operand of the keyword prototype
statement. A keyword corresponds to a
symbolic parameter if the characters of the
keyword are identical to the characters of
the symbolic parameter that follow the
ampersand.

The following are valid keyword macro
instruction operands.

LOOP2=SYMBOL
St==F'4096"
TO=

The following are invalid keyword macro
instruction operands.
§X4F2=0 (2,3) (keyword does not Lkegin
with a letter)
(keyword is more than
seven characters)
(no keyword)

CARDAREA=A+2

= (TC (8) , (FRCM))

108 Part 3: Conditional Assembly and Macro Facilities

The operands in a keyword macro
instruction may be written in any order.
If an operand appeared in a keyword
prototype statement, a corresponding
operand does not have to appear in the
keyword macro instruction. If an operand
is omitted, the comma that would have
separated it from the next operand need not
be written.

The following rules are used to replace
the symbolic parameters in the statements
of a keyword macro definition.

1. If a symbolic parameter appears in the
name entry of the prototype statement,
and the name entry of the macro
instruction contains a symbol, the
symbolic parameter is replaced by the
symbol. If the name entry of the
macro instruction is unused or
contains a sequence symbol, the
symbolic parameter is replaced by a
null character value.

2. If a symbolic parameter appears in the
operand of the prototype statement,
and the macro instruction contains a
keyword that corresponds to the
symbolic parameter, the value assigned
to the keyword replaces the symbolic
parameter.

3. If a symbolic parameter was assigned a
value by a prototype statement, and
the macro instruction does not contain
a keyword that corresponds to the
symbolic parameter, the standard value
assigned to the symbolic parameter
replaces the symbolic parameter.
Otherwise, the symbolic parameter is
replaced by a null character value.

Note: 1If a symbolic parameter value is a
self-defining term the type attribute
assigned to the value is the letter N. 1If
a symbolic parameter value is omitted the
type attribute assigned to the value is
theletter 0. All other values are assigned
the type attribute U.

The following keyword macro definition,
keyword macro instruction, and generated
statements illustrate these rules.

Statement 1 assigns the values 2 and S
to the symbolic parameters &R and EA,
respectively. Statement 6 assigns the
values FA, FB, and THERE to the keywords T,
F, and A, respectively. The symbol HERE is
used in the name entry of statement 6.

Since a symbolic parameter (&€N) appears
in the name entry of the prototype
statement (statement 1), and the
corresponding characters (HERE) of the
macro instruction (statement 6) are a

symbol, &N is replaced by HERE in statement
2. .

T
Name |Operation|Operand
1
+
MACRO I
1| &N MOVE | $R=2,8R=5,&T=,EF=
2| &N ST | ER, EA |
3] L | €R, §F
4| | ST | R, ET
5j L | €R, €A
| | MEND | |
L 4 1 4
v v T 1
6 | HERE MOVE | T=FA,F=FB, A=THERE |
] 2
T h]
HERE ST | 2, THERE |
L |12,FB |
ST |2,FA |
L | 2, THERE |
L 3

Since &T appears in the operand of
statement 1, and statement 6 contains the
keyword (T) that corresponds to &T, the
value assigned to T (FA) replaces §&T in
statement 4. Similarly, FB and THERE
replace &F and §A in statement 3 and in
statements 2 and 5, respectively. Note
that the value assigned to &§A in statement
6 is used instead of the value assigned to
€A in statement 1.

Since &R appears in the operand of
statement 1, and statement 6 does not
contain a corresponding keyword, the value
assigned to &R (2) , replaces &R in
statements 2, 3, 4, and 5.

Operand Sublists. The value assigned to a
keyword and the value assigned to a
symbolic parameter may be an operand
sublist. Anything that may be used as an
operand sublist in a positional macro
instruction may be used as a value in a
keyword macro instruction and as a value in
a keyword prototype statement. The rules
for forming valid operand sublists are
detailed in Section 8 under "Operand
Sublists."

Keyword Inner Macro Instructions. Keyword
and positional inner macro instructions may
be used as model statements in either
keyword or positional macro definitions.

Mixed-Mode Macro Definitions and
Instructions

Mixed-mode macro definitions allow the
programmer to use the features of keyword

and positional macro definitions in the
same macro definition.

Section 10: Additional Features 109

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

Mixed-mode macro definitions are
prepared the same way as positional macro
definitions, except that the prototype
statement is written differently. (In TOS
SYSLIST may not be used in the definition.)
The rules for preparing positional macro
definitions are in Section 7.

MIXED-MODE PROTOTYPE

The typical form of this statement is:

L)
Name Operation|Operand

s .

L]
A symbolic A symbol |Two to 100 (200
parameter |for F assembler)

or not used |operands of the
| form described
|below, separated

|by commas
L

fon o e s . e e e e oy
o . e s s, s, e . e

Sy

The operands must be valid operands of
positional and keyword prototype
statements. All the positional operands
must precede the first keyword operand.
The rules for forming positional operands
are discussed in Section 7 under "Macro
Instruction Prototype.™ The rules for
forming keyword operands are discussed
under "Keyword Prototype."”

The following sample mixed-mode
prototype statement contains three
positional operands and two keyword
operands.

W Ll
Name |Operation|Operand
4 4

&N

o s s o
b s et e

L] T
| MOVE | €TY, EP, R, £TO=, §F=
i L

MIXED-MODE MACRO INSTRUCTION

The typical form of a mixed-mode macro
instruction is:

r) L
| Name |Operation]Operand
L 4 L

T T T
|A symbol, |Mnemonic |Zero to 100 operands
| sequence |operation| (200 for F Assembler)

b s, s s v, s, e s a0

| symbol | code |of the form described
Jor not | |below, separated by
|used | | commas

L i L

The operand consists of two parts. The
first part corresponds to the positional
prototype operands. This part of the
operand is written in the same way that the ~
operand entry of a positional macro
instruction is written. The rules for
writing positional macro instructions are
in Section 8.

The second part of the operand
corresponds to the keyword prototype
operands. This part of the operand is
written in the same way that the operand
entry of a keyword macro instruction is
written. The rules for writing keyword
macro instructions are described under
"Keyword Macro Instruction.®

The following mixed-mode macro
definition, mixed-mode macro instruction,
and generated statements illustrate these
facilities.

L] T
Name |Operation|Operand
4 L
L] T
| MACRO |
1| &N | MOVE |6TY,6P, &R, ETO=, EF= |
[N | STETY | R, SAVE |
LETY |€R, EPEF |
STETY | €R, EPETO | (/f\x
LETY | €R, SAVE
F + {
2|HERE |MOVE |H,,2,F=FB, TO=FA |
L 4 4
L 3 T 1
HERE |STH |2,SAVE |
|LH [2,FB |
| | STH |2,FA |
| |LH |2,SAVE |
L L L 4

The prototype statement (statement 1)
contains three positional operands (&TY,é&P,
and &R) and two keyword operands (§TO and
§F) . In the macro instruction (statement
2) the positional operands are written in
the same order as the positional operands
in the prototype statement (the second
operand is omitted). The keyword operands
are written in an order that is different
from the order of keyword operands in the
prototype statement.

Mixed-mode inner macro instructions may
be used as model statements in mixed-mode,
keyword, and positional macro definitions.
Keyword and positional inner macro
instructions may be used as model
statements in mixed-mode macro definitions.

110 Part 3: Conditional Assembly and Macro Facilities

Conditional Assembly Compatibility

Macro definitions prepared for use with the
other 1IBM System/360 Operating System
assenblers having macro language facilities
may be used with the DOS/TOS assembler
provided that all SET symbols are declared

in an appropriate LCLA, LCLB, LCLC, GBLA,
GBLB, or GBLC statement. The AIFB and AGOB
instructions are processed by the DOS/TOS
assembler the same way that the AIF and AGO
instructions are processed. AIFB and AGOCB
instructions cause the count set up by the
ACTR instruction to be decremented exactly
like the AGO and AIF instructions.

Section 10: Additional Features 111

Appendix A. Extended Binary Coded Decimal

Interchange Code (EBCDIC)

The following charts and the associated key
show the bit configurations of the 256
possible codes (characters) of the Extended
BCD Interchange Code. To write a given
character in binary, locate the character
on the chart. The top row of coordinates
equates to bit positions 0 and 1, the
second row to bit positions 2 and 3, and
the left row of coordinates equates to bit
positions 4, 5, 6 and 7.

Examples:
Character A equals:
top row--11 (bit positions 0, 1)

2nd row--00 (bit positions 2, 3)

left row--0001 (bit positions 4, 5, 6
and 7)

Therefore, character A is shown as:
1100 0001
Character $ equals:
top row--01 (bit positions 0, 1)
2nd row--01 (bit positions 2,. 3)

left row--1011 (bit positions 4, 5, 6
and 7)

112

Therefore, character $§ is shown as:
0101 1011

The coordinates on the bottom of the
chart are the three zone punches required
to reproduce the character in a punched
card; the coordinates on the right side
represent the numeric punches.

Examples:

Character A = bottom row--12 punch
right row--1 punch

Therefore, character A is shown by a 12
and a 1 punch in the same card column.

Character $§ = bottom row--11 punch
right row--8 and 3 punches

Therefore, character $ is shown by 11,
8, and 3 punches in the same card column.

There are fifteen exceptions to the
punching equated to bit positions. These
exceptions are shown in the chart by
circled numbers 1 through 15, and the
substituted punching is shown below the
chart under "“Exceptions."™

™
<

Bit Positions Bit Positions

0,1 0,1
Bit Positions Bit Positions
2,3 ,

ojerefelrorcieio DICITIE
- 0
3
SOS] / e || Al 1
~
3 FS . bk |s B | K|s |2
. -
- 29 1] cit|t]s ,
< g < i
£ PE | REs|BYP| PN e < dlmiv p|mlula 5
S o § =
8 HT INLLF |RS a = e |nlv EIN|V|S 2
o H a
& LC |85 [oB|uc o #lo|w Flolwl|s
@
DEL|1L | vRE [EOT s | p|x elr|x|7
hlaly HiQ|Y|s
i riz| ! {R|Z)|9

ey

Bit Positions 4, 5, 6, 7

e Zone Punches —————{
l‘——— Zone Punches ——’1
Bit Positions Bit Positions
0, 1 0,1
Bit Positions Bit Positions
2,3 2,3
~
i< "
[.§
& < 3
:E’ g 1 P:
a = 2
Q
&
a

Figure 1S.

Zone Punches

"——-—— Zone Punches ————-i

Q@ 12-0-9-8-1 () No Punches ® 12-0 @ o
@ 12-n1-9--1 ® n 1-0 @ n-0-94
® 11-0-9-8-1 @ n @ o-e-2 @ 12-n
@ 12-11-0-9-8-1 12-11-0 @ o

Extended Binary Coded Decimal Interchange Code (Part 1 of 2)

Appendix A:

EBCDIC

113

— g

Contrcl Characters

-—=a

PF Punch Off BS Backspace EN Funch On
| HT Horizcntal Tab IL 1dle RS Reader Stop
1c Lower Case BY Bypass uc Upper Case
DL Delete LF Line Feed ET End of Transmission
RE Restore EB End of Block SN Set Mode
NL New Line PR Prefix SE Space
DS Digit Select S0S Start of Significance FS Field Separator
Special Graphic Characters
¢ Cent Sign * Asterisk > Greater-than Sign
. Period, Decimal Point) Right Parenthesis ? Cuestion Mark |
|< Less-than Sign ; Semicolon ¢ Colon
| (Left Parenthesis - Logical NO1 # Number Sign
|+ Plus Sign - Minus Sign, Hyphen @ At Sign
| Vertical Bar, Logical OR / Slash ' Frime, Apostrophe
& Amgersand , Comma = Equal Sign
|! Exclamaticn Point % Percent * guotation Mark
$ Dcllar Sign _ Underscore
|
|
|
b ——————————— -
r T T
| | | Bit Pattern Hole Fattern
|Exanples | Type | Bit Positions - T -
| | [01 23 4567 Zone Punches ! Digit Punches |
L 4L iR 4 ¥ |
T T - ¥ T) |
| PF | Control Character | 00 00 0100 12-9-4 {
----------- $-- - -
] Special Graphic j 01 10 1100 0-8-4]
4
--es t ==~
| R | Upper Case | 11 01 1001 | 11-9 |
¢ O t 1 + —
| a | Lower Case | 10 00 0001 | 12-0-1 |
[L 1
f } etttk +- T -{
| | Control Character, | 00 11 0000 12-11-0-9-8-1 |
| | function not yet | | |
| | assigned] I }
t L -— 1 — X ——d
Figure 15. Extended Binary Coded Decimal Interchange Code (Fart 2 of 2)

114

O

Appendix B. Hexadecimal-Decimal Number Conversiori Table

The table in this appendix provides for
direct conversion of decimal and
hexadecimal numbers in these ranges:

] L)
| Hexadecimal |Decimal
L

b e dets e el

000 to FFF 0000 to 4095
L

Decimal numbers (0000-4095) are given
within the 5-part table. The first two
characters (high-order) of hexadecimal
numbers (000-FFF) are given in the lefthand
column of the table; the third character

(x) is arranged across the top of each part
of the table.

To find the decimal equivalent of the
hexadecimal number 0C9, look for 0C in the
left column, and across that row under the
column for x = 9 The decimal number is
0201. :

To convert from decimal to hexadecimal,
look up the decimal number within the table
and read the hexadecimal number by a
combination of the hex characters in the
left column, and the value for x at the top
of the column containing the decimal
number.

Appendix B:

For example, the decimal number 123 has
the hexadecimal equivalent of 07B; the
decimal number 1478 has the hexadecimal
equivalent of 5Cé6.

For numbers outside the range of the
table, add the following values to the
table

F X 1

| Hexadecimal |Decimal |

[l 1 ']

¥)]
1000 4096
2000 8192
3000 12288
4000 16384
5000 20480
6000 24576
7000 28672
8000 32768
9000 36864
A000 40960
B00O 45056
c000 49152
D000 53248
E000 57344
F000 61440

L 4L J

Hexadecimal-Decimal Number Conversion Table 115

0 1 2 3 4 S 6 7 8 9 A B [D E F
00x 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
01x 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02x 0032 0033 0034 0035 0036 0037 0038 0039 0040 O0OQu1 0042 0043 0044 0045 0046 0047
03x 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 Q06C 0061 Q0062 0063
04x 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
05x 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
06x 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
07x 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
08x 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
09x 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAx 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0Bx 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191
0Cx 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0Dx 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
O0Ex 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFx 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0257 0252 0253 0254 0255
10x 0256 0257 0258 025% 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
11x 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12x 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
13x 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
x 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0337 0332 0333 0334 0335
15x 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16x 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17x 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
18x 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 03% 0395 0396 0397 0398 0399
19x 0400 0401 0402 04D3 0404 O4OS 0406 0407 Q408 0409 0410 0411 0412 0413 0414 0415
1Ax 0416 0417 0418 041° 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1Bx 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 OU4U O4WS 0UU6 0447
1Cx 0448 0u49 0450 0451 0452 0453 0454 0455 0uS6 0457 0458 0459 0460 0461 0462 0463
1Dx 0464 0465 OU66 OUE7 0U68 0469 0470 0471 2472 0473 0474 0475 Q476 0477 0478 0479
1Ex 0480 0481 0482 0483 0484 0485 0486 OuUB7 0u88 0489 0490 04N 0492 0493 0494 0u9S
1Fx 0496 0437 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511
20x 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21x 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22x 0544 0585 OS546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23x 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
26x 0576 0577 0578 0579 0580 0581 0582 0583 0564 0585 0586 0587 0588 0589 0590 0591
25x 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26x 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27x 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
28x 0640 0641 0642 0643 0644 0685 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29x 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2Ax 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2Bx 0688 0689 0690 0691 0692 0693, 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2Cx 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 07% 0715 0716 0717 0718 0719
2Dx 0720 072% 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2Ex 0736 0737 0738 0739 0740 0741 0782 0743 Qw4 Q745 O746 0747 0748 0749 0750 0751
irx 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
30x 0768 0769 0770 0771 0772 0773 077% 0775 0776 0777 0778 0779 0780 0781 0782 0783
3ix 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 07% 0795 0796 0797 0798 0799
32x 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33x 0816 0817 08148 0819 0820 0827 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
34x 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 084S 0846 0847
35x 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36x 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 087¢ 0875 0876 0877 0878 0879
37x 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38x 0896 0897 0898 0893 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 09N
39x 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3Ax 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3Bx 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3Cx 0960 096! 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3Dx 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 099N
3Ex 0992 0993 099 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3rx 1008 1009 1010 11011 1012 1013 1018 1015 1016 1017 1018 1019 1020 1021 1022 1023

116

@

x= 0 1 2 3 4 5 6 7 8 9 A B [D E F
40x 1028 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1038
(33 1060 1061 1042 1043 1004 1085 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42x 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43x 1072 1073 107¢ 1075 1076 1077 1078 1079 7080 1081 1082 1083 1088 1085 1086 1087
4ax 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
4Sx 1104 1105 1106 1107 1108 1109 1110 111 M2 113 1M1 1115 1116 1117 1118 1119
46x 1120 1121 1122 1123 1126 1125 1126 127 1128 1129 1130 1131 1132 1133 1138 1135
47x 1136 1137 1138 1139 1180 1141 12 163 144 1145 1146 1147 1148 1149 1150 1151
48x 1152 1153 1158 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49x 1168 1169 170 1N 1172 1173 1174 178 1176 1177 1178 179 1180 1181 1182 1183
4Ax 1186 1185 1186 1187 1188 1189 1130 1191 1192 1193 1194 1195 1196 1197 1198 1199
4Bx 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 2zn 1212 1213 1214 1215
4Cx 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4Dx 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
[1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4rx 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
50x 1280 1281 1282 1283 1288 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
5ix 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 13N
52x 1312 1313 1314 1315 1316 1317 1318 1319 1320 1320 1322 1323 1324 1325 1326 1327
53x 1328 1329 1330 1331 1332 1333 133¢ 1335 1336 1337 1338 1339 1340 1341 1342 1343
(3% 1348 1385 1346 1347 1348 13649 1350 1351 1352 1383 1354 1355 1356 1357 1358 1359
133 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56x 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57x 1392 1393 1398 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58x 1408 1409 1410 1411 1412 1413 1414 1615 . 1416 1417 1418 1419 1420 1421 1422 1423
59x 16424 1425 1426 1427 1428 1429 16430 131 1432 1433 1434 1435 1436 1437 1438 1439
SAx 1840 1481 1842 1443 1448 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
SBx 1456 1457 wss 1859 1460 161 1462 1463 1464 1465 1466 1467 1468 1469 1470 wn
5Cx 1872 w3 Wi 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
Spx 1488 1489 1490 1691 1492 1493 1498 1495 w96 1497 1498 1499 1500 1501 1502 1503
SEx 1508 1505 1506 1507 1508. 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
SPx 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
60x 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61x 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62x 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63x 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
64x 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65x 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66x 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67x 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
68x 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69x 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6Ax 1696 1697 1698 1699 1700 1701 1702 1703 17046 1705 1706 1707 1708 1709 1710 171
6Bx 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6Cx 1728 1729 1730 1734 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6Dx 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6Ex | 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1M 1772 1773 1774 1775
6Fx 1776 117N 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
T0x 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
Tix 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
12x 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73x 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
Tax 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75% 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76x 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
Tx 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
78x 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79x 1936 1937 1938 1939 1940 1941 1942 1943 194y 1945 1946 1947 1948 1949 1950 1951
TAx 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7Bx 1968 1969 1970 1IN 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7Cx 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7Dx 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
TEx 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 203
Trx 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

Appendix B:

Hexadecimal-Decimal

Numbexr Conversion Table

17

4] 1 2 3 4 5 6 7 8 9 A B C D E F
80x 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81x 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82x 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
33x 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
84x 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85x 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86x 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87x 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
88x 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89x 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2296 2207
8Ax 2208 2209 2210 22n1 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8Bx 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8Cx 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8Dx 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 227
8Ex 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8Fx 2288 2289 2290 2291 2292 2293 2294 229% 2296 2297 2298 2299 2300 2301 2302 2303
90x 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91x 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92x 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93x 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
9Ux 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95x 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96x 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 24Mm 2412 2413 2414 2415
97x 2416 2417 2418 2419 2420 2421 2422 26423 2424 2425 2626 2427 2428 2429 2430 2431
98x 2432 2433 2434 2435 2436 2037 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99x 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9Ax 2464 2465 2066 2067 2468 2069 2470 24M 2472 2473 2074 2475 2476 2477 2478 2479
9Bx 2480 2u81 2482 2483 2484 2u85 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9Cx 2496 2497 2698 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9Dx 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9Ex 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9Fx 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 |
A0x 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Alx 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2x 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3x 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
Alx 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 263§
AS5x 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6x 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7x 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8x 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2760 2701 2702 2703
A9x 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAx 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 - 2734 2735
ABx 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACx 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 276t 2765 2766 2767
ADx 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEX 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFx 2800 2801 2802 2803 2804 2805 280¢ 2807 2808 2803 2810 281 2812 2813 2814 2815
BOx 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
Bix 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2x 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3x 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2679
Blx 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
BSx 2896 2897 2898 2899 2900 2901 2902 2903 2904 29305 2906 2907 2908 2909 2910 29
B6x 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7x 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8x 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
BIx 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 297s 2975
BAXx 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBx 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BCx 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDx 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEx 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFx 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 307

118

x= 0 1 2 3 4 5 6 7 8 9 A B c) E F
cox 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 sus> 3086 3087
Cix 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
c2x 3108 3105 3106 3107 3108 3109 3110 3333 3112 3113 314 3115 3116 3117 3118 3119
C3x 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
cux 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5% 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
Céx 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
CTx 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
csx 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
c9x 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
cax 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 32642 3243 3244 3245 3246 3247
CBx 3288 3209 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
ccx 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
cDx 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEx 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFx 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
DOx 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
Dix 3344 3345 3346 3347 3368 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2x 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3x 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
Dux 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5x 3808 3409 3410 3411 3412 3613 3814 3815 3416 3417 3418 3019 3620 3421 3422 3423
Déx 3820 3425 3426 3427 3428 3829 3430 3431 3432 3433 3034 3435 3436 3437 3438 3439
DTx 3040 3641 3462 3443 3046 3045 3446 3447 - 3648 3449 3450 3451 3852 3453 3454 3455
D8x 3856 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D9x 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3082 3483 3484 3485 3486 3487
DAX 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBx 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DCx 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDx 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3548 3550 3551
DEx 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFx 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
EOx 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
Elx 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2x 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3x 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
Elx 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
ESx 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6x 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7x 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8x 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9x 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAx 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBX 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
ECx 3776 3777 3778 3779 3780 3781 3782 3783 3784. 3785 3786 3787 3788 3789 3790 3791
EDx 3792 3793 379¢ 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEx 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFx 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
FOx 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3352 3853 3854 3855
Fix 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3863 3870 3471
F2x 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3x 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
Flix 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5x 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6x 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3943 3950 3951
FTx 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8x 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3962 3983
FIx 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAx 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBx 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FCx 4032 4033 4034 4035 4036 4037 4038 4039 4O40 4041 HO42 4043 LO44 4O45 4LO46 4OWT
FDx 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 |
FEX 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FPx 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 409G 4095

Appendix B:

Hexadecimal-Decimal Number Conversion Table

119

Appendix C. Machine Instruction Format

o

| AFFLICAELE INSTRUCTIONS

T
|
4
T

ASSEMBLER CFERAND
FIELD FORMAT

b -

BASIC MACHINE FORMAT

|9}
>
%2}
il
[~
=3
o]
w0~
S
o0&
=R %]
N
FE
(201
[O]
o
g 4
Mo,
[}
~ 0 23 & O
~ X 194 Ry >
< m 1] 1]
o
je]
[=1
a
-
o]
-
O
-
-
172}
(]
o
0]
=
N
4 N [
24 @
~ [12}
- - - -
© = ~ H
 utenaiambeunts BN deanduiandepnts BN dndesshende TN S nnbandie |
N l} N ! |
= [24 | = Mmoo [} 1
R e B et I «© [I |
- 1 Aol | - | !
= 24 [=11 = [+ }]
F———d b= b b ——
=] =} 1 =1] =] [
[¢] | (o] [o} 1 ¢} |
~ D | wt O F -~ Q! - Q|
Pgold P Py P3|
©m- O lomO | 1©mO | © @O |
N O | MO 1 HO | NO
[i @ [[}] [1
Q 1 &7 [] o] [Q [}
o | Q (] o | o 1
L e e AL T R S]
24
23

0
=
o}
o
i)
Q
=]
M
n
g0
o~ M
P
Mo
[]
- O
=] Q
[S] 28]
e St s e S e W W—— —— S— So—
-
(=}
Lo}
S
L]
-
«©
-
[te)
m -
-
— .
N m 2}
A -~ S~ [
N o NN o
K X MmN Q
ICT A GO
-
NANNN NANNN QO
[aNaROG RO AMaoann g
TSN NN [N 7]
—— [t adh ndh il
[« -1 ZEZE
e e e S S e . S St S e e
oy e e
EERE ~1
[Bad [a] | N [a Ry
| o—eme—al T e——
[N | N
= 2] 1= =< I}
e e e e e e e
N | o~
= b I = > |
po mm e e e e f
- } - |
E ~ | = |
b e o e e
=} i =} |
[e] ' (o] |
o~ @ | o~ QO |
[} t..m i L9
© o o mO |
N O i HNO |
Q | @ [
jon [} o |
(o] | o |
e —— b ————)
e e e e e e e S e e e S
o]
~
S S ——

12}
g =]
=1 (¢}
i Z
A 13
- =
= N
[4
1%2] 1]
= a 3
= 9]
o~ + .~
o L2 2
3 Bal O
< =} [
o3 2] 1]
.~ -
=0 - 2
o 4 - Q
[R] < =~
-
@
-
~
~
[32]
J
-
—— —
(%) N 12}
2] m (]
-~ o~ N
o N N NN QO
[Q%] 2] (2R -2
[SEEN - - . [=))
™M m NN cMmm Qe
[~ Aawn X 0T
- - -~ = ~ lsm
- - -
0 R R
o e o ey o ———— e ———
8§ &1 8 87 w1
- a il | - Qtl i~ (=]
o e e e o] b e —
N [} N N
= m [m g m
e s P——e— pe———
(a2}] [3p]
=+ 1 * =
e e e e e e—] o ——]
- | - -
E 4 [| = 24 = ~
e e e e o ”..lalll o o e]
] =] =
e} [} o} @]
- Q | ~ O -~ QO
+ g [} + ‘m @ 4 .m
o m O f©o® 0]
MO] O O
V] | [o
Q4 | 2 o]
o] | o o
o e s e [SR N S

120

r] k| 1
| | ASSEMBLER OPERAND | |
| BASIC MACHINE FORMAT | FIELD FORMAT |APPLICABLE INSTRUCTIONS |
b=-r t 1 1
I 1r T T=-T-7 | i i
| 11 8 | 8 |4 |12] | |All SI instructions |
| | |Operation] | 1 1 |D1(B1),12 |except those listed]

] Code | 12 |B1|D1] s1,12 for other S1 formats]

L L i N §) l
[sI] l |

R D |

|Operation| 1 1 1 D1(B1) LPSW,SSM,T10,TCH l

| Code | |B1|D1} S1 TS t

L L &4 j | l

v T L) 1 l

| 16 14 112} |

| Two-byte [| D1(B1) 5CK, STCK, STIDP,STIDC, |

|Operation Code |B1|D1| s1 S10, SIOF, HI1IO, HDV |
| 1 ¢ Lowlod | (See Notes 2, 3, 6, | |
1 | and 10) | |
L 4 L 4. J
L) R) Ll T 1
| | T W Al L R LS L] I I l
I 8 |4 [4 (4 [12]64 [12] | | [
| | |operation| | | | | | |D1@©1,B1) ,D2 (L2,B2) | PACK, UNPK, MVO, AP, |
1 11 Code |(L1|L2|B1|D1}|B2|D2] |S1@L1,S2L2) |Cp,DP,MP,SP, ZAP |
l I | I L 1 L L L § I | I I
|Ss] | |
l r T Tr="7r="T l |
LIl 8 | 8 |4 [12]4 |12 | |
	Operation	[I D1(@E,B1) ,D2 (B2)	NC, OC, XC,CLC,MVC ,MVN,						
	Code	L	B1	D1	B2	D2]	S1(L),S2	{MVZ, TR, TRT, ED, EDMK	
L L	(See Notes 2, 3, 5, and)								
r T T									
	8 . {4	4	4	12	4)12	{D1@1,BY) ,D2(B2),13			
	Operation{						{s1@1),52,13	SRP	
{ Code	L1	13	B1	D1	B2	D2		S1,52,13	
	t e —— (See Notes 2, 3, S, 6, 7,								
1 and 10) [
N i J									

Appendix C: Machine Instruction Format 121

Notes for Appendix C.

1.

10.

122

R1, R2, and R3 are absolute expressions that specify general or floating-point
registers. The general register numbers are 0 through 15; floating-point register
numbers are 0, 2, 4, and 6.

D1 and D2 are absolute expressions that specify displacements. A value of 0-4095
may be specified.

B1 and B2 are absolute expressions that specify base registers. Register numbers
0-15.

X2 is an absolute expression that specifies an index register. Register numbers
are 0-15.

L, L1, and L2 are absolute expressions that specify field lengths. BAn L expression
can specify a value of 1-256. L1 and L2 expressions can specify a value of 1-16.
In all cases, the assembled value will be one less than the specified wvalue.

I, 12, and 13 are absolute expressions that provide immediate data. The value of 1
and 12 may be 0-255. The value of 13 may be 0-9.

S1 and S2 are absolute or relocatable expressions that specify an address.

RR, RS, and S1 instruction fields that are blank under BASIC MACHINE FORMAT are_not
examined during instruction execution. The fields are not written in the symbolic
operand, but are assembled as binary zeros.

M1 and M3 specify a U-bit mask.

In IBM System/370 the HIO, HDV, S10, and SIOF operation codes occupy one byte and

the low order bit of the second byte. 1n all other systems the HIO and SIO
operation codes occupy only the first byte of the instruction.

Appendix D. Machine Instruction Mnemonic Operation Codes

Figure 14 lists all machine operation codes
and their associated assembler instructions
and mnemonics in operation code order.

Figure 16 contains the mnemonic
operation codes for all machine
instructions that can be represented in
assembler language, including extended
mnemonic operation codes. 1t is in
alphabetic order by instruction. Indicated
for each instruction are both the mnemonic
and machine operation codes, explicit and
implicit operand formats, program
interruptions possible, and condition code
set.

