File No. S360-25

Form C28-6603-2 rorm c28-6603-2 | (0§
Page Revised 11/15/68 by TNL N28-0586

Systems Reference Library

IBM Systemn/360 Operating System
| Basic FORTRAN IV (E) Programmer’'s Guide

Program Number 360S-F0-092

This publication describes how to compile, link
edit, and execute a FORTRAN IV (E) program. The
text also describes the output of compilation and
execution and how to make optimal use of the
compiler and a load module.

&
#
3
E
g
B

Third Edition

This publication is a major revision of, and makes obsolete, Form
C28-6603-1 and Technical Newsletters N28-0211, N28-0233, and N28-0235.
New material explains how FORTRAN IV handles exponent overflow and
underflow in floating-point registers. There are also additions and
deletions among input/output messages. Changes to the text are indi-
cated by a vertical line to the left of the change; revised illustra-
tions are denoted by a bullet () to the left of the caption.

Sspecifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Comments may be addressed to IBM Corporation, Programming Publications,
1271 Avenue of the Americas, New York, N. Y. 10020.

International Business Machines Corporation 1966

The purpose of the Programmer's Guide is
to enable programmers to compile, 1link
edit, and execute FORTRAN IV (E) programs
under control of IBM System/360 Operating
System. The FORTRAN IV (E) language is
described in the publication IBM System/360
Basic FORTRAN IV Language, Form C28-6629, a
corequisite to this publication.

The Programmer's Guide is
fulfill its purpose for
programmers:

organized to
three groups of

1. Programmers who wish to use the cata-
loged procedures as provided by IBM
need read only the "Introduction" and
"Job Control Languaoce" sections to
understand the job control statements,
and the "Job Processing" section to
use cataloged procedures for compil-
ing, link editing, and executing
FORTRAN programs. The "Programming
Considerations" and "System Output"
sections are recommended for program-
mers who want to wuse the FORTRAN
language more effectively.

2. Programmers who, in addition, are con-
cerned with creating and retrieving
data sets, optimizing the use of I/0
devices, or temporarily modifying IBM-
supplied cataloged procedures should
read the entire Programmer's Guide.

3. Programmers concerned with making
extensive use of the operating system
facilities, such as writing their own
cataloged procedures, modifying the
FORTRAN library, or calculating region
sizes for operating in a multiprogram-
ming environment with a variable num-
ber of tasks, should also read the
entire Programmer's Guide in conjunc-
tion with the following publications,
as they are referred to:

IBM System/360 Operating System: Sys-
tem Programmer's Guide, Form C28-6550

IBM System/360 Operating System: Util-
ities, Form C28-6586

IBM System/360: FORTRAN
Subprograms, Form C28-6596

IV Library

IBM System/ 360 Operating System:
Supervisor and Data Management Servi-
ces, Form C28-66U6

IBM System/360 Operating System: Job

PREFACE

IBM System/360 Operating System: Stcr-
age Estimates, Form C28-6551

IBM System/360 Operating System: Link-
age Editor, Form C28-6538

IBM System/360 Operating System: Sys-
tem Generation, Form C28-6554.
IEM System/360 Operating System:

Operator's Guide, Form C28-6540

IBM System/360 Operating System: Mes-
sages and Codes, Form C28-6631

IBM System/360 Operating System:
Programmer's Guide to Debugging, Form
C28-6670

This contains

that:

publication appendixes

¢ Give several examples of executing load
modules.

e Describe the preparation of assembler
language subprograms for use with a
main program written in FORTRAN. To
understand this appendix, these publi-
cations are prerequisite:

IBM System/360 Operating System: Assem-—
bler Language, Form C28-6514

IBM System/360 Operating System: Assem-—

bler (E) Programmer's Guide, Form
C28-6595 or IBM System/360 Operating
System: Assembler (F) Programmer's

Guide, Form C26-3756

e Describe the diagnostic messages
duced during compilation and
module execution.

pro-
load

For easier reading, the titles of publi-
cations referred to in this publication are
abbreviated. For example, references to
the publication IBM _System/360 Operating
System: Linkage Editor are abbreviated to

"Linkage Editor publication."

Control Language, Form C28-6539

INTRODUCTION e e e e
Job and Job Step Relatlonshlp
Data Sets ¢ « ¢ ¢ ¢ ¢« « o o .

Indexing Data Sets

Data Set Labels.

Generation Data Sets . . .
FORTRAN Processing. . .

Processing a FORTRAN Program

Efficient Processing . . .
Output of Processing . . .
Data Set Organization. . .
Cataloged Procedures . . .

JOB CONTROL LANGUAGE . . . + « .
Job Management . . . 4 o« o .« o .

Coding Job Control Statements. .
General Structure of Control
Statements
Name Field
Operation Field.
Operand Field.
Comments Field
Continuing Control Statements
Notation for Defining Control
Statements

Job Statement. . . . « ¢ ¢ . . .
Name Field. « . . .
Operand Field

Job Accounting Information
Programmer's Name.
Control Statement Messages
Conditions for Terminating

Job

Assigning Job Priority (PRTY). .

Requesting a Message Class
(MSGCLASS) e & o « o « o «
Specifying Main Storage

Requirements for a Job (REGION)

EXEC Statement
Name Field. « .« . . .
Operand Field

Positional Parameter . . .
Keyword Parameters
Accounting Information

Setting Job Step Time L1m1ts

(TIME). . « « ¢« & « &« « .
Specifying Main Storage

Requirements for a Job Step

(REGION) e & v & o o o o =

Data Definition (DD) Statement .
Name Field. « . « « ¢« & « « .
Operand Field

Unit Record Parameters . .

Routing a Data Set to an Output

Stream (SYsSOUT)

Retrieving Previously Created

Data Sets . « « « ¢« « o

-

14
14
14
15
15
15
15
15

16

24

24

26
26

28

28

Delimiter Statement. . . « « « .
JOB PROCESSING v 2 o o « o o« o «

Using Cataloged Procedures . . .
Compile. . . o« o e
Compile and L1nk Edlt. .- .
Link Edit and Execute. .
Compile, Link Edit,

Storage Locations and Bytes. . .

Compiler Processing. « .
Compiler Name. . . « « « =«
Compiler ddnames
Compiler Device Classes. .
Compiler Options
Multiple Compilation

Job Step.

Linkage Editor Processing. . . .
Linkage Editor Name. . . .
Linkage Editor Input
Linkage Editor ddnames and

Device ClasseS. . . « + .
Additional Input
Linkage Editor Priority. .

Multiple Link Editing Within

Step. . . . e e e e e

Other Llnkage Edltor Control

Statements.
Options for Llnkage Edltor
Processing. « . .« « « . .

Load Module Execution.
Program Name « .« .
Execution ddnames.

Retrieving Data Sets Written

Within a

CONTENTS

and Output.

[

with Varying FORTRAN Sequence

Numbers « « « « « « « « =

.

and Execute.

-

REWIND and BACKSPACE Statements.

Error Message Data Set . .
Execution Device Classes .

CREATING DATA SETS o« « « « « o =
Data Set Name. . . « .« .« « « <«
Specifying I/0 Devices
Specifying Volumes

Specifying Space on Direct
VOolumes . o o ¢ o o o o o « o

Label Information. . . «
Disposition of a Data Set. . . .

Writing a Unit Record Data
Intermediate Device

Access

31

35
35
35
35
37
39
40
41
41
42
43
by
45
45
46

46
46

us8
49
49
49
50
51
52

52

53
54

55

55

DCB Parameter. .« « « o o o o o« o « .
Referring to Previously Spe01f1ed
DCB Information. « « « « o« o o« o «
Density and Conversion.
Record FOrmat « « o« o o o« o o o = o«
Record Length, Buffer Length, Block
Length, and Number of Buffers for
Sequential Data Sets
FORTRAN Records and Loglcal
Records for Sequential Data
SetS. 4 4 v i 4 e e e e e e ..
BACKSPACE Operations
Record Length, Buffer Length, and
Number of Buffers for Direct
Access Data Sets
DCB Ranges and Assumptions.

CATALOGED PROCEDURES &+ v o « o o « o =
Compile. . . .« . e e e e .
Compile and Llnk Edlt e e e e
Link Edit and Execute. . e e e
Compile, Link Edit, and Execute.

User and Modified Cataloged Procedures

Overriding Cataloged Procedures. . . .
Overriding Parameters in the
EXEC Statement. . . e e e .

Overriding and Addlnq DD
Statements.

e e e e @ e e e e

PROGRAMMING CONSIDERATIONS

Minimum System Requirements for the
FORTRAN Compiler. . . . « « ¢ « « « .

Source Program Considerations.
Initialization « .+ . . .
Coding the Source Program. . . .
Arithmetic Statements.
IF Statement . .« . . ¢« « ¢« o o .
DO Loop Considerations
READ/WRITE Statements.
Program Structure. . . . « . .
Statement Numbers and Names. « .
Use of DUMP and PDUMP.
Direct Access Programming. . . .
Direct Access Programming

Considerations.
How Arguments Are Passed

DD Statement Considerations.
Channel Optimization
I/0 Device Optimization.
Direct-Access Space Optimization
Priority Scheduler
Considerations for Cataloged
ProceduresS. . « ¢ o« « o « o o

Library Considerations
Compiler Restrictions. . . « « « .+ < .

Linkage Editor Restrictions.

55
55

56

56

57
62

68
69
69

73

80
80
80
81
82
83
83

84

FORTRAN Load Module Restrictions . . .
SYSTEM OUTPUT. v ¢ o o 2 o o o « o o o

Compiler Output. « « « « & o o o o o &
Source Listing . « . .« <
Storage Map. « « « . « e e .
Object Module Card Deck. o o o .
Source Module Diagnostics. . . .

Linkage Editor Output.
Module Map « « « o « o o o o o &
Cross-Reference List

Load Module Output .« « « « « « o« « o &
Error Code Diagnostics
Program Interrupt Messages . . .
ABEND DUump . « « « « « «
Operator MessagesS. .« . « « « « .

APPENDIX A: EXAMPLES OF JOB
PROCESSING. « o o 2 o o o o o « o o =«

Example 1. . ¢ ¢« v ¢ ¢ ¢ « o o o

Example 2. ¢ ¢ ¢ ¢ ¢ o ¢« o o o
Example 3. < . . .
Example 4. . . . ¢ ¢ ¢ & o « o .

APPENDIX B: ASSEMBLER LANGUAGE
SUBPROGRAMS « &« &« « ¢ o o o o o o« o &

Subroutine References.
Argument List. « « & &+ &
SAVe AYCaA. « « o « o o o o o o
Calling Sequence . . « « « « « &

Coding the Assembler Language

SUbprograme « o« « o o o o o e o o o .
Coding a Lowest Level Assembler
Language Subprogram
Sharing Data in COMMON

Higher Level Assembly Language
Subprogram. « « « <« ¢ ¢ ¢ o o .
In-Line Argument List.

Getting Arguments From the Argument
LiSte o o o o o ¢ o o o o ¢ o o o o @

APPENDIX C: STORAGE MAP FOR LOAD
MODULE EXECUTION. e ¢ v o o o « o o

APPENDIX D: SYSTEM DIAGNOSTICS. . . .

Compiler Diagnostic Messages

Compiler Informative Messages. .
Compiler Error/Warning Messages.

Load Module Execution Diagnostic

MESSAgEeS. « o o + o o 2 o o o o o o .
Operator MessagesS. . « « « o« « .
Program Interrupt Messages . . .
Execution Error Messages

INDEXe o o o o o ¢ o o« o o o o o o o o

.101

.101
.101

.101
.102

.103

.105
.106

.106
.106
-106

.115
.115
.115
116

.119

Rocket Firing Job.
Linkage Editor Execution .
Figure 3. Typical FORTRAN Processing
Figure 4. Job Control Statement

Formats « ¢ ¢ o ¢« ¢ ¢ ¢« ¢ o & 4 o o .

Figure 1.
Figure 2.

Figure 5 JOB Statement.
Figure 6. Sample JOB Statements. . .
Figure 7 EXEC Statement
Figure 8. Sample EXEC Statements . .
Figure 9. Compiler and Linkage
sditor Options. « e .
Figure 10. Data Deflnltlon (DD)
Statement
Figure 11. DD Statement Parameters. .
Figure 12. Examples of Unit Record DD
Statements. « < ¢ ¢ ¢ 4 e e e e e e .
Figure 13. Retrieving Previously
Created Data Sets . . « « « « « « . .

Delimiter Statement. . . .

Invoking the Cataloged
Procedure FORTEC. « &+ 4 « o o « o o «

Figure 16. Compiling a Single Source
Module. . v ¢ v 4 & ¢ ¢« o o o o o o o

Figure 17. Compiling Several Source
MOAULES &« v &« ¢ ¢ o o o o o o o o o o

Figure 18. 1Invoking the Cataloged
Procedure FORTECL . . .

Figure 19.. Compiling and Llnk Edltlng
Several Source Modules. . .

Figure 20. Compiling and Llnk Edltlng
a Source Module Residing in a
Cataloged Data Set. « « « « « . . .

Figure 21. Invoking the Cataloged
Procedure FORTELG . . « e e e

Figure 22. Link Edit and Execute. - .

Figure 23. Link Edit and Execute
(Object Modules in a Cataloged Data
Set)e 4 4 4 e e e e e e e e e e e

Figure 24. Invoking the Cataloged
Procedure FORTECLG. « e .

Figure 25. Single Compile, L1nk Edlt,
and Execute e e e .

Figure 14.
Figure 15.

Figure 26. Batched Compile, Link
Edit, and Execute . .« « ¢ o o o o o «
Figure 27. Blocked Records.
Figure 28. Compiler Options « ..
Figure 29. Multiple Compllatlon
Within a Job Step
Figure 30. Linkage Editor Input and

output. « « ¢ ¢ ¢ 4 ¢ 4 @ e e e e e .
Figure 31. Linkage Editor Example
Using INCLUDE and LIBRARY Statements.
Figure 32. Tape Output for Several
Data Sets Using Same Data Set
Reference Number. . . . o o o o .
Figure 33. Examples of DD Statements
for Creating Data SetS. « « « « « « &
Figure 34. DD Parameters for Creating
Data Sets . « ¢ ¢ ¢ ¢« ¢ ¢ ¢« e 0 e e .
Figure 35. FORTRAN Record (FORMAT
Control) Fixed-Length Specification .

25
27

28

29
31

32

32

32

33

33

33

34

34

34

34

34

35

38

40

42

by

48

50

51

57

ILLUSTRATIONS

Figure 36. FORTRAN Record (FORMAT
control) With Fixed-Length
Specification and FORTRAN Record
Length Less Than BLKSIZE.

Figure 37. FORTRAN Record (FORMAT
control) Variable-Length

Specification e e e e e .

Figure 38. TFORTRAN Record (FORMAT
Control) With Variable-Length
Specification and the FORTRAN Record
Length Less Than (LRECL-4).

Figure 39. FORTRAN Record (FORMAT
Control) With Undefined Specification
and the FORTRAN Record Length Less
Than BLKSIZE. « &« « « o « o & « e .

Figure 40. Fixed-Length Blocked
Records Written Under FORMAT Control.

Figure 41. Variable-Length Blocked
Records Written Under FORMAT Control.

Figure 47. ©Logical Record (No FORMAT
Control) for Direct Access.

Figure 48. Compile Cataloged
Procedure (FORTEC). - o .
Figure 49. Compile and Link Edlt
Cataloged Procedure (FORTECL)
Figure 50. ©Link Edit and Execute
Cataloged Procedure (FORTELG)

Figure 51. Compile, Link Edit, and
Execute Cataloged Procedure
(FORTECLG) e « o o o o o o « « o « o =

Figure 52. Record Chaining.

Figure 53. Writing a Direct Access
Data Set for the First Time

Figure 54. DD Statement Parameters
for Optimization. « . . . « « <« . . .

Figure 55. Source Module Listing. . .
Figure 56. Storage Map. . . « e e
Figure 57. Object Module Deck
Structure © e e e e e e e
Figure 58. Format of Diagnostic
MESSAgeS. v « o « o o o o o o o o o
Figure 59. Module Map . « « « « « « =«
Figure 60. Linkage Editor

Cross-Reference List. « . .

Figure 61. Input/Output Flow for
Example 1 ¢« « ¢« ¢« ¢« « .« .
Figure 62. Job Control Statements
Example 1 ¢ ¢ ¢ ¢ o o o o o o o « o =
Figure 63. I/O Flow for Example 2 . .
Figure 64. Job Control Statements
Example 2 . ¢ ¢ ¢« 4« ¢ 4 e 4 4 e e . .
Figure 65. I/O Flow for Example 3 . .
Figure 66. Job Control Statements
Example 3 . . ¢ ¢ ¢ ¢ 4 e e e 4 e e
Figure 67. Block Diagram for
Example 4 . . ¢ ¢ ¢ ¢ ¢ ¢ 4 4 e e o
Figure 68. Job Control Statements
Example 4 . . ¢ ¢ v ¢ ¢ 4 4 4 e e o
Figure 69. FORTRAN Coding for
Example 4 . o o v ¢ 4 ¢ 4 4 e e e e

58

58

58

59
59
60
63
65
66
67
68
78

80

81
86
87

87
88

89

91

91
92

93
9u

94
96
97

98

Figure 70. Save Area. . « « « « =
Figure 71. Lowest Level Assembler
SUbprogram. « « « « « o o o o o o
Figure 72. Higher Level Assemkler
Subprogram. « <« < ¢« ¢« ¢ « o o o

TABLES

Table 1. Job Control Statements.
Table 2. Compiler ddnames. . . .
Table 3. Device Class Names. . .
Table 4. Correspondence Between

-

Compiler ddnames and Device Classes

Table 5. Conditions for Multiple
Compilation . « .+« « &« ¢ &« ¢ « o .
Table 6. Linkage Editor ddnames.
Table 7. -Correspondence Between
Linkage Editor ddnames and Device
Classes . ¢ v ¢ ¢ ¢ o o o s « o
Table 8. Load Module ddnames . .

.100

.101

.102

. 37

. 4o
. 42

Figure 73
Figure 74

Example .

Figure 75

In-Line Argument List.

Assembler Subprogram

Load

Storage Map .

Table 9.
Table 10.
Table 11.

Data Set References .
DEN Values for Model 2400 .
Specifications Made by the
FORTRAN Programmer for Record Types

and Blocking.
BLKSIZE Ranges:
Considerations.

Table 12.

Table 13.

Load Module

Default Values.

Table 14.

Source Module Size

Restrictions.
Linkage Registers .

Table 15.
Table 16.
Format.

Dimension and Subscript

.

.

.

-

.

.

-

DCB Parameter

Device

.

Module Execution

-

.103
.104

.105

. 56

. 82
.100

.103

The IBM System/360 Operating System (the
operating system) consists of a control
program and processing programs. The con-
trol program supervises execution of all
processing programs, such as the FORTRAN E
compiler, and all problem programs, such as
a FORTRAN program. Therefore, to execute a
FORTRAN program the programmer must first
communicate with the operating system. The
medium of communication between the pro-
grammer and the operating system is the job
control language.

Job control language statements define
two units of work to the operating system:
the job and the job step. The important
aspect of Jjobs and job steps is that they
are defined by the programmer. He defines
a Jjob to the operating system by using a
JOB statement; he defines a job step by
using the EXEC statement. Another impor-
tant statement is the DD (data definition)
statement, which gives the operating system
information about data used in jobs and job
steps. The sequence of control statements
and any data placed 1in this segquence is
called the input stream. The input stream
can be read by either a card reader or a
tape device.

JOB AND JOB STEP RELATIONSHFIP

When a programmer is given a problem, he
analyzes that problem and defines a precise
problem-solving procedure; that is, he
writes a program or a series of programs.
To the operating system, executing a main
program (and any subprograms it calls) is a
job__step. A job consists of executing one
or more job steps.

At its simplest, a job consists of one
job step. For example, executing a FORTRAN
main program to invert a matrix is a job
consisting of one job step.

If the problem is complex, one Jjob may
consist of a series of job steps. For
example, a programmer 1is given a tape

raw data from a rocket firing:
raw data into a
Three steps

containing
he must transform this
series of graphs and reports.
may be defined:

1. Comparing the raw data to projected
data and eliminatino errors which
arise Dbecause of intermittent errors
in gauges and transmission facilities.

2. Using the refined data and a set of
parameters as input to a set of equa-

INTRODUCTION

tions, which develop values for the
production of graphs and reports.

3. Using the wvalues to plot the graphs
and print the reports.

In this example, each step can be a
separate job with one job step in each job.
However, designating several related job
steps as one job is more efficient: pro-
cessing time is decreased because only one
job is defined, and interdependence of job
steps may be stated. (The interdependence
of jobs cannot be stated.) 1In the rocket
firing example, each step may be defined as
a job step within one job that encompasses
all processing. Figure 1 illustrates the
rocket firing job with three job steps.

DATA SETS

In Figure 1, two collections of input
data (raw data and projected data) and one
collection of output data (refined data)
are used in job step 1. In the operating
system, a collection of data that can be
named by the programmer is called a data
set. A data set is defined to the operat-
ing system by a DD statement.

Raw
Data

Job Step 1:

Projected
Refine Data

Data

Refined
Data

Job Step 2:
Develop Values

Parameters

Job Step 3:
Generate
Graphs and
Reports

Graphs
and
Reports

Figure 1. Rocket Firing Job

Introduction 9

A data set resides on a volume(s), which
is an external storage unit accessible to
an input/output device. (For example, a
volume may be a reel of tape or a disk
pack.)

Several I1/0 devices grouped together and
given a single name when the system is
generated constitute a device class. (For
example, a device class can consist of all
the tape devices 1in the installation;
another can consist of the printer, a
direct access device, and a tape device.)

Indexing Data Sets

The name of a data set, information
identifying the volume(s) on which the data
set resides, device type, and the position
of the data set on the volume may be placed

in an index to help the control program
find the data set. This index, which is
part of an index structure called the

catalog, resides on direct access volumes
with the operating system. Any data set
whose name and volume identification are
placed in this index is called a cataloged
data set.

Furthermore, a hierarchy of indexes may
be devised to classify data sets and make
names for data sets unique. For example,
an installation may divide its cataloged
data sets into four ogroups: SCIENCE,
ENGRNG, ACCNTS, and INVNTRY. In turn, each
of these groups may be subdivided: the
SCIENCE group may be subdivided into MATH,

PHYSICS, CHEM, and BIOLOGY; MATH may con-
tain volume identification for the data
sets ALGEBRA, CALCULUS, and BOOL. To find

the data set BOOL, the programmer specifies .

all indexes beginning with +the 1largest
group -- SCIENCE; then the next largest
group, - MATH; finally, the data set BOOL.

The complete identification needed to find
the data set BOOL is SCIENCE.MATH.BOOL.

Data set names are of two classes. An
unqualified name is a data set name or an
index name not preceded by an index name.
A qualified name is a data set name or
index name preceded by index names rep-
resenting index levels; for example, in the
preceding text, the qualified name of the
data set BOOL is SCIENCE.MATH.BOOL.

Before
data set,
the index

using a qualified name to name a
the programmer must be sure that

levels specified in a qualified
name are placed in the catalog. Index
levels are placed in the catalog by a
utility program. For more information, see
the section "Modifying System Control Data"
in the Utilities publication or
"Maintaining the Catalog and the Volume

10

Table of Contents" in the
Programmer ‘s Guide.

Systems

Data Set Labels

Information such as record format, buf-
fer length, density, creation date, expira-
tion date, and an identifier needed to read
the data set are stored in the operating
system data set labels. If a data set 1is
cataloged and standard labels are specified

when the data set is created, the informa-
tion specified in the DD statement to
subsequently retrieve the data set is sub-

stantially reduced. In addition to the
data set name, the only information needed
to retrieve the data set 1is the current
status of the data set (new, old, etc.)
and the status the data set is to have when

the job step is completed (deleted, kept,
passed, etc.).
Generation Data Sets

Data set identification may also be

based upon the time of generation. 1In the
operating system, a collection of succes-
sive historically related data sets is a
generation data group. Each of the data
sets is a generation data set. A genera-
tion number 1is attached to the data group
name to refer to a particular generation.
The most recent generation is 0; the gener-
ation previous to 0 is -1; the generation
previous to -1 is -2; etc. An index
describing a generation data group mrust
exist in the catalog. The index is created
by a data set utility program.

For example, a data group named WEATHER

might be wused for weather reporting and
forecasting. The generations for the gen-
eration data group WEATHER are:

WEATHER(0)

WEATHER (-1)

WEATHER(-2)

When a new generation 1is created, it is

where n is an
For example, after

called generation (+n),
integer greater than 0.

a job step has created WEATHER (+1), the
operating system changes its name to
WEATHER(0) at the end of the job. The data

set that was WEATHER(0) at the beginning of
the job becomes WEATHER(-1).

If more than one generation is created
in a job, the first generation created is

generation (+1); the next generation
created is generation (+2); and so on

FORTRAN PROCESSING

In the operating system environment, a
source program is called a source module; a
compiled source module is an object module
(object program). The object module cannot
be executed until it is placed in a format
suitable for 1loading, and all external
references to subprograms are resolved.
This is done by an IBM supplied program --
the linkage editor.

The executable output of the 1linkage
editor 1is a load module. However, the
input to the linkage editor may be either

or other 1load modules.
Linkage editor execution can be expanded
further: several object modules and/or
load modules may be combined to form one
load module, The 1linkage editor inserts
the requested library functions and subrou-
tines into the load module. For example,
if the compiled object module TEST calls
subroutines ALPHA and BETA and the 1library
function SIN, the linkage editor combines
the object module TEST and the previously
link edited 1load modules ALPHA, BETA, and
SIN into one load module. This process is
illustrated in Figure 2.

object modules

A program written in FORTRAN may call
subprograms written in the assembler lan-
guage as 1long as the assembler subprogram

uses the 1linkage conventions shown in
Appendix B: "Assembler Language Subpro-
grams."” The linkage editor resolves the
references between assembler and FORTRAN
modules.
ALPHA
SIN

TEST BETA

Linkage

Editor

TEST

Figure 2. Linkage Editor Execution

Processing a FORTRAN Program

After an object module is
the 1linkage editor, the resulting load
module may be executed. Therefore, to
compile, 1link edit, and execute a FORTRAN
program, three steps are necessary:

processed by

1. Compile the FORTRAN source module and
any FORTRAN subprograms not compiled
previously to produce one or more
object modules,

2. Link edit the resulting object
module (s) and any modules needed to
resolve external references to form a
load module.

3. Execute the load module.

Figure 3 illustrates the problem program
processing; FORTRAN subprograms and
assembler subprograms (object modules) are
used to resolve external references.

Assembler

S e

Subprogram
Main Program Assembler
Subprogram
Job Stepl:
Compile
Main Program Assemble
and Subprograms
Subprograms
Object Object
(Load Modules Modules
Modules)
Job Step 2:
Linkage
Editor
Load
Module
| Job Step: 3
Input > Execute Output
Load Module
Output
Input i

Figure 3. Typical FORTRAN Processing

Introduction 11

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

Efficient Processing

Each compilation, each 1linkage eaitor
execution, and each load module execution
may be defined as separate jobs, but combi-
ning the separate jobs into one job is more
efficient.

Assume that the source module MAIN is to
be compiled and executed. MAIN requires
the services of two subprograms, SUB1 and
SUB2, and neither subprogram is compiled.
Since the compiler can perform batched
compilations, all the compilations can be
combined in one job step., Three job steps
are necessary to perform the job:

JOB: Compile, link edit, and execute
JOB STEP 1: Compile MAIN, SUB1, SUB2
JOB STEP 2: Link edit the modules
JOB STEP 3: Execute load module MAIN

Ooutput of Processing

The compiler, linkage editor, and other
components of the operating system generate
diagnostic output which can be used to
debug programs. BAmong these are 1listings,
module maps, and diagnostic messages.

Data Set Organization

A data set 1is a named collection of

data. Several methods are available for
internally organizing data sets. Three
types of data sets are accessible in

FORTRAN processing:
partitioned data sets,
data sets.

sequential data sets,
and direct access

A sequential data__set is organized in
the same way as a data set that resides on
a tape volume, but a sequential data set
may reside on any type of volume. The
compiler, 1linkage editor, and load modules
process sequential data sets.

A partitioned data set (PDS) is composed
of named, independent groups of sequential
data and resides on a direct access volume.
A directory index resides in the PDS and
directs the operating system to any group
of sequential data. Each group of sequen-
tial data is called a member. (A member of
a PDS is not a data set.) Partitioned data
sets are used for storage of any type of
sequentially organized data. In particu-
lar, they are used for storage of source
and load modules (each module is a member).

12

only individual members of
accessible to the compiler. Members of a
PDS are accessible to a FORTRAN 1load
module, but only under certain conditions.
(See the discussion of the IN, OUT subpara-
meters of +the LABEL parameter in the sec-
tion "Creating Data Sets.")

a PDS are

The FORTRAN library is a cataloged PDS
that contains the 1library subprograms in
the form of load modules. SYS1.FORTLIB is
the name given to this PDS.

Processing Partitioned Data Sets: To pro-
cess a member of a partitioned data set,
the programmer must use the DD statement to
provide information about the data set and
the member. The programmer must specify
(in the DSNAME parameter) both the name of
the data set and of the member, and must
indicate (in the LABEL parameter) whether
the member is to be created or retrieved.
However, 1if the programmer regquests the
FORTRAN compiler to process a partitioned
data set (for example, to compile a source
deck stored as a member of a partitioned
data set), no LABEL information need be
specified.

Note that the processing of a parti-
tioned data set is limited to READ or WRITE
operations only. The programmer is not
permitted both to READ and WRITE the same
data set in a single program.

A direct _access _data_set contains rec-
ords that are read or written by specifying
the position of the record within the data
set. When the position of the record is
indicated in a FIND, READ, or WRITE state-
ment, the operating system goes directly to
that position in the data set and either
retrieves, reads, or writes the record.
For example, with a sequential data set, if
the 100th record is read or written, all
records preceding the 100th record (records
1 through 99) must be transmitted before
the 100th record can be transmitted. With
a direct access data set, the 100th record
can be transmitted directly by indicating
in the I/0 statement, that the 100th record
is to be transmitted. However, in a direct
access data set, records can only be trans-
mitted by direct access I/0 statements;
they cannot be transmitted by sequential
I/0 statements. Records in a direct access
data set can be transmitted sequentially by
using the associated variable in direct
access 1/0 statements.

A direct access data set must reside on
a direct access volume. Direct access data
sets are only processed by FORTRAN load
modules; the compiler and linkage editor
cannot process direct access data sets.

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

Catagorizing a data set as
partitioned, or direct access reflects its
organization Catagorizing a data set as
cataloged or as a generation data set,
reflects a method of retrieving the data
set. Sequential, partitioned, and direct
access data sets can be cataloged; however,
an individual member of a PDS cannot be
cataloged because a member is not a data
set. A generation data set can only be a
sequential or direct access data set; a
generation data set cannot be a PDS or a
member of a PDS.

sequential,

Cataloged Procedures

To reduce the possibility of error in
the frequent reproduction of Fjob control
statements, cataloged procedures can be
written. A cataloged procedure is a set of
EXEC and DD statements placed in a PDS
accessible to the operating system. (The
JOB statement cannot be cataloged.) A
cataloged procedure consists of a single
procedure step or a series of procedure
steps defined by EXEC statements. A proce-
dure step in a cataloged procedure is
equivalent to a job step in a job. Just as

DD statements are included for a job step,

DD statements are included in procedure
steps.

An EXEC statement in the input stream
can invoke a cataloged procedure. There
fore, the definition of Jjob step is
extended: executing a load module or
invoking a cataloged procedure is a job

step to the operating system.

To simplify the steps involved in com-
piling and 1link editing, four cataloged
procedures for FORTRAN (E) are supplied by

IBM. These four cataloged procedures and

their uses are:

FORTEC compile

FORTECL compile and link edit into the
FORTRAN library (FORTLIB)

FORTELG link edit and execute

FORTECLG compile, link edit, and execute

Any cataloged procedure may be tem-
porarily modified by EXEC and DD statements
in the input stream; this temporary modifi-

Introduction 13

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

JOB_CONTROL_LANGUAGE

The FORTRAN programmer uses the job format. To make the definition and
control statements shown in Table 1 to description of job control statements more
compile, link edit, and execute programs. understandable, a notation to show the

format of the statements has been devised
and will be used throughout this
JOB MANAGEMENT publication.
eTable 1., Job Control Statements

Job control statements are processed by r T 1
a group of operating system routines known |statement| Function |
collectively as job management routines. t + 4
These routines interpret control state- jJoB |Indicates the beginning of aj
ments, control the flow of jobs, and issue i |new job and describes that job. |
messages to both the operator and the t + 4
programmer. Job management routines have {EXEC |Indicates a job step and|
two major components: a job scheduler and] |describes that job step; indi-|
a master scheduler, | |cates the cataloged procedure|

] |or load module to be executed. |

The specific facilities available }—- + 4
through the job scheduler and the master |DD |Describes data sets, and con-|
scheduler depend on the scheduling level i | trols device and volume |
the installation selects during system] |assignment. |
generation. Schedulers are available at t t-—- -— —— i
two levels: the sequential scheduler and |delimiter|Separates data sets in the |
the more powerful priority scheduler. 1 |input stream from control |

| |statements; it appears after|

Sequential schedulers process job steps | leach data set in the input|
one at a time in the order of their | | stream. |
appearance in the input stream. Operating t + q
systems with a primary control program |comment |Contains miscellaneous remarks, |
(PCP) and those that provide multiprogram- |]annotations, etc., written by|
ming with a fixed number of tasks (MFT) use | |the programmer; it can appear|
sequential schedulers.] |before or after any controlj|

| | statement. |

Priority schedulers process jobs accord- L 4 - -
ing to their relative priority and avail-
able system resources, and can accept input
data from more than one input stream.

Systems that provide multiprogramming with GENERAL STRUCTURE OF CONTROL STATEMENTS

a variable number of tasks (MVT) wuse

priority schedulers.

Except for the comment statement, con-

trol statements contain the identifying

CODING JOB_CONTROL STATEMENTS characters // or /* in card columns 1 and
2, The comment statement is identified by
the initial characters //* in card columns

Like any other computer language, the 1, 2, and 3. Control statements may con-
job control language has a specific struc- tain four fields: name, operation,
ture and must conform to a prescribed operand, and comments (see Figure 4).

r -1 = ittt bttt 1
] Format | Applicable Control Statements |
b -- + 1
|//Name Operation Operand [(Comment] | JOB, EXEC, DD |
| I |
|7/ Operation Operand [Comment] | EXEC, DD |
| : | |
|7* [Comment]] delimiter |

|
{//*[Comment] ‘ comment |
L - —— —— o = - J

Figure U4, Job Control Statement Formats

14

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

The name contains between one and eight
alphameric or national characters, the
first of which must be alphabetic. The
name begins in card column 3 and is fol-
lowed by one or more blanks to separate it
from the operation field. The name is used
“to:

1. Identify the control statement to the
operating system.

2. Enable other control statements in the
job to refer to information contained
in the named statement.

3. Relate DD statements to I/0 statements
in the load module.

Operation Field

The operation field contains one of the
following operation codes:

JOB
EXEC
DD

Or, if the statement is a delimiter or
comment statement, the operation field is
blank. The operation code is preceded and
followed by one or more blanks.

Operand Field

The operand field contains the parame-
ters that provide information to the
operating system. The parameters are
separated Dby commas. The operand field is
ended by placing one or more blanks after
the last parameter. There are two types of
parameters, positional and keyword. Posi-
tional and keyword parameters are identi-
fied in the definition of control
statements.

Positional Parameters: Positional parame-
ters are placed first in the operand field
and must appear in a specified order. If a
positional parameter is omitted and other
positional parameters follow, the omission
must be indicated by a comma. If a posi-
tional parameter is omitted and only key-
word parameters follow, the omission is not
indicated by a comma.

Reyword Parameters: A keyword parameter
may be placed anywhere in the operand field
after the positional parameters. A keyword
parameter consists of a keyword, followed

by an equal sign, followed by a single
value or a list of subparameters. If there
is a 1list of subparameters, the list must
be enclosed in parentheses or apostrophes
and the subparameters in the list must be
separated by commas. Keyword parameters
may appear in any order.

Subparameters: Subparameters are either
positional or keyword. Positional subpa-
rameters appear first in the parameter and
must appear in the specified order. If a
positional subparameter is omitted and
other positional subparameters follow, the
omission must be indicated by a comma. If

a positional subparameter is omitted and
only keyword subparameters follow, the
omission is not 1indicated by a comma.
Positional and keyword subparameters are
noted in the definition of control
statements.

Comments Field

The comments field can contain any
information considered helpful by the pro-
grammer, Comments, except for those on a
comment statement, must be separated from
the operand field by at least one blank;
they may appear in the remaining columns up
to and including column 71.

CONTINUING CONTROL STATEMENTS

Except for the comment statement, which
is contained in columns 1 through 80,
control statements are contained in columns
1 through 71 of cards or card images. If
the total length of a statement exceeds 71
columns, or if parameters are to be placed
on separate cards, operating system con-
tinuation conventions must be followed. To
continue an operand field:

1. Interrupt the field after a complete
parameter or subparameter, including
the comma that follows it, at or
before column 71. (The coding of a
nonblank character in column 72 is
optional.)

2. Include comments, if desired, by fol-
lowing the interrupted field with at
least one blank.

3. Code the identifying characters // in
columns 1 and 2 of the following card
or card image.

4., Continue the interrupted operand

beginning in any column from 4 through
16.

Job Control Language 15

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

Note:
be avoided whenever possible to

should
reduce

Excessive continuation cards

processing time for the control program.

1.

Comments can be continued onto addition-
al cards after the operand has
pleted.

been
To continue a comments field:

com-

Interrupt the comment at a convenient
place.

2. Code a nonblank character in column
72.

3. Code the identifying characters // in
columns 1 and 2 of the following card
or card image.

4. cContinue the comments field beginning
in any column after column 3,

Note: The comment statement cannot be
continued.

NOTATION FOR DEFINING CONTROL STATEMENTS

The notation used to define

control

statements in this publication is described
in the following paragraphs.

1.

2'

16

The following symbols are used to

define control statements but are
never used in an actual statement.

a. hyphen -

b. or]

c. underscore _

d. Dbraces {3

e. brackets (1

f. ellipsis cee

g. superscript 1

The special uses of these symbols are

explained in paragraphs 4 through 10.
Upper-case letters and words, numbers,
and the symbols below are written in
an actual control statement exactly as
shown in the statement definition.
(Any exceptions to this rule are noted
in the definition of a control
statement.)

a apostrophe
b. asterisk

c comma

d. equal sign
e, parentheses
f. period

g. slash

* -

Ne ~ll=

3'

5.

6.

Lower-case letters, words, and symbols
appearing in a control statement
definition represent variables for
which specific information is substi-
tuted in the actual statement.

state-
value
the

Example: If name appears in a

ment definition, a specific
(e.g., ALPHA) is substituted for
variable in the actual statement.

Hyphens join lower-case
words, and symbols to form a
variable.

letters,
single

Example: If member-name appears in
a statement definition, a specific
value (e.g., BETA) is substituted for
the variable in the actual statement.

Stacked items or items separated from
each other by the "or" symbol repre-
sent alternatives. Only one alterna-
tive should be selected.

Example: The two representations

A

B and A|B|C

C

have the same meaning and indicate
that either A or B or C should be
selected.

An underscore indicates a default
option. If an underscored alternative
is selected, it need not be written in
the actual statement.

Example: The two representations

A
B and A|B|C
C

have the same meaning and indicate
that either A or B or C should be
selected; however, if B is selected,

it need not be written, because it is
the default option.

Braces group_ related items, such as
alternatives.
Example: ALPHA =({A|B|C},D)

indicates that a choice should be made
among the items enclosed within the
braces. If A is selected, the result
is ALPHA=(A,D) If C is selected, the
result can be either ALPHA=(,D) or
ALPHA=(C,D).

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

8.

Brackets also group related items;
however, everything within the brac-
kets is optional and may be omitted

Example: ALPHA =([A|B|C],D)

indicates that a choice can be made
among the items enclosed within the
brackets or that the items within the
brackets can be omitted. If B is
selected, the result is ALPHA=(B,D).
If no choice is made, the result is
ALPHA=(,D).

An ellipsis indicates that the preced-
ing item or group of items can be
repeated more than once in succession.

Example: ALPHA[,BETA]...

indicates that ALPHA can appear alone
or can be followed by ,BETA repeated
optionally any number of times in
succession.

Job Control Language 16 1

10. A superscript refers to a footnote.

NEW)1

OLD

MOD

indicates that additional information

concerning the grouped items is con-
tained in footnote number 1.

Example:

11. Blanks are used to improve the read-
ability of control statement defini-
tions. Unless otherwise noted, blanks
have no meaning in a statement defini-
tion.

JOB_STATEMENT

The JOB statement (Figure 5) 1is the
first statement in the sequence of control
statements that describe a job. The JOB
statement contains the following informa-
tion:

|
]
|
|
|
|
|
|
|
—
|
|
|
|
|
|
I
]
|
|
|
|
|
]
I
]
|
|
|
I
|
|

1. The name of the job.

2. Accounting information relative to the
job.

3. Programmer's name.

4. Whether the job control statements are
printed for the programmer.

5. Conditions for terminating the execu-

tion of the job.
6. A job priority assignment.

7. Output class for
messages.

priority scheduler

8. Specification of main storage require-
ments for a job.
Examples of the JOB statement are shown
in Figure 6.

Positional Parameters

/7 jobname | JOB

[([account-number] [,accounting-informationl])1 2 3]
[,programmer-namel ¢ S @

Keyword Parameters

MSGLFVEL=0
MSGLFVEL=1

[PRTY=nnl®
[MSGCLASS=x]°

[REGION=nnnnnk]?®

P—————— e

|
|
I
I
|
|
|
I
I
|
I
I
I
I
[
I
!

[COND= ((code,operator) [, (code,operator)l...7)8]

|
|
I
|
|
|
I
|
I
I
I
|
|
I
I
|
|
I
b
|tIf the information specified
|

|

apostrophes instead of parentheses.

|2If only "account-number" is specified, the delimiting parentheses may be omitted.
allowed between

| 3®The maximum number of characters

| apostrophes is 142.

| “If "programmer-name" contains commas, parentheses, apostrophes, or blanks, it must be

| enclosed within apostrophes.
| SWhen an apostrophe is contained within
shown as two consecutive apostrophes.

he maximum number of characters allowed for "programmer-name" is 20.

| 7The maximum number of tests allowed is 8.

|8If only one test is specified, the outer pair of parentheses may be omitted.
used by the priority scheduler only.

| °This parameter is
| ignores it.

| S

("account-number"
contains blanks, parentheses, or equal signs, the information must be

"programmer-name", the

and/or "accounting-information")

delimited by

the delimiting parentheses or

apostrophe must be

et

The sequential scheduler

— ——— —— — — —— — — ———— " ——— —— — ——— — — — et S, S, st St s, S st e)

Figure 5. JOB Statement

Job Control Language 17

DEPT. BLDG.

PHONE NO.

80 Column Key Punch Layout

IPROJECT NO. l PRIOJEi:T IiD.] |PROJECY NAME

DATE DUE OUT
SHEET__OF ___

-
~

T
3|4|5|s[7}9] 9I101112x314151517m.= 0{21) 22| 23| 24| 25| 26(27 28 29| 30| 31 n')ﬂaalssaswssmm"

43 44| 45/ 46| 47| 48| 49| 50| 51 52 53| 54| 55| 56 62| 67/68|69/70|71/72|73|74|75{76 {77 |78|79|80|

daﬂ ¢

quﬂ§£7!LT)

/| /\P R 7)) ZFl=- 241y COND=(12ls LIT) s PRTY =
j e |

Figure 6. Sample JOB Statements

NAME FIELD

The "jobname" must alwavs be specified;
it identifies the Jjob to the operating
system. No two jobs being handled concur-
rently by a priority scheduler should have
the same "jobname".

OPERAND FIELD

Job Accounting Information

The first positional parameter can con-
tain the installation account number and
any parameters passed to the installation
accounting routines. These routines are
written by the installatior and inserted in
the operating system when it is generated.
The precise format of the job accounting
information is specified by the installa-
tion.

As a system generation option with
sequential schedulers, the account number
can be established as a required parameter.
With priority schedulers, the requirement
can be established with a cataloged proce-
dure for the input reader. (Information
about how to write an accounting routine
may be found in IBM System/360 Operating
System: Systems Programmer's Guide.) Oth-
erwise, the account number is optional.

Programmer's Name

name" is the second
If no job accounting
its absence must be
comma preceding the
If neither job account-
ing information nor programmer's name is
coded, commas need not be used to indicate
their absence.

The "programmer
positional parameter.
information is coded,
indicated by a
programmer's name.

18

This parameter is optional unless it is
made mandatory at the installation in the
same way as job accounting information is
made mandatory.

Control Statement Messages

The MSGLEVEL parameter indicates the
type of control statement messages the
programmer wishes to receive from the con-

trol program.

MSGLEVEL=0
indicates that only control statement
diagnostic messages are written for

the programmer.

MSGLEVEL=1
indicates that all control statements,
as well as control statement diag-
nostic messages, are written for the
programmer.

occurs in a control
statement that is continued onto one or
more cards, only one of the continuation
cards is printed with the diagnostics.

