File No. S360-15

Systems Reference Library

IBM System/360 Installation Manual - Physical Planning

Preface

This manual contains information necessary for planning the physical installation of the IBM System/360. It includes floor planning information, as well as electrical, environmental, and structural requirements. Detailed cable charts are also provided. In addition, the manual contains suggestions for planning an efficient and a pleasant installation.

The customer, in planning his installation, should make such arrangements as he deems necessary for the services of professional consultants. The installation must meet local and national code requirements.
The physical planning requirements of the system are subject to modification by engineering developments.

Machine specifications in this manual are for those units unique to IBM System/360. For information pertaining to machines used on both IBM System/360 and System/370, refer to IBM System/370 Installation Manual-Physical Planning, GC22-7004.

Thirteenth Edition (February 1974)
This is a major revision of GC22-6820-11, making it obsolete. In addition Technical Newsletter GN22-0441 has been incorporated in the base manual, making it obsolete. Because significant changes have been made throughout the manual, it should be reviewed in its entirety. Information pertinent to IBM System/360 system models and those machines that can be used only on System/360 is included in this manual. Before using this publication in connection with the installation and operation of IBM equipment, refer to the IBM System/360 and System/370 Bibliography, GA22-6822, for editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office serving your locality.

This manual has been prepared by the IBM System Products Division, Product Publications, Dept. B98, PO Box 390, Poughkeepsie, N.Y. 12602. A form for readers' comments is provided at the back of this publication. If the form has been removed, comments may be sent to the above address. Comments become the property of IBM.
Section 1. Preinstallation Planning 1.1
Schedule 1.1
BUILDING REQUIREMENTS 1.2
Space and Layout Requirements 1.2
System Layout 1.2
Floor Construction 1.3
Furniture 1.4
Acoustical Treatment of Computer Room 1.4
Lighting 1.6
Vibration 1.6
AIR CONDITIONING 1.7
Temperature and Humidity Design Criteria 1.7
Machine Operating Limits 1.7
Air Filtration 1.8
Mechanical Air Filter 1.8
Electrostatic Plate Filter 1.8
Temperature and Humidity Recording Instruments 1.8
AIR DISTRIBUTION AND TYPES OF SYSTEMS 1.9
Single Duct (Overhead System) 1.9
Underfloor System 1.9
Two Duct (Two Air Conditioning Unit System) 1.9
Two Duct (Single Air Conditioning Unit System) 1.9
POWER REQUIREMENTS 1.10
Voltage Limits 1.10
Frequency Limits 1.10
Line-to-Line Voltage Imbalance 1.10
Harmonic Content 1.10
POWER DISTRIBUTION SYSTEM 1.10
Primary Computer Power Service 1.10
Branch Circuits 1.10
Grounding 1.11
Phase Rotation 1.11
Emergency Power-Off Controls 1.11
Lightning Protection 1.11
Convenience Outlets 1.11
Primary Power Problem Areas 1.11
SAFETY AND FIRE PRECAUTIONS 1.13
Computer Location 1.13
Fire Prevention Considerations 1.13
Type of Fire Prevention Equipment in a Computer Area 1.13
Data Storage 1.13
Supporting Facilities 1.14
Air Conditioning Systems 1.14
Electrical Systems 1.14
Preplanning to Continue an Operation in an Emergency 1.14
General Precautions and Personnel Training 1.14
Additional Reference Material 1.14
STORAGE OF TAPE, DISK PACK, DISK CARTRIDGE,
AND DATA CELL 1.15
PRIORITY 1.16
Input/Output Priority Sequence 1.16
Device Wait (Critical Time) 1.16
CABLES 1.17
Cables Supplied 1.17
Cables Related to Initial Installations 1.17
Other Cable Requests 1.17
FIELD ENGINEERING SUPPORT FACILITIES 1.18
CE Room and Test Area 1.18
Furniture and Fixtures 1.18
RETAIN/370 Services 1.18
Basic Storage Module (BSM) Analyzer 1.18
SYSTEM/360 AND SYSTEM/370 FIELD ENGINEERING FURNITURE AND TEST EQUIPMENT 1.19
STANDARD SYMBOLS 1.20
STANDARD SPECIFICATIONS 1.21
Shipping Dimensions 1.21
Environmental Specifications 1.21
Metric Conversions 1.21
Manufacturers of Plugs, Receptacles, and Connectors 1.21
Abbreviations and Definitions 1.22
Section 2. System Specifications and Cabling Schematics
System/360 Model 22, 2022 Processing Unit 2022.1
System/360 Model 22 Cabling Schematic 2022.2
System/360 Model 25, 2025 Processing Unit 2015.1
System/360 Model 25 Cabling Schematic (World Trade) 2025.3 2025.3
System/360 Model 25 Cabling Schematic (U.S.) 2025.6
System/360 Model 30, 2030 Processing Unit 2030.1
System/360 Model 30 Cabling Schematic 2030.2
System/360 Model 40, 2040 Processing Unit 2040.1
System/360 Model 40 Cabling Schematic 2040.2
System/360 Model 44, 2044 Processing Unit 2044.1
System/360 Model 44 Cabling Schematic 2044.2
System/360 Model 50 F, G, and H, 2050 Processing Unit 2050.1
System/360 Model 50 HG and I, 2050 Processing Unit 2050.3
System/360 Model 50 Cabling Schematic 2050.5
System/360 Model 65 H and I, 2065 Processing Unit 2065.1
System/360 Model 65 IH and J, 2065 Processing Unit 2065.3
System/360 Model 65 I Multiprocessing, 2065 Processing Unit 2065.5
System/360 Model 65 IH Multiprocessing, 2065 Processing Unit 2065.7
System/360 Model 65 J Multiprocessing, 2065 Processing Unit 2065.9
System/360 Model 65 Cabling Schematic 2065.11
System/360 Model 65 Multiprocessing Cabling Schematic 2065.13
System/360 Model 65 J Multiprocessing Additional
Storage Feature Cabling Schematic 2065.15
System/360 Model 67 Configurations 2067.1
System/360 Model 67 Configuration Features 2067.2
System/360 Model 67-1 2067.2
System/360 Model 67-2 2067.3
System/360 Model 67, 2067 Processing Unit 2067.5
System/360 Model 67-1 Cabling Schematic 2067.7
System/360 Model 67-2 Cabling Schematic 2067.9
System/360 Model 75 H and I, 2075 Processing Unit 2075.1
System/360 Model 75 IH and J, 2075 Processing Unit 2075.3
System/360 Model 75 Cabling Schematic 2075.5
System/360 Model 85, 2085 Processing Unit 2085.1
System/360 Model 85, Power Distribution Unit (PDU)- 2085 Frame 14 2085.3
Motor-Generator Starter (Remote) for System/360 Model 85 ($50-\mathrm{Hz}$ Input) 2085.4
Motor-Generator Starter (Remote) for System/360 Model 85 ($60-\mathrm{Hz}$ Input) 2085.5
Motor Generator (Remote) for System/360 Model 85 ($50-\mathrm{Hz}$ Input) 2085.6

Motor Generator (Remote) for System/360 Model 85 ($60-\mathrm{Hz}$ Input)	2085.8
System/360 Model 85 Cabling Schematic (2880	
Attachment)	2085.10
System/360 Model 195 J and K-3195 Processing Unit and Storage	3195.1
System/360 Model 195 KJ and L-3195 Processing Unit and Storage	3195.3
Motor Generator (Remote) for System/360 Model 195 ($50-\mathrm{Hz}$ Input)	3195.5
Distribution Guide for Motor-Generator Output to 3085 PDU	3195.5
Motor Generator (Remote) for System/360 Model 195 ($60-\mathrm{Hz}$ Input)	3195.7
Distribution Guide for Motor-Generator Output to 3085 PDU	3195.7
Rotary Converter (Remote) for System/360 Model 195 (World Trade Only)	3195.9
System/360 Model 195 Cabling Schematic-CPU	3195.10
System/360 Model 195 Cabling Schematic-Channels	3195.12
System/360 Model 195 Cabling Schematic-Coolant	
Hoses	3195.14
Section 3. Machine Specifications and Cabling Schematics	
1051 Control Unit Models 1 and N1	1051
1231 Optical Mark Page Reader Model N1	1231
1285 Optical Reader Model 1	1285
1404 Printer Model 2	140
1412 Magnetic Character Reader Model 1	1412.1
1418 Optical Character Reader Models 1 to 3	1418.1
1428 Alphameric Optical Reader Models 1 to 3.	1418.1
1445 Printer Model N1	1445
2167 Configuration Unit Models 1 to 4	2167.1
2167 Configuration Unit Cabling Schematic	2167.2
2302 Disk Storage Models 3 and 4	2302.1
2361 Core Storage Models 1 and 2	2361.1
2365 Processor Storage Models 2 and 3	2365.1
2365 Processor Storage Model 5	2365.2
2365 Processor Storage Model 12	2365.3
2365 Processor Storage Model 13	2365.4
2385 Processor Storage Model 1	2385.1
2385 Processor Storage Model 2	2385.3
2846 Channel Controller Model 1	2846
3060 System Console Model 1 for System/360	
Model 195	3060.1
3080 Power Unit Models 1 to 3 for System/360	
Model 195	3080
3085 Power Distribution Unit (PDU) Model 1 for	
System/360 Model 195	3085

3086 Coolant Distribution Unit (CDU) Model 1 for System/360 Model 195 3086
7772 Audio Response Unit Model 3 7772.1
7772 Audio Response Unit Cabling Schematic 7772.2
Section 4. General Cabling Information
General Control-to-Channel Cabling 4.1
Channel-to-Channel Adapter Cabling 4.2
Direct Control Cabling 4.3
Field Engineering Test Equipment Cabling 4.4
2955 Field Engineering Data Adapter Unit (FE DAU) 4.4
Units with Integral or Abutted Controls 4.5
Appendix A. Additional Cooling Requirements for Models 85 and 195 A. 1
Computer Room Environment Limits A. 1
Temperature and Humidity Criteria A. 1
Liquid Coolant System A. 1
General Requirements A. 1
Customer-Supplied Chilled Water Specifications A. 1
Customer-supplied Chilled Water Requirements A. 1
Coolant Distribution Unit for System/360, 2085 and 2385 A. 2
Typical Connections for Customer-supplied Chilled
Water for Models 85 and 195 A. 2
Appendix B. Input/Output Device Priority Considerations B. 1
Appendix C. Power Cord Style Specifications and Plug Installation (World Trade Reference) C. 1
Cable Specifications C. 1
How to Install a Power Plug on Shielded Cable C. 1
Names of Bulk Cable Components C. 1
Preparing Bulk Cable End for the Plug C. 1
Installing the Plug C. 1
Appendix D. Template Index D. 1
Appendix E. System/360 Specification Summary (English Units) E. 1
Appendix F. System/360 Specification Summary (Metric Units) F. 1
Appendix G. Inch-to-Centimeter Conversion Table G. 1
Index X. 1

The successful installation of a data processing system requires long-range planning and continuous supervision to ensure that the plans are followed. The customer assumes the responsibility of providing suitable space and facilities for the IBM system. IBM Installation Planning representatives are available for consultation in planning physical requirements of the installation.
Depending on the size of the system, the customer may establish a preinstallation consulting and service group that includes IBM representatives, accounting firms, engineering consultants, and other outside consultants. This group will consult with and advise the customer's data processing manager (or executive committee) on the course of action, objectives, and progress of the installation. The manager (or executive committee) will be in charge of the overall operation and will coordinate the physical planning with the procedures and general planning. When the actual order for the system is closed, most of the preliminary methods and procedures planning will have been completed because such planning often forms the basis for the detailed machine order. The customer's planning and programming staff will prepare a list of the actual components to be used in the installation. This list should include the system's components, other equipment or furniture, tape storage cabinets, worktables, chairs, and desks.

The customer must decide on a suitable location for the computer area. Suitable facilities for installation may exist in some customers' offices; while in others, minor or major changes to existing space will provide a suitable location. In other instances, the customer may desire a complete new building. The operation should follow a planned schedule so that the machine room will be ready when the system is delivered.

SCHEDULE

Because each data processing system installation will differ in some respects from every other installation, it is not possible to provide a detailed schedule in this type of manual. However, the following suggested schedule should be adhered to as closely as possible:

Twelve months before system delivery:

1. Determine the machine components desired and review the order.
2. Read this Installation Manual-Physical Planning.
3. Determine the prospective location of the system. Make a preliminary layout of the proposed installation.
4. Request a visit by the IBM Installation Planning representative to discuss with the customer's planning staff and consulting group all phases of the proposed installation. The discussion should include: size of the proposed room, physical layout of the equipment, floor loadings,
use of raised floors, electrical power and air conditioning requirements, and communications facilities (when required).
5. Advise IBM of security or other restrictions, and advise of any unusual housing requirements as a result of these restrictions.
6. The customer should study local delivery quotations on power, air conditioning, customer-supplied cable, and other equipment to determine when each item must be ordered.
Six months before system delivery, the air conditioning and power equipment requirements, and delivery and installation schedule should be reviewed.

Four months before system delivery, the final layout should be made and approved by the customer, Branch Manager, and Field Engineering Manager so that all cables can be ordered. The cable order will be prepared from the final layout by the IBM representative. This is a critical point in the schedule. After these cables are ordered, no changes should be made in the layout that will affect cable lengths. See "Cables Supplied."

A System/ 360 Model 85 or 195 customer should decide when he would prefer to have the $415-\mathrm{Hz}$ motor generator delivered to the site for installation by his electricians. The motor generator may be delivered up to two months prior to delivery of the system so that all the fixed wiring is complete by system installation time.
One month before system delivery, a survey must be made by local IBM representatives to determine specific requirements for moving the machine components from the delivery platform to the machine room. The IBM Branch Office will notify the IBM plants of any special shipping instructions that are required to facilitate delivery within the customer's facilities.

Two weeks before system delivery:

1. Cables will be delivered to the machine room. It is the customer's responsibility to have the cables set in place by personnel of his selection. It is IBM's preference and practice, under normal circumstances, to set the cables in place at the customer's request. If other personnel are selected, IBM will supervise such work. It is IBM's responsibility to connect interconnecting cables to IBM components. Field Engineering furniture and equipment will be delivered.
2. If components are on order and scheduled to be shipped within three months of the original system, their cables may be included on the original cable order. In this case, they will be shipped with the system cables.
Components scheduled to be shipped later than three months after the original system require a separate cable order. These cables will be shipped to coincide with arrival of the individual units.

One week before system delivery, all air conditioning equipment should be installed, tested, and ready for operation. Electrical facilities, lighting, floor ramps, painting, plastering, and decorating should also be completed at this time. This includes the customer's electrical wiring of the motor generator to the system power distribution unit (PDU location), and necessary communications lines, data sets, etc.
Balancing of the air conditioning system and the water cooling system should be made as soon as possible after the machines have been completely installed.

Building Requirements

An Installation Planning representative is available to assist in selecting a suitable area. If the installation of the system requires a new building design, or if the existing space is to be altered radically, a suggested machine layout should be made prior to any building planning.

In selecting a location for the computer installation, consideration should be given to the following:

1. Availability and location of proper and adequate power (including standby power where required).
2. Space to house air conditioning equipment (compressor and air handling location and placement of cooling tower or evaporative condenser).
3. Ceiling height, outside wall area, and glass area, because these factors will affect the ease of air conditioning the area, and maintaining the required humidity.
4. Work flow to other areas such as accounting department, etc.
5. Floor loading capacity.
6. Proper safety and fire prevention procedures.

SPACE AND LAYOUT REQUIREMENTS

Space and layout requirements will differ for each system and depend on the customer's intended applications as well as the physical area available. A few general rules can be given.

The floor area required for the system will be determined by the specific components to be installed: length-to-width ratio of the room, location of columns, provision for future expansion, etc. To determine the exact area required for a specific group of components, a machine layout should be made using measurements of room under consideration.

Space should be provided for the daily storage of tape, cards, printed forms, etc., within the computer room. As provided by the National Fire Protection Association Standard, all other combustible materials such as permanent master documents, punched card records, magnetic

[^0]tape, etc., should be stored in properly designed and protected storage areas. See NFPA* Standard No. 75, Sections 300 and 600, and "Safety and Fire Precautions" in this manual. Consideration should be given in locating storage areas to minimize both the amount of space required and the travel time between areas.

Space must also be planned for printer forms, carriers, storage cabinets, card and record files, worktables, desks, communications facilities, etc.
The integration of the computer work area with that of other associated areas and with storage areas should be considered. The work flow from other areas such as punched card equipment to and from the system should be considered when aisles and intermediate storage locations are planned. The CPU or other control consoles should not be placed directly on main aisles or in traffic centers.

At the option of IBM, test equipment may be assigned to the installation to maintain the equipment in the machine room. Some machines may be moved to the test area, depending on the type of work to be done. These areas should be, whenever possible, on the same floor level. If they are not, ramps should be provided for moving test equipment and machine components. See "CE Room and Test Area" for detailed requirements.

SYSTEM LAYOUT

Before attempting to make a layout, it will be necessary to assign priority to the system channels and to the control units to be attached to the channels. The method for making these assignments is described under "Priority." The IBM Branch Office will provide necessary assistance.

Operational requirements should determine the specific location of the various components in the machine room. However, because the separate components are connected by cables of restricted length, and because of space limitations, priority, and the necessity for maintaining clearances between machines for servicing, work space, and aisles, the customer may need to prepare and analyze several tentative layouts before deciding on the final one.
Because each customer has different requirements such as room size, column spacing, a combination of machine components, and a procedure for using auxiliary input/ output units, each installation should be considered individually to determine the best arrangement.
The customer should prepare a layout of the system with the advice of the salesman and Installation Planning representative. This layout must be finalized and approved by the customer prior to the ordering of the system cables. It is the responsibility of each IBM Branch Office to ensure that cables are ordered on schedule. The Installation Planning representatives are available for assistance in this ordering.
To make a layout, it is necessary to have an accurate drawing of the proposed area. Plastic templates, scaled at $1 / 4$ inch to 1 foot, will be available from IBM. See Appendix D
for order (form) numbers. Note that the plan views printed in this manual may not be scaled at $1 / 4$ inch to 1 foot. The templates show the clearances required to allow working room for the customer's operator and for the customer engineer to service the unit. Space is included for test or servicing equipment. The swinging radii of the component gates and machine covers and the caster and cable hole locations are shown. If the area layout is to scale, these templates may be used to position the machine equipment on the area drawing; in some cases, clearances shown on the templates may be overlapped as long as the larger clearance is maintained. The gate swing of an auxiliary unit must not interfere with the gate swing of its corresponding control unit.
Systems and machines must be located so that the length of connecting cables will not exceed maximum limits. These limits vary for each type of machine, and charts showing the limits are in Sections 2 and 3 of this manual.
To make a layout and order cables, it is necessary to consider the following information pertaining to the system configuration:

1. Control units to be assigned to each channel.
2. Channel sequence or priority.
3. Features on all units.
4. Physical and logical sequence of control units on each channel.
5. Number of input/output units or features attached to each control unit.
The priority sequence of units on each channel should be established by the customer to fit his application.
The final layout must be reviewed to ensure that cable limitations have not been violated and that proper clearances have been maintained. Copies of this layout must accompany the cable order.
After the cables have been ordered, any changes in the final layout that affect cable lengths must be accompanied by an RPQ (Request for Price Quotation).

When preparing a layout for a system, the following additional points should be considered:

1. There should be visual access between a control unit and at least one of its associated input/output devices.
2. There should be visual access between a channel (CPU on the smaller systems) and one of the attached control units, also, between a channel and the system console. Significant servicing advantages can be realized by keeping the physical distances as short as practical to permit the CE test panels to be visible and recognizable between the units mentioned in items 1 and 2.
3. High-intensity lighting-over 50 footcandles (540 lumens $/ \mathrm{m}^{2}$)-should be avoided in areas where display devices are to be used.
4. When a unit requires external cables that must be purchased by the customer and installed through walls and/or floors, the purchase of this cable and the arrangements for its installation should be made with
sufficient lead time to permit the cable facilities to be available to the computer system at installation time. This pertains to units such as the IBM 2260 Display Station, the IBM 3270 Information Display System, and the IBM 3705 Communications Controller.
5. Where teleprocessing equipment requiring commoncarrier facilities is to be installed, arrangement for these facilities should be made in advance to permit these facilities to be available at the time of installation of the computer equipment. The IBM teleprocessing representative should be consulted regarding systems carrier requirements. See IBM Planning and Installation of a Data Communications System Using IBM Line Adapters, GA24-3435, for additional information.
6. The front of the IBM 2816 Switching Unit has a switch and display panel that requires periodic manual operations and should be accessible to and visible from the operator's position.
7. When an IBM machine without built-in convenience outlets is located remote from the computer room, power must be available adjacent to the unit for soldering irons, test equipment, and so forth.

FLOOR CONSTRUCTION

The weight of each unit is listed on its specifications page. A structural engineer should be consulted to determine whether the floor is capable of supporting the system weight load as oriented on your layout.

IBM considers the following factors in determining floor loading:

1. If more than three machines are placed side by side, no allowance can be taken for side clearance at the ends of the machines.
2. Regardless of the actual service clearances required, clearances used in floor loading computations cannot be more than 30 inches (76 cm) in any direction from the machine.
3. Twenty pounds per square foot ($98 \mathrm{~kg} / \mathrm{m}^{2}$) of service area used in calculation must be applied as live-load in floor loading computations.
4. If a false or raised floor is used, 10 pounds per square foot ($49 \mathrm{~kg} / \mathrm{m}^{2}$) of total area used in calculation must be applied as false floor load in the floor loading computation.
5. The weight of cables has been considered as part of the machine weight.
6. Most office building floors rated at 50 pounds per square foot ($250 \mathrm{~kg} / \mathrm{m}^{2}$) have an additional allowance of 20 to 25 pounds per square foot (98 to $130 \mathrm{~kg} / \mathrm{m}^{2}$) for partitions. The local building department should be contacted in reference to using this partition allowance in determining the floor loading capacity.

A raised floor will accomplish the following major objectives:

1. Allow for future layout change with minimum reconstruction cost.
2. Protect the interconnecting cables and power receptacles.
3. Provide personnel safety.
4. Permit the space between the two floors to be used to supply air to the equipment and/or area.
A raised floor can be constructed of steel, aluminum, or fire-resistant wood. The free-access type floor is preferred rather than the raceway type. The two general floor types are shown in Figure 1-1.

IBM recommends:

1. No metal should be exposed to the walking surface where a metallic raised floor structure is used. Such exposure is considered an electrical safety hazard and can also cause static discharge problems.
2. The raised floor height should be 12 inches (31 cm).
3. Minimum clearance must be adequate to accommodate IBM cables, chilled water piping, power distribution, etc., but should not be less than $41 / 2$ inches (11 cm) to allow for passage of cables and connectors.
4. When a raised floor panel is cut for cable entry, air register, etc., additional panel support may be required to restore the structural integrity of the panel.
5. Protective covering should be used to prevent damage to floor tiles, carpeting, and panels while equipment is being moved into or relocated within the installation.
6. Eliminate sharp edges on all floor cutouts where cables and hoses pass through these openings.
Floor covering material can contribute to the buildup of high static electrical charges as a result of the motion of people, carts, furniture, etc., in contact with the floor material. Abrupt discharge of these static charges to metallic surfaces or to other people cause discomfort to personnel and may cause malfunction of electronic equipment.
This static buildup and discharge can be mınımized by:
7. Providing a conductive path to ground from metallic raised floor structure including the metal panels.
8. Ensuring that maximum resistance for floor surface material is 2×10^{10} ohms, measured between floor surface and building (or applicable ground reference). The procedure outlined in NFPA No. 56A, Chapter 25, Section 2522, should be used. Details of this procedure can be obtained from the IBM Installation Planning representative, if necessary. Floor material with a lower resistance will further decrease static buildup and discharge. The floor covering shall provide a resistance of not less than 150 kilohms when measured, from any point on the floor, by the methods described in NFPA 56A.
Note: Special attention must be given to floor panels constructed of metal facings and nonconductive core to ensure that the resistance requirements are met.
9. Maintaining the room humidity within control limits of design criteria as defined under "Temperature and Humidity Design Criteria" in this manual.
If carpet floor coverings are used, they should be of the variety marketed by carpet manufacturers as "antistatic." Two types are generally available: those with the antistatic properties manufactured into the material and those treated later with antistatic agents. Materials, depending on additives, may have short effective antistatic life without frequent retreatment of the carpet. Maintenance of all antistatic floor coverings (carpet, tile, etc.) should be in agreement with the individual supplier's recommendations.

Vacuuming equipment used in the machine area should have a nonconductive hose and nozzle assembly. This safety precaution minimizes any possibility of static discharge or electrical shock.

FURNITURE

Furniture can provide a potential source of high static charge. Precautions should be taken to ensure that seat covers, etc., are made of materials resistant to static buildup. Many plastics will permit the buildup of high static charges. Cloth-covered chairs are normally less susceptible to generating static charges. Rubber or other insulating type of feet for equipment should be avoided. If casters, ball bearings, etc., are used, they should be lubricated with a graphite or other conductive grease. Rubber tread casters, wheels, etc., should contain conductive material.
The resistance of furniture hardware which touches the floor (such as casters, feet, etc.) should be below 10^{9} ohms from metal in the furniture frame to a metal test surface on which the unloaded furniture sample is placed.

ACOUSTICAL TREATMENT OF COMPUTER ROOM

The entire field of noise reduction is complex. Acoustical treatment of the computer room is recommended to provide for more efficient and comfortable operation. Proper design of acoustic treatment of a computer room may require the services of an acoustical specialist.

The total environmental noise level of a computer room is affected by all the noise sources in the room, the physical arrangement of the noise sources, and the sound reflective (or absorptive) characteristics of the room surfaces.

The noise level in an installation may be reduced by proper spacing and orientation of the various pieces of noise-emitting equipment. The principal noise sources of the system are the mechanical units such as card punch machines, printers, readers, sorters, and tape drives. Sufficient space should be provided around such units-the farther apart they can be placed the lower the overall room noise will be. When possible, place the noisier machines so that operators are not constantly working between them. Consider placing the quieter electronic units between the

Raceway Floor:

Covers Removable
Cutouts in Covers

Free-Access Floor:
Pedestal Supported Panels
Panels Removable
Cutouts in Panels

Free-Access Floor:

Subframing Supported Panels
Panels Removable
Cutouts in Panels

Note: A raised-floor-panel lifter should be made readily available in the computer room at a convenient location.

Figure 1-1. Types of Raised Flooring
mechanical units referred to previously. An effective method is to place these units at an angle to an aisle or an open work area.
Air conditioner blowers and other external noise sources, if not properly installed, can make a substantial contribution to the overall noise level.
The use of absorptive materials will reduce the overall noise level throughout an installation. Effective and economical sound reduction can be achieved by using a sound-absorptive ceiling. Best results can be expected from a dropped acoustic ceiling. For large rooms, the use of absorptive material (conductive rugs) on the floor will usually result in further significant reduction of the sound level in the room. Wall surfaces should be made absorptive wherever possible to prevent reflection of sound. To prevent computer room noise from reaching adjacent office areas, it is important that the walls be constructed from the floor to the base ceiling and that they be properly sealed. The doors must also have a good seal. If overhead duct work exists, noise may be transmitted to or from other rooms. The transmission of noise may be reduced by acoustical treatment of the ducts.

LIGHTING

A minimum illumination of 50 footcandles (540 lumens $/ \mathrm{m}^{2}$), measured 30 inches (76 cm) above the floor, should be maintained in the machine room area.

Direct sunlight should be avoided, because lower levels of illumination are needed to observe the various console and signal lamps. Also, direct sunlight may cause devices that employ light sensing (such as certain magnetic tape units) to malfunction. The lights for general illumination should be sectionally controlled by switches so that a portion of the lighting can be turned off as desired. Lights should not be powered from the computer power panel. See "Power Distribution System" for details.
Provisions should be made for emergency lighting. See "Supporting Facilities" under "Safety and Fire Precautions."

VIBRATION

It may be necessary to install the System/360 in an area that is subject to minor vibrations. The intensity of vibrations in an office environment will not affect the reliable operation of the System $/ 360$.

Air Conditioning

The components of the machines are internally cooled by air circulated by blowers in most units. The air intake varies slightly from one unit to another, but generally is through the bottom and also through louvers along the bottom edge. One-inch ($25,4-\mathrm{mm}$) dust filters are included at each air input. Warm air usually exhausts from the top of each unit.
To determine the air conditioning capacity necessary for an installation, the following factors must be considered:

```
Machine heat dissipation
Personnel
Latent load
Fresh air introduction
Infiltration of heat through outer walls
Ceiling
Floors
Door openings
Partitions
Glass wall area
Possible reheat
```

A separate air conditioning system is recommended for a data processing installation. Because of the amount of heat dissipated while this machine is in operation, it is necessary for the air conditioning system to maintain a cooling cycle year-round.
Machine heat dissipation loads are given on the specification page for each machine.
The air conditioning units should not be powered from the computer room power panel. The feeder for the air conditioning system and for the computer room power panel should not be in the same conduit.

TEMPERATURE AND HUMIDITY DESIGN CRITERIA

The air conditioning system should be designed to operate at $75^{\circ} \mathrm{F}\left(24^{\circ} \mathrm{C}\right)$ and 50% relative humidity at altitudes up to 7,000 feet $(2.150 \mathrm{~m})$. This design point provides for the largest buffer in terms of available system time. If the air conditioning system fails or malfunctions, the computer will be able to operate until it reaches its specified limits. This increases the possibility of effecting air conditioning repairs before the computer must be shut down. The design point has also been proven to be a generally acceptable personal comfort level.

In certain geographical areas, a design point of 50% relative humidity is not practical and a value of 45% should be used.
Air conditioning control instruments that respond to $\pm 2^{\circ} \mathrm{F}\left(\pm 1^{\circ} \mathrm{C}\right)$ and $\pm 5 \%$ relative humidity should be installed.
Substantial deviations from the recommended design point in either direction, if maintained for long periods, will expose the system to malfunction from external conditions. High relative humidity levels may cause improper feeding of cards and paper, as well as operator discomfort and
condensation on windows and walls when outside temperatures fall below room dew point. Low relative humidity levels alone will not cause static discharge. However, in combination with certain types of floor construction, floor coverings, furniture, etc., static charges which are generated by movement of people, carts, furniture, paper, etc., will be more readily stored on one or more of the objects. These charges may be high enough if discharged by contact with another person or object to be quite objectionable to operating personnel; and if discharged to or near data processing or other electronic equipment, these charges can cause intermittent interference.
Because deviations of only a few hours will permit the floors, desks, furniture, cards, tape, and paper to reach a condition that will readily permit the retention of a charge, it is recommended that the air conditioning system be automatically controlled and provided with a high/low alarm or a continuously recording device with the appropriate limits marked. In most areas, it will be necessary to add moisture to the room air to meet the design criteria.

MACHINE OPERATING LIMITS

Some individual machines may require special consideration and have more or less restrictive requirements. See machine specification page for individual requirements.

	Machine Operating	Machine Nonoperating	Design Criteria
Temperature	$.60^{\circ}$ to $90^{\circ} \mathrm{F}$	50° to $110^{\circ} \mathrm{F}$	$75^{\circ} \mathrm{F}$
	$\left(16^{\circ}\right.$ to $\left.32^{\circ} \mathrm{C}\right)$	$\left(10^{\circ}\right.$ to $\left.43^{\circ} \mathrm{C}\right)$	$\left(24^{\circ} \mathrm{C}\right)$
Relative Humidity	20% to 80%	8% to 80%	50%
Max Wet Bulb	$78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$	$80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$	-

The air entering the machine must be at the conditions for machine operation before power is turned on.

Under no condition of operation may the machine input air and room air exceed $90^{\circ} \mathrm{F}\left(32^{\circ} \mathrm{C}\right)$. This is a maximum operating temperature limit and should not be considered a design condition.

When conditioned air is supplied to the base of any unit by a duct or underfloor air supply, the relative humidity of the air entering a machine unit should not be greater than 80%. This specification is an absolute maximum. Air temperature in this duct or underfloor air supply should be kept above room dew point temperature to prevent condensation within or on the machines. When it is necessary to add moisture to the system for control of low relative humidity, one of the following methods should be used:

1. Steam grid or jets.
2. Steam cup.
3. Water atomizers.

Water treatment may be necessary in areas with high mineral content in the water to avoid contamination of the air.

Note: In localities where the outside temperature drops below freezing, condensation will form on single, glazed window panes. Also, if outside temperatures are considerably below freezing, the outside walls of the building should be waterproofed or vapor sealed on the inside; or, in time, structural damage will occur in the outside walls.

AIR FILTRATION

A high-efficiency filter, rated according to the following specifications, should be installed to filter all air supplied to the computer room.
Mechanical and electrostatic air cleaners operate on two different principles; therefore, it is necessary to specify a different efficiency rating for each type.

Mechanical Air Filter

The mechanical air filter must be rated at a minimum of 20% efficiency by the Bureau of Standards discoloration test using atmospheric dust. This rating applies to a clean filter and must be maintained throughout the life of the filter.

