
Systems Reference Library

IBM System/3BO DOS

Full American National Standard COBOL

Programmer's Guide

Program Number 360N-CB-4B2

File No. S360-24
Order No. GC28-6398-3

This publication describes how to compile an
American National standard COBOL X3.23-1968
program using the IBM System/360 Disk Operating
System Full American National Standard COBOL
Compiler Version 2. It also describes how to link
edit the resulting object module, and execute the
program. Included is a description of the output
from each of these three steps: compile, link
edit, and execute. In addition, this publication
explains features of the compiler and available
options of the operating system. American
National Standard COBOL was formerly known as USA
Standard COBOL.

PREFACE

This publication is logically and
functionally divided into two parts. Part
I contains information useful to
programmers who are running IBM Full
American National Standard COBOL programs,
i.e., programs compiled on the version 2
compiler, under the control of the IBM
Systeml360 Disk Operating System. Part I
covers such topics as job control language,
library usage, interpreting output, and
program debugging. Part I is intended
solely as object-time reference material.

Part II contains supplemental
information on the use of the language as
specified in the publication !~~_Syst~mL~~Q
Q~~~_QQ~~~t~ng_§ystem: Full American
National' Standard COBOL, Order
No. GC28-6394, and should be used in
conjunction with this publication for
coding IBM American National Standard COBOL
programs. Part II covers in detail such
topics as file organization, file label
handling, and record formats. Part II is
intended as source-time reference material
for language features that are primarily
system-dependent.

Fourth Edition (September 1972)

Wider ranging and more detailed
discussions of the Disk Operating System
are given in the following publications:

DOS Data Management Concepts,
Order No. GC24-3427

DOS System Generation,
Order No. GC24-5033

IBM System/360 Principles of Operation,
Order No. GA24-6821

The titles and abstracts of related
publications are listed in the publication
IBM System/360 Bibliography, Order No.
GA22-6822.

This is a reprint of GC28-6398-2'incorporating changes released in the
following Technical Newsletters2

GN28-0Qs8 (December 15, 1971) (DOS Release 26)
GN28-0Q9Q (June 15, 1972) (DOS Release 27)

Changes are periodically made to the specifications herein, any such
changes will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publica­
tion. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Publications, 1271 Avenue of the Americas,
New York, New York 10020.

@ Copyright International Business Machines corporation 1969,1970,1971

",
)

\

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL 3N28-1023 ~

PART I • • • 9

INTRODUCTION
Control Program

Supervisor • •

• • • • . 11

Job Control Processor
Initial Program Loader •

processing Programs
System Service Programs 0 • • •

Application Programs • • 0 • 0 0

IBM-Supplied Processing Programs
Multiprogramming • 0 0 • 0 • 0 • • • 0

Background vs. Foreground Programs 0

11
• 11
• 11

11
11

• 11
• 12
• 12
• 12
• 12

JOB DEFINITION • • 0 0 0 0 • 13
Job steps • 0 • • • • 13

compilation Job Steps • • • •• 13
Multiphase Program Execution 0 • 13

Types of Jobs 0 • • • • 0 • • 14
Job Definition Statements 0 15
Other Job Control Statements • • 15

JOB PROCESSING. • • 17
Compilation • 17
Editing • • 0 • • 17
Phase Execution • 18

Multiphase Programs • 18

PREPARING COBOL PROGRAMS FOR PROCESSING 19
Assignment of Input/Output Devices · 0 0 19
Job Control . 0 0 0 0 · · 0 0 · · 0 0 · 22

Job Control Statements 0 0 0 0 · · · · 22
Comments in Job Control statements 0 22
Statement Formats 0 · · 0 0 · 0 0 0 22
Sequence of Job Control Statements · 23

Description and Formats of Job
Control Statements 0 · 23

ASSGN Statement · 23
CLOSE Statement 0 0 · 0 · 25
DATE Statement 0 25
TLBL Statement . 0 · · 0 · 0 26
DLBL Statement 0 0 · 0 · · · · 0 27
EXTENT Statement 0 27
VOL Statement 0 · · · · 29
DLAB Statement 0 0 0 0 · · · · · 30
TPLAB Statement · 0 · · 31
XTENT Statement 0 31
JOB Statement 0 · · · 0 · 0 · 0 · · 32
LBLTYP Statement 0 32
LISTIO Statement 0 0 0 · · 33
MTC Stateme.nt 0 · · · · 33
OPTION Statement · · 33
PAUSE Statement · 35
RESET Statement · 35
RSTRT Statement · 36
UPSI Statement 0 36

CBL Statement -- COBOL Option
Control Card 0 0 · · · · · · 37
Job Control Commands · · 0 0 · · 38

Linkage Editor Control statements · 38
Control Statement Placement 0 39
PHASE Statement · 0 0 · 0 · · 39

INCLUDE Statement
ENTRY Statement
ACTION Statement

Autolink Feature • •

CONTENTS

40
• 0 40

40
o • 41

LIBRARIAN FUNCTIONS 43
Librarian • • . • 0 43
Core Image Library • • 0 • • • 43

Cataloging and Retieving Program
Phases -- Core Image Library 0 • 0 • 43

Relocatable Library • • 0 0 • 44
Maintenance Functions • 0 0 0 0 • 0 0 44

Cataloging a Module -- Relocatable
Library • • • • 0 0 • 0 • 0 0 • 0 0 44

Source Statement Library • • 0 0 0 • • 0 45
Maintenance Functions 0 • •• • 0 45

Cataloging a Book Source
Statement Library • • 45
Updating Books -- Source Statenent
Library • . • • • 0 • 0 0 • 0 • 0 • 47
Logical Unit Assignment and Control
Statement Placement: 0 • 0 0 • • • • 49
UPDATE Function -- Invalid Operand
Defaults 0 • • • • • 0 • • 0 0 • 0 • 50

Private Libraries 0 0 • 0 • 0 0 • • • • 50
Source Language Considerations 0 • • • 51

Extended Source Program Library
Facility 0 • • • • • 0 0 • 0 • • 51

PR~GRAM CHECKOUT · · · 0 53
Debug Language · · · · 0 · 53

Flow of Control · 0 · 0 53
Displaying Data Values During
Execution · · 0 · 0 · 0 0 0 0 · · 54
Testing a Program Selectively · 56

Testing Changes and Additions to
Programs · 0 · · 0 0 56
Dumps 0 . . · · · · · · · · · 0 · 0 · · 56

How to Use a Dump · · 0 · 0 57
Errors That Can Cause a Dump 0 · 57
Locating a DTF · · · · · 0 · 58
Locating Data · · · · · · 0 0 0 · 59

Compiler Diagnostics · · · 0 · · 66
Working with Diagnostic Messages . 0 · 66
Generation of Diagnostic Messages · · 66

Linkage Editor Output · · 0 · · 66
Execution-Time Messages · · 0 · · 66
Recording Program Status 0 · 0 0 · · 67

RERUN Clause · · · 0 · 0 0 · · · 0 · · 67
Taking a Checkpoint 0 · · · 67

Restarting a Program · · · 0 0 · 68

INTERPRETI~G OUTPUT · 69
Compiler Output · · 69

Object Module · · · 0 · · 77
Linkage Editor Output · · · 0 · 0 77

Comments on the Phase Map 79
Linkage Editor Messages · · · . · · 79

DOS ANS COBOL Unresolved External
References . · · · · 0 · 0 · · · 79
COBOL Phase Execution output · · · 0 · · 79

Operator Messages · · 0 · · · · 0 · · 80

/

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

STOP Statement • • • • •
ACCEPT Statement •

System output

• • • 80
• 80
• 80

CALLING AND CALLED PROGRAMS • • 81
Linkage • • • • •

Linkage In A Calling program •
Linkage In A Called Program . • • •
Entry Points • • • • • • • • •
Correspondence of Arguments and

• 81
81

• 82
• 82

Parameters • • • • • • • • • • 82
Link Editing Without Overlay • . • 83
Assembler Language Subprograms ••• 84

Register Us~ • • • • • • 84
Save Area • • • • • • • • • 84
Argument Li~t • • • • • • • • • • • • 84

In-Line Parameter List • • • • • • • 85
Lowest Level Program ..., • • 87

Overlays • • • • • • • • • • 87
Special Considerations When Using
Overlay Structures • • • • • • • • • 87

Assembler Language Subroutine for
Accomplishing Overlay • • • • • • • • 88
Link Editing with Overlay • • • • • • 89
Job Control for Accowplishing Overlay 90

USIN~ THE SORT FEATURE • • • • • •
Sort Job Control Requirements

Sort Input and Output control

• 95
• • • 95

Statements • • • • • • . • • •
Sort Work File Control Statements

Amount of Intermediate Storage

• 95
96

Required • • • • • • • • • • • 96
Improving Performance • • 96

Sort Diagnostic Messages • • • • • • 96
Linkage with the Sort Feature • • • • • 96

Completion Codes • • • • • • •• 97
Cataloging a Sort Program • 97

Checkpoint/Restart During a Sort • • 97
,Using Sort in a Multiphase Environment • 97

USING THE SEGMENTATION FEATURE • •
Operation • • • • • • • • • • •

Output F~om a Segmented Program
Compiler Output • • • •
Linkage Editor Output • • • •

Cataloging a segmented Program
Determining the Priority of the
Last Segment Loaded into the
Transient Area • • • . • • •

Using the Perform Statement In A
Segmented Program • • • • • •
Sort in a Segmented Program

PART II

• 99
• 99
.100

• .100
• .101

.101

.102

• .102
.102

• .105

PROCESSING COBOL FILES ON MASS STORA~E
DEVICES •• • •
File Organization

Sequential Organization • • • •
Direct Organization • • • • • •
rndexed Organization • •

Data Management Concepts • •
Sequential Organization (DTFSD)

Processing a Sequentially Organized
File • • • • • • • • • • • • •

Direct organization (DTFDA)
Accessing a Directly organized File

.107

.107

.107

.107

.107
• .108

.109

.109

.109

.110

ACTUAL KEY Clause •••••••••• 111
Randomizing Techniques ••••••• 112

Actual Track Addressing
Considerations for Specific Devices .125

Randomizing for the 2311 Disk Drive 125
Randomizing for the 2321 Data Cell .126

Indexed Organization (DTFIS) • • .127
Prime Area • • • • .127
Indexes • • • • • • .128

Track Index .128
Cylinder Index .128
Master Index • • • • • .128

Overflow Area ••• 128
Cylinder Overflow Area .128
Independent Overflow Area ••••• 128
Adding Records to an Indexed File .128

Accessing an Indexed File (DTFIS) •• 130
Key Clauses ••• • • • •••• 130
Improving Efficiency. • •• • .131

ADVANCED PROCESSING CAPABILITIES •••• 133
DTF Tables. • • • • ••• 133

Pre-DTF Switch •••••.••••• 138
Error Recovery ••.•••••••••• 138
Volume and File Label rlandling ••••• 144

Tape Labels • • • • • • ••••• 144
Volume Labels •••• 144
Standard File Labels ••• 144
User standard Labels •••••• 144
Nonstandard Labels. • • .144

Label Processing Considerations .148
Sample Programs ••••• 149

Mass Storage File Labels .•••••• 157
Volume Labels •••• .157
Standard File Labels. • •• 157
User Labels • • • • • • .157

Label Processing considerations ••• 157
Files on Mass storage Device
Opened as Input •••••.•••• 157
Files on Mass storage Devices
Opened as Output. • ••••• 158

Unlabeled Files •• 158

RECORD FORMATS. • • •• 159
Fixed-length (Format F) Records •• 159
Undefined (Format U) Records •••••• 159
Variable-length (Format V) Records ••• 160

APPLY WRIT~-ONLY Clause .163
Spanned (Format S) Records. • •• .163

S-Mode Capabilities •• • • •• .164
Sequentially Organized S-Mode Files
on Tape or Mass Storage Devices .165

Source Language Considerations ••• 165
Processing Sequentially Organize~
S-Mode Files •••••••••••• 165

Directly Organized S-Mode Files ••• 167
Source Language Considerations ••• 167
Processing Directly Organized
S-Mode Files. • •• •• • .168

OCCURS Clause with the DEPENDING ON
Option. • • • • • • •••••• 168

PROGRAMMING TECHNIQUES · · · · .171
General Considerations · .171

Spacing the Source Program Listing .171
Environment Division ;, · · · · · · .171

SELECT Sentence . · · . . · · · · .171
RESERVE Clause . . · · . . · .171

/'
I

\

/

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL 3N28-1023

APPLY WRITE-ONLY Clause
Data Division • • • • • • • • • •

Overall Considerations .
Prefixes • • • •

.171

.171
• .171

• •• 171
Level Numbers •• • •

File Section • •
• • • • • • .172

RECORD CONTAINS Clause •
Working-Storage Section

Separate Modules • • • •
Locating the Working-Storage

• •• 172
.172
.172

• •• 172

Section in Dumps. .172
Data Description • • •• • . • • .173

REDEFINES Clause. .173
PICTURE Clause. • • .173
USAGE Clause. • • • ••••• 175
SYNCHRONIZED Clause •• 177
Special Considerations for DISPLAY
and COMPUTATIONAL Fields • • •
Data Formats in the Computer • • •

.177

.178

.180

.180
Procedure Division • • • . • • . . • •

Modularizing the Procedure Division
Main-Line Routine .180
Processing Subroutines • • • • •
Input/Output Subroutines • •

· .180
.180

Intermediate Results •
Intermediate Results and Binary

• .180

Data Items. • • • • • •• 181
Intermediate Results and COBOL
Library Subroutines .181
Intermediate Results Greater Than
30 Digits ••••••••••••• 181
Intermediate Results and
Floating-point Data Items
Intermediate Results and the ON

• .181

SIZE ERROR Option ••••••••• 181
Exponentiation ••••••••.••• 181
Procedure Division Statements .••• 182

COMPUTE Statement •••• 182
IF Statement •••••••••••• 182
MOVE Statement. • .182
NOTE Statement. • • ••• 182
PERFORM Statement ••• 182
READ INTO and WRITE FROM Options •• 182
TRANSFORM Statement •••••• 183

Using the Report Writer Feature •••• 183
REPORT Clause in a File
Description (FD) Entry •
Summing Techniques •
Use of SUM • . • • • • •
SUM Routines • • • • •
Output Line Overlay
Page Breaks
WITH CODE Clause • • •

• .183
.183
.183

• ••• 184
• ••• 185
• ••• 185

Control Footings and Page Format •
NEXT GROUP Clause

.185

.186

.186
Floating First Detail
Report Writer Routines

Table Handling Considerations
Subscripts • • •• • • • •
Index-names • • • •
Index Data Items • • • •
OCCURS Clause • •
DEPENDING ON Option
SEARCH ALL Statement • • • •
SET Statement • • • • • • • •
SEARCH Statement •
Building Tables

8

.187
• .187

• •• 187
• •. 187
• •• 188

.188
• •• 188
• •• 188

.189
• •• 189

.191

.i92

Core Saving Technique When Using Sort
and Segmentation ••••••••• : •• 192

Using The Technique ••••••••• 193
Restrictions When Using the Technique 193

APPENDIX A: SAMPLE PROGRAM OUTPUT .195

APPENDIX B: STANDARD TAPE FILE LABELS .209

APPENDIX C: STANDARD MASS STORAGE
DEVICE LABELS • • • • • • • • • .211

APPENDIX D: TRACK FORMATS FOR THE
2311, 2314, AND 2321 DIRECT-ACCESS
STORAGE DEVICES • • • • • • • • • • 217

APPENDIX E: COBOL LIBRARY SUBROUTINES .219
Input/Output Subroutines ••••••• 219

Printer Spacing •••••••••• 219
Tape and Sequential Disk Labels •• 219
CLOSE WITH LOCK Subroutine. • .219
WRITE Statement Subroutines .219 '
READ Statement Subroutines. • .219
REWRITE Statement Subroutines .219
DISPLAY (EXHIBIT and TRACE)
Subroutines •••••••••••• 220
ACCEPT and STOP (literal) statement
Subroutines • • • • • • • •• .220
CLOSE Subroutine. • • • • •• .220
Multiple File Tape Subroutine .220
Tape Pointer Subroutine .220
Input/Output Error Subroutines ••• 220
Disk Extent Subroutines .220
Auxiliary Subroutines •• 220

Conversion Subroutines •••••••• 220
Arithmetic Verb Subroutines •• 222
Sort Feature Interface Routine •••• 222
CheckpOint (RERUN) Subroutine •• 222
segmentation Feature Subroutine .222
Other Verb Routines .222

Compare Subroutines •• 222
MOVE Subroutines. • • .223
TRANSFORM Subroutine. • .223
Clas~ Test Subroutine •• 223
SEARCH Subroutine .223
Main Program or Subprogram
Subroutine • • • • • •• •

Transient Subroutines • • • • •
Erro~ Message Subroutine •
Reposition Tape Subroutine •

• .223
.223
.223

• .223

APPENDIX F: SYSTEM CONFIGURArION •• 225
Minimum Machine Requirements for the
Compiler ••••••••••••••• 225
Source Program Size Considerations •• 225

Compiler Capacity ••••••••• 225
Effective Storage Considerations •• 226

Execution Time Considerations •• 227
Multiprogramming Considerations .227
Sort Feature Considerations .228

APPENDIX G: COMMUNICATION REGION
Communication Region ~

APPENDIX H: SAMPLE JOB DECKS •
Direct Files .0.•

Creating a Direct File ~ •

• .229
• .229

• .231
• .232

.232

Page of GC28-6398-2, -3·, Revised 2/15/73 by 'I'NL GN28-1023

Retrieving and Updating a Direct
File •••••••••••••••• 232

Indexed Files ••••••• • .233
Creating an Indexed File •••••• 233
Retrieving and Updating an Indexed
File. • • • • • • • • • • • • .234

Files Used in a Sort Operation. .234
Sorting an Unlabeled Tape File ••• 234

•• 235
.235

••• 236
•. 323

APPENDIX I: DIAGNOSTIC MESSAGES ~ •
Compiler Diagnostic Messages • •

Compile-Time Messages •• • • • •
Object-Time Messages • • • • • •

COBOL Object Program Unnumbere~
Messages • • .324

INDEX •• 325

(

Figure 1. Sample Structure of Job
Deck for Compiling,' Link Editing, and
Executing a Main Program and Two
Subprograms • • • • • • 13
Figure 2. Sample Logical Unit
Assignments • • • • • • • • • • • 20
Figure 3. Possible Specifications for
X'ss' in the ASSGN Control Statement • 25
Figure 4. Sample Label and File
Extent Information for Mass Storage
Files • • . • . • . 29
Figure 5. Job Definition -- Use of
the Librarian • • • • • • • • • • • • • 39
Figure 6. Sample Coding to Calculate
FICA • • • • • • • • • • • • • • • 52
Figure 7. Altering a Program from
the Source Statement Library Using
INSERT and DELETE Cards • • 52
Figure 8. Effect of INSERT and
DELETE Cards • • • • • • • 52
Figure 9. Sample output of EXHIBIT
Statement with the CHANGED NAMED
Option •••••••••••••••• 55
Figure 10. Sample Dump Resulting from
Abnormal Termination (Part 1 of 6) • 60
Figure 11. Examples of Compiler
Output (Part 1 of 4) •••••••••• 70
Figure 12. Linkage Editor output • 78
Figure 13. Output from Execution Job
Steps • • • • • • • • • • • • • • • 80
Figure 14. Calling and Called
Programs •••••••••••• 81
Figure 15. Example of Data Flow Logic
in a Call Structure • • • • • • 83
Figure 16. Sample Linkage Routines
Used with a Calling Subprogram • • • 86
Figure 17. Sample In-line Parameter
List ••••••••••••••• 87
Figure 18. Sample Linkage Routines
Used with a Lowest Level Subprogram 87
Figure 19. Example of an Assembler
Language Subroutine for Accomplishing
Overlay •••••• '.' ••••••• , 88
Figure 20. Flow Diagram of overlay
Logic • • • • • • • • • • • • • • • 89
Figure 21. Job Control for
Accomplishing Overlay • • • • • • 90
Figure 22. Calling Sequence to Obtain
Overlay Between Three COBOL Subprograms 91
Figure 23. Segmenting the Program
SAVECORE ••••••••••••••• 99
Figure 24. Storage Layout for SAVECORE 100
Figure 25. compiler Output for
SAVECORE ••••••••••••••• 101
Figure 26. Link Editing a Segmented
Program •••••••••••••••• 103
Figure 27. Location of Sort Program
in a segmentation structure •••••• 103
l"igure 28. Structures of the Actual
Key • • • • • • • • • • • • • • • • • • 111

FIGURE~

Figure 29. Permissible Specifications
for the First Eight Bytes of the
Actual Key ••••••••••• .112
Figure 30. Creating a Direct File
Using Method B (Part 1 of 4) •••••• 116
Figure 31. Creating a Direct File
with Relative Track Addressing Using
Method B (Part 1 of 4) • • • • • • 121
Figure 32. Formats of Blocked and
Unblocked Records ••••••••••• 127
Figure 33. Adding a Record to a Prime
Track ••••••••••• • .129
Figure 34. Standard Tape File Label
and TPLAB Cards • • • • • • • 145
Figure 35. Standard Tape File Label
and rLBL Card (Showing Maximum
Specifications) ••••••• •• 146
Figure 36. Standard Tape File Label
and TLBL Card <Showing Minimum
Requirements) •••••• • • 147
Figure 37. Standard, User Standard,
and Volume Labels ••••••••••• 148
Figure 38. Nonstandard Labels ••••• 148
Figure 39. Processing an Unlabeled
Multifile Volume (Part 1 of 2) ••••• 151
Figure 40. Reading a Multivolume File
with Standard Labels; Creating a
Multifile Volume with Standard Labels
(Part 1 of 2) •••.•••••••••• 153
Figure 41. Creating an Unlabeled
Multivolume File (Part 1 of 2) • • .155
Figure 42. Fixed-Length (Format F)
Records • • • • • • • • • • • • • .159
Figure 43. Undefined (Format U)
Records • • • • • • • • • • • • • .160
Figure 44. Unblocked V-Mode Records .160
Figure 45. Blocked V-Hade Records •• 161
Figure 46. Fields in Unblocked V-Mode
Records a ••••••••••••••• 162
Figure 47. Fields in Blocked V-Mode
Records • • • • • • • • • • • .162
Figure 48. First Two Blocks of
VARIABLE-FILE-2 • • • • • • .163
Figure 49. Control Fields of an
S~Mode Record • • • • • • • • • • .164
Figure 50. One Logical Record
Spanning Physical Blocks •• 165
Figure 51. First Four Blocks of
SPAN-FILE • • • • • • • • • • • • .166
Figure 52. Advantage of S-Mode
Rec"ords Over V-Mode Records •• 166
Figure 53. Direct and Sequential
Spanned Files On A Mass Storage Device 167
Figure 54. Calculating Record Lengths
Wnen Using the OCCURS Clause with the
DEPENDING ON Option • • • • •• 1 70
Figure 55. Treatment of Varying
Values in a Data Item of PICTURE 89 •• 180
Figure 56. Sample of GROUP INDICArE
Clause and Resultant Execution Output .185
Figure 57. Format of a Report Record
When the CODE Clause is Specified .l80

Figure 58. Activating the NEXT GROUP Figure 60. Partition Diagram when
clause ••••••••••• • .187
Figure 59. Table structure in Core

Sort is Used with Segmentation •••• 19~
Figure 61. CHGPRTY Subroutine .1gn

storage • • • • • • • • • • • • .190 Figure 62. Track Format •• 218
Figure 63. Communication Region in
the Supervisor •••••••. • .229

j IN1'RODUCTION

4 JOB DEFINITION

.. JOB PROCESSING

• PREP~RING COBOL PROGRAMS FOR PROCESSING

~ LIBR~RIAN FUNCTIONS

'~ PROGRAM CHECKOUT

• INTERPRETING OUTPUT

• C~LLING AND CALLED PROGRAMS

• USING THE SEGMENTATION FEATURE

, USING THE SORT FEATURE

COBOL has undergone considerable
refinement and standardization since 1959.
A standard COBOL has been approved by the
American National Standards Institute, an
industry-wide association of computer
manufacturers and users. This standard is
called American National Standard COBOL.
IBM Full American National Standard COBOL
is compatible with American National
Standard COBOL and includes a number of
extensions to it as well.

An IBM Full American National Standard
COBOL program may be processed by the IBM
System/360 Disk Operating System. Under
control of the operating system, a set of
IBM Full American National Standard COBOL
source statements is translated to form a
module. In order to be executed, the
module in turn must be processed to form a
phase. The reasons for this will become
clear later. For now it is sufficient to
note that the flow of an IBM Full American
National Standard COBOL (herein, simply
termed COBOL) program through the operating
system is from source statements to module
to phase.

The Disk Operating System consists
essentially of a £Q~~~Q!_~Qg~~~ and a
number of processing programs.

The components of the control program
are: the Supervisor, Job Control
Processor, and the Initial Program Loader.

SUPERVISOR

The main function of the supervisor is
to provide an orderly and efficient flow of
jobs through the operating system. (A job
is some specified unit of work, such as the
processing of a COBOL program.) The
supervisor loads into the computer the
phases that are to be executed. During
execution of the program, control usually
alternates between the Supervisor and the
processing program. The Supervisor, for
example, handles all requests for
input/output operations.

JOB CONTROL PROCESSOR

The primary function of the Job Control
Processor is the processing of job control
statements. Job control statements
describe the jobs to be performed and
specify the prograrrumer's requirements for
each job. Job control statements are
written by the programmer using the job
control language. The use of job control
statements and the rules for specifying
them are discussed later.

INITIAL PROGRAM LOADER

The Initial Program Loader (IPL) routine
loads the supervisor into main storage when
system operation is initiated. Detailed
information about the Initial Program
Loader need not concern the COBOL
p~qgrammer. Anyone interested in this
material, however, can find it in the
publication QQ§_§y~t~ill_£Q~tfQ!
and Service.

PROCESSING PROGRAMS

The processing programs ~nclude the
COBOL compiler, service prog~ams, and
application programs.

SYSTEM SERVICE PROGRAMS

The system service programs provide the
functions of generating the system,
creating and maintaining the library
sections, and editing programs into disk
residence before execution. The system
service programs are:

1. ~i~~~g~_~~i~Qf. The Linkage Editor
processes modules and incorporates
them into phases. A single module can
be edited to form a single phase, or
several modules can be edited or
!i~ke~ together to form one executable
phase. Moreover, a module to be
processed by the Linkage Editor may be
one that was just created (during the
same job) or one that was created in a
previous job and saved.

Introduction 11

The programmer instructs the Linkage
Editor to perform these functions
through job control statements. In
addition, there are several linkage
editor control statements.
Information on their use is given
later.

2. Librarian. The Librarian consists of
a group of programs used for
generating the system, maintaining and
reorganizing the disk library areas,
and providing printed and punched
output from the libraries. The three
system libraries are: the core image
library, the relocatable library, and
the source statement library. In
addition, the Librarian supports
private core image, relocatable, and
source statement libraries. Detailed
information on the Librarian is given
later.

APPLICATION PROGRAMS

Application programs are usually
programs written in a higher-level
programming language (e.g., COBOL). All
application programs within the Disk
Operating System are executed under the
supervision of the control program.

IBM-SUPPLIED PROCESSING PROGRAMS

The following are examples of
IBM-supplied processing programs:

1. Language translators, e.g., COBOL
compiler

2. Sort/Merge

3. Utilities

4. Autotest

For those systems with main storage
equal to or in excess of 24K bytes, the
Disk Operating System offers
mUltiprogramming support. In addition to
at least 24K bytes of main storage,
multiprogramming support requires the
storage protection feature.

~~!~iEEQ~E~~i~~ refers to the ability
of the system to control more than one

12

program concurrently by interleaving their
execution. This support is referred to as
fixed partitioned multiprogramming, since
programs are assigned to fixed locations
when they are cataloged to the system.
Each program occupies a contiguous area of
main storage. The amount of main storage
allocated to programs to be executed may be
determined when the system is generated, or
it may be determined by the operator when
the program is loaded into main storage for
execution.

BACKGROUND VS. FOREGROUND PROGRAMS

There are two types of problem programs
in multiprogramming: background and
foreground. Background programs are
initiated by the Job Control Processor from
batched-job input streams. E2E~9E2g~Q
programs may operate in either the
batched-job mode or in the single-program
mode. Single-program foreground programs
are initiated by the operator from the
printer-keyboard. When one program is
completed, the operator must explicitly
initiate the next program.

Background and foreground programs
initiate and terminate independently of one
another. Neither is aware of the other's
status or existence.

The system is capable of concurrently
operating one background program and one or
two foreground programs. Priority for CPU
processing is controlled by the supervisor
with foreground programs having priority
over background programs. Control is taken
away from a high priority program when that
program encounters a condition that
prevents continuation of processing, until
a specified event has occurred. Control is
taken away from a lower priority program
when an event for which a higher priority
program was waiting has been completed.
Interruptions are received and processed by
the Supervisor.

In a multiprogramming environment, the
COBOL compiler can execute either in the
background or the foreground. In systems
that support the batched-job foreground and
private core image library options, the
Linkage Editor can execute in either
foreground partition as well as in the
background partition. Additional
information on executing the compiler and
Linkage Editor in the foreground is
contained in "Appendix F: System
Configuration." COBOL program phases can
be executed as either background or
foreground programs.

)

A jQ~ is a specified unit of work to be
performed under control of the operating
system. A typical job might be the
processing of a COBOL program -- compiling
source statements, editing the module
produced to form a phase, and then
executing the phase. Job definition -- the
process of specifying the work to be done
during a single job -- allows the
programmer considerable flexibility. A job
can include as many or as few iQQ_~t~E~ as
the programmer desires.

JOB STEPS

A job step is exactly what the name
implies -- one step in the processing of a
job. Thus, in the job mentioned above, one
job step is the compilation of source
statements; another is the link editing of
a module; another is the execution of a
phase. In contrast to a job definition,
the definition of a job step is fixed.
Each job step involves the execution of a
program, whether it be a program that is
part of the Disk operating System or a
program that is written by the programmer.
A compilation requires the execution of the
COBOL compiler. Similarly, an editing
implies the execution of the Linkage Editor
Finally, the execution of a phase is the
execution of the problem program itself.

The compilation of a COBOL program may
necessitate more than one job step (more
than one execution of the COBOL compiler).
In some cases, a COBOL program consists of
a main program and one or more subprograms.
To compile such a program, a separate job
step must be specified for the main program
and for each of the subprograms. Thus, the
COBOL compiler is executed once for the
main program and once for each subprogram.
Each execution of the compiler produces a
module. The separate modules can then be
combined into one phase by a single job
step -- the execution of the Linkage
Editor.

For a COBOL program that consists of a
main program and two subprograms,
compilation and execution require five
steps: (1) compile (main program), (2)
compile (first subprogram), (3) compile

JOB DEFINITIOl~

(second subprogram), (4) link edit (three
modules combined into one phase), and (5)
execute (phase). Figure 1 shows a sample
structure of the job deck for these five
job steps. Compilation and execution in
three job steps -- compile, link e1it, and
execute -- is applicable only when the
COBOL source program is a single main
program.

r---,
// JOB PROG1

/ / EXEC FCOBOL
{source deck - main program}

/*

// EXEC FCOBOL
{source deck - first subprogram}

/*

// EXEC FCOBOL
{source deck - second subprogram}

/*

// EXEC LNKEDT

// EXEC L ___ J

Figure 1. Sample Structure of Job Deck
for Compiling, Link Editing,
and Executing a Main Program
and Two Subprograms

The execution of a COBOL program has
thus far been referred to as the execution
of a phase. It is possible, however, to
organize a COBOL program so that it is
executed as two or more phases. Such a
program is known as a ~~l~~Ehase program.

By definition, a Ehase is that portion
of a program that is loaded into main
storage by a single operation of the
Supervisor. A COBOL program can be
executed as a single phase only if there is
an area of main storage available to

Job Definition 13

accommodate all of it. A program that is
too large to be executed as a single phase
must be structured as a multiphase program.
The technique that enables the programmer
to use subprograms that do not fit into
main storage (along with the main program)
is called 2Y~~1~Y.

The number of phases in a COBOL program
has no effect on the number of job steps
required to process that program. As will
be seen, the Linkage Editor can produce one
or more phases in a single job step.
Similarly, both single-phase and multiphase
programs require only one execution job
step. Phase execution is the execution of
all phases that constitute one COBOL
program.

Detailed information on overlay
structures, as well as information on using
the facilities of the operating system to
create multiple phases and to execute them,
can be found in the chapter "Calling and
Called Programs."

TYPES OF JOBS

A typical job falls into one of several
categories. A brief description of these
categories follows; a complete discussion
is found in the chapter "Preparing COBOL
Programs for Processing."

Compile-Only: This type of job involves
only the execution of the COBOL compiler.
It is useful when checking for errors in
COBOL source statements. A compile-only
job is also used to produce a module that
is to be further processed in a subsequent
job.

A compile-only job can consist of one
job step or several successive job steps.

Edit-only: This type of job involves only
the execution of the Linkage Editor. It is
used primarily to combine modules produced
in previous compile-only jobs, and to check
that all cross references between modules
have be·en r~sol ved. The programmer can
specify that all modules be combined to
form one phase: or he can specify that some
modules form one phase and that others form
additional phases. The phase output
produced as the result of an edit-only job
can be retained for execution in a
subsequent job.

14

£Qme~le_~ng_~g~~: This type of job
combines the functions of the compile-only
and the edit-only jobs. It requires the
execution of both the COBOL compiler and
the Linkage Editor. The job can include
one or more compilations, resulting in one
or more modules. The programmer can
specify that the Linkage Editor process any
or all of the modules just produced; in
addition, he can specify that one or more
previously produced modules be included in
the linkage editor processing.

Execute-Only: This type of job involves
the execution of a phase (or multiple
phases) produced in a previous job. Once a
COBOL program has been compiled and edited
successfully, it can be retained as one or
mor.e phases and executed whenever needed.
~his eliminates the need for recompiling
and ~e-editing every time a COBOL program
is to be executed.

Edit and Execute2 This type of job
combines the functions of the edit-only and
the execute-only jobs. It requires the
execution of both the Linkage Editor and
the resulting phase(s).

C0l.!!EileL_~~!~L_~nd_~~~£!!~~: This type of
job combines the functions of the compile
and edit and the execute-only jobs. It
calls for the execution of the COBOL
compiler, the Linkage Editor, and the
problem program; that is, the COBOL program
is to be completely processed.

When considering the definition of his
job, the programmer should be aware of the
following: ~~_~-iQQ_~~~P_!~_£~ncel!~g
during execut.ion, the en~!~~_iQQ_!§'
ter~nate~ any remaining_iQQ_~~~Q§'_~~~
skipQed. Thus, in a compile-edit-and
execute job, a failure in compilation
precludes the editing of the module(s) and
phase execution. similarly, a failure in
editing precludes phase execution.

For this reason, a job usually should
(but need not) consist of related job steps
only. For example, if two independent
single-phase executions are included in one
job, the failure of the first phase
execution precludes the execution of the
second phase. Defining each phase
execution as a separate job would prevent
this from happening. If successful
execution of both phases can be guaranteed
before the job is run, however, the
programmer may prefer to include both
executions in a single job.

(

JOB DEFINITION STATEMENTS

Once the programmer has decided the work
to be done within his job and how many job
steps are required to perform the job, he
can then define his job by writing job
control statements. Since these statements
are usually punched in cards, the set of
job 90ntrol statements is referred to as a
job deck. In addition to job control
statements, the job deck can include input
data for a program that is executed during
a job step. For example, input data for
the COBOL compiler the COBOL program to
be compiled -- can be placed in the job
deck.

The inclusion of input data in the job
deck depends upon the manner in:which the
installation has assigned input/output
devices. Job control statements are read
from the unit named SYSRDR (system reader),
which can be either a card reader, a
magnetic tape unit, or a disk extent.
Input to the processing programs is read
from the unit named SYSIPT (system input),
which also can be either a card reader, a
magnetic tape unit, or a disk extent. The
installation has the option of assigning
either two separate devices for these units
(one device for SYSRDR, a second device for
SYSIPT) or one device to serve as both
SYSRDR and SYSIPT. If two devices have
been assigned, the job deck must consist of
only job control statements; input data
must be kept separate. If only one device
has been assigned, input data must be
included within the job deck.

There are four job control statements
that are used for job definition: the JOB
statement, the EXEC statement, the
end-of-data statement (/*), and the
end-of-job statement (/&). In this
chapter, the discussion of these job
control statements is limited to the
function and use of each statement. The
rules for writing each statement are given
in the chapter "Preparing COBOL Programs
for Processing."

The JOB statement defines the start of a
job. One JOB statement is required for
every job; it must be the first statement
in the job deck. The programmer must name
his job on the JOB statement.

The EXEC statement requests the
execution of a program. Therefore, one
EXEC statement is required for each job
step within a job. The EXEC statement

indicates the program that is to be
executed (for example, the COBOL compiler,
the.Linkage Editor). As soon as the EXEC
statement has been processed, the program
indicated by the statement begins
execution.

The end-of-data statement, also referred
to as the /* (slash asterisk) statement,
defines the end of a program's input data.
When the data is included within the job
deck (that is, SYSIPT and SYSRDR are the
same device), the /* statement immediately
follows the input data. For example, COBOL
source statements would be placed
immediately after the EXEC statement for
the COBOL compiler; a 1* statement would
follow the last COBOL source statement.

When input data is kept separate (that
is, SYSIPT and SYSRDR are separate
devices), the 1* statement immediately
follows each set of input data on SYSIPT.
For example, if a job consists of two
compilation job steps, an editing job step.
and an execution job step, SYSIPT would
contain the source statements for the first
compilation followed by a 1* statement, the
source statements for the second
compilation followed by a /* statement, any
input data for the Linkage Editor followed
by a /* statement, and perhaps some input
data for the problem program followed by a
1* statement.

The end-of-job statement, also referred
to as the /& (slash ampersand) statement,
defines the end of the job. A /& statement
must appear as the last statement in the
job deck.

OTHER JOB CONTROL STATEMENTS

The four job definition statements form
the framework of the job deck. There are a
number of other job control statements in
the job control language; however, not all
of them must appear in the job deck. The
job control statements are summarized
briefly in Table 1.

The double slash preceding each
statement name identifies the statement as
a job control statement. Most of the
statements are used for data management
creating, manipulating, and keeping track
of data files. (Data files are externally
stored collections of data from which data
is read and onto which data is written.)

Job Definition 15

// DATE

// DLAB

// DLBL

// EXEC

// EXTENT

// JOB

// LBLTYP

// LISTIOI
1
1

// MTC 1
1

1
// OPTION

// PAUSE

// RESET

// RSTRT

// TLBL

// TPLAB

// UPSI

// VOL

// XTENT

/*

/&

Provides. a date for the
Communication Region.

Disk file label information.

Disk file label information.

Execute program.

Disk file extent.

Beginning of control
information for a job.

Reserves storage for label
information.

Lists input/output
assignments.

Controls operations on
magnetic tape.

Specifies one or more job
control options.

Creates a pause for operator
intervention.

Resets input/output
assignments to standard
assignments.

Restarts a checkpointed
program.

Tape label information.

Tape label information.

Sets user-program switches.

Disk/tape label information.

Disk file extent.

End-of-data-file or
end-of-job-step.

End-of-job.

1* Comments. L _________ ~ ______________________________ _

16

This chapter describes in greater detail
the three types of job steps involved in
processing a COBOL program. Once the
reader becomes familiar with the
information presented here, he should be
able to write control statements by
referring only to the next chapter,
"Preparing COBOL Programs for Processing."

COMPILATION

Compilation is the execution of the
COBOL compiler. The programmer requests
compilation by placing in the job deck an
EXEC statement that contains the program
name FCOBOL, the name of the COBOL
compiler. This is the EXEC FCOBOL
statement.

Input to the compiler is a set of COBOL
source statements, consisting of either a
main program or a subprogram. Source
statements must be punched in Extended
Binary-Coded-Decimal Interchange Code
(EBCDIC). The COBOL source statements are
read from SYSIPT. The job deck is read
from SYSRDR. If SYSRDR and SYSIPT are
assigned to the same unit, the COBOL source
statements should be placed after the EXEC
FCOBOL statement in the job deck.

Output from the COBOL compiler is
dependent upon the options specified when
the system is generated. This output may
include a listing of source statements
exactly as they appear in the input deck.
The source listing is produced on SYSLST.
In addition, the module produced by the
compiler may be written on SYSLNK, the
linkage editor input unit, and punched on
SYSPCH. Separate Data and/or Procedure
Division maps, a symbolic cross-reference
list, and diagnostic messages can also be
produced. The format of compiler output is
discussed and illustrated in the chapter
"Interpreting output."

The programmer can override any of the
compiler options specified when the system
was generated, or include some not
previously specified, by using the OPTION
control statement in the compile job step.
Compiler options are discussed in detail in
the chapter "Preparing COBOL Programs for
Processing."

JOB PROCESSING

EDITING

Editing is the execution of the Linkage
Editor. The programmer requests ejiting by
placing in the job deck an EXEC statement
that contains the program name LNKEDT, the
name of the Linkage Editor. This is the
EXEC LNKEDT statement.

Input to the Linkage Editor consists of
a set of linkage editor control statements
and one or more modules to be edited.
These modules include any of the following:

1. Modules that were compiled previously
in the job and placed at that time on
the linkage editor input unit, SYSLNK.

2. Modules that were compiled in a
previous job and saved as module
decks. The module decks must be
placed on SYSIPT. Linkage editor
control statements are read from
SYSRDR.

3. Modules that were compiled in a
previous job step and cataloged in the
~gloc~~~Qlg_libra~y. The relocatable
library is a collection of frequently
used routines in the form of modules,
that can be included in a program
phase via the INCLUDE control
statement in the linkage editor job
step.

Output from the Linkage Editor consists
of one or more phases. A phase may be an
entire program or it may be part of an
overlay structure (multiple phases).

A phase produced by the Linkage Editor
can be executed immediately after it is
produced (that is, in the job step
immediately following the linkage editor
job step), or it can be executed later,
either in a subsequent job step of the same
job or in a subsequent job. In either of
the latter cases, the phase to be executed
must be cataloged in the core image libary.
Such a phase can be retrieved in the
execute job step by specifying the phase
name in the EXEC statement, where phase
name is the name under which it was
cataloged. Otherwise, the phase output is
retained only for the duration of one job
step following the linkage editor job step
That is, if the module that was just link
edited is to be executed in the next job
step, it need not have been cataloged. An
EXEC statement will cause the phase to be
brought in from the temporary part of the

Job Processing 17

core image library and will begin
execution. However, the next time such a
module is to be executed, the linkage
editor job step is required since the phase
was not cataloged in the core image
library.

If a private core image library is
assigned, output from the Linkage Editor is
placed in the private core image library
(either permanently or temporarily) rather
than in the resident system core image
library. When execution of a program is
requested and a private core image library
is assigned, this library is searched first
for the requested phase name and then the
system core image library is searched.

In addition to the phase, the Linkage
Editor produces a phase map on SYSLST.
Linkage editor diagnostic messages are also
printed on SYSLST. If the NOMAP option of
the linkage editor ACTION control statement
is specified, no phase map is produced and
linkage editor diagnostic messages are
listed on SYSLST, if assigned. Otherwise,
the diagnostic messages are listed on
SYSLOG. The contents of the phase map are
discussed and illustrated in the chapter
"Interpreting output."

Linkage editor control statements direct
the execution of the Linkage Editor.
Together with any module decks to be
processed, they form the ~i!l~~~~_~Q.!.t.2!..
input deck, which is read by the Job
Control Processor fro~SYSIPT and written
on'SYSLNK. /

There are four linkage editor control
statements: the ACTION statement, the
PHASE statement, the ENTRY statement, and
the INCLUDE statement. These statements
are discussed in the next chapter.

PHASE EXECUTION

Phase execution is the execution of the
problem program, for example, the program
written by the COBOL programmer. If the
program is an overlay structure (multiple
phase), the execution job step actually
involves the execution of all the phases in
the program.

18

The phase(s) to be executed must be
contained in the core image library. The
core image library is a collection of
executable phases from which programs are
loaded by the supervisor. A phase is
written in the temporary part of the core
image library by the Linkage Editor at the
time the phase is produced. It is
permanently retained (cataloged) in the
core image library, if the programmer has
so requested, via the CATAL option in the
OPTION control statement.

The programmer requests the execution of
a phase by placing in the job deck an EXEC
statement that specifies the name of the
phase. However, if the phase to be
executed was produced in the immediately
preceding job step, it is not necessary to
specify its name in the EXEC statement.

MULTI PHASE PROGRAMS

A COBOL program can be executed as a
single phase as long as there is an area of
main storage available to accommodate it.
This area, known as the P~QQ!~~_Q~Qg~~m
~, must be large enough to contain the
main program and all called subprograms.
When a program is too large to be executed
as a single phase, it must be structured as
a multiphase program.

The overlay structure available to the
COBOL programmer for multiphase programs is
known as root phase overlay, and is used
primarily for programs of three or more
phases. One phase of the program is
designated as the root phase (main program)
and, as such, remains in the problem
program area throughout the execution of
the entire program. The other phases in
the program -- subordinate phases -- are
loaded into the problem program area as
they are needed. A subordinate phase may
overlay any previously loaded sUbordinate
phase, but no subordinate phase may overlay
the root phase. One or more sUborainate
phases can reside simultaneously in main
storage with the root phase.

Use of the linkage editor control
statements needed to effect overlay are
discussed in the chapter "Calling and
Called Programs."

This chapter provides information about
preparing COBOL source programs for
compilation, link editing, and execution.

ASSIGNMENT OF INPUT/OUTPUT DEVICES

Almost all COBOL programs include
input/output statements calling for data to
be read from or written into data files
stored on external devices. COBOL programs
do not reference input/output devices by
their actual physical address, but rather
by their symbolic names. Thus, a COBOL
program is dependent on the device type and
not on the actual device address. The
COBOL programmer need only select the
symbolic name of a device from a fixed set
of symbolic names. At execution time, as a
job control function, the symbolic name is
associated with an actual physical device.
The ~tand~rd assignment of physical
addresses to symbolic names may be made at
system generation time. However, job
control statements and operator commands
can alter the standard device assignment
before program execution. This is
discussed later in this chapter.

To simulate an installation environment
all the examples in this publication assume
that the symbolic units and their physical
and logical assignments are as shown in
Figure 2.

The symbolic names are divided into two
classes: system logical units and
E££gram~er_!£gi£~!~i~~.

The system logical units (SYSIPr,
SYSLNK, SYSLOG, SYSLST, SYSPCH, SYSRES,
SYSCLB, SYSSLB, SYSRLB, and SYSRDR) are
used by the control program and by
IBM-supplied processing programs. SYSIPT,
SYSLST, SYSPCH, and SYSLOG can be
implicitly referenced by certain COBOL
procedural statements. Two additional
names, SYSIN and SYSOUT, are defined for
background program assignments. The names
are valid only to the Job Control
Processor, and cannot be referenced in the
COBOL program. SYSIN can be used when
SYSRDR and SYSIPT are the same device;
SYSOUT must be used when SYSLST and SYSPCH
are assigned to the same magnetic tape
unit. A complete discussion of the
assignment of the logical unit SYSCLB can
be found in the publication QQ§_§y~~g~
££~trol_~~~~£rvic£. .

preparing COBOL Programs for Processing 19

r--------7----------T---------------------,
ILogical I Physical I Device I
I Unit I unit I Type I
~--------+----------+---------------------~
ISYSRES IX'190' 12311 Disk unit I
~--------+----------+---------------------~
ISYSLNK IX'191' 12311 Disk unit I
~--------+----------+---------------------~
ISYSRDR, IX'OOC' 12540 card reader I
I SYSIPT I I . I
~--------+----------+---------------------~
ISYSLST IX'OOE' 11403 Printer I
~--------+----------+---------------------~
ISYSPCH IX'OOO' 12540 card punch I
~--------+----------+-----------------~---~
ISYSLOG IX'OlF' 11052 Printer keyboard I
~--------+----------+---------------------~
ISYSCLB IX'191' 12311 Disk unit 1
~-~------+----------+---------------------~
ISYSSLB IX'191· 12311 Disk unit I
~--------+----------+---------------------~
ISYSRLB IX'191' 12311 Disk uni't I
~--------+----------+---------------------~
ISYS001 IX'191' 12311 Disk system I
I I I work file I
~--------+----------+---------------------~
I SYS002 I X'191' 12311 Disk system I
1 1 I work file I
~--------+----------+---------------------~
I SYS0031 X'190' 12311 Disk system !
I I I work file I
~--------+----------+---------------------~
ISYS004 IX'281' 12400 Tape work file I
~--------+----------+---------------------~
I SYS005 I X' OOE' 11403 Printer 1
~--------+----------+---------------------~
ISYS006 IX'191' 12311 Disk unit I
~--------+----------+---------------------~
ISYS001 !X'191' 12311 Disk unit I
~--------+----------+---------------------~
I SYS008 I X, 282' 12400 Tape unit I
~--------+----------+---------------------~
ISYS009 IX'283' 12400 Tape unit I
~--------+----------+---------------------~
ISYS010 IX'284' 12400 Tape unit I
~--------+--~-------+----------~------~---~
I SYS011 I X' 285' 12400 Tape unit I
~--------+----------+---------------------~

-- ISYS012 IX'OOE' 11403 Printer I
~--------+----------+---------------------~
I SYS013 I X' OOc' 12540 Card reader I
~--------+----------+---------------------~
ISYS014 IX'01F' 11052 Printer keyboardl
~--------+-------~--+---------------------~
ISYS015 IX'192' 12314 Disk unit I
~--------+----------+---------------------~
ISYS016 I unassigned I I
Ithrough I I I
ISYS221 I I I L ________ ~ __________ ~ _____________________ J

Figure 2. Sample Logical Unit Assignments

20

Programmer logical units are those in
the range SYSOOO through SYS221 an~ maybe
referenced in the COBOL source language
ASSIGN clause.

·A COBOL programmer uses the source
language ASSIGN clause to assign a file
used by his problem program to the
appropriate symbolic name. Although
symbolic names may be assigned to physical
devices at system generation time, the
programmer may alter these assignments at
execution time by means of the ASSGN
control statement. However, if the
programmer wishes to use the assignments
made at system generation time for his own
data files in the COBOL program, ASSGN
control statements are unnecessary.

Table 2 is a complete list of symbolic
names and their usage.

Page of GC28-6398-2,~3, Revised 2/15/73 by TNL 3N28-1023

Table 2. Symbolic Names, Functions, and Permissible Device Types
r---------T---T-------------------------,
ISymbolic I I Permissible I
I Name I Function I Device Types I
~---------+---+-------------------------~
ISYSRDR IInput unit for control statements. I Card reader I
I I I Magnetic tape unit I
I I I Disk extent I
~---------+---+-------------------------~
ISYSIPT IInput unit for programs. I Card reader I
I I I Magnetic tape unit I
I I I Disk extent I
~---------+---+-------------------------~
ISYSPCH IMain unit for punched output. . I Card punch I
I I I Magnetic tape unit I
I I I Disk extent I
~---------+---+------------------~------~
ISYSLST IMain unit for printed output. I Printer I
I I I Magnetic tape unit I
I I I Disk extent I
~---------+---+-------------------------~.
ISYSLOG IReceives operator messages and logs in job control I Printer keyboard I
I I statements. I Printer I
~---------+---+-------------------------~
ISYSLNK IInput to the Linkage Editor. I Disk extent I
I I I I
~---------+---+-------------------------~
ISYSRES Icontains the operating system, the core image I Disk extent I
I I library, relocatable library, and source statement I (2311,2314,3330~) I
I I library. I I
~---------+---+-------------------------~
ISYSCLB IA private core image library. I Disk extent I
~---------+--~--+-------------------------~
ISYSSLB IA private source statement library. I Disk extent I
~---------+---+-------------------------~
ISYSRLB IA private relocatable library. I Disk extent I
~---------+---+-------------------------~
ISYSIN IMust be used when SYSRDR and SYSIPT are assigned I Disk I
I Ito the same disk extent. May be used when they I Magnetic tape unit I
I lare assigned to the same card reader or magnetic I Card reader I
I Itape. I I
~---------+---+-------------------------~
ISYSOUT IThis name must be used when SYSPCH and SYSLST are I Magnetic tape unit I
I lassigned to the same magnetic tape unit. It I I
I Imust be assigned by the operator ASSGN command. I I
~---------+---+-------------------------~
ISYSmax IThese units are available to the programmer as I Any unit I
I Iwork files or for storing data files. They I I
I lare called programmer logical units as opposed I I
I Ito the above-mentioned names which are always I I
I Ireferred to as system lo[ical units. The I I
I Ilargest number of programmer logical units I I
I lavailable in the system is 222 (SYSOOO through I I
I ISYS221). The value of SYSmax is determined by the I I
I Idistribution of the programmer logical units I I
I I among the partitions. I I
~---------~------------~-------------------------------~------~-------------------------~
I~Compiler work files must not be assigned to 3330. I
L ___ ~---__________________________________ J

))

)

Preparing COBOL Programs for Processing 21

The Job Control Processor for the Disk
Operating System prepares the system for
execution of programs in a batched job
environment. Input to the Job Control
Processor is in the form of job coutro!
state~ and job control commands.

JOB CONTROL STATEMENTS

Job control statements are designed for
an SO-column punched card format. Although
certain restrictions must be observed, the
statements are essentially free form. Job
control statements conform to these rules:

1. Name. Two slashes (//) identify the
statement as a job control statement.
They must.be in columns 1 and 2. At
least one ·blank immediately follows
the second slash.

Exceptions; The end-of-job statement
contains /& in columns 1 and 2; the
end-of-data-file statement contains /*
in columns 1 and 2; the comment
statement contains * in column 1 and a
blank in column 2.

2. Operation. This identifies the
operation to be performed. It can be
up to eight characters long. At least
one blank follows its last character.

3. Operand. This may be blank or may
contain one or more entries separated
by commas. The last term must be
followed by a blank, unless its last
character is in column 71.

4. Comments. Optional programmer
comments must be separated from the
operand by at least one space.

Continuation cards are not recognized by
the Job Control Processor. For the
exception to this rule, see the
descriptions of the DLAB and TPLAB
statements.

All job control statements are read from
the device identified by the symbolic name
SYSRDR.

Comments in Job Control Statements

Comment statements (i.e., statements
preceded by an asterisk in column 1

22

followed by a blank) may be placed anywhere
in the job deck. The remainder of the card
may contain any character from the EBCDIC
set. Comment statements are designed for
communication with the operator;
accordingly, they are written on the
console printer-keyboard, SYSLOG, in
addition to being written on SYSLsr. If
followed by a PAUSE control statement, the
comment statement can be used to request
operator action.

Statement Formats

The following notation is used in the
statement formats:

1. All upper-case letters represent
specifications that are to appear in
the actual statement exactly as shown
in the statement format. For example,
JOB in the operation field of the JOB
statement should be punched exactly as
shown.

2. All lower-case letters represent
generic terms that are to be replaced
in the actual statement. For example,
jobname is a generic term that should
be replaced by the name that the
programmer is giving his job.

3. Hyphens are used to join two or more
words in order to form a single
generic term. For example,
device-address is one generic term.

4. Brackets are used to indicate that a
specification is optional and is not
always required in the statement. For
example, [type] indicates that the
programmer's replacement for the
generic term, type, mayor may not
appear in the statement, depending on
the programmer's requirements.

5. Braces enclosing stacked items
indicate that a choice of one item
must be made by the programmer. For
example:

$YS
PROG
ALL
SYSxxx

indicates that either SYS, PROG, ALL,
or SYSxxx must appear in the actual
statement.-- (

\

6. Brackets enclosing stacked items
indicate that a choice of" one item
may, but need not, be made by the
programmer. For example:

,X'ss'
,ALT

indicates that either ,X'ss' or ,ALT
but not both, may appear in the actual
statement, or the specification can be
omitted entirely.

7. All punctuation marks shown in the
statement formats other than hyphens,
brackets, and braces must be punched
as shown. This includes periods,
commas, and parentheses. For example,
, [date] means that the specification,
if present in the statement, should
consist of the programmer's
replacement for the generic term date
preceded by the comma with no
intervening space. Even if the date
is omitted, the comma must be punched
as shown.

8. The ellipsis (•••) indicates where
repetition may occur at the
programmer's option. The portion of
the format that may be repeated is
determined as follows:

a. Scanning right to left, determine
the bracket or brace delimiter
immediately to the left of the
ellipsis.

b. Continue scanning right to left
and determine the logically
matching bracket or brace
delimiter.

c. The ellipsis applies to the words
and punctuation between the pair
of delimiters.

Sequence of Job Control Statements

The job deck for a specific job always
begins with a JOB statement and ends with a
/& (end-of-job) statement. A specific job
consists of one or more job steps. The
beginning of a job step is indicated by the
appearance of an EXEC statement. When an
EXEC statement is encountered, it initiates
the execution of the job step, which
includes all preceding control statements
up to, but not including, a previous EXEC
statement.

The only limitation on the sequence of
statements within a job step is that which
is discussed here for the label information
statements.

The label statements must be in the .
order:

or

or

or

VOL
TPLAB

VOL
DLAB
XTENT (one for each area or fi:e in

the volume)

DLBL
EXTENT (one for each area or file in

the volume)

TLBL

and must immediately precede the EXEC
statement to which they apply.

DESCRIPTION AND FORMATS OF JOB CONTROL
STATEMENTS

This section contains descriptions and
formats of job control statements.

Job control statements, with the
exception of /*, /&, and *, contain two
slashes in columns 1 and 2 to identify
them.

ASSGN Statement

The ASSGN control statement assigns a
logical input/output unit to a physical
device. An ASSGN control statement must be
present in the job deck for each data file
assigned to an external storage device in
the COBOL program where these assignments
differ from those established at system
generation time. Data files are assigned
to programmer logical units in COBOL by
means of the source language ASSIGN clause.
The ASSGN control statement may also be
used to change a system standard assignment
for the duration of the job. The format of
the ASSGN control statement is as follows:

r---,
I ,X'ss' I
I // ASSGN SYSxxx,device-address I
I ,ALT I L ___ J

Preparing COBOL Programs for Processing 23

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

SYSxxx
is one of the logical devices listed
in Table 2.

Exception: SYSOUT must be assigned
using the ASSGN job control command.
Job control commands are described in
detail in the publication DOS System
control and Service.

device-address

X'ss'

24

allows three different formats:

X'cuu'
where c is the channel number and uu
the unit number in hexadecimal
notation. The values of 'cuu' are
determined by each installation.

UA

c = 0 for multiplexor channel,
1 through 6 for selector
channels 1 through 6.

uu = 00 to FE (0 to 254) in
hexadecimal.

indicates that the logical unit is
to be unassigned. Any source
language input/output operation
attempted on this device causes
cancellation of the job.

IGN
indicates that the logical unit is
~o be assigned. Each time a RE~D
statement for the file assigned to
IGN is encountered, control will be
transferred to the imperative­
statement following the AT END
option. The IGN option is not valid
for SYSRDR, SYSIPT, and SYSIN. This
option is useful in program
debugging since source language
input references to files residing
on symbolic units for which IGN has
been specified are ignored. ~ny
file for which the IGN opt~on is
used must be a sequential input
file. Output files assigned with
the IGN option are not supported by
American National Standard COBOL
object programs.

is the device specification. It is
used for ~pecifying mode settings for
7-track and dual density 9-track
tapes.. If X'ss' is not specified, the
system assumes X'90 l for 7-track tapes
and X'CO' for 9-track tapes. The

ALT

possible specifications for X'ss' are
shown in Figure 3.

must be specified in the control
statement that assigns an alternate
magnetic tape unit which is used when
the capacity of the original
assignment is reached. The
sp~cifications for the alternate unit
must be the same as those of the
orginal unit, since X'ss' cannot be
specified. The characteristics of the
alternate unit must be the sane as
those of the original unit. : Multiple
alternat'es can be assigned to a
symbolic unit.

Device assignments made by the ~SSGN
control statement are considered temporary ..
They are in effect until another ASSGN
control statement or a RESET statement for
that logical unit, or the next /& or JOB
statement is read, whichever occurs first~
If a RESET, /&, or JOB statement is
encountered, the assignment reverts to the
standard assignment established at system
generation time plus any modification by an
ASSGN command.

The COBJL programmer may assign only the
programmer logical units (SYSOOO through
SYS221) to data files used in his program.
For example, if the following ASSIGN clause
is used,

SELECT IN-FILE ASSIGN TO SYS004-UR-2540R-S

an ASSGN control statement must appear in
the job deck which assigns SYS004 to a
physical device if the physical device
differs from the permanent assignment. In
this case, the physical device must be a
2540 card reader~ An example of such a
control statement is:

// ASSGN SYS004,X!OOC'

Physical unit X'OOC' was permanently
assigned to a 2540 Card Reader at system
generation time.

Note: The ASSGN control st'atement is
necessary only when the symbolic unit
assignment is being made to' a physical
device address which differs from that
established at system generation time.

w~ppendix H: Sample Job Decks" contains
illustrations of ASSGN statement usage.

r----T------T-----------------------------,
I I I 7-Track Tape I

I I Bytes~--------T-----------T--------~
I I per I I Translate I Convert I
I ss I Inch I Parity I Feature I Feature I
~----+------+--------+-----------+--------~

10 200 odd off on
20 200 even off off
28 200 even on off
30 200 odd off off
38 200 odd on off
50 556 odd off on
60 556 even off off
68 556 even on off
70 556 odd off off
78 556 odd on off
90 800 odd off on
AO 800 even off off
A8 800 even on off
BO 800 odd off off
B8 800 odd on off

~--------~-----------~--------~
I 9-Track Tape 1

~-----------------------------~
CO 800 1 single density 9-track I
CO 1600 I single density 9-track 1
CO 1600 1 dual density 9-track 1
C8 800 I dual density 9-track 1 L ____ ~ ______ ~ _____________________________ J

Figure 3. Possible Specifications for
X'ss' in the ASSGN control
Statement

The CLOSE control statement is used to
close either a system or programmer logical
unit assigned to tape. As a result of the
CLOSE control statement, a standard
end-of-volume label set is written and the
tape is rewound and unloaded. The CLOSE
statement applies only to a temporarily
assigned logical unit, that is, a logical
unit for which an ASSGN control statement
has been specified within the same job.
The format of the CLOSE control statement
is as follows:

r---------------------------~-------------,

1 ~ J 1

1 ,X'cuu' [,X'ss') I
1 ,UA 1
1// CLOSE SYSxxx ,IGN 1
1 ,hlT . 1 L ___ J

The logical unit can optionally be
reassigned to another device, unassigned,
or switched to an alternate unit.

Note that when SYSxxx is a system
logical unit, one of the optional
parameters must be specified. When closing
a programmer logical unit, no optional
parameter need be specified.

SYSxxx
may only be used for magnetic tape and
may be specified as SYSPCH, SYSLST,
SYSOUT, or SYSOOO through SYS221.

X'cuu'

X'ss'

UA

IGN

ALT

specifies that after the logical unit
is closed, it will be assigned to the
channel and unit specified. (See
"ASSGN Control Statement" for an
explanation of 'cuu'.) When
reassigning a system logical unit, the
new unit will be opened if it is
either a mass storage device or a
magnetic tape at load point.

represents device specification for
mode settings on 7-track and 9-track
tape. <See "ASSGN Control Statement"
for an explanation of 'ss'.) If X'ss
is not specified, the mode settings
remain unchanged.

specifies that the logical unit is to
be closed and unassigned.

specifies that the logical unit is to
be closed and unassigned with the
ignore option. This operand is
invalid for SYSRDR, SYSIPT, or SYSIN.

specifies that the logical unit is to
be closed and an alternate unit is to
be opened and used. This operand is
valid only for system logical output
units (SYSPCH, SYSLST, or SYSOur)
currently assigned to a magnetic tape
unit.

DATE Statement

The DATE control statement contains a
date t~at is put in the Communication
Region of the Supervisor. A complete
description of the fields of the
Communication Region is given in "1\ppendix
G: Communication Region." The DATE
statement is in one of the following
formats:

r---,
1// DATE mm/dd/yy 1
t---~
1// DATE dd/mm/yy 1 L ___ J

where:
mm
dd
yy

month (01 to 12)
day (01 to 31)
year (00 to 99)

Preparing COBOL Programs for Processing 25

The format to be used is the format
selected when the system was generated.

When the DATE statement is used, it
applies only to the current job being
executed. The Job Control Processor does
not check the operand except to ensure that
its length is eight characters. If no DATE
statement is specified in the current job,
the Job Control Processor supplies the date
given in the last SET command. The SET
command is discussed in detail in the
publication QQ~_~Y~~~~_£2n~E2~_~n~_~~EYi£~.

A DATE statement should be included in
every job deck that has as one of its job
steps the execution of a COBOL program that
utilizes the special register CURRENT-DATE,
if the date desired is other than that
designated in the previous SET command.

The TLBL control statement replaces the
VOL and TPLAB combination used in previous
versions of the system. However, the
current system will continue to support
these statements. The TLBL control
statement contains file label information
for tape label checking and writing. Its
format follows:

r---,
1// TLBL filename, 1
1 ' ['file-identifier'], [date], 1
1 [file-serial-numberJ, 1
1 [volume-sequence-numberJ, 1
1 [file-sequence-numberJ, 1
1 [generation-number], 1
1 [version-numberJ 1 L ___ J

filename
identifies the file to the control
program. It can be from one to seven
characters in length. If the
following SELECT sentence appears in a
COBOL program:

SELECT NEWFILE ASSIGN TO
SYS003-UT-2400-S-0UTFILE

the filename operand on control
statements for this file must be
OUTFILE. If the SELECT clause were
coded:

SELECT NEWFILE ASSIGN TO
SYS003-UT-2400-S

the filename operand on the control
statement for the file must be SYS003.

'file-identifier'
consists of from 1 to 17 characters,

26

date

contained within apostrophes,
indicating the name associated with
the file on the volume. This operand
may contain embedded blanks. If this
operand is omitted on output files,
the filename will be used. If this
operand-is-omitted on input files, no
checking will be done.

consists of from one to six
characters, in the format yy/ddd,
indicating the expiration date of the
file for output or the creation date
for input. (The day of the year may
consist of from one to three
characters.) For output files, a one
to four character retention period
(d-dddd) may be specified. If this
operand is omitted, a O-day retention
period will be assumed for output
files. For input files, no checking
will be done if this operand is
omitted or if a retention period is
specified.

file-serial-number
consists of from one to six characters
indicating the volume serial number of
the first (or only) reel of the file.
If fewer than six characters are
specified, the field will be
right-justified and padded with zeros.
If this operand is omitted on output
files, the volume serial number of the
first (or only> reel of the file will
be used. If the operand is omitted on
input files, no checking will be done.

volume-sequence-number
consists of from one to four
characters in ascending order for each
volume of a multivolume file. This
number is incremented automatically by
OPEN and CLOSE routines as required.
If this operand is omitted on output
files, BCD 0001 will be used. If
omitted on input files, no checking is
done.

file-sequence-number
consists of from one to four
characters in ascending order for each
file of a multifile volume. This
number is incremented automatically by
OPEN and CLOSE routines as required.
If this operand is omitted on output
files, BCD 0001 will be used. If it
is omitted on input files, no checking
will be done.

generation-number
consists of from one to four numeric
characters that modify the
file-identifier. If this· operand is
omitted on output files, BCD 0001 is
used. If it is omitted on input
files, no checking will be done.

version-number
consists of from one to two numeric
characters that modify the generation
number. If this operand is omitted on
output files, BCD 01 will be used. If
it is omitted on input files, no
checking will be done.

~ote: If a tape file with standard labels
is opened two different ways in the same
COBOL program, and that file resides on a
multifile volume, the programmer should use
two separate TLBL cards with different
filenames specified on each.

The DLBL control statement, in
conjunction with the EXTENT statement,
replaces the VOL, DLAB, and XTENT
combination used in previous versions of
the Disk Operating System. However, the
current system will continue to support the
VOL, DLAB, and XTENT statements. The DLBL
statement has the following format:

r---,
III DLBL filename I
I , [' file-identifer'], [date], [codes] I L ___ J

filename
identifies the file to the control
program. It can be from one to seven
characters in length. If the
following SELECT sentence appears in a
COBOL program:

SELECT INFILE ASSIGN TO
SYS005-DA-2311-A-INPUTA

the filename operand on control
statements for this file must be
INPUTA. If the SELECT sentence is
coded:

SELECT INFILE ASSIGN TO
SYS005-DA-2311-A

the filename operand on control
statements for the file must be
SYS005.

'file-identifier'
is the name associated with the file
on the volume. This can consist of
from 1 to 44 alphanumeric characters
contained within apostrophes,
including the file-identifier and, if
used, generation-number and version­
number of generation. If fewer than
44 characters are used, the field is
left-justified and padded with blanks.
If this operand is omitted, f~l~~~m~
will be used.

/

date

codes

consists of from one to six characters
indicating either the retention period
of the file in the format d through
dddd (1-9999), or the absolute
expiration date of the file in the
format yy/ddd. When the d through
dddd format is used, the file is
retained for the number of dayi
specified as dddd. For example, if
da"!:.~ is specified as 31, the file will
be retained a month from the day of
creation. When the yy/ddd format is
used, the file is retained until the
day (ddd) in the year <yy) specified.
For example, if ~~"!:.~ is specified as
69/200, the file will be retained
through the 200th day of the year
1969.

If date is omitted when the file is
created, a 7-day retention period is
assumed. If this operand is present
for a file opened as INPUT or 1-0, it
is ignored.

is a 2- or 3-character field
indicating the type of file label, as
follows:

SD
DA

ISC

ISE

Sequential Disk
Direct Access

= Indexed Sequential using Load
Create
Indexed Sequential using Load
Extension, Add, or Retrieve

If £Q~~ is omitted, SD is assumed.

"Appendix H: Sample Job Decks" contains
illustrations of DLBL statement usage.

The EXTENT control statement defines
each area (or extent) of a DASD file -- a
file assigned to a mass storage device.
One or more EXTENT control statements must
follow each DLBL statement.

The EXTENT control statement replaces
the XTENT statement used in previous
versions of the Disk Operating System.
However, XTENT will continue to be
supported in the current system.

Preparing COBOL Programs for Processing 27

The format of the EXTENT control
statement is:'

r---,
1// EXTENT [symbolic":'unit], [serial-number] I
I , [type]~ [sequence-number] I
I , [relative-track], [number-of-tracks] I
I , [spli t-cylinder":'track], [B=bins] I L ____________ ~_~ ___ ~ ______________________ J

symbolic-unit
is a 6-character field indicating the
symbolic unit (SYsxxx) of the volume
for which this extent is effective.
If this operand is omitted, the
symbolic unit of the preceding EXTENT
statemen£~will be used. When
specified,' symbolic-unit may be any
SYSxxx assigned to the device type
indicated in the SELECT sentence for
thefile~ F6r example, if the
following 'coding appears in a COBOL
program: .

SELECTOUTFILE ASSIGN TO
SYS004-DA-2311-A

the symbolic unit in the EXTENT
control statement can by any SYSxxx
assigned to a 2311 disk pack. The
symbolic. unit operand is not required
for an IJSYSxx filename, where xx is
IN, PH, LS,RS,SL, or RL. If SYSRDR
or SY~IPTis assigned, this operand
must beiricluded.

serial-number

type

28

consists of·from one to six characters
indicating th~ volume serial number of
the volume for which this extent is
effective. If fewer than six
char~cters are used, the field will be
right~jusiified arid padded with zeros.
If this operand is omitted, the volume
serial number of the preceding EXTENT
control statement will be used. If no
serial. number was'provided in the
EXTENT control statement, the serial
number willnot'be checked and it will
be the programmer's responsibility if
files ~redestroyed as a result of
mounting the incorrect volume.

consists of one character indicating
the type of the extent, as follows:

1
2

4
8

DatiareaCno split cylinder)
Overflow area (for an indexed
file)
Index area (for an indexed file)
Data area (split cylinder)

If this operand is omitted, 1 is
assumed.

sequence-number
consists of from one to three
characters containing a decimal number
from 0 to 255 indicating the sequence
number of this extent within a
multi-extent file. Extent sequence 0
is used for the master index of an
indexed file. If the master index is
not used, the first extent of an
indexed file has the sequence number
1. The extent sequence number for all
other types of files begins with O.
If this operand is omitted for the
first extent of ISFMS files, the
extent will not be accepted. For SD
or DA files, this operand is not
required. Direct files can have up to
five extents. Indexed files can have
up to eleven data extents (nine prime.
one cylinder index, one separate
overflow) •

relative-track
consists of from one to five
characters indicating the sequential
number of the track, relative to zero,
where the data extent is to begin. If
this field is omitted on an ISFMS
file, the extent will not be accepted.
This field is not required for DA
input or for SD input files (the
extents from the file labels will be
used) •

Formulas for converting actual to
relative track addresses (RT) and
relative track to actual for the DASD
devices follow.

Actual to Relative:

2311 10 x cylinder number + track
number = RT

2314 20 x cylinder number + track
number = RT

2321 1000 x subcell number + 100 x
strip number + 20 x block
number + track number = RT

Relative to Actual:

2311

2314

2321

RT = quotient is cylinder,
10 remainder is track

RT = quotient is cylinder,
2'0 remainder is track

RT quotient is subcell,
1000 remainder1

remainderl
1'0'0-----

remainder2
20

quotient is strip,
remainder2

quotient is block.
remainder is track

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL 3N2e-1023

Example: Track 5, cylinder 150 on
a 2311 = 1505 in relative track.

number-of-tracks
consists of from one to five
characters indicating the number of
tracks to be allocated to the file.
For SO input files, this field may be
omitted. The number of tracks for a
split cylinder file must be a multiple
of the number of cylinders specified
for the file and the number of tracks
specified for each cylinder.

split-cylinder-~rack

bins

consists of from one to two
characters, with a value of 0 through
19, indicating the upper traek number
for the split cylinder in SO files.

consists of from one to two characters
identifying the 2321 bin that the
extent was created for, or on which
the extent is currently located. If
the field is one character, the
creating bin is assumed to be zero.
There is no need to specify a creating
bin for SO or ISFMS files. If this
operand is omitted, bin 0 is assumed
for both bins. If the operand is
included and positional operands are
omitted, only one comma is required
preceding the keyword operand. If any
operands preceding the bin
specification are omitted, one comma
for each operand is acceptable, but
unnecessary.

Figure 4 shows examples of using the
DLBL statement in conjunction with the
EXTENT statement. "Applendix H: Sample
Job Decks" contains illustrations of EXTENT
statement usage.

VOL Statement

The VOL control statement is used when
standard labels for a DASD or tape file are
checked. It is used in conjunction with
TPLAB or DLAB and XTENT statements. The
VOL and ~PLAB or VOL, DLAB and XTENr
statements must appear in that order and
must immediately precede the EXEC statement
to which they apply. The format of the VOL
control statement is:

r---, 1// VOL SYSxxx,filename 1 L ___ J

SYSxxx
is the symbolic unit name. The
symbolic unit name is the same name
that appears in the XTENT statement
for the file.

filename
identifies the file to the control
program. It can consist of from one
to seven characters. rhe appearance
of two identical operands is
characteristic of COBOL object
modules, since filename might be the
logical unit which is assigned to a
device.

Note that filename, as used in this
context, does not refer to the COBOL
file-name, but to filename as it is used by
the system.

For example, if the following COBOL
coding appeared as part of a complete
program, MASTERX is the name by which the
file is known to the control program.

r---,
Direct file:

The following DLBL and EXTENT statements describe a direct file occupying 840
tracks, beginning on relative trac~ 10.

// DLBL MASTER,,75/001,DA
// EXTENT SYS015~li1111,1,O,10,840

Indexed file:

The following DLBL and EXTENT statements describe an indexed file occupying 90
tracks, beginning on relative track 1106. The first EXTENT allocates a 14-track

Icylinder index. The second EXTENT allocates a 76~track data area.
I
I // DLBL MASTER,,75/001,ISC
I // EXTENT SYS015,111111,4,1,1106,14
I // EXTENT SYS015,111111,1,2,1120,76 L ___ J

) Figure 4. Sample Labe~.~nd File Extent Information for Mass Storage Files

preparing COBOL Programs for processing 29

ENVIRONMENT DIVISION.
FILE-CONTROL.

SELECT MASTER-FILE ASSIGN TO
SYS004-UT-2400-S-MASTERX

DATA DIVISION.
FILE SECTION.
FD MASTER-FILE

The VOL control statement for the file
could be coded as follows:

// VOL SYS004,MASTERX

If the COBOL SELECT sentence had oeen
coded as:

SELECT MASTER-FILE ASSIGN TO
SYS004-UT-2400-S

SYS004 would be the name by which the file
is known to the control program and the VOL
statement could be coded as follows:

// VOL SYS004,SYS004

rhe filename, as used in the VOL control
statement format, is identical to the
symbolic name of the program DTF that
identifies the file. Although, in COBOL,
displacement is from the symbolic name
MASTER-FILE when referencing the DTF, the
system interprets this to be MASTERX in the
first case, and SYS004 in the second case.

when coding the VOL control statement
for files assigned to mass storage devices,
there is an additional consideration. If
the following SELECT sentence appears in a
COBOL program:

SELECT INFILE ASSIGN TO
SYS001-DA-2311-A-INPUTA

the symbolic unit name on the control
statements for the file can be any SYSxxx
assigned to a 2311 disk pack. The filename
on control statements for the file must be
INPUTA.

For example, the VOL control statement
might be:

// VOL SYS021,INPUTA

If the SELECT sentence were ~1ed:

SELECT INFILE ASSIGN TO
SYS004-DA-2311-A

the symbolic unit name on control
statements for the file can be any SYSxxx
assigned to a 2311 disk pack. The filename

30

on control statements for the file must be
SYS004. Both 6f the following VOL control
statements are acceptable:

// VOL SYS004,SYS004
/1 VOL SYS005,SYS004

DLAB Statement

The DLAB control statement contains
information for label checking and creation
of files assigned to mass storage devices.
This statement must immediately follow a
VOL control statement. (Disk label formats
are given in "Appendix C: Standard Mass
Storage Device Labels.") The format of the
DLAB control statement is:

r------~----------------------------------,
1// DLAB 'label fields 1-3', 1
1 xxxx,yyddd,yyddd,'systemcode' [,type] I L ___ J

'label fields 1-3'

xxxx

The first three fields of the
disk-file label are contained just as
they appear in the label. This is a
51-character string contained within
apostrophes and followed by a comma.

The DLAB statement requires two cards
for completion; therefore, column 72
of the first card requires a character
punch other than a blank. The columns
between the comma and the continuation
character must be blank.

is the volume-sequence-number in field
4 of the Format 1 label and must begin
in card column 16 of the second card.

yyddd,yyddd
is the file creation date followed by
the file expiration date. It is
recommended that this field be left
blank.

'systemcode'

type

is ignored by the Disk Operating
System. The dummy field specified
must be 13 characters long.

indicates the type of file label:

SD = Sequential Disk
DA = Direct Access
ISC = Indexed Sequential (used when

creating the file)
ISE = Indexed Sequential (used when

updating or retrieving the
file)

SD is assumed if this entry is
omitted.

(

TPLAB statement

The TPLAB control statement contains
file label information for tape label
checking and creation. It must immediately
follow a VOL control statement. The TPLAB
control statement contains an image of a
portion of the standard tape file label.
The format and contents of a standard tape
label are given in "Appendix B: Standard
Tape File Labels." The format of the TPLAB
control statement is as follows:

r-------------------------------~---------,
I \'label fields 3-10'1 I
I / / TPLAB / 'I
I I'label fields 3-13' \ I L ___ J

'label fields 3-10'
is a 49-byte character string
contained within apostrophes,
identical to positions 5 through 53 of
the tape file label. These fields can
be included in one line and are the
only ones used for label checking.

'label fields 3-13'
is a 69-byte character string
contained within apostrophes,
identical to positions S through 73 of
the tape file label. These fields are
too long to be included on a single
line. The character strinq must
extend into column 71, a continuation
character (any character) must be
placed in column 72, and the character
string is completed on the next line.
The continuation line starts in column
16. Fields 3 through 13 are written
in the corresponding fields when the
output label is created. When
specified for an input file, fieljs 11
through 13 are ignored. However, even
for output files, fields 11 through 13
are never used by the Disk Operating
System label processing routines.

The XTENT control statement is used to
define an area of a file on a mass storage
device. Each DASD file <file assigned to a
mass storage device> requires one or more
XTENT control statements. The format of
the XTENT control statement is:

r---,
1// XTENT type, sequence, lower, upper I
I 'serial no', SYSxxx [, B2] I L ___ J

type
Each XTENT type identifies the funtion
of the defined area.

Exteni~Qg -- occupies one or three
columns containing:

1
2

4
128

Data area (no split cylinder)
Overflow area (for an indexed
file)

= Index area (for an indexed file)
Data area (split cylinder). If
type 128 is specified, the lower
head is assumed to be H1 H2 H2
in lower, and the upper head is
assumed to be H1 H2 H2 in upper
(See the discussion of the lower
and upper fields.)

sequence Extent Seguence Number -­
indicates the sequence nun~er
of this extent within a
multi-extent file. The
sequence number occupies one
to three columns and contains
a decimal number from 0 to
255. Extent sequence 0 is
used for the master index of
an indexed file. If the
master index is not used, the
first extent of an indexed
file contains sequence number
1. The extent sequence for
all other types of files
begins with O. Direct files
can have up to five extents.
Indexed files can have up to
eleven data extents (nine
prime, one cylinder index, one
separate overflow).

lower Lower Limit of Extent
occupies nine columns and
contains the lowest address of
the extent in the form
B1C1C1C2C2C2H1H2H2

where:

B1 is the initially assigned
cell number. It is equal to:

o for 2311 and 2314
o to 9 for 2321

C1C1 is the subcell number.
It is equal to:

00 for 2311 and 2314
00 to 19 for 2321

C2C2C2 is the cylinder number.
It can be:

000 to 199 for 2311 and
2314

or strip number:

000 to 009 for 2321

Preparing COBOL Programs for Processing 31

H1 is the head block position.
It is equal to:

o for 2311 and 2314
o to 4 for 2321

H2H2 is the head number. It
can be:

00 to 09 for 2311
00 to 19 for 2321 and

2314

A lower extent of all zeros is
invalid.

~Qte: For 2321, the last five
strips of subcell 19 are
reserved for alternate tracks.

upper Upper Limit of Extent -­
occupies nine columns
containing the highest address
of the extent in the same form
as the lower limit.

serial no' Volume Serial Number -- This
is a 6-bytealphanumeric
character string, contained
within apostrophes. The
number is the same as in the
volume label (volume serial
number) and the Format 1 label
(file serial number).

SYSxxx This is the symbolic address
of the DASD drive. If more
than one symbolic address is
to be specified on separate
XTENT cards for the same file,
the symbolic addresses must be
in consecutive order. See
"EXTENT Statement" for details
on SYSxxx assignments.

B2 Currently assigned cell
number. Its' value is:

o for 2311 or 2314
o to 9 for 2321

This field is optional. If
missing, the Job Control
Processor assigns B2 = B1 •

The JOB control statement indicates the
beginning of control information for a job.
The JOB control statement is in the
following format:

r---,
1// JOB jobname 1 L ___ J

32

jobname
is a programmer-defined name
consisting of from one to eight
alphanumeric characters. Comments can
appear on the JOB control statement
following the jobname (through column
72). If the timer feature is present,
the time of day appears in columns 73
to 80 when the JOB statement is
printed on SYSLST. The time of day is
also printed in columns 1 through 8 on
the next line of SYSLOG.

If a job is restarted, the jobname
must be identical to that used when
the checkpoint was taken.

Note: The JOB statement resets the effect
of all previously issued OPTION and ASSGN
control statements.

The LBLTYP control statement defines the
amount of storage to be reserved at linkage
edit time in the problem program area of
main storage in order to process tape and
nonsequential DASD file labels. It applies
to both background and foreground object
programs, and is required if the file
contains standard labels.

The LBLTYP control statement immediately
precedes the // EXEC LNKEDT statement in
the job deck, with the exception of
self-relocating programs for which it is
instead submitted immediately preceding the
// EXEC statement for the program. The
format of the LBLTYP control statement is:

r---,
1 (TAPE[(nn)]/ I
I / / LBLJ.'YP) (. I
I INSD(nn)} I L ___________ ~ _____________________________ J

TAPE [(nn)]
is used only if tape files requiring
label information are to be processed
and if no nonsequential DASD files are
to be processed. gg is optional and
is present only for future expansion.
It is ignored by the Job Control
Processor.

NSD(nn)
is used if any nonsequential DASD
files are to be processed, regardless
of other type files that are used. nn
specifies the largest number of
extents to be used for a single file.

The LISTIO control statement causes the
system to print a list of input/output
assignments on SYSLST. The format of the
LISTIO control statement is:

r---,
1 SYS 1
1 PROG 1
1 F1 1
1 F2 1
1// LISTIO ALL 1
1 SYSxxx 1
1 UNITS 1
1 DOWN 1
1 UA 1
1 X'cuu' 1 L ___ J

SYS

PROG

F1

F2

ALL

causes the physical units assigned to
all system logical units to be listed.

causes the physical units assigned to
all background programmer logical
units to be listed.

causes the physical units assigned to
all foreground-one logical units to be
listed.

causes the physical units assigned to
all foreground-two logical units to be
listed.

causes the physical units assigned to
all logical units to be listed.

SYSxxx

UNITS

DOWN

UA

causes the physical units assigned to
the logical unit specified to be
listed.

causes the logical units assigned to
all physical units to be listed.

causes all physical units specified as
inoperative to be listed.

causes all physical units not
currently assigned to a logical unit
to be listed.

X'cuu'
causes the logical units assigned to
the physical unit specified to be
listed.

MTC Statement

The MTC control statement controls 2400
series magnetic tape operations. The
format is as follows:

r---,
1// MTC opcode,SYSxxx[,nnl I L ___ J

opcode
specifies the operation to be
performed. opcode can be chosen from
the following:

BSF Backspace to tapemark

BSR Backspace to interrecord gap

ERG Erase gap (write blank tape)

FSF Forward space to tapemark

FSR Forward space to interrecord
gap

RUN Rewind and unload

REW Rewind

WTM Write tapemark

SYSxxx

[, nnl

represents any logical unit assigned
to magnetic tape upon which the MTC
control statement is to operate.

is the decimal number (01 through 99)
which, if specified, represents the
number of times the operation is to be
performed. If nn is omitted, the
operation is performed once.

OPTION Statement

The OPTION control statement is used to
specify one or more of the options of the
Job Control Processor. The format of the
OPTION statement is:

r---,
1// OPTION option1[,option21... J L ___ J

Preparing COBOL Programs for Processing 33

The order in which the selected options
appear in the operand field is arbitrary.
Options are reset to the standard
established at system generation time upon
encountering the next JOB statement or the
/& statement.

The options are:

LOG

NOLOG

DUMP

causes the listing of columns 1
through 80 of all control statements
on SYSLST. If LOG is not the standard
established at system generation time,
control statements are not listed
until a LOG option is encountered.
Once a LOG option statement is read,
logging continues from job step to job
step until a NOLOG option is
encountered or until either the JOB or
/& control statement is encountered.

suppresses the listing of all control
statements on SYSLST until a LOG
option is encountered, or until either
the JOB or /& control statement is
encountered.

causes a dump of the registers and
main storage to be printed on SYSLST
in the case of an abnormal program
termination (such as a program check).

NODUMP

LINK

suppresses the DUMP option.

indicates that the object module is to
be link edited. When the LINK option
is used, the output of the COBOL
compiler is written on SYSLNK. The
LINK option must always precede an
EXEC LNKEDT statement in the job deck.
(CATAL also causes the LINK option to
be set.) LINK is not acceptable to
the Job Control Processor operating in
the foreground unless the private core
image library option is supported and
a private core image library is
assigned.

NOLINK

DECK

34

suppresses the LINK option. The COBOL
compiler can also suppress the LINK
option if the program contains an
error that would preclude the
successful execution of the program.

causes the COBOL compiler to punch an
object module on SYSPCH. If both DECK
and LINK are specified, the output of
the compiler is written on both SYSPCH
and SYSLNK.

NODECK

LIST

suppresses the DECK option.

causes the compiler to write the COBOL
source statements on SYSLST.

NOLIST
suppresses the LIST option.

LISTX
causes the COBOL compiler to write a
Procedure Division map on SYSLST. In
addition, global tables, literal
pools, and register assignments will
be provided.

NOLISTX

XREF

suppresses the LISTX option.

causes the COBOL compiler to write a
symbolic cross-reference list on
SYSLST.

NOXREF

SYM

suppresses the XREF option.

causes the COBOL compiler to write a
Data Division map on SYSLST.

NOSYM

ERRS

suppresses the SYM option.

causes the COBOL compiler to write the
diagnostic messages related to the
source program on SYSLST.

NOERRS
suppresses the ERRS option.

CATAL
causes the cataloging of a phase or
program in the core image library upon
completion of a linkage editor job
step. CATAL also causes the LINK
option to be set. CATAL is not
accepted by the Job Control Processor
operating in a batched-job foreground
environment unless the private core
image library option is supported and
a private core image library is
assigned.

STDLABEL
causes the standard label track to be
cleared and all DASD or tape labels
submitted after this point to be
written on the standard label track.
This option is reset to the USRLABEL
option at end-of-job or end-of-job
step. All file definition statements
submitted after the STDLABEL option
are available to any program in any
area until another set of standard

file definition statements is
submitted. STDLABEL is not accepted
by the Job Control Processor operating
in a batched-job foreground
environment. All file definition
statements following OPTION STDLABEL
are included in the standard file
definition set until one of the
following occurs:

• End-of-job step

• End-of-job

• OPTION USRLABEL is specified

• OPTION PARSTD is specified

USRLABEL
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the user
label track.

PARSTD
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the
partition standard label track. The
PARSTD option is reset to the USRLABEL
option at end-of-job or end-of-job
sEep. All file definition statements
submitted after the PARSTD option will
be available to any program in the
current partition until another set of
partition standard file definition
statements is submitted. All file
definition statements submitted after
OPTION PARSTD will be included in the
standard file definition set until one
of the following occurs:

• End-of-job step

• End-of-job

• OPTION USRLABEL is specified

• OPTION STDLABEL is specified

For a given filen9me, the sequence of
search for label information during an
OPEN is the USRLABEL area, followed by
the PARSTD area, followed by the
STDLABEL area.

The options specified in the OPTION
statement remain in effect until a
contradictory option is encountered or
until a JOB control statement is read. In
the latter case, the options are reset to
the standard that was established at system
generation time.

Any assignment for SYSLNK, after the
occurrence of the OPTION statement, cancels

the LINK and CATAL options. These two
options are also canceled after each
occurrence of an EXEC statement with a
blank operand.

PAUSE Statement

The PAUSE control statement allows for
operator intervention between job steps.
The format of the PAUSE control statement
is:

r---,
1// PAUSE [comments] 1 L ___ J

The PAUSE control statement is effective
just before the n~xt input control
statement in the job deck is read. The
PAUSE control statement always prints on
SYSLOG and SYSLST.

An example of this statement is:

// PAUSE SAVE SYS004, SYS005, MOUNT
NEW TAPES

This sample statement instructs the
operator to save the output tapes and mount
two new tapes.

When the PAUSE statement is encountered
by the Job Control Processor, the printer
keyboard (IBM 1052) is unlocked for
operator-message input. The
end-of-communication indicator, B, causes
processing to continue. If an IBM 1052
Printer is not available, the PAUSE control
statement is ignored.

RESET Statement

The RESET control statement resets
input/output assignments to the standard
assignments. The standard assignments are
those specified at system generation time
plus any modifications made by the operator
by means of the ASSGN command without the
TEMP option. The RESET command is
discussed in detail in the publication QQ~
System Control and Service. The format of
the RESET statement is:

r---,
1 ~SYS ~ 1 1// RESET PROG 1
1 ALL 1
1 SYSxxx 1 L ___ J

SYS
resets all system logical units to
their standard assignments.

Preparing COBOL Programs for Processing 35

PROG

ALL

resets all programmer logical units to
their standard assignments.

resets all system and programmer
logical units to their standard
assignments.

SYSxxx
resets the logical unit specified to
its standard assignment.

RSTRT statement

A restart facility is available for
checkpoint programs. A programmer can use
the source language RERUN clause in his
program to cause checkpoint records to be
written. This allows sufficient
information to be stored so that program
execution can be restarted at a specified
point. The checkpoint information includes
the registers, tape positioning
information, a dump of main storage, and a
restart address.

The restart facility allows the
programmer to continue execution of an
interrupted job at a point other than the
beginning. The procedure is to submit a
group of job control statements including a
RSTRT control statement. The format is as
follows:

r---,
1// RSTRT SYsxxx,nnnn,filename I L ___ J

SYSxxx

nnnn

is the symbolic unit name of the 2400,
2311, or 2314 checkpoint file used for
restarting. This unit must have been
assigned previously.

is the identification of the
checkpoint record to be used for
restarting. This serial number
consists of four characters. It
corresponds to the checkpoint
identification used when the
checkpoint was taken. The serial
number is supplied by the checkpoint
routine.

filename
is the symbolic name of the 2311'or
2314 disk checkpoint file used for
restarting. It must be identical to
the SYSxxx of the system-name
specified in the RERUN clause.

36

When a checkpoint is taken, the
completed checkpoint is noted on SYSLOG.
Restarting can be done from any checkpoint
record, not just the last. The jobname
specified in the JOB statement must be
identical to the jobname used when the
checkpoint was taken. The proper
input/output device assignments must
precede the RSTRT control statement.

Assignment of input/output devices to
symbolic unit names may vary from the
initial assignment. Assignments are made
for restarting jobs in the same manner as
assignments are made for normal jobs.

See the chapter "Program Checkout" for
fUrther details on taking checkpoints and
restarting a program for which checkpoints
have been taken.

UPSI Statement

The UPSI control statement allows the
programmer to set program switches that can
be tested by problem programs at execution
time. The UPSI control statement has the
following format:

r---,
1// UPSI nnnnnnnn I L ___ J

nnnnnnnn
consists of from one to eight
characters of 0, 1, or X. Positions
containing 1 are set to 1; positions
containing X are unchanged.
Unspecified rightmost positions are
assumed to be X.

The UPSI byte is the 24th byte in the
Communication Region of the Supervisor. A
complete description~of the fields of the
Communication Region is given in "~ppendix
G: Communication Region." The Job Control
Processor clears the UPSI byte to binary
zeros before reading control statements for
each job. When the UPSI control statement
is read, the Job Control Processor sets
these bits to the programmer's
specifications. Any combination of the
eight bits can be tested in the COBOL
source program at execution time by means
of the source language switches UPSI-O
through UPSI-7.

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL 3N28-1023

CBL STATEMENT -- COBOL OPTION CONTROL CARD

Although most options for compilation
are specified either at system generation
time or in the OPTION control statement,
the COBOL compiler provides an additional
statement, the CBL statement, for the
specification of compile-time options
unique to COBOL.

The CBL card must be placed between the
EXEC FCOBOL statement and the first
statement in the COBOL program. The CBL
card cannot be continued. However, if
specification of options will continue past
colUmn 71, multiple CBL cards may be used.

The options shown in the following
format may appear in any order. No blanks
may appear in the operand field.
Underscoring indicates the default case.

r---,
f, SEQ 1 r, FLAG~]

CBL [BUF=nnnnnl ~NOSE~ ~FLAGE

[, SUPMAP] [, SPACE':1 1 [, CLIST]

[
, QUOTE] [, TRUNC 1

[,STXITl ,APOST , NOTRUNCJ
r, ZWB 1
L' NOZWBJ

[
, CATALR J' [. LIB 1

-~~~~~:~~~------~~~~:~~------------------
CBL

must begin in column 2 and be preceded
and followed by at least one blank.