Note: If an error

Conditions for Terminating a Job

At the completion of a job step, a code
is issued indicating the outcome of the job
step. Instructions, written by the pro-
grammer, in a FORTRAN program cannot gener-
ate the code. The generated code is tested
against the conditions stated in control
statements. The error codes generated are:

0 - No errors or warnings detected

4 - Possible errors (warnings) detected
8 - Serious errors detected

12

For the compiler, the SYSLIN DD state-

ment is omitted, or the NOLOAD option
is specified. For the linkage editor,
severe errors are detected.

16 - For the compiler, the SYSIN or SYS-
PRINT DD statement is omitted, a per-
manent I/0 error is encountered, the

source module is nonexistent, or the
compiler, linkage editor, or a 1load
module terminated abnormally. If any

error message (except a program inter-
rupt message) is issued during 1load
module execution, a 16 is issued.

The COND parameter specifies conditions
under which a job is terminated. Up to
eight different tests, each consisting of a
code and an operator, may be specified to
the right of the equal sign. The code may
be any number between 0 and 4095. The
operator indicates the mathematical rela-
tionship between the code placed in the JOB
statement and the codes issued by completed
job steps. If the relationship is true,
the job is terminated. The six operators
and their meanings are:

Operator Meaning

GT greater than

GE greater than or equal to
EQ equal to

NE not equal to

LT less than

LE less than or equal to

For example, if a code 8 is returned by
the compiler and the JOB statement
contains:

COND= (7, LT)
the job is terminated.

If more than one condition is indicated
in the COND parameter and any of the

conditions are satisfied, the Jjob is
terminated.

Assigning Job Priority (PRTY)

(Used by Priority Schedulers Only)

To assign a priority other than the
default job priority (as established in the
input reader procedure), PRTY=nn must be
coded in the operand field of the JOB
statement. The term "nn" is to be replaced
with a decimal number from O through 14
(the highest priority number is 14).

Whenever possible, avoid using priority
14, This is used by the system to expedite
processing of exceptional jobs It is also
intended for other special uses by future

features of systems with priority
schedulers
If the PRTY parameter is omitted, the

default job priority is assumed.

Requesting a Message Class (MSGCLASS)

(Used by Priority Schedulers Only)

With a quantity and diversity of data in
the output stream, an installation may want
to separate different types of output data
into different classes. Each class is
directed to an output writer associated
with a specific output unit. The MSGCLASS=
X parameter allows the messages issued by
the job scheduler to be routed to an output
class other than the normal message class,
A. Replace the letter "x" with an alpha-
betic or numeric character. An output
writer, which 1is assigned to process this
class, will transfer this data to a specif-
ic device.

Specifying Main Storage Requirements for a
Job (REGION)

(Used by Priority Schedulers Only)

REGION=nnnnnK can be specified to indic-
ate the amount of main stcrage to be
allocated to the job. Replace the term
"nnnnn" with the number of 1024-byte areas
to be allocated to the job; e.g., REGION=
50K. This number can range from one to
five digits and cannot exceed 16,384,

If the REGION parameter is omitted, the
default region size (as established in the
input reader procedure) is assumed.

Note: If different region sizes are to be
specified for each step in the Jjob, the
REGION parameter should be coded in the
EXEC statement associated with each step
instead of in the JOB statement,

EXEC _STATEMENT

The EXEC statement (Figure 7) indicates
the beginning of a job step and describes
that Jjob step. The statement contains the
following information:

1 The name of the job step or
step.

procedure

Job Control Language 19

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

2

3.

Name of the cataloged procedure or
load module to be executed.

Compiler and/or linkage editor options
passed to the job step.

Accounting information relative to

this job step.

6.

Conditions for bypassing the exzacution
of this job step.

A time 1limit for the job step or an
entire cataloged procedure.

Specification of main storage require-
ments for a job step or an entire
cataloged procedure.

T
Operation|Operand
1

// [stepnamel]®

Positional Parameter

EXEC
cataloged-procedure-name
PGM=program-name

lPGM=*.stepname.ddname S
PGM=*. stepname. procstep. ddname

SPROC=cataloged—procedure-name l

Keyword Parameters

[fPARM
PARM. procstep?

=(optionl[,optionl...)3 & 4

ACCT.procstep2f =(accounting-information)3 ¢ i

COND
COND.procstep2}=((code,operator[,stepname[.procstep]])
- [, (code, operator(,stepnamel.procstepll)]l...®)?

10) i1
{TIME
TIME. procstep=2 =(minutes, seconds)

10
REGION
REGION. procstep?2) =nnnnnkK

o e e e e St . e e e SRR e ot MR it e i e St e ot S o S e et s, et e s 54

+
|
I
]
|
]
{
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
i

1

]
I
|
[
I
]
|
I
I
|
I
I
|
I
|
|
|
!
|
!
|
|
I
|
|
|
]
|
k
|
|
]
{
|
]
|
|
|
I
I
!
|
I
|
|
|
|
|

|*2If only minutes are given, the parentheses need not be used.

L

1"stepname"™ is required when information from this control statement is referred to
in a later job step.

2If this alternative is selected, it may be repeated in the EXEC statement, once
each step in the cataloged procedure.

31f the information specified contains blanks, parentheses, or equal signs, it must
be delimited by apostrophes instead of parentheses,

4If only one option is specified and it does not contain any blanks, parentheses,
equal signs, the delimiting parentheses may be omitted.

5The maximum number of characters allowed between delimiting parentheses is 100. If
the option 1list is enclosed in apostrophes, however, the PARM parameter must be
coded on one card.

6If "accounting-information" does not contain commas, blanks, parentheses, or equal
signs, the delimiting parentheses may be omitted.

7The maximum number of characters allowed between the delimiting
parentheses is 144.

8The maximum number of repetitions allowed is 7.

9If only one test is specified, the outer pair of parentheses may be omitted.

°This parameter is used by MVT priority schedulers only. Sequential schedulers
ignore it.

for

or

apostrophes or

If only seconds
given, the parentheses must be used and a comma must precede the seconds.

are

e e comrars s o e oo o — —— ———— —— —— — ————s e S, S o S — —— ——— —— — —{—— — ——— — — —— — —t—— S v, s, ool e s

Figure

20

7. EXEC Statement

IBM 80 Column Key Punch Layout

NAME DEPT. I'nTb'('; [WME NO. Ir-no;scr NO. PRIOJEi:Y nin.] IPROJECT NAME GAEBUECDT [
1|2 3|4L5 5| 7J3 QJ}Q 11{12}13(14}15|16/ 17| 13[19izo 21}!‘2&23{24 25[25{27 28 29i‘in =|!19 11[34 35| 36| 37| 38 39|40[41 2{43 44| 45| 46| 47| 48| 49| 50] 51| 52|53 54| 55| 56| 57| 5 67|68(69|70(71{72|73{74|75{76({77|78(79{80
el 1 ERERERRERERR NS | | |
XE =IEUFAAAGIACCT = (896]5427) s CONDln (7216 T) s TIME= ﬂﬁézp =
[! =T RERE RS ! ! [
; T 1 T T] R]
Exapmpl SUNNNENEENE) ENERRNNEEE IR UEAN NRRRNN
/sreed exlac romrecies L T
yira e gqll T=‘pec JHfM=L =18 P3SIZE=22 {P]
o PARM.LKED=XREF | RS RE | I
| ConD. Lﬂep: (7:LTSTEPH. FO TD;’i L s | < || : RN 5 E : i “
Ht ONp. |60=(T3 STEPY.. LKEDD Y (72 LT STIEPY, FORTII | - | | |
Tl eaazopdanss) nEASAEERER NENNEAN
= B i T T T
[lAccrsppaea . L L1 e
RN EERERNE RN EANEERE RN RAREREEY ot
Figure 8. Sample EXEC Statements
Example 1 of Figure 8 shows the EXEC PROC=FORTEC
statement used to execute a programe.
Example 2 in Figure 8 shows an EXEC state- indicates that the cataloged procedure
ment that invokes a cataloged procedure. FORTEC is to be executed.
NAME FIELD Specifying a Program in a Library:
PGM=program-name
The "stepname" is the name of the job indicates that a program is executed.
step. It is required when information from The "program name" is an unqualified
this job step is referred to in a later job member name of a load module in the
step. system 1library (SYSl.LINKLIB) or pri-

vate library. For example,

PGM=IEWL
OPERAND FIELD
indicates that the load module IEWL is
executed. A load module in a private
Positional Parameter PDS (private library) is executed by
joining the private library with the
system library through the use of a
The options in the positional parameter JOBLIB DD statement. See the discus-
of an EXEC statement specify either the sion concerning JOBLIB.
name of the cataloged procedure or program
to be executed. Each program (load module)
to be executed must be a member of a Specifying a Program Described in a Pre-
library (PDS). The library can be the vious Job Step:
system library (SYS1.LINKLIB), a private
library, or a temporary library created to PGM=%*. stepname.ddname

store a program from a previous job step of indicates that a program is executed,
the same job. but the program is taken from a data
set specified in a DD statement of a
specifying a Cataloged Procedure: previous Jjob step. The * indicates
the current job; "stepname" is the
PROC=cataloged-procedure-name name of a previous step within the
cataloged-procedure-name current job; and "ddname" is the name
indicate that a cataloged procedure is of a DD statement within that step.
invoked. The "cataloged procedure (The "stepname" cannot refer to a job
name" is the unqualified name of the step in another job.) For example, in
cataloged procedure. For example, the statements,

Job Control Language 21

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

//LXIX JOB , JOHNSMITH,COND=(7,LT)

//STEP4 EXEC PGM=IEWL
//SYSLMOD DD DSNAME=MATH (ARCTAN)

//STEPS5 EXEC PGM=#*,STEPY4.SYSLMOD

statement STEP5 indicates that the
name of the program is taken from the
DD statement SYSLMOD in job step
STEP4. Consequently, the load module
ARCTAN in the PDS MATH is executed.

specifying a Program Described in a Cata-
loged Procedure:

PGM=%*,stepname. procstep.ddname

indicates that a program is executed,
but the program is taken from the data
set specified in a DD statement of a
previously executed cataloged proce-
dure. The * 1indicates the current
job; "stepname" is the name of the job
step that invoked the cataloged proce-
dure; "procstep" is the name of a step
within the cataloged procedure;
"ddname" is the name of a DD statement
within that procedure step. (The
"stepname" cannot refer to a job step
in another job.) For example, consid-
er a cataloged procedure FORT,

//COMPIL
//SYSUT1 DD
//SYSLIN DD

EXEC PGM=IEJFAAAOQ
UNIT=TAPE
DSNAME=LINKINP

3

EXEC PGM=IEWL
DSNAME=RESULT (ANS)

//LKED
//SYSLMOD DD

Furthermore, assume the following sta-
tements are placed in the input
stream;

//XLIV JOB ,SMITH, COND=(7,LT)
//81 EXEC PROC=FORT

/782 EXEC PGM=%*,S1.LKED.SYSLMOD
//FT03F001 DD UNIT=PRINTER
//FT01F001 DD UNIT=INPUT

The statement S2 in the input stream
indicates that the name of the program is
taken from the DD statement SYSLMOD in the

- procedure step LKED in the procedure
invoked by the EXEC statement S1 conse-
quently, the 1load module ANS in the PDS
RESULT is executed.

22

Keyword Parameters

The keyword parameters may refer to a
program, to an entire cataloged procedure,
or to a step within a cataloged procedure.

If the parameter refers to a program or
to an entire cataloged procedure (with the
PARM parameter only the first procedure
step is affected), the keyword is written
followed by an equal sign and the list of
subparameters. (In example 2, Figure 8,
the parameter ACCT applies to the entire
procedure.) When parameters are overridden
in a cataloged procedure step, the keyword
is written, a period is placed after the
keyword, and the stepname follows immedi-
ately. (In example 2, Figure 8, the cata-
loged procedure FORTECLG is invoked. Two
sets of PARM options apply to two different
procedure steps; one applies to the proce-
dure step FORT and the other to the proce-
dure step LKED.) More information about
overriding cataloged procedures is given in
the section "Cataloged Procedures."

Options for the Compiler and Linkage

Editor:

The PARM parameter is used to pass

options to the compiler or linkage editor.
(PARM has no meaning to a FORTRAN load
module.)
PARM

passes options to the compiler or

linkage editor, when their execution
is indicated by the PGM parameter in
the EXEC statement. If the execution
of a cataloged procedure is indicated,
the options specified in the first
procedure step are overridden by the
options in the new PARM parameter; any
options specified in other procedure
steps are deleted.

PARM. procstep
passes options to a compiler or 1link-
age editor step within the named cata-
loged procedure step. Any PARM para-

meter in the procedure step is

deleted, and the PARM parameter that

is passed to the procedure step is
inserted.

A maximum of 100 characters may be

written between parentheses that enclose

the 1list of options.
close the option 1list, the
must be coded on one card.

If apostrophes en-
PARM parameter

The format for compiler options and

those linkage editor options most applic-
able to a FORTRAN program is shown in
Figure 9.

Compiler:

{PARM

Linkage Editor:

nnnnkK
PARM.procstep}='[SIZE={yyyyyyy}][,LINELNG=zzz][,NAME=xxxxxx] {,NOSOURCE

¢y DECK +MAP +» LOAD
+ NODECK + NOMAP +» NOLOAD

PARM MAP s LET
PARM.procstepf=([XREF| |,XCAL| [,NCAL][,LIST][,OVLY])2

+ SOURCE }

,BCD ,SPACE| {,ADJUST "1
,EBCDIC(\,PRFRM{ },NOADJUST

e ——— e e —————

L -
Figure 9.

Detailed information concerning compiler
and- linkage editor options is given in the
section "Job Processing."

Condition for Bypassing a Job Step:

This COND parameter (unlike the one in
the JOB statement) determines if the job
step defined by the EXFC statement is
bypassed.

COND
states conditions for
execution of a program or an entire
cataloged procedure. If the EXEC
statement invokes a cataloged proce-
dure, this COND parameter replaces all

bypassing the

COND parameters in each step of the
procedure.

COND. procstep
states conditions for bypassing the

execution of a specific cataloged pro-
cedure step "procstep". The specified
COND parameter replaces all COND pa-
rameters in that procedure step.

The subparameters for the COND parameter
are of the form:

(code,operator [, stepnamel)

The subparameters "code" and "operator"
are the same as the code and operator
described for the COND parameter in the JOB
statement. The subparameter "stepname"
identifies the previous 3job step that
issued the code. For example, the COND
parameter:

COND.GO=((5,LT,FORT), (5,LT,LKED))
indicates that the step in which the
COND parameter appears is bypassed if
5 is less than the code returned by
either of the steps FORT or LKED.

Compiler and Linkage Editor Options

e e b e e e — e — e e e e . e e]

If a step in a cataloged procedure
issued the code, "stepname" must qualify
the name of the procedure step; that is,

(code,operator [, stepname.procstepl)
If "stepname" or "stepname.procstep" is

not given, "code" is compared to all codes
issued by previous job or procedure steps.

Accounting Information

The ACCT parameter specifies accounting
information for a job step within a job.

ACCT
is used to pass accounting information
to the installation accounting rou-
tines for this job step.

ACCT.procstep
is used to pass accounting information
for a step within a cataloged proce-
dure.

If both +the JOB and EXEC statements
contain accounting information, the instal-
lation accounting routines decide how the
specified accounting information is used
for the jok step.

Setting Job Step Time Limits (TIME)

(Used by Priority Schedulers Only)

To limit the computing time wused by a
single job step or cataloged procedure
step, a maximum time for its completion can
be assigned. Such an assignment is useful
in a multiprogramming environment where

Job Control Language 23

more than one job has access to the comput-
ing system.

The time is coded in minutes and sec-
onds. The number of minutes cannot exceed
1439. The number of seconds cannot exceed
59. If the job step is not completed in
this time, the entire Jjob 1is terminated.
(If the job step execution time is expected
to exceed 1439 minutes (24 hours) TIME=1440
can be coded to eliminate job step timing.)
If the TIME parameter is omitted, the
default job step time limit (as established
in the cataloged procedure for the input
reader) is assumed.

TIME
assigns a time limit for a job step or
for an entire cataloged procedure.
For a cataloged procedure, this param-

eter overrides all TIME parameters
that may have been specified in the
procedure.

TIME.procstep

assigns a time limit for a single step
of a cataloged procedure. This param-
eter overrides, for +the named step,
any TIME parameter which is present.
As many parameters of this form as
there are steps in the cataloged pro-
cedure being executed can be written.

Specifying Main Storage Requirements for a
Job Step (REGION)

(Used by Priority Schedulers Only)

The REGION parameter may be specified in
the JOB statement, in which case it over-
rides the REGION parameters specified in
the EXEC statements and applies to all
steps of the job. However, if it is
desired to allot to each job step only as
much storage as it requires, the REGION
parameter should be omitted from the JOB
statement, and the EXEC statements should
contain a REGION parameter specifying the
amount of main storage to be allocated to
the associated Jjob step. If the REGION
parameter is omitted from both JOB and EXEC
statements, the default region size (as
established in the cataloged procedure for
the input reader) is assumed. The size is
specified in the form "nnnnnk" where
"nnnnn" is the number of 1024-byte areas to
be allocated to the job step; e.g.,
REGION=50K.

REGION
specifies a region size for the job
step or for the entire cataloged pro-
cedure. For a cataloged procedure,
this parameter overrides all REGION

24

parameters that may have been speci-
fied in the procedure.

REGION.procstep

specifies a region size for a single
step of a cataloged procedure. This
parameter overrides the REGION param-
eter in the named cataloged procedure
step, if one 1is present. As many
parameters of this form as there are
steps in the cataloged procedure being
executed can be written.

For a discussion of the region size
required for FORTRAN jobs, see "Specifying

Main Storage Requirements for a Job
(REGION)."
DATA DEFINITION (DD) STATEMENT

The DD statement (Figure 10) describes

data sets. The DD statement can contain
the following information:

1. Name of the DD statement.

2. Name of the data set to be processed.

3. Type and number of I/O devices for the
data set.

which the

4., Volume(s) on data set

resides.

5. Amount and type of space allocated on
a direct access volume.

6. Label information for the data set.

7. The status of the data set before
execution of the step and the disposi-
tion of the data set after execution
of the step.

8. Allocation of data sets to facilitate

channel optimization.

NAME FIELD
ddname
is used:
1. To identify data sets defined by

this DD statement to the compiler
or linkage editor.

2. To relate data sets defined by
this DD statement to data set
reference numbers used by the

programmer in his program.

3. To identify this DD statement to
other control statements in the
input stream.

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

r T R v h |
| Name |Operation|Operandt |
L 1 4 4
r L) v 1
| | o
| | |Positional Parameter
| | |
| 77 (ddnane 2| DD 1 * “
| procstep. ddname | || DATA
| JOBLIB3 | || puMMY
| STEPLIB | | I
| SYSABEND | |
| SYSUDUMP | | Keyword ParametexrsS
! | |
		DDNAME=ddname	
	Ir W		
		dsname	
		dsname(element)	
		* ,ddname	
			[DSNAME= { *.stepname.ddname
		*, stepname.procstep.ddname	
		&name	
		&éname (element) N	
		(UNIT=(subparameter-1list)]	
]		
		IDCB=(subparameter-1ist)]	
		[VOLUME=(subparameter-1list)]	
			SPACE=(subparameter-list)
			SPLIT=(subparameter-list)
i	LSUBALLOC= (subparameter-1list)		
		[LABEL=(subparameter-list)]	
		[DISP=(subparameter-list)	
i			s¥souT=A
] 1	sYsour=8B I		
]	LsYSoUT=(x[,program-namel [, form-no.1)¢ 7		
}		[SEP=(subparameter-1list)]	
'f 1 4 .'			
]1To allow a programmer flexibility in the use of the DD statement, all parameters are			
optional; however, a DD statement with a blank operand field is invalid.			
2The name field must be blank when concatenating data sets.			
3The JOBLIB statement precedes any EXEC statements in the job. See the discussion			
{ concerning JOBLIB under "Name Field" in this section.			
4If either DATA or * is specified, keyword parameters cannot be specified.			
SIf "subparameter-list®™ consists of only one subparameter and no leading comma			
(indicating the omission of a positional subparameter) is required, the delimiting			
parentheses may be omitted.			
{eThis form of the parameter is used only with priority schedulers.
}7If program-name and form-no. are omitted, the delimiting parentheses can be omitted. |
L _—— -4
e Figure 10, Data Definition (DD) Statement
Job Control Language 25

Form C28-6603-2

Page Revised 11/15/68 by TNL N28-0586
The "ddname" format is "Job

Processing."

given in

procstep.ddname
is wused to override DD statements in
cataloged procedures. The step in the
cataloged procedure is identified by
"procstep. " The "ddname" identifies
either:

1. A DD statement in the cataloged
procedure that is to be modified

by the DD statement in the input
stream, Or
2. A DD statement that is to be

added to the DD statements in the
procedure step.

JOBLIB and STEPLIB

are used to concatenate a private
library with the system library,

SYS1.LINKLIB; that is, the operating
system library and the data sets spe-
cified in the JOBLIB or STEPLIB DD
statement are temporarily combined to
form one library. Use of JOBLIB
results in concatenation for the dura-

tion of a job; use of STEPLIB, for the
duration of a job step.
The JOBLIB DD statement must appear

immediately after the JOB statement of the
job to which it pertains; its operand field
must contain at least the DSNAME and DISP
parameters, The DISP parameter must be

coded either DISP=(NEW, PASS) or DISP=(OLD,
PASS) or DISP=(SHR,PASS) so that the
library remains available throughout the
job. (See the discussion of the DISP

parameter under "Operand Field.")

The STEPLIB DD statement may appear in
any position among the DD statements for
the step. The data set defined should be
OLD. If the private library is not cata-

loged and 1is to be referred to in a later
step (or steps), DISP=(OLD,PASS) or DISP=
(SHR, PASS) should be coded. A later step

may then refer to it by coding DSNAME=%¥,
stepname.STEPLIB, DISP=(OLD,PASS) on the
STEPLIB DD statement for the later step.

For a complete discussion of JOBLIB and

Language publication.

Note: Data sets with records of different
formats, or data sets that reside on dif-
ferent types of devices, should not be
concatenated.

26

SYSABEND and SYSUDUMP
are special DD names used to define a
data set on which a system abnormal
termination dump can be written. The
dump is provided for job steps subject
to abnormal termination.

The dump provided when the SYSABEND DD
statement is used includes the system
nucleus, the problem program storage
area, and a trace table, if the trace
table option was requested at system
generation., The SYSUDUMP DD statement
provides a dump of only the problem
program areas.

A complete discussion of SYSABEND and
SYSUDUMP DD statements, including an
example of use, appears in the Job
Control Langquage publication.

OPERAND FIELD

For purposes of discussion,
for the
classes.

parameters
DD statement are divided into six
Parameters are used to:

e Specify unit record data sets.

e Retrieve a previously created and cata-
loged data set.

e Retrieve a data set created in a pre-
vious Jjob step in the current job and
passed to the current job step.

e Retrieve a data set created but not
cataloged in a previous job.

e Create data sets that are to reside on
magnetic tape or direct access volumes.

e Optimize I/O operations.

The following text describes the DD
statement parameters that apply to proces-
sing unit record data sets and retrieving
data sets created in previous job steps, or
data sets created and cataloged in previous
jobs (see Figure 11). The method of retri-
eving uncataloged data sets created in
previous jobs is also discussed in this
section. Parameters shown in Figure 10 and
not mentioned in this section are used to
create data sets, retrieve uncataloged data
sets, and optimize I/O operations in job
steps. These parameters are discussed in
the sections "Creating Data Sets" and "Pro-
gramming Considerations."

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

r —e———— o — oo 1
| |
i f* 1 |
| {onm} |
| dsname {
| dsname(element)]
| *,ddname |
| |DSNAME=(*, stepname. ddname |
| *,stepname.procstep.ddname |
] &name |
{ &éname (element) i
| |
| UNIT=(namel, {n|P}2]1)3 |
| |
| §EBT§P_=Q]
1 PRTSP=1 |
| PRTSP=2 |
]| DCB=(PRTSP=3) |
| |
] { MODE=E‘.} { ‘ STACK=1} |
| MODE=CJ |, STACK=2 |
| subparameter-list“ |
| |
| { SYSOUT=A |
|| SYsouT=B |
| \sYsouT=(x[,program-namel [, form-no.1)s 6|
| |
| 7 ,DELETE 1
| SOLD . KEEP]
| JDISP=()NEW ¢« CATLG)8l]
| MOD » UNCATLG |
H SHR i
| |
| LABEL= (subparameter-1list) # |
}VOLUME=(subparameter—list)“ {
H -4
|2If either of these two parameters is]
| selected, it must be the only parameter]
| selected. |
}2If neither "n" nor "P" is specified, 1]
| is assumed. |
|2If only "“name" is specified, the deli-|]
| miting parentheses may be omitted. |
]4See the section "Creating Data Sets."]
|3This form of the parameter is used only|
! with MVT priority schedulers. |
j61f program-name and form-no. are]
| omitted, the delimiting parentheses can]

| be omitted.]
|7The assumption for the second subpara-|]
| meter is discussed in "Specifying the]
| Disposition of a Data Set" in this|
| section. |
}8The subparameters are positional. |
L

Figure 11. DD Statement Parameters

Unit Record Parameters

The UNIT, DCB, and SYSOUT parameters are
used for unit record data sets; the * or
DATA parameters designate that the data set
for this Jjob step follows in the input
stream. Examples of DD statements for unit
record data sets are shown in Figure 12.

Specifying Data in the Input Stream:

*

indicates that a data set immediately
follows this DD statement in the input
stream. This parameter is wused to
specify a source module deck, object
module deck, or data in ‘the input
stream. If the EXEC statement for the
job step invokes a cataloged proce-
dure, a data set may be placed in the
input stream for each procedure step.
If the EXEC statement in the input
stream specifies execution of a pro-
gram, only one data set may be placed
in the input stream. The DD * state-
ment must be the last DD statement for
the procedure step or program. The
end of the data set must be indicated
by a delimiter statement. The data
cannot contain // in the first two
characters of the record.

DATA
also indicates data in the input
stream. The restrictions and use of
the DATA parameter are the same as the
*, except that // may appear in the
first and second positions in the
record.

UNIT Parameter:

UNIT=(namel, {n|P}])

specifies an address of an I/0 device,
a type of I/0 device, or class of I/O
devices, and the number of I/0 devices
assigned to a data set. When the
system is generated, the "name" is
assigned by the operating system or
the installation. (See the section
"System Generation Macro-Instructions"
in the publication System Generation.)
The programmer can use only the
assigned names in his DD statements.
For example,

UNIT=190, UNIT=2311, UNIT=TAPE

where 190 is a device address, 2311 is
a device type, and TAPE is a device
class.

{n|P}

specifies the number of devices allo-
cated to the data set. If a number
"n" is specified, the operating system
assigns that number of devices to the
data set. Parallel, "P", is used with
cataloged data sets. The control pro-
gram assigns as many devices as there
are volumes indicated in the index and
the label field of the cataloged data
set.

Job Control Language 27

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

Sample Coding Form

1-10 [11-20 | 21-30 31-40 | | 51—-60] 61-70 | 71-80
112[3[4[5l6[7[8[9[0l 112[3]4[5[67[8[9[0[112]34]5]6[7[8[910] 1 [2[3]41516[71890 1 [2[3]4]5]6[78I[0] 1 [2]3]415[6[7[8]9]0l 112[3[4]5[6]7I8[S[0[1[2[3[4[5]6]7]8[9]0

. Example 1: Printepr| .. . 1., .,

TR SR

llllllllllllllllll lllll

//SYSPRINT, DD, SYSOUT=AsDCB=PRTSP=2 |

1

1

v e b P bv v e by

v by by b b e b L s 1
T T T

111 lllllilll

Xama/, ; ’

’Illllllllll

|

1

!
||u|||x||!|||||||||

!

CB=STACK=2

/1SYSPUNCH DD, UNIT=SYSCP2pC

lllllllIl!lllllllll#lllllllll!llllll

’

s I|||!llll||

//SYSIN, DD,

L

1

o o by by b by Ly 1

|
1
]
1
|
T
|
1
|
1
|
1
|
|
1
|

|
T
|
|
T
|
TR AN A TR A
T
|
T
|
|
T
]

|
T
|
T
:
|
T
|

Figure 12.

DCB_Parameter:

DCB=PRTSP={0}1]2]3}
specifies
er.
no space, single space, double
and triple space, respectively.
carriage control character in
FORTRAN record causes
the 1line is printed.

printed. A default value of 0 applies
only to a FORTRAN program.
{MODE=E} ,STACK=1}

DCB=(\MODE=C ¢ STACK=2))

specify options for the

punch. The MODE

in column binary or
specifies column binary, and E
fies EBCDIC.

The STACK subparameter
stacker selection for
read punch.

the

Routing _a Data_Set to_an_Output Stream
(SYSOUT)

Through the use of the SYSOUT parameter,
output data sets can be routed to a system
same

output stream and handled in much the
way as system messages

SYSOUT=A

can be used with sequential schedulers
to indicate that the data set is to be
written on the system printer output
No parameter other than the

device

28

line spacing for the print-
The digits 0, 1, 2, and 3 specify
space,
The

a
spacing before
The PRTSP para-
meter causes spacing after the line is

card-read-
subparameter indi-
cates whether the card is transmitted
EBCDIC mode; C

speci-

indicates
card

Examples of Unit Record DD Statements

DCB parameter has any meaning when
SYSOUT=A is used. With systems pro-
viding multiprogramming with a fixed
number of tasks, the processing pro-
gram that writes the data must be in
the lowest priority partition.

SYSOUT=B

can be used with sequential schedulers
to indicate the system card punch
unit. The priority scheduler will
route the output to class B.

SYSouUT=(x[, program-name] [, form-no. 1)

If there

is wused with priority schedulers.
When priority schedulers are used, the
data set is normally written on an
intermediate direct access device dur-
ing program execution and later routed

through an output stream to a system
output device. The character "x" can
be alphabetic or numeric, specifying

the system output class. Output writ-
ers route data from the output classes
to system output devices. The DD
statement for this data set can also

include a unit specification describ-
ing the intermediate direct access
device and an estimate of the space

required. If these parameters are
omitted, the Jjob scheduler provides
default values as the job is read and
processed.

is a
program to handle

special installation

output operations,
its ‘"program-name" should be speci-
fied. "Program-name" is the member
name of the program, which must reside
in the system library

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

If the output data set is to be
printed or punched on a specific type
of output form, a 4-digit "form-no."
should be specified. This form number
is used to instruct the operator, in a
message issued at the time the data
set 1is to be printed, of the form to
be used.

Retrieving Previously Created Data Sets

If a data set on a magnetic tape or a
direct access volume is created with stan-
dard labels and cataloged in a previous job
or job step, all information for the data
set such as device, volume, space, etc., is
stored in the catalog and labels. This
information need not be repeated in other
DD statements. To retrieve the data set,
the name (DSNAME) and disposition (DISP) of
the data set must be specified.

If the data set was created in a pre-
vious job step in the current job and its
disposition was specified as PASS, all of
the information in the previous DD state-
ment is available to the control program,

and is accessible by referring to the
previous DD statement by name. To retrieve
the data set, a pointer to a data set

created in a previous job step is specified
by the DSNAME parameter. The disposition
(DISP) of the data set is also specified;
if more than one unit is to be allocated,
the UNIT parameter must be specified too.

If the data set was created with stan-

If a data set created without standard
labels in a previous job is retrieved, the
LABEL and DCB parameters must be specified.
The VOLUME, LABEL, and DCB parameters are

discussed in the section "Creating Data
Sets."

Examples of the use of DD statements to
retrieve previously created data sets are
shown in Figure 13.

IDENTIFYING A CREATED DATA SET: The DSNAME
parameter indicates the name of a data set
or refers to a data set defined in the
current or a previous job step.

Specifying a Cataloged Data Set by Name:

DSNAME=dsname
the fully qualified name of the data
set 1is indicated by "dsname." If the
data set was previously created and
cataloged, the control program uses
the "dsname" to search the catalog,
find the data set, and instruct the
operator to mount the required
volumes.

Specifying a Generation Data Group or PDS:

DSNAME=dsname (element)
indicates either a generation data set
in a generation data group, or a
member of a partitioned data set. The
name of the generation data group or
partitioned data set 1is indicated by
"dsname"; if "element" is either 0 or

dard 1labels in a previous job but not a signed integer, a generation data
cataloged, information concerning the data set is indicated. For example,

set, such as space, record format, etc., is

sto;ed in thg lébels. The vélume 'and DSNAME=FIRING(-2)

device information is not stored. To . . .

retrieve the data set, the name (DSNAME), indicates the Fhlrd most recent member
if the data set is named, disposition of the generation data group FIRING.
(DISP), volume (VOLUME), and device (UNIT) If "element"” is a name, a member of a

must be specified. partitioned data set is indicated.

Sample Coding Form

1-10 11-20 21-30 [31-40 [41-50 1 51-60 | 61=70 71-80
1[2[3[4[5]6[7[8[e]o[1]2[3]4[5]6[7[8]9]0]1[2[3]4]5][6]7[8]9[0] 1 [2[3[4[5]6[7[8[e[0] 1 [2[3]4a[5]6[7[8[S[0] 1 [2[3[4]5]6[7]8]9[0] i[2]3[4[5]6[7]8[9lo[1 [2[3[4[5]6[7]8]S]0

Lo I ;
1/ FT@IFB0L, DD, DSNAME=MATH»DISP=(OLD>PASS)

v b b v v by by
T

b Tl e
lllllllllIllIIllllllllll'lI!II

AT B R R par by

|
T
|
T

lllllllll!lllll(LALl

T T

//FTymewhl,

TR M R T [t Tl bl Dt N

(MODAKEEP),

|III||IIII

DSNAME - ﬁTEPQ.fT®7F0¢13pISP

T

LLJllIIIIIIIIIIIIIl‘lllllllllllllllllI1|llIIIIIIIlIII||IIII|IIII|IIII
T

18¢7VOLUM518

//an,;m, D .D.S,NAME -MAT._ .B.uDISPI OLDUNIT=, ER= .21 e el
| T ‘J Ll LI ol L LI L | Lol Ll | Ll Ll | Ll IJ Ll Ll ' Ll L | Ll 1l | Lol Ll | | | I Ll ' Ll I Ll I Ll Ll
Figure 13. Retrieving Previously Created Data Sets

Job Control Language

29

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

Before any generation data set can be
specified in the DSNAME parameter, the
name for the generation data group
must be inserted in the catalog index.
The name of the generation data group
is inserted by use of a utility pro-
gram described in the section "Modify-
ing System Control Data" in the Utili-
ties publication.

Note: Members of a partitioned data
set may be read as input to a FORTRAN
object program or created as output
from a FORTRAN object program, but
only when the member name and either
LABEL=(,,, IN) or LABEL=(,,,0UT) is
specified in the associated DD
statement.

Referring to a Data Set in the Current Job
Step:

DSNAME=*, ddname
indicates a data set that is defined
previously in a DD statement in this
job step. The * indicates the current
job. The name of the data set is
copied from the DSNAME parameter in
the DD statement named "ddname."

Referring to a Data Set in a Previous Job

Step:

DSNAME=*, stepname. ddname

indicates a data set defined in a DD
statement in a previous job step in
this job. The * indicates the current
job, and "stepname" is the name of a
previous job step. The name of the
data set is copied from the DSNAME
parameter in the DD statement named
"ddname." For example, in the follow-
ing control statements, the DD state-
ment FTOB8F001 in job step S2 indicates
that the data set name (TIME) is
copied from the DD statement FTO7F001
in job step Sl1.

//LAUNCH JOB

//JOBLIB DD DSNAME=FIRING,DISP=(OLD, PASS)
/750 EXEC PGM=ROCKET

//FT05F001 DD DSNAME=RATES(+1),DISP=0LD
//FT07F001 DD DSNAME=TIME, DISP={(OLD, PASS)
//S2 EXEC PGM=DISTANCE ‘

//FT08F001 DD DSNAME=*,.FTO07F001,DISP=0OLD
//FT01F001 DD *

.

Referring to a_ Data Set in a cCataloged

Procedure:

DSNAME=%*, stepname. procstep.ddname
indicates a data set defined
cataloged procedure invoked by a pre-
vious job step in this job. The *
indicates the current job; "stepname"

in a

30

is the name of a previous job step;
"procstep®™ is the name of a step in
the cataloged procedure; and "ddname"
is the name of the DD statement defin-
ing the data set.

Assigning Names to Temporary Data Sets:

DSNAME=¢&name
assigns a name to a temporary data
set. The control program assigns the
data set a unique name which exists
only until the end of the current job.

The data set may be accessed in fol-
lowing job steps by é&name. This
option is useful in passing an object

module from a compiler job step to a
linkage editor job step.

DSNAME=¢gname (element)

assigns a name to a member of a
temporary PDS. The name 1is assigned
in the same manner as the DSNAME=
&¢name. This option is useful in stor-
ing object modules that will be 1link
edited in a later Jjob step in the
current job.

SPECIFYING THE DISPOSITION OF A DATA SET:
The DISP parameter 1is specified for both
previously created data sets and data sets
being created in this job step.

|, DELETE + DELETE
NEW ¢ KEEP + KEEP
DISP=(SOLD » PASS ¢ CATLG)
MOD + CATLG .+ UNCATLG

SHR) |, UNCATLG

is used for all data sets residing on
magnetic tape or direct access volumes.
when

The first subparameter indicates

the data set was created.

NEW
indicates that the data set is created
in this step.

OLD
indicates that the data set was
created by a previous job or job step.

MOD

indicates that the data set was
created in a previous job or job step,
and records are to be added to the
-data set. Before the first I/0 opera-
tion for the data set occurs, the data
set is positioned following the last
record. If a data set specified as
MOD does not exist, the specification
is assumed to be NEW

SHR
indicates that the data set resides on
a direct-access volume and is used as
input to a job whose operations do not

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

prevent simultaneous use of the data
set as input to another job. This
parameter has meaning only in a multi-
programming environment for existing
data sets. If it is omitted in a
multiprogramming environment, the data
set is consideved unusable by any
other concurrently operating job. If
it is coded in other than a multipro-
gramming environment, the system
assumes that the disposition of the
data set is OLD.

indicates the
normal Jjob

The second subparameter
disposition of the data set at
step termination.

DELETE
causes the space occupied by the data
set to be released and made available
at the end of the current job step.
If the data set was cataloged, it is
removed from the catalog.

KEEP
ensures that the data set 1is kept
intact until a DELETE option is speci-
fied in a subsequent job or job step.
KEEP 1is wused to retain uncataloged
data sets for processing in future
jobs. KEEP does not imply PASS.

PASS
indicates that the data set is
referred to in a later job step. When
a subsequent reference to the data set
is made, its PASS status lapses unless
another PASS is issued. The final
disposition of the data set should be
stated in the last job step that uses
the data set. When a data set is in
PASS status, the operating system
attempts to keep the volume(s) for the
data set mounted. If dismounting is
necessary, the control program issues
a message to mount the volume(s) when
needed., PASS is wused to pass data
sets among job steps in the same job.

When a data set is concatenated with
the system library through use of the
JOBLIB DD statement, PASS assumes a
different meaning. Without PASS in
the JOBLIB statement, the concatena-
tion is only in effect for the first
job step. If PASS is specified, the
concatenation is in effect for the
entire job.

CATLG
causes the creation of a catalog entry
that points to the data set. The data
set can then be referred to in subse-
quent jobs or job steps by name (CATLG
implies KEEP).

UNCATLG
causes the data set to be removed from

the catalog at the end of the job
step. UNCATLG does not imply DELETE.

If the second subparameter is not speci-
fied, no action is taken +to alter the
status of the data set. If the data set
was created in this Jjob (NEW), it is
deleted at the end of the current job step.
If the data set existed before this job
(MOD or OLD), it exists after the end of
the job.

The third subparameter indicates the
disposition of the data set if the job step

terminates abnormally. This is the condi-
tional disposition of the data set.
Explanations for DELETE, KEEP, CATLG, and
UNCATLG are the same as those for normal
termination.

Notes:

e If a conditional disposition is not
specified and the job step abnormally
terminates, the requested disposition
(the second subparameter of the DISP
keyword) is performed.

e Data sets that were passed, but not

received by subsequent steps because of
abnormal termination, will assume the
conditional disposition specified the
last time they were passed. If a
conditional disposition was not speci-
fied then, all data sets that were new
when initially passed are deleted. All
other data sets are kept.

e A conditional disposition other than
DELETE for a temporary data set is
invalid, and the system assumes DELETE.

Effect of DISP Parameter at End of FORTRAN
Job: 1In a FORTRAN job that is terminated
by a STOP or CALL EXIT statement, all data
sets that were used by the job will be
closed. The closing operation will posi-
tion the volume in accordance with the DISP
parameter, as follows:

DISP Parameter Positioning Action

PASS Forward space to
end of data set
DELETE Rewind

KEEP, CATLG, UNCATLG Rewind and unload

DELIMITER STATEMENT

The delimiter statement (see Figure 14)
is wused to separate data from subsequent
control statements in the input stream, and
is placed after each data set in the input
stream.

Job Control Language 31

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

r
| Name
L

o e o e
SRS S ——

L)
|[7*
L

Figure 14, Delimiter Statement

The delimiter statement contains a slash
in column 1, an asterisk in column 2, and a
blank in column 3. The remainder of the
card may contain comments.

COMMENT STATEMENT

The comment statement (see Figure 14.1)
is used to enter any information considered

helpful by the programmer. It can be
inserted before or after any control state-
ment., Comments can be coded in columns U4
through 80. The comments cannot be con-
tinued onto another statement. (If the
comment statement appears on a system out-
put listing, it can be identified by the

appearance of *** in columns 1 through 3.)
T T b |
|Name | |
L 4 4
L) T 1
177% | |
[41 - ——d
Figure 14.1. Comment Statement

The comment statement contains a slash

in column 1, a slash in column 2, and an
asterisk in column 3. The remainder of the
card can contain comments.

Job Control Language 31.1

JOB_PROCESSING

To execute a FORTRAN program, three
steps are required -- compiling, link edit-
ing, and executing. Using cataloged proce-
dures to make these steps easier is dis-
cussed in this section.

For each of the three steps involved in
processing, ddnames and device names are
specified by the operating system. These
ddnames, options for the compiler and link-
age editor, batched compilation, and speci-
fying additional libraries for the linkage
editor are discussed in this section.

USING CATALOGED PROCEDURES

Because writing job control statements
can become time-consuming, IBM supplies
four cataloged procedures to aid in the
compiling, 1link editing, and executing of
FORTRAN E programs. Each procedure
requires a
//procstep.SYSIN DD
statement indicating the location of a
source module or object module to the
control program. In addition, a DD state-
ment GO.SYSIN can be used to define data in
the input stream for a procedure step that
executes a load module. The Jjob control
statements needed to invoke the procedures,
and deck structures used with the proce-
dures are described in the following text.

Compile

The name of the cataloged procedure for
compilation is FORTEC. It is invoked by
the name FORTEC as the first parameter in
an EXEC statement.

(The cataloged procedure, FORTEC, con-
sists of the control statements shown in
Figure 48 in "Cataloged Procedures.")

With the procedure FORTFC, a DD state-
ment FORT.SYSIN indicating the location of
the source module must be supplied.
Figure 15 shows control statements that can
be used to invoke the procedure.

32

77/ jobname JOB
// EXEC FORTEC
//FORT.SYSIN DD *
T
| FORTRAN Source Module
L

/%

b e

Figure 15. Invoking the

dure FORTEC

Cataloged Proce-

Single Compile: A sample deck structure to
compile a single source module is shown in
Figure 16.

//J0OBSC JOB 00,JIMJONES,MSGLEVEL=1
//EXECC EXEC PROC=FORTEC
//FORT.SYSIN DD *

r -1
| FORTRAN Source Module |
t J
7%

Figure 16. Compiling a Single Source

Module

The SYSIN data set containing the source
module is defined as data in the input
stream for the compiler. Note that a
delimiter statement follows the last state-
ment in the source module.

Batched Compile: A sample deck structure
to batch compile is shown in Figure 17.

//JOBBC JOB 00,JOHNDOE,MSGLEVEL=1
//EXECC EXEC PROC=FORTEC
//FORT.SYSIN DD #*

r 1
| First FORTRAN Source Module |
L J
v 1
| Last FORTRAN Source Module i
L —d
/¥
Figure 17. Compiling Several Source
Modules

If several source modules are entered in

the SYSIN data set for one job step, the

compiler recognizes the FORTRAN END state-
ment. If the next card is a delimiter

statement, control returns to the control

program at the end of the compilation. If
the next card 1is a FORTRAN statement,
control remains with the FORTRAN compiler.

Compile and Link Edit

The cataloged procedure to compile a
FORTRAN source module and 1link edit the
resulting object module is named FORTECL.
It 1is invoked by the name FORTECL as the
first parameter in an EXEC statement.

(The cataloged procedure FORTECL con-
sists of the job control statements shown
in Figure 49 in "Cataloged Procedures".)

With the procedure FORTECL, a DD state-
ment FORT.SYSIN must be supplied to indi-
cate the location of the source module.
This cataloged procedure writes the result-
ing load module in the FORTRAN library
(SYS1.FORTLIB); however, an overriding DD
statement

//LKED. SYSLMOD DD DSNAME=SYS1.FORTLIB(name)

can Dbe supplied to name the resulting load
module. Figure 18 shows control statements
that can be used to invoke the procedure.

//jobname JOB
// EXEC FORTECL
//FORT.SYSIN DD *

| FORTRAN Source Module
L -
/%

//LKED. SYSLMOD DD DSNAME=SYS1l.FORTLIB(name)

—

Figure 18. Invoking the Cataloged Proce-
dure FORTECL
Again the source module is defined as

data in the input stream. Note that the DD
statement LKED.SYSLMOD wust follow the
delimiter statement for the source modules
in the input stream.

