
Systems Reference Library

IBM System/3 6 0

FORTRAN IV Language

This publication describes and illustrates the
use of the FORTRAN IV language for the IBM System/
360 Operating System, the IBM System/360 Model 44
Programming System, and the IBM System/360
Disk Operating System.

File No. S360-25 OS
Form C28-6515-7

44PS
DOS

This publication describes the IBM
System/360 FORTRAN IV language for the
IBM systern/360 Operating System, the IBM
System/360 Mbdel 44 Programming System,
and the IBM System/360 Disk Operating
System. A reader should have some know
ledge of FORTRAN before using this pub
lication. A useful source for this
information is the set of programmed
instruction texts, fQRTR~~ IV_foE_IB~
System/360, Forms R29-0080 through
R29-0087.

The material in this publication is
arranged to provide a quick definition
and syntactical reference to the various
elements of the language by means of a
box format. In addition, sufficient
text describing each element, with
appropriate examples as to possible use,
is given.

Appendixes contain additional infor
mation useful in writing a FORTRAN IV
program. This information consists of a
table of source program characters, a
list of other FORTRAN statements
accepted by FORTRAN IV, a list of
FORTRAN-supplied mathematical subpro
grams and service subprograms, lists of
differences between FORTRAN IV and Basic

Eighth Edition (October, 1968)

FORTRAN IV and USA FORTRAN IV, and
sample programs. Out-of-line mathemat
ical subprograms and service subprograms
are described in the publication IBM
System/360: FORTRAN IV Library Subpro
grams, Form C28-6596. Compiler restric
tions and programming considerations are
contained in the programmer's guide for
the respective system. The programmers'
guides are as follows:

IBM System/360 Operati~g_§.y2!§!!.!._
[QE~RA~_IY-1tll_~!;2gra~~er'2 Guigg,
Form C28-6602

IBM System/360 Model 44 Programming
§Y2!~~~--~~ig~_!Q_§v2!~~-22~ for
KQ8~RA~L!'.!:29!:~!!'.~er2, Form C 2 8- 6 813

IBM System/360 Disk Operating System,
FORTRAN IV Programmer's Guide, Form
C28-6397

A comparison of FORTRAN IV compilers
is in the publication I~~-[QE!BA_li_!Y
E~fer~~£~_Q~, Form X28-6383.

This is a major revision of, and makes obsolete, Form C28-6515-6.
This edition clarifies text and corrects errors that appeared in the
previous edition, and should be reviewed for revised, added, and
deleted material. Changes to text, and small changes to illustrations,
are indicated by a vertical line to the left of the change; changed or
added illustrations are denoted by the symbol • to the left of the
caption.

Changes are periodically made to the specifications herein; any such
changes will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Address comments concerning the contents of this publication to IBM
Corporation, Programming Publications, 1271 Avenue of the Americas,
New York, N. Y. 10020. Comments should mention the compiler and
level being used.

©Copyright International Business Machines Corporation 1965, 1966, 1968

INTRODUCTION • • • • • • 7

ELEMENTS OF THE LANGUAGE • • • • 8
Statements • • • • • • • • • • • 8

Coding FORTRAN Statements 9
Constants • • • • • • 10

Integer Constants • • • • • • • • 10
Real Constants • • • • • • • • • • 11
complex Constants • • 12
Logical Constants • • 13
Literal Constants 13
Hexadecimal Constants • • • • 14

Symbolic Names • • • • 14
Variables • • • • 15

Variable Names • • • • • • 15
Variable Types and Lengths • • 16

Type Declaration by the Predefined
Specification • • • • • • • • • 17
Type Declaration by the IMPLICIT
Statement • • • • • • 17
Type Declaration by Explicit
Specification Statements • • • • 17

Arrays • • • • • • • • • • • • • • • 18
Declaring the Size and Type of an
Array • • • • • • • • •
Arrangement of Arrays in Storage •

Subscripts • • • • • • •
Expressions • . • • • • ••••

Arithmetic Expressions
Arithmetic Operators •

Logical Expressions
Relational Operators
Logical Operators

ARITHMETIC AND LOGICAL ASSIGNMENT
STATEMENT • • • • • • •

18
• • 19

• 19
• • 20
• • 20

21
• • 24
• • 24
• • 25

28

CONTROL STATEMENTS • • • • • • • 31
GO TO Statements • • • • • • 31

Unconditional GO TO Statement • • • • 31
computed GO TO Statement • • • • • 32
ASSIGN and Assigned GO TO statements 32

ADDITIONAL CONTROL STATEMENTS • 34
Arithmetic IF Statement 34
Logical IF Statement • • • • • • 35
DO Statement • • • • • • • • • • • 36
Programming considerations in Using
a DO Loop • • • • • • • •
CONTINUE Statement •
PAUSE Statement
STOP Statement
END Statement

INPUT/OUTPUT STATEMENTS

38
• 39

• • 40
• • 41

• 41

• • 42
• • 44 Sequential Input/Output Statements •

READ Statement • • • • • •
Formatted READ •

• • 44
• • • • 45

Unformatted READ • •
WRITE Statement

Formatted WRITE • • • •
Unformatted WRITE

READ and WRITE Using NAMELIST

45
• 46

• • 46
47

• • • • 47

CONTENTS

NAMELIST Input Data • • • • •
NAMELIST Output Data •

FORMAT Statement •
Various Forms of a FORMAT Statement
I Format code • • • •
D, E, and F Format Codes •
Z Format code
G Format Code
Examples of Numeric Format codes •
scale Factor - P •
L Format Code • • • • • •
A Format Code • • • • • •
H Format code and Literal Data
X Format Code • • • • • •
T Format Code • • • • • • • •
Group Format Specification • •
Reading Format Specifications at
Object Time • • • • •

END FILE Statement •
REWIND Statement • •
BACKSPACE Statement

Direct Access Input/Output Statements
DEFINE FILE Statement • • • • • • •
Direct Access Programming
considerations • • • • • • • • •
READ Statement • •
WRITE Statement
FIND Statement • •

DATA INITIALIZATION STATEMENT

SPECIFICATION STATEMENTS
DIMENSION Statement
Type Statements
IMPLICIT Statement • •
Explicit Specification Statements
DOUBLE PRECISION Statement •
COMMON Statement • • • • • • • •
Blank and Labeled common •
Arrangement of variables in Common •
EQUIVALENCE Statement • • • • •
Storage Arrangement of Variables in
Equivalence Groups

SUBPROGRAMS • • • • •
Naming Subprograms
Functions • • • • • • • • •

Function Definition • • • • •
Function Reference • • • • • •

Statement Functions • • • • • •
FUNCTION Subprograms • • • • • •

RETURN and END Statements in a
FUNCTION Subprogram • • • •

SUBROUTINE Subprograms • • • • •
CALL Statement • • • • • • • •
RETURN Statements in a SUBROUTINE
Subprogram • • • • • • •

Arguments in a FUNCTION or
SUBROUTINE Subprogram
Multiple Entry into a Subprogram
EXTERNAL Statement • • • • • • •
Object-Time Dimensions • • • • •

• 48
• 49
• 50

51
• 52
• 53
• 53
• 54
• 54
• 56
• 57
• 57
• 58
• 59
• 59
• 60

• 60
• 61
• 61
• 62
• 62
• 62

• 64
• 65
• 66
• 67

• 69

• 71
• 71
• 71
• 72

74
• 75
• 76
• 77
• 79
• 80

• 82

• 83
• 83
• 84
• 84
• 84
• 84
• 86

• 88
• 88
• 90

• 90

91
• 93
• 95
• 96

BLOCK DATA Subprogram

APPENDIX A: SOURCE PROGRAM CHARACTERS

APPENDIX B: OTHER FORTRAN STATEMENTS
ACCEPTED BY FORTRAN IV •

READ Statement • •
PUNCH Statement
PRINT Statement

APPENDIX C: FORTRAN-SUPPLIED
SUBPROGRAMS • • • • • • •

APPENDIX D: SAMPLE PROGRAMS
Sample Program 1 • • • • • •
Sample Program 2 • • • • • •

APPENDIX E: DEBUG FACILITY •

• 99

100

• • 101
• .101
•• 101
•• 102

•• 103

•• 108
•• 108
•• 109

•• 114

Programming Considerations • • •
Debug Facility Statements ••••

DEBUG Specification Statement
AT Debug Packet Identification
Statement • • • • • • • • • •
TRACE ON Statement • • • •
TRACE OFF Statement
DISPLAY Statement
Debug Packet Programming Examples

•• 114
.115
116

.117
••• 117

.117

.118
•• 118

APPENDIX F: FORTRAN IV FEATURES NOT IN
BASIC FORTRAN IV •••••••••••• 121

APPENDIX G: FORTRAN IV FEATURES NOT IN
USA FORTRAN IV. • • • • • .122

INDEX .123

TABLES

Table 1. Determining the Type and
Length of the Result of +, -, *• /
Operations • • • • • • • • • • • • • 23
Table 2. Valid Combinations with
the Arithmetic Operator ** ••••• 24

FIGURES

Figure 1.
Figure 2.
(Part 1 of

Sample Program 1
Sample Program 2
3) • • • • • • • •

•••• 108

• .111

ILLUSTRATIONS

Table 3. Conversion Rules for the
Arithmetic Assignment Statement
A = ~ • • • • • • • • • • • • • • • 30
Table 4. Mathematical Function
subprograms (Part 1 of 3) .104
Table 5. out-of-Line service
Subprograms • • • • • • • • • .107

IBM System/360 FORTRAN IV for the Operating System, the Model 44 Pro
gramming System, and the Disk Operating System consists of a language, a
library of subprograms, and a compiler.

The FORTRAN IV language is especially useful in writing programs for
applications that involve mathematical computations and other manipula
tion of numerical data. The name FORTRAN is derived from FORrnula
TRANslator.

Source programs written in the FORTRAN IV language consist of a set
of statements constructed by the programmer from the language elements
described in this publication.

In a process called compilation, a program called the FORTRAN com
piler analyzes the source program statements and translates them into a
machine language program called the object program, which will be suit
able for execution on IBM System/360. In addition, when the FORTRAN
compiler detects errors in the source program, it produces appropriate
diagnostic error messages. The FORTRAN programmers' guides listed in
the Preface contain information about compiling and executing FORTRAN
programs.

The FORTRAN compiler operates under control of an operating system
which provides the FORTRAN compiler with input/output and other ser
vices. Object programs generated by the FORTRAN compiler also operate
under operating system control and depend on it for similar services.

The IBM System/360 FORTRAN IV language is compatible with and encom
passes the United States of America (USA) FORTRAN, including its mathe
matical subroutine provisions. It also contains, as a proper subset,
Basic FORTRAN IV. Appendixes F and G contain lists of differences
between FORTRAN IV and Basic FORTRAN IV and USA FORTRAN IV.

Introduction 7

STATEMENTS

Source programs consist of a set of statements from which the com
piler generates machine instructions, constants, and storage areas. A
given FORTRAN statement effectively performs one of three functions:

1. Causes certain operations to be performed (e.g., addition, multi
plication, branching)

2. Specifies the nature of the data being handled

3. Specifies the characteristics of the source program

FORTRAN statements usually are composed of certain FORTRAN key words
used in conjunction with the basic elements of the language: constants,
variables, and expressions. The categories of FORTRAN statements are as
follows:

1. Arithmet!£_and_~2.9!£al_~ssbg!!!!!~g~§tat~m~nts: These statements
cause calculations to be performed or conditions to be tested. The
result replaces the current value of a designated variable or sub
scripted variable.

2. Control Statements: These statements enable the user to govern the
flow of and to terminate the execution of the object program.

3. !~p~t/Q~!E~t Stat~ment~: These statements, in addition to control
ling input/output devices, enable the user to transfer data between
internal storage and an input/output medium.

4. FORMAT Statement: This statement is used in conjunction with cer
tain input/output statements to specify the form of a FORTRAN
record.

5. NAMELIST Statement: This statement is used in conjunction with
certain-input/output statements to specify the form of a special
kind of record.

6. DATA Initialization Statement: This statement is used to assign
Initia1-vaiues-to variables~-

7. Specification Statements: These statements are used to declare the
properties of variables, arrays, and functions (such as type and
amount of storage reserved) and, in addition, can be used to assign
initial values to variables and arrays.

8. Statement Function Definition Statement: This statement specifies
operations-to be-performed-whenever the statement function name
appears in the program.

·9. Subprogram Statements: These statements enable the user to name
and define functions and subroutines, which can be compiled separ
ately or with the main program

8

The basic elements of the language are discussed in this section
The actual FORTRAN statements in which these elements are used are dis
cussed in following sections The term E!:2g~am_~nit refers to a main
program or a subprogram; the term executable stat§ffi§nt2 refers to those
statements in groups 1, 2, and 3.

The order of a FORTRAN program unit (other than a BLOCK DATA subpro
gram) is as follows:

1. Subprogram statement, if any.

2. IMPLICIT statement, if any.

3. Other specification statements, if any. (Explicit specification
statements that initialize variables or arrays must follow other
specification statements that contain the same variable or array
names.)

4. Statement function definitions, if any.

s. Executable statements, at least one of which must be present.

6. END statement.

FORMAT, NAMELIST, and DATA statements may appear anywhere after the
IMPLICIT statement, if present, and before the END statement. DATA
statements, however, must follow any specification statements that con
tain the same variable or array names. A NAMELIST statement declaring a
NAMELIST name must precede the use of that name in any input/output
statement.

The order of statements in BLOCK DATA subprograms is discussed in the
section "BLOCK DATA subprogram."

CODING FORTRAN STATEMENTS

The statements of a FORTRAN source program can be written on a stan
dard FORTRAN coding form, Form X28-7327. Each line on the coding form
represents one 80-column card. FORTRAN statements are written one to a
card within columns 7 through 72. If a statement is too long for one
card, it may be continued on as many as 19 successive cards by placing
any character, other than a blank or zero, in column 6 of each continua
tion card. For the first card of a statement, column 6 must be blank or
zero.

As many blanks as desired may be written in a statement to improve
its readability. They are ignored by the compiler. Blanks that are
inserted in literal data are retained and treated as blanks within the
data.

Columns 1 through 5 of the first card of a statement may contain a
statement number consisting of from 1 through 5 decimal digits. Blanks
and leading zeros in a statement number are ignored. Statement numbers
may appear anywhere in columns 1 through 5 and may be assigned in any
order; the value of statement numbers does not affect the order in which
the statements are executed in a FORTRAN program.

Columns 73 through 80 are not significant to the FORTRAN compiler and
may, therefore, be used for program identification, sequencing, or auy
other purpose

Elements of the Language 9

Comments to explain the program may be written in columns 2 through
80 of a card if the letter c is placed in column 1. Comments may appear
between FORTRAN statements; a comments card may not immediately precede
a continuation card. comments are not processed by the FORTRAN com
piler, but are printed on the source program listing. Blanks may be
inserted where desired to improve readability.

CONSTANTS

A constant is a fixed, unvarying quantity. There are four classes of
constants -- those that specify numbers (numerical constants), those
that specify truth values <logical constants), those that specify liter
al data (literal constants>, and those that specify hexadecimal data
{hexadecimal constants).

Numerical constants may be integer, real, or complex numbers; logical
constants may be .TRUE. or .FALSE.; literal constants may be a string
of alphameric and/or special characters; and hexadecimal constants must
be hexadecimal (base 16) numbers.

INTEGER CONSTANTS

r--1
I Definition I
~---~ I Intege~_f2~21~nt - a whole number written without a decimal point. I
I It occupies four locations of storage (i.e., four bytes). I
I I
I Maximum Magnitude: 2147483647 Ci.e., 231-1). I l __ J

An integer constant may be positive, zero, or negative; if unsigned,
it is assumed to be positive. Its magnitude must not be greater than
the maximum and it may not contain embedded commas.

Examples:

10

Valid Integer Constants:

0
91
173
-2147483647

Invalid Integer Constants:

27.
3145903612
5,396

(Contains a decimal point)
{Exceeds the allowable range)
(Contains an embedded comma>

REAL CONSTANTS

r--1 I Definition I
~--------------~---~ I g~al_f2!!§.~~~! -- has one of three forms: a basic real constant, a I
I basic real constant followed by a decimal exponent, or an integer I
l constant followed by a decimal exponent. I
I I
I A basic real constant is a string of decimal digits with a deci- I
I mal point. If the string contains fewer than eight digits, the I
I basic real constant occupies four storage locations (bytes); if the I
I string contains eight or more digits, the basic real constant occu- I

pies eight storage locations (bytes>. I

The storage requirement (length) of a real constant can also be
explicitly specified by appending an exponent to a basic real con
stant or an integer constant. An exponent consists of the letter E
or the letter D followed by a signed or unsigned 1- or 2-digit
integer constant. The letter E specifies a constant of length four;
the letter D specifies a constant of length eight.

Magnitude:

Precision:

(either four or eight locations) 0 or 16-65 (approxi
rnately 10-70) through 1663 (approxirnately 1075)

(four locations> 6 hexadecimal digits
{approximately 7.2 decimal digits)

{eight locations> 14 hexadecimal digits

I
I
I
I
I
I
I
I
I
I
I
I
I
I

(approximately 16.8 decimal digits) I ._ ___ J

A real constant rnay be positive, zero, or negative (if unsigned, it
is assumed to be positive) and must be of the allowable magnitude. It
may not contain embedded commas. The decimal exponent permits the
expression of a real constant as the product of a basic real constant or
integer constant times 10 raised to a desired power.

Examples:

Val!g Real Constants (four storage locations):

+O.
-999.9999
7.0E+O
19761.25E+l
7.E3
7.0E3
7.0E+03
7E-03

Ci.e., 7.0 x 10° = 7.0)
Ci.e., 19761.25 x 101 = 197612.5)

{i.e., 7.0 x 103 = 7000.0>

<i.e., 7.0 x 10-3 = 0.007>

Valid Real Constants {eight storage locations):

1234567890123456.D-94
21.98753829457168
1.0000000
7.9D03
7.9D+03
7.9D+3
7.900
7003

(Equivalent to .1234567890123456xl0-7S)

(i.e., 7.9 x 10 3 7900.0)

(i.e., 7.9 x 100 = 7.9)
(i.e., 7 0 x 10 3 = 7000.0)

Elements of the Language 11

Invalid Real Constants:

1
3,471.1
1.E

1. 2E+113
23.SE+97

21. 3E-90

(Missing a decimal point or a decimal exponent)
(Embedded comma)
(Missing a 1- or 2-digit integer constant fol

lowing the E. Note that it is not inter
preted as 1 0 x 100>

CE is followed by a 3-digit integer constant)
(Magnitude outside the allowable range; that

is, 23. 5 x 1097>1663)
(Magnitude outside the allowable range; that

is, 21.3 x 10-90<16-65)

COMPLEX CONSTANTS

r--1
I Definition I
t--~
I f2m2l~_f2~~!~nt - an ordered pair of signed or unsigned real con- I
I stants separated by a comma and enclosed in parentheses. The first I
I real constant in a complex constant represents the real part of the I
l complex number; the second represents the imaginary part of the corn- I
I plex number. Both parts must occupy the same number of storage I
I locations (either four or eight). I
L--J

The real constants in a complex constant may be positive, zero, or
negative (if unsigned, they are assumed to be positive), but they must
be in the given range.

12

Valid Complex Constants

(3.2,-1.86)
C-5.0E+03,.16E+02)
(4.7D+2,1.9736148)
(47D+2,38D+3)

(Has the value 3.2 - 1.86i)
(Has the value -5000. + 16.0i>
(Has the value 470. + 1.9736148i)
(Has the value 4700. + 38000.i)

Where i =v-T

Inv~1i9 complex Constants:

(292704,1.697)
(.003E4,.00SD6)

(The real part is not a valid real constant)
(The parts differ in length>

LOGICAL CONSTANTS

r--------~--1

I Definition I
~--~
l Logical Constant - a constant that specifies a logical value There I
] are two logical values: I
l • TRUE. I
I . FALSE. I
I Each occupies four storage locations. The words TRUE and FALSE must l
I be preceded and followed by periods as shown above. I
L--J

The logical constant .TRUE. or .FALSE. when assigned to a logical
variable specifies that the value of the logical variable is true c;
false, respectively. (See the section "Logical Expressions.")

LITERAL CONSTANTS

r--1
I Definition I
t--------~--~
I ~itera1_£2~1~nt - a string of alphameric and/or special characters, I
I delimited as follows: I
I I
I 1. The string can be enclosed in apostrophes. I
I I
I 2. The string can be preceded by wH where w is the number of I
l characters in the string. I
L--J

I The string may contain any characters (see Appendix A). Each
- character requires one byte of storage. The number of characters in the

string, including blanks, may not be greater than 255. If apostrophes
delimit the literal, a single apostrophe within the literal is repre
sented by two apostrophes. If ~H precedes the literal, a single apos
trophe within the literal is represented as a single apostrophe.

Literals can be used only in CALL statement or function reference
argument lists, as data initialization values, or in FORMAT statements.
The first form, a string enclosed in apostrophes, may be used in PAUSE
statements.

Examples:

24H INPUT/OUTPUT AREA N0.2
'DATA'
'X-COORDINATE
'3 14 1

1 DON'' T'
5HDON'T

Y-COORDINATE Z-COORDINATE'

Elements of the Language 13

HEXADECIMAL CONSTANTS

r--1 I Definition I
~--------~--~
I Hexadecimal Constant - the character Z followed by a hexadecimal I
I number formed from the set 0 through 9 and A through F. I
L--J

Hexadecimal constants may be used only as data initialization values.

One storage location {byte) contains two hexadecimal digits. If a
constant is specified as an odd number of digits, a leading hexadecimal
zero is added on the left to fill the storage location. The internal
form of each hexadecimal digit is as follows:

0 - 0000
1 - 0001
2 - 0010
3 - 0011

4 - 0100
5 - 0101
6 - 0110
7 - 0111

8 - 1000
9 - 1001
A - 1010
B - 1011

c - 1100
D - 1101
E - 1110
F - 1111

Examples:

Z1C49A2F1 represents the bit string: 00011100010010011010001011110001

ZBADFADE represents the bit string: 00001011101011011111101011011110
where the first four zero bits are implied because an odd
number of hexadecimal digits is written.

The maximum number of digits allowed in a hexadecimal constant
depends upon the length specification of the variable being initialized
(see "Variable Types and Lengths"). The following list shows the maxi
mum number of digits for each length specification:

Length Specification
of Variable

16
8
4
2
1

Maximum Number of
Hexadecimal Digits

32
16

8
4
2

If the number of digits is greater than the maximum, the leftmost
hexadecimal digits are truncated; if the number of digits is less than
the maximum, hexadecimal zeros are supplied on the left.

SYMBOLIC NAMES

r--1
I Definition I
~---~
I §ymboli£_~~~~ - from 1 through 6 alphameric (i.e., numeric, 0 I
I through 9, or alphabetic, A through z and $) characters, the first I
J of which must be alphabetic. I
L--J

14

symbolic names are used in a program unit (i.e., a main program or a
subprogram) to identify elements in the following classes.

• An array and the elements of that array (see "Arrays")

A variable (see "Variables")

• A statement function (see "Statement Functions")

• An intrinsic function (see Appendix C)

• A FUNCTION subprogram (see "FUNCTION Subprograms")

• A SUBROUTINE subprogram (see "SUBROUTINE Subprograms")

• A block name (see "BLOCK DATA Subprogram">

• An external procedure that cannot be classified as either a SUBROU
TINE or FUNCTION subprogram (see "EXTERNAL Statement")

Symbolic names must be unique within a class in a program unit and
can identify elements of only one class with the following exceptions.

A block name can also be an array, variable, or statement function
name in a program unit.

A FUNCTION subprogram name must also be a variable name in the
FUNCTION subprogram.

Once a symbolic name is used as a FUNCTION subprogram name, a
SUBROUTINE subprogram name, a block name, or an external procedure name
in any unit of an executable program, no other program unit of that
executable program can use that name to identify an entity of these
classes in any other way.

VARIABLES

A FORTRAN variable is a symbolic representation of a quantity that
occupies a storage area. The value specified by the name is always the
current value stored in the area.

For example, in the statement:

A= S.O+B

both A and B are variables. The value of B is determined by some pre
vious statement and may change from time to time. The value of A is
calculated whenever this statement is executed and changes as the value
of B changes.

VARIABLE NAMES

The use of meaningful variable names can serve as an aid in document
ing a program. That is, someone other than the programmer may look at
the program and understand its function For example, to compute the
distance a car traveled in a certain amount of time at a given rate of
speed, the following statement could have been written:

Elements of the Language 15

x = y * z

where * designates multiplication. However, it would be more meaningful
to someone reading this statement if the programmer had written:

DIST = RATE * TIME

Examples:

Valid Variable Names:

B292S
RATE
$VAR

Invalid Variable Names:

B292704
4ARRAY
SI.X

(Contains more than six characters)
(First character is not alphabetic)
(Contains a special character)

VARIABLE TYPES AND LENGTHS

The type of a variable corresponds to the type of data the variable
represents. Thus, an integer variable represents integer data, a real
variable represents real data, etc. There is no variable type asso
ciated with literal or hexadecimal data. These types of data are iden
tified by a name of one of the other types.

For every type of variable, there is a corresponding standard and
optional length specification which determines the number of storage
locations Cbytes) that are reserved for each variable. The following
list shows each variable type with its associated standard and optional
length:

Variable Type
Integer
Real
complex
Logical

Standard
4
4
8
4

Optional
2
8

16
1

A programmer may declare the type of a variable by using the
following:

• Predefined specification contained in the FORTRAN language

• Explicit specification statements

• IMPLICIT statement

An explicit specification statement overrides an IMPLICIT statement,
which, in turn, overrides the predefined specification The optional
length specification of a variable may be declared only by the IMPLICIT
or explicit specification statements. If, in these statements, no
length specification is stated, the standard length is assumed <see the
section, "Type Statements">.

16

Type Declaration by the Predefined Sp~£if!£~t!2~

The predefined specification is a convention used to specify
variables as integer or real as follows:

1. If the first character of the variable name is I, J, K, L, M, or N,
the variable is integer of a standard length 4.

2. If the first character of the variable name is any other alphabetic
character, the variable is real of a standard length 4.

This convention is the traditional FORTRAN method of implicitly
specifying the type of a variable as being either integer or real. In
all examples that follow in this publication it is presumed that this
specification applies unless otherwise noted. Variables defined with
this convention are of standard length.

Type Declaration by the IMPLICIT Statement

The IMPLICIT statement allows a programmer to specify the type of
variables in much the same way as was specified by the predefined con
vention. That is, in both the type is determined by the first character
of the variable name. However, the programmer, using the IMPLICIT
statement, has the option of specifying which initial letters designate
a particular variable type. The IMPLICIT statement can be used to
specify all types of variables -- integer, real, complex, and logical -
and to indicate standard or optional length.

The IMPLICIT statement overrides the variable type as determined by
the predefined convention. For example, if the IMPLICIT statement
specifies that variables beginning with the letters A through M are real
variables and variables beginning with the letters N through Y are
integer variables, then the variable ITEM (which would be treated as an
integer variable under the predefined convention) is now treated as a
real variable. Note that variables beginning with the letters z and $
are (by the predefined convention) treated as real variables. The
IMPLICIT statement is presented in greater detail in the section "Speci
fication Statements."

Explicit specification statements differ from the first two ways of
specifying the type of a variable, in that an explicit specification
statement declares the type of a particular variable by its ~~~~ rather
than as a group of variables beginning with a particular ch~ra£i~f·

For example, assume that an IMPLICIT statement overrode the prede
fined convention for variables beginning with the letter I by declaring
them to be real and that a subsequent explicit specification statement
declared that the variable named ITEM is complex. Then, the variable
ITEM is complex and all other variables beginning with the character I
are real. Note that variables beginning with the letters J through N
are specified as integer by the predefined convention.

The explicit specification statements are discussed in greater detail
in the section "Specification Statements."

Elements of the Language 17

ARRAYS

A FORTRAN array is a set of variables identified by a single variable
name. A particular variable in the array may be referred to by its
position in the array (e.g., first variable, third variable, seventh
variable, etc.). Consider the array named NEXT which consists of five
variables, each currently representing the following values: 273, 41,
8976, 59, and 2.

NEXT(1) is the location containing 273
NEXT(2) is the location containing 41
NEXT(3) is the location containing 8976
NEXT(4) is the location containing 59
NEXT(5) is the location containing 2

Each variable (element) in this array consists of the name of the
array (i.e., NEXT) immediately followed by a number enclosed in paren
theses, called a subscript quantity. The variables which the array com
prises are called subscripted variables. Therefore, the subscripted
variable NEXT(1) has the value 273; the subscripted variable NEXT(2) has
the value 41, etc.