BUF=nnnnn

SEQ
NOSEQ

the BUF option specifies the amount of
storage to be assigned to each
compiler work file buffer. gggnn is a
decimal number from 256 to 32,767. If
this option is not specified, 256 is
assumed.

indicates whether or not the compiler
is to check the sequence of source
statements. If SEQ is specified and a
statement is not in sequence, it is
flagged.

FLAGW
FLAGE

determines which diagnostics the
compiler will list. FLAGW indicates
that' all diagnostics will be listed
(severity levels W, C, E, and D).
FLAGEindicates that only those

~ diagriostics with severity levels C, E,
/ and,D will be listed.

SUPMAP
causes the CLIST and LISTX options to
be suppressed if an E-level diagnostic
message is produced by the compiler.
SUPlw1AP also causes the DECK option to
be suppressed, and no object nodule is
produced.

SPACEn
indicates the type of spacing to be
used on the output listing. n can be
specified as either 1 (single
spacing), 2 (double spacing), or 3
(triple spacing). If the SPA:En
option is omitted, single spacing is
provided.

CLIST

STXIT

"QUOTE
APOST

indicates that a condensed listing is
to be produced. The condensed listing
will contain only the address of the
first generated instruction for each
verb in the Procedure Division. The
CLIST option overrides the LISTX or
NOLISTX options. The LISTX or NOLISTX
options are either established at
system generation tim~ or specified in
the OPTION control statement.

enables a USE AFTBR STA~DARD ERROR
declarative to get control when an
input/output error occurs on a unit
record device.

-----QUOTE indicates to the compiler that
the double quotation marks (") should
be accepted as the character to
delineate literals; APOST indicates

,that the apostrophe (') should be
accepted. The compiler will generate
the specified character for the
figurative constant QUOTE(S).

NOTRUNC
TRUN~

is an option that applies only to
COMPUTATIONAL receiving fields in MOVE
statements and arithmetic expressions.
If TRUNC is specified, extra code is
generated to truncate the final
intermediate result of the arithmetic
expression, or the sending field in
the MOVE statement, to the number of
digits specified in the PICTURE clause
of the COMPUTATIONAL receiving field.
If TRUNC is specified, the compiler
assumes that the data being
manipulated conforms to PICTURE and
USAGE specifications. The compiler
then generates code to manipulate the
data based on the siie of the field in
core (halfword, etc.). TRUNC conforms
to the American National Standard,
while NOTRUNC leads to more efficient

Preparing COBOL Programs for Processing 37

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

ZWB
NOZWB

LIB
NOLIS

processing. This will occasionally
cause dissimilar results for various
sending fields because of the
different code generated to perform
the operation.

indicates whether or not the compiler
will generate code to strip the sign'
when comparing a signed external
decimal field with an alphanumeric
field. If ZWB is in effect, the
signed external decimal field is moved
to an intermediate field and has its
sign stripped before being compared
with the'alphanumeric field.

-----indicates that BASIS and/or COPY
statements are in the source program.
If either COpy or BASIS is present,
LIB must be in effect. If COpy and/or
BASIS statements are not present, use
of the NOLIB option yields more
efficient compiler processing.

CATALR
NOCATALR

causes the compiler to generate CATALR
card images on the SYSPCH file if
OPTION DECK is in effect during
compilation. This will allow
cataloging' of the compiler-produced
object modules into the relocatable
library. The default is NOCATALR for
which no CATALR cards are produced by
the compiler. The module names in the
CATALR dards adhere to the same rules
as the phase names in the
compiler-produced PHASE cards
according to the segmentation and sort
phase naming conventions.

JOB CONTROL COMMANDS

Job control commands are distinguished
from job control statements by the absence
of // blank in positions 1 through 3 of
each command. They permit the operator to
adjust the system according to day-to-day
operating conditions. This is particularly
true in the area of device assignment,
where the operator may need to (1)
communicate to the system that a device is
unavailable, or (2) designate a different
device as the standard for a given symbolic
unit. Therefore, these commands normally
are not a part of the regular job deck for
a job. Job control commands tend to be
effective across jobs, whereas job control
statements are confined within a job.

38

Job control commands are discussed in
detail in the publication DOS System
Control and Service.

LINKAGE EDITOR CONTROL STATEMENTS

object modules used as input to the
Linkage Editor must include linkage editor
control statements. There are four linkage
editor control statements: PHASE, INCLUDEi
ENTRY, and ACTION.

Linkage editor control statements
initially enter the system through the
device assigned to SYSRDR as part of the
input job stream. PHASE and INCLUDE
statements may also be present on SYSIPT or
in the relocatable library. All four
statements are verified for operation
(INCLUDE, ACTION, ENTRY, or PHASE) and are
copied to SYSLNK to become input when the
Linkage Editor is executed.

Linkage editor control statements must
be blank in position 1 of the statement.
The operand field is terminated by the
first blank position. It cannot extend
beyond column 72.

,The Linkage Editor is executed asa
distinct job step. Figure 5 shows how'the
linkage editor function is performed as a

.job step in three kinds of operations.

1. Catalog Programs in Core Image
Library. Tne linkage editor function
is performed immediately preceding the
operation that catalogs programs into
the core image library. When the
CATAL option is specified, programs
edited by the Linkage Editor are
cataloged in the core image lib~ary by
the Librarian after the editing
function is performed. The sequence
of this operation is shown in Part A
of Figure 5. Note that the input for
the LNKEDT function could contain
modules from the relocatable library
instead of, or in addition to, those
modules from the card reader, tape
unit, or mass storage unit extent
assigned to SYSIPT. This is
accomplished by naming the module(s)
to be copied from the relocatable
library in an INCLUDE statement.

(

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL 3N28-1023

Load-and-Execute. The sequence of
this operation is shown in Part B of
Figure 5. Specifying OPTION LINK
causes the Job Control Processor to
open SYSLNK, and allows the Job
Control Processor to place the object
module(s) and linkage editor control
statements on SYSLNK. As with the
catalog operation, the input can
consist of object modules from the
relocatable library instead of, or in
addition to, those modules from the
c~~d reader, tape unit, or disk extent
assigned to SYSIPT. This is accom­
plished by specifying the name of the
module to be included in the operand
of an INCLUDE statement. After the
object modules have been edited and
placed in the core image library, th~
program is executed. The blank
operand in the EXEC control statement
indicates that the program that has
just been link edited and temporarily
stored in the core image library is to
be executed.

3. Compile-and-Execute, Source modules
can be compiled and then executed in a
single sequence of job steps. In •
order to do this, the COBOL compiler
is directed to write the object module
directly on SYSLNK. This is done by
using the LINK option in the oprION
control statement. Upon completion of
this output operation, the linkage
editor function is performed. The
program is link edited and ten­
porarily stored in the core image
library. The sequence of this
operation is shown in Part C of
Figure 5.

Preparing COBOL Programs for Processing 38.1

•

...... ----- EXEC FCOBOL OPTION CATAl
PHASE PROGA,·

1+-______ INClUDE
{object module}
ENTRY

I
------------~------------EXECPROGA---------~II

I

EXEC lNKEDT
® lOAD AND EXECUTE

I

Core
Storage
Execution

I
1~1·-----------EXECFCOBOl

I OPTION liNK I
,I INCLUDE I I, {object module} ,I
~-----------------------------ENTRY ----------------------------~I
I EXEC lNKEDT

EXEC

OPllON LINK
EXEC FCOBOl

...... ______________________________ ENTRY

EXEC lNKEDT
EXEC

Core
Storage
Execution

I
I
I
I

II

Figure 5. Job Definition -- Use of the Librarian

In each of the operations described in
Figure 5, if a private core image library
is assigned, output from the Linkage Editor
will be placed <either permanently or
temporarily> in the private core image
library rather than in the system core
image library. If the Linkage Editor is
executed in a batched-job foreground
partition, a private core image library
must be assigned. Private core image
libraries are a system generation option.

Control statement Placement

The placement of linkage editor control
statements is subject to the following
rules:

1. The ACTION statement must be the first
linkage editor control statement
encountered in the input stream;
otherwise, it is ignored.

2. The PHASE statement must precede each
object module that is to begin a
phase.

3. The INCT r'DE statement must be
specified for each object module that
is to be included in a program phase.

4. A single ENTRY statement should follow
the last object module when multiple
object modules are processed in a
single linkage editor run.

ACTION and ENTRY statements, when
present, must be on SYSRDR. PHASE and
INCLUDE statements may be present on
SYSRDR, SYSIPT, or in the relocatable
library.

The PHASE statement must be specified if
the output of the Linkage Editor is to
consist of more than one phase or if the
program phase is to be cataloged in the
core image library. Each object module
that begins a phase must be preceded by a
PHASE statement. Any object module not
preceded by a PHASE statement will be
included in the current phase.

Preparing COBOL Programs for Processing 39

The statement provides the Linkage
Editor with a phase name and an origin
point for the phase. The PHASE statement
is in the following format:

r---,
I PHASE name,origin[,NOAUTO] I L ___ J

name
is the symbolic name of the phase. It
is the name under which the program
phase is to be cataloged. This name
does not have to be the name specified
in the PROGRAM-ID paragraph in the
Identification Division of the source
program and, in the case of overlay
and sort, it should not be the same.
It must consist of from one to eight
alphanumeric characters. Phases that
are to be executed in an overlay
structure should have phase names of
from five to eight alphanumeric
characters, the first four of which
should be the same. An asterisk
cannot be used as the first character
of a phase name.

origin
indicates to the Linkage Editor the
starting address of this specific
phase. An~asterisk may be used as an
origin specification to indicate that
this phase is to follow the previous
phase. This origin specification
format of the PHASE statement covers
all applications that do not include
setting up overlay structures. See
the chapter "Calling and Called
Programs"·for information on the PHASE
statement for overlay applications.

NOAUTO
indicates that the Automatic Library
Look-Up (AUTOLINK) feature is
suppressed for both the private
relocatable library and the system
relocatable library. (The use of
NOAUTO causes the AUTOLINK process to
be suppressed for that phase only.)
The AUTOLINK feature is discussed
later in this chapter.

The INCLUDE statement must be specified
for each object module deck or object
module in the relocatable library that is
to be included in a program phase. The
format of the INCLUDE statement is as
follows:

r---,
I INCLUDE [module-name] [,(namelist)] I L ___ J

40

The INCLUDE statement has two optional
operands. When both operands are used,
they must be in the prescribed order. When
the first operand is omitted and the second
operand is used, a comma must precede the
second operand.

module-name
must be specified when the object
module is in the relocatable library.
It is not specified when the module to
be included is in the form of a card
deck being entered from SYSIPr.
module-name is the name under which
the module was cataloged in the
library, and must consist of from one
to eight alphanumeric characters.

Cnamelist)
causes the Linkage Editor to construct
a phase from the control sections
specified in the list. Since control
sections are of no interest to the
COBOL programmer, users interested in
this option should refer to the
description of the INCLUDE statement
in the publication DOS System Control
an~-2erYi£~·

The ENTRY statement is required only if
the programmer wishes to provide a specific
entry point in the first phase produced by
the Linkage Editor. When no ENTRY
statement is provided, the Job Control
Processor writes an ENTRY statement with a
blank operand on SYSLNK to ensure that an
ENTRY statement will be present to halt
link editing. The transfer address will be
the load address of the first phase. The
ENTRY statement is described further in the
publication DOS system Control and Service.

The ACTION statement is used to indicate
linkage editor options. When used, the
statement must be the first linkage editor
statement in the input stream. The format
of the ACTION statement is as follows:

r---,
I CLEAR I
I MAP I
I NOMAP I
I ACTION NOAUTO I
I CANCEL I
I BG I
I Fl I
I F2 I L ___ J

CLEAR

NOMAP

indicates that the entire temporary
portion of the core image library will
be set to binary zero before the
beginning of the linkage editor
function. CLEAR is a time-consuming
function and should be used only when
necessary.

indicates that SYSLST is available for
diagnostic messages. In addition, a
main storage map is output on SYSLST.

indicates that SYSLST is unavailable
when performing the link edit
function. The mapping of main storage
is not performed, and all linkage
editor diagnostic messages are listed
on the printer-keyboard (SYSLOG).

NOAUTO
suppresses the AUTOLINK function for
both the private and system
relocatable libraries during the link
editing of the entire program.
AUTOL1NK is discussed later in this
chapter.

CANCEL
causes an automatic cancellation of
the job if any of the linkage editor
errors 21001 through 21701 occur.

These diagnostic messages can be found
in the publication QQ~_~y~~em £2n~E21
and Service.

BG, F1, and F2
are options used to link edit a
program for execution in a partition
other than that in which the link edit
function is taking place. See the
publication DOS System Control and
Se~vi£~.

AUTOL1NK FEATURE

If any references to external-names are
still unresolved after all modules have
been read from SYSLNK, SYSIPT, and/or the
relocatable library, AUTOLINK collects each
unresolved external reference from the
phase. It then searches the private
relocatable library (if SYSRLB has been
assigned) and the system relocatable
library for module names identical to the
unresolved names and includes these modules
in the program phase. This feature should
not be suppressed (via PHASE or ACTION
statements) in linkage editor job steps
which include COBOL subroutines cataloged
in the relocatable library_ See the
chapter "Calling and Called Programs" for
additional details.

Preparing COBOL Programs for Processing 41

The system residence device (SYSRES) for
the Disk Operating System can contain three
libraries: the core image library, the
relocatable library, and the source
statement library. Executable programs
(core image format) are stored in the core
image library; relocatable object modules
are stored in the relocatable library; and
source language routines are stored in the
source statement library.

The core image library is required for
each disk resident system. The relocatable
library and the source statement library
are not required.

In addition to the three system
libraries located on SYSRES, the programmer
may also request creation of private core
image, source statement, and relocatable
libraries. These libraries are discussed
under "Private Libraries" in this chapter.

The Librarian is a group of programs
that perform-three major functions:

1. Maintenance

2. Service

3. Copy

Maintenance functions are used to
catalog (that is, add), delete, or rename
components of the three libraries, condense
libraries and directories, set a condense
limit for an automatic condense function,
reallocate directory and library extents,
and update the source statement library.

The copy function is used either to
completely or selectively copy the disk on
which the system resides. Service
functions are used to translate information
from a particular library to printed
(displayed) or punched output.

Only the catalog maintenance function of
the Librarian is discussed in this
publication for the three system libraries.
In addition, the update function of the
source statement library is discussed. A
complete description of librarian functions
can be found in the publication QQ~~~~~m
£ont~01_~~~_2~~vi£~.

The core image library may contain any
number of programs. Each program consists
of one or more separate phases. Associated
with the core image library is a core image
directory which contains a unique
descriptive entry for each phase in the
core image library. These entries in the
core image directory are used to locate and
retrieve phases from the core image
library.

If a program is to be cataloged in the
core image library, the job control
statement // OPTION with the CATAL option
must be specified prior to the first
linkage editor control card, and must
precede the first PHASE card of the program
to be cataloged. Upon successful
completion of the linkage editor job step,
output from the .Linkage Editor is placed in
the core image library as a permanent
member. The program phase is cataloged
under the name specified in the PHASE
statement.

If a phase in the core image library is
to be replaced by a new phase having the
same name, only the catalog function need
be used. The previously cataloged phase of
the same name is implicitly deleted from
the core image directory by the catalog
function, and the space it occupies in the
library can later be released by the
condense function.

~ote: The necessary ASSGN control
statements must follow the // JOB control
statement if the current assignments are
not the following:

1. SYSRDR -- Card reader, tape unit, or
disk extent

2. SYSIPT -- Card reader, tape unit, or
disk extent

3. SYSLST -- Printer, tape unit, or disk
extent

4. SYSLOG Printer keyboard

5. SYSLNK Disk extent

Librarian Functions 43

The following is an example of
cataloging a single phase, FOURA, into the
core image library. (The program phase
FOURA can be executed in the next job step
by specifying the // EXEC statement with a
blank name field.)

// JOB CATALOG
// OPTION CATAL

PHASE FOURA,*
INCLUDE

{object deck}
/*
// LBLTYP TAPE
// EXEC LNKEDT
// EXEC
/&

To compile, link edit, and catalog the
phase FOURA into the core image library in
the same job, the following job deck could
be used:

// JOB CATALOG
// OPTION CATAL

PHASE FOURA,*
// EXEC FCOBOL

{source deck}
/*
// EXEC LNKEDT
/*
/&

When the phase is executed in a
subsequent job, the EXEC statement that
calls for execution must specify FOURA,
i.e., the name by which the phase has been
cataloged.

// JOB EXJOB
// EXEC FOURA
/&

The relocatable library contains any
number of modules. Each module is a
complete object deck in relocatable format.
The purpose of the relocatable library is
to allow the programmer to maintain
frequently used routines in residence and
combine them with other modules without
recompiling.

Associated with the relocatable library
is the relocatable directory. The
directory contains a unique, descriptive
entry for each module in the relocatable
library. The entries in the relocatable
directory are used to locate and retrieve
modules in the relocatable library.

44

MAINTENANCE FUNCTIONS

To request a maintenance function for
the relocatable library, the following
control statement is used:

// EXEC MAINT

The catalog function adds a module to
the relocatable library. A module in the
relocatable library is the output of a
complete COBOL compilation.

The catalog function implies a delete
function. Thus, if a module exists in the
relocatable library with the same name as a
module to be cataloged, the module in the
library is deleted by deleting reference to
it in the relocatable directory.

The CATALR control statement is required
to add a module to the relocatable library.
The format of the CATALR control statement
is:

r---, I CATALR module-name [,v.m] I L ___ J

module-name

v.m

is the name by which the module is
known to the control program. The
module-name consists of from one to
eight-characters the first of which
must not be an asterisk.

specifies the change level at which
the module is to be cataloged. ~ may
be any decimal number from 0 through
127. ~ may be any decimal number from
o through 255. If this operand is
omitted, a change level of 0.0 is
assumed. A change level can be
assigned only when a module is
cataloged.

All control statements required to
catalog an object module must be read from
SYSIPT. For the catalog function, device
assignments must be as follows:

1. SYSRDR

2. SYSIPT --

3. SYSLST --

4. SYSLOG --

Card reader, tape unit, or
disk extent

Card reader, tape unit, or
disk extent

Printer, tape unit, or disk
extent

Printer keyboard

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL 3N28-1023

~: If SYSRDR andlor SYSIPT are assigned
to a tape unit, the MAINT program assumes
that the tape is positioned to the first
input record. The tape is not rewound at
the end of the job.

The following is an example of compiling
a source program and cataloging the
resultant module in the relocatable
library. The job deck is read from SYSIPT.

II JOB NINE
II OPTION DECK
II EXEC FCOBOL

{source deck}
1*
II PAUSE PLACE DECK AFTER CATALR CARD
II EXEC MAINT

1*
If:,

CATALR MOD9

(punched deck goes here)

In the above example, as a result of the
compile step, the object module is written
on SYSPCH. The next job step catalogs the
object module (MOD9) into the relocatable
library. Since the object module must be
cataloged from SYSIPT, a message to the
operator instructs him to place the object
module on SYSIPT behind the CATALR
statement.

The following is an example of
cataloging two previously created object
modules in the relocatable library:

II JOB EIGHT
I I EXEC MAl NT

CATALR MOD8A

1*
If:,

{object deck}
CATALR MOD8B

{object deck}

An additional capability of the system
permits a programmer to compile a program
and to catalog it to the system
relocatable, or private relocatable,
library in one continuous run. The
programmer inserts aCATALR statement in
his job control input stream preceding the
compiler execute statement. The CATALR
statement will be written on the SYSPCH
file (tape or mass storage device) ahead of
the compiler output. The programmer then

)
' reassigns the SYSPCH file as SYSIPT and

executes the MAINT program to perform the
catalog function. The output of the

compilation (on tape or mass stora~e
device) may be cataloged immediately
may be cataloged at some later time.
can also be held after cataloging as
of the compilation.

or it
It

backup

Note: This facility is not available for
IBM 2314, 2319, and 3330 applications
because of the restriction in the MAINT
program limiting input to only 80
character records. Records produced
for 2314, 2319, and 3330 applications
exceed this limit.

SOURCE STATEMENT LIBRARY

The source statement library contains
any number of books. Each book in the
source statement library is composed of a
sequence ;f source language statements.
The purpose of the source statement library
is to allow the COBOL programmer to
initiate the compilation of a book into the
source program by using the COpy statement
or the BASIS card.

Each book in the source statement
library is classified as belonging to a
specific sublibrary. Sublibraries are
defined for two programming languages:
Assembler and COBOL. Individual books are
classified by sublibrary names. Therefore,
books written in each of these languages
may have the same name.

Associated with the source statement
library is a source statement directory.
The directory contains a unique descriptive
entry for each book in the source statement
library. The entries in the source
statement directory are used to locate and
retrieve books in the source statement
library.

MAINTENANCE FUNCTIONS

To request a maintenance function for
the source statement library, the followinq
control statement must be used:

II EXEC MAINT

Cataloging a Book -- Source Statement
Library

The CATALS control statement is required
to add a book to a sublibrary of the source
statement library.

A book added to a sublibrary of the
source statement library is removed by
using the delete function. When a book
exists in a sublibrary with the same name
as a book to be cataloged in that

Librarian Functions. 45.

.
,r

sublibrary, the existing book in the
sublibrary is deleted. The following is
the format of the CATALS control statement:

r---, I CATALS sublib.library-name(,v.m(,C]] I L ___ J

The operation field contains CATALS.

sublib
represents the sublibrary to which a
book is to be cataloged and can be:

Any alphanumeric character (0-9, A-Z,
#, $, and Q) representing source
statement libraries. The characters A
and C have special uses:

A is used for the Assembler sublibrary

C is used for the COBOL sublibrary

The sublib qualifier is required. If
omitted, the operand will be flagged as
invalid and no processing will be done on
the book.

library-name

v.m

C

represents the name of the book to be
cataloged. The library-name consists
of from one to eight alphanumeric
characters, the first of which must be
alphabetic. It is the name the
programmer uses to retrieve the book
when using the source language COpy
statement or BASIS card.

specifies the change level at which
the book is to be cataloged. y may be
any decimal number from 0 through 127;
ill may be any decimal number from 0
through 255. If this operand is
omitted, a change level of 0.0 is
assumed. The ~ operand becomes part
of the entry in the directory for the
specified book. Its value is
incremented each time an update is
performed on the book.

indicates, that change level
verification is required before
updates are accepted for this book.

See the UPDATE control statement,
discussed later in this chapter, for its
relationship to the ~ and C operands of
the CATALS control statement.

In addition to the CATALS control
statement, a control statement of the
following form must precede and follow the
book to be cataloged:

46

r---, I BKEND (sublib.library-namel,(SEQNCE], I
I (count], (CMPRSDl I L ___ J

All operand entries are optional. When
used, the entries must be in the prescribed
order and need appear only in the BKEND
statement preceding the book to be
cataloged.

The first entry in the operand field is
identical to the operand of the CArALS
control statement.

SEQNCE

count

specifies that columns 76 to 80 of the
card images constituting the book are
to be checked for ascending sequence
numbers. If an error is detected in
the sequence checking, an error
message is printed. The error can be
corrected, and the book can be
recataloged.

specifies the number of card images in
the book. When the count operand is
used, the card input is counted,
beginning with the preceding BKEND
statement and including the subsequent
BKEND statement. If an error is
detected in the card count, an error
message is printed. The error can be
corrected, and the book can be
recataloged.

CMPRSD
indicates that the book to be
cataloged in the library is in
compressed format as a result of
CMPRSD having been specified ~hen
performing a PUNCH or DSPCH service
function. These functions are
described in the publication QQ~
System Control and Service.

Card input for the catalog function is
from the device assigned to SYSIPT. The
CATALS control statement is also read from
the device assigned to SYSIPr. For the
catalog function, device assignments must
be as follows:

1. SYSRDR -- Card reader, tape unit, or
disk extent

2. SYSIPT -- Card reader, tape unit, or
disk extent

3. SYSLST -- printer, tape unit, or disk
extent

4. SYSLOG -- Printer keyboard

Frequently used Environment Division,
Data Division, and Procedure Division
entries can be cataloged in the COBOL

(

sublibrary of the source statement library.
A book in the source statement library
might consist, for example, of a file
description of the Data Division or a
paragraph of the Procedure Division.

The following is an example of
cataloging a file description in the COBOL
sublibrary of the source statement library.

// JOB ANYNAME
// EXEC MAINT

CATALS C.FILEA
BKEND C.FILEA

/*
/&

BKEND

BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS RECA.

Retrieving a Cataloged Book -- COBOL COPY
Statement: The preceding file description
can be included in a COBOL source program
by writing the following statement:

FD FILEB COPY FILEA.

Note that the library entry does not
include FD or the file-name. It begins
with the first clause that is actually to
follow the file-name. This is true for all
options of the COpy statement. However,
data entries in the library may have a
level number (01 or 77) identical to the
level number of the data-name that precedes
the COPY statement. In this case, all
information about the library data-name is
copied from the library and all references
to the library data-name are replaced by
the data-name in the program if the
REPLACING option is specified. The change
is made only for this program. The entry
as it appears in the library remains
unchanged. For example, assume the
following data entry is cataloged under the
library-name DATAR,

01 PAYFILE USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9

OCCURS 1 DEPENDING ON CALC OF
PAYFILE.

and the following statement is written in a
COBOL source module:

01 GROSS COpy DATAR REPLACING PAYFILE
BY GROSS.

The compiler interprets this as:

01 GROSS USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9

OCCURS 1 DEPENDING ON CALC OF
GROSS.

Note also that the library-name is used
to identify the book in the library. It
has no other use in the COBOL program.

Text cataloged in the source statement
library must conform to COBOL margin
restrictions.

The COBOL COpy statement is discussed in
detail in the section "Extended Source
Program Library Facility."

Updating Books -- Source Statement LibraEY

The update function is used to make
changes to properly identified statements
within a book in the source statement
library. Statements are identified in the
identification field, colUmns 73 through
80, which is fixed in format as follows:

Columns 73-76

ColUmns 77-80

Program identification
which must be constant
throughout the book.

Sequence number of the
statement within the
book.

One or more source statements may be
added to, deleted from, or replaced in a
book in the library without the necessity
of replacing the entire book. The update
function also provides these facilities:

1. Resequencing statements within a book
in the source statement library

2. Changing the change level (v.m) of the
book

3. Adding or removing the change level
requirement

4. Copying a book with optional retention
of the old book with a new name (for
backup purposes)

The UPDATE control statement is used for
the update function and has the following
format:

r---,
I UPDATE sublib.library-name, [s.book1], I
I [v. m] , [nn] I L ___ J

The operation field contains UPDATE.

sublib
represents the sublibrary that
contains the book to be updated. It
may be any of the characters 0 through
9, A through Z, #, $, or @.

Librarian Functions 47

s.bookl

v.m

nn

48

provides a temporary update option.
The old book is renamed s.bookl and
the updated book is named------
sublib.library-name. ~ indicates the
sublibrary that contains the old,
renamed book. It may be one of the
characters a through 9, A through Z,
#, $, or @. If this operand is not
specified, the old book is deleted.

represents the change level of the
book to be updated. y may be any
decimal number from a through 127; ill

may be any decimal number from a
through 255. This operand must be
present if change level verification
is to be performed. Use of the
optional entry C in the CATALS control
statement at the time the book is
cataloged in the library determines
whether change level verification is
required before updating. If the
directory entry specifies that change
level verification is not required
before updating, the change level
operand in the UPDATE control
statement is ignored.

If the change level is verified, the
change level in the book's directory
entry is increased by 1 by the system
for verification of the next update.
If m is at its maximum value and an
update is processed, m is reset to a
and the value of y is increased by 1.
If both v and m are at their maximum
values and an update is processed,
both v and m are reset to o.

represents the resequencing status
required for the update. nn may be a
1- or 2-character decimal number from
1 through 10, or it may be the word
NO. If nn is a decimal number, it
represents the increment that will be
used in resequencing the statements in
the book. If nn is NO, the statements
will not be resequenced. If nn is not
specified, the statements will be
resequenced with an increment of 1.
When a book is resequenced, the
sequence number of thefirst statement
is 0000. For example, if a book is
cataloged in the source statement
library with sequence numbers ranging
from 0010 through 1000 with increments
of 5 for each statement:

and ~ is not specified when the
update function is performed, the book
is resequenced with numbers 0000,
0001, 0002, ••• etc.

and NO is specified, insertions,
deletions, and/or replacements are
made with no effect on the original
sequence numbers.

and rr~ is specified as 2, the book is
resequenced with numbers 0000, 0002,
0004, ••• etc., regardless of the
original sequencing of the book in the
library or the sequence numbers of the
added or replacement cards.

The UPDA'l'E control statement is followed
by ADD, DEL (delete), and/or REP (replace)
control statements as required, followed by
the terminating END statement. The ADD,
DEL, REP, and END statements are identified
as update control statements by a right
parenthesis in the first position (column 1
in card format). This is a variation from
the general librarian control statement
format: thus, it clearly identifies these
control statements as part of the update
function.

ADD Statement: The ADD statement is used
for the addition of source statements to a
book. The format is:

r---,
I) ADD seq-no I L ___ J

ADD indicates that source statements
following this statement are to be added to
the book.

seq-no
represents the sequence number of the
statement in the book after which the
new statements are to be added. It
may be any decimal number consisting
of from one to four characters.

DEL Statement: The DEL statement causes
the-deletion-of Source statements from the
book. The format is:

r---, I) DEL first-seq-no[,last-seq-no] I L ____ ~ __________________________________ ~_J

DEL indicates that statements are to be
deleted from the book.

\
)

first-seq-no
last-seq-no

represent the sequence numbers of the
first and last statements of a section
to be deleted. Each number may be a
decimal number consisting of from one
to four characters. If last-seg-no is
not specified, the statement
represented by first-seg-no is the
only statement deleted.

REP. Statement: The REP statement is used
when replacement of source statements is
required in a book. The format is:

r---,
I) REP first-seq-no(,last-seq-nol 1 L __________________________________ . _______ J

REP indicates that source statements
following this statement are to replace
existing statements in a book.

first-seq-no
last-seq-no

represent the sequence numbers of the
first and last statements of a section
to be replaced. Each number may be a
decimal number consisting of from one
to four characters. Any number of new
statements can be added to a book when
a section is replaced. (The number of
statements added need not equal the
number of statements being replaced.)

Sequence number 9999 is the highest
number acceptable for a statement to be
updated. If the book is so large that
statement sequence numbers have "wrapped
around" (progressed from 9998, 9999, to
0000,0001), it will not be possible to
update statements 0000 and 0001.

END Statement: This statement indicates
the end of updates for a given book. The
format is:

r---, I) END [v.m(,C]] I L ___ J

v.m

c

represents the change level to be
assigned to the book after it is
updated; ~.may be any decimal number
from 0 through 127. m may be any
decimal number from 0 through 255.
This operand provides an additional
means of specifying the change level
of a book in the library. (The other
method is through the use of the ~~
'operand in the CATALS statement.)

indicates that change level
verification is required before any
subsequent updates for a given book.

If ~ is specified and £ is omitted,
the book does not require change level
verification before a subsequent update.
This feature removes a previously specified
verification requirement for a particular
book.

If both optional operands are omitted,
the change level in the book's directory
entry is increased as a result of the
update, and the verification requirement
remains unchanged.

Logical Unit Assignment and Control
Statement Placement:

For the update function, SYSIN nust be
assigned to a card reader, a tape unit, or
a disk unit. SYSLST must be assigned to a
printer, a tape unit, or a disk extent;
SYSLOG must be assigned to the printer
keyboard.

Control statement input for the update
function, read from the device assigned to
SYSIN, must be in the following order:

1. The JOB control statement.

2. The ASSGN control statements, if the
current assignments are not those
required. The ASSGN control
statements that can be used are SYSIN,
SYSLST, and SYSLOG.

3. The EXEC MAINT control statement.

~. The UPDATE control statement.

5.) ADD,) DEL, or) REP statements with
appropriate source statements.

6.) END statement.

7. The /* control statement.

8. The /& control statement, which is the
last control statement of the job.

The source statement library c~n also be
updated by using the DELETE and INSERT
cards. These are discussed in "Extended
Source Program Library Facility" in this
chapter, and in the publication IB~
~m/360 Disk Operating System: Full
American National Standard COBOL.

Librarian Functions 49

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

UPDATE Function -- Invalid Operand Defaults

UPDATE Statement:

1. If the first or second operand is
invalid, the statement is flagged, the
book is not updated, and the remaining
co.ntrol statements are checked to
determine their validity.

2. If change level verification is
required and the incorrect change
level is specified, the statement is
flagged, the book is not updated, and
the remaining control statements are
checked to determine their validity.

3. If the resequencing operand is
invalid, resequencing is done in
increments of 1.

ADD. DEL, or REP statements:

1. If there is an invalid operation or
operand in an ADD, DEL, or REP
statement, the statement is flagged,
the book is not updated, and the
remaining control statements are
checked to determine their validity.
All options of the UPDATE and END
statements are ignored.

2. The second operand must be greater
than the first operand in a DEL or REP
statement If not, the statement is
considered invalid and is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their validity. All options
of the UPDATE and END statements are
ignored.

3. All updates to a book between an
UPDATE statement and an END statement
must be in ascending sequential order
of statement sequence numbers. The
first operand of a DEL or REP
statement must be greater than the
last operand of the preceding c6ntrol
statement. The operand of an ADD
statement must be equal to or greater
than the last operand of the preceding
control statement. Consecutive ADD '
statements must not have the same
operand. If these conditions are not
met, the default is the same as for
items 1 and 2.

END Statement: If the first operand of the
END statement is invalid, the statement is
flagged, both operands are ignored, and the
book is updated as though no operands were

50

specified. If the second operand is
invalid, the statement is flagged, the
operand is ignored, and the book is updated
as though the second operand were not
specified.

Out-of-seguence Updates: If the source
statements to be added to a book are not in
sequence or do not contain sequence
numbers, the book is updated, and a message
indicating the error appears following the
END statement. If the resequencing option
has been specified in the UPDATE statement,
the book is sequenced by the specified
value, and subsequent updating is possible.
If the resequencing option is not
specified, the book is resequenced in
increments of 1, and subsequent updating
will be possible. If the resequencing
option NO is specified, the book will be
out of sequence, and subsequent updating
may not be possible.

PRIVATE LIBRARIES

Private libraries are desirable in the
system to permit some libraries to be
located on a disk pack other than the one
used by SYSRES.

Private libraries are supported for the
core image library, the relocatable
library, and the source statement library,
on both the 2311, 2314, and 3330 mass
storage devices. However, the following
restrictions apply:

1. The private library must be on the
same type of disk device as SYSRES.

; ~;',; '1

2. Reference may be made to a private
core image library only if SYSCLB is
assigned. If SYSCLB is assigned, the
system core image library cannot be
changed.

3. Reference may be made to a private
relocatable library only if SYSRLB is
aSSigned. If SYSRLB is assigned, the
system relocatable library cannot be
changed.

4. Reference may be made to a private
source statement library only if
SYSSLB is assigned. If SYSSLB is
assigned, the system source statement
library cannot be changed.

5. Private libraries cannot be
reallocated.

6. The COpy function is not effective for
private libraries except when they are (
being created.

)

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

An unlimited number of private libraries
is possible. However, each must be
distinguished by a unique fi.le
identification in the DLBL statement for
the library. No more than one private
relocatable library and one private source
statement library may be assigned in a
given job.

The creation and maintenance of private
libraries is discussed in the publication
DOS System Control and service.

SOURCE LANGUAGE CONSIDERATIONS

To use the private source statement
library for COPY, BASIS, INSERT, and DELETE
(see "Extended Source Program Library
Facility" for further details), the ASSGN,
DLBL, and EXTENT control statements that
define this private library must be present
in the job deck for compilation. When
present, a search for the book is made in
the private library. If it is not there,
the system library is searched. If the
statements for the private library are not
present, the system library is searched. A
programmer may create several private
libraries, but only one private library can
be used in a given job.

EXTEC1DBD SOURCE PROGRAM LIBRARY FACILITY

A complete program may be included as an
entry in the source statement library by
using the catalog function. This program
can then be retrieved by a BASIS card and
compiled in a subsequent job.

The following control statements would
be used to catalog the program SAMPLE as a
book in the COBOL sublibrary of the souroe
statement library:

// JOB CATALOG
/ / EXEC Zv".AINT

CATALS C.SAMPLE
BKEND C.SAMPLE

/*
/&

{source program}

BKEND

When compiling a program that has been
cataloged in the COBOL sublibrary of the

source statement library, a BASIS card
brings in an entire source program. The
following control statements could be used
to compile the cataloged program SAMPLE:

// JOB PGM1
// OPTION LOG,DECK,LIST,LISTX,ERRS
// EXEC FCOBOL

CBL LIB

/*
/&

BASIS SAMPLE

INSERT or DELETE cards may follow the
BASIS card -if the user. wishes to-modify the
book SAMPLE before it is processed by the·
compiler. The original ·source program must
have been coded with sequence nq.mbers in
columns 1 through 6 of each source card.

The INSERT statement will add new source
statements after the specified sequence
numbers. The DELETE statement will delete
the statements indicated by the sequence
numbers, or will delete more than one
statement when the first and last sequence
numbers to be deleted are specified,
separated bY'a hyphen. Source program
cards may follow a DELETE card for
insertion before the card following the
last one deleted. The sequence numbers in
columns 1 through 6 are used to update
COBOL source statements at compilation
time, and are in effect for the one run
only.

Assume that a company runs its payroll
program each week as a source program taken
from the source stat~ment library. The
name of the program is PAYROLL. During the
year, an old age insurance tax (FICA) is
deducted at the rate of 4-2/5% each week
for all personnel until earnings exceed
$7800. The coding to accomplish this is
shown in Figure 6.

At the beginning of the ye'ar, the test
for earnings over $7800 is taken out of the
program until .a more appropriate time later
in the year. In addition, at the beginning
of the year, management dictates that all
draftsmen receive a 5% pay increase.
Assume that records for all personnel
contain an occupation code. The code
identifying draftsmen is DR. The
programmer can program these changes as
shown in Figure 7.

The altered program will contain the
coding shown in Figure 8.

Librarian Functions 51

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

r---~---------------------------------------,
1000730 IF ANNUAL-PAY GREATER THAN 7800 GO TO PAY-WRITE. I
1000735 IF ANNUAL-PAY GREATER THAn 7800 - BASE-PAY GO TO LAST-FIC~. I
1000740 FICA-PAYR. COMPUTE FICA-PAY = BASE-PAY * .044 I
1000745 MOVE FICA-PAY TO OUTPUT-FICA. I
1000750 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE. I
1000755 ~DD BASE-PAY TO ANNUAL-PAY. 1
I I
, I
I I
1000850 STOP RUN. I l ___ ---_______________________________ J

Figure 6. Sample Coding to Calculate FICA

.r--~-------------~--,
1// JOB PGM2 . 1
1// OPTION LOG,DECK,LIST,LISTX,ERRS I
1/1 EXEC FCOBOL I
I CBL LIB, QUOTE I
I BASIS PAYROLL I
I DELETE 000730, 000735 I
I IF OCCUPATION-CODE = "DR" PERFORM PAY-INCREASE THRU EX1. t
I INSERT 000850 I
I PAY-INCREASE. MULTIPLY 1.05 BY BASE-PAY. I
I EX1. EXIT. I
1/& I l _________________________________ ~ ___ j

Figure 7. Altering a Program from the Source Statement Library Using INSERT anj DELETE
Cards

r-------------~---~-----------,
I IF OCCUPATION-CODE = "DR" PERFORM PAY-INCREASE THRU EX1.
1000740 FICA-PAYR. COMPUTE FICA-PAY = BASE-PAY * .044
1000745 MOVE FICA-PAY ,TO OUTPU'1'-FICA.
1000750 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE.
1000755 ADD BASE-PAY TO ANNUAL-PAY.
I •
I .
I .
1000850 STOP RUN.
I ~AY-INCREASE. MULTIPLY 1.05 BY BASE-PAY.
I EX1. EXIT. l ___ ----______________________________ J

Figure 8. Effect of INSERT and DELETE Cards

• 52 " ..

(

A programmer using the American National
Standard COBOL compiler under the IBM
System/360 Disk Operating System has
several methods available to him for
testing and debugging his programs for
increased operating efficiency.

The COBOL debugging language can be used
by itself or in conjunction with other
COBOL statements. A dump can also be used
for program checkout.

DEBUG LANGUAGE

The COBOL debugging language is designed
to assist the COBOL programmer in producing
an error-free program in the shortest
possible time. The following sections
discuss the use of the debug language and
other methods of program checkout.

The three debug language statements are
TRACE, EXHIBIT, and ON. Anyone of these
statements can be used as often as
necessary. They can be interspersed
throughout a COBOL source program, or they
can be contained in a packet in the input
stream to the compiler.

Program checkout may not be desired
after testing is completed. A debug packet
can be removed after testing to eliminate
the extra object program coding generated
for the debug statements.

The output produced by the TRACE and
EXHIBIT statements is listed on the system
logical output device (SYSLST).

The following discussions describe
methods of using the debug language.

FLOW OF CONTROL

The READY TRACE statement causes the
compiler-generated card numbers for each
section-name and paragraph-name to be
displayed. These card numbers are listed
on SYSLST at execution time when control
passes to these sections and paragraphs.
Hence, the output of the READY TRACE
statement appears as a list of card
numbers.

To reduce the length of the list and the
time taken to generate it, a trace can be
stopped with a RESET TRACE statement. The
READY TRACE/RESET TRACE combination is
helpful in examining a particular area of
the program where the flow of control is
difficult to determine, e.g., code consists
of a series of PERFORM statements or nested
conditional statements. The READY TRACE
statement can be coded so that the trace
begins before control passes to that area.
The RESET TRACE statement can be coded so
that the trace stops when the program has
passed beyond the area.

Use of the ON statement with the TRACE
statement allows conditional control of the
tracing. When the COBOL compiler
encounters an ON statement, it creates a
counter which is incremented during
execution, whenever control passes through
that ON statement. For example, if an
error occurs when a specific record is
processed, the ON statement can be used to
isolate the problem record. The statement
should be placed where control passes
through it only once for each record that
is read. When the contents of the counter
equal the number of the record (as
specified in the ON statement>, a trace can
be taken on that record. The following
example shows a method in which the 200th
record could be selected for a TRACE
statement.

Col.
1 Area A

RD-REC.

DEBUG RD-REC
PARA-NM-l. ON 200 READY TRACE.

ON 201 RESET TRACE.

If the TRACE statement were used without
the ON statement, every record would be
traced.

An example of a common program error is
failing to break a loop or unintentionally
creating a loop in the program. If many
iterations of the loop are required before
it can be determined that a program error
exists, the ON statement can be used to
initiate a trace after the expected number
of iterations has been completed.

Program Checkout 53

Note: If an error occurs during
compilation of an ON statement, the
diagnostic message may refer to the
previous statement number.

DISPLAYING DATA VALUES DURING EXECUTION

A programmer can display the value of a
data item during program execution by using
the EXHIBIT statement. The EXHIBIT
.statement has three options:

1. EXHIBIT NAMED -- Displays the names
and values of the data-names listed in
the statement.

2. EXHIBIT CHANGED -- Displays the value
of the data-names listed in the
statement only if the value has
changed since the last execution of
the statement.

3. EXHIBIT CHANGED NAMED -- Displays the
names and the values of the data-names
only if the values have changed since
the last execution of the statement.

Data values can be used to check the
accuracy of the program. For example,
using EXHIBIT NAMED, the programmer can
display specified fields from records,
compute the calculations himself, and
compare his calculations with the output
from his program. The coding for a payroll
problem might be:

Col.
1 Area A

DEBUG

54

GROSS-PAY-CALC.
COMPUTE GROSS-PAY =
RATE-PER-HOUR * (HRSWKD
+ 1.5 * OVERTIMEHRS).

NET-PAY-CALC.

NET-PAY-CALC
SAMPLE-1. ON 10 AND

EVERY 10 EXHIBIT NAMED
RATE-PER-HOUR, HRSWKD,
OVERTIMEHRS, GROSS-PAY.

This coding will cause the values of the
four fields to be listed for every tenth
data record before net pay calculations are
made. The output could appear as:

RATE-PER-HOUR = 4.00 HRSWKD = 40.0
OVERTIMEHRS = 0.0 GROSS-PAY = 160.00

RATE-PER-HOUR = 4.10 HRSWKD = 40.0
OVERTIMEHRS = 1.5 GROSS-PAY = 173.23

RATE-PER-HOUR = 3.35 HRSWKD = 40.0
OVERTIMEHRS = 0.0 GROSS-PAY = 134.00

Note: Decimal points are included in this
example for clarity, but actual printouts
depend on the data description in the
program.

The preceding was an example of checking
at regular intervals (every tenth record).
A check of any unusual conditions can be
made by using various combinations of COBOL
statements in the debug packet. For
example:

IF OVERTIMEHRS GREATER THAN 2.0
EXHIBIT NAMED PAYRCDHRS •••

In connection with the previous example,
this statement could cause the entire pay
record to be displayed whenever an unusual
condition (overtime exceeding two hours) is
encountered.

The EXHIBIT statement with the CHANGED
option also can be used to monitor
conditions that do not occur at regular
intervals. The values of data-names are
listed only if the value has changed since
the last execution of the statement. For
example, suppose the program calculates
postage rates to various cities. The flow
of the program might be:

r-----------,
IREAD INPUT 1
1 DATA FOR 1<----- B
1 CITY 1
L-----T-----J

1
1
V

r-----------,
1 CALCULATE 1
1 RATE FOR 1
1 CITY 1
L-----T-----J

I
I
V

r-----------,
1 EXHIBIT 1
1 CHANGED I
L-----T-----J

I
I
V

~~~--->B 
~ 

I 
I 
I 
V 

The EXHIBIT statement with the CHANGED 
option in the program might be: 

EXHIBIT CHANGED STATE CITY RATE 

The output from the EXHIBIT statement 
with the CHANGED option could appear as: 

01 01 10 
02 15 
03 
04 10 

02 01 
02 20 
03 15 
04 

03 01 10 

The first column contains the code for a 
state, the second column contains the code 
for a city, and the third column contains 
the code for the postage rate. The value 
of a data-name is listed only if it has 
changed since the previous execution. For 
example, since the postage rate to city 02 
and city 03 in state 01 are the same, the 
rate is not printed for city 03. 

The EXHIBIT statement with the CHANGED 
NAMED option lists the data-name if the 
value has changed. For example, the 
program might calculate the' cost of various 
methods of shipping to different cities. 
After the calculations are made, the 
following statement could appear in the 
program: 

EXHIBIT CHANGED NAMED STATE CITY RAIL 
BUS TRUCK AIR 

The output from this statement could appear 
as shown in Figure 9. Note that a 
data-name and its value are listed only if 
the value has changed since the previous 
execution. 

r---------------------------------------------------------------------------------------, 
STATE = 01 CITY = 01 RAIL = 10 BUS = 14 TRUCK = 12 AIR = 20 

CITY = 02 

CITY 03 BUS = 06 AIR = 15 

CITY = 04 RAIL = 30 BUS = 25 TRUCK 28 AIR 34 

STATE = 02 CITY 01 TRUCK = 25 

CITY 02 TRUCK 20 AIR = 30 

_______________________________________________________________________________________ J 

Figure 9. Sample Output of EXHIBIT Statement with the CHANGED NAMED Option 

Program Checkout 55 



TESTING A PROGRAM SELECTIVELY 

A debug packet allows the programmer to 
select a portion of the program for 
testing. The packet can include test data 
and can specify operations the programmer 
wants to be performed. When the testing is 
completed, the packet can be removed. The 
flow of control can be selectively altered 
by the inclusion of debug packets, as 
illustrated in the following example of 
selective testing of B: 

r---------, 
I I 
I START I 
I I 
L----T----J 

I L ________________ , 

r---------, 
I I 
I A I 
I I L _________ J 

I 
V 

r---------, 
I DEBUG I 
I PACKET I 
I FOR A I 
L----T----J 

I 
r----------------J 
I 
V 

r---------, 
I I 
I B I 
I I 
L----T----J 

I L ________________ , 

r---------, 
I I 
I C I 
I I L _________ J 

I 
V 

r---------, 
I DEBUG I 
I PACKET I 
I FOR C I 
L----T----J 

I 
I 

r----------------J 
I 
V 

r---------, 
I I 
I STOP I 
I RUN I 
L _________ J 

In this program, A creates data, B 
processes it, and C prints it. The debug 
packet for A simulates test data. It is 
first in the program to be executed. In 
the packet, the last statement is GO TO B, 
which permits A to be bypassed. After B is 
executed with the test data, control passes 
to the debug packet for C, which contains a 
GO TO statement that transfers control to 
the end of the program, bypassing C. 

56 

If a program runs correctly, anj changes 
or additions might improve its efficiency, 
a debug packet can be used to test changes 
without modifying the original source 
program •. 

If the changes to be incorporated are in 
the middle of a paragraph, the entire 
paragraph with the changes included must be 
written in the debug packet. The last 
statement in the packet should be a GO ro 
statement that transfers control to the 
Rext procedure to be executed. 

There are usually several ways to 
perform an operation. Alternative methods 
can be tested by putting them in debug 
packets. 

The source program library facility can 
be used for program checkout by placing a 
source program in a library (see the 
chapter "Librarian Functions"). Changes or 
additions to the program can be tested by 
using the BASIS card and any number of 
INSERT and DELETE cards. Such changes or 
additions remain in effect only for the 
duration ef the run. 

A debug packet can also be used in 
conjunction with the BASIS card to debug a 
program or to test deletions or adjitions 
to it. The debug packet is inserted in the 
input stream immediately following the 
BASIS card and any INSERT or DELETE cards. 

If a serious error occurs during 
execution of the problem program, the job 
is abnormally terminated; any remaining 
steps are bypassed; and a program phase 
dump is generated. The programmer can use 
the dump for program checkout. (However, 
any pending transfers to an external device 
may not be completed. For example, if a 
READY TRACE statement is in effect when the 
job is abnormally terminated, the last card 
number may not appear on the external 
device.) In cases where a serious error 
occurs in other than the problem program 
(e.g., 'supervisor), a dump is not produced. 
Note that program phase dumps can be 
suppressed if the NODUMP option of the 
OPTION control statement has been specified 
for the job, or if NODU~~ was specified at 
system generation time and is not 
overridden by the DUMP option for the 
current job. 



HOW TO USE A DUMP 

When a job is abnormally terminated due 
to a serious error in the problem program, 
a message is written on SYSLST which 
indicates the: 

1. 

2. 

3. 

4. 

Type of interrupt (e.g., program 
check) 

Hexadecimal address of the instruction 
that caused the interrupt 

Condition code 

Reason for the interrupt (e.g., data 
exception) 

The instruction address can be compared 
to the Procedure Division map. The 
contents of LISTX provide a relative 
address for each statement. The load 
address of the module (which can be 
obtained from the map of main storage 
generated by the Linkage Editor) must be 
subtracted from the instruction address to 
obtain the relative instruction address as 
shown in the Procedure Division map. If 
the interrupt occurred within the COBOL 
program, the programmer can use the error 
address and LISTX to locate the specific 
statement in the program which caused a 
dump to be taken. Examination of the 
statement and the fields associated with it 
may produce information as to the specific 
nature of the error. 

Figure 10 is a sample dump which was 
caused by a data exception. Invalid data 
<i.e., data which did not correspond to its 
usage) was placed in the numeric field B as 
a result of redefinition. The following 
discussion illustrates the method of 
finding the specific statement in the 
program which caused the dump. Letters 
identifying the text correspond to letters 
in the program listing. 

The program interrupt occurred at HEX 
LOCATION 0039BC. This is indicated in 
the SYSLST message printed just before 
the dump. 

The linkage editor map indicates that 
the program was loaded into address 
0032AO. This is determined by 
examining the load point of the 
control section TESTRUN. TEsrRUN is 
the name assigned to the program 
module by the source coding: 

PROGRAM-ID. TESTRUN. 

The specific instruction which caused 
the dump is located by subtracting the 
load address from the interrupt 
address (i.e., subtracting 32AO from 
39BC). The result, 7lC, is the 
relative interrupt address and can be 
found in the object code listing. In 
this case the instruction in question 
is an AP (add decimal). 

The left-hand column of the object 
code listing gives the compiler­
generated card number associated with 
the instruction. It is card 69. As 
seen in the source listing, card 69 
contains the COMPUTE statement. 

Additional details about reading a dump 
are found in the chapter "Interpreting 
Output." 

ERRORS THAT CAN CAUSE A DUl-1P 

A dump can be caused by one of many 
errors. Several of these errors may occur 
at the COBOL language level while others 
can occur at the job control level. 

The following are examples of COBOL 
language errors that can cause a dump: 

1. A GO TO statement with no 
procedure-name following it may have 
been improperly initialized with an 
ALTER statement. The execution of 
this statement will cause an invalid 
branch to be taken and results will be 
unpredictable. 

2. Moves of or arithmetic calculations 
using numeric fields that have not 
been properly initialized. 

3. 

4. 

For example, neglecting to initialize 
the object of an OCCURS clause with 
the DEPENDING ON option, or 
referencing data fields prior to the 
first READ statement may cause a 
program interrupt and a dump. 

Invalid data placed in a numeric field 
as a result of redefinition. 

Input/output errors that are 
nonrecoverable. 

Program Checkout 57 



5. Items with subscripts whose values 
exceed the defined maximum value can 
destroy machine instructions when 
moved. 

6. Attempting to execute an invalid 
operation code through a system or 
program error. 

7. Generating an invalid address for an 
area that has address protection. 

8. Subprogram linkage declarations that 
are not defined exactly as they are 
stated in the calling program. 

9. Data or instructions can be modified 
by entering a subprogram and 
manipulating data incorrectly. A 
COBOL subprogram can acquire invalid 
information from the main program, 
e.g., a CALL statement using a 
procedure-name and an ENTRY statement 
using a data-name. 

10. An input'file contains invalid data 
such as a blank numeric field or data 
incorrectly specified by its data 
description. 

The compiler does not generate a test 
to check the sign position for a valid 
configuration before the item is used 
as an operand. The programmer can 
test for valid data by means of the 
numeric class test and, by using the 
TRANSFORM statement, convert it to 
valid data under certain conditions. 

For example, if the units position of 
a numeric data item described as USAGE 
IS DISPLAY contained a blank, the 
blank could be transformed to a zero, 
thus forcing a valid sign. 

LOCATING A DTF 

One or more DTF's are generated by the 
compiler for each file opened in the COBOL 
program. All information about that file 
is found within the DTF or in the fields 
preceding the DTF. See the chapter 
"Advanced Processing Capabilities" for the 
type of information available and its 
location. 

A particular DTF may be located in an 
execution-time dump as follows: 

1. 

58 

Determine the order of the DTF address 
cells in the TGT from the DTF numbers 
shown for each file-name in the 
glossary. 

Note: Since the order is the same as 
the FD's in the Data Division, the 
order can be determined from the 
source program if the SYM option was 
not used (i.e., no glossary was 
printed) • 

2. Find the relative starting address of 
the block of DTF cells from the TGT 
listing in the Memory Map. 

3. Calculate the absolute starting 
address of the block by adding the 
hexadecimal relocation factor for the 
beginning of the object module as 
given in the linkage editor MAP. 

4. Allowing one fullword per DTF cell, 
count off the cells from the starting 
address found in step 3, using the 
order determined in step 1 to locate 
the desired DTF cell. 

5. If more than one DTF is generated for 
a file, the above procedure should be 
followed using the PGT and the SUBDTF 
cells rather than the TGT and the 
DTFADR cells. The order of multiple 
DTF's in core is dependent on the OPEN 
option as follows: 

a. INPUT 

b. OUTPUT 

c. I-a or INPUT REVERSED 

The following discussion illustrates the 
method of finding the DTF's in the sample 
program in Figure 10. Letters identifying 
the text refer to letters in the program 
listing. 

® 

The DTF for FILE-1 precedes the DTF 
for FILE-2. 

DTFADR CELLS begin at relative 
location 5BO. 

Since the relocation factor is 32AO, 
the DTFADR CELLS begin at location 
3850 in the dump. 

The DTF for FILE-1 begins at location 
33F8, and the DTF for FILE-2 begins at 
location 3470. 



) 

LOCATING DATA 

The location assigned to a given 
data-name may similarly be found by using 
the BL number and displacement given for 
that entry in the glossary, and then 
locating the appropriate one fullword BL 
cell in the TGT. The hexadecimal sum of 
the glossary displacement and the contents 
of the cell should give the relative 
address of the desired area. This can then 
be converted to an absolute address as 
described above. 

Since the problem program in Figure 10 
interrupted because of a data exception, 
the programmer should locate' the contents 
of field B at the time of the interrupt. 
This can be done as follows: 

Locate data-name B in the glossary. 
It appears under the column headed 
SOURCE-NAME. Source-name B has been 
assigned to base locator 3 (i.e., 
BL =3) with a displacement of 050. 
The sum of the value of base locator 3 
and the displacement value 50 is the 
address of data-name B. 

The Register Assignment table lists 
the registers assigned to each base 
locator. Register 6 has been assigned 
to BL =3. 

The contents of the 16 general 
registers at the time of the interrupt 
are displayed at the beginning of the 

dump. Register 6 contains the address 
00003388. 

The location of data-name B can now be 
determined by adding the contents of 
register 6 and the displacement value 
50. The result, 33D8, is the address 
of the leftmost byte of the 4-byte 
field B. 

Note: Field B contains F1F2F3C4. 
This is external decimal 
representation and does not correspond 
to the USAGE COMPUTATIONAL-3 defined 
in the source listing. 

The location assigned to a given 
data-name may also be found by using 
the BL CELLS pOinter in the TGT Memory 
Map. Figure 10 indicates that the BL 
cells begin at location 3844 (add 5A4 
to the load point address, 32AO, of 
the object module). The first four 
bytes are the first BL cell, the 
second four bytes are the second BL 
cell, etc. Note that the third BL 
cell contains the value 3388. This is 
the same value as that contained in 
register 6. 

~£te: Some program errors may destroy 
the contents of the general registers 
or the BL cells. In such cases, 
alternate methods of locating the 
DTF's are useful. 

Program Checkout 59 



1/ JOB DTACHK 
II OPTION NODECK,LINK,LIST,LISTX,SVM,ERRS 
II EXEC FCOBOL 

CBL QUOTE,SEQ 
00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
0.0037 

000010 
000020 
000030 
000040 
000050 
000060 
000070 
OOOOBO 
000090 
000100 
000110 
000120 
000130 
000140 
000150 
000160 
000170 
000180 
000190 
000200 
000210 
000220 
000230 
000240 
000250 
000255 
000260 
000270 
000280 
000290 
000300 
000310 
000320 
000330 
000340 
000350 
000360 

IDENTIFICATION DIVISION. 
PROGRAM-ID. TESTRUN. 

AUTHOR. PROGRAMMER NAME. 
INSTALLATION. NEW YORK PROGRAMMING CENTER. 
DATE-WRITTEN. FEBRUARY 4, 1971 

DATE-COMPILED. 04/24/71 
REMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A 

COBOL USERS. IT CREATES AN OUTPUT FILE AND 
INPUT. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-H50. 
OBJECT-COMPUTER. IBM-360-H50. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT FILE-1 ASSIGN TO SYS008-UT-2400-S. 
SELECT FILE-2 ASSIGN TO SYS008-UT-2400-S. 

DATA DIVISION. 
FILE SECTION. 
FD FILE-l 

LABEL RECORDS ARE OMITTED 
BLOCK CONTAINS 5 RECORDS 
RECORDING MODE IS F 
RECORD CONTAINS 20 CHARACTERS 
DATA RECORD IS RECORD-1. 

01 RECORD-l. 
05 FIELD-A PIC X(20). 

FD FILE-2 
LABEL RECORDS ARE OMITTED 
BLOCK CONTAINS 5 RECORDS 
RECORD CONTAINS 20 CHARACTERS 
RECORDING MODE IS F 
DATA RECORD IS RECORD-2. 

01 RECORD-2. 
05 FIELD-A PIC X(20). 

05.00.19 

SAMPLE PROGRAM FOR 
READS IT BACK AS 

CD 

Figure 10. Sample Dump Resulting from Abnormal Termination (Part 1 of 6) 

60 

( 



00038 
00039 
00040 
00041 
00042 
00043 
00044 
00045 
00046 
00047 
00048 
00049 
00050 
00051 
00052 
00053 
00054 
00055 
00056 
00057 
00058 
00059 
00060 
00061 
00062 
00063 
00064 
00065 
00066 
00067 
00068 
00069 
00070 
00071 
00072 
00073 
00074 
00075 
00076 
00077 
00078 
00079 
00080 
00081 
00082 
00083 
00084 

000370 
000380 
000390 
000400 
000410 
000420 
000430 
000440 
000450 
000460 
000470 
000480 
000490 
000500 
000510 
000520 
000530 
000534 
000535 
000536 
000540 
000550 
000560 
000570 
000580 
000590 
000600 
000610 
000620 
000630 
000640 
000645 
000650 
000660 
000670 
000680 
000690 
000700 
000710 
000720 
000730 
000740 
000750 
000760 
000770 
000780 
000790 

Figure 10. 

WORKING-STORAGE SECTIUN. 
01 FILLER. 

02 COUNT PIC S99 COMP SYNC. 
02 ALPHABET PIC X(26) VALUE IS "ABCDEFGHIJKLMNOPQRSTUVWXYZ". 
02 ALPHA REDEFINES ALPHABET PIC X OCCURS 26 TIMES. 
02 NUMBR PIC S99 CaMP SYNC. 
02 DEPENDENTS PIC X(26) VALUE "01234012340123401234012340". 
02 DEPEND REDEFINES DEPENDENTS PIC X OCCURS 26 TIMES. 

01 WORK-RECORD. . 
05 NAME-FIELD PIC X. 
05 FILLER PIC X. 
05 RECORD-NO PIC 9999. 
05 FILLER PIC X VALUE IS SPACE. 
05 LOCATION PIC AAA VALUE IS "NYC". 
05 FILLER PIC X VALUE IS SPACE. 
05 NO-OF-DEPENDENTS PIC XX. 
05 FILLER PIC X(7) VALUE IS SPACES, 

01 RECORDA. 
02 A PICTU~E S9(4) VALUE 1234. 
02 b REDEFINES A PICTURE S9(7) COMPUTATIONAL-3. 

PROCEOURE DIVISION. 
BEGIN. READY TRACE. 

NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED 
AND INITIALIZES COUNTERS. 

STEP-l. OPEN OUTPUT FILE-l. MOVE ZERO TO COUNT, NUMBR. 
NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE 
CONTAINED IN THE FILE, WRITES THEM ON TAPE, AND DISPLAYS 
THEM ON THE CONSOLE. 

STEP-2. ADD 1 TO COUNT, NUMBR. MOVE ALPHA (COUNT) TO 
NAME-FIELD. 10' 

COMPUTE B = B + 1. ~ 
MOVE DEPEND (COUNT) TO NO-OF-DEPENDENTS. 
MOVE NUMBR TO RECO~D-NO. 

STEP-3. DISPLAY WORK-RECORD UPON CONSOLE. WR{TE RECORD-l FROM 
WORK-RECORD. 

STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL COUNT IS EQUAL TO 26. 
NOTE THAT THE FOLLOWING CLOSES THE OUTPUT FILE AND REOPENS 
IT AS INPUT. 

STEP-5. CLOSE FILE~l. OPEN INPUT FILE-2. 
NOTE THAT THE FOLLOWI~G READS BACK THE FILE AND SINGLES 
OUT EMPLOYEES WITH NO DEPENDENTS. 

STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-8. 
STEP-7. IF NO-OF-DEPENDENTS IS EQUAL TO "0" MOVE HZ" TO 

NO-OF-DEPENDENTS. EXHIBIT NAMED WO~K-RECORD. GO TO STEP-6. 
STEP-8. CLOSE FILE-2. 

STOP RUN. 

Sample Dump Resulting from Abnormal Termination (Part 2 of 6) 

Program Checkout 61 



INTRNL NAME LVL SOURCE NAME 

DNM=1-148 FD FlLE-l 
DNM=1-178 01 RECORD-l 
DNM=1-199 02 
DNM=1-2l6 FD 
DNM=1-246 01 
DNM=1-267 02 
DNM=1-2B7 01 
DNM=1-306 02 
DNM=1-32l 02 
DNM=1-339 02 
DNM=1-357 02 
DNM=1-372 02 
DNM=1-392 02 
DNM=1-40B 01 
DNM=1-432 02 
DNM=1-452 02 
DNM= 1-471 02 
DNM=1-490 02 
DNM=2-000 02 
DNM=2-01B 02 
DNM=2-037 02 
DNM=2-063 02 
DNM=2-0B2 01 
DNM=2-l02 02 
DNM=2-113 02 

TGT 

SAVE AREA 
SWITCH 
TALLY 
SORT SAVE 
ENTRY-SAVE 

FIELD-A 
FILE-2 
RECORD-2 
FIELD-A 
FILL ER 
COUNT 
ALPHABET 
ALPHA 
NUMBR 
DEPENDENTS 
DEPEND 
WORK-RECORD 
NAME-FIELD 
FILLER 
RECORD-NO 
FILLER 
LOCATION 
FILLER 
NO-OF-DEPENDENTS 
FILLER 
RECORDA 
A 

-0 B 

MEMORY MAP 

SORT CORE SIZE 
NSTD-REELS 
SORT RET 
WORKING CELLS 
SORT FILE SIZE 
SORT MODE SIZE 
PGT-VN TBL 
TGT-VN TBL 
SORTAB ADDRESS 
LENGTH OF VN TBL 
LNGTH OF SORTAB 
PGM tD 
A(INtTlI 
UPSI SWITCHES 
OVERFLOW C~ELLS 
BL CELLS N 
DTFADR CELLS 
TEMP STORAGE 
TEMP STORAGE-2 
TEMP STORAGE-3 
TEMP STOQ.AGE-4 
BLL CELL S 
VLC CELLS 
SBL CELLS 
INDEX CELLS 
SUBADR CELLS 
ONCTL CELL S 
PFMCTL CELLS 
PFMSAV CELLS 
VN CELLS 
SAVE ~REA =2 
XSASW CELLS 
XSA CELLS 
PARA."1 CELLS 
RPTS AV AREA 
CHECKPT CTR 
IOPTR CELLS 

003 EB 

003EB 
00430 
00434 
0043B 
0043C 
00440 
00444 
00446 
0044B 
0057B 
0057C 
005BO 
005B4 
005B8 
005BC 
005BE 
00590 
0059B 
0059C 
005A4 
005A4 
005BO - tf\ 
005BB~ 
005CO 
005CO 
005CO 
005CO 
005C4 
005C4 
005C4 
005C4 
005CC 
005CC 
005CC 
00500 
00504 
00504 
005D4 
00504 
005D8 
00508 
00508 

BASE 

DTF=Ol 
BL=l 
BL=l 

DTF=02 
BL=2 
BL=2 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 

DISPL INTRNL NAME 

ONM=1-148 
000 ONM=1-178 
000 ONM=1-199 

ONM=1-2l6 
000 DNM=1-246 
000 ONM=1-267 
000 ONM=1-2B7 
000 ONM=1-306 
002 ONM=1-32l 
002 DNM=1-339 
OlC DNM=1-357 
OLE ONM=1-372 
OLE DNM=1-392 
038 DNM=l-408 
038 DNM=1-432 
039 ONM=1-452 
03A DNM=1-471 
03E DNM=l-490 
03F ONM=2-000 
042 ONM=2-0l8 
043 DNM=2-037 
045 DNM=2-063 
050 DNM=2-082 
050 DNM= 2-102 
050 DNM=2-113 

DEFINITION USAGE 

OTFMT 
OS OCL20 GROUP 
OS 20C OISP 

DTFMT 
OS OCL20 GROUP 
OS 20C DISP 
OS OCL56 GROUP 
OS lH COMP 
OS 26C DISP 
OS lC DISP 
OS lH COMP 
DS 26C DISP 
OS lC DISP 
DS OCL20 GROUP 
OS lC DISP 
OS lC DISP 
OS 4C OISP-NM 
OS lC DISP 
OS 3C DISP 
OS lC DISP 
OS 2C DISP 
OS 7C DISP 
OS OCL4 GROUP 
OS 4C DISP-NM 
OS 4P COMP..,3 

Figure 10. Sample Dump Resulting from Abnormal Termination (Part 3 of 6) 

62 

R 0 Q M 

F 

F 

R 0 

R 0 

R 



REGISTER ASSIGNMENT 

REG 6 
REG 1 
REG 8 

61 

69 
10 

BL =3 -@ 
BL =1 
BL =2 

0006FC 
000100 
000104 
000108 
00010A 
00010E 
000712 
000116 
00011 C 
000122 
000126 
00012A 
00012E 
000130 
000134 
000138 
OOOBC 
000142 

II EXEC LNKEDT 

PHASE XFR.-AD 

PHASE*** 0032AO 

II ASSGN SYS008,X'182' 
II EXEC 

41 40 
48 20 
4C 20 
1A 42 
5B 40 
50 40 
58 EO 
02 00 
FA 30 
41 40 
48 20 
4C 20 
1A 42 
5B 40 
50 40 
58 EO 
02 00 
92 40 

LOCOR.E 

0032AO 

6 002 LA 
6 000 LH 
C 03A MH 

AR 
C 038 S 
0 10C ST 
0 10e L 
6 038 E 000 ®-- MVC 
6 050 C 03C C AP 
6 OlE LA 
6 000 LH 
C 03A MH 

AR 
C 038 S 
0 lEO ST 
0 lEO L 
6 043 E 000 MVC 
6 044 MVI 

HICOR.E DSK-AO ESD TYPE 

004ADB 53 01 2 CSECT 

CSECT 
* ENTRY 
* ENTRY 
* ENTRY 

CSECT 
ENTRY 

CSECT 

CSECT 

* ENTRY 

* ENTRY 
* ENTRY 

CSECT 

CSECT 
ENTRY 

* ENTRY 

4,00210,61 ONM=1-339 
2,00010,61 ONM=1-306 
2,03AIO,121 LIT+2 
4,2 
4,03810,121 LIT+O 
4,10CIO,131 SBS=1 
14,10CIO,131 SBS=l 
03811,61,0001141 ONM=1-432 ONM=1-339 
05014,61,03Cl1,121 ONM=2-113 LIT+4 
4,01EIO,61 ONM=1-392 
2,00010,61 ONM=l-306 
2,03AIO,121 LIT+2 
4,2 
4,03810,121 LIT+O 
4,lEOIO,l31 SBS=2 
14,lEOIO,131 SBS:;2 
04311,61,0001141 DNM=2-31 DNM=1-392 
044161, X' 40' ONM:;2-31+1 

LABEL LOADED REL-FR 

TESTRUN 0032AO 0032AO --® 
IJFFBZZN 003C50 003C50 
IJFFZZZN 003C50 
IJFFBZZZ 003C50 
IJFFZZZZ 003C50 

ILBDSAEO 0049FO 0049FO 
ILBDSAEl 004A06 

ILBDMNSO 0049E8 0049E8 

ILBODSPO 0041B8 0041B8 
ILBDDSPl 004108 
ILBOOSP2 0041AO 
ILBDDSP3 004958 

ILBOIMLO 004990 004990 

IJJCPDl 003FCO 003FCO 
IJJCPD1N 003FCO 
IJJCPD3 003FCO 

Figure 10. Sample Dump Resulting from Abnormal Termination (Part 4 of 6) 

Program Checkout 63 



05031 PROGRAM CHECK INTERRUPTION - HEX LOCATION 0039BC - CONDITION CODE 0 - DATA EXCEPTION ~ 
05001 JOB OTACHK CANCELED 

OTACHK CD 
GR 0-7 00003850 00003960 00000001 00000001 0000338A 50003C12 00003388 00003550 
GR 8-F 000035B8 00003BE2 000032AO 000032AO 00003880 00003688 0000338A 000041B8 
FP REG 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
COMREG BG AOOR IS 000208 

000000 00000000 00000000 00000000 00000000 00000000 00000208 FF050000 00000000 
000020 FF050007 40002E06 FF150007 COO039C2 5B5BC2C5 0601F440 FF05000E 80002EOO 
000040 00002F28 08000000 00002F18 00000000 FCBF1CB3 015005E8 00040000 OFOO14BA 
000060 00040000 00000336 00040000 0000147A 00000000 OOOOOBBC 00040000 00000204 
000080 00000000 00000000 00000000 00000003 00050003 06B006BO 06B041BB 00734570 
OOOOAO 0146940F B47B41AO C0544570 OB8418A8 41900156 4180B2CE 47FOOOOA 06B006BO 
OOOOCO 06B006BO 06B006BO 06B041BB 001741BB 00504570 01464180 01569640 AOO19120 
OOOOEO AOOC4710 00EA9260 AOO195E2 A0024780 00C695C1 A0024780 00C69561 A0024780 
000100 010E9104 AOO04780 010E9203 008F9281 AOO04BAO 0262487A COO049AO 027641AA 
000120 C0440718 94F9703B 07017058 70589283 AOO09680 A0014400 04080788 947FAOOI 
000140 4570B218 07F842BO 00E748BO 02C847FO BC704570 BC700205 BEEEBEF5 OC05BEEE 
000160 C0441 BAA 0006BEEE 000C43Al 000742AO 023741AA C0444400 A0045890 A0044220 
000180 AOO09140 AOO14710 BB640207 OlF09008 68009058 68209060 68409068 68609070 
000 lAO 4BA00262 4IAACOOO 02010016 AOO09898 90108200 01F04400 A0045890 A0049818 
0001CO 90309890 01F08200 00389284 COA40207 01FOBF50 9890BF58 820001FO 9680AOOO . 
0001EO 41100030 47FOB166 96030039 82000038 FF050007 40002E06 00001000 00002000 
000200 00003000 80001048 FOF461F2 F461F7F1 32A03000 00000000 00000000 00000000 
000220 C4E3C1C3 C8024040 0007AFFF 00004AOB 00004AOB 00000010 0007FFFF F875EC01 
000240 A8A07COO 00C62171 21782269 226AOOOO 25102514 25183CFO F4F2F4F7 F1F1F1F4 
000260 00002044 OOOOOOOC 22E21E4E 1EF41F04 1F140020 214C0010 5B5BC206 00130001 
000280 01001FQ8 20000000 00000000 02080000 00000294 00000000 000025AC 00000044 
0002AO 00001F2C 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
0002CO 0000289C 00003228 100020CE 000010C8 00002A9C 923801C9 909001FO 4190086C 
0002EO 48A00236 4AA00262 9180AOOO 47100306 58BOA004 9018B030 48B002C8 41CBBOOO 
000300 410CBOOO 07F99601 AOO048BO 02C841CB BOO0410C BOO095FF AOOF0789 90EOBF6C 
000320 48E001C8 0207BF50 EOO094FO BF510213 BF5801FO 07F99090 01F09220 01C94590 
000340 02E04190 01B69500 00234780 03F49526 002347BO 00BE4860 00221A66 487002CA 
000360 48667000 07F6181F 1B664121 000F4570 BCAC4860 BE5C1B22 43201007 4130001F 
000380 1B234740 03904130 00151B23 47B00392 1A234220 04094320 100747FO 04584720 
0003AO 00CA4230 04094820 02364322 C003IA23 950B1007 47F00454 4 72000C 8 96801002 
0003CO 960C1004 07F91858 41430002 43540000 41455000 1A444A40 BE5495FF 40004770 
0003EO 03CC4284 000007F9 95FF04B1 07891BOO 5000BF74 95FF04B1 4780B238 48600236 
000400 95600237 47800366 0502A005 02814770 04204111 00004910 BE3A47BO 04201B66 
000420 4121000F 4570BCAC 05021009 023947BO 00C61B33 43301007 95011 006 4710039E 
000440 92FF04D9 02000440 AOO04123 000B0500 1007AOOE 47BOOOCA 04031002 COB04182 
000460 20004870 02544338 70004930 BE3847BO 03B88930 00034A30 024891FO 30044780 
000480 B60E0501 0022BB2C 4780B8E4 D501BE4C BE5A4720 04AE4930 BE744770 04AE950F 
0004AO 00234780 04AE9110 30064780 B2384180 00014148 80001A44 4A40BE54 18584A50 
0004CO 02740200 04B14000 50104000 92FF4000 42205000 4260500C 92035018 91F03004 
0004EO 4780B62E 47F004EC 5880BF8C 44000CB8 9560C09C 47700566 020202CO 10095860 
000500 02CC9507 60004770 05660202 02CD6001 587002CC IB444340 30054C40 BE485A40 
000520 02004144 00000503 70014000 47800566 9120100C 47100560 91051002 47700560 
000540 91406004 47800560 94BF6004 91101002 47800558 96401002 96141002 9601100C 
000560 02034000 700195FF 30024770 03C64280 30029198 30060779 43203000 4322C090 
000580 48603000 95003000 47800592 9F006000 07694060 05E29550 30044780 080C9504 
0005AO 50184780 08409101 100C4710 0500940F 06FF91FO 500C4780 05000300 C09C3004 
0005CO 95035018 47000634 9560C09C 4780067C 02020049 1009940F 07030300 0048500C 
0005EO 9COOOOOE 477005F2 4032C084 96803006 07F94730 OBC69106 00454770 OE9C913F 
000600 00454710 060C91AF 00440789 0201003A 05E29550 30044770 06200202 00491009 
000620 58600048 4A60BOOC 50600040 4032COB4 47F0089A 95015018 4720065C 9560C09C 
000640 47700654 45700B84 9120800F 47100094 47F0065C 91203006 47100094 9560C09C 
000660 4710051)0 45700B84 4B800262 4878COOO 91407038 47100500 96F006FF 95003003 

Figure 10. Sample Dump Resulting from Abnormal Termination (Part 5 of 6) 

64 



OTACHK 

0032EO 00005218 00000208 00000000 00000000 00000000 00000000 00000000 00000000 
003300 00000000 --SAME--
003320 00000000 58COFOC6 58EOCOOO 58DOFOCA 9500EOOO 4170FOA2 96100048 92FFEOOO 
003340 47FOFOAC 98CEF03A 90ECOOOC 1850989F FOBA9110 00480719 07FF0700 00003BE2 
003360 000032AO 000032AO 00003880 00003688 000038EC 00003BC8 C306C2C 6 FOFOFOFl 
0033 80 E3C5E2E3 09E40540 0001CIC2 C3C4C5C6 C7C8C901 02030405 06070809 E2E3E4E5 
0033AO E6E7E8E9 0001FOFl F2F3F4FO FIF2F3F4 FOFIF2F3 F4FOFlF2 F3F4FOFl F~F3F4FO ® 0033CO C1000000 00004005 E8C34000 0040404 40 00000000 FIF2F3C4 00004C40 
0033EO 01010014 00000000 00000000 00000000 OEOOOOOO 04000000 00009200 00000108 
003400 00003430 00000000 10003C50 1160E2E8 E2FOFOF8 40400162 0000000 04000000 
003420 00000000 86BCF018 41EOEOOl 58201044 010034E8 20000064 00003550 00003550 
003440 00000014 00003583 00640063 00000000 00000000 000049FO 01010014 00000000 
003460 00000000 00000000 00000000 04000000 0.008200 00000108 000034A8 00000000 
003480 10003C50 1168E2E8 E2FOFOF8 40400272 00000000 20000000 00000000 86BCF018 
0034AO 41EOEOOl 58201044 020035B8 00000064 00003620 00000000 00000014 00000000 
0034CO 00640063 00000000 00004A06 000049FO 00000000 00000000 00000000 00000000 
0034EO 00000000 00000000 00004770 30129261 10004110 100107F3 020467CE 60170201 
003500 67056274 C6C306C2 0603F8FO F8FOF1FO FIF2FIFl F2FOF2F2 F2FIF3FO F4FOF5FO 
003520 F5FIF6FO F6FIF7FO 010000A8 10006670 20006148 400050C8 70004C40 41110004 
003540 41110004 41110004 58110000 58FI0010 45EFOO18 41105342 07FBOOOO 000032BO 
003560 000035A4 000035F8 000030B4 000039BO 00003944 00004096 0000300A 000032BO 
003580 000062B8 00004478 00004C94 00005704 00005A4C 00005B68 0000373E 000035E4 
0035AO 000036A6 060C40FF C4B20E09 02106276 0207601C 0212F363 603B6276 96F06041 
0035CO 4110601C 5840C65C 41200008 05301B24 47403018 95401000 41703012 92611000 
0035EO 41101001 00000000 6276C494 58FOC340 017F9240 68200206 00004218 000042BO 
003600 00004348 000043EO 000062B8 00004478 00004510 000045F8 0500627C 00000000 
003620 000001FF 00003800 00003982 00003968 00003F2C 00003BAA 00003BAA 00003C40 
003640 0000370A 00003BAA 00003E6C 00003060 00004090 000030BE 00003B20 00003BC6 
003660 00003BC6 00000203 02030001 04050104 00000203 00000105 00000404 00000104 
003680 04040202 01030000 00202020 20210000 lC404040 40404000 00200000 00006148 
0036AO 00180014 OFOFOOOO OOOCICOC 00000000 5 8F OCOI0 000036F4 10000006 OCOO0822 
0036CO 00000000 00040000 01E40267 00000003 7000004B 00000000 00000000 000038EC 
003bEO 00000000 00000000 000033F8 00003550 000032AO 000033F8 50003C12 02AAI000 
003700 00100COO 09EEOOOO FFFF0201 6030C49A 4810C4A6 06104CI0 C48C5010 024C4810 
003720 C4A60610 4CI0C48C 50100264 414062AE 5A40024C F8710208 40000205 00000000 
003740 5000'5362 410053F6 5430536A 98675366 18809506 800041EO 568E58FO 52BA078F 
003760 43680000 8C600004 89600002 8870001B 58B6536E 91508000 47705400 91A08000 
003780 47E05400 00003958 00003550 01005366 70003934 000041B8 00003850 00003960 
0037AO 00003550 000032AO 000033F8 50003C12 00003388 00003550 000035B8 00003BE2 
0037CO 000032AO 000032AO 00003880 00003960 000041B8 00003850 00004708 00003550 
OOHEO 00015540 0000395. 5.F10010 45EFOOO~"0747FO 568E0703 532E532E 47F0568E 
003800 49A053E2 58C053E6 078C91FF 53014780 566845BO 55F445BO 00000000 00000000 

N 003820 E000590C 478056AC 91FF53DO 47105686 41B05686 47F055F4 000032AO 91FF5301 
003840 47105598 ~00035501000035B810000338~ ~00033F8 00003470 00000000 0000001C 
003860 00000000 0000338A 42F90000 88F00008 ObQ3A3E 11671116 17670201 60045366 
003880 000049E8 000041B8 00004990 00003950 00003A3E 00003AEO 00003B2C 00003B88 
0038AO 00003A5E 00003A72 00003B26 00003B58 00003A3E 504088AE 00000001 lCOOOOLA 
0038CO .. 5B5BC206 07C50540 5B5BC2C3 0306E2C5 5B5BC2C6 C304E403 FOE90000 COOOOOOO 
0038EO E6060902 6009C5C3 0609C420 58FOC004 051FOOOl 4004F6FO 404040AA 96400048 
003900 58FOC004 051FOOOl 4004F6F3 40404010 4110C040 580001C8 184005FO 5000F008 
003920 4500FOOC 000033F8 OA024100 01C858FO COO805EF 581001C8 96101020 5020DIBC 
003940 587001BC 02016000 C0380201 601CC038 58FOC004 051FOOOl 4004F6F7 404040Fl 
003960 4830C03A 4A306000 4E300100 07050100 0100940F 01064F30 01004030 60004830 
003980 C03A4A30 601C4E30 01000705 01000100 940FOI06 4F300100 4030601C 41406002 
0039AO 48206000 4C20C03A lA425B40 C0385040 010C58EO 010C0200 6038EOOO FA306050 
0039CO C03C4140 601E4820 60004C20 C03AIA42 5B40C038 504001EO 58EOOIEO 02006043 
0039EO E0009240 60444830 601C4E30 0100F331 603AOI06 96F0603D 58FOC004 051FOOOl 
003AOO 4004F7F2 4040404F 58FOC004 051FOO02 00000014 000001C4 0038FFFF 02137000 

Figure 10. Sample Dump Resulting from Abnormal Termination (Part 6 of 6) 

Program Checkout 65 



Diagnostic messages are generated by the 
compiler and listed on SYSLST when errors 
are found in the source program. A 
complete list of compiler diagnostics is 
contained in "Appendix I: Diagnostic 
Messages." 

~ote: Diagnostic messages are suppressed 
when the NOERRS option is in effect. 

WORKING WITH DIAGNOSTIC MESSAGES 

1. Approach the diagnostic messages in 
the order in which they appear on the 
source listing. It is possible to get 
compound diagnostic messages. 
Frequently, an earlier diagnostic 
message indicates the reason for a 
later diagnostic message. For 
example, a missing quotation mark for 
a nonnumeric literal could involve the 
inclusion of some clauses not intended 
for that particular literal. This 
could cause an apparently valid clause 
to be diagnosed as invalid because it 
is not complete, or because it is in 
conflict with something that preceded 
it. 

2. Check for missing or superfluous 
punctuation, or other errors of this 
type. 

3. Frequently, a seemingly meaningless 
message is clarified when the valid 
syntax or format of the clause or 
statement in question is referenced. 

GENERATION OF DIAGNOSTIC MESSAGES 

The compiler scans the statement, 
element by element, to determine whether 
the words are combined in a meaningful 
manner. Based upon the elements that have 
already been scanned, there are only 
certain words or elements that can be 
correctly encountered. 

If the anticipated elements are not 
encountered, a diagnostic message is 
produced. Some errors may not be uncovered 
until information from various sections of 
the program is combined and the 
inconsistency is noted. Errors uncovered 
in this manner can produce a slightly 
different message format than those 
uncovered when the actual source text is 
still available. The message that is made 
unique through that particular error may 

66 

not contain, for example, the actual source 
statement that produced the error. 

Errors that appear to be identical are 
diagnosed in a slightly different manner, 
depending on where they were encountered by 
the compiler and how they fit within the 
context of valid syntax. For example, a 
period missing from the end of the 
Working-Storage section header is diagnosed 
specifically as a period required. There 
is no other information that can appear at 
that point. However, if at the end of a 
data item description entry, an element is 
encountered that is not valid at that 
point, such as the digits 02, it is 
diagnosed as invalid. Any clauses 
associated with the 02 entry which conflict 
with the clauses in the previous entry (the 
one that contained the missing period>, are 
diagnosed. Thus, a missing period produces 
a different type of diagnostic message in 
one situation than in the other. 

If an error occurs during compilation of 
an ON statement, the diagnostic message may 
refer to the previous statement number. 

Note: If an E-Ievel. diagnostic is 
generated, the .LINK option is cancelled, 
and any linkage editor control statements 
in the job stream are invalid. For this 
reason, the following message is issued by 
the Job Control Processor following the 
first linkage editor control statement 
encountered: 

1Sln { ~ } STATEMENT OUT OF SEQUENCE. 

LINKAGE EDITOR OUTPUT 

The Linkage Editor produces diagnostic 
messages, console messages, and a storage 
map. For a complete description of output 
and error messages from the Linkage Editor, 
see the publication DOS System Control and 
Service. output resulting from the link 
editing of a COBOL program is discussed in 
the chapter "Interpreting outpu~" 

EXECUTION-TIME MESSAGES 

When an error condition that is 
recognized by compiler-generated code 
occurs during execution, an error message 
is written on SYSLST and SYSLOG. No 
message is written on SYSLST when an error 
occurs in the foreground and SYSLST is 
assigned to a disk. 



Messages that normally appear on SYSLOG 
are provided with a code indicating whether 
the message originated in a foreground or 
background program. These messages are 
listed in "Appendix I: Diagnostic 
Messages." 

RECORDING PROGRAM STATUS 

When a program is expected to run for an 
extended period of time, provision should 
be made for taking checkpoint information 
periodically during the run. A £geckEQint 
is the recording of the status of a problem 
program and main storage (including 
input/output status and the contents of the 
general registers). Thus, it provides a 
means of restarting the job at an 
intermediate checkpoint position rather 
than at the beginning, if for any reason 
processing is terminated before the normal 
end of the program. For example, a job of 
higher priority may require immediate 
processing, or some malfunction (such as a 
power failure) may occur and cause an 
interruption. checkpoints are taken using 
the COBOL RERUN clause. 

Restart is a means of resuming the 
executIon-of the program from one of the 
checkpoints rather than from the beginning. 
The ability to restart is provided through 
the RSTRT job control statement. 

RERUN CLAUSE 

The presence of the RERUN clause in the 
source program causes the CHKPT macro 
instruction to be issued at the specified 
interval. When the CHKPT macro instruction 
is issued, the following information is 
saved: 

1. Information for the Restart and other 
supervisor or job control routines. 

2. The general registers. 

3. Bytes 8 through 10, and 12 through 45 
of the Communication Region. 

4. The problem program area. 

5. All file protection extents for files 
assigned to mass storage devices if 
the extents are attached to logical 
units contained in the program for 
which checkpoints are taken. 

Since the COBOL RERUN clause provides a 
linkage to the system CHKPT macro 
instruction, any warnings and restrictions 

on the use of this macro instruction also 
apply to the use of the RERUN clause. See 
the publication DOS Supervisor and I/O 
Macro~ for a complete description of the 
CHKPT macro instruction. 

TAKING A CHECKPOINT 

In order to take a checkpoint, the 
programmer must specify the source language 
RERUN clause and must define the file upon 
which checkpoint records are to be written 
(e.g., ASSGN, EXTENT, etc.) Checkpoint 
information must be written on a 2311 or 
2314 mass storage device or on a magnetic 
tape -- either 7- or 9-track. Checkpoint 
records cannot be imbedded in one of the 
problem program's output files, i.e., the 
program must establish a separate file 
exclusively for checkpoint records. 

In designing a program for which 
checkpoints are to be taken, the programmer 
should consider the fact that, upon 
restarting, the program must be able to 
continue as though it had just reached that 
point in the program at which termination 
occurred. Hence, the programmer should 
ensure that: 

1. File handling is such as to permit 
easy reconstruction of the status of 
the system as it existed at the time 
of checkpoint was taken. For example, 
when multifile reels are used, the 
operator should be informed (by 
message) as to which file is in use at 
the time a checkpoint is to be taken. 
He requires this information at 
restart time. 

2. The contents of files are not altered 
between the time of the checkpoint and 
the time of the restart. For 
sequential files, all records written 
on the file at the time the checkpoint 
is taken should be unaltered at 
restart. time. For nonsequential 
files, care must be taken to design 
the-Program so that a restart will not 
duplicate work that has been completed 
between checkpoint time and restart 
time. For example, suppose that 
checkpoint 5 is taken. By adding an 
amount representing the interest due, 
account XYZ is updated on a 
direct-access file that was opened 
with the I-a option. If the program 
is restarted from checkpoint 5 and if 
the interest is recalculated and again 
added to account XYZ, incorrect 
results will be produced. 

If the program is modular in design, 
RERUN statements must be included in all 

Program Checkout 67 



modules that handle files for which 
checkpoints are to be taken. (When an 
entry pOint of a module containing a RERUN 
statement is encountered, a COBOL 
subroutine, ILBDCKPO, is called. ILBDCKPO 
enters the files of the module into the 
list of files to be repositioned.) 
Repositioning to the proper record will not 
occur for any files that were defined in 
modules other than those containing RERUN 
statements. Moreover, a restart from any 
given checkpoint may not reposition other 
tapes on which checkpoints are stored. 
Note, too, that only one disk checkpoint 
file can be used. 

RESTARTING A PROGRAM 

If the programmer requests checkpoints 
in his job by means of the COBOL RERUN 
clause, the following message is given each 
time a checkpoint is taken: 

nnnn 

68 

OCOOl CHKPT nnnn HAS BEEN TAKEN ON 
SYSxxx 

is the 4-character identification of 
the checkpoint record. 

To restart a job from a checkpoint, the 
following steps are required: 

1. Replace the // EXEC statement with a 
// RSTRT statement. The format of the 
RSTRT statement is discussed in the 
chapter "Preparing COBOL Programs For 
Processing." All other job control 
statements applicable to the job step 
should be the same as when the job was 
originally run. If necessary, the 
channel and unit addresses for the // 
ASSGN control statements may be 
changed. 

2. Rewind all tapes used by the program 
being restarted, and mount them on 
devices assigned to the symbolic units 
required by the program. If 
multivolume files are used, mount (on 
the primary unit) the reel oeing used 
at the time that the checkpoint was 
taken, and rewind it. If multifile 
volumes are used, position the reel to 
the start of the file referenced at 
the time the checkpoint is being 
taken. 

3. Reposition any card file so that only 
cards not yet read when the checkpoint 
was taken are in the card reader. 

4. Execute the job. 



The Full American National Standard 
COBOL compiler, COBOL object module, 
Linkage Editor, and other system components 
can produce output in the form of printed 
listings, punched card decks, diagnostic or 
informative messages, and data files 
directed to tape or to mass storage 
devices. This chapter gives the format of 
and describes this output. The same COBOL 
program is used for each example. 
"Appendix A: Sample Program Output" shows 
the output formats in the context of a 
complete listing generated by the sample 
program. 

COMPILER OUTPUT 

The output of the compilation job step 
may include: 

• A printed listing of the job control 
statements 

• A printed listing of the statements 
contained in the source program 

• A glossary of compiler-generated 
information about data 

• Global tables, register assignments, 
and literal pools 

• A printed listing of the object code 

• A condensed listing containing only the 
relative address of the first generated 
instruction for each verb 

• Compiler diagnostic messages 

• A cross-reference listing 

• System messages 

• An object module 

The presence or absence of the 
above-mentioned types of compiler output is 
determined by options specified at system 
generation time. These options can be 
overridden or additional options specified 
at compilation time by using the OPTION 
control statement and the CBL card. 

The level of diagnostic message printed 
depends upon the FLAGW or FLAGE option of 
the CBL card. 

INTERPRETING OUTPUT 

All output to be listed is written on 
the device assigned to SYSLST. If SYSLST 
is assigned to a magnetic tape, COBOL will 
treat the file as an unlabeled tape. Line 
spacing of the source listing is controlled 
by the SPACEn option of the CBL card and by 
SKIP 1/2/3 and EJECT in the COBOL source 
program. The number of lines per page can 
be specified in the SET command. In 
addition, a listing of input/output 
assignments can be printed on SYSLST by 
using the LISTIO control statement. 

Figure 11 contains the compiler output 
listing shown in "Appendix A: Sample 
Program Output." Each type of output is 
numbered, and each format within each type 
is lettered. The text below and that 
following the figure is an explanation of 
the figure. 

The listing of the job control 
statements associated with this job 
st~E. These statements are listed 
because the LOG option was specified 
at system generation time. 

Compiler options. The CBL card, if 
specified, is printed on SYSLST unless 
the LIST option is suppressed. 

The source module listing. The 
statements in the source program are 
listed exactly as submitted except 
that a compiler-generated card number 
is listed to the left of each line. 
This is the number referenced in 
diagnostic messages and in the object 
code listing. It is also the number 
printed on SYSLST as a result of the 
source language TRACE statement. The 
source module is not listed when the 
NOLIST option is specified. 

The following notations may appear on 
the listing: 

C Denotes that the statement was inserted 
with a COpy statement. 

** Denotes that the card is out of 
sequence. NOSEQ should be specified on 
the CBL card if the sequence check is 
to be suppressed. 

I Denotes that the card was inserted with 
an INSERT or BASIS card. 

Interpreting output 69 



II JOB SAMPLE ) CD 
II OPTION NODECK,LINK,LIST,LISTX,SYM,ERqS f( 1 
II EXEC FCOBOL 

CBL QUOTE,SEQ--0 
00001 000010 IDENTIFICATION DIVISION. 
00002 000020 PROGRAM-ID. TESTRUN. 
00003 000030 AUTHOR. PROGRAMMER NAME. 
00004 000040 INSTALLATION. NEW YORK PROGRA~MING CENTER. 
00005 000050 DATE-WRITTEN. FEBRUARY 2,1971 
00006 000060 DATE-COMPILED. 04/24/71 
00007 000070 REMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR 
00008 000080 COBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK AS 
00009 000090 INPUT. 
00010 000100 
00011 000110 ENVIRONMENT DIVISION. 
00012 000120 CONFIGURATION SECTION. 
00013 000130 SOURCE-COMPUTER. IBM-360-H50. 
00014 000140 OBJECT-COMPUTER. IBM-360-H50. 
00015 000150 INPUT-OUTPUT SECTION. 
00016 000160 FILE-CONTROL. 
00017 000170 SELECT FILE-l ASSIGN TO SYSOOS·UT-2400-S. 
0001S 0001S0 SELECT FILE-2 ASSIGN TO SYSOOS-UT-2400-S. 
00019 OQ0190 

00056 
00057 
00058 
00059 
00060 

00073 
00074 
00075 
00076 
00077 
0007S 
00079 
00080 

000550 PROCEDURE DIVISION. 
000560 BEGIN. READY TRACE. 
000570 NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED 
0005S0 AND INITIALIZES COUNTERS. 
000590 STEP-l. OPEN OUTPUT FILE-1. MOVE ZERO TO COUNT, NUMBR. 

000720 
000730 
000740 
000750 
000760 
000770 
0007S0 
000790 

STEP-5. CLOSE FILE-l. OPEN INPUT FILE-2. 
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES 
OUT EMPLOYEES WITH NO DEPENDENTS. 

STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-So 
STEP-7. IF NO-Of-DEPENDENTS IS EQUAL TO "0" MOVE HZ" TO 

NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO STEP-6. 
STEP-So CLOSE FILE-2. 

STOP RUN. 

Figure 11. Examples of Compiler Output (Part 1 of 4) 

70 



) 

Page of GC28-6398-2,-3, Revised 2/15/7-3 by TNL GN28-1023 

ONII-1-1118 
ONII-1-178 
0Itlt-1-199 
ONIt-1-216 
ONII-1-2116 
ONIt-1-267 
DNN-1-287 
ONN-1-306 
ONIt-1-321 
ONII-1-339 
ONlt-1-357 
ONII-1-372 
ONlt-1-392 
ONlt-1-1I08 
ONN-1-432 
DNK-1-1152 
ONII-1-1171 
ONlI-1-Il90 
ONIt-2-000 
ONII-2-018 
ONK-2-037 
ONlI-2-063 

~ SOURC~ME 
FD FILE-1 
01 RECORD-l 
02 FIELD-A 
FD FILE-2 
01 RECORD-2 
02 FIELD-A 
01 FILLER 
02 COUNr 
02 ALPHABEr 
02 ALPHA 
02 NUMBR 
02 DEPENDENTS 
02 DEPEND 
01 ilORK-RBCORO 
02 NAME-FIELD 
02 FILLER 
02 RECORD-NO 
02 FILLER 
02 LOCArION 
02 PILLER 
02 NO-OF-DEPENDENTS 
02 FILLER 

MEMORY MAP 

TGT ® 
SAllE AREA 
SifITCH 
rALLY 
SlRT SAVE 
ENrRY-SAVE 
SlRT CORE SIZE 
NsrD-REELS 
SlRT RET 
ifORItING CELLS 
SORT FILE SIZE 
SORr MODE SIZE 
P3T-VN TBL 
T3r-VN rBL 
SlRTAB ADDRESS 
LENGTH OF VN rBL 
Llt3TH OF S::>RTAB 
PGM ID 
ACINIT1) 
UPS I SWITCHES 
OVERFLOW CELLS 
BL CELLS 
DTPADR CBLLS 
TEMP srORA:;£ 
TBMP STORA3E-2 
rEMP srORA:;E-3 
TBMP STORA:;E-II 
BLL CELLS 
VL:: CELLS 
SBL CELLS 
INDEX CELLS 
SUBADR CELLS 
::>N::TL CELLS 
PPMCTL CELLS 
PFKSAV CELLS 
VN CELLS 
SII.VE AREA =2 
XSASW CELLS 
XSA CBLLS 
PARAK CELLS 
RPTSAV AREA 
CHECKPT crR 
IOPTR CELLS 

LITBRAL POOL (HEX) (!) 

003EO 

003£0 
001128 
001l2C 
001130 
0011311 
001138 
001l3C 
00113£ 
0011110 
00570 
00574 
00578 
0057C 
00580 
00584 
00586 
00588 
00590 
005911 
00S9C 
00S9C 
00SA8 
OOSBO 
00SB8 
00SB8 
00SB8 
00SB8 
OOSBC 
OOSBC 
OOSBC 
OOSBC 
00SC4 
OOSCII 
OOSCII 
00SC8 
OOSCC 
OOSCC 
OOSCC 
OOSCC 
OOSDO 
OOSDO 
OOSDO 

@ 
BASE 

DTP=Ol 
BL-l 
BL-l 

DTF=02 
BL=2 
BL-2 
BL-3 
BL=3 
BL-3 
BLa 3 
BL-3 
BL-3 
BL=3 
BL=3 
BL-3 
BL"3 
BLa 3 
BLa 3 
BLa 3 
BLa 3 
BL=3 
BL"3 

CD 
OISPL 

000 
000 

000 
000 
000 
000 
002 
002 
01C 
OlE 
OlE 
038 
038 
039 
03A 
03E 
03P' 
042 
043 
045 

® 
IMTRNL NAME 

DNII-1-148 
DNM-1-178 
DNM-1-199 
DNN=1-216 
DNM=1-2116 
DNM=1-267 
DNM-1-287 
DNM-1-306 
'DNM-1-321 
DNM-1-339 
D .. nl-1-357 
DNM-1-372 
DNM-1-392 
DNK=1-1I08 
DNM-1-1132 
ON1I1I1-IIS2 
DNM-l-l171 
oNII-l-1190 
DNK-2-000 
DNK:02-018 
DNK-2-037 
DNMc 2-063 

00610 (LIr+O) 
00628 (LIT+~4) 

00000001 001A5B5B C2D6D7CS D5405BSB ::2C3D3D6 E2CS5BSB 
C2C6C3DII EIID3FOE9 COOOOOOO 

DISPLAY LIrERALS (BCD) 

006311 (LrL+36) 'ilORK-RECORD' 

PGT CD 
OIlERPLOil CELLS 
VIRTUAL CELLS 
PROCEDURE NAME CELLS 
GENERATED NAME CELLS 
SDBDTF ADDRESS CELLS 
VNI CELLS 
LITERALS 
DISPLAY LITERALS 

00SD8 

00508 
00508 
005£4 
00SF8 
00608 
00608 
00610 
006311 

Figure 11. Examples of Compiler output (Part 2 of 4) 

® @ CD DEPINlrION US"':;E R o Q M 

OTFIIT F 
DS OCL20 GROUP 
OS 20:: DISP 

DrrU F 
DS OCL20 GROUP 
DS 20C DISP 
DS OCL56 GR::>tJP 
OS 1H COltP 0 LIS 26C oISP 
DS lC DISP R 0 
DS lH COllP 
DS 26C oISP 
DS lC DISP R 0 
DS OCL20 3ROUP 
DS lC oISP 
DS 1C DISP 
DS IIC DISP-NM 
DS lC DISP 
DS 3C DISP 
DS lC DISP 
DS 2C DISP 
DS 7C DISP 

Interpreting Output 71 



Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023 

REGISTER ASSIGN"IENT 

}eD ~EG 6 BL =3 
REG 7 BL "'1 
REG 8 BL =2 

® 0 CD CD CD 
57 000640 START EQU * 000640 58 FO C 004 L 15,004(0,12 ) V(ILBOOSPO) 

000644 05 IF BALR 1,15 
000646 000140 DC X'OOO140' 
000649 04F5F7404040 DC X'04F5F7404040' 

57 000650 96 40 0 048 01 048(13),X'40' SWT+O 
60 000654 58 FO C 004 L 15,004(0,12) V( ILBOOSPO) 

000658 05 IF BALR 1,15 
00065A 000140 DC X'000140' 
000650 04F6F0404040 DC X'04F6F0404040' 

60 000664 41 10 C 03E LA 1,03E(Otl2) LIT+6 
000668 58 00 0 1C8 L 0,lC8(0,13) olF=l 
00066C 1840 LR 4,0 
00066E 05 FO BALR 15,0 
000670 50 00 F 008 ST 0,008(0,15) 
000674 45 00 F OOC BAL 0,00C(0,15) 
000678 00000000 DC X'OOOOOOOO' 
00067C OA 02 SVC 2 
00067E 41 00 0 1C8 LA 0,1C8(0,13) oTF=l 
000682 58 FO C 008 L 15,008(0,12) V(ILBOIMLO) 
000686 05 EF BALR 14,15 
000688 58 10 0 1C8 L 1,1C8(0,13) OTF=l 
00068C 96 10 1 020 01 020(1),X'lO' 
000690 50 20 0 1 BC i ST 2,lBC(0,13) BL =1 
000694 58 70 0 1BC 

CD 
L 7,lBC(0,13) BL =1 

60 000698 02 01 6 000 C 038 MVC 000(2,6),038(12) ONM=1-306 LIT+O 
00069E 02 01'6 01C C 038 MVC 01 C (2,6) ,038 ( 12 ) ON"I=1-357 LIT+O CD 64 0006A4 PN=Ol EQU * 0006A4 58 FO C 004 L 15,004(0,12) V( ILBOOSPO) 
0006A8 05 IF BALR 1,15 
0006AA 000140 DC X'OOO140' 
0006AO 04F6F4404040 DC X'04F6F4404040' 

64 0006B4 48 30 C 03A LH 3,03A(0,12) L IT+2 
0006B8 4A 30 6 000 AH 3,000(0,6) ONM=1-306 
0006BC 4E 30 0 100 CVO 3,100(0,13) TS=Ol 
0006CO 07 05 0 100 o 100 XC 100(6,13),100(13) TS=Ol TS=Ol 
0006C6 94 OF 0 106 NI lo6(13),X'OF' TS=01+6 
0006CA 4F 30 0 100 CVB 3,100(0,13) TS=Ol 
0006CE 40 30 6 000 STH 3,000(0,6) ONM=1-306 
000602 48 30 C 03A LH 3,03A(0,12) LIT+2 
000606 4A 30 6 01C AH 3,01C(0,6) ONM=1-357 
00060A 4E 30 0 100 CVO 3,100(0,13) TS=Ol 
00060E 07 05 0 100 0 100 xc 100(6,13),100(13) TS=Ol TS=Ol 
0006E4 94 OF 0 106 NI 106( 131, X' OF' TS=01'+6 
0006E8 4F 30 0 100 CVB 3tloO( 0,131 TS=Ol 
0006EC 40 30 6 01C 5TH 3,01C(0,61 oNM=1-357 

64 0006FO 41 40 6 002 LA 4,002(0,61 ONM=1-339 
0006F4 48 20 6 000 LH 2,000(0,61 ONM=1-306 
0006F8 4C 20 C 03A MH 2,03A(0,121 LIT+2 
0006FC 1A 42 AR 4,2 
0006FE 5B 40 C 038 5 4,038(0,121 LIT+O 
000702 50 40 0 10C ST 4,10C(0,131 SBS=l 
000706 58 EO 0 10C L 14,10C(0,131 SBS=l 
00070A 02 00 6 038 E 000 MVC 038(1,6),000114) ONM=1-432 oNM=1-339 

Figure 11. Examples of Compiler Output (Part 3 of 4) 

( 



0 

CROSS-REFERENCE DICTIONARY 

DATA NAMES DEFN REFERENCE 

FILE-l 00017 00060 00060 00068 00073 
RECORD-l 00028 00068 00068 
F I L E-2 00018 00073 00073 00076 00076 00079 
REC ORD-2 00036 00076 
COUNT 00040 00060 00064 00064 00064 00066 00070 
ALPHA 00042 00064 00064 
NUMBR 00043 00060 00064 00064 00067 

0 DEP END 00045 00066 00066 
WORK-RECORD 00046 00068 00068 0006B 00076 0007B 
NAME-FIELD 00047 00064 
RECORD-NO 00049 00067 00067 
NO-OF-DEPENDENTS 00053 00066 00066 00077 00077 00077 00077 

® 
PROCEDUR E NAMES DEFN REFERENCE 

STE P-2 00064 00070 
STEP-3 00068 00070 
STEP-6 00076 00078 
STE P-8 00079 00076 

CARD ERROR MESSAG~ ® 
064 ®ILA50llI-~HIGH ORDER TRUNCATION MIGHT OCCUR. 

64 ILA50l1I-W HIGH OQDER TRUNCATION MIGHT OCCUR. 

1,. 

Figure 11. Examples of Compiler Output (Part 4 of 4) 

Interpreting Output 73 



74 

If DATE-COMPILED is specified in 
the Identification Division, any 
sentences in that paragraph are 
replaced in the listing by the date of 
compilation. It is printed in one of 
the following formats depending upon 
the format chosen at system generation 
time. 

DATE-COMPILED. month/day/year or 

DATE-COMPILED. day/month/year 

Glossary. The glossary is listed 
when the SYM option is specified. 
The glossary contains information 
about names in the COBOL source 
program. 

(1) andCi) The internal-name 
generated by the compiler. 
This name is used in the 
compiler object code listing 
to represent the name used in 
the so~rce program. It is 
repeated in column F for 
readability. 

® 

@ 

A normalized level number. 
This level number is 
determined by the compiler as 
follows: the first level 
number of any hierarchy is 
always 01, and increments for 
other levels are always by 
one. Only level numbers 03 
through 49 are affected; 
level numbers 66, 77, and 88, 
and FD, SD, and RD indicators 
are not changed. 

The data-name that is used in 
the source module. 

~Q~g: The following Report Writer 
internally-generated data-names 
can appear under the SOURCE NAME 
column: 

CTL.LVL Used to coordinate 
control break 
activities. 

GRP.IND Used by coding for GROUP 
INDICATE cIa use. 

TER.COD Used by coding for 
TERMINATE clause. 

FRS.GEN Used by coding for 
GENERATE clause. 

-nnnn Generated report record 
associated with the file 
on which the report is 
to be printed. 

RPT.RCD Build area for print 
record. 

CTL.CHR First or second position 
of RPT.RCD. Used for 
carriage control 
character. 

RPT.LIN 

CODE­
CELL 

E.nnnn 

S.nnnn 

N.nnnn 

Beginning of actual 
information which will 
be displayed. Second or 
third position of 
RPT. RCD. 

Used to hold code 
specified. 

Name generated from 
COLUMN clause in 
02-level statement. 

Used for elementary 
level with SUM clause, 
but not with data-name. 

Used to save the total 
number of lines used by 
a report group when 
relative line numbering 
is specified. 

@ and ® For data-names, these columns 
contain information about the 
address in the form of a base and 
displacement. For file-names, the 
colUmn contains information about 
the associated DTF, if any. 

® 

® 

This column defines storage for 
each data item. It is represented 
in assembler-like terminology. 
Table 3 refers to information in 
this column. 

Usage of the data-name. For FD 
entries, the DTF type is 
identified (e.g., DTFDA). For 
group items containing a USAGE 
clause, the usage type is printed 
For group items that do not 
contain a USAGE clause, GROUP is 
printed. For elementary items, 
the information in the USAGE 
clause is printed. 



Table 3. Glossary Definition and Usage 
r----------------------------T-----------------------T----------------------------------, I Type I Definition I Usage I 
~----------------------------+-----------------------+----------------------------------~ 

Group Fixed-Length DS OCLN GROUP 
Alphabetic DS NC DISP 
Alphanumeric DS NC DISP 
Alphanumeric Edited DS NC AN-EDIT 
Numeric Edited DS NC NM-EDIT 
Index-Name DS 1H INDEX-NM 
Group Variable-Length DS VLI=N GROUP 
Sterling Report OS NC RPT-ST 
External Decimal DS NC OISP-NM 
External Floating-Point OS NC DISP-FP 
Internal Floating-Point DS 1F COMP-1 

DS 1D COMP-2 
Binary DS 1H, 1F, OR 2F COMP 
Internal Decimal DS NP COMP-3 
Sterling Non-Report DS NC DISP-ST 
Index-Name BLANK INDEX-NAME 
File (FD) BLANK DTF TYPE 
Condition (88) BLANK BLANK 
Report Definition (RD) BLANK BLANK 
Sort Definition (SD) BLANK BLANK 

~----------------------------~-----~-----------------~----------------------------------~ 
I~: Under the definition column, N = size in bytes, except in group variable-length I 
Iwhere it is a variable cell number. I l __________________________ ~ __________________________ - _______________________________ -_J 

o A letter under column: 

R - Indicates that the data-name 
redefines another data-name. 

o - Indicates that an OCCURS 
clause has been specified for 
that data-name. 

Q - Indicates that the data-name 
is or contains the DEPENDING 
ON object of the OCCURS 
clause. 

M - Indicates the record format. 
The letters which may appear 
under column Mare: 

F - fixed-length records 

U - undefined records 

v - variable-length records 

S ~ spanned records 

Global tables and literal pool: 
Global tables and the literal pool are 
listed when the LISTX option is 
specified, unless SUPMAP is also 
specified and an E-Ievel error is 
encountered. A global table contains 
easily addressable information needed 
by the object program for execution. 
For example, in the Procedure Division 
output coding (3), the address of the 
first instruction under STEP-1 (OPEN 
OUTPUT FILE-1) is found in the 

PROCEDURE NAME CELLS portion of the 
Program Global Table (PGT). 

® 

The Task Global Table (TGT). This 
table is used to record and save 
information needed during the 
execution of the object program. 
This information includes 
switches, addresses, and work 
areas. 

The Literal Pool. This lists all 
literals used in the program, with 
duplications removed. These 
literals include those specified 
by the programmer (e.g., MOVE 
"ABC" TO DATA-NAME) and those 
generated by the compiler (e.g., 
to align decimal points in 
arithmetic computations). The 
literals are divided into two 
groups: those that are referenced 
by instructions (marked "LITERAL 
POOL") and those that are 
parameters to the display object 
time subroutine (marked "DISPLAY 
LITERALS") • 

The Program Global Table (PGT). 
This table contains literals and 
the addresses of procedure-names 
and generated procedure-nam~s 
referenced by Procedure Division 
instructions. 

Register aSSignment: This lists the 
permanent register assigned to each 
base locator in the object program. 

Interpreting output 75 



Page of GC28-6398-2,-3, Revised 2/15113 by TNL GN28-1023 

76 

The rema1n1ng base locators.are given 
temporary register assignments but are 
not listed. Register assignments are 
listed when LISTX is specified. 

Object code listing. The object code 
listing is produced when the LISTX 
option is specified, unless SUPMAP is 
also specified and an E-level error is 
encountered. The a'ctual object code 
~isting contains: 

® 

® 

The compiler-generated' card 
number. This number identifies 
the COBOL statement in the source 
deck which contains the verb that 
generates the object code found in 
column C. For Report writer 
generated routines, each routine 
references the compiler~generated 
card number of its respective RD. 

The relative location, in 
hexadecimal notation, of the 
object code instruction in the 
module. 

The actual object code instruction 
in hexadecimal notation. 

The procedure-name number. A 
number is assigned only to 
procedure-names referred to in 
other Procedure Division 
statements. 

The object code instruction in the 
form that closely resembles 
assembler language. (Displacements 
are in hexadecimal notation.) 

Compiler-generated infor~ation 
about the operands of the 
generated instruction. This 
includes names and relative 
locations of literals. 'Table 4 
refers to information in this 
column. 

Cross-reference Dictionary: The cross 
reference dictionary is produced when 
the XREF option is specified. It 
consists of two parts: 

The XREF dictionary for .data-names 
consists of data-names followed by 
the generated card number of the 
statement which defines each 
data-name, and the generated card 
number of statements where each 
data-name is referenced. Report 
Writer data-names, with the 
exception of data-names in the 
form "-nnn", are defined with the 

generated card number of their' 
respective RD's. 

The XREF dictionary forI 
procedure-names consists of the 
procedure-names followed by the 
gene~ated card number of the 
statement where each 
procedure-name is ~sed as a 
section-name or paragraph-name, 
and the generated card Qumber of 
statements where each 
procedure-name i~ ~eferenced. 

The names appear in the order in which 
they appear in the source program. 
The number of· references appearing in 
the cross-reference dictionary for a 
given name is based upon th~ number of. 
times the name is referenced in the 
code generated by the compiler. 

Table 4. Symbols Used in the Listing and 
Glossary to Define . 
Compiler-Generated Information 

r----------T------------------------------, 
1 Symbol I Meaning 1 
~----------+------------~-----------------~ 

DNM .1 SOURCE DATA NAME 
SAV SAVE AREA CELL 
SWT SWITCH CELL 
TLY TALLY CELL 
WC WORKING CELL 
TS TEMPORARY STORAGE CELL 
VLC VARIABLE LENGTH CELL 
SBL SECONDARY BASE LOCATOR 
BL BASE LOCATOR 
BLL BASE LOCATOR FOR LINKAGE 

ON 
PFM 
PSV 

IVN 
ISBS 
IXSW 
IXSA 
IPRM 
IPN 
IGN 
DTF 
VN 
LIT 
TS2 

RSV 
SDF 
TS3 

TS4 

SECTION 
ON COUNTER 
PERFORM COUNTER 
PERFORM SAVE 
VARIABLE PROCEDURE NAME 
SUBSCRIPT ADDRESS 
EXHIBIT SWITCH 
EXHIBIT SAVE AREA 
PARAMETER 
SOURCE PROCEDURE NAME 
GENERATED PROCEDURE N~ME 
DTF ADDRESS 
VARIABLE N~ME INITIALIZ~TION 
LITERAL 
TEMPORARY STOR~GE 

(NON-ARITHMETIC) 
REPORT SAVE AREA . 
SECONDARY DTF POINTER 
TEMPORARY STORAGE 

(SYNCHRONIZATION) 
TEMPORARY STORAGE 

(SYNCHRONIZATION) 
INX INDEX CELL 
V (BCDNAME) VIRTUAL 
VIR VIRTUAL 1 L __________ ~ ______________________________ J 



) 

Diagnostic messages: The diagnostic 
messages associated with the 
compilation are always listed. The 
format of the diagnostic message is: 

Compiler-generated card number. 
This is the number of a line in 
the source program related to the 
error. 

Interpreting output 76.1: 



( 



® 

® 

Message identification. The 
message identification for the 
Disk Operating system Full 
American National Standard COBOL 
compiler always begins with the 
symbols ILA. 

The severity level. There are 
four severity levels as follows: 

HI) Warning 
This level indicates that an 
error was made in the source 
program. However, it is not 
serious enough to interfere 
with the execution of the 
program. These warning 
messages are listed only if 
the FLAGW option is specified 
in the CBL card or chosen at 
system generation time. 

<C) Conditional 
This level indicates that an 
error was made but the 
compiler usually makes a 
corrective assumption. The 
statement containing the error 
is retained. Execution can be 
attempted. 

tE) Err()r 
This level indicates that a 
serious error was made. 
Usually the compiler makes no 
corrective assumption. The 
statement or operand 
containing the error is 
dropped. Compilation is 
completed, but execution of 
the program should not be 
attempted. 

<D) Disaster 
This error indicates that a 
serious error was made. 
Compilation is not completed. 
Results are unpredictable. 

The message text. The text 
identifies the condition that 
caused the error and indicates the 
action taken by the compiler. 

Since Report Writer generates a 
number of internal data items and 
procedural statements, some error 
messages may reflect internal 
names. In cases where the error 
occurs mainly in these generated 
routines, the error messages may 
indicate the card number of the RD 
entry for the report under 
consideration. In addition, there 
are errors that may indicate the 
number of the card upon which the 
statement containing the error 
ends rather than the card upon 

which the error occurs. Internal 
name formats for Report Writer are 
discussed under "Glossary" 
(heading 4, item C). 

"Appendix I: Diagnostic Messages" 
gives a complete list of compiler 
diagnostic messages. 

OBJECT MODULE 

The object module contains the external 
symbol dictionary, the text of the program, 
and the relocation dictionary. It is 
followed by an END statement that marks the 
end of the module. For additional 
information about the external symbol 
dictionary and the relocation dictionary, 
see the publication DOS System Control and 
Service. 

An object deck is punched if the DECK 
option is specified, unless an E-Ievel 
diagnostic message is generated. The 
object module is written on SYSLNK if the 
LINK option is specified, unless an E-level 
diagnostic message is generated. 

LINKAGE EDITOR OUTPUT 

The output of the link edit step may 
include: 

• A printed listing of the job control 
statements 

• A map of the phase after it has been 
processed by the Linkage Editor 

• Diagnostic messages 

• A listing of the linkage editor control 
statements 

• A phase which may be assigned to the 
core image library 

Any diagnostic messages associated with 
the Linkage Editor are automatically 
generated as output. The other forms of 
output may be requested by the OPTION 
control statement. All output to be listed 
is printed on the device assigned to 
SYSLST. 

Figure 12 is an example of a linkage 
editor output listing. It shows the job 
control statements and the phase map. The 
different types of output are numbered and 
each type to be explained is lettered. The 
text following the figure is an explanation 
of the figure. 

Interpreting Output 77 



II EXEC LNKEDT (!) 

JOB SAMPLE DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT 

ACTION 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 

TAKEN MAP 
AUTOLINK IJFFBZZN 
AUTOLINK ILBDDSPO 
INCLUDE IJJCPD1 
AUTOLINK ILBDIMLO 
AUTOLINK ILBDMNSO 
AUTOLINK ILBDSAEO 
ENTRY 

® ® 
PHASE XFR-AD 

® 
LOCORE 

PHASE*** 0032AO 0032AO 
r--

® CD 
HICORE DSK-AD 

004ACB 53 01 2 

Figure 12. Linkage Editor Output 

78 

~h~_jQQ_£Qg~fQ!_~~~~emgg£~. These 
statements are listed since the LOG 
option is specified. 

Q~~~_!!~~~g~_~£i~Qf_di~ggos~!£_mg~~~gg 
Qf_inE~~. The ACTION statement is not 
required. If the MAP option is 
specified, SYSLST must be assigned. 
If the statement is not used and 
SYSLST is assigned, MAP is assumed and 
a map of main storage and any error 
diagnostic messages are considered 
output on SYSLST. 

CD CD ® CD 
ESD TYPE LABEL LOADED REL-FR 

CSECT TESTRUN 0032AO 0032AO 

CSECT IJFFBZZN 003C40 003C40 
* ENTRY IJFFZZZN 003C40 
* ENTRY IJFFBZZZ 003C40 
* ENTRY IJFFZZZZ 003C40 

CSECT I U3DSAEO 0049EO 0049EO 
ENTRY ILBDSAE1 0049F6 

CSECT ILBDMNSO 004908 004908 CD 
CSECT ILBDDSPO 0041A8 0041A8 
* ENTRY ILBDDSP1 0046F8 
* ENTRY ILBDDSP2 004790 
* ENTRY ILBDDSP3 004948 

CSECT ILBDIMLO 004980 004980 

CSECT IJJCPD1 003FBO 003FBO 
ENTRY IJJCPD1N 003FBO 

* ENTRY IJJCPD3 003FBO 

Map of main storage. A phase map is 
printed when MAP is specified (or 
assumed) during linkage editor 
processing. The following information 
is contained in the map of main 
storage: 

The name of each phase. This is 
the name specified in the phase 
statement. . 

The transfer address of each 
phase. 



Page of GC28-6398-2;-3, Revised 2/15/73 by TNLGN28-1023 

@ 

® 

o 
@ 

® 

o 

The lowest main storage loca~ion 
of each phase. 

The highest main ,storage location 
of each phase. 

The hexadecimal disk address where 
the phase begins in the core image 
library. 

The names of all CSECT's belonging 
to a phase. 

All defined entry points within a 
CSECT. If an entry point is not 
referenced, it is flagged with an 
asterisk (*). 

The address where each CSECT is 
loaded. 

The relocation factor of each 
CSECT. 

comments on the Phase Map 

The severity of linkage editor 
I diagnostic messages may affect the 
production of the phase map. Since various 
processing options affect the structure of 
the phase, the text of the phase map will 
sometimes provide additional information. 
For example, the phase may contain an 
overlay structure. In this case, a map 
will be listed for each segment in the 
overlay structure. 

Linkage Editor Messages 

The Linkage Editor may gene~ate 
informative or diagnostic messages. A 
complete list of these messages' is included 
in the publication DOS Operator 
Communications and Messages. 

DOS ANS COBOL UNRESOLVED EXTERNAL 
REFERENCES 

When the linkage editor encounters a 
weak external reference (WXTRN) , 
auto linking is suppressed and the v-type 
address constant is either resolved from 
those modules included into the load 
module or it remains unresolved. 

) Unresolved WXTRNs will not cause the 

linkage editor to cancel the link step if 
ACTION CANCEL is in effect. 

The object time subroutine library of 
the ANS Full COBOL compiler utilizes wxrRNs 
not only as address constants but also as 
switches to determine at object time 
whether certain options are in effect. It 
is a very convenient feature which can lead 
to tight and efficient code. 

Unresolved WXTRNs are normally 
intentional but unresolved EXTRNs are 
normally unintentional and an error. 

Any of the following unresolved WXTRNs 
may appear when link editing an obj'ect 
module pronuced by an ANS COBOL compiler: , 

ILBDCKP2 
ILBDDSPO 
ILBDRELO 
ILBDDSP1 
ILBDDSP3 

COBOL PHASE EXECUTION OUTPUT 

The output generated by program 
execution (in addition to data written on 
output files) may include: 

• Data displayed on the console or on the 
printer 

• Messages to the operator 

• System informative messages 

• System diagnostic messages 

• A system dump 

A dump and system diagnostic messages 
are generated automatically during program 
execution only if the program contains 
errors that cause abnormal termination. 

Figure 13 is an example of output from 
the execution job step. The follo~ing text 
is an explanation of the illustration. 

I 

Job control statements. These 
statements are listed because the LOG 
option is specified. 

Program output on printer. The 
results of execution of the TRACE and 
EXHIBIT N~~D statements appear on the 
program listing. 

Console output. Data is printed on 
the console as a result of the 
execution of DISPLAY UPON CONSOLE. 

Interpreting Output 79 



Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023 

" AS'SCN SYS008,)('l83' I Ii" 
" EXEC \V 

64 
68 
73 
76 
77 

BG /I Jon SAMPLE 
00.01.09 

BG A 11001 NYC 0 
BG 6 000 .. Nft 1 
BG C 11003 NYC 2 
SG () 1100 •• Nft 5 
BG E 1I00r. NYC 4 
BG F ilOOL NIC 0 
BG G 11007 NYC 1 
8G I't 1I00:! Nrc 2 

WORK-RECORD • A 0001 NYC Z 
76 
77 
WORK-RECORD • B 0002 NYC 1 
76 

BG I 000!l NYC 3 
~~~e~4---------­
BG K 0011 NYC 0