Batch Compile and Link Edit: A sample deck
structure to batch compile several source
modules and link edit the resulting object
modules is shown in Figure 19. The result-
ing load module is placed in the FORTRAN
library and assigned the name CHEM.

//JOBCLE JOB 012,'E .SMITH'
// EXEC FORTECL
//FORT.SYSIN DD *

(=== - - 1
| First FORTRAN Source Module |
L S J
e 1
| Last FORTRAN Source Module |
S, —_ —_—— 4
J *

//LKED.SYSLMOD DD DSNAME=SYS1.FORTLIB(CHEM)
Figure 19. Compiling and Link Editing Sev-
eral Source Modules

Single Compile and Link Edit: A sample
deck structure to compile and link edit a
single source module, placing it in the
FORTRAN 1library, and assigning the result-
ing module the name XYZ is shown in
Figure 20. The source module is read from
the cataloged sequential data set SOMOD.

//COMPLED JOB 527, 'JOHN BROWN'

// EXEC FORTECL

//FORT.SYSIN DD DSNAME=SOMOD,DISP=OLD
//LKED.SYSLMOD DD DSNAME=SYS1.FORTLIB(XYZ)

Figure 20. Compiling and Link Fditing a
Source Module Residing in a

Cataloged Data Set
Because the source modules reside in a

cataloged data set, the delimiter statement

is omitted.

Link Edit and Execute

The cataloged procedure to 1link edit
FORTRAN object modules and execute the
resulting load module is named FORTELG. It
is invoked by the name FORTELG as the first
parameter in an EXEC statement.

(The cataloged procedure, FORTELG, con-
sists of the control statements shown in
Figure 50 in "Cataloged Procedures").

With the procedure FORTELG, a DD state-
ment LKED.SYSIN, which indicates the loca-
tion of the object module, must be sup-
plied.

Three data sets are defined by DD state-
ments in the cataloged procedure for use
during execution of the 1load module. If
the programmer intends to wuse these DD
statements, he can use data set reference

Job Processing 33

numbers
ing way:

one, two, and three in the follow-

1 - the data set defined ky the DD state-
ment GO.SYSIN (used primarily to read
data from the input stream)

2 - card output
3 - printed output

Any of the DD statements for these data
set reference numbers may ke overridden, as
shown in "Cataloged Procedures".

Figure 21 shows control statements that
can be used to invoke the FORTELG cataloged
procedure.

//jobname JOB
// EXEC FORTELG
//LKED.SYSIN DD *

[~~~ — 1
| FORTRAN Object Module |
L - _ e 4
/%

Figure 21. Invoking the Cataloged Proce-

dure FORTELG

Link Edit: A sample deck structure to link
edit and execute as one load module several
object modules entered in the input stream
is shown in Figure 22.

//JOBBLG JOB 00,TOMSMITH, MSGLEVEL=1
//EXECLG EXEC PROC=FORTELG
//LKED.SYSIN DD *

| First FORTRAN Object Module |
—_— y)
i 1
| Last FORTRAN Object Module |
N, J
/*
Figure 22. Link Edit and Fxecute
The object module decks were created by
the DECK compiler option. The 1linkage

editor recognizes the end of one module and

the beginning of another and resolves ref-
erences between them.

A sample deck structure is shown in
Figure 23 for object modules that are
members of the cataloged sequential data
set, OBJMODS, that resides on a tape vol-
ume. In addition a data set in the input

stream is processed ref-

erence number 1.

using data set

34

//JOBBLG JOB 00,EDJONES,MSGLEVEL=1
//EXECLG EXEC FORTELG

//LKED.SYSIN DD DSNAME=0BJMODS,DISP=OLD
//GO.SYSIN DD *

r i 1
| Data |
L —_ - - - J
/%

Figure 23. Link Edit and Execute (Object

Modules in a
Set)

Cataloged Data

Compile, Link Edit, and Execute

The fourth cataloged procedure,
FORTECLG, passes a source module through
three procedure steps - compile, link edit,

and execute. The cataloged procedure is
invoked by the name FORTECLG as the first
parameter in an EXEC statement.

(The cataloged procedure, FORTECLG con-
sists of the control statements shown in
Figure 51 in "Cataloged Procedures.")

The SYSIN data set (source module) must
be defined to the compiler. Figure 24
shows statements that can be used to invoke
the procedure FORTECLG.

//jobname JOB
// EXEC PROC=FORTECLG
//FORT.SYSIN DD *

b 1
| FORTRAN Source Module

e J
/%

Figure 24. 1Invoking the Cataloged Proce-

dure FORTECLG

Single Compile, Link Edit, and Execute:
Figure 25 shows a sample deck structure to
compile, link edit, and execute a single
source module.

//JOBSCLG JOB 00, TJONES, MSGLEVEL=1
//EXECC EXEC FORTECLG
//FORT.SYSIN DD *

FORTRAN Source Module

L —_—

——

Figure 25. Single

Execute

Compile, Link Edit, and

Batched Compile, Link Edit, and Execute:
Figure 26 shows a sample deck structure to
batch compile, 1link edit, and execute. The
source modules are placed in the input
stream along with a data set that is read
using data set reference number 1 in the
load module.

//JOBBCLG JOB 00,JBOND, MSGLEVEL=1
//EXECCLG EXEC FORTECLG

//FORT.SYSIN DD *

r -
| First FORTRAN Source Module |
b ——— i |

/%
//GO.SYSIN DD *

[m=———————== T s —sT oo s s s 1
] Data |
L —_— —_——— e e e e e J
/*

Figure 26. Batched Compile, Link Edit, and

Execute

STORAGE LOCATIONS AND BYTES

Storage 1locations 1in System/360 are
called bytes, words, and double-words. One
word is four bytes long; a double-word is
eight bytes long.

When data is transmitted to main storage
by I/0 operations under control of FORMAT
statements, one character indicated by the
FORMAT statement is contained in one byte.

When data is read into main storage, it
is translated into internal format. A real
constant or variable, or an integer con-
stant or variable occupies one word (four

bytes). A double-precision constant or
variable occupies a doutle-word (eight
bytes). For I/0 operations not under

FORMAT control, variables and constants are
read from and written on the volume in the
internal format.

COMPILER PROCESSING

The names for DD statements (ddnames)
relate I/0 statements in the compiler to
data sets wused by the compiler. These
ddnames must be wused for the compiler.

When the system is generated, names for I/O
device classes are also established and
must be used by the programmer.

Compiler Name

The program name for the compiler is
IEJFAAAO. If the compiler is to be exe-
cuted without using the supplied cataloged
procedures in a job step, the EXEC state-
ment parameter

PGM=IEJFAAAOQ

must be used.

Compiler ddnames

The compiler can use six data sets. To
establish communication between the compil-
er and the programmer, each data set is
assigned a specific ddname. Each data set
has a specific function and device require-

ment. Table 2 1lists the ddnames, func-
tions, and device requirements for the data
sets.

To compile a FORTRAN source module, four
of these data sets are necessary -- SYSIN,
SYSPRINT, SYSUT1l, and SYSUT2, along with
the direct-access volume(s) that contains
the operating system. With these four data
sets, only a listing is generated by the
compiler. Two optional data sets are pro-
vided for writing the object module: the
SYSPUNCH data set is intended for punching
the object module and the SYSLIN data set
is intended for writing the object module
on a magnetic tape or a direct access
volume.

For the DD statement SYSIN or SYSPRINT,
an intermediate storage device may be spec-
ified instead of the card reader or print-
er. The intermediate storage device usual-
ly 1is magnetic tape or a direct access
device.

If an intermediate device 1is specified
for SYSIN, the compiler assumes that the
source module deck was placed on intermedi-
ate storage by a previous job or job step.
If an intermediate device is specified for
SYSPRINT, the map, listing, and
error/warning messages are written on that
device; a new job or job step can print the
contents of the data set. When the
SYSPRINT data set is written on an inter-
mediate storage device, carriage control
characters are placed in the records.

Job Processing 35

Table 2. Compiler ddnames

r B - - I B 1
| ddname | Function | Device Requirements | Record Lengthl |
S S - :
| SYSIN | Reading the source module |card reader, direct ac-| 80 |
| | |cess, or magnetic tape | i
e ommmm oo -—--- $--- oo oo Frmmm oo 1
{SYSPRINT|Writing the storage map, listing, |printer, direct access, | 121 |
| | and messages |or magnetic tape | |
———————————— -—- — R
| SYSPUNCH | Punching the object module deck | card punch, direct ac- | 80 |
| | |cess, or magnetic tape |
Ly — S 1
|SYSLIN |Output data set for the object mod- |card punch, direct ac- | 80 |
| lule, used as input to linkage editor|cess, or magnetic tape |
__________________ —_ 4 —— ——— 1 4
T T 4
| SYSUT1 |Work data sets used by the compiler |direct access or mag- |Determined by the|
| |for compilation |netic tape |compiler during |
-------- | |compilation. Not|
| SYSUT2 | | | specified by the |
| | | |programmer. |
________ L 1 —_— S O —
| *The maximum number of records per block for the SYSIN, SYSPRINT, and SYSPUNCH data |
| sets is determined by device type (see Table 12). The maximum number of records per |
| block for the SYSLIN data set is either 1, 5, or 40, depending on which linkage editor|
| is used to read the data set. |
. _— J

The following features of the compiler
can be wused only if the PRFRM compiler
option is specified. For a more detailed
description of the SPACE/PRFRM option, see
"Compiler Options" in this section.

If the PRFRM compiler option is speci-
fied in the EXEC statement, the FORTRAN
compiler can read or write blocked records
for SYSIN, SYSPUNCH, SYSPRINT, and SYSLIN.
Blocked records are grouped before they are
written on a volume; the entire group is
then written together, instead of writing
each record individually. (Blocking for
SYSUT1 and SYSUT2 is determined by the
compiler; the programmer cannot specify
blocking for these data sets.) Figure 27
illustrates blocked records.

| record | record | | record | record |
| Y B . 11 L JE— |

Figure 27. Blocked Records

Blocking saves space on the volume and
increases ' the efficiency of the compiler
because fewer I1I/0 operations are performed.
The programmer specifies whether records
are Dblocked by the BLKSIZF subparameter in
the DCB parameter of the DD statement (see
"Creating Data Sets"). Records can be
blocked only if they are read from or
written on a direct access or magnetic tape

36

volume. The SYSLIN data set should be
blocked only if the object module is to be
used as input to either of the linkage
editor programs IEWLFL40 or IEWLF880.
Table 2 shows the record length and maximum
number of records per block for each data
set.

If the SPACE compiler option is speci-
fied, other data sets cannot be concatenat-

ed with the SYSIN data set. If +the PRFRM
compiler option is specified, other data
sets can be concatenated with the SYSIN
data set.

If the SPACE compiler option is speci-
fied, the SYSPRINT, SYSPUNCH, and SYSLIN
data sets must be sequential data sets;

only the SYSIN data set can be read as a
member of a PDS. However, if the PRFRM
compiler option is specified, the SYSPRINT,

SYSPUNCH, and SYSLIN data sets can be
written as members of partitioned data
sets.

Compiler Device Classes

Names for input/output device classes
used for compilation are also specified by
the operating system when the system is
generated. The class names, functions, and
types of devices are shown in Table 3.

Table 3. Device Class Names
|CLASS NAME|CLASS FUNCTIONS|DEVICE TYPE |
b + e 4
| sYssQ |writing, | magnetic tape]
| | reading, | edirect access|
| | backspacing | }
I | (sequential) | |
1 4 p— R 4
v T T 1
}|sYspa jwriting, | edirect access|
	reading, [
	backspacing,	
	updating	
jrecords in		
	place (direct)	

} - 1
{syscp | punching cards |ecard punch

4 4

L] T
|A | SYSOUT output |eprinter |
| | | emagnetic tape}
L | S 1 J

The data sets used by the compiler must
be assigned to the device classes listed in
Table 4.

Table U4. Correspondence Between Compiler
ddnames and Device Classes

| T 1
|ddname |Possible Device Classes |
L 1 F |
v T 1
| SYSIN |sYssQ, the input stream device]
| | (specified by DD * or DD DATA), |
| lor a device specified as the|
] |card reader |
¢ ¢ 1
| SYSPRINT|A, SYSSQ |
i 1 4
L) T -= A
| SYSPUNCH| SYSCP%1, SYSSQ, SYSDA |
1 L 4
L 3 v |
| SYsuTl |SYSSQ, SYSDA i
L. 4 —_— ___,'
[] L)

| SYSUT2 |SYSSQ, SYSDA |
1 1 - 4
T 1)
| SYSLIN |SYSSQ, SYSDA, SYSCP1 |
L . - 4
v 1
|*Both the SYSPUNCH and SYSLIN data sets)
| cannot be written on the SYSCP devicej|
| class in the same job step. }
L J

Compiler Options

Options (Figure 28) may be passed to the
compiler through the PARM parameter in the
EXEC statement. The following information
may be specified:

1 Amount of main storage allocated to
the compiler for this compilation

2. Maximum length of a FORTRAN record
written under FORMAT control.

3. Name assigned to the program.

4, Whether the source program is coded in
Binary Coded Decimal (BCD) or Extended
Binary coded Decimal Interchange Code
(EBCDIC).

5. Whether a list of source statements is
printed.
6. Whether an object module is punched.

7. Whether
printed.

a map of the object module is

8. Whether the compiler writes the object
module on an output data set that
resides on a direct access or tape
volume.

9. Whether any additional main storage is
used either to compile a larger source
module or to increase the speed of
compilation.

10, Whether the source statements contain
enmbedded blanks in variable names,
statement numbers, constants and re-
served words, whether meaningful
blanks are not inserted between names
and reserved words, and whether
FORTRAN keywords are used as variable
names in the source program.

There is no specified order for compiler
options.

Figure 28 shows the compiler options.
For most options, a default for the option
is underlined. If an alternative is not
underlined, the default is indicated in the
explanation of that option. The defaults
indicated in this publication are the stan-
dard defaults for FORTRAN(E). However,
when the operating system is generated, the
installation can change the defaults for
compiler options. For more information
about changing the defaults for compiler
options, see the section "System Generation
Macro-Instructions" in the System_ _Genera-
tion publication. Before using any of the
default options, the programmer should
determine the defaults for his installa-
tion. For purposes of illustration, this
publication assumes that the defaults cho-
sen by the installation are the standard
defaults

Job Processing 37

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

r 1
| {fPARM } ' nnnnk +BCD s SOURCE } |
] \PARM. procstepf = SIZE=)yyyyyyy [, LINELNG=2zzz] [,NAME=xxxxxx]),EBCDIC ¢ NOSOURCE/ |
| |
| + DECK } , MAP } , LOAD SPACE) {, ADJUST '1,2,3 |
| , NODECK(|, NOMAP{ }, NOLOAD(},PRFRMf), NOADJUST I
L 4
T 1
|*If the information specified contains blanks, parentheses, or equal signs, it must not|
| be delimited by parentheses but by apostrophes. |
{2If only one option is specified and it does not contain any blanks, parentheses, or|
| equal signs, the delimiting parentheses or apostrophes may be omitted. |
| 3®The maximum number of characters allowed between delimiting parentheses is 100. If |
| the option list is enclosed in apostrophes, however, the PARM parameter must be coded |
| on one card. |
L J
Figure 28. Compiler Options

SIZE=YyYyYYYYY or SIZE=nnnnkK: The SIZE six alphameric characters, the first of

option indicates the amount of main storage

available for the compilation. The pro-
grammer specifies a number YYYYYYY,
(yyyyyyy = 15360) or nnnnK (K=1024 and
15<nnnn<9999), If the option is not speci-

fied or the number specified is less than
15,360 bytes, the compiler assumes 15,360.
If the number specified is greater than the
amount available, processing continues,
provided the amount available is at least
15,360 bytes when the SPACE option is
specified, or at least 19,456 bytes when
the PRFRM option is specified. This figure

assumes no blocking. If the input is
blocked (e.g., by an input reader), a
figure that 1is 160 times the blocking
factor in bytes must be added to the
19,456-byte specification in the SIZE
option. (See "SPACE or PRFRM.")

LINELNG=zzz: The LINELNG option indicates
the maximum length of a FORTRAN record
written under control of a FORMAT state-

ment. The specified number zzz (0<zzz<256)
represents the maximum length of a FORTRAN
record. During compilation, the length of
all records is calculated using the coded
information in the FORMAT statement. If
the record length exceeds zzz, a warning is
issued by the compiler. If this option is
not specified, zzz is assumed to be 132.
For example, assume that 144 positions are
specified in the LINELNG option and the
following source statements are compiled:

WRITE(7,10) POINT,ALPHA,I,J,K,L

e

10 FORMAT(2F30.8,4I30)

A warning is 1issued because the record
length indicated by the FORMAT statement is
180, and the LINELNG parameter indicates a
maximum length of 144,

NAME=xxxxxx: The NAME option specifies the

name (xxxxxx) assigned to the module by the
programmer, where xxxxxx consists of one to

38

which is alphabetic. If NAME is not speci-
fied, the compiler assumes either the name
MAIN for a main program or the name of the
subprogram specified in the SUBROUTINE or
FUNCTION statement for subprograms. If
there is a conflict between the name given
to the subprogram in the first statement of
the source module and the name specified in
the NAME option, the name specified in the
SUBROUTINE or FUNCTION statement takes pre-
cedence. The name appears in the source
listing, storage map, and object module.

BCD or EBCDIC: The BCD option indicates
that the source module is written in Binary
Coded Decimal; EBCDIC indicates Extended
Binary Coded Decimal Interchange Code.

Note: The compilers
characters either in
print

do not support BCD
literal data or as
control characters. Such characters
are treated as EBCDIC, Consequently, a
BCD +, for example, used as a carriage
control character will not cause printing
to continue on the same line. Therefore,
programs keypunched in BCD, should be care-
fully screened in order to avoid errors
relating to literal data and print control
characters.

SOURCE _or NOSOQURCE: The SOURCE option
specifies that the source listing is writ-
ten on the data set specified by the
SYSPRINT DD statement. The NOSOURCE option
indicates that no source listing is writ-
ten. A description of the source 1listing

is given in the section "System Output."”

DECK __or NODECK: The DECK option specifies
that the compiled source module (i.e., the
object module) is written on the data set
specified by the SYSPUNCH DD statement.

NODECK specifies that no object module is
written. A description of the object
module is given in the section "System
Output."

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

MAP_or_ NOMAP: The MAP option specifies
that a storage map of the object module is
written on the data set specified by the
SYSPRINT DD statement; the option NOMAP
specifies that no map is written A de-
scription of the map is given in the

section "System Output."

LOAD or NOLOAD: The LOAD option indicates

that the object module is written on the

data set specified by the SYSLIN DD
ment. This option must be used

Job Processing

state-
if a

38.1

cataloged procedure to compile, link edit,
and execute is used. A description of the
object module is given 1in the section
"System Output".

The NOLOAD option indicates that the
object module is not written on the SYSLIN
data set. When NOLOAD is specified, the
compiler automatically returns a condition
code of 12. This option must not be used
if a cataloged procedure to compile, link
edit, and execute is used. If NOLOAD and
DECK are specified, the SYSPUNCH data set
may be used as input to the linkage editor.

If the LOAD and DECK options are speci-
fied, the object module is written on the
two data sets, indicated by the SYSLIN and
SYSPUNCH DD statements.

SPACE or PRFRM: When the PRFRM option is
specified, the size of a source module is
limited. (See Table 1u4.) By specifying
the SPACE option and more than 15360 bytes
in the SIZE option, the limit for the size
of the source module is increased.

The PRFRM option indicates that excess
main storage is allocated for faster compi-
lations rather than larger source modules.
The PRFRM option must be specified if any
of the compiler data sets SYSIN, SYSPRINT,
or SYSPUNCH are allocated to non-unit-
record devices (e.g., priority schedulers).
To block records for the ccmpiler data sets
SYSIN, SYSPRINT, SYSPUNCH, and SYSLIN, or
to write the SYSPRINT, SYSPUNCH, and SYSLIN
data sets as members of partitioned data
sets, the PRFRM option must be specified.
Other data sets can be concatenated with
the SYSIN data set only if the PRFRM option
is specified. (Note: Only data sets that
reside on the same type of device can be
concatenated.)

To ensure that these options improve the
operation of the compiler, at least 19456
bytes should be allocated to the compiler
in the SIZE option. If less than 19456
bytes are specified or if less than 19456
bytes are available and the PRFRM option is

specified, processing continues using the
SPACE option and the amount of storage
available. If blocked input and output is

specified with the PRFRM orption, the SIZE
option must specify enough storage to

contain blocked records. Any storage not
used by the PRFRM option is used to compile
a bigger source module and increase the
size of the buffers which decreases the
number of I/0 operations and increases the
speed of the compiler.

ADJUST or NOADJUST: The ADJUST option

indicates that the source module contains
embedded blanks, contains no meaningful
blanks, and uses keywords as variable names

in the source statements. With the ADJUST
option, the source statement can contain
embedded blanks. For example, the source
statements

FORMAT (1H , I10)
DELTA T=T /INC
are valid. With the ADJUST option, the

source statement need not contain meaning-
ful blanks. For example, the source state-
ments

DOUBLEPRECISIONFUNCTIONDPROD (X, Y)

DIMENSIONABC(10)
are valid. With the ADJUST option, the
source can contain FORTRAN keywords (GO,
Do, IF, READ, FIND, WRITE, etc.) wused as
variable names. For example, the source
statements
IF(IF) 20,30,40
READ=A+B+C
are valid.

If NOADJUST is specified, the source

module must not contain embedded blanks,
must contain meaningful blanks, and must
not contain FORTRAN keywords used as vari-
able names. with the NOADJUST
comp.i ion,. . source modnles are com-
iled faster. For example, the previous

"§3ﬂ?EE"§EE?%ﬁents must be written as fol-
lows to make them acceptable to the compil-
er when the NOADJUST option is used.

FORMAT(1H ,I10)

DELTAT=T/INC

DOUBLE PRECISION FUNCTION DPROD(X,Y)
DIMENSION ABC(10)

IF(IFX)20,30,40

READX=A+B+C

Multiple Compilation Within a Job Step

may be performed
the conditions

Several compilations
within one job step, if
shown in Table 5 are met.

Job Processing 39

Table 5. Conditions for Multiple Compila-
tion

"""" - =T -1

T
|Option|Input Stream |Source Modules

|
| |Device |Reside On |
— U Fommmm oo 1
| | card reader |input stream |
| e T 1
| SPACE | |input stream |
| | tape b= -—— !
| | |Jcard reader]
— pommmee R P !
|card reader | (input stream |
|PRFRM e { Jtape |
| | tape | Jcard reader
| | | {direct access |
L L —t - R |
The compiler recognizes the FORTRAN END

statement in a source deck, compiles the
program, and determines if another source
program follows - the END statement. If
there 1is another source program, another
compilation is initiated (see Figure 29).

//JOBRA JOB , 'RBLACK'
//STEP1 EXEC FORTEC
//FORT.SYSIN DD *

1 READ (9,10)A,B,C

END
SUBROUTINE CALC
END
J*
Within a

Figure 29. Multiple Compilation

Job Step

EXEC statement may be used to
initiate a job step; therefore, compiler
options can be stated only once for all
compilations in a job step. These options
are then wused for all compilations in the
batched compilation.

Only one

A main program compiled first in a
multiple compilation 1is given the name
specified in the NAME option. Any subpro-

gram in a multiple compilation is given the
name of the subprogram in the first card of
the source subprogram. For example, in the
multiple compilation,

40

//MULTCOMP JOB , 'FRANK KELLY'
// EXEC FORTEC, PARM.FORT="'NAME=GAMMA"
//FORT.SYSIN DD *

SUBROUTINE ALPHA

END
FUNCTION BETA(X,Y,Z)

END
J *

the first module is given the name ALPHA
and the second is given the name BETA.

Any main program after the first program
is given the name MAIN. Moreover, if the
NAME option is not specified and the first
module is a main program, the first program
is also given the name MAIN. For example,
in the multiple compilation,

//MULCOM JOB

// EXEC FORTEC

//FORT.SYSIN DD *
READ(1,10)ALP,BETA

END
SUBROUTINE INVERT(A,B)

.

END
READ(5)P,C,R

END
/%

both the first and third programs are given

the name MAIN. The second program is
assigned the name INVERT.

When a multiple compilation is per-
formed, the SYSLIN or SYSPUNCH data set
contains all the object modules because
only one SYSLIN DD statement may be sup-
plied for compiler output. The object
modules are placed sequentially on the
volume.

r - - T q
| Object Module 1 | Object Module 2 | ...
L 4 —_ d

LINKAGE EDITOR PROCESSING

The
modules,

linkage editor processes object
resolves any references to subpro-

grams, and constructs a locad module. To
communicate with the 1linkage editor, the
programmer supplies an EXEC statement and
DD statements that define all required data
sets; he may also supply linkage editor

control statements.

Linkage Editor Name

Three linkage editor programs are avail-
able with the operating system. The pro-
gram names for the three linkage editors
and the minimum storage in which they are
designed to operate are:

IEWLE150 15,360 bytes
IEWLE180 18,432 bytes
IEWLELL4O 45,056 bytes

All facilities described for the linkage
editor in this publication are available
with all three linkage editors, except that
blocking the primary input primary output
is available only with the higher-level

linkage editor, IEWLE4U4O0.
For simpler programming, the 1linkage
editors have been assigned the alias pro-

gram name IEWL.
fies the parameter

If the programmer speci-

PGM=IEWL

in the EXEC statement, +the highest 1level

linkage editor provided in the
installation's operating system is exe-
cuted. If he wants to execute a specific

linkage editor, he must specify the specif-
ic program name of that linkage editor.

Linkage Editor Input and Output

There are two types of input to the
linkage editor: primary and secondary.
Primary input consists of a sequential data
set that contains object modules and 1lin-
kage editor control statements. Any exter-
nal references among object modules in the
primary input are resolved by the linkage
editor as the primary input is processed.

Furthermore, the primary input contains
references to the secondary input. These
references are linkage editor control

statements and/or FORTRAN external referen-
ces in the modules.

Secondary input resolves these refer-
ences and 1is separated into two types:

automatic call library and additional input
specified by the programmer. The automatic
call library should always be the FORTRAN
library (SYS1.FORTLIB), which is the PDS
that contains the FORTRAN library subpro-
grams. Through the use of DD statements
that omit the ddname, the automatic call
library can be concatenated with other
partitioned data sets. Three types of
additional input may be specified by the
programmer :

e An
program in
structed.

object module used as the rwain
the load module being con-
This object module, which
can be accompanied by linkage editor
control statements, is either a member
of a PDS or is a sequential data set.
The first record in the primary input
must be a linkage editor INCLUDE con-
trol statement that tells e inkage
editor to insert the main program.

e An object module or a load module used
to resolve external references made in
another module. The object module,
which can be accompanied by 1linkage
editor control statements, is a sequen-
tial data set or is a member of a PDS.
The load module, which is a member of a
PDS, cannot be accompanied by 1linkage
editor control statements. An INCLUDE
statement that defines the data set
must be given to include the module.

¢ A module used to resolve external ref-
erences made in another mwodule. The
load module or object module (which can
be accompanied by linkage editor con-
trol statements) is a member of a PDS.
A linkage editorw control state-
ment that define € data set to the
linkage editor must be given to include
modules from the data set in the 1load
module.

In addition, the secondary input can con-
tain external references and linkage editor

control statements. The automatic call
library and any of the three types of
additional input may be used to resolve

references in the secondary input.

The output of the linkage editor con-
sists of the load module, module map, and

error messages. The load module is always
placed in a PDS. Error messages and the
optional module map are written on an
intermediate storage device or a printer.

In addition, a work data set is required by
the 1linkage editor to do its processing.
Figure 30 shows the I/0O flow in 1linkage
editor processing.

Job Processing 41

Linkage Editor ddnames

r 5 T = - - 1

| ddname | FUNCTION | DEVICE REQUIREMENTS |

b 4 J

r -7 - - -’-'*'—-' 1

| SYSLIN |Primary input data, normally the output of |edirect access |

| |the compiler | magnetic tape

| I | ecard reader |

pmmmmmmmmmmmm === _ T {

| SYSLIB |automatic call library (e.g., SYS1.FORTLIB)|edirect access

[N 4

; $-——-mv -—- -- -

|syYsuT1 |work data set | edirect access |
4 4

----- t - - 1

| SYSPRINT |diagnostic messages | eprinter

| | |]eintermediate storage device|

prm oo s e o -1

| SYSLMOD |output data set for the load module | edirect access

L 4

t O T T

|user-specified|additional libraries and object modules

L L

| emagnetic tape

- N

R S

SYSUT 1

SYsLIB Work SYSLMOD

Data Set

Output
Module

Automatic
Call
Library

Library

SYSLIN

Linkage

Primary
Editor

Input {

Diagnostic

Additional Data Set

Libraries

SYSPRINT

Figure 30. Linkage Editor Input and Output

Linkage Editor ddnames and Device Classes

The programmer communicates data set
information to the linkage editor through
DD statements identified by specific

ddnames (similar to the ddnames used by the
compiler). The ddnames, functions, and
requirements for data sets are shown in
Table 6.

Any data sets specified by SYSLIB or
SYSLMOD must be partitioned data sets.
(The other data sets are partitioned or
sequential.) The ddname for the DD state-

42

ment that retrieves any additional librar-
ies 1is written in INCLUDE and LIBRARY
statements and is not fixed by the linkage
editor.

In addition, if one of the higher 1level
linkage editors (program name: IEWLF440 or
IEWLF880) is used, the SYSLIN data set can
contain blocked records. The linkage edi-
tor can then accept a blocked SYSLIN data
set that 1is created by the compiler. The
record length for the SYSLIN data set is 80
bytes. With the 1linkage editor IEWLF4LO
the maximum number of records per block is
5. With IEWLF880, the maximum number of
records per block is 40.

The device classes used by the compiler
(see Table 3) must also be wused with the
linkage editor. The data sets used by
linkage editor may be assigned to the
device classes listed in Table 7.

Table 7. Correspondence Between Linkage
Editor ddnames and Device Classes

r- R - -
| ddname | Possible Device Classes |
- _— .'
| SYSLIN | S¥YSSQ, SYSDA,or the input |
] |stream device (specified |
| |by DD* or DD DATA) or a |
| |device specified as the |
| |card reader |
[N 1 _ - 4
L} T 1
| SYSLIB | sYsba |
t oo 4
| sYsuT1 | sYSDA |
b -- = .
| SYSLMOD | SYSDA I
; + 1
| SYSPRINT |A,SYSSQ |
o + - e
|

| user-specified|SYSDA,SYSSQ
1

| -

Additional Input

The INCLUDE and LIBRARY statements are
used to specify additional secondary input
to the 1linkage editor. Modules specified
by neither INCLUDE nor LIPRARY statements
nor contained in the primary input are
retrieved from the automatic call 1library.

INCLUDE Statement:

| Sttt S - - 1
|Operat10nL0perand |

_________ - -——

+
|INCLUDE |ddnamel (member-name |
[,member-namel...)] |
[,ddnamel (memker-name |
[,member-namel...)]]l... |

The INCLUDE statement is used to include
either members of additional libraries
(PDS) or a sequential data set. The
"ddname" specifies a DD statement that
defines either a PDS containing object
modules and control statements or just load
modules, or defines a sequential data set
containing object modules and linkage edi-
tor control statements. The "member name"
is the name of a member of a PDS and is not
used when a sequential data set is speci-
fied.

The 1linkage editor
module or load module in the
module when the INCLUDE
encountered.

inserts the object
output load
statement is

LIBRARY Statement:

 a— fommm e -
| LIBRARY |ddname (member-name

| | [,member-namel...)
[,ddname (member-name

[,member-nanmel...)]...
| i -

b e s ——

The LIBRARY statement is used to include
members of additional libraries. The
"ddname" must be the name of a DD statement
that specifies a PDS that contains either
object modules and linkage editor control
statements, or Jjust load modules. The
"member name" is an external reference that
is unresolved after primary input process-
ing is complete.

The LIBRARY statement differs from the
INCLUDE statement: external references
specified in the LIBRARY statement are not
resolved until all other processing, except
references reserved for the automatic call

library, is completed by 1linkage editor.
(INCLUDE statements resolve external refer-
ences when the INCLUDE statement is encoun-
tered.)

Example: Two subprograms, SUB1 and SUB2,
and a main program, MAIN, are compiled by
separate job steps. In addition to the
FORTRAN library, a private library, MYLIE,
is wused to resolve external references to
the symbols X, Y, and Z. Each of the
object modules 1is placed in a sequential
data set by the compiler, and passed to the
linkage editor job step.

Figure 31 shows the control statements
for this job. (Note: Cataloged procedures
are not used in this job.) In this job, an
additional library, MYLIB, is specified by
the LIBRARY statement and the ADDLIB DD
statement. SUB1 and SUB2 are included in
the 1load module by the INCLUDE statements
and the DD statements DD1 and DD2. The
linkage editor input stream, SYSLIN, is two
concatenated data sets: the first data set
is the sequential data set §&GOFILE which
contains the main program; the second data
set is the two INCLUDE statements and the
LIBRARY statement. After 1linkage editor
execution, the load module is placed in the
PDS PROGLIB and given the name CALC.

Linkage Editor Priority

If modules with the same name appear in
the input to 1linkage editor, the linkage
editor inserts only one of the modules.
The following priority for modules is es-
tablished by the linkage editor:

1. Modules appearing in the SYSLIN data

set or modules identified by INCLUDE
statements.

2. Modules identified by the LIBRARY
statement.

3. Modules appearing in the SYSLIB data
set.

For example, if a module named SIN
appears both in a module identified in a
LIBRARY statement and in the automatic call
library, only the module identified in the
LIBRARY statement is inserted in the output
load module.

If modules with the same name appear in
a single data set, only the module encoun-
tered first is inserted in the output load
module.

Job Processing 43

{
| //JOBX

—— . St e . e, S St e — et St S W, e e e, . . e, e st S S e, — e S— — —— o— — — o— t— o — — o, . sl

JOB
| 7/STEP1 EXEC PGM=IEJFAAAQ, PARM='NAME=MAIN,LOAD'
| .
: .
| //SYSLIN DD DSNAME=§GOFILE,DISP=(, PASS),UNIT=SYSSQ
| //SYSIN DD *
| Source module for MAIN
|/
| //STEP2 EXEC PGM=IEJFAAA(Q, PARM='NAME=SUB1,LOAD"
| .
} .
| //SYSLIN DD DSNAME=§SUBPROG1 ,DISP=(,PASS) , UNIT=SYSSQ
| /7/SYSIN DD *
| Source module for SUBL
| /%
| 7/STEP3 EXEC PGM=IEJFAAAOQ, PARM="NAME=SUB2,LOAD"
] .
| .
| .
| //SYSLIN DD DSNAME=§SUBPROG2,DISP=(, PASS), UNIT=SYSSQ
| /7/SYSIN DD *
] Source module for SUB2
| 7*
| //STEPU4 EXEC PGM=IEWL
| .
: .
| //SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=0OLD
|//SYSLMOD DD DSNAME=PROGLIB(CALC), UNIT=SYSDA
| //ADDLIB DD DSNAME=MYLIB,DISP=0LD
| 7/DD1 DD DSNAME=%.,STEP2.SYSLIN,DISP=0LD
| //DD2 DD DSNAME=%*,STEP3.SYSLIN,DISP=OLD
| //SYSLIN DD DSNAME=%_.STEP1.SYSLIN,DISP=0OLD
V4 DD *
| INCLUDE DD1
| INCLUDE DD2
| LIBRARY ADDLIB(X,Y,Z)
| 7%
U - ———
Figure 31. Linkage Editor Example Using INCLUDE and LIBRARY Statements

Multiple Link Editing Within a Step

be part

constructed.

following a NAME statement are

A NAME

assumed to
next load module being
statement can be

Just as the compiler can perform several
compilations within a procedure step or job
step (batched compilation), the 1linkage
editor can produce several 1load modules
within a single procedure step or job step.
Another 1linkage editor control statement,
the NAME statement, is used to delimit the
input for one 1load module from the input
for another load module.

r T
|Operation|Operand

|
|
|
|
|
|
|
|
|
|
|
|
|
|
e N

|member-name [(R)]
L L

The NAME statement is placed after the
last object module or linkage editor con-
trol statement used as input to a load
module. Any modules or control statements

4y

placed only in the primary input: any NAME
statements in the secondary input are
ignored.

All of the resulting load modules from a
batched linkage editor execution are placed
in the 1library (PDS) specified in the
SYSLMOD DD statement. The member name for
each of the resulting 1load modules is
specified as "“"member name" in the NAME
Statement. For example, if the primary
input for one of the 1load modules is
followed by a NAME statement containing the
member name XALPHA and the SYSLMOD DD
statement for the linkage editor step spec-
ifies the PDS MYLIB, the resulting 1load
module 1is assigned the memker name XALPHA

and is placed in the PDS MYLIB. The
SYSLMOD DD statement should not contain a
member name. However, if the SYSLMOD

statement contains a member name, that
member name must be identical to the member
name specified in the first NAME statement
appearing in the primary input.

The NAME statement can be used to speci-
fy that a load module currently residing in
a PDS is to be replaced by the load module
constructed from the input immediately
preceding the NAME statement. Replacement
is specified by coding (R) following the
member name in the NAME statement.

When several load modules are created in
a single step (multiple link editing), the
options specified in the EXEC statement for
that step apply to each load module created
in that step.

resides on a
A load module

An object module

data set PROGX.
is to be constructed from this module,
using the FORTRAN library and a private
library MYLIB to resolve external refer-
ences within the module. Another object
module resides on a sequential data set
PROGY, and a load module is to be con-
structed from this object module using the
same library to resolve external refer-
ences. Both load modules are to be placed
in the 1library PROGLIB. The first module
is to be assigned the member name FUNTST;
the second module 1is assigned the member
name SUBTST.

Example:
sequential

The following text shows the job control
statements and the position of INCLUDE,
LIBRARY, and NAME linkage editor statements
necessary to perform the job.

//JOB2 JOB 108, 'J.JONES'

//STEP EXEC PGM=IEWL

//SYSLIB DD DSNAME=SYS1l.FORTLIB,DISP=OLD
//SYSLMOD DD DSNAME=PROGLIP,DISP=0OLD

//DD1 DD DSNAME=PROGX,DISP=0OLD
//DD2 DD DSNAME=PROGY,DISP=OLD
//ADDLIB DD DSNAME=MYLIB
//SYSLIN DD *

INCLUDE DD1

LIBRARY ADDLIB(X,Z)

NAME FUNTST

INCLUDE DD2

LIBRARY ADDLIB(Y, Z)

NAME SUBTST

The JOB statement JOB2 defines the job,
and the EXEC statement STEP instructs the

operating system to execute the program
IEWL. The DD statement SYSLIB tells the
linkage editor that the FORTRAN library is

the automatic call library. The SYSLMOD DD

statement tells the
both modules are
PROGLIB.

linkage editor that
written in the PDS

The first INCLUDE statement and the LD
statement DD1 tell the linkage editor that
the first 1l1load module is to contain the

object module that resides on the sequen-
tial data set PROGX. The first LIBRARY
statement tells 1linkage editor that the

references to X and Z in this module are to
be resolved Ly the 1library MYLIB. The

first NAME statement tells the 1linkage
editor that the resulting module is
assigned the member name FUNTIST. The con-

trol statements are similar for the 1load

module with the member name SURTST.

Other Linkage Editor Control Statements

In addition to the LIBRARY, INCLUDE, and
NAME statements, other contrcl statements
are available for wuse with the 1linkage
editor. These statements enable the user
to: specify different names for 1load
modules (ALIAS), replace modules within a
load module (REPLACE), change program names
(CHANGE), and name entry points (ENTRY).
In addition, two statements (OVERLAY and

INSERT) enable the programmer to overlay
load modules. For a detailed description
of +these control statements, see the sec-

tion "Specifying Additional Processing" in
the Linkage Editor publication.

Options for Linkage Editor Processing

The linkage editor options are specified
in an EXEC statement. The options that are
most applicable to FORTRAN programming are:

PARM MAP ||, LET
PARM.procstepf=(|XREF ||, XCAL| [, NCAL]

(,LIST]([,0VLY])

MAP_ or_ _XREF: The MAP option instructs
linkage editor to produce a map of the load
module; this map indicates the relative

location and length of main programs and
subprograms. If XREF is specified, a map
of the 1locad module is produced and a

cross-reference list indicating all exter-
nal references in each main program and
subprogram is generated. If neither option
is specified, neither the —map ~Hor the
Cross-rereérence “TTETING . is generated. De-

scriptions of the map and cross-reference
listing are given in "System Output."

XCAL: The LET
mark the

LET or
linkage editor to

option instructs
load module

Job Processing 45

ready for execution even though error con-
ditions were found. The XCAL option
informs the linkage editor to mark the load
module executable even though valid exclu-
sive branches are made between modules that
overlay each other.

NCAL: The NCAL option informs 1linkage
editor that the libraries specified in the
SYSLIB DD statement or specified in LIBRARY
statements are not used to resolve external
references. (The SYSLIB DD statement need
not be specified.) The subprograms in the
libraries are not inserted in the load
module. However, the load module is marked
executable.

When an object module will be 1link
edited again prior to its use in execution
and that module contains either

1. An input/output statement (READ,
WRITE, BACKSPACE, REWIND, END FILE),

2. A STOP/PAUSE statement,

3. Any service subprogram (SLITE, SLITET,
OVERFL, DVCHK, EXIT, DUMP, PDUMP), or

4. Any one of the following library sub-
programs
DEXP DLOG DLOG10 DSIN
DCOsS. DSQRT DTANH EXP
ALOG ALOG10 SIN COS
SQRT TANH

NCAL must be specified. 2n I/0 statement,

a STOP or PAUSE statement, any service
subprogram, or any of the above library
subprograms require FORTRAN 1load module
execution routines. These routines are

inserted by the linkage editor, and must be
inserted only once in any 1load module.
When the final 1linkage editor processing
for the module is performed, NCAL should
not be specified and the load module execu-
tion routines will be inserted.

LIST: The LIST option indicates that link-
age editor control statements are listed in
card-image format on the diagnostic output
data set.

OVLY: The OVLY option indicates to the
linkage editor that an overlay structure is

to be constructed by the linkage editor.
This option must be wused if an OVERLAY
linkage editor control statement is used.

If an OVERLAY statement is not used, the
OVLY option is ignored. For more informa-
tion about overlay structures see the Link-
age Editor publication.

Other options can also be specified for
the linkage editor. For a detailed de-
scription of all 1linkage editor options,
see the Linkage Editor publication.

46

LOAD MODULE EXECUTION

The ddnames used in executing load
modules must adhere to the format specified
by IBM. When the system 1is generated,
device names are assigned by the operating
system and the installation; the programrmer
chooses devices by specifying either the
installation or operating system names.

Program_Name

When "PGM=program name" is used to indi-
cate the execution of a load module, the
module must be in either the system library
(SYS1.LINKLIB) or a private library. When
the module is in a private library, a
JOBLIB DD statement, indicating the name of
the private library, must be supplied to
concatenate the private 1library with the
system library. For example, assume that
the load modules CALC and ALGBRA in the PDS
MATH and the load module MATRIX in the PDS
MATRICES are executed in the following job:

//JOBN JOB 00, JOHNSMITH

//JOBLIB DD DSNAME=MATH,DISP=(OLD,PASS)
// DD DSNAME=MATRICES,DISP=(OLD, PASS)
//STEP1 EXEC PGM=CALC

//STEP2 EXEC PGM=MATRIX

//STEP3 EXEC PGM=ALGBRA

The JOBLIB DD statement concatenates the
private library MATH with the system
library. The private library MATRICES is
concatenated with the system library, by
concatenating the second DD statement with
the JOBLIB DD statement.

Execution ddnames

In the source module, data set reference
numbers are used to identify data sets.
Data sets processed by a FORTRAN 1load
module must be either sequential or direct
and must be defined by DD statements. The
correspondence between a data set reference
number and a DD statement is made by a
ddname.

The ddname format that must be used for
load module execution is:

FTxxFyyy

where:
xX 1s the data set reference number.
yyy is a FORTRAN sequence number

Data_Set Reference Number (xx): When the
system 1is generated, the upper limit for
data set reference numbers is specified by
the installation; it must not exceed 99.
This upper limit does not correspond to the

number of input/output devices.

If an installation specifies an upper
limit of 99 for its data set reference
numbers, the ddnames and data set reference

numbers correspond as shown in Table 8.
Note that 0 is not a valid data set
reference number,

Table 8., Load Module ddnames

r T - 1
| Data Set Reference Numbers | ddnames |
b t 1
1	FTO1Fyyy
2	FTO2Fyyy
.	.
.	.
[.	.
.	.
13	FT13Fyyy
.] .	
.	.
i .	.
99	FT99Fyyy
L L J

FORTRAN Sequence Number (yyy): The FORTRAN
sequence number refers to sequential data
sets that are written using the same data
set reference number,

For sequential or partitioned data sets,
the first FORTRAN sequence number is always

001. This sequence number changes only
when an END FILE statement is executed and
the program later executes a READ or WRITE

statement using the same data set reference
number. For example, the following state-
ments, executed in the order shown, cause
the FORTRAN sequence number to change.

WRITE(10,5)A,B,C

END FILE 10

WRITE(10,5)X, Y, Z

For the first WRITE, a DD statement
identified by the ddname FT10F001 defines
the data set. For the second WRITE, a DD
statement identified by the ddname FT10F002
defines the data set.