Electrostatic Plate Filter

The electrostatic plate filter must be rated at a minimum of 85 to 90% efficiency by the Bureau of Standards discoloration test using atmospheric dust. Electrostatic air cleaners are designed to operate at 85 to 90% efficiency at a given face velocity. As you increase the face velocity through an electrostatic filter, its efficiency decreases. Therefore, an electrostatic filter operated at increased face velocities or below 85% efficiency would allow a greater number of particles charged by the ionizing wires to pass through the plate section and to enter the room. This would increase what is known as space charge. As the space charge increases, a greater voltage differential occurs between the positive charged particles and the negative surfaces in the room. This causes dust to accumulate rapidly on all surfaces, defeating the purpose of a highefficiency filter.

Special air filtration is necessary only where installations are exposed to corrosive gases, salt air, or unusual dirt or dust conditions.

TEMPERATURE AND HUMIDITY RECORDING INSTRUMENTS

It is recommended that all customers install temperature and humidity recording instruments. Recording instruments are necessary to provide a continuous record of temperature and humidity conditions in the machine area. Also, if the air conditioning requirements are not met, a record is available to indicate the extent and duration of the undesirable condition and to indicate whether a drying-out period is required. This may, in some cases, save machine downtime.

The record of temperature and humidity can be used:

1. To assure the customer that his air conditioning installation is continuously performing its job. Installation errors and loss of efficiency because of malfunction of some part of the air conditioning system can be quickly detected.
2. To determine whether a mandatory drying-out period is necessary when humidity limitations are exceeded. The drying-out period may be necessary if the excess humidity occurs either during periods of actual machine operation or during periods when the machine is down and unattended. The extent and duration of the excess humidity determines the duration of the drying-out period.
3. To determine whether the environment in the area meets the requirements for the machine.
A visual or an audible signal device should be incorporated into the instrument. It provides a visual or an audible indication that the temperature or humidity conditions to the computer area are nearing the maximum limitations stated in this manual. Action can then be taken by the customer's personnel to correct this situation.

Direct-reading instruments with a seven-day, electric-drive chart should be used for all installations to monitor the ambient room conditions. The recorder should be at a representative location within the room and adjacent to the control devices.

For use in monitoring the underfloor air conditions, a remote indicating instrument is recommended. This should also have a seven-day, electric-drive chart and can be the wet and dry bulb or electronic type if direct reading is not available. The recording instrument can be on the wall in the room or in the mechanical equipment room or in any other location convenient to the building engineer.

Air Distribution and Types of Systems

The heat load of the computer system is concentrated in a relatively small area. For this reason, careful attention should be given to the method of air distribution to eliminate areas of excessive air motion.
Several types of air conditioning systems can be designed to satisfy the temperature and humidity requirements. The following are the most common types of systems in use with a brief description of each. In no case should these descriptions be considered complete, and the use of an experienced air conditioning design engineer is strongly recommended. All local building codes should be checked, including the electrical code, as some localities will not permit the use of the raised floor for air conditioning as described in the following text.
The system should use predominantly recirculated air with a set minimum for introduction of fresh air for personnel. This minimum fresh air introduction will enable the machine area to be pressurized so that air leakage is always outward. This will help prevent dust entry from adjacent areas.

SINGLE DUCT (OVERHEAD SYSTEM)

In this system, the entire heat load of the room, including the heat generated by the computer system, is absorbed by the air supplied to the machine room. The air is generally supplied from either an overhead duct and diffuser system or by a ceiling plenum.
The return air to the air conditioning unit is taken from either ceiling return registers above the heat-producing units, or a fixed pattern of returns both in the ceiling or on the walls around the periphery of the room.
The temperature control system would consist of temperature and humidity controls placed in a representative location within the machine room. A temperature and humidity recorder (previously described) would be mounted adjacent to the controls to monitor the room conditions.

UNDERFLOOR SYSTEM

In this system, the space between the regular building floor and the raised floor is used as a supply plenum. All air is discharged into the room through floor registers around the perimeter of the area. The air is returned to the air conditioning unit by means of ceiling registers located directly above the machine units.
A higher return temperature can be used in this system without affecting the design conditions of the overall room. The design of this system takes into consideration a heat transfer factor through the metal floor. This affords a
certain amount of reheat to control relative humidity of air before it enters the room.
The temperature control system would consist of the same controls as described for the single duct system. In addition, the system must have controls of air temperature in the underfloor supply system to prevent an uncomfortably cold floor. Air entering the machine through the cable holes must be within stated machine specifications.

TWO DUCT (TWO AIR CONDITIONING UNIT SYSTEM)

One air handling unit with separate controls supplies conditioned and filtered air to the area under the raised floor. The air is discharged into the room through the floor panels or the registers. This air absorbs the heat generated by the machine and is discharged from the top of the units into the room. Relative humidity of the air supplied to the units should be maintained below 80% and temperatures should be controlled to prevent condensation on or within the units.
To ensure a controlled relative humidity, it will be necessary to provide for a reheat system to operate in conjunction with the cooling unit. This unit is basically a sensible cooling operation.
The second air handling unit supplies air directly to the room through a separate duct system and should be large enough to absorb the remaining heat load in the computer area. It should be capable of maintaining room temperature and relative humidity as specified in this manual and give complete year-round air conditioning, ventilation, and heating.

TWO DUCT (SINGLE AIR CONDITIONING UNIT SYSTEM)

This system is similar to the preceding system except in one respect: This system uses only one air handling unit to supply both air circuits. The air is filtered and the temperature and humidity are regulated before air is supplied to the room and the underfloor area.
A split coil with reheat and/or face and bypass dampers can be used to regulate the air to be supplied to the underfloor area. Relative humidity of this air should be maintained below 80% and temperature should be controlled to prevent condensation on or within the units.
The temperature control system for the air being supplied to the overhead system would be the same as for the single duct system. In addition, a control system would have to be installed in the discharge duct to regulate the air supply to the underfloor system. The controls would operate either the separate cooling and reheat coils or the face and bypass dampers to maintain the required conditions. A remote reading temperature and humidity recorder should be installed with the sensing elements in the discharge air to the underfloor system to monitor the air entering the machine units.

Power Requirements

The computer system can be supplied to operate on either a 208 V or a 230 V (not both), 3-phase (1-phase for some machines; see individual machine specification pages), 3 -wire, 4 -conductor, $60-\mathrm{Hz}$ supply. The four conductors consist of three phase wires and one insulated equipment grounding conductor (green or green with yellow trace).
Total system power demand depends on the system configuration, as well as on the type of operation. A quick summary can be obtained by adding the kVA values as shown on the individual machine specification pages.

VOLTAGE LIMITS

The line-to-line, steady-state voltage must be maintained within plus 10% or minus 8% of the normal rated voltage, measured at the receptacle, when the system is operating.

FREQUENCY LIMITS

The line frequency must be maintained at 60 Hz plus or minus $1 / 2 \mathrm{~Hz}$.

LINE-TO-LINE VOLTAGE IMBALANCE

The value of any of the three line-to-line equipment voltages in a three-phase system shall not differ by more than 2.5% from the arithmetic average of the three voltages. All three line-to-line voltages shall be within the limits specified under "Voltage Limits."

HARMONIC CONTENT

The maximum total harmonic content of the power system voltage waveforms on the equipment feeder shall not exceed 5% with the equipment not operating.

Power Distribution System

PRIMARY COMPUTER POWER SERVICE

For maximum system reliability, the computer power panel should connect to feeders that serve no other loads. Transient-producing devices, such as accounting machines, card punch machines, typewriters, desk calculators, and so forth, should be connected to separate panels from those feeding the computer units to eliminate potential sources of noise interference to the computer system.

BRANCH CIRCUITS

The computer branch circuit panel should be in an unobstructed, well-lighted area in the computer room.
The individual branch circuits on the panel should be protected by suitable circuit breakers properly de-rated according to manufacturer specifications and applicable codes. Each circuit breaker should be labeled to identify the branch circuit it is controlling.
The grounding wire of the branch circuit must be insulated and equal in size to the phase conductors.
Branch circuits should terminate under the raised floor as close as possible [within 10 feet $(3,05 m)$] to the machine they supply. The branch circuits should be run in metallic conduit, either rigid or nonrigid. This conduit system should be continuous and uninterrupted from the receptacle to the building or transformer ground. See Figure 1-2 for further details.
Power cords are supplied in $14-\mathrm{foot}$ ($427-\mathrm{cm}$) lengths, unless otherwise noted on the specification page. The length is measured from the symbol \oplus on the plan views. Power plugs furnished by IBM that can be located under the computer floor will be watertight. The customersupplied receptacle should be watertight or nonwatertight and can be either an inline or a fixed type, depending on local code requirements.

Note: The service ratings for the branch circuit connections are given in the "Specification Summary," Appendix E or F.

GROUNDING

All IBM units are provided with an equipment ground wire (green or green with yellow trace). At the branch circuit panel, the green wire ground from all units must be tied into one main grounding conductor. This equipment grounding wire must be carried back to service ground or suitable building ground. This is a noncurrent-carrying ground, not a neutral. Conduit must not be used as the only grounding means.
Wherever possible, the system's power panel shall be mounted in contact with bare building steel or connected to it by a short length of cable. Where this is not possible, a metal area (power panel plus conduit plus plate) of at least 10 square feet $\left(0,93 \mathrm{~m}^{2}\right)$ in contact with masonry shall be connected to the green-wire common. The connection shall not be more than 5 feet (152 cm) long and shall consist of \#12 AWG [0.0051 square inches ($3,3 \mathrm{~mm}^{2}$)] or larger wire.

PHASE ROTATION

The three-phase power receptacles for use with the system must be wired for correct phase rotation. Looking at the face of the receptacle, and running counterclockwise from the ground pin, the sequencing will be phase 1 , phase 2 , and phase 3. See Figure 1-2.

EMERGENCY POWER-OFF CONTROLS

As a safety precaution, in addition to emergency power-off switches for individual components or other units of equipment, controls for the disconnecting provided as a part of the main service wiring supplying the electronic computer equipment shall be convenient to the operator. These controls should also be next to each exit door to readily disconnect power to all electronic equipment in the computer area and to the air conditioning system. Provision should be made for emergency lighting. See "Supporting Facilities" under "Safety and Fire Precautions" and notes on motor-gent ator specification pages.

LIGHTNING PROTECTION

It is recommended that the customer install lightning protection on his secondary power source when:

1. Primary power is supplied by an overhead power service.
2. The utility company installs lightning protectors on the primary power source.
3. The area is subject to electrical storms or equivalent type power surges.
The determination as to whether lightning protection is desirable, the selection of the service protector needed, and its proper installation are to be made by the customer.

CONVENIENCE OUTLETS

A suitable number of convenience outlets should be installed in the computer room and CE room for use by building maintenance personnel, porter service, customer engineers, etc. Convenience outlets should be on the lighting or other building circuits, not on the computer power panel or feeder. See "CE Room and Test Area" for details of requirements in that area.

Under no circumstances are the system convenience outlets on IBM units to be used for any purpose other than normal servicing.

PRIMARY POWER PROBLEM AREAS

All reasonable efforts have been made in the machine design to ensure satisfactory operation from the normal power supplied by most power companies. There are, however, many outside variables over which neither your power company nor IBM has any control. To guard against possible computer malfunctions caused by outside (radiated or conducted) transient electrical noise signals being superimposed on the power supplying your computer, power distribution design should comply with the computer system requirements specified in this manual.

Failures caused by your power supply are basically of two types:

1. Power Outages: This includes short duration dips in voltage as well as prolonged outages. If the frequency of such power failures is not acceptable for your operation, it may be necessary to install static, rotary, or a combination of both types of standby power systems. The IBM Installation Planning representative will discuss your application requirement with you.
2. Transient Electrical Noise Superimposed on Power Lines: This type of problem may be caused by a wide variety of industrial, medical, communications, or other equipment in the vicinity of the power company's distribution lines, or within or adjacent to your facilities. Electromechanical equipment such as adding machines, card punch machines, etc., on the same power source as the computer, may, under certain conditions, cause intermittent electrical disturbances.
If transient-producing devices have been eliminated from the feeder and the computer room power panel and power line disturbances are still present, it may be necessary for the customer to install isolation equipment (for example, transformers, motor generators, and so forth).

Notes:

1. Remotely disengaged by an emergency device located near the console operator and next to the main exit door.
2. Ground wire (green or green with yellow trace).

Figure 1-2. Power Distribution System

Safety and Fire Precautions

Safety is a vital factor in planning for a large computer installation. This consideration is reflected in the choice of a computer location, building materials used, fire prevention equipment, air conditioning and electrical systems, and personnel training.

COMPUTER LOCATION

1. The computer area should be in a noncombustible or fire-resistive building or room.
2. The computer room should not be above, below, or adjacent to areas where inflammable or explosive materials or gases are stored, manufactured or processed. If the customer must locate near such an area, he should take precautions to safeguard the area.

FIRE PREVENTION CONSIDERATIONS

1. Walls enclosing a computer area should be of noncombustible materials. These walls should extend from floor to ceiling. If walls are made of combustible material, they should be protected as prescribed by code.
2. If a computer area has one or more outside walls adjacent to a building that is susceptible to fire:
a. Installation of shatterproof windows in the computer room would improve the safety of personnel and equipment from flying debris and water damage.
b. Sprinklers could be installed externally over the windows to protect them with a blanket of water if a fire occurs in the adjacent area.
c. Windows could be sealed with masonry.
3. Where a false (or hung) ceiling is to be added, it should be constructed of noncombustible or fire-resistant material. All ducts and insulating materials should be noncombustible and nondusting. If combustible materials are used in the space between the structural ceiling and the false ceiling, appropriate protection should be provided.
4. A raised floor, installed over the structural floor, should be constructed of noncombustible or fire-retardant materials. If the structural floor is of combustible material, it should be protected from the ceiling below, preferably by water sprinklers. (Note: Before the computer is installed, the space between the raised and the structural floors should be cleared of debris. Also, this space should be periodically checked after installation, to keep it free of accumulated dust and possible debris.)
5. The roof or floor above the computer and tape storage areas should be a watertight slab. If practical, the walls of the room should be sealed to the slab in such a manner as to prevent water entering from above.
6. Subfloor space should be provided with positive drainage.
7. When machines are connected to a system but are located in a different room from the CPU (or system EPO), a switch that is capable of disconnecting power to the machine(s) shall be provided in the remote location. Check with your IBM Installation Planning representative to determine whether the remote IBM units can provide this switch function or whether a wall switch is required.

TYPE OF FIRE PREVENTION EQUIPMENT IN A COMPUTER AREA

1. An early-warning detection system should be installed to protect the computer and tape storage areas. This detection system should actuate an audible alarm.
2. Portable carbon dioxide fire extinguishers of suitable size [15 pounds (7 kg)] and number should be provided in the machine room. Carbon dioxide is a recommended nonwetting agent for electrical equipment (Class C Hazard). Extinguishers should be readily accessible to individuals in the area and extinguisher locations should be visibly marked overhead. Local codes govern the frequency of inspecting the cylinders.
3. Where portable carbon dioxide cylinders are used as the primary extinguishing agent, it is advisable to locate a standpipe or hose unit within effective range of the computer area as a secondary extinguishing agent or backup.
4. If the customer requires or prefers to have a roomflooding system installed, Halon 1301 (see NFPA No. 12A) can be considered on the basis of its excellent safety qualities.
5. In some cases, local codes and ordinances, or insurance regulations, require automatic water sprinklers. Preaction sprinkler systems should be considered if they conform to such codes and ordinances. High temperatures actuate heat-sensitive devices, which open a control valve. This valve, located outside the room, admits water into the sprinkler piping before the sprinkler heads operate. This type of system minimizes the possibility of accidental discharge of water because of failure or mechanical breakage of the automatic sprinkler heads.

DATA STORAGE

1. Any data stored in the computer room, whether in the form of magnetic tape, paper tape, cards, or paper forms, should be limited to the minimum needed for safe, efficient operation and should be enclosed in metal cabinets or fire-resistant containers.
2. For security purposes or for maintaining duplicates of master records, a separate storage room should be used. This room should be constructed of fire-resistant material and should contain the same type of fire prevention equipment as described in "Type of Fire Prevention Equipment in a Computer Area."

SUPPORTING FACILITIES

Air Conditioning Systems

1. In most installations, the computer area is controlled by a separate air conditioning system. In these cases, an emergency power-off switch should be placed in a convenient location, preferably near the console operator or next to the main exit door. Fusible-link dampers should be located at fire walls and at places as prescribed by local code.
2. Where the regular building air conditioning system is used, with supplemental units in the computer area, the supplemental units would then be handled as stated in item 1 . The regular building air conditioning system should have an alarm in the regular building maintenance area to alert the maintenance personnel of an emergency. Air ducts serving other areas but passing through the computer room should contain fusible-link dampers at each wall of the computer room.
3. The air filters used as part of the air conditioning system should contain noncombustible or self-extinguishing material.

Electrical Systems

1. The mainline breaker for the computer equipment should be remotely operated. The remote controls should be in a convenient location, preferably near the console operator and next to the main exit door. A light should be installed to indicate when power is on.
2. Some local codes require a special battery-operated lighting unit that will automatically illuminate an area if a power or lighting circuit failure occurs. These units are wired to and controlled by the lighting circuit. When not required by code, it is recommended that such lights be installed.
3. Watertight connectors should be used if they must be located where they may be exposed to excessive moisture. Proper drainage will guard against flooding or trapping water under the raised floor in the computer room. This is important in new buildings where the regular floor is recessed and the raised surface is on the level of the adjacent areas.
4. Where continuity of operation is essential, a standby power source should be installed.

PREPLANNING TO CONTINUE OPERATION IN AN EMERGENCY

The continued operation of a customer's computer depends on information stored on cards, tapes, disks, drums, and so forth. Also, equipment must be available to process the information. Arrangements should be made for emergency use of other equipment and transportation of personnel, data, and supplies to a temporary location. Duplicate or master records should be maintained from which the necessary information can be taken to resume operation. These records should be stored in a remote area.

GENERAL PRECAUTIONS AND PERSONNEL TRAINING

1. The computer room, air conditioning equipment room, and data storage room should be monitored during nonoperating hours.
2. Steampipes and waterpipes above the false ceiling should be inspected to guard against possible damage because of accidental breakage, leakage, or condensation.
3. Emergency exit doors should be located in the computer area. The number of doors depends on the size and location of the area.
4. Personnel should be trained in emergency measures such as:
a. Method and sequence of shutting off all electrical power.
b. Shutting off air conditioning system.
c. Handling fire extinguishers in the approved manner.
d. Operating a small-diameter fire hose.
e. Evacuating records.
f. Evacuating personnel.
g. Calling fire company.
h. First aid.

ADDITIONAL REFERENCE MATERIAL

Consult NFPA Standard No. 75, "Protection of Electronic Computer/Data Processing Equipment."

Storage of Tape, Disk Pack, Disk Cartridge, and Data Cell

Storage facilities for frequent or infrequent usage of magnetic tape should be maintained within the following limits:

IBM Heavy-Duty Magnetic Tape

Relative Humidity: 20\% to 80%
Temperature: 40° to $90^{\circ} \mathrm{F}\left(4^{\circ}\right.$ to $32^{\circ} \mathrm{C}$)
Mylar* Tape-Long-Term Storage
Relative Humidity: 20% to 80%
Temperature: 50° to $90^{\circ} \mathrm{F}$ (10° to $32^{\circ} \mathrm{C}$)
Tape exposed to atmospheric conditions outside the preceding limits will require reconditioning before it is used. This is accomplished by permitting the tape to remain in the correct operating environment for a length of time equal to the storage time (up to maximum reconditioning period of 24 hours).
The tape should be stored in a dustproof container in a vertical position and should never come in contact with magnetic material at any time. Magnetic fields of greater than 50 -oersted intensity can cause loss of information or introduction of noise.
When shipping magnetic tape, each reel should be sealed in a plastic bag and packed individually in stiff cardboard shipping boxes. These may be obtained from IBM.

[^1]The disk pack, disk cartridge, and data cell are precision instruments. Storage facilities should be maintained within the following limits:

Disk Pack and Disk Cartridge

Short-Term Storage:
Temperature: 60° to $90^{\circ} \mathrm{F}\left(16^{\circ}\right.$ to $32^{\circ} \mathrm{C}$)
Relative Humidity: 10% to 80%
Long-Term Storage:
Temperature: 40° to $150^{\circ} \mathrm{F}\left(4^{\circ}\right.$ to $66^{\circ} \mathrm{C}$)
Data Cell
Storage:
Temperature: 50° to $110^{\circ} \mathrm{F}\left(10^{\circ}\right.$ to $43^{\circ} \mathrm{C}$)
Relative Humidity: 8% to 80%
Max Wet Bulb: $80^{\circ} \mathrm{F} \quad\left(27^{\circ} \mathrm{C}\right)$
Disk packs, disk cartridges, and data cells must be conditioned to the machine operating environment before use. This is accomplished by permitting the device to remain in the correct operating environment for a length of time equal to the time out of the operating environment (up to a maximum conditioning period of 2 hours).
These devices are equipped with dustproof covers which should be left in place, except when installed in the file. Storage should be in fire-resistant cabinets away from magnetic fields. Magnetic fields of greater than 50 oersteds can cause loss of information or introduction of noise.

Additional information concerning handling, operation, device dimensions, flammability characteristics, shipping requirements, and housekeeping is in IBM Disk Pack Handling and Operating Procedures, GA26-5756, and IBM Data Cell Handling Guide, GA26-3633.

Priority

INPUT/OUTPUT PRIORITY SEQUENCE

Channel capabilities are affected by the sequence in which I/O devices are attached to the channel. This sequence is called priority. This is most pronounced on the byte multiplexer channel. For assigning priorities, the devices are divided into three groups:

Class 1: Devices subject to overrun.
Class 2: Devices that require channel service in synchronization with their mechanical operations.
Class 3: Devices that do not require their channel service to be in synchronization with their operations.

Device Wait (Critical) Time

After a multiplex-mode device requests channel service, it has a fixed length of time that it can wait for service. If the channel provides service within this length of time, the device operates satisfactorily. If, however, the channel does not service the device within the device's wait time, either of two things happens: If the device is not subject to overrun, it continues waiting; if it is subject to overrun, it loses data and subsequently causes an I/O interruption condition. For example, when an IBM 1403 Printer on an overloaded byte multiplexer channel fails to receive data within its particular wait time, it merely waits until service is provided by the byte multiplexer channel. The delay does not cause an interruption condition, nor is a new start I/O instruction required for selecting the 1403. The only effect is a lessening in performance. If an IBM 1442 Card Read Punch read operation does not receive data service within its wait time, however, overrun occurs.
Wait (critical) time factors for multiplex-mode devices are listed in Appendix B.
In attaching devices to the byte multiplexer channel, the various classes are normally attached in numeric sequence (1,2 , and 3). Within each class, devices are usually attached in order of increasing critical time intervals. Differences in how individual I/O devices are programmed may require two I/O devices with either the same or nearly the same critical times to be swapped in priority for proper operation. No information can be lost with devices of class 2 or 3. A device not required to operate at its rated performance may be attached with a lower priority than normally assigned.

Devices that operate in burst mode may be attached to byte multiplexer channel in any physical location; from a performance standpoint, these units should be assigned lowest priority. On the selector or block multiplexer channel, devices are assigned priority according to data rate within class sequence.

In determining the attachment of I/O devices to selector or block multiplexer channels, the following guidelines generally apply. Class 1 devices with the highest data rates are normally attached to the lowest numbered channels (for example, channel 1). Because service to class 2 and 3 devices may be delayed without the loss of information, they usually are attached to the highest numbered channels (for example, channels 3 and 4).
In determining the priority of control units which operate multiple devices with different priority rules (for example, a 2821 that attaches both class 2 and class 3 devices and the 2702 or tape control units that may attach devices with different data rates), the highest priority for any of the attached devices is normally used.
The class designation, critical time, and data rates for various units and features are in Appendix B. For additional information, see the appropriate system or channel characteristics publication.
Control units are addressed by the channel via a cable that contains "select in" and "select out" lines. A particular control unit can be connected to either line. Control units may be in any physical sequence on these lines that will permit connection in accordance with the prescribed priority sequence. Several physical sequences of units are usually possible that will provide the same priority sequence.
Cables must be ordered by starting at the unit most remote from the CPU. Cables are then specified from unit to unit back to the channel or CPU. It is necessary that the proper sequence be observed to ensure receiving the proper length cables. The machine type numbers used in the "From" and "To" columns of the cable order form determine the amount of cable required to connect to the proper location inside the units at each end of the cable. When ordering a cable to attach from one location to another within the same unit (for example, SF \#1850 on one channel to another channel within the same unit), specify an " X " length of " 0 " feet, unless otherwise directed.

Cables

IBM supplies the necessary cables for the initial installation as specified in this manual. The cables are custom-made to the lengths required for each installation. Cables are measured in accordance with the approved layout. The group number and channel where required, along with the required cable length, must be submitted for each cable in the computer system. The required cable length is defined as the center-to-center distance between machine cable entry holes measured along the intended route of the cable as projected on the floor or other mounting surface. When machines are mounted on a raised floor, twice the height of the raised floor should be included in the required cable length. IBM makes allowance for the portion of each cable that is from the floor or mounting surface into the machine. For best electrical design and computer performance, all cable lengths should be kept as short as possible. External interconnecting cables should be installed under the raised floor. Where a raised floor is not used, these cables should be protected from mechanical damage, scuffing, and in a manner that will not present a safety hazard to operating personnel.
Orders for cables that exceed the maximum lengths specified for the system must be approved by IBM and may result in extra charges. Consult your IBM representative.
When a unit requires external cables which must be purchased by the customer and installed through walls and/or floors, the purchase of this cable and the arrangements for its installation should be made with sufficient lead time to permit the cable facilities to be available to the computer system at installation time. This pertains to units such as the IBM $2260,3270,3704$, and 3705.

CABLES SUPPLIED

Cables Related to Initial Installations

One cable or one "cable group" within standard specifications in accordance with an approved layout, required to install machines being delivered from IBM, will be supplied by IBM at no additional charge unless customer-supplied or a chargeable basis is indicated (such as for IBM 2260 cables). Orders for cables not within the standard specifications must be accompanied by an approved RPQ. For detailed instructions on entering cable orders, consult your IBM representative.
Changes in cable order specifications requested within three months of the scheduled date of shipment (or subsequent to any non-IBM-caused deferment within three months of scheduled date of shipment) may be subject to charge.
Any cables (of the type provided at no charge for an initial installation) required for rearrangement of previously installed IBM machines necessary to accommodate the installation of machines being delivered from IBM, will be supplied by IBM at no charge on an exchange basis. An explanation of why the cables are required must accompany the cable order. All replaced cables must be returned to IBM.

Other Cable Requests

Cables requested for other reasons (for example, additional or replacement cables for rearrangement not caused by installation of machines being delivered from IBM, cables to connect IBM and non-IBM equipment, etc.) will be considered only on an RPQ basis.

Field Engineering Support Facilities

CE ROOM AND TEST AREA

The customer engineers' test area for a single installation should contain between 70 and 400 square feet (7 and $38 \mathrm{~m}^{2}$) of space depending on the size of the system, and be air conditioned to the same specifications as the machine room.
The IBM Field Engineering Branch Manager will provide, on a scaled layout, the Field Engineering equipment which will be installed in the CE room to assist the customer in locating receptacles, lights, and so forth.
The test area should contain at least one 208 V (or 230 V), 3-phase, 20A power receptacle (Hubbell or Pass and Seymour type 7250 or equivalent) for operation of the tape unit testing equipment. At least two 115 V , single-phase, 15 A receptacles (convenience outlets) and other receptacles adequate to repair any unit that can be serviced in the CE room should be provided. The 115 V receptacles (convenience outlets) should not be supplied power from the computer power panel.

FURNITURE AND FIXTURES

The furniture and fixtures for the CE room will be determined by local Field Engineering management and will vary according to the size of the system or systems installed and the number of customer engineers required.
The following is a partial list of typical furniture and fixtures:

	Length		Width		Height	
	in.	$c m$	in.	cm	in.	cm
Desk	45	114	34	86	29	74
Workbench	72	183	30	76	35	89
Shelf Cabinet	36	91	18	46	72	183
Parts Cabinet	42	107	24	61	87	221
File Cabinet	18	46	28	71	60	152
Bookcase	$33-1 / 4$	84	$15-1 / 4$	39	42	107
Study Table	60	152	30	76	29	74
Book Cart	40	102	13	33	31	79
Card File	17	43	24	61	9	23
Microfiche Viewer	24	61	24	61	54	137
Tool and Test Equipment						
\quad Cart	22	56	22	56	35	89

Templates for the furniture listed are available from IBM. See Appendix D for order (form) number.

RETAIN/370 SERVICE

The IBM 2955 Field Engineering Data Adapter Unit (FE DAU) for RETAIN/370 is used on System/360 Model 195. The 2955 has the following specifications:

Dimensions: See plan view on the following page.

Weight: $\quad 600 \mathrm{lb}(280 \mathrm{~kg})$
Heat Output: $\quad 3,000 \mathrm{BTU} / \mathrm{hr}(760 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 120 \mathrm{cfm}\left(4 \mathrm{~m}^{3} / \mathrm{min}\right)$
Power Requirements: $\quad 1.0 \mathrm{kVA}$, single phase, 60 Hz
Power Plug: R\&S, FS3720. Customer supplies either R\&S, FS3743 receptacle or R\&S, FS3913 connector.

Cabling Schematic: See Section 4.
Note: The FE DAU takes one control unit position on a byte multiplexer channel. It is a class 1 device with a critical time of 14.1/N.

BASIC STORAGE MODULE (BSM) ANALYZER

Provision must be made for testing the spare BSM for IBM System/360 Models 85 and 195.
The spare BSM is within the frame of a mobile service cart. The physical dimensions and other specifications for the spare BSM and cart are:

Dimensions: See plan view on the following page.
Weight: $\quad 500 \mathrm{lb}(230 \mathrm{~kg})$

Heat Output:	To Air	To Water
BTU/hr	3,100	2,500
$(\mathrm{kcal} / \mathrm{hr})$	(790)	(630)

Airflow: $325 \mathrm{cfm}\left(10 \mathrm{~m}^{3} / \mathrm{min}\right)$

For servicing, this cart must be near the analyzer.
For the Model 85 with IBM 2385 Processor Storage Model 1 or 2 , the $415-\mathrm{Hz}$ power for testing the spare BSM is supplied from the PDU (frame 14) via the analyzer. IBM furnishes the connector and up to 100 feet of cable to the analyzer. The $60-\mathrm{Hz}$ power is supplied from the customer's wall outlet or inline connector. Coolant is supplied from the CDU (2385 frame 01) via 100 feet of hose.

The Model 85 test area will contain a BSM analyzer with the following specifications:

Dimensions: See plan view on the following page.
Weight: $1,040 \mathrm{lb}(480 \mathrm{~kg})$
Heat Output: $12,900 \mathrm{BTU} / \mathrm{hr}(3.300 \mathrm{kcal} / \mathrm{hr})$
Airflow: $1,240 \mathrm{cfm}\left(36 \mathrm{~m}^{3} / \mathrm{min}\right)$
Power Requirements: $\quad 4.5 \mathrm{kVA}, 60 \mathrm{~Hz}$ $3.0 \mathrm{kVA}, 415 \mathrm{~Hz}$

For the Model 195, specifications for the BSM analyzer are identical, except that no customer-supplied powè plug or receptacle is needed because both $415-\mathrm{Hz}$ and $60-\mathrm{Hz}$ power are supplied from the IBM 3085 Power Distribution Unit (PDU), frame 09. Coolant is supplied from the IBM 3086 Coolant Distribution Unit '(CDU), frame 02, via 125 feet of hose.

[^2]
System/360 and System/370 Field Engineering Furniture and Test Equipment

PLAN VIEWS

Standard Symbols

Figure 1-3 shows the symbols adopted as standard for the IBM System/360. Frame numbers are shown circled on plan views and cabling schematics, for example, (04).

In Plan Views:

Figure 1-3. Standard Symbols

Standard Specifications

SHIPPING DIMENSIONS

Unless otherwise noted on individual specifications page, the following statement applies: All system components can be reduced to $291 / 2^{\prime \prime} \times 60^{\prime \prime}(75 \mathrm{~cm} \times 152 \mathrm{~cm})$ or smaller sections for shipment.

ENVIRONMENTAL SPECIFICATIONS

Unless otherwise noted on individual specifications pages, the following environmental specifications apply:

Environment Operating:	
Temperature	$60^{\circ}-90^{\circ} \mathrm{F}\left(16^{\mathrm{O}}-32^{\mathrm{O}} \mathrm{C}\right)$
Rel Humidity	$20 \%-80 \%$
Max Wet Bulb	$78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$
Environment Nonoperating:	
Temperature	$50^{\circ}-110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$
Rel Humidity	$8 \%-80 \%$
Max Wet Bulb	$80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$
Environment Shipping:	
Temperature	-40° to $140^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Rel Humidity	$5 \%-100 \%($ no condensation $)$
Wet Bulb Range	$33^{\mathrm{o}}-80^{\circ} \mathrm{F}\left(1^{\mathrm{O}}-29^{\circ} \mathrm{C}\right)$

METRIC CONVERSIONS

In this manual, English units converted into metric units are rounded to the nearest whole number or to the nearest decimal place given. Exceptions are kilograms (kg), kilo-
calories per hour ($\mathrm{kcal} / \mathrm{hr}$), cubic meters per minute $\left(\mathrm{m}^{3} / \mathrm{min}\right)$, lumens per square meter (lumens $/ \mathrm{m}^{2}$), kilograms per square meter ($\mathrm{kg} / \mathrm{m}^{2}$) pertaining to floor loading, and meters (m) pertaining to altitude; these are rounded to the $1 / 10 / 50$ rule.
To round according to the $1 / 10 / 50$ rule:

1. When the number is less than 100 , round up to the next unit, for example, 23,2 or 23,7 becomes 24 .
2. When the number is greater than 100 and less than 1,000 , round up to the next ten, for example, 163 becomes 170 .
3. When the number is greater than 1,000 , round up to the next 50 , for example, 1.232 becomes 1.250 .
Note that numbers expressed in metric units use commas in place of decimal points and decimal points in place of commas (for example, two thousand one hundred kilograms is expressed as 2.100 kg and one-half becomes $0,5)$.