77
WORK-RECORD = C 0003 NYC 2
76
77
WORK-RECORD = D 0004 NYC 3
76
77
WORK-RECORD • E 0005 NYC 4
76
77
WORK-RECORD = F 0006 NYC Z

1tGLIJ1)l.! N I e 1
BG Moon NYC 2
BG 14 II 0 14 jq, C ,
BG 0 001r. NYC 4
BG P I10lr. lue 0
8'G Q 1)017. NYC 1

-SG R 0013 Nt C 2
BG S 1I01!l NYC 3
BG I 11020 Nft 4
BG U 0021 NYC 0
BG V 002~ NTC 1
BG W 0023 NYC 2
BG X 0024 NYC 3
BG Y 0025 NYC 4
BG Z 0026 NfC 0
BG EO.I SAMPLE

OO.09.20,IIURATION 00.02.11

Figure 13. Output from Execution Job steps

OPERATOR MESSAGES

The COBOL phase may issue operator
messages. In the message, XX denotes a
system-generated 2-character numeric field
that is used to identify the program
issuing the message.

STOP. Statement

The following message is generated by
the STOP statement with the literal option:

XX C110A STOP 'literal'

Explanation: This message is issued at the
programmer's discretion to indicate
possible alternative action to be taken by
the operator.

Operator Response: Follows the
instructions given both by the message and
on the job request form supplied by the
programmer. If the job is to be resumed,
hit end-of-block.

ACCEPT statement

The following message is generated by an
ACCEPT statement with the FROM CONSOLE
option:

XX ClllA "AWAITING REPLY"

Explanation~ This message is issued by the
object program when operator intervention
is required.

80

Operator Response: Enter the reply and hit
end-of-block to send message. (The
contents of the text field should be
supplied by the programmer on the job
request form.)

SYSTEM OUTPUT

Informative and diagnostic messages may
appear in the listing during the execution
of the object program.

Each of these messages contains an
identification code in the first column of
the message'to indicate the portion of the
operating system that generated the
message. Table 5 lists these codes,
together with identification for each.

Table 5. System Message Identification
Codes

r----T----------------------------.--------,
ICodel Identification I
~----+------------------------------------i
I 0 I An on-line console message from I
I I the Supervisor . I
~----+------------------------------------i
I 1 I A message from the Job Control I
I I Processor I
~----+-------------------------------~----i
I 2 I A message from the Linkage Editor I
~----+-------...,--------·--------------------i
I 3 I A message from the Librarian I
~----+------------------------------------i
I 4 I A message from LIOCS I
~----+------------------------------------i
I 7 I A message from the Sort program I
~----+------------------------------------i
I C I A message from COBOL object-time I
l ____ l ____ :~:~~~~~=: _____________ · ________ J (

This chapter describes the accepted
linkage con~entions for calling and called
programs and discusses linkage methods when
using an assembler language program. In
addition, th~s chapter contains a
description of the overlay facility which
enables different called programs to occupy
the same area in main storage at different
times. It also contains a suggested
assembler language program to be used in
conjunction with the overlay feature.

A COBOL source program that passes
control to another program is a calling
Qrog~~m. The program that receives control
from the calling program is referred to as
a called program. Both programs must be
compiled (or assembled) in separate job
steps, but the resulting object modules
must be link edited together in the same
phase.

A called program can also be a calling
program; that is, a called'program can, in
turn, call another program. In Figure 14
for instance. program A calls program B;
program B calls program C. Therefore:

1. A is considered a calling program by B

2. B is considered a called program by A

3. B is considered a calling program by C

4. C is considered a called program by B

r---,
1 ABC 1
1 r--------, r--------, r--------, 1
1 ICalling 1 ICalled 1 ICalled 1 1
1 Iprogram 1 Iprogram 1 Iprogram 1 1
1 lof B 1 lof All of B I 1
1 1 1---> 1 1----> 1 1 I
1 1 1 ICalling I I 1 1
I 1 1 1 program I 1 1 1
1 1 I lof C I 1 1 1 1 L ________ J L ________ J L ________ J 1
L ___ J

Figure 14. Calling and Called Programs

By convention, a called program may call
to an entry point in any other program,
except one on a higher level in the "path"
of that program. That is, A may call to an
entry point in B or C, and B may call C;
however, C should not call A or B.
Instead, C transfers control Q~!Y to B by
issuing the EXIT PROGRAM or GOBACK
statements in COBOL (or its equivalent in
another language). B then returns to A.

CALLING AND CALLED PROGRAMS

Compiler generated switches, e.g., ON
and ALTER, are not reinitialized upon each
entrance to the called program, that is,
the program is in its last executed state.

Note: It is necessary for an American
National Standard COBOL program to know
whether it is the main or the called
program. For this reason, any non-American
National Standard COBOL program calling an
American National Standard program must
first call the subroutine ILBDSETO. The
function of this subroutine is to set a
switch to X'FF' in subroutine ILBDMNSO,
which is the indication to the American
National Standard COBOL program that it is
a called program. Standard linkage
conventions should be observed when calling
ILBDSETO; there are no parameters to be
passed.

Whenever a program calls another
program, linkage must be established
between the two. The calling program must
state the entry point of the called program
and must specify any arguments to be
passed. The called program must have an
entry point and must be able to accept the
arguments. Further, the called program
must establish the linkage for the return
of control to the calling program.

LINKAGE IN A CALLING PROGRAM

A calling COBOL program must contain the
following statement at the point where
another program is to be called:

r---,
I£~~~ literal-1 [~~!~~ identifier-1 1
1 [identifier-2] •••] 1 L ___ J

literal-1
is the name specified as the
program-name in the PROGRAM-ID
paragraph of the called program, or
the name of the entry point in the
called program. When the called
program is to be entered at the
beginning of the Procedure Division,
li~er~!=l i~ the name of the program
being called. When the called program
is to be entered at some point other

Calling and Called Programs 81

than the beginning of the Procedure
Division, literal-1 should not be the
same as the name specified in-the
PROGRAM-ID paragraph of the called
program. Since the program-name in
the PROGRAM-ID paragraph produces an
external reference defining an entry
point, this entry point name would not
be uniquely defined as an external
reference.

identifier-1 [identifier-21 •••
are the arguments being passed to the
called program. Each identifier
represents a data item defined in the
File, Working-Storage, or Linkage
Sections of the calling program and
should contain a level number 01 or
77. When passing identifiers from the
File Section, the file should be open
before the CALL statement is executed.
If the called program is an assembler
language program, the arguments may
represent file-names and procedure­
names. If no arguments are to be
passed, the USING option is omitted.

LINKAGE IN A CALLED PROGRAM

A called COBOL program must contain two
sets of statements:

1. One of the following statements must
appear at the point where the program
is entered.

82

If the called program is entered at
the first instruction in the Procedure
Division and arguments are passed by
the calling program:

r------------------------------------,
I I
l~gQ~~QQg~ Q!Y!~IO~ [Q~!NG I
I identifier-1 [identifier-21 ••• 1. I L ____________________________________ J

If the entry point of the called
program is not the first statement of
the Procedure Division:

r-------------------------------------,
I I
I ~~g! literal-1 [USIN§ identifier-1 I
I [identifier-21 ••• 1 I L _____________________________________ J

literal-1
is the name of the entry point in
the called program. It is the
same name that appears in the
CALL statement of the program
that calls this program.
literal-1 must not be the name of
any other entry pOint or
program-name in the run unit.

identifier-1 [identifier-21 ••• 1
are the data items representing
parameters. They correspond to
the arguments of the CALL
statement of the calling program.
Each data item in this parameter
list must be defined in the
Linkage Section of the called
program and must contain a level
number of 01 or 77.

2. Either of the following statements
must be inserted where control is to
be returned to the calling program:

r-------------------------------------,
I EXIT PROGRAM. I
~-----------------------------~-------~
I GOBACK. I L _____________________________________ J

Both the EXIT PROGRAM and GOBACK
statements cause the restoration of
the necessary registers, and return
control to the point in the calling·
program immediately following the
calling sequence.

ENTRY POINTS

Each time an entry point is specified in
a called program, an external-name is
defined. An external-name is a name that
can be referenced by another program that
has been separately compiled or assembled.
Each time an entry name is specified in a
calling program, an external reference is
defined. An external-reference is a symbol
that is defined as an external-name in
another separately compiled or assembled
program. The Linkage Editor resolves
external-names and external references, and
combines calling and called programs into a
format suitable for execution together,
i.e., as a single phase. .

Note: Several different entry points may
be defined in one COBOL source module.
Different CALL statements in any module of
the phase may specify the same entry point,
but each definition of an entry point must
be unique in the same phase.

CORRESPONDENCE OF ARGUMENTS AND PARAMETERS

The number of identifiers in the
argument list of the calling program spould
be the same as the number of identifiers in
the parameter list of the called program.
If the number of identifiers in the
argument list of the calling program is
greater than the number of identifiers in

the parameter list of the called program,
only those specified in the parameter list
of the called program may be referred to by
the called program. There is a one-for-one
correspondence. The correspondence is
positional and not by name. An identifier
must not appear more than once in the same
USING clause.

Only the address of an argument is
passed. Consequently, both the identifier
that is an argument and the identifier that
is the corresponding parameter refer to the
same location in main storage. The pair of
identifiers need not be identical, but the
data descriptions must be equivalent. For
example, if an argument is a level-77
data-name representing a 30-character
string, its corresponding parameter could
also be a level-77 data-name representing a
character string of length 30, or the
parameter could be a level-01 data item
with subordinate items representing
character strings whose combined length is
30.

Although all parameters in the ENTRY
statement must be described with level
numbers 01 or 77, there is no such
restriction made for arguments in the CALL
statement. An argument may be a qualified
name or a subscripted name. When a group
item with a level number other than 01 is
specified as an argument, proper boundary
word alignment is required if subordinate
items are described as COMPUTATIONAL,
COMPUTATIONAL-l, or COMPUTATIONAL-2. If
the argument corresponds to an 01-level
parameter, doubleword alignment is
required.

LINK EDITING WITHOUT OVERLAY

Assume that a COBOL main program
(COBMAIN>, at one or more points in its
logic executes CALL statements to COBOL
programs SUBPRGA, SUBPRGB, SUBPRGC, and
SUBPRGD. Also assume that the module sizes
for the main program and sUbprograms are:

Program
COBMAIN
SUBPRGA
SUBPRGB
SUBPRGC
SUBPRGD

Module Size
(in bytes)

20,000
4,000
5,000
6,000
3,000

Through the linkage mechanism, all
called programs plus COBMAIN must be link
edited together to form one module ·of
38;000 bytes. Therefore, COBMAIN would
require 38,000 bytes of storage in order to
be executed. No overlay structure need be
specified at link edit time if 38,000 bytes
of core storage are available.

The following is an example of the job
control statements needed to link edit
these calling and called programs without
specifying an overlay structure. The
source decks for COBMAIN and SUBPRG~ are
included in the job deck, whereas SUBPRGB,
SUBPRGC, and SUBPRGD are in the relocatable
library.

// JOB NOVERLAY
// OPTION LINK,LIST,DUMP

ACTION t'llAP

/*

/*

//
//

/*
/&

PHASE EXAMP1,*
INCLUDE

{object module COBMAIN}

INCLUDE SUBPRGB
INCLUDE SUBPRGC
INCLUDE SUBPRGD
INCLUDE

{object module SUBPRGA}

ENTRY
EXEC LNKEDT
EXEC

{data for program}

Figure 15 is an example of the data flow
logic of·this call structure where all the
programs fit into main storage.

Figure 15. Example of Data Flow Logic in a
Call Structure

Calling and Called Programs 83

~otg: For the example given, it is assumed
that SYSLNK is a standard assignment. The
flow diagram illustrates how the various
program segments are link edited into
storage in a sequential arrangement.

A main program written in COBOL can call
programs written in other languages that
use the same linkage conventions. Whenever
a COBOL program calls an assembler language
program, certain conventions and techniques
must be used.

There are three basic ways to use
assembler-written called programs with a
main program written in COBOL:

1. A COBOL main program or called program
calling an assembler-writtem program.

2. An assembler-written program calling a
COBOL program.

3. An assembler-written program calling
another assembler-written program.

From these combinations, more
complicated structures can be formed.

In a COBOL program, the expansions of
the CALL and GOBACK or EXIT PROGRAM
statements provide the save and return
coding that is necessary to establish
linkage between the calling and called
programs in accordance with the linkage
conventions of the system. Assembler
language programs must be prepared in
accordance with the same linkage
conventions. These conventions include:

1. Using the proper registers to
establish linkage.

2. Reserving, in the calling program, a
storage area for items contained in
the argument list. This storage area
can be referenced by the called
program.

3. Reserving, in the calling program, a
save area in which the contents of the
registers can be saved.

REGISTER USE

The Disk Operating System has assigned
functions to certain registers used in
linkages. Table 6 shows the conventions
for using general registers as linkage
registers. The calling program must load
the address of the return point into

84

register 14, and it must load the address
of the entry point of the called program
into register 15.

Table 6. Conventional Use of Linkage
Registers

r----T--------T---------------------------,
I Reg. I Reg. I I
INO. IName I Function I
~----+--------+-~-------------------------~
I 1 I Argument I Address of the argument I
I Ilist I list passed to the called I
I Iregisterl program. I
~----f--------f---------------------------~
113 I Save I Address of the area re- I
I larea I served by the calling pro-I
I I register I gram in which the contents I
I I I of certain registers are I
I I I stored by the called I
I I I program. I
~----f--------+---------------------------~
114 I Return I Address of the location inl
I Iregisterl the calling program to I
I I I which control is returned I
I I I after execution of the I
I I I ca lIed prog ram. I
~----+--------+---------------------------1
115 I Entry I Address of the entry point I
I I point I in the called program. I
I I register I I l ____ ~ ________ ~ ___________________________ J

SAVE AREA

A calling assembler language program
must reserve a save area of 18 words,
beginning on a fullword boundary, to be
used by the called program for saving
registers; it must load the address of this
area into register 13. Table 7 shows the
layout of the save area and the contents of
each word.

A called COBOL program does not save
floating-point registers. The programmer
is responsible for saving and restoring the
contents of these registers in the calling
program.

ARGUMENT LIST

The argument list is a group of
contiguous full words, beginning on a
fullword boundary, each of which is an
address of a data item to be passed to the
called program. If the program is to pass
arguments, an argument list must be ·
prepared and its address loaded into
register 1. The high-order bit of the last
argument, by convention, is set to 1 to
indicate the end of the list.

Table 7. Save Area Layout and Word
Contents

r---,
r-----------------------------,

AREA IThis word is a part of the I
(word 1) Istandard linkage convention I

lestablished under the Disk I
IOperating System. The word I
Imust be reserved for proper I
laddressing of the subsequent I
I entries. However, an I
lassembler subprogram may use I
Ithe word for any desired I
I purpose. I
~--------~--------------------~

AREA+4 IThe address of the previous I
(word 2) Isave area, that is, the save I

larea of the subprogram that I
Icalled this one. I
~-----------------------------~

AREA+8 IThe address of t~e next save I
(word 3) larea, that is, the save area I

lof the subprogram to which I
Ithis subprogram refers. I
~-----------------------------~

AREA+12 IThe contents of register 14, I
(word 4) Ithat is, the return address. I

~-----------------------------~
AREA+16 IThe contents of register 15, I

(word 15) I that is, the entry address. I
~-----------------------------~

AREA+20 IThe contents of register o. I
(word 6) I I

~-----------------------------~
AREA+24 IThe contents of register 1. I

<word 7) I I
I I
I I
I I
~-----------------------------~

IAREA+68 IThe contents of register 12. I
I (word 18) I I I L _____________________________ J

L ___ J

Any assembler-written program must be
coded with a detailed knowledge of the data
formats of the arguments being passed.
Most coding errors occur because of the
data format discrepancies of the arguments.

If one programmer writes both the
calling program and the called program, the
data format of the arguments should not
present a problem when passed as
parameters. However, when the programs are
written by different programmers, the data
format specifications for the arguments
must be clearly defined for the programmer.

The linkage conventions used by an
assembler program that calls another
program are illustrated in Figure 16. The
linkage should include:

1. The calling sequence.

2. The save and return routines.

3. The out-of-line parameter list. (An
in-line parameter list may be used.)

4. A save area on a fullword boundary.

The assembler programmer may establish
an in-line parameter list instead of an
out-of-line list. In this case, he may
substitute the calling sequence and
parameter list illustrated in Figure 17 for
that shown in Figure 16.

Calling and Called Programs 85

r---,
deckname START 0 INITIATES PROGRAM ASSEMBLAGE AT FIRST
* AVAILABLE LOCATION. ENTRY POINT TO THE
* PROGRAM.

ENTRY
EXTRN
USING

* SAVE ROUTINE
name1.. STM

*
*
* LR

DROP
USING
LR

*
* LA

* ST

*
* ST

*
*
* BC
AREA DS

*

name1..
name 2
name1l 15

14,r1..,12(13)

r3,15
15
name1..,r3
r2,13

13, AREA

13,8(r2>

r2,4(13)

15,prob1..
18F

THE CONTENTS OF REGISTERS 14, 15, AND
o THROUGH r1.. ARE STORED IN 'IHE SAVE
AREA OF THE CALLING PROGRAM (PREVIOUS
SAVE AREA). r1.. IS ANY NUMBER FROM 0 THROUGH 12.

WHERE r3 AND r2 HAVE BEEN SAVED
LOADS REGISTER 13, WHICH POINTS TO THE
SAVE AREA OF THE CALLING PROGRAM, INTO
ANY GENERAL REGISTER, r2, EXCEPT 0 AND 13.
LOADS THE ADDRESS OF THIS PROGRAM'S
SAVE AREA INTO REGISTER 13.
STORES THE ADDRESS OF THIS PROGRAM'S SAVE
AREA INTO WORD 3 OF THE SAVE AREA OF THE
CALLING PROGRAL"1.
STORES THE ADDRESS OF THE PREVIOUS SAVE
AREA CI.E., THE SAME AREA OF THE CALLING
PROGRAM) INTO WORD 2 OF THIS PROGRAM'S
SAVE AREA.

RESERVES 18 WORDS FOR THE SAVE AREA
THIS IS LAST STATEMENT OF SAVE ROUTINE.

prob1.. {User-written program statements}
* CALLING SEQUENCE

LA 1,ARGLST
L 15,ADCON
BALR 14,15
{Remainder of user-written program statements}

* RETURN ROUTINE
L 13,4(13)

* LM 2,r1..,28(13)

* L 14,12(13)

*
* MVI 12(13),X'FF'

*
* BCR 15,14
ADCON DC ACname2)

* PARAMETER LIST
ARGLST DC AL4Carg1..)

DC AL4 (arg2)

LOADS THE ADDRESS OF THE PREVIOUS SAVE
AREA BACK INTO REGISTER 13.
THE CONTENTS OF REGISTER 2 THROUGH r1.. ARE
RESTORED FROM THE PREVIOUS SAVE AREA.
LOADS THE RETURN ADDRESS, WHICH IS IN
WORD 4 OF THE CALLING PROGRAM'S SAVE AREA,
INTO REGISTER 14.
SETS FLAG FF IN THE SAVE AREA OF THE
CALLING PROGRAM TO INDICATE THAT CONTROL
HAS RETURNED TO THE CALLING PROGRAM.
LAST STATEMENT IN RETURN ROUTINE
CONTAINS THE ADDRESS OF SUBPROGRAM name2_

FIRST STATEMENT IN PARAMETER AREA SETUP

DC X'80' FIRST BYTE OF LAST ARGUMENT SETS BIT 0 TO 1
DC AL3Cargn) LAST STATEMENT IN PARAMETER AREA SETUP ___ J

Figure 16. Sample Linkage Routines Used with a calling Subprogram

86

r---,
ADCON DC A(prob1)

LA
L
CNOP
BALR
DC
DC

14,RETURN
15,ADCON
2,4
1,15
AL4(arg1)
AL4(arg2)

DC X'80'
DC AL3(argn)

RETURN EQU • L ___ J

Figure 17. Sample In-line Parameter List

LOWEST LEVEL PROGRAM

If an assembler called program does not
call any other program (i.e., if it is at
the lowest level), the programmer should
omit the save routine, calling sequence,
and parameter list shown in Figure 16. If
the assembler called program uses any

\ registers, it must save them. Figure 18
)illustrates the appropriate linkage
conventions used by an assembler program at
the lowest level.

r---,
deckname START 0

ENTRY name

USING .,15
name STM 14,r1,12(13)

User-written program statements

LM 2,r1,28(13)
MVI 12(13),X'FF'
BCR 15,14

~---i
I~: If registers 13 and/or 14 are usedl
lin the called subprogram, their contents I
Ishould be saved and restored by the I
Icalled subprogram. I
L ________________________ ------~----------J

'Figure 18. Sample Linkage Routines Used
) with a Lowest Level subprogram

OVERLAYS

If a program is too large to be
contained in the number of bytes available
in main storage, it can still be eKecuted
by means of an overlay structure. An
overlay structure permits the re-use of
storage locations previously occupied by
another p~ogram. In order to use an
overlay structure, the programmer must plan
his program so that one or more called·
programs need not be in main storage at the
same time as the rest of the program phase.

The following is a diagram of the basic
form of a program to be overlaid:

I
I
IROOT PHASE
I
I
I r------J..-----,

I I
I I
I I
I I
I I
ISUBA ISUBB

The root phase consists of the COBOL
main program and an assembler language
subroutine which handles the overlay
structures. SUBA and SUBB are the called
programs that are to be overlaid in core
storage.

In using the overlay technique, the
programmer specifies to the Linkage Editor
which programs are to overlay each other.
These programs are processed by the Linkage
Editor so they can be placed automatically
in main storage for execution when called
by the main program. The resulting output
of the Linkage Editor is called an overlay
structure.

SPECIAL CONSIDERATIONS WHEN USING OVERLAY
STRUCTURES

There" are three areas of special concern
to the programmer who decides to use"bhe
overlay feature. These problems concern
the use of the assembler language
subroutine, proper link editing, and job
control statements.

Calling and Called Programs 87

Page of GC28-6398-2,~3, Revised 2/15/73 by TNL GN28-1023

ASSEMBLER LANGUAGE SUBROUTINE FOR
ACCOMPLISHING OVERLAY

The CALL statement is used for "direct"
linkage; that is, the assistance of the
Supervisor is not required (as it is when
loading or fetching a phase). There are no
COBOL statements that will generate the
equivalent of the LOAD or FETCH assembler
macro instructions. For this reason, one
must call an assembler program to effect an
overlay of a COBOL program. This routine
must be link edited as part of either a

. 2. It can be used for assembler overlays
if the programmer has a desired entry
point in his END card and the first
statement at that entry point is 'STM
14,12,12(13)'.

3. This subroutine can be used for a
COBOL program which contains an ENTRY
statement immediately following the
Procedur~ Division header. It will
not work with a COBOL subprogram
compiled with a Procedure Division
USING statement, or for entry points
in a COBOL subprogram which appear
.anywhere other than as the first
instruction of the Procedure Division.
A suggested technique for diverse
entry points is a table look-up using
V-type constants.

.root phase or permanently resident phase.

The sample overlay subroutine shown in
Figure 19 is governed by the following
restrictions:

1. The example is a suggested technique,
and is not the only technique.

r---,
STMNT SOURCE STATEMENT

0001 OVERLAY
0002

START 0
ENTRY OVRLAY

ENTRY TIME 0003 * AT
0004 *
0005 *
0006 *
0007 *
0008 *
0009 *
0010 * AT
0011 *
0012 *
0013 *
0014 *
0015 *

R1=POINTER TO ADCON LIST OF USING ARGUMENTS
FIRST ARGUMENT IS PHASE OR SUBROUTINE NAME
MUST BE 8 BYTES
R13=ADDRESS OF SAVE AREA
R14=RETURN POINT OF CALLING PROGRAM
R15=ENTRY POINT OF OVERLAY PROGRAM

EXIT
R1=POINTER TO SECOND ARGUMENT OF ADCON LIST

OF USING ARGUMENTS
R14=RETURN POINT OF CALLING PROGRAM--NOT THIS PROG
R15=ENTRY POINT OF PHASE OR SUBPROGRAM

0016 USING *,15
0017 OVRLAY STM O,l,SAVE
0018 L 1,0(1)
0019 CLC CORSUB,O(l)
0020 BE SUBIN
0021 MVC CORSUB(8),0(1)
0022 SR 0,0
0023 SVC 4
0024 SEARCH1 LA 1,4(1)
0025 CLC 0(4,1),=C'COBF'
0026 BNE SEARCHl
0027 S 1,=F'8'
0028 L 1,0(1)
0029 LA 1,8(1)
0030 ST 1,ASUB
0031 SUBIN LM 0, 1, SAVE
0032 LA 1,4(1)
0033 L 15,ASUB
0034 BR 15
0035 CORSUB DS oeL8
0036 DC 8X'FF'
0037 ASUB DS F
0038 SAVE DS 2F

SAVE WORK REGS
POINT Rl TO PHASE NAME
IN CORE?
YES,BR
SET CURRENT PHASE

LOAD PHASE
STEP SEARCH POINT
END OF.· INIT1?
NO, LOOP
POINT TO "START" ADCON
LOAD "START"
INCREMENT TO "ENTRY"
SAVE ENTRY ADDR.
RELOAD WORK REGS
POINT TO PARAMETERS

BRANCH TO ENTRY POINT

(

0039 END i).

Fi~~~~-19~--~;~;;1~-~f~~~-~;;~;bl;;-~~~~~~~;-~~~~ii~;-f~;-~~~~;;li;hi~~-~;;;i;;~~----- (
88

)

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL 3N28-1023

Note: Care should be taken with the
techniques used in statements 0019 and
0020. Only when the COBOL program is
loaded are altered GO TO statements
reinitialized. A better technique would be
to load the called programs each time they
are required.

LINK EDITING WITH OVERLAY

In a linkage editor job step, the
programmer specifies the overlay points in
a program by using PHASE statements. In
the Working-Storage section l a level-01 or
level-77 constant must be created for each
phase to be called at execution time.
These constants have a PICTURE of X(8) and
a VALUE clause containing the same name as
that appearing on the PHASE card for that
segment in the link edit run.

In addition, each argument to be passed
to the called program must have an entry in
the Linkage section. Remember, also, that
the ENTRY statement should not refer to the
program-name. (Use of the program-name
will result in incorrect execution.)

When more than one subprogram in the
overlay structure requires the same COBOL
subroutine, the II EXEC LNKEDT statement
must be preceded by INCLUDE cards for each
of these subroutines. The names of these
subroutines can be determined by requesting
LISTX at compile time.

when preparing the control cards for the
Linkage Editor, the programmer should be
certain to include the assembler language
subroutine with the main (root) phase.
Also, to achieve maximum overlay, the phase
names for the called programs should be
different from the names of the called
programs specified in the PROGRAM-ID
paragraphs. Maximum overlay causes loading
of the next phases to start at the same
point where the first overlay phase
started.

Figure 20 is a flow diagram of the
overlay logic. The PHASE cards indicate
the beginning address of each phase. The
phases OVERLAYC and OVERLAYD will have the
same beginn'ing address as OVERLAYB. .The
sequence of events is:

1. The main program calls the overlay
routin.e.

2. The overlay routine fetches the
particular COBOL subprogram and places
it in the overlay area.

3. The overlay routine transfers control
to ., tpe first instruction of the called
program.

4. The called program returns to the
COBOL calling program (not to the
assembler language overlay routine).

If OVERLAYB were known to be in storage,
the CALL statement would be:

r---,
I CALL "OVERLAYB" USING PARAM-1, PARAM-2.1 L ___ J

But when using the assembler. language
overlay routine (OVRLAY), it becomes:

r---,
I CALL "OVRLAY" USING PROCESS-LABEL, I
I PARM-1, PARM-2. I L _______ . _________________________________ J

where PROCESS-LABEL contains the
external-name OVERLAYB of the called
program.

However, the ENTRY statement of the
called program is the same for both cases,
i.e., ENTRY "OVRLAY1" USING PARAM-1,
PARAM-2, whether it is called indirectly by
the main program through the overlay
program or called directly by the main
program.

Note: An ENTRY which is to be called by
OVRLAY must precede the first executable
statement in the called program.

COBOL
Main or Root

Overlay Routine

Overlay Area

Subprogram

Figure 20. ··Flow Diagram of·.Overlay Logic

Calling and Called Programs 89

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

JOB CONTROL FOR ACCOMPLISHING OVERLAY

The job control statements required to
accomplish the overlay illustrated in
Figure 20 are shown in Figure 21. The
PHASE statements specify to the Linkage
Editor that the overlay structure to be
established is one in which the called
programs OVERLAYB, OVERLAYC, and OVERL~YD
overlay each other when called during
execution.

Note: The phase name specified in the
PHASE card must be the same as the value
contained in the first argument for CALL

"OVRLAY", i.e., PROCESS-LABEL, COMPOrE-rAX,
etc., contain OVERLAYB, OVERLAYC, .
respectively, which are the names given in
the PHASE card.

It is the programmer's responsibility to
write the entire overlay, i. e., ·the COBOL
main (or calling) program and an assembler
language subroutine (for which a sample
program is given in this chapter) that
fetches and overlays the called programs.
A calling sequence to obtain an overlay
structure between three COBOL subprograms
is illustrated in Figure 22.

r--~------------------~-----------------,
1/ JOB OVERLAYS I
1/ OPTION LINK I

PHASE OVERLAY,ROOT I
1/ EXEC FCOBOL I

{COBOL Source for Main Program MAINL~NE} I
/0.
1/ EXEC ASSEMBLY

{Source deck for Assembler Language Routine OVERLAY}
/*

PHASE OVERLAYB,*
II EXEC FCOBOL

{COBOL Source for Called Program OVERLAYB}
1*

PH~SE OVERLAYC,OVERLAYB
// EXEC FCOBOL

{COBOL Source for Called Program OVERLAYC}
1*

PHASE OVERLAYD,OVERLAYC
II EXEC FCOBOL

{COBOL Source for Called Program OVERLAYD}
/*
1/ EXEC LNKEDT
/1 EXEC
It;.
It

I
I
f

-------------------------------__ J

Figure 21. Job Control for Accomplishing Overlay

90

(

r---1

IDENTIFICATION DIVISION.
PROGRAM-ID. MAINLINE.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.
77 PROCESS-LABEL PICTURE IS X(S) VALUE IS "OVERLAYB".
77 PARAM-l PICTURE IS X.
77 PARAM-2 PICTURE IS XX.
77 COHPUTE-TAX PICTURE IS X(S) VALUE IS "OVERLAYC".

01 NAMET.
02 EMPLY-NUMB PICTURE IS 9(5).
02 SALARY PICTURE IS 9(4)V99.
02 RATE PICTURE IS 9(3)V99.
02 HOURS-REG PICTURE IS 9(3)V99.
02 HOURS-OT PICTURE IS 9(2)V99.

01 COMPUTE-SALARY PICTURE IS X(S) VALUE IS "OVERLAYD".
01 NAMES.

02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.

CALL "0VRLAY" USING PROCESS-LABEL, PARAM-1, PARAM-2.

CALL "OVRLAY" USING COMPUTE-TAX, NAMET.

CALL "OVRLAY" USING COMPUTE-SALARY, NAMES.

___ J

Figure 22. Calling sequence to Obtain Overlay Between Three COBOL Subprograms
(Part 1 of 3)

Calling and Called Programs 91

r---,

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAY1.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 PARAM-10 PICTURE X.
01 PARAM-20 PICTURE XX.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVRLAY1" USING PARAM-10, PARAM-20.

GOBACK.

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAY2.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 NAMEX.
02 EMPLY-NUMBX PICTURE IS 9(5).
02 SALARYX PICTURE IS 9(4) V99.
02 RATEX PICTURE IS 9(3)V99.
02' HOURS-REGX PICTURE IS 9(3)V99.
02 HOURS-OTX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
PARA-N~~. ENTRY "OVRLAY2" USING NAMEX.

GOBACK.

Figure 22. Calling Sequence to obtain Overlay Between Three COBOL Subprograms
(Part 2 of 3)

92

(

r---,
COBOL Subprogram D

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAY3.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION
01 NAMES.

02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVRLAY3" USING NAMES.

GOBACK.

Figure 22. Calling Sequence to Obtain Overlay Between Three COBOL Subprograms
(Part 3 of 3)

Calling and Called Programs 93

In order to use the System/360 Disk
Operating System Sort/Merge program, Sort
Feature statements are written in the COBOL
source program. These statements are
described in the publication !~~_~~~em~36Q
Qi~~_Qe~E~~igg_~ystem: Full American
National Standard COBOL. The Sort/Merge
program itself is described in the
publication IBM system/360 Disk Oe~E~tigg
System: Tape and Disk Sort/Merge, Order
No. GC28-6676. "Appendix F: System
Configuration" in this publication contains
information about system requirements when
the Sort Feature is used.

Additional job control statements must
be included in the execution step of the
job to describe the files used by the sort
program. These statements are described
below in "Sort Job Control Requirements."

~Q~~: The Checkpoint/Restart Feature can
be activated during a sorting operation by
specifying the RERUN statement.

SORT JOB CONTROL REQUIREMENTS

Three types of files can be defined for
the Sort program in the execution job step:
input, output, and work.

SORT INPUT AND OUTPUT CONTROL STATEMENTS

When the USING and/or GIVING options are
specified, the compiler generates dummy
Input and/or Output Procedures. Hence, the
job control requirements for files named as
operands of USING and GIVING are the same
as those for files used as input to or
output from the sorting operation in these
procedures.

The following job control statements are
required for files used as input to or
output from the sorting operation:

USING THE SORT FEATURE

ASSGN

followed by

or

or

or

VOL
TPLAB

VOL
DLAB
XTENT

DLBL
EXTENT

TLBL

The symbolic unit to which each sort
input or output file is assigned in the
source language ASSIGN clause is specified
in an ASSGN control statement.

Note: ASSGN control statements are
required only if the input/output devices
used in an application have not been
previously assigned the appropriate
symbolic names.

If an input file contains standard
labels, a TLBL or DLBL (or VOL and TPLAB or
VOL and DLAB) statement(s) is required.
The symbolic name of the device from which
the input file is to be read must also be
included on this statement.

One EXTENT (XTENT) control statement is
required to define the limits of each ·area
of a mass storage device from which an
input file will be read. EXTENT (XTENT)
statements must include the symbolic unit
name of the device containing the extent.

If the output file is to use standard
labels, a TLBL or DLBL (or VOL and TPLAB or
VOL and DLAB) statement(s) is required.

One EXTENT (XTENT) control statement
must be used to define the limits of each
area of a mass storage device onto which
the output file is written. The symbolic
name of the output unit must appear on this
card.

Using the Sort Feature 95

SORT WORK FILE CONTROL STATEMENTS

The Sort program requires at least one
mass storage unit or three tape units as an
intermediate sort work file. The symbolic
units to which this file is assigned must
be consecutively numbered beginning with
SYS001. Intermediate storage may be
assigned on the following devices:

• IBM 2400 Magnetic Tape Units

• IBM 2311 Disk Storage Drive

• IBM 2314 Direct-Access Storage Device

Note: When variable-length or
redefined-length records are being sorted,
sort work files must not be assigned to
7-track tapes. 7-track tape work files can
only be used to sort records whose keys are
packed decimal or binary.

Device types may not be mixed; i.e.,
work units for a particular sort operation
must all be of the same type.

If spanned records are being sorted and
mass storage devices are being used as sort
work files, it is the programmer's
responsibility to assign these work files
to devices whose track sizes are larger
than the logical record sizes of the
records being sorted. A spanned record
that is larger than the available track
size can be sorted by assigning the work
files to magnetic tape.

If a work unit is to use standard
labels, a TLBL or DLBL (or VOL and TPLAB or
VOL and DLAB) control statement(s) is
required. The filename entry on these
statements must be SORTWK1 through SORTWKn.
The symbolic unit names assigned to the
work areas to be allocated eSYS001, SYS002,
etc.) must appear on these cards.

One EXTENT eXTENT) control statement
must be included to define each work area
on a mass storage device. The total work
area required may be divided into as many
as eight extents, which would require eight
EXTENT eXTENT) control statements.
Symbolic unit names on these statements
must be in consecutive order, (SYS001,
SYS002, etc.).

When intermediate storage is assigned on
a mass storage unit, at least twice the
amount required to hold all input records

96

should be assigned. This area may consist
of from one to eight extents, and the
extents may be assigned on no more than
eight devices.

If tape intermediate storage is used, at
least the minumum number of units (three)
must be assigned. The input file can be as
large as the number of records that can be
written on one full reel of tape.
Assigning more than three intermediate
storage tape drives does not increase the
maximum input file size, but does improve
perf ormance.

Performance increases significantly if
SOK is available for execution of the Sort
program. At the lOOK level, the
performance is very high. If no core is
available, the Sort/Merge program will
issue a message:

70S4A "INSUFFICIENT CORE"

The messages generated by the Sort
Feature are listed in the publication IBM
Syst~~~~~Q_Qi~~_QEerating System: Tape-and
Disk sort/Merge, Order No. GC28-6676.

LINKAGE WITH THE SORT FEATURE

To initiate a sort operation, the COBOL
object program includes the object time
subroutine ILBDSRTO and,transfers control
to it.

If the INPUT PROCEDURE option of the
SORT statement is specified in the source
program, exit E1S of the Sort/Merge program
is used. At this exit, the record released
by the programmer is passed to the
Sort/Merge program. Since a dummy Input
Procedure will be generated by the compiler
when the USING option is specified, records
in the USING file are also passed to the
Sort/Merge program at exit E1S.

If the OUTPUT PROCEDURE option of the
SORT statement is specified, 'exit E3S of
the Sort/Merge program is used. At this
exit, the record returned by the Sort/Merge
program is passed to the programmer. ,Since
a dummy output Procedure is generated by
the compiler when the GIVING option is
specified, records are also returned at
exit E3S and written on this file.

Completion Codes

The Sort/Merge program returns a
completion code upon termination and this
code is stored in the COBOL special
register SORT-RETURN. The codes are:

o -- Successful completion of
Sort/Merge

16 -- Unsuccessful completion of
Sort/Merge

Successful Completion: When a Sort/Merge
application has been successfully executed,
a completion code of zero is returned and
the sort operation terminates.

Unsuccessful Completion: If the Sort
program encounters an error during
execution that will not allow it to
complete successfully, it returns a
completion code of 16 and terminates. (A
possible error is an uncorrectable
input/output error.) The publication !~~
§ystg~~J~Q_Q!~~_Qpg~~~!rrg_§y~~g~~ __ ~~E~_~rr£
Q!sk_§Q~~~~g~gg, Order No. GC28-6676
contains a detailed description of the
conditions under which this termination
will occur.

The programmer may test the SORT-RETURN
register for successful termination of the
sort operation, as shown in the following
example:

SORT SALES-RECORDS ON ASCENDING KEY,
CUSTOMER-NUMBER, DESCENDING KEY DATE,
USING FN-1, GIVING FN-2. IF
SORT-RETURN NOT EQUAL TO ZERO, DISPLAY
"SORT UNSUCCESSFUL" UPON CONSOLE, STOP
RUN.

When the CATAL option is used to catalog
a sort program, the fOllowing should be
observed:

• To avoid duplicate names when selecting
a catalog name for his program, the
programmer must be aware of the naming
convention used by the compiler to
generate the name of the dummy phase
into which the phases of the Sort/Merge
program will subsequently be loaded.

Naming Convention: The compiler generates
the phase card for the dummy phase using
the following convention:

• If the PROGRAM-ID name is 6, 7, or 8
characters in length, the dummy phase
name consists of the first 6 characters
plus 2 zero cha~acters.

• If the PROGRAM-ID name is less than 6
characters in length, the name is
padded with zeros to 8 characters.

• Since the system expects the first
character of PROGRAM-ID to be
alphabetic, the first character, if
numeric, is converted as follows:

o -> J
1-9 -> A-I

The hyphen is converted to zero if it
appears as the second through eighth
character.

The Checkpoint/Restart Feature is
available to the programmer using the COBOL
SORT statement. The programmer uses the
RERUN clause to specify that checkpoints
should be taken during program execution.
The control statement requirements for
taking a checkpoint are discussed in the
chapter "Program Checkout."

The system-name specified in the RERUN
clause as the sort checkpoint device must
not be the same as any system-name used in
the source language ASSIGN clause, but
follows the same rules of formation.

The RERUN clause is fully described in
the publication !~~~~~g~~J£Q_Q!~~
QE~~~t~rrg_§y~~em~ __ ~~ll_~~~~!£~~_~~~!Q~~l
St~rr~~~_~Q~Q~·

When the Sort program is invoked in a
multiphase environment, the following
should be noted:

1. It is the programmer's responsibility
to ensure that the COBOL program
containing the SORT statement is the
highest phase in core.

2. If two programs are compiled, link
edited, and executed together, only
one program may use the Sort feature.
If both programs require Sort, the
programs can be compiled separately
and then the decks must be organized
so that the dummy phase cards for Sort
are both together at the end of the
deck before they are link edited and
executed.

Note: A technique for effective
utilization of core storage when the SORT
verb is used in a segmented program can be
found in the chapter "Programming
Techniques."

Using the Sort Feature 97

\

COBOL segmentation is a facility that
provides a means of accomplishing object
time. overlay as a result of specifications
made at the source language level.
segmentation will allow the programmer to
divide the Procedure Division of a source
proqram into sections. Through the use of
a system of priority numbers, certain
sections are designated as permanently
resident in core storage and other sections
as overlayable fixed segments and/or
independent segments. Thus, a large
program can be executed in a de~ined area
of core storage by limiting the number of
segments in the program that are
permanently resident in core.

If there is a limit on the amount of
core available, the program SAVECORE could
be segmented as illustrated in Figure 23.

r---,
IDENTIFICATION DIVISION.

PROGRAM-ID. SAVECORE.

EN~IRONMENT DIVISION.

OBJECT~COMPUTER. IBM-360-50
SEGMENT-LIMIT IS 15.

DATA DIVISION.

PROCEDURE DIVISION.
SECTION-l SECTION 8.

SECTION-2 SECTION 8.

SECTION-3 SECTION 16.

SECTION-4 SECTION 8.

SECTION-5 SECTION 50.

SECTION-6 SECTION 16.

ISECTION-7 SECTION 50.

I · I • L __ _

/ Figure 23. Segmenting the Program SAVECORE

USING THE SEGMENTATION FEATURE

Assuming that 12K is available for the
program SAVECORE, Figure 24 shows the
manner in which core storage would be
utilized. It is apparent from the
illustration that SECTION-3, SECTION-6, and
SECTION-7 cannot be in core at the same
time, nor can SECTION-3, SECTION-5 and
SECTION-7 be in core simultaneously.

Sections in the permanent segment
<SECTION-l, SECTION-2, and SECTION-4) are
those which must be available for reference
at all times, or which are referenced
frequently. They are distinguished here by
the fact that they have been assigned
priority numbers less than the segment
limit.

Sections in the overlayable fixed
segment are sections which are less
frequently used. They are always made
available in the state they were in when
last used. They are distinguishable here
by the fact that they have been assigned
priority numbers greater than the segment
limit but less than 49.

Sections in the independent segment can
overlay, and be overlaid by, either an
overlayable fixed segment or another
independent segment. Independent segments
are those assigned priority numbers greater
than 49 and less than 100, and they are
always given control in their initial
state.

OPERATION

Execution of the object program begins
in the root segment. The first se~ment in
the permanent segment is considered the
root segment. If the program does not
contain a permanent segment, tpe compiler
generates a dummy segment which will
initiate the execution of the first
overlayable or independent segment. All
global tables, literals, and qata areas are
part of the root segment. Called object
time subroutines are also part of the root
segment. When CALL statements appear in a
segmented program, subprograms are loaded
with the fixed portion of the main program
as if they had a priority of zero.

segmented programs must not be called by
another program (segmented or not
segmented). If a segmented program calls a
subprogram, the CALL statement may appear
in any segment. However, the object module

Using the segmentation Feature 99

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

associated with the subprogram must be
incladedin the root segment prior to the
execution of the main program. This can be
accomplished in several ways. Following
are two examples:

1. Produce object decks for both programs
and place the one for the subprogram
in the root segment:

PHASE, ROOT

{object deck for the root segment}

{object deck for the subprogram}

PHASE,·

{object deck for the overlay segment}

followed by a // EXEC LNKEDT and a //
EXEC.

2. Catalog the object module for the
subprogram in the relocatable library
prior to link editing the main
program. Insert an INCLUDE card for
the subprogram and an ENTRY card for
the root phase into the linkage editor
control cards for the root phase of
the main program. The Linkage Editor
will search the relocatable library
for the subprogram and include it with

the root phase. The ENTRY card will
cause the Linkage Editor to pass
control to the main program at
execution time.

OUTPUT FROM A SEGMENTED PROGRAM

COMPILER OUTPUT

The output produced by the compile~ is
an overlay structure consisting of multiple
object modules preceded by linkage editor.
control statements. Segments whose
priority is greater than the segment limit
(or 49, if no SEGMENT-LIMIr clause is
specified) consist of executable
instructions only.

The compiler generates each segment as a
separate object module preceded by a PHASE
card. The names appearing on these PHASE
cards (segment-names) conform to the
following naming conventions:

1. The name of the root segment is the
same as the program-name specified in
the PROGRAM-ID clause.

2. The name of each overlayable and
independent segment is a combination
of the p~ogram-name and the priority

r---------------------------,

fixed portion
(12K)

5K

I data-buffers, global I
I table, etc., (lK) I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~I permanent segment 

~---------------------------i (priority number < 15) 
I SECTION-4 (2K) I 
~--------------------------- ------------------------------I SECTION-3 (3K) I SECTION-5 (2K) I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I SECTION-6 (2K) I SEcrION-7 (lK) I 
--------------------------- ----__________________________ J -- ~ ~--------------

SECTION-3 and SECTION-6 
are overlayable fixed segments 
(14 < priority number < 50) 

SECTION-5 and SECTION-7 are 
independent segments 
(49 < priority number < 100) 

Figure 24. Storage Layout for SAVECORE 

100 

( 



Page of GC28-6398-2,-3; Revised 2/15/73 by TNL 3N28-1023 

number of the segment. These names 
are formed according to the following 
rules: 

a. If the program-name is 6, 7, or 8 
characters in length, the 
segment-name consists of the first 
6 characters of program-name plus 
the 2-character priority number. 

b. If the program-name is less than 6 
characters in length, the priority 
number is appended after the 
program-name. 

c. Since the system expects the first 
character of PROGRAM-ID to be 
alphabetic, the first character, 
if numeric, is converted as 
follows: 

o -> J 
1-9 -> A-I 

The hyphen is converted to zero if 
it appears as the second through 
eighth character. 

Note: Single-digit priority numbers 
are preceded by a zero. 

Warning: In order to avoid duplicate 
names, the programmer must be aware of 
the above naming conventions. If the 
last two characters of an 8-character 
PROGRAM-ID are numeric, these same two 
characters may not appear in the 
source program as a segment number. 

Figure 25 is an illustration of the 
compiler output for the skeleton program 
shown in Figure 23. 

LINKAGE EDITOR OUTPUT 

Figure 26 is an illustration of the 
input to the Linkage Editor and the phase 
map produced by the Linkage Editor 
resulting from the compilation and editing 
of the segmented program BIGJOB. The 
following text is an explanation of the 
figure. 

PHASE card generated by the compiler 
for the root segment BIGJOB. 

AUTOLINK card for the Segmentation 
subroutine. 

r-----~-----------------------------------, 
PHASE SAVECORE,ROOT I 

{object module for the root segment 
(sections with priority-numbers less 
than the segment limit) including any 
programs called by SAVECORE} 

I 
I 
l 

PflASE· SAVEC016,* 

{object module for segments with a 
priority of 16 (two sections)} 

PHASE SAVEC050,SAVEC016 

{object module for segments with a 
priority of 50 (two sections)} 

---------------------------------~------_J 
Figure 25. co.mpiler Output for SAVECORE 

PHASE cards generated by the compiler 
for segments of priority 10, 47-50, 60, 
62, and 63. 

Control cards generated for the Sort 
Feature. These cards are explained in 
"Sort in a Segmented Program". 

Location of the ·entry point CURSEGM. 
Item 6 is explained in "Determining the 
Priority of the Last Segment Loaded 
into the Transient Area". 

Load address of phase BIGJOBOO. Item 6 
is explained in "Sort in a Segmented 
Program." 

Note: If the CATALR option of the CBL card 
is specified, the compiler generates CATALR 
cards in front of PHASE cards. 

Cataloging a Segmented Program 

When the CATAL option is used to catalog 
a segmented program, the following points 
should be observed: 

1. To avoid duplicate names, the 
programm~r must be aware of the naming 
conventions used by the compiler (see 
"Compiler Output") because a 
segment-name maybe at the same as a 
phase-name already existing in the 
core image library. 

2. Since the PHASE card is generated by 
the compiler, the user must not 
specify a PHASE card for the program. 

Using the Segmentation Feature 101 



Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-~023' 

ro invoke a previously cataloged 
segmented program, the progxammer must use 
the following control statement: 

// EXEC name 

where ~ is the program-name specified in 
the PROGRAM-ID clause. 

De~rmininq the Priority of the Last 
Segment Loaded into the Transient Area 

If a segmented program is abnormally 
terminated during execution, the priority 
of the last segment loaded into the 
transient area can be determined as 
follows: 

1. In the map of main storage generated 
by the Linkage Editor, under the 
column LABEL, look for the name 
'CURSEGM' (see item 5 in Figure 26). 

2. Associated with this label, in the 
column LOADED, is an address. 

3. At this location is stored the 
priority (one byte) of the segment 
current in the transient area. If 
this byte is X'OO', no segment has 
been loaded into the transient area. 
This ~ndicates that the error causing 
the dump occurred in the root segment. 

USING THE PERFORM STATEMENT IN A SEGMENTED 
PROGRAM 

When the PERFORM statement is used in a 
segmented program, the programmer should be 
aware of the fol'lowing: 

o A PERFORM statement that appears in a 
section whose priority-number is less 
than the segment limit can have within 
its range only (1) sections with 
priority-numbers less than 50, and (2) 
sections wholly contained in a single 
segment whose priority-number is 
greater than 49. 

102 

Note: As an extension to American 
National Standard COBOL, the DOS Full 
American National Standard COBOL Com­
piler allows sections with any 

priority-number to fall within'the 
range of a PERFORM statement. 

• A PERFORM statement that appears in a 
section whose priority-nurr~er is equal 
to or greater than the segment limit 
can have within its range only (1) 
sections with the same priority-number 
as the section containing the PERFORM 
statement, and (2) sections with 
priority-numbers that are less than the 
segment limit. 

Note: As an extension to American 
National standard COBOL4 the DOS Full 
American National Standard COBOL 
Compiler allows sections with any 
priority-number to fall within the 
range of a PERFORM statement. 

• when a procedure-name in a segment with 
a priority-number less than the segment 
limit is referred to by a PERFORM 
statement in a segment with a 
priority-number greater than the 
segment limit, the independent segment 
will be reinitialized upon exit from 
the PERFORM statement. 

SORT IN A SEGMENTED PROGRAM 

If a segmented program contains a SORT 
statement, the sort program will be loaded 
above the largest overlayable or 
independent segment as shown in Figure 21. 

The compiler accomplishes this by 
providing the following two control 
statements at the end of the overlay 
structure: 

PHASE BIGJOBOO,transient area + L 

INCLUDE ILBDDUMO 

These cards are illustrated in Figure 26, 
item 4. The value of "L" in the figur~ is 
X'002F2' which is the length of the longest 
segment, BIGJOB41, rounded to the next 
half word boundary. Note that Linkage 
Editor relocates the phase BIGJOBOO to the 
next doubleword boundary (see Figure 26, 
item 6). 

Note: A technique for effective 
utilization of core storage when a 
segmented program uses the Sort Feature can 
be found in the chapter "Programming 
Techniques." 



) 

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL 3N2a-1023 

r-------------------------------------------------------------------------------~-------, 
IJOB BIGJ DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT 
1 
\ 
IACTION TAKEN MAP 
\ 
1 LIST 
\ . PHASE BIGJOB,ROOT~ 

1 • 
\ . 
\ LIST 
JLIST 

AUTOLINK 
AUTO LINK 

ILBDSEMO~ 
ILBDSRTO 

LIST PHASE BIGJOB10,* 
LIST PHASE BIGJOB47,BIGJOB10 
LIST PHASE BIGJOB48,BIGJOB47 
LIST PHASE BIGJOB49,BIGJOB48 (;\ 
LIST PHASE BIGJOB50,BIGJOB49 ~ 
LIST PHASE BIGJOB60,BIGJOBSO 
LIST PHASE BIGJOB62,BIGJOB60 
LIST PHASEBIGJOB63,BIGJOB62 
LIST PHASE BIGJOBOO'BIGJOB63+X'002F2'}~4 
LIST INCLUDE ILBDDUMO ~ 

~-------------------------------------------------------------------------------~-------~ 
~----------~--------------------------------------------------~-------------------------~ I PHASE XFR-AD LOCORE HICORE DSK~AD ESD TYPE LABEL LOADED REL-FR I 
I 1 

ROOT BIGJOB 003000 003000 0075A3 64 04 1 CSECT BIGJOB 003000 003000 1 
1 
I 
1 

CSECT ILBDSEMO 006268 006268 1 
* ENTRY CURSEGM 00637D It 01 
CSECT ILBDSRTO 006B38 006B38 

BIGJOB10 0075A8 0075A8 0075E9 64 09 2 CSEC~ BIGJOB10 0075A8 0075A8 
BIGJOB47 0075A8 0075A8 007899 65 00 1 CSECT BIGJOB47 007SA8 0075A8 
BIGJOB48 0075A8 007SA8 0075DB 65 00 2 CSECT BIGJOB48 0075A8 0075A8 
BIGJOB49 0075A8 007SA8 007503 65 01 1 CSECT BIGJOB49 0075A8 0075A8 
BIGJOB50 0075A8 007SA8 0075Fl 65 01 2 CSECT BIGJOB50 0075A8 0075A8 
BIGJOB60 0075A8 0075A8 0076ED 65 02 1 CSECT BIGJOB60 0075A8 0075A8 
BIGJOB62 0075A8 0075A8 007501 65 02 2 CSECT BIGJOB62 0075A8 0075A8 
BIGJOB63 0075A8 0075A8 007621 65 03 1 CSECT BIGJOB63 0075A8 0075A8 ~ 
BIGJOBOO 0078AO 0078AO 0078A1 &5. 03 2 CSEC~ ILBDDUMO 0078A~ 0078AO ~ _______________________________________________________________________ ~---------------J 

Figure 26. Link Editing a segmented Program 

r------------------------------------------------------------------------------~--------, 

r--~---------1 
1 ROOT 1 Including COBOL·subroutines and called programs 
~------------~ 

{
I TRANSIENT I 

L I AREA I 
~------------~ 

Overlayable and independ~nt segments 

ISORT PROGRAM 1 L ____________ J 

L = length of the largest segment in bytes. 

Figure 27. Location of Sort Program in a segmentation Structure 

Using the Segmentation Feature 10? 



( 



• PROCESSING COBOL FILES ON MASS STORAGE DEVICES 

• ADVANCED PROCESSING CAPABILITIES 

• RECORD FORMATS 

• PROGRAMMING TECHNIQUES 





A mass storage device is one on which 
records can be stored in such a way that 
the location of anyone record can be 
determined without extensive searching. 
Records can be accessed directly rather 
than serially. 

The recording surface of a mass storage 
device is divided into many tracks. A 
track is defined as a circumference of the 
recording surface. The number of tracks 
per recording surface and the capacity of a 
track for each device are shown in Table 8. 

Table 8. Recording capacities of Mass 
Storage Devices 

r------T----------------------------------, 
1 Device 1 capacity 1 
~------t----------------------------------~ 
12311 1 200 tracks per surface; 3625 I 
1 I bytes per track. I 
~------+------------~------~--------------~ 
12314 1 200 tracks per surface; 7294 I 
1 1 bytes per track. 1 
~------+----------------------------------~ 
,12321 1 100 tracks per strip; 2000 bytes' 1 
1 1 per track. 1 L ______ ~ __________________________________ J 

Each device has some type of access 
mechanism through which data is transferred 
to and from the device. The mechanisms are 
different for each device, but each 
mechanism contains a number of read/write 
heads that transfer data as the recording 
surfaces rotate past them. Only one head 
can transfer data (either reading or 
writing) at a time. 

FILE ORGANIZATION 

Records 'in a file must be logically 
organized so that they can be retrieved 
efficiently for processing. Three methods 
of organization for mass storage devices 
are supported by the Disk Operating System 
Full American National Standard COBOL 
compiler: sequential, direct, and indexed. 

SEQUENTIAL ORGANIZATION 

In a sequential file, ,records are 
organized solely on the basis of their 
successive physical location in the file. 
The records are read or updated in the same 
order in which they appear. 

Individual records cannot be located 
quickly. Records usually cannot be deleted 
or added unless the entire file is 
rewritten. This organization is used when 
most of the records in the file are 
processed each time the file is used. 

DIRECT ORGANIZATION 

A file with direct organization is 
characterized by some predictable 
relationship between the key of a record 
and the address of that record on a mass 
storage device. This relationship is 
established by the programmer. 

Direct organization is generally used 
for files where the time req~ired to locate 
individual records must be kept to an 
absolute minimum, or for files whose 
characteristics do not permit the use of 
sequential or indexed organization. 

This organization method has 
considerable flexibility. The accompanying 
disadvantage is that although the Disk 
Operating system provides the routines to 
read or write a file of this type, the 
programmer is largely responsible for the 
logic and programming required to locate 
the key of a record and its address on a 
mass storage device. 

INDEXED ORGANIZATION 

An indexed file is similar to a 
sequential file in that rapid sequential 
processing is possible. The indexes 
associated with an indexed file also allow 
quick retrieval of individual records 
through random access. Moreover, a 
separate area of the file is ~et aside for 
additions; this eliminates the neea to 
rewrite the entire file when adding 
records, a process that would usually be 
necessary with a sequentially organized 
file. Although the added records are not 
physically in key sequence, the indexes are 
constructed in such a way that the added 
records can be quickly retrieved in key 
sequence, thus making rapid sequential 
access possible. 

Processing COBOL Files on Mass Storage Devices 107 



In this method of organization, the Disk 
Operating system has control over the 
location of the individual records. Since 
the characteristics of the file are known, 
most of the mechanics of locating a 
particular record are handled by the 
system. 

The data management facilities of the 
Disk Operating System are provided by a 
group of routines that are collectively 
referred to as the Input/Output Control 
System (IOCS). A distinction is made 
between two types of routines: 

1. Physical IOCS (PIOCS) -- the physical 
input/output routines included in the 
Supervisor. PIOCS is used by all 
programs run within the system. It 
includes facilities for scheduling 
input/output operations, checking for 
and handling error conditions related 
to input/output devices, and handling 
input/output interruptions to maintain 
maximum input/output speeds without 
burdening the programmer's problem 
program. 

2. Logical IOCS (LIOCS) -- the logical 
input/output routines linked with the 
programmer's problem program. These 
routines provide an interface between 
the programmer's file processing 
routines and the PIOCS routines. 

LIOCS performs those functions that a 
programmer needs to locate and access 
a logical record for processing. A 
lQ~ical recurd is one unit of 
information ~n a file of similar 
units, for example, one employee's 
record in a master payroll file, one 
part-number record in an inventory 
file, or one customer account record 
in an account file. One or more 
logical records may be included in one 
physical record. LIOCS refers to the 
routines that perform the following 
functions: 

a. Blocking and deblocking records 

b. Switching between input/output 
areas when two areas are specified 
for a file 

c. Handling end-of-file and 
end-of-volume conditions 

d. Checking and writing labels 

A brief description of functions 
performed by LIOCSand their relationship 
to a COBOL program follows. 

108 

Whenever COBOL imperative-statements 
(READ, WRITE, REWRITE, etc.) are used in a 
program to control the input/output of 
records in a file, that file must be 
defined by a DTF (Qefine The ~ile). A DTF 
is created for each file opened in a COBOL 
program from information specified in the 
Environment Division, FD entry, anj 
input/output statements in the source 
program. The DTF for each file is part of 
the object module that is generated by the 
compiler. It describes the characteristics 
of the logical file, indicates the type of 
processing to be used for the fil~ and 
specifies the main storage areas and 
routines used for the file. 

One of the constants in the DTF table is 
the address of a logic module that is to be 
used at execution time to process that 
file. A lQgi£_~od~!~ contains the coding 
necessary to perform data management 
functions required by the file such as 
blocking and deblocking, initiating laDel 
checking, etc. 

Generally, these logic modules are 
assembled separately and cataloged in the 
relocatable library under a standard name. 
At link editing time, the Linkage Editor 
searches the relocatable library using the 
virtual reference to locate the logic 
module. The logic module is then included 
as part of the program phase. Note that 
since the Autolink feature of the Linkage 
Editor is responsible for including the 
logic modules, the COBOL programmer need 
not specify any INCLUDE statements. 

The type of DTF table prepared by the 
compiler depends on the organization of the 
file and the device to which it is 
assigned. The DTF's used for processing 
files assigned to mass storage devices are 
as follows: 

DTFSD -- Sequential organization, 
sequential access 

DTFDA -- Direct organization, 
sequential or random access 

DTFIS -- Indexed organization, 
sequential or random access 

The remainder of this chapter provides 
information about preparing programs which 
process files assigned to mass storage 
devices. Included are general descriptions 
of the organization, the COBOL statements 
that must be specified in order to build 
the correct DTF tables, and coding 
examples. 



SEQUENTIAL ORGANIZATION (DTFSD) 

In a sequential file on a mass storage 
device, records are written one after 
another -- track by track, cylinder by 
cylinder -- at successively higher 
addresses. 

Records may be fixed-length, spanned, or 
variable-length, blocked or unblocked, or 
undefined. Since the file is always 
accessed sequentially, it is not formatted 
with keys. 

Processing a sequentially organized file 
for selected records is inefficient. If it 
is done infrequently, the time spent in 
locating the records is not significant. 
The slowest way is to read the records 
sequentially until the desired one is 
located. On the average, half of the file 
must be read to locate one record. 

Additions and deletions require a 
complete rewrite of a sequentially 
organized file on a mass storage device. 
Sequential organization is used on mass 
storage devices primarily for tables and 
intermediate storage rather than for master 
files. 

Sequentially organized files formatted 
with keys cannot be created using DTFSD. 
DTFDA may be used to create and access 
(sequentially or randomly) such files. 

PROCESSING A SEQUENTIALLY ORGANIZED FILE 

To create, retrieve, or update a DTFSD 
file, the following specifications should 
be made in the source program: 

Required clauses: 

SELECT [OPTIONAL] file-name 

ASSIGN TO SYSnnn- J UT t - { ~ii! } -S 
) DA .f , 2321 

Optional clauses: 

RESERVE Clause 
FILE-LIMIT Clause 
ACCESS MODE IS SEQUENTIAL 
PROCESSING MODE IS SEQUENTIAL 
RERUN Clause 
SAME Clause 
APPLY WRITE-ONLY Clause (create only) 
APPLY WRITE-VERIFY Clause (create or 

update only) 

Invalid clauses: 

ACCESS MODE IS RANDOM 
ACTUAL KEY Clause 
NOMINAL KEY Clause 
RECORD KEY Clause 
TRACK-AREA Clause 
MULTIPLE FILE TAPE Clause 
APPLY EXTENDED-SEARCH Clause 
APPLY CYL-OVERFLOW Clause 

~MASTER-INDEX} 
APPLY) Clause 

~CYL-INDEX 

APPLY CORE-INDEX Clause 

DTFSD files may be opened as INPUr, 
OUTPUT, or 1-0. When creating such a file, 
an INVALID KEY condition occurs when the 
file limit has been reached and an attempt 
is made to place another record on the mass 
storage device. The file limit is 
determined from the XTENT or EXTENr control 
statements. 

When a DTFSD file is opened as OUTPUT, 
each WRITE statement signifies the creation 
of a new record. When opened as 1-0, each 
WRITE statement signifies that the record 
just read is to be rewritten. 

DIRECT ORGANIZATION (DTFDA) 

With direct organization, there is a 
definite relationship beteween the key of a 
record and its address. This relationship 
permits rapid access to any record if the 
file is carefully organized. The 
programmer develops a record address that 
ranges from zero to some maximum by 
converting a particular field in each 
record to a track address. Each byte in 
the address is a binary number. To 
reference a particular record, the 
programmer must supply both the track 
address and the identifier that makes each 
record unique on its track. Both the track 
address and the identifier are supplied by 
the programmer in the ACTUAL KEY clause. 
This will be discussed in detail later in 
this chapter. 

With direct organization, records may be 
fixed length, spanned or undefined. The 
records must be unblocked. RO (record 
zero) of each track is used as a capacity 
record. It contains the address of the 
last record written on the track, and is 
used by the system to determine whether a 
new record will fit on the track. The 
capacity records are updated by the system 
as records are added to the file. The 
capacity records do not account for 

Processing COBOL Files on Mass Storage Devices 109 



deletions: as far as the system is 
concerned, once a track is full it remains 
full (even if the programmer deletes 
records> until the file is reorganized. 