The column headings in this appendix and
the information each column provides
follow.

Instructions. This column contains the
name of the instruction associated with the
mnemonic operation code.

Mnemonic Operation_ Code. This column gives
the mnemonic operation code for the Machine
instruction. This is written in the
operation field when coding the
instruction.

Machine Operation Code. This column
contains the hexadecimal equivalent of the
actual machine operation code. The
operation code will appear in this form in
most storage dumps and when displayed on
the system control panel. For extended
mnemonics, this column also contains the
mnemonic code of the instruction from which
the extended mnemonic is derived.

Operand Format. This column shows the
symbolic format of the operand field in
both explicit and implicit form. For both
forms, R1, R2, and R3 indicate general

Appendix D:

registers in operands one, two, and three
respectively. X2 indicates a general
register used as an index register in the
second operand. Instructions which require
an index register (X2) but are not to be
indexed are shown with a 0 replacing X2.
L, L1, and 12 indicate lengths for either
operand, operand one, and operand two
respectively. M1 and M3 indicate four bit
masks in operands one and three. 1, 12,
and I3 indicate immediate data eight bits
long (I and I2), or four bits long (13).

For the explicit format, D1 and D2
indicate a displacement and B1 and B2
indicate a base register for operands one
and two.

For the implicit format, D1, B1, aid D2,
B2 are replaced by S1 and S2 which indicate
a storage address in operands one and two.

Type of Instruction. This column gives the
basic machine format of the instruction
(RR, RX, SI, or SS). 1f an instruction is
included in a special feature or is an
extended mnemonic, this is also indicated.

Program Interruptions Possible. This

column indicates the possible program
interrupts for this instruction. The
abbreviations used are: A-Addressing,
S-Specification, Ov-Overflow, P-Protection,
Op-Operation (if feature is not installed)
and Other-other interruptions which are
listed. The type of overflow is indicated
by: D-Decimal, E-Exponent, or F-Fixed
Point.

Condition Code Set. The condition set as a
result of this instruction is indicated in
this column. (See legend following the
figure.)

Machine Instruction Mnemonic Operation Codes 123

[RR Format
LB L] T
Operation { | |
Code | Name ! Mnemonic Remarks !
+ -1 {
00 | | I
01 |
02 |
{03 [|
« 04 Set Program Mask SPM
,l 05 ‘Branch and Link BALR |
06 Branch on Count BCTR |
07 Branch on Condition BCR
08 Set Storage Key SSK
09 Insert Storage Key ISK
0A Supervisor Call SvC
0B
ocC |
0D
OE Move Long MVCL System/370
only
OF Compare Logical Long CLCL System/370|
only |
10 Load Positive LPR |
1" Load Negative LNR
12 Load and Test LTR
13 Load Complement | ICR
14 AND NR
15 Compare Logical CLR
16 OR OR
17 Exclusive OR XR
18 Load LR
19 Compa re : CR
1A Add AR
1B Subtract SR
1Cc Multiply MR
1D Divide DR
1E Add Logical ALR
1F Subtract Logical SLR
20 Load Positive (Long) LPDR
21 Load Negative (L.ong) LNDR
22 Load and Test (Long) LTDR
23 Load Complement (Long) | LCDR |
24 Halve (Long) | HDR |
25 | Load Rounded (Extended to Long) LRDR 85,135,
System/370
26 Multiply (Extended) MXR 85,195,
System/370|
27 Multiply (Long to Extended) MXDR 85,195
System/370
28 Load (Long) LDR
29 Compare (Long) CDR |
2A Add Normalized (Long) ADR |
2B Subtract Normalized SDR |
2C Multiply (Long) MDR
2D Divide (Long) DDR
2E Add Unnormalized (Long) AWR
2F Subtract Unnormalized (Long) SWR
30 Load Positive (Short) LPLR
31 Load Negative (Short) LNER |
32 | Load and Test (Short) | LTER | |
33 | Load Complement (Short) | LCER |]
L 4 Lo 1 s
Figure 16. List of Machine Instructions by Operation Code (Part 1 of 5)

124

O

r 1

| RR Format |

t : T T T -4

{ Operation | ! ! !

| Code | Name | Mnemonic | Remarks

b + + 1

| 34 | Halve (Short) { HER |

| 35 | Load Rounded (Long to Short) | LRER | 85,195,

| | | | System/370

| 36 | Add Normalized (Extended) | AXR | 85,195,

| | | | System/370

| 37 { Subtract Normalized (Extended) | SXR | 85,195,

| | | | System/370]

| 38 | Load (Short) | LER |

| 39 | Compare (Short) | CER |

{ 3a | Add Normalized (Short) | AER | |

| 3B | Subtract Normalized (Short) | SER | |

| 3C | Multiply (Short) | MER | |

| 3D | Divide (Short) | DER] |

| 3E | Add Unnormalized (Short) { AUR | |

| 3F | Subtract Unnormalized (Short) | SUR | |

b t 1 1 {

| RX Format | | | |

[4 4 4 4

v T Nl L 1

| 40 | Store Halfword | STH | |

| 41 | Load Address | 1A | |

| 42 | Store Charater | STC | |

| 43 | Insert Character | IC] |

| 44 | Execute | EX | |

| 45 | Branch and Link | BAL | [

| 46 | Branch on Count | BCT | |

| 47 | Branch on Condition | BC 1 |

| u8 | Load Halfword | LH l]

| 49 | Compare Halfword | CH | |

| 4A | Add Halfword AH |

| 4B | Subtract Halfword SH |

| u4C Multiply Halfword MH |
4D I !
4E Convert to Decimal CVD |
ur Convert to Binary CVB |

| 50 | Store | ST | |

| 31 | | I

| 52 | |
53 | I
54 AND | N I
55 Compare Logical CL |

| 56 | OR o |

| 57 | Exclusive OR X

| 58 | Load L

| 59 | Compare C

| 5a | aaa A

| 5B | Subtract S

| 5C | Multiply M |

| 5D | Divide D |

| 5E | Add Logical AL {

| 5F | Subtract Logical SL | |

| | | |

I | | |

| 60 | Store (Long) STD |

| 6] | |

| 62 I |

| 63 | | |

| 64 | | |

| 65 | ! |

L L 4 L J

Figure 16. List of Machine Instructions by Operation Code (Part 2 of 5)

Appendix D: Machine Instruction Mnemonic Operation Codes 125

r 1
| RX Format |
:' q T T ‘:
| Operation | | | |
| Code | Name | Mnemonic { Remarks |
i $ 1- 1 {
| 66 x . | | l
67 Multiply (Long to Extended) | MXD | 85,195, |
| | System/370]
68 Load (Long) | LD | |
69 Compare (Long)	CD	
6A Add Normalized (Long)	AD	
6B Subtract Normalized (Long)	SD]	
6C Multiply (Long)	MD	
6D Divide (Long)	DD l	
6E Add Unnormalized (Long)	AW	i
6F	Subtract Unnormalized (Long) [SW	
! !		
V !		
70 Store (Short)	STE	
[71 [1 n		
72 1 [
73 [l	
74 [l 1 1		
75	I	[
76 [I |
77 | | l
78 Load (Short) | LE | |
79 Compare (Short) | CE | |
7a Add Normalized (Short) | AE | |
7B Subtract Normalized (Short) | SE | |
7C Multiply (Short) | ME ! |
7D Divide (Short) | DE | |
7E Add Unnormalized (Short) | AU] |
1F | Subtract Unnormalized (Short) | SU | |
+ -= - 1 {
RS,SI Format| | | I
$ - 1 1 |
80 | Set System Mask | SsM |
| 81 | | [
| 82 | Load PSW | LPSW |
83 | Diagnose | |
84 | Write Direct | WRD |
85 Read Direct | RDD] |
86 Branch on Index High | BXH |
87 Branch on Index Low or Equal | BXLE |
88 Shift Right Singie Logical | SRL l |
89 Shift Left Single Logical | SLL |]
8a Shift Right Single | SRA | |
| 8B Shift Left Single ! SIa | | |
| 8C Shift Right Double Logical | SRDL | |
| 8D Shift Left Double Logical | SLDL | |
8E Shift Right Double | SRDA | |
8F Shift Left Double | SLDA | |
[| | | |
90 Store Multiple | STM |
91 Test under Mask | T™ |
92 | Move (Immediate) | Mvi |
93 Test and Set | TS |
94 AND (Immediate) i NI |
95 Compare Logical (Immediate) | CLI |
95 OR (Immediate) | o1 |]
97 Exclusive OR (Immediate) | XI |
| 98 Load Multiple | 1M |
99 | | !
9A |] [
9B |] |
4 N S o -)

Figure 16. List of Machine Instructions by Operation Code (Part 3 of 5)

126

O

RS, SI Format |

e

Operation

Code Name Mnemonic Remarks |

-—--{
See Note 2

Start 1/0, Start 1/0 Fast Release SI10,SIOF
Test 1/0 TI1C
9E Halt I,/0, Halt Cevice HIC,HLV
9F Test Channel TCH

——te e
JRENSE Sp—

See Note 1}

| AF Monitor Call NC System/370

only

B2 (First byte of two-byte operation codes) See Note 3

Store Control STCTL System/370
only
System/370

only

Load Control LCTL

—— — T i ot — — —- T —— s T — — — — — — ——— —

BD Compare Logical Characters

under Mask CLM System/370]
only

System/370|
only |
System/370]

only

BE Store Characters under Mask STCM

Insert Characters under Mask ICcM

SS Format

s e v e e o et o s . . e, i Sl e s . . et S iy S S S — — A T S T — — —— — — — — —— —— — —— — f— — — — — s S S ot

o]
[+]
e o e s i o . o i o . o o B o R S S G S . S . P S S o S — e, A, o o, e

e o e e e s . e
s s e man ol e

[e e o et At e . S S S i S S T S T e P e e e . o e S

| |
cc | |

L 1 i

e e

Figure 16. List of Machine Instructions by Operation Code (Fart 4 of 5)

Appendix D: Machine Instruction Mnemonic Operation Codes 127

SS Format

Operation
Code

Name

Mnemonic

Remarks

A T o S —

cD
CE
CF
DO
D1
D2
D3
DU
DS
D6
D7
D8
DS
DA
DB
DC
| DD
| DE
DF

EO
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EF

FO

,___._
B

— e e o

|
|
|
I
J &

Move Numerics
Move (Characters)
Move Zones

AND (Characters)

Compare Logical (Characters)

OR (Characters)

Exclusive OR (Characters)

Translate
Translate and Test
Edit

Edit and Mark

Shift and Round Decimal

Move with Offset
Pack
Unpack

Zero and Add Decimal
Compare Decimal

Add Decimal
Subtract Decimal
Multiply Decimal
Divide Decimal

P S

r——.-.._._.._._....-.._—.____.__._._..._-—

MVN

Mvz
NC
CLC
ocC
XC

TR
TRT
ED
EDMK

SRP

MVO
PACK
UNPK

e e e e s . . e . i . . St e i S, S At e e S S . e, e, o e, e

o e, e s s i Sl S s St S Sl e S e o Ao e S S B

System/370

only

— — . i o—— i c—)

— — ———

Figure 16.

List of Machine Instructions

Note 1: On the Model 195 and Systemy/370
Halt Device and Halt I/O are as follows:

128

by Operation Code (Part 5 of 5)

machines, the machine operations for

L s _-—-1 .
i 1001 1110 XXXX XXXO0 | Halt 1,/0 HIO

P}
r~— === Dkt |
| 1001 1110 XXXX XXX1 | Halt Device HDV
L

—— -

(X denotes an ignored bit position)

Oon other System/360 machines the Halt 1,/0 operation code is:

r —v-
| 1001 1110 XXXX XXXX |
J

L

The Halt Device instruction does not exist under this system; the second byte is
completely ignored.

Note 2: Under the System/370 architecture the machine operations for Start 1/0 and
Start 1/0 Fast Release are as follows:

-
1001 1100 XXXX XXX0 | Start 1/0 SIO
-1

= o -

r
| 1001 1100 XXXX XXX1 | Start 1/0 Fast Release SIOF

t ———— ——

(X denotes an ignored bit position)

Under System/360 the Start 1,/0 code is:

————

r
| 1001 1100 XXXX XXXX |

L —_——

The Start I/0 Fast Release instruction does not exist under this system. The second
byte is completely ignored.

Note_3: The following operation codes occupy two bytes of Si-type instructions. They

can be used on System/370 machines only.

[} T - I - 1
| Operation | | 1
| Code - Name | Mnemonic |
b t R

| B202 | Store CPU 1D | STiDP 1
B203	Store Channel 1D	STIDC
B204	Set Clock	SCK
B20S	Store Clock	STCK
L L - —— _— 1

The special Model 85, Model 195, and Systemy/370 instructions are supported only by the

DOS Assembler D, 14K variant.

Appendix D: Machine Instruction Mnemonic Operation Codes

129

r T T v T T T T T T T T T T T T
] |Mnemonic |Machine | Operand Format |
| |Operation|Operation|

| Instruction | Code | Code | Explicit Implicit |
! -+ b + -- T mmmmmmmmmm—m e
|add |A {5A IR1,D2 (X2,B2) or R1,D2{(,B2) |R1,S2 (X2} or R1 ,821
|add | AR | 1A |[R1,R2

|Add Decimal | AP FA |p1 1,81 ,D2 (L2,B2) |S1(L1),S2(L2) or |
| | | 1s1,82

|add Halfword | AH 4a |R1,D2 (X2,B2)or R1,D2(,B2) |[R1,S2 (X2)or R1,52 {
|Add Logical | AL | 5E |R1,D2 (X2,B2) or R1,D2 (,B2) |F1,S2(X2) or R1,52]
I I | | ! |
I I | | | |
|Add Logical | ALR 1E |IR1,R2 | |
|Add Normalized, | |] 1
| Extended | AXR | 36 |R1,R2 | |
|Add Normalized,Long |AD | 6A |R1,D2 (X2,B2)or R1,D2 (,B2) |[R1,S2(X2)or R1,S2 |
|Add Normalized,Long |ADR |2a |R1,R2 |]
jAdd Normalized,Short |[AE | 7A |R1,D2 (X2,B2) or R1,D2 (,B2) |R1,S2(X2)or R1,S2 |
|Add Normalized,Short |AER | 3A |R1,R2] |
I | | |

|Add Unnormalized,Long|AW | 6E |R1,D2 (X2,B2) or R1,D2 (,B2) §R1,SZ(X2)or R1,S82 }
Add Unnormalized,Long	AWR	2E	R1,R2	
Add Unnormalized,]]			
Short	AU	7E	R1,D2 (X2,B2)or R1,D2(,B2)]R1,S2 (X2)or R1,S2	
Add Unnormalized,				
Short	AUR	3E	IR1,R2 I	
And Logical	N 54	R1,D2 (X2,B2) or R1,D2(,B2)	R1,S2 (X2)or R1,52	
I I			I	
And Logical	NC	D4	D1(L,B1) ,D2 (B2)	s1(L) ,S2 or S1,S2
And Logical	NR	14	R1,R2]	
And Logical Immediate	NI	94 {p1(81) ,12 151,12		
Branch and Link	BAL	45	R1,D2 (X2,B2) or R1,D2 (,B2)	R1,S2 (X2)or R1,S2
Branch and Link	BALR {05	R1,R2		
Branch on Condition	BC {u7 }M1,D2(X2,BZ) or M1,D2(,B2)}M1,52,(X2) or }			
	[[M1,52 [
Branch on Condition	BCR 07	M1,R2 !		
Branch on Count BCT 46	R1,D2 (X2,B2)or R1,D2 (,B2)	R1,S2 (X2)or R1,S2		
Branch on Count BCTR 06	R1,R2]			
Branch on Equal	BE	47 (BC 8	D2(X2,B2)or D2 (,B2) 1S2 (X2) or S2	
Branch on High	BH	47 (BC 2)	D2(X2,B2)or D2(,B2) [S2 (X2) or S2	
Branch en Index High	BXH 86	R1,R3,D2 (B2)	R1,R3,52]	
Branch on Index Low				
Jor Equal BXLE 87	R1,R3,D2 (B2)	R1,R3,S2]		
Branch on Low	BL j47(BC 4)	D2{X2,B2jor D2{,BZj Sz (X2) or Sz i		
Branch if Mixed	BM	47 (BC 4)	D2 (X2,B2)or D2 (,B2)]SS2 (X2) or S2	
		I ! I		
Branch on Minus	BM	47 (BC 4)	D2(X2,B2)or D2 (,B2)	S2 (X2) or S2
Branch on Not Equal	BNE	47 (BC 7)	D2(X2,B2)or D2(,B2)	S2 (X2) or S2
Branch on Not High	BNH	47 (8C 13)	D2 (X2,B2) oxr D2 (,B2)	S2(X2) or S2
Branch on Not Low	BNL	47 (BC 11)	D2 (X2,B2) or D2 (,B2)	S2(X2) or S2]
Branch on Not Minus	BNM	47 (BC 11)	D2 (X2,B2) or D2 (,B2)	S2 (X2) or S2
L L L L Al J

Figure 17. Machine Instruction Summary (Part 1 of 14)

o

r LS £} T |
| Mnemonic |Machine | Operand Format |
| Operation|Operation | |
{Instruction Cede {Code | Explicit Implicit |
|.__._ L i 1 3
|Branch on Not Ones | BNO |47 (BC 14) |D2 (X2,B2)or D2 (,B2) 152 (x2) or s2 1
Branch on Not Plus	BNP	47 (BC 13)	D2 (X2,B2)or D2 (,B2) 1S2 (X2) or S2
Branch on Not Zeros BNZ	47(BC 7)	D2(X2,B2)or D2 (,B2) 1S2 (X2) or S2	
Branch if Ones BO	47 (BC 1)	D2(X2,B2)or D2 (,B2)	S2 (X2) or S2
Branch on Overflow BO	47 (BC 1)	D2(X2,B2)or D2 (,B2)	S2 (X2) or S2
Branch on Plus BP 47 (BC 2)	D2 (X2,B2) or D2 (, B2) S2 (X2) or S2		
Branch if Zeros BZ 47 (BC 8)	D2(X2,B2)or D2 (,B2) S2(X2) or S2		
Branch on Zero BZ 47 (BC 8) {D2 (X2,B2) or D2 (,B2) S2(X2) or S2			
Branch Unconditional	B 47 (BC 15)	D2 (X2,B2)or D2 (,B2) S2(X2) or S2	
Branch Unconditional	BR 07 (BCR 15) {R2		
_			
Compare Algebraic C 59	R1,D2 (X2,B2) or R%1,D2(,B2)	R1,S2 (X2) or R1,S2	
Compare Algebraic	CR	19	R1,R2
Compare Decimal	cp	F9	p1 @1,B1) ,D2 (L2,B2) s1(L1) ,S2(L2) or
[1 [l	S1,S2		
Compare Halfword	CH	49	R1,D2 (X2,B2) or R1,D2 (,B2)
Compare Logical	CL	55	R1,D2 (X2,B2) or R1,D2 (,B2)
	I		
Compare Logical	CLC	DS	p1 (&,B1) ,D2 (B2) }st(L) ,S2 or S1,S82
Compare Logical	CLR	15	R1,R2
	l		
Compare Logical			
Charactexs under			
Mask	CLM	BD R1,M3,D2, (B2)	R1,M3,52
[
Compare Logical	CL1 {95 D1 @B1) ,12	st,12	
Immediate			
Compare Logical Long	CLCL	OF R1,R2	
Compare,Long CD	69 R1,D2 (X2,B2) or R1,D2(,B2)	R1,S2(X2) or R1,S2	
Compare,Long CDR	29 R1,R2 1		
Compare,Short	CE 179 R1,D2 (X2,B2) or R1,D2(,B2)	R1,S2 (X2) or R1,S2	
Compare,Short	CER	39	R1,R2
Convert to Binary	CVB	4F	R1,D2 (X2,B2) or R1,D2(,B2) {R1,S2 (X2) or R1,S2
Convert to Decimal	CvD	4E	R1,D2 (X2,B2)or R1,D2(,B2)
L L L L L Y |

Figure

17.

Appendix D:

Machine Instruction Mnemonic Operation Codes

Machine Instruction Summary (Part 2 of 14)

131

r T H 1
|Program Interruptions |
|Possible Condition Code Set]

Instruction Type of b=r=v——1-71--7 ¥ T T r 4
| | Instruction |alSs|OoviP|Op|Other | 00 | 01 | 10 | 11 |

' L S 1 1 1 + {

Add | RX Ix[x|F | | |]|Sum=0 |Sum<0 [Sum>0 |Overflow |

Add RR P TIF L |Sum=0 |Sum<0 |Sum>0 |Overflow |

Add Decimal SS,Decimal |x] |D |x|x |Data [Sum=0 |Sum<0]Sum>0 |Overflow |

|Add Halfword RX Ix|x|F | | | | Sum=0 |Sum<Q. {Sum<0 {Overflow |

|Add Logical | RX Ixix] 11 1 | Sum=0@)| sum 0@ Sun=0@Djsum 0 @ |
| I I T T I | I | I l]

. | 1 1] | ! | |

Add Logical RR Sum=0@®)| Sum=0@] Sum=0@jsum 0 @ |

Add Normalized,] | { |

Extended RR,Floating Pt. X|E x |B,C IR |L M | |

Add Normalized,Long |RX,Floating Pt.|x|x|E x |B,C R 'L M |P]

Add Normalized,Long |RR,Floating Pt. x|E x |B,C R L iM iP |

Add Normalized,Short |RX,Floating Pt.|x|x|E x |B,C R L M |P |

Add Normalized,Short |RR,Floating Pt. x|E x |B,C R L |M |P |

| |]

Add Unnormalized, | |]

Long) |RX,Floating Pt.|x|X|E C R |L M |P |

Add Unnormalized, | | | | |

Long |RR,Floating Pt.] [x|E x |C R L |M |P]

Add Unnormalized, ‘ | O | | |

Short RX,Floating Pt.|x|x|E Ix |C R L |M |P]

Add Unnormalized, | 111 (I | |]

Short |RR,Floating Pt.]| |x|E | |x |C IR L |M |P |

Add Logical | RX Ixl=xl 11 | |J |K | | |
O I ! | I I I

And Logical SS | x| x| J |K |

And Logical RR I | J |K |

And Logical Immediate]SI 1 x| x| J K |

Branch and Link RX 11 11 IN |N IN |N |

Branch and Link RR 11 11 IN IN IN |N {

[I ! |] | |

Branch on Condition RX | | N IN IN N

Branch on Condition RR | | N |N |N N

Branch on Count RX |] N |N |N N

Branch on Count RR I 1 IN |N IN IN |

Branch on Equal RX ,Ext.Mnemonic| | | IN |N IN |N |

I | | | | | |

Branch on High | RX ,Ext .Mnemonic| IN IN IN |N

Branch on Index High |RS IN {N IN IN

Branch on Index Low | [I | l | ! | |

or Equal | RS | 1 | |N IN |N |N |

Branch on Low {RX ,Ext .Mnemonic| | | IN IN |N IN |

Branch if Mixed | RX ,Ext.Mnemonic| (| | IN |N IN |N |

I | | | | | |

Branch on Minus | RX ,Ext .Mnémonic| 11 | IN IN IN |N |

Branch on Not Equal |RX,Ext.Mnemonic| | | | IN IN IN IN |

Branch on Not High |RX,Ext.Mnemonic] | | | | IN IN |N IN |

Branch on Not Low | RX ,Ext.Mnemonic| | | | | IN |N IN IN |

Branch on Not Minus |RX,Ext.Mnemonic| | | | | IN IN IN |N [

L L Lol_1 L4 4 AL 4 L 4 1

Figure 17. Machine Instruction Summary (Part 3 of 14)

1

32

O

r -T T 1
l | Program Interruptions |
& | | Possible Condition Code Set |
b, Instruction | Type of | Bt St St S Rt T T T T |
| | Instruction |A1$|Ole|Op]0ther i 00 j 0% | 10 | 11
t - t-t-—4-4-—1 1 1 } 1 ~
|Branch on Not Ones |RX,Ext.Mnemonic| [| |N |N IN |N
Branch on Not Plus | RX,Ext.Mnemonic| | | | IN IN IN N
Branch on Not Zeros |RX,Ext.Mnemonic| | | | IN IN |N N
Branch if Ones " |RX,Ext.Mnemonic| | | | IN |N |N N
|Branch on Overflow | RX,Ext.Mnemonic| | | | | |N |N | N |N]
| R | | | | | |
| | I T | | | | | |
Branch on Plus | RX ,Ext.Mnemonic| | | | |N |N |N N
Branch if Zeros |RX ,Ext.Mnemonic| | | | |N IN |N N
Branch on Zero | RX ,Ext.Mnemonic| | | | | IN |N |N |N |
Branch Unconditional	RX,Ext.Mnemonic						IN	N IN IN
Branch Unconditional	RR,Ext.Mnemonic	[I I	IN	N	N	N		
	I O I							
Compare Algebraic	RX	x	x			12	AA	BB
Compare Algebraic	RR b		12	AA	BB]		
Compare Decimal	SS,Decimal x				x	Data	2	AA
Compare Halfword RX I xix			12	AA	BB]		
Compare Logical RX lx	x}]			2	AA	BB		
	I							
Compare Logical SS- Ixlxy 1	12	AA	BB					
Compare Logical RR x				2	AA	BB		
Compare Logical [I								
Characters under	1 1							
Mask RS Ix)		x	x		XX	YY 122		
Compare Logical ter								
Immediate	Sst =] 1	1		2	AA	BB		
Compare Logical Long	RR	x	x x	x		2	AR BB	
Compare,Long	RX,Floating Pt.	x	x			x	12 {AA	BB i
O	Comapre,Long	RR,Floating Pt.]x[x]	1x		12	AA	BB	
I T O I]								
Compare,Short	RX,Floating Pt.	x	x			x		2
Compare,Short	RR,Floating Pt.		x		[x	12	AA	BB
Convert to Binary	RX IxIx				Dbata,F	N	N	N IN
Convert to Decimal	RX Ixlx] x			N	N	N	N	
L L L L4 L_L L L 1 [} ry 3

Figure 17. Machine Instruction Summary (Part 4 of 14)

Appendix D: Machine Instruction Mnemonic Operation Codes 133

i‘ See Note 1, Figure 16.

r -T T T , 1
	Mnemonic	Machine	Operand Format
	Operation	Operation]	
Instruction	Code	Code	Explicit Implicit
L { 'y L N [
T g ;			
Divide ID HE {R1,D2 (x2,B2) or R1,D2 (,B2)	[R1,52 (X2) or R1,S2		
Divide	DR	1D	R1,R2
Divide Decimal	DP	FD	p1, (L1,B1) ,D2 (L2,B2) S1(L1) ,S2(L2) or
	, / s1,S2		
Divide,Long	BD	6D {R1,D2 (X2,B2) ,or R1,D2(,B2)	R1,52 (X2) or R1,52]
Divide,Long	DDR	2D	R1,R2 l
i			
Divide,Short	DE	7D	R1,D2 (X2,B2) oxr R1,D2 (,B2)
pivide,Short	DER	3D	R1,R2
Edit	ED	DE	p1@,B1) ,D2 (B2) s1(L) ,S2 or S$1,S2
Edit and Mark	EDMK	DF	D1(,B1) ,D2 (B2) 1s1 (L) ,S2 or S1,S2
Exclusive Or {X 157 {R1,D2 (X2,B2) or R1,D2{,B2)	R1,S2 {X2) or R1,S2j		
I	I		' !
Exclusive Or	XC	D7	p1(&,B1) ,D2 (B2)
Exclusive Or	XR	17	R1,R2]
Exclusive Or			
Immediate	X1 197	D1@B1) ,12 1S1,12	
Execute	EX	4y	R1,D2 (x2,B2) or R1,D2(,B2)
Halve,Long	HDR	24	R1,R2
l :	:		
Halve,Short HER ;34	R1,R2		
Halt Device HDV	9 {D1(B1)	S?	
Halt 1I/0	HIO	9E1 ID1@BY) 181	
Insert Character	1C	43	R1,D2 (X2,B2) or R1,D2(,B2)
Insert Characters		i ;	
under Mask ICcM	BF	R1,M3,D2 (B2) {R1,M3,S2	
Insert Storage Key ISK	09	{R1,R2 ,]	
Load L	58	R1,D2 (X2,B2) or R1,D2(,B2)	R1,S52 (X2) or R1,S2]
: I l			
ILoad ;LR i18 }R1,R2			
Load Address	LA [u1	{R1,D2 (X2,B2) or R1,D2(,B2) [R1,S2 (X2) or R1,S2	
Load and Test	LTR	12	IR1,R2 '
Load and Test,Long	LTDR	22	R1,R2
Load and Test,Short	LTER	32	R1,R2
Load Complement }LCR }13	R1,R2		
Load Complement,Long	LCDR	23	IR1,R2
{Load Complement,Short	LCER	33	R1,R2
Load Control	LCTL	B7	R1,R3,D2 (B2)
Load Halfword	LH	48	R1,D2 (X2,B2) or R1,D2(,B2)
{Load,Long jLD j68	R1,D2(X2,B2) or R1,D2(,B2)	R1,S2(X2) or R1,S2]	
Load,Long	LDR	28	{R1,R2
Load Multiple	LM	98	R1,R3,D2 (B2)
Load Negative	LNR	11	IR1,R2]
Load Negative,Long	LNDR	21	R1,R2
Load Negative,Short	LNER	31	R1,R2
Load Positive	LPR	10	[R1,R2
Load Positive,Long	LPDR	20	R1,R2
Load Positive,Short	LPER	30	R1,R2
Load PSW	LPSW	82	ID1(BY) 1s1
Load Rounded,			
Extended to Long	LRDR	25	R1,R2
Load Rounded,		i i	
Long to Short	LRER	35	R1,R2 , o
Load, Short	LE	78	R1,D2 (X2,B2) or R1,D2(,B2)
t L L L i J			
J

| B

Figure 17.