For direct data sets, the FORTRAN
sequence number is always 00l. Attempting
to execute an END FILE statement for a
direct data set is ignored.

A DD statement with the required ddname
must be supplied every time the WRITE, END
FILE, READ/WRITE sequence occurs. If the
FORTRAN statements in the following example

are executed, DD statements with the
ddnames indicated by the arrows must be
supplied for the corresponding WRITE
statements.
Statements ddnames
15 FORMAT(3F10.3,1I7)
10 FORMAT(3F10,.3)
DO 20 I=1,J0
20 WRITE(17,10)A,B,C ——————-———- > FT17F001
ENDFILE 17
DO 30 I=1,N
30 WRITE(17,15)X,Y,2,K ———=——=—— > FT17F002
END FILE 17
DO 40 I=1,M,2
40 WRITE(17,10)A,B,C —————mmeee > FT17F003

ENDFILE 17

If the preceding instructions are used
to write a tape, the output tape has the
appearance shown in Figure 32.

Job Processing 47

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

tapemark
records

records

tapemark tapemark

records

e

v T L} T v T T T T Ll T
|A,B,C{A,B,C} .. |A,B,C||X,Y,2,K]|X,Y,2,K] eo. |X,Y,%,K|}A,B,C|A,B,C| e« |A,B,C
L 1 1 1 1l 4 41 L 4l (R XL L

LI

——

]
J

At - -

Written using DD
statement FT17F001

o et e, et s MBS . o S st S e

Written using DD
statement FT17F002

Written using DD
statement FT17F003

———— ———c— {—— o T— — t— ——— o

_— ———

Figure 32,

Retrieving Data Sets Written with Varying
FORTRAN Sequence Numbers

Retrieving the data sets shown in Figure
32 depends on when the data set was created
and whether it was cataloged when it was
created. There are four distinct
conditions:

1. The data set 1is created in the job
step in which it is retrieved.

2. The data set is created in one job
step and retrieved in another job
step, both steps in the same job.

3. The data set was created and cataloged
in a previous job.

4, The data set was created in a previous
job, but was not cataloged.

To retrieve the data sets shown in
Figure 32, the data set sequence numbers in
the LABEL parameter must be supplied in DD
statements used to write the data sets.
The LABEL parameter is described in detail
in the section "Creating Data Sets."

, NL
LABEL=([data-set-sequence-number] {.gg)
,BLP

indicates

of the data set on a sequen-
This sequence number is cata-
loged along with the remainder of the
information in the DD statement. For the
first data set on the volume, the data set
sequence number is 1; for the second, it is
2; etc.

The "data-set-sequence-number"
the position
tial volume.

If one of the data sets shown in Figure
32 is read in the same job step in which it
is created, an END FILE statement and then
a REWIND statement must be issued after the
last WRITE instruction. The FORTRAN

48

Tape Output for Several Data Sets Using Same Data Set Reference Number

sequence number 1is incremented by the
execution of the END FILE statement if the
data set is to be read by the same data set
reference number. DD statement FT17F004 is
used to read the data set. For example,
the following DD statements are used to

write the three data sets shown in Figure
32 and then read the second data set:
//FT17F001 DD UNIT=TAPE,LABEL=(,NL),
//FT17F002 DD UNIT=TAPE, LABEL=(2,NL), X
// VOLUME=REF=%, FT17F001

//FT17F003 DD UNIT=TAPE,LABEL=(3,NL), X
7/ VOLUME=REF=%, FT17F001

//FT17F004 DD VOLUME=REF=%,FT17F002, X
4 DISP=0OLD, LABEL= (2, NL)

The VOLUME parameter indicates that the

data set resides on the same volume as the
data set defined by DD statement FT17F001.
DD statement FT17F004 refers to the data
set created by DD statement FT17F002.

If the data set is read by a different
data set reference number, for example,
data set reference number 18, then the DD

statement FT17F004 is replaced by the
statement:
//FT18F001 DD VOLUME=REF=%,FT17F002, X

44 DISP=OLD

If the data sets shown in Figure 32 are
cataloged for later reading, the following
DD statements should be used to write the
data sets:

//FT17F001 DD DSNAME=N1,LABEL=(1,NL), X
77 DISP=(, CATLG)

//FT17F002 DD DSNAME=N2,LABEL=(2,NL), X
7/ DISP=(, CATLG) , VOLUME=REF=#, FT17F001
//FT17F003 DD DSNAME=N3, LABEL=(3,NL), X

7/ DISP=(,CATLG) , VOLUME=REF=%, FT17F002

The only information necessary to retrieve
the data sets 1is the DSNAME and the DISP
parameters. (The data set sequence number

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

is stored in the catalog and is accessible
to the control program.) For example, if
data set reference number 10 is used to
retrieve the data set N1, the following DD
statement is used to retrieve the data set:

//FT10F001 DD DSNAME=N1,DISP=0OLD

If the data set is not cataloged and
then retrieved in a later job, the VOLUME
and LABEL information is needed to retrieve
the data set. When the data set is
created, the programmer must assign it to a
specific volume.

Assume the data sets shown in Figure 32
were assigned the volume identified by the
volume serial number A11111 when the data
sets were created. If the second data set
written on the volume is retrieved by data
set reference number 10 in a later job, the
following DD statement 1is needed to re-
trieve the data set:

//FT10F001 DD VOLUME=SER=A11111,DISP=0OLD, X
/7 LABEL=(2, NL) , UNIT=SYSSQ

REWIND and BACKSPACE Statements

The REWIND and BACKSPACE statements
force execution of positioning operations
for sequential data sets by the control
program. For direct access data sets,
REWIND and BACKSPACE operations are

ignored.

The REWIND statement instructs the con-
trol program to position the volume on the
device so that the next record read or
written is the first record transmitted for
that data set reference number on that
volume, irrespective of data set sequence
numbers. The space acquired dynamically
for 1I/0 buffers for a data set is released
as part of the REWIND operation. For this
reason, a program that uses many data sets
may conserve main storage by issuing REWIND
statements after processing is completed.

The BACKSPACE statement causes a back-
ward skip of one logical record for each
BACKSPACE ISSUED. The records may be
blocked or unblocked and of any valid type
(F, U, V). ©Note that the default selection
for FORTRAN data sets is U-type (undefined)
records which can not be blocked. If a
BACKSPACE statement requests backward move-
ment past the load point or first record of
the data set, that request is ignored.

Since BACKSPACE 1is not supported across
reels of a multireel data set on tape, a
BACKSPACE request made under such condi-
tions is treated as an attempt to move
backward past the load point. The user is
not made aware of input/output errors that
have occurred during a BACKSPACE operation
until he 1issues his next READ or WRITE
request., BACKSPACE should not be directed
toward the data set defined as SYSIN,

Error Message Data Set

When the system is generated, the
installation assigns a data set reference
number so that execution error messages and
information for traceback, DUMP, and PDUMP
can be written on a data set. The pro-
grammer must define a data set, using a DD
statement with the ddname for that data set
reference number. This data set should be
defined using the SYSOUT=A parameter. 1If
the error message data set is on tape, the
DD statement should contain DCB parameters
for BLKSIZE=133 and RECFM=UA. (The publi-
cation IBM_ System/360 Operating System:
System Generation, Form C28-6554, explains
the method of assigning the data set
reference number. See the description of
the OBJERR parameter in the FORTLIB macro
instruction in the section "System Genera-
tion Macro-Instructions.") If this data set
is not defined and an error condition is
encountered during the execution of the job
step, the job step is terminated and a
condition code of 16 is issued.

Execution Device Classes

For load module execution, the program-
mer can use the same names assigned to
device classes used by the compiler (shown
in Table 3). However, additional names for
specific devices and device classes can be
assigned by the installation where the
system is generated. The programmer can
choose which device to use for his data
sets, and can specify the name of that
device or class of devices to which that
device belongs in the UNIT parameter of the
DD statement.

However, a direct access device must be
used for a data set which is defined (by
the DEFINE FILE statement) as a direct
access data set in the FORTRAN program.

Job Processing 49

CREATING DATA SETS

Data sets are created by specifying DSNAME - name of the data set
parameters in the DD statement or by using
a data set utility program. This section UNIT - class and number of devices used
discusses the use of the DD statement to for the data set
create data sets. (The Utilities publica-
tion discusses data set utility programs.) VOLUME - volume on which the data set

No consideration is given to optimizing I/O resides
operations; this information is given in
the section "Program Optimization." LABEL - label specification
DISP - the status of the data set at the
Examples of DD statements used to create beginning of the step and the
data sets are shown in Figure 33. , disposition of the data set after

the completion of the step
To create data sets, the DSNAME, OUNIT,
VOLUME, SPACE, LABEL, DISP, SYSOUT, and DCB SYSOUT - ultimate device for printer data
parameters are of special significance (see sets
Figure 34). These parameters specify:
DCB - tape density, record format,
record length

Sample Coding Form
1-10 | 11-20 | 21-30 | 31-40 | 41-50 I 51— 60 | 61-70 | 71-80

112[3[a[5]e[7[8[9]0] 1[2]3[4]5]6[7[8[o[o[112[3[4a[5[6]7]8[o[o] 1 [2[3]al5]6[7[8]o[ol 1 [2]3]4[5]6[7]8lo[ol1 [2[3]4[5]6[7[8[2]0[(T2[3]4[5[6[7[8[9]0] I [2[3]4]5[6[7]8]9]0
Xia / tn.S%t..l....!....l....l....l....!.“,l....
//fI31F®¢h,DQ,DSNAM& MAT&IX)DI&R,(NEW)CATLG)1¢A Eh (15 zEXRDT 67@31)s 4 1
/J‘l,,,,,,IIIIIMNJI,PACLAﬁSQyp¢UME (PRJNAJ,,R&TA Mx&ﬁR,AAG?X ...l....;.z..l...L
oo s) SPACER(3885.(1881180),5CONTI6IROUND), 4y uites i Bous i,
AR ,CIBH(RECFMllVlBI,LRECLJ(:OlhBLKS»IZIE 1212....|l...,...,|....g...,|..u
Jlll]||||!|||I|I|||!|||||||||!1|||lllII!lllllllllllllllllll!lIllllllI!Illklllll
Mﬂnﬂ&@ﬁﬂﬁ&bﬁm_ﬁ_ﬂam_ﬁam_ﬂmﬂﬁgm.l..”!”ulnu!.||.|.1.|!11..l..11

//FT89F@@1, DD DS, AME,&TEMPQUNI (IAPECLSp3)7DJSP (NEWaPﬁSS)n,,,,[,l,,llLl,|lll
AL,,|,,,|;,,,,|VOLUME (5RETAIM31»9 SER= (7775 8,999744)), ;....Ii...;z...h...
/,/,,‘,,,.,il,,,D,C,B|,(Dg,NHZ,).R,E,CFM,,,B|L,KIS,IZE 25¢,¢)... R
b pe s b pe e b e b fe e 1 ,.!....l... cle e b pe i e

X : 1 if Y.

//SYSRRLND,DD S| §DNL,A1QCB (BEKSIZQ,LQHmDENIZ,TRTCH Cl,,,,,|,,,,||,,,!l,ll|,lJL
lllll||II|II|IliLll!lllllllll!llllllllllIIII|III||I|II|IIII[lIIIlIIII!IIIIlIIII
e Xlamp NG 7i 7, atalle.ged _‘L_J_,_,_J__L_J__,_J__l_,___,__l__'_
I/FT31F¢¢1IPD DSNAM CHEM,DISPlﬂpkﬁ P),UNIT L%¢¢|Lz T
/ﬂ..|,...|..,.|DCB (DEN ZQTRTCH ET,@ECFM U)BLKSIZElA¢®Q);|,l,,,,[,,,,i,,|,1,,,,
//',.I....;... VOLUNE=SE&’A6¢S...,|‘...|.‘..1,...|....1‘...]..,.|....;...,|..l.

Figure 33. Examples of DD Statements for Creating Data Sets

50

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

dsname
DSNAME=Jdsname(element)
&name

SYSOUT=(X[,program-name][,form-no.])
,DELETE [° |,DELETE

NEW) | KEEP KEEP
DISP=(% "PASS TCATLG)7

LCATLG JUNCATLG
SHR)1 UNCATLG

.stepname . procs tep.ddname 3 E

&name(element)
DUMMY
DDNAME=ddname
UNIT=(name[, {n|P}*])2 >SER=(volume-serial-number[,volume-serial-number]...)?
dsname
VOLUME=([PRIVATE][,RETAIN][,volume-sequence-number][,volume-count] | ,REF=Y*.ddname)

* s tepname . ddname g
*_stepname.procstep.ddname)

TRK ,MXIG]®
SPACE=(%CYL l,(primary-quantity[,secondary-quantity][,directory-quantity])[,RLSE][,ALX] [,ROUND]s)7
average-record-length)) ,CONTIG
SNL Y T, IN ,EXPDT=yyddd])e
LABEL=([data-set-sequence-number] < ,SL o | ouT | [,RETPD=xxxx
,BLP
SYSOUT=A
SYSOUT=B

gsname 0 c ve {FAU}[AIM][T][,BLKSIZE=xxxx]
peB=([} -ddname JDEN=(1 3 || TRTCH=0E ,BUFN0={g} [,0PTCD=C]|,RECFM=<V[A[MI[T],LRECL=xxxx ,BLKSIZE=xxxX)11
.s tepname . ddname 2 T {F|V3BLATMI[T],LRECL=xxxx ,BLKSIZE=xxxX

»BLKSIZE=xxxx12

1If neither "n" nor "P" is specified, 1 is assumed.
2If only "name" is specified, the delimiting parentheses may be omitted.

7A11 subparameters are positional subparameters.

3If only one "volume-serial-number" is specified, the delimiting parentheses may be omitted.

#SER and REF are keyword subparameters; the remaining subparameters are positional subparameters.
SThe assumption made when this subparameter is omitted is discussed with the SPACE parameter.
SROUND can be specified only if “average-record-length" is specified for the first subparameter.

SEXPDT and RETPD are keyword subparameters; the remaining subparameters are positional subpargmeters.
9The assumption made when this subparameter is omitted is discussed in "Job Control Language.

10BUFNO is the only DCB subparameter that should be specified for direct access data sets.

11The first subparameter is positional; all other subparameters are keyword subparameters.

12This form is used only with compiler and linkage editor blocked input and output.

Figure 34. DD Parameters for Creating Data Sets

DATA_ SET NAME I specified in the associated DD
statement.
The DSNAME parameter specifies the name DSNAME=é&name }
of the data set. Only four forms of the DSNAME=¢name (element)

DSNAME parameter are used to create data
sets.

{DSNAME=dsname

DSNAME=dsname(element)}
specify names for data sets that are
created for permanent use,

Note: Members of a partitioned data
set may be read as input to a FORTRAN
object program or created as output
from a FORTRAN object program, but
only when the member name and either
LABEL=(,,,IN) or LABEL=(,,,0UT) are

specify data sets that are temporarily
created for the execution of a single
job or job step.

DUMMY

is specified in the DD statement to
inhibit write operations specified for
the data set. The WRITE statement is
recognized, but no data is transmit-
ted. (When the programmer specifies
DUMMY in a DD statement used to over-
ride a cataloged procedure, all param-
eters in the cataloged DD statement
are overridden.) The FORTRAN program-

Creating Data Sets 51

mer should not specify DUMMY for a
data set that is to be read; an end of
data set condition results, and the
execution of the load module is termi-
nated.

DDNAME=ddname

indicates a pseudo data set that will
assume the characteristics specified
in a subsequent DD statement "ddname."
The DD statement identified by
"ddname" then loses its identity; that
is, the statement cannot be referred
to by an *....ddname parameter. The
statement in which the DDNAME parame-
ter appears may be referenced by sub-
sequent *....ddname parameters. If a
subsequent statement identified by
"ddname" does not appear, the data set
defined by the DD statement containing
the DDNAME parameter is assumed to be
an unused statement. The DDNAME pa-
rameter can be used five times in any
job step or procedure step, but no two
uses can refer to the same "ddname."
The DDNAME parameter is used mainly
for cataloged procedures (as shown in
Figure 50 in the section "Cataloged
Procedures").

SPECIFYING I/0 DEVICES

The name of an input/output device or
class of devices and the number of devices
are specified in the UNIT parameter,

UNIT=(namel, {n]|P}1)

name
is given to the input/output device
classes when the system is generated.

{n]P}
specifies the number of devices allo-
cated to the data set.

SPECIFYING VOLUMES

The programmer indicates the volumes
used for the data set in the VOLUME parame-
ter.

52

VOLUME=([PRIVATE] [, RETAIN]

[, volume-sequence-number]
[,volume-count]

s SER=(volume-serial-number
[,volume-serial-numberl...)

dsname

+REF=)*¥_,ddname
* . stepname .ddname
*.stepname.procstep.ddname

~

identifies +the volume(s) assigned to the
data set.

PRIVATE

indicates that the assigned volume is
to contain only the data set defined
by this DD statement. PRIVATE is
overridden when the DD statement for a
data set requests the wuse of the
private volume with the SER or REF
subparameter.

RETAIN

indicates that this volume is to
remain mounted after the job step is
completed. (Unless RETAIN is - speci-
fied, the volume is dismounted after
its last use in the Jjob step.)
Volumes are retained so that data may
be transmitted to or from the data
set, or so that other data sets may
reside on the volume. If the data set
requires more than one volume, only
the last volume is retained; the other
volumes are dismounted when the end of
the volume is reached. If each job
step 1ssues a RETAIN for the volume,
the retained status lapses when execu-
tion of the job 1is completed.

volume-sequence-number

is a one-to-four digit number that
specifies the sequence number of a
selected volume at which processing is
to begin. All volumes whose sequence
numbers precede the specified number
are omitted from processing. Specifi-
cation of the volume-sequence-number
is wuseful only when the programmer is
reading or writing a multi-volume
cataloged data set.

volume-count

specifies the number of volumes
required by the data set. Unless the
SER or REF subparameter is used, this

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

subparameter 1is required for
multi-volume output data set.

every

SER

specifies which volumes are used for
the data set by specifying the volume
serial number for each specific
volume. (The volume serial number is
assigned and placed on the volume when
the volume is made ready for wuse by
the installation.) A volume serial
number consists of one to six alpha-
meric characters. If it contains
fewer than six characters, the serial
number is left-adjusted and padded
with blanks. If SER is not specified,
and DISP is not specified as NEW, the
data set 1is assumed to be cataloged
and serial numbers are retrieved
from the catalog. A volume serial
number need not be specified for an
output data set.

REF
is to
data

indicates that the data set
occupy the same volume(s) as the
set identified by "dsname",
"*,ddname", "*,stepname.ddname", or
"*,stepname.procstep.ddname." Table 9
shows the data set references.

When REF is specified and the data set
resides on a tape volume, the data set
is placed on the same volume, immedi-
ately behind the data set referred to
by this subparameter. When this sub-
parameter is used, the UNIT parameter
may be omitted.

If SER or REF is not specified, the
control program will allocate any non-
private volume that is available.

Table 9. Data Set References

|
|
]

b n o

Option Refers to

REF=dsname]A data set named

"dsname".

s e e i

REF=%, ddname]|A data set indicat-
led by DD statement
| "ddname" in the

jcurrent job step.
LN

L

REF=%*, stepname.ddname]A data set indicat-
{ed by DD statement
}"ddname" in the job
}step "stepname".
1

—ie amin i it . s et s i i

|
REF=#, stepname, |A data set indicat-
procstep.ddnamejed by DD statement
] "ddname" in the
| procedure step
| "procstep" invoked
}in the job step
| "stepname".
iy

s s e el TP

e e et s e s St S i o

]

SPECIFYING SPACE ON DIRECT ACCESS_ VOLUMES

The programmer indicates, in the SPACE
parameter, the space to be allocated on a
volume to a direct access data set.

TRK
SPACE= ({ CYL ,
average-record-length
(primary-quantity
[, secondary-quantity]
[,directory-quantityl)
, MXIG

{,RLSE] |, ALX
, CONTIG

[, ROUNDI)

volume.
meaning for tape

specifies space on a direct access
Although SPACE has no
volumes, if a sequential data set is
assigned to a device class that contains
both direct access devices and tape de-
vices, SPACE should be specified. The
SPACE parameter specifies:

1. Units of measurement in which space is
allocated.

2. Amount of space allocated.

3. Whether unused space can be released.

4. In what format space is allocated.

5. Whether space is to begin on a cylind-
er boundary.

TRK

CYL

average-record-length
specify the wunits of measurement in
which storage is assigned. The wunits
may be tracks (TRK), cylinders (CYL),
or records (average record length
expressed in decimal numbers).

(primary-quantity[,secondary-quantity]
[,directory-quantityl)
specify the amount of space allocated
for the data set. The "primary gquan-
tity" indicates the number of records,
tracks, or cylinders allocated when
the job step begins. The "secondary
quantity" indicates the amount of
space to be allocated each time pre-
viously allocated space is exhausted.
The operating system can allocate
additional space specified in the
secondary quantity 15 times. The
"directory quantity" is used only when

Creating Data Sets 53

\

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

writing a PDS, and it specifies the
number of 256-byte records to reserve
for the directory of the PDS.

For example, by specifying:
SPACE=(120, (400,100))

space is reserved for 400 records; the
average record length is 120 charac-
ters. Each time space is exhausted,
space for 100 additional records is
allocated.

By specifying the following, 20 cylin-
ders are allocated to the data set:

SPACE=CYL, (20,2, 5))

When previously allocated
exhausted, two additional cylinders
are allocated. In addition, space is
reserved for five records in the di-
rectory of a PDS.

space is

Note: When the FORTRAN programmer
uses a direct access data set, he must
allocate space on the direct access
volume in two places: the DEFINE FILE
statement in the source module and a
DD statement at load module execution.
He must also make certain that the DD
statement SPACE parameter contains an
adequate SPACE allocation, based on
the value specified in the DEFINE FILE
statement.

RLSE
indicates that all unused external
storage assigned to a NEW or MOD
output data set is released when the
data set is closed in a job step.

MXIG

ALX

CONTIG

54

specify the format of the space allo-
cated to the data set. MXIG requests
the largest single block of storage
that is greater than or equal to the
space requested in the "primary quan-
tity." ALX requests up to five conti-
guous blocks of storage, each block
greater than the "primary quantity."”
CONTIG requests that the space indi-
cated in the "primary quantity" be
contiguous.

If the subparameter is not specified,
or if any option cannot be fulfillegqd,

the operating system attempts to

assign contiguous space. If there is
not enough contiguous space, up to
five noncontiguous areas are
allocated.

ROUND

indicates that allocation of space for
the specified number of records is to
begin and end on a cylinder boundary.

Note: The SPACE parameter in the DD
statement must be used if a data set
might be written on a direct access
device. For the compiler, the pro-
grammer should allow 150 characters
per source statement in the "primary
quantity" for each data set except
SYSPRINT. For SYSPRINT, he should
allow approximately 220 characters per
source statement.

LABEL INFORMATION

If the programmer wishes to catalog a
data set so that he can refer to it without
repeating information (record type, record
length, number of buffers, etc.) that was
supplied when the data set was created, he

must specify certain information in the
LABEL parameter. If the parameter is
omitted and the data set is passed, the

label information 1is retrieved from data
set labels stored with the data set.

. NL
LABEL=([data-set-sequence-number] {.gg
P

+ BL.
,IN | [, ExPDT=yyddd ,
,0UT| |, RETPD=XXXX)

data-set-sequence-number

is a 4-digit number that identifies
the relative location of the data set
with respect to the first data set on
a tape volume. (For example, if there
are three data sets on a magnetic tape
volume, the third data set is identi-
fied by data set sequence number 3.)
If the data set sequence number is not
specified, the operating system
assumes 1. (This option should not be
confused with the volume sequence
number, which represents a particular
volume for a data set.)

{

[

Form C28-6603~2
Page Revised 11/15/68 by TNL N28-0586

NL
SL
BLP
specify data set 1label information
SL indicates standard labels which
contain information such as record

format, buffer length, dates, density,

and identifiers for the data set. NL
indicates no labels. BLP indicates
that label processing is to be
bypassed.

The feature that allows bypassing of
label processing is a system genera-
tion option (OPTIONS=BYLABEL). I1f
this option has not been specified and
BLP is coded, the system assumes NL.

IN]

ouT
are used to control data sets that are
to be processed as input or output

only. A form of read/write protection
is offered by these subparameters.

For input data sets, the 1IN

meter allows:

subpara-

e Access to members of a partitioned
data set (for read purposes only).

¢ A means of avoiding operator inter-
vention when reading a data set that
is protected by either a high
expiration date or by the absence of
the write-ring (file-protected
tape).

For output data sets, the OUT subpara-
meter allows a member of a partitioned
data set to be created.

IN
specifies that the data set is to be
processed for input only. 1IN will be
recognized only if the first input/
output operation specifying the data
set is a READ., If the first operation
is not a READ, the IN subparameter has

no effect and both READ/WRITE opera-
tions are allowed. When the first
operation is a READ, any subsequent

WRITE issued to the data set will be
treated as an error, and the job will
be terminated. Additionally, the spe-
cification of IN permits the reading
of a password-protected data set (if
the correct password is supplied), and
avoids the need of operator interven-
tion when reading a data set protected
by either a high expiration date or
the absence of a write-ring.

ouT
specifies that the data set defined by
the DD statement is to be recognized
only if the first input/output opera-
tion specifying the data set is a

WRITE. If the first operation is not
WRITE, the OUT subparameter has no
effect and both READ/WRITE operations

are allowed. However, the creation of
a member of a partitioned data set is
not allowed when the first operation
is READ, even though the OUT subpara-
meter was specified. When the first
operation is a WRITE, any subsequent
READ issued to the data set will be
treated as an error, and the job will
be terminated. OUT must be specified
to create a member of a partitioned
data set.

EXPDT=yyddd

RETPD=xXXXX
specify how 1long the data set shall
exist. The expiration date, EXPDT=
yyddd, indicates the year (yy) and the
day (ddd) the data set can be deleted
by the DELETE subparameter in the DISP
parameter. The period of retention,
RETPD=xxxx, indicates the period of
time, in days, that the data set is to
be retained. If neither is specified,
the retention period is assumed to be
zero.

DISPOSITION OF A DATA SET

The disposition of a data set is speci-
fied by the DISP parameter; (see "Data
Definition (DD) Statement.)" The same

creating data
created data

options are used for both
sets and using previously
sets.

WRITING A UNIT RECORD DATA SET ON AN
INTERMEDIATE DEVICE

A printed output data set may be written
on an intermediate device and subsequently
written on the printer (ultimate device).

SYSOUT=A

indicates that the ultimate destina-
tion for printed output data sets is
the printer.
Note: For SYSOUT data sets, if the
DEN subparameter is specified, only
DEN=2 can be specified.

Creating Data Sets 55

Form C28-6603-2
Page Revised 11/15768 by TNL N28-0586

DCB_PARAMETER

For the compiler or linkage editor, the
length of a block can be specified. For
load module execution, the FORTRAN pro-

grammer may specify record formats, record
lengths, and the number of buffers for
sequentially organized data sets that

reside on magnetic tape or direct access
volumes. For direct access organized data
sets, only the number of buffers can be
specified; any other specifications are
ignored. The DCB information is placed in
the labels for these data sets.

dsname

DCB= (| *, ddname
*, stepname. ddname
*,stepname. procstep.ddname

[,DEN={0]1]2]33}1[, TRTCH={C|E|T|ET}]
[, BUFNO={1]2}]

{F{U}[A|M]IT]
[, BLKSIZE=xxxX]
o RECFM= JV[A|M] [T], LRECL=XXX¥
o+ BLKSIZE=XXXX
{F|V}BIA|M](T], LRECL
=xxXX, BLKSIZE=XXXX

[, OPTCD=C]

uBLKSIZE=xxxx

REFERRING TO PREVIOUSLY SPECIFIED DCB
INFORMATION

The first subparameter

dsname

*,ddname

*,stepname. ddname
*,stepname. procstep.ddname

is used to retrieve DCB parameter informa-
tion from previously created data sets.
The DCB information specified for the data
set referred to by this subparameter is
copied by the control program for wuse in
processing the data set defined by the DD

statement in which this subparameter
appears. Any subparameters in the DCB
parameter that follow this subparameter

override any copied DCB subparameters.

56

dsname ,
indicates that the DCB subparameters
of a cataloged data set "dsname" are
copied and used as the DCB parameters
for this data set The data set
indicated by "dsname" must be current-
ly mounted, and it must reside on a
direct access volume.

*, ddname
indicates that the DCB parameter in a
preceding DD statement "ddname" in the
current job step is copied.

*, stepname.ddname
indicates that the DCB parameter in a
DD statement "ddname" that occurs in a
previous job step "stepname" in the
current job is copied.

*. stepname. procstep. ddname

indicates that the DCB parameter in
the DD statement "ddname" is copied
from a previous step "procstep" in a

cataloged procedure. The procedure
was invoked by the EXEC statement
"stepname" in the current job.

DENSITY AND CONVERSION

The second subparameter indicates the

density and conversion for tape volumes.

DENSITY: Density is only specified for
data sets residing on magnetic tape
volumes.

DEN={0|1]2|3]|}

Table 10
numbers 0, 1, 2,

correlates
and 3.

density with the

Table 10. DEN Values for Model 2400

1
]]Tape Recording Density (bits/inch) |
| DEN } 1
|va e| 7 Track] 9 Track |
L } 4 .l
) T T
I 0 | 200 | - |
|1 556 | - |
| 2 | 800 | 800 |
1 3 | - | 1600 |
L 4 e e o 4
Note: If SYSOUT=A is specified, DEN=2 is

the only DEN option that may be specified.

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

CONVERSION: Conversion is used only for
data sets residing on 7-track tape volumes.

TRTCH={C|E|T|ET}
indicates
used:

which conversion type is

C - data conversion feature is used
E - even parity is used

T - translation from BCD to EBCDIC or
EBCDIC to BCD is required

ET - even parity is used and transla-
tion from BCD to EBCDIC is
required

CHAINED SCHEDULING

Chained scheduling may be requested by
specifying OPTCD=C as a DCB subparameter in
the DD statement. Although chained sche-
duling 1is not wused for direct access 1/0
itself, it does produce faster formatting
of direct access data sets. When chained
scheduling is specified, the system makes
use of about 2K additional bytes of main
storage to provide the feature.

RECORD FORMAT

RECFM=U[A|M][T]
RECFM=VI{B] [A|M] [T]
RECFM=F[B] [A|M]IT]

The characters V, F, U, and B represent

V - variable-length records (records whose
length can vary throughout the data
set)

F - fixed-length
length
set)

records (records whose
is constant throughout the data

U - undefined records (records that do not
conform to either the fixed-length or
variable-length format)

B - blocked records

Note: For blocked compiler and 1linkage
editor I/0, RECFM should not be specified.

The character A indicates the use of the
FORTRAN carriage control characters; the
character M indicates the use of machine
code control characters.

The character T specifies the use of the
track overflow feature. Use of this fea-
ture results in more efficient utilization
of track capacity and allows records to be

written when the specified block size
exceeds track size. RECFM subparameter
specifications, and the type of processing

associated with each, follow:

RECFM=UT Formatted Sequential I/O

RECFM=VT Formatted or Unformatted Sequen-
tial I/0

RECFM=FT Direct Access I/0 or Formatted
Sequential I/0

Note: Backspacing 1is not allowed when

track overflow is specified. Therefore, a
FORTRAN program using the track overflow
feature may mnot contain the BACKSPACE
statement.

RECORD LENGTH, BUFFER LENGTH, BLOCK LENGTH,
AND NUMBER OF BUFFERS FOR SEQUENTIAL DATA
SETS

For blocked records used by the compiler
or linkage editor, the length of a block is
specified by the buffer 1length which is
specified by

BLKSIZE=xxXXX
The record 1length

specified by the
editor.

(LRECL) is permanently
compiler or linkage

For unblocked records used by the com-
piler or linkage editor, the values for
BLKSIZE and LRECL are permanently
specified.

For unblocked fixed-length records or
undefined records used during load module
execution, the record length and the buffer
length are specified by

BLKSIZE=XXXX

Creating Data Sets 56.1

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

For unblocked variable-length
the record length is specified by

records,

LRECL=XXXX
Buffer length is specified by
BLKSIZE=XXXX

For blocked variable-length or fixed-
length records used by 1load modules, the
record length is specified by

LRECL=xXXXX

Block length
fied by

and buffer length are speci-

BLKSIZE=XXXX
Undefined records cannot be blocked.

Table 11 is a summary of the specifica-
tions made by the programmer for record
types and blocking in FORTRAN processing.

The number of buffers required to read
or write any data set is specified by

BUFNO=x (x=1 or 2)

FORTRAN Records and Logical Records for
Sequential Data Sets

In FORTRAN, records for sequential data
sets are defined by specifications in
FORMAT statements and by READ/WRITE lists.
A record defined by a specification in a
FORMAT statement is a FORTRAN record (see
the section "Input/Output Statements" in
the Basic FORTRAN IV _Language publication).
A record defined by a READ/WRITE list is a
logical record. Within each category,
there are three types of records: fixed
length, variable-length, and undefined. 1In
addition, fixed-length and variable-length
records can be blocked.

For unformatted READ
ments,

and WRITE state-
the logical record, as defined by

the I/0 list, is placed into physical rec-
ords and, if required, the 1logical record
is spanned over physical records. When
spanning occurs, FORTRAN library routines
do not split-write an item over the span
even if there is enough room in the buffer
to accomodate part of the item. However,

FORTRAN does provide the ability to read
items split across segments.

UNBLOCKED RECORDS, FORMAT CONTROL: For
fixed-length and undefined records, the

record 1length and buffer length are speci-
fied in the BLKSIZE subparameter. For
variable-length records, the record length
is specified in the LRECL subparameter; the

buffer length is specified in the BLKSIZE
subparameter. The information coded in a
FORMAT statement indicates the FORTRAN

record length (in bytes).

Fixed-Length Records: For unblocked fixed-

length records written under FORMAT con-

trol, the FORTRAN record length must not

exceed BLKSIZE (see Figure 35).

Example: Assume BLKSIZE=U44

10 FORMAT(F10.5,16,2F12.5,'SUMS')
WRITE(20,10)AB, NA, AC,AD

r——————————= BLKSIZE — —— ——— —————— 1

I I

F———————— FORTRAN Record = — — — — — — —— 4

44 Bytes of Data

FORTRAN Record (FORMAT Control)
Fixed-Length Specification

Figure 35.

If the FORTRAN record length is less
than BLKSIZE, the record 1is padded with
blanks to fill the remainder of the buffer
(see Figure 36). The entire buffer is

written.

Creating Data Sets 57

Table 11. Specifications Made by the FORTRAN Programmer for Record Types and Blocking

- T T T T ‘i’

|
RECFM |

1

Blocked or |
Specification |Record Length |Buffer Length |
|

4

|

Step Unblocked Record Type

e e

|
!
!
3
}

|
|
|
4
T
|
4
4

I
|
|
-—-- + 1 1
| Compiler or| Unblocked |Fixed-Length not specified|not specified?|not specified?
| Linkage — p----—- 1 --- 1 o B 1
| Editor] Blocked | Fixed-Length | RECFM=FB=2 |not specified? |BLKSIZE=xxxxX |
} 1 t + + 1 1
]] | Fixed-Length | RECFM=F3 |BLKSIZE =xxxx3 |
| | t 1 1- -1 |
| | Unblocked |Variable-Length|RECFM=V | RECL—xxxx | |
1 | b + 1 1 |
| Load Module} |Undefined | RECFM=U | BLKSIZE=xxxX |BLKSIZE=xxxx |
| Execution ¢ 4 ———————e 4 4 |
| | | Fixed-Length |RECFM=FB | | |
|] t 4 LRECL=xXxX | I
| | Blocked |Var1able-Length|RECFM—VB |] |
| | -——- 1 o d e {
| i |Undef1ned |Blocked undefined records are not permitted |
1 i N 1 ,‘
r
| *Permanently specified by the compiler and cannot be altered. |
| 2For SYSPRINT or other written output, RECFM=FBA under the sequential scheduler, and |
| RECFM=FM under the priority scheduler. |
| 2?Not specified for direct access data sets. |
L J
Example: Assume BLKSIZE=56 rTT T T T BLKSIZE —— — —— ——————]
I
|
5 FORMAT (F10.5,I6,F12.5, TOTAL') | e — - RECL — — — — — — — —— — — i
WRITE (15,5) BC,NB,BD [1
it FORTRAN Record — — — — — — — 1
| |
| | !
F———————— BLKSIZE — — — — — — — — — — 9
: |I BCWISCW| Data
—— — —— —— — WrittenRecord — — — — — — — —— 1
: I Figure 37. FORTRAN Record (FORMAT Control)
- — —— FORTRAN Record — = —— | Variable-Length Specification
| | |
33 Bytes of Data 23 Bytes of Blanks

If the FORTRAN record 1length is 1less
Figure 36, FORTRAN Record (FORMAT Control) than (LRECL-4), the unused portion of the
With Fixed-Length Specification buffer is not written (see Figure 38).
and FORTRAN Record Length Less
Than BLKSIZE

r————— — = ——= BLKSIZE — — — — — — — — — —— o
Variable-Length Records: For unblocked L Written Record — — — — —
variable-length records written under FOR- r 1 |
MAT control, LRECL is specified as four | Mmoo ———— RECL — 4— —— ——— ——-
greater than the maximum FORTRAN record | | | :
length and BLKSIZE as four greater than [r————-FowmANRmmd—-—~—1 |
| | |

LRECL. These extra eight bytes are
required for the 4-byte block control word kc SeW
(BCW) and the U4-byte segment control word
(SCW), as shown in Figure 32, The BCW (see
Figure 37) contains the 1length of the Figure 38. FORTRAN Record (FORMAT Control)

Data Not Written J'

block; the SCW (see Figure 38) contains the With variable-Length Specifica-
length of the record segment; i.e., the tion and the FORTRAN Record
data length plus four bytes for the SCW. Length Less Than (LRECL-4)

58

Undefined Records: For undefined records
written under FORMAT control, BLKSIZE is
specified as the maximam FORTRAN record
length. If the FORTRAN record length is

less than BLKSIZE, the unused portion of

the Dbuffer is not written (see Figure 39).
r—————————— BLKSIZE — — — — — —— —— I
I I
j—— — — — FORTRAN Record — — — — — 1
| |
| | |
________ g
Data Not Written |
________ J
Figure 39. FORTRAN Record (FORMAT Control)

With Undefined Specification
and the FORTRAN Record Length
Less Than BLKSIZE

BLOCKED RECORDS, FORMAT CONTROL: For all
blocked records, the record length is spec-
ified in the LRECL subparameter; the block
length and buffer 1length in the BLKSIZE
subparameter.

Fixed-Length Records: For Dblocked fixed-
length records written under FORMAT
control, LRECL is specified as maximum
possible FORTRAN record length, and BLKSIZE
must be an integral multiple of LRECL. If
the FORTRAN record 1length is 1less than
LRECL, the rightmost portion of the record
is padded with blanks (see Figure 40).

Example: Assume BLKSIZE=48 and LRECL=24
10 FORMAT(IS8,Fl16.4)

20 FORMAT(I12)

WRITE(13,10)N,B

WRITE(13,20)K

ll— ————————— Written Block — —— — — — — — — —'II
———— IRECL — — — — — _—————— LRECL— — ——
I I FORTRAN |
p- — — — FORTRAN Record — ———-t—"p oy — 7 |
| | |
12 12 Bytes
24 Data Bytes Data Bytes of
Blanks
Figure 40. Fixed-Length Blocked Records

Written Under FORMAT Control

Variable-Length Records: For blocked
variable-length records written under
FORMAT control, LRECL is specified as four
greater than the maximum FORTRAN record
length, and BLKSIZE must be four plus an
integral multiple of LRECL. The four addi-
tional bytes allocated with BLKSIZE are
required for the block control word that
contains the block length. The four addi-
tional bytes allocated with LRECL are used
for the segment control word that contains
the record-length indicator.

If a WRITE statement is executed and the
amount of space remaining in the present
buffer is less than LRECL, only the filled

portion of this buffer 1is written (see
Figure 37); the new data goes into the next
buffer. However, if the space remaining in

a buffer is greater than LRECL, the buffer
is not written, but held for the next WRITE
statement (see Figure U41). If another
WRITE statement is not executed before the
job step is terminated, then the filled
portion of the buffer is written.

Creating Data Sets 59

Example: Assume BLKSIZE=28 and LRECL=12
30 FORMAT(I3,F5.2)

40 FORMAT(F4.1)

50 FORMAT(F7.3)

WRITE(12,30)M,2

WRITE(12,40)V
WRITE(12,50)Y
e ——— BLKSIZE — — — — — — — ———— 1
| |
_— Written Block — — ——— —— 1 :
] |
: —————IRECL— ——— T ————— RECL— — — —— :
| | i
I | —— —FORTRAN Record——{ --FORTRAN |
| | | I | Record | |
[| P
4 4 Bytes]
BCW|SC 8 Data Bytes scw| Data Not |
Bytes Written |
_____ 1
" FORTRAN Recordf -7
|
This space of 13 bytes
BCW[SCW 7 Data Bytes Ready for next WRITE.
(space > LRECL)

Variable-Length Blocked Records
Written Under FORMAT Control

Figure 41.

NO FORMAT CONTROL: Only variable-length
records can be written without format con-
trol; i.e., the RECFM subparameter must be
V. (If nothing is specified, v is
assumed.)

Records written without FORMAT control have
the following properties:

e The 1length of the 1logical record is
controlled by the type and number of
variables in the I/O 1list of its asso-
ciated READ or WRITE statement.

record can be physically
recorded on an external medium as one
or more record segments. Not all seg-
ments of a logical record must fit into
the same physical record (block).

A logical

e Three quantities control the manner in
which records are placed on an external
medium: the block size (as specified by
the BLKSIZE parameter), the segment
length (as specified by the LRECL

60

parameter), and the logical record (as
defined by the length of the I/O list).
BLKSIZE and LRECL are specified as part
of the DCB parameter of the data defi-
nition (DD) statement. If not speci-
fied, FORTRAN provides default values.

Each Dblock begins with a U4-byte block
control word (BCW); each segment begins
with a U4-byte segment control word (SCW).
The SCWs and BCWs are provided by the
system.

The format
42.

of a BCW is given in Figure

r T
| block-length |

2 bytes

Figure 42. Format of a BRlock Control Word

where:

block-length
is a binary count of the total number
of bytes of information in the block.
This includes four bytes for the BCW

plus the sum of the segment lengths
specified in each SCW in the block.
(The permissible range is from 8 to
32,767 bytes.)

reserved
is two bytes of zeros reserved for

system use.

The format of an SCW is given in Figure
43.
= - - -=-T -
| segment-length | code | reserved |
| L S —_

2 bytes 1 byte 1 byte
Figure 43. Format of a Segment Control
Word

where:

segment-length
is a binary count of the number of
bytes in the SCW (four bytes) plus the
number of bytes in the data portion of
the segment following the SCW. (The
prermissible range is from 4 to 32,763
bytes.)

code :
indicates the position of the segment
with respect to the other segments (if

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

any) of the record. Bits 0 through 5
are reserved for system use and are
set to 0. Bits 6 and 7 contain the

codes:

Code Meaning

00 This segment is not followed or
preceded by another segment of
the record.

01 This segment is the first of a
multi-segment record.

10 This segment is the 1last of a
multi-segment record.

11 This segment 1is neither the
first nor last of a multi-
segment record.

reserved

is a byte of zeros reserved for system

use.

Unblocked records: For unblocked records
written without FORMAT control, the value
of BLKSIZE is equal to LRECL+4, (The four
additional bytes are for the BCW.)

If the logical record 1length is 1less
than or equal to LRECL-4, the 1logical
record comprises one record segment.

Hence, for the associated READ or WRITE
statement, one record segment, i.e., oOne
block, is transmitted (see Figure Uuu).
Note that the unused portion of the block
is not transmitted.

If the logical record length is greater
than LRECL-4, the logical record comprises
N record segments, where:

N=logical record length/LRECL-U4,

Hence, for the associated READ or WRITE
statement, N record segments, 1i.e., N
blocks, are transmitted (see Figure 45),
Example 1: Assume BLKSIZE=28 and LRECL=24
WRITE(18)Q,R

where:

Q0 and R are real *8 variables.

F—m === BLKSIZE — — — — — — — — — — 1
| |
I e LRECL - — ——— — — — — —
T |
‘ - Logical Record —— — — — A :
BCW SCW Data Segment Not Written
4 bytes 4 bytes 16 bytes 4 bytes
Figure U44. Variable-length Unblocked Rec-
ords, No FORMAT Control, One
Record Segment
Example 2: Assume BLKSIZE=28 and LRECL=24
WRITE(18)Q,R,S,V,X
where:
Q, R, and V are real *8 variables.
S and X are real *4 variables.
[———— — BLKSIZE —— ———— — ——]
|
| Fm——————— LRECL —— ——————— -
| | |
} :— —————— Beginning of Logical Record = — ——— — —1
BCW Neal) Data Segment 1
4 bytes 4 bytes 20 bytes
r— — —— —End of Logical Record — ————
BCW SCW Data Segment 2 Not Written
4 bytes 4 bytes 12 bytes 8 bytes
Figure 45, Variable-length Unblocked Rec-

ords, No FORMAT cControl, Two

Record Segments

For blocked records writ-
ten without FORMAT control, each block,
except the last, is composed of at least M
record segments, where:

Blocked Records:

M = BLKSIZE-4/LRECL

If the 1logical record 1length is less
than or equal to LRECL-4, the 1logical
record comprises one record segment.
Hence, for the associated READ or WRITE

statement, one block, i.e., M record seg-
ments, is transmitted.