Often, more records are converted to a 
given track address than will actually fit 
on the track. These surplus records are 
known as overflow records and are usually 
written into a separate area known as an 
overflow area. 

As already noted, the programmer has an 
unlimited choice in deciding where records 
are to be located in a directly organized 
file. The logic and programming are his 
responsibility. 

When creating or making additions to the 
file, the programmer must specify the 
location for a record (track address) and 
the identifier that makes each record on 
the track unique. If there is space on the 
track, the system writes the record and 
updates the capacity record. If the 
specified track is full, a standard error 
condition occurs, and the programmer may 
specify another track address in his USE 
AFTER STANDARD ERROR declarative routine. 

In the case of one maximum size record 
per track (when spanned records are not 
specified>, the data length plus the length 
of the symbolic key cannot exceed the 
following values: 

2311 
2314 
2321 

3605 bytes 
7249 bytes 
1984 bytes 

When reading or updating the file, the 
programmer must supply the track address 
and the unique identifier on the track for 
the specific record being sought. The 
system locates the track and searches that 
track for the record with the specified 
identifier. If the record is not found, 
COBOL indicates this to the programmer by 
raising an INVALID KEY condition. Only the 
track specified by the programmer is 
searched. If, however, the APPLY 
EXTENDED-SEARCH clause has been specified 
for the file, the entire cylinder is 
searched for the desired record. In this 
case, the INVALID KEY condition arises only 
if the record cannot be found on the 
cylinder. To ensure file integrity, the 
upper limit of each ext.ent of a file using 
EXTENDED-SEARCH must be the last track of a 
cylinder. 

Error recovery from a DTFDA file is 
described in detail in the chapter 
"Advanced Processing capabilities." 

110 

ACCESSING A DIRECTLY ORGANIZED FILE 

A directly organized file (DTFD~) may be 
accessed either sequentially or randomly. 

ACCESSING A DIRECTLY ORGANIZED FILE 
~~QQ~~!I~~~r:--When-readrng-a-drrect file 
sequentially, records are retrieved in 
logical sequence; this logical sequence 
corresponds exactly to the physical 
sequence of the records. To retrieve a 
DTFDA file sequentially, the following 
specifications are made in the source 
program: 

ENVIRONMENT DIVISION 

Required clauses: 

SELECT [OPTIONAL] file-name 

FILE-LIMIT Clause 
ACCESS MODE IS SEQUENTIAL 
PROCESSING MODE IS SEQUENTIAL 
ACTUAL KEY Clause 
RERUN Clause 
SAME Clause 

Invalid clauses: 

RESERVE Clause 
ACCESS MODE IS RANDOM 
NOMINAL KEY Clause 
RECORD KEY Clause 
TRACK-AREA Clause 
MULTIPLE FILE TAPE Clause 
APPLY WRITE-ONLY Clause 
APPLY CYL-OVERFLOW Clause 
APPLY EXTENDED- SEARCH Clause 
APPLY WRITE-VERIFY Clause 

j MASTER- INDEX l 
APPLY, ( Clause 

(CYL-INDEX ) 

APPLY GORE-INDEX Clause 

When DTFDA reco'rds are retrieved 
sequentially, the file may be opened only 
as INPUT. The AT END condition occurs when 
the last record has been read and execution 
of another READ is attempted. 

Note that in the ASSIGN clause, an A 
must be specified for files witn actual 
track addressing, and a Q must be specified 
for files with relative track addressing. 



) 

ACCESSING A DIRECTLY ORGANIZED FILE 
gANDQ~~~~--To-create-a-drrectly-organized 
file randomly, the following specifications 
are made in the source program: 

SELECT file-name 

ASSIGN TO SYSnnn-DA- { mtH: i 
ACCESS MODE IS RANDOM 
ACTUAL KEY Clause 

Optional clauses: 

FILE-LIMIT Clause 
PROCESSING MODE IS SEQUENTIAL 
RERUN Clause 
SAME Clause 
APPLY WRITE-VERIFY Clause 

RESERVE Clause 
ACCESS MODE IS SEQUENTIAL 
NOMINAL KEY Clause 
RECORD KEY Clause 
TRACK-AREA Clause 
MULTIPLE FILE TAPE Clause 
APPLY WRITE-ONLY Clause 
APPLY EXTENDED-SEARCH Clause 
APPLY WRITE-VERIFY Clause 
APPLY CYL-OVERFLOW Clause 

JMASTER-INDEX ( 
APPLY) Clause 

{CYL-INDEX 

APPLY CORE-INDEX Clause 

Note that in the ASSIGN clause, an A 
must be specified for files with actual 
track addressing, and a Q must be specified 
for files with relative track addressing. 

To retrieve or update a directly 
organized file randomly, the following 
specifications must be made in the source 
program. 

ENVIRONMENT DIVISION 

SELECT file-name 

ASSIGN TO SYSnnn-DA- 2314 - D { 2311 ( l A ~ 
2321 U 

W 

ACCESS MODE IS RANDOM 
ACTUAL KEY Clause 

Note that in the ASSIGN clause an A must 
be specified for files with actual track 
addressing, a D must be specified for files 
with relative track addressing, a Q must be 
specified for files with actual track 
addressing when the REWRITE statement is 
used, and ~ must be specified for files 
with relative track addressing when the 
REWRITE statement is used. 

The optional and invalid clauses are the 
same as those specified previously for 
creating a directly organized file. 

Exception: APPLY EXTENDED-SEARCH is 
optional when retrieving or updating a 
directly organized file randomly. 

ACTUAL KEY CLAUSE 

Note that the ACTUAL KEY clause is 
required for DTFDA files when ACCESS IS 
RANDOM, is optional for DTFDA files when 
ACCESS IS SEQUENTIAL, and is not used for 
DTFSD files. 

The actual key consists of two 
components. One component expresses the 
track address at which the record is to be 
placed for an output operation, or at which 
the search is to begin for an input 
operation. The track address can be 
expressed either as an actual address or as 
a relative address, depending upon the 
addressing scheme chosen when the file was 
created. The other component is associated 
with the record itself and serves as its 
unique identifier. The structures of both 
actual keys are shown in Figure 28. 

r-----------------------------------------, 
r-------------------------------, 
I Actual Key I 
~-------------T-----------------~ 
IActual Track IRecord Identifier I 
I Address I I L _____________ ~ _________________ J 

Byte 1 8 9 263 

r-------------------------------, 
I Actual Key I 
~-------------T-----------------~ 
I Relative IRecord Identifierl 
ITrack Address I I L _____________ ~ _________________ J 

I Byte 1 4 5 258 L ________________________________________ _ 

Figure 28. Structures of the Actual Key 

Processing COBOL Files on Mass Storage Devices 111 



r-------------T-------------T---------------T--------------T------------~, 
I Pack I Cell I Cylinder I Head I Record I 
~-------------f------T------f------T--------+------T-------+-------------~ 
I M I BIB IC I C I HI H, R , 

f--------------+-------------+------+------+------+--------+------+-------f-------------i 
I Byte I I I I I I I I I 
, , "I ,. I 'I I 
I Device I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
~-------------- -------------f--~---f------+------+--------f------+-------+-------------~ 
I 2311 I 0-221 I 0 I 0 I 0 ,0-199 I 0 I 0-9 I 0-255 I 
~--------------f-------------+------+------+------+--------+------+-------+-------------i 
I 2314 I 0-221 I 0 I 0 I 0 I 0-199 I 0 I 0-19 I 0-255 I 
~--------------+-------------f------f------f------+--------f------+-------f-------------~ 
I 2321 I 0-221 I 0 I 0-9 I 0-19 I 0-9 I 0-4 I 0-19 I 0-255 I L ______________ ~ _____________ ~ ______ ~ ______ ~ ______ ~ ________ ~ ______ ~ _______ ~ _____________ J 

Figure 29. Permissible Specifications for the First Eight Bytes of the Actual Key 

The format of the ACTUAL KEY clause is: 

ACTUAL KEY IS data-name 

When actual track addressing is used, 
data-name may be any fixed item from 9 
through 263 bytes in length. It must be 
defined in the Working-Storage, File, or 
Linkage Section. The first eight bytes are 
used to specify the actual track address. 
The structure of these bytes and 
permissible specifications for the 2311, 
2314, and 2321 mass storage devices are 
shown in Figure 29. The programmer may 
select from 1 to 255 bytes for the record 
identifier portion of the actual key field. 

When relative track addressing is used, 
data-name may be any fixed item from 5 
through 258 bytes in length. It must be 
defined in the File Section, the Working­
storage Section, or the Linkage Section. 
The first four bytes of data-name are the 
track identifier. The identifier is used 
to specify the relative track address for 
the record and must be defined as an 
8-integer binary data item whose maximum 
value does not exceed 16,777,215. The 
remainder of data-name, which is 1 through 
254 bytes in length, is the record 
identifier. It represents the symbolic 
portion of the key field used to identify a 
particular record on a track. 

For a complete discussion of the ACTUAL 
KEY clause, see the publication IBM 
§ystem/360 Disk Operating system:--Full 
American National Standard COBOL. 

One method of determining the value of 
the track address portion of the field 
defined in the ACTUAL KEY clause is 
referred to as in~~rgct_addre~~ing. 
Indirect addressing generally is used wht._. 
the range of keys for a file includes a 

112 

high percentage of unused values. For 
example, employee numbers may range from 
000001 to 009999, but only 3000 of the 
possible 9999 numbers are currently 
assigned. Indirect addressing is also used 
for nonnumeric keys. Key, in this 
discussion, refers to that field of the 
record being written that will be converted 
to the track address portion. 

Indirect addressing signifies that the 
key is converted to a value for the actual 
track address by using some algorithm 
intended to limit the range of addresses. 
Such an algorithm is called a randomizing 
iechn!g~~. Rand~mizing techniques need not 
produce a unique address for every record 
and, in fact, such techniques usually 
produce 2YnQrrym~. Synonyms are records 
whose keys randomize to the same address. 

Two objectives must be considered in 
selecting a randomizing technique: 

1. Every possible key in the file must 
randomize to an address within the 
designated range. 

2. The addresses should be distributed 
evenly across the range so that there 
are as few synonyms as possible. 

Note that one way to minimize synonyms 
is to allocate more space for the file than 
is actually required to contain all the 
records. For example, the percentage of 
locations that are actually used might be 
80% to 85% of the allocated space. 

( 



When actual track addressing is used, 
the first eight bytes of the ACTUAL KEY 
field can be thought of as a "discontinuous 
binary address." This is significant to 
the programmer because he must keep two 
considerations in mind. First, the 
cylinder and head number must be in binary 
notation, so the results of the randomizing 
formula must be in binary format. Second, 
the address is "discontinuous" since a 
mathematical overflow from one element 
(e.g., head number) does not increment the 
adjacent element (e.g., cylinder number). 

DIVISION/REMAINDER METHOD: One of the 
simplest ways to indirectly address a 
directly organized file is by using the 
division/remainder method. (For a 
discussion of other randomizing techniques, 
see the publication Introduction to IBM 
System/360 Direct Access Storage Devices 
~n~QEganization Methods, Order No. 
GC20-1649.) 

1. Determine the amount of locations 
required to contain the data file. 
Include a packing factor for 
additional space to eliminate 
synonyms. The packing factor should 
be approximately 20% of the total 
space allocated to contain the data 
file. 

2. Select, from the prime number table, 
the nearest prime number that is less 
than the total of step 1. A 2Ei~~ 
n~~Q~E is a number divisible only by 
itself and the integer 1. Table 9 is 
a partial list of prime numbers. 

3. Clear any zones from the first eight 
bytes of the actual key field. This 
can be accomplished by moving the key 
to a field described as COMPUTATIONAL. 

4. Divide the key by the prime number 
selected. 

5. Ignore the quotient; utilize the 
remainder as the relative location 
within the data file. 

6. (For actual track addressing only) 
Locate the beginning of the space 
available and manipulate the relative 
address, to the actual device address 
if necessary. 

For example, assume that a company is 
planning to create an inventory file on a 
2311 disk storage device. There are 8000 
different inventory parts, each identified 
by an 8-character part number. Using a 20% 
packing factor, 10,000 record positions are 
allocated to store the data file. 

~~~hQg_~: The closest prime number to 
10,000, but under 10,000, is 9973. Using

one inventory part number as an example, in
this case #25DF3514, and clearing the zones
we have 25463514. Dividing by 9973 we get
a quotient of 2553 and a remainder of 2445.
2445 is the relative location of the record
within the data file corresponding to part
number 25DF3514. The record address can be
determined from the relative location as
follows:

1. (For actual track addressing only)
Determine the beginning point for the
data file (e.g., cylinder 100, track
0).

2. Determine the number of records that
can be stored on a track (e.g., twelve
per track on a 2311 disk pack,
assuming each inventory record is 200
bytes long).

Because each data record contains
non-data components, such as a count
area and interrecord gaps, track
capacity for data storage will vary
with record length. As the number of
separate records on a track increases,
interrecord gaps occupy additional
byte positions so that data capacity
is reduced. Track capacity formulas
provide the means to determine total
byte requirements for records of
various sizes on a track. These
formulas can be found in the
publications I~~~ystem/360 component
Descriptions, Order Nos. GA26-5988
and GA26-3599.

3. Divide the relative number (2445) by
the number of records to be stored on
each track.

4. (For actual track addressing only)
The result, quotient = 203, is now
divided into cylinder and head
designation. Since the 2311 disk pack
has ten heads, the quotient of 203 is
divided by 10 to show:

Cylinder or CC = 20
Head or HH = 03 (high-order zero

added>

4B. (For relative track addressing only)
The result, quotient = 203, now
becomes the track identifier of the
actual key.

~thQ~_~: Utilizing the same example,
another approach will also provide the
relative track address: .
1. The number of records that may be

contained on one track is twelve.
Therefore, if 10,000 record locations
are to be provided, 834 tracks must be
reserved.

Processing COBOL Files on Mass Storage Devices 113

Table 9. Partial List of Prime Numbers
(Part 1 of 2)

r------------------T----------------------,
I A I B I
I (Number) I (Nearest Prime Number I
I I Less Than A) I

~------------------+----------------------~
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000
5100
5200
5300
5400
5500

499
599
691
797
887
997

1097
1193
1297
1399
1499
1597
1699
1789
1889
1999
2099
2179
2297
2399
2477
2593
2699
2797
2897
2999
3089
3191
3299
3391
3499
3593
3697
3797
3889
3989
4099
4177
4297
4397
4493
4597
4691
4799
4889
4999
5099
4197
5297
4399
5483 L __________________ ~ ______________________ J

114

Table 9. Partial List of Prime Numbers
,(Part 2 of 2)

r------------------T----------------------,
I A I B I
I (Number) I (Nearest Prime Number I
I I Less Than A) I

~----~-------------+----------------------~
5600 5591
5700 5693
5800 5791
5900 5897
6000 5987
6100 6091
6200 6199
6300 6299
6400 6397
6500 6491
6600 6599
6700 6691
6800 6793
6900 6899
7000 6997
7100 7079
7200 7193
7300 7297
7400 7393
7500 7499
7600 7591
7700 7699
7800 7793
7900 7883
8000 7993
8100 8093
8200 8191
8300 8297
8400 8389
8500 8467
8600 8599
8700 8699
8800 8793
8900 8899
9000 8899
9100 9091
9200 9199
9300 9293
9400 9397
9500 9497
9600 9587
9700 9697
9800 9791
9900 9887

10,000 9973
10,100 10,099
10,200 10,193
10,300 10,289
10,400 10,399
10,500 10,499
10,600 10,597 __________________ ~ ______________________ J

2. The prime number nearest, but less
than 834, is 829.

3. Divide the zone-stripped key by the
prime value. (In the example,
25463514 divided by 829 provides a
quotient of 30715 and a remainder of
779. The remainder is the relative
address.)

4. (For actual track addressing only) To
convert the relative address to an
actual device address, divide the
relative address by the number of
tracks in a cylinder. The quotient
will provide the cylinder number and
the remainder will be the track
number. For example, the 2311 disk
pack would utilize 779 as:

Cylinder or CC = 77
Track or HH = 9

Figure 30 is a sample COBOL program
which creates a direct file with actual
track addressing using Method Band
provides for the p05sibility of synonym
overflow. Synonym overflow will occur if a
record randomizes to a track that is
already full. The following description
highlights the features of the example.
Circled numbers on the program listing
correspond to the numbers in the text.

The value 10 is added to TRACK-1 to
ensure that the problem program does
not write on cylind.er O. Cylinder 0
must be reserved for the Volume Table
of Contents.

• Since the prime number used as a
divisor is 829, the largest possible
remainder will be 828. Adding 10 to
TRACK-1 adjusts the largest possible
remainder to 838.

If synonym overflow occurs, control is
given to the error procedure
declarative specified in the first
section of the Procedure Division.
The declarative provides that:

• Any record which cannot fit on a
track (i.e., tracks 0 through 8 of
any cylinder) will be written in the
first available position on the
following track(s).

• Any record which cannot fit within a
single cylinder will be written on
cylinder 84 (i.e., the cylinder
overflow area).

• If a record cannot fit on either
cylinders 1 through 83, or on
cylinder 84, the job is terminated.

The standard- error condition "no room
found" is tested before control is
given to the synonym routine. Other
standard error conditions as well as
invalid key conditions result in job
termination.

ERROR-COND is the identifier which
specifies the error condition that
caused control to be given to the
error declarative. ERROR-COND is
printed on SYSLST whenever the error
declarative section is entered.
TRACK-ID and C-REC are also printed on
SYSLST. They are printed before the
execution of each WRITE statement.
This output has been provided in order
to facilitate an understanding of the
logic involved in the creation of
D-FILE.

The first twelve records which
randomize to cylinder 002 track 8 are
actually written on track 8.

The next twelve records which
randomize to cylinder 002 track 8 are
adjusted by the SYNONYM-ROUTINE and
written on cylinder 002 track 9.

The next twelve records which
randomize to cylinder 002 track 8 are
adjusted by the SYNONYM-ROUTINE and
written on cylinder 84 track 0 (i.e.,
the overflow cylinder).

(1) The last two records which randomize
to cylinder 002 track 8 are adjusted
by the SYNONYM-ROUTINE and written on
cylinder 84 track 1 (i.e., the
overflow cylinder).

Processing COBOL Files on Mass Storage Devices 115

II JOB METHODB
II OPTION NODECK,lINK,lIST,lISTX,SYM,ERRS
II EXEC FCOBOl

IDENTIFICATION DIVISION.
PROGRAM-ID. METHOD-B.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SCURCE-CDMPUTER. leM-360.
OBJECT-COMPUTER. IBM-360.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT a-fILE ASSIGN SYS015-DA-2311-A-MASTER
ACCESS IS RANDOM
AC TUAL KE'Y IS AC T-KEY.
SELECT C-FILE ASSIGN TO SYS007-UR-2540R-S.

DATA DIVISION.
FILE SECTION.
FD D-fILE

LABEL RECORDS ARE STANDARD.
01 D-REC.

02 PART-NUM FIC X(8J.
02 NUM-ON-HAND PIC 9(4j.
02 PRICE PIC 9151V99.
02 FILLER PIC XllSl).

FD C-FIlE
LAeEL RECORDS ARE OMITTED.

01 C~REC.
02 PART-NUM PIC X(8).
02 NUM-ON-HAND PIC 9(4J.
02 PRICE PIC ~(5)V99.

WORKING-STORAGE SECTION.
77 HD PIC 9 VALUE ZERO.
77 SAVE PIC S9(8) COMP SYNC.
77 QUOTIENT PIC S9(5J COMP SYNC.
01 ERROR-COND.

02 FILLER PIC 99 VALUE ZERO.
02 ERR PIC 9 VALUE ZERO.
02 FIllER PIC 9(5) VALUE ZERO.

01 TRACK-l pIC ~999.
01 TRACK-ID REDEFINES TRACK-I.

02 CYL PIC «;99. .
02 HEAD PIC 9.

e1 . KEY-I.
e2 M PIC S9«;9 COMP SYNC VALUE ZEROES.
02 BB PIC 59 CaMP SYNC VALUE ZERO.
C2 CC PIC S999 CaMP SYNC.
02 HH PIC 59 COMP SYNC.
02 R PIC X VALUE lOW-VALUE.
C2 REC-ID pIC xes).

01 KEY-2 REDEFINES KEY-I.
C2 FILLER PIC X.
C2 ACT-KEY PIC X(16J.

Figure 30. Creating a Direct File Using Method B (Part 1 of 4)

116

PROCEDURE DIVISION.
DECLARA TI VES.
ERRQR-PROCEDURE SECTION. USE AFTER STANDARD ERROR PROCEDURE

ON D-FILE GIVING ERROR-COND.
ERROR-ROUTINE.

EXHIBIT NAMED ERRuR-COND.
IF ERR = 1 GO TO SYNONYM-ROUTINE ELSE }

DISPLAY ICTHER STANDARD ERROR I REC-ID (D
GO TO EOJ.

SYNONYM-ROUTINE.
IF CC = 84 AND HD = 9 DISPLAY 10VERFLCW AREA FULLI

GO TO EOJ.
IF CC = 84 ADO l TO HD GO TO AoJUST-HD.
IF HH = 9 GO TO END-CYLINDER.
ADD l TO HH.
GO TO WRITES.

ENe-Cn INDER.
MOVE 84 TO CC.

ADJUST-HD.
MOVE HD TO HH.
GO TO WRITES.

END DECLARATIVES.
FILE-CREATION SECTION.

OPEN INPUT C-FILE
OUTPUT D-F ILE.

READS.
READ C-FILE AT END GO TO EOJ.
MOVE CORRESPONDING C-RfC TO D-REC.
MOVE PART-HUM OF C-REC TO REC-IO SAVE.
DIVIDE SAVE 8Y 829 GIVING QUOTIENT REMAINDER TRACK-l.
ADD 10 TO TRACK-l.
MOVE CYL TO CC.
MOVE HEAD TO HH.

WRITES.
EXHIBIT NAMED TRACK-ID C-REC CC HH.
WRITE D-REC INVALID KEY GO TO INVALID-KEY.
GO TO READS.

INVALID-KEY.

EOJ.

II LBLTYP NSD(Oll
1/ EXEC LNKEDT

CISPLAY IINVALID KEY REC~ID.

CLOSE C-FILE D-FILE.
STOP RUN.

}®

Figure 30. Creating a Direct File Using Method B (Part 2 of 4)

®

Processing COBOL Files on Mass Storage Devices 117

II ASSGN SYS(C7,X'00C'
II ~SSGN SYS015,X'192'
II DLBL MASTER.,50/C(1.OA
II EXTENT SYS015,111111,1,0,10,840
II EXEC

TRACK- I D 0010 C-REC e2C;(((C(
TRACK-ID 0011 C-REC 8290C001
TRACK-ID 0011 C-REC 82900001X
TRA(K- I 0 0028 C-REC 8290(Cle(1
T·RACK-I D 0028 C-REC 8290C018(2
TRACK- ID 0028 C-REC 8290CC1e(!
TRACK-IO 0028 C-REC 8290001804
TRACK-IO 0028 C-REC = e290((18(5
TRACK-IO 0028 C-REC 8290(018C6
TRACK-IO = OC2e C-REC 8290C(lSC7
TRACK-Ie 0028 C-REC 8290C(18C8
TRACK-IO 002e C-REC 8290C01809
TRACK-Ie 0028 C-REC 82900(1810
TRACK-ID 0028 C-REC 8 290(C 1811
TRACK-Ie 0028 C-REC 8290ce1812
TRACK-IO OC28 C-REC 8290eCl 813
ERI<OR-COND = C0100000
TRACK-I D = 0028 e-REC 8290ce1813
TRACK-ID = OC28 e-R EC 8 290CC 1814
ERRCP-CCt-iD = CC1CCCCO
TRACK-ID = CC2e C-REC 82900ele14
TRACK-Ie = 0028 C-REC 8290001815
ERROR-CONe = COICOOCO
TRACK-Ie = 0028 C-REC 8290eC181!;
TRACK-IO = 0028 C-REC 8290001816
ERROR-COND = COIcceco
TRACK-IO = 0028 C-REC 8290CC1816
TRACK-1D = OC28 C-REC 8290001817
ERRCR-CON D = COleeecc
TRACK-Ie = 0028 C-REC 8290CC1817
TRACK-IO = OC28 C-REC 8290C(1818
ERROR-COND = 001coeeo
TRACK-ID = 0028 C-REC 8290CC1818
TRACK-ID = OC28 C-REC 8290(e181<;
EI<RcR-CCN D = 001000CO
TRACK-ID = 0028 C-REC 8290ee181«;
TRACK- 10 = 0028 C-REe 82900C182C
ERROR-CoND = C01COOCO
TRACK-ID = 0028 C-REC 8290Cele2(
TRACK- ID = eC28 C-PEe 8290001821
ERI'OR-CON 0 = CC1eoeco
TRACK-IO = 0028 C-REC 8290001821
TRAeK- I 0 = 002E C-REC 8290((1822
EPRCP-CCNO = 00100000
TRACK- I D = OC28 C-REC 82900C1822
TRA(K-ID = 0028 (-REC 82900C182!
ERRCR-CCND = COICOOCO
TRACK-ID = eC2E C-REC 8290(01823
TRACK-Ie = 0028 C-PEC 8290C(1824
ERROR-CCND = CClecceo
TRACK-ID = 0028 (-R E(8290CC1824

CC COl HH 0
CC 001 HH 1
CC 001 HH 1
CC CO2 HH 8
CC 002 HH 8
CC 002 HH 8
CC 002 HH 8
CC 002 HH 8
CC CO2 HH 8 ® CC 002 HH 8
CC CO2 HH 8
CC 002 HH 8
CC CC2 HH 8
CC 002 HH 8
CC CC2 HH 8
CC 002 HH 8

CC 002 HH 9
CC 002 HH 8

CC 002 HH 9
CC CC2 HH 8

C(' CC2 HH 9
C(' 002 HH 8

CC CO2 HH 9
CC .:: 002 HH 8

e.c CO2 HH C;
CC 002 HH 8

CC 002 HH 9 ® CC CC2 HH 8

~C CO2 HH 9
CC CC2 HH 8

CC CC2 HH 9
CC CO2 HH 8

CC eC2 HH 9
CC 002 HH 8

CC OC2 HH 9
e.c CO2 HH 8

CC CO2 HH 9
cc OC2 HH R

c.;C CO2 HH = C;

Figure 30. Creating a Direct File Using Method B (Part 3 of 4)

118

TRACK-IO = 0028 C-REC 8290((1825 CC CO2 HH
ERRCR-CCNO = 00100000
TRACK- 10 = C028 C-REC 82900C1825 CC CO2 HH
ERRCR-CONO = CC1COCCO
TRACK- I D = CC28 C-REC 8290001825 CC C84 HH
T RACK- I D = 0028 C-REC 8290CCleH CC 002 HH
EPROR-CCNO = OC1COOOO
TRACK-IO =" 0028 C-REC 8290C01826 CC CO2 HH 9
ERRCR-CCNO = 00100000
TRACK-IO = C028 C-REC 8290C01826 CC 084 HH 0
TRACK- I C = OC28 C-REC 8290C01827 CC CC2 HH 8
ERRCR-COND = OOlCCCCO
TRACK-IO = 0028 C-REC 8290C01827 CC 002 I-IH 9
ERRCR-CCND = COlcecoc
TRACK-IC = 0028 C-REC 8290CC1827 CC C84 HH C
TRACK-IO = 0028 C-REC 8290C01828 CC CC2 HH 8
ERRCR-CONO = COleeeec
TRACK-IO = 0028 C-REC 82900C1828 CC CO2 HH <;
ERRCR-CCNC = (C1CCCCO
TRACK-IO = 0028 C-REC 8290C01828 CC 084 HH 0
TRACK-IO = 0028 C-REC 829COO1829 CC 002 HH 8
EI<l<CF-CONC = C010c'::oe
TRACK-IO = CC28 C-PEC 829000182C; CC 002 HH 9
ERRCR-COND = 0010CCCO
TRACK-IO = 0028 C-REC 829000182<; CC 084 HH 0
TRACK-IC = 0028 C-R EC 829000183C l.C CO2 HH 8
ERRCR-CONC = CC1ecccc
TRACK-IC = 0028 C-REC 8290001830 CC CC2 HH 9
ERRCR-CCNC = C01COOCO
TRACK-IO = 0028 C-REC 829CCC18!C C(' CA4 HH 0 ®
TRACK-IO = 0028 C-REC 8290C01831 CC CC2 HH 8
ERRCR-CCt-iD = CC100000
TRACK-IO = CC28 C-REC 8290001831 CC 002 HH 9
OilCR-CCNC = OOlOOOCO
TRACK-IO = CC28 C-REC 8290C01831 CC 084 HH 0
TRACK-IC = OC28 C-R EC 82900018!2 CC CC2 HH 8
ERRCR-CCNC = COICCOOO
TRACK-IC = 0028 C-REC 8290001832 CC 002 HH -:: <;

ERRCR-CCNO = COICOCOO
TRACK-IC = 0028 C-REC 829CC01832 CC 084 HI-! 0
TRACK-IC = CC2E C-REC 82900018!3 CC CO2 HH 8
ERRCR-CCNC = CCICCCCC
TRACK-IO = OC28 C-REC 8290CC1E33 CC 002 HH 9
ERRC R-CCN C = COI00000
TRACK-IO = 0028 C-REC 8290CC1833 CC 084 HH 0
TRACK-IO = CC28 C-REC 8290001834 CC CO2 HH 8
EPRCR-CONC = OOlCOOCO
TRACK-IO = 0028 C-REC 8290001834 CC 002 HH 9
ERRCR-CONC = CClcceec
TRACK-IC = 0028 C-R EC 8290C01834 Cl. 084 HH
TRACK-IC = 0028 C-REC 8290C(18!5 CC CC2 HH
ERRCR-CONC = CC1CCCCC
TRACK-IO = 0028 C-REC 8290eC183!: CC 002 HH 9
ERRCR-CCNC = C01COOOO
TRACK-ID = CC28 C-REC 8290C(1835 CC 084 I1H 0
TRACK-IO = CC28 C-REC 8290CC1836 CC CO2 HH 8
ERHR-CCN 0 = COI00CCO
TRACK-IO = CC28 C-REC 8290001836 CC 002 HH 9
ERRCR-CON C = C01CCOCO
TRACK-IO 0028 C-R EC 8290001836 CC 084 HH 0

TRACK-IO 0028 C-REC 8290C01837 CC CO2 HH 8
FRROR-CONO = COICOCCC
TRACK-IO = 0028 C-REC 8290C01837 CC 002 HH 9
ERROR-eOND = CCICOCCO
TRACK- 10 = CC28 C-REC 829CCG18!7 CC 084 HH 0
ERROR-COND = (CICCCOO
TRACK-IO = 0028 C-REe 829CC01837 cc 084 HH 1 (i)
TRACK-IO = 0028 C-REC 8290001838 CC 002 HH 8
ERROR-COND = CC1COCCO
TRACK-IO = 0028 C-REC 8290CC1838 CC OC2 HH ::: 9
ERROR-CONO = COICCCCC
TRACK-IO = 0028 e-REC 8290CCl838 CC 084 HH

Figure 30. Creating a Direct File Using Method B <Part 4 of 4)

Processing COBOL Files on Mass Storage Devices 119

Figure 31 is a sample COBOL program
which creates a direct file with relative
track addressing using Method B. The
sample program provides for the possibility
of synonym overflow. Synonym overflow will
occur if a record randomizes to a track
which is already full. The following
discussion highlights some basic features.
Circled numbers on the program listing
correspond to numbers in the text.

120

Since the prime number used as a
divisor is 829, the largest possible
remainder will be 828.

If synonym overflow occurs, control is
given to the USE AFTER STANDARD ERROR
declarative specified in the first
section of the Procedure Division.
The declarative provides that any
record that cannot fit on the track to
which it randomizes will be written on
the first subsequent track available.

The standard error condition "no room
found" is tested before control is
given to the SYNONYM-ROUTINE. Other
standard error conditions as well as
invalid key conditions result in job
termination (EOJ).

ERROR-COND is the identifier which
specifies the error condition that

caused control to be given to the
error declarative. ERROR-COND is
printed on SYSLST whenever the error
declarative section is entered.
TRACK-ID and C-REC are also printed on
SYSLST before execution of each WRITE
statement. This output has been
provided in order to facilitate an
understanding of the logic involved in
the creation of D-FILE.

The first twelve records which
randomize to relative track 18 are
actually written on relative track 18.

The next twelve records which
randomize to relative track 18 are
adjusted by the SYNONYM-ROUTINE and
are actually written on relative track
19.

The next twelve records which
randomize to relative track 18 are
adjusted by the SYNONYM-ROUTINE and
are actually written on relative track
20.

The last two records which randomize
to relative track 18 are adjusted by
the SYNONYM-ROUTINE and are actually
written on relative track 21.

II JOB METHODB
II OPTION NODECK,LINK,LIST,LISTX,SYH,ERRS
I I EXEC FCOBOL

CBL QUOTE
IDENTIFICAr ION DIV ISION.
PROGRAM-ID. ME!T=fODB.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-:OMPUTER. IBM-360.
OBJECT-COMPUTER. IEM-360.
INPUT-OUTPUT SE:TION.
FI LE-CONT ROL.

SELE:T D-FILE ASSI3N TO SYS015-DA-2311-D-MASrER
ACCESS IS RANDOM
AC TUAL KE Y I S A: T- KE Y.
SELECr C-FILE ASSIGN TO SYS007-UR-2540R-S.

DATA DIVISION.
FILE SECT ION.
FD D-FILE.

LABEL RECORDS ARE ST AN DARD,
01 D-REC.

05 PART-NJM PIC lC (8) •
05 NUM-ON-HAND PIC 9 (tJ).
05 PRICE pIC 9(~V99.
05 FILLE R P[: X (1 81) •

FD C-FILE
LABEL RE:ORDS ARE OMITTED.

01 C-REC.
05 PAR T- N U M PI C X (8) •
05 NUM-ON-HAND PIC 9(4) •
05 PRICE PIC 9(5)V99.
05 FILLER PIC X (611 •

WJRKING-STORA3E SECTION.
77 SAVE PIC S9 (8) COMP SYNC.
77 QUOTIENT PI: S9 (8) :OMP SYNC.
01 ACT-KEY.

02 TRACK-ID PIC S9 (8) COMP SYNC.
02 REC-ID PIC X(8).

01 ERROB-COND.
02 FILLER PIC 99 VAL U E ZERO.
02 ERR PI: 9 VALUE ZERO.
02 FILLER PIC 9(~ VALUE ZERO.

Figure 31. Creating a Direct File with Relative Track Addressing Using Method B
<Part 1 of 4)

P~ocessing COBOL Files on Mass Storage Devices 121

PR3C EDUR E DI VI SIaN.
DECLARAT IV ES.
ERROR-PROCEDURE SECTION. USE AFTER srANDARD ERROR PROCEDJRE

ON D-FILE GIVING ERROR-COND.
ERROR-RD UTINE. {

EXBIBIr NAMED ERROR-COND.
IF ERR = 1 :;0 TO SYNONYM-ROUTI NE EL5 E I"i""

DISPLAY "OTHER srANDARD ERRJR "RE:-ID (\V
GO TO EOJ. J

S YNO NY M-ROUT IN E.
IF TRACK-ID IS LESS T~AN 834, ADD 1 ro rRACK-I~ GO ro

WRn ES.
END DECLARA TI VB S.

OPEN INPur C-FILE
OUTPUT D-FILE.

READS.
READ C-FILE AT END :;0 TO EOJ.
MOVE CORRESPONDING C-REC TO D-REC.
MOVE PAR T-NUM OF ~-REC TO REC-ID, SAVE.
DIVIDE SAVE BY 829 GIVnG QUOTIENT REMAINDf:R TRACK-ID.

WR ITES.
EXHIBIT NAMED TRACK-ID C-R EC.
WRITE D-RE: INVALID KEY GO TO INVALID-KEY.
GO TO READS.

IN VA L ID- KE Y.

EOJ.

1/ °L BLTYP N SD (01)
// EXEC LNKEDT

DISPLAY "INVALID KEY "REC-ID.

CLOS E C-FILE D-FILE.
STOP RUN.

}CD

Figure 31. Creating a Direct File with Relative Track Addressing Using Method B
(Part 2 of 4)

122

II ASSGN SYS007,X'00C'
II ASSGN SYS015,X'192'
II DLBL MASTER,,70/365,DA
II EXTENT SYS025,111111,1.,0,10,850
II EXEC

TRACK-ID 00000000 C-REC 82900000
TRACK-ID 00000001 C-REC 82900001
TRACK-ID 00000018 C-REC 8290001801
TRACK-ID 00000018 C-REC 8290001802
TRACK-ID 00000018 C-REC 8290001803
TRACK-ID 00000018 C-REC 8290001804
TRACK-ID 00000018 C-REC 8290001805
TRACK-ID 00000018 C-REC 8290001806 CD TRACK-ID 00000018 C-REC 8290001807
GRACK-ID 00000018 C-REC 8290001808
TRACK-ID 00000018 C-REC 8290001809
TRACK-ID 00000018 C-REC 8290001810
TRACK-ID 00000018 C-REC 8290001811
TRACK-ID 00000018 C-REC 8290001812
TRACK-ID 00000018 C-REC 8290001813
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001813
TRACK-ID = 00000018 C-REC 8290001814
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001814
TRACK-ID = 00000018 C-REC 8290001815
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001815
TRACK-ID = 00000018 C-REC 8290001816
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001816
TRACK-ID = 00000018 C-REC 8290001817
ERROR-COND = 00100000
TRACK~ID = 00000019 C-REC 8290001817
TRACK-ID = 00000018 C-REC 8290001818
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001818
TRACK-ID = 00000018 C-REC 8290001819 CD ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001819
TRACK-ID = 00000018 C- REC = 8290001820
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001820
TRACK-ID = 00000018 C-REC 8290001821
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001821
TRACK-ID = 00000018 C-REC 8290001822
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001822
TRACK-ID = 00000018 C-REC 8290001823
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001823
TRACK-ID = 00000018 C-REC 8290001824
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001824

Figure 31. Creating a Direct File with Relative Track Addressing Using Method B
(Part 3 of 4)

Processing COBOL Files on Mass Storage Devices 123

rRACK-ID = Q0000018 C-REC 8290001825
ERROR-COND = 00100000
rRACK-ID = 00000019 C-REC 8290001825
E RROR-COND = 0.0100000
rRACK-ID = 00000020 C-REC 8290001825
TRACK-ID = 00000018 C-REC 8290001826
ERROR-COND = 00100000
rRACK-ID = 00000019 C-REC 8290001826
ERROR-COND = 00100000
rRACK-ID = 00000020 C-REC 8290001826
TRACK-ID = 0·00.00018 C-REC = 8290001821
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC = 8290001827
ERROR-COND = 00100000
TRACK-ID = 00000020 C-REC = 8290001821
r RACK- ID = 00000018 C-REC 8290001828
ERRQR-COND = 00100000
rRACK-ID = 00000019 C-REC = 8290001828
ERROR-COND = 00100000
rRACK-ID = 00000020 C-REC = 8290001828
TRACK-ID = 00000018 C-REC = 8290001829
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC = 8290001829
ERROR-COND = 00100000
TRACK-ID = 00000020 C-REC = 8290001829
rRACK-ID = 00000018 C-REC 8290001830
~RROR-COND = 00100000
rRACK-ID = 00000019 C-REC = 8290001830
ERROR-COND = 00100000
r RACK-ID = Q0000020 C-REC = 8290001830
TRACK-ID = 00000018 C-REC = 8290001831 CD ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC = 8290001831
ERROR-COND = 00100000
TRACK-ID = 000n0020 C-REC = 8290001831
lRACK-ID = 00000018 C-REC 8290001832
ERROR-COND = 00100000
rRACK-ID = 00000019 C-REC = 8290P01832
ERROR-COND ~ 00100000
rRACK-ID = 00000020 C-REC = 8290001832
TRACK-ID = 00000018 C-REC = 8290001833
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC = 8290001833
ERROR-COND ~ 00100000
TRACK-ID = 00000020 C-REC = 8290001833
rRACK-ID = 00000018 C-REC 829000183~
ERROR-COND = 00100000
rRACK-ID = 00000019 C-REC = 82900018H
ERROR-COND = 00100000
rRACK-ID = 00Q00020 C-REC = 8290001834
TRACK-ID = 00000018 C-REC = 8290001835
ERROR-COND = 00100000
rRACK-ID = 00000019 C-REC = 8290001835
ERROR-COND = n0100000
r RACK- ID = 00000020 C-REC = 8290001835
TRACK-ID = 00000018 C-REC = 8290001836
ERROR-COND = 00100000
rRACK-ID = 00000019 C-REC = 8290001836
ERROR-COND = 00100000
rRACK-ID = 00000020 C-REC = 8290001836
TRACK-ID = 00000018 C-REC = 8290001837

10
ERROR-COND = 00100000
rRACK-ID = 00000019 C-REC 8290001837
ERROR-COND = 00100000
rRACK-ID = 00000020 C-REC 8290001837
ERROR-COND = 00100000
r RACK-ID = 00000021 C-REC 8290001831
TRACK-ID = 00000018 C-REC = 8290001838
ERROR-COND = 00100000

\
TRACK-ID = 00000019 C-REC = 8290001838
ERROR-COND = 00100000
TRACK-ID = 00000020 C-REC = 8290001838
ERROR-COND = 00100000
TRACK-ID = 00000021 C-REC = 8290001838

Figure 31. Creating a Direct File with Relative Track Addressing Using Method B
<Part 4 of 4)

124

ACTUAL TRACK ADDRESSING CONSIDERATIONS FOR
SPECIFIC DEVICES

Randomizing for the 2311 Disk Drive

When randomizing for the 2311 Disk
Drive, ~t is possible to circumvent the
discontinous binary address by coding the
randomizing formula in decimal arithmetic
and then converting the results to binary.
This can be done by setting aside a decimal
field with the low-order byte reserved for
the head number, and the high-order bytes
reserved for the cylinder number. A
mathematical overflow from the head number
will now increment the cylinder number and
produce a valid address. The low-order
byte should then be converted to binary and
stored in the HH field, and the high-order
bytes converted to binary and stored in the
CC field of the actual key field.

Randomizing to the 2311 Disk Drive
should present no significant problems if
the programmer using direct organization is
completely aware that the cylinder and head
number give him a unique track number. To
illustrate, the 2311 could be thought of as
consisting of tracks numbered as follows:

Cylinder 0

Track
Numbers

--,
I 0

--~
I

--~
I

--~
I

--~
I

--~
I

--~
I

--~
I 9

Cylinder 1
--,

110
--~

I
--~

I
--~

I
--~

I
--~

I
--~

I
- ~

119

Cylinder 2
--,

120
--~

I
--~

I
--~

I
--~

I
--~

I
--~

I
--~

129

If the randomizing formula resulted in
an address of cylinder 001, head 9:

Cylinder I Head
Number I Number

--------------t-----------
001 I 9

this would be a reference to track 19.
This fact allows the programmer to ignore
the discontinuous cylinder and head number.
If his formula resulted in an address of
0020, this would result in accessing
cylinder 2, head 0, the location of track
20.

The programmer can make another use of
this decimal track address. He may wisn to
reserve the last track of each cylinder for
synonyms. If this is the case, he is in
effect redefining the cylinder to consist
of nine tracks rather than ten tracks. The
2311 cylinder could then be thought of as
consisting of track numbers, as follows:

Cylinder 0 Cylinder 1 Cylinder 2
--, --, --,

Track I 0 19 118
Numbers --~ --j~ --~

I I 119
--~ --~ --~

I I 120
--~ --~ --~

I I I
--~ --~ --~

I I I
--~ --~ --~

I I I
--~ --~ --~

I I I
--~ --~ --~

I 8 117 126

If the programmer randomizes to relative
track number 20, he can access it by
dividing the track address by the number of
tracks (9) in a cylinder. The quotient now
becomes the cylinder number, and the
remainder becomes the head number.

2 cylinder number

9/0020
18

2 head number

To simplify randomizing, an algorithm
must be developed to generate a decimal
track address. This track address can then
be converted to a binary cylinder number
and head number. In addition, tracks can
be reserved by dividing the track address
by the number of tracks in a cylinder. The
same concepts will hold true for devices
such as the 2314. For example, an
algorithm can be developed using 20 tracks
per cylinder and dividing by the closest
prime number less than 20.

Processing COBOL Files on I~ss Storage Devices 125

Randomizing for the 2321 Data Cell

The track reference field for the 2321
Data Cell is composed of the following
discontinuous binary address:

sub
cell cell strip cyl. head record

r---~---T----T----T-----T----T----T------'

I I I I I I I I I
I M I BIB I C I C I H I H I R I l ___ L ___ L ____ L ____ L _____ ~ ____ ~ ____ ~ ______ J

0-9 0-19 0-9 0-4 0-19

At first glance, this presents an almost
impossible randomizing task; but since each
strip includes 100 tracks that are
accessible through cylinder and head
number, the 2321 Data Cell can be
considered to consist of consecutively
numbered tracks.

Tracks I Strip
-------------------f-------

0 ' 99 0

------100 ' 199 1

-------900 ' 999 9

1000 -------. 1099 10

1900~ , 1999 19

10000~' 10099 100

~
199 19900 t 19999

199900---: 199999 1999

It can be seen that relative track 20 is
located on cylinder 1, head 0 of some
particular strip. Its address can be
calculated by dividing by 20.

1 = cylinder number

20[;0
20

o = head number

Thus, relative track number 120 will be
located on strip 1, cylinder 1, head 0 of
some subcell. Note that the strip number
is given by the hundreds digit, and the
cylinder and head number are derived by
dividing the two low-order digits by 20.

The same relationship holds true for
relative track number 900. It is located
on strip 9, cylinder 0, track O. Again,
the hundreds digit gives the strip number,
and dividing the two low-order digits by 20

126

results in a quotient and remainder of
zero.

This relationship holds true through a
relative track number of 19999, which is
the number of tracks that can be contained
on one cell of a data cell array. By
applying the foregoing rules, an address of
subcell 19, strip 9, cylinder 4, head 19 is
derived.

Thus, by randomizing to a 5-digit
decimal track number, the programmer will
be able to access the 20,000 tracks
(40,000,000 characters) contained in a
cell.

The thousands digits would represent the
subcell number, the hundreds digit the
strip number, and the quotient and
remainder of the two low-order digits
divided by 20 would represent the cylinder
and head number. E..ach one of these
resulting decimal digits would then be
converted to binary and placed in the
appropriate location in the track reference
field.

There is a total of 200,000 tracks per
data cell array. To derive valid addresses
that cross cell boundaries, the programmer
shouldrandornize to a 6-digit decimal track
address. The highest address possible
should be 199,999. To convert this to a
data cell address, similar rules apply. In
this case, the programmer must divide the
three high-order digits by 20:

9 = cell

20f~~~
180

19 subcell

The quotient becomes the cell number and
the remainder becomes the subcell number.
The hundreds digit is still the strip
number, and the cylinder and head number
can be derived as pr~viously illustrated.
The resulting address is 0091994190 and
would appear in the first eight bytes of
the actual key field as follows:

sub
cell cell strip cyl.head

r----T----T----T----T----T---·~-· --T----'
I M I BIB I C I C I H I I R I

~----+----+----+----+----+----+----+----~
I 0 I 0 I 9 I 19 I 9 I 4 I 19 I 0 I l ____ ~ ____ ~ ____ ~ ____ L ____ L ____ L ____ L ____ J

Randomizing to the data cell can be
accomplished by developing an algorithm to
generate decimal track addresses. The use
of the foregoing rules makes it possible to

convert these generated track addresses to
the appropriate discontinuous binary
address.

INDEXED ORGANIZATION (DTFIS>

An indexed file is a sequential file
with indexes that permit rapid access to
individual records as well as rapid
sequential processing. Error recovery from
a DTFIS file is described in detail in the
chapter "Advanced Processing capabilities."
An indexed file has three distinct areas:
a prime area, indexes, and an overflow
area. Each area is described in detail
below.

PRIME AREA

When the file is first created, or when
it is subsequently reorganized, records are
written in the prime area. Until the prime
area is full, additions to the file may
also be written there. The prime area may
span multiple volumes. Note that the last
track of the prime area may not be used by
the COBOL programmer.

The records in the prime area must be
formatted with keys, and must be positioned
in key sequence. The records may be
blocked or unblocked. If records are
blocked, each logical record within the
block contains its key, and the key area
for the block contains the key of the
highest record in the block. The Disk
Operating System permits fixed-length
records only. Figure 32 shows the formats
of blocked and unblocked records on a
track.

r---,
Unblocked Records

r----------T------T-------T-----T------T-----T-------T-----T------T---------,
I KEY NUMBER I I COUNT I KEY I DATA I I COUNT I KEY I DATA I I L __________ ~ ______ ~ _______ ~ _____ ~ ______ ~ _____ ~ _______ ~ _____ ~ ______ ~ _________ J

" " " I I I
I I I
I I I
I I L--Logical record (key embedded)
I I
I I
I L--Key of logical record
I
I
L--Highest key on track

Blocked Records

r----------T---T----------T-----T------T------T------T---T------------------,
IKEY NUMBER I I COUNT I KEY I DATA I DATA I DATA I I I L __________ ~ ___ ~ __________ ~ _____ ~ ______ ~ ______ ~ ______ ~ ___ ~ __________________ J

" ,,- '-/ --
I I
I I
I I
I I
I I
I I
I I

" I
I
I
L--Logical records with embedded keys

I L--Key of last logical record in block
I
I
L--Highest key on track

Figure 32. Formats of Blocked and Unblocked Records

Processing COBOL Files on Mass storage Devices 127

INDEXES

There are three possible levels of
indexes for a file with indexed
organization: a track index, a cylinder
index, and a master index. They are
created and written by the system when the
file is created or reorganized.

This is the lowest level of index and is
always present. There is one track index
for each cylinder in the prime area. It is
always written on the first track of the
cylinder that it indexes.

The track index contains a pair of
entries for each prime data track in the
cylinder: a normal entry and an overflow
entry. The normal entry contains the home
address of the prime track and the key of
the highest record on the track. The
overflow entry contains the highest key
associated with that track and the address
of the lowest record in the overflow area.
If no overflow entry has yet been made, the
address of the lowest record in the
overflow area is the dummy entry X'FF'.

The cylinder index is a higher level of
index and is always present. Its entries
point to track indexes. There is one
cylinder index for the file. It is written
on the device specified in the APPLY
CYL-INDEX clause. If this clause is not
specified, the cylinder index is written on
the same device as the prime area.

Master Index

The master index is the highest level
index and is optional. It is used when· the
cylinder index is so long that searching it
is very time consuming. It is suggested
that a master index be requested when the
cylinder index occupies more than four
tracks. (A master index consists of one
entry for each track of the cylinder
index.)

The Disk Operating System permits one
level of master index for the file and
requires that it be written immediately
before the cylinder index. If a master
index is desired, the APPLY MASTER-INDEX

128

clause must be specified in the source
program. When this clause is specified,
the cylinder index is placed on the same
device as the master index.

OVERFLOW AREA

There are two types of overflow areas:
a cylinder overflow area and an independent
overflow area. Either or both may be
specified for an indexed file. Records are
written in the overflow area(s) as
additions are made to the file.

A certain number of whole tracks are
reserved in each cylinder for overflow
records from the prime tracks in that
cylinder. The programmer may specify the
number of tracks to be reserved by means of
the APPLY CYL-OVERFLOW clause. If he
specifies 0 as the number of tracks in this
clause, no cylinder overflow area is
reserved. If the clause is omitted, 20% of
each cylinder is reserved for overflow.

Overflow records from anywhere in the
prime area are placed in a certain number
of cylinders reserved soley for this
purpose. The size and location of the
independent overflow area can be specified
if the programmer includes the proper job
control XTENT (or EXTENT) cards. rhe area
must, however, be on the same mass storage
device type as the prime area.

A suggested approach is to have cylinder
overflow areas large enough to contain the
average number of overflow records caused
by additions and an independent overflow
area to be used as the cylinder overflow
areas are filled.

A new record added to an indexed file is
placed into a location on a track in the
prime area determined by the value of its
key field •. If records in the file ,were
placed in precise physical sequence, the
addition of a new record would require the
shifting of all records with keys higher
than that of the one inserted. However,
indexed organization allows a record to be
inserted into its proper positi0n on a
track, with the shifting of only the

r---,
~g!~_Q~!~-~g~~

r-----' r-----'
0001 1000011 1000031 L _____ J L _____ J

New

r-----'
1000091
L _____ J

r-----'
1000101 L _____ J

A

I
I
I

record---------- J

r-----'
1000111 L _____ J

A

I
1
1
I
I

Original record moved up-----------------J

r-----' r-----' r-----' r-----'
0002 1000161 1000171 •••••••••••••••••••••• 1000251 1000271

L _____ J L _____ J

r-----'
10001 4 1 •••••••• L _____ J

A

I

L _____ J L _____ J

L------Record removed from Track 0001

Figure 33~ Adding a Record to a Prime Track

records on that track. Any records for
which there is no space on that track are
then placed in an overflow area, and become
overflow records. Overflow records are
always fixed-length, unblocked records,
formatted with keys.

As records are added to the overflow
area, they are no longer in key sequence.
The system ensures, however, that they are
always in logical sequence.

Figure 33 illustrates the addition of a
record to a prime track.

The new record (00010) is written in its
proper sequential location on the prime
track. The rest of its prime records are
moved up one location. The bumped record
(00014) is written in the first available
location in the overflow area. The record
is placed in the cylinder overflow area for
that cylinder, if a cylinder overflow area
exists and ~f there is space in it:
otherwise, the record is placed in the
independent overflow area. The first
addition to a track is always handled in
this manner. Any record that is higher
than the original highest record on the
preceding track, but lower than the
original highest record on this track, is
written on the prime track. Record 00015,

for example, would be written as the first
record on track 0002, and record 00027
would be bumped into the overflow area.

Subsequent additions are written either
on the prime track where they belong or as
part of the overflow chain from that track.
If the addition belongs between the last
prime record on a track and a previous
overflow from that track (as is the case
with record 00013>, it is written in the
first available location in the overflow
area on an empty track, or on a track whose
first record has a numerically lower key.

If the addition belongs on a prime track
(as would be the case with record 00005),
it is written in its proper sequential
location on the prime track. The bumped
record (record 00011) is written in the
overflow area.

A record with a key higher than the
current highest key in the file is placed
on the last prime track containing data
records. If that track is full, the record
is placed in the overflow area.

Processing COBOL Files on Mass Storage Devices 129

ACCESSING AN INDEXED FILE (DTFIS)

An indexed file may be accessed both
sequentially and randomly. .

ACCESSING AN INDEXED FILE SEQUENTI~LLY: An
indexed file may only be created
sequentially. It can also be read and
updated in the sequential access mode. The
following specifications may be made in the
source program.

ENVIRONMENT DIVISION

Required clauses:

SELECT [OPTIONAL] file-name

(' 2311l
ASSIGN TO SYSnnn-DA-J 2314 - I t 2321)
RECORD KEY Clause
NOMINAL KEY Clause (when reading, if the

START statement is used)

FILE-LIMIT Clause
ACCESS MODE IS SEQUENTIAL
PROCESSING MODE IS SEQUENTIAL
RERUN Clause
SAME Clause
APPLY WRITE-VERIFY Clause (create and

update)
APPLYCYL-OVERFLOW Clause (create)

{ MASTER- INDEX'l
APPLY ~ (Clause

~CYL-INDEX)

Invalid clauses:

130

ACCESS MODE IS RANDOM
ACTUAL KEY Clause
TRACK-AREA Clause
MULTIPLE FILE TAPE Clause
APPLY WRITE-ONLY Clause
APPLY EXTENDED-SEARCH Clause
APPLY CORE-INDEX Clause
RESERVE Clause

ACCESSING AN INDEXED FILE RANDOMLY: A
randomly-accessed indexed file may be read,
updated, or added to. The following
specifications may be made in the source
program:

ENVIRONMENT DIVISION

Required clauses:

SELECT [OPTIONAL] file-name

{
23111

ASSIGN TO SYSnnn-DA- 2314.-1
.2321

ACCESS IS RANDOM
NOMINAL KEY Clause
RECORD KEY Clause

FILE LIMIT Clause
PROCESSING MODE IS SEQUENTIAL
TRACK-AREA Clause
RERUN Clause
SAME Clause
APPLY WRITE VERIFY Clause
APPLY CYL-OVERFLOW Clause
APPLY CORE-INDEX Clause

~
MASTER-INDEXl

APPLY (
C~L-INDEX)

Clause

Invalid clauses:

RESERVE Clause
ACCESS MODE IS SEQUENTIAL
ACTUAL KEY Clause
MULTIPLE FILE TAPE Clause
APPLY EXTENDED-SEARCH Clause

Key Clauses

When creating an indexed file, the only
key clause required is the RECORD KEY
clause. The data-name specified in this
clause is the name of the field within the
record that contains the key. Keys must be
in ascending numerical order when creating
an indexed file.

If a START statement is used when
retrieving an indexed file sequentially,
the NOMINAL KEY clause is required.

When accessing an indexed file randomly,
both the NOMINAL KEY and RECORD KEY clauses
are required. When reading the file, the
data-name specified in the NOMINAL KEY
clause is the key of the record which is
being retrieved. The data-name specified
in the RECORD KEY clause is the name of the
field within the record that contains. this
key.

When adding records to an indexed file,
the data-name specified in the NOMINAL KEY
clause is the key for the record being
written and is used to determine its
physical location. The data-name specified
in the RECORD KEY clause specifies the
field in the record that contains the key.

Improving Efficiency

When processing an indexed file, the
following source language Environment
Division clauses may be used to improve
efficiency:

TRACK-AREA Clause
APPLY CORE-INDEX Clause

For additional details, see the
publication IBMSystem/360 Disk Operating
System: Full American National Standard
COBOL.

Processing COBOL Files on Mass Storage Devices 131

(
'I

The following topics are discussed
within this chapter:

DTF Tables

Error Recovery

Volume and File Label Handling

Whenever COBOL imperative-statements
(READ, WRITE, REWRITE, etc.) are used in a
program to control the input and/or output
of records in a file, that file must be
defined by a DTF. A DTF is created by the
compiler for each file opened in a COBOL
program from information specified in the
Environment Division, FD entry, and
input/output statements in the source
program. The DTF for each file is part of
the object module that is generated by the
compiler". It describes the characteristics
of the logical file, indicates the type of
processing to be used for the file, and
specifies the main storage areas and
routines used for the file.

The DTF's ,generated for the permissible
combinations of device type and COBOL file
processing technique are as follows:

DTFCD Card reader, punch -­
organization and access
sequential

DTFPR Printer -- organization and
access sequential

DTFMT Tape -- organization and access
sequential

ADVANCED PROCESSING CAPABILITIES

DTFSD Mass storage device -­
organization and access
sequential

DTFDA Mass storage device -­
organization direct, access
sequential or random

DTFIS Mass storage device -­
organization indexed, access
sequential or random

Because of their limited interest for
the COBOL programmer, the contents and
location of the fields of each of the DTF
types are not discussed in this
publication. However, there are certain
fields which immediately precede the
storage area allocated for the DTF which
are pertinent and which are described
below.

For magnetic tape files (DTFMT) or
sequentially organized files on mass
storage devices (DTFSD), a 26-byte Pre-DTF
is reserved in front of the DTF. The
fields of the Pre-DTF are shown in Table
10. If any option is not specified, the
field will contain binary zeros.

When actual track addressing is used for
files with direct organization and random
access (DTFDA), a variable-length Pre-DTF
is reserved. The fields of the Pre-DTF are
shown in Table 11. If any option is not
specified, the field will contain binary
zeros.

When relative track addressing is used
for files with direct organization and
random access (DTFDA), a variable-length
Pre-DTF is reserved. The fields of the
Pre-DTF are shown in Table 12. If any
option is not specified, the field will
contain binary zeros.

Advanced Processing Capabilities 133

Table 10. Fields Preceding DTFMT and DTFSD
r-------T--~----,
12 bytes I Length of nonstandard label, if present I
~-------+---~
11 byte I Number of reels (as specified in the ASSIGN clause) when file is opened1 I
~-------+---~
11 byte I Number of reels remaining (i.e., file not completely read)1 I
~-------+---~
12 bytes I Maximum record length if records are variable, blocked and APPLY WRITE-ONLY isl
I I not specified. I
~-------+---~
I I [REEL] I 14 bytes I Address of label declarative with BEGINNING option I
I I UNIT I
~-------+---~

14 bytes: Address of label declara ti ve with ENDING [REEL] option 1
I I UNIT I
~-------+---~
14 bytes I Address of label declarative with ENDING FILE option I
~-------+---~
14 bytes I Address of label declarative with BEGINNING FILE option I
~-------+---~
11 byte I Switch -- FF if closed WITH LOCK; otherwise, the switch is used as shown in I
I I Table 16 I
~-------+---~
13 bytes I Address of USE AFTER STANDARD ERROR declarative I
~-------~---~

~ DTFMT/DTFSD *
~---~
11For INPUT files with nonstandard labels only. I L ___ J

Table 11. Fields Preceding DTFDA -- ACCESS IS RANDOM -- Actual Track Addressing
r-------T---,
19-263 I I
I bytes I ACTUAL KEY1 1
~-------f---~
18 bytes I SEEK Address 2 1
~-------+---~
12 bytes I Error bytes 3 1
~-------+---~
14 bytes I Address of file extent information I
~-------f---~---------------------------~
14 bytes 1 Address of label declarative with ENDING FILE option 1
~-------f---~
14 bytes I Address of label declarative with BEGINNING FILE option I
~-------+---~
11 byte 1 Switch -- FF if closed WITH LOCK; otherwise the switch is used as shown in 1
I I Table 16 1
~-------+---~
13 bytes I Address of USE AFTER STANDARD ERROR declarative 1
~-------i---__________________________________ ~
1 DTFDA 1
~---~
11ACTUAL KEY specified in last executed WRITE statement 1
12 In the form MBBCCHHR 1
13 This area is reserved by the Supervisor and assigned the name ERRBYTE. For a 1
I complete discussion, refer to the publication DOS Supervisor and 1/0 Macros, 1
I Order No. GC24-5037. 1 L ___ J

134

Table 12. Fields Preceding DTFDA -- ACCESS IS RANDOM -- Relative Track Addressing
r-------T---,
15-258 I I
I bytes IACTUAL KEY1 I
~-------+---~ 14 byteslsEEK address 2 I
~-------+---~
13 byteslLast extent used 3 I
~-------+---~
11 byte INot used I
~-------+-------------------------------------~---~
12 bytes I Error bytes~ I
~-------+---~
11 byte IIndex to last extent used in the Disk Extent Table I
~-------+---~
13 byteslAddress of Disk Extent Table in the DTF I
~-------+---~ 14 byteslAddress of label declarative with ENDING FILE option I
~-------+---~
14 byteslAddress of label declarative with BEGINNING FILE option I
~-------t---~
11 byte Iswitch -- FF if closed WITH LOCK; otherwise the switch is used as shown in I
1 ITable 16 I
~-------+---~
13 byteslAddress of USE AFTER STANDARD ERROR declarative I
~-------~---~

f DTFDA 1
I I
~---~
11ACTUAL KEY specified in the last executed WRITE statement I
12 In the form TTTR I
13 In the form TTT I
I~This area is reserved by the DOS Supervisor and assigned the name ERRBYTE. For a I
I complete discussion, refer to the publication QOS SUEervi~Qf-~nd ILQ_~~£fQ~. I L ___ J

~
/

Advanced Processing Capabilities 135

When actual track addressing is used for
files with direct organization and
sequential access (DTFDA), a 31-byte
Pre-DTF is reserved. The fields of the
Pre-DTF are shown in Table 13. If any
option is not specified, the field will
contain binary zeros.

When relative track addressing is used
for files with direct organization and

sequential access (DTFDA), a 31-byte
Pre-DTF is reserved. The fields of the
Pre-DTF are shown in Table 14. If any
option is not specified, the field will
contain binary zeros.

For files whose organization is indexed,
eight bytes are reserved preceding the DTF.
as shown in Table 15.

Table 13. Fields Preceding DTFDA -- ACCESS IS SEQUENTIAL -- Actual Track Addressing
r-------T---,
18 byteslSEEK address 1 I
~-------+---~
15 bytesiIDLOC2 1
~-------+---~
12 byteslError bytes 3 I
~-------+---~
14 bytes I Address of file extent information 1
~-------+--~------------------------------~
14 byteslAddress of label declarative with ENDING FILE option I
~-------+---~
14 byteslAddress of label declarative with BEGINNING FILE option 1
~-------+--.--------~------~
11 byte ISwitch -- FF if closed WITH LOCK; otherwise the switch is used as shown in I
I ITable 16 I
~-------t---~
13 byteslAddress of USE AFTER STANDARD ERROR declarative I

I-------
L

-------------------------:::::---1

I I
~---~
11 In the form MBBCCHHR I
12Address (returned by the system) of next record in the form CCHHR I
13 This area is reserved by the DOS supervisor and assigned the name ERRBYTE. For a I
I complete discussion, refer to the publication DOS Supervisor and I/O Macros. I l ___ J

136

(

Table 14. Fields Preceding DTFDA -- ACCESS IS SEQUENTIAL -- Relative Track Addressing
r-------T---, 14 byteslSEEK address~ I
~-------+---~
13 byteSILast extent used2 I
~-------+---~ 11 byte INot used I
~-------+---~ 14 bytesiIDLOC3 I
~-------+---~ 11 byte INot used I
~-------+---~
12 bytes I Error bytes~ I
~-------+---~ 11 byte IIndex to the last extent used in the Disk Extent Table I
~-------+---~
13 byteslAddress of Disk Extent Table in the DTF I
~-------+---~----~--~
14 bytes I Address of label declarative with ENDING FILE option I
~-------+---~ 14 byteslAddress of label declarative with BEGINNING FILE option I
~-------+---~ 11 byte ISwitch -- FF if closed with LOCK; otherwise the switch is used as shown in I
I ITable 16 I
~-------+---~
13 byteslAddress of USE AFTER STANDARD ERROR declarative I
~-------~---~

k ~ f DTFDA 1
I I
~---~-----------------~
I~In the form TTTR I
12 In the form TTT I
13 Address (returned by the system) of the next record in the form TTTR I
I~This area is reserved by the DOS Supervisor and assigned the name ERRBYTE. For a I
I complete discussion, refer to the publication DOS supervisor and I/O Macros. I L ___ J

Table 15. Fields Preceding DTFIS
r-------T---,
12 byteslUnused I
~-------+--~------------------------~ 12 byteslDisplacement of record key within record I
~-------+---~---------------------~ 11 byte ISwitch -- FF if closed WITH LOCK; otherwise the switch is used as shown in I
1 ITable 16 1
~-------+---~
13 byteslAddress of USE AFTER STANDARD ERROR declarative I
~-------~---~

~ DTFIS ~
L ___ J

Advanced Processing Capabilities 137

Some files can be opened several
different ways in one COBOL program.

For DTFCD and DTFPR, only one DTF will
be generated for each file.

For DTFMT, a maximum of three DTF's may
be needed -- one each for OPEN INPUT, OPEN
INPUT REVERSED, and OPEN OUTPUT.

For DTFSD, a maximum of three DTF's may
be needed -- one each for OPEN INPUT, OPEN
OUTPUT, and OPEN 1-0 statements.

For DTFIS and DTFDA, only one DTF is
needed.

When used, this switch provides
communication between. the executing program
and its input/output subroutines at
execution time. The entire byte may be set
to X'FFI to indicate that the file was
closed WITH LOCK and cannot be reopened.
Otherwise the switch is used as shown in
Table 16.

COBOL allows the programmer to handle
input/output. errors through 1) the INVALID
KEY clause for certain source language
s ta tements, and 2) . the USE AFTER STANDARD
ERROR declarative sentence.

Input/output errors c~used bi the
program can be recovered .. from· directly by
the procedure specified in the INVALID KEY
clause~ That is, when the system
determines that an invalid key condition
exists, control is returned to the

138

programmer at the imperative-statement
specified in the INVALID KEY clause. An
invalid key condition can occur on files
with direct or indexed organization and on
sequentially organized disk files. rhe
errors that cause an invalid key condition
are shown in Table 17.

Table 16. Meaning of Pre-DTF Switch
r-----T-----------------------------------,
I Bit I Meaning, if ON I
.-----+-----------------------------------~
I 0 ITurned ON the first time a GTFSD I
I loutput file is opened. The entire I
I IDTF is saved for subsequent OPEN I
I IOUTPUT statements. I
.-----+-----------------------------------~ I 1 ITurned ON when DTFDA or DTFSD filesl
I I are opened 1-0. I
~-----+-----------------------------------~

2 This bit is ON to indicate
beginning of volume user label
processing. The bit is set OFF
when a file is opened to indicate
to the user label processing
subroutine (ILBDUSLO) that
beginning-of-file user labels are
to be processed. That subroutine
sets the bit ON after beginning­
of-file processing to indicate that
all subsequent calls for this
subroutine are for beginning-of­
volume user label processing.

~-----+-----------------------------------~
I 3 IFor output files with variable- I
I Ilength blocked records, this bit isl
I Iturned OFF when a file is opened I
I land ON for all WRITE's after the I
I I first. I
.~~---+-----------------------------------~
I 4 ITurned ON for spanned record I
I Iprocessing on a DTFDA file. I
.-----+-----------------------------------~ I 5-71Not used. I L _____ ~ ___________________________________ J

Table 17. Errors Causing an Invalid Key Condition
r-------------T-------------T--------T---------T--,
I Organization I ACCESS I OPEN I 1-0 Verbl Condition I

~-------------+-------------+--------+---------+--~
I Sequential I [SEQUENTIAL] I OUTPUT I WRITE I End of extents reached. I

~-------------f-------------f--------f---------f--~
I DiIect I [SEQUENTIAL] I OUTPUT I WRITE I Track address outside file extents. I

~-------------+-------------+--------+---------+--~
I Direct I RANDOM I INPUT I READ I No record found. I

I I ~--------f---------f--~
I I I OUTPUT ,"WRITE I Track address outside f~le extents. I

I I ~--------+---------+--~
I I I 1-0 I READ I Track address outside file extents. I

I I I I REWRITE I I

~-------------f-------------+--------+---------+--~
I Indexed I [SEQUENTIAL] I INPUT I START I No record found. I

I I I 1-0 I I I

I I ~--------+---------+--~
I I I OUTPUT I WRITE I Duplicate record; sequence check. I

I ~-------------+--------+---------+--~ I I RANDOM I INPUT I READ I No record found. I

I I ~--------+---------~ I
I I I 1-0 I REWRITE I I

I I ~--------+---------i--~
I I I 1-0 I WRITE I Duplicate record. I L _____________ ~ _____________ ~ ________ ~ _________ ~ __ J

Other input/output errors cause the job
to be cancelled unless the programmer has
specified a USE AFTER STANDARD ERROR
declarative. Control is transferred to
this declarative section if the system
determines that a "standard" error has
occurred during input/output processing.
In this declarative section, the programmer

may interrogate the COBOL error bytes if he
has specified the GIVING option of the OSE
AFTER STANDARD ERROR declarative sentence.
The meaning of these bytes for a specified
combination of device type and file
processing technique is shown in Table 18.

Advanced Processing Capabilities 139

Table 18. Meaning of Error Bytes for GIVING Option of Error Declarative
r-------T------------T------------T------T-----T--------------T----T--------------------,
I I I I 11/0 I I I I
IDevice I Organization I ACCESS 10PEN IVerb I Condition IBytel Result I
~-------t------------t------------t------t-----t--------------t----t-------------~------i
I Unit I sequential I [SEQUENTIALll I I Input/output I 1 IFile must be closed I
I record I I I I I error I I and job must be I
I I I I I I I I terminated. I
~-------+------------f------------f------t-----f--------------f----t--------------------~
Tape sequential [SEQUENTIALlIINPUT IREAD IWrong length I 2 ISkip block if I

I I 1 record I I return is made to I
I I I I I non-declarative I
I I I I I portion. I
I I ~--------------+----+--------------------~
I I IParity error I 1 ISkip block if I
I I I I I return is made to I
I I I I I non-declarative I
I I 1 I I portion. I
~------f-----f--------------~----~--------------------~
10UTPUTIWRITEIAII exceptional conditions are handled I
I I 1 by the system. I

.---~---+------------+------------f------f-----f--------------T----T--------------------~
DASD Sequential [SEQUENTIALllINPUT IREAD IWrong length I 2 ISkip block if I

11-0 I 1 record 1 I return is made to I
I I I I I non-declarative I
1 I 1 I I portion. I
I I ~--------------f----+--------------------~
I I IParity error I 1 ISkip block if I
I I I 1 I return is made to I
I I I I I non-declarative I
I I I I I portion. I
~------f-----t--------------f----f--------------------~
10UTPUTIWRITEIParity error I 1 IBad block written. I
11-0 I ~--------------f----t--------------------i
I 1 IWrong length I 2 IBad block written. I
1 I I record I I I

~-------f------------t------------+------t-----+--------------t----t--------------------i
IDASD I Direct I [SEQUENTIALlIINPUT IREAD IWrong length 1 2 IReturn to statement I
I I I I I I record I I after READ. I
I I 1 1 I ~--------------f----f--------------------i
I I I I I IData check in I 1 IReturn to statement 1
I I I I I I count area I I after READ. I
1 I I I I ~--------------t----f--------------------i
I I I I I IData check fori 4 IReturn to statement I
I I I I I I key and/or I I after READ. I
I I I 1 I I data I I I
~-------+------------f-----~------+------t-----t--------~-----~----~--------------------~
DASD Direct RANDOM IINPUT IREAD ISame as ACCESS SEQUENTIAL (above). I

11-0 I I I
~------f-----+--------------T----T----~---------------~
OUTPUT WRITEIWrong length I 2 IReturn to next I

I record 1 I statement; bad I
I I I block written. I
.--------------t----f--------------------i
IData check in I 1 IReturn to next 1
I count area I I statement; bad I
I I I block written. 1
~--------------f----t--------------------~
IData check fori 4 IReturn to next I
I key and/or 1 I statement; bad I
I data I I block written. I
.--------------f----f--------------------i
INO room found I 3 IReturn to next I
I I I statement. I

~-------~------------~------------~------~-----~--------------~----~--------------------i
INote: If no USE AFTER STANDARD ERROR routine is specified and one of the above con- I
Iditions occurs, the programmer is notified of the condition and the job is cancelled. I L ___ J

140

Table 18. Meaning of Error Bytes for GIVING Option of Error Declarative (Part 2 of 2)
r-------T------------T------------T------T-------T--------------T----T------------------,
1 1 1 1 1 I/O 1 1 1 1
IDevice 1 Organization 1 ACCESS 1 OPEN IVerb 1 Condition IBytel Result 1
~-------+------------+------------+------+-------+--------------+----+------------------~
DASD 1 Direct 1 RANDOM 11/0 1 REWRITE 1 Wrong length 1 2 IReturn to next 1

1 1 1 1 1 record 1 1 statement; bad 1
1 1 1 1 1 1 1 block written. 1
1 1 1 1 ~--------------+----+------------------~
1 1 1 1 IData check in 1 1 IReturn to next 1
1 1 1 1 1 count area 1 1 statement; bad 1
1 1 1 1 1 1 1 block written. 1
1 1 1 1 ~--------------+----+------------------~
1 1 1 1 IData check in 1 4 IReturn to next 1
1 1 1 1 1 key and/or 1 1 statement; bad 1
1 1 1 1 1 data 1 1 block written. 1

~-------+------------+------------+------+-------+--------------+----+------------------~
DASD Indexed [SEQUENTIALlIINPUT IREAD IDASD error 1 1 IReturn to next 1

11-0 IREWRITE~--------------+----~ statement; bad 1
1 1 IWrong length 1 2 1 block read or 1
1 1 1 record 1 1 written. 1
1 ~-------+--------------+----+------------------~
1 ISTART IDASD error 1 1 IContinued pro- 1
1 1 1 1 1 cessing of file 1
I 1 1 1 1 permitted. 1
~------+-------+--------------+----+------------------~
OUTPUT WRITE IDASD error 1 1 IReturn to next 1

~--------------+----~ statement; bad 1
IWrong length 1 2 1 block written. 1
1 record 1 1 1
~--------------+----+------------------~
IPrime data 1 3 IFile must be 1
1 area full 1 1 closed. 1
~--------------+----+------------------~
ICylinder indexl 4 IFile must be 1
1 full 1 1 closed. 1
~--------------+----+------------------~
IMaster index 1 5 IFile must be 1
1 full 1 1 closed. 1

~-------+------------+------------+------+-------+--------------+----+------------------~
DASD Indexed RANDOM IINPUT IREAD IDASD error 1 1 IReturn to next 1

11-0 IREWRITE~--------------+----~ statement; bad 1
1 1 IWrong length 1 2 1 block read or 1
1 1 1 record 1 1 written. 1
~------+-------+--------------+----+------------------~
11-0 1 WRITE IDASD error 1 1 IReturn to next 1
1 1 ~--------------+----~ statement; bad 1
1 1 IWrong length 1 2 1 block written. 1
1 I I record 1 I I
I I ~--------------+----+------------------~
I I 10verflow area I 6 IFiles must be I
1 I I full 1 1 closed. 1

~-------~------------~------------~------~-------~--------------~----~------------------~
INot~: If no USE AFTER STANDARD ERROR routine is specified and one of the above con- 1
Iditions occurs, the programmer is notified of the condition and the job is cancelled. 1 L ___ J

If the programmer includes a USE AFTER
STANDARD ERROR routine without specifying
the GIVING option, he must call an
assembler language routine within the
declarative if he wishes to interrogate the
error bits -- set either in the DTF (DTFMT,
DTFSD, or DTFIS) or in the fields preceding
the DTF (DTFDA).

Interrogation of these error bits should
be made to the locations shown in Tables
19, 20, 21, and 22.

Note: The byte and bit displacement in
Tables 19, 20, 21, and 22 is relative to
zero.

Advanced Processing Capabilities 141

Table 19. Location and Meaning of Error Bits for DTFMT
r--------------T-----------T--------------------------T-----------T---------------------,
, OPEN I Verb I Condition ,Byte* I Bit I

~--------------f-----------f--------------------------+-----------f---------------------~
,INPUT I READ I Wrong length record , 3 ,1 ,
, , ~--------------------------+-----------+---------------------~
I I I Parity error I 2 I 6 ,
~--------------+-----------+--------------------------f-----------+---------------------~
,OUTPUT I WRITE I Wrong length record , 3 ,1 ,
I I ~--------------------------+-----------+---------------------~ , , I Parity error I 2 ,6 ,
~--------------~-----------~--------------------------~-----------~---------------------~
,*Within the DTF. , L __ ~ ____________________________________ J

Table 20. Location and Meaning of Error Bits for DTFSD
r-------------T------------T--------------------------T------------T--------------------,
I OPEN I Verb I Condition I Byte* I Bit I

~-------------f------------+--------------------------+------------+--------------------~
I INPUT, 1-0 I READ I Wrong length record I 3 ,1 I

I I ~--------------------------+------------+--------------------~ I , , Parity error I 2 I 6 ,
~-------------+------------+----------~---------------+------------+--------------------~
I OUTPUT, I-a, WRITE , Parity error I 2 I 6 I

~-------------~------------~--------------------------~------------~--------------------~
I*Within the DTF. I L ___ J

Table 21. Location and Meaning of Error Bits for DTFDA
r------------.---------------T-----------T-------------------------~--T--------T--------,
I ACCESS , OPEN I Verb I Condition ,Byte* I Bit I

~------------+---------------+-----------+----------------------------+--------+--------~
,[SEQUENTIAL], INPUT I READ I Wrong length record ,0 I 1 ,
, , I ~----------------------------+--------+--------~
, , , I Data check in count area I 1 I 0 I

I , , ~----------------------------+--------+--------~
, , I I Data check in key or data I 1 ,3 ,
, , , ~----------------------------+--------+--------~
, I I I No record found , 1 I 2 or 4 ,
~------------~---------------+-----------+----------------------------~--------~--------~

RANDOM I INPUT, 1-0 I READ I Same as sequential ,
~---------------+-----------+----------------------------T--------T--------~ I OUTPUT I WRITE I Wrong length record ,0 I 1 ,
, I ~----------------------------+--------+--------~
I I I No room found I 0 I 4 I
I I ~----------------------------+--------+--------~
I I I Data check in count area I 1 I 0 ,
I , ~----------------------------+--------+--------~
I I I Data check in key or data I 1 I 3 I
~---------------+-----------+----------------------------+--------+--------~
I I-a I REWRITE I Wrong length record I 0 I 1 I
I I ~----------------------------+--------+--------~
I I I Data check in count area I 1 I 0 I
I I ~----------------------------+--------+--------~
I I , Data check in key or data I 1 ,3 ,
I I ~----------------------------+--------+--------~
I I I No record found I 1 I 2 or 4 I

~------------~---------------~-----------~----------------------------~--------~--------~
I*Within error bytes preceding DTF. See the section "DTF Tables" for the location of I
I these bytes.' I L ___ J

142

Table 22. Location and Meaning of Error Bits for DTFIS
r------------T---------------T-----------T----------------------------T--------T--------,
I ACCESS I OPEN I Verb I Condition I Byte* I Bit I
~------------t---------------+-----------+----------------------------+--------+--------~

[SEQUENTIALll INPUT, 1-0 I READ I DASD error I 30 I 0 I
I I ~----------------------------+--------+--------~
I I I Wrong length record I 30 I 1 I
~---------------+-----------+----------------------------+--------+--------~
I OUTPUT I WRITE I DASD error I 30 I 0 I
I I ~----------------------------+--------+--------~
I I I Wrong length record I 30 I 1 I
I I ~----------------------------+--------+--------~
I I I Prime data area full I 30 I 2 I
I I ~----------------------------+--------+--------~
I I I Cylinder index full I 30 I 3 I
I I ~----------------------------+--------+--------~
I I I Master index full I 30 I 4 I

~------------+---------------+-----------+----------------------------+--------+--------~
I RANDOM I INPUT, 1-0 I READ I DASD error I 30 I 0 I
I I I REWRI TE I' I I I
I I I ~----------------------------+--------+--------~
I I I I Wrong length record I 30 I 1 I
I ~---------------+-----------+----------------------------+--------+--------~
I I 1-0 I WRITE I DASD error I 30 I 0 I
I I I ~----------------------------+--------+--------~
I I I I Wrong length record I 30 I 1 I
I I I ~----------------------------+--------+--------~
I I I I Overflow area full I 30 I 6 I
~------------L---------------L-----------L------------________________ L ________ L ________ ~
I*Within the DTF. I L ___ J

The following should be considered when
processing tape input files:

1. Two types of errors are returned to
the programmer: wrong length record
and parity check. The COBOL error
bytes, if requested, are set to
reflect the error condition and
control is transferred to the USE
AFTER STANDARD ERROR declarative
sentence. The error block is made
available at data-name-2 of the GIVING
option, if specified.

If a parity error is detected when a
block of records is read, the tape is
backspaced and reread 100 times before
control is returned to the programmer.
If the error persists, the block is
considered an error block and is added
to the block count found in the DTF
table.

2. Normal return (to the non-declarative
portion) from a USE AFTER STANDARD
ERROR declarative section is through
the invoked IOCS subroutine. Thus,
the next sequential block is brought
into main storage permitting continued
processing of the file. (The error
block is bypassed.) A return through
the use of a GO TO statement does not
bring the next block into main
storage: therefore,. it is impossible
to continue processing the file.

The processing of a sequential disk file
opened as input is the same as the previous
discussion of tape files, except that the
disk block is reread ten times before being
considered an error block.

COBOL cannot handle nested errors on
sequential files. If errors occur within
an error declarative, results are
unpredictable.

Advanced Processing Capabilities 143

VOLUME AND FILE LABEL HANDLING

TAPE LABELS

Among the several types of tape labels
allowed under the Disk Operating System
are: volume labels, standard file labels,
user standard labels, and nonstandard
labels. Unlabeled files are also
permitted. The description of each type of
label follows.

A volume label is used whenever standard
file labels are used. Logical IOCS
requires a volume label with VOL1 as its
first four characters on every standard or
user standard labeled file. VOL2-VOLa are
also allowed, but must be written and
checked by the programmer.

A standard file label is an aD-character
label created when an output file is opened
or closed, in part by IOCS using the VOL
and TPLAB or TLBL control statements. The
first three characters are HDR (header),
EOV (end-of-volume), or EOF (end-of-file).
The fourth character is a 1, indicating the
first of a possible eight labels. The
remainder of the label is formatted into
fields describing the file. Labels 2
through a in this field are bypassed on
input, and are not created on output under

144

the Disk Operating System. The contents of
the fields of a standard file label are
described in "Appendix B: Standard rape
File Labels." The relationship between the
TPLAB statement and a standard file label
is shown in Figure 34. The relationship
between the TLBL statement and a standard
file label is shown in Figures 35 and 36.

User Standard Labels

A user standard label is an aD-character
label having UHL (user header label) or UTL
(user trailer label) in the first three
positions. The fourth position contains a
number 1 through a which represents the
relative position of the user label within
a group of user labels. The contents of
the remaining 76 positions are entirely up
to the programmer. User labels, if
present, follow HDR, EOV, ~r EOF standard
labels. On multi~olume files, they may
also appear at beginning-of-volume. User
header labels are resequenced starting with
one (UHL1) at the beginning of a new
volume. Figure 37 shows the positioning of
user labels on a file.

Nonstandard Labels

A nonstandard label may be any length.
The contents of a nonstandard label is
entirely programmer-dependent. It is the
COBOL programmer's responsibility either to
process or bypass nonstandard labels on
input and to create them on output. Figure
3a shows the positioning of nonstandard
labels on a file.

"---

t'l'j
~
~
Ii
Cl)

w
f

C/)
rt
~
::s
0-
n,!
Ii
PI

8
~
ro
Cl)

t'l'j
.....
Cl)

s:
0-
Cl)
.....
n,!
::s
PI

8
t'd
t"i

~
()
n,!
Ii
PI
en

:t"
PI
<
n,!
::s
n
Cl)
0-

t'd
Ii
0
n
Cl)
til
til
~
()
n,!
ro
n,!
0-....
.....
rt
Cl)
til

P
-'=
U'1

Standard Tape File Label

Syst_ Code

:H D t:,!
:E 0 f: :
IE OV" I
I I I --...--
Supplied
by IOCS

010 0 0 00 0100 S / T 0 S /3 6 0 b bIb b b b b b b~"
: (In HOR1) : ::
I I I I
I I I I

Supplied by IOCS on output
if TPLAB specifies fields 1- 10 only

Job Control TPLAB Card(s) (May be punched with fields 1-10 or 1 -13)

1&5-~~M!!!!!!!!!!!!:!!:!!!::!!~!!!!!!!!:~!:!:!!!!!
~""~~~LL~~UUUU~~~~~~~~""~~LLLLLLLLUUUUUU~~~111111111111

/1 Fo.. ~ v I F
O

" G ~~ Creation xpiml ~ ~ oJ I o. I ener· 0 ;: .5 0::: Fi .. Identifier Serial Seq. Seq. ation =i ate ate ~=t ~::"' g
_ No. Noo Noo No. > b;VrolDay ~r.IDay

~DD DDDDDDODOOODDDDODDDDDDO DDDDDDODO DDODOOOOOD:DO~D OIDD~DD OOOOODODOOD DODDOOO 444444444444
12 J t'l J I 110 III Il It IS II 11111111 II 22llJllSlln ltaJl11 lUla3l a.tl tUU, tl 1'111\151 It'ssllflllil laUMII .. la.lll1n IMlSllnll"a

11111111111111111~11111111111'111®"'1~"0" 1" 1111!'! 1':I@,."'@1 1~ 111' 111 1111111 555555555555
0, i4' 5 ~ 7 8 119\ I 10 11 & 'i3'

2 2 2 2 2 2 2 2 2 2 2 2 2 2 u 2 2 2 2 2 2 2 2 2 ~ 2'2 2 2 u 2 2 .. d u 2:2'-;/2 2"2 2 2.. 2 2 2 2 ~ 27 2 2 2 2 2 2 2 && U 1& 61 6 1& &
. I I I I

333333333 3333333333~3~3 3~3~333 3333333
I I

444444 4444444444444444 444444444 444444A444~4~444~4~44 4444444

555555555555555555555555555555555 5555555555~5~555~5~5~ 5555555 !~!:!!~!~~~!
66 &&&&6i&6&666&G6&&&6&66& 66&&&&&&&6&&&&6&&&&6~&~&&&~&~&&& 61&&&&1

I I I I

11117111111 i 1111111111111111111111 n 117111 i1111111:1111:7111111 1111111 Continuation card
I I I I

I a .1.8 I I B a B 1.8 I a I I 1I"1 U' a .".U . lB. B. a 8 B B 8 a a & a 8 8 8 a .1 (required if field
. I I I I)

999 S 9 9 9 S 9 99 9ig!l S g 9 9 9:9 9~ 9 9 9:99~ 9 9 ~ 9 S!i 9S S 9 gg S 9999999 1- 13 are used
1 2 It' I 1 I • 10 11111 It 15 1111 I' II II 21 221J M IS a II It a 'I ll" J' lIli 3l)I. t,1t: tu. c tl "II ~11Z 1t:1I11 JI 1111 I au MIIII I .. a1O n 11 I M IS Jill "".

IB"':il!. I

222222222222

333333333333

111111111111

111118811118

Ilt PLABt
• t J toooo~ t

Blank J l B- 5 punch Blank Arry character

The circled numben on the TPLAB cards correspond to the Quote (B-5 punch) if only Fields 1-10are used

numbered fields of the tape label above. Security cod. if Fi.lds 1-13 are used

~ "Zj
+:'
0'\ ~

C
t;
CD

w
V1 .
C/l
rt
Pol
::s
a,
Pol
t;
a,

1-3
Pol
ro

CD

"%.l
~
CD

t"4
Pol
0"
CD
~

Pol
::s
0..

8
t"f
tD
t"f
()
Pol
t;
C.

C/l ::r
0
~
::s
~

3:
Pol
~
S
~
C/l
ro

CD
0
HI
0
Pol
rt
0
::3
en

'"

Standard Tape-· Fife Label

I «I «I «I File E Vol. l' File
E G~ner- «I 15

.: Oper- EE E
Serial Seq.

EZ
c: FileName Eo File-tO OE Date E r~ Seq. E atlon E .: .. ation

~p dl8 8 No. ~ No. No. o No. o ..
~ I'-' 1'-'>
00 00000 OOOOOOO(00 pOOOOOOOOOOOOOOO~ 00 POOOOO 0000000 O~OOO 00000 00000 o p 0 0000000000000
12 345.7 .110111213141

" 7
'"2021222324252$272121311313233) 35l1i 73131 .. 4142 43 101.,41474149 5OISlS3S4 !s'515751SS IOI&2UM &5~&7 ~U'707In71147S7'n7l7584

1'1 11111 11111111 11 11111111111111111 11 11111 1111111 11111 11111 11111 Iii 1 1111111111111

22 22222 2222222 22 ~2222222222222221 22 '22222 2222222 2~222 2~222 22222 2~2 2222222222222

33 33333 3333333 33 ~3333333333333333 33 ~33333 3333333 3~333 3~333 33333 3 ~ 3 3333333333333

44 44444 4444444~ 44 ~444444444444444~ 44 ~44444 4444444 4~ 444 4~ 44 4 44444 4H 4444444444444

55 55555 55555555 55 ~5555555555555555 55 ~55555 5555555 55555 5~555 55555 5 ~ 5 5555555555555

66 6 666 6 66666666 6 6 ~666666666666666E 6 6 ~66666 6666666 6~666 66666 66666 6 ~ 6 6666666666666

77 77 77) 77777771 71 ~777777777777777 7? ~77777 7777777 77 77 7 77 77 7 77777 7 ~ 7 7777777171717

88 S S 8 8 8 3888e888 S 8 ~388838888888888E 88 ~88888 8888888 8888 e 8 B 8 8 8 88888 8 ~ 8 88£8888888888

99~~~j9~~9qS99S~~a9S99999999999S9~99999999999999999999999999999999299999S99~9999
• ~ l • , _. 1 ~ : _, Ii 12 ,~ I. IS It 17 .. la 2\1 21 21 z; 2. 25 26 li 21 2'J JU 31 31 7: 71 35 36 31 J8 31 ~ .1 42 ~ ~ 4:i .. 41 <II ., :.0 ~I 52 53 54 55 51 51 51 59 10 " &2 53 14 15 fi 61 ., 6~ IG r ;, I, I. I~ 7. I' 'P '9 ilO

IBM 50~1

I If LBLj
Blank

DTF
Name

- -

L-a-Spunch---1

- - - - - -- - ---~-------

1
Date - yy/d or yy/dd or yy/ddd (on Input or Output)
Retention Period - d-dddd (on Output only)

I

I

Notes:

Maximum size TlBl fields
are shown.
• Any field (except Ident,

Operation, and Date)
may be from 1 position to
the maximum shown. loes
fiffs in the remaining
positions of the label field.

• Ident _and Operation must
be as shown.

• Date may be 4- 6 positions;
Retention period, 1 - 4.

2 If a field is omitted, shift the
fol lowing comma and fields
to the left.
loes supplies a default value
for the label field on output.

3 No comma fo I lows the last
fi e Id user!.

t%j
I.Q
C
Ii
CD

W
0\ .
en
rt
III
~
Q.
III
Ii
Q.

~
III
ro

CD

"'Ij
I-'
CD

t-f
III
0"
CD
I-'

III
::s
Q.

~
t"I
tl1
t"I

n
III
Ii·
Q.

::t>' en
Q. ::r'
< 0
III ~
~
n ~
CD I.Q
Q.

~
I'd
Ii ~
0
n 8 CD
en a en ::0
~ CD

I.Q 100
C n

III Ii ro CD
III a
tr CD ~
I-' rt en
rt
CD
en

~

-'=
...,J

Standard Tape File Label

e
File Identifier System Code

(Reserved
for A. S. A.)

~H 0 R : 1 ! DTF Nome
~E 0 F: :

!b b b b b b b b b b! , , , ,
Volume
Serial

Number IE OV' ,
I I'

~

Supplied
by loes

, ,
I I

Job Control TLBL Card

/
/

~
Oper-

File Name
CD ation
~

DO D~DDD O~DDOOOO OOODOOOOOOOOODOOOOOOOOOOOOOOOODDODOOOOOOOODOOODDOOOOO~nooooooOOOO
1 2 3 4 5 I 1 • 9 10111213 14 15 1~ I! II 19 20 21 Z2 2l 24 2S 2i .1 2129 :JIll l2 ,'J J. J5 3& 37 31 39 4(141 424344 45 4S 47 4J 43 50 ~1 52 53 54 ~ r.i 51 51 ~ 50 11 &21314 &5" 57 "51 111 71 n 13 14 15 75 n 1119 10

111 1 1 1 1 111111 111

222 222 2'222222 222

33 3 3333 3P33333 333 ~

44 4~444 4.444444 4444444444444444444~444444444444444444444444444.44444444444444444 ~

55 5~555 5:J555555 555

66 6~666 66666666 666

77 7 ~ 7 7 7 71777777 1 7 7 77 77 7 7 7 77 7

88 8~888 88888888 888888888868888888888886888

99
1 2 3 4 5 I 1 •• lD 11 1213 If 1516 HI' 192021 22 23 24 25 .527 21 29 :JI31 l2 3J J4 35 3& 31 3139 40 41 4243444541414149 50 51 52 53 54 55 Sl57 SlSIIO II &2 53 1415 • 57 ".1111 n 73 14 15 11 n 1111.

/ It LBj
Blank

DTF
Name

- -- ~----- --- -------- -- ---

On input ,no values
are supplied and no
checking is performed.

LABEL PROCESSING CONSIDERATIONS

The labels which may appear on tape are
shown in Figures 37 and 38. The compiler
allows the programmer to work with all the
previously mentioned labels as well as with
unlabeled files.

If user standard labels are to be
created or ch~cked in the COBOL program,
the USE AFTER BEGINNING/ENDING LABELS
declarative sentence and the LABEL RECORDS
clause with the data-name option must be
specified. ---------

r---,
Load Point Marker

I
\l.-

R N N R N N P P R R R N N P P R R N N P P R

~=}---I;I;I=I;I~I~I=I;T~T=T~T-T--------T-T~I~T=T;T~T=T~1-1~1~1=1~1~1=1~1-1--------}
I IOIOI-IOIDIDI-IDIHI-IHITI ITIOIOI-IOITI-ITITIDIDI-IDIHI-IHITI
I ILILI-ILIRIRI-IRILI-ILIMI FILE #lIMIFIFI-IFILI-ILIMIRIRI-IRILI-ILIMI FILE #2
I 11121-1 811121-1 8111-1 81 I I 11121-18111-181 11121-18111-181 I L _____ ~_~_~_~_~_~_~_~_~_~_~_~_~ ________ ~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_J _______ _

End of Tape Marker
I
I

Notes: R = Required, processed by laCS.
N = permitted, but not written or checked, by laCS and not available to user.
P = Processed by IOCS and available to user. ________ . ___ J

Figure 37. Standard, User Standard, and Volume Labels

r----------------~--,
Load Point Marker

I

'" o R C
r-T------T-T-T-T-T--------T-T-T-T-T-T--------------
~_J I L I I L I I I I L I I L I I
I IAI IAI I I IAI IAI I
I IBI-IBITI ITIBI-IBITI
I lEI IEIMI FILE #lIMIEI IEIMI
I ILl-ILl I I ILl-ILl I
I lSI lSI I I lSI lSI I L ________ ~_~_~_~_~ ________ ~_~_~_~_~_~ _____________ _

No~g2: R = Required, processed by laCS.
o = Optional.
C = Written by COBOL compiler.

Figure 38. Nonstandard Labels

148

Header labels are written or read when
the file is opened or when a volume switch
occurs. Trailer labels are written when
the physical end of the reel is reached, or
when a CLOSE REEL or CLOSE file-name is
issued. Trailer labels are read on each
reel except the last when a tapemark is
reached. For the last reel (i.e., EOF
labels), trailer labels are not read until
the file is closed.

For multivolume input files with
nonstandard labels, the programmer must
specify the integer-l option of the source
language ASSIGN clause, where integer-l is
the number of reels in the file. This
number can be overridden at execution time
by storing a nonzero integer in the special
register NSTD-REELS before opening the
file. The number of· reels is available to
the programmer while the file is .opened
both in the special register NSTD-REELS and
in the field reserved for this purpose
which precedes the DTF table for DTFMT (see
"DTF Tables" in this chapter). In
addition, the number of reels remaining
after each volume switch can also be found
in the field reserved for this purpose
which precedes the DTF table for DTFMT.

When processing a multivolume file with
nonstandard labels <i.e., when the
~at~=n~mg option of the LABEL RECORDS
clause is specified), if the programmer
wishes to stop reading or writing before
the physical end of a reel is reached, he
must set a switch in the appropriate
declarative section. In the Procedure
Division, he can either CLOSE REEL or CLOSE
FILE depending on the switch setting.
Volume switching is done by LIOCS when
CLOSE REEL is executed.

Sample Programs

Figure 39 illustrates the manner in
which unlabeled input files on a multifile
volume are processed by a COBOL program.
The input volume contains four files, only
three of which are being used by the
program. This unused file, which resides
between the first and third file on the
volume, must be bypassed during file
processing. The program creates a single
multivolume file with standard labels.

All input files residing on the same
volume are assigned to the same
symbolic unit.

The second file on the input reel is
not used in this program and is
bypassed through use of the POSITION
option of the MULTIPLE FILE TAPE
clause.

The first and second input files are
closed by the execution of the CLOSE
statement with the NO REWIND option,
leaving the tape positioned in mid-reel
for the next OPEN.

~ All volumes with the exception of the
last volume of the multivolume output
file are closed by a close statement
with the REEL OPTION. Volume switching
is performed as noted in step(!).
The second and third input files
processed by the program are opened by
an OPEN statement with the NO REWIND
o~io~

At job completion, a standard CLOSE is
issued to reposition the tapes of the
closed files at their physical
beginnings.

An LBLTYP control statement is included
because a tape file requiring label
information is to be processed.

Alternate assignments have been made
for SYSOll. Because there alternate
assignments are in the sequence in
which the ASSGN statements are
submitted, the first volume of the
output file will be on tape drive 282,
the second on 283, and the third on
181. When the first CLOSE OUT-PUT REEL
statement is executed, a standard EOV
label is written on the volume assigned
to drive 282 and the reel is rewound
and positioned at its physical
beginning. The next WRITE RECO
statement executed will then be written
on the volume mounted on drive 283.

Although the file OUT-PUT consists of
multiple volumes, only one TLBL control
statement need be submitted.

Figure 40 is a sample program that
illustrates the manner in which the
multivolume file created in Figure 39 is
read as an input file. The sample program
also creates a multifile volume with
standard labels.

~ All. output files residing on the same
volume are assigned to the same
symbolic unit.

The name field of the system~name in
the ASSIGN clause is specified. This
is the external-name by which the file
is known to the system. When
specified, it is the name that appears

Advanced Processing Capabilities 149

o
in the filename field of the. VOL, DLBL,
or TLBL job control statements.

For the multivolume input file IN-PUT,
the AT END option of the READ statement
applies only to the last volume
containing the EOF label. For prior
volumes containing EOV labels,
automatic volume switching will take
place as indicated in the ASSGN control
statements pertaining to the file
IN-PUT.

The first and second file written on
the volume are closed using the NO
REWIND option of the CLOSE statement.
This option leaves the tape positioned
in mid-reel following the EOF label of
the file just closed.

At job's completion, a standard CLOSE
is issued to reposition the tapes of
the closed files at their physical
beginning.

A LBLTYP control statement is included
because tape files requiring label
information label information are being
processed.

There are three TLBL control statements
for the volume assigned to SYS013, one
for each file referenced on the volume.
The filename field of the TLBL control
statements for these files contains the
names used in the ASSIGN clauses of the
COBOL source program, not the
programmer logical unit name.

Alternate assignments have been made
for SYS012 to handle the multiple
volumes of the file IN-PUT.

Figure 41 illustrates the creation of an
unlabeled multivolume file. The number of
output volumes is determined dynamically
during program execution. The program's
input consists of the labeled multivolume
file created in Figure 40.

150

All input files residing on the same
volume are assigned to the same
symbolic unit.

(j)

The name field of the system-name of
the ASSIGN clause is specified. These
names will appear on the TLBL control
statements that refer to these files.

The MULTIPLE FILE TAPE clause is not
required for the multifile volume
because each file is being processed in
the sequence in which it appears on the
reel. A rewind will not be executed
for any file on the reel except for
that processed last.

The CLOSE statement for files IN-PUT-1
and IN-PUT-2, and the OPEN statement
for files IN-PUT-2 and IN-PUT-3, use
the NO REWIND option. This leaves the
tape positioned in mid-reel for the
mul tif ile volume's next OPEl~ statement.

When it has been determined from the
input data that a new output reel is
required for the multivolume output
file, a CLOSE OUT-PUT REEL statement is
executed, processing is halted, and a
message is issued to the operator which
requests a new volume to be mounted.

At job's completion, a standard CLOSE
is issued to reposition the tapes of
the closed file at their physical
beginning.

An LBLTYP control statement is included
because tape files requiring label
information are being processed.

There are three TLBL control statements
for the volume assigned to SYS014, one
for each file referenced on the volume.
The filename field of the TLBL control
statements for these files contains the
names used in the ASSIGN clauses of the
source program and not the programmer
logical unit names.

Only one tape drive is assigned to the
multivolume file OUT-PUT. Therefore,
each time a volume is closed,
processing must be halted and the
operator informed to mount a new tape.
This is illustrated in Step~.

// JOB SAMPLE
* UNLABELED MULTIFILE VOLUME TO MULTIVOLUME FILE WITH STANDARD LABELS
// OPTION LOG, DUMP, LINK, LIST, LISTX, XREF, SYM, ERRS, NODECK
// EXEC ECOBOL

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
000380
000390
000400
000410
000420
000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE-l.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-F50.
OBJECT-COMPUTER. IBM-360-F50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

~~~~~i i~~gi~ ~~~i~~ ig ~~~~i~=~i=~~~~=~=~i~i~:·~ CD 
SELECT INPUT3 ASSIGN TO SYS010-UT-2400-S-FILE3. J 
SELECT OUT-PUT ASSIGN TO SYSOll-UT-2400-S. 