134

Machine Instruction Summary (Part 5 of 14)

o

O

T L 1
Mnemonic |Machine Cperand Format {
Operation| Operation , |
Instruction Code | Code Explicit Implicit |
5 N 4 d
T T T 1
Load, Short LER |38 R1,R2 |
Monitor Call MC AF D1(B1) ,I2 S1,12 |
Move Characters MvC L2 p1(L,B1) ,D2 (B2) st1(L) ,S2 or S1,S2 |
Move Immediate MV1 92 {D1(B1) ,12 151,12 |
Move Long MVCL | OE |R1,R2
Move Numerics MVN | D1 |p1(,B1) ,D2 (B2) s1(L) ,S2 or s1,S82
Move with Offset MVO F1 D1(L1,B1) ,D2 (L2,B2) sS1(L1) ,S2(L2)orx |
181,82 1
Move Zones Mvz L3 D1(L,B1) ,D2 (B2) s1() ,S2 or S1,S2
Multiply M 5C R1,D2 (X2,B2) or R1,D2(,E2) |R1,S2(X2) or R1,S2
|Multiply MR 1c R1,R2
|Multiply Decimal Mp FC D1 (L1,B1) ,D2 (1L2,B2) sS1(1),52(L2) or
| ' | 51,52 |
Multiply, Extended MXR 26 R1,R2
Multiply Halfword MH uc R1,D2 (X2,B2) or R1,D2(,E2) {R1,S2(X2) or R1,S2
|
Multiply,Long MD 6C R1,D2 (X2,B2) or R1,D2(,B2) [R1,S2(X2) or R1,S2
Multiply,Long MDR 2C R1,R2
Multiply, Long to .
Extended MXD 27 R1,D2 (X2,B2) or R1,D2(,B2)|R1,52(X2) or R1(S2)
Multiply, Long to i ,
Extended MXDR 167 |R1,R2
Multiply,Short ME 17C |R1,D2 (X2,B2) or R1,D2(,E2) |R1,S2(X2) or R1,S2
Multiply,Short MER {3C |R1,R2 {
|No Operation NOP |47 BC 0 |D2(X2,B2) or D2 (,B2) |S2(X2) or S2
[-t L L J
Figure 17. Machine Instruction Summary (Part 6 of 14)
Apperdix D: Machine Instruction Mnemonic Operation Codes 135

r T T L]
| | |Program Interruptions :
| |Possikle Condition Code Set
|Instruction Type of o ¥ =TT T T -r
| Instruction |a|s|Ov|P|Op|Other | 00 | 01 10 | "
1 i I G 4 4 4 3 J

T T LA) T T T |) |
|pivide RX |x[x] |F |N IN N |N |
|pivide RR | 1x] |F IN IN N IN |
|Divide Decimal SS,Decimal x|x x|x |D,Data|N IN N N
{Divide,Long RX,Floating Pt. |x|x|E x |B,E IN IN N N
[pivide,Long RR,Floating Pt.| |x|E x |[B,E |N IN N N
: | | | { } | | !
|pivide,Short RX,Floating Pt.|x|x|E x |B,E |N IN N N
|Divide,Short RR,Floating Pt.| |x|E |x |B,E IN IN N N
|Edit SS,Decimal x x|x |bData |S |T |0
|Edit and Mark SS,Decimal X x|x |pata |S |T AY)
|Exclusive Or { RX xix| i [J |K | |

| I] |
|Exclusive Or Ss |x b4 |d |K
|Exclusive Ox | RR | I 1 |3 IR |
|Exclusive Or] | | 1 | | | |]
| Immediate | s1 1x x| | 13 IK |
| Execute | RX Ixlx] |1 |G |May be set by this instruction]
|Halve,Long RR,Floating Pt.| |x]| | |x | IN N [N IN
| I Y A | | |
{Halve,Short | RR,Floating Pt.| [x]| | Ix | N |N N N
|Halt Device S1 | | | | A DD cc ARL |RK
|Halt 1/0 S1 11| | |a | DD cc |GG KK [
| Insert Character | RX Il 1 |1 IN N N N
| Insert Characters | | |
| undexr Mask |RS =] | x[x uu T Ss
| Insert Storage Key RR |x|x] |x |A N IN IN N |
| Load RX Ixix] N |N N N i
| | I | | | |]
{Load RR | | | IN |N N IN |
|Load Address RX | | N IN N IN |
|Load and Test | RR | I J |L M | |
|Load and Test,Long RR,Floating Pt.| [x| | Ix IR |L M | -
|Load and Test,Short |RR,Floating Pt.] |x| | |x R |L M]
| I T I | | | | |
|Load Complement | RR | |F P L M o]
|Load Complement,lLong |RR,Floating Pt.| |[x| P R L M
|Load Complement,Short|RR,Floating Pt.| |x} b'4 IR |L M
|Load Control |RS Ix]x| x|x | A N N IN N
|Load Halfword I RX fxix] i N N iN N
|Load,Long |RX,Floating Pt.|x|x] | |x | N N IN N
|Load,Long |RR,Floating Pt.| |x X N N IN N |
|Load Multiple |RS |x|x N N IN N
Load Negative	RR	1		J L		
Load Negative,Long	RR,Floating Pt.]	x	x R L			
Load Negative,Short	RR,Floating Pt.		x Ix R	L		
]]				
Load Positive	RR	1	F		J M (o]	
{Load Positive,Long	RR,Floating Pt.		x	x	R L	M
Load Positive,Short	RR,Floating Pt.]		[x] 1x IR L M			
Load PSW	s1 Ixlx]	& IcQ	ec 129 190	
Load Rounded,Extended	I T R					
to Long	RR,Floating Pt.] [x]	E		x	IN IN {N N	
Load Rounded,Long	I					
to Short	RR,Floating Pt.]	X	E		x	N IN IN N
Load, Short	RX,Floating Pt.	x	x]			x
Monitor Call	S1	Ixl	Ix	G,A IN IN IN	N	
[. L j R P .1 A L X1 .l 4 ¥}

Figure 17. Machine Instruction Summary (Part 7 of 14)

136

O

r T T 1
| | |Program Interruptions |
o | | |Possible Condition Code set }
= Instructicn | Type of | s St St et it Sttt T T T 1
| | Instruction |A|S|Oov|P|Op|Other | 00 | 01 | 10 | 11 |
L L Lol 1 1.1 4 4 i i 1 ")
T71r7T Tt T T T T T) |
|Load, Short |RR,Floating Pt.] |x| | |x | IN N IN IN 1
|Move Characters | SS | x| | x | IN |N |N |N
|[Move Immediate | s1 | x| |x | N IN |N IN
|Move Long | RR | x| x I1x|x | AAA | AAB |AAC | AAD
Move Numerics | SS | x| x| | IN |N |N |N
Move with Offset | ss | x| x| | IN |N |N | N
| | I | | | |
| |1 | | |
Move Zones | ss | x| x N IN IN | N
Multiply | RX | x| x N |N |N IN
Multiply | RR | 1xl | IN IN {N |N
Multiply Decimal | SS,Decimal | x| x| x|x |bata |N | N IN IN
Multiply,Extended |RR,Floating Pt.| |x|E Ix |B |N |N |N |N
|[Multiply Halfword | RX | xlx | |N |N |N IN
| | || | | | |
{Multiply,Long |RX,Floating Pt.|x|x|E x |B IN |N |N |N
|Multiply,Long |RR,Floating Pt.| |x|E | |x |B IN IN |N | N |
{Multiply,Long | I A O I | | | | |
|to Extended |RX,Floating Pt.|x|x|E [x|x [|B IN |N IN |N |
[Multiply,Long | P Etd | | | | |
|to Extended |RR,Floating Pt.| |x|E | |x |B IN IN |N |N
|Multiply,Short |RX,Floating Pt.|x|x|E | |x |B |N |N IN |N
|{Multiply,Short |RR,Floating Pt.| |x|E | |x |B |IN |N IN |N |
|No Operation |RX,Ext.Mnemonic| | | | | | |N |N |N |N |
L L 1L 1.1 4 L L. 4 4 3

C

Figure 17.

Appendix D:

Machine Instruction Summary (Part 8 of 14)

Machine Instruction Mnemonic Operation Codes

137

Ll T
|Mnemonic [Machine
|Operation|Operation

T

Operand Format

Instruction | Code | Code Explicit Implicit
4 4 4 J
1 T T k)
No Operation { NOPR 07 (BCR 0) |R2 | i
Or Logical |0 |56 |R1,D2 (X2,B2) or R1,D2(,B2) |R1,S2(X2) or R1,S82]
Or Logical | oC | D6 D1 (@,B1) ,D2 (B2) |s1() ,S2 or S1,S82
Or Logical | OR 116 R1,R2 |
Or Logical Immediate |O1 | 96 p1(B1) ,12 181,12
Pack	PACK	F2	D1(1,B1) ,D2 (L2,B2)	s1(LY) ,S2(L2) or
				s1,s2
Read Direct	RDD	85 Ip1 @1 ,12	81,12	
Set Clock	SCK	B204	D1 (B1)	s1
Set Program Mask	SPM	04	R1	
Set System Key	SSK	08	R1,R2]
Set System Mask	sSsM 180 iD1BY isi i			
{Shift and Round				
Decimal	SRP	FO	D1@1,BY ,D2 (B2) ,M3 {s1(Lt) ,s2,M3 or	
I]	st,s2,M3	
Shift Left Double				
Algebraic	SLDA	8F [R1,D2 (B2)	R1,S2	
		I	I	
jShift Left Double				
Logical	SLDL	8D	R1,D2 (B2)	R1,S82
Shift Left Single				
Algebraic	sLa	8B	R1,D2 (B2)	R1,82
Shift Left Single]				
Logical	SLL	89	R1,D2 (B2)	R1,S2
Shift Right Double				
Algebraic	SRCA	8E	R1,D2 (B2) R1,S2	
1Shift Right Double				
Logical SRDL	8C	R1,D2 (B2) R1,S2		
! i				
Shift Right Single				
Algebraic SRA	8A	R1,D2 (B2) R1,S2		
Shift Right Single				
Logical	SRL	88 R1,D2 (B2) R1,S2		
start 1,0	s10	9c? D1 (B1) s1		
Start 1/0 Fast				
Release SIOF	9C	D1 @1 s1		
Store ST	50	R1,D2 (X2,B2) or R1,D2(,B2)	R1,S2(X2) or R1,S2	
Store Channel ID	ST1IDC	B203 D1(B1) s1		
Store Character	STC	42 R1,D2 (X2,B2) or R1,D2(,B2)	R1,D2 (X2) or R1,S2	
Store Characters				
junder Mask	STCM	BE	R1,M3,D2 (B2)	R1,M3,S82]
Store Clock	STCK	B205	D1(B1) 181	
Store Control	STCTL	B6	R1,R3,D2 (B2)	R1,R3,S52
Store CPU 1D STIDP B202	D1@®1) 181			
;				
Store Halfword STH 40	R1,D2 (X2,B2) or R1,D2(,B2)	R1,S2(X2) or R1,S2]		
Store Long	STD 60	R1,D2 (X2,B2)	R1,S2 (X2) or R1,S2	
Store Multiple	STM 90 [R1,R2,D2 (B2)	R1,R2,S2		
Store Short	STE 70	R1,D2 (X2,B2) or R1,D2(,B2)	R1,S2(X2) or R1,S2	
Subtract s SB	IR1,D2 (X2)	R1,S2 (X2) or Rt,S2		
Subtract SR 1B	R1,R2			
Subtract Decimal Sp	FB	p1 @1,B1) ,D2 (L2,B2)	s1(L1) ,S2(L2) or	
I /52				
Subtract Halfword SH	4B	R1,D2 (X2,B2) or R1,D2(,B2)	R1,S2 (X2) or R1,S2	
Subtract Logical	SL	5F	R1,D2 (X2,B2) or R1,D2(,B2)	R1,S2 (X2) or R1,S2
Subtract Logical	SLR	1F IR1,R2		
b y) 1 i H {				
* See Note 2, Figure 16.				
L 3

Figure 17.

138

Machine Instruction Summary (Part 9 of 14)

/

r T T t
| |Mnemonic |Machine Operand Format]
| |Operation|Operation |
{Instruction |Code jCode Explicit Implicit |
b { t + T i
|Subtract Normalized, | | | | |
| Extended | SXR |37 |R1,R2 | i
|Subtract Normalized, | | | |
{Long | sD | 6B R1,D2 (X2,B2) or R1,D2(,B2) [R1,S2 (X2) or R1,S2|
Subtract Normalized,				
Long	SDR	2B	[R1,R2	
Subtract Normalized,				
Short	SE	7B	R1,D2 (X2,B2) or R1,D2(,B2)	R1,S2(X2) or R1,S2
Subtract Normalized,				

|Short | SER | 3B |R1,R2 i

|Subtract | | | |

|Unnormalized,Long | sSw | 6F |R1,D2 (X2,B2) or R1,D2(,B2) |R1,S2 (X2) or R1,S2
| I | |

| | | |

| Subtract | | |

|Unnormalized,Long | SWR | 2F |R1,R2

| Subtract | | |

Unnormalized,Short	sU	7F	R1,D2 (X2,B2) or R1,D2(,B2)	R1,S2 (X2) or R1,S2
Subtract				
Unnormalized,Short	SUR	3F IR1,R2		

| Supervisor Call | svC | OA |1

|Test and Set | TS |93 |D1®B1) s1

| | | I

{Test Channel | TCH | 9F |ID1@®B1) s1 |
|Test 1,0 | T10 19D |ID1 @1 s1

|Test Under Mask | ™ 191 |[p1@B1) ,12 s1,12

|Translate | TR | DC |D1 &,B1) ,D2 (B2) |s1(L) ,S2 or S1,S82 |
|Translate and Test | TRT | DD |D1(,B1) ,D2 (B2) s1(L) ,S2 or S$1,S2 |
I I | | |
Unpack	UNPK {F3 {D1 @1,B1) ,D2 (L2,B2)	s1 (L1 ,S52(L2) or
I		v
Write Direct	WRD	84 D1 @®B1) ,12 {s1,12
{Zero and Add Decimal |ZAP |F8 |p1 @1,B1) ,Db2 (L2,B2) |s1(L1) ,S2(L2) or |
! ! ! | 5152 !

Figure 17. Machine Instruction Summary (Part 10 of 14)

Appendix D: Machine Instruction Mnemonic Operation Codes 139

T T 1
{ { |Program Interruptions |
| | |Possible Condition Code Set l
|Instruction | Type of t-r-r——7-1--7 T T T T |
| {Instruction {A{S|Ov]|P|Op|Other | 00 | 01 | 10 " |
L L I N 11 4 1 4 41 4 J
T T T T T) T v T 1
No Operation	RR,Ext.Mnemonic						IN IN IN IN
Oor Logical	RX	x	x	J	K		
0r Logical	ss x		x J	K			
0r Logical	RR		J	K			
Or Logical Immediate	SI x		1%l		J I K		
Pack Ss x	Ix]	IN IN	IN N				
[I I]							
[, (1 1							
1Read Direct S1 x		x]x	A N IN IN N				
Set Clock S1 X	x	x	x	A AAE	AAF	AAG	
Set Program Mask RR	[RR	RR	RR IRR			
Set Storage Key RR x}x i ix jA iN	N IN N						
Set System Mask S1 x] A IN IN IN N					
Shift and Round	[O Y I]						
Decimal	ss x		D	x		pata	J
Shift Left Double		T I O					
Algebraic	RS	1xIF				J	L M {0
[T I]			
{Shift Left Double	[TR I						
Logical	RS Il 11	N IN IN N					
Shift Left Single] (I T T I							
Algebraic	RS 1 1VIF] 13	L M 0 [
Shift Left Single	[T I I I		!				
Logical	RS e IN N IN IN						
Shift Right Double	[T T I I	!					
Algebraic	RS [. I J L M]						
Shift Right Double	[O T I]					
Logical	RS I Ixl		N N N N				
[I I i							
Shift Right Single	I						
Algebraic	RS I O	J L M					
Shift Right Single	O R I						
Logical	RS I O T I N N N N]						
Start 1/0	s1 111 11 A	MM	cC	EE	AA]		
start 1/0 Fast	I Y A A]					
Release	S1 P11 1] 1A	MM jcc	EE	KK]			
Store	RX Ixlx]	x		IN [N IN	N		
Store Channel 1D	s1 1 11	x	A	ARH	cC	AAL	KK
Store Character RX Ix]	x	IN IN	N IN				
Store Character I] !	i i i						
under Mask RS 1x}		x			N	N IN	N
Store Clock S1 1x		x	x		AAJ	AAK	
Store Control RS	x	x	x		A	N IN	N IN
Store CPU 1D S1	x	x	x	x	A IN	N	N !N
1							
Store Halfword RX	x	x	x} IN	N	N IN		
Store Long RX,Floating Pt.	x]	x]	x	x		N	N IN
Store Multiple RS	x	x	} x	IN	N IN IN		
Store Short RX,Floating Pt.	x	x	x	x	N	N	N
Subtract	RX IxIx	F			v	X	Y {0
	1 I N O						
Subtract	RR 1 1IF T}) v 1X 1Y {0						
Subtract Decimal SS,Decimal	x]	D	x]x	beta	V 1X 1Y	0	
jSubtract Halfword RX 1x	x	F			V {X Y	0	
Subtract Logical RX Ixlx] 11	1		W,H	V,1	W,1		
Subtract Logical	RR I I I I T			W,H {V,1 {W,I			
t L L L_1 1.1 1. 4 4 i 4 3

Figure 17. Machine Language Summary (Part 11 of 14)

140

r B T - = 1
|Program Instructions |

0 |Possible Condition Code Set |
— jInstruction Type of [s e et T T T -— {
{ | Instruction |Als|Ov|PlOp|Other | 00 | O1 | 10 | 11 i
L Ladb 4.4 4 | _+_ 4 - 4 K}

TV ov 1T F T s T T 1

| Subtract Normalized, | [T TR T I | | | | |
Extended RR,Floating Pt.| |x|E | |x |B,C IR L M | |
Subtract Normalized, P11 1o | | | |
Long RX,Floating Pt.|x|x|E | |x |B,C IR L M 1] |
Subtract Normalized,	[T T I					
Long	RR,Floating Pt.]	x	E		x	B,C IR L M 10
Subtract Normalized,	(I T R I					
Short RX,Floating Pt.	x	x	E		x	B,C R L M 12
Subtract Normalized, 11 1						
Short RR,Floating Pt.		x	E		x	B,C R L 1M Ko}
Subtract	[11 I					
Unnormalized,Long RX,Floating Pt.	x	x	E		x	C IR
I	1					

11 1]			
Subtract I					
Unnormalized,Long RR,Floating Pt. x	E	[x	C R	L	M 19
Subtract		11			
Unnormalized,Short RX,Floating Pt.	x	x	E		x
Subtract [!					
{Unnormalized,Short RR,Floating Pt. x	E		x	C R	L M 19
Supervisor Call RR i I T	N	N	N	N	
Test and Set S1 I} 1 1=l	1SS	TT			
1 1					

Test Channel S1 ([I R P -X 133 {11 |FF | HH {
|Test 1/0 S1 | | (| A |LL |cC |EE | KK |
Test Under Mask S1 x| |1 |UU KA | |WW |
Translate Ss x| | |x] IN IN |N |N |
Translate and Test SS x| | || | PP | NN |00 |]
I O							
Unpack Ss x		Ix!	IN	N	N IN		
Write Direct S1 x		Ix	A	N	N	N	N
2ero and Add Decimal	SS,Decimal	x] ID	x	x	Data	J L M	0
[l L L.t .1 L.l L L L 4 i]

Figure 17. Machine Instruction Summary (Part 12 or 14)

Appendix D: Machine Instruction Mnemonic Operation Codes 141

r
|Program Interruptions Possible

|

|

| Under Ov:

| =Decimal

| E=Exponent

| F=Fixed Point

|

] Under Other:

| A Privileged Operation

| B Exponent Underflow

| C Significance

| D Decimal Divide

| E Floating Point Divide

| F Fixed Point Divide

| G Execute

H GA Monitoring

|

|Condition Code Set

| H No Carry

| 1 Carry

| J Result=0

| K Result is Not Equal to Zero

| L Result is Less Than Zero

| M Result is Greater Than Zero

| N Not Changed

| o} Overflow

| P Result Exponent Underflows

| Q Result Exponent Overflows

| R Result Fraction=0

| S Result Field Equals Zero

| T Result Field is Less Than Zero

| U Result Field is Greater Than Zero

| v Difference=0

| W Difference is Not Equal to Zero

| X Difference is Less Than Zero

| Y Difference is Greater Than Zero

| Z First Operand Equals Second Operand

| AA First Operand is Less Than Second Operand

| BB First Operand is Greater Than Second Operand
| CC CSW Stored

| DD Channel and Subchannel not Working

| EE Channel or Subchannel Busy

| FF Channel Operating in Burst Mode

| GG Burst Operation Terminated

| HH Channel Not Operational

| 11 Interruption Pending in Channel

| JaJ Channel Available

] KK Not Operational

| LL Available

| MM 1/0 Operation Initiated and Channel Proceeding With its Execution
| NN Nonzero Function Byte Found Before the First Operand Field is Exhausted
| 00 Last Function Byte is Nonzero

| PP All Function Bytes Are Zero

| Q0 Set According to Bits 34 and 35 of the New PSW Loaded
| RR Set According to Bits 2 and 3 of the Register Specified by R1
| Ss Leftmost Bit of Byte Specified=0

| TT Leftmost Bit of Byte Specified=1

| uu Selected Bits Are All Zeros; Mask is All Zeros
| vv Selected Bits Are Mixed (zeros and ones)

| WW Selected Bits Are All Ones

L

— — —— — ——— — — — — — — S——— et S Fr— S S S—d— —]

o s o S ST S— — — — S E— e = AT S— — — S— — S — — Y— G—, GOV S— S F—— S W S— —

Figure 17. Machine Instruction Summary (Part 13 of 14)

142

— s s e e e 4

ConditiQn Code Set »

XX Selected Bytes are Equal, or Mask is Zero

YY Selected Field of First Operand is Low

zZ Selected Field of First Operand is High |

AAA First-operand and Second-operand Counts are Equal

AAB First Operand Count is Lower

AAC First Operand Count is Higher

AAD No Movement Because of Destructive Overla;

AAE Clock Value Set

AAF Clock Value Secure

AAG Clock not Operational

AAH Channel 1D Correctly Stored
| AAI Channel Activity Prohibited During 1D

AAJ Clock Value is Valid l

AAK Clock Value Not Necessarily Valid]

AAL Channel Working With Another Device |
[} J
Figure 16. Machine Instruction Summary (Part 14 of 14)

Appendix D:

Machine Instruction Mnemonic Operation Codes

143

Appendix E. Assembler Instructions

r N T T - 1
|Operation | | |
| Entry | Name Entry |Operand Entry |
L R 4]
v T 1 1
|ACTR |Not used, must not be present |An arithmetic SETA expresssion |
t 4 _ . 3 . [
T T H
|AGO |A sequence symbol or not present|A sequence symbol |
L 4 L 4
v T T 1
|AIF |A sequence symbol or not present|A logical expression enclosed in |
{ | |parentheses, immediately followed by a |
| | | sequence symbol |
fomm e ¢ }=—- i
| ANOP |A sequence symbol |Not used, must not be present |
|8 —_ + -]
r T 1
|CCwW Any symbol or not present | Four operands, separated by commas |
=== t {
=CNOP |A sequence symbol or not present|Two absolute expressions, separated by a |
comma
.t | | !
|CoM |A sequence symbol or not present|Not used, should not be present |
1 4 L — 4
r T - T - 1
|CoPY |Not used, must not be present {A symbol |
[N 4 4
r - T - ""+' . - 1
| CSECT |Any symbol or not present | Not used, should not be present |
L 4 4]
v T T 1
{DC |Any symbol or not present |One operand |
. + -1~ ' {
| DROP |A sequence symbol or not present|One to sixteen absolute expressions, | AN
] | separated by commas | NM,V
t ~ + {
DS |{Any symbol or not present |One operand |
L e e 4 4
T L T 1
| DSECT |A variable symbol or an |Not used, should not be present |
ordinary s ol
| i 4 |
‘EJECT |A sequence symbol or not present|Not used, should not be present |
L 4]
T T 3 1
| END |A sequence symbol or not present|A relocatable expression l
| | |or not present |
k e 4 e 4
| ENTRY |A sequence symbol or not present|One or more relocatable symbols, |
| | |separated by commas |
: a— H . !
| EQU |A variable symbol or an [An absolute or relocatable expression |
| |ordinary symbol | |
t t } 4
| EXTRN |A sequence symbol or not present|One or more relocatable symbols, |
| | |separated by commas |
N L iR P y
v T T 1
|GBLA |Not used, must not be present |One or more variable symbols that are to |
| | |be used as SET symbols, separated by]
! | | commas ? |
b t + 1
|GBLB |Not used, must not be present |One or more variable symbols that are to |
] | |be used as SET symbols, separated by]
commas *
S i - i
| SET symbols may be defined as subscripted SET symbols. J
L _

(Part 1 of 3) :1:15

144

r . T T - L]
|Operation | | |
|Entry |Name Entry |Operand Entry |
i —_—1 4
b I . i
GBLC	Not used, must not be present	One or more variable symbols that are to
		be used as SET symbols, separated by
		commas ?
b t $ —mmmmmme - 4		
ICTL	Not used, must not be present	One to three decimal values, separated by
		commas
t t —- $ - - 4		
ISEQ	Not used, must not be present	Two decimal values, separated by a comma
t L 4		
r T T 1		
LCLA	Not used, must not be present	One or more variable symbols that are to
		{be used as SET symbols, separated by
		commas 1
b t t H		
LCLB	Not used, must not be present	One or more variable symbols that are to
		be used as SET symbols, separated by
		commas ¢
b ¢ — e— -—- {		
LCLC	Not used, must not be present	One or more variable symbols separated by
		commas *
b t + {		
LTORG	Any symbol or not present	Not used, should not be present
[4		
3 T ~		
MACROZ2 Not used, must not be present	Not used, should not be present	
L		
¢ e R N		
MEND2	A sequence symbol or not present	Not used, must not be present
L 4 4 4		
T T T 1		
MEX1IT?2	A sequence symbol or not present	Not used, must not be present
[N + 4 1		
r T T .= 1		
MNOTE?2	A sequence symbol, a variable	A severity code, followed by a comma,
	symbol or not present	followed by any combination of characters
		enclosed in apostrophes
b t ¢ — 4		
ORG	A sequence symbol or not used	A relocatable expression or not used
1 4 §		
_ T T 1		
PRINT	A sequence symbol or not present	One to three operands
4 4 4		
T T - H		
PUNCH	A sequence symbol or not present	One to 80 characters enclosed in 1
		apostrophes
b + + - {		
REPRO	A sequence symbol or not used	Not used, must not be present
N L 1]		
r T T 1		
SETA	SETA symbol	An arithmetic expression
t I 8 4 4		
L3 T T 1		
SETB	A SETB symbol	A 0 or a 1, or logical expression
		enclosed in parentheses
[} —— 4 o 4 -—— §		
r T T ™ =1		
SETC	A SETC symbol	A type attribute, a character expression,
		a substring notation, or a concatenation
{ !	of character expressions and substring	
		notations ’
S t 3= ‘ - {		
SPACE	A sequence symbol or not present	A decimal self-defining term or not used
1 i N L .		
r 1] T §		
START	Any symbol or not present	A self-defining term or not used
[L L		
}		
* SET symbols may be defined as subscripted SET symbols.		
2 May only be used as part of a macro definition.		

-

]

(part 2 of 3)

Appendix E: Assembler Instructions 145

T T
|

r
|Operation |
|Operand Entry
4

|? See Section 5 for the description of the name entry.
|¢ DOS Assembler 14K D only.
[l ——— -

1
|
|Entry |Name Entry |
[1
r L T "’{
|TITLE3 |A special symbol (0 to 4 charac-|One to 100 characters, enclosed in |
i jters) , a sequence symbol, a |apostrophes]
| | variable symbol, or not present
. ! ! !
r - T T - == 1
{USING |A sequence symbol or not present|An absolute or relocatable expression |
| | | followed by 1 to 16 absolute expressions,]
| | |separated by commas |
t ~—emmt $ e {
| WXTRN“ |A sequence symbol or not present|One or more relocatable symbols, |
| | | separated by commas |
L - 1 4 i
{ - 1
|
|
4

(Part 3 of 3)

ASSEMBLER STATEMENTS

T
INSTRUCTION | NAME ENTRY | OPERAND ENTRY
L 3

- ——

v T
|Model Statements?! 2 |An ordinary symbol, variable JAny combination of characters

| (A variable symbol or any
| assembler language mnemonic|symbol, a combination of
Joperation code except COPY,|variable symbols and other

|END, ICTL, 1SEQ, and PRINT) |characters that is equivalent]

| symbol , sequence

| to a symbol, or not used
L

| (including variable
| symbols)
l

]

|Prototype Statement?

¢
|A symbolic parameter or
|not used

| Zero or more operands that
|are symbolic parameters,
|separated by commas, followed
{by zero or more operands

| (separated by commas) of the
|form symbolic parameter,
|equal sign, optional standard
|value

4

:
!
;

v, e, vodets s e G Ay Sowrn, Svveen Sy s i . s ety et e et i, e, 2

e e e e e e o e e g e . e e e e

4
Macro Iastruction An ordinary symbol, a | Zero or more positional
Statement? variable symbol, a sequence |operands separated by commas,
| symbol, a combination of {foliowed by zero or more |
variable symbols and other |keyword operands (separated |
characters that is equivalent|by commas) of the form |
to a symbol,“ or not used keyword, equal sign, value®* |
-t 1 {
Assembler Language |An ordinary symbol, a var- |Any combination of characters]|
Statementt 2 |iable symbol, a sequence | (including variable symbols) |
| symbol, a combination |
| of variable symbols and |
| other characters that is |
| equivalent to a symbol, |
| or not used |
e L 1
|1 Variable symbols may not be used to generate the following mnemonic operation codes: |
| ACTR, COPY, END, ICTL, CSECT, DSECT, 1SEQ, PRINT, REPRO, and START. Variable symbols|
| may not be used in the name and operand entries of the following instructions: COPY,|
{ END, ICTL, and ISEQ. Variable symbols may not be used in the name entry of the ACTIR |
| instruction. ‘ |
{2 The line following a REPRO statement may not contain variable symbols. {
|2 May only be used as part of a macro definition. |
|4 Variable symbols appearing in a macro instruction are replaced by their values before|
| the macro instruction is processed. 1
Lt 3

146

Appendix F. Summary of Constants

r T T T T T T T T L]
i I I | LENGTH | | CON- l l TRUN- |
TYPE	IMPLIED		Mop1-		STANTS [RANGE	RANGE CATION/		
AND	LENGTH	ALIGN-	FIER	SPECIF1ED	PER	FOR EX-	FOR PADDING	
DELIM.	(BYTES)	MENT	RANGE	BY	OPERAND	PONENTS	SCALE	SIDE
b + t t ¢ + 1 1 + {								
IC *	as	byte	1 to	characters	one			right
needed 2561								
S— S b ; ; } 4'								
X *	as	byte	1 to	hexadecimal	one		left	
	needed		2561	digits				
b + t t- t + + 4 + :								
B*	as	byte	1 to	binary	one			left
	needed		256	digits				
b ¢ + t ¢ + 4 4 $ -								
F ¢	4	word	1 to 8	decimal	multiple	-85 to	-187 to] 1left	
digit +7 +346								
L [laigies	115	! ,'						
r T T T 1 . T . T T T 1								
B: 0	2	half	1 to 8	decimal	multiple	-85 to	-187 to	left
ord digit +75 +346								
L	word	ldigies	1 1 !)					
r T T T T R T L} T T 1								
{E '	4	word	1 to 8	decimal	multiple	-85 to	0 to 14] right	
digits +75

L s N L S !
{D * | 8 | double| 1 to 8 |decimal |multiple |-85 to | 0 to 14] «right |
| I | word | |digits | [+75 | | |
1 4 [L L 4 4 4 4 5
v T T T 1] T T T 1
L2 * | 16 | double| 1 to |decimal |multiple |-85 to | 0 to 28] right]
| | | word | 16 |digits | 1+75] | |

4 IR } 4 1 1 4 I 4

1 T 1 1 L T T T 1
P | as | byte | 1 to |decimal |multiple | | | left |

| needed | | 16 |digits | | | | |

+ ¢ t % ¢ 1 1 $ {
2z * | as | byte | 1 to |decimal jmultiple | | | left |
| | needed | | 16 |digits | | l | |
L iR } I Jl 4 4 4 4 4
r T T T T L} T T T 1
1A () | 4 | word | 1 to 4 |an absolute |multiple | | | 1left |
| | | ! |expression | | | | |
| | [t t i I | | |
| | | | 3 or 4 |a relocatable] | | | |

| | | |or complex | | | | |

| | | | relocatable | | 1 | |
| [| | |expression | | | | !