If the logical record length is greater
than LRECL-4, the logical record comprises
N record segments, where:

N=logical record length/LRECL-4,

Creating Data Sets 61

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

associated READ or WRITE
statement, N record segments (i e., as
many blocks of M segments each as are
needed to make up N segments) are trans-
mitted. The unused portion of the last
block is held for the next READ or WRITE
(see Figure 46).

Hence, for the

Example: Assume BLKSIZE=28 and LRECL=12

WRITE(18)A

WRITE(18)B

WRITE(18)E

A is a real *8 variable.
B and E are real *4 variables.

where:

BCW SCW Record 1 SCW Record 2 Not Written

4 bytes 4 bytes 8 bytes 4 bytes 4 bytes 4 bytes

— — Logical Record ——

BCW Nl Record 3 Space Ready for Next Write

4 bytes 4 bytes 4 bytes 16 bytes

Figure 46. Variable-length, Blocked Rec-

ords, No FORMAT Control

BACKSPACE Operations

Unblocked Records: For all unblocked rec-
ords, written with or without FORMAT con-
trol, the volume is positioned so that the
last logical record read or written is
transmitted next.

Blocked Records: Blocked records are back-
spaced on a logical record basis. Thus, a
BACKSPACE may result in a deblocking opera-
tion rather than in making a new physical
record available,

62

Note: Logical records are usually synony-
mous with the amount of data specified in
the I/O 1list for the READ or WRITE state-
ment that processes the record Thus, when
there is no FORMAT control, the logical
record may be spanned over one or more
physical records on the volume; however,
FORTRAN treats only the logical record as
an entity. For records written with
FORMAT control, a single READ/WRITE state-
ment may refer to or create several logical
records. This occurs when there is a /
character in the FORMAT statement or when
the I/0 list exceeds the FORMAT specifica-
tions, causing the FORMAT statement to be
used again from the first parenthesis.

RECORD LENGTH, BUFFER LENGTH, AND NUMBER OF
BUFFERS FOR DIRECT ACCESS DATA SETS

A direct access data set can contain
only fixed-length unblocked records. Any
attempts to read or write any other record

format by specification in the DCB parame-
ter are ignored. The record length and
buffer 1length for a data set are specified
by the programmer as the record size in the
DEFINE FILE statement, and cannot be
changed by specifying the BLKSIZE or LRECL
subparameters in the DCB parameter. For
example, the following statement sets the
record length and buffer length permanently
at 152 bytes:

DEFINE FILE 8(1000,152,E,INDIC)

The direct access data set defined by this
DEFINE FILE statement contains 1000 fixed-
length unblocked records. Each record is
152 bytes long, and is written under FORMAT
control.

The only DCB parameter that can be
supplied for direct access data sets is the
number of buffers:

BUFNO=x

where:
x (1 or 2) is the number of buffers
used to read or write the data set.

For records written with FORMAT control,
the record format is the same as for
fixed-length unblocked records written with
FORMAT control for sequential data sets.
For records written without FORMAT control,
the records must be specified as fixed-
length and unblocked. These records do not
contain a block control word or a segment
control word.

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

Spanning considerations

For records written without FORMAT con-
trol, the input/output list may exceed the
logical record 1length (i.e., block size).
In this case a new block is started on
output, and the next block is processed on
input. If it is shorter than the record
length, the remaining portion of the record
is padded with zeros (see Figure 47).

Note that the DEFINE FILE field r (r=152
in the preceding example) specifies the
maximum size of each record in a data set.

It is only when this size is exceeded by
the 1I/0 list that spanning occurs.
Although FORTRAN allows the creation and

retrieval of such records, this feature is
not supported by other processors. Thus,
data sets containing such records cannot be
processed in other than FORTRAN jobs.

When spanning occurs, the FORTRAN
library routines do not split-write an item

over the span even if there is enough room
in the buffer to accomodate part of the
item. The same considerations apply to
reading.

Example: A DEFINE FILE statement has spe-
cified the record length for a direct

access data set as 20. This statement is

then executed
WRITE(9'IX)DP1,DP2,R1,R2
where:

DP1 and DP2 are
variables.

double precision

R1 and R2 are real variables.

IX is an integer variable that con-
tains the record position.
Creating Data Sets 62.1

[~ — = — — — Record Lenglh — — —— — — |

| |

:— ————— Record Segment | =— — — — — — —:
|

I]

20 Data Bytes

Record Segment |+ Record Segment 5 = 1 Logical Record

— — - - —— Record Segmentg — — — — — — 9

' I

! 1

4 Data Bytes 16 Bytes of Zeros
Figure 47. Logical Record (No FORMAT

Control) for Direct Access

BACKSPACE, END FILE, and REWIND opera-
tions are ignored for direct access data
sets.

DCB RANGES AND ASSUMPTIONS

For compilation, the LRECL value for the
following data sets is fixed and cannot be
altered by the programmer:

Data_ Set LRECL Value
SYSPRINT 121
SYSIN 80
SYSPUNCH 80
SYSLIN 80
If the PRFRM option is specified, the
SYSPRINT, SYSIN, and SYSPUNCH compiler data

sets can contain blocked records. If the
higher 1level linkage editor (program name:
IEWLEU4UO0) is used, the SYSLIN data set can
contain blocked records.

The BLKSIZE value mnmust be an integral
multiple of the corresponding LRECL value

shown above. The maximum BLKSIZE value is
limited only by the type of input/output
device (see Table 12), except that for

SYSLIN the maximum BLKSIZE value is 400

with linkage editor IEWLEH4U4O.

load module execution,
cations depend on record type.
records, the BLKSIZE value must be an
integral multiple of the LRECL value; for V
type records, BLKSIZE must be specified as
4 + n x LRECL (where n is the number of
records in the block); for U type records,
no blocking is permitted. Note, too, that
the BLKSIZE and LRECL range is limited only
by the type of device used to directly
write the data set (see Table 12). Load
module DCB parameter default values are
shown in Table 13.

For specifi-

For F type

Table 12. BLKSIZE Ranges: Device Considerations
i T T TT TSI TT oo oo — oo - - - -
| Device Type | BLKSIZE Ranges
 — R i - - -
| | F and U Record Type | V Record Type |
b - e 4
| Card Reader | 1<x<80 | 9<x<80 |
b-- Do ommmmmmmmm oo !
| Card Punch | 1<x<81 | 9<x<89 |
pmm - oo ¥ e .
Printer:		
120 Spaces	1<x<121	9<x<129
132 Spaces	1<x<133	9<x<141
144 spaces	1<x<145	9<x<153
T — e - - 1		
Magnetic Tape	18<x<32,000	
prmmm oo mm - $o-—— -- I S e 4		
Direct Access:	Without Track Overflowl] With Track Overflow?	
T T o e -- -1		
] 2301	1<x<20,483	1<x<32,763
2302	1<x<4984	1<x<32,763
2303	1<x<4892	1<x<32,763]
] 2311	1<x<3625	1<x<32,763
2314	1<x<7294	1<x<32,763
[—— 1 - ————————————— i {		
*If RECFM=V, the minimum block size is 9.		
- - —_— 1

Creating Data Sets 63

Table 13. Load Module DCB Parameter Default Values

|1If the records have no FORMAT control, the default RECFM is V and the default LRECL
| is 4 less than BLKSIZE, where the default BLKSIZE is as specified in this table.
|12The first character in each record is assumed to be a carriage control character.

r T T T 1
| | | Sequential Data Sets? l Direct Access Data Sets |
| Data Set Ref- | S T + - T 4
| erence Number | ddname | RECFM |Default LRECL |Default RECFM| Default LRECL |
| I | | or BLKSIZE | | or BLKSIZE f
[4 4 4 4 d
r +°-" T T T T 1
I 1 | FTO1F001 | F | 80 I F | |
e e —— o } e i |
| 2 | FTO02F001 | F | 80 | F | |
b-———— f————————— + +- ———————————— {The value spec- |
| 3 | FTO3F001 | UAZ2 | 133 | Fa2 |ified as the
b $————_———— + -4 -4 {maximum size of |
4	FTO4FO001	U	800	F	a record in the
.]	DEFINE FILE	
.	statement.
. I I	
99	FT99F001	U	800	F	
* _______________ N 4 L 1 L 4
1
|
|
|
J

L—— - _ —_ - —_—

(L

This section contains figures showing
the job control statements used in the
FORTRAN IV (E) cataloged procedures and a

brief description of each procedure. This
section also describes how to override
statements and parameters in any cataloged
procedure. (The use of cataloged proce-
dures is discussed in "Job Processing.")
The SPACE parameter shown in these cata-
loged procedures is written for use with
IBM 2311 disk storage drive.

Compile

The cataloged procedure for compilation
(FORTEC) is shown in Figure 48.

The EXEC statement that invokes the

FORTRAN E compiler is named FORT; the EXEC
statement indicates that the operating sys-
tem is to execute the program IEJFAAAO [the
name for the FORTRAN (E) compiler]. Com-
piler options are not explicitly supplied
with the procedure: default options are
assumed. The programmer can override these
default options by using an EXEC statement
which includes the options he desires.

Compile and Link Edit

(FORTECL) to
edit the

The cataloged procedure
compile a source module and link

CATALOGED PROCEDURES

The EXEC statement named FORT instructs
the control program to execute the FORTRAN
(E) compiler. Again, no compiler options
are specified; default options are assumed.

The EXEC statement named LKED instructs
the control program to execute the program
IEWL (the alias for the highest 1level
linkage editor in the installation's oper-
ating system). This statement also speci-
fies the XREF, LIST, LET, and NCAL linkage
editor options. The NCAL option instructs
the 1linkage editor not to resolve any
external references in the FORIRAN library.
This means that the resulting load module
must be processed by the 1linkage editor
again before the module can be executed
unless NCAL is overridden.

Link Edit and Execute

The cataloged procedure to 1link edit
FORTRAN object modules and execute the
resulting load modules (FORTELG) is shown

in Figure 50.

The EXEC statement that executes the
linkage editor is named LKED and specifies
that the operating system is to execute the
program IEWL, the alias for the highest
level linkage editor. This statement also
specifies the XREF, LIST, and LET options
for the linkage editor. The programmer can

resulting object module into the FORTRAN override these options by wusing an EXEC
library (FORTLIB) is shown in Figure 49. statement in the input stream.
IBM FORTRAN Coding Form ot b
e = R [e
STATEMENT | 2 FORTRAN STATEMENT Rl
1 2 3 4 5 :) J B 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 25 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 &4 65 66 &7 68 69 70 71 72|73 74 75 76 77 78 79 80
LIFORT EXEC, PGM=1EJ ‘ =42) ;
/1 SYSPIRINT ﬂgaﬂ = =121
vi D =039 = =
vin T =S SEP= (9@ 2¢)) |]
T UNIT=S 9 SEP= = al() | R
/1 sYs|) NifT= E[P= SYSPUNCHD =gl 2 D1 SIP=(MODl2 PASS) » IS
i P =/(Bd>() | | L
Figure 48. Compile Cataloged Procedure (FORTEC)
Cataloged Procedures 65

The EXEC statement named GO executes the
load module produced by the linkage editor
procedure step. The PGM vparameter speci-
fies that the operating system is to exe-
cute the data set defined by the DD state-
ment SYSLMOD in the procedure step LKED.

In a multiprogramming environment with a
priority scheduler, main storage require-
ments for the execute step are determined
by a number of factors. These include the
size of the object program produced by the
compiler, the requirements of the data
access method used, the blocking factor,
the number and record sizes of data sets
used, the number and sizes of 1library
subprograms invoked, and the sizes of other
execution time routines required by the
program. If the default REGION is not
large enough for program execution,
REGION.GO must be used to specify a REGION
parameter on the program's EXEC statement.

A listing of the execution time routines
required for various input/output, inter-
ruption, and error procedures is contained
in the publication IBM System/360 FORTRAN
IV Library Subprograms. It also lists the
sizes of Dboth the execution time routines
and the mathematical subprograms.

The following is an examrple of
REGION.GO specification +*o
main storage requirements for
step of a FORTRAN program.

using a
indicate the
the execute

IBM

FORTRAN Coding Form

//EXAMPLE1 JOB ACCOUNT1, 'JOHN SMITH',
MSGLEVEL=1

// EXEC FORTECLG, PARM.FORT=DECK,
REGION.GO=60K

//FORT.SYSIN DD #

FORTRAN SOURCE SYMBOLIC DECKS

-

/¥
//LKED.SYSIN DD *

PREVIOUSLY COMPILED OR ASSEMBLED
OBJECT DECKS

/*
//GO.SYSIN DD *

INPUT DATA

/*

x28.7327-5
Peinted in U.S.A,

PROGRAM

PROGRAMMER I DATE

PUNCHING
INSTRUCTIONS

GRAPHIC PAGE OF

CARD ELECTRO NUMBER

PUNCH

STATEMENT

>fconr)

FORTRAN STATEMENT

IDENTIFICATION
SEQUENCE

T 23 45

7 8 9,10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2/ 26 29 30 31 32 33 34 35 36 37 38 39 40 A1 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 4 65 66 67 68 69 70 71 72|73 74 75 76 77 78 79 &

1FIORM EX

c| PGIM=[1 EVIFIAAAD > REG) ON=L2Z K

DD SYySsouT=A

-
K~1
[}
[
| W |
|
[3

11SYSPRI N

KiS1ZE=[121
KS

DD s =BsD | EE=8%

unN 5Q SYSIPUNC

—
OUoxidm

~
[T IED)

NN ISR
~
3
=3

u

ou

M:T ﬂ:
u =

=S

=
[10

:_
Pl
=
O

| | SPA

wlw|e
m
'\h5l{?%%17

m
oo

’

E@g) PACE
NICH)>IDSN

D)» RLSE
ETl»

XREF)LE

[~ 30

™
£ 0
>
o~
>
|20
=153
~J|~

PG

-~
~

L]

[]
b

DD

mqorwumdqq

B*BLMSHIE=121
E| =

DISN| (olLD>DEL

S

sys

I

SISISISIS

(YL
©
>

S|LIMOD)>[SPIACEE

b
|

FORTLI B0 [SP=0LD
\ El

C-eve)
og°uﬁﬁ¥3§ﬁ
N LT

bk

Figure 49,

66

Compile and Link Edit Cataloged Procedure (FORTECL)

FORTRAN Coding Form

xa5.7327-5
Privted 0 U.S.A.

ot % l FORTRAN STATEMENT N
/1 LKED| EXEC PGM=1 EML]>PARM=(XREF> LET)LIST) sREGION=0K [[[[[[]
/1 SYSPRINT] DD SYSOUT=A>DCB=BLKSI ZE=/121 ; RN EE RN
1/SYSL)I8 Dp s, =svs1quer 1LIBaD)1 SP= | BERRERRN L
L INDp D =BYSIN il IENRARE N -
/1'SYS|ILMOD DD D imaszeﬂrm}nl),mapﬂ‘(ggﬂ,lp SS)aUNIT= ISYSDAs | | = ' %
L1 | SPACE=(1g@2M.(5 11) s RLISE : ‘ |l .
//SYSuT1 DD UNIT=SYSDAYSEP=(S ﬁamce-(mzq, %hgp) i i |
/160 EXEC P6M=s|. LKED.S sCOND=/(HaLTsLKED) | | | | J i
/{FT@1F@d1 DD DDNAME=SYSIN | N BERNARREEDEEEED | il

1 F@d1] : = ‘ 1 ‘ : ‘ |

FO®1, = | ? i ‘ ‘ B ‘
| ! N .

Figure 50. Link Edit and Fxecute Cataloged Procedure (FORTELG)
Compile, Link Edit, and Execute also permanently modify the IBM-supplied

The cataloged procedure (FORTECLG) to
compile, link edit, and execute FORTRAN
source modules is shown in Figure 51.

The cataloged procedure FORTECLG con-
sists of the statements in the FORTEC and
FORTELG procedures, with one exception: the
DD statement SYSLIN (in the compiler proce-
dure step FORT) defines the output of the
compiler, and the statement SYSLIN (in the
linkage editor procedure step LKED) iden-
tifies this data set as the primary input
to the linkage editor. The programmer does
not have to define the linkage editor input
as he did with the procedure FORTELG, but
he must define the data set SYSIN for the
compiler so that the source module can be
read. He may also define a data set which
becomes part of the primary input by using
a DD statement LKED.SYSIN which is concate-
nated with object module. This data set is
concatenated with the data set containing
the output of the compiler.

USER_AND MODIFIED CATALOGED PROCEDURES

The programmer can write his own cata-
loged procedures and tailor them to the
facilities in his installation. He can

cataloged procedures. For information
about adding and permanently modifying cat-
aloged procedures, see the section
"Cataloged Procedures" in publication
System Programmer's Guide.

the

If during system generation, the G or H
level library option was specified in the
FORTLIB macro-instruction, the FORTRAN (E)
cataloged procedures must be permanently
modified to correspond to the FORTRAN (G)
or (H) cataloged procedures. The FORTLIB
macro-instruction is described in the pub-
lication IEM System/360 Operating System,
System Generation. Further modifications
to cataloged procedure may be necessary as
described in the Job Control Language pub-
lication.

If the E level library option was speci-
fied, but the value of the OBJERR parameter
of the FORTLIB macro-instruction was omit-
ted or specified as something other than
03, the following DD card must be added to
the FORTRAN E cataloged procedure either to
modify them permanently or to override them
at execution time.

Cataloged Procedures 67

IBM FORTRAN Coding Form [Pl

PROGRAMMER I DATE INSTRUCTIONS oen CARD ELECTRO NUNGER

et é FORTRAN STATEMENT IOENTIFICATION
/I FORT EXEL PeM=IEVFAAAZSREG] ON=H % ; IHE 1
V/SYSPRINT| DD SY&JUTsA»DquqLNQHzE-121 | R ‘ N
/I'SYSPUNCH DD _SySOUT= JDCB*BLKSIZE=8Z NEENNESEEEREEI NS i a
7/5YSUT1 DPp UNIT=SYSS :szpsavswu NCH)s SPACIE=/(98 /(38»>26))| : i
//SY‘UTZiDD‘uNlTssyiﬁragtreﬂYﬁwT1>§RNCE=(§bHa(3@bEM)) 1 1; B
/7 SYSILIIIN_ Dp UNIT=SYSSQ>SEP=SYSPU cﬂLDSNAMﬂ= LIOADSET 01 SP=(MOD>PASS)> X
/7 1] [| || | SPACE=[(885/(288>209)) RLSE)| _ T 1T 3]
//LKEP| EXE[C PGM=1E' L,pamn=(wwfr,1m1,u;5v 9COﬂb=;H’LW{EjRT »REGION=96K T
//'8YSPRINT| DD_SYSOUT=As DCIB=BLKS| ZE=121 | HERENRENRAN IENEREREEE.
/1SYSLIB Dp. S¥nﬂﬂ-svs1.rbRTLUB,DIﬁm=§Fﬁ i 2 REREREEN ‘ a

/71SYSLIN D[P DSNAME=¢LOADS[ET>D!|S|P.=(OLD s DE[LETE)»DCB=BLKSIZE=8G &
LLQQD DDNAME=SYSIN | | B RN T 1 - B

JTTSYS[LMOD DD DSNA EsaéoBET(anN)bDl P=(NEW> PASS) > UNIT=SYSDA> X *
7 1T |oPACEER (1842 (5891289 1) 5 RLSE) ‘ ‘

/78YsuTA DDMU%I‘=S%SDA’ﬁEP=O€Z&LNGD:§%&LhB)aSPACEc(1!4¢(Bﬁ§2bp) ‘ |
/760 EXEC PGM=#.LKED|. SYSLMQOD> COND= ([(HsL T FORTY s (HH[LToLKED)) | ' |
IIFTE1F@61 DD DDNAME=SYSIN | || |~ RS \ N

/IFTO2FGd1| DD SYSOUT|=B _ 1 T T T :
//FTB3FEP1 DD SYsouT=A | ‘ T EENNNER il

f — e N a A -+ ‘

| L1 NENERREREEN HIRERERRIEE R

RN RN ENEN ;3'§’:7‘f : i il :\‘, L
‘,‘] ‘}'i'iwl\] l‘, [l il ‘

Figure 51. Compile, Link Fdit, and Execute Cataloged Procedure (FORTECLG)

//GO.FTxxF001 DD SYSOUT=A that is, the parameters added or modified
are in effect only for that execution.
where:
xx (2 digits) is the unit specified.
(See Figures 50 and 51.)

OVERRIDING CATALOGED PROCEDURES

If the same cataloged procedure is exe-

Cataloged procedures are composed of cuted by two different job steps in the

EXEC and DD statements. A feature of the same Jjob, the overriding parameters or

operating system is its ability to read statements supplied for the first execution

control statements and modify a cataloged are not carried over for the second execu-

procedure for the current execution of the tion of the procedure. For example, con-
procedure. Overriding is only temporary; sider these job control statements:

68

//3J0B1 JOB MSGLEVEL=1
//STEP1 EXEC FORTEC,PARM.FORT='SIZE=22K'

//STEP2 EXEC FORTEC

When the procedure is executed in the first
step STEP1, the compiler is allocated 22K
bytes. However, when the procedure FORTEC
is executed in the second step, the SIZE
option reverts to the default option (15K)
because the overriding parameter only
affects the current execution of the cata-
loged procedure.

The following text discusses the tech-

niques used to override cataloged proce-
dures.

Overriding Parameters in the EXEC Statement

Two forms of keyword parameters
("keyword" and "keyword.procstep") in the
EXEC statement are discussed in "Job Con-
trol Language." The form "keyword.
procstep" is used to add or override param-
eters in an EXEC statement in a cataloged
procedure.

The FORTRAN programmer can, for example,
add (or override) compiler or linkage edi-

tor options, specify accounting informa-
tion, or he can state different conditions
for bypassing a job step for an execution

of a cataloged procedure.

Note: When the PARM parameter is overrid-
den, all options stated in the EXEC state-
ment in the procedure step are deleted, and
the overriding PARM parameter is substitut-
ed.

Example 1: Assume the cataloged procedure
FORTEC is used to compile a program, and
the programmer wants to specify the name of
his program and the MAP compiler option.

The following statement can be wused to
invoke the procedure and to supply the
option.
//STEP1 EXEC FORTEC, X
7/ PARM.FORT="'MAP, NAME=MYPROG"

The PARM options apply to the procedure
step FORT.
Example 2: Assume the cataloged procedure

FORTECL is used to compile and link edit a
program. The programmer wants to specify
the ADJUST option for the compiler because
his source module contains embedded blanks

and FORTRAN keywords used as variable
names. Furthermore, he wants to remove the
NCAL linkage editor option because he does
not want to make another pass through the
linkage editor prior to wusing the 1load
module in execution. The following EXEC
statement can be used to add the ADJUST
option to the compiler procedure step
(FORT), and remove the NCAL option from the
linkage editor procedure step (LKED).

//CL EXEC FORTECL,PARM.FORT=ADJUST, X
// PARM.LKED=(XREF,LIST,LET)

Example 3: Assume the cataloged procedure
FORTELG is used to link edit and execute a
module. Furthermore, the MAP linkage edi-
tor option overrides XREF, LET, and LIST in
the linkage editor step and the COND param-
eter is changed for bypassing the execution
of the load module. The following EXEC
statement adds and overrides parameters in
the procedure.

//DO EXEC FORTELG,PARM.LKED=MAP, X
7/ COND.GO=(3,LT,DO.LKED)

The PARM parameter applies to the 1link-
age editor procedure step LKED, and the
COND parameter applies to the execution
procedure step GO.

Example U4: Assume a source module 1is
compiled, link edited, and executed using
the cataloged procedure FORTECLG. Further-
more, the compiler option SIZE and the
linkage editor option MAP are specified,
and account number 506 is wused for the
execution procedure step. The following
EXEC statement adds and overrides parame-
ters in the procedure.

//STEP1 EXEC FORTECLG, X
/7 PARM.FORT='SIZE=22000"', X
7/ PARM.LKED=MAP, X
Va4 ACCT.GO=506
Overriding and Adding DD Statements

A DD statement with the name
"procstep.ddname" is used to override pa-
rameters in DD statements in cataloged

procedures or to add DD statements to
cataloged procedures. The "procstep" iden-
tifies the step in the cataloged procedure.
If "ddname" is the name of a DD statement

1. present in the step, the parameters in
the DD statement in the input stream
override parameters in the DD state-
ment in the procedure step.

2. not present in the step, the new DD
statement is added to the step.

Cataloged Procedures 69

In any case, the modification is only
effective for the current execution of the
cataloged procedure.

When overriding, the original DD state-
ment in the cataloged procedure is copied,
and the parameters specified in it are
replaced by the corresponding parameters in
the new DD statement. Only parameters that
must be changed are specified in the over-
riding DD statement.

wants to delete a
keyword parameter in a DD statement, he
supplies an overriding DD statement that
contains that keyword, followed by an equal
sign, followed by a comma.

If the programmer

keyword=,

For example, if the SYSOUT parameter is to
be deleted from the SYSPRINT data set and
the data set is to be written on the device
PRINT in the cataloged procedure FORTEC,
the following DD statement is used:

//FORT.SYSPRINT DD SYSOUT=,UNIT=PRINT

If more than one DD statement is modi-
fied, the overriding DD statements must be
in the same order that the DD statements
appear in the cataloged procedure. Any DD
statements that are added to the procedure
must follow overriding DD statements.

When the procedures FORTEC, FORTECL, and
FORTECLG are used, a DD statement
FORT.SYSIN must be added to define the
SYSIN data set to the compile step in the

procedures (see Figures 15, 18, and 24).
When the procedure FORTFLG is used, a DD
statement LKED.SYSIN must be added to

define the SYSLIN data set (see Figure 21).

When the procedures
and FORTECLG are used, an overriding DD
statement can be used to write the 1load
module constructed in the linkage editor
step in a particular PDS chosen by the
programmer and assign that member of the
PDS a particular name.

FORTELG, FORTECL,

If the programmer is using the procedure
FORTECL and he does not supply an overrid-
ing DD statement assigning the resulting
load module to a private PDS, he must
supply an overriding DD statement

//LKED.SYSLMOD DD DSNAME SYS1.FORTLIB(name)
to name the load module before he places it

in the FORTRAN library (SYS1.FORTLIB).
This procedure can be a powerful tool for

70

adding modules to the FORTRAN 1library and
replacing load modules in the FORTRAN
library.

In execution procedure steps, the pro-
grammer can catalog data sets, assign names
to data sets, supply DCB information for

data sets, add data sets, or specify par-
ticular volumes for data sets by using
overriding DD statements.

Example 1: The cataloged procedure

FORTECLG is used to compile, link edit, and
execute a FORTRAN program. Since the oper-
ating system for this installation contains
the highest level linkage editor, blocking
can be specified for the SYSLIN data set.
In addition, the SYSPRINT data set for the
compiler is blocked. The PRFRM and SIZE
compiler options are specified in the PARM
parameter, along with the BLKSIZE LRECL
subparameter in the DCB parameter for these
data sets.

During 1load module execution, the pro-
grammer wants the data set identified by
ddname FTO03F001 to be written on the device
class TAPE, instead of treating this data
set as a SYSOUT data set and writing it on
device class A. To do this the SYSOUT
keyword parameter must be deleted from the
SYSPRINT DD statement in the procedure ster
FORT, and a UNIT parameter must be sup-
plied. The data sets identified by ddnames
FTO4F001 and FTO08F001 are named, cataloged,
and assigned specific volumes. The follow-
ing DD statements are wused to add this
information and indicate the location of
the source module.

//J0B1 JOB MSGLEVEL=1

//STEP1 EXEC FORTECLG, X
7/ PARM. FORT="'PRFRM, SIZE=22K"
//FORT.SYSPRINT DD DCB=BLKSIZE=968
//FORT.SYSLIN DD DCB=BLKSIZE=800
//FORT.SYSIN DD *

- ———

J*
//LKED.SYSLIN DD DCB=BLKSIZE=800
//GO.FT03F001 DD SYSOUT=,,UNIT=TAPE

//GO.FTO4F001 DD DSNAME=MATRIX, X
// DISP=(NEW,CATLG) ,UNIT=TAPE, X
/7 VOLUME=SER=987K

//GO.FTO08F001 DD DSNAME=INVERT, X
// DISP= (NEW,CATLG) , UNIT=TAPE, X

7/ VOLUME=SER=1020

Example 2: Assume that DCB information is
added to the DD statement identified by
ddname FT03F001, and that a sequential data
set that contains blocked records and

resides on a direct access volume is creat-
ed and cataloged, using data set reference
number 2. The following statements over-
ride statements FT02F001 and FTO03F001 in
the procedure and indicate the location of
the object module.

//J0B2 JOB
//STEP1 EXEC FORTELG
//LKED.SYSIN DD #*

r————-- T —— s m———————— e 1
| FORTRAN Object Module |
L ——— e e e e e e e e J
/%

/7/GO.FT02F001 DD DSNAME=FIRING, X
/7 UNIT=SYSDA,DISP=(NEW,CATLG), X
7/ SPACE=(100, (2000,200),,,ROUND), X
// VOLUME= (PRIVATE, SER=207H), X
// DCB=(RECFM=VB, BLKSIZE=2416, X
/7 LRECL=804)

//GO.FT03F001 DD DCB=(RECFM=F, X

/7 BLKSIZE=50)

Example 3: Assume the cataloged procedure
FORTECL 1is used to compile and link edit a

module, DER, which is added to the FORTRAN
library. The following job control state-
ments can be used to add the module to the
FORTRAN library.

//ADDMDL JOB 427,'R.WHITE'
//CL EXEC FORTECL,PARM.FORT='NAME=DER"
//FORT.SYSIN DD *

| IS, _
/*
//LKED.SYSLMOD DD DSNAME=SYS1.FORTLIB(DER)

After
can be used to resolve external

the procedure has been executed, DER
references

made in FORTRAN source modules to the name
DER.
Example 4: Assume the cataloged procedure

FORTECL is wused to replace the library
function SQRT in the FORTRAN library. The
following Jjob control statements can be
used to replace the SQRT function in the
FORTRAN library.

//REPLAC JOB ,'JIM JONES'
// EXEC FORT FORTECL,PARM=*NAME=SQRT,MAP'
//FORT.SYSIN DD *

| FORTRAN Source Module

e ——

/*
//LKED.SYSLMOD DD DSNAME=SYS1.FORTLIB(SQRT)

After the execution of the cataloged proce-
dure, the new module SQRT is used to
resolve any external references made to the
name SQRT. The IBM-supplied 1library sub-
program is no longer used.

Example 5: Assume the cataloged procedure
FORTEC is used to compile a source module
STARS. The resulting object module STARS
is to be written in the PDS SCIENCE. The
SYSPRINT data set 1is written on the PDS
PRINT and assigned the member name STARS.
The following job control statements can be
used to write this output in the parti-
tioned data sets.

//JOB2 JOB ,JIM
//STEP EXEC FORTEC

//FORT.SYSPRINT DD DSNAME=PRINT (STARS) X
/7 DISP=0OLD
//FORT.SYSLIN DD DSNAME=SCIENC (STARS) X

7/ DISP=OLD

Example 6: Assume the link edit and exe-
cute cataloged procedure (FORTELG) is used.
The 1load module constructed in the linkage
editor step 1is placed in the cataloged
partitioned data set MATH and is assigned
the member name DERIV. The parameters not

overridden in the SYSLMOD DD statement are
copied and used to write the SYSLMOD data
set.

//JOB3 JOB

//STEP1 EXEC FORTELG

//LKED.SYSLMOD DD DSNAME=MATH(DERIV), X

s/ DISP=(MOD,PASS)
//LKED.SYSIN DD *

- == === 1

[FORTRAN Object Module |

/*

Example 7: Assume the compile, link edit,
and execute cataloged procedure (FORTECLG)
is used with three data sets in the input
stream:

1. A FORTRAN main program MAIN with a

series of subprograms, SUB1 through
SUBN.

2. A 1linkage editor control statement
that specifies an additional library,
MYLIB. MYLIB is wused to resolve
external references for the symbols

ALPHA, BETA, and GAMMA.
3. A data set used by the load module and

identified by data set reference num-
ber 1 in the source module.

Cataloged Procedures 71

//JOBCLG JOB 00, 'J.DAVID',MSGLEVEL=1
//EXECCLGX EXEC FORTECLG
//FORT.SYSIN DD *

e - -= ——==
| FORTRAN Source Module MAIN |
b —mm oo m e 1
s

| FORTRAN Source Module SUB1 |
b= -1
| . I
| . I
I . I
t s .
| FORTRAN Source Module SUBN |
[- - ——l
/%

//LKED.ADDLIB DD DSNAME=MYLIB,DISP=OLD
//LKED.SYSIN DD *
LIBRARY ADDLIB(ALPHA,BETA, GAMMA)
/¥
//GO.SYSIN DD *

| IS —_—

72

The DD statement FORT.SYSIN indicates to
the compiler that the source modules are in
the input stream. The DD statement
LKED.ADDLIB defines the additional 1library
MYLIB to the linkage editor. The DD state-
ment LKED.SYSIN defines a data set that is
concatenated with the primary input to the
linkage editor. The linkage editor control
statements and the object modules appear as
one data set to the linkage editor. The DD
statement GO.SYSIN defines data in the
input stream for the load module.

Form C28-6603-2
Page Revised 5/1/68 by TNL N28-0580

This section discusses minimum system
requirements for the compiler, program
optimization, updating the FORTRAN library,
creation of the programmer's private
library, and limitations of the compiler.

MINIMUM SYSTEM REQUIREMENTS FOR THE FORTRAN
COMPILER

IBM System/360 Operating System operates
in a device-independent environment. In
particular, the FORTRAN compiler may oper-
ate with any combination of devices (shown
in Table 3); however, there are certain
requirements.

The FORTRAN (E) compiler requires at
least a System/360 Model 30 with 32K
bytes of storage, and the standard
instruction set with the floating-point
option. At 1least 15,360 bytes should
be allocated in the SIZE compiler
option. If less than 15,360 bytes is
specified, the compiler assumes the
design point value 15360.

All programs require a device, such as
the 1052 keyboard printer, for direct
operator communication.

At least one direct access device must
be used for residence of the operating
system.

If the data sets identified by the DD

| statements SYSUT1, SYSUT2, and SYSLIN
are to reside on direct access volumes,
another direct access device should be
made available to the compiler for more
efficient compilation.

When a DD statement specifies that a
data set resides on a tape volume,
there must be one tape device available
in the installation for that data set.

SOURCE PROGRAM CONSIDERATIONS

Facilities are available in the FORTRAN
language that enable a programmer to opti-
mize compilation and execution speed and to
reduce the size of the object module.

PROGRAMMING CONSIDERATIONS

Initialization

The programmer should initialize all
variables that are not initialized by
arithmetic statements in his program.
Operating System/360 may place a load
module anywhere in available main storage;
the value of a variable cannot be guaran-
teed until the programmer has given that
variable a value by an assignment state-
ment. For example, in the subprogram

SUBROUTINE ALPHA(X,Y,2)
A=B+2.0

the result A may contain any value, because
B was not initialized. If the programmer
expects B to be zero, he should initialize
B as shown in the following statements:

SUBROUTINE ALPHA(X,Y,Z7)
B=0.0
A=B+2.0

Coding the Source Program

The ADJUST compiler option permits the
programmer to insert embedded blanks, elim-
inate meaningful blanks, and use FORTRAN
keywords as variable names in his program.
In order to decrease compilation time, the
NOADJUST option may be specified. However,
the program to be processed by the NOADJUST
option must be such that there are no
embedded blanks, meaningful blanks are
placed where required, and there are no
uses of FORTRAN keywords or variable or
array names in the source program.

Arithmetic Statements

The use of multiplication instead of the
exponential operation is recommended when
the exponent is a small integer. For
example, the statement

VOL=(U.*R*¥R*¥R) /3.

Programming Considerations 73

is more efficient than the statement
VOL=(4.*R*%*3) /3.

because the exponential operation requires
a library subprogram. When multiplication
is used, storage 1is conserved and both
compiler and linkage editor processing time
are decreased.

To calculate the square root, the square
root library subprogram should be used
instead of the exponential function. For
example, the statement

HYPOT=SQRT (A*A+B*B)

is more accurate than the statement
HYPOT=(A*A+B*B) **0.5

accurate

because the SQRT function is more
than the exponential function.

The mixed mode arithmetic expression is
provided to reduce errors because of unin-
tentional wuse of different modes in arith-
metic statements. However, when mixed mode
arithmetic statements are used, extra
instructions are generated. For example,
in the statement

A=A+l

an in-line subprogram is generated to per-
form the operation indicated. Both main
storage and execution time would be saved
by using the statement

A=A+1.0

IF _Statement

An arithmetic IF statement lists three
statement numbers. One of the listed num-
bers should immediately follow the IF sta-
tement to eliminate unnecessary branching
in the 1load module. For example, the
coding represented by the statements

IF (A-B)20,30,30
30 A=0.0

20 B=0.0

T4

is more efficient than coding
by the statements

represented

IF(A-B) 20,30,30

10 X=2.+Y
30 A=0.0
20 B=0.0

DO Loop Considerations

Values for expressions that remain con-
stant within a DO loop should be calculated
before entry into the 1loop, instead of
calculating the expression each time
through the 1loop. For example, 1in the
statements

DO 10 1=1,100
X(I)=2.0% (G+ALPHA) +Y (I)
10 CONTINUE

the expression 2.0*(G+ALPHA) must be calcu-
lated each time the DO loop is executed.
For greater efficiency, the following sta-
tements should be substituted

BETA=2.0* (G+ALPHA)
DO 10 1=1,100
X(I)=BETA+Y(I)
10 CONTINUE
is decreased, because

The execution time

the expression 2.0#*(G+ALPHA) is calculated
only once.
Any subscripts that remain constant

within the range of a DO loop should not be
used in the DO loop. For example, in the
statements

DO 10 1=1,50
X(I)=Y(ID)+Z(J)

10 CONTINUE

a subscript calculation for Z(J) is per-
formed each time the DO loop is executed,
even though Z(J) remains constant for each
execution of the loop.

By substituting the statements

B=Z(J)
DO 10 I=1,50
X(I)=Y(I)+B

10 CONTINUE

only one subscript calculation is made for
Z(J) and execution time is decreased.

Intricate subscript calculation within
the range of a DO should be avoided. For
example, in the statements

DO 10 I=1,10
5 X(3*I+4)=Y(3*I+4)+B

10 CONTINUE

two intricate subscript calculations are
made each time statement 5 is executed.
The DO loop should be rewritten as shown in
the statements

DO 10 1=7,34,3
5 X(I)=Y(I)+B

10 CONTINUE
to reduce the subscript calculation to

simpler terms and allow faster execution of
the DO loop.

READ/WRITE Statements

To read or write an array, an implied DO
in a READ/WRITE statement should be used
instead of a DO loop. For example, five
FORTRAN records, each containing two
values, are written by the statements

10 FORMAT (F20.5,I10)
po 15 I=1,5
15 WRITE(5,10)A(I),J(I)

In the statements

10 FORMAT (5(F20.5,110))
WRITE(5,10) (A(I),J(I),I=1,5)

only one FORTRAN
values is written.
DO saves load module
space on the volume

record containing ten
The use of an implied
execution time and

Extra subscript calculation within the
range of an implied DO should be avoided.
This is the same consideration shown in

regard to the DO loop. if the

statements

For example,

2 FORMAT('0',10F12.6)

READ(1,2) (A(I),.I=4,31,3)

are substituted for the statements

2 FORMAT('0',10F12.6)
READ(1,2)A(3*%I+1),I=1,10)

the intricacy of the subscript calculation

is reduced and the load module execution
time is reduced.

Program Structure

Better efficiency in load module execu-
tion is achieved when storage for a main
program or each subprogram (excluding
COMMON) is less than 12K bytes. A program
that exceeds 12K bytes may be segmented
into a group of subprograms and one main
program.

If a large number of variables are to be
passed among calling and called programs,
some of the variables should be placed in
the COMMON area. For example, in the main
program and subroutine EXAMPL

DIMENSION E(20),I(15)
READ(10)A,B,C
CALL EXAMPL(A,B,C,D,E,F,I)

END

SUBROUTINE EXAMPL (X,Y,%Z,P,Q,R,J)
DIMENSION Q(20),J(15)

RETURN
END

time and
storage for

storage are wasted by allocating
variables in both the main
program and subprogram, and by the subse-
quent instructions required to transfer
variables from one program to another.

The two programs should be written using
a COMMON area, as follows:

Programming Considerations 75

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

COMMON A, B,C,D,E(20),F,I(15)
READ(10)A, B, C
CALL EXAMPL

END

SUBROUTINE EXAMPL
COMMON X,Y,%,P,0(20),R,J(15)

RETURN
END

Storage is allocated for variable in COMMON
only once, and fewer instructions are
needed to cross-reference the variables
between programs.

Statement Numbers and Names

For its internal use, the compiler
places statement numbers and names used for
variables, arrays, and subprograms in two

tables. Each table is divided into several
strings and is searched many times during
compilation. If the number of entries in
each string is approximately equal, the

average time required to find a name or a
statement number is reduced.

STATEMENT _NUMBERS: Statement numbers are
assigned to five strings in the statement
number table; assignment is made according
to the last digit in the statement number.
Statement numbers ending in 0 or 1 are
placed in the first string; those ending in
2 or 3 are placed in the second; those

ending in 4 or 5 are placed in the third;
etc. Statement numbers should be evenly
distributed in the strings to decrease

compilation time.

For example, using 100 statement numbers
that end only in 0 or 5 1is inefficient,
because two long strings of 50 entries each
are created in the statement number table.
If these 100 statement numbers were distri-
buted equally in strings, that is, 10
statement numbers ending in 0, 10 ending in
1, etc., five strings of 20 entries each
would be created. The time used to compile
the source program is decreased because
excessive time is not spent searching long
strings.

76

NAMES: Names used in the program are
assigned to six strings; assignment is made
according to the length of the name. Names
that are one character long are placed in
the first string; names two characters long
are placed in the second string, etc. For
faster compilation, the names should be
distributed equally among the six strings.
For example, if there are 26 names of one
character each in a program, one 1long
string is created. For greater efficiency,
the names should be distributed equally to
make six strings, each containing four or
five names.

Use of Embedded Blanks in FORTRAN Programs

To improve the readability of a source
program, the programmer may use any number
of Dblanks when writing FORTRAN statements.
Except for literal data, in which blanks
are retained as coded in the source state-
ment, blanks are normally ignored by the
compiler. Thus, the statement DO 25 J = 10
is the equivalent of D025J=10. Both state-
ments are syntactically correct assignment
statements and are executed as such. (A
value of 10 is assigned to the variable
D025J.) Neither statement will cause an
error message.

Use of DUMP and PDUMP

Three facts are pertinent when the sub-
routines DUMP and PDUMP are used:

1. Under the operating system, a program
can be loaded into different areas of
main storage for different executions.

2. The compiler assigns locations to
variables and arrays in COMMON in the
same order that the programmer speci-
fied in a COMMON statement.

3. The compiler assigns locations in the
object module to variables and arrays

that are not in COMMON by name length
and the order in which they are
encountered.

several
that

shows
statements

The following text
examples of how to write
use DUMP and PDUMP.

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

If a series of variables and arrays that
reside in COMMON are to be dumped, only the

first and 1last variables to be dumped
should be 1listed as arguments for the
subroutine For example, if COMMON is

defined as:

COMMON A, B,C(20),I(10),D

the following statement can be used to dump
the variable B and the arrays C and I in
hexadecimal format and terminate execution
after the dump.

CALL DUMP (B,I(10),0)

If the variables and arrays are not in
COMMON, a set of arguments should be listed

for each name that is to be dumped. For
example, if COMMON is defined as:

COMMON A, B,C(20),I(10),D

and the array X is defined as:

DIMENSION X(25)

and a variable Y is defined in the module,
the following statement should be used to
dump B, C, I, Y, and X in real format
without terminating execution:

CALL PDUMP(B,I(10),5,X(1),X(25),5,Y,Y,5)

Programming Considerations 76.1

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

If the statement

CALL PDUMP(B,I(10),5,X(1),Y¥,5)

is used, the COMMON area is dumped correct-
ly, but all main storage between X(1) and Y
is dumped.

If an array and a variable are passed as
arguments to a subprogram, the arguments in
the call to DUMP or PDUMP in the subprogram
should specify the parameters used in the
definition of the subprogram. For example,
if the subprogram SUBI is defined as:

SUBROUTINE SUBI(X,Y)
DIMENSION X(10)

and the call to SUBI within the
module is:

source

DIMENSION A(10)

.

CALL SUBI(A,B)

then the following statement in the subpro-
gram should be used to dump the variables
in hexadecimal format without terminating
execution:

CALL PDUMP (X(1),X(10),0,Y,Y,0)

Object Time Input/Output Efficiency

FORTRAN processing time' can be appre-
ciably reduced by the use of programming

techniques that result in greater data
transfer efficiency. Such techniques are
particularly important in executing pro-

grams that require substantial input/output
operations. Discussed below are four pro-
gramming areas in which the correct choice
of programming method can increase FORTRAN
processing speed.

READ/WRITE _TYPE: The unformatted form of
the READ and WRITE statement provides the
fastest data transfer rate. Therefore, for
most efficient processing, the unformatted
form should be used to transfer information
to or from an intermediate data set -- a
data set that 1is written out during a
program, not examined by the programmer,
and then read back for additional proces-
sing later in the program or in another
program. Thus, for an intermediate data
set, statement 11 in the following example
is preferable to statement 9.