I-O-CONTROL. 
MULTIPLE FILE TAPE CONTAINS INPUTl POSITION 1 ~ (2\ 

INPUT2 POSITION 3 , ~ 
INPUT3 POSITION 4. , 

DATA DIVISION. 
FILE SECTION. 
FD INPUTl 

RECORD CONTAINS 80 CHARACTERS 
LABEL RECORD IS OMITTED. 

01 RECl PIC X(80). 
FD INPUT2 

RECORD CONTAINS 80 CHARACTERS 
LABEL RECORD IS OMITTED. 

01 REC2 PIC X(80) 
FD INPUT3 

RECORD CONTAINS 80 CHARACrERS 
LABEL RECORD IS OMITTED. 

01 REC3 PIC X(80). 
FD OUT-PUT 

RECORD CONTAINS 80 CHARACTERS 
BLOCK CONTAINS 3 RECORDS 
LABEL RECORD IS STANDARD. 

01 RECO PIC X(80). 
PROCEDURE DIVISION. 

OPEN INPUT INPUTl OUTPUT OUT-PUT. 
READ1. 

READ INPUTl INTO RECO AT END GO TO CLOSE1. 
A. WRITE RECO. 
B. GO TO READ1. 
CLOSE1. 

CLOSE INPUTl WITH NO REWIND. ~ 
C. CLOSE OUT-PUT REEL.CY 
D. OPEN INPUT INPUT2 WITH NO REWIND. ~ 
READ2. 

READ INPUT2 INTO RECO AT END GO TO CLOSE2. 
PERFORM A. 
GO TO READ2. 

CLOSE2. 
CLOSE INPUT2 WITH NO REWIND.~ 
PERFORM C. 
OPEN INPUT INPUT3 WITH NO REWIND.~ 

Figure 39. Processing an Unlabeled Multifile Volume (Part 1 of 2) 

Advanced Processing Capabilities 151 



READ3. 000540 
000550 
000560 
000570 
000580 
000590 
000600 

READ INPUT3 INTO RECO AT END GO TO CLOSE3. 
PERFORM A. 
GO TO READ3. 

CLOSE3. 
CLOSE INPUT3 OUT-PUT. ~ 
s'rop RUN. 

/ / LBLTYP TAPE (j) 
// EXEC LNKEDT 

// ASSGN SYS010, X, 281' 
// ASSGN SYS011,X'282 1 t 
// ASSGN SYS011,X'283',ALT ~ 
// ASSGN SYS011,X'181',ALT) 
// TLBL SYS011,'MULTI-VOL FILE',99/214 
// EXEC 0 

Figure 39. Processing an Unlabeled Multifile Volume (Part 2 of 2) 

152 



II JOB SAMPLE 
* LABELED MULTIVOLUME FILE TO LABELED MULTIFILE VOLUME 
II OPTION LOG,DUMP, LINK,LIST,LISTX,XREF,SYM,ERRS, NODECK 
II EXEC FCOBOL 

000010 
000020 
000030 
000040 
000050 
000060 
000060 
000080 
000090 
000100 
000110 
000120 
000130 
000140 
000150 
000160 
000170 
000180 
000190 
000200 
000210 
000220 
000230 
000240 
000250 
000260 
000270 
000280 
000290 
000300 
000310 
000320 
000330 
000340 
000350 
000360 
000370 
000380 
000390 
000400 
000410 
000420 
000430 
000440 
000450 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SAMPLE-2. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-F50. 
OBJECT-COMPUTER. IBM-360-F50. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT IN-PUT ASSIGN TO SYS012-UT-2400-S. 
SELECT OUT-PUTl ASSIGN TO SYS013-UT-2400-S-FILE1. '1 
SELECT OUT-PUT2 ASSIGN TO SYS013-UT-2400-S-FILE2. ( ~ 
SELECT OUT-PUT3 ASSIGN TO SYS013-UT-2400-S-FILE3. , 

DATA DIVISION. 
FILE SECTION. 
FD IN-PUT 

RECORD CONTAINS 80 CHARACTERS 
BLOCK CONTAINS 3 RECORDS 
LABEL RECORD IS STANDARD. 

01 IN-REC. 
05 FILLER PIC X(4). 
05 CODA PIC X. 
05 FILLER PIC X(6). 
05 CO DB PIC X. 

88 SW-FILl VALUE 191. 
88 SW-FIL2 VALUE '8'. 

05 FILLER PIC X(68). 
FD OUT-PUTl 

RECORD CONTAINS 80 CHARACTERS 
BLOCK CONTAINS 3 RECORDS 
LABEL RECORD IS STANDARD. 

01 OUT-RECl PIC X(80). 
FD OUT-PUT2 

RECORD CONTAINS 80 CHARACTERS 
BLOCK CONTAINS 3 RECORDS 
LABEL RECORD IS STANDARD. 

01 OUT-REC2 PIC X(80). 
FD OUT-PUT3 

RECORD CONTAINS 80 CHARACTERS 
BLOCK CONTAINS 3 RECORDS 
LABEL RECORD IS STANDARD. 

01 OUT-REC3 PIC X(80). 
WORKING-STORAGE SECTION. 
71 TAPE-NUMBER PIC 9 VALUE O. 
PROCEDURE DIVISION. 

OPEN INPUT IN-PUT OUTPUT OUT-PUT1. 

Figure 40. Reading a Multivolume File with Standard Labels; Creating a Multifile Volume 
with Standard Labels (Part 1 of 2) 

Advanced Processing capabilities 153 



000460 
000470 
000480 
000490 
000500 
000510 
000520 
000530 
000540 
000550 
000560 
000570 
000580 
000590 
000600 
000610 
000620 
000630 
000640 
000650 
000660 
000670 
000680 
000690 

READ-IN. 
READ IN-PUT AT END GO TO END-OF-JOB. CD 

A. MOVE IN-REC TO OUT-REC1. 
WRITE OUT-REC1. 
IF SW-FILL NEXT SENTENCE ELSE GO TO READ-IN. 
CLOSE OUT-PUTl WITH NO REWIND. ~ 
OPEN OUTPUT OUT-PUT2. 
ADD 1 TO TAPE-NUMBER. 

B. PERFORM READ-IN. 
MOVE IN-REC TO OUT-REC2. 
WRITE OUT-REC'2. 
IF SW-FIL2 NEXT SENTENCE ELSE GO TO B. 
CLOSE OUT-PUT2 WITH NO REWIND. 0 
OPEN OUTPUT OUT-PUT3. 
ADD 1 TO TAPE-NUMBER. 

C. PERFORM READ-IN. 
MOVE IN-REC TO OUT-REC3. 
WRITE OUT-REC3. 
GO TO C. 

END-OF-JOB. 
CLOSE IN-PUT. 
IF TAPE-NUMBER = 0 CLOSE OUT-PUTl GO TO D. } fii'\ 
IF TAPE-NUMBER 1 CLOSE OUT-PUT2 ELSE CLOSE OUT-PUT3. \:I 

D. STOP RUN. 

// LBLTYP TAPE~ 
// EXEC LNKEDT 

// 
// 
// 
// 
// 
// 
// 
// 
// 

ASSGN SYS013,X'182' 
TLBL FILE1,'MULTI-FILEl VOL'l 
TLBL FILE2,'MULTI-FILE2 VOL'(~ 
TLBL FILE2,'MULTI-FILE3 VOL" 
ASSGN SYS012,X'282' l 
ASSGN SYS012,X'283',ALT (<1) 
ASSGN SYS012,X'181',ALT , 
TLBL SYS012,'MULTI-VOL FILE' 
EXEC 

Figure 40. Reading a Multivolume File with Standard Labels; Creating a Multifile VolUme 
with Standard Labels (Part 2 of 2) 

154 

( 
\ 



// JOB SAMPLE 
* LABELED t-lULTIFILE VOLUME TO UNLABELED MULTIVOLUME FILE 
// OPTION LOG,DUMP,LINK,LIST,LISTX,XREF,SYM,ERRS, NODECK 
// EXEC FCOBOL 
000010 IDENTIFICATION DIVISION. 
000020 PROGRAM-ID. SAMPLE-3. 
000030 ENVIRONMENT DIVISION. 
000040 CONFIGURATION SECTION. 
000050 SOURCE-COMPUTER. IBM-360F50. 
000060 OBJECT-COMPUTER. IBM-360-F50. 
000070 INPUT-OUTPUT SECTION. 
OOOOSO FILE-CONTROL. 
000090 SELECT IN-PUT-1 ASSIGN TO SYS014-UT-2400-S-FILE1. l 
000100 SELECT IN-PUT-2 ASSIGN TO SYS014-UT-2400-S-FILE2. ( (2) 
000110 SELECT IN-PUT-3 ASSIGN TO SYS014-UT-2400-S-FILE3. ) 
000120 SELECT OUT-PUT ASSIGN TO SYS015-UT-2400-S. 
000130 DATA DIVISION. 
000140 FILE SECTION. 
000150 FD IN-PUT-1 
000160 RECORD CONTAINS SO CHARACTERS 
000170 BLOCK CONTAINS 3 RECORDS 
000180 LABEL RECORD IS STANDARD. 
000190 02 IN-REC1 PIC X(SO). 
000200 FD IN-PUT-2 
000210 RECORD CONTAINS 80 CHARACTERS 
000220 BLOCK CONTAINS 3 RECORDS 
000230 LABEL RECORD IS STANDARD. 
000240 01 IN-REC2 PIC X(SO). 
000250 FD IN-PUT-3 
000260 RECORD CONTAINS SO CHARACTERS 
000270 BLOCK CONTAINS 3 RECORDS 
000280 LABEL RECORD IS STANDARD. 
000290 01 IN-REC3 PIC X(80). 
000300 FD OUT-PUT 
0'00310 RECORD CONTAINS SO CHARACTERS 
000320 BLOCK CONTAINS 3 RECORDS 
000330 LABEL RECORD IS OMITTED. 
000340 01 OUT-REC. 
000350 05 FILLER PIC X(4). 
000360 05 CODA PIC X. 
000310 S8 HI VALUE 19

1
• 

0003~0 05 FILLER PIC X(6) • 
. 000390 05 CODB PIC X. 
000400 S8 LO VALUE 18'. 
000410 05 FILLER PIC X(6S). 
000420 PROCEDURE DIVISION. 
000430 OPEN INPUT IN-PUT-1 OUTPUT OUT-PUT. 
000440 IN-1. 
000450 READ IN-PUT-1 INTO OUT-REC AT END GO TO CLOSE1. 
000460 TESTER. 
000470 IF HI AND LO PERFORM CLOSE-OUT ELSE WRITE OUT-REC.~ 
0004S0 A. GO TO IN-1. 
000490 CLOSE1. 
000500 CLOSE IN-PUT-1 WITH NO REWIND. } (3) 
000510 OPEN INPUT IN-PUT-2 WITH NO REWIND. 
000520 IN-2. 
000530 READ IN-PUT-2 INTO OUT-REC AT END GO TO CLOSE2. 
000540 PERFORM TESTER. 
000550 GO TO IN-2. 

Figure 41. Creating an Unlabeled Multivolume File (Part 1 of 2) 

Advanced Processing Capabilities 155 



00056 
000570 
000580 
000590 
000600 
000610 
000620 
000630 
000640 
000650 
000660 
000670 
000680 

CLOSE2. ~ 
CLOSE IN-PUT-2 WITH NO REWIND. ~ 
OPEN INPUT IN-PUT-3 WITH NO REWIND. 

IN-3. 
READ IN-PUT-3 INTO OUT-REC AT END GO TO CLOSE3. 
PERFORM TESTER. 
GO TO IN-3. 

CLOSE-OUT. ~ 
CLOSE OUT-PUT REEL. CD 
STOP 'REMOVE TAPE ON SYS015 AHD MOUNT NEW TAPE'. 

CLOSE3. 
CLOSE IN-PUT-3 OUT-PUT.~ 
STOP RUN. 

II LBLTYP TAPE ~ 
/1 EXEC LNKEDT 

II ASSGN SYS014,X'182' 
II TLBL FILE1,'MULTI-FILE1 
I I TLBL FILE2, 'MULTI-FILE2 
/1 TLBL FILE3,'MULTI-FILE3 
II ASSGN SYS015,X'282'(1) 
II EXEC 

VOL'l 
VOL' @ 
VOL' \ 

Figure 41. creating an Unlabeled Multivolume File (Part 2 of 2) 

156 



MASS STORAGE FILE LABELS 

The IBM System/360 Disk Operating System 
provides postive identification and 
protection of all files on mass storage 
devices by recording labels on each volume. 
These labels ensure that the correct volume 
is used for input, and that no current 
information is destroyed on output. 

The mass storage labels always include 
one volume label for each volume and one or 
more-f!!g=!~~g!i for each logical file on 
the volume. There may also De ~~£~_h~~~~f 
labels and ~~gE_~E~il~E_l~Qel~. 

The volume label is an aO-byte data 
field preceded by a 4-byte key field. Both 
the key field and the first four bytes of 
the data field contain the label identifier 
VOL1. IOCS creates a standard volume label 
for every volume processed by the Disk 
operating System. It is always the third 
record on cylinder 0, track O. The format 
and contents of a standard volume label can 
be found in the publication DOS Data 
Mana~ement Concepts. 

Standard File Labels 

A standard file label identifies a 
p~rticular logical file, gives its 
location(s) on the mass storage device, and 
contains information to prevent premature 
destruction of current files. A standard 
file label for a file located on a mass 
storage device is a 140-character label 
created (OPEN/CLOSE OUTPUT) in part by IOCS 
using the VOL and DLAB, or DLBL control 
statements. The fields contained within 
the label follow three standard formats. 

1. Format 1 is used for all logical 
files. The contents of the fields of 
a Format 1 label is discussed in 
"Appendix C: Standard Mass Storage 
Device Labels." 

2. Format 2 is required for indexed 
files. The contents of the fields of 
a Format 2 label can be found in the 
publication DOS Data Management 
Concepts. 

3. Format 3 is required if a logical file 
uses more than three extents of any 
volume. The contents of the fields of 
a Format 3 label can be found in the 
publication QQ§_Q~~~_~~~~gem~~~ 
co~£gp~~. 

User Labels 

The programmer can include additional 
labels to further define his file. The 
labels are referred to as user standard 
labels. They cannot be specified for 
indexed files. A user label is an 
aO-character label containing UHL (user 
header label) or UTL (user trailer label) 
in the first three character positions. 
The fourth position contains a number 1 
through 8 which represents the relative 
position of the user label with a group of 
user labels. The contents of the remaining 
76 positions is entirely up to the 
programmer. User header and trailer labels 
are written on the first track of the first 
extent of each volume allocated by the 
programmer for the file. User header 
labels are resequenced starting with one 
(UHL1) at the beginning of each new volume. 

LABEL PROCESSING CONSIDERATIONS 

1. Standard labels checked 

a. The volume serial numbers in the 
volume labels are compared to the 
file serial numbers in the EXTENT 
(or XTENT) cards. 

b. Fields 1 through 3 in Format 1 
label are compared to the 
corresponding fields in the DLBL 
(or DLAB) card. Fields 4 through 
6 are then checked against their 
EBCDIC equivalents in the DLAB 
continuation card. 

c. Each of the extent definitions in 
the Format 1 and Format 3 labels 
is checked against the limit 
fields supplied in the EXTENT 
(or XTENT) cards. 

2. User labels checked 

a. If user header labels are 
indicated for directly or 
sequentially organized files, they 
are read as each volume of the 
file is opened. After reading 
each label, the OPEN routine 
branches to the programmer's label 
routine if the appropriate USE 
AFTER STANDARD LABEL PROCEDURE 
declarative is specified in the 
source program. The LABEL RECORDS 
clause with the data-name option 
must be specified in the Data 

Advanced Processing Capabilities 157 



Division. The programmer's label 
routine then performs any 
processing required. 

b. If user trailer labels are 
indicated on a sequential file, 
they are read after reaching the 
end of the last extent on each 
volume when the file is closed, 
provided end-of-file has been 
reached. Trailer labels are 
processed by the programmer's 
label routine if the appropriate 
USE AFTER STANDARD LABEL PROCEDURE 
declarative is specified in the 
source program. The LABEL RECORDS 
clause with the data-name option 
must be specified in the Data 
Division. 

Files on Mass Storage Devices Opened as 
Qutput 

1. Standard labels created 

158 

a. The volume seriai numbers in the 
volume labels are compared to the 
file serial numbers in the EXTENT 
(or XTENT) cards. 

b. The extent definitions in all 
current labels on the volume are 
checked to determine whether any 
extend into those defined in the 
EXTENT (or XTENT) cards. If any 
overlap, the expiration date 1S 
checked against the current date 
in the Communication Region of the 
Supervisor. If the expiration 
date has passed, the old labels 
are deleted. If not, the operator 
is notified of the condition. 

c. The new Format 1 label is written 
with information supplied in the 
DLBL card (or the DLAB card and 
the DLAB continuation card). If 
an indexed file is being 
processed, the DTFIS routine 
supplies information for the 
Format 2 label. 

d. The information in the EXTENT 
(or XTENT) cards is placed in the 
Format 1 labels and, if necessary, 
in the additional Format 3 labels. 

2. User header labels created 

a. If user header labels are 
indicated by the presence of the 
appropriate USE AFTER STANDARD 
LABEL PROCEDURE declarative and 
the LABEL RECORDS clause with the 
data-name option, the programmer's 
label routine is entered to 
furnish the labels as each volume 
of the file is opened. This can 
be done for as many as eight user 
header labels per volume. As each 
label is presented, IOCS writes it 
out on the first track of the 
first extent of the volume. 

b. If user trailer labels are 
indicated by the presence of the 
appropriate USE AFTER STANDARD 
LABEL PROCEDURE declarative and 
the LABEL RECORDS clause with the 
data-name option, the programmer's 
label routine is entered to 
furnish the labels when the end of 
the last extent on each volume is 
reached. This can be done for as 
many as eight user trailer labels. 
The CLOSE statement must be issued 
to create trailer labels for the 
last volume of a sequential file 
or for a direct file. 

UNLABELED FILES 

When a multivolume tape file is opened 
as INPUT and integer as specified in the 
ASSIGN clause is greater than 1, the 
compiler will generate the following 
messa'ge to the operator: 

C126D IS IT EOF? 

The operator must respond either with N if 
it is not the last reel, or with Y if it is 
the last reel. If it is end-of-file, 
control passes to the imperative-statement 
specified in the AT END phrase of the READ 
statement; if it is not end-of-file, 
processing of the next volume is initiated. 

If the integer specified in the ASSIGN 
clause is not greater than 1, control 
always passes at end-of-volume to the 
imperative-statement specified in the AT 
END phrase of the READ statement. 



Logical records may be in one of four 
formats: fixed-length (format F), 
variable-length (format V), undefined 
(format U), or spanned (format S). F-mode 
files must contain records of equal 
lengths. Files containing records of 
unequal lengths must be V-mode, S-mode, or 
U-mode. Files containing logical records 
that are longer than physical records must 
be S-mode. 

The record format is specified in the 
RECORDING MODE clause in the Data Division. 
If this clause is omitted, the compiler 
determines the record format from the 
record descriptions associated with the 
file. If the file is to be blocked, the 
BLOCK CONT~INS clause must be specified in 
the Data Division. 

The prime consideration in the selection 
of a record format is the nature of the 
file itself. The programmer knows the type 
of input his program will receive and the 
type of output it will produce. The 
selection of a record format is based on 
this knowledge as well as an understanding 
of the type of input/output devices on 
which the file is written and of the access 
method used to read or write the file. 

FIXED-LENGTH (FORMAT F) RECORDS 

Format F records are fixed-length 
records. The programmer specifies format F 
records by including RECORDING MODE IS F in 
the file description entry in the Data 
Division. If the clause is omitted and 
both of the following are true: 

• ~ll records in the file are the same 
size 

• BLOCK CONT~INS [integer-l TO] 
integer-2... does not specify 
integer-2 less than the length of the 
maximum level-Ol record 

the compiler determines the recording mode 
to be F. All records in the file are the 
same size if there is only one record 
description associated with the file and it 
contains no OCCURS clause with the 
DEPENDING ON option, or if multiple record 
descriptions are all the same length. 

The number of logical records within a 
block (blocking factor) is normally 
constant for every block in the file. When 

RECORD FORMATS 

fixed-length records are blocked, the 
programmer specifies the BLOCK CONTAINS 
clause in the file description entry in the 
Data Division. 

In unblocked format F, the logical 
record constitutes the block. The BLOCK 
CONTAINS clause is unnecessary for 
unblocked records. 

Format F records are shown in Figure 42. 
The optional control character, represented 
by C in Figure 42, is used for stacker 
selection and carriage control. When 
carriage control or stacker selection is 
desired, the WRITE statement with the 
ADVANCING or POSITIONING option is used to 
write records on the output file. In this 
case one character position must be 
included as the first character of the 
record. This position will be 
automatically filled in with the carriage 
control or stacker select character. The 
carriage control character never appears 
when the file is written on the printer or 
punched on the card punch. 

r-----------------------------------------, 
Logical Record 

r---T------------------------, 
I C I Data I L ___ ~ ________________________ J 

Blocked Records 
r-----------T-----------T-----------, 
I Logical I Logical I Logical I 
I Record I Record I Record I L ___________ ~ ___________ ~ ___________ J 

<------------Fixed Length-----------> 

Unblocked Record 
r-----------------------------------, 
I Logical Record I L ___________________________________ J 

<------------Fixed Length-----------> 
L _________________________________________ J 

Figure 42. Fixed-Length (Format F) Records 

Format U is provided to permit the 
processing of any blocks that do not 
conform to F or V formats. Format U 
records are shown in Figure 43. The 
optional control character C, as discussed 

Record Formats 159 



under "Fixed-Length (Format F) Records," 
may be used in each logical record. 

The programmer specifies format U 
records by including RECORDING MODE IS U in 
the file description entry in the Data 
Division. U-mode records may be specified 
only for directly organized or standard 
sequential files. 

If the RECORDING MODE clause is omitted, 
and BLOCK CONTAINS [integer-1 TO] 
integer-2 ••• does not specify integer-2 
less than the maximum level-01 record, the 
compiler determines the recording mode to 
be U if the file is directly organized and 
one of the following conditions exist: 

• The FD entry contains two or more 
level-01 descriptions of different 
lengths. 

• A record description contains an OCCURS 
clause with the DEPENDING ON option. 

• A RECORD CONTAINS clause specifies a 
range of record lengths. 

Each block on the external storage media 
is treated as a logical record. There are 
no record-length or block-length fields. 

~ote: When a READ INTO statement is used 
for a U-mode file, the size of the longest 
record for that file is used in the MOVE 
statement. All other rules of the MOVE 
statement apply. 

r-----------------------------------------, 
Logical Record I 

r---T----------------------, 
I C I Data I L ___ ~ ______________________ J 

Format U Record 
r---------------------------------, 
I Logical Record I L _________________________________ J 

I 
I 
I 
I 
I 
I 
I 
I 
I _________________________________________ J 

Figure 43. Undefined (Format U) Records 

VARIABLE-LENGTH (FORMAT V) RECORDS 

The programmer specifies format V 
records by including RECORDING MODE IS V in 
the file description entry in the Data 
Division. V-mode records may only be 
specified for standard sequential files. 
If the RECORDING MODE clause is omitted and 

160 

BLOCK CONTAINS [integer-1 TO] integer-2 ••• 
does not specify integer-2 less than the 
maximum level-01 record, the compiler' 
determines the recording mode to be V if 
the file is standard sequential and one of 
the following conditions exists: 

• The FD entry contains two or more level 
01 descriptions of different lengths. 

• A record description contains an OCCURS 
clause with the DEPENDING ON option. 

• A RECORD CONTAINS clause specifies a 
range of record lengths. 

V-mode records, unlike U-mode or F-mode 
records, are preceded by fields containing 
control information. These control fields 
are illustrated in Figures 44 and 45. 

The first four bytes of each block 
contain control information (CC): 

LL -- represents two bytes designating 
the length of the block (including 
the • CC· field). 

BB -- represents two bytes reserved for 
system use. 

The first four bytes of each logical 
record contain control information (cc): 

11 -- represents two bytes designating 
the logical record length 
(including the 'ec' field). 

bb -- represents two bytes reserved for 
system use. 

For unblocked V mode records (see Figure 
46) the data portion + CC + cc constitute 
the block. 

r-----------------------------------------, 
I I 
I 4 4 variable I 
I <--bytes-><--bytes--><------bytes------->I 
I r----T----T----T----T--~----------------, I 
I I LL I BB I 11 I bb I \ Da ta I I I L ____ ~ ____ ~ ____ ~ ____ ~ ___ ~ _______________ JI 
I .-~.'-"..--' \ I 
I ICC I • cc l I 
I I L _________________________________________ J 

Figure 44. Unblocked V-Mode Records 

For blocked V-mode records (see Figure 
45) the data portion of each record + the 
cc of each record + CC constitute the 
block. 



r--------------------------------------------------------------------------------------, 
I 1st 2nd 3rd I 
I Logical Record Logical Record Logical Record I 
I ./'-... ___ /"'-. __ ./'0... _ II 

I r----T----T----T----T-----------T----T----T----------T----T----T----------, 
I I LL I BB I 11 I bb I DATA-1 I 11 I bb I DATA-2 I 11 I bb I DATA-3 I I 

I ~----~----~----~----~-----------~----~----~----------i-~~.~~----------J I 
'-~'--,...-/ -.- I 

: ·CC· ~I_ - I 
I (block control 'cc' I 
I bytes) (record control I 
I bytes) I L ______________________________________________________________________________________ J 

Figure 45. Blocked V-Mode Records 

The control bytes are automatically 
provided when the file is written and are 
not communicated to the programmer when the 
file is read. Although they do not appear 
in the description of the logical record 
provided by tlle programmer, the compiler 
will allocate input and output buffers 
which are large enough to accomodate them. 
When variable-length records are written on 
unit record devices, control bytes are 
neither printed nor punched. They appear, 
however, on other external storage devices 
as well as in buffer areas of core storage. 
V-mode records moved from an input buffer 
to a working-storage area will be moved 
without the control bytes. 

~ote: When a READ INTO statement is used 
for a V-mode file, the size of the longest 
record for that file is used in the MOVE 
statement. All other rules of the MOVE 
statement apply. 

Consider the following standard 
sequential file consisting of unblocked 
V-mode records: 

FD VARIABLE-F{LE-1 
RECORDING MODE IS V 
BLOCK CONTAINS 35 TO 80 CHARACTERS 
RECORD CONTAINS 27 TO 72 CHARACTERS 
DATA RECORD IS VARIABLE-RECORD-1 
LABEL RECORDS ARE STANDARD. 

01 VARIABLE-RECORD-1. 
05 FIELD-A PIC X(20). 
05 FIELD-B PIC 99. 
05 FIELD-C OCCURS 1 TO 10 TIMES 

DEPENDING ON 
FIELD-B PIC 9(5). 

The LABEL RECORDS clause is always 
required. The DATA RECORD(S) clause is 
never required. If the RECORDING MODE 
clause is omitted, the compiler determines 
the mode as V since the record associated 
with VARIABLE-FILE-1 varies in length 
depending on the contents of FIELD-B. The 
RECORD CONTAINS clause is never required. 
The compiler determines record sizes from 
the record description entries. Record 
length calculations are affected by the 
following: 

• When the BLOCK CONTAINS clause with the 
RECORDS option is used, the compiler 
adds four bytes to the logical record 
length and four more bytes to the block 
length. 

• When the BLOCK CONTAINS clause with the 
CHARACTERS option is used, the 
programmer must include each cc + CC in 
the length calculation (see Figure 45). 
In the definition of VARIABLE-FILE-l, 
the BLOCK CONTAINS clause specifies 8 
more bytes than does the record 
contains clause. Four of these bytes 
are the logical record control bytes 
and the other four are the block 
control bytes. 

Assumming that FIELD-B contains the 
value 02 for the first record of a file and 
FIELD-B contains the value 03 for the 
second record of the file, the first two 
records will appear on an external storage 
device and in buffer areas of core storage 
as shown in Figure 46. 

If the file described in Example 1 had a 
blocking factor of 2, the first two records 
would appear on an external storage medium 
as shown in Figure 47. 

Record Formats 161 



r-----------~-----------------------------------------------------------------~-------------------, 
I 1st Block 2nd Block I 
I./"'-... ~ I 
I r -T -T----T -T -- --T--T-------T-------T----T--T----T--T-------T--T-------T-------T-------, I 
II0040IBBI0036IbbIFIELD-AI02IFIELD-CIFIELD-CI0045IBBIO041IbbIFIELD-AI03IFIELD-CIFIELD-CIFIELD-CI I I l ____ ~ __ ~ ____ ~ __ ~-------~--~-------~~ ______ ~ ____ ~ __ ~ ___ ~ __ ~-_~ ____ ~ __ ~ ______ ~~ _______ ~ _______ J I 
I I 
I Note: Lengths appear in decimal notation for illustrative purposes. I 
I I l _________________________________________________________________________________________________ J 

Figure 46. Fields in Unblocked V-Mode Records 

r-----------------------------------------------~---------------------------------------, 
I 1st Record . 2nd . Record I 
I -"- ._ . ~·I 
I r----T--T----T--T-------T--T-------T----~--T----T--T-------T--T-------T-------T-----~-, I 
I 10081IBBI0036IbbIFIELD-AI02IFIELD-CIFIELD-CI0041IbbIFIELD-AI 031 FIELD-CIFIELD-CIFIELD-CI I IL ____ ~ __ ~ ____ ~ __ ~ _______ ~ __ ~ _______ ~ _______ ~ ____ ~ __ ~ _______ ~_~ _______ ~_~ _____ ~ ______ J I 

I I 
I Note: Lengths appear in decimal notation for illustrative purposes. I 
I I L _____________________________________________________ ---_______________________________ J 

Figure 47. Fields in Blocked V-Mode Records 

Example 2: 

If VARIABLE-FILE-2 is blocked, with 
space allocated for three records of 
maximum size per block, the following FD 
entry could be used when the file is 
created: 

FD VARIABLE-FILE-2 
RECORDING MODE IS V 
BLOCK CONTAINS 3 RECORDS 
RECORD CONTAINS 20 TO 100 CHARACTERS 
DATA RECORDS ARE VARIABLE-RECORD-l, 
VARIABLE-RECORD-2 
LABEL RECORDS ARE STANDARD. 

01 VARIABLE-RECORD-l. 
05 FIELD-A PIC X(20). 
05 FIELD-B PIC X(80). 

01 VARIABLE-RECORD-2. 
05 FIELD-X PIC X(20). 

As mentioned previously, the RECORDING 
MODE, RECORD CONTAINS, and DATA RECORDS 
clauses are unnecessary. By specifying 
that each block contains three records, the 
programmer allows the compiler to provide 

162 

space for three records of maximum size 
plus additional space for the required 
control bytes. Hence, 316 character 
positions are reserved by the compiler for 
each output buffer. If this size is other 
than the maximum, the BLOCK CONTAINS clause 
with the CHARACTERS option should be 
specified. 

Assuming that the first six records 
written are five 100-character records 
followed by one 20-character record, the 
first two blocks of VARIABLE-FILE-2 will 
appear on the external storage device as 
shown in Figure 48. 

The buffer for the second block is 
truncated after the sixth WRITE statement 
is executed since there is not enough space 
left for a maximum size. record. Hence, 
even if the seventh WRITE to 
VARIABLE-FILE-2 is a 20-character record, 
it will appear as the first record in the 
third block. This situation can be avoided 
by using the APPLY WRITE-ONLY clause when 
creating files of variable-length blocked 
records. 



r-------------------------------------------------------------------------------------------------, 
1 1st Block 2nd Block 1 
1 ________ ~ 1 
1 r---T--T---T--T----T---T--T----T---T--T----T57107T---T--T---T--T----T---T------------------, 1 
1 1316 1 BBl1041 bblData 11041 bb 1 Data 11041bbiData 1:.'.12361 BB 11041 bblData 11041 bbl Datal241 bbl Data 1 1 1 L ___ .1 __ .1 ___ .L __ .L ____ .1 ___ .L __ .L ____ .L ___ .1 __ .L ____ i· ... __ il.-__ .1 __ .L ___ .1 __ .1 ____ .1-__ .1 __________________ J 1 

1 1 
1 Note: Lengths appear in decimal notation for illustrative purposes. 1 
1 1 L _______________________________________________________________________________________________ ~_J 

Figure 48. First Two Blocks of VARIABLE-FILE-2 

APPLY WRITE-ONLY Clause 

The APPLY WRITE-ONLY clause is used to 
make optimum use of buffer and external 
storage space when creating a standard 
sequential file with blocked V-mode 
records. 

Suppose VARIABLE-FILE-2' is being created 
with the following FD entry: 

FD VARIABLE-FILE-2 
RECORDING MODE IS V 
BLOCK CONTAINS 316 CHARACTERS 
RECORD CONTAINS 20 TO 100 CHARACTERS 
DATA RECORDS ARE VARIABLE-RECORD-l, 
VARIABLE-RECORD-2 
LABEL RECORDS ARE STANDARD. 

01 VARIABLE-RECORD-l. 
05 FIELD-A PIC X(20). 
05 FIELD-B PIC X(80). 

01 VARIABLE-RECORD-2. 
05 FIELD-X PIC X(20). 

The first three WRITE statements to the 
file create one 20-character record 
followed by· two lOO-character,records. 
Without the APPLY WRITE-ONLY clause, the 
buffer is truncated after the third WRITE 
statement is executed, since the maximum 
size record no longer fits. The block is 
written as shown below: 

r---T--T--T--T----T---T--T----T---T--T----' 
12361bbl241bbiDatall041bbiDatall041bbiDatai L ___ .1 __ .1 __ .1 __ .1 ____ .1 ___ .1 __ .1 ____ .1 ___ .1 __ .1 ____ J 

Using the APPLY WRITE-ONLY clause will 
cause a buffer to be truncated only when 
the next record does not fit in the buffer. 
That is, if the next three WRITE statements 
to the file specify VARIABLE-RECORD-2, the 
block will be created containing six 
logical records, as shown below: 

~Q~~: When using the APPLY WRITE-ONLY 
clause, records must not be constructed in 
buffer areas. An intermediate work area 
must be used with a WRITE FROM statement. 

A spanned record is a logical record 
that may be contained in one or more 
physical blocks. Format S records may be 
specified for direct files and for standard 
sequential files assigned to magnetic tape. 
or to mass storage devices. 

When creating files with S-mode records. 
if a record is larger than the remaining . 
space in a block, a segment of the record 
is written to fill the block. The 
remainder of the record is stored in the 
next block or blocks, as required. 

When retrieving a file with S-mode 
records, only complete records are made 
available to the programmer. 

Spanned records are preceded by fields 
containing control information. Figure 45 
illustrates the control fields. 

BDF (Block Descriptor Field): 

LL -- represents 2 bytes designating the 
length of the physical block 
(including the block descriptor 
field itself). 

BB -- represents 2 bytes reserved for 
system use. 

Record Formats 163 



SDF (Segment Descriptor Field): 

11 -- represents 2 bytes designating the 
length of the record segment 
(including the segment descriptor 
field itself). 

bb -- represents 2 bytes reserved for 
system use. 

~otg: There is only one block descriptor 
field at the beginning of each physical 
block. There is, however, one segment 
descriptor field for each record segment 
within the block. 

Each segment of a record in a block, 
even if it is the entire record, is 
preceded by a segment descriptor field. 
The segment descriptor field also indicates 
whether the segment is the first, the last, 
or an intermediate segment. Each block 
includes a block descriptor field. These 
fields are not described in the Data 
Division; provision is automatically made 
for them. These fields are not available 
to the programmer. 

A spanned blocked file may be described 
as a file composed of physical blocks of 
fixed length established by the programmer. 
The logical records ma~ be either fixed or 
variable in length and that size may be 
smaller, equal to, or larger than the 
physical block size. There are no required 
relationships between logical records and 
physical block sizes. 

A spanned unblocked file may be 
described as a file composed of physical 
blocks each containing one logical record 
or one segment of a logical record. The 
logical records may be either fixed or 
variable in length. When the physical 
block contains one logical record, the 
length of the block is determined by the 
logical record size. When a logical record 
has to be segmented, the system always 
writes the largest physical block possible. 
The system segments the logical record when 
the entire logical record cannot fit on the 
track. 

Figure 50 is an illustration of blocked 
spanned records of SFILE. SFILE is 
described in the Data Division with the 
following file description entry: 

FD SFILE 
RECORD CONTAINS 250 CHARACI'ERS 
BLOCK CONTAINS 100 CHARACTERS 

Figure 50 also illustrates the concept 
of record segments. Note that the third 
block contains the last 50 bytes of REC-l 
and the first 50 bytes of REC-2. Such 
portions of logical records are called 
record segments. It is therefore correct 
to say that the third block contains the 
last segment of REC-l and the first segment 
of REC-2. 'The first block contains the 
first segment of REC-l and the second block 
contains an intermediate segment of'REC-l. 

S-MODE CAPABILITIES 

Formatting a file in the S-mode allows 
the programmer to make the most efficient 
use of external storage while organizing 
data files with logical record lengths most 
suited to his needs. 

1. Physical record lengths can be 
designated in such a manner as to make 
the most efficient use of track 
capacities on· mass storage devices. 

2. The programmer is not required to 
adjust logical record lengths to 
maximum physical record lengths and 
their device-dependent variants when 
designing his data files. 

3. The programmer has greater flexibility 
in transferring logical records across 
DASO types. 

Spanned record processing will support 
the 2400 tape series, the 2311 and 2314 
disk storage devices, and the 2321 data 
cell drive. 

r---------------------------------------------------------------------------------------, 
I I 
I <--4 bytes---> <--4 bytes--> <----------------Variable bytes------------------> I 
I r------T------T------T------T-------------------------------------------------, I 
I I LL I BB I 11 I bb I Data Record or Segment I I I L ______ ~ ______ ~ ______ ~ ______ ~ _________________________________________________ J I 

I I 
I BOF SOF I 
I I 
L _____ ------------------------------------------------__________________________________ J 

Figure 49. Control Fields of an S-Mode Record 

164 



" / 

r---------------------------------------------------------------------------------------, 
I I 
I <--------100 bytes-------> <--------100 bytes-------> <-50 bytes-> <-50 bytes-> I 
I r------------------------, r------------------------, r-----------T------------, I 
I I REC-l I G I REC-l I G 1 REC-l' I . REC-2 I I I L ________________________ J L ________________________ J L ___________ ~ ____________ J I 

I 1st Block 2nd Block 3rd Block I 
I I L _______________________________________________________________________________________ J 

Figure 50. One Logical Record Spanning Physical Blocks 

SEQUENTIALLY ORGANIZED S-MODE FILES ON TAPE 
OR MASS STORAGE DEVICES 

When the spanned format is used for 
DTFMT or DTFSD files, the logical records 
may be either fixed or variable in length 
and are completely independent of physical 
record length. A logical record may span 
physical records. A physical record may 
contain one or more logical records and/or 
segments of logical records. 

The programmer specifies S-mode by 
describing the file with the following 
clauses in the file description (FD) entry 
of his COBOL program: 

• BLOCK CONTAINS integer-2 CHARACTERS 

• RECORD CONTAINS [integer-l TO] 
integer-2 CHARACTERS 

• RECORDING MODE IS S 

The size of the physical record must be 
specified using the BLOCK CONTAINS clause 
with the CHARACTERS option. Any block size 
may be specified. Block size is 
independent of logical record size. 

The size of the logical record may be 
specified by the RECORD CONTAINS clause. 
If this clause is omitted, the compiler 
will determine the maximum record size from 
the record descriptions under the FD. 

Format S may be specified by the 
RECORDING MODE IS S clause. If this clause 
is omitted, the compiler will set the 
recording mode to S if the BLOCK CONTAINS 
integer-2 CHARACTERS clause was specified 
and either: 

1. integer-2 is less than the largest 
fixed-length level-Ol FD entry 

2. integer-2 is less than the maximum 
length of a variable level-Ol FD entry 
(i.e., an entry containing one or more 
OCCURS clauses with the DEPENDING ON 
option) • 

When the spanned recording mode is being 
used, each logical record is processed in a 
work area, not in the buffer. Logical 
records are always aligned on a double-word 
boundary. Therefore, the programmer is not 
required to add inter-record slack bytes 
for alignment purposes. 

Except for the APPLY WRITE-ONLY clause, 
all the options for a variable file apply 
to a spanned file. 

suppose a file has the following file 
description entry: 

FD SPAN-FILE 
BLOCK CONTAINS 100 CHARACTERS 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS DATAREC. 

01 DATAREC. 
05 FIELD-A PIC X(100}. 
05 FIELD-B PIC X(50). 

Figure 51 illustrates the first four 
blocks of SPAN-FILE as they would appear on 
external storage devices <i.e., tape or 
mass storage) or in buffer areas of core 
storage. 

Note: 

1. The RECORDING MODE clause is not 
specified. The compiler determines 
the recording mode to be S since the 
block size is less than the record 
size. 

2. The length of each physical block is 
100 bytes, as specified in the BLOCK 
CONTAINS clause. All required control 
fields, as well as data, must be 
contained within these 100 bytes. 

3. No provision is made for the control 
fields within the level-a! entry 
DATAREC. 

Record Formats 165 



r---------------------------------------------------------------------------------------------------------, 
4 4 92 4 4 58 4 30 

<-bytes-><-bytes-><-----------bytes-------------> <-bytes-><-bytes-><---bytes---><-bytes-><--bytes---> 
r---T---T---T----T------------------------------, r---T---T---T----T-------------T---T----T-----------, 
ILL IBB III I bb I' DATAREC (1) I ILL IBB III I bb I DATAREC (1) III I bb IDATAREC (2)1 L ___ ~ ___ ~ ___ ~ ____ L ______________________________ J L ___ ~ ___ ~ ___ ~ ____ ~ _____________ ~ ___ ~ ____ L ___________ J 

1st Block 2nd Block 

4 4 92 4 4 28 4 60 
<-bytes-><-bytes-><-----------bytes-------------> <-bytes-><-bytes-><--bytes---><-bytes-><---bytes----> 
r---T---T---T----T------------------------------, r---T---T---T----T-----------T---T----T-------------, 
ILL IBB III I bb I DATAREC (2) I ILL IBB III I bb IDATAREC (2)111 I bb I DATAREC (3) I I L ___ ~ ___ ~ ___ ~ ____ ~ ______________________________ J L ___ ~ ___ ~ ___ ~ ____ ~ ___________ ~ ___ ~ ____ ~ _____________ J I 

3rd Block 4th Block 
I 
I 
I _________________ -------------___________________________________________________________________________ J 

Figure 51. First Four Blocks of SPAN-FILE 

r-----------------------------------------T--------------------------------------------1 
I RECORDING MODE IS V I RECORDING MODE IS S I 
~------------------------------------------+--------------------------------------------~ 
I I I 
I I , 
I r-----T-----' r-----T-----' r-----' I r-----T-----T-----' r-----T-----T-----' I 
, I 150 I 150 I G , 150 , 100 I G I 150, ,,150 I 150 I 50, G I 100 I 100 I 150 I I 'l _____ ~ _____ J l _____ ~ _____ J l _____ J I l _____ ~ _____ ~ _____ J l _____ ~ _____ ~ ____ J I 
I ~'.~ --v--' -....- -..,--' I '-.,,,.-' '-.,,--' -------------- -v-' --v-' , 

, Rl R2 R3 R4 R5 'Rl R2 R3 R4 R5 , , , , 
I I I 
~------------------------------------------~--------------------------------------------~ 
I~ot~: The enclosed diagrams are for illustrative purposes only. Neither takes into I 
,account the space required for control fields. , l _____________________________________________________ -------___________________________ J 

Figure 52. Advantage of S-Mode Records Over V-Mode Records 

The preceding discussion dealt with 
S-mode records which were larger than the 
physical blocks that contained them. It is 
also possible to have S-mode records which 
are equal to or smaller than the physical 
blocks that contain them. In such cases, 
the RECORDING MODE clause must specify S 
(if so desired) since the compiler cannot 
determine this by comparing block size and 
record size. 

One advantage of S-mode records over 
V-mode records is illustrated by a file 
with the following characteristics: 

1. RECORD CONTAINS 50 TO 150 CHARACTERS 

2. BLOCK CONTA·INS 350 CHARACTERS 

3. The first five records written are 
150, 150, 150, 100, and 150 characters 
in length. 

For V-mode records, buffers are 
truncated if the next logical record is too 

166 

large to be completely contained in the 
block (see Figure 52). This results in 
more physical blocks and more inter-record 
gaps on the external storage device. 

Note: For V-mode records, buffer 
truncation occurs: 

1. When the maximum level-Ol record is 
too large 

2. If APPLY WRITE-ONLY or SAME RECORD 
AREA is specified and the actual 
logical record is too large 

For S-mode records, all blocks are 350 
bytes long and records that are too large 
to fit entirely into a block will be 
segmented. This results in more efficient 
use of external storage devices since the 
number of inter-record gaps are minimized 
(Figure 52). 

With the exception of the last block, 
the actual physical block size wil~ always 



fall between the limits of specified block 
size and four bytes less than the specified 
block size, depending on whether or not the 
residual space of an incomplete block in 
the buffer is sufficient to add a segment 
length field and at least one byte of data. 
That is, specified block size - 4 ~ actual 
block size ~ specified block size. 

The last block may be short when an 
incomplete block remains in the buffer at 
CLOSE time. 

A second advantage of S-mode processing 
over that of V-mode is that the programmer 
is no longer limited to a record length 
that does not exceed the track capacity of 
the mass storage device selected. Records 
may span track, cylinders, and extents, but 
not volumes. 

DTFMT and DTFSD spanned records differ 
from other formats because of an allocation 
of an area of core know as the "logical 
record area." If logical records span 
physical blocks, COBOL will use this 
logical record area to assemble complete 
logical records. If logical records do not 
span blocks (i.e., they are contained 
within a single physical block) the logical 
record area is not used. Regardless, it is 
complete logical records that are made 
available to the programmer. Both READ and 
WRITE statements should be thought of as 
manipulating complete logical records and 
not record segments. 

DIRECTLY ORGANIZED S-MODE FILES 

When S-mode is used for a directly 
organized file, only unblocked records are 
permitted. Logical records may be either 
fixed or variable in length. A logical 
record will span physical records if, and 
only if, it spans tracks. A physical 
record will contain only one logical record 
or a segment of a logical record, or 
segments of two logical records and/or 
whole logical records. Records may span 
tracks, cylinders, and extents, but not 
volumes. 

Source Language Considerations 

The programmer specifies S-mode by 
describing the file with the following 
clauses in the file description (FO) entry 
of his COBOL program: 

• BLOCK CONTAINS integer-2 CHARACrERS 

• RECORD CONTAINS [integer-1 TO] integer-2 
CHARACTERS 

• RECORDING MODE IS S 

The size of a logical record may be 
specified by the RECORD CONTAINS clause. 
If this clause is omitted, the compiler 
will determine the maximum record size from 
the record descriptions under the FO. 

The spanned format may be specified by 
the RECORDING MODE IS S clause. If this 
clause is omitted, the compiler will set 
the recording mode to S if the BLOCK 

r---------------------------------------------------------------------------------------, 
Sequential File Direct File 

r-----T---------T-------------, r-----' r---------, r-------, 
I R1 I R2 I R3 I ••• 1st track ••• I R1 I G I R2 I G I R3 I L _____ ~ _________ ~ _____________ J L _____ J L _________ J L _______ J 

r-----------------------------, r-------------------------------, 
I R3 I .•. 2nd track ••• I R3 I L _____________________________ J L _______________________________ J 

r-----------T-----------------, r-----------------, r---------, 
I R3 I R4 I ••. 3rd track ••• I R3 I G I R4 I L ___________ ~ _________________ J L _________________ J L _________ J 

r-------, 
••• 4th track ••• I R4 I L _______ J 

Figure 53. Direct and Sequential Spanned Files on a Mass Storage Device 

Record Formats 167 



CONTAINS integer-2 CHARACTERS clause was 
specified and integer-2 is less than the 
greatest logical record size. This is the 
only use of the BLOCK CONTAINS clause. It 
is otherwise treated as comments. 

The physical block size is determined by 
either: 

1. The logical record length 

2. The track capacity of the device being 
used 

If, for example, the track capacity of a 
mass storage device is 3625 characters, any 
record smaller than 3625 characters may be 
written as a single physical block. If a 
logical record is greater than 3625 
characters, the record is segmented. The 
first segment may be contained in a 
physical block of up to 3625 bytes, and the 
remaining segments must be contained in 
succeeding blocks. In other words, a 
logical record will span physical blocks 
if, any only if, it spans tracks. 

Figure 53 illustrates four 
variable-length records (Rl, R2, R3, and 
R4) as they wo~ld appear in direct and 
sequential files on a mass storage device. 
In both cases, control fields have been 
omitted for illustrative purposes. For 
both files, assume: 

1. BLOCK CONTAINS 3625 CHARACTERS (track 
capacity = 3,625) 

2. RECORD CONTAINS 500 TO 5000 CHARACTERS 

In the sequential file, each physical 
block is 3625 bytes in length and is 
completely filled with logical records. 
The file consists of three physical blocks, 
occupies three tracks, and contains no 
inter-record gaps. 

In the direct file, the physical blocks 
vary in length. Each block contains only 
one logical record or one record segment. 
Logical record R3 spans physical blocks 
only because it spans tracks. The file 
consists of seven physical blocks, occupies 
more than three tracks, and contains three 
inter-record gaps. 

When processing directly organized 
files, there are two advantages spanned 
format has over the other record formats: 

1. Logical record lengths may exceed the 
length restriction of the track 
capacity of the mass storage device. 

168 

If, for example, the track capacity 'of 
a mass storage device is 2000 bytes, 
the length of each logical record for 
formats other than spanned is, by 
necessity, restricted to the track 
capacity. 

Note: Even when the spanned format is 
used, the COBOL restriction on the 
length of logical records (i.e., a 
maximum length of 32,767 characters) 
must be adhered to. 

2. For formats other than spanned, only 
complete logical records can be 
written on any single track. This 
means that if a track has only 1000 
unoccupied bytes and the programmer 
attempts to add a record of 1100 bytes 
to this track, an INVALID KEY 
condition will occur. When the 
spanned format is used, a 1000 byte 
segment will be written on the 
specified track, and the remainder 
will be written on the next track. 
The segmenting is transparent to the 
programmer. 

OCCURS CLAUSE WITH THE DEPENDING ON OPTION 

If a record description contains an 
OCCURS clause with the DEPENDING ON option. 
the record length is variable. This is 
true for records described in an FD as well 
as in the Working-Storage section. The 
previous sections discussed four different 
record formats. Three of them, V-mode, 
U-mode, and S-mode, may contain one or more 
OCCURS clauses with the DEPENDING ON 
option. 

This section discusses some factors that 
affect the manipulation of records 
containing OCCURS clauses with the 
DEPENDING ON option. The text indicates 
whether the factors apply to the File or 
Working-Storage sections, or both. 

The compiler calculates the length of 
V-mode records containing the OCCURS clause 
with the DEPENDING ON option at two 
different times, as follows (the first 
applies to FD entries only; the second to 
both FD and Working-storage entries): 

1. When a file is read and the object of 
the DEPENDING ON option is within the 
record. 

2. When the object of the DEPENDING ON 
option is changed as a result o£ a 
move to it or any item within its 
group. (The length is not calculated 
when a move is made to an item which 
redefines or renames it.) ( 



Note: Care must be taken within subprogram 
structures to ensure that changes to the 
object of the DEPENDING ON option are made 
within the program that references the 
variable-length record. 

consider the following example: 

WORKING-STORAGE SECTION. 

77 CONTROL-l 
77 WORKAREA-l 

PIC 99. 
PIC 9 (6) V9 9. 

01 SALARY-HISTORY. 
05 SALARY OCCURS 0 TO 10 TIMES 

DEPENDING ON 
CONTROL-l PIC 9(6)V99. 

The Procedure Division statement MOVE 5 
TO CONTROL-l will cause a recalculation of 
the length of SALARY-HISTORY. MOVE 
SALARY (5) TO WORKAREA-l will not cause the 
length to be recalculated. 

The compiler permits the occurrence of 
more than one level-Ol record, containing 
the OCCURS clause with the DEPENDING ON 
option, in the same FD entry (see Figure 
54). If the BLOCK CONTAINS clause is 
omitted, the buffer size is calculated from 
the longest level-Ol record description 
entry. In Figure 54, the buffer size is 
determined by the description of RECORD-1 
(RECORD-l need not be the first record 
description under the FD). 

During the execution of a READ 
statement, the length of each level-Ol 
record description entry in the PD will be 
calculated (see Figure 54). The length of 
the variable portion of each record will be 
the product of the numeric value contained 
in the object of the DEPENDING ON option 
and the length of the subject of the OCCURS 
clause. In Figure 54, the length of 
FIELD-l is calculated by multiplying the 
contents of CONTROL-1 by the length of 
FIELD-l; the length of FIELD-2, by the 
product of the contents of CONTROL-2 and 
the length of FIELD-2; the length of 
FIELD-3 by the contents of CONTROL-3 and 
the length of FIELD-3. 

Since the execution of a READ statement 
makes available only one record type (i.e., 
RECORD-l type, RECORD-2 type, or RECORD-3 
type), two of the three record descriptions 
in Figure 54 will be inappropriate. In 
such cases, if the contents of the object 
of the DEPENDING ON option does not conform 
to its picture, the length of the 
corresponding record will not be 
calculated. For the contents of an item to 
conform to its picture: 

• An item described as USAGE DISPLAY must 
contain external decimal data. 

• An item described as USAGE 
COMPUTATIONAL-3 must contain internal 
decimal data. 

• An item described as USAGE 
COMPUTATIONAL must contain binary data. 

The following example illustrates the 
length calculations made by the system when 
a READ statement is executed: 

FD 

01 RECORD-l. 
05 A PIC 99. 
05 B PIC 99. 
05 C PIC 99 OCCURS 5 TIMES 

DEPENDING ON A. 

01 RECORD-2. 
05 D PIC XX. 
05 EPIC 99. 
05 F PIC 99. 
05 G PIC 99 OCCURS 5 TIMES 

DEPENDING ON F. 

WORKING-STORAGE SECTION. 

01 TABLE-3. 
05 H OCCURS 10 TIMES DEPENDING ON B. 

01 TABLE-4. 
05 I OCCURS 10 TIMES DEPENDING ON E. 

When a record is read, lengths are 
determined as follows: 

1. The length of RECORD-l is calculated 
using the contents of field A. 

2. The length of RECORD-2 is calculated 
using the contents of field F. 

3. The length of TABLE-3 is calculated 
using the contents of field B. 

4. The length of TABLE-4 is calculated 
using the contents of field E. 

The programmer should be aware of 
several characteristics of the previously 
cited length calculations. The following 
example illustrates a group item (i.e., 
REC-l) whose subordinate items contain an 
OCCURS clause with the DEPENDING ON option 
and the object of that DEPENDING ON option. 

Record Formats 169 



r--------------------------------~---------------------~--------------------------------, 
FD INPUT-FILE 

DATA RECORDS ARE RECORD-1 RECORD-2 RECORD-3. 

01 RECORD-1. 
05 CONTROI,-l PIC 99. 
05 FIELD-1 OCCURS o TO 10 TIMES DEPENDING ON CONTROL-1 PIC 9 (5) • 

01 RECORD-2. 
05 CONTROL-2 PIC 99. 
05 FIELD-2 OCCURS 1 TO 5 TIMES DEPENDING ON CONTROL-2 PIC 9 (4) • 

01 RECORD-3. 
05 FILLER PIC XX. 
05 CONTROL-3 PIC 99. 
05 FIELD-3 OCCURS o TO 10 TIMES DEPENDING ON CONTROL-3 PIC X(4). _______________________________________________________________________________________ J 

Figure 54. Calculating Record Lengths When Using the OCCURS Clause with the DEPENDING ON 
option . 

WORKING-STORAGE SECTION. 
01 REC-l. 

05 FIELD-1 PIC 9. 
05 FIELD-2 OCCURS 5 TIMES DEPENDING ON 

FIELD-1 PIC X(5). 

01 REC-2. 
05 REC-2-DATA PIC X(50). 

The results of executing a MOVE to the 
group item REC-1 will be affected by the 
following: 

• The length of REC-1 may have been 
calculated at some time prior to the 
execution of this MOVE.statement. 

• The length of REC-1 may never have been 
calculated at all. 

• After the move, since the contents of 
FIELD-1 have been changed, an attempt 
will be made to recalculate the length 
of REC-1. This recalculation, however, 
will only be made if the new contents 
of FIELD-1 conform to its picture 
(i.e., USAGE'DISPLAY must contain an 
external decimal item, USAGE 
COMPUTATIONAL-3 must contain an 
internal decimal item and USAGE 
COMPUTATIONAL must contain a binary 
item). In the preceding example, if 
FIELD-1 does not contain an external 
decimal item, the length of REC-1 will 
not be calculated. 

Note: According to the COBOL description, 
FIELD-2 can occur a maximum of five times. 
If, however, FIELD-1 contains an external 
decimal item whose value exceeds five,the 
length of REC-1 will still be calculated. 

170 

One possible consequence of this invalid 
calculation will be encountered if the 
programmer attempts to initialize REC-l by 
moving zeros or spaces to it. This 
initialization would inadvertently delete 
part of the adjacent data stored in REC-2. 

The following discussion applies to 
updating a record containing an OCCURS 
clause with the DEPENDING ON option and at 
least one other subsequent entry. In this 
case, the subsequent entry is another 
OCCURS clause with the DEPENDING ON option. 

WORKING-STORAGE SECTION. 
01 VARIABLE-REC. 

05 FIELD-A PIC X(10). 
05 CONTROL-l PIC 99. 
05 CONTROL-2 PIC 99. 
05 VARY-FIELD-1 OCCURS 10 TIMES 

DEPENDING ON CONTROL-l PIC X(5). 
05 VARY-FIELD-2 OCCURS 10 'l'IIv'£S 

DEPENDING ON CONTROL-2 PIC X(9). 

01 STORE-VARY-FIELD-2. 
05 VARY-FLD-2 OCCURS 10 TIMES 

DEPENDING ON CONTROL-2 PIC X(9). 

Assume that CONTROL-1 contains the value 
5 and VARY-FIELD-l contains 5 entries. 

In order to add a sixth field to 
VARY-FIELD-1 the following steps are 
required: 

MOVE VARY-FIELD-2 TO STORE-VARY-FIELD-2. 
ADD 1 TO CONTROL-1. 
MOVE 'additional field' TO VARY-FIELD-1 

(CONTROL-1). 
MOVE STORE-VARY-FIELD-2 TO VARY-FIELD-2. 



This chapter describes several 
techniques for increasing the efficiency of 
a COBOL program. It is divided into seven 
parts. The first four parts deal with the 
divisions of a COBOL program. The fifth is 
concerned with the Report Writer Feature; 
the sixth with Table Handling Feature, and 
the seventh with using Sort in a segmented 
program. 

GENERAL CONSIDERATIONS 

There are four statements that can be 
coded in any or all of the four divisions 
of a source program: SKIP1, SKIP2, SKIP3, 
and EJECT. These statements provide the 
programmer with the ability to control the 
spacing of a source listing and thereby 
improve its readability. 

ENVIRONMENT DIVISION 

SELECT sentences for the most active 
files should appear first, since the COBOL 
compiler assigns registers to files until 
it runs out of registers and then reuses 
the last registers for all subsequent 
files. 

RESERVE Clause 

When using an additional buffer to 
process standard sequential files, care 
must be taken to ensure that the buffer is 
filled before the execution of each WRITE 
or REWRITE statement. 

APPLY WRITE-ONLY Clause 

To make optimum use of buffer and 
external storage space allocated when 
creating a standard sequential file with 
blocked V-mode records, the programmer 
should use the APPLY WRITE-ONLY clause for 

the file. Using this clause causes a 
buffer to be truncated only when the next 
record does not fit in the buffer. (If 
APPLY WRITE-ONLY is not specified, the 
buffer is truncated when the maximum size 
record will not fit in the space remaining 
in the buffer.) 

DATA DIVISION 

OVERALL CONSIDERATIONS 

Assign a prefix to each level-Ol item in 
a program, and use this prefix on every 
subordinate item (except FILLER) to 
associate a file with its records and work 
areas. For example, MASTER is the prefix 
used here: 

FILE SECTION. 
FD MASTER-INPUT-FILE 

01 MASTER-INPUT-RECORD. 

WORKING-STORAGE SECTION. 
01 MASTER-WORK-AREA. 

05 MASTER-PAYROLL PICTURE 9(3). 
05 MASTER-SSNO PICTURE 9(9). 

If files or work areas have the same 
fields, use the prefix to distinguish 
between them. For example, if three files 
all have a date field, instead of DATE, 
DAT, and DA-TE, use MASTER-DATE, 
DETAIL-DATE, and REPORT-DATE. Using a 
unique prefix for each level-Ol item and 
all subordinate fields makes it easier for 
a programmer unfamiliar with the program to 
find fields in the program listing, and to 
know which fields are logically part of the 
same record or area. 

When using the MOVE statement with the 
CORRESPONDING option and referring to 
individual fields, redefine or rename 
"corresponding" names with the prefixed 

Programming Techniques 171 



unique names. This technique eliminates 
excessive qualifying. For example: 

01 MST-WORK-AREA. 
05 SAME-NAMES. (***) 

10 LAST-NAME PIC ••• 
10 FIRST-NAME PIC ••• 
10 PAYROLL PIC ••• 

05 DIFF-NAMES REDEFINES SAME-NAMES. 
10 MST-LAST-NAME PIC ••• 
10 MST-FIRST-NAME PIC ••• 
10 MST-PAYROLL PIC ••• 

01 RPT-WORK-AREA. 
05 SAME-NAMES. (***) 

10 PAYROLL PIC ••• 
10 FILLER PIC ••• 
10 FIRST-NAME PIC ••• 
10 FILLER PIC ••• 
10 LAST-NAME PIC ••• 

PROCEDURE DIVISION. 

IF MST-PAYROLL IS EQUAL TO HDQ-PAYROLL 
AND MST-LAST-NAME 
IS NOT EQUAL TO PRRV-LAST-NAME 
MOVE CORRESPONDING 
MST-WORK-AREA 
TO RPT-WORK-AREA. 

Note: Fields marked *** above must have 
exactly the same names for their 
subordinate fields to be considered 
"corresponding." The same names must not 
be the redefining ones or they will not be 
considered to correspond. 

Level Numbers 

The programmer should use widely 
incremented level numbers such as 01, 05, 
10, 15, etc., instead of 01, 02. 03, 04, 
etc., in order to allow space for future 
insertions of group levels. For 
readability, indent level numbers. Use 
level number 88 for codes. Thus, if the 
codes must be changed, the Procedure 
Division coding for tests need not be 
changed. 

FILE SECTION 

The programmer should use the RECORD 
CONTAINS clause with the integer CHARACTERS 

172 

option in order to save himself, as well as 
any future programmer, the task of counting 
the data record description positions. In 
addition, the compiler can then diagnose 
errors if the data record description 
conflicts with the RECORD CONTAINS clause. 

WORKING-STORAGE SECTION 

Separate Modules 

In a large program, the programmer 
should plan ahead for breaking the programs 
into separately compiled modules, as 
follows: 

1. when using separate modules, an 
attempt should be made to combine 
entries of each Working-Storage 
Section into a single level-Ol record 
(or a single level-Ol record for each 
32K bytes). Logical record areas can 
be indicated by using level-02, -03, 
etc., entries. A CALL statement with 
the USING option is more efficient 
when a single item is passed- than when 
many level-Ol and/or -77 i'terns are 
passed. When this method is employed, 
mistakes are more easily avoided. 

2. Areas which do not contain VALUE 
clauses should be separated from areas 
that do contain VALUE clauses. VALUE 
clauses (except for level-88 items) 
are invalid in the Linkage Section. 

3. When the Working-Storage Section 
consists of one level-Ol item without 
any VALUE clauses, the COPY statement 
can easily be used to include the item 
as the description of a Linkage 
Section in a separately compiled 
module. 

4. See the chapter "Using the 
Segmentation Feature" for additional 
information on how to modularize the 
Procedure Division of a COBOL program. 

~2~~in~_~h~_~QE~~~~~~or~~~_~g£~iQn_!n 
Dump§. 

A simple method of locating the 
working-Storage Section of a program in 
object-time dumps is to include the two 
following statements as the first and last 
Working-Storage statements, respectively, 
in the program. 



77 FILLER PICTURE X(44), VALUE npROGRAM 
XXXXXXXX WORKING-STORAGE BEGINS HEREn. 

01 FILLER PICTURE X(42), VALUE npROGRAM 
XXXXXXXX WORKING-STORAGE ENDS HEREn. 

These two nonnumeric literals will 
appear in all dumps of the program, 
delimiting the Working-Storage Section. 
The program-name specified in the 
PROGRAM-ID clause should replace the 
XXXXXXXX in the literal. 

DATA DESCRIPTION 

The Procedure Division operations that 
most often require adjustment of data items 
include the MOVE statement, the IF 
statement when used in a relation test, and 
arithmetic operations. Efficient use of 
data description clauses, such as 
REDEFINES, PICTURE, and USAGE, avoids the 
generation of extra code. 

REDEFINES Clause 

BEUS!~@_Q~!~_~~~~: The main storage area 
can be used more efficiently by writing 
different data descriptions for the same 
data area. For example, the coding that 
follows shows how the same area can be used 
as.a work area for the records of several 
input files that are not processed 
concurrently. 

WORKING-STORAGE SECTION. 
01 WORK-AREA-FILE1. 

(largest record description for FILE1) 

01 WORK-AREA-FILE2 REDEFINES 
WORK-AREA-FILE1. 

(largest record description for FILE2) 

ALTERNATE GROUPINGS AND DESCRIPTIONS: 
Program data can often be described more 
efficiently by providing alternate 
groupings or data descriptions for the same 
data. For example, a program references 
both a field and its subfields, each of 
which is more efficiently described with a 
different usage. This can be done by using 
the REDEFINES clause as follows: 

01 PAYROLL-RECORD. 
as EMPLOYEE-RECORD PICTURE X(28). 
as EMPLOYEE-FIELD REDEFINES 

EMPLOYEE-RECORD. 
10 NAME PICTURE X(24). 
10 NUMBERX PICTURE S9(S) COMPo 

as DATE-RECORD PICTURE X(10). 

The following illustrates how a table 
(TABLEA) can be initialized by having 
different data descriptions for the same 
data: 

as VALUE-A. 
10 Al PICTURE S9(9) COMPUTATIONAL 

VALUE IS ZEROES. 
10 A2 PICTURE S9(9) COMPUTATIONAL 

VALUE IS 1. 

10 Al00 PICTURE S9(9) COMPUTATIONAL 
VALUE is 99. 

as TABLEA REDEFINES VALUE-A 
PICTURE S9(9) COMPUTATIONAL 
OCCURS 100 TIMES. 

Note: Caution should be exercised when 
redefining a subscript. If the value of 
the redefining data item is changed in the 
Procedure Division, no new calculation for 
the subscript is performed. 

DECIMAL-POINT ALIGNMENT: Procedure 
DivIsion-operatIonS-are most efficient when 
the decimal positions of the data items 
involved are aligned. If they are not, the 
compiler generates instructions to align 
the decimal positions before any operations 
involving the data items can be executed. 

Assume, for example, that a program 
contains the following instructions: 

WORKING-STORAGE SECTION. 
77 A PICTURE S999V99. 
77 B PICTURE S99V9. 

PROCEDURE DIVISION. 

ADD A TO B. 

Time and internal storage space are 
saved by defining Bas: 

77 B PICTURE S99V99. 

If it is inefficient to define B 
differently, a one-time conversion can be 

Programming Techniques 173 



done, as explained in "Data Format 
Conversion" in this chapter. 

[!ELQ~_Q[_~~~Q~~~_~~~~!~: When a data item 
is moved to another data item of a 
different length, the following should be 
considered: 

• If the items are external decimal 
items, the compiler generates 
instructions to insert zeros in the 
high-order positions of the receiving 
field, when it is the larger. 

• If the items are nonnumeric, the 
compiler generates instructions to 
insert spaces in the low-order 
positions of the receiving field (or 
the high-order positions if the 
JUSTIFIED RIGHT clause is specified). 
This.generation of extra instructions 
can be avoided if the sending field is 
described with a length equal to or 
greater than the receiving field. 

~IGN_~~~~~: The presence or absence of a 
plus or minus sign in the description of an 
arithmetic field often can affect the 
efficiency of a program. The following 
paragraphs discuss some of the 
considerations. 

Qeci~~!_!~g~~: The sign position in an 
internal or external decimal item can 
contain: 

1. A plus or minus sign. If S is 
specified in the PICTURE clause, a 
plus or minus sign is inserted when 
either of the following conditions 
prevail: 

174 

a. The item is in the Working~Storage 
section and a VALUE clause has 
been specified. 

b. A value for the item is assigned 
as a result of an arithmetic 
operation during execution of the 
program. 

If an external decimal item is 
punched, printed, or displayed, an 
overpunch will appear in the low-order 
digit. In EBCDIC, the configuration 
for low-order zeros normally is a 
nonprintable character. Low-order 
digits of positive values will be 
represented by one of the letters A 
through I (digits 1 through 9); 
low-order digits of negative values 

will be represented by one of the 
letters J through R (digits 1 through 
9) • 

2. A hexadecimal F. If S is not 
specified in the PICTURE clause, an F 
is inserted in the sign position when 
either of the following conditions 
prevail: 

a. The item is in the Working-Storage 
Section and a VALUE clause has 
been specified 

b. A value for the item is developed 
during the execution of the 
program. 

An F is treated as positive, but is 
not an overpunch. 