MANUFACTURERS OF PLUGS, RECEPTACLES, AND CONNECTORS

Hansen-Hansen Manufacturing Co.
Hubbell (H)-Harvey Hubbell, Inc.
Pass and Seymour (P\&S)-Pass and Seymour, Inc.
Russell and Stoll (R\&S)-Midland Ross Corp.

ABBREVIATIONS AND DEFINITIONS

A	ampere	mfg	manufacturing
ambient	environment	MG	motor generator
AWG	American wire gauge	min	minimum/minute
		mm	millimeter
blk mpxr	block multiplexer	MP	multiprocessing
bpi	bits per inch	mpxr	multiplexer
bps	bits per second	ms	millisecond
BSM	basic storage module	MTU	magnetic tape unit
BTU	British thermal unit		
bus	one or more conductors used for transmitting signals or power	N	in sorting, file size, the number of records to be processed by the sort
C	Celsius/coupler	NEMA	National Electrical Manufacturers'
CCITT	Consultant Committee of International		Association
	Telephone \& Telegraph (WT)	NFPA	National Fire Protection Association
CDU	coolant distribution unit	No.	number
CE	customer engineer		
CER	customer engineering room	OD	outside diameter
cfm	cubic feet per minute	oersted	centimeter-gram-second electromagnetic
ch	channel		unit of magnetic intensity
cm	centimeter	ohm	practical meter-kilogram-second unit of
conn	connector		electrical resistance equal to the
CPU	central processing unit	.	resistance of a circuit in which a
CRT	cathode-ray tube		potential difference of 1 volt pro-
C-T-C	connector-to-connector		duces a current of 1 ampere
DAA	Data Access Arrangement	P\&S	Pass and Seymour
DAU	data adapter unit	PDU	power distribution unit
dist	distribution	pH	hydrogen-ion concentration
		ppm	parts per million
EIA	Electronic Industry Association	proc	processing
EPO	sequence and control	psi	pounds per square inch
		psig	pounds per square inch gauge
F	Fahrenheit/front	pwr	power
FE	field engineering		
FE DAU	Field Engineering Data Adapter Unit	R	rear
fr	frame	R\&S	Russell \& Stoll
ft	feet	rdr	reader
		Rel	relative
gpm	gallons per minute	RPQ	Request for Price Quotation
		Rt	right
H	height/Hubbell		
hp	high pressure/horsepower	S	side
Hz	hertz	SCU	storage control unit
		sec	second
in.	inch	service clearance	minimum space required to allow
I/O	input/output		working room for the machine operator and/or the customer engineer for
kcal/hr	kilocalories per hour		servicing the unit
kg	kilogram	SF	special feature
$\mathrm{kg} / \mathrm{cm}^{2}$	kilograms per square centimeter	slr	selector
$\mathrm{kg} / \mathrm{m}^{2}$	kilograms per square meter	stg	storage
kVA	kilovolt ampere		
		TNL	Technical Newsletter
L	left		
lb	pound	UK	United Kingdom
lumens/m ${ }^{2}$	lumens per square meter	U.S.	United States
m	meter	V	volt
max	maximum	VFL	variable field length
MCM	thousand circular mils		
$\mathrm{m}^{3} / \mathrm{min}$	cubic meter per minute	WT	World Trade

Section 2. System Specifications and Cabling Schematics

PLAN VIEW

SPECIFICATIONS

Dimensions:*

	F	S	H
Inches	$* *$	$* *$	60
$(\mathrm{~cm})$	$(* *)$	$(* *)$	(152)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$* *$	$* *$	$* *$	$* *$
$(\mathrm{~cm})$	$(* *)$	$\left({ }^{* *}\right)$	$(* *)$	$(* *)$

Weight: $\quad 1,500 \mathrm{lb}(690 \mathrm{~kg})$

Heat Output: $\quad 6,900 \mathrm{BTU} / \mathrm{hr}(1.750 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 900 \mathrm{cfm}(26 \mathrm{~m} 3 / \mathrm{min})$

Power Requirements:	
kVA	2.4
Phases	3
Plug	R\&S, FS3730
Connector	R\&S, FS3914
Receptacle	R\&S, FS3744
Power Cord Style	D3

Notes:

* Unless otherwise specified, the shipping dimensions on the 2022 are $32^{\prime \prime} \times 68^{\prime \prime} \times 64 "(81 \mathrm{~cm} \mathrm{x}$ $173 \mathrm{~cm} \times 163 \mathrm{~cm}$). Removal of the side covers reduces the width to 29 " (74 cm). If further reduction in length is required, see sales representative for method of specifying on the order. This modifies the unit to $29 " \times 60^{\prime \prime} \times 70^{\prime \prime}$ ($74 \mathrm{~cm} \times 152 \mathrm{~cm} \times 178 \mathrm{~cm}$).
** See plan view.

SYSTEM/360 MODEL 22 CABLING SCHEMATIC

Selector Channel	Byte Multiplexer Channel	CPU	$32-31$

Group No.	No. of Cables	From	To	Max Length $(f t)$	Notes
$32-31$	1				
$32-32$	1	2022	2022	System $/ 360 \mathrm{CPU}$	100
$32-33$	1	2022	System/360 CPU	100	2
		System/360 CPU	100	3	

Notes:

1. For the interconnection of two System/360 CPUs (SF \#3895); order one per feature.
2. To SF \# 3621, two-system EPO connection.
3. To SF \#3622, multisystem EPO connection. See Note 2 in "System/360 Specification Summary."

SYSTEM/360 MODEL 25, 2025 PROCESSING UNIT

PLAN VIEW

* Line Cord
** Power Cables
*** Signal Cables

Notes:

1. Optional Service Area No. 1 or No. 2 required to ensure access to left side of machine for test equipment.
2. This cable opening is required when $S F \# 3622$ is installed.
3. This caster is for shipping purposes. No damage occurs if this caster is over power cord exit hole when
machine is installed.
4. The $5^{\prime \prime} \times 6^{\prime \prime}$ cable opening is designed for the Russell and Stoll plug. Size may be adjusted to conform with other style plugs used on $50-\mathrm{Hz}$ World Trade machines.

SPECIFICATIONS

Dimensions:*			
	F	S	H
	Inches	$* *$	$* *$
$(\mathrm{~cm})$	$\left({ }^{* *}\right)$	$\left({ }^{* *}\right)$	(152)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$* *$	$* *$	$* *$	$* *$
$(\mathrm{~cm})$	$\left({ }^{* *}\right)$	$\left({ }^{* *}\right)$	$\left({ }^{* *}\right)$	$\left({ }^{* *}\right)$
Weight:	$2,050 \mathrm{lb}(930 \mathrm{~kg})$			

Heat Output: $\quad 20,500 \mathrm{BTU} / \mathrm{hr}(5.200 \mathrm{kcal} / \mathrm{hr})$

Airflow: $800 \mathrm{cfm}\left(23 \mathrm{~m}^{3} / \mathrm{min}\right)$

Environment Operating:

Temperature	$60^{\circ}-90^{\circ} \mathrm{F}\left(16^{\circ}-32^{\circ} \mathrm{C}\right)$
Rel Humidity	$8 \%-80 \%$
Max Wet Bulb	$78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$

Notes:

* Unless otherwise specified, the shipping dimensions on the 2025 are 31 " $\times 66-1 / 2$ " $\times 64$ " ($79 \mathrm{~cm} \times 169 \mathrm{~cm} \times 163 \mathrm{~cm}$). Removal of the side covers reduces the width to $29^{\prime \prime}(74 \mathrm{~cm})$. If further reduction in length is required, request special shipping group. This modifies the unit to 29 " $\times 60$ " $\times 70$ " ($74 \mathrm{~cm} \times 152$ $\mathrm{cm} \times 178 \mathrm{~cm}$).
** See plan view.
*** For machines with serial numbers 10001 through 10105 and 10133 through 10160 , use power cord style E3. For machines with serial numbers 10106, 10132, 10161, and higher, use power cord style E5.

SYSTEM/360 MODEL 25 CABLING SCHEMATIC (WORLD TRADE)

Group No.	No. of Cables	From	$\begin{gathered} 2025 \\ \text { Cable Entry } \end{gathered}$	To	$\begin{gathered} \text { Max } \\ \text { Length }(f t) \end{gathered}$	Notes
630	1	2311	Signal	2025	50	17, 20
634	2	2311	-	2311	-	1,19, 20
3501	1	1403	Power	2025	25	15
3502	2	1403	Signal	2025	25	14, 15
3504	1	2540	Power	2025	25	18
3505	1	2540	Signal	2025	25	16
3507	1	2311 \#1	Power	2025	-	1,18,20
3508	1	2311 \#1	Signal	2025	-	1,18,20
3510	2	Direct Control	Signal	2025	50	2
3511	1	System/360 CPU	Signal	2025	100	3
3512	1	2025	Power	System/360 CPU	100	4
3513	1	2025	Power	System/360 CPU	100	5
3516	4	Data Set	Signal	2025	40	8,12
3517	2	Data Set	Signal	2025	40	8, 12
3518	1	Telegraph	Signal	2025	40	9,12
3520	2	1403	Signal	2025	25	14, 15
3521	3	2560-A1	Signal	2025	13	-
3522	1	2560-A1	Signal	2025	13	11
3524	2	2560-A1	Power	2025	13	-
3526	1	Data Set Swedish PTT, Japanese NTT, or IBM 3976 or 3977	Signal	2025	40	10, 12
3527	1	Data Set UK GPO or German PTT	Signal	2025	40	10, 12

Notes:

1. Total length of groups 3507 or 3508 and 634(s) should not exceed 100 feet.
2. For SF \#3274 (direct control) and \#3895 (external interrupt) from non-IBM device.
3. For SF \#3274 (direct control) and \#3895 (external interrupt) to System/360 CPU; order one per feature.
4. To SF \#3621, two-system EPO connection.
5. To SF \#3622, multisystem EPO connection. See Note 2 in "System/ 360 Specification Summary."
6. See appropriate control unit for sequence and control (EPO) cable group numbers.
7. Channel I/O interface cable to attach up to eight control units is limited to 100 feet. See appropriate control unit for selector or multiplexer channel cable group numbers.
8. For each SF \#7401 (EIA start/stop data adapter base), order data set cables as follows:

SF No.	Cable Group No.
7401	3517
7401 and 7402	3516
7401,7402, and 7403	3516 and 3517

Maximum of four of group 3516 and four of group 3517 for each 2025.
9. For each SF \#7411 (telegraph start/stop data adapter base), order one cable group. Maximum of four of group 3518 for each 2025. Note: No cables are required for SF \#7412 and \#7413 because each group 3518 provides for six lines.
10. Order one group for each of SF \#2727, \#2728, \#3461, \#7551, and \#7552. Maximum of three for each 2025.
11. Required when SF \#1580 (card print control) is installed on the 2025 and SF \#1575, \#1576, or \#1577 is installed on the 2560.
12. See "Cables from Non-IBM Devices" for cable specifications.
13. See "2711 Line Adapter Unit Cabling Schematic" in IBM System/370 WT Installation Manual-Physical Planning, GC19-0004, for cabling information.
14. For all machines shipped after March 1, 1969, use group 3520. If ordering cables to recable or replace existing cables, order the group number identical to that shown on the label of the existing cable. Consult your IBM representative for assistance.
15. The power cable (group 504 C or 505 C) from group 504 or 505 (1403) may be used in place of group 3501 if the 504 C or 505 C cable is the correct length. New cable group 3502 or 3520 (see note 14) must be ordered. The signal cables from group 504 or 505 are not to be used for the 1403-to-2025 integrated attachment feature. Cables from a 1403 to a 2020 are not interchangeable with cables to connect a 1403 to a 2025 .

SYSTEM/360 MODEL 25 CABLING SCHEMATIC (WORLD TRADE)

16. Power cable (group 510A) from group 510 (2540) may be used for power cable group 3504 if the 510 A cable is the correct length. The signal cable (group 510B) may be used in place of signal cable group 3505 if it is the correct length and if it is at EC level 131840 or higher. Consult your IBM representative for assistance.
17. Group 604 must not be used when 2311 s are attached to the 2025 through the integrated attachment feature. Group 630 must be ordered. Installations now using cable group 630 or 3509 may use existing cables if they are the correct length.
18. Cables from group 611 that are used between the 2311 \#1 and the 2841 must not be used for direct attachment to the 2025 . New cable groups 3507 and 3508 must be ordered. Cables from group 633 may be used in place of groups 3507 and 3508 if the existing cables are the correct length.
19. Cables from group 612 that are used between 2311 units must not be used on a System/360 Model 25 . New cable group 634 must be ordered. Cables from existing group 634 or 3515 may be used if the cables are the correct length.
20. Cables used between 2311 units on a System/ 360 Model 20 or between 2311 units and the 2020 are not to be used on the System/360 Model 25.

Cables from Non-IBM Devices

SYSTEM/360 MODEL 25 CABLING SCHEMATIC (U.S.)

SYSTEM/360 MODEL 25 CABLING SCHEMATIC (U.S.)

Group No.	No. of Cables	From	2025 Cable Entry	To	$\begin{gathered} \text { Max } \\ \text { Length }(f t) \end{gathered}$	Notes
630	1	2311	Signal	2025	50	18, 21
632	2	2311	-	2311	-	1,20,21
3501	1	1403	Power	2025	25	16
3502	2	1403	Signal	2025	25	15, 16
3503	1	2540	Power	2025	25	17
3505	1	2540	Signal	2025	25	17
3506	1	2311 \# 1	Power	2025	-	1,19, 21
3508	1	2311 \# 1	Signal	2025	-	1,19, 21
3510	2	Direct Control	Signal	2025	50	2
3511	1	System/360 CPU	Signal	2025	100	3
3512	1	2025	Power	System/360 CPU	100	4
3513	1	2025	Power	System/360 CPU	100	5
3516	4	Data Set	Signal	2025	40	8, 13
3517	2	Data Set	Signal	2025	40	8, 13
3518	1	Telegraph	Signal	2025	40	9,13
3519	4	Data Set (Autocall)	Signal	2025	40	10, 13
3520	2	1403	Signal	2025	25	15, 16
3521	3	2560-A1	Signal	2025	13	-
3522	1	2560-A1	Signal	2025	13	12
3523	2	2560-A1	Power	2025	13	-
3526	1	Data Set (Synchronous)	Signal	2025	4.0	11, 13

Notes:

1. Total length of groups 3506 or 3508 and $632(\mathrm{~s})$ should not exceed 100 feet.
2. For SF \#3274 (direct control) and \#3895 (external interrupt) from non-IBM device.
3. For SF \#3274 (direct control) and \#3895 (external interrupt) to System/360 CPU; order one per feature.
4. To SF \#3621, two-system EPO connection.
5. To SF \#3622, multisystem EPO connection. See Note 2 in "System/360 Specification Summary."
6. See appropriate control unit for sequence and control (EPO) cable group numbers.
7. Channel I/O interface cable to attach up to eight control units is limited to 100 feet. See appropriate control unit for selector or multiplexer channel cable group numbers.
8. For each SF \#7401 (EIA start/stop data adapter base), order data set cables as follows:

	Cable SF No.
7401	3517
7401 and 7402	3516
7401,7402 , and 7403	3516 and 3517

Maximum of four of group 3516 and four of group 3517 for each 2025.
9. For each SF \# 7411 (telegraph start/stop data adapter base), order one cable group. Maximum of four of group 3518 for each 2025. Note: No cables are required for SF \#7412 and \#7413 because each group 3518 provides for six lines.
10. For SF \# 1300 (autocall adapter base), order data set cables as follows:

	Cable Group No.
SF No.	One 3519
1300	One 3519
1300 and 1301	Two 3519s
1300,1301 , and 1302	Tw

11. Order one group for each of SF \# 2727, \#2728, \#3461, \#7551, and \#7552. Maximum of three for each 2025.
12. Required when SF \# 1580 (card print control) is installed on the 2025 and $\mathrm{SF} \# 1575$, \#1576, or \#1577 is installed on the 2560.
13. See "Cables from Non-IBM Devices" for cable specifications.
14. See "2711 Line Adapter Unit Cabling Schematic" in IBM System/370 Installation Manual-Physical Planning, GC22-7004, for cabling information.
15. For all machines shipped after March 1, 1969, use group 3520. If ordering cables to recable or replace existing cables, order the group number identical to that shown on the label of the existing cable. Consult your IBM representative for assistance.
16. The power cable (group 504C or 505 C) from group 504 or 505 (1403) may be used in place of group 3501 if the 504 C or 505 C cable is the correct length. New cable group 3502 or 3520 (see note 15) must be ordered. The signal cables from group 504 or 505 are not to be used for the 1403-to-2025 integrated attachment feature. Cables from a 1403 to a 2020 are not interchangeable with cables to connect a 1403 to a 2025.

SYSTEM/360 MODEL 25 CABLING SCHEMATIC (U.S.)

17. Power cable (group 503A) from group 503 (2540) may be used for power cable group 3503 if the 503A cable is the correct length. The signal cable (group 503B) may be used in place of signal cable group 3505 if it is the correct length and if it is at EC level 131840 or higher. Consult your IBM representative for assistance.
18. Group 604 must not be used when 2311s are attached to the 2025 through the integrated attachment feature. Group 630 must be ordered. Installations now using cable group 630 or 3509 may use existing cables if they are the correct length.
19. Cables from group 605 that are used between the $2311 \# 1$ and the 2841 must not be used for direct attachment to the 2025. New cable groups 3506 and 3508 must be ordered. Cables from group 631 may be used in place of groups 3506 and 3508 if the existing cables are the correct length.
20. Cables from group 606 that are used between 2311 units must not be used on a System/ 360 Model 25 . New cable group 632 must be ordered. Cables from existing group 632 or 3514 may be used if the cables are the correct length.
21. Cables used between 2311 units on a System/ 360 Model 20 or between 2311 units and the 2020 are not to be used on the System/360 Model 25.

Cables from Non-IBM Devices

PLAN VIEW

Note: This cable opening is required when
SF \# 3622 or 1051 is installed.

SPECIFICATIONS

Dimensions: *

	F	S	H
Inches	$* *$	$* *$	60
$(\mathrm{~cm})$	$\left({ }^{* *}\right)$	$(* *)$	(152)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$* *$	$* *$	$* *$	$* *$
$(\mathrm{~cm})$	$\left({ }^{* *}\right)$	$\left({ }^{* *}\right)$	$(* *)$	$(* *)$

Weight: $\quad 1,700 \mathrm{lb}(780 \mathrm{~kg})$

Heat Output: $\quad 10,000 \mathrm{BTU} / \mathrm{hr}(2.550 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 900 \mathrm{cfm}\left(26 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:

kVA	3.8
Phases	3
Plug	R\&S, FS3730
Connector	R\&S, FS3914
Receptacle	R\&S, FS3744
Power Cord Style	D3

Notes:

* Unless otherwise specified, the shipping dimensions on the 2030 are 32 " x 68" x 64" ($81 \mathrm{~cm} \times$ $173 \mathrm{~cm} \times 163 \mathrm{~cm}$). Removal of the side covers reduces the width to $29 "(74 \mathrm{~cm}$). If further reduction in length is required, see sales representative for method of specifying on the order. This modifies the unit to 29 " $\times 60 " \times 70$ "
($74 \mathrm{~cm} \times 152 \mathrm{~cm} \times 178 \mathrm{~cm}$).
** See plan view.

2030

Group	No. of			Max	
No.	Cables	From	To	Length (ft)	Notes
30-02	2	Direct Control	2030	50	4
30-03	2	2030	Control Unit	-	1
30-04	1	System/360 CPU	2030	100	2
30-05	2	2030	2030	(Fixed)	3
30-06	2	2030	Selector Channel	-	1
30-07	2	2030	Multiplexer Channel	-	1
30-08	2	2030	Channel-to-Channel Adapter	-	1
30-09	1	2030	System/360 CPU	100	5
30-10	1	2030	System/360 CPU	100	6

Notes:

1. From channel-to-channel adapter (SF \# 1850); maximum cable length of 100 feet available to attach up to seven control units.
2. For the interconnection of two System/360 CPUs (SF \#3274 and \#3895); order one per feature.
3. Channel-to-channel adapter (SF \#1850) to the channel within the same unit (maximum of one required).
4. For SF \#3274 and \#3895 from non-IBM device.
5. To SF \#3621, two-system EPO connection.
6. To SF \#3622, multisystem EPO connection. See Note 2 in "System/360 Specification Summary."

PLAN VIEW

Frame	Weight		Heat Output		Airflow	
	lb		kg	BTU $/ \mathrm{hr}$	$\mathrm{kcal} / \mathrm{hr}$	cfm
$\mathrm{m}^{3} / \mathrm{min}$						
01	1,700	780	7,000	1.800	300	9
02	610	280	3,500	890		

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	$60^{* *}$
$(\mathrm{~cm})$	$\left.\mathbf{(*}^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	$\left(152^{* *}\right)$

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	$\left({ }^{*}\right)$

	Models	
Weight:	D to G	GF and H
lb	1,700	2,310
$(\mathrm{~kg})$	(780)	(1.050)

Heat Output:

$\mathrm{BTU} / \mathrm{hr}$	7,000	10,500
$(\mathrm{kcal} / \mathrm{hr})$	(1.800)	(2.650)

Airflow:

cfm		
$\left(\mathrm{m}^{3} / \mathrm{min}\right)$	300	300
	(9)	(9)

Power Requirements:

kVA	2.5	3.7
Phases	3	3
Plug	R\&S, FS3760	
Connector	R\&S, FS3934	
Receptacle	R\&S, FS3754	
Power Cord Style	B1	

Environment Operating:

Temperature	$60^{\circ}-90^{\circ} \mathrm{F}\left(16^{\circ}-32^{\circ} \mathrm{C}\right)$
Rel Humidity	$10 \%-80 \%$
Max Wet Bulb	$78{ }^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$

Environment Nonoperating:

Temperature	$50^{\circ}-110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$
Rel Humidity	$10 \%-80 \%$
Max Wet Bulb	$80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$

Notes:

* See plan view.
** Shipping height is $70^{\prime \prime}(178 \mathrm{~cm})$ for Models GF and H .

SYSTEM/360 MODEL 40 CABLING SCHEMATIC

Channel-toChannel Adapter (SF \#1850)	Selector Channel 1	Selector Channel 2	Multiplexer Channel	CPU	40-07		
					$\begin{array}{\|c} \hline 40-08 \\ 40-01 \\ \hline 40-02 \end{array}$		
$\downarrow \begin{aligned} & \text { 40-03 } \\ & 40-04 \\ & 40-05 \\ & 40-06\end{aligned}$							
Other Control Unit, Channel, or Adapter							
Group No.	No. of Cables		From		To	$\begin{gathered} \text { Max } \\ \text { Length }(f t) \end{gathered}$	Notes
40-01	2		Direct Control		2040	50	3
40-02	1		System/360 CPU		2040	100	2
40-03	2		2040		Control Unit	-	1
40-04	2		2040		Selector Channel	-	1
40-05	2		2040		Multiplexer Channel	-	1
40-06	2		2040		Channel-to-Channel Adapter	-	1
40-07	1		2040		System/360 CPU	100	5
40-08	1		2040		System/360 CPU	100	4

Notes:

1. From channel-to-channel adapter (SF \#1850); maximum cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to seven control units.
2. For the interconnection of two System/360 CPUs (SF \#3274); order one per feature.
3. For SF \#3274 from non-IBM device.
4. To SF \#3621, two-system EPO connection.
5. To SF \#3622, multisystem EPO connection. See Note 2 in "System/360 Specification Summary."

SYSTEM/360 MODEL 44, 2044 PROCESSING UNIT

PLAN VIEW

Frame	Weight		Heat Output	
	lb	kg	$\mathrm{BTU} / \mathrm{hr}$	
$\mathrm{kcal} / \mathrm{hr}$				
01	700	320	2,500	640
02	2,200	1.000	16,500	4.200
03	1,300	590	9,000	2.300

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	${ }^{*}$	72
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	(183)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	$\left({ }^{*}\right)$

	Models		
Weight:	E and F	G	H
lb	2,900	2,900	4,200
$(\mathrm{~kg})$	(1.350)	(1.350)	(1.950)

Heat Output:			
BTU/hr	15,000	19,000	28,000
$(\mathrm{kcal} / \mathrm{hr})$	(3.800)	(4.800)	(7.100)

Airflow:

cfm	1,600	1,600	2,400
$\left(\mathrm{~m}^{3} / \mathrm{min}\right)$	(46)	(46)	(68)

Power Requirements:**			
kVA	5.3	6.5	9.5
Phases	3	3	3
Plug	R\&S, FS3760		
Connector	R\&S, FS3934		
Receptacle R\&S, FS3754 Power Cord Style E1 l			

Notes:

* See plan view.
** Two identical electrical services are required for Model H only.

SYSTEM/360 MODEL 44 CABLING SCHEMATIC

Up to eight control units per channel; maximum cable length per channel is 200 feet (unless modified by general control-to-channel cabling schematic)

44-01, 44-02, 44-03, 44-04,
44-05, 44-06, 44-07, 44-08

Group No.	No. of Cables	From	To	$\begin{gathered} \text { Max } \\ \text { Length }(f t) \end{gathered}$	Notes
44-01	1	Non-IBM	2044	100	1
44-02	1	IBM	2044	100	1
44-03	5	2044	2044	100	4
44-04	3	Non-IBM	2044	100	3
44-05	4	Non-IBM	2044	100	2
44-06	5	Non-IBM	2044	100	4
44-07	1	2044	System/360 CPU	100	5
44-08	1	2044	System/360 CPU	100	6

Notes:

1. For external interrupt feature (SF \#3895) and/or direct word feature (SF \#3288).
2. For direct data feature (SF \#3275).
3. For priority interrupt feature (SF \#5625).
4. For direct word feature (SF \#3288).
5. To SF \#3621, two-system EPO connection.
6. To SF \#3622, multisystem EPO connection. See Note 2 in "System/360 Specification Summary."

PLAN View

Frame	Table		Frame		Covers	
	lb	kg	lb	kg	lb	kg
01	175	80	1,900	870	200	91
02			1,150	530	250	120
03			1,560	710	150	69

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	$72-1 / 2$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$(*)$	(184)

Service Clearances:

	F	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left(^{*}\right)$	$\left(^{*}\right)$	$\left({ }^{*}\right)$

	Models	
Weight:	F and G	H
lb	4,700	5,385
(kg)	(2.150)	(2.450)

Heat Output:		
BTU $/ \mathrm{hr}$	20,410	21,350
$(\mathrm{kcal} / \mathrm{hr})$	(5.150)	(5.400)

Airflow:

cfm	2,350	2,990
$\left(\mathrm{~m}^{3} / \mathrm{min}\right)$	(67)	(85)

Power Requirements:

kVA	6.5	6.8
Phases	3	3
Plug	R\&S, SC7328	
Connector	R\&S, SC7428	
Receptacle	R\&S, SC7324	
Power Cord Style	E3	

Notes:

* See plan view.

PLAN VIEW

Note: Frame 05 may be used on some Model 1 systems.

Frame	Table		Frame		Covers	
	lb	kg	lb	kg	lb	kg
01	175	80	1,900	870	200	91
02			1,150	530	250	120
03			1,560	710	150	69
04			1,500	690	250	120
05						

SPECIFICATIONS

Dimensions:

	F	S	H
	Inches	$*$	$*$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left({ }^{*}\right)$	(184)
Service Clearances:			

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	$\left(^{*}\right)$	$\left.\mathbf{(}^{*}\right)$

Weight: $\quad 7,135 \mathrm{lb}(3.250 \mathrm{~kg})$

	Models	
Heat Output:	$H G$	I
BTU/hr	24,000	25,000
(kcal/hr)	(6.050)	(6.350)

Airflow:

cfm	4,600	4,600
$\left(\mathrm{~m}^{3} / \mathrm{min}\right)$	(140)	(140)

Power Requirements:		
kVA	7.0	7.6
Phases	3	3
Plug	R\&S, SC7328	
Connector	R\&S, SC7428	
Receptacle	R\&S, SC7324	
Power Cord Style	E3	

Notes:

* See plan view.

SYSTEM/360 MODEL 50 CABLING SCHEMATIC

Notes:

1. For channel-to-channel adapter (SF \#1850). Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units.
2. One per 2361.
3. To other System/360 CPU (SF \#3274); order one per feature.
4. For SF \#3274 from non-IBM device.
5. The sum of groups 50-07 and (50-01 plus 50-04) should not exceed 150 feet for any 2361.
6. To SF \# 3621, two-system EPO connection.
7. To SF \# 3622, multisystem EPO connection. See Note 2 in "System/360 Specification Summary."

PLAN VIEW

Frame	Weight	
	lb	kg
01	2,400	1.100
02	1,020	
04	540	470
06	330	150

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	$72-1 / 2$
$(\mathrm{~cm})$	$\left.\mathbf{(}^{*}\right)$	$\left({ }^{*}\right)$	(184)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left(^{*}\right)$	$\left(^{*}\right)$	$\left({ }^{*}\right)$
Weight:	$4,290 \mathrm{lb}$	$(1.950 \mathrm{~kg})$		

Heat Output: $15,800 \mathrm{BTU} / \mathrm{hr}(4.000 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 2,100 \mathrm{cfm}\left(60 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:

kVA	5.4
Phases	3
Plug	R\&S, SC7328
Connector	R\&S, SC7428
Receptacle	R\&S, SC7324
Power Cord Style	E1

Notes:

* See plan view.

PLAN VIEW

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	$72-1 / 2$
$(\mathrm{~cm})$	$\left.\mathbf{(}^{*}\right)$	$(*)$	(184)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left.\mathbf{(}^{*}\right)$	$\mathbf{(*)}^{*}$	$\left.\mathbf{(}^{*}\right)$	$\left.\mathbf{(}^{*}\right)$

Weight: $\quad 5,190 \mathrm{lb}(2.400 \mathrm{~kg})$

Heat Output: $\quad 15,800 \mathrm{BTU} / \mathrm{hr}(4.000 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 2,100 \mathrm{cfm}\left(60 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:

kVA	5.4
Phases	3
Plug	R\&S, SC7328
Connector	R\&S, SC7428
Receptacle	R\&S, SC7324
Power Cord Style	E1

Notes:

* See plan view.

PLAN VIEW

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	$72-1 / 2$
$(\mathrm{~cm})$	$\left.\mathbf{(}^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	(184)

Service Clearances:

	F	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left({ }^{*}\right)$	$\left(^{*}\right)$	$\left({ }^{*}\right)$

Weight: $\quad 8,170 \mathrm{lb}(3.750 \mathrm{~kg})$

Heat Output: $15,800 \mathrm{BTU} / \mathrm{hr}$ per 2065 ($4.000 \mathrm{kcal} / \mathrm{hr}$ per 2065)

Airflow: $\quad 2,100 \mathrm{cfm}$ per 2065 ($60 \mathrm{~m}^{3} / \mathrm{min}$ per 2065)

Power Requirements:		
kVA 5.4 per 2065 Phases 3 Plug R\&S, SC7328 Connector R\&S, SC7428 $\left.\begin{array}{ll}\text { Receptacle } & \text { R\&S, SC7324 }\end{array}\right\}$ Per 2065 Power Cord Style E1		

Notes:

* See plan view.

PLAN VIEW

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	$72-1 / 2$
$(\mathrm{~cm})$	$\left.\mathbf{(}^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	(184)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left.\mathbf{(}^{*}\right)$	$\left.\mathbf{(*}^{*}\right)$	$\left.\mathbf{(*}^{*}\right)$	$\left.\mathbf{(}^{*}\right)$

Weight: $\quad 8,500 \mathrm{lb}(3.900 \mathrm{~kg})$

Heat Output: $15,800 \mathrm{BTU} / \mathrm{hr}$ per 2065
$(4.000 \mathrm{kcal} / \mathrm{hr}$ per 2065$)$
Airflow: $\quad 2,100 \mathrm{cfm}$ per 2065 ($60 \mathrm{~m}^{3} / \mathrm{min}$ per 2065)

Power Requirements:

kVA	5.4 per 2065	Per 2065
Phases	3	
Plug	R\&S, SC7328	
Connector	R\&S, SC7428	
Receptacle	R\&S, SC7324	
Power Cord	tyle E1	

Notes:

* See plan view.