The subscripted variable NEXT(!) refers to the "Ith" subscripted
variable in the array, where I is an integer variable that may assume a
value of 1, 2, 3, 4, or 5.

To refer to any element in an array, the array name must be sub~
scripted. In particular, array name alone does not represent the first
element.

Consider the following array named LIST described by two subscript
quantities, the first ranging from 1 through 5, the second from 1
through 3:

Column 1 --82 __ _

12
91
24

2

Column 2 ----4--
13

1
16

8

Column 3 ----=;--
14
31
10

2

Suppose it is desired to refer to the number in row 2, column 3; this
would be:

LIST (2 1 3)

Thus, LIST (2,3) has the value 14 and LIST (4,1) has the value 24.

Ordinary mathematical notation might use LIS'I' to represent any ele
ment of the array LIST. In FORTRAN, this is written as LIST(I,J) where
I equals 1, 2, 3, 4, or 5 and J equals 1, 2, or 3.

DECLARING THE SIZE AND TYPE OF AN ARRAY

The size (number of elements) of an array is specified by the number
of subscript quantities of the array and the maximum value of each sub
script quantity. This information must be given for all arrays before
using them in a FORTRAN program so that an appropriate amount of storage
may be reserved Declaration of this information is made by a DIMENSION

18

statement, a CO~MON statement, or by one of the explicit specification
statements; these statements are discussed in detail in the section
"Specification Statements." The type of an array name is determined by
the conventions for specifying the type of a variable name. Each ele
ment of an array is of the type specified for the array name.

ARRANGEMENT OF ARRAYS IN STORAGE

Arrays are stored in ascending storage locations, with the value of
the fuirft of their subscript quantities increasing most rapidly and the
value o the last increasing least rapidly.

For example, the array LIST, whose values are given in the previous
example, is arranged in storage as follows:

82 12 91 24 2 4 13 1 16 8 7 14 31 10 2

The array named A, described by one subscript quantity which varies
from 1 to 5, afpears in storage as follows:

A(1) A(2) A(3) A(4) A(5)

The array named B, described by two subscript quantities with the
first subscript quantity varying over the range from 1 to 5, and the
second varying from 1 to 3, appears in ascending storage locations in
the following order:

B(1,1) BC2,1) E(3,1) B(4,1) B(5,1)--1

r--------------------------------------J
L->B(l,2) B(2,2) B(3,2) B(4,2) B(5,2)--1

r--------------------------------------J
L->B(l,3) BC2,3) BC3,3) B(4,3) B(5,3)

Note that E(1,2) and B(1,3) follow in storage B(5,1) and B(5,2),
respectively.

The following list is the order of an array named c, described by
three subscript quantities with the first varying from 1 to 3, the
second varying from 1 to 2, and the third varying from 1 to 3:

C(l,1,1) C(2,1,1) C(3,1,1) C(l,2,1) C{2,2,1) C(3,2,1)--1

r---J
L->CU,1,2) C(2,1,2) C(3,1,2} CU,2,2) C(2,2,2) C(3,2,2)--1

r---J
L->CU,1,3) C(2,1,3) C(3,1,3) cn,2,3) C{2,2,3) CC3,2,3)

Note that CCl,1,2) and C(l,1,3) follow in storage C(3,2,1) and
C{3,2,2), respectively.

A subscript is an integer subscript quantity or a set of integer sub
script quantities separated by commas, that is used to identify a parti
cular element of an array. The number of subscript quantities in any
subscript must be the same as the number of dimensions of the array with

Elements of the Language 19

which the subscript is associated. A subscript is enclosed in paren
theses and is written immediately after the array name A maximum of
seven subscript quantities can appear in a subscript.

The following rules apply to the construction of subscript quanti
ties. (See the section "Expressions" for additional information about
the terms used below)

1. Subscript quantities may contain arithmetic expressions that use
any of the arithmetic operators: +, -, *• / 1 **·

2. subscript quantities may contain function references.

3. Subscript quantities may contain subscripted names.

4. Mixed mode expressions (integer and real only) within subscript
quantities are evaluated according to normal FORTRAN rules. If the
evaluated expression is real, it is converted to integer.

5. The evaluated result of a subscript quantity should always be
greater than zero and less than or equal to the size of the corres
ponding dimension.

Examples:

Valid subscripted Variables:

ARRAY CIHOLD)
NEXT (19)
MATRIX CI-5)
EAK CI,JCK+1*L,.3*ACM,N)))
ARRAY CI,J/4*K**2)

1nv~1id subscripted Variables

ARRAY C-5)
LOT (0)

ALL (1. GE. I)

NXT (1+(1.3,2.0))

{A subscript quantity may not be negative)
CA subscript quantity may never be nor assume a

value of zero)
(A subscript quantity may not assume a true or

false value)
CA subscript quantity may not assume a complex

value)

EXPRESSIONS

FORTRAN IV provides two kinds of expressions: arithmetic and logi
cal. The value of an arithmetic expression is always a number whose type
is integer, real, or complex. The value of a logical expression is
always a truth value: .TRUE. or .FALSE •• Expressions may appear in
assignment statements and in certain control statements.

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a primary which may be
a single constant, variable, subscripted variable, function reference,
or another expression enclosed in parentheses. The primary may be eith
er integer, real, or complex.

20

In an expression consisting of a single primary, the type of the pri
mary is the type of the expression

Examples:

Primary
3
A
3.14D3
(2.0,5.7)
SIN(X)
(A*B+C)

Type of Primary
Integer constant
Real variable
Real constant
Complex constant
Real function reference
Parenthesized real

expression

Type of Expression
Integer of length 4
Real of length 4
Real of length 8
Complex of length S
Real of length 4
Real of length 4

More complicated arithmetic expressions containing two or more pri
maries may be formed by using arithmetic operators that express the
computation(s) to be performed.

Arithmetic Operators

The arithmetic operators are as follows:

Arithmetic Operator
**
*
/
+

Definition
Exponentiation
Multiplication
Division
Addition
Subtraction

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS: The following are the
rules for constructing arithmetic expressions that contain arithmetic
operators:

1. All desired computations must be specified explicitly. That is, if
more than one primary appears in an arithmetic expression, they
must be separated from one another by an arithmetic operator. For
example, the two variables A and B will not be multiplied if
written:

AB

If multiplication is desired, the expression must be written as
follows:

A*B or B*A

2. No two arithmetic operators may appear in sequence in the same
expression. For example, the following expressions are invalid:

A*/B and A*-B

The expression A*-B could be written correctly as follows:

A*(-B)

In effect, -B will be evaluated first and then A will be multiplied
with it. (For further uses of parentheses, see rule 3.)

Elements of the Language 21

3. Order of Computation: Computation is performed from left to right
according to the hierarchy of operations shown in the following
list

22

Operation
Evaluation of functions
Exponentiation {**)
Multiplication and division (* and /)
Addition and subtraction (+ and -)

Hierarchy
1st
2nd
3rd
4th

This hierarchy is used to determine which of two consecutive opera
tions is performed first. If the first operator is higher than or
equal to the second, the first operation is performed. If not, the
second operator is compared to the third, etc. When the end of the
expression is encountered, all of the remaining operations are per
formed in reverse order.

For example, in the expression A*B+C*D**I, the operations are per
formed in the following order:

a.
b.
c.
a.

A*B
D**I
C*Y
X+Z

Call the result X <multiplication)
Call the result Y (exponentiation>
Call the result z (multiplication)
Final operation (addition)

(X+C*D**I)
(X+C*Y)
(X+Z)

If there are consecutive exponentiation operators, the evaluation
is from right to left. Thus, the expression:

A**B**C

is evaluated as follows:

a. B**C Call the result z
b. A**Z Final operation

A unary plus or minus has the same hierarchy as a plus or minus in
addition or subtraction. Thus,

A=-B is treated as A=O-E

A=-E*C is treated as A=-(E*C)

A=-B+C is treated as A=(-B)+C

Parentheses may be used in arithmetic expressions, as in algebra,
to specify the order in which the arithmetic operations are to be
computed. Where parentheses are used, the expression within the
parentheses is evaluated before the result is used. This is equi
valent to the definition above since a parenthesized expression is
a primary.

For example, the following expression:

B+((A+E)*C)+A**2

is effectively evaluated in the following order:

a. (A+B) Call the result x B+(X*C)+A**2
b. (X*C) Call the result y B+Y+A**2
c. E+Y Call the result w W+A**2
a. A**2 Call the result z W+Z
e. W+Z Final operation

Table 1. Determining the Type and Length of the Result of +, -, *r /
Operations

r-------------T--------T---------T---------T---------T--------T--------1
I I I I I I I I
I !INTEGER I INTEGER I REAL I REAL I COMPLEX! COMPLEX!
J+ - * / I <2> I <4l l <4> I rn> I <8> l <16> I
l-------------+--------+---------+---------+---------+--------+--------~
!INTEGER)Integer] Integer I Real I Real I Complexl Complex)
I <2> I <2> I <4> I <4> I <8> I <8> I <16> I
t-------------+--------+---------t---------+---------+--------+--------~
!INTEGER !Integer I Integer I Real l Real I Complex! Complex!
I <4> I <4> I <4> I <4> I <8> I <8> I <16> I
~-------------+--------+---------+---------+---------+--------+--------~
jREAL !Real I Real I Real ! Real l Complex! Complex!
I <4> J <4> I C4> I <4> I <8> I <8> I C16> I
~-------------+--------+---------+---------+---------+--------+--------~
]REAL]Real I Real I Real I Real I complex! Complex)
I <8> I <8> I <8> I <8> I <8> I <16> I <16> I
r-------------+--------+---------+---------+---------+--------+--------~
] COMPLEX I Co1q:::lex I complex I complex I Complex I complexJ complex!
I <8> I <8> I <8> I <8> I <16> I <8> I <16> I
t-------------+--------+---------+---------+---------+--------+--------~
JCOMPLEX !Complex I complex I complex I complex I Complex! Complex!
J <16> l <16> I <16> I <16> I <16> I <16> I <16> I
r-------------i--------i---------i---------i---------i--------i--------~
JNo~~: When division is performed using two integers, the answer is I
!truncated and an integer answer is given. For example, if I=9 and I
IJ=2, then the expression CI/J) would yield an integer answer of 4 I
jafter truncation. I
L--J

4. The type and length of the result of an operation depends upon the
type and length of the two operands (primaries) involved in the
operation. Table 1 shows the type and length of the result of the
operations +, -, *r and /.

Assume that the type of the following variables has been specified
as follows:

c
I, J, K
D

Real variable
Integer variable
Complex variable

4
4, 2, 2
16

Then the expression I*J/C**K+D is evaluated as follows:

§Q,!:2~~E!~§Si,2!} Ty2e and Length

I*J (Call the result X) Integer of length 4
C**K (Call the result Y) Real of length 4
X/Y (Call the result Z) Real of length 4
Z+D Complex of length 16

Thus, the final type of the entire expression is complex of length
16, but the type changed at different stages in the evaluation.
Note that, depending on the values of the variables involved, the
result of the expression I*J*C might be different from I*C*J.

Elements of the Language 23

5. The arithmetic operator denoting exponentiation Ci e •**> may only
be used to combine the types of operands shown in Table 2.

The type of the result depends upon the type of the two operands
involved, as shown in Table 1. For example, if an integer is
raised to a real power, the type of the result is real.

Table 2. Valid Combinations with the Arithmetic Operator **
r--1
I Base Exponent I
~--i
I Integer (either length)} {Integer (either length) I
l or ** or I
I Real (either length) Real (either length) I
I I
I Complex (either length) ** Integer (either length) I
l--J

LOGICAL EXPRESSIONS

The simplest form of logical expression consists of a single logical
primary, which can be a logical constant, logical variable, logical sub
scripted variable, logical function reference, or logical expression
enclosed in parentheses, which always has the value .TRUE. or .FALSE ••

More complicated logical expressions may be formed by using logical
and relational operators. These expressions may be in one of the fol
lowing forms:

. 1. Relational operators combined with arithmetic expressions whose
type is integer or real.

2. Logical operators combined with logical primary.

3. Logical operators combined with either or both forms of the logical
expressions described in items 1 and 2.

Item 1 is discussed in the following section, "Relational Operators;"
items 2 and 3 are discussed in the section "Logical Operators."

Relational Operators

The six relational operators, each of which must be preceded and fol
lowed by a period, are as follows:

Rel~!iO~!_Q£.!2!~!2!
.GT.
.GE.
.LT.
.LE.
.EQ.
.NE.

Definition
Greater-than <>>
Greater than or equal to (~)
Less than <<>
Less than or equal to ($)

Equal to <=>
Not equal to <*>

The relational operators express an arithmetic condition which can be
either true or false Only arithmetic expressions whose type is integer
or real may be combined by relational operators. For example, assume
that the type of the following variables has been specified as follows:

24

Variable Names
ROOT, E
A, I, F
L
c

'.!:Y~
Real variables
Integer variables
Logical variable
Complex variable

Then the following examples illustrate valid and invalid logical
expressions using the relational operators.

Examples:

Valid Logical Expressions Using Relational Operators:

A .LT. I
E••2.7 .EQ. (5*ROOT+4)
• 5 .GE •• 9•ROCT
E .EQ. 27.3D+05

Invalid Logical Expressions Using Relational Operators:

c .GE. (2.7,5.9E3) (Complex quantities may never appear in logical
expressions)

L .EQ. (A+F) (Logical quantities may never be joined by
relational operators)

E**2 .EQ 97.1E9 (Missing period immediately after the relational
operator)

.GT. 9 (Missing arithmetic expression before the rela-
tional operator) ·

foqical Operators

The three logical operators, each of which must be preceded and fol
lowed by a period, are as follows <where A and B represent logical con
stants or variables, or expressions containing relational operators>:

Logical Operator

.NOT. • NOT.A

.AND. A.AND.B

.OR. A.OR.B

Meaning

If A is .TRUE., then .NOT.A has the value
.FALSE.; if A is .FALSE., then .NOT.A
has the value .TRUE.

If A and Bare both .TRUE., then A.AND.B
has the value .TRUE.; if either A or B
or both are .FALSE., then A.AND.B has
the value .FALSE.

If either A or B or both are .TRUE., then
A.OR.B has the value .TRUE.; if both A
and Bare .FALSE., then A.OR.B has the
value .FALSE.

Two logical operators may appear in sequence only if the second one
is the logical operator .NOT ••

Only those expressions which, when evaluated, have the value .TRUE.
or .FALSE may be combined with the logical operators to form logical
expressions. For example, assume that the type of the following vari
ables has been specified as follows:

Elements of the Language 25

variable Names
ROOT, E
A, I, F
L, W
c

~
Real variables
Integer variables
Logical variables
complex variable

Then the following examples illustrate valid and invalid logical
expressions using both logical and relational operators.

Examples:

Valid Logical Expressions:

(ROOT*A .GT. A) .AND.
L • AND. • NOT. (I • GT.
CE+5.9D2 .GT. 2*E) .OR.

w
F)

L
.NOT. W .AND. .NOT. L

L .AND. .NOT. W .OR. I .GT.
(A**F .GT. RCCT) .AND. .NOT.

Invalid Logical Expressions:

F
(I • EQ. E)

A .AND. L
.OR. W

CA is not a logical expression>

NOT. (A • GT. F)

(C .EQ. I) .AND. L

L .AND •• OR. w

.AND. L

(.OR. must be preceded by a logical expression)
<Missing period before the logical operator

.NOT.)
CA complex quantity may never be an operand of

a relational operator)
(The logical operators .AND. and .OR. must

always be separated by a logical expression)
(.AND. must be preceded by a logical

expression)

Order of Computation2_!!L.~2g!£~J:_~~P~2sion~:
operations are performed is:

The order in which the

ope_!:ation
Evaluation of functions
Exponentiation (**)
Multiplication and division (* and /)
Addition and subtraction C+ and -)
.LT.,.LE.,.EQ.,.NE.,.GT.,.GE •
• NOT.
.AND.
.OR.

26

!!!fil:e!:Chy
1st (highest)
2nd
3rd
4th
5th
6th
7th
8th

For example, the expression:

A.GT.D**B.AND •• NOT.L.OR.N

is effectively evaluated in the following order:

1. D**B Call the result w (exponentiation)
2. A.GT.W Call the result x (relational operator>
3. .NOT.L call the result y (highest logical operator)
4. X.AND.Y Call the result z (second highest logical operator>
5. Z.OR.N Final operation

~21~= Logical expressions may not require that all parts be evaluated.
Functions within logical expressions may or may not be called. For
example, in the expression A.OR.LGF(.TRUE.), it should not be assumed
that the LGF function is always invoked.

Use of Parentheses in Logical EXE~~22!2~2= Parentheses may be used in
logical expressions to specify the order in which the operations are to
be performed. Where parentheses are used, the expression contained
within the most deeply nested parentheses (that is, the innermost pair
of parentheses) is effectively evaluated first. For example, the logi
cal expression:

(I.GT.(B+C)).AND.L

is effectively evaluated in the following order:

1. B+C
2. I.GT.X
3. Y.AND.L

Call the result X
Call the result Y
Final operation

The logical expression to which the logical operator .NOT. applies
roust be enclosed in parentheses if it contains two or more quantities.
For example, assume that the values of the logical variables, A and B,
are .FALSE. and .TRUE., respectively. Then the following two expres
sions are not equivalent:

.NOT.CA.OR.El

.NOT.A.OR.E

In the first expression, A.OR.B, is evaluated first. The result is
.TRUE.; but .NOT. (.TRUE.) implies .FALSE •• Therefore, the value of the
first expression is .FALSE.

In the second expression, .NOT.A is evaluated first. The result is
.TRUE.; but .TRUE •• OR.B implies .TRUE •• Therefore, the value of the
second expression is .TRUE ••

Elements of the Language 27

r--1
I General Form I
!--~
I ~ = £ I
I I
I Where: ~ is a subscripted or nonsubscripted variable. I
I I
I Q is an arithmetic expression or logical expression. I l __ J

This FORTRAN statement closely resembles a conventional algebraic
equation; however, the equal sign specifies replacement rather than
equivalence. That is, the expression to the right of the equal sign is
evaluated, and the resulting value replaces the current value of the
variable to the left of the equal sign.

If £ is a logical expression, ~ must be a logical variable. If Q is
an arithmetic expression, ~ must be an integer, real, or complex vari
able. Table 3 gives the conversion rules used for placing the evaluated
result of arithmetic expression £ into variable ~·

Assume that the type of the following variables has been specified
as:

yariabl~-~~!!.1~~
I, J, W
A, B, C, D
E
G, H

1YE~
Integer variables
Real variables
Complex variable
Logical variables

~~g!h_§J2~£ifi£~ti2~
4,4,2
414,8,8
8
4,4

Then the following examples illustrate valid arithmetic statements
using constants, variables, and subscripted variables of different
types:

B

A I

I = I + 1

E I**J+D

A C*D

A = E

28

:Q~SC!:iE!i2~
The value of A is replaced by the current value of B.

The value of B is truncated to an integer value, and
this value replaces the value of W.

The value of I is converted to a real value, and this
result replaces the value of A.

The value of I is replaced by the value of I + 1.

I is raised to the power J and the result is con
verted to a real value to which the value of D is
added. This result replaces the real part of the
complex variable E. The imaginary part of the com
plex variable is set to zero.

The most significant part of the product of c and D
replaces the value of A.

The real part of the complex variable E replaces the
value of A.

Statements
E = A

G = .TRUE.

H .NOT.G

G = 3 •• GT.I

E = (1.0,2.0)

Description
The value of A replaces the value of the real part of

the complex variable E; the imaginary part is set
equal to zero

The value of G is replaced by the logical constant
• TRUE ••

If G is .TRUE., the value of His replaced by the
logical constant .FALSE •• If G is .FALSE., the
value of H is replaced by the logical constant
• TRUE ••

The value of I is converted to a real value; if the
real constant 3. is greater than this result, the
logical constant .TRUE. replaces the value of G.
If 3. is not greater than I, the logical constant
.FALSE. replaces the value of G.

The value of the complex variable
the complex constant Cl.0,2.0).
statement E = (A,B) where A and
ables is invalid.

E is replaced by
Note that the

B are real vari-

Arithmetic and Logical Assignment Statement 29

Table 3. Conversion Rules for the Arithmetic Assignment Statement ~ = Q
----------T-----------T-----------T-----------T-----------T-----------1

I Type J I I I I I
I of ~ I INTEGER*2 I I I I I
!Type I INTEGER*4 I REAL*4 I REAL*8 I COMPLEX*8 JCOMPLEX*16 I
I of~ I I I I I I
~---------- -----------+-----------.l-----------+-----------.l-----------~
IINTEGER*2 I Assign I Fix and assign I Fix and assign real I
I INTEGER*4 I l I part; imaginary part I
I I l I not used. I
r----------+-----------+-----------T-----------+-----------T-----------~
I REAL*4 I Float and l Assign jReal assignjAssign reallReal assign!
l I assign I I I part; imag- l real part; I
l I l I linary part !imaginary I
I I I I !not used. !part not I
I I I I I I used. I
~----------+-----------+-----------.l-----------+-----------.l-----------i
I REAL*8 IDP Float I Assign !Assign real part; imag-1
I land assign I ·]inary part not used. I
~----------f-----------f-----------T-----------+-----------T-----------i
JCOMPLEX*8 jFloat and jAssign to !Real assign! Assign jReal assign!
l]assign to !real part; !real part; I !real and I
I jreal part;]imaginary !imaginary I !imaginary I
I !imaginary jpart set !part set tol jparts. I
I I part set I to zero. I zero. I I I
I I to zero. I I I I I
r----------+-----------+-----------.l-----------+-----------.l-----------~
jCOMPLEX*16jDP float I Assign to real part; I Assign I
I I and assign I imaginary part set to I I
I ~to real I zero. I I
I l part; imag- j I I
I I inary part I I I
I I set to I I I
I I zero. I I I
1----------.l-----------.l-----------------------.l-----------------------~
)Not~§: J

Jl. AS§igD means transmit the resulting value, without change. If I
I the significant digits of the resulting value exceed the speci- I
I fied length, results are unpredictable. I
]2. B~~!-~2§i3D means transmit to ~ as much precision of the most I
I significant part of the resulting value as REAL*4 data can I
I contain. I
13. Fi~ means transform the resulting value to the form of a basic I
J real constant and truncate the fractional portion. I
14. Float means transform the resulting value to the form of a REAL*4 I
I number, retaining in the process as much precision of the value I
I as a REAL*4 number can contain. I
15. DP Float means transform the resulting value to the form of a I
I REAL*8 number. I
j6. An expression of the form E=(A,B), where Eis a complex variable I
I and A and B are real variables, is invalid. The mathematical I
I function subprogram CMPLX can be used for this purpose. See I
I Appendix c. I
l--J

30

Normally, FORTRAN statements are executed sequentially. That is,
after one statement has been executed, the statement immediately follow
ing it is executed. This section discusses the statements that may be
used to alter and control the normal sequence of execution of statements
in the program.

GO TO staterrents permit transfer of control to an executable state
ment specified by number in the GO TO statement. Control may be trans
ferred either unconditionally or conditionally. The GO TO statements
are:

1. Unconditional GO TO statement

2. computed GO ~o statement

3. Assigned GO ~o statement

UNCONDITIONAL GO TO STATEMENT

r--------~--1
i General Form I
r--~
I GO TO ~~~~ I
I I
I Where: xxxxx is an executable statement number. I
L--J

This GO TO statement causes control to be transferred to the state
ment specified by the statement number. Every subsequent execution of
this GO TO statement results in a transfer to that same statement. Any
executable statement immediately following this statement should have a
statement number; otherwise it can never be referred to or executed.

GO TO 25
10 A = B + C

25 C = E**2

In this example, each time the GO TO statement is executed, control
is transferred to statement 25.

Control Statements 31

COMPUTED GO TO STATEMENT

.--,
J General Form I
r--~
I GO TO <!11 !21 ~3J •••1!n>1 ! I
I I
I Where: ! 11 ! 2 , ••• 1!n1 are executable statement numbers. I
I I
I ! is a nonsubscripted integer variable whose current value I
I is in the range: 1 ~ i ~ n I
l--J

This statement causes control to be transferred to the statement num
bered ! 1 , ! 21 ! 31 ••• , or !ni depending on whether the current value of i
is 1, 2, 3, ••• , or n, respectively. If the value of i is outside the
allowable range, the next statement is executed.

Example:

GO TO (25, 10, 7), ITEM

7 C = E**2+A

25 L = C

10 B = 21.3E02

In this example, if the value of the integer variable ITEM is 1,
statement 25 will be executed next. If ITEM is equal to 2, statement 10
is executed next, and so on.

ASSIGN AND ASSIGNED GO TO STATEMENTS

.--------~--,
I General Form I
~--------~--~
I ASSIGN i TO m
I
I
I
I GO TO rn, <!1r!21!31•••r!nl
I
I Where:
I
I
I
I
I
I

i is an executable statement number.
numbers !11!21!31•••1!n·

It must be one of the

x 1 ,x2 ,x 3 , ••• ,x0 are executable statement numbers in the pro
gram unit containing the GO TO statement.

m is a nonsubscripted integer variable of length 4 which is
I assigned one of the statement numbers: !1r!2r!3i• •i!n• I
l __ J

32

The assigned GC TO statement causes control to be transferred to the
statement numbered ~ 1 ,~2 ,~3 , .,or ~n• depending on whether the current
assignment of mis x 1 ,x2 ,x3 , ••• ,or ~n• respectively. For example, in
the following statement: -

GO TO N, (10, 25 1 8)

If the current assignment of the integer variable N is statement number
8, then the statement numbered 8 is executed next. If the current
assignment of N is statement number 10, the statement numbered 10 is
executed next. If N is assigned statement number 25, statement 25 is
executed next.

At the time of execution of an assigned GO TO statement, the current
value of m must have been defined to be one of the values~' ~2 ••• ~n by
the previous execution of an ASSIGN statement. The value of the integer
variable ~ is not the integer statement number; ASSIGN 10 TO I is not
the same as I = 10.

Example 1:

ASSIGN 50 ~O NUMBER
10 GO TO NUMBER, (35, 50, 25, 12, 18)

50 A = B + C

Explanation:

In example 1, statement 50 is executed immediately after statement
10.

ASSIGN 10 ~O ITEM

13 GO TO ITEM, (8, 12, 2 5, 5 0, 10)

8 A = B + C

10 B = C + D
ASSIGN 25 ~O ITEM
GO TO 13

25 C = E**2

Control Statements 33

Explanation:

In example 2, the first time statement 13 is executed, control is
transferred to statement 10. On the second execution of statement 13,
control is transferred to statement 25

ARITHMETIC IF STATEMENT

r--------~--1
I General Form I
~--~
I IF (~) ~1..~2.~3 I
I I
I I
I Where: ~ is any arithmetic expression except complex. I
I I
I ~11 ~2 ,~ 3 are executable statement numbers. I
l--------~--J

The arithmetic IF statement causes control to be transferred to the
statement numbered ~11 ~21 or ~3 when the value of the arithmetic expres
sion (~) is less than, equal to, or greater than zero, respectively.
The first executable statement following the arithmetic IF statement
should have a statement number; otherwise, it can never be referred to
or executed.

Example:

IF {A{J,K}**3-B}10, 4, 30

4 D = B + C

30 C = D**2

10 E = (F*E}/D+l

Explanation:

In this example, if the value of the expression (ACJ,K)**3-BI is
negative, the statement numbered 10 is executed next. If the value of
the expression is zero, the statement numbered 4 is executed next. If
the value of the expression is positive, the statement numbered 30 is
executed next.

34

LOGICAL IF STATEMENT

r--1
J General Forro I
~--~
I IF(~)§ I
I I
I Where: ~ is any logical expression. I
I I
I e is any executable statement except a DO statement or I
I another logical IF statement. I
L--J

The logical IF statement is used to evaluate the logical expression
(~) and to execute or skip statement e depending on whether the value of
the expression is .TRUE. or .FALSE., respectively.

Example 1:

IF(A.LE.0.0) GO TO 25
C = D + E
IF(A.EQ.B) ANSWER = 2.0*A/C
F = G/H

25 W = X**Z

Explanation:

In the first statement, if the value of the expression is .TRUE.
(i.e., A is less than or equal to O.O>, the statement GO TO 25 is
executed next and control is passed to the statement numbered 25. If
the value of the expression is .FALSE.(i.e., A is greater than 0.0), the
statement GO TO 25 is ignored and control is passed to the second
statement.