3. An invalid configuration. If an 
internal or external decimal item 
contains an invalid configuration in 
the sign position, and if the item is 
involved in a Procedure Division 
operation, the program will be 
abnormally terminated. 

~~~!grrg~_!~g~~ (items for which no S has 
been specified) are treated as absolute
values. Whenever a value (signed or
unsigned) is stored in or moved in an
elementary move to an unsigned item, a
hexadecimal F is stored in the sign
position of the unsigned item. For
example, if an arithmetic operation
involves signed operands and an unsigned
result field, compiler-generated code will
insert an F in the sign position of the
result field when the result is stored.

For internal and external decimal items
used as input, it is the programmer's
responsibility to ensure that the input
data is valid. The compiler does not
generate a test to ensure that the
configuration in the sign position is
valid.

When a group item is being moved, the
data is moved without regard to the level
structure of the group items involved. The
possibility exists that the configuration
in the sign position of a subordinate
numeric item may be destroyed. Therefore,
caution should be exercised in moving group
items with subordinate numeric fields or
with other group operations such as READ or
ACCEPT.

\

I
/

The USAGE clause should be written at
the highest level possible.

DAT~ FORMAT CONVERSION: Operations
involving mixed, elementary numeric data
formats require conversion to a common
format. This usually means that additional
storage is used and execution time is
increased. The code generated must often
move data to an internal work area, perform
any necessary conversion, and then execute
the indicated operation. Often, too, the
result may have to be converted in the same
way. Table 23 indicates when data
conversion is necessary.

If it is impractical to use the same
data formats throughout a program, and if
two data items of different formats are
frequently used together, a one-time
conversion can be effected. For example,
if ~ is defined as a COMPUTATIONAL item and
B as a COMPUTATIONAL-3 item, A can be moved
to a work area that has been defined as
COMPUTATIONAL-3. This move causes the data
in A to be converted to COMPUTATION~L-3.
Whenever A and B are used in a Procedure
Division operation, reference can be made
to the work area rather than to A. When
this technique is used, the conversion is
performed only once, instead of each time
an operation is performed.

Table 23. Data Format Conversion (Part 1 of 2)
r---------T-------------T---------T--------------T-----------T--------------------------,
I I I I I Converted I I
I I IBoundary I I for I I
I I Bytes I Alignment I Typical I~rithmetic I Special I
I Usage I Required IRequired I Usage IOperations I Characteristics I
~---------+-------------+---------t--------------t-----------+--------------------------~
I DISPLAY 11 per digit I No IInput from I Yes I May be used for numeric I
I (external I (except for I Icards, output I I fields up to 18 digits I
I decimal) I V) I I to cards, I I long. I
I I I I listings I I I
I I I I I I Fields over 15 digits I
I I I I I I require extra instruc- I
I I I I I I tions if used in I
I I I I I I computations. I
~---------t-------------+---------t--------------t-----------+--------------------------~
I DISPLAY 11 per I No \Input from \ Yes I Converted to COMP-2 I
I (external I character I Icards, output I I format via COBOL library I
I floating I (except for I Ito cards, I I subroutine. I
I point) I V) I I listings I I I
~---------+-------------+---------+--------------t-----------t--------------------------~
COMP-3 1 per 2 No Input to a Sometimes I Requires less space than I
(internal digits plus report item when a I DISPLAY. I
decimal) 1 byte for small I I

low-order Arithmetic COMP-3 iteml Convenient form for I
digit and fields is used I decimal alignment. I
sign with a I I

Work areas small COMP I Can be used in arithmetic I
item I computations without I

I conversion. I
I I
I Fields over 15 digits I
I require a subroutine whenl
I used in computations. I L _________ ~ _____________ ~ _________ ~ ______________ ~ ___________ ~ __________________________ J

Programming Techniques 175

Table 23. Data Format coriversion (Part 2 of 2)
r---------T-------------T---------T--------------T-----------T--------------------------,
, , " , Converted , ,
, , I Bountary I ,for I I
, I Bytes I Alignment , Typical ,Arithmetic I Special ,
IUsage 'Required IRequired I Usage loperations I Characteristics I
~---------+-------------+---------+--------------+-----------+--------------------------~
ICOMP 2 if 1~N~4 Halfword Subscripting Sometimes Rounding and testing for'
I (binary> for both the ON SIZE ERROR ,
, 4 if 5~N~9 Fullword Arithmetic mixed and condition are cumbersome I
I fields unmixed if calculated result is ,
, 8 if 10~N~18 Fullword usages greater than 9(9). I
I where N is I
I the number of Extra instructions are ,
, 9's in the generated for computa- ,
, picture tions if the SYNCHRONIZ~D'
, clause is not specified. , , ,
J Fields of over nine I
J digits require additional,
, handling. I
~---------f-------------+---------+--------------+-----------+--------------------------~
COMP-1 ,4 (short- Fullword Fractional ,No Tends to produce less I
(internal I precision) exponentiation accurate results if mOre ,
floating than 17 significant I
point) digits are required and I

if the exponent is I
large. ,

I
Extra instructions are I
generated for computa- I
tions if the SYNCHRONIZED,
clause is not specified. I ,
Requires floating-point I
feature. I

~---------f-------------+---------+--------------+-----------+--------------------------~
'COMP-2 18 (long- I Double- I Fractional I No I Same as COMP-1. I
I (internal I precision) I word I exponentiation I I I
I floatingl I Iwhen addition-I I I
I point) I I I al precision I I I
I , , lis required I I , L _________ L _____ ~ _______ ~ _________ ~ ______________ ~ ___________ ~ __________________________ J

The following seven cases show how data
conversions are handled on mixed elementary
items for names, data comparisions, and
arithmetic operations. Moves without the
CORRESPONDING option to and from group
items, as well as comparisons involving
group items, are done. without conversion.

Numeric DISPLAY to COMPUTATIONAL-3:

To Move Data: Converts DISPLAY data to
COMPUTATIONAL-3 data.

!Q~QmE§!~~_Data: Converts DISPLAY data to
COMPUTATIONAL-3 data.

To Perform Arithmetic Operations: Converts
DISPLAY data to COMPUTATIONAL-3 data.

176

Numeric DISPLAY to COMPUTATIONAL:

To Move Data: Converts DISPLAY data to
COMPUTATIONAL-3 data and then to
COMPUTATIONAL data.

!~C0m2~~_Q~:!:§!: Converts DISPLAY to
COMPUTATIONAL or converts both DISPLAY and
COMPUTATIONAL data to COMPUTATIONAL-3 data.

To~~rfQEill_Ar!th~~tic_2E~~~~!Qll~: Converts
DISPLAY data to COMPUTATIONAL-3 or
COMPUTATIONAL data.

COMPUTATIONAL-3 to COMPUTATIONAL:

To Mov~_Dat§!: Moves COMPUTAT~ONAL-3 data
to a work area and then converts
COMPUTATIONAL-3 data to COMPUTATIONAL data.

(

~Q_£Q~E~E~_Q~ta: Converts COMPUTATIONAL
data to COMPUTATIONAL-3 or vice versa,
depending on the size of the field.

To Perform Arithmetic Operations: Converts
COMPUTATIONAL data to COMPUTATIONAL-3 or
vice versa, depending on the size of the
field.

To Move Data: Converts COMPUTATIONAL data
to COMPUTATIONAL-3 data in a work area, and
then moves the work area.

To Compare Data: Converts COMPUTATIONAL to
COMPUTATIONAL-3 data or vice versa,
depending on the size of the field.

!o P~E~QEm_~!~hill~~!£_opera~!Q~~: Converts
COMPUTATIONAL to COMPUTATIONAL-3 data or
vice versa, depending on the size of the
field.

To Move Data: Converts COMPUTATIONAL data
to COMPUTATIONAL-3 data and then to DISPLAY
data.

To CQmE~E~_Q~ta: Converts DISPLAY to
COMPUTATIONAL or both COMPUTATIONAL and
DISPLAY data to COMPUTATIONAL-3 data,
depending on the size of the field.

~Q-R~E~Q~m_~!~hmeti£_OEeratiQn~:
Depending on the size of the field,
converts DISPLAY data to COMPUTATIONAL
data, or both DISPLAY and COMPUTATIONAL
data to COMPUTATIONAL-3 data in which case
the result is generated in a
COMPUTATIONAL-3 work area and then
converted and moved to the DISPLAY result
field.

COMPUTATIONAL-3 to Numeric DISPLAY:

To Move Data: Converts COMPUTATIONAL-3
data to DISPLAY data.

To Compare Data: Converts DISPLAY data to
COMPUTATIONAL-3 data. The result is
generated in a COMPUTATIONAL-3 work area
and is then converted and moved to the
DISPLAY result field.

Numeric DISPLAY to Numeric DISPLAY:

The result is generated in a
COMPUTATIONAL-3 work area and is then
converted to DISPLAY and moved to the
DISPLAY result field.

Internal Floating-point to Any Other: When
an item described as COMPUTATIONAL-lor
COMPUTATIONAL-2 (internal floating-point)
is used in an operation with another data
format, the item in the other data format
is always converted to internal floating­
point. If necessary, the internal
floating-point result is then converted to
the format of the other data item.

SYNCHRONIZED Clause

As illustrated in Table 23,
COMPUTATIONAL, COMPUTATIONAL-l and
COMPUTATIONAL-2 items have specific
boundary alignment requirements. ro ensure
correct alignment, either the programmer or
the compiler may have to insert slack bytes
or the compiler must generate extra
instructions to move the item to a
correctly aligned work area when reference
is made to the item.

The SYNCHRONIZED clause may be used at
the elementary level to specify the
automatic alignment of elementary items on
their proper boundaries, or at the 01 level
to synchronize all elementary items within
the group. For COMPUTATIONAL items, if the
PICTURE is in the range of S9 through
S9(4), the item is aligned on a halfword
boundary. If the PICTURE is in the range
of S9(5) through S9(18), the item is
aligned on a fullword boundary. For
COMPUTATIONAL-1 items, the item is aligned
on a full word boundary. For
COMPUTATIONAL-2 items, the item is aligned
on a doubleword boundary. The SYNCHRONIZED
clause and slack bytes are fully discussed
in the publication IBM System/360 Disk
Operating System·: Full American National
Standard COBOL.

£Eecial Considerations for DISPLAY and
COMPUTATIONAL Fields

NUMERIC DISPLAY FIELDS: Zeros are not
inserted into numeric DISPLAY fields by the
instruction set. When numeric DISPLAY data
is moved, the compiler generates
instructions that insert any necessary
zeros into the DISPLAY fields. When
numeric DISPLAY data is compared, and one
field is smaller than the other, the
compiler generates instructions to move the
smaller item to a work area where zeros are
inserted.

Programming Techniques 177

COMPUTATIONAL FIELDS: COMPUTATIONAL fields
can be aligned on either a halfword or
fullword boundary. If an operation
involves COMPUTATIONAL fields of different
lengths, the halfword field is
automatically expanded to a fullword field.
Therefore, mixed halfword and fullword
fields require no additional operations.

COMPUTATIONAL-l AND COMPUTATIONAL-2 FIELDS:
Ii-an-arithmetic-operation-involves-a-----
mixture of short-precision and
long-precision fields, the compiler
generates instructions to expand the
short-precision field to a long-precision
field before the operation is executed.

COMPUTATIONAL-3 FIELDS: The compiler does
not have to generate instructions to insert
high-order zeros for ADD and SUBTRACT
statements that involve COMPUTATIONAL-3
data. The zeros are inserted by the
instruction set.

Data Formats in the Computer

The following examples illustrate how
the various COBOL data formats appear in
the computer in EBCDIC (Extended
Binary-Coded-Decimal Interchange Code)
format. More detailed information about
these data formats appear in the
publication !~~_~~~~g~36~~f!~£!Elg~_Qf
Qper~t!Q~·

Numeric DISPLAY (External Decimal):
Suppose the value of an item is -1234, and
its PICTURE and USAGE clauses are:

PICTURE 9999 DISPLAY.

or

PICTURE S9999 DISPLAY.

The item appears in the computer in the
following forms, respectively:

I Fl I F2 I F3 I F4 I L ____ ~ ____ ~ ____ ~ ____ J

Byte

I Fl I F2 I F3 I D4 I L ____ ~ ____ ~ ____ ~ ____ J

Byte.

Hexadecimal F is treated arithmetically as
positive; hexadecimal D ~epresents a minus
sign.

COMPUTATIONAL-3 (Internal Decimal):
suppose-the-value-of-an-item-is-+1234, and
its PICTURE and USAGE clauses are:

178

PICTURE 9999 COMPUTATIONAL-3.

or

PICTURE S9999 COMPUTATIONAL-3.

The item appears internally in the
following forms, respectively:

I 01 I 23 I 4F I L ____ ~ ____ J. ____ J

Byte

I 01 I 23 I 4C I L ____ ~ ____ J. ____ J

Byte

Hexadecimal F is treated arithmetically as
positive; hexadecimal C represents a plus
sign.

Note: Since the low-order byte of an
internal decimal number always cont.ains a
sign field, an item with an odd number of
digits can be stored more efficiently than
an item with an even number of digits.
Note that a leading zero is inserted in the
above example.

COMPQ!~!!Q~~!!_~!~ar~): suppose the value
of an item is 1234, and its PICTURE and
USAGE clauses are:

PICTURE S9999 COMPUTATIONAL.

The item appears internally in the
following form:

I 0000 I 0100 I 1101 I 0010 I

L-l----~------~------~------J

Sign
position

A a in the sign position indicates that
the number is positive. Negative numbers
are represented in two's complement form;
thus, the sign position of a negative
number will always contain a 1.

For example -1234 would appear as
follows:

I 1111 I 1011 I 0010 I 1110 I L ______ ~ ______ ~ ______ ~ ______ J

. t
S~gn

Position

'l'able 24. Relationship of PICTURE to Storage Allocation
r------------------------T----------------------------T---------------------------------,
1 PICTURE I Maximum Working Value I Assigned Storage I
~------------------------+----------------------------+---------------------------------~
IS9 through S9(4) I 32,767 lOne halfword I
I I I I
IS9(5) through S9(9) I 2,147,483,647 lOne fullword I
I I I I
IS9(10) through S9(18) 1 9,223,372,036,854,775,807 I Two fullwords I L ________________________ ~ ____________________________ ~ _________________________________ J

Binary Item Manipulation: A binary item is
allocated storage ranging from one halfword
to two fullwords, depending on the number
of 9's in its PICTURE. Table 24 is an
illustration of how the compiler allocates
this storage. Note that it is possible for
a value larger than that implied by the
PICTURE clause to be stored in the item.
For example, PICTURE S9(4) implies a
maximum value of 9999, although it could

, actually hold the number 32,767.

Because most binary items are
manipulated according to their allotted
storage capacity, the programmer can ignore
this situation. For the following reasons,
however, 'he must be careful of his data:

1. When the ON SIZE ERROR option is used,
the size test is made on the basis of
the maximum value allowed by the
picture of the result field. If a
size error condition exists, the value
of the result field is not altered and
control is given to the imperative­
statements specified by the error
option.

2. When a binary item is displayed or
exhibited, the value used is a
function of the number of 9's
specified in the PICTURE clause.

3. When the acutal value of a positive
number is significantly larger than
its picture value, a value of 1 could
appear in the sign position of the
item, causing the item to be treated
as a negative number in subsequent
operations.

Figure 55 illustrates three binary
manipulations. In each case, the result
field is an item described as PICTURE S9
COMPUTATIONAL. One halfword of storage has
been allocated, and no ON SIZE ERROR option
is involved. Note that if the ON SIZE
ERROR option had been specified, it would
have been executed for cases Band c.

COMPUTATIONAL-lor COMPUTATIONAL-2
(Floating-point): suppose the value of an
item is +1234 and that its USAGE is
COMPUTATIONAL-1, the item appears
internally in the following form:

101100 001110100 1101 0010 0000 0000 00001 L_~ _________ ~ _____________________________ J

S 1 7 8

S is the sign position of the number.

A o in the sign position indicates
that the sign is plus.

A 1 in the sign position indicates
that the sign' is minus.

Bits 1 through 7 are the exponent
(characteristic) of the number.

Bits 8 through 31 are the fraction
(mantissa) of the number.

31

This form of data is referred to as
floating point. The example illustrates
short-precision floating-point data
(COMPUTATIONAL-1). In long-precision
(COMPUTATIONAL-2), the fraction length is
56 bits. (For a detailed explanation of
floating-point representation, see the
publication IBM System/360 Principles of
Operation.)

Programming Techniques 179

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

r------T-----------------------T-------------T-------------------------T----------------,
I I Hexadecimal Result of I Decimal I Actual Decimal Value I DISPLA~ or I
I Case I Binary Calculation I Equivalent, I in Halfword of storage I EXHIBIT Value I
~------+---------------~-------+-------------t-------------------------t----------------i
I A I 0008 I 8 I +8 I 8 I
~------+-----------------------+-------------+-------------------------+----------------~
I B I OOOA I 10 I +10 I 0 I
~------+-------------~---------+-------------+-------------------------t----------------~
I C I C350 I 50000 I -15536 I 6 I
L _____ -~-----------------------~-------------~--------_________________ ~ ________________ J

Figure 55. Treatment of Varying Values in a Data Item of PICTURE S9

PROCEDURE DIVISION

The Procedure Division of a program can
often be made more efficient or easier to
debug by using some of the techniques
described below.

MODULARIZING THE PROCEDURE DIVISION

Modularization involves organizing the
Procedure Division into at least three
functional levels: a main-line routine,
processing subroutines, and input/output
subroutines. When the Procedure Division
is modularized, programs are easier to
maintain and document. In addition,
modularization makes it simple to break
down a program using the segmentation
feature, resulting in a more efficient
segmented program.

Main~Line Routine

The main-line routine should be short
and simple, and should contain all the
major logical decisions of the program.
This routine controls the order in which
second-level subroutines are executed. All
second-level subroutines should be invoked
from the main-line routine by PERFORM
statements.

Processing Subroutines

Processing subroutines should be broken
down into as many functional levels as
necessary, depending on the complexity of
the program. These must be completely
closed subroutines, with one entry point
and one exit point. The entry point should
be the first statement of the subroutine.
The exit point should be the EXIT
statement. Processing subroutines can
PERFORM only lower level subroutines;
return to the higher level subroutine

180

(processing subroutine) must be
accomplished by a GO TO statement that
references the EXIT statement.

Input/Output Subroutines

The input/output subroutines should be
the lowest level subroutines, since all
higher level subroutines have access to
them. There should be one OPEN subr~utine
and one CLOSE subroutine for the program,
and only one functional (READ or WRITE)
subroutine for each file. Having one READ
or WRITE subroutine per file has several
advantages:

1. Coding can be added to count records
on a file, transform blanks into
zeros, check for 9's padding, etc.

2. Input and output files can be
reformatted without changing the logic
of the program.

3. DEBUG statements can be added during
testing to create input or to DISPLAY
formatted output, instead of having to
create a test file.

INTERMEDIATE RESULTS

The compiler treats arithmetic
statements as a succession of operations
and sets up intermediate result fields to
contain the results of these operations.
Examples of such statements are the
arithmetic statements and statements
containing arithmetic expressions. See the
appendix "Intermediate Results" in the
publication IBM System/360 Disk Operating
System: Full American National Standard
COBOL for a description of the algorithms
used by the compiler to determine the
number of places reserved for intermediate
result fields.

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

Intermediate Results and Binary Data Items

If an operation involving binary
operands requires an intermediate result
greater than 18 digits, the compiler
converts the operands to internal decimal
before performing the operation. If the
result field is binary, the result will be
converted from internal decimal to binary.

If an intermediate result will not be
greater than nine digits, the operation is
performed most ~fficiently on binary data
fields.

Intermediate Results and COBOL Library
Subroutines

If a decimal multiplication operation
requires an intermediate result greater
than 30 digits, a COBOL library sUbroutine
is used to perform the multiplication. The
result of this multiplication is then
truncated to 30 digits.

A COBOL library subroutine is used to
perform division if:

1. rhe divisor is equal to or greater
than 15 digits.

2. The length of the divisor plus the
length of the scaled dividend is
greater than 16 bytes.

3. The scaled dividend is greater than 30
digits. (A scaled dividend is a
number that has been multiplied by a
power of ten in order to obtain the
desired number of decimal places in
the quotient.)

Intermediate Results Greater Than 30 Digits

whenever the number of digits in a
decimal' intermediate result is greater than
30, the field is truncated to 30 digits. A
warning message will be generated during
compilation, and program flow will not be
interrupted at execution time. This
truncation may cause a result to be
incorrect.

If binary or internal decimal data is in
agreement with its data description, no
interrupt can occur because of an overflow
condition in an intermediate result. This

I is due to the truncation described in the
) preceding paragraph.

If the possibility exists that an
intermediate result field may exceed 30
digits, truncation can be avoided by the
specification of floating-point operands
(COMPUTATIONAL-lor COMPUTATIONAL-2);
however, accuracy may not be maintained.

Intermediate Results and Floating-point
Data Items

If a floating-point operand has an
intermediate result field in which exponent
overflow occurs, the job will be abnormally
terminated.

Regardless of how Band : are defined in
the following statement, if A is a
floating-point data item, no decimal places
will be calculated in the intermediate
result.

COMPUTE A = B / C

Intermediate Results and the ON SIZE ERROR
Option

The ON SIZE ERROR option applies only to
the final calculated results and not to
intermediate result fields.

EXPONENTIATION

When the exponent is not a literal, one
of the following three subroutines is
invoked, depending on the base and the
exponent:

1. If the base is not a floating-point
item and the exponent is an integer
item, a call to the subroutine
ILBDXPRO is generated and the
exponentiation is executed in pack~d
decimal arithmetic.

2. If the base is a floating-point item
and the exponent is an integer item, a
call to the subroutine ILBDGPwO is
generated and the exponentiation is
executed in floating-point arithmetic.

3. If the exponent is a floating-point
item or has a PICTURE specifying a
decimal places, a call to the
subroutine ILBDFPWO is generated and
the exponentiation is executed in
floating-paint arithmetic.

When the exponent is an integer literal,
one of the following applies:

Programming Techniques 181

Page of GC28';"6398-2,-3, Revised 2/15/73 by TNL GN28-1023

1. If the ,base is a floating-point item,
a call to the subroutine ILBDGPwO is
generated and the exponentiation is
executed in floating-point arithmetic.

2. If the base is not a floating-point
item, an inline loop is generated to
perform the exponentiation unless the
maximum, possible result exceeds 30
digits, in which case a call to the
subroutine ILBDXPRO is generated. In
either case, the exponentiation is
executed in packed decimal arithmetic.

PROCEDURE DIVISION STATEMENTS

COMPUTE.Statement

The use of the COMPUTE statement
generates more efficient code than does the
use of individual arithmetic statements,
since the compiler can keep track of
internal work areas and does not have to
store the results of intermediate·
calculations. It is the programmer's
responsibility, however, to ensure that the
data is defined with the level of
significance required in the answer.

IF Statement

Nested and compound IF statements should
be avoided as the logic is difficult to
debug.

MOVE-Statement

Performing a MOVE operation for an item
longer than 256 bytes requires the
generation of ·more instructions than are
required for that of aMOVE operation for
an item of 256 bytes or less.

When a MOVE statement with the
CORRESPONDING option is executed, data
items are considered as "corresponding"
only if their respective ,data-names are the
same, including all~mplied.qualification
up to, but not including, ·the data-names
used in the MOVE statement itself.

182

For example:

01 AA
05 BB

10 CC
10 DO

05 EE
10 FF

01 XX
05 BB

10 CC
10 DO

05 YY
10 FF

The statement MOVE CORRESPONDING AA TO XX
will result in moving CC and DO, but not
FF, since FF of EE does not correspond to
FF of YY.

Note: The other. rules for MOVE
CORRESPONDING, of course, must still be
satisfied.

The compiler assumes that the data being
moved conforms to PICTURE and USAGE
specifications. If it does not, dissimilar
results will occasionally occur because of
the different code generated for various
sending and receiving fields. This fact is
most apparent when the sending field is
COMPUTATIONAL, the value in the item
exceeds the number of digits specified in
the PICTURE clause, and the option NOTRUNC
is in effect.

NOTE Statement

When the NOTE statement is the first
statement in a paragraph, it will cause the
whole paragraph to be treated as part of
the NOTE. Programmer errors can be avoided
by using the asterisk (*> in place of the
NOTE statement.

PERFORM Statement

PERFORM is a useful statement if the
programmer adheres to the following rules:

1. Always execute the last statement of a
series of routines being operated on
by a PERFORM statement. When
branching out of the routine, make
sure control will eventually return to
the last statement of the routine,
which should be an EXIT statenent.
Although no code is generated, the
EXIT statement allows a programmer to
immediately recognize the extent of a
series of routines within t~e range of
a PERFORM statement. .

2. AI~ays either PERFORM routine-name
THRU routine-name-exit, or PERFORM
section-name. A PERFORM
paragraph-name can create problems for(
the programmer trying to maintain the

Page of GC28-6398-2,-3, Revised 2/15/13 by TNL GN28-1023

program. For example, if one
paragraph must be broken into two
paragraphs, the programmer must
examine every statement to determine
whether this paragraph is within the
range of the PERFORM statement. As a
result, all statements referencing the
paragraph-~~me must be changed to
PERFORM THRU statements.

3~ A PERFORM statement containing
embedded PERFORMs or a PERFORM VARYING
with one or more AFTER options causes
the compiler to generate complex code.
If a series of simple PERFORM
s~tements can accomplish the same
function, the programmer woula be wise
to substitute these since more
efficient code is generated.

READ INTO and.WRITE FROM Options

Always use READ INTO and WRITE FROM, and
process all files in the Working-storage
Section for the following reasons:

1. Debugging is much simpler.
Working-Storage areas are easier to
locate in a dump than are buffer
areas. And, if files are blocked, it
is much easier to determine which
record in a block was being processed
when the abnormal termination
occurred.

2. Trying to access a record-area after
the AT END condition has occurred (for
example, AT END MOVE HIGH-VALUE TO
INPUT-RECORD) can cause problems if
the record area is defined only in the
File Section.

Note: The programmer should be aware that
additional time is used to execute the move
operation involved in each READ INTO or
WRITE FROM instruction.

When a READ INTO statement is used for a
V-mode or U-mode file, the size of the
longest record £or that file is used in the
MOVE statement. All other rules of the
MOVE statement apply.

Programming Techniques 182.1

(

)

The TRANSFORM statement generates more
efficient code than the EXAMINE REPLACING
BY statement when only one character is
being transformed. The TRANSFORM
statement, however, uses a 256-byte table.

USING THE REPORT WRITER FEATURE

REPORT Clause in a File Description (FD)
Entry

A given ~~pQ~t-~am~ may appear in a
maximum of two file description entries.
The file description entries need not have
the same characteristics. If the same
report-name is specified in two file
description entries, the report will be
written on both files. For example:

ENVIRONMENT DIVISION.
SELECT FILE-l ASSIGN SYS005-UR-1403-S.
SELECT FILE-2 ASSIGN SYS001-UT-2400-S.

DATA DIVISION.
FD FILE-l RECORDING MODE F

RECORD CONTAINS 121 CHARACTERS
REPORT IS REPORT-A.

FD FILE-2 RECORDING MODE V
RECORD CONTAINS 101 CHARACTERS
REPORT IS REPORT-A.

For each GENERATE statement, the records
for REPORT-A will be written on FILE-l and
FILE-2, respectively. The records on
FILE-2 will not contain columns 102 through
121 of the corresponding records on FILE-l.

Execution time of an object program can
be decreased by keeping in mind that Report
Writer source coding is treated as though
the programmer had written the program in
COBOL without the Report Writer feature.
Therefore, a complex source statement or
series of statements will generally be
executed faster than simple statements that
perform the same function. The following

example shows two coding techniques for the
Report Section of the Data Division.
Method 2 uses the more complex statements.

RD ••• CONTROLS ARE YEAR MONTH WEEK DAY.

Method 1:

01 TYPE CONTROL FOOTING YEAR.
02 SUM COST.

01 TYPE CONTROL FOOTING MONTH.
02 SUM COST.

01 TYPE CONTROL FOOTING WEEK.
02 SUM COST.

01 TYPE CONTROL FOOTING DAY.
02 SUM COST.

Method 2:

01 TYPE CONTROL FOOTING YEAR.
02 SUM A.

01 TYPE CONTROL FOOTING MONTH.
02 A SUM B.

01 TYPE CONTROL FOOTING WEEK.
02 B SUM C.

01 TYPE CONTROL FOOTING DAY.
02 C SUM COST.

Method 2 will execute faster. One
addition will be performed for each day,
one more for each week, and one for each
month. In Method 1, four additions will be
performed for each day.

Unless each identifier is the name of a
SUM counter in a TYPE CONTROL FOOTING
report group at an equal or lower position
in the control hierarchy, the identifier
must be defined in the File, Working­
storage, or Linkage Sections as well as in
a TYPE DETAIL report group as a source
item. A SUM counter is algebraically
incremented just before presentation of the
TYPE DETAIL report group in which the item
being summed appears as a source item or
the item being summed appeared in a SUM
clause that contained an UPON option for
this DETAIL report group. This is known as
SOURCE-SUM corresponding. In the following
example, SUBTOTAL is incremented only when
DETAIL-l is generated.

Programming Techniques 183

FILE SECTION.

02 NO-PURCHASES PICTURE 99.

REPORT SECTION.
01 DETAIL-l TYPE DETAIL.

02 COLUMN 30 PICTURE 99 SOURCE
NO-PURCHASES.

01 DETAIL-2 TYPE DETAIL.

01 DAY TYPE CONTROL FOOTING
LINE PLUS 2.

02 SUBTOTAL COLUMN 30 PICTURE 999
SUM NO-PURCHASES.

01 MONTH TYPE CONTROL FOOTING
LINE PLUS 2 NEXT GROUP
NEXT PAGE.

A SUM routine is generated by the Report
Writer for each DETAIL report group of the
report. The operands included for summing
are determined as follows:

1. The SUM operand(s) also appears in a
SOURCE clause(s) for the DETAIL report
group.

2. The UPON detail-name option was
specified in the SUM clause. In this
case, all the operands are included in
the SUM routine for only that DETAIL
report group, even if the operand
appears in a SOURCE clause in other
DETAIL report groups.

When a GENERATE detail-name statement is
executed, the SUM routine for that DETAIL
report group is executed in its logical
sequence. When GENERATE report-name
statement is executed and the report
contains more than one DETAIL report group,
the SUM routine is executed for each one.
The SUM routines are executed in the

184

sequence in which the DETAIL report groups
are specified.

The following two examples show the SUM
routines that are generated by the Report
Writer. Example 1 illustrates how operands
are selected for inclusion in the routine
on the basis of simple SOURCE-SUM
correlation. Example 2 illustrates how
operands are selected when the UPON
detail-name option is specified.

Example!: The following statements are
coded in the Report Section:

01 DETAIL-l TYPE DE
02 ••• SOURCE A.

01 DETAIL-2 TYPE DE
02 ••• SOURCE B.
02 ••• SOURCE C.

01 DETAIL-3 TYPE DE
02 ••• SOURCE B.

01 TYPE CF •••
02 SUM-CTR-l ••• SUM A, B, C.

01 TYPE CF •••
02 SUM-CTR-2 ••• SUM B.

A SUM routine is generated for each
DETAIL report group, as follows:

SUM-ROUTINE FOR DETAIL-l

REPORT-SAVE
ADD A TO SUM-CTR-l.

REPORT-RETURN

2UM~ROU!~~~_[QR-Q~!AIL=~

REPORT-SAVE
ADD B TO SUM-CTR-l.
ADD C TO SUM-CTR-l.
ADD B TO SUM-CTR-2.

REPORT-RETURN

SUM-ROUTINE FOR DETAIL-3

REPORT-SAVE
ADD B TO SUM-CTR-l.
ADD B TO SUM-CTR-2.

REPORT-RETURN

(

Example 2: This example uses the same
coding as Example 1, with one exception:
the UPON detail-name option is used for
SUM-CTR-l, as follows:

01 TYPE CF •••
02 SUM-CTR-l ••• SUM A, B, C

UPON DETAIL-2.

The following SUM routines would then be
generated instead of those shown in the
previous example:

SUM Routine for DETAIL-l

REPORT-SAVE
REPORT-RETURN

SUM Routine for DETAIL-2

REPORT-SAVE
ADD A TO SUM-CTR-l.
ADD B TO SUM-CTR-l.
ADD C TO SUM-CTR-l.
ADD B TO SUM-CTR-2.

REPORT-RETURN

SUM Routine for DETAIL-3

REPORT-SAVE
ADD B TO SUM-CTR-2.

REPORT-RETURN

Output Line Overlay

The Report Writer output line is created
using an internal REDEFINES specification,
indexed by integer-l. No check is made to
prevent overlay on any line. For example:

02 COLUMN 10 PICTURE X(23)
VALUE "MONTHLY SUPPLIES REPORT".

02 COLUMN 12 PICTURE X(9)
SOURCE CURRENT-MONTH.

A length of 23 starting from column 10,
followed by a specification for column 12,
will cause field overlay when this line is
printed.

Page Breaks

The Report Writer page break routine
operates independently of the routines that
are executed after any control breaks
(except that a page break will occur as the
result of a LINE NEXT PAGE clause). Thus,
the programmer should be aware of the
following facts:

1. A Control Heading is not printed after
a Page Heading except for fi~st
generation. If the programmer wishes

to have the equivalent of a Control
Heading at the top of each page, he
must include the information and data
to be printed as part of the Page
Heading. Since only one Page Heading
may be specified for each report, he
should be selective in considering his
Control Heading because it will be the
same for each page, and may be printed
at inappropriate times (see "Control
Footings and Page Format" in this
chapter) •

2. GROUP INDICATE items are printed after
page and control breaks. Figure 56
contains a GROUP INDICATE clause and
illustrates the execution output.

r---,
REPORT SECTION.

01 DETAIL-LINE TYPE IS DETAIL LINE
NUMBER IS PLUS 1.
02 COLUMN IS 2 GROUP INDICATE

PICTURE IS A(9) SOURCE IS
MONTHNAME OF RECORD-AREA (MONTH).

(Execution Output)
~------------------------~----------------~
I JANUARY 15 AOO... I
I AO 2. • • I
I I
IPURCHASES AND COST... I
~---~
I JANUARY 21 A03... I
I AO 3. • • I L ___ J

Figure 56. Sample of GROUP INDICATE Clause
and Resultant Execution Output

When more than one report is being
written on a file and the reports are to be
selectively written, a unique l-character
code must be given for each report. A
mnemonic-name is specified in the RD-level
entry for each report and is associated
with the code in the Special-Names
paragraph of the Environment Division.

Note: If a report is written with the CODE
option, the report should not be written
directly on a printer device.

This code will be written as the first
character of each record that is written on
the file. When the programmer wishes to

Programming Techniques 185

write a report from this file, he needs
only to read a record, check the first
character for the desired code, and have it
printed if the desired code is found. The
record should be printed starting from the
third character, as illustrated in Figure
57.

F----l
L _____ J

n

Figure 57. Format of a Report Record When
the CODE Clause is Specified

The following example shows how to
create and print a report with a code of A.
A Report Writer program contains the
following statements:

ENVIRONMENT DIVISION.

SPECIAL-NAMES. nAn IS CODE-CHR-A
"Bn IS CODE-CHR-B.

DATA DIVISION.

REPORT SECTION.
RD REP-FILE-A CODE CODE-CHR-A •••

RD REP-FILE-B CODE CODE-CHR-B •••

A second program could then be used to
print only the report with the code of A,
as follows:

DATA DIVISION.
FD RPT-IN-FILE

RECORD CONTAINS 122 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS RPT-RCD.

01 RPT-RCD.
05 CODE-CHR PICTURE X.
05 PRINT-PART.

10 CTL-CHR PICTURE X.
10 RECORD-PART PICTURE X(120).

FD PRINT-FILE
RECORD CONTAINS 121 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS PRINT-REC.

01 PRINT-REC.
05 FILLER PICTURE X(121).

186

PROCEDURE DIVISION.

· • · LOOP. READ RPT-IN-FILE AT END
GO TO CONTINUE.

CONTINUE.

IF CODE-CHR = "A"
WRITE PRINT-REC FROM PRINT-PART
AFTER POSITIONING CTL-CHR LINES.
GO TO LOOP.

Depending on the number and size of
Control Footings (as well as the page depth
of the report), all of the specified
Control Footings may not be printed on the
same page if a control break occurs for a
high-level control. When a page condition
is detected before all required Control
Footings are printed, the Report Writer
will print the Page Footing (if specified),
skip to the next page, print the Page
Heading (if specified) and then continue to
print control Footings.

If the programmer wishes all of his
control Footings to be printed on the same
page, he must format his page in the
RD-Ievel entry for the report (by setting
the LAST DETAIL integer to a sufficiently
low line number) to allow for the necessary
space.

Each time a CONTROL FOOTING report group
with a NEXT GROUP clause is printed, the
clause is activated only if the report
group is associated with the control that
causes the break. This is illustrated in
Figure 58.

(
I

\

)

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

r---,
RD EXPENSE-REPORT CONTROLS ARE FINAL,

MONTH, DAY

01 TYPE CONTROL FOOTING DAY
LINE PLUS 1 NEXT GROUP
NEXT P~GE.

01 TYPE CONTROL FOOTING MONTH
LINE PLUS 1 NEXT GROUP
NEXT PAGE.

(Execution Output)

EXPENSE REPORT

January 31 ••••••••• 29.30
(Output for CF DAY)

January total ••••• 131.40
(Output for CF MONTH)

Figure 58. Activating the NEXT GROUP
Clause

Note: The NEXT GROUP NEXT PAGE clause for
the Control Footing DAY is not activated.

Floating First Detail

The first presentation of a body group
(PH, PF, CH, CF, DE) that contains a
relative line as its first line will have
its relative line spacing suppressed; the
first line will be printed on either the
value of FIRST DETAIL or INTEGER PLUS 1 of
a NEXT GROUP clause from the preceding
page. For example:

1. If the following body group was the
last to be printed on a page

01 TYPE CF NEXT GROUP NEXT PAGE

then this next body group

01 TYPE DE LINE PLUS 5

would be printed on value of FIRST
DETAIL (in PAGE clause).

2. If the following body group was the
last to be printed on a page

01 TYPE CF NEXT GROUP LINE 12

and after printing, line-counter
then this next body group

01 TYPE DETAIL LINE PLUS 5

40,

would be printed on line 12 + 1 (i.e.,
line 13).

Report Writer Routines

At the end of the analysis of a report
description (RD) entry, the Report Writer
routines are generated, based on the
contents of the RD. Each routine
references the compiler-generated card
number of its respective RD.

TABLE HANDLING CONSIDERATIONS

Subscripts

If a subscript is represented by a
constant and if the subscripted item is of
fixed length, the location of the
subscripted data item within the table or
list is resolved during compilation.

If a subscript is represented by a
data-name, the location is resolved at
execution time. The most efficient format
in this case is COMPUTATIONAL, with a
PICTURE size less than five integers.

The value contained in a subscript is an
integer which represents an occurrence
number within a table. Every time a
subscripted data-name is referenced in a
program, the compiler generates up to 16
instructions to calculate the correct
displacement. Therefore, if a subscripted
data-name is to be processed extensively,
move the subscripted item to an
unsubscripted work area, do all necessary
processing, and then move the item back
into the table. Even when subscripts are
described as COMPUTATIONAL, subscripting
takes time and core storage.

Note: Caution should be observed when
redefining a subscript. If the value of
the redefining data item is changed in the
Procedure Divisio~, no new calculation for
the subscript is performed.

Programming Techniques 187

Index-names

Index-names are compiler-generated
items, one fullword in length, assigned
storage in the TGT (Task Global Table). An
index-name is defined by the INDEXED BY
clause. The value in an index-name
represents an actual displacement from the
beginning of the table that corresponds to
an occurrence number in the table. Address
calculation for a direct index requires a
maximum of four instructions; address
calculation for a relative index requires a
few more. Therefore, the use of
index-names in referencing tables is more
efficient than the use of subscripts. The
use of direct indexes is faster than the
use of relative indexes.

Index-names can only be referenced in
the PERFORM, SEARCH, and SET statements.

Index Data Items

Index data items are compiler-generated
storage positions, one fullword in length,
that are assigned storage within the COBOL
program area. An index data item is
defined by the USAGE IS INDEX clause. The
programmer can use index data items to save
values of index-names for later reference.

Great care must be taken when setting
values of index data items. Since an index
data item is not part of any table, the
compiler is unable to change any
displacement value contained in an
index-name when an index data item is set
to the value of an index-name or another
index data item. See the SET statement
examples later in this chapter.

Index data items can only be referenced
in SEARCH and SET statements.

OCCORS Clause

If indexing is to be used to reference a
table element and the Format 2 (SEARCH ALL)
statement is also used, the KEY option must
be specified in the OCCURS clause. A table
element is represented by the subject of an
OCCURS clause, and is equivalent to one
level of a table. The table element must
then be ordered upon the keyes) and
data-name(s) specified.

188

DEPENDING ON Option

If a data item described by an OCCURS
clause with the DEPENDING ON data-name
option is followed by nonsubordinate data
items, a change in the value of data~name
during the course of program execution will
have the following effects:

1. The size of any group described by or
containing the related OCCURS clause
will reflect the new value of
data-name.

2. Whenever a MOVE to a field containing
an OCCURS clause with the DEPENDING ON
option is executed, the MOVE is done
on the basis of the current contents
of the object of the DEPENDING ON
option.

3. The location of any nonsubordinate
items following the item described
with the OCCURS clause will be
affected by the new value of
data-name. If the programmer wishes
to preserve the contents of these
items, the following procedure can be
used: prior to the change in
data-name, move all nonsubordinate
items following the variable item to a
work area; after the change in
data-name, move all the items back.

Note: The value of gata-n~~~ may change
because a move is made to it or to the
group in which it is contained; or the
value of data-name may change because the
group in which it is contained is a record
area that has been changed b~ execution of
a READ statement.

For example, assume that the Data
Division of a program contains the
following coding:

01 ANYRECORD.
05 A PICTURE S999 COMPUTATIONAL-3.
05 TABLEA PICTURE S999 OCCURS 100

TIMES DEPENDING ON A.
05 GROUPB.

Subordinate data items.
End of record.

GROUPB items are not subordinate toTABLEA,
which is described by the OCCURS clause~
Assuming that WORKB is a work area with the
same data structure as GROUPB, the
following procedural coding could be used:

MOVE GROUPB TO WORKB

Calculate a new value of A

MOVE WORKB TO GROUPB
(

)

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

The preceding statements can be avoided
by placing the OCCURS clause with the
DEPENDING ON option at the end of the
record.

Note; data~name can also change because of
a change in the value of an item that
redefines it. In this case, the group size
and the location of rionsubordinate items as
described in the two preceding paragraphs
cannot be determined.

SEARCH ALL Statement

The SEARCH ALL statement is used to
search an entire table for an item without
having to write a loop procedure. For
example, a programmer-defi~ed table may be
the following:

01 TABLE.
05 ,E'NTRY-IN-TABLE OCCURS 90 TIMES

ASCENDING KEY-l,KEY-2
DESCENDING KEY-3
INDEXED BY INDEX-l.
10 PART-l PICTURE ~(2).
10 KEY-l PICTURE 9(5).
10 PART-2 PICTURE 9(6).
10 KEY-2 PICTURE 9(4).
10 PART-3 PICTURE 9(33).
10 KEY-3 PICTURE 9(5).

A search of the entire table can be
initiated with the following instruction:

SEARCH ALL ENTRY-IN-TABLE AT END GO TO
NOENTRY WHEN KEY-l (INDEX-l) = VALUE-l
AND KEY-2 (INDEX-l) = VALUE-2 AND KEY-3
(INDEX-l) = VALUE-3 MOVE PART-l
(INDEX-l) TO OUTPUT-AREA.

The preceding instructions will execute
a,search on the given array TABLE, which
contains 90 elements of 55 bytes and 3
keys. The primary and secondary keys
(KEY-l and KEY-2) are in ascending order
whereas the least significant key (KEY-3)
is in descending order. If an entry is
found in which the three keys are equal to
the given values (i.e., VALUE-l, VALUE-2,
VALUE-3), PART-l of that entry will be
moved to OUTPUT-AREA. If matching keys are
not found in any of the entries in TABLE,
the NOENTRY routine is entered.

If a match is found between a table
entry and the given values, the index
(INDEX-l) is set to a value corresponding

to the relative position within the table
of the matching entry. If no match is
found, the index remains at the setting it
had when execution of the SEARCH ALL
statement began.

Notg: It is more efficient to 'test keys in
order of significance (i.e., KEY-l should
be specified before KEY-2 in the WHEN'
statement). The WHEN statement can only
test for equality, and only one side of the
equation may be a key.

The table search is performed using a
binary search technique. The table must be
presorted on· all keys, and all entries must
be the same length.

'SET Statl.nent

The SET statement is used to assign
values to index-names and to index data
items.

When an index-name is set to the value
of a literal, identifier, or an index-name
from another table element, it is set to an
actual displacement from the beginning of
the table that corresponds to the
occurrence number indicated by the second
operand in the statement. The compiler
performs the necessary calculations. If an
index-name is set to another index-name for
the same table, the compiler need make no'
conversion of the actual displacement value
contained in the second operand.

However, when an index data item is set
to another index data ~tem or to an
index-name, or when an index-name is set to
an index data item, the compiler is unable
to change any displacement value it finds,
since an index data item is not part of any
table. Thus, no conversion of values can
take place. Remember this to avoid making
programming errors.

For example, suppose that a table' has
been defined as:

01 A.
05 B OCCURS 2 INDEXED BY 11, IS.

10 C OCCURS 2 INDEXED BY 12, 16.
15 D OCCURS 3 INDEXED BY 13, 14.

20 EPIC X(20).
20F PIC 9(5).

T.he table appears in core stora;Je as
shown in Figure 59.

programming rechni~ues 189

r--~--------------~-----------------,
I Byte
I r--------------------T-----' 0

25
1,

I ~----------~---------+-----i 50
I (1, 1, 3) I ElF I
I B(l) ~--------------------+~~---i 15

I C (1, 2) 1: ::: :: :: r~~1~~~~~~~~~~~~~~~~~I~~~~~j ~::
I A ~--------------------+-----i 150

115
1,

200
(2, 1, 3)

I B(2) ~--------------------+-~---f 225

! C (2, 2) E ::: :: :: r~~1~~~~~~~=~~~~~~~=I=~~j :::
f L ____________________ ~ __ ~--J 300 I
L ___ - _________________________________ J

Figure 59. Table structure in ~ore Storage

Suppose that a reference to D (2, 2, 3)
is necessary. The following method is
incorrect:

SET 13 TO 2.
SET INDX-DATA-ITM TO 13.
SET 13 UP BY 1.
SET 12, 11 TO INDX-DATA-ITM.
MOVE'D (11, 12, 13) 'TO WORKAREA.

The value contained in 13 after the first
SET statement is 25, which ,represents the
beginning point of the second occurrence of
D. When the second SET statement is
executed, the value 25 is placed in
INDX-DATA-ITM, and the fourth SET statement
moves the value 25 into 12 and 11. The,
third SET statement ~ncreases the value in
13 to 50. The calculation for the address
o (11, 12, 13) would then be as follows:

(address of D (1, 1, 1» + 25 + 25 + 50
= (address of D (1, 1, 1» + 100

This is not the address of D (2, 2, 3).

190 ", , ,

The following method will find the
correct address:

SET 13 TO 2.
SET 12, 11 TO 13.
SET I3 UP BY 1.

In this case, the first SET statement
places the value 25 in 13. Since the
compiler is able to calculate the lengths
of Band C, the second SET statement places
the value 15 in 12, and the value 150 in
11. The third SET statement places the
value 50 in 13. The correct address
calculation will be: '

(address of 0 (1, 1, 1» + 150 + 15 + 50
= (address of D (1, 1, 1» + 275

The rules for the SET statement are
shown in Table 25.

Use care when setting the value of
index-names associated with tables
described as OCCURS DEPENDING ON. ,If th~
table entry length is changed, the value
contained within the index-name will be,oome
invalid unless a new SET statement corrects·
it.

(

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL 3N28-1023

programmer with respect to the location of
the SORT verb in the program a~d conditions
under which the SORT verb is executed.

r----------------------------,
I I
I ROOT I
I I

L {r-:::::::::-::-:::::::-::::--1
~----------------------------~
I I
I SORT PROGRAM I
I I L--__________________________ J

Figure 60. Partition Diagram when Sort is
Used with Segmentation

USING THE TECHNIQUE

ro cause the Sort program to be loaded
into the same area used by the overlayable
segments and thus share this area of core,
a simple change must be made to the linkage
editor control cards generated by the
compiler.

The compiler will generate the following
linkage editor control cards for the
Sort:

PH~SE XXXXXXOO,XXXXXXyy + X'L'
INCLUDE ILBDDUMO

where XXXXXX is the first six letters of
the PROGR~M-ID name, YY is the priority
of the last segment of the program, and L
is the size, in hexadecimal, of the
largest overlayable segment rounded to
the next highest doubleword boundary.

ILBDDUMO is a dummy CSECT of 2 bytes used
to load the Sort program.

To cause the Sort program to be loaded
in the overlay area, the + X'L' parameter
must be removed from the PHASE card for
PH~SE XXXXXXOO. To do this, the programmer
must first produce an object deck (compile
only) and then manually change the PHASE
card. This PHASE card is usually three
cards from the back of the object deck.

RESTRICTIONS WHEN USING THE TECHNIQUE

When the previously described technique
) is used, the following restrictions apply

to the use of the SORT verb:

1. The SORT verb and its correspondiog
INPUT and/or OUTPUT ~rocedures may
appear only in the permanent~y
resident segments of the program. The
reason for this is that after the Sort
operation is complete, control returns
to the instruction in the COBOL
program immediately following the SORT
verb. If the SORT verb were in an
overlayable segment, the Sort program
itself would overlay the invoking
segment. The COBOL subroutine that
keeps track of which overlayable
segment i.s currently in core
(ILBDSEGM) is unaware of t.his.
Therefore, when control is returned
following the Sort operation, the
proper segment is not reloaded as is
necessary.

2. The SORT verb may not be invoked via a
PERFORM from an overlayable segment
even though the SORT verb 'is in the
permanently resident area of the
program. The reason for this is
similar to the reason given above.
Eventually, the PERFORM is satisfied
and control is returned to the
instruction following the PERFORM.
However, .in the meantime, the Sort
program has overlaid the segment in
which the PERE'ORM was issued without
notifying the subroutine ILBDSE3M.
Therefore, the correct overlayable
segment will not be reloaded as
necessary.

3. If a SORT verb is executed at any time
in the program, control can not be
passed back to the overlayable segment
that was the last one executed,
without first going through another
overlay segment in the program. The
reason is again the same as previously
cited. The Sort program has overlaid
the segment currently in the ~verlay
area without informing ILBDSEGM.
Therefore, if control is passed back
to the segment that ILBDSEGM assumes
is in core, no reload of the seg~ent'
is made. However, if· control is
passed to another overlayable segment,
ILBDSEGM causes a load to occur and
all of its pointers are rese~
accordingly.

Note: Restrictions 2 and 3 can be
eliminated by employing the technique
explained below. This technique
accomplishes the same effect as the one
d'escribed above but requires a subroutine
linkage in the problem program.

Alternate Technique

The COBOL subroUtine ILBDSEGM'k~eps
track ·of which overlayable segment is
currently in the overlay area. This is

programming Techniques 193

done by keeping the priority number of the
proper segment in a field called CURSEGM.
Before leaving an overlayable segment to
execute a SORT verb, the contents of
CURSEGM are changed to indicate that
segment FF is currently in core. When the
Sort operation is complete and control is
returned to the overlayable segment,
ILBDSEGM checks CURSEGM to determine
whether the proper segment is in core.
Since ILBDSEGM now thinks that segment FF
is in core, a load is made for the program
segment that has been overlaid by the Sort
program and processing continues normally.
The idea is to force a reload, when
necessary, of the segment overlaid by the
Sort program. This can be accomplished as
follows:

• Catalog the subroutine CHGPRTY listed
in Figure 61 to the relocatable
library. In the COBOL program, just
before leaving an overlayable segment
to execute the Sort program, include
the following linkage - CALL 'CHGPRTY'.

• The CALL to CHGPRTY need be'made only
if before returning to this segment
both of the following conditions
prevail:

(a) A SORT verb will' be executed, and

(b) Control will not pass through any
other overlayable segment prior
to the return to the current
segment.

As mentioned previously, this technique
elimates only restrictions 2 and 3. The
restriction that the SORT verb be coded
only in the resident portion of the program
still applies. The reason for this is that
the compiler generates in-line code that is
used by the Sort exits when the USING
and/or GIVING options of the SORT verb are
used. This requires that the segment
containing the SORT verb and the Sort
program itself both be resident in core
simultaneously_

r---,
CHGPRTY

RETURN

ADCON
SAVE

CSECT
USING
ST
L
LTR
BZ
MVI
L
BR
DC
DC
END

*,15
1, SAVE
1,ADCON
1,1
RETURN
O(l),X'FF'
1, SAVE
14
V(CURSEGM)
F'O'
CHGPRTY

SAVE REG. 1
GET AQDR. QF "CURSEGM"
TEST ADDR. FOR ZERO
YES. EXIT
CHANGE PRTY TO FF
RESTORE REG. 1
RETURN TO CALLER
LINKAGE TO "CURSEGM"
SAVE AREA

--__ - ________________________________ J

Figure 61. CHGPRTY Subroutine

(

The following is a sample COBOL program
and the output listing resulting from its
compilation, link editing, and execution.
The program creates a blocked, labeled,
standard sequential file, writes it out on
tape, and then reads it back in. It also
does a check on the field called
NO-OF-DEPENDENTS. All data records in the
file are displayed. Those with a zero in
the NO-OF-DEPENDENTS field are displayed
with the special character Z. The records

// Jf]B SAMPLE
// 8 DTION NODECK,LI~K,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

CBL OUOTE,SEQ
IDENTIFICATIO~ DIVISION.
PROGRAM-ID. TESTRUN.

AUTHOR. PROGRAMMER NAME.

APPENDIX A: SAMPLE PROGRAM OUTPUT

of the file are not altered from the time
of creation, despite the fact that the
NO-OF-DEPENDENTS field is changed for
display purposes. The individual records
of the file are created using the
subscripting technique. TRACE is used as a
debugging aid during program execution.

The output formats illustrated in the
listing are described in the chapter
"Interpreting Output."

00001
00002
00003
00004
00000;
00006
00007
OOOOB
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
C0026
00027
00028
00029
0(\030
001)31
00032
00033
00034
C0035
00036
00037

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
00(\200
000210
000220
000230
000240
000250
1)00255
000260
000270
1)00280
000290
000300
000310
000320
000330
000340
000350
000360

INSTALLATION. NEW YORK PROGRA~MING CENTEQ.
DATE-WRITTEN. FEBRUARY 2,1971

DATE-CO~PILED. 04/24/71
REMARKS. THIS PROGRAM HAS BEEN WRITTE~ AS A

COBOL USERS. IT CREATES AN OUTPUT FILE AND
INPUT.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMDUTER. IBM-360-H50.
OBJECT-COMPUTER. IBM-360-H50.
I~PIJT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILE-1 ASSIGN TO SYS008-UT-2400-S.
SELECT FILE-2 ASSIGN TO SYSOOB-UT-2400-S.

DATA DIVISIO~.

FILE SECTION.
FD FILE-1

LAAEL RECORDS ARE OMITTED
~Lf]CK CONTAINS 5 RECORDS
RECORDING MODE IS F
RECORD CONTAINS 20 CHARACTERS
DATA RECQRD IS DECORD-l.

01 RECORD-1.
05 FIELD-A PIC X(201.

FD FILE-2
LABEL R~CORDS ARE OMITTED
BLOCK CONTAINS 5 RECORns
RECORD CONTAINS 20 CHARACTERS
RECORDING MODE IS F
DATA RECORD IS RECORD-2.

01 RECORD-2.
05 FIELD-A PIC X(201.

SAMPLE PROGRAM FOR
RE ADS I T BACK AS

Appendix A: Sample Program Output 195'

00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
0004Q
00050
00051
00052
00053
00054
00055
00056
00')57
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080

196

000370
000380
000390
000400
000410
000420
000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530
000540
000550
000560
000570
000580
000590
000600
000610
000620
000630
000640
000650
000660
000670
000680
000690
000700
000710
000720
000730
000740
000750
000760
000770
000780
000790

WO~KING-STORAGE SECTION.
01 FILLER.

02 COUNT PIC S99 CO~P SYNC.
02 ALPHABET PIC X(26) VALUE IS "ABCDEFGHIJKLMNOPQRSTUV~XYZ~.
02 ALPHA REDEFINES ALPHABET PIC X OCCURS 26 TIMES.
02 NUMBR PIC SQ9 CaMP SYNC.
02 DEPENDENTS PIC X(26) VALUE "01234012340123401234012340".
02 DEPE~D REDEFINES DEPENDENTS PIC X OCCURS 26 TIMES.

01 WO~K~RECORD.
05 NA~~-FIELD PIC X.
05 FILLER PIC X VALUE IS SPACE.
05 RECO~D-NO PIC 9999.
05 FILLER PIC X VALUE IS SPACE.
05 LOCATION PIC AAA VALUE IS "NYC".
05 FILLEQ PIC X VALUE IS SPACE.
05 NO-OF-DEPENDENTS PIC XX.
05 FILLER PIC X(7) VALUE IS SPACES.

PROCEDURE DIVISION.
BEGIN. READY TRACE.

NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
AND INITIALIZES COUNTERS.

STEP-1. OPEN OUTPUT FILE-l. MOVE ZERO TO COUNT, NUMBR.
NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE
CONTAINED IN THE FILE, WRITES THEM ON TAPE, AND DISP~AYS
THEM ON TH~ CONSOLE.

STEP-2. ADD 1 TO COUNT, NUMBR. MOVE ALPHA (COUNT) TO
NAME-FIELD.
~OVE DEPEND (COUNT) TO NO-OF-DEPENDENTS.
MOVE NUMBR TO RECORD-NO.

STEP-3. DISPLAY WORK-RECORD UPON CONSOLE. WRITE RECORD-l FROM
WORK-R ECOR D.

STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL COUNT IS EQUAL TO 26.
NOTE THAT THE FOLLOWING CLOSES THE OUTPUT FILE AND REOPENS
IT AS INPUT.

STEP-5. CLOSE FILE-l. OPEN INPUT FILE-2.
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES
OUT EMPLOYEES WITH NO DEPENDENTS.

STEP-~. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-8.
STEP-7. IF NO-OF-DEPENDENTS IS EQUAL TO "0" MOVE HZ" TO

NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO STEP-6.
STEP-8. CLOSE FILE-2.

STOP RUN.

I NTRNl NAME lVl SOURCE NAME BASE oISPl INTRNl NA"1E oEF I NIT I ON USAGE R a Q M

DNM=1-14B FD FllE-l oTF=Ol oNM=1-14B oTFMT F
DNMal-178 01 RECORD-l Blal 000 oNM=1 .. 176 OS OCl20 GROUP
DNM=1-199 02 FIElD-A Bl=l 000 oNM=1-l99 OS 20C oiSP
DNM=1-216 FD FIlE-2 DTF=02 DNM=1-216 DTFMT F
oNM=1-246 01 RECORD-2 Bl=2 000 DNM=1-246 OS OCl20 GROUP
DNMal-267 02 FIElO-A Bl=2 000 oNM=1-267 OS 20C DISP
oNM=1-267 01 FIllER Bl=3 000 DNM=1-267 OS OCl56 GROUP
DNM=1-306 02 COUNT Bl=3 000 DNM=1-306 OS lH CaMP
oNM=1-321 02 ALPHABET Bl=3 002 oNM=1-321 OS 26C oiSP
DNM=1-339 02 ALPHA Bl=3 002 oNM=1-339 OS lC olSP R 0
DNM=1-357 02 NUMBR Bl"3 OlC oNM=1-357 OS lH COMP
DNM-1-372 02 DEPENDENTS Bl=3 OlE DNM=1-372 OS 26C olSP
oNM"'1-392 02 DEPEND 6l=3 OlE DN.M= 1-392 OS 1C DIS? R a
DNM=1-406 01 WORK-RECORD Bl=3 036 oNM=1-406 OS OCl20 GROUP
DN,M=1-432 02 NAME-FIELD Bl=3 036 DNM=1-432 OS lC DISP
QNM=1-452 02 FIllER Bl"'3 039 DNM=1..,452 OS lC oISP
ONM=1-471 02 RECORD-NO Bl"3 03A DNM=1-471 OS 4C DISP-NM
DNM=1-490 02 FILLER Bl=3 03E DNM= 1-490 OS lC DISP
DNM=2-000 02 lOCATION Bl=3 03F DNM=2-000 OS 3C DISP
oNM"2-018 02 FILLER Bl=3 042 DNM=2-018 OS lC DISP
DNM=2-037 02 NO-OF-oEPENoENTS Bl=3 043 oNM=2':'037 OS 2C DISP
DNM=2-063 02 FILLER Bl=3 045 oNM=2-063 OS 1C DISP

I

)

Appendix A: Sample Program Output 197

TGT

SAVE AREA
SWITCH
TAllY
SORT SAVE
ENT~Y-SAVE

MEMORY MAP

SORT CORE SIZE
NSTO-REElS
SmlT RET
WORKING CEllS
SORT FILE SIZE
SORT MODE SHE
PGT-VN TBl
Tr.T-VN Tl3l
SORTAB ADDRESS
lENGTH OF VN TBl
lNGTH OF SORTAB
PGM 10
A(lNITlI
uos t SWITCHES
OVERFLOW CEllS
BL CEllS
OTFAD~ CEllS
TEMP STORAGE
TEMP STORAGE-2
TEMP STIJ~AGE-3
TE~P STORAGE-4
Bll CELLS
VLC CEllS
SBl CELLS
INDEX CEllS
SUBAOR CELLS
ONCTL CEllS
OFMCTl CELL S
PFMSAV CellS
VN CEllS
SAVE AREA =2
XSASW CEllS
XSA CEllS
PARAM CEllS
RPTSAV AREA
CHECKPT CTR
rOPTR CELLS

198

003EO

003EO
00428
0042C
00430
00434
00438
0043C
0043E
00440
00570
00574
00578
0057C
00580
00584
00586
00588
00590
00594
0059C
0059C
005A8
005BO
00568
00568
00568
00568
0056C
005BC
005BC
0056C
005C4
005C4
005C4
005C8
005CC
005CC
005CC
005CC
00500
00500
00500

(

LITERAL POOL (HEXI

00610 (LIT+OI - 00000001 001A5BSB C206olC5 o5405B5B C2C30306 E2C55B5B
00628 (LIT+241 C2C6C304 E403FOE9 COOOOOOO

DISPLAY LITERALS (BCDI

00634 (L TL+361 'WORK-RECORD'

PGT

OVE~FLOW CELLS
VIRTUAL CELLS
PROCEDURE NAME CELLS
GENERATED NAME CELLS
SUBDTF ADDRESS CELLS
VNI CELLS
LITERALS
DISPLAY LITERALS

REGISTE~ ASSIGNMENT

REG 6
REG 1
REG 8

BL =3
BL =1
BL =2

00508

00508
00508
005E4
005F8
00608
00608
00610
00634

Appendix A: Sample Program output 199

57 000640 START EQU * 000640 58 FO C 004 L 15,004(0,12) V(ILBOOSPO)
000644 05 IF BALR 1,15
000646 00C140 DC X'000140'
000649 04F'5F7404040 DC X'04F5F7404040'

57 000650 96 40 0 048 01 048(13) ,X'40' SWT+O
60 000654 58 "'0 C 004 L 15,004(0,12) V(ILBDOSPO)

000658 05 IF BAL~ 1,15
00065A 000140 DC X'000140'
(J00650 04F6F0404040 DC X'04F6F0404040'

60 000664 41 10 C 03E LA 1,03E(0,12) LlT+6
00066 A 58 00 0 lC8 L 0,1C8(0,13) OTF=l
00066C 18 40 L~ 4,0
OOl)66E 05 FO BALR 15,0
000670 sa 00 008 ST 0,008(0,15)
000674 45 01) F OOC BAL 0,00C(0,15)
00067s:j OOOOCOOO DC X'OOOOOOOO'
00067C OA 02 SVC 2
00067E 41 1)0 0 lC8 LA 0,1C8(0,13) OTF=l
000682 58 FO C 008 L 15,008(0,12) V(ILBOIMLO)
000686 05 EF BALR 14,15
00068A 58 10 0 lC8 L I, lC8(0, 13) OTF=l
00068C 96 10 1 020 01 020(l),X'l0'
000690 50 20 0 IBC ST 2,lBC(0,13) BL =1
000694 58 70 0 IBC L 7,1BC(0,13) BL =1

60 0006<;18 02 01 6 000 C 038 MVC 000(2,6),038(12) ONM=1-306 LlT+O
00069E D2 01 6 01C C 038 MVC 0IC(2,6) ,C38(12) 0~M=1-357 LIT+O

64 0006A4 PN=O 1 EQU * 0006A4 58 FO C 004 L 15,004(0,12) V (IL BOOSPO 1
C006A8 05 IF BAL~ 1,15
0006AA 000140 DC X'000140'
0006AO 04F6F4404040 DC X'04F6F4404040'

64 0006B4 48 30 C 03A LH 3,03A(Otl2) LIT+2
0006B8 4A 30 6 000 AH 3,000(0,6) ONM=1-306
0006F.\C 4E 30 0 100 CVO 3,100(0,131 TS=Ol
0006CO 07 05 0 100 0 100 XC 100(6,13) ,1001131 TS=Ol TS=Ol
0006C6 94 OF 0 106 ~I 1 D6 (131 , X '0 F' TS=01+6
0006CA 4F 30 0 100 CVB 3,100(0,131 TS=Ol
0006CE 40 30 6 000 STH 3,000(0,61 ONM=1-306
000602 48 30 C 03A LH 3,03A(O,12) LlT+2
000606 4A 30 6 01C AH 3,01C(0,61 ONM=1-357
00060A 4E 30 0 100 C VO 3,100(0,131 TS=Ol
0006DE 07 05 0 100 o 100 XC 100(6,131,100(131 TS=Ol TS=Ol
0006E4 94 OF 0 106 ~I 106(l3),X'OF' TS=01+6
0006E8 4F 30 0 100 CVB 3,100(0,131 TS=Ol
0006EC 40 30 6 OIC STH 3,01C(0,61 ONM=1-357

64 0006FO 41 40 6 002 LA 4,002(0,61 ONM=1-339
0006F4 48 20 6 000 LH 2,000(0,61 ONM=1-306
0006F8 4C 20 C 03A MH 2,03A(0,121 LIT+2
0006FC lA 42 AR 4,2
0006FE 5B 40 C 038 S 4,038(0,121 L IT+O
000702 50 40 0 10C ST 4,10C(0,13) SBS=l
000706 58 EO 0 1 DC L 14,10C(0,131 SBS=l
00071)A 02 00 6 1)38 E 1)00 "1VC 038(1,6),000(141 DNM=1-432 DNM=1-339

66 000710 41 40 6 OlE LA 4,01E(0,61 ONM=1-392
000714 48 20 6 000 LH 2,000(0,61 ONM=1-306
000718 4C 20 C 03A "1H 2,03A(0,121 LlT+2
00071C 1A 42 AR 4,2
0007lF. 5~ 4C C 031\ S 4,038(0,12) LlT+O
000722 50 40 0 lEO ST 4,1EO(0,13) SBS=2
000726 5e EO 0 lEO L 14,IEO(0,131 SBS=2
00072A 02 00 6 043 E 000 MVC 043(1,6),000(14) ONM=2-37 DNM=1-392
000730 02 40 6 044 MVI 044(61,X'40' DNM=2-37+1

67 0(1)734 48 30 6 OIC LH 3,01C(0,61 ONM=1-357
aOO73p. 4E ,0 0 100 CVD 3,100(0,13) TS=O'l
OOOBC F3 31 6 03A 0 106 UNPK 03A(4,61,106(2,131 ONM=1-471 TS=07
000742 96 FO 6 030 or 030(61,X'FO' ONM=1-471+3

200

68 000746 58 FO C 004 L 15,00410,121 VIILBOOSPOI
00074A 05 1F BALR 1,15
00074C 000140 DC X'000140'
00074F 04F6F8404040 DC X'04F6F8404040'

68 000756 58 FO C 004 L 15,00410,121 VI ILBOOSPOI
00075A 05 1F BALR 1,15
00075C 0002 DC X'0002'
00075E 00 DC X'OO'
00075F 000014 DC X'000014'
000762 000001C4 DC X'000001C4' BL =3
000766 0038 DC X'0038'
000768 FFFF DC X'FFFF'

68 00076A 02 13 7 000 6 038 MVC 000120,71,038161 ONM=1-178 ONM=1-408
000770 58 10 0 1C8 L 1,1C810,131 OTF=l
000774 18 41 Lq 4,1
000776 58 FO 1 010 L 15,01010,1)
00077A 45 EO F OOC BAL 14,00CI0,151
00077E 50 20 0 IBC ST 2,1BCI0,131 BL =1
000782 58 70 0 1 BC L 7, 1 BC 10, 131 BL =1
000786 58 10 0 1E8 L 1,lE810,131 VN=Ol
00078A 07 F1 BCR 15,1

70 00078C PN=02 EQU * 00078C 58 FO C 004 L 15,00410,121 VIILBOOSPOI
000790 05 IF BALR 1,15
000792 000140 DC X'000140'
000795 04F7F0404040 DC X'04F7F0404040'

70 00079C 58 00 0 1E8 L 0, lE81 0, 131 VN=Ol
0007AO 50 00 D 1 E4 ST 0,lE410,131 PSV=l
0007A4 58 00 C 020 L 0,02010,121 GN=Ol
0007A8 50 00 0 1 E8 ST 0,1E810,131 VN=Ol
0007AC GN=Ol EOU * 0007AC 48 30 6 000 LH 3,00010,61 ONM=1-306
0007BO 49 30 C 03C CH 3,03CIO,121 LIT+4
0007B4 58 FO C 024 L 15,02410,121 GN=02
0007B8 07 8F BCR 8,15
0007BA 58 10 C OOC L 1,00CI0,121 PN=Ol
0007BE 07 F1 BCR 15,1
0007CO GN=02 EQU * 0007CO 58 00 0 lE4 L 0,1E410,131 PSV=l
0007C4 50 00 0 lE8 ST O,1E810,131 VN=Ol

73 0007C 8 58 FO C 004 L 15,00410,121 VIILBOOSPOI
0007CC 05 1F BALR 1,15
0007CE 000140 DC X'000140'
000701 04F7F3404040 DC X'04F7F3404040'

73 000708 58 10 0 lC8 L 1,lC810,131 OTF=l
00070C 94 EF 1 020 NI 02011l,X'EF'
0007EO 18 01 LR 0,1
0007E2 18 40 Lq 4,0
0007E4 41 10 C 046 LA 1,04610,121 LIT+14
0007E8 07 00 BCR 0,0
0007EA 05 FO BALR 15,0
0007EC 50 00 F OOB ST 0,00810,151
0007FO 45 00 F OOC BAL 0,00CI0,151
0007F4 00000000 DC X'OOOOOOOO'
0007F8 OA 02 SVC 2
0007FA 58 00 0 lC8 L 0,1C810,131 OTF=l
0007FE 41 10 C 04E LA 1,04EI0,121 LIT+22
000802 OA 02 SVC 2

73 000804 41 10 C 03E LA 1,03EI0,121 LIT+6
000808 58 00 0 lCC L 0,lCCI0,13) OTF=2
OOOBOC 18 40 LR 4,0
00080E 05 FO BALq 15,0
000810 50 00 F OOB ST 0,00810,151
000814 45 00 F OOC BAL O,OOCIO,15)
000818 00000000 DC X'OOOOOOOO'
ooolnc OA 02 SVC 2
00081E 41 00 0 lCC LA O,1CCIO,13) OTF=2
000822 58 FO C 008 L 15,00810,12) VIILBOIMLO)
000826 05 EF BALR 14,15
000828 58 10 0 1CC L l,lCCI0,13) OTF=2
00082C 96 10 1 020 at 02011I,X'10'

Appendix A: Sample Program output 201

16 000830 PN=03 EOU * 000830 58 FO C 004 L 15,00410,12) VIILBDDSPO)
000834 05 1F BALR 1,15
000836 000140 DC X'000140'
000839 04F1F6404040 DC X'04F1F6404040'

76 000R40 58 10 0 1CC L 1,1CCIO,13) DTF=2
000844 58 FO C 028 L 15,028(0,12) GN=03
000848 91 20 1 010 TM 010(1),X'20'
00084C 07 IF BCR 1,15
00084E 18 41 L~ 4,1
000850 41 FO C 028 LA 15,02810,12) GN=03
000854 02 02 1 02.5 F 001 MVC 02513,1),001(15)
OM85A 58 FO 1 010 L 15,01010,1)

000a5E 45 EO F 008 BAL 14,00810,15)
000862 50 20 0 1CO ST 2,1COIO,13) BL =2
000866 58 80 0 1CO L 8,1COIO,13) BL =2
00086A 02 13 6 038 8 000 MVC 038120,6),00018) DNM=1-408 DNM=1-246
000870 58 FO C 018 L 15,01810,12) PN=04
000S14 01 FF BCR 15,15

76 000816 GN=03 EQU * 000816 58 10 C 01C L 1,01CIO,12) PN=05
00087A 07 F1 BCR 15,1

71 00081C PN=04 EQU * 00087C 58 FO C 004 L 15,00410,12) V(ILBDDSPO)
000880 or; IF BALR 1,15
000882 000140 DC X'000140'
000885 04F1F7404040 DC X'04F7F1404040'

71 00088C 58 20 C 02C L 2,02CIO,12) GN=04
000890 05 00 C 056 6 043 CLC 05611,12),04316) L IT+30 DNM=2-31
000896 01 12 BCR 7,2
000R98 95 40 6 044 CLl 044(6),X'40' D~M=2-37+l
00089C 07 12 SCR 7,2

71 00089E 02 00 6 043 C 051 MVC 043(1,6),057112) DNM=2-37 LIT+31
0008A4 92 40 6 044 MVI 04416'),X'40' DNM=2-31+1

7S OOOSAR GN=04 EOU * 0008A8 '58 10 C 058 L 1,05SIO,12) LI T+32
0008AC 50 10 0 lEC ST 1,1ECIO,13) PRM=l
0008BO 41 20 0 1EC LA 2,lECIO,13) PRM=l
600SB4 58 FO C 004 L 15,00410,12) V(ILBODSPO)
0008B8 05 IF BALR 1,15
OOOSBA ROOI DC X'8001'
OOORSC 10 DC X'10'
OOOSBD OOOOOB DC X'OOOOOS'
0008CO OCOOO05C DC X'OCOOO05C' LIT+36
0008C4 0000 DC X'OOOO'
0008C6 00 DC X'OO'
0008C7 000014 DC X' 000014'
0008CA 000001C4 DC X'ODOOOIC4' BL =3
0008CE 0038 DC X'0038'
000800 FFFF DC X'FFFF'

78 000802 58 10 C 014 L 1,01410,12) PN=03
000806 01 Fl BCR 15,1

79 000808 PN=05 EQU * 000808 58 FO C 004 L 15,004(0,12) VIILBDDSPO)
0008DC 05 1F BALR 1,15
0008f'E 000140 DC X'000140'
0008El 04F1F9404040 DC X'04F7F9404040'

79 OOORE8 58 10 0 ICC L 1,lCCIO,13) DTF=2
0008EC 94 EF 1 020 NI 020(l)'X'EF'
0008FO 18 01 LQ. 0,1
0008F2 1R 40 LR 4,0
0008F4 4i 10 C 046 LA 1,04610,12) LIT+14
0008F8 07 00 BCR 0,0
0008FA 05 FO BALR 15,0
0008FC 50 00 F 008 ST 0,00810,15)
000900 45 00 F OOC BAl 0,00C(0,151
000904 00000000 DC x'ooooooob'
000908 OA 02 SVC 2
00090A 58 00 0 1CC L 0,lCCIO,13) DTF=2
00090E 41 10 C 04E LA 1,04E(0,12) L IT+22

202

000912 OA 02 SVC 2
80 000914 OA OE SVC 14

000916 OA OE SVC 14
000918 50 DO 5 008 INIT2 ST 13,008(0,5)
00091C 50 50 0 004 5T 5,004(0,13)
000920 58 20 C 000 l 2,000(0,12) VIR=l
000924 95 00 2 000 CLl 000(2),X'00'
000928 01 19 BCR 1,9
00092A 92 FF 2 000 MVI 000(2),X'FF'
00092E 96 10 0 048 01 048(13),X'10' 5WT+0
000932 50 EO 0 054 INIT3 ST 14,054(0,13)
000936 05 FO BAlA. 15,0
000938 91 20 0 048 TM 048(13),X'20' SWT+O
00093C 41 EO F 016 BC 14,016(0,15)
000940 58 00 B 048 l 0,048(0,11)
000944 98 20 B 050 lM 2,13,OSO(llJ
000948 58 EO 0 054 l 14,054(0,13)
00094C 01 FE BCR 15,14
00094E 96 20 0 048 01 048(13),X'20' SWT+O
000952 41 60 0 004 lA 6,004(0,0)
000956 41 10 C OOC lA 1,00C(O,12) PN=Ol
00095A 41 10 C 038 lA 1,038(0,12) LIT+O
0009SE 06 10 BCTA. 1,0
000960 05 '50 BAlR 5,0
000962 58 40 000 l 4,000(0,1)
000966 IE 4B AlR 4,11
000968 50 40 1 000 ST 4,000(0,1)
00096C 81 16 5 000 BXlE 1,6,000(5)
000910 41 80 0 IBC lA 8,1 BC (0,13) aVF=l
000914 41 10 0 1CF LA 1,lCF(O,13) TS=Ol-l
000918 05 10 BAlR 1,0
00091A 58 00 8 000 l 0,000(0,8)
00091E IE OB AlR 0,11
000980 50 00 8 000 ST 0,000(0,8)
000984 81 86 1 000 BXlE 8,6,OOO(lJ
000988 02 03 0 1E8 C 030 MVC lE8(4,13),030(12) VN=OI VNI=1
00098E 58 60 0 1C4 l 6,IC4(O,13) Bl =3
000992 58 10 0 1BC L 1,IBC(O,13) BL =1
000996 58 80 0 lCO l 8,lCO(O,13) Bl =2
00099A 58 EO 0 054 l 14,OS4(0, 13)
00099E 01 FE BCR 15,14
000000 05 FO INITI BAlR 15,0
000002 01 00 BCR 0,0
000004 90 OE F OOA STM 0, 14,OOA(lS)
000008 41 FO F 082 Be 15,082(0,15)
OOOOOC OS 30F
000084 58 CO F OC6 l 12,OC6(o,15)
000088 58 EO C 000 l 14,000(0,12) VIR=1
00008C 58 DO F OCA l 13,OCA(O,1S)
000090 95 00 E 000 ClI 000(14),X'00'
000094 41 10 F OA2 BC 1,OA2(O,IS)
000098 96 10 0 048 aI 048(13),X'10' SWT+O
00009C 92 FF E 000 MVI 000(14) ,X' FF'
OOOOAO 41 FO F OAC BC IS,OAC(O,15)
0000A4 98 CE F 03A LM 12,14,03A(IS)
0000A8 90 EC 0 OOC STM 14,12,00C(13)
COOOAC 18 50 lR 5,13
OOOOAE 98 9F F OBA LM 9,15,OBA(15)
0000B2 91 10 0 048 TM 048(13) ,X'lO' SWT+O
0000B6 01 19 BCR 1,9
0000B8 07 FF BCI! 15,15
OOOOBA 07 00 BCR 0,0
OOOOBC 00000932 AOCQP--I l4lINIT3)
OOOOCO 00000000 AOCON l4(INIT1)
0000C4 00000000 AOCON L4lINIT1)
0000C8 00000508 ADCON L4(PGTJ
OOOOCC 000003EO AOCON l4CTGTJ
000000 00000640 AOCON l4(ST ART)
000004 00000918 AOCON L4C INIT2)
000008 C306C2C6FOFOFOFI DC X'C306C2C6FOFOFOFl'
OOOOEO E3C5E2E309E40540 DC X'E3CSE2E309E4DS40'

Appendix A: sample Program output 203

OAT A NAMES

FIL E-l
RECORD-l
FILE-2
RECORD-2
COUNT
ALPHA
NUMBR
DEPEND
WORK-RECORD
NAM E-FI HD
RECORD-NO
NO-OF-DEPENDENTS

PROCEDURE NAMES

STEP-2
STE P-3
STEP-6
STEP-8

CARO ERROR MESSAGE

64
64

204

ILA5011 1-101
lLA5011 I""W

CROSS-REFERENCE DICTIONARY

DEFN REFERENCE

00017 00060 00060
00028 00068 00068
00018 00073 00073
00036 00076
00040 00060 00064
00042 00064 00064
00043 00060 00064
00045 00066 00066
00046 00068 00068
00047 00064
00049 00067 00067
00053 00066 00066

DEFN REFERENCE

00064 00070
00068 00070
00076 00078
00079 00076

HIGH ORDER TRUNCATION MIGHT OCCUR.
HIGH ORDER TRUNCATION MIGHT OCCUR.

00068 00073

00076 00076

00064 00064

00064 00067

00068 00076

00077 00077

00079

00066 00070

00078

00077 00077

)

II EXEC LNKEDT

JOB SAMPLE

ACT ION
LIST
LI ST
LIST
LIST
LIST
LIST
LIST

TAKEN "'lAP
AUTOLINK IJFFBZZN
AUTOLtNK tLBDOSPO
INCLUDE IJJCDD1
AUTOLINK tLBDIMLO
AUTOLINK tLBDMNSO
AUTOLtNK ILBDSAEO
ENTRY

PHASE XFR-AD

PHASE*** 0032AO

DISK LINKAGE EOITOR DIAGNOSTIC OF INPUT

LOCORE HtCORE DSK-AD ESD TYPE LABEL LOADED REL-FR

0032AO 004ACB 53 01 2 CSECT TESTRUN 0032AO 0032AO

CSECT IJFFBZZN 003C40 003C40
* ENTo,Y tJFFZZZN 003C40
* ENTRY IJFFBZZZ 003C40
* ENTRY IJFFZZZZ 003C40

CSECT tLBOSAEO 0049EO 0049EO
ENTRY ILBOSAE1 0049F6

CSECT ILBOMNSO 0049013 004908

CSECT ILBDOSPO 0041A8 0041A8
* ENTRY tLBOOSPl 0046F8

* ENTRY tLBOOSP2 004790

* ENTRY tLBDOSP3 004948

CSECT ILBDIMLO 004980 004980

CSECT tJJCPD1 003FBO 003FBO
ENTRY IJJCP01N 003FBO

* ENTRY IJJCP03 003FBO

Appendix A: Sample Program Output 205

II ASSGN SYS008,X'183'
II EXEC

60
64
68
70
64
68
64
68
64
68
64
68
64
68
64
68
64
68
64
68
64
68
64
68
64
68
64
68
64
68
64
68
64
68
64
68
64
68
64
68
64.
68
64
68
64
68
64
68
64
68
64
68
64
68
73
76
17
WO~K-RECORD

76
77
WORK-RECORD
76
77
WO~K-RECORD

76
17
WO~K-RECORD
76
77
WO~K-RECORD

76
17
WORK-RECORD
76
77
WORK-RECORD
76
77

206

A 0001 NYC

B 0002 NYC

C 0003 NYC 2

o 0004 NYC 3

E 0005 NYC 4

F 0006 NYC

G 0007 NYC 1

(

WORK-RECORD = H 0008 NVC 2 I3G /I assgn sysoon ¥' 183'
76
77 BG
WORK-RECORD c 0009 NVC 3
76 R G A 0001 NYC a
77
WORK-RECORD J 0010 NVC 4 qr, S 0002 r~YC 1
76
77 qr, C 0003 NYC 2
WO~K-~ECORD K 0011 NVC Z
76 SG [l 00011 NYC 3
77
WORK-RECORD .. L 0012 fIIYC gG F. 0005 NYC '+
76
77 eG F 0006 rlYC 0
WO~K-RECO~D M 0013 NYC 2
76 SG G 0007 NYC
77
WORK-RECORD :: N 0014 ~VC 3 SG H 0008 !lye
76
77 nG 0009 NYC 3
WO~K-RECORD a 0015 NYC 4
76 BG ., 0010 NYC 4
77
WO~K-RECORD P 0016 fIIVC Z SG K 0011 NYC 0
76
77 BG L 0012 UYC
WORK-RECORD 0 0017 NYC
76 BG M 0013 NYC
77
WO~K-RECORD = R 0018 NYC 2 !'ir, N 0014 NYC
76
77 Sr, 0 0015 NYC 4
WO~K-RECORD S 0019 r..ivc 3
76 '1G P 0011i NYC 0
77
WORK-RECORD = T 0020 fIIYC 4 SG Q 0017 UYC
76
77 aG R 0018 I~YC

WORK-RECORD U 0021 NYC Z
76 SG S 0019 r~YC 3
77
WORK-RECORD :: V 0022 NYC SG T 0020 UYC
76
77 SG LJ 0021 IIYC 0
WORK-RECORD c W 0023 NYC 2
76 BG V 0022 NYC
77
WORK-RECORD X 0024 fIIVC 3 sr, II 0023 NYC
76
77 BG X OO2U NYC 3
WORK-RECORD Y 0025 NVC 4
76 An Y 0025 UYC II

77
WORK-RECORD Z 0026 NYC Z SG Z oon UYC 0
76
79 fIG EO.' 'jMlPLE

05 11 43 01!£lAT I OI! 00.02 25

EOJ SAMPLE

)

Appendix A: Sample Program output 207

(

)

FII,
lGbtl

FI,ld Number

ldentln.,
Venlon
Number of
Generation

File
Security

The standard tape file label format and contents are as follows:

2. FILE LABEL NUMBER
1 byte, EBCDIC

4. FILE SERIAL NUMBER
6 bytes, EBCDIC

5. VOLUME SEQUENCE
NUMBER
4 bytes

6. FILE SEQUENCE
4 bytes

7. GENERATION TIME 4-tiytes-------

8. VERSION NUMBER OF
GENERATION -----
2bytes--

Identifies the type of label.
HDR = Header (beginning of a data file)
EOF End-of-file tend of a set of data)
EOV = End-of-volume (end of the physical reel)

Always a 1.

Uniquely identifies the entire file, may contain
only printable characters. Some other systems
will not accept embedded blanks in the file
identifier.

Uniquely identifies a file/volume relationship.
This field is identical to the volume serial
number in the volume label of the first or only
volume of a multivolume file or a multifile set.
This field will normally be numeric (000001 to
999999), but may contain any six alphanumeric
characters.

Indicates the order of a volume in a given file or
multifile set. The first must be numbered 0001,
and subsequent numbers must be in proper numeric
sequence.

Assigns numeric sequence to a file within a multi­
file set. The first must be numbered 0001.

Uniquely identifies the various editions of the
file. May be from 0001 to 9999 in proper numeric
sequence.

Indicates the version of a generation of a file.

Appendix B: Standard Tape File Labels 209

field

9.

10.

11.

12.

13.

210

Name and Length

CREATION DATE
6 bytes

EXPIRATION DATE 6-Eytes-----

FILE SECURITY r-Eyte----

BLOCK COUNT
6 bytes

SYSTEM CODE
13 bytes

RESERVED
7bytes

Description

Indicates the year and the day of the year that the
file was created.

Po§.!.iion
1
2-3
4-6

Code
blank
00-99
001-366

~~aning
none
year
day of year

(e.g., January 31, 1971 would be entered as
71031) •

Indicates the year and the day of the year when the
file may become a scratch tape. The format of
this field is identical to field 9. On a
multifile reel processed sequentially, all files
are considered to expire on the same day.

Indicates security status of the file.

o = No security protection.

1 = Security protection. Additional
identification of the file is required before
it can be processed.

Indicates the number of data blocks written in the
file from the last header label to the first
trailer label, exclusive of tapemarks. Count
does not include checkpoint records. This field
is used in trailer labels.

Uniquely identifies the operating sys~em.

Reserved. Should be recorded as blanks.

Option Record Key
Codes Length Location

l r ~
Reserved
Far Future File

Secondary

Use Type
Allocation

I I 1 I~ I~ ~I~ ..,-0 ~I~ 0-0 c; S! I~ O! ~I 1 I~ coco COO-

Reserved ,J
Far Future RJard ~Iock Ke~ LData Set
Use Format length length Indicators

APPENDIX C: STANDARD MASS STORAGE DEVICE LABELS

Space
Remaining

~
Last Used
Track &
Recard On
That Track

8:1 I I I§ ~I<n !::!:: §~

First Extent

lawer Upper
limit limit

~III= =11 I~= eJ L Extent
Extent Type Sequence
Indicatar Number

Extents

Additional Extent Additianal Extent

Painter

III I I I~~ III " I;:? I I I l~

Format 1: This format is common to all data files on disk.

1. FILE NAME
iiii-bytes; alphanumeric EBCDIC

This field serves as the key portion of the file
label. It can consist of three sections:

1. File ID is an alphanumeric field assigned by
the programmer and identifies the file. It
can be 1 through 35 bytes in length if
generation and version numbers are used, or 1
through 44 bytes in length if they are not
used.

2. Generation Number. If used, this field is
separated-from-File ID by a period. It has
the format Gnnnn, where G identifies the
field as the generation number and nnnn (in
decimal) identifies the generation of the
file.

3. Version Number of Generation. If used, this
section immediately follows the generation
number and has the format Vnn, where V
identifies the field as the version of
generation number and nn (in decimal)
identifies the version of generation of the
file.

~Q£~: IBM System/360 Disk Operating system
compares the entire field against the filename
given in the DLAB and DLBL cards. The generation
and version numbers are treated differently by the
IBM System/360 Operating System.

Appendix C: Standard Mass Storage Device Labels 211

2.

3.

4.

5.

6.

7a.

7b.

7c.

8.

9.

10.

212

Fields 2 through 33 constitute the DATA portion of the file label.

Name and Length

FORMAT IDENTIFIER
1 byte, EBCDIC numeric

FILE SERIAL NUMBER
6-EyteS;-alphanumeric EBCDIC

~Q~q~_SEQ~~~Q~_~~MB~R
2 bytes, binary

CREATION DATE
3 bytes, discontinuous binary

EXPIRATION DATE
3 bytes, discontinuous binary

BYTES USED IN LAST BLOCK
OF DIRECTORY
1 byte, binary

SPARE
1 byte

RESERVED
7 bytes

Description

1 = format 1

Uniquely identifies a file/volume relationship. It
is identical to the volume serial number of the
first or only volume of a mUltivolume file.

Indicates the order of a volume relative to the
first volume on which the data file resides.

Indicates the year and the day of the year the file
was created. It is of the form YDD, where Y
signifies the year (0-99) and DO the day of the
year (1-366).

Indicates the year and the day of the year the file
may be deleted. The form of this field is
identical to that of field 5.

Contains a count of the number of extents for this
file on this volume. If user labels are used,
the count includes the user label track as a
separate extent. This field is maintained by the
Disk Operating system.,

Used by rBM Systeml360 Operating System only for
partitioned (library structure) data sets. Not
used by the Disk Operating system.

Reserved for future use.

Uniquely identifies the operating system.

Reserved for future use.

The contents of this field uniquely identify the
type of data file.

Hex
Code
4000

2000

8000

0200

0000

Meani!!9:
Sequential organization

Direct organization

Indexed organization

Library organization

Organization not defined in the file
label

Fiel~ Name and Length

11. RECORD FORMAT
1 byte

12.

13.

14.

15.

16.

OPTION CODES
1 byte

KEY LOCATION
2 bytes, binary

Description

The contents of this field indicate the type of
records contained in the file.

Bit
Position content Meaning

Variable-length records O-and-r 01

2

3

5 and 6

7

10 Fixed-length records

11 Undefined format

o No track overflow

1 File is organized using track

o

overflow (IBM System/360
Operating System only>

Unblocked records

1 Blocked records

o No truncated records

1 Truncated records in file

01 control character ASA code

10 Control character machine code

00 Control character not stated

o Records are written without
keys

1 Records are written with keys

Bits within this field are used to indicate various
options used in building the file.

Bit
Position ---0----

1-7

Meaning,
If on, indicates data file was created

using write validity check.

Unused.

Indicates the block length for fixed-length
records, or maximum block size for variable­
length blocks.

Indicates the record length for fixed-length
records, or the maximum record length for
variable-length records.

Indicates the length of the key portion of the data
records in the file.

Indicates the high-order position of the data
record.

Appendix C: Standard Mass Storage Device Labels 213

17. Q~!~_2~!_!~Q!£~!Qg~
1 byte

18.

19.

20.

21.

214

LAST USED TRACK AND
RECORD-o~THAT~K
5 bytes, discontinuous binary

EXTENT TYPE INDICATOg
1 byte

Bits within this fiel~ are used to indicate the
following:

Bit
r.Q~!'~!'Q!!

o

1

2

3

!:!~~!!!.!!g
If on, indicates that this is the last

volume on which this file normally
resides. This bit is used by the
Disk Operating System DTFSR routine
only. None of the other bits in
this byte are used by the Disk
Operating System.

If on, indicates that the data set
described by this file must remain
in the same absolute location on the
direct-access device.

If on, indicates that block length
must always be a multiple of eight
bytes.

If on, indicates that this data file
is security protected; a password
must be provided in order to access
it.

4-7 Space. Reserved for future use.

Indicates the amount of storage to be requested for
this data file at end-of-extent. This field is
used by the IBM System/360 Operating system only.
It is not used by the Disk Operating System
routines.

Indicates the last occupied track in a consecutive
file organization data file. This field has the
format CCHHR. It is all binary zeros if the last
track in a consecutive data file is not on this
volume, or if it is not consecutive organization.

A count of the number of bytes of available space
remaining on the last track used by this data
file on this volume.

Indicates the type of extent with which the
following fields are associated:

Hex
Code
-00-

01

02

04

40

80

!1~~ni!!g
Next three fields db not indicate any

extent.

Prime area (indexed) or consecutive
area, etc., (i.e., the extent
containing the user's data records).

Overflow area of an indexed· file.

Cylinder index or master index area of
an indexed file.

User label track area.

Shared cylinder indicator.

(

!
/

22.

23.

24.

~~!~~_§~QUENCE NUMBER
1 byte, binary

LOWER LIMIT
4-byteS;~rscontinuous binary

UPPER LIMIT
4 bytes

25-28. ADDITIONAL EXTENT
lO-bytes---------

29-32. ADDITIONAL EXTENT
ro-Eytes---------

33. POINTER TO NEXT FILE LABEL
WITHIN THIS LABEL SET
5-bytes;~iscontinuous binary

Indicates the extent sequence in a multi-extent
file.

The cylinder and the track address specifying the
starting point (lower limit) of this extent
component. This field has the format CCHH.

The cylinder and the track address specifying the
end point (upper limit) of this extent component.
This field has the format CCHH.

These fields have the same format as the fields
21 through 24, above.

These fields have the same format as fields 21
through 24, above.

The disk address (format CCHHR) of a continuation
label is needed to further describe the file. If
field 9 indicates indexed organization, this
field will point to a Format 2 file label withiQ
this label set. Otherwise, it points to a Formq~
3 file label, and then only if the file contain~
more than three extent segments. If no
additional file label is pointed to, this field
contains all binary zeros.

Appendix C: Standard Mass Storage Device Labels ~1,5

(

The track format for the 2311, 2314, and
2321 direct-access storage devices is
illustrated in Figure 62. The names of the
fields are given in the following
discussion.

Index Marker: All tracks start with an
index marker. It is a signal to the
hardware that indicates 'beginning of the
track.

Home Address: The horne address, preceded
by-a-gap~-follows the index marker. The
home address uniquely identifies each track
by specifying the cylinder and head number.

Track Descriptor Record (Record 0): Record
o consists of two parts: a count portion
and a data portion. The ~~-2Q~~iQ~ is
the same as it is for any other record (see
the following description of count for
record 1. The a-byte data portion is used
to record information used by LIOCS. The
information in the data portion depends on
the data organization (direct or indexed)
that is being used.

For direct organization, this portion in
the form of CCHHR contains the address of
the last record on the track and the number
of bytes remaining on the track. This
information is used to determine whether
there is space for another record on the
track. For indexed organization, the data
portion contains the address of the last
record in the cylinder overflow area and
the number of tracks remaining in the
cylinder overflow area. Record 0 is then
used as the cylinder overflow control
record.

Address Marker: All records after record 0
will-be-preceded by a 2-byte address
marker. The address marker is a signal to
the hardware that a record is starting.

Data Records: Data records can consist of
a-COunt-and-data portion for sequential
organization, or a count, key, and data

portion for direct and indexed
organizations.

1. count Portion. The count portion
contains the identification of each
record, the key length, and the data
length.

a. Identification. Each record is
identified-With its cylinder
number, head number, or record
number. The cylinder and head
numbers will be the same as those
of the horne address. The record
number will indicate a particular
record on the track. That is, the
first record after record 0 will
be record 1, followed by record 2,
etc. This 5-byte binary field in
the form of CCHHR is often
referred to as the record ID.

b. ~~~en~h!.. The key length is
specified in an a-bit byte; its
length can range from 0 to 255.
This field will contain a zero if
there is no key.

c. Data Length. The data length is
specified in the 16 bits of the
next two bytes.

Note: It is the count portion
that identifies the presence or
absence of a key, in addition to
indicating the data length. In
this way, each record is unique
and self formatting.

2. Key Port!on. The key portion of the
record is normally used to store the
control field of the data record such
as a man number. Direct and indexed
files must have a key portion.

3. Da~a PQE~ion. The data portion of the
record contains the data record.

Appendix D: Track Formats for the 2311, 2314, and 2321 Direct-Access Storage Devices 217

Note that all records, incl~ding the
data record, terminate with a 2-byte cyclic
check. The hardware uses this cyclic check
to ensure that is correctly reread what it
had ~ritten. The cyclic check is
cumulative and is appended to each record
when it is ~ritten. Upon reading the
record, the cyclic check is again
accumulated and then compared with the
appended cyclic check. If they do not
agree, a data check is initiated.

The first byte of the count portion of
each record and the home address is
reserved for a flag byte. If a track

becomes defective, a utility program may be
used to transfer the data to an alternate
track. (Cylinders 200 through 202 are
reserved for alternate tracks on the 2321.
Strips 6 through 9 of subcell 19 of each
ce~l are re~erved for alternate tracks on
the 2321.) In this case, a flag bit ~ithin
the byte is set QB to indicate that this is
a defective track and the address of an
alternate track will be placed in the
record ID of record O. Subsequent
references to this defective track will
result in the Supervisor accessing record 0
for the address of the alternate track.

G C+JG ~G U£]G 0GC+JG~_I_Rl_-_Co_un_t_1 G::I =Rl=-:-f<=ey=I....,...G~I=R=l=-=Da=ta=lGwG~
I I Count Data I T

Index Home Address First DatQ

Marker Add1ress Trac:k Marker Rec:1ord

Desc:rlptor
G= Gap Rec:ord

G I F I C ,C I H I H ,C IC, A

I'--'~ P
Flag I Head I

1

Number

Cylinder Cyc:lic:
Number Chec:k

~~ ~
Key o Optional o Variable

. Length

IF, C Ie, H, H, R ,KL,DLIDLt C, c,

I~III
G
A
p ~~ICICI

Bytes Remaining
After "Initialize Disk" Flag Rec:ord Key Data Cyclic:

10 Length Length Chec:k

Figure 62. Track Format

218

G

:~CIC,

Data

(2) Variable
Length

/

\

COBOL library subroutines perform
operations requiring extensive coding. For
this reason it would be inefficient to
place the coding in the object module each
time it. is needed. Most COBOL library
subroutines are stored in the relocatable
library. When required, they are combined
at link-edit time with the object module
produced by the compiler. Subroutines
stored in the core image library are
dynamically fetched during problem program
execution.

There are several major categories of
COBOL library subroutines:

• Input/output verb routines

• Conversion routines

• Arithmetic verb routines

• Sort Feature interface routines

• Checkpoint (RERUN) routines

• Segmentation Feature routines

• Other verb routines

• Transient routines

The following sections describe some of
the more commonly used subroutines.

INPUT/OUTPUT SUBROUTINES

rhe input/output subroutines are used
for the COBOL verbs DISPL~Y (TRACE and
EXHIBIT), ACCEPT, STOP (literal), RE~D,
WRITE, and REWRITE, printer spacing,
printer overflow, input/output errors, disk
formatting and extent handling, and tape
and sequential disk labels.

Printer.Spacing

The ILBDSPAO subroutine is used to
control printer spacing when the WRITE
statement with the BEFORE/AFTER ADVANCING

"I, or POSITIONING option is specified in the
/ source program.

APPENDIX E: COBOL LIBRARY SUBROUTINES

Tape and Sequential Disk Labels

The ILBDUSLO and ILBDNSLO subroutines
are used when user or nonstandard labels,
respectively, are to be processed (LABEL
RECORDS ARE data-name).

CLOSE WITH LOCK Subroutine

The ILBDCLKO subroutine is 91ven control
to issue an object-time message when an
OPEN statement is used to open a file
previously closed WITH LOCK.

WRITE Statement Subroutines

The ILBDVBLO subroutine is used to write
variable-length blocked records.

The ILBDDIOO subroutine is used for
writing files with direct organization
(DTFDA).

The ILBDISMO subroutine is used for
writing files with indexed organization.

READ'Statement'Subroutines

The ILBDDSRO subroutine ~s used to read
sequentially the records of a directly
organized file.

The ILBDDIOO subroutine is used to read
randomly the records of a directly
organized file.

The ILBDISMO subroutine is used to read
an ind~xed file.

REwRITE Statement Subroutines

The ILBDDIOO subroutine is used to
update records on a directly organized
file.

The ILBDISMO subroutine is used to
update an indexed file.

Appendix E: COBOL Library Subroutines 219

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

DISfLAY (EXHIBIT and TRACE) Subroutines

The ILBDDSPO subroutine formats one or
more operands into printed lines,
performing conversions as needed.

The ILBDOSYO and ILBDASYO subroutines
open SYSLST and/or SYSPCH and/or SYSIPT if
there are DISPLAY or ACCEPT statements in a
label declarative.

ACCEPT and STOP (literal) Statement
SUbroutines

The ILBDACPO subroutine is used to
handle ACCEPT statements for both SYSIPT
and the console, as well as the STOP
(literal) statement. The ILBDACPO
subroutine does not format or convert
operands. For operands greater than 80
characters in length, any remainder in
excess of the nearest multiple of 80 is
ignored when accepting data from SYSIPT.

CLOSE Subroutine

The ILBDCRDO subroutine is given control
when a CLOSE UNIT statement is issued for a
sequential input file with direct
organization.

Multiple File Tape Subroutine

The ILBDMFTO subroutine is given, control
when a reel contains more than one file and
there are no standard labels.

Tape-pointer Subroutine

The ILBDIMLO subroutine locates the
pointer to the physical tape drive
associated with the logical unit for a
particular tape file.

Input/Output Error Subroutines

The ILBDSAEO subroutine is used for
processing input/output errors that occur
on tape and sequential disk.

The ILBDDAEO subroutine is used for
processing input/output errors that occur
on directly organized files.

The ILBDISEO subroutine is called
whenever an input/output error occurs
during the processing an indexed file.

220

The ILBDABXO subroutine is used to issue
a STXIT macro instruction causing control
to be passed to it if there is an error on
a unit-record device.

Disk Extent Subroutines

The ILBDFMTO subroutine writes record 0
(RO) on each track of each extent of a
directly organized file opened as output.
This subroutine is called after the file
has been opened.

The ILBDXTNG· subroutine stores for
subsequent use the extent information for
directly organized files.

Auxiliary Subroutines

Certain input/output subroutines use
auxiliary subroutines as follows:

Auxiliary
Routine
ILBDMOVO

Used By
ILBDSPAO, ILBDNSLO, ILBDVBLO

ILBDIDAO ILBDFMTO, ILBDDSRO

CONVERSION SUBROUTINES

Eight numeric data formats are permitted
in COBOL: five external (for input and
output) and three internal (for internal
processing). .

The five external formats are:

• External or zoned decimal

• External fl9ating-point

• Sterling display

• Numeric edited

• Sterling report

The three internal formats are:

• Internal or packed decimal

• Binary

• Internal floating-point

The conversions from internal decimal to
external decimal, from external decimal to
internal decimal, and from internal decimal
to numeric edited are· performed in-line.
The other conversions are performed by the (
COBOL library subroutines shown in Table
26.

Table 26. Functions of COBOL Library Conversion Subroutines
r-----------------------T---,
I I Conversion I
I ~-------------------------------T-------------------------------1
I Subroutine Name I I I
I and Entry Points I From I To I
~-----------------------+-------------------------------+-------------------------------1
I ILBDEFL2 I External floating-point I Internal decimal I
I I I I
I ILBDEFL1 I External floating-point I Binary I
I I I I
I ILBDEFLO I External floating-point I Internal floating-point I
~-----------------------+-------------------------------+------------------------~------~
I ILBDBID01 I Binary I Internal decimal I
I I I I
I ILBDBID11 I I I
I I I I
I ILBDBID21 I I I

~-----------------------+-------------------------------+-------------------------------~
I ILBDBIE01 I Binary I External decimal I

I I I I
I ILBDBIE11 I I I

I I I I
I ILBDBIE21 I I I

~-----------------------+-------------------------------+-------------------------------~
I ILBDBII02 I Binary I Internal floating-point I

I I I I
I ILBDBII12 I I I

~-----------------------+-------------------------------+-------------------------------1
I ILBDTEF02 I Binary I External floating-point I
I I I I
I ILBDTEF12 I I I

I I I I
I ILBDTEF2 I Internal decimal I External floating-point I
I I I I
I IFBDTEF3 I Internal floating-point I External floating-point I

~-----------------------+-------------------------------+-------------------------------~
I ILBDIDBO I Internal decimal I Binary I

I I I I
I ILBDIDB1 I External decimal I Binary I

~-----------------------+-------------------------------+-------------------------------1
I ILBDDCI1 I Internal decimal I Internal floating-point I

I I I I
I ILBDDCIO I External decimal I Internal floating-point I

~-----------------------+-------------------------------+----------~--------------------~
I ILBDIFDO I Internal floating-point I Internal decimal I

I I I I
I ILBDIFD1 I Internal floating-point I External decimal I

~-----------------------+-------------------------------+-------------------------------1
I ILBDIFB1 I Internal floating-point I Binary integer and a power I

I I I of 10 exponent I

I I I I
I ILBDIFB23 I I I
I I I I
I ILBDIFB03 I Internal floating-point I Binary I
~-----------------------+-------------------------------+-------------------------------1
I ILBDIDRO I Internal decimal I Sterling report I

~-----------------------+-------------------------------+-------------------------------~
I ILBDIDTO I Internal decimal I Sterling non-report I

~-----------------------+-------------------------------+-------------------------------1
I ILBDSTIO I Sterling non-report I Internal decimal I
~-----------------------~-------------------------------~-------------------------------~
11The entry points used depend on whether the double-precision number is in registers 0 I
I and 1, 2 and 3, or 4 and 5, respectively. I
12The entry points are for single-precision binary and double-precision binary, I
I respectively. ' I
13This entry ·point is used for calls from other COBOL library subroutines. I L ___ J

Appendix E: COBOL Library Subroutines 221

ARITHMETIC VERB SUBROUTINES

Most arithmetic operations are performed
in-line. However, involved calculations
with very large numbers, such as decimal
multiplication of two 30-digit numbers, are
performed by COBOL library arithmetic
subroutines. These subroutine names and
their functions are shown in Table 27.

SORT FEATURE INTERFACE ROUTINE

Communication between the Sort/Merge
program and the COBOL program is maintained
by ILBDSRTO.

CHECKPOINT (RERUN) SUBROUTINE

The ILBDCKPO subroutine issues the
checkpoint macro instruction, which will
write checkpoint records on a programmer­
specified tape or disk checkpoint device.
There are two calling sequences to this
subroutine. The first, ILBDCKP1, is
activated during initialization when the
addresses of all files in the program are
entered in a table. The second, ILBDCKP2,
is required to take checkpoints during a
sorting operation.

If RERUN is requested during a sorting
operation, ILBDSRTO must gather a list of
physical IOCS files in use by the Sort
program every time Sort exits at Ell, E2l,
and E3l. ILBDSRTO then calls the
checkpoint subroutine which will take a
checkpoint of all active files.

SEGMENTATION FEATURE SUBROUTINE

The Segmentation Feature requires an
object time subroutine, ILBDSEMO. The
ILBDSEMO subroutine performs the following
functions when segments are needed:

1. Loads and initializes independent
segments not in core.

2. Loads overlayable segments not in
core.

3. Initializes independent segments if
the segment is in core.

4. Branches to desired entry points.

OTHER VERB ROUTINES

There are also COBOL library subroutines
for comparisons, the verbs MOVE and
TRANSFORM, and other features of the COBOL
language.

Compare Subroutines

The ILBDVCOO subroutine compares two
operands, one or both of which is variable
in length. Each may exceed 256 bytes.

The ILBDIVLO subroutine is used in
comparisons involving the figurative
constant ALL 'literal', where literal is
greater than one character.

Table 27. Functions of COBOL Library Arithmetic Subroutines
r---------------T---,
ISubroutine Name I Function I
~---------------+---~
IILBDXMUO I Internal decimal multiplication (30 digits * 30 digits = 60 digits) I
~---------------+---~
IILBDXDIO I Internal decimal division (60 digits/30 digits = 30 digits) I
~---------------+---~
IILBDXPRO I Decimal fixed-point exponentiation I

~---------------+---~
IILBDFPWO I Floating-point exponentiation I
~---------------+--~------~
IILBDGPW01 I Floating-point exponentiation I
~---------------~------------------------------------~----------------------------------~
11The ILBDGPWO entry point is used if the exponent has a PICTURE clause specifying an I
I integer. The ILBDFPWO entry point is used in all other cases. I L ___ J

222

MOVE Subroutines

The ILBDVMOO subroutine is used when one
or both operands is variable in length.
Each may exceed 256 bytes. The subroutine
has two entry points, depending on the type
of MOVE: ILBDVMOO (left-justified) and
ILBDVMOi (right-justified).

The ILBDANFO subroutine is used to move
the figurative constant ALL 'literal',
where literal is greater than one
character.

The ILBDANEO subroutine is used to
perform a right-or left-justified
alphanumeric edited move.

TRANSFORM Subroutine

The ILBDVTRO subroutine transforms
variable-length items using the ILBDTRNO
transform table.

The ILBDCLSO subroutine is used to
perform class tests for variable-length
items and those fixed-length items longer
than 256 bytes.

~ote: The following tables are placed in
the library for use by the in-line coding
generated by the compiler and the
subroutines called for by both the class
test and TRANSFORM:

ILBDATBO
ILBDETBO
ILBDITBO
ILBDUTBO
ILBDWTBO

Alphabetic class test
External decimal class test
Internal decimal class test
Unsigned internal decimal
Unsigned external decimal

The ILBDSCHO subroutine processes each
search argument key according to type.

Main Program or Subprogram Subroutine

The ILBDMNSO subroutine is a i-byte
switch tested in the code generated for
EXIT PROGRAM, GOBACK, INITi, and INIT2.

The ILBDSETO subroutine must be called
by a non-American National Standard COBOL
program prior to any call to an American
National Standard COBOL program. When
calling ILBDSETO, standard linkage
conventions must be observed; there are no
parameters to be passed. The ILBDSETO
subroutine sets the i-byte switch
(ILBDMNSO) to X'FF'. This switch is tested
in the American National Standard COBOL
program to determine whether it is a main
or a called program. The name of this
subroutine can be changed to any name
desired by the COBOL user.

TRANSIENT SUBROUTINES

The subroutine library includes routines
that are dynamically fetched during program
execution. These routines are as follows:

Error Message Subroutine

The $$BCOBER subroutine prepares
input/output error messages, prints the
error messages, and calls the system
transient routine $$PDUMP to provide a dump
if the DUMP option is in effect.

The $$BFCMUL subroutine resets the PUB
pointer for a particular (SYSnnn) device to
the same as that saved earlier py the
subroutine ILBDIMLO.

Appendix E: GOBOL Library Subroutines 223

(

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL 3N28-1023

This appendix contains information
concerning system requirements for the DOS
Full American National Standard COBOL
compiler, e~ecution time considerations,
and the Sort Feature.

MINIMUM MACHINE REQUIREMENTS FOR THE
COMPILER

1. At least a System/360 Model 30. The
compiler also operates on Models 40,
50, 65, 67 (in 65 mode), or 75. A
minimum of 54K bytes of main storage
is required.

2. Five work files. The system logical
unit S'YSLNK must be assigned to a
single area (extent) on a 2311 or 2314
mass storage device. Four programmer
logical units (SYS001 through SYS004)
must reside on 2400 tape units, or on
2311 or 2314 mass storage devices. At
least one programmer logical unit as
well as the operating system must
reside on a mass storage device (i.e.,
a 2311 or 2314). If the three
remaining logical units reside on
tape, there must be a separate tape
unit for each data set. If they
reside on a mass storage device, there
must be enough space on that device.

3.

) 4.

Work file assignments must be made as
follows:

SYSLNK - mass storage device
SYS001 - mass storage device
SYS002 - mass storage device or tape

unit
SYS003 - mass storage device or tape

unit
SYS004 - mass storage device or tape

unit

Note that SYSLNK need only be assigned
at compile time if the CATAL or LINK
option is in effect.

The filenames for SYSLNK and SYS001
through SYS004 on the TLBL or DLBL
statements are IJSYSLN, IJSYS01,
IJSYS02, IJSYS03, and IJSYS04,
respectively.

A device, such as a printer keyboard,
for direct operator communication.

A device, such as a card reader, for
the job input stream.

APPENDIX F: SYSTEM CONFIGURATION

5. A device, such as a printer or tape
unit, for system output files.

6. The commercial instruction set, and
floating-point arithmetic feature, if
floating-point literals,
floating-point calculations, or
fractional exponents are used.

Note: All devices currently supported by
IBM Systeml360 Disk Operating System COBOL
are supported by IBM System/360 Disk
Operating System American National Standard
COBOL.

SOURCE PROGRAM SIZE CONSIDERATIONS

Compiler Capacity

This section contains information which
must be considered in determining the
limitations on the SIZE of a COBOL source
program in a specific core size. It also
contains information to aid the programmer
in determining how his source program
affects usage of space at compilation time.

The capacity of the COBOL compiler is
limited by two general conditions: (1) the
total table requirement may be greater than
the space available and (2) the fact that
an individual table (with the exception of
the ADCON and cross-reference tables) may
need to be longer than 32,767 bytes. If
either of these conditions are met during
compilation, one of the following error
messages will be issued:

ILA0001I-D NO MORE TABLE SPACE
AVAILABLE. COMPILAr.ION
ABANDONED.

ILA0003I-D A TABLE HAS EXCEEDED THE
MAXIMUM SIZE. COMPILATION
ABANDONED.

In either case, compilation is terminated.
Ho~ever, in the first case, or in the case
of overflow of the ADCON or cross-reference
table, the program may be recompiled with a
larger size parameter.

The compiler will accept and compile a 1500
card program in a 54K region, which is the
maximum available space in 65K core size.
In this configuration, the minimum size
compiler input/output areas must be
allocated. If both LINK and DECK are

Appendix F: System Configuration 225

specified, more core is requir~d for buffer
space, which reduces the space available to
a given program. Within this
configuration, the compiler will accept
programs much larger than 1500; the
specific size limitation for any core size
depends entirely on the statement mix in
that program, but the limiting factors· are
described in the next section.

The overall critical limit using the
minimum buffer specification may be
expressed as follows:

2 (number of pn's + gn's + literals +
virtuals) + 8A + S (L + 50 + 8V + 3P) S
14390 + C

where the number of virtuals is the .number
of calls to COBOL object-time subroutine
entry points and user subprograms specified
by a CALL statement, and V is the number of
unique such names; also

A = number of entries in the ADCON table
as defined below

S = 1 if the segmentation Feature is
required; otherwise 0

L = length of optimized literals

D = number of segment discontiguities in
the Procedure Division

P number of PERFORM exits and altered
GO TO statements

C = any core over 54K assigned to the
program

Within this configuration, assuming no
REPORT SECTION, the compiler will accept
for example:

300 procedure references assuming an
average procedure-name length of 12
characters

25 OCCURS clauses with the DEPENDING ON
option

10 files, assuming an average of 3
subordinate record entries

Effective storage Considerations

The amount of core storage within the
compiler's partition and the limitation on
the size of an individual- internal table
are two factors that limit the capacity of
the compiler. The limitation on the size
of internal tables can, in_some instances,
be overcome by the spilling over of some
tables onto external devices. However,

226

spilling over may cause a severe
degradation of performance. The core
storage limitation should not be reached by
any reasonable use of the language.
However, within a limited storage capac~ty
excessive use .of certain features and
combination of features in the .language
could make compilation impossible. Some of
the features that significantly affect
storage usage are:

1. ADCON Table

Each entry occupies 8 bytes. This
table is not limited to the maximum
size of 32,767 bytes. Entries are
based on:

• Number of 4096-byte segments in
the Working-Storage Section

• Number of 4096-byte segments in a
file buffer area

• Number of referenced
procedure-names

• Number of implicit procedure-name
references such as those generated
by IF, SEARCH, and GENERATE
statements, ON SIZE ERROR, INVALID
KEY, and AT END options, the
OCCURS clause with the DEPENDING
ON option, USE sentences, and the
Segmentation Feature

• Number of files

2. Procedure-Name Table

This table contains the number of
definitions written in a section and
unresolved procedure references.
Procedure references are resolved at
the end of a section if the definition
of the procedure-name is 1n that
section or a preceding section.
Therefore, forwar~ references beyond a
section impact space.

.3. OCCURS DEPENDING ON Table

4.

5.

This table contains an entry for each
unique object of an OCCURS clause with
the DEPENDING ON option. The size of
an entry is (2 + length of name +
length of each qualifier) bytes.

Index Table

An entry is made for each INDEXED BY
clause consisting of 11 bytes for each
index.

File Table
(

6. Report Writer Tables

A considerable amount of information
is maintained concerning each RD such
as controls, sums, headings, footings,
routines to be generated, etc. The
contents of the table is increased by
the existence of qualification and
subscripting in the Report Section.
Approximately 30 reports can be
processed, without exceeding the limit
of a table.

Entries are. made depending on the
number of operands in a statement.
This table could reach its limits by
the use of compound nested IF
statements or GO TO DEPENDING ON
statements with an excessive number of
branch points.

An entry is made for each
procedure-name and each data-name in
the program. A procedure entry
consists of (7 or 9 + length of name)
bytes. A data entry consists of
(length of name + n) bytes, where ~ is
determined by the attributes of the
data item. Some of the features that
contribute to the value ~ are:

• One byte for each character in a
numeric edited or alpha-numeric
edited item picture.

• Five bytes for an elementary item
with a sterling report PICTURE
clause.

• Three bytes for an item
subordinate to an OCCURS clause.

9. Literal Tables

The total length of all literals
(after optimization) may not exceed
32511 bytes. No more than 16255
literals may be specified.

If the Segmentation Feature is used,
an area corresponding to the total
length of all optimized literals must
be kept free during the time the ADCON
table is being built. Therefore, a
segmented program with literals may
need more core.

10. Miscellaneous Tables
The existence of the following items
causes entries to be made into tables
that impact the total space required
for compilation.

• SAME (RECORD) AREA clause
• Subscripting
• Intermediate Arithmetic Results
• Complex Arithmetic Expressions
• Complex Logical Expressions
• APPLY clauses
• Special-Names
• RERUN clauses
• Error messages
• XREF
• Segmentation Feature

EXECUTION TIME CONSIDERATIONS

The amount of main storage must be
sufficient to accomodate at least:

• The selected control program

• Support for the file processing
techniques used

• Load module to be executed

MULTIPROGRAMMING CONSIDERATIONS

In a system which supports the batch-job
foreground (MPS=BJF) and private core image
library options, the Linkage Editor can
execute in either foreground partition (as
well as the background partition) provided
a minimum of 10K of storage is assigned to
the partition. When executing in a
foreground partition, a private core image
library must be assigned.

In the multiprogramming environment
described above, the COBOL compiler can be
executed in any partition having a minimum
of 54,272 bytes in the following manner:

1. At system generation time, link edit
the compiler in the background
partition and place it in the system
core image library.

2. Link edit the compiler in each desired
foreground partition and place the
output in a private core image library
assigned to that partition.

3. When executing the compiler in a
foreground partition, assign the
appropriate private core image
library.

Appendix F: System Configuration 227

SORT FEATURE CONSIDERATIONS

The Sort/Merge program must be executed
under control of the Disk Operating System.
The program requires the following minimum
machine configuration:

1. 16K (16,384) bytes of main storage if
the program is to use IBM 2400 Series
Magnetic Tape Units or IBM 2311 Disk
storage Drives for intermediate
storage. The Sort/Merge program uses
10,240 bytes; an additional 6K bytes
are needed for the Disk Operating
system and user-written routines.

2. 32K (32,768) bytes of main storage if
the program is to use the IBM 2314
Direct Access Facility for
intermediate storage. The Sort/Merge
program uses 22,528 bytes; an
additional 10K bytes are needed for
the Disk Operating System and
programmer-written routines.

Note: Performance increases
significantly if 50K is available for
operation of the Sort/Merge program.
At the lOOK level, the performance is
very high.

3. Standard instruction set.

4. One 2311 or 2314 disk unit attached to
one selector channel for sort input,

228

output, and work files. (System
residence requirements may necessitate
having an additional disk storage unit
for sorting.)

5. One IBM 1403 and 1443 Printer, or one
IBM 1052 Printer Keyboard.

6. One IBM 1442, 2501, 2520, and 2540
Card Reader, or one IBM 2400 Series
Magnetic Tape Unit (7- or 9-track)
assigned to SYSIPT and SYSRDR.

7. Three IBM 2400 Series Magnetic Tape
Units for work files when tape units
are to be used for intermediate
storage.

8. One IBM 2400 Series Magnetic Tape Unit
if tape input/output is to be used.

When tape units are used for
intermediate storage, five input/outp~t
devices are required as the minimum for a
sorting operation (one input, three work,
one output). When disk units are used for
intermediate storage, three extents are
required (one input, one work, one output>.

Three extents are required as a minimum
for a disk merging operation (two input,
one output). A one-way merge, which simply
copies the input file, may be executed with
two input units or one disk unit.

The Communication Region is a 46-byte
storage area within the Supervisor used by
the Supervisor and the COBOL compiler •. The
structure of the Communication Region is
illustrated in Figure 63.

Fields in the Communication Region are
addressed relative to the first byte of the
region. An asterisk (*) identifies the
fields available to the COBOL programmer.

~yte!~l Meaning

0-7* Calendar date supplied during the
IPL procedure or by the DATE
control statement. This field
can be used for dating printed
output of the COBOL program via
the special register
CURRENT-DATE. The date can be
in one of two forms: mm/dd/yy
or dd/rom/yy where rom is month, dd
is day, and yy is year. The form
is chosen by the installation at
system generation time.

8,9 Address of the background program
label area.

10,11 Reserved for control program use.

12-22* User area for inter-program or
intra-program communication.

Bytes

This field can be referenced in a
COBOL program executing in the
background via the special
register COM-REG. All eleven

Date

Ma/Ooy/Yr

or

Doy/Mo/Vr

0

• Address of first
byte supplied in
register 1 by
COMRG

7 8

C
,!!

~
S
Q

'>
t g.

VI

Cl c:
'i
~

:2
QI

~}
.. - 5:
~~<

User Area

Vi 0-
(Inter -orlntroprogrom 2

Reserved Communicotion) i
~

~
E
2
~
~

9 10 11 12 22 23 24

APPENDIX G: COMMUNICATION REGION

Byte(s) M~aning

bytes are initialized to binary
zeros when a JOB control
statement is encountered.

23* User program switch indicators
(UPSI). The condition-name
associated with the status of the
UPSI switches can be specified in
the COBOL program via the
Special-Names paragraph of the
Environment Division. UPSI byte
switches are set by the UPSI
control statement. The
condition-name associated with
each may be tested in the
Procedure Division of the COBOL
program. UPSI byte switches are
initialized to binary zeros when
a JOB control statement is
encountered.

24-31 Jobname for background programs
located in the operand field of
the JOB control statement.

32-35 Address of the uppermost byte of
the background program area.

36-39

40-43

44,45

Job Name

Address of the uppermost byte of
the last phase loaded into the
background program area.

Address of the uppermost byte used
in loading any phase of the
background program.

Length of the background program
label area.

2
E ~ <
QI

0

:8 ::ii Cl

~
c: 0 :.c EI
o E (Entered from E C .s ~ E

QI 2 Job Control) QI

~ I: .5 ~ ~ :>]] 0- U 0-
'0 '0 :::>..0 E

QI e QI
QI QI ::ii >.0 >'51 >.0- 0

al QI al 0 al QI d:
t;< tiif t;£

'0 ~ E i:i ~ E i:i~'O ..c .. E QI .. 0
~ 8. B ~ §:~

.. 8. .. :g 11. ~ "'0 11...c QI
:::>0- <:::>et <:::>0-I

31 32 35 36 3940 4344 45

Figure 63. Communication Region in the Supervisor

Appendix G: Communication Region 229

This appendix illustrates the necessary
job control statements and their sequence
for five typical programs:

1. creating a Direct File

2. Retrieving and updating a Direct File

3. Creating an Indexed File

4. Retrieving and Updating an Indexed
File

5. Sorting an Unlabeled Tape File

In all five programs the programmer has
requested the following compiler options
through the OPTION control statement:

NODECK -- No punched card output for
the object program is
needed.

LINK

LIST

LISTX

SYM

ERRS

The object module is to be
linkage edited.

The COBOL source statements
are to be printed on SYSLST.

A Procedure Division map
with global tables, literal
pool, and register
assignments is to be printed
on SYSLST.

A Data Division map is to be
printed on SYSLST.

The diagnostic messages of
the COBOL compiler are to be
printed on SYSLST.

The EXEC FCOBOL statement calls for
execution of the FCOBOL compiler.

By using the CBL card, the programmer
indicates that in this source program the
quotation mark (") is used for nonnumeric
literals.

The ASSIGN clause in the COBOL source
program specifies a system-name with the
following fields:

SYSnnn-class-device-organization[-name]

The ASSGN control statement for a file
must specify the same logical unit as the
§YSnnn field of system-name. The ASSGN
statement assigns the logical unit to a
specific hexadecimal address. The address

APPENDIX H: SAMPLE JOB DECKS

specified must be associated with the
device whose number is given in the g~y!£~
field of system-name.

The DLBL control statememt for a labeled
file on a mass storage device must contain
the same n~~ as system-name. This is the
name by which the file is known to the
control program. (The ~m~ field of
system-name is optional. If n~~~ is
omitted, the DLBL statement must specify
the logical unit (SYSnnn) as the
file-name.) The code field of the DLBL
statement must correspond to the £!~~~ and
organization fields of system-name as
follows:

DLBL I ASSIGN I ASSIGN
"code" I "class" I "organization"

--------+------------+---------------
SD I DA or UT I S

I I
I I

DA I DA I A or U, D or W
I I
I I

ISC I DA I I
I I
I I

ISE I DA 'I

The first EXTENT control statement for a
file on a mass storage device must specify
the same logical unit as the §!Snnn field
of system-name. (Subsequent EXTENT
statements for the same file, if they
immediately follow the first, may omit this
field.> The type of the extent must be
compatible with the 2Eg~n!~~~i2g field of
system-name as follows:

EXTENT I ASSIGN
"type" , "organization"

--T------------------t---------------
1 I (data area, no 'S, A, U, I, D, W

, split cylinder) ,
I I

2 I (overflow area fori I
, indexed file) ,
I I

3 ,(index area for 'I
I indexed file) ,
I I

4 I (data 'area, split I s, A, U, I, D, W
'cylinder) I

Appendix H: Sample Job Decks 231

DIRECT FILES

The following two examples illustrate
the job control statements necessary for
programs that create and update a direct
file.

In the COBOL source programs, the
programmer has written:

SELECT DA-FILE ASSIGN TO
SYS015-DA-2311-A-MASTER •••

SELECT CARD-FILE ASSIGN TO
SYS007-UR-2540R-S •••

In the READFILE source program, the
programmer has written:

SELECT PRINT-FILE ASSIGN TO
SYS008-UR-2403-S •••

(Note the relationship between the
system-names in the source programs and the
control statements.)

The LBLTYP statement defines the amount
of storage to be reserved to process labels
for the DA file. The file has one extent.

The EXEC LNKEDT statement causes the
object program to be link edited.

An ASSGN control statement assigns
logical unit SYS007 to the hexadecimal
address OOC -- a 2540R Card Reader.

In the updating program, another ASSGN
statement assigns logical unit SYS008 to
the hexadecimal address OOE -- a 1403
Printer.

The next series of statements identify
the direct file completely.

The ASSGN statement identifies the file
as residing on logical unit SYS015, which
has the hexadecimal address of 192 -- a
2311 Disk Drive.

The DLBL statement specifies the
filename as MASTER, with an expiration date
of the 365th day of 1970, and that the file
has direct organization (DA).

The EXTENT statement specifies that the
file residing on logical unit SYS015 has a
serial number 111111, that the extent is a
data area with no split cylinder and that
this is the first (and only) extent for the
file (type and sequence number 1,0), that
the file begins on relative track 1020
(track 0 of cylinder 102), and that the
file occupies 100 tracks.

232

(Note that in the EXTENT statement, the
relative track number (1020) is not
required for the input DA file of the
updating progr~m, since the system will use
the file labels for this information.)

The EXEC statement begins execution of
the problem program, and is followed by
input data.

The /* statements indicate end-of-data,
the /& statement indicates end-of-job.

Cre~~ing a Direct File

// JOB CREATEDA
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

CBL QUOTE

{COBOL source deck}
/*
// LBLTYP NSD(Ol)
// EXEC LNKEDT
// ASSGN SYS007,X'00C'
// ASSGN SYS015,X'192'
// DLBL MASTER, 99/365,DA
// EXTENT SYS015,111111,1,0,1020,100
// EXEC

/*
/&

{input data cards}

Retrieving and Updating a Direct File

// JOB READFILE
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

CBL QUOTE

{COBOL source deck}
/*
// LBLTYP NSD(Ol)
// EXEC LNKEDT
// ASSGN SYS007,X'00C'
// ASSGN SYS008,X'OOE'

// ASSGN SYS015,X'192'
// DLBL MASTER, 99/365,DA
// EXTENT SYS015,111111,1,0,1020,100

/*
/&

{input data cards} (

INDEXED FILES

The following two examples illustrate
the job control statements necessary for
programs that create and update an indexed
file.

In the CREATEIS source program, the
programmer has written:

SELECT IS-FILE ASSIGN TO
SYS015-DA-2311-I-MASTER

ACCESS IS SEQUENTIAL
RECORD KEY IS REC-ID.

In the RANDIS source program, the
programmer has written:

SELECT IS-FILE ASSIGN TO
SYS015-DA-2311-I-MASTER

ACCESS IS RANDOM
NOMINAL KEY IS KEY-ID
RECORD KEY .15 REC-ID.

SELECT PRINT-FILE ASSIGN TO
SYS008-UR-1403-S

RESERVE NO ALTERNATE AREAS.

In both source programs, he has written:

SELECT CARD-FILE ASSIGN TO
SYS001-UR-2540R-S.

I-O-CONTROL.
APPLY MASTER-INDEX TO 2311 ON IS-FILE.

(Note the relationship between the
source program statements and the job
control statements.)

The LBLTYP statement defines the amount
of storage reserved to process labels for
the indexed file. The file has three
extents: a master index extent, a cylinder
index extent, and a data extent.

The EXEC LNKEDT statement causes the
object module to be link edited.

An ASSGN control statement assigns
logical unit SYS001 to the hexadecimal
address OOC -- a 2540R Card Reader.

In the retrieval program, another ASSGN
statement assigns logical unit SYS008 to
the hexadecimal address OOE -- a 1403
Printer.

The next ASSGN statement assigns logical
unit SYS015 to the hexadecimal address 193

a 2311 Disk Drive.

The DLBL statement names the file as
MASTER, and indicates the expiration date
as the 365th day ~f 1970. In the file
creation program, the file label is indexed
sequential using Load Create (code ISC); in

the retrieval program, the file label is
indexed sequential using Load Extension,
Add or Retrieve (code ISE).

The first EXTENT statement is identified
as a master index (type and sequence
numbers are 4,0), and the relative track is
1800 (the extent begins on cylinder 180
track 0), and the extent is 10 tracks long.

The second EXTENT statement is
identified as a cylinder index (type and
sequence number are 4,1), the r~lative
track is 1810 (the extent begins on
cylinder 181, track 0), and the extent is
10 tracks long.

(Note that the extents assigned to
master and cylinder indexes must be
contiguous, and that the master index must
precede the cylinder index on the disk
pack. Also note, that if a master index is
not requested, the first extent is that for
the cylinder index, which would be type 4,
sequence number 1.)

The third EXTENT statement is identified
as a data area (type 1) and is the third
extent named for this file. The relative
track is 0010 (the extent begins on
cylinder 1, track 0), and the extent is
1750 tracks long.

End-of-data is indicated with the /*
statement; end-of-job is indicated with the
/& statement.

Creating an Indexed File

// JOB CREATEIS
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

CBL QUOTE

{COBOL source deck}
/*
// LBLTYP NSD(03)
// EXEC LNKEDT
// ASSGN SYS007,X'00C'
// ASSGN SYSOi5,X'193'
// DLBL MASTER,99/365,ISC
// EXTENT SYS015,111111,4~O,1800,10
// EXTENT SYS015,111111,4,l,1810,10
// EXTENT SYS015.,111111,1,2,0010,1750
// EXEC

{input data'card}

Appendix H: Sample Job Decks 233

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

Ret~ieving and Updating an Indexed File

// JOB RANDIS
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

{COBOL source deck}
// LBLTYP NSD(03)
// EXEC LNKEDT
// ASSGN SYS007,X'OOC'
// ASSGN SYS008,X'OOE'
// ASSGN SYS015,X'193'
// DLBL MASTER,99/365,ISE
// EXTENT SYS015,111111,4,O,1800,5
// EXTBNT SYS015,111111,4,1,1810,10
// EXTENT SYS015,111111,1,2,0010,1750
// EXEC

/*
/&

{input data cards}

FILES USED IN A SORT OPERATION

The following example illustrates the
job control statements necessary for a
program that sorts an unlabeled tape file.

In the COBOL source program, the
programmer has written:

SELECT NET~FILE-IN ASSIGN TO
SYS007-UT-2400-S.

SELECT NET-FILE-OUT ASSIGN TO
SYS008-UT-2400-S.

SELECT NET-FILE ASSIGN TO 3
SYS001-UT-2400-S.

NET-FILE-IN is the input file;
NET-FILE-OUT is the output file: NET-FILE
is the sort work file, which utilizes three
tape units.

234

(Note the relationship between the
system-names in the COBOL source program
and the control statements.)

The EXEC LNKEDT statement causes the job
to be link edited.

The first two ASSGN control statements
assign the logical unit SYS007 to
hexadecimal address 181, and lpgical unit
SYS008 to hexadecimal address 182. SYS007
is the sort input file, and SYS008 is the
sort output file.

The last three ASSGN statements assign
logical unit SYS001 to hexadecimal address
183, logical unit SYS002 to hexadecimal
address 281, and logical unit SYS003 to
hexadecimal address 282. SYS001, SYS002,
and SYS003 are the logical units that must
be used for sort work files. The sort work
files must be assigned to 9-track tape
units. At this installation, 9-track tape
drives are associated with hexadecimal
addresses 183, 281, and 282.

Sorting an Unlabeled Tape File

// JOB SORTCOB
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

CBL QUOTE

{COBOL source deck)
// EXEC LNKEDT
// ASSGN SYSOO7,X'181'
// ASSGN SYSOO8,X'182'
// ASSGN SYSOO1,X'183'
// ASSGN SYSOO2,X'281'
// ASSGN SYSOO3,X'282'
// EXEC
/&

(

APPENDIX I: DIAGNOSTIC MESSAGES

This appendix describes diagnostic messages generated by the compiler
and by compiler-generated object code.

COMPILER DIAGNOSTIC MESSAGES

Using one of the messages as an example, COBOL compiler messages are
in the following format:

105 ILAl002I-W ••••• SECTION HEADER MISSING. ASSUMED PRESENT.

The code 105 is the compiler-generated card number of the statement
where the error has occurred. ILA identifies this as a Disk Operating
System Full American National Standard COBOL compiler message; 1002 is
the identifying number of the message. The symbol I indicates that this
is a message to the programmer for his action. W is a level of severity
in the error code with an explanation as follows:

W Warning -- Indicates that an error was made in the source program.
However, it is not serious enough to hinder the execution of the
program.

C Conditional -- Indicates that an error was made but the compiler
usually makes a corrective assumption. The statement containing
the error is retained. Execution can be attempted for the
debugging value.

E Error -- Indicates that a serious error was made. Usually the
compiler makes no corrective assumption. The statement containing
the error is dropped. Execution of the program should not be
attempted.

D Disaster -- Indicates that a serious error was made. Compilation
is not completed. Results are unpredictable.

The message text usually describes the error and describes the action
taken by the compiler as a result of the error. Most of the messages
are self-explanatory, except in two situations:

1. When no compiler action is given. These messages are numbered in
the 3000 series. They appear in combination with other messages
that do have the compiler action described.

2. When messages describe errors that require an explanation too lo~g
to include in a message. These explanations appear in text under
the messages.

Words in a message that must vary according to the program being
compiled are denoted by five asterisks (•••••) in the messages printed
below.

Appendix I: Diagnostic Messages 235

Page of GC28-6398-2~-3, Revised 2/15/73 by TNL GN28-1023

COMP.ILE-TlME.MESSAGES

~LA0001I-D NO MORE TABLE SPACE AVAILABLE. COMPILATION ABANDONED.

Explanation: Because of the size or complexity of the
source program, all of the space available for internal
tables was exhausted.

Response: Allocate more core storage for the compiler or
make the program smaller or less complex before recompiling.

If the problem recurs, do the following before calling
IBM for programming s~pport: have source deck, control
cards, and compiler output available.

I ILA0002I-D BAeIS LIBRARY NOT FOUND OR LIB OPTION NOT SPECIFIED.
COMPILATION ABANDONED.

Explanation: The source statement book specified in a BASIS
card at the beginning of compilation was not found or LIB
was not specified on the eBL card.

Programmer Response: Correct the BASIS card, make the
source code available in the library before recompiling, or
specify LIB on the CBL card.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA0003I-D A TABLE HAS EXCEEDED MAXIMUM SIZE. COMPILATION ABANDONED.

lLA0004I-

Explanation: A table other than the ADCON or Cross
Reference table has exceeded 32767 bytes.

Program Response: The program must be written as two or
more separate COBOL programs.

LINK OPTION RESET - D OR E LEVEL ERROR FOUND.

Explanation: The LINK option (set by a // OPTION LINK job
control statement) was reset if it had been set previously.
This prevent~ the execution of a partially compiled program
or a program with serious errors in it. If a // EXEC LNKEDT
card is read later, the job control diagnostic - 1S130
STATEMENT OUT OF SEQUENCB - is logged. The operator usually
cancels the job at this point. Ensure that all E- and
D-level errors have been eliminated from the program before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA0005I-D LOGIC OR MACHINE ERROR IN TAMER. COMPILATION ABANDONED.

Explanatcion: A program logic error was detected in the
FCOBOL table 'management routines.

Programmer 'Res'ponse: Compiler 'error. Do the following
,before calling'IBM for programming support: have source
deck, control cards, and compiler output available.

~: Messages numbered ILA0001I, ILA0003I, and ILA00051 may be printed
at any time 'during compilation and may be fOllowed by a dump. Message
ILA00021 is printed at 'the beginning of compilation. Message ILA00041
follows the last message issued.

236

The following messages are grouped in the compiler output listing.

ILA1001I-C NUMERIC LITERAL NOT RECOGNIZED AS LEVEL NUMBER BECAUSE
••••••• ILLEGAL AS USED. SKIPPING TO NEXT LEVEL, SECTION OR
DIVISION.

Programmer Response: Probable user error. Check the word
following the level number and correct its misuse before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1002I-W ••••• SECTION HEADER MISSING. ASSUMED PRESENT.

Programmer Response: Probable user error. Supply section
header or, if present, correct its syntax (check for a
margin error or a mispelling) and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl003I-W ••••• PARAGRAPH NAME MISSING. ASSUMED PRESENT.

~fQg~~f Re~eQnse: Probable user error. Supply paragraph
name or, if present, correct its syntax (check for a marg1n
error or a misspelling) and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1004I-E INVALID WORD •••••• SKIPPING TO NEXT RECOGNIZABLE WORD.

Programmer Response: Probable user error. Correct invalid
word or syntax error before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl005I-E INVALID ORDER IN ENVIRONMENT DIVISION. SKIPPING TO NEXT
DIVISION.

Programmer Response: Probable user error. Correct the
sequence of sections and/or paragraphs in the Environment
Division before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl006I-E DECLARATIVES SECTION WITHOUT USE SENTENCE. SECTION CAN
NEVER BE EXECUTED.

Programmer Response: Probable user error. Supply USE
sentence before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 237

ILAl007I-W ***** NOT PRECEDED BY A SPACE. ASSUMED SPACE.

Programmer ResE£rr~~: Probable user error. Check syntax,
supply space where needed, and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl008I-W RIGHT PAREN SHOULD NOT BE PRECEDED BY SPACE.

~rQ~amm~r_B~~E£rr~~: Probable user error. Remove space
preceding right parenthesis and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl009I-E COPY MUST BE PRECEDED BY PROCEDURE-NAME. IGNORED.

~rQgramm~f_B~~EQrrse: Probable user error. Supply
procedure-name or, if present, correct its syntax (check for
a margin error or a misspelling) before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1010I-W LEFT PAREN SHOULD NOT BE FOLLOWED BY SPACE.

Proqrammer Response: Probable user error. Remove space
following left parenthesis and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA10llI-C RECORDING MODE SPECIFICATION IS INVALID. ASSUMED VARIABLE.

Programmer Response: Probable user error. Correct
RECORDING MODE specification ensuring that it is compatible
with the record description and the file organization before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1012I-E FILE-NAME NOT UNIQUE. USING FIRST DEFINITION.

Programmer Response: Probable user error. Correct the
duplication either by removing a redundant SELECT sentence
or by replacing a misspelled file-name in a SELECT sentence
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl013I-E CHARACTER LENGTH IN SPECIAL-NAMES MUST- BE ONE.

238

~rQ~~~~f_Re~EQrr~~: Probable user error. Change length of
nonnumeric literal to one before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

)

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

ILA1014I-W 'FILE' NOT PRESENT IN MULTIPLE FILE CLAUSE. ASSUMED
PRESENT.

Programmer ReseQ~~: Probable user error. Ensure that the
key word 'FILE' is present in the MULTIPLE FILE TAPE clause
and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1015I-E ***** INVALID AS EXTERNAL-NAME. IGNORED.

.i

Programmer ReseQns~: Probable user error. Ensure that the
name conforms to rules for the formation of procedure-names.
If it is a library-name, make sure that member exists in
library before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available •

ILA1016I-E MORE THAN ONE ***** CLAUSE. SKIPPING TO NEXT CLAUSE.

Programmer Res2~: Probable user error. Remove multiple
occurrence of clause from entry before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1017I-E ***** INVALID IN ***** CLAUSE. SKIPPING TO NEXT CLAUSE.

Programmer Response: Probable user error. Replace or
remove the invalid specification before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and programming support.

ILA1018I-E COPY CLAUSE INVALID IN A COpy LIBRARY OR LIB OPTION NOT
SPECIFIED. IGNORED.

Programmer Response: Probable user error. Correct library
member before recompiling or specify LIB on the CBL .card.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1019I-E NO LIBRARY NAME. COpy CLAUSE IGNORED.

Programmer Response: Probable user error. Supply
library-name before recompiling.

If the problem reCUrS, do the following ,before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1020I-E ***** MUST BE PROCEDURE-NAME FOLLOWING DEBUG.*.***.

Programmer Response: Prvbable user error. Add or correct
word following DEBUG to conform to rules for a valid
procedure-name before recompiling.

If the probl.em recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 239

ILA1021I-E ••••• DOES NOT BELONG ON A DEBUG CARD. SKIPPING TO NEXT
CARD.

Programmer ResQQns~: Probable user error. Remove invalid
specification from DEBUG card before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1022I-W PERIOD DOES NOT BELONG ON DEBUG CARD. DELETED.

progr~~_Re~Q~: Probable user error. Remove period
from debug card and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: 'have source deck ,control
cards, and compiler output available.

ILA1023I-E INVALID FILE-NAME. USE IGNORED.

Programmer ResQ~~: Probable user error. Supply valid
file-name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, ~ontrol
cards, and compiler output available. .

ILA1024I-E UNDEFINED FILE-NAME. USE IGNORED.

Programmer Response: Probable user error. supply valid
SELECT sentence for file-name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1025I-C REDEFINES CLAUSE NOT FIRST CLAUSE FOLLOWING DATA-NAME.
ASSUMED FIRST.

Programmer Response: Probable user error. Ensure that the
REDEFINES clause is the first clause following data-name
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1026I-W FOUND * •••• EXPECTING ENVIRONMENT. ALL ENV. DIV.
STATEMENTS IGNORED.

Programmer Response: probable user error. Supply valid
Environment Division header before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1027I-E DUPLICATE FD. IGNORED.

240

Programmer Response: Probable user error. Eliminate
duplicate FD or correct duplicate file-name if misspelled
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available. (

)

ILAl028I-E ***** SENTENCE IMPROPERLY WRITTEN. SENTENCE IGNORED.

Prog~~~~Re~EQ~~~: Probable user error. Correct syntax
of sentence before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1029I-E ***** IN ***** SENTENCE NOT DEFINED AS FILE-NAME. SENTENCE
IGNORED.

~EQg~~E_g~~EQ~~~: Probable user error. Ensure that
file-name is validly defined in a SELECT sentence before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1030I-E ***** IN ***** SENTENCE IS INVALID. WORD IGNORED.

~rogE~~E_g~~EQ~~~: Probable user error. Supply valid
word before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1031I-C USE SENTENCE NOT PRECEDED BY SECTION-NAME. SECTION-NAME
ASSUMED.

~EQgEa~~E_g~~EQ~~~: Probable user error. Supply
section-name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1032I-E ***** INCORRECTLY USED IN USE SENTENCE. SENTENCE IGNORED.

Programmer Response: Probable user error. Correct syntax
of USE sentence before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1033I-W ***** FILE-NAME ALREADY ASSIGNED THIS SAME CLAUSE OPTION.
USING FIRST ONE.

~EQgEa~~~Re~EQ~~~: Probable user error. Remove duplicate
SAME clause, specify correct SAME clause option, or correct
a misspelled file-name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl034I-E ***** CLAUSE ILLEGAL IN ***** LEVEL. SKIPPING TO NEXT VALID
CLAUSE.

Programmer Respon§g: Probable user error. Correct SD entry
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 241

ILAl035I-E INTEGER NOT PRESENT IN MULTIPLE FILE CLAUSE.

f~Qg~~~~_g~2QQrr2~: Probable user error. Indicate
position of file by specifying the "POSITION integer-n"
option.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1036I-C QUALIFIED NAME INVALID AFTER LEVEL NUMBER. USING LOWEST
NAME.

Proqrarnmer Response: Probable user error. Correct
data-name following level number before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl037I-E ***** INVALID IN DATA DESCRIPTION. SKIPPING TO NEXT CLAUSE.

f!:.Qg!:.~e!:._Re~on§g: Probable user error. Correct or
remove invalid clause in data description entry before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1038I-E ***** INVALID AFTER LEVEL NUMBER. SKIPPING TO NEXT LEVEL.

R!:'Qg!:.~§!:._ResPQ~: Probable user error. Correct
data-name following level number before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1039I-W DATA-NAME IN ***** CLAUSE ~EED NOT BE QUALIFIED. USING
LOWEST NAME.

Programmer Response: Probable user error. Remove
qualification of data-name and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl040I-E IMPROPER LEVEL NUMBER FOR FILE SECTION.

Programmer Response: Probable user error. Remove invalid
level numbers or indicators from the File Section before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl041I-E ***** INVALID AS USED IN ***** SECTION. SKIPPING TO NEXT
LEVEL, SECTION OR DIVISION.

242

Programmer Response: Probable user error. Correct invalid
specification by removing it or moving it to its proper
place in source program before recompiling.

If lhe problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1042I-E ASSIGN CLAUSE MISSING IN SELECT. CONTINUING.

Programmer Response: Probable user error. Supply ASSIGN
clause for file before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl043I-W END OF SENTENCE SHOULD PRECEDE *****. ASSUMED PRESENT.

~rQgr~~r_g~~Qg~~: Probable user error. Supply period to
terminate sentence and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl044I-E INVALID OR MISSING USING AND/OR GIVING CLAUSE IN SORT
STATEMENT. PROGRAM CANNOT BE EXECUTED.

Programmer Response: Probable user error. Supply correct
USING and/or GIVING option in SORT statement before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1045I-E INVALID ORDER IN ***** SECTION.

Programmer Re§EQgse: Probable user error. Correct sequence
of paragraphs before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1046I-E MEMBER NOT FOUND IN LIBRARY. IGNORING COPY.

~rQg~~~r_g~~EQg~~: Probable user error. Correct
misspelled library-name or ensure that member is in the
library before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, compiler output, and a listing of the source
statement library available.

ILAl047I-W SYNTAX INCORRECT. TREATED AS COMMENTS.

~rQg~~mmer_g~~EQ~~~: Probable user error. Correct the
syntax of the item in error before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1048I-W REEL (UNIT) NOT IN ASSIGN CLAUSE. ASSUMED PRESENT.

Programmer Response: Probable user error. Correct the
syntax of MULTIPLE REEL/UNIT clause and recompile if
necessary.

Appendix I: Diagnostic Messages 243

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1049I-E ***** FILE-NAME ALREADY ASSIGNED THIS MULTIPLE FILE CLAUSE
OPTION. USING FIRST ONE.

~rogf~gf_gg~~Qrrse: Probable user error. Remove duplicate
specification of file-name or correct a misspelled file-name
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl050I-C ***** FILE ALREADY ASSIGNED THIS APPLY OPTION. FILE-NAME
IGNORED.

Programmer Response: Probable user error. Remove duplicate
APPLY option for file-riame or correct a misspelled file-name
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1051I-E NO DATA-NAME IN USE SENTENCE. SENTENCE IGNORED.

Programmer ResQons~: Probable user error. Include
data-name in USE sentence before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1052I-E ***** ILLEGALLY USED IN USE SENTENCE. END SENTENCE,
RESCANNING AT NEXT RECOGNIZABLE WORD.

~fQgf~~f_Re~EQrrse: Probable user error. Supply valid
SELECT sentence for file-name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1053I-E ***** CLAUSE INVALID. CLAUSE IGNORED.

~fQgrammef Re~~on~: Probable user error. Correct invalid
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1054I-E OPERAND FOR INITIATE NOT FOUND OR ILLEGAL. OPERAND DROPPED.

Programmer Response: Probable user error. Supply valid
operand for INITIATE statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1055I-E VALID FILE-NAME NOT PRESENT. DESCRIPTION IGNORED.

244

Programmer Response: Probable user error. Supply valid
file-name or sort-file-name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1056I-E FILE-NAME NOT DEFINED IN A SELECT. DESCRIPTION IGNORED.

~fQgf~~f_Re~EQ~~~: Probable user error. Check that the
SELECT sentence has not been discarded due to a syntax error
or correct a misspelled file-name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1057I-E FIRST WORD IN REPORT SECTION NOT RD. IGNORED.

Programmer ResEQ~~~: Probable user error. Correct the
syntax of Report Section before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have. source deck, control
cards, and compiler output available.

ILA1058I-E NO REPORTS CLAUSE IN FILE SECTION. REPORT SECTION IGNORED.

~fQgfarnm~f_Re~EQ~se: Probable user error. Ensure that a
valid REPORT clause is included in File Section before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1059I-E NO REPORT CLAUSE FOR RD. RD IGNORED.

~fQgramm~f Re~EQ~~~: Probable user error. Ensure that the
report-name is specified in a REPORT clause in the File
Section for the file on which the report is to be written
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1060I-E INVALID WORD IN REPORT WRITER STATEMENT.· IGNORED.

Programmer Response: Probable user error. Remove invalid
word before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1061I-E DUPLICATE CLAUSE. DROPPED.

~fQgf~~~f_Re~EQ~~~: Probable user error. Remove duplicate
occurrence of same clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1062I-E ***** IN COPY REPLACING STATEMENT INVALID AS BCD NAME.

Programmer ResEQn~: Probable user error. Replace
indicated word with valid configuration before recompiling.

Appendix I: Diagnostic Messages 245

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1063I-E DUPLICATE ENTRY IN PAGE CLAUSE. DUPLICATE DROPPED.

~~gra~~r_Re~eQrr~~: Probable user error. Remove duplicate
entry before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1064I-E NO TYPE CLAUSE SPECIFIED. SKIPPING TO NEXT 01.

Programmer Rese~: Probable user error. Supply TYPE
clause for this report group before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1065I-E INTEGER MISSING IN PAGE CLAUSE. ENTRY IGNORED.

~r2gr~!!!!!!~r_g~eQn~~: Probable user error. Ensure that an
integer is specified for each PAGE clause entry before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1066I-E INVALID WORD IN PAGE CLAUSE. SKIPPING TO NEXT RECOGNIZABLE
WORD.

Programmer Respon~~: Probable user error. Correct syntax
of PAGE clause entries before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1067I-E INVALID HEADER. SKIPPING TO NEXT RECOGNIZABLE WORD.

Programmer Response: Probable user error. Remove invalid
headers from the Report Section before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1068I-E OPERAND FOR GENERATE NOT FOUND. STATEMENT DROPPED.

Programmer Response: Probable user error. Supply GENERATE
statement operand before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl069I-E INVALID TYPE CLAUSE. SKIPPING TO NEXT 01.

246

~rogr~~I-Reseorr~~: Probable user error. Correct TYPE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

/

(
\

ILA1070I-C FLT-PT LIT MANTISSA EXCEEDS 16 DIGITS. TRUNCATED TO 16.

~fQgfamm~f_Re~eQns~: Probable user error. Supply a
mantissa of no more than 16 digits before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl071I-C FLT-PT LIT EXPONENT EXCEEDS 2 DIGITS. TRUNCATED TO 2.
RESCANNING.

Programmer Reseonse: Probable user error. Specify an
exponent of no more than 2 digits before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1072I-C FLT-PT LIT EXPONENT FOLLOWED BY NON-BLANK. RESCANNING AT
NON-BLANK.

~fQg~~er_g~~eQ~: Probable user error. Ensure that a
blank follows exponent before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1073I-C FLT-PT LIT E FOLLOWED BY INVALID CHARACTER. SKIPPING TO
NEXT WORD.

~fQg~amm~~_Re~Qg~~: Probable user error. Supply valid
character to follow E before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl074I-C FLT-PT LIT SIGN FOLLOWED BY INVALID CHARACTER. RESCANNING
AT E.

Proqrammer Reseonse: Probable user error. Supply valid
character to follow sign before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1075I-C FLT-PT LIT EXCEEDS LIMIT. ASSUME MAX OR MIN PER SIGN OF
EXPONENT.

~~Qg~~~~_g~~eQgse: Probable user error. Respecify valid
literal before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl076I-C NONNUMERIC LIT EXCEEDS 120 CHARACTERS. TRUNCATED TO 120.

~rog~~~~_Re~Qg~~: Probable user error. Ensure that the
nonnumeric literal contains no more than 120 characters
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available. .

Appendix I: Diagnostic Messages 247

ILAl077I-C NONNUMERIC LIT CONTINUES IN AREA A. ASSUME AREA B.

~£Q~ammg~_gg~EQg~~: Probable user error. Continue
nonnumeric literal in Area B of the continuation card before
recompiling.

,If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl078I-W NONNUMERIC LIT CONTINUED WITHOUT HYPHEN OR QUOTE. ASSUMED.

~rog~~~gr Re~Eonse: Probable user error. Insert hyphen in
column 7 or a quotation mark in Area B of continuation line,
whichever is missing, and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1079I-W NONNUMERIC LIT HAS ZERO LENGTH. ASSUME ONE SPACE.

Programmer Response: Probable user error. Specify valid
nonnumeric literal before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl080I-W PERIOD PRECEDED BY SPACE. ASSUME END OF SENTENCE.

~rog~ammg~_Re~EQns~: Probable user error. Ensure that no
spaces precede period and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl081I-W PERIOD NOT FOLLOWED BY SPACE. ASSUME END OF SENTENCE.

~~Qg~arnmgr Re~EQgse: Probable user error. Ensure that at
least one blank follows period ahd recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compil~r output available.

ILAl082I-C NUMERIC LIT EXCEEDS 18 DIGITS. TRUNCATED TO 18.

~ro~ammg~_Re~EQg~: Probable user error. Supply a numeric
literal of no more than 18 digits before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl083I-C ILLEGAL CHARACTER. SCAN RESUMED AT NEXT VALID CHARACTER.

248

~~Qg~~gr Rg~PQ~~~: Probable user error. Remove or
replace invalid character before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLAl084I-W COMMA SHOULD NOT BE PRECEDED BY SPACE.

Programmer Response: Probable user error. Ensure that no
spaces precede comma and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1085I-C WORD OR PICTURE EXCEEDS 30 CHARACTERS. TRUNCATED TO 30
CHARACTERS.

~fQgf~~_Re~E2U~~: Probable user error. Supply a word or
PICTURE of no more than 30 characters before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl086I-W ••••• SHOULD BEGIN IN AREA A.

~fogr~E-Re~QU~: Probable user error. Begin indicated
word in Area A before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl087I-W ••••••• SHOULD NOT BEGIN IN AREA A.

Programmer ResE2~se: Probable user error. Begin indicated
word in Area B before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1088I-E MISSING FIRST INSERT OR DELETE CARD. PASS CARDS UNTIL
FOUND. • •••••

Programmer Respons~: Probable user error. Supply INSERT or
DELETE card before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl089I-E INSERT OR DELETE NUMBER OUT OF SEQUENCE. SKIPPING TO NEXT
INSERT CARD OR DELETE NUMBER. • •••••

Programmer Response: Probable user error. Correct sequence
of inserted or deleted numbers before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl090I-E DELETE THRU NUMBER OUT OF SEQUENCE. PASS CARDS UNTIL NEXT
INSERT OR DELETE. • •••••

Programmer Response: Probable user error. Ensure that
ranges of sequence numbers specified on DELETE card are in
the proper order before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 249

lLA1091I-C ***** IN AREA A NOT VALID AS PROC-NM. ASSUME AREA B.

Programmer Response: Probable user error. If indicated
name is a procedure-name, correct its formation before
recompiling. If indicated name is ~Q~ a procedure-name,
ensure that it begins in Area B and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl092I-E DECLARATlVES DO NOT FOLLOW PROCEDURE DIVISION. IGNORED.

~~ogr~g~Re~EQ~~g: Probable user error. Ensure that
Declaratives Section header immediately follows Procedure
Division header before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1093I-E NO DECLARATIVES SECTION. END DECLARATlVES IGNORED.

Programmer Response: Probable user error. Depending upon
the logic of the program, either remove END DECLARATIVES
statement and recompile if necessary, or add a Declaratives
Section before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1094I-E INTEGER IN NEXT GROUP CLAUSE DOES NOT CONFORM TO PAGE CLAUSE
SPECIFICATIONS. CONTINUING.

~rogr~~g~_Re~Qnsg: Probable user error. Supply an
"integer" in NEXT GROUP clause that is compatible with PAGE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl095I-W WORD 'SECTION' OR 'DIVISION' MISSING. ASSUMED PRESENT.

~~Qg~~g~Re~Qrr~g: Probable user error. Add missing word
and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1096I-E DATA-NAME IN UPON OPTION NOT SPECIFIED AS A DATA-NAME FOR A
TYPE DETAIL REPORT GROUP IN THIS REPORT. UPON OPTION
IGNORED.

250

Programmer Response: Probable user error. Ensure that the
TYPE DETAIL clause is specified for the data-name at the 01
level before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1097I-E PROGRAM-ID MISSING OR MISPLACED. IF PROGRAM-ID DOES NOT
IMMEDIATELY FOLLOW IDENTIFICATION DIVISION, IT WILL BE
IGNORED.

~rogra~er ResQQnse: Probable user error. Ensure that the
PROGRAM-ID paragraph immediately follows IDENTIFICATION
DIVISION header before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl098I-C NONNUMERIC LIT NOT CONTINUED WITH HYPHEN AND QUOTE. END
LITERAL ON LAST CARD.

Programmer Response: Probable user error. If a
continuation is desired, insert a hyphen in column 7 of the
continuation card and a quotation mark preceding the
continuation in Area B before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1099I-E ***** IS INVALID AS USED.

Programmer Response: Probable user error. Remove or
replace indicated word before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAllOOI-W ***** SEQUENCE ERRORS IN SOURCE PROGRAM.

~~Qg~~~g~_Re~Qgse: Probable user error. Correct sequence
errors and recompile if necessary.

I·f the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1101I-E NEXT PAGE NOT IN FIRST LINE CLAUSE. IGNORED.

Programmer Response: Probable user error. Correct
placement of NEXT PAGE option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1102I-W INCOMPLETE ELEMENTARY ITEM. ASSUME VALUE SPACES.

Programmer Response: Probable user error. Correct
description of elementary item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl103I-E GROUP TYPE ALLOWED ONCE FOR RD. IGNORED.

~~QQ~~_gesPQgse: Probable user error. Remove duplicate
TYPE option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 251

ILAll04I-E CONTROL NAME NOT SPECIFIED IN RD. SKIPPING TO NEXT 01.

~~Qg~~mm~~_Re~~Q~~~: Probable user error. Ensure that
identifier is specified in a CONTROL clause before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA110SI-W ELEMENTARY ITEM EXPECTED. ASSUMED.

~~Qg~amme~_Re~Q~~~: Probable user error. Supply proper
level number before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAll06I-E OPERAND FOR TERMINATE NOT FOUND OR ILLEGAL. OPERAND
DROPPED.

~~Qg~~e~_gg~~Q~se: Probable user error. Ensure that a
valid report-name has been specified in the TERMINATE
statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1107I-C 'NEXT GROUP' CLAUSE IS ILLEGAL FOR THIS REPORT GROUP.
IGNORED.

Programmer Response: Probable user error. Remove NEXT
GROUP clause from PH, PF, or CF report group entry before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1108I-E ***** IS NOT A POSITIVE INTEGRAL NUMBER. ASSUMED ONE.

Programmer Response: Probable user error. Supply a valid
positive integer before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1109I-E DUPLICATE USE OF CONTROL NAME. SKIPPING TO NEXT 01.

~rog~~g~_gg~~Q~~~: Probable user error. Eliminate
duplication before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, c~ntrol
cards, and compiler output available.

lLAlll0I-W INVALID USE OF SUM CLAUSE. CLAUSE IGNORED.

252

Programmer Response: Probable user error. Correct invalid
use of SUM clause and recompile if necessary.

If the problem recurs, do the following before calling
IBM for progra~ng support: have source deck, control
cards, and compiler output available.

ILAllllI-W ELEMENTARY LEVEL WITHOUT COLUMN OR SUM CLAUSE.

~!Qgramme!-Re~E2nse: Probable user error. If entry is not
to be suppressed, supply COLUMN clause before recompiling.
If sum counter is to be referenced elsewhere in the program,
supply SUM clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1112I-E '*****' ALREADY SPECIFIED IN TWO FILE DESCRIPTION ENTRIES.
IGNORED.

Programmer Re§EQnse: Probable user error. Ensure that a
given report-name appears in no more than two REPORT clauses
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1113I-E EXPECTING 6-DIGIT SEQUENCE NUMBER. SKIPPING TO NEXT INSERT
OR DELETE NUMBER. *****.

~!Q9!~~gf_gg~EQn~g: Probable user error. Correct
sequence-number-field before recompiling.

If the problem recurs, do the following before calling
IBM for programming sUt?Port: have source deck, control
cards, and compiler output available.

ILA1114I-C EXTRANEOUS COMMA OR HYPHEN ON DELETE CARD. IGNORED.

Programmer Response: Probable user error. Correct syntax
of DELETE card and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1115I-E NO BLANK, COMMA, OR HYPHEN FOLLOWING SEQUENCE NUMBER.
ASSUME BLANK. *****.

~!Qqf~f_Re~Qnse: Probable user error. Provide valid
sequence number separator before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl116I-E EXPECTING 6-DIGIT SEQUENCE NUMBER AFTER HYPHEN. IGNORING
DELETE FROM THRU NUMBER. *****.

~fQqf~f Re~E2Qse: Probable user error. Provide valid
sequence number before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1117I-E DELETE NUMBER GREATER THAN LAST SEQUENCE NUMBER. STOP
INSERT AND DELETE. *****.

~rogf~~f_Re~Qn~: Probable user error. Ensure that
DELETE sequence number is within library entry before
recompiling.

Appendix I: Diagnostic Messages 253

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1118I-E INSERT NUMBER GREATER THAN LAST SEQUENCE NUMBER. STOP
INSERT AND DELETE. *****.

Programmer Respon~: Probable user error. Ensure that
INSERT sequence number is within library entry before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAll19I-E INTEGER IN 'LINE' CLAUSE DOES NOT CONFORM TO PAGE CLAUSE
SPECIFICATIONS. CONTINUING.

EfQgf~~~f_Re~E2rr~: Probable user error. Ensure that LINE
clause is compatible with PAGE clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl120I-W COMMA NOT FOLLOWED BY SPACE. ASSUMED.

EfQgfa~~f_gg~2rr~~: Probable user error. Insert a space
after comma and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl121I-W PERIOD OR COMMA INVALID AS USED IN PICTURE CLAUSE.

EfQqfa~~f-Bg~E2rr~~: Probable user error. Supply valid
PICTURE clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1122I-E EXTERNAL-NAME IN RERUN CLAUSE MUST NOT BE THE SAME AS
SYSTEM-NAME USED IN ASSIGN CLAUSE. RERUN IGNORED.

Programmer Response: Probable user error. Correct
duplicate use of name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1123I-E NUMBER IS ZERO OR NEGATIVE. SENTENCE IGNORED.

Erogf~~er_Re~E2rr~: Probable user error. Supply valid
positive integer before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl124I-E NUMBER TOO LARGE FOR RERUN. CLAUSE IGNORED.

254

Programmer Response: Probable user error. Provide a number
no larger than allowable maximum before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1125I-C ***** FILE-NAME USED IN PREVIOUS RERUN. USING FIRST ONE.

~rogf~f_Re~2!!~~: Probable user error. Ensure tha.t a
given file-name appears in only one RERUN clause before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1127I-C ***** INVALID IN ***** SENTENCE. REST OF SENTENCE IGNORED.

~rogf~~r Re~Q~~~: Probable user error. Correct invalid
entry in indicated sentence before recompiling.

If the problem recurs, do the following before calling
IBM for programnUng support: have source deck, control
cards, and compiler output available.

ILA1129I-C 10 DIV. HEADER MISSING OR MISPLACED. ASSUMED PRESENT.

Programmer Response: Probable user error. Ensure that an
Identification Division header appears as first source
statement in program and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, co~trol
cards, and compiler output available.

ILA1130I-E ***** DIV. HEADER MISSING. WORDS IN ***** STATEMENTS ARE
INVALID.

Programmer Response: Probable user error. Supply indicated
division header before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1131I-W INVALID PRIORITY NUMBER. ZERO ASSUMED.

Programmer Response: Probable user error. Supply a valid
priority number before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1132I-E INVALID SYSTEM-NAME. SKIPPING TO NEXT CLAUSE.

Programmer Response: Probable user error. Correct
system-name before recompiling.

If ,the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1133I-W MORE THAN 1 USE ON STANDARD ERROR SPECIFIED FOR SAME FILE OR
OPEN OPTION. DUPLICATE USE IGNORED.

Programmer Response: Probable user error. Ensure that a
given file-name is not referred to implicitly or explicitly
in more than one USE AFTER STANDARD ERROR procedure before
recompiling.

Appendix I: Diagnostic Messages 255

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1134I-E USE SPECIFIED FOR FILE WITH LABEL RECORDS OMITTED OR
STANDARD. SENTENCE IGNORED.

Programmer Response: Probable user error. Either specify
the LABEL RECORDS clause with the data-name option or remove
USE procedure for labels before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1135I-W INTEGER-l OUTSIDE OF ALLOWABLE LIMITS. 1 ASSUMED.

~fQ~~~ Rese~~: Probable user error. Correct
integer-l specification before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA1136I-E DATA-NAME ALREADY SPECIFIED FOR A TYPE DETAIL REPORT GROUP.
SKIPPING TO NEXT 01, RD, OR SECTION.

Programmer Response: Probable user error. Ensure that each
DETAIL report group has a unique data-name at the 01 level
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1137I-W MINIMUM NUMBER OF OCCURRENCES IN OCCURS CLAUSE NOT LESS THAN
MAXIMUM NUMBER. CONTINUING.

~~ogr~gf_Re~PQ~~: Probable user error. Correct the
OCCURS clause to ensure that integer-l is less than
integer-2 before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl139I-W ***** DUPLICATELY DEFINED SECTION. SECTION NAME IGNORED.

Programmer Response: Probable user error. Remove
duplication of indicated section before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1140I-C NUMERIC LITERAL EXCEEDS MAXIMUM. SUBSTITUTING 32767.

256

~~Q9fammef_Re~PQnse: Probable user error. Supply a literal
no larger than 32767 before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1141I-C FILE ORGANIZATION FIELD INVALID IN SYSTEM-NAME. SEQUENTIAL
ASSUMED.

~rogr~E-Re~Q~~~: Probable user error. Supply a valid
organization field in system-name of ASSIGN clause before
recompiling.

If the problem recurs, do the f~llowing before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1142I-E USE FOR STANDARD ERROR OR LABEL PROCESSING SPECIFIED FOR
FILE AND OPEN OPTION. USE FOR OPEN OPTION IGNORED.

Programmer Re~~: Probable user error. Ensure that a
given file-name is not referred to, implicitly or
explicitly, in more than one USE statement for error or
label processing declarative before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl143I-E USE STATEMENTS IMPLY STANDARD AND NONSTANDARD LABELS. USE
IGNORED.

Programmer ReseQ~se: Probable user error. Ensure that if a
USE BEFORE label procedure is specified for the file or for
an OPEN option, a USE AFTER is not also specified for the
same file or OPEN option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1144I-W POSITIONING AND ADVANCING ILLEGALLY USED FOR SAME FILE.

~~Qgrammer Re~Q~: Probable user error. Ensure that the
ADVANCING and POSITIONING options are not both specified for
the same file before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl145I-E ***** DUPLICATELY DEFINED IN SPECIAL NAMES PARAGRAPH.
SENTENCE IGNORED.

~~Qg~~~ ResEo~: Probable user error. Eliminate
duplicate definition of indicated item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl147I-E SD FILE ILLEGALLY SPECIFIED IN SAME AREA CLAUSE. CLAUSE FOR
SO IGNORED.

~f2gramm~_ResEo~se: Probable user error. Ensure that a
sort-file-name does not appear in a SAME AREA clause without
the SORT or RECORD options before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 257

ILA1148I-C INVALID SEGMENT LIMIT. FIFTY ASSUMED.

PrQ5l!:~er_ResPO!!§.~: Probable user error. Supply a valid
segment limit before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, coritrol
cards, and compiler output available.

lLAl149I-E FILES IN SAME AREA CLAUSE DO NOT ALL APPEAR IN THE SAME
SORT/RECORD AREA CLAUSE. ,~****' NOT GIVEN SAME AREA
NUMBER.

Programmer Response: Probable user error. Ensure that if
one or more file-names of a SAME AREA clause appear in a
SAME SORT/RECORD AREA clause, all file-names in the former
clause appear in the latter clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLAl151I-E ILLEGAL CHARACTER USE IN CURRENCY SIGN CLAUSE. CLAUSE
IGNORED.

~~Qg~~mmgr Re§'2Q!!~: Probable user error. Correct literal
in CURRENCY SIGN clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

IAL1152I-E ON AND/OR OFF STATUS MUST BE SPECIFIED ON UPSI CLAUSE.
SPECIAL NAME IGNORED.

~rog~amm~E_R~§.E~: Probable user error. Ensure that an
ON or OFF status is defined for an UPSI switch in the
Special-Names paragraph if the status is tested in the
Procedure Division before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1154I-E 2 DIFFERENT LABEL PROCEDURES FOR EOF AND EOV WITH 'BEFORE'
OPTION. BOTH LABEL PROCEDURES IGNORED.

Programmer Re~~: Probable user error. Ensure that a
file is not referenced, implicitly or explicitly, in more
than one USE statement with the BEFORE option before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl155I-E DEVICE CLASS INVALID IN SYSTEM-NAME. SKIPPING TO NEXT
FIELD.

258

Programmer Response: Probable user error. Supply a valid
device-class field in system-name of ASSIGN clause before
recompiling.

If the problem recurs, do the following before calling
IBM for programming suvport: have source deck, control
cards, and compiler output available.

)

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN2~~1~23

ILA1156I-C DEVICE NUMBER INVALID IN SYSTEM-NAME. • •••••• ASSUMED.

Programmer ResE~g: Probable user error. Supply valid
device-number field in system-name of ASSIGN clause and
recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, co~trol
cards, and compiler output available.

ILA1158I-E • ••••• ·IN ENTRY STATEMENT IS SAME AS PROGRAM-ID. • ••••••
IGNORED FOR ENTRY VERB.

Programmer Respon~e: Probable user error. Ensure that the
Ii teral specified in the ENTRY statement is not .. the same
name as the PROGRAM-ID before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

I ILAl159I-W PAGE LIMIT INTEGER-l NOT SPECIFIED OR INVALID. ASSUME
HIGH-VALUE.

Programmer Response: Probable user error. Specify
integer-l if other than relative LINE NUMBERS are to be used
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl160I-E CONTINUATION OF WORD FOUND IN AREA A. IGNORED.

Programmer Response: Probable user error. Begin continued
word in Area B before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1161I-W RESERVED WORD MISSING. ASSUMED PRESENT.

Programmer Response: Probable user error. Correct syntax
of clause or statement and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1162I-E INTEGER IN LINE CLAUSE IS LESS THAN PREVIOUS VALUE.

ILA1163I-E

IGNORED.

Programmer Response: Probable user error. Ensure that LIN~
NUMBER entries are given in ascending order before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: 'have source deck, control
cards, and compiler output available.

ABSOLUTE LINE NUMBER IS PRECEDED BYA RELATIVE LINE NUMBER.
IGNORED.

Programmer Response: Probable user error. Ensure that an
absolute LINE NUMBER is not preceded by a relative LINE
NUMBER before recompiling.

Appendix I: Diagnostic Messages 259

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1164I-E NO PAGE CLAUSE SPECIFIED. ALL LINE CLAUSES MUST BE 'LINE
PLUS INTEGER'. IGNORED.

Programmer Response: Probable user error. Specify the PAGE
LIMIT clause if other than relative LINE NUMBER entries are
desired before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output 'available.

ILAl165I-E 'HEADING' EQUALS 'FIRST DETAIL' IN PAGE C~USE. PAGE
HEADING IS ILLEGAL. CONTINUING.

Programmer Resp~: Probable user error. Co~rect PAGE
LIMIT clause so that FIRST DETAIL integer is greater than
HEADING integer before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1166I-E 'FOOTING' EQUALS 'PAGE LIMITi IN PAGE CLAUSE. PAGE FOOTING
IS ILLEGAL. CONTINUING.

Programmer ResQQ~g: Probable user error. Ensure that the
line number 0f the FOOTING is less than the integer
specified in the PAGE LIMIT clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output ~vailable.

ILAl167I-W 'LINE NEXT PAGE' CLAUSE IS ILLEGAL FOR THIS REPORT GROUP.
IGNORED.

Programmer ResQQnsg: Probable user error. Ensure that LINE
NEXT PAGE is not specified for RH, PH, or PF report groups,
or for report groups within reports with no PAGE LIMIT
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output a~dilable.

ILA1168I-E DUPLICATE REPORT NAME. SKIPPING TO NEW RD.

Programmer Resp~: Probable user error. Ensure that each
report-name is unique before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1169I-E AN OPERAND IN THIS SUM CLAUSE DOES NOT APPEAR AS A SOURCE
ITEM IN DETAIL *****. OPERAND IGNORED.

260

Programmer Response: Probable user error. Ensure that the
SUM cl~use operand appears as a source item in the indicated
DETAIL report group before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available. (

ILAl170I-E DETAIL REPORT GROUP SPECIFIED WITH NO DATA-NAME.
CONTINUING.

~f2~~mm~~_Rg~EQgse: Probable user error. Ensure that each
DETAIL report group has a unique data-name at the 01 level
in a report before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl171I-E INTEGERS IN PAGE CLAUSE ARE NOT IN ASCENDING ORDER.
CONTINUING.

~rogra~g~ Respog~~: Probable user error. Ensure that PAGE
LIMIT integers (integer-2 through integer-S) are in
ascending order before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1172I-E WORD INVALID AS REPORT NAME. RD IGNORED.

~~Q~~~esPQgse: Probable user error. Correct
formation of report-name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA1173I-E GROUP INDICATE IS ILLEGAL FOR THIS REPORT GROUP. IGNORED.

Programmer Response: Probable user error. Remove GROUP
INDICATE clause from all report groups except DETAIL before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards,. and compiler output available.

ILAl174I-E NO LINE CLAUSE SPECIFIED IN PRECEDING REPORT GROUP. NO
OUTPUT GENERATED.

~rog~amm~~_Re~EQ~: Probable user error. For each report
group, specify a LINE clause either at the report group
level or prior to or for the first elementary item in the
line before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA117SI-E DATA-NAME FOR THIS REPORT GROUP IS NOT UNIQUE. SKIPPING TO
NEW 01, RD, SECTION.

Programmer Response: Probable user error. Ensure that each
report group data~name is a unique level-Ol item before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl176I-E SYS NUMBER NOT EQUAL TO 001 FOR SORT FILE. ASSUMED PRESENT.

Programmer Response: Probable user error. Ensure that sort
work file assignments begin with SYSOOl before recompiling.

Appendix I: Diagnostic Messages 261

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl178I-E RESET CLAUSE SPECIFIED, AND IS EITHER ILLEGAL FOR THIS
REPORT GROUP, OR ELEMENTARY ITEM DOES NOT CONTAIN A SUM
CLAUSE. CLAUSE IGNORED.

Programmer Response: Probable user error. Ensure that the
RESET clause is used in conjunction with the SUM clause and
is associated with a CF report group before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILAl179I-E COLUMN NUMBER ILLEGAL. ASSUME COLUMN 1.

~£Qg£a~~£_ResPQ~~~: Probable user error. Ensure that the
column number does not exceed the record size before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2001I-C BLOCK SIZE SMALLER THAN RECORD SIZE. BLOCK CONTAINS
IGNORED.

Programmer Respon~: Probable user error. Correct BLOCK
CONTAINS clause or RECORDING MODE clause before recompiling.

If the problem recurs, do the fol.lowing before calling
IBM for programming support: have source deck, control
ca'rds, and compiler output available.

ILA2002I-E ORGANIZATION INCORRECT. USING STANDARD SEQUENTIAL.

Programmer Response: Probable user error. Correct
organization or device class specification of system-name in
ASSIGN clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2003I-E RANDOM ACCESS ILLEGAL FOR THIS FILE. USING SEQUENTIAL.

~£Qg£~er_g~~Qg~~: Probable user error. Correct
system-name' in ASSGN clause, or if sequential access is
desired, remove ACCESS MODE clause before recompiling.

If the·problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2004I-E RECORDING MODE ILLEGAL FOR ORGANIZATION. RECORDING MODE
IGNORED.

262

~£Qg£~~£_ResPQg~~: Probable user error. Change recording
mode statement to comply with file's organization before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2005I-E A CARD FILE MUST HAVE FIXED RECORD FORMAT. FIXED ASSUMED.

~fogrammer Response: Probable user error. If the card
reader is the required device for this file, correct or
remove the RECORDING MODE clause and recompile if necessary.
If the error is a result of incorrect device assignment,
correct system-name in the ASSIGN clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2006I-C SPANNED RECORDS INVALID FOR THIS DEVICE. USING VARIABLE.

Programmer Response: Probable user error. If S-format is
the desired recording mode, specify a valid device type by
correcting system-name in the ASSIGN clause before
recompiling. If S-format is not the desired recording mode,
correct the RECORDING MODE clause if specified, or correct
the BLOCK CONTAINS clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2007I-C RECORD CONTAINS CLAUSE CONFLICTS WITH RECORD DESCRIPTION.
CLAUSE IGNORED.

Programmer Response: Probable user error. Correct the
RECORD CONTAINS clause and recompile if necessary. If the
record description is in error, make the necessary
correcti,ons before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2008I-C APPLY MASTER/CYL INDEX VALID ONLY FOR INDEXED FILES. CLAUSE
IGNORED.

~~Q9.rammer Resp0!1~: Probable user error. If indexed
organization is desired, correct system-name in ASSIGN
clause before recompiling. Otherwise, remove APPLY clause
and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2009I-C SYNCHRONIZED ITEM NOT ON PROPER BOUNDARY. NO ALIGNMENT
PERFORMED BECAUSE STARTING ADDRESS OF THE REDEFINED ITEM
WOULD HAVE TO BE CHANGED.

Proqrammer Response: Probable user error. Correct boundary
alignment of redefined item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2010I-E OBJECT OF REDEFINES CLAUSE IS OCCURS DEPENDING ON SUBJECT.
REDEFINES CLAUSE IGNORED.

Proqrammer Response: Probable user error. Remove the
DEPENDING ON option from OCCURS clause before recompiling.

Appendix I: Diagnostic Messages 263

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2011I-E AN INDEX DATA ITEM MAY NOT BE A CONDITIONAL VARIABLE. 88(S>
DISCARDED.

Programmer Response: Probable user error. Depending on the
logic of the program, either supply appropriate level
numbers or remove level-88 items before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2012I-E INDEX NAMES AND/OR KEYS IGNORED FOR TABLE WITH ILLEGAL
SUBJECT.

Programmer Resp~: Probable user error. Ensure that
subject of table is valid before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2013I-C BLOCK CONTAINS CLAUSE IMPROPERLY WRITTEN. CLAUSE IGNORED.

~~Qg~~~g~_Re~PQU~: Probable user error. Correct syntax
of BLOCK CONTAINS clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2014I-C BLOCK CONTAINS CHARACTERS MUST BE USED FOR SPANNED RECORDS.
USING VARIABLE.

Programmer Response: Probable user error. Either supply
the CHARACTERS option of the BLOCK CONTAINS clause, correct
the organization field of system-name in the ASSIGN clause
if direct organization is intended, or respecify the
RECORDING MODE clause if other than S-mode is desired.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2015I-W CONFLIC~ING SPECIFICATIONS FOR RECORD FORMAT. *****
. ASSUMED.

Programmer Response: Probable user error. Correct
RECORDING MODE clause, BLOCK CONTAINS clause, RECORD
CONTAINS clause, or record description, to eliminate
conflict, and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2016I-E DATA RECORD SIZE IS VARIABLE. 'RECORDING MODE F' IGNORED.

264

Programmer ResPQn~: Probable user error. Ensure that the
record is associated with a valid FD, then correct RECORDING
MODE clause or record description before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2017I-E IF THE SUBJECT OF AN INDEXED BY CLAUSE IS AN ELEMENTARY ITEM
ONLY THAT ITEM MAY BE SPECIFIED IN THE KEY CLAUSE. REST OF
KEYS DISCARDED.

Programmer Response: Probable user error. Remove all keys
from ASCENDING/DESCENDING option except subject of INDEXED
BY clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2018I-E OBJECT OF RENAMES CLAUSE WAS NOT FOUND OR NON-UNIQUE IN
LOGICAL RECORD.

Programmer Response: Probable user error. Supply a data
description entry for the data-name being used as the object
of the RENAMES clause, delete or qualify a duplicate use of
the same data-name, or correct a misspelled data-name before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2019I-C BLOCK CONTAINS CLAUSE INVALID WHEN RECORD FORMAT IS UNDEF.
CLAUSE IGNORED.

Programmer Response: Probable user error. If U mode is the
recording mode desired, remove the BLOCK CONTAINS clause and
recompile if necessary. If other than U mode is desired,
provide the proper RECORDING MODE clause and/or check the
system-name of the file's ASSIGN clause and the record
description for compatibility with the desired recording
mode specification (or assumption) before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards,. and compiler output available.

lLA2020I-C TRACK-AREA CLAUSE ILLEGAL FOR THIS ACCESS METHOD. CLAUSE
IGNORED.

Programmer Response: Probable user error. Delete
TRACK-AREA clause if the desired access method for the file
is sequential, and recompile if necessary. Otherwise,
specify ACCESS MODE IS RANDOM before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2021I-C PICTURE DUPLICATION FACTOR TRUNCATED TO 5 SIGNIFICANT
DIGITS.

~~ogrammer Response: Probable user error. Correct picture
duplication factor before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2022I-E THE OBJECT OF THE RENAMES OR RENAMES THRU CLAUSE CANNOT BE
AN 01, 66, 77, OR 88. STATEMENT DISCARDED.

~~2grammg~Re~ponse: Probable user error. Correct the
object of the RENAMES or RENAMES THRU clause or its level
number before recompiling.

Appendix I: Diagnostic Messages 265

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2023I-E ***** KEY MISSING. FILE IGNORED.

~fQgf~gf_Re~EQgse: Probable user error. Supply indicated
key for file or check that the desired combination or
organization and access method has been specified before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2024I-E ***** KEY IS ILLEGAL FOR THIS ORGANIZATION. CLAUSE IGNORED.

Programmer Response: Probable user error. Remove indicated
key clause or check that the desired file organization has
been specified in the ASSIGN clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2025I-E FILE NAME NOT UNIQUE. FILE IGNORED.

~fQgrammer Response: Probable user error. Ensure that the
file-name has not been defined elsewhere in the program.
Either correct spelling of duplicate or check syntax of FD
statement.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2027I-C APPLY CORE-INDEX ILLEGAL FOR THIS ACCESS METHOD. CLAUSE
IGNORED.

Programmer Response: Probable user error. Remove APPLY
CORE-INDEX clause or, if random access is desired, correct
ACCE~S MODE clause before recompiling

If the problem recurs, do the following before calling
IBM for programming support: have source deck,control
cards, and compiler output available.

ILA2028I-W RECORD CONTAINS CLAUSE IMPROPERLY WRITTEN. CLAUSE IGNORED.

~roqf~ef_Re~2Qrr~g: Probable user error. Correct syntax
of RECORD CONTAINS clause and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2029I-C FIRST NON 77, 88 ITEM IN SECTION IS NOT AN 01. THIS ITEM
WAS CHANGED TO 01.

266

Programmer Response: Probable user error. Correct entry to
ensure that a level-Ol entry precedes subsequent levels of .
data description before recompiling.

If the problem recurs, do the following before calling
IBM for programndng support: have source deck, control
cards, and compiler output available.

ILA2030I-C 77 ITEM PRECEDED BY AN 01-49 ITEM OR 77 IN FILE SECTION. 77
CHANGED TO 01.

Programmer Response: Probable user error. Change 77 to a
valid level number or rearrange items in the Linkage or
Working-Storage Sections before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2031I-C 88 ITEM MUST MUST BE PRECEDED BY 01-49 OR 77 ITEM. 88
CHANGED TO 01.

Programmer Response: Probable user error. Cor~ect entry so
that condition-name (88) is subordinate to a conditional
variable with a valid level number before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2032I-E 88 ITEM CONTAINED A CLAUSE OTHER THAN VALUE CLAUSE. CLAUSE
DELETED.

Programmer Response: Probable user error. Remove clauses
other than VALUE from condition-name (88) entry or correct
level-number of entry before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2033I-C ITEM'S USAGE INCOMPATIBLE WITH USAGE OF GROUP IT BELONGS TO.
USAGE CHANGED TO GROUP'S USAGE.

Proqrammer Response: Probable user error. Correct USAGE
clause on group or elementary level before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2034I-E GROUP ITEM HAS PICTURE CLAUSE. CLAUSE DELETED.

~EQgE~~gE_Re~Qg~g: Probable user error. Remove PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2035I-E GROUP ITEM HAS BLANK WHEN ZERO CLAUSE. CLAUSE DELETED.

Proqrammer Response: Probable user error. Remove BLANK
WHEN ZERO clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2036I-E GROUP ITEM HAS JUSTIFIED CLAUSE. CLAUSE DELETED.

Programmer Response: Probable user error. Remove JUSTIFIED
clause before recompiling.

Appendix I: Diagnostic Messages 267

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control·
cards, and compiler output available.

ILA2037I-E BLANK WHEN ZERO CLAUSE USED INCORRECTLY. CLAUSE IGNORED.

~~Qg~~g~_Re~EQ~se: Probable user error. Correct syntax
of BLANK WHEN ZERO clause or check compatability of clause
with data type of item being described before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2038I-E ACTUAL KEY MUST BE GREATER THAN 4 AND LESS THAN 259 BYTES IN
LENGTH. USING 5.

~rog£~~_Re~EQ~~: Probable user error. Correct the
ACTUAL KEY clause, specifying a data-name that represents a
fixed item from 5 through 258 bytes in length before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2039I-C PICTURE CONFIGURATION ILLEGAL. PICTURE CHANGED TO 9 UNLESS
USAGE IS 'DISPLAY-ST', THEN L(6)BDZ9BDZ9.

~~2g~ammg~_Re~EQ~~: Probable user error. Correct PICTURE
configuration before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2040I-E JUSTIFIED CLAUSE SPEC'D FOR NON-ALPHABETIC OR
NON-ALPHANUMERIC ITEM. CLAUSE DELETED.

~~Qg~ammg~~Re~Q~se: Probable user error. Remove JUSTIFIED
clause or change PICTURE to alphabetic or alphanumeric
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2041I-E CONDITION NAME UNDER GROUP HAS VALUE CLAUSE THAT IS NUMERIC.
88 DISCARDED.

Programmer Respon~: Probable user error. Change group
item'S usage to ensure that values associated with
condition-names refer to a conditional variable whose USAGE
IS DISPLAY before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2042I-E THIS ITEM CAUSES OVER 3 LEVELS OF SUBSCRIPTING. OCCURS
CLAUSE DROPPED FOR THIS ITEM.

268

~~g~~g~Re~Q~~~: Probable user error. Remove OCCURS
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2043I-E 01 OR 77 LEVEL HAS AN OCCURS CLAUSE. CLAUSE DELETED.

frogrammer Response: Probable user error. Remove OCCURS
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2044I-E DUPLICATE SD. IGNORED.

~~Qg~~~_Re~Q~se: Probable user error. Remove duplicate
or correct misspelled sort-file-name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2045I-E REPORT CONTROL NAME UNDEFINED.

Programmer Response: Probable user error. Define the
identifier specified in the CONTROL clause in the File or
Working-Storage section before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2046I-E REPORT CONTROL NAME NOT FIXED LENGTH.