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	$72-1 / 2$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	(184)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left({ }^{*}\right)$	$\left(^{*}\right)$	$\left(^{*}\right)$
Weight:	$8,830 \mathrm{lb}(4.050 \mathrm{~kg})$			

Heat Output: 15,800 BTU/hr per 2065

$$
(4.000 \mathrm{kcal} / \mathrm{hr} \text { per } 2065)
$$

Airflow: $\quad 2,100 \mathrm{cfm}$ per 2065
($60 \mathrm{~m}^{3} / \mathrm{min}$ per 2065)

Power Requirements:	
kVA	5.4 per 2065
Phases	3
Plug	R\&S, SC7328
$\left.\begin{array}{ll}\text { Connector } & \text { R\&S, SC7428 } \\ \text { Receptacle } & \text { R\&S, SC7324 }\end{array}\right\}$ Per 2065	
Power Cord Style E1	

Notes:

* See plan view.

SYSTEM/360 MODEL 65 CABLING SCHEMATIC

Group No.	No. of Cables	From	To	$\begin{gathered} \text { Max } \\ \text { Length }(f t) \end{gathered}$	Notes
60-03	1	2860	2065 (B)	50	2
60-04	1	2361	2065 H (B)	50	4
60-05	12	2361 \# 1	2065 H (B)	20	
60-06	1	2860 \#1	2065 (B)	40	6
60-08	13	2860 \#2	2860 \# 1	20	3,5
60-09	2	Direct Control	2065 (B)	50	11
60-10	2	2860 (SF \#1850)	Control Unit	-	1,9
60-11	2	2860 (SF \#1850)	Channel-to-Channel Adapter	-	8,9
60-12	12	2361	2361 \#1	20	3
60-13	1	Direct Control	2065 (B)	100	7
60-14	2	2860 (SF \#1850)	Multiplexer Channel	-	1,9
60-15	2	2860 (SF \#1850)	Selector Channel	-	1,9
60-16	1	2860 \#2	2065 (B)	-	6
60-17	2	SF \#7920/\#7921	Selector Channel	-	9
60-18	2	SF \#7920/\#7921	Control Unit	-	9
60-19	2	SF \#7920/\#7921	Channel-to-Channel Adapter	-	9
60-20	13	2860 \# 1	2065 (A)	25	3,5
60-22	1	2065 (B)	System/360 CPU	100	10
60-23	1	2065 (B)	System/360 CPU	100	12
60-25	13	2870 \# 1	2065 (A)	25	16
60-27	1	2870	2065 (B)	-	13, 14
60-28	13	2870 \#1	2860 \#2	20	3,5
60-29	1	2870\#1	2065 (B)	65	6
60-30	2	SF \#7920/\#7921	Multiplexer Channel	-	9
60-31	1	2361	2065 I, J (C)	-	4
60-32	12	2361 \#1	2065 I, J (C)	20	3
60-33	1	2361	2065 (B)	-	4
60-34	13	2870 \#2	2870 \#1	20	5
60-35	1	2870 \#2	2065 (B)	65	6,15

Notes:

1. From channel-to-channel adapter (SF \#1850).
2. One per channel.
3. The sum of group $60-20$ plus $60-05$ or $60-32$ plus $60-08$ plus $60-28$ plus $60-34$ plus $60-12(\mathrm{~s})$ must not exceed 140 feet for Models H and I; 120 feet for Model J.
4. One per 2361.
5. At no time may the sum of groups $60-20$ plus $60-08$ plus $60-28$ plus $60-34$ exceed 65 feet.
6. Sequence and control (EPO).
7. For the interconnection of two System/360 CPUs (SF \#3274); order one per feature.
8. For the interconnection of two channel-to-channel adapter features (SF \#1850).
9. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units.
10. To SF \#3621, two-system EPO connection.
11. For SF \#3274 to non-IBM device.
12. To SF \#3622, multisystem EPO connection. See Note 2 in "System/360 Specification Summary."
13. Maximum " X " length:

25 feet for one channel frame
45 feet for two channel frames
65 feet for three or four channel frames.
14. When used with $2870 \# 2$ and $2870 \# 2$ is the fourth channel frame, " X " length must equal sum of groups $60-20$ plus $60-08$ plus $60-28$ plus $60-34$; but length should not exceed 65 feet.
15. Use group $60-29$ for 2870 \#2 if total number of channel frames is less than four.
16. Use group $60-25$ in place of groups $60-28$ and $60-20$ when 2870 is the only channel.

SYSTEM/360 MODEL 65 MULTIPROCESSING CABLING SCHEMATIC

Group No.	No. of Cables	From	To	$\begin{gathered} \text { Max } \\ \text { Length }(f t) \end{gathered}$	Notes
60-03	1	2860	2065	50	2
60-06	1	2860 \#1	2065	40	6
60-08	13	2860	2860 \#1	20	5
60-09	2	Direct Control	2065	50	11
60-10	2	2860 (SF \#1850)	Control Unit	-	1,9
60-11	2	2860 (SF \# 1850)	Channel-to-Channel Adapter	-	8, 9
60-13	1	Direct Control	2065	100	7
60-14	2	2860 (SF \#1850)	Multiplexer Channel	-	1,9
60-15	2	2860 (SF \#1850)	Selector Channel	-	1,9
60-16	1	2860 \#2	2065	-	6
60-17	2	SF \#7920/\#7921	Selector Channel	-	9
60-18	2	SF \#7920/\#7921	Control Unit	-	9
60-19	2	SF \#7920/\#7921	Channel-to-Channel Adapter	-	9
60-20	13	2860 \#1	2065	25	3, 4, 5
60-22	1	2065	System/360 CPU	100	10
60-23	1	2065	System/360 CPU	100	12
60-25	13	2870 \#1	2065	25	14
60-27	1	2870	2065	-	13, 15
60-28	13	2870 \# 1	2860 \#2	20	-
60-29	1	2870	2065	65	6
60-30	2	SF \#7920/\#7921	Multiplexer Channel	-	9
60-34	13	2870 \#2	2870 \#1	20	5
60-35	1	2873\#2	2065 \# 1	65	6,16

Notes:

1. From channel-to-channel adapter (SF \#1850).
2. One per channel.
3. When 2365 \#4 is absent, route the cables to cable entry F instead of A.
4. When $2365 \# 3$ is absent, route the cables to cable entry G instead of E.
5. At no time may the sum of groups $60-20$ plus $60-08$ plus $60-28$ plus $60-34$ exceed 65 feet.
6. Sequence and control (EPO).
7. For the interconnection of two System/360 CPUs (SF \#3274); order one per feature.
8. For the interconnection of two channel-to-channel adapter features (SF \#1850).
9. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units.
10. To SF \#3621, two-system EPO connection.
11. For SF \#3274 to non-IBM device.
12. To SF \#3622, multisystem EPO connection. See Note 2 in "System/360 Specification Summary."
13. Maximum " X " length:

25 feet for one channel frame
45 feet for two channel frames
65 feet for three or four channel frames.
14. Use group $60-25$ in place of groups $60-28$ and $60-20$ when 2870 is the only channel.
15. When used with $2870 \# 2$ and $2870 \# 2$ is the fourth channel frame, " X " length must equal sum of groups $60-20$ plus $60-08$ plus $60-28$ plus $60-34$; but length should not exceed 65 feet.
16. Use group $60-29$ for 2870 \#2 if total number of channel frames is less than four on 2065 \#1.

SYSTEM/360 MODEL 67 CONFIGURATIONS

The IBM System/360 Model 67 configuration varies, depending on the units that are ordered by the customer to make up his system.
The following rules are to be observed in the arrangement of the system and peripheral units:

1. The configurations of the System/360 Model 67-1 are limited by features to those shown on the following page. The IBM 2365 Processor Storage units are to be numbered as shown in Examples 12 through 15.
2. The configurations of the System/360 Model 67-2 are shown on Examples 16 through 23. The 2365 Processor Storage units and 2067 Processing Units are to be numbered as shown in Examples 16 through 23. The 2365 Processor Storage units in Example 23 would always be numbered 5 through 8 from left to right,
regardless of whether the configuration was located to the left or right of the configuration with the processors.
3. The 2365 Processor Storage units are installed to the right and/or left of the 2067 or side by side in a contiguous wall section with an expansion feature (SF \#3846) between them. This feature (SF \#3846) must always be between two adjacent 2365 units when a 2067 is not between them.
4. The 2365 Processor Storage Model 2 units require SF \#8035 when installed with a 2067.
5. The power sequence feature ($\mathrm{SF} \# 5518$) is required for a system with two or more 2067 Processing Units. SF \#5518 is installed in one of the expansion features (SF \#3846) that will be required for the two-processor system.
6. Subfloor cable entry capability is a requirement.

SYSTEM/360 MODEL 65 J MULTIPROCESSING ADDITIONAL STORAGE FEATURE CABLING SCHEMATIC

SYSTEM/360 MODEL 65 J MULTIPROCESSING

ADDITIONAL STORAGE FEATURE CABLING SCHEMATIC

Group	No. of	From Unit-Frame	To Unit-Frame		
	Cables	Unit-Frame	Unit-Frame	Length (ft)	Notes
60-42	12	2365-13 Fr 36	2065 Fr 06	35	1,2
60-43	12	2365-13 Fr 36	2065 Fr 16	35	1,2
60-44	3	2365-13 Fr 36	2065 Fr 16	35	1,2
60-45	3	2365-13 Fr 36	2065 Fr 06	35	1,2
60-46	3	2365-13 Fr 36	2065 Fr 16	35	2,3
60-47	3	2365-13 Fr 36	2065 Fr 06	35	2,3
60-48	3	2365-13 Fr 36	2065 Fr 16	35	2,4
60-49	3	2365-1 3 Fr 36	2065 Fr 06	35	2, 4
60-50	3	2365-13 Fr 36	2065 Fr 16	35	2,5
60-51	3	2365-13 Fr 36	2065 Fr 06	35	2,5
60-52	1	2365-13	2065 Fr 12	60	6
.60-53	1	2365-13	2065 Fr 02	60	6
60-54 (or 60-56)	1	2365-13 Fr 36	2065 Fr 12	40	7,9
60-55 (or 60-57)	1	$2365-13 \mathrm{Fr} 24$	2065 Fr 02	40	8,9

Notes:

1. These cable groups are required for first additional storage unit.
2. Total " X " length must not exceed 50 feet for cable groups ($60-42$ plus $60-43$), ($60-44$ plus $60-45$), ($60-46$ plus $60-47$), $60-48$ plus $60-49$), and ($60-50$ plus $60-51$).
3. These cable groups are required for second additional storage unit.
4. These cable groups are required for third additional storage unit.
5. These cable groups are required for fourth adcitional storage unit.
6. One cable group is required for each additional storage unit.
7. One cable group is required for first additional storage unit.
8. One cable group is required for third additional storage unit.
9. For $50-\mathrm{Hz}$ machines, use group number in parentheses.

SYSTEM/360 MODEL 67 CONFIGURATION
 FEATURES

The IBM Sales Manual lists the special features that must be ordered to make up the various configurations of the 2365 Processor Storage units and the 2067 Processing Units.

System/360 Model 67-1

Example 12-SF \#9101 attaches 2365 Model 2 \# 1 to 2067 Model 1.

Example 14-SF \#9103 attaches 2365 Model 2 \#3 to 2067 Model 1 (2365 Model 2 with SF \#9102 is a prerequisite).

Example 13-SF \#9102 attaches
2365 Model 2 \#2 to
2067 Model 1
(2365 with SF \#9101
is a prerequisite).

Example 15-SF \#9104 attaches 2365 Model 2 \# 4 to

 2067 Model 1 (2365 Model 2 with SF \#9103 is a prerequisite).
System/360 Model 67-2

The following feature listing and example represent typical configurations:

Special Feature (SF \#)	Function	Special Feature (SF \#)	Function
9111*	Required to attach 2365 Model 12 \# 1 to 2067 Model 2 \# 1. Plant installation only.	9127	Required on the right-end 2365 of the second wall to connect 2067 \# 2 from the right.
9112*	Required to attach 2365 Model 12 \#2 to 2067 Model 2 \# 1. Plant installation only.	9128	Required on the leftend 2365 of the second wall to connect 2067 \# 2 from the left.
9114*	Required to attach 2365 Model $12 \# 3$ to 2067 Model 2 \# 1. Plant installation only.	9129	Required on each 2365 , except the first of the second wall, for 2067 \#2. Prerequisite is either SF \#9127 or SF \#9128 on the first 2365.
9116*	Required to attach 2365 Model 12 to \#4 to 2067 Model 2 \#1. Plant installation only.	9131	Required on the left-end 2365 of each wall when 2846 \#1 attaches on the left.
9117	Required on the right-end 2365 of the second wall to connect 2067 \# 1 from the right.	9132	Required on the right-end 2365 of each wall when 2846 \#1 attaches on the right.
9118	Required on the left-end 2365 of the second wall to connect 2067 \# 1 from the left.	9133	Required on each 2365 on a wall, except the first, for 2846 \#1. Prerequisite is either SF \#9131 or SF \#9132
9119	Required on each 2365 , except the first of the second wall, for 2067 \#1. Prerequisite is either SF \#9117 or SF \#9118 on the first 2365.	9141	on the first 2365 on each wall. Required on the left-end 2365 of each wall when 2846 \#2 attaches on the left.
9121*	Required to attach 2365 Model 12 \#3 to 2067 Model 2 \#2.	9142	Required on the right-end 2365 of each wall when 2846
9122*	Required to attach 2365 Model 12 \#4 to 2067 Model 2 \#2.	9143	\# 2 attaches on the right. Required on each 2365 on a wall, except the first, for
9123*	Required to attach 2365 Model 12 \#2 to 2067 Model 2 \#2.		2846 \# 2. Prerequisite is either SF \#9141 or SF \#9142 on the first 2365 on each wall.
9125*	Required to attach 2365 Model 12 \# 1 to 2067 Model 2 \#2.	*Model	only.

Example 16

Example 17

System/360 Model 67-2 Configurations With Two Processors

Example 20

Example 21

Note: Additional 2365 Processor Storage units (maximum of four) may be ordered with any of the two-processor configurations.

Example 18

Example 19

Example 22

Example 23

SYSTEM/360 MODEL 67, 2067 PROCESSING UNIT

PLAN VIEW

Frame	Weight	
	lb	kg
01	1,914	870
02	860	400
03	900	410

SPECIFICATIONS

Dimensions:

	F	S	H
Inches		*	72-1/2
(cm)	(*)	(*)	(184)
Service Clearances:			
	F	R	$\mathbf{R t}$
Inches	*	*	*
(cm)	(*)	(*)	(*)
Weight:		1.700	

Heat Output: $\quad 20,000 \mathrm{BTU} / \mathrm{hr}(5.050 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 4,620 \mathrm{cfm}\left(140 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:

kVA $\quad 6.85$

Phases 3
Plug R\&S, SC7328
Connector R\&S, SC7428
Receptacle R\&S, SC7324
Power Cord Style E1

Notes:

* See plan view. Dimensions are frame size; add $1-3 / 8^{\prime \prime}(4 \mathrm{~cm})$ for each cover.

SYSTEM/360 MODEL 67-1 CABLING SCHEMATIC

SYSTEM/360 MODEL 67-1 CABLING SCHEMATIC

Group No.	No. of Cables	From	To	$\begin{gathered} \text { Max } \\ \text { Length }(f t) \end{gathered}$	Notes
60-06	1	2860 \#1	2067	40	4
60-08	13	2860 \#2	2860 \#1	20	3
60-10	2	2860 (SF \#1850)	Control Unit	-	1,7
60-11	2	2860 (SF \# 1850)	Channel-to-Channel Adapter	-	6,7
60-14	2	2860 (SF \#1850)	Multiplexer Channel	-	1,7
60-15	2	2860 (SF \#1850)	Selector Channel	-	1,7
60-16	1	2860 \# 2	2067	-	4
60-20	13	2860 \#1	2365-2	25	3
60-25	13	2870 \# 1	2365-2	25	9
60-28	13	2870 \# 1	2860 \# 2	20	3
60-29	1	2870 \#1	2067	-	4
60-34	13	2870 \#2	2870 \# 1	-	3
67-10	1	Direct Control	2067	100	5
67-11	2	Direct Control	2067	50	10
67-20	2	SF \#7920	2860	-	7
67-21	2	SF \#7920	Control Unit	-	7
67-22	2	SF \#7920	Channel-to-Channel Adapter	-	7
67-35	2	SF \#7920	2870	-	7
67-36	1	2870	2067	-	8,11
67-37	1	2860	2067	-	2
67-38	1	2870 \# 2	2067	-	4,12

Notes:

1. From channel-to-channel adapter (SF \#1850).
2. One per channel.
3. At no time may the sum of groups $60-20$ plus $60-08$ plus $60-28$ plus $60-34$ exceed 65 feet.
4. Sequence and control (EPO).
5. For the interconnection of two System/360 CPUs (SF \#3274); order one per feature.
6. For the interconnection of two channel-to-channel adapter features (SF \#1850).
7. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units.
8. Maximum " X " length:

25 feet for one channel frame
45 feet for two channel frames
65 feet for three or four channel frames.
9. Use group $60-25$ in place of groups $60-28$ and $60-20$ when 2870 is the only channel.
10. For SF \#3274 to non-IBM device.
11. When used with $2870 \# 2$ and $2870 \# 2$ is the fourth channel frame, " X " length must equal sum of groups $60-20$ plus $60-08$ plus $60-28$ plus $60-34$; but length should not exceed 65 feet.
12. Use group $60-29$ for $2870 \# 2$ if total number of channel frames is less than four.

SYSTEM/360 MODEL 67-2 CABLING SCHEMATIC

Group	No. of	
No.	Fables	From
$60-08$	13	2860 \#2
$60-10$	2	2860 (SF \#1850)
$60-11$	2	2860 (SF \#1850)
$60-14$	2	$2860(\mathrm{SF} \mathrm{\# 1850)}$
$60-15$	2	2860 (SF \#1850)
$60-22$	1	2067
$60-23$	1	2067
$60-28$	13	2870
$67-02$	3	2846
$67-03$	3	2846
$67-04$	14	$2860 \# 1$
$67-05$	1	2860
$67-06$	1	2860
$67-07$	1	$2365-12$
$67-08$	1	2846
$67-09$	1	2846
$67-12$	1	2067
$67-14$	1	2846
$67-15$	1	$2365-12$
$67-16$	1	$2365-12$
$67-17$		2846

To	Max Length (ft)	Notes
$2860 \# 1$	20	7
Control Unit	-	9,10
Channel-to-Channel Adapter	-	$9,10,11$
Multiplexer Channel	-	9,10
Selector Channel	20	9,10
System/360 CPU	100	24
System/360 CPU	100	25
$2860 \# 1$	20	7
2067	40	19
2846	115	2
2846	25	8
2846	35	3
2846	-	4
$2365-12$	30	5
2067	100	6
$2365-12$	125	12
Sequence Control (SF \#5518)	45	13
Sequence Control (SF \#5518)	60	15
Sequence Control (SF \#55 18)	60	16
2067	60	17
2067	60	18

SYSTEM/360 MODEL 67-2 CABLING SCHEMATIC

Group No.	No. of Cables	From	To	$\begin{gathered} \text { Max } \\ \text { Length }(f t) \end{gathered}$	Notes
67-18	13	2870	2846	-	7, 8
67-19	2	2870	2846	-	3,4,8
67-20	2	2067 (SF \#7920)	Selector Channel	-	10
67-21	2	2067 (SF \#7920)	Control Unit	-	10
67-22	2	2067 (SF \#7920)	Channel-to-Channel Adapter	-	10
67-23	1	2067	2067	-	20,23
67-24	1	2365-12	2067	75	21
67-25 (or 67-98)	1	2365-12	2365-12	-	22
67-27	11	2846	2365-12	25	1
67-28	11	2846	2365-12	25	1
67-31	11	2365-12	2365-12	45	14
67-32	11	2365-12	2365-12	45	14
67-35	2	2067 (SF \#7920)	Multiplexer Channel	-	10

Notes:

1. May connect to first 2365 at either end of the system wall.
2. Total cable length to attach up to three 2846 units is 115 feet. One group $67-03$ is required for each 2067 connected to the 2846s.
3. Sequence and control (EPO).
4. One per channel. Maximum cable length of 25 feet to first channel frame; 85 feet to any other channel.
5. May be used to connect one contiguous wall section to another. One group 67-07 is required for each 2067 in the configuration.
6. One to each 2067.
7. Channel-frame-to-channel-frame interconnecting cable length should not exceed 60 feet for up to three channel frames.
8. Cable length from 2846 to first channel should not exceed 25 feet.
9. From channel-to-channel adapter (SF \#1850).
10. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units.
11. For the interconnection of two channel-to-channel adapter features (SF \#1850).
12. One to each 2365.
13. Multisystem EPO connection (SF \#3622); one per 2067. See Note 2 in "System/360 Specification Summary."
14. May be used to connect one contiguous wall section to another. Use group 67-31 for 2846 \#1 and group 67-32 for 2846 \#2.
15. One per 2846. Power sequence (EPO).
16. One per 2365 in multiple 2067 system. Power sequence (EPO).
17. One per 2365 in single 2067 system. Power sequence (EPO).
18. Required when system has 2365 Model 12s and only one 2067.
19. All the $67-02$ cable groups may be routed from any one of the 2846 units to each 2067 in the system or from separate 2846 units as shown.
20. One group is required between first 2067 and second 2067 when both have SF \#3800 (extended direct control feature).
21. Required for the connection of the 2365 s of one contiguous wall section to the 2067 s of a second contiguous wall section. One is required from each 2365 to each 2067.
22. Required to connect second contiguous wall section with the first for convenience outlet power when second wall section has no 2067. For $50-\mathrm{Hz}$ machines, use group number in parentheses.
23. Maximum " X " length of group 67-23 cannot exceed 100 feet.
24. To SF \#3621, two-system EPO connection, to 2067 for single processor; SF \#5518 for dual processor.
25. To SF \#3622, multisystem EPO connection, to 2067 for single processor; SF \#5518 for dual processor. See Note 2 in "System/360 Specification Summary."

SYSTEM/360 MODEL 75 H AND I, 2075 PROCESSING UNIT

PLAN VIEW

Frame	Weight		Airflow		Heat Output	
	Ib		kg	cfm	$\mathrm{m} / \mathrm{min}$	BTU/hr
01	kcal/hr					
01	1,700	780	1,700	49	13,800	3.500
02	2,200	1,000	1,050	30	8,280	2.100
03	125	57	0	0	0	0
04	550	250	300	9	2,760	700
05	550	250	300	9	2,760	700
11	250	120			550	140
1052	100	46			335	85
Spacer	30	14				

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	$72-1 / 2$
$(\mathrm{~cm})$	$\left.\mathbf{(}^{*}\right)$	$\left({ }^{*}\right)$	(184)

Service Clearances:

	F	R	Rt	L
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left(^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	$\left({ }^{*}\right)$
Weight:	$5,125 \mathrm{lb}(2.350 \mathrm{~kg})$			

Heat Output: $27,600 \mathrm{BTU} / \mathrm{hr}(7.000 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 3,350 \mathrm{cfm}\left(95 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:			
Voltage	$208 / 230$	220	408
kVA	8.6	6.9	11.2
Phases	3	3	3
Plug	R\&S, SC7328		
Connector	R\&S, SC7428		
Receptacle	R\&S, SC7324		
Power Cord Style	E3		

Notes:

* See plan view.

2075.3 Installation Manual-Physical Planning

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	$72-1 / 2$
$(\mathrm{~cm})$	$\left.\mathbf{(}^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	(184)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left.\mathbf{(*)}^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	$\left.\mathbf{(}^{*}\right)$

Weight: $\quad 5,325 \mathrm{lb}(2.450 \mathrm{~kg})$

Heat Output: $27,600 \mathrm{BTU} / \mathrm{hr}(7.000 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 3,350 \mathrm{cfm}\left(95 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:			
Voltage	$208 / 230$	220	408
kVA	8.6	6.9	11.2
Phases	3	3	3
Plug	R\&S, SC7328		
Connector	R\&S, SC7428		
Receptacle	R\&S, SC7324		
Power Cord Style	E3		

Notes:

* See plan view.

SYSTEM/360 MODEL 75 CABLING SCHEMATIC

SYSTEM/360 MODEL 75 CABLING SCHEMATIC

Group No.	No. of Cables	From	To	$\begin{gathered} \text { Max } \\ \text { Length }(f t) \end{gathered}$	Notes
70-01	2	Direct Control	2075	50	7
70-02	8	2361 \#1	2075	40	11
70-03	7	2860\#1	2075	40	1
70-04	1	2860	2075	-	4, 13
70-05	13	2860 \#2	2860 \#1	-	1
70-06	2	2860 (SF \#1850)	Channel-to-Channel Adapter	-	2, 3
70-07	2	2860	Multiplexer Channel	-	2,5
70-08	1	2860 \# 1	2075	40	-
70-09	2	2860 (SF \#1850)	Control Unit	-	2,5
70-10	12	2361 \# 2	2361 \#1	-	11
70-11	1	Direct Control	2075	100	8
70-12	1	2860 \#2	2075	-	-
70-13	2	2860	Selector Channel	-	2,5
70-14	2	2361	2075	-	6,11
70-15	1	2075	System/360 CPU	-	9
70-17	1	2075	System/360 CPU	-	10
70-18	7	2870 \#1	2075	40	-
70-19	1	2870	2075	-	4
70-20	13	2870 \#1	2860 \#2	20	1
70-21	1	2870 \# 1	2075	-	-
70-22	2	2075	Selector Channel	-	2,12
70-23	2	2075	Multiplexer Channel	-	2,12
70-24	2	2075	Control Unit	-	2, 12
70-25	2	. 2075	Channel-to-Channel Adapter	-	2,5,12
70-26	13	2870 \#2	2870 \#1	-	1
70-27	1	2870 \# 2	2075	-	13, 14

Notes:

1. The sum of groups $\mathbf{7 0 - 0 3}$ plus $\mathbf{7 0 - 0 5}$ plus $\mathbf{7 0 - 2 0}$ plus $\mathbf{7 0 - 2 6}$ may not exceed 50 feet for two channel frames, 70 feet for three channel frames, or 65 feet for four channel frames.
2. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units.
3. For the interconnection of two channel-to-channel adapter features (SF \#1850).
4. One cable per channel. Cable length may not be less than 15 feet for first channel frame; 30 feet for second, third, and fourth channel frames.
5. Channel-to-channel adapter feature (SF \#1850).
6. One per 2361.
7. Direct control to non-IBM device (SF \#3274).
8. Direct control to other System/360 CPU (SF \#3274); order one per feature.
9. To SF \#3621, two-system EPO connection.
10. To SF \#3622, multisystem EPO connection. See Note 2 in "System/360 Specification Summary."
11. The sum of groups $70-02$ plus $70-10$ may not exceed 100 feet for one to three 2361 s and 80 feet for four 2361s. Group 70-14 may not exceed the sum of groups 70-02 plus 70-10s for any one 2361.
12. For SF \#7920 and \#7921.
13. One cable per channel frame. Maximum " X " length is 40 feet for one channel frame, 50 feet for two channel frames, and 70 feet for three and four channel frames.
14. Use group 70-21 for 2870 \#2 if total number of channel frames is less than four.

SYSTEM/360 MODEL 85, 2085 PROCESSING UNIT

PLAN VIEW

Frame	Size (With Covers)	
	Inches	Centimeters
$07,09,10,12$	30×61	76×155
$01,02,04$	20×66	51×168
03	20×67	51×170
08,11	30×30	76×76
13	20×20	51×51

A Typical dimensions for casters and leveling pads on frames 09, 10, and 12.

- Typical dimensions for leveling pads on frames 01, 02, 03, and 04.

Details (By Frame)

Frame	Weight $l b$ (kg)	Airflow cfm $\left(m^{3} / m i n\right)$	Heat Output BTU/hr (kcal/hr)	
			To Air	To Water
01	$\begin{aligned} & 1,116 \\ & (510) \end{aligned}$	$\begin{aligned} & 400 \\ & (12) \end{aligned}$	$\begin{aligned} & 2,910 \\ & (740) \end{aligned}$	$\begin{aligned} & 16,340 \\ & (4.150) \end{aligned}$
02	$\begin{aligned} & 1,622 \\ & (740) \end{aligned}$	$\begin{aligned} & 400 \\ & (12) \end{aligned}$	$\begin{aligned} & 6,990 \\ & (1.800) \end{aligned}$	$\begin{aligned} & 18,050 \\ & (4.550) \end{aligned}$
03	$\begin{aligned} & 1,191 \\ & (550) \end{aligned}$	$\begin{aligned} & 400 \\ & \text { (12) } \end{aligned}$	$\begin{aligned} & 4,690 \\ & (1.200) \end{aligned}$	$\begin{aligned} & 30,250 \\ & (7.650) \end{aligned}$
04	$\begin{aligned} & 1,634 \\ & (750) \end{aligned}$	$\begin{aligned} & 400 \\ & (12) \end{aligned}$	$\begin{aligned} & 5,880 \\ & (1.500) \end{aligned}$	$\begin{aligned} & 31,800 \\ & (8.050) \end{aligned}$
05	$\begin{aligned} & 816 \\ & (380) \end{aligned}$	200 (6)	$\begin{aligned} & 2,000 \\ & (510) \end{aligned}$	$\begin{aligned} & 0 \\ & (0) \end{aligned}$
06	$\begin{aligned} & 1,004 \\ & (460) \end{aligned}$	200 (6)	$\begin{aligned} & 5,100 \\ & (1.300) \end{aligned}$	(0)
07	$\begin{aligned} & 1,145 \\ & (520) \end{aligned}$	$\begin{aligned} & 500 \\ & (15) \end{aligned}$	$\begin{aligned} & 3,140 \\ & (800) \end{aligned}$	(0)
08	$\begin{aligned} & 0 \\ & (0) \end{aligned}$	(0)	$\begin{aligned} & 0 \\ & (0) \end{aligned}$	(0)
09	$\begin{aligned} & 2,035 \\ & (930) \end{aligned}$	300 (9)	$\begin{aligned} & 2,320 \\ & (590) \end{aligned}$	$\begin{aligned} & 45,090 \\ & (11.400) \end{aligned}$
10	$\begin{aligned} & 2,035 \\ & (930) \end{aligned}$	$\begin{aligned} & 300 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & 640 \\ & (170) \end{aligned}$	$\begin{aligned} & 22,310 \\ & (5.650) \end{aligned}$
11	(0)	$\begin{aligned} & 0 \\ & (0) \end{aligned}$	0 (0)	$\begin{aligned} & 0 \\ & (0) \end{aligned}$
12	$\begin{aligned} & 1,830 \\ & (840) \end{aligned}$	(0)	$\begin{aligned} & 3,500 \\ & (890) \end{aligned}$	(0)

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	$78^{* *}$
$(\mathrm{~cm})$	$\left.\mathbf{(}^{*}\right)$	$\left.\mathbf{(*}^{*}\right)$	$\left(198^{* *}\right)$

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left(^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	$\left.\mathbf{(}^{*}\right)$

Weight: $\quad 14,428 \mathrm{lb}(6.550 \mathrm{~kg})$

Heat Output:
Air $\quad 37,170 \mathrm{BTU} / \mathrm{hr}(9.400 \mathrm{kcal} / \mathrm{hr})$
Water $163,840 \mathrm{BTU} / \mathrm{hr}(41.300 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 3,100 \mathrm{cfm}\left(88 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:	***
kVA	2.0 (To Frame 07)
Phases	3
Plug	R\&S, FS3760
Connector	R\&S, FS3934
Receptacle	R\&S, FS3754
Power Cord Style \quad D3	

Environment Operating:
Temperature $\quad 65^{\circ}-80^{\circ} \mathrm{F}\left(18^{\circ}-27^{\circ} \mathrm{C}\right)$
Rel Humidity 20\%-80\%
Max Wet Bulb $\quad 73^{\circ} \mathrm{F}\left(23^{\circ} \mathrm{C}\right)^{\dagger}$

Notes:

* See plan view.
** Height dimension can be reduced to 70" $(178 \mathrm{~cm})$ by removing top blowers.
*** Powered from PDU (2085 frame 14).
\dagger See "Liquid Coolant System" in Appendix A.

SYSTEM/360 MODEL 85, POWER DISTRIBUTION UNIT (PDU)-2085 FRAME 14

PLAN VIEW

Notes:

1. Flexible conduits to P, Q, and R are 3 inches (8 cm).
2. Flexible conduit to S is $]$ inch (3 cm).
3. Pigtail cable is provided from each conduit location ($8-\mathrm{foot}[244-\mathrm{cm}]$ length from exit).
4. Flexible conduit and junction boxes are provided by the customer.
5. Clamp fittings for flexible conduit are provided.