In the third statement, if the value of the expression is .TRUE.
<i.e., A is equal to B), the value of ANSWER is replaced by the value of
the expression (2.0*A/C) and then the fourth statement is executed. If
the value of the expression is .FALSE. (i.e., A is not equal to B), the
value of ANSWER remains unchanged and the fourth statement is executed
next.

Example 2:

Assume that P and Q are logical variables.

IF{P.OR •• NOT Q)A=B
C = B**2

control Statements 35

Explanation:

In the first statement, if the value of the expression is TRUE , the
value of A is replaced by the value of B and the second statement is
executed next. If the value of the expression is .FALSE., the statement
A = B is skipped and the second statement is executed.

DO STATEMENT

r--~-------,
I General Form I
~--~
I End of DO Initial Test I
I Range Variable Value Value Increment I
I ---...-- '-'._,.-__.. "'-',.._... '-..,..-.' '----.....- I
I DO
I
I Where:
I
I
I
I
I
I
I
I
I

i =

~ is an executable statement number appearing after the DO
statement.

i is a nonsubscripted integer variable.

!!!11 !!!21 and !!!31 are either unsigned integer constants great
er than zero or unsigned nonsubscripted integer variables
whose value is greater than zero. !!!2 may not exceed 231-2
in value. !!!3 is optional; if it is omitted, its value is
assumed to be 1. In this case, the preceding comma must

~ also be omitted.
L--

The DO statement is a command to execute, at least once, the state
ments that physically follow the DO statement, up to and including the
statement numbered ~· These statements are called the range of the DO.
The first time the statements in the range of the DO are executed, i is
initialized to the value m1 ; each succeeding time i is increased by the
value !!!3 • When, at the end of the iteration, i is equal to the highest
value that does not exceed m21 control passes to the statement following
the statement numbered ~· Thus, the number of times the statements in
the range of the DO are executed is given by the expression:

r 1

I !!!2 - !!!1 I
I ------- I +1
I !]!3 I
L J

where the brackets represent the largest integral value not exceeding
the value of the expression within the brackets. If m2 is less than m1 ,

the statements in the range of the DO are executed once. Upon comple=
tion of the DO, the DO variable is undefined and may not be used until
assigned a value {e.g., in a READ list).

There are several ways in which looping {repetitively executing the
same statements) may be accomplished when using the FORTRAN language.
For example, assume that a manufacturer carries 1000 different machine
parts in stock. Periodically, he may find it necessary to compute the
amount of each different part presently available. This amount may be
calculated by subtracting the number of each item used, OUTCI>, from the
previous stock on hand, STOCK{I).

36

I=O
10 I=I+l

STOCK(I)=STOCK(I)- OUT(I)
IF(I-1000) 10,30,30

30 A=B+C

The first, second, and fourth statements required to control the pre
viously shown loop could be replaced by a single DO statement as shown
in example 2.

DO 25 I = 1,1000
25 STOCK(I) = STOCK(I)-OUT(I)

A = E+C

In example 2, the DO variable, I, is set to the initial value of 1.
Before the second execution-O:r-statement 25, I is increased-by-the
increment, 1, and statement 25 is c.gain executed. After 1000 executions
of the DO loop, I equals 1000. Since I is now equal to the highest
value that does not exceed the ~~2~-y~lu~, 1000, control passes out of
the DO loop and the third statement is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 1000 or 1001.

DO 25 I=l, 10, 2
J = I+K

25 ARRAY(J) = ERAY(J)
A = B + C

Explanation:

In example 3, statement 25 is the end of the range of the DO loop.
The ~Q_y~~~~~le, I, is set to the initial value of 1. Before the second
execution of the DC loop, I is increased by the increment, 2, and the
second and third statements are executed a second time. After the fifth
execution of the DC loop, I equals 9 Since I is now equal to the high
est value that does not exceed the test value, 10, control passes out of
the DO loop and the fourth statement-is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 9 or 11.

Control statements 37

PROGRAMMING CONSIDERATIONS IN USING A DO LOOP

1. The indexing parameters of a DO statement Ci, m1 , m2 , m3) should
not be changed by a statement ~!!h!~ the range-of the DO loop.

2. There may be other DO statements within the range of a DO state
ment. All statements in the range of the inner DO must be in the
range of the outer DO. A set of DO statements satisfying this rule
is called a nest of DO's.

DO 50 I = 1, 4

A(I) = B(I)**2

DO 50 J=1, 5 }

50 C(J+1) = A(I)

Example 2:

DO 10 INDEX = L, M

N = INDEX + K

DO 15 J = 1, 100, 2 }

15 TAELE(J) = SUM{J 1 N)-1

10 B{N) = A(N)

Range of
Inner DO

Range of
Inner DO

Range of
outer DO

Range of
Outer DO

3. A transfer out of the range of any DO loop is permissible at any
time.

4. The extended range of a DO is defined as those statements in the
program unit containing the DO statement that are executed between
the transfer out of the innermost DO of a nest of DO's and the
transfer back into the range-Of-this innermost DO. The following
restrictions apply:

38

• Transfer into the range of a DO is permitted only if such a
transfer is from the extended range of the DO.

• The extended range of a DO statement must not contain another DO
statement that has an extended range if the second DO is within
the same program unit as the first.

• The indexing parameters Ci, m1 , m2 , IB 3) cannot be changed in the
extended range of the DO.

Note that a statement that is the end of the range of more than one
DO statement is within the innermost DO. The statement label of
such a terminal statement may not be used in any GO TO or arithme
tic IF statement that occurs anywhere but in the range of the most
deeply contained DO with that terminal statement.

Example:

DO DO

2 5

_1

In the preceding example, the transfers specified by the numbers 1,
2, and 3 are permissible, whereas those specified by 4, 5, 6, and 7
are not.

5. The indexing parameters <i,~1 ,~2 ,~3) may be changed by statements
outside the range of the DO statement only if no transfer is made
back into.the range of the DO statement that uses those parameters.

6. The last statement in the range of a DO loop (statement ~) must be
an executable statement. It cannot be a GO TO statement of any
form, or a PAUSE, STOP, RETURN, arithmetic IF statement, another DO
statement, or a logical IF statement containing any of these forms.

7. The use of, and return from, a subprogram from within any DO loop
in a nest of DO's is permitted.

CONTINUE STATEMENT

.---,
I General Form I
~---~
I CONTINUE I
l--------~--J

CONTINUE is a dummy statement that may be placed anywhere in the
source progra~ without affecting the sequence of execution. It may be
used as the last statement in the range of a DO in order to avoid ending
the DO loop with a GO TO, PAUSE, STOP, RETURN, arithmetic IF, another DO
statement, or a logical IF statement containing any of these forms

Control Statements 39

l

DO 30 I = 1 1 20
7 IF (A(I)-B(I)) 5,30,30
5 A{I) =A(I) +1 0

B(I) = BCI) -2.0

GO TO 7
30 CONTINUE

C = A(3) + E(7)

In example 1, the CONTINUE statement is used as the last statement in
the range of the DO in order to avoid ending the DO loop with the state
ment GO TO 7.

DO 30 I=l,20
IF(A(I)-B(I))S,40,40

5 A(I) = CCI)
GO TO 30

40 A{I) = 0.0
30 CONTINUE

Explanation:

In example 2, the CONTINUE statement provides a branch point enabling
the programmer to bypass the execution of statement 40.

PAUSE STATEMENT

r--1
l General Form I
~--i
I PAUSE I
I PAUSE n I
I PAUSE ·~22~9§ 1 I
I I
I Where: Q is a string of 1 through 5 decimal digits. I
J I
I '!!!§22~~· is a literal constant of one form only: specific- I
I ally, a string of alpharneric and/or special characters I
l enclosed in apostrophes. I l __ J

40

PAUSE ~' PAUSE ~~§§~g~, or PAUSE 00000 is displayed, depending upon
whether ~' ·~~§§~~· or no parameter was specified, and the program
waits until operator intervention causes it to resume execution, start
ing with the next statement after the PAUSE statement. For further
information, see the FORTRAN programmers' guides listed in the Preface.

STOP STATEMENT

r--1
I General Form I
~---~
I STOP I
1 sToP n 1
I I
I Where: n is a string of 1 through 5 decimal digits. I
L--J

The STOP statement terminates the execution of the object program and
displays n if specified. For further information, see the FORTRAN pro
grammers' guides listed in the Preface.

END STATEMENT

.---,
I General Form I
~--~
I END I
L---~----------------------J

The END statement is a nonexecutable statement that defines the end
of a source program or source subprogram for the compiler. Physically,
it must be the last statement of each program or subprogram. It may not
have a statement number, and it may not be continued. The END statement
does not terminate program execution. To terminate execution, a STOP
statement or a RE~URN statement in the main program is required.

Control Statements 41

INPUT/OUTPUT STATEMENTS

Input/output statements are used to transfer and control the flow of
data between internal storage and an input/output device, such as a card
reader, printer, punch, magnetic tape unit, or disk storage unit. The
data that is to be transferred belongs to a 9~!~ ~~i· Data sets are
composed of one or more records. Typical records are punched cards,
printed lines, or the images of either on magnetic tape or disk.

Operation: In order for the input or output operation to take place,
the programmer must specify the kind of operation he desires; READ,
WRITE, or BACKSPACE, for example.

Data Set Reference Number: A FORTRAN programmer refers to a data set by
Its-data-set-reference-number. <The FORTRAN programmers' guides, listed
in the preface, explain how data set reference numbers are associated
with data sets.) In the statement specifying the type of input/output
operation, the programmer must give the data set reference number corre
sponding to the data set he wishes to operate on.

I/O_~is!: Input/output statements in FORTRAN are primarily concerned
with the transfer of data between storage locations defined in a FORTRAN
program and records which are external to the program. On input, data
is taken from a record and placed into storage locations that are not
necessarily contiguous. On output, data is gathered from diverse
storage locations and placed into a record. An I/O list is used to spe
cify which storage locations are used. The I/O list can contain vari
able names, subscripted array names, unsubscripted array names, or array
names accompanied by indexing specifications in a form called an implied
DO. No function references or arithmetic expressions are permitted in
an I/O list.

If a variable name or subscripted array name appears in the I/O list,
one item is transmitted between a storage location and a record.

If an unsubscripted array name appears in the list, the entire array
is transmitted in the order in which it is stored. (If the array has
more than one dimension, it is stored in ascending storage locations,
with the value of the first subscript quantity increasing most rapidly
and the value of the last increasing least rapidly. An example is given
in the section "Arrangement of Arrays in Storage.")

If an implied DO appears in the I/O list, the elements of the
arrayCs) specified by the implied DO are transmitted. The implied DO
specification is enclosed in parentheses Within the parentheses are
one or more subscripted array names, separated by commas with a comma
following the last name, followed by indexing parameters i=m1 , m2 , m3 •

The indexing parameters are as defined for the DO statement. Their
range is the list of the DO-implied list and, for input lists, i, m1 ,

m2 , and m3 may appear within that range only in subscripts.

42

For example, assume that A is a variable and that B, c, and D are
1-dimensional arrays each containing 20 elements. Then the statement:

WRITE (6) A, E, (C(I), I=l,4), D(4)

writes the current value of variable A, the entire array B, the first
four elements of the array c, and the fourth element of D. (The 6 fol
lowing the WRITE is the data set reference number.)

Implied DO's can be nested if required. For example, to read an ele
ment into array E after values are read into each row of a 10 x 20 array
A, the following would be written:

READ (5) ((ACI,J), J=l,10), BCI>, I=l,20)

The order of the names in the list specifies the order in which the
data is transferred between the record and the storage locations.

A special kind of I/O list called a NAMELIST list is explained in the
section "READ and WRITE Using NAMELIST."

Formatted and Unformatted Records: Data can be transmitted either under
contrOl-of-a-FORMA~-statement-or-without the use of a FORMAT statement.

When data is transmitted with format control, the data in the record
is coded in a form that can be read by the programmer or satisfies the
needs of machine representation. The transformation for input takes the
character codes and constructs a machine representation of an item. The
output transformation takes the machine representation of an item and
constructs character codes suitable for printing. Most transformations
involve numeric representations that require base conversion. To obtain
format control, the programmer must include a FORMAT statement in the
program and must give the statement number of the FORMAT statement in
the READ or WRITE statement specifying the input/output operation.

When data is transmitted without format control, no FORMAT statement
is used. In this case, there is a one-to-one correspondence between
internal storage locations (bytes> and external record positions. A
typical use of unformatted data is for information that is written out
during a program, not examined by the programmer, and then read back in
later in the program or in another program for additional processing.

For unformatted data, the I/O list determines the length of the rec
ord. For example, an output record is complete when the current values
of all the items in the I/O list have been placed in it, plus any con
trol words supplied by the input/output routines or Data Management.
For further information, see the FORTRAN IV programmers' guides listed
in the Pref ace

For formatted data, the I/O list and the FORMAT statement determine
the form of the record. For further information see the section "FORMAT
Statement" and the FORTRAN IV programmers' guides

Input/Output Statements 43

There are two types of input/output statements: sequential and
direct access Sequential input/output statements are used for storing
and retrieving data sequentially. These statements are device indepen
dent and can be used for data sets on either sequential or direct access
devices.

The direct access input/output statements are used to store and
retrieve data in an order specified by the user. These statements can
be used only for a data set on a direct access storage device.

SEQUENTIAL INPUT/CU~PUT STATEMEN~S

There are five sequential input/output statements: READ, WRITE, END
FILE, REWIND, and BACKSPACE. The READ and WRITE statements cause
transfer of records of sequential data sets. The END FILE statement
defines the end of a data set; the REWIND and BACKSPACE statements con
trol the positioning of data sets. In addition to these five state
ments, the FORMAT and NAMELIST statements, although not input/
output statements, are used with certain forms of the READ and WRITE
statements.

READ STATEMENT

r--1
!General Form I
~---~
JREAD(~•E•END=g,ERR=g) !!~~ l
I I
!Where: ~ is an unsigned integer constant or an integer variable I
I that is of length 4 and represents a data set reference I
I number. I
I I
I E is optional and is either the statement number or array I
I name of the FORMAT statement describing the record(s) being I
I read, or a NAMELIST name. I
I I
I END=c is optional and c is the number of the statement to I
I which transfer is made-upon encountering the end of the datal
I set. I
I I
I ERR=d is optional and d is the number of the statement to J
I which transfer is made-upon encountering an error condition I
I in data transfer. I
I I
I list is optional and is an I/O list. I
L--J

The READ statement may take many forms. The value of ~ must always
be specified, but under appropriate conditions E• g, £, and list can be
omitted. The order of the parameters END=c and ERR=d can be reversed
within the parentheses. - -

44

Transfer is made to the statement specified by the END parameter when
the end of the data set is encountered; i e., when a READ statement is
executed after the last record on the data set has already been read.
(No indication is given of the number of list items read into before the
end of the data set was encountered.) If the END parameter is omitted,
object program execution is terminated upon encountering the end of the
data set.

Transfer is made to the statement specified by the ERR parameter if
an input/output device error occurs. No data is read into the list
items and no indication is given of which record or records could not be
read, only that an error occurred during transmission of data. If the
ERR parameter is omitted, object program execution is terminated when an
input/output device error occurs.

The basic forms of the READ statements are:

READ(a,b) list
READ(a)-li~
READ{~,~-)~-

Purpose

Formatted READ
Unformatted READ
READ using NAMELIST

The discussion of READ using NAMELIST is in the section "READ and
WRITE Using NAMELIST."

Formatted READ

The form READ (a,b) list is used to read data from the data set asso
ciated with data set-reference number a into the variables whose names
are given in the list. The data is transmitted from the data set to
storage according to the specifications in the FORMAT statement, which
is statement number ~·

Example:

READ (5,98) A,B,(C(I,K>,I=l,10)

Explanation: The above statement causes input data to be read from the
data set associated with data set reference number 5 into the variables
A, E, C(l,K), C(2,K>, ••• , CClO,K) in the forrrat specified by the FORMAT
statement whose statement number is 98.

Unformatted READ

The form READ(~) !is~ is used to read a single record from the data
set associated with data set reference number a into the variables whose
names are given in the list. Since the data is unformatted, no FORMAT
statement number is given. This statement is used to read unformatted
data written by a WRITE(~) !!st statement. If the !!2~ is omitted, a
record is passed over without being processed.

Input/Output Statements 45

Example:

READ {J) A,E,C

~xpl2n2!!2n: The above statement causes data to be read from the data
set associated with data set reference number J into the variables A, B,
and c.

WRITE STATEMENT

.--,
!General Form I
~--~
)WRITE(~1]2) list
I
I Where: 2 is an unsigned integer constant or an integer variable

that is of length 4 and represents a data set reference
number.

I
I
I
I
I
I
I

]2 is optional and is either the statement number or array
name of the FORMAT statement describing the record{s) being
written, or a NAMELIST name.

I 1!~! is optional and is an I/O list.
L--

The WRITE statement may take many different forms. For example, the
list or the parameter]2 may be omitted.

The three basic forms of the WRITE statement are:

WRITE(a,b) list
WRITE(a) list
WRITE(a,x)

Purpose

Formatted WRITE
Unformatted WRITE
WRITE using NAMELIST

The discussion of WRITE using NAMELIST is in the section "READ and
WRITE Using NAMELIST."

Formatted_!ig,!TE

The form WRITECa,b) list is used to write data into the data set
whose reference number is ~ from the variables whose names are given in
the list. The data is transmitted from storage to the data set accord
ing to the specifications in the FORMAT statement, whose statement num
ber is Q•

Example:

WRITEC7, 75)A, (BU, 3), I=l, 10, 2), C

Explanation: The above statement causes data to be written from the
variables A, BCl,3), BC3,3), BCS,3>, B(7,3), BC9,3), c into the data set
associated with data set reference number 7 in the format specified by
the FORMAT statement whose statement number is 75.

46

Unformatted WRITE

The form WRITE(~) li~~ is used to write a single record from the
variables whose names are given in the !i~~ into the data set whose data
set reference number is ~· This data can be read back into storage with
the unformatted form of the READ statement, READ(a) list. The list can-
not be omitted. - ~~ ~~

WRITE (L) ((A{I 1 J),I=1,10,2) 1 B(J,3) 1 J=l,K)

E!mlana~!2~: The above statement causes data to be written from the 1

variables Atl,1>, AC3,1>, ••• , A(9,1>, B(l,3), A(l,2>, A(3,2>, ••• ,
A(9,2), B(2,3), ••• , B(K,3) into the data set associated with the data
set reference number L. Since the record is unformatted, no FORMAT
statement number is given. Therefore, no FORMAT statement number should
be given in the READ statement used to read the data back into storage.

READ AND WRITE USING NAMELIST

The NAMELIST statement is used in conjunction with the READ(a,x> and
WRITE<~,!> statements to provide for reading and writing data without
including the list specification in the READ and WRITE statements. The
NAMELIST statement declares a name x to refer to a particular list of
variables or array names. Neither a dummy variable name nor a dummy
array name may appear in the list. Thereafter, the forms READC~,~> and
WRITECa,x) are used to transmit data between the data set associated
with the-reference number~ and the variables specified by the NAMELIST
name ~·

The format and rules for constructing and using the NAMELIST state
ments are described in the following text.

r--1
)General Form I
!--~
INAMELIST/~/~·~···£/y/g,~ •••• f/~/g,h,···! I
I I
]Where: ~.y, and~···· are NAMELIST names. I
l I
I ~,f,£ 1 §, ••• are variable or array names. I
l--J

The following rules apply to declaring and using a NAMELIST name:

1. A NAMELIST name is a symbolic name.

2. A NAMELIST name is enclosed in slashes. The list of variable or
array names belonging to a NAMELIST name ends with a new NAMELIST
name enclosed in slashes or with the end of the NAMELIST statement.

Input/Output Statements 47

3. A variable name or an array name may belong to one or more NAMELIST
lists.

4. A NAMELIST name must be declared in a NAMELIST statement before it
is used in an input/output statement, and it may be declared only
once. After it is declared, it may appear only in input/output
statements.

5. The rules for input/output conversion of NAMELIST data are the same
as the rules for data conversion described in the section "FORMAT
Statement." The NAMELIST data must be in a special form, described
in the following sections.

6. A NAMELIST name may not be used as an argument.

Input data must be in a special form in order to be read using a
NAMELIST list. The first character in each record to be read must be
blank. The second character in the first record of a group of data
records must be an &, immediately followed by the NAMELIST name. The
NAMELIST name must be followed by a blank and must not contain any
embedded blanks. This name is followed by data items separated by com
mas. (A comma after the last item is optional.) The end of a data
group is signaled by &END.

The form of the data items in an input record may be:

• variable name = constant

The variable name may be a subscripted array name or a single vari
able name. Subscripts must be integer constants. The constant may
be integer, real, literal, complex, or logical. (If the constants
are logical, they may be in the form Tor .TRUE. and For .FALSE.)

• array ~ = set of constants (separated by commas)

The array ~ is not subscripted. The set of constants consists of
constants of the type integer, real, literal, complex, or logical.
The number of constants must be less than or equal to the number of
elements in the array. successive occurrences of the same constant
can be represented in the form ~!con~!~~!·

The variable names and array names specified in the input data set
must appear in the NAMELIST list, but the order is not significant. A
name that has been made equivalent to a name in the input data cannot be
substituted for that name in the NAMELIST list. The list can contain
names of items in COMMON but must not contain dummy argument names.

Each data record must begin with a complete variable or array name or
constant. Embedded blanks are not permitted in names or constants.
Trailing blanks after integers and exponents are treated as zeros.

48

NAMELIST Output Data

When output data is written using a NAMELIST list, it is written in a
form that can be read using a NAMELIST list. All variable and array
names specified in the NAMELIST list and their values are written out,
each according to its type. The fields for the data are made large
enough to contain all the significant digits. The values of a complete
array are written out in columns.

Example: Assume that A is a 3 by 1 array, I and L are 3 by 3 arrays,
and that the following statements are given:

NAMELIST /NAM1/A 1 B,I,J,L/NAM2/C,J,I 1 L

READ {5,NAM1)

WRITE (6 1 NAM2)

~~1~~~!ion: The NAMELIST statement defines two NAMELIST lists, NAM1
and NAM2. The READ statement causes input data to be read from the data
set associated with data set reference number 5 into the variables and
arrays specified by NAMl. Assume that the data cards have the form:

Column 2
I
v

First card &NAMl IC2,3)=5,J=4,B=3.2

Last card A(3)=4.0,L=2,3,7*4,&END

The first data card is read and examined to verify that its name is con
sistent with the NAMELIST name in the READ statement. (If that NAMELIST
name is not found, then it reads to the next NAMELIST group.) When the
data is read, the integer constants 5 and 4 are placed in IC2,3) and J,
respectively; and the real constants 3.2 and 4.0 are placed in B and
AC3>, respectively. Since L is an array name not followed by a sub
script, the entire array is filled with the succeeding constants.
Therefore, the integer constants 2 and 3 are placed in LC1,1) and
LC2,1), respectively, and the integer constant 4 is placed in LC3,1),
L{l,2), ••• , L(3,3).

The WRITE statement causes data to be written from the variables and
arrays specified by NAM2 into the data set associated with data set
reference number 6. Assume that the values of J, L, and It2,3) were not
altered since the previous READ statement, that c was given the value
428.0E+03, that ICl,3) was given the value 6, and that the rest of the
elements of I were set to zero. Then, if the output is punched on
cards, the form is:

First card

Second card

Third card

Fourth card

Column 2
I
v
&NAM2

c=42sooo.oo,J=4,I=O,o,o,o,o,o,6,5,

O,L=2,3,4,4,4,4,4,4 1 4 1

&END

Input/Output Statements 49

FORMAT STATEMENT

r--1
JGeneral Form I
~--~
I~ FORMAT (c1 ,c2r•••rCn) I
I I
!Where: ~~~~~ is a statement number (1 through 5 digits). I
I I
I £ 11 £ 2i••••£n are format codes. I
I I
JThe format codes are: I
I I
J2I~ (Describes integer data fields.) I
l~D~.Q (Describes real data fields.) I
l~E~.g (Describes real data fields.) l
lE2F~.Q (Describes real data fields.) I
I ~z~ {Describes hexadecimal data fields.) I
)£2G~.~ (Describes integer, real, complex, or logical data fields.) I
l2L~ {Describes logical data fields.) I
l2A~ (Describes alpharneric data fields.) I
!'Literal' (Transmits literal data.) I
l~H (Transmits literal data.) I
l~X (Indicates that a field is to be skipped on input or filled I
I with blanks on output.) I
IT! (Indicates the position in a FORTRAN record where transfer l
I of data is to start.) I
!2< •••) (Indicates a group format specification.) I
I I
!Where: 2 is optional and is an unsigned integer constant used to l
l denote the number of times the format code is to be used. I
I If ~ is omitted, the code is used only once. I
I I
I w is an unsigned nonzero integer constant that specifies thel
I number of characters in the field. I
I I
I 9 is an unsigned integer constant specifying the number of I
I decimal places to the right of the decimal point; i.e., the I
I fractional portion. I
I I
I ~ is an unsigned integer constant specifying the number of I
I significant digits. I
I I
I ! is an unsigned integer constant designating a character I
I position in a record. I
I I
I ~ is optional and represents a scale factor designator of I
I the form nP where n is an unsigned or negatively signed I
I integer constant. I
I I
) (•••) is a group format specification. Within the paren-]
l theses are format codes separated by commas or slashes.]
I Group format specifications can be nested to a level of two.J
I The ~ preceding this form is called a group repeat count. I
~--~
!NO!~= I
l 1. Complex data fields in records require two successive D, E, F, I
! G, or A format codes. These codes may be grouped within I
I parentheses I
I I
I 2 Both commas and slashes can be used as separators between format I
I codes (see the section "Various Forms of a FORMAT Statement"). I
l __ J

50

The FORMAT statement is used in conjunction with the I/O list in the
READ and WRITE statements to specify the structure of FORTRAN records
and the form of the data fields within the records. In the FORMAT
statement, the data fields are described with format codes, and the
order in which these format codes are specified gives the structure of
the FORTRAN records. The I/O list gives the names of the data items to
make up the record. The length of the list in conjunction with the FOR
MAT statement specifies the length of the record (see the section
"Various Forms of a FORMAT Statement"). Throughout this section, the
examples show punched card input and printed line output. The concepts
apply to all input/output media. In the examples, the character b
represents a blank.

The following list gives general rules for using the FORMAT
statement:

1. FORMAT statements are not executed; their function is to supply
information to the object program. They may be placed anywhere in
the source program.

2. When defining a FORTRAN record by a FORMAT statement, it is impor
tant to consider the maximum size record allowed on the input/
output mediuro. For example, if a FORTRAN record is to be punched
for output, the record should not be longer than 80 characters. If
it is to be printed, it should not be longer than the printer's
line length. For input, the FORMAT statement should not define a
FORTRAN record longer than the record referred to in the data set.

3. When formatted records are prepared for printing, the first
character of the record is not printed. It is treated as a car
riage control character. It can be specified in a FORMAT statement
with either of two forms of literal data: either ·~· or lH~, where
x is one of the following:

~ Meaning

blank Advance one line before printing

0 Advance two lines before printing

1 Advance to first line of next page

+ No advance

For media other than the printer, the first character of the record
is treated as data.

4. If the I/O list is omitted from the READ or WRITE statement, a
record is skipped on input, or a blank record is inserted on out
put, unless the record was transmitted between the data set and the
FORMAT statement (see "H Format Code and Literal Data").

Various Forms of a FORMAT Statement

All of the format codes in a FORMAT statement are enclosed in a pair
of parentheses. Within these parentheses, the format codes are delim
ited by the separators: comma and slash.

Execution of a formatted READ or formatted WRITE statement initiates
format control Each action of format control depends on information
provided jointly ty the I/O list, if one exists, and the format specifi
cation. There is no I/O list item corresponding to the format descrip-

Input/Output Statements 51

tors x, H, and literals enclosed in apostrophes. These communicate
information directly with the record.

Whenever an I, D, E, F, G, A, L, or Z code is encountered, format
control determines whether there is a corresponding element in the I/O
list. If there is such an element, appropriately converted information
is transmitted. If there is no corresponding element, the format con
trol terminates.

If, however, format control reaches the last outer right parenthesis
of the format specification and another element is specified in the I/O
list, control is transferred to the group repeat count of the group for
mat specification terminated by the last right parenthesis that precedes
the right parenthesis ending the FORMAT statement.

The question of whether there are further elements in the I/O list is
asked only when an I, D, E, F, G, A, L, or z code or the final right
parenthesis of the format specification is encountered. Before this is
done, T, x, and H codes, literals enclosed in apostrophes, and slashes
are processed. If there are fewer elements in the I/O list than there
are format codes, the remaining format codes are ignored.