~~~~g~_Re~EQnse: Probable user error. Correct the data 
description entry for the report control name before 
recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2047I-E MORE THAN 12 INDEX NAMES SPECIFIED FOR TABLE. FIRST 12 
ACCEPTED. 

Programmer Response: Probable user error. Remove all 
index-names in excess of 12 before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

lLA2049I-C NO VALID OPEN FOR FILE. FILE IGNORED. 

Programmer ResEQQse: Probable user error. Supply valid or 
missing OPEN statement for file before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2050I-C BLOCK SIZE TOO LARGE. USING MAXIMUM FOR DEVICE. RECORD 
TRUNCA~ED. 

~~Qg~a~g~_Re~E£~se: Probable user error. Adjust block 
size for file to a size compatible with the device before 
recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

Appendix I: Diagnostic Messages 269 



ILA2051I-C APPLY EXTENDED-SEARCH VALID ONLY FOR DIRECT FILES. CLAUSE 
IGNORED. 

Programmer Response: Probable user error. Remove APPLY 
EXTENDED-SEARCH clause and recompile if necessary. However, 
if direct organization and random access is desired, correct 
system-name in ASSIGN clause and ACCESS MODE clause before 
recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

1LA2052I-E MORE THAN 12 KEYS SPECIFIED FOR TABLE. FIRST 12 ACCEPTED. 

ErogEa~~E-E~~e£g~~: Probable user error. Remove reference 
to keys in excess of 12 before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2053I-C 77 ITEM WITHOUT PICTURE CLAUSE. ASSUME PICTURE 9. 

~EQgEammeE_Re~Qgse: Probable user error. Supply a PICTURE 
clause for level-77 item before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2054I-C PICTURE LENGTH WOULD CAUSE OVERFLOW FROM REPORT LINE AT 
SPECIFIED COLUMN. TRUNCATED TO AVAILABLE SIZE. 

~EQ9E~gE_Re~ponse: Probable user error. Ensure that 
compatibility of both PICTURE and COLUMN clauses before 
recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2055I-C STERLING NONREPORT PICTURE - SIGN IN POUND FIELD MUST BE ON 
HI OR LO ORDER DIGIT. PICTURE REPLACED BY 9D807. 

Programmer Response: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2056I-C STERLING NONREPORT PICTURE - 9 IN ILLEGAL POST ION. PICTURE 
REPLACED BY 908D7. 

Programmer Response: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2057I-C STERLING NONREPORT PICTURE - SIGN IN SHILLING FIELD ILLEGAL. 

270 

PICTURE REPLACED BY 90807. 

Programmer Response: Probable user error. Correct PICTURE 
clause before recompiling. 



) . 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2058I-C STERLING NONREPORT PICTURE - 8 IN ILLEGAL POSITION. PICTURE 
REPLACED BY 90807. 

Programmer Response: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

lLA2059I-C STERLING NONREPORT PICTURE - SIGN IN PENCE FIELD ILLEGAL. 
PICTURE REPLACED BY 90807. 

Progr~~r Respon~: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

lLA2060I-C STERLING NONREPORT PICTURE - 6 OR 7 IN ILLEGAL POSITION. 
PICTURE REPLACED BY 90807. 

Programmer Response: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2061I-C STERLING NONREPORT PICTURE. USAGE NOT DISPLAY-ST. PICTURE 
REPLACED BY 9(1). 

Programmer Response: Probable user error. Specify USAGE IS 
OISPLAY-ST or replace PICTURE clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source de~k, control 
cards, and compiler output available. 

lLA2062I-C STERLING NONREPORT PICTURE - V IN ILLEGAL POSITION. PICTURE 
REPLACED BY 90807. 

~~Q~~~_Re~QQ~: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

lLA2063I-C STERLING NONREPORT PICTURE - S IN ILLEGAL POSITION. PICTURE 
REPLACED BY 90807. 

~~Qgf~er_Re2EQ~~: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

Appendix I: Diagnostic Messages 271 



lLA2064I-C STERLING NONREPORT PICTURE - DIGIT LENGTH GT 2. PICTURE 
REPLACED BY 90807. 

~roqramrn~~ Re~Qll~~: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

lLA2065I-C STERLING NONREPORT PICTURE - SHILLING FIELD GT 2. PICTURE 
REPLACED BY 90807. 

~roq~~~~Re~Qll~: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2066I-C STERLING NONREPORT PICTURE - PENCE FIELD GT 2. PICTURE 
REPLACED BY 90807. 

~~gr~_B~~pon~: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling' 
IBM for progra~ng support: have source deck, control 
cards, and compiler output available. 

lLA2067I-C STERLING NONREPORT PICTURE - NO POUND SEPARATOR. PICTURE 
REPLACED BY 90807. 

Proqr~er Respon~: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the. following before calling 
IBM for progra~ng support: have source deck, control 
cards, and compiler output available. 

lLA2068I-C ONLY THE RENAMES CLAUSE MAY BE SPECIFIED FOR A LEVEL 66 
ENTRY. CLAUSE IGNORED. 

Programmer Response: Probable user error. Remove all 
clauses except RENAMES clause for level-66 item and 
recompile if necessary. 

If the problem recurs, do the following before calli~g 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

lLA2069I-C NUMERIC PICTURE - SIGN IN ILLEGAL POSITION. PICTURE 
REPLACED BY 9(1). 

~roqr~~ Re§pon~: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programndng support: have source deck, control 
cards, and compiler output available. 

lLA2070I-C NUMERIC PICTURE - P IN ILLEGAL POSITION. PICTURE REPLACED 
BY 9(1). 

272 

~roq~~ ResPQ~~: Probable user error. Correct PICTURE 
clause before recompiling. 

( 



If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

lLA2071I-C NUMERIC PICTURE - V IN ILLEGAL POSITION. PICTURE REPLACED 
BY 9(1). 

~E2g£~~~ Re~2Q~~: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

lLA2072I-C NUMERIC PICTURE - NO 9 IN PICTURE. PICTURE REPLACED BY 9(1). 

Programmer Response: Probable user error. Correct PICTURE 
clause or change USAGE clause to be compatible with the 
PICTURE clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2073I-C NUMERIC PICTURE - P ENCLOSED BY 9'S. PICTURE REPLACED BY 
9 (1) • 

Programmer Response: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output .. :;;.vailable~ 

ILA2074I-D COMPILER ERROR - MINOR CODE FOR RENAMES ENTRY IS ILLEGAL. 

If the problem recurs, do the following to complete your 
problem determination action before calling IBM for 
programming support: have source deck, control cards, and 
compiler output available. 

ILA2075I-C NUMERIC PICTURE - DIGIT LENGTH GT 18. PICTURE REPLACED BY 
9 (1). 

Programmer Response: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2076I-C NUMERIC PICTURE - DIGIT LENGTH + SCALE GT 18. PICTURE 
REPLACED BY 9(1). 

Programmer Response: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2077I-C EXTERNAL FLOATING-POINT PICTURE - USAGE NOT DISPLAY. 
PICTURE CHANGED TO 9. 

Programmer Respon~: Probable user error. Supply USAGE IS 
DISPLAY clause before recompiling. 

Appendix I: Diagnostic Messages 273 



If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2018I-W EXTERNAL FLOATING-POINT PICTURE - MORE THAN 1 'SIGN. CHANGED 
TO 1. 

~rogrammer Respon~~: Probable user error. Correct PICTURE 
clause and recompile if necessary. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

lLA2019I-C EXTERNAL FLOATING-POINT PICTURE - SIGN IN ILLEGAL POSITION. 
PICTURE CHANGED TO +9.E+99. 

Programmer Response: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

tLA2080I-C EXTERNAL FLOATING-POINT PICTURE - SIGN MISSING. ASSUME 
MINUS SIGN. 

Programmer Response: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
.IBM for programming support: have source deck, control 
cards, and compiler output available. 

lLA2081I-C EXTERNAL FLOATING-POINT PICTURE - REQUIRED CHARACTER BEFORE 
EXPONENT MISSING. PICTURE CHANGED TO +9.E+99. 

Programmer Response: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2082I-W EXTERNAL FLOATING-POINT PICTURE - NO DECIMAL POINT IN 
MANTISSA. ASSUME IMPLIED V. 

Programmer Response: Probable user error. Correct PICTURE 
clause and recompile if necessary. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

ILA2083I-C EXTERNAL FLOATING-POINT PICTURE - MANTISSA LENGTH GT 16. 

274 

PICTURE CHANGED TO +9.E+99. 

Prog~~~~~spog~: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 



lLA2084I-C EXTERNAL FLOATING-POINT PICTURE - TOTAL LENGTH GT 22. 
PICTURE CHANGED TO +9.E+99. 

Programmer Re~£rr~: Probable user error. Correct PICTURE 
clause before recompiling. 