No. of Wires and Size (AWG)	Entry			
	P	Q	R	S
	$\begin{aligned} & 6-\# 2 / 0 \\ & 1-\# 6 \end{aligned}$	$\begin{aligned} & 6-\# 2 / 0 \\ & 1-\# 6 \end{aligned}$	$\begin{aligned} & 6-\#_{1} 1 / 0 \\ & 1-\#_{6} \end{aligned}$	$\begin{aligned} & 3-\#_{10}^{\#} \\ & 2-\#_{12} \end{aligned}$

dunction Box Connection Details

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	30	60	70
$(\mathrm{~cm})$	(76)	(152)	(178)

Service Clearances:

	F	R	Rt	L
Inches	36	36	30	30
(cm)	(91)	(91)	(76)	(76)

Weight: $\quad 1,500 \mathrm{lb}(690 \mathrm{~kg})$

Heat Output: Negligible

Airflow: $\quad 0 \mathrm{cfm}\left(\mathrm{cm}^{3} / \mathrm{min}\right)$

Power Requirements (kVA):

	Models			
	I	J	K	L
$50 / 60 \mathrm{~Hz}$	14.5	18.0	27.0	36.0
$415 / 441 \mathrm{~Hz}$	81.0	87.0	105.0	132.0

MOTOR-GENERATOR STARTER (REMOTE)
FOR SYSTEM/360 MODEL 85 (50-HZ INPUT)

PLAN VIEW

SPECIFICATIONS

Dimensions:

	F	S	H
408V			
Inches	$37-1 / 2$	30	90
(cm)	(95)	(76)	(229)

Service Clearances:

	F	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
			0	0
Inches	30	30	(0)	(0)

Weight:

NEMA Size \#6: 220,380 , and 408V

$$
2,000 \mathrm{lb}(910 \mathrm{~kg})
$$

Power Requirements:
Motor starter can be set at one of the following:

Starting Current			Starting Time (sec)	
$\begin{array}{\|c} 220 \mathrm{~V} \\ (A) \end{array}$	$\begin{gathered} 380 \mathrm{~V} \\ (\mathrm{~A}) \end{gathered}$	$\begin{gathered} 408 V \\ (A) \end{gathered}$		
3,110	1,800	1,950	7.0	100
1,980	1,190	1,245	9.5	80
1,304	760	822	14.5	65 (factory setting)
776	450	487	25.0	50

PLAN VIEW

SPECIFICATIONS

Dimensions:

	F	S	H
208/230V			
Inches	$37-1 / 2$	30	90
$(\mathrm{~cm})$	(95)	(76)	(229)
440 V			
Inches	$37-1 / 2$	20	80
$(\mathrm{~cm})$	(95)	(51)	(203)

Service Clearances:

	F	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	30	30	0	0
$(\mathrm{~cm})$	(76)	(76)	(0)	(0)

Weight:
NEMA Size \#6: 208/230V
$2,000 \mathrm{lb}(910 \mathrm{~kg})$
NEMA Size \#5: 440V

$$
800 \mathrm{lb}(370 \mathrm{~kg})
$$

Power Requirements:

Motor starter can be set at one of the following:

Starting Current		Starting Time (Approximate) (sec)	Tap Setting (percent)
$208 / 230 \mathrm{~V}$ (A)	440 V (A)	(finn	
2,760	1,460	7	100
1,760	935	10	80
1,160	615	15	65
			(factory setting)
690	365	25	50

MOTOR GENERATOR (REMOTE)

FOR SYSTEM/360 MODEL 85 (50-HZ INPUT)

PLAN VIEW

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	100	34	53
$(\mathrm{~cm})$	(254)	(86)	(135)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	30	30	30	30
$(\mathrm{~cm})$	(76)	(76)	(76)	(76)
Weight:	$4,630 \mathrm{lb}(2.100 \mathrm{~kg})$			

Heat Output (Max): 102,000 BTU/hr (25.750 kcal/hr)

Power Requirements:

Input:

Induction Motor- $225 \mathrm{hp}, 380 / 408 \mathrm{~V}, 50 \mathrm{~Hz}, 284 / 305 \mathrm{~A}$ full load, code F, $40^{\circ} \mathrm{C}$ maximum ambient, dripproof enclosure
Output:
Synchronous Generator-175 kVA, 208V, 3 phase, 441 Hz , 485 A full load, $70^{\circ} \mathrm{C}$ temperature rise, dripproof enclosure

Notes:

The installation and maintenance of the motor-generator (including starter) unit will be the responsibility of the customer.

At time of installation:

1. An overvoltage circuit is provided in the motorgenerator regulator. This must be adjusted to remove generator output when the $441-\mathrm{Hz}$ line voltage reaches $220 \pm 2 \mathrm{~V}$ (rms).
2. The generator output voltage must be set so that the voltage measured by the meter located on the power distribution unit (2085 frame 14) reads between the center and upper scribe marks.
3. Consult motor-generator manufacturer's instruction manual for further installation procedures and maintenance.

Customer to supply the following wiring:

1. Input feeders to the motor.
2. Wiring between motor-generator unit and motor starter.
3. Output feeders from generator to PDU (frame 14); if in conduit, this must be a nonferrous conduit. Maximum voltage drop at the PDU should not exceed 5%.
4. Five remote leads required from generator to PDU: three leads for sensing (2 -ohm maximum resistance) and two leads for indicator lights.
5. The EPO pushbutton in computer room must remotely cut off power to the motor and output of the generator. Shunt trips are provided for this purpose in both circuit breakers.

MOTOR GENERATOR (REMOTE)

PLAN VIEW

SPECIFICATIONS

Dimensions:

	F	S	H
	Inches	86	34
$(\mathrm{~cm})$	(218)	(86)	(135)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	30	30	30	30
(cm)	(76)	(76)	(76)	(76)

Weight: $\quad 4,200 \mathrm{lb}(1.950 \mathrm{~kg})$

Heat Output (Max):

208/230V: $86,000 \mathrm{BTU} / \mathrm{hr}(21.700 \mathrm{kcal} / \mathrm{hr})$
$440 \mathrm{~V}: \quad 102,000 \mathrm{BTU} / \mathrm{hr}(25.750 \mathrm{kcal} / \mathrm{hr})$

Power Requirements:

Input:
Induction Motor-200 hp, 208/230V or 440 V , $60 \mathrm{~Hz}, 240 \mathrm{~A}$ full load, NEMA design B, code F, $40^{\circ} \mathrm{C}$ maximum ambient, dripproof enclosure
Output.
Synchronous Generator-175kVA, 208V, 3 phase, $415 \mathrm{~Hz}, 485 \mathrm{~A}$ full load, $70^{\circ} \mathrm{C}$ temperature rise, dripproof enclosure

Notes:

The installation and maintenance of the motor-generator (including starter) unit will be the responsibility of the customer.

At time of installation:

1. An overvoltage circuit is provided in the motorgenerator regulator. This must be adjusted to remove generator output when the $415-\mathrm{Hz}$ line voltage reaches $220 \pm 2 \mathrm{~V}$ (rms).
2. The generator output voltage must be set so that the voltage measured by the meter located on the power distribution unit (2085 frame 14) reads between the center and upper scribe marks.
3. Consult motor-generator manufacturer's instruction manual for further installation procedures and maintenance.

Customer to supply the following wiring:

1. Input feeders to the motor.
2. Wiring between motor-generator unit and motor starter.
3. Output feeders from generator to PDU (frame 14); if in conduit, this must be a nonferrous conduit. Maximum voltage drop at the PDU should not exceed 5%.
4. Five remote leads required from generator to PDU: three leads for sensing (2 -ohm maximum resistance) and two leads for indicator lights.
5. The EPO pushbutton in computer room must remotely cut off power to the motor and output of the generator. Shunt trips are provided for this purpose in both circuit breakers.

SYSTEM/360 MODEL 85 CABLING SCHEMATIC

Group	No. of		Frame		Frame	Max	
No.	Cables	From	No.	To	No.	Length (ft)	Notes
85-01	13	2860	01	2085	07	25	3
85-02	1	2860		2085	07	45	2, 15
85-03	1	2860		2085	14	100	1
85-04	13	2860 \# 2	02	2860 \#1		20	3
85-05	1	2870 \# 1		2085	07	65	15
85-06	13	2870 \#1		2860 \#2		20	3
85-07	13	2870 \# 1		2085	07	25	4
85-08	1	2870 \#1		2085	14	100	1
85-09	14	Coupler		2085	08	30	11, 18
85-10	1	Coupler		2085	08	-	11, 13
85-11 (or 85-38))	2365-5		2365-5		20	12, 20
85-12 (or 85-39)) 1	2365-5		2085	14	80	12, 20
85-13	6	2085	06	2085	14	75	-
85-14	4	2085		2085	14	100	-
85-15	3	2365-5		2085	14	80	-
85-16	1	2085	07	2085	14	100	-
85-17	1	System/360 CPU		2085	05	100	5
85-18	2	Non-IBM		2085	05	50	5
85-19	1	2085	14	System/360 CPU		100	6
85-20	1	2085	14	System/360 CPU		100	7
85-21 (or 85-40)) 2	2385		2085	14	100	20
85-22 (or 85-41)) 1	2385	01	2085	14	100	20
85-23	1	2085	06	2085	09	50	-
85-24	1	2085	06	2085	10	50	-
85-25 (or 85-42))	2385	11	2085	14	100	20
85-26	24	Coupler		2085	08	30	11
85-27	2	2860		Multiplexer Channel		-	8,9
85-28	2	2860		Selector Channel		-	8,9
85-29	2	2860		Control Unit		-	8,9
85-30	2	2860		Channel-to-Channel Adapter		-	8,9
85-31 (or 85-43)) 2	2085	12	2085	14	-	12, 20
85-32	2	2085	05	Selector Channel		-	9, 16
85-33	2	2085	05	Multiplexer Channel		-	9, 16
85-34	2	2085	05	Control Unit		-	9, 16
85-35	2	2085	05	Channel-to-Channel Adapter		-	8, 9, 16
85-36	1	2385	11	2085	14	100	-
85-37	1	2385	11	2085	06	100	-
85-44	1	Coupler		2085	08	30	11,17
85-45	13	2870 \#2		2870 \# 1		20	3
85-52	1	2085	14	CE Room		100	19

Notes:

1. One per channel unit (power control).
2. One per channel.
3. The sum of groups $85-01$ plus $85-04$ plus $85-06$ plus $85-45$ should not exceed 65 feet.
4. Required for 2870 when no 2860 s are present.
5. To direct control (SF \#3274).
6. To SF \#3621, two-system EPO connection.
7. For SF \#3622, multisystem EPO connection. See Note 2 in "System/360 Specification Summary."
8. For channel-to-channel adapter (SF \#1850).
9. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to seven control units.
10. Cable from 2365 or 2385 is fixed length and is shipped with storage unit. Cable couplers may be located within 6 feet radius of cable exit (6 feet includes height of floor).
11. Three couplers each for 2365 ; five for 2385. See "System/360 Model 85 Cabling Schematic (2880 Attachment)" for size.
Couplers should be accessible.
12. Sequence and control (EPO).
13. Required only on 2365 \#3 and \#4 (J configuration). Cable length must equal $85-09$ plus 9 feet.
14. Fixed-length cable (4 feet) is shipped with machine.
15. Maximum " X " length:

25 feet for one channel frame
45 feet for two channel frames 65 feet for three or four channel frames.
16. For operator console feature (SF \#5450).
17. Required for 2385 Model 2 only.
18. The " X " dimension for both $85-09$ groups must be the same.
19. From BSM analyzer located in CE room (CER).
20. For $50-\mathrm{Hz}$ machines, use group number in parentheses.

Group	No. of		Frame	Max No.	Fables	To

Notes:

1. Cable length must be a minimum of 10 feet (C-T-C). All cables, except 85-50, are ordered connector-to-connector (C-T-C); that is, when a 10 -foot cable is ordered, the order department will send a cable with a total length of 10 feet from connector to connector.
2. Cable dimensi- © and number of couplers, for each 2880 , must satisfy both the following equations:
a. Maximum eenuation equation (based on circuit performance characteristics):

$$
1.5(\mathrm{X} 1)+\mathrm{X} 2+35(\mathrm{~N}-1) \leqslant 287
$$

b. Maximum delay equation (based on system data rate performance characteristics):

$$
X 1+X 2 \leqslant 105
$$

SYSTEM/360 MODEL 85 CABLING SCHEMATIC (2880 ATTACHMENT)

Where:
X1 = the C-T-C length (in feet) of cable group 85-46 between the 2880 and its associated coupler.
$\mathrm{X} 2=$ the $\mathrm{C}-\mathrm{T}-\mathrm{C}$ length (in feet) of the sum of all intervening cable groups $85-47$ and $85-48$ between the 2880 's associated coupler and the 2085.
$N=$ the number of couplers between the 2880 and the 2085.
See Examples 1 and 2.

Example 1:
Assume X2 ${ }_{(1)}=10$ feet (C-T-C).
Find maximum length (C-T-C) of $\mathrm{X} \mathbf{1}_{(1)}$. Note 5 may apply.
Note 2, equation a: $\quad 1.5(\mathrm{X} 1)+\mathrm{X} 2+35(\mathrm{~N}-1)=287$
$1.5(\mathrm{X} 1)=287-10$
$\mathrm{X} 1=\frac{277}{1.5}=184$ feet (C-T-C)
Note 2, equation $\mathrm{b}: \quad \mathrm{X} 1+\mathrm{X} 2=105$

$$
\mathbf{X 1}=105-10=95 \text { feet }(\mathbf{C}-\mathbf{T}-\mathbf{C})
$$

Maximum length to satisfy both equations is 95 feet (C-T-C) from equation b. However, in those cases specified in note 5 , it would be further restricted to 10 feet (C-T-C) when those special control units were attached to the 2880 .

The floor-to-connector distance in the 2880 is 7 feet and in the 2085 it is 2 feet. For planning purposes in Example 1, the maximum " X " distance for group $85-46\left(\mathrm{X}_{(1)}\right)$ is 95 feet -7 feet $=88$ feet and for group $85-48\left(\mathrm{X}_{(}(1)\right)$ is 10 feet -2 feet $=8$ feet.

Example 2:
Assume $\mathrm{X}^{2}(1), \mathrm{X} \mathbf{2}_{(2)}, \mathrm{X} \mathbf{2}_{(3)}, \mathrm{X} \mathbf{2}_{(4)}$, and $\mathrm{X}^{2}(5)$ all equal 10 feet (C-T-C); $\mathrm{X} 1_{(6)}$ equals 30 feet (C-T-C).
Find maximum length (C-T-C) of $\mathrm{X} 2_{(6)}$. Note 5 does not apply.
Note 2, equation a: $\quad 1.5(\mathrm{X} 1)+\mathrm{X} 2+35(\mathrm{~N}-1)=287$

$$
1.5(30)+\mathrm{X} 2+35(5)=287
$$

$$
45+X 2+175=287
$$

$$
\mathrm{X} 2=287-(45+175)=67
$$

$$
\mathrm{X} 2_{(1)}+\mathrm{X} 2_{(2)}+\mathrm{X} 2_{(3)}+\mathrm{X} 2_{(4)}+\mathrm{X} 2_{(5)}+\mathrm{X} 2_{(6)}=67
$$

$$
\mathrm{X}^{2}(6)=67-50=17 \text { feet }(\mathrm{C}-\mathrm{T}-\mathrm{C})
$$

Note 2, equation b: $\quad \mathrm{X} 1+\mathrm{X} 2=105$

$$
\mathrm{X} 2=105-30=75
$$

$$
X^{2}(6)=75-50=25 \text { feet }(C-T-C)
$$

Maximum length to satisfy both equations is 17 feet (C-T-C) from equation a.
For planning purposes in Example 2, group 85-46 \#6 ($\mathrm{X} 9(6)$), the maximum " X " dimension is
30 feet -7 feet $=23$ feet. The maximum " X " dimension for group $85-47 \# 5$ is 17 feet because the
C-T-C equals the " X " dimension for this group.
3. Cable C-T-C length of group $85-49$ must always equal the sum of the C-T-C lengths of intervening groups $85-47$ and $85-48$ plus 6 additional feet for each intervening coupler. This provides equal delay along the simplex path (85-49) and the multiplex path (85-47, 85-48, and couplers).
4. Length of group $85-51$ must be equal to the length of the group $85-47$ cables between the couplers.
5. A 2835 Model 1, 2835 Model 2, or a 2820 must be attached to the first 2880 ; the maximum length for cable group 85-46 is 10 feet (C-T-C) and the maximum length for cable group $85-48$ is 20 feet (C-T-C).

SYSTEM/360 MODEL 85 CABLING SCHEMATIC (2880 ATTACHMENT)

Memory (Storage) Bus Coupler (2365/2385)

1051 CONTROL UNIT MODELS 1 AND N1

PLAN VIEW

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	26	15	27
$(\mathrm{~cm})$	(66)	(38)	(69)

Service Clearances:

	F	\mathbf{R}	Rt	L
Inches	0	36	0	30
$(\mathrm{~cm})$	(0)	(91)	(0)	(76)

Weight: $195 \mathrm{lb}(89 \mathrm{~kg})$

Heat Output: $670 \mathrm{BTU} / \mathrm{hr}$ ($170 \mathrm{kcal} / \mathrm{hr}$)

Airflow: $0 \mathrm{cfm}\left(0 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:

kVA
Phases
Plug
Connector
Receptacle
Power Cord Style
0.2

1
R\&S, FS3720
R\&S, FS3913
R\&S, FS3743
A5

Environment Operating:
Temperature $\quad 50^{\circ}-110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$
Rel Humidity $10 \%-80 \%$
Max Wet Bulb $\quad 80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$
Environment Nonoperating:
Temperature $\quad 50^{\circ}-110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$
Rel Humidity $10 \%-80 \%$
Max Wet Bulb $80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$

Cable Limitations:

Fixed length to 2030.

PLAN VIEW (Not $1 / 4^{\prime \prime}=1^{\prime}$ Scale)

SYSTEM/360 MODEL 195 J AND K-3195 PROCESSING UNIT AND STORAGE

Details (By Frame, Without Covers)

Frame	$\begin{aligned} & \text { Dimensions } \\ & \begin{array}{c} \text { Fllllll} \\ \text { inches } \end{array} \\ & \hline(\mathrm{cm}) \end{aligned}$	Weight $l b$ (kg)	$\begin{aligned} & \text { Airflow } \\ & c f m \\ & \left(\mathrm{~m}^{3} / \mathrm{min}\right) \end{aligned}$	Heat Output BTU/hr (kcal/hr)	
				To Air	To Water
06	$\begin{aligned} & 66 \times 15 \times 70 \\ & (168 \times 38 \times 178) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (640) \end{aligned}$	$\begin{aligned} & 400 \\ & (12) \end{aligned}$	$\begin{aligned} & 7,000 \\ & (1.800) \end{aligned}$	$\begin{aligned} & 7,000 \\ & (1.800) \end{aligned}$
08	$\begin{aligned} & 66 \times 15 \times 70 \\ & (168 \times 38 \times 178) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (640) \end{aligned}$	$\begin{aligned} & 400 \\ & (12) \end{aligned}$	$\begin{aligned} & 5,000 \\ & (1.300) \end{aligned}$	$\begin{aligned} & 5,000 \\ & (1.300) \end{aligned}$
10	$\begin{aligned} & 15 \times 66 \times 70 \\ & (38 \times 168 \times 178) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (640) \end{aligned}$	$\begin{aligned} & 400 \\ & (12) \end{aligned}$	$\begin{aligned} & 6,500 \\ & (1.650) \end{aligned}$	$\begin{aligned} & 6,500 \\ & (1.650) \end{aligned}$
12	$\begin{aligned} & 15 \times 50 \times 70 \\ & (38 \times 127 \times 178) \end{aligned}$	$\begin{aligned} & 1,000 \\ & (460) \end{aligned}$	$\begin{aligned} & 250 \\ & \text { (8) } \end{aligned}$	$\begin{aligned} & 7,800 \\ & (2.000) \end{aligned}$	$\begin{aligned} & 2,500 \\ & (640) \end{aligned}$
14	$\begin{aligned} & 30 \times 30 \times 70 \\ & (76 \times 76 \times 178) \end{aligned}$	$\begin{aligned} & 1,300 \\ & (590) \end{aligned}$	-	-	$\begin{aligned} & 21,000 \\ & (5.300) \end{aligned}$
15	$\begin{aligned} & 50 \times 30 \times 70 \\ & (127 \times 76 \times 178) \end{aligned}$	$\begin{aligned} & 1,000 \\ & (460) \end{aligned}$	$\begin{aligned} & 300 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & 3,000 \\ & (760) \end{aligned}$	-
16	$\begin{aligned} & 15 \times 30 \times 70 \\ & (38 \times 76 \times 178) \end{aligned}$	$\begin{aligned} & 650 \\ & (300) \end{aligned}$	$\begin{aligned} & 150 \\ & (5) \end{aligned}$	$\begin{aligned} & 2,000 \\ & (510) \end{aligned}$	-
18	$\begin{aligned} & 46 \times 30 \times 70 \\ & (117 \times 76 \times 178) \end{aligned}$	$\begin{aligned} & 1,800 \\ & (820) \end{aligned}$	-	-	-
19	$\begin{aligned} & 46 \times 30 \times 70 \\ & (117 \times 76 \times 178) \end{aligned}$	$\begin{aligned} & 1,800 \\ & (820) \end{aligned}$	-	-	-
50	$\begin{aligned} & 46 \times 68 * \times 70 \\ & (117 \times 173 * \times 178) \end{aligned}$	$\begin{aligned} & 3,500^{*} \\ & \left(1.600^{*}\right) \end{aligned}$	$\begin{aligned} & 2,800 \\ & (80) \end{aligned}$	$\begin{aligned} & 25,000 \\ & (6.350) \end{aligned}$	$\begin{aligned} & 20,000 \\ & (5.050) \end{aligned}$
51	$\begin{aligned} & 46 \times 68 * \times 70 \\ & \left(117 \times 173^{*} \times 178\right) \end{aligned}$	$\begin{aligned} & 3,500^{*} \\ & \left(1.600^{*}\right) \end{aligned}$	$\begin{aligned} & 2,800 \\ & (80) \end{aligned}$	$\begin{aligned} & 25,000 \\ & (6.350) \end{aligned}$	$\begin{aligned} & 20,000 \\ & (5.050) \end{aligned}$

CPU Totals (By Model)

Model	$\begin{gathered} \hline \text { Weight } \\ l b \\ (\mathrm{~kg}) \end{gathered}$	Airflow cfm $\left(m^{3} / \mathrm{min}\right)$	$\begin{aligned} & \text { Heat Output } \\ & \text { BTU/hr (kcal/hr) } \end{aligned}$		Remarks
			To Air	To Water	
J	$\begin{aligned} & 13,450 \\ & (6.150) \end{aligned}$	$\begin{aligned} & 4,700 \\ & (140) \end{aligned}$	$\begin{aligned} & 56,300 \\ & (14.200) \end{aligned}$	$\begin{aligned} & 62,000 \\ & (15.650) \end{aligned}$	Omit frames 18 and 51
K	$\begin{aligned} & 18,750 \\ & (8.550) \end{aligned}$	$\begin{aligned} & 7,500 \\ & (220) \end{aligned}$	$\begin{aligned} & 81,300 \\ & (20.500) \end{aligned}$	$\begin{aligned} & 82,000 \\ & (20.700) \end{aligned}$	

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$* *$	$* *$	70
$(\mathrm{~cm})$	$(* *)$	$(* *)$	(178)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$* *$	$* *$	$* *$	$* *$
$(\mathrm{~cm})$	$\left({ }^{* *}\right)$	$\left({ }^{* *}\right)$	$(* *)$	$\left({ }^{* *}\right)$

Power Requirements:

The Model 195 J and K receive $50 / 60-\mathrm{Hz}$ and $415 / 441-\mathrm{Hz}$ power from 3080 Models 1,2 , and 3 and 3085 PDU.

Environment Operating:

Temperature	$65^{\circ}-80^{\circ} \mathrm{F}\left(18^{\mathrm{O}}-27^{\circ} \mathrm{C}\right)$
Rel Humidity	$20 \%-80 \%$
Max Wet Bulb	$75^{\circ} \mathrm{F}\left(24^{\circ} \mathrm{C}\right)^{* * *}$

Notes:

* The 68 inches (173 cm) represents width of two 34 -inch ($86-\mathrm{cm}$) wide subframes, each weighing $1,750 \mathrm{lb}(800 \mathrm{~kg})$.
** See plan view.
*** See "Liquid Coolant System" in Appendix A.

SYSTEM/360 MODEL 195 KJ AND L-3195 PROCESSING UNIT AND STORAGE

PLAN VIEW (Not 1/4" = $\mathbf{1}^{\prime}$ Scale)

3195.3 Installation Manual-Physical Planning

SYSTEM/360 MODEL 195 KJ AND L-3195 PROCESSING UNIT AND STORAGE

Details (By Frame, Without Covers)

Frame	Dimensions $\boldsymbol{F} \times \mathrm{S} \times \mathrm{H}$ inches (cm)	$\begin{aligned} & \text { Weight } \\ & \quad l b \\ & (\mathrm{~kg}) \end{aligned}$	Airflow cfm $\left(m^{3} / \min \right)$	Heat Output BTU/hr (kcal/hr)	
				To Air	To Water
06	$\begin{aligned} & 66 \times 15 \times 70 \\ & (168 \times 38 \times 178) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (640) \end{aligned}$	$\begin{aligned} & 400 \\ & (12) \end{aligned}$	$\begin{aligned} & 7,000 \\ & (1.800) \end{aligned}$	$\begin{aligned} & 7,000 \\ & (1.800) \end{aligned}$
08	$\begin{aligned} & 66 \times 15 \times 70 \\ & (168 \times 38 \times 178) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (640) \end{aligned}$	$\begin{aligned} & 400 \\ & (12) \end{aligned}$	$\begin{aligned} & 5,000 \\ & (1.300) \end{aligned}$	$\begin{aligned} & 5,000 \\ & (1.300) \end{aligned}$
10	$\begin{aligned} & 15 \times 66 \times 70 \\ & (38 \times 168 \times 178) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (640) \end{aligned}$	$\begin{aligned} & 400 \\ & (12) \end{aligned}$	$\begin{aligned} & 6,500 \\ & (1.650) \end{aligned}$	$\begin{aligned} & 6,500 \\ & (1.650) \end{aligned}$
12	$\begin{aligned} & 15 \times 50 \times 70 \\ & (38 \times 127 \times 178) \end{aligned}$	$\begin{aligned} & 1,000 \\ & (460) \end{aligned}$	$\begin{aligned} & 250 \\ & (8) \end{aligned}$	$\begin{aligned} & 7,800 \\ & (2.000) \end{aligned}$	$\begin{aligned} & 2,500 \\ & (640) \end{aligned}$
14	$\begin{aligned} & 30 \times 30 \times 70 \\ & (76 \times 76 \times 178) \end{aligned}$	$\begin{aligned} & 1,300 \\ & (590) \end{aligned}$	-	-	$\begin{aligned} & 21,000 \\ & (5.300) \end{aligned}$
15	$\begin{aligned} & 50 \times 30 \times 70 \\ & (127 \times 76 \times 178) \end{aligned}$	$\begin{aligned} & 1,000 \\ & (460) \end{aligned}$	$\begin{aligned} & 300 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & 3,000 \\ & (760) \end{aligned}$	-
16	$\begin{aligned} & 15 \times 30 \times 70 \\ & (38 \times 76 \times 178) \end{aligned}$	$\begin{aligned} & 650 \\ & (300) \end{aligned}$	$\begin{aligned} & 150 \\ & \text { (5) } \end{aligned}$	$\begin{aligned} & 2,000 \\ & (510) \end{aligned}$	-
18	$\begin{aligned} & 46 \times 30 \times 70 \\ & (117 \times 76 \times 178) \end{aligned}$	$\begin{aligned} & 1,800^{*} \\ & \left(820^{*}\right) \end{aligned}$	-	-	-
19	$\begin{aligned} & 46 \times 30 \times 70 \\ & (117 \times 76 \times 178) \end{aligned}$	$\begin{aligned} & 3,100 \\ & (1.450) \end{aligned}$	-	-	-
50	$\begin{aligned} & 46 \times 68^{* *} \times 70 \\ & \left(117 \times 173^{* *} \times 178\right) \end{aligned}$	$\begin{aligned} & 3,500^{* *} \\ & \left(1.600^{* *}\right) \end{aligned}$	$\begin{aligned} & 2,800 \\ & (80) \end{aligned}$	$\begin{aligned} & 25,000 \\ & (6.350) \end{aligned}$	$\begin{aligned} & 20,000 \\ & (5.050) \end{aligned}$
51	$\begin{aligned} & 46 \times 68^{* *} \times 70 \\ & \left(117 \times 173^{* *} \times 178\right) \end{aligned}$	$\begin{aligned} & 3,500^{* *} \\ & \left(1.600^{* *}\right) \end{aligned}$	$\begin{aligned} & 2,800 \\ & (80) \end{aligned}$	$\begin{aligned} & 25,000 \\ & (6.350) \end{aligned}$	$\begin{aligned} & 20,000 \\ & (5.050) \end{aligned}$
52	$\begin{aligned} & 46 \times 68^{* *} \times 70 \\ & \left(117 \times 173^{* *} \times 178\right) \end{aligned}$	$\begin{aligned} & 3,500^{* *} \\ & \left(1.600^{* *}\right) \end{aligned}$	$\begin{aligned} & 2,800 \\ & (80) \end{aligned}$	$\begin{aligned} & 25,000 \\ & (6.350) \end{aligned}$	$\begin{aligned} & 20,000 \\ & (5.050) \end{aligned}$
53	$\begin{aligned} & 46 \times 68^{* *} \times 70 \\ & \left(117 \times 173^{* *} \times 178\right) \end{aligned}$	$\begin{aligned} & 3,500^{* *} \\ & \left(1.600^{* *}\right) \end{aligned}$	$\begin{aligned} & 2,800 \\ & (80) \end{aligned}$	$\begin{aligned} & 25,000 \\ & (6.350) \end{aligned}$	$\begin{aligned} & 20,000 \\ & (5.050) \end{aligned}$

CPU Totals (By Model)

Model	Weightt \dagger $l b$ (kg)	Airflow cfm $\left(m^{3} / \mathrm{min}\right)$	Heat Output BTU/hr (kcal/hr)		Remarks
			To Air	To Water	
KJ	$\begin{aligned} & 24,850 \\ & (11.300) \end{aligned}$	$\begin{aligned} & 10,300 \\ & (300) \end{aligned}$	$\begin{array}{r} 106,300 \\ (26.800) \end{array}$	$\begin{aligned} & 102,000 \\ & (27.750) \end{aligned}$	Omit frame 53
L	$\begin{aligned} & 28,350 \\ & (12,900) \end{aligned}$	$\begin{aligned} & 13,100 \\ & (380) \end{aligned}$	$\begin{aligned} & 131,300 \\ & (33.100) \end{aligned}$	$\begin{aligned} & 122,000 \\ & (30.800) \end{aligned}$	

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$* * *$	$* * *$	70
$(\mathrm{~cm})$	$(* * *)$	$(* * *)$	(178)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$* * *$	$* * *$	$* * *$	$* * *$
$(\mathrm{~cm})$	$(* * *)$	$(* * *)$	$(* * *)$	$(* * *)$

Power Requirements:

The Model 195 KJ and L receive $50 / 60-\mathrm{Hz}$ and $415 / 441-\mathrm{Hz}$ power from 3080 Models 1 , 2, and 3 and 3085 PDU.

Environment Operating:

Temperature	$65^{\circ}-80^{\circ} \mathrm{F}\left(18^{\circ}-27^{\circ} \mathrm{C}\right)$
Rel Humidity	$20 \%-80 \%$
Max Wet Bulb	$75^{\circ} \mathrm{F}\left(24^{\circ} \mathrm{C}\right) \dagger$

Notes:

* The $1,800 \mathrm{lb}(820 \mathrm{~kg})$ is increased to $3,100 \mathrm{lb}(1.450 \mathrm{~kg})$ for Model L .
** The 68 inches (173 cm) represents width of two 34 -inch ($86-\mathrm{cm}$) wide subframes, each weighing $1,750 \mathrm{lb}(800 \mathrm{~kg})$.
*** See plan view.
\dagger See "Liquid Coolant System" in Appendix A.
$\dagger \dagger$ Based on IBM's method of calculating floor loading, the Model 195 exceeds 75 pounds per square foot ($370 \mathrm{~kg} / \mathrm{m}^{2}$) distributed floor loading. The installation site, therefore, should be reviewed by a qualified consultant.

PLAN VIEW

Distribution Guide for Motor-Generator Output to 3085 PDU

Information in this guide accommodates a 208 A full-load rating. Note that the conduit quantity column refers to the number of conduits recommended, each conduit containing all three phases in the wire size shown (three conductors per conduit) plus one AWG \#2 insulated copper conductor in one of the conduits (the larger, if used) for ground. It is important that local and national wiring codes be followed.