Comma:
box at
commas,
defined
the end
see the

The simplest form of a FORMAT statement is the one shown in the
the beginning of this section with the format codes, separated by

enclosed in a pair of parentheses. one FORTRAN record is
by the beginning of the FORMAT statement Cleft parenthesis) to
of the FORMAT statement {right parenthesis). For an example,
section "Examples of Numeric Format Codes."

Slash: A slash is used to indicate the end of a FORTRAN record format.
For example, the statement:

25 FORMAT {I3 1 F6.2/D10.3 1 F6.2)

describes two FORTRAN record formats. The first, third, etc., records
are transmitted according to the format I3, F6.2 and the second, fourth,
etc., records are transmitted according to the format 010.3, F6.2.

Consecutive slashes can be used to introduce blank output records or
to skip input records. If there are Q consecutive slashes at the begin
ning or end of a FORMAT statement, Q input records are skipped or Q
blank records are inserted between output records. If Q consecutive
slashes appear anywhere else in a FORMAT statement, the number of
records skipped or blank records inserted is n-1. For example, the
statement:

25 FORMAT C1X,10I5//1X,8E14.5)

describes three FORTRAN record formats. On output, it causes double
spacing between the line written with format 1X,10I5 and the line writ
ten with the format 1X,8E14.5.

I Format Code

The I format code is used in transmitting integer data. For example,
if a READ statement refers to a FORMAT statement containing I format
codes, the input data is stored in internal storage in integer format.
The magnitude of the data to be transmitted must not exceed the maximum
magnitude of an integer constant.

52

Input: Leading, embedded, and trailing blanks in a field of the input
card are interpreted as zeros.

ou~put: If the number of significant digits and sign required to repre
sent the quantity in the storage location is less than ~' the leftmost
print positions are filled with blanks. If it is greater than ~'
asterisks are printed instead of the number.

The D, E, and F format codes are used in transmitting real or double
precision data. 'Ihe data must not exceed the maximum magnitude for a
real or double precision constant.

1!!12!!!= Input must be a real or double precision number which, optional
ly, may have a D or E exponent. 'Ihe decimal point may be omitted. If
it is present, its position overrides the position indicated by the d
portion of the format field descriptor, and the number of positions
specified by w must include a place for it. If the data has a D or E
exponent and the format field descriptor includes a P scale factor, the
scale factor has no effect. Each data item must be right justified in
its field, since leading, trailing, and embedded blanks are treated as
zeros. These three format codes are interchangeable for input. It
makes no difference, for example, whether D, E, or F is used to describe
a field containing 12.42E+08.

2~!P!!!= For data written under a D or E format code, unless a P scale
factor is specified, output consists of an optional sign (required for
negative values), a decimal point, the number of significant digits
specified by d, and a D or E exponent requiring four positions. The w
specification-must provide for all these positions, including the one
for a sign when the output value is negative. If additional space is
available, a leading zero may be written before the decimal point.

For data written under an F format code, ~ must provide sufficient
spaces for an integer segment if it is other than zero, a fractional
segment containing ~ digits, a decimal point, and, if the output value
is negative, a sign. If insufficient positions are provided for the
integer p©rtion, including the decimal point and sign (if any>,
asterisks are written instead of data. If excess positions are pro
vided, the number is preceded by blanks.

For D, E, and F, fractional digits in excess of the number specified
by 9 are dropped after rounding.

Z Format Code

The Z format code is used in transmitting hexadecimal data.

Input: Leading, embedded, and trailing blanks in an input field are
treated as zeros. One storage location Cbyte) in internal storage con
tains two hexadecimal digits; thus, if an input field contains an odd
number of digits, the number will be padded on the left with a hexa
decimal zero when it is stored.

Output: If the number of characters in the storage location is less
than ~' the leftmost print positions are filled with blanks If the
number of characters in the storage location is greater than ~. the
leftmost digits are truncated and the rest of the number is printed.

Input/Output Statements 53

G Format Code

The G format code is a generalized code used to transmit integer,
real, complex, or logical data according to the type specification of
the corresponding variable in the I/O list.

Input: The rules for input for G format code depend upon the type of
the variable in the I/O list and the form of the number punched on the
card. For example, if the variable is real and the number punched in
the card has an E decimal exponent, the rules are the same as for the E
format code. If the variable in the I/O list is integer or logical, the
~ portion of the format code, specifying the number of significant
digits, can be omitted; if it is given, it is ignored. For complex and
real data, the § portion gives the location of the implied decimal point
for input -- just like the g specification for D, E, and F format codes.

Q~iP~i: The § portion of the format code can be omitted for integer and
logical data and the numbers are printed according to the rules for I
and L format codes. For complex and real data, the s is used to deter
mine the number of digits to be printed and whether the number should be
printed with or without a decimal exponent. If the number, say n, is in
the range 0.1~ n < 10**s 1 the number is printed without a decimal
exponent. Otherwise, it is printed with an E or D decimal exponent
depending on the length specification of the variable in the I/O list.
The ~ specification for complex and real data must include a position
for a decimal point, four positions for a decimal exponent, and, if the
value is negative, a position for a minus sign. All other rules for
output are the same as those for the individual format codes.

The following examples illustrate the use of the format codes I, F,
D, E, Z, and G.

Example 1:

75 FORMAT (I3,F5.2,E10.3,G10.3)

READ (5 1 75) N,A,B,C

!;~.!~~i!.2!!=

1. Four input fields are described in the FORMAT statement and four
variables are in the I/O list. Therefore, each time the READ
statement is executed, one input card is read from the data set
associated with data set reference number 5.

2. When an input card is read, the number in the first field of the
card (three columns) is stored in integer format in location N.
The number in the second field of the input card (five columns} is
stored in real format, with no decimal exponent, in location A,
etc.

3. If there were one more variable in the I/O list, say M, another
card would be read and the information in the first three columns
in that card would be stored in integer format in location M. The
rest of the data on the card would be ignored.

4. If there were one fewer variable in the list <say c is omitted), no
number would be stored according to the format Gl0.3.

54

5 This format statement defines only one record format. The section
"Various Forms of a FORMAT Statement" explains how to define more
than one record format in a FORMAT state~ent

Example 2: Assume that the following statements are given:

75 FORMAT CZ4,D10.3,2G10.3)

READ (5,75) A,B,C,D

where A, c, and D are REAL*4 and E is REAL*8 and that the following
input cards are read:

column

Input

Cards

Format

1
I

5
I

15
I

25
I

35
I

v v v v v

~ :::~::::::::::::::::::~::::~::::::
l 3ACb346.18D-03485.322836276.38E+15

Z4 Dl0.3 Gl0.3 Gl0.3

Then the variables A, B, c, and D receive values as if the following
had been punched:

A
03F1

2AF3

3ACO

Explanation:

B
156. 432D+02

155.381D+020

346.180-03

c
276. 38E+15

382.506E+28

485.322836

D
000000.000

276.38E+15

276.38E+15

1. Leading, trailing,
treated as zeros.
input card was not
not 2.

and embedded blanks in an input field are
Therefore, since the value for B on the second
right justified in the .field, the exponent is 20

2. Values read into the variables c and D with a G format code are
converted according to the type of the corresponding variable in
the I/O list.

];~mI?!~-~: Assume that the following statements are given:

76 FORMAT C'O',Fo.2,E12.3,G14.6,I5)

WRITE (6,76)A,B,C,N

and that the variables A, B, c, and N have the following values:

A 12 c N

034.40 123.380E+02 123.380E+02 031

031.1 1156.1E+02 123456789. 130

-354 32 834 621E-03 1234 56789 428

01.132 83,121E+06 123380 0+02 000

Input/Output Statements 55

Then, the following lines are printed:

Column 2 3
1 9 1 5

34.40 0 123E 05 12338.0 31

31.10 0.116E 06 0 123457E 09 130

****** 0.835E 00 1234.57 428

1.13 0.831E 08 0.123380E 08 0

~~lanat~~n:

1. The integer portion of the third value of A exceeds the format spe
cification, so asterisks are printed instead of a value. The frac
tional portion of the fourth value of A exceeds the format specifi
cation, so the fractional portion is rounded.

2. Note that for the variable B the decimal point is printed to the
left of the first significant digit and that only three significant
digits are printed because of the format specification E12.3.
Excess digits are rounded off from the right.

3. The values of the variable c are printed according to the format
specification G14.6. The£ specification, which in this case is 6,
determines the number of digits to be printed and whether the
number should be printed with a decimal exponent. Values greater
than or equal to 0.1 and less than 1,000,000 are printed without a
decimal exponent in this example. Thus, the first and third values
have no exponent. The second and fourth values are greater than
1,000,000, so they are printed with an exponent.

The P scale factor may be specified as the first part of a D, E, F,
or G field descriptor to change the location of the decimal point in
real numbers. The effect of the scale factor is:

scale factor
external numter = internal number x 10

Input: A scale factor may be specified for any real data, but it is
ignored for any data item that contains an exponent in the external
field. For example, if the input data is in the form xx.xxxx and is to
be used internally in the form .xxxxxx, then the format code used to
effect this change is 2PF7.4. or, if the input data is in the form xx.
xxxx and is to be used internally in the form xxxx.xx, then the format
code used to effect this change is -2PF7.4.

~E!PE!= A scale factor can be specified for real numbers with or
without E or D decimal exponents. For numbers without an E or D decimal
exponent, the effect is the same as for input data except that the
decimal point is moved in the opposite direction For example, if the
number has the internal form xx.xxxx and is to be written out in the
form xxxx.xx, the format code used to effect this change is 2PF7.4.

56

For numbers with an E or D decimal exponent, when the decimal point
is moved, the exponent is adjusted to account for it, i.e., the value is
not changed. For example, if the internal number 238. were printed
according to the format E10.3, it would appear as 0 238Eb03. If it were
printed according to the format 1PE10.3, it would appear as 2.380Eb02.

A repetition code can precede the D, E, or F format code. For
example, 2P3F7.4 is valid.

~~~i~g: Once a scale factor has been established, it applies to all 
subsequently interpreted D, E, F, and G codes in the same FORMAT state
ment until another scale factor is encountered. The new scale factor is 
then established. A factor of 0 may be used to discontinue the effect 
of a previous scale factor. 

The L format code is used in transmitting logical variables. 

1!!12~1= The first ~ or F encountered in the ~ characters of the input 
field causes a value of .TRUE. or .FALSE., respectively, to be assigned 
to the corresponding logical variable in the I/O list. If the field ~ 
consists entirely of blanks, a value of .FALSE. is assumed. 

2~tEU1: A T or F is inserted in the output record depending upon wheth
er the value of the logical variable in the I/O list was .TRUE. or 
.FALSE., respectively. The single character is right justified in the 
output field and preceded by ~-1 blanks. 

A Format Code 

The A format code is used in transmitting data that is stored 
internally in character format. The number of characters transmitted 
under A format code depends on the length of the corresponding variable 
in the I/O list. Each alphabetic or special character is given a unique 
internal code. Numeric data is converted digit by digit into internal 
format, rather than the entire numeric field being converted into a 
single binary number. Thus, the A format code can be used for numeric 
fields, but not for numeric fields requiring arithmetic. 

l!!E~l= The maximum number of characters stored in internal storage 
depends on the length of the variable in the I/O list. If ~ is greater 
than the variable length, say v, then the leftmost w-v characters in the 
field of the input card are skipped and the remaining-y characters are 
read and stored in the variable. If ~ is less than y, then ~ characters 
from the field in the input card are read and the rewaining rightmost 
characters in the variable are filled with blanks. 

2utE~l= If w is greater than the length of the variable in the I/O 
list, say the length is y, then the printed field will contain v charac
ters right-justified in the field, preceded by leading blanks. -If ~ is 
less than y, the leftmost ~ characters from the variable will be printed 
and the rest of the data will be truncated. 

~~~mEle_!: Assume that B has been specified as real of length 8, that N 
and M are integers of standard length 4, and that the following state
wents are given.

Input/Output Statements 57

25 FORMAT (3A7)

READ (5 1 25) B, N, M

When the READ statement is executed, one input card is read from the
data set associated with data set reference number 5 into the variables
B, N, and M in the format specified by FORMAT statement number 25. The
following list shows the values stored for the given input cards (b
represents a blank).

InEut_£~

ABCDEFG46bATb11234567

HIJKLMN76543213334445

~

ABCDEFGb

FJ:IJKLMNb

~

ATbl

4321

M

4567

4445

ExamEle 2: Assume that A and B are real variables of length 4, that c
is a real variable of length 8, and that the following statements are
given:

26 FORMAT (A6,A5,A6)

WRITE (6 1 26) A 1 B 1 C

When the WRITE statement is executed, one line is written on the data
set associated with data set reference number 6 from the variables A, B,
and c in the format specified by FORMAT statement 26. The following
list shows the printed output for values of A, B, and C Cb represents a
blank).

A

A1E2

~

C3D4

c

E5F6G7H8 bbA1B2bC3D4E5F6G7

Literal data can appear in a FORMAT statement in one of two ways: it
can be enclosed in apostrophes or it can follow the H format code. For
example, the following FORMAT statements are equivalent:

25 FORMAT (' 1968 INVENTORY REPORT'>

25 FORMAT (22H 1968 INVENTORY REPORT)

No item in the I/C list corresponds to the literal data. The data is
read or written directly into or from the FORMAT statement. (The FORMAT
statement can contain other types of format codes with corresponding
variables in the I/O list.)

l!!E~t: Information is read from the input card and replaces the literal
data in the FORMA~ statement. (If the H format code is used, w charac
ters are read. If apostrophes are used, as rrany characters as-there are
spaces between the apostrophes are read.) For example, the following
statements:

8 FORMAT {' HEADINGS')

READ (5, 8)

cause the first nine characters of the next record to be read from the
data set associated with data set reference number 5 into the FORMAT
statemept 8, replacing the blank and the eight characters H, E, A, D, I,
N, G 1 and s.

58

Q~~ut: The literal data from the FORMAT statement is written on the
output data set (If the H format code is used, the ~ characters fol
lowing the H are written. If apostrophes are used, the characters
enclosed in apostrophes are written.) For example, the following
statements:

8 FORMAT (14HOMEAN AVERAGE:, F8.4)
WRITE (6 1 8) AVRGE

would cause the following record to be written if the value of AVRGE
were 12.3456:

MEAN AVERAGE: 12.3456

Note: If the literal data is enclosed in apostrophes, an apostrophe
character in the data is represented by two successive apostrophes. For
example, DON'T is represented as DON''T.

The X format code specifies a field of w characters to be skipped on
input or filled with blanks on output. For example, the following
statements:

5 FORMAT CI10,10X,4I10)

READ (5 1 5) I,J,K,L,M

cause the first ten characters of the input card to be read into vari
able I, the next ten characters to be skipped over without transmission,
and the next four fields of ten characters each to be read into the
variables J, K, L, and M.

T Format Code

The T format code specifies the position in the FORTRAN record where
the transfer of data is to begin. (Note that for printed output, the
first character of the output data record is used for carriage control
and is not printed. Thus, for example, if TSO, 'Z' is specified in a
FORMAT statement, a z will be the 50th character of the output record,
but it will appear in the 49th print position.)

The following illustrates the use of the T code.

5 FORMAT (T40,'1968 STATISTICAL REPORT 1 1 T80,

X 'DECEMBER',Tl,'OPART NO. 10095')

WRITE (6,5)

cause the following line to be printed:

Print Print Print
Position 1 Position 39 Position
I I I
v v v
PART NO. 10095 1968 STATISTICAL REPORT DECEMBER

79

The T format code can be used in a FORMAT statement with any type of
format code, as, for example, with FORMAT C'O',T40,I5).

Input/Output Statements 59

The group format specification is used to repeat a set of format
codes and to control the order in which the format codes are usEd.

The group repeat count ~ is the sarre as the repeat indicator a which
can be placed in front of other format codes. For example, the follow
ing statements are equivalent:

10 FORMAT (I3,2(I4,I5),I6)

10 FORMAT {I3,U4,I5,I4,I5),I6)

Group repeat specifications control the order in which format codes
are used since control returns to the last group repeat specification
when there are more items in the I/O list than there are format codes in
the FORMAT statement (see "Various Forms of a FORMAT Statement"). Thus,
in the previous example, if there were more than six items in the I/O
list, control would return to the group repeat count 2 which precedes
the specification (I4,I5).

If the group repeat count is omitted, a count of 1 is assumed. For
example, the statements:

15 FORMAT {13 1 (F6.2,D10.3))

READ (5,15) N,A,B,C,D,E

cause values to be read from the first record for N, A, and B, according
to the format codes I3,F6.2, and D10.3, respectively. Then, because the
I/O list is not exhausted, control returns to the last group repeat spe
cification, the next record is read, and values are transmitted to c and
D according to the format codes F6.2 and D10.3, respectively. Since the
I/O list is still not exhausted, another record is read and a value is
transmitted to E according to the format code F6.2 -- the format code
D10.3 is not used.

The format codes within the group repeat specification can be
separated by commas and slashes. For example, the following statement
is valid:

40 FORMAT (2I3/(3F6.2,F6.3/D10.3,3D10.2))

The first record is transmitted according to the specification 213, the
second, fourth, etc., records are transmitted according to the specifi
cation 3F6.2,F6.3, and the third, fifth, etc., records are transmitted
according to the specification D10.3,3D10.2, until the I/O list is
exhausted.

FORTRAN provides for variable format statements by allowing a format
specification to te read into an array in storage. The data in the
array may then be used as the format specification for subsequent input/
output operations. The format specification may also be placed into the
array by a DATA statement or an explicit specification statement in the
source program.

60

1. The name of the array containing the variable FORMAT specification
must appear in a DIMENSION, COMMON, or explicit specification
statement, even if the array size is only 1.

2. The format codes entered into the array must have the same form as
a source program FORMAT statement, except that the word FORMAT and
the statement number are omitted.

3. If a format code read in at object time contains double apostrophes
within a literal field that is defined by apostrophes, it should be
used for output only. If an object time format code is to be used
for input, and if it must contain a literal field with an internal
apostrophe, the H format code must be used for the literal field
definition.

Example: Assume that the following statements are given:

DIMENSION FMT (18)

1 FORMAT (18A4)

READ (5,1) FMT

READ (5,FMT) A,B,(C(I),I=l,5)

and that the first input card associated with data set reference number
5 contains C2El0.3, 5F10.8).

The data on the rest of the input cards is read, converted, and stored
in A, B, and the array c, according to the format codes 2E10.3, 5F10.8.

END FILE STATEMENT

.---~--,] General Form I
r--1
I END FILE ~ I
I I
I Where: 2 is an unsigned integer constant or integer variable that I
) is of length 4 and represents a data set reference number. I
L--J

The END FILE statement defines the end of the data set associated
with ~·

REWIND STATEMENT

r--1
i General Form I
r--1
I REWIND 2 I
I I
l Where:v ~ is an unsigned integer constant or integer variable that I
~ is of length 4 and represents a data set reference number. I
L--J

The REWIND statement causes a subsequent READ or WRITE statement ref
erring to ~ to read data from or write data into the first record of the
data set associated with ~·

Input/Output Statements 61

BACKSPACE STATEMENT

r--1
] General Form I
~--~
I BACKSPACE ~ I
I I
) Where: ~ is an unsigned integer constant or integer variable that I
] is cf length 4 and represents a data set reference number. I
l--J

The BACKSPACE statement causes the data set associated with a to back•
space one record. If the data set associated with ~ is already at its
beginning, execution of this statement has no effect. For further
information, see the FORTRAN IV programmers' guides listed in the
Preface.

There are four direct access input/output statements: READ, WRITE,
DEFINE FILE, and FIND. The READ and WRITE statements cause transfer of
data into or out cf internal storage. These statements allow the user
to specify the location within a data set fron: which data is to be read
or into which data is to be written.

The DEFINE FILE statement specifies the characteristics of the data
set(s) to be used during a direct access operation. The FIND statement
overlaps record retrieval from a direct access device with computation
in the program. In addition to these four statements, the FORMAT state
ment (described previously> specifies the form in which data is to be
transmitted. The direct access READ and WRITE statements and the FIND
statement are the only input/output statements that may refer to a data
set reference number defined by a DEFINE FILE statement.

Each record in a direct access data set has a unique record number
associated with it. The programmer must specify in the READ, WRITE, and
FIND statements net only the data set reference number, as for sequen
tial input/output statements, but also the number of the record to be
read, written, or found. Specifying the record number permits opera
tions to be performed on selected records of the data set, instead of on
records in their sequential order.

The number of the record physically following the one just processed
is made available to the program in an integer variable known as the
associated variable. Thus, if the associated variable is used in a READ
or WRITE statement to specify the record number, sequential processing
is automatically secured. The associated variable is specified in the
DEFINE FILE statement, which also gives the number, size, and type of
the records in the direct access data set.

DEFINE FILE STATEMENT

The DEFINE FILE statement describes the characteristics of any data
set to be used during a direct access input/output operation. To use
the direct access READ, WRITE, and FIND statements in a program, the
data set(s) must be described with a DEFINE FILE statement. Each data
set must be described once, and this description may appear once in each
program or subprogram. Subsequent descriptions have no effect.

62

The DEFINE FILE statement must logically precede (i.e., must be
"executed" prior to> any input/outpu-c statement referring to the data
set described in the DEFINE FILE statement.

r--1
I General Form I
~--~
I DEFINE FILE ~1<ill11E11f1rY1>r~2<ill21£21f2rY2>, ••• ,~n<illnr£nrfn1Yn> I
l I
I Where: ~ represents an integer constant that is the data set I
I reference number. I
I I
l ~ represents an integer constant that specifies the number I
] of records in the data set associated with a. I
I I
j r represents an integer constant that specifies the maximum I
I size of each record associated with a. The record size is I
I measured in characters (bytes>, storage locations (bytes>, I
] or storage units (words). (A storage unit is the number of I
I storage locations divided by four and rounded to the next I
I highest integer.) The method used to measure the record I
I size depends upon the specification for f. I
I I
I f specifies that the data set is to be read or written eith- I
I er with or without format control; f may be one of the fol- I
l lowing letters: I
I I
I L indicates that the data set is to be read or written I
J either with or without format control. The maximum record I
I size is measured in number of storage locations (bytes). I
I I
I E indicates that the data set is to be read or written I
l under format control (as specified by a format statement>. I
I The maximum record size is measured in number of charac- I
I ters (bytes>. I
I I
I U indicates that the data set is to be read or written I
I without format control. The maximum record size is mea- I
I sured in number of storage uni ts (words>. I
I I
I v represents a nonsubscripted integer variable called an I
I associated variable. At the conclusion Of each read or I
I write operation, v is set to a value that points to the rec- I
l ord that immediately follows the last record transmitted. I
I At the conclusion of a find operation, y is set to a value I
I that points to the record found. I
L--J

The associated variable cannot appear in the I/O list of a READ or
WRITE statement for a data set associated with the DEFINE FILE
statement.

DEFINE FILE 8(50,100,L,I2),9(100,50,L,J3)

This DEFINE FILE statement describes two data sets, referred to by
data set reference numbers 8 and 9. The data in the first data set con
sists of 50 records, each with a maximum length of 100 storage loca
tions. The L specifies that the data is to be transmitted either with
or without format control. I2 is the associated variable that serves as
a pointer to the next record.

Input/Output Statements 63

The data in the second data set consists of 100 records, each with a
maximum length of 50 storage locations. The L specifies that the data
is to be transmitted either with or without format control. J3 is the
associated variable that serves as a pointer to the next record.

If an E is substituted for the L in the preceding DEFINE FILE state
ment, a FORMAT statement is required and the data is transmitted under
format control. If the data is to be transmitted without format con
trol, the DEFINE FILE statement can be written as:

DEFINE FILE 8(50,25,U,I2),9(100,13,U,J3)

DIRFCT ACCESS PROGRAMMING CONSIDERATIONS

When p~ogramming for direct access input/output operations, the user
must establish a correspondence between FORTRAN records and the records
described by the ~EFINE FILE statement. All conventions of FORMAT con
trol discussed in the section "FORMAT Statement" are applicable.

For example, tc process the data set described by the statement:

DEFINE FILE 8(10,48,L,K8)

the FORMAT statement used to control the reading or writing could not
specify a record lcnger than 48 characters. The statements:

FORMAT(4F12.1) or
FORMAT(I12,9F4.2)

define a FORTRAN record that corresponds to those records described by
the DEFINE FILE statement. The records can also be transmitted under
FORMAT control by substituting an E for the L and rewriting the DEFINE
FILE statement as:

DEFINE FILE 8(10,48,E,K8)

To process a direct access data set without format control, the number
of storage locations specified for each record must be greater than
or equal to the maximum number of storage locations in a record to be
written by any WRITE statement referencing the data set. For example,
if the I/O list of the WRITE statement specifies transmission of the
contents of 100 storage locations, the DEFINE FILE statement can be
either:

DEFINE FILE 8(50,100,L,K8) or
DEFINE FILE 8{50,25,U,K8)

Programs may share an associated variable as a COMMON variable. The
following example shows how this can be accomplished.

COMMON IUAR
DEFINE FILE 8(100,10,L,IUAR)

I TEMP= I UAR
CALL SUBI(ANS,ARG)

8 IF (IUAR-ITEMP) 20,16,20

64

SUBROUTINE SUBI(A,B)
COMMON IUAR

In this example, the program and the subprogram share the associated
variable IUAR. An input/output operation that references data set 8 and
is performed in the subroutine causes the value of the associated vari
able to be changed. The associated variable is then tested in the main
program in statement 8.

READ STATEMENT

The READ staterrent causes data to be transferred from a direct access
device into internal storage. The data set being read must be defined
with a DEFINE FILE statement.

r--1
J General Form I
~--~
I READ (~'Er ~' ERR=Q) list I
l I
] Where: ~ is an integer constant or unsigned integer variable that I
l is of length 4 and represents a data set reference number; ~ I
J must be followed by an apostrophe (1). I
I l
I E is an integer expression that represents the relative I
J position of a record within the data set associated with a. I
I I
I I
I b is optional and, if given, is either the statement number I
I of the FORMAT statement that describes the data being read I
I or the name of an array that contains an object time f orITat.]
I I
I ERR=Q is optional and Q is the statement number to which I
I control is given when a device error condition is encoun- I
! tered during data transfer from device to storage. I
I I
I !!~t is optional and is an I/O list. I l __ J

The I/O list must not contain the associated variable defined in the
DEFINE FILE staterrent for data set ~·

Example:

DEFINE FILE 8(500,100,L,IDll,9(100,28,L,ID2l
DIMENSION MC10)

ID2 21

10 FORMAT (5120)
9 READ (8 1 16,10) (M(K),K=l,10)

13 READ C9'IL2+5) A,E,C,D,E,F,G

Input/Output Statements 65

READ statement 9 transmits data from the data set associated with
data set reference number 8, under control of FORMAT statement 10;
transmission begins with record 16. Ten data items of 20 characters
each are read as specified by the I/O list and FORMAT statement 10. Two
records are read to satisfy the I/O list, because each record contains
only five data items (100 characters). The associated variable ID1 is
set to a value of 18 at the conclusion of the operation.

READ statement 13 transmits data from the data set associated with
data set reference number 9, without format control; transmission begins
with record 26. Data is read until the I/O list for statement 13 is
satisfied. Because the DEFINE FILE statement for data set 9 specified
the record length as 28 storage locations, the I/O list of statement 13
calls for the same amount of data {the seven variables are type real and
each occupies four storage locations). The associated variable ID2 is
set to a value of 27 at the conclusion of the operation. If the value
of ID2 is unchanged, the next execution of statement 13 reads record 32.

The DEFINE FILE statement in the previous example can also be written
as:

DEFINE FILE 8(500,100,E,ID1),9(100,7,U 1 ID2>

The FORMAT statement may also control the point at which reading
starts. For example, if statement 10 in the example is

10 FORMAT (//5I20)

records 16 and 17 are skipped, record 18 is read, records 19 and 20 are
skipped, record 21 is read, and ID1 is set to a value of 22 at the con
clusion of the READ operation in statement 9.