4 [N $ L 4 [l i k]

L] v T]] ¥ t 1
vV () | 4 word | 3 or 4 |relocatable |multiple | | | left |

| | | symbol | | | | |
I iy L L L iy 4 1 4]
) T 1) 1 t T T T 1 b
I1Is () | 2 | half | 2 only |one absolute |multiple | | | |
|] | word | |or relocatab-| | | | {

| | |le expression| i | | |

| | jor two abso- | | | | |

| | |lute expres- | l 1 1 |
| | | I | sions: | | | | |
I R S o S N]
T L}
|* In a DS assembler instruction, C and X type constants may have length specification |
| to 65535. |
12 DOS Assembler D, 14K variant only. !

Appendix F:

(Part 1 of 2)

Summary of Constants 147

W i | L] L § T T i |

| LENGTH | | CON- | | TRUN- |

TYPE | IMPLIED MODI- | | STANTS RANGE | RANGE CATION/ |
AND | LENGTH ALIGN-| FIER |SPECIFIED | PER FOR EX- | FOR PADDING |
DELIM.| (BYTES) | MENT | RANGE | BY | OPERAND PONENTS | SCALE S1DE |
d L L 4 <+ 1 4 1

T T T T v 1

Y () i 2] half | 1 or 2 | an absolute |multiple | T left |
| word {expression | | |

| i t i | |

| 2 only |a relocatable] | |

| l. |]or complex | | | |

| | | relocatable | { | l

| | |expression I | 1 |

4 L L 4 4 L L. R 4

148

(Part 2 of 2)

C

Appendix G. Macro Facility Summary

The four charts in this appendix summarize
the macro facility described in Part 2 of
this publication.

Figure 18 indicates which macro facility
elements may be used in the name and

Figure 20 is a summary of the attributes
that may be used in each expression.

Figure 21 is a summary of the variable
symbols that may be used in each

. .
operand entries of each statement. expression.
Figure 19 is a summary of the
: .
expressions that may be used in macro
. .
instruction statements.
Variable Symbols
Attribut
Glabal SET Symbols Locol SET Symbols System Voriable Symbols ributes
Symbolic Sequence
Statement | Paorometer SETA SETB SETC SETA SETB SETC &SYSNDX | &SYSECT | &SYSLIST Type Length Scaling Integer Count Number Symbol
MACRO
Prototype Name
Statement Operand
GBLA Operand
GBLB Operand
GBLC Operand
LCLA Operond
LCLB Qperand
LaLc Operend
Model Name Name Name Name Nome Name Name Name Name Name Nome
Statement Operation | Operation | Operation [Operotion | Operation [Operation | Operation [Operation | Operation|Operation
Operand | Operand Operand | Operond | Operond | Operond Operand | Operand Operand [Operand
COPY Nome
SETA Name Name 3 5 P
Operand? | Operand Operand® | Operand® | Operand | Operand Operand” | Operand Operand' Operend [Operand Operand | Operand Operand
SETB Name Name 5 4 5 S 5 S 5
Operand® | Operand® | Operand | Operand® | Operond® | Operond | Operond® | Operand® | Operand® [Operand® | Operand® | Operand” | Operand® | Operand” | Operand” | Operand
SETC Nome o Nome
Operand Operand’ Operunds Operand Opemnd7 Operand Operand | Operand Operand |Operand Operond
AlF 4 5 5 5 5 5 Name
Operand® | Operand® | Operond | Operand® | Operand® | Operand Opel‘ﬂr\dé Operqndé Operond*|Operand® Operand® | Operand” | Operand! Operond” | Operand” |Operand” | Operand
AGO Name
Operand
ACTR Opemndz Operand Operunda Opemm!2 Operand | Operand3 Opemnd2 Operand Operandz Operand | Operand Operand | Operand | Operand
ANOP Name
MEXIT Name
MNOTE Operand | Operand | Operand | Operand | Operand |Operand | Operand |Operand [Operand [Operand Name
MEND Name
Quter Name Name Name Name Name Name Name
Macro Operand Qperand | Operand [Operand | Cperand Operand
Inner Name Name Name Name Name Nome Name Name Name Name Name
Macro Operand | Operand Operand | Operand | Operond [Operand Operand | Operand Operand [Operand
Assembler Name Nome Name Name Nome Name Nome
Language Operation | Operation | Operation | Operation | Operation | Operation
Statement Operand Operand | Operand | Operand | Operond Operand
1. Variable symbols in macro-instructions are replaced by their values before processing .
2. Only if value is self-defining term.
3. Converted to arithmetic +1 or 0.
4. Only in choracter relations.
5. Only in arithmetic relations.
6. Only in arithmetic or character relations.
7. Converted to upsigned number .
8. Converted to character 1 or 0.
9. Only if one to eight decimal digits,

Fiqure 18. Macro Facility Elements

Appendix G: Macro Facility Summary 149

r El v k) 1
|Expression |Arithmetic Expressions |Character Expressions |Logical Expressions |
b ¢ ¢ —mmmmmd {
|May |1. Self-defining terms |1. Any combination of 11. SETB symbols |
|contain |12. Length, scaling, } characters enclosed [2. Arithmetic relations?}
	integer, count, and	in apostrophes	3. Character relations2
	number attributes	2. Any variable symbol	
{3. SETA and SETB symbols]	enclosed in apos-		
	4. SETC symbols whose	trophes	
	value is 1-8 decimal	3. A concatenation of	
	digits	variable symbols and	
[5. Symbolic parameters	other characters	
	if the corresponding	enclosed in apos-	
	operand is a self-] trophes		
	defining term	4. A request for a type	
	6 &SYSLIST (n) if the	attribute	
	corresponding operand	} l	
i i is a selif-defining i			
]	term		
	7. &SYSLIST (n,m) if the		
	corresponding operand		
	is a self-defining		
]	term		
	8. ESYSNDX		
F + + 1 {			
Operators	+,~-,%, and /	concatenation , with a	AND, OR, and NOT
are	parentheses permitted	period (.)	parentheses permitted
1 L L 4]			
[3 T [] T 1			
Range	-23% to +231-1 10 through 127 (255 for	0 (false) orx	
Jof values		assembler F) characters.	1 (true)
L 4 L 4]			
T H 1 1			
{May be	1. SETA operands	1. SETC operands? 1. SETB operands	
used in	{2. Arithmetic relations	2. Character relations2?	2. AIF operands
	3. Subscripted SET	3. SETA operands*“	
	symbols		
	4. ESYSLIST I I l		
	5. Substring notation		i
	6. Sublist notation		
]	7. SETC operands {		
	8. ACTR operands	!	
. L 4 4 4			
{' An arithmetic relation consists of two arithmetic expressions related by the]			
operators GT, LT, EQ, NE, GE, or LE.			
2 A character relation consists of two character expressions related by the operator			
GT, LT, EQ, NE, GE, or LE. The type attribute notation and the substring notation]			
may also be used in character relations. The maximum length of the character H			
expressions that can be compared is 127 (255 for assembler F) characters. If the two]			
character expressions are of unequal length, then the shorter one will always compare			
less than the longer.			
2 Maximum of eight characters will be assigned.			
# If one to eight decimal digits. J			
t - _—
Figure 19. Expressions

150

r T T T
|Attribute|Notation|May be used with: |May be used only if|May be used in
| | |type attribute is:
b ¢ ¢ +
|Type i T® {Symbols outside | May always be 1. SETC operand
i | fmacro definitions; {used) fields
| | | symbolic parameters, | 2. Character |
| €SYSLIST (n), and | relations
| §SYSLIST (n,m) inside macro | (SETB)
| definitions | |
— : ¢ t 1
|Length | L' | Symbols outside |Any letter except |Arithmetic
| | |macro definitions; symbolic |M,N,0,T, and U |expressions
parameters, §SYSLIST (n), and			
§SYSLIST (n,m) inside macro			
		definitions]
b ¢ ! 4-- 1 {			
Scaling	Ss*	Symbols outside	4,F,G,D,E,K,L,P,
		macro definitions; symbolic	and 2
		parameters, §SYSLIST (n), and	
		6SYSLIST (n,m) inside macro	
		definitions]
L L L Nl 3			
r T T T T			
Integer	I’	Symbols outside	H4,F,G,D,E,K,L,P,
i		macro definitions; symbolic	and 2
		parameters, §SYSLIST (n), and	
[6SYSLIST (n,m) inside macro	
]		definitions	
b t t t 1			
Count	K*	Symbolic parameters	Any letter
		corresponding to macro	
		instruction operands, §SYSLIST	
		(n) , and &SYSLIST (n,m) inside	
		macro definitions	{
b ¢ b 1 1 {			
Number	N'	Symbolic parameters,	Any letter
]	§6SYSL1IST, and §SYSLIST (n)		expressions
1 | |inside macro definitions | I
L L N 4 1 1
Figure 20. Attributes

Appendix G:

Macro Facility Summary

151

Y S ¥ e s s 11 T T ’
=Varga?1e }Deflned by: }Inltlallzed, | Value changed |May be used in: }
symbo or set to: | by:] |
1 4 i 4 4
r " T -] X T T - {
|Symbolic! | Prototype |Corresponding | (Constant |1. Arithmetic expressionsi
|Parameter | statement Imacro ;nstxuctlonlthrgugh?ut | if-operand is self- i
{ | | operand |definition) | defining term]
! l ! 1 |2. Character expressions |
t t- . $ 1 ' '
| SETA IFCLA,or gBLA |0 |§ETA |1. Arithmetic expressions}
! |instruction l lznstruction |2. Character expressions |
r R T T + {
| SETB |PCLB or gBLB |0 I§ETB |1. Arithmetic expressions}
| |instruction | |instructions |2. Character expressions |
{ 1 1 l 13. Logical expressions |
H 1 T T) : |
| SETC IPCLC or GBLC |Null character | SETC [1. Arithmetic expressions}
| |instruction |value |instruction | if value is one to 1
i |] | | eight decimal digits |
! l ! l |2. Character expressions |
i T 1 ; T i 1 {
| §SYSNDX* | The assemblerl@acro instruction| (Constant |1. Arithmetic expressions}
	Jindex	throughout	2. Character expressions
]		definition;	
!		unique for	
[each macro	l
i _ ! l llnstruction) 1 !			
L) T ¥ R			
}GSYSECTG }The assembler’gon&iglhsection }(gonstant	Character expressions]		
in ich macro throughout			
		instruction	definition;
{ ; ;appears }gz;cby CSgCT,			
T, an			
I			START) []
t ———t + t 1 - {			
{ESYSLIST' {The assembler	Not applicable }Not applicable	N'§SYSLIST in arithmetic	
expressions			
[L L 4			
r T T=- T {			
€SYSLIST (n) * ‘	The assembler	Corresponding	(Constant Arithmetic expressions}
§SYSLIST (n,m) *		{macro instruction	throughout if operand is self-
		operand	definition) defining term
! !	Character expressions		
- v v T {
| $SYSPARM | The assembler]Yalue specified | (Constant Arithmetic expression i
| | |in the OPTION | throughout if value is one to]
! | lzep‘gpntrol | assembly) - eight decimal digits |
i l istatement 1 2. Character expressions |
F - |
|* May only be used in macro definitions.]
t
- J

Figure 21.

152

Variable Symbols

-

O

O

Appendix H. Dictionary and Source Statement Sizes

Part 1. Dictionaries Used in Macro Generation

A.

[—— o s i e S st G e S G o S Y

Dictionaries at Collection Time
Two or more dictionaries must be constructed to enable the macro
generator portion of the assembler to accomplish macro generation and
conditional assembly: a global dictionary and one or more local
dictionaries.
Global Dictionary
A glokal dictionary containing macro instruction mnemonics and global
SET variable names is built for the entire program. Dictionary entries
are fitted into blocks of fixed size, 256 bytes for Assembler (L) and
1024 Lkytes for Assembler (F)
Each block contains ccmplete entries. If an entry cannot fit into the
remainder of one block, it is put into the next bklock and bytes in the
remainder are not used. The sizes of various kinds of dictionary
entries are as follows:
|
Macro Mnemonic Operation Code| 10 bytes plus mnemonic! (Assembler F) |
8 bytes plus mnemonic! (Assembler [) |
|
Global SET Variable Name 6 bytes plus name" (Assembler F) |
8 bytes plus name" (Assembler T) |
(A dimensioned global SET variakle is |
counted only once) |
|
Fixed Overhead 8 bytes for first block |
| 4 bytes for each succeeding block |
| 5 bytes for last block |
L -1
* One byte is used for each character in the name or mnemonic. [
¥)

The maximum size of the global dictionary is 64 blocks. In addition,
the maximum number of distinct global symbols for the Assembler (D) is
400. (§SYSPARM is counted in the 14K variant.)

Local Dictiocnary

A local dictionary containing ordinary symbols relevant to macro
generation and conditional assembly, sequence symbols and local SET
variable names is constructed for the main portion of the program. In
addition, a local dictionary containing an entry for each local SET
variable name, sequence symbol and prototype symbolic parameter declared
within a macro definition is constructed for each different macro
definition used in the program. Cictionary entries are fitted into
blocks of fixed size, 256 bytes for Assembler (D) and 1024 bytes for
Assembler (F).

Each block contains complete entries. If an entry cannot fit into the
remainder of one block, it is put into the next block and bytes in the
remainder are not used. The sizes of various kinds of dictionary
entries are as follows:

Arpendix H: Dictionary and Source Statement Sizes

153

154

r

Sequence Symbol Names

Local SET Variable Names
|

Prototype Symbolic Parameters
|

|Relevant ordinary symbols
appearing in the main
portion of the program

Fixed Overhead

4

10
10

8

4
5

bytes plus name' (When defined.)
bytes plus name' (When first
referenced.)

bytes plus name' (A dimensioned local
SET variakle is counted only once.)

bytes plus name*

bytes plus name®*

bytes for first block (32 bytes if a
macro local dictionary)

bytes for each succeeding block
bytes for last block

!
l
b
I
L

' One byte is used for each character in the name or mnemonic.

SN SN —

The maximum size for the local dictionary is 64 klocks.

B. Dictionaries at Generation Time

‘::% To conserve storage during the actual conditional assembly and macro
generation, the contents of the Global Dictionary and Local Dictiomaries
are restructured as follows:

r 1
l |
| , [
{Global Dictionary |
| (N=dimension) |
.* i ‘:
|Fixed Overhead | 4 bytes plus word alignment i
| |
|Macro Mnemonic Operation Code 3 bytes |
| |
|Global SETA dimensioned 1 byte plus 4N [
| |
|Global SETA undimensioned 4 bytes |
Global SETB dimensioned	1 byte plus (N/8)
	[N/8 is rounded to the next
highest integer}	
Global SETB undimensioned 1 byte	
]Global SETC dimensioned 1 byte plus 9N 1	
Global SETC undimensioned	9 bytes
lL L {
: |

w |Local Dictionary
| (N=dimension)

f 7

|Fixed Overhead | 20 bytes plus word alignment

	for the F assembler
	27 bytes plus word alignment
.	for the D assembler
l '	

| Sequence Symbols |

| | S5 bytes (when the size of the

	dictionary (see below) is less than
	3000, only the first 40 symbols will
	require 5 bytes each)
Local SETA dimensioned	1 byte plus 4N
Local SETA undimensioned	4 bytes
Local SETB dimensioned	1 byte plus (N/8)
	[N/8 is rounded to the next
	highest integer]
'	
Local SETB undimensioned	1 byte
Local SETC dimensioned	1 byte plus 9N
Local SETC undimensioned	9 bytes
Relevant ordinary symbols	l
appearing in the main portion	
of the program (see Note)	5 bytes]
L L 5

Appendix H: Dictionary and Source Statement Sizes 155

156

Note: For the D assembler, only those ordinary symbols which appear in
macro instruction operands are included in this table; for the F
assembler, all ordinary symbols are included. As a result, the F
assembler may overflow the Local Dictionary before the D assembler.

The restructured Global Dictionary and the restructured local
Dictionary for the main portion of the program must be resident in main
storage.

In addition, if the program contains any macro instructions, main
storage is required for the largest Local Dictionary of the macro
definitions being processed. Furthermore, if any macro definitions
contain inner macro instructions, main storage is required for all the
restructured Local Dictionaries of all the macros in the nest.

In addition to those requirements specified above for the Local
Dictionary of the main portion of the program, each macro definition
Local Dictionary requires the following for the parameter table:

r T]
|Fixed Overhead | 22 bytes |
} i 4
| , l
|Table Entries |
t T i
a. Character string	3 bytes plus L
b. Hexadecimal, binary,	
decimal, and character	
self-defining values	7 bytes plus L
} ¢. Symbol [9 bytes plus L	
I	
d. Sublist [10 bytes plus 2N bytes plus Y	
I 4 - {	
I=Length of entry	
N=Number of entries in sublist	
Y=Total length of table entries of a., b., and c. formats	
t 4	
Each nested macro instruction also requires the following:	
r N T i . 1	
jParameter pointer iist	2 bytes plus 2N
I	
Pointers to list in table	8 bytes plus word alignment]
t L {	
N=the number of operands.	
i k]	
The size of the dictionary depends on the partition size and the	
assembler variant used. Maximum dictionary sizes for Assembler (D)	
variants in the smallest possible partitions are as follows (in bytes):	
r T T .	T 1
Partition size	10K
] i i
DOS Assembler (D) Variant	
t , . 1 + 1 }]	
10K with tape work files] 2050	3100
10K with disk work files	1500
I I I]
14K	- -
L L L e e e e L |

Part 2. Macro Mnemonic Table (D Assembler Only)

As the source text is scanned, a table of macro mnemonics is constructed. There is
an entry for each macro used or defined as a programmer macro in the program. The
entries are made under the premise that every undefined operation is a system macro
mnemonic. This table is then subsetted to locate and edit system macros from the
library.

An entry in this subsetted table consists of 9 bytes. With 10,240 or 14,336
contiguous bytes of main storage available (see "Machine Features Required®),
approximately 450 distinct macro mnemonics can be handled. When this table
overflows, processing continues with only those macros defined at that point. 1f
additional storage is available, this table is expanded accordingly.

Part 3. Source Statement Complexity—-Conditional Assembly and Macro Generation

For any statement except macro prototype or macro instructions, a counter is
increased by one for each literal occurrence of the following:

1. Ordinary Symbol

a. Name, operation, or operand entry (when the operand count starts, the
counter is decremented by one), or

b. Operand of an EXTRN or WXTRN statement, or

c. Operand of an attribute operator (L',T',1', etc.) in a SETA, SETB or SETC
expression, or

d. Operand of a machine or assembler instruction (only if in the main portion
of the program)

2. Variable Symbol
3. Sequence Symbol

Note 1: The maximum value the counter may attain is 35 for the D assembler and 50
for the F assembler.

Note 2: This restriction applies to the name and operation entry of a macro
instruction or prototype taken as a unit. Each macro instruction or prototype
operand (in sublist, each sublist operand) is also subject to the counter
restriction.
Examples of counts:

1. §&B2 SETB (T'NAME EQ'W' OR 'PC'.'A' EQ'AA') count=3

2. EXTRN A, B, C, &§C count=4

Part 4. Source Statement Complexity-Assembler Statements

A. D_Assembler
With 10,240 or 14,336 contiguous bytes of main storage available (see "Machine
Features Required"), the size of any statement must be less than a certain limit.
This limit is:
1. 727 bytes for DC or DS statements.
2. 743 bytes for all other statements.

Appendix H: Dictionary and Source Statement Sizes

157

There are two formulas used to estimate the size (in bytes) of a statement.
The greater of the two calculated values (S, or S;) determines whether the
statement is less than the given limit. In general, all statements can be d::®
processed if they contain 50 or fewer terms. If a statement contains more than
50 terms, the formulas should be used to determine if the statement can be
processed, or if the statement should be shortened using EQU assembler
instructions. (In the example for S,, if A+ (B-C) *#3 were equated to a symbol,
that symbol could be used as the displacement field of the first operand.) The
formulas for statement size, S, and S,, follow.

Sq = Ny + Npy + ll(NLS + NSD) + 6(NS + NL)

Ng = the total number of bytes in name, operation, operand, and comments
entries. (The maximum value of Np is 187.)

N, = the number of operators and delimiters in the operand entry [except
equal (=), period (.). and apostrophe ('}].

N;g = the number of references to length attribute (L'SYMBOL).

= the number of self-defining terms.

2
2}
o

l

Ng = the number of symbolic terms (including #).

Np, = the number of literal operands. (The maximum is 1.)
Example:
NAME MVC A+ (B-C) #3(L'D,5) ,=15CLS"ABCDEFG "

Sq=39+9+4 (1+4) +6 (3+1)
=92 bytes

0
N
1
2
+

g+t 9(We + Wa +oueeeoo+ Wy + Np) + Ngp

/‘:(A\

Np = the total number of bytes in name, operation, operand, and comments
entries. (The maximum value of Ng is 187) .

We + W,......+Wit§ a weight associated with the 1st, 2nd,
ceesescesgl expression.

Wi = 1, if the expression is:

a. absolute,

b. simply relocatable, or

c. in error.
If the expression is complexly relocatable, W; depends on the number of
unpaired control section numbers (Nggp) -

r i 1

%NESD LWy 'I
]

|1 |1
|2, 3, 4, OR 5 1 2 |
|6, 7, 8, OR 9 13]
|10, 11, 12, OR 13 | 4 |
|14, 15, OR 16 1 5 1
L 1 a

Ng = the number of expressions.

Ngp = the number of expression delimiters.

The rules for counting the number of expressions (Np) and the number of
expression delimiters (Ngp) are:

1. Expression delimiters are commas and the terminating blank of an operand.
2. Left and right parentheses can be part of an expression or can be
expression delimiters. A left or right parenthesis is an expression
delimiter if it ends an expression. Otherwise, it is part of an expression.

158

Example 1: The operand is:

5,6,A+20%B (6,7)

The expression delimiters are the three commas, the left parenthesis (1. the
right parenthesis [)], and the terminating blank.

The first, second, fourth, and fifth expressions all have a weight of 1. The
third expression in the operand [A+20*B] has a weight of 1 (either B is absolute,
making the result absolute or simply relocatable or, B is relocatable so the
expression is in error.

Sa2

NB+9(W14’Wz+W3+W»4+W5#NE) +NED

Sa2 Ng +9(1+1+1+1+14+5) +6
Sa = N + 96 bytes

Example 2: The operand is:
A+17% (C-D) , (A+20)

The number of expressions (Np) is 2. The

second expression is (A+20)

The first expression is A+17% (X-D) .
The number of expression delimiters (Ngp) is 2 (the comma and the terminating
blank) .
Example 3: The operand is:
20 (,3) ,16 (5)

There are 5 expressions and 7 expression delimiters.

Expression 1 = 20 Expression Delimiter 1 = (
Expression 2 = 5 Expression Delimiter 2 = ,
Expression 3 = 3 Expression Delimiter 3 =)
Expression 4 = 16 Expression Delimiter 4 =,
Expression S = 5 Expression Delimiter 5 = (
Expression Delimiter 6 =
Expression Delimiter 7 = blank

B. F Assembler

1. Generated statements may not exceed 272 characters. Statement length
includes name, operation, operand, and comments. If a comments field
exists, the blank separating the operand and the comments field is included
in the statement length. The statement is truncated if it exceeds 272
characters.

2. DC, DS and literal DCs cannot contain more than 32 operands per statement.

Part 5. Print Control Statement Listing Restrictions

TITLE, SPACE and EJECT statements will not appear in the source listings unless the
statement is continued onto another card. Then the first card of the statement will
be listed. 1f any of these three statements are generated by macro expansion, they
will not be listed (regardless of continuation) if the current PRINT option is NOGEN.

Appendix H: Dictionary and Source Statement Sizes 159

Appendix I. Sample Program and Assembler Listing Description

The assembler listing consists of five The following sample program illustrates
sections, ordered as follows: external an actual assembler listing. Several
symbol dictionary items; the source and errors have been included to show their
object program statements; relocation effect on an assembly.

dictionary items; symbol cross-reference
table; and diagnostic messages.

Given:

1. A TABLE with 15 entries, each 16 bytes long, having the following format:

r T T T 1
| NUMBER of items | SWITCHes | ADDRESS] NAME |
L

3 bytes 1 byte 4 bytes 8 bytes

2. A LIST of items, each 16 bytes long, having the following format:

r - T y T
| NAME | SWITCHes NUMBER of items | ADDRESS

.]

8 bytes 1 byte 3 bytes 4 bytes

Find: Any of the items in the LIST which occur in the TABLE and put the SWITCHes,
NUMBER of items, and ADDRESS from that LIST entry into the corresponding TABLE entry. ,
If the LIST item does not occur in the TABLE, turn on the first bit in the SWITCHes byte C;;D

of the LIST entry.

The TABLE entries have been sorted by their NAME.

160

O

(:) (:) (:) (:> (:) (:) EXTERNAL SYMBOL DICTIONARY PAGE 1
SYMBOL TYPE ID ADDR LENGTH LD 1D
PC 01 000000 0001CO
SEARCH LD 000026 01
EXTERNAL SYMBOL _DICTIONARY (ESD) * This column contains symbols that
L . appear in the name field of CSECT or
This section of tpe }1st1ng.conta1n§ the START statements, as operands of
external symbol dictionary information ENTRY, EXTRN, and WXTRN statements, or
passed to the linkage editor in the object in the operand field of V-type address

module. The entries describe the control
sections, external references, and entry
points in the assembled program. There are ; v’
five types of entries, shown along with ghg‘tagle.. The type designators are
with their associated fields. The circled etined as:

numbers refer to the corresponding heading SD--names section definition. The
in the sample listing. symbol appeared in the name field

of a CSECT or START statement.

2 This column contains the type
designator for the entry, as shown in

LD--The symbol appeared as the
operand of an ENTRY statement.

ER--external reference. The symbol
appeared as the operand of an
EXTRN statement, or was defined

; T T T T —T } as a V-type address constant.

| | 2 121 « | s | € | PC--unnamed control section

|SYMBOL| TYPE| 1D| ADDR| LENGTH| LDID | definition.

b e e + {

[X | Sb|1 x| X | X | - | CM--common control section

t + +-—=t P ! definition.

| x | b |- X | - | X

t + t---+ -t WX--weak external reference. The

| X | ER| X | - | - | - symbol appeared as the operand of
t + +-—-+ t t a WXTRN statement.

| - | eClX| X | X | = |

b + + + + { .| 3 This column contains the external

| - | cM | X | X | X | - | symbol dictionary identification

*— f i i T—— T 1 number (ID). The number is a unique
| X ' WX | X - - | - l two digit hexadecimal number
r====s========---L-.!—-—e. ————————————— : identifying the entry. It is used by
|The X indicates entries accompanying | the LD entry of the ESD and by the
|each type designation. ! relocation dictionary to cross

L

reference to the ESD.

Appendix I: Sample Program and Assembler Listing Description 161

@
EXAM SAMPLE PROGRAM PAGE (:) 1 s
(9) (19
LOC O0BJECT CODE ADDR1 ADDRZ2 STMT SOURCE STATEMENT DUS CL3-0 09/46/7067
2 (X E XSRS T RS RS SRS R SR RS R S X X R R R R R RS R 2222 RS SRS X R 3 SAM@OU[
R THIS IS THE MACRO DEFINITION * SAMPLOO2
4 HERRRER R RN R BB AR ER RN GBI R R AR BB R AR R AR R BRR ARG R IR R R RO A RNt nnuns SAMPLOO3
5 MACRO SAMPLOV4
6 MOVE &T0,EFROM SAMPLOOY
T o SAMPLOOG
8 .+ DEFINE SETC SYMBOL SAMPLOOT
9 % SAMPLOOY
10 LCLC &TYPE SAMPLOOY
11 .+ SAMPLOLU
12 .» CHECK NUMBER OF OPERANDS SAMPLOL L
13 . SAMPLOL2 .
14 AIF (N'&SYSLIST NE 2).ERROR! SAMPLOL3
15 .« SAMPLOL 4
16 o CHECK TYPE ATTRIBUTES OF OPERANDS SAMPLOLS
17 .= SAMPLOL G
18 AIF {T'&T0O NE T*E&FROM).ERROR2 SAKPLOL?
19 AIF (T'4TO EQ *C*-OR T'E&TO EQ 'G* OR T'ETO EQ'K*).TYPECGK SAMPLOLE
20 AIF (T'6T0 EQ 'D* OR T'E&TO EQ *E* OR TYETO EQ*H').TYPEDEH SAMPLOL9
21 AIF (T'6TO EQ 'F').MOVE SAMPLO20
22 AGO .ERROR3 SAMPLG21
23 .TYPEDEH ANOP SAMPLO22
24 o SAMPLO23
25 . ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL SAMPLOZ4
26 o% SAMPLO2S
21 &TYPE SETC TreT0 SAMPLO26
28 .MOVE ANOP SAMPLO2
29 » NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO SAMPLOZH
30 LETYPE 24 EFROM o SAMPLO2Y
31 STETYPE 2,870 SAMPLO 30
32 MEXIT SAMPLO3L
33 . SAMPLO 32
34 .e CHECK LENGTH ATTRIBUTES OF OPERANDS SAMPLO33
35 % SAMPLO34
36 TYPECGK AIF (L'ETO NE L'EBFROM OR L'6TO GT 2561).ERRURSG SAMPLO3b
#ue® ERROR ex»s
37 » NEXT STATEMENT GENERATED FGR MOVE MACRO SAMPLO36
38 MVC &T0,EFROM SAMPLO3T .
39 MEXIT SAMPLO S N
40 o SAMBLO3Y \
41 o ERROR MESSAGES FOR INVALID MUVE MACRO INSTRUCTIONS SAMPLO4G <tc,JV
42 % SAMPLO4L
43 JERRORL MNDTE 1,'IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERATED' SAMPLO4Z
44 MEXIT . SAMPLO4 S
45 JERROR2 MNOTE 1,°'OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED® SAMPLO44
46 MEXIT SAMPLO4Y
47 .ERROR3 MNOTE 1,°IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED® SAMPLO46
48 MEXIT ' SANMPLO4GT
49 .ERROR4 MNDTE 1, °*IMPROPER DPERAND LENGTHS, NU STATEMENTS GENERATED® SAMPLO4 3
50 MEND SAMPLO4S
“ The column contains the address of the SOURCE AND OBJECT PROGRAM
symbol (hexadecimal notation) for SD
and LD type entries, and zeros for ER
and WX type entries. For PC and CM This section of the listing.documents the .
type entries, it indicates the source statements and the resulting object
beginning address of the control program.
section.
7 This is the deck identification. It
s This column contains the assembled is the symbol that appears in the name -

length, in bytes, of the control field of the first TITLE statement.
section (hexadecimal notation) .

o This is the information taken from the
b This column contains, for LD type operand field of a TITLE statement.
entries, the identification (ID)
number assigned to the ESD entry that
identifies the control section in ® Listing page number.
which the symbol was defined.
10 This column contains the assembled
address (hexadecimal notation) of the
object code.