Copper Wire Size	Conduit		$\begin{aligned} & 3195 \\ & \text { Model } \end{aligned}$	Maximum Run Lengths by Conduit Type--ft (meters \dagger)		
	Quantity	$\begin{gathered} \text { Size } \\ \text { (inches) } \end{gathered}$		Ferrous	Nonferrous	Nonmetallict
250 MCM*	1	3	L	$\begin{aligned} & 105^{* *} \\ & \left(32^{* *}\right) \end{aligned}$	$\begin{aligned} & 130^{* *} \\ & \left(40^{\star *}\right) \end{aligned}$	$\begin{aligned} & 155^{* * *} \\ & \left(47^{* * *}\right) \end{aligned}$
			KJ	$\begin{aligned} & 130^{* *} \\ & \left(40^{* *}\right) \end{aligned}$	$\begin{aligned} & 155^{* *} \\ & \left(47^{* *}\right) \end{aligned}$	$\begin{aligned} & 180^{* * *} \\ & \left(55^{* *}\right) \end{aligned}$
			K	$\begin{aligned} & 145^{* *} \\ & \left(44^{* *}\right) \end{aligned}$	$\begin{aligned} & 170^{* *} \\ & \left(52^{* *}\right) \end{aligned}$	$\begin{aligned} & 195^{* * *} \\ & \left(59^{* * *}\right) \end{aligned}$
			J	$\begin{aligned} & 160^{* *} \\ & \left(49^{* *}\right) \end{aligned}$	$\begin{aligned} & 185^{* *} \\ & \left(59^{* *}\right) \end{aligned}$	$\begin{aligned} & 210^{* * *} \\ & \left(64^{* * *}\right) \end{aligned}$
2/0 AWG	2	2	L	$\begin{aligned} & 190 \\ & (58) \end{aligned}$	$\begin{aligned} & 230 \\ & (70) \end{aligned}$	$\begin{aligned} & 265 \\ & (81) \end{aligned}$
			KJ	$\begin{aligned} & 230 \\ & (70) \end{aligned}$	$\begin{aligned} & 270 \\ & (82) \end{aligned}$	$\begin{aligned} & 305 \\ & (93) \end{aligned}$
			K	255 (78)	$\begin{aligned} & 295 \\ & (90) \end{aligned}$	$\begin{aligned} & 330 \\ & (101) \end{aligned}$
			J	280 (85)	$\begin{aligned} & 320 \\ & (98) \end{aligned}$	$\begin{aligned} & 355 \\ & (108) \end{aligned}$
250 MCM	$\left\{\begin{array}{l} 1 \\ 1 \end{array}\right.$	$\left.\begin{array}{c} 2-1 / 2 \\ 3 \end{array}\right\}$	L	210 (64)	$\begin{aligned} & 260 \\ & (79) \end{aligned}$	$\begin{aligned} & 310 \\ & \text { (94) } \end{aligned}$
			KJ	$\begin{aligned} & 250 \\ & (76) \end{aligned}$	$\begin{aligned} & 300 \\ & \text { (91) } \end{aligned}$	$\begin{aligned} & 350 \\ & (107) \end{aligned}$
			K	275 (84)	$\begin{aligned} & 325 \\ & (99) \end{aligned}$	$\begin{aligned} & 375 \\ & (114) \end{aligned}$
			J	300 (91)	350 (107)	$\begin{aligned} & 400 \\ & (122) \end{aligned}$
Single runs with conductors smaller than 250 MCM should not be used. $M C M=$ thousand circular mils, where a circular mil is the cross-sectional area of a 0.001 " $(0,0254 \mathrm{~mm})$ diameter wire $\left(7.854(10)-7\right.$ in 2 or $5,067(10)^{-4} \mathrm{~mm}^{2}$). ${ }^{ *} 90^{\circ} \mathrm{C}$ insulation required. *** $75^{\circ} \mathrm{C}$ insulation required. thengths are rounded to the nearest unit meter. + +Or cabled in air, where codes allow.						

SPECIFICATIONS

Dimensions:

	F	S	H	
Inches (cm)	$\begin{gathered} 81 \\ (206) \end{gathered}$	$\begin{gathered} 36 \\ (91) \end{gathered}$	$\begin{gathered} 51 \\ (130) \end{gathered}$	
Service Clearances:				
	F	R	Rt	L
Inches (cm)	$\begin{gathered} 30 \\ (76) \end{gathered}$			

Weight: $\quad 3,600 \mathrm{lb}^{*}(1.650 \mathrm{~kg} *)$

Heat Output (Approximate):

$$
55,250 \mathrm{BTU} / \mathrm{hr} \quad(14.000 \mathrm{kcal} / \mathrm{hr})
$$

Power Requirements:

Phases 3
Input:
Induction Motor-100 hp, type K, class B, $220 / 240 \mathrm{~V}$ or $380 / 408 \mathrm{~V}, 50 \pm 0.5 \mathrm{~Hz}$

Input (V)	Locked Rotor Current (A)	Full Load Current (A)
220	Special start winding. Less than 200% of full load.	245
240		230
380		142
408		134

Output:
Synchronous Generator-75 kVA, 208V $\pm 2 \%$, $441 \mathrm{~Hz} \pm 6 \%$

Notes:

* Starter circuitry is included in the generator.

The installation and maintenance of the motor-generator (including starter) unit will be the responsibility of the customer. Consult motor-generator manufacturer's instruction manual for further installation procedures and maintenance.

Customer to supply the following wiring:

1. Input feeders to the motor.
2. Output feeders from generator to PDU junction box. Maximum voltage drop at the PDU should not exceed 5%.
3. Five remote leads required from generator to PDU junction box: three AWG \#14 leads for sensing and two AWG \#16 leads for indicator lights.
4. The EPO pushbutton in the computer room must remotely cut off power to motor and output of the generator. Shunt trips are provided for this purpose in both circuit breakers.

PLAN VIEW

Distribution Guide for Motor-Generator Output to 3085 PDU

Information in this guide accommodates a 208A full-load rating. Note that the conduit quantity column refers to the number of conduits recommended, each conduit containing all three phases in the wire size shown (three conductors per conduit) plus one AWG \#2 insulated copper conductor in one of the conduits (the larger, if used) for ground. It is important that local and national wiring codes be followed.

Copper Wire Size	Conduit		$\begin{gathered} 3195 \\ \text { Model } \end{gathered}$	Moximum Run Lengths by Conduit Type--ft (meters ${ }^{\dagger}$)		
	Quantity	Size (inches)		Ferrous	Nonferrous	Nonmetallict
250 MCM*	1	3	L	$\begin{aligned} & 105 * * \\ & \left(32^{* *}\right) \end{aligned}$	$\begin{aligned} & 130^{* *} \\ & \left(40^{* *}\right) \end{aligned}$	$\begin{aligned} & 155^{* * *} \\ & \left(47^{* * *}\right) \end{aligned}$
			Kj	$\begin{aligned} & 130^{* *} \\ & \left(40^{* *}\right) \end{aligned}$	$\begin{aligned} & 155^{* *} \\ & \left(47^{* *}\right) \end{aligned}$	$\begin{aligned} & 180^{* * *} \\ & \left(55^{* * *}\right) \end{aligned}$
			K	$\begin{aligned} & 145^{* *} \\ & \left(44^{* *}\right) \end{aligned}$	$\begin{aligned} & 170^{* *} \\ & \left(52^{* *}\right) \end{aligned}$	$\begin{aligned} & 195^{* * *} \\ & (59 * *) \end{aligned}$
			J	$\begin{aligned} & 160^{* *} \\ & \left(49^{* *}\right) \end{aligned}$	$\begin{aligned} & 185 * * \\ & \left(59^{* *}\right) \end{aligned}$	$\begin{aligned} & 210^{* * *} \\ & \left(64^{* * *}\right) \end{aligned}$
2/0 AWG	2	2	L	$\begin{aligned} & 190 \\ & (58) \end{aligned}$	$\begin{aligned} & 230 \\ & (70) \end{aligned}$	265
			KJ	$\begin{aligned} & 230 \\ & (70) \end{aligned}$	$\begin{aligned} & 270 \\ & (82) \end{aligned}$	$\begin{aligned} & 305 \\ & \text { (93) } \end{aligned}$
			K	$\begin{aligned} & 255 \\ & (78) \end{aligned}$	$\begin{aligned} & 295 \\ & (90) \end{aligned}$	$\begin{aligned} & 330 \\ & (101) \end{aligned}$
			J	$\begin{aligned} & 280 \\ & (85) \end{aligned}$	$\begin{aligned} & 320 \\ & (98) \end{aligned}$	$\begin{aligned} & 355 \\ & (108) \end{aligned}$
250 MCM	$\left\{\begin{array}{l} 1 \\ 1 \end{array}\right.$	$\left.\begin{array}{c} 2-1 / 2 \\ 3 \end{array}\right\}$	L	$\underset{(64)}{210}$	$\begin{aligned} & 260 \\ & (79) \end{aligned}$	$\begin{aligned} & 310 \\ & (94) \end{aligned}$
			KJ	$\begin{aligned} & 250 \\ & (76) \end{aligned}$	$\begin{aligned} & 300 \\ & \text { (91) } \end{aligned}$	$\begin{aligned} & 350 \\ & (107) \end{aligned}$
				$\begin{gathered} 275 \\ (84) \end{gathered}$	$\begin{aligned} & 325 \\ & (99) \end{aligned}$	$\begin{aligned} & 375 \\ & (114) \end{aligned}$
			J	$\begin{aligned} & 300 \\ & \text { (91) } \end{aligned}$	$\begin{aligned} & 350 \\ & (107) \end{aligned}$	$\begin{aligned} & 400 \\ & (122) \end{aligned}$
* Single runs with conductors smaller than 250 MCM should not be used. MCM = thousand circular mils, where a circular mil is the cross-sectional area of a 0.001 " ($0,0254 \mathrm{~mm}$) diameter wire ($7.854(-10))^{-7}$ in 2 or $5,067(10)^{-4} \mathrm{~mm}^{2}$). $* * 90^{\circ} \mathrm{C}$ insulation required. *** $75^{\circ} \mathrm{C}$ insulation required. \dagger Lengths are rounded to the nearest unit meter. t+Or cabled in air, where codes allow.						

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	76	37	54
$(\mathrm{~cm})$	(193)	(94)	(137)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	30	30	30	30
(cm)	(76)	(76)	(76)	(76)
Weight:	$3,000 \mathrm{lb}$	$(1.400 \mathrm{~kg})$		

Heat Output (Approximate):

$40,000 \mathrm{BTU} / \mathrm{hr}(10.100 \mathrm{kcal} / \mathrm{hr})$

Power Requirements:*

Phases 3
Input:
Induction Motor-90 hp, type K, NEMA design $\mathrm{A}, 208 / 230 \mathrm{~V}$ or $440 \mathrm{~V} \pm 10 \%$, $60 \mathrm{~Hz} \pm 5 \%, 40^{\circ} \mathrm{C}$ maximum ambient
Starting Inrush Current:
208V-460A
$230 \mathrm{~V}-424 \mathrm{~A}$
440V-200A
Running Current at Full Load:
208V-235A
$230 \mathrm{~V}-212 \mathrm{~A}$
440V-106A
Output:
Synchronous Generator-75 kVA, 208V $\pm 2 \%$, $415 \mathrm{~Hz} \pm 6 \%$
Notes:

* Starter circuitry is included in the generator.

The installation and maintenance of the motor-generator (including starter) unit will be the responsibility of the customer. Consult motor-generator manufacturer's instruction manual for further installation procedures and maintenance.
Customer to supply the following wiring:

1. Input feeders to the motor.
2. Output feeders from generator to PDU junction box. Maximum voltage drop at the PDU should not exceed 5%.
3. Five remote leads required from generator to PDU junction box: three AWG \#14 leads for sensing and two AWG \#16 leads for indicator lights.
4. The EPO pushbutton in the computer room must remotely cut off power to motor and output of the generator. Shunt trips are provided for this purpose in both circuit breakers.

ROTARY CONVERTER (REMOTE) FOR SYSTEM/360 MODEL 195 (WORLD TRADE ONLY)

PLAN VIEW

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	56	36	37
$(\mathrm{~cm})$	(142)	(91)	(94)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	30	30	30	30
$(\mathrm{~cm})$	(76)	(76)	(76)	(76)

Weight: $\quad 1,550 \mathrm{lb}(710 \mathrm{~kg})$

Heat Output: $\quad 22,915 \mathrm{BTU} / \mathrm{hr} \quad(5.800 \mathrm{kcal} / \mathrm{hr})$

Power Requirements:

Phases 3
Input:
Induction Motor-50 hp, 220/240V or $380 / 408 V, 50 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$

Input (V)	Locked Rotor Current (A)	Full Load Current (A)
220	760	123
240	830	113
380	460	71
408	500	68

Output:
Synchronous generator coupled to motor with timing belts, $208 \mathrm{~V}, 60 \mathrm{~Hz}, 37.5 \mathrm{kVA}$

Cable	No. of	From	To	Max	
No.	Cables	Unit-Frame	Unit-Frame	Length (ft)	Notes
95-09	2	3060 Fr 01	Control Unit	-	9
95-10	49	3060 Fr 01	3195 Fr 10	26	3
95-11	35	3060 Fr 01	3195 Fr 06	26	3
95-12	26	3060 Fr 01	3195 Fr 08	26	3
95-13	12	3060 Fr 01	3195 Fr 12	25	3
95-14	2	3060 Fr 01	2803	96	2
95-15	2	3060 Fr 01	3060 Fr 01	14	3
95-16	3	3195 Fr 08	3195 Fr 12	17	3
95-17	2	3060 Fr 01	Selector Channel	-	9
95-18	2	3060 Fr 01	Byte Multiplexer Channel	-	9
95-19	2	3060 Fr 01	Block Multiplexer Channel	-	9
95-20	4	3085 Fr 09	3080 Fr 03	68	-
95-21	2	3085 Fr 09	3060 Fr 01	68	-
95-22	4	3085 Fr 09	3060 Fr 01	68	-
95-23	3	3085 Fr 09	3080 Fr 04	68	-
95-24	2	3085 Fr 09	3195 Fr 06	68	-
95-25	4	3085 Fr 09	3080 Fr 05	68	-
95-26	1	3085 Fr 09	3195 Fr 10	68	-

$\begin{gathered} \text { Cable } \\ \text { No. } \end{gathered}$	No. of Cables	From Unit-Frame	To Unit-Frame	$\begin{gathered} \text { Max } \\ \text { Length }(f t) \end{gathered}$	Notes
95-27	3	3085 Fr 09	3195 Fr 19	68	-
95-28	3	3085 Fr 09	3195 Fr 19	68	5
95-29	4	3085 Fr 09	3195 Fr 16	68	-
95-30	1	3085 Fr 09	3195 Fr 12	68	-
95-31	3	3085 Fr 09	3195 Fr 14	68	-
95-32	3	3085 Fr 09	3195 Fr 18	68	4
95-33	3	3085 Fr 09	3195 Fr 18	68	6
95-34	2	3085 Fr 09	3195 Fr 08	68	-
95-35	2	3085 Fr 09	CER (CE Room)	100	8
95-36	2	3085 Fr 09	3086 Fr 02	55	-
95-37	2	3060 Fr 01	Channel-to-Channel Adapter	-	9
95-38	2	Direct Control	3195 Fr 15	100	10
95-40	1	3060 Fr 01	3195 Fr 19	96	-
95-41	1	3060 Fr 01	3195 Fr 19	96	5
95-42	2	3060 Fr 01	3195 Fr 16	96	-
95-43	1	3060 Fr 01	3195 Fr 14	96	-
95-44	1	3060 Fr 01	3195 Fr 18	96	6
95-45	1	3060 Fr 01	3195 Fr 18	96	4
95-46	1	3060 Fr 01	3080 Fr 03	96	-
95-47	1	3060 Fr 01	3080 Fr 04	96	-
95-48	1	3060 Fr 01	3080 Fr 05	96	-
95-49	2	3085 Fr 09	3060 Fr 01	96	-
95-50	3	3060 Fr 01	3060 Fr 01	8	3
95-51	1	3060 Fr 01	3060 Fr 01	12	3
95-52	1	3085 Fr 09	3195 Fr 15	68	-
95-53	2	Direct Control	3195 Fr 15	100	11
95-54	2	Direct Control	3195 Fr 15	100	1
95-60	21	3080 Fr 03	3195 Fr 06	24	7
95-61	22	3080 Fr 04	3195 Fr 08	24	7
95-62	21	3080 Fr 05	3195 Fr 10	24	7
95-63	19	3195 Fr 14	3195 Fr 12	10	3
95-65	1	3195 Fr 16	3195 Fr 15	8	3
95-66	1	3195 Fr 15	3195 Fr 14	8	3
95-67	1	3195 Fr 14	3195 Fr 06	24	-
95-68	1	3080 Fr 05	3080 Fr 04	68	-
95-70	1	3085 Fr 09	System/360 or System/370 CPU	100	12
95-71	1	3085 Fr 09	System/360 or System/370 CPU	100	13

Notes:

1. Direct control to other System/360 or System/370 CPUs (excluding 3195).
2. With more than one 2803 on a system, route to "last" 2803 (containing terminators).
3. Fixed-length cables.
4. For 3195 Model L configuration only.
5. For 3195 Model KJ and L configurations only.
6. For 3195 Model K, KJ, and L configurations only.
7. Cables in this group are divided between the two cutouts in the 3080 . Measure from the 3195 cutout to the farther 3080 cutout.
8. From BSM analyzer located in CE room (CER).
9. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units.
10. Direct control to non-IBM devices.
11. Direct control to another 3195.
12. To SF \# 3621, two-system EPO connection.
13. To SF \# 3622, multisystem EPO connection. See Note 2 in "System/360 Specification Summary."

SYSTEM/360 MODEL 195 CABLING SCHEMATIC-CHANNELS

Cable Function	Group No.	No. of Cables	From	To	$\begin{gathered} \text { Max } \\ \text { Length (ft) } \end{gathered}$	Notes
Multiplex	95-72	13	2860	3195 Fr 15	-	1,4,6
	95-73	13	2870	3195 Fr 15	-	1,4,6
	95-74	13	2880	3195 Fr 15	-	1,4,6
	95-75	13	2860	3195 Fr 15	-	1,5,6
	95-76	13	2870	3195 Fr 15	-	1,5,6
	95-77	13	2880	3195 Fr 15	-	1,5,6
	95-78	13	2860	2860	-	1
	95-80	13	2860	2880	-	1
	95-81	13	2870	2860	-	1
	95-82	13	2870	2870	-	1
	95-83	13	2870	2880	-	1
	95-84	13	2880	2860	-	1
	95-86	13	2880	2880	-	1
Simplex	95-87	1	2860	3195 Fr 15	-	2,3
	95-88	1	2870	3195 Fr 15	-	2,3
	95-89	1	2880	3195 Fr 15	-	2,3
Control	95-90	1	2860	3085 Fr 09	90	-
	95-91	1	2870	3085 Fr 09	90	-
	95-92	1	2880	3085 Fr 09	90	-
Channel-to-	95-93	2	2860	Channel-to-Channel Adapter	-	7,8
Channel	95-94	2	2860	Multiplexer Channel	-	7,8
Adapter	95-95	2	2860	Block Multiplexer Channel	-	7,8
	95-96	2	2860	Selector Channel	-	7,8
	95-97	2	2860	Control Unit	-	7,8

Notes:

Bus Arrangement	Max "X" cable lengths (feet) per bus to connect:			
	1 Unit	2 Units	3 Units	4 Units
With 2880s only	129	115	102	88
Combinations of 2860s, 2870s, and 2880s with a 2880 last unit on bus		111	91	74
Combinations of $2860 \mathrm{~s}, 2870 \mathrm{~s}$, and 2880 s with either a 2860 or 2870 last unit on bus		77	60	47
With 2860s and/or 2870 s only on a bus	95	76	57	39

2. One group per channel.
3. The total (T) length of simplex group must be within $+0 \%$ and -3% of the accumulated total length of multiplex group(s) between that particular channel and 3195.
4. For bus A only.
5. For bus B only.
6. General Information: Maximum of two buses (A and B) per system; divide channel frames between buses A and B when both buses are used. Intermix of 2860,2870 , and 2880 frames on either bus is allowed. Limitation: Maximum of four channel frames on one bus.
Basic System: Maximum of seven frames or seven logical channels, whichever occurs first.
If two 2870 s are attached, additional intermixed 2860 s and 2880 s may be attached up to a maximum of five frames or five logical channels of 2860 and/or 2880.
If one 2870 is attached, additional intermixed 2860 s and 2880 s may be attached up to a maximum of six frames or six logical channels of 2860 and/or 2880.
If no 2870 s are attached, the restrictions are the same as for one attached 2870.
With Extended Channels (SF \#3851): Maximum of 8 frames or 14 logical channels, whichever occurs first.
If two 2870 s are attached, additional intermixed 2860 s and 2880 s may be attached up to a maximum of 5 frames or 5 logical channels of 2860 or a maximum of 6 frames or 12 logical channels of 2880.
If one 2870 is attached, additional intermixed 2860 s and 2880 s may be attached up to a maximum of 6 frames or 6 logical channels of 2860 or a maximum of 7 frames or 13 logical channels of 2880.
If no 2870s are attached, the restrictions are the same as for one attached 2870.
7. For channel-to-channel adapter (SF \# 1850).
8. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units.

SYSTEM/360 MODEL 195 CABLING SCHEMATIC-COOLANT HOSES

SYSTEM/360 MODEL 195 CABLING SCHEMATIC-COOLANT HOSES

Group	No. of Hoses	From	To 3195 Frame	Fixed Length $(f t)$	Notes
$95-01$	20	3086	See Schematic	-	$1,2,3$
$95-02$	2	3086	51	50	1,3
$95-03$	2	3086	52	50	1,3
$95-04$	2	3086	53	50	1,3

Notes:

1. Supply hoses have quick-connect plug fittings on end away from CDU and socket fittings on end going into CDU (Supply hoses only are shown on this schematic; assume one return hose for each supply hose.) Return hoses have quick-connect socket fittings on end away from CDU and plug fittings going into CDU. (Exceptions are BSM analyzer hoses, which have socket connectors on both ends of the supply and return hoses.)
2. Hoses are 50 feet (fixed length), except where otherwise noted.
3. Coolant hoses are ordered by group number only.

Specify:
Group number $95-01$ for Model J
Group numbers 95-01 and 95-02 for Model K
Group numbers $95-01,95-02$, and $95-03$ for Model KJ
Group numbers 95-01, 95-02, 95-03, and 95-04 for Model L.

PLAN VIEW

Note: For cabling information, see Section 4, "Units with Integral or Abutted Controls."

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	43-1/2	24	$44-3 / 4$
(cm)	(110)	(61)	(114)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	42	42	30	36
$(\mathrm{~cm})$	(107)	(107)	(76)	(91)

Weight: $620 \mathrm{lb}(290 \mathrm{~kg})$

Heat Output: 3,700 BTU/hr (940 kcal/hr)

Airflow: $300 \mathrm{cfm}\left(9 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:

kVA	1.2
Phases	1
Plug	R\&S, FS3720
Connector	R\&S, FS3913
Receptacle	R\&S, FS3743
Power Cord Style	A1

Environment Operating:
Temperature $\quad 50^{\circ}-110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$
Rel Humidity $8 \%-80 \%$

Environment Nonoperating:

Temperature $\quad 50^{\circ}-110^{\circ} \mathrm{F} \quad\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$
Rel Humidity $8 \%-80 \%$

PLAN VIEW

Note: For cabling information, see Section 4, 'Units with Integral or Abutted Controls."

SPECIFICATIONS

Dimensions:

	F	S*	H
Inches	$71-1 / 4^{* *}$	$35-3 / 4^{* *}$	60
$(\mathrm{~cm})$	$\left(181^{* *}\right)$	$\left(91^{* *}\right)$	(152)

Service Clearances:

	F	R	Rt	L
Inches	36	48	42	48
$(\mathrm{~cm})$	(91)	(122)	(107)	(122)

Weight: $1,600 \mathrm{lb}(730 \mathrm{~kg})$

Heat Output: $5,000 \mathrm{BTU} / \mathrm{hr}(1.300 \mathrm{kcal} / \mathrm{hr})$

Airflow: $600 \mathrm{cfm}\left(17 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:

kVA	1.8
Phases	3
Plug	R\&S, FS3760
Connector	R\&S, FS3934
Receptacle	R\&S, FS3754
Power Cord Style D1	

Notes:

* Dimension includes 9 " $(23 \mathrm{~cm})$ for reading board projection. Reading board is removed for shipment.
** Dimensions can be reduced to 70" x 29" ($178 \mathrm{~cm} \times 74 \mathrm{~cm}$) for shipping.

PLAN VIEW

Note: For cabling information, see 2821 in /BM System/370 Installation Manual-Physical Planning.

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$67-1 / 8^{*}$	$31-3 / 4^{*}$	$53-1 / 2^{*}$
$(\mathrm{~cm})$	$\left(170^{*}\right)$	$\left(81^{*}\right)$	$\left(136^{*}\right)$

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	36	36	48	42
$(\mathrm{~cm})$	(91)	(91)	(122)	(107)

Weight: $\quad 1,600 \mathrm{lb}(730 \mathrm{~kg})$

Heat Output: $3,800 \mathrm{BTU} / \mathrm{hr}(960 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 280 \mathrm{cfm}\left(8 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements: ** kVA 1.5

Notes:

* Front Forms Cart: $18-1 / 4$ " x $25^{\prime \prime} \times 21-1 / 4$ " ($46 \mathrm{~cm} \times 64 \mathrm{~cm} \times 54 \mathrm{~cm}$).
Rear Forms Cart: 24-1/2" x 23" x 21-1/4" ($62 \mathrm{~cm} \times 58 \mathrm{~cm} \times 54 \mathrm{~cm}$).
Maximum Forms Cart Projection: front 5"
$(13 \mathrm{~cm})$ and rear 9" (23 cm).
** Powered from 2821-4.

1412 MAGNETIC CHARACTER READER MODEL 1

PLAN VIEW

Note: For cabling information, see Section 4, "Units with Integral or Abutted Controls."

Accumulator (SF \#3610)

SPECIFICATIONS

Dimensions:

	F	S	H
Reader-Sorter*			
Inches	112	$41-1 / 4^{* *}$	$60-1 / 4$
$(\mathrm{~cm})$	(284)	$\left(105^{* *}\right)$	(153)
Accumulator			
Inches	17		
$(\mathrm{~cm})$	(43)	(52)	(98)

Service Clearances:

	F	R	Rt	L
Reader-Sorter				
Inches	42	48	36	36
$(\mathrm{~cm})$	(107)	(122)	(91)	(91)

Accumulator

None required, except provide for operator access at front.

Weight:

Reader-Sorter
$2,475 \mathrm{lb}$ *** ($1.150 \mathrm{~kg}{ }^{* * *}$)
Accumulator
105 lb (48 kg)
Heat Output: $\quad 8,100 \mathrm{BTU} / \mathrm{hr}^{* * *}\left(2.050 \mathrm{kcal} / \mathrm{hr}^{* * *}\right)$

Airflow: $320 \mathrm{cfm}^{* * *}\left(10 \mathrm{~m}^{3} / \mathrm{min}^{* * *}\right)$
Power Requirements:***
$\begin{array}{ll}\text { kVA } & 3.39\end{array}$
Phases 1
Plug R\&S, FS3750
Connector R\&S, FS3933
Receptacle R\&S, FS3753
Accumulator is powered from 1412.
Power Cord Style D1

Environment Operating:
Temperature $\quad 65^{\circ}-80^{\circ} \mathrm{F}\left(18^{\mathrm{O}}-27^{\circ} \mathrm{C}\right)$
Rel Humidity $20 \%-65 \%$
Notes:

* Machine is shipped in two sections.
** Dimension includes 10 " (25 cm) for reading board projection.
*** For endorser unit, add 0.6 kVA , $1,400 \mathrm{BTU} / \mathrm{hr}(360 \mathrm{kcal} / \mathrm{hr}), 110 \mathrm{cfm}$ ($4 \mathrm{~m}^{3} / \mathrm{min}$), and $75 \mathrm{lb}(35 \mathrm{~kg})$.

1418 OPTICAL CHARACTER READER MODELS 1 TO 3
 1428 ALPHAMERIC OPTICAL READER MODELS 1 TO 3

PLAN VIEW

Note: For cabling information, see Section 4, "Units with Integral or Abutted Controls."

Frame	Weight lb (kg)			
	Models 1 and 3		Model 2	
	1418	1428	1418	1428
01	$\begin{array}{r} 1,680 \\ (770) \end{array}$	$\begin{array}{r} 1,780 \\ (810) \end{array}$	$\begin{array}{r} 1,730 \\ (790) \end{array}$	$\begin{array}{r} 1,830 \\ (840) \end{array}$
02	$\begin{array}{r} 970 \\ (440) \end{array}$			

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	112^{*}	$41-1 / 4^{* *}$	$60-1 / 4^{* * *}$
$(\mathrm{~cm})$	$\left(284^{*}\right)$	$\left(105^{* *}\right)$	$\left(153^{* * *}\right)$

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	42	48	36	36
$(\mathrm{~cm})$	(107)	(122)	(91)	(91)
	1418	1428	1418	1428
Weight:	Models 1, 3	Models 1,3	Model 2	Model 2
lb	2,650	2,750	2,700	2,800
(kg)	(1.250)	(1.250)	(1.250)	(1.300)

Heat Output: $\quad 10,500 \mathrm{BTU} / \mathrm{hr}(2.650 \mathrm{kcal} / \mathrm{hr})$
Airflow: $\quad 575 \mathrm{cfm}\left(17 \mathrm{~m}^{3} / \mathrm{min}\right)$
Power Requirements:

kVA	4.6
Phases	3
Plug	R\&S, FS3760
Connector	R\&S, FS3934
Receptacle	R\&S, FS3754
Power Cord Style	D1

Environment Operating:

$$
\begin{array}{ll}
\text { Temperature } & 65^{\circ}-80^{\circ} \mathrm{F}\left(18^{\mathrm{O}}-27^{\circ} \mathrm{C}\right) \\
\text { Rel Humidity } & 20 \%-65 \%
\end{array}
$$

Notes:

* Machine is shipped in two sections.
** Dimension includes 10 " (25 cm) for reading board projection.
*** Add 7-3/8" (19 cm) to height for CRT on the 1418 .

1445 PRINTER MODEL N1

PLAN VIEW

Note: For cabling information, see Section 4, '"Units with Integral or Abutted Controls."

SPECIFICATIONS

Dimensions:*

	F	S	H
	Inches	$55-7 / 8$	43
$(\mathrm{~cm})$	(142)	(109)	(117)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	36	36	48	30
$(\mathrm{~cm})$	(91)	(91)	(122)	(76)

Weight: $\quad 825 \mathrm{lb}(380 \mathrm{~kg})$

Heat Output: $3,200 \mathrm{BTU} / \mathrm{hr}(810 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 50 \mathrm{cfm}\left(2 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:

kVA	1.1
Phases	1
Plug	R\&S, FS3720
Connector	R\&S, FS3913
Receptacle	R\&S, FS3743
Power Cord Style	A1

Environment Operating:

Temperature $60^{\circ}-90^{\circ} \mathrm{F}\left(16^{\circ}-32^{\circ} \mathrm{C}\right)$
Rel Humidity $10 \%-80 \%$

Notes:

* Shipping dimensions are $49^{\prime \prime} \times 25^{\prime \prime} \times 50^{\prime \prime}$ ($124 \mathrm{~cm} \times 64 \mathrm{~cm} \times 127 \mathrm{~cm}$).

2167 CONFIGURATION UNIT MODELS 1 TO 4

PLAN VIEW

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$85-1 / 2^{*}$	33	$68-3 / 4$
$(\mathrm{~cm})$	$\left(217^{*}\right)$	(84)	(175)

Service Clearances:

	F	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	60	60	60	60
$(\mathrm{~cm})$	(152)	(152)	(152)	(152)

Weight:	Model 3	Model 4
lb	4,025	4,425
$(\mathrm{~kg})$	(1.850)	(2.050)

Heat Output:		
BTU/hr	20,000	28,000
(kcal/hr)	(5.050)	(7.100)

Airflow:

cfm	2,210	2,210
$\left(\mathrm{~m}^{3} / \mathrm{min}\right)$	(63)	(63)

Power Requirements:		
kVA	9.0	12.6
Phases	3	3
Plug	R\&S, SC7328	
Connector	R\&S, SC7428	
Receptacle	R\&S, SC7324	
Power Cord Style	E-	

Environment Operating:	
Temperature	$65^{\circ}-90^{\circ} \mathrm{F}\left(18^{\mathrm{O}}-32^{\circ} \mathrm{C}\right)$
Rel Humidity	$10 \%-80 \%$
Max Wet Bulb	$78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$

Notes:

* Machine is shipped in two sections.

2302 DISK STORAGE MODELS 3 AND 4

PLAN VIEW

WIIIIT Air Intake Area

Note: For cabling information, see 2841 in IBM System/370 Installation Manual-Physical Planning.

Airflow

2167 CONFIGURATION UNIT CABLING SCHEMATIC

Group No.	No. of Cables	From	To					Max Length $(f t)$	Notes
875	4	2167	2067	75	1,6				
876	1	2167	$2365-12$	75	2				
877	1	2167	SF \#5518 in SF \#3846	75	3				
878	1	2167	2846	75	4				
879	1	2167	2067	75	5				
880	3	2167	2067	75	6				

Notes:

1. One required to each 2067 when 2167 is used.
2. One required to each 2365 Model 12 when 2167 is used.
3. One required for each 2167 (EPO).
4. One required to each 2846 for up to four 2365 Model 12s. Two required to each 2846 for five or more 2365 Model 12s.
5. One required to 2067 (without SF \#5518), EPO.
6. For systems with more than four 2365 s, add one group 880 to each 2067.

PLAN VIEW

Note: For cabling information, see host CPU.