COMMON A(10), B(10)
DIMENSION D(20)
EQUIVALENCE (A(1), D(1))

9 WRITE(10, 10)A, B
10 FORMAT (10E13.3/)
11 WRITE (9) D

IMPLIED DO: Array notation is far more
efficient than the indexing capability of
an implied DO in an I/O list. Thus, for
efficiency, the statement WRITE (9) A
(where A is an array name) is preferable to
WRITE (9) (A(I), I=1, 13).

EQUIVALENCE STATEMENT : In FORTRAN, on
input, data is taken from a record and
placed into storage locations that are not
necessarily contiguous. On output, data is
normally gathered from diverse storage
locations. Input/output operations, howev-
er, can be made more efficient by storing
and retrieving data from contiguous
locations.

To construct an efficient READ or WRITE
statement for an I/0 1list consisting of
many variables, wuse a COMMON or named
COMMON statement to force all the variables

in the 1list to be allocated contiguous
storage space. Next, use an EQUIVALENCE
statement to define a single dimensioned

variable that is the same length as the
list of variables. Finally, use a WRITE on
the single dimensioned variable using array
notation. The following example illus-
trates this technique:

COMMON/LISTA/A(10),B(8), Cc, D, I, K, L(10)
REAL*8 B

COMPLEX*16 LIST(10)

EQUIVALENCE (A(1), LIST(1))

WRITE(9)LIST

Use of the BACKSPACE
efficient

BACKSPACE STATEMENT:
statement is not recommended if
processing is desired.

Data Definition Considerations

The DCB parameter of the DD statement
allows for the redefinition of many data
set characteristics at execution time.
Those specifications that most concern the
FORTRAN programmer are discussed in the
following text. For a full description of
the DCB parameter, see the publication IBM
System/360 Operating System Supervisor_ _and
Data _Management Macro-Instructions, Form
C28-6647.

Programming Considerations 77

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

BLKSIZE: The BLKSIZE subparameter speci-
fies the buffer size to be wused; the
maximum is 32K bytes. As a general rule
for tape, a larger block size is more

efficient. On disk, track capacity is the
most efficient block size. The block size
specified should be large enough to hold
the 1largest 1logical record produced. No
spanning of a logical record into physical

records will then occur.

BUFNO: The BUFNO subparameter specifies
the number of buffers to be used. If a
value of 1 is specified for BUFNO, single
buffering is provided. If either no value
or any value other than 1 is specified,
double buffering, which offers an overlap
advantage, is provided.

RECFM: The RECFM subparameter specifies
both record format and the use of blocking.
When records are blocked, fewer 1/0
requests are made +to a device during the
processing of logical records; I/O proces-

sing speeds are thereby increased. In
general, large blocking factors improve
performance. (see "Record Format" for

additional information.)

OPTCD: OPTCD=C requests the use of chained
scheduling, a feature that results in the
decrease of I/0 transfer time. Chained

scheduling is put into effect only when an
I/0 request is received before a previous
I/0 request has ended. For this reason, it
is difficult to predict when chained sche-
duling will be effective. However, the use
of chained scheduling will provide a per-
formance improvement in the formatting that

is done with a new direct access data set.
For sequential data sets, the user may wish
to measure the effect before selecting

chained scheduling for production runs.

Direct Access Programming

The use of direct access I/0 rather than
sequential I/O0 can decrease load module
execution time: the direct access state-
ments in the FORTRAN IV (E) language enable
the programmer to retrieve a record from
any place on the volume without reading all
the records preceding that record in the
data set. Direct data sets should be
pre-formatted. If the NEW subparameter of
the DD statement is specified for the data
set, the FORTRAN load module will format
the data set before the program begins
processing.

Note: Direct access I/0 statements and
sequential I/0 statements may not be used
to process, via the same unit number, the
same direct data set within the same
FORTRAN load module However, sequential

78

I/0 statements may process a direct data
set in one load module, while direct access
I/0 statements process it in another

Not all applications are suited to
direct access I/0, but an application that
uses a large table that must be held in
external storage can use direct access I/0
effectively. An even better example of a
direct access application is one that uses

a data set that is updated frequently
Records in the data set that are wupdated
frequently are called master _records.

Records in other data sets used to update
the master records are called detail
records.

Each of the master records should con-
tain a unique identification that distin-
guishes this record from any other master
record. Detail records used to update the
masters should contain an identification
field that identifies a detail record with
a master record. For example, astronomers
might have assigned unique numbers to some
stars and wish to collect data for each
star on a data set. The unique number for
each star can be used as identification for
each master record. Any detail record used
to update a master record for a star would
have to contain the same number as the
star.

A FORTRAN program indicates which record
to FIND, READ or WRITE by its record
position within the data set. The ideal
situation would be to use the unique record
identification as the record position.
However, in most cases this is impractical.
The solution to this problem is a randomiz-
ing technique. A randomizing technique is
a function which operates on the identifi-
cation field and converts it to a record
position. For example, if 6-digit numbers
are assigned to each star, the randomizing
technique may truncate the last two digits
of the number assigned to the star and use
the remaining four digits as a record
position. For example, star number 383320
would be assigned position 3833, Another
example of a randomizing technique would be
a mathematical operation performed on the
identification number, such as squaring the
identification number and truncating the
first four digits and the last four digits
of the result. Then the record for star
number 383320 is assigned record position
3422, There is no general randomizing
technique for all sets of identification
numbers. The programmer must devise his
own technique for a given set of identifi-
cation numbers

Two problems arise when randomizing
techniques are used. The first problem is
that there may be a lot of space wasted on
the volume. The solution in this instance
must be developed within the randomizing

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

Identifier Chain

¥ Ll L h)
	Record	
383320	position	Data
	for 383396	
L i 8 -—— —-_—-d		
T		
r 1		
v		
r L) L) === 1		
i] Record H		
383396	position	Data
	for 383352	
L L L J		
T		
r K}		
v		
r T L] 1		
]	End	I
] 383352	of	Data
	Chain	
L 4 L - Fpe—— 4
Figure 52, Record Chaining

technique itself. For example, if the last
two digits on the identification numbers
for stars are truncated and no star numbers
begin with =zero, the first 1000 record
positions are blank. Then a step should be
added to the randomizing technique to sub-
tract 999 from the result of the
truncation.

The second problem is that more than one
identification may randomize to the same
record location. For example, if the last
two digits are truncated, the stars identi-
fied by numbers 383320, 383396, and 383352
randomize to the same record location --
3833. Records that randomize to the same
record location are called synonyms. This
problem can be solved by developing a
different randomizing technique. However,
in some situations this is difficult, and
the problem must be solved by chaining.

Chaining is arranging records in a
string by reserving an integer variable in
each record to point to another record.
This integer variable will contain either
an indicator showing that there are no more
records in this chain, or the record 1loca-
tion of the next record in the chain.
Records chained together are not adjacent
to each other. Figure 52 shows the records
for star numbers 383320, 383396, and
383352

When records are chained, the first
record encountered for a record position is
written in the record position that
resulted from randomizing the identifica-
tion number. Any records that then ran-

domize to that same record location must be
written in record positions to which no
other record identifications randomize.
The space for these synonyms can be allo-
cated either at the end or the beginning of
the data set. However, this space must be
allocated when the data set is first writ-
ten. For example, if the randomizing tech-
nique assigns master records to record
locations between 1 and 9999, the program
mer may wish to reserve record locations
10000 to 12000 for master records that
become synonyms.

The programmer must keep a record loca-
tion counter to keep track of the space
assigned for synonyms. When a synonym is
inserted in this space, the record location
counter must be incremented. The programm-
er should set up a dummy record in his data
set to maintain this record location count-
er. When the direct access data set is
created, the record location counter should
be set at the 1lower limit of the record
positions available for synonyms (i.e ,
record 1location 10000 in the example used
above),

In addition, an indicator should be
reserved to indicate +to the program that
the end of a chain has been reached. Since
no record position 1is designated as 0,
0 can be used to indicate the end of a
chain.

Before a FORTRAN program writes a direct
access data set for the first time, the
data set must be created by writing
"skeleton records" in the space that is to

Programming Considerations 78.1

Form C28-6603-2
Page Revised 11/15/68 by TNL N28-0586

be allocated for the direct access data
set. These skeleton records should be
written by an installation-written programe.
After the skeleton records are written, the
direct access data set must be classified
as OLD in the DISP parameter of +the DD
statement. However, if the skeleton reco-
rds are not written before direct access
records are written by the FORTRAN program
for the first time, a FORTRAN load module

78.2

automatically creates the data set and
writes the skeleton records. The programm-
er indicates that skeleton records have not
been written by specifying NEW in the DISP
parameter. A FORTRAN 1load module writes
skeleton records according to the format

described in the Supervisor_ and Data_Man-
agement Services publication, Form
C28-66U6.

Figure 53 shows a block diagram of the
logic that can be used to write a direct
access data set for the first time. The
block diagram does not show any attempt to
write skeleton records.

Example 4 in Appendix A shows a program
and job control statements used to update a
direct access data set.

Direct Access Programming Considerations

In a job that creates a data set which
will reside on a direct-access device, the
DCB subparameter of the DD statement must
specify DSORG = DA in order that the label
that is created will indicate that this is
a direct-access data set (see "Creating a
Direct Data Set" in the publication IBM
System/360 Operating System: Supervisor and
Data Management Services, Form C28-6646).

Space must be allocated in the SPACE
parameter of the DD statement for a data
set written on a direct access volume. For
direct access data sets, the space allocat-
ed in the SPACE parameter should be consis-
tent with the record length and number of
records specified in the DEFINE FILE state-
ment in the FORTRAN program. For example,
in the DEFINE FILE statement

DEFINE FILE 8(1000,40,E,I)

the number of records is specified as 1000
and the record length is specified as Uu4O0.
When this program is executed the DD state-
ment for this data set should contain the
SPACE parameter

SPACE (40,(1000))

indicating'that space is allocated for 1000
records, and 40 bytes for each record.

The DEFINE FILE statement for a data set
must be in a source module in the root
segment (i.e., it cannot be overlaid), but
does not have to be in the same source
module in which I/O operations occur. For
example, the DEFINE FILE statement can be
given in a main program with a subprogram
performing the I/O operations on the data
set. However, if an associated variable
defined in the main program is to be wused
by a subprogram, it must be passed to the
subprogram in COMMON. Since an associated
variable is updated by input/output opera-
tions, the subprogram cannot get to the
updated value to make wuse of it in its

operations unless the associated variable

is in COMMON.

The FIND statement permits record
retrieval to occur concurrently with compu-
tation or I/O operations performed on dif-
ferent data sets. By using the FIND state-
ment, load module execution time <can be
decreased. For example, the statements

10 A=SQRT(X)

52 E=ALPHA+BETA*SIN(Y)
64 WRITE(9)A,R,C,D,E
76 READ(8'101)X,Y

are inefficient because computations are
performed between statements 10 and 52 and
an I/0 operation 1is performed on another
data set while record number 101 could be
retrieved. If the following statements are
substituted, the execution of this module
becomes more efficient because record num-
ber 101 is retrieved during computation and
I/0 operations on other data sets:

5 FIND(8'101)
10 A=SQRT (X)

52 E=ALPHA+BETA*SIN(Y)
64 WRITE(9)A,B,C,D,E
76 READ(8'101)X,Y

How Arguments Are Passed

Although the programmer cannot alter the
method for passing arguments to a subpro-
gram, knowing how arguments are passed may
be valuable when he debugs his program. A

main program passes arguments to a subpro-
gram in two ways.
The first method is called "“call by

value." When this method is used, the main
program moves the value currently residing
in the argument in the main program into
the location assigned to the argument in
the subprogram. When the subprogram
returns to the main program, the value of
the argument in the subprogram is moved to
the location of the argument in the main
program. In FORTRAN (E), only variables
are passed using "call by value."

Programming Considerations 79

DEFINE FILE

Allowing enough
Space for Synonyms

1

Set Record
Location Counter =
Lower Limit of
Space for Synonyms

Read
Detail
Record

Write Record
Containing
Record
Location
Counter

of Detail Data

Randomize
Identification
Number to
Record Location

Set Record Position Build
in Read Statement Master
= Chain Variable Record

Set Chain
Variable in Master
Record = Record
Location Counter

Write
Master
Record

Set Record Position
in Write Statement
= Record
Location Counter

!

Increment
Record Location
Counter by 1

Figure 53. Writing a Direct Access Data

Set for the First Time

80

The second method is called "call by
name." When this method is used, the main
program moves an address into the location
assigned to the argument in the subprogram.
In FORTRAN (E), arrays and subprograms,
used as arguments, are passed using "call
by name." The main program moves the
address of the first element in the array
into the subprogram or moves the address of
the entry point of the subprogram, used as
an argument, into the subprogram.

CD STATEMENT CONSIDERATIONS

Several DD statement parameters and sub-
parameters are provided for I/0O optimiza-
tion (see Figure 54). Other DD statement
parameters are discussed in "Job Control
Language" and "Creating Data Sets."

Channel Optimization

The SEP parameter indicates that I/0
operations for specified data sets are to
use separate channels (channel separation),
if possible. The 1I/0 operations for the
data set, defined by the DD statement, in
which

SEP=(ddnamel,ddnamel...)
appears, are assigned to a channel
different from those assigned to the

I/0 operations for data sets defined
by the DD statements "ddname".
Assigning data sets whose I/0 opera-

tions occur at the same time to dif-
ferent channels decreases the time
required for I/O operations.

I1/0 Device Optimization

UNIT subparameters can be specified for
device optimization.

VOLUME MOUNTING AND DEVICE SEPARATION:

,
UNIT=(name[,P][,DEFER]

[,SEP=(ddnamel,ddnamel...) 1)

can be specified for volume mounting
and device separation. The "name" and
number of wunits are discussed in the
section "Data Definition Statement."

DEFER
indicates that the volume(s) for the
data set need not be mounted until
needed. The control program notifies
the operator when to mount the volume.

Form C28-6603-2
Page Revised 5/1/68 by TNL N28-0580

SEP=(ddnamel,ddnamel...1) 2

(namel, n|P 31[,DEFER][,SEP=(ddname(,ddnamel...*) 2]% 5)5}

UNIT= {AFF=ddname

SPACE=(ABSTR, (quantity, beginning-address[,directory-quantityl))

TRK
SUBALLOC=({CYL
average-record-length

[,directory—quantity]),istepname.ddname

|

|

|

|

|

|

|

I

a frons . | |
|\SPLIT=(n| |,average-record-length , (primary-quantity ([, secondary-quantityl)|)
I

: },(primary—quantity[,secondary-quantity]
|

|

|

|

|

ddname }
)

stepname.procstep.ddname

e — ——— — ——— ——— —— — {—— o S,]

| *The maximum number of repetitions allowed is 7. |
|2If only one "ddname" is specified, the delimiting parentheses may be omitted. |
|2If neither "n" nor "P" is specified, 1 is assumed. |
| “This subparameter is applicable only for direct-access devices. |

| 5This subparameter is the

| positional subparameters.

|8If only "name" is specified, the delimiting parentheses may be omitted.
L

Figure 54.

SEP=(ddnamel,ddnamel...)
is used when a data set is not to be
assigned to the same access arms on
direct access devices as the data sets
identified by the 1list of ddnames.
This subparameter is used to decrease
access time for data sets. This para-

meter is meaningful only for data
sets residing on direct access
volumes. The SEP subparameter in the

UNIT parameter provides for device
separation, while the SEP parameter
provides for channel spearation.

DEVICE AFFINITY: The use of the
device by data sets is specified by

same

UNIT=AFF=ddname
the data set defined by the DD state-
ment in which the AFF subparameter
appears uses the same device as the
data set defined by the DD statement
"ddname" in the current job step.

Direct-Access Space Optimization

The SPACE parameter discussed in "Creat-
ing Data Sets" is used to allocate space on
a volume. Another form of the SPACE para-
meter may also be wused to specify space
beginning at a designated track address on
a direct access volume. The SPLIT or
SUBALLOC parameters may be specified

only keyword subparameter shown in this figure.
| remaining subparameters shown in the UNIT, SPACE, SPLIT, and SUBALLOC parameters

All the|

DD Statement Parameters for Optimization

are|

|

|

_______ ———— ————— —_ 4
instead of SPACE to split the wuse of
cylinders among data sets on a direct

access volume or to use space specified for
another data set which that data set did
not use.

SPACE BEGINNING AT A SPECIFIED ADDRESS:

SPACE=(ABSTR,quantity,beginning-address
[,directory-quantityl)

specifies space beginning at a partic-
ular address on a direct access
volume. The "quantity" is the number
of tracks allocated to the data set.
The "beginning address" is the track
address on a direct access volume
where the space begins. If the data
set is a partitioned data set, the
"directory quantity" specifies the
number of records allocated to the
directory.

SPLITTING THE USE OF CYLINDERS AMONG DATA
SETS: If several sequential data sets in a
step use the same direct access volume,
processing time can be saved by splitting
the use of cylinders among the data sets.
Splitting cylinders eliminates seek opera-
tions on separate cylinders for different
data sets. Seek operations are measured in
milliseconds, while the data transfer is
measured in microseconds. Direct access
and partitioned data sets cannot be created
using the SPLIT parameter.

Programming Considerations 81

Form C28-6603-2
Page Revised 5/1/68 by TNL N28-0580

{WCYL
SPLIT=(n| |,average-record-length

» (Primary-quantity
[,secondary-quantity]l) |)

is substituted for the SPACE parameter
when the wuse of cylinders is split.
If CYL is specified, "n" indicates the
number of tracks per «cylinder to be
used for this data set. If "average
record length" is specified, "n" indi-
cates the percentage of tracks per
cylinder wused for this data set. The
remaining 'subparameters are the same
as those specified for SPACE in
"Creating Data Sets."

More than one DD statement in a step
will wuse the SPLIT parameter. However,
only the first DD statement specifies all
the subparameters; the remaining DD state-
ments need only specify "n". For example:

//STEP4 EXEC PGM=TESTFI
//FT08F001 DD SPLIT=(45,800,(100,25))

//FT17F001 DD SPLIT=(35)

//FT23F001 DD SPLIT=(20)

ACCESSING UNUSED _SPACE: Data sets in the
current step or previous steps may not have
used all the space allocated to them by a
DD statement. The SUBALLOC parameter may
be substituted for the SPACE parameter to

permit a new data set to use this unused
space.
TRK .
SUBALLOC= (§ CYL y
average-record-length

(primary-quantity,
[,secondary-quantity]

[,directory-quantityl),

ddname
stepname.ddname)
stepname.procstep.ddname

The data set from which unused space
is taken 1is defined in the DD state-
ment "ddname", which appears in the
step "stepname." (The step must be in
the current job.) The other subparam-
eters specified in the SUBALLOC param-
eter are the same as the subparam-
eters described for SPACE in "Creating
Data Sets."

82

Priority Scheduler Considerations for
Cataloged Procedures

If, during system generation, the
installation selects a priority scheduler
and an operating system that provides mul-
tiprogramming with a variable number of
tasks (MVT), the following information must
be taken into consideration when writing
FORTRAN programs.

1. The PRFRM option must be in effect for
the compile step, either by default or
by explicit request in the compiler
job step PARM field. Similarly, the
SIZE allocation must be at least 19,
456 bytes. This figure assumes no
blocking. If the input is blocked
(e.g., by an input reader), a figure
that 1is 160 times the blocking factor
must be added to the 19,456-byte spec-
ification in the SIZE option. For a
compile step, REGION must be at least
16K bytes greater than the compiler
SIZE specified in the PARM field (or
default SIZE).

2. If the default or
parameter is not

cataloged REGION
sufficient for a

particular compile, 1link edit, or
execute job step, an adequate REGION
must be specified on the appropriate
JOB or EXEC card. For a link edit
step, the specification for REGION
depends on which 1linkage editor 1is
used (see "Linkage Editor
Restrictions").

Linkage Editor REGION

IEWLE150 24K

IEWLE180 26K

IEWLEG4YLO 54K

3. DCB BLKSIZE parameters must be speci-

fied on the DD cards for SYSLIN,
SYSPUNCH, and SYSPRINT. For SYSPRINT,
this block size is 121; for SYSPUNCH
it 1is 80. The blocking factor deter-
mines the specification for SYSLIN,
but it must be specified as a multiple
of 80. If this figure is added to the
SIZE specification, it must also be
added to that for REGION.

4. cCompiler data sets handled by output
writers cannot be blocked (e.g., SYS-
PRINT and SYSPUNCH).

5. All FORTRAN programs, upon completion
of processing, must use either a STOP
statement or a CALL statement using
the entry name EXIT. The omission of
STOP or CALL EXIT in a FORTRAN (E)
program will result in failure to
clear buffers for all FORTRAN data
sets used in the execution of the job;

Form C28-6603-2
Page Revised 5/1/68 by TNL N28-0580

therefore, with blocked output, a
block of print lines could be lost.

LIBRARY CONSIDERATIONS

The FORTRAN library is a group of sub-
programs residing in the partitioned data
set SYS1.FORTLIB. For a detailed descrip-
tion >f the FORTRAN library, see the publi-
cation IBM System/360 FORTRAN IV Library
Subprograms, Form C28-6596. A programmer
can change the subprograms in the library;
he can add, delete, or substitute 1library
subprograms; or he can create his own
library. These topics are discussed in
detail 1in the section "Moving and Copying
Data" in the Utilities publication.

When the FORTRAN 1library is changed
either for maintenance or to provide addi-
tional features, precompiled programs in a
user library require special attention to
benefit from the changed 1library modules.
This can be accomplished by wusing the
linkage edit facilities to include the
current library modules and to store the
resultant load module back into the FORTRAN
library. When the facilities of the 1lin-
kage editor are used to provide an overlay
structure or to replace a single control
section, care should be taken not to mix
FORTRAN library modules that are at diverse
operating system levels. This warning app-
lies especially to the 1library modules
created when FORTRAN E selects the extended
error message facility at system generation
time and uses the FORTRAN G or H library.

COMPILER RESTRICTIONS

Table 14 shows the average number of
source statements that can be compiled by
the FORTRAN compiler with regard to the
SPACE and PRFRM option and the size (in
bytes) of the Dictionary and the Overflow
Table used by the compiler. The Dictionary
and the Overflow Table are used by the
compiler to contain information concerning
variables, arrays, subscripts, functions,
data set reference numbers, statement num-
bers, etc.

The Dictionary and the Overflow Table

size in bytes, S, required to compile a
number of source statements, X, is
approximately

S$=10X+500

The following is a
restrictions:

list of compiler

¢ The maximum number of variables that
may be equated in EQUIVALENCE state-
ments is approximately 100: For compi-
lations in which the largest unused
portion of the Dictionary and the Over-
flow Table exceeds 800 bytes, the maxi-
mum becomes the number of bytes in this
segment divided by 8. For example, if
the compiler allocates 5500 bytes to
the Dictionary and the Overflow Table,
and 3100 are wused, then the maximum
becomes 2400/8=300.

e The maximum number of names for vari-
ables and arrays that may appear in an
I/0 list is approximately 250.

e The maximum number
subprogram call or
tion is 48.

of arguments in a
subprogram defini-

¢ The maximum level of
loops is 25.

nesting for DO

¢ The maximum number of statement numbers
in a computed GO TO statement is appro-
ximately 250.

e The maximum number of records allowed

in a direct access data set is

224 (224=16,777,216).

e The maximum size of an array is 131,071
bytes.

¢ The maximum total program and data size
(including COMMON) is 196,608 bytes.

¢ The total number of statement numbers
referred to (excluding FORMAT statement
numbers), DO statements, and statement
functions cannot exceed 1000.

e The number of arguments in a statement
function cannot exceed 15.

Programming Considerations 83

Form C28-6603-2
‘Page Revised 5/1/68 by TNL N28-0580

Table 14. Source Module Size Restrictions
r T T T 1
Average Number of	Dictionary and	Intermediate Text Capacity (in bytes)		
SIZE Option	Source Statements	overflow Table } T		
	that Can be Compiled	Size (in bytes)	SPACE	PRFRM
; T 4 T + T 1 1 T 1				
SPACE	PRFRM1	SPACE	PRFRM	SPACE
poe—t 4= t ¥ ¥ ¢ + 1 {				
15K	19K	170	170	2216
44K	48K	2500	1980	25512
86K	90K	6500	6500	65536
200K	204K	6500	6500	65536
IL' L L L 1 L L L 1 =Il				
If blocked input and output are used, the value of the expression [2(BLKSIZE)] must				
be added for each data set that contains blocked records to the number shown under the				
PRFRM option.				
2The figures under "In Storage" indicate how many additional bytes are available for				
retaining the intermediate text in main storage before the text has to be written onj				
external storage. If the storage required for intermediate text does not exceed this				
figure, no I/0 operations are performed for the intermediate text.				
L 4

LINKAGE EDITOR RESTRICTIONS

The maximum number of load modules and
object modules that can be processed by
each linkage editor varies according to the
number of bytes of main storage reserved
for 1linkage editor operations. This maxi-
mum is shown below for each of the three
linkage editors.

r T T 1
|Linkage Editor|Bytes Reserved] |
| Name |for Operation | Maximum |
i 1 ¥ {
| | 15K | 119]
| IEWLE150 s + i
| | 18K | 229 I
L 1 R d
r) L] 1
| | 18K | 75 |
| IEWLE180 ¢ + i
| | 20K | 180 |
b 1 4 J
r T T 1
| | 44K | 349 |
| IEWLE440 b } §
| | 88K | 1250 I
L L L J

Object modules processed by the linkage
editor cannot exceed 512K bytes, because
this is the maximum that can be processed
by program FETCH.

84

FORTRAN_LOAD MODULE RESTRICTIONS

The following is a list of FORTRAN load
module restrictions:

A FORTRAN load module cannot read past
the end of a data set.

e For
the

the EXP and DEXP library functions,
argument cannot exceed 174.673.

e For the SIN and COS library functions,
the absolute value of the argument
cannot exceed
2186 x (218e x =,82354966406249996D+06).

e For the DSIN and DCOS 1library func-
tions, the absolute value of the argu-
ment cannot exceed
250e % (25%e z=,35371188737802239D+16).

e The minimum record length for records
written on a magnetic tape volume is
18. The minimum record 1length for
records read from a magnetic tape
volume is 12.

e A data set reference number cannot
exceed the maximum data set reference
number specified by the installation
when the system is generated.

The compiler, 1linkage editor, and load
modules produce aids which may be used to
document and debug programs. This section
describes the listings, maps, card decks,
and error messages produced by these compo-
nents of the operating system .

COMPILER OUTPUT

The compiler can generate a listing of
source statements, a storage map showing
the location of variables and constants in
the object module, and an object module
card deck. Source module diagnostic mes-
sages are also produced during compilation.

Source Listing

If the SOURCE option 1is specified or
assumed, the source listing is written by
the output device specified in the SYSPRINT
DD statement. A sequential internal state-
ment number:

S.nnnn (1<nnnn<9999)

is assigned to each source statement.
(Comments and continuation cards are not
assigned an internal statement number.)

The internal statement number is then used
in the diagnostic messages to indicate
erroneous statements in the source program.
An example of a source program listing is
shown in Figure 55. This printout is the
source listing of Sample Program 1 shown in

SYSTEM OUTPUT

Storage Map

If the MAP option is specified, a stor-
age map of the okject module is written on
the data set specified by the SYSPRINT DD
card. The storage map gives a listing of:

1. The relative addresses and names of
all wvariables, including subprogram
names and in-line subprogram names.

2. The relative addresses and names of
all external references, including all
subprograms, except in-line subpro-
grams.

3. All wuser-specified 1literal constants

and their relative addresses.

4. All compiler-generated constants and
their relative addresses.

5. A branch list consisting of all state-
ment numbers referred to and their
relative addresses.

An example of a map printout is shown in

Figure 56. This printout is the source
module map of Sample Program 1 shown in
"Appendix D" of the publication Basic
FORTRAN IV Language.
Object Module Card Deck

The compiler produces an object module.

This module is composed of four types of
card images -- TXT, RLD, ESD, and END. If

"Appendix D" of the publication Basic the DECK option is specified, the object
FORTRAN IV Language. module 1is written on the device specified;
c PRIME NUMBER PROBLEM
S.0001 100 WRITE (6,8)
$.0002 8 FORMAT (52H FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 1000/
119Xy LHL/ 19Xy LH2 /19Xy LH3)

$.0003 101 1=5

$.0004 3 A=l

5$.0005 102 A=SQRT(A)

5.0006 103 J=A

$.0007 104 DO 1 K=3,J,2

$.0008 105 L=1/K

$.0009 106 IF(L¥K=1)1,2,4

5.0010 L CONTINUE

$.0011 107 WRITE (6,5)1

5.0012 5 FORMAT (120)

$.0013 2 1=1+2

$.0014 108 IF(1000-11744,3

$.0015 4 WRITE (6,59)

S.G016 9 FORMAT (1l4H PROGRAM ERROR)

$.0017 7 WRITE (6,6)

$.001g 6 FORMAT (31H THIS IS THE END OF THE PROGRAM)

$.0019 109 sTapP

5.0020 END
Figure 55. Source Module Listing

System Output 85

STORAGE MAP VARTABLES (TAGSO C=COMMON, E=EQUIVALENCE)
NAME TAG REL ADR NAME TAG REL ADR NAME TAG REL ADR NAME TAG REL ADR
I 000l54 A 000158 00015¢C K 000160
L 000164
EXTERNAL REFERENCES
NAME REL ADR NAME REL ADR NAME REL ADR NAME REL ADR
SQRT 000168
CONSTANTS
NAME REL ADR NAME REL ADR NAME REL ADR NAME REL ADR
00000005 000184 00000002 000188 000003E8 00018C
[MPLIED EXTERNAL REFERENCES
NAME REL ADR NAME REL ADR NAME REL ADR NAME REL ADR
IBCOM# 000220
STATEMENT NUMBER REL ADR STATEMENT NUMBER REL ADR STATEMENT NUMBER REL ADR STATEMENT NUMBER REL ADR
00100 000256 00100 000256 00008 000190 00101 00026C
00003 000274 00102 000294 00103 0002A5 00104 0002C%4
00105 0002¢CC 00106 0002DC 00001 0002F4 00107 000308
00005 00010C 00002 000324 00108 000330 00004 000346
00009 0001EQ 00007 000358 00006 0001F4 00109 00035C
Figure 56. Storage Map
in the SYSPUNCH DD statement; if LOAD is external references, the storage at the
specified, the module 1is written on the address indicated in the RLD card image

SYSLIN DD state-
description of these
following

device specified in the
ment. A functional
card images is given in the
paragraphs.

OBJECT MODULE CARD_ IMAGES: Every card
image in the object module contains a
12-2-9 punch in column 1 and an identifier
in columns 2 through 4. The identifier
consists of the characters ESD, RLD, TXT or
END. The first four characters of the name
of the program are placed in columns 73
through 76 with the sequence number of the
card in columns 77-80.

ESD__card: Three types of ESD card images
are generated:

ESD, type 0 - contains the name of the pro-
gram and indicates the begin-
ning of the object module.

ESD, type 2 - contains the names of subpro-

grams referred to by CALL
statements, EXTERNAL state-
ments, and function refer-
ences 1in the source program.
ESD, type 5 - contains information about
the COMMON area.
The number 0, 2, or 5 is placed in card
column 25.
RLD Card Image: An RLID card image is

generated for external references indicated
in the ESD, type 2 card images. To com-
plete external references, the addresses in
the RLD card image are matched with exter-
nal symbols in the ESD card images by the
linkage editor. When it has resolved

86

contains the address assigned to the sub-
program indicated in the ESD, type 2 card
image. RLD card images are also generated
for a branch list produced for statement
numbers, DO loops, and Statement Functions.

TXT _Card _Image: The TXT card image con-
tains the constants used by the programmer
in his source module, any constants gener-
ated by the compiler, coded information for
FORMAT statements, and the machine instruc-

tions generated by the compiler from the
source module.
END cCard Image: One END card image is

generated for each compiled source module.
This card indicates the end of the object
module to the linkage editor, and contains
the entry point (where control is given to
begin execution of the module after it is
link edited).

OBJECT MODULE DECK STRUCTURE: Figure 57
indicates the FORTRAN object module deck
structure. If the object module is written
on a device other than the card punch, the
structure of the module is the same.

Source Module Diagnostics

Two types of diagnostic messages are
generated by the compiler - informative and
error/warning messages.

Source Module Informative Messages: Source
module messages tell the programmer or
operator about the status of the compiler.
A message is generated when the compilation

Generated Constants

END Card, giving
the entry point
for the module

RLD Cards for
the Branch List

TXT Cards for
the Branch List

TXT Caids
for Object
Module Instructions

TXT Cards
for Compiler

ESD, Type 2 and
RLD for Compiler

Generated External
References

TXT Cards for
Coded FORMAT

Statements

TXT Cards
for Source

ESD, Type 2, and
RLD for External
References in

CALL, EXTERNAL,
and Statements

Using Subprograms

ESD, Type 5,
Indicating the
Existence of the

COMMON Area

ESD, Type O
Giving the Name
of the Object
Module

Figure 57. Object

Module Constants

Module Deck Structure

has Dbegun, when the compiler options are
processed, and at the end of compilation.
For a description of these messages, see
"Appendix D."

Source Module Error/Warning Messages: All
error/warning messages produced are written
in a group following the source module
listing and storage map. Figure 58 shows
the format of each message as it is written

on the data set specified by the SYSPRINT
DD statement.

When error conditions cannot be ascribed
to a single source statement, the error
message contains an internal statement num-
ber 5.0000. For example, in the FORTRAN
statements

DOUBLE PRECISION DP
COMMON R, DP

the error message

IEJi46I S.0000 INCONSISTENT EQUATE

is issued, because a double-precision vari-
able is not placed on the proper boundary.
The error could be attributed to either
FORTRAN statement, so the internal state-
ment number S.0000 is assigned to the error
message.

There are two types of error/warning
messages: serious error messages and warn-
ing messages beginning with the word
"WARNING". Serious error messages transmit
a condition code of 8, 12, or 16. Warning
messages transmit a condition code of 4.

- - 1
| MESSAGE NUMBER STATEMENT NUMBER DESCRIPTION |
| IEJnnnl S. XXXX message |
t- e e e e e .
| nnn is the message number |
| XXXX is the internal statement number

| message is the actual message printed |
Lee e e e e e e e e e e e e e J
Figure 58. Format of Diagnostic Messages

System Output 87

For a description of error/warning
sages, see "Appendix D."

mes-

LINKAGE EDITOR OUTPUT

The 1linkage editor produces a map of a
load module if the MAP option is specified,
or a cross-reference list and a map if the
XREF option 1is specified. The 1linkage
editor also produces diagnostic messages,
which are discussed in the "Appendix D" of
the publication Linkage Editor.

Module Map

The module map is written on the data
set specified in the SYSPRINT DD statement
for the linkage editor. To the 1linkage
editor, each program (main or subprogram)
and the COMMON area are control sections.

Each control section name is written
along with origin and length of the control

section. For a program, the name is list-
ed; for COMMON, the name $BLANKCOM is
listed. The origin and length of a control
section is written in hexadecimal numbers.
A segment number is also listed for overlay
structures (see the publication Linkage
Editor).

The names and locations of each control
section and entry points and their 1loca-
tions are also written; any functions

SYSLIB DD statement are listed and marked
by asterisks.

The total length and entry point of the
load module are also listed.

Figure 59 shows a load module map for
Sample Program 1 shown in Appendix D of the
publication Basic FORTRAN IV Language.

Cross-Reference List

If the option XREF is specified, a
cross-reference list is written with the
module map. This cross-reference list

gives the 1location from which an external

reference is made, the symbol externally
referenced in this control section, the
control section in which the symbol

appears, and the of the
control section in which the symbol
appears. Unless the 1linkage editor is
building an overlay structure, the cross-
reference list appears after the module map

for all control sections.

segment number

Figure 60 shows the cross-reference list
and module map for Sample Program 1 shown
in "Appendix D" of the publication Basic
FORTRAN IV Language.

LOAD MODULE OUTPUT

The programmer defines the output data

called from the data set specified by the sets for load module execution in READ,
-——- MODULE MAP ----
CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
MAIN 00 37A
IHCSSGRT* 380 AC
SQRT 380
IHCFCOME* 430 1484
I1BCOM# 430 FDIOCS# A60
IHCFIQSH* 1888 c50
FIOCS# 1888
IHCUATBL* 2508 638
ENTRY ADDRESS 00
TOTAL LENGTH 2B40
Figure 59. Module Map

88

———— CROSS REFERENCE TABLE ----
CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
MAIN 00 37A
[HCSSQRT* 380 AC
SQRT 380
IHCFCOME* 430 1484
1BCOM# 430 FDIOCS# A60
IHCFIOSH® 1888 €50
FIOCSH 1888
[HCUATBL* 2508 638
LOCATION REFERS TO SYMBOL IN CONTROL SECTION
168 SQRT [HCSSQRT
220 [BCOM¢# IHCFCOME
404 1BCOM# [HCFCOME
AS5C FIOCS# IHCF IOSH
CFC FIOCS# THCFIOSH
190C [HCUATBL IHCUATBL
19E8 1BCOM# IHCFCOME
ENTRY ADDRESS 00
TOTAL LENGTH 2840
Figure 60. Linkage Editor Cross-Reference List
WRITE, and FORMAT statements. At execution written when an exception occurs. Operator
time, FORTRAN load module diagnostics are intervention is not required fcr any of
generated in three forms - error code these exceptions (interrupts), and execu-
diagnostics, program interrupt messages, tion is not terminated. The program inter-
and operator messages. An error code rupt messages are written on a data set

indicates an input/output error or a misuse
of a FORTRAN library function. A program
interrupt message (which is a special form
of an error code diagnostic) indicates a
condition which System/360 cannot correct.
An operator message is generated when a
STOP or PAUSE is executed.

Error Code Diagnostics

When an error condition arises during
execution of a FORTRAN 1load module, a
message of the form
IHCxxXI [message text]
is printed. The error code is the number
specified by the digits xxx. With some
error code diagnostics, a "message text" is
printed. The error code diagnostics are
described in Appendix D.

The error code diagnostics are written

on a data set specified by the programmer.
(See "Job Processing.")

Program Interrupt Messages

containing
(PSW) are

Program
old program

interrupt messages

the status word

specified by the programmer (see "Job Proc-
essing.") For a detailed description of
| these messages, see Appendix D.

ABEND Dump

If a program interrupt occurs that caus-
es abnormal termination of a 1load module,
an indicative dump is given (i.e., only the
contents of significant registers, indica-
tors, etc., are dumped). However, if a
programmer adds the statement:

//GO.SYSABEND DD SYSOUT=A

to the execute step of a catalcged proce-
dure, all main storage and registers are
dumped. For information about interpreting
the indicative and abnormal terminaticn
dumps, see Part V of the Messages, Comrle-
tion Codes_and Storage Dumps publication.

Operator Messages

A message is transmitted to the operator
when a STOP or PAUSE is encountered during
load module execution. Operator messages
are written on the device specified for
operator communication. For a description
of these messages, see Appendix D.

System Output 89

The following examples show several
methods to process load modules. Example 1
consists of a single job step that uses
blocked variable-length records as output
in a matrix inversion application. Example
2 shows the rocket firing example used in
the "Introduction" to show job and job step
relationships. Example 3 uses a generation
data group to report and forecast the
weather. Example 4 shows a program to
update a direct access data set that con-
tains star master records.

Example 1

Problem Statement:
A previously created and cataloged data set
SCIENCE.MATH.MATRICES contains 80 matrices.

SCIENCE.
MATINV MATH.
INVMATRS
Printed
Output

Figure 61. Input/Output Flow for Example 1

APPENDIX A: EXAMPLES OF JOB PROCESSING

Each matrix 1is an array containing real
variables. The size of the matrices varies
from 2x2 to 15x15; the average size is

10x10. The matrices are inverted by a load
module MATINV in the PDS MATPROGS. Each
inverted matrix is written as a single
record on the data set
SCIENCE.MATH.INVMATRS. The first variable
in each record denotes the size of the

matrix. Each inverted matrix is printed.
The I/0 flow for the example is shown in

Figure 61. The job control statements used

to define this job are shown in Figure 62.

The JOB statement identifies
the programmer as JOHN SMITH and supplies
the account number 537. The MSGLEVEL pa-
rameter indicates that both control state-
ments and control statement diagnostic mes-
sages are printed on the console typewrit-
er.

Explanation:

The JOBLIB DD statement indicates that
the cataloged PDS MATPROGS is concatenated
with the system library.

The EXEC statement indicates that the
load module MATINV is executed.

DD statement FTO08F001 identifies the
input data set, SCIENCE.MATH.MATRICES. (In

the 1load module, data set reference number
8 is used to read the input data set.)
Because this data set has been previously
created and cataloged (DISP=0LD), no other

information has to be supplied.

Sample Coding Form

1-10 [11-20 [21-30 [31-40 [41-50 | 51—60 | 61-70 71-80
11213]4[5]6[7[8]e[o[1]2]3[4[5]6]7[8]9[0li [2[3]4]5]6]7[8]S[0l1 [2[3[4[516[7]8]9l0 1 [2]3[4]5]6[7 [8]9[0]i [2[3[a[5]6[718[o]0] 1 [2[3[a[5[6]7[8[s[o] 1]2[3[4]5]6[7[8[9]0

//INVERT, JOB 5372JOHNSMITHIMSGLEVEL=1

ST AR

oo b e b e b e by

//JOBLIB DD DSNAME=MATPROGSDISP- oD

R it { B L1

|||1||1|A!|||||||||

T

cos el b i by

//INVERT, EXEC_PEM=MATINY

llllilll IllllLl‘JllllllIl

llllllllllLJJLlllll

IIII»'IIIII]IIIIIII

/ / FT¢|8IFI¢1¢I11 IDI

DSNAME=SCIENCE .MATH .MATRICES DI SP=0LD

o e b b b by

|
T
|
T
|
T
|
T

|
|
|
|
//FT1@FB91 DD 3Y50UT|4“1|...,|....|....|....|....|..l.|.1..,..1.1....;....|....
//FTALFOg1 DD D,_DSNAME=SCLENC ,MAJﬁ,I VMATRSs,,|1,|,,,,,,ll,l,; L
I/ {....... .. DISp= (NEW3pATLG)7UN;|;pAp¢Ass,y0LumE SE&,1¢89W1..|....i....|...1
oo ,RApﬁ (u¢8p(6¢7ﬁ)7RLSE7C0WTIG)RpMND)1&EP‘E1QQF¢ TR
It iit o, PCB=(RECFM=VB, LRECL908,BLKSIZE-2728) 1111.LLL[.i1\..ixH.|,...
oo e by e b by b e e e b b b b b b e b Ly
Figure 62. Job Control Statements for Example 1

Appendix A: Examples of Job Processing 91

DD statement FT10F001 identifies the
printed output. (In the load module, data
set reference number 10 is used for printed
output.) The data set is written on the
device class specified in the SYSOUT param-
eter. The records are then written on a
device determined by the operator when the
job is executed.

DD statement FTO4F001 defines the output
data set. (In the load module, data set
reference number 4 is vused to write the
data set containing the inverted matrices.)
Since the data set is created and cataloged
in this job step, device, volume, space,
record format, and length information are
supplied.

The DSNAME parameter indicates that the
data set 1is named SCIENCE.MATH.INVMATRS.
The DISP parameter indicates that the data
set 1is created (NEW) and cataloged (CATLG)
in this job step. The SPACE parameter
indicates that space 1is reserved for 80
records, 408 characters long (80 matrices
of average size). When space is exhausted,

space for 9 more records is allocated. The
space is contiguous (CONTIG); any unused
space is released (RLSE), and allocation
begins and ends on cylinder boundaries
(ROUND) .

The DCB parameter indicates blocked
variable-length records (RECFM), because

the size of matrices varies. The FORTRAN
record length is 904, the maximum size of a
FORTRAN record. The maximum size of a
FORTRAN record in this data set is the
maximum number of elements in a matrix
multiplied by the number of bytes allocated
for an element (900) plus 4 for the vari-
able that indicates the size of the matrix.
LRECL is specified as 908 (the FORTRAN
record 1length plus 4 for the segment con-
trol word used by the operating system for
a variable-length record). BLKSIZE is
specified as 2728 (an integral multiple of
LRECL plus 4 for the block control word
used for blocked variable-length records).

The parameter SEP indicates that 1I/0
operations for the data set SCIENCE.
MATH.INVMATRS should use a different chan-
nel from I/O operations for the data set

SCIENCE.MATH.MATRICES.

Example_ 2

Problem Statement: A previously created
data set RAWDATA contains raw data from a
test firing. A load module PROGRD refines

92

data by comparing the data set RAWDATA
against a forecasted result, PROJDATA. The
output of ©PROGRD is a data set &SREFDATA,
which contains the refined data.

The refined data is wused to develop
values from which graphs and reports can be
generated. The load module ANALYZ contains
a series of equations and uses a previously
created and cataloged data set PARAMS which
contains the parameters for these equa-
tions. ANALYZ creates a data set §VALUES,
which contains intermediate values.

These values are used as input to the
load module REPORT, which prints graphs and
reports of the data gathered from the test
firing. Figure 63 shows the I/0 flow for
this example. It is the same as Figure 1
in the "Introduction" except that the data
sets and programs have been assigned the
names indicated in the preceding text.
Figure 64 shows the job control statements
used to process this job.

The load modules REFDAT, ANALYZ, and
REPORT are contained in the PDS FIRING.

Explanation: The JOB statement indicates
the programmer's name, JOHN SMITH, and that
control statements and control statement
errors are printed on the console typewrit-
er (MSGLEVEL=1).

RAWDATA

PROJDATA PROGRD

! REFDATA

PARAMS ANALYZ

REPORT

!