162

@

EXAM SAMPLE PROGRAM PAGE 2
LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT DOS CL3-0 09/%?{67
52 RESRERRRRRRARBRNRGAVERRRRBRNERAFRARBRQERERBIRARAARFRBRRGRBARRARN SRRt ne SAMPLOSO
53 « MAIN ROUTINE * SAMPLOS1
54 BRBBRER AP RRR RO RR AR BB R RR RN BB ENB AR RN BB R RERRBRBRRIRRARRREERAERERRRERD SAMPLOsz
000000 55 CSECT SAMPLOS53
56 ENTRY SEARCH SAMPLOS4
000000 05CO 57 BEGIN BALR R12,0 ESTABLISH ADDRESSABILITY OF PROGRAM SAMPLOSY
000002 58 USING #,R12 AND TELL THE ASSEMBLER SAMPLOSE
000002 9857 ClAé 001A8 59 LM RSyRTy=A(LISTAREA,16,LISTEND) LOAD LIST AREA PARAMS SAMPLOSY
000000 60 USING LIST4RS REGISTER 5 POINTS TO THE LIST SAMPLOS8
000006 45E0 C024 00026 61 MORE BAL R144SEARCH FIND LIST ENTRY IN TABLE SAMPLOS9
00000A 9180 C022 00024 62 ™ SWITCHNONE CHECK TO SEE IF NAME WAS FOUND SAMPLO6O
00000E 4710 CO18 00014 63 80 NOTTHERE BRANCH IF NOT SAMPLOGL
400000 64 USING TABLE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY SAMPLNG2
65 MOVE TSWITCH,LSWITCH MOVE FUNCTIONS SAMPLOG63
#se ERROR #»s
66 1+ IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED
67 MOUE TNUMBER,LNUMBER FROM LIST ENTRY
wen ERROR #ne
68 MOVE TADDRESS,LADDRESS TO TABLE ENTRY SAMPLO69
69+n NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO
000012 5820 500C 0000C 70+ L 2,LADDRESS
000016 5020 1004 00004 71+ ST 2y TADDRESS
00001A 9680 5008 00008 72 NOTTHERE 01 LSWITCH,NONE TURN ON SWITCH IN LIST ENTRY SAMPLO S
00001E 8756 COO04 00006 73 BXLE RS5,R6,MORE LOOP THROUGH THE LIST SAMPLOT6
T4 EOJ END OF PROGRAM, USER LIBRARY MACROD SAMPLOT7
75+# 360N-CL-453 EOJ CHANGE LEVEL 3-0
000022 OAQE 76+ svC 14
000024 77 SWITCH DS X SAMPLOTS
000080 78 NONE EQU Xv80¢* SAMPLOT79
TO 4Rt st R RN AR R RN R R RN RN R RN AR RN R ARA G RARTRNARBRBREREA NN RR RN nenny SAMPLOBO
80 » BINARY SEARCH ROUTINE * SAMPLOS8]
8] BERRR R R R RAR AR R RN NG R B ERT ARG ERRRN AR RRARR R A RS RRRRERRDRBRERNRRRERE RN SANPLOﬂz
000025 00
000026 947F C022 00024 82 SEARCH NI SWITCH,255-NONE TURN OFF NOT FOUND SWITCH SAMPLOB3
00002A 9813 C1B2 00184 83 LM RLsR3,=F'128,4,128"* LOAD TABLE PARAMETERS SAMPLQB4
00002 4111 CO46 00048 84 LA R1, TABLAREA-16(R1) GET ADDRESS OF MIDDLE ENTRY SAMPLOBYS
000032 8830 0001 00001 85 LOOP SRL R3,1 DIVIDE INCREMENT BY 2 SAMPLOBG
000036 D507 5000 1008 00000 00008 86 cLe LNAME, TNAME COMPARE LIST ENTRY WITH TABLE ENTRY SAMPLO87
00003C 4720 CO4A 0004C 87 BH HIGHER BRANCH IF SHOULD BE HIGHER IN TABLE SAMPLOSBS
000040 OTS8E 88 BCR ByR 14 EXIT IF FOUND SAMPLOBY
89 SR R1¢R3 OTHERWISE IT IS LOWER IN THE TABLE XSAMPLO9O
000042 1813 SO SUBTRACT INCREMENT SAMPLOY1
000044 4620 C030 00032 90 MORE BCT R2,L00P LOOP 4 TIMES SAMPLO92
#as ERROR nes
000048 47F0 CO50 00052 91 8 NOTFOUND ARGUMENT IS NOT IN THE TABLE SAMPLOY 3
00004C 1A13 92 MIGHER AR R14R3 ADD INCREMENT SAMPLO94
Q0004E 4620 C030 00032 93 BCT R2,L00P LOOP 4 TIMES SAMPLO9S
000052 9680 €022 00024 94 NOTFOUND OI SWITCHNONE TURN ON NOT FOUND SWLTCH SAMPLO9I6
000056 OTFE 95 BR R14 EXIT SAMPLOI7
" This column contains the object code 12 These two columns contain effective
produced by the source statement. The addresses (the result of adding
entries are always left-justified. together a base register value and
The notation is hexadecimal. Entries displacement value) :

are machine instructions or assembled

constants.

Machine instructions are

printed in full with a blank inserted
after every four digits (two bytes).
Constants may be only partially
printed (see the PRINT assembler

instruction in

Statements") .

Appendix I1:

"Assembler Instruction

1. The column headed ADDR1 contains
the effective address for the
first operand of an SS or an SI
instruction.

2. The column headed ADDR2 contains
the effective address of the
second operand of any instruction
referencing storage.

Both address fields contain six
digits; however, if the high order
digit is a zero, it is not printed.

Sample Program and Assembler Listing Description 163

EXAM SAMPLE PROGRAM ’ PAGE 3 0]
LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT DOS CL3-0 09/@/61
97 «» SAMPTO99
98 = THIS IS THE TABLE SAMPL100O
99 SAMPL1O1
000058 100 DS oD SAMPL102
000058 0000000000000000 101 TABLAREA DC XL8%0! SAMPL103
000060 C1D3D7C8C1404040 102 oC CLB'ALPHA® SAMPL104
000068 0000000000000000 103 oC XL80* SAMPL 105
000070 C2CS5E3C140404040 . 104 oC CLB'*BETA’ SAMPL 106
000078 0000000000000000 105 ocC xLato* SAMPLIOY
000080 C4CSD3E3C1404040 106 DC CL8*DELTA? SAMPL108
000088 0000000000000000 107 bC XLgro* SAMPL 109
000090 CSDTE2C9D3D6D540 108 DC CL8'EPSILON! SAMPLLIO
000098 0000000000000000 109 ocC XLsto* ’ SAMPLILLL
0000A0 CSE3C14040404040 110 oC CL8'ETA? SAMPL1LZ
0000A8 0000000000000000 111 oC - XL8to* SAMPL113
€00080 C7C1D4D4C1404040 112 DC CL8*GAMMA" SAMPLILS
000088 0000000000000000 113 DC XLato°* SAMPLILS
0000C0 C9D6E3CL140404040 114 oC cLerioTar SAMPLLLG
0000C8 0000000000000000 115 oC XL8¢0°* SAMPLLLY
0000D0 D2C1D7D7C1404040 116 bC CLB*KAPPA! SAMPLI1LS
000008 0000000000000000 117 DC XL8'0°* SAMPLI19
COO00EQ D3C1D4C2C4C14040 118 oc CL8'LAMBDA" SAMPLL20
0000E8 0000000000000000 119 oC XL80°* SAMPLL21
0000F0 D4E4404040404040 120 oC cLaMye SAMPLLZ2
0000F8 0000000000000000 121 oC XL8to¢* . SAMPLL23
000100 D5t4404040404040 122 bcC CLB*NU* SAMPL1Z24
000108 0000000000000000 123 oC XLg'o* SAMPL12%
000110 D6D4C9IC3DID6DS40 124 oC CLB'OMICRON® SAMPL126
000118 F040404040404040 12% oC cLsro* SAMPLL27T
000120 D7C8C94040404040 126 DC CLBPHIY SAMPLL28
600128 0000000000000000 127 nc xLs*o* SAMPLYZY
000130 E2C9C7D4C1404040 128 ocC CLB'SIGMA® SAMPL 130
€00138 0000000000000000 129 nC XL80¢* SAMPL131L
000140 £9C5E3C140404040 130 DC CLB'ZETA" SAMPL 132
131 = SAMPL1L33
132 » THIS 1S THE LIST SAMPL] 34
133 » SAMPL 135
000148 D3C1D4C2C4C14040 134 LISTAREA DC CL8*LAMBDA" : SAMPLI1 36 .
00015C 0A . 1358 bC Xt0A* SAMPLLST \
000151 000010 136 DC FL3v29°" SAMPL Y 3H !
000154 00000000 137 [+]9 A{BEGIN) SAMPL 139 .
000158 E9CS5E3C140404040 138 ocC CLB*ZETA" SAMPL 140
000160 05 ’ 139 oc X'05¢ SAMPL14)
000161 000005 140 oc FL3¢5¢ SAMPL 142
000164 00000032 141 oC ALLOUP) SAMPL143
000168 E3CBCS5E3C1404040 142 DC CLB'THETA® SAMPL144
000170 02 143 0C X102* SAMPL14S
000171 o00002C 144 oC FL345¢" SAMPL LGSO
000174 00000000 145 Dc A(BEGIN) SAMPL 147
000178 E3C1E44040404040 146 oC CL8*TAU* SAMPL148
000180 00 147 bC X*00°* SAMPL149
'3 This column contains the statement instrgction, and_macro .
number. A plus sign (+) to the right definitions submitted with the
of the number indicates that the main program for.assembly.
statement was generated as the result Listing control instructions are
of macro instruction processing. The not pr}nted, except for.the.
maximum statement number is 65,535. following case: ?RINT is listed
1f there are more than 65,535 when PRINT ON is in effect and a
statements, the statement number PRINT statement is encountered.
wraps-around.
14 This column contains the source b. Macro definitigns for system
program statement. The following macro instructions are not
items apply to this section of the listed.
listing:
c. The statements generated as the
a. Source statements are listed, result of a macro imstruction
including those brought into the follow the macro instruction in
program by the COPY assembler the listing.

164

@ ®
& EXAM SAMPLE PROGRAM) PAGE 4
LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT DUS CL3-0 09/16/67
000181 000000 148 oC FL3'0* SAMPL150
000184 00000001 149 oC AlLl) SAMPLLS1
000188 D3C9E2E340404040 150 oC CL8'LIST? SAMPL152
000190 151 oC X*1G* SAMPL153
#ne ERROR wew
000190 0001C8 152 DC FL3'456" SAMPL L 54
000193 00
000194 00000000 153 DoC A(Q) SAMPL 155
000198 C1D3D07C8C1404040 154 LISTEND DOC CL8*ALPHA? SAMPL1b6
0001A0 00 155 oC Xt00* SAMPLLS !
0001Al 000001 156 ocC FL31? SAMPL158
0001A4 00000078 157 oc A(123) SAMPL 159
158 = SAMPL160
159 +« THESE ARE THE SYMBOLIC REGISTERS SAMPL161
160 SAMPL162
000001 161 R1 EQU 1 SAMPLL163
000002 162 R2 EQU 2 SAMPL164
000003 163 R3 EQU 3 SAMPL1GS
000005 164 RS EQU 5 SAMPL1GO
000006 165 R6 EQU 6 SAMPLLG/
000007 166 R7 EQU 7 SAMPL168
00000C 167 R12 €QU 12 SAMPL169
00000€E 168 R14 EQU 14 SAMPLLTO
169 # SAMPLLTL
170 = THIS 1S THE FORMAY DEFINITION OF LIST ENTRIES SAMPILLT2
171 = SAMPLL 73
€00000 172 LIST DSECT SAMPLLT4
000000 173 LNAME DS cLs SAMPLLTS
000008 174 LSWITCH DS C SAMPL176
000009 175 LNUMBER DS FL3 SAMPLLTT
00000C 176 LADDRESS DS F SAMPLLT38
177 » SAMPL1T79
178 = THIS IS FORMAT DEFINITION OF TABLE ENTRIES SAMPL1BO
179 = SAMPL I8
000000 180 TABLE OSECT SAMPLL82
¢00000 181 TNUMBER DS EL3 SAMPL183
000003 182 TSWITCH DS c SAMPL L84
000004 183 TADDRESS DS F SAMPLLBY
caooo0s8 184 TNAME (3 cL8 SAMPL1B6
€C0000 185 END BEGIN SAMPL 187
0001A8 0000014800000010 186 =A(LISTAREA,164LISTEND)
000184 0000008000000004 187 =F'128,4,128"

d. Assembler or machine instructions
in the source program that
contain variable symbols are
listed twice: as they appear in

message only. An MNOTE indicator
does not appear in the diagnostic
section of the listing.

the source input, and with values h. When an error is found in a
substituted for the variable programmer macro definition, it
symbols. is treated like any other

assembly error: the error
indication appears after the
statement in error, and a
diagnostic is placed in the list
of diagnostics. However, when an
error is encountered during the
expansion of a macro instruction

e. Diagnostic messages are not
listed inline in the source and
. object program section. An error
indicator, ***ERROR**#¥, appears
following the statement in error.
The message appears in the

- diagnostic section of the (system or programmer defined),
listing. the error indication appears in

place of the erroneous statement,
f. MNOTE messages are listed inline which is not listed. The error

in the source and object program
section.. An MNOTE indicator
appears in the diagnostic section
of the listing. The MNOTE
message format is: severity
code, message text.

The MNOTE * form of the MNOTE
statement results in an inline

Appendix I:

Sample Program and

indication appears following the
last statement listed before the
erroneous statement was
encountered, and the associated
diagnostic message is placed in
the list of diagnostics,

Literals will appear in the
listing following an LTORG or the

Assembler Listing Description 165

166

in normal statement format,
Because of this, it is possible
for a generated statement to
occupy two or more continuation
lines on the listing. This is
unlike source statements which
are restricted to one
continuation line.

RELOCATION DICTIONARY PAGE 1
@
POS. ID REL.ID FLAGS ADDRESS
ol ol ocC 000154
ol (D3 ocC 000164
ol o1 oc 000174
ol ol ocC 0001A8
ol 01 ocC 000180
END statement or both. Literals s This field indicates the assembler
are identified by the equals () level and version number, e.g., DOS
sign preceding them. CL2-1 reads as DOS assembler level 2,
version 1.
j. If the END statement contains an
operand, the transfer address 16 Current date obtained from SET card.
appears in the location column
(LOC) . 17 Identification-sequence field from the
source statement.
k. In the case of COM, CSECT, and
DSECT statements, the location
field contains the beginning
address of these control sections
i.e., the first occurrence.
1. For a USING statement, the
location field contains the value RELOCATION DICTIONARY
of the first operand.
This section of the 1listing contains the
m. For LTORG and ORG statements, the relocation dictionary information passed to
location field contains the the linkage editor in the object module.
location assigned to the literal The entries describe the address constants
pool or the value of the ORG in the assembled program that are affected
operand. by relocation.
n. For an EQU statement the location
field contains the value 8 This column contains the external
assigned. symbol dictionary 1D number assigned
to the ESD entry that describes the
o. Generated statements always print control section in which the address

constant is used as an operand.

19 This column contains the external
symbol dictionary 1D number assigned
to the ESD entry that describes the
control section in which the
referenced symbol is defined.

N

A

)

P

20

The two-digit hexadecimal number in
this column is interpreted as follows:

First Digit--a zero indicates that the
entry describes an A-type, a Y-type,
or a CCW address constant;

Second Digit--the first three bits of 21
this digit indicate the length and

sign of the address constant as

follows:

Bits 0 and 1 Bit 2
+

00 = 1 byte 0=
01 =2 bytes 1= -
10 = 3 bytes

11 = 4 bytes

This column contains the assembled

address of the field where the address

constant is stored.

Appendix I: Sample Program and Assembler Listing Description

167

@ @ @

SYMBOL LEN VALUE

BEGIN 00002 000000
HIGHER 00002 00004C
LADDRESS 00004 00000C

LIST

00001 000000

LISTAREA 00008 000148
LISTEND 00008 000198
LNAME 00008 000000
LNUMBER 00003 000009

LOoOP

00004 000032

LSWITCH 00001 000008

MORE
MORE
NONE

00004 000006
00004 000006
00001 000080

NOTFOUND 00004 000052
NOTTHERE 00004 00001A

R1
R12
R14
R2
R3
RS
R6
R7

00001 000001
00001 00000C
00001 00000E
00001 000002
00001 000003
00001 000005
00001 000006
00001 000007

SEARCH 00004 000026
SWITCH 00001 000024
TABLAREA 00008 000058
TABLE 00001 000000
TADDRESS 00004 000004
TNAME 00008 000008
TNUMBER 00003 000000

TSWI

TCH 00001 000003

&)

DEFN

00057
00092
00176
00172
00134
00154
00173
00175
00085
00174
00061
00090
00078
00094
00072
00161
00167
00168
00162
00163
00164
00165
00166
00082
00077
oolo01
00180
00183
00184
00181
o082

0137
0087
0070
0060
0059
0059
0086

0090
0072
0073

0062
0091
0063
0064
0057
0061
0090
0083
0059
0073
0059
0056
0062
0084
0064
0071
0086

0145

0186
0186

0093

0072

0083
0058
0088
0093
0085
0060

0061
0082

CROSS-REFERENCE

o185

0l41

0082 0094

PAGE

0084 0084 0089 0092

89 0092
73

0094

3

CROSS-REFERENCE

This section of the listing information
concerns symbols--where they are defined
and used in the program.

22

23

16

8

This column contains the symbols.

This column states the length (decimal
notation), in bytes, of the field
occupied by the symbol value.

This column contains either the
address the symbol represents, or a
value to which the symbol is equated.

This column contains the statement
number of the statement in which the
symbol was defined.

26 This column contains the statement
numbers of statements in which the
symbol appears as an operand.

The following notes apply to the
cross-referencing section:

o Symbols appearing in V-type address
constants do not appear in the
cross-reference listing.

L A PRINT OFF listing control
instruction does not affect the
production of the cross-reference
section of the listing.

o Undefined symbols appear in the
cross-reference section. However,
only the symbol column and the
reference column have entries.

EXAM

@

STMT ERROR CODE MESSAGE
36 1JQ073 ILLEGAL NAME FIELD
65 1JQ059 UNDEFINED SEQUENCE SYMBOL
66 1JQ037 MNOTE STATEMENT
67 . 1JQO8s UNDEFINED OPERATION CODE
90 1J4Qo23 PREVIOUSLY DEFINED NAME
151 1JQ039 INVALID DELIMITER

6 STATEMENTS FLAGGED IN THIS ASSEMBLY

DIAGNOSTICS

PAGE 1

DIAGNOSTICS

This section contains the diagnostic
messages issued as a result of error
conditions encountered in the program.

Explanatory notes for each message are

contained in Appendix N.

27 This column contains the number of the

statement in error.

28 This column contains the message
identifier.

29 This column contains the message.

The following notes apply to the
diagnostics section:

1J9

1JY

XXX

TwWO
the

An MNOTE indicator of the form MNOTE
STATEMENT appears in the diagnostic
section, if an MNOTE statement is
issued by a macro instruction. The
MNOTE statement itself is inline in
the source and object program section
of the listing.

A message identifier consists of six
characters and is of the form:

1J0xxx

IJYxxx

Appendix I:

Sample Program and Assembler Listing Description

identifies the issuing agent as
DOS/TOS D assembler.

identifies the issuing agent as
DOS F assembler.

is a unique number assigned to the
message.

statistical messages may appear in
listing. They are:

A message indicating the total
number of statements in error. If
no statements are in error, the
message

NO STATEMENTS FLAGGED IN THIS
ASSEMBLY

is printed following the
Cross-Reference section and no
diagnostic section is printed.

A message if one or more Y-type
address constants appear in the
program.

AT LEAST ONE RELOCATABLE Y-TYPE
CONSTANT 1IN ASSEMBLY.

This message if issued, appears
before the diagnostic section.

169

Appendix J. Assembler Language-~Features Comparison Chart

Features not shown below are common to all assemblers. In the chart:

= Not allowed.
X = As defined in 1BM Operating System/360 Assembler Lanquage, GC28-6514.

Op(s)= Operand (s) .

r T L) T L L] T 1
| | | }7090,/7094] | | 05/360 |
| |Model 20 | BPS/360: | Support |BPS 8K Tape|DOS,TOS | Assembler |
{Feature jBasic jBasic |Package |BOS 8K Disk|D Assem~| DOS F |
| |Assembler |Assembler |Assembler|Assemblers |blers | Assembler |
b= et + t } 1 + {
No. of Continuation	0	0	0	1 I] 2		
Cards/Statement						
(exclusive of macro						
instructions)]	
L 4 i N 4 4 4 <4 y						
L} T T) k] T T						
Input Character	EBCDIC	EBCDIC	BCD	EBCD1C	EBCDIC	EBCDIC
Code			EBCDI1C			
[R }+ I 4 4 4 4						
) T T T l T L 1						
ELEMENTS :						
[R L 4 4 4 4 4 4						
L} . T T T 6l T T 1						
Maximum Characters	4	6	6	8 18	8	
per symbol I I	I I					
L 'y 4 4 4 4 4 K						
L} T T T Ll T T L}						
Character	1 Char only} 1 Char only	X X	X	X		
self-defining terms						
i L 1 4 4 4						
L . . T T T T T h] b						
Binary self-defining	- -	- -	- -	X 1X	X	
terms I !	I		!			
{ [il + 4 4 4 1 5]						
13 . T T T T T T 1						
Length attribute	- -	- -	- -	X 1X	X	
reference]			
8 N L 4 4 4	b					
T . T T T T T h] 1						
Literals	- -	- - =~ -	X 1X	X		
L i 4 4 4 4						
v R T T T T 1						
Extended mnemonics	- - - -	X	X X	X		
F ¢ S ey 1 3 i						
Maximum location	214-1	29¢-1	224-1	224-1 j224-1	234-1	
counter value		i				
[R L L 4 4 | 4
H ’ r T T T T T
Multiple Control - - |- - - - X 1X | X
Sections per |] |
assembly | l i

i

T
EXPRESSIONS: |

4

4
|Operators I+ - | +-* [+=%/ [+-%/ [+-%/ | +-*/ |
t N L 4 4 4 4 4
v T T L T T 1
|Number of terms |3 |3 |16 13 116 { 16 |
t L 4 4 4 4 4 y |
r T T T T hi T 1
|Levels of |- - |- - - - {1 15 | 5 |
| parentheses | | | | | | |
} § I, L 4 4 4 4]
r T T L) ¥ T T 1
|Complex I~ - - - - - 1X RS RS |
|relocatability] I | | | | |
L L L 4 4 i 4]

(Part 1 of 3)

170

¥
|* The TOS Assembler and the 10K variant of t

| constants.

r T T T T T T %
| | | |7090,7094 | 105/360 {
| |Model 20 | BPS /360 |Support |BPS 8K Tape|DOS,TOS |Assembler |
jFeature {Basic | Basic |Package |BOS 8K Disk|D Assem- |DOS F |
| |Assembler |Assembler |Assembler|Assemblers |blers | Assembler |
o t b t 1 4 + !
| ASSEMBLER | | | | | | |
| INSTRUCTIONS : | i | | 1 1 !
1 L N 4 4 3 1 4
v T L L) T T L] 1
|IDC and DS | | | | | | |
t L 4 4 1 1 i J
v . T T k) T i T 1
|Expressions allowed |- - |- - |- - |- - 1X X |
|as modifiers | | | | { | |
[R L 4 4 . 4 i |
13 . T 1] T T i h] i A
|[Multiple operands |- - |- - |- - |- - - - |Less than |
| | | | | | 133 |
1 I L AR 4 4 4]
T T 1 Ll T T LS L]
	- -	- - - -	Except 1X 1X			
		I	Address i			
[Multiple constants				Consts.		
in an operand				}		
i L N 4 4 4 1 J						
r . T T A R)) T Al						
Bit length - -	- -	- -	- -	- - [X !		
specifications						
[L N SR 4 4 N X						
v . 1B T T) h) L] 1						
Scale modifier	- - - -	- -	X 1X IX			
t L L 4 4 4 4 §]						
r . . T T T T Ll h) 1						
Exponent Modifier	- - - -	- -	X 1X	X		
1] L 4 41 3 1 'l						
1 3 1 T T T B L) 1						
{Only	Except	Except	Except Q	Except Q1	X2	
DC types	C.X,	B,P,2,	B,V,Q,L			i
	H,Y,Q	v.Y,s,Q,L				!
L N IR 4 1 4 1 4						
r . N T T T T T T i						
DC duplication	Except Y	Except A	X	Except S X 1X		
factor						!
1 $ L 4 1 4 1 J						
L3 . R v T T T s T 1						
DC duplication	Except Y	- -	- -	Except S 1X 1X		
factor of zero l					{	
1 L L L 4 1 iy i1						
r T] T T T Al 1						
	Except	Except	l			
DC length modifier	H,Y	H,E,D	X	X 1X P8 [
t i 8 $ 4 4 1 3 }						
r T t T T T T B						
l	Only lonly ¢,	only C,	!	!		
DS types	4,C,	H,F,D	4,F,D	X 1X	X]	
L L 4 1 1 31 4 4						
r e T T T T + T						
[DS length modifier Jonly C	only C [only C	X 1x 1				
t t + t 1 1 1 {						
DS maximum length	256	256 256 1256 165,535 165,535 1				
moditier		[
1 L L 4 4 3 4]						
] . L 13 T T Ll T \						
DS constant subfield	- -	- -	- - {X X 1X			
permitted]
L 1 kN $						
r 1 T al						
COPY - - - - - - - - 1X 1x						
L 4 4 3						
i T T 1						
CSECT	- -	- -	- - X 1x 1x :			
- N 3 "N [} 4 3
T 1] T T T Bl
| DSECT |- - |- - |- - X 1x 1x 1
4 4 i 4 3
T T) T 1
ISEQ - - - - |-- 1X X X !
[} 1 4 4 il J
T L] T h) T i
|LTORG - - - - |- - R 1X X |
L L L 1 [L. 1 3
l
|
l
4

he DOS Assembler D do not allow L-type

|2 DOS F Assembler does not allow Q-type or L-type constants.
L

Appendix J:

Assembler Languages--Features Comparison Chart

{(part 2 of 3)

171

r
r
r
F }Mod 770 1
eature el 20 90/7094 T
1 |Basic 222{2“‘ | Support =BPs 8K ’ 1 0s/360 |
8 |Assembler {A | Package |BOS Tape |DOS,TOS | As I
|PRINT t |Assembler |Assembl 8K Disk|D Assem- sembler |
|- - T + erJAssemblers |blers | DOS F]
TITLE - - |- - T 4 l Assembler |
oo IX 1X 1% i
coM T X X |
[~ - - X X
ICTL + L |- - - -
] |=- {1 + L X | X
b | 'Zsop (1or |1 op }x 4 1 |
|USING |%2 ¢ only) | | 1X 1 x i
ops (op 12 o H 1 ! l
| reloc ps (op 1]2-17 1 4 3 |
| BN N i {
| jontyy able ! 1 | X |
DROP + H jonly) i i i |
|1 op only ’]|—1 o +] | I
ccw t [1oponly [X s + [
l I-= lro 2 t ops |X | x
p (relo- 4
{ I |catable X | X Tx +
|ORG + jonly) } X I
| |no blank op| t H I
t ! plno blank oplno blank 1% L am— !
| o op onl - K
{EXTRN 1%1 Y ’%1 op only |1 op only|1 op only |[X ! |
oponly |10 } X 1
_____ p only |10 H |
fWXTRN l% | max 14) p only|1 op only i
| I-- b ; ' | X I
L I“ H 'Jf 1 '
r ' ' l-- '_- T ‘} J
|CNOP t 1 1 i ;gos 14K | -- i
'% {) ’g'decmal |2 dec\imal%IZ d 1 e '
1 igits Ay ecimal X T 1
PUNCH lr__ 1 idlglts [digits ; ; X 1'
REPRO +- 1= |-- T3 X 1 |
[-- |-- 1 i 1X 1 x 1
Macro TS/3 b 1 - } X %IX + !
Instructi 60 - 1 4 X 1
| ions l?odel 20 = !-— 1x %X 11 o J’
110CS only | !] ; | x i
L] i
L 1 | I i
1 H |
]

172

(Part 3 of 3)

O

O

s

P) h L) 1
|BPS 8K Tape, | |
|BOS 8K Disk | DOS, TOS |0S/360
Macro Facility Features |Assemblers |Assemblers|Assembler
— 1 1 1 {
|Operand Sublists . | -- | X | X |
| ! | |
Attributes of macro instruction operands inside macro - 1 X | X
definitions and symbols used in conditional assembly | |
instructions outside macro definitions. | 1
| I I
Subscripted SET symbols | - X ! |
| | |
Maximum number of operands 49 100 1200
o l
Conditional assembly instructions outside macro -- X | X
definitions | |
|
Maximum number of SET symbols |
' !		
global SETA 16	+ 1+	
~ S		
global SETB BN	128	+ I+]
I		
global SETC . n :	16	+ 1+
: '		
local SETA 16 ! + [+		
local SETB	128	+ 1+
! 2 g		
local SETC : e ; : ;	0	4 1+
H . e B g 4 1 1]		
* Maximum number of operands in DOS assembler F is 200.		
+ The number of SET symbols permitted by the Disk and Tape Operating Systems Assemblers)		
and the 1BM System/360 Operating System Assembler is variable, dependent upon the		
available main storage.		
o ;		
Note: The maximum:size of a character expression is 127 in DOS (assembler D) and TOS		
land 255 characters in 0S and DOS (assembler F). ‘ |
! SRR e : H

Appendix J: Assembler Languages--Features Comparison Chart 173

Appendix K. Card Input for Assembly Runs

Figure 22 lists the control cards necessary to assemble a program.
listed in the order in which they must appear.

via SYSRDR, all others via SYSIPT.
1f this device is a disk file, the combined file must be designated as SYSIN.
Job control statements are described in the publications IBM System/360 Disk Operating

SYSIPT.