If the problem recurs, do the following before calling 
IBM for programming support: have source deck, control 
cards, and compiler output available. 

lLA2085I-C EXTERNAL FLOATING-POINT PICTURE - EXPONENT LENGTH NOT 2 
DIGITS. ASSUME 2 DIGITS. 

~~~~gE_gg~on~: Probable user error. Correct PICTURE 
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2086I-C NUMERIC EDITED PICTURE - TWO FIXED DOLLAR SIGNS, +, - OR
FIXED AND FLOATING DOLLAR SIGN. PICTURE REPLACED BY 9(1).

~£Qgf~gE-gg~EQrr~g: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2089I-C NUMERIC EDITED PICTURE - 9, Z OR * PRECEDES FLOATING STRING.
PICTURE REPLACED BY 9(1).

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2090I-C NUMERIC EDITED PICTURE - P IN ILLEGAL POSITION. PICTURE
REPLACED BY 9(1).

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2091I-C NUMERIC EDITED PICTURE - TWO DIFFERENT FLOATING STRING
CHARACTERS. PICTURE REPLACED BY 9(1).

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2092I-C NUMERIC EDITED PICTURE - Z AND * IN PICTURE. PICTURE
REPLACED BY 9(1).

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

Appendix I: Diagnostic Messages 275

If the problem recurs, do the following before'calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2093I-C NUMERIC EDITED PICTURE - 9 PRECEDES * OR Z. PICTURE
REPLACED BY 9(1).

~EQgE~E Re~on~: Probable user error. correct the
order in the PICTURE clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2094I-C NUMERIC EDITED PICTURE - FLOATING STRING PRECEDES * OR Z.
PICTURE REPLACED BY 9(1).

Programmer Response: Probable user error. Correct order of
PICTURE clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2096I-C DECIMAL POINT MAY ONLY APPEAR ONCE IN A PICTURE CHARACTER
STRING. PICTURE REPLACED BY 9(1).

~EQgE~gE~~P2rrse: Probable user error. Remove all but
one decimal point (or comma, if DECIMAL-POINT IS COMMA has
been specified in Special-Names paragraph) before
recompiling.

If the problem recurs, do the following before calling
IBM for programndng support: have source deck, control
cards, and compiler output available.

ILA2097I-C NUMERIC EDITED PICTURE - DECIMAL POINT OR V CONTRADICTORY TO
P. PICTURE REPLACED BY 9(1).

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2098I-C INDEXED BY AND/OR KEY CLAUSE IS ILLEGAL FOR ITEM SUBORDINATE
TO GROUP THAT HAS OCCURS BUT NO INDEXED BY CLAUSE. CLAUSE
IGNORED.

Proqrammer Response: Probable user error. Supply INDEXED
BY clause on group item or eliminate the subordinate INDEXED
BY clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2099I-C NUMERIC EDITED PICTURE - CR OR DB AND SIGN BOTH USED.

276

PICTURE REPLACED BY 9(1).

Programmer Respo~: Probable user error. Remove duplicate
sign symbol before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

/

ILA2100I-C NUMERIC EDITED PICTURE - CR OR DB NOT LAST TWO CHARACTERS IN
PICTURE. PICTURE REPLACED BY 9(1).

~~Qg~amme~_Re~eQ~se: Probable user error. Ensure that CR
or DB are the last two characters in the PICTURE before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2101I-C NUMERIC EDITED PICTURE - SIGN IS NOT FIRST OR LAST CHARACTER
IN PICTURE. PICTURE REPLACED BY 9(1).

Programmer Response: Probable user error. Ensure that the
sign is the leftmost or rightmost character in the PICTURE
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2102I-C NUMERIC EDITED PICTURE - NUMERIC CHARACTERS AFTER DECIMAL
POINT ARE NOT THE SAME. PICTURE REPLACED BY 9(1).

Programmer Response: Probable user error. Supply valid
numeric characters as suppression symbols after the decimal
point before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2103I-C NUMERIC EDITED PICTURE - TOTAL LENGTH GT 127. PICTURE
REPLACED BY 9(1).

Programmer Response: Probable user error. Reduce total
length of PICTURE character string to 127 or less before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2104I-C NUMERIC EDITED PICTURE - NUMERIC LENGTH GT 18. PICTURE
REPLACED BY 9(1).

~~Q~~e~_Re~Q~se: Probable user error. Reduce the
number of digit positions represented to 18 or less before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA210SI-E ONLY ONE KEY MAY BE SPECIFIED IF THE SUBJECT OF TABLE IS A
KEY. REST OF KEYS DISCARDED.

Prog~~~~g~spo~~~: Probable user error. Eliminate all
keys except table subject before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 277

ILA2106I-E THE RENAMES CLAUSE MUST BE THE LAST ENTRY IN A LOGICAL
RECORD. SKIPPING TO NEXT LEVEL, SECTION, OR DIVISION.

~~Qg~~mmer_Respo~: Probable user error. Correct
placement oflevel-66 item, ensuring that it is the last
entry in the record before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2107I-W NUMERIC EDITED PICTURE - USAGE NOT DISPLAY. PICTURE CHANGED
TO 9.

Programmer Response: Probable user error. Correct PICTURE
or USAGE clause for item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2108I-E KEYS IGNORED FOR ITEM WITH NO INDEXED BY CLAUSE.

Proqrammer Response: Probable user error. 'Supply INDEXED
BY clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2110I-C APPLY WRITE-ONLY VALID ONLY FOR VARIABLE BLOCKED RECORDS.
CLAUSE IGNORED.

~rog~ammer_Respo~~: Probable user error. Ensure that
blocked V-mode records have been specified before
recompiling, or delete APPLY clause and recompile if
necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2113I-W ITEM WITH USAGE OF COMPUTATIONAL-lOR COMPUTATIONAL-2 HAS
PICTURE CLAUSE. CLAUSE IGNORED.

~~Qgramm~~_Re~QQns~: Probable user error. Remove PICTURE
clause and recompile if necessary, or correct USAGE clause
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2114I-E ONLY THE SYNCHRONIZED CLAUSE IS ALLOWED FOR A USAGE IS INDEX
ITEM. CLAUSE IGNORED.

Programmer Response: Probable user error. Remove invalid
clause(s) before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2115I-E LENGTH OF VARIABLE GROUP GT 32K. ·ACCEPTED AS WRITTEN.

278

~ro~amm~~ Re~~Qrr~~: Probable user error. Reduce length of
variable group to 32K or less before recompiling.

)

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2116I-E FIXED LENGTH GROUP ITEM IN WORKING-STORAGE OR LINKAGE
SECTION IS GT 131K.

programmer ResEQ~~: Probable user error. Reduce length of
group item to 131K or less before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2117I-E INVALID NUMERIC EDITED CHARACTER. PICTURE CHANGED TO 9.

Programmer ReseQ~~~: Probable user error. Supply valid
combination of USAGE and PICTURE before recompiling.

If the problem recurs, do the following before calling
IBM for programming suppo~~: have source deck, control
cards, and compiler output available.

ILA2118I-C LENGTH OF REDEFINES SUBJECT GREATER THAN LENGTH OF REDEFINES
OBJECT. SUBJECT LENGTH USED.

Programmer Response: Probable user error. Ensure that
length of redefined item is greater than or equal to length
of item that redefines it before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2119I-E VALUE CLAUSE SPECIFIED FOR AN ITEM IN A REDEFINES GROUP.
CLAUSE IGNORED.

Programmer Response: Probable user error. Remove VALUE
clause or place VALUE clause in redefined item before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2120I-E OBJECT OF REDEFINES CLAUSE UNDEFINED OR ILLEGAL. CLAUSE
IGNORED.

Programmer ResEQ~: Probable user error. Correct object
of REDEFINES clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2121I-W SUBJECT OF REDEFINES IS VARIABLE LENGTH.

Programmer Response: Probable user error. Remove DEPENDING
ON option from OCCURS clause that describes subject of
REDEFINES clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have, sourc~ deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 279

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

ILA2122I-E REDEFINES SUBJECT LEVEL NUMBER NOT EQUAL TO REDEFINES OBJECT
LEVEL NUMBER OR OBJECT NOT IMMEDIATELY PKECEDING SUBJECT.
CLAUSE IGNORED.

I ILA2123I-C

Programmer Response: Probable user error. Correct
placement or level number of entry containing REDEFINES
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

OBJECT OF REDEFINES IS SUBSCRIPTED OR CONTAINS OCCURS CLAUSE
DATA SPACE ALLOCATION MAY BE IMPROPER.

Programmer Response: Probable user error. Remove OCCURS
clause from description of object of REDEFINES or use method
other than REDEFINES to achieve desired purpose.'

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2124I-C OBJECT OF REDEFINES IS VARIABLE LENGTH GROUP ITEM.
REDEFINES CLAUSE IGNORED.

Programmer ResPQ~~: Probable user error. Correct
REDEFINES clause or use method other than REDEFINES to
achieve desired purpose.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2125I-W VALUE CLAUSE TREATED AS COMMENTS FOR ITEMS IN FILE AND
LINKAGE SECTIONS.

Programmer.Response: Probable user error. Remove VALUE
clause from items other than level-8S items in File or
Linkage Section and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2126I-C VALUE CLAUSE LITERAL TOO LONG. TRUNCATED TO PICTURE SIZE.

Programmer Response: Probable user error. Depending upon
the logic of the program, either correct length of PICTURE
or of the literal specified in the VALUE clause before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2127I-C NUMERIC VALUE CLAUSE SPECIFIED FOR GROUP ITEM. CLAUSE
IGNORED.

280

Programmer Response: Probable user error. Specify a
nonnumeric literal or a figurative constant in the VALUE
clause or remove VALUE clause from group level and define
initial values at the elementary level before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available. (

lLA2128I-C VALUE CLAUSE LITERAL DOES NOT CONFORM TO PICTURE. CHANGED
TO BLANKS.

Programmer Response: Probable user error. Ensure that the
VALUE and PICTURE clauses are compatible before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2129I-C VALUE CLAUSE LITERAL DOES NOT CONFORM TO PICTURE. CHANGED
TO ZERO.

R~Qgf~mmg~ Re~Qnsg: Probable user error. Ensure that the
VALUE and PICTURE clauses are compatible before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2130I-E ITEM CANNOT HAVE VALUE CLAUSE. CLAUSE IGNORED.

R!QgE~;:_ResI?0!!.se: Probable user error. Remove VALUE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler outPUt available.

lLA2132I-E RECORD KEY LENGTH GREATER THAN 255 BYTES. ACCEPTED AS
WRITTEN.

R~Qg~~;:_ResI?o~: Probable user error. Reduce PICTURE
length of data-name specified in the RECORD KEY clause to
255 bytes or less before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2133I-W LABEL RECORDS CLAUSE INVALID OR MISSING. ***** ASSUMED.

Rroqr~~~~I?onse: Probable user error. Supply missing
LABEL RECORDS clause or, if present, correct specification
and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programndng support: have source deck, control
cards, and compiler output available.

lLA2134I-C VALUE FOR SCALING CHARACTER SHOULD BE ZERO. CHANGED TO
ZERO.

Programmer ResI?onse: Probable user error. Change value to
zero before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2135I-C RECORDS IN ISAM FILE CANNOT BE VARIABLE LENGTH. ASSUMED
FIXED AT MAXIMUM SIZE.

~rogrammg;:_Re~QQ!!'~~: Probable user error. Correct record
description entries associated with the file so that each is
the same length before recompiling.

Appendix I: Diagnostic Messages 281

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2136I-E NOMINAL KEY LENGTH FOR INDEXED FILE GREATER THAN 255 BYTES.
KEY IGNORED.

Programmer~@'E2!!@'~: Probable user error. Correct PIC'I'URE
clause of data-name specified in the NOMINAL KEY clause to
reflect length of 255 bytes or less before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, cont~ol
cards, and compiler output available.

ILA2137I-E THE OBJECT OF THE RENAMES THRU CLAUSE IS SUBORDINATE TO THE
SUBJECT. STATEMENT DISCARDED.

REQ9Ea~mgE Re@'EQns~: Probable user error. Correct RENAMES
THRU clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2139I-W APPLY WRITE-VERIFY VALID ONLY FOR MASS STORAGE DEVICES.
CLAUSE IGNORED.

Programmer ResEonse: Probable user error. Either remove
APPLY WRITE-VERIFY clause or change ASSIGN clause to specify
a mass storage device designation before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2140I-E VALUE CLAUSE SPECIFIED ON BOTH GROUP AND ELEMENTARY ITEM OR
ON SUBORDINATE GROUP. SECOND ITEM'S VALUE CLAUSE IGNORED.

Programmer ResEonse: Probable user error. Correct record
description to ensure that a VALUE clause does not appear
both on the group level and on a level subordinate to the
group level, before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2141I-C LENGTH OF LITERAL IS MORE OR LESS THAN LENGTH OF GROUP.
LENGTH OF LITERAL ASSUMED.

Rrog~aremgE~@'E2!!@'~: Probable user error. Either change
the length of the group by respecifying the PICTURE clause
or respecify VALUE clause for group before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and comp~ler output available.

ILA2142I-E ALPHABETIC OR ALPHANUMERIC ITEM HAS ILLEGAL USAGE. PICTURE
CHANGED TO 9.

282

Rro~ammer_Re@'EQ!!@.g: Probable user error. Either correct
PICTURE or USAGE clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

)

Page of GC28-6398-2,-3, R~vised 2/15/73 by TNL GN28-1023

lLA2143I-W STERLING NONREPORT PICTURE - MORE THAN ONE V OR S. ASSUMED
ONE.

Programmer ResQQnse: Probable user error. Correct PICTURE
clause and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
.cards, and compiler output available.

ILA2144I-C NUMERIC PICTURE - MORE THAN ONE V OR S. ASSUMED ONE.

·Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA214SI-E ALPHABETIC OR ALPH~NUMERIC ITEM LENGTH GREATER THAN 32767.
TRUNCATED TO 32767.

Programmer Reseonse: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2146I-W RECORD CONTAINS DISAGREES WITH COMPUTED MAXIMUM. USING
COMPUTEP MAXIMUM.

Programmer ResEQnse: Probable user error. Correct RECORD
CONTAINS clause and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2147I-W BLOCK CONTAINS CLAUSE FOR UNIT-RECORD DEVICE IS INVALID.
CLAUSE IGNORED

Programmer Response: Probable user error. Delete BLOCK
CONTAINS clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2148I-W ON AN 01 (77) COpy LIBRARY-NAME CLAUSE, LIBRARY DID NOT HAVE
AN 01 (77) AS FIRST CARD.

Programmer Response: Probable user error. Correct first
entry of library member before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, compiler output, and a listing of the source
statement library member available.

ILA2149I-E VALUE CLAUSE SPECIFIED FOR iTEM WITH OCCURS OR FOR ITEM
S~~ORDINA',['E TO AN ITEM WITH OCCURS. CLAUSE IGNORED.

Programmer Response: Probable user error. Remove VALUE
clause before recompiling.

Appendix I: Diagnostic Messages 283

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2150I-E VALUE CLAUSE SPECIFIED FOR ITEM IN VARIABLE LENGTH PORTION
OF A WORKING-STORAGE RECORD. CLAUSE IGNORED.

284

Programmer Response: Probable user error. Remove VALUE
clause before recompiling.

)

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2151I-C ELEMENTARY ITEMS NOT INTERNAL FLOATING-POINT MUST HAVE
PICTURE. PICTURE ASSUMED 9.

Programmer Response: Probable user error. Supply PICTURE
clause for item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2152I-D COMPILER ERROR - PHASE 2 INPUT UNRECOGNIZABLE. SKIPPING TO
NEXT PHASE.

Programmer ResQQrse: Compiler error~

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2153I-C APPLY CYL-OVERFLOW VALID ONLY FOR INDEXED FILES. CLAUSE
IGNORED.

Programmer Response: Probable user error. Remove APPLY
C~L-OVERFLOW clause and recompile if necessary. If the file
is in fact an indexed file, correct system-name
specification in the ASSIGN clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2154I-C THE AREA BEING REDEFINED IS NOT IMMEDIATELY PRECEDING THE
ENTRY WHICH REDEFINES IT OR THE LEVEL NUMBERS OF THE SUBJECT
AND OBJECT OF THE REDEFINES ARE NOT THE SAME. THE OBJECT OF
THE REDEFINES IS ASSUMED TO BE THE LAST ENTRY WITH THE SAME
LEVEL NUMBER AS THE SUBJECT OF THE REDEFINES.

Programmer Response: Probable user error. Correct level
number of subject and/or object of the REDEFINES clause or,
if correct, check placement of object of REDEFINES to ensure
that it and its subordinate entries immediately precede the
subject before reco~piling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2155I-C ILLEGAL STERLING NONREPORT PICTURE CHARACTER. PICTURE
REPLACED BY 90807.

Programmer Response: Probable user error. Correct PICTURE
of sterling nonr.eport item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2156I-W PICTURE DOES NOT CONTAIN A SIGN. SIGN DROPPED FROM VALUE
CLAUSE LITERAL.

Programmer Response: Probable user error. Include a sign
in PICTURE clause before recompiling, or remove sign from
literal and recompile if necessary.

Appendix I: Diagnostic Messages 284.1

.... ' ," ' (

, ". ~ .. ", .. " ~ , I'" .','.'

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2157I-W RESERVE CLAUSE TREATED AS COMMENTS FOR THIS FILE
ORGANIZATION.

~~gf~~r Re~QQ~se: Probable user error. If file
organization is standard sequential, correct system-name of
ASSIGN clause before recompiling. If file organization is
other than standard sequential, delete RESERVE clause and
recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2158I-D OCCURS DEPENDING ON VARIABLE IS IN VARIABLE PORTION OF A
RECORD. PROGRAM INTERRUPT WILL OCCUR.

~rogf~~f-Respo~~~: Probable user error. Ensure that
DEPENDING ON variable is not in variable portion of record
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2159I-C OBJECT OF REDEFINES CLAUSE NOT DEFINED. PREVIOUS 01 ASSUMED
TO BE OBJECT.

Programmer Response: Probable user error. Define object of
REDEFINES clause and ensure that it and its subordinate
fields immediately precede the subject before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2160I-E THE OBJECT OF THE RENAMES OR RENAMES THRU CLAUSE CANNOT
CONTAIN AN OCCURS OR OCCURS DEPENDING ON CLAUSE NOR MAY IT
BE SUBORDINATE TO AN ITEM THAT WAS ONE OF THESE CLAUSES.
STATEMENT DISCARDED.

Programmer Respon~: Probable user error. Supply a valid
RENAMES or RENAMES THRU object before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

I~2161I-C PICTURE INVALID. ADJACENT C DELIMITERS. ASSUMED PICTURE
L(6)9BDZ9BDZ9.

~fQg~~f-Re~QQ~~: Probable user error. correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2162I-C PICTURE INVALID. ADJACENT D DELIMITERS. ASSUMED PICTURE
L(6)9BDZ9BDZ9.

~fQgf~~f~~Q~~: Probable user error. Correct PICTURE
clause before recompiling.

Appendix I: Diagnostic Messages 285

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2163I-C PICTURE INVALID. MORE THAN 2 DELIMITERS. ASSUMED PICTURE
L(6)9BDZ9BDZ9.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2164I-C PICTURE INVALID. NO STERLING DELIMITERS. ASSUMED PICTURE
L(6)9BDZ9BDZ9.

Programmer Response: Probable user error. Correct PICT~RE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2165I-C PICTURE INVALID. ONLY 1 STERLING DELIMITER. ASSUME PICTURE
L(6)9BDZ9BDZ9.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards,and compiler output available.

ILA2166I-C PICTURE INVALID. ERROR IN SHILLING FIELD. ASSUMED SHILLING
PICTURE Z9B.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2167I-C PICTURE INVALID. NUMBER OF POUND DIGITS EXCEEDS 15.
ASSUMED PICTURE L(6)9BD.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2168I-C PICTURE INVALID. ERROR IN WHOLE PENCE FIELD. ASSUMED PENCE
PICTURE Z9.

286

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2169I-C PICTURE INVALID. ERROR IN DECIMAL PENCE FIELD. DECIMAL
FIELD TRUNCATED.

~rogrammer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2170I-C PICTURE INVALID. ERROR IN POUND FIELD. ASSUMED POUND
PICTURE L(6)9B.

~£Qgrammer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for progra~ng support: have source deck, control
cards, and compiler output available.

lLA2171I-C PICTURE INVALID. NUMBER OF POUND DIGITS PLUS NUMBER OF
PENCE DECIMAL EXCEEDS 15. DECIMAL PENCE DROPPED.

~~Qgrammer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for progra~ng support: have source deck, control
cards, and compiler output available.

lLA2172I-C PICTURE INVALID. SIZE OF REPORT FIELD EXCEEDS 127 BYTES.
ASSUMED PICTURE L(6)9BDZ9BDZ9.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output ·available.

lLA2173I-C PICTURE INVALID. CR OR DB NOT VALID WITH LEADING SIGN.
DECIMAL FIELD TRUNCATED.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available. .

lLA2174I-C PICTURE INVALID. SIGN IN DECIMAL PENCE FIELD NOT VALID WITH
LEADING SIGN. DECIMAL FIELD TRUNCATED.

Programmer Respon~~: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2175I-C TRACK-AREA EXCEEDS AND IS REDUCED TO 32,767 BYTES.

Proqrammer Response: Probable user error. Correct integer
specification in TRACK-AREA clause and recompile if
necessary.

Appendix I: Diagnostic Messages 287

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2176I-W MULTIPLE FILE TAPE CLAUSE ONLY APPLIES TO MAGNETIC TAPE
FILES. CLAUSE IGNORED.

Programmer Response: Probable user error. For files not
assigned to magnetic tape units, remove MULTIPLE FILE TAPE
clause and recompile if necessary. If assignment is to
magnetic tape units, check the system-name in the ASSIGN
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2177I-W ZERO SUPPRESSION CHARACTER WILL OVERRIDE BLANK WHEN ZERO
CLAUSE. CLAUSE IGNORED.

~fQgf~~f_Re~QQrr~: Probable user error. Remove BLANK
WHEN ZERO clause and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2178I-E RECORD KEY IS NOT WITHIN FILE RECORD.

~fQgfamm~f_Re~EQrr~: Probable user error. Ensure that the
data-name specified in the RECORD KEY clause is defined
within the file record before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2179I-E RECORD KEY IS NOT FIXED LENGTH.

Programmer Response: Probable user error. Define the
data-name specified in the RECORD KEY clause as a fixed
length item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2180I-E RECORD KEY FOR UNBLOCKED FILE INCLUDES FIRST BYTE OF RECORD.

Programmer Response: Probable user error. For an unblocked
file, correct the placement of the description of the
data-name specified in the RECORD CONTAINS clause so that it
excludes the first byte of the record before recompiling.
If blocked records are desired, add or correct the BLOCK
CONTAINS clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2181I-C TRACK-AREA VALID ONLY FOR ADD FUNCTION. IGNORED.

288

Programmer Response: Probable user error. Remove
TRACK-AREA clause an recompile if necessary. If adding
records to an indexed file in the random access mode, ensure
that the system-name in the ASSIGN clause and the ACCESS
MODE cJ?use are correct before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2182I-E FILE MAY BE OPENED OUTPUT ONLY. FILE IGNORED.

~r2gr~~~E_g~~EQ~~~: Probable user error. Ensure that if
an indexed file is created in a program, it is not reopened
as INPUT or 1-0 in the same program, before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2183I-W NO LEVEL 01 FOR FD OR SD.

PrograrrIDer Re~Q~~: Probable user error. Supply a valid
record description entry for the FD or SD before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2184I-E VALUE CLAUSE LITERAL DOES NOT CONFORM TO PICTURE. CLAUSE
IGNORED.

~rQgr~~~r_g~~EQ~~~: Probable user error. Ensure that the
VALUE and PICTURE clauses are compatible before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2185I-E DATA-NAME-3 EITHER PRECEDES DATA-NAME-2 OR IS DATA-NAME-2 IN
THE RENru~ES THRU CLAUSE. STATEMENT DISCARDED.

Prog~~~~r_g~~EQ~~~: Probable user error. Supply valid
objects of RENAMES THRU clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2186I-C PICTURE DUPLICATION FACTOR IS ZERO. ASSUMING ONE OCCURRENCE
OF PICTURE CHARACTER.

Progr~~~~r_Re~EQns~: Probable user error. If a PICTURE
duplication factor is required, supply a non-zero integer
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2187I-E OBJECT OF RENAMES CLAUSE OR RENAMES THRU CLAUSE IS NOT IN
SAME LOGICAL RECORD~ STATEMENT DISCARDED.

Progra~~r_g~~EQ~se: Probable user error. Supply valid
objects of the RENAMES clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 289

ILA2188I-C EXTERNAL FLOATING-POINT PICTURE ILLEGAL WHEN CURRENCY SIGN
IS E. PICTURE CHANGED TO 9.

Programmer ResEQ~g~: Probable user error. Supply valid
PICTURE clause or respecify CURRENCY SIGN clause before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2190I-W PICTURE CLAUSE IS SIGNED, VALUE CLAUSE UNSIGNED. ASSUMED
POSITIVE.

~E2gEamm~E-g~gEQ~se: Probable user error. If a negative
value is intended, respecify VALUE clause before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2191I-C THE SYNCHRONIZED CLAUSE SHOULD NOT BE SPECIFIED WHEN 88'S
ARE UNDER GROUP. STATEMENT ACCEPTED AS WRITTEN.

Programmer Response: Probable user error. Remove
SYNCHRONIZED clause from group with which condition-names
(88's) are associated before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2192I-E ONLY USAGE IS DISPLAY SHOULD BE SPECIFIED WHEN VALUE CLAUSE
IS ASSOCIATED WITH A GROUP ITEM. VALUE CLAUSE DROPPED.

Programmer ResE~g~: Probable user error. , Remove clauses
other than USAGE IS DISPLAY and VALUE from group level
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2193I-C LITERAL-l IS GREATER THAN OR = TO LITERAL-2 IN VALUE THRU
CLAUSE.

~rogEamm~E_g~~Qrrg~: Probable user error. Ensure that
literal-2 is greater than literal-l in the VALUE clause with
the THRU option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2194I-C CHARACTERS OPTION IN BLOCK CONTAINS CLAUSE NOT LEGAL IN
INDEXED FILE. CLAUSE IGNORED.

290

~rogrammer Response: Probable user error. Use the BLOCK
CONTAINS clause with the RECORDS option to specify blocked
records on an indexed file before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2196I-C NO VALUE CLAUSE GIVEN FOR CONDITION NAME. VALUE ASSUMED
ZERO OR SPACES DEPENDING ON PICTURE.

Programmer Rese2~~: Probable user error. Specify VALUE
clause for condition-name entry or correct level number if
condition-name is not desired before recompiling.

If ,the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2199I-C TRACK AREA TOO SMALL. CLAUSE IGNORED.

~rogf~er Response: Probable user error. Respecify
"integer" in the TRACK-AREA clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2200I-E TAPE RECORD MUST CONTAIN AT LEAST 18 CHARACTERS. FILE
IGNORED.

Programmer Response: Probable user error. Respecify
logical record length or block the logical records to ensure
that physical record size is at least 18 characters before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2201I-E NOMINAL KEY OR CORE-INDEX DATA-NAME MUST BE DEFINED IN
WORKING-STORAGE SECTION.

Programmer Response: Probable user error. Define data-name
in the Working-Storage Section before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2202I-E NOMINAL KEY OR CORE-INDEX DATA-NAME MUST BE DEFINED IN THE
FIXED PORTION OF A RECORD. CONTINUING.

~rogfammeE_~spon~: Probable user error. Define data-name
as a fixed-length item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2203I-E INVALID DEVICE TYPE FOR SD. DISK ASSUMED.

Programmer Response: Probable user error. Respecify device
class as UT or DA in the system-name of the ASSIGN clause
before recompiling.

If ,the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2204I-E RECORD KEY AND NOMINAL KEY MUST BE THE SAME
LENGTH. CONTINUING.

~fQqf~gf_~esEQ~~g: Probable user error. Correct
data-names so that lengths are the same before recompiling.

Appendix I: Diagnostic Messages 291

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA220SI-E ORGANIZATION ILLEGAL FOR ACCESS. FD IGNORED.

~EQgEa~~E_g~~EQrr~~: Probable user error. ACCESS MODE must
be sequential for a sequentially organized file. Remove
ACCESS MODE IS RANDOM clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA2206I-E REWRITE ILLEGAL FOR ORGANIZATION. STATEMENT IGNORED.

Programmer Re~on~: Probable user error. Either specify
organization as 'U', 'W', or 'I' in system-name of ASSIGN
clause or use the WRITE statement instead of REWRITE befbre
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2207I-C APPLY CORE-INDEX LEGAL ONLY FOR INDEXED ORGANIZATION.
CLAUSE IGNORED.

Programmer Respon~: Probable user error. Remove APPLY
CORE-INDEX clause or correct organization field of
system-name of ASSIGN clause and insure that ACCESS MODE IS
RANDOM before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2208I-E ***** KEY INVALID, UNDEFINED, OR NOT UNIQUE. CLAUSE
IGNORED.

~EQgEa~~E_g~~pon~~: Probable user error. correct
indicated key clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2209I-C CORE-INDEX DATA-NAME INVALID, UNDEFINED, OR NOT UNIQUE.
CLAUSE IGNORED.

Programmer Response: Probable user error. Correct
CORE-INDEX data-name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2210I-E ACTUAL KEY MUST BE GREATER THAN 8 AND LESS THAN 263 BYTES IN
LENGTH. USING 9.

292

~Eogra~gE_Re~PQrrse: Probable user error. Correct PICTURE
of ACTUAL KEY data-name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

)

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

ILA2211I-C CYLINDER OVERFLOW TOO LARGE. CLAUSE IGNORED.

Programmer Response: Probable user error. Ensure that the
cylinder overflow area does not exceed eight tracks on a
2311 or 18 tracks on a 2314 or 2321 before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2212I-W INVALID ALPHANUMERIC EDITED CHARACTER. ACCEPTED AS WRITTEN.

Programmer Response: Probable user error. Correct FICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2213I-W USER LABEL RECORD NOT DESCRIBED UNDER FD. USER LABEL
IGNORED.

Programmer Response: Probable user error. Describe the
data-name specified in the LABEL RECORD(S) clause under the
FD before recompiling.

If the problem recurs, do the follolrling before calling
IBM for programming support: have source deck, control
cards, and compiler output avaiiable.

ILA2214I-C STERLING NONREPORT PICTURE - NO SHILLING SEPARATOR. PICTURE
REPLACED BY 90807.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA2223I-E GROUP ITEM HAS PICTURE CLAUSE. PROCESSED AS ELEMENTARY
ITEM.

Programmer Res2~: Probable user error. Remove PICrURE
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA3001I-E ***** NOT DEFINED. ***.

Explanation: This message always appears in conjunction
with another message.

Programmer Response: Probable user error. Define the
indicated name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler outp~t available.

ILA3002I-E ***** NOT UNIQUE. ***.

Explanation: This message always appears in conjunction
with another message.

Appendix I: Diagnostic Messages 293

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

294

Programmer ReseQ~: Probable user error. Eliminate
duplication by qualification or by substituting another name
for the indicated item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

, ..

(

c

/

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

ILA3003I-E HIGHEST LEVEL QUALIFIER ••••• NOT DEFINED. • •••

Explanation: This message always appears in conjunction
with another message.

Programmer ResPQnse: Probable user error. Define the
indicated qualifier before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control"
cards, and compiler output available.

ILA3004I-W QUALIFYING NAME ••••• NOT UNIQUE. DISCARDED.

Explanation: This message always appears in conjunction
with another message.

Programmer Response: Probable user error. Eliminate
duplication by substituting another name for indicated item
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA3005I-E ••••• NOT A VALID QUALIFIER. • •••

Explanation: This message always appears in conjunction
with another message.

Proarammer Resp~: Probable user error. Correct
indicated item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA3006I-B ••••• NOT DEFINED AS PART OF •••••• • •••

Explanation: This message always appears in conjunction
with another message.

Programmer Response: Probable user error. Correct
qualification before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA3007I-W ••••• NOT UNIQUELY QUALIFIED By...... DISCARDED.

Explanation: This message always appears in conjunction
with another message.

Programmer Response: Probable user error. Correctly
qualify indicated name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA3008I-E ••••• NOT VALID AS IDENTIFIER-1 IN ••••• CORRESPONDING
STATEMENT. STATEMENT DISCARDED.

Programmer Resposne: Probable user error. Correct
identifier-1 in the indicated statement before recompiling.

Appendix I: Diagnostic Messages 294'.1

" .
• -'. # •

. ,. ,. (

• I •••

~ , . , ~. .

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA3009I-E ***** NOT VALID AS IDENTIFIER-2 IN ***** CORRESPONDING
STATEMENT.

Programmer Response: Probable user error. Correct
identifier-2 in the indicated statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA3010I-W SUPERFLUOUS 'TO' IGNORED IN ***** CORRESPONDING STATEMENT.

Programmer Response: Probable user error. Remove
superfluous TO from indicated statement and recompile if
necessary.

If·the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA3011I-W NO CORRESPONDENCE FOUND BETWEEN IDENTIFIER AND *****.

Programmer Response: Probable user error. Establish the
correct correspondence between the items subordinate to the
identifiers before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA3012I-D COMPILER ERROR -·LAST ITEM REFERENCED BY ACCESS WAS
ELEMENTARY ITEM.

Programmer Response: Compiler error.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output available.

ILA3013I-D DICT PTR LESS THAN QVAR ENTRY FOR ELEMENTARY ITEM.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output available.

ILA3014I-D NO MATCH FOUND IN QVAR FOR ***** ELEMENTARY ITEM.

Programmer Response: Compiler error.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output available.

ILA3016I-D IMPOSSIBLE *****. COMPILER ERROR.

~~Qgrammer ReseQ~se: Compiler error.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output available.

Appendix I: Diagnostic Messages 295

ILA3011I-D COMPILER ERROR. • •••• MINOR CODE ILLEGAL.

Programmer Response: Compiler error.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output available.

ILA3018I-E SPECIAL REGISTERS TIME-OF-DAY OR CURRENT-DATE MAY ONLY BE
USED IN THE MOVE STATEMENT.

Explanation: This message always appears in conjunction
with another message.

~~Qg~amme~_Respou~: Probable user error. Remove
references to TIME-OF-DAY and CURRENT-DATE from statements
other than MOVE before recompiling.

If the problem recurs, do the following before calling
IBM for progra~ng support: have source deck, control
cards, and compiler output available.

ILA3019I-E ILLEGAL LEVEL FOR ••••••

Programmer Response: Probable user error. Correct level of
indicated item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA3020I-E REPORT NAME ILLEGAL AS USED. DISCARDED.

Programmer Response: Probable user error. Report-name may
be specified only in the GENERATE, INITIATE, or TERMINATE
statements. Remove all other references before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA3021I-C ••• *. NOT UNIQUE IN ITS GROUP. DISCARDED.

~rog~g~_Respou~: Probable user error. Eliminate
duplication of indicated item before recompiling.

If the problem recurs, do the following before calling
IBM for progra~ng support: have source deck, control
cards, and compiler output available.

lLA3022I-E .*.*. NOT VALID AS IDENTIFIER-l IN SEARCH STATEMENT.
STATEMENT DISCARDED.

~fQ~~g~Re~PQU~: Probable user error. Correct
identifier-l before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ItA3023I-W ITEMS CONTAINING THE USAGE IS INDEX, REDEFINES, RENAMES, OR
OCCURS CLAUSES DO NOT QUALIFY AS CORRESPONDING IDENTIFIERS.

296

Programmer Response: Probable user error. Make any
necessary corrections before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA3024I-E NO KEYS WERE SPECIFIED FOR *****. STATEMENT DISCARDED.

Programmer Response: Probable user error. Define keys
specified as identifier-l in SEARCH statement before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA3025I-E AN ERROR WAS DETECTED PROCESSING THE KEY FOR *****. ***.

Programmer Respon§g: Probable user error. For a SEARCH ALL
statement, ensure that the KEY option appears in the OCCURS
clause of identifier-l; for a SEARCH statement, ensure that
the INDEXED BY option is specified. Then recompile the
program.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA3026I-E IDENTIFIER OMITTED IN ***** CORRESPONDING STATEMENT.

~~Q~~~~_Respo~se: Probable user error. Supply missing
identifier in indicated statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA3027I-W DATA-NAME UNDER LABEL RECORD IS NON-UNIQUE. LAST DATA
DESCRIPTION OF ***** ASSUMED.

~~ogr~~E_Re~EQ~se: Probable user error. Eliminate
duplicate use of data-name and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4001I-C OUTCOME OF PRECEDING CONDITION LEADS TO NON-EXISTENT 'NEXT
SENTENCE'. • STOP RUN' INSERTED.

Programmer Response: Probable user error. Add a sentence
after IF statement before recompiling, or if evaluation of
condition leads to a logical end of program, add a STOP RUN
statement and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4002I-E ***** STATEMENT INCOMPLETE. STATEMENT DISCARDED.

~E~rammer Re~~se: Probable user error. Complete
indicated statement before recompiling. .

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 297

ILA4003I-E EXPECTING NEW STATEMENT. FOUND •••••• DELETING TILL NEXT
VERB OR PROCEDURE-NAME.

Programmer ResEonse: Probable user error. Replace
indicated item with a valid statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4004I-E ••• *. . .••• IS ILLEGALLY USED IN ••••• STATEMENT.
DISCARDED.

Programmer ResEonse: Probable user error. Replace
invalidly used items before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards,. and compiler output available.

ILA400SI-E ••••• AND ••••• VIOLATE RULE ABOUT LENGTH OF TRANSFORM
OPERANDS. STATEMENT DISCARDED.

Programmer Re~~~: Probable user error. Correct length
of TRANSFORM statement operands before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4006I-C ••••• STATEMENT CONTAINS UNPAIRED LEFT PARENTHESIS.
OUTERMOST IGNORED.

Programmer ResEonse: Probable user error. Ensure that a
corresponding right parenthesis appears for each left
parenthesis before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4001I-C ••••• MISSING OR MISPLACED IN ••••• STATEMENT. ASSUMED IN
REQUIRED POSITION.

~rog~~ Re~E2~: Probable user error. Supply missing
or misplaced item in indicated statement and recompile if
necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4008I-W SUPERFLUOUS ••••• FOUND IN ••••• STATEMENT. IGNORED.

~fQg~~~Re~on~~: Probable user error. Remove
superfluous item from indicated statement before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4009I-E EXAMINE STATEMENT REQUIRES FIGURATIVE CONSTANT, SINGLE
NONNUMERIC LITERAL, OR l-DIGIT UNSIGNED NUMERIC INTEGRAL
LITERAL. FOUND •••••• STATEMENT DISCARDED.

298

~ro~~~_Re~Eon~~: Probable user error. Correct EXAMINF.
statement operand before recompiling.

If the problem recurs, do the following before calling
IBM for programndng support: have source deck, control
cards, and compiler output available.

lLA4010I-C ***** STATEMENT CONTAINS UNPAIRED RIGHT PARENTHESIS.
OUTERMOST IGNORED.

~EQgE~E_Respon~~: Probable user error. Ensure that a
corresponding left parenthesis appears for each right
parenthesis before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4011I-E ***** IS NOT AN ALLOWABLE CHARACTER FOR *****. STATEMENT
DISCARDED.

Programmer Response: Probable user error. Correct
indicated operand before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4012I-E COMPARISON BETWEEN TWO LITERALS IS ILLEGAL. TEST DISCARDED.

Programmer Response: Probable user error. Correct operands
of comparison before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4013I-C RELATIONAL MISSING IN IF STATEMENT. 'EQUAL' ASSUMED.

~rogr~~sponse: Probable user error. Supply desired
relational operator in condition before recompiling.

If the problem recurs, do the following before calling
IBM for programndng support: have source deck, control
cards, and compiler output available.

lLA4014I-E EXAMINE STATEMENT REQUIRES IDENTIFIER WHOSE USAGE IS
DISPLAY. FOUND ***** *****. STATEMENT DISCARDED.

Programmer Respo~: Probable user error. Supply valid
EXAMINE statement operand before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4015I-E 'GO TO' ILLEGAL UNLESS ALTERED. STATEMENT DISCARDED.

·Programmer Respon~: Probable user error. Correct the
logic of the program to ensure that an ALTER statement whose
operand is the name of the paragraph in which the GO TO
appears has been included before recompiling.

If the problem recurs, do the following before calling
IBM for programming support. Have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 299

ILA4016I-E OPERAND OF ***** APPEARS IN WRONG SEGMENT OF PROGRAM.
ACCEPTED AS WRITTEN.

Programmer Re~onse: Probable user error. Place operand of
indicated statement in the proper segment before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4017I-E ELSE UNMATCHED BY CONDITION IS DISCARDED.

Programmer Response: Probable user error. Correct logic of
nested IF condition before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4018I-E SET STATEMENT HAS AN ILLEGAL OPERAND BEFORE 'TO' OR
INCOMPATIBLE OPERANDS. OPERAND BEFORE 'TO' DISCARDED.

~~Qg~amm~~ Re~Qg~~: Probable user error. Correct SET
statement operand(s) before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4019I-E ***** ***** MAY NOT BE USED AS ARITHMETIC OPERAND IN *****
STATEMENT. ARBITRARILY SUBSTITUTING *****.

~~Q~~~~_Response: Probable user error. correct item in
indicated statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4020I-C SIGN BEFORE ***** IS DISCARDED.

~~Qg~a~~~_Re2QQrr~~: Probable user error. Remove or
replace invalid sign on indicated item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4021I-W MINUS SIGN FOLLOWED BY SPACE ACCEPTED AS REVERSING SIGN OF
FOLLOWING LITERAL.

~~Qqramm~~_Respogse: Probable user error. Delete space
after minus sign and recompile if necessary.

If the problem recurs. do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4022I-W EXIT MUST BE SINGLE-WORD PARAGRAPH PRECEDED BY A
PROCEDURE-NAME. STATEMENT DISCARDED.

300

Programmer Response: Probable user.error. Correct syntax
of EXIT statement before recompiling.

If the problem recurs, do the following before calling
IBM for programndng support: have source deck, control
cards, and compiler output available.

ILA4023I-E STORE-FIELD WHEN USED IN COMPUTATION MUST BE TO NUMERIC
DATA-NAME. FOUND ***** *****. STATEMENT DISCARDED.

Programmer Res2Q~~~: Probable user error. Respecify item
as numeric or replace name of receiving field before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4024I-E TWO OPERANDS ARE REQUIRED BEFORE 'GIVING'. STATEMENT
DISCARDED.

Programmer Response: Probable user error. Correct syntax
of arithmetic statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4025I-E POSITIONING AND ADVANCING ILLEGALLY USED FOR SAME FILE.
ADVANCING ASSUMED.

Programmer Response: Probable user error. Ensure that the
ADVANCING and POSITIONING options are not both specified for
the same file before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4026I-E ***** ***** IS ILLEGALLY USED IN ***** TEST. TEST
DISCARDED.

Programmer Response: Probable user error. Correct
operand(s) of indicated test before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4027I-C RIGHT TERM OF A CONDITION MAY NOT BE NEGATED. NEGATION IS
APPLIED TO THE RELATIONAL.

Programmer Response: Probable user error. Correct
placement of NOT operator in relation condition before
recompiling.

If the problem recurs, do the following before calling
IBM for programndng support: have. source deck, control
cards, and compiler output available.

ILA4028I-C TWO 'NOT'S' IN SUCCESSION ILLEGAL. ACCEPTED AS CANCELLING
EACH OTHER.

~rogrammer Response: Probable user error. Remove one of
NOT'operators in relation condition before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler' output available.

ILA4029I-E ***** ***** MAY NOT BE COMPARED WITH ***** *****. TEST
DISCARDED.

Programmer Response: Probable user error. Correct operands
of relation condition before recompiling.

Appendix I: Diagnostic Messages 301

ILA4030I-E

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

FOUND ***** AFTER CONDITION.
IMMEDIATELY FOLLOW CONDITION.
FOUND.

EXPECT 'OR', 'AND', OR VERB TO
DELETING TILL ONE OF THESE IS

~E2~~~E Rese2~~~: Probable user error. Ensure that
either OR, AND, or an imperative-statement follows condition
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4031I-E PROCEDURE-NAME NOT THAT OF A SINGLE GO PARAGRAPH MAY NOT BE
ALTERED. STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct operand
of ALTER statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4032I-C STATEMENT ACCEPTED WITH TRUE AND FALSE OUTCOMES IDENTICAL.
NEXT STATEMENT ASSUMED.

~E2qEammeE-B~~eQ~~~: Probable user error. Correct logic of
conditional statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4033I-C PROCEDURE-NAME WHICH IS THE END-OF-RANGE OF A PERFORM
STATEMENT MAY NOT BE ALTERED. STATEMENT DISCARDED.

~Eogra~~E Re~eQ~~~: Probable user error. Correct operand
of ALTER statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4034I-C GO DEPENDING ON MUST BE FOLLOWED BY INTEGRAL IDENTIFIER LESS
THAN 4 DIGITS IN LENGTH. FOUND *****. STATEMENT DISCARDED.

Programmer Response: Probable user error. Supply valid
operand of DEPENDING ON option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4035I-W NO MORE THAN 3 INDEX-NAMES OR IDENTIFIERS SHOULD BE VARIED
IN PERFORM STATEMENT. ACCEPTED AS WRITTEN.

302

~~E!~nati2~: This compiler can pormally handle a program
varying more than three data-names, but the practice is
invalid under standard COBOL rules and is not recommended.

~E2qEamm~E ResEQnse: Limit number of operands of VARYING
option and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4036I-W PERFORM RANGE IS FROM ••••• TO ••••• , WHICH PRECEDES IT.
ACCEPTED AS WRITTEN.

Explanation: This compiler can normally handle the perform
range indicated, but the practice is not recommended.

Programmer Response: Change operands of PERFORM statement
and recompile if necessary •

. If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4037I-E SYNTAX ~QUIRES PROCEDURE-NAME TO FOLLOW 'THRU'. FOUND
•••••• • •••• OPTION DISREGARDED.

Programmer Response: Probable user error. Correct syntax
of PERFORM statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4038I-E VARYING OPTION REQUIRES INDEX-NAME OR IDENTIFIER. FOUND
LITERAL. ARBITRARILY SUBSTITUTING ••••••

Programmer Response: Probable user error. Correct operand
of VARYING option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4039I-E ••••• • •••• IN VARYING OR TIMES OPTION IS NOT NUMERIC.
A~BITRARILY SUBSTITUTING ••••••

Programmer Response: Probable user error. Correct operand
of VARYING or TIMES option before recompiling.

If ,the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4040I-E ••••• FILE ••••• MAY NOT BE OPENED ••••• AND IS DISCARDED.

Proqrammer Response: Probable user error. Correct OPEN
statement for indicated file before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4041I-E SYNTAX REQUIRES 'INPUT', 'OUTPUT', OR '1-0' AFTER OPEN.
FOUND •••••• DELETING TILL ONE OF THESE IS FOUND.

Programmer Response: Probable user error. Correct syntax
of OPEN statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: D~agnostic Messages 303

Page of GC28-6398-2.-3, Revised 2/15/73 by TNL GN28-1023

lLA4042I-E SYNTAX REQUIRES FILE-NAME IN ••••• STATEMENT. FOUND ••••••
DELETING TILL LEGAL ELEMENT FOUND·.

Programmer Response: Probable user error. Supply valid
file-name in indicated statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4043I-W ADVANCING AND POSITIONING ILLEGALLY USED FOR SAME FILE.
ACCEPTED AS WRITTEN.

Programmer Resp~: Probable user error. Ensure that the
ADVANCING and POSlrIONING options are not both specified for
the same file before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4044I-C ••••• • •••• SHOULD NOT BE MOVED TO NUMERIC FIELD.
SUBSTITUTING ••••••

Programmer ResPQ~~: Probable user error. Either correct
usage of items moved to numeric field or correct usage of
field before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4045I-E CODE CLAUSE ILLEGAL FOR ON-LINE DEVICE. CLAUSE DELETED.·

Programmer Response: Probable user error. Remove CODE
clause or respecify device type before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4047I-E WRITE ILLEGAL FOR L~BEL RECORDS. STATEMENT DELETED.

Programmer Response: Probable user error. specify label
processing in the Declaratives Section of the program before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4048I-E USE VERB MAY NOT APPE~R EXCEPT IN DECLARATIVES SECTION.
STATEMENT DISCARDED.

Programmer Response: Probable user error. Remove USE
statement from non-declarative portion of Procedure Division
befor~ recompiling.

If the problem:recurs, do the ,following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4049I-W INAPPROPRIATE OPTIONAL COBOL WORDS PRECEDING .**** IGNORED.

304

Programmer Respou~g: Probable user error. Remove
inappropriate words preceding indicated entry before
recompiling.

\
I

I

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

I~4050I-E SYNTAX REQUIRES •••••• FOUND •••••• STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct syntax
of statement before recompiling.

Appendix I: Diagnostic Messages 304.1

(

If the problem recurs, do the following before calling
IBM for programndng support: have source deck, control
cards, and compiler output available.

ILA4052I-E ***** ***** MAY NOT BE TARGET FIELD FOR *****
***** STATEMENT AND IS DISCARDED.

***** IN

~~Q~~g~_Re~2Quse: Probable user error. Correct operands
of indicated statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4054I-E SYNTAX REQUIRES SORT-FILE NAME. FOUND *****. STATEMENT
DISCARDED.

~~g~~~_Re~~: Probable user error. Supply valid
sort-file-name before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4055I-C SORT SEQUENCE NOT SPECIFIED. ASCENDING ASSUMED.

Programmer Response: Probable user error. Specify
ASCENDING and/or DESCENDING option and recompile if
necessary.

If the problem recurs, do the following before calling
IBM for programndng support: have source deck, control
cards, and compiler output available.

ILA4056I-E SYNTAX REQUIRES *****. FOUND *****. DISCARDED.

Programmer Response: Probable user error. correct syntax
of statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4057I-E NUMBER OF SORT KEYS EXCEEDS MAXIMUM OR TOTAL KEY LENGTH
EXCEEDS 256 BYTES. ***** DISCARDED.

Programmer Response: Probable user error. Ensure that the
number of sort keys is no more than 12 and the total length
of all keys does not exceed 256 bytes before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4059I-E SORT-KEY MUST BE NON-SUBSCRIPTED OR NON-INDEXED FIXED-LENGTH
DATA-NAME DEFINED UNDER AN SO. FOUND *****. DISCARDED.

Programmer Response: Probable user error. Correct type
and/or position of sort key before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 305

ILA4060I-C ***** IS NOT A POSITIVE NUMERIC INTEGRAL LITERAL OF REQUIRED
LENGTH. ***** OPTION DISCARDED.

~r2gr~~gr ResE2rrse : Probable user error. Correct operand
of indicated option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4061I-W NEITHER NAMED NOR CHANGED SPECIFIED. NAMED ASSUMED.

Er2gr~gr_Re~E2rr~~: Probable user error. Specify an
EXHIBIT statement option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4062I-W 'NAMED CHANGED' ACCEPTED AS 'CHANGED NAMED' •

Er2gr~~gr_gg~Q2rrse: Probable user error. Correct EXHIBIT
statement option and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4063I-W PREVIOUS DEBUG PACKET REFERS TO SAME PROCEDURE-NAME. CARD
DELETED AND FOLLOWING STATEMENTS ATTACHED TO IMMEDIATELY
PRECEDING PACKET.

Er2grammgr_Re~QQrr~~: Probable user error. Ensure that only
one DEBUG packet refers to a given location in program
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4064I-E ***** IS NOT A POSITIVE NUMERIC INTEGRAL LITERAL OF REQUIRED
LENGTH. SUBSTITUTING *****.

Programmer ResEonse: Probable user error. Correct
indicated operand before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4065I-W NUMERIC LITERAL IN EXAMINE STATEMENT SHOULD BE UNSIGNED.
SIGN IGNORED.

Erogramm~E_Re~QQ~: Probable user error. Remove sign from
numeric literal and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4066I-E SYNTAX REQUIRES 01 LEVEL SD DATA-NAME IN RELEASE STATEMENT.

306

FOUND *****. STATEMENT DISCARDED.

Programmer ResEonse: Probable user error. Correct RELEASE
statement operand before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4067I-W ALL CHARACTER SHOULD NOT BE USED AS LITERAL IN EXAMINE
STATEMENT. STATEMENT ACCEPTED AS WRITTEN.

~fQ~~~r Re~2Qll~: Probable user error. Supply valid
literal in EXAMINE statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4068I-D COMPILER ERROR. PHASE 4 TRYING TO GET DATA ATTRIBUTES FOR
*****.
Programmer Response: The compiler has reached a point in
its processing where it is unable to continue.

Do the following before calling IBM for programming
support: have source deck, control cards,· and compiler
output available.

lLA4069I-C SYNTAX REQUIRES DEVICE-NAME. FOUND ***** IN *****
STATEMENT. SYSTEM UNIT ASSUMED.

~fQqf~~f_g~~2Qll~~: Probable user error. Specify a valid
device-name or mnemonic-name associated with a device-name
in the Special-Names paragraph before recompil~ng.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4070I-E ***** STATEMENT REQUIRES IDENTIFIER WHOSE USAGE IS DISPLAY.
FOUND SPECIAL REGISTER. STATEMENT DISCARDED.

~rogremm~f_Re~2Qll~: Probable user error. Supply an
identifier in indicated statement whose usage is DISPLAY
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4071I-E ***** EXCEEDS LEGAL LENGTH. DISCARDED.

~rogf~~f~~2Qll~: Probable user error. Correct length
of indicated item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4072I-W EXIT FROM ***** PROCEDURE ASSUMED BEFORE *****.

Programmer Response: Probable user error. Ensure that END
DECLARATlVES, a section-name within the declaratives
section, or the end of the range of the PERFORM exists
following routine before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 307

ILA4013I-W ••••• SHOULD NOT APPEAR IN DECLARATIVE SECTION. ACCEPTED AS
WRITTEN.

Explanation: The statement will be compiled, but its use is
illegal under standard COBOL rules and is not recommended •.

~~Qgramm~~Respo~~: Probable user error. Remove indicated
statement from Declaratives Section before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4014I-C STATEMENT CONTAINS FLOATING-POINT DATA ITEMS. REMAINDER
IGNORED.

Programmer Response: Probable user error. If the REMAINDER
option of the DIVIDE statement is required, ensure that none
of the operands are floating-point items before recompilin9.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4015I-C 'NEXT SENTENCE' ILLEGAL AND DISCARDED. BOTH •• *.* AND NOT
••••• WILL CAUSE EXECUTION OF NEXT VERB.

Programmer Respon~~: Probable user error. Remove invalid
NEXT SENTENCE specification from AT END, ON SIZE ERROR, or
END-OF-PAGE options before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4016I-E *.* •• REQUIRES ••••• LEVELS OF SUBSCRIPTING OR INDEXING.
SUBSTITUTING FIRST OCCURRENCE OF ••••••

Proqrammer Response: Probable user error. Provide required
level of subscripting or indexing for indicated item before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, . control
cards, and compiler output available.

lLA4011I-E ••••• MAY NOT BE USED AS A SUBSCRIPT SINCE IT REQUIRES
SUBSCRIPTING ITSELF. SUBSTITUTING FIRST OCCURRENCE OF
••••••
Programmer Response: Probable user error. Provide a
subscript that itself requires no subscripting before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4018I-E SUBSCRIPT MUST BE INTEGRAL DATA-NAME OR LITERAL. FOUND
NON-INTEGER .**.*. SUBSTITUTING FIRST OCCURRENCE OF .* •• *.

308

~rogr~~~ Re~Q~: Probable user error. Ensure that
subscript is either a data-name representing an integral
value or a literal before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4079I-E ***** FOUND AMONG .SUBSCRIPTS. SUBSTITUTING FIRST OCCURRENCE
OF *****.

Proqrammer Response: Probable user error. Substitute valid
subscript for indicated item before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4080I-W DEBUG CARD MAY NOT REFER TO A PROCEDURE NAME WHICH ITSELF IS
IN A DEBUG PACKET. CARD DELETED AND FOLLOWING STATEMENTS
ATTACHED TO IMMEDIATELY PRECEDING PACKET.

R£Qg~~er Re~Qonse: Probable user error. Ensure that the
location specified on one DEBUG card is neither used on any
other DEBUG card, nor is a location within any other DEBUG
packet before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4081I-C ***** EXCEEDS ***** CHARACTERS. UP TO 255 ACCEPTED.

Rrogra~g~_Re~~: Probable user error. correct length
of the item represented by the ACCEPT statement "identifier"
before recompiling.·

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4082I-E ***** IS NOT DEFINED AS SUBSCRIPTED OR INDEXED. SUBSCRIPTS
DISCARDED.

Programmer Response: Probable user error. Specify required
options of OCCURS clause for item before recompiling.

If the problem recurs, do the following before calling
IBM for programndng support: have source deck, control
cards, and compiler output available.

lLA4083I-E OCCURS DEPENDING ON VARIABLE MUST BE INTEGRAL
NON-SUBSCRIPTED DATA-NAME. FOUND *****. ARBITRARILY
SUBSTITUTING *****.

Programmer Response: Probable user error. Correct operand
of DEPENDING ON option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4084I-C ILLOGICAL USE OF PARENTHESES ACCEPTED WITH DOUBTS AS TO
MEANING.

Programmer Re~Q~~: Probable user error. Check the logic
of the use of parentheses before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 309

lLA4085I-E RECORD DESCRIPTION FOR FILE ***** MISSING OR ILLEGAL.
STATEMENT DISCARDED.

Programmer Response: Probable user error. Ensure that any
errors detected by the compiler during the Data Division
scan on the indicated file's record description are
corrected before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4086I-C ***** CONDITION USED WHERE ONLY IMPERATIVE STATEMENTS ARE
LEGAL MAY CAUSE ERRORS IN PROCESSING.

~~g~rnm~r Respon~: Probable user error. Ensure that
imperative-statements appear where required before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4087I-E 'END DECLARATlVES' MISSING OR MISPLACED. PROGRAM CANNOT BE
EXECUTED.

Programmer Response: Probable user error. Ensure that the
end of the Declaratives Section has been indicated by an END
DECLARATIVES statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4088I-D COMPILER ERROR. I-C TEXT COUNT FIELD O. SKIPPING TO PHASE
5.

Programmer Response: Compiler error.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output available.

ILA4089I-W ***** ***** SHOULD NOT BE TARGET FIELD FOR ***** *****
IN ***** STATEMENT. STATEMENT ACCEPTED AS WRITTEN.

Programmer Response: Probable user error. Correct operand
being used as receiving field in indicated statement before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4090I-E SORT KEY MUST BE IN FIXED POSITION NOT MORE THAN 4092 BYTES
FROM START OF RECORD. ***** DISCARDED.

~fQ9E~~f_Re~Qgse: Probable user ~rror. Correct position
of sort key within record before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4091I-E SYNTAX REQUIRES OPERAND. FOUND *****. TEST DISCARDED.

310

. Programmer Resposne: Probable user error. Supply a valid
operand for statement before recompiling.

(

~

Page of GC28-6398-2,-3, Revised. 2/15/73 by TNL GN28-1023

If the problem recurs, do the following before ca~ling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4092I-W EXTERNAL DECIMAL NAME USED IN TRANSFORM STAT~MENT.
STATEMENT ACCEPTED AS WRITTEN.

Programmer ResQ~: Probable user error. Ensure that
TRANSFORM statement operands are either alphabetic,
alphanumeric, or numeric edited items (identifier~3·only),
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4093I-w EXPECTING SECTION-NAME. FOUND PROCEDURE-NAME. REFERENCE
ACCEPTED. AS WRITTEN.

Programmer Response: Probable user error. Specify
section-name and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4094I-W ***** IS IN A RECOKD OF AN APPLY WRITE-O~LY FILE, AND
REFERRING TO IT MAY CAUSE ERRORS IF FILE IS OPENED AS OUTPU~
WHEN ***** STATEMENT IS EXECUTED.

Programmer ResQQ~: Probable user error. Referring to
subfields of records of a file for which APPLY WRITE~ONLY
has been specified is not recommended. Make any necessary
changes before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4095I-E WRITE FROM IDENTIFIER REQUIRED FOR *****, TO wHICH
WRITE-ONLY IS APPLIED. STATEMENT DISCARDED.

Programmer Response: Probable user error. Specify WRITE
with the FROM option for files for which APPLY WRITE-ONLY
has been specified before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4096I-W ***** STATEMENT wILL NEVER BE EXECUTED.

Explanation: The logic of the COBOL source program prevents
the computer from executing the statement noted. The
compiler, however, accepts the statement as written.

Proqrammer Response: Probable user error. Correct
placement of statement and recompile _Fnecessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4097I-C UNIT (REEL) OPTION ILLEGAL FOR ••• **. DISCARDED.

Appendix I: Diagnostic Messages 311

312

Programmer Response: Probable user error. Remove or
replace invalid option in indicated statement before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

(

(

)

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

ILA4098I-E 'ALTER' STATEMENT VIOLATES RULE ABOUT REFERENCES TO A GO TO
IN A DIFFERENT INDEPENDENT SE~MENT. IGNORED.

ProgrammerResQ~: Probable user error. Ensure that the
operand of the ALTER statement refers to a paragraph-name
within an independent segment of the same priority as the
segment containing the ALTER statement, or that the ALrER
statement and the GO TO statement are in the root segment
before recompiling.

If the problem recurs, do the following before Galling
IBM for programming support: have source deck, control
cards and compiler output available.

ILA~100I-W IDE~TIFIER FOLLOWING INTO (FROM) IN READ (WRITE) STATEMENT
SHOULD NOT BE DEFINED UNDER SAME FD AS RECORD-NA£'I..E.
ACCEPTED AS WRITTEN.

Programmer ResQonse: Probable user error. Ensure that the
operand of the INTO option is an identifier that is the name
of a Working-Storage or L~ .lkage Section item, or an output
record of a previously opened file, or that the operand of
the FROM option is defined in the Working-storage or Linkage
Section, or in another FD before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4101I-E SET STATEMENT REQUIRES OPER&~D AFTER 'UP' OR 'DOWN' TO BE
NUMERIC INTEGRAL DATA-NAME OR POSITIVE INTEGRAL NUMERIC
LITERAL. FOUND *****. STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct operand
of UP or DOWN option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4102I-E SET STATEMENT REQUIRES OPERAND AFTER 'TO' TO BE INDEX-nAME,
INDEX DATA ITEM, NUMERIC INTEGRAL DATA-NAME, OR INTEGRAL
NUMERIC LITERAL GREATER THAN ZERO. FOUND *****. STATEMENT
DISCARDED.

Programmer ResQQ~~: Probable user error. Correct operand
of TO option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4103I-C 'ALL' MUST BE FOLLOWED BY NONNUMERIC LIT. FOUND *****.

ILA4104I-E

DISCARDING 'ALL'.

Proqrammer Response: Probable user error. Correct
formation of figurative constant before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

SEARCH OR SEARCH ALL STATEMENT HAS EITHER SUBSCRIPTED OR
INDEXED IDENTIFIER-lOR ILLEGAL OPERAND. SCANNING TILL 'AT
END' OR 'WHEN'. DELETING TILL ONE OF THESE IS FOUND.

Programmer Resgonse: Probable user error. Correct operand
of SEARCH or SEARCH ALL statement before recompiling.

Appendix I: Diagnostic Messages 312.1

(

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4105I-E DATA-NAME CANNOT BE BOTH INDEXED AND SUBSCRIPTED Ii1 *****
STATEMENT. SUBSCRIPTS DISCARDED.

Programmer Respon~g: Probable user error. Correct
subscripting or indexing of data-name in indicated statement
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4106I-E DATA-NAME MUST BE INDEXED BY INDEX NAME OR INDEX NAME PLUS
OR MINUS AN INTEGRAL NUMERIC LITERAL. SUBSTITUTING FIRST
OCCURRENCE OF *****.

Programmer Respon~g: Probable user error. Correct manner
in which data-name is indexed before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4108I-E CALLED PROGRAM MAY NOT BE SEGMENTED. ENTRY STATEMENT
IGNORED.

~~Qg~~e~_Re~EQgse: Probable user error. Ensure that all
restrictions on subprogram linkage are observed before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4109I-E KEY IN SEARCH-ALL FLOATING POINT OR STERLING. STATEMENT
CHANGED TO SEARCH STATEMENT.

Programmer Response: Probable user error. Ensure that keys
are either DISPLAY, COMPUTATIONAL, or COMPUTATIONAL-3 items
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4110I-E CONDITION IN SEARCH ALL STATEMENT TESTS KEY WITHOUT TESTING
ALL PRECEDING KEYS. STATEMENT DISCARDED.

~~Qgfamm~~ Re~2Qrrse: Probable user error. Ensure that the
condition specified in the SEARCH ALL statement tests all
keys before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4111I-E INVALID CONDITION OR INVALID FORMULA IN CONDITION IN SEARCH
ALL STATEMENT. STATEMENT DISCARDED.

Proqrammer Response: Probable user error. Correct
condition in SEARCH ALL statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 313

ILA4112I-W SET UP OR DOWN SHOULD NOT INCREMENT INDEX-NAME BY INDEX DATA
ITEM. ACCEPTED AS WRITTEN.

~~Qgrammg~_Re~e£~~: Probable user error. Correct SET
statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4113I-C BEFORE OR AFTER ADVANCING OR AFTER POSITIONING REQUIRED FOR
*****. ASSUMING *****.

~~Qg~~mmg~ Rese£~~: Probable user error. Ensure that if
the ADVANCING or POSITIONING option is specified for a
record in a file, every WRITE statement for records in the
same file also contains the same option before recompiling.

If the problem recurs, do the following before" calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4114I-C INVALID ADVANCING/POSITIONING OPTION. 1 LINE ASSUMED.

~~Qg~~~_Rese£~~: Probable user error. supply valid
operand for ADVANCING or POSITIONING option before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4115I-C 'AFTER POSITIONING' EXPECTED BUT NOT FOUND. ASSUMED
PRESENT.

programmer Response: Probable user error. Supply AFTER
POSITIONING option and recompile if necessary.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4116I-E ILLEGAL TO ***** FILE *****. STATEMENT DELETED.

Programmer Respon~: Probable user error. Remove invalid
statement for indicated file before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4117I-C ***** CLAUSE MISSING. ***** NEXT SENTENCE USED.

~~Q~ammg~_Re~e£~se: Probable user error. Supply missing
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4118I-C NO REWIND IS AN INVALID OPTION FOR FILE *****. IGNORED.

314

Programmer Response: Probable user error. Remove invalid
option for indicated file before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA4119I-C INVALID FILE TYPE FOR START VERB. STATEMENT DISCARDED.

Programmer Response: Probable user error. Ensure that a
START statement is specified only for an indexed file before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA4120I-C REWRITE LEGAL ONLY FOR '0' AND 'W' DIRECT FILE. ACCEPTED AS
'WRITE' •

Rrog~~er~spo~~g: Probable user error. If the REWRITE
statement is desired, correct system-name in the ASSIGN
clause before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA5001I-D ERROR OCCURRED WHILE TRYING TO ASSIGN A DOUBLE "REGISTER.
COMPILATION ABANDONED.

Rrog~~~ Re~Q~~: compiler error. The compiler has
reached a point in its processing where it is unable to
continue.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output available.

ILA5002I-D ERROR OCCURRED WHILE PROCESSING A SUBSCRIPTED OR INDEXED
DATA-NAME. COMPILATION ABANDONED.

Proqrammer Response: Compiler error. The compiler has
reached a point in its processing where it is unable to
continue.

Do the following before calling IBM. for programming
support: have source deck, control cards, and compiler
output with LISTX and SYM available.

ILA5003I-C DIVISOR IS ZERO. RESULT WILL BE ALL 9'S.

R~Q~~mm~~ Re~P2~~~: Probable user error. Correct divisor
to prevent division by zero before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA5004I-W ALPHANUMERIC SENDING FIELD TOO BIG. 18 LOW ORDER BYTES
USED.

R~~amme~ ResQQ~se: Probable user error. Correct length
of alphanumeric sending field or receiving field before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 315

lLA5005I-D ERROR OCCURRED WHILE PROCESSING A MOVE. COMPILATION
ABANDONED.

~rogramm~LRe~Q~: Compiler error. The compiler has
reached a point in its processing where it is unable to
continue.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output with LISTX and SYM available.

ILA5006I-D UNEXPECTED INPUT TO THE MOVE OR STORE PROCESSOR.
COMPILATION ABANDONED.

~fQ9~~f~sEo~~: Compiler error. The compiler has
reached a point in its processing where it is unable to
continue.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output with LISTX and SYM available.

ILA5007I-D UNEXPECTED INPUT TO THE ARITHMETIC CODE GENERATOR.
COMPILATION ABANDONED.

~fQ9f~~f_Re~pon~~: Compiler error. The compiler has
reached a point in its processing where it is unable to
continue processing.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output with LISTX and SYM available.

ILA5008I-D UNEXPECTED INPUT TO THE FLOATING-POINT ARITHMETIC ROUTINE
'FBCVBH'. COMPILATION ABANDONED.

~fQ9£~mm~f-E~spo~se: Compiler error. The compiler has
reached a point in its processing where it is unable to
continue.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output with LISTX and SYM available.

ILA5009I-D LOST SUBSCRIPT OR INDEX ID IN TABLE 'XSSNT'. COMPILATION
ABANDONED.

~~Qgf~mm~f_~~EQ~~~: Compiler error. The compiler has
reached a point in its processing where it is unable to
continue.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output with LISTX and SYM available..

ILA5010I-C HIGH ORDER TRUNCATION OF THE CONSTANT DID OCCUR.

316

Programmer Response: Probable user error. If high-order
truncation is not desirable, make necessary corrections
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA5011I-W HIGH ORDER TRUNCATION MIGHT OCCUR.

Programmer Respon2~: Probable user error. If high-order
truncation is not desirable, make necessary corrections
before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA5012I-D LOST INTERMEDIATE RESULT ATTRIBUTES IN 'XINTR' TABLE.
COMPILATION ABANDONED.

~fQgramm~f_Re~E2n~~: Compiler error. The compiler has
reached a point in its processing where it is unable to
continue.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output with LISTX and SYM available.

ILA5013I-E ILLEGAL COMPARISON OF TWO LITERALS. STATEMENT DISCARDED.

Programmer Respon~: Probable user error. Correct operands
of the comparision before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA5014I-E KEY IN SEARCH ALL AT INVALID OFFSET. STATEMENT DISCARQED.

gEQ~~~f Respon~: Probable user error. Correct
displacement of key in SEARCH ALL statement before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available. .

ILAS015I-E INVALID USE OF SPECIAL REGISTER. STATEMENT DISCARDED.

~ro9:f~f Re~eQn~: Probable user error. Check
data-names, procedure-names, etc., to ensure .that a special
register has not been used in an invalid capacity before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA5016I-E MORE THAN 255 SUBSCRIPT ADDRESS CELLS USED. PROGRAM CANNOT
EXECUTE CORRECTLY.

Programmer ResE2~~: Compiler error. The compiler has
reached a point in its processing where it has encountered
an unrecoverable error.

Do the following before calling IBM for programming
support: have source deck, control cards, and.compiler
output available.

ILA5017I-C INVALID ADVANCING OPTION FOR A DTFCD FILE. USING STACKER 1.

Programmer Rese2~~~: Probable user error. Correct operand
of ADVANCING option before recompiling.

Appendix I: Diagnostic Messages 317

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA5018I-C INTEGER IN POSITIONING OPTION NOT BETWEEN 0 AND 3.
1 ASSUMED.

Programmer Response: Probable user error. correct operand
of POSITIONING option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA5019I-C PUNCH STACKER SELECT SPECIFIED FOR A DTFPR FILE. USING
ISKIP TO CHANNEL 11.

~~2g~amme~ Re~p2~~: Probable user error. Ensure that
operand of ADVANCING or POSITIONING option is compatible
with device type before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA5020I-C IDENTIFIER IN EXHIBIT EXCEEDS MAXIMUM. TRUNCATED TO 120
CHARACTERS.

~£2g~amme~ ReeEQg~: Probable user error. Correct operand
length in EXHIBIT statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA5021I-C INTEGER IN ADVANCING OR POSITIONING OPTION NOT POSITIVg.
POSITIVE ASSUMED.

Programmer Response: Probable user error. Correct operand
of ADVANCING or POSITIONING option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

lLA5022I-C MORE THAN 2-DIGIT INTEGER IN ADVANCING OPTION USING lNTEGER
1.

~f2~~~~~~PQg~~: Probable user error. Supply valid
integer in ADVANCING option before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA5023I-E EOP INVALID FOR DOUBLE-BUFFERED FILE. IGNORED.

318

~~2grammg~ Re~PQ~~: Probable user error. Ensure that the
END-OF-PAGE option is not used for files for which a double
buffer has been requested (RESERVE clause) before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA5024I-E END-OF-PAGE OPTION REQUESTED FOR NON-DTFPR FILE. IGNORED.

Programmer Response: Probable user error. Ensure that
END-OF-PAGE option is compatible with device type before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA5025I-C ADVANCING OR POSITIONING OPTION ILLEGAL FOR NON-SEQUENTIAL
FILE. IGNORED.

Prograremer Response: Probable user error. Ensure that the
ADVANCING or POSITIONING options are used only for standard
sequential files before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

ILA5026I-C EXHIBIT OPERAND GREATER THAN 256 BYTES. LENGTH OF 256
ASSUMED.

Rrog~ammer Respo~~~: Probable user error. Correct operand
length in EXHIBIT statement before recompiling.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

The following messages may be interspersed in phase 6 output.

ILA6003I-D ERROR FOUND PROCESSING F4 TEXT. UNKNOWN DATA A-TEXT CODE.

Rrogf~ Re2p2~2~: Compiler error. The compiler has
reached a point in its processing where it is unable to
continue.

Do the following before calling IBM for prograrrming
support: have source deck, control cards, and compiler
output with LISTX and DUMP available.

ILA6005I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Programmer Response: Compiler error. The compiler has
reached a point in its processing where it is unable to
continue.

Do the following before calling IBM for programming
support: have source deck, control cards, and compiler
output with LISTX and DUMP available.

ILA6006I-E MAP SUPPRESS SPECIFIED AND E-LEVEL DIAGNOSTIC HAS OCCURRED.
LISTX, LINK, AND DECK WILL BE SUPPRESSED.

Programmer Response: Probable user error. To obtain LISTX,
LINK, and DECK options, all E-Ievel diagnostic messages
must be eliminated from program during next compilation.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output available.

Appendix I: Diagnostic Messages 319

ILA6007I-D TABLE HAS EXCEEDED MAXIMUM SIZE. OBJECT MODULE AND DECK
WILL BE INCOMPLETE.

320

Rrogfa~ Re§EQn~~: Table space has been exhausted and
complete compiler output is unavailable. Rerun job in a
larger partition.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, and compiler output with LIS~X and DUMP available.

The following messages are issued during compilation on SYSLOG. They
are also printed on SYSLST with the prefix ILA.

C1001

C1011

C1021

C1031

PARTITION AREA IS LESS THAN 54K.

~~E!~nat~~: At least 54K is required to compile using the
Full American National Standard COBOL compiler.

system Action: The compilation is terminated.

Programmer Response: Not applicable.

Operator Response: Probable user error. Use the ALLOC
command to allocate at least 54K to the partition. If the
problem recurs, do the following to complete your problem
determination action before calling IBM for programming
support:

• Execute the MAP command and save the output.

• Have the source deck, control cards, output listing, and
console sheet available.

DEVICE NOT ASSIGNED - SYSnnn.

~~Ela~~~Qn: nnn is either 001, 002, 003, or 004. The
specified logical unit is unassigned and must be assigned.

System Action: The compilation is terminated.

Programmer Response: Not applicable.

Operator Response: Probable user error. Use the ASSGN
command to assign a physical unit (magnetic tape or disk) to
the file indicated. If the problem recurs, do the following
before calling IBM for programming support:

• Execute the LISTIO command and save the output.

• Have the source deck, control cards, output listing, and
console sheet available.

UNSUPPORTED DEVICE TYPE - SYSnnn.

~~E1~n~~~Qn: nnn is either 001, 002, 003, or 004. Tl.e
specified file must be a disk file if SYS001, or a tape or
disk file if SYS002 through SYS004.

2yst~ill-~£~ion: The compilation is terminated.

Q~f~~f_g~~Qn~~: Probable user error. Use the ASSGN
command to assign the appropriate physical unit to the file
indicated -- SYSOOl should be assigned to a disk unit;
SYS002 through SYS004 should be assigned to a magnetic tape
or disk unit. If the problem recurs, do the following
before calling IBM for programming support:

• Execute the LISTIO command and save the output.

• Have the source deck, control cards, output listing, and
console sheet available.

END OF FILE ON SYSIPT.

Explanation: End-of-file was encountered in the
initialization phase -- no source language was found.

Appendix I: Diagnostic Messages 321

C104I

322

system Action: The compilation is terminated.

E~ogr~e~_Bg~pon~~: Not applicable or the same as the
operator action.

Qeg~~tQ~_R~~eQrr~~: Probable user error. Ensure that a /*
card does not precede the source deck, or add the source
deck to the job stream. If the problem recurs, do the
following before calling IBM for programming support:

• Execute the LISTIO command and save the output.

• Have the source deck, control cards, output listing, and
console sheet available.

WARNING. SYSOOl FILE IS TAPE.

Explanation: In small, simple programs that do not require
dictionary spill, it is sometimes possible to compile with
the spill file (SYS001) assigned to tape. However, if any
spill does occur, an input/output error may occur.

E~Q~~~~g~_~£tiQ~: Not applicable or the same as the
operator action.

QperatQ~_Rg~eQrr~~: Probable user error. Use the ASSGN
command to assign SYSOOl to a disk unit if compilation
cancels with an input/output error. If the problem recurs,
do the following before calling IBM for programming support:

• Execute the LISTIO command and save the output.

• Have the source deck, control cards, output listing, and
console sheet available.

The following messages are normally issued on SYSLOG.

C110A STOP literal

~~2!~n~i~2n: The programmer has issued a STOP literal
statement in the American National Standard COBOL source
program.

2Y~i~m-~£ii2~: Awaits operator response.

~~Qg~~mm~~_B~~2Q~~~: Not applicable.

Q2~~~tQ~_B~~QQ~~~: Operator should respond with
end-of-block, or with any character in order to proceed with
the program.

C111A AWAITING REPLY

~xplanation: This message is issued in connection with the
American National Standard COBOL ACCEPT statement.

§Y~~~m_~£~~~: Awaits operator response.

~~2g~~mm~~_B~~22~~~: Not applicable.

Q2~~~~Q~_B~~Q~~~: The operator should reply as specified
by the programmer.

The following messages are issued on SYSLOG and SYSLST prior to
dancellation of the job. If the DUMP option is specified, a partial
dump is taken from .the problem program origin to the highest core
location of the last phase loaded. When this occurs, the eight bytes
immediately preceding the DTF are destroyed. The messages have the
form:

CmmmI SYSnnn filename DTFaddress text

where:

nnn is equal to 001 through 255
filename is seven or less characters and is generated from the
---iile=name specified in the SELECT sentence.
address is the hexadecimal address of the file's DTF table
mmm and tg~i correspond as follows:

mmm text
112 DATA CHECK
113 WRONG LENGTH RECORD
114 PRIME DATA AREA FULL
115 CYLINDER INDEX TOO SMALL
116 MASTER INDEX TOO SMALL
117 OVERFLOW AREA FULL
118 DATA CHECK IN COUNT
119 DATA CHECK IN KEY OR DATA
120 NO ROOM FOUND
121 DASD ERROR
122 DASD ERROR WHILE ATTEMPTING

TO WRITE RECORD ZERO
123 FILE CANNOT BE OPENED AFTER

CLOSE WITH LOCK
124 CYLINDER AND MASTER INDEX

TOO SMALL

~~2lanati2n: Condition indicated occurred on SYSnnn.

Appendix I: Diagnostic Messages 323

~togra~t-B~~£U~: Rerun the job or add a user
declarative section to the Procedure Division of the source
program to handle errors within the program.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, compiler output, and console sheet available.

125 NO EXTENTS

~~E!~!!.~t!.£!!.: During CLOSE UNIT processing, nO'extent is
found for the next volume.

~togr~mmgt_B~~E£!!.e~: Rerun job with proper EXTENT (XTENT)
statements.

If the problem recurs, do the following before calling
IBM for programming support: have source deck, control
cards, compiler output, and console sheet available.

QE~~Re~E£!!.~~: Not applicable.

~he following message is issued on SYSLOG:

Ci2(jD IS IT EOF?

324

~~ElanatiQ!!.: A tapemark was just read on an unlabeled tape
file described at compila.tion time as having more than one
reel.

~togr~~~Re~EQ!!'§~: Not applicable.

QE~at~B~EQ!!'§~: The operator must respond either with N
if it is end of volume, or with Y if it is end of file.

xxx •••

ExElanation: rhis message is written on the console and is
recognizable because it is not preceded by a message code
and action indicator. It is issued by an object program
originally coded in COBOL. The message text is supplied by
the object program and may indicate alternative action to be
taken.

System Action: rhe job continues.

operator ResE£!!'§~: Operator response, if a'ny is needed, is
determined by the message text.

(

\

)

Page ~f GC28-6398-2,-3, Revised 2/15/73 by rNL ;N28-1023

(where more than one page reference is given, the najor reference appears first.)

• 22,182,40
/. 15
/i. 15

abnormal termipation 56-59
ACCEPT statement 80

subroutines 220
accessing a direct file 109-127

randomly 111
sequentially 110

accessing an indexed file 127-131
randomly 130-131
sequentially 130

accessing a sequential file 109
ACTION statement 40-41
actual key 111-127

actual track addressing
111-115,125-127

sample program 116-119
relative track addressing 111-115

sample program 121-124
AcrcrAL KEY clause 111-112
actual track addressifig 111-115,125-127

sample program 116-119
ADD statenent (Librarian) 48,49,50
adding records to an indexed file
128-129,130-131

adding source statements to a book 48
addressing direct files

actual track addressing
111-115,125-127

sam~le progran 116-119
relative track addressing 111-115

sample program 121-124
ALTER statement

in a called program 81,88
AP~ST option 37
application programs 12
APPLY EXTENDED-SEARCB clause 110
APPLY wRI'rE-ONLY clause 163

programming techni~ue 171
argum~nts

passed to a called assembler language
progra:n 84-85

passed to a called COB~L program
81,82-83

arithmetic subroutines 222
assembler language routine for

accomplishing overlay 88
assembler language subprograms 84-87
assenbler sublibrary of source statement
library 45

ASS3N control statement 23-24
ASSIGN clause 20
assigning storage for compiler ~ork file
buffers 37

assignment of input/output devices 19-20

asterisk (*)
in job deck 22
in PHASE statement 40
in source program 182

AUTOLINK 41
Autonatic Library Look-ap (!\[lr:>LI~iO 41

and ACTION control statement 40
and PHASB control statement 4J

auxiliary subroutines 220

background program 12
label area 229

BASIS card 51-52,45
used for debugging 56

batched-job m~de 12
binary items 178-179
BKEND control statement 46
block descriptor field 163
block-length field

V-node rec~rds 160
books in the source statement libr~ri

cataloging 45-47
retrieving 47
updating 47-49

braces 22
brackets 22
BUF option 37
building tables 192

CALL statement 81-82
in segmented program 99-100

called pro~ram 81
calling an assembler language subpro~ran

84-87
callin~ and called programs 81-93
callin~ program 81
CANCEL option 41
capacity records 109il10
CATAL option 34,38
cataloging

a book 45-46
a module 44-45
a program phase 43-44,38,39-40
a segmented program 101
a sort program 97

CATALR control statement
CATALR option 38
CArALS control statement
CBL statement 37-38
checking standard labels

DLAB control statement
DLBL control statement
TLBL. control statement
TPLAB control statement
VOL control statement

checkout, program 53-68
CLEAR option 41

45-46

144,1-57
30
27
26

31
29-30

ItldeK 325

Page of GC28-6398-2,-3, Revise,d 2/15/73 by 'rNL GN28-1023

cbeckpoint. subroutine 222,68
checkpointing a COBOL pr~qram 67-68,
checkpoints during a sort operation 97

control'statement requirements 67,68
CSKPT macro instruction 67,68
class test sub.routine 223
CLE~R option 41
CLIST opti~n37
CLOSE control statement 25
CLOSE UNIT subroutine 220
CLOSE WITH LOCK subroutine 219
COBOL option card (CBL card) 37-38
COBOL sublibrary of source statement
library 45
co~ment control statement '22
comments in job control statements
comnents on the phase map 79
Communication Region 229

O~TE control statement
compare subroutines 222
compilation 17

fore~round 227,12
options for 37-38,33-35
work files required for

25-26

225
compile and edit job 14
compile, edit, and execute job
compile-only job 14

14

22

- compiler diagnostic messages 235-324,76-77
,generation of 66
working with 66

compiler-generated card number
on diagnostic messages 76
on object code listing 76
on s~urce statements 69

compiler machine requirements
compiler options

CBL card 37-38
JPTION control statement

compiler output 69-77

225

33-35

compiler work files 225
completion codes fr~m sort pro~ram
computational items

97

conversions involving 175-177
internal representation of 178-179
special considerations for 177

COMP(J'rE statement
programming technique
subroutines 222

COe4-REG 229

181

condensed object listing 37
continuati~n of job control statements

OLAB control statement 30
TPL~B control statement 31

control fields
S~mode records 163
V-mode records 160

control fo~tings and page format
control program 11
control sections 40
control statement placement

job control statements 23

186

linkage editor control statements 39

22

conversion subroutines 220-221
converting elementary data items
converting track addresses

175-177

326

in a COBOL source program
relative to actual 113,115

in EXTENT control statement

actual to relative 28
relative to actual 28

copy function of Librarian 43
COpy statement 47
core image directory 43
core image library

private 50,18,34
and Linka~e Editor 39,227

aystem '43-44
and Linkage Editor 38,39

correspondence of ar;uments and paraneters
assembler language subpr~~rams 84-85
COBOL subprograms 82-83

creating a direct file 111
actual track addressing
111-115,125-127

sample program 116-119
relative track addressin~ 111-115

aample program 121-124
sample job decks 232,231

creating an indexed file 130
sample j~b deck 233,231

creating standard mass stora;e file
labels 158,157

OLAB control statement 30
DLBL control statement 27
P~RSTD option 35
STOLABEL option 34-35

creating standard tape file labels
144,145-149

PARSTD option 35
STOLABEL option 34-35
TLBL control statement 26
rPLAB control statement 31

creating user labels 144,148,157,158
crSRLABEL option 35

cro,ss-reference dictionary 76,34
CURRENT-DATE 229,26
cyclic check 218
cylinder index 128
cylinder overflo~ area 128

data, locating in a dump 59
data extents

direct files 27-29,31
indexed files 27-29,31

data files 15
data f~rmat conversion 175-177
data f~rmats in the computer 178-179
data management 108,15
DATE-COMPILED 74
DATE control statement 25-26

and Communication Region 229
debu~ packet 56
debug~ing language 53-56
DECK option 34
DEL statement 48-49
DELETE card 51-52

used for debuggin~ 56
deleting source statements

for one run only 51
from a book 48-49

DEPENDING ON option of OCCORS clause
and Table Handling Feature 188-189
and variable-length records 168-170 /

device assignment 19-20 \
duration of effect 24

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL 3N28-1023

diagnostic messages
compiler 76~77,66,235-324
generation of 66
linkage editor 79
object time 80,323-324

dictionary, cross-reference 76,34
direct files 109-127

actual track addressing
111-119,125-127

relative track addressing
111-115,120-124

sample job decks 232,231
direct linkage 88
d~rect organization 109-127,107
disk extent subroutines 220
DISPLAY items

conversions involving 177,176
internal format of 178
special considerations for 177

DISPLAY statement subroutines 220
division/remainder method of ran:iomizing

113-115
used to create a direct file

actual track addressing 115-119
relative track addressing 120-124

DLAB control statement 30
DLBL control statement 27

DTF
identifying private libraries 51

creation of 108,133
locating in a dump 58
symbolic name of 30

DTF tables 133-138
dummy segment 99
DUMP option 34
dumps 56-65

errors causing 57-58
how to use 57
locating data in 59
locating DTF in 58

edit and execute job 14
editing 17-18,38-41
edit-only job 14
EJECT 69,171
ellipsis 23
END statement 49
end-of-data control statement 15
end-of-job control statement 15
ENTRY control statement 40-41
entry point in a c~lled program 81,82
ENTRY statement 82

in an overlay structure 89
error message subroutine 223
error recovery

on unit-record devices 37
using an assembler language routine
141-143

using error declarative section 138-141
using INVALID KEY 138,139

ERRS option 34
EXEC control statement 15
EXEC FCOBOL statement 17,15
EXEC LNKEDT statement 17,15
execute-only job 14

I execution output 79-80
/ execution time, machine requirements

227,228
messages 66

EXHIBIT statement 54-55
subroutine 220

EXIT PROGRAM statement 82
exponentiation 181
extended search 110
extended source program library facility

51-52
EXTENT control statement 27-29
extents, maximum number 28,31
external-name 82
external reference 82

unresolved 41,79
weak 79

F-mode records 159
FCOBOL 17
file integrity 110
file organization 107-108

direct 109-126,107
indexed 127-131,107-108
sequential 109,107

file retention
on direct-access storage devices 27
on tape devices 25

fixed-length records 159
fixed partitioned multiprogramming 12
FLAGE option 37
FLAGW option 37

foreground compilation 227,12
foreground programs 12
format F records 159
format notation 22-23
format S records 163-168
format U records 159-160
format V records 160-163

generic terms 22
GIVING option of error declarative
139-141

global table 75
glossary 74
GOBACK statement 82

hypbens 22

IBM-supplied processing programs 12
identification field of COBOL source
statements 47

IF statement 182
ILBDCKPO subroutine 68,222
ILBDDUMO subroutine 102,193-194
ILBDMNSO subroutine 81,223
ILBDSEMO subroutine 101,194,222
ILBDSETO subroutine 81,223
ILBDSRTO subroutine 96,222
in-line parameter list 85,87
INCLUDE control statement 40
independent overflow area 128
independent segment 99
index data items 188,189
index-names 188,189-192
indexed files 127-131

Index 327

Page of GC28-'6398-2,-3, Revised 2/15/73 by TNL GN28-1023

adding records to 128-129
sample job decks 233-234,231

indexed organization 107,127-131
improving efficiency when using 131

indexes 128
indirect ,addressing 112-115
Initial Program Loader (IPL) 11
input

compiler 17
Job Control Processor 22
Linkage Editor 17,38'

for a segmented program 100,101,102
INPUT PROCEDURE option 95,96
19Put/Output Control System (IOCS), 108
input/output subroutines 219-220

used for errors 220,223
input/output error subroutines 220
INSERT card 51,52

used for debugging 56
intermediate results 180-181
interrupts, errors causing 57-58
INVALID KEY condition 138,139

direct organization 110,139
indexed organization 139
standard ~equential organization
109,139

IOCS 108

job 13
types 14

job control commands 38
job control considerations

for accomplishing overlay
for sort program 95-96

Job Control Processor 11,22
options 33-35

90

JOB control statement
job control statements

definition 11

32,15
22-38,15

22-23 format notation
formation of 22
overlay considerations
sequence of 23

90

sort considerations 95-96
job deck 15,23
job definition 13-16
job definition statements
job step 13

15

label area, reserving storage for
label definition

DLAB control statement
DLBL control statement
TLBL control statement
TPLAB control statement

label processing 144-158

30
27
26-27

31

32

157-158 mass storage file labels
tape file labels 144-156

label processing considerations
mass storage file labels 157-158
tape file labels 148-149

label processing subroutines
LBLTYP control statement 32
level numbers 172
LIB option 38
Librarian 43,12

328

219,220

line overlay (Report writer) 185
LINK option 34,38,236
liilkage 81-83

in a called program 82
in a calling program 81
correspondence of arguments and

parameters 82-83
entry points 82

linkage conventions 84-87
argument list 84-85
assembler subprogram 84-86
generated by compiler for segmentation
100,101,102

overlay considerations 89
in-line parameter list 85
lowest level subprogram 87
register use 84
save area 84

link editing 17-18,14
in the foreground 227,12,34,39
with overlay 89-90
without overlay 83-84

Linkage Editor 11-12
linkage editor control statements 38-41

fields of 38
generated by compiler for segmentation
100,101,102 ,

overlay considerations 90
placement of 39

linkage editor diagnostic of input 78
linkage editor input deck 18,17
linkage editor input for a segmented

program 100,101,102
linkage editor messages 79
linkage editor output 77-79,66,17-18
linkage registers 84
linkage with the Sort Feature 96-97
LIOCS 108
LIST option 34
LISTIO control statement 33
LISTX option 34
literal pool 75
locating the ~orking-Storage Section in

dumps 172-173
LOG option 34
logic module 108
Logical Input/Output Control systen

(LIOCS) 108
logical/ record 108

spanning physical blocks 163-168

machine considerations 225-228
main program or subprogram subroutine

223,81
maintenance function of Librarian 43-50
MAP option 41
mass storage device 107
mass storage file labels 157-158
master index 128
modularizing

the Data Division 172
the Procedure Division 180
when using the Segmentation Feature 99

module 11
input to Linkage Editor 40,38

MOVE statement 182
MOVE statement subroutines 223

\

/

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL'3N28-1023

MTC control statement 33
multifile volumes

examples
creating 149-150,153-154
input processing 149,151-152

TLBL control statement 26
multiphase program 18,13-14
multiple file tape subroutine 220
multiprogramming 12
multivolume tape files

examples of creating 150,155-156
with nonstandard labels 149

nami~g conventions
used by sort 97
used by segmentation 100-101

NEXT GROUP clause 186
NOAUTO option 40,41
NOCATALR option 38
NODECK option 34
NODUMP. option 34
NOERRS option 34
NOLIB option 38
NOLINK option 34
NOLIST option 34
NOLISTX option 34
NOLOG option 34
NOMAP option 18,4~
NOMINAL KEY clause 130,131
nonstandard tape file labels 144

multivolume file considerations 149
NOSEQ option 37
NOSYM option 34
NOTE statement 182
NOTRUNC option 37-38
NOXREF option 34
NOZWB option 38
NSTD-REELS 149

object code listing 76
object module 77

produced by the compiler for
Segmentation 100

object time messages 323-324
OCCURS clause 168.-170

with Table Handling Feature 188
ON statement 53
operator communication

ACCEPT statement 80
job control commands 38
PAUSE control statement 35
STOP statement 80

operator intervention between job steps
35

operator messages
ACCEPT statement 80
STOP statement 80

OPTION control statement 33-35
duration of effect 35

OPTIONAL (SELECT clause> 24
options for compiliation

CBL card 37-38
OPTION control statement 33-35

organization of files 107-108 .
direct 109-127,107

. indexed 127-131,107-108

sequential 109,107
origin point of phase 40
output

compiler 69-77,17
complete sample program 195-207
EXHIBIT statement 54-55
from a segmented program 100-102
linkage editor 77-79,66,17-18
phase execution 79-80
system 80
TRACE statement 53

OUTPUT PROCEDURE option 96
overflow area 128-129
overlay 14

using Segmentation Feature 99-103
using subprogram linkage 89-93

overlay logic 89
overlay structures 87-93

job control considerations 90
linkage editor 89-93
PHASE statement 39-40
provided by Segmentation Feature

99-103
overlay able fixed segment 99

page breaks 185
parameter list, 82-83,85
PARSTD option 35
PAUSE control statement 35
PERFORM statement 182

in a segmented program 102
permanent segment 99
phase

definition of 11
origin point 40

PHASE control statement 39-40
generated by compiler for Segmentation
100,101,102

using overlay 89
phase execution 18

output 79-80
phase map 78-79
Physical Input/Output Control System

(PIOCS) 108
PICTURE clause 173-174
PIOCS 108
pre-DTF switch 138
prefixes 171-172
prime area 127
prime numbers 113,114
printer spacing subroutine 219
priority numbers 99
private core image library 50,18,34

and Linkage Editor 39,227
private libraries SO-51
private relocatable library 40,50
problem program area 18
Procedure Division header 82
processing

direct files 109-127
indexed files 127-131
sequential files 109

processing programs 11
program checkout 53-68
Program Global Table (PGT) 75
PROGRAM-ID paragraph

and program linkage 81

Ind.ex 329

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

and Segmentation 100-101
program status 67
program switches 36

Communication Region 229
programmer logical units 19,20
programming techniques 171-194

Data Division 171-179
Environment Division 171
general considerations 171

. Procedure Division 180-183
Report writer Feature 183-187
Table Handling Feature 187-192
using Sort and Segmentation 192-194

QUOTE option 37

randomizing
for the 2311 Disk Drive 125
for the 2321 Data Cell Drive

randomizing techniques '112-115
126

sample programs 116-119,121-124
READ INTO statement 182.1
READ statement subroutines
READY TRACE statement 53
RECORD CONTAINS clause 172
record formats 159-170

format F 159
format S 163-168
format U 159-160
format V 160-163

RECORD KEY clause 130-131
record zero (RO) 109

219

recording capacities of mass storage
devices 107

recording program status 67
REDEFINES clause 173
redefining subscripts 173
reference

external 82
unresolved 41,79
Vleak 79

register use for linkage 84
relocatable library 44-45

directory 44
INCLUDE statement

REP statement 49
40

replacing source .statements in a book
REPORT clause 183
Report Writer Feature 183-187
Repor~ Writer routines, generation of
reposition tape subroutine 223
RERUN clause

49

187

and RSTRT control statement
and Sort Feature 97
subroutine 222

67-68,36

RESERVE clause 171
RESET control statement
RESET TRACE statement 53

35-36

restarting a checkpointed program.. 68,36
retrieving a book from the source statement
library 47

BASIS card 51,52
COPY statement 47
modifying using INSERT and DELETE·
cards 51,52

retrieving a direct file 110,.111
sample job deck 232,231

330

retrieving an indexed file 130
sample job deck 233,231

retrieving a program phase 43-44
REWRITE statement subroutines 219
root phase 18

in overlay structure 87
root phase overlay 18
root segment 99,100,101
RSTRT control statement 36,67-68
RO (record zero) 109

S-mode records 163-168
sample program output 195-207
save area 84
SEARCH ALL statement 189
SEARCH statement 191-192

subroutine 223
segment descriptor field 164
segment limit 99,100
segmentation Feature 99-103

subroutine 222
segment~tion subroutine 222
segments 99-101
SELECT clause

ASSGN control statement 23-24
DLBL control statement 27
EXTENT control statement 27-29
programming technique 171
TLBL control statement 26
VOL control statement 29-30

SELECT OPTIONAL clause 24
SELECT sentence 171
SEQ option 37
sequence-check source statements 37
sequence of job control statements 23
sequential organization 107,109
service function of Librarian 43
SET command 26,69
SET statement 189-190
7-track tape, restriction V1hen used as sort

work files 96
sign usage 174
single-program mode 12
SKIP1 69,.171
SKIP2 69,171
SKIP3 69,171
slash ampersand (/&) 15
slash asterisk (/*) 15
sort diagnostic messages 96
sort Feature 95-97

machine requirements 228
in a multiphase environment 102
in a segmented program 101-103

sort interface subroutine 222
sort job control requirements 95-96
.sort . work files 96
sorting an unlabeled tape file 234,231

sample job deck 234
SORT-RETURN 97
source statement library 45-49

directory 45
space allocation

EXTENT control statement 27-29
XTENT control statement 31

SPACEn option 37
spacing of source program listing

37,69,171
spanned records 163-168

(

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

-

on -directly organized files 168
on sequentially organized files

165-167
and Sort Feature 96

special registers
COM-REG 229
CURRENT-DATE 26,229
NSTD-REELS 149
SORT-RETURN 97

spill file 322
standard file labels

example of multiple volume
creation 149,151-152

mass storage 157-158
format 1 211-215

tape 144,148-149,209-210
START statement 130
statement formats 22-23
STDLABEL option 34-35
STOP statement 80

subroutines 220
STXIT option 37
subordinate phases 18
subprogram structures 81-93
subroutines 219-223
subscripts 187

redefining 173
SUM counters 183,184
SUM routines 184-185
summing techniques 183,184
Supervisor 11
SUPMAP option 37
suppressing messages

FLAGE option 37
NOERRS option 34

SYM option 34
symbolic names

of input/output devices 19-20
of phases 40

SYNCHRONIZED clause 177
synonyms 112
syntax rules

job control statements 22
SYSCLB 19,21,50
SYSIN 19,21
SYSIPT 19,21
SYSLNK 19,21,38
SYSLOG 19,21
SYSLST 19,21,69
SYSOUT 19,21,24
SYSPCH 19,21
SYSRDR 19,21

on same device as SYSIPT 15,17,19'
SYSRES 19,21,50
SYSRLB 19,21,50
SYSSLB 19,21,50
system configuration 225-228
system logical units 20
system message identification codes 80
system-name restriction for RERUN on a sort
file 97

system output 80
system service programs 11-12
SYSOOO through SYS221 19,20

table element 188
J Table Handling Feature 187-192

tape file labels 144-156
tape pointer subroutine 220
Task Global Table (TGT) 75
TLBL control statement 26

standard tape file labels 146,147
TPLAB control statement 31

standard tape file labels 145
TRACE statement 53

subroutine 220
track 107
track addressing 109-127

actual 111-115,125-127
sample program 116-119

relative 111-115
sample program 121-124

track formats for direct-access storage
devices 217-218

track index 128
TRANSFORM statement 183

subroutine 223
transient area 101,102,103
transient subroutines 223
TRUNC option 37-38
truncation of COMPUTATIONAL items 37-38

U-mode records 159-160
undefined records 159-160
unlabeled files 151

example of multifile volume
processing 149,151-152

example of multivolume file
creation 180,155-156

sorting 234,231
unnumbered messages 324
unresolved external references 41,79
unsigned items 174
UPDATE function 47-50

ADD statement 48
control statement placement 49
DEL statement 48-49
END statement 49
invalid operand defaults 50
logical unit assignment 49
REP statement 49
UPDATE statement 47-48

UPDATE statement 47-4.8
updating a book in the source statement
library 47-50

updating a direct file 111
sample job deck 232,231

updating an indexed file 130
sample job deck 233~231

UPSI byte 36
UPSI control statement 36

Communication Region 229
UPS I switches 229
UPSI-O through UPSI-7 36
USAGE clause 175-177
user labels

mass storage files 157,158
tape.files 144,148

user program switch indicators 229
USING option

of CALL statement 81-82
of ENTRY statement 82
on Procedure Division header 82

USRLABEL option 35

Index 331

Page of GC28-6398-2,-3, Revised 2/15/73 by TNL GN28-1023

utility data sets
required by compiler 225
required by sort program 228,96

V-mode records 160-163
variable-length records 160-163
VOL control . statement 29-3'0
volume labels

mass storage 157
tape 144

weak external references 79
WITH CODE clause 185-186
work files

332

required by compiler 225
required by sort program 2,28,96

Working-Storage Section, ,locating in a
dump 172-173

WRITE FROM statement 182.1
WRITE statement subroutines 219

XREF dictionary 76
XREF option 34
XTENT control statement

ZWB option 38

31

7-track tape, restriction when use~ as sort
work files 96

I~; ~ &.":,-'''' ("
l/ c" I .. '1 t,_)

(

READER'S COMMENTS

TITLE: IBM System/360 Disk Operating System
Full American National Standard COBOL
Programmer's Guide

ORDER NO. GC28-6398-3

Your comments assist us in improving the usefulness of our publications; they are an important part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

.:r~~o-o",!:,o-",

fold fold

· · () • s:: · :e.
• 0 • ::s .aq

:e:
• fn

:s=
: I'D

..
·

,ttention: PUBLICATIONS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

IBM CORPORATION
1271 Avenue of the Americas
New York, New York 10020

FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.

.. ~ ... :
fold

ternational Business Machines Corporation
Ita Processing Division
33 Westchester Avenue, White Plains, New York 10804
.S.A. only]

1M World Trade Corporation
!1 United Nations Plaza, New York, New York 10017
lternational)

fold

H

~
en

.........
w
~
0

t:1
0 en
~
J:!

~ en
n
0
tl1
0
I:i

ttl · Cil ·
ttl
11
::s
rt
m
p,

....
::s
c::: · en
&,.
·
Cil
n
I\J
00
1
~
W
\0
00
1

W

\