Graphs
and

I/0 Flow for Example 2

Figure 63.

Sample Coding Form
1-10 [11-20 | 21-30 [31-40 [41-50 1 51— 60 1 61-70 H 71-80
112[3]a[5]6[7[8]]0]1[2]3]a]5]6[7[8]o]ol1[2[3[4]5]6[7I8]9[0] i [2]3]4]5]6[718]9]0] 1 [2]3[4]5]6]718]5[0l i [2[314[516[7[8[9]0] 1 [2[3]4[5]6[7[8[3[0] 112[3]4]5[6[7][8]9[0
4AIE$TELRE.Joat)JOHNSMITW’MSGLEVEL.Al..‘1.\‘,.\‘1‘1,,1.;...,[.‘L‘\.‘.l|.‘.,h...
//JO LIB DD\ IDISINAME FIIRIIINJG DIISlpl (IOILID ’IPIAISS)) 11 i l L1} ! 11] \ |) \ | S T - I | | | I] N 'Y
/l/lSlTlElplil IEX EJCI JPKG‘MA IPIRlOG[RDI 1 [| S] L1 1) [| I S | I | I] l L1 1 [1 1 | | | [I | \ I | l L1 1 iLJ;lJ;
/I/!FIT11|¢IFIQ¢1I JDLDL JDSINLALMEl= AWqAITlAA’IDI!Slpl IOL!Dl 11 | I [i1 11 | L1 1 1 l) O T | [1111 | | | b | | |
/I/1FITI11F¢l¢1| IDIDl ADSINIAIM IPIR\OI\J DATA’\DISP OLDL l 111 \ | S .| | 111 1 l [S N O T W | 1 1 111 | I [I T
/JETAZFWL OD_DS NAME| EREFDATAs, PISP= n(NE)'V.MP\A.SSMUNIT\ TAPECLSs | oo
/I/III[lllLllllLIVO M[E (’RETAIN’SER 21¢7),||1|l|>\1IILL|ll|\|\11\11|\||||2l1[l|111
ﬂﬁ‘.x‘.JL!i,L4DCB (DEN ZnRECFM FsBLKSIZE uga) e
//STEPZ! IEIXEC PG|M ANA'LYZ(L I I J S , L1 LI ’ . \ I . I § I | l I [L1 1] l y I I L1l] § I
[IFTAT EQQL,QQ[D&NAMI =%.STEP1. FTAZF@@ipDIﬁP OLD
//FT18F¢Q1I IDIDI IDSNAME[LPJALRJAMS,DI Slpl loJLD 111 \ I Tt |) | \ | S] I) I | [1111 l I | | | I - l | '
//FT2¢F¢¢1IQQIDSMAM£ GVALpﬁﬁpplﬁfLKNEW7PA§§)QUNIT TAPECLS’i\.JA.{...K|..,‘|..1,
//(Ll I I I Lol 11 [DCKBI I(DIEINI NZJ)LRLEQAFIMA JFAJ\BLKSJI\ZIE>=I2¢MLH)’VOLUME SER 21\¢I L1 l F I | | S - | J
//STEPABI lElXEICI IPIGMI \RIE\PORTl 1 1 L1 11 k L1 1| | '} [111 1 1) I | LLALJ_A | I ‘ - | Lol 4} l 111 li I
/[fIQ8F¢¢M.QQ.DSNAM *HSTﬁ\,lfﬁggfﬂm%LgLSRigHDl,.\LLA,t\\l‘\....|111111l41|4L41
AAFTMQFgﬁilp.,,NIT,PRINI£@\..KIl.}‘1.‘.‘|.,.‘L‘luxl.4J1,‘.,|...K|..,.11.l.|;1..
e b b b b b b b e e b b b e b b
Figure 64. Job Control Statements for Example 2
The JOBLIB DD statement indicates that DD statement FT17F001 identifies the
the PDS FIRING is concatenated with the data set which contains refined data. The
system library. DSNAME parameter indicates that the data
set was created using DD statement FT12F001
The EXEC statement STEP1 defines the in Jjob step STEP1l. The DISP parameter
first Jjob step in the job, and indicates indicates that the data set 1is deleted
that the load module PROGRD is executed. after execution of this job step. The DD
statement FT18F001 identifies the

The DD statements FT10F001 and FT11F001
identify the data sets containing raw data

(RAWDATR) and the forecasted result
(PROJDATA), respectively.
DD statement FT12F001 defines a tempo-

rary data set, &REFDATA, created for input
to the second step. (In the 1load module,
data set reference number 12 is used to
write EREFDATA.) The DISP parameter indi-
cates that a data set is created (NEW) and
is passed (PASS). The data set is written
using the device class TAPFCLS. The VOLUME
parameter indicates that the volume iden-
tified by serial number 2107 is wused for
this data set. The DCB parameter indicates

that +the volume is written wusing high
density (DEN). The records are fixed-
length (RECFM). The logical record length
is 400; therefore, the Dbuffer 1length
(BLKSIZE) is specified as 400.

The EXEC statement STFP2 defines the
second Jjob step in the job and indicates

that the load module ANALYZ is executed.

previously created and cataloged data set

PARAMS.

DD statement FT20F001 defines the tempo-
rary data set &VALUES containing the inter-
mediate values. The DISP parameter indi-
cates that the data set is created in this
step and that it is passed. The data set
is written on volume 2108 using one of the
devices assigned to the class TAPECLS. The
DCB parameter indicates high density (DEN),
fixed-length records (RECFM). Each record
is 204 characters long (BLKSIZE).

The EXEC statement STEP3 defines the
third job step and indicates that the load
module REPORT is executed.

DD statement FTO08F001 identifies the
data set containing intermediate values.
The DSNAME parameter indicates that this
data set 1is defined by the DD statement
FT20F001 in job step STEP2.

Appendix A: Examples of Job Processing 93

DD statement FT10F001 indicates that the
data set reference number 10 is wused to

print the reports and graphs for job step
three.

Example 3

Problem Statement: A generation data

group, WEATHER, is updated and then several
of the data sets within the group are used
to produce a forecast.

The load module FILECR in the PDS WTHRPR
reads a card data set and creates a new
generation data set. The new generation

contains current data about weather condi-
tions. FILECR also generates a weather
report.

The load module FORCST in the PDS WTHRPR
then uses the new generation along with
three other generations of the group to
forecast the weather. The weather forecast
is written on the printer. Figure 65 shows
the input/output flow for the job.
Figure 66 shows the job control statements.

ﬁ Weath Weather
Dec?fo “ FILECR Conditions
FORCST
WEATHER(-2)
Weather
Forecast
Figure 65. I/0 Flow for Example 3
xplanation: The JOB statement defines the

jOb WEATHRP to the operating system, and
indicates that only control statement error
messages are printed on the console type-
writer. The JOBLIB DD statement indicates
that the PDS WTHRPR 1is concatenated with
the system library.

Sample Coding Form

1-10 | 11-20 21-30 [31-40 [41-50 I 51—-60 [61-70 [71-80
1[2[3[a[5]6[7[8]90[1[2[3]a[5]6[7I8[910] 1]2]3]4l516]718]9]0] 1 [2[3]a]5]6[7]8[9l0 1 [2[31al5]6[7 8]9[0] 1 [2]3[4]5[6]718]9[0| 1 [2[3[4[5]6[7[8[lo] 1 [2[3[4[5[6[7]8[S[0

/IWEATHRP JOB MSGLEVEL=

Illllll]lllIllllllljjllllIlllllllllll

v b e by

//JOBLLB DD, DSNAME=WTHRPRaDISP

T | Tl s b

= (OLDPASS)

T

SR TR

TS b B e et b BT Mt Y

|
|111|l|1|!1111||!||!|l||l||||

|

T

//CREATEE|XECPGMFILECIRIJI_LiJllJlllLllllllll]lIllllllllll

v b b e Py

//FT@8F@PL, DD, DSNAME=WEATHER(+1) sUNIT=(HYP

ERT,5,3DEFER) .

IIIIIIIl|

Lo Ly L

o L b b

|
|
!
L fathh! bt RN EY R ISR AR RS ST |
441, l|||||,,|,VOLUM£ (aRﬁTAINpﬁgglﬂaizh,DI P=(N EM%QAFLQXmIT.l.,l....i.l..l...
AAJJ;....|,.,,;L BEL|Iﬁ§L RETPD= ﬂQ&QXJRQE:.,EQFM;ﬁA&..&LZE1WQ¢JJ|....I.I..|..,1
FM%@MPQpMIPMME ﬁ&pms%ggluw,uj,thulhu,hulhu,hul
//FTﬂﬁFG@lIDD ﬁ,lllll,,l,IWEAIHER N R R
..l,f...Meg.th.anaa.fn....lll.,|....1‘\.\|u4414..‘;..l.|.u.;.l..1....;.1..1..1.
Xl i1, INDICATES END OF DATA | il il
//FORECAST,EXECIPGM FORCSE,J.l\llkf.lJ.;l...‘l.‘.l...l‘.,..]....l.‘.,ix...l.lll
/AEIZQEQQA DD DSNAME WﬁATHER(+1 aDISP,QQ{l [,..I.[..h.u.i..,.l.l..h...l.LLL
//f[gﬂfQth,gg,lQﬁNAME WEATHER(ﬁ)ﬁSEPlfT2¢F¢¢AQDJSP Ol ol L
//FT22F@@1, . DD ,pSNAMELﬂEATngglg),pISP OLP{I,\IllllLLll,,,l;,,,,|l,lLi,|,,“,,.
/IFT23F@@1, DD , DSNAME=WEATHER(-2)9DISP=0LD . |ttt il
Aﬁﬂﬁ%ﬂ}ﬂ&PMﬂPMMﬁRJHHgHH__“i“,MHIMHJ.HAH.J”H|HH
| |

ce b e b b

Figure 66.

94

Job Control Statements for Example 3

The EXEC statement defines the first
step CREATE to the operating system and
indicates the execution of the load module
FILECR in the PDS WTHRPR.

DD statement FT08F001 defines the new
member of the generation data group. A
member of the class of devices HYPERT is
used for the data set, and mounting of the

volume is deferred (DEFER). The DISP pa-

rameter indicates a new data set (NEW) and
that it is cataloged (CATLG). The 1label
parameter indicates standard labels are

written and the retention period is 30
days. The DCB parameter indicates fixed-
length records (RECFM), each 400 characters
long (BLKSIZE).

DD statement FTO3F001 defines printed
output. The DCB field indicates that the
report is double-spaced. The SEP parameter
indicates channel separation from the data
set defined by DD statement FT08F001. DD
statement FTO01F001 indicates that the card
data set is in the input stream.

The second job step is defined by the
EXEC statement FORECAST, which indicates
that the 1load module FORCST 1is to be
executed. The DD statements for data set
reference numbers 20 through 23 retrieve
members of the generation data group
WEATHER. DD statement FTO3F001 indicates
printed output for the weather forecast.

Example &4

A data set has been created that con-
tains master records for an index of stars.
Each star is identified by a wunique six-
digit star identification number. Each
star is assigned a record position in the
data set by truncating the last two digits
in the star identification number. Because
synonyms arise, records are chained.

The
observed

following conventions must be
in processing this data set:

1. The star master record that contains
the record 1location counter pointing
to space reserved for chained records
is assigned to record location 1.

2. A zero in the chain variable indicates
that the end of a chain has been
reached.

3. The first variable in each star master
record is the star identification
field; the second variable in each
star master is the chain variable.

4. Each record contains six other vari-
ables that contain information about
that star.

Problem Statement:
diagram illustrating the
problem.

Figure 67 shows a block
logic for this

A card data set read from the input
stream 1is used to update the star master
data set. Each record (detail record) in

this data set contains:

1. The star identification field of the
star master record that the detail
record is used to update.

2. Six variables that are to be used to
update the star master.

When a star detail record is read, its
identification field is randomized, and the
appropriate star master record is read. If
the correct star master record is found,
the record is to be updated. If a star
master 1is not found, then a star master
record is to be created for that star.

The last record in the star detail data
set contains a star identification number
999999 which indicates that processing the
star detail data set is completed.

Explanation: Figure 67 is similar to the
diagram shown in Figure 53, except Figure
67 includes blocks that describe updating
variables in master records already present
in the data set. (Figure 53 includes
blocks describing certain operations that
must be performed when a direct access data
set is first written.) Also, Figure 67 is
adapted to Example 4, whereas Figure 53 is
more general. Figure 69 shows the FORTRAN
coding for this program.

The star master record that contains the

record counter is read, placing the record
location counter in LOCREC. Whenever a
detail record is read, the identification

variable is checked to determine if the end
of the detail data set has been reached.
The star detail records contain the vari-
ables A, B, C, D, E, and F.

The identification number in the detail
record is randomized; the result is placed
in the variable NOREC, which is wused to
read a master record. The master record
contains the star identification number
(IDSTRM), a chain record location (ICHAIN),
and six wvariables (T, U, V, W, Y, and 2)
which are to be updated by the variables in
the star detail records. IDSTRM and IDSTRD
are compared to see 1if +the correct star
master is found. If it is not, then the
variables containing the chain record num-

bers are followed until the correct star
master is found or a new star master is
created.

Appendix A: Examples of Job Processing 95

Write Star
Master
Record

Read Star
Master

Record
No. 1

Read Star
Detail
Record

Ident
in Star Detail
=999999

Randomize Star
Number to a
Record Location

Set Record Position
in Read Statement
= Chain Variable

Figure 67.

96

Read Star
Master
Record

Write Star
Master
Record

Ident
in Star Detail =
Ident in Star
Master

Update
Variable in
Star Master

Chain
Variable in
Master =

Set Chain
Variable = Record
Location Counter

Write
Master
Record

Set Record Position
in Write Statement
= Record
Location Counter

1

Increment
Record Location
Counter by 1

Y

Build Star
Master Record

Block Diagram for Example 4

Job control Statements: The program shown
in Figure 69 is compiled and 1link edited,
placing the load module in the PDS STARPGMS
and assigning the 1load module the name
UPDATE. The data set that contains the
star master records was cataloged and

assigned the name STARMSTR when it was
created. Figure 68 shows the job control
statements needed to execute the module
UPDATE.

Sample Coding Form
-10 | -20 21-30 [31-40 1 41-50 [51— [61-70 [71-80

EEABErEER EERs SR A B B0 Z5A B R EE A s B B M EE o B MsE e sl es
//STARDAUP JOB 3233%]. ASTRONOMER’)MSGLEYELI}. L | I
//JOBLIBDDDSNAME STARPGMS)DISPOLD L
// EXECPGMUPDATEIL L
//FT¢7F¢¢1 DD DSNAME STARMSTR»DISP OLD jl...l....lll..|.. .;....|....;....1....
//lemwl DD*HH, | STAR DETAILSI FOLLOW .
o l_ﬁtar Detail Data Set ;. ..1....|.i.\;.. L
ﬁf.l|..¢1|.“,1\END QF STAR DETAILS, ,lx‘,.r,\ 1;.ll.a. ‘11.'1u1..;1.,1111.t
;...I..\.;..HI...(I....I_L.‘.Jl...l.l..;H..I...‘;; ol ; .I.,..:...,I.u

Figure 68. Job Control Statements for Example U

Appendix A: Examples of Job Processing 97

IDENTIFICATION

STATEME
Rewend FORTRAN STATEMENT SEQUENCE -

NUMBER

o~ JconT.

T 73 435

25 74 25 76 27 28 25 30 31 32 33 34 35 36 37 38 39 40 4 ze.suawnaswsosl 52 53 54 55 56 57 58 59 60 61 &2 63 64 65 66 &7 68 69 70 71 72|73 74 75 78 77 78 79

@@¢af3¢aE,NHxv71 1T . 1] T

REE/ADD

P

NG LOCATTON| [COUNTE
c

TRM
LAS

READ STAR_DATA_RECORD

[N]l=Y i)
[\

DhA

) 20>

2
I RID
S E
CHEC
R DisE|»
9 2

L

=)

TSTIAR DATA AND READ STAR MASTER

{go

D T
C

TRM3[T

HATNA T2 UV X2 Z

1
M
)2
A
3

R
)
K
)
bl
ATION
S
S
’
L
E

ﬂ
>0 = |4
L e e o e e v [(Y e B I E S A

00| |n ln

AND CHAIN
S

(
I
I
D
S
g
I]
1
i
T
T
v
2
T
A

cClZ] |

R_MASTER RECORD| AND WRITE| LAST| RECORD

M
N LA
DSITR

IN“ ‘ 1 | : ‘J f

EGIN UCTION OF NEW STAR MASTER|. UPDATE

[=)[=) IO OO ON

HOIE| N>
~
q =
o
4 [= e P

=
mm
(@)
o)
N

m»xo>» >

;Bu[W STAR MASTER RECORD| | LT

=INImM
[92]

MNMmMGO O

I |
L] 1L NI ERERIEREREEN
S_[FOUND]>| UPDATE AND WRILTE [STAR MASTER[[[([

OO

; | |
I EREERE 1
i i i 1 1

ii T 11‘ H"‘: ,‘

| | |
@3)) I|IDSTIRM ICHMINWTwU7V‘W)W)£ [l f ; | ;:g‘ ;{

O

R_DATA RE ORD : B

ARIABLE TN RECORD READ [THE NEXT STAR MASTER IN THE CHAIN

< <
N Z
m
- ><I9[
= IE
n
—{ |~
> [

STAR MASTER CONTATNG RECORD| LOCATLON COUNTER

20
E=IE
>
~
> |
=
>
=
~
—
m

~0|0 NO OIN
»

k]

71@4)Iosnnwmﬁoc EC [[

=
Y
WIN =

)
sl
m
MmN =202 Lo 0o=

i il i s N BN i | i i
123 & 5]6f7 & 9 0 1112 13 14 15 16 17 21 22 23 24 25 26 %7 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72|73 74 75 76 77 78 79

A standard card form, BM electo 868157, 1% available for punching staf his form

Figure 69. FORTRAN Coding for Example 4

98

A FORTRAN programmer can use assembler
language subprograms with his FORTRAN main

program. This section describes the link-
age conventions that must be used by the
assembler language subprogram to communi-

cate with the FORTRAN main program. To
understand this appendix, the reader must
be familiar with the publications Assembler
Language and Assembler (E) Programmer's
Guide or Assembler (F) Programmer's Guide.

SUBROUTINE REFERENCES

The FORTRAN programmer can refer to a
subprogram in two ways: by a CALL statement
or a function reference within an arithme-
tic expression. For example, the state-
ments

CALL MYSUB(X,Y,Z)
I=J+K+MYFUNC(L,M,N)

refer to a subroutine subprogram MYSUB and
a function subprogram MYFUNC, respectively.
the

For subprogram reference, compiler

generates:

1. An argument list in which the address-
es of the arguments are placed to make

the arguments accessible to the sub-
program.

2. A save area in which the subprogram
can save information related to the

calling program.

3. A calling sequence to pass control to
the subprogram.

Arqgument List

The argument list contains addresses of
variables, arrays, and subprogram names
used as arguments. Since the arguments are
located in the main program, these address-
es are locations within the main program.
Each entry in the argument 1list is four
bytes 1long and is aligned on a full-word

Appendix B:

APPENDIX B: ASSEMBLER LANGUAGE SUBPROGRAMS

boundary. The last three bytes of each
entry contain the 24-bit address of an
argument. The first byte of each entry

contains zeros, unless it is the last entry

in the argument 1list. If it is the last
entry, the first (leftmost) bit in the
entry contains a 1.

The address of the argument 1list is

placed in general register 1 by the calling
program.

Save Area

The calling program contains a save area
in which the subprogram places information,
such as the entry point for this program,
an address to which the subprogram returns,
general register contents, and addresses of
save areas used by programs other than the
subprogram. The amount of storage reserved
by the calling program is 18 words.
Figure 70 shows the layout of the save area
and the contents of each word. The address

of the save area 1is placed 1in general
register 13.
FORTRAN main _programs

0, Dot save
"1F "these rege™

floating-point registers.
TEEETERSETEeIve~Fne assembler lan-
guage subprogram is responsible for saving
and restoring these registers.

Calling Sequence

A calling sequence 1is generated to

transmit control to the subprogram. The
address of the save area in the calling
program is placed in general register 13.

The address of the parameter list is placed
in general register 1, and the entry
address for the subprogram 1is placed in
general register 15. An instruction is

then generated to branch to the address in
the general register 15 and to save the
return address 1in general register 14.
Table 15 shows a summary of the use of

general registers.

Assembler Language Subprograms 99

!

AREA+] 2> e S

(word u) |The contents of register 14; that is, the address to which the subprogram|
|returns. If a subprogram returns to this program, the first byte of this]|
|location is set to ones, indicating that the called subprogram has|
|returned control. |

| AREA+16-—=>} - — e 4

| (woxrd 5) |The contents of register 15; that is, the address to which entry to the]

| |subprogram is made.

JAREA+20—==> pmm e e e o —_— —_—

AREA- >r - 1
(word 1) {This word is used by a FORTRAN-compiled routine to |
| store its epilogue address and may not be used by the |

| assembler language subprograms for any purpose. 1
AREA+U———D> oo - 4
(word 2) |If this program which calls the assembler language subprogram is itself a|
| subprogram, this location contains the address of the save area of thej|

|calling program. Otherwise this location is not used. |

AREA+8 >t - .|
(word 3) |The address of the save area of the subprogram called by this program. |
|

|

{

— e e T . e e . e, o s et S e . S ot e s

e s e . . e e e S . . St e s, s e 2]

|

i
| (word 6) |The contents of register O. |
| | |
I t-- R - - -
L. | . |
| . I . !
| . . |
|AREA+68——=> }p—~——— —— —— ———— i
| (word 18) |The contents of register 12. |
| | |
| O —— —_— _— i
|
!
|
[— ———
Figure 70. Save Area
Table 15. Linkage Registers

I - === - 1

lReglster |Register Namel Function |
| Number | |]
e —— frmm oo , - - , —memme]
| 0 | Result |Used for function subprograms only. The result is returned in |
] | Register |general or floating-point register 0. (For subroutine subpro-|
| | |grams, the result(s) 1is returned by the subprogram in aj
| | |variable(s) passed to the subprogram by the programmer in his|
| | |CALL statement.) |
b T T T 1
| 1 |Argument List|Address of the argument list passed to the called subprogram. |
| | Register | |
F + t , - =
| 13 | Save Area |Address of the area reserved by the calling program in which |
| | Register |the contents of registers are stored by the called program. |
| T, 1 - __‘|
1) T
| 14 | Return |Address of the location in the calling program to which control|
| | Register |is returned after execution of the called program.
pmmm - ommmmm -4 -- —
| 15 | Entry Point |Address of the entry point in the subprogram. |
| | Register | |
L L L —— 4

100

CODING THE ASSEMBLER LANGUAGE SUBPROGRAM

Two types of assembler language subpro-
grams are possible: the first type (lowest
level) assembler subprogram does not call
another subprogram; the second type (higher
level) subprogram does call another subpro-
gram.

Coding a Lowest Level Assembler Language
Subprogram

For the lowest level assembler language

subprogram, the linkage instructions must

include:

1. An instruction that names an entry
point for the subprogram.

2. An instruction(s) to save any reg-

isters used by the subprogram in the
save area reserved by the «calling
program. (The contents of 1linkage
registers 0 and 1 need not be saved.)

3. An instruction(s) to restore the
"saved" registers before returning
control to the calling program.

4. An instruction that sets the first
byte in the fourth word of the save
area to ones, indicating that control
is returned to the calling program.

5. An instruction that returns control to

the calling program.

Figure 71 shows the linkage conventions

does not call another subprogram. In addi-
tion to these conventions, the assembler
program must provide a method to transfer

arguments from the «calling program and
return the arguments to the calling pro-
gram.

Sharing Data in COMMON

With FORTRAN (E), general register 4
contains the address of the COMMON area.
If the size of the COMMON area exceeds 4095
bytes, additional registers (e.g., register
5, 6, and 7) are assigned consecutively.

Higher Level Assembly Lanquage Subprogram

A higher level assembler subprogram must
include the same 1linkage instructions as
the lowest 1level subprogram, but because
the higher level subprogram calls another
subprogram, it must simulate a FORTRAN
subprogram reference statement and include:

1. A save area and additional instruc-
tions to insert entries into its save
area.

2. A calling sequence and a parameter
list for the subprogram that the high-
er level subprogram calls.

assembler instruction that indi-
external reference to the
called by the higher level

3. An
cates an
subprogram

for an assembler language subprogram that subprogram calls.

r - 2 - R - 1
| Name | Oper. |Operand Comments

[} - T '{
deckname	START	0
~~	BC	15, m+1+4(15) BRANCH AROUND CONSTANTS IN CALLING SEQUENCE
‘	DC	X*"m' m MUST BE AN ODD INTEGER TO INSURE THAT THE PROGRAM
]	DC	CLm* name" STARTS ON A HALF-WORD BOUNDARY. THE NAME CAN BE PADDED
* .		N WITH BLANKS. 7
5	STM	14, m 12(13) THE CONTENTS OF REGISTERS 14, 15, AND O THROUGHJQ ARE
*		STORED IN THE SAVE AREA OF THE CALLING PROGRAM.[R«IS ANY
*		NUMBER FROM 0 THROUGH 12.
	BALR	B,O0 ESTABLISH BASE REGISTER (2<12)
	USING	*,B
	user	written source statements

| | [|
| | I I
I		
	LM	2,@ 28(13) RESTORE REGISTERS
	MVI 112 13) X'FF' INDICATE CONTROL RETURNED TO CALLING PROGRAM	
	BCR	15 RETURN TO CALLING PROGRAM
L 4 -4 4
Figure 71. Lowest Level Assembler Subprogram

Appendix B:

Assembler Language Subprograms 101

4, Additional instructions in the return In-Line Argqument List
routine to retrieve entries in the

save area.

Figure 72 shows the linkage
for an assembler subprogram
another assembler subprogram.

The assembler programmer can establish
conventions an in-line argument 1list instead of an
that calls out-of-line list. 1In this case, he deletes

the argument list shown in Figure 71 and
substitutes the calling sequence shown in
Figure 73 for that shown in Figure 71.

T
| Name |Oper. |Operand

Comments

| deckname |START |0
|EXTRN |name,

|DC |AL3 (argp)
L

|

| |BC |15, m+1+4(15)

| |DC | X'm"

| |DC | CLm" name,

| * | | SAVE ROUTINE

| | STM |14,R,12(13)

| [|

| | |

| | BALR |B,0

| |USING |*,B

| | LR 19,13

| * | |

| * | |

| |LA {13,AREA

| * | |

| |sT |]13,8(0,0)

| * | |

| |sT 1Q,4(0,13)

| * | |

| * | |

| | BC |15, prob,

| AREA |DS |18F

| * | |END OF SAVE ROUTINE
|prob, |user |written program statements
| I - |

| | - 1

| | - |

| * | | CALLING SEQUENCE
] | LA |1, ARGLIST

| |L |15, ADCON

| |BALR |14,15

| |more |user written program statements
| | - |

| I |

| | - |

| * | |RETURN ROUTINE
| |L |13,AREA+4

| * | |

| | LM |2,R,28(13)

| L 114,12(13)

| |MVI 112(13) ,X'FF'

| | BCR 115,14

| * | |END OF RETURN ROUTINE
| ADCON |DC |A(name,)

| * | | ARGUMENT LIST
|ARGLIST |DC |ALY4 (arg,)

| |- |

| | - |

| | - |

| |DC |X'80"

|

L

NAME OF THE SUBPROGRAM CALLED BY THIS SUBPROGRAM

THE CONTENTS OF REGISTERS 14, 15, AND O THROUGH R ARE
STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS ANY
NUMBER FROM 2 THROUGH 12.

ESTABLISH BASE REGISTER

LOADS REGISTER 13, WHICH POINTS TO THE SAVE AREA OF THE
CALLING PROGRAM, INTO ANY GENERAL REGISTER, Q, EXCEPT 0,
1, 13, and 15.

LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO
REGISTER 13.

STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO THE
CALLING PROGRAM'S SAVE AREA

STORES THE ADDRESS OF THE PREVIOUS SAVE AREA (THE SAVE
AREA OF THE CALLING PROGRAM) INTO WORD 2 OF THIS PRO-
GRAM'S SAVE AREA

RESERVES 18 WORDS FOR THE SAVE AREA

LOAD ADDRESS OF ARGUMENT LIST

LOADS THE ADDRESS OF THE PREVIOUS SAVE AREA BACK INTO
REGISTER 13

LOADS THE RETURN ADDRESS INTO REGISTER 1u4.

RETURN TO CALLING PROGRAM

ADDRESS OF FIRST ARGUMENT

INDICATE LAST ARGUMENT IN ARGUMENT LIST
ADDRESS OF LAST ARGUMENT

e e o e e e . e e s i A S et S . S S S, . o s . S S S— i S . S — — — S S— e, S ot ST . s, S i, e, . e . S e . e st e sy e, =

Figure 72. Higher Level Assembler Subprogram

102

r T T - 1
| Name |Oper. |Operand |
¢ $ -~ -~
ADCON	DC	A(probl)
I -		
	-	
I		
	LA	14, RETURN
L	15, ADCON	
	CNOP	2,4
	BALR	1,15
	DC	ALY4 (arg,)
I -		
[P		
T		
	DC	xX*80"
	DC	AL3 (argp)
RETURN	BC	0,X"isn"'
i1 1 —_— J		
Figure 73. In-Line Argument List

GETTING ARGUMENTS FROM THE ARGUMENT LIST

The argument list contains addresses for
the arguments passed to a subprogram. The
order of these addresses is the same as the
order specified for the arguments. in the
calling statement in the main program. The
address for the argument list is placed in
register 1. For example, when the state-
ment

CALL MYSUB(A,B,C)

is compiled, the following argument list is
generated.

00000000 address for A i
|66660000{ _—address for B) —‘1
|16685666| address for C }
L ——i —_— —d
For purposes of discussion, A is a double-

precision variable, B is a subprogram name,
and C is an array.

The address of a variable in the calling
program is placed in the argument 1list.
The following instructions in an assembler
language subprogram can be used to move the
double-precision variable A to location VAR
in the subprogram.

L 0,0(1)
MVC VAR(8),0(Q)

where:
Q is any general register.

For a
of a storage
argument list.

subprogram reference, an address
location 1is placed in the
The address at this storage

Appendix B:

location 1is the entry point to the
subprogram. The following instructions can
be wused to enter subprogram B from the
subprogram to which B 1is passed as an

argument.
L Q,4(1)
L 15,0(Q)
BALR 14,15
where:

Q is any general register.

For an array, the address of the first
variable in the array 1is placed in the
argument list. An array [for example, a
three-dimensional array C€(3,2,2)] appears
in this format in main storage.

c(,1,1) cC(2,1,1)

c(3,1,1) c(1,2,1)=—

4
C(2,1,2) ==
—d

r
L-c(2,2,1)

——————
t-c(3,1,2)

c(3,2,1) c(1,1,2)

c(1,2,2) cC(2,2,2) c(3,2,2)

Table 16 shows the general subscript format
for arrays of 1, 2, and 3 dimensions.

Table 16. Dimension and Subscript Format

(m—————————= T———= ===
|Array A | Subscript Format |
F — e 1
A(DD)	A(sD)
A(D1,D2)	A(S1,S2)
A(D1,D2,D3)	A(S1,S52,S3)
poommmmmmmmmhe e —

|D1, D2, and D3 are integer constants used|
|in the DIMENSION statement. S1, S2, and]
| S3 are subscripts used with subscripted|

|variables. |
L U J

The address of the first variable in the
array 1is placed in the argument list. To
retrieve any other variables in the array,
the displacement of the variable, that is,
the distance of a variable from the first
variable in the array, must ke calculated.
The formulas for computing the displacement
(DISPLC) of a variable for one, two, and
three dimensional arrays are

DISPLC =(S1-1)*L
DISPLC =(S1-1) *L+ (S2-1)*D1*L
DISPLC =(S1-1)*L+ (S2-1)*D1#*L+(S3-1) *D2#D1+*L

where:
L is the
the array.

length of each variable in

For example, the real variable c<(2,1,2)
in the main program is to be moved to a
location ARVAR in the subprogram. Using
the formula for displacement of variables
in a three-dimensional array, the displace-
ment is calculated to be 28 and placed in

Assembler Language Subprograms 103

the general register DISP. The following
instructions can be used to move the vari-
able .

L Q,8(1)
LE S5,0(Q,DISP)
STE S, ARVAR
where:
Q, R, and S are general registers.

Example: An assembler language subprogram
is to be named ADDARR, and a real variable,
an array, and an integer variable are to be
passed as arguments to the subprogram. The
statement

CALL ADDARR (X,Y,J)
is used to call the subprogram. Figure 74

shows the 1linkage wused in the assembler
subprogram.

(—=————=— T T T T T T e ——————————— e
| Name |Opex. |Operand
F et - e -
| ADDARR |START |0
|B |EQU |8
| BC 115,12(15)
|DC |X*7"
|DC |CL7*ADDARR"
ADDARR | STM 114,12,12(13)
|BALR |B,0
|USING |*,B
|L 12,8(1) MOVE THIRD ARGUMENT TO THE LOCATION CALLED INDEX IN
|MVC | INDEX(4),0(2) THE ASSEMBLER LANGUAGE SUBPROGRAM.
|L 13,0(1)
|MVC |VAR(4),0(3) ASSEMBLER LANGUAGE SUBPROGRAM
l4,4(1) LOAD THE ADDRESS OF THE ARRAY TO GENERAL REGISTER 4.
|L [4,4(4)

|User Written Statements

|

|
I
I
|
|
I
|
|
|
|
| |L
I
!
I
|
I
|
I
I
|

| LM |14,12,28(13)
|MVI [12(13),X"FF"
|BCR |15,14
|DS | OF

| INDEX | DS |1F

| VAR | DS |1F

| I 4 L

A
I
4|
|
I
|
|
|
|
I
|
}

MOVE FIRST ARGUMENT TO THE LOCATION CALLED VAR IN THE |
|
I
|
|
I
|
I
I
|
|
I
|
I
4

Figure 74. Assembler Subprogram Example

104

APPENDIX C: STORAGE MAP FOR LOAD MODULE EXECUTION
Figure 75 shows a storage map for 1load r - 1
module execution. The superscripts shown |Resident and Transient Control Program |
in the figure indicate one of the notes b ———————————— —_ -
listed in this appendix. | First FORTRAN Object Module |
F e 4
| COMMON Area?l |
I8

pommmm o T —— -1
|Second FORTRAN Okject Module |
Note 1: The COMMON area is inserted into b e 4
the load module after the first object |Third FORTRAN Object Module |
module that refers to it. For example, if b e e e e e 1

the first object module does not refer to | .
COMMON and the second object module does, | . |
the COMMON area follows the second object | . |
module. p—————————— ——— |
|Last FORTRAN Object Module]
___ 4
|Explicitly Referenced Library Subprograms|
S e
Note 2: Buffers for direct access data |Implicitly Referenced Library Subprograms|

sets are extended upward in main storage as
buffers are needed.

Note 3: The order in which IOBs are placed
in main storage 1is dependent on the
sequence of I/0O operations. The IOBs can
be 1located anywhere in upper main storage.

Note 4: The routines for direct access I/0
are loaded into main storage when a direct
access data set is defined by a DEFINE FILE
statement. The routines for sequential I/O
are loaded into main storage when a sequen-
tial data set is first used.

Note 5: A DCB is allocated for every data
set reference number used by the 1load
module.

Appendix C:

p-——
|External References for Library Subprgrms|

-

|Buffers for Direct Access Data Sets? |

|Transient Work Area Required of Every|
|Load Module for Use by the Control Pro-|

| Input/Output Blocks (IOBs) Containing]|
|Information Concerning the Interface|
|Between FORTRAN Execution Time I/O Rou-|
|tines and the Control Program?3 |

.
|Buffers for Sequential Data Sets |
|Control Program Routines for Performing]
|Direct Access I/0 and Control Program|
jRoutines for Sequential I/0% |
-~
Containing]|
Use of Each|

|[Data Control Blocks (DCBs)
| Information Concerning the
|Data SetS

L

[R

! _
|Task Input/Output Table (TIOT) Containing]|
|Information such as Jjobname, stepname, |
|and ddname for each data set used by the|

|step |
o —— {
|Register Save Area for the Control Pro-|
| gram |
L - 4
Figure 75. Load Module Execution Storage

Map

Storage Map for Load Module Execution 105

APPENDIX D: SYSTEM DIAGNOSTICS

This appendix contains a detailed de-
scription of the diagnostic messages pro-
duced during compilation and load module
execution.

COMPILER DIAGNOSTIC MESSAGES

Two types of compiler diagnostic mes-
sages are generated - informative and
error/warning.

Compiler Informative Messages

Four informative messages are generated
by the compiler to inform the programmer or
operator of the status of the compilation.
The message and any compiler action taken
is shown.

LEVEL: rmthyr
FORTRAN IV (E) COMPILATION

IBM 0S/360 BASIC
DATE: yy.ddd

Explanation: This message is gen-
erated at the beginning of every

compilation. The level number (r)
and date (mthyr) of the compiler
is given by "rmthyr". The number
of the day (ddd) in the year (yy)
that the compilation takes place
is given by "yy.ddd".

IEJOO1I COMPILER OPTIONS IN EFFECT:
[SOURCE, 1 [BCD, 1 [MAP,] [DECK,]
{SPACE,}
[LOAD, 1 [ADJUST, 1| PRFRM,
[NAME=xxxxXxX,]SIZE=yyyYYYY«

LINELNG=zzz

Explanation: This message occurs
for every compiler job step. All
bracketed options appear, if they
are specified or assumed by
default.

SIZE OF COMMON xxxxx PROGRAM yyyyy

Explanation: This message is gen-
erated before the end of every
compilation. The number of bytes
needed to contain the COMMON area
is the decimal number xxxxX. The
number of bytes needed to contain
the program (instructions generat-
ed by the compiler, constants, and

106

variables not assigned to COMMON,

etc.) is the decimal number
YYvyvyy.

END OF COMPILATION
Explanation: This message indi-

cates that a compilation is
cessfully completed.

suc-

Compiler Action: If this message
is not generated by the compiler,
the compilation was terminated
abnormally and a condition code of
16 was generated because of inter-
nal errors.

Compiler Error/Warning Messages

The following text contains a descrip-
tion of error/warning messages produced by
the compiler. The message is shown with an
explanation, and any compiler action or
user action that is required. Unless oth-
erwise specified, messages preceded by
"WARNING" generate a condition code of 4;
other messages generate a condition code of
8.

IEJO02I ONE OR MORE INVALID COMPILER
OPTIONS IN 'PARM' FIELD
OPTION(S) IGNORED

An invalid compiler
PARM

Explanation:
option is specified in the
field of the EXEC statement.

Compiler Action: The compilation
proceeds using only the specified
valid compiler options and

defaulted options.

IEJOO3I 'NAME' OPTION TOO LONG - TRUNCATED
Explanation: The name specified
for the compiler option
NAME=xxxxxX 1s longer than six
characters.

Compiler Action: The characters
beyond the sixth position are
truncated and the compiler pro-
ceeds as if the truncated name had

been specified.

IEJOOUT

IEJOO5I

IEJOO6I

IEJOO7I

MISSING OR ERRONEOUS DD STATEMENT

SSYSUTl
FOR) SYSUT2

\ SYSLIN
SYSPUNCH

XXXXXXXX

(SYSIN 2

\

Explanation: A DD statement is
not supplied or the ddname is
mispunched for the DD statement
indicated in the message. If

another program passes control to
the compiler, then a DD statement
XXXXXXXX passed as a parameter is
missing.

Compiler Action: A condition code
of 16 is generated for the omis-
sion of SYSIN. The compilation is

terminated. The compilation pro-
ceeds if any other ddnames are
omitted. If SYSLIN is omitted, a

condition code of 12 is generated

and the compiler assumes NOLOAD,
even though the programmer may
have specified TLOAD. For the

omission of SYSPUNCH, the compiler
assumes NODECK, even though DECK
may have been specified.

NO INPUT FOUND

Explanation: A source module is
nonexistent; that is a DD * state-
ment defining the location of the
source module for the compiler is
immediately followed by a delim-
iter statement.

Compiler Action: A condition code
of 16 is generated, and control is
returned to the control program.

INSUFFICIENT STORAGE. SPACE

OPTION IN EFFECT

Explanation: The PRFRM option is
specified; however, there is not
enough main storage available for
the PRFRM option.

Compiler Action: The SPACE com-

" piler option 1is assumed, and the
compiler begins the compilation
again.

INSUFFICIENT STORAGE FOR COMPILA-
TION

Explanation:
is specified
option; however,

Blocked compiler I/O
with the PRFRM
there 1is not

IEJ008I

IEJO010I

IEJO11I

Appendix D:

enough main storage available for

the PRFRM option.

Compiler Action: The compilation
is terminated, and a condition
code of 16 is issued.

INVALID BLKSIZE SPECIFICATION

Explanation: The BLKSIZE subpa-
rameter specified in a DD state-
ment is not an integral multiple
of the specified LRECL value for
that data set.

Compiler Action: The compilation
is terminated, and a condition
code of 16 is issued.

I/0 ERROR,
XXX e o XXX

COMPILATION TERMINATED,

Explanation: An irrecoverable
input/output error was encountered
during compilation, which makes
continuation impossible.

XXX...XXX is the character string
formatted by the SYNADAF macro
instruction. For an interpreta-
tion of this information, see IBM
System/360 Operating System:
Ssupervisor and Data Managemrent
Macro-Instructions, Form C28-6647.

Compiler Action: Compilation is
terminated, and a condition code
16 is generated.

I1/0 ERROR, ‘DECK' CANCELED,
XXX o XXX

Explanation: An irrecoverable

error was encountered during an
output operation on the data set
defined by SYSPUNCH. XXX...XXX is
the character string formatted by
the SYNADAF macro instruction.
For an interpretation of this
information, see IBM System/360
Operating System: Supervisor and
Data Management Macro-
Instructions, Form C28-66Uu47.

Compiler Action: The DECK option
is changed to NODECK, and
compilation continues. In the
case of multiple compilations,
only the last (partial) deck punch
need be discarded.

FORTRAN E Messages 107

IEJ029T

IEJO30I

IEJO31I

IEJ032I

IEJO33I

IEJO34T

IEJO35I

108

ARRAY MUST BE DIMENSIONED ON ITS
FIRST AND ONLY ITS FIRST OCCUR-
RENCE

Explanation: The dimension of an
array must be given in either a
DIMENSION, COMMON, or Explicit
Specification statement prior to
its use in any other statement and
can never be redefined.

ILLEGAL USE OF FUNCTION NAME

Explanation: A function name may
not appear in an EQUIVALENCE or

COMMON statement.

EQUIVALENCE TABLE FULL

Explanation: There are too

equated variables.

many

User Response:
strictions."

See "Compiler Re-

INTEGER TOO BIG

Integer 1is larger
allowable

231-1 or

the number of

DEFINE
224

Explanation:
than maximum size

(i.e., larger than
2,147,483,647), or
records specified in a
FILE statement exceeds
(16,777,116).

WARNING == FIRST CARD IS CONTINUA-
TION

Explanation: First non-comment
statement was a continuation 1line
(i.e., a nonzero character, other
than a blank, was encountered in
column 6.)

Compiler Action: The statement is
processed as if it were the ini-
tial line of a statement.

SUBPROGRAM CARD NOT FIRST

Explanation: A FUNCTION or
SUBROUTINE statement appears after
the first statement in a program.
For example, the first card in a
subprogram (other than a comments
card) is not a FUNCTION or
SUBROUTINE statement.

ARGUMENT MISSING IN FUNCTION DEFI-
NITION

IEJO36I

IEJO0371

IEJO038I

IEJO39I

IEJO41T

IEJOu2T1

IEJOU43T

Explanation: Function definition
(either 1in Statement Function or
FUNCTION header statement) must
have at least one argument.

ILLEGAL CHARACTER

Character is not

Explanation:
recognizable.

The character is
delimiter, which

Compiler Action:
taken to be a
should be either

b-x*.,+ /=)

or Column 73, where b is a blank.
INVALID STATEMENT OR STATEMENT
NUMBER

Explanation: For example, an

equal sign is missing in a State-
ment Function Definition or an
arithmetic statement. A left
parenthesis is missing in an IF
statement or an illegal delimiter
precedes the statement.

SEQUENCE ERROR

All specification
statements (DIMENSION, EQUIVAL-
ENCE, REAL, INTEGER, DOUBLE PRECI-
SION, COMMON) must precede all
Statement Function Definition
statements. All Statement Func-
tion Definition statements must
precede all executable statements.

Explanation:

MORE THAN 6 CHARACTERS IN NAME

MULTI-DEFINED OR ILLEGAL NAME

Explanation: A name is defined
more than once or an illegal name
is wused as a variable. For exam-
ple, a real variable is redefined
as an integer variable.

MULTI-DEFINED STATEMENT NUMBER

Explanation: This statement num-
ber has been used previously.

Every statement number should be
unique, and associated with only
one statement in a program.

ILLEGAL USE OF RESERVED WORDS

When NOADJUST is
reserved word must

Explanation:
specified, a

IEJO4LT

IEJO45T

IEJOu6T

IEJO47TI

IEJOUS8T

IEJOU4OT

TIEJO50I

IEJO51T

IEJO52T

not be used as a variable, array,
or subprogram name.

TOO MANY DECIMAL POINTS
Explanation: Only one decimal
point can appear in a real or

double-precision number.

DECIMAL POINT AFTER E
Explanation: A decimal point has

been found in the exponent part of
a real or double-precision number.

TOO MANY E'S

Explanation: A second E has been
found in a number (e.g., 2,7E2E2).