The card groups are
All job control cards enter the system
The same device may be assigned for both SYSRDR and

System: System Control and System Service Programs or IBM System/360 Tape Operating
System: System Control and System Service Programs.
I T T 1
{Card Group |Card Arrangement | Comments |
L L 4]
T T T - i
{Job Contrel /s JOB { First card in group, always required. |
| | | |
[| ASSGN SYSCLB | Used when the core image library is on a separate |
| | | (private) file (see Note 3). |
[| | |
	// ASSGN SYSSLB,..	Used when the source statement library is on a
		separate (private) file.?
	// ASSGN SYSIPT,..	Source program input.
!]		
	// ASSGN SYSLST,..	Program listing.
{] !		
	// ASSGN SYS001,...	
	£/ ASSGN SYS002,...] Work files. i	
i	// ASSGN SYS003,...]]
[
	4/ ASSGN SYSPCH,..	Required when DECK option is specified.
!	I ‘	
{// ASSGN SYSLNK,..	Required when assemble-and-execute is specified.	
I]		
	// OPTION DECK,...	Optional. Used to indicate desired assembler
		functions.
	// EXEC ASSEMBLY	Required.
1 L EN - 4		
T T LB 1		
jAssembler	Source Deck	Source statements (machine, H
Input		assembler, and macro instructions).
[]		
! l/*	Indicates end-of-data set. i	
1 L —_— L —_— -....41		
'n T T		
Job Control	/§&	End-of-job statement.
. — L L -4		
T		
?* SYSSLB is assigned as follows:		
l		
For DOS--SYSSLB cannot be assigned for the 10K assembler. 1If SYSSLB is assigned for		
the 14K D assembler or the F assembler, it is concatenated with the source statement		
library on SYSRES. (The assembler searches first SYSSLB and then the SYSRES]		
1library.) The 10K D assembler and if SYSSLB is not assigned the 14K D and F		
assemblers use only the source statement library of SYSRES.		
!		
{ For TOS--Both TOS assembler variants use either SYSSLB or the source statement		
{ library on SYSRES. They use SYSSLB if it is assigned. 1If it is not assigned, they		
use the SYSRES library.		
L J
Figure 22. Card Input for an Assembly (Part 1 of 2)

3

r
|
{Note _1: Only those assignments and options not already in effect are required.
{Note 2: Assignments for SYSIN and/or SYSOUT must be accomplished by permanent

|assignments. For details see the publications for DOS and TOS system control and l
| system service programs. |

|Note_3: Normally the assembler and the linkage editor can be executed in the
jbackground only. However, in a Disk Operating System that supports the batched-job

| foreground and private core image library options, the assembler and the linkage editor
{can also be executed in any of the foreground partitions provided that the partition is
|2K bytes larger than the minimum main storage area required by the assembler; then the
|appropriate private core image library must be assigned instead of the library on the
|system residence device (SYSRES). A private core image library must be assigned with a
| job control command (a job control command differs from a job control statement in that|
{it does not have slashes in columns 1 and 2), which makes it a permanent assignment. l
|1t remains in effect until another ASSGN command for SYSCLB is encountered. |
L J

Figure 22. Card Input for an Assembly (Part 2 of 2)

Appendix K: Card Input for Assembly Runs 175

r
Symbolic Unit|Remarks
4

Function and Device

SYSRDR

T
Required if the SYSIN

option is not used.

Jok control statement input device. May ke the
same device as SYSIPT except for comkined input.
from IBM 2311, 2314, or 2319 rLisk Extent (see
SYSIN) .

IBM 1442, 2520, or 2540 Card Read Punch, IBM 2501
Card Reader, IBM 2400-series Magnetic Tape Unit,
or IBM 2311, 2314 or 2319 rLisk Extent for the
disk system.

SYSIPT

—

-‘l——

Required if the SYSIN
option is not used.

Source program input device. May be the same
device as SYSRDR except for combined input from
IBM 2311, 2314, or 2319 risk Extent (see SYSIN).

IBM 1442, 2520, or 2540 Card Read Punch, IBM 2501
Card Reader, IBM 2400-series Magnetic Tape Unit
(7-or 9-track), or IBM 2311, 2314, or 2319 Lisk
Extent for the disk system. If the LCata
Conversion feature was used to prepare the
7-track tape, it must also be used to read the
tape. The tape or disk records must be 80-kyte
unklocked records.

SYSIN

Required for combined
disk input.

Optional for combined
card or tape input.

Used for a combined input file for SYSRLR
and SYSIPT.

IBM 1442, 2520, or 2540 Card Read Punch, IBM 2501
Card Reader, IBM 2400-series Magnetic Tape Unit,
or IBM 2311, 2314, or 2319 rLisk Extent for the
disk system.

s e, it e St St s, e, Sk avnct e e, S S S— —— e W S e, = . Sy Sy S, S S (et i, St

SYSIN can be used in lieu of the SYSLR and SYSIPT|
designation when the file is card or tape input. |
It must be used when the file is disk input (disk]
system only) . |

SYSLST

Required if the SYSOUT

option is not used.

e st e o e s e s e e S e e i e e S . S, . s et e s S s o) et s et e . e s e St i o s]

Program listing device.

IBM 1403, 1404 (continuous forms only), or 1443
Printer. IBM 2400-series Magnetic Tape Unit
{9-track, or 7-track with or without the rata
Conversion feature) or IEBM 2311, 2314, or 2319
Disk Extent for the disk system.

Listing on tape or disk appears as 121-character
print images (a single forms control followed Ly
a 120-character line image) .

SYSPCH

[e e s . s s . o S S S (s W S St S,) i S RS S S, S, S ey SN S S S o, S S — — — — — U — — — — —— — — — —— =" w— i, S e e — —

e e s . i s . e e s o, et s S it e e e S, e, e o S e

i

Optional.

e s . e s e e S s s S o, ot o S o i S i o S — T T —

i s S e, S—— o, St s St simte, S it s, sl

Object program output device.

IBM 1442, 2520, or 2540 Card Read Punch. IEM
2400-series Magnetic Tape Unit (9-track, or
7-track with the Data Conversion feature), or IEM
2311, 2314, or 2319 Disk Extent for the system.

Output on tape or disk is in 81-byte unklocked
records.

Not used when the assemble-and-execute or the
NODECK option is specified.

s, s e e e i e ity S e ma S —

Figure 23.

176

Cevice Assignments (Part 1

cf 2)

&

N

f -
|Symbolic Unit|Remarks Function and Device
L

b t
| SYSOUT {Optional
|

Used for a combined ocutput file for SYSLST and
SYSPCH to a single tape unit.

IBM 2400-series Magnetic Tape Unit (9-track, or
7-track with the Data Conversion feature).

[—

SYSLNK Optionai Used for temporary storage of assembler output.
Required only when the assemble-and-execute

option is specified. |

IBM 2400-series Magnetic Tape Unit (9-track, or
7-track with the Data Conversion feature) for the
tape system or IBM 2311, 2314, or 2319 Lisk
Extent for the disk system. This extent may ke
on the same device that contains the LOS resident
system. ; |
4

Used for temporary.work area during assembly.
IBM 2400-series Magnetic Tape Unit (9-track, or
7-track with the Data Conversion feature) for
either the tape or disk systems or three IEM
2311, 2314, or 2319 Disk Extents for the disk
system. These extents may be on the same device
that contains the DOS resident system.

SYS002
SYS003

SYS001
Required

For details of work file assignement, see the
publication for DOS system generation.

—— e —

SYSCLB May be used only on a LCOS system that supports
the private core image library option. Must ke
the same device type as SYSRES. See also Note 3

in Figure 22.

Optional

SYSSLB Must be same device as SYSRES. See Appendix M,

Figure 31.

Optional

o o o e e e e e e et e e et et et e s et e o et s e s s s e s e e o et s et st e e]

p—— - —

e . s o s i e s, MR i s S s

Note: The 2311, 2314, or 2319 can be used for one or more of the symbolic units

| SYSRDR, SYSIPT, SYSIN, SYSPCH, or SYSLST only if a supervisor has been SYSGEN'Ad that
|can accommodate input from disk storage or output to disk storage for these units. For
|details see the DOS system generation manual.
L

}
e o, s s s et i e o iy s e s, s ool e, s s .

Figure 23. TCevice Assignments (Part 2 of 2)

r L]
|Input and Qutput Using an IBM 1442 or 2520 Card Read Punch: Whenever an IEM 1442 or |
| 2520 Card Read Punch is assigned tc SYSRDR , SYSIPT, or SYSIN and also to SYSPCH, a |
|number of blank cards sufficient for punching the output deck must follow the /#* card |
|follows the assembler END statement in the source deck. This is to prevent erroneously|
|
|
3

|punching the cards of a following job step. Any extra cards that are not needed are

|automatically bypassed.
L -

Figure 24. Operating Consideraticns

Appendix K: Card Input for Assembly Runs 177

r
|Card Group Card Arrangement
t

Comments

1 3
Job Control // JOB ...
|// ASSGN SYSRLB...

// ASSGN SYSSLB...

// ASSGN SYSIPT...
| // ASSGN SYSLST...
// ASSGN SYSINK...
// ASSGN SYS001...

// ASSGN SYS002...
// ASSGN SYS003...

// OPTION LINK....

/7 EXEC ASSEMBLY

—— e cmne aefpen s ouf

First card in group, always required.

o e s can i

Used by the linkage editor when the relocatakle
library is on a separate (private) file and
previcusly assembled modules are to be inciuded.

Used when the source statement library is on a
separate (private) file."

Source program input.
Program listing.

Required for assemble-and-execute.
} work files.

Required. Used to indicate LINK option and any
additional assembler functions desired.

Required.

Assembler Input
Source Deck

—— — o — — —

/¥

P T,

Source statements (machine, assembler, and
macro instructions) Note: If the operand of the
END statement is omitted, a PHASE card must
precede the // EXEC ASSEMBLY card or an ENTRY
card must follow the ENL statement (tape system
only) .

Indicates end-of-data set.

y
T
Job Control |
| ENTRY...

// EXEC LNKEDT

ey s . e — — — — v a2l c— —

Calls the linkage editor.

// EXEC
Data Data, if any |
i/* ! End-of-data set indicator. '
Job Control [/s i End-of-job statement.

* See Figure 22.

| system service programs.
i

‘|Note 1: Only those assignments and options not already in effect are required. |

‘|Note 2: Assignments for SYSIN and/or SYSOUT must be accomplished by permanent
assignments. For details see the rublications for DOS and TOS system control and

¢

Figure 25. Card Input for Assenbly, Linkage Editing, and Execution

178

:{f\
P

Note: j
Broken lines indicate ——
where the Assembler / N\
input would be placed L \ P2
- if SYSIPT were the /& J [\‘
same unit as SYSRDR. | v/ . /
(// EXEC ASSEMBLY (T -/
Optional A o] f— —
ptiona {// ASSGN SYSSLB,.. 7 | P oysiN
{// ASSGN SYSPCH, ... / [) (Optional)
{// ASSGN SYS003,... -
{// ASSGN SYS002, .. /
(// ASSGN SYS001, ... /
Optional ==={// ASSGN SYSLNK,... /
(// ASSGN SYSLST, ... /
{// ASSGN SYSIPT, ... / —
Optional =+{// OPTION ... Y 4 // \
// JOB / \
/* /
/ END 7
SYSRDR L Assembler End Card P
Vol \
/ \
\ /
\ Source
~ . Statements
syssLs!
(Optional) SYsieT
/‘h\
\
-
/
/
SYsouT
;Zrm - (Optional)
System /360 SYSLST
/ 7
{
[m——— \—“I
v
r— -—
S s__l
N 1 Y SPCH
SYSLOG / \ gzg?n (Optional)
{) 5Y5003
~ .4.4 SYSLNK
(Optional)

! See Figure 25.

Figure 26. 1/0 Units Used by the Tape Assembler

Appendix K: Card Input for Assembly Runs 179

(
- \l\\ —_—
/ A\
L |
Note: r /& /
Broken lines indicate A
where the Assembler (// ExEC AssEMBLY i s

input would be placed

Optional
if SYSIPT were the Onrione! T~{J/ assoN svssis

/ A
, 1]
g
/"'-‘\ (.
| S !
:......._ J
| sysin

(Required if SYSRDR
and SYSIPT are o
combined disk file.
Optional if SYSRDR
and SYSIPT are a
combined card or

tape file.)

same unit as SYSRDR. // ASSGN SYSPCH, . .. /
If SYSIPT and T~ /
SYSRDR are the same (// ASSGN 5YS003, .., /
disk unit, they must be a /
combined file assigned (// ASSGN §Y$002,.. . /
as SYSIN. /
Optional (// ASSGN SYS001, ... /
\V/ ASSGN SYSLNK, ... ,
, f// ASSGN SYSLST, 2 /’ o
e ’ e A
Optionat 1// ASSGN SYSIPT, ... ,' /,' &\‘~—-"' |
. l\-(//OPTION) |
Optiona ~————{// ASSGN SYSCLS, .. "f ,!
{// JOB -
Source
Statements
SYSIPT
— -
syssts! -~ >
- ™ ———
(Optional) ’) \\ .
.)
]
-]
System System/360 /:: -
Pack SYSLST
-
Vi
[T
SYSLOG s 1\ sysoo)

7/
- /
SYSLNK ~~—=Z 7 35333?,
N— 1 (Optionai) T L
L See Figure 25. SYSCLB
(Optional)

Figure 27. 1/0 Units Used by the Disk Assembler

N — —

—
L

SYSPCH

N

SYSOUT
(Optional)

{Optional)
ptional)

T T v T 1
| |Assemble-and-execute |Assemble-and-execute | Assemble-and-execute |
Q |Assemble-and-execute | (Include object { (Include object | (Include object 1
s | |routines from the |routines from cards) |routines from the]
| | relocatable library) | |relocatable library i
| | | land from cards |
[l L 1 4
C T T T 1
|// JOB... 1// J0B... |// J0B... |// JOB... |
I | | | |
|// ASSGN SYSIPT... |// ASSGN SYSIPT... |// ASSGN SYSIPT... |// ASSGN SYSIPT.... |
| | | | !
|// ASSGN SYSLST,... |// ASSGN SYSLST,... |// ASSGN SYSLST,... |// ASSGN SYSLST,... |
[| | | I
// ASSGN SYS001,..	// ASSGN SYsS00t,..	// ASSGN Sys001,..	// ASSGN SYS001,..
// ASSGN SYS002,..	// ASSGN SYS002,..	// ASSGN SyYs002,..]// ASSGN S¥S002,..
// ASSGN SYS003,..	// ASSGN SYS003,..	// ASSGN SyYs003,..	// ASSGN SYS003,..
// ASSGN SYSLNK,...	// ASSGN SYSLNK,...	// ASSGN SYSLNK,..	// ASSGN SYSLNK,..
I] , ! I			
// OPTION LINK,...	// OPTION LINK,..	// OPTION LINK,..	// OPTION LINK,...
]	,	
// EXEC ASSEMBLY	// EXEC ASSEMBLY	// EXEC ASSEMBLY	// EXEC ASSEMBLY
L L KN 4 i			
r == T T T 1			
Source Deck [Source deck	Source deck	Source deck	
[/* | /* 1/* [/% |
b t $ 1 {
INCLUDE SUBR1 INCLUDE | INCLUDE SUBR1 |

| |

INCLUDE SUBR2 Object deck (s) | INCLUDE |

! I

/* |Object deck (s) |

|

|

I

INCLUDE SUBR2

INCLUDE SUBRT

ENTRY <... ENTRY ... ENTRY.....

T
|
l
I
|
l/
|
| /*
|
|
|
|
ENTRY |
I
|

// EXEC LNKEDT

I
!
|
!
I
|
|
I
I
|
|
|
// EXEC LNKEDT

// EXEC LNKEDT // EXEC LNKEDT
1 |

Any job control cards needed for the programs to be executed.

T i et . e e o F— — —— — — —— S, S, it St SRt S st

s -
|1f SYSRDR and SYSIPT are different units, a/é card must placed after the last EXEC card
|in SYSRDR, and should be placed after the last /* in SYSIPT.

L

// EXEC |// EXEC |// EXEC |// EXEC
L 4 4

T T T ‘{

]Dita, if any IDita, if any]Dita, if any |D:ta, if any |

2 i i K .

/& VA /8 /7€ |

|8 L L | 4

1

I

|

]

Figure 28. Card Input for Different Variations of Assembly, Linkage Editing and
Execution

Appendix K: Card Input for Assembly Runs 181

Appendix L. Replacing the Current Assembler

The EXEC ASSEMBLY statement causes the job
control program to look for a phase with
the name ASSEMBLY in the Core Image Library
and load it into main storage. Since
duplicate names cannot appear in a library,
and every version of the assembler
processor has the same phase name, only one
of them can be in the Core Image Library at
a time. Therefore the variant best suited
for the particular installation is normally
included in the Core Image Library. The
programmer can, however, select another
variant from the Relocatable Library and
include it in the Core Image Library
instead of the variant that is already
there.

Figure 29 shows the job control cards
required to bring a particular assembler
variant from the Relocatable Library into
the Core Image Library, and Figure 30 shows
the valid assembler names (the names under
which the variants would be cataloged in
the Relocatable Library). After the
variant has been included in the Core Image
Library, it can be loaded and executed
through the EXEC ASSEMBLY statement.

to build larger symbol tables. The
ifference in speed varies with the amount
of additional core and the number of
symbols in the assembly.

Thus, if the assembly has few symbols
or if only a small amount of additional
core is available to a larger variant, the
larger and smaller variants will be nearly
equal in speed.

nos

LR e

45% faster

For comparable assemblies:
assembler F (IJYASM) is up to
than DOS assembler D.

Note 1: The descriptions 16K and 32K
refer to the machine size required to run
the 10K and 14K variants respectively
(except that the 14K variant can run on a
IBM System/360 Operating System Model 30
with 24K of core) .

Note 2: Some installations have two or
more assemblers in the Core Image Library.
In such instances, the phase names have
been changed to avoid duplicate names in
the library. (Refer to 1BM System/360
Disk Operating System: System Generation
and Maintenance, and 1BM_System/360 Tape

r 1
|// JOB CONDENSE | Operating System: System Generation and
|// EXEC MAINT This job not | Maintenance.)
| DELETC ASSE.ALL needed in TOS |
| CONDS CL [¢ T v T 1
|/& | | Name | System|Work Files?! |Minimum Core?2|
|// JOB LINKASM | b + 1 + !
// OPTION CATAL		1JQD16DW	DOS	Disk {10,240
INCLUDE name'	l [
// EXEC LNKEDT		1JQD16TW	DOS	Tape 110,240
[/€ [[[
b 4	1JQ0D32	DOS	Mixed 114,336	
i* *name® seiected from those listed in				
Figure 30. [IJYASM	DOS	Mixed 145,056	
=== O 1 1 $ 4				
Figure 29. Card Input for Selecting	I3QT16	TOS	Tape 10,240	
Different Assembler Variants				
IJQT32	TOS	Tape j 14,336		
Variants 1JQT16, IJQOD16TW, and 1JQD16DW } 1 L 4 {
must be used if the assembler is to be run |* Mixed work files mean any combination |
in less than 14K of available core. | of 2400-series tapes and/or 2311 and/or|
Variants 1JQT32 and 1JQ9D32 may be used if | 2314 disk extents for SYS001, SYS002,
available core is never less than 14K. | and SYS003. 1In general, the assembler
The 1JQ variants are D assemblers. | uses SYS001 and SYS002 as serial files
Variant IJYASM (the DOS F assembler) may | and SYS003 as a random access file.
be used if available core is never less |
than 45,056 bytes. |? Minimum core refers to the minimum
' | number of contiguous bytes necessary
I139T32 andlJQD32 are generally faster | for the particular assembler variant to
than LJOT16 and 1JOD16DW or 1JQD16TW, | function correctly.
respectively, because they have test i/o t]

buffering and can use the additional core

182

Figure 30. Assembler Variants

O

C

Figure 31 lists the card groups that make
up the output deck produced by the

assembler.

The groups are listed

in the

order in which they appear in the output

deck.

Appendix M. Object Deck Output
)

Note: No output deck 11 be produced when
NODECK appears in the g&gﬁ?N card.

The formats of the ESD, TXT, RLD, END,
and SYM cards are shown in Figures 32 and
33.

Card Group

L]
| Remarks
]

Reproduced

Carxds

Symbol Table (SYM)

roblem Program

Relocation

END Card

Dictionary (RLD)

r
|

1

b

|

|

|

|

|External Symbol Dictionary (ESD) |
|

|P

|

|

|

|

|

|

b

t

| These reproduced cards result from REPRO or PUNCH
|instructions located before START.

|
| Produced when SYM appears in the OPTION card.

|Consists of text (TXT) and reproduced cards. The
| reproduced cards result from REPRO or PUNCH
|instructions located after START.

|Produced if relocatable constants are present.

!
|Produced as the last card of the output deck.
L N

|Object Deck Identification

|The 4-character assembly identification label punched into the name entry of the first
|TITLE card in the source program is punched into columns 73-76 of each record in the

|Jobject deck. 1I1f there is no label, these columns are left blank.

|Object Deck Sequencing Numbering

|

|An assembler-generated sequence number is punched into columns 77-80 of each card in

|the object
L

deck.

b s, e s . wnda v S— —— —— — L rr— — — ——— G— — ——— {— — — —— — — i — o

Figure 31.

Assembler Qutput Deck

Appendix M: Object Deck Output 183

The information in each card is in Extended Binary Coded Decimal Interchange Code.

r T 1 r T 1
|Columns | Punched | |{Columns | Punched [
t L { 1 {
|ESD Card | {73-76 |Program identification taken from|
t T 4 | |the name field of the first TITLE]|
| 1 |Multiple punch (12-2-9). | | |statement. l
| |1dentifies this as a loader card.| |]
1 | | |77-80 |Sequence number. |
| 2-4 |ESD--External Symbol Dictionary | I 4
| {card. | |RLD Card |
| t - h
}1142 |Number of bytes of information | | 1 |Multiple punch (12-2-9). 1
| |contained in this card. | |
| | | 2-4 |RLD--Relocation Dictionary card. |
]15-16 |External symbol identification | |]
| |number (ESID) of the first SD,]111-12 |Number of bytes of information |
| |PC, WX, or ER on this card. | Jcontained in the card. l
| |Relates the SD, PC, WX, or ER to | |
| {a particular control section. | |17-72 |Variable information (multiple |
| |items) .
|17-72 |Variable information. | 2 positions. Pointer to the }
	8 positions. Name.			relocation factor of the
	o1 position. Type code to			contents of the load constant.
	indicate SD, WX, PC, LD, or			o2 positions. Pointer to the
ER.		relocation factor of the]		
3 positions. Assembled		control sections in which the		
origin.		load constants occurs.]		
1 position. Blank.]	o1 position. Flag indicating		
3 positions. Control section] type of constant.		
length, if an SD-type or a			3 positions. Assembled	
PC-type. I1If an LD-type, this			address of load constant.	
l field contains the external				
symbol identification number		73-76	Program identification taken form	
(ESID) of the SD or PC			the name field of the first TITLE	
containing the label.			statement.	
I I I				
{73-76	Program identification taken form		77-80	Sequence number.
	the name field of the first TITLE	b 41 {		
	statement.		END Card	
L]				
77-80 =Sequence number. } { 1 }Multiple punch (12-2-9). }				
t	2-4	END		
TXT Card 6-8	Assembled origin of the label]			
b T	supplied to the Assembler in the			
] 1	Multiple punch (12-2-9).	END card (optional) .		
1dentifies this as a loader card.	15-16	ESID number of the control		
2-	TXT--Text card.		section to which this END card	
6-	Assembled origin (address of		refers.	
first byte to be loaded from this 17-22	Symbolic label supplied to the			
card) .	Assembler if this label was not			
11-12 Number of bytes of text to be	defined within the assembly.]			
loaded. 73-76	Program identification taken from			
15-16 External symbol identification	the name field of the first TITLE			
number (ESID) of the control	statement.			
section (SD) containing the text. |77-80 |Sequence number. |
17-72 Up to 56 bytes of text--data or L 4 -4
] instructions to be loaded. |
L

i J

Figure 32. Format of ESD, TXT, RLD, and END Cards

184

e

r T
Columns|Contents
iR

1 112-2-9 punch
2-4 |SYM

5-10 |Blank
11-12 |Number of bytes in the Variable Field
13-14 |Blank
15-16 |ESID
17-72 |The Variable Field (see below)
|73-76 |Deck 1D (from the first TITLE card) or blank
|77-80 |Card sequence number
L L

r

|
|The variable field (columns 17-72) contains up to 56 bytes of AUTOTEST text. The items

|making up the text are packed together; consequently the last card may contain less
Jthan 56 bytes of text in the variable field. The contents of the fields within an
|individual text item are, as follows:

1.0rganization (1 byte) :

Bit 0: O
Bit 1: 1
Bit 2: 1
Bit 3: 1
1 =DC or DS
Bit 4 :
0 = not DC or DS
Bits 5-7: Length of name minus one.

2. Address (3 bytes) : displacement from base of control section.
3. Symbol Name (1-8 bytes): symbolic name of the particular item.
The following fields are present only for data-type items:

4. Dpata Type (1 byte):

X'00 character

|X*04*' hexadecimal

|X'08' binary

|X*10* full word, fixed point

[X*14' half word, fixed point

|X*18' single precision floating point
{X*1C*' double precision floating point
|X'20* A-type or Q-type address constant
|X'24' Y-type address constant

|X*'28* S-type address constant

|X*2C" V-type address constant

|X*30' packed decimal

|X*34* zoned decimal

5. Length (1-2 bytes): 1length of data item minus one. Occupies two bytes for
character, hexadecimal and binary items; otherwise one.

o o s . S .

6. Multiplicity (1 byte) : always X*01°'.

b s s et G S— A — S— — —— S W — — — f—— — — — — — ——— — — — — — — — — — — — — — — —— — — — — i S—— t— —— — — ——— — o o—]

Figure 33. Format of the SYM card.

Appendix M: Object Deck Output

185

New text can be substituted for
assembled text using the REP card. Each
REP card must contain the assembled address
of the first byte to be replaced and the
identification of the control section to
which it refers, and may contain from two
to 22 bytes of text. The text is
substituted, byte for byte, for the
original text, beginning at the address
specified. 7The address, the control
section reference, and the new text must be
stated in hexadecimal. The REP card must
be placed after the TXT cards in the object
module that it modifies. 1ts format is
shown in Figure 34.

8%

]
Columns |Contents
4

1

N
[}
=

wn
[}
N

7-12

-
=
t
- —
<)) w

ey
~
1
~
o

-
1
~
N

fm e e s . e e e . . . T S S e . . s S e S S S e e S . S S S e o o g G oy
~ ~
w
t
4]
o

L)
|Multiple punch (12-2-9).
|1dentifies this as a loader card.

|

|REP--Replace text card.

!

| Blank.

|

|Assembled address of the first
|byte to be replaced

| (hexadecimal) . Must be right
{justified with leading zeros if
|needed to £fill the field.

———— s e e ot a2

I

|Blank.

|

| External symbol identification
|number (ESID) of the control
|section (SD) containing the text
| (hexadecimal) . Must be right

| justified with leading zeros if
|needed to fill the field.

|

From one to eleven #4-digit
hexadecimal fields separated by
commas, each replacing two bytes.
|2 blank indicates the end of
|information in this card.

|
Blank.

May be used for program
|identification.
4

b s s e s S S S St s St S St et Ao S Sy e et G

Figure 34.

Format of the REP card.

Appendix N. Diagnostic Exror Messages

Diagnostic error messages are printed lists the diagnostic messages and their
following the cross-reference listing, in message codes. 1f errors are encountered
statement number order. The message code while editing library macros, the statement
has the form 1JQ9nnn for the D assembler and number referenced will be that of the ®"END"
1J¥nnn for the F assembler. Figure 35 statement.

r T T 1
|Message| | |
|Code |Message | Meaning |
L 4 4 '}
T T 1 L
|1JQ 001|DUPLICATION FACTOR ERROR |puplication factor: 1
|13Y | | 1. 1Is zero in a literal. |
| | | 2. Is not a positive absolute expression. |
L | |
|1JQ 002 |RELOCATABLE DUPLICATION FACTOR |Duplication factor is relocatable. |
P | | |
]13Q 003 |LENGTH ERROR | 1. Out of permissable range. |
|13Y | | 2. Invalid specification. |
| | | I
|1JQ 004 |RELOCATABLE LENGTH Length is relocatable. |
|1JY | {
| | |
|IJQ 00S|S-TYPE CONSTANT IN LITERAL S-type constant in literal. i
|1JY | .

| |

|IJQ 006 | INVALID ORIGIN Location counter has been reset to a value

| 1JY l less than the starting address of the control
| | section.

P l

|1JQ 007 LOCATION COUNTER ERROR Location counter has exceeded 224-1.

{1JY | ‘

| | : |
|13Q 008 |INVALID DISPLACEMENT Displacement in an explicit address is not |
{1JY | within 0-4095. |
| | |]
}1JQ 009 |MISSING OPERAND |Operand is missing. |
|13y | | }

| |

-|1JQ 010 |INVALID SPECIFICATION OF REGISTER| 1. The register or mask field specification]|

|1JY {OR MASK FIELD not an absolute value.