WRITE STATEMENT

The WRITE statement causes data to be transferred f rcrr internal
storage to a direct access device. The data set being written must be
defined with a DEFINE FILE statement.

r--1
I General Form I
~--~
I WRITE {~'Lr~> list I
I I
I Where: ~ is an integer constant or unsigned integer variable that l
I is of length 4 and represents a data set reference number; l
I ~must be followed by an apostrophe <'). I
l I
I r is an integer expression that represents the relative I
I position of a record within the data set associated with a. I
I I
l I] R is optional and, if given, is either the statement number I
I of the FORMAT statement that describes the data being writ- I
] ten or the name of an array that contains an object time I
I format. I
I I
l list is optional and is an I/O list. I
L--J

66

Example:

DEFINE FILE 8(500,100,L,ID1),9(100,28,L,ID2)
DIMENSION M(10)

ID2=21

10 FORMAT (5I20)
8 WRITE (8'16,10) (M{K),K=l,10)

11 WRITE (9'I~2+5) A,E,C,D,E,F,G

WRITE statement 8 transmits data into the data set associated with
the data set reference number 8, under control of FORMAT statement 10;
transmission begins with record 16. Ten data items of 20 characters
each are written as specified by the I/O list and FORMAT statement 10.
Two records are written to satisfy the I/O list because each record con
tains 5 data items (100 characters). The associated variable IDl is set
to a value of 18 at the conclusion of the operation.

WRITE statement 11 transmits data into the data set associated with
data set reference number 9, without format control; transmission begins
with record 26. The contents of 28 storage locations are written as
specified by the I/O list for statement 11. The associated variable ID2
is set to a value of 27 at the conclusion of the operation. Note the
correspondence between the records described (28 storage locations per
record) and the number of items called for by the I/O list (7 variables,
type real, each occupying four storage locations>.

The DEFINE FILE statement in the example can also be written as:

DEFINE FILE 8(500,100,E,IDl), 9(100,7,U,ID2)

As with the READ statement, a FORMAT statement may also be used to
control the pcint at which writing begins.

FIND STATEMENT

The FIND statement causes the next input record to be found while the
present record is being processed, thereby increasing the execution
speed of the object program. The program has no access to the record
that was found until a READ statement for that record is executed.
(There is no advantage to having a FIND statement precede a WRITE
statement.)

r--1
J General Form I
~--1
I FIND (~'E> I
I I
I Where: ~ is an integer constant or unsigned integer variable that l
I is of length 4 and represents a data set reference number; ~ I
] must be followed by an apostrophe <'>. I
I I
I £ is an integer expression that represents the relative I
) position of a record within the data set associated with ~· I
l--j

Input/Output Statements 67

The data set on which the record is being found must be defined with a
DEFINE FILE statement

10 FIND (8'50)

15 READ (8 1 50) A,B

While the statements between statements 10 and 15 are executed, rec
ord 50, in the data set associated with data set reference number 8, is
found.

DEFINE FILE B{1000,72,L,ID8J
DIMENSION A(100) 1 B(100) 1 C(100) 1 D(100>,EC100),F(100)

15 FORMAT (6F12.4)
FIND (8 1 5)

ID8=1
DO 100 I=1,100
READ (8'ID8+4,15)A(I),B(I),C(I),D{I),E(I),F(I)

100 CONTINUE

DO 200 I=1,100
WRITE (8'ID8+4,15)A(I) 1 B(I),C{I),D(I) 1 E(I),F(I)

200 CONTINUE

END

The general exarrple illustrates the ability of direct access state
ments to gather and disperse data in an order designated by the user.
The first DO loop in the example fills arrays A through F with data from
the 5th, 10th, 15th, ••• , and 500th record associated with data set
reference number 8. Array A receives the first value in every fifth rec
ord, B the second value and so on, as specified by FORMAT statement 15
and the I/O list cf the READ statement. At the end of the READ opera
tion, each record has been dispersed into arrays A through F. At the
conclusion of the first DO loop, IDB has a value of 501.

The second DO loop in the example groups the data items from each
array, as specified by the I/O list of the WRITE statement and FORMAT
statement 15. Each group of data items is placed in the data set asso
.ciated with data set reference number 8. Writing begins at the 505th
record and continues at intervals of five, until record 1000 is written,
if IDB is not changed between the last READ and the first WRITE.

68

r--1
I General Form I
..--~ l DATA ~l/gl/,~2/g2/, ••• ,~nl£nl I
I I
I Where: Each ~ is a list containing variables, subscripted variables)
I (in which case the subscripts must be integer constants), or I
I array names. Dummy arguments may not appear in the list. I
I I
I Each d is a list of constants (integer, real, complex, hexa- I
I decimal, logical, or literal), any of which may be preceded I
I by i*. I
I I
I Each i is an unsigned integer constant. When the form i* I
I appears before a constant, it indicates that the constant is I
I to be specified i times. I
L--J

A DATA initialization statement is used to define initial values of
variables, array elements, and arrays. There must be a one-to-one
correspondence between the total number of elements specified or iffip1ied
by the list ~ and the total number of constants specified by the corres
ponding list ~ after application of any replication factors, ~·

This statement cannot precede any other specification statement that
refers to the same variables or arrays. It also cannot precede an
IMPLICIT statement. Otherwise, a DATA statement can appear anywhere in
the program.

Example 1:

DIMENSION D(5,10)
DATA A, E, C/5.0,6.1 1 7.3/,D,E/25*1.0,25*2.0,5.l/

The DATA staterrent indicates that the variables A, B, and C are to be
initialized to the values 5.0, 6.1, and 7.3 respectively. In addition,
the statement specifies that the first 25 variables in the array D are
to be initialized to the value 1.0, the remaining 25 variables in D to
the value 2.0, and the variable E to the value 5.1.

Data Initialization Statement 69

DIMENSION A(5), BC3,3), L(4)
DATA A/5*1.0/, B/9*2 01 1 L/4*.TRUE./ 1 C/ 1 FOUR 1 /

The DATA statement specifies that all the variables in the arrays A
and Bare to be initialized to the values 1.0 and 2.0, respectively.
All the logical variables in the array L are initialized to the value
.TRUE •• The letters T and F may be used as an abbreviation for .TRUE.
and .FALSE., respectively. In addition, the variable C is initialized
with the literal data constant FOUR.

An initially defined variable, or variable of an array, may not be in
blank common. In a labeled common block, they may be initially defined
only in a BLOCK DATA subprogram. (See the section "Subprograms.">

70

SPECIFICATION STATEMENTS

The specification statements provide the compiler with information
about the nature of the data used in the source program. In addition,
they supply the information required to allocate locations in storage
for this data.

Specification statements must precede statement function definitions,
which must precede the program part containing at least one executable
statement. Within the specification statements, any statement describ
ing data roust precede references to that data. In particular, the
IMPLICIT statement, if used, must be the first specification statement.

The specification statement EXTERNAL is described in the section
"Subprograms."

DIMENSION STATEMENT

r--1
I General Form I
~--~
I DIMENSION ~1<~1>1~2<~2>1 ~3(~3), ••• ,~n<~n> I
I I
I I
I I
I Where: E1 , E21 E3 , ••• , En are array names. I
I I
I k 1 , k 2 , k 3 , ••• ,kn are each composed of one through seven I
I iinsi~ned-intege~ constants, separated by commas, represent- I
I ing the maximum value of each subscript in the array. ~1 I
I through ~n may be integer variables of length 4 only when I
I the DIMENSION statement in which they appear is in a I
I subprogram. I
l __ J

The information necessary to allocate storage for arrays used in the
source program may be provided by the DIMENSION statement. The follow
ing examples illustrate how this information may be declared.

Examples:

DIMENSION A (10), ARRAY (5,5,5), LIST (10,100)
DIMENSION E(25,50),TABLECS,8,4)

TYPE STATEMENTS

There are two kinds of type statements: the IMPLICIT specification
statement, and the explicit specification statements <INTEGER, REAL,
COMPLEX, and LOGICAL).

The IMPLICIT statement enables the user to:

• Specify the type of a group of variables or arrays according to the
initial character of their names

Specification Statements 71

specify the amount of storage to be allocated for each variable
according to the associated type

The explicit specification statements enable the user to:

Specify the type of a variable or array according to its particular
name

• Specify the amount of storage to be allocated for each variable
according to the associated type

• Specify the dimensions of an array

• Assign initial data values for variables and arrays

The explicit specification statement overrides the IMPLICIT state
ment, which, in turn, overrides the predefined convention for specifying
type.

IMPLICIT STATEMENT

,--,
I General Form I
~--i
J IMPLICIT ~*~<~1r~2r•••>r•••r~*~<~1r~2r•••> I
I I
I Where: ~YE~ is one of the following: INTEGER, REAL, COMPLEX, or I
I LOGICAL. I
I I
I *2 is optional and represents one of the permissible length I
I specifications for its associated type. I
I I
I ! 1 r ! 2 , ••• are single alphabetic characters separated by]
I commas, or a range of characters drawn from the set A, B, I
I ••• z, $, in that order. The range is denoted by the first I
I and last characters of the range separated by a minus sign I
I (e.g., (A-D)). I
L--J

The IMPLICIT specification statement must be the first statement in a
main program and the second statement in a subprogram. There can be
only one IMPLICIT statement per program or subprogram. The IMPLICIT
specification statement enables the user to declare the type of the
variables appearing in his program <i.e., integer, real, complex, or
logical) by specifying that variables beginning with certain designated
letters are of a certain type. Furthermore, the IMPLICIT statement
allows the programmer to declare the number of locations (bytesl to be
allocated for each in the group of specified variables. The types that
a variable may assume, along with the permissible length specifications,
are as follows:

~ Length SE~£!f ic~~!2n
INTEGER 2 or 4 (standard length is 4)
REAL 4 or 8 (standard length is 4)
COMPLEX 8 or 16 (standard length is 8)
LOGICAL 1 or 4 (standard length is 4)

For each type there is a corresponding standard length specification.
If this standard length specification (for its associated type> is
desired, the *§ may be omitted in the IMPLICIT statement. That is, the

72

variables will assume the standard length specification. For each type
there is also a corresponding optional length specification. If this
optional length specification is desired, then the *£ must be included
within the IMPLICIT statement.

Example 1:

IMPLICIT REAL (A-H, 0-$>, INTEGER (I-N)

All variables beginning with the characters I through N are declared
as INTEGER. Since no length specification was explicitly given (i.e.,
the *s was omitted), four storage locations (the standard length for
INTEGER) are allocated for each variable.

All other variables (those beginning with the characters A through H,
o through z, and $) are declared as REAL with four storage locations
allocated for each.

Note that the statement in example 1 performs the sarne function of
typing variables as the predefined convention (see "Type Declaration by
the Predefined Specification").

Example 2:

IMPLICIT INTEGER*2(A-H>, REAL*8{I-Kl, LOGICAL{L,M,N)

All variables beginning with the characters A through H are declared
as integer with two storage locations allocated for each. All variables
beginning with the characters I through K are declared as real with
eight storage locations allocated for each. All variables beginning
with the characters L, M, and N are declared as logical with four loca
tions allocated for each.

Since the remaining letters of the alphabet, namely, 0 through Z and
$, are left undefined by the IMPLICIT statement, the predefined conven
tion will take effect. Thus, all variables beginning with the charac
ters o through z and $ are declared as real, each with a standard length
of four locations.

IMPLICIT COMPLEX*16(C-F)

All variables beginning with the characters c through F are declared
as complex, each with eight storage locations reserved for the real part
of the complex data and eight storage locations reserved for the
imaginary part. The types of the variables beginning with the charac
ters A, B, G through z, and $ are determined by the predefined
convention

Specification Statements 73

EXPLICIT SPECIFICATION STATEMENTS

r--1
I General Form I
~--i
I TY~*2 ~*21<~1)/~1/1£*22<~2)/~2/1°•·1~*2n<~n)/~n/
I
I Where:
I
I
I
I
I
I
I
I
l
I
I
l
I
I
I
I
l

~ is INTEGER, REAL, LOGICAL, or COMPLEX.

*2•*21 1*221 ••• 1 *2n are optional. Each 2 represents one of
the permissible length specifications for its associated

~-

~,£, ... ,~are variable, array, or function names (see the
section "Subprograms">

(~1),{~2), ••• , C~n> are optional and give dimension informa
tion for arrays. Each ~ is composed of one through seven
unsigned integer constants, separated by commas, represent
ing the maximum value of each subscript in the array. Each
~ may be an unsigned integer variable of length 4 only when
the type statement in which it appears is in a subprogram.

/~1/ 1 /~2/ 1 ••• ,/~n/ are optional and represent initial data
values.

L--J
The explicit specification statements declare the typ~ (INTEGER,

REAL, COMPLEX, or LOGICAL) of a particular variable or array by its
name, rather than by its initial character. This differs from the other
ways of specifying the type of a variable or array <i.e., predefined
convention and the IMPLICIT statement>. In addition, the information
necessary to allocate storage for arrays (dimension information> may be
included within the statement.

Initial data values may be assigned to variables or arrays by use of
/~n/ where ~n is a constant or list of constants separated by commas.
Lists of constants are used only to assign initial values to array ele
ments. £ successive occurrences of the same constant can be represented
by the form £*constant. If initial data values are assigned to an array
in an explicit specification statement, the dimension information for
the array must be in the explicit specification statement or in a pre
ceding DIMENSION or COMMON statement. An initial data value may not be
assigned to a function name.

Initial data values cannot be assigned to variables or arrays in
blank common. The BLOCK DATA subprogram must be used to assign initial
values to variables and arrays in labeled common.

In the same manner in which the IMPLICIT statement overrides the pre
defined convention, the explicit specification statements override the
IMPLICIT statement and predefined convention. If the length specifica
tion is omitted Ci.e.,*2>, the standard length per type is assumed.

~~!!l-ple_!:

INTEGER*2 ITEM/76/, VALUE

Explanation:

This statement declares that the variables ITEM and VALUE are of type
integer, each with two storage locations reserved. In addition, the
variable ITEM is initialized to the value 76.

74

Example 2:

COMPLEX C,D/{2.1,4.7)/,E*16

_g~p1~!!~!.i2!!=

This statement declares that the variables c, D, and E are of type
complex. Since no length specification was explicitly given, the stan
dard length is assumed. Thus, c and D each have eight storage locations
reserved (four for the real part, four for the imaginary part) and D is
initialized to the value (2.1,4.7). In addition, 16 storage locations
are reserved for the variable E. Thus, if a length specification is
explicitly written, it overrides the assumed standard length.

g~~mple~:

REAL*8 BAKER, HOLD, VALUE*4, ITEMCS,5)

Explanation:

This statement declares that the variables BAKER, HOLD, VALUE, and
the array named ITEM are of type real. In addition, it declares the
size of the array ITEM. The variables BAKER and HOLD have eight storage
locations reserved for each; the variable VALUE has four storage loca
tions reserved; and the array named ITEM has 200 storage locations
reserved (eight for each variable in the array). Note that when the
length is associated with the type (e.g., REAL*8>, the length applies to
each variable in the statement unless explicitly overridden (as in the
case of VALUE*4>.

Example 4:

REAL A(5,5)/20*6.9E2,5*1.0/, B(100)/100*0.0/,TEST*8(5)/5*0.0/

This staterrent declares the size of each array, A and B, and their
type (real). The array A has 100 storage locations reserved (four for
each variable in the array) and the array B has 400 storage locations
reserved (four for each variable>. In addition, the first 20 variables
in the array A are initialized to the value 6.9E2 and the last five
variables are initialized to the value 1.0. All 100 variables in the
array Bare initialized to the value 0.0. The array TEST has 40 storage
locations reserved (eight for each variable>. In addition, each vari
able is initialized to the value 0.0.

DOUBLE PRECISION STATEMENT

.---,
] General Form I
~--------~--~
J DOUBLE PRECISION ~(~1 >,£<~2>, ••• ,~<~n> I
I I
I Where: ~,g, ••• ,~ represent variable, array, or function names (see I
I the section "Subprograms">. I
I I
I Ct1>,<t2>r •• , <tn> are optional. Each tis composed of one I
I through seven unsigned integer constants, separated by com- l
! mas, that represent the maximum value of each subscript in I
I the array. I
L--J

Specification Statements 75

The DOUBLE PRECISION statement explicitly specifies that the vari
ables ~rE•£•··· are of type double precision. This statement overrides
any specification of a variable made by either the predefined convention
or the IMPLICIT statement. This specificaticn is identical to that of
type REAL*8. This statement cannot be used to define initial data
values

In addition, FUNCTION subprograms may be typed double precision as
follows:

DOUBLE PRECISION FUNCTION name (£1 ,~2,£3, ••• ,~n>

COMMON STATEMENT

r--1
I General Form I
~--~
I COMMON /£/~ <~1>1E<~2>, ••• /£/£(~3),Q(~ >,... I
I I
I Where: a,b, ••• ,c,a ••• are variable names or array narnes that can- I
l not be aummy arguments. I
I I
I ~1 ,~ 2 , ••• ~ 3 ,~ ••• are optional and are each composed of one I
I through seven unsigned integer constants, separated by com- I
l mas, representing the maximum value of each subscript in the I
I array. I
l I
) /£/••• represent optional common block names consisting of !
I one through six alpharneric characters, the first of which is I
I alphabetic. These names must always be embedded in slashes. I
L--J

The COMMON statement is used to define a storage area that can be
referred to by a calling program and one or more subprograms, and to
specify the names of variables and arrays to be placed in this area.
Therefore, variables or arrays that appear in a calling program or sub
program can be made to share the same storage locations with variables
or arrays in other subprograms. Also, a common area can be used to
implicitly transfer arguments between a calling program and a subpro
gram. Arguments passed in common are subject to the same rules with
regard to type, length, etc., as arguments passed in an argument list
(see the section "Subprograms">.

If more than one COMMON statement appears in a calling program or
subprogram, the entries in the statements are cumulative. Redundant
entries are not permitted.

Although the entries in a CO~MON statement can contain dimension
information, object-time dimensions may never be used.

The length of a common area can be increased by using an EQUIVALENCE
statement.

Since the entries in a common area share storage locations, the order
in which they are entered is significant. Ccnsider the following
example:

76


~~~!!!El~= 

Cal!!!!9_R!:29~!!: 

COMMON A, B, C, R(100) 
REAL A,B,C 
INTEGER R 

CALL MAPMY C ••• ) 

SUEROU'IINE MAPMY C ••• ) 

COMMON X, Y, Z, S(100) 
REAL X,Y,Z 
INTEGER S 

In the calling program, the statement COMMON A,B,C,R(100) would cause 
412 storage locations (four locations per variable) to be reserved in 
the following order: 

r--------------------------------------------------1 
Beginning ! A B c I Layout of 
of comroon I 4 locations 4 locations 4 locations I storage 
area I I 

~--------------------------------------------------~ I R(l) RC100) I 
l 4 locations 4 locations I 
l--------------------------------------------------J 

The statement COMMON X, Y, z, S{100) would then cause the variables 
x, Y, z, and SC1> ••• S{100) to share the same storage space as A, B, c, 
and R(1) ••• RC100), respectively. Note that values for x, Y, z, and S(l) 
••• sC100l, because they occupy the same storage locations as A, B, c, 
and RC1) ••• RC100), do not have to be transmitted in the argument list of 
a CALL statement. 

BLANK AND LAEELED COMMON 

In the preceding example, the common storage area (common block) is 
called a blank common area. That is, no particular name was given to 
that area of storage. The variables that appeared in the COMMON state
ments were assigned locations relative to the beginning of this blank 
common area. However, variables and arrays may be placed in separate 
common areas. Each of these separate areas (or blocks) is given a name 
consisting of one through six alphameric characters Cthe first of which 
is alphabetic>; those blocks which have the same name occupy the same 
storage space. This permits a calling program to share one common block 
with one subprogram and another common block with another subprogram and 
also facilitates program documentation. 

Those variables that are to be placed in labeled {or named> common 
are preceded by a common block name enclosed in slashes. For example, 
the variables A,B, and c will be placed in the labeled common area, 
HOLD, by the following statement: 

COMMON/HOLD/A,E,C 

In a COMMON statement, blank common may be distinguished from labeled 
common by preceding the variables in blank common by two consecutive 
slashes or, if the variables appear at the beginning of the COMMON 
statement, by omitting any block name. For example, in the following 
statement: 

Specification Statements 77 



COMMON A, B, C /ITEMS/ X, Y, Z / / D, E, F 

the variables A, B, c, D, E, and F will be placed in blank common in 
that order; the variables x, Y, and Z will be placed in the common area 
labeled ITEMS. 

Blank and labeled common entries appearing in COMMON statements are 
cumulative throughout the program. For example, consider the following 
two COMMON statements: 

COMMON A, B, C /R/ D, E /S/ F 
COMMON G, H /S/ I, J /R/P//W 

These two statements have the same effect as the single statement: 

COMMON A, B, C, G, H, W /R/ D, E, P /S/ F, I, J 

Assume that A, B, c, K, x, and Y each occupy four locations of 
storage, H and G each occupy eight locations, and D and E each occupy 
two locations. 

SUBROUTINE MAPMY( ••• ) 

COMMON H, A /R/ X, D // B 
COMMON G, Y, C /R/ K, E 

CALL MAPMYC ••• ) 

Explanation: 

In the calling program, the statement COMMON H, A /R/ x, D //B causes 
16 locations (four locations each for A and B, and eight for H) to be 
reserved in blank common in the following order: 

Beginning 
of blank 
common 

r------------------------------------------------------------1 
I H A B I 
I 8 locations 4 locations 4 locations I 
I I 
~------------------------------------------------------------~ 
I I 
I continuation of blank common I 
I I 
l------------------------------------------------------------J 

and also causes six locations (four for X, and two for D) to be reserved 
in the labeled common area R in the following order: 

r------------------------------------------------------------1 
Beginning I X D I 
of labeled! 4 locations 2 locations I 
common R I I 

~------------------------------------------------------------~ 
I I 
I continuation of labeled common I 
I I l ____________________________________________________________ J 

78 



The statement COMMON G,Y,C/R/K,E appearing in the subprogram MAPMY 
would then cause the variables G, Y, and c to share the same storage 
space Cin blank common) as H, A, and B, respectively. It would also 
cause the variables K and E to share the same storage space (in labeled 
common area R) as X and D, respectively. 

ARRANGEMENT OF VARIABLES IN COMMON 

Variables in a common block need not be aligned properly. However, 
considerable object-time efficiency is lost unless the programmer 
ensures that all of the variables have proper boundary alignment. 

Proper alignment is achieved either by arranging the variables in a 
fixed descending order according to length, or by constructing the block 
so that dummy variables force proper alignment. If the fixed order is 
used, the variables must appear in the following order: 

length of 16 (complex) 
length of 8 (complex or real> 
length Of 4 Creal or integer or logical) 
length of 2 (integer) 
length of 1 (logical) 

If the fixed order is not used, proper alignment can be ensured by 
constructing the block so that the displacement of each variable can be 
evenly divided by the reference number associated with the variable. 
(Displacement is the number of storage locations Cbytesl from the begin
ning of the block to the first storage location of the variable.) The 
following list shows the reference number for each type of variable: 

Type of Length Reference 
Variable Specification Number 

---~-~-

Logical 1 1 
4 4 

Integer 2 2 
4 4 

Real 4 4 
8 8 

Complex 8 8 
16 8 

The first variable in every common block is positioned as though its 
length specification were eight. Therefore, a variable of any length 
may be the first assigned within a block. To obtain the proper align
ment for other variables in the same block, it may be necessary to add a 
dummy variable to the block. For example, the variables A, I, and CMPLX 
are REAL*4, INTEGER*4, and COMPLEX*B, respectively, and form a COMMON 
block that is defined as: 

COMMON A, I, CMPLX 

Then, the displacement of these variables within the block is illus
trated as follows: 

Specification Statements 79 



l<--------A--------->l<-------I---------->j<-------CMPLX-----------> 
I 4 storage I 4 storage J 8 storage 
I locations I locations l locations 
I I l 
v 
displacement 
0 storage 
locations 

v 
displacement 
4 storage 
locations 

v 
displacement 
8 storage 
locations 

The displacements of I and CMPLX are evenly divisible by their reference 
numbers. However, if I were an integer with a length specification of 
2, then CMPLX is not properly aligned Cits displacement of 6 is not 
evenly divisible by its reference number of 8). In this case, proper 
alignment is ensured by inserting a dummy variable with.a length speci
fication of 2 either between A and I, or between I and CMPLX. 

EQUIVALENCE STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
r-----------------------------------------------------~----------------~ 
1 EQUIVALENCE c~, _t, ~' ••• >, <9, ~' .f, ••• > I 
I I 
I Where: a, b, c, d, e, f,... are variables (not dummy arguments) I 
I that may be subscripted. The subscripts may have two forms: I 
I If the variable is singly subscripted, it refers to the I 
I position of the variable in the array (i.e., first variable, I 
I 25th variable, etc.). If the variable is multi-subscripted, I 
I it refers to the position in the array in the same fashion I 
I as the position is referred to in an arithmetic statement. I 
L----------------------------------------------------------------------J 

The EQUIVALENCE statement provides the option for controlling the 
allocation of data storage within a single program unit. In particular, 
when the logic of the program permits it, the number of storage loca
tions used can be reduced by causing locations to be shared by two or 
more variables of the same or different types. Equivalence between 
variables implies storage sharing only, not mathematical equivalence. 

Since arrays are stored in a predetermined order <see "Arrangement of 
Arrays in Storage"), equivalencing two elements of two different arrays 
may implicitly equivalence other elements of the two arrays. The 
EQUIVALENCE statement must not contradict itself or any previously esta
blished equivalences. 

Two variables in one common block or in two different common blocks 
cannot be made equivalent. However, a variable in a program or a sub
program can be made equivalent to a variable in a common block. If the 
variable that is equivalenced to a variable in the common block is an 
element of an array, the implicit equivalencing of the rest of the ele
ments of the array may extend the size of the common block (see example 
2). The size of the common block must not be extended so that elements 
are added before the beginning of the established common block. 

Assume that in the initial part of a program, an array c of size 
100x100 is needed; in the final stages of the program C is no longer 
used, but arrays A and B of sizes 50x50 and 100, respectively, are used. 
The elements of all three arrays are of the type REAL*4. Storage space 
can then be saved by using the statements: 

80 



DIMENSION C(l00,100), A(50,50), B(100) 
EQUIVALENCE (C(l), A(1)) 1 (C(2501), B(l)) 

The array A, which has 2500 elements, can occupy the same storage as 
the first 2500 elements of array c since the arrays are not both needed 
at the same time. Similarly, the array B can be made to share storage 
with elements 2501 to 2600 of array c. 

Example 2: 

DIMENSION B(5) 1 C(lO, 10), DC5, 10, 15) 
EQUIVALENCE CA, B(l), CC5,3)), CDC5,10,2>, E) 

This EQUIVALENCE statement specifies that the variables A, BC1>, and 
CC5,3) are assigned the same storage locations and that variables D(5, 
10,2) and E are assigned the same storage locations. It also implies 
that BC2) and CC6,3), etc., are assigned the same storage locations. 
Note that further equivalence specification of B(2) with any element of 
array c other than C(6 1 3) is invalid. 

The designations CC5,3) and DC5,10,2) could have been replaced with 
the designations CC25) and DC100) and the effect would have been the 
same. 

Example 3: 

COMMON A, B, C 
DIMENSION D(3) 
EQUIVALENCE (B,D(l)) 

This would cause a common area to be established containing the vari
ables A, B, and c. The EQUIVALENCE statement would then cause the vari
able D(l) to share the same storage location as B, D(2) to share the 
same storage location as c, and D{3) would extend the size of the common 
area, in the following manner: 

A <lowest location of the common area) 
B, D(l) 
C, D<2) 

D(3) (highest location of the common area) 

The following EQUIVALENCE statement is invalid: 

COMMON A, B, C 
DIMENSION D ( 3) 
EQUIVALENCE CB, 0(3)) 

because it would force D(l) to precede A, as follows: 

D(l) 
A, D(2) 
B, D(3) 
c 

(lowest location of the common area) 

(highest location of the common area) 

Specification Statements 81 



STORAGE ARRANGEMENT OF VARIABLES IN EQUIVALENCE GROUPS 

Variables in an equivalence group may be in any order in main 
storage. However, considerable object-time efficiency is lost unless 
the programmer ensures that all of the variables have proper boundary 
alignment. 

Proper alignment is achieved either by arranging the variables in a 
fixed, descending order according to length, or by constructing the 
group so that dummy variables force proper alignment. If the fixed 
order is used, the variables must appear in the following order: 

length of 16 (complex) 
length of 8 (complex or real> 
length of 4 (real or integer or logical) 
length of 2 (integer> 
length of 1 <logical) 

If the fixed order is not used, proper alignment can be ensured by 
constructing the group so that the displacement of each variable in the 
group can be evenly divided by the reference number associated with the 
variable. (Displacement is the number of storage locations (bytes> from 
the beginning of the group to the first storage location of the vari
able.) The reference numbers for each type of variable are given in the 
section "COMMON Statement." The first variable in each group is posi
tioned as if its length specification were eight. 

For example, the variables A, I, and CMPLX are REAL*4, INTEGER*4, and 
COMPLEX*8, respectively, and are defined as: 

DIMENSION A(10), IC16), CMPLX(5) 
EQUIVALENCE (A(1) 1 !(7) 1 CMPLXC1)) 

Then, the displacement of these variables within the group is illus
trated as follows: 

!(1)<----------1 ------------------64 storage locations-------->IC16) 
I 

v 
displacement 
0 storage 
locations 

I A(l)<------------40 storage locations-------->AC10) 
I 
I CMPLX(l)<--------40 storage locations----->CMPLX(S) 
I 
v 
displacement 
24 storage 
locations 

The displacements of A and CMPLX are evenly divisible by their reference 
numbers. However, if the EQUIVALENCE statement were written as 

EQUIVALENCE (A(1), IC6), CMPLX(1)) 

then CMPLX is not properly aligned Cits displacement of 20 is not evenly 
divisible by its reference number of 8). 

Note that this discussion applies solely to the manner in which the 
equivalence group is arranged in storage This arrangement is not 
affected by the order in which the variable and array names are listed 
in the EQUIVALENCE statement For example, the statement EQUIVALENCE 
(A(1),I(7),CMPLX(1)) has exactly the same effect as EQUIVALENCE 
(CMPLX(1J,A(1),I(7)). 

82 



SUBPROGRAMS 

It is sometimes desirable to write a program which, at various 
points, requires the same computation to be performed with different 
data for each calculation. It would simplify the writing of that pro
gram if the statements required to perform the desired computation could 
be written only once and then could be referred to freely,, with each 
subsequent reference having the same effect as though these instructions 
were written at the point in the program where the reference was made. 

For example, to take the cube root of a number, a program must be 
written with this object in mind. If a general program were written to 
take the cube root of any number, it would be desirable to be able to 
combine that program (or subprogram> with other programs where cube root 
calculati~ns are required. 

The FORTRAN language provides for the above situation through the use 
of subpro~rams. There are two classes of subprograms: FUNCTION subpro
grams and SUBROUTINE subprograms. In addition, there is a group of 
FORTRAN supplied subprograms (see Appendix c>. Functions differ from 
SUBROUTINE subprograms in that they return at least one value to the 
calling program, whereas SUBROUTINE subprograms need not return any. 

Statement functions are also discussed in this section since they are 
similar to FUNCTION subprograms. The difference is that subprograms are 
not in the same program unit as the program unit referring to them, 
while statement function definitions and references are in the same pro
gram unit. 

NAMING SUBPROGRAMS 

A subp~ogram name consists of from one through six alphameric charac
ters, the first of which must be alphabetic. A subprogram name may not 
contain special characters <see Appendix A). The type of a function 
determines the type of the result that can be returned from it. 

• .'!YE~ Dec12~ation~!_2_§E2te~~~~-!~~£Eio~: such declaration may be 
accomplished in one of three ways: by the predefined convention, by 
the IMPLICIT statement, or by the explicit specification statements. 
Thus, the rules for declaring the type of variables apply to state
ment functions. 

• Type Declaration of FUNCTION Subprograms: The declaration may be 
made by the predefined convention, by the IMPLICIT statement, by an 
explicit specification in the FUNCTION statement, or by an explicit 
specification statement within the FUNCTION subprogram. 

The type of a SUBROUTINE subprogram cannot be defined because the 
results that are returned to the calling program are dependent only on 
the type of the variable names appearing in the argument list of the 
calling program and/or the implicit arguments in common. 

Subprograms 83 



FUNCTIONS 

A function is a statement of the relationship between a number of 
variables To use a function in FORTRAN, it is necessary to: 

1. Define the function Ci.e , specify which calculations are to be 
performed) 

2. Refer to the function by name where required in the program 

There are three steps in the definition of a function in FORTRAN: 

1. The function must be assigned a unique name by which it may be 
called Csee the section "Naming Subprogram.s") 

2. The dummy arguments of the function must be stated 

3. The procedure for evaluating the function must be stated 

Items 2 and 3 are discussed in detail in the sections dealing with 
the specific subprogram (e.g., "Statement Functions," "FUNCTION subpro
grams," etc.>. 

Function Reference 

When the name of a function, followed by a list of its arguments, 
appears in any FORTRAN expression, it references the function and causes 
the computations to be performed as indicated by the function defini
tion. The resulting quantity replaces the function reference in the 
expression, and assumes the type of the function. The type of the name 
used for the reference must agree with the type of the name used in the 
definition. 

STATEMENT FUNCTIONS 

A statement function definition specifies operations to be performed 
whenever that statement function name appears as a function reference in 
another statement in the same program unit. 

r----------------------------------------------------------------------1 
IGeneral Form I 
~----------------------------------------------------------------------~ 
l~<~1r~2r~3r•••r2n> =expression I 
I I 
!Where: name is the statement function name Csee the section "Naming! 
I subprograms"> • I 
I I 
I 21r22r~3r•••r2n are dummy arguments. They must be unique I 
I <within the statement) nonsubscripted variables. J 
I I 
I ~~p~~~!2n is any arithmetic or logical expression that does! 
~ not contain subscripted variables Any statement function I 
~ appearing in this expression must have been defined I 
I previously. I 
L----------------------------------------------------------------------J 

84 



The expression to the right of the equal sign defines the operations 
to be performed when a reference to this function appears in an assign
ment statement. The expression defining the function must not contain a 
reference to the function. 

The dummy arguments enclosed in parentheses following the function 
name are dummy variables for which the arguments given in the function 
reference are substituted when the function reference is encountered. 
The same dummy arguments may be used in more than one statement function 
definition, and may be used as variables outside the statement function 
definitions. An actual argument in a statement function reference may 
be any expression of the same type as the corresponding dummy argument. 

All statement function definitions to be used in a program must pre
cede the first executable statement of the program. 

Examp}e: The statement: 

FUNC(A,B) = 3.*A+B**2.+X+Y+Z 

defines the statement function FUNC, where FUNC is the function name and 
A and B are the dummy arguments. The expression to the right of the 
equal sign defines the operations to be performed when the function 
reference appears in an arithmetic statement. 

The function reference might appear in a statement as follows: 

C = FUNC(D,E) 

This is equivalent to: 

C = 3.*D+E**2.+X+Y+Z 

Note the correspondence between the dummy arguments A and B in the f unc
tion definition and the actual arguments D and E in the function 
reference. 

Examples: 

Valid statement 
references: 

function definitions and statement function 

Definition 

~UM(A,B,C,D) = A+B+C+D 
FUNC(Z) = A+X*Y*Z 
VALID (A, B) = • NOT. A • OR. B 

Reference 

NET GROS-SUM(TAX,FICA,HOSP,STOCK) 
ANS = FUNC(RESULT) 
VAL = TEST .OR. VALIDCD,E> 
BIGSUM = SUM(A,B,SUM(C,D,E,F) ,G) 

Invalid statement function £~!i~ili2~2~ 

SUBPRG(3,J,K)=3*I+J**3 
SOMEF(A(I),B)=A(I)/B+3. 
SUBPROGRAM{A,E)=A**2+B**2 

3FUNC(D)=3 14*E 

ASF(Al=A+E(I) 

BAD(A,B)=A+B+EAD(C,D) 

(Arguments must be variables) 
(Arguments must be nonsubscripted> 
(Function name exceeds limit of six 

characters> 
(Function name must begin with an 

alphabetic character> 
(Subscripted variable in the expres

sion> 
(Recursive definition not permitted) 

Subprograms 85 



Form C28-6515-7 
Page revised 3/3/69 by TNL N28-0251 

Invalid statement function ~~f~~~~~ (the functions are defined 
as-above): 

WRONG= SUM(TAX,FICA) 
I 

MIX' ~. '.~.UNC (I) 

(Number of arguments does not agree 
with above definition) 

(Type of argument does not agree with 
above definition) 

FUNCTION SUBPROGRAMS 

The FUNCrION subprogram is a FORrRAN subprogram consisting of a 
FUNCTION statement followed by other statements including at least one 
RErURN statement. It is an independently written program that is 
executed wherever its name is referenced in another program. 

r----------------------------------------------------------------------1 I General Form I 
~----------------------------------------------------------------------i 
I !~e~ FUNCTION ~emg*~ <e11e21~3•···•en> I 
I I 
I Where: !~eg is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or L03IC- I 
I AL. Its inclusion is optional. I 
I I 
I ~!!!~ is the name of the FUNCTION. I 
I I 
I *2 represents one of the permissible length specifications I 
I for its associated type. It may be included optionally only I 
I when '.!Yeg is specified. It must not be used when DOUBLE I 
I PRECISION is specified. I 
I I 
I ~11e21e31•••1en are dummy arguments. They must be nonsub- I 
I scripted variable, array, or dummy names of SUBR~UTINE or I 
I other FUNCTION subprograms. (There must be at least one I 
I argument in the argument list.) I 
L----------------------------------------------------------------------J 

A type declaration for a function name may be made by the predefined 
convention, by an IMPLICIT statement, by an explicit specification in 
the FUNCTION statement, or by an explicit specification statement within 
the FUNCTION subprogram. 

A type declaration in the FUNCTION statement overrides any type 
declaration by an explicit specification statement within the FUNCrION 
subprogram. The function must also be typed in the calling program, if 
the predefined convention is not used. 

Since the FUNCTION is a separate subprogram, the variables and state
ment numbers within it do not relate to any other program. 

The FUNCTION statement must be the first statement in the subprogram. 
The FUNCTION subprogram may contain any FORrRAN statement except a 
SUBROUTINE statement, another FUNCTION statement, or a BLOCK DATA state
ment. If an IMPLICIT statement is used in a FUNCTION subprogram, it 
must immediately follow the FUNCTION statement. 

The name of the function must be assigned a value at least once in 
the subprogram -- either as the variable name to the left of the equal 
sign in an assignment statement, as an argument of a CALL statement, or 
in an input list (READ statement) within the subprogram. 

86 



The dummy arguments of the FUNCTION subprogram 
<i.e., a 1 ,a2 ,a 3 , •• ,an> may be considered to be dummy variable names. 
These are replaced at the time of execution by the actual arguments sup
plied in the function reference in the calling program Additional 
information about arguments is in the section "Arguments in a FUNCTION 
or SUBROUTINE Subprogram." 

The relationship between variable names used as arguments in the cal
ling program and the dummy variables used as arguments in the FUNCTION 
subprogram is illustrated in the following example: 

ANS ROOTl*CALCCX,Y,I) 

Explanation: 

FUNCTION CALC CA,B,J) 

CALC = A**I/B 

RETURN 
END 

In this example, the values of x, Y, and I are used in the FUNCTION 
subprogram as the values of A, B, and J, respectively. The value of 
CALC is computed, and this value is returned to the calling program 
where the value of ANS is computed. The variable I in the argument list 
of CALC in the calling program is not the same as the variable I 
appearing in the subprogram. 

Example 2: 

Calling Program 

INTEGER*2 CALC 

ANS=ROOTl*CALC{N,M,P) 

Explanation: 

FUNCTION Subprogram 

INTEGER FUNCTION CALC*2(I,J,K) 

CALC 

RE'IURN 
END 

I+J+K**2 

The FUNCTION subprogram CALC is declared as type INTEGER of length 2. 

Subprograms 87 



RETURN and END Statements in a FUNCTION Subprogram 

All FUNCTION subprograms must contain an END statement and at least 
one RETURN statement. The END statement specifies, for the compiler, 
the end of the subprogram: the RETURN statement signifies a logical con
clusion of the computation and returns the computed value and control to 
the calling program. There may be more than one RETURN statement in a 
FORTRAN subprogram. 

FUNCTION DAV (D,E,F) 
IF (0-E) 10, 20, 30 

10 A = D+2.0*E 

5 A = F+2.0*E 

20 DAV = A+E**2 

RETURN 
30 DAV = E**2 

RETURN 
END 

SUBROUTINE SUBPROGRAMS 

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in 
many respects. The rules for naming FUNCTION and SUBROUTINE subprograms 
are similar. They both require an END statement, and they both contain 
the same sort of dummy arguments. Like the FUNCTION subprogram, the 
SUBROUTINE subprogram is a set of commonly used computations, but it 
need not return any results to the calling program, as does the FUNCTION 
subprogram. 

The SUBROUTINE subprogram is referenced by the CALL statement, which 
consists of the word CALL followed by the name of the subprogram and its 
parenthesized arguments. 

88 



r----------------------------------------------------------------------1 I General Form I 
~----------------------------------------------------------------------~ 
SUBROUTINE~ (~11~2,~3, •·•~n> 

RETURN 

END 

Where: name is the SUBROUTINE name (see the section "Naming 
Subprograms">. 

~1 ,~2.~3, ••• ,~n are dummy arguments. (There need not be 
any.) Each argument used must be a nonsubscripted variable 
or array name, the dummy name of another SUBROUTINE or 
FUNCTION subprogram, or of the form * where the character 
"*" denotes a return point specified by a statement number 

J in the calling program. 
l----------------------------------------------------------------------

Since the SUBROUTINE is a separate program, the variables and state
ment numbers within it do not relate to any other program. 

The SUBROUTINE statement must be the first statement in the subpro
gram. The SUBROUTINE subprogram may contain any FORTRAN statement 
except a FUNCTION statement, another SUBROUTINE statement, or a BLOCK 
DATA statement. If an IMPLICIT statement is used in a SUBROUTINE sub
program, it must irrmediately follow the SUBROUTINE statement. 

The SUBROUTINE subprogram may use one or more of its arguments to 
return values to the calling program. Any arguments so used must appear 
to the left of an arithmetic statement in an input list within the sub
program, as arguments of a CALL statement, or as arguments in a function 
reference. The SUBROUTINE name must not appear in any other statement 
in the SUBROUTINE subprogram. 

The dummy arguments <~11 ~21 ~3 , ••• ,~n> may be considered dummy vari
able names that are replaced at the time of execution by the actual 
arguments supplied in the CALL statement. Additional information about 
dummy arguments is in the section "Arguments in a FUNCTION or SUBROUTINE 
Subprogram." 

Example: The relationship between variable names used as arguments in 
the calling program and the dummy variable used as arguments in the SUB
ROUTINE subprogram is illustrated in the following example. The object 
of the subprogram is to "copy" one array directly into another. 

Calling Program 

DIMENSION X(100),Y(100) 

K = 100 
CALL COPY (X,Y,K) 

SUBROUTINE Subprogram 

SUBROUTINE COPY(A 1 B,N) 
DIMENSION A (100),B(100) 
DO 10 I = 1, N 

10 B(I) = A (I) 
RETURN 
END 

subprograms 89 



The CALL statereent is used to call a SUBROUTINE subprogram. 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------i 
I CALL~ <~1,~2r~3••••r~n> I 
I I 
I I 
I Where: ~ is the name of a SUBROUTINE subprogram. I 
I I 
I I 
I a 1 ,a2,a3 , ••• ,an are the actual arguments that are being sup- I 
I plied to the SUBROUTINE subprogram. Each may be of the form I 
) &n where ~ is a statement number <see "RETURN Statements in I 
I a SUBROUTINE Subprogram">. I 
l----------------------------------------------------------------------J 

Examples: 

CALL OUT 
CALL MATMPY cx,5,40,Y,7,2) 
CALL QDRTIC (X,Y,Z,ROOT1,ROOT2) 
CALL SUBl(X+Y*5,ABDF,SINE) 

The CALL statement transfers control to the SUBROUTINE subprogram, 
and replaces the dummy variables with the value of the actual arguments 
that appear in the CALL statement. 

RETURN Statements in a SUBROUTINE Subprogram 

r----------------------------------------------------------------------1 
I General Form I 
~---------------------------------------------------------------------~ 
I RETURN I 
I I 
I RETURN i I 
I I 
I Where: ! is an integer constant or variable of length 4 whose I 
I value, say n, denotes the nth statement number in the argu- I 
I ment list of a SUBROUTINE statement; ! may be specified only I 
I in a SUBROUTINE subprogram. I 
l----------------------------------------------------------------------J 

The normal sequence of execution following the RETURN statement of a 
SUBROUTINE subprogram is to the next statement following the CALL in the 
calling program. It is also possible to return to any numbered state
ment in the calling program by using a return of the type RETURN i· 
Returns of the type RETURN may be made in either a SUBROUTINE or 
FUNCTION subprogram (see "RETURN and END Statements in a FUNCTION Sub~ 
program"). Returns of the type RETURN i may only be made in a 
SUBROUTINE subprogram. In a main program, a RETURN statement performs 
the same function as a STOP statement 

90 



Example: 

Calling Program 

10 CALL SUB (A,B,C,&30,&40) 
20 Y = A + B 

30 Y = A + C 

40 Y = B + C 

END 

100 
200 
300 
400 

Subprogram 

SUBROUTINE SUB (X,Y,Z 1 *,*l 

IF (M) 200,300,400 
RETURN 
RETURN 1 
RETURN 2 
END 

In the preceding example, execution of statement 10 in the calling 
program causes entry into subprogram SUB. When statement 100 is 
executed, the return to the calling program will be to statement 20, 30, 
or 40, if M is less than, equal to, or greater than zero, respectively. 

A CALL statement that uses a RETURN ~ form may be best understood by 
comparing it to a CALL and computed GO TO statement in sequence. For 
example, the following CALL statement: 

CALL SUB (P 1 &20,Q,&35,R 1 &22) 

is equivalent to: 

CALL SUB (P 1 Q,R 1 I) 
GO TO (20,35,22),I 

where the index I is assigned a value of 1, 2, or 3 in the called 
subprogram. 

ARGUMENTS IN A FUNCTION OR SUBROUTINE SUBPROGRAM 

The dummy arguments of a subprogram appear after the FUNCTION or 
SUBROUTINE name and are enclosed in parentheses. They are replaced at 
the time of execution by the actual arguments supplied in the CALL state~ 
ment or function reference in the calling program. The dummy argu
ments must correspond in number, order, type, and length to the actual 
arguments. For example, if an actual argument is an integer constant, 
then the corresponding dummy argument must be an integer of length 4. 
If a dummy argument is an array, the cor,responding actual argument must 
be (1) an array, or (2) an array element. In the first instance, the 
size of the dummy array must not exceed the size of the actual array. 
In the second, the size of the dummy array must not exceed the size of 
that portion of the actual array which follows and includes the desig
nated element. 

Subprograms 91 



The actual arguments can be: 

Any type of constant except hexadecimal 