Frame	Weight		Airflow		Heat Output			
	16	kg	cfm	$\mathrm{m}^{3} / \mathrm{min}$	BTU/hr		kcal/hr	
					Model 1	Model 2	Model 1	Model 2
01	625	290	275	8	2,750	$4,200{ }^{\circ}$	700	1.100
02	1,500	690	930	27	8,250	13,200	2.100	3.350

SPECIFICATIONS

Dimensions:

$\left.\begin{array}{lccc} & \text { F } & \text { S } & \text { H } \\ & \text { Inches } & 90-1 / 4 & 31-3 / 4\end{array}\right) 70-1 / 2$

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
	Inches	72	30	30
(cm)	(183)	(76)	(76)	(91)

Weight: $\quad 2,125 \mathrm{lb}(970 \mathrm{~kg})$

Heat Output:	Model 1	Model 2
BTU/hr	11,000	17,400
$(\mathrm{kcal} / \mathrm{hr})$	(2.800)	(4.400)

Airflow:
cfm
1,205
(35)

Power Requirements:		
kVA	4.5	7.0
Phases	3	3
Plug	R\&S, SC7328	
Connector	R\&S, SC7428	
Receptacle	R\&S, SC7324	
Power Cord Style	E3	

Environment Operating:

Temperature	$60^{\circ}-90^{\circ} \mathrm{F}\left(16^{\circ}-32^{\circ} \mathrm{C}\right)$
Rel Humidity	$8 \%-80 \%$
Max Wet Bulb	$78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$
nvironment Nonoperating:	
Temperature	$50^{\circ}-110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$
Rel Humidity	$8 \%-80 \%$
Max Wet Bulb	$78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$

Rel Humidity $8 \%-80 \%$
Max Wet Bulb $\quad 78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$

Environment Nonoperating:
Temperature $\quad 50^{\circ}-110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$
Max Wet Bulb $\quad 78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$

PLAN VIEW

Note: For cabling information, see host CPU.

Frame	Weight	
	Ib	kg
01	870	400
02	1,200	550
03	430	200
04	220	100

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	$72-1 / 2$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left(^{*}\right)$	(184)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left(^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	$\left({ }^{*}\right)$

Weight: $\quad 2,720 \mathrm{lb}(1.250 \mathrm{~kg})$

Heat Output: $25,300 \mathrm{BTU} / \mathrm{hr}(6.400 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 1,495 \mathrm{cfm}\left(43 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:	
kVA	7.4
Phases	3
Plug	R\&S,
Connector	R\&S, SC7428
Receptacle	R\&S, SC7324
Power Cord Style E3	

Environment Operating:

Temperature	$60^{\circ}-90^{\circ} \mathrm{F}\left(16^{\circ}-32^{\circ} \mathrm{C}\right)$
Rel Humidity	$8 \%-80 \%$
Max Wet Bulb	$78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$

Notes:

* See plan view. Dimensions are for frame size; add $1-3 / 8^{\prime \prime}(4 \mathrm{~cm})$ for each cover.
** SF \# 8035 is required with each 2365 Model 2 in a Model 67 system.
*** SF \# 3846 is an expansion feature that is required between two 2365 units when not separated by a 2067.

2365 PROCESSOR STORAGE MODEL 5

PLAN VIEW

Note: For cabling information, see host CPU.

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$29-1 / 2$	$83-3 / 4$	$72-1 / 2$
$(\mathrm{~cm})$	(75)	(213)	(184)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	30	30	$*$	$*$
$(\mathrm{~cm})$	(76)	(76)	$\left(^{*}\right)$	$\left({ }^{*}\right)$
Weight:	$2,500 \mathrm{lb}(1.150 \mathrm{~kg})$			

Heat Output: $15,000 \mathrm{BTU} / \mathrm{hr}(3.800 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 750 \mathrm{cfm}\left(22 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:
kVA
4.0

Notes:

* See plan view.
** Powered from PDU (2085 frame 14).

PLAN VIEW

Note: For cabling information, see host CPU.

Frame	Weight	
	Ib	kg
01	870	400
02	1,200	550
03	800	370
04	430	200

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	$72-1 / 2$
$(\mathrm{~cm})$	$\left(^{*}\right)$		$\left.\mathbf{*}^{*}\right)$

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$*$	$*$	$*$	$*$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left(^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	$\left(^{*}\right)$

Weight: $3,300 \mathrm{lb}(1.500 \mathrm{~kg})$

Heat Output: $\quad 29,000 \mathrm{BTU} / \mathrm{hr}(7.350 \mathrm{kcal} / \mathrm{hr})$

Airflow:- $\quad 2,345 \mathrm{cfm}\left(67 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:	
kVA	8.5
Phases	3
Plug	R\&S,
SC7328	
Connector	R\&S,
SC7428	
Receptacle	R\&S,
SC7324	
Power Cord	Style
l	

Environment Operating:
Temperature $\quad 60^{\circ}-90^{\circ} \mathrm{F}\left(16^{\circ}-32^{\circ} \mathrm{C}\right)$
Rel Humidity $8 \%-80 \%$
Max Wet Bulb $\quad 78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$

Notes:

* See plan view. Dimensions are for frame size; add $1-3 / 8^{\prime \prime}(4 \mathrm{~cm})$ for each cover.
** SF \#3846 is an expansion feature that is required between two 2365 units when not separated by a 2067.

PLAN VIEW

Note: For cabling information, see host CPU.

Frame	Weight	
	lb	kg
01	870	400
02	1,200	550
03	430	200
04	220	100

SPECIFICATIONS

Dimensions:

	\mathbf{F}	\mathbf{S}	\mathbf{H}
Inches	\dagger	\dagger	$72-1 / 2$
$(\mathrm{~cm})$	(\dagger)	(\dagger)	(184)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	\dagger	\dagger	\dagger	\dagger
(cm)	(\dagger)	(\dagger)	(\dagger)	(\dagger)

Weight: $\quad 2,720 \mathrm{lb}(1.250 \mathrm{~kg})$

Heat Output: $25,300 \mathrm{BTU} / \mathrm{hr}(6.400 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 1,495 \mathrm{cfm}\left(43 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:	
kVA	7.4
Phases	3
Plug	R\&S, SC7328
Connector	R\&S, SC7428
Receptacle	R\&S, SC7324
Power Cord Style	E3

Environment Operating:

Temperature	$60^{\circ}-90^{\circ} \mathrm{F} \cdot\left(16^{\circ}-32^{\circ} \mathrm{C}\right)$
Rel Humidity	$8 \%-80 \%$
Max Wet Bulb	$78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$

Notes:

* See Model 65 Multiprocessing Unit cabling schematic for required usage.
** Required only for 2365 \#6, \#7, and \#8.
*** Required only for 2365 \#5 through \#8.
\dagger See plan view. Dimensions are for frame size; add 1-3/8" (4 cm) for each cover.

2385 PROCESSOR STORAGE MODEL 1

PLAN VIEW (Not $1 / 4^{\prime \prime}=1^{\prime}$ Scale)

Note: For cabling information, see host CPU.

2385 PROCESSOR STORAGE MODEL 1

Details (By Frame)

Frame	$\begin{aligned} & \hline \text { Weight } \\ & \text { lb } \\ & \text { (kg) } \end{aligned}$	Airflow cfm $\left(m^{3} / \mathrm{min}\right)$	BTU/hr (kcal/hr)	
			To Air	To Water
01	$\begin{aligned} & 1,819 \\ & (830) \end{aligned}$	-	$\begin{aligned} & 3,500 \\ & (890) \end{aligned}$	-
02*	$\begin{aligned} & 1,888 \\ & (860) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (40) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	$\begin{aligned} & 10,000 \\ & (2.550) \end{aligned}$
03*	$\begin{aligned} & 1,679 \\ & (770) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (40) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	$\begin{aligned} & 10,000 \\ & (2.550) \end{aligned}$
04*	$\begin{aligned} & 1,881 \\ & (860) \end{aligned}$	$\begin{aligned} & 280 \\ & (8) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	0 (0)
05*	$\begin{aligned} & 1,881 \\ & (860) \end{aligned}$	$\begin{aligned} & 280 \\ & (8) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	0 (0)
06*	$\begin{aligned} & 1,679 \\ & (770) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (40) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	$\begin{aligned} & 10,000 \\ & (2.550) \end{aligned}$
07*	$\begin{aligned} & 1,888 \\ & (860) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (40) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	$\begin{aligned} & 10,000 \\ & (2.550) \end{aligned}$
08	$\begin{aligned} & 1,581 \\ & (720) \end{aligned}$	$\begin{aligned} & 820 \\ & (24) \end{aligned}$	$\begin{gathered} 6,400 \\ (1.650) \end{gathered}$	$\begin{aligned} & 22,300 \\ & (5.650) \end{aligned}$
09	$\begin{aligned} & 1,246 \\ & (570) \end{aligned}$	$\begin{aligned} & 450 \\ & (13) \end{aligned}$	$\begin{aligned} & 1,640 \\ & (420) \end{aligned}$	$\begin{array}{r} 4,750 \\ (1.200) \end{array}$
10	$\begin{aligned} & 0 \\ & (0) \end{aligned}$			
11	$\begin{aligned} & 1,679 \\ & (770) \end{aligned}$	$\begin{aligned} & 240 \\ & (7) \end{aligned}$	$\begin{aligned} & 1,210 \\ & (310) \end{aligned}$	$\begin{array}{r} 5,050 \\ (1.300) \end{array}$

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$* *$	$* *$	78
$(\mathrm{~cm})$	$\left({ }^{* *}\right)$	$(* *)$	(198)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$* *$	$* *$	$* *$	$* *$
$(\mathrm{~cm})$	$(* *)$	$\left({ }^{* *}\right)$	$(* *)$	$\left({ }^{* *}\right)$

Weight: See Details (By Frame)
Heat Output:

$$
\begin{array}{ll}
\text { Air } & 87,750 \mathrm{BTU} / \mathrm{hr}(22.150 \mathrm{kcal} / \mathrm{hr}) \\
\text { Water } & 72,100 \mathrm{BTU} / \mathrm{hr}(18.200 \mathrm{kcal} / \mathrm{hr})
\end{array}
$$

Airflow: $\quad 7,670 \mathrm{cfm}\left(220 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:
The 2385 Model 1 receives $50 / 60-\mathrm{Hz}$ and $415 / 441-\mathrm{Hz}$ power from the PDU (2085 frame 14).

Environment Operating:

Temperature	$65^{\circ}-80^{\circ} \mathrm{F}\left(18^{\circ}-27^{\circ} \mathrm{C}\right)$
Rel Humidity	$20 \%-80 \%$
Max Wet Bulb	$73^{\circ} \mathrm{F}\left(23^{\circ} \mathrm{C}\right)^{* * *}$

Notes:

* The 34 " $\times 46^{\prime \prime}$ ($86 \mathrm{~cm} \times 117 \mathrm{~cm}$) frames cannot be reduced to $29-1 / 2^{\prime \prime}(75 \mathrm{~cm})$ for shipping.
** See plan view.
*** See "Liquid Coolant System" in Appendix A.

2385 PROCESSOR STORAGE MODEL 2

PLAN VIEW (Not 1/4" = $\mathbf{1}^{\prime}$ Scale)

Note: For cabling information, see host CPU.

Details (By Frame)

Frame	Weight lb (kg)	$\begin{gathered} \text { Airflow } \\ c f m \\ \left(m^{3} / \mathrm{min}\right) \end{gathered}$	BTU/hr (kcal/hr)	
			To Air	To Water
01	$\begin{aligned} & 1,819 \\ & (830) \end{aligned}$	-	$\begin{aligned} & 3,500 \\ & (890) \end{aligned}$	-
02*	$\begin{aligned} & 1,888 \\ & (860) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (40) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	$\begin{aligned} & 10,000 \\ & (2.550) \end{aligned}$
03*	$\begin{aligned} & 1,679 \\ & (770) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (40) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	$\begin{aligned} & 10,000 \\ & (2.550) \end{aligned}$
04*	$\begin{aligned} & 1,881 \\ & (860) \end{aligned}$	$\begin{aligned} & 280 \\ & \text { (8) } \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	0 (0)
05*	$\begin{aligned} & 1,881 \\ & (860) \end{aligned}$	$\begin{aligned} & 280 \\ & \text { (8) } \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	0 (0)
06*	$\begin{aligned} & 1,679 \\ & (770) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (40) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	$\begin{aligned} & 10,000 \\ & (2.550) \end{aligned}$
07*	$\begin{aligned} & 1,888 \\ & (860) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (40) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	$\begin{aligned} & 10,000 \\ & (2.550) \end{aligned}$
08	$\begin{aligned} & 1,581 \\ & (720) \end{aligned}$	$\begin{aligned} & 820 \\ & (24) \end{aligned}$	$\begin{aligned} & 6,400 \\ & (1.650) \end{aligned}$	$\begin{aligned} & 22,300 \\ & (5.650) \end{aligned}$
09	$\begin{aligned} & 1,246 \\ & (570) \end{aligned}$	$\begin{aligned} & 450 \\ & \text { (13) } \end{aligned}$	$\begin{aligned} & 3,280 \\ & (830) \end{aligned}$	$\begin{aligned} & 9,500 \\ & (2.400) \end{aligned}$
10	0 (0)	$\begin{aligned} & 0 \\ & (0) \end{aligned}$	0 (0)	0 (0)
11	$\begin{aligned} & 2,049 \\ & (930) \end{aligned}$	240 (7)	$\begin{aligned} & 2,420 \\ & (610) \end{aligned}$	$\begin{aligned} & 10,100 \\ & (2.550) \end{aligned}$
12	$\begin{aligned} & 1,581 \\ & (720) \end{aligned}$	$\begin{aligned} & 820 \\ & (24) \end{aligned}$	$\begin{aligned} & 6,400 \\ & (1.650) \end{aligned}$	$\begin{aligned} & 22,300 \\ & (5.650) \end{aligned}$
13*	$\begin{aligned} & 1,888 \\ & (860) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (40) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	$\begin{aligned} & 10,000 \\ & (2.550) \end{aligned}$
14*	$\begin{aligned} & 1,679 \\ & (770) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (40) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	$\begin{aligned} & 10,000 \\ & (2.550) \end{aligned}$
15*	$\begin{aligned} & 1,881 \\ & (860) \end{aligned}$	$\begin{aligned} & 280 \\ & (8) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	0 (0)
16*	$\begin{aligned} & 1,881 \\ & (860) \end{aligned}$	$\begin{aligned} & 280 \\ & (8) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	0 (0)
17*	$\begin{aligned} & 1,679 \\ & (770) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (40) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	$\begin{aligned} & 10,000 \\ & (2.550) \end{aligned}$
18*	$\begin{aligned} & 1,888 \\ & (860) \end{aligned}$	$\begin{aligned} & 1,400 \\ & (40) \end{aligned}$	$\begin{aligned} & 12,500 \\ & (3.200) \end{aligned}$	$\begin{aligned} & 10,000 \\ & (2.550) \end{aligned}$

SPECIFICATIONS

Dimensions:

	F	\mathbf{S}	\mathbf{H}
Inches	$* *$	$* *$	78
$(\mathrm{~cm})$	$\left({ }^{* *}\right)$	$(* *)$	(198)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	$* *$	$* *$	$* *$	$* *$
$(\mathrm{~cm})$	$\left({ }^{* *}\right)$	$\left({ }^{* *}\right)$	$\left({ }^{* *}\right)$	$\left({ }^{* *}\right)$

Weight: See Details (By Frame)
Heat Output:
Air $\quad 172,000 \mathrm{BTU} / \mathrm{hr}(43.350 \mathrm{kcal} / \mathrm{hr})$
Water $\quad 144,200 \mathrm{BTU} / \mathrm{hr}(36.350 \mathrm{kcal} / \mathrm{hr})$
Airflow: $\quad 14,650 \mathrm{cfm}\left(420 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:

The 2385 Model 2 receives $50 / 60-\mathrm{Hz}$ and $415 / 441-\mathrm{Hz}$ power from the PDU (2085 frame 14).

Environment Operating:

Temperature	$65^{\circ}-80^{\circ} \mathrm{F}\left(18^{\mathrm{O}}-27^{\circ} \mathrm{C}\right)$
Rel Humidity	$20 \%-80 \%$
Max Wet Bulb	$73^{\circ} \mathrm{F}\left(23^{\circ} \mathrm{C}\right)^{* * *}$

Notes:

* The 34 " x 46 " ($86 \mathrm{~cm} \times 117 \mathrm{~cm}$) frames cannot be reduced to $29-1 / 2^{\prime \prime}(75 \mathrm{~cm})$ for shipping.
** See plan view.
*** See "Liquid Coolant System" in Appendix A.

2846 CHANNEL CONTROLLER MODEL 1

PLAN VIEW

Note: For cabling information, see host CPU.

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	$72-1 / 2$
$(\mathrm{~cm})$	$\left(^{*}\right)$	$(*)$	(184)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	30	48	72	55
$(\mathrm{~cm})$	(76)	(122)	(183)	(140)

Weight: $\quad 2,000 \mathrm{lb}(910 \mathrm{~kg})$

Heat Output: $2,600 \mathrm{BTU} / \mathrm{hr}(660 \mathrm{kcal} / \mathrm{hr}$)

Airflow: $\quad 900 \mathrm{cfm}\left(26 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:

kVA	0.88
Phases	1
Plug	R\&S, FS3720
Connector	R\&S, FS3913
Receptacle	R\&S, FS3743
Power Cord Style A2	

Environment Operating:

Temperature	$60^{\circ}-90^{\circ} \mathrm{F}\left(16^{\circ}-32^{\circ} \mathrm{C}\right)$
Rel Humidity	$8 \%-80 \%$
Max Wet Bulb	$78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$

Notes:

* See plan view.

3060 SYSTEM CONSOLE MODEL 1 FOR SYSTEM/360 MODEL 195

PLAN VIEW

Note: For cabling information, see 3195.

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$*$	$*$	67
$(\mathrm{~cm})$	$\left(^{*}\right)$	$\left.\mathbf{(}^{*}\right)$	(170)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	30	24	36	42
$(\mathrm{~cm})$	(76)	(61)	(91)	(107)
Weight:	$2,500 \mathrm{lb}$	$(1.150 \mathrm{~kg})$		

Heat Output: $14,000 \mathrm{BTU} / \mathrm{hr}(3.550 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 1,100 \mathrm{cfm}\left(32 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:

The 3060 (frame 01) receives power from the 3085 PDU (frame 09).

Notes:

* See plan view.

3080 POWER UNIT MODELS 1 TO 3 FOR SYSTEM/360 MODEL 195

SPECIFICATIONS

PLAN VIEW

Note: For cabling information, see 3195.

Dimensions: (All Models)

	F	S	H
Inches	$34-1 / 2$	32	60
$(\mathrm{~cm})$	(88)	(81)	(152)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	36	24^{*}	24^{*}	24^{*}
$(\mathrm{~cm})$	(91)	$\left(61^{*}\right)$	$\left(61^{*}\right)$	$\left(61^{*}\right)$

Weight: $\quad 1,300 \mathrm{lb}(590 \mathrm{~kg})$ per unit

Heat Output:	Water		
	Model 1	Model 2	Model 3
$\mathrm{BTU} / \mathrm{hr}$	20,000	14,000	19,000
$(\mathrm{kcal} / \mathrm{hr})$	(5.050)	(3.550)	(4.800)

Airflow: $\quad 0 \mathrm{cfm}\left(0 \mathrm{~m}^{3} / \mathrm{min}\right)$ per unit

Power Requirements:

The 3080 (frames 03, 04, and 05) receives power from 3085 PDU (frame 09).

Notes:

One 3195 Processing Unit requires one each of 3080 Power Unit Models 1, 2, and 3.

3080 Model	Frame	Supplies Power for Frame
1	03	06 (Floating Point)
2	04	08 (Fixed Point and VFL Decimal)
3	05	10 (I-unit and SCU)

* No service access required. The 24 -inch ($61-\mathrm{cm}$) clearance is shown to assist in distributing machine weight for 75 pounds per square foot $\left(370 \mathrm{~kg} / \mathrm{m}^{2}\right)$ floor loading.

PLAN VIEW

Junction Box Comection Details

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	32	32	60
$(\mathrm{~cm})$	(81)	(81)	(152)

Service Clearances:

	F	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	36	0	36	36
$(\mathrm{~cm})$	(91)	(0)	(91)	(91)
Weight:	$1,000 \mathrm{lb}(460 \mathrm{~kg})$			

Heat Output: Negligible

Airflow: $\quad 0 \mathrm{cfm}\left(0 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:

The PDU (frame 09):

1. Receives $208 \mathrm{~V}, 415 / 441-\mathrm{Hz}$ power from remote motor generator.
2. $U . S$.

Requires 208 V or $230 \mathrm{~V}, 60-\mathrm{Hz} \pm 0.5-\mathrm{Hz}$ power from customer power panel:

For Model J or K, use 60A service.
For Model KJ or L, use 100A service.

World Trade

Receives $208 \mathrm{~V}, 60-\mathrm{Hz}$ power from remote rotary converter or customer outlet.

Requirements	System Model	
	Jand K	KJ and L
	R\&S, SC7328	R\&S, JPS1034H
Connector	R\&S, SC7428	R\&S, JCS1034H
Receptacle	R\&S, SC7324	R\&S, JRSR1034H

System	$50 / 60 \mathrm{~Hz}$		$415 / 441 \mathrm{~Hz}$	
Model	$k V A$	A/Phase	$k V A$	A/Phase
J	10.4	30	47.25	131
K	16.2	45	54.25	151
$K J$	21.6	60	64.25	179
L	27.0	75	74.25	206

3086 COOLANT DISTRIBUTION UNIT (CDU) MODEL 1 FOR SYSTEM/360 MODEL 195

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$62-1 / 2$	32	70
$(\mathrm{~cm})$	(159)	(81)	(178)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	36	36	36	0
$(\mathrm{~cm})$	(91)	(91)	(91)	(0)

Weight: $\quad 1,450 \mathrm{lb}(660 \mathrm{~kg})$

Heat Output:

Air $\quad 2,800 \mathrm{BTU} / \mathrm{hr}(710 \mathrm{kcal} / \mathrm{hr})$
Water $\quad 9,000 \mathrm{BTU} / \mathrm{hr}(2.300 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 0 \mathrm{cfm}\left(0 \mathrm{~m}^{3} / \mathrm{min}\right)$
Environment Operating:

Temperature	$65^{\circ}-90^{\circ} \mathrm{F}\left(18^{\mathrm{O}}-32^{\mathrm{O}} \mathrm{C}\right)$
Rel Humidity	$20 \%-80 \%$
Max Wet Bulb	$72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)^{*}$

Environment Nonoperating:

Temperature $\quad 50^{\circ}-110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$
Rel Humidity $8 \%-80 \%$
Max Wet Bulb $\quad 80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)^{*}$
Notes:

* See "Liquid Coolant System" in Appendix A.

PLAN VIEW

SPECIFICATIONS

Dimensions:

	F	S	H
Inches	$37-1 / 2$	$31-1 / 2$	70
$(\mathrm{~cm})$	(95)	(80)	(178)

Service Clearances:

	\mathbf{F}	\mathbf{R}	$\mathbf{R t}$	\mathbf{L}
Inches	42	36	30^{*}	30^{*}
$(\mathrm{~cm})$	(107)	(91)	$\left(76^{*}\right)$	$\left(76^{*}\right)$

Weight: $600 \mathrm{lb}(280 \mathrm{~kg})$

Heat Output: $5,100 \mathrm{BTU} / \mathrm{hr}(1.300 \mathrm{kcal} / \mathrm{hr})$

Airflow: $\quad 1,800 \mathrm{cfm}\left(51 \mathrm{~m}^{3} / \mathrm{min}\right)$

Power Requirements:	
kVA	2.0
Phases	1
Plug	R\&S, FS3720
Connector	R\&S, FS3913
Receptacle	R\&S, FS3743
Power Cord	Style A3

Environment Operating:

Temperature	$60^{\circ}-90^{\circ} \mathrm{F}\left(16^{\circ}-32^{\circ} \mathrm{C}\right)$
Rel Humidity	$8 \%-80 \%$
Max Wet Bulb	$78^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$

Environment Nonoperating:

Temperature	$50^{\circ}-110^{\circ} \mathrm{F}\left(10^{\circ}-43^{\circ} \mathrm{C}\right)$
Rel Humidity	$0 \%-90 \%$
Max Wet Bulb	$80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$

Notes:

* When not abutted to another similar module.

7772 AUDIO RESPONSE UNIT CABLING SCHEMATIC

Group No.	No. of Cables	From	To	Max Length $(f t)$	Notes
650	2	7772	-	1	
651	2	7772	Multiplexer Channel	-	1
652	1	7772	Control Unit	100	2
653 (or 655)	2	7772	Channel	40	$4,5,6$
654	2	7772	-	1,3	

Notes:

1. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units.
2. Sequence and control (EPO).
3. To channel-to-channel adapter (SF \#1850).
4. One group for each pair of data sets.
5. See "Cables from Non-IBM Devices" for cable specifications.
6. For $50-\mathrm{Hz}$ machines, use group number in parentheses.

Cables from Non-IBM Devices

2 EIA RS-232A Connectors

GENERAL CONTROL-TO-CHANNEL CABLING

Generally, the cable available to connect up to eight control units to a channel is limited to 200 feet (100 feet for System/360 Models 22, 25, and 30). Exceptions to this are noted on the cabling schematics for the individual control units. All control units are connected to the channels serially. All channels exceeding 100 feet must be reviewed and approved by the Installation Planning representative.

*The channel may be a separate unit (such as the IBM 2860) or integral to the system processing unit.
**Units with two-byte interface feature must be installed first on the channel.

CHANNEL-TO-CHANNEL ADAPTER CABLING

The channel-to-channel adapter (SF \#1850) is considered as though it were a control unit on each of the channels involved. The adapter requires external cables to a control unit or channel of the second system. The adapter is installed with the channel, either in a separate unit (such as the 2860) or physically in the central processing unit. It may be assigned to any control unit position on the guest channel. The adapter is assigned to the first control unit position on the host channel; the cable attaching it to the channel is specified as " X " length of " 0 " feet.

* X refers to the host channel; Y refers to the guest channel.

DIRECT CONTROL CABLING

Multiple Processing Units (Notes 1 and 2)

Two Processing Units With External Devices (Notes 1, 2, and 3)

External Interrupt (Notes 1, 2, and 3)

Notes:

1. Cabling shown above is in addition to basic channel requirements.
2. Processing unit may be System/370 or System/360.
3. The total length of 747 or 776 plus 748 or 777 must not exceed 200 feet (100 feet for System/ $\mathbf{3 6 0}$ Models 22, 25, and 30). The length of 765 plus 747 or 776 is similarly restricted.

FIELD ENGINEERING TEST EQUIPMENT CABLING

2955 Field Engineering Data Adapter Unit (FE DAU)

Cables must be ordered as part of the channel to which the FE DAU is attached.

Group	No. of			Max	
No.	Cables	From	To	Length (ft)	Notes
1376	2	FE DAU	Byte Multiplexer Channel	-	1,3
1377	2	FE DAU	Control Unit	-	1,3
1378	1	FE DAU	Channel	150	2
1379	1	Data Access Arrangem	FE DAU	50	4

Notes:

1. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units.
2. Sequence and control (EPO).
3. One cable group plus EPO required for each CPU attached.
4. Customer must provide the interface to customer-provided telephone line. The interface consists of a Data Access Arrangement with a telephone, as designated by USOC Code CDT. Cable terminates in two ring lugs at customer-provided telephone end.

UNITS WITH INTEGRAL OR ABUTTED CONTROLS

Group No.	No. of Cables	
702	1	From
706	2	Reader Unit
707	2	1445
708	1	1445
712	2	1445
713	2	1231
714	1	1231
715	2	1231
716	2	1285
717	1	1285
720	2	1285
722	2	1445
723	2	1231
735	2	1285
746	2	1445
747	1	Reader Unit
748	1	Reader Unit
754	2	Reader Unit
755	2	1231
		1285

Notes:

1. Total cable length of 200 feet (unless modified by general control-to-channel cabling schematic) available to attach up to eight control units.
2. Sequence and control (EPO).
3. To channel-to-channel adapter (SF \#1850).
4. For SF \#3895 or SF \#3274 on System/360 CPU.
5. 200 feet (unless modified by direct control cabling schematic) total length of 747 plus 748.
6. For use with all 1412,1418 , and 1428 machines with SF \#7720 (single address).

Appendix A. Additional Cooling Requirements for Models 85 and 195

COMPUTER ROOM ENVIRONMENT LIMITS

Temperature and Humidity Criteria

Under no condition shall condensation be allowed to occur within the IBM equipment.
Temperature and relative humidity requirements are as stated on the specifications pages.

LIQUID COOLANT SYSTEM

General Requirements

The liquid coolant system is a closed-recirculation system. The loop should have a capacity to accept the heat rejected by the computer at the temperature level specified and to provide proper coolant distribution to individual computer frames.
To prevent condensation on the internal portions of water-cooled units, it is recommended that room recorders with audible alarms be installed to alert operating personnel of impending out-of-specification conditions. Relative humidity recorders should be set at 75%; wet bulb recorders should be set at $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$.

Customer-supplied Chilled Water Specifications

Note: When the computer system is inoperative (power off), there shall be no customer coolant circulating.
The customer-supplied chilled water may vary 15% in flow rate and $\pm 7.5^{\circ} \mathrm{F}\left(\pm 4,2^{\circ} \mathrm{C}\right)$ in temperature. However, the $60^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)$ maximum temperature may not be exceeded.
Customer-supplied chilled water should be as free of particulate matter as feasible. A filtering system of dualbasket type water strainers (size 50 mesh) is recommended. This allows switching from one strainer to another for cleaning, maintenance, and replacement. A means of reverse flushing the heat exchanger in the CDU should be considered. The frequency of reverse flushing depends on the quality of the customer's chilled water.

Hardness of water shall not exceed 200 ppm calcium and magnesium. Water pH shall be between 7 and 9 .
Supply lines should be terminated with three Hansen (Hansen Mfg. Co., Cleveland, Ohio 44735) HK series B6-K31 plugs; return lines should be terminated with three Hansen HK series B6-H31 sockets. Fittings should be horizontal. Nine-inch $(228,6-\mathrm{mm})$ long insulators are provided by IBM to cover these fittings.

Customer water connections must be accessible.
The maximum coolant hose length supplied by IBM from floor cutout (CDU) to customer fitting is 5 feet (152 cm). Maximum pressure on customer-supplied, chilled-water lines should not exceed $75 \mathrm{psig}\left(5,3 \mathrm{~kg} / \mathrm{cm}^{2}\right)$.

Customer-supplied Chilled Water Requirements

These specifications are valid for the chilled-water temperature range of $60^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)$ to $45^{\circ} \mathrm{F}\left(7^{\circ} \mathrm{C}\right)$ and for altitudes up to 3,000 feet $(920 \mathrm{~m})$. For installations using other temperature ranges and at altitudes above 3,000 feet (920 m), consult your Installation Planning representative.

Model 85

Parameter	2085		2385	
	Max Unit*	Min Unit*	Model 2	Model 1
Max Water Temp ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 60 \\ (16) \end{gathered}$			
Min Water Temp ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	45 (7)	45 (7)	45 (7)	45 (7)
Pressure Drop $\mathrm{psig}\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$	$\begin{gathered} 20 \\ (1,4) \end{gathered}$	$\begin{gathered} 10 \\ (0,7) \end{gathered}$	$\begin{gathered} 20 \\ (1,4) \end{gathered}$	$\begin{gathered} 10 \\ (0,7) \end{gathered}$
Flow Rate gpm (liters/min)	$\begin{gathered} 35 \\ (133) \end{gathered}$	$\begin{array}{r} 25 \\ (95) \end{array}$	$\begin{gathered} 35 \\ (133) \end{gathered}$	$\begin{array}{r} 25 \\ (95) \end{array}$
* Maximum and minimum refer to the smallest and the largest configuration of system model and installed features.				

Model 195

Parameter	Model			
	J	K	$K J$	L
Flow Rate				
gpm (liters/min)	25	30	35	40
	(95)	(114)	(133)	(151)
Pressure Drop	10	15	20	25
psig (kg/cm ${ }^{2}$)	$(0,7)$	$(1,1)$	$(1,4)$	$(1,8)$
Max Water Temp	60	60	60	60
${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$				

COOLANT DISTRIBUTION UNIT FOR SYSTEM/360 2085 AND 2385

Typical Connections for Customer-supplied Chilled Water for Models 85 and 195

[^3]
Appendix B. Input/Output Device Priority Considerations

I/O Device	Class	Byte Multiplexer Channel Critical Time (ms)	Block Multiplexer and Selector Channel Burst Mode Data Rate (per second)	Notes (Listed at End of Table)
1231-N1	1	11.00	150 characters	
1285	1	0.40	760 characters	
1412	1	0.86	Mpxr only	2, 3
1418	1	-	Mpxr only	2, 3
1428	1	-	Mpxr only	2
1445	3	18.50	90,000 characters	
2955	1	14.1/N	Mpxr only	
7772	1	$$		
		$3.30 \quad 1.48$	Mpxr only	1

* Manual = pushbutton; manual dialing telephone.

Notes:

1. Is generally attached to the lowest priority (highest numbered) selector channel. The adapter must be the first control device on the channel to which it is assigned and must also have first priority.
2. In general, this device should be placed in highest channel priority. However, because of the load imposed on the channel by one or more of these devices as a function of how the device is programmed, it may be necessary for another device to be placed in higher priority.
3. Only one per system.