2. The register or mask field specified not|
in the range 0 - 15.

3. An o0dd register specified where an even |

| register is required (multiply, divide, |
and shift instructions) .

4. The register specified is not a floating
point register (floating point |
instructions) .

5. The register specified is not an
extended precision floating point |
register (extended precision floating
point instructions) .

| 6. The immediate field specified for an SRP

| instruction not in the range 0 - 9.

—— —

R

g oo e i

Figure 35. Assembler Diagnostic Error Messages (Part 1 of 14)

Appendix N: Diagnostic Error Messages 187

r l
Message]|

Code | Message Meaning
+
1JQ 011|SCALE MODIF1ER ERROR Scale modifier is:
1JY 1. Too large.
2. Not an absolute expression.
139 012|RELOCATABLE SCALE MODIFLER Scale modifier is not allowed to be
1JY relocatable.
|
1JQ 013 |EXPONENT MODIFIER ERROR Exponent is: |
1JY 1. Out of range. |
2. Not specified as an absolute expression.|
|IJQ 014 |RELOCATABLE EXPONENT MODIFIER |Exponent modifier is not allowed to be
|1JY | |relocatable.
| |
1JQ0 015)INVALID LITERAL USAGE A valid literal is used illegally,
1JY e.g., specifies a receiving field or a
register.
1JQ 016 | INVALID NAME Name entry incorrectly specified--
1JY 1. Contains more than 8 characters.
2. Does not begin with a letter.
-3. Has a special character imbedded.
|
|IJQ 017 |DATA 1ITEM TOO LARGE The constant is too large for: |
|13Y | 1. The data type. |
| } 2. The explicit length. |
| | v |
|13Q 018]INVALID SYMBOL The symbol specification is invalid, |
|1JY § e.g., longer than 8 characters, embedded |
: | special character.
| |
1JQ 019 |EXTERNAL SYMBOL ERROR | 1. 1dentical name entry in a CSECT
1JY and a DSECT statement.
2. Identical operands in one or more
EXTRN/WXTRN statements.
1JQ 020|INVALID IMMEDIATE FIELD 1. The immediate field is not an absolute
1JY expression.
2. The value of the immediate field
is not in the range 0-255.
1JQ 021|SYMBOL NOT PREVIOUSLY DEFINED A statement requiring predefined symbols
1JY contains a symbol not predefined.
| ,
1JQ 022|ESD TABLE OVERFLOW The total number of control sections, dummy
1JY sections, and unique symbols in EXTRN
' statements and V-type constants exceeds 255.
1JQ 023 |PREVIOUSLY DEFINED NAME] The symbol in the name entry has appeared
10y in the name entry of a previous statement.
1JQ 024 |UNDEFINED SYMBOL A symbol being referenced has not been
1JY defined in the program.
| |
|1JQ 025 |RELOCATABILITY ERROR A relocatable or complex relocatable
{1JY | expression is specified where an absolute
| | |jexpression is required. {
L 4 L J
Figure 35. Assembler Diagnostic Error Messages (Part 2 of 14)

188

C

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

r

[]
Message|
Code | Message
]

Meaning

+)
026 | TOO MANY LEVELS OF

[ESpR—

— e E—a—— ——— o anu wn o)

1JQ Expression specifies more than 5 levels
1JY PARENTHESES of parentheses.
I1JQ 027|TOO MANY TERMS More than 16 terms specified in an
1JY expression.
IJQ 028 |REGISTER NOT USED |A register specified in a DROP statement
1JY - : is not currently in use.
IJQ 029|CCW ERROR Bits 37-39 of the Channel Command Word are |
1JY set to nonzero.
]
IJQ 030|INVALID CNOP Invalid range.
| 1JY |
IJQ 031]|UNKNOWN TYPE Incorrect type designation in a DC,
|1JY | |DS, oxr literal.
| | l
|I3Q 032|OP-CODE NOT ALLOWED TO |Operation code allowed only in source
| 13Y BE GENERATED | statement has been obtained through
| | substitution of a value for a variable |
| } | symbol. |
1JQ 033|ALIGNMENT ERROR Referenced address is not aligned to the
1JY | proper boundary for this instruction.
Note: Under System/370 this message applies
| only when the flagged statement is privileged|
instruction, a branch instruction, or an END |
instruction. |
|
IJQ 034]|INVALID OP-CODE Invalid operation code: |
1JY 1. More than eight characters.
} 2. Operation entry not followed by a blank
| on same card.
IJQ 035|ADDRESSABILITY ERROR The referenced address is not within the
| 1JY range of a USING instruction.
|
IJQ 036 |OPERAND FIELD Operand found for. an operation code which
1JY MUST BE BLANK does not allow operands. (This message may |
| be produced by the assembler if an operand is|
| present in a COM, EJECT, or LTORG statement |
| when the operation field has been created by |
| variable symbol substitution. Operands in |
| these statements are not used but are not in |
1 error.) |
| : |
IJQ 037 |MNOTE STATEMENT |An MNOTE statement has been generated from a |
1JY | macro definition. The text and severity code]
| of the MNOTE statement is inline in the |
| | |1listing. |
[] L L 1
Figure 35. Assembler Dignostic Error Messages (Part 3 of 14)

Appendix N: Diagnostic Error Messages 189

r T
|Message|
|Code |Message
L L

Meaning

[2 Ll
|1JQ 038|ENTRY ERROR
|13y

JQ 039

1 INVALID DELIMITER
1JY

e A S o Sy s S, o S— . i —— — — — — —

. — —— — —— — —— — —— —— T— . —— f——— — — — — — — — —— —

IJQ 040 |GENERATED RECORD
| 1Y TOO LONG

|
|IJQ O41|UNDECLARED VARIABLE
I1JY | SYMBOL

1JQ O42|SINGLE TERM LOGICAL
1JY EXPRESSION IS NOT A
| SETB SYMBOL

IJQ O43|SET SYMBOL PREVIOUSLY

|13Y | DEFINED
|
1JQ O4Y4|SET SYMBOL USAGE
1JY | INCONSISTENT WITH
| DECLARATION
|
IJQ 045]|ILLEGAL SYMBOLIC
| 13Y | PARAMETER
| |
|1JQ 046 |AT LEAST 1 RELOCATABLE
| 13Y | Y~-TYPE CONSTANT IN
] | ASSEMBLY

[|
|1JQ 047|SEQUENCE SYMBOL

| 13Y | PREVIOUSLY DEFINED
t i

¥

| 1. More than 100 ENTRY operands in this
program.

2. A symbol in the ENTRY operand:

| a. Appears in more than one ENTRY
statement.

b. 1Is defined in a dummy section.

c. Is defined in blank common.

EXTRN or WXTRN statement.
e. Is equated to a value less than
| start of CSECT.

|Any syntax error.

| 1. A symbol has other than alphameric

| characters.

2. A symbol begins with other than alpha
characters.

3. Excessive right parenthesis.

4. Equal sign encountered in a sublist.

an unexpected place.

6. Mispunched op code causes unexpected
syntax scan.

7. A missing delimiter.

8. A special character that is not a valid
delimiter but is used as a delimiter.

9. A delimiter used illegally.

10. A missing operand: nothing appearing

between delimiters.

Unpaired parenthesis.

11.
12. An embedded blank.

N -a

Record has more than 187 characters.

o — — —— ——— — — ——n SAn. St St S i, e S, o

|Variable symbol is not declared in
|a define SET symbol statement or in a macro
| prototype.

| Single term logical expression is
|lonly valid for a SETB symbol.

SET symbol previously defined.

A SET symbol has been ‘declared as:
1. Undimensioned but it is subscripted.
2. Subscripted but it is undimensioned.

S,

|Attribute requested for a variable symbol
|which is not a symbolic parameter.

|One or more relocatable Y-type constants in
|assembly; relocation may result in

|address greater than 2 bytes in length.

[

| Sequence symbol previously defined.

i

d. 1Is equated to a symbol defined by an

5. Any terminating character encountered in

s . S, s, . S S S e S P A —— — — — T S—— — — ST F— —_— f— ——_. — {— S S ot Sl St s sy S, st S, v et ety et w0k

Figure 35. Assembler Diagnostic Error Messages (Part 4 of 14)

190

~
S

N

N

r T L) 1
; Messagel| | |
; Code |Message | Meaning |
- i 1 |
L] T A
1JQ 0u48|SYMBOLIC PARAMETER | 1. Symbolic parameter previously defined. |
|1JY | PREVIOUSLY DEFINED OR | 2. System variable symbol declared as a |
| SYMBOL DECLARED AS symbolic parameter.
| SYSTEM VARIABLE
| SYMBOLIC PARAMETER |
1JQ 049 |VARIABLE SYMBOL MATCHES Variable symbol matches a parameter. |
1JY A PARAMETER]
1JQ 050| INCONSISTENT GLOBAL A global SET variable that is defined in more
’ 1JY DECLARATIONS than one macro definition, or in a macro |

| |definition and in the source program, is |
| |inconsistent in SET type or dimension. |

IJQ 051|PROGRAMMER MACRO DEFINITION Programmer macro prototype operation entry
1JY PREVIOQUSLY DEFINED is identical to a: |
1. Machine instruction.

| | 2. Assembler instruction.

3. Previous programmer macro prototype.

This message is not produced when a
programmer macro matches a system macro. The
|programmer macro will be assembled with no
|indication of the corresponding system macro.

|
|IJQ 052|NAME FIELD CONTAINS SET symbol in name entry does not correspond |
|1JY | ILLEGAL SET SYMBOL to SET statement type. |
|
! |IJQ 053|GLOBAL DICTIONARY FULL Global dictionary is full. BAssembly
@ | 1JY is terminated. See Appendix H for dictionary|
| size limits. |
|
|IJQ 054|{LOCAL DICTIONARY FULL Local dictionary is full. Assembly
11JY [is terminated. See Appendix H for dictionary
| |size limits.
|
{IJQ 056 | ARITHMETIC OVERFLOW |Intermediate or final result of an
|13y |arithmetic operation is less than -23" or
| : |greater than 23'-1.
| |
|IJQ 057 SUBSCRIPT EXCEEDS 1. §&SYSLST or symbolic parameter subscript:
|13Y MAXIMUM DIMENSION a. Exceeds 100 (200 for F assembler).

| b. Is negative.
| 2. Symbolic parameter subscript is zero.
| 3. SET symbol subscript exceeds dimension.

IJQ 059 |UNDEFINED SEQUENCE Operand sequence symbol does not appear as a
1JY SYMBOL sequence symbol in a name field.

L K

M e it i . — — — — — — — —— W——

IO

Figure 35. Assembler Diagnostic Error Messages (Part 5 of 14)

Appendix N: Diagnostic Error Messages 191

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

r T
|Message|

|Code |Message
L Il

Meaning

r T

|IJQ 060 ILLEGAL ATTRIBUTE
|1JY | NOTATION

I

|

|
[1JQ 061|ACTR COUNTER EXCEEDED
(13Y |

I I
[IJQ 062|GENERATED STRING GREATER
|13Y [THAN 127 [255] CHARACTERS

.
[|IJQ 063 | EXPRESSION 1 OF SUBSTRING

| 10Y [IS ZERO OR MINUS
| |
|1JQ 064 [EXPRESSION 2 OF SUBSTRING
|13Y |IS ZERO OR MINUS
I |
[IJQ 065]|INVALID OR ILLEGAL TERM
|10Y | IN ARITHMETIC
| EXPRESSION

[

|

T

|IJQ 066 |UNDEFINED OR DUPLICATE
|13y | KEYWORD OPERAND

! [

I

I
|1JQ 068|GENERATION TIME DICTIONARY
| 1JY |AREA OVERFLOWED

I | ‘
|IJQ 069] EXPRESSION 2 OF SUBSTRING
| IJY GREATER THAN 8 CHARACTERS

|IJQ 070 FLOATING POINT CHARACTERISTIC

|13Y [OUT OF RANGE
I !

I
|13Q 071|ILLEGAL OCCURRENCE OF

| IJY LCL, GBL, or ACTR STATEMENT

|

[1JQ 072|ILLEGAL RANGE ON ISEQ
|13Y STATEMENT

L

L

e

|L*, S', or I' requested for a parameter
{whose type attribute does not allow these
|attributes to be requested.

I

|Conditional assembly loop counter
|exceeded--conditional assembly terminated.

|Generated string is greater than 127
|characters for D assembler or 255 characters
|for F assembler.

|Expression 1 of substring is not allowed
|to be zero or minus.

|Expression 2 of substring is not allowed
|to be zero or minus.

1. The parameter is not a self-defining
term.

2. The value of the SETC symbol used in
the arithmetic expression is not
composed of decimal digits.

once in a macro instruction.
2. Keyword is not defined in prototype.

|

|

|

|

}

| 1. A keyword operand occurs more than

[

,

|See Appendix H for dictionary size limits.
!
|

| Expression 2 of substring is not
|allowed to be greater than 8.

!

|Exponent too large for length of

|defining field; exponent modifier has caused
|loss of all significant digits.

|
|Local or Global declaration, or ACTR
| Statement is out of proper sequence.

|

|Operand of ISEQ statement has
lan illegal range.

1

b, e . e, s S, v e S S—— (— T— — — — — — — — — — — —— — —— fo— —- S S—— S S— —— o St Lo Wi, St S, Smemre e e s, e, e sk s sen 99

Figure 35.

192

Assembler Diagnostic Error Messages (Part 6 of 14)

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

r T 1
|Message | |
| Code Message {Meaning |
H L (]
3 T S |
1130 073 |ILLEGAL NAME FIELD | 1. Name entry required to be blank is not |
1JY | blank. |
| 2. Required name entry is missing. |
| 3. Name entry required to be a sequence |
| | symbol is not a sequence symbol. |
| |
I1JQ 074|ILLEGAL STATEMENT IN | 1. Statement encountered in COPY code is |
1JY COPYCODE OR SYSTEM MACRO | not legal in COPY code. |
] | 2. Statement encountered in system macro is|
| not legal in system macro. [
| ‘ |
1JQ9 075|ILLEGAL STATEMENT | Statement allowed only in a macro |
| 1JY OUTSIDE OF A MACRO definition encountered in OPEN code, l
| DEFINITION e.g., period asterisk (.*), mnote statement. |
| |
IJQ 076 | SEQUENCE ERROR Statement not in sequence specified i
1JY	by ISEQ instruction.
IJQ 077	ILLEGAL CONTINUATION 1. Too many continuation cards.
1IJY CARD 2. Nonblanks occur between the begin and	
	continue columns of the continuation
	treated as such because of punch in
	continue column of preceding card.
IJQ 078	MACRO MNEMONIC OP-CODE
13Y TABLE OVERFLOW	overflow. See Appendix H.
IJQ 079	ILLEGAL STATEMENT IN
1JY	MACRO DEFINITION
1JQ 080	ILLEGAL START CARD
1JY the location counter have been encountered	
before a START statement.	
I1JQ 081	ILLEGAL FORMAT IN GBL
1JY OR LCL STATEMENT	
11JQ 082]	ILLEGAL DIMENSION Dimension is not within the limits of 1-255.
SPECIFICATION IN GBL OR	
l LCL STATEMENT	
IJQ 083	SET STATEMENT NAME The name entry of a SET statement must
1JY	FIELD NOT VARIABLE be a variable symbol. 1
SYMBOL	
I	
IJQ 084	ILLEGAL OPERAND FIELD Syntax invalid, e.g., AIF statement
1JY	FORMAT IN CONDITIONAL
	ASSEMBLY STATEMENT parenthesis or, sequence symbol missing in
	operand field of AIF or AGO statement.
L 4 L J
Figure 35. Assembler Diagnostic Error Messages (Part 7 of 14)

Appendix N: Diagnostic Error Messages 193

r T
|Message|
|Code
L

|Message
4

Meaning

r T
| IJQ 085|INVALID SYNTAX IN

—_——

1.

Invalid delimiter.

194

1
|
|
*.
| IJY | EXPRESSION 2. Too many terms in expression. |
| | 3. Too many levels of parentheses. |
[i 4, Two operators in succession. [
ol :
{IJQ 086 | ILLEGAL USAGE OF SYSTEM 1. System variable symbol appears in: |
1JY | VARIABLE SYMBOL ‘ | a. The name entry of a SET statement. |
| b. A mixed-mode macro definition. |
| c. A keyword macro definition. |
| d. A GBL or LCL statement. |
| | 2. &SYSLIST in context other than N' |
| SYSLIST. |
| |
| IJQ 087|NO ENDING APOSTROPHE End of card encountered before an]
|1JY | |ending apostrophe. |
[I
|IJQ 088 |UNDEFINED OPERATION | 1. Symbol in operation code field does not |
| 13Y | CODE | correspond to a valid machine or |
| assembler operation code or to any |
| operation code in a macro prototype |
| statement. |
| 2. An inner macro is not defined. The |
| opcode of the macro is not printed. |
| |
IJQ 089	INVALID ATTRIBUTE	The argument of the attribute reference
IJY NOTATION	must be a symbolic parameter and the	
	statement must be within a macro definition.	
IJQ 090	INVALID SUBSCRIPT Syntax error, e.g., no right parenthesis i	
1JY after subscript; double subscript where		
single subscript is required, or single]		
	subscript where double subscript is required.	
IJQ 091	INVALID SELF-DEFINING 1. Value is too large.	
1JY TERM	2. Value is inconsistent with the data	
		type, e.g., hex for decimal, etc.
[
IJQ 092|INVALID FORMAT FOR 1. Variable symbol is no longer |
1JY VARIABLE SYMBOL than 8 characters. |
2. First character after the ampersand is |
not alphabetic. |
3. Failure to use double ampersand in TITLE|
| | card or character self-defining term. |
|
1JQ 093 |UNBALANCED PARENTHESES |End of statement or card encountered
1JY OR EXCESSIVE LEFT |before all parenthesis levels are
PARENTHESES |satisfied. May, be caused by embedded blank
] |or other unexpected terminator, or failure to
| |have a punch in continuation column.
]
IJQ 094 |INVALID OR ILLEGAL | 1. Name not blank or variable symbol. |
{|1JY NAME OR OPERATION IN | 2. Variable symbol in name field is |
PROTOTYPE STATEMENT | subscripted.
| 3. Violation of rules for forming variable
| | | symbol, (must begin with ampersand (§)
] | followed by 1-7 letters and/or numbers |
| | first of which must be a letter). |
| | 4. Statement following "MACRO' is not a |
| | | valid prototype statement. i
i i L 3
Figure 35. Assembler Diagnostic Error Messages {(Part & of 14)

A
N

S

3 L)
|Message|

|Code
i

| Message
4

Meaning

v T
[IJY 095|ENTRY TABLE OVERFLOW

1JQ
1JY

1J9
1Jy

096

097

MACRO INSTRUCTION OR
PROTOTYPE OPERAND
EXCEEDS 127 [225]
CHARACTERS IN LENGTH

INVALID FORMAT 1IN MACRO
INSTRUCTION OPERAND OR
PROTOTYPE PARAMETER

Number of ENTRY symbols, i.e.,ENTRY
instruction operands, exceeds 100.

Macro instruction or prototype
operand length exceeds 127

characters for D assembler and
255 characters for F assembler.

1. Illegal equal sign ().

2. A single ampersand (§) appears
somewhere in the standard
value assigned to a prototype keyword
parameter.

3. First character of a prototype parameter

is not an ampersand.

4. Prototype parameter is a subscripted
variable symbol.

5. 1Invalid usage of alternate format in
prototype (see example) .

6. Invalid prototype parameter, e.g., §A*
or EA&E.

Note: Occurrence of this error will cause
only syntax to be checked for the remainder
of the macro definition.

Example:

r T T T 1
| | | |Continuation|
| Name | Operation|Operand | Column |
b=t ¢ : i
| | PROTO |éa,€B, | |
I | or | |
| | PROTO 16,88, | X |
I | | & | |
[} L]

L

L

| I
1JQ 098|EXCESSIVE OF

1. The prototype has more than 100

— s s, e, 5 s e b

1JY | OPERANDS OR PARAMETERS (200 for F assembler) parameters.
| 2. The macro instruction has more than 100
(200 for F assembler) operands.
|
IJQ 099 |POSITIONAL MACRO Positional macro instruction operand
1JY INSTRUCTION OPERAND prototype parameter or extra
PROTOTYPE PARAMETER comma follows keyword. |
| OR EXTRA COMMA FOLLOWS |
| KEYWORD
I1JQ 100| STATEMENT COMPLEXITY See Appendix H for statement complexity
1JY EXCEEDED |limits. |
| | |
IJ0 101|EOD on SYSIN or SYSIPT |End of data reached before an END |
1JY | | statement was encountered. |
i N L []
Figure 35. Assembler Diagnostic Error Messages (Part 9 of 14)

Appendix N: Diagnostic Error Messages

195

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

r ¥
|Message|
|Code |Message
[N 4

Meaning

r T
|I3Q 102|INVALID OR ILLEGAL ICTL
1JY

|IJQ 103 |ILLEGAL NAME IN
I1JY |OPERAND FIELD OF COPY
| CARD

IJQ 104 |COPY CODE NOT FOUND
1JY

I1JQ 105|EOD ON SOURCE STATEMENT
1JY LIBRARY

|
[IJY 106 |NOT NAME OF DSECT

|
1JQ 107|INVALID OPERAND
13Y

I1JQ 108 |PREMATURE EOD
1JY

IJQ 109|PRECISION LOST
1JY i
|

1JY 110|EXPRESSION VALUE
| TOO LARGE

U S——
S S S —

PR pp——

1. Operands of ICTL statements are
out of range.

2. ICTL is not the first statement in the
input deck.

Syntax error, e.g., symbol has an
|illegal character or has more than
8 characters.

The operand of a COPY statement
| specified COPY text which cannot be
found in the library.

1. Mend statement missing from macro
definition.

While editing a macro, COPY code not
found. Macro definition truncated.

End of file encountered while reading a
macro or copy code.

The statement immediately preceding
BKEND in a copy book has a nonblank
character in its continuation column.

w N
.

=
)

|Referenced symbol expected to be DSECT name,
but it is not.

Operand unrecognizable, contains invalid
|value, or incorrectly specified.

Indicates a machine error or an internal
assembler error.

High order information lost by attempting
to express constant in a field not long
enough to contain it.

|
Value of expression greater than
-16777216 to +16777215.

|
Expressions in EQU and ORG statements are
flagged if (1) they include terms previously
defined as negative values, or (2) positive
|terms give a result of more than three bytes
|in magnitude. The error indication may be
|erroneous due to (1) the treatment of
negative values as three-byte positive
values, or (2) the effect of large positive
| values on the location counter if a control
| section begins with a START statement having
|an operand greater than zero, or a control
|section is divided into subsections.

L

o bt e ey 20d

— — —— — o——" —— ————" —— — — A So——n St e S At} O SO St SRS Mo S S e

S

Figure 35. Assembler Diagnostic Error Messages (Part 10 of 14)

196

Messages ending with an I are printed on both SYSLST and SYSLOG unless one of the
messages indicates that SYSLST or an unidentifiable unit is defective, in which case

they will appear on SYSLOG only.

The messages appearing on SYSLOG will be prefaced by

"A* regardliess of which assembler produced them. 110I and 111I errors can be detected
at any point during assembly -- amount of assembly listing printed is unpredictable.
1121 through 1151 errors are detected immediately upon assembly attempt -- no assembly
listing is printed. 1In either case the assembly is terminated, the source is bypassed
to a /* or EOF, and control returned to the supervisor via EOJ. The subsequent steps
of a multiple step JOB are not bypassed unless they are also defective.

r
|Message

|Code Message
1

T

Meaning

T
I
|
%
13Q 110I|ABORT--PERM I/O ERROR
I
|
|
|

IJQ 1111|ABORT--UNEXPECTED EOF
1J3Y |ON SYSxxx

|
|
|
1JQ 112I|ABORT--INADEQUATE

1JY |CORE FOR 32L [44K]
| ASSEMBLER

A SV ——

o e e st e et . . e s S S S St Gt fn. S . S

[e e . o, S . . Yt s S S ——

An unrecoverable error on the designated unit
prevents further processing. If the file
named is SYSxxx, the unit code of the DTF
which caused the error does not match any
unit valid in the assembler.

1
|
I
i
|
|
|
|

| The assembler does not support multivolume
work files. Determine the cause of EOF

(usually short tape) and rerun with adequate
| storage for work files.

| |
Cause: An attempt was made to execute the
[{32K] D assembler in less than 14K, or the F
assembler in less than U44K.

This is probably a user error.

| System Action: The job step is terminated.

Programmer Action: If there is insufficient
|main storage available, you must linkage edit
|a smaller assembler.

1f the problem recurs, do the following to
complete your problem determination action:

1. Execute the MAP command and retain the
output.
2. Have the printer output available.

|Operator Action: Execute the MAP command to
|determine the partition size. Then allocate
|a larger partition for the assembly.

L

Figure 35. Assembler Diagnostic Error Messages (Part 11 of 14)

Appendix N: Diagnostic Error Messages 197

Page of GC24-3414-9
Revised Nov, 31, 1972
By TNL: GN33-8157

r T 1
|Message | B
|Code |Message Meaning \ W4
i L

IJQ 113I]|ABORT--INVALID Cause: The assignments for a work file (s)

I
I
[
!
|
|
I
[
]
|
I
|
|
|

|
L

| PHYSICAL UNIT FOR
SYSxxx

I
I
I
|
L

are not valid.

The device type is not valid, or the 10K
version of the D assembler is linkage
edited for different devices than those
assigned.

|
The UA (unassign) or IGN (ignore) option|
was specified for the D assembler.

The specified mode setting is not wvalid.|

For the 10K version of the D assembler,
the work file device types are not
consistent. (SYS003 is correct.)

s o s i e, St (i, e, et s S, St i, s, e, e, S o, e, @]

|Only the first invalid unit is named in the
|message.

| This is probably a user error.

System Action: The job step is terminated.

Programmer Action: Use the LISTIO output to
determine the cause for the message.

Correct the assignments and resubmit the job.

|1f the problem recurs, do the following to
| complete your problem determination action:

1. Have the LISTIO output available.

| 2. Have the job stream and system output
| available.

|

|Operator Action: 1Issue the LISTIO command to
|check the assignments and enter the correct
|work file assignments if possible.

L

b s et s Mt . S, S ey . S St S — —" S— — ——" f—d——— — Aoy, S G, Bt

Figure 35.

198

Assembler Diagnostic Error Messages (Part 12 of 14)

oy

/

N

I 1
|Message

|Code

Message

Meaning

s e e
P S———"

|
L

I1JQ 1141

IJY 1141

ABORT--NO UNIT ASSIGNED FOR
SYSPCH (for D assembler)

ABORT--NO UNIT
ASSIGNED FOR SYSxxx
(OPTION SYM)

| (foxr F assembler)

Cause : For the D assembler, the OPTION
[CECK] is in effect and SYSPCH is not
assigned. |

This is probably a user error.

System Action: The job step is terminated.

|Programmer Action: Submit an assign for
|SYSPCH,

or
specify OPTION (NODECK] and resubmit the jok.

If the problem recurs, do the following to
complete your problem determination action:

1. Retain the LISTIO listing.
2. Have the job stream, program listing, |
and system log available. 1

Operator Action: Execute the LIST10 command
fand verify assignments. Submit an assign for
| SYSPCH and rerun the job.

Cause: For the F assembler, a required unit
(SYS001-SYS003 or a device required by

an OPTION statement) is unassigned, or the
|IGN option is specified for the device. The |
(ignore) option is valid for SYSPCH and
SYSLST.

This is probably a user error.

System Action: The system terminates the jok
ster.

Programmer Action: Submit an assignment for
{the indicated logical unit,

or

correct the OPTICON statement to eliminate the
requirement and resubmit the job.

1f the problem recurs, have the LISTIO
listing, the system log, the job stream, and
the printer output available to complete your
problem determination action.

Operator Action: Execute the LISTIO command

and verify the assignments. Submit an assign
for the indicated logical unit and rerun the

| job.

L

R et et oo s S st . s S S

Figure 35.

Assembler Diagnostic Error Messages (Part 13 of 14)

Appendix N: Diagnostic Error Messages 199

r L} -1
|Message |

Code Message Meaning

— s e e o

IJY 115I |ABORT--INVALID DUAL Cause: SYSPCH and SYSIPT are both assigned
ASSGN SYSPCH- to the same unit, which is not a 1442N1 or
SYSIPT [SYSLST) 2520B1 card reader,

or

| SYSPCH and SYSLST are both assigned to the
[same unit, which is not a disk.

This is probably a user error.

System Action: The job step is terminated.
| |
Programmer Action: Check the LISTIO listing
to determine the dual assignments. Reassign
|the indicated logical units to separate |
devices, or the required device type.

I1f the problem recurs, retain the LISTIO
output, the job stream, system log, and
supervisor listing to complete your prokblem
|determination action.

Operator Action: Execute LISTIO to determine
|the current assignments. Reassign the two
indicated logical units to separate devices
or to the required device type.

— . — — —— — —— ——

IJQ 1161 |ABORT-INVALID MULTIPLE Cause: For the D assembler, more than one
| | EXTENTS FOR WORKFILES extent is assigned for SYS001, SYsS002,
(for the D assembler) |ox SYS003.

System Action: The job step is terminated.

Programmer Action: Probable user error.
| Correct extent job control statement. If the
] problem persists do the following kefore |
| calling for IBM programming support.

| | ® Execute the LSERV program and save its
i ; output.
|

|

|

]

L

e Have the associated jobstream and program
listing available.

Operator Action: None.

[— e, o s S a— — ——

Figure 35. Assembler Diagnostic Error Messages (Part 14 of 14)

Note: If the execution of the assembler is terminated abnormally with the message 49502
NO MORE AVAILABLE EXTENTS, on the console, one of the assembler work files has Leen
filled. This is probably caused by a conditional assembly loop resulting from a logical
error in the source code. To locate the error, ACTR statements should be included in
each macro definition and in the main portion of the source code. The programmer must
also make sure that a MACRO statement is included to identify the beginning of each
macro definition. Otherwise the statements of the d:finition are included in the main
portion of the program.

200

@

I

A

Appendix O. Self-Relocating Program Techniques

Self-relocating programs are executed in a
multiprogramming environment and at any
location in main storage. These programs
may be located in either foreground area of
main storage. A program that is
self-relocating must initialize its address
constants, including channel command words
(CCWs) at execution time. The user must
code his own self-relocating routine for
execution after it is linkage edited and
loaded into main storage.