Any type of subscripted or nonsubscripted variable (except one last 
defined by an ASSIGN statement) 

• An ar~ay name 

• An arithmetic or logical expression 

• The name of a FUNCTION or SUBROUTINE subprogram 

• A statement number (for a SUBROUTINE subprogram only, see the sec
tion "RETURN Statements in a SUBROUTINE Subprogram"> 

If a literal constant is passed as an argument, the actual argument 
passed is the literal as defined, without delimiting apostrophes or the 
preceding wH specification. An actual argument which is the name of a 
subprogram~must be identified by an EXTERNAL statement containing that 
name. 

When the dummy argument is an array name, an appropriate DIMENSION or 
explicit specification statement must appear in the subprogram. None of 
the dummy arguments may appear in an EQUIVALENCE or COMMON statement. 

If a dummy argument is assigned a value in the subprogram, the corre
sponding actual argument must be a subscripted or unsubscripted variable 
name, or an array name. A constant should not be specified as an actual 
argument unless the programmer is certain that the corresponding dummy 
argument is not assigned a value in the subprogram. 

A referenced subprogram cannot define dummy arguments such that the 
subprogram reference causes those arguments to be associated with other 
dummy arguments within the subprogram or with variables in COMMON. For 
example, if the function DERIV is defined as 

FUNCTION DERIV cx,Y,Z) 
COMMON W 

and if the following statements are included in the calling program 

COMMON B 

C = DERIV CA,B,A) 

then X, Y, z, and W cannot be defined (e.g., cannot appear to the left 
of an equal sign in an arithmetic statement) in the function DERIV. 

Enclosing a dummy argument in slashes Ce.g., (/X/ 1 /Y/)) ensures that 
it will be referred to in the subprogram by location. In reference by 
location, the subprogram reserves no storage for the durrmy argument. 
The subprogram uses the location of the corresponding actual argument 
for its calculations. This contrasts with reference by value in which 
the dummy argument is assigned storage in the subprogram. When the sub
program is entered, the value of the actual argument is brought in from 
the calling program. When the subprogram terminates, the final value is 
transmitted back to the actual argument. An argument which is an ex
pression Cother than a simple variable) is always referred to by value 
unless its corresponding dummy argument is enclosed in slashes. 

92 



MULTIPLE ENTRY INTO A SUBPROGRAM 

The standard (normal) entry into a SUBROUTINE subprogram from the 
calling p~ogram is made by a CALL statement that references the subpro
gram name. The standard entry into a FUNCTICN subprogram is made by a 
function reference in an arithmetic expression Entry is made at the 
first executable statement following the SUBROUTINE or FUNCTION 
statement. 

It is also possible to enter a subprogram (either SUBROUTINE or 
FUNCTION) by a CALL statement or a function reference that references an 
ENTRY statement in the subprogram. Entry is made at the first execut
able statement following the ENTRY statement. 

r----------------------------------------------------------------------1 I General Form I 
r----------------------------------------------------------------------~ 
I ENTRY nam~ <211~21231•••12n> I 
I I 
I Where: name is the name of an entry point (see the section "Naming I 
I subprograms"). I 
I I 
I ~1 ,~2 1 231••·1~n are the dummy arguments corresponding to an I 
I actual argument in a CALL statement or in a function I 
I reference. I 
L----------------------------------------------------------------------J 

ENTRY statements are nonexecutable and do not affect control sequenc
ing during execution of a subprogram. A subprogram must not reference 
itself directly or through any of its entry points. Entry cannot be 
made into the range of a DO. The appearance of an ENTRY statement does 
not alter the rule that statement functions in subprograms must precede 
the first executable statement of the subprogram. 

The dummy arguments in the ENTRY statement need not agree in order, 
type, or number with the dummy arguments in the SUBROUTINE or FUNCTION 
statement or any other ENTRY statement in the subprogram. However, the 
arguments for each CALL or function reference must agree in order, type, 
and number with the dummy arguments in the SUBROUTINE, FUNCTION, or 
ENTRY statement that it references. 

Entry into a subprogram initializes the dummy arguments of the 
referenced ENTRY statement. Thus, all appearances of these arguments in 
the whole subprogram are initialized. Arguments that were referenced by 
value at some previous use of the subprogram need not appear in the 
argument list of the ENTRY statement. In this case, the reference will 
not transmit new values for the arguments not listed. A function 
reference, and hence the corresponding ENTRY statement, must have at 
least one argument. 

If a dummy argument is listed at more than one entry point, it must 
be consistently referenced either by name or by value. A dummy argument 
must not be used in any executable statement in the subprogram unless it 
has been previously defined as a dummy argument in an ENTRY, SUBROUTINE, 
or FUNCTION statement. 

Subprograms 93 



If information for an object-time dimension array is passed in a 
reference to an ENTRY statement, the array name and all of its dimension 
parameters (except any that are in a common area) must appear in the 
argument list of the ENTRY statement. 

In a FUNCTION subprogram, the types of the function name and entry 
name are determined by the FUNCTION and ENTRY statements. The types of 
these variables Ci.e., the function name and entry names) can be dif
ferent; the variables are treated as if they were equivalenced. After 
one of these variables is assigned a value in the subprogram, the others 
become indeterminate in value. 

Upon exit from a FUNCTION subprogram, the value returned is the value 
last assigned to the function name or any entry name. It is returned as 
though it were assigned to the name in the current function reference. 
If the last value is assigned to a different entry name, and that entry 
name differs in type from the name in the current function reference, 
the value of the function is undefined. 

Example 1: 

Calling Program 

TAELE(l) = FUNC(W,X,Y,Z) 
DO 5 I=2,100 
TAELE(I) = ENT(U) 

5 CONTINUE 

Subprogram 

FUNCTION FUNC(T,A,B,C) 

ENTRY ENT('I) 

FUNC = A * B + C ** T 
RETURN 

END 

Explanation: The FUNCTION subprogram is entered once at entry point 
FUNC and initial values are assigned to the dummy arguments T, A, B, and 
c. Thereafter, the FUNCTION subprogram is entered at entry point ENT, 
and only one value is transmitted. No new values are passed for A, B, 
or c, so their values are changed only by operations in the subprogram. 
(Note that the original reference to A, B, and c must be by value -- not 
a reference by location.) 

Each time, the result of the FUNCTION subprogram is returned to the 
main program function reference by the variable FUNC. If FUNC and ENT 
had been of different types, it would have been necessary to have 
returned the result by FUNC the first time and by ENT the rest of the 
times. 

94 



CALL SUBl (A 1 E1 C1 D1 E1 F) 

CALL SUB2CG,&10,&20) 
y = G 

CALL SUB3(&10,&20) 
Y = A+B 

10 Y C+D 
20 Y = E+F 

50 
100 
200 
300 

§Ub£!~~1E~!!! 

SUBROUTINE SUBl cu,v,w,x,Y,Z) 
RETURN 
ENTRY SUB2 CT,*,*) 
U = V* W+T 
ENTRY SUB3 (*,*> 
X = Y**Z 
IF (W) 100, 200 1 300 
RETURN 1 
RETURN 2 
RETURN 
END'' 

In this example, a call to SUB1 merely performs initialization. A 
subsequent call to SUB2 or SUB3 causes execution of a different section 
of the SUB1 subroutine. Then, depending upon.the result of the arith
metic IF statement at statement SO, control returns to the calling pro
gram at statement 10, 20, or the statement following the call. 

EXTERNAL STATEMENT 

,---------------------------------------------------------------------, 
I General Form I 
~----------------------------------------------------------------------~ 
I EXTERNAL ~.,!2,,£,... I 
I I 
J Where: ~·~•£•••• are names of subprograms that are passed as argu- I 
I ments to other subprograms. I 
L----------------------------------------------------------------------J 

The EXTERNAL statement is a specification statement, and must precede 
statement function definitions and the executable statements. 

If the name of a FORTRAN supplied in-line function is used in an 
EXTERNAL statement, the function is not expanded in-line when it appears 
as a function reference. Instead, it is assumed that the function is 
supplied by the user or is part of the FORTRAN-supplied library. (The 
FORTRAN-supplied in-line and out-of-line functions are given in Appendix 
C.) 

The name of any subprogram that is passed as an argun;ent to another 
subprogram must appear in an EXTERNAL statement in the calling program. 
For example, assume that SUB and MULT are subprogram names in the fol
lowing statements! 

Subprograms 95 



~~amE.!~_!: 

£~11!!!~L!:!:29~!!! 

EXTERNAL MULT 

CALL SUB (J, MULT,C) 

Explanation: 

4 

6 

SUBROUTINE SUB(K,Y,Z) 
IF (K) 4,6,6 
D = Y CK,Z**2) 

RETURN 
END 

In this example, the subprogram name MULT is used as an argument in 
the subprogram SUE. The subprogram name MULT is passed to the dummy 
variable Y as are the variables J and c passed to the dummy variables K 
and z, respectively. The subprogram MULT is called and executed only if 
the value of K is negative. 

ExamEle 2: 

CALL SUB (A,B,MULT CC,D),37) 

SUBROUTINE SUB cw,x,Y,Zl 

RETURN 
END 

In this example, an EXTERNAL statement is not required because the 
subprogram named MULT is not an argument; it is executed first and the 
result becomes the argument. 

OBJECT-TIME DIMENSIONS 

If an array is used in a FUNCTION or SUBROUTINE subprogram and its 
name is not in a COMMON statement within the subprogram, the absolute 
dimensions of the array do not have to be explicitly declared in the 
subprogram by constants. Instead, an explicit specification statement 
or DIMENSION statement appearing in the subprogram may contain integer 
variables of length 4 to specify the size of the array. When the sub
program is called, these integer variables receive their values from the 
actual arguments in the calling program reference or from common. Thus, 
the dimensions of a dummy array arpearing in a subprogram may change 
each time the subrrogram is called. 

96 



The absolute dimensions of an array must be declared in the calling 
program or in a higher level calling program, and the array name must be 
passed to the subprogram in the argument list of the calling program. 
The dimensions passed to the subprogram must be less than or equal to 
the absolute dimensions of the array declared in the calling program. 
The variable dimension size can be passed through more than one level of 
subprogram <i.e., to a subprogram that calls another subprogram, passing 
it dimension information). 

Integer variables in the explicit specification or DIMENSION state
ment that provide dimension information must not be redefined within the 
subprogram; i.e., they must not appear to the left of an equal sign. 

The name of an array with object-time dimensions cannot appear in a 
COMMON statement. 

DIMENSION AC5,10) ••• 

CALL SUBRl( ••• A,5,10 ••• l 

END 

Explanation: 

SUBROUTINE SUBRl( ••• R,L,M ••• ) 

REAL ••• R(L,M) ••• 

DO 10 I=l,L 
DO 10 J=l,M 

10 R(I,J)=O. 

RETURN 

END 

This example shows the use of object-time dimensions to supply 
dimension information to a subroutine that will perform some operation 
on an array of any specified size. In this case, the dimensions passed 
are those specified for the array in the calling program, i.e., the full 
size of the array. 

Subprograms 97 



Example 2: 

DIMENSION A(5,10) 

I = 4 

J = 7 

CALL SUBRl( ••• A,I,J ••• ) 

END 

Explanation: 

SUBROUTINE SUBRl( •• R,L,M ••• ) 

REAL •• R(L,M) •• 

DO 10 I=l,L 
DO 10 J=l,M 

10 RU,J)=O. 

RETURN 

END 

This example shows the use of object-time dimensions to specify a 
subset of the extent of an array to a subprogram. The effect of this 
coding is the same as if another array, B, of dimensions (4,7) had been 
defined in the calling program and had been made equivalent to array A; 
the array B and its dimensions would then have been passed to SUBRl as 
follows: 

DIMENSION ••• A(5 1 10),B(4 1 7) ••• 

EQUIVALENCE (A(1,1) 1 B(1 1 1)) 

I = 4 

J = 7 

CALL SUBRl ( ••• B,I,J ••• ) 

END 

98 



BLOCK DATA SUBPROGRAM 

To initialize variables in a labeled (named> common block, a separate 
subprogram must be written. This separate subprogram contains only the 
DATA, COMMON, DIMENSION, EQUIVALENCE, and Type statements associated 
with the data being defined. Data may not be initialized in unlabeled 
common. 

r----------------------------------------------------------------------1 I General Form I 
~----------------------------------------------------------------------i I BLOCK DATA I 
I l 
I I 
I I 
I END I 
L----------------------------------------------------------------------J 
1. The BLOCK DATA subprogram may not contain any executable 

statements. 

2. The BLOCK DATA statement must be the first statement in the subpro
gram. If an IMPLICIT statement is used in a BLOCK DATA subprogram, 
it must immediately follow the BLOCK DATA statement. The COMMON 
statement must precede the data initialization statements. 

3. Any main program or subprogram using a common block must contain a 
COMMON statement defining that block. If initial values are to be 
assigned, a BLOCK DATA subprogram is necessary. 

4. All elements of a common block must be listed in the COMMON state
ment, even though they are not all initialized; for example, the 
variable A in the COMMON statement in the following example does 
not appear in the data initialization statement: 

BLOCK DATA 
COMMON/ELN/C,A,B/RMG/Z,Y 
REAL B(4)/1.0,l.2,2*1.3/,Z*8(3)/3*7.64980825DO/ 
COMPLEX C/(2.4,3.769)/ 
END 

5. Data may be entered into more than one common block in a single 
BLOCK DATA subprogram. 

6. Only one BLOCK DATA subprogram may be used to enter data into a 
particular common block. 

Subprograms 99 



~PPENDIX A: SOURCE PROGRAM CHARACTERS 

r----------------~----------------T-----------------------------------1 
I Alphabetic Characters I Numeric Characters I 
~----------------------------------+-----------------------------------~ 

A 
B 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
p 

Q 
R 
s 
T 
u 
v 
w 
x 
y 
z 
$ 

o I 
1 I 
2 I 
3 I 
4 I 
s I 
6 I 
1 I 
s I 
9 I 

I 
I 

~-----------------------------------~ I Special Characters I 
~-----------------------------------~ 

+ 

/ 
= 

* , 
( 

(blank> I 
I 
I 
I 
I 
I 
I 
I 
I 

' (apostrophe> 
I 
I 
I & 

----------------------------------~-----------------------------------J 

The 49 characters listed above constitute the set of characters 
acceptable by FORTRAN, except in literal data where any valid card code 
is acceptable. 

100 



APPENI:IX B: OTHER FORTRAN STATEMENTS ACCEPTED BY FORTRAN IV 

This appendix discusses those features of previously implemented 
FORTRAN IV languages that are incorporated into the System/360 FORTRAN 
IV language. The inclusion of these additional language facilities 
allows existing FORTRAN programs to be recompiled for use on the IBM 
System/360 with little or no reprogran:ming. 

READ STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
r----------------------------------------------------------------------~ 
] READ R,list I 
~ I 
I I 
I I 
1 Where: b is the statement number or array name of the FORMAT state- I 
1 ment describing the data. I 
I 1 
I I 
l I 
l !!~1 is a series of variable or array names, separated by ] 
J commas, which may be indexed and incren:ented. They specify I 
I the number of items to be read and the locations in storage I 
I into which the data is placed. I 
L----------------------------------------------------------------------J 

This statement has the effect of a READ (n,b) list statement where b 
and list are defined as above, and the value of n-"IS-installation 
aepenaent. 

PUNCH STATEMENT 

r----------------------------------------------------------------------1 
l General Form I 
r----------------------------------------------------------------------~ 
I PUNCH Q, !!~1 I 
I I 
I I 
1 I 
I Where: b is the statement number or array name of the FORMAT state- I 
I ment describing the data. I 
I I 
I I 
I I 
I list is a series of variable or array names, separated by I 
I commas, which may be indexed and incremented. They specify I 
J the number of items to be written and the locations in I 
1 storage from which the data is taken. I 
l ______________________________________________________________________ J 

This statement has the effect of a WRITE (n,b) list statement where b 
and list are defined as above, and the value of-n Is-Installation 
dependent. -

Appendix B: Other FORTRAN Statements Accepted by FORTRAN IV 101 



PRINT STATEMENT 

r---~-------------------------------------------------~---------------, I General Form I 
~---~-----------------------------------------------------------------i 
I PRINT E• list I 
! I 
I I 
I I 
I Where: £ is the statement number or array name of the FORMAT state- ] 
I ment describing the data. I 
I I 
I I 
I I 
I !i~! is a series of variable or array names, separated by ] 
I commas which may be indexed and incremented. They specify I 
I the number of items to be written and the locations in I 
I storage from which the data is taken. I 
L---------------------------------------------------------------------J 

This statement has the effect of a WRITE Cn,b> list staterrent where Q 
and list are defined as above, and the value of-n is installation 
dependent. -

102 



APPENDIX C: FORTRAN-SUPPLIED SUBPROGRAMS 

The FORTRAN-supplied subprograms are of two types: mathematical sub
programs and service subprograms. The mathematical subprograms corres
pond to a FUNCTION subprogram; the service subprograms correspond to a 
SUBROUTINE subprogram. An in-line subprogram is inserted by the FORTRAN 
compiler at any point in the program where the function is referenced. 
An out-of-line stibprogram is located in a library and the compiler 
generates an external reference to it. A detailed description of out
of-line mathematical subprograms and service subprograms is given in the 
publication IBM System/360: FORTRAN IV Library Subprograms, Form 
C28-6596. Table 4 shows mathematical function subprograms, and Table 5 
shows out-of-line service subprograms. An asterisk in the in-line/ 
out-of-line column of Table 4 identifies the function as one defined as 
an intrinsic function in USA FORTRAN IV. 

Appendix C: FORTRAN-Supplied Subprograms 103 



Table 4. Mathematical Function Subprograms (Part 1 of 3) 
r---··----------T------y------------------T---------------T------T-----------T-----------1 
I I I I I I I Type of I 
I !Entry I I In-Line (I) !No. of I Type of !Function I 
I Function !Name I Definition jOut-of-Line (Oll Arg. I Arguments jValue I 
r--------------+------+------------------t---------------+------+-----------+-----------i 
!Exponential jEXP learg I o I 1 !Real *4 !Real *4 I 
I IDEXP I earg I O I 1 jReal *8 !Real *8 I 
I ICEXP learg I 0 f 1 !Complex *8 jComplex *8 I 
I ICDEXP learg I 0 I 1 !Complex *16jComplex *161 
r--------------+------t------------------+---------------+------+-----------+-----------~ 
!Natural IALOG jln (Arg) I 0 I 1 !Real *4 !Real *4 I 
!Logarithm IDLOG lln (Arg) I o I 1 IReal *8 !Real *8 I 
I fCLOG lln (Arg> I O I 1 !Complex *8 !Complex *8 I 
I ICDLOG lln (Arg) I 0 I 1 fComplex *16jComplex *161 
r~------------+------t------------------+---------------+------+-----------+-----------1 
!Common fALOG101log 1 o<Arg) I o I 1 !Real *4 !Real *4 I 
!Logarithm JDLOG10llog10 {Arg) I 0 I 1 !Real *8 !Real *8 I 
r--------------t------t------------------+---------------+------+-----------+-----------~ 
!Arcsine IARSIN larcsin (Arg) I o I 1 !Real *4 !Real *4 I 
I IDARSINlarcsin (Arg) I O I 1 !Real *8 !Real *8 I 
r--------------+------t------------------+---------------+------+-----------+-----------~ 
I Arccosine I ARCOS I arccos (Arg) I o I 1. I Real *4 I Real *4 I 
I IDARCOSjarccos (Arg) I 0 I 1 !Real *8 !Real *8 I 
r--------------+------+------------------+---------------+------t-----------+-----------1 
IArctangent1 IATAN larctan (Arg) I 0 I 1 !Real *4 !Real *4 I 
I IATAN2 larctan (Arg1 /Arg2 )1 0 I 2 !Real *4 !Real *4 I 
I IDATAN larctan (Arg> I O I 1 !Real *8 fReal *8 I 
I jDATAN2jarctan CArg1 /Arg2 ll 0 I 2 fReal *8 !Real *8 I 
r--------------+------+------------------+---------------+------+-----------+-----------1 
!Trigonometric JSIN !sin (Arg) I O I 1 !Real *4 !Real *4 I 
I Sine I DSIN I sin (Arg) I 0 I 1 I Real *8 I Real *8 I 
I (Argument in jCSIN f sin (Arg) I O I 1 !Complex *8 !Complex *8 I 
I radians) jCDSIN !sin <Arg) I O I 1 !Complex *16fComplex *1.61 
r--------------+------t------------------+---------------+------+-----------+-----------1 
!Trigonometric ICOS Jcos (Arg) I o I 1 fReal *4 !Real *4 I 
!Cosine IDCOS !cos (Arg) I 0 I 1 !Real *8 !Real *8 I 
I (Argument in ICCOS fcos (Arg) l O I 1 !Complex *8 I Complex *8 I 
I radians) ICDCOS !cos CArg) I O I 1 !Complex *161Complex *161 
r--------------+------+------------------+---------------+------+-----------+-----------1 
!Trigonometric ITAN !tan (Arg) I O I 1. !Real *4 !Real *4 I 
I Tangent I I I I I I I 
!<Argument in ]DTAN ftan (Arg) I O I 1 !Real *8 !Real *8 I 
I radians> I I 1 1 I I I 
r--------------+------t------------------t---------------+------+-----------+-----------1 
!Trigonometric ICOTAN jcotan (Arg) I O I 1 fReal *4 !Real *4 I 
!Cotangent I I I I I I I 
I (Argument in IDCOTANjcotan (Arg) I o I 1. !Real *8 !Real *8 I 
I radians> I I I t I I I 
r--------------+------+------------------+---------------+------+-----------+-----------1 
!Square Root ISQRT l<Arg> 112 I O I 1 fReal *4 fReal *4 I 
I JDSQRT I CArg)1/.! I O I 1 !Real *8 !Real *8 I 
I fCSQRT I CArg)1/.! I 0 I 1 !Complex *8 !Complex *8 I 
I l CDSQRTI (Arg)'lft I 0 I 1 I Complex *1.6 fComplex *161 
·~------------i ______ i __________________ i _______________ ..1._ _____ i ___________ i ___________ 1 

I l 1 Two arguments must be supplied for ATAN2 and DATAN2. I 
l---------------------------------------------------------------------------------------J 

104 



Table 4. Mathematical Function Subprograms (Part 2 of 3) 
r--------------T------T------------------T---------------T------T-----------T-----------1 
I I I I I I I Type of I 
I ]Entry I I In-Line (I) INo. ofl Type of !Function I 
I Function I Name l Definition I Out-of-Line (0) I Arg, I Arguments !Value I 
(--------------+------+------------------+---------------+------+-----------+-----------~ 
!Hyperbolic ITANH ]tanh (Arg) I O I 1 !Real *4 !Real *4 I 
]Tangent IDTANH ltanh (Argl ] O I 1 !Real •8 IRea" *8 I 
r--------------+------+------------------+---------------+------+-----------+-----------~ 
!Hyperbolic ISINH Jsinh (Argl I O I 1 (Real *4 !Real *4 I 
I Sine I DSINH I sinh (Argl I 0 I 1 I Real *8 I Real *8 I 
(--------------+------+------------------+---------------+------+-----------+-----------~ 
I Hyperbolic I COSH I cosh (Arg) I O I 1 I Real *4 I Real *4 I 
!Cosine IDCOSH 1cosh (Argl I 0 I 1 !Real *8 (Real *8 I 
r--------------+------+------------- ·----+---------------+------+-----------+-----------~ 
l Error Function I ERF I ..l. ~x -u2 I 0 I 1 I Real *4 I Real *4 I 
I IDERF fJri e du I O f 1 !Real *8 (Real *8 I 
I I I o I I I I I 
r--------------+------+------------------+---------------+------+-----------+-----------~ 
I Complemented I ERFC f 1-erf (xl I O l 1 I Real *4 I Real *4 I 
!Error FunctionlDERFC I I 0 l 1 ]Real *8 !Real *8 I 
r--------------+------+------------------+---------------+------+-----------+-----------~ 
!Gamma IGAMMA I ~oo x-1 -u I O I 1 !Real •4 jReal *4 I 
I IDGAMMAI u e du I 0 I 1 !Real *8 !Real *8 I 
I I I o I I I I I 
r--------------+------+------------------+---------------+------+-----------+-----------~ 
!Log-gamma IALGAMAI ,--- I O I 1 !Real *4 !Real *4 I 
I IDLGAMA] loge I (x) I 0 ] 1 I Real *8 I Real *8 I 
r--------------+------+------------------+---------------+------+-----------+-----------~ 
!Modular IMOD IArg._ (mod Arg2 l= I I * I 2 (Integer *4 !Integer *4 I 
IArithmetic2 IAMOD )Arg._-[x]*Arg2 I I * I 2 !Real *4 IReal*4 I 
l IDMOD !Where: lxl is the I I * I 2 !Real *8 !Real *8 I 
I I I largest integer l I I I I 
I I !whose magnitude I I I I I 
I I !does not exceed I I I I I 
I I (the magnitude of I I I I I 
I I I Arg,_/Arg2• The I I I I I 
I I I sign of the inte- I I I I I 
I I I ger is the same I I I I I 
I I I as the sign of I I I I I 
I I IArg._/Arg2• I I I I I 
r--------------+------+------------------+---------------+------+-----------+-----------~ 
!Absolute valueJIABS JIArgl I I * I 1 finteger *4 !Integer *4 I 
I IABS I I I * I 1 !Real *4 !Real *4 I 
I IDABS I I I * I 1 !Real •8 !Real *8 I 
I r------+-.-----------------+---------------t------t-----------t-----------~ 
I )CABS I Jca2+b2) for a+bi I o I 1 !Complex *8 !Real *4 I 
I I CDABS l I 0 I 1 I Complex •161 Real *8 I 
r--------------+------+------------------+---------------+------+-----------+-----------~ 
]Truncation IINT !Sign of Arg times I I * I 1 JReal *4 !Integer *4 I 
I l f largest integer I I I I I 
I I l:5JArgl I I I I I 
I IAINT I I I * I 1 !Real •4 !Real *4 I 
I I !DINT l I I * I 1 I Real *8 I Integer *4 I 
r--------------+------+------------------+---------------+------+-----------+-----------~ 
!Largest value 3 (AMAXO (Max(Arg._,Arg2 , ••• ll O * I ~2 !Integer *4 !Real *4 I 
I JAMAX1 I I 0 * I ~2 !Real *4 !Real *4 I 
I I MAXO I I O * I ~2 I Integer *4 I Integer *4 I 
I I MAX1 I I O * I ~2 I Real *4 I Integer *4 I 
I IDMAX1 I I O * I ~2 fReal *8 fReal *8 I 
r--------------L------L------------------L---------------L------L-----------L-----------~ I (2MOD and AMOD are not defined when the value of the second argument is zero. I 
l 3 For the FORTRAN IV (H) compiler, these functions are in-line. I 
l*USA FORTRAN IV intrinsic function I 
l---------------------------------------------------------------------------------------J 

Appendix C: FORTRAN-Supplied Subprograms 105 



Table 4. Mathematical Function Subprograms {Part 3 of 3) 
r--------------y------T------------------r---------------y------r-----------r-----------1 
I I I I I I I Type of I 
I I Entry I I In-Line (I) I No. of I Type of I Function I 
l Function !Name i Definition !Out-of-Line (Ol I Arg, I Arguments !Value I 
r--------------+-----~+------------------+---------------+------+-----------+-----------i 
I Smallest I AMINO vi Min(Arg._, Arg2, ••• ) I 0 * I <!2 I Integer *4 I Real *4 I 
1value3 IAMIN1 I I 0 * I <!2 !Real *4 !Real *4 I 
I I MINO I I 0 * I <!2 I Integer *4 I Integer *4 I 
I IMIN1 I I 0 * I <!2 IReal *4 !Integer *4 I 
I IDMIN1 I I O * I <!2 !Real *8 !Real *8 I 
t--------------+------+------------------+---------------+------+-----------+-----------i 
!Float IFLOAT ]Convert from I I * I 1 !Integer *4 !Real *4 I 
I I DFLOATf integer to real I I I 1 I Integer *4 I Real *8 I 
r--------------+------+------------------+---------------+------+-----------+-----------i 
JFix IIFIX )Convert from I I * I 1 !Real *4 !Integer *4 I 
I I HFIX I real to integer I I I 1 I Real *4 I Integer *2 I 
r--------------+------+------------------+---------------+------+-----------+-----------i 
!Transfer of jSIGN !Sign of Arg2 times I I * I 2 !Real *4 JReal *4 I 
Jsign4 I IJArg._J I I I I I 
I JISIGN I I I * I 2 jinteger *4 !Integer *4 I 
I )DSIGN I I I * I 2 !Real *8 !Real *8 I 
r--------------+------+------------------+---------------+------+-----------+-----------i 
)Positive IDIM IArg._-Min<Arg._, I I * I 2 !Real *4 jReal *4 I 
!difference IIDIM jArg2 ) I I * I 2 !Integer *4 !Integer *4 I 
r--------------+------+------------------+---------------+------+-----------+-----------i 
!Obtaining mostJSNGL ] I I * I 1 !Real *8 !Real *4 I 
I significant I I I I I I I 
I part of a I I I I I I I 
I Real *8 I I J I I I I 
I argument I I I I I I I 
r--------------+------+------------------+---------------+------+-----------+------~----i 
I Obtain real I REAL I I I * I 1 I complex *8 I Real *4 I 
I part of I I I I I I I 
I complex I I I I I I I 
I argument I J I I I I I 
f--------------+------+------------------+---------------+------+-----------+-----------i 
I Obtain I AIMAG I I I * I 1 I Complex *8 I Real *4 I 
I imaginary I I I I I I I 
I part of I I I l I I I 
I complex I I I I I I I 
I argument I I I I I I I 
r--------------+------+------------------+---------------+------+-----------+-----------i 
I Express a Real I DBLE I I I * I 1 I Real *4 I Real *8 I 
1*4 argument inl I I I I I I 
!Real *8 form I I I I I I I 
r--------------+------+------------------+---------------+------+-----------+-----------i 
!Express two ICMPLX IC=Arg._,+iArg2 I I * I 2 jReal *4 !Complex *B I 
I real arguments I DCMPLX] I I I 2 I Real *B I Complex *161 
I in complex I I I I I I I 
!form I I I I I I I 
r--------------+------+------------------+---------------+------+-----------+-----------i 
)Obtain ICONJG IC=X-iY I I * I 1 )Complex *B !Complex *B I 
!conjugate IDCONJGIFor Arg=X+iY I I I 1 !Complex *161Complex *161 
J of a complex I I I I I I I 
I argument I I I I I I I r--------------i ______ i __________________ i _______________ i ______ i ___________ i ___________ i 

13 For the FORTRAN IV {H) compiler, these functions are in-line. I 

l l 4 SIGN, ISIGN, and DSIGN are not defined when the value of the second argument is zero. I 
l*USA FORTRAN IV intrinsic function I 
L---------------------------------------------------------------------------------------J 

106 



Table 5. Out-of-Line service Subprograms 
r----------------------T-----------------------T----------------------------------------1 
l Function I CALL Statement l Argument Information I 
r----~----------------+-----------------------+----------------------------------------~ 
)Alter status of sense ICALL SLITE<i> Ii is an integer expression. I 
!lights I l I 
l I )If i = O, the four sense lights are I 
I I I turned off. I 
l I l If i = 1, 2, 3, or 4, the corresponding I 
l I I sense light is turned on. I 
r----------------------+-----------------------+----------------------------------------~ 
)Test and record statuslCALL SLITETCi,i> Ii is an integer expression that has al 
lof sense lights I l value of 1, 2, 3, or 4 and indicates I 
I I I which sense light to test. l 
l I Ii is an integer variable that is set to I 
I I I 1 if the sense light was on, or to 2 I 
I l I if the sense light was off; I 
r-----------~---------+-----------------------+--------------------~-------------------~ 
IDump storage on the !CALL DUMP C~11 E11 f1 , ~and E are variables that indicate thel 
)output data set and I ···•~n•En•fn> limits of storage to be dumped. I 
terminate execution I {Either ~ or E may be the upper or I 

I lower limits of storage, but both mustl 
I be in the same program or subprogram I 
I or in common.) I 
l f indicates the dump format and may be l 
l one of the following: I 
I 0 - hexadecimal I 
I 1 - logical*l I 
I 2 - logical*4 I 
I 3 - integer* 2 I 
I 4 - integer•4 I 
I 5 - real*4 I 
I 6 - real•8 I 
I 7 - complex•a I 

I I I 8 - complex•16 I 
I I I 9 - literal I 
r~--------------------+-----------------------+----------------------------------------~ 
jDump storage on the ICALL PDUMP C~11 Q1 ,f1 , 1~1 E• and f are as defined above forl 
)output data set and I ••• ·~•En•fn> I DUMP. I 
l continue execution I I I 
r----------------------+-----------------------+----------------------------------------~ 
!Test for divide check !CALL DVCHK<i> Ii is an integer variable that is set tol 
!exception I l 1 if the divide-check indicator was I 
I I I on, or to 2 if the indicator was off. I 
l I I After testing, the divide-check indi- I 
I I ·I cator is turned off. I 