Appendix C. Power Cord Style Specifications and Plug Installation (World Trade Reference)

CABLE SPECIFICATIONS

Power Cord Style	Cable Nominal $O D$ inches (mm)	Number of Shields	Conductors		
			Quantity	Nominal $O D^{*}$ inches (mm)	$A W G$ No.
A1	$0.520(13,2)$	1	3	$0.064(1,6)$	14
A2	$0.510(13,0)$	1	3	$0.081(2,1)$	12
A3	0.570 (14,5)	1	3	$0.102(2,6)$	10
A4	0.375 (9,5)	1	3	$0.051(1,3)$	16
A5	0.390 (9,9)	0	3	$0.051(1,3)$	16
A6	$0.560(14,2)$	0	3	$0.064(1,6)$	14
A8	0.390 (9,9)	0	3	$0.064(1,6)$	14
A9	$0.374(9,5)$	0	3	0.040 (1,0)	18
B1	$0.713(18,1)$	0	5	$0.102(2,6)$	10
B2	$0.693(17,6)$	1	5	$0.064(1,6)$	14
D1	$0.792(20,1)$	2	5	$0.102(2,6)$	10
D2	0.750 (19,0)	1	5	$0.102(2,6)$	10
D3	0.642 (16,3)	2	5	$0.064(1,6)$	14
E1	$1.024(26,0)$	1	5	$0.129(3,3)$	8
E2	$1.400(35,6)$	0	5	$0.232(5,9)$	4
E3	$1.200(30,5)$	2	5	$0.184(4,7)$	6
E4	$1.200(30,5)$	0	5	$0.184(4,7)$	6
E5	$1.200(30,5)$	1	5	$0.184(4,7)$	6
E6	$1.240(31,5)$	2	4	$0.184(4,7)$	6
E7	$1.440(36,6)$	1	5	$0.232(5,9)$	4
E8	0.974 (24,7)	0	5	$0.129(3,3)$	8
E9	$0.949(24,1)$	1	4	$0.184(4,7)$	6
E10	$1.340(34,0)$	1	4	$0.232(5,9)$	4
F1	$1.400(35,6)$	0	5	$0.292(7,4)$	2
F2	$1.646(41,8)$	1	5	$0.292(7,4)$	2
F3	1.646 (41,8)	0	5	$0.292(7,4)$	2
F4	1.293 (32,8)	1	4	$0.292(7,4)$	2
G1			3	$0.040(1,0)$	18
G2					
G3	0.360 (9,1)	0	-	$0.051(1,3)$	16
G4	$0.365(9,3)$	1	-	0.040 (1,0)	18

* This diameter refers to solid, bare wire.

HOW TO INSTALL A POWER PLUG ON SHIELDED CABLE

To make power cable shielding effective, the shield or shields must be properly terminated at the plug end of the cable. Because different plugs are used in different countries, slight changes to the following instructions may be needed.

Names of Bulk Cable Components

Preparing Bulk Cable End for the Plug

Dimensions given are for reference only. The installer is to use his own discretion to assure proper assembly of the cable and plug.

Step 1: Remove outer jacket for $1-1 / 2$ inches (38 mm) from end for 15A-30A cables or 2-3/4 inches (70 mm) from end for $45 \mathrm{~A}-60 \mathrm{~A}$ cables. If this is a one-shield cable, go to step 4.

Step 2: (For two-shield cables only.) Remove the outer shield as far back as the outer jacket. The Mylar separator is exposed. Wrap one full turn of electrical tape over the separator and another full turn of tape over the cut end of the outer shield; overlap onto the outer jacket. This tape is used to assure complete electrical isolation between the inner and the outer shields. (See (A).)

Step 3: (For two-shield cables only.) Remove Mylar separator for 1 inch (25 mm) from end for 15A-30A cables or $2-1 / 4$ inches (57 mm) from end for $45 \mathrm{~A}-60 \mathrm{~A}$ cables. Do not cut the inner shield.

Step 4: Do not cut the inner (or only) shield. Unbraid and carefully comb out the shield for 1 inch (25 mm) from end for 15A-30A cables or $2-1 / 4$ inches (57 mm) from end for 45A-60A cables. The core is exposed. (See (B).)

Step 5: Remove cable core for a minimum of $3 / 4$ inch (19 mm) from the end; the conductors are exposed. (See (C).)

Step 6: Carefully lay the shield back over the cable outer jacket; wrap tape around the shield for temporary protec-
tion. Note that on two-shield cables, the outer shield must be insulated from the plug cap, equipment ground (earth) wire, conduit, and so on; the outer shield is grounded at the machine end only. The inner (or only) shield should be grounded through the shell of the plug to the branch circuit conduit. Three-hundred-sixty-degree grounding of, the shield to the plug shell is desirable; that is, making contact between the shield and the shell at all points around the edge, not just at one point.

Installing the Plug

These steps show the attachment of one type of plug; modifications will be needed to allow for the different physical designs of plugs used in various countries.

Install the clamp, brass washer, and bushing over the prepared cable end as shown at (D). Take the protective tape off the shield and slide the bushing over against the shield. Carefully lay the shield back over (E) of the bushing; be sure to spread the strands of the shield evenly over the bushing surface.

Slide the brass washer over the shield and up against the mating surface of the bushing at (F). Wrap tape around the shield for one full turn and trim off the remaining shield strands. Install the clamp and be sure that the mating surface is tightly against the brass washer.

Install the proper terminals and put the rest of the plug assembly together.

Appendix D. Template Index

Type	Model	Order (Form) Number	Type	Model	Order (Form) Number
			2030		GX22-6894
360 and 370	Field Engineering				
	Furniture and Test		2040		GX22-6894
	Equipment	GX22-6925			
			2044	E-H	GX22-6914
360	22	See 2022			
			2050	F-H	GX22-6914
360	25	See 2025			
			2050	HG, I	GX22-6914
360	30	See 2030			
360	40	See 2040	2065	H, I	GX22-6856
			2065	IH, J	GX22-6856
360	44 E-H	See 2044 E-H			
			2065	1 (MP)	GX22-6924
360	$50 \mathrm{~F}-\mathrm{H}$	See 2050 F-H			
360	$50 \mathrm{HG}, \mathrm{I}$	See 2050 HG, I	2065	IH (MP)	GX22-6924
	65 H I	See 2065 H,	2065	J (MP)	GX22-6924
			2067		GX22-6905
360	$65 \mathrm{IH}, \mathrm{J}$	See 2065 IH, J			
			2075	H, I	GX22-6856
360	65 I (MP)	See 2065 I (MP)	2075	IH, J	GX22-6856
360	65 IH (MP)	See 2065 IH (MP)			
			2085		GX22-6923
360	65 J (MP)	See 2065 J (MP)			
			2167	1-4	GX22-6905
360	67	See 2067	2302	3,4	GX22-6858
360	$75 \mathrm{H}, \mathrm{I}$	See 2075 H, I			
			2361	1,2	GX22-6856
360	$75 \mathrm{IH} ; \mathrm{J}$	See 2075 IH, J	2365	2,3	GX22-6856
360	85	See 2085			GX22-6905
360	195 J, K, KJ, L	See 3195	2365	5	GX22-6923
1051	1,N1	GX22-6894	2365	12	GX22-6905
1231	N1	GX22-6860	2365	13	GX22-6924
1285	1	GX22-6860	2385	1,2	GX22-6923
1404	2	GX22-6834	2846	1	GX22-6905
1412	1	GX22-6860	3060	1	GX22-6981
1418	1-3	GX22-6860	3080	1-3	GX22-6981
1428	1-3	GX22-6860	3085	1	GX22-6981
1445	N1	GX22-6834	3086	1	GX22-6981
2022		GX22-6894	3195	J, K, KJ, L	GX22-6981
2025		GX22-6894	7772	3	GX22-6857

Appendix E. System/360 Specification Summary (English Units)

Notes:

1. Parameters not shown may be found in the system/machine specifications.
2. When $S F \# 3622$ is installed, an additional receptacle (for power cord style A or connector note A) is required.
3. This unit is equipped with radio interference control circuits and requires a good
insulated wired earth or building ground. Total resistance of the ground conductor,
For proper operation, all components of the system or systems to which this unit is
attached must have the same ground reference. Conduit is not a satisfactory means of
grounding.
4. Powered from another unit
5. Shipped in sections. See specifications page.
6. Two identical electrical services are required
7. For airflow, see specifications page for 2302 Disk Storage.

Power Cord Notes:

see Appendix c for power cord specifications. For service size ratings, see the following connector notes which can also be applied to $200 / 220 / 235 \mathrm{~V}$, $50-\mathrm{Hz}$ units. For $380 / 408 \mathrm{~V}$, $50-\mathrm{Hz}$ units, the rating should be decided by using power cord specifications in Appendix C.

Connector Notes:

Plug	Connector	Receptacle	Service Rating*
Russell and Stoll, FS3720	FS3913	FS3743	15A, 1 phase, 3 wire
Russell and Stoll, FS3730	FS3914	FS3744	15A. 3 phase, 4 wire
Russell and Stoll, FS3750	FS3933	FS3753	30A, 1 phase, 3 wire
Russell and Stoll, FS3760	FS3934	FS 3754	30A, 3 phase, 4 wire
Russell and Stoll, SC7328	SC7428	SC7324	60A, 3 phase, 4 wire
Russell and Stoll, JPS 1034H	JCS 1034H	JRSR 1034 ${ }^{\text {H }}$	100A, 3 phase, 4 wire
$115 v$ Hubbell or Pass and Seymour, 5266 (nonlocking)	5269	5261 or 5262	15A, 1 phase, 3 wire
208/230V Hubbell or Pass and	5669	5661 or 5662	15A, 1 phase, 3 wire
Seymour, 5666 (nonlocking) $115 v$ Huibell or Pass and Seymour, 4720/4723 (locking)	4730	4700 or 4710	15A, 1 phase, 3 wire
208/230V Hubbell or Pass and Seymour, 4770 (locking)	4780	4750 or 4760	15A, 1 phase, 3 wire
Russell and Stoll, FS3720-20	FS3913-20	FS 3743-20	20A, 1 phase, 3 wire

*The plugs, connectors, and receptacles listed are for use on 208 V or 230 V services. The 115 V options are not available unless noted. The number of wires includes one insulated grounding conductor (green or green with yellow trace).

Type	Model	Description	kVA	Electrical		Environmental			Dimensions (cm)			Service Clearances (cm)				Notes (Listed at End of Table
				Pwr Cord Style	Conn Note	kcal/hr	$\begin{aligned} & m^{3} / \\ & \min \end{aligned}$	Weight (kg)								
									Front	Side	Height	F	R	Rt	L	
360	22	2022 Processing Unit	2,4	D3	B	1.750	26	690			152					1.2
360	25	2025 Processing Unit	7,4	E-	E	5.200	23	930			152					1,2
360	30	2030 Processing Unit	3,8	D3	B	2.550	26	780			152					1-3
360	40D-G	2040 Processing Unit	2,5	B1	D	1.800	9	780			152					1-3
360	40GF, H	2040 Processing Unit	3.7	B1	D	2.650	9	1.050			178					1-3
360	44E,F	2044 Processing Unit	5,3	E1	D	3.800	46	1.350			183					1-3
360	44 G	2044 Processing Unit	6,5	E1	D	4.800	46	1.350			183					1-3
360	448	2044 Processing Unit	9,5	E1(2)	D (2)	7.100	68	1.950			183					1-3,6
360	50F, G	2050 Processing Unit	6,5	E3	E	5.150	67	2.150			184					1,2
360	50H	2050. Processing Unit	6.8	E3	E	5.400	85	2.450			184					1-3
360	50Hg	2050 Processing Unit	7.0	E3	E	6.050	140	3. 250			184					1-3
360	501	2050 Processing Unit	7.6	E3	E	6.350	140	3.250			184					1-3
360	65H,I	2065 Processing Unit	5.4	E1	E	4.000	60	1.950			184					1,2
360	651\%, J	2065 Processing Unit	5.4	E1	E	4.000	60	2.400			184					1,2
360	65I	Multiprocessing Unit	5.4	E1	E	4.000	60	3.750			184					1,2
360	65IH	Multiprocessing Unit	5.4	E1	E	4.000	60	3.900			184					1,2
360	65J	Multiprocessing Unit	5.4	E1	E	4.000	60	4.050			184					1,2
360	67	2067 Processing Unit	6,85	E1	E	5.050	140	1.700			184					1,2
360	75H,1	2075 Processing Unit		E3	E	7.000	95	2.350			184					1-3
360	751日, J	2075 Processing Unit		E3	E	7.000	95	2.450			184					1-3
360	85	2085 Processing unit		D3	D		88	6.550			198					1-3
360	85	Power Dist Unit (2085)					0	690	76	152	178	91	91	76	76	1-3
T 360	85	MG Starter (Remote)										76	76	0	0	1
1360	85	MG Starter (Remote)										76	76	0	0	1
T 360	85	MG (Remote)				25.750		2.100	254	86	135	76	76	76	76	1
S 360	85	MG (Remote)						1.950	218	86	135	76	76	76	76	1
360	195J	3195 Proc Unit 8 Stg					140	6.150			178					1-3
360	195K	3195 Proc Unit 8 Stg					220	8.550			178					1-3
360	195KJ	3195 Proc Unit 8 Stg					300	11.300			178					1-3
360	1951	3195 Proc Unit 6 Stg					380	12.900			178					1-3
T 360	195	Mg (Remote)				14.000		1.650	206	91	130	76	76	76	76	1
S 360	195	MG (Remote)				10.100		1.400	193	94	137	76	76	76	76	1
T 360	195	Rotary Conv (Remote)				5.800		710	142	91	94	76	76	76	76	1
1051	1,N1	Control Unit	0.2	A5	A	170	0	89	66	38	69	0	91	0	76	
1231	N 1	Optical Mark Page Rdr	1,2	A1	A	940	9	290	110	61	114	107	107	76	91	3
1285	1	Optical Reader	1.8	D1	D	1.300	17	730	181	91	152	91	122	107	122	
1404	2	Printer	1,5			960	8	730	170	81	136	91	91	122	107	4
1412	1	Magnetic Character Rdr	3,39	D1	c	2.050	10	1.150	284	105	153	107	122	91	91	5
1418	1,3	Optical Character Rdr	4.6	D1	D	2.650	17	1.250	284	105	153	107	122	91	91	5
1418	2	Optical Character Rdr	4.6	D1	D	2.650	17	1.250	284	105	153	107	122	91	91	5
1428	1,3	Alphameric Optical Rdr	4,6	D1	D	2.650	17	1.250	284	105	153	107	122	91	91	5
1428	,	Alphameric Optical Rdr	4.6	D1	D	2.650	17	1.300	284	105	153	107	122	91	91	5
1445	N1	Printer	1.1	A1	A	810	2	380	142	109	117	91	91	122	76	
2167	1-4	Configuration Unit	0,65	${ }^{\text {A2 }}$	${ }^{\text {A }}$	510	15	270			117					
2302	3	Disk Storage	9,0	E-	E	5.050	63	1.850	217	84	175	152	152	152	152	3-5,7
2302	4	Disk Storage	12,6	E-	E	7.100	63	2.050	217	84	175	152	152	152	152	3-5.7
2361	1	Core Storage	4,5	E3	E	2.800	35	970	229	81	179	183	76	76	91	3
2361	2	Core Storage	7.0	E3	E	4.400	35	970	229	81	179	183	76	76	91	3
2365	2,3	Processor Storage	7,4	E3	E	6.400	43	1.250			184					1
2365	5	Processor Storage	4.0			3.800	22	1. 150	75	213	184	76	76			1,4
2365	12	Processor Storage	8,5	E3	E	7.350	67	1.500			184					1
2365	13	Processor Storage	7.4	E3	E	6.400	43	1.250			184					1
2385 2385	1	Processor Storage Processor Storage					$\begin{aligned} & 220 \\ & 420 \end{aligned}$				198 198					1
2846	,	Channel Controller	0,88	A2	A	660	26	910			184	76	122	183	140	1
3060	1	System Console				3.550	32	1.150 590			$\begin{aligned} & 170 \\ & 157 \end{aligned}$	76 91	61	91	107	1,3,4
3080	1-3	Power Unit					0	590	88	81	152	91				1.3.4
3085	1	Power Dist Unit					0	460	81	81	152	91	0	91	91	1,3
3086	1	Coolant Dist Unit					0	660	159	81	178	91	91	91	0	1,3
7772	3	Audio Response Unit	2,0	A3	A	1.300	51	280	95	80	178	107	91	76	76	

Notes:
Parameters not shown may be found in the system/machine specifications.
When SF \#3622 is installed, an additional receptacle (for power cord style A or connector note A) is required.
3. This unit is equipped with radio interference control circuits and requires a good insulated wired insulated wired earth or building ground. Total resistance of the ground conductor, measured between the receptacle and the building grounding point, must not exceed 3
For proper operation, all components of the system or systems to which this unit is For proper operation, all components of the system or systems to which this unit is attached m
4. Powered from another unit.
5. Shipped in sections. See specifications page.
6. Two identical electrical services are required
7. For airflow, see specifications page for 2302 Disk storage.

Power Cord Notes:
See Appendix C for power cord specifications. For service size ratings, see the following connector notes which can also be applied to $200 / 220 / 235 \mathrm{~V}$, $50-\mathrm{Hz}$ units. For $380 / 408 \mathrm{~V}$, $50-\mathrm{Hz}$ units, the rating should be decided by using power cord specifications in Appendix C.

Connector Notes:

Plug	Connector	Receptacle	Service Rating*
Russell and Stoll, FS3720	FS3913	FS3743	15A, 1 phase, 3 wire
Russell and Stoll, FS3730	FS39 14	FS3744	15A, 3 phase, 4 wire
Russell and Stoll, FS3750	FS3933	FS3753	30A, 1 phase, 3 wire
Russell and Stoll, FS3760	FS3934	FS3754	30A, 3 phase, 4 wire
Russell and Stoll. SC7328	SC7428	SC7 324	60A, 3 phase, 4 wire
Russell and Stoll, JPS 1034H	JCS1034H	JRSR 1034H	100A, 3 phase, 4 wire
115 V Hubbell or Pass and Seymour, 5266 (nonlocking)	5269	5261 or 5262	15A, 1 phase, 3 wire
208/230V Hubbell or Pass and Seymour, 5666 (nonlocking)	5669	5661 or 5662	15A, 1 phase, 3 wire
$115 v$ Hubbell or Pass and Seymour. 4720/4723 (locking)	4730	4700 or 4710	15A, 1 phase, 3 wire
208/230V Hubbell or Pass and Seymour, 4770 (locking)	4780	4750 or 4760	15A, 1 phase, 3 wire
Russell and Stoll, FS3720-20	FS39 13-20	FS3743-20	20A, 1 phase, 3 wire

*The plugs, connectors, and receptacles listed are for use on 208V or 230V services. The 115V options are not available unless noted. The number of wires includes one insulated grounding conductor (green or green with yellow trace).

Appendix G. Inch-to-Centimeter Conversion Table

cable group reference (continued)

67-23 to 67-25		2067.10
67-27	to 67-28	2067.10
67-31	to 67-32	2067.10
67-35	2067.8	8,2067.10
67-36	to 67-38	2067.8
67-98	2067.1	
70-01	to 70-15	2075.6
70-17	to 70-27	2075.6
85-01	to 85-45	2085.9
$85-46$	to 85-51	2085.10
85-52	2085.9	
95-01	to 95-04	3195.15
95-09	to 95-38	3195.10
95-40	to 95-54	3195.11
95-60	to 95-63	3195.11
95-65	to 95-68	3195.11
95-70	to 95-71	3195.11
95-72	to 95-78	3195.13
95-80	to 95-84	3195.13
95-86	to 95-97	3195.13
443	2025.3, 2025.6	
446 to 447		2025.3, 2025.6
503	2025.8	
504 to 505		2025.4, 2025.7
510	2025.5	
604	2025.5,	, 2025.8
605 to 606		2025.8
611 to 612		2025.5
630	2025.4, 2025.7	
631	2025.8	
	2025.7	
633	2025.5	
634	2025.4	
650 to 655		7772.2
702		
706 to 708		4.5
712 to 717		4.5
720		
722 to 723		4.5
7354.5		
$746 \quad 4.5$		
747 to 748 4		4.3, 4.5
754 to 755		4.5
7654.3		
776 to 777		4.3
875 to 880		2167.2
$\begin{aligned} & 1376 \text { to } 1379 \\ & 3501 \text { to } 3502 \end{aligned}$		$\begin{aligned} & 4.4 \\ & 2025.4,2025.7 \end{aligned}$
3503	2025.7	
3504	2025.4	
3505	2025.4, 2025.7	
3506	2025.7	
3507	2025.4	
3508	2025.4, 2025.7	
3510 to 3513		2025.4, 2025.7
3516 to 3518		2025.4, 2025.7
$3519 \quad 2025.7$		
3520 to 3522		2025.4, 2025.7
3523	2025.7	
3524	2025.4	
3526	2025.	.4,2025.7

cable group reference (continued)

$3527 \quad 2025.4$

cables
from non-IBM devices (see cabling schematic for each system/machine)
requested for other reasons 1.17
supplied 1.17
cabling schematics (see schematic for each system/machine)
CE room and test area 1.18
channel-to-channel adapter (SF \#1850) cabling 4.2
circuit breakers 1.10
clearances, service (see specifications for each system/machine)
computer area
data storage $1.13,1.15$
emergency operation 1.14
environment limits 1.21, A. 1
location 1.13
safety and fire considerations 1.13
connector manufacturers 1.21
control-to-channel cabling, general 4.1
convenience outlets 1.11
conversion table, inch-to-centimeter G. 1
converter, rotary (for System/360 Model 195) 3195.9
Customer Engineering room, layout and power 1.18
customer-supplied chilled water
requirements A. 1
specifications A. 1
typical connections for A. 2

Data Adapter Unit (FE DAU) 1.18, 4.4
data cell storage and shipping 1.15
definitions 1.22
dimensions (see specifications for each system/machine)
direct control cabling 4.3
disk pack storage and shipping 1.15
distribution guide for motor-generator output to
3085 PDU 3195.5, 3195.7
environmental conditions (see specifications for each system/machine)
environmental limitations, shipping 1.21

Field Engineering test equipment cabling 4.4
filtration, air 1.8
fire and safety precautions 1.13
fire extinguishers 1.13
floor construction 1.3
illustration 1.4
furniture and fixtures (CE room) 1.18
general control-to-channel cabling 4.1
grounding 1.11
grounding requirements, special (appear in specification summary where applicable)
group number, cable (see cable group reference)
heat output (see specifications for each system/machine)
humidity (see temperature and humidity)
inch-to-centimeter conversion table G. 1
input/output device priority considerations B. 1
input/output priority sequence - 1.16
layout of system $\quad 1.2$
lighting considerations 1.6
lightning protection 1.11
liquid coolant system A. 1
machine operating limits $1.7,1.21$
machine specifications (see specifications for each machine) standard symbols used in 1.20
magnetic tape storage and shipping 1.15
manufacturers of plugs, receptacles, and connectors 1.21
metric conversions, rounding of 1.21
motor-generator (remote) specifications for
System/360 Model 85
$50-\mathrm{Hz}$ input 2085.6
$60-\mathrm{Hz}$ input 2085.7
System/360 Model 195
$50-\mathrm{Hz}$ input 3195.5
$60-\mathrm{Hz}$ input 3195.7
motor-generator starter (remote) specifications for
System/360 Model 85
$50-\mathrm{Hz}$ input 2085.4
$60-\mathrm{Hz}$ input 2085.5
operating limits, machine environment $1.7,1.21$
output priority sequence 1.16
personnel training, suggested 1.14
phase rotation, system power 1.11
plan views (see specifications for each system/machine)
planning, preinstallation 1.1
plug installation C. 1
plug manufacturers 1.21
power cord length 1.10
power cord style specifications C. 1
power distribution system $1.10,1.12$
power requirements 1.10
CE room 1.18
convenience outlets 1.11
emergency controls 1.11
grounding 1.11
installation 1.10
lightning protection 1.11
phase rotation 1.11
plugs and connectors (see specifications for each system/machine)
power cord style (see specifications for each system/machine)
problem areas 1.11
precautions, fire and safety 1.13
preinstallation planning 1.1
priority, I/O device
assignment 1.16
considerations (table) B. 1
raised floor
illustrations 1.4
objectives $1.3,1.4$
safety notes $1.3,1.4$
receptacle manufacturers 1.21
recording instruments, temperature and humidity 1.8
requirements, installation
acoustics 1.4
air conditioning 1.7

```
requirements, installation (continued)
    building 1.2
    furniture
                CE room 1.18
                illustration 1.19
                precautions 1.4
    lighting 1.6
    magnetic tape, disk, and data cell storage 1.15
    Model 85-additional A. }
    Model 195-additional A.1
    personnel training 1.14
    power 1.10
    preinstallation planning 1.1
    RETAIN/370 services (FE DAU) 1.18
    safety and fire precautions 1.13
    safety and security 1.13
    scheduling 1.1
    service clearances (see specifications for each system/machine)
    shipping, environmental limitations 1.21
    space and layout requirements 1.2
    sprinkler systems 1.13
    teleprocessing 1.3
    temperature and humidity 1.7
rotary converter (remote) for System/360 Model }195\mathrm{ (World Trade
    only) }3195.
rounding of metric conversions 1.21
safety and fire precautions 1.13
scheduling 1.1
service clearances (see specifications for each system/machine)
shipping, environmental limitations 1.21
space and layout requirements 1.2
special grounding requirements (appear in specification summary
    where applicable)
specification summary
        English units E. }
    metric units F.1
sprinkler systems 1.13
standard environmental specifications 1.21
standard symbols used in system/machine specifications
    (illustration) 1.20
static charge prevention 1.4
storage considerations
        disk and data cell 1.15
        general data 1.13,1.15
        magnetic tape 1.15
system layout 1.2
system specifications (see specifications for each system)
    standard symbols used in 1.20
symbols and specifications 1.20,1.21
System/360 and System/370 Field Engineering Furniture and
    Test Equipment 1.19
System/360 Model 22
    cabling schematic 2022.2
    2022 Processing Unit specifications 2022.1
System/360 Model 25
    cables from non-IBM devices
                World Trade 2025.5
                U.S. 2025.8
cabling schematic
                World Trade 2025.3
            U.S. 2025.6
        2025 Processing Unit specifications 2025.2
System/360 Model 30
    cabling schematic 2030.2
    2030 Processing Unit specifications 2030.1
```

System/360 Model 40
cabling schematic 2040.2
2040 Processing Unit specifications 2040.1
System/360 Model 44
cabling schematic 2044.2
2044 Processing Unit specifications 2044.1
System/360 Model 50
cabling schematic 2050.5
2050 Processing Unit specifications
Models F, G, and H 2050.2
Models HG and I 2050.4
System/360 Model 65
cabling schematic
Model 65 J Multiprocessing with additional storage 2065.15
multiprocessing 2065.13
single processor 2065.11
specifications
Multiprocessing Unit, Model I 2065.6
Multiprocessing Unit, Model IH 2065.8
Multiprocessing Unit, Model J 2065.10
2065 Processing Unit, Models H and I 2065.2
2065 Processing Unit, Models IH and J 2065.4
System/360 Model 67
cabling schematic
Model 67-1 2067.7
Model 67-2 2067.9
configuration rules 2067.1
configurations with
2067 Model $1 \quad 2067.2$
2067 Model $2 \quad 2067.3$
2067 Processing Unit specifications 2067.6
System/360 Model 75
cabling schematic 2075.5
2075 Processing Unit specifications
Models H and I 2075.2
Models IH and J 2075.4
System/360 Model 85
additional cooling requirements for A. 1
cabling for $2880 \quad 2085.10$
cabling schematic 2085.8
memory (storage) bus coupler 2085.13
specifications
coolant distribution unit (2085 and 2385) A. 2
motor generator (remote)
$50-\mathrm{Hz}$ input 2085.6
$60-\mathrm{Hz}$ input 2085.7
motor-generator starter (remote)
$50-\mathrm{Hz}$ input 2085.4
$60-\mathrm{Hz}$ input 2085.5
power distribution unit (2085 frame 14) 2085.3
2085 Processing Unit 2085.2
System/360 Model 195
(see also 3060, 3080, 3085, and 3086)
additional cooling requirements for A. 1
cabling schematic
channels 3195.12
coolant hoses 3195.14
CPU 3195.10
specifications
motor generator (remote) for
$50-\mathrm{Hz}$ input 3195.5
$60-\mathrm{Hz}$ input 3195.7
rotary converter (remote) (World Trade only) 3195.9
3195 Processing Unit and storage
Models J and K 3195.2
Models KJ and L 3195.4
teleprocessing 1.3
temperature and humidity (see specifications for each
system/machine)
maximum 1.7
recommended design conditions 1.7
recording instruments 1.8
templates
FE furniture (illustration) 1.19
order (form) numbers D. 1
usage in machine layout 1.3
termination hardware, cables from non-IBM devices (see cabling schematic for each system/machine)
test area requirements 1.18
units with integral or abutted controls 4.5
vibration in office environment, effect on machines 1.6
water, customer-supplied chilled
requirements A. 1
specifications A. 1
typical connections for A. 2
weight (see specifications for each system/machine)
1051 Control Unit Models 1 and N1 specifications 1051
1231 Optical Mark Page Reader Model N1
cable groups 4.5
priority considerations B. 1
specifications 1231
1285 Optical Reader Model 1
cable groups 4.5
priority considerations B. 1
specifications 1285
1404 Printer Model 2
specifications 1404
to 2821 cabling (see System/370 Installation ManualPhysical Planning)
1412 Magnetic Character Reader Model 1
cable groups 4.5
priority considerations B. 1
specifications 1412.2
1418 Optical Character Reader Models 1 to 3
cable groups 4.5
priority considerations B.l
specifications 1418.2
1428 Alphameric Optical Reader Models 1 to 3
cable groups 4.5
priority considerations B. 1
specifications 1418.2
1445 Printer Model N1
cable groups 4.5
priority considerations B. 1
specifications 1445
2022 Processing Unit (see System/360 Model 22)
2025 Processing Unit (see System/360 Model 25)
2030 Processing Unit (see System/360 Model 30)
2040 Processing Unit (see System/360 Model 40)
2044 Processing Unit (see System/360 Model 44)
2050 Processing Unit (see System/360 Model 50)
2065 Processing Unit (see System/360 Model 65)

2067 Processing Unit (see System/360 Model 67)
2075 Processing Unit (see System/360 Model 75)
2085 Processing Unit (see System/360 Model 85)
2167 Configuration Unit Models 1 to 4
cabling schematic 2167.2
specifications 2167.1
2302 Disk Storage Models 3 and 4
specifications 2302.2
to 2841 cabling (see System/370 Installation ManualPhysical Planning)
2361 Core Storage Models 1 and 2
cabling
to System/360 Model $50 \quad 2050.5$
to System/360 Model 65 2065.11
to System/360 Model $75 \quad 2075.5$
specifications 2361
2365 Processor Storage
cabling
Model 2 to System/360 Model $65 \quad 2065.13$
Model 2 to System/360 Model 67-1 2067.7
Model 3 to System/360 Model $75 \quad 2075.5$
Model 5 to System/360 Model $85 \quad 2085.8$
Model 12 to System/360 Model 67-2 2067.9
Model 13 to System 360 Model 65 Multiprocessing
2365.13, 2365.15
specifications
Model 2 and $3 \quad 2365.1$
Model $5 \quad 2365.2$
Model $12 \quad 2365.3$
Model $13 \quad 2365.4$
2385 Processor Storage
Models 1 and 2 to System/360 Model 85 cabling 2085.8
specifications
Model $1 \quad 2385.2$
Model 2385.4
2846 Channel Controller Model 1
specifications 2846
to System/360 Model 67-2 cabling 2067.19
2955 Field Engineering Data Adapter Unit (FE DAU)
cabling schematic 4.4
plan view 1.19
priority considerations B. 1
3060 System Console Model 1
cabling schematic (Model 195) 3195.10
specifications 3060.2
3080 Power Unit Models 1 to 3
cabling schematic (Model 195) 3195.10
coolant hose schematic 3195.14
specifications 3080
3085 Power Distribution Unit (PDU) Model 1
cabling schematic (Model 195) 3195.10
specifications 3085
3086 Coolant Distribution Unit (CDU) Model 1
cabling schematic (Model 195) 3195.10
coolant hose schematic 3195.14
specifications 3086
3195 Processing Unit and Storage (see System/360 Model 195)
7772 Audio Response Unit Model 3
cables from non-IBM devices 7772.2
cabling schematic 7772.2
priority considerations B. 1
specifications 7772.1

Order No. GC22-6820-12

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of IBM systems. This form may be used to communicate your views about this publication. They will be sent to the author's department for whatever review and action, if any, is deemed appropriate.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:
Clarity Accuracy Completeness Organization Coding Retrieval Legibility
If you wish a reply, give your name and mailing address:

What is your occupation? \qquad

Number of latest Newsletter associated with this publication: \qquad

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader's Comment Form

Postage will be paid by:
International Business Machines Corporation Department B98
P.O. Box 390

Poughkeepsie, New York 12602

【BM

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

[^0]: * National Fire Protection Association

 60 Batterymarch Street
 Boston, Massachusetts 02110

[^1]: * Trademark of E.I. du Pont de Nemours \& Co. (Inc.)

[^2]: 1.18 System/360 Installation Manual-Physical Planning

[^3]: * IBM Supplied
 ** Customer Supplied