ILLEGAL NUMBER OR NAME

Explanation: Illegal wuse of a
number. For example, in the
statement, DIMENSION 5 (1,2), the
number 5 1is not a proper array
name.

MORE THAN 3 DIMENSIONS

Explanation: Maximum number of
dimensions permitted in an array

is three.

DIMENSION ERROR

Explanation: Illegal delimiter or
size of an array exceeds 131,071
bytes in a COMMON, DIMENSION, or
Explicit Specification statement.

CANNOT EQUATE

Explanation: At least two vari-
ables or subscripted variables
should appear in the parentheses
of an EQUIVALENCE statement.

WARNING -- COMMA MISSING

Explanation: A required comma was
not encountered.

Compiler Action: The statement is
compiled as through a comma were
there.

WRONG DIMENSION

Number of subscripts
used does not

Explanation:
in the variable

IEJO531

IEJOS5UT

IEJO551

IEJO561

IEJO57I

IEJ058I

IEJO060I

 IEJO61I

Appendix D:

correspond to the number of sub-
scripts in the array as defined in

a COMMON, DIMENSION, or Explicit
Specification statement.

SUBSCRIPT ERROR

Explanation: The subscript
expression contains more than

three subscripts, an illegal deli-
miter, or an illegal variable.

INVALID ARGUMENT IN ASF

Explanation: An 1illegal symbol
arpears as an argument in the
Statement Function argument list.
For example, SF(A,B,*,C) or
SF(A,B,C) where C is an array.

INVALID ARGUMENT IN HEADER CARD

Explanation: An illegal variable
or a multidefined variable appears
in the function definition argu-
ment list.

ILLEGAL STATEMENT NUMBRER FIELD

Explanation: Statement number
list in a computed GO TO or in an
arithmetic IF statement is inval-
id.

DATA SET REFERENCE NUMBER MISSING

Explanation: There is no data set
reference number specified, for
example, WRITE(,10), or the data
set reference number is multirly
defined.

LEFT PARENTHESIS MISSING AFTER R/W

Explanation: The left parenthesis

in a READ or WRITE statement is
missing. For example, in the
statement: WRITE3,10), the 1left
parenthesis before the 3 is miss-
ing.

ERROR IN VARIABLE

Explanation: Symkol in an
EQUIVALENCE statement is not a
variable, for example, EQUIVALENCE

(10,B), or is a dummy variable.

WARNING =-- STATEMENT CANNOT BE

REACHED

FORTRAN E Messages 109

IEJO63I

IEJO6ULT

IEJO65I

IEJO066I

IEJO067I

IEJO68T

IEJO69I

IEJO70I

110

Explanation: Statement following
a GO TO, IF, RETURN, or STOP has

no statement number.

EQUIVALENCE SUBSCRIPT ERROR

Explanation: There is an illegal
delimiter or a missing subscript
in an EQUIVALENCE subscript.

TOO MANY SYMBOLS AND STATEMENT
NUMBERS

Explanation: The Dictionary and
Overflow Table have overflowed, or
the total number of statement num-
bers referred to (excluding FORMAT
statement numbers), DO statements,

and statement functions exceeds
1000.
User Response: Subdividing the

program or reducing the number of

symbols and statement numbers is
necessary.
INVALID STATEMENT NUMBER OR

PAUSE/STOP NUMBER

Explanation: Either there is an
alphabetic or illegal character in
the number, or there are more than
five digits in the number.

BACKWARD DO LOOP

Explanation: The statement speci-
fied in the range of the DO state-
ment may not precede the DO state-
ment.

INVALID DATA SET CONTROL CHARACTER
Explanation: The FORMAT control
specification in the DEFINE FILE
statement is not L, E, or U.

ERROR IN EXPONENT

Explanation: An exponent is miss-
ing or is too large in a real or
double-precision number.

TOO MANY ARGUMENTS IN ASF

than 15 argu-
defi-

Explanation: More
ments in Statement Function

nition is not permitted.

INVALID FUNCTION NAME

IEJO71I

IEJO721

IEJO0731

IEJO74I

IEJO751I

IEJO76I

IEJO771I

IEJO78I

Explanation: Invalid subprogram
name in a FUNCTION or SUBROUTINE

header statement.

ILLEGAL SUBROUTINE NAME

Explanation: Illegal delimiter or
illegal subroutine name in a CALL

statement.

ASF OUT OF SEQUENCE

Explanation: Statement Function
statement is out of sequence or an
array is not dimensioned prior to

its first use.

TRANSFER TO NON-EXECUTABLE STATE-
MENT

The statement number
referred to by a GO TO, computed
GO TO, or an arithmetic IF state-
ment is a FORMAT or specification
statement.

Explanation:

VARIABLE ALREADY IN COMMON

Explanation: A variable appears
in COMMON more than once or an
inconsistent equate was made
(e.g., the statement COMMON

(a,B,C,A) is illegal).

UNFINISHED STATEMENT

Explanation: A FORMAT statement
is not finished.

PARENTHESIS ERROR

Explanation: A parenthesis is not
closed or is missing. The paren-

theses are not nested properly.

Compiler Action: The compiler
cannot assume their position.

ILLEGAL DELIMITER OR MISSING NAME

An improper delimi-
special character

ter or illegal

was encountered.

ILLEGAL END DO

The last statement

in the range of a DO 1loop cannot
be a nonexecutable statement,
Arithmetic 1IF, GO TO, PAUSE,

IEJO079T

IEJO80I

IEJO81I

IEJO82I

IEJO083I

IEJO8UTI

IEJO085I

IEJO86I

RETURN,
ment.

STOP, or another DO state-

TYPE MUST BE INTEGER SCALAR

Explanation: The DO variable, com-
puted GO TO variable, or the asso-
ciated variable in a DEFINE FILE
statement must be a non-
subscripted integer variable.

COMMA MISSING

Explanation: A required comma was
not encountered.

Compiler Action: The compiler
cannot assume its position.

ILLEGAL FORMAT SPECIFICATION

decimal
fol-

Explanation: Illegal
point or a number is missing

lowing decimal point.
INVALID NUMBER

Explanation: There is an error in

an integer, real, or double-
precision number.
ERROR IN INTEGER
Explanation: Number zero not
allowed in most FORMAT specifi-
cations, a DIMENSION statement, or

in a subscript.
MORE THAN 4 WARNINGS IN STATEMENT

Explanation: More than four warn-

ings have been generated for a
statement.
Compiler Action: The compilation

of the statement is terminated.

THIS MESSAGE IS A COMPILER ERROR

Explanation: Compilers working
text contains meaningless code.

Compiler Action:
tinues.

Compilation con-

ILLEGAL BLANK

Explanation: When NOADJUST is
specified, an illegal embedded
blank is found in the FORMAT
statement.

IEJO87I

IEJO88I

IEJO89I

IEJO090I

IEJO91I

IEJ0921

IEJO93T

IEJO94TI

NUMBER MISSING

Explanation: A number is missing
in E, F, T, A, I, D, or X conver-
sion code or an illegal delimiter
precedes the number.

NESTED PARENTHESIS

Explanation: Not more than one
level of nested parenthesis is
permitted in a FORMAT statement.
ILLEGAL DATA SET REFERENCE NUMRER

Explanation: Data set reference
number must be an integer variable

or a constant within the range 1
to 99.

APOSTROPHE NOT CLOSED

Explanation: An apostrophe was

not found terminating the 1literal

data in a FORMAT statement.

ILLEGAL SIGN

Explanation: A P Format code or a
blank are the only legal delim-
iters following a plus or minus
sign in a FORMAT statement, unless
the sign appears in literal data.

ILLEGAL COMMA

Explanation: An erroneous comma
appears in a FORMAT statement.

NOT IN INTEGER MODE

Explanation: The associated vari-
able indicating the relative posi-
tion of a record in a direct
access FIND, READ, or WRITE state-
ment is not an integer variable.

WARNING -- TOO MANY DECIMAL PLACES

The number of deci-
mal places must be less than the
size of the entire number in a
FORMAT statement. The size of the

Explanation:

entire number is egqual to the
number of decimal places.
Appendix D: FORTRAN E Messages 111

IEJO95I

IEJO96I

IEJO097I

IEJO98I

IEJO099T

IEJ100I

112

STATEMENT NUMBER REFERENCE NOT
FORMAT STATEMENT :

Explanation: The statement number
referred to in a READ/WRITE state-
ment 1is not that of a FORMAT
statement.

ILLEGAL VARIABLE IN I/O LIST

Explanation: The use of subpro-
gram names or constants are not
allowed in an I/O list.

TOO MANY ELEMENTS IN LIST
Explanation: The 1list in the
READ, WRITE, or Computed GO TO
statement contains too many ele-
ments. There are approximately
250 variables permitted in a sin-

gle list. The use of implied DO's
in READ/WRITE statement decreases
the number of variables permitted.

User Response: The statement

should be divided
statements.

into several

NO CHARACTER BETWEEN APOSTROPHES

Explanation: An open apostrophe
is immediately followed by a close

apostrophe in the FORMAT state-
ment. At least one character
should appear within the apos-
trophes.

TOO MANY CHARACTERS BETWEEN APOS-
TROPHES

Explanation: The number of char-
acters appearing within apostrophe
in the FORMAT statement is too
large for the compiler to handle.
That is, not more than 255 charac-
ters should appear between apos-
trophes in a FORMAT statement.

ILLEGAL DO VARIABLE OR CONSTANT
Explanation: DO parameter must be

a nonsubscripted integer variable,
or integer constant.

IEJ123T

IEJ12471

IEJ1251

IEJ1261I

IEJ1271

IEJ1281

IEJ1291

IEJ130I

IEJ1311

FUNCTION NAME NOT ASSIGNED A VALUE

Explanation: The function name is
not defined in its function sub-
program (i.e., it does not appear
on the left side of an equal sign,
as a list item in a READ statement
or as - an argument in a CALL
statement).

NOT IN INTEGER MODE

Explanation: The associated vari-
able indicating the relative posi-
tion of a record in a direct
access FIND, READ, or WRITE state-
ment is not an integer variable.

DO VARIABLE REDEFINED

Explanation: The same variable is
used as the DO variable more than
once in nested DO loops.

FUNCTION ARGUMENT MISSING

Explanation: An argument in a
function reference is missing.

THIS MESSAGE IS A COMPILER ERROR
Explanation: Compiler's inter-

mediate text contains meaningless
code.

Compiler Action:
terminated.

Compilation is

INVALID CALL OR IF STATEMENT

MULTI-DEFINED NAME OR KEYWORD

Explanation: A name is redefined,
or a keyword is used as a vari-
able.

ILLEGAL ARGUMENT

Explanation: An illegal argument
is specified for a call to a
function or subroutine.

WRONG MODE
Explanation: The wmode of the
argument does not agree with the

mode of the in-line function.

IEJ132I

IEJ133I

IEJ135I

IEJ136I

IEJ1371

IEJ139I

IEJ140I

IEJ141I

IEJ142T

IEJ1u43T

INCORRECT NESTING OF DO

Explanation: The last statement in
the range of the DO loop nested
within other DO loops exceeds the
range of one or more of those DO
loops.

ILLEGAL EQUAL SIGN

Explanation: TwWO equal signs

appear in the same statement.

SUBSCRIPT OR ARRAY NOT ALLOWED
Explanation: A subscript or array
is not allowed in Statement Func-
tion definition.

UNDEFINED STATEMENT NUMBER

The statement number
does not exist in the

Explanation:
referred to

program.

NAME MISSING OR ILLEGAL DELIMITER
Illegal delimiter
found. For example, X=A+*B, A
variable or constant is missing
between the two orperators or one
of the operators is superfluous.

Explanation:

WRONG NUMBER OF ARGUMENTS IN CALL

Explanation: The number of argu-
ments in Statement Function ref-
erence or in an in-line function
reference does not agree with the
function definition.

TOO MANY PARAMETERS

Explanation: The maximum number
of arguments allowed in a subpro-
gram call or definition is u48.

ILLEGAL SUBPROGRAM NAME

Explanation: Name of a function
or subroutine call is not defined
as a function or subroutine sub-
program name.

MORE THAN 25 LEVELS OF DO NESTING

Not more than 25 DO
nested.

Explanation:
loops may be

INVALID RESULT FIELD

IEJ1u4uT

IEJ145T

IEJ1461T

IEJ147I

IEJ148T

IEJ149T

IEJ150I

IEJ158I

IEJ1591

Appendix D:

Explanation: The result field of
an arithmetic statement is inval-
id.

ILLEGAL NUMBER OF STATEMENT NUM-
BERS

Explanation: An arithmetic IF
statement must contain exactly
three statement numbers.

PROGRAM TOO BIG

Explanation: The object module

has exceeded the
range.

kasic register

INCONSISTENT EQUATE

Explanation: For example, EQUIVA-
LENCE (A(1),B),(A(2),C),(B,C) or a
double-precision variable in COM-
MON is not on the proper boundary.

TWO VARIABLES IN COMMON ARE EQUAT-
ED

Explanation: Two or more vari-
ables equivalenced are in COMMON.

COMMON EXTENDED UPWARD

Explanation: An EQUIVALENCE
statement cannot cause COMMON to
be extended before the beginning

of the COMMON area.

DUMMY ARRAY OR VARIABLE IN COMMON

A dummy variable or
COMMON.

array 1is not permitted in

EQUATED NAME NOT A VARIABLE

Explanation: The equated name

must be a variable.

WARNING--POSSIBLE MISSING DEFINE
FILE STATEMENT

Explanation: There is no DEFINE
FILE statement for a data set
reference number specified in a
direct access FIND, READ, or WRITE
statement.

WARNING--LAST EXECUTABLE STATEMENT
NOT RETURN, STOP, IF OR GO TO

FORTRAN E Messages 113

IEJ1601I

IEJ161X

IEJ1621

IEJ163I

IEJl64T

IEJ165T

IEJ1661

114

Explanation: The last executable
statement of a program should be a
RETURN, STOP, IF, or an uncondi-
tional GO TO statement.

Compiler action: The compiler
generates a RETURN before the END
statement.

WARNING--STATEMENT CONTAINS SUPER-
FLUOUS INFORMATION

Explanation: The statement has
been compiled but something super-
fluous exists at the end, e.qg.,
REWIND I XYZ

XYZ is superfluous

WARNING--SUGGEST SUBDIVIDING PRO-
GRAM

Explanation: Program causes use
of spill base register producing

inefficient object code

User Response: Subdivide program
into a main program and a series
of subprograms.

WARNING--BLANK CARD

Explanation: The card contains
only a statement number.

Compiler Action: The card is
ignored.

WARNING--TOO MANY DIGITS IN NUMBER

WARNING--STATEMENT NUMBER MISSING

Explanation: Format statement
must have a statement number.
Compiler Action: The statement is
ignored.

WARNING--UNREFERENCED FORMAT
STATEMENT
Explanation: A TFORMAT statement

is not referred +to by any other
statement.
Compiler Action: The FORMAT

statement is not processed.

WARNING--REDUNDANT COMMA

Explanation: There is a redundant
comma in the statement.

IEJ1671

IEJ168I

IEJ1691

IEJ170I

IEJ1711

IEJ1721

IEJ1731I

IEJ174T

Compiler Action: The redundant

comma is ignored.

WARNING--LINE TOO LONG

Explanation: Record length indi-
cated in the FORMAT statement
exceeds length stated or assumed
for the compiler option LINELNG.

WARNING--END CARD MISSING

Explanation: The end of the
source program is reached and an

END card is not there.

Compiler Action: Processing
tinues as if it were there.

con-

WARNING--RIGHT PARENTHESIS MISSING

Explanation: The right parenthe-
sis in the statement is missing.

Compiler Action: Processing
tinues as if it were there.

con-

WARNING--ZERO OR NO COUNT IN X
CONVERSION

Explanation: The number preceding
the X format code is 0 or blank.

Compiler Action: Processing con-
tinues, ignoring the X format
code.

WARNING--PARAMETERS MISSING

Explanation: There are no param—
eters following a left parenthesis
or a comma.

WARNING--UNREFERENCED ASF ARGUMENT

Explanation: Argument of state-
ment function not referred to in
the arithmetic expression of the
statement function.

WARNING--EXCESSIVE RIGHT PARENTHE-
SIS

Compiler Action: The additiocnal
right parentheses in the statement
are ignored and processing contin-
ues.

WARNING--ARRAY
USED AS SCALAR

Explanation: The name of the
array is not followed by a sub-
script enclosed in parentheses.

IEJ175I WARNING--STATEMENT NUMBER ON DEC-

LARATIVE STATEMENT
Explanation: The statement number

associated with the declarative
statement is superfluous.

LOAD MODULE EXECUTION DIAGNOSTIC MESSAGES

The 1load module produces three types of
diagnostic messages:

® Operator messages.

e Execution error messages.
Program interrupt messages.

Operator Messages

Operator messages for STOP and PAUSE are
generated by FORTRAN load modules.

The message for a PAUSE is of the form
yy IHCO01A PAUSE XXXXX
where:
yy is the identification number and

XXXXX is the number specified in the
PAUSE source statement.

Explanation: A PAUSE is executed: The
programmer should give instructions that
indicate the action to be taken by the

operator when the PAUSE is encountered.

User Response: To resume execution, the
operator presses the REQUEST key. When the
PROCEED light comes on, the operator types

REPLY yy,'Z'

where:
yy 1is the identification number and %

is any letter or number. To resume

program execution the operator must

press the alternate coding key and a

numeric 5.

of

The message for a STOP statement 1is

the form
THC002I STOP XXXXX

where:
XXXxX 1is the number specified in the

STOP source statement.

User Response: None

Program Interrupt Messages

Program interrupt messages containing
the o01ld program status word (PSW) are
written when an exception occurs. The

format is:

IHC210I PROGRAM INTERRUPT (P) - OLD PSW IS

9
XXXXXXX) CUXXXXXXXX
D
F
The letter P in the message indicates
that the interruption was precise. This
will always be the case for non-

specification interrupt messages in FORTRAN
except when wusing machines with special
hardware on which imprecise interruptions
may occur.

The four characters in the PSW (i.e., 9,
C, D, or F) represent the code number (in
hexadecimal) associated with the type of
interruption. The following text describes
these interruptions.

Fixed-Point-Divide Exception: The fixed-
point-divide exception, assigned code
number 9, is recognized when division of a
fixed-point number by zero is attempted. A
fixed-point divide exception would occur
during execution of the following state-
ments:

J=0
I=7
K=I/J

Exponent-Overflow Exception: The exponent-
overflow exception, assigned code number C,
is recognized when the result of a
floating-point addition, subtraction,
multiplication, or division is greater than
or equal to 163 (approximately 7.2 x
1073)., For example, an exponent-overflow
would occur during execution of the state-
ment

A = 1.0E+75 + 7.2E+75

When the interrupt occurs, the result
register contains a floating-point numrber
whose fraction and sign is correct. Howev-
er, the number is not wusable for further
computation since its characteristic field
no longer reflects the true exponent. The
content of the result register as it exist-
ed when the interrupt occurred is printed
following the program interrupt message
with the format:

Appendix D: FORTRAN E Messages 115

REGISTER CONTAINED hhhhhhhhhhhhhhhh

where: ‘
hhhhhhhhhhhhhhhh is the floating-point

number in hexadecimal
notation.

Exponent overflow causes "exponent
wraparound" -- i.e., the characteristic
field represents an exponent that is 128
smaller than the correct one. Treating

bits 1 to 7 (the exponent characteristic
field) of the floating-point number as a
binary integer, the true exponent (TE) may
be computed, as follows:

TE=(Bits 1 to 7)+128-6U4

Before program execution continues, the
FORTRAN library sets the result register to
the largest possible floating-point number
that can be represented in short precision
(16%3*%(1-16-°)) or in long precision
(1663%(1-16-14)), but the sign of the
result is not changed. The condition code
is not altered.

Exponent-Underflow Exception: The exponent-

underflow exception, assigned code number
D, 1is recognized when the result of a
floating-point addition, subtraction,
multiplication, or division is less than
16-65 (approximately 5.4x10-79). An
exponent-underflow exception would occur
during execution of the statement:
A = 1.0E-50 * 1.0E-50

Although exponent underflows can be

masked, FORTRAN jobs are executed without
the mask so that the library will handle
such interrupts.

When the interrupt occurs, the result
register contains a floating-point number
whose fraction is normalized and whose sign
is correct. However, the number is not
usable for further computation since its
characteristic field no longer reflects the
true exponent. The content of the result
register as it existed when the interrupt
occurred is printed following the program
interrupt message with the format:

REGISTER CONTAINED hhhhhhhhhhhhhhhh

where:
hhhhhhhhhhhhhhhh is the floating-point
number in hexadecimal
notations.
Exponent underflow causes "exponent
wraparound" - i.e., the characteristic

field represents an exponent that is 128
larger than the correct one. Treating bits
1 to 7 (the exponent characteristic field)
of the floating-point number as a binary

116

c:Eloat

integer, the true (TE)

computed as follows:

exponent may be

TE=(Bits 1 to 7)-128-64

Before program execution continues, the
FORTRAN library sets the result register to
a true zero of correct precision. If the
interrupt resulted from a floating-point
addition or subtraction operation, the con-
dition code 1is set to zero to reflect the
setting of the result register.

Note: The System/360 Operating System FOR-
TRAN programmer who wishes to take advan-
tage of the "exponent wraparound" feature
and handle the interrupt in his own program
must call an assembly language subroutine
to issue a SPIE macro instruction which
will override the FORTRAN interruption rou-
tine.

ing-Point-Divide) The
floatTHI=TO =qIvide" assigned
code number F, is recognized when division
of a floating-point number by zero is
attempted. A floating-point divide

exception would occur during execution of
the following statements:

Execution Error Messages

In the following text, the error codes
are given with an explanation describing
the type of error. Preceding the explana-
tion, an abbreviated name is given indicat-
ing the origin of the error. Unless other-
wise specified, a condition code of 16 is
generated and the job step is terminated.

The abbreviated name for the
the error is:

origin of

IBC - IHCFCOME, IHCFIOSE, and IHCDIOSE
routines (perform input/output conver-
sions for FORTRAN load module execution
and act as an interface between FORTRAN
I/0 statements and the control program).

LIB - SYS1.FORTLIB.
of the messages, the module name is
given followed by the entry point
name (s) enclosed in parentheses.

In the explanation

IBERR - IHCIBERR Routine (detects error

conditions that arise because a load
module 1is executed that has FORTRAN
language errors indicated in diagnostic

messages given when the source module

was compiled).

Form C28-6603-2

Page Revised 5/1/68 by

LIB - SYS1.FORTLIB.
of the
given

name(s) enclosed in

TNL N28-0580

In the explanation
the module name is
the entry point
parentheses.

messages,
followed by

IBERR - IHCIBERR Routine (detects error

conditions that arise
module is

because a load

executed that has FORTRAN

language errors indicated in diagnostic

messages

given when the source module

was compiled).

IHC2111

IHC212I

IHC2131

IHC214T

IHC2151

| THC2161

IHC2171

IHC2181I

IHC2191I

Explanation: IBC -- An invalid
character has been detected in a
FORMAT statement.

Explanation: IBC -- An attempt
has been made to read or write,
under FORMAT control, a record
that exceeds the BLKSIZE value.

Explanation: IBC -- The input
list in an input/output statement

without a FORMAT specification is
larger than the logical record.

Explanation: FIOCS -- For records
in sequential data sets written
without FORMAT control, for which
the RECFM subparameter must be V
(variable), either U (undefined)
or F (fixed) was specified.

Explanation: IBC -- An invalid
character exists for the decimal

input corresponding to an I, E, F,
or D format code.

SLITE-SLITET X IS AN ILLEGAL VALUE

Explanation: LIB -- An invalid
sense light number was detected in
the arqument list in a call to the
SLITE or SLITET subroutine.

Explanation: IBC -- An end of
data set was sensed during a READ
operation; that 1is, a program

attempted to read beyond the data.

I/0 ERROR XXX...XXX

Explanation: IBC -- A permanent
input/output error has been
encountered, or an attempt has

been made to read or write with

magnetic tape a record that is
less than 18 bytes long.
XXX...XXX is the character string

formatted by the SYNADAF macro
instruction. For an interpreta-
tion of this information, see IBM
System/360 Operating System Super-
visor and Data Management Macro-
Instructions, Form C28-6647.

Explanation: FIOCS -- A data set
is referred to in the load module,

IHC2201

IHC230I

IHC231I

IHC232I

IHC233I

IHC2341

IHC2351I

IHC236I

IHC2371

| 1THC241I

Appendix D:

but no DD statement is supplied
for it, or a DD statement has an
erroneous ddname.

Explanation: FIOCS -- A data set
reference number exceeds the limit
specified for data set reference
numbers when this operating system
was generated.

SOURCE ERROR AT ISN xxxxXx - EXECU-
TION FAILED

IBERR -- During load
module execution, a source state-
ment error 1is encountered. The
internal statement number for the
source statement is XxxX.

Explanation:

Explanation: DIOCS -- Direct ac-
cess input/output statements are

used for a sequential data set, or
input/output statements for a
sequential data set are used for a
direct access data set.

Explanation: DIOCS -- Relative
position of a record is not a
positive integer, or the relative
position exceeds the number of
records in the data set.

Explanation: DIOCS -- The record
length specified in the DEFINE

FILE statement exceeds the physic-
al limitation of the volume
assigned to the data set in the DD
statement.

DIOCS -- The data

Explanation:

set assigned to print execution
error messages cannot be a direct
access data set.

Explanation: DIOCS -- A data set
reference number assigned to a
direct access data set has been

used for a sequential data set.

Explanation: DIOCS -- A READ is
executed for a direct access data
set that has not been created.

Explanation: DIOCS -- Length of
record read did not correspond to
length of record specified in the
DEFINE FILE statement.

FIXPI INTEGER BASE=0, INTEGER
EXPONENT=X, LE O

Explanation: LIB -- For an ex-
ponentiation operation (I**J) in
the subprogram IHCFIXPI(FIXPI#)
where I . and J represent integer
variables or integer constants,

I=0 and J<0 is an error.

FORTRAN E Messages 117

Form C28-6603-2
Page Revised 5/1/68 by TNL N28-0580

IHC242T

IHC2431

IIHCZQQI

| IHC2451

| IHC2511

IHC2521

118

FRXPI REAL*4 BASE=0.0,
EXPONENT=X, LE 0

Explanation: LIB -- For an ex-
ponentiation operation (R**J) in

the subprogram IHCFRXPI(FRXPI#),
where R represents a real variable
or constant, and J represents an

integer variable or constant, R=0
and J<0 is an error.

FDXPI REAL#*8 BASE=0.0, INTEGER
EXPONENT=X, LE 0

Explanation: LIB -- For an ex-
ponentiation operation (D**J) in

the subprogram IHCFDXPI (FDXPI#),
where D represents a double preci-
sion variable and J represents an

integer variable or constant, D=0
and J<0 is an error.

FRXPR REAL*Y BASE=0.0, REAL*Y4
EXPONENT=X.X, LE O

Explanation: LIB -- For an ex-
ponentiation operation (R*#*S) in

the subprogram IHCFRXPR(FRXPR#),
where R and S are real variables
or real constants, R=0 and S<0 is
and error.

FDXPD REAL*8
EXPONENT=X. X,

BASE=0.0, REAL*8

LE 0

Explanation: LIB -- For an ex-
ponentiation operation (D**P) in
the subprogram IHCFDXPD(FDXPD#),
where D and P are double precision
variables or double precision con-
stants, D=0 and P<0 is an error.

SQRT NEGATIVE ARGUMENT=X.X

Explanation: LIB -- In the sub-
program IHCSSQRT(SQRT), an argu-

ment less than 0 is an error.

EXP ARG=X.X, GT 174.673

Explanation: LIB -- In the sub-
program IHCSEXP(EXP), an argument
greater than 174.673 is an error.

IHC254T

| 1HC261I

| 1HC2621

| 1HC2631

THC264T

INTEGER |IHC253I ALOG-ALOG10 ARG=X.X LE ZERO

Explanation: LIB -- In the sub-
program IHCSLOG(ALOG and ALOG10),
an argument less than or equal to

zero' is an error. Because this
subprogram is called by an
exponential subprogram this mes-
sage also indicates that an

attempt has been made to raise a
negative base to a real power.

SIN-COS /ARG/=/X.X(HEX=X)/,
GE PI*2%%18

Explanation: LIB -- In the sub-
program IHCSSCN(SIN and COS), the
absolute value of an argument
greater than or equal to 218e=x is
an error.

(218ex =,82354966406249996D+06)

DSQRT NEGATIVE ARGUMENT=X.X

Explanation: LIB -- In the sub-
program IHCLSQRT(DSQRT), an argu-
ment less than 0 is an error.

DEXP ARG=X.X, GT 174.673

Explanation: LIB -- In the sub-
program IHCLEXP(DEXP), an argument
greater than 174.673 is an error.

DLOG-DLOG10 ARG=X.X, LE ZERO

Explanation: LIB -- In the subpro-
gram IHCLLOG(DLOG and DLOG10), an
argument less than or equal to
zero 1is an error. Because the
subprogram is called by an
exponential subprogram, this mes-
sage also indicates that an
attempt has been made to raise a
negative double precision base to
a power.

DSIN-DCOS /ARG/=/X.X(HEX=X)/,
GE PI*2%#*50

Explanation: LIB -- In the sub-
program IHCLSCN(DSIN and DCOS),
the absolute value of an argument
greater than or equal to 25%ex jis
an error.

(250 = =,35371188737802239D+16)

A, device class 28,55
ABEND dump 89
ABSTR subparameter 81
Accessing unused space 82
Account number 18
Accounting information
in the EXEC statement 23
in the JOB statement 18
ACCT parameter 23
ACCT.procstep parameter 23
Additional input to the linkage
editor 43
ADJUST compiler option
AFF subparameter 81
Affinity for devices 81
ALIAS linkage editor control statement U5
ALX subparameter 54
Argument list 79,99,102-104
Assembler language subprograms
addresses of arguments 102-104
argument list 99
calling sequence 99
COMMON area, use of 101
linkage conventions 100,101
register use 100
save area 99
subroutine references 99
Assigning names to temporary data
sets 30,51
Asterisk parameter (*) 26
Automatic call library 41,42,43
Average record length subparameter
54,81,82

39,73

B, device class 28

BACKSPACE statement 149,62
Batched compilation 39-40

BCD compiler option 38

BLKSIZE subparameter 55,56
Blocked records 36,41-42,59,61
BUFNO subparameter 55,57,62
Bypassing a job step 23

Byte 35

Card input and output 26,27
Carriage control characters
Catalog 10
Cataloged data sets 10
Cataloged procedure
IBM supplied 12-13
invocation of 21
overriding 13,22-23,24,68-72
steps 13
user-written 67
Cataloged procedure name parameter 21
CATLG subparameter 31
CHANGE linkage editor control statement 45
Channel separation 81
Column binary mode 27
Comments in job control statements 15
COMMON area 75,101
Compile and link editor cataloged procedure

27,56

INDEX

(FORTECL) 65
Compile cataloged procedure (FORTEC) 65
Compile, link edit, and execute cataloged
procedure (FORTECLG) 65

Compiler
ddnames 35-36
device classes 36
error/warning messages 87,106-115
informative messages 86,106

multiple or batched compilation 39-40
name 35

object module deck structure 86-87
options 37-39

restrictions 84
source listing 85
storage map 85
concatenating data sets
with other data sets 25
with the system library 26
COND parameter
in the EXEC statement 23
in the JOB statement 18
COND.procstep parameter 23
Condition code
in the EXEC statement 23
in the JOB statement 18
meaning of 18
Constants 35
CONTIG subparameter 54
Continuing control statements 15
Control fields in variable-length
records 59,60,61
Control statement messages 18
conversion for tape data sets 56
Creating data sets 50-6u4
Cross-reference list, linkage editor 88
CYL subparameter 54,81,82
Cylinders, direct-access device 54,81
DATA parameter 27
Data in input stream 27
Data set- reference number 47
Data sets 9
cataloged 10
generation 10
indexing 10
labels 10
name
qualified 10
unqualified 10
organization
direct access 12
partitioned 12
sequential 12
residence 10
DCB parameter 27,55
DCB ranges and assumptions
DD statement
asterisk parameter 26
DATA parameter 27
DCB parameter 27,55,56
ddname 24,52

63,64

Index 119

DDNAME parameter 52
definition of 24,50,80
DISP parameter 30,55
DSNAME parameter 30,51
DUMMY parameter 51
LABEL parameter 48,54-55
SEP parameter 80
SPACE parameter 53-54,79,81
SPLIT parameter 81
SUBALLOC parameter 82
SYSOUT parameter 28,49,55
UNIT parameter 28,52,81
VOLUME parameter 52-53
ddname 24,52
DDNAME parameter 52
Deck compiler option 38,85
Deck structure, object module 86
DEFER subparameter 80
DEFINE FILE statement
DELETE subparameter 30
Delimiter statement 31
DEN subparameter 56
Density, tape 56
Device class 10
Diagnostic messages 86
Dictionary for the compiler 84
Direct access data sets
buffer length 62
number of buffers 62
record length 62
-Direct access programming
associated variable 79
DEFINE FILE statement 79
randomizing techniques 77
record chaining 78
skeleton records 78
synonyms 78
Directory
index 12
quantity 54,81
DISP parameter 30,55
Disposition of a data set
DO loops 7T4-75
Double precision 35
Double-word 35
DSNAME parameter 30,51
DUMMY parameter 51
DUMP subroutine 76-77

62,79

77-79

30,55

EBCDIC compiler option 38
EBCDIC mode 27
END card for object modules 85

END FILE statement U47,48,62

ENTRY linkage editor control statement 45

EQUIVALENCE statement 83

Error message data set 49

Error/warning messages
generated by the compiler 87,106-115
generated by the linkage editor 88
generated for load modules 89,115-118

ESD card 85
Exceptions

exponent-overflow 89,115
exponent-underflow 89,115
fixed-point-divide 89,115

floating-point-divide
EXEC statement

ACCT parameter 23

ACCT.procstep parameter 23

89,116

120

ACCT.procstep parameter 23
COND parameter 23
COND.procstep parameter 23
definition of 19
name 21
PARM parameter 22,37,69
PARM.procstep parameter
PGM parameter 21
PROC parameter 21
Execution, load module
DCB assumptions 64
ddnames 46-48
device classes U9
error message data set 49
errors (see error-warning messages)
program name 46
restrictions 83
storage map 86
EXPDT subparameter 55
Expiration date for data sets 55
Exponent-overflow 89,115
Exponent-underflow 89,115
Exponentiation 73-74
External references

22,69

11,41-45,86

Fields in job control statements
name field 15
operand field 15
operation field 15

Fixed-length records 56,57,58,59

Fixed-point-divide 89,118 /2
Floating-point-divide 89,1182
FORTEC

description of 65

use of 13,32,65
FORTECL

description of 65

use of 13,33,65
FORTECLG

description of 67

use of 13,34,65
FORTELG

description of 65

use of 13,33-34,65
FORTRAN library 12,41,43,83
FORTRAN records

direct-access data sets 62

sequential data sets 56,57
FORTRAN sequence number 47-49
FTxxFyyy 47

Generation data group 10,29
Generation data set 10,29
Generation number 10,29

IEJFAAAO0 35

IEWL 41
IEWLE150 41
IEWLE180 41
IEWLELLO 41

INCLUDE Linkage Editor Control Statement

42,43

Index

directory 12

for cataloged data sets 10
Index name 10
Informative messages 86,106
Initialization in programs 73
Input

to the compiler 32,37

to the linkage editor 41-42
Input stream 9,26
INSERT linkage editor control statement U5
Integer constants and variables 35
Intermediate storage device 35,55
Internal statement number 87
Interrupt messages 89,118
I1/0 devices

address 27,52,80,81

name 27,52,80,81

number of 27,52,80,81

Job 9
Job control statements
comments 15
continuing 15
notation for defining
JOB statement
account number parameter 18
accounting information parameter 18
COND parameter 19
definition of 17
MSGLEVEL parameter 18
name 18
programmer's name parameter 18
Job step 9
JOBLIB DD statement
Jobname 18

14-15

16-17

26,31,47

KEEP subparameter 30
Keyword parameters and subparameters 15
KReyword.procstep 22,69

LABEL parameter U48,54-55
Labels, data set 10,28,48,54-55

Length
buffer 56,62
of FORTRAN records 57,62
of logical records 57,62

LET linkage editor option 45
Library
automatic call 41,42,43
FORTRAN 12,41,43,83
private 21
system 21
LIBRARY linkage editor control
statement 43
LINELNG compile option 38
Link edit and execute cataloged
procedure (FORTELG) 65
Linkage conventions 100,101
Linkage editor
additional input 43
automatic call library 41,42,u43
control statements 43-44
cross-reference list 45,88
ddnames used with 42
definition of 11
device classes 42
diagnostic messages 88

module map 45,88
name 41
options 43-44

primary input 41
priority 43
restrictions 84
secondary input 41
LIST linkage editor option 46

LOAD compiler option 38
Load module
cross-reference list 88
definition of 11
execution of (see execution, load
module)
map 88
restrictions 84
Locations, storage 35
Logical records
fixed-length 56-63
format of 56-63
variable-length 56-63
LRECL subparameter 56

MAP
compiler option 38
linkage editor option 45
Member of a PDS 12
Messages
compiler error/warning
compiler informative
control statement 18
linkage editor 88
load module 89,115-118
operator 89,115
program interrupt 89,118
source module diagnostic 86,87
Minimum system requirements 73
MOD subparameter 30
MODE subparameter 27
Module map
load module 88
object module 73
MSGCLASS parameter 19
MSGLEVEL parameter 18
Multiple compilation 39-40
Multiple link editing 44-45
Multiprogramming with a variable number
of tasks (MVT)
cataloged procedures 66,82
job control language 14
job management 14
programming considerations 82
MVT (see Multiprogramming with a variable
number of tasks)
MXIG subparameter 54

87,106-115
86,106

NAME
compiler option 38,40
linkage editor control statement U444
Name subparameter 28,52,81
NCAL linkage editor option 46
NEW subparamter 30
NL subparameter 48,55
NOADJUST compiler option
NODECK compiler option 38
NOLOAD compiler option 38
NOMAP compiler option 38
NOSOURCE compiler option 38
Notation for defining control statements
16-17
Number of I/O devices subparameter
28,52,81

39,73

Object module
card deck 85-86
definition of 11
map 85

Index 121

OLD subparameter 30 Record chaining 78

Optimization REF subparameter 53
ADJUST option 73 REGION parameter 19,24
direct-access programming 77-79 Register use 100
DUMP subroutine 76-77 REPLACE linkage editor control
implied DO in I/O statements 75 statement U5
initialization 73 RETAIN subparameter 52
I1/0 operations 75,77-79 Retention period for data sets 55
NOADJUST option 73 RETPD subparameter 55
of arithmetic expressions 73-74 Retrieving data sets 28-29,48-49
of DO loops 7u4-75 REWIND statement 49,62
of exponentiation 73-74 RLD cards 85
passing arguments 79 RLSE subparameter 54
PDUMP subroutine 76-77 ROUND subparameter 54
program structure 75-76
subscripts 74-75 Save area 99
Options Secondary input 41
compiler 37-39 Secondary quantity subparameter 53,81
linkage editor 43-44 Segment numbers 88
Organization of data sets 12 SEP parameter 81
output SEP subparameter 81
of a load module 88-89 Sequential data set 12
of the compiler 35-36,85-88 SER subparameter 52
of the linkage editor 41,88 Serial number, volume 53
OVERLAY linkage editor CONTROL SHR subparameter 30
Statement 45 SIZE compiler option 38,73
Overlaying load modules U6 Skeleton records 78
Overriding cataloged procedures SL subparameter 48,55
13,22-23,24,68-72 SOURCE compiler option 38,85
OVLY linkage editor option 46 Source listing 85
Source module 11
Parameters SPACE compiler option 36,39
keyword 15 Space on direct-access volumes 53-54,81
positional 15 SPACE parameter 53-54,81
PARM parameter 22,37,69 Specifying execution of a program
PARM.procstep parameter 22,69 described in a cataloged procedure 22
Partitioned data set 12 described in a previous job step 21
PASS subparameter 31 in a library 21
Passed data sets 31 SPLIT parameter 81
Passing arguments STACK subparameter 27
call by name 79 Stacker selection 27
call by value 79 Standard labels 10,28,48,54
PAUSE statement 89,115 Step
PDS (see partioned data set) job 9
PDUMP subroutine 76-77 procedure 13
PGM parameter 21 Stepname 18
Positional parameters and subparameters 15 STOP statement 89,115
PRFRM compiler option 36,39,63 Storage map 86
Primary input 41 SUBALLOC subparameter 82
Primary quantity subparameter 53,81 Subparameters 15
Printer spacing 27 Subprograms, assembler language 99
Priority schedulers 14 SYSCP device class 37
PRIVATE subparameter 52 SYSDA device class 37
Private volume 52 SYSIN ddname 32,36,37
PROC parameter 21 SYSLIB ddname 42
Procedure step 13 SYSLIN ddname 36,37,42
Procedure, cataloged 12-13 SYSLMOD ddname 42
Procstep 21,22 SYSOUT parameter 28,49,55
Procstep.ddname 25 SYSPRINT ddname 36,37
Procstep.SYSIN 32 SYSPUNCH ddname 36,37
Programmer's name parameter 18 - SYSSQ device class 37
PRTSP subparameter 27 SYSUT1 ddname 36,37
PRTY parameter 19 SYSUT2 ddname 36,37

SYS1.FORTLIB 12,41,83,116
Qualified name 10
Tape density 56

Randomizing techniques 77 Temporary names for data sets 30,52
Real constants and variables 35 Terminating a job 18
RECFM subparameter 56 TRK subparameter 54,82

122

TRTCH subparameter 56
TXT card 85

Unblocked records
direct-access data set 62-63
sequential data set 56-62
UNCATLG subparameter 31
Undefined logical record 59
UNIT parameter 27,52,80
Unit record data sets 26-27,55
Unqualified name 10

Variable-length logical record 58,59
Variables 35

Volume
Volume
Volume
VOLUME
Volume
Volume

10

count subparameter 52
mounting, deferred 80
parameter 52-53

sequence number subparameter
serial number 53

Warning messages (see error/warning
messages)

Word

35

XCAL linkage editor option 45
XREF linkage editor option 45,88

Index

52

123

C28-6603-2

TSI

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corpaoration

821 United Nations Plaza, New York, New York 10017
[International]

*yY°S°n UT pa3uTid

Z-€099-820

. AR

IBM Technical Newsletter File Number $360-25
Re: Form No. C28-6603-2
This Newsletter No. N28-0580
Date May 1, 1968
Previous Newsletter Nos. N28-0578

IBM System/360 Operating System
FORTRAN IV (E) Programmer's Guide

This Technical Newsletter amends the Systems Reference Library
publication IBM System/360 Operating System: FORTRAN IV (E)
Programmer's Guide, Form C28-6603-2.

In the referenced publication, replace the pages listed below
with the corresponding pages attached to this newsletter:

Pages to be Pages to be
Removed Inserted

37,38 37,38,38.1

49 through 52 49 through 52

55,56 55,56,56.1

73 through 76 73 through 76

81 through 84 81 through 84

116.1,117,118 117,118

Changes to text are indicated by a vertical line to the left of
the change; changes to illustrations are shown by the symbol (e)
to the left of the caption.

Summary of Amendment

The changes in this newsletter correspond to Release 16 of the
IBM System/360 Operating System.

This newsletter explains how the FORTRAN IV (E) user might
possibly make use of the optional Extended Error Message facility.
To do so, he must select the facility at system generation time
and use the FORTRAN G or H library. In addition, this newsletter
lists the text of messages produced when the mathematical library
detects certain error conditions. There are also miscellaneous
clarifications and corrections.

File this cover letter at the back of the publication. It will
then serve as a record of the changes received and incorporated.

IBM Corporation, Programming Systems Publications, 1271 Avenune of the Americas, New York, N.Y. 10020

PRINTED IN U.S.A.

=6 MAR 1989

Technical Newsletter File Number $360-25
Re: Form No. C28-6603-2

This Newsletter No. N28-0586

Date November 15, 1968

Previous Newsletter Nos. N28-0578

(applies to =2)

N28-0580

(applies to =2)

IBM System/360 Operating System
Basic FORTRAN 1V (E) Programmer's Guide

This Technical Newsletter, a part of Release 17 of the IBM
System/360 Operating System, provides replacement pages for the
publication IBM System/360 Operating System: FORTRAN IV (E)
Programmer's Guide, Form C28-6603-2. These replacement pages
remain 1in effect for subsequent releases unless specifically
altered. Pages to be inserted and/or removed are listed below.

Pages

Cover, preface
11-16.1

19-22

25-32 (31.1 added)
37-38.1

47-56,1

57-58

61-62,1

75-76.1

77-78.2

Changes to the text, and small changes to illustrations, are indi-
cated by a vertical line to the left of the change; changed or
added illustrations are denoted by the symbol e to the left of the
caption.

Summary of Amendments

This newsletter contains information describing two newly supported
FORTRAN features: logical backspace and partitioned data set
processing. New sections have also been added to explain how to
use the comment statement, how to increase processing efficiency,
and how to avoid operator intervention for file-protected tape
volumes., Additional information relating to the DISP parameter of
the DD statement is also included, and miscellaneous clarifications
and corrections have been made throughout the publication,

File this cover letter at the back of the publication to provide a
record of changes.

IBM Corporation, Programming Publications, 1271 Avenue of the Americas, New York, N.Y. 10020

PRINTED IN U.S.A.