r------~-------~------+-----------------------+----------------------------------------~ 
!Test for exponent ICALL OVERFLCi> Ii is an integer variable that is set tol 
!overflow or underflow l I 1 if an exponent overflow condition I 
I I I was the last to occur, to 2 if no I 
l I I overflow condition exists, or to 3 if I 
I I I an exponent underflow condition was I 
l l I the last to occur. After testing, thel 
I I I overflow indicator is turned off. I 
r---------~----~-----+-----------------------+----------------------------------------~ 
I Terminate execution I CALL EXIT I None I 
L~-----~--~---------~-----------------------~----------------------------------------J 

Appendix C: FORTRAN-Supplied subprograms 107 



The sample program (Figure 1) is designed to find all of the prime 
numbers between 1 and 1000. A prime number is an integer that cannot be 
evenly divided by any integer except itself and 1. Thus, 7 is a prime 
number. The number 9 is not prime since it can be divided evenly by 3. 

FORTRAN C:ading Form 

Figure 1 Sample Program 1 

108 



SAMPLE PROGRAM 2 

The n points (xi, Yi) are to be used to fit an m degree polynomial by 
the least-squares method. 

In order to obtain the coefficients a 0 , a 1 , ... , am, it is necessary to 
solve the normal equations: 

where: 

(1) 
( 2) 

(m+l) 

Woao + W1a1 + 
W1a 0 + W2a1 + 

Wo 

W1 = 

W2 

n 

n 
~ X· 
i=l l 

n 
x. ~ 

i=l l 

2 

n 
~ x.2m 
i=l l 

+ Wmam = Zo 
+ Wm+ 1 am = Z1 

Zm 

n 
Zo = ~ Y· 

i=l l 

Zm 

n 
~ y.x. 
i=l J. l 

n 
~ y.x.2 
i=l l l 

n 
~ y.x.m 
i=l 1 l 

After the W's and Z's have betn computed, the 
solved by the method of elimination which 
following solution of the normal equations for a 
al Cm = 2). 

The forward solution is as follows: 

1. Divide equation (1) by W0 • 

normal equations are 
is illustrated by the 
second degree polynomi-

2. Multiply the equation resulting from step 1 by W1 and subtract from 
equation (2). 

3. Multiply the equation resulting from step 1 by W2 and subtract from 
equation (3). 

Appendix D: Sample Programs 109 



The resulting equations are: 

(4) ao + b12a 1 + b.:1.3a2 = b.:1.4 

{ 5) b22a.:1. + b23a2 b;;i4 

(6) b32a.:1. + b33a;;i = b34 

where: 

b.:1.2 = W1 /W 0 , b.:1.3 = W2/Wo, b.:1.4 = Zo/Wo 

b22 W2-b.:1. 2W1 b23 W3-b13W1 b24 = Z1 -b14W1 

b32 W3-b12W2 b33 = W4 -b13W2 b34 :::: Z2-b14 W2 

Steps 1 and 2 are repeated using equations (5) and (6), with b 22 and b 32 
instead of Wo and W1 . The resulting equations are: 

where: 

The backward solution is as follows: 

(9) a2 from equation (8) 

from equation (7) 

(11) a 0 from equation (4) 

Figure 2 is a possible FORTRAN program for carrying out the 
calculations for the case: n = 100, m S 10. W0 , W1 , W2 , ••• , W2m are 
stored in W(l), W(2), W(3), ••• , W(2M+l), respectively. Z0 , Z1 , Z2 , 
... , Zrn are stored in Z (1), z (2), z (3), ••• , Z(M+l), respectively. 

110 



IB:t.1 FORTRAN Coding Form 

PROGRAM SAMPLE PROGRAM 2. PUNCHING 
GRAPHIC 

± 
~AGE 1 of 3 

PROGRAMMER OAIE 6I_b.B INSTRUCTIONS 
PUNCH ]Am UECTRO NUMSE~· 

STATEMENT 
FORTRAN STATEMENT l[>ENflFICATION 

NUMl!R 8 SEQUENCE 

2 J "5 
6 RE AL 11 ,x ( i 00) ; y ( 1~2J )"; w 2

( i id~-z (ii l
6 

; A ( ii~~ B ( 1i;12 5l 52 SJ 54 5, 56 57 SB 59 60 61 62 ~ ... 65 66 67 6fi69 70 71 n 
7J 74 75 76 n ?e 79 so 

1 FOIMAT (I2,I3/(ijF1ij.7)) 
2 FO RM AT ( 5 El 5.G ' 

RE AD (5 , 1 ) M' N' ( X( I ) ,y (I h I= 1 'N 
L . 21*1 +i 
LB = M+2 
L = M+ 1 
DO 5 J =2 , L]~ 

5' ~( J ) = !0 .(I) 
~( i) = N 
D 6 J = 1 'L I 

6 H J) = 10 .~ 
DO 16 I~ 1'N 
Pi = 1."' I I ' ]l ( 1 ) '= l( 1 ) +Y (I) 
DO 13 J =- 2,Lr ' p - X( I ) j!P I 
~( J ) . ~ (J )+P I I 

13 zc J ) = r( J)+ Y( IHP 
DjQJ 1 6 J =LB' L~ 
p ( I) i*P I 

I I I 

1 i 

1 l 4 5 6 7 a 9 10 11 12 IJ 14 15 16 11 IS 19 20 21 12 2J 24 21 ;o 11 16 29 JO JI l1 3J J4 Js J6 J7 Je J9 oo 41 42 ~ « 45 ~ 47 48 49 so 51 52 SJ 54 ss so 51 53 !i9 60 01 62 6J.,. 65 M 67 68 69 7o 11 n T.l 74 7s 76 n 78 7'I 80 
•A"""""'" <o<d fo,.,, IBM elocho 888157, ;, o•<>llobl• fm O"nch;ng stotemonh f•om th;, fo,m 

Figure 2. Sample Program 2 (Part 1 of 3) 

IBM FORTRAN CDdlng Form 

s~i!~i~1 § FORTRAN STATEMENT IDEs~61~~~~~0N 
2 3 i 6 o ~( j) 11: 1~( J) + p 10 21 22 23 2• 25 20 21 w 29 JO 31 32 33 J4 JS 36 37 38 J9 40 41 .02 43 4< 45 46 47 <8 49 so 51 52 53 54 ss s6 57 sa 59 oo 01 02 63 M 65 66 67 68 o9 10 11 n 73 74 75 7oin 1a n ao 

17 DO 2 /I=1'Li1' 
I 

J = K!±I! T 

J 
23 DO 31 L= ,Lz 

++-H-1'-H-H-+-t+-H -++-+-++++l-+-1 

Ii = L +1 

3 ~( Li!:)i = B Li!,LB) : 
l 

I = Lt: 
35 SIGMA = ~.0 

D 37 J=I,Li! 

l J 
1 2 ,J 4 s 6 7 8 9 10 11 12 13 14 15 16 17 la 19 2U 21 7< 23 74 is 76 27 ZB ·~ 30' JI 32 33 34 » 37 3e :l9 40 41 42 43 44 45 4b 47 4(1 49 Sa 51 12 SJ 54 55 56 57 56 59 60 6\ bi 63 64 65 66 67 6e 69 70 71 72 n 74 75 76 Tl 70 79 BO 

•A ""'>tlotdco<df0<m \t1Moleo"o888157 lsovolloble~• nehin !lot<m ... .,fromthi<~<m 

Figure 2. Sample Program 2 (Part 2 of 3) 

Appendix D: Sample Programs 111 



IBJ,t 

STATEMENT tj 
NUM~E~ 0 

I 

i 
i 

j 

FORTRAN C:oding Form 

PAGE 3 OF 3 

FORTRAN STATEMENT 

AC! - B(I,LB)-SIGIMA I I l 

1 
ST P 1 i , : 

END I I 1 ! J f 
I 

1 l i 
I T i T 

l : I I 
' I ! 

L T 
' I 

! 
T i 

! I ' I I I l 
' 

' 
I 

I + + 
I I i I 

' 

T I 
'i i 

I I 

I I I 
I T 

1 
1 

' i 
' I 

1 I 

! 

t I 
I I J 

XZB-7"7-5 

Prlotod••U.S.A. 

IDENllFICATION 
SEQUENCE 

I 

' 

I ' I 1 1 1 i I I ' i 

l J 1 l . i ' I 
2 3 4 s 9 10 ll 12 13 14 1s 10 11 1s 19 w 21 22 n 24 2s 26 27 2a 29 30 31 J2 33 J4 35 36 :i7 Ja 39 -~--~1 42'"113 « .-; 46 •7 '411 49 so s1 s2 so 54 ss 56 57 sa 59 60 61 02 63 64 65 66 67 6ll 69 70 11 n n 1• 75 n n 7B 79 so 

"Astando<doordfmm.ISM•leol<o88Bl57,l!ova;lobl.lo,oun< ==='==------------------------------~ 

Figure 2. Sample Program 2 (Part 3 of 3) 

The elements of the W array, except W(l), are set equal to zero. 
WC1) is set equal to N. For each value of I, XI and YI are selected. 
The powers of XI are computed and accumulated in the correct W counters. 
The powers of XI are multiplied by YI, and the products are accumulated 
in the correct Z counters. In order to save machine time when the 
object program is being run, the previously computed power of XI is used 
when computing the next power of Xl. Note the use of variables as index 
parameters. By the time control has passed to statement 17, the coun
ters have been set as follows: 

112 

W(l) 

WC2) 

W(3) 

N 

N 
z; XI 
I=l 

N 
~ XI 2 

I=l 

N 
W(2M+1) = ~ XI 2 M 

I=l 

z (1) = 

z(2) = 

z (3) 

z(M+l) 

N 
~ YI 
I=l 

N 
~ YIXI 
I=l 

N 
~ YIXI 2 

I=l 

N 
~ YIXIM 
I=;l 



.BY the time control has passed to statement 23, the values of w0 , W1 , 

•• , W2 m+ 1 have been placed in the storage locations corresponding to 
columns 1 through M+l, rows 1 through M+1, of the B array, and the 
values of z0 , Z1 , ••• , Zm have been stored in the locations correspond
ing to the column M+2 of the B array. For example, for the illustrative 
problem CM= 2>, columns 1 through 4, rows 1 through 3, of the B array 
would be set to the following computed values: 

Zo 

This matrix represents equations (1), (2), and (3), the normal equa
tions for M = 2. 

The forward solution, which results in equations (4), (7J, and (8) in 
the illustrative problem, is carried out by statements 23 through 31. 
By the time control has passed to statement 33, the coefficients of the 
A.I terms in the M+1 equations which would be obtained in hand calcula
tions have replaced the contents of the locations corresponding to 
columns 1 through M+1, rows 1 through M+1, of the B array, and the con
stants on the right-hand side of the equations have replaced the con
tents of the locations corresponding to column M+2, rows 1 through M+1, 
of the B array. For the illustrative problem, columns 1 through 4, rows 
1 through 3, of the B array would be set to the following computed 
values: 

1 

0 1 

0 0 

This matrix represents equations (4), (7), and (8). 

The backward solution, which results in equations (91, {10>, and C11> 
in the illustrative problem, is carried out by statements 33 through 40. 
By the time control has passed to statement 41, which prints the values 
of the A9 terms, the values of the (M+1) *AI terms have been stored in 
the M+1 locations for the A array. For the illustrative problem, the A 
array would contain the following computed values for a 2 , a 1 , and a 0 , 

respectively: 

Location Contents 
~--~~ 

A(3) 

A(2) 

A(l) 

The resulting values of the AI terms are then printed according to 
the FORMAT specification in statement 2. 

Appendix D: Sample Programs 113 



The debug facility is a prograrrming aid that enables the user to loc
ate errors in a FCRTRAN source program. It is available only with the 
Operating System (G) compiler and the Disk Operating System FORTRAN com
piler. The debug facility provides for tracing the flow within a pro
gram, tracing the flow between programs, displaying the values of vari
ables and arrays, and checking the validity of subscripts. 

The debug facility consists of a DEBUG specification statement, an AT 
debug packet identification statement, and three executable statements. 
These statements, alone or in combination with any FORTRAN source lan
guage statements, are used to state the desired debugging operations for 
a single program unit in source language. CA program unit is a single 
main program or a subprogram.) 

The source deck arrangement consists of the source language state
ments that comprise the program, followed by the DEBUG specification 
statement, followed by the debug packets, followed by the END statement. 

The statements that make up a program debugging operation must be 
grouped in one or more debug packets. A debug packet is preceded by the 
AT debug packet identification statement and consists of one or more 
executable debug facility statements, and/or FORTRAN source language 
statements. A debug packet is terminated by either another debug packet 
identification statement or the END statement of the program unit. 

PROGRAMMING CONSIDERATIONS 

The following precautions must be taken when setting up a debug 
packet: 

1. Any DO loops initiated within a debug packet must be wholly con
tained within that packet. 

2. Statement numbers within a debug packet must be unique. They must 
be different from statement numbers within other debug packets and 
within the program being debugged. 

3. An error in a program should not be corrected with a debug packet; 
when the debug packet is removed, the error remains in the program. 

114 



4. The following statements must not appear in a debug packet: 

SUBROUTINE 
FUNCTION 
ENTRY 
IMPLICIT 
BLOCK DATA 
statement function definition 

5. The program being debugged must not transfer control to any state
ment number defined in a debug packet; however, control may be 
returned to any point in the program from a packet. In addition, a 
debug packet may contain a RETURN, STOP, or CALL EXIT statement. 

DEBUG FACILITY STA1EMENTS 

The specification statement (DEBUG) sets the conditions for operation 
of the debug facility and designates debugging operations that apply to 
the entire program unit <such as subscript checking>. The debug packet 
identification statement (AT) identifies the beginning of the debug pac
ket and the point in the program at which debugging is to begin. The 
three executable statements (TRACE ON, TRACE OFF, and DISPLAY> designate 
actions to be taken at specific points in the program. The following 
text explains each debug facility statement and contains several pro
gramming examples. 

Appendix E: Debug Facility 115 



DEBUG SPECIFICATION STATEMENT 

There must be one DEBUG statement for each program or subprogram to 
be debugged, and it must immediately precede the first debug packet. 

r----------------------------------------------------------------------1 
jGeneral Form I 
~----------------------------------------------------------------------~ 
!DEBUG QE~iQg, ••• ,option I 
I I 
f Where: option may be any of the following: 

UNIT (2_) 

where 2. is an integer constant that represents a data set 
reference number. All debugging output is placed in this data 
set, called the debug output data set. If this option is not 
specified, any debugging output is placed in the standard out
put data set. All unit definitions within an executable pro
gram must refer to the same unit. 

SUBCHK Cg1 1 g21•••1!!n> 
where g is an array name. The validity of the subscripts used 
with the named arrays is checked by comparing the subscript 

I combination with the size of the array. If the subscript I 
I exceeds its dimension bounds, a message is placed in the debug! 
I output data set. Program execution continues, using the in- I 
I correct subscript. If the list of array names is omitted, alll 
I arrays in the program are checked for valid subscript usage. I 
I If the entire option is omitted, no arrays are checked for I 
J valid subscripts. I 
·I I 
I TRACE I 
I This option must be in the DEBUG specification statement of I 
I each program or subprogram for which tracing is desired. If I 
I this option is omitted, there can be no display of program I 
I flow by statement number within this program. Even when this I 
I option is used, a TRACE ON statement must appear in the first I 
) debug packet in which tracing is desired. I 
I I 
JINIT <m1, m21•••1mn> I 
I - where ill is the name of a variable or an array that is to be I 
I displayed in the debug output data set only when the variable I 
I or the array values change. If ill is a variable name, the namel 
I and value are displayed whenever the variable is assigned a I 
I new value in either an assignment, a READ, or an assigned GO I 
I TO statement. If ill is an array name, the changed element is I 
I displayed. If the list of names is omitted, a display occurs I 
I whenever the value of a variable or an array element is I 
I changed. If the entire option is omitted, no display occurs I 
I when values change. I 
I I 
JSUBTRACE I 
I This option specifies that the name of this subprogram is to I 
I be displayed whenever it is entered. The message RETURN is to! 
I be displayed whenever execution of the subprogram is I 
I completed. I 
L----------------------------------------------------------------------J 

The options in a DEBUG specification statement may be given in any 
.order and they must be separated by commas 

116 



AT DEBUG PACKET IDENTIFICATION STATEMENT 

The AT statement identifies the beginning of a debug packet and indi
cates the point in the program at which debugging is to begin. There 
must be one AT statement for each debug packet; there may be many debug 
packets for one program or subprogram. 

r----------------------------------------------------------------------1 
IGeneral Form I 
r----------------------------------------------------------------------~ 
I AT state~!!!_!!~mtef I 
I I 
!Where: statement number is an executable statement number in the pro-I 
I gram or sutprogram to be debugged. I 
L----------------------------------------------------------------------J 

The debugging operations specified within the debug packet are per
formed prior to the execution of the statement indicated by the state
ment number in the AT statement. 

TRACE ON STATEMENT 

The TRACE ON statement initiates the display of program flow by state
ment number. Each time a statement with an external statement number 
is executed, a record of the statement number is made on the debug out
put data set. This statement has no effect unless the TRACE option was 
specified in the DEBUG specification statement. 

r----------------------------------------------------------------------1 
!General Form I 
r----------------------------------------------------------------------~ 
!TRACE ON I 
L----------------------------------------------------------------------J 

For a given debug packet, the 'TRACE ON statement takes effect immedi
ately before the execution of the statement specified in the AT state
ment; tracing continues until a TRACE OFF statement is encountered. The 
TRACE ON stays in effect through any level of subprogram call or return. 
However, if a TRACE ON statement is in effect and control is given to a 
program in which the TRACE option was not specified, the statement num
bers in that program are not traced. Trace output is placed in the 
debug output data set. 

This statement rr.ay not appear as the conditional part of a logical IF 
statement. 

TRACE OFF STATEMENT 

The TRACE OFF statement may appear anywhere within a debug packet and 
stops the recording of program flow by staterr.ent number. 

r----------------------------------------------------------------------1 
!General Form I 
(----------------------------------------------------------------------~ 
JTRACE OFF I 
L----------------------------------------------------------------------J 

This statement may not appear as the conditional part of a logical IF 
statement. 

Appendix E: Debug Facility 117 



DISPLAY STATEMENT 

The DISPLAY statement may appear anywhere within a debug packet and 
causes data to be displayed in NAMELIST output format 

r----------------------------------------------------------------------1 
IGeneral Form I 
}----------------------------------------------------------------.,-------·~ 
JDISPLAY !is:!;: I 
I I 
!Where: list is a series of variable or array names, separated by I 
I commas. I 
L----------------------------------------------------------------------J 

The DISPLAY statement eliminates the need for FORMAT or NAMELIST and 
WRITE statements to display the results of a debugging operation. The 
data is placed in the debug output data set. 

The effect of a DISPLAY list statement is the same as the following 
FORTRAN IV source language statements: 

NAMELIST /name/list 
WRITE (n, name)--- --

where: 
name is the same in both statements. Note that subscripted 
variables or dummy arguments may not appear in the list. 

This statement may not appear as the conditional part of a logical IF 
statement. 

DEBUG PACKET PROGRAMMING EXAMPLES 

The following examples show the use of a debug packet to test the 
operation of a program. 

~~mple_1: 

INTEGER SOLON, GFAR, EWELL 

10 SOLON = GFAR * SQRT (EWELL) 
11 IF (SOLON) 40, SO, 60 

DEBUG UNIT (3) 
AT 11 
DISPLAY GFAR, SOLON, EWELL 
END 

In example 1, the values of SOLON, GFAR, and EWELL are to be examined 
as they were at the completion of the arithmetic operation in statement 
10. Therefore, the statement number entered in the AT statement is 11. 

118 



The debugging Qferation indicated is carried out just before execu
tion of statement 11 If statement number 10 is entered in the AT 
statement, the values of SOLON, GFAR, and EWELL are displayed as they 
were before execution of statement 10. 

DIMENSION STOCK(1000),0UT(1000) 

DO 30 I = 1, 1000 
25 STOCK (I) = STCCK (I) - OUT (I) 
30 CONTINUE 
35 A = B + C 

DEBUG UNIT (3) 
AT 35 
DISPLAY STOCK 
END 

In example 2, all of the values of STOCK are to be displayed. 
statement 35 is encountered, the debugging operation designated in 
debug packet is executed. The value of STOCK at the completion of 
DO loop is displayed. 

When 
the 
the 

Note: If the AT statement indicated statement 25 as the point of execu
tion for the debugging operation, the value of STOCK is displayed for 
each iteration of the DO loop. 

Exam:12le 3: 

10 A 1.5 
12 L = 1 
15 B = A + 1. 5 
20 DO 22 I = 1,5 

22 CONTINUE 
25 C = B + 3.16 
30 D = C/2 

STOP 

DEBUG UNIT (3), TRACE 
c DEBUG PACKET NUMBER 1 

AT 10 
TRACE ON 

c DEBUG PACKET NUMBER 2 
AT 20 
TRACE OFF 
DO 35 I = 1,3 

35 CONTINUE 
TRACE ON 

c DEBUG PACKET NUMBER 3 
AT 30 
TRACE OFF 
END 

Appendix E: Debug Facility 119 



When statement 10 is encountered, tracing begins as indicated by 
debug packet 1. When statement 20 is encountered, tracing stops as 
indicated by the TRACE OFF statement in debug packet 2 and no tracing 
occurs during the execution of the statements within this packet. Trac
ing resumes before leaving debug packet 2 When statement 30 is encoun
tered, debug packet 3 is executed, and causes tracing to stop. 

In this example, all trace information is placed in the data set 
associated with data set reference number 3. This data set contains 
trace information for the following statement numbers: 10, 12, 15, 20, 
22, 22, 22, 22, 22, 25. Note that statement numbers 35 and 30 do not 
appear. 

120 



APPENDIX F: FORTRAN IV FEATURES NOT IN BASIC FORTRAN IV 

The following features in FORTRAN IV are not in Basic FORTRAN IV: 

ASSIGN 
BLOCK DATA 
Labeled COMMON 
COMPLEX 
DATA 
Debug Facility 
More than three dimensions 
Object-time dimensions 
Object-time FORMAT specifications 
Assigned GO TO 
Logical IF 
LOGICAL 
PRINT b, list 
PUNCH E, IIst 
READ b; list-
END and ERR-parameters in a READ 
Generalized Type statement (But note that DOUBLE PRECISION is 

provided as an explicit type.) 
IMPLICIT 
Call by name 
Literal as argument of CALL 
ENTRY 
RETURNi Ci not a blank) 
NAMELIST 
PAUSE with literal 
G, z, and L format codes 
Complex, logical, literal, and hexadecimal constants 
Generalized subscript form 

The following in-line subprograms in FORTRAN IV are not in Basic FOR
TRAN IV: 

REAL 
AIMAG 
DCMPLX 
CMPLX 
I::CCNJG 
CONJG 
HFIX 
CABS 
CDABS 

INT 
AINT 
I DINT 

The following out-of-line subprograms in FORTRAN IV are not in Basic 
FORTRAN IV: 

CEXP DARSIN 
CD EXP ARCOS DAR COS 
CLOG 'IAN DTAN 
CD LOG COT AN DCOTAN 
CSIN SINH DSINH 
CDS IN COSH DCOSH 
ccos ERF DERF 
CDC OS 
CSQRT ERFC DE RFC 
CD SQRT GAMMA DGAMrt.A 
DATAN2 ALGAMA DLGAMA 

Appendix F: FORTRAN IV Features Not In Basic FORTRAN IV 121 



Direct Access Input/Output Statements 
Double Exponentiation 
END and ERR parameters in READ 
ENTRY 
Generalized subscripts 
Hexadecimal constant 
IMPLICIT 
Initial data values in type statement 
Length of variables as part of type specifications 
Literal enclosed in apostrophes 
Mixed mode expressions 
More than 3 dimensions in an array 
NAMELIST 
PAUSE 'message' 
PRINT 
PUNCH 
REAP f2r!J:2:!:: 
T and Z format codes 
RETURN i 

122 



&END statement 48 

A format code 57 
ABS function 105 
absolute value functions 
actual arguments 85,91 
adjustable dimensions 96 
AIMAG function 106 
AINT tunction 105 
ALGAMA function 105 
ALOG function 104 
ALOGlO function 104 
AMAXO function 105 
AMAX1 function 105 
AMINO function 106 
AMINl function 106 
AMOD function 105 
ARCOS function 104 
arccosine functions 
arcsine functions 
arctangent functions 

104 
104 

104 

105 

arguments in function or subroutine 
subprograms 91 

arithmetic assignment statements 
arithmetic expressions 

defined 20 
order of computation 

arithmetic IF 34 
arithmetic operators 
arrays 

21 

arrangement of 19 
dimension information 
general 18 

18 type specification 
ARSIN function 104 
ASSIGN and assigned GO TO 
assignment statements 28 
associated variable 63 

22 

71 

32 

AT debug packet identification 
ATAN function 104 
ATAN2 function 104 

BACKSPACE statement 62 
Basic FORTRAN· IV 121 
basic real constant 11 
blank common 77 
blank record 51 
blanks 9 
BLOCK DATA subprogram 99 
bytes (storage locations) 72 

CABS function 105 
call by name/location 92 
CALL statement 90 
carriage control characters 51 
ccos function 104 
CDABS function 105 
cocos function 104 
CDEXP function 104 

28 

117 

CDLOG function 104 
CDSIN function 104 
CDSQRT function 104 
CEXP function 104 
character set 100 
character string 13,50,57 
CLOG function 104 
CMPLX function 106 
coding form 9 
coding statements 9 
comments 9 
common logarithm 104 
COMMON statement 76 
compilers 8 
completed error function 105 
COMPLEX statement 74 
complex values 

constants 12 
in arithmetic assignment statement 28 
in FORMAT statement 54 
length specification 72 
type specification 74 

computed GO TO 32 
CONJG function 106 
constants 10 
continuation statements 9 
CONTINUE statement 39 
control statements 31 
conversion rules 

in arithmetic assignment statements 30 
in FORMAT statements 53-60 

cos function 104 
COSH function 105 
COTAN function 104 
CSIN function 104 
CSQRT function 104 

D format code 53 
DABS function 105 
DARCOS function 104 
DARSIN function 104 
DATA initialization statement 69 

in BLOCK DATA subprogram 99 
data set reference number 42 
DATAN function 104 
DATAN2 function 104 
DBLE function 105 
DCMPLX function 105 
DCONJG function 105 
DCOS function 104 
DCOSH function 105 
DCOTAN function 104 
debug facility 114 
DEBUG statement 116 
DEFINE FILE statement 62 
DERF function 105 
DERFC function 105 
DEXP function 104 
DFLOAT function 105 

Index 123 



DGAMMA function 105 
DIM function 105 
DIMENSION statement 71 

object-time dimensions 96 
direct access input/output statements 62 

programming considerations 64 
DISPLAY statement 118 
DLGAMA function 105 
DLOG function 104 
DLOG10 function 104 
DMAXl function 105 
DMINl function 105 
DMOD function 105 
DO statement 36 

programming considerations 38 
double precision number (see real numbers) 
DOUBLE PRECISION statement 75 
DSIGN function 105 
DSIN function 104 
DSINH function 105 
DSQRT function 104 
DTAN function 104 
DTANH function 105 
dummy arguments 85,89,91 
DUMP subprogram 107 
DVCHK subprogram 107 

E format code 53 
elements of the language 8 
embedded blanks 9 
END FILE statement 61 
END parameter in READ 44 
END statement 

in FUNCTION subprogram 88 
in main program 41 
in NAMELIST (&END) 48 

ENTRY statement 93 
equivalence groups 80,82 
EQUIVALENCE statement 80 
ERF function 105 
ERFC function 105 
ERR parameter in READ 44,65 
error functions 105 
executable statement, definition 8 
EXIT subprogram 107 
EXP function 104 
explicit specification 17 
explicit specification statements 74 
exponential functions 104 
exponentiation 22 
expressions 

arithmetic 20 
defined 20 
logical 24 

extended range of DO 38 
EXTERNAL statement 95 

F format code 53 
field descriptors 50 
FIND statement 67 
fix functions 106 
FLOAT function 106 
float functions 106 
FORMAT statement 

124 

form 50 
purpose 51 
use at object time 60 

formatted READ statement 45 
formatted records 43 
formatted WRITE statement 46 
FORTRAN coding form 9 
FORTRAN-supplied subprograms 103 
function definition 84 
function reference 84 
FUNCTION subprogram 86 

G format code 54 
GAMMA function 105 
gamma functions 105 
GO TO statement 

assigned 32 
computed 32 
unconditional 31 

group format specification 60 

H format code 58 
hexadecimal values 

constants 14 
transmitting 53 

HFIX function 106 
22 hierarchy of operations 

hyperbolic cosine function 
hyperbolic sine function 
hyperbolic tangent function 

I format code 
!ABS function 
!DIM function 
!DINT function 
IF statement 

52 
105 
106 

105 

34 arithmetic 
logical 35 

IFIX function 106 
implicit specification 
IMPLICIT statement 72 
implied DO 4 2 
index 123 
!NIT option of DEBUG 
input/output statements 
INT function 105 
integers 

constants 10 
I format code 52 
length specification 
magnitude 10 

17 

105 
105 

105 

116 
42 

72 

type specification 74 
use in arithmetic assignment 
statements 28 

INTEGER statement 
I/O list 

defined 42 
omitted 51 

!SIGN function 

74 

106 

L format code 57 
labeled common 77 
language elements 8 
largest value functions 105 
length specification 16 
library subprograms 103 
literals 

constants 13 
data in FORMAT statements 58 

logical assignment statements 28 
logical expressions 24 



logical IF statement 35 
logical operators 25 
LOGICAL statement 74 
logical values 

constants 12 
type specification 74 
use in arithmetic assignment 

statements 28 
use in logical expressions 24 

logical variables 16 
loop control 36 
log-gamma functions 105 

mathematical subprograms 104 
MAXO function 105 
MAX1 function 105 
MINO function 106 
MIN1 function 106 
mixed mode expressions 30 
MOD function 105 
mode (see type) 
modular arithmetic functions 105 

NAMELIST statement 47 
natural logarithm 104 
nested DO loops 38 
numeric format codes 54 

object-time dimensions 96 
object-time format 60 
operators 

arithmetic 21 
logical 25 
order of computation 22 
relational 24 

order 
of arithmetic computation 22 
of common blocks 78 
of equivalence groups 80 
of logical expression computation 
of source program statements 9 

OVERFL subprogram 107 

P scale factor 56 
parentheses 

in arithmetic expressions 22 
in logical expressions 27 
in FORMAT statement 51 

PAUSE statement 40 
PDUMP subprogram 107 
positive difference functions 106 
predefined specifications 17 
primary 

arithmetic 21 
logical 24 

PRINT b, list 102 
PRINT statement 102 
printer control characters 51 
program unit, definition 8 
PUNCH Q1 list 101 
PUNCH statement 101 

range of DO 
READ b, list 
READ statement 

36,38 
101 

direct access 65 
sequential 44,101 

REAL function 106 

26 

real numbers 
constants 11 
in D, E, and F format codes 53 
length specification 72 
magnitude 11 
precision 11 
type specification 73 
use in arithmetic assignment 
statements 28 

REAL statement 74 
record number 62 
records 

formatted 43 
length of 63 
unformatted 43 

reference by location 92 
reference by value 92 
relational operators 24 
RETURN statement 

in FUNCTION subprogram 88 
in main program 90 
in SUBROUTINE subprogram 90 

REWIND statement 61 

scale factor 56 
sequential input/output 44 
service subprograms 107 
SIGN function 106 
sign transfer functions 106 
SIN function 105 
SINH function 105 
size specification, array 18 
SLITE subprogram 107 
SLITET subprogram 107 
smallest value functions 106 
SNGL function 106 
source program characters 100 
special characters 100 
specification statements 71 
SQRT function 104 
square root functions 104 
statement 

categories 8 
function definitions 84 
numbers 9 
order 9 
source 8 

STOP statement 41 
storage locations (bytes) 72 

for literals 13 
SUBCHK debug option 116 
subprograms 

arguments 91 
BLOCK DATA 99 
FUNCTION 86 
general 83-99 
multiple entry 93 
naming 83 

subprogram statements 83 
SUBROUTINE subprogram 88 
subscripts 19 
SUBTRACE debug option 116 
symbolic names 14 

T format code 
TAN function 
TANH function 
termination of 

59 
104 

105 
program 41 

Index 125 



TRACE OFF statement 117 
TRACE ON statement 117 
TRACE debug option 116 
transfer of sign functions 106 
trigonometric cosine functions 104 
trigonometric cotangent functions 104 
trigonometric sine functions 104 
trigonometric tangent functions 104 
truncation functions 105 
truth values 13,25 
type specification 

of arithmetic expressions 23 
of arrays 18 
of FUNCTION subprogram 83 
of statement function definitions 83 
of variables 16 

type statement 74 
type statements 71 

unary minus 22 
unconditional GO TO 31 
unformatted READ statement 

126 

45 

unformatted records 43 
unformatted WRITE statement 47 
UNIT debug option 116 
USA FORTRAN IV 7,122 

variable format statements 60 
variables 

arrangement in common 79 
arrangement in equivalence groups 
general 15 
length specification 16 
names 15 
type specification 16 

WRITE statement 
direct access 66 
sequential 46 

X format code 59 

z format code 53 

82 





C28-6515-7 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

( 



Technical Newsletter File Number S360-25 

Re: Form No. C28-6515-7 

This Newsletter No. N28-0251 

Dare March 3, 1969 

IBM System/360 
FORTRAN IV Language 

Previous Newsletter Nos. 

This Technical Newsletter amends the IBM Systems Reference Library 
publication IBM System/360 FORTRAN IV Language, Form C28-6515-7. 

In the referenced publication, replace the page listed below with 
the corresponding page attached to this newsletter. 

Subject of Amendment 

86 Function Subprograms 

Changes to text are indicated by a vertical line to the left of 
the change. 

File this cover letter at the back of the publication as confirm
ation that all changes have been received and incorporated into 
the publication. 

IBM Corporation, Programming Publications, 1271 Avenue of the Americas, New York, N.Y. 10020 

PRINTED IN U.S.A. 

None 