When coding a self-relocating program,
the programmer should take these points
into consideration:

1. All A-type address constants must be
relocated.

2. The 1I/0 area addresses in all CCWs
must be relocated.

3. Address constants generated by
physical I0CS macros (EXCP, WAIT,
etc.) must be relocated.

4., Logical 10CS macros can be
self-relocated using the OPENR macro.

The following example program shows how
a user may code a self-relocating program.
This example uses the A-type constant and
registers 1 and 2 although the user may use
any of the other available registers if he

chooses.

Appendix O:

This program contains six address
constants. Two are A-type and two each are
contained in the command control block
(CCB and the channel command word (CCW)
macros. This procedure is used:

1. The absolute addresses of the contents
of the two A-type constants (EOFTAPE
and CHA12) and the CCW for each CCB
(PRINTCCW and TAPECCW) are loaded into
a work register (register 1).

2. The work register is stored in the
address constants [A (EOFTAPE) and
A (CHA12)] and in their respective CCBs
(PRINTCCB+8 and TAPECCB+8) .

3. The command code for the CCWs shares a
fullword with the I/0 area address and
must be reset after the 1I/0 area
address has been stored. This is done
here by two methods: (a) saving the
command code for the PRINTCCW in
register 2 and then restoring it; (b)
using the the Move Immediate (MVI)
instruction for the TAPECCW to set the
command code.

In the main routine of this program,
note that register notation has been used
with the EXCP and WAIT macros to avoid the
generation of address constants by the
macros themselves. The example of a
self-relocating program follows.

Self-Relocating Program Techniques 201

SOURCE STATEMENT

PRINT NOGEN
PROGRAM START 0

RELOCATE CCW ADDRESS
IN CCB8 FOR PRINTER

RELOCATE CCW ADDRESS
IN CCB FOR' INPUT TAPE

*RELOCATE***%#*
¥ PROGRAM *

ADDRESS *

** % *CONSTANTS *

SAVE PRINT CCW OP CODE

RELOCATE OUTPUT AREA ADDRESS
IN PRINTER CCW

RESTORE PRINT CCW OP CODE

RELOCATE INPUT AREA ADDRESS
IN TAPE CCW

BALR 15,0
USING #*,15

* ROUTINE TO RELOCATE ADDRESS CONSTANTS
LA 1,PRINTCCW
ST 1,PRINTCCB+8
LA 1,TAPECCW
sT 1,TAPECCB+8
LA 1,EOFTAPE
ST 1,AEOFTAPE
LA 1,CHA12
ST 1,ACHA12
Ic 2,PRINTCCW
LA 1,0UTAREA
ST 1,PRINTCCW
STC 2,PRINTCCW
La 1,INAREA
ST 1,TAPECCW
MVi TAPECCW, 2

SET TAPE CCW CODE TO READ

* MAIN ROUTINE...READ TAPE AND PRINT RECORDS

READTAPE LA
EXCPp
WAIT
L
BAL

CHECK ™

CHA12 MVI

EOFTAPE EOJ
CNOP
PRINTCCB CCB
TAPECCB CCB
PRINTCCW CCW
TAPECCW CCW
AEOFTAPE DC
ACHA12 DC
OUTAREA DC
INAREA DC
END

1,TAPECCB
(1)

(1)

10 ,AFOFTAPE

14 ,CHECK
OUTAREA (10) , INAREA
OUTAREA+15 (70) , INAREA+10
OUTAREA+90 (20) , INAREA+80
1,PRINTCCB

(1)

1)

10 ,ACHA12

14 ,CHECK

READTAPE

41,1

1,10

14

PRINTCCW ,X ' 8B'

)]

M

PRINTCCW,9

14

0,4

SYS004 ,PRINTCCW,X*0400"*
SYS001,TAPECCW

9 ,0UTAREA,X"20',110
2,INAREA,X'20',100

A (EOFTAPE)

A (CHA12)

CL110* *

CL100* *

PROGRAM

GET CCB ADDRESS
READ ONE RECORD FROM TAPE
WAIT FOR COMPL. OF I,/0
GET ADDRESS OF TAPE EOF ROUTINE
GO TO UNIT EXCEPTION SUBROUTINE
EDIT RECORD

IN

OUTPUT AREA
GET CCB ADDRESS
PRINT EDITED RECORD
WAIT FOR COMPL. OF 1,0
GET ADDRESS OF CHAN 12 ROUTINE
GO TO UNIT EXCEPTION SUBROUTINE

CHECK FOR UNIT EXC. IN CCB
YES~-GO TO PROPER ROUTINE
NO-RETURN TO MAINLINE

SET SK TO CHAN 1 OP CODE

SK TO CHAN 1 IMMEDIATELY

WAIT FOR COMPL. OF 1/0

SET PRINTER OP CODE TO WRITE

RETURN TO MAINLINE

END OF JOB

ALIGN CCB'S TO FULL WORD

Appendix P. Sample Macro Definitions

The macro definitions in this appendix are
typical applications of the macro language
and conditional assembly. Another macro
definition is included as part of Appendix
I. The definitions are presented along
with statements generated from typical
corresponding macro instructions.

The second macro definition is MOVE.
This macro is recursive; i.e., it calls
itself as an inner macro. Compare this
macro definition with MOVE in Appendix 1.
MOVE in Appendix 1 has more statements,
however it functions differently and
includes error checking facilities.

The first macro definition is NOTE -- a
DOS system macro taken from the source
statement library of the DOS assembler.

MACRD
SLABEL NOTE &FILEN
«* IBM SYSTEM/360 TAPE/DISK OPERATING SYSTEM
+ CHANGE LEVEL 2-0
, AIF (T*EFILEN NE *0').ONE
. MNOTE O, *NO FILENAME SPECIFIED.SET TO ¢'atte
ELABEL L =A%) sssxsERROR-PATCH DTF TABLE ADDRESS
AGO « THREE

«ONE ALF (PEFILEN'(1,1) NE *(*).TWO
AIF (*&FILEN(L)®* EQ *1*').FOUR

GLABEL LR 1. 6FILEN(]) GET DTF TABLE ADDRESS
AGO «THREE

«TWO ANOP

ELABEL L 1+=A{&FILEN) GET DTF TABLE ADDRESS

« THREE L 13,1611} GET LOGIC MODULE ADDRESS
AGO «FIVE

«FOUR ANOP

&LABEL L 15,161(1) GET LOGIC MODULE ADDRESS

+FIVE BAL 14,121(15) BRANCH TO NOTE ROUTINE
MEND

-

* STATEMENTS GENERATED FROM NOTE MACRO INSTRUCTIONS

-

= SYMBOL AS OPERAND

NNAME NOTE INFILE
+= CHANGE LEVEL 2-0

+NNAME L 19=A(INFILE) GET DTF TABLE ADDRESS
+ L 15,161{1) GET LOGIC MODULE ADDRESS
+ BAL 14,12(15) BRANCH TO NOTE ROUTINE
* REGISTER 1 AS OPERAND
NOTE (1)
+» CHANGE LEVEL 2-0
+ L 15,16{(1) GET LOGIC MODULE ADDRESS
+ BAL 14,12(15) BRANCH TO NOTE ROUTINE
- OTHER REGISTER AS OPERAND
NOTE (5)
+# CHANGE LEVEL 2-0
+ LR 145 GET OTF TABLE ADDRESS
+ L 15,16{1) GET LOGIC MODULE ADDRESS
+ BAL 14,12(15) BRANCH TO NOTE ROUTINE

Appendix P: Sample Macro Definitions 203

» OMITTED OPERAND

NOTE
+# CHANGE LEVEL 2-0
OyNO FILENAME SPECIFIED.SET TO !w!¢

. L lo=A(#) ##sssERROR-PATCH DTF TABLE ADDRESS
. L 15,16(1) GET LOGIC MODULE ADDRESS
‘ BAL 14,12(15) BRANCH TO NOTE ROUTINE
MACRO
GNAME MOVE GFROM,&TO,GCOUNT
o
o RECURSIVE GENERAL PURPOSE MOVE MACRO
o
GBLA €A
LCLA &B
&8 SETA &COUNT ,
PN AIF (8B LE 256).D0 MOVE LESS THAN 256 BYTES

ENAME MVC ETO+EA. (256) yEFROM+EA 256 BYTE MOVE
€A SETA GEA+256

€8 SETA £&B-256
MOVE &FROM,ETD, EB CALL THYSELF
MEXIT
«DO0 ANOP
ENAME MVvC ETO+EA. (EB) » EFROM+EA LESS THAN 256 BYTE MOVE
“EA SETA 0 SET BACK TO O FOR NEXT CALL
MEND
.
» STATEMENTS GENERATED FROM MOVE MACRO INSTRUCTIONS
»
. MOVE LESS THAN 256 BYTES

MNAME MOVE FRMAD,TOAD,1%50
+MNAME Mve TOAD+0(150) 4FRMAD+0 LESS THAN 256 BYTE MOVE

» MOVE 256 BYTES
MOVE FRMAD,TOAD,256
+ MVC TOAD+0(256) yFRMAD+0 LESS. THAN 256 BYTE MOVE
L MOVE MORE THAN 256 BYTES

MNAME2 MOVE FRMAD,TOAD,400
+MNAME2 MVC TOAD+0(256)FRMAD+0 256 BYTE MOVE
+ MVC TOAD+256(144)yFRMAD+256 LESS THAN 256 BYTE MOVE

* MOVE MORE THAN 512 BYTES

MOVE FRMAD,TOAD,520

MVC TOAD+0(256) FRMAD+0 256 BYTE MOVE

MVC TOAD+256(256),FRMAD+256 256 BYTE MOVE

MVvC TOAD+512(8),FRMAD+#512 LESS THAN 256 BYTE MOVE

L K R 2

204

Page of GC24-3414-9
Revised Nov. 31, 1972
By TNL: GN33-8157

Index

Indexes to systems reference library manuals are consolidated in IBM System/360 Disk
Operating System Master Index, GC24-5063 and in IBM System/360 Tape Operating System
Programming Index, GC24-5064. For additional information about any subject listed
below, refer to other publications listed for the same subject in the consolidated
index.

ANOP instruction 97
Example of 97
Form of 97
Sequence symbol in 97
Use of 97

&SYS, restrictions on use 76,88,101
&SYSECT (see Current control section name)
&SYSLIST (see macro instruction operand)
&SYSNDX (see macro instruction index)
&SYSPARM (see system parameter for

conditional assembly)

7090/7094 Support Package Assembler

Absolute terms 20

ACTR instruction 97

Address constants 56
A-type 57

Complex relocatable expressions

Literals not allowed 25

Apostrophes in
Character expressions 91
Macro instruction operands 77
MNOTE instruction 99

Arithmetic expressions
Arithmetic relations 94
Evaluation procedure 89
Invalid examples of 89

S-type 57 Operand sublists 90
V-type 58 Operators allowed 88
Y-type 57 Parenthesized terms in 89

Address specification 42
Addressing 31
Dummy sections 36
Explicit 31
External control sections 39
Implied 31
Relative 34
AGO instruction 96
Example 96
Form of 96
Inside macro definitions 96
Operand field of 96
Outside macro definitions 96
Sequence symbol in 96
Use of 96
AGOB instruction 13,75
AIF instruction 95
Example of 95
Form of 95
Inside macro definitions 95
Invalid operand fields of 95
Logical expression in 95
Operand field of 95
Outside macro definitions 95
Sequence symbols in 95
Use of 95
Valid operand fields of 96
| AIFB instruction 13,75
Alignment, boundary
CNOP instruction for 65
Machine instruction 41
Ampersands in
Character expressions 92
Macro-instruction operands 79
MNOTE instruction 99
Symbolic parameters 74
Variable symbols 72

evaluation of 89
examples of 89
SETA instruction 88
SETB instruction 93
Substring notation 91,92
Terms allowed 88
vValid examples of 88
Arithmetic relations 94
Arithmetic variable 104
Assembler instructions
Statement 46
Table 144
(see specific instructions)
Assembler language 13
Basic Operating System 13

Basic Programming Support 13,170

Coding conventions 16
Comparison chart 170
Macro facilities, relation to
Statement format 17
Structure 19,20
Assembler program
Basic functions 12
DOS/TOS relationship 15
Listing 160
Output 34,183
Variants 182
Assembler relationships 15
Assembling a Program 174

71

Assemble-and-execute 13,178,181

Card Input 174,178,181

Device Assignments 176,177
Diagnostic Error Messages 187
I/0 Units Used 179,180

Operating Considerations 176,177

Output 183

Index

205

Assembly, terminating an 67
Assembly no operation (see ANOP
instruction)
Attributes 84
How referred to 85
Inner macro instruction operands 84
Kinds of 84
Notations 84
Operand sublists 84
Outer macro instruction operands 84
Summary chart of 151
Use of 84
(see also specific attributes)

Basic Programming Support Assembler 13, 170
Base Registers
Address calculaticn
DROP instructions 32
Loading of 31
USING instructions 31
Binary constant 53
Binary self-defining term 24
Binary variable 104
Bit length specification 49
Mutiple constants 50
Multiple operands 50
Duplicated constants 50
Blanks
Logical expressions 93
Macro instruction operands 79

15,39,42

CCW instruction 60
Channel command word, defining 60
Character codes 113
Character constant 51
Character expressions 91
Ampersands in 91
Character relations 94
Concatenating 92
Examples of 91
Periods and 91
Apostrophes in 91
SETB instructions 93
SETC instructions 90
Character relations 94
Character self-defining term 24
Charcter set 19,20,112
Character variable 104
CNOP instruction 65
Coding form 17
COM instruction 36
Commas, macro instruction operands 79
Comments entries 18
Comments statements
Examples of 19,78
Model statements 78
Not generated 78
Comparison chart 70
Compatibility between System/360
assemblers 12
DOS/TOS assembler variants 12
DOS/TOS assemblers and OS assemblers 13
DOS/TOS assemblers and BOS/BPS
assemblers 13
Macro-definitions 111

206

Complex relocatable expressions 57

Concatenation ﬂ(‘m
Character expressions 91,92 %kuﬁ
Defined 77 >

Examples of 77
Substring notations 091
Conditional assembly elements, summary
charts of 97,150
Conditional assembly instructions
How to write 83
Summary of 98
Use of 83 s
(see also specific instructions)
Conditional branch (see AIF instruction)
Constants (see also specific types)
Defining (see DC instructions)
Summary of 147
Continuation lines 16
Conditional branch instruction 44
Operand format 43,44
Control section location assignment 35
Control sections
Blank common 36
CSECT instruction
Defined 34
DSECT instruction 36
First control section, properties of 35
START instruction 35
Unnamed 36
COPY instruction 66
COPY statements in macro definitions
Form of 78
Model statements, contrasted 78

35,36

Operand field of 78 SN
Use of 78 |

Count attribute N
Defined 86

Notation 84
Operand sublists 86
Use of 86
Variable symbols 86

CSECT instruction, symbol in, length
attribute of 35, 36

Current control section name (&SYSECT)
Affected by CSECT, DSECT, START 105
Example of 106
Use of 105

Data definition instructions 47
Channel command words 60
Constants 47
Storages 58
Data representation 15
DC instruction 47
Duplication factor operand subfield 48
Operand subfield modifiers 48 .
Type operand subfield 48
Length modifier 48
Scale modifier 50
Exponent modifier 51
Constant operand subfield 51
- Address-constants (see address
constants)
Binary constant 53
Character constant 52
Decimal-constants 56 T

DC instruction (continued)

Fixed-point constants 53

Floating-point constants 54

Hexadecimal constant 52

Type codes for 50
Decimal constants 56

Length modifier 56

Length, maximum 56

Packed 54

Zoned 54
Decimal field, integer attribute of 87
Decimal self-defining terms 91
Defining constants (see DC instruction)
Defining storage (see DC instruction;

DS instruction)
Defining symbols 22,83
Diagnostic Error Messages 187
Dimension, subscripted SET symbols 104
Displacements 42
Double-shift instruction 42
DROP instruction 32,42
DS instruction 58

Defining areas 59

Forcing alignment 59
DSECT instruction 36
Dummy section location assignment 36,38
Duplication factor 48

Forcing alignment 59

Effective address length 43
EJECT instruction 61
END instruction 67
ENTRY instruction 38,39
Entry point symbol, identification of 38
EQU instruction 46
Equal signs, as macro instruction
operands 79
Error message (see MNOTE instruction)
Error Messages 187
After END statement 67
Explicit addressing 31,42
Length 42
Exponent modifiers 51
Expressions 26,27,38
Absolute 42
Character 91
Evaluation 27
Logical 94
Relocatable 42
Summary chart of 150
Extended mnemonic codes 44
Operand format 45
Table 123
External control section, addressing of 39
External symbol, identification of 39
EXTRN instruction 39

First control section 35
Fixed-point constants 53

Format 53

Positioning of 53

Scaling 54

values, minimum and maximum 53,54
Fiﬁed;goint field, integer attribute

]

Floating-point constants
Alignment 55
Format 55
Scale modifiers 55

54

Floating-point field, integer attribute

of 87
Format e¢ontrol, input 6

GBLA instruction
Form of 101

3

Inside macro definitions
Outside macro definitions

Use of 101
GBLB instruction
Form of 101

Inside macro definitions
Outside macro definitions

Use of 101
GBLC instruction
Form of 101

Inside macro definitions
Outside macro definitions

Use of 101

101
101

101
101

101
101

General register zero, base register

usage 32

Generated statements, examples of 77

Global SET symbols
Defining 101

Examples of 101,102,103
Local SET symbols, compared 100

Using 101
Global variable symbols
Types of 100

(see also global SET symbols, sub-

scripted SET symbol

Hexadecimal constants 5

s)

2

Hexadecimal-decimal conversion chart 116
Hexadecimal self-defining terms 23

I' (see Integer attribut
ICTL instruction 63

e)

Identification~-sequence field 19
Identifying blank common control

section 37,38

Identifying assembly output 60,61

Identify dummy section
Implied addressing 31,4
Length 42

36
2

Implied length specification

Inner macro instruction
Defined 79
Example of 82
Symbolic parameters i
Instruction alignment 4
Instruction format 19
Interger attributed
Decimal fields 87
Examples of 87
Fixed-point fields 8
Floating-point fields
How to compute 87
Notation 84
Restrictions on use

n
1

7

87

82

87

42

Index

207

Integer attributed (continued)
Use of 87
ISEQ instruction 63

K' (see Count attribute)

Keyword
Defined 108
Keyword macro instruction 108
Symbolic parameter and 107

Keyword, inner macro instructions used

in 109
Keyword macro definition

Positional macro definitions 107

compared 107
Use 107
Keyword macro instruction
Example of 109
Format of 108
Keywords in 108
Operands 68,108
Invalid examples 109
Valid examples 109
Operand sublists in 109
Keyword prototype statement
Examples of 108,109
Format of 108
Operands 108,109
Invalid examples 108
valid examples 108
Standard values 108

L' (see Length attribute)
LCLA instruction

Form of 88

Use of 88
LCLB instruction

Form of 88

Use of 88
LCLC instruction

Form of 88

Use of 88
Length modifier 48

Bit length specification 49
Lengths explicit and implied 42,43
Length attribute

Defined 43,85

Examples 85

Notation 84

Restrictions on use 86

Symbols 22,86

Use of 85, 86
Length modifier 48

Length subfield 41
Level of parentheses 26
Library, copying coding form 66
Linkage symbols (see also ENTRY

instruction; EXTRN instruction)

Entry point symbol 38

External symbol 38

Linkage editor and use of 38
Listing, spacing 61,62
Listing control instructions 60
Literal pools 26,64,65

Segments one to four 65

208

Literals 25
Character 42
DC instruction, used in 25
Duplicate 26
Format 25
Literal pool, beginning 65
Literal pools, multiple 26

Treatment of self-defining term 25

Local SET symbols
Defining 101
Examples of 101,102,103

Global SET symbols, compared 100

‘Using 101
Local variable symbols
Types of 100
(see also local SET symbols)

(see also subscripted SET symbols)

Location counter 46,51,57
Predefined symbols 23
References to 23
Setting 64

Logical expressions
AIF instructions 95
Arithmetic relations 94
Blanks in 94
Character relations 94
Evaluation of 94
Invalid examples of 94
Logical operators in 94
Parenthesized terms in

Evaluation of 94
Examples of 94
Relation operators in 94
SETB instructions 93
Terms allowed in 94
Valid examples of 94
LTORG instruction 64,65

Machine features required 9
Machine instructions 41
Alignment and checking 41
Length 43
Literals, limits on 25
Mnemonic operation codes 43
Operand fields and subfields 41
Symbolic operand formats 43
Machine-instruction mnemonic codes
Alphabetical listing 123
MACRO
Form of 74
Use 74
Macro definition
Compatibility 111
Defined 74
Example of 76
How to prepare 74

Keyword (see Keyword macro definition)

Mixed-mode (see Mixed-mode macro
definition)
Placement in source program 74
Sample 162,203,204
Use 74
Macro definition exit (see MEXIT
instruction)

Machine instruction examples and format

RR 41,43,44

Machine instruction examples and format

(contined)
RX 41,44
RS 41,44
SI 41,44
ss 41,44

Summary table 120,121
Macro definition header statement (see
MACRO)
Macro definition trailer statement (see
MEND)

Macro facility
Additional features
Comparison chart 173
Relation to assembler language 71
Summary 98,149

Macro instruction

97,98

Defined 71
Example of 80
Form of 179

How to write 79

Levels of 82

Inner 82

Mnemonic operation code 79

Name entry of 79

Omitted operands 80 .
Example of 80

Operand entry of 79

Operands
Ampersands 80
Blanks 80

Commas 80
Equal signs 80
Paired parentheses 79
Paired apostrophes 79
Operand sublists 80,81
Operation entry of 79
Outer 81
Statement form 80
Types of 69
Used as model statement 81
Macro instruction index (&SYSNDX)
AIF instruction 104
Arithmetic expressions 104
Character relation 104
Example 105
MNOTE instruction 104
SETB instruction 104
SETC instruction 105
Use of 104
Macro instruction operand (&SYSLIST)
Attributes of 106
Use of 106,109
(see also symbolic parameters)
Macro instruction prototype statement
(see prototype statement)
Macro instruction statement (see macro
instruction)
MEND
Form of 74
MEXIT instruction, contrasted 99
Use of 74
MEXIT instruction
Example of 99
Form of 99
MEND, contrasted 99
Use of 99

Mixed-mode macro definitions
Positional macro definitions
contrasted 110
Use 109,110
Mixed-mode macro instruction
Example of 110
Form of 110
Operand field of 69,110
Mixed-mode prototype statement
Example of 110
Form of 110
Operands of 110
Mnemonic operation codes 43
Extended 44
Machine instruction 43
Macro instruction 74
MNOTE instruction
Ampersands in 100
Error message 100
Example of 100
Operand entry of 99,100
Apostrophes in 100
Severity code 100
Use of 99
Model statements
Comments field of 76
Comments statements 78
Defined 75
Name field of 75
Operation field of 75
Operand field of 76
Use of 75

N' (see Number attribute)
Name entries 18
Number attribute

Defined 86

Notation 86

Operand sublist 86

Object deck 183
Object module 34
Operands
Entries 17,18
Fields 41
Subfields 41,42
Symbolic 38,41,43
Operand sublist
Alternate statement form 81
Defined 80
Example of 81
Use of 381
Operation codes
Assembler 14
Machine 14
Operation entries
Operation field 41
Ordinary symbol 22
ORG instruction 64
Outer macro instruction defined 81

17,18

Paired parentheses 79

Index

209

Paired apostrophes 79 Scale modifier

Parentheses in Fixed-point constants 50
Arithmetic expressions 89 Floating-point constants 50,51
Logical expressions 94 Scaling attribute
Macro instruction operands 79,80 Decimal fields 85,86
Operand fields and subfields 42 Defined 85
Paired 79 Fixed-point fields 85,86

Period in Floating-point fields 85,86
Character expressions 91 Notation 102
Comments statements 78 Restrictions on use 86
Concatenation 78 Symbols 85,86
Sequence symbols 87 Use of 85,86

Positional macro definition (see macro Self-defining terms 23,24

definition) Binary 24

Positional macro instruction (see macro Character 24

instruction) 69 Decimal 23

Previously defined symbols 23 Hexadecimal 23

PRINT instruction 62 . Using 23

Program control instructions 62 (see also specific terms)

Program listings 15 Sequence checking 63

Program sectioning and linking 21,31,34 Sequence symbols 22,86,87

Prototype statement AGO instruction 96
Alternate 75 AIF instruction 95,96
Example of 75 ANOP instruction 97
Form of 74 How to write 86,87
Keyword (see keyword prototype state- Invalid examples of 87

ment) Macro instruction 87,88
Mixed-mode (see mixed-mode prototype Use of 87
statement) valid examples of 87,88
Name entry of 74 Set symbols
Operand entry of 74 Assigning values to 83
Operation entry of 74 Defining 83
Statement form 74,75 Symbolic parameters, contrasted 83
Symbolic parameters in 74 Use 83
Use of 74 (see also local SET symbols)
PUNCH instruction 63,64 (see also global SET symbols)

(see also subscripted SET symbols)
SET variable 100,101

Relational operators 94 SETA instruction
Relative addressing 34 Examples of 89,90
Relocatability 15,20 Form of 88
Attributes 38 Operand entry of 88
Prcogram, general register zero 32 Evaluation procedure 89
Relocatable expressions 28,41 Operators allowed 88
In USING instructions 32 Parenthesized terms 89
Relocatable symbols 22 Terms allowed 88
Relocatable terms Valid examples of 88
Pairing of 27 Operand sublist 90
In relocatable expressions 28 Example 90
REP card 186 SETB instruction
REPRO instruction 64 Example of 95
RR machine instruction format 41,42 Form of 93
Length attribute 41 Logical expression in 94
Symbolic operands 43 Arithmetic relations 94
RS machine instruction format 41,42 Blanks in 94
Address specification 42 Character relations 94
Length attribute 41 Evaluation of 94
Symbolic operands 43 Operators allowed 94
RX machine instruction format 41,42 Operand entry of 93,94
Address specification 42 Invalid examples of 94
Length attribute 41 valid examples of 94
Symbolic operands 43 SETC instruction

Apostrophes 90

Character expressions in 90
S' (see scaling attribute) Ampersands 90

Sample macro definitions 161,203,204 Periods 90
Sample program 160

210

J

£

SETC instruction (continued)
Concatenation in
Character expressions 91
Substring notations 91,92
Examples of 90,91,92
Form of 90
Operand entry of 90
Substring notations in 91,92
Arithmetic expressions in 92
Character expressions in 92
Invalid examples of 92
Valid examples of 92
Type attribute in 90,91
Example of 091
SETA symbol
Assigning values to 83
Defining 83
SETA instruction 89
Using 89
SETB symbol
ATIF instruction 95,96
Assigning values to 83
Defining 83
SETA instruction 95
SETB instruction 95
SETC instruction 95
Using 95
SETC symbol
Assigning values to 83
Defining 83
SETA instruction 94
Using 93

Severity code in MNOTE instruction 100

SI machine instruction format 44
Address specification 42
Length attribute 41
Symbolic operands 43

Source module 34

Source statement library defined 72

SPACE instruction 61,62

SS machine instruction format 41,44
Address specification 42
Length attribute 41
Length field 42
Symbolic operands 43

START instruction
Positioning of 34
Unamed control sections 35

Statements 16,17
Boundaries 16
Examples 18
Macro instructions 80
Prototype 74
Summary of 146

Storage, defining (see DS instruction)

S-type address constant 57

Sublist (see operand sublist)

Subscripted SET symbols
Defining 103
Dimension of 104
Examples 104
How to write 103
Invalid examples of 103
Subscript of 104
Using 104

Examples 104

Page of GC24-3414-9
Revised Nov, 31, 1972
By TNL: GN33-8157

Valid examples of 103
Substring notation
Arithmetic expressions in 92
Character expression in 52
Concatenating 92
How to write 92
Invalid example of 92
SETB instruction 94
SETC instruction 93
Valid examples of 92
SYM card 185
Symbol definition, EQU instruction for 46
Symbols
Absolute 22
Defining 22
Length attributes 41
Referring to 26
Length, maximum 23
Ordinary 22
Previously defined 23
Relocatable 22
Restrictions 23
Sequence 22,87
Symbol table capacity 153
Types of 22
Value attributes 41
Variable 22
Symbolic linkages 38
ENTRY instruction 38,39
EXTRN instruction 39
Symbolic operands formats 43
Symbolic parameter
Comments field 76
Concatenation of 77
Defined 76
How to write 76
Invalid examples of 76
Model statements 76
Prototype statement 74
Replaced by 76
Valid example of 76
System parameter for conditional assembly
Assigning values 107
Defined 107
System variable symbols
Assigned values by assembler 104
Defined 104
(see also specific system variable
symbols)

T' (see Type attributes)
Tables, internal, capacity of 151
Terms
Expressions composed of 20
Pairing of 27
TITLE instruction 61
Type attribute
Defined 85
Literals 85
Macro instruction operands 85
Notation 84
SETC instruction 90
Use 85

Unconditional branch (see AGO instruction)

Index 211

Unamed control section 35
USING instruction 31,42

Variable symbols 22

212

Assigning values to 72

Defined 72

How to write 72

Restrictions in use to generate
operation codes 74,75

Summary chart of 150

System 104,105

Variable symbols (continued)
Types of 72 ‘

Use 72 AN 4

(see also specific variable symbols)
V-type address constant 58

XFR instruction 13

Y-type address constant 57 !

GC24-3414-9

wts”

IV

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.8.A. only)

1BM World Trade Corporation
821 United Nations Piaza, New York, New York 10017
(International)

afenSue WIquessy SOL pue SOA

V'S ut paund

6-v1vE-4TOD

W

D
e

READER’S
COMMENT
FORM

DOS and TOS Assembler
Language

GC24-3414-9

Your views about this publication may help improve its usefulness; this form
will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,
however. For more direct handling of such request, please contact your

: IBM representative or the IBM Branch Office serving your locality.

« 3NIT Q31100 ONOIV LND #» -+

*
&

VAN

Reply requested: Name:
;es % Job Title:
° Address:

Zip

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

GC24-3414-9

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

* 3NIT ONOTVY @104 HO LND °°°

Foid Fold
First Class
Permit 40
Armonk
New York
L
L
Business Reply Mail E—
N . I]
0 postage stamp necessary if mailed in the U.S.A, —
I
. . L]
Postage will be paid by: ——
International Business Machines Corporation r—
Department 813 L T
1133 Westchester Avenue I
White Plains, New York 10604
Foid Fold

JISIME

Internationa! Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. oniy)

1BM World Trade Corporation _
821 United Nations Plaza, New York, New York 10017
(International)

afen3ueT wqQWLsSY SOL pue SOd

V'S ut pajurd

6v1vE-¥TOD

A
N

"

